Understanding Model Counting for S-acyclic
CNF-formulas

Johann Brault-Baron*!, Florent Capelli’?, and Stefan Mengel*3

1 LSV UMR 8643, ENS Cachan and Inria, France
2 IMJ UMR 7586 - Logique, Université Paris Diderot, France
3 LIX UMR 7161, Ecole Polytechnique, France

—— Abstract

We show that #SAT on (-acyclic CNF-formulas can be solved in polynomial time. In contrast
to previous algorithms for other structurally restricted classes of formulas, our algorithm does
not proceed by dynamic programming. Instead, it works along an elimination order, solving
a weighted version of constraint satisfaction. We give evidence that this deviation from more
standard algorithms is no coincidence by showing that it is outside of the framework recently
proposed by Saether et al. (SAT 2014) which subsumes all other structural tractability results for
#SAT known so far.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Combi-
natorics, G.2.2 Graph Theory

Keywords and phrases model counting, hypergraph acyclicity, structural tractability

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.143

1 Introduction

The propositional model counting problem #SAT is, given a CNF-formula F, to count
the satisfying assignments of F'. #SAT is the canonical #P-complete problem and is thus
central to the area of counting complexity. Moreover, many important problems in artificial
intelligence research reduce to #SAT (see e.g. [19]), so there is also great interest in the
problem from a practical point of view.

Unfortunately, #SAT is computationally very hard: even for very restricted CNF-
formulas, e.g. monotone 2-CNF-formulas, the problem is #P-hard and in fact even #P-
hard to approximate [19]. Thus the focus of research in finding tractable classes of #SAT-
instances has turned to so-called structural classes, which one gets by assigning a graph or
hypergraph to a CNF-formula and then restricting the class of (hyper)graphs considered.
The general idea is that if the (hyper)graph associated with an instance has a treelike de-
composition that is “nice” enough, e.g. a tree decomposition of small width, then there is
a dynamic programming algorithm that solves #SAT for the instance. In the recent years,
many such dynamic programming algorithms for ever more general classes of graphs and
hypergraphs have been found, see e.g. [13, 21, 18, 22, 7].

It had been an open question for some time how far this approach could be pushed, until
very recently Saether, Telle and Vatshelle, in a striking contribution [20], introduced a new

* This work has received support from the French Agence Nationale dela Recherche, AGGREG project
reference ANR-14-CE25-0017-01.

T Partially supported by ANR Blanc CompA ANR-13-BS02-0001.

¥ Partially supported by a grant from Qualcomm.

© Johann Brault-Baron, Florent Capelli, and Stefan Mengel; SYMPOSIUM

B licensed under Creative Commons License CC-BY LV \n ON THEORETICAL
32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015). n ASPECTS
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 143-156 4 7 / OF COMPUTER

\\v Leibniz International Proceedings in Informatics SCIENCE
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.143
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

144

Understanding Model Counting for 3-acyclic CNF-formulas

framework for #SAT. This framework which we call STV-framework is centered around
a new width measure called PS-width and aims to formalize the most general class for
which efficient dynamic programming for #SAT is possible (see Section 2.5 for details). We
consider the STV-framework to be a very convincing formalization, delineating the limits
of dynamic programming for #SAT. This belief is supported by the fact that in the full
version of this paper we show that the STV-framework gives a uniform explanation for all
previously known structural tractability results for #SAT.

In this article, we focus on S-acyclic CNF-formulas, i.e., formulas whose associated
hypergraph is S-acyclic. There are several different reasonable ways of defining acyclicity of
hypergraphs that have been proposed [12, 11], and S-acyclicity is the most general acyclicity
notion generally considered in the literature for which #SAT could be tractable (see the
discussions in [17, 7]). The complexity of #SAT for S-acyclic formulas is left as an open
problem in [7] because it is interesting for several reasons: First, up to this paper, it was
the only structural class of formulas for which we know that SAT is tractable [17] without
this directly generalizing to a tractability result for #SAT. This is because the algorithm
of [17] does not proceed by dynamic programming but uses resolution, a technique that is
known to generally not generalize to counting. Moreover, S-acyclicity can be generalized to
a width-measure [15], so there is hope that a good algorithm for S-acyclic formulas might
generalize to wider classes for which even the status for SAT is left as an open problem
in [17]. Since decomposition techniques based on hypergraph acyclicity tend to be more
general than graph-based techniques [14], this might lead to large, new classes of tractable
#SAT-instances.

The contribution of this paper is twofold: First, we show that #SAT on S-acyclic formu-
las is tractable. In fact, we show that a more general counting problem which we call weighted
counting for constraint satisfaction with default values, for short #CSPqe¢, is tractable on
[f-acyclic hypergraphs. We remark that there is another line of research on #CSP, the
counting problem related to constraint satisfaction, where dichotomy theorems for weighted
#CSP depending on fixed constraint languages are proven, see e.g. [5, 6]. We stress that
we do not assume that the relations of our instances are fixed but we consider them as
part of the input. Thus our results and those on fixed constraint languages are completely
unrelated. Instead, the structural restrictions we consider are similar to those considered
e.g. in [9], but since we allow clauses, resp. relations, of unbounded arity, our results and
those of [9] are incomparable as well.

We note that our algorithm is very different in style from the algorithms for structural
#SAT in the literature. Instead of doing dynamic programming along a decomposition,
we proceed along a vertex elimination order which is more similar to the approach to SAT
in [17]. But in contrast to using well-understood resolution techniques, we develop from
scratch a procedure to update the weights of our #CSPyes instance along the elimination
order. Our algorithm is non-obvious and novel, but it is relatively easy to write down and its
correctness is easy to prove. Indeed, most of the work in the full version of this paper is spent
on showing the polynomial runtime bound which requires a thorough understanding of how
the weights of instances evolve during the algorithm. Unfortunately, these considerations
cannot be presented in this version of this paper due to space restrictions.

Our second contribution is showing that our tractability result is not covered by the
STV-framework, which, as discussed before, covers all other known structural tractability
results for #SAT. In fact, we show that from [20] we cannot even get subexponential runtime
bounds for S-acyclic #SAT. This can be seen as an explanation for why the algorithm for
[B-acyclic #SAT is so substantially different from the algorithms from the literature. We

J. Brault-Baron, F. Capelli, and S. Mengel

feel that the deviation from the usual dynamic programming techniques is not a coincidence
but instead due to the fact that S-acyclic #SAT is the first known tractable class which is
not explained by the unifying framework of [20]. Thus, our algorithm indeed introduces a
new algorithmic technique for #SAT that allows the solution of instances that could not be
solved with techniques known before.

2 Preliminaries and notation

2.1 Weighted counting for constraint satisfaction with default values

Let D and X be two sets. DX denotes the set of functions from X to D. We think of X
as a set of variables and of D as a domain, and thus we call a € DX an assignment to the
variables X. A partial assignment to the variables X is a mapping in DY where Y C X. If
a € DX and Y C X, we denote by aly the restriction of a onto Y. For a € DX and b € DY,
we write a ~ b if a|xny = b|xny and if a ~ b, we denote by a U b the mapping in DXVY
with (a Ub)(z) = a(x) if x € X and (a Ub)(x) = b(z) otherwise. Let a € DX, y ¢ X and
d € D. We write a @, d := aU{y — d}. We denote by Q the set of nonnegative rationals.

» Definition 1. A weighted constraint with default value ¢ = (f,) on variables X and
domain D is a function f : S — Q with S C DX and u € Q. S = supp(c) is called the
support of ¢, p(c) = p is called the default value and we denote by var(c) = X the variables
of c. We define the size |¢| of the constraint ¢ to be |c| := |S]| - |var(¢)|. The constraint ¢
naturally induces a total function on DX, also denoted by ¢, defined by c(a) := f(a) ifa € S
and c¢(a) := p otherwise.

To ease the notation, when a is an assignment to a set X D var(c), we make the convention
c(a) = c(alvar(c)). Observe that we do not assume var(c) to be non-empty. A constraint whose
set of variables is empty has only one possible value in its support: the value associated with
the empty assignment (the assignment that assigns no variable).

Since we only consider weighted constraints with default value in this paper, we will only
say weighted constraint where the default value is always implicitly understood. Note that
we restrict ourselves to non-negative weights, because non-negativity will be crucial in the
proofs. This is not a problem in our context, non-negative numbers are sufficient to encode
#SAT as we will see in Section 2.3. We however use rational numbers for convenience and
all our results can be extended easily to non-negative algebraic numbers.

» Definition 2. The problem #CSP 4. is the problem of computing, given a finite set I of
weighted constraints on domain D, the partition function

w(l) = Z l—Ic(a)7

acDvar(D) c€1

where var(I) := (J ¢ var(c).
The size ||I|| of a #CSPgcf-instance I is defined to be |[I]| := > |c|. Its structural size
s(I) of I is defined to be s(I) := > ., |var(c)|.

Note that the size of an instance as defined above roughly corresponds to that of an
encoding in which the non-default values, i.e., the values on the support, are given by listing
the support and the associated values in one table for each relation. We consider this
convention as very natural and indeed it is near to the conventions in database theory and
artificial intelligence.

145

STACS 2015

146

Understanding Model Counting for 3-acyclic CNF-formulas

Given an instance I, it will be useful to refer to subinstances of I, that is a set J C I.
We will also refer to partition function of subinstances under some partial assignment, that
is, the partition function of J where some of its variables are forced to a certain value. To
this end, for a € DV, with W C var(I), and J C I with V' = var(J) we define

w(J,a) = Z Hc(b).

veDV' c€J
an~b

2.2 Graphs and hypergraphs associated to CNF-formulas

We use standard notation for graphs which can e.g. be found in [10]. A hypergraph H =
(V, E) consists of a finite set V and a set E of non-empty subsets of V. The elements of V" are
called wvertices while the elements of F are called edges. As usual for graphs, we sometimes
denote the vertex set of a hypergraph H by V() and the edge set of H by E(#H). The size
of a hypergraph is defined to be || H[| = >_ c g3 lel-

We denote by H \ v the hypergraph we get from H after deleting v from V(#) and all
edges e € E(H) and then deleting the empty edge if it occurs.

We are interested in structural restrictions of the problem #CSPg.f. i.e., we restrict
the way the variables interact in the different constraints. To formalize this, we introduce
the hypergraph associated to an instance of #CSPqer: The hypergraph H(I) associated to
#CSPges-instance I is the hypergraph H(I) := (var(I), E;) where Ej := {var(c) | ¢ € I}.
The hypergraph of a CNF-formula is defined as H(F') := (var(F'), Er) where Ep := {var(C) |
C € cla(F)} where var(F') denotes the set of variables of F' and cla(F') denotes the set of
clauses of F'.

The incidence graph I(#) of a hypergraph H = (V, E) is the bipartite graph with the
vertex set V' U E and an edge between v € V,e € E if and only if v € e. Similarly, the
incidence graph I(F') of a CNF-formula F' has the vertex set var(F)Ucla(F) and = € var(F)
and C € cla(F) are connected by an edge if and only if = appears in C.

2.3 Relation to #SAT

We show in this section how we can encode #SAT into #CSP4e¢-instances with the same
hypergraphs.

Classically, in CSP, all the solutions to a constraint are explicitly listed. For a CNF-
formula however, each clause with n variables has 2™ — 1 solutions, which would lead to a
CSP-representation exponentially bigger than the CNF-formula. One way of dealing with
this is encoding CNF-formulas into CSP-instances by listing all assignments that are not
solution of a constraint, see e.g. [8]. In this encoding, each clause has only one counter-
example and the corresponding CSP-instance is roughly of the same size as the CNF-formula.

The strength of the CSP with default values is that it can easily embed both represen-
tations. This leads to a polynomial reduction from #SAT to #CSP yet.

» Lemma 3. Given a CNF-formula F one can construct in polynomial time a #CSP qef-
instance I on variables var(F) and domain {0,1} such that

H(F) =H(I),
for all a € {0,132 (F) g is a solution of F if and only if [I.c;cla) =1, and O otherwise,
and

s(I) = 1] = [F].

J. Brault-Baron, F. Capelli, and S. Mengel

Proof. For each clause C of F', we define a constraint ¢ with default value 1 whose variables
are the variables of C' and such that supp(c) = {a} and ¢(a) = 0, where a is the only
assignment of var(C') that is not a solution of C. It is easy to check that this construction
has the above properties. |

2.4 B-acyclicity of hypergraphs

In this section we introduce the characterizations of S-acyclicity of hypergraphs we will use
in this paper. We remark that there are many more characterizations, see e.g. [12, 3, 4].

» Definition 4. Let H be a hypergraph. A vertex x € V(H) is called a nest point if
{e € E(H) | = € e} forms a sequence of sets increasing with respect to inclusion, that is
{e€c E(H) |z €e}={e1,...,er} with e; Cej4q fori e {1,...,k—1}.
A B-elimination order for ‘H is defined inductively as follows:
If # = 0, then only the empty tuple is a [-elimination order for #.
Otherwise, (x1,...,x,) is a f-elimination for H if ; is a nest point of H and (z2,...,z,)
is a f-elimination order for H \ z;.
A hypergraph #H called f-acyclic if and only if there exists a S-elimination order for H.

One can easily show [4] that removing a nest point in a hypergraph does not change its
[B-acyclicity. Since deciding if a vertex is a nest point could be done in polnomial time, a
greedy elimination of nest points yields a polynomial time algorithm to test the S-acyclicity
of a hypergraph and to compute a S-elimination order if it exists.

We will also make use of another equivalent characterization of B-acyclic hypergraphs.
A graph G is defined to be chordal bipartite if it is bipartite and every cycle of length at
least 6 in G has a chord.

» Theorem 5 ([1]). A hypergraph is B-acyclic if and only if its incidence graph is chordal
bipartite.

We say that a #CSPge¢-instance I is S-acyclic if H(I) is S-acyclic and we use an analogous
convention for #SAT. Note that the incidence graph of an instance I and that of its
hypergraph in general do not coincide, because I might contain several constraints with the
same sets of variables. But with Theorem 5, it is not hard to see that the incidence graph of
an instance I is chordal bipartite if and only if the incidence graph of the hypergraph of I
is chordal bipartite, so we can interchangeably use both notions of incidence graphs in this
paper without changing the class of instances.

Using Lemma 3 gives the following easy corollary.

» Corollary 6. #SAT is polynomial time reducible to #CSPyet. Moreover, #SAT restricted
to B-acyclic formulas is polynomial time reducible to #CSPqes restricted to [-acyclic in-
stances.

2.5 Width measures of graphs and CNF-Formulas

In this section we introduce several width measures on graphs and CNF-formulas that are
used when relating our algorithm for S-acyclic #CSPg4er to the framework of Sezether, Telle
and Vatshelle [20]. Readers only interested in the algorithmic part of this paper may safely
skip to Section 3.

We consider several width notions that are mainly defined by branch decompositions.
For an introduction into this area and many more details see [23]. For a tree T we denote by

147

STACS 2015

148

Understanding Model Counting for 3-acyclic CNF-formulas

L(T) the set of the leaves of T' and by V(T') the set of vertices of T'. A branch decomposition
(T,6) of a graph G = (V, E) consists of a subcubic tree T, i.e., a tree in which every vertex
has degree at most 3, and a bijection § between L(T) and V. For convenience we often
identify L(T) and V. Moreover, it is often convenient to see a branch decomposition as
rooted tree, and as this does not change any of the notions we define (see [23]), we generally
follow this convention. For every z € V(T) we define T, be the subtree of T rooted in z.
From x we get a partition or cut of V into two sets defined by (L(T%),V \ L(T)). For a set
X C V we often write X for V' \ X.

Given a symmetric function f : 2" x 2V — R we define the f-width of a branch decom-
position (7', §) to be max,ev (1) f(L(T%), V \ L(T%)), i.e., the f-width is the maximum value
of f over all cuts of the vertices of 7. The f-branch width of a graph G is defined as the
minimum f-width of all branch decompositions of G.

Given a graph G = (V,E) and a cut (X, X) of V, we define G[X, X] to be the graph
with vertex set V and edge set {uv | u € X,v € X,uv € E}.

We will use at several places the well-known notion of treewidth of a graph G, denoted
by tw(G). Instead of working with the usual definition of treewidth (see e.g. [2]), it is more
convenient for us to work with the strongly related notion of Mazimum-Matching-width (for
short MM-width) introduced by Vatshelle [23]. The MM-width of a graph G, denoted by
mmw (G), is defined as the f-branch width of G for the function f that, given a cut (X, X)
of G, computes the size of the maximum matching of G[X, X]. MM-width and treewidth
are linearly related [23, p. 28].

» Lemma 7. Let G be a graph, then §(tw(G) + 1) < mmw(G) < tw(G) + 1.

The Mazimum-Induced-Matching-width (for short MIM-width) is another width measure
of graphs that we will use extensively: The MIM-width of a graph G, denoted by mimw(G),
is defined as the f-branch width of G for the function f that, given a cut (X, X) of G,
computes the size of the maximum induced matching of G[X, X].

Given a CNF-formula F', we say that a set of clauses C C cla(F) is projection satisfiable
if there is an assignment to F' that satisfies all clauses in C and no clause in cla(F) \ C. The
PS-value of F is defined to be the number of projection satisfiable subsets of cla(F'). Let F
be a CNF-formula, X C var(F) and C C cla(F). Then we denote by Fx ¢ the formula we
get from F' by deleting first every clause not in C and then every variable not in X.

Let I(F) be the incidence graph of F and let (A, A) be a cut of I(F). Let X := var(F)NA,
X :=var(F)N A, C:=cla(F)N A and C := cla(F)N A. Let ps(A, A) be the maximum of the
PS-values of Fy z and Fg o. Then the PS-width of a branch decomposition (7',0) of I(F)
is defined as the’ps—branch width of (T, d). Moreover, the PS-width of F', denoted psw(F),
is defined to be the ps-branch width of I(F).

Let us try to give an intuition why we believe that PS-width is a good notion to model the
limits of tractable dynamic programming for #SAT: The dynamic programming algorithms
in the literature typically proceed by cutting instances into subinstances and then iteratively
solving the instance along these cuts. During this process, some information has to be
propagated between the subinstances. Intuitively, a minimum amount of such information
is which sets of clauses are already satisfied by certain assignments and which clauses still
have to be satisfied later in the process. In doing this, the individual clauses can be “bundled
together” if they are satisfied by an assignment simultaneously. The number such bundles
is exactly the PS-width of a cut, so we feel that PS-width is a good formalization of the
minimum amount of information that has to be propagated during dynamic programming
in the style of the algorithms from the literature.

J. Brault-Baron, F. Capelli, and S. Mengel 149

Not only is PS-width in our opinion a good measure for the limits of dynamic program-
ming, but Saether, Telle and Vatshelle also showed that it allows efficient solving of #SAT.

» Theorem 8 ([20]). Given a CNF-formula F with n variables and m clauses and of size
s, and a branch decomposition (T,0) of the incidence graph I(F) of F with PS-width k, one
can count the number of satisfying assignments of F in time O(k3s(m + n)).

We admit that the intuition explained above is rather vague and informal, so the reader
might or might not share it, but we stress that it is supported more rigorously by the fact that
all known tractability results from the literature that were shown by dynamic programming
can be explained by a combination of PS-width and Theorem 8 (see the full version of this

paper).

3 The algorithm

In this section we describe an algorithm that, given an instance I of #CSP4ef on domain D
and a nest point = of H(I), constructs in a polynomial number of arithmetic operations an
instance I” such that H(I") = H(I) \ z, ||| < ||| and w(I) = |D|w(I"). We then explain
that if I is B-acyclic, we can iterate the procedure to compute w(I) in a polynomial number
of arithmetic operations.

To make the presentation of the algorithm more clear, we will first consider a special
case before presenting the algorithm for the general case.

3.1 The special case of nested constraints

In this section we consider #CSP 4e-instances whose variable scopes are nested, i.e., in-
stances of the form I = {¢1,...,¢,} where var(c1) C ... Cvar(c,). Note that these instances
are (-acyclic, but of course there are [-acyclic instances not of this form which will be
treated in the next section. Let us first sketch the idea behind the algorithm.

Fix an instance I as above and let © € var(cy). Observe that = chosen this way is a nest
point of H(I). We want to eliminate x from I to get an instance I’ such that

w(I) = |Djw(I"). (1)

For each constraint ¢;, the instance I’ will have a constraint ¢} in the variables var(c;) \ {z}.

The idea behind the computation of the weights of I’ is as follows: For every subinstance
I, ={c1,...,¢;} we want for all assignments a to var(I’) that w(l;,a) = |Djw(I},a) where
Il = {c},...,c}. Note that (1) follows directly from this. Since a is an assignment to all
the variables of I', we have w(I],a) = H§':1 c’(a). So let us compute the weights of the c/.
For i = 1 we have

da) =w(l . a) = w(Il7a) _ ngpcl(aﬁ% d)
(@) = w(tf. o) = 2 (x029)

For ¢ > 1 we have |D| H;zl cj(a) = [Dlw(I},a) = w(li,a) = 3 4cp H;zl cila®z d). It

follows that) ‘
_ >aep 1= cila ®q d) _ >aep ;1 cila @z d)
IDITT52) ¢ (a) IDlw(Ii_y,a)

c;(a)

By construction we have |Dlw(I{_;,a) = w(li—1,a) = > ,cp H;: cj(a @5 d). The case
where the denominator is zero will be dealt with in the proof Theorem 9.

STACS 2015

150

Understanding Model Counting for 3-acyclic CNF-formulas

Choosing the weights for the ¢} as described above, yields an instance I’ that satisfies (1).
Iterating this process then yields an algorithm to solve the instance I. The following theorem
formalizes the above discussion, applies some arithmetic simplifications and analyzes the
number of arithmetic operations performed in the procedure.

» Theorem 9. Let I be a set of weighted constraints on domain D of the form I =
{c1,...,¢cp} wherevar(ci) C ... Cvar(cy). Let x € var(cy).

We define a new instance I' := {c},...,c,} such that ¢ = (f],ju;) is the weighted
constraint on variables var(c) = var(c;) \ {z}, with default value u(c;) and supp(c;) := {a €
DY) | 3d € D, (a @, d) € supp(c;)}. Moreover, for all a € supp(c)), define

~ Yaepllj_1¢ila®ad)
= =

YaeplljZicila®.d
if the denominator is non-zero and f!(a) := 0 otherwise.

Then H(I') = H(I) \ z, |I'|| < ||| and w(I) = |D|w(I’). Moreover, one can compute
I" with O(p||I||) arithmetic operations.

fi(o) = 202D (o)

, fori>1

Proof. Observe first that for a € supp(c}) and j < ¢ and d € D, the assignment a @, d
assigns values to all variables of ¢;, since var(c;) C var(c;) and thus all terms defined above
are well-defined.

H(I') = H(I) \ = is obvious because for every i we have var(c;) = var(c;) \ {z}.

Moreover, ||I'|| < ||I|| because for every i, |¢j| < |¢;| since |supp(c})| = |[{a € DY) |
3d € D, (a @, d) € supp(c;)}| < |supp(c;)]-

Inspired by the discussion at the beginning of this section, we now show by induction on
1 that for all a € D"‘"(Ci)7

DIT] @ =3 [[esaes d).
j=1

deD j=1

Fori=1,let a € D), Ifq € supp(c}), this statement is clear from the definition.
If a ¢ supp(cy), then for all d € D, (a ®, d) ¢ supp(c1). Thus ¢1(a @, d) = p for all d
and consequently), ci(a @, d) = |D|u1 = |D|c}(a).
Now suppose that the result holds for i. Let a € D¥(¢). Then we get by induction
it1

T4 = (X [4))chia(a).

deD j=1

First, assume that >, szl ¢j(a @45 d) = 0. Since this is a sum of non-negative
rationals, we have that for all d, H;Zl ¢j(a @z d) = 0. Thus, ;ill cj(a®y d) =0 for all d
and it follows that), H;ill ¢;j(a @4 d) = 0 which proves the claim.

Now assume that), H;‘:1 cila ®z d) #0. If a € supp(cj), then by definition of
Ciy1, the claim follows directly.

If a ¢ supp(ci+1), then H;J:l ci(a®y d) = i H;zl ¢j(a @y d) for all d. Thus

i+l i i
Z H ci(a®y d) = piga Z H ¢jla @y d) = ciyq(a) Z H cjla @, d),
deD j=1 deD j=1 deD j=1

which establishes the claim for ¢ + 1.

J. Brault-Baron, F. Capelli, and S. Mengel

Applying the result for i = p, we get

IDjw(I';a) = [D| [¢j(a) = > [cila @z d) = w(l,a).
j=1

deD j=1

It follows directly that w(I) = |D|w(I’) as desired.

We now analyze the number of arithmetic operations we make in the construction of
I'. Clearly, if we have computed the }_, H;=1 ¢jla @, d) for all i < p and a € supp(c})
then we can compute_c;(a) with one division. Thus we need to do p divisions. Moreover, if
we have computed H;Zl ¢;j(a @4 d), then we only need one more multiplication to compute

i+1
H;il cjla @y d).

Now, we prove by induction on i that [[;_, cj(a @, d) can take at most 1+ >7"_, |c;]
different values when a varies. This is trivial for ¢ = 0. Now remark that if a®, d ¢ sulpp(ci),
then J[j_, cj(a®. d) = fi H;;ll ¢;j(a®, d), thus by induction, we have at most 1+ 23;11 |c;]
different values for H;:l ¢j(a @5 d). Moreover, there are at most |supp(c;)| < |c;| other
values for a @, d € supp(c;), which completes the induction. ‘

It follows that we have to compute at most O(p||/||) different values for the [T;_, ¢;(a®.d)
which can be done with O(p||I||) multiplications. Now if i is fixed, for all a, the sum
>aep [lj=1 ¢j(a®; d) has at most 14375, |¢;| different terms that are already computed.
Thus we only need O(||I||) operations to compute each of them. As there are p different
sums to compute, we can do everything with O(p||I]|) arithmetic operations. <

3.2 The general case

In this section, we extend Theorem 9 to the case where we have a general nest point in a
#CSP ges-instance. This will allow us to solve #CSPqes for all S-acyclic instances.
In the following, for x € var(I), we denote by I(x) = {c € I | z € var(c)}.

» Theorem 10. Let I be a set of weighted constraints on domain D and x a nest point of
H(I). Let I(x) ={c1,...,¢cp} withvar(c1) C ... Cvar(cy). Let I' = {c' | ¢ € I} where

if c¢ I(x) then ¢ :=c¢

if ¢ = ¢;, then ¢ := (f!, ;) is the weighted constraint on variables var(c}) = var(c;) \ {z},
with default value p(c;) and supp(c;) = {a € DY) | 3d € D, (a ®, d) € supp(c;)}.
Moreover, for all a € supp(c}), define

_ SuenITiicila®ed)
2 deD H;i cjla®, d

if the denominator is non-zero and f!(a) := 0 otherwise.

Aio) = =L D g

, fori>1

Then H(I') = H(I) \ =, ||| < ||| and w(I) = |D|w(I’). Moreover, one can compute I’
with a O(p||I(z)|]) arithmetic operations.

Proof. Note first that the definition of the ¢ is identical to the construction in Theorem 9.

Let us explain why I’ is well-defined. As x is a nest point, we can write I(x) = {c1,...,¢,}
with var(e;) € ... C var(cp). If two constraints have the same variables, we choose an
arbitrary order for them. Note that in the full version we will choose a specific order that
ensures that the algorithm runs in polynomial time on a RAM, but in this proof any order
will do.

151

STACS 2015

152

Understanding Model Counting for 3-acyclic CNF-formulas

H(I') = H(I)\z and ||I'|| < ||| is shown as before. Moreover, the bound on the number
of arithmetic operations follows from Theorem 9.

We have w(I) = 3, c puronia) 2ogep LLiey Cila @o d) [leg¢r(x) cla @z d). For ¢ ¢ I(x)
we have c¢(a @, d) = c(a) = ¢/(a) by definition. Moreover, we have seen in the proof of
Theorem 9 that >, [11_; ci(a @, d) = |D|T]}_; ¢i(a). It follows that

wny=p| Y [T ¢@=Dlu().

aeDvar(D\{z} i=1 c¢I(x)
<

Our algorithm for #CSP gy iteratively applies the procedure of Theorem 10 along a (-
elimination order. Clearly, this only uses a polynomial number of arithmetic operations,
because applying Theorem 10 only needs a polynomial number of arithmetic operations
and the size of the instances is decreasing. Note that this does not directly give that the
algorithm runs in polynomial time. We iteratively multiply and divide numbers which could
lead to an iterative squaring effect and result in numbers of exponential bitsize. However,
in the full version of this paper, we show that this actually does not happen: The weights
computed in each step are essentially a ratio of weights of two subinstances of the original
instance. It follows that the bitsize of the numerator and the denominator of all numbers is
polynomially bounded and thus all arithmetic operations can be done in polynomial time.
Implementing this yields the following result.

» Theorem 11. There exists an algorithm that, given a B-acyclic instance I of #CSPyet,
computes w(I) in polynomial time.

Combining Theorem 11 and Corollary 6 we get the main tractability result for #SAT.

» Corollary 12. #SAT on S-acyclic CNF-formulas can be solved in polynomial time.

4 Relation to the STV-framework

In this section we compare our algorithmic result for #SAT on [-acyclic hypergraphs to
the framework proposed by Seether, Telle and Vatshelle in [20] which we call for short the
STV-framework. In the full version of this paper we show that the STV-framework gives
a uniform explanation of all tractability results for #SAT in the literature, extending the
results of [20]. We see this as strong evidence that the STV-framework is indeed a good
formalization of the intuitive notion of “dynamic programming for #SAT”.

To show that our result is not covered by the STV-framework, we now show that it
cannot give any subexponential time algorithms for g-acyclic #SAT. To this end, we prove
an exponential lower bound on the PS-width of g-acyclic CNF-formulas.

We start off with a simple lemma.

We remind the reader that a CNF-formula F' is called monotone if all variables appear
only positively in F'.

» Lemma 13. For every bipartite graph G there is a monotone CNF-formula F such that
F has the incidence graph G and psw(F) > 2mimw(G)/2,

Proof. We construct F' by choosing arbitrarily one color class of G to represent clauses and
the other one to represent variables. This choice then uniquely yields a monotone formula
where a clause C contains a variable x if and only if « is connected to C' by an edge in G.

J. Brault-Baron, F. Capelli, and S. Mengel

Let (T, 0) be a branch decomposition of G and F. Let t be a vertex of T with cut (A, A).
Set X :=var(F)N A, X :=var(F)N A, C:=cla(F)N A and C := cla(F) N A. Moreover, let
M be a maximum induced matching of G[A, A] and let Vi; be the end vertices of M.

First assume that [C N V| > [C N Vay|. Let Cy, ..., Cy be the clauses in C N Vy; and let
r1,...,2) be variables in X N Vy,. Note that k > |M|/2. Since M is an induced matching,
every clause C; contains exactly one of the variables x;, and we assume w.l.o.g. that C;
contains z;. Let a be an assignment to the x; and let a’ be the extended assignment of X
that we get by assigning 0 to all other variables. Then a’ satisfies in F'g exactly the clauses
C; for which a(z;) = 1 since the formula is monotone. Since there are 2¥ assignments to the
x;, we have |PS(Fg)| > 2k > 21M1/2,

For [CNV| < [CNVay| it follows symmetrically that |PS(Fx a)| > 2IM1/2 - Consequently,
we have in either case that the PS-width of F is at least 21™1/2 and the claim follows. <

We will now define for every graph G a graph G’. The construction will be such that,
if G is chosen in the right way, then G’ will be chordal bipartite and of high MIM-width.
Combining this with Lemma 13 yields a class of -acyclic CNF-formulas of high PS-width.
Since PS-width is the crucial parameter in the STV-framework, this shows that g-acyclic
#SAT cannot be solved efficiently by this framework.

Given a graph G = (V, E) we define G’ = (V', E’) as follows:

for every v € V there are two vertices x,,y, € V’,

for every edge e = uv € E there are four vertices pe v, e,u, Pe,v, Gey € V',

every u,v € V we add the edge z,y, to E’, and

for every edge e = uv € E we add the edges pe uqe,u, Pe,vle,vs TuDe,us Yvle,us TvPe,vs Yule,v-
These are all vertices and edges of G’.

» Lemma 14. G’ is chordal bipartite.
» Lemma 15. Let G be bipartite. Then tw(G) < 6mimw(G').

Proof. Let (1,4’) be a branch decomposition of G'. Let A, B C V(G) be the two colour
classes of G. We construct a branch decomposition (7, §) of G by deleting the leaves labeled
with Pe ., @e,u; Pe,vs de,vs and those labeled z, for v € A or with y, for v € B. Then we
delete all internal vertices of of T” that have become leaves by these deletions until we get
a branch decomposition 7" with the leaves z, for v € B and y, for v € A. For the leaves of
T we define 6(t) := v where v € V is such that ¢'(t) = z,, or ¢’(t) = y,. The result (7,9) is
a branch decomposition of G.

Let ¢ be a vertex of 7" with the corresponding cut (X, X). Let M C E be a matching in
G[X, X]. Let (X’,X’) be the cut of t in (7",0"). Let e = uv € M, then x, and y, are on
different sides of the cut X’ and they are connected by the path =, pe yGe Yy Consequently,
there is at least one edge along this path in G’[X”, X’]. Choose one such edge arbitrarily.

Let M’ be the set of edges we have chosen for the different edges in M. Let M, be the
set of edges in M’ that do not have an end vertex y, and let M?; be the set of edges in M’
that do not have an end vertex x,. Let M"” be the bigger of these two sets. Since ¢/ € M’
can only have an end vertex x, or y, but not both, we have M|+ [M| > |M’| and thus
M| > M2

We claim that M” is an induced matching in G’. Clearly, M’ is a matching because M is
one. Consequently, M"” C M’ is also a matching. We now show that M” is also induced. By
way of contradiction, assume this were not true. Then there must be two adjacent vertices
u,v € V' that are end vertices of edges in M” but not in the same edge in M"”. If u = pes 4,
for some ¢’ € E and w € V, then v must be z,,. But then by construction of M’, the vertex

153

STACS 2015

154

Understanding Model Counting for 3-acyclic CNF-formulas

w must be incident to two edges in M which contradicts M being a matching. Similarly,
we can rule out that v is g . Thus, v must be z,, or y,, and v must be . or y,. Since
T and x,, are in the same colour class of G, they are not adjacent. Similarly ¥, and v,
are not adjacent. Consequently, we may assume that v = x,, and v = y,,». But then they
cannot both be an endpoint of an edge in M” by construction of M”. Thus M" is induced.

By Lemma 7 we know that there is a ¢ € T with cut (X, X) such that we can find a
matching M of size at least twég) in G[X, X]. By the construction above the corresponding
cut (X', X') yields an induced matching of size % in G’[X’, X']. This completes the
proof. |

The connection between expansion and treewidth (see [16]) yields the following lemma.

» Lemma 16. There is a family G of graphs and constants ¢ > 0 and d € N such that for
every G € G the graph G has mazimum degree d and we have tw(G) > ¢|E(G)|.

» Corollary 17. There is a family G' of chordal bipartite graphs and a constant ¢ such that
for every graph G € G we have mimw(G) > ¢|V(G)].

Proof. Let G be the class of Lemma 16. We first transform every graph G € G into a
bipartite one G; by subdividing every edge, i.e., by introducing for each edge e = uv a new
vertex w, and by replacing e by uw, and wev. It is well-known that subdividing edges does
not decrease the treewidth of a graph (see e.g. [10]), and thus tw(G) < tw(G;). Moreover,
|E(G1)| = 2|E(G)|, and thus tw(G1) > 1c|E(G1)|. Now let G’ = {G} | G € G}. Then the
graphs in G’ are chordal bipartite by Lemma 14 and the bound on the MIM-width follows
by combining Lemma 16 and Lemma 15. |

Combining Corollary 17 and Lemma 13 yields the main result of this section.

» Corollary 18. There is a family of monotone S-acyclic CNF-formulas of PS-width 29
where n is the number of variables in the formulas.

Since the runtime in Theorem 8 depends linearly on the PS-width, we get that the STV-
framework cannot prove subexponential runtime bounds for #SAT on S-acyclic formulas.

5 Conclusion

We have shown that S-acyclic #SAT can be solved in polynomial time, a question left open
in [7]. Our algorithm does not follow the dynamic programming approach that was used
in all other structural tractability results that were known before, and as we have seen this
is no coincidence. Instead, S-acyclic #SAT lies outside the STV-framework of [20] that
explains all earlier results in a uniform way.

We close this paper with several open problems that we feel should be explored in the
future. First, our algorithm for #SAT is specifically designed for the case of B-acyclic
formulas, but we feel that the techniques developed might possibly be extended to other
classes of hypergraphs that one can characterize by elimination orders. In this direction, it
would be interesting to see if hypergraphs of bounded S-hypertree width, a width measure
generalizing (-acyclicity proposed in [15], can be characterized by elimination orders and if
such a characterization can be used to solve #SAT on the respective instances. Note that
this case lies outside of the STV-framework, therefore dynamic programming without new
ingredients is unlikely to work. Also, even the complexity of deciding SAT on instances of
bounded S-hypertree width is an open problem [17].

J. Brault-Baron, F. Capelli, and S. Mengel

It might also be interesting to generalize our algorithm to solve cases for which we
already have polynomial time algorithms. For example, is there any uniform explanation
for tractability of bounded cliquewidth #SAT and S-acyclic #SAT, similarly to the way in
which the framework of [20] explains tractability for all previously known results?

Finally, we feel that, although we have shown that the STV-framework does not explain
all tractability results for #SAT, it is still a framework that should be studied in the future.
We believe that there are still many classes to be captured by it and thus we see a better
understanding of the framework as an important goal for future research. One question
is the complexity of computing branch decompositions of (approximately) minimal MIM-
width or PS-width. Alternatively, one could try to find more classes of bipartite graphs for
which one can efficiently compute branch decompositions of small MIM-width. This would
then directly extend the knowledge on structural classes of CNF-formulas for which dynamic
programming can efficiently solve #SAT.

—— References

1 G. Ausiello, A. D’Atri, and M. Moscarini. Chordality properties on graphs and minimal
conceptual connections in semantic data models. J. Comput. Syst. Sci., 33(2):179-202,
1986.

2 H.L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1-21, 1993.

3 A. Brandstadt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1999.

4 J. Brault-Baron. Hypergraph Acyclicity Revisited. ArXiv e-prints, March 2014.

5 A. Bulatov, M. Dyer, L.A. Goldberg, M. Jalsenius, M. Jerrum, and D. Richerby. The
complexity of weighted and unweighted #CSP. Journal of Computer and System Sciences,
78(2):681-688, March 2012.

6 J.-Y. Cai and X. Chen. Complexity of counting CSP with complex weights. In Proceedings
of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12, page
909-920, New York, NY, USA, 2012. ACM.

7 F. Capelli, A. Durand, and S. Mengel. Hypergraph Acyclicity and Propositional Model
Counting. In Theory and Applications of Satisfiability Testing - SAT 2014 - 17th Interna-
tional Conference, pages 399-414, 2014.

8 D.A. Cohen, M.J. Green, and C. Houghton. Constraint representations and structural
tractability. In Principles and Practice of Constraint Programming - CP 2009, pages 289—
303, 2009.

9 V. Dalmau and P. Jonsson. The complexity of counting homomorphisms seen from the
other side. Theor. Comput. Sci., 329(1-3):315-323, 2004.

10 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

11 D. Duris. Some characterizations of v and S-acyclicity of hypergraphs. Inf. Process. Lett.,
112(16):617-620, 2012.

12 R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. Journal
of the ACM, 30(3):514-550, 1983.

13 E. Fischer, J.A. Makowsky, and E.V. Ravve. Counting truth assignments of formulas of
bounded tree-width or clique-width. Discrete Applied Mathematics, 156(4):511-529, 2008.

14 G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP decomposition
methods. Artif. Intell., 124(2):243-282, 2000.

15 G. Gottlob and R. Pichler. Hypergraphs in Model Checking: Acyclicity and Hypertree-
Width versus Clique-Width. SIAM Journal on Computing, 33(2), 2004.

155

STACS 2015

156

Understanding Model Counting for 3-acyclic CNF-formulas

16

17

18

19

20

21

22

23

M. Grohe and D. Marx. On tree width, bramble size, and expansion. .J. Comb. Theory,
Ser. B, 99(1):218-228, 2009.

S. Ordyniak, D. Paulusma, and S. Szeider. Satisfiability of acyclic and almost acyclic CNF
formulas. Theoretical Computer Science, 481:85-99, 2013.

D. Paulusma, F. Slivovsky, and S. Szeider. Model Counting for CNF Formulas of Bounded
Modular Treewidth. In 30th International Symposium on Theoretical Aspects of Computer
Science, STACS 2013, pages 55—66, 2013.

D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2):273 —
302, 1996.

S. Hortemo Saether, J.A. Telle, and M. Vatshelle. Solving MaxSAT and #SAT on structured
CNF formulas. In Theory and Applications of Satisfiability Testing - SAT 2014 - 17th
International Conference, pages 16-31, 2014.

M. Samer and S. Szeider. Algorithms for propositional model counting. Journal of Discrete
Algorithms, 8(1):50-64, 2010.

F. Slivovsky and S. Szeider. Model Counting for Formulas of Bounded Clique-Width. In
Algorithms and Computation - 24th International Symposium, ISAAC 2013, pages 677687,
2013.

M. Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen, 2012.

	Introduction
	Preliminaries and notation
	Weighted counting for constraint satisfaction with default values
	Graphs and hypergraphs associated to CNF-formulas
	Relation to #SAT
	-acyclicity of hypergraphs
	Width measures of graphs and CNF-Formulas

	The algorithm
	The special case of nested constraints
	The general case

	Relation to the STV-framework
	Conclusion

