Tractable Probabilistic p-Calculus That Expresses
Probabilistic Temporal Logics*

Pablo Castro'?, Cecilia Kilmurray!?, and Nir Piterman?®

1 Departamento de Computacion, FCEFQyN, Universidad Nacional de Rio

Cuarto, Rio Cuarto, Argentina

{ckilmurray,pcastro}@dc.exa.unrc.edu.ar

Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET)

3 Department of Computer Science, University of Leicester, Leicester, UK
nir.piterman@leicester.ac.uk

N

—— Abstract

We revisit a recently introduced probabilistic p-calculus and study an expressive fragment of
it. By using the probabilistic quantification as an atomic operation of the calculus we establish
a connection between the calculus and obligation games. The calculus we consider is strong
enough to encode well-known logics such as PCTL and PCTL*. Its game semantics is very similar
to the game semantics of the classical u-calculus (using parity obligation games instead of parity
games). This leads to an optimal complexity of NPNco-NP for its finite model checking procedure.
Furthermore, we investigate a (relatively) well-behaved fragment of this calculus: an extension
of PCTL with fixed points. An important feature of this extended version of PCTL is that its
model checking is only exponential w.r.t. the alternation depth of fixed points, one of the main
characteristics of Kozen’s p-calculus.

1998 ACM Subject Classification F.4.1 Mathematical Logic
Keywords and phrases p-calculus, probabilistic logics, model checking, game semantics

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.211

1 Introduction

In recent years, probabilistic model checking has received an increasing attention in the area
of system verification; tools like PRISM [8] and LiQuor [4] enable the automatic verification
of quantitative properties of systems (and a lot more); these kinds of properties are essential
for the verification of network protocols, critical systems and randomized algorithms, to
name a few examples.

Some of the most prominent probabilistic temporal logics used for model checking are
PCTL, the probabilistic counterpart of CTL, and PCTL*, the probabilistic counterpart of cTL*.
In particular, PCTL has a clear semantics, and its model checking procedure can be performed
in polynomial time. The definition of a probabilistic p-calculus that provides a unifying
formalism for probabilistic temporal logics has been an active field of research in the area,
such a formalism could provide to probabilistic model checking the same benefits as those
given by Kozen’s p-calculus to qualitative model checking. The p-calculus [12] is a powerful
temporal logic that combines many useful features. It generalizes modal logic by adding
fixpoint operators, it has a compact, extremely powerful, and very pleasing mathematical

* This work was partially supported by FP7-PEOPLE-IRESES-2011 MEALS project and EPSRC
EP/L007177/1 project.

© Pablo Castro, Cecilia Kilmurray, and Nir Piterman; SYMPOSIUM

B licensed under Creative Commons License CC-BY LV \n ON THEORETICAL
32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015). n ASPECTS
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 211-223 4 7 / OF COMPUTER

\\v Leibniz International Proceedings in Informatics SCIENCE
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.211
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

212

Tractable Probabilistic u-Calculus That Expresses Probabilistic Temporal Logics

theory, its model checking problem is polynomial in the length of the formula and only
exponential in its alternation depth [7]. Most of the temporal logics used in computer
science can be encoded into fragments of it; and, in addition, it has strong connections to
two-player games and automata theory, which lead to optimal decision procedures for it.

Here, we revisit the probabilistic p-calculus introduced by Mio and Simpson in [14,
15], however, we suggest to use probabilistic quantification as an atomic operation. The
resulting probabilistic p-calculus (named pP-calculus) enjoys many of the qualities of the
discrete p-calculus. We show that the logic is expressive enough to capture PCTL and
PCTL*. We establish a tight connection between our logic and the recently introduced
obligation parity games [3]. In particular, we provide a game semantics for pP-calculus
using such games. When considering finite-state model checking, the games provide an
optimal decision procedure in NP N co-NP (compared with 3EXPTIME for the logic of Mio
and Simpson); where optimality is w.r.t. model checking the discrete p-calculus, which
has the same complexity. In contrast to the “normal” p-calculus, we lose the connection
between the alternation depth of the formula and the complexity of model checking. We also
propose a well-behaved fragment of pP-calculus, this logic is mainly an extension of PCTL
with fixpoints, we prove that the complexity of model checking for this fragment is only
exponential in the alternation depth of quantifiers; as mentioned above, this is an important
characteristic of standard p-calculus.

The paper is organized as follows. In Section 2 we introduce the basic definitions needed
to tackle the rest of the paper. The probabilistic u-calculus is introduced in Section 3 and
then its expressivity is investigated. We then present the game semantics in Section 4. In
Section 5 we show that a well-known “hard” problem in NPNco-NP can be reduced to model
checking formulas of pP-calculus with only one fixpoint operator. A well-behaved fragment
of this logic is described in Section 6. Finally, we discuss related work and add final remarks.

2 Preliminaries

In this section we briefly introduce some basic concepts. We denote the set of real numbers
between 0 and 1 as [0,1]. Given a set S we denote by 0(S) the function 0(S)(s) = 0 for
every s € S and by 1(S) the function 1(S)(s) = 1 for every s € S. When S is clear from
the context we write 0 and I. Given a universe U and a subset S C U we write y, for the
function x4(s) =1if s € Sand x4(s) =0 for s ¢ S.

A Kripke structure over a set AP of atomic propositions is a tuple K = (S, R, L, so),
where S is a (countable) set of locations, R C S x S is a relation such that for every s € S we
have that R(s) is finite, L : AP — 2% is a labeling function and sy € S is an initial location.
A Markov chain over a set AP of atomic letters is a tuple M = (K, P), where K is a Kripke
structure and P : R — (0, 1] is such that for every s € S we have > , .z P(s,s") = L.
Sometimes it will be convenient to consider P : S x S — [0,1] by associating P(s,s’) = 0 for
every (s,s’) ¢ R. For alocation s € S we denote by M, the Markov chain obtained from M
by setting s to the initial location. A path m = sg, s1,... is a finite or infinite sequence of
locations such that for every 0 < i < n we have P(s;,8;11) > 0. If 7 = s, ..., s, is finite,
we denote by measurey; () = H?:_Ol P(s;, s;+1) the measure of (the set of infinite paths that
extend) m. Given a (Borel) set of paths II starting from the same state s, we denote by
measureys (IT) the measure of II. Note that every Markov chain can be interpreted as a
Kripke structure by looking on the embedded Kripke structure.

PCTL formulas over a set AP are defined as state formulas (®) and path formulas (¥)

P. Castro, C. Kilmurray, and N. Piterman

as follows. Let J = {>,>} x [0, 1] be the set of bounds.
(I)ZZ:pi|_|p7;|(I)1\/(I)2|(I)1/\<I)2|P](\I/) \I/:O(I)|(I)UCI)|(I)W®

Here W is the weak until (i.e., it allows the first operand to hold forever). As usual we
introduce the abbreviations F and G. State formulas are formulas. The semantics of PCTL
associates with every formula a set of states. We denote by [¢]as the set of states of M
that satisfy ¢. For every path formula ¢ and state s of M, measurep (s, @) is the measure
of paths starting in s that satisfy ¢. The semantics and intuitions of PCTL formulas are as
usual, see [1].

We define p-calculus over Kripke structures with the following syntax.

Where p; € AP, V = {Xy, X1,...} is an enumerable set of variables, and X; € V. The
notions of open and closed formulas are as usual. The semantics of a p-calculus formula
over a Kripke structure K = (S, R, L, sg) is given w.r.t. assignments to variables in V. An
assignment p : V — (S — {0,1}) associates a function from the states to {0, 1} with every
variable in V. Given an assignment p we set p[f/X] to be the assignment that associates
the function f with X and p(Y) with every Y # X. We use the notation of a function
into {0, 1} instead of set notation to facilitate the discussion in the rest of the paper. The
semantics of a formula ¢ in structure K with respect to assignment p, denoted [¢]f, is
defined as follows.

[Pil% = XL [-pil% = 1= XL
[X]% = p(X)
[1 V pa]fe = max([e1]%, [v2]%) lp1 A palfe = min([e1]%, [21%)
[0e]f% = As.max(s oyer[e]%(s) [Oe]f = As.ming, g)ere]% ()
[nXol5 = Up([el5?) [vX.¢lf, = gho(lelhd ™)

Note that the semantics of a formula where all variables are bound by fixpoint operators
is independent of the assignment p. The interested reader is referred to [16] for an in-depth
introduction to p-calculus.

3 A Probabilistic y-Calculus

In this section we present our version of probabilistic u-calculus (denoted pP-calculus). Un-
like the “normal” p-calculus, pP-calculus is two sorted. We distinguish between qualitative
formulas (that get values in {0,1}) and quantitative formulas (that get values in [0, 1]).!
Although the logic is a subset of the probabilistic p-calculus of Mio and Simpson [15] we
give a direct definition of its semantics without relying on their results.

Given an enumerable set of variables V = { Xy, X1, ... }, the syntax of the logic is given by
the following grammar, where ¥ are qualitative formulas, and ® are quantitative formulas.

J = {>,>} x[0,1]
U= Pi | —P; | \I’l \/\I’Q | ‘l/]_ /\\112 | [(I)]J | VXZ‘I’ | /J/X,L\I/ (1)

1 This is not to be confused with qualitative PCTL, where the bounds are restricted to > 1 and > 0.

213

STACS 2015

214

Tractable Probabilistic u-Calculus That Expresses Probabilistic Temporal Logics

We say that variable X; is bound in 0X;.¢(X;) for 0 € {u,v}. A variable that is not
bound is free. A formula is a qualitative formula with no free variables. That is, at the top
level we consider only formulas that can be evaluated to {0,1}. Note that we add to the
existential and universal next operators of u-calculus the (probabilistic) next operator and
the probabilistic quantification operator.

The semantics of a formula 1 over a Markov chain M is defined with respect to an
interpretation p, which associates a function from states to real values in [0, 1] with each
variable appearing in ¢. Formally, for p: ¥V — (S — [0,1]) the semantics [¢]}, : S — [0,1]
is defined as follows:

[Pl = X000 [pilh = 1= X
[X1% = p(X)

[p1 V @2]hy = max([e1]hy [p2]4r) lr A @2l = min([p1]fy, [w207,)
[O¢lhr = As. >, P(s,8") el (s") Mlels18 = ([l (s)J 71:0)
[[OQOMM = As'maX(S,S’)ER[‘pM/[(SI) [[DSO]]?VI = /\S'min(S,S’)ER[[SOM/I(S/)

[uX.el% = tp([e]f ™) Xl = gfp([elf ™)

That is, the value of the probabilistic next is the average value over successors and the
probabilistic quantification compares the value with the given bound. Even though the
semantics is quite similar to the semantics of u-calculus the former is restricted to functions
of the type f : S — {0,1} and here the functions are f : S — [0,1]. That is, functions
associate real values with states.

It is simple to see that all these transformers are monotonic. In particular, if p; < po,
that is for every X € V and every s € S we have p1(X)(s) < p2(X)(s), then [o]7; < [¢]53-
For instance, consider a formula of the form [p];. We have to show that, if [[¢] ;]4;(s) = 1,
then [[¢]s]%; = 1. However, if p; < po it follows that [¢]5; < [¢lh7- So, if [¢]4;, then
also [¢]47J. It follows from the Knaster-Tarski theorem that fixed-points are well defined.

It is possible to show that our calculus is closed under negation. For this, we need to
consider the usual dualizations between the standard operators. In addition, the probab-
ilistic next is its own dual and the probabilistic quantification has to be replaced with the
dual probabilistic quantification. That is, []>1-p is the dual of [-]>, and []>1-, is the dual
of []sp. We now show that the definition of qualitative formulas is indeed justified.

» Lemma 1. For every qualitative formula ¢ we have [¢]4, € {0,1}.

Proof. We can show that the semantics of all operators in the qualitative fragment are
functions whose range is {0,1}. This holds trivially for propositions. Given two functions
whose range is {0, 1} clearly, min and max return such functions as well.

For [¢] this follows directly from the definition. |

3.1 Expressing the u-Calculus

We show that pP-calculus is strong enough to express the p-calculus over the embedded
Kripke structure without using the existential and universal next operators. We include this
construction mostly as justification for the hardness of model checking the pP-calculus over
finite-state Markov chains.

Given a p-calculus formula ¢, let p(¢) denote the formula obtained from ¢ by the fol-
lowing recursive transformation.

P(Pi) = Di P(% \ 7/12) = P(Q/fl) \/PW&) P(0¢) = [OP(¢)]>0
p(=pi) = —pi p(1 Apa) = p(1) A p(ih2) p(OW) = [Op(¥)]>1
p(X) =X p(pX.) = uX.p(¥) p(v X)) = vX.p(¥)

P. Castro, C. Kilmurray, and N. Piterman

That is, we replace the existential next operator by a probabilistic quantification of more
than 0, and the universal next operator by a probabilistic quantification of at least 1.

» Lemma 2. For every Markov chain M = (K, P) we have [p(¢)]4; = [¢]%-

We notice that, in general, it is not clear how to express the universal and existential next
operators without including them explicitly. This is because the [-] ; operator also resets the
value to 0 or 1. An additional comment regarding these operators is included in Section 5.
It follows that pP-calculus is strong enough to express all standard temporal logics such as
CTL, LTL, and CTL*.

3.2 Expressing PCTL

We show that pP-calculus can express PCTL. Given a PCTL formula ¢, let ¢(¢) denote the
formula obtained from ¢ by the following recursive transformation.

t(pi) = pi t(1 V ah2) = t(1) V t(1h2) t(Ps(¥)) = [t(¥)]s
t(=pi) = —pi t(1 Aip2) = H(th2) A t(1ha) t(Oy) = Ot(y)
trUP2) = pX . t(h2) V (H(1) A OX) (Y1 Waha) = v X . t() V (t(11) A OX)

That is, we use fixpoint operators to unwind until and weak until operators in the standard
way this is done with CcTL and p-calculus. We note that this construction is essentially
identical to the encoding of CTL in p-calculus, which is used also in [15] (though the main
complexity in their construction is in expressing the probabilistic quantification, which is
part of the syntax in our setting). Due to its importance we include it in full here.

» Lemma 3. For every Markov chain M and PCTL formula ¢ we have [p]n = [t(0)]%;-

The conversion of PCTL* to pP-calculus is also possible. As for PCTL, it is essentially
identical to the translation of CTL* to p-calculus, with the caveat that we have to replace
nondeterministic automata by deterministic automata. The usage of deterministic automata
is, similarly, required for the handling of LTL for probabilistic model checking [2]. We
note that this implies that PCTL* is expressible (through the same construction with the
additional encoding of the probabilistic thresholds) also in the probabilistic p-calculus of
Mio and Simpson.

4 Game Semantics

First, we describe the intuition behind the game semantics, and only then formally define
the games. Given a formula ¢ and a Markov chain M = (K, P), where K = (S, R, L, s'"),
we define a game whose configurations correspond to locations of M and subformulas of
©. The semantics is defined in terms of a two-player stochastic obligation parity game [3].
Such games include configurations of players 0 and 1 as well as probabilistic configurations.
The winning condition is a combination of a parity condition and obligations (for how much
player 0 has to win) on some configurations. Player 0 is the verifier, who tries to prove
that the formula holds, and player 1 is the refuter, who tries to prove that the formula does
not hold. Each configuration has a valuation for each player. In general, the value of a
configuration, denoted by val;(s, ¢) for ¢ € {0,1}, is a value in [0,1]; val;(s,p) = 1 means
that player ¢ wins (completely) from a configuration. For every qualitative (sub)formula the
value of (s,) is either 0 or 1. Intuitively, if valy(s, p) = 1, then the formula is true in M.
For propositions, (s, p), player 0 wins when s € L(p) and she loses otherwise (configurations

215

STACS 2015

216

Tractable Probabilistic u-Calculus That Expresses Probabilistic Temporal Logics

with —p are dual). Configurations (s, @1 V p2) are verifier configurations, and she chooses
a successor (s, ;). Configurations (s, p; A ¢3) are refuter configurations, and she selects a
successor (s, ;).

For a fixpoint ¢ € {u, v}, from configuration (s,cX.p) the game progresses to (s,);
while from configurations (s, X) the game progresses to (s,0X.¢) where o X.p is the sub-
formula binding X. Interesting cases are the probabilistic operators: from configuration
(s, [p]s) the game progresses with no choice to (s,¢). However, the former configurations
have the obligation J associated with them. That is, from these obligation states player 0
wins completely (value 1) if she wins with a value satisfying J from the successor configura-
tion. These three types of configurations (fixpoint related and probabilistic quantification)
are deterministic configurations. We associate them with the probabilistic player and assign
the probability 1 to the single successor. The next operators are treated as follows. A con-
figuration of the form (s, Q¢) is a verifier configuration from where she chooses a successor
s" of s and moves to configuration (s,). A configuration of the form (s,[p) is a refuter
configuration from where she chooses a successor s’ of s and moves to configuration (s, ¢).
A configuration of the form (s, Q) is a probabilistic configuration with successors (s', ¢)
for every successors s’ of s. Furthermore, the probability of ((s, O¢), (s',¢)) is k(s,s’). It
follows that the only (meaningful) probabilistic configurations are those corresponding to
the probabilistic next of the calculus. The parity condition in the game arises from the
alternation depth of formulas.

4.1 Parity Obligation Games

We give a short introduction to obligation parity games. The notion of winning (and value)
in an obligation game is quite involved and we refer the reader to [3] for an in-depth intro-
duction.

A parity obligation game is G = (V,(Vp,V1,V},), E, k,G), where V is a set of config-
urations, Vp, Vi1, and V,, form a partition of V' to player 0, player 1, and stochastic con-
figurations, respectively, £ C V x V is the set of edges, x associates a probabilistic dis-
tribution with the edges leaving every configuration in V), i.e., for every v € V,, we have
Yww)epk(v,v’) = 1 and for every (v,v') ¢ E we have k(v,v’) = 0, and G = (¢, O) is the
winning condition, where ¢ : V' — [0..m] is a parity priority function, with m as its indexz,
and O : V — {1} U ({>,>} x [0,1]) is the obligation function. A configuration v such that
O(v) # L is called an obligation configuration.

» Theorem 4. [3] For every configuration v € V there is a value val;(v) € [0,1] such that
valy(v) + valy (v) = 1. Furthermore, for every obligation configuration v we have val;(v) €
{0,1}. For a configuration v of a finite parity obligation game, one can decide whether
val;(v) > 1 in NPN co-NP and val;(v) can be computed in exponential time.

4.2 Model Checking Game

We are now ready to formally define the model checking games. Let sub(y) denote the
subformulas of ¢ according to the grammar in (1). We use the notion of alternation depth
as defined, e.g., in [7]. Roughly speaking, the alternation depth of a formula is a measure of
its complexity. Essentially, it is the largest number of u and v alternations that appear in
the formula. Furthermore, let d be ad(p), with every subformula ¢’ of ¢ we can associate
a color c(¢’) as follows. If ¢ = vX.a) then c(¢’) = 2(d — ad(y’)). If ¢ = pX.¢ then
c(¢') = 2(d — ad(¢')) + 1. For every other formula ¢’ we set ¢(¢’) = 2d — 1. Tt follows that
c(¢’) is in the range [0..2d — 1].

P. Castro, C. Kilmurray, and N. Piterman

Figure 1
Markov chain M. Figure 2 The game Gy,

» Definition 5. Consider a Markov chain M = (K, P), where K = (S, R, L,s") and a
formula . We define the game Gr,, = (V, E, (Vo, V1,V,), K, G) as follows:

V=A(s,¥) | s € SN € sublp)},

Vo = {(87¢1 N 1#2)7 (S’ Ow)}v Vi= {(val A1), (Sva)}’ and V;, = V\ (VO uW),

E ={((s,p),(s,p)), ((s,7p), (s,7p)) | p is a proposition } U {((s, [¥]), (s,9))}

O (51 v), (5,60)) 11 € {121} U (5,0 Atia), (5,90)) | € {1,2}}

U {((5,00), (5, 0)) | Pls,s) >0} U {((5,00),(s',) | Pls,s') > 0}

U {((5: 00), (5 0) | Pls,) > 0F U {((5,0X-0), (5,0)) | o € {w,mu}}

U {((s,X), (s,0X.9)) | 6 X.¢ is the subformula binding X and o € {p,v}}
k((s,OY)(s',¢)) = P(s,s’), and k((s,9¥)(s,¢’)) = 1 for every other (s,9) € V, and
((s,4), (s,9)) € E.

G = (¢, 0), where O(s,[¢];) = J and O(s,) = L for every other formula;
c(y) If 4 is not a proposition.
c(s;) = ¢ 0 If(Yy=pandseL(p)or (¢ =-pands¢ L(p))
1 If (¢ =pand s ¢ L(p)) or (v =-pand s € L(p))

Let us present a simple example to obtain a first taste of pP-calculus and its game
semantics. Consider Markov chain M in Fig. 1 and the formula ¢ : vX.p A [OX]>0.5.
The alternation depth of ¢ is 1. Tt follows that c¢(sg,p) = 0, ¢(s1,p) = 1, and for every
other configuration ¢(v) = 0. The game obtained from ¢ and M is shown in Fig. 2. In
this graphic, we use circles to denote probabilistic configurations and diamonds to denote
player 1 configurations. Note that there are no player 0 configurations in this game. The only
configurations with obligations are (sg, [OX]>0.5) and (s1,[OX]>0.5). Let us calculate the
value of (so, vX.p A [OX]>0.5), the unique successor of this configuration is a configuration
where the refuter plays. The configuration (sg, p) is colored 0 as p € L(sg). Thus, the refuter
should avoid this sink state as it is winning for verifier and select the other successor. This
is a probabilistic configuration with obligation Z%. Then note that player 0 can ensure that
with probability at least % she either wins by reading (so,p) or gets to the same obligation
configuration, with color 0 the minimal in the loop. Player 0 can repeat this pattern forever.
It follows that player 0 meets her obligation and that the value of (sg, [OX]>05) is 1. We
conclude that valo(sg, vX.p A [OX]>05) = 1. Thus, the formula holds over this structure.
Intuitively, there is a location where p holds and for at least % of its successors the same
property holds again.

The following theorem shows that these games capture the semantics of pP-calculus.

» Theorem 6. For every Markov chain M, every location s, and every formula ¢ we have
lelhs (s) = valo(s, @), where valy(s,) is the value of configuration (s, p) in game Gy, .

217

STACS 2015

218

Tractable Probabilistic u-Calculus That Expresses Probabilistic Temporal Logics

» Corollary 7. Given a finite Markov chain M and a formula ¢ we can decide whether
lelh; =1 in NP co-NP.

Proof. From Theorem 4 we can determine whether the value of configuration (s, ¢) in Gz,
is at least one in NP N co-NP. The size of Gy, is polynomial in the size of M and in the
size of ¢. The result follows. <

We note that the game captures also the semantics of quantitative subformulas. It follows
that for a quantitative subformula ¢ we can decide whether [¢)]4,(s) > p in NP N co-NP
and compute it in exponential time.

5 Hardness of Model Checking

As we have shown in Section 3, there is a simple translation from the p-calculus to our logic.
The exact complexity of model checking the u-calculus is a long standing open problem. It
is well-known that its complexity lies in UP Nco-UP [11] and is equivalent to the complexity
of solving parity games [7]. However, the complexity arises from the alternation of fixpoint
operators. Here, we show that in our logic already the fraction that uses only the least
fixpoint (and only one fixpoint) is as hard as some of the “hard” problems known to be in
NP N co-NP but not known to be in P.

5.1 Two-player Stochastic Reachability Games

A two-player stochastic reachability game is G = (V, (Vy,V1,V,), E, &, T), where V, Vg,
Vi, Vp, E, and k are just like in parity obligation games and 7" C V is a set of target
configurations. A strategy for player 0 is ¢ : Vp — V such that for every v € Vy we
have (v,0(v)) € E. A strategy for player 1 is defined similarly. We intentionally consider

2. Given strategies o and 7 for players 0 and 1,

only deterministic memoryless strategies
respectively, the Markov chain G, . is the result of fixing the choices of the players according
to their strategies. For a configuration v ¢ T, let I, = {v} - V* - T - V¥ be the set of paths
that start in v and visit T. Then, the value of a configuration v € V' \ T for player 0 is

valp(v) = sup,, inf, measureg,, (IL,).

» Theorem 8. [6, 11, 17] For every configuration v € V \ T deciding if valg(v) > p for
some p € [0,1] is in NP N co-NP. The decision problem of whether a configuration in a
2-player parity/mean-payoff/discounted is winning for player 0 can be reduced to deciding
valy(v) > p.

5.2 Encoding Games as Model Checking

Consider a two-player stochastic reachability game G = (V, (Vo, V4, V},), E, k,T), a config-
uration v € V' \ T and a value p € [0,1]. We show how to construct a Markov chain Mg
and a formula ¢, such that IIQDR]]’ILIG (so) = 1 iff valp(v) > p, where sg is the initial state of
Mg. Let Mg = (K, P) be a Markov chain, where K = (V, E, L, v), and P(v,v’) is k(v,v’) if
v € V,and P(v,v') = m otherwise?. The labeling L uses four propositions: po, p1, and p,,

2 Tt is well known that in two-player stochastic reachability games there are optimal deterministic
memoryless strategies for both players [6].

3 Or indeed, every distribution that associates non-zero probability with exactly the successors of v.

P. Castro, C. Kilmurray, and N. Piterman

marking configurations of player 0, player 1, and stochastic, and p, marking configurations
in T as the goal.

Let 1/1R =Dy \ ((pp - OX) A (pO - <>X) A (pl - DX)) Then Pr = [/LX'wR]>(I'
» Lemma 9. [[(pR]]’;VIG (v) =1 iff valo(v) > gq.

» Corollary 10. Model checking alternation free uP-calculus formulas is as hard as solving
parity/mean-payoff/discounted games.

We note that this result relies on the usage of the existential and universal next operat-
ors. Indeed, the proof relies on our ability to “keep” the value of existential and universal
configurations in the original game in the formula. We do not know whether it is possible
to prove a similar result for a calculus without the existential and universal next operators.
We suspect that these next operators increase the expressive power of the logic. We also do
not know if by removing these two operators the “normal” complexity hierarchy of the p-
calculus that relies on alternation depth is introduced. We note that parity obligation games
can clearly encode the reachability of stochastic games. Thus, showing that the pP-calculus
without existential and universal next operators enjoys the same hierarchy would require
other techniques for model checking this calculus. A hardness result that does not use the
existential and universal next operators is by encoding the p-calculus in p?-calculus, as we
do in Subsection 3.1. This hardness result does rely on fixpoint alternation.

We note that a similar encoding can represent the value of an obligation game (with fi-
nitely many different obligation values) as the result of model checking a pP-calculus formula
over a Markov chain. As before, the structure of the game is encoded into the Markov chain.
The encoding is more involved as we have to include propositions that will identify the exact
obligations of configurations. Using these additional propositions the correct probabilistic
quantification can be included in the formula. The structure of the formula is very similar to
the classical encoding of the solution of parity games as p-calculus model checking. That is,
a prefix with fixpoints binding the variables according to the parity condition followed by a
body that includes the association of configurations with player 0, player 1, or probabilistic
(as above) with the inclusion of probabilistic quantification as well. We leave further details
of this construction as future work.

6 u-PCTL

We now introduce a fragment of pP-calculus that is expressive enough for encoding PCTL
and whose model checking is exponential only w.r.t. alternations of quantifiers. Thus,
for formulas with a bounded number of fixpoint alternations the model checking of this
fragment is polynomial. We believe that this logic may serve as a basis for defining other
useful extensions of PCTL.

Let AP be a set {po,p1, ...} of atomic propositions and let V = { Xy, X1, Xo,...} be an
enumerable set of variables; the sets ® and ¥ of location and path formulas, respectively,
are mutually recursively defined as follows:

J o= {>>}x10,1]
Du=p; | pi | Xi[@1V P2 | Oy APy | [¥]) [vX;® | pnX;.P
Uim XP | DYUD| DWD

We assume that in every formula there is no repetition of bound variables; it is straight-
forward to see that every formula can be rewritten to satisfy this requirement. In general,

219

STACS 2015

220

Tractable Probabilistic u-Calculus That Expresses Probabilistic Temporal Logics

we are interested in formulas in which all variables are bound. The definition of alternation
depth is as before.

The semantics of this logic can be straightforwardly obtained from the semantics for
uP-calculus given in Section 3, taking into account the fixpoint semantics of path operators;
and similarly for its game semantics. That is, we replace Xt by O, 1 U 2 by pX.s V
(1 AOX), and 1 Wepe by vX.4ha V (1 A OX).

Before presenting the model-checking algorithm we introduce some further notations.
We use a collection of (global) set variables S; € 2°, where each variable S; represents
the valuation of a variable X; appearing in the formula. Let cg,c1,... be a set of fresh
propositions, and we denote by M|[¢; < S;] the structure over AP U {¢y,...,c,} obtained
from M by setting L(c;) = S;. For the formula ¢, let ¢[X; < ¢;] be the formula obtained
from ¢, by replacing every reference to X; by c;.

We are now ready to present the model-checking algorithm for p-pcTL. Our pro-
cedure, called ewval, is presented as Algorithm 1. The procedure takes a Markov chain
M = (S,R, L,so) and a pu-PCTL formula ¢ and returns the set of states satisfying ¢. We
assume that variables S;, where X; is bound by a least fixpoint, are initialized to the empty
set; and variables S;, where X; is bound by a greatest fixpoint, are initialized to the set of
all states S. This algorithm uses the well-known way of calculating fixed points by using the
Knaster-Tarski theorem and it assumes a polynomial model checking algorithm for PCTL
(denoted eval PCTL).

The algorithm is similar to that proposed in [7] to model check standard p-calculus, fixed
points are calculated in the standard way, new constants are used for reducing subformulas
to PCTL formulas, and we only reset the values of variables when the nesting of two different
fixed points are found, otherwise previous calculation of fixed points are employed; to do
so, we use some auxiliary functions: Parent(yp;) returns the fixpoint ¢ X; surrounding ¢;
such that X; appears free in that formula, and OpenSub(yp;) returns the set subformulas
of ¢; that are bound by the same fixpoint operators and in which X; is free. Notice that
formulas of the form [¥]; are handled by eval PCTL after replacing fixpoint variables by
propositions.

» Theorem 11. For a formula ¢, s € eval(M, o) iff [¢]4,(s) = 1.

We note that this procedure is exponential only w.r.t. alternation depth. Thus, if the
alternation depth is fixed the procedure is polynomial.*

» Theorem 12. Procedure eval runs in time O((|M|* - |¢|2)24(@)+1) where the constant k
depends on the model checker used for PCTL formulas.

Furthermore, we prove that this fragment of pP-calculus is strictly more expressive than
PCTL.

» Theorem 13. p-PCTL is strictly more expressive than PCTL.

Proof. Consider the formula vY.p A [XY]s0, one can see that it is equivalent to the CTL
formula EGp. Theorem 14.45 in [1] shows that there is no qualitative PCTL formula that is

4 We also note that if a similar approach would be applied to finite obligation parity games the result
would be an exponential number of calls to an NP N co-NP algorithm. Indeed, the search for the sets
of obligations that can be used to satisfy other obligations can follow the same search pattern by using
maximal and minimal fixpoints. However, checking that each obligation is met, which corresponds to
the PCTL model checking in eval, would be a solution of a finite turn-based stochastic parity-reachability
game, which is in NP N co-NP.

P. Castro, C. Kilmurray, and N. Piterman

Input: A Markov Chain M and a formula ¢
Output: Set of states satisfying ¢
switch the form of ¢ do

1
2 case ¢ is a PCTL formula return evalPCTL(M,9) ;
3 case ¢ = p; return L(p;) ;

4 case ¢ = ¢; return S; ;

5 case ¢ = ¢1 A ¢ return eval(M,p1)Neval(M,p2) ;
6 case ¢ = ¢1 V ¢o return eval(M,p1)Ueval(M,p2) ;
7 case ¢ = vX;.¢'

8 if Parent(¢) = pX; then

9 ‘ forall the vX};, € OpenSub(¢) do S = S;

10 end

11 repeat

12 Sl =S

13 Si = eval(M|[c; + S;], &' [X; + ¢i]);

14 until S; = S;

15 return S;;

16 end

17 case ¢ = uX;.¢'

18 if Parent(¢) = vX, then

19 ‘ forall the uX; € OpenSub(¢p) do Sy = 0;

20 end

21 repeat

22 Sl =5

23 Si = eval(M|[c; + S;], &' [X; + ¢i]);

24 until S; = S5;

25 return S;;

26 end

27 endsw

Algorithm 1: Recursive Procedure eval

equivalent to it. It is possible to extend their proof to cover also quantitative probabilistic
quantification of PCTL. Thus, formula vY.p A [XY]so cannot be expressed in PCTL. <

To summarize, pu-PCTL formulas with bounded alternation depth admit a polynomial
model-checking procedure, p-PCTL is more expressive than PCTL. Finally, note that u-pPCTL
may be particularly useful to capture properties about repeating patterns of executions with
measure 0. For instance, the formula vX.p A [OX]>0.5 allows one to separate the model of
Figure 1 from the model obtained from it by removing the loop in state sg. We leave as
further work a careful investigation of this logic.

7 Related Work

Several attempts have been made to extend the features of Kozen’s p-calculus to the realm
of logics characterizing Markov chains. Huth and Kwiatkowska and, independently, Mclver
and Morgan considered qualitative p-calculi over Markov chains [9, 13]. Their definition
replaced union by maximum (max) and intersection by minimum (min) defining a basic
probabilistic calculus. The semantics of a formula was changed from a Boolean value of

221

STACS 2015

222

Tractable Probabilistic u-Calculus That Expresses Probabilistic Temporal Logics

{0,1} to a real value in [0,1]. Their logic, however, does not capture popular probabilistic
temporal logics such as PCTL [14]. In particular, these logics do not include the probabilistic
quantification central to the notion of PCTL and also did not allow to capture a single prob-
abilistic quantification surrounding an LTL formula. Cleaveland et al. extend the calculus of
Huth and Kwiatkowska by adding probabilistic quantification and allowing a finite number
of nesting of probabilistic quantifications [5]. In particular, they do not allow interaction
between fixpoint operators and probabilistic quantification. This restriction makes reason-
ing about the logic simple by repeating a finite number of times the evaluation of the simpler
logic of Huth and Kwiatkowska. The resulting logic allows to express PCTL (and PCTL*). At
the same time, it limits the expressive power of the logic: it cannot express the p-calculus
over the embedded Kripke structure, or even the CTL formula EGp, which we saw can be
expressed in u-PCTL (and consequently in pP-calculus). Both types of p-calculus are subsets
of pP-calculus.

Recently, Mio and Simpson [15] suggested an extended quantitative p-calculus that in-
cludes various options for join and meet. They include the maxz and min suggested previ-
ously, but also include some standard operators in Lukasiewicz logics such as @ and ©, that
have similar pleasing mathematical properties and are generalizations of Boolean disjunction
and conjunction. In order to capture probabilistic quantification they also include explicit
multiplication by a rational constant. The resulting logic enjoys some of the mathematical
properties of the p-calculus, allowing one to express PCTL probabilistic quantification, for
instance. Using the operators @ and ® as atomic operators results in several shortcom-
ings. The best algorithms for model checking for this logic are either non-elementary or (by
reduction to first-order theory of the reals) triple exponential. Probabilistic quantification
is expressed as a combination of a fixpoint of one of the new operators along with multi-
plication by constants. Another advantage of our logic over that of Mio and Simpson is
that we can syntactically recognize formulas that are qualitative. Furthermore, not directly
relevant for the u-calculus, the game semantics associated with it includes a construct called
“independent product” and it is not known whether games with this feature are determined
for general Borel winning conditions. We note that Mio and Simpson define their logic on
Markov decision processes (MDPs) and not over Markov chains. All the results we presen-
ted above generalize to MDPs. There are no additional technical difficulties in carrying the
proofs over. We have chosen to present our work on MDPs to simplify presentation and to
be consistent with the large body of work on model checking Markov chains and PCTL that
we are familiar with.

8 Final Remarks

We have presented a probabilistic p-calculus that uses probabilistic quantification as an
atomic operation. Our main goal is to provide a unifying formalism into which the probabil-
istic temporal logics used in model checking can be encoded. We have shown that PCTL and
PCTL* can be captured in this calculus, and we note that similar results can be obtained for
other probabilistic logics such as probabilistic linear temporal logic. We have proved some
interesting results for this logic; in particular, its model checking problem is in NP N co-NP
and it admits a simple game semantics. Furthermore, we presented a simple fragment of this
logic which we believe may be important for expressing properties that are not expressible
in other probabilistic logics, in particular, those predicating about executions with measure
0, we leave as a further work a deeper investigation of this fragment.

The discrete p-calculus is intrinsically linked to alternating parity tree automata. We

P. Castro, C. Kilmurray, and N. Piterman

believe that a similar connection exists between uP-calculus and p-automata [10]. We leave
the consideration of this connection as future work.

—— References

1
2

10

11

12

13

14

15
16

17

C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

A. Bianco and L. de Alfaro. Model checking of probabalistic and nondeterministic systems.
In 15th Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, volume 1026 of Lecture Notes in Computer Science, pages 499-513. Springer, 1995.
K. Chatterjee and N. Piterman. Obligation blackwell games and p-automata. Technical
report, arXiv:1206.5174, 2012.

F. Ciesinski and C. Baier. LiQuor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In QFEST, pages 131-132. IEEE Computer Society, 2006.

R. Cleaveland, S. Purushothaman Iyer, and M. Narasimha. Probabilistic temporal logics
via the modal mu-calculus. Theor. Comput. Sci., 342(2-3):316-350, 2005.

A. Condon. The complexity of stochastic games. Inf. Comput., 96(2):203-224, 1992.

E.A. Emerson and C. Lei. Efficient model checking in fragments of the p-calculus. In LICS.
IEEE Computer Society, 1986.

A. Hinton, M.Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: a tool for automatic
verification of probabilistic systems. In TACAS, volume 3920 of Lecture Notes in Computer
Science. Springer-Verlag, 2006.

M. Huth and M.Z. Kwiatkowska. Quantitative analysis and model checking. In 12th IEEE
Symposium on Logic in Computer Science, pages 111-122. IEEE Computer Society, 1997.
M. Huth, N. Piterman, and D. Wagner. p-automata: New foundations for discrete-time
probabilistic verification. Performance Evaluation, 69(7-8):356-378, 2012.

M. Jurdzinski. Deciding the winner in parity games is in UP N co-UP. Inf. Process. Lett.,
68(3):119-124, 1998.

D. Kozen. Results on the propositional p-calculus. In Automata, Languages and Pro-
gramming, volume 140 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1982.

A. Mclver and C. Morgan. Results on the quantitative p-calculus qMu. ACM Trans.
Comput. Log., 8(1), 2007.

M. Mio. Game Semantics for Probabilistic pi-Calculi. PhD thesis, University of Edinburgh,
2012.

M. Mio and A. Simpson. fLukasiewicz p-calculus. In FICS, 2013.

K. Scheider. Verification of Reactive Systems: Formal Methods and Algorithms. Springer,
2004.

U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158(1&2):343-359, 1996.

223

STACS 2015

	Introduction
	Preliminaries
	A Probabilistic -Calculus
	Expressing the -Calculus
	Expressing pctl

	Game Semantics
	Parity Obligation Games
	Model Checking Game

	Hardness of Model Checking
	Two-player Stochastic Reachability Games
	Encoding Games as Model Checking

	-pctl
	Related Work
	Final Remarks

