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Abstract
We consider the point-to-point message passing model of communication in which there are k
processors with individual private inputs, each n-bit long. Each processor is located at the node
of an underlying undirected graph and has access to private random coins. An edge of the graph
is a private channel of communication between its endpoints. The processors have to compute a
given function of all their inputs by communicating along these channels. While this model has
been widely used in distributed computing, strong lower bounds on the amount of communication
needed to compute simple functions have just begun to appear.

In this work, we prove a tight lower bound of Ω(kn) on the communication needed for com-
puting the Tribes function, when the underlying graph is a star of k + 1 nodes that has k leaves
with inputs and a center with no input. A lower bound on this topology easily implies compar-
able bounds for others. Our lower bounds are obtained by building upon the recent information
theoretic techniques of Braverman et al. ([4], FOCS’13) and combining it with the earlier work of
Jayram, Kumar and Sivakumar ([10], STOC’03). This approach yields information complexity
bounds that are of independent interest.
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1 Introduction

The classical model of 2-party communication was introduced in the seminal work of Yao[18],
motivated by problems of distributed computing. This model has proved to be of fundamental
importance (see the book by Kushilevitz and Nisan [13]) and forms the core of the vibrant
subject of communication complexity. It is fair to say that the wide applicability of this
model to different areas of computer science cannot be over-emphasized.

However, a commonly encountered situation in distributed computing is one where
there are multiple processors, each holding a private input, that are connected by an
underlying communication graph. An edge of the graph corresponds to a private channel
of communication between the endpoints. There are k processors located on distinct nodes
of the graph that want to compute a function of their joint inputs. In such a networked
scenario, a very natural question is to understand how much total communication is needed

∗ A. Chattopadhyay is partially supported by a Ramanujan Fellowship of the DST and S. Mukhopadhyay
is supported by a TCS Fellowship.

© Arkadev Chattopadhyay and Sagnik Mukhopadhyay;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 224–237

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.224
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


A.Chattopadhyay and S.Mukhopadhyay 225

to get the function computed. The classical 2-party model is just a special case where the
graph is an edge connecting two processors.

Among others, this model has also been called the Number-in-hand multiparty point-
to-point message passing model of communication. Apart from distributed computing, this
model is used in secure multiparty computation. The study of the communication cost in the
model was most likely introduced by Dolev and Feder [6] and further worked on by Duris
and Rolim [8]. These early works focused on deterministic communication. There has been
renewed interest in the model because it arguably better captures many of today’s networks
that is studied in various distributed models: models for map-reduce [11, 9], massively
parallel model for computing conjunctive queries [3, 12], distributed models of learning [1]
and in core distributed computing [7]. However, there were no known systematic techniques
of proving lower bounds on the cost of randomized communication protocols that exploited
the non-broadcast nature of the private channels of communication in the model. Recently,
there has been a flurry of work developing new techniques for proving lower bounds on
communication. Phillips, Verbin and Zhang [14] introduced the method of symmetrization
to prove strong bounds for a variety of functions. Their technique was further developed in
the works of Woodruff and Zhang [15, 16, 17].

All these works considered the co-ordinator model, a special case, that was introduced in
the early work of [6]. In the co-ordinator model, the underlying graph has the star topology
with k + 1 nodes. There are k leaves, each holding an n-bit input. Each of the k leaf-nodes
is connected to the center of the star. The node at the center has no input and is called
the co-ordinator. The following two simple observations about the model will be relevant
for this work: every function can be trivially computed using O(nk) bits of communication
by having each of the k players send their inputs to the co-ordinator who then outputs the
answer. It is also easily observed that the co-ordinator model can simulate a communication
protocol on an arbitrary topology having k nodes with at most a log k factor blow-up in the
total communication cost.

A key lesson learnt from our experience with the classical 2-party model is that an
excellent indicator of our understanding of a model is our ability to prove lower bounds
for the widely known Set-Disjointness problem in the model. Indeed, as surveyed in [5],
several new and fundamental lower bound techniques have emerged from efforts to prove
lower bounds for this function. Further, the lower bound for Set-Disjointness, is what
drives many of the applications of communication complexity to other domains. While
the symmetrization technique of Phillips et.al and its refinements by Woodruff and Zhang
proved several lower bounds, no strong lower bounds for Set-Disjointness were known until
recently in the k-processor co-ordinator model. In this setting, the relevant definition of
Set-Disjointness is the natural generalization of its 2-party definition: view the n-bit inputs
of the k processors as a k×n Boolean matrix where the ith row corresponds to the Processor
i’s input. The Set-Disjointness function outputs 1 iff there exists a column of this matrix
that has no zeroes.

In an important development, Braverman et al. [4] proved a tight Ω(kn) lower bound for
Set-Disjointness in the co-ordinator model. Their approach is to build up new information
complexity tools for this model that is a significant generalization of the 2-party technique of
Bar-Yossef et al. [2]. In this work, we further develop this information complexity method
for the co-ordinator model by considering another natural and important function, known as
Tribesm,`. In this function, the n-bit input to each processor is grouped into m blocks, each
of length `. Thus, the overall k × n input matrix splits up into m sub-matrices A1, . . . , Am,
each of dimension k × `. Tribes outputs 1 iff the Set-Disjointness function outputs 1 on each
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sub-matrix Ai. This obviously imparts a direct-sum flavor to the problem of determining the
complexity of the Tribes function in the following sense: a naive protocol will solve Tribes by
simultaneously running an optimal protocol for Set-Disjointness on each of the m instances
A1, . . . , Am. Is this strategy optimal?

This question was answered in the affirmative for the 2-party model by Jayram, Kumar
and Sivakumar [10] when they proved an Ω(n) lower bound on the randomized communication
complexity of the Tribes function. Their work delicately extended the information theoretic
tools of Bar-Yossef et.al [2]. Interestingly, it also exhibited the power of the information
complexity approach. There was no other known technique to establish a tight lower bound
on the Tribes function1.

In this work, we show that the naive strategy for solving Tribes is optimal also in the
co-ordinator model:

I Theorem 1. In the k-processor co-ordinator model, every bounded error randomized
protocol solving the Tribesm,n function, has communication cost Ω

(
m`k

)
, for every k ≥ 2.

We prove this by extending and simplifying the information complexity approach of [4]
and the earlier work of [10]. It is worth noting that our bounds in Theorem 1 hold for all
values of k. In particular, this also yields a lower bound for Set-Disjointness for all values of
k. The earlier bound of Braverman et al. only worked if k = Ω(logn).

2 Overview & Comparison with Previous Work

We first provide a quick overview of our techniques and contributions. We follow this up
with a more detailed description, elaborating on the main steps of the argument.

Brief Summary: Recall that the Tribesm,n function can be written as an m-fold AND of
Disjn instances. One possible way to show that Tribesm,n is hard in message-passing model
is to show that any protocol evaluating Tribesm,n must evaluate all the the Disjn instances.
This suffices to argue that Tribesm,n is m times as hard as Disjn. By now it is well known that
information complexity provides a convenient framework to realize such direct sum arguments.
In order to do so, one needs to define a distribution on inputs that is entirely supported
on the ones of the m Set-Disjointness instances of Tribes. This was the general strategy
of Jayram et al. [10] in the 2-party context. However, the first problem one encounters is
to define an appropriate hard distribution and a right notion of information cost such that
Disjointness has high information cost of Ω(k`) under that distribution in the co-ordinator
model. This turns out to be a delicate and involved step. Various natural information costs do
not work as observed by Phillips et al. [14]. Here, we are helped by the work of Braverman et
al. [4]. They come up with an appropriate distribution τ and an information cost measure IC0.
However, we face some problems in using them. The first is that τ happens to be (almost)
entirely supported on the zeroes of Set-Disjointness. Taking ideas from [10], we modify τ to
get a distribution µ supported exclusively on the ones of Set-Disjointness. Roughly speaking,
to sample from µ, we first sample from τ and then pick a random column of the sampled
input and force it to all ones. Intuitively, the idea is that the all ones column is being well
hidden at a random spot. The intuition is, if τ was hard, µ should also remain hard. It turns

1 This is not surprising. Two other successful techniques, the discrepancy and the corruption method, both
yield lower bounds on the non-deterministic complexity. On the other hand, Tribes and its complement,
on n-bit inputs, both have only

√
n non-deterministic complexity.
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out that we prove the hardness of µ directly from scratch. To do so we appropriately modify
the information cost measure IC0 to IC so that it yields high information complexity under µ.
Here, we use an idea of [10].

However, proving that IC is high for protocols when inputs are sampled according to µ
raises new technical challenges. The first challenge is to prove a direct sum result on the
information complexity of protocols as measured by IC. We do not know how to do that.
Here we borrow ideas from [10] to introduce a new information measure, PIC(f) which is a
lower bound on IC(f) and will be explained in relevant section. We show that PIC

(
Disjn

)
is at least Ω(` · PIC

(
Disj2

)
). Implementing this step is a novelty of this work. The final

challenge is to prove that IC
(
Disj2

)
is Ω(k). We again do that by first simplifying some of

the lemmas of [4] and extending them using some ideas from the work of [10].

More Detailed Account: Among the many possible ways to define information cost of a
protocol, the definition we work with stems from the inherent structure of the communication
model. As evident from the previous discussion, in the model of communication we are
interested in, the co-ordinator can see the whole transcript of the protocol but cannot see
the inputs. On the other hand, the processors can only see a local view of the transcript -
the message that is passed to them and the message they send - along with their respective
inputs. From the point of view of the co-ordinator, who has no input, the information
revealed by the transcript about the input can be expressed by I[X : Π(X)]. This is small
for the protocol where the co-ordinator goes around probing each player on each coordinate
to see whether any player has 0 in it and gives up once she finds such a player.(We call it
Protocol A). It is not hard to see that the information cost can only be as high as O(n log k)
for protocol A. A relevant information cost measure from the point of view of processor i is
I[X−i : Πi(X) | Xi] which measures how much information processor i learns about other
inputs from the transcript. It turns out that this information cost is also very small for
the protocol where all the processors send their respective inputs to the co-ordinator (We
call this protocol as protocol B). Here I[X−i : Πi(X) | Xi] is 0 for all i. What is worth
noticing is that in both protocols, if we consider the sum of the two information costs, i.e.,
I[X : Π(X)] +

∑
i I[X−i : Πi(X) | Xi], it is Ω(nk) which is the kind of bound we are aiming

for.
This cost trade-off was first observed in [14] but they were unable to prove a lower bound

for Disjn in this model of communication. Braverman et al [4] solved this problem by coming
up with the following notion of information complexity. Let (X,M,Z) be distributed jointly
according to some distribution τ . The information cost of a protocol Π with respect to τ is
defined as, IC0

τ (Π) =
∑
i∈[k]

[
I
τ
[Xi : Πi(X) | M,Z] + I

τ
[M : Πi(X) | Xi,Z]

]
.

Conditioning on the auxiliary random variables M and Z serves the following purpose:
Even though the distribution τ is a non-product distribution, it can be thought of as a
convex combination of product distributions, one for each specific values of M and Z. It is
well-known by now that such convex combination facilitates proving direct-sum like result.

The desired properties of the distribution τ are as follows. First, the distribution should
have enough entropy to make it hard for the players to encode their inputs cheaply and
send it across to the co-ordinator. Such an encoding is attempted in protocol B. Second, the
distribution should be supported on inputs which have only a few 0’s in each column of Disjn.
This makes sure that the co-ordinator has to probe Ω(k) processors in each column before
he finds a 0 in that column. This attempt of probing was undertaken by the co-ordinator
in protocol A. The first property can be individually satisfied by setting each processor’s
input to be 0 or 1 with equal probability in each column. The second property can also be
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individually satisfied by taking a random processor for each column and giving it a 0 and
giving 1 to rest of the processors as their inputs. Let Zj denote the processor whose bit was
fixed to 0 in column j. The hard distribution for Disjn is a convex combination of these two
distributions. The way it is done is by setting a Bernoulli random variable Mj for each of
the column j which acts as a switch, i.e., if Mj = 0 the input to the column j is sampled
from the first distribution, otherwise it is sampled from the second distribution. Mj takes
value 0 with probability 2/3. We define M = 〈M1, . . . ,M`〉 and Z = 〈Z1, . . . ,Z`〉.

At this point it is interesting to go back to the definition of IC0 and try to see the
implication of each term in the definition. For the coordinator,

∑
i Iτ[X

i : Πi(X) | M,Z]
represents the amount of information revealed about the inputs of the processors by the
transcript. For convenience, we can assume that M is with co-ordinator. We can do this
without loss of generality as the co-ordinator can sample O(log k) inputs from column j and
conclude the value of Mj from it, for any j. This amount of communication is okay for us as
we are trying to show a lower bound of Ω(nk). However note that we cannot assume that
the processors have the knowledge of M. Had that been the situation, the processors would
have employed protocol A or protocol B in column j depending on the value of the Mj . The
value of I[Xi : Πi(X) | M,Z], in this protocol, would have been small. So we need to make
sure that we charge the processors for their effort to know the value of M. This is taken
care by the second term in the definition of IC0 i.e., I

µ
[M : Πi(X) | Xi,Z]. Braverman et

al. [4] used this notion of information complexity to achieve the Ω(`k) lower bound for the
information cost of Disjn with respect to the hard distribution.

As mentioned before, we, however, need the hard distribution ζ for Tribesm,n to be entirely
supported on 1s of Disjn. But the distribution τ described above is supported on 0s of Disjn.
Here we borrow ideas from [10] and design a distribution µ by selecting a random column
for the Disjn instances and planting an all 1 input in it. We denote the random co-ordinate
by W. It is easy to verify that µ is a distribution supported in 1s of Disjn. We set the
hard distribution for Tribesm,n to be an m-fold product distribution ζ = µm denoted by the
random variables 〈X̄, M̄, Z̄,W̄〉. It is to be noted that a correct protocol should work well for
all inputs, not necessarily for the inputs coming from the distribution ζ. This property will
be crucially used in later part of the proof. The modification of the input distribution from
τ to µ and subsequently to ζ calls for changing the definition of the information complexity
to suit our purpose. We define information complexity as follows which we will use in this
paper.

I Definition 2. Let (X̄, M̄, Z̄,W̄) be distributed jointly according to ζ. The information
cost of a protocol Π with k processors in NIH point-to-point coordinator model with respect
to ζ is defined as,

ICζ(Π) =
∑
i∈[k]

[
I
ζ
[X̄i : Πi(X̄) | M̄, Z̄,W̄] + I

ζ
[M̄ : Πi(X̄) | X̄i, Z̄,W̄]

]
. (1)

For a function f : X → R, the information complexity of the function is defined as,
ICζ,δ(f) = infΠ ICµ(Π), where the infimum is taken over all δ-error protocol Π for f .

By doing this, we are able to bound the information complexity of Tribesm,n as m-times
that of Disjn. Although non-trivial, this step can be accomplished by exploiting the proof
techniques used in [4]. The next step is to bound the information complexity of Disjn, which
turns out to be difficult for two reasons. First, the distribution µ is no more a 0 distribution
for Disjn. We get around this by defining a new information complexity measure, - which
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we call as partial information complexity - to show that the partial information complexity
of Disjn on distribution µ is at least (` − 1)-times that of Disj2. This is one of the main
technical contributions of our paper. See Section 4.1 for details. The second hurdle we face
is bounding the information complexity of Disj2. Here we combine ideas from [10, 4] to
conclude that the partial information complexity of Disj2 is Ω(k). This is the second main
technical contribution of this paper, which is explained in Section 4.2. Finally we give a
simple argument in Section 5 to show that ICζ(Π) lower bounds the communication cost of
Π where Π is any correct protocol for Tribesm,n.

3 Preliminaries

Communication complexity. In this work, we are mainly interested in multiparty com-
munication number-in-hand model. In this model of computation, the input is distributed
between k players P1, · · · , Pk who jointly wish to compute a function f on the combined
input by communication with each other.

We work with randomized protocol where the players have access to private coins. (Though
it might seem like that the public coin protocol can yield better upper bound, it can be
noted that all the proofs can be modified to give the same result for public coin model.)
The standard notion of private coin randomized communication complexity is adopted here,
where we look at the worst-case communication of the protocol when the protocol is allowed
to make only δ error (bounded away from 1/2) on each input. Here the probability is taken
over the private coin tosses of the players. For more details, readers are referred to [13].

Information theory. We will quickly go through the information theoretic definitions and
facts we need. For a random variable X taking value in the sample space Ω according to the
distribution p()̇, the entropy of X, denoted as H(X), is defined as H(X) =

∑
x∈Ω Pr[X =

x] log 1
Pr[X=x] = Ex

[
log 1

p(x)

]
.

For two random variables X and Y , the conditional entropy of X given Y is defined as
H(X|Y ) = Ex,y

[
log 1

p(x|y)

]
.

Informally, the entropy of a random variable measures the uncertainty associated with
it. Conditioning on another random variable, i.e., knowing the value that another random
variable takes can only decrease the uncertainty of the former one. This notion is captured in
the following fact thatH(X|Y ) ≤ H(X) where the equality is achieved when X is independent
of Y . Given two random variables X and Y with joint distribution p(x, y) we can talk about
how much information one random variable reveals about the other random variable. The
mutual information, as it is called, betweenX and Y is defined as I[X : Y ] = H(X)−H(X|Y ).

It is to be noted that the mutual information is a symmetric quantity, though it might
not be obvious from the definition itself. From the previous discussion, it is easy to see that
the mutual information is a non-negative quantity. As before, we can also define conditional
mutual information as I[X : Y |Z] = H(X|Z)−H(X|Y,Z).

The following chain rule of mutual information will be crucially used in our proof.

I[X1, . . . , Xn : Y ] =
∑
i∈[n]

I[Xi : Y |Xi−1, . . . , X1]. (2)

It is to be noted that the chain rule of mutual information will also work when conditioned
on random variable Z.
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230 Tribes Is Hard in the Message Passing Model

I Remark. Consider a permutation σ : [n]→ [n]. The following observation will be useful in
our proof.

I[X1, . . . , Xn : Y ] =
∑
i∈[n]

I[Xσ(i) : Y |Xσ(i−1), . . . , Xσ(1)]. (3)

We will use the following lemma regarding mutual information.

I Lemma 3. Consider random variables A,B,C and D. If A is independent of B given D

then,

I[A : B,C | D] = I[A : C | B,D], (4)

and

I[A : C | B,D] ≥ I[A : C | D]. (5)

4 Lower Bound for Tribesm,n in Message Passing Model

Here, in the first subsection, we will show two direct-sum results. In the first step we bound
the information complexity of Tribesm,n in terms of that of Disjn. It is to be noted that the
proof technique of [2] falls short of proving any lower bound on the information complexity
measure we have defined - mainly because of the fact the information complexity measure
consists of sum two different mutual information terms for each processor, and it is not
clear that one can come up with lower bounds for both the terms simultaneously. This
problem has already been attended to in [4] and the proof we present here resembles the
proof technique used by them. For completeness we include the proof in this paper. In the
second step, we will bound the information complexity of Disjn in terms of Disj2. This step
is more difficult and a straight-forward application of the direct-sum argument of [4] will not
work. First we use ideas from [10] to define partial information complexity measure which
is more convenient to work with. Then we come up with a novel direct-sum argument for
partial information complexity measure.

In Section 4.2, we show that the information complexity of Disj2 is Ω(k). We manage to
show this by combining ideas from [4, 10].

4.1 Direct Sum
In this section we prove that the information cost of computing Tribesm,n is m times the
information cost of computing Disjn. The proof is almost the same proof as in [4] where the
authors have used a direct sum theorem to show that the information cost of computing
Disjn is ` times the information cost of computing k-bit ANDk. Before going into details we
need the following definitions which we will borrow from [10].

Consider f : Dm → R can be written as f(X) = g(h(X1), . . . , h(Xm)) where X =
〈X1, . . . , Xm〉, Xi ∈ D and h : D → R. In other words, f is g-decomposable with primitive
h.

I Definition 4 (Collapsing distribution). We call X ∈ Dm be a collapsing input for f if for
any i ∈ [m] and y ∈ D, we have f(X(i, y)) = h(y). Any distribution ζ supported entirely on
collapsing inputs on f is called a collapsing distribution of f .

I Definition 5 (Projection). Given a distribution ν specified by random variable (D1, . . . , Dk)
and a subset S of [k], we call the projection of ν on (Di)i∈S , denoted as ν ↓(Di)i∈S , the
marginal distribution of (Di)i∈S induced by ν.
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The proof is by reduction: we will show that given a protocol Π for Tribesm,n and a
collapsing distribution µ = ζml , we can construct a protocol Π′ for Disjn such that it computes
Disjn with the same error probability as that of Π and the information complexity of Π is m
times that of Disjn.

I Theorem 6. Let µ = ζm` be a collapsing distribution for Tribesm,n partitioned by M,Z
and W as described before. Then

ICµ(Tribesm,n) ≥ m.ICζ`(Disjn). (6)

As mentioned before, the proof of Theorem 6 works out nicely by adapting the proof
techniques of [4] and is omitted in this version.

Now our goal is to connect the information cost of Disjn under ζ` to information cost of
ANDk. So a natural attempt is to prove a theorem like Theorem 6 for reduction from Disjn
to ANDk. Unfortunately this is not possible. Recall that Disjn(X) =

∨`
i=1
∧k
j=1X

j
i . Hence

for a collapsing distribution each of the ANDks should evaluate to 0, which is not the case
for the distribution ζ`.

Inspired by [10], we define the following measure of information cost, namely, partial
information cost. Let Π be a protocol for Disjn. The partial information cost of Π is defined
as,

PIC(Π) =
k∑
i=1

(
I
[
M−W : Πi(X) | Xi,Z,W

]
+ I
[
Xi
−W : Πi(X) | M,Z,W

])
. (7)

The random variable M−W denotes M with its W-th coordinate removed. Similarly, Xi
−W

denotes Xi with its W-th coordinate removed. The partial information complexity of Disjn
is the partial information cost of the best protocol computing Disjn. It is easy to see that the
partial information complexity of any function f lower bounds the information complexity of
f .

We prove the following theorem.

I Theorem 7. Let ζ` be the distribution over the inputs of Disjn partitioned by M,Z,W as
described before. Then

PICζ`(Disjn) ≥ (`− 1).PICζ2(Disj2). (8)

Here we will show the following reduction analogous to our previous reduction from
Tribesm,n to Disjn. Given a protocol Π′ for Disjn and distribution ζ` (as described in Section
2, we will come up with a protocol Π′′ for Disj2 such that the partial information cost of Π′′
w.r.t. ζ` is 1/(`− 1) times the partial information cost of Π′ w.r.t ζ2.

Let us describe the construction of the protocol Π′′. On an input u = 〈u1, u2〉 for Disj2,
the processors and the coordinator sample a k × ` random matrix X(u) in the following way.

1. The coordinator samples P and Q uniformly at random from [`] such that P < Q.
2. The coordinator samples Z−{P,Q} = (Zi)i∈[`]\P,Q, where each Zi ∈

R
[k], and sends it to

all the processors.
3. The coordinator samples a number R uniformly at random from {0, ..., `− 2} and then

samples a subset T ⊆ [`]\{P,Q} uniformly at random from all sets of size R that do not
contain P,Q. Then the coordinator samples Mt ∼ Bin(1/3) for all t ∈ T and sends them
to all the processors. The processors use their private randomness to sample Xt for each
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column t in T in the following way: The input of the Zt-th processor is fixed to 0 in Xt

and the other processors get 1 if Mt = 1, otherwise, if Mt = 0, they get 0 or 1 uniformly
at random. We will call this input sampling procedure as IpSample.

4. For the rest of the columns, the coordinator samples the inputs according to IpSample
and sends the requisite inputs to the respective processors.

5. The processors form the input X ≡ X(u,P,Q) (i.e., XP = u1 and XQ = u2) and run
the protocol Π′ for Disjn with X as input.

I Observation 8. Consider the tuple (U,N,V,S) distributed according to ζ2. If U is given
as input to protocol Π′′, then (X,M,Z,W) is distributed according to ζ`, where W is the
unique all 1’s coordinate in X. Here W = P if V = 1 and W = Q if V = 2.

Next we prove the following lemma connecting the information cost of Π′ for Disjn and
that of Π′′ for Disj2. This lemma implies the Theorem 7.

I Lemma 9.

I
(U,N,V,S)∼ζ2

[Ui
−V,Π′′i(U) | N,V,S] ≤ 1

`− 1 I
(X,M,W,Z)∼ζ`

[Xi
−W,Π′i(X) | M,W,Z], (9)

and

I
(U,N,V,S)∼ζ2

[N−V,Π′′i(U) | Ui,V,S] ≤ 1
`− 1 I

(X,M,W,Z)∼ζ`
[M−W,Π′i(X) | Xi,W,Z]. (10)

Proof. We consider the LHS of Equation (10). The view of processor i of the transcript of
protocol Π′′, denoted as Π′′i(U), is given as follows.

Π′′i(U) = 〈P,Q,Z−P,Q,R,T,MT,Xi
T̄\{P,Q},Π

′(X(P,Q,U)))〉. (11)

So the LHS of Equation (10) can be written as

I
(U,N,V,S)∼ζ2

[N−V : Π′′i(U) | Ui,V,S]

= I
(U,N,V,S)∼ζ2

(X,M,Z)∼ζ`↓X,M,Z

[N−V : P,Q,Z−P,Q,T,MT,R,Xi
T̄\{P,Q},Π

′i(X(P,Q,U))|Ui,V,S]

= I
(U,N,V,S)∼ζ2

(X,M,Z)∼ζ`↓X,M,Z

[N−V : Π′i(X(P,Q,U))|P,Q,Z−P,Q,T,MT,R,Xi
T̄\{P,Q},U

i,V,S]

[Lemma 3 eqn. (4)]
= I

(U,N,V,S)∼ζ2
(X,M,Z)∼ζ`↓X,M,Z

[N−V : Π′i(X) | P,Q,R,T,MT,Z,V,Xi
T̄]

[Combining (Ui,Xi
T̄\{P,Q} and (Z−P,Q,S)]

≤ I
(U,N,V,S)∼ζ2

(X,M,Z)∼ζ`↓X,M,Z

[N−V : Π′i(X) | P,Q,R,T,MT,Z,V,Xi]

[Lemma 3 eqn. (5), Xi
S ind. of N−V]

[V takes value in 1 and 2 uniformly at random. Hence we can write it as follows.]

= 1
2 I

(X,M,Z)∼ζ`↓X,M,Z
[MP : Π′i(X) | P,Q,R,T,MT,Z,V = 2,Xi]

+ 1
2 I

(X,M,Z)∼ζ`↓X,M,Z
[MQ : Π′i(X) | P,Q,R,T,MT,Z,V = 1,Xi]. (12)
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Consider the first mutual information term.

I[MP : Π′i(X) | P,Q,R,T,MT,Z,V = 2,Xi]

= 2
`(`− 1)

∑
p<q

I[Mp : Π′i(X) | P = p,Q = q,R,T,MT,Z,V = 2,Xi]

= 2
`(`− 1)2

∑
p<q

`−2∑
r=0

∑
t:|t|=r

Pr[T = t]I[Mp : Π′i(X) | p, q, r, t,Mt,Z,V = 2,Xi]

= 2
`(`− 1)2

∑
p<q

`−2∑
r=0

∑
t:|t|=r

(`− r − 2)!r!
(`− 2)! I[Mp : Π′i(X) | p, q, r, t,Mt,Z,V = 2,Xi].

We can safely drop the conditioning P = p,R = r,T = t and V = 2 in the following way.
It is easy to see R = r,T = t is implied by Mt. Mp implies P = p. Moreover, given (p, q),
V = 2 is equivalent to W = p. So we can write,

I[MP : Π′i(X) | P,Q,R,T,MT,Z,V = 2,Xi]

= 2
(`− 1)!`(`− 1)

∑
q

∑
p:p<q

`−2∑
r=0

∑
t:|t|=r

((`− r − 2)!r!)I[Mp : Π′i(X) | W = q,Mt,Z,Xi].

(13)

Similarly, the second mutual information term of Equation (12) term can be written in the
following way.

I[MQ : Π′i(X) | P,Q,R,T,MT,Z,V = 1,Xi]

= 2
(`− 1)!`(`− 1)

∑
q

∑
p:p<q

`−2∑
r=0

∑
t:|t|=r

((`− r − 2)!r!)I[Mq : Π′i(X) | W = p,Mt,Z,Xi].

(14)

Combining Equation (12), (13), (14), we get,

I(U,N,V,S)∼ζ2 [N−V,Π′i(U) | Ui,V,S]

≤ 1
(`− 1)!`(`− 1)

∑
q′

∑
p′:p′ 6=q′

`−2∑
r=0

∑
t:|t|=r

((`− r − 2)!r!)I[Mp′ : Π′i(X)|W = q′,Mt,Z,Xi]

The number of permutations of [`]\q where the r + 1th element is p′ and the first r elements
constitute the set t is (`− r − 2)!r!. Hence we can write the previous summation as follows,

= 1
(`− 1)!`(`− 1)

∑
q′

∑
σ∈S[`]\q′

∑
i∈[`]\q′

I[Mσ(i) : Π′i(X) | M{σ(1),...,σ(i−1)},Z,W = q′,Xi]

= 1
(`− 1)!`(`− 1)

∑
q′

∑
σ∈S[`]\q′

I[M−q′ : Π′i(X) | Z,W = q′,Xi]

[Using chain rule of information, Eq. (3)]

= 1
`− 1

∑
q′

1
`

I
(X,M,Z)∼ζ`↓X,M,Z

[M−q′ : Π′i(X) | Z,W = q′,Xi]

= 1
`− 1 I

(X,M,Z,W)∼ζ`
[M−W : Π′i(X) | Z,W,Xi]. (15)

Equation (9) can be proved in the similar way and therefore omitted. J
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4.2 Lower Bounding Disj2
In this section we prove the following.

I Theorem 10. IC(Disj2) ≥ PIC(Disj2) ≥ Ω(1).

This, combined with Theorem 7 and Theorem 6 will imply a Ω(m`k) lower bound on the
switched information complexity of Tribesm,n which is the lower bound on Rδ(Tribesm,n) we
aimed for.

Notation. By ē we mean the all 1 vector of size k. By ēi,j , we mean the boolean vector of
size k where all entries are 1 except the entries in index i and j. Similarly, ēi is the boolean
vector where all entries are 1 except that of index i. Π[i, x,m, z; ēi] implies the transcript of
the protocol Π on the following Disj2 instance: the input of the first column comes from the
distribution specified by M = m, Z = z and Xi

1 = x and the input of the second column is
ēi. Abusing notation slightly, Πi[x,m, z; ēi] represents processor-i’s view of the transcript
Π[i, x,m, z; ēi].

Hellinger distance. For probability distributions P and Q supported on a sample space
Ω, the Hellinger distance between P and Q, denoted as h(P,Q), is defined as, h(P,Q) =
1√
2 ||
√
P −

√
Q||2 = 1 − F (P,Q), where F (P,Q) =

∑
ω∈Ω

√
P (ω)Q(ω) is also known as

Bhattacharya coefficient. Below we will state a fact (without proof) about Hellinger distance.

I Fact 11 ([2]). Let Π be a δ-error protocol for function f . For inputs x and y such that
f(x) 6= f(y), we have,

h(Π(x),Π(y)) ≥ 1− δ√
2
. (16)

The following lemmas are generalization of their two-party analogues.

I Lemma 12 (k-party cut-paste). For any randomized protocol Π computing f : Xk → {0, 1}
and for any x, y ∈ Xk and for some i and j,

h(Π(xixjx−i,j , yiyjy−i,j)) = h(Π(xiyjx−i,j , yixjy−i,j)). (17)

I Lemma 13 (Pythagorean). For any randomized protocol Π and for any input x, y ∈ Xk

and for some i and j,

2h2(Π(xixjx−i,j , yiyjy−i,j)) ≥ h2(Π(xixjx−i,j , xiyjy−i,j)) + h2(Π(yixjx−i,j , yiyjy−i,j)).
(18)

Following structural properties are generalizations of analogous properties shown in [4].
Simpler proofs will be included in full version.

I Lemma 14 (Diagonal). For i 6= j

h2(Πi[0, 0, j; ē],Πi[1, 1, z; ē]) ≥ 1
2h

2(Πi(ēi,j ; ē),Πi(ēj ; ē)). (19)

I Lemma 15 (Global-to-local). For i 6= j

h2(Π[i, 0, 0, z; ē],Π[i, 1, 0, z; ē]) = h(Πi[0, 0, z; ē],Πi[1, 0, z; ē]), (20)

and

h(Π(ēi,j ; ē),Π(ēi; ē) = h(Πi(ēi,j ; ē),Πi(ēi; ē)). (21)
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Now we are ready to prove the partial information cost of Disj2 is Ω(k). We consider
processor i and fix a value j 6= i.

I Claim 16 ([4]).

(1) I[M−W : Πi | Xi,Z = j,W = 2] ≥ 2
3h

2(Πi[1, 0, j; ē],Πi[1, 1, j; ē]), (22)

(2) I[Xi
−W : Πi | M,Z = j,W = 2] ≥ 2

3h
2(Πi[0, 0, j; ē],Πi[1, 0, j; ē]), (23)

(3) I[M−W : Πi | Xi,Z = j,W = 1] ≥ 2
3h

2(Πi[ē; 1, 0, j],Πi[ē; 1, 1, j]), (24)

(4) I[Xi
−W : Πi | M,Z = j,W = 1] ≥ 2

3h
2(Πi[ē; 0, 0, j],Πi[ē; 1, 0, j]). (25)

Using Cauchy-Schwarz and triangle inequality, we can write the following.∑
i

I[M−W : Πi | Xi,Z,W] + I[Xi
−W; Πi | M,Z,W]

≥ 1
3k
∑
i

∑
j:i 6=j

[
h2(Πi[1, 1, j; ē],Πi[0, 0, j; ē]) + h2(Πi[ē; 1, 1, j],Πi[ē; 0, 0, j])

]
[Claim 16]

≥ 1
6k
∑
i

∑
j:i 6=j

[
h2(Πi(ēi,j .ē),Πi(ēj .ē)) + h2(Πi(ēēi,j),Πi(ēēj)

]
. [Lemma 14]

≥ 1
6k
∑
i

∑
j:i 6=j

[
h2(Π(ēi,j .ē),Π(ēj .ē)) + h2(Π(ēēi,j),Π(ēēj))

]
[Lemma 15]

≥ 1
24k

∑
i6=j

[
[h2(Π(ēi.ē),Π(ēj .ē))] + [h2(Π(ēēi),Π(ēēj))]

]
[Recounting & Tr. ineq.]

= 1
24k

∑
i 6=j

[
[h2(Π(ē.ē),Π(ēi,j .ē))] + [h2(Π(ēē),Π(ēēi,j))]

]
[Lemma 12]

≥ 1
48k

∑
i6=j

[h2(Π(ē.ēi,j),Π(ēi,j .ē))] [Cauchy-Schwarz & triangle inequality]

≥ 1
96k

∑
i6=j

[
[h2(Π(ē.ēi,j),Π(ēj .ēi)) + h2(Π(ēi,j ē),Π(ēi.ēj))]

]
[Lemma 13]

= k − 1
384 (1− δ)2 = Ω(k). [Fact 11 ]

5 Putting Everything Together

In this section we show randomized communication complexity of any function f is lower
bounded by the information complexity of f .

I Theorem 17. For any distribution µ over the inputs,

Rε(Tribesm,n) = Ω(ICµ(Tribesm,n)). (26)

This follows from the fact that the expected length of any instantaneous q-ary code for a
random variable X is at least H(X)/ log q. We omit the proof for space constraint. Using
Theorem 6, 7, 10 and 17, it is not hard to see that Theorem 1 follows.

STACS 2015



236 Tribes Is Hard in the Message Passing Model

References
1 Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay Mansour. Distributed learning,

communication complexity and privacy. In Shie Mannor, Nathan Srebro, and Robert C.
Williamson, editors, COLT 2012 - The 25th Annual Conference on Learning Theory, June
25-27, 2012, Edinburgh, Scotland, pages 26.1–26.22. JMLR.org, 2012.

2 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. In 43rd Symposium on Founda-
tions of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada,
Proceedings, pages 209–218. IEEE Computer Society, 2002.

3 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. In Richard Hull and Wenfei Fan, editors, Proceedings of the 32nd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2013,
New York, NY, USA - June 22 - 27, 2013, pages 273–284. ACM, 2013.

4 Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntan-
athan. A tight bound for set disjointness in the message-passing model. In FOCS, pages
668–677. IEEE Computer Society, 2013.

5 Arkadev Chattopadhyay and Toniann Pitassi. The story of set disjointness. SIGACT News,
41(3):59–85, 2010.

6 Danny Dolev and Tomás Feder. Determinism vs. nondeterminism in multiparty commu-
nication complexity. SIAM J. Comput., 21(5):889–895, 1992.

7 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. The communication complexity of
distributed task allocation. In Darek Kowalski and Alessandro Panconesi, editors, ACM
Symposium on Principles of Distributed Computing, PODC ’12, Funchal, Madeira, Por-
tugal, July 16-18, 2012, pages 67–76. ACM, 2012.

8 Pavol Duris and José D. P. Rolim. Lower bounds on the multiparty communication com-
plexity. J. Comput. Syst. Sci., 56(1):90–95, 1998.

9 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation
in the mapreduce framework. In Takao Asano, Shin-Ichi Nakano, Yoshio Okamoto, and
Osamu Watanabe, editors, Algorithms and Computation - 22nd International Symposium,
ISAAC 2011, Yokohama, Japan, December 5-8, 2011. Proceedings, volume 7074 of Lecture
Notes in Computer Science, pages 374–383. Springer, 2011.

10 T. S. Jayram, Ravi Kumar, and D. Sivakumar. Two applications of information complexity.
In Lawrence L. Larmore and Michel X. Goemans, editors, STOC, pages 673–682. ACM,
2003.

11 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
mapreduce. In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010,
pages 938–948. SIAM, 2010.

12 Paraschos Koutris and Dan Suciu. Parallel evaluation of conjunctive queries. In Maur-
izio Lenzerini and Thomas Schwentick, editors, Proceedings of the 30th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2011, June 12-16,
2011, Athens, Greece, pages 223–234. ACM, 2011.

13 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

14 Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty
communication complexity, made easy. In Yuval Rabani, editor, Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 486–501. SIAM, 2012.

15 David P. Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring.
In Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on



A.Chattopadhyay and S.Mukhopadhyay 237

Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012,
pages 941–960. ACM, 2012.

16 David P. Woodruff and Qin Zhang. When distributed computation is communication
expensive. In Yehuda Afek, editor, Distributed Computing - 27th International Symposium,
DISC 2013, Jerusalem, Israel, October 14-18, 2013. Proceedings, volume 8205 of Lecture
Notes in Computer Science, pages 16–30. Springer, 2013.

17 David P. Woodruff and Qin Zhang. An optimal lower bound for distinct elements in
the message passing model. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 718–733. SIAM, 2014.

18 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (pre-
liminary report). In Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch, Walter A.
Burkhard, and Alfred V. Aho, editors, Proceedings of the 11h Annual ACM Symposium
on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 209–213.
ACM, 1979.

STACS 2015


	Introduction
	Overview & Comparison with Previous Work
	Preliminaries
	Lower Bound for Tribesm,n in Message Passing Model
	Direct Sum
	Lower Bounding Disj2

	Putting Everything Together

