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Abstract
We reconsider basic algorithmic graph problems in a setting where an n-vertex input graph
is read-only and the computation must take place in a working memory of O(n) bits or little
more than that. For computing connected components and performing breadth-first search, we
match the running times of standard algorithms that have no memory restrictions, for depth-first
search and related problems we come within a factor of Θ(log logn), and for computing minimum
spanning forests and single-source shortest-paths trees we come close for sparse input graphs.
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1 Introduction

Motivated on the one hand by the increased prevalence of huge data collections (“big data”),
and on the other hand by the emergence of small mobile devices and embedded systems that
cannot be equipped with very large memories, recent years have seen a surge of interest in
data structures and algorithms that treat memory space as a scarce resource.

The classical area of Turing machines that operate in logarithmic space is still very
active [17, 18, 21, 22]. Practical concerns, however, lead us to focus on algorithms that
run in near-linear time. Even for the fundamental s-t connectivity problem on directed
graphs, the most space-efficient algorithm, due to Barnes et al. [7], needs n/2O(

√
logn) bits

of memory when required to run in polynomial time. The bound is only slightly sublinear,
and a nearly matching lower bound is known for the so-called NNJAG model [20]. In
addition, Tompa [33] showed that certain natural algorithmic approaches to the problem
require superpolynomial time if the number of bits available is o(n). It therefore seems
reasonable to accord algorithms that operate on general n-vertex graphs approximately n
bits of working memory. In return, we would hope to match the time bounds of standard
graph algorithms or to come close. For this to be possible, it is necessary to replace the
Turing machine by a model closer to computing practice, and a number of such models have
been proposed. Common to all of them is that access to the input is restricted in some
way. In the multi-pass streaming model [27], the input can only be accessed in a purely
sequential fashion, and the main goal is to minimize the number of passes over the input.
Another model [9] allows the input items to be permuted but not destroyed, and in the
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restore model [13], the input may be temporarily modified during a computation, but must
be restored to its original state.

In this paper we employ the register input model of Frederickson [24]. It features a read-
only input memory and a write-only output medium. The computation proper takes place
in a working memory of limited size. When stating that a problem can be solved with a
certain number of bits, what we mean is that the working memory comprises that many bits.
The input and working memories are divided into words of w bits for a fixed parameter w,
arithmetic and logical operations on w-bit words take constant time, and random access
to the input and working memories is provided. In the context of inputs of n words, we
assume, as is common, that w = Θ(logn) and, in particular, that w is large enough to allow
all words in the input and working memories to be addressed.

A number of results are known for the register input model. For the fundamental problem
of sorting n items, Pagter and Rauhe [29] described a comparison-based algorithm that, for
every given s with logn ≤ s ≤ n/logn, runs in O(n2/s) time using O(s) bits, and a matching
lower bound of Ω(n2) for the time-space product was established by Beame [8] for the strong
branching-program model. Other researchers have considered selection [10, 12, 23, 24, 28, 31]
and various problems in computational geometry [2, 4, 5, 6, 11, 16]. With one exception,
discussed below, we are not aware of previous work that reduces the working space needed to
process n-vertex graphs below Θ(n logn) bits with only a modest penalty in the running time.

1.1 New Results
We describe a number of algorithms for the register input model, all of which input a
directed or undirected graph (plus, possibly, other items). When discussing graph algorithms
below, we always use n and m to denote the number of vertices and the number of edges,
respectively, in the input graph.

A focal point of our work is depth-first search (DFS) (Section 3) and its applications
(Section 4). We first show that a DFS can be carried out in O((n + m) logn) time with
(log23 + ε)n bits, for arbitrary fixed ε > 0. A very similar result was found independently
by Asano et al. [3]. They need cn bits, for an unspecified constant c > 2, or Θ(mn)
time, however. Relaxing the space bound to O(n) bits, we can perform the DFS in just
O((n+m) log logn) time. We also show how to achieve linear time with O(n log logn) bits
and how to interpolate between the two latter results with the same time-space product.
Our main technique can be viewed as employing an “approximate runtime stack”: With
just O(log logn) bits rather than Θ(logn) bits for each vertex on the stack, we store only
an approximation of its stack entry and only an approximation of its position on the stack
and show how to execute the DFS in the face of the resulting uncertainty.

Some applications of DFS process the output of a DFS in reverse order. This is rarely
highlighted, since reversing a sequence is implicit when the whole sequence fits in memory.
When this is not the case, however, the operation can become a bottleneck. While reversing
a sequence in general may be more expensive, we show how to run a DFS in reverse with only
a modest penalty of O(n log logn) additional bits. This allows us to compute topological
sortings and strongly connected components in linear time with O(n log logn) bits. Here
the main technique employed is to keep enough information about a DFS to restart it in
the middle and to use this repeatedly to reverse small pieces of its output, produced in
reverse order, one at a time. Although the connected components of an undirected graph
are usually computed by means of DFS, in Section 5 we observe that this bottleneck can be
avoided and show how to compute the connected components in O(n+m) time with O(n)
bits and how to carry out a breadth-first search within the same bounds.
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Section 6 describes space-efficient versions of the algorithms of Prim and Dijkstra for
computing a minimum spanning forest (MSF) and a single-source shortest-paths (SSSP)
tree, respectively. To describe the algorithms, we introduce the notion of a priority queue
with a deletion budget. A priority queue with a deletion budget uses less space than a
usual priority queue, but can be used only for a certain time before it must be refilled, i.e.,
initialized anew. We give two algorithms for the MSF problem. The first one runs with O(n)
bits in O(n+m logn) time. The second algorithm uses more space, namely O(n log(2+m/n))
bits, but matches the running time of O(m + n logn) of usual implementations of Prim’s
algorithm. Despite the pronounced similarities between Prim’s and Dijkstra’s algorithms,
the SSSP problem appears more difficult in a space-efficient setting because the vertices of
the SSSP tree cannot be output and forgotten as they are computed; rather, their distances
from the source are needed later in the computation. We cannot store the distances, and in
order to recompute them with any degree of efficiency, we must remember the SSSP tree,
which needs Θ(n log(2 + m/n)) bits. While this number of bits is O(n) for sparse graphs
withm = O(n), it degrades to Θ(n logn) for dense graphs withm = Θ(n2). Assume, by way
of example, that the input graph is sparse and that we want to use only O(n) bits. Then we
can recompute the distances from the SSSP tree in batches of size Θ(n/logn) in O(n) time.
Since we need to do this for Θ(logn) batches for each of Θ(logn) refillings of the priority
queue, the total time becomes O(m+n(logn)2). More generally, if O(n(log(2+m/n)+s(n)))
bits are available, we achieve a time bound of O(m+ n logn+ n((logn)/s(n))2).

2 Preliminaries

It is customary to distinguish between adjacency matrices and adjacency lists, but not to
specify the input format of a graph algorithm in any greater detail. This is because linear
time and a linear number of words of working memory are sufficient to convert between any
two reasonable adjacency-list representations—e.g., the edges may be reordered by means
of radix sorting. In our setting, where we want to get by with o(n logn) bits of working
memory, we have to be more specific about the input format.

Let G = (V,E) be an input graph with n vertices and m edges. As is common, we always
assume that V = {1, . . . , n} and that, given u ∈ V , we can access the set N(u) of neighbors
of u (if G is undirected) or of outneighbors of u (if G is directed). For some algorithms
it suffices to be able to iterate over N(u) in constant time per vertex, the archetypical
functionality provided by adjacency lists. For most of our algorithms, however, we need
random access to N(u). More precisely, given u and an integer k with 1 ≤ k ≤ |N(u)|, we
need constant-time access to the kth element of N(u). In such cases we will indicate that
the input graph must be represented via adjacency arrays.

Some algorithms have additional special requirements. When we state that an adjacency-
array representation of an undirected graph has cross pointers, what we mean is that, given
a vertex u and the position in N(u) of a neighbor v of u, in constant time we can find the
position of u in N(v). Our algorithm for computing the strongly connected components of a
directed graph assumes that, given a vertex u, we have access not only to its outneighbors,
but also to its inneighbors. We will formulate this by stating that the input graph must
be represented with in/out adjacency lists or arrays. Our algorithm for the single-source
shortest-paths problem uses in/out adjacency arrays, say, Nin(u) and Nout(u) for u ∈ V ,
and requires the arrays Nout(u), for u ∈ V , to be sorted consistently with a linear order
on V that is either the natural order 1, . . . , n or is specified in the input. We will say that
the input graph must be represented with sorted adjacency arrays. In addition, for each
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(u, v) ∈ E, given u and the position of v in Nout(u), we must be able to find the position
of u in Nin(v) in constant time—again, we will say that the representation must have cross
pointers.

An inconspicuous but crucial role is played in most of our algorithms by a special case,
characterized in the following lemma, of a data structure developed in [26].

I Lemma 2.1. For every fixed n ∈ N = {1, 2, . . .}, there is a dictionary that can store a
subset A of {1, . . . , n}, each a ∈ A with a string ha of satellite data of O(logn) bits, in
O(n +

∑
a∈A |ha|) bits such that membership in A can be tested in constant time for each

element of {1, . . . , n}, ha can be inspected in constant time for each a ∈ A, elements with
their satellite data can be inserted in and deleted from A in constant amortized time, an
operation some_id that returns an (arbitrary) element of A is supported in constant time,
and an operation all_ids that returns all elements of A is supported in O(|A|+ 1) time.

We sometimes want to store for each vertex v in a graph with n vertices and m edges an
index into the adjacency array of v. Jensen’s inequality and Lemma 2.1 show that this can
be done with O(n log(2 +m/n)) bits.

3 Depth-First Search

A DFS of a directed graph G = (V,E) steps through the vertices of G and processes each in
turn if its processing has not already begun. The processing of a vertex u ∈ V consists in
stepping through its outgoing edges and, for each such edge (u, v), exploring (u, v) and, if the
processing of v has not already started, processing v recursively. Every vertex is processed
exactly once, and every edge is explored exactly once. When the processing of a vertex
u ∈ V starts, we say that u is discovered.

It is customary to use a stack to keep track of the vertices whose processing has begun,
but not yet ended, with vertices that were discovered more recently appearing closer to
the top of the stack. When a vertex is discovered, it is pushed on the stack, and when its
processing terminates, it is again at the top of the stack, from which it is popped. Following
Cormen et al. [14], we call a vertex white if it has not yet been discovered, gray if its
processing is underway, and black if its processing has ended.

Whenever an edge (u, v) is explored, u is at the top of the stack. If the exploration
of (u, v) causes v to be pushed on the stack above u, i.e., if v is white just prior to the
exploration of (u, v), v becomes gray at that point and will remain gray and immediately
above u on the stack until v is popped and turns black. Thus, whenever a vertex v appears
immediately above another vertex u on the stack, (u, v) is an edge of E and the first edge
out of u whose head is neither black nor stored below v on the stack.

As described so far, depth-first search does not do anything useful—it is just an “empty
control structure”. Applications of DFS therefore augment the basic scheme with additional
computational steps. Such steps can be executed, e.g., at the beginning and/or at the end
of each processing of a vertex and/or at the exploration of each edge. If they are phrased as
application-dependent user procedures preprocess, postprocess, preexplore and postexplore,
DFS can be expressed via the code fragment below, which denotes the outdegree of a vertex u
by deg(u) and its kth outneighbor by N(u)[k], for k = 1, . . . ,deg(u).

DFS :
for u := 1 to n do color [u] := white;
for u := 1 to n do if color [u] = white then process(u);
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The procedure process is defined as follows:

process(u):
color [u] := gray;
preprocess(u);
k := 1;
while k ≤ deg(u) do
v := N(u)[k];
preexplore(u, v, color [v]);
if color [v] = white then process(v);
postexplore(u, v);
k := k + 1;

postprocess(u);
color [u] := black;

We view the problem to be solved as that of executing the correct sequence of calls of
preprocess, postprocess, preexplore and postexplore. Of course, we exclude the time and space
requirements of these procedures from our resource bounds, and we often ignore them in
what follows so as not to clutter the picture.

The execution of the procedure DFS uses Θ(n) bits of working memory for the array
color . However, the implicit run-time stack needed to keep track of partially executed calls
of process may require Θ(n logn) bits. As a first step towards more space-efficient solutions,
we eliminate the explicit recursion from the procedure process and reformulate it below to
manage its own run-time stack. The latter, denoted by S, stores not just vertices, but pairs
consisting of a vertex u and an integer that indicates the number of the next edge out of u
to be explored. Pushing a pair (u, k) on S is written S ⇐ (u, k), popping the top entry from
S and storing its components in u and k is written (u, k) ⇐ S, and S is tested for being
nonempty with S 6= ∅.

process(u):
S ⇐ (u, 1);
while S 6= ∅ do

(u, k)⇐ S;
color [u] := gray;
if k ≤ deg(u) then
S ⇐ (u, k + 1);
if color [N(u)[k]] = white then S ⇐ (N(u)[k], 1);

else color [u] := black;

Informally, the presence on S of an entry of the form (u, k) signals that at some point,
namely when (u, k) again becomes the top entry of S, the algorithm will proceed to either
process the kth edge out of u or discover that k > deg(u). In the first case, (u, k) is replaced
by (u, k+ 1) as the top entry on S. Although this is formulated above in terms of standard
stack operations as a pop followed by a conditional push, our discussion will instead pretend
that it happens as a test of the value of a field in the top entry on S followed by—depending
on the outcome—an increment of that value or a pop.

3.1 A Simple DFS Algorithm
An entry on S can be represented in Θ(logn) bits and, in general, needs that much space.
Since S may grow to contain as many as n entries, the algorithm stated above requires
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Θ(n logn) bits of working space. The goal in this section is to reduce the space requirements
to little more than n bits while incurring only a logarithmic penalty in the time bound.
I Theorem 3.1. For every constant ε > 0, a DFS of a graph with n vertices and m edges
can be performed in O((n+m) logn) time with at most (log23 + ε)n bits.
Proof. Without loss of generality, assume below that n is larger than a certain constant.
Take λ = log23. Among other data structures detailed below, we need the array color of
n entries drawn from {white, gray, black}. It is well-known and easy to see that color can
be realized in at most (λ + ε/3)n bits so that individual entries can be tested and set in
constant time (assume without loss of generality that 3/ε is an integer that divides n and
store each group of 3/ε consecutive color values in dlog2(33/ε)e = d3λ/εe bits).

Compute q as a positive integer with q = Θ(n/logn), chosen so that 2q entries on S

take up at most (ε/3)n bits. At any given time, we partition the entries on S into O(logn)
segments as follows: The bottommost q entries form the first segment, the next q entries
form the second segment, and so on, with the last segment usually containing fewer than q
entries. Let us call the last (most recently pushed) entry within each segment its trailer.

We remember only a part S′ of the full stack S. S′ always consists of the one or two
last (most recent) segments of S and therefore, by the choice of q, requires no more than
(ε/3)n bits of storage. In addition, we store all trailers present on S on a separate stack T of
O((logn)2) bits. T and various simple variables together can be stored in fewer than (ε/3)n
bits, so the total space requirements are bounded by (λ+ ε)n bits.

The algorithm works with S′ exactly as the usual DFS algorithm works with S (of course,
additionally manipulating trailers as appropriate), except in the following two special events:
(1) When S′ already contains 2q entries and a new entry is to be pushed on S, first the older
of the two segments present on S′ is dropped to make room for a new segment. (2) When S′
loses its last entry due to a pop but S (and hence T ) is not empty, the one or two topmost
segments of S are restored and placed on S′, after which the normal execution resumes.

The restoration of a segment is performed as follows: First all gray vertices are recolored
white. Then the DFS is restarted from the beginning, except that black vertices remain
black and that the process operates quietly, i.e., the user procedures preprocess, postprocess,
preexplore and postexplore are not executed. The restoration is continued until the top
entries on S′ and T coincide, at which point one (if there is only one) or two segments of S
will have been restored on S′.

To see that the restoration is correct, recall that if u and v are successive vertices on S,
(u, v) is the first edge out of u whose head is neither black nor stored on S below v. Thus all
vertices that are pushed on S′ during the restoration, except for the last trailer, will simply
skip over their first outgoing edges, those that point to gray or black vertices, and push the
first white vertex encountered—the correct next vertex on the stack—while coloring it gray.
In particular, no vertices are ever popped, so no restoration will be called for during the
restoration. The last trailer will skip over edges to gray or black vertices and reach the edge
that was the next edge to be explored in the original DFS, which is resumed at that precise
point.

To bound the number of restorations, consider the potential function Φ = max{q −
|S′|, 0}, where |S′| is the number of entries currently stored on S′. Φ = q initially and Φ ≥ 0
at all times, no push increases Φ, a pop increases Φ by at most 1, and a restoration decreases
Φ from q to 0. As each of the n vertices is popped only once, the number of restorations
is bounded by (q + n)/q = O(logn). It is obvious that a restoration can be executed in
O(n+m) time. The computation outside of restorations also runs in O(n+m) time, as it
is basically a standard DFS, so the total time comes to O((n+m) logn). J
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3.2 Depth-First Search in Linear Time
This section describes a DFS procedure that works in O(n+m) time and uses O(n log logn)
bits. Several notions carry over from the previous section: segments of q = Θ(n/logn)
entries on S, the stack S′ that contains only the last one or two segments on S, and the
restoration of the topmost segment of S when S′ becomes empty. There are two main new
ideas, explained in the following.

The first idea is to carry out a restoration not by restarting the DFS from scratch, but
by using the trailer of the segment just below the top segment of S as a starting point (if S
contains just one segment, restart the DFS from the beginning). Thus the goal is to restore
just the top segment without going through the process of reconstructing the segments below
it only to throw them away immediately after.

The idea expressed in the previous paragraph meets with a difficulty. Recall that in
the algorithm of Section 3.1, the restoration begins by recoloring all gray vertices white,
so that they are again eligible for being pushed on the stack. Such an operation would
be too expensive in the present context. Besides, what we need is something different: a
recoloring that is applied only to the vertices in the top segment of S, since only these
should be allowed to enter S′. We achieve a similar effect by numbering the segments
consecutively from bottom to top and introducing a table D with an entry for each vertex
in V . Whenever a vertex u ∈ V is pushed on S′, the number of the segment that it enters
is stored permanently in D[u]. Since all segment numbers are O(logn), D can be stored in
O(n log logn) bits. In addition, we temporarily switch the meaning of the colors white and
gray for the vertices in the top segment of S for the duration of the restoration.

The restoration process is modified as follows: At each exploration of an edge (u, v), v
is pushed on S′ exactly if D[v] indicates that v belongs to the top segment on S and v is
gray. If v is pushed, it is colored white to prevent it from being pushed again later in the
restoration. When the restoration is complete, the vertices in the restored top segment are
all white, and they are recolored gray (their “true” color) before the original DFS resumes.

The second new idea serves to speed up the search for the correct edge out of a vertex u
on the stack during a restoration. Ideally, we would like to know the integer k such that the
pair (u, k) is stored on S, but we do not have the space to remember this information for all
vertices. Define a vertex to be big if its degree exceedsm/q. For the at most q big vertices we
store the relevant pairs explicitly. More precisely, the part of S maintained on T is extended
to include not only the trailers, but also all pairs (u, k), where u is big. During a restoration,
the part of T above and including the topmost trailer is accessed from bottom to top, in
synchrony with the restoration, so that the need to search through the outgoing edges of big
vertices is eliminated—the correct value of k is found in constant time. For other vertices
we store a rough, O(log logn)-bit approximation of the relevant k. Compute l as a positive
integer with l = Θ(logn). For each pair (u, k) stored on S with deg(u) ≥ 1, we extend
the table entry D[u] to contain also the integer fu = b(k − 1)/guc, where gu = ddeg(u)/le.
Informally, fu indicates the number of groups of gu edges out of u that have been completely
explored. The restoration is changed to skip the processing of edges in such groups.

For all u ∈ V with deg(u) ≥ 1, fu ≤ (k − 1)/gu ≤ (k − 1)l/deg(u) ≤ deg(u)l/deg(u) =
O(logn), so O(n log logn) bits still suffice for the extended table D. During a restoration,
the search for the correct edge out of a vertex u that is not big can now be performed in
O(gu) = O(1 +m/(ql)) = O(1 +m/n) time. A single restoration carries out the search for
q vertices and therefore takes O((1 + m/n)q) = O((n+m)/logn) time. As in the proof of
Theorem 3.1 and for the same reasons, the number of restorations is O(logn) and the time
spent outside of restorations is O(n+m), so the total time for the DFS is O(n+m).
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I Lemma 3.2. A DFS of a graph with n vertices and m edges, represented via adjacency
arrays, can be performed in O(n+m) time with O(n log logn) bits.

3.3 An Upper-Bound Time-Space Tradeoff for DFS
In this section we give a tradeoff between time and space for DFS. Except for the explicit
constant factor indicated in the space bound of Theorem 3.1, Theorem 3.3 subsumes Theo-
rem 3.1 and Lemma 3.2, but its proof draws heavily on arguments presented in their proofs.

I Theorem 3.3. For every function t : N → N such that t(n) can be computed within the
resource bounds of this theorem (e.g., in O(n) time using O(n) bits), a DFS of a graph with n
vertices and m edges, represented via adjacency arrays, can be performed in O((n+m)t(n))
time with O(n+ n(log logn)/t(n)) bits.

Proof. Begin by computing a positive integer r with r = Θ(1+ logn
t(n) ). Divide S into segments

of q = Θ(n/logn) consecutive entries each, as usual, but additionally and in the same manner
divide S into big segments of qr consecutive entries each. Thus each big segment consists of
r consecutive usual segments.

We use an algorithm that is a combination of the two algorithms described in Sections
3.1 and 3.2. Its top-level structure is nearly identical to that of the algorithm of Theo-
rem 3.1, except that it employs big segments in place of usual segments. Thus information
is maintained about up to two big segments, and occasionally a big segment needs to be
restored, which is done in linear time by recoloring all gray vertices white and repeating the
computation quietly until the topmost trailer on T has been pushed on S′. The number of
such big restorations is O(n/(qr)) = O((logn)/(1 + logn

t(n) )) = O(t(n)), so the time spent in
big restorations is O((n+m)t(n)).

Between big restorations, the algorithm proceeds almost exactly as that of Lemma 3.2.
The only differences are that the table D is implemented not as a simple array, but with the
dictionary of Lemma 2.1, and that the entry in D of a vertex u is deleted from D when u no
longer belongs to one of the two topmost big segments on S. Because of this, the number of
bits needed byD is O(n+qr log logn) = O(n+ n log logn

logn (1+ logn
t(n) )) = O(n+n(log logn)/t(n)).

Of course, the restoration should classify a gray vertex without an entry inD as not belonging
to the segment under restoration, i.e., such a vertex should not be pushed on S′. The runtime
analysis of Section 3.2 carries over to the present context and shows the time spent outside
of big restorations to be O(n+m). J

4 Reverse DFS with Applications

I Lemma 4.1. If we can carry out a DFS S of a directed graph with n vertices and m edges in
time t(n,m) with s(n,m) bits, we can output the reverse of a sequence of symbolic represen-
tations of the user calls executed by S in O(t(n,m)) time with O(s(n,m) + n log logn) bits.

Proof. Assume without loss of generality that n ≤ s(n,m) ≤ n logn. For times t0 < · · · < tr
such that t0 and tr are the times of the beginning and the end of S, r = O(n(logn)/s(n,m)),
and the number of pushes and pops executed on the stack S of S during the time interval
Ij = (tj−1, tj) is O(s(n,m)/logn), for j = 1, . . . , r, use a simulation of an execution of S to
compute r, to label each vertex v with the pair (d[v], f [v]) ∈ {1, . . . , r}2 such that v becomes
gray during Id[v] and black during If [v], and to record, for j = 1, . . . , r, the top entries H
and H ′ of S at times tj−1 and tj , the value Ĥ at time tj−1 of the deepest stack entry that
changes during Ij , and the first and last user calls, if any, executed during Ij .
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For j = r, . . . , 1, we now simulate S during Ij , record a part of the sequence of (symbolic
representations of) user calls executed during Ij , and output the reverse of that sequence,
completed with its missing parts, while keeping track of the vertex colors during the corre-
sponding reverse DFS. The missing parts are those calls preexplore(u, v, color [v]) for which
color [v] 6= white and the calls postexplore(u, v) that immediately follow them. Without these
calls, the sequence of calls executed during Ij fits in O(s(n,m)) bits. On the other hand, it
is easy to reconstruct the calls missing between two successive recorded calls, essentially by
traversing corresponding pieces of adjacency lists or arrays, and to output them in reverse
order, O(n/logn) calls at a time; the details are left to the reader.

To simulate S from time tj−1 onwards, we need the coloring of each vertex v at time tj−1,
which can be deduced from (d[v], f [v]). We cannot construct the stack valid at time tj−1 in
its entirety, but since S is to be simulated only until tj , it suffices to construct the part of S
between Ĥ and H, inclusive. We do this by a stack restoration similarly as for DFS: Starting
from Ĥ, each vertex steps through its adjacency list or array, skipping over black and gray
outneighbors, until it encounters a first white outneighbor and pushes it on the stack. The
recorded stack entries allow us to know exactly when to stop the stack restoration and when
to stop the simulation pertaining to Ij . Apart from a constant-factor simulation overhead,
the only significant resources needed are O(s(n,m)) bits used for the restored stack and for
user calls, O(n log r) = O(n log logn) bits to store vertex labels and colors, and the time
consumed by the stack reconstructions. For j = r, . . . , 1, if the stack reconstruction prior
to the simulation for Ij pushes an entry other than Ĥ for a vertex v on S, we must have
f [v] = j, since otherwise Ĥ could not appear at the top of S during Ij . Except for at most
r vertices, every vertex is therefore pushed on S in at most one reconstruction, so the time
needed for all reconstructions is within a constant factor of the time consumed by S. J

In particular, we can output the vertices of a graph G in reverse postorder with respect
to a DFS forest of G. If G is directed and acyclic, this order is a topological sorting of G [32].

I Theorem 4.2. Within the time and space bounds of a DFS of G, up to a constant factor,
plus O(n log logn) bits, the vertices of a directed acyclic n-vertex graph G can be output in
the order of a topological sorting of G.

We define the SCC problem as follows: Given a directed n-vertex graph G = (V,E) with
c strongly connected components (SCCs), output a sequence (u1, k1), . . . , (un, kn), where
{u1, . . . , un} = V and k1, . . . , kn is a nondecreasing sequence of integers such that 1 ≤ ki ≤ c
for i = 1, . . . , n and ki = kj , for 1 ≤ i, j ≤ n, exactly if ui and uj belong to the same SCC
of G. Combining Lemma 4.1 with a DFS-based SCC algorithm whose main procedure steps
through the vertices in reverse postorder [1], one can easily show the theorem below.

I Theorem 4.3. If a DFS of a directed graph with n vertices and m edges, represented with
in/out adjacency lists or arrays, can be carried out in t(n,m) time with s(n,m) bits, then,
given a directed graph G with n vertices and m edges, represented in the same way, the SCC
problem can be solved for G in O(t(n,m)) time with O(s(n,m) + n log logn) bits.

5 Computing Connected Components and Breadth-First Search

We consider the following variants of the connected-components and breadth-first search
(BFS) problems: The input is an undirected graph G = (V,E) and, in the case of BFS, a
permutation (π(1), . . . , π(n)) of V . The output is a sequence (u1, k1), . . . , (un, kn), where
n = |V |, {u1, . . . , un} = V , and k1, . . . , kn is a nondecreasing sequence of integers with the
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following property: For the connected-components problem, 1 ≤ ki ≤ c for i = 1, . . . , n,
where c is the number of connected components of G, and ki = kj , for 1 ≤ i, j ≤ n, exactly
if ui and uj belong to the same connected component of G. For BFS, ki is the distance
in G from ui to the first vertex in the sequence (π(1), . . . , π(n)) that belongs to the same
connected component as ui, for i = 1, . . . , n.

I Theorem 5.1. The connected-components and BFS problems for an undirected graph with
n vertices and m edges can be solved in O(n+m) time with O(n) bits.

Proof sketch. For the connected-components problem, we explore the graph using the same
(white→ gray→ black) coloring as in the case of DFS. Instead of exploring an edge incident
on the most recently discovered vertex, we pick an arbitrary gray vertex and explore all of
its incident edges. When we run out of gray vertices, we instead process a white vertex after
incrementing a components counter. If the set of gray vertices is stored in an instance of
the dictionary of Lemma 2.1 with its some_id operation, the process can easily be carried
out in linear time.

For the BFS problem, we refine the process by splitting the set of gray vertices in two,
the sets of inner-gray and of outer-gray vertices. As long as there are inner-gray vertices,
we process one of these, coloring its white neighbors outer-gray. When this is no longer the
case, we increment a distance counter and recolor the outer-gray vertices inner-gray. When
there are neither inner-gray nor outer-gray vertices, we set the distance counter to 0 and
continue the process at the first white vertex in the sequence (π(1), . . . , π(n)). J

6 Priority Queues with a Deletion Budget and Their Applications

For our purposes, a priority queue is a data structure that maintains an initially empty
collection of items, each with a unique identification, a key drawn from a totally ordered
set, and arbitrary satellite data, under the operations insert, extract_min and decrease_key.
The operation insert inserts a new item in the collection, extract_min returns an item whose
key is minimal after deleting it from the collection, and a call decrease_key(v, d, p) replaces
the current key dv of the item with identification v by d and its current satellite data by p,
provided that d < dv, and does nothing if d ≥ dv. Our priority queue is nonstandard in
two minor ways. First, satellite data are frequently not included in the specification of
priority queues. And second, a call decrease_key(v, d, p) is usually considered legal only if
d is smaller than the key of v before the call.

We will say that a priority queue has a deletion budget of b if it is guaranteed to work
correctly until the end of the bth call of extract_min (but possibly not after that). Thus
usual priority queues have infinite deletion budgets. The following general construction
derives from a priority queue Q a priority queue Qb with a smaller budget b: Initially, Qb
operates exactly as Q. Whenever the number of items stored in Qb reaches 2b, however, all
the items are extracted from Qb, their median is computed, b items with largest keys are
thrown away, and the other b items are reinserted in Qb. A call of decrease_key that refers
to an item that was thrown away reinserts the item with its new key. To see the correctness
of the construction, observe that if an item is thrown away and not later reinserted with a
smaller key, Q can avoid returning it in one of the b first calls of extract_min, whereas an
item whose key in Qb is incorrect and therefore too large (the item must have been thrown
away and later reinserted) is definitely not returned by Qb in any of these calls. The main
advantage of a priority queue with a small deletion budget is that it uses little space. By
applying the construction above to a Fibonacci heap [25], augmented with an instance of
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the dictionary of Lemma 2.1 that we use to map identifications of items to their positions
in the Fibonacci heap and their keys and satellite data, we obtain:

I Lemma 6.1. For every given n, b ∈ N, there is a priority queue with deletion budget b
for identifications drawn from {1, . . . , n} with O(logn)-bit keys and O(logn)-bit satellite
data that executes insert and decrease_key in constant amortized time and extract_min in
O(logn) amortized time and that uses O(n+ b logn) bits.

6.1 Computing Minimum Spanning Forests
I Theorem 6.2. Given an undirected graph G with n vertices, m edges and O(logn)-bit
edge weights, represented with adjacency arrays and cross pointers, the edges of a minimum
spanning forest of G can be output either in O(n + m logn) time with O(n) bits or in
O(m+ n logn) time with O(n log(2 +m/n)) bits.

Proof sketch. We give a proof only for the more interesting case m ≥ n/2. We run Prim’s
algorithm [30] with an instance Qb of the priority queue of Lemma 6.1 with deletion budget
Θ(n/logn). Prim’s algorithm grows a minimum spanning forest F one tree at a time,
repeatedly adding to F a vertex outside of F that is closest to F . For each vertex v outside
of F , Qb stores the item (v, dv, pv), where the key dv is the smallest weight of an edge {u, v}
for which u is in F , and pv, if dv <∞, is the position of u in the adjacency array N(v) of v.

Qb must be refilled O(logn) times. Between the refillings, the algorithm n times executes
an extract_min operation on Qb to obtain an item (v, dv, pv) and, if dv < ∞, outputs the
edge {u, v}, where u is the vertex in position pv in N(v). For each neighbor x of v outside
of F , it also executes the operation decrease_key(x, d, p), where d is the weight of the edge
{v, x} and p is the position of v in N(x)—which can be found by following a cross pointer.
Outside of refillings of Qb, the algorithm uses O(m+ n logn) time.

Processing every edge in G, we can refill Qb in O(m) time, which shows the first part of
the theorem. In order to be faster, we maintain for each vertex v outside of F the position
in its adjacency array of a closest neighbor of v in F , i.e., the last component of the triple
(v, dv, pv). This needs O(n log(2 +m/n)) bits and allows the refilling time to be lowered to
O(n), which shows the second part of the theorem. J

6.2 The Single-Source Shortest-Paths Problem
I Theorem 6.3. For every function s : N → N such that s(n) can be computed within the
resource bounds of this theorem (e.g., in O(n) time using O(n) bits), the following problem
can be solved in O(m + n logn + n((logn)/s(n))2) time with O(n(log(2 + m/n) + s(n)))
bits: Given a directed graph G = (V,E) with n vertices, m edges and nonnegative O(logn)-
bit edge weights, represented with sorted in/out adjacency arrays and cross pointers, and a
vertex s∗ ∈ V from which all vertices in G are reachable, compute a shortest-paths tree in
G rooted at s∗, i.e., a tree that is the union, over all v ∈ V , of a shortest path in G from s∗

to v.

Proof sketch. Assume without loss of generality that s(n) ≤ logn. We run Dijkstra’s
algorithm [15, 19, 34] with an instance Qb of the priority queue of Lemma 6.1 with deletion
budget Θ(ns(n)/logn). Dijkstra’s algorithm grows an SSSP tree T rooted at s∗ one vertex
at a time, repeatedly adding to T a vertex outside of T that is closest to s∗. For each vertex v
outside of T , Qb stores the item (v, dv, pv), where the key dv is the infimum of the lengths of
paths in G from s∗ to v whose only vertex outside of T is v, and pv, if dv <∞, is the position
in the in-adjacency array Nin(v) of v of the second-last vertex on a shortest such path.
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Qb must be refilled O(logn/s(n)) times. Between the refillings, the algorithm n times
executes an extract_min operation on Qb to obtain an item (v, dv, pv). It adds v to T and,
if v 6= s∗, adds also the edge (u, v), where u is the vertex in position pv in Nin(v). The
edge (u, v) or the distance dv from s∗ to v may be output at this point; at any rate, the
algorithm remembers (u, v) by storing pv permanently with v. This allows v to find its
parent u in T in constant time—an operation that we call following a parent pointer—and,
over all vertices v, needs O(n log(2 +m/n)) bits. For each outneighbor x of v outside of T ,
the algorithm also executes the operation decrease_key(x, dv + c, p), where c is the weight
of the edge (v, x) and p is the position of v in Nin(x), an operation known as relaxing the
edge (v, x). Outside of refillings of Qb, the algorithm uses O(m+ n logn) time.

To ease refillings, the algorithm maintains the following additional information: First,
a list L of the vertices added to T since the previous refilling and their distances from s∗

(O(ns(n)) bits). Second, for each vertex v outside of T , the integer pv such that a triple of
the form (v, d, pv) was present in Qb at the end of the previous refilling (O(n log(2 +m/n))
bits). We call pv the old tentative parent pointer of v.

In each refilling, the vertices outside of T are processed in O(logn/s(n)) batches of O(r)
vertices each, where r = ns(n)/logn. The batches must be consistent with the ordering of
the adjacency arrays of G in the sense that if u and v are vertices such that v appears in
a batch after that of u, v may not precede u in any adjacency array. The purpose of the
processing of a batch is, for each vertex v in the batch, to insert the correct triple (v, dv, pv)
in Qb and to store pv as the new old tentative parent pointer of v. We will show that a
batch can be processed in O(n) time plus a quantity that sums to O(m + n logn) over all
refillings. Since there are O(logn/s(n)) refillings and O(logn/s(n)) batches to be processed
in each refilling, we arrive at the overall time bound of O(m+ n logn+ n((logn)/s(n))2).

For each batch, we first recompute the items stored in Qb for the vertices in the batch
at the end of the previous refilling of Qb. Since each vertex v in the batch already knows
its old tentative parent pointer pv, this amounts to computing the length of the path in T
from s∗ to the vertex u in position pv in Nin(v). This quantity could be found simply by
following parent pointers from u to s∗, summing edge weights along the way. In the interest
of efficiency, however, the vertices in the batch collaborate.

In a first phase, the vertices in the batch, one by one, emit a token that follows parent
pointers, summing edge weights as it goes along, but marks the vertices that it passes and
stops as soon as it reaches s∗ or a vertex marked earlier by another token, after marking that
vertex as a branching vertex. The total number of edges on the paths traversed by the tokens
is bounded by n− 1 (T has no more edges), and the number of branching vertices is O(r).

In a second phase, the vertices are processed in the same order as in the first phase, and
each sends a token twice along the same path as in the first phase. The path ends either
at s∗, at a distance of 0 from itself, or at a branching vertex which, at this point, will have
been marked with its distance from s∗. Adding that distance to the known length of the
path traversed, the vertex obtains its own distance from s∗. In the final traversal of the path
by its token, the vertex helps later vertices in the batch by marking all branching vertices
along the path with their distances from s∗. This is done by subtracting the edge weights
encountered along the path from a variable initialized with the total length of the path.

What remains for the batch at this point is to relax all edges from vertices stored in L to
vertices in the batch. Because the adjacency arrays are sorted consistently with the batches,
this can be done in O(m+n logn) time over all refillings, which establishes the running time
anticipated above. If the distances of branching vertices from s∗ are stored in an instance of
the dictionary of Lemma 2.1, the necessary additional space is O(n+r logn) = O(ns(n)). J
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