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Abstract
Tolerance graphs model interval relations in such a way that intervals can tolerate a certain
amount of overlap without being in conflict. In one of the most natural generalizations of tolerance
graphs with direct applications in the comparison of DNA sequences from different organisms,
namely multitolerance graphs, two tolerances are allowed for each interval – one from the left
and one from the right side. Several efficient algorithms for optimization problems that are NP-
hard in general graphs have been designed for tolerance and multitolerance graphs. In spite of
this progress, the complexity status of some fundamental algorithmic problems on tolerance and
multitolerance graphs, such as the dominating set problem, remained unresolved until now, three
decades after the introduction of tolerance graphs. In this article we introduce two new geometric
representations for tolerance and multitolerance graphs, given by points and line segments in
the plane. Apart from being important on their own, these new representations prove to be a
powerful tool for deriving both hardness results and polynomial time algorithms. Using them, we
surprisingly prove that the dominating set problem can be solved in polynomial time on tolerance
graphs and that it is APX-hard on multitolerance graphs, solving thus a longstanding open
problem. This problem is the first one that has been discovered with a different complexity status
in these two graph classes. Furthermore we present an algorithm that solves the independent
dominating set problem on multitolerance graphs in polynomial time, thus demonstrating the
potential of this new representation for further exploitation via sweep line algorithms.
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1 Introduction

A graph G = (V,E) on n vertices is a tolerance graph if there exists a collection
I = {Iv | v ∈ V } of intervals on the real line and a set t = {tv | v ∈ V } of positive num-
bers (the tolerances), such that for any two vertices u, v ∈ V , uv ∈ E if and only if
|Iu ∩ Iv| ≥ min{tu, tv}, where |I| denotes the length of the interval I. The pair 〈I, t〉 is
called a tolerance representation of G. If G has a tolerance representation 〈I, t〉, such that
tv ≤ |Iv| for every v ∈ V , then G is called a bounded tolerance graph.

If we replace in the above definition “min” by “max”, we obtain the class of max-
tolerance graphs. Both tolerance and max-tolerance graphs have attracted many research
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efforts [2,4,7,9,10,12,14–17] as they find numerous applications, especially in bioinformatics,
among others [10,12, 14]; for a more detailed account see the book on tolerance graphs [11].
One of their major applications is in the comparison of DNA sequences from different
organisms or individuals by making use of a software tool like BLAST [1]. However, at
some parts of the above genomic sequences in BLAST, we may want to be more tolerant
than at other parts, since for example some of them may be biologically less significant or
we have less confidence in the exact sequence due to sequencing errors in more error prone
genomic regions. This concept leads naturally to the notion of multitolerance graphs which
generalize tolerance graphs [11, 15, 19]. The main idea is to allow two different tolerances for
each interval, one to each of its sides. Then, every interval tolerates in its interior part the
intersection with other intervals by an amount that is a convex combination of these two
border-tolerances.

Formally, let I = [l, r] be an interval on the real line and lt, rt ∈ I be two numbers
between l and r, called tolerant points. For every λ ∈ [0, 1], we define the interval Ilt,rt

(λ) =
[l + (rt − l)λ, lt+(r− lt)λ], which is the convex combination of [l, lt] and [rt, r]. Furthermore,
we define the set I(I, lt, rt) = {Ilt,rt(λ) | λ ∈ [0, 1]} of intervals. That is, I(I, lt, rt) is the set
of all intervals that we obtain when we linearly transform [l, lt] into [rt, r]. For an interval I,
the set of tolerance-intervals τ of I is defined either as τ = I(I, lt, rt) for some values
lt, rt ∈ I (the case of a bounded vertex), or as τ = {R} (the case of an unbounded vertex).
A graph G = (V,E) is a multitolerance graph if there exists a collection I = {Iv | v ∈ V }
of intervals and a family t = {τv | v ∈ V } of sets of tolerance-intervals, such that: for any
two vertices u, v ∈ V , uv ∈ E if and only if Qu ⊆ Iv for some Qu ∈ τu, or Qv ⊆ Iu for some
Qv ∈ τv. Then, the pair 〈I, t〉 is called a multitolerance representation of G. If G has a
multitolerance representation with only bounded vertices, i.e., with τv 6= {R} for every vertex
v, then G is called a bounded multitolerance graph.

For several optimization problems that are NP-hard in general graphs, such as the coloring,
clique, and independent set problems, efficient algorithms are known for tolerance and
multitolerance graphs. However, only few of them have been derived using the (multi)tolerance
representation (e.g. [10,19]), while most of these algorithms appeared as a consequence of
the containment of tolerance and multitolerance graphs to weakly chordal (and thus also
to perfect) graphs [20]. To design efficient algorithms for (multi)tolerance graphs, it seems
to be essential to assume that a suitable representation of the graph is given along with
the input, as it has been recently proved that the recognition of tolerance graphs is NP-
complete [17]. Recently two new geometric intersection models in the 3-dimensional space
have been introduced for both tolerance graphs (the parallelepiped representation [16]) and
multitolerance graphs (the trapezoepiped representation [15]), which enabled the design of
very efficient algorithms for such problems, in most cases with (optimal) O(n logn) running
time [15,16]. In spite of this, the complexity status of some algorithmic problems on tolerance
and multitolerance graphs still remains open, three decades after the introduction of tolerance
graphs in [8]. Arguably the two most famous and intriguing examples of such problems are the
minimum dominating set problem and the Hamilton cycle problem (see e.g. [20, page 314]).
Both these problems are known to be NP-complete on the greater class of weakly chordal
graphs [3, 18] but solvable in polynomial time in the smaller classes of bounded tolerance
and bounded multitolerance (i.e., trapezoid) graphs [6, 13]. The reason that these problems
resisted solution attempts over the years seems to be that the existing representations for
(multi)tolerance graphs do not provide enough insight to deal with these problems.

In this article we introduce a new geometric representation for multitolerance graphs,
which we call the shadow representation, given by a set of line segments and points in the
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plane. In the case of tolerance graphs, this representation takes a very special form, in which
all line segments are horizontal, and therefore we call it the horizontal shadow representation.
Note that both the shadow and the horizontal shadow representations are not intersection
models for multitolerance graphs and for tolerance graphs, respectively, in the sense that two
line segments may not intersect in the representation although the corresponding vertices are
adjacent. However, the main advantage of these two new representations is that they provide
substantially new insight for tolerance and multitolerance graphs and they can be used to
interpret optimization problems (such as the dominating set problem and its variants) using
computational geometry terms.

Apart from being important on their own, these new representations enable us to establish
the complexity of the minimum dominating set problem on both tolerance and multitolerance
graphs, thus solving a longstanding open problem. Given a horizontal shadow representation
of a tolerance graph G, we present an algorithm that computes a minimum dominating set
in polynomial time. On the other hand, using the shadow representation, we prove that
the minimum dominating set problem is APX-hard on multitolerance graphs by providing a
reduction from a special case of the set cover problem. That is, there exists no Polynomial
Time Approximation Scheme (PTAS) for this problem unless P=NP. This is the first problem
that has been discovered with a different complexity status in these two graph classes.
Therefore, given the (seemingly) small difference between the definition of tolerance and
multitolerance graphs, this dichotomy result appears to be surprising. Furthermore we present
an easy algorithm that solves (using the shadow representation) the independent dominating
set problem on multitolerance graphs in polynomial time. This algorithm demonstrates the
potential of this new representation for further exploitation via sweep line algorithms. Due
to lack of space, full proofs are given in a clearly marked appendix.

Throughout the article we consider simple undirected graphs with no loops or multiple
edges. In an undirected graph G the edge between two vertices u and v is denoted by uv, and
in this case u and v are said to be adjacent in G. We denote by N(u) = {v ∈ V : uv ∈ E}
the set of neighbors of a vertex u in G, and N [u] = N(u) ∪ {u}. Given a graph G = (V,E)
and a subset S ⊆ V , G[S] denotes the induced subgraph of G on the vertices in S. A subset
S ⊆ V is a dominating set of G if every vertex v ∈ V \ S has at least one neighbor in S. A
subset S ⊆ V is an independent set of G if G[S] has no edges. Furthermore S ⊆ V is an
independent dominating set of G if S is both an independent set and a dominating set of
G. Note that any inclusion maximal independent set is also an independent dominating set.
The (independent) dominating set problem is the problem of computing an (independent)
dominating set of minimum size in a given graph G. Finally, given a set X ⊆ R2 of points
in the plane, we denote by Hconvex(X) the convex hull defined by the points of X, and by
X = R2 \X the complement of X in R2. For simplicity of the presentation we make the
following notational convention throughout the paper: whenever we need to compute a set S
with the smallest cardinality among a family S of sets, we write S = min{S}.

2 Tolerance and Multitolerance Graphs

In this section we briefly revise the 3-dimensional intersection models for tolerance graphs [16]
and multitolerance graphs [15] and some useful properties of these models that are needed
for the remainder of the paper. Consider a multitolerance graph G = (V,E) that is given
along with a multitolerance representation R. Let VB and VU denote the set of bounded
and unbounded vertices of G in this representation, respectively. Consider now two parallel
lines L1 and L2 in the plane. For every vertex v ∈ V = VB ∪VU , we appropriately construct a
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Figure 1 The trapezoid Tu corresponds to the bounded vertex u ∈ VB , while the line segment
T v corresponds to the unbounded vertex v ∈ VU .

trapezoid T v with its parallel lines on L1 and L2, respectively (for details of this construction
of the trapezoids we refer to [15]). According to this construction, for every unbounded
vertex v ∈ VU the trapezoid T v is trivial, i.e., a line [15]. For every vertex v ∈ V = VB ∪ VU
we denote by av, bv, cv, dv the lower left, upper right, upper left, and lower right endpoints
of the trapezoid T v, respectively. Note that for every unbounded vertex v ∈ VU we have
av = dv and cv = bv, since T v is just a line segment. An example is depicted in Figure 1,
where Tu corresponds to a bounded vertex u and T v corresponds to an unbounded vertex v.

We now define the left and right angles of these trapezoids. For every angle φ, the values
tanφ and cotφ = 1

tanφ denote the tangent and the cotangent of φ, respectively. Furthermore,
φ = arc cotx is the angle φ, for which cotφ = x.

I Definition 1 ([15]). For every vertex v ∈ V = VB ∪ VU , the values φv,1 = arc cot (cv − av)
and φv,2 = arc cot (bv − dv) are the left angle and the right angle of T v, respectively. Moreover,
for every unbounded vertex v ∈ VU , φv = φv,1 = φv,2 is the angle of T v.

Note that without loss of generality we can assume that all endpoints and angles of
the trapezoids are distinct, i.e., {au, bu, cu, du} ∩ {av, bv, cv, dv} = ∅ and {φu,1, φu,2} ∩
{φv,1, φv,2} = ∅ for every u, v ∈ V with u 6= v, as well as that 0 < φv,1, φv,2 <

π
2 for all angles

φv,1, φv,2 [15]. It is important to note here that this set of trapezoids {T v : v ∈ V = VB ∪VU}
is not an intersection model for the graph G, as two trapezoids T v, Tw may have a non-
empty intersection although vw /∈ E. However the subset of trapezoids {T v : v ∈ VB} that
corresponds to the bounded vertices is an intersection model of the induced subgraph G[VB ],
i.e., uv ∈ E if and only if Tu ∩ T v 6= ∅ where u, v ∈ VB .

In order to construct an intersection model for the whole graph G (i.e., including also the
set VU of the unbounded vertices), we exploit the third dimension as follows. Let ∆ = max{bv :
v ∈ V } −min{au : u ∈ V } (where we consider the endpoints bv and au as real numbers on
the lines L1 and L2, respectively). First, for every unbounded vertex v ∈ VU we construct the
line segment Tv = {(x, y, z) : (x, y) ∈ T v, z = ∆− cotφv}. For every bounded vertex v ∈ VB ,
denote by T v,1 and T v,2 the left and the right line segment of the trapezoid T v, respect-
ively. We construct two line segments Tv,1 = {(x, y, z) : (x, y) ∈ T v,1, z = ∆− cotφv,1} and
Tv,2 = {(x, y, z) : (x, y) ∈ T v,2, z = ∆− cotφv,2}. Then, for every v ∈ VB , we construct the
3-dimensional object Tv as the convex hull Hconvex(T v, Tv,1, Tv,2); this 3-dimensional object
Tv is called the trapezoepiped of vertex v ∈ VB . The resulting set {Tv : v ∈ V = VB ∪ VU} of
objects in the 3-dimensional space is called the trapezoepiped representation of the multitoler-
ance graph G [15]. This is an intersection model of G, i.e., two vertices v, w are adjacent if
and only if Tv ∩Tw 6= ∅. For a proof of this fact and for more details about the trapezoepiped
representation of multitolerance graphs we refer to [15].

An example of this construction is given in Figure 2. A multitolerance graph G with six
vertices {v1, v2, . . . , v6} is depicted in Figure 2a, while the trapezoepiped representation of G
is illustrated in Figure 2b. The set of bounded and unbounded vertices in this representation
are VB = {v3, v4, v6} and VU = {v1, v2, v5}, respectively.
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Figure 2 (a) A multitolerance graph G and (b) a trapezoepiped representation R of G. Here,
hvi,j = ∆− cotφvi,j for every bounded vertex vi ∈ VB and j ∈ {1, 2}, while hvi = ∆− cotφvi for
every unbounded vertex vi ∈ VU .

I Definition 2 ([15]). An unbounded vertex v ∈ VU is inevitable if replacing Tv by
Hconvex(Tv, T v) creates a new edge uv in G; then u is a hovering vertex of v and the
set H(v) of all hovering vertices of v is the hovering set of v. A trapezoepiped representation
of a multitolerance graph G is called canonical if every unbounded vertex is inevitable.

In the example of Figure 2, v2 and v5 are inevitable unbounded vertices, v1 and v4 are
hovering vertices of v2 and v5, respectively, while v1 is not an inevitable unbounded vertex.
Therefore, this representation is not canonical for the graph G. However, if we replace Tv1 by
Hconvex(Tv1 , av1 , cv1), we get a canonical representation for G in which vertex v1 is bounded.

Let G be a multitolerance graph and R be a trapezoepiped representation of G, where
φu,1 = φu,2 for every bounded vertex u ∈ VB. Then, for every u ∈ VB, Tu becomes a paral-
lelepiped and it can be proved that G is a tolerance graph [15]. This particular 3-dimensional
intersection model for tolerance graphs is known as a parallelepiped representation [16].

3 The New Geometric Representations

In this section we introduce the shadow representation of multitolerance graphs, which is
given by a set of line segments and points in the plane. Given a trapezoepiped representation
of a multitolerance graph G with n vertices, we can compute a shadow representation of
G in O(n) time. Whenever G admits a parallelepiped representation (i.e., G is a tolerance
graph) all line segments in the shadow representation of G become horizontal, and in this
case we call it a horizontal shadow representation.

I Definition 3 (shadow representation). Let G = (V,E) be a multitolerance graph, R be
a trapezoepiped representation of G, and VB , VU be the sets of bounded and unbounded
vertices of G in R, respectively. We associate the vertices of G with the following points and
line segments in the plane:

for every v ∈ VB, the points pv,1 = (av,∆ − cotφv,1) and pv,2 = (dv,∆ − cotφv,2) and
the line segment Lv = (pv,1, pv,2),
for every v ∈ VU , the point pv = (av,∆− cotφv).
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Figure 3 The shadow representation (P,L) of the multitolerance graph G of Figure 2. The
unbounded vertices VU = {v1, v2, v5} are associated with the points P = {pv1 , pv2 , pv5}, while
the bounded vertices VB = {v3, v4, v6} are associated with the line segments L = {Lv1 , Lv2 , Lv5},
respectively.

The tuple (P,L), where L = {Lv : v ∈ VB} and P = {pv : v ∈ VU}, is the shadow
representation of G. If φv,1 = φv,2 for every v ∈ VB, then (P,L) is the horizontal shadow
representation of the tolerance graph G. Furthermore, the representation (P,L) is canonical
if the initial trapezoepiped representation R is also canonical.

As an example we illustrate in Figure 3 the shadow representation (P,L) of the multitol-
erance graph G of Figure 2.

I Definition 4 (shadow). For an arbitrary point t = (tx, ty) ∈ R2 the shadow of t is the
region St = {(x, y) ∈ R2 : x ≤ tx, y − x ≤ ty − tx}. Furthermore, for every line segment Lu,
where u ∈ VB , the shadow of Lu is the region Su =

⋃
t∈Lu

St.

I Definition 5 (reverse shadow). For an arbitrary point t = (tx, ty) ∈ R2 the reverse shadow
of t is the region Ft = {(x, y) ∈ R2 : x ≥ tx, y − x ≥ ty − tx}. Furthermore, for every line
segment Li, where u ∈ VB , the reverse shadow of Li is the region Fi =

⋃
t∈Li

Ft.

I Lemma 6. Let G be a multitolerance graph and (P,L) be a shadow representation of G.
Let u ∈ VB be a bounded vertex of G such that the corresponding line segment Lu is not
trivial, i.e., Lu is not a single point. Then the angle of the line segment Lu with a horizontal
line (i.e., parallel to the x-axis) is at most π

4 and at least −π2 .

Recall now that two unbounded vertices u, v ∈ VU are never adjacent. The connection
between a multitolerance graph G and a shadow representation of it is given in Lemmas 7
and 8. Furthermore Lemma 9 describes how the hovering vertices of an unbounded vertex
v ∈ VU (cf. Definition 2) can be seen in a shadow representation (P,L).

I Lemma 7. Let (P,L) be a shadow representation of a multitolerance graph G. Let u, v ∈ VB
be two bounded vertices of G. Then uv ∈ E if and only if Lv ∩ Su 6= ∅ or Lu ∩ Sv 6= ∅.

I Lemma 8. Let (P,L) be a shadow representation of a multitolerance graph G. Let v ∈ VU
and u ∈ VB be two vertices of G. Then uv ∈ E if and only if pv ∈ Su.

I Lemma 9. Let (P,L) be a shadow representation of a multitolerance graph G. Let v ∈ VU
be an unbounded vertex of G and u ∈ V \ {v} be another arbitrary vertex. If u ∈ VB
(resp. u ∈ VU ), then u is a hovering vertex of v if and only if Lu ∩ Sv 6= ∅ (resp. pu ∈ Sv).

In the example of Figure 3 the shadows of the points in P and of the line segments in L
are shown with dotted lines. For instance, pv2 ∈ Sv3 and pv2 /∈ Sv4 , and thus the unbounded
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vertex v2 is adjacent to the bounded vertex v3 but not to the bounded vertex v4. Furthermore
Lv3 ∩Sv4 6= ∅, and thus v3 and v4 are adjacent. On the other hand, Lv3 ∩Sv6 = Lv6 ∩Sv3 = ∅,
and thus v3 and v4 are not adjacent. Finally pv1 ∈ Sv2 and Lv4 ∩ Sv5 6= ∅, and thus v1 is a
hovering vertex of v2 and v4 is a hovering vertex of v5. These facts can be also checked in
the trapezoepiped representation of the same multitolerance graph G in Figure 2b.

4 Dominating Set is APX-hard on Multitolerance Graphs

In this section we prove that the dominating set problem on multitolerance graphs is APX-
hard via an approximation-preserving reduction [21] from a special case of the set cover
problem, namely Special 3-Set Cover [5].

I Theorem 10. Dominating Set is APX-hard on multitolerance graphs.

5 Bounded Dominating Set on Tolerance Graphs

In this section we use the horizontal shadow representation of tolerance graphs (cf. Section 3)
to provide a polynomial time algorithm for a variation of the minimum dominating set
problem on tolerance graphs, namely Bounded Dominating Set, formally defined below.
This problem variation may be interesting on its own, but we use our algorithm for Bounded
Dominating Set as a subroutine in our algorithm for the minimum dominating set problem
on tolerance graphs, cf. Sections 6 and 7. Note that, given a horizontal shadow representation
(P,L) of a tolerance graph G = (V,E), the representation (P,L) defines a partition of the
vertex set V into the set VB of bounded vertices and the set VU of unbounded vertices. We
denote P = {p1, p2, . . . , p|P|} and L ={L1, L2, . . . , L|L|}, where |P|+ |L| = |VU |+ |VB | = |V |.

With a slight abuse of notation, for any two elements x1, x2 ∈ P ∪ L, we may say in
the following that x1 is adjacent with x2 (or x1 is a neighbor of x2) if the vertices that
correspond to x1 and x2 are adjacent in the graph G. Moreover, whenever P1 ⊆ P2 ⊆ P and
L1 ⊆ L2 ⊆ L, we may say that the set P1∪L1 dominates P2∪L2 if the vertices corresponding
to P1 ∪ L1 dominate the subgraph of G induced by the vertices corresponding to P2 ∪ L2.

Bounded Dominating Set on Tolerance Graphs

Input: A horizontal shadow representation (P,L) of a tolerance graph G.
Output: A set Z ⊆ L of minimum size that dominates (P,L), or the announcement
that L does not dominate (P,L).

5.1 Notation and Terminology
For an arbitrary point t = (tx, ty) ∈ R2 we define two (infinite) lines passing through t:

the vertical line Γvert
t = {(tx, s) ∈ R2 : s ∈ R}, i.e., the line that is parallel to the y-axis,

the diagonal line Γdiag
t = {(s, s+ (ty − tx)) ∈ R2 : s ∈ R}, i.e., the line that is parallel to

the main diagonal {(s, s) ∈ R2 : s ∈ R}.

For every point t = (tx, ty) ∈ R2, each of the lines Γvert
t ,Γdiag

t separates R2 into two regions.
With respect to the line Γvert

t we define the regions R2
left(Γvert

t ) = {(x, y) ∈ R2 : x ≤ tx}
and R2

right(Γvert
t ) = {(x, y) ∈ R2 : x ≥ tx} of the points to the left and to the right of Γvert

t ,
respectively. With respect to the line Γdiag

t , we define the regions R2
left(Γ

diag
t ) = {(x, y) ∈ R2 :

y − x ≥ ty − tx} and R2
right(Γ

diag
t ) = {(x, y) ∈ R2 : y − x ≤ ty − tx} of the points to the left

and to the right of Γdiag
t , respectively.
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Furthermore, for an arbitrary point t = (tx, ty) ∈ R2 we define the region At (resp. Bt) that
contains all points that are both to the right (resp. to the left) of Γvert

t and to the right (resp. to
the left) of Γdiag

t . That is, At = R2
right(Γvert

t )∩R2
right(Γ

diag
t ) and Bt = R2

left(Γvert
t )∩R2

left(Γ
diag
t ).

Consider an arbitrary horizontal line segment Li ∈ L. We denote by li and ri its left
and its right endpoint, respectively; note that possibly li = ri. Denote by A = {li, ri :
1 ≤ i ≤ |L|} the set of all endpoints of all line segments of L. Furthermore denote by
B = {Γdiag

t ∩Γvert
t′ : t, t′ ∈ A} the set of all intersection points of the vertical and the diagonal

lines that pass from points of A. Note that A ⊆ B.
Given a horizontal shadow representation (P,L) we always assume that the points

p1, p2, . . . , p|P| are ordered increasingly with respect to their x-coordinates. Similarly we
assume that the horizontal line segments L1, L2, . . . , L|L| are ordered increasingly with respect
to the x-coordinates of their endpoint ri.

I Definition 11. Let 1 ≤ i, i′ ≤ |L|. The pair (i, i′) is a right-crossing pair if ri′ ∈ Sri
.

Furthermore the pair (i, i′) is a left-crossing pair if li ∈ Sli′ . For every right-crossing
pair (i, i′), we define Llefti,i′ = {x ∈ P ∪ L : x ⊆ Bt, where t = Γvert

ri
∩ Γdiag

ri′ } and for every
left-crossing pair (i, i′) we define Lrighti,i′ = {x ∈ P ∪ L : x ⊆ At, where t = Γvert

li
∩ Γdiag

li′ }

I Definition 12. Let S ⊆ P ∪ L be an arbitrary set. Let (i, i′) be a right-crossing pair and
(j, j′) be a left-crossing pair. If Li, Li′ ∈ S and S ⊆ Llefti,i′ , then (i, i′) is the end-pair of the
set S. If Lj , Lj′ ∈ S and S ⊆ Lrightj,j′ , then (j, j′) is the start-pair of the set S.

5.2 The Algorithm
In this section we present our algorithm for Bounded Dominating Set on tolerance
graphs, cf. Algorithm 1. Given a horizontal shadow representation (P,L) of a tolerance
graph G, we first add two dummy line segments L0 and L|L|+1 (with endpoints l0, r0 and
l|L|+1, r|L|+1, respectively) such that all elements of P ∪ L are contained in Ar0 and in Bl|L|+1 .
Let L′ = L ∪ {L0, L|L|+1}. Note that (P,L′) is a horizontal shadow representation of some
tolerance graph G′, where the bounded vertices V ′B of G′ correspond to the line segments of
L′ and the unbounded vertices V ′U of G′ correspond to the points of P. Furthermore note
that V ′B = VB ∪ {v0, v|L|+1} and V ′U = VU , where v0 and v|L|+1 are the (isolated) bounded
vertices of G′ that correspond to the line segments L0 and L|L|+1, respectively.

For simplicity of the presentation, we refer in the following to the augmented set L′
of horizontal line segments by L. In the remainder of this section we will write L =
{L1, L2, . . . , L|L|} with the understanding that the first and the last line segments L1 and
L|L| of L are dummy. Furthermore, we will refer to the augmented tolerance graph G′ by G.

For every pair of points (a, b) ∈ A×B such that b ∈ R2
right(Γdiag

a ), define X(a, b) to be the
set of all points of P and all line segments of L that are contained in the region Bb \Γvert

b and
to the right of the line Γdiag

a , i.e., X(a, b) = {x ∈ P ∪ L : x ⊆ (Bb \ Γvert
b ) ∩ R2

right(Γdiag
a )}.

I Definition 13. Let (a, b) ∈ A× B be a pair of points such that b ∈ R2
right(Γdiag

a ). Further-
more let (i, i′) be a right-crossing pair such that b ∈ R2

left(Γvert
ri

). Then BD(P,L)(a, b, i, i′) is
a dominating set Z ⊆ L of X(a, b) with the smallest size, in which (i, i′) is its end-pair. If
such a dominating set Z ⊆ L of X(a, b) does not exist, we define BD(P,L)(a, b, i, i′) = ⊥.

Note that always Li ∈ BD(P,L)(a, b, i, i′). However, since b ∈ R2
left(Γvert

ri
) in Definition 13,

it follows that Li * Bb \ Γvert
b , and thus Li /∈ X(a, b). For simplicity of the presentation

we may refer to the set BD(P,L)(a, b, i, i′) as BDG(a, b, i, i′), where (P,L) is the horizontal
shadow representation of the tolerance graph G, or just as BD(a, b, i, i′) whenever the
horizontal shadow representation (P,L) is clear from the context.
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Algorithm 1 Bounded Dominating Set on Tolerance Graphs
Input: A horizontal shadow representation (P,L), where P = {p1, p2, . . . , p|P|} and
L = {L1, L2, . . . , L|L|}

Output: A set Z ⊆ L of minimum size that dominates (P,L), or the announcement that L
does not dominate (P,L)

1: Add two dummy line segments L0 and L|L|+1 completely to the left and to the right of
P ∪ L, respectively

2: L ← L ∪ {L0, L|L|+1}; denote L = {L1, L2, . . . , L|L|}, where now L1, L|L| are dummy
3: A ← {li, ri : 1 ≤ i ≤ |L|}; B ← {Γdiag

t ∩ Γvert
t′ : t, t′ ∈ A}

4: for every pair of points (a, b) ∈ A× B such that b ∈ R2
right(Γdiag

a ) do
5: X(a, b)← {x ∈ P ∪ L : x ⊆ (Bb \ Γvert

b ) ∩ R2
right(Γdiag

a )}
6: for every i, i′ ∈ {1, 2, . . . , |L|} do
7: if ri′ ∈ Sri then {(i, i′) is a right-crossing pair}
8: if {Li} ∪ {Li′} dominates all elements of X(a, b) then BD(P,L)(a, b, i, i′) ←

{Li} ∪ {Li′} {initialization}
9: Llefti,i′ ← {Lk ⊆ Bt : t = Γvert

ri
∩ Γdiag

ri′ }
10: if L∩Llefti,i′ does not dominate all elements of X(a, b) then BD(P,L)(a, b, i, i′)← ⊥

{initialization}
11: else BD(P,L)(a, b, i, i′)← L∩ Llefti,i′ {initialization}

12: for every pair of points (a, b) ∈ A× B such that b ∈ R2
right(Γdiag

a ) do
13: for every i, i′ ∈ {1, 2, . . . , |L|} do
14: if ri′ ∈ Sri

then {(i, i′) is a right-crossing pair}
15: Compute Z1 = {Li} ∪minc,j,j′{BD(P,L)(a, c, j, j′)} by Lemma 14
16: if |Z1| < |BD(P,L)(a, b, i, i′)| then BD(P,L)(a, b, i, i′)← Z1

17: Compute Z2 = minc{BD(P,L)(a, c, i, i′) ∪BD(P,L)(c, b, i, i′)} by Lemma 15
18: if |Z2| < |BD(P,L)(a, b, i, i′)| then BD(P,L)(a, b, i, i′)← Z2

19: if BD(P,L)(l1, rL, |L|, |L|) = ⊥ then return L does not dominate (P,L)
20: else return BD(P,L)(l1, rL, |L|, |L|) \ {L1, L|L|}

I Lemma 14. Let (a, b) ∈ A × B and let (i, i′) be a right-crossing pair such that
BD(a, b, i, i′) 6= ⊥. If BD(a, b, i, i′)\Li dominates all elements of {x ∈ X(a, b) : x∩(Si∪Fi) 6=
∅} then BD(a, b, i, i′) = {Li} ∪minc,j,j′{BD(a, c, j, j′)}, where the minimum is taken over
all c, j, j′ such that:

c = Γvert
rj
∩ Γdiag

b if rj ∈ R2
left(Γvert

b ), and c = b otherwise,
(j, j′) is a right-crossing pair of Lleft

i,i′ \ {Li}, where j′ = i′ whenever i 6= i′, and
{Lj} ∪ {Lj′} dominates all elements of the set X(a, b) \X(a, c).

I Lemma 15. Let (a, b) ∈ A × B and let (i, i′) be a right-crossing pair such that
BD(a, b, i, i′) 6= ⊥. If BD(a, b, i, i′) \ Li does not dominate all elements of {x ∈ X(a, b) :
x ∩ (Si ∪ Fi) 6= ∅} then BD(a, b, i, i′) = minc{BD(a, c, i, i′) ∪ BD(c, b, i, i′)} where the
minimum is taken over all c such that:

c ∈ B ∩ R2
right(Γvert

li
) ∩ R2

right(Γdiag
a ) ∩ (Bb \ Γvert

b ) and
P ∩X(a, b) ∩ Fc ∩ Fi = ∅.

I Theorem 16. Given a horizontal shadow representation (P,L) of a tolerance graph G,
Algorithm 1 computes Bounded Dominating Set in polynomial time.
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Algorithm 2 Restricted Bounded Dominating Set on Tolerance Graphs
Input: A 6-tuple I = (P,L, j, j′, i, i′), where (P,L) is a horizontal shadow representation of

a tolerance graph G, (j, j′) is a left-crossing pair of (P,L), and (i, i′) is a right-crossing
pair of (P,L).

Output: A set Z ⊆ L of minimum size that dominates (P,L), where (j, j′) is the start-
pair and (i, i′) is the end-pair of Z, or the announcement that L ∩ Lrightj,j′ ∩ Llefti,i′ does not
dominate (P,L).

1: if (P,L) contains a bad point p ∈ P or a bad line segment Lk ∈ L (cf. Definition 17)
then

2: return L ∩ Lrightj,j′ ∩ Llefti,i′ does not dominate (P,L)
3: Compute the set Z1 ⊆ L of all irrelevant line segments (cf. Definition 17)
4: L ← L \ Z1; r ← Γvert

ri
∩ Γdiag

ri′

5: Compute the representation (P̂, L̂) by adding the elements {xk,1, xk,2 : k ∈ {j, j′}} to
(P,L) (cf. Lemma 18)

6: return BD(P̂,L̂)(lxj,1 , r, i, i
′) {by calling Algorithm 1}

6 Restricted Bounded Dominating Set on Tolerance Graphs

In this section we use Algorithm 1 of Section 5 to provide a polynomial time algorithm
(cf. Algorithm 2) for a slightly modified version of Bounded Dominating Set on tolerance
graphs, which we call Restricted Bounded Dominating Set, formally defined below.

Restricted Bounded Dominating Set on Tolerance Graphs

Input: A 6-tuple I = (P,L, j, j′, i, i′), where (P,L) is a horizontal shadow representation
of a tolerance graph G, (j, j′) is a left-crossing pair of G, and (i, i′) is a right-crossing
pair of G.
Output: A set Z ⊆ L of minimum size that dominates (P,L), where (j, j′) is the
start-pair and (i, i′) is the end-pair of Z, or the announcement that L∩Lrightj,j′ ∩Llefti,i′ does
not dominate (P,L).

I Definition 17. Let I = (P,L, j, j′, i, i′) be an instance of Restricted Bounded Dom-
inating Set on tolerance graphs. Let l = Γvert

lj
∩ Γdiag

lj′ and r = Γvert
ri
∩ Γdiag

ri′ . A point p ∈ P
is a bad point if p ∈ Bl or p ∈ R2

right(Γvert
r ). A line segment Lt ∈ L is a bad line segment

if Lt ⊆ Bl or Lt ⊆ Ar. Furthermore a line segment Lt ∈ L is an irrelevant line segment if
either Lt ⊆ Bl ∩ Ar and Lt /∈ Lrightj,j′ ∩ Llefti,i′ , or Lt has an endpoint in Bl ∪ Ar and another
point in Bl ∩Ar.

The next lemma will enable us to reduce Restricted Bounded Dominating Set to
Bounded Dominating Set on tolerance graphs.

I Lemma 18. Let I = (P,L, j, j′, i, i′) be an instance of Restricted Bounded Domin-
ating Set on tolerance graphs, which has no bad points p ∈ P and no bad or irrelevant line
segments L ∈ L. Then for every k ∈ {j, j′} we can add two new elements xk,1, xk,2 to the
set P ∪ L such that Lk is the only neighbor of xk,1 and xk,2, k ∈ {j, j′}.

I Definition 19. Let (j, j′) be a left-crossing pair and (i, i′) be a right-crossing pair in
the horizontal shadow representation (P,L). Then RD(P,L)(j, j′, i, i′) is a dominating set
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Z ⊆ L ∩ Lrightj,j′ ∩ Llefti,i′ of (P,L) with the smallest size, in which (j, j′) and (i, i′) are the
start-pair and the end-pair, respectively. If such a dominating set Z does not exist, we define
RD(P,L)(j, j′, i, i′) = ⊥.

For simplicity of the presentation we may refer to the set RD(P,L)(j, j′, i, i′) as
RDG(j, j′, i, i′), where (P,L) is the horizontal shadow representation of the tolerance graph G.

I Theorem 20. Given a 6-tuple I = (P,L, j, j′, i, i′), where (P,L) is a horizontal shadow
representation of a tolerance graph G, (j, j′) is a left-crossing pair and (i, i′) is a right-
crossing pair of (P,L), Algorithm 2 computes Restricted Bounded Dominating Set in
polynomial time.

7 Dominating Set on Tolerance Graphs

In this section we present our main algorithm of the paper (cf. Algorithm 3) which com-
putes in polynomial time a minimum dominating set of a tolerance graph G, given by a
horizontal shadow representation (P,L). Algorithm 3 uses Algorithms 1 and 2 as subroutines
(cf. Sections 5 and 6). Throughout this section we assume without loss of generality that the
given tolerance graph G is connected and that G is given with a canonical horizontal shadow
representation (P,L).

For every p ∈ P we denote by N(p) = {Lk ∈ L : p ∈ Sk} and H(p) = {x ∈ P ∪ L :
x ∩ Sp 6= ∅}. Note that, due to Lemmas 8 and 9, N(p) is the set of neighbors of p and
H(p) is the set of hovering vertices of p. Furthermore, for every Lk ∈ L we denote by
N(Lk) = {p ∈ P : p ∈ Sk} ∪ {Lt ∈ L : Lt ∩ Sk 6= ∅ or Lk ∩ St 6= ∅}. Note that, due to
Lemmas 7 and 8, N(Lk) is the set of neighbors of Lk.

Define now the subset P∗ = {p ∈ P : there exists no point p′ ∈ P such that p ∈ H(p′)}.
Note by the definition of the set P∗ that for every p1, p2 ∈ P∗ we have p1 /∈ Sp2 ∪ Fp2 .

Given a canonical horizontal shadow representation (P,L), where P = {p1, p2, . . . , p|P|}
and L = {L1, L2, . . . , L|L|}, we add two dummy line segments L0 and L|L|+1 (with endpoints
l0, r0 and l|L|+1, r|L|+1, respectively) such that all elements of P ∪ L are contained in Ar0

and in Bl|L|+1 . Denote L′ = L ∪ {L0, L|L|+1}. Furthermore we add one dummy point p|P|+1
such that all elements of P ∪ L′ are contained in Bp|P|+1 . Denote P ′ = P ∪ {p|P|+1}. For
simplicity of the presentation, we refer in the following to the augmented sets P ′ and L′ of
points and horizontal line segments by P and L, respectively. In the remainder of this section
we will write P = {p1, p2, . . . , p|P|} and L = {L1, L2, . . . , L|L|} with the understanding that
the last point p|P| of P, as well as the first and the last line segments L1 and L|L| of L, are
dummy. Note that the last point p|P| (i.e., the new dummy point) belongs to the set P∗.

For every pi, pj ∈ P∗ with i < j, we define Gj = {x ∈ P ∪ L : x ⊆ Bpj \ Γvert
pj
} and

G(i, j) = {x ∈ Gj : x ⊆ Api
}. Note that pj /∈ Gj and pj /∈ G(i, j).

I Definition 21. Let pj ∈ P∗ and (i, i′) be a right-crossing pair in Gj . Then D(j, i, i′) is a
minimum dominating set of Gj whose end-pair is (i, i′). If there exists no dominating set Z
of Gj whose end-pair is (i, i′), we define D(j, i, i′) = ⊥.

I Lemma 22. Let G be a tolerance graph, (P,L) be a canonical representation of G, pj ∈ P∗,
and a right-crossing pair (i, i′) of Gj such that D(j, i, i′) 6= ⊥. Then

D(j, i, i′) = min
q′,z,z′,w,w′

{
D(q, z, z′) ∪ {pk ∈ P∗ : q ≤ k ≤ q′} ∪RDG(q′,j)(w,w′, i, i′)
BDGj

(l1, b, i, i′), where b = Γvert
ri
∩ Γdiag

ri′

where the minimum is taken over all q′, z, z′, w, w′ such that:
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Algorithm 3 Dominating Set on Tolerance Graphs
Input: A canonical horizontal shadow representation (P,L), where P = {p1, p2, . . . , p|P|}

and L = {L1, L2, . . . , L|L|}.
Output: A set D ⊆ L ∪ P of minimum size that dominates (P,L).

1: Add two dummy line segments L0 and L|L|+1 completely to the left and to the right of
P ∪ L, respectively

2: Add a dummy point p|P|+1 completely to the right of L|L|+1
3: P ← P ∪ {p|P|+1}; L ← L ∪ {L0, L|L|+1}
4: Denote P = {p1, p2, . . . , p|P|} and L = {L1, L2, . . . , L|L|}, where now p|P|, L1, and L|L|

are dummy
5: P∗ ← {p ∈ P : there exists no point p′ ∈ P such that p ∈ H(p′)}
6: for every pair of points (a, b) ∈ A× B such that b ∈ R2

right(Γdiag
a ) do

7: X(a, b)← {x ∈ P ∪ L : x ⊆ (Bb \ Γvert
b ) ∩ R2

right(Γdiag
a )}

8: for every pj ∈ P∗ do
9: Gj ← {x ∈ P ∪ L : x ⊆ Bpj \ Γvert

pj
}

10: for every i, i′ ∈ {1, 2, . . . , |L|} do
11: if Li, Li′ ∈ Gj and ri′ ∈ Sri then {(i, i′) is a right-crossing pair of Gj}
12: if X(ri′ , pj) is not dominated by Li and Li′ then D(j, i, i′)← ⊥
13: if there exists a point p ∈ P ∩Gj such that p ∈ R2

right(Γvert
ri

) then D(j, i, i′)← ⊥
14: if D(j, i, i′) 6= ⊥ then
15: Compute D(j, i, i′) by Lemma 22 {by calling Algorithms 1 and 2}

16: return D(|P|, |L|, |L|) \ {L1, LL}

1 ≤ q′ < j,
i, i′ /∈ N(pq′) ∪H(pq′),
(w,w′) is a left-crossing pair of G(q′, j) such that RDG(q′,j)(w,w′, i, i′) 6= ⊥,
(z, z′) is a right-crossing pair of Gq′ ,
q = min{1 ≤ k ≤ q′ : pk ∈ P∗, pk ∈ Aω, where ω = Γvert

rz
∩ Γdiag

rz′ ,
D(q, z, z′) 6= ⊥,
(H(pq) ∪H(pq′)) \

(⋃
q≤k≤q′ N(pk)

)
are dominated by the line segments Lz, Lz′ , Lw, Lw′ ,

G(q, q′) is dominated by {pk ∈ P∗ : q ≤ k ≤ q′}.

I Theorem 23. Given a canonical horizontal shadow representation (P,L) of a connected
tolerance graph G, Algorithm 3 computes in polynomial time a minimum dominating set of G.

8 Independent Dominating Set on Multitolerance Graphs

In this section we provide a polynomial time sweep-line algorithm which, given a shadow
representation (P,L) of a multitolerance graph G, computes in polynomial time a minimum
independent dominating set of G.

I Theorem 24. Given a shadow representation (P,L) of a multitolerance graph G, we can
compute a minimum independent dominating set in polynomial time.
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