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Abstract
We consider the minimum cost flow problem on graphs with unit capacities and its special cases.
In previous studies, special purpose algorithms exploiting the fact that capacities are one have
been developed. In contrast, for maximum flow with unit capacities, the best bounds are proven
for slight modifications of classical blocking flow and push-relabel algorithms.

In this paper we show that the classical cost scaling algorithms of Goldberg and Tarjan (for
general integer capacities) applied to a problem with unit capacities achieve or improve the best
known bounds. For weighted bipartite matching we establish a bound of O(

√
rm logC) on a

slight variation of this algorithm. Here r is the size of the smaller side of the bipartite graph,
m is the number of edges, and C is the largest absolute value of an arc-cost. This simplifies a
result of [Duan et al. 2011] and improves the bound, answering an open question of [Tarjan and
Ramshaw 2012]. For graphs with unit vertex capacities we establish a novel O(

√
nm log(nC))

bound. We also give the first cycle canceling algorithm for minimum cost flow with unit capacities.
The algorithm naturally generalizes the single source shortest path algorithm of [Goldberg 1995].
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1 Introduction

The input to the minimum cost flow (MCF) problem is a directed graph G = (V,E) with
integer arc costs and integer capacities. The goal is to find a circulation (flow) of minimum
cost, where a circulation is a function on arcs that satisfies capacity constraints for all arcs
and conservation constraints for all vertices. We denote |V | by n, |E| by m, the maximum
capacity by U and the maximum cost value by C.1 MCF has many applications (see e.g., [1])
and has been extensively studied.

An important subclass of MCF problems are the problems with unit capacities (UMCF).
In particular, the weighted bipartite matching (WBM) problem is a special case of UMCF.
The goal in WBM is to find a matching of maximum weight in a weighted bipartite graph.
The following two problems are closely related to WBM and are also a special case of UMCF.
The assignment (AS) problem is to find a perfect matching of maximum weight, and the

∗ Part of the work was done while the author was at Microsoft Research
1 When writing logU and logC, we assume that U > 1 and C > 1, respectively.
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imperfect assignment (IAS) problem is to find a maximum weight matching of a given size
F . The single source shortest path (SSSP) problem can be reduced to AS. Another special
case is the UMCF problem on graphs with unit vertex capacities (or equivalently with an
out-degree or an in-degree of one for every vertex).

The unit capacity maximum flow problem and the maximum bipartite matching problem
can be reduced, respectively, to the UMCF and WBM problems with most arc costs zero
and some arc costs plus or minus one. The best combinatorial bounds for these problems
are O(min(m1/2, n2/3)m) and O(

√
nm), respectively [13, 7]. Recently, Madry [15] proved an

Õ(m10/7) bound using interior point methods. Better combinatorial bounds are known for
important special cases of the maximum bipartite matching problem when the flow value
(which is the size of the matching) F is small and when the smaller of the two sizes of the
input bipartite graph, r, is small. The bound for the former case is O(

√
Fm) [12] and for the

latter case, O(
√
rm) [2]. The best combinatorial bound for maximum flow with unit vertex

capacities is O(
√
nm) [7].

Many of the results on unit-capacity maximum flow have been extended to UMCF.
Gabow and Tarjan [8] showed an O(min(m1/2, n2/3)m log(nC)) bound for UMCF and
O(
√
nm log(nC) bound for WBM, AS, and IAS problems. Goldberg [9] gave an O(

√
nm logC)

algorithm for SSSP, and Duan et al. [6] gave an algorithm for WBM with the same com-
plexity. Ramshaw and Tarjan [16] developed an O(

√
rm log(rC)) algorithm for WBM and

an O(
√
Fm log(FC)) algorithm for IAS. However, these extensions are ad hoc: the al-

gorithms are not MCF algorithms, and their connection to common MCF algorithms is not
straightforward.

In this paper we develop a unified MCF framework for problems with unit and small
integer capacities. The resulting algorithms are simple, intuitive, and match or improve the
previous bounds. In essence we show that classical algorithms with slight modifications and
a careful analysis give the same or better bounds for UMCF problems as special purpose
algorithms.

We show, in fact, two unified frameworks for UMCF. The first, in Section 4, is a novel
cycle canceling algorithm extending [9], which is the first cycle canceling algorithm that has
good time bounds for UMCF problems. The second, in Section 3, is a pseudoflow framework
which consists of the MCF cost-scaling algorithms of [11] with a fresh analysis for UMCF
problems. Section 5 shows how to apply these frameworks to the special cases of UMCF.
When applied to these special cases, the algorithms stay almost the same but require a more
careful analysis.

Our paper unifies (or replaces) [11, 8, 16, 9] and the second part of [6] and obtains the
following results:

A novel O(
√
rm log(C)) time bound for WBM, answering an open question of [16].2

A novel O(
√
nm log(nC)) time bound for UMCF with unit vertex capacities,

which is the first extension of Even and Tarjan [7] from maximum flow to MCF.
All the previous time bounds for UMCF, AS, IAS and SSSP.
Namely O(min(m1/2, n2/3)m log(nC)) for UMCF 3, O(

√
nm log(nC)) for AS,

O(
√
Fm log(FC)) for IAS and O(

√
nm logC) for SSSP.

2 Note that r < n, so this bound improves both the O(
√
nm logC) bound of Duan et al. [6] and the

O(
√
rm log(rC)) bound of Ramshaw and Tarjan [16].

3 And an O(min(n,
√
mU,n2/3U1/3)mmin(U, logn) log(nC)) bound for MCF.
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2 Definitions and Notation

The input to the MCF problem is a directed graph G = (V,E) where |V | = n and |E| = m.
Each arc (v, w) ∈ E has an associated integer capacity 0 ≤ u(v, w) ≤ U and an associated
integer cost c(v, w) such that |c(v, w)| ≤ C. For every input arc e, we add to E a reverse arc
eR with u(eR) = 0 and c(eR) = −c(e). We also define (eR)R = e. To simplify notation, we
usually assume that the graph has no parallel or anti-parallel arcs, so every arc is uniquely
defined by its endpoints, and (v, w)R = (w, v).

A circulation f is a function f : E → R which is anti-symmetric: ∀(v,w)∈Ef(v, w) =
−f(w, v), satisfying the capacity constraints ∀(v,w)∈Ef(v, w) ≤ u(v, w) and the flow con-
servation constraints ∀v∈V

∑
w∈V |(v,w)∈E f(v, w) = 0. For any flow function f we define

cost(f) = 1
2

∑
(v,w)∈E f(v, w) · c(v, w). A circulation is optimal if its cost is minimal. The

MCF problem is to find an optimal circulation in G. The MCF problem with vertex capacities
of F has the added constraint that ∀v∈V

∑
(v,w)∈E,f(v,w)>0 f(v, w) ≤ F .

A pseudoflow f is a function f : E → R satisfying f(v, w) = −f(w, v) and f(v, w) ≤
u(v, w) for every arc (v, w) ∈ E. We define Ef = {(v, w) ∈ E | f(v, w) < u(v, w)} as the set
of residual arcs. For a vertex v we define ef (v) =

∑
(w,v)∈E f(w, v). We call a vertex v with

ef (v) > 0 an excess and a vertex v with ef (v) < 0 a deficit. Note that a circulation is just a
pseudoflow with no excesses or deficits.

Given a potential function p : V → R we call cp(v, w) = c(v, w)− p(v) + p(w) the reduced
cost of the arc (v, w). We say that a pseudoflow (or a circulation) f with potentials p is
ε-optimal if for every arc (v, w) ∈ Ef we have cp(v, w) ≥ −ε. By linear programming duality,
a 0-optimal circulation is optimal. We define EA = {(v, w) ∈ Ef | cp(v, w) < 0} as the set of
admissible arcs. We define GA = (V,EA) as the admissible subgraph.

A graph G is bipartite if we can partition V into V1 and V2 such that E ⊆ V1 × V2. A
bipartite graph G is balanced if |V1| = |V2|. Given a bipartite graph, a matching is a set of
edges that do not have common vertices. A perfect matching is a matching such that any
vertex is adjacent to an edge in the matching. If the edges have weights, the weight of a
matching is the sum of the edge weights. The WBM problem is to compute a matching with
maximum weight among all matchings. The AS problem is to compute a perfect matching in
a bipartite graph with maximum weight among all perfect matchings.4 The IAS problem is
to compute a matching of size F in a bipartite graph with maximum weight among all such
matchings. In these problems we use C as the maximum weight of an edge in the bipartite
graph. The WBM, AS, and IAS problems can be formulated as UMCF problems (see Section
5).

A circulation is optimal if and only if there exists a potential function such that all
residual arcs have non-negative reduced costs [14]. Another optimality condition is that a
circulation is optimal if and only if the residual graph has no cycles of negative cost.

The cost-scaling method was introduced in [3, 17]. We use the more efficient variant
due to Goldberg and Tarjan [11]. The cost-scaling method proceeds in iterations which we
call cost scales; each one starts with a 2ε-optimal circulation and ends with an ε-optimal
circulation. It starts with the zero circulation which is C-optimal. When ε < 1/n, an
ε-optimal circulation is optimal, so the method takes O(log(nC)) iterations. For efficiency, we
restrict ourselves to values of ε that are integral powers of two. Unless mentioned otherwise,
we use 2dlogCe as the initial value of ε. We assume that the reader is familiar with Dijkstra’s
algorithm [5] and its bucket-based implementation due to Dial [4].

4 Note that a perfect matching exists only in a balanced bipartite graph.
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Algorithm 1 The cost scaling blocking flow algorithm of Goldberg and Tarjan [11].
function MCF(G)

ε← C, p← 0, f ← 0
while ε ≥ 1

n
do (ε, f, p)← Refine(ε, f, p)

end while
return f

end function
function Raise-Potentials(ε, f, p)

while @ EA-path from excess to deficit do
S ← {v ∈ V | ∃ EA-path from an excess to v}
∀v ∈ S : p(v)← p(v) + ε

end while
end function

function Refine(ε′, f ′, p′)
ε← ε′

2 , p← p′, f ← f ′

∀(v, w) ∈ EA: f(v, w)← u(v, w)
while f is not a circulation do

Raise-Potentials(ε, f, p)
f ← f + a blocking flow in GA

end while
return (ε, f, p)

end function

3 Pseudoflow Framework

Our pseudoflow framework for UMCF is based on the cost scaling algorithms of [11]. In this
section we analyze the blocking flow algorithm of [11] for UMCF. One can get similar bounds
for the push-relabel variant of [11]; we defer this result to the full version of the paper.

Algorithm 1 describes the blocking flow cost scaling algorithm of [11]. We say f is a
blocking flow in GA if f is a pseudoflow that: (i) Satisfies conservation constraints everywhere
except at the excesses and deficits of GA. (ii) Saturates at least one arc on every residual
path from an excess to a deficit in GA.

The algorithm starts a cost scale (the refine method in Algorithm 1) by saturating all
admissible arcs, which turns the circulation into a pseudoflow. It then performs the following
two steps until the pseudoflow becomes a circulation:
1. Iteratively increase by ε the potential of all vertices reachable from some excess in GA,

creating new admissible arcs. Stop when there is an admissible excess-to-deficit path.
2. Compute a blocking flow in GA and add it to the current pseudoflow.

We implement step (1) (the raise-potentials method in Algorithm 1) with a modific-
ation that makes its running time linear, as described in Section 3.1. To analyze step (2),
recall that Goldberg and Tarjan [11] show that GA is acyclic throughout the execution of
the algorithm. Since GA also has unit capacities, we can compute a blocking flow in GA in
O(m) time by a depth-first search in GA.

Let f ′ and p′ be the circulation and potentials at the start of the current cost scale (f ′
with p′ is 2ε-optimal). Let f and p be the current pseudoflow and potentials maintained by
the algorithm (f is ε-optimal w.r.t. p). Let λ = min(m1/2, n2/3). Let d(v) = p(v)−p′(v)

ε . Note
that d(v) must be integral. We divide every cost scale into two phases. The second phase
begins when every excess v has d(v) ≥ λ.

I Lemma 1. The first phase of every cost scale runs in O(mλ) time.

Proof. After every blocking flow computation, for every excess v, d(v) increases by at least
one. It follows that for every excess v, d(v) ≥ λ after at most λ blocking flow computations.
Since both step (1) and step (2) take O(m) time, the lemma follows. J

I Lemma 2. If k is the total excess at the start of the second phase, then the second phase
takes O(mk) time.

Proof. Every blocking flow computation sends at least one unit of flow from some excess to
some deficit. Since both step (1) and step (2) take O(m) time, the lemma follows. J

STACS 2015



410 Minimum Cost Flows

Lemma 1 and 2 imply an O(λm) time bound on the Goldberg-Tarjan algorithm on UMCF,
if we can show that when the second phase starts there is O(λ) excess left. We introduce the
following notation. We define E+ = {(v, w) ∈ E | f ′(v, w) > f(v, w)} and let G+ = (V,E+)
be the subgraph of G induced by the arcs of E+. Note that if (v, w) ∈ E+ then (v, w) ∈ Ef
and (w, v) ∈ Ef ′ . We say Y ⊆ E is an excess-deficit cut if every path from an excess to a
deficit contains an arc in Y .

Lemma 3 and 4 are the core of our analysis of the pseudoflow framework. They allow
us to extend the analysis of maximum flow algorithms to MCF by applying the classical
arguments to E+ rather then to Ef . Lemma 4 is an extension of Lemma 5.7 of [11]. It
essentially states that an excess-deficit cut in E+ bounds the total amount of excess, just as
a cut on EA does. Lemma 5 will then conclude the analysis.

I Lemma 3. If (v, w) ∈ E+ then d(v) ≤ d(w) + 3.

Proof. Since (w, v) ∈ Ef ′ then cp′(w, v) ≥ −ε′ = −2ε so we have cp′(v, w) ≤ 2ε. Since
(v, w) ∈ Ef we maintain the invariant cp(v, w) ≥ −ε. We subtract the inequalities and get
cp(v, w)−cp′(v, w) ≥ −ε−2ε and so d(w)ε−d(v)ε ≥ −3ε. It follows that d(v) ≤ d(w)+3. J

I Lemma 4. Let f ′ and f be a circulation and pseudoflow in G = (V,E). Let Y be an
excess-deficit cut in G+. Then∑

v∈V,ef (v)>0 ef (v) ≤
∑

(v,w)∈Y (f ′(v, w)− f(v, w)) ≤
∑

(v,w)∈Y uf (v, w).

Proof. The flow f ′ − f is a feasible flow in Gf since for every arc (v, w) ∈ Ef we have
f ′(v, w)− f(v, w) ≤ u(v, w)− f(v, w) = uf (v, w). By definition we get that f + (f ′− f) = f ′.
Since f ′ is a circulation, we get that f ′ − f drains all the excess in f . J

I Lemma 5. When the second phase starts there is O(λ) excess left.

Proof. During the second phase every excess v has d(v) ≥ λ and every deficit v has d(v) = 0.
Assume λ =

√
m. Consider the 1

3λ sets of arcs Ai = {(v, w) ∈ E+ | d(v) ∈ {3i, 3i −
1, 3i − 2} ∧ d(w) ∈ {3i − 3, 3i − 4, 3i − 5}} where 1 ≤ i ≤ λ

3 .
5 By Lemma 3 any set Ai is

an excess-deficit cut in Gf . By the pigeon hole principle there must be a set Ai such that
|Ai| ≤ m

λ/3 = 3
√
m. So by Lemma 4 the remaining excess is at most 3

√
m = 3λ.

Assume λ = n2/3. We apply the pigeon hole principle to the sets of nodes Ni = {v ∈
V | d(v) ∈ {6i, 6i− 1, 6i− 2, 6i− 3, 6i− 4, 6i− 5}} where 1 ≤ i ≤ λ

6 .
6 There must be a set

Ni such that |Ni| ≤ n
λ/6 = 6n1/3. So there are at most 36n2/3 arcs in A2i and therefore by

Lemma 4 the remaining excess is at most 36n2/3 = 36λ. J

Our analysis extends to networks with integer capacities bounded by U and produces a time
bound of O(min{n,m1/2U1/2, n2/3U1/3}mmin{logn,U} log(nC)). We defer an extended
description to the full version of the paper.

3.1 Raise Potentials
We describe a faster implementation of raise-potentials from Algorithm 1 using Dial’s
shortest path algorithm. This kind of implementation is well known, see e.g. [8, 9, 16].

5 Note that A1 = {(v, w) ∈ E+ | d(v) ∈ {3, 2, 1} ∧ d(w) = 0}. We assume for simplicity of presentation
that λ

3 is an integer.
6 Here we assume for simplicity that λ

6 is an integer.
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Consider the length function `(v, w) = b cp(v,w)
ε c+ 1 and the graph Gf with an additional

source vertex r connected to every excess v with an arc (r, v) of length `(r, v) = 0. For every
vertex v reachable from r, we find the distance d`(v) from r to v w.r.t. `. Let u be the deficit
with the shortest distance d`(u). For a vertex v such that d`(v) < d`(u) we increase the
potential p(v) by (d`(u)− d`(v))ε. Lemma 6 shows that this computes the same potentials
as in the naive implementation of raise-potentials from Algorithm 1.

Lemma 7 shows that we need to compute distances only up to 3n. This implies that
Dial’s algorithm runs in linear time and space. We terminate the computation once we reach
a deficit; alternatively, we can add an arc (r, v) for every vertex v with `(r, v) = 3n and run
the algorithm to the end.

I Lemma 6. Consider a run of the naive implementation of raise-potentials from
Algorithm 1. Let Si be the set S computed at the i-th iteration, and let S0 = {v ∈ V : ∃u
with ef (u) > 0 and v reachable from u in GA}. Then Si = {v ∈ V | d`(v) ≤ i}.

Proof. The proof is by induction on iterations of the naive implementation. For the basis,
note that S0 is the set of vertices reachable from excesses in the admissible graph. If (v, w)
is admissible, then `(v, w) = 0, which implies the claim for S0. We assume the claim is true
for S0, .., Sk−1 and prove it for Sk. Note that p and ` are the potentials and lengths before
running raise-potentials.

First, we show that for every vertex v with d`(v) ≤ k we have v ∈ Sk. By definition of
the naive implementation Si ⊆ Sk for i < k since all admissible arcs into vertices in Si in
iteration i remain admissible in subsequent iterations. Therefore by the induction hypothesis
we need to consider only vertices v with d`(v) = k. Let P be the shortest path from r

to v (by ` distance). Going backwards from v towards r on P let (u, x) be the first arc
we encounter with d`(u) < d`(x) = k (possibly x = v). It follows that the arcs along P
from x to v have zero length ` and are therefore admissible. By the induction hypothesis
we have that u ∈ Sd`(u) \ Sd`(u)−1. So in the k’th iteration the reduced cost of (u, x) is
cp(u, x)− ε · (k− d`(u)) = cp(u, x)− ε · (d`(x)− d`(u)) = cp(u, x)− ε · b cp(u,x)

ε c− ε = (cp(u, x)
mod ε)− ε < 0. So (u, x) is admissible in the k’th iteration and since there is an admissible
path from x to v the claim follows.

Finally, we show that for every vertex v ∈ Sk we have d`(v) ≤ k. By the induction
hypothesis we need to consider only vertices v ∈ Sk \ Sk−1. By definition of the naive
implementation, in the k’th iteration we found an admissible path P from some vertex in
Sk−1 to v. Let (u, x) be the last arc on P such that u ∈ Sk−1 (possibly x = v). By the
induction hypothesis we get that u ∈ Sd`(u) \ Sd`(u)−1. So the reduced cost of (u, x) in the
k’th iteration is cp(u, x) − ε · (k − d`(u)) < 0. It follows that cp(u,x)

ε − (k − d`(u) − 1) < 1
and so b cp(u,x)

ε − (k − d`(u) − 1)c ≤ 0. So by definition of shortest distances we get that
d`(x) ≤ d`(u) + `(u, x) ≤ k. Since the subpath of P from x to v was always admissible we
get that d`(v) ≤ d`(x) ≤ k. J

I Lemma 7. For every v ∈ V with ef (v) < 0 we have d`(v) ≤ 3n.

Proof. We assume for contradiction that d`(v) > 3n. By Lemma 4 there must be an E+

path from some excess w to v. We run the naive implementation of raise-potentials
from Algorithm 1 for d`(v) iterations (we do not terminate if we find a deficit). By Lemma
6 after d`(v) iterations we have d(w) ≥ d`(v) > 3n and d(v) = 0. Applying Lemma 3
telescopically along the E+ path from w to v we get that d(w) ≤ d(v) + 3n = 3n which is a
contradiction. J
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Algorithm 2 A scaling iteration of the UMCF cycle canceling algorithm.
function Refine(ε′, f, p)

ε← 1
2 ε
′

while |Ebad| > 0 do
k ← |Ebad|
Cancel admissible cycles
S ← Find-Set-Or-Chain()
if S is a set then ∀v ∈ S : p(v)← p(v) + ε
else Eliminate-Chain(S)
end if

end while
return (ε, f, p)

end function
function Eliminate-Chain(S = (v0, .., v|S|−1))
∀t∈{1...|S|−2} : Push(vt, vt+1)
Raise-Potentials(ε, f, p)
∀(v, w) ∈ EA-path from v|S|−1 to v0 :

Push(v, w)
end function

function Find-Set-Or-Chain()
∀(v, w) ∈ Ebad : `′(v, w) = −1
∀(v, w) /∈ Ebad : `′(v, w) = 0
G′ ← GA with a new vertex r
∀v ∈ V : connect r to v with `′(r, v) = 0
Compute `′ distances from r in G′
if ∃v ∈ V d`′ (r, v) ≤ −

√
k then

return EA-path from r to v
else
∀i<√k: Ai ← {v ∈ V | d`′ (r, v) = −i}
j ← argmaxi|{(v, w) ∈ Ebad | w ∈ Ai}|
return ∪j≤i≤√kAi

end if
end function
function Push(v, w)

f(v, w)← f(v, w) + 1, f(w, v)← f(w, v)− 1
end function

4 Cycle Canceling Framework

We present a cycle canceling algorithm that solves the UMCF problem in O(m3/2 log(nC))
time. Unlike the methods of the previous section, the cycle-canceling algorithm always
maintains a feasible circulation, which is desirable in some contexts. On the other hand, we
were unable to prove an O(mn2/3 log(nC)) bound as we did in the preflow framework. Our
algorithm is based on the shortest path algorithm of Goldberg [9]. The main difference is
that the shortest path algorithm halts when it finds a negative cycle and the MCF algorithm
cancels such cycles and proceeds.

We introduce more notation. We define Ebad = {(v, w) ∈ E | cp(v, w) < −ε} as the set
of bad arcs. Note that Ebad ⊆ EA. For a length function ` and vertices x, y ∈ V we define
d`(x, y) to be the distance according to ` from x to y. Given S ⊂ V and T ⊂ E, we say S is
T -closed if for every arc (v, w) ∈ T , v ∈ S implies w ∈ S.

We describe the cycle-canceling variant of refine in Algorithm 2. We use k to denote
the number of bad arcs. We perform iterations of canceling admissible cycles, finding either
a large EA-closed set or a long EA path and then using the set or path to raise potentials or
cancel more cycles and reduce the number of bad arcs. In each iteration we reduce k by at
least

√
k. The eliminate-chain method is the main place where our algorithm differs from

Goldberg’s shortest path algorithm. The latter stops when it finds a negative cycle, while we
need to cancel such cycles.

We define an iteration of the algorithm as one iteration of the loop of the refine method.
In every iteration we first cancel all admissible cycles in G. Goldberg and Tarjan [10]
describe how to perform this in O(m) time for unit capacity networks. Next we run the
find-set-or-chain method. This method finds either a path in GA with at least

√
k bad

arcs or an EA-closed set of vertices with at least
√
k incoming bad arcs.

We find the path or the set by creating a new graph G′ from GA with a length function
`′ as defined in Algorithm 2. Since we canceled admissible cycles in G, the graph G′ is
acyclic and we find a topological ordering of vertices in G′ in O(m) time. Using this ordering,
we compute the distance d`′(r, v) for every vertex v in O(m) time. If some vertex v has
d`′(r, v) ≤ −

√
k then the path from r to v is the path we seek. Otherwise, by the pigeon hole

principle, there is a set Ai of all the vertices with distance −i that has at least
√
k incoming

bad arcs. The set of all vertices with distance −i or less is therefore an EA-closed set of
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vertices with at least
√
k incoming bad arcs.

If we find an EA-closed set S, we increase the potentials of the vertices in S by ε. Since
S is EA-closed, raising the potential of S by ε does not create new bad arcs out of S. On
the other hand each arc into S that was bad before the increase is no longer bad after the
increase (f is 2ε-optimal so reduced costs are at least −2ε). Since S contained at least

√
k

incoming bad arcs, we reduce the number of bad arcs by at least
√
k.

If we find a path, we run the eliminate-chain method. This method eliminates the bad
arcs on the path by adjusting potentials and canceling cycles with bad arcs, without creating
new bad arcs. The eliminate-chain method runs in linear time. See Section 4.1.

Each iteration in refine finds either a set or a chain and in either case eliminates at least√
k bad arcs. So the number of iterations is O(

√
m). Each iteration takes O(m) time. It

follows that a cost scale takes O(m3/2) time, yielding an O(m3/2 log(nC)) UMCF algorithm.

4.1 Chain Elimination
The input to eliminate-chain is an admissible path S = (v0, v1, . . . v|S|−1). It is possible
to implement eliminate-chain so that it cancels only negative cycles, but we describe a
simpler implementation that may cancel cycles with positive cost, and a variant for which
the circulation cost is monotonically decreasing.

The procedure starts by pushing a unit of flow from v0 to v|S|−1 along S. This saturates
the bad arcs on S without creating new ones, and introduces a unit of deficit at v0 and
a unit of excess at v|S|−1. We then run the raise-potentials method from Section 3.1
with a modified length function (see below). This increases the potentials and creates an
admissible path, P , from v|S|−1 to v0 without introducing new bad arcs. To convert the
pseudoflow into a circulation, we push a unit of flow on P . Since P is admissible, we do not
create new bad arcs. Since bad arcs have reduced costs in the interval [−2ε,−ε) the length
` of these arcs (defined in Section 3.1) is −1. We re-define ` to be zero on bad arcs, that
is `(v, w) = max(0, b cp(v,w)

ε c + 1). After raise-potentials updates p, the reduced costs
of admissible arcs (and in particular of bad arcs) cannot decrease, so no new bad arcs are
created.

Pushing a unit of flow on S and then returning it on P changes the flow on a set of
cycles. Reduced costs of arcs on P may be positive w.r.t. the potentials at the beginning of
eliminate-chain, and the cycles may have positive cost. We can modify the algorithm to
make sure the total cost of these cycles is negative; then at least one of the cycles is negative.
We use a different length function `m. The reverse arcs of arcs along S have reduced costs in
(0, 2ε]. For such arcs with reduced costs in (0, ε] we set `m = 0 (instead of 1) and for such
arcs with reduced costs in (ε,−2ε] we `m = 1 (instead of 2). For every other residual arc e we
define `m(e) = `(e). Also, if the reversal of S become admissible, we always select it as the
admissible path we push the flow back on; in this case eliminate-chain does not change
f . Running raise-potentials with `m is equivalent to running the naive implementation
from Algorithm 1 if we also treat reverse arcs of arcs along S with reduced costs in (0, ε] as
admissible. One can prove this using the same arguments as in the proof of Lemma 6. It
follows that the residual path we find from v|S|−1 to v0 may contain reverse arcs of arcs in S
with reduced costs in (0, ε]. Pushing the flow back on these arcs creates new admissible arcs
but cannot create new bad arcs. Lemma 8 proves that with `m we get decreasing circulation
costs.

I Lemma 8. Let f ′ be the flow before eliminate-chain and f after. If f ′ 6= f then
cost(f) < cost(f ′).
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Proof. Let P be the return path we select after raise-potentials and S̄ the reversal of S. P
is a shortest path w..r.t. `m and S̄ is not, so we have

∑
(v,w)∈P `m(v, w) <

∑
(v,w)∈S̄ `m(v, w)

and so
∑

(v,w)∈P\S̄ `m(v, w) <
∑

(v,w)∈S̄\P `m(v, w). It follows that∑
(v,w)∈P\S̄

cp(v,w)
ε ≤

∑
(v,w)∈P\S̄ max(0, b cp(v,w)

ε c+ 1) =
∑

(v,w)∈P\S̄ `m(v, w)
<

∑
(v,w)∈S̄\P `m(v, w) =

∑
(v,w)∈S̄\P (d cp(v,w)

ε e − 1) ≤
∑

(v,w)∈S̄\P
cp(v,w)

ε . So we get that∑
(v,w)∈P cp(v, w) <

∑
(v,w)∈S̄ cp(v, w) and therefore

∑
(v,w)∈P∪S cp(v, w) < 0. J

5 Special Case Improvements and Generalizations

In this section we improve the bounds for our frameworks from Sections 3 and 4 for the
special cases of SSSP, IAS, WBM and UMCF with unit vertex capacities.

First we review reductions from the WBM, AS and IAS problems to UMCF. The reduction
from WBM is as follows. Given an instance H = (V1 ∪ V2, EH) of WBM, we create a graph
G = (V,E). We add two new vertices s and t so that V = V1 ∪ V2 ∪ {s, t}. For each edge
(v, w) ∈ EH we have an arc (v, w) ∈ E whose cost in G is the negation of its cost in H (so
that a maximum weight becomes a minimum cost). For every vertex v ∈ V1 we add a new
arc (s, v) with c(s, v) = 0. For every vertex v ∈ V2 we add a new arc (v, t) with c(v, t) = 0.
We also add the arc (t, s) with c(t, s) = 0. Let r = min{|V1|, |V2|}. We set the capacities of
all arcs to 1 except for the arc (t, s), which gets a capacity of u(t, s) = r (we can replace (t, s)
by r parallel unit capacity arcs to get an UMCF instance). Clearly a minimum cost flow in
G corresponds to a matching of maximum weight in H.

The reduction of AS to UMCF is the same as for WBM except that we set c(t, s) = −nC.
Clearly a minimum cost flow in G corresponds to a perfect matching of maximum weight
in H. The maximum absolute value of an arc cost in is nC rather than C. However we
still state our bounds as a function of C defined as the largest absolute value of a weight in
H. We reduce IAS to UMCF using the same reduction as for AS, except u(t, s) = F and
c(t, s) = −FC.

5.1 The Single Source Shortest Path Problem
We show how the cycle canceling algorithm of Section 4 can be slightly modified to match
the O(

√
nm logC) time bound of [9]. In the modified algorithm we maintain f as the zero

circulation except temporarily inside the eliminate-chain procedure. When the algorithm
terminates, the reduced costs of all arcs are non-negative, so we can find all shortest paths
from a source using Dijkstra’s algorithm in O(m+ n logn) time.

We run the O(logC) cost scales of the cycle canceling algorithm of Section 4 with the
length function `m until ε = 1. However, we terminate if we find an admissible cycle in
refine or if the return path in eliminate-chain is not the reversal of S. In these cases
there is a negative cycle in Gf . An analysis similar to the one of Section 4 shows that the
running time of a cost scale is O(

√
nm) rather than O(m3/2). This is done by defining a

vertex as bad if it has a bad incoming arc and fixing at least
√
k bad vertices in each iteration

of refine where k is the total number of bad vertices. The potential increase of an EA-closed
set fixes all the bad vertices in the set. Lemma 9 shows that running eliminate-chain with
`m either fixes all the bad vertices along S or there is a negative cycle and we can terminate.

I Lemma 9. If (x, vi) is bad and vi ∈ S then there is a negative cycle or d`m
(x) > d`m

(vi)

Proof. Let S′ be the part of the reverse path of S from v|S|−1 to vi. If d`m(x) ≤ d`m(vi) then
there is a path P from v|S|−1 to x with

∑
(v,w)∈P `(v, w) ≤

∑
(v,w)∈S′ `(v, w). Using the same
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arguments as in the proof of Lemma 8 we get that
∑

(v,w)∈P cp(v, w)−
∑

(v,w)∈S′ cp(v, w) ≤ 0.
So the cycle of P then (x, vi) and then the part of S from vi to v|S|−1 is a negative cycle. J

When ε = 1 we run one last, slightly modified, cost scale. We change the definition of an
admissible arc to be an arc with non-positive reduced cost. Since all potentials and costs at
this point are integral and thereby multiples of ε, the reduced cost of an admissible arc is
either −1 or 0 and it is ≥ 1 for all other arcs. A bad arc is an admissible arc of reduced cost
−1. Since zero reduced cost arcs are admissible, there are no zero reduced cost arcs outgoing
from an EA-closed set, and an increase of the potentials of the vertices in the set by 1 does
not create new bad arcs. We define the length function ` in eliminate-chain accordingly:
for every residual arc (v, w) we define `(v, w) = max(0, cp(v, w)). The arguments of Lemma
6 show that running raise-potentials with this length function does not create new bad
arcs. The arguments of Lemma 8 show that if there isn’t a negative cycle then we can push
the flow back on the reversal of S.

It remains to show how to make the admissible network (by the new definition of
admissibility) acyclic. We start every iteration of refine by contracting strongly connected
components of G induced by zero reduced cost arcs. In the contracted graph we set the
potentials of vertices to zero and the costs of arcs to be the reduced costs of the corresponding
arcs before the contraction. This transformation takes linear time. At the end of the iteration
we set the potential of every original vertex v to be its potential before the contraction
plus the potential computed for the vertex into which v was contacted. See [9]. After the
contraction GA must be acyclic (otherwise there is a negative cycle and we terminate).

5.2 Imperfect Assignment Problem
We show an O(

√
Fm log(FC)) time bound for IAS using either the pseudoflow or the cycle

canceling framework. Since the cost of (t, s) is −FC, the zero circulation is not C-optimal
with respect to the zero potential function. So instead of starting with the zero circulation
we start with the circulation f consisting of a flow of value F from s to t together with
a flow of F through the arc (t, s), thereby saturating (t, s) (we assume that the value of
the maximum flow from s to t is at least F as otherwise the problem is infeasible). This
circulation is C-optimal with respect to the zero potential function.

The other modification we perform is a transformation of potentials before every cost
scale as follows. For every vertex v ∈ V1 we set p(v) = p(v) + ε. For every vertex v ∈ V2 we
set p(v) = p(v) + 2ε. We also set p(t) = p(t) + 3ε. Lemma 10 specifies the outcome of the
transformation.

I Lemma 10. After applying the potential transformation we have
∑

(v,w)∈EA
uf (v, w) ≤ 3F .

Proof. Consider an arc (v, w) ∈ {(s, t)} ∪ ({s} × V1) ∪ (V1 × V2) ∪ (V2 × {t}). Before the
transformation cp(v, w) ≥ −ε. After the transformation cp(v, w) ≥ ε− ε = 0. So (v, w) /∈ EA.

Let R = Ef ∩ ((V1 × {s}) ∪ (V2 × V1) ∪ ({t} × V2)) and consider an arc (v, w) ∈ R. Since
f(v, w) < u(v, w) = 0 then f(w, v) > 0. Since f is a circulation and since all flow cycles
of f contain (t, s) we get that |R| ≤ 3f(t, s). So

∑
(v,w)∈EA

uf (v, w) = |R| + uf (t, s) ≤
3f(t, s) + uf (t, s) = 3f(t, s) + u(t, s)− f(t, s) = 2f(t, s) + u(t, s) ≤ 3F . J

Lemma 10 implies that we start every cost scale in the cycle canceling framework with
O(F ) bad arcs. An O(

√
Fm) time bound per cost scale follows using the same analysis as in

Section 4. Lemma 11 implies an log(FC) bound on the number of cost scales:

I Lemma 11. An ε-optimal circulation f with ε < 1
2F+4 is optimal.
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Proof. Consider a simple residual cycle Y . Pair up consecutive arcs that are not incident
to s and t along Y . By the definition of G at least one arc in each pair is in V2 × V1. It
follows that |Y | ≤ 4 + 2|Ef ∩ (V2 × V1)| = 4 + 2|{(w, v) ∈ V1 × V2 | f(w, v) > 0}| ≤ 4 + 2F ,
where the last inequality holds since by the conservation constraints in G we have that
|{(w, v) ∈ V1×V2 | f(w, v) > 0}| ≤ u(t, s) ≤ F . It follows that cost(Y ) =

∑
(v,w)∈Y c(v, w) =∑

(v,w)∈Y cp(v, w) ≥
∑

(v,w)∈Y −ε ≥ −(4 + 2F )ε > −1. Since costs are integral it follows
that cost(Y ) ≥ 0 so there are no negative residual cycles and therefore f is optimal. J

For the pseudoflow framework we use the same notation as in Section 3 except that we
let λ =

√
F . We split a cost scale of the algorithm into two phases. The second phase starts

when every excess v has d(v) ≥ λ. Lemma 12 and the analysis from Section 3 yield the
O(
√
Fm) time bound per cost scale for the pseudoflow framework.

I Lemma 12. When the second phase starts there is O(
√
F ) excess left.

Proof. Consider the decomposition of the current pseudoflow f into simple cycles and paths
from deficits to excesses. By the definition of G every simple flow cycle or path is of length
at most 4. By Lemma 10 the total excess generated when we start a cost scale is at most 3F
so there are at most 3F flow paths from deficits to excesses. Since u(t, s) = F there are at
most F flow cycles. It follows that |{(v, w) ∈ E | f(v, w) > 0}| ≤ 4 · 3F + 4F = 16F .

Let R = Ef ∩ ((V1×{s})∪ (V2×V1)∪ ({t}×V2)∪{(t, s)}). We have
∑

(v,w)∈R uf (v, w) ≤
|{(w, v) ∈ E | f(w, v) > 0}| + F ≤ 17F . For 1 ≤ i ≤ λ

12 let Ai = {(v, w) ∈ Ef | d(v) ∈
{12i, 12i− 1, ..., 12i− 11}}.7 We apply the pigeon hole principle to the sets of arcs Ai ∩R.
Since

∑
(v,w)∈R uf (v, w) ≤ 17F there must be a set Ai∩R such that

∑
(v,w)∈Ai∩R uf (v, w) ≤

17F/ 1
12λ = 204

√
F . We show that each Ai ∩R is an excess-deficit cut in G+. A bound of

204
√
F on the remaining excess follows using Lemma 4.

Consider an excess-deficit E+ residual path P . We show that it has an arc in each set
Ai ∩R. Clearly every simple residual path in Gf , and P in particular, must have at least
one arc in R out of every 4 consecutive arcs. Furthermore, since an excess has d(v) = λ,
a deficit has d(v) = 0, and by Lemma 3, P must contain 4 consecutive arcs in each Ai. It
follows that one of these 4 arcs is in R and therefore in Ai ∩R. J

5.3 Weighted Bipartite Matching
In this section we show the O(

√
rm log(C)) time bound for the WBM problem. Recall that r

is the number of vertices in the smaller “side” of the bipartite graph. We use the same ideas
as Duan at al. [6], but within our cost-scaling frameworks, obtaining a simpler algorithm
with the improved time bound. First we show how to obtain an O(

√
rm log(rC)) time bound

using either framework. Then we show how to improve the bound to O(
√
rm logC) by

introducing a preprocessing stage based on the pseudoflow framework and a postprocessing
stage based on the cycle canceling framework.

Before every cost scale we perform the same potential transformation as in Section 5.2. A
lemma analogous to Lemma 10 shows that following this transformation

∑
(v,w)∈EA

uf (v, w) ≤
3r. This gives a bound of O(

√
rm) time for a cost scale in the cycle canceling framework.

For the pseudoflow framework we define λ =
√
r and split a cost scale into two phases as in

Section 5.2. Lemma 13 implies the O(
√
rm) time bound for a cost sale in the pseudoflow

framework. For both frameworks, a lemma analogous to Lemma 11 implies O(log rC) cost
scales yielding the O(

√
rm log(rC)) bound.

7 As in the previous section, to simplify the presentation we assume that λ
12 is an integer.
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I Lemma 13. When the second phase starts there is O(
√
r) excess left.

Proof. Assume without loss of generality that r = |V1| ≤ |V2|. For 1 ≤ i ≤ λ
12 let

Ki = {v ∈ V | d(v) ∈ {12i, 12i − 1, ..., 12i − 10, 12i − 11}} and let Ni = Ki ∩ V1.8 By the
pigeon hole principle there must be a set Nj such that |Nj | ≤ r

1
12λ

= 12
√
r. We argue in the

next paragraph that the set of E+ arcs outgoing from every Ni is an excess-deficit cut in
G+. Since each vertex in V1 has only one outgoing arc that may be in E+, the size of the
cut corresponding to Nj is at most 12

√
r and the lemma follows by Lemma 4.

Consider a simple path P of E+ arcs from an excess to a deficit. By Lemma 3, P must
have at least 4 consecutive vertices in Ki. Since P is simple, one of these vertices v has
v ∈ V1 and so we get v ∈ Ni. The single outgoing E+ arc of v must be on P . J

Next we improve the running time to O(
√
rm logC). The improved algorithm has three

stages. First we find an C√
r
-optimal circulation in O(

√
rm) time. Then we run cost scales

from either framework to get an 1√
r
-optimal circulation in O(

√
rm logC) time. Finally we

convert the circulation to an optimal one in O(
√
rm) time.

For the first stage we set ε = C√
r
. We set p(v) = −C for every vertex v ∈ {s} ∪ V1 and

p(v) = 0 for every vertex v ∈ V2 ∪ {t}. We initialize f with the zero circulation. Finally we
call the refine method of the blocking flow algorithm from Section 3. Lemma 14 shows that
this call to refine performs at most O(

√
r) blocking flow computations. It was first proved

for a balanced bipartite graph by Duan at al. [6]. It follows that this stage runs in O(
√
rm)

time.

I Lemma 14. The first stage performs at most
√
r + 2 blocking flow computations.

Proof. Consider the initial potentials. Arcs outgoing from s or incoming into t have reduced
cost 0. Every arc (v, w) ∈ V1 × V2 has cp(v, w) ≥ −C + C + 0 ≥ 0. The arc (t, s) has
cp(t, s) = −C. It follows that EA = {(t, s)}. So after saturating admissible arcs we have
ef (s) > 0, ef (t) < 0 and E+ = {(s, t)}. Since t is the only deficit we have p(t) = 0. After y
blocking flows we have that p(s) = −C + y C√

r
. It follows that cp(s, t) = −p(s) is nonnegative

for y ≤
√
r and is negative for y =

√
r + 1. So (s, t) is admissible after

√
r + 1 blocking

flows and the (
√
r + 2)’th blocking flow drains all remaining excess from s through the arc

(s, t). J

For the finish-up stage we run the last cost scale of the SSSP algorithm from Section
5.1, except that whenever we encounter an admissible (negative) cycle we do not terminate.
Instead we cancel the cycle and start a new iteration of refine. Consider a negative cycle.
By integrality, its cost is −1 or less, so by ε-optimality (recall that ε ≤ 1/

√
r at this point)

the cycle must contain at least
√
r arcs with negative reduced cost. This observation implies

that canceling a negative cycle saturates at least
√
r bad arcs. It follows that the number of

time we restart an iteration of refine is O(
√
r).

5.4 Minimum Cost Flow with Unit Vertex Capacities
We show an O(

√
nm log(nC)) time bound on the MCF problem with unit vertex capacities

using our pseudoflow framework. We consider the formulation of the problem on networks
where every vertex has an out-degree of 1 or an in-degree of 1. The time bound is proved in
the same way as in Section 3 except we let λ =

√
n and we let Lemma 15 replace Lemma 5.

8 To simplify the presentation we assume that λ/12 is an integer.
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I Lemma 15. When the second phase starts there is O(
√
n) excess left.

Proof. During the second phase every excess v has d(v) ≥ λ and every deficit v has d(v) = 0.
Consider the 1

3λ sets of vertices Vi = {v ∈ V | d(v) ∈ {3i, 3i− 1, 3i− 2}} where 1 ≤ i ≤ λ
3 .

Also consider Ai = {(v, w) ∈ E+ | (v ∈ Vi and has out-degree 1) or (w ∈ Vi and has in-degree
1) }. By Lemma 3 for any set Vi, every E+ excess to deficit path must contain a vertex in
Vi. It follows that every Ai is an excess-deficit cut in Gf . By the pigeon hole principle there
must be a set Vi such that |Vi| ≤ n

λ/3 = 3
√
n = 3λ and therefore |Ai| ≤ 3

√
n. So by Lemma

4 the remaining excess is at most 3λ. J
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