
Existential Second-order Logic over Graphs:
A Complete Complexity-theoretic Classification
Till Tantau

Institute of Theoretical Computer Science
Universität zu Lübeck, Germany
tantau@tcs.uni-luebeck.de

Abstract
Descriptive complexity theory aims at inferring a problem’s computational complexity from the
syntactic complexity of its description. A cornerstone of this theory is Fagin’s Theorem, by which
a property is expressible in existential second-order logic (eso logic) if, and only if, it is in NP. A
natural question, from the theory’s point of view, is which syntactic fragments of eso logic also
still characterize NP. Research on this question has culminated in a dichotomy result by Gottlob,
Kolaitis, and Schwentick: for each possible quantifier prefix of an eso formula, the resulting
prefix class over graphs either contains an NP-complete problem or is contained in P. However,
the exact complexity of the prefix classes inside P remained elusive. In the present paper, we
clear up the picture by showing that for each prefix class of eso logic, its reduction closure
under first-order reductions is either FO, L, NL, or NP. For undirected self-loop-free graphs
two containment results are especially challenging to prove: containment in L for the prefix
∃R1 · · · ∃Rn∀x∃y and containment in FO for the prefix ∃M∀x∃y for monadic M . The complex
argument by Gottlob et al. concerning polynomial time needs to be carefully reexamined and
either combined with the logspace version of Courcelle’s Theorem or directly improved to first-
order computations. A different challenge is posed by formulas with the prefix ∃M∀x∀y, which
we show to express special constraint satisfaction problems that lie in L.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.4.1 Mathematical
Logic

Keywords and phrases existential second-order logic, descriptive complexity, logarithmic space

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.703

1 Introduction

Fagin’s Theorem [9] establishes a tight connection between complexity theory and finite
model theory: A language lies in NP if, and only if, it is the set of all finite models (coded
appropriately as words) of some formula in existential second-order logic (eso logic). This
machine-independent characterization of a major complexity class sparked the research area
of descriptive complexity theory, which strives to characterize the computational complex-
ity of languages by the syntactic structure of the formulas that can be used to describe
them. Nowadays, syntactic logical characterizations have been found for all major com-
plexity classes, see [13] for an overview, although some syntactic extras (like numerical
predicates) are often needed for technical reasons.

When looking at subclasses of NP like P, NL, L, or NC1, one might hope that syn-
tactic restrictions of eso logic can be used to characterize them; and the most natural
way of restricting eso formulas is to limit the number and types of quantifiers used. All
eso formulas can be rewritten in prenex normal form as ∃R1 · · · ∃Rr∀x1∃x2 · · · ∀xn−1∃xn ψ,

© Till Tantau;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 703–715

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.703
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

704 ESO Logic over Graphs: A Complete Complexity-theoretic Classification

where the Ri are second-order variables, the xi are first-order variables, and ψ is quan-
tifier-free. Formulas like φ3-colorable = ∃R∃G∃B∀x∀y

(
(R(x) ∨ G(x) ∨ B(x)) ∧

(
E(x, y) →

¬(R(x) ∧ R(y)) ∧ ¬(G(x) ∧ G(y)) ∧ ¬(B(x) ∧ B(y))
))
, which describes the NP-complete

problem 3-colorable, show that we do not need the full power of eso logic to capture
NP-complete problems: the prefix ∃R∃G∃B∀x∀y suffices. However, do formulas of the form,
say, ∃R∀x∃y ψ also capture all of NP; or do they characterize exactly, say, P? This ques-
tion lies at the heart of a detailed study by Gottlob, Kolaitis, and Schwentick [11] entitled
Existential Second-Order Logic Over Graphs: Charting the Tractability Frontier, where the
following dichotomy is shown: For each possible syntactic restriction of the quantifier block
of eso formulas, the resulting prefix class either contains an NP-complete problem or is
contained in P. For instance, it is shown there that all graph problems expressible by for-
mulas of the form ∃R∀x∀y ψ lie in P, while some problems expressible by formulas of the
form ∃R∀x∀y∀z ψ are NP-complete. The dichotomy does not, however, settle the question
of whether all of P – or at least some interesting subclass thereof like logarithmic space (L)
or nondeterministic logarithmic space (NL) – is described by one of the logical fragments.

1.1 Contributions of This Paper
One cannot really hope to show that the prefix class of, say, the quantifier prefix ∃R∀x∀y is
exactly P, since P 6= NP would follow: This syntactically severely restricted prefix class can
be shown [6, Proposition 10.6] to be contained in NTIME(nk) for some constant k and is thus
provably different from NP by the time hierarchy theorem. The best one can try to prove are
statements like “this prefix class is contained in P and contains a problem complete for P”
or, phrased more succinctly, “the reduction closure of this prefix class is P.” Our main result,
Theorem 1.1, consists of such statements: For each possible eso prefix class, its reduction
closure under first-order reductions is either FO, L, NL, or NP. In particular, no prefix class
yields P as its reduction closure (unless, of course, P = NP or NL = P).

It makes a difference which vocabulary we are allowed to use in our formulas and which
logical structures we are interested in: Results depend on whether we consider arbitrary
graphs, undirected graphs, undirected graphs without self-loops, or just strings. (In this
paper, all considered graphs are finite.) The case of strings has been addressed and settled
in [6]. In the present paper we consider the same three cases as in [11]: In our vocabulary,
we always have just a single binary relational symbol (E), so all models of formulas are
graphs. We then differentiate between directed graphs, undirected graphs, and undirected
graphs without self-loops (which we call basic graphs for brevity). Note that allowing self-
loops, whose presence at a vertex x can be tested with the formula E(x, x), is equivalent to
considering basic graphs together with an additional monadic input predicate.

To describe the syntactic fragments of eso logic easily and succinctly, we use the nota-
tion of [11]: The uppercase letter E denotes the presence of an existential second-order
quantifier, an optional index as in E2 denotes the arity of the quantifier, and the lowercase
letters a and e denote universal and existential first-order quantifiers, respectively. The
prefix type of the formula φ3-colorable mentioned earlier is EEEaa (or even E1E1E1aa since
the predicates are monadic) and we say that φ3-colorable has prefix type EEEaa (and also
E1E1E1aa). We will use regular expressions over the alphabet {a, e, E,E1, E2, E3, . . . } to
denote patterns of prefix types such as E∗aa for “any number of existential second-order
quantifiers followed by exactly two universal first-order quantifiers.” To define the three kinds
of prefix classes that we are interested in, for a formula φ let modelsdirected(φ) = {G | G
is a directed graph and G |= φ}, modelsundirected(φ) = {G | G is an undirected graph
and G |= φ}, and modelsbasic(φ) = {G | G is a basic graph and G |= φ}. For instance,

T. Tantau 705

modelsbasic(φ3-colorable) = 3-colorable (ignoring coding issues). Next, for a prefix type
pattern P , let FDdirected(P) = {modelsdirected(φ) | φ has a prefix type in P} and define
FDundirected(P) and FDbasic(P) similarly for undirected and basic graphs. “FD” stands for
“Fagin-definable” and Fagin’s Theorem can be stated succinctly as FDstrings(E∗(ae)∗) = NP.

As stated earlier, in the context of syntactic fragments of eso logic it makes sense to
consider reduction closures of prefix classes rather than the prefix classes themselves. It
will not matter much which particular kind of reductions we use, as long as they are weak
enough. All our reductions will be first-order reductions [13], which are first-order queries
with access to the bit predicate or, equivalently, functions computable by a logarithmic-
time-uniform constant-depth circuit family.1 Let us write A ≤fo B if A can be reduced to B
using first-order reductions. Let us write FDdirected(P) = {A | A ≤fo B ∈ FDdirected(P)} for
the reduction closure of FDdirected(P) and define FDundirected(P) and FDbasic(P) similarly.

I Theorem 1.1 (Main Result). The following table completely classifies all prefix classes of
eso logic over basic graphs (upper part) and undirected and directed graphs (lower part):2

If P is at least one of . . . and at most one of . . . , then

– (ae)∗, E∗e∗a, E1ae FDbasic(P) = FO
E1E1ae , E2ae E∗ae FDbasic(P) = L
E1aa Eaa FDbasic(P) = L
E1eaa E1e

∗aa FDbasic(P) = NL
E1aaa, E1E1aa, E2eaa, E1eae,
E1aee, E1aea, E1aae E∗(ae)∗ FDbasic(P) = NP

– (ae)∗, E∗e∗a FDundirected(P) = FDdirected(P) = FO
E1aa E1e

∗aa, Eaa FDundirected(P) = FDdirected(P) = NL
E1aaa, E1E1aa, E2eaa, E1ae E∗(ae)∗ FDundirected(P) = FDdirected(P) = NP

Note that we always have FDundirected(P) = FDdirected(P), which is not trivial, especially
for the prefix E1aa: On undirected graphs, using only two universally quantified variables,
it seems difficult to express “non-symmetric” properties, suggesting FDundirected(E1aa) ⊆ L.
However, using a gadget construction, we will show that FDundirected(E1aa) contains an
NL-complete problem.

As an application of the theorem, let us use it to prove even-cycle ∈ L, which is
the problem of detecting the presence of a cycle3 of even length in basic graphs B. The
complexity of this problem has been researched for a long time, see [12] for a discussion and
variants. The idea is to consider the following eso formulas:

φm = ∃C1 · · · ∃Cm∀x∃y
(
E(x, y) ∧

∨m
i=1
(
Ci(x) ∧ C(i mod m)+1(y) ∧

∧
j 6=i ¬Cj(x)

))
. (1)

They “describe” the following situation: The basic graph can be colored with m different
colors so that each vertex x is connected to a “next” vertex y with the “next” color (with
color C1 following Cm). For m > 2, it is not hard to see that B |= φm if, and only if,
every connected component of B contains a cycle whose length is a multiple of m. Since
φm has quantifier prefix E∗ae and the graphs are basic, the second row concerning basic

1 As a technicality, since we use first-order reductions with access to the bit predicate, by FO we refer to
“first-order logic with access to the bit predicate,” which is the same as logarithmic-time-uniform AC0.

2 The “interesting” prefixes, where the complexity classes differ between the two parts, are highlighted.
3 A cycle in an undirected graph must, of course, have length at least 3 and consist of distinct vertices.

STACS 2015

706 ESO Logic over Graphs: A Complete Complexity-theoretic Classification

graphs in Theorem 1.1 tells us that B |= φm can be decided in logarithmic space. The
following algorithm now shows even-cycle ∈ L: In a basic input graph B, replace all edges
by length-2 paths, then test whether C |= φ4 holds for some connected component C of B.

1.2 Technical Contributions
The proofs of the statements FDbasic(E∗ae) ⊆ L and FDbasic(E1ae) ⊆ FO require a sophis-
ticated technical machinery. In both cases, our proofs follow the ideas of a 35-page proof of
FDbasic(E∗ae) ⊆ P in [11]. The central observation concerning the first statement is that the
algorithmically most challenging part in the proof of [11] is the application of Courcelle’s
Theorem [5] to graphs of bounded tree width. It has been shown in [8] that there is a
logspace version of Courcelle’s Theorem, which will allow us to lower the complexity from P
to L when the input graphs have bounded tree width. For graphs of unbounded tree width,
we will explain how the other polynomial time procedures from the proof of [11] can be
reimplemented in logarithmic space.

To prove FDbasic(E1ae) ⊆ FO, we need to lower the complexity of the involved algorithms
further. The idea is to again follow the ideas from [11] for E∗ae. When there is just a single
monadic predicate, certain algorithmic aspects of the proof can be simplified so severely that
they can actually be expressed in first-order logic. Note, however, that already a second
monadic predicate or a single binary predicate makes the complexity jump up to L, that is,
FDbasic(E1E1ae) = FDbasic(E2ae) = L.

Concerning the remaining claims from Theorem 1.1 that are not already proved in [11],
two cases are noteworthy: Proving that FDbasic(E1eaa) contains an NL-complete problem
turns out to require a nontrivial gadget construction. Proving FDbasic(E1aa) ⊆ L requires a
reformulation of the problems in FDbasic(E1aa) as special constraint satisfaction problems
and showing that these lie in L.

1.3 Related Work
The study of the expressive power of syntactic fragments of logics dates back decades; the
decidability of prefix classes of first-order logic, for instance, has been solved completely in
a long sequence of papers, see [2] for an overview. Interestingly, the first-order Ackermann
prefix class ae plays a key role in that context and both E1ae and E∗ae turn out to be the
most complicated cases in the context of the present paper, too. The expressive power of
monadic second-order logic (mso logic) has also received a lot of attention, for instance in
[3, 5, 7], but emphasis has been on restricted structures rather than on syntactic fragments.

Concerning syntactic fragments of eso logic, the two papers most closely related to the
present paper are [6] by Eiter, Gottlob, and Gurevich and [11] by Gottlob, Kolaitis, and
Schwentick. In the first paper, a similar kind of classification is presented as in the present
paper, only over strings rather than graphs. It is shown there that for all prefix patterns P
the class FDstrings(P) is either equal to NP; is not equal to NP but contains an NP-complete
problem; is equal to REG; or is a subclass of FO. Interestingly, two classes of special
interest are FDstrings(E∗1ae) and FDstrings(E∗1aa), both of which are the minimal classes
equal to the regular languages (by the results of Büchi [3]). In comparison, by the results
of the present paper FDbasic(E∗1ae) = FDbasic(E1E1ae) = L, while FDbasic(E1ae) = FO, and
FDbasic(E∗1aa) = FDbasic(E1E1aa) = NP, while FDbasic(E1aa) = L.

The present paper builds on the paper [11] by Gottlob, Kolaitis, and Schwentick, which
contains many of the upper and lower bounds from Theorem 1.1 for the class NP as well as
most of the combinatorial and graph-theoretic arguments needed to prove FDbasic(E∗ae) ⊆ L

T. Tantau 707

and FDbasic(E1ae) ⊆ FO. The paper misses, however, the finer classification provided in our
Theorem 1.1 and Remark 5.1 of [11] expresses the unclear status of the exact complexity
of FDbasic(E∗ae) at the time of writing, which hinges on a problem called satu(P): “Note
also that for each P , satu(P) is probably not a PTIME-complete set. [. . .] This is due to
the check for bounded treewidth, which is in LOGCFL (cf. Wanke [1994]) but not known
to be in NL.” The complexity of the check for bounded tree width was settled only later,
namely in a paper by Elberfeld, Jakoby, and the author [8], and shown to lie in L. This
does not mean, however, that the proof of [11] immediately yields FDbasic(E∗ae) ⊆ L since
the application of Courcelle’s Theorem is but one of several subprocedures in the proof and
since a generalization of tree width rather than normal tree width is used.

1.4 Organization of This Paper
To prove Theorem 1.1, we need to prove the lower bounds implicit in the first column of
the theorem’s table and the upper bounds implicit in the second column. The lower bounds
are proved in Section 2 by presenting reductions from complete problems for L, NL, or NP.
The upper bounds are proved in Section 3, where we prove, in order, FDbasic(Eaa) ⊆ L,
FDbasic(E∗ae) ⊆ L, and FDbasic(E1ae) ⊆ FO using arguments drawn from different areas.

Only the proof ideas are given in this conference paper, please see the technical report
version for full proofs [16].

2 Lower Bounds: Hardness for L and NL

For each of the prefix patterns listed in the first column of the table in Theorem 1.1 we
now show that their prefix classes contain problems that are hard for L, NL, or NP. The
problems from which we reduce are listed in Table 1. As can be seen, we only need to prove
new results for a minority of the classes since the NP cases have already been settled in [11].

Table 1 The lower bounds in Theorem 1.1 are proved by showing that the problems in this
table, which are complete for the classes in the claims, are either expressible in the fragment or are
at least reducible to a problem expressible in the fragment. The problem unreach asks whether
there is no path from s to t in a directed graph. The problems A2 and A3 are explained below.

Claim Hard problem Proved where

Lower bounds for basic graphs
FDbasic(E1E1ae) ⊇ L A3 Lemma 2.1
FDbasic(E2ae) ⊇ L A2 Lemma 2.2
FDbasic(E1aa) ⊇ L 2-colorable [11, Remark 3.1]
FDbasic(E1eaa) ⊇ NL unreach Lemma 2.3
FDbasic(E1aaa) ⊇ NP positive-one-in-three-3sat [11, Theorem 2.2]
FDbasic(E1E1aa) ⊇ NP 3-colorable [11, Theorem 2.3]
FDbasic(E2eaa) ⊇ NP 3-colorable [11, Theorem 2.4]
FDbasic(E1eae) ⊇ NP 3sat [11, Theorem 2.5]
FDbasic(E1aee) ⊇ NP not-all-equal-3sat [11, Theorem 2.6]
FDbasic(E1aea) ⊇ NP positive-one-in-three-3sat [11, Theorem 2.7]
FDbasic(E1aae) ⊇ NP positive-one-in-three-3sat [11, Theorem 2.8]

Remaining lower bounds for undirected and, thereby, also for directed graphs
FDundirected(E1aa) ⊇ NL unreach Lemma 2.3
FDundirected(E1ae) ⊇ NP 3sat [11, Theorem 2.1]

STACS 2015

708 ESO Logic over Graphs: A Complete Complexity-theoretic Classification

S

G :

B :

the first-order reduction

s

s s̄

s′ s̄′

a

a ā

a′ ā′

b

b b̄

b′ b̄′

c

c c̄

c′ c̄′

t

t t̄

t′ t̄′

Figure 1 Example of the reduction from Lemma 2.3. The directed graph G on top is reduced
to the basic graph at the bottom. The edges from the “squares” result from the first rule given in
the full proof in the full paper, the curved edges result from the second rule, and the two diagonal
edges result from the last rule.

B : s s̄

s′ s̄′

⊗

⊗

a ā

a′ ā′

⊗

⊗

b b̄

b′ b̄′

⊗

⊗

c c̄

c′ c̄′

⊗

⊗

t t̄

t′ t̄′

⊗

⊗

Figure 2 Visualization of the requirements concerning which vertices may lie in M imposed by
the formula ψ: For edges with label ⊗ exactly one end must lie in M and for directed edges, if the
tail of the edge lies in M , the head must also lie in M .

The two special languages A2 and A3 in the table are defined as follows: For m ≥ 2
let Am = {G | G is an undirected graph in which each connected component contains a
cycle whose length is a multiple of m}. These languages are all hard for L: In [4, page 388,
remarks for problem ufa] it is shown that the reachability problem for graphs consisting of
just two undirected trees is complete for L. Since L is trivially closed under complement,
testing whether there is no path from a vertex u to a vertex v in a graph consisting of two
trees is also complete for L, which in turn is the same as asking whether u and v lie in
different trees. To reduce this question to Am, attach cycles of length 2m to both u and v.
Then all (namely both) components of the resulting graph contain a cycle whose length is
a multiple of m if, and only if, u and v lie in different components. (Using a cycle length of
2m rather than m ensures that also for m = 2 we attach a proper cycle.)

I Lemma 2.1. A3 ∈ FDbasic(E1E1ae).

Proof idea. Use φ3 from equation (1), but get rid of one of the second-order quantifiers. J

I Lemma 2.2. A2 ∈ FDbasic(E2ae).

Proof idea. Use ∃F∀x∃y
(
E(x, y) ∧ F (x, y) ∧ ¬F (y, x) ∧ (F (x, x)↔ ¬F (y, y))

)
. J

I Lemma 2.3. unreach reduces to a problem in FDbasic(E1eaa) and also to a problem in
FDundirected(E1aa).

Proof idea. Undirected graphs are essentially the same as basic graphs with an extra mon-
adic relation S1 that is part of the input. Similarly, a single existential first-order quan-
tifier such as the one in E1eaa allows us to pick a vertex and then single out the set of
vertices connected to it. Thus, essentially, it suffices to show that unreach reduces to
modelsbasic(∃M∀x∀y ψ) where ψ is a formula over the vocabulary (E2, S1).

The reduction works as shown in Figure 1: Each vertex of the original directed graph
gets replaced by four vertices that are connected in a square. Two of them are in the set S,

T. Tantau 709

Table 2 The upper bounds from Theorem 1.1 and where they are proved. Missing upper bounds
for basic and undirected graphs follow from the bounds for directed graphs on the right.

Claims for basic graphs Proved where
FDbasic(E1ae) ⊆ FO Section 3.3
FDbasic(E∗ae) ⊆ L Section 3.2
FDbasic(Eaa) ⊆ L Section 3.1

Claims for directed graphs Proved where
FDdirected((ae)∗) ⊆ FO trivial
FDdirected(E∗e∗a) ⊆ FO [11, Theorem 3.1]
FDdirected(E1e

∗aa) ⊆ NL [11, Theorem 3.2]
FDdirected(Eaa) ⊆ NL [11, Theorem 3.4]
FDdirected(E∗(ae)∗) ⊆ NP Fagin’s Theorem

the others are not. Directed edges in the original graph get replaced by undirected edges
between one of the four vertices of the tail vertex and one of the four vertices of the head
vertex. Additionally, there are edges inside the square of the source and of the target.

The formula ψ expresses that edges inside S and edges outside S correspond to an
exclusive or with respect to membership in M , edges between vertices in S and outside S
correspond to an implication: If the vertex outside S is in M , so must the vertex inside S.
Figure 2 visualizes this situation. One then shows the following: There is some M that
makes φ true if, and only if, there can be no path from s to t in G since we must have
s ∈M , t /∈M , and together with s the setM must contain all vertices reachable from s. J

3 Upper Bounds: Containment in FO and L

The second column of the table in Theorem 1.1 lists upper bounds that we address in the
present section. Table 2 shows the order in which we tackle them.

3.1 Eaa Over Basic Graphs: Reformulation as Constraint Satisfaction
Our first upper bound, FDbasic(Eaa) ⊆ L, is proved in two steps: First, we reformulate the
problems in FDbasic(Eaa) as special constraint satisfaction problems (csps) in Lemma 3.1.
Second, we show that these csps lie in L in Lemma 3.2.

It will not be necessary to formally introduce the whole theory of constraint satisfaction
problems since we will only encounter one very specialized form. Furthermore, our csps
do not quite fit into the standard framework and major results on csps like Schaefer’s
Theorem [15] or the refined version thereof [1] do not settle the complexity of these special
csps. Nevertheless, we will need some basic terminology: In a binary csp, we are given a
universe U and a set of constraints, each of which picks a number of elements from U and
specifies one or more possibilities concerning which of these elements may lie in a solution
X ⊆ U . A constraint language specifies the types of constraints that we are allowed to
use. For instance the constraint language for 3sat specifies that constraints (which are
clauses) must rule out one of the eight possibilities concerning which of the elements (which
are the variables) are in X (are set to true). We need to deviate from this framework in
one important way: we require that there is a constraint for every pair of distinct elements
of U , not just for some of them. Unfortunately, this deviation inhibits our applying the
classification of the complexity of csps from [1]; more precisely, the smallest standard csp
classes that are able to express the special csps we are interested in are known to contain
NL-complete languages – while we wish to prove containment in L.

For sets C,D ⊆ {0, 1, 2} we define a {C,D}-constraint satisfaction problem P on a
universe U to be a mapping that maps each size-2 subset {x, y} ⊆ U to either C or D.
A solution for P is a subset X ⊆ U such that for all size-2 subsets {x, y} ⊆ U we have

STACS 2015

710 ESO Logic over Graphs: A Complete Complexity-theoretic Classification

P :

⊕

	
⊕ B :

d

a

e

b

f

c

d

a

e

b

f

c

w

d

a

e

b

f

c

w

Figure 3 Example of a pattern graph P = (C,A⊕, A) with two “colors” black and white
(so C = {black,white}, A⊕ = {(black, black), (white, black)}, and A	 = {(black,white)}) and an
uncolored (“gray”) example graph B. We have B ∈ saturation(P) as shown by two examples of
legal colorings of B together with witness functions w (in gray).

|{x, y}∩X| ∈ P ({x, y}). In other words, P fixes for every pair of two vertices x or y one of two
possible constraints concerning how many elements of {x, y} may lie in X. Let csp{C,D} =
{P | P is a {C,D}-csp that has a solution}. As an example, csp

{
{1}, {0, 1, 2}

}
is essentially

the same as the problem 2-colorable = bipartite since a {1}-constraint enforces that
exactly one of two vertices must lie in X (and, hence, corresponds to an edge), while a
{0, 1, 2}-constraint has no effect (and, hence, corresponds to no edge being present). In
Lemma 3.2 we show that all csp{C,D} lie in L, which is fortunate since we reduce to them:

I Lemma 3.1. For every Eaa-formula φ there are sets C,D ⊆ {0, 1, 2} such that the set
modelsbasic(φ) reduces to csp{C,D}.

Proof idea. By [11, Lemma 3.3] we may assume that φ has the form ∃M∀x∀y ψ with a
monadic quantifier M . Rewrite ψ as x 6= y →

(
(E(x, y) → γ) ∧ (¬E(x, y) → δ)

)
where γ

and δ only contain M(x) and M(y) as atomic formulas. Since the graphs are basic and x
and y are interchangeable, γ and δ can only make claims concerning |{x, y} ∩M |. Use C to
encode the claim made by γ and D to encode δ. J

I Lemma 3.2. Let C,D ⊆ {0, 1, 2}. Then csp{C,D} ∈ L.

Proof idea. Argue for each choice of C and D how we can check in logarithmic space
whether a {C,D}-csp P has a solution X ⊆ U . Most cases are quite trivial; the only
interesting ones are csp

{
{1}, {0, 1, 2}

}
, which we already saw to be essentially the same as

2-colorable = bipartite ∈ L, and csp
{
{0, 1}, {1, 2}}, which is essentially the same as

split-graph and hence lies even in FO by a characterization of [10]. J

3.2 E∗ae Over Basic Graphs: From P to L
Our objective is to show FDbasic(E∗ae) ⊆ L in this section. More precisely, we only need to
show FDbasic(E∗1ae) ⊆ L since [11, Theorem 4.1] states FDbasic(E∗ae) = FDbasic(E∗1ae).

A proof of the weaker claim FDbasic(E∗1ae) ⊆ P is spread over the 35 pages of Sections
4, 5, and 6 of the paper [11] and consists of two kinds of arguments: graph-theoretic ones
and algorithmic ones. Since the graph-theoretic arguments are independent of complexity-
theoretic considerations, our main job is to show how the algorithms described by Gottlob
et al. can be implemented in logarithmic space rather than polynomial time.

Similarly to the switch from model checking problems to graphs problems in the previous
section, we also wish to reformulate the model checking problems modelsbasic(φ) for E∗1ae-
formulas φ in a graph-theoretic manner. Gottlob et al. introduce the notion of pattern graphs
for this: A pattern graph P = (C,A⊕, A) consists of a set of colors C, a set A⊕ ⊆ C × C
of ⊕-arcs, and a set A	 ⊆ C × C of 	-arcs (A⊕ and A	 need not be disjoint). Given
a basic graph B = (V,E), a coloring of G with respect to P is a function c : V → C. A
mapping w : V → V is called a witness function for a coloring c if for all x ∈ V we have

T. Tantau 711

(1) x 6= w(x), (2) if {x,w(x)} ∈ E, then
(
c(x), c(w(x))

)
∈ A⊕, and (3) if {x,w(x)} /∈ E,

then
(
c(x), c(w(x))

)
∈ A	.4 If there exists a coloring together with a witness function

for B with respect to P , we say that B can be saturated by P and the saturation problem
saturation(P) is the set of all basic graphs that can be saturated by P , see Figure 3 for
an example.

The intuition behind these definitions is that a witness function tells us for each x in ∀x
which y in ∃y we must pick to make a formula φ of the form ∃M1 · · · ∃Mn ∀x∃y ψ true. The
pattern graph encodes the restrictions imposed by ψ and the monadic predicates Mi:

I Fact 3.3 ([11, Theorem 4.6]). For every formula φ = ∃M1 · · · ∃Mn ∀x∃y ψ, where the Mi

are monadic and ψ is quantifier-free, there is a pattern graph P with 2n vertices such that
modelsbasic(φ) = saturation(P).

Thus, it remains to show saturation(P) ∈ L for all pattern graphs P . Towards this
aim, for a fixed pattern graph P we devise logspace algorithms that work for larger and
larger classes of basic graphs B, ending with the class of all basic graphs.

Graphs of Bounded Tree Width and Special Graphs We start by considering only graphs
of bounded tree width, an important class of graphs introduced by Robertson and Seymour
in [14]: A tree decomposition of a graph B is a tree T together with a mapping that assigns
subsets of B’s vertices (called bags) to the nodes of T . The bags must have two properties:
First, for every edge {x, y} of B there must be some bag that contains both x and y. Second,
the nodes of T whose bags contain a given vertex x must be connected in T . The width of
a decomposition is the size of its largest bag (minus 1 for technical reasons). The tree width
of B is the minimal width of any tree decomposition for it. A class of graphs has bounded
tree width if there is a constant c such that all graphs in the class have tree width at most c.
From an algorithmic point of view, many problems that can be solved efficiently on trees
can also be solved efficiently on graphs of bounded tree width. Courcelle’s Theorem turns
this into a precise statement:

I Fact 3.4 (Courcelle’s Theorem, [5]). For every mso-formula φ and t ≥ 1 we have

modelsbasic(φ) ∩ {G | G has tree width at most t} ∈ LINTIME.

Gottlob et al. apply this theorem to show that when the input graphs B have bounded
tree width, we can decide whether B ∈ saturation(P) holds in polynomial time: the
property B ∈ saturation(P) is easily described in mso logic. We can lower the complexity
from “polynomial time” to “logarithmic space” by using the following logarithmic space
version of Courcelle’s Theorem:
I Fact 3.5 (Logspace Version of Fact 3.4, [8]). For every mso-formula φ and t ≥ 1 we have

modelsbasic(φ) ∩ {G | G has tree width at most t} ∈ L.

In their graph-theoretic arguments, Gottlob et al. encounter not only graphs of bounded
tree width, but also graphs that they call (k, t)-special and which are defined as follows: For
a basic graph B = (V,E) let us call two vertices u and v equivalent if for all x ∈ V \ {u, v}
we have {u, x} ∈ E if, and only if, {v, x} ∈ E. Observe that this defines an easy-to-check

4 Using {u, v} to indicate an undirected edge between u and v in a basic graph and, in not-so-slight
abuse of notation, even writing {u, v} ∈ E, helps in distinguishing these edges from the directed edges
in the pattern graph. Formally, we mean of course (u, v) ∈ E and (v, u) ∈ E; and E ⊆ V × V holds.

STACS 2015

712 ESO Logic over Graphs: A Complete Complexity-theoretic Classification

equivalence relation on the vertices of B and that each equivalence class is either a clique
or an independent set of B. A graph is (k, t)-special if we can remove (up to) k equivalence
classes A1, . . . , Ak from the graph such that the remaining graph has tree width at most t.

The intuition behind (k, t)-special graphs is that equivalent vertices are “more or less
indistinguishable” and, thus, for a large enough equivalence class removing some vertices
does not change whether the graph can be saturated or not. Formally, let B be (k, t)-special
and let A1, . . . , Ak be to-be-removed equivalence classes. We obtain an s-shrink of B by
repeatedly removing vertices from those Ai that have more than s vertices until all of them
have at most s vertices. The proof of Lemma 6.4 in [11] implies the following two facts:
I Fact 3.6. For every k, t, and pattern graph P there is an s such for every s-shrink B′ of
a (k, t)-special graph B we have B ∈ saturation(P) if, and only if, B′ ∈ saturation(P).
I Fact 3.7. An s-shrink of a (k, t)-special graph has tree width at most t+ sk.

In Lemmas 6.3 and 6.4 of [11], Gottlob et al. present polynomial-time algorithms for
testing whether a graph is (k, t)-special and for computing an s-shrink when the test is
positive. The following lemma shows that we can reimplement these algorithms in a space-
efficient manner (which the original algorithms are not):

I Lemma 3.8. For every s, k, and t, there is a logspace computable function that maps
every (k, t)-special graph B to an s-shrink of B (and all other graphs to “not (k, t)-special”).

Proof idea. Find a tuple (v1, . . . , vk) of vertices such that removing all vertices equivalent
to some vi leaves behind a graph of tree width at most t. Then for each vi leave only the
lexicographically first s vertices equivalent to vi in the graph. J

The following lemma sums up the bottom line of the above discussion:

I Lemma 3.9. For every pattern graph P and all k and t we have

saturation(P) ∩ {B | B is (k, t)-special} ∈ L.

Proof idea. To decide saturation(P) on (k, t)-special graphs B, compute a shrink B′,
which has bounded tree width, and apply the logspace version of Courcelle’s Theorem. J

Graphs With Self-Saturating Mixed Cycles We extend the class of graphs that our log-
space machines can handle to graphs that are not necessarily (k, t)-special, but at least
contain a mixed self-saturating cycle. A self-saturating cycle of a basic graph B = (V,E)
with respect to a pattern graph P = (C,A⊕, A) is a sequence (v1, v2, . . . , vn+1) of vertices
in V for n ≥ 2 where the vi for i ∈ {1, . . . , n} are all different, vn+1 = v1, and we can assign
colors c : {v1, . . . , vn} → C such that for all i ∈ {1, . . . , n} we have: if {vi, vi+1} ∈ E, then
(c(vi), c(vi+1)) ∈ A⊕; and if {vi, vi+1} /∈ E, then (c(vi), c(vi+1)) ∈ A	. In other words, B
restricted to {v1, . . . , vn} can be saturated with the “natural” witness function that “moves
along” the cycle. The following is an easy observation concerning self-saturating cycles:

I Lemma 3.10. For every B ∈ saturation(P) there is a self-saturating cycle in B for P .

Proof idea. Just “follow the witness function” until it runs into a cycle. J

A self-saturating cycle is mixed if for some i, j ∈ {1, . . . , n} we have {vi, vi+1} ∈ E

and {vj , vj+1} /∈ E, otherwise the cycle is called pure. In Figure 3, (b, c, f, b) is a pure
self-saturating cycle and (a, c, f, d, a) is a mixed self-saturating cycle as proved by the two
example colorings. Two facts concerning mixed self-saturating cycles will be important:

T. Tantau 713

I Fact 3.11 ([11, Lemma 6.5]). For every pattern graph P there is a constant d such that
every basic graph that has a mixed self-saturating cycle with respect to P also has such a
cycle of length at most d.
I Fact 3.12 ([11, Section 6.3]). For each pattern graph P there exist k and t such that
B ∈ saturation(P) holds for all graphs B that contain a mixed self-saturating cycle but
are not (k, t)-special.

I Lemma 3.13. For every pattern graph P , we have

saturation(P) ∩ {B | B contains a mixed self-saturating cycle} ∈ L.

Proof idea. Fact 3.11 gives a logspace procedure for detecting mixed self-saturating cycles.
Combine it with Fact 3.12 and Lemma 3.9. J

Arbitrary Basic Graphs The last step is to extend our algorithm to graphs that do not
contain mixed self-saturating cycles (and are not (k, t)-special, but this will no longer be
important). Clearly, by considering the union of the languages from Lemma 3.13 above and
Lemma 3.14 below, we see that saturation(P) ∈ L holds for all pattern graphs P .

I Lemma 3.14. For every pattern graph P , we have

saturation(P) ∩ {B | B contains no mixed self-saturating cycle} ∈ L.

Proof idea. Theorem 5.17 of [11] provides a polynomial-time algorithm for deciding B ∈
saturation(P) when there are no mixed self-saturating cycles in B. The algorithmically
relevant operations in the proof are (1) computing complement graphs (exchanging edges
and non-edges), (2) computing connected components, and (3) applying Courcelle’s Theorem
to these components. Clearly, all three operations can also be implemented in logarithmic
space using Reingold’s Theorem and the logspace version of Courcelle’s Theorem. J

3.3 E1ae Over Basic Graphs: From L to FO
Our final task for this paper is showing FDbasic(E1ae) ⊆ FO.5 By Fact 3.3, it suffices to
show saturation(P) ∈ FO for all pattern graphs with two colors (denoted “white” and
“black” in the following) and this will be our objective in this section.6

In the previous section we proved saturation(P) ∈ L for all pattern graphs by devel-
oping logspace algorithms that worked for larger and larger classes of graphs. However, this
approach is bound to fail for the class FO since properties like “the graph is a tree” (let alone
“the graph is (k, t)-special”) are not expressible in first-order logic. Instead, in this section
we show saturation(P) ∈ FO directly for each possible pattern graph with two colors.

The simplest case arises when P = (C,A⊕, A) is acyclic (meaning that the directed
graph (C,A⊕ ∪A) is acyclic): Lemma 3.10 shows that we then have saturation(P) = ∅
since self-saturating cycles cannot exist for such P . Thus, we only need to consider pattern
graphs P with cycles (self-loops are also cycles, here). Since P only has two colors, there are
only few ways in which such cycles may arise. The more cycles there are, the easier it will
be to color the graph, so we first handle the case that there are cycles both in A⊕ and A	,
then that there is a cycle in A⊕ or in A	, and finally that there is only a cycle in A⊕ ∪A	.

5 In contrast, Lemmas 2.1 and 2.2 show that if we have two monadic quantifiers or one binary quantifier,
the prefix class contains an L-complete problem.

6 In contrast, using three colors we can describe L-complete problems: saturation(P) = A3 where P
contains a ⊕-labeled 3-cycle and A3 is the L-complete language from Table 1.

STACS 2015

714 ESO Logic over Graphs: A Complete Complexity-theoretic Classification

I Lemma 3.15. Let P = ({black,white}, A⊕, A) contain cycles both in A⊕ and A	. Then
saturation(P) contains all graphs with at least two vertices (and is hence in FO).

Proof idea. The interesting case is a ⊕-cycle involving both colors. In each connected
component, choose a vertex and color the vertices black or white depending on whether
they have odd or even distance from the chosen vertex. The witness of a vertex is a vertex
nearer to the chosen vertex (except for the chosen vertex, whose witness is any neighbor). J

I Lemma 3.16. Let P = ({black,white}, A⊕, A) contain a cycle in A⊕ or in A	. Then
saturation(P) ∈ FO.

Proof idea. The most interesting case is exactly the pattern graph shown in Figure 3. We
distinguish the cases that the input graph B consists of a matching plus some isolated
vertices or has a connected component of size at least three. If the matching is a single edge,
B /∈ saturation(P); otherwise, B ∈ saturation(P) since one can devise similar methods
as in the previous lemma for coloring the graph and constructing a witness function. J

We are left with the case that the set A⊕ ∪A	 contains a cycle, but neither A⊕ nor A	
does. This is only possible when P is either ⊕

	 or 	
⊕ . For this special kind of

cycle, there is an analogue of Fact 3.12 that does not refer to (k, t)-special graphs:
I Fact 3.17 ([11, Lemma 6.7]). For every pattern graph P , we have B ∈ saturation(P)
for all B that contain a self-saturating cycle for P on which ⊕- and 	-arcs alternate.

I Lemma 3.18. Let P = ({black,white}, A⊕, A) contain a cycle in A⊕ ∪A	, but none in
A⊕ nor in A	. Then saturation(P) ∈ FO.

Proof idea. Use Fact 3.11 to detect a mixed self-saturating cycle using d existential first-
order quantifiers. The existence of such a cycle in B is a necessary condition for B ∈
saturation(P) by Lemma 3.10 and also a sufficient condition by Fact 3.17. J

4 Conclusion

In the present paper we have completely classified the first-order reduction closures of prefix
classes of eso logic over directed, undirected, and basic graphs: each one of them is equal to
one of the standard classes FO, L, NL, or NP. It turned out that the prefix classes for directed
and undirected graphs are always the same, but often differ from the prefix classes for basic
graphs. Especially interesting prefixes that mark the border between one complexity class
and the next are E1ae, E∗ae, and Eaa.

A natural question that arises is: Can we find a prefix class whose reduction closure
is P? By the results of the present paper, this cannot be an eso prefix class, unless unlikely
collapses occur. However, what about prefix classes of general second-order logic? We may
similarly ask whether any class other than L, NL, and the classes of the polynomial hierarchy
can be characterized by a prefix class of second-order logic.

Together with the results from [6], we now have a fairly complete picture of the complexity
of all eso prefix classes over directed graphs, undirected graphs, basic graphs, and strings.
Concerning arbitrary logical structures, Gottlob et al. [11] already point out that their P-
NP-dichotomy for directed graphs generalizes to the collection of all finite structures over
any relational vocabulary that contains a relation symbol of arity at least two; and it is not
hard to see that our Theorem 1.1 also generalizes in this way (a closer look at the FO and
NL upper bounds in [11] shows that they hold for arbitrary structures). The complexity of
prefix classes over other special structures is, however, still open, including those of trees,
infinite words, and bipartite graphs.

T. Tantau 715

References
1 Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Heribert Vollmer.

The complexity of satisfiability problems: Refining Schaefer’s theorem. Journal of Com-
puter and System Sciences, 75(4):245–254, 2009.

2 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Springer-
Verlag, Berlin, 1997.

3 Julius R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für mathe-
matische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

4 Stephen A. Cook and Pierre McKenzie. Problems complete for deterministic logarithmic
space. Journal of Algorithms, 8(5):385–394, 1987.

5 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Information and Computation, 85(1):12–75, 1990.

6 Thomas Eiter, Georg Gottlob, and Yuri Gurevich. Existential second order logic over
strings. Journal of the ACM, 47(1):77–131, 2000.

7 Michael Elberfeld, Martin Grohe, and Till Tantau. Where first-order and monadic second-
order logic coincide. In Proceedings of the 27th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS 2012), pages 265–274. IEEE Computer Society, 2012.

8 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems
of Bodlaender and Courcelle. In Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2010), pages 143–152, 2010.

9 Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Com-
plexity of Computation, 7:43–74, 1974.

10 Stéphane Földes and Peter L. Hammer. Split graphs. In Proceedings of the Eighth South-
eastern Conference on Combinatorics, Graph Theory and Computing, Congressus Numer-
antium XIX, pages 311–315. Louisiana State Univeristy, Baton Rouge, Louisiana, 1977.

11 Georg Gottlob, Phokion G. Kolaitis, and Thomas Schwentick. Existential second-order
logic over graphs: Charting the tractability frontier. Journal of the ACM, 51(2):312–362,
2004.

12 Edith Hemaspaandra, Holger Spakowski, and Mayur Thakur. Complexity of cycle length
modularity problems in graphs. In Proceedings of the 6th Latin American Symposium on
Theoretical Informatics (LATIN 2004), volume 2976 of Lecture Notes in Computer Science,
pages 509–518. Springer, 2004.

13 Neil Immerman. Descriptive Complexity Theory. Springer-Verlag, New York, 1998.
14 Neil Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.

Journal of Algorithms, 7(3):309–322, 1986.
15 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th

Symposium on Theory of Computing (STOC 1978), pages 216–226. ACM Press, 1978.
16 Till Tantau. Existential second-order logic over graphs: A complete complexity-theoretic

classification. Technical Report arxiv:1412.6396 [cs.LO], ArXiv e-prints, 2014.

STACS 2015

	Introduction
	Contributions of This Paper
	Technical Contributions
	Related Work
	Organization of This Paper

	Lower Bounds: Hardness for L and NL
	Upper Bounds: Containment in FO and L
	Eaa Over Basic Graphs: Reformulation as Constraint Satisfaction
	E*ae Over Basic Graphs: From P to L
	E1ae Over Basic Graphs: From L to FO

	Conclusion

