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Abstract
The tractability conjecture for constraint satisfaction problems (CSPs) describes the constraint
languages over a finite domain whose CSP can be solved in polynomial-time. The precise for-
mulation of the conjecture uses basic notions from universal algebra. In this talk, we give a
short introduction to the universal-algebraic approach to the study of the complexity of CSPs.
Finally, we discuss attempts to generalise the tractability conjecture to large classes of constraint
languages over infinite domains, in particular for constraint languages that arise in qualitative
temporal and spatial reasoning.
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1 The Constraint Satisfaction Problem

Constraint satisfaction problems are computational problems that can be formalised in
several equivalent ways. A mathematically convenient way is to view CSPs as structural
homomorphism problems, as follows. Fix a structure Γ with a finite relational signature τ .
The domain of Γ need not be finite for the following computational problem to be well-defined.

I Definition 1 (CSP(Γ)). The constraint satisfaction problem for Γ, denoted by CSP(Γ), is
the computational problem to decide for a given finite τ -structure A whether there exists a
homomorphism to Γ.

The fixed structure Γ is often referred to as the constraint language of the constraint
satisfaction problem, since we choose from the relations in Γ to formulate our constraints in
the input structure A. We give some concrete examples of CSPs.
1. Graph n-colorability can be formulated as CSP(Kn) where Kn is the complete loopless

graph on n vertices.
2. The question whether a given finite digraph is acyclic, i.e., does not contain a directed

cycle, can be formulated as CSP(Q;<).
3. The question whether a given directed graph has a vertex bipartition such that both

parts are acyclic can be formulated as CSP(N;E) where

E := {(a, b) ∈ N2 | a < b or (a− b) is odd} .
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4. CSP(R;≤, A,O) for A := {(a, b, c) ∈ R3 | a + b = c} and O := {1} is essentially the
feasibility problem for linear programs (see [5]).

The list can be prolonged easily, and contains a variety of problems that appeared in the
literature throughout theoretical computer science.

There is a great amount of work about the computational complexity of CSP(Γ) when
Γ is a finite structure (i.e., has a finite domain), stimulated by the following dichotomy
conjecture.

I Conjecture 1 (Feder and Vardi [18]). Let Γ be a finite structure with a finite relational
signature. Then CSP(Γ) is in P or NP-complete.

2 The Universal-Algebraic Approach

The central notion for the universal algebraic approach is the notion of a polymorphism of
a constraint language Γ. A polymorphism of Γ is a homomorphism h from finite powers
of Γ into Γ. In other words, when h has arity k, then we require for all relations R of
Γ and (a1

1, . . . , a
1
n) ∈ R, . . . , (ak

1 , . . . , a
k
n) ∈ R that (h(a1

1, . . . , a
k
1), . . . , h(a1

n, . . . , a
k
n)) ∈ R.

Unary polymorphisms are also known as endomorphisms. Thus, polymorphisms generalise
endomorphisms, and endomorphisms generalise automorphisms of Γ. We write Pol(Γ) for
the set of all polymorphisms of Γ, and Aut(Γ) for the set of all polymorphisms of Γ.

The following result for structures with a finite domain, which relies on a fundamental
theorem in universal algebra [19, 16], hints at the relevance of polymorphisms for CSPs.

I Theorem 2 ([23]). Let Γ1 and Γ2 be finite structures with the same domain and finite
relational signatures such that Pol(Γ1) ⊆ Pol(Γ2). Then there is a deterministic linear-time
many-one reduction from CSP(Γ2) to CSP(Γ1).

Theorem 2 has an important advancement, Theorem 3 below, which is particularly
important when we want to reduce between CSPs where the constraint languages have
different domains. Let us first mention that the set Pol(Γ) is a function clone. A function
clone is a set S of functions of finite arity that

is closed under composition: for k-ary g ∈ S and l-ary f1, . . . , fk ∈ S the l-ary function
g(f1, . . . , fk) given by (x1, . . . , xl) 7→ g(f1(x1, . . . , xl), . . . , fk(x1, . . . , xl)) is also in S, and
contains the projections πk

i given by (x1, . . . , xk) 7→ xi.
A map ξ : Pol(Γ1)→ Pol(Γ2) is called a clone homomorphism if for all g, f1, . . . , fk ∈ Pol(Γ1)

ξ(g(f1, . . . , fk)) = ξ(g)(ξ(f1), . . . , ξ(fk))

and ξ(πk
i ) = πk

i for all 1 ≤ i ≤ k. A clone isomorphism is a bijective clone homomorphism.

I Theorem 3. Suppose that Γ1 and Γ2 are finite structures with finite relational signature
such that there exists a clone isomorphism between Pol(Γ1) to Pol(Γ2). Then CSP(Γ1) and
CSP(Γ2) are equivalent under deterministic linear-time many-one reductions.

3 The Finite Domain Tractability Conjecture

Theorem 3 from the previous section tells us that the computational complexity of CSP(Γ)
is coded into the equations that hold on the polymorphisms. We even have a candidate
equation that might characterise the CSPs in P.
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4 The Complexity of Constraint Satisfaction Problems

I Theorem 4 ([17, 28, 21]). Suppose that Γ is a finite structure. Then Γ has a Taylor1
polymorphism f , that is, when f has arity n then it satisfies for every i ≤ n an equation of
the form

∀x, y. f(x1, . . . , xn) = f(y1, . . . , y1) ,

where x1, . . . , xn, y1, . . . , yn ∈ {x, y} and xi 6= yi, or there is a structure Γ′ obtained from Γ
by dropping all but finitely many relations such that CSP(Γ′) is NP-complete.

The condition given in Theorem 4 has been improved recently: the existence of a Taylor
polymorphism is equivalent to the existence of an operation that satisfies an equation that is
must easier to grasp.

I Theorem 5 ([1]). A finite structure Γ has a Taylor polymorphism if and only if it has a
cyclic polymorphism f , that is, f has arity n ≥ 2 and satisfies

∀x1, . . . , xn. f(x1, . . . , xn) = f(x2, . . . , xn, x1) .

The following conjecture has been made in different form by Bulatov, Jeavons, and
Krokhin [17]; the formulation given below is equivalent by well-known facts. The conjecture
complements Theorem 4, and its truth would settle the dichotomy conjecture.

I Conjecture 2 (Tractability Conjecture). Let Γ be a finite structure with finite relational
signature and a Taylor (or, equivalently, cyclic) polymorphism. Then CSP(Γ) is in P.

4 Infinite Domains

The universal-algebraic approach can be generalised to constraint languages Γ over infinite
domains. This generalisation is most straightforward when the automorphism group of Γ is
large, in the following sense.

IDefinition 6. A permutation groupG on a setX is called oligomorphic if the componentwise
action of G on Xn has only finitely many orbits, for all n ∈ N.

An example of an oligomorphic permutation group is the automorphism group of (Q;<).
Countable structures Γ with an oligomorphic permutation group are well-known to model-
theorists: by a theorem independently due to Ryll-Nardzewski, Engeler, and Svenonius (see,
e.g., [22]), these are precisely the countable structures that are ω-categorical, that is, Γ has
the property that all countable models of the first-order theory of Γ are isomorphic to Γ.

A versatile method to construct ω-categorical structures is via Fraïssé-limits, and taking
reducts, which we briefly recall here. We need the standard notion of homogeneity (some-
times called ultrahomogeneity) from model theory. A structure Γ is called homogeneous
if all isomorphisms between finite substructures can be extended to automorphisms of Γ.
Homogeneous structures with finite relational signature are ω-categorical [22]. Homogeneous
structures are uniquely given by their age, which is the class of finite structures that embed
into them. The age of a homogeneous structure must have the amalgamation property (we
again refer to [22]), and every amalgamation class C gives rise to a homogeneous structure
of age C. The fundamental model theory of homogeneous structures goes back to Fraïssé,
and hence the unique homogeneous structure for a given amalgamation class is called the
Fraïssé-limit of this class.

1 Note that, contrary to what can often be found in the literature, in our definition of Taylor operations,
we do not insist on idempotency of f .
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A reduct of a structure ∆ is a structure Γ on the same domain such that all relations of Γ
are first-order definable (without parameters) in ∆. For example, the structure (Q; Betw)
where Betw := {(x, y, z) | x < y < z ∨ z < y < x} (the so-called Betweenness relation) is a
reduct of (Q;<). Reducts of homogeneous structures need not be homogeneous, but reducts
of ω-categorical structures remain ω-categorical.

When Γ is ω-categorical, then the complexity of Γ is still coded into the polymorphisms.

I Theorem 7 ([8]). Let Γ1 and Γ2 be ω-categorical structures with the same domain and
finite relational signatures such that Pol(Γ1) = Pol(Γ2). Then Γ1 and Γ2 are equivalent
under deterministic linear-time many-one reductions.

An example of a permutation group which is not oligomorphic is the automorphism group
of the structure (N;E) discussed in the introduction: it has infinitely many orbits in its
componentwise action on N2. However, in this case it is easy to come up with a structure
that has precisely the same CSP, but whose automorphism group is oligomorphic: let Q1, Q2
be a partition of Q such that both Q1 and Q2 are dense in Q, and consider the structure
(Q;E′) where

E′ := {(a, b) ∈ Q2 | a < b or a ∈ Q1 ⇔ b ∈ Q2} .

This is a frequent phenomenon: many computational problems in temporal and spatial
reasoning can be formulated as CSPs, but often some extra care is needed to show that
they can be formulated with ω-categorical constraint languages. A necessary and sufficient
Myhill-Nerode-type condition that characterises the CSPs that can be formulated with an
ω-categorical constraint language can be found in [3]. An example of a structure that does
not satisfy the mentioned Myhill-Nerode-type condition of Example 4, in the introduction.
Hence, CSP(R;A,O) (which is essentially the feasibility problem for linear programs) cannot
be formulated as CSP(Γ) with an ω-categorical constraint language.

We do not know whether Theorem 3 remains valid for ω-categorical structures Γ, that is,
whether the isomorphism type of the polymorphism clone of Γ determines the complexity of
CSP(Γ). However, the theorem can be rescued by a slight modification.

I Theorem 8 ([12]). Suppose that Γ1 and Γ2 are ω-categorical structures with finite relational
signature such that there exists a clone isomorphism between Pol(Γ1) and Pol(Γ2) which is
also a homeomorphism. Then CSP(Γ1) and CSP(Γ2) are equivalent under deterministic
linear-time many-one reductions.

The homeomorphicity requirement in Theorem 8 is with respect to the topology of
pointwise convergence on the space of all functions of finite arity, which is defined as follows.
For elements a, b1, . . . , bk of the domain D, define Fa,b1,...,bk

:= {f | f(b1, . . . , bk) = a}. Then
the topology of pointwise convergence is the smallest topology where the open sets include
{Fa,b1,...,bk

| k ∈ N, a, b1, . . . , bk ∈ D}. It is a basic fact that a clone C is closed in this space,
C = C, if and only if it is the polymorphism clone of a structure.

5 A general tractability conjecture

Cyclic polymorphisms do not characterise the tractability of the CSP for ω-categorical
structures: a simple counterexample is the structure (N; 6=, I4) where I4 is the quaternary
relation defined as I4 := {(a, b, c, d) ∈ N4 | a = b⇒ c = d}. The automorphism group of this
structure is the set of all permutations of N, which is clearly oligomorphic. The polymorphisms
of this structure are precisely all functions that are composed from injective functions and

STACS 2015



6 The Complexity of Constraint Satisfaction Problems

projections. Hence, the clone does not contain cyclic operations. But CSP(N; 6=, I4) is easily
seen to be in P; see [6].

The structure (N; 6=, I4) has polymorphisms that are almost as good as cyclic operations:
every binary injective operation f will be a polymorphism, and we can always pick an
injection i from N→ N such that the following holds:

∀x1, x2. f(x1, x2) = i(f(x2, x1)) .

We also have to describe an obstruction to general algorithmic results for the class of all
ω-categorical structures. Henson [20] constructed uncountably many homogeneous directed
graphs Γ, and all of these directed graphs have distinct CSPs. Since there are only countably
many algorithms, there must be directed graphs in this class with an undecidable CSP. There
are also CSPs of various intermediate complexities [2]. All of Henson’s digraphs have a binary
polymorphism f and endomorphisms e1, e2 satisfying

∀x1, x2. e1(f(x1, x2)) = e2(f(x2, x1)) ,

that is, from a universal-algebraic perspective, they all ‘look like easy CSPs’, but they are
not.

Henson’s directed homogeneous graphs are based on forbidding infinite families of finite
structures. On the other hand, the ω-categorical structures that appear ‘in nature’ (either in
mathematics or to formulate computational problems as CSPs) can typically be described by
forbidding only finitely many finite structures. More formally, we say that a homogeneous
structure Γ is finitely bounded if there exists a finite set F of finite structures such that the
age of Γ is given as the class of all finite structures that do not embed any of the structures
from F . We now generalise the tractability conjecture by modifying the idea of Taylor
polymorphisms so that it involves outside applications of endomorphisms, as follows.

I Conjecture 3. Let Γ be the reduct of a finitely bounded homogeneous structure. If Γ has a
polymorphism f of arity n ≥ 2 such that for every i ≤ n there are endomorphisms e1, e2 and
x1, . . . , xn, y1, . . . , yn ∈ {x, y} with xi 6= yi such that f satisfies

e1(f(x1, . . . , xn)) = e2(f(y1, . . . , yn))

then CSP(Γ) is in P. Otherwise, CSP(Γ) is NP-complete.

The conjecture has been verified for several classes of ω-categorical structures:
All reducts of (Q;<) in [7];
All reducts of the Random graph (the Fraïssé-limit of the class of all finite graphs) in [10];
All reducts of the homogeneous equivalence relation with infinitely many infinite classes
in [15].

The strongest tool we have for attacking this conjecture will be introduced in the next section.

6 Ramsey Theory

The complexity classification results for ω-categorical structures mentioned in Section 5 rely
on results from structural Ramsey theory. We say that a homogeneous structure Γ is Ramsey
if for all finite substructures A and B of Γ and every colouring of the embeddings of A into
Γ with finitely many colours, there exists an embedding e : B → Γ such that all embeddings
of A into e(B) have the same color. Examples of homogeneous Ramsey structures are
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(Q;<);
the ordered Random graph, and other generically ordered Fraïssé-limits of so-called free
amalgamation classes (examples are ordered versions of the Henson digraphs) [27];
the convexly ordered homogeneous binary branching C-relation, and other tree-like
structures [25, 26];
the lexicographically ordered vector space over a finite field (see [24]);
the lexicographically ordered atomless Boolean algebra (see [24]).

The fact that a structure is Ramsey can be exploited when analysing its automorphism
group, endomorphism monoid, or polymorphism clone. Our usage of Ramsey theory is
almost exclusively via the concept of canonical functions. For simplicity, we explain this
concept for unary functions only; however, the ideas generalize straightforwardly to finitary
functions; see [9] for an in-depth introduction to the method of canonical functions. A
function f : Γ→ Γ is called canonical if for all β ∈ Aut(Γ) we have f ◦β ∈ {αf | α ∈ Aut(Γ)}.
When Γ is an ordered Ramsey structure, then an arbitrary function ‘looks as a canonical
function on large parts of the domain’: formally, for every function f over the domain of
Γ, there exists a canonical function g in {αfβ | α, β ∈ Aut(Γ)} – the canonisation lemma.
In practice, we often use a generalisation of canonisation involving constants – we refer
to [9] for details. Suppose now that Γ is homogeneous in a finite relational signature. Then
there are only finitely many behaviours of canonical functions, and this is essential to break
classification arguments dealing with endomorphisms (and polymorphisms) into finitely many
cases. We hope that canonical functions and canonization can be used to reduce Conjecture 3
to Theorem 4 and Conjecture 2.

The method of canonical functions has been used extensively in [7, 13, 4, 10, 9, 15, 11], in
two contexts: complexity classification of CSPs and classification of reducts of homogeneous
structures.

When is it possible to apply this method to analyse the endomorphisms (and polymorph-
isms) of C? We do not need C to be Ramsey, it suffices that C has a homogeneous expansion
with finite relational signature which is Ramsey. The following question is therefore of
essential importance.

I Question 1 ([14]). Is it true that every homogeneous structure with finite relational
signature has a homogeneous Ramsey expansion with finite relational signature?

Similar in spirit, we ask the following.

I Question 2 ([14]). Can every ω-categorical structure be expanded to an ω-categorical
structure which is Ramsey?

These questions are closely related to recent research in topological dynamics – we refer
to a recent survey article for more on this connection [29]. A positive answer to Question 1
would imply that the method of Ramsey theory and canonical functions can be used to
approach the tractability conjecture from Section 5 in general.
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