
Distributed Streaming with Finite Memory
Frank Neven1, Nicole Schweikardt2, Frédéric Servais1, and
Tony Tan1

1 Hasselt University and Transnational University of Limburg
2 Humbold-University Berlin

Abstract
We introduce three formal models of distributed systems for query evaluation on massive data-
bases: Distributed Streaming with Register Automata (DSAs), Distributed Streaming with Re-
gister Transducers (DSTs), and Distributed Streaming with Register Transducers and Joins
(DSTJs). These models are based on the key-value paradigm where the input is transformed
into a dataset of key-value pairs, and on each key a local computation is performed on the values
associated with that key resulting in another set of key-value pairs. Computation proceeds in
a constant number of rounds, where the result of the last round is the input to the next round,
and transformation to key-value pairs is required to be generic. The difference between the three
models is in the local computation part. In DSAs it is limited to making one pass over its input
using a register automaton, while in DSTs it can make two passes: in the first pass it uses a finite-
state automaton and in the second it uses a register transducer. The third model DSTJs is an
extension of DSTs, where local computations are capable of constructing the Cartesian product of
two sets. We obtain the following results: (1) DSAs can evaluate first-order queries over bounded
degree databases; (2) DSTs can evaluate semijoin algebra queries over arbitrary databases; (3)
DSTJs can evaluate the whole relational algebra over arbitrary databases; (4) DSTJs are strictly
stronger than DSTs, which in turn, are strictly stronger than DSAs; (5) within DSAs, DSTs and
DSTJs there is a strict hierarchy w.r.t. the number of rounds.

1998 ACM Subject Classification C.2.4 Distributed Systems, H.2.4 Systems, H.2.6 Database
Machines

Keywords and phrases Distributed systems, relational algebra, semijoin algebra, register auto-
mata, register transducers

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.324

1 Introduction

Recent years have seen a massive growth in parallel and distributed computations based on
the key-value paradigm. This was fostered by the emergence of popular systems such as
Hadoop [31] and Spark [25], which support this paradigm, as well as by many specialised
systems built on top of them such as Hive [29], Pig [15], Shark [32], etc.

In brief, the key-value paradigm works as follows. An input dataset D is first transformed
into another dataset D′ of key-value pairs which is then distributed across a cluster of
machines, where values with the same key are sent to the same server. The main computation
is performed on D′, where values in different servers can be processed in parallel. Take, for
example, the Pig Latin1 script below for computing the query A(x, y) ∧ ¬B(y):

1 See [24, 23, 15] and the references therein for more details about Pig Latin and the Pig system.

© Frank Neven, Nicole Schweikardt, Frédéric Servais, and Tony Tan;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 324–341

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.324
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F. Neven, N. Schweikardt, F. Servais, and T. Tan 325

1. A = load ‘A.txt’ as (x,y);
2. B = load ‘B.txt’ as (y);
3. C = cogroup A by y, B by y;
4. D = filter C by IsEmpty(B);
5. E = foreach D generate flatten(A); // E is the result of A(x, y) ∧ ¬B(y)

In brief, the Pig system converts this script into a Hadoop’s MapReduce program that does the
following. The mapper maps each tuple A(a, b) into a key-value pair (key = b, val = A(a, b));
and each tuple B(b) into (key = b, val = B(b)). This is done in the script’s step 3. For each
key c, it checks whether there is an A-tuple and a B-tuple. It collects only those keys in
which there is A-tuple, but no B-tuple. This is done in step 4. It will then store only the
A-tuples from the collected keys. This is done in step 5.

This example highlights one of the most appealing features of the key-value paradigm:
ease of parallelisation. Since computations for different keys are independent, they can be
computed in parallel by assigning each key to a server that is responsible for its computation.
Typically one server can be assigned with many keys, and in Hadoop such assignments are
done using random hash function by default.

We are aware that the key-value paradigm is often called the map-reduce paradigm,
and rightly so. However, in many systems communities the name map-reduce refers to
Hadoop’s MapReduce and excludes Spark, even though Spark does support map-reduce like
computations. The difference between map-reduce in Hadoop and Spark lies in, among many
other aspects, the implementation of fault tolerance and data storage [25, 33]. Since our
focus is on the theory, and to avoid confusion, we opt for the name key-value paradigm.

Many algorithms and systems have been built based on the key-value paradigm. We will
discuss some of them in the related work section at the end of Section 1. In the database
setting, SQL-queries are the standard class of queries. Recently, systems such as Pig, Hive,
and Shark have been built to support SQL-like queries on massive datasets, and have been
widely used in both academia and industry. However, still lacking is a detailed study of their
theoretical foundations.

In this paper we aim to contribute to filling this gap. Our goal is to determine computing
mechanisms that are necessary and sufficient for evaluating relational algebra, which is the
foundation of the SQL query language. To this end, we introduce three models for distributed
computations based on the key-value paradigm and compare their expressiveness with rela-
tional algebra: Distributed Streaming with register Automata (DSAs), Distributed Streaming
with register Transducers (DSTs), and Distributed Streaming with register Transducers and
Joins (DSTJs). In introducing new models, we must be aware that systems like Pig, Hive, or
Shark are fully automated in the sense that an input query is automatically converted into a
program in Hadoop (for Pig and Hive) or Spark (in the case of Shark). The models must be
simple enough to allow for such automation, while still being strong enough to capture a
useful class of queries (in our case, relational algebra or suitable fragments thereof).

Brief description of our models. To avoid clutter, we start by defining our models for
Boolean queries over directed finite graphs, which is the simplest form of database.

For Boolean queries each model consists of three components: (1) a mapper that maps
each element in the input to a bag of key-value pairs; (2) a reducer that computes for each
key separately on the bag of values associated to that key and outputs a bag of values; (3) an
aggregator that determines the final output yes/no from a bag of values. They can perform
multiple rounds of computation, where the output of the reducer is passed as input to the
next mapper. The aggregator is consequently only applied at the very end to determine the

ICDT 2015

326 Distributed Streaming with Finite Memory

result. For non-Boolean queries, we discard the aggregator, and set the output of the last
reducer as the output of the computation.2

The difference between DSAs/DSTs/DSTJs and the general key-value paradigm lies on
the specific, concrete models of computations assigned to the map, reduce, and aggregator
functions. In fact, the models assigned are very simple as we will briefly explain below.

In DSAs the mappers are generic functions that map deterministically a tuple to a bag of
key-value pairs based on the equality type of the input tuple. They are essentially functions
that neither can invent values nor interpret values, except for the equality test among the data
values. The reducers and aggregators in DSAs are commutative3 finite memory automata [17],
also called register automata [22]. These are finite automata extended with a fixed number of
registers where each register can hold a data value. The automata change states depending
on the current state and equality tests among the values currently stored in the registers and
those in the input tuple. In the reduce phase, the input values are fed to the automaton one
by one (hence, the name “streaming”). After having read the last input item, it outputs a
finite bag of values of constant size depending on the final configuration. The automaton
from the aggregator component is used to pass through the output of the last reduce phase
to determine the end result.

Note that the computation performed by a DSA’s mapper, reducer, or aggregator process
the input only once while using at most logarithmic space. Furthermore, the number of
elements in the output of reducers within the DSA model does not depend on the length
of its input but only on the reducer itself. Hence, DSAs are rather limited as they need to
summarise an input stream by a fixed number of output values. In particular, DSAs cannot
transform a stream of values into another stream of values. To allow for this, we introduce
the second model, DSTs. DSTs use the same mappers and aggregators as DSAs, but it has
available more powerful reducers. In DSTs, a reducer makes two passes over the input: in
the first pass it uses a commutative finite state automaton to gather some finite information
on the input, and in the second pass it uses a commutative register transducer that for each
input value outputs a bag of values. A register transducer works essentially like a register
automaton. It has a fixed number of registers where each register can hold a data value.
Depending on the current state and the equality tests among the values in the registers
and in the input tuple, it can change its state and at the same time output a bag of values.
Hence, a register transducer can transform a stream of values into another stream of values.

Note that it seems very unlikely that DSAs or DSTs can compute Boolean queries that
involve join operations, where there can be a quadratic blow-up in the size of intermediate
results. In fact, as we will show later, both DSAs and DSTs cannot detect the existence of
a triangle in a given graph, and hence, cannot perform join operations. This motivates us
to introduce the third model called DSTJs. Again, the only difference between DSTJs and
DSTs lies on the reducers. In DSTJs, the reducers can be of two types: a register transducer
(as used by DSTs), or an abstract function that performs a Cartesian product between two
subsets of the input values; the latter is a natural abstraction of the join transformation
supported by the RDD data structure in Spark [26, 25, 33]. By definition, DSTJs hence
can perform join operations. We will show later that DSTJs can evaluate the whole class of
relational algebra queries.

2 We note that although the aggregator component is not common in the key-value paradigm, it does
exist. See, for example, the system Bagel [8]. For Boolean queries such as “Are there at least 1000
triangles?”, it is more convenient and efficient to add an aggregator component that aggregates all the
output, rather than adding an extra round to simulate the aggregator.

3 Commutativity is necessary to ensure that the output is independent of the order in which the input
tuples are processed.

F. Neven, N. Schweikardt, F. Servais, and T. Tan 327

Main results. The main results in this paper are the following:

1. DSTJs are strictly stronger than DSTs, which are strictly stronger than DSAs; and within
each of the 3 models there is a strict expressiveness hierarchy w.r.t. the number of rounds;

2. neither DSAs nor DSTs can detect the presence of a triangle in a graph (hence, neither
DSAs nor DSTs can do joins);

3. when restricting attention to bounded degree databases, DSAs can evaluate relational
algebra (and, even more, first-order sentences with modulo counting quantifiers)

4. over arbitrary databases, DSTs can evaluate the semijoin algebra while DSAs can not;
5. over arbitrary databases, DSTJs can evaluate the relational algebra while DSTs can not.

The relations among DSAs, DSTs and DSTJs with the classical database queries are
illustrated as follows.4

DSA (DST (DSTJ

⊆ ⊆ ⊆

FO (= rel. alg.) over semijoin algebra relational algebra
bounded degree databases

These results emphasise that, albeit simple, DSAs, DSTs, and DSTJs are pretty expressive.
In fact, they also highlight that the power of the key-value paradigm here lies within the
ability to group values according to a common key.

Related Work. The key-value paradigm, or map-reduce paradigm, attracted a lot of
attention since its inception into Google in the mid 2000s [13, 14]. Arguably it can be viewed
as a subclass of the BSP model introduced by Valiant back in 1990 [30], in which the keys play
a special role in determining the distribution of the data. We discuss the work most related
to the setting of the present paper. We are aware of [5, 1, 4, 2, 9, 10, 11, 19, 20, 21, 27, 28].
Karloff et al. [18] introduce a rigorous computation model for the MapReduce programming
paradigm where (randomised) mappers and reducers are implemented by a RAM with
sublinear space and polynomial time. It is typical that in the map-reduce computation the
reducers considered so far in the literature, such as [2, 4, 27], while limited in the number
of data it can access, can be arbitrarily strong, typically polynomial time machines in the
number of original input items. This is obviously orthogonal with our models here, where
the power of the reducers are limited.

Map-reduce as a framework for the evaluation of special classes of queries, especially
the join queries, has been considered by a number of articles. However, it is not that
clear how to extend them to full relational algebra. We mention here some of the work
along this line. Afrati and Ullman [5] study the evaluation of join queries and take the
amount of communication, calculated as the sum of the sizes of the input to reducers, as
a complexity measure. Evaluation of transitive closure and datalog queries in MapReduce
has been investigated in [1, 6]. Afrati et al. [4] study the tradeoff between parallelism and
communication cost in a map-reduce setting. In particular, the authors established lower
and upper bounds on communication costs for a number of typical problems in databases.
All the lower bounds are established only for one round computation.

Most of the existing MapReduce algorithms assume the number of keys generated is
bounded by a constant, equating the number of keys with the number of available servers.

4 It is a classic result by Codd [12] that first-order logic and relational algebra are equivalent in terms of
expressiveness.

ICDT 2015

328 Distributed Streaming with Finite Memory

See, for example, the algorithm for enumerating the triangles in [27] and arbitrary sample
subgraphs in [2, 4]. This is orthogonal to our approach, where the number of generated keys
can be proportional to the number of vertices in the input graph, and parallelisation can
be achieved by automatically hashing the keys to the available servers. A more thorough
discussion on generic mappers is provided in Section 3.

Koutris and Suciu [19] introduce the massively parallel (MP) model of computation, where
computations proceed in a sequence of parallel steps, each followed by a global synchronisation
of all servers. In this model, evaluation of conjunctive queries [9, 19] as well as skyline
queries [3] have been considered. The MP model can be implemented in the map-reduce
setting, with the hash functions fully specified. Again, the bounds, especially the lower
bounds, are established mainly for one round of computation.

Another setting, but orthogonal to the MapReduce framework, is that of declarative
networking where distributed computations and networking protocols are modeled and
programmed using formalisms based on Datalog [7, 16].

Outline. We give a formal definition of the key-value paradigm in Section 2. In Section 3
we present the notion of generic mappers. Then, in Sections 4–6 we provide the formal
definitions of DSAs, DSTs, and DSTJs, respectively, and study their expressiveness. In
Section 7 we establish the relations between our DSA/DST/DSTJ models and the classical
semijoin algebra and relational algebra. We conclude in Section 8.

2 The key-value paradigm

We start by introducing some notations. Let N be the set of natural numbers {1, 2, . . .}. For
m ∈ N, we let [m] = {1, . . . ,m}. Let S and T be sets. We write Pow(S) or 2S to denote
the set of all finite subsets of S, and we write P(S, T) and F(S, T) to denote the class of all
partial functions and all functions from S to T , respectively. We write Bags(S) to denote
the set of all finite bags over S (i.e., all finite multisets built from elements in S). Instead of
B ∈ Bags(S), we sometimes write B v S. We write χ

B to denote the characteristic function
of the bag B. That is, for every x ∈ S, χ

B(x) returns the multiplicity of x in B. We say
that A is a subbag of B, if χ

A(x) ≤ χ
B(x), for every x ∈ S.

We fix an infinite set D of data values. In this paper, we are mostly concerned with
(finite, directed) graphs G = (V,E), where V ⊆ D and E ⊆ V × V . Such graphs are always
presented in the form of a sequence of pairs (a1, b1), . . . , (an, bn) where each pair (ai, bi)
indicates that there is an edge from vertex ai to vertex bi. In view of this, elements of D will
also be called vertices, or nodes. We use the words vertex and node interchangeably, and
we write V (G) and E(G) to denote G’s set of vertices and edges, respectively. We refer to
Section 7 for a generalisation to relations of higher arity, where the input is a stream of facts
of the form R(a1, . . . , am), where R is an arbitrary relation symbol.

We assume we are given two sets K and V denoting the domain of keys and values,
respectively. We call an element (key, val) ∈ K × V a key-value pair and an element
(key, B) ∈ K × Bags(V) a key-bag-value pair. To differentiate them from the standard
tuple, we will write 〈key : val〉 and

〈
key : B

〉
to denote key-value and key-bag-value pairs,

respectively.
A key-value paradigm (KVP) instance is a tuple M = (map1, red1, . . . ,map`, red`, agg)

where ` ∈ N. We say thatM has ` rounds. The components ofM are defined as follows:
map1 is an initial mapper which maps an edge e ∈ D×D to a finite bag over K×V;
for each i ≥ 2, mapi is a mapper which maps a value in V to a finite bag over K×V;

F. Neven, N. Schweikardt, F. Servais, and T. Tan 329

e1, e2, e3, . . .G =

?
map1

〈
key1 : val1

〉
,
〈
key2 : val2

〉
,
〈
key3 : val3

〉
, . . .M1 =

((((((((((((((((9

��������)

hhhhhhhhhhhhhhhhz〈
key1 : B1

〉

?
red1

〈
key2 : B2

〉

?
red1

· 〈
keyn : Bn

〉

?
red1

val11, val12, val13, . . .R1 =

......

val`1, val`2, val`3, . . .R` =

?

agg

yes/no

Figure 1 The flow of computation in an ` round key-value paradigm computation.

for each i ∈ [`], redi is a reducer which maps a key key ∈ K and finite bag B v V of
values to a finite bag B′ v V of values; and,
agg is an aggregator which determines the output ofM; agg is a function mapping a finite
bag over V to the value yes or no.

For a bag B v K×V, define keys(B) = {key | ∃ val ∈ V, 〈key : val〉 ∈ B} as the set of keys
occurring in B, and values(key, B) = {{val | 〈key : val〉 ∈ B}} as the bag of values occurring in
B with key key. Here, we use double braces {{...}} to indicate bags, i.e., if B contains i copies
of tuple 〈key : val〉, then values(key, B) contains i copies of val.

On input G = (V,E), the outputM(G) ∈ {yes, no} is computed as follows:
M1 =

⋃
e∈E map1(e) and R1 =

⋃
key∈keys(M1) red1(key, values(key,M1)).

For each i ∈ {2, . . . , `},
Mi =

⋃
val∈Ri−1

mapi(val) and Ri =
⋃

key∈keys(Mi)

redi(key, values(key,Mi))

Finally,M(G) = agg(R`).
We write Mi(G) and Ri(G) to indicate that the bags Mi and Ri are obtained when the input
graph is G. We say thatM(G) is the output ofM on input graph G.

Figure 1 illustrates the flow of computation in an `-round KVP instance. As mentioned
in Section 1, the models DSA/DST/DSTJ introduced in this paper follow the key-value
paradigm, where the mappers are required to be generic (see Section 3), and the reducers
and aggregators are specified by extensions of finite automata (see Sections 4–6).

3 Generic mappers

In this section we instantiate the key and value sets K and V, and define formally the notion
of generic mappers. We fix a finite alphabet Σ and a number k ∈ N. We reserve # to be

ICDT 2015

330 Distributed Streaming with Finite Memory

a special symbol not in D, intended to represent an empty spot or an empty register. D#
denotes the set D∪{#}. We usually write a, b, c, . . . to denote elements of D# and ā, b̄, c̄, . . .
for elements of Dk

with k ∈ N. When ā ∈ Dk
#, we tacitly assume that ā = a1, . . . , ak.

Define Ak as Σ×Dk
#. Both K and V will be interpreted as Ak. The purpose of σ in

(σ, ā) ∈ Σ ×Dk
is to encode a finite amount of information about the vertices in ā. For

t = (σ, ā) ∈ Ak, we call σ the label of t.
A D-bijection is a 1-1 mapping π : D# → D#, where π(#) = #. We extend π to tuples

in the canonical way. Let R and S be finite sets and let f be a function from R ×Dm
to

Bags(S ×Dn
#) for some m,n ∈ N. The function f is generic if the following two conditions

hold: (1) For all (r, c̄) ∈ R×Dm
, if (s, d̄) ∈ f(r, c̄), then all non-# values in d̄ are from c̄; i.e.,

f cannot invent new values. (2) For every D-bijection π, χ
f(r,c̄)(s, d̄) = χ

f(r,π(c̄))(s, π(d̄));
i.e., f cannot interpret values in D.

Let us briefly comment on our choice of generic mappers. In the theoretical studies of
MapReduce computations, a mapper is typically a hash function, which maps the data items
to the available machines; see, for example, [5, 2, 9, 10, 19, 21, 27]. This is different to our
model here, where the mappers are generic functions that map a value deterministically
to a set of key-value pairs. Such mappers are not uncommon. For example, the mappers
generated by the Pig system [15] are essentially generic mappers similar to the ones studied
in this paper; see [23, Section 4.2]. We will give a more detailed comparison between our
model and the Pig system at the end of Section 7.

Obviously, the generic mappers can generate as many keys as the number of tuples in the
input database. However, this does not mean that the system needs one machine for one
key. In the classic example of a MapReduce program for “word count” [13], the mapper is
a generic function and the number of keys produced equals the number of different words
in the input text. But one would hardly insist that it requires one machine for each key.
Rather, to achieve parallelisation, the system automatically hashes the keys to the available
machines5, and the processor evaluates the values for each key separately, one key at a time.
Of course, specific hash functions may be desirable to achieve optimisation in some settings,
say when the input datasets have been preprocessed, or when some statistics about the input
are known. This is out of the scope of our paper. Our goal is to study the sufficient and
necessary computation mechanism to evaluate relational algebra in a general setting, where
nothing is known about the data or the available machines.

To end this section, let us describe how generic mappers can be specified. We let
[k]# := [k] ∪ {#}. The equality type τ of a tuple (d1, . . . , dk) is the undirected graph with
vertex set [k]#, where for i, j ∈ [k] there is an edge between vertices i and j iff di = dj , and
there is an edge between vertices i and # iff di = #. A generic mapper can be specified
by a table that assigns to each equality type τ over [k]# a list p1, . . . , ps of patterns, each
of the form 〈ki : vi〉, where ki = (σi, j1, . . . , jk) and vi = (σ′i, j′1, . . . , j′k) with σi, σ

′
i ∈ Σ

and j1, . . . , jk, j′1, . . . , j′k ∈ [k]#. On input of a tuple (σ, d1, . . . , dk) ∈ Ak, the mapper then
determines the equality type τ of (d1, . . . , dk), looks up the according patterns p1, . . . , ps,
and for each such pi outputs the key-value pair 〈keyi : vali〉 with keyi = (σi, dj1 , . . . , djk

) and
vali = (σ′i, dj′1 , . . . , dj′k), where d# is defined to be the value #. Generic initial mappers are
specified accordingly, where only equality types over {1, 2,#} for input tuples (d1, d2) ∈ D×D
are considered.

5 By default, the Hadoop system [31] takes a random hash function to hash the keys, which in practice
works well. Theoretically this is not surprising. A standard application of Chernoff bounds guarantees
that the keys are assigned to all machines uniformly (up to a small constant factor). Nevertheless,
Hadoop also provides a platform for the user to specify his/her own hash functions.

F. Neven, N. Schweikardt, F. Servais, and T. Tan 331

4 Distributed streaming with register automata (DSA)

In this section we introduce DSAs and study their expressiveness. We start with RA-reducers
and RA-aggregators, which are reducers and aggregators instantiated with register automata.
Following this, we present the formal definition of DSAs, and establish their expressiveness,
as well as a hierarchy on the number of rounds.

RA-reducers. We start with the notion of register transition systems, which are essentially
register automata [17, 22]. Intuitively, they work as follows. The input is a sequence of
elements of Ak, and each register can hold an element of D#. For every input (σ, ā) ∈ Ak,
the system changes its state depending on σ and equality tests among the vertices in ā and
the vertices currently stored in the registers. The formal definition reads as follows.

I Definition 1. For r ∈ N, an r-register transition system over Ak is a tuple S = 〈Q, δ〉,
where r ≥ k, Q is a finite set of states, and δ is a transition function from Q×Σ×F([k], 2[r])
to P([r], [k])×Q.6

The intuitive meaning of a transition in δ is as follows. If on input (σ, ā) the system is in
state q, and the data value ai appears in exactly the registers in f(i) for each i ∈ [k], and
δ(q, σ, f) = (g, q′), then the system can enter state q′ and replace the content of each register
j with ag(j) for each j ∈ [r].

A configuration of S is an element of Q×Dr
#. An element (σ, ā) ∈ Ak induces a relation

`(σ,ā) on the configurations of S defined as follows: (q, ū) `(σ,ā) (q′, v̄), if δ(q, σ, f) = (g, q′)
and

f(i) = {j | uj = ai} for each i ∈ [k], and
for each i ∈ [r], if g(i) is defined, then vi = ag(i) and if g(i) is undefined, then vi = ui.

Let t = t1 · · · tn be a sequence of elements of Ak. A run of S on t starting from a configura-
tion (q, ū) is a sequence (q0, ū0), . . . , (qn, ūn) of configurations, where (q0, ū0) = (q, ū) and
(qi−1, ūi−1) `ti (qi, ūi) for each i ∈ [n].

We now define reducers in terms of transition systems.

I Definition 2. An RA-reducer over Ak is a tuple red = (S, ρin, ρout), where S = 〈Q, δ〉 is
an r-register transition system over Ak and r ≥ k; ρin is a function that maps an element of
Ak to a configuration of S; and, ρout is a function that maps a configuration of S to a finite
bag over Ak. Both ρin and ρout are required to be generic.

Intuitively, each reducer gets as input a key-bag-value pair
〈
key : B

〉
where ρin(key)

identifies the initial configuration from which the run of S is started. The output then is
ρout(c), where c is the last configuration of the run.

Formally, let
〈
key : B

〉
∈ Ak × Bags(Ak) be a key-bag-value pair, and let t1, . . . , tm be

an enumeration of the elements in B.7 The output red(key, B) is defined as ρout(qm, ūm) for
the run (q0, ū0), . . . , (qm, ūm) of S on t1t2 · · · tm with (q0, ū0) = ρin(key).

Obviously, the run of S on B depends on the order in which t1, . . . , tm are presented.
However, we want to insist that the output red(key, B) is the same regardless of the order in
which the elements in B are arranged. Therefore, we require RA-reducers to be commutative

6 Note that unlike the definition of register automata in [17] and [22], in a transition system we do not
specify the initial state, the final states and the initial content of the registers. We will, however, use
the standard register automata to define the aggregator.

7 Since B is a bag, some elements can appear multiple times in the enumeration.

ICDT 2015

332 Distributed Streaming with Finite Memory

in the following sense: If t = t1 · · · tm and t′ = tπ(1) · · · tπ(m) are two enumerations of the
elements of B (for some permutation π of [m]), and (qm, ūm) and (q′m, ū′m) are the final
configurations of the runs of S on t and t′, respectively, starting in configuration ρin(key),
then ρout(qm, ūm) = ρout(q′m, ū′m).

Note that by definition of a transition system, an RA-reducer can never get stuck and
always processes the complete input. The output of an RA-reducer is therefore well-defined.

RA-aggregator. An r-register automaton over Ak is an r-register transition system S =
〈Q, δ〉 together with a designated initial state q0, a set of final states F ⊆ Q and an initial
content of the registers ū0. We will write A = 〈Q, δ, q0, F, ū0〉 to denote an r-register
automaton.

The configurations of A and the relations `(σ,ā) are defined similarly as for a transition
system. The only difference is that in a register automaton, we insist that the run should
start from the configuration (q0, ū0).

Formally, let t = t1 · · · tn be a sequence of elements of Ak. The run (q0, ū0), · · · , (qn, ūn)
of A on t is accepting (and A accepts t) iff qn ∈ F . The automaton is commutative when
A accepts t1 · · · tn if and only if A accepts tπ(1) · · · tπ(n) for every sequence t = t1 · · · tn of
elements of Ak and for every permutation π on [n]. For commutative register automata
we can safely regard the input sequence as a finite bag B, where we consider an arbitrary
enumeration of the elements in B and in which context we simply say that either A accepts
B or not.

I Definition 3. An RA-aggregator is a commutative r-register automaton A over Ak with
r ≥ k.

Obviously, an RA-aggregator A can be viewed as a function from finite bags of Ak to
{yes, no}, where A(B) = yes, if A accepts B, and A(B) = no, otherwise.

Definition of DSA. An `-round DSA is a tupleM = (map1, red1, . . . ,map`, red`, agg), where
each mapi is a generic mapper, each redi is an RA-reducer, and agg is an RA-aggregator.

We say thatM accepts a graph G, if agg(R`(G)) = yes, in which case, we writeM(G) =
yes. Here, R` is as defined in Section 2. By G(M) we denote the class of all graphs accepted
byM, and we say that G(M) is the class of graphs recognised byM.

I Example 4. Consider inputs of the form (d1, s1), . . . , (dn, sn), where each tuple (di, si)
indicates that data value di is stored on server si. Let INTERSECT be the problem to decide
whether there is a data value that is stored on more than one server. It can easily be formalised
as a 1-round DSAM = (map1, red1, agg) over Ak for k = 1 and Σ = {σblank, σdisj, σndisj}.

The initial mapper map1 assigns to each input tuple (di, si) ∈ D×D a single key-value
pair 〈key : val〉 with key = (σblank, di) and val = (σblank, si). Thus, the initial mapper can be
specified by a table which assigns to each equality type τ the single pattern p = 〈k : v〉 with
k = (σblank, 1) and v = (σblank, 2).

The reducer red1 is an RA-reducer over Ak (for k = 1), with a single register, with state
set Q = {q0, q1, q2}, and with ρin(key) = (q0,#) for all key ∈ Ak. The transition function δ
ensures that when reading a symbol (σ, s) ∈ Ak, the RA-reducer proceeds as follows: If the
current state is q0 (i.e., the automaton performs its first step), then the automaton stores
the value s in its register and changes to state q1. If the current state is q1, and the value s
is different from the value stored in the register, then the automaton changes to state q2;
otherwise (i.e., s coincides with the value stored in the register), the automaton remains in
state q1. If the current state is q2, then the automaton simply remains in this state.

F. Neven, N. Schweikardt, F. Servais, and T. Tan 333

Gm

a1r -PPPPPPq
@
@
@
@
@
@R

a2r -��
��

��1

Q
Q
Q
Q
QQs

...

am
r -�
�
�
�
��3

�
�
�
�
�
��

b1r -PPPPPPq
@
@
@
@
@
@R

b2r -��
��

��1

Q
Q
Q
Q
QQs

...

bm
r -�
�
�
�
��3

�
�
�
�
�
��

c1r -PPPPPPq
@
@
@
@
@
@R

c2r -��
��

��1

Q
Q
Q
Q
QQs

...

cm
r -�
�
�
�
��3

�
�
�
�
�
��

d1r -PPPPPPq
@
@
@
@
@
@R

d2r -��
��

��1

Q
Q
Q
Q
QQs

...

dm
r -�
�
�
�
��3

�
�
�
�
�
��

e1r
e2r
...

em
r

a1r -PPPPPPq
@
@
@
@
@
@R

a2r -��
��

��1

Q
Q
Q
Q
QQs

...

am
r

*
�
�
�
�
��3

�
�
�
�
�
��

b1r -PPPPPPq
@
@
@
@
@
@R

b2r -��
��
��1

Q
Q
Q
Q
QQs

...

bm
r -�
�
�
�
��3

�
�
�
�
�
��

G̃m

c1r -PPPPPPq
@
@
@
@
@
@R

c2r -��
��
��1

Q
Q
Q
Q
QQs

...

cm
r -�
�
�
�
��3

�
�
�
�
�
��

d1r -PPPPPPq
@
@
@
@
@
@R

d2r -��
��

��1

Q
Q
Q
Q
QQs

...

dm
r

I

�
�
�
�
��3

�
�
�
�
�
��

e1r
e2r
...

em
r

Figure 2 DSAs cannot differentiate between Gm on the left and G̃m on the right.

The function ρout maps the final configuration (q, v) to (σndisj,#) if q = q2, and to
(σdisj,#) otherwise. Finally, the aggregator agg is a simple finite automaton which receives as
input a list of items in Ak and accepts if, and only if, at least one these items is of the form
(σndisj,#). This completes the description of a 1-round DSA which solves the INTERSECT
problem. �

Expressiveness of DSAs and a hierarchy on the number of rounds. The rest of this
section is devoted to our study of the expressiveness of DSAs.

We start by showing that on general graphs DSAs cannot compute joins; in fact, they
cannot even test if an input graph contains a triangle. Let TRIANGLE be the class of all
graphs G that contain a directed triangle.

I Theorem 5. There is no DSA that recognises TRIANGLE.

Proof (sketch). Consider the graphs Gm and G̃m depicted in Figure 2. While G̃m contains
a triangle, Gm does not. We show that for every DSAM there is an m ∈ N such thatM
cannot distinguish between Gm and G̃m, i.e.,M(Gm) =M(G̃m). The number m we choose
here is bigger than the number r of registers ofM, and the proof relies on a careful analysis
of the computation ofM, utilising the fact that mappers ofM are generic and reducers of
M are generic and commutative. Briefly, it is based on the fact that for every vertex u, its
neighbourhoods in both Gm and G̃m are “the same”. Moreover, since m ≥ r + 1, by just
looking at the u and its neighbourhood, the DSA M cannot differentiate whether u is a
vertex in Gm or G̃m. This holds for every vertex u in Gm and G̃m (both have the same set
of vertices), and implies thatM cannot differentiate Gm and G̃m. J

Concerning the graphs Gm and G̃m used in the above proof, note that the maximum
length of a walk8 in Gm is 4, while G̃m contains walks of arbitrary lengths. Thus, we obtain
the following where, for ` ∈ N, we define `-WALK as the class of all graphs that contain a
walk of length `.

I Corollary 6. Let ` ≥ 5. There is no DSA that recognises `-WALK.

However, when restricting attention to bounded degree graphs, DSAs are quite powerful:
they can recognise all properties definable in first-order logic with modulo counting quantifiers.
That is, first-order logic enriched by quantifiers of the form ∃imodmxψ, stating that the
number of nodes x satisfying ψ is congruent i modulo m, for integers m ≥ 1 and i ∈
{0, . . . ,m−1}.

8 A walk of length ` is a sequence of ` edges (a0, a1), (a1, a2), . . . , (a`−1, a`) in which repetition of
vertices/edges is allowed.

ICDT 2015

334 Distributed Streaming with Finite Memory

For a vertex u in a graph G, define in-deg(u) and out-deg(u) as the in-degree and the
out-degree of u, respectively, and let deg(u) = in-deg(u) + out-deg(u), and let deg(G) =
maxu∈V (G)(deg(u)) be the degree of G.

I Theorem 7. Let d ≥ 2 and let ϕ be a sentence of first-order logic with modulo counting
quantifiers. There is a DSAMϕ,d such that G(Mϕ,d) = {G : deg(G) ≤ d and G |= ϕ}.

For d, ` ≥ 0, define 2`-WALKd to be the class of all graphs G such that deg(G) ≤ d and
there is a walk of length 2` in G.

I Theorem 8.
1. For every d, ` ≥ 0, there is an `-round DSAM such that G(M) = (2`)-WALKd.
2. For every ` ≥ 0, there is no `-round DSA that recognises (2`+1)-WALK2.
3. For every ` ∈ N, (`+1)-round DSAs are strictly more expressive than `-round DSAs.

5 Distributed streaming with register transducers (DST)

In this section we introduce the model DST, which is stronger than the DSA-model. As
mentioned earlier, the only difference between DSTs and DSAs is on the reducer level. Within
a DSA, a reducer is a register automaton that makes one pass over its input, and upon
finishing this pass, it outputs a finite bag of values determined by its final configuration. In
contrast, within a DST, a reducer is an RT-reducer which consists of two components: a
finite-state automaton and a transducer system; and makes two passes over the input. In
the first pass, it uses its finite-state automaton to read the input, but does not produce any
output. The final state of the first pass serves as the initial state for the transducer system
to make another pass on the input. During this second pass, the transducer outputs a bag of
values for each input value (hence the name transducer).

In the next few paragraphs we present the formal definition of DSTs. We start by
extending Definition 1 to transducer systems.

I Definition 9. For r ∈ N, an r-register transducer system over Ak is a tuple T = 〈Q, δ, µ〉,
where r ≥ k, Q is a finite set of states, δ is a transition function from Q× Σ× F([k], 2[r])
to P([r], [k]) × Q, and µ is a transducer function from Q × Σ × F([k], 2[r]) to Bags(Σ ×
F([k], [r+k])).

Thus, an r-register transducer system T = 〈Q, δ, µ〉 is a transition system 〈Q, δ〉 extended
with a transducer function µ. The meaning of δ is the same as before, while the meaning
of µ is as follows. If on input (σ, ā) the automaton is in configuration (q, ū), and for each
i ∈ [k], the data value ai appears in exactly the registers in f(i), then the transducer function
outputs the finite bag C v Ak which is obtained from C̃ := µ(q, σ, f) by replacing every
(σ′, h) ∈ C̃ with the value (σ′, v̄) where, for each i ∈ [k],

vi =
{

uh(i) if h(i) ≤ r
ah(i)−r if h(i) ≥ r+1

(i.e., the function h tells us for each of the k positions i of v̄, that the value at this position
should be the value at the h(i)-th position of the tuple ūā). We say that C is the output of
µ from (σ, ā) and (q, ū).

Let t = t1 · · · tn be a sequence of elements of Ak. When starting with a configuration
(q, ū), the transducer system T = 〈Q, δ, µ〉 processes t as follows: It runs the transition system
〈Q, δ〉 on t starting with configuration (p0, v̄0) := (q, ū), resulting in a run (p0, v̄0), . . . , (pn, v̄n).

F. Neven, N. Schweikardt, F. Servais, and T. Tan 335

During this run, on reading each ti it outputs the bag Ci, defined as the output of µ from ti
and (pi−1, v̄i−1).

The union C of the bags C1, . . . , Cn is the output of the transducer system T on t from
the configuration (q, ū).9

I Definition 10. An RT-reducer over Ak is a tuple red = (A, T , ρin), where A is a commut-
ative finite-state automaton10 over the alphabet Σ and T is an r-register transducer system
over Ak for r ≥ k, and ρin is a function that maps an element of Ak to a state of A. As
before, ρin is required to be generic.

As input, an RT-reducer red = (A, T , ρin) receives a key-bag-value pair 〈key : B〉 ∈
Ak × Bags(Ak). Let t = t1 · · · tm be an enumeration of the elements in B. First, the finite
state automaton A reads only the labels in t starting from the state ρin(key), and ends in a
configuration, say q. Then, the transducer system T reads t starting from the configuration
(q, ā), where ā is the data values component in key. The output of red on 〈key : B〉 is the
output of T on t. As in the case of RA-reducers, we want to insist that the output red(key, B)
is independent of the order of elements in B read by T . Therefore, we require RT-reducers
to be commutative.

Finally, we are ready to define DST.

I Definition 11. An `-round DST is a tupleM = (map1, red1, . . . ,map`, red`, agg), where
each mapi is a generic mapper, each redi is an RT-reducer, and agg is an RA-aggregator.

The notion of acceptance, along with the notionsM(G) (for a graph G) and G(M), are
defined in the same way as for DSAs. Note that we require the reducer to make two passes
on the values, where a finite state automaton is making the first pass, and a transducer is
making the second pass. Without two passes, semijoin algebra cannot be captured. The rest
of this section is devoted to our study of the expressiveness of DSTs.

Our first result states that for DSTs, ` rounds are sufficient and necessary to recognise
the existence of a walk of length 2`. Recall that `-WALK (for ` ∈ N) is the class of all graphs
that contain a walk of length `.

I Theorem 12.
1. For each ` ∈ N there is an `-round DSTM such that G(M) = (2`)-WALK.
2. For each ` ∈ N, there is no `-round DST that recognises (2`+2)-WALK.
3. For every ` ∈ N, (`+1)-round DSTs are strictly more expressive than `-round DSTs.

In particular, 6-WALK can be recognised by a DST. From Corollary 6, we know that no
DSA can recognise 6-WALK. Furthermore, by modifying the proof of Theorem 5, we can
also show that DSTs are still not powerful enough to solve the TRIANGLE problem. These
two facts are stated formally as follows:

I Theorem 13.
DSTs are strictly stronger than DSAs.
There is no DST that recognises TRIANGLE.

9 We should remark that although register transducers are very natural extension of register automata,
we are not aware of any literature where they have been studied previously.

10A finite state automaton A is commutative, if for every sequence σ1 · · ·σm, for every permutation π on
[m], on reading the sequence σ1 · · ·σm and σπ(1) · · ·σπ(m), the automaton ends in the same state.

ICDT 2015

336 Distributed Streaming with Finite Memory

6 Distributed streaming with register transducers and joins

In this section we introduce the strongest model of this paper, called Distributed streaming
with register transducers and joins (DSTJ). It is designed specifically to capture relational
algebra. The difference between DSTJs and DSTs is again on the reducer level. In DSTJs, a
reducer can be of two types: an RT-reducer or a joiner, which is simply an abstract function
that performs the Cartesian product between two sets. Its formal definition is as follows.

A joiner is a triplet J = (α, β, γ), where α, β, γ are symbols from Σ. A joiner J = (α, β, γ)
works as follows. The input is a key-bag-value pair

〈
key : VAL

〉
. Let key = (ζ, ā). The joiner

J outputs the bag {{(α, āb̄c̄) | (β, b̄) ∈ VAL and (γ, c̄) ∈ VAL}}.
Next, we define a relational reducer as a reducer that can choose either an RT-reducer or

a joiner to process its values.

I Definition 14. A relational reducer is a tuple R = (F,J , T), where F : Σ→ {C, T} is a
function that maps σ ∈ Σ to either C or T , J is a joiner, and T is an RT-reducer.

On input of a key-bag-value pair
〈
key : VAL

〉
, a relational reducer does the following:

Let key = (σ, t). If F (σ) = C, the relational reducer runs the joiner J on
〈
key : VAL

〉
. If

F (σ) = T , it runs the RT-reducer T on
〈
key : VAL

〉
.

I Definition 15. An `-round DSTJ is a tupleM = (map1, red1, . . . ,map`, red`, agg), where
each mapi is a generic mapper, each redi is a relational reducer, and agg is an RA-aggregator.

The notion of acceptance, along with the notionsM(G) (for a graph G) and G(M), are
defined in the same way as for DSTs. The rest of this section is devoted to the expressiveness
of DSTJs. Our first expressiveness result states that DSTJ can recognise the existence of a
triangle.

I Lemma 16. There is a 2-round DSTJM such that G(M) = TRIANGLE.

Proof (sketch). Intuitively, in the first roundM collects all pairs (u, v) where there is path of
length 2 from u to v. In the second round on each pair (u, v) output in the first round, it checks
whether there is an edge from v to u. If so, it outputs a special symbol γ. The aggregator
simply checks whether γ appears among the values output by the reducer in the second
round. We note that this algorithm is very similar to the algorithm MR-Node-Iterator++
in [27]. J

Combining Lemma 16 and Theorem 13, we obtain:

I Theorem 17. DSTJs are strictly stronger than DSTs.

In a graph G, a cycle of length m is sequence of edges (u1, u2), . . . , (um−1, um), (um, u1) ∈
E(G). It is not necessary that the vertices u1, . . . , um are pairwise different. For m ≥ 3,
define the class m-CYCLE where a graph G ∈ m-CYCLE if and only if G contains a cycle
of length m.

I Theorem 18. For each positive integer ` ≥ 1, the following holds.
1. There is an `-round DSTJM such that G(M) = 2`-CYCLE.
2. For each ` ∈ N, there is no `-round DSTJM such that G(M) = 2`+1-CYCLE.
3. (`+1)-round DSTJs are strictly more expressive than `-round DSTJs.

F. Neven, N. Schweikardt, F. Servais, and T. Tan 337

7 Semijoin algebra and relational algebra

In this section we study the connections between the models DSA/DST/DSTJ and the
semijoin algebra and the relational algebra. To this end, we define the corresponding model
for DSA/DST/DSTJ for non-Boolean queries on general databases.

We fix a finite vocabulary τ of relation symbols with associated arities and assume every
database DB to be over τ . For a relation symbol R and a tuple of values ā whose arity
matches the arity of R, we call R(ā) a fact. Clearly, a database is just a finite set of facts.
The initial mapper will now receive as input an enumeration of all the facts in the database.

Here we assume that Σ contains τ , and as before, Ak denotes Σ×Dk
#. A fact R(ā) can

then be viewed as an element of Ak by padding an appropriate number of #’s at the end
of ā. Similarly, an element (R, ā) ∈ Dk

can be viewed as an R-fact by discarding the
components. To avoid being pedantic, we will view elements of Ak as facts, and vice versa.

I Definition 19. For every X ∈ {DSA,DST,DSTJ}, an `-round DB-X over Ak is a tuple
M = (map1, red1, . . . ,map`, red`), where each mapi is a generic mapper, and each redi is
an RA-reducer, an RT-reducer, and relational reducer, when X is DSA, DST and DSTJ,
respectively.

On an input database DB, for each i ∈ [`], the bags Mi(DB) of key-value pairs and the
bags Ri(DB) of values are defined as in Section 2. For every X ∈ {DSA,DST,DSTJ}, on
input of a database DB, the output of a DB-XM is defined as the tuples from R`(DB).

Note that in the lower bounds proved in the previous sections are for models with
aggregator components, which the non-Boolean models do not have. Obviously, all the lower
bounds for the Boolean queries carry over to their non-Boolean counterparts. Next, we
are going to show that on classes of bounded degree databases, DB-DSA can evaluate the
relational algebra; while over general databases, DB-DST and DB-DSTJ can evaluate the
semijoin algebra and the relational algebra, respectively. In the following e(DB) denotes the
result of evaluating the expression e on the database DB.

I Theorem 20.
1. For every relational algebra expression e and an integer d > 0, there is a DB-DSAMe

such that for every database DB of degree at most d,Me(DB) = e(DB).
2. For every semijoin algebra expression e, there is a DB-DST Me such that for every

database DB,Me(DB) = e(DB).
3. For every relational algebra expression e, there is a DB-DSTJ Me such that for every

database DB,Me(DB) = e(DB).
Moreover, eachMe can be constructed effectively.

Proof. Proof of (1). We are going to show that on bounded degree databases, each RA
operation can be simulated by one round DSAM = (map, red), in which the tuples output
by the reducer has the same label T . Its generalisation for arbitrary RA-expression can be
established via straightforward induction. Note that the bounded degree is only needed for
the semijoin and join operations.

Union: R ∪ S.
The mapper works as follows. On input t, if t is R(ā), it outputs

〈
T (ā) : R(ā)

〉
; if t is

S(ā), it outputs
〈
T (ā) : S(ā)

〉
; otherwise, it outputs nothing. The reducer red works as

follows. On key t, it outputs t itself.
Intersection: R ∪ S.

ICDT 2015

338 Distributed Streaming with Finite Memory

The mapper works like in the case R ∪ S. The reducer red works as follows. On key t, it
checks whether there are two tuples, one with label R and another with label S. If so, it
outputs t itself. Otherwise, it outputs nothing.
Difference: R− S.
The mapper works like in the case R ∪ S. The reducer red works as follows. On key t, it
checks whether there is a tuple with label R and there is no tuple with label S. If so, it
outputs t itself. Otherwise, it outputs nothing.
Selection: σi=j(R).
The mapper works as follows. On input t, if t is R(ā) and ai = aj it outputs

〈
T (ā) : T (ā)

〉
;

otherwise, it outputs nothing. The reducer red works as follows. On key t, it outputs t
itself.
Projection: πi1,...,im(R).
The mapper works as follows. On input t, it outputs

〈
T (ai1 , . . . , aim) : T (ai1 , . . . , aim)

〉
,

if t is R(ā). Otherwise, it outputs nothing. The reducer red works as follows. On key t,
it outputs t itself.
Semijoin: Rnθ S.
Let I and J be the projection of θ to its first and second coordinates. The mapper works
as follows. On input t, if t is R(ā), it outputs

〈
T (πI(ā)) : R(ā))

〉
; if t is S(ā), it outputs〈

T (πJ(ā)) : S(πJ(ā)))
〉
; otherwise, it outputs nothing. The reducer red works as follows.

On key t, it passes through its input, while remembering all the R-facts in its registers.
Since the input dataabse DB is of bounded degree, say ≤ d, the number R-facts associated
with one particular key is also bounded by d. So we can choose the number of registers
in red to be kd, where k is the arity of R, to accommodate all the R-facts and S-facts. If
there is at least an S-fact among its input, it outputs all the R-facts. Otherwise, if there
is no S-fact among its input, it outputs nothing.
Join: R onθ S.
As in the semijoin case, let I and J be the projection of θ to its first and second coordinates.
The mapper works in the same manner as in the semijoin case. The reducer red works as
follows. On key t, it passes through its input, while remembering all the R-facts and all
its S-facts in its registers. Similar to the semijoin case, since DB is of bounded degree, say
≤ d, the number R-facts and S-facts associated with one particular key is also bounded
by d. So we can choose the number of registers in red to be (k + l)d, where k and l are
the arities of R and S, respectively, to accommodate all the R-facts and S-facts. If there
is at least one R-fact and one S-fact among its input, it outputs all the combination of
the join among the R-facts and S-facts in the input. Otherwise, if there is no S-fact or if
there is no R-fact, it outputs nothing.

Proof of (2). Note that for union, intersection, difference, selection and projection, one-round
DSA presented above works for arbitrary database. Hence, it is sufficient to show that
semijoin operation Rnθ S over arbitrary graph can be done in one-round DST.

Let I and J be the projection of θ to its first and second coordinates. The mapper works
as in the case of semijoin above. The reducer red works as follows. On key t, in the first pass
it checks whether there is an S-fact among the input, which can be done trivially by a finite
state automaton. If there is an S-fact, in the second pass on each R-fact R(ā) in the input,
it outputs T (ā). If there is no S-fact, in the second pass it does nothing and output nothing.

Proof of (3): Again, since all the other operations can be evaluated by DSA and DST,
it is sufficient to show that join operation R onθ S over arbitrary database can be done in
one-round DSTJ. The mapper works similarly as in the case of join above. Then the reducer
uses joiner to pair off the R-tuples with S-tuples. J

F. Neven, N. Schweikardt, F. Servais, and T. Tan 339

Note that 6-WALK can be expressed in the semijoin algebra, and TRIANGLE can be
expressed in the relational algebra. Thus, it follows that DB-DSA and DB-DST cannot
evaluate all semijoin algebra and relational algebra expressions, respectively.

Comparison with Pig. To end this section, we give a brief description of the Pig system,
and relate it to our models here. For more details, we refer the reader to [15, 23]. In
short, Pig is a system built on the Hadoop system to evaluate queries on a large relational
database written in a language called Pig Latin. Upon receiving an input query, Pig generates
a MapReduce program that evaluates the query on a given database, where the number
of rounds corresponds linearly to the number of (CO)GROUP and JOIN queries. For each
(CO)GROUP query it generates a mapper that assigns keys to tuples based on the BY clauses
in the query, i.e. projecting the tuples to fields in the BY clauses. The JOIN operations are
handled in one of two ways: (i) rewrite into a COGROUP followed by a FOR EACH operation,
which yields a parallel hash-join or sort-merge join, or (ii) use fragment-replicate join. Either
way requires one round of MapReduce computation, and can be captured by the joiner.

Obviously, two independent subqueries can be evaluated simultaneously in a one round
MapReduce job. Typically a MapReduce compilation of Pig Latin script looks as follows:

load - filter,
for each

- group,
cogroup

map1 red1

- · · · · · · - group,
cogroup

mapi redi

- · · · · · ·

The (CO)GROUP commands form the boundary between the map and reduce phase. In
the current implementation of Pig, the commands in between the boundaries are pushed into
the reduce function. Obviously, the FILTER and FOR EACH command can be implemented as
one of RA-reducer or RT-reducer, and JOIN as joiner. Hence, one round in the Pig system
corresponds to one round of either DSA, DST, or DSTJ.

8 Conclusion

We introduced three simple abstractions of the key-value paradigm in terms of finite memory
automata and transducers. Our results emphasise that, even though the proposed models
are simple, they form a relevant subclass of MapReduce. In particular, DSTJs can evaluate
the whole relational algebra, while DSTs can evaluate the semijoin algebra which forms an
important subset of the relational algebra. Furthermore, on the class of bounded degree
graphs (and analogously, also for bounded degree databases), DSAs can evaluate all Boolean
queries formulated in relational algebra or first-order logic with modulo counting quantifiers.
In fact, on this class, we believe DSAs to be equivalent to first-order logic with modulo
counting quantifiers. A direction for future research is to extend the current model with
arithmetic and aggregation, as SQL queries support modest forms of counting.

Acknowledgements. We thank the anonymous referees for their helpful and inspiring
comments. We also thank Jan Van den Bussche for inspiring discussions. The fourth author
is supported by FWO Pegasus Marie Curie Fellowship.

ICDT 2015

340 Distributed Streaming with Finite Memory

References
1 F. Afrati, V. Borkar, M. Carey, N. Polyzotis, and J. Ullman. Map-reduce extensions and

recursive queries. In ICDE, 2011.
2 F. Afrati, D. Fotakis, and J. Ullman. Enumerating subgraph instances using map-reduce.

In ICDE, 2013.
3 F. Afrati, P. Koutris, D. Suciu, and J. Ullman. Parallel skyline queries. In ICDT, 2012.
4 F. Afrati, A. Dash Sarma, S. Salihoglu, and J. Ullman. Upper and lower bounds on the

cost of a map-reduce computation. PVLDB, 6(4):277–288, 2013.
5 F. Afrati and J. Ullman. Optimizing joins in a map-reduce environment. In EDBT, 2010.
6 F. Afrati and J. Ullman. Transitive closure and recursive datalog implemented on clusters.

In EDBT, 2012.
7 T. Ameloot, F. Neven, and J. Van den Bussche. Relational transducers for declarative

networking. Journal of the ACM, 60(2):15, 2013.
8 Apache Bagel. Bagel. http://spark.apache.org/docs/0.7.3/bagel-programming-guide.html.
9 P. Beame, P. Koutris, and D. Suciu. Communication steps for parallel query processing.

In PODS, 2013.
10 P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing. In PODS, 2014.
11 F. Chierichetti, R. Kumar, and A. Tomkins. Max-cover in map-reduce. In WWW, 2010.
12 E. Codd. A relational model of data for large shared data banks. Communication of the

ACM, 13(6):377–387, 1970.
13 J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In

OSDI, 2004.
14 J. Dean and S. Ghemawat. Mapreduce: a flexible data processing tool. Communication of

the ACM, 53(1):72–77, 2010.
15 A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam, C. Olston, B. Reed,

S. Srinivasan, and U. Srivastava. Building a highlevel dataflow system on top of mapreduce:
The pig experience. PVLDB, 2(2):1414–1425, 2009.

16 J. Hellerstein. The declarative imperative: experiences and conjectures in distributed logic.
SIGMOD Record, 39(1):5–19, 2010.

17 M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer Science,
134(2):329–363, 1994.

18 H. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for mapreduce. In SODA,
2010.

19 P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In PODS, 2011.
20 R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani. Fast greedy algorithms in mapre-

duce and streaming. In SPAA, 2013.
21 S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: a method for solving graph

problems in mapreduce. In SPAA, 2011.
22 F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite

alphabets. ACM Transactions on Computational Logic, 5(3):403–435, 2004.
23 C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign

language for data processing. In SIGMOD Conference, 2008.
24 Apache Pig. Pig. http://pig.apache.org/.
25 Apache Spark. Spark. http://spark.apache.org.
26 Apache Spark. Spark programming guide. http://spark.apache.org/docs/latest/

programming-guide.html.
27 S. Suri and S. Vassilvitskii. Counting triangles and the curse of the last reducer. In WWW,

2011.
28 Y. Tao, W. Lin, and X. Xiao. Minimal mapreduce algorithms. In SIGMOD, 2013.

http://pig.apache.org/
http://spark.apache.org
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html

F. Neven, N. Schweikardt, F. Servais, and T. Tan 341

29 A. Thusoo, J. Sen Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu, and
R. Murthy. Hive - a petabyte scale data warehouse using hadoop. In ICDE, 2010.

30 L. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

31 T. White. Hadoop - The Definitive Guide: Storage and Analysis at Internet Scale (3. ed.,
revised and updated). O’Reilly, 2012.

32 R. Xin, J. Rosen, M. Zaharia, M. Franklin, S. Shenker, and I. Stoica. Shark: Sql and rich
analytics at scale. In SIGMOD, 2013.

33 M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In NSDI, 2012.

ICDT 2015

	Introduction
	The key-value paradigm
	Generic mappers
	Distributed streaming with register automata (DSA)
	Distributed streaming with register transducers (DST)
	Distributed streaming with register transducers and joins
	Semijoin algebra and relational algebra
	Conclusion

