
18th International Conference on
Database Theory

ICDT’15, March 23–27, 2015, Brussels, Belgium

Edited by

Marcelo Arenas
Martín Ugarte

LIPIcs – Vo l . 31 – ICDT’15 www.dagstuh l .de/ l ip i c s



Editors
Marcelo Arenas Martín Ugarte
Pontificia Universidad Católica de Chile Pontificia Universidad Católica de Chile
Santiago, Chile Santiago, Chile
marenas@ing.puc.cl martinugarte@puc.cl

ACM Classification 1998
H.2: Database Management, H.2.1 Normal forms, H.2.2 Schema and subschema, H.2.3 Query languages,
H.2.4 Query processing, H.2.4 Relational databases, H.2.4 Distributed databases, H.2.5 Heterogeneous
Databases, H.3.5 Online Information Services, H.1: Miscellaneous – Privacy, H.4.1 Office Automation:
Workflow management, B.4.4 Performance Analysis and Design Aids: Formal models, Verification, F.1.3
Complexity measures and classes, F.4.1 Computational Logic, Model Theory, G.2.2 Graph Theory –
Hypergraphs

ISBN 978-3-939897-79-8

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-79-8.

Publication date
March, 2015

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ICDT.2015.1

ISBN 978-3-939897-79-8 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-79-8
http://www.dagstuhl.de/dagpub/978-3-939897-79-8
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.1
http://www.dagstuhl.de/dagpub/978-3-939897-79-8
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics


iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (RWTH Aachen)
Pascal Weil (Chair, CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

ICDT 2015

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics




Contents

Preface vii

ICDT 2015 Test of Time Award ix

Organization xi

External Reviewers xiii

List of Authors xv

Invited Talks

The Confounding Problem of Private Data Release
Graham Cormode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Using Locality for Efficient Query Evaluation in Various Computation Models
Nicole Schweikardt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Large-Scale Similarity Joins With Guarantees
Rasmus Pagh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Awards Session

A Declarative Framework for Linking Entities
Douglas Burdick, Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and
Wang-Chiew Tan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Asymptotic Determinacy of Path Queries using Union-of-Paths Views
Nadime Francis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

(Regular Paper)
Games for Active XML Revisited

Martin Schuster and Thomas Schwentick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Query Evaluation

Answering Conjunctive Queries with Inequalities
Paraschos Koutris, Tova Milo, Sudeepa Roy, and Dan Suciu . . . . . . . . . . . . . . . . . . . . . 76

SQL’s Three-Valued Logic and Certain Answers
Leonid Libkin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A Trichotomy in the Complexity of Counting Answers to Conjunctive Queries
Hubie Chen and Stefan Mengel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Data Examples and Learning

Learning Tree Patterns from Example Graphs
Sara Cohen and Yaacov Y. Weiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/


vi Contents

Characterizing XML Twig Queries with Examples
Sławek Staworko and Piotr Wieczorek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

The Product Homomorphism Problem and Applications
Balder ten Cate and Victor Dalmau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Graph Databases and Semantic Web

Regular Queries on Graph Databases
Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Complexity and Expressiveness of ShEx for RDF
Sławek Staworko, Iovka Boneva, Jose E. Labra Gayo, Samuel Hym,
Eric G. Prud’hommeaux, and Harold Solbrig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

CONSTRUCT Queries in SPARQL
Egor V. Kostylev, Juan L. Reutter, and Martín Ugarte . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Separability by Short Subsequences and Subwords
Piotr Hofman and Wim Martens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Algorithms and Workflows

Process-Centric Views of Data-Driven Business Artifacts
Adrien Koutsos and Victor Vianu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

On The I/O Complexity of Dynamic Distinct Counting
Xiaocheng Hu, Yufei Tao, Yi Yang, Shengyu Zhang, and Shuigeng Zhou . . . . . . . . . 265

Shared-Constraint Range Reporting
Sudip Biswas, Manish Patil, Rahul Shah, and Sharma V. Thankachan . . . . . . . . . . . 277

Distributed Query Processing

Optimal Broadcasting Strategies for Conjunctive Queries over Distributed Data
Bas Ketsman and Frank Neven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Datalog Queries Distributing over Components
Tom Ameloot, Bas Ketsman, Frank Neven, and Daniel Zinn . . . . . . . . . . . . . . . . . . . . . 308

Distributed Streaming with Finite Memory
Frank Neven, Nicole Schweikardt, Frédéric Servais, and Tony Tan . . . . . . . . . . . . . . . 324

Consistency and Repairs

From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back
Babak Salimi and Leopoldo Bertossi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

On the Relationship between Consistent Query Answering and Constraint Satisfaction
Problems

Carsten Lutz and Frank Wolter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

On the Data Complexity of Consistent Query Answering over Graph Databases
Pablo Barceló and Gaëlle Fontaine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380



Preface

The 18th International Conference on Database Theory (ICDT 2015) was held in Brussels,
Belgium, March 23–27, 2015. Originally biennial, the ICDT conference has been held annually
and jointly with EDBT (“Extending Database Technology”) since 2009.

The proceedings of ICDT 2015 include a paper by Graham Cormode (University of
Warwick) based on the keynote address by him, a paper by Rasmus Pagh (IT University
of Copenhagen) based on the keynote address by him, an overview of an invited lecture by
Nicole Schweikardt (Humboldt University of Berlin), a laudation concerning the ICDT 2015
Test of Time Award, and 22 research papers that were selected by the Program Committee
from 50 submissions.

Out of the 22 accepted papers, the Program Committee selected the paper A Declarative
Framework for Linking Entities by Douglas Burdick, Ronald Fagin, Phokion G. Kolaitis,
Lucian Popa and Wang-Chiew Tan for the ICDT 2015 Best Paper Award. Furthermore,
the Program Committee selected the paper Asymptotic Determinacy of Path Queries using
Union-of-Paths Views by Nadime Francis for the ICDT 2015 Best Student Paper Award.
The ICDT 2015 Test of Time Award is given to the paper Efficient Computation of Frequent
and Top-k Elements in Data Streams by Ahmed Metwally, Divyakant Agrawal, and Amr El
Abbadi, which originally appeared in the proceedings of ICDT 2005. Warmest congratulations
to the authors of these award winning papers!

I thank all authors who submitted papers to ICDT 2015. I would also like to thank all
members of the Program Committee, and the external reviewers, for the enormous amount
of work they have done. The Program Committee did not meet in person, but carried out
extensive discussions during the electronic PC meeting. I thank Andrei Voronkov for his
EasyChair system, which made it easy to manage and coordinate the discussion.

I thank the ICDT Council members for their help in selecting the Program Committee
and their advice on issues of policy during the conference. Special thanks also go to Martín
Ugarte, the Proceedings Chair of EDBT/ICDT 2015. I thank many colleagues involved
in the organisation of the conference for fruitful collaboration, in particular, Floris Geerts
(EDBT/ICDT 2015 Conference Chair).

Marcelo Arenas
January 2015

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




ICDT 2015 Test of Time Award

In 2013, the International Conference on Database Theory (ICDT) began awarding the ICDT
test-of-time award, with the goal of recognising one paper, or a small number of papers,
presented at ICDT a decade earlier that have best met the “test of time”. In 2015, the award
will recognise a paper from the ICDT 2005 proceedings that has had the most impact in
terms of research, methodology, conceptual contribution, or transfer to practise over the past
decade. The award will be presented during the EDBT/ICDT 2015 Joint Conference, March
23–27, 2015 in Brussels, Belgium.

The committee consisting of Serge Abiteboul, Sudeepa Roy, and chaired by Leonid Libkin
(2005 PC co-chair) has chosen the following recipient of the 2015 ICDT Test of Time Award:

“Efficient Computation of Frequent and
Top-k Elements in Data Streams”

by Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi

The paper studies the problem of finding items which occur most frequently in a data
stream. This is a basic algorithmic problem of great practical importance. The paper
proposed a SpaceSaving algorithm which was shown to both provide theoretical guarantees
and to perform significantly better than others in practical scenarios. Since its publication,
the paper has made impact in both algorithms research and practical implementations of
streaming algorithms. Several implementations of the algorithm have been made available,
and they are used both in industry and as benchmarks to compare against other streaming
algorithms. The paper has been highly cited: many papers have made use of the data
structure, either directly, or to solve new problems. The algorithm itself is easy to motivate
and state, and consequently it is taught in a number of algorithms courses.

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




Organization

Conference Chair

Floris Geerts (U. of Antwerp)

Program Chair

Marcelo Arenas (PUC Chile)

Program Committee

Marcelo Arenas (PUC Chile)
Pankaj Agarwal (Duke U.)
Angela Bonifati (U. of Lille 1 & Inria)
Edith Cohen (Microsoft Research)
Giuseppe De Giacomo (Sapienza U. di Roma)
Daniel Deutch (Tel Aviv U.)
Gaelle Fontaine (U. of Chile)
Todd Green (LogicBlox & UC Davis)
Sebastian Maneth (U. of Edinburgh)
Filip Murlak (U. of Warsaw)
S Muthukrishnan (Rutgers U.)
Reinhard Pichler (Vienna U. of Technology)
Christopher Re (Stanford U.)
Cristian Riveros (PUC Chile)
Sudeepa Roy (U. of Washington)
Cristina Sirangelo (LSV, ENS-Cachan)
Yufei Tao (Chinese U. of Hong Kong)
Balder Ten Cate (LogicBlox & UC Santa Cruz)
Jan Van Den Bussche (Hasselt U.)
Stijn Vansummeren (U. Libre de Bruxelles)
Victor Vianu (UC San Diego)
David Woodruff (IBM Almaden)

Proceedings Chair

Martín Ugarte (PUC Chile)

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




External Reviewers

Foto Afrati Filip Mazowiecki
Peter Alvaro Andrew McGregor
Tom Ameloot Marco Montali
Guillaume Bagan Jelani Nelson
Pablo Barceló Frank Neven
Manuel Bodirsky Jorge Pérez
Iovka Boneva Andreas Pieris
Pierre Bourhis Chung Keung Poon
Paolo Ciaccia Miguel Romero
Radu Ciucanu Riccardo Rosati
Claire David Emanuel Sallinger
Alin Deutsch Vadim Savenkov
Esther Ezra Evgeny Sherkhonov
Wenfei Fan Mantas Simkus
George H. L. Fletcher Sebastian Skritek
Olivier Gauwin Wang-Chiew Tan
Sam Haney Srikanta Tirthapura
Piotr Hofman Sophie Tison
Hossein Jowhari Domagoj Vrgoc
Phokion G. Kolaitis Johannes Wallner
Paraschos Koutris Adam Witkowski
Kasper Larsen Peter Wood
Domenico Lembo Zhilin Wu
Maurizio Lenzerini You Wu
Jerry Li Xiaokui Xiao
Leonid Libkin Ke Yi
Katja Losemann Marc Zeitoun
Wim Martens Thomas Zeume
Dániel Marx Wuzhou Zhang

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




List of Authors

Tom Ameloot Manish Patil
Pablo Barceló Lucian Popa
Leopoldo Bertossi Eric Prud’Hommeaux
Sudip Biswas Juan L. Reutter
Iovka Boneva Miguel Romero
Douglas Burdick Sudeepa Roy
Balder ten Cate Babak Salimi
Hubie Chen Martin Schuster
Sara Cohen Nicole Schweikardt
Graham Cormode Thomas Schwentick
Victor Dalmau Frédéric Servais
Ronald Fagin Rahul Shah
Gaelle Fontaine Harold Solbrig
Nadime Francis Sławek Staworko
Piotr Hofman Dan Suciu
Xiaocheng Hu Tony Tan
Samuel Hym Wang-Chiew Tan
Bas Ketsman Yufei Tao
Phokion G. Kolaitis Sharma Thankachan
Egor V. Kostylev Martín Ugarte
Paraschos Koutris Moshe Y. Vardi
Adrien Koutsos Victor Vianu
Jose Emilio Labra Gayo Yaacov Y. Weiss
Leonid Libkin Piotr Wieczorek
Carsten Lutz Frank Wolter
Wim Martens Yi Yang
Stefan Mengel Shengyu Zhang
Tova Milo Shuigeng Zhou
Frank Neven Daniel Zinn
Rasmus Pagh

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




The Confounding Problem of Private Data
Release
Graham Cormode

University of Warwick
Coventry, UK
G.Cormode@Warwick.ac.uk

Abstract
The demands to make data available are growing ever louder, including open data initiatives and
“data monetization”. But the problem of doing so without disclosing confidential information is
a subtle and difficult one. Is “private data release” an oxymoron? This paper (accompanying an
invited talk) aims to delve into the motivations of data release, explore the challenges, and outline
some of the current statistical approaches developed in response to this confounding problem.

1998 ACM Subject Classification H.1 [Models and Principles]: Miscellaneous – Privacy

Keywords and phrases privacy, anonymization, data release

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.1

Category Invited Talk

1 Introduction

One can scarcely glance at the Internet these days without being overwhelmed with articles
on the great promise of, and excitement surrounding, humanity’s ability to collect, store and
analyse data. Whether under the banner of “big data”, “data science” or some other catchy
phrase, data is the new sliced bread, and computer scientists are the new master bakers,
in this half-baked metaphor. The list of activities that will benefit from this data-based
perspective is lengthy, and has been enumerated enthusiastically in other venues.

The starting point for this article is that for this revolution to succeed, a vital component
is the data itself, and in many cases this data derives from the activities of individuals who
may be unaware of the manifold uses to which it is being put. Indeed, the cynic can view the
era of big data as merely the second coming of data mining, rebranded due to the tarnish
that this term carries with it. The original association of data mining, or data dredging as
its detractors termed it, was of interrogating data in the pursuit of a purpose for which it
was not originally collected.

Putting aside the statistical concerns around torturing the data long enough until it
confesses, there are ethical and legal concerns that arise from this use of data. Data protection
regulations mandate the ways in which data can and cannot be used, and specifically preclude
some reuses of data beyond its original purpose. The individuals who have contributed to
the data are naturally concerned about what can be learned about them from this process:
either what information is revealed about them directly, or what can be inferred about them
from the various metrics and measurements. Laws are increasingly being drawn to protect
the data of an individual. The notion of ‘privacy’ is becoming recognized as a human right1.

1 http://www.un.org/ga/search/view_doc.asp?symbol=A/C.3/68/L.45/Rev.1

© Graham Cormode;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.1
http://www.un.org/ga/search/view_doc.asp?symbol=A/C.3/68/L.45/Rev.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 The Confounding Problem of Private Data Release

This appears to create a tension between the bright future of a data-driven society, and
the dark Orwellian nightmare of a world without privacy. Since it was computer scientists and
statisticians who were most guilty of creating the hype, they should feel some responsibility
for resolving this tension. This focuses attention on a solution that is primarily technical in
nature, as opposed to one that is legal, social, or moral.

The solution that is most commonly suggested is seemingly simple: just anonymize the
data before it is used. That is, make it impossible to determine the identity of individuals
contributing to the data. Then it will be fine to go ahead with any and every subsequent
piece of data mangling, since the association between people and their data has been broken.

The annoying flaw in this prescription is that the act of anonymization is far more intricate
than one would ever imagine. The awkward history of attempts to anonymize data is littered
with anecdotes of failure. These are sufficiently illuminating that they bear retelling, albeit
with only light regard for historical accuracy.

I know what you tipped last summer

In 2014, the New York City Taxi and Limousine Commission released a dataset comprising
information about taxi trips taken the preceding year2. This was in response to a Freedom
of Information request. The data had the identifying information of the cabs “masked”,
so that the same cab had the same masked identifier throughout the data. But with a
little effort, the masking function could be reversed, since it was performed by applying
a standard hash function (MD5) to the number. A dictionary attack iterating over the
moderate (< 107) number of possibilities was sufficient to reidentify the cabs. From this,
various privacy breaches were possible: combining the pick-up time and location with the
cab number obtained from press photographs, it was possible to identify where celebrities
had traveled and how much they had tipped3; and by finding establishments of ill-repute
frequented late at night, find trips from these to specific locations to identify the homes of
their clients.

Mass Data Release

When Massachusetts Group Insurance Commission released data on hospital visits of state
employees, they performed due diligence by removing the names, addresses and social security
numbers from the data. However, Latanya Sweeney was able reidentify a large fraction of
individuals in the data based on other signals: specifically, date of birth, sex, and postal
(ZIP) code. These three attributes – none of them identifying in isolation – turn out to
be uniquely identifying for a majority of Americans [9]. Moreover, data linking individuals
to their demographics is quite widely available. The result is that the supposedly private
detailed medical data for many people could be recovered from the released information.

Many other notable examples follow a similar pattern: the release of Internet search
histories by AOL in 20064; the extraction of individual movie viewing histories from Netflix
data in 20085.

From these horror stories to chill the spines of researchers, certain patterns and themes
can be derived:

2 https://archive.org/details/nycTaxiTripData2013
3 http://research.neustar.biz/2014/09/15/
4 http://www.nytimes.com/2006/08/09/technology/09aol.html
5 http://www.nytimes.com/2009/10/18/business/18stream.html

https://archive.org/details/nycTaxiTripData2013
http://research.neustar.biz/2014/09/15/
http://www.nytimes.com/2006/08/09/technology/09aol.html
http://www.nytimes.com/2009/10/18/business/18stream.html


G. Cormode 3

Attempts to release data are usually done with the best of intentions. These can include
attempts to create useful data sets for researchers and the public, response to freedom of
information requests, and business purposes (attempts to “monetize” rich data sets).

Those releasing data are not oblivious to the sensitivity of the data they are sharing:
they make some efforts to remove or mask identifying data. However, these fail in what
in retrospect appear to be obvious ways: the free availability of external information with
which to join to reidentify, or trivial attacks on the masking function.

The consequences vary: in some cases, a large fraction of individuals in the data can be
reidentified, in others it is just an unlucky few. The current consensus seems to be that
these are equally undesirable outcomes. Similarly, the nature of data does not affect the
perceived severity of the breach. Even seemingly innocuous data sets (taxi trips or movie
viewings) can inform on people’s activities or beliefs that they would consider private.

It is worth noting that there is selection bias in these examples, and that there are many
more releases of data which do not expose private information.

In response to these “surprising failures of anonymization” [7], there are a variety of
possible responses. One is to despair of the difficulty of private data release, and to resolve
to oppose any further releases. However, the various pressures, including the clarion calls
from Governments and advocate groups to make data open, mean that data releases will
continue to happen and grow as more data becomes available.

Equally pessimistic is to begin with the same premise, and instead to declare that privacy
is an artifact of the past, which can no longer be attained in a world of Google and Facebook6.
However, thus far society seems not to have abandoned its need for privacy.

Legal responses are a valid option, but mostly seem to provide some attempt at recompense
after the fact rather than prevent, and at best may provide a sufficient penalty that those
releasing data do so with more caution and control over its spread. The scepticism with
which the computing community has viewed efforts such as the “Right to be forgotten”7 to
put the genie back into the bottle show that information spreads too widely and too quickly
for the law to be an effective information removal implement.

Thus, providing tools and mechanisms to understand and assist the release of private
data remains the main viable option to respond to these challenges. The computer science
and statistical research community has risen to this challenge over the past few decades, by
providing a vast literature on the topic. Nevertheless, the problem remains a difficult and
confounding one, that will occupy researchers for years to come.

1.1 Outline

The remainder of this article attempts to touch on some of the technical issues surrounding
privacy and data release. Section 2 delineates various privacy problems and their connection
to other areas. Section 3 outlines some basic principles for working with private data and
technical directions. Section 4 identifies some of the most interesting areas for research, and
makes some initial suggestions for efforts here.

6 https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
7 http://www.stanfordlawreview.org/online/privacy-paradox/right-to-be-forgotten

ICDT 2015

https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
http://www.stanfordlawreview.org/online/privacy-paradox/right-to-be-forgotten


4 The Confounding Problem of Private Data Release

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������
������

������
������
������
������
������

Data
Recipient

Data
Recipient

Data
Recipient

Filter 1 Filter 2

Data
Subject

Exchange
Platform

(a) First-person privacy.

Data
Recipient

Data
Recipient

Data
Recipient

Data
Recipient

Data
Subject

(b) Second-person privacy.

Data
Recipient

Data
Recipient

Data
Subject

Data
Subject

Data
Subject

Data
Recipient

Recipient =
OwnerDataset

Data

Aggregate

(c) Third-person privacy.

Figure 1 Classification of scenarios raising privacy concerns.

2 Privacy Preliminaries

In a typical privacy setting, there are a number of players, with possibly competing interests.
There are data subjects, whose information is the subject of privacy concern. A data subject
can be an individual or user, but it can also be a device, e.g., a computer or cell phone.
The subject’s information may be released to specific data recipients. In some cases, this
involves an exchange platform that typically provides both sharing and filtering capabilities.
Examples include social networks and photo sharing sites. In other cases, it involves an
intermediate entity that either re-shares the data directly (e.g., advertisement-supported
sites), or aggregates it first and may then reshare it (e.g., stores, credit card companies,
phone companies). The aggregator can end up collating large amounts of data about the
demographics, habits, activities and interests of the data subjects, and becomes the dataset
owner of this collection. Intermediate entities may choose to perform a data release and make
some amount of information available to a data recipient, with or without notification to
individual data subjects. However, such a release is still governed by legal obligations to data
subjects (e.g., opt-in vs. opt-out), as well as good practice (a data release should not harm
or upset the data subjects involved). Note that the information disclosed is based on the
collected data, but may be modified in a number of ways. A data release can be addressed
to a particular recipient, rather than being made generally available to all (a public release).

Within this scenario, there are three broad classes of privacy concerns. The classification
is based on how close a data subject is to the final data recipient, and is illustrated in
Figure 1. We distinguish between intermediate entities that re-share data at an individual
level (Figure 1b) and those that aggregate it first (Figure 1c) because the privacy concerns
are significantly different.

2.1 First-person privacy: Users (over)sharing their own data
First-person privacy issues concern the private data that a user shares with other entities
(e.g., websites, social networks), and the rules and policies that determine who is able to see



G. Cormode 5

this information. This is illustrated schematically in Figure 1a. There have been a large
number of headlines about privacy in recent years which ultimately derive from the difficulty
of ordinary users to appreciate the consequences of their data sharing. These include stories
about people sacked for inadvertently sharing their feelings about their manager directly
with their management chain8; and a fugitive captured after revealing his whereabouts to
his ‘friends’ who included a justice department official9. Examples like this arise because
users imagine that their information is being shared with their “true friends”, but in fact it
may be shared with all people they have marked as “friends” through a system. When these
two groups differ, such unintended consequences can occur.

There are several opportunities for research into ways to help users cope with these
privacy problems. Efforts to date have included the provision of tools and warnings to
users (from service providers directly or from third-party plugins) about the extent of their
(over)sharing, and encouraging them to check before they post information.

2.2 Second-person privacy: information spreads fast
Second-person privacy issues arise when the data that a user has shared with one entity is
then passed on to other entities, as shown in Figure 1b. Oversharing of this data can lead
to privacy concerns. For example, AT&T researchers identified that when MySpace was
connecting to external advertisers to place ads on a page, they were passing detailed private
data about the user viewing the page direct to the advertiser10. This ultimately led to a
binding settlement with the FTC monitoring MySpace’s activities for twenty years11.

There is much research potential here. Focus so far has primarily been on detecting
when this happens and tracking the flow of information. A natural approach is to provide
languages for users to express their privacy preferences about how and with whom their
information can be shared; P3P can be seen as an effort in this direction from the start
of the century12, and “do-not-track” a more recent example on the web. Adoption of such
methods have been limited thus far, due to implicit opposition from users (lacking interest in
expressing their privacy requirements and difficulty in doing so), and service providers (whose
business interests may rely on allowing as much sharing of data as possible). Future directions
may be to more actively track information sharing, and the development of “peer-to-peer”
data networks where encryption tools are used to control access to information, such as the
diaspora social network13.

2.3 Third-person privacy: private data release
Third-person privacy issues surround the practice of collecting large amounts of data about
many individuals together, and sharing this with other entities, illustrated in Figure 1c. This
can be in the form of a static data set, a live data feed, or via exposing an API for interactive
interrogation. The goal of this activity is to provide general information about a large user
base without revealing detailed information about any one individual. However, there is the
potential for such data sets to inadvertently reveal private information. The high-profile

8 http://www.dailymail.co.uk/news/article-1206491/
9 http://www.guardian.co.uk/technology/2009/oct/14/mexico-fugitive-facebook-arrest
10 http://online.wsj.com/article/SB10001424052748704513104575256701215465596.html
11 http://ftc.gov/opa/2012/05/myspace.shtm
12 http://www.w3.org/P3P/
13 https://github.com/diaspora/diaspora

ICDT 2015

http://www.dailymail.co.uk/news/article-1206491/
http://www.guardian.co.uk/technology/2009/oct/14/mexico-fugitive-facebook-arrest
http://online.wsj.com/article/SB10001424052748704513104575256701215465596.html
http://ftc.gov/opa/2012/05/myspace.shtm
http://www.w3.org/P3P/
https://github.com/diaspora/diaspora


6 The Confounding Problem of Private Data Release

failures of private data release outlined in the introduction all fall under the heading of
third-person privacy.

2.4 Privacy, Utility and Trust
Guaranteeing the privacy and maintaining the utility of the released data are fundamentally
opposing objectives. There are many possible compromise approaches, some favoring privacy
over utility, and others the reverse. Where in this continuum one chooses to perform a data
release is governed by the level of trust in the data recipient. Assessing trust is easier in
some cases than others: For first-person privacy, data subjects assess the trustworthiness
of their friends, who are the intended data recipients (however, pitfalls exist, as discussed
above). For third-person privacy, data owners have various control levers over the data
recipients (e.g., if the recipients are analysts employed by the data owner, they are subject to
internal rules and regulations; if they are external partners, they are subject to contractual
obligations). However, second-person privacy is less amenable to trust analysis, partly
because of a lack of transparency in the data release process (see Section 4). Under all three
models, understanding the data flow is essential to assessing trust.

2.5 Privacy versus Security
Philosophically, privacy and security (as understood within computer science) have many
tenets in common. However, there are essential differences. Security is primarily concerned
with a binary decision: is access granted to a particular resource? For example, if a user
has the right key they can decrypt a file and access its contents in full, otherwise they learn
nothing. In privacy, the issues are more subtle: a data owner has detailed information about
a collection of users, and must decide which data items, and in what form, they should be
revealed to another entity. As such, the foundations of privacy technology are less mature,
and less widely deployed than security technologies such as encryption.

3 Privacy Principles

Some necessary (but not necessarily sufficient) conditions for ensuring private data release
include the following:

3.1 Protecting Personally Identifiable Information
When sharing data, it is important to remove information which can uniquely identify the
data subject, unless this is absolutely needed. Examples of such “personally identifiable
information” (PII) are well-documented, and include names, account numbers, license plate
number, and social security numbers. In the communications domain, attributes such as IP
address, MAC address, and telephone number are also considered PII.

A US FTC report14 advocates that data be “de-identified”. That is, all PII is removed
prior to sharing. However, in some cases, it is necessary to “join” two data sets to collate
data on individuals from different sources. If this cannot be done prior to release (e.g., if the
two data sets are owned by different organizations), then more complex technical solutions
are needed (see below).

14 http://ftc.gov/os/2012/03/120326privacyreport.pdf

http://ftc.gov/os/2012/03/120326privacyreport.pdf


G. Cormode 7

3.2 Quasi-identifiers
A major subtlety of data release is that information which does not obviously qualify as PII
may nevertheless be sufficient to identify an individual. For example, learning the zip (postal)
code of an individual does not typically identify that person15: most zip codes contain around
10,000 households. However, if taken in combination with other attributes, this can become
identifying, as discussed in the Massachusetts Group Insurance commission example.

There has been much work in the research world on how to anonymize data so that quasi-
identifiers are not identifying. The work on k-anonymity tries to delete and reduce precision
of information so that each individual matches against at least k entries in the released
data [8]. The database community happily occupied itself for many years in generating new
variations on k anonymity; the enthusiasm for this has waned since it was observed that
k-anonymity/diversity does not necessarily provide very useful protection [5].

A different policy approach is to remove the “obviously” identifying fields (PII), and
to ensure that what remains cannot be “reasonably linked” back to a specific individual
or device16. The FTC’s current standard for reasonability is qualitative, and lacking in
examples, and so provides little actionable guidance for data release.

3.3 The data minimization principle
A basic concept in data sharing is the data minimization principle: it should reveal no
more information than is needed for the task at hand. Clearly, this can guide how much
information to delete or mask prior to release. However, putting this into practice can still
be challenging. In particular, it is hard to fully anticipate what information could be of use
for the data recipient, and it is too easy to fall into the trap of including data “just in case”
it is needed. Moreover, the default option is often to allow data to remain in place: it takes
an active decision to remove or modify the values. In these cases, it is helpful to remember
the value of data to its collator: great effort is often expended in collecting and curating rich
data. It is therefore incumbent on organizations to avoid freely giving such wealth to others
without good reason.

3.4 Data Correlations
An additional risk to privacy arises from the accretion of data about individuals. That is,
if a data set includes a lot of information about someone’s activity collected over a long
period of time, this can build up into a picture that is unique, and identifying. In the AOL
example, it was the large collection of search terms that helped to identify certain users,
and hence learn about other searches that they had made. Modern communications and
internet applications are a particularly rich source of information about individual’s interests
and views. Relevant data can include internet browsing history, phone call activities, and
set-top box TV data. Even if attempts are made to mask these (e.g., by suppressing or
hashing phone numbers), these patterns can quickly become unique for most users; moreover,
a determined entity could observe a targeted individual in order to find their entries in the
data. As with quasi-identifiers, there may be no reasonable technical provision which can
preclude such a determined effort to re-identify while still providing the desired functionality.
However, it is possible to ensure that such efforts become costly to enact, and that casual

15With some exceptions, e.g., 20252
16 http://ftc.gov/os/2012/03/120326privacyreport.pdf

ICDT 2015

http://ftc.gov/os/2012/03/120326privacyreport.pdf


8 The Confounding Problem of Private Data Release

inspection of the released data does not allow easy identification: a far weaker standard than
the goal of perfect privacy, but perhaps a more reasonable one for data that is released to a
single party rather than to the world at large.

3.5 Aggregations and Differential Privacy: Safety in Numbers
A natural way to improve the privacy of data is to provide it in aggregated form. That is,
instead of reporting the raw data, just provide statistics on groups of the data. For example,
instead of releasing full lists of phone calls made on a mobile network, one could compute
just the number of calls and average call length (etc.) per account. Or, customer information
could be aggregated up to the neighborhood level, rather than at the household level. Great
care and thought is still required: information still leaks when some groups are allowed to be
small, or when the behavior within a group is uniform.

Within the privacy research community, the concept of “Differential Privacy” is close
to such aggregation in spirit [4]. In its most common form, differential privacy typically
computes aggregate statistics over grouped data, and adds statistical noise to further perturb
the result. In practice, it may be sufficient to rely on aggregation alone, but augmented
with suppression of small groups: the uncertainty in which individuals contribute to the
data is sufficient to provide the perturbation necessary. Use of aggregation is one technique
specifically mentioned in the FTC report (see footnote 14).

3.6 Privacy Checklist
The following checklist is an attempt to articulate a set of questions that should be answered
about any planned use of private data:

What is the data that will be used?
What are the different fields in the data?
Which are the uniquely identifying fields?
How was the data obtained? What control did users have over the inclusion of their data?
How much data is there? At what rate is it produced?
Who is the intended recipient of the data?
What is their intended use for the data?
What other (linkable) data sets would they have access to?
What contractual obligations will the data recipient be placed under?
What transformations will be applied to the data to ensure privacy? Who will perform
each step?
Can each of the data elements be justified or can the list be shortened?
Will all PII be removed from the data prior to release?
What partially identifying information will remain in the data? How easy would it be to
identify an individual from this?
How much data will there be on each individual? Will this allow correlation attacks?
What are the consequences of re-identification? What are the possible harms that could
result?
What are the benefits of the use of the data contrasted against the potential risk of
re-identification?
What are the benefits to the user to share the data?
Who will ensure that the privacy procedure will be adhered to? Can this procedure be
audited?



G. Cormode 9

4 Privacy Pinch-points

The discussion thus far has ranged broadly over different types of data and different data
release settings. The subsequent sections consider some specific applications and techniques
in more detail. The cited work here is heavily biased to the author’s recent research.

4.1 Location and Mobility Data
Data about people’s location, gathered from GPS devices and mobile phones, is increasingly
available. This gives insight into the distribution of people, but also their movements. The
possible applications suggested for mobility data are many and varied: urban planning,
dynamic advertising, road traffic analysis, emergency management and more. At the same
time, it is understood that the detailed location of an individual is very sensitive: their
presence at a particular medical facility, say, may be very private. Even coarse location data
is sensitive: an individual may not wish it to be learned that they were far from where they
said they would be. Longitudinal location data is also particularly susceptible to correlation
attacks of the kind described above: observing someone’s location late at night typically
identifies a “home” location, while location in the middle of the day identifies a “work”
location. This can isolate an individual, and then reveal everywhere else they go.

Consequently, great care is required in releasing location data. Raw trajectories of
movements over extended periods reveal too much. Instead, different approaches are needed.
These can include: (1) Demographic snapshots. Describe the demographic occupancy of
grid-cells of sufficient size, e.g., the (approximate) number of people there; the gender and age
breakdowns, etc. [2]. (2) Short trajectories. Describe the detailed movements of (anonymous)
individuals for short periods of time. It must be made difficult or impossible to “sew these
back together”. (3) Density maps. The approximate locations of an identified sub-population
can be revealed at regular (e.g., hourly) intervals. Each of these brief outlines needs further
research to refine into a specific, robust, procedure.

4.2 Joining private data sets
Much value in working with data comes from the ability to join together multiple data sets,
and hence to learn from the combination. For example, a telecoms provider might wish to
study the impact of call drops on customers’ usage by joining logging data on call drops with
billing data. This becomes problematic to achieve under privacy, since such joins are best
performed making use of a unique identifier to isolate records corresponding to a particular
entity (“the key”); however, such unique identifiers are typically considered PII. Moreover,
several attacks on privacy have occurred due to the possibility of joining a private data set
with a public one.

There are several natural approaches to dealing with joins over private data: (1) The
(trusted) data owner performs the linkage, and then drops the uniquely identifying attributes
from the resulting joined data set, before releasing it. (2) Appropriate “hashing” (using a
secret ‘salt’ value17) to replace occurrences of the key in both data sets. Then they can be
joined using the hashed key value, rather than the true key value. (3) Both data sets can be
entrusted to a trusted third party, who will perform the linkage, and return the results to the
data user. It is important that the data recipient cannot easily compare the joined output
to the input and so reidentify the source of some data items. Each one of these approaches

17 It was a lack of salt that made the NYC taxi data so easy to reidentify.

ICDT 2015



10 The Confounding Problem of Private Data Release

necessitates some amount of trust between the parties. There are cryptographic protocols
for performing joins without revealing which items matched, but these are considered slow
and costly to put into practice.

4.3 Synthetic data sets

One approach that can significantly enhance the privacy of a dataset is to generate a synthetic
dataset that mimics certain properties of the original, but contains made-up entries that are
generated according to some model [6]. A synthetic dataset is designed such that specific
tasks can be performed over it with sufficient accuracy (e.g., analyzing traffic patterns), but
will most likely introduce large errors in other, unrelated types of analysis.

Generating synthetic data may seem very different in nature to anonymization of data, as
they start from opposite extremes. Data anonymization is often viewed as starting with the
original private data in full, and chipping away at it by removal and coarsening of information,
whereas synthetic data generation may be seen as starting with nothing, and creating a new
data set by sampling from an appropriate statistical model whose parameters are derived
from the full data. However, this can also be viewed as a spectrum. One perspective on
private data release is that it should be viewed as designing an appropriate model for the
data, the parameters of which are learned from the data, and which is rich enough to generate
faithful data.

This approach is of particular value when combined with models such as differential
privacy. Applying differential privacy to the function f(x) = x, i.e. trying to simply release
the input data in full, can be seen as a trivially complex model, where the parameters
describe the data in full. The effect of differential privacy in this setting is simply to add
noise that drowns out all signal in the data. At the other extreme, a simple model of the data,
described in terms of sums and averages across all individuals (say) can be obtained very
accurately through differential privacy, but may only describe the data poorly. Abstracting
from these extremes, the difference between the input data and the released data can be
broken into two pieces: the model error (the noise introduced by fitting the data to a model)
and the privacy error (the additional noise added to the parameters of the model to provide
a privacy guarantee). Much recent work in private data release can then be viewed as trying
to find appropriate models for data so that the model error and noise error can both be
contained [3].

4.4 Graph Structured Data

One aspect of “big data” is the variety of forms that the data can arrive in. Different types
of data require different approaches to allow private data release. An important class of data
is that which can be represented in the form of a graph, such as the pattern of interactions
between individuals. This provides a suitable target: a problem simple enough to state, yet
complex enough to give pause, and flexible enough to model a number of different settings.
The reasons that graph data presents a challenge for data release hinges on the fact that
typically an individual will correspond to a node in the graph, and the associated information
(edges) can be quite substantial. Finding a suitable representation of the graph data so that
appropriate statistical noise (say) can be added to mask the presence of an individual while
preserving properties of the graph has so far eluded researchers.



G. Cormode 11

4.5 Inference and Privacy
One of the reasons that private data release remains a confounding problem is the difficulty in
pinning down a suitable definition. Lacking a precise definition of what properties a private
data release should satisfy, it is possible to be fooled into believing that stronger guarantees
result. A case in point is the ability to draw strong conclusions about individuals from the
released data. One might assume that if data is released under an appropriate privacy model,
then it should not be possible to infer supposedly private information about individuals in
the data. However, this is often the case, under a variety of privacy models [5, 1].

The reason is that effective classifiers can be built for data where the parameters of the
classifier depend not on the behaviour of any one individual, but collectively on large groups
within the population. Data released under privacy often preserves statistics on large groups
– indeed, this is very much a requirement for utility. Consequently, it is possible to build
accurate classifiers for seemingly private information. Applying the classifier to individuals
(either from within the data or drawn from a similar population) leads to accurate inferences
about them.

4.6 Data-as-a-Service
The concept of data-as-a-service (DaaS) is a powerful one: since companies have access to
much data of interest, it should be possible to monetize this, and license access to other
organizations who would like to make use of it. Here, privacy concerns come to the fore. It is
vital to ensure that detailed customer data is not released as part of DaaS: revealing who a
business’s customers are, let alone what they are doing, would be viewed as a serious privacy
breach. Multiple privacy techniques may be needed to ensure that such transactions can
proceed effectively. Specifically, all identifiers should be removed, and it should be ensured
that there are no shortcuts that would allow identifiers to be restored. The minimal amount
of information should be included, and the contribution of one individual to the data should
be limited, to reduce the chances of exploiting data correlations to re-identify a person.
Ideally, data would be provided in an aggregate form, possibly with some random noise
added and small counts suppressed. Even then, the privacy analysis should take into account
the possibility of linking the data to other external sources, and thus establish the potential
risks of this.

5 Conclusion

Enabling the release of private data remains a fundamental challenge. Guaranteeing privacy
and being able to share useful data stand in fundamental opposition: the only way to provide
perfect privacy is to entirely prevent all access to data, and the only way to ensure full use
of the data is to make no attempt to address privacy concerns. Nevertheless, there can be
workable compromises that provide a reasonable level of privacy against re-identification
while enabling legitimate data uses. This article has attempted to outline the different ways
in which privacy can be at risk, and discussed principles and ongoing efforts to find workable
solutions. Despite the many horror stories and conceptual challenges, there remains optimism
that suitable technical solutions can be found to all the promise of big data to be realized
while providing strong and effective privacy protections for all.

Acknowledgments. I am indebted to Balachander Krishnamurthy, Magda Procopiuc and
Divesh Srivastava for many lengthy and detailed discussions at AT&T Labs–Research

ICDT 2015



12 The Confounding Problem of Private Data Release

around the topic of privacy. These discussions developed many of the perspectives on
privacy promulgated in this paper, and led to notes on which this article is based (perhaps
explaining the telecoms bias in some of the examples chosen). I similarly thank my many
other collaborators with whom I have worked on topics in privacy over the years. These
include Smriti Bhagat, Xi Gong, Xi He, Zach Jorgensen, Ninghui Li, Tiancheng Li, Ashwin
Machanavajjhala, Entong Shen, Tanh Tran, Xiaokui Xiao, Ting Yu, and Jun Zhang. I also
thank the many other researchers in the privacy community with whom I have discussed
ideas and algorithms over the years.

My work is supported by a Royal Society Wolfson Research Merit Award, and European
Commission Marie Curie Integration Grant PCIG13-GA-2013-618202.

References
1 Graham Cormode. Personal privacy vs population privacy: Learning to attack anonymiz-

ation. In ACM SIGKDD, August 2011.
2 Graham Cormode, Magda Procopiuc, Divesh Srivastava, and Thanh Tran. Differentially

private publication of sparse data. In International Conference on Database Theory, 2012.
3 Graham Cormode, Magda Procopiuc, Divesh Srivastava, Xiaokui Xiao, and Jun Zhang.

Privbayes: Private data release via bayesian networks. In ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2014.

4 Cynthia Dwork. A firm foundation for private data analysis. Communications of the ACM,
54(1):86–95, 2011.

5 Dan Kifer. Attacks on privacy and deFinetti’s theorem. In ACM SIGMOD International
Conference on Management of Data, 2009.

6 Ashwin Machanavajjhala, Daniel Kifer, John M. Abowd, Johannes Gehrke, and Lars Vil-
huber. Privacy: Theory meets practice on the map. In IEEE International Conference on
Data Engineering, 2008.

7 Paul Ohm. Broken promises of privacy: Responding to the surprising failure of anonymiz-
ation. UCLA Law Review, 57(6):1701–1778, August 2010.

8 Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing information:
k-anonymity and its enforcement through generalization and suppression. Technical Report
SRI-CSL-98-04, SRI, 1998.

9 L. Sweeney. Simple demographics often identify people uniquely. Technical Report Data
Privacy Working Paper 3, Carnegie Mellon University, 2000.



Using Locality for Efficient Query Evaluation in
Various Computation Models
Nicole Schweikardt

Department of Computer Science
Humboldt-Universität zu Berlin
schweikn@informatik.hu-berlin.de

Abstract
In the database theory and logic literature, different notions of locality of queries have been
studied, the most prominent being Hanf locality [6, 4, 12] and Gaifman locality [5, 8]. These
notions are designed so that, in order to evaluate a local query in a given database, it suffices to
look only at small neighbourhoods around tuples of elements that belong to the database.

In this talk I want to give a survey of how to use locality for efficient query evaluation in
various computation models. In particular, we will take a closer look at how to enumerate query
results with constant delay [2, 9, 3], and at how to evaluate queries in a map-reduce like setting
[11] or in Pregel [10]. Also, we will have a closer look at how to transform a given local query
into a form suitable for exploiting its locality [1, 7].

1998 ACM Subject Classification H.2.4 [Database Management]: Systems – Query Processing,
H.2.3 [Database Management]: Languages – Query Languages, F.4.1 [Mathematical Logic and
Formal Languages]: Mathematical Logic – Computational Logic, Model Theory

Keywords and phrases query evaluation, locality

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.13

Category Invited Talk

References
1 B. Bollig and D. Kuske. An optimal construction of Hanf sentences. J. Applied Logic,

10(2):179–186, 2012.
2 A. Durand and E. Grandjean. First-order queries on structures of bounded degree are

computable with constant delay. ACM Trans. Comput. Log., 8(4), 2007.
3 A. Durand, N. Schweikardt, and L. Segoufin. Enumerating answers to first-order queries

over databases of low degree. Proc. PODS 2014, pages 121–131, 2014.
4 R. Fagin, L. Stockmeyer, and M. Vardi. On Monadic NP vs Monadic co-NP. Inf. Comput.,

120(1):78–92, 1995.
5 H. Gaifman. On local and nonlocal properties. In J. Stern, editor, Logic Colloquium’81,

pages 105–135. North-Holland, 1982.
6 W. Hanf. Model-theoretic methods in the study of elementary logic. In The Theory of

Models, J. Addison, L. Henkin, and A. Tarski, Eds. North Holland, 1965, pp. 132–145.
7 L. Heimberg, D. Kuske, and N. Schweikardt. An Optimal Gaifman Normal Form Construc-

tion for Structures of Bounded Degree. Proc. LICS 2013, pages 63–72, 2013.
8 L. Hella, L. Libkin, and J. Nurmonen. Notions of locality and their logical characterizations

over finite models. J. Symb. Log., 64(4):1751–1773, 1999.
9 W. Kazana and L. Segoufin. First-order query evaluation on structures of bounded degree.

Logical Methods in Computer Science, 7(2), 2011.

© Nicole Schweikardt;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 13–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


14 Using Locality for Efficient Query Evaluation in Various Computation Models

10 G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, G. Czajkowski Pregel: a
system for large-scale graph processing. Proc. SIGMOD 2010, pages 135–146, 2010.

11 F. Neven, N. Schweikardt, F. Servais, and T. Tan. Distributed Streaming with Finite
Memory. Proc. ICDT 2015.

12 J. Nurmonen. Counting Modulo Quantifiers on Finite Structures. Inf. Comput., 160(1–
2):62–87, 2000.



Large-Scale Similarity Joins With Guarantees
Rasmus Pagh∗

IT University of Copenhagen, Denmark
pagh@itu.dk

Abstract
The ability to handle noisy or imprecise data is becoming increasingly important in computing. In
the database community the notion of similarity join has been studied extensively, yet existing
solutions have offered weak performance guarantees. Either they are based on deterministic
filtering techniques that often, but not always, succeed in reducing computational costs, or they
are based on randomized techniques that have improved guarantees on computational cost but
come with a probability of not returning the correct result. The aim of this paper is to give
an overview of randomized techniques for high-dimensional similarity search, and discuss recent
advances towards making these techniques more widely applicable by eliminating probability of
error and improving the locality of data access.

1998 ACM Subject Classification H.2.4 Database Management – Systems

Keywords and phrases Similarity join, filtering, locality-sensitive hashing, recall

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.15

Category Invited Talk

If I am not me, then who the hell am I?

(Douglas Quaid (Arnold Schwarzenegger) in Total Recall)

1 Introduction

In their famous book Perceptrons [23] from 1969, Minsky and Papert formulated a simple
indexing problem: “Store a set S of D-dimensional binary vectors, such that for a query
vector q, and a tolerance r, we can quickly answer if there exists a vector in S that differs from
q in at most r positions.” To this day the achievable space/time trade-offs for this indexing
problem remain unknown, and even the best solutions offer only weak performance guarantees
for large r and D compared to the guarantees that are known for exact or 1-dimensional
search (hash tables, B-trees). At the same time “tolerance” in data processing and analysis is
gaining importance, as systems are increasingly dealing with imprecise data such as: different
textual representations of the same object (e.g., in data reconciliation), slightly modified
versions of a string (e.g., in plagiarism detection), or feature vectors whose similarity tells us
about the affinity of two objects (e.g., in recommender systems).

The reporting version of Minsky and Papert’s problem, where the task is to search for all
vectors in S within distance r from q, is usually referred to as the near neighbor problem,
and has been considered as an approach to tolerant indexing for many different spaces and

∗ Supported by the European Research Council under the European Union’s 7th Framework Programme
(FP7/2007-2013) / ERC grant agreement no. 614331.

© Rasmus Pagh;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 15–24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


16 Large-Scale Similarity Joins With Guarantees

metrics. In database settings it will often be the case that there is a set Q of vectors1 for
which we want to find all near neighbors in S. If we let d(q, x) denote the distance between
vectors q and x, the similarity join of Q and S with tolerance r is the set

Q ./r S = {(q, x) ∈ Q× S | d(q, x) ≤ r} .

The term “similarity join” suggests that we join vectors that are similar, defined as having
distance smaller than r. Sometimes it is more natural to work with a measure of similarity
rather than distance, for example cosine or Jaccard similarity. This does not fundamentally
change the problem since for each similarity measure we can define a distance measure that
is a decreasing function of similarity.

Some applications do not specify a fixed search radius r, but rather ask to find the
k closest vectors in S for each q ∈ Q. This variant is referred to as a k-nearest-neighbor
(kNN) similarity join. Here we do not consider kNN similarity joins, but note that there are
asymptotically efficient reductions for answering kNN queries using near neighbor queries [16].

While our focus is on theoretical aspects of computing similarity joins, we note that the
problem (and its kNN variation) is of broad practical importance and has been a subject of
extensive study in recent years in several application-oriented fields:

databases (e.g. [9, 10, 11, 18, 19, 20, 22, 28, 31, 32, 34]),
information retrieval (e.g. [6, 12, 35]), and
knowledge discovery (e.g. [1, 5, 33, 36, 37]).

Scope of this paper. The aim of this paper is to give an overview of the main techniques
used for high-dimensional similarity search, and discuss recent advances towards making
these techniques more widely applicable by eliminating probability of error and improving
the locality of data access.

We focus on randomized techniques that scale well to high-dimensional data. (In low
dimensions there exist efficient indexing methods for similarity search, and these translate
into efficient similarity join methods.) For similarity joins it is generally better to take
advantage of the fact that many queries have to be answered, and avoid creating a standard
index, so we omit discussion of the extensive body of work dealing with indexes for similarity
search.

We refer to the recent book by Augsten and Böhlen [4] for a survey of a broader spectrum
of algorithms for similarity join than we are able to cover here.

2 Techniques for high-dimensional similarity joins

To focus on basic techniques we mainly consider the simple case of D-dimensional binary
vectors and Hamming distances. Also, we assume for simplicity that the binary vectors
are explicitly stored, but binary vectors with Hamming weight much smaller than D could
advantageously be stored using a sparse representation.

2.1 Approximation
Following the seminal papers of Gionis, Har-Peled, Indyk, and Motwani [16, 14] a large
literature has focused on approximate similarity join algorithms that may have false negatives,

1 While the near neighbor problem can be defined for arbitrary spaces we will refer to elements of the
space as “vectors”.



R. Pagh 17

i.e., pairs that have distance at most r but fail to be reported by the algorithm. In this
setting it is of course desirable to achieve the highest possible recall, defined as the fraction
of the join result returned by the algorithm.

The possibility of false negatives should not be confused with over-approximation where
the join result is likely to contain “false positive” pairs at distance up to cr, for some
approximation factor c. False positives can be eliminated by checking the distances of all
pairs, which is relatively cheap if the precision is not too low, i.e., when there is not a large
fraction of such false positives. It has been observed that many real-life data sets have low
intrinsic dimension in the sense that the number of vectors within distance cr is within a
reasonably small factor of the number of vectors within distance r when c is a small constant.

2.2 Candidate set generation
Many approximate similarity join algorithms work by first generating a set of candidate
pairs C ⊆ Q× S. For each (q, x) ∈ C the distance d(q, x) is then either computed exactly or
estimated with sufficient precision to determine whether or not d(q, x) ≤ r. More generally
one can think about a gradual process where a distance estimate is refined for each pair
until it is possible to determine whether d(q, x) ≤ r. Many results on similarity join can
be seen as methods for computing good estimates of distances based on a small amount of
information about vectors. Lower bounds from communication complexity (see e.g. [26] and
its references) tell us that it is in general not possible to efficiently and accurately estimate
distances between two vectors based on a small amount of information about each. But
in many settings even crude estimates can give rise to substantial savings compared to a
naïve solution that computes all distances precisely. For example, the Hamming distance
between vectors q and x always lies between |||q|| − ||x||| and ||q||+ ||x||, where || · || denotes
the Hamming weight, i.e., number of 1s.

Subquadratic algorithms. Ideally, to be able to scale to large set sizes we would like to not
spend time on every pair in Q× S. For simplicity of discussion suppose that |Q| = |S| = n

such that |Q × S| = n2. Of course, if the join result has size close to n2 we cannot hope
to use subquadratic time. But for large n it will normally only be of interest to compute
Q ./r S when |Q ./r S| � n2, so we focus on this case.

Some algorithms achieve subquadratic performance for certain data distributions. For
example Bayardo et al. [6] exploit that cosine similarity of most pairs of vectors (in information
retrieval data sets) is small unless they share high weight features. For data sets where
many pairs do not share such high weight features the processing time can be substantially
subquadratic. Another example comes from association mining in genetic data where
Achlioptas et al. [1], building upon seminal work of Paturi et al. [27], obtained running time
empirically proportional to n3/2.

Curse of dimensionality. To obtain the widest possible applicability we would ideally like
to guarantee subquadratic running time regardless of data distribution. It is commonly
believed that such a general result is not possible due to the curse of dimensionality. Indeed,
no similarity join algorithms with good time bounds in terms of parameters n and D are
known. This means that, unless the general belief is wrong, we need to settle for results
that take some aspect of the data distribution into account. Intuitively, the most difficult
case occurs when all distances are close to r, since it is hard to determine whether or not to
include a pair without computing its distance exactly. Most data sets have a distribution of
distances that is much more well-behaved, at least up to a certain radius rmax above which

ICDT 2015



18 Large-Scale Similarity Joins With Guarantees

the similarity join size explodes. Some of the strongest theoretical results that guarantee
subquadratic performance (e.g. [16, 14]) rest on the assumption that we are considering
r that is not too close to rmax. In other words, there is not a huge number of pairs with
distance slightly above r. Often the ratio rmax/r is thought of as a parameter c that specifies
how well distances need to be approximated to distinguish pairs at distance r from pairs at
distance rmax.

2.3 Locality-sensitive hashing.
Paturi et al. [27] pioneered an approach to candidate set generation that results in subquad-
ratic time for similarity join2 as soon as the above-mentioned approximation ratio c is larger
than 1.

Their technique can be seems as an early instance of locality sensitive hashing (LSH), which
creates a candidate set using a sequence of specially constructed hash functions h1, h2, . . . , ht
chosen from a family of functions where the collision probability Pr [hi(q) = hi(x)] is a
non-increasing function of the distance d(q, x). For each hash function hi, every pair in Q×S
with colliding hash values is included as a candidate pair, i.e.:

C =
t⋃
i=1
{(q, x) ∈ Q× S | hi(q) = hi(x)} . (1)

Computing C can be seen as a sequence of t equi-joins with hash value as join attribute. If
we are not concerned with the possibility of generating a candidate pair more than once,
these joins can be processed independently, and the space required for each join is linear
in the input size. While these joins can of course individually be efficiently computed, the
number of joins needed can be large, so it is not obvious that computing them one by one is
the best solution. Indeed, in Section 4 we give an overview of recent work highlighting how
other approaches can give rise to better temporal locality of memory accesses, resulting in
more efficient algorithms in memory hierarchies.

LSH construction. For binary vectors and Hamming distances, the currently best LSH
construction (from [27, 14]) is remarkably simple. It works by selecting (or sampling) a
random set of bits from the vector, i.e., for some randomly chosen ai ∈ {0, 1}D we have:

hi(x) = x ∧ ai, (2)

where ∧ denotes bitwise conjunction, i.e., the & operator in many programming languages.
The Hamming weight of ai is chosen to ensure “small” collision probability for the large
majority of pairs in Q × S that have distance above cr, for some c. If the aim is to
minimize the total number of vector comparisons plus hash function evaluations the best
choice of ai (for large D) is a random vector with ||ai|| ≈ D ln(n)/(cr). This results in
Pr [hi(q) = hi(x)] < 1/n when d(q, x) > cr, meaning that for each hi there will in expectation
be O (n) candidate pairs that have distance above cr. A common way to think about this
is as a filter that is able to remove all but a few of the up to n2 pairs in Q × S that are
not “close to being in the join result”. If we have d(q, x) = r the same choice of ai yields
Pr [hi(q) = hi(x)] ≈ n−1/c. So for each hash function hi the probability that (q, x) is added

2 In fact, they considered a simplified setting where the task is to find a single pair at distance less than r
in a binary data set that is otherwise random. But their technique extends to the more general setting
of similarity join computation.



R. Pagh 19

to C is quite small. This can addressed by using t > n1/c hash functions, which for an
independent sequence of hash functions reduces the probability that (q, x) 6∈ C (such that
the pair becomes a false negative) to (1− n−1/c)t < 1/e. Further increasing the parameter t
reduces, but does not eliminate, the probability of false negatives.

We note that LSH families for many other distance (and similarity) measures have been
developed. The 2012 Paris Kanellakis Theory And Practice Award went to Andrei Broder,
Moses Charikar, and Piotr Indyk for their contributions to work on locality sensitive hashing
for fundamental measures, e.g. [14, 7, 8, 13]. LSH methods are by definition randomized and
have often been seen as inherently approximate in the sense that they must have a nonzero
false negative probability. However, as we will see in Section 3 there are randomized filtering
techniques that guarantee total recall, i.e., no false negatives. As such, the borderline between
LSH techniques and other filtering technique is blurred, or even meaningless.

2.4 Aggregation
In some cases it is possible to gather information on a set of vectors that allows filtering
of pairs involving any element of the set. One such technique is based on aggregation.
As an example, Valiant [29] showed that if we consider Q′ ⊂ Q and S′ ⊂ S there are
situations in which we can show emptiness of Q′ ./r S′ based only on aggregate vectors
σQ′ =

∑
q∈Q′(2q − 1)s(q) and σS′ =

∑
x∈S′(2x− 1)s(x), where s : {0, 1}D → {−1,+1} is a

random function and the arithmetic is over the integers. We consider the dot product

σQ′ · σS′ =
∑
q∈Q′

∑
x∈S′

(s(q)(2q − 1D)) · (s(x)(2x− 1D)) . (3)

The value of (3) is useful for example if the dot product (2q−1D)·(2x−1D) is close to 0 for
all but at most one pair (q, x) ∈ Q×S. Since (2q− 1D) · (2x− 1D) = D− 2d(q, x) a pair with
small Hamming distance has a contribution to (3) of either close to −D or close to +D. This
means that the presence of a close pair can be detected (with a certain probability of error) by
considering whether |σQ′ · σS′ | is close to 0 or close to D. In a theoretical breakthrough [29],
Valiant showed how to combine this technique with fast matrix multiplication (for computing
all dot products of aggregates) to achieve sub-quadratic running time even in cases where
most distances are very close to r. It remains to be seen if aggregation techniques can yield
algorithms that are good in both theory and practice. Promising experimental work on a
different aggregation technique was carried out by Low and Zheng [21], independently of
Valiant, in the context of indexing.

3 Addressing the issue of false negatives

We now consider ways of eliminating false negatives, or in other words achieving total recall.
As a starting observation, note that the non-zero probability that q and x do not collide
under any hi, as defined in (2), is not due to the fact that each ai is random. Indeed, if
we choose a1, . . . , at as a random permutation of the set of all vectors of Hamming weight
D − r we will be guaranteed that hi(q) = hi(x) for some i, while vectors at distance above
r will have no collisions. We say that such a sequence of vectors is covering for distance r.
The reason that traditional LSH constructions are not covering is that the hash functions
are chosen independently, which inherently means that there will be a probability of error.
Though the example above is extreme — it requires t to be very large — it does show
that suitably correlating the hash functions in the sequence can ensure that all pairs within
distance r are included in the candidate set.

ICDT 2015



20 Large-Scale Similarity Joins With Guarantees

More efficient constructions. Following an early work of Greene et al. [15], Arasu et al. [3]
presented a much more efficient construction of a covering vector sequence. Their first
observation is that if t = r + 1 and we choose a1, . . . , at that are disjoint (ai ∧ aj = 0D for
all i 6= j) and covering all dimensions (

∨
i ai = 1D) then vectors at distance at most r will be

identical in the bits indicated by at least one vector ai, such that hi(q) = hi(x).
While this approach ensures that we generate every pair in Q ./r S as a candidate, it is

not clear how well this sequence of functions is able to filter away pairs at distances larger
than r from the candidate set. Norouzi et al. [24] recently considered, independently of Arasu
et al. [3], the special case where the binary vectors are random. But for general (worst case)
data it could be that all differences between q and x appear in the positions indicated by a1,
in which case there will be hash collisions for all functions except h1. To address this, Arasu
et al. propose to initially apply a random permutation π : {1, . . . , D} → {1, . . . , D} to the
dimensions. Abusing notation we let π(x) denote the vector where π(x)i = xπ(i), so that the
hash functions considered are defined by:

h′i(x) = π(x) ∧ ai . (4)

As a practical consideration it may be advantageous to instead compute π−1(h′(x)) =
x∧π−1(ai), since we can precompute the vectors π−1(ai), and this change preserves collisions.

Analysis. We claim that including the permutation makes Pr [h′i(q) = h′i(x)], where the
probability is over the choice of random permutation, depend only on the Hamming weight
||ai|| and the distance d(q, x). Essentially, h′i(x) is sampling a set of ||ai|| positions from
{1, . . . , D}, without replacement, and we have a collision if none of these positions differ:

Pr [h′i(q) = h′i(x)] =
(
D − d(q, x)
||ai||

)/ (
D

||ai||

)
. (5)

When D is large (and D � d(q, x)) this probability is well approximated by the probability
when sampling with replacement, i.e.,

Pr [h′i(q) = h′i(x)] ≈ (1− d(q, x)/D)||ai|| ≈ exp(−||ai|| d(q, x)/D) . (6)

As can be seen the collision probability decreases exponentially with ||ai||, so increasing the
Hamming weights of a1, . . . , at will increase filtering efficiency. Arasu et al. present a method
for getting a covering sequence a∗1, . . . , a∗t of larger Hamming weight (no longer satisfying
the disjointness condition). We refer to their paper for a precise description, and simply use
h∗1, . . . , h

∗
t to denote the corresponding hash functions. Arasu et al. do not provide a general

analysis, but it appears that the Hamming weight that their method can achieve with t

functions is asymptotically (for large t and r) around D log2(t)/(4r). This corresponds to a
collision probability for each hash function h∗i of roughly:

Pr [h∗i (q) = h∗i (x)] ≈ exp(− log2(t)d(q, x)/(4r)) ≈ t−0.36d(q,x)/r . (7)

The probability that (q, x) is included in the candidate set can be upper bounded by a union
bound over all t functions, as t1−0.36 d(q,x)/r. This means that for d(q, x) > 3r we are likely
not to include (q, x) as a candidate, and the probability that it becomes a candidate decreases
polynomially with t. Just as for standard LSH, the best choice of t balances the cost of false
positives in the candidate set with the cost of identifying candidate pairs more than once.



R. Pagh 21

Discussion of optimality. If we consider (q, x) with d(q, x) = r any covering sequence of vec-
tors needs to ensure a collision, which requires, at least, that the expected number of collisions
is 1. So if we use hash functions h1, . . . , ht then we must have

∑t
i=1 Pr [hi(q) = hi(x) | d(q, x)

= r] ≥ 1. If we assume that there is a non-increasing function of f : R → R such that for
each i, Pr [hi(q) = hi(x) | d(q, x) = cr] = f(c), then:

t ≥ 1/f(1) . (8)

According to (7) the construction of Arasu et al. [3] obtains f(1) ≈ t−0.36, i.e., t ≈ (1/f(1))2.77.
If it is possible to obtain a sequence of hash functions of length close to the lower bound (8) it
will be possible to match the performance of the classical LSH method of Gionis et al. [14]. A
nonconstructive argument by the probabilistic method, using a sequence of randomly chosen
vectors ai, shows that t = O (r log(D)/f(1)) suffices to ensure the existence of a covering
sequence of vectors. However, this fact is of little help since we have no effective way of
constructing such a sequence, or even checking its correctness.

4 Addressing the issue of data locality

An issue with the candidate generation method that we have outlined is that it makes poor
use of the memory hierarchy. If the data set does not fit in internal memory it is likely that
we will need to read every vector from external memory once for each hash function. In
contrast, methods that explicitly consider all pairs of vectors can be implemented with good
data locality by handling subsets of Q and S that fit in fast memory.

Bahmani et al. [5] suggested to use two levels of LSH to compute similarity joins more
efficiently in a distributed setting, where the goal is to distribute the data such that most
computations can be done separately on each node. Roughly, the top-level LSH distributes
the data to nodes such that it is reasonably evenly distributed, and the second-level LSH
improves the filtering to decrease the computational cost.

In a recent paper [25] we take this idea further and analyze the resulting algorithm in
the I/O model (see e.g. [30]), where the aim is to minimize the number of block transfers
between slow and fast memory. Consider a setting where standard LSH-based similarity
joins use nρ hash functions, for a parameter ρ ∈ (0; 1). If n significantly exceeds the number
M of vectors that fit in fast memory, this means that the join algorithm will need to transfer
each element nρ times between fast and slow memory. This is not always better than a naïve
block nested loop join algorithm, which transfers each vector n/M times. Our main finding
is that both of these bounds can be improved for large n, to O ((n/M)ρ poly logn) transfers
of each vector, under a reasonable assumption on the distance distribution (essentially that
the number of pairs in Q× S at distance close to r is not huge).

A recursive similarity join algorithm. The algorithm described in our paper [25] is designed
with ease of analysis in mind, so it may not be fully practical — in particular due to the
poly logn factor. Here we will consider a simple variant that highlights the main idea of [25]
and is potentially useful. The idea is to use a shorter sequence of LSH functions h1, . . . , hL
that is just powerful enough to filter away a constant fraction of the candidate pairs in Q×S.
This step alone will leave many false positives, but it can be applied recursively to each
bucket of each hash function to increase filtering efficiency. We will soon describe the base
case of the recursion, but first state the general case, where C(Q,S) denotes our recursive

ICDT 2015



22 Large-Scale Similarity Joins With Guarantees

function for computing a candidate set. Let V denote the set of possible hash values; then:

C(Q,S) =
L⋃
i=1

⋃
v∈V

C({q ∈ Q | hi(q) = v}, {x ∈ S | hi(x) = v}), (9)

where the sequence of hash functions is chosen randomly and independently. Since a pair
may collide more than once the candidate set should be thought of as a multiset, and the
number of candidates proportional to the size of this multiset. The recursion in (9) effectively
replaces the naïve candidate set Q× S by a multiset of colliding pairs of size:

coll(Q,S) =
L∑
i=1

∑
v∈V
|{q ∈ Q | hi(q) = v} × {x ∈ S | hi(x) = v}| . (10)

We would like to apply (9) when it at least halves the number coll(Q,S) of candidate
pairs compared to |Q× S|. That is, as a base case we take:

C(Q,S) = Q× S if |Q× S| ≤ 2 coll(Q,S) . (11)

Discussion. If we consider the sets Q′ ⊆ Q and S′ ⊆ S in a particular base case, all vectors
will have identical values for a sequence of hash functions. This is in some ways similar to
the common technique of composing several LSH functions to increase filtering efficiency.
The essential difference is that many subproblems can share each hash function, so much of
the work on distributing vectors into subproblems is shared. Since applying the LSH family
to the base case fails to decrease the number of candidate pairs substantially, it must be the
case that the majority of pairs in Q′ × S′ have distance not much above r, so the complexity
of checking candidates can be bounded in terms of the number of pairs that have distance
not much above r.

We outline the main idea in the analysis from our paper [25] as it applies to the simplified
algorithm. If we restrict attention to a particular pair (q, x) ∈ Q× S, the recursion can be
seen as a branching process where the presence of (q, x) in a subproblem may lead to the pair
being repeated in one or more recursive subproblems. The pair is ultimately considered if
and only if it “survives” on some path in the recursion tree, all the way down to a base case
(where all pairs are considered as candidates). We would like to ensure that if d(q, x) ≤ r then
(q, x) survives with certainty (or with good probability, if false negatives can be tolerated),
while if d(q, x) > cr for c > 1 the probability that (q, x) becomes a candidate decreases
rapidly with c. The theory of branching processes (see e.g. [17]) says that this will be the
case if the expected number of recursive calls involving (q, x) is at least 1 for d(q, x) ≤ r and
less than 1 for d(q, x) > cr.

An advantage of a recursive algorithm is that once subproblems are small enough to fit
in fast memory they will produce no further transfers between fast and slow memory. When
solving the base case we may also use a recursive approach by splitting Q × S into four
candidate sets each involving half of Q and S.

We stress that an arbitrary sequence of hash functions can be used, including those
described in Section 3. In this case, the similarity join algorithm will achieve total recall.

5 Conclusion and open problems

We have argued that randomized techniques related to those traditionally used in LSH are
applicable to similarity joins in which false negatives do not occur. It remains to be seen to



R. Pagh 23

what extent such techniques can be extended to other spaces and metrics, such as Euclidean
or Manhattan distances, but non-constructive arguments suggest that at least some nontrivial
results are possible. Even in the case of binary vectors it is an interesting question if the
construction of Arasu et al. [3] can be improved, and in that case how close to the lower
bound (8) it is possible to get.

Finally, recent developments on indexes for approximate similarity search [2] suggest that
it may be possible to further improve LSH-based similarity join algorithms.

Acknowledgement. The author thanks Ninh Pham, Francesco Silvestri, and Matthew Skala
for useful feedback on a preliminary version of this paper.

References
1 Panagiotis Achlioptas, Bernhard Schölkopf, and Karsten Borgwardt. Two-locus association

mapping in subquadratic time. In Proceedings of KDD, pages 726–734. ACM, 2011.
2 Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate

near neighbors. arXiv preprint arXiv:1501.01062, 2015.
3 Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact set-similarity joins.

In Proceedings of VLDB, pages 918–929, 2006.
4 Nikolaus Augsten and Michael H Böhlen. Similarity joins in relational database systems.

Synthesis Lectures on Data Management, 5(5):1–124, 2013.
5 Bahman Bahmani, Ashish Goel, and Rajendra Shinde. Efficient distributed locality sensit-

ive hashing. In Proceedings of CIKM, pages 2174–2178, 2012.
6 Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs similarity

search. In Proceedings of WWW, pages 131–140, 2007.
7 Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntactic

clustering of the web. Computer Networks, 29(8-13):1157–1166, 1997.
8 Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceed-

ings of STOC, pages 380–388, 2002.
9 Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A primitive operator for simil-

arity joins in data cleaning. In Proceedings of ICDE, page 5, 2006.
10 Yun Chen and Jignesh M Patel. Efficient evaluation of all-nearest-neighbor queries. In

Proceedings of ICDE, pages 1056–1065. IEEE, 2007.
11 Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr Indyk, Rajeev Motwani,

Jeffrey D. Ullman, and Cheng Yang. Finding interesting associations without support
pruning. IEEE Trans. Knowl. Data Eng., 13(1):64–78, 2001.

12 Abhinandan Das, Mayur Datar, Ashutosh Garg, and ShyamSundar Rajaram. Google news
personalization: scalable online collaborative filtering. In Proceedings of WWW, pages
271–280, 2007.

13 Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of SOCG, pages 253–262,
2004.

14 Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions
via hashing. In Proceedings of VLDB, pages 518–529, 1999.

15 Dan Greene, Michal Parnas, and Frances Yao. Multi-index hashing for information retrieval.
In Proceedings of FOCS, pages 722–731. IEEE, 1994.

16 Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: To-
wards removing the curse of dimensionality. Theory of computing, 8(1):321–350, 2012.

17 Theodore E Harris. The theory of branching processes. Courier Dover Publications, 2002.

ICDT 2015



24 Large-Scale Similarity Joins With Guarantees

18 Edwin H Jacox and Hanan Samet. Metric space similarity joins. ACM Transactions on
Database Systems (TODS), 33(2):7, 2008.

19 Yu Jiang, Dong Deng, Jiannan Wang, Guoliang Li, and Jianhua Feng. Efficient parallel
partition-based algorithms for similarity search and join with edit distance constraints. In
Proceedings of Joint EDBT/ICDT Workshops, pages 341–348. ACM, 2013.

20 Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. Pass-join: A partition-based
method for similarity joins. Proceedings of the VLDB Endowment, 5(3):253–264, 2011.

21 Yucheng Low and Alice X Zheng. Fast top-k similarity queries via matrix compression. In
Proceedings of CIKM, pages 2070–2074. ACM, 2012.

22 Jiaheng Lu, Chunbin Lin, Wei Wang, Chen Li, and Haiyong Wang. String similarity
measures and joins with synonyms. In Proceedings of SIGMOD, pages 373–384. ACM,
2013.

23 Marvin L Minsky and Seymour A Papert. Perceptrons - Expanded Edition: An Introduction
to Computational Geometry. MIT press, 1987.

24 Mohammad Norouzi, Ali Punjani, and David J Fleet. Fast search in hamming space with
multi-index hashing. In Proceedings of CVPR, pages 3108–3115. IEEE, 2012.

25 Rasmus Pagh, Ninh Pham, Francesco Silvestri, and Morten Stöckel. I/O-efficient similarity
join in high dimensions. Manuscript, 2015.

26 Rasmus Pagh, Morten Stöckel, and David P. Woodruff. Is min-wise hashing optimal for
summarizing set intersection? In Proceedings of PODS, pages 109–120. ACM, 2014.

27 Ramamohan Paturi, Sanguthevar Rajasekaran, and John Reif. The Light Bulb Problem.
Information and Computation, 117(2):187–192, March 1995.

28 Yasin N Silva, Walid G Aref, and Mohamed H Ali. The similarity join database operator.
In Proceedings of ICDE, pages 892–903. IEEE, 2010.

29 Gregory Valiant. Finding Correlations in Subquadratic Time, with Applications to Learning
Parities and Juntas. In Proceedings of FOCS, pages 11–20. IEEE, October 2012.

30 Jeffrey Scott Vitter. Algorithms and Data Structures for External Memory. Now Publishers
Inc., 2008.

31 Jiannan Wang, Guoliang Li, and Jianhua Fe. Fast-join: An efficient method for fuzzy token
matching based string similarity join. In Proceedings of ICDE, pages 458–469. IEEE, 2011.

32 Jiannan Wang, Guoliang Li, and Jianhua Feng. Can we beat the prefix filtering?: an
adaptive framework for similarity join and search. In Proceedings of SIGMOD, pages 85–
96. ACM, 2012.

33 Ye Wang, Ahmed Metwally, and Srinivasan Parthasarathy. Scalable all-pairs similarity
search in metric spaces. In Proceedings of KDD, pages 829–837, 2013.

34 Chenyi Xia, Hongjun Lu, Beng Chin Ooi, and Jing Hu. Gorder: an efficient method for
knn join processing. In Proceedings of VLDB, pages 756–767. VLDB Endowment, 2004.

35 Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient similarity joins for near
duplicate detection. In Proceedings of WWW, pages 131–140, 2008.

36 Reza Bosagh Zadeh and Ashish Goel. Dimension independent similarity computation. The
Journal of Machine Learning Research, 14(1):1605–1626, 2013.

37 Xiang Zhang, Fei Zou, and Wei Wang. Fastanova: an efficient algorithm for genome-wide
association study. In Proceedings of KDD, pages 821–829. ACM, 2008.



A Declarative Framework for Linking Entities
Doug Burdick1, Ronald Fagin1, Phokion G. Kolaitis2,1,
Lucian Popa1, and Wang-Chiew Tan2

1 IBM Research – Almaden
2 UC Santa Cruz

Abstract
The aim of this paper is to introduce and develop a truly declarative framework for entity linking
and, in particular, for entity resolution. As in some earlier approaches, our framework is based
on the systematic use of constraints. However, the constraints we adopt are link-to-source con-
straints, unlike in earlier approaches where source-to-link constraints were used to dictate how to
generate links. Our approach makes it possible to focus entirely on the intended properties of the
outcome of entity linking, thus separating the constraints from any procedure of how to achieve
that outcome. The core language consists of link-to-source constraints that specify the desired
properties of a link relation in terms of source relations and built-in predicates such as similarity
measures. A key feature of the link-to-source constraints is that they employ disjunction, which
enables the declarative listing of all the reasons as to why two entities should be linked. We also
consider extensions of the core language that capture collective entity resolution, by allowing
inter-dependence between links.

We identify a class of “good” solutions for entity linking specifications, which we callmaximum-
value solutions and which capture the strength of a link by counting the reasons that justify it.
We study natural algorithmic problems associated with these solutions, including the problem
of enumerating the “good” solutions, and the problem of finding the certain links, which are the
links that appear in every “good” solution. We show that these problems are tractable for the
core language, but may become intractable once we allow inter-dependence between link rela-
tions. We also make some surprising connections between our declarative framework, which is
deterministic, and probabilistic approaches such as ones based on Markov Logic Networks.

1998 ACM Subject Classification H.2.5 Heterogeneous Databases

Keywords and phrases entity linking, entity resolution, constraints, certain links

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.25

1 Introduction

Entity linking is a long-standing research problem that has received considerable attention over
the years. The most extensively investigated case of entity linking is entity resolution, which is
the problem of linking pieces of information occurring in one or more, possibly heterogeneous,
datasets that refer to the same real-world object (entity). Entity resolution is known under
various names: record linkage, data deduplication, reference reconciliation, merge-purge (see,
e.g., [9, 11, 15, 22, 26]). Much of entity resolution research has focused on developing the
algorithms, similarity measures, and the general methodologies for matching entities, while
at the same time significant engineering effort has been devoted to experimenting and tuning
the resulting systems.

In recent years, we have seen several new efforts aimed at raising the level of abstraction
in entity resolution systems. These efforts, ranging from the earlier AJAX framework [17]
to the more recent Dedupalog [2] and HIL [21] languages, represent attempts to specify, in

© Doug Burdick, Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang-Chiew Tan;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 25–43

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


26 A Declarative Framework for Linking Entities

a more declarative way, the basic ingredients of an entity resolution process. In particular,
instead of using lower-level implementation algorithms, they employ SQL-like constructs
or constraints expressed in logical formalisms as components of a high-level language. A
common characteristic in these approaches is the use of source-to-link constraints, that is,
constraints that specify the direct creation of the links from the source data. In turn, this
feature has the consequence that operational semantics are used, hence the meaning of a
specification in such a language is some link relation resulting from the operational semantics.
For example, HIL uses SQL-like statements to express the creation of links from a set of
sources and provides only an operational procedure to interpret such statements. As for
Dedupalog, the specification has the form of a Datalog-style program with constraints of two
types: hard constraints and soft constraints. The goal is to find a link relation that satisfies
the hard constraints, and that minimizes the number of soft constraints violated. Since this
turns out to be a computationally intractable problem, the semantics of Dedupalog is given
by an algorithm that, in many cases, produces an approximately optimal result.

In this paper, we take a different approach to declarative entity linking (and, in particu-
lar, to declarative entity resolution), where we clearly separate the specification from the
implementation, and also ensure that the implementation always satisfies the specification.
Our goal is to provide a clean and expressive specification language, with rigorous semantics,
which can serve as a foundation for the implementation or evaluation of entity linking systems.
Two salient features of our framework are as follows.

First, we consider entity resolution as a general problem of defining links between source
values. A (binary) link is modeled as a binary table that relates pairs of values from the given
source relations. While, as described earlier, entity resolution is typically confined to the
problem of matching entities representing the same real-world object, our framework allows
linking entities that are not necessarily of the same type; in particular, a link relation need
not be an equivalence relation. In other words, the same type of specification is used not
only to match person records across multiple databases (which is a typical entity resolution
application), but also to link a subsidiary company with its parent company or to link a
CEO with his/her company.

Second, as in some of the earlier approaches, our specification language is based on
constraints. However, the constraints we adopt are link-to-source constraints, unlike in earlier
approaches where source-to-link constraints were used to dictate how to populate the link
relations. Our approach makes it possible to focus entirely on the intended properties of
the outcome of entity linking, thus separating the constraints from any procedure of how to
achieve that outcome. The core language L0 consists of link-to-source constraints that specify
the desired properties of link relations in terms of the source relations and built-in predicates,
such as similarity measures. We also consider extensions of L0 in which other link relations
may be used in the specification of link relations, thus allowing a link to also depend on other
links. We distinguish two such extensions, namely, the language L1 in which no recursion
is allowed in the specification (i.e., no link relation depends on itself) and the language
L2 in which recursion is allowed; these extensions capture what is usually called collective
entity resolution [6], where inter-dependence between links is allowed. A key feature of the
link-to-source constraints is that, in their most general form, they are disjunctive constraints
that enable the declarative listing of all the reasons as to why two entities are linked. In
addition, our specification languages make use of inclusion dependencies that specify the
provenance of the links w.r.t. the source data, and also allow for functional dependencies
that specify when a link relation is many-to-one or one-to-one.

Since all our constraints are link-to-source, they always admit solutions, that is, link



D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan 27

relations that satisfy all the constraints at hand. (The empty link instance is always a
solution, albeit not necessarily a desirable one.) Therefore, one of the main questions that has
to be addressed is: what are the “good” solutions out of the space of all possible solutions?
Moreover, since multiple good solutions may exist for a given specification and a given
source instance, a related important problem is that of identifying the certain links and the
ambiguous links, that is, those links that appear in every good solution and, respectively, in
some, but not in every, good solution. From a practical point of view, the certain links are the
links that should be kept, while the ambiguous links are the links that must be inspected by a
human. In particular, examination of the ambiguous links may lead to a revised specification
that will result into fewer ambiguous links. Thus, producing the ambiguous links is an
important computational task.

As a first candidate of a class of “good” solutions, we consider maximal solutions, where
goodness is maximality among solutions w.r.t. set containment. For each fixed entity linking
specification in the core language L0, we show that there is a polynomial-delay algorithm that,
for each source instance I, enumerates all of the maximal solutions for I. (A polynomial-delay
algorithm [24] for a problem is an algorithm that, given an input, generates all solutions
to the problem, one after another, where the first solution is generated in polynomial time,
and the next solution is generated in polynomial time after the previous solution.) We also
show that there are polynomial-time algorithms that, given a source instance I, compute the
certain links and the ambiguous links for I w.r.t. the class of maximal solutions. However,
we point out that, in practice, there are too many maximal solutions, which implies that
quite often there are too few certain links, if any. In other words, the semantics given by
maximal solutions is too coarse-grained and does not have enough differentiating power
among solutions. In view of the above, we refine the semantics by considering a subclass of
maximal solutions that we call maximum-value solutions, which maximize the total strength
of links. Under this semantics, the strength of a link is measured by counting the disjuncts
and existential witnesses that “justify” the existence of a link. For each fixed entity linking
specification in the core language L0, we show that there is a polynomial-delay algorithm
that, for each source instance I, enumerates all of the maximum-value solutions for I. We
also show that there are polynomial-time algorithms that, for each source instance I, compute
the certain links and the ambiguous links for I w.r.t. the class of maximum-value solutions.

We also establish that some existing probabilistic approaches for entity resolution can be
captured, in a precise sense, by entity linking specifications in L0 under a suitable extension
of the maximum-value semantics that allows for weight functions. We start with a well-known
class of probabilistic matching algorithms that originated with Fellegi and Sunter [15] and is
at the core of many commercial systems, including IBM’s QualityStage [23]. We show that
the core logic behind these matching algorithms is captured by a fragment of L0 where each
disjunct in the matching constraint consists of a single atomic formula. We then consider
the richer probabilistic framework of Markov Logic Networks (MLNs) [29], which in general
allows for arbitrary first-order formulas to be interpreted in a probabilistic sense. We show
that a class of linear MLNs that is useful for entity resolution [30] is captured by a fragment
of L0 (under the same extended semantics). Thus, rather surprisingly, a purely probabilistic
approach (based on MLNs) can be captured in a deterministic way. As a byproduct, we show
that for linear MLNs, there is a polynomial-delay algorithm for enumerating the maximum
probability worlds, and polynomial-time algorithms for computing the certain and ambiguous
links (w.r.t. the class of maximum probability worlds). To the best of our knowledge, these
are the first polynomial-time results for MLN-based entity resolution.

The state of affairs turns out to be dramatically different for the extended language L1

ICDT 2015



28 A Declarative Framework for Linking Entities

that allows dependence of a link on other links, but disallows recursive interdependence
between links. To begin with, we show that there is a fixed entity linking specification in L1
for which the following problem is NP-complete: given a source instance I and a positive
integer k, is there a solution for I whose value is at least k? Consequently, there is no
polynomial-delay algorithm for enumerating the maximum-value solutions, unless P = NP.
Moreover, we show that there is a fixed entity linking specification in L1 for which there
are no polynomial-time algorithms for telling whether a link is certain or ambiguous w.r.t.
the class of maximum-value solutions, unless NP = coNP. It should be noted that the
intractability of recognizing the certain links and the ambiguous links is established by using
results about the computational complexity of recognizing frozen variables in constraint
satisfaction problems [25]. On the positive side, we identify a large syntactic fragment of L1
for which there is a polynomial-delay algorithm for enumerating maximum-value solutions, as
well as polynomial-time algorithms for computing the certain links and the ambiguous links.

The complete proofs of all our results will appear in a full version of this paper.

2 A Declarative Framework for Linking Entities: Basics

A source relational schema is a finite sequence S = 〈R1, . . . , Rm〉 of relation symbols, each
of a fixed arity. When attribute names are not essential, we may identify attributes by
their position. A source instance I over S is a sequence (RI1, . . . , RIm), where each RIi
is a finite relation of the same arity as Ri. We often use Ri to denote both the relation
symbol and the relation RIi that interprets it. Additionally, a link schema is a finite sequence
L = 〈L1, . . . , Ln〉 of link symbols, where each Li is binary. A link instance J over L is a
sequence (LJ1 , . . . , LJn) of finite binary relations. For a relation T (either source or link) and
a tuple t in T , we denote by T (t) the association between T and t and refer to it as a fact.
When T is a link relation, we may refer to T (t) as a link. An instance can be conveniently
represented by its set of facts. Given instances K and K ′, we say that K is a subinstance of
K ′ and write K ⊆ K ′ if the set of facts in K is a subset of the set of facts in K ′. We write
K ⊂ K ′ if this subset relationship is strict.

We specify a link relation, implicitly, by defining the properties that it must satisfy. For
each link symbol L, there are three sets of constraints, as follows. The first set contains at
most one matching constraint of the form

(mL) L(x, y)→ ∀u(ψ(x, y,u)→ α1 ∨ . . . ∨ αk),

where ψ(x, y,u) is a (possibly empty) conjunction of atomic formulas over S, the universally
quantified variables u must occur in ψ, and where αi ::= ∃z φi(x, y,u, z). Each φi is a
conjunction of source atomic formulas, along with equalities and other built-in or user-defined
boolean predicates (such as similarity or string containment). Also, note that x and y are
universally quantified, but for simplicity of notation we omit their quantifiers.

The intuition behind the use of disjunction in the matching constraint is that it lists all
the possible matching conditions (i.e., α1, . . ., αk) for why a link L(x, y) may exist. If a link
L(x, y) exists, then one or more of those reasons must be true. We do not require a matching
constraint to be given for each link; for those links without a matching constraint, the link
relation is implicitly defined by the rest of the constraints. We will give concrete examples of
matching constraints shortly. We will also explain the role of the universal quantification ∀u
and of the formula ψ(x, y,u).

The second set of constraints, for a given link symbol L, consists of an inclusion dependency
of the form L[X] ⊆ R[A] and an inclusion dependency of the form L[Y ] ⊆ R′[A′]. Here,



D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan 29

X and Y denote the first and the second attribute of L, while A and A′ denote attributes
in source relations R and R′. As usual, R[A] denotes the projection of R on A. The two
dependencies specify an upper bound for the set of links that can appear in L: every link
in L will be a pair relating a value in R[A] with a value in R′[A′]. Finally, the third set of
constraints, for a given link symbol L, with attributes X and Y , consists of zero, one or both
of the functional dependencies L : X → Y and L : Y → X. Functional dependencies encode
basic cardinality constraints on the result of entity linking. (See also [21] for the significance
of such constraints in practice.) The presence of one functional dependency means that the
links are required to be many-to-one, that is, an entity on one side must be linked with at
most one entity on the other side. The presence of both functional dependencies means that
the links must be one-to-one.

We use the term L0 for the above language, consisting of matching constraints, and
inclusion and functional dependencies. Later, we also consider extensions to L0 (such as
allowing for inter-dependencies among the links). We use the term entity linking specification
(in L0) for a triple E = (L,S,Σ) where L is a link schema, S is a source schema, and Σ
is a set of constraints containing, for each link symbol L in L, (1) at most one matching
constraint, (2) two inclusion dependencies, and (3) zero, one or two functional dependencies,
all as defined above.

I Definition 1. Let E = (L,S,Σ) be an entity linking specification, and I be a source
instance. A solution for I w.r.t. E is a link instance J such that (J, I) |= Σ, where (J, I) is
the instance over the schema L ∪ S obtained by taking the union of the facts in J and I.

I Example 2. In this scenario, we link subsidiaries in one database with parent companies
in another database. Consider the following source schema S:

Subsid(sid, sname, location) Company(cid, cname, hdqrt) Exec(eid, cid, name, title)

This source schema includes the relation symbols Subsid from the first database, and Company
and Exec from the second database. A source instance I for S is given below as a set of facts:

Subsid(s1, “Citibank N.A.”, “New York”) Company(c1, “Citigroup Inc”, “New York”)
Subsid(s2, “CIT Bank”, “Salt Lake City”) Company(c2, “CIT Group Inc”, “New York”)

Exec(e1, c1, “E. McQuade”,
“CEO, Citibank N.A.”)

The intention is to generate links between subsidiary ids and corresponding company ids.
Thus, the link schema L consists of a single link symbol L(sid, cid). In the scenario,“Citibank
N.A.” is the name of a true subsidiary of “Citigroup Inc”, while “CIT Bank” is the name of a
true subsidiary of “CIT Group Inc”. We note that this is a real-life example, and “Citigroup
Inc” and “CIT Group Inc” are two different financial institutions. The goal of entity linking
is to identify links such as L(s1, c1) and L(s2, c2), given the available evidence.

A possible entity linking specification that exploits the available attributes and the
relationship between the source tables is E = (L,S,Σ), where Σ consists of a matching
constraint:

L(sid, cid) → ∀sn, loc, cn, hd (Subsid(sid, sn, loc)∧ Company(cid, cn, hd)
→ (sn ∼ cn) ∨ ∃e, n, t(Exec(e, cid, n, t)∧ contains(t, sn))),

two inclusion dependencies L[sid] ⊆ Subsid[sid], L[cid] ⊆ Company[cid], and the functional
dependency L : sid → cid. While the inclusion dependencies specify where L is allowed to
take values from, the functional dependency gives the additional requirement on L that the

ICDT 2015



30 A Declarative Framework for Linking Entities

links must be many-to-one from sid to cid. Thus, every subsidiary must link to at most one
company, but the converse need not hold. The matching constraint gives the actual matching
logic and includes a listing of all the possible matching conditions for why a link may exist.
Concretely, if a subsidiary id and a company id are linked, then it must be that one of the
two matching conditions holds: (1) there is an overlap in the names, as specified by sn ∼ cn,
or (2) there is some executive working for the company and this executive has a title that
contains the subsidiary’s name.

The universally quantified conjunction Subsid (sid, sn, loc) ∧ Company (cid, cn, hd) gives
the context surrounding the occurrences of sid and cid in the source relations. In general, the
matching conditions can refer to any variable in the context (e.g., sn, cn), and each matching
constraint’s disjunction must be true for every instantiation of the universal variables. For
example, if a subsidiary id (sid) is associated with two or more subsidiary names (sn) in
the source relation Subsid, then the disjunction of the two matching conditions must hold
for every such name. Thus, we consider every name variation of the subsidiary; if for some
variation sn the matching conditions do not hold, then that may be an indication that we
do not have a true subsidiary.

The following are solutions for I w.r.t. E :

J1 = {L(s1, c1), L(s2, c1)} J2 = {L(s1, c1), L(s2, c2)}
J3 = {L(s1, c2), L(s2, c1)} J4 = {L(s1, c2), L(s2, c2)}

We assume here that the name overlap predicate ∼ evaluates to true for all pairs of subsidiary
name and company name occurring in our instance I (thus, “Citibank N.A.” ∼ “Citigroup
Inc” but also “Citibank N.A.” ∼ “CIT Group Inc”, and so on). Note that the link L(s1, c1)
satisfies both the ∼ predicate and the the Exec-based condition, while other links satisfy
only the ∼ predicate. The link instance J5 = {L(s1, c1), L(s1, c2)} is not a solution, since it
violates the functional dependency. Finally, we note that every subinstance of a solution is
always a solution. J

The above example shows that, in general, we allow matching of entities that are not
necessarily of the same type and where a link relation is not necessarily an equivalence
relation.

A key feature of the language is that matching constraints do not “force” the existence
of the links. They form only a necessary condition for the existence of the links. This is a
departure from the more traditional approaches based on source-to-link rules of the form
α→ L, which eagerly populate (or require) links in L whenever the matching condition α is
true. However, when other constraints are considered (e.g., functional dependencies), the
links in L may become invalid. As a result, any specification that includes source-to-link
rules will likely have no solutions. In contrast, our notion of entity linking specification
always has solutions. A large part of this paper will then be focused on identifying a subset
of “good” solutions among all the possible solutions.

Before we proceed to define concrete classes of “good” solutions, we first define the notions
of certain, possible and ambiguous links. These notions can be defined, generally, w.r.t. an
arbitrary class of solutions, that is, w.r.t. a subset C of solutions that satisfy some property.
We may also refer to the solutions in a class C as C -solutions.

I Definition 3. Assume a class C of solutions and an entity linking specification E = (L,S,Σ).
Then, given a source instance I:
(i) The set of certain links for I w.r.t. C and E is the set of links that appear in every

C -solution J for I w.r.t. E .



D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan 31

(ii) The set of possible links for I w.r.t. C and E is the set of links that appear in some
C -solution J for I w.r.t. E .

(iii) The set of ambiguous links for I w.r.t. C and E is given by the set difference between
the possible and the certain links for I w.r.t. E .

3 A Naive Semantics Based on Maximal Solutions

The first class of “good” solutions that we investigate is the class of maximal solutions, where
“goodness” of a solution is defined as maximality w.r.t. set containment.

I Definition 4. Assume an entity linking specification E = (L,S,Σ). Given a source instance
I, a maximal solution for I w.r.t. E is a link instance J such that: (1) (J, I) satisfies Σ, and
(2) there is no J ′ such that J ⊂ J ′ and (J ′, I) satisfies Σ.

I Example 5. We revisit Example 2. The solutions J1, J2, J3, J4 are maximal for the
given source instance I (and w.r.t. the given E), because in each of the four instances, we
cannot add any further links over the sid- and cid-values in I without violating the functional
dependency. It can also be verified that these four instances are all the maximal solutions
for I. J

Maximal solutions vs. repairs. We next show a connection with source-to-link constraints
and the framework of repairs [4], which we shall use later in this section. Given an entity
linking specification E = (L,S,Σ) in L0, we first extract a source-to-link specification
M = (S,L,Σ′) as follows. For each matching constraint mL in Σ, and given the inclusion
dependencies L[X] ⊆ R[A] and L[Y ] ⊆ R′[A′], we add the following source-to-link constraint
in Σ′:

(m′L) R(. . . , x, . . .) ∧R′(. . . , y, . . .) ∧ (∀u(ψ(x, y,u)→ α1 ∨ . . . ∨ αk)) → L(x, y)

In the above, the occurrence of x in the R-atom is in the position of attribute A and, similarly,
the occurrence of y in the R′-atom is in the position of attribute A′. Intuitively, the formula
m′L inverts the direction of the implication in mL. For every pair x, y of values, with x

coming from R[A] and y coming from R′[A′], we check that the left-hand side of m′L is
satisfied in the source. If that is the case then m′L requires the addition of an appropriate
link in L. We can formally define this process of adding links by using the chase as follows.

First, we note thatM can be seen as a schema mapping or data exchange setting [12]
where the link schema plays the role of a target schema. The constraints in Σ′ are a particular
case of first-order tgds [3], that is, source-to-target tgds where the left-hand side of the
tgd can contain an arbitrary first-order formula (rather than just a conjunction of atomic
formulas). As shown in [3], the chase with first-order tgds behaves in the same way as the
chase with regular source-to-target tgds. In particular, it terminates in polynomial time
in the size of the source instance. Furthermore, since there are no existentially quantified
variables in L, each m′L is a full tgd; hence, the chase produces no nulls and its result for a
given source instance I is unique.

Let us denote the result of the chase by U = chaseM(I). Intuitively, U contains all the
links that are possible based on just the matching constraints and inclusion dependencies.
However, when we consider the additional functional dependencies in Σ, not all the links in U
are possible due to conflicts. Instead we must consider subinstances of U that are consistent.
The maximal subinstances of U that are consistent are also known as the subset repairs [4]
of U .

ICDT 2015



32 A Declarative Framework for Linking Entities

As it turns out, the subset repairs of U = chaseM(I) w.r.t. the functional dependencies
are precisely the maximal solutions w.r.t. the original entity linking specification.

I Proposition 6. Assume an entity linking specification E = (L,S,Σ) in L0, and letM =
(S,L,Σ′) be the source-to-link specification constructed from E. Furthermore, let F be the
set of functional dependencies in Σ. Then, for every source instance I, the set of maximal
solutions for I w.r.t. E is the same as the set of subset repairs of U = chaseM(I) w.r.t. F .

Based on the previous proposition and known results about the consistent answers of
projection-free queries [8], we immediately obtain the following tractability results.

I Theorem 7. Let E be an entity linking specification in L0. Then:
There is a polynomial-delay algorithm that, given a source instance I, enumerates all the
maximal solutions for I w.r.t. E.
There is a polynomial-time algorithm that, given a source instance I, computes the set of
certain links for I w.r.t. the class of maximal solutions and E.
There is a polynomial-time algorithm that, given a source instance I, computes the set of
ambiguous links for I w.r.t. the class of maximal solutions and E.

Proposition 6 provides a useful connection between an entirely declarative specification,
based on maximal solutions w.r.t. E , and a more procedural approach, based on chasing
withM and then applying repairs. It also gives us polynomial-time algorithms for the three
problems of interest. While this connection with repairs is directly applicable for L0 and the
semantics of maximal solutions, the situation becomes more complex for the more refined
semantics that we consider later, where we will need to employ graph-based techniques to
handle link values.

Deficiency of maximal solutions. We now point out the main deficiency of the semantics
based on maximal solutions: in general, there may be too many maximal solutions and,
hence, too few certain links. Intuitively, the semantics given by maximal solutions is too
coarse-grained and does not have enough discriminating power to identify the “good” links.
Consider our scenario in Example 2. We showed that there are four maximal solutions, J1,
J2, J3, and J4, for the given source instance I. It can be easily seen that the set of certain
links in this example is empty: there is no link that appears in all four maximal solutions
and, hence, no link qualifies as a certain link. On the flip side, every link that occurs in one
of the four maximal solutions is possible (and ambiguous). However, some links are clearly
stronger than others. In particular, the link L(s1, c1) relating “Citibank N.A.” to “Citigroup
Inc.” satisfies both the ∼ predicate and the Exec-based matching condition, while the other
links satisfy only the ∼ predicate. Intuitively, there is evidence that suggests that L(s1, c1)
is a strong link that should be differentiated from the other links.

To address the above issue, we next refine the class of “good” solutions by assigning
value to links, which in turn will increase the power of discriminating among the links. In
particular, it will allow to increase the number of links that qualify as certain, thus reducing
ambiguity.

4 Maximum-Value Solutions

We now consider a variation of the core language L0 that allows us to differentiate among
the links in a solution, based on the evidence supporting each link. More precisely, for each
link fact L(a, b) in a solution, we count the number of disjuncts that are satisfied among



D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan 33

all the possible disjuncts α1, . . . , αk in the matching constraint mL. We also count, for
each satisfied disjunct αi = ∃z φi, the number of different instantiations of the existentially
quantified variables z that witness the satisfaction of φi. Intuitively, the larger these numbers
are, the better the links are.

While syntactically similar to L0, the new language will be semantically different due to
the presence of counting. In particular, in the new language, one cannot drop disjuncts that
are logically redundant, since such disjuncts may be important for measuring the strength of
the links, so dropping them would change the semantics. To make this behavior explicit, in
the notation for a matching constraint mL, we replace ∨ with a new symbol ⊕ as follows:

(mL) L(x, y)→ ∀u(ψ(x, y,u)→ α1 ⊕ . . .⊕ αk).

Syntactically, everything else is the same as in L0. We call the resulting language L0(⊕).
While the notion of a solution is the same as for L0 and continues to be based on logical

satisfaction (where ⊕ is interpreted as ∨), the notion of a “good” solution in L0(⊕) will now
change to reflect the strength or the value of the links. Concretely, we will identify, among
the maximal solutions, a subclass of solutions that additionally maximize the total value of
the links.

Assume an entity linking specification E = (L,S,Σ) in L0(⊕). Let I be a source instance
and J be a solution for I w.r.t. E . We define the value of a link L(a, b) in the solution J as
follows.

First, if there is no matching constraint mL for L, we take the value of L(a, b) to be 1.
This is the case when there are no direct requirements on the link, other than the inclusion
and functional dependencies (if any). Furthermore, the link is consistent with other links in
the given solution (since it appears in the solution). Giving it a value of 1 (as opposed to
0, for example) ensures that the total value of a solution strictly increases with an increase
in the number of links. Assume now that there is a matching constraint mL for L. Since
(J, I) satisfies mL, it must be that I satisfies the right-hand side of mL where x and y are
instantiated with a and b. Assume first that there is no instantiation u0 of the vector of
universally quantified variables u such that I |= ψ(a, b,u0). This means that the matching
constraint for L(a, b) is satisfied for vacuous reasons. For the same reasons as above (in the
case of no matching constraint), we take the value of the link to also be 1. In all other cases,
we let the value of the link be:

Val(L(a, b)) = min
u0

(
∑
αi,z0

1). (1)

In the above, u0 ranges over all the distinct instantiations of the vector of universally
quantified variables u such that I |= ψ(a, b,u0). We take the minimum, over all such u0, of
the strength with which the source instance I satisfies the disjunction α1 ∨ . . . ∨ αk. This
strength is defined as a sum that gives a value of 1 for every disjunct αi such that I satisfies
αi(a, b,u0) and, moreover, for every distinct instantiation z0 of the vector z of existentially
quantified variables of αi that makes this satisfaction hold. (Recall that αi is, in general, of
the form ∃z φi(x, y,u, z).) In the case when the existentially quantified variables are missing,
then we count only 1 per disjunct.

Intuitively, the sum in formula (1) calculates the matching strength by counting the
number of satisfied disjuncts together with the evidence (i.e., the number of existential
witnesses), while the minimum guarantees that we take the weakest matching strength among
all u0.

The value of a solution J , denoted by Val(J), is then the sum of the values of the links
in J .

ICDT 2015



34 A Declarative Framework for Linking Entities

I Definition 8. Assume an entity linking specification E = (L,S,Σ) in L0(⊕). Given a source
instance I, a maximum-value solution for I w.r.t. E is a link instance J such that: (1) (J, I)
satisfies Σ, and (2) for every J ′ such that (J ′, I) satisfies Σ, we have that Val(J ′) ≤ Val(J).

I Example 9. Recall Example 2. By applying formula (1), the values of the individual
links that can be formed between subsidiary ids and company ids, based on the matching
constraint, are:

Val(L(s1, c1)) = 2 Val(L(s1, c2)) = Val(L(s2, c1)) = Val(L(s2, c2)) = 1

The value of 2, for the link L(s1, c1), is obtained as follows. First, for the given s1 and c1,
there is only one way to instantiate the universally quantified variables sn, loc, cn, and hd
in the matching constraint. (This is because there is only one tuple for s1 in Subsid, and
one tuple for c1 in Company.) Hence, the min in the formula (1) is applied over a single
element. Then, it can be seen that both disjuncts in the matching constraint are satisfied
for s1 and c1. The first disjunct contributes a value of 1, since the disjunct is simply the
atomic formula sn ∼ cn. The second disjunct also contributes a value of 1, since there is
only one way to instantiate the existential variables in the Exec-based condition (with the
values corresponding for “E. McQuade”). Thus, the total strength with which the disjuncts
are satisfied is 2 and, hence, the value of the link is 2. A similar evaluation takes place for
the other three links, with the difference that only the first disjunct is satisfied.

Consider the earlier solutions J1, J2, J3, and J4, which were shown to be the maximal
solutions. By summing up the values of their links, we obtain that Val(J1) = Val(J2) = 3,
while Val(J3) = Val(J4) = 2. So, J1 and J2 are maximum-value solutions, while J3 and
J4 are not. It can also be seen that there is now one certain link, namely L(s1, c1), which
appears in both J1 and J2 and correctly relates “Citibank N.A.” with “Citigroup Inc”. This
in contrast with the case of the maximal solutions semantics where we had zero certain
links. Also, the two links L(s2, c1) and L(s2, c2), relating “CIT Bank” with either “Citigroup
Inc.” or “CIT Group Inc.” are now ambiguous, whereas in the case of the maximal solutions
semantics all four links were ambiguous. Finally, the ambiguity of L(s2, c1) and L(s2, c2) is,
intuitively, the best we can achieve here, since there is not enough information to differentiate
between the two links, based on the given specification. A human user is needed at this point
to further refine the entity linking specification, possibly by using additional information
(e.g., additional attributes or relations). J

A simple but important observation for L0(⊕) is that, even though Val(L(a, b)) was
defined relative to a solution J (in which L(a, b) occurs), the actual value of Val(L(a, b))
is independent of J . This is so because, in L0(⊕), the formula ψ and the disjuncts α1,
. . ., αk are over the source schema. In Section 6, we will consider richer languages, where
the α’s can also depend on link predicates. Even though the same definitions of value and
maximum-value solutions continue to apply for the richer languages, there we will have that
Val(L(a, b)) depends, in general, on the choice of the solution J in which it occurs.

I Proposition 10. If E is an entity linking specification in L0(⊕) and I is a source instance,
then every maximum-value solution for I w.r.t. E is also a maximal solution for I w.r.t. E.

The proposition is an immediate consequence of the fact that in L0(⊕), the value of a link
is independent of the solution in which it occurs, and is at least one. The reverse inclusion
does not hold, as seen in Example 9. Thus, for L0(⊕), maximum-value solutions form a strict
subclass of maximal solutions. As a consequence, the set of certain links over maximum-value
solutions is often a strict superset of the certain links over maximal solutions.



D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan 35

We give next the main complexity result of this section, stating the tractability of L0(⊕).
In contrast with Theorem 7, which follows from results on data repairs, the proof of the
following theorem is of a different nature and makes use of maximum-weight matching type
of algorithms. In particular, it is based on extensions of results from [10, 16, 27].

I Theorem 11. Let E be an entity linking specification in L0(⊕). Then:
There is a polynomial-delay algorithm that, given a source instance I, enumerates all the
maximum-value solutions for I w.r.t. E.
There is a polynomial-time algorithm that, given a source instance I, computes the certain
links for I w.r.t. the class of maximum-value solutions and E.
There is a polynomial-time algorithm that, given a source instance I, computes the
ambiguous links for I w.r.t. the class of maximum-value solutions and E.

5 Connection to Probabilistic Approaches

In this section, we investigate the relationship between our declarative framework based on
disjunctive matching constraints and existing probabilistic methods for entity resolution.

We start by introducing a simple yet powerful extension of L0(⊕) that incorporates
weights and which we call L0(⊕,w). For each matching constraint

(mL) L(x, y)→ ∀u(ψ(x, y,u)→ α1 ⊕ . . .⊕ αk),

and for each disjunct αi ::= ∃z φi(x, y,u, z) there is now a weight function wφi(x, y,u, z)
that returns a number. Intuitively, with each disjunct that returns true or false we also
have a function that computes a weight (or a score) for that disjunct. The semantics of
L0(⊕,w) is the same as that of L0(⊕) except that when counting existential witnesses for
each disjunct we also multiply by the number returned by the weight function for that
disjunct. Theorem 11 goes through when we replace L0(⊕) by L0(⊕,w), by the same proof.

5.1 Comparison to Probabilistic Matching
The first connection we make is to a well-known class of probabilistic matching algorithms
that has originated with Fellegi and Sunter [15] and is at the core of many commercial
systems including IBM’s QualityStage [23], which we use as a representative example.

The probabilistic matching algorithm in QualityStage approaches record matching in
three steps. First, it applies pairwise comparison functions over the individual attributes (or
fields) in the two records to be compared. For each pair of attributes, the function returns
a score based on two probabilities (that must be learned or given to the system a priori):
the “match” probability m, which is the probability that two fields match given that it is
known that the two records match, and the “unmatch” (or accidental match) probability
u, which is the probability that two fields match but the records do not match. Secondly,
the algorithm aggregates the scores returned by individual comparison functions by taking
a weighted sum, where each comparison function has its own weight (also to be learned or
given to the system a priori). Finally, a link is returned if it has high-enough aggregated
score (higher than a threshold, which also must be learned or tuned).

We show that the first two steps in the above algorithm can be captured by a single
disjunctive matching constraint, while the third one can be captured as an implementation
step. We use a canonical example for deduplication of mailing lists.

I Example 12. The source schema S consists of two relation symbols: MasterList, repres-
enting a master list of mailing addresses, and NewList, a list with new mailing addresses

ICDT 2015



36 A Declarative Framework for Linking Entities

that must be deduplicated against the first one. Both relations are assumed to have the
same schema, including personal attributes (e.g., last name ln, first name fn, etc.) and also
address attributes (e.g., street name street, etc.). Furthermore, we assume each record has
been assigned a record id (rid) and the deduplication problem is one of linking an rid from
the new list to a unique rid in the master list. The core functionality of a QualityStage
algorithm can be logically expressed by an entity linking specification E = (L,S,Σ) in
L0(⊕,w), where Σ consists of a single matching constraint:

L(rid1, rid2) →
∀ln1, fn1, . . . , street1, ln2, fn2, . . . , street2
( NewList(rid1, ln1, fn1, street1, . . .) ∧ MasterList(rid2, ln2, fn2, street2, . . .)
→ SOUNDEX(ln1, ln2) ⊕ SOUNDEX(fn1, fn2) ⊕ . . . ⊕ EDIT(street1, street2) ),

along with the obvious inclusion dependencies. Although QualityStage does not have
cardinality constraints, it is natural to add to our specification the functional dependency
L : rid1 → rid2. In the above matching constraint, each disjunct calls a QualityStage
built-in comparison function (e.g., SOUNDEX, which compares how similar two names sound,
or edit distance EDIT), by passing the arguments to be compared. In turn, each call to a
QualityStage comparison function returns a weight that depends on the given arguments and
also on the aforementioned probabilities m and u for the particular attribute. The weight
of each possible link is then the sum of the weights for all the disjuncts. Maximum-value
solutions are obtained as solutions (containing non-conflicting links) that maximize the total
value. (QualityStage has the additional requirement that only links whose weights are above
a certain threshold are considered possible. This can be easily added in an implementation
on top of our maximum-value semantics.)

We note that the above matching constraint uses only a fragment of L0(⊕,w) where each
disjunct is a simple atomic formula with no existential quantification and no conjunction. J

5.2 Comparison to Markov Logic Networks for Entity Resolution
We now connect to a richer probabilistic framework, that of Markov Logic Networks (MLNs)
[29], which in general allows for arbitrary first-order formulas to be interpreted in a prob-
abilistic sense. We show that a class of MLNs that is useful for entity resolution [30] is
captured, in a precise sense, by the fragment of L0(⊕,w) with no universal quantification.
Thus, rather surprisingly, a purely probabilistic approach (based on MLNs) can be captured
in a deterministic way (via L0(⊕,w)). We make use of this correspondence to obtain a
polynomial-delay algorithm for enumerating the maximum-probability worlds in the MLN
setting, and polynomial-time algorithms for finding the certain and ambiguous links over
maximum-probability worlds. These are the first polynomial-time results, to the best of our
knowledge, for MLN-based entity resolution.

5.2.1 Markov Logic Networks: Preliminaries
The fragment of MLNs that we consider is defined as follows. For simplicity of discussion,
we assume that there is one single link symbol L; the same definitions extend immediately
to the case of multiple link symbols in the schema. A linear MLN M is a set of formulas
σi → L(x, y) (for 1 ≤ i ≤ n), each with a weight wi, where σi is a conjunction of atomic
formulas over the source, and where the free variables of σi include x and y. Examples
of linear MLN formulas for entity resolution appear in [30], with the provision that the
role of the link relation is played there by the Equals predicate. Later we also consider



D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan 37

extensions of linear MLNs where a link symbol may also appear in the left-hand side, thus
allowing for inter-dependencies among the links. We assume that the same requirements we
have for the presence of inclusion dependencies involving the link relation L in our entity
linking specifications are also required in the MLN setup; also, as with our entity linking
specifications, there may be functional dependencies on L.

Note that the formulas σi → L(x, y) in linear MLNs are source-to-link constraints; thus,
they fall in the category of rules that eagerly populate the link relations. As discussed
earlier in Section 2, such specifications may not have solutions. However, in the MLN
framework, these formulas are not required to be satisfied in a hard logical sense but rather
in a probabilistic sense, which allows for violations and which we explain next.

Fix a source instance I. For each “possible world”, that is, choice of link instance L0 for
L satisfying the inclusion dependencies w.r.t. I and the functional dependencies on L, we
assign a probability to that possible world, based on the source-to-link formulas inM and
their weights, as follows. Let K be an instance over the combined source and link schema,
and let γ be a formula over the combined schema. A (K, γ)-valuation (or simply valuation, if
K and γ are fixed or understood) is a function v from the free variables of γ to members of
the domain of K. Denote by |γ| the number of valuations that make γ true in K. Then the
probability assigned to a link instance L0 (for a given source instance I) is proportional (see
also [30]) to ew1|σ1→L|+···+wn|σn→L|, where the role of L is played by L0. (These probabilities
are scaled so that they sum up to 1, over all choices for L0.) Intuitively, the probability of a
world increases with the number of valuations that make a formula inM true and also with
the weight of the formula.

Define a link (a tuple over the L schema) to be certain (w.r.t. the class of maximum-
probability worlds) if it is in every maximum-probability world w.r.t.M (for the given source
instance I). Similarly, we define ambiguous links.

5.2.2 Translation to L0(⊕, w)
Given the linear MLN with formulas σi → L(x, y) with weight wi, for 1 ≤ i ≤ n, we define the
corresponding entity linking specification in L0(⊕,w) to consist of the matching constraint
L(x, y)→ ∃z1σ1 ⊕ · · · ⊕ ∃znσn, where zi consists of the free variables of σi other than x and
y, and where the disjunct ∃ziσi has weight wi, for 1 ≤ i ≤ n. Also, this corresponding entity
linking specification has the same inclusion dependencies and functional dependencies on L
as the linear MLN. Note that the weight function for each disjunct σi is a constant, whereas
for QualityStage we needed in general nonconstant weight functions for each disjunct in a
matching constraint.

LetM be an MLN, and let E be the corresponding entity linking specification in L0(⊕,w).
For a given source instance I, let us denote the set of maximum-probability worlds w.r.t.
M by Max Probability WorldsM(I), the set of solutions w.r.t. E by SolutionsE(I), and the
set of maximum-value solutions w.r.t. E by Max Value SolutionsE(I).We have the following
result, interrelating maximum-value solutions and maximum-probability worlds.

I Theorem 13. LetM be a linear MLN, let E be the corresponding entity linking specification
in L0(⊕,w), and let I be a source instance. Then:

Max Value SolutionsE(I) = Max Probability WorldsM(I) ∩ SolutionsE(I).
The certain links for I w.r.t. the class of maximum-probability worlds andM are precisely
the certain links for I w.r.t. the class of maximum-value solutions and E.

Note that the second part of the theorem holds even though the sets of maximum-value
solutions and of maximum-probability worlds do not coincide.

ICDT 2015



38 A Declarative Framework for Linking Entities

The proof of the second part is based on a characterization of maximum-probability
worlds in terms of maximum-value solutions. (The details of this characterization will appear
in the full version of the paper.) We also use that characterization to prove the analog of
Theorem 11 for linear MLNs, that is, that for linear MLNs, there is a polynomial-delay
algorithm for enumerating the maximum-probability worlds, and polynomial-time algorithms
for finding the certain and ambiguous links.

5.3 Deterministic vs. Probabilistic: Discussion
We showed that our declarative language can capture important classes of probabilistic
methods, under a suitable extension that allows for weights. While this translation is
interesting in itself, we envision our language to be used as a deterministic framework (i.e.,
no probabilities) where the rules that govern the links are written out explicitly, by a domain
expert, as semantic rules with a true/false interpretation and (primarily) with no weights
(other than 1) in the disjuncts.

While probabilistic methods may provide more automation via learning algorithms to tune
or learn weights, probabilities, and thresholds, these methods are also more opaque in that it
is hard to explain the results other than in terms of scores or probabilities in the underlying
model. These methods may also be hard to customize when the results are not satisfactory.
A simple change in a parameter or a threshold may often have unintended consequences. In
contrast, a high-level deterministic language (such as L0(⊕)) provides a more transparent way
for linking entities where the results can be explained in terms of the rules (disjuncts) that
are satisfied. When the results are not satisfactory, rather than changing some numbers, a
domain expert can explicitly refine the entity linking logic by adding or removing disjuncts, or
by adding, removing or changing a conjunct within a particular disjunct. We note that similar
observations were made in the context of information extraction (IE) systems [7], where it
is observed that rule-based IE systems are the dominant systems adopted by commercial
companies for similar reasons (i.e., they are declarative, and easier to understand, to explain,
and to incorporate domain knowledge).

6 More Expressive Languages

We now explore extensions of the core language L0, to allow a matching constraint for a link
to possibly refer to other links. These extensions allow us to express what is usually called
collective entity resolution [6], that is, the process of creating multiple types of links together.

The matching constraint for a link symbol L has the same form mL as in Section 2.
However, in each disjunct αi ::= ∃z φi(x, y,u, z), the formula φi can now be a conjunction
of source and link atomic formulas, along with equalities and other built-in or user-defined
boolean predicates. If a specification is not allowed to have recursion among the link
predicates, we call the resulting language L1. Thus, in L1, there is a hierarchy of links, where
a matching constraint for a link L may call only links that are strictly lower in the hierarchy
than L. When recursion is allowed, we call the language L2. So L1 is a sublanguage of L2.
The corresponding variations for maximum-value solutions, L1(⊕) and L2(⊕), are defined
as in the case of L0. We also consider the corresponding weighted versions L1(⊕,w) and
L2(⊕,w).

I Example 14. Consider a bibliographic example where we link papers (from one database)
with articles (from another database), while also linking the corresponding venues. The source
schema S consists of Paper(pid, title, venue, year) and Article(ano, title, journal, year).



D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan 39

Here, pid is a unique id assigned to Paper records, while venue could be a conference, a
journal, or some other place of publication. The Article relation represents publications
that appeared in journals, and ano is a unique id assigned to such records. The link schema
L consists of two relations: PaperLink (pid, ano) and VenueLink (venue, journal). The
first relation is intended to link paper ids from Paper with article numbers from Article,
when they represent the same publication. The second relation is intended to relate journal
values that occur in Article (e.g., “ACM TODS”) to journal values that occur under the
venue field in Paper (e.g., “TODS”).

A possible entity linking specification in L2 is E = (L,S,Σ), where Σ contains:

VenueLink(ven, jou) → (ven ∼1 jou)
∨ ∃pid, t1, y1, ano, t2, y2 ( Paper(pid, t1, ven, y1)

∧ Article(ano, t2, jou, y2)
∧ PaperLink(pid, ano) )

PaperLink(pid, ano) →
∀t1, ven, y1, t2, jou, y2 ( Paper(pid, t1, ven, y1)∧ Article(ano, t2, jou, y2)

→ ((t1 ∼2 t2) ∧ (y1 = y2)) ∨ ((t1 ∼2 t2) ∧ VenueLink(ven, jou)) )

The first constraint specifies that we may link a venue with a journal only if their string
values are similar (via some similarity predicate ∼1), or if there are papers and articles that
have been published in the respective venue and journal and that are linked via PaperLink.
The second constraint specifies that we may link a paper with an article only if their titles
are similar (via a similarity predicate ∼2) and their years of publication match exactly, or if
their titles are similar and their venues of publications are linked via VenueLink.

Additionally, Σ includes two functional dependencies on PaperLink: pid→ ano, ano→
pid, to reflect that each paper id in Paper must match to at most one article number in
Article, and vice-versa. We do not require any functional dependencies on VenueLink; thus,
we could have multiple venue strings in Paper matching with a journal string in Article,
and vice-versa. We also include in Σ the expected inclusion dependencies from the link
attributes to the corresponding source attributes (e.g., PaperLink[pid] ⊆ Paper[pid]).

With a simple modification, where we remove the second disjunct in the matching
constraint for PaperLink, we obtain a different entity linking specification that is in L1.
While the advantage of such specification is that it is non-recursive, the modified specification
is more constrained: the matching conditions for PaperLink are stricter now (whereas before
we had a disjunction of conditions). As a result, there will be less possible links for the
modified specification. J

6.1 Results for L1 and L2

We now focus on the computational complexity of the relevant problems (computing/enu-
merating maximum-value solutions and computing certain and ambiguous links). We show
that we hit intractability in general, even in the case of L1, the non-recursive fragment of L2.
On the other hand, we show that there is a large syntactic fragment of L1 that is tractable.
Finally, we show that the correspondence between L0(⊕,w) and MLNs breaks when we go
to the richer L1(⊕,w).

Our first result, for L1(⊕), states the NP-completeness of determining whether there
exists a solution of at least a given value. In turn, this implies that there is no polynomial-time
algorithm to compute one maximum-value solution (unless P = NP). Hence, there is no

ICDT 2015



40 A Declarative Framework for Linking Entities

polynomial-delay algorithm for the problem of enumerating maximum-value solutions (again,
unless P = NP).

I Theorem 15. There is a fixed entity linking specification E in L1(⊕) for which the following
problem is NP-complete: Given source instance I and positive integer k, is there a solution
for I w.r.t. E of value at least k?

We now turn our attention to the problems of computing certain and ambiguous links.
If C is a class of solutions and E = (L,S,Σ) is a fixed entity linking specification, then
recognizing certain links w.r.t. C and E is the following decision problem: given a source
instance I and a link l, is l a certain link for I w.r.t. C and E? The problem of recognizing
ambiguous links w.r.t. C and E is defined in a similar way. Here, we investigate the complexity
of recognizing certain and ambiguous links for the class of all maximum-value solutions for
entity linking specifications in L1(⊕). The main result is that there is an entity linking
specification in L1(⊕) for which no polynomial-time algorithms for recognizing certain and
ambiguous links exist, unless NP = coNP.

By Theorem 15, there is an entity linking specification E in L1(⊕) such that the following
problem is NP-complete: given a source instance I and a positive integer k, is there a solution
for I of value at least k? For that particular specification, recognizing certain links and
recognizing ambiguous links are trivial problems because no link is certain and every link is
ambiguous; intuitively, this is so because E encodes 3-Colorability, a problem that has
“symmetries”.

To establish the intractability of recognizing certain and ambiguous links, we bring into
the picture the concept of a frozen variable from constraint satisfaction. An instance of the
constraint satisfaction problem consists of a set of variables, a domain of values for each
variable, and a set of constraints that restrict the combinations of values that some tuples of
variables may take. A solution to such an instance is an assignment of values to variables so
that all constraints are satisfied. A variable is frozen if it takes the same value in all solutions
of a given instance. Jonsson and Krokhin [25] showed that for every constraint satisfaction
problem over a two-element domain the problem of recognizing frozen variables exhibits the
following trichotomy: it is in PTIME or it is coNP-complete or it is DP-complete. Recall
that DP is the class of all decision problems that can be written as the conjunction of a
problem in NP and a problem in coNP; in particular, both NP and coNP are subclasses
of DP (see also [28]). Constraint satisfaction problems over a two-element domain can be
thought of as variants of boolean satisfiability. An important such NP-complete variant is
Positive-1-in-3-SAT, which asks: given a positive 3CNF-formula ϕ (i.e., a 3CNF-formula
in which each clause has the form (x ∨ y ∨ z)), is there a 1-in-3 satisfying truth assignment
(i.e., a truth assignment that makes exactly one variable true in every clause of ϕ)? Theorem
6.1 in [25] implies that the following problem is DP-complete: given a positive 3CNF-formula
ϕ and a variable x of ϕ, is it true that there is a 1-in-3 satisfying truth assignment for ϕ
and the variable x is frozen? By exploiting the above result, we are able to establish the
intractability of recognizing certain and ambiguous links for entity linking specifications in
L1(⊕).

I Theorem 16. There is a fixed entity linking specification E in L1(⊕) such that:
Unless NP = coNP, there is no polynomial-time algorithm for recognizing certain links
w.r.t. to the class of all maximum-value solutions and E.
Unless NP = coNP, there is no polynomial-time algorithm for recognizing ambiguous
links w.r.t. to the class of all maximum-value solutions and E.



D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan 41

While the above complexity results for L1 show intractability in general, the next theorem
gives special conditions under which the same problems become tractable for L1(⊕). However,
if any of the conditions fails to be satisfied, then we fall back into intractability. We say that
an entity linking specification is 2-level hierarchical if the link relations each fall into one of
two disjoint sets, the “top-level links” and the “bottom-level links”. The right-hand side of
the matching constraints for the bottom-level link relations can refer only to source relations
and built-in predicates (like equality, similarity, and string containment). The right-hand
side of the matching constraints for the top-level link relations can refer only to bottom-level
link relations, source relations, and built-in predicates.

I Theorem 17. Assume that the entity linking specification is 2-level hierarchical. Assume
also the following three conditions.
1. The top-level links have no FDs.
2. There are no universal quantifiers in the matching constraints for the top-level links.
3. Each disjunct in each matching constraint for each top-level link refers to at most one

bottom-level link relation.
Then there is a polynomial-delay algorithm to enumerate the maximum-value solutions, and
there are polynomial-time algorithms to compute the certain and the ambiguous links.

Furthermore, if any of the three assumptions (1), (2), or (3) is violated, then it may be
NP-complete even to decide the following: Given source instance I and positive integer k, is
there a solution for I of value at least k?

As an immediate application of the above theorem, recall the entity linking specification
in L2 for VenueLink and PaperLink in Example 14, and the entity linking specification in L1
obtained from it by the modification described in the same Example 14. The entity linking
specification in L1, where VenueLink is the top-level link, and PaperLink is the bottom-level
link, satisfies the assumptions of Theorem 17, and so enjoys the desirable properties in the
conclusions of (the positive part of) the theorem. Interestingly enough, it turns out that
even the entity linking specification in L2 for this example enjoys the desirable properties.

We close this section by considering the weighted versions L1(⊕,w) and L2(⊕,w).
Theorem 13 shows a precise correspondence between a linear MLN and its corresponding
entity linking specification in L0(⊕,w). Does this correspondence carry over to L1(⊕,w)
or L2(⊕,w)? Let us define extended linear MLNs to be defined like linear MLNs, except
that instead of taking σi to be a conjunction of atomic formulas over the source, we allow
these atomic formulas to also involve another link relation. We then define the corresponding
entity linking specification as before. It can be shown that the analog of Theorem 13 fails
(the details will appear in the full version of the paper). Thus, the two frameworks, one
based on deterministic entity linking specifications, the other based on probabilistic Markov
Logic Networks, diverge when allowing for inter-dependencies among links.

7 Related Work

As mentioned in the introduction, there has been extensive earlier work on entity resolution;
overviews can be found in the recent surveys [14] and [18] and the tutorial [19]. We have
also made in-depth connections to existing probabilistic approaches for entity resolution. We
now comment briefly on some other declarative approaches to entity resolution.

An early argument in favor of using link-centric constraints to specify links in a declarative
manner appeared in [1], but no formal language, semantics or algorithms were given there.
We already discussed Dedupalog [2], a high-level framework that enables collective entity

ICDT 2015



42 A Declarative Framework for Linking Entities

resolution through the use of Datalog-like constraints. The result of executing a Dedupalog
program is an instance that satisfies the hard constraints of the program but may violate
the soft constraints of the program. Thus, a Dedupalog program is only a guideline for the
implementation, which is an algorithm that attempts to minimize the number of violations
of soft constraints. In contrast, the constraints we use form a truly declarative specification,
by stating only the necessary conditions that must be satisfied by links, thus decoupling the
specification from any implementation.

The language LinQL [20] uses SQL-like syntax to define similarity predicates among
string-valued attributes only. In contrast, we create links among structured entities, and
the LinQL similarity functions could be used as one ingredient in our framework. Matching
dependencies (MDs) were introduced in [13] to enforce equality on attribute values based on
matching conditions. In effect, MDs are source-to-link constraints that may modify source
relations. MDs have been given operational semantics in [5] via a variation of the chase
procedure that fixes violations of a given set of MDs. Like Dedupalog, MDs look only at
equivalence (same-as) type of linkage.

8 Concluding Remarks

We laid the foundation for a truly declarative entity-linking framework that is based on
specifying only the desired properties of the links. We identified a class of maximum-value
solutions for entity linking specifications, and studied the computational complexity of
producing such solutions and identifying certain and ambiguous links. This work opens
up several new directions in reasoning about entity linking specifications. These include
studying the implication and equivalence of entity linking specifications (e.g., deciding when
two such specifications have the same certain links), as well as delineating the expressive
power of the languages we introduced. More broadly, this work may also provide a different
perspective for linking heterogeneous entities in the Semantic Web.

Acknowledgements. Kolaitis is partially supported by NSF Grant IIS-1217869; Tan is
partially supported by NSF grant IIS-1450560.

References

1 Bogdan Alexe, Douglas Burdick, Mauricio A. Hernández, Georgia Koutrika, Rajasekar
Krishnamurthy, Lucian Popa, Ioana R. Stanoi, and Ryan Wisnesky. High-Level Rules for
Integration and Analysis of Data: New Challenges. In LNCS 8000: In Search of Elegance
in the Theory and Practice of Computation, pages 36–55, 2013.

2 A. Arasu, C. Re, and D. Suciu. Large-Scale Deduplication with Constraints using Dedupa-
log. In ICDE, pages 952–963, 2009.

3 M. Arenas, P. Barceló, R. Fagin, and L. Libkin. Solutions and Query Rewriting in Data
Exchange. Inf. Comp., pages 28–51, 2013.

4 Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent Query Answers in
Inconsistent Databases. In PODS, pages 68–79, 1999.

5 Leopoldo E. Bertossi, Solmaz Kolahi, and Laks V. S. Lakshmanan. Data Cleaning and
Query Answering with Matching Dependencies and Matching Functions. Theory of Com-
puting Systems, 52(3):441–482, 2013.

6 Indrajit Bhattacharya and Lise Getoor. Collective Entity Resolution in Relational Data.
TKDD, 1(1), 2007.



D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan 43

7 Laura Chiticariu, Yunyao Li, and Frederick R. Reiss. Rule-Based Information Extraction is
Dead! Long Live Rule-Based Information Extraction Systems! In EMNLP, pages 827–832,
2013.

8 Jan Chomicki and Jerzy Marcinkowski. Minimal-Change Integrity Maintenance using Tuple
Deletions. Inf. Comp., 197:90–121, 2005.

9 Xin Dong, Alon Y. Halevy, and Jayant Madhavan. Reference Reconciliation in Complex
Information Spaces. In SIGMOD, pages 85–96, 2005.

10 J. Edmonds. Maximum Matching and a Polyhedron with 0,1-vertices. Journal of Research
National Bureau of Standards Section B, 69:125–130, 1965.

11 Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate Record
Detection: A Survey. IEEE TKDE, 19(1):1–16, 2007.

12 R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics and Query
Answering. Theoretical Computer Science (TCS), 336(1):89–124, 2005.

13 Wenfei Fan. Dependencies Revisited for Improving Data Quality. In PODS, pages 159–170,
2008.

14 Wenfei Fan and Floris Geerts. Foundations of Data Quality Management. Morgan &
Claypool Publishers, 2012.

15 I. P. Fellegi and A. B. Sunter. A Theory for Record Linkage. J. Am. Statistical Assoc.,
64(328):1183–1210, 1969.

16 K. Fukuda and T. Matsui. Finding All the Perfect Matchings in Bipartite Graphs. Appl.
Math. Lett., 7(1):15–18, 1994.

17 H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita. Declarative Data Clean-
ing: Language, Model, and Algorithms. In VLDB, pages 371–380, 2001.

18 Venkatesh Ganti and Anish Das Sarma. Data Cleaning: A Practical Perspective. Morgan
& Claypool Publishers, 2013.

19 Lise Getoor and Ashwin Machanavajjhala. Entity Resolution: Theory, Practice & Open
Challenges. PVLDB, 5(12):2018–2019, 2012.

20 Oktie Hassanzadeh, Anastasios Kementsietsidis, Lipyeow Lim, Renée J. Miller, and Min
Wang. A Framework for Semantic Link Discovery over Relational Data. In CIKM, pages
1027–1036, 2009.

21 Mauricio A. Hernández, Georgia Koutrika, Rajasekar Krishnamurthy, Lucian Popa, and
Ryan Wisnesky. HIL: A High-Level Scripting Language for Entity Integration. In EDBT,
pages 549–560, 2013.

22 Mauricio A. Hernández and Salvatore J. Stolfo. The Merge/Purge Problem for Large
Databases. In SIGMOD, pages 127–138, 1995.

23 IBM InfoSphere QualityStage. http://www.ibm.com/software/products/en/
ibminfoqual.

24 D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. On Generating All Maximal Inde-
pendent Sets. Inf. Process. Lett., 27(3):119–123, 1988.

25 Peter Jonsson and Andrei A. Krokhin. Recognizing Frozen Variables in Constraint Satis-
faction Problems. Theoretical Computer Science (TCS), 329(1-3):93–113, 2004.

26 Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record Linkage: Similarity Measures
and Algorithms. In SIGMOD, pages 802–803, 2006.

27 K.G. Murty. An Algorithm for Ranking All the Assignments in Order of Increasing Cost.
Operations Research, 16(3):682–687, 1968.

28 C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
29 Matthew Richardson and Pedro Domingos. Markov Logic Networks. Machine Learning,

62(1-2):107–136, 2006.
30 Parag Singla and Pedro Domingos. Entity Resolution with Markov Logic. In ICDM, pages

572–582, 2006.

ICDT 2015

http://www.ibm.com/software/products/en/ibminfoqual
http://www.ibm.com/software/products/en/ibminfoqual


Asymptotic Determinacy of Path Queries using
Union-of-Paths Views
Nadime Francis

ENS-Cachan, Inria
francis@lsv.ens-cachan.fr

Abstract
We consider the view determinacy problem over graph databases for queries defined as (possibly
infinite) unions of path queries. These queries select pairs of nodes in a graph that are connected
through a path whose length falls in a given set. A view specification is a set of such queries. We
say that a view specification V determines a query Q if, for all databases D, the answers to V
on D contain enough information to answer Q.

Our main result states that, given a view V, there exists an explicit bound that depends on
V such that we can decide the determinacy problem for all queries that ask for a path longer
than this bound, and provide first-order rewritings for the queries that are determined. We call
this notion asymptotic determinacy. As a corollary, we can also compute the set of almost all
path queries that are determined by V.

1998 ACM Subject Classification H.2.4 [Database Management]: Systems – Query processing,
H.2.3 [Database Management]: Languages – Query languages

Keywords and phrases Graph databases, Views, Determinacy, Rewriting, Path queries

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.44

1 Introduction

View determinacy is a static analysis problem on databases that consists in deciding whether
a given set of initial queries, called a view, contains enough information to answer a new
query, and this on all databases. Solving this problem has many applications, namely in
query optimization and caching. Assume that querying the database is costly, but that
answers to all previous queries are kept in cache. Then it is useful to know whether a new
query can be answered using only cached information and without accessing the database.
Query determinacy can also be stated as a security problem. Assume that views represent
information that can be publicly accessed, but that the considered query contains private data
that should not be disclosed. Then it should be ensured that the view does not determine
the query.

We consider this question over graph databases. Graph databases are relational databases
in which all relations are binary. Equivalently, they can be seen as directed graphs with edges
labeled from a finite alphabet. Such databases arise naturally in several scenarios, which
include social networks, crime detection, biological data and the semantic Web. For instance,
in social networks, individual data such as name or phone number are represented as nodes,
whereas relationships between members of the network are edges linking the corresponding
nodes and labeled by the nature of the relationship. Thus, a person X is a friend of a person
Y if there is an edge going from X to Y with label friend.

Information contained in a graph database does not only lie in the content of the graph
but also in its topology, that is in how the different data nodes are connected to each other.
Typical queries then naturally ask about topological properties of the graph, namely the

© Nadime Francis;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 44–59

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


N. Francis 45

existence of links, paths, and so on. In a social network, a user X could be interested in
computing the transitive closure of the friend relation: she would like to retrieve all nodes Y
such that there is a path going from X to Y using only the friend label. Relevant query and
view languages to consider in this context should have at least this expressive power.

The determinacy problem has been considered in various contexts (see [1], [5] among
others). It was shown in [2] that determinacy is decidable when queries and views are defined
as path queries, that is, queries Qk that select pairs of nodes (x, y) such that there is a path
from x to y whose length is a given integer k. For instance, it proves that the two views Q3
and Q4 determine the query Q5, which is not immediate to see. The main contribution of our
work is to extend this result by considering a broader class of views that allows disjunction.
For instance, a query Qk,` selects pairs of node that are linked either by a path of length
k or a path of length `. A typical case covered by our work is the following: views are Q2,
Q1,2 and Q2,3, and we will see that these views determine the query Q5.

More precisely, we consider here arbitrary unions of path queries. A union of path
queries Q is a query that selects pairs of nodes in a graph that are connected through a
path whose length falls in a given set. Note that we do not have any restriction on how
these sets are defined, in particular we do not require them to be finite, or even have a finite
representation. Of course, our algorithmic constructions only work when these representations
are effective, but our theoretical criteria do not require it. We actually require very little of
these representations, and a lot of formalisms would fit our needs. For instance, regular path
queries on a one letter alphabet could define the query Qodd that selects all pairs of nodes
linked by a path of odd length, and a query similarly defined by a context-sensitive language
could be Qexp, that selects pairs of nodes linked by a path of length 2n for some n. Note
that a path query can be seen as a special case of union of paths queries of size 1.

In this paper, we show that, given a view V defined by unions of path queries, we can
decide whether V determines a path query Q assuming Q is “big enough,” that is, Q asks
for the existence of a path longer than some n0 that we can effectively compute from V. We
call this notion asymptotic determinacy. Although n0 is of exponential size, our decision
procedure actually works in ΠP

2 in the size of the finite sets that are associated with the view,
disregarding the infinite ones. When it concludes that V determines Q, we also provide a
first-order rewriting of Q using V. Otherwise, it produces a generic counter-example that
shows that V does not determine Q. Our technique starts by reducing V to a much simpler
view V′ that has many useful properties, namely all queries in V′ are finite unions, and some
Q ∈ V′ is actually a path query Qc, for some integer c. This particular query is a key to our
reasoning, as it allows us to reduce infinite structures to finite ones by computing modulo c.
The finite number of small queries that we are not able to process are cases where both our
criterion of determinacy and our generic counter-examples fail.

Related Work
The determinacy problem has been considered in [3] for regular path queries, i.e. queries that
select pairs of nodes that are connected through a path whose sequence of labels satisfies
some regular expression. In [3], determinacy is known as losslessness under the exact views
assumption. However, it is still unknown whether this property is decidable and what a good
rewriting language could be. Note that, on a one-letter alphabet, regular path queries are
actually weaker than infinite unions of path queries.

The determinacy problem has been solved in two specific cases. First, [2] showed how
to decide whether a path view determines a path query and provides first-order rewritings
of the query using the view when it is the case. The work presented here can be seen as

ICDT 2015



46 Asymptotic Determinacy of Path Queries using Union-of-Paths Views

an extension of [2], where we consider more expressive views, by allowing (possibly infinite)
disjunction. In [2], a simple criterion is given: the view determines the query if and only if
the view image of a simple path satisfying the query is connected. We will see in Example 14
and Example 15 that this decision criterion no longer applies here, as the view images in
these examples are connected, but the view does not determine the query.

Secondly, [4] proved that regular path queries can always be rewritten as Datalog queries
using regular path views, assuming monotone determinacy. Monotone determinacy is a
stronger form of determinacy that is known to be decidable in this setting. It basically
requires both determinacy and the fact that rewritings of the query using the views are
monotone. Our work can be seen as an attempt to lift this monotonicity assumption, while
still retaining some of the expressive power of regular path queries and views, such as
disjunction and transitive closure. Of course, without assuming monotonicity there can be
no hope of finding a rewriting in Datalog, since it can only express monotone queries.

2 Preliminaries

Graph Databases
A binary schema σ is a finite set of binary relational predicates. A graph database D over
σ is a relational structure over a binary schema σ. Alternatively, it can also be seen as a
directed edge-labeled graph whose labeling alphabet are symbols in σ. An element in the
domain of D is called a node.

A path π in a database D from x0 to xm is a finite sequence π = x0a0x1 . . . xm−1am−1xm,
where each xi is a node of D, each ai is a symbol of σ, and for all i, ai(xi, xi+1) holds in D.
Such a path is said to be simple if each node occurs at most once in π. We simply write
π = x0 . . . xm when the specific symbol of σ that holds for each pair (i, i+ 1) is irrelevant.
The length of π, denoted by |π|, is the length of the word a0 . . . am−1, in this case m. To
denote the fact that π is a path from x0 to xm, we will often write x0

π→ xm. By abuse of
notation, we also consider π as a graph database that contains exactly the nodes x0, . . . , xm,
and in which only ai(xi, xi+1) holds, for all i.

Queries
A binary query Q over a schema σ is a mapping associating to each graph database D over σ
a binary relation Q(D) over the domain of D. In this work, we only consider the following
two query languages.

A path query Q is defined by a single integer k. On a given database D, Q returns all the
pairs of nodes (x, y) in D such that there exists a path in D from x to y of length k. In other
words, Q(D) = {(x, y) ∈ D | ∃π, x π→ y and |π| = k}. For ease of notation and consistency
with what follows, we will write Q = {k}.

A union of path queries Q is defined by a (possibly infinite) set of integers {k1, k2, . . .},
and returns all the pairs of nodes that are connected through a path whose length belongs
to the set, i.e. Q(D) = {(x, y) ∈ D | ∃π, x π→ y and |π| ∈ Q}. By abuse of notation, Q
represents both the query and the associated set. Unions of path queries are a generalization
of path queries, as any path query can be seen as a union of path queries whose associated
set is of size 1.

These two query languages can be compared with other core languages commonly used
in the field. Path queries are conjunctive queries on a single predicate whose underlying
graph is a directed path. Alternatively, they are also regular path queries whose associated



N. Francis 47

language is a single word on a single-letter alphabet. Unions of path queries are arbitrary
unions of such queries. Note that these are more expressive than regular path queries on a
single letter alphabet. Indeed, Q = {p | p is prime} is a union of path queries that is not
regular.

We do not impose any way of representing the infinite sets associated to unions of path
queries. For our constructions to be effective, we only require:

the ability to decide, given a query, whether its associated set is infinite.
the ability to effectively list all the elements in the associated set, when it is finite.

Thus, many formalisms would fit our needs, such as regular sets, but we could possibly
think of stronger languages for finitely describing infinite sets of integers. While considering
infinite unions may seem rather strange, this should be understood on a conceptual level, as
a way to ease comparisons and extensions to existing work. Most of the work presented is
actually only relevant to finite unions. Indeed, we will see in Lemma 4 that infinite unions
cannot be used for the determinacy and rewriting of path queries, which explains the very
low requirements we have on queries with an infinite associated set.

Views
Let σ and τ be two binary schemas. A view V from σ to τ is a set of binary queries over σ,
one for each symbol in τ . Note that, since both σ and τ are finite, then V is also a finite
set. By abuse of notation, we will use the same notation for both the relational predicate in
τ and the corresponding query in V. For a given graph database D over σ, V(D) is then
defined as another graph database E over τ , such that for each V ∈ τ , the interpretation of
V in E is exactly V (D). Finally, the nodes of E are exactly those that appear in one of those
relations, also known as the active domain of E.

Determinacy
A formal definition of determinacy is given in [6] as:

I Definition 1 (Determinacy). We say that a view V determines a query Q if:

∀D,D′,V(D) = V(D′) ⇒ Q(D) = Q(D′)

Intuitively, this means that a view V determines a query Q, which we write V� Q, if,
for all databases D, V(D) always contains enough information to answer Q on D. Moreover,
we say that a query R is a rewriting of Q using V if R(V(D)) = Q(D) for all D.

The determinacy problem is the problem of deciding, given a view V and a query Q,
whether V� Q. To the best of our knowledge, its decidability status is still open when Q
is a conjunctive query and V a conjunctive view, and also when Q is a regular path query,
and V a regular path view. Nonetheless, several cases have been considered and solved. The
results in [2] solve the problem when Q is a path query and V a path view. In [6], this
problem is considered for Q and V defined by conjunctive queries, and in [4] for Q and V
defined with regular path queries, both with the added restriction that V must determine Q
in a monotone way, which means that a monotone rewriting of Q using V exists.

Here, we consider the determinacy problem for Q defined as a path query, and V defined
as a set of unions of path queries. However, for each V, there exist a finite number of Q on
which our technique does not work. Hence, we are actually solving a slightly weaker problem,
that we call the α-asymptotic determinacy problem which allows, for each V, to exclude a
finite number of queries Q. The excluded queries are those that ask for a path longer than

ICDT 2015



48 Asymptotic Determinacy of Path Queries using Union-of-Paths Views

α(V), where α is a fixed function that maps each view to a natural number. Note that
providing an answer or a rewriting in “almost all” cases is something that has already been
considered in the same context, for instance in [2]. We can now formally state the problem
and our main result:

Problem : α-asymptotic determinacy
Input : A union-of-paths view V and a path query Q = {n} with n > α(V)
Question : Does V� Q?

I Theorem 2. There exists an explicit and computable function α for which the α-asymptotic
determinacy problem is decidable. Moreover, when the view determines the query, the decision
procedure effectively computes a first-order rewriting of the query using the view.

It will actually come from the proof that the specific α for which we can solve the problem
grows exponentially in the size of the finite unions in V, while disregarding the infinite ones.
However, the decision procedure itself works with a much lower ΠP

2 complexity.

Arithmetic Notations
Some of the proofs in this work involve a lot of arithmetic reasonings. We present here the
notations that we use. Given two integers n and d, n[d] represents the remainder in the
division of n by d. We say that two integers n1 and n2 are equivalent modulo d, and we write
n1 ≡ n2[d] if they have the same remainder modulo d. We denote by gcd(A) the greatest
common divisor of a set of integers A, and we use n1 ∧ n2 for gcd({n1, n2}). Additionally,
for two binary relations R and S, we write R · S for {(x, z) | ∃y,R(x, y) and S(y, z)}. Let n
be a positive integer, we also use R1 = R, and Rn = Rn−1 ·R if n ≥ 2.

Organization
The rest of the paper investigates the determinacy problem for a path query Q using view V
defined by unions of path queries. In Section 3, we start by providing some conditions on Q
and V that are necessary for V to determine Q. Section 4 is dedicated to proving Theorem 2,
which gives a procedure for deciding the determinacy problem for almost all path queries Q,
as well as a first-order rewriting of Q using V for the queries that are determined. Finally,
in Section 5, we discuss the issue that remains to be solved in order to decide determinacy
for all queries.

Note that, due to space constraints, we only provide sketches of the most long and
technical proofs. The missing proofs can be found in a more complete version of this paper.

3 Necessary Conditions and First Results

In this section and the next, we only consider path queries and union of path views. When
we simply say “query” or “view”, it is implied that they belong to those specific classes. The
goal here is to provide a set of necessary conditions for a view V to determine a query Q.

Our first lemma states that a view V cannot possibly determine a query Q if V does not
at least contain a path query. In other words, even though V is defined using union of path
queries, at least one of them cannot make use of the union.

I Lemma 3. Assume that a view V and query Q are such that V� Q. Then there exists
C ∈ V such that |C| = 1.



N. Francis 49

x0 x1 x2 x3 x4

Figure 1 Illustration for the proof of Lemma 3, showing here that V = {2, 4} 6� Q = {4}.
Following the notations in the proof, the top path is π2,V and the bottom path is π4,V . Remark then
that adding or removing the dashed edge does not change the view, but changes the query result.

Proof. Assume by contraposition that, for all V ∈ V, |V | > 1. Let Q = {n}. We build a
database D as follows:

D contains n+ 1 distinct nodes x0, . . . , xn.
For all i < n, a(xi, xi+1) holds in D.
For all i ≤ n, for all V ∈ V such that i ∈ V , we add to D a simple path πi,V from x0 to
xi, such that |πi,V | ∈ V − {i}. Such a path exists because |V | > 1.

We then construct another database D′ which is a copy of D except that a(x0, x1) does
not hold in D′. It is then easy to check that V(D) = V(D′) and that Q(D) 6= Q(D′). In
particular, (x0, xn) ∈ Q(D) and (x0, xn) /∈ Q(D′). Hence V 6� Q, which concludes the proof.
This construction is illustrated on Figure 1. J

Our second lemma states that we can safely ignore the queries in V that are defined by
infinite unions. This means that if a view V determines a query Q, then V also determines
Q without making use of its infinite components.

I Lemma 4. Let Q be a query and V be a view. Let V = Vf ]V∞, such that Vf only
contains queries defined by finite sets, and V∞ only contains queries defined by infinite sets.
Then V� Q if and only if Vf � Q.

Proof. It is easy to see that if Vf � Q, then V� Q. Conversely, assume that Vf does not
determine Q. Then there exists two databases D1 and D2 such that D1 and D2 agree on Vf

but not on Q. Let k be the biggest number that appears in Q∪Vf . We transform D1 into a
new database D′1 as follows:

We add to D′1 k + 1 new nodes x0,. . . ,xk, as well as the following edges:
For all i, a(xi, xi+1) holds in D′1.
a(x0, x0) and a(xk, xk) hold in D′1.

For each original node x of D1, we add a(x, x0) and a(xk, x) to D′1.

We then apply the same steps to D2 and get a new database D′2. This construction has no
effect on Q or Vf for the original nodes of D1 and D2. However, it makes it so that for
each (x, y) ∈ D1 (respectively D2), for each V ∈ V∞, V (x, y) holds in V∞(D′1) (respectively
V∞(D′2)). Thus, we can check that D′1 and D′2 agree on V but not on Q. Hence V 6� Q,
which concludes the proof. J

Altogether, these two lemmas show than we can restrict our attention to views V that
contain only queries defined by finite sets, and contain at least one query C such that |C| = 1.
This reduction is effective if we can decide which views correspond to infinite sets, and which
views correspond to singletons. We can now state the following definition for views that
contain such a path query C:

I Definition 5 (Complete). Let V be a view and C ∈ V such that C = {c}. We say that V
is C-complete if, for all i ∈ {0, . . . , c− 1}, there exists V ∈ V and k ∈ V such that k ≡ i[c].

ICDT 2015



50 Asymptotic Determinacy of Path Queries using Union-of-Paths Views

Our next necessary condition is an adaptation of the condition in [2]:

I Claim 6. Let V be a view and Q = {n}. Let π = x0 . . . xn. If V � Q then there is an
undirected path from x0 to xn in V(π).

This condition allows us to reduce any determinacy problem to an equivalent problem
with the added hypothesis that the view is C-complete:

I Lemma 7. Let V be a view and C ∈ V such that C = {c}. Let Q = {n}, and π = x0 . . . xn.
Assume that there is a path from x0 to xn in V(π). Then we can effectively compute a view
V′ with C ′ ∈ V′ such that C ′ = {c′} and a query Q′ such that V′ is C ′-complete and V� Q
if and only if V′ � Q′.

Sketch of proof. There are two cases to this proof. Consider the set U of all numbers that
appear in V. If gcd(U) = 1, then we can construct a new query V as a combination of the
other queries in V, such that V contains some vi ≡ i[c] for all i.

Assume now that gcd(U) = d, with d 6= 1. This means that all numbers appearing in V
can be divided by d. Since x0 is connected to xn in V(π), this also means that d divides
n. In this case, we build a new view V′ and a new query Q′ by dividing by d all numbers
that appear respectively in V and Q. We then show that V determines Q if and only if V′

determines Q′, and we apply the first case to V′ and Q′. J

Finally, the last lemma of this section shows that proving that V� Q for some Q also
yields a lot of other determinacy results easily.

I Lemma 8. Let V be a view and C ∈ V such that C = {c}. Let Q = {n}, and assume that
V� Q. Then, for all positive integer k, V� {n+ kc}.

Proof. Let R be a rewriting of Q using V. Let k be a positive integer. Then it is easy to
check that R · Ck is a rewriting of Q′ = {n+ kc} using V. J

4 Asymptotic Determinacy

The goal of this section is to prove Theorem 2. By using the results of Section 3, we can
restrict our attention to C-complete views V, with C ∈ V and such that all V ∈ V are finite.
Theorem 2 is a consequence of the following proposition:

I Proposition 9. Given a C-complete view V defined by finite unions of path queries, such
that C ∈ V with C = {c} for some c ∈ N and a natural number o ∈ {0, . . . , c − 1}, it is
decidable whether there exists a query Q = {n} such that n ≡ o[c] and V� Q. If this is the
case, such a query Q and a first-order rewriting of Q with regards to V can be effectively
computed.

Indeed, given a C-complete view V and a query Q = {m}, we can first decide if there
exists another query n, with n ≡ m[c] such that V � {n}. If this is not the case, then
we can safely conclude that V 6� Q. Otherwise, Proposition 9 gives us an explicit n that
is determined by V. If m > n, then Lemma 8 concludes that V � Q. Else, Q is one of
those small queries that we cannot handle, but there are only finitely many of them. Hence
α in Theorem 2 can be defined as the function that maps V to the maximal n given by
Proposition 9. In order to decide general determinacy, we would need the smallest n ≡ m[c]
that is determined by V. This particular issue is discussed in Section 5.

The proof of Proposition 9 is divided in three parts. In Section 4.1, we introduce a tool
that describes the possible behaviors that can be observed through the view V. We use it to



N. Francis 51

x0 x1 x2 x3 x4

x V

implies

x0 x1 x2 x3 x4

x V
C

or

x0 x1 x2 x3 x4

x V
C

Figure 2 Example of possible behaviors for a database (full) and its view (dashed), with C = {3}
and V = {1, 2}. Assume we know the information represented in the top figure. Then, one of the
two bottom pictures must hold. More generally, if C = {c} and V (x, xi) holds in E, then Ck(x, xj)
must also hold, with j = i+ (c− v[c]) and kc = v + (c− v[c]) for some v ∈ V .

prove the propositions in Section 4.2 and Section 4.3. More precisely, Section 4.2 settles the
case where no query Q = {n} with n ≡ o[c] is determined by V, and Section 4.3 builds an
approriate query Q when one does exist.

4.1 Behavior graph
The goal of this section is to define a tool that will help us deal with the high combinatorial
complexity when trying to find a target path in a database based on its view image. We now
give a rough sketch of the idea behind this tool. Assume we want to prove that some database
D contains a path π of length n by only looking at E = V(D), where V is a C-complete view
that contains only finite unions of path queries. If D does indeed contain such a path, then
the following properties must necessarily hold in E:
C1. E contains the n+ 1 (not necessarily distinct) nodes of π, x0, . . . , xn.
C2. For each V ∈ V and u ∈ V , V (xi, xi+u) holds in E for all i.
C3. For each x in E such that V (x, xi) holds in E, there exists an appropriate value of k

and j such that Ck(x, xj) holds in E. The values of k and j depend on the witness path
that proves V (x, xi), as shown in Figure 2.

Of course, there are many ways for a view instance E to satisfy all these properties
without D actually having a path of length n from x0 to xn, let alone one that goes through
all the xi’s in the right order. Let µ be a path in D from some xi to some xj . We define
the delay of this path as δ(µ) = |µ| − (j − i), that is the length of µ minus the expected
length of µ if µ had been the section from xi to xj of a path of length n whose nodes are the
xi’s. Note that δ(µ) can be positive (µ is longer than expected), negative (µ is shorter than
expected), or zero, in which case there is a path of length (j − i) from xi to xj as intended.

Let D be a database and E = V(D) such that E satisfies the necessary conditions above.
For this D and E, we build a graph HD that represents the delays of the paths of D that are
induced by the conditions (C1), (C2) and (C3) as follows:

HD has n+ 1 nodes that represent x0, . . . , xn, as in (C1). We simply note them 0, . . . , n.
For all V ∈ V and u ∈ V , (C2) implies that V (xi, xi+u) holds in E. Hence, there exists a
path π in D going from xi to xi+u of length v, for some v ∈ V .

We represent this as an edge in HD going from i to i+ u of label δ(π) = (v − u).

ICDT 2015



52 Asymptotic Determinacy of Path Queries using Union-of-Paths Views

xi xi+u xi+u+q

x
v − u′

u′

V ′

kc = v′ + q

Figure 3 Illustration for the existence of the path π′ of delay (v−u)+(v′−u′) in the construction
of HD. Full arrows represent paths in D and are labeled by their length. Dashed arrows represent
edges in E. π′ is the thick path, and q = c− v′[c].

For all u′ < v such that u′ ∈ V ′ for some V ′ ∈ V, we know that V ′(x, xi+u) holds in E,
where x is the u′th predecessor of xi+u along π. We apply (C3) as shown in Figure 3.
This leads to a path π′ from xi to xi+u+(c−v′[c]) such that δ(π′) = (v − u) + (v′ − u′),
for some v′ ∈ V ′, which we similarly represent in HD.

Assume that there is a path from node 0 to node n in HD whose sum of labels is 0. By
composing all the paths in D that led to this path in HD, we can prove that there exists in
D a path π from x0 to xn such that δ(π) = 0. Hence, π is of length n, and we have actually
found a path of length n from x0 to xn in D.

Consider the case where this is true for all databases D, that is, for all databases D
such that V(D) satisfies the necessary conditions, HD contains such a path. Then all these
databases contain a path of length n from x0 to xn. This means that the necessary conditions
for the existence of a path of length n in D are also sufficient. Since these conditions can be
checked by looking only at the view instance, it implies that V� {n}.

Unfortunately, the size of HD depends on the size of the target query. In order to have
a representation that does not depend on n, we identify in HD all nodes i and j such that
i ≡ j[c]. Note that this is consistent with the fact that such nodes were already linked by
paths of delay 0 thanks to C ∈ V. This is exactly the idea behind choice graphs, that are
formally defined below. While we do lose some information by doing this merging, these
graphs are still rich enough to allow us to decide asymptotic determinacy, as we will see in
the rest of the proof.

I Definition 10 (Choice graph). Given a C-complete view V such that C ∈ V with C = {c},
we define HV as the set of all directed, edge-labeled graphs H such that:
1. H has c nodes, which we will simply note 0, 1, . . . , c− 1.
2. The edges of H carry labels in {−2(m− 1), . . . , 2(m− 1)}, where m is the biggest element

that appears in the views, that is m = maxV ∈V maxu∈V u.
3. For each i, j ∈ {0, . . . , c − 1}, for each V ∈ V, for each u ∈ V such that u ≡ (j − i)[c],

there exists v ∈ V such that:
there is an edge in H from i to j labeled by v − u.
for each V ′ ∈ V, for each u′ ∈ V ′, there exist v′ ∈ V ′ and an edge in H from i to
(j − v′)[c] labeled by (v − u) + (v′ − u′).

I Remark. Since each H ∈ HV has a bounded number of nodes and edges, then HV is finite.
Moreover all H ∈ HV are complete graphs, because V is C-complete.

I Definition 11 (Weight). The weight of a path in a graph H is the sum of all labels along
edges of the path. A path with no edge is of weight 0.



N. Francis 53

xk x`

C C C C

implies, for all u:

xk x`xk−u x`+c−u

C C C C C

u c− u

Figure 4 Illustration of the intuition for the construction of a behavior graph. Assume that
the xi’s form a path of length n from x0 to xn. If xk and x` are connected via a sequence of C’s,
represented by the dashed edges, then for all u < c, there exists some intermediate nodes such that
xk−u and x`+c−u are connected as shown in the picture.

I Definition 12 (Behavior graph). Given a C-complete view V such that C ∈ V with
C = {c}, we define GV as the set of all directed, edge-labeled graphs G constructed as follows:
1. Pick H ∈ HV, and start with G = H.
2. Pick i, j ∈ {0, . . . , c− 1} such that:

There exists in G a path from i to j of weight (i− j)[c]. Let a be the weight of a path
of minimal length satisfying this property.
For all a′ ≡ a[c], there exists i′, j′ such that (j′ − i′) ≡ (j − i)[c], and there is no edge
from i′ to j′ of label a′.

Then, for all i′, j′ such that (j′ − i′) ≡ (j − i)[c], add an edge a from i′ to j′.
3. Repeat step 2 until no more edges can be added.

I Remark.
Step 2 of the construction of GV can only be applied a finite number of times for each G,
since it can be done at most once for each (i, j). Moreover, there is a finite amount of
choice at each step. Hence, GV is finite.
As soon as there is a path from some i to some j of weight (i − j)[c], then there is a
weight a ≡ (i− j)[c] such that all i′, j′ that are at the same distance than i is from j are
linked by an edge of this particular weight.

Behavior graphs contain another necessary property of the existence of a path of length
n that goes through the xi’s. Remark that a path π of delay i − j going from xi to xj is
actually of length 0 modulo c. Hence π appears in E as a sequence of C edges. Then the
reasoning shown in Figure 4 implies the existence of paths of identical delay from nodes xi−u
to nodes xj+c−u for all u.

All the intuitions presented in this section are made precise in Section 4.2 and Section 4.3,
when this tool is actually used. In Section 4.2, we show that, if there exists some behavior
graph G such that there is no path of weight 0 from 0 to o in G, then we can build two
databases that agree on the view but not on paths of length n ≡ o[c], for all n. In other
words, we can build a database whose view satisfies all the necessary conditions for the
existence of a path of length n, while still maintaining a non-zero delay between the relevant
nodes. On the contrary, in Section 4.3, we show that, if for all behavior graphs G, there is a
path of weight 0 from 0 to o in G, then it is enough to satisfy the necessary conditions in
order to have a path of length n.

Our decision algorithm uses these properties of behavior graphs as follows. For a given
C-complete view V and a given natural number o ∈ {0, . . . , c− 1}, we are simply looking

ICDT 2015



54 Asymptotic Determinacy of Path Queries using Union-of-Paths Views

0

1

+1+1

+0,+1

+0,+1

Figure 5 A behavior graph for
the view defined in Example 14.

0

12

+4,−8

−4,+8

−4,+8

+4,−8

−4,+8

+4,−8

+0

+0+0

Figure 6 A behavior graph for the view defined in Ex-
ample 15.

for the occurrence of a specific graph G ∈ GV, namely one that does not contain a path of
weight 0 from node 0 to node o. If we do find one such G, then, for all n ≡ o[c], V 6� {n}.
Otherwise, V� {n} for some n ≡ o[c]. We do not actually need to compute GV: we simply
guess the appropriate graph G and check that it does contain the critical path. Since G is of
size polynomial in V and the considered path, if it exists, can be assumed to be polynomial
in the size of G (thanks to Bezout’s Identity), our decision procedure is in PSpace, more
precisely in ΠP

2 .

4.2 Negative direction: building counter-examples
In this section, we solve the negative case of Proposition 9 by proving the following proposition:

I Proposition 13. Assume that there exists G ∈ GV such that there is no path of weight 0
from 0 to o. Then, for all n ≡ o[c], V 6� {n}.

The proof of Proposition 13 is split across Lemma 16 and Lemma 17. The canonical
counter-examples that we build in order to prove that V 6� {n} depend on whether G only
contains cycles of positive or negative weights, or if it actually has both. These two cases are
respectively dealt with in Lemma 16 and Lemma 17, and Example 14 and Example 15 give
examples of both situations.

I Example 14. Let V = {C, V }, C = {2} and V = {1, 2}. Figure 5 represents one of the
graphs in GV, that additionally satisfies the condition of Lemma 16. Namely, there is no
path of weight 0 from 0 to 1, and 0 only has non-negative cycles.

I Example 15. Let V = {C, V }, C = {3} and V = {1, 5}. Figure 6 represents one of the
graphs in GV, that additionally satisfies the condition of Lemma 17. Namely, there is no
path of weight 0 from 0 to 1, and 0 has positive and negative cycles.

I Lemma 16. Assume that there exists G ∈ GV such that 0 does not have both a cycle of
positive weight and a cycle of negative weight and that there is no path of weight 0 from 0 to
o. Then, for all n ≡ o[c], V 6� {n}.

Sketch of proof. Assume that G does not have cycles of negative weights. An example of
such a case is given in Example 14. We explain how the proof works on this example.

We build a counter-example showing that V does not determine any odd n as follows.
Start from a database D which consists of two simple paths of length n denoted x0 . . . xn
and x′0 . . . x′n. For each i, add a path of length 2 from xi to xi+1, and a path of length 2
from x′i to x′i+1, sharing their middle nodes. Notice now that you can switch the position of



N. Francis 55

x0 x1 x2 x3 x4 x5

x′0 x′1 x′2 x′3 x′4 x′5

x0 x′1 x2 x′3 x4 x′5

x′0 x1 x′2 x3 x′4 x5

Figure 7 Example of the construction in Lemma 16 for the view defined in Example 14.

xi with x′i for all odd i without altering the view. This defines a new database D′, as shown
in Figure 7. D and D′ agree on the view, but any path that goes from x0 to xn in D′ has to
go at least once through one of the new paths, and is thus longer than n. Hence D and D′

disagree on Q, which concludes the proof.
This construction highlights the ideas in the general proof, for any V and Q. The fact

that the new paths introduced from x0 to x′n in D are strictly longer than n actually stems
from the assumption that G has no cycles of negative weights. The complete proof consists
in giving an exact characterization of which new paths to add, and which nodes to switch
between the two original paths. J

I Lemma 17. Assume that there exists G ∈ GV such that 0 has both cycles of positive and
negative weight, and that there is no path of weight 0 from 0 to o. Then, for all n ≡ o[c],
V 6� {n}.

Sketch of proof. Remark that the conditions of this lemma are satisfied in Example 15, for
o = 1. Let Q = {n}, with n ≡ 1[c]. We illustrate the proof on this particular example.

Let W be the set of all cycles of 0 in G. Let d = gcd(W ). Here, d = 12. Notice that, for
each i, j ∈ G, there is a unique w(i, j) ∈ {0, . . . , 11} such that, for all path π from i to j, π
is of weight w(i, j) modulo d. For instance, all paths from 0 to 1 are of weight 4 modulo 12.
A careful analysis of the arithmetic properties of G can actually show that this is true in
general.

We build a counter-example showing that V 6� Q by using the information contained
in G as follows. Start with a database D which is a cycle of length d whose nodes are
x0, . . . , xd−1. From D, we define a database D′ by renaming each node xi of D to xi+w(0,i[c]).
For instance, x0 remains as x0, x1 is renamed to x1+w(0,1), which is x5, x2 is renamed to
x10, and so on. See Figure 8.

Remark now that D′ is also a cycle of length d, whose nodes have simply been reordered,
compared to D. Moreover, we can check that V(D) = V(D′). However, all paths of D of
length 1 modulo c starting from x0 end in one of x1, x4, x7 or x10, whereas for D′, they
end in one of x2, x5, x8 or x11. This is due to the fact that w(0, 1) 6= 0, as assumed by the
lemma. Hence, D and D′ cannot agree on Q, which concludes this counter-example.

The fact that D′ is always a correctly-defined cycle of length d whose view image is equal
to V(D) relies once again on the good arithmetic properties of G. J

4.3 Positive direction: computing a rewriting
In this section, we solve the positive case of Proposition 9. We start by giving a simple example
that shows some of the features of the rewritings that will be used to prove Proposition 19.

ICDT 2015



56 Asymptotic Determinacy of Path Queries using Union-of-Paths Views

x0

x1

x2
x3

x4

x5

x6

x7

x8
x9

x10

x11

x0

x5

x10
x3

x8

x1

x6

x11

x4
x9

x2

x7

Figure 8 Example of the construction in Lemma 17 for the view defined in Example 15.

x0 x1 x2 x3 x4 x5

z

2

2
2

2

Figure 9 Illustration for the last case of Example 18. The full edges represent paths in the
database, along with their length when it is more than 1. The dotted edges represent the two
possible implications of V1(z, x3).

I Example 18. In this example, we work with:
V = {C, V1, V2}
C = {2}

V1 = {1, 2}
V2 = {2, 3} Q = {5}

We show that V� Q. Indeed, the following formula R is a rewriting of Q using V.

R(x, y) = ∃x0, . . . , x5, x0 = x ∧ x5 = y ∧ CQπ5 ∧
(
∀z, V1(z, x3)⇒ (C(z, x3) ∨ C(z, x4))

)
where π5 is a simple path whose nodes are x0, . . . , x5 and CQπ5 is the conjunctive query
that states all the atoms that hold in V(π5). First, remark that R only states necessary
conditions for the existence of a path of length 5 from x to y, as explained in Section 4.1,
hence, for all D, Q(D) ⊆ R(V(D)).

Assume now that (x, y) ∈ R(V(D)). Let x0, . . . , x5 be a quantification for which R(x, y)
is satisfied. We can prove the following:

C(x0, x2), C(x1, x3) and C(x2, x4) hold in V(D). Hence, these pairs of nodes are at
distance 2 in D.
V1(x4, x5) holds in V(D). Hence, x4 and x5 are either at distance 1 or 2. If this distance
is 1, then we immediately get a path of length 5 from x0 to x5 by using the previous
point, as x0

2→ x2
2→ x4

1→ x5.
Similarly, V2(x0, x3) holds in V(D). If the distance from x0 to x3 is 3, we immediately get
x0

3→ x3
2→ x5. Otherwise, there exists z such that x0 → z → x3. This implies V1(z, x3).

The remaining case is represented in Figure 9, with the two possible implications of
V1(z, x3) given by R. Both possibilities also imply a path of length 5 from x0 to x5.

I Proposition 19. Assume that for all G ∈ GV there is a path of weight 0 from 0 to o. Then
there exists n ≡ o[c] such that V� {n} and we can effectively compute a first-order rewriting
that witnesses it.



N. Francis 57

Sketch of proof. Let Q = {n}, with n ≡ o[c]. We define a rewriting R as:

R(x, y) = ∃x0, . . . , xn, x0 = x ∧ xn = y ∧
3∧
i=1

Ri(x0, . . . , xn)

where R1, R2 and R3 are first-order formulas such that:
R1 states that x0, . . . , xn satisfy V(π) with π = x0 . . . xn.
R2 states that, if V (z, xi) holds for some z, then Cbu/cc+1(z, xi+c−u[c]) must also hold
for some u ∈ V , as explained in Figure 2.
R3 states that, if xi and xj are at distance d ≡ 0[c], then xi−l and xi+c−l must be at
distance d+ c, for all l ∈ {0, . . . , c− 1}. As stated, R3 is not in first-order because it is
an infinite disjunction on the values of d. We can actually make it finite, but we omit the
argument here for simplicity.

First, remark that Q(D) ⊆ R(V(D)). Indeed, each Ri only states necessary conditions.
The rest of this sketch is devoted to showing the converse.

Let D be a database such that (x, y) ∈ R(V(D)). Hence, there exist nodes x0, . . . , xn in
D such that Ri(x0, . . . , xn) holds in V(D). Let π be a path in D from xi to xj , we denote
the delay of this path by δ(π) = |π| − (j − i), that is the length of π minus the expected
distance between xi and xj . For instance, assume that there is a path of length 2 from x0 to
x1, then the delay of this path would be 1. By following this path, x1 is too far from x0 by
1, because x1 was intended to be the successor of x0.

From D, we build a graph H with n + 1 nodes such that there is an edge of label w
between nodes i and j if and only if there is a path π from xi to xj with δ(π) = w. Then we
deduce from H a graph G by merging the nodes of H that have the same index modulo c.
Remark that R1, R2 and R3 imply that G actually contains a behavior graph G0, as defined
in Section 4.1. Thus, by hypothesis, this graph contains a path π0 from 0 to o of weigth 0.

If n is big enough, then we can actually choose G0 in such a way that each edge of G0
has many witness paths in D. In other words, if G0 contains an edge from i to j of weight w,
then there exists many pairs of nodes xi′ and xj′ such that i′ ≡ i[c], j′ ≡ j[c] and there exists
a path π from xi′ to xj′ with δ(π) = w. With some additional combinatorial work, we show
that we can mimic π0 in D through the use of these witness paths, and thus produce a path
of delay 0 from x0 to xn. Hence, this path is of length n, which implies that (x0, xn) ∈ Q(D)
and concludes the proof. J

5 The case of small queries

In this section, we investigate the following example, in order to illustrate the issue that
remains to be solved in the case of small queries.

V = {C, V1, V2}
C = {2}

V1 = {1, 2}
V2 = {2, 5}

I Claim 20. For all even n, V� Q = {n}. This easily comes from C = {2}.

By applying Theorem 9 we can show that there exists some odd n such that V� Q = {n},
hence V also determines all bigger queries. In order to get the full picture, we need to find
the smallest odd n that is determined by V. Our work so far actually gives us:

I Claim 21. For all odd n ≤ 7, V 6� Q = {n}.

ICDT 2015



58 Asymptotic Determinacy of Path Queries using Union-of-Paths Views

x0 x1 x2 x3 x4 x5 x6 x7

x′0 x′1 x′2 x′3 x′4 x′5 x′6 x′7

x0 x′1 x2 x′3 x4 x′5 x6 x′7

x′0 x1 x′2 x3 x′4 x5 x′6 x7

Figure 10 The two databases above are a proof that V 6� Q = {n} for any odd n that is not
greater than 7. Indeed, we can check that both databases agree on V. However, there is no path of
length 1 (respectively 3, 5 and 7) from x0 to x1 (respectively x3, x5 and x7) in the bottom database.

To prove this claim, we use a technique that is very similar to Lemma 16. More precisely,
the two databases in Figure 10 agree on V, but disagree on all Q = {n} when n is odd and
not greater than 7.

Note that this technique does not work for n greater than 7. Indeed, in the case shown
above, any path that goes from x0 to x7 in the bottom database has to cross from the top
section to the bottom section. By doing so, it suffers a delay of either +1 or −3 compared
to the expected value. It works here because 7 is “too small” and does not provide enough
space to catch-up on this delay. Assume now that n = 9, then a delay of −3 can be mitigated
by following a +1 path three times, and thus does not provide a counter-example.

I Claim 22. For all n ≥ 11, V� Q = {n}.

We show this by arguing that V � Q = {11}. This is done by actually proving that
the canonical rewriting R given in Section 4.3 works in this case. Although the proof given
in Section 4.3 does not apply (because 11 is not “big enough” for all the combinatorial
arguments to go through), a careful enumeration of all the possibilities for a database
satisfying R actually shows that R(x, y) implies a path of length 11 from x to y, as was done
in Example 18.

It is then straightforward to prove that V determines every odd query bigger than 11.
Let n = 11 + 2k be such a query. Then a rewriting for n is simply R11 · Ck, as in Lemma 8.
As we already know that V determines every even query, this end the proof of the claim.

The case of n = 9. There remains only a single unsolved case, which is n = 9. This
qualifies as a “small query” for the view V: a query for which we are unable to either build
a generic counter-example, as in Section 4.2, or provide a generic rewriting, as in Section 4.3.
We actually proved that V 6� Q = {9}. However, the smallest counter-example that we know
is a pair of databases of 154 nodes each, that were built by hand through a very tedious trial
and error process and checked by a computer program. At this time, we are unfortunately
unable to provide any technique to generate such a counter-example for other views and
queries. We conjecture that the combinatorial complexity of these “small queries” might be
way higher than what we have dealt with so far.



N. Francis 59

6 Conclusions

We have shown that, given a view V defined by unions of path queries, we can decide
determinacy of almost all path queries Q. Although the smallest query that we can handle is
of exponential size in the size of V, our decision procedure still works with ΠP

2 complexity.
Moreover, for the queries that are big enough to be handled by our algorithm, we also provide
a first-order rewriting when they are determined, and a canonical counter-example otherwise.

A natural continuation of this work would be to try and solve the determinacy problem
even for small queries. Another possible continuation stems from the following remark: on all
examples where V determines Q that we are aware of, it also turns out that our rewriting is
actually correct, even when the query is too small to be handled by our technique. Perhaps
it so happens that this rewriting is always correct, as soon as we assume that V determines
Q. Failing that, it might still be the case that a first-order rewriting can always be found.

Acknowledgements. I gratefully thank Luc Segoufin and Cristina Sirangelo for carefully
proofreading this paper and providing many invaluable comments and advices.

References
1 Serge Abiteboul and Oliver M. Duschka. Complexity of answering queries using materi-

alized views. In ACM Symp. on Principles of Database Systems (PODS), pages 254–263,
1998.

2 Foto N. Afrati. Determinacy and query rewriting for conjunctive queries and views. The-
oretical Computer Science, 412(11):1005–1021, 2011.

3 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Lossless
regular views. In ACM Symp. on Principles of Database Systems (PODS), pages 247–258.
ACM, 2002.

4 Nadime Francis, Luc Segoufin, and Cristina Sirangelo. Datalog rewritings of regular path
queries using views. In Proceedings of the 17th International Conference on Database The-
ory (ICDT’14), pages 107–118, 2014.

5 Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering
queries using views. In ACM Symp. on Principles of Database Systems (PODS), pages
95–104, 1995.

6 Alan Nash, Luc Segoufin, and Victor Vianu. Views and queries: Determinacy and rewriting.
ACM Transactions on Database Systems, 35(3), 2010.

ICDT 2015



Games for Active XML Revisited
Martin Schuster and Thomas Schwentick

TU Dortmund, Germany

Abstract
The paper studies the rewriting mechanisms for intensional documents in the Active XML frame-
work, abstracted in the form of active context-free games. The safe rewriting problem studied in
this paper is to decide whether the first player, Juliet, has a winning strategy for a given game
and (nested) word; this corresponds to a successful rewriting strategy for a given intensional
document. The paper examines several extensions to active context-free games.

The primary extension allows more expressive schemas (namely XML schemas and regular
nested word languages) for both target and replacement languages and has the effect that games
are played on nested words instead of (flat) words as in previous studies. Other extensions
consider validation of input parameters of web services, and an alternative semantics based on
insertion of service call results.

In general, the complexity of the safe rewriting problem is highly intractable (doubly expo-
nential time), but the paper identifies interesting tractable cases.

1998 ACM Subject Classification F.2.m Miscellaneous, F.4.2 Grammars and Other Rewriting
Systems, H.3.5 Online Information Services

Keywords and phrases Active XML, Computational Complexity, Nested Words, Rewriting
Games, Semistructured Data

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.60

1 Introduction

Scientific context

This paper contributes to the theoretical foundations of intensional documents, in the frame-
work of Active XML [1]. It studies game-based abstractions of the mechanism transforming
intensional documents into documents of a desired form by calling web services. One form
of such games has been introduced under the name active context-free games in [11] as an
abstraction of a problem studied in [9].1 The setting in [9] is as follows: an Active XML
document is given, where some elements consist of functions representing web services that
can be called. The goal is to rewrite the document by a series of web service calls into a
document matching a given target schema.

Towards an intuition of Active XML document rewriting, consider the example in Figure 1
of an online local news site dynamically loading information about weather and local events
(adapted from [9] and [11]). Figure 1a shows the initial Active XML document for such a site,
containing function nodes which refer to a weather and an event service, respectively, instead
of concrete weather and event data. After a single function call to each of these services has
been materialised, the resulting document may look like the one depicted in Figure 1b. Note
that the rewritten document now contains new function nodes; further rewriting might be

1 Actually, the two notions were introduced in the respective conference papers.

© Martin Schuster and Thomas Schwentick;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 60–75

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.60
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


M. Schuster and T. Schwentick 61

City

Events

@events_svc

Weather

@weather_svc

Name

Dortmund
(a) Example document before rewriting.

City

Events

@events_svcSports

@sports_svc

Weather

20◦/sunny

Name

Dortmund

(b) Same document after function calls.

Figure 1 Example of Active XML rewriting.

necessary to reach a document in a given target schema (which could, for instance, require
that the document contains at least one indoor event if the weather is rainy).

Modelling this rewriting problem as a game follows the approach of dealing with uncer-
tainty by playing a “game against nature”: We model the process intended to rewrite a given
document into a target schema by performing function calls as a player (Juliet). As her
moves, she chooses which function nodes to call, and her goal is to reach a document in the
target schema. Returns of function calls, on the other hand, are chosen (in accordance with
some schema for each called service) by an antagonistic second player (Romeo), whose goal
is to foil Juliet. The question whether a given document can always be rewritten into the
target schema may then be solved by deciding whether Juliet has a winning strategy. More
specifically, given an input document, target schema and return schemas for function calls,
there should exist a safe rewriting algorithm that always rewrites the input document into
the target schema, no matter the concrete returns of function calls, if and only if Juliet has
a winning strategy in the corresponding game.2

In [9], the target schema is represented by an XML document type definition (DTD). It
was argued that, due to the restricted nature of DTDs, the problem can be reduced to a
rewriting game on strings where, in each move a single symbol is replaced by a string, the set
of allowed replacement strings for each symbol is a regular language and the target language
is regular3, as well.

In [11] the complexity of the problem to determine the winner in such games (mainly
with finite replacement languages) was studied. Whereas this problem is undecidable in
general, there are important cases in which it can be solved, particularly if Juliet chooses
the symbols to be replaced in a left-to-right fashion. In and after [11, 9], research very much
concentrated on games on strings (and thus on the setting with DTDs). Furthermore, to
achieve tractability, a special emphasis was given to the restriction to bounded strategies, in
which the recursion depth with respect to web service calls is bounded by some constant.

Our approach

The aim of this paper is to broaden the scope and extend the investigation of games for
Active XML in several aspects. First of all, we consider stronger schema languages (compared
to DTDs) such as XML Schema and Relax NG, due to their practical importance. To allow
for this extension, our games are played on nested words [3].4

2 It is hard to give a precise statement of safe rewriting that does not already involve games, but we hope
that the general idea of this statement becomes sufficiently clear.

3 More precisely, it should be given by a deterministic regular expression.
4 More precisely: word encodings of nested words in the sense of [3].

ICDT 2015



62 Games for Active XML Revisited

Table 1 Summary of complexity results. All results are completeness results.

No replay Bounded Unbounded
Regular target language
Regular replacement PSPACE 2-EXPTIME 2-EXPTIME
Finite replacement PSPACE PSPACE EXPTIME
DTD or XML Schema target language
Regular replacement PTIME PSPACE EXPTIME
Finite replacement PTIME PTIME EXPTIME

Furthermore, we study the impact of the validation of input parameters for web service
calls (partly considered already in [9]), and investigate an alternative semantics, where results
of web service calls are inserted next to the node representing the web service, as opposed to
replacing that node.

As we are particularly interested in the identification of tractable cases, we follow the
previous line of research by concentrating on strategies in document order (left-to-right
strategies) and by considering bounded strategies (bounded replay) and strategies in which
no calls in results from previous web service calls are allowed (no replay). However, we also
pinpoint the complexity of the general setting.

As a basic intuition for the concept of replay, consider again the online news site example
from Figure 1, and assume that the schema for the event service’s returns is (partially)
given by @event_svc→ (Sports|Movie)@event_svc, i.e. the event service allows for dynamic
loading of additional results. A strategy with no replay would not be allowed to fetch any
additional results in the situation of Figure 1b, while a strategy with bounded replay k (for
some constant k) could load up to k more events after the first. A strategy with unbounded
replay would be able to fetch an arbitrary number of results, but might lead to a rewriting
process that does not terminate if unsuccessful.

Our contributions

Our complexity results with respect to stronger schema languages are summarised in Table 1.
In the general setting, the complexity is very bad: doubly exponential time. However,
there are tractable cases for XML Schema: replay-free strategies in general and strategies
with bounded replay in the case of finite replacement languages (that is, when there are
only finitely many possible answers, for each web service). It should be noted that the
PSPACE-hardness result for the case with DTDs, bounded replay and infinite replacement
languages indicates that the respective PTIME claim in [9] is wrong.

In the setting where web services come with an input schema that restricts the parameters
of web service calls, we only study replay-free strategies. It turns out that this case is
tractable if all schemas are specified by DTDs and the number of web services is bounded.
On the other hand, if the desired document structure is specified by an XML Schema or the
number of function symbols is unbounded, the task becomes PSPACE-hard.

For insertion-based semantics, we identify an undecidable setting and establish a corres-
pondence with the standard “replacement” semantics, otherwise.

As a side result of independent interest, we show that the word problem for alternating
nested word automata is PSPACE-complete.



M. Schuster and T. Schwentick 63

Related work

We note that the results on flat strings in this paper do not directly follow from the results
in [11], as [11] assumed target languages given by DFAs as opposed to deterministic regular
expressions, which are integral to both DTDs and more expressive XML schema languages.
However, the techniques from [11] can be adapted.

More related work for active context-free games than the papers mentioned so far is
discussed in [11]. Further results on active context-free games in the “flat strings” setting
can be found in [2, 4]. A different form of 2-player rewrite games are studied in [13]. More
general structure rewriting games are defined in [7].

Organisation

We give basic definitions in Section 2. Games with regular schema languages (given by nested
word automata) are studied in Section 3, games in which the schemas are given as DTDs
or XML Schemas are investigated in Section 4. Validation of parameters and insertion of
web service results are considered in Section 5. Due to space restrictions, most proofs are
omitted here. An appendix containing the omitted proofs can be found in [12].

Acknowledgements

We would like to thank the anonymous reviewers for their insightful and constructive
comments. We are grateful to Nils Vortmeier and Thomas Zeume for careful proof reading,
and to Krystian Kensy for checking our proof of Proposition 18 (b) and for pinpointing the
problems in the algorithm of [9] as part of his Master’s thesis.

2 Preliminaries

For any natural number n ∈ N, we denote by [n] the set {1, . . . , n}. Where M is a (finite)
set, P(M) denotes the powerset of M , i.e. the set of all subsets of M . For an alphabet Σ,
we denote the set of finite strings over Σ by Σ∗ and ε denotes the empty string.

Nested words

We use nested words5 as an abstraction of XML documents [3]. For a finite alphabet Σ,
〈Σ〉 def= {〈a〉 | a ∈ Σ} denotes the set of all opening Σ-tags and 〈/Σ〉 def= {〈/a〉 | a ∈ Σ}
the set of all closing Σ-tags. The set WF(Σ) ⊆ (〈Σ〉 ∪ 〈/Σ〉)∗ of (well-)nested words over
Σ is the smallest set such that ε ∈ WF(Σ), and if u, v ∈ WF(Σ) and a ∈ Σ, then also
u〈a〉v〈/a〉 ∈WF(Σ). We (informally) associate with every nested word w its canonical forest
representation, such that words 〈a〉〈/a〉, 〈a〉v〈/a〉 and uv correspond to an a-labelled leaf, a
tree with root a (and subforest corresponding to v), and the forest of u followed by the forest
of v, respectively. A nested string w is rooted, if its corresponding forest is a tree. In a nested
string w = w1 . . . wn ∈WF(Σ), two tags wi ∈ 〈Σ〉 and wj ∈ 〈/Σ〉 with i < j are associated if
the substring wi . . . wj of w is rooted. To stress the distinction from nested strings in WF(Σ),
we refer to strings in Σ∗ as flat strings (over Σ).

What we describe as opening and closing tags is often referred to as call symbols and
return symbols in the literature on nested words; we avoid these terms to avoid confusion
with Read and Call moves used in context-free games (see below).

5 Our definition of nested words corresponds to word encodings of well-matched nested words in [3].

ICDT 2015



64 Games for Active XML Revisited

Context-free games

A context-free game on nested words (cfG) G = (Σ,Γ, R, T ) consists6 of a finite alphabet
Σ, a set Γ ⊆ Σ of function symbols, a rule set R ⊆ Γ ×WF(Σ) and a target language
T ⊆ WF(Σ). We will only consider the case where T and, for each symbol a ∈ Γ, the set
Ra

def= {u | (a, u) ∈ R} is a non-empty regular nested word language, to be defined in the
next subsection.

A play of G is played by two players, Juliet and Romeo, on a word w ∈WF(Σ). In a
nutshell, Juliet moves the focus along w in a left-to-right manner and decides, for every
closing tag7 〈/a〉 whether she plays a Read or, in case a ∈ Γ, a Call move. In the latter case,
Romeo then replaces the rooted word ending at the position of 〈/a〉 with some word v ∈ Ra
and the focus is set on the first symbol of v. In case of a Read move (or an opening tag) the
focus just moves further on. Juliet wins a play if the word obtained at its end is in T .

Towards a formal definition, a configuration is a tuple κ = (p, u, v) ∈ {J,R} × (〈Σ〉 ∪
〈/Σ〉)∗× (〈Σ〉∪ 〈/Σ〉)∗ where p is the player to move, uv ∈WF(Σ) is the current word, and the
first symbol of v is the current position. A winning configuration for Juliet is a configuration
κ = (J, u, ε) with u ∈ T . The configuration κ′ = (p′, u′, v′) is a successor configuration of
κ = (p, u, v) (Notation: κ→ κ′) if one of the following holds:

(1) p′ = p = J, u′ = us, and sv′ = v for some s ∈ 〈Σ〉 ∪ 〈/Σ〉 (Juliet plays Read);
(2) p = J, p′ = R, u = u′, v = v′ = 〈/a〉z for z ∈ (〈Σ〉 ∪ 〈/Σ〉)∗, a ∈ Γ, (Juliet plays Call);
(3) p = R, p′ = J, u = x〈a〉y, v = 〈/a〉z for x, z ∈ (〈Σ〉 ∪ 〈/Σ〉)∗, y ∈ WF(Σ), u′ = x and

v′ = y′z for some y′ ∈ Ra (Romeo plays y′);8

The initial configuration of game G for string w is κ0(w) def= (J, ε, w). A play of G is either
an infinite sequence Π = κ0, κ1, . . . or a finite sequence Π = κ0, κ1, . . . , κk of configurations,
where, for each i > 0, κi−1 → κi and, in the finite case, κk has no successor configuration.
In the latter case, Juliet wins the play if κk is of the form (J, u, ε) with u ∈ T , in all other
cases, Romeo wins.

Strategies

A strategy for player p ∈ {J,R} maps prefixes κ0, κ1, . . . , κk of plays, where κk is a p-
configuration, to allowed moves. We denote strategies for Juliet by σ, σ′, σ1, . . . and
strategies for Romeo by τ, τ ′, τ1, . . .

A strategy σ is memoryless if, for every prefix κ0, κ1, . . . , κk of a play, the selected move
σ(κ0, κ1, . . . , κk) only depends on κk. As context-free games are reachability games we only
need to consider memoryless games; see, e.g., [6].

I Proposition 1. Let G be a context-free game, and w a string. Then either Juliet or
Romeo has a winning strategy on w, which is actually memoryless.

6 Some of the following definitions are taken from [4].
7 It is easy to see that the winning chances of the game do not change if we allow Juliet to play Call

moves at opening tags: if Juliet wants to play Call at an opening tag she can simply play Read until
the focus reaches the corresponding closing tag and play Call then. On the other hand, if she can win a
game by calling a closing tag, she can also win it by calling the corresponding opening tag, thanks to
the fact that she has full information.

8 We note that a Call move on 〈/a〉 in a substring of the form 〈a〉y〈/a〉 actually deletes the substring y
along with the opening and closing a-tags. This is consistent with the AXML intuition of the subtree
rooted at a function node getting replaced when the function node is called.



M. Schuster and T. Schwentick 65

Therefore, in the following, strategies σ for Juliet map configurations κ to moves σ(κ) ∈
{Call,Read} and strategies τ for Romeo map configurations κ to moves τ(κ) ∈WF(Σ).

For configurations κ, κ′ and strategies σ, τ we write κ σ,τ−→ κ′ if κ′ is the unique successor
configuration of κ determined by strategies σ and τ . Given an initial word w and strategies
σ, τ the play9 Π(σ, τ, w) def= κ0(w) σ,τ−→ κ1

σ,τ−→ · · · is uniquely determined. If Π(σ, τ, w) is
finite, we denote the word represented by its final configuration by wordG(w, σ, τ).

A strategy σ for Juliet is finite on string w if the play Π(σ, τ, w) is finite for every
strategy τ of Romeo. It is a winning strategy on w if Juliet wins the play Π(σ, τ, w), for
every τ of Romeo. A strategy τ for Romeo is a winning strategy for w if Romeo wins
Π(σ, τ, w), for every strategy σ of Juliet. We only consider finite strategies for Juliet, due
to Juliet’s winning condition. We denote the set of all finite strategies for Juliet in the
game G by STRATJ(G), and the set of all strategies for Romeo by STRATR(G).

The Call depth of a play Π is the maximum nesting depth of Call moves in Π, if this
maximum exists. That is, the Call depth of a play is zero, if no Call is played at all, and one,
if no Call is played inside a string yielded by a replacement move. For a strategy σ of Juliet
and a string w ∈WF(Σ), the Call depth DepthG(σ,w) of σ on w is the maximum Call depth
in any play Π(σ, τ, w). A strategy σ has k-bounded Call depth if DepthG(σ,w) ≤ k for all
w ∈WF(Σ). We denote by STRATkJ(G) the set of all strategies with k-bounded Call depth
for Juliet on G. As a more intuitive formulation, we use the concept of replay, which is
defined as Call depth (if it exists) minus one: Strategies for Juliet of Call depth one are
called replay-free, and strategies of k-bounded Call depth, for any k, have bounded replay.
For technical reasons, we need to use Call depth for some formal proofs and definitions, but
we will stick with the more intuitive concept of replay wherever possible.

By JWin(G) we denote the set of all words for which Juliet has a winning strategy in
STRATJ(G) (likewise for JWink(G) and STRATkJ(G)).

Nested word automata

A nested word automaton (NWA) A = (Q,Σ, δ, q0, F ) [3] is basically a pushdown automaton
which performs a push operation on every opening tag and a pop operation on every closing
tag, and in which the pushdown symbols are just states. More formally, A consists of a set
Q of states, an alphabet Σ, a transition function δ, an initial state q0 ∈ Q and a set F ⊆ Q
of accepting states. The function δ is the union of a function (Q× 〈Σ〉)→ P(Q×Q) and a
function (Q×Q× 〈/Σ〉)→ P(Q).

A configuration κ of A is a tuple (q, α) ∈ Q×Q∗, with a linear state q and a sequence α
of hierarchical states, reflecting the pushdown store. A run of A on w = w1 . . . wn ∈WF(Σ)
is a sequence κ0, . . . , κn of configurations κi = (qi, αi) of A such that for each i ∈ [n] and
a ∈ Σ it holds that

if wi = 〈a〉, (qi, p) ∈ δ(qi−1, 〈a〉) (for some p ∈ Q), and αi = pαi−1, or
if wi = 〈/a〉, qi ∈ δ(qi−1, p, 〈/a〉) (for some p ∈ Q), and pαi = αi−1.

In this case, we also write κ0
w
;A κn. We say that A accepts w if (q0, ε)

w
;A (q′, ε) for some

q′ ∈ F . The language L(A) ⊆WF(Σ) is defined as the set of all strings accepted by A and
is called a regular language (of nested words).

An NWA is deterministic (or DNWA) if |δ(q, 〈a〉)| = 1 = |δ(q, p, 〈/a〉)| for all p, q ∈ Q
and a ∈ Σ. In this case, we simply write δ(q, 〈a〉) = (q′, p′) instead of δ(q, 〈a〉) = {(q′, p′)}

9 As the underlying game G will always be clear from the context, our notation does not mention G
explicitly.

ICDT 2015



66 Games for Active XML Revisited

(and accordingly for δ(q, p, 〈/a〉)), and δ∗(p, w) = q if q is the unique state, for which
(p, ε) w

;A (q, ε).
An NWA is in normal form if every transition function δ(p, 〈a〉) only uses pairs of the

form (q, p). Informally, when A reads an opening tag it always pushes its current state
(before the opening tag) and therefore can see this state when it reads the corresponding
closing tag. As in this case the hierarchical state is just the origin state p of the transition,
we write δ(p, 〈a〉) = q as an abbreviation of δ(p, 〈a〉) = (q, p), for DNWAs in normal form.

I Lemma 2. There is a polynomial-time algorithm that computes for every deterministic
NWA an equivalent deterministic NWA in normal form.

Algorithmic Problems

In this paper, we study the following algorithmic problem JWin(G) for various classes G of
context-free games.

JWin(G)
Given: A context-free game G ∈ G and a string w.
Question: Is w ∈ JWin(G)?

A class G of context-free games in JWin(G) comes with three parameters:
the representation of the target language T ,
the representation of the replacement languages Ra, and
to which extent replay is restricted.

It is a fair assumption that the representations of the target language and the replacement
languages are of the same kind, but we will always discuss the impact of the replacement
language representations separately. In our most general setting, investigated in Section 3,
target languages are represented by deterministic nested word automata, and replacement
languages by (not necessarily deterministic) nested word automata. We do not consider the
representation of target languages by non-deterministic NWAs, as (1) already for DNWAs
the complexity is very high in general, and (2) we can show that even in the replay-free
case the complexity would become EXPTIME-complete. We usually denote the automata
representing the target and replacement languages by A(T ) and A(Ra), respectively.

In Section 4 we study the cases where T is given as an XML Schema or a DTD. In each
setting, we consider the cases of unrestricted replay, bounded replay (Call depth k, for some
k), and no replay (Call depth 1). We note that replay depth is formally not an actual game
parameter, but the algorithmic problem can be restricted to strategies of Juliet of the
stated kind.

If the class G of games is clear from the context, we often simply write JWin instead of
JWin(G).

We denote by |R| the combined size of all A(Ra), a ∈ Γ, and by |G| the size of (a sensible
representation of) G, i.e. |G| = |Σ|+ |R|+ |A(T )|.

3 Games with regular target languages

We first consider our most general case, where target languages are given by DNWAs,
replacement languages by NWAs and replay is unrestricted, because the algorithm that we
develop for this case can be adapted (and sped up) for many of the more restricted cases. It is
important to note that our results do not rely on the presentation of schemas as nested word
automata. In fact, in Section 4, we will assume that the target schema is given as an XML



M. Schuster and T. Schwentick 67

Schema or a DTD. However, for our algorithms nested word automata are handy to represent
(linearisations of) regular tree languages and therefore in this section target languages are
represented by NWAs. We emphasize that deterministic bottom-up tree automata can be
translated into deterministic NWAs in polynomial time [3].

This generic algorithm works in two main stages for a given cfG G and word w. It first
analyses the game G and aggregates all necessary information in a so-called call effect C.
Then it uses C to decide whether Juliet has a winning strategy in the game G on w.

The call effect C only depends on G and contains, for every function symbol f and every
state q of the A(T ), all possible effects of the subgame starting with a Call move of Juliet on
some symbol 〈/f〉 on the target language T , under the assumption that the sub-computation
of A(T ) on the word yielded by the game from 〈/f〉 starts in state q. More precisely, it
summarises which sets S of states Juliet can enforce by some strategy σ, where each S is a
set of states of A(T ) that Romeo might enforce with a counter strategy against σ.

The first stage of the algorithm consists of an inductive computation in which successive
approximations C1, C2, . . . of C are computed, where Ci is the restriction of C to strategies
of Juliet of Call depth i. The size of call effects and the number of iterations are at most
exponential in |G|. However, the first stage can not be performed in exponential time as
a single iteration might take doubly exponential time in |G|. It turns out through our
corresponding lower bound that single iterations can not be done faster.

At the end of the first stage, the algorithm computes an alternating NWA AG (of
exponential size) from C that decides the set JWin(G). In the second stage, AG is evaluated
on w, taking at most polynomial space in |AG| and |w|.

A restriction of games to bounded replay does not improve the general complexity of the
problem, as this is dominated by the doubly exponential effort of a single iteration. However,
for replay-free games, no iterations are needed, the initial call effect C1 is of polynomial size
and can easily be computed and therefore, in this case, the overall complexity is dominated
by the second stage, yielding a polynomial-space algorithm.

Altogether we prove the following theorem in this section.

I Theorem 3. For the class of unrestricted games JWin(G) is
(a) 2-EXPTIME-complete with unbounded replay,
(b) 2-EXPTIME-complete with bounded replay, and
(c) PSPACE-complete without replay.

The rest of this section gives a proof sketch for Theorem 3.
Before we describe the generic algorithm in more detail, we discuss the very natural

and more direct approach by alternating algorithms, in which a strategy for Juliet is
nondeterministically guessed and the possible moves of Romeo are taken care of by universal
branching. In our setting of context-free games, there are the following obstacles to this
approach: (1) Romeo can, in general, choose from an infinite number of (and thus arbitrarily
long) strings in Ra, for the current a, and (2) it is not a priori clear that such algorithms
terminate on all branches. Whereas the latter obstacle is not too serious (if Juliet has a
winning strategy, termination on all branches is guaranteed), the former requires a more
refined approach. We basically deal with it in two ways: in some cases it is possible to
show that it does not help Romeo to choose strings of length beyond some bound; in the
remaining cases (in particular in those cases considered in this section), the algorithms use
abstracted moves instead of the actual replacement moves of the game. The two stages that
were sketched above, then come very naturally: first, the abstraction has to be computed,
then it can be used for the actual alternating computation.

ICDT 2015



68 Games for Active XML Revisited

Our abstraction from actual cfGs is based on the simple observation that instead of
knowing the final word wordG(w, σ, τ) that is reached in a play Π(σ, τ, w), it suffices to know
whether δ∗(q0,wordG(w, σ, τ)) ∈ F to tell the winner. If we fix a strategy σ of Juliet in a
game on w, the possible outcomes of the game (for the different strategies of Romeo) can
thus be summarised by statesG(q0, w, σ) def= {δ∗(q0,wordG(w, σ, τ)) | τ ∈ STRATR(G)}.

To this end, it will be particularly useful to study the (abstractions of) possible outcomes
of subgames that start from a Call move on some tag 〈/a〉 until the focus moves to the symbol
after 〈/a〉.

I Definition 4. For a cfG G = (Σ,Γ, R, T ) with a deterministic target NWA A(T ) =
(Q,Σ, δ, q0, F ), the call effect C[G] : Γ×Q→ P(P(Q)) is defined, for every a ∈ Γ, q ∈ Q, by

C[G](a, q) def= [{statesG(q, 〈a〉〈/a〉, σ) | σ ∈ STRATJ,Call(G)}]min ,

where STRATJ,Call(G) contains all strategies of Juliet that start by playing Read on 〈a〉
and Call on 〈/a〉, and the operator [·]min removes all non-minimal sets from a set of sets.

We next describe how to compute C[G] from a given cfG G. As already mentioned, our
algorithm follows a fixpoint-based approach. It computes inductively, for k = 1, 2, . . . the call
effect of the restricted game of maximum Call depth k. We show that the fixpoint reached
by this process is the actual call effect C[G].

To this end, let, for every cfG G, a ∈ Σ, q ∈ Q, and k ≥ 1,

Ck[G](a, q) def=
[
{statesG(q, 〈a〉〈/a〉, σ) | σ ∈ STRATkJ,Call(G)}

]
min

.

As an important special case, the call effect of replay-free games – the basis for the inductive
computation – consists of only one set.

I Lemma 5. For every q ∈ Q and a ∈ Σ, it holds that

C1[G](a, q) = {{δ∗(q, v) | v ∈ Ra}}.

In particular, C1[G] can be computed from G in polynomial time.

This just follows from the definitions, as Romeo can choose any string from Ra.
We next describe how each Ck+1[G] can be computed from Ck[G]. The algorithm uses

alternating nested word automata (ANWAs) which we will now define.
An alternating nested word automaton (ANWA) A = (Q,Σ, δ, q0, F ) is defined like an

NWA, except that the two parts of δ map (Q× 〈Σ〉) into B+(Q×Q) and (Q×Q× 〈/Σ〉)
into B+(Q), respectively, where B+(Q) denotes the set of all positive boolean combinations
over elements of Q using the binary operators ∧ and ∨ (and likewise for B+(Q×Q)).

The semantics of ANWA is defined via runs, which require the notion of tree domains. A
tree domain is a prefix-closed language D ⊆ N∗ of words over N such that, if wk ∈ D for
some w ∈ D, k ∈ N, then also wj ∈ D for all j < k. Strings in a tree domain are interpreted
as node addresses for ordered trees in the standard way: ε addresses the root, and if w ∈ D
addresses some node v with k children, then w1, . . . , wk ∈ D address those children.

For any function λ : D → (Q ∪ (Q × Q)) and node address x ∈ D, we denote by λ(x)
the linear state component of λ(x), i.e. if λ(x) = q or λ(x) = (q, p) for some p, q ∈ Q, then
λ(x) = q.

A run r = (D,λ) of an ANWA A over a nested word w = w1 . . . wn is a finite tree of
depth n, represented by a tree domain D and a labelling function λ : D → (Q ∪ (Q×Q))
such that λ(ε) = q0 and, for every x ∈ D of length i with ` children, it holds that



M. Schuster and T. Schwentick 69

if wi+1 ∈ 〈Σ〉, then {λ(x · 1), . . . , λ(x · `)} |= δ(λ(x), wi+1), and
if wi+1 ∈ 〈/Σ〉 with associated opening tag wj , and λ(y) = (q, p) for some p, q ∈ Q (where
y is the prefix of x of length j), then {λ(x · 1), . . . , λ(x · `)} |= δ(λ(x), p, wi+1).

An ANWA A accepts a nested word w if there is a run (D,λ) over w such that λ(x) ∈ F , for
every x ∈ D of length |w|.

ANWAs are used twice in the generic algorithm, first, to inductively compute Ck+1[G]
from Ck[G], second to actually decide JWin(G), given C[G]. The following proposition will
be crucial, in both cases.

I Proposition 6. There is an algorithm that computes from the call effect C[G] of a game
G in polynomial time in |C[G]| and |G| an ANWA AC[G] such that L(AC[G]) = JWin(G).

The computation of Ck+1[G] from Ck[G] involves a non-emptiness test for ANWAs, the second
stage a test whether w ∈ L(AC[G]). Therefore, both of the following complexity results for
ANWAs influence the complexity of our algorithms.

I Proposition 7.
(a) Non-emptiness for ANWAs is 2-EXPTIME-complete.
(b) The membership problem for ANWAs is PSPACE-complete.

Statement (a) follows immediately from the corresponding result for visibly pushdown
automata in [5], statement (b) is new, to the best of our knowledge, and seems to be
interesting in its own right. It is shown in [12].

Now we continue describing the ingredients of the first stage of the generic algorithm.

I Lemma 8. Given a state q ∈ Q, an alphabet symbol a ∈ Γ, and Ck[G], for some k ≥ 1,
the call effect Ck+1[G](a, q) can be computed in doubly exponential time in |G|.

By Lemmas 5 and 8, one can compute Ck[G] inductively, for every k ≥ 1. By definition it
holds, for every q and a, that Ck[G](a, q) is contained in the closure of Ck+1[G](q, a) under
supersets. As there are ≤ 2|Q| sets in each Ck[G](a, q) (for a ∈ Γ, q ∈ Q), the computation
reaches a fixed point after at most exponentially many iterations. We denote this fixed point
by C∗[G], that is, we define, for every a ∈ Σ, q ∈ Q:

C∗[G](a, q) def=
[ ∞⋃
k=1
Ck[G](a, q).

]
min

In particular, for each game G, there is a number ` ≤ |Γ| × |Q| × 2|Q| such that C∗[G] =
C`[G] and Cm[G] = C`[G], for every m ≥ `. However, it is not self evident that this process
actually constructs C[G], i.e., that C∗[G] = C[G]. The following result shows that this is
actually the case.

I Proposition 9. For every cfG G it holds: C∗[G] = C[G].

Now we can give a (high-level) proof for Theorem 3.

Proof of Theorem 3. We first justify the upper bounds. Let G be a cfG and w a word. By
Lemma 5, C1[G] can be computed in polynomial time from G. For the replay-free case, we
can immediately construct an ANWA for JWin(G) and evaluate it on w, yielding a PSPACE
upper bound by Proposition 7.

For (a) and (b), C[G] (Ck[G], respectively) can be computed in doubly exponential time,
AC can be computed in exponential time (in the size of G), and whether w ∈ L(AC) can

ICDT 2015



70 Games for Active XML Revisited

then be tested in polynomial space in |AC | and |w|, that is, in at most exponential space in
|G| and |w|.

That these upper bounds can not be considerably improved, is stated in the following
proposition, thereby completing the proof of Theorem 3. J

I Proposition 10. For the class of unrestricted games JWin is
(a) 2-EXPTIME-hard with bounded replay, and
(b) PSPACE-hard with no replay.

Claims (a) and (b) of Proposition 10 follow from the corresponding parts of Proposition 7;
in the proof, we construct from an ANWA A a replay-free cfG simulating A on any input
word w (yielding claim (b)) and explain how replay can be added to that game to find and
verify a witness for the non-emptiness of A, if one exists (yielding claim (a)).

For finite (and explicitly given) replacement languages the complexity changes considerably
in the cases with replay, but not in the replay-free case.

I Proposition 11. For the class of unrestricted games with finite replacement languages,
JWin(G) is
(a) EXPTIME-complete with unbounded replay, and
(b) PSPACE-complete with bounded or without replay.

The upper bound in (a) follows as for finite replacement languages Ck+1[G](a, q) can be
computed from Ck[G](a, q) in polynomial space10. The PSPACE upper bound in (b) can
then be achieved by the usual “recomputation technique” of space-bounded computations.

The lower bound in (a) already holds for flat words (see Theorem 4.3 in [11]). The lower
bound in (b) follows as the proof of Proposition 10 only uses finite replacement languages.

As our algorithms generally construct ANWAs deciding JWin(G), the data complexity
for JWin is in PSPACE for all cases considered in this section due to Proposition 7.

4 Games with XML Schema target languages

The results of Section 3 provide a solid foundation for our further studies, but the setting
studied there suffers from two problems: (1) the complexities are far too high (at least
for games with replay) and (2) the assumption that target and replacement languages are
specified by (D)NWAs is not very realistic. In this section, we address both issues at the
same time: when we require that target languages are specified by typical XML schema
languages (DTD or XML Schema), we get considerably better complexities.

The better complexities basically all have the same reason: XML Schema target languages
can be described by a restriction of nested word automata, which we call simple below.
This restriction translates to the alternating NWAs corresponding to call effects. For simple
ANWAs, however, the two basic algorithmic problems, Non-emptiness and Membership have
dramatically better complexities: PSPACE and PTIME as opposed to 2-EXPTIME and
PSPACE, respectively. We emphasise that, in accordance with the official standards, our
definitions for DTDs and XML Schema require deterministic regular expressions.

Altogether, we prove the following complexity results.

I Theorem 12. For classes of games with XML Schemas or DTDs, respectively, JWin
is

10 It is worth noting that this upper bound even holds if the finite replacement language is not explicitly
given, but represented by NWAs.



M. Schuster and T. Schwentick 71

(a) EXPTIME-complete for unbounded replay,
(b) PSPACE-complete for bounded replay, and
(c) PTIME-complete (under logspace-reductions) without replay.

Here, the lower bounds are proven for DTDs, and the upper bounds for XML Schemas.
The lower bound in Theorem 12 (b) for the case of games with DTDs contradicts the

statement of a PTIME algorithm in Section 4.3 of [9] (unless PTIME = PSPACE).11
Before we describe the proof of Theorem 12, we first define single-type tree grammars and

local tree grammars as well-established abstractions of XML Schema and DTDs, respectively
(see, e.g., [10]). However, we will refer to grammars of these types as XML Schemas and
DTDs, respectively.

I Definition 13. A (regular) tree grammar is a tuple T = (Σ,∆, S, P, λ), where
Σ is a finite alphabet of labels,
∆ is a finite alphabet of types,
S ∈ ∆ is the root or starting type,
P is a set of productions of the form X → rX mapping each type X ∈ ∆ to a deterministic
regular expression rX over ∆, called the content model of X, and
λ : ∆→ Σ is a labelling function assigning a label from Σ to each type in ∆.

T is single-type if for each X ∈ ∆, the content model rX contains no competing types, i.e. if
rX contains no two types Y 6= Z with λ(Y ) = λ(Z). T is local, if it has exactly one type for
every label.

We omit the definition of the formal semantics of regular tree grammars. The nested word
language L(T ) described by T is just the set of linearisations of trees of the tree language
that is defined in the standard way.

We next define simple DNWAs, a restriction of DNWAs that captures all languages
specified by single-type tree grammars. In simple DNWAs, states are typed, i.e. each state
has a component in some type alphabet ∆. Informally, when a simple DNWA A reads a
subword w = 〈a〉v〈/a〉 in state q, it determines already on reading 〈a〉 which state q′ it will
take after processing w, and this state will be of the same type as q. After reading 〈a〉, the
linear state of A only depends on the type of q, not the exact state; this models the single-type
restriction. After reading 〈a〉, A goes on to validate v, and if this validation fails, A enters a
failure state ⊥ instead of q′. Thus, the state of A at a position basically only depends on its
ancestor positions (in the tree view of the document) and their left siblings. The only way in
which other nodes in subtrees of these nodes can influence the state is by assuming the sink
state ⊥. Thus, in the spirit of [8], we could call such DNWAs ancestor-sibling-based but we
prefer the term simple for simplicity.

I Definition 14. A deterministic NWA A(T ) = (Q,Σ, δ, q0, F ) in normal form is simple
(SNWA) if there exist a type alphabet ∆ and state set P with Q ⊆ P ×∆, a local acceptance
function Floc : Σ→ P(Q), a target state function t : Q×Σ→ Q and a failure state ⊥ ∈ Q\F ,
such that the following conditions are satisfied for every a ∈ Σ:

for every p, p′ ∈ P,X ∈ ∆: δ((p,X), 〈a〉) = δ((p′, X), 〈a〉);
for every q ∈ Floc(a): δ(q, p, 〈/a〉) = t(p, a);

11A close inspection of the construction in the proof in [9] reveals that the automaton constructed there
does not deal correctly with the alternation between the choices of Romeo and Juliet. More precisely,
the automaton allows Romeo to let the suffix of a replacement string depend on the choices of Juliet
on its prefix.

ICDT 2015



72 Games for Active XML Revisited

for every q ∈ Q \ Floc(a): δ(q, p, 〈/a〉) = ⊥ and
for every q ∈ Q: δ(⊥, 〈a〉) = δ(⊥, q, 〈/a〉) = ⊥.
for every (p,X) ∈ Q: t((p,X), a) = (p′, X) for some p′ ∈ P .

A cfG is called simple if its target DNWA is simple.

I Proposition 15. From every single-type tree grammar T , a simple DNWA A can be
computed in polynomial time, such that L(A) = L(T ).

The following adaptation of the notion of simplicity to ANWAs is a bit technical. It will
guarantee however that the ANWAs obtained from simple games are simple and have
reasonable complexity properties.

I Definition 16. An ANWA A = (Q,Σ, δ, q0, F ) with Q ⊆ P ×∆ (for some state set P and
type alphabet ∆) is simple (SANWA), if it has the following two properties.

(Horizontal simplicity) There are a local acceptance function Floc : Σ → P(Q), a test
state q? ∈ Q, and a target state function t : Q×Σ→ Q, such that the transition function
δ of A satisfies the following conditions:
δ(q, q′, 〈/a〉) = t(q′, a) for all q ∈ Q and q′ 6= q?;

δ(q, q?, 〈/a〉) =
{
true, if q ∈ Floc(a)
false, if q 6∈ Floc(a)

Furthermore, for each (p,X) ∈ Q and a ∈ Σ, it holds that t((p,X), a) = (p′, X) for some
p′ ∈ P .
(Vertical Simplicity) For each X ∈ ∆ and a ∈ Σ, there is a q ∈ Q such that for all p ∈ P
it holds that δ((p,X), 〈a〉) ∈ B+({q} × ((P × {X}) ∪ {q?})).

Essentially, horizontal simplicity states that A has two kinds of computations on a well-
nested subword: (1) computations starting from a pair (q, q?) test a property of the subword
and can either succeed or fail at the end of the subword (and thus influence the overall
computation); (2) computations starting from a pair (q, q′) for q′ 6= q? basically ignore the
subword. Even though they may branch in an alternating fashion, the state after the closing
tag 〈/a〉 is the same in all subruns, is determined by t(q′, a) and has the same type as q′.

Vertical simplicity, on the other hand, states that all alternation in A happens in the
choice of hierarchical states – while, on an opening tag, A may branch into sub-runs pushing
different hierarchical states onto the stack, the choice of linear follow-up state is “locally
deterministic”, depending only the type of the previous state of A and the label of the tag
being read, and the current type is preserved in all hierarchical states except for q?. Together,
these two conditions also guarantee that SNWAs may also be interpreted as SANWAs.

I Proposition 17.
(a) Non-emptiness for SANWA is PSPACE-complete.
(b) The membership problem for SANWA is decidable in polynomial time.

Proof of Theorem 12. The generic algorithm from the previous section can be adapted for
simple cfGs, but with better complexity thanks to Proposition 17, to yield the upper bounds
stated in Theorem 12.

More precisely, Proposition 17 (b) and Lemma 5 yield a polynomial time bound for
replay-free games. Proposition 17 (a) guarantees that the inductive step in the computation
of C[G] can be carried out in polynomial space (as opposed to doubly exponential time).12

12We actually use a slightly stronger result than Proposition 17 (a): deciding whether, for an NWA A1
and a SANWA A2, it holds L(A1) ∩ L(A2) 6= ∅, is complete for PSPACE.



M. Schuster and T. Schwentick 73

The upper bounds for games with unrestricted replay follows immediately and the upper
bound for bounded replay can be shown similarly as in Proposition 11 (b).

The lower bounds are given by the following proposition. They mostly follow from careful
adaptation of lower bound proofs of [11] for games on flat strings. J

I Proposition 18. For the class of games with target languages specified by DTDs, JWin
is
(a) EXPTIME-hard with unrestricted replay,
(b) PSPACE-hard with bounded replay, and
(c) PTIME-hard (under logspace-reductions) without replay

For finite (and explicitly given) replacement languages we get feasibility even for bounded
replay, but no improvement for unbounded replay.

I Proposition 19. For the class of games with target languages specified by XML Schemas
and explicitly enumerated finite replacement languages, JWin is
(a) EXPTIME-complete with unrestricted replay, and
(b) PTIME-complete (under logspace-reductions) with bounded replay or without replay.
The same results hold for DTDs in place of XML Schemas.

Once again, as our algorithm generally computes a SANWA deciding JWin(G), the data
complexity for JWin is in PTIME for all cases considered here, due to Proposition 17.

5 Validation of parameters and Insertion

In this section, we focus on two features that have not been addressed in the previous two
sections: validation of the parameters of a function call with respect to a given schema, and
a semantics which allows that returned trees do not replace their call nodes but are inserted
next to them.

5.1 Validation of parameters
As pointed out in [9], in Active XML, parameters of function calls should be valid with
respect to some schema. Transferred to the setting of cfGs this means that Juliet should
only be able to play a Call move in a configuration (J, u〈a〉v, 〈/a〉w) if 〈a〉v〈/a〉 is in Va
for some set Va of words that are valid for calls of 〈/a〉. Our definition of cfGs and the
previous ones studied in the literature mostly ignore this aspect.13 We do not investigate all
possible game types in combination with parameter validation but rather concentrate on
the most promising setting with respect to tractable algorithms. It turns out, that games
without replay and with DTDs to specify target, replacement and validation languages have
a tractable winning problem as long as the number of different validation DTDs is bounded
by some constant.14 It becomes intractable if the number of validation schemas can be
unbounded and (already) with target and validation languages specified by XML Schemas,
even with only one validation schema.

More precisely, we prove the following results.

13Actually, [9] takes validation into account but the precise way in which parameters are specified and
tested is not explained in full detail.

14Note that this implies a polynomial-time data complexity for arbitrary replay-free games with DTD
target, replacement and validation languages.

ICDT 2015



74 Games for Active XML Revisited

I Theorem 20. For the class of games with validation with a bounded number of validation
DTDs and target languages specified by DTDs, JWin is in PTIME without replay.

The algorithm uses a bottom-up approach. The basic idea is that, starting from the
leaves, at each level of the tree (that is for some node v and its leaf children) all relevant
information about the game in the subtree tv is computed with the help of flat replay-free
games and aggregated in v. Then the children of v are discarded and the algorithm continues
until only the root remains.

The following result shows that for slightly stronger games, parameter validation worsens
the complexity.15

I Theorem 21. For the class of games with validation, JWin (without replay) is
(a) EXPTIME-hard, if target and validation languages are specified by DNWAs (even with

only one function symbol);
(b) PSPACE-hard, for games with only one function symbol, if the validation language

is given by an XML schema, the target language by a DTD and a finite replacement
language; and

(c) PSPACE-hard, for games with an unbounded number of validation DTDs and replace-
ment and target languages specified by DTDs.

Part (a) is proven by reduction from the intersection emptiness problem for DNWAs,
while parts (b) and (c) use similar reductions from the problem of determining whether a
quantified Boolean formula in disjunctive normal form is true.

Due to time constraints and as we are mainly interested in finding tractable cases, we
have not looked for matching upper bounds.

5.2 Insertion rules
In our definition of Call moves, we define the successor configuration of a configuration
(R, u〈a〉v, 〈/a〉w) to be (J, u, v′w), that is, 〈a〉v〈/a〉 is replaced by a string v′ ∈ Ra. However,
Active XML also offers an “append” option, where results of function calls are inserted as
siblings after the calling function node (cf. [1]). There are (at least) three possible semantics
of a Call move for insertion (as opposed to replacement) based games: the next configuration
could be (1) (J, u, 〈a〉v〈/a〉v′w), (2) (J, u〈a〉v〈/a〉, v′w), or (3) (J, u〈a〉v〈/a〉v′, w), depending
on “how much replay” we allow for Juliet. We consider (1) as the general setting, (2) as
the setting with weak replay and (3) as the setting without replay. It turns out that the weak
replay setting basically corresponds to the (unrestricted) setting with replacement rules and
that (3) corresponds to the replay-free setting with replacement rules. Setting (1), however,
gives Juliet a lot of power and makes JWin(G) undecidable.

I Theorem 22. For the class of games with insertion semantics, target DNWAs and
replacement NWAs, JWin is
(a) undecidable in general;
(b) 2-EXPTIME-complete for games with weak replay; and
(c) PSPACE-complete for games without replay.

The proof idea for Theorem 22 is to simulate insertion-based games by replacement-based
games and vice versa; part (a) additionally uses the undecidability of JWin for arbitrary
(i.e. not necessarily left-to-right) strategies on games with flat strings, which was proven to
be undecidable in [11].

15This is, of course not surprising. If any, the surprising result is Theorem 20.



M. Schuster and T. Schwentick 75

6 Conclusion

The complexity of context-free games on nested words differs considerably from that on flat
words (2-EXPTIME vs. EXPTIME), but there are still interesting tractable cases. One
of the main insights of this paper is that the main tractable cases remain tractable if one
allows XML Schema instead of DTDs for the specification of schemas.

Another result is that adding validation of input parameters can worsen the complexity,
but tractability can be maintained by a careful choice of the setting. However, here the step
from DTDs to XML Schema may considerably worsen the complexity.

Insertion semantics with unlimited replay yields undecidability.
We leave open some corresponding upper bounds in the setting with validation of input

parameters. In future work, we plan to study the impact of parameters of function calls
more thoroughly.

References
1 Serge Abiteboul, Omar Benjelloun, and Tova Milo. The Active XML project: an overview.

VLDB J., 17(5):1019–1040, 2008.
2 Serge Abiteboul, Tova Milo, and Omar Benjelloun. Regular rewriting of active XML and

unambiguity. In PODS, pages 295–303, 2005.
3 Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3), 2009.
4 Henrik Björklund, Martin Schuster, Thomas Schwentick, and Joscha Kulbatzki. On op-

timum left-to-right strategies for active context-free games. In Joint 2013 EDBT/ICDT
Conferences, ICDT ’13 Proceedings, Genoa, Italy, March 18-22, 2013, pages 105–116, 2013.

5 Laura Bozzelli. Alternating automata and a temporal fixpoint calculus for visibly pushdown
languages. In CONCUR- Concurrency Theory, 18th International Conference, pages 476–
491, 2007.

6 E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games. A
Guide to Current Research. Springer, 2002.

7 Lukasz Kaiser. Synthesis for structure rewriting systems. In Rastislav Královic and Damian
Niwinski, editors, MFCS, volume 5734 of Lecture Notes in Computer Science, pages 415–
426. Springer, 2009.

8 Wim Martens, Frank Neven, Thomas Schwentick, and Geert Jan Bex. Expressiveness and
complexity of XML schema. ACM Trans. Database Syst., 31(3):770–813, 2006.

9 Tova Milo, Serge Abiteboul, Bernd Amann, Omar Benjelloun, and Frederic Dang Ngoc.
Exchanging intensional XML data. ACM Trans. Database Syst., 30(1):1–40, 2005.

10 Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Taxonomy of XML
schema languages using formal language theory. ACM Trans. Internet Techn., 5(4):660–704,
2005.

11 Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Active context-free games. Theory
Comput. Syst., 39(1):237–276, 2006.

12 Martin Schuster and Thomas Schwentick. Games for Active XML revisited. CoRR,
abs/1412.5910, 2014. Available online at http://arxiv.org/abs/1412.5910.

13 Johannes Waldmann. Rewrite games. In Sophie Tison, editor, RTA, volume 2378 of Lecture
Notes in Computer Science, pages 144–158. Springer, 2002.

ICDT 2015

http://arxiv.org/abs/1412.5910


Answering Conjunctive Queries with Inequalities∗

Paraschos Koutris1, Tova Milo2, Sudeepa Roy3, and Dan Suciu4

1 University of Washington
pkoutris@cs.washington.edu

2 Tel Aviv University
milo@cs.tau.ac.il

3 University of Washington
sudeepa@cs.washington.edu

4 University of Washington
suciu@cs.washington.edu

Abstract
In this parer, we study the complexity of answering conjunctive queries (CQ) with inequalities
( 6=). In particular, we compare the complexity of the query with and without inequalities. The
main contribution of our work is a novel combinatorial technique that enables the use of any
Select-Project-Join query plan for a given CQ without inequalities in answering the CQ with
inequalities, with an additional factor in running time that only depends on the query. To
achieve this, we define a new projection operator that keeps a small representation (independent
of the size of the database) of the set of input tuples that map to each tuple in the output of the
projection; this representation is used to evaluate all the inequalities in the query. Second, we
generalize a result by Papadimitriou-Yannakakis [18] and give an alternative algorithm based on
the color-coding technique [4] to evaluate a CQ with inequalities by using an algorithm for the CQ
without inequalities. Third, we investigate the structure of the query graph, inequality graph, and
the augmented query graph with inequalities, and show that even if the query and the inequality
graphs have bounded treewidth, the augmented graph not only can have an unbounded treewidth
but can also be NP-hard to evaluate. Further, we illustrate classes of queries and inequalities
where the augmented graphs have unbounded treewidth, but the CQ with inequalities can be
evaluated in poly-time. Finally, we give necessary properties and sufficient properties that allow
a class of CQs to have poly-time combined complexity with respect to any inequality pattern.

1998 ACM Subject Classification H.2.4 [Systems]: Query Processing

Keywords and phrases query evaluation, conjunctive query, inequality, treewidth

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.76

1 Introduction

In this paper, we study the complexity of answering conjunctive queries (CQ) with a set of
inequalities of the form xi 6= xj between variables in the query. The complexity of answering
CQs without inequalities has been extensively studied in the literature during the past
three decades. Query evaluation of CQs is NP-hard in terms of combined complexity (both
query and database are inputs), while the data complexity of CQs (query is fixed) is in AC0
[1]. Yannakakis [23] showed that evaluation of acyclic CQs has polynomial-time combined

∗ This work has been partially funded by the NSF awards IIS-1247469 and IIS-0911036, European
Research Council under the FP7, ERC grant MoDaS, agreement 291071 and the Israel Ministry of
Science.

© Paraschos Koutris, Tova Milo, Sudeepa Roy, and Dan Suciu;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 76–93

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.76
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


P. Koutris, T. Milo, S. Roy, and D. Suciu 77

complexity. This result has been generalized later to CQs with bounded treewidth, bounded
querywidth, or bounded hypertreewidth: the combined complexity remains polynomial if the
width of a tree or query decomposition of the query (hyper-)graph is bounded [6, 10, 14, 9].

However, the complexity of query evaluation changes drastically once we add inequalities
in the body of the query. Consider the following Boolean acyclic CQ P k which can be solved
in O(k|D|) time on a database instance D:

P k( ) = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1)

If we add the inequalities xi 6= xj for every i < j and evaluate it on an instance where each
R`, 1 ≤ ` ≤ k, corresponds to the edges in a graph with k + 1 vertices, query evaluation
becomes equivalent to asking whether the graph contains a Hamiltonian path, and therefore
is NP-hard in k. Papadimitriou and Yannakakis [18] observed this fact and showed that still
the problem is fixed-parameter tractable for acyclic CQs:

I Theorem 1 ([18]). Let q be an acyclic conjunctive query with inequalities and D be a
database instance. Then, q can be evaluated in time 2O(k log k) · |D| log2 |D| where k is the
number of variables in q that appear in some inequality.

The proof is based on the color-coding technique introduced by Alon-Yuster-Zwick in
[4] that finds subgraphs in a graph. In general, answering CQs with inequalities is closely
related to finding patterns in a graph, which has been extensively studied in the context of
graph theory and algorithms. For example, using the idea of representative sets, Monien [16]
showed the following: given a graph G(V,E) and a vertex s ∈ V , there exists a deterministic
O(k! · |E|) algorithm that finds all vertices v with a length-k path from s and also reports
these paths (a trivial algorithm will run in time O(|V |k)). Later, Alon et al. proposed the
much simpler color-coding technique that can solve the same problem in expected time
2O(k)|V | for undirected graphs and 2O(k)|E| for directed graphs. These two ideas have been
widely used to find other patterns in a graph, e.g., for finding cycles of even length [3, 25, 4].

In the context of databases, Papadimitriou and Yannakakis [18] showed that answering
acyclic CQs with comparison operators between variables (<,≤ etc.) is harder than answering
acyclic CQs with inequalities ( 6=) since this problem is no longer fixed-parameter tractable.
The query containment problem for CQs with comparisons and inequalities ( 6=, <,≤), i.e.,
whether Q1 ⊆ Q2, has been shown to be Πp

2-complete by van der Meyden [21]; the effect of
several syntactic properties of Q1, Q2 on the complexity of this problem has been studied by
Kolaitis et al. [14]. Durand and Grandjean [8] improved Theorem 1 from [18] by reducing
the time complexity by a log2|D| factor. Answering queries with views in the presence of
comparison operators has been studied by Afrati et al. [2]. Rosati [20] showed that answering
CQs with inequalities is undecidable in description logic.

Our Contributions. In this paper we focus on the combined complexity of answering CQs
with inequalities ( 6=) where we explore both the structure of the query and the inequalities.
Let q be a CQ with a set of variables, I be a set of inequalities of the form xi 6= xj , and k
be the number of variables that appear in one of the inequalities in I (k < |q|). We will use
(q, I) to denote q with inequalities I, and D to denote the database instance. We will refer
to the combined complexity in |D|, |q|, k by default (and not the data complexity on |D|)
unless mentioned otherwise.

The main result in this paper says that any query plan for evaluating a CQ can be
converted to a query plan for evaluating the same CQ with arbitrary inequalities, and the
increase in running time is a factor that only depends on the query:

ICDT 2015



78 Answering Conjunctive Queries with Inequalities

I Theorem 2 (Main Theorem). Let q be a CQ that can be evaluated in time T (|q|, |D|)
using a Select-Project-Join (SPJ) query plan Pq. Then, a query plan Pq,I for (q, I) can
be obtained to evaluate (q, I) in time g(q, I) ·max(T (|q|, |D|), |D|) for a function g that is
independent of the input database. 1

The key techniques used to prove the above theorem (Sections 3 and 4), and our other
contributions in this paper (Sections 5, 6, and 7) are summarized below.

1. (Section 3, 4) Our main technical contribution is a new projection operator, called
H-projection. While the standard projection in relational algebra removes all other
attributes for each tuple in the output, the new operator computes and retains a certain
representation of the group of input tuples that contribute to each tuple in the output.
This representation is of size independent of the database and allows the updated query
plan to still correctly filter out certain tuples that do not satisfy the inequalities. In
Section 3 we present the basic algorithmic components of this operator. In Section 4, we
show how to apply this operator to transform the given query plan to another query plan
that incorporates the added inequalities.

2. (Section 5) We generalize Theorem 1 to arbitrary CQs with inequalities (i.e., not
necessarily acyclic) by a simple application of the color-coding technique. In particular,
we show (Theorem 21) that any algorithm that computes a CQ q on a database D
in time T (|q|, |D|) can be extended to an algorithm that can evaluate (q, I) in time
f(k) · log(|D|) · T (|q|, |D|). While Theorem 2 and Theorem 21 appear similar, there are
several advantages of using our algorithm over the color-coding-based technique which
we also discuss in Section 5.

3. (Section 6) The multiplicative factors dependent on the query in Theorem 1, Theorem 21,
and (in the worst case) Theorem 2 are exponential in k. In Section 6 we investigate
the combined structure of the queries and inequalities that allow or forbid poly-time
combined complexity. We show that, even if q and I have a simple structure, answering
(q, I) can be NP-hard in k (Proposition 25). We also present a connection with the list
coloring problem that allows us to answer certain pairings of queries with inequalities in
poly-time combined complexity (Proposition 27).

4. (Section 7) We provide a sufficient condition for CQs, bounded fractional vertex cover,
that ensures poly-time combined complexity when evaluated with any set of inequalities
I. Moreover, we show that families of CQs with unbounded integer vertex cover are
NP-hard to evaluate in k (Theorem 29).

2 Preliminaries

We are given a CQ q, a set of inequalities I, and a database instance D. The goal is to
evaluate the query with inequality, denoted by (q, I), on D. We will use vars(q) to denote
the variables in the body of query q and Dom to denote the active domain of D. The set of
variables in the head of q (i.e., the variables that appear in the output of q) is denoted by
head(q). If head(q) = ∅, q is called a Boolean query, while if head(q) = vars(q), it is called a
full query.

The set I contains inequalities of the form xi 6= xj , where xi, xj ∈ vars(q) such that they
belong to two distinct relational atoms in the query. We do not consider inequalities of the

1 Some queries like q() = R(x)S(y) can be evaluated in constant time whereas to evaluate the inequality
constraints we need to scan the relations in D.



P. Koutris, T. Milo, S. Roy, and D. Suciu 79

form xi 6= c for some constant c, or of the form xi 6= xj where xi, xj only belong to the same
relational atoms because these can be preprocessed by scanning the database instance and
filtering out the tuples that violate these inequalities in time O(|I||D|). We will use k to
denote the number of variables appearing in I (k ≤ |vars(q)| < |q|).

Query Graph, Inequality Graph, and Augmented Graph. Given a CQ q and a set of
inequalities I, we define three undirected graphs on vars(q) as the set of vertices:

The query incidence graph or simply the query graph, denoted by Gq, of a query q contains
all the variables and the relational atoms in the query as vertices; an edge exists between a
variable x and an atom S if and only if x appears in S.

The inequality graph GI adds an edge between xi, xj ∈ vars(q) if the inequality xi 6= xj
belongs to I.

The query (q, I) can be viewed as an augmentation of q with additional predicates, where
for each inequality xi 6= xj we add a relational atom Iij(xi, xj) to the query q, and add new
relations Iij to D instantiated to tuples (a, b) ∈ Dom× Dom such that a 6= b. The augmented
graph Gq,I is the query incidence graph of this augmented query. Note that Gq,I includes
the edges from Gq, and for every edge (xi, xj) ∈ GI , it includes two edges (xi, Iij), (xj , Iij);
examples can be found in Section 6.

Treewidth and Acyclicity of a Query. We briefly review the definition of the treewidth of
a graph and a query.

I Definition 3 (Treewidth). A tree decomposition [19] of a graph G(V,E) is a tree T = (I, F ),
with a set X(u) ⊆ V associated with each vertex u ∈ I of the tree, such that the following
conditions are satisfied:
1. For each v ∈ V , there is a u ∈ I such that v ∈ X(u),
2. For all edges (v1, v2) ∈ E, there is a u ∈ I with v1, v2 ∈ X(u),
3. For each v ∈ V , the set {u ∈ I : v ∈ X(u)} induces a connected subtree of T .
The width of the tree decomposition T = (I, F ) is maxu∈I |X(u)| − 1. The treewidth of G is
the width of the tree decomposition of G having the minimum width.

Chekuri and Rajaraman defined the treewidth of a query q as the treewidth of the query incid-
ence graph Gq [6]. A query can be viewed as a hypergraph where every hyperedge corresponds
to an atom in the query and comprises the variables as vertices that belong to the relational
atom. The GYO-reduction [11, 24] of a query repeatedly removes ears from the query hyper-
graph (hyperedges having at least one variable that does not belong to any other hyperedge)
until no further ears exist. A query is acyclic if its GYO-reduction is the empty hypergraph,
otherwise it is cyclic. For example, the query P k( ) = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1)
is acyclic, whereas the query Ck( ) = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, x1) is cyclic.

There is another notion of width of a query called querywidth qw defined in terms of
query decomposition such that the decomposition tree has relational atoms from the query
instead of variables [6]; The relation between the querywidth qw and treewidth tw of a query
is given by the inequality tw/a ≤ qw ≤ tw + 1, where a is the maximum arity of an atom
in q. A query is acyclic if and only if its querywidth is 1; the treewidth of an acyclic query
can be > 1 [6]. The notion of hypertreewidth has been defined by Gottlob et al. in [10]. A
query can be evaluated in poly-time combined complexity if its treewidth, querywidth, or
hypertreewidth is bounded [23, 6, 10, 14, 9].

ICDT 2015



80 Answering Conjunctive Queries with Inequalities

x1 

x2 

y1 

y2 

y3 

(a) The bipartite graph H0

R = {(1, 1), (1, 2), (1, 4), (1, 8),
(2, 1), (2, 2), (2, 3), (2, 4),
(3, 2), (5, 2), (10, 2)}

(b) The instance of R(x1, x2)

Figure 1 The running example (Example 5) for Section 3.

3 Main Techniques

In this section, we present the main techniques used to prove Theorem 2 with the help of a
simple query q2 that computes the cross product of two relations and projects onto the empty
set. In particular, we consider the query (q2, I) with an arbitrary set of inequalities I, where
q2( ) = R(x1, . . . , xm), S(y1, . . . , y`). A naïve way to evaluate the query (q2, I) is to iterate
over all pairs of tuples from R and S, and check if any such pair satisfies the inequalities in
I. This algorithm runs in time O(m`|R||S|). We will show instead how to evaluate (q2, I) in
time f(q2, I)(|R|+ |S|) for some function f that is independent of the relations R and S.

The key idea is to compress the information that we need from R to evaluate the
inequalities by computing a representation R′ of R of such that the size of R′ only depends
on I and not on R. Further, we must be able to compute R′ in time O(f ′(I)|R|). Then,
instead of iterating over the pairs of tuples from R,S, we can iterate over the pairs from
R′ and S, which can be done in time f ′′(q2, I)|S|. The challenge is to show that such a
representation R′ exists and that we can compute it efficiently.

We now formalize the above intuition. Let X = {x1, · · · , xm}, Y = {y1, · · · , y`}. Let
H = GI denote the inequality graph; since q2 has only two relations, H is a bipartite graph
on X and Y . If a tuple t from S satisfies the inequalities in I when paired with at least one
tuple in R, we say that t is H-accepted by R, and it contributes to the answer of (q2, I). For
a variable xi and a tuple t, let t[xi] denotes the value of the attribute of t that corresponds
to variable xi.

I Definition 4 (H-accepted Tuples). Let H = (X,Y,E) be a bipartite graph. We say that a
tuple t over Y is H-accepted by a relation R if there exists some tuple tR ∈ R such that for
every (xi, yj) ∈ E, we have tR[xi] 6= t[yj ].

Notice that (q2, I) is true if and only if there exists a tuple tS ∈ S that is H-accepted by
R.

I Example 5 (Running Example). Let us define H0 = (X,Y,E) with X = {x1, x2}, Y =
{y1, y2, y3} and E = {(x1, y1), (x1, y2), (x2, y2), (x2, y3)} (see Figure 1(a)) and consider the
instance for R as depicted in Figure 1(b). This setting will be used as our running example.

Observe that the tuple t = (2, 1, 3) is H0-accepted by R. Indeed consider the tuple
t′ = (3, 2) in R: it is easy to check that all inequalities are satisfied by t, t′. In contrast, the
tuple (2, 1, 2) is not H0-accepted by R.

I Definition 6 (H-Equivalence). Let H = (X,Y,E) be a bipartite graph. Two relations
R1, R2 of arity m = |X| are H-equivalent if for any tuple t of arity ` = |Y |, the tuple t is
H-accepted by R1 if and only if t is H-accepted by R2.



P. Koutris, T. Milo, S. Roy, and D. Suciu 81

H-equivalent relations form an equivalence class comprising instances of the same arity m.
The main result in this section shows that for a given R, an H-equivalent instance R′ ⊆ R of
size independent of R can be efficiently constructed.

I Theorem 7. Let H = (X,Y,E) be a bipartite graph (|Y | = `) and R be a relation of arity
m = |X|. Let φ(H) = `!

∏
j∈[`] dH(yj), where dH(v) is the degree of a vertex v in H. There

exists an instance R′ ⊆ R such that:
1. R′ is H-equivalent with R
2. |R′| ≤ e · φ(H)
3. R′ can be computed in time O(φ(H)|R|).

To describe how the algorithm that constructs R′ works, we need to introduce another
notion that describes the tuples of arity ` that are not H-accepted by R. Let ⊥ be a value
that does not appear in the active domain Dom.

I Definition 8 (H-Forbidden Tuples). Let H = (X,Y,E) be a bipartite graph and R be a
relation of arity m = |X|. A tuple t over Y with values in Dom ∪ {⊥} is H-forbidden for R if
for any tuple tR ∈ R there exist yj ∈ Y and (xi, yj) ∈ E such that t[yj ] = tR[xi].

I Example 9 (Continued). The reader can verify from Figure 1 that tuples of the form
(1, 2, x), where x can be any value, are H0-forbidden for R. Furthermore, notice that the
tuple (1, 2,⊥) is also H0-forbidden (in our construction (1, 2,⊥) being H0-forbidden implies
that any tuple of the form (1, 2, x) is H0-forbidden).

Next we formalize the intuition of the above example. We say that a tuple t1 defined
over Y subsumes another tuple t2 defined over Y if for any yj ∈ Y , either t1[yj ] = ⊥ or
t1[yj ] = t2[yj ]. Observe that if t1 subsumes t2 and t1 is H-forbidden, t2 must be H-forbidden
as well. A tuple is minimally H-forbidden if it is H-forbidden and is not subsumed by
any other H-forbidden tuple. In our example, (1, 2, 1) is subsumed by (1, 2,⊥), so it is not
minimally H0-forbidden, but the tuple (1, 2,⊥) is. Lemma 10 stated below will be used to
prove Theorem 7:

I Lemma 10. Let H = (X,Y,E) be a bipartite graph, and R be a relation defined on X. Then,
the set of all minimally H-forbidden tuples of R has size at most φ(H) = `!

∏
j∈[`] dH(yj)

and it can be computed in time O(φ(H)|R|).

To prove the above lemma, we present an algorithm that encodes all the minimally
H-forbidden tuples of R in a rooted tree TH(R). The tree has labels for both the nodes and
the edges. More precisely, the label L(v) of some node v is either a tuple in R or a special
symbol ⊥∗ (only the leaves can have label ⊥∗), while the label of an edge of the tree is a pair
of the form (yj , a), where yj ∈ Y and a ∈ Dom. The labels of the edges are used to construct a
set of H-forbidden tuples that includes the set of all minimally H-forbidden tuples as follows:

For each leaf node v with label L(v) = ⊥∗, let (yj1 , aj1), . . . , (yjm
, ajm

) be the edge labels
in the order they appear from the root to the leaf. Then, the tuple tup(v) defined on Y as
follows is an H-forbidden tuple (but not necessarily minimally H-forbidden):

tup(v)[yj ] =
{
aj if j ∈ {j1, . . . , jm}
⊥ otherwise

ICDT 2015



82 Answering Conjunctive Queries with Inequalities

⊥∗(5, 2)

(3, 2)

(1, 1)

(2, 3) (1, 4)(2, 1)

(2, 3)

(3, 2)

(5, 2)

y1 : 1

y2 : 3
y3 : 3

y2 : 2

y2 : 1

y2 : 2 y1 : 1y2 : 3y2 : 2 y1 : 3

y3 : 3

y3 : 2

y1 : 2

(1, 2, 3) (1, 2, 1) (1, 2, 1)(2, 1, 2)(1, 2,⊥)H0-forbidden:

(2, 3)

y3 : 1

(5, 2)

(2, 1)
y2 : 1

(3, 2)

(1, 2)

y3 : 1

y1 : 1 y2 : 1
y2 : 2

y1 : 2

(3, 2)

(2, 3)

⊥∗

⊥∗

⊥∗ ⊥∗

Figure 2 The tree TH(R) of the running example. The diagram also presents how theH0-forbidden
tuples are encoded by the tree.

Construction of TH(R). We construct TH(R) inductively by scanning through the tuples
of R in an arbitrary order. As we read the next tuple t from R, we need to ensure that the
H-forbidden tuples that have been so far encoded by the tree are not H-accepted by t: we
achieve this by expanding some of the leaves and adding new edges and nodes to the tree.
Therefore, after the algorithm has consumed a subset R′′ ⊆ R, the partially constructed tree
will be TH(R′′).

For the base of the induction, where R′′ = ∅, we define TH(∅) as a tree that contains a
single node (the root r) with label L(r) = ⊥∗.

For the inductive step, let TH(R′′) be the current tree and let t ∈ R be the next scanned
tuple. The algorithm processes (in arbitrary order) all the leaf nodes v of the tree with
L(v) = ⊥∗. Let (yj1 , aj1), . . . , (yjp

, ajp
) be the edge labels in the order they appear on the

path from root r to v. We distinguish two cases (for tuple t and a fixed leaf node v):
1. There exists j ∈ {j1, . . . , jp} and edge (xi, yj) ∈ E such that t[xi] = aj . In this case,

tup(v) will be H-forbidden in R′′ ∪ {t}; therefore, nothing needs to be done for this v.
2. Otherwise (i.e., there is no such j), tup(v) is not a H-forbidden tuple for R′′∪{t}. We set

L(v) = t (therefore, we never reassign the label of a node that has already been assigned
to some tuple in R). There are two cases:
a. If p = `, we cannot expand further from v (and will not expand in the future because

now L(v) 6= ⊥∗), since all yj-s have been already set.
b. If p < `, we expand the tree at node v. For every edge (xi, yj) ∈ E such that
j /∈ {j1, . . . , jp}, we add a fresh node vi,j with L(vi,j) = ⊥∗ and an edge (v, vi,j) with
label (yj , t[xi]). Notice that the tuples tup(vi,j) will be now H-forbidden in R′′ ∪ {t}.

The algorithm stops when either (a) all the tuples from R are scanned or (b) there exists no
leaf node with label ⊥∗.

I Example 11 (Continued). We now illustrate the steps of the algorithm through the
running example. After reading the first tuple, t1 = (1, 1), the algorithm expands the root
node r to three children (for y1, y2, y3), labels L(r) = (1, 1) and labels the new edges as
(y1, 1), (y2, 1), (y3, 1) and the new three leaves as ⊥∗.

Suppose the second tuple t2 = (1, 2) is read next. First consider the leaf node with
label ⊥∗ that is reached from the root through the edge (y1, 1). At this point, the node



P. Koutris, T. Milo, S. Roy, and D. Suciu 83

represents the tuple (1,⊥,⊥). Observe that are in case (1) of the algorithm, and so the
node is not expanded (t2[x1] = 1 and m = 1 < 3 = `). Consider now the third leaf node
with label ⊥∗, reached through the edge (y3, 1). We are now in case (2), and we have to
expand the node. The available edges (since we have already assigned a value to y3) are
(x1, y1), (x1, y2), (x2, y2). Hence, the node is labeled (1, 2), and expands into three children,
one for each of the above edges. These edges are labeled by (y1, 1), (y2, 1), (y2, 2) respectively;
then the algorithm continues and at the end the tree in Figure 2 is obtained.

The H-forbidden tuples encoded by the tree are not necessarily minimally H-forbidden.
However, for every minimally H-forbidden tuple there exists a node in the tree that encodes
it. In the running example, we find only two minimally H0-forbidden tuples for R: (1, 2,⊥)
and (2, 1, 2). Furthermore, the constructed tree is not unique for R and depends on the order
in which the tuples in R are scanned. The following lemma sums up the properties of the
tree construction, and directly implies Lemma 10; the proof is deferred to the full version of
the paper [15].

I Lemma 12. TH(R) satisfies the following properties:
1. The number of leaves is at most φ(H) = `!

∏
j∈[`] dH(yj).

2. Every leaf of TH(R) with label ⊥∗ encodes a H-forbidden tuple.
3. Every minimally H-forbidden tuple is encoded by some leaf of the tree with label ⊥∗.

For our running example, φ(H0) = 3! · (1 · 2 · 1) = 12, whereas the tree TH0(R) has only
10 leaves. We should note here that the bound φ(H) is tight, i.e. there exists an instance for
which the number of minimally H-forbidden tuples is exactly φ(H). 2

We now discuss how we can use the tree TH(R) to find a small H-equivalent relation to
R. It turns out that the connection is immediate: it suffices to collect the labels of all the
nodes (not only leaves) of the tree TH(R) that are not ⊥∗. More formally:

EH(R) = {L(v) | v ∈ TH(R), L(v) 6= ⊥∗} (1)

We can now show the following result, which completes the proof of Theorem 7:

I Lemma 13. The set EH(R) is H-equivalent to R and has size |EH(R)| ≤ e · φ(H).

I Example 14 (Continued). For our running example, the small H0-equivalent relation
will be: EH0(R) = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (5, 2)}. In other words, the tuples
(1, 8), (2, 2), (2, 4), (10, 2) are redundant and can be removed without affecting the answer to
the query (q2, I).

Although the set of minimally H-forbidden tuples is the same irrespective of the order
by which the algorithm scans the tuples, the relation EH(R) depends on this order. It is an
open problem to find the smallest possible H-equivalent relation for R.

4 Query Plans for Inequalities

In this section, we use the techniques presented in the previous section as building blocks
and prove Theorem 2. A Select-Project-Join (SPJ) query plan refers to a relational algebra
expression that uses only selection (σ), projection (Π), and join (on) operators. Let Pq be

2 For example, for H0 consider the instance {(1, 2), (3, 4), (5, 6)}. The reader can check that the resulting
tree has 12 leaves with label ⊥∗, and that every leaf leads to a different minimally H-forbidden tuple.

ICDT 2015



84 Answering Conjunctive Queries with Inequalities

Rule-2/3

ΠD

ΠC,E

R(A,B,E)

ΠD

R(A,B,E)

σE=‘a‘

R(A,B,E)

σE=‘a‘

ΠD

Rule-3 Rule-1
Pq0,>Pq0

onB=B′

onC=C′

S(B′, C)

σE=‘a‘’

ΠD

R(A,B,E)

ΠC,E

σE=‘a‘

S(B′, C)

T (C ′, D)

ΠC,C′,D,E

S(B′, C) S(B′, C)

T (C ′, D)T (C ′, D)

onC=C′

onC=C′ onC=C′

onB=B′onB=B′onB=B′

T (C ′, D)

Figure 3 The relational plan Pq0 for Example 15, and the transformation to the plan Pq0,>.

any SPJ query plan that computes a CQ q (without inequalities) on a database instance D
in time T (|q|, |D|). We will show how to transform Pq into a plan Pq,I that computes (q, I)
in time g(q, I) ·max(T (|q|, |D|). Without loss of generality, we assume that all the relation
names and attributes in the base and derived relations (at intermediate steps in the plan)
are distinct. Our running example for this section is given below:

I Example 15. Consider the query (q0, I), and the query plan Pq0 that computes q0:

q0(w) = R(x, y, ‘a‘), S(y, z), T (z, w), I = {x 6= z, y 6= w, x 6= w}
Pq0 = ΠD(σE=‘a‘(ΠC,E(R(A,B,E) onB=B′ S(B′, C))) onC=C′ T (C ′, D))

The query plan Pq0 is depicted in Figure 3.

Clearly, this plan by itself does not work for (q0, I) as it is losing information that is
essential to evaluate the inequlities, e.g., B(= B′) is being projected out and it is used later
in the inequality x 6= w with the attribute C of T . To overcome this problem while keeping
the same structure of the plan, we define a new projection operator that allows us to perform
valid algebraic transformations, even in the presence of inequalities. Let att(R) be the set
of attributes that appear in a base or derived relation R; a query plan or sub-plan P is a
derived relation with attributes att(P). If X ⊆ att(R), let X̄R = att(R) \X.

I Definition 16 (H-Projection). Let R be a base or a derived relation in P . Let X ⊆ att(R)
and H = (X̄R, att(P) \ att(R), E) be a bipartite graph. Then, the H-projection of R on X,
denoted ΠHX(R), is defined as

ΠHX(R) =
⋃

α∈ΠX(R)

EH(σX=α(R)) (2)

where EH denotes an H-equivalent subrelation as defined and constructed in equation (1).

Intuitively, H contains the inequalities between the attributes in X̄R (that are being projected
out) and the attributes of the rest of the query plan. The operator ΠHX first groups the
tuples from R according to the values of the X-attributes, but then instead of projecting out
the values of the attributes in X̄R for each such group, it computes a small H-equivalent
subrelation according to the graph H.



P. Koutris, T. Milo, S. Roy, and D. Suciu 85

I Observation 17. The H-projection of a relation R on X satisfies the following proper-
ties:
1. ΠX(R) = ΠX(ΠHX(R))
2. |ΠHX(R)| ≤ e · φ(H) · |ΠX(R)| (ref. Lemma 7)

First step. To construct the plan Pq,I from Pq, we first create an equivalent query plan
Pq,> by pulling all the projections in Pq to the top of the plan. The equivalence of Pq and
Pq,> is maintained by the following standard algebraic rules regarding projections:

(Rule-1) Absorption: If X ⊆ Y , then ΠX(R) = ΠX(ΠY (R)).
(Rule-2) Distribution: If X1 ⊆ att(R1) and X2 = att(R2), then ΠX1∪X2(R1 × R2) =

ΠX1(R1)×R2.
(Rule-3) Commutativity with Selection: If the selection condition θ is over a subset of X,

then σθ(ΠX(R)) = ΠX(σθ(R)).

Figure 3 depicts how each rule is applied in our running example to transform the initial
query plan Pq0 to Pq0,>, where the only projection occurs in the top of the query plan.
Observe that to distribute a projection over a join R1 onA1=A2 R2 (and not a cartesian
product), we can write it as σA1=A2(R1 ×R2), use both (Rule-2) and (Rule-3) to push the
projection, and then write it back in the form as R1 onA1=A2 R2.

The plan Pq,> will be of the form Pq,> = ΠX(P0), where P0 is a query plan that contains
only selections and joins. Notice that the plan ΠX(σI(P0)) correctly computes (q, I), since
it applies the inequalities before projecting out any attributes.3 However, the running time
is not comparable with that of Pq since the structures of the plans Pq and ΠX(σI(P0)) are
very different. To achieve comparable running time, we modify ΠX(σI(P0)) by applying the
corresponding rules of (Rule-1), (Rule-2), (Rule-3) for H-projection in the reverse order.

Second step. To convert projections to H-projections, first, we replace ΠX with ΠH0
X , where

H0 = (att(P0) \X, ∅, ∅). Notice that ΠH0
X is essentially like ΠX , but instead of removing the

attributes that are not in X, the operator keeps an arbitrary witness. Thus, if we compute
ΠH0
X (σI(P0)), we not only get all tuples t in (q, I), but for every such tuple we obtain a

tuple t′ from (qf , I) such that t = t′[X]. For our running example, X = {D}, and therefore,
H0 = ({A,B,B′, C, C ′, E}, ∅, ∅) (see the rightmost plan in Figure 4).

Third step. We next present the rules for H-projections to convert ΠH0
X (σI(P0)) to the

desired plan Pq,I . To show that the rules are algebraically correct, we need a weaker version
of plan equivalence.

I Definition 18 (Plan Equivalence). Two plans P1,P2 are equivalent under ΠHX , denoted
P1 ≡HX P2, if for every tuple α, EH(σX=α(P1)) and EH(σX=α(P2)) are H-equivalent.

In other words, we do not need to have the same values of the attributes that are being
projected out by ΠX in the small sub-relations EH. We write I[X1, X2] ⊆ I to denote
the inequalities between attributes in subsets X1 and X2. For convenience, we also write
I[X,X] = I[X]. We use E[X1, X2] in a similar fashion, where E is the set of edges in a
bipartite graph. Let A = att(P0). We apply the transformation rules for a sub-plan that is
of the form ΠHX(σI(S)), where I is defined on att(S) and H = (X̄S ,A, E). 4 The rules are:

3 From here on we let I denote inequalities on attributes and not variables.
4 For the sake of simplicity, we do not write the bipartite graph as H = (X̄S , A \ att(S), E). However,

the transformation rules ensure that the edges E in the bipartite graph are always between X̄S and
A \ att(S).

ICDT 2015



86 Answering Conjunctive Queries with Inequalities

R(A,B,E)

R(A,B,E)

σE=‘a‘

Rule-1’Rule-3’

ΠH0
D

σA 6=C,B 6=D,A6=D

ΠH0
D

S(B′, C)

onB=B′

T (C ′, D)

onC=C′

ΠH1
C,C′,D,E

Rule-2’/3’

σA 6=C,B 6=D,A6=D

σE=‘a‘

S(B′, C)

T (C ′, D)

onB=B′

onC=C′

Pq0,I

R(A,B,E)

ΠH0
D

onC=C′

T (C ′, D)ΠH2
C,E

σE=‘a‘

onB=B′

σB 6=D,A6=D

σA 6=C

R(A,B,E) S(B′, C)

T (C ′, D)

onB=B′

ΠH0
D

σB 6=D,A6=D

onC=C′

σA 6=C

ΠH2
C,E

σE=‘a‘

S(B′, C)

Figure 4 The reverse application of rules for Example 15. The bipartite graphs defined have
edge sets E(H0) = ∅, E(H1) = ∅ and E(H2) = {(A, D), (B, D)}.

(Rule-1’). If X ⊆ Y and H′ = (Ȳ S ,A, E[Ȳ S ,A]), then

ΠHX(σI(S)) ≡HX ΠHX(ΠH
′

Y (σI(S)))

In the running example, we have X = {D}, Y = {C,C ′, D,E}, and att(S) = A =
{A,B,B′, C, C ′, D,E}. The new bipartite graph for Rule-1’ in Figure 4 (corresponding
to Rule-1 in Figure 3) is H1 = ({A,B,B′},A, ∅).

(Rule-2’). Let S = R1×R2, and X = X1∪Z2, where X1 ⊆ att(R1) = Z1 and Z2 = att(R2).
If we define H′ = (Z1 \X1, A, E[Z1 \X1,A] ∪ I[Z1 \X1, Z2]), then

ΠHX1∪Z2
(σI(R1 ×R2)) ≡HX σI\I[Z1](ΠH

′

X1
(σI[Z1](R1))×R2)

This rule adds new edges to the bipartite graph (which is initially empty) from the set of
inequalities I. In the running example, we have X1 = {C,E} ⊆ {A,B,B′, C,E} = Z1 and
Z2 = {C ′, D}. Since E(H1) = ∅, to construct the edge set of the new bipartite graph H2, we
need to find the inequalities that have one attribute in Z1 \X1 = {A,B,B′} and the other in
Z2 = {C ′, D}: these are A 6= D and B 6= D. Hence, H2 = ({A,B,B′},A, {(A,D), (B,D)}),
and the application of the rule is depicted in Figure 4.

(Rule-3’). If θ is defined over a subset of X, and S = σθ(R):

ΠHX(σI(σθ(R))) ≡HX σθ(ΠHX(σI(R)))

In the running example, we move the selection operator σE=‘a‘ before the projection operator
ΠH2
C,E as the last step of the transformation.
The proof of correctness of these transformations (i.e., (Rule-1’), (Rule-2’), (Rule-3’)

preserve the equivalence of the plans under ΠHX) is deferred to the full version of the paper [15].
After applying the above transformations in the reverse order, the following lemma holds:



P. Koutris, T. Milo, S. Roy, and D. Suciu 87

I Lemma 19. Let Pq be an SPJ plan for q. For a set of inequalities I, the transformed plan
Pq,I has the following properties:
1. If Pq,> = ΠX(P0), the plan ΠX(Pq,I) computes (q, I) (after projecting out the attributes

that served as witness from Pq,I).
2. For every ΠX operator in Pq, there exists a corresponding ΠHX operator in Pq,I for some

appropriately constructed H.
3. Every intermediate relation R in Pq,I has size at most e ·maxH{φ(H)} · |R′|, where R′ is

the corresponding intermediate relation in Pq.
4. If T (|q|, |D|) is the time to evaluate Pq, the the time to evaluate Pq,I increases by a factor

of at most (e ·maxH{φ(H)})2.

Theorem 2 directly follows from the above lemma. To prove the bound on the running
time, we use the fact that each operator (selection, projection or join) can be implemented
in at most quadratic time in the size of the input (i.e., T (MN) ≤ cM2T (N)). Additionally,
notice that, if k is the vertex size of the inequality graph, then maxH{φ(H)} ≤ k!kk. Hence,
the running time can increase at most by a factor of 2O(k log k) when inequalities are added
to the query. In our running example, φ(H0) = 1, φ(H0) = 1 and φ(H2) = 2, hence the
resulting intermediate relations in will be at most 2e times larger than the ones in Pq0 .

The following query with inequalities is an example where our algorithm gives much
better running time than the color-coding-based or treewidth-based techniques described in
the subsequent sections.

I Example 20. Consider P k() = R1(x1, x2), R2(x2, x3), · · · , Rk(xk, xk+1) with inequalities
I = {xi 6= xi+2 | i ∈ [k − 1]}. Let P be the SPJ plan that computes this acyclic query in
time O(k|D|) by performing joins from left to right and projecting out the attributes as soon
as they join. Then, the plan PI that is constructed has constant maxH{φ(H)}; thus, (P k, I)
can be evaluated in time O(k|D|) as well.

I Remark. In this section we compared the running time of queries with inequalities with
SPJ plans that compute the query without the inequalities. However, optimal algorithms
that compute CQs may not use SPJ plans, as the recent worst-case optimal algorithms
in [17, 22] show. These algorithms apply to conjunctive queries without projections, where
any inequality can be applied at the end without affecting the asymptotic running time.
However, there are cases where nonstandard algorithms for Boolean CQs run faster than
SPJ algorithms, e.g. q() = R(x1, x2), R(x2, x3), . . . , R(x2k, x1), can be computed in time
O(N2−1/k), where N = |R|. We show in the full version [15] that our techniques can be
applied in this case as well. However, it is an open whether we can use them for any black-box
algorithm.

5 Color-coding Technique and Generalization of Theorem 1

In this section, we will review the color-coding technique from [4] and use it to generalize
Theorem 1 for arbitrary CQs with inequalities (i.e., not necessarily acyclic queries)5.

I Theorem 21. Let q be a CQ that can be evaluated in time T (|q|, |D|). Then, (q, I) can be
computed in time 2O(k log k) · log(|D|) · T (|q|, |D|) where k is the number of variables in I.

5 The log2(|D|) factor in Theorem 1 is reduced to log(|D|) in Theorem 21, but this is because one log
factor was due to sorting the relations in the acyclic query, and now this hidden in the term T (|q|, |D|).

ICDT 2015



88 Answering Conjunctive Queries with Inequalities

First, we state the original randomized color-coding technique to describe the intuition:
randomly color each value of the active domain by using a hash function h, use these colors to
check the inequality constraints, and use the actual values to check the equality constraints.

For a CQ q, let qf denote the full query (without inequalities), where every variable in
the body appears in the head of the query q. For a variable xi and a tuple t, t[xi] (or simply
t[i] where it is clear from the context) denotes the value of the attribute of t that corresponds
to variable xi. Let t ∈ qf (D). We say that t satisfies the inequalities I, denoted by t |= I, if
for each xi 6= xj in I, t[xi] 6= t[xj ]. We say that t satisfies the inequalities I with respect to
the hash function h, denoted by t |=h I, if for each such inequaity h(t[xi]) 6= h(t[xj ]).

Recall that k is the number of variables that appear in I. Let h be a perfectly random
hash function h : Dom→ [p] (where p ≥ k). For any t ∈ qf (D) if t satisfies I, then with high
probability it also satisfies I with respect to h, i.e., Prh[t |=h I | t |= I] ≥ p(p−1)···(p−k+1)

pk

≥ e−2
∑k−1

i=1
(i/p) ≥ e−k, where we used the fact that 1 − x ≥ e−2x for x ≤ 1

2 . Therefore,
by repeating the experiment 2O(k) times we can evaluate a Boolean query with constant
probability.

This process can be derandomized leading to a deterministic algorithm (for evaluating
any CQ, not necessarily Boolean) by selecting h from a family F of k-perfect hash functions.
A k-perfect family guarantees that for every tuple of arity at most k (with values from
the domain Dom), there will be some h ∈ F such that for all i, j ∈ [k], if t[i] 6= t[j], then
h(t[i]) 6= h(t[j]) (and thus if t |= I, then t |=h I) It is known (see [4]) that we can construct
a k-perfect family of size |F| = 2O(k) log(|Dom|) = 2O(k) log |D|.6

A coloring c of the vertices of the inequality graph GI with k colors is called a valid
k-coloring, if for each xi 6= xj we have that ci 6= cj where ci denotes the color of variable
xi under c. Let C(GI) denote all the valid colorings of GI . For each such coloring c and
any given hash function h : Dom → [k], we can define a subinstance D[c, h] ⊆ D such that
for each relation R, RD[c,h] = {t ∈ RD | ∀xi ∈ vars(R), h(t[xi]) = ci}. In other words, the
subinstance D[c, h] picks only the tuples that under the hash function h agree with the
coloring c of the inequality graph. Then the algorithm can be stated as follows:

Deterministic Algorithm: For every hash function h : Dom→ [k] in a k-perfect hash
family F , for every valid k-coloring c ∈ C(GI) of the variables, evaluate the query q
on the sub-instance D[c, h]. Output

⋃
h∈F

⋃
c∈C(GI) q(D[c, h]).

The correctness argument for the above algorithm is presented in [15]. The running time
of the algorithm is O(|F| · |C(GI)| · T (q, |D|)). Since |F| ≤ 2O(p) log |D| and |C(GI)| ≤ kk,
Theorem 21 follows.

Comparison of Theorem 2 with Theorem 21. The factors dependent on the query in these
two theorems (g(q, I) in Theorem 2 and f(k) in Theorem 21) are both bounded by 2O(k log k).
However, our technique outperforms the color-coding technique in several respects. First,
the randomized color-coding technique is simple and elegant, but is unsuitable to implement
in a database system that typically aims to find deterministic answers. On the other hand,
apart from the additional log(|D|) factor, the derandomized color-coding technique demands
the construction of a new k-perfect hash family for every database instance and query, and
therefore may not be efficient for practical purposes. Our algorithm requires no preprocessing
and can be applied in a database system by maintaining the same query plan and using

6 Assuming Dom includes only the attributes that appear as variables in the query q, |Dom| ≤ |D||q|.



P. Koutris, T. Milo, S. Roy, and D. Suciu 89

x1	  

x2	  
x3	  

x4	  

x5	  

x6	  

(a)	  

x1	  

x2	  
x3	  

x4	  

x5	  

x6	  
x7	  

x8	  

(b)	  

x7	  

x8	  

x2	  

x3	  

x4	  

x5	  

x6	  

x7	  

x8	  

x1	  

(c)	  

x1 

x6 

x7 

x2 

x4 

x8 

(d) 

x3 

x5 

x9 

Figure 5 Augmented graphs for Example 22 (k = 7) and Example 23 (k = 8). The solid and
dotted edges come from the query and inequalities respectively; the blue squares denote variables,
and red circles denote (unnamed) relational atoms: (a) (P 7, I1), (b) (P 7, I2), (c) (P 7, I3), (d)
(P 7, I4).

a more sophisticated projection operation. More importantly, the color coding technique
is oblivious of the combined structure of the query and the inequalities. As an example,
consider the path query P k, together with the inequalities I1 = {xi 6= xi+2 : i ∈ [k − 1]}.
The color-coding-based algorithm has a running time of 2O(k log k)|D| log |D|. However, as
discussed in Section 4, we can compute this query in time O(k|D|), thus the exponential
dependence on k is eliminated.

6 CQs and Inequalities with Polynomial Combined Complexity

In this section, we investigate classes of queries and inequalities that entail a poly-time
combined complexity for (q, I) in terms of the treewidths of query graph Gq, inequality
graph GI , and augmented graph Gq,I . If the augmented graph Gq,I has bounded treewidth,
then (q, I) can be answered in poly-time combined complexity [23, 6]. We give examples of
such q and I below:

I Example 22. Consider the path query: P k( ) = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1),
which is acyclic, and consider the following inequality patterns (see Figure 5): (i) (P k, I1)
where I1 = {xi 6= xi+2 : i ∈ [k − 1]} has treewidth 2. (ii) (P k, I2) where I2 = {xi 6= xi+ k

2
:

i ∈ [k+1
2 ]} has treewidth 3 (k is odd). (iii) (P k, I3) where I3 = {xi 6= xk−i+1 : i ∈ [k+1

2 ]} has
treewidth 2 (k is odd).

However, for certain inputs our algorithm in Section 4 can outperform the treewidth-based
techniques since it considers the inequality structure more carefully. For instance, even
though the augmented graph of (P k, I1) has treewidth 2 (see Figure 5 (a)), the techniques
of [23] will give an algorithm with running time O(poly(k)|D|2), whereas the algorithm in
Section 4 gives a running time of O(k|D|).

Indeed, the treewidth of Gq,I is at least as large as the treewidth of Gq and GI . As
mentioned earlier, when GI is the complete graph on k+1 variables (with treewidth = k+1),
answering (P k, I) is as hard as finding if a graph on k + 1 vertices has a Hamiltonian path,
and therefore is NP-hard in k. Interestingly, even when both Gq and GI have bounded
treewidths, Gq,I may have unbounded treewidth as illustrated by the following example:

I Example 23. Consider (P k, I4) (see Figure 5(d)), where k+1 = p2 for some p. Algebraically,
we can write I4 as: I4 = {xi 6= xbi/pc+1+2p−(i mod p) | i = 1, . . . , p(p− 1)}. The edges for
P k are depicted in the figure as an alternating path on the grid with solid edges, whereas

ICDT 2015



90 Answering Conjunctive Queries with Inequalities

the remaining edges are dotted and correspond to the inequalities. Here both GPk and GI4

have treewidth 1, but GPk,I4 has treewidth Θ(
√
k).

However, this does not show that evaluation of the query (P k, I4) is NP-hard in k, which we
prove below by a reduction from the list coloring problem:

I Definition 24 (List Coloring). Given an undirected graph G = (V,E), and a list of
admissible colors L(v) for each vertex v ∈ V , list coloring asks whether there exists a coloring
c(v) ∈ L(v) for each vertex v such that the adjacent vertices in G have different colors.

The list coloring problem generalizes the coloring problem, and therefore is NP-hard. List
coloring is NP-hard even on grid graphs with 4 colors and where 2 ≤ |L(v)| ≤ 3 for each
vertex v [7]; we show NP-hardness for (P k, I4) by a reduction from list coloring on grids.
I Proposition 25. The combined complexity of evaluating (P k, I4) is NP-hard, where both
the query P k and the inequality graph G are acyclic (have treewidth 1).
In fact, the above proposition can be generalized as follows: if the graph Gq,I is NP-hard for
list coloring for a query q where each relation has arity 2, then evaluation of the query (q, I)
is also NP-hard in the size of the query.

On the contrary, (q, I) may not be hard in terms of combined complexity if the treewidth
of Gq,I is unbounded, which we also show with the help of the list coloring problem. Consider
the queries F k( ) = R1(x1), R2(x2), . . . , Rk(xk). Given inequalities I, the evaluation of
(F k, I) is equivalent to the list coloring problem on the graph GI when the available colors
for each vertex xi are the tuples in Ri(xi). Since list coloring is NP-hard:
I Proposition 26. The evaluation of (F k, I) is NP-hard in k for arbitrary inequalities I.
Therefore, answering (F k, I) becomes NP-hard in k even for this simple class of queries if
we allow arbitrary set of inequalities I (this also follows from Theorem 29). However, list
coloring can be solved in polynomial time for certain graphs GI : (i) Trees (the problem
can be solved in time O(|V |) independent of the available colors[13]), and in general graphs
of constant treewidth. (ii) Complete graphs (by a reduction to bipartite matching).7 In
general, if the connected components of G are either complete graphs or have constant
treewidth, list coloring can be solved in polynomial time. Therefore, on such graphs as GI ,
the query (F k, I) can be computed in poly-time in k and |D|. Here we point out that none of
the other algorithms given in this paper can give a poly-time algorithm in k, |D| for (F k, I)
when GI is the complete graph (and therefore has treewidth k). The following proposition
generalizes this property:
I Proposition 27. Let q be a Boolean CQ, where each relational atom has arity at most 2. If
q has a vertex cover (a set of variables that can cover all relations in q) of constant size and
the list coloring problem on GI can be solved in poly-time, then (q, I) can be answered in
poly-time combined complexity.
The proof is given in the full version of the paper. To see an example, consider the star query
Zn( ) = R1(y, x1), . . . , Rn(y, xn) which has a vertex cover {y} of size 1. We iterate over
all possible values of y: for each such value α ∈ Dom, the query R1(α, x1), . . . , Rn(α, xn) is
equivalent to Fn, and therefore (Zn, I) can be evaluated in poly-time in combined complexity
when GI is an easy instance of list coloring.

7 We can construct a bipartite graph where all vertices v appear on one side, the colors appear on the
other side, and there is an edge (v, c) if c ∈ L(v). Then the list coloring problem on complete graph is
solvable if and only if there is a perfect matching in the graph.



P. Koutris, T. Milo, S. Roy, and D. Suciu 91

7 CQs with Polynomial Combined Complexity for All Inequalities

This section aims to find CQs q such that computing (q, I) has poly-time combined complexity,
no matter what the choice of I is. Here we present a sufficient condition for this, and a
stronger necessary condition.

A fractional edge cover of a CQ q assigns a number vR to each relation R ∈ q such that for
each variable x,

∑
R:x∈vars(R) vR ≥ 1. A fractional vertex packing (or, independent set) of q

assigns a number ux to each variable x, such that
∑
x∈vars(R) ux ≤ 1 for every relation R ∈ q.

By duality, the minimum fractional edge cover is equal to the maximum fractional vertex
packing. When each vR ∈ {0, 1} we get an integer edge cover, and when each ux ∈ {0, 1} we
get an integer vertex packing.

I Definition 28. A family Q of Boolean CQs has unbounded fractional (resp. integer) vertex
packing if there exists a function T (n) such that for every integer n > 0 it can output in time
poly(n) a query q ∈ Q that has a fractional (resp. integer) vertex packing of size at least n
(counting relational atoms as well as variables).

A family Q of Boolean CQs has bounded fractional (resp. integer) vertex packing if there
exists a constant b > 0 such that for any q ∈ Q, the size of any fractional (resp. integer)
vertex packing is ≤ b.

Path queries P k( ) = R1(x1, x2), R2(x2, x3), . . . , Rk(xk, xk+1) and cycle queries Ck( ) =
R1(x1, x2), R2(x2, x3), . . . , Rk(xk, x1) are examples of classes of unbounded vertex packing.

I Theorem 29.
1. If a family of Boolean CQs Q has unbounded integer vertex packing, the combined

complexity of (q, I) for q ∈ Q is NP-hard.
2. If a family of CQs Q has bounded fractional vertex packing, then for each q ∈ Q, (q, I)

can be evaluated in poly-time combined complexity for any I.

The NP-hardness in this theorem follows by a reduction from 3-Coloring, whereas the
poly-time algorithm uses the bound given by Atserias-Grohe-Marx [12, 5] in terms of the size
of minimum fractional edge cover of the query, and the duality between minimum fractional
edge cover and maximum fractional vertex packing. The formal proof of the above theorem
will appear in the full version of the paper.

In this paper, we illustrate the properties with examples. Consider the family Sk( ) =
R(x1, . . . , xk) for k ≥ 1: this has vertex packing of size = 1 and therefore can be answered
trivially in poly-time in combined complexity for any inequality pattern I. On the other
hand, the class of path queries P k mentioned earlier has unbounded vertex packing (has
a vertex packing of size ≈ k

2 ), and therefore for certain set of inequalities (e.g., when GI
is a complete graph), the query evaluation of (P k, I) is NP-hard in k. Similarly, the class
F k( ) = R1(x1), R2(x2), . . . , Rk(xk) mentioned earlier has unbounded vertex packing, and is
NP-hard in k with certain inequality patterns (see Proposition 26).

Theorem 29 is not a dichotomy or a characterization of easy CQs w.r.t. inequalities, since
there is a gap between the maximum fractional and integer vertex packing.8

8 For example, for the complete graph on k vertices, the maximum integer vertex packing is of size 1
whereas the maximum fractional vertex packing is of size k

2 .

ICDT 2015



92 Answering Conjunctive Queries with Inequalities

8 Conclusion

We studied the complexity of CQs with inequalities and compared the complexity of query
answering with and without the inequality constraints. Several questions remain open: Is
there a property that gives a dichotomy of query evaluation with inequalities both for the
class of CQs, and for the class of CQs along with the inequality graphs? What can be
said about unions of conjunctive queries (UCQ) and recursive datalog programs? Can our
techniques be used as a black-box to extend any algorithm for CQs, i.e., not necessarily
based on SPJ query plans, to evaluate CQs with inequalities?

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-

Wesley, 1995.
2 Foto Afrati, Chen Li, and Prasenjit Mitra. Answering queries using views with arithmetic

comparisons. In PODS, pages 209–220, 2002.
3 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.

Algorithmica, 17(3):209–223, 1997.
4 Noga Alon, Raphael Yuster, and Uri Zwick. Color coding. In Ming-Yang Kao, editor,

Encyclopedia of Algorithms. Springer, 2008.
5 Albert Atserias, Martin Grohe, and Daniel Marx. Size bounds and query plans for relational

joins. FOCS, pages 739–748, 2008.
6 Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited. Theor.

Comput. Sci., 239(2):211–229, 2000.
7 Marc Demange and Dominique De Werra. On some coloring problems in grids. Theor.

Comput. Sci., 472:9–27, February 2013.
8 Arnaud Durand and Etienne Grandjean. The complexity of acyclic conjunctive queries

revisited. CoRR, abs/cs/0605008, 2006.
9 Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions. J.

ACM, 49(6):716–752, November 2002.
10 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and

tractable queries. In PODS, pages 21–32, 1999.
11 M.H. Graham. On the universal relation. Technical Report, University of Toronto, Ontario,

Canada, 1979.
12 Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. In SODA,

pages 289–298, 2006.
13 Klaus Jansen and Petra Scheffler. Generalized coloring for tree-like graphs. Discrete Applied

Mathematics, 75(2):135–155, 1997.
14 Phokion G. Kolaitis, David L. Martin, and Madhukar N. Thakur. On the complexity of

the containment problem for conjunctive queries with built-in predicates. In PODS, pages
197–204, 1998.

15 Paraschos Koutris, Tova Milo, Sudeepa Roy, and Dan Suciu. Answering conjunctive queries
with inequalities. CoRR, abs/1412.3869, 2014.

16 B. Monien. How to find long paths efficiently. In G. Ausiello and M. Lucertini, editors, Ana-
lysis and Design of Algorithms for Combinatorial Problems, volume 109 of North-Holland
Mathematics Studies, pages 239 – 254. North-Holland, 1985.

17 Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join
algorithms: [extended abstract]. In Proceedings of the 31st ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA,
May 20-24, 2012, pages 37–48, 2012.



P. Koutris, T. Milo, S. Roy, and D. Suciu 93

18 Christos H. Papadimitriou and Mihalis Yannakakis. On the complexity of database queries.
In PODS, pages 12–19, 1997.

19 Neil Robertson and P.D Seymour. Graph minors. iii. planar tree-width. Journal of Com-
binatorial Theory, Series B, 36(1):49 – 64, 1984.

20 Riccardo Rosati. The limits of querying ontologies. In ICDT, pages 164–178, 2007.
21 Ron van der Meyden. The complexity of querying indefinite data about linearly ordered

domains. J. Comput. Syst. Sci., 54(1):113–135, February 1997.
22 Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Proc. 17th

International Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014.,
pages 96–106, 2014.

23 Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB, pages 82–94.
IEEE Computer Society, 1981.

24 C.T. Yu and M. Z. Ozsoyoglu. An algorithm for tree-query membership of a distributed
query. In COMPSAC, pages 306–312, 1979.

25 Raphael Yuster and Uri Zwick. Finding even cycles even faster. SIAM J. Discrete Math.,
10(2):209–222, 1997.

ICDT 2015



SQL’s Three-Valued Logic and Certain Answers
Leonid Libkin

School of Informatics, University of Edinburgh

Abstract
SQL uses three-valued logic for evaluating queries on databases with nulls. The standard theoret-
ical approach to evaluating queries on incomplete databases is to compute certain answers. While
these two cannot coincide, due to a significant complexity mismatch, we can still ask whether
the two schemes are related in any way. For instance, does SQL always produce answers we can
be certain about?

This is not so: SQL’s and certain answers semantics could be totally unrelated. We show,
however, that a slight modification of the three-valued semantics for relational calculus queries
can provide the required certainty guarantees. The key point of the new scheme is to fully utilize
the three-valued semantics, and classify answers not into certain or non-certain, as was done
before, but rather into certainly true, certainly false, or unknown. This yields relatively small
changes to the evaluation procedure, which we consider at the level of both declarative (relational
calculus) and procedural (relational algebra) queries. We also introduce a new notion of certain
answers with nulls, which properly accounts for queries returning tuples containing null values.

1998 ACM Subject Classification H.2.4 Query Processing

Keywords and phrases Null values, incomplete information, query evaluation, three-valued logic,
certain answers

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.94

1 Introduction

SQL’s query evaluation engine uses three-valued logic when it comes to handling incomplete
information: comparisons involving null values have the truth value unknown [7]. This results
in a number of well known paradoxes. Consider, for instance, two relations R and S with a
single numerical attribute A, and assume that S contains a single row with a null value in it.
Then

select S.A from S where S.A <= 0 or S.A > 0 (1)

returns nothing despite the condition in the where clause being a tautology. This is because
both null <= 0 and null > 0 evaluate to unknown and so does their disjunction. Worse
yet, for the same reason, the query computing R− S:

select R.A from R where R.A not in (select S.A from S) (2)

returns nothing if S contains a single null, no matter what R is, telling us that might well
have |R| > |S| and R− S = ∅ at the same time.

However unintuitive these answers are (which led to very severe criticism of the design of
null-related features of SQL [6, 7]) they at least seem not to give us any false positives. To
understand what it means, we appeal to the standard theoretical notion of query answering
in the presence of incompleteness, certain answers [1, 12]. Each incomplete database D has
an associated semantics [[D]]. We can think of [[D]] as the set of possible complete databases
that D can represent, i.e., all databases obtained by substituting values for nulls. Then

© Leonid Libkin;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 94–109

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.94
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


L. Libkin 95

certain answers contain tuples that will be in the answer to Q over all possible complete
databases represented by D:

certain(Q,D) =
⋂
{Q(D′) | D′ ∈ [[D]]} (3)

How does SQL evaluation of queries relate to certain answers? There is a simple argument
that they cannot coincide for relational calculus queries: SQL’s evaluation is tractable
(very tractable, in fact, of AC0 data complexity), but data complexity of certain answers is
intractable: at least coNP-complete for commonly considered semantics [2]. Examples (1)
and (2) seem to suggest that we at least get a subset of certain answers, but this is not the
case: false positives are possible. Consider the query:

select R.A from R

where R.A not in (select R1.A from R R1 (4)
where R1.A not in (select * from S))

expressing R− (R− S) and a database R = {1} and S = {⊥}. SQL’s evaluation results in
{1}. At the same time the certain answer is empty: if ⊥ is interpreted as any value other
than 1, the query produces ∅.

Can we remedy this? Clearly we cannot modify SQL’s evaluation rules to generate
certain answers due to the complexity mismatch. So the best we can hope for is a reasonable
approximation without false positives. The idea itself is not new: in fact for the first time
it was expressed in [22], even before complexity bounds for certain answers were known.
Despite this, we do not yet have such approximation schemes for SQL query evaluation.
Providing them is our goal here. Specifically, we want to achieve the following:

find query answers fast, without a significant modification of the existing evaluation
techniques, and at the same time
guarantee that no false positives occur, i.e., every returned tuple is a certain answer.

We achieve this by providing a small modification to the three-valued logic approach of
SQL that restores correctness guarantees: query evaluation no longer produces false positives,
and all returned results are guaranteed to be certain answers.

To understand the idea of the modification, notice that SQL’s query evaluation actually
mixes three- and two-valued logic. Three-valued logic is used to evaluate conditions, but
then query results return only those tuples for which conditions evaluate to true, effectively
collapsing unknown and false. This works fine for positive queries, but once negation,
especially negation in subqueries (e.g., not in or not exists) enters the picture, we have
a problem, as it flips truth values. Now true flips to false, but both unknown and false
(which were collapsed to one value when a subquery was evaluated) flip to true! This is how
unintended tuples end up in the answer.

So to get correctness guarantees, we just need to be faithful to the three-valued approach.
This means that there will be three possible outcomes for each candidate answer tuple: it
can be either

certainly in the answer (truth value true); or
certainly not in the answer (truth value false); or
possibly in the answer, or possibly not (truth value unknown).

The second modification that we need is using marked, or naïve nulls [1, 12] in tables.
Such nulls can appear multiple times in tables, and they are often required by applications
such as data integration and exchange [3, 13]. In fact they have already been implemented in

ICDT 2015



96 SQL’s Three-Valued Logic and Certain Answers

connection with such applications [11, 19]. Generally, SQL’s nulls can be modeled with naïve
nulls, simply by forbidding repetition. The reason we need marked nulls is twofold. Firstly, we
want to produce more general results. Secondly, we need to overcome an additional (and quite
unreasonable) deficiency of SQL’s handling of nulls: even comparing whether a null value
equals itself produces truth value unknown. Indeed, consider a table T(A,B) with a single tuple
(1,null) and a query select T1.A from T T1, T T2 where T1.A=T2.A and T1.B=T2.B,
i.e., πA(T ∩ T ). Instead of the expected 1, it gives the empty result, as comparing a value
with itself does not evaluate to true.

We remark that using the multi-valued approach has proved very useful in two closely
related areas: model-checking [4, 10], and knowledge representation [14, 18]. In fact the
procedure of [14] that uses three-valued reasoning with knowledge bases is similar in spirit
with the modification of SQL query evaluation that we propose (although the technical details
of our procedure are quite different from [14]), and its modifications to achieve tractable
reasoning [18] relied on database query evaluation techniques. In the database field the
three-valued approach has, by and large, belonged to the practice rather than the theory.

Organization. In Section 2 we present basic definitions. Section 3 describes the evaluation
procedure for relational calculus and SQL’s three-valued approach in the presence of nulls.
Section 4 presents the modified evaluation procedure and states its correctness. In Section 5
we prove a generalization of that result, relying on a new notion of certain answers with nulls.
This generalization properly accounts for all three possible outcomes of query evaluation
(certainly true, certainly false, unknown). In Section 6 we look at certainty guarantees for
relational algebra queries. Concluding remarks are in Section 7. Due to space limitations,
only proof sketches are presented here; complete proofs are available in the full version.

2 Preliminaries

Incomplete databases. We begin with some standard definitions [1, 12]. Incomplete
databases are populated by constants and nulls. The sets of constants and nulls are countably
infinite sets denoted by Const and Null respectively. Nulls are denoted by ⊥, sometimes with
sub- or superscripts.

A relational schema (vocabulary) is a set of relation names with associated arities. An
incomplete relational instance D assigns to each k-ary relation symbol S from the vocabulary
a k-ary relation SD over Const ∪ Null, i.e., a finite subset of (Const ∪ Null)k. When the
instance is clear from the context we shall write S, rather than SD, for the relation itself as
well.

The sets of constants and nulls that occur in D are denoted by Const(D) and Null(D). If
Null(D) is empty, we refer to D as complete. That is, complete databases are those without
nulls. The active domain of D is adom(D) = Const(D) ∪ Null(D).

Homomorphisms, valuations, and semantics. Given two relational structures D and D′,
a homomorphism h : D → D′ is a map from the active domain of D to the active domain of
D′ such that:
1. for every relation symbol S, if a tuple ū is in relation S in D, then the tuple h(ū) is in

the relation S in D′; and
2. h(c) = c for every c ∈ Const(D).

By h(D) we denote the image of D, i.e., the set of all tuples S(h(ū)) where S(ū) is in D.
If h : D → D′ is a homomorphism, then h(D) is a subinstance of D′.



L. Libkin 97

A homomorphism h : D → D′ is called a valuation if h(x) is a constant for every
x ∈ adom(D); in other words, it provides a valuation of nulls as constant values. If h is a
valuation, then h(D) is complete. We now define the semantics of incomplete databases by
means of valuations:

[[D]] = {h(D) | h is a valuation}.

This is often referred to as the closed-world assumption, or cwa semantics of incompleteness
[12, 21]. Another common semantics uses the open-world assumption, or owa, and allows
adding complete tuples to h(D). In the study of incompleteness, the closed-world semantics
is a bit more common [1, 2, 12] since it is better behaved. We shall offer some comments on
the owa semantics in Section 5.2.

Query languages. As our basic query languages we consider relational calculus and its
fragments. Relational calculus has exactly the power of first-order logic, or FO. Its formulae
are built from relational atoms R(x̄), equality atoms x = y, by closing them under conjunction
∧, disjunction ∨, negation ¬, existential ∃ and universal ∀ quantifiers. If x̄ is the list of free
variables of a formula ϕ, we write ϕ(x̄) to indicate this. We write |x̄| for the length of x̄.

Conjunctive queries (CQs, also known as select-project-join queries) are defined as queries
expressed in the ∃,∧-fragment of FO. The class UCQ of unions of conjunctive queries is the
class of formulae of the form ϕ1 ∨ . . .∨ϕm, where each ϕi is a conjunctive query. In terms of
its expressive power, this is the existential-positive fragment of FO, i.e., the ∃,∨,∧-fragment.

We shall use relational algebra, the procedural language equivalent to FO, that has
operations of selection σ, projection π, cartesian product ×, union ∪, and difference −. We
use the unnamed perspective of relational algebra which does not require the renaming
operator [1] (more on this in Section 6, where we shall add explicit intersection to relational
algebra). The fragment without the difference operator is referred to as positive relational
algebra; it has the same expressiveness as existential positive formulae (and thus unions of
conjunctive queries).

3 Evaluation procedures for FO queries

We shall look at different query evaluation procedures. Each such procedure Eval will take
a query (an FO formula) ϕ(x̄), a database D, and an assignment ν of values to the free
variables x̄. The output Eval(ϕ,D, ν) is a truth value. For the standard Boolean logic, the
domain of truth values is {0, 1}, with 0 meaning false and 1 meaning true. For three-valued
logic, the domain is {0, 1

2 , 1}, with
1
2 interpreted as unknown.

An assignment ν maps each free variable to an element of adom(D). Note that such an
element could be a constant or a null; assignments thus are not valuations. We write ν[a/x]
for the assignment that changes ν by mapping x to a. Also, given a tuple x̄ = (x1, . . . , xn) of
free variables, and a tuple ā = (a1, . . . , an), we write simply Eval(ϕ,D, ā) if the assignment
ν is such that ν(xi) = ai for all i ≤ n.

Given an evaluation procedure Eval, the outcome of query evaluation for ϕ(x̄) with |x̄| = k

is

Eval(ϕ,D) = {ā ∈ adom(D)k | Eval(ϕ,D, ā) = 1} .

For all of the evaluation procedures that we use (except two in Subsection 5.2), the

ICDT 2015



98 SQL’s Three-Valued Logic and Certain Answers

evaluation of the Boolean connectives and quantifiers is completely standard:

Eval(ϕ ∨ ψ,D, ν) = max(Eval(ϕ,D, ν),Eval(ψ,D, ν))
Eval(ϕ ∧ ψ,D, ν) = min(Eval(ϕ,D, ν),Eval(ψ,D, ν))

Eval(¬ϕ,D, ν) = 1− Eval(ϕ,D, ν)
Eval(∃xϕ,D, ν) = max{Eval(ϕ,D, ν[a/x]) | a ∈ adom(D)}
Eval(∀xϕ,D, ν) = min{Eval(ϕ,D, ν[a/x]) | a ∈ adom(D)}

(5)

Thus, from now we only explain the valuation of atomic formulae R(x̄) and equalities
x = y. The classical FO evaluation gives us the procedure EvalFO with the range {0, 1}
defined by (5) and:

EvalFO(R(x̄), D, ν) =
{

1 if ν(x̄) ∈ RD

0 if ν(x̄) 6∈ RD

EvalFO(x = y,D, ν) =
{

1 if ν(x) = ν(y)
0 if ν(x) 6= ν(y)

SQL’s evaluation has {0, 1
2 , 1} as the range of values. Again it uses rules (5), and the

rule for EvalSQL(R(x̄), D, ν) is exactly the same as for EvalFO, but for equality atoms the rule
differs:

EvalSQL(x = y,D, ν) =


1 if ν(x) = ν(y) and ν(x), ν(y) ∈ Const
0 if ν(x) 6= ν(y) and ν(x), ν(y) ∈ Const
1
2 if ν(x) ∈ Null or ν(y) ∈ Null

Indeed, SQL’s approach is to declare every comparison as unknown if a null is involved. Note
that over complete databases, EvalFO and EvalSQL coincide. Also, over incomplete databases,
EvalFO is usually referred to as naïve evaluation [1, 12].

How do these relate to certain answers? We now examine FO and SQL evaluation. But
first note that the definition (3) ensures that only tuples of constants are present in certain
answers. There is no such restriction on the standard evaluation procedures. So to do a fair
comparison we only compare sets of constant tuples returned by evaluation procedures (this
will be relaxed later in the paper).

I Definition 1. Given a class Q of queries, an evaluation procedure Eval has certainty
guarantees for Q if for every query ϕ(x̄) ∈ Q, every database D, and every tuple ā of
constants with |ā| = |x̄|, we have

ā ∈ Eval(ϕ,D) ⇒ ā ∈ certain(ϕ,D).

In other words,
Eval(ϕ,D) ∩ Const|x̄| ⊆ certain(ϕ,D).

Certain answers and EvalFO. The first observation is immediate:

certain(ϕ,D) ⊆ EvalFO(ϕ,D).

The converse in general is not true, we can have EvalFO(ϕ(x̄), D) ∩ Const|x̄| 6⊆ certain(ϕ,D).
Consider for instance ϕ(x) = R(x) ∧ ¬S(x) expressing the difference of R and S. Let D
contain RD = {1} and SD = {⊥}; then Eval(ϕ,D) = {1} while certain(ϕ,D) = ∅.



L. Libkin 99

However, sometimes certainty guarantees can be established. It has long been known [12]
that we get them by excluding universal quantification and negation from first-order logic:
EvalFO has certainty guarantees for the class UCQ. This was recently extended in [8] which
showed that the same is true for queries from a rather significant expansion of the class UCQ,
by adding universal quantification and a limited form of implication. More precisely, we look
at the class Qcert

FO defined as follows:
atomic formulae R(x̄) and x = y are in Qcert

FO ;
if ϕ,ψ ∈ Qcert

FO then so are ϕ ∨ ψ and ϕ ∧ ψ;
if ϕ ∈ Qcert

FO then so are ∃xϕ and ∀xϕ;
if ϕ(x̄, ȳ) is in Qcert

FO , then so is ∀x̄ (R(x̄)→ ϕ(x̄, ȳ)), where R is a relation symbol in the
schema, and x̄ does not have a repetition of variables.

Then EvalFO has certainty guarantees for Qcert
FO queries [8]. From the point of view of relational

algebra, the class Qcert
FO corresponds to operations σ, π,∪,× and the division operation Q÷Q′,

where Q′ is written in the π,∪,×-fragment of relational algebra, see [16].

Certain answers and EvalSQL. How does SQL change things? Actually, it changes them for
the worse: now there is no connection between EvalSQL(ϕ,D) and certain(ϕ,D) whatsoever.
Indeed, we saw that for the query ϕ(x) = R(x) ∧ ¬(R(x) ∧ ¬S(x)) and database D with
RD = {1} and SD = {⊥}, the certain answer is empty while EvalSQL(ϕ,D) = {1}, and for
ψ(x) = R(x) ∧ (S(x) ∨ ¬S(x)), the certain answer is {1}, while EvalSQL(ψ,D) = ∅.

In a restricted case we provide correctness guarantees:

I Proposition 2. EvalSQL has certainty guarantees for unions of conjunctive queries.

Proof sketch. This follows from the fact for unions of conjunctive queries, EvalSQL(ϕ,D, ν) =
1 implies EvalFO(ϕ,D, ν) = 1 (shown by induction), and known results for FO evaluation for
unions of conjunctive queries [12]. J

4 Evaluation procedures with certainty guarantees

We now introduce an evaluation procedure that comes with certainty guarantees for all
relational calculus queries. For that, we have to explain what is wrong with FO and SQL
evaluation procedures shown above, particularly for evaluation of atomic formulae.

Atomic relational formulae R(x̄). For both SQL and FO, one simply checks, for a given
assignment ν, whether ν(x̄) belongs to R. However, returning 0 if ν(x̄) 6∈ R is too strong
if we view 0 as saying that the tuple certainly cannot belong to R.
Indeed, consider R = {(⊥1, 1), (2,⊥2)} and let ν be the identity (recall that the range of
ν is the whole active domain). Consider a tuple x̄ = (⊥1,⊥2). It is not in R, but can
it be in R under some valuation h? Of course it can: if h(⊥1) = 2 and h(⊥2) = 1, then
h(x̄) = (2, 1) and h(R) = {(2, 1)}, i.e., h(x̄) ∈ h(R). On the other hand, if h′(⊥1) = 1
and h′(⊥2) = 2, then h′(x̄) = (1, 2) and h′(R) = {(1, 1), (2, 2)}, so h′(x̄) 6∈ h′(R). Thus,
the correct value for evaluating the membership of x̄ in R seems to be 1

2 , not 0. Value 0
should be reserved for cases when no valuation h makes h(x̄) ∈ h(R) possible.
The EvalFO and EvalSQL procedures return 0 too eagerly, and this becomes a problem
when negation is applied to a formula, as 0 becomes a 1, and suddenly we have a false
positive answer that in fact is not certain at all. If the value is kept at 1

2 , applying
negation still results in 1− 1

2 = 1
2 , and thus no false ‘certain answers’ appear.

ICDT 2015



100 SQL’s Three-Valued Logic and Certain Answers

Equality formulae x = y FO evaluation results in 0 if ν(x) and ν(y) are different nulls,
but they could still be mapped to the same constant, so the right value should be 1

2 , not
0. On the other hand, SQL evaluation produces 1

2 if one of ν(x) or ν(y) is a null. But
if we know ν(x) = ν(y), then for every valuation h we will have h(ν(x)) = h(ν(y)), so
the evaluation procedure must return 1 and not 1

2 in this case, or else it will miss some
certain answers.

Now with this in mind, we introduce a proper 3-valued evaluation procedure Eval3v. For
this, we need one additional concept. Given two tuples t̄1 and t̄2 of the same length over
Const ∪ Null, we say that they unify if there is a homomorphism h such that h(t̄1) = h(t̄2).
We then write t̄1 ⇑ t̄2.

It is easy to see that we can define t̄1 ⇑ t̄2 by asking for a valuation h so that h(t̄1) = h(t̄2).
By classical results on unification, it is known that t̄1 ⇑ t̄2 can be tested in linear time [20].

Now the evaluation procedure is as follows. It uses rules (5) and the following rules for
atomic formulae:

Eval3v(R(x̄), D, ν) =


1 if ν(x̄) ∈ RD

0 if there is no t̄ ∈ RD such that ν(x̄) ⇑ t̄
1
2 otherwise

Eval3v(x = y,D, ν) =


1 if ν(x) = ν(y)
0 if ν(x), ν(y) ∈ Const and ν(x) 6= ν(y)
1
2 otherwise

Coming back to the example in the beginning of the section, if we have a database D with
RD = {(⊥1, 1), (2,⊥2)} and ν : (x, y) 7→ (⊥1,⊥2), then Eval3v(R(x, y), D, ν) = 1

2 . Indeed,
even though (⊥1,⊥2) is not in RD, there are valuations h so that h(⊥1,⊥2) ∈ h(RD). On
the other hand, no valuation h makes (1, 2) ∈ h(RD) possible, so for ν′ : (x, y) 7→ (1, 2) we
have Eval3v(R(x, y), D, ν′) = 0.

These modifications turn out to be sufficient to ensure certainty guarantees for all
relational calculus queries.

I Theorem 3. Eval3v has certainty guarantees for all FO queries.

As an example, consider again query (4), or ϕ(x) = R(x)∧¬(R(x)∧¬S(x)) over D with
RD = {1} and SD = {⊥}. It produced a false positive since EvalSQL(ϕ,D) = {1} but the
certain answer is empty. But now we have Eval3v(ϕ,D) = ∅. Indeed, we had EvalSQL(R(x) ∧
¬S(x), D, 1) = 0, and thus EvalSQL(ϕ,D, 1) = 1, but now Eval3v(R(x)∧¬S(x), D, 1) = 1

2 and
hence Eval3v(ϕ,D, 1) = 1

2 .

As another remark, note that the result of Eval3v need not be contained in the result of
EvalSQL, i.e., Eval3v can produce results that SQL evaluation misses. For instance, given a
database D with RD = {(⊥,⊥)} and a query ψ = ∃x, y R(x, y)∧ x = y, one can easily check
that Eval3v(ψ,D, ν) = 1 (for the only possible valuation over a singleton active domain),
while EvalSQL(ψ,D, ν) = 1

2 .

Theorem 3 will be a consequence of a more general result (Theorem 6), that does not
restrict us to constant tuples. But for this we first need to define certain answers with nulls.



L. Libkin 101

5 Certain answers with nulls

While the definition of certain answers (3) has been with us for 30+ years [17], recently it
has been questioned [15, 16]. One of the problems with this definition is that it only returns
tuples containing constants. Consider a database D with a relation RD = {(1, 2), (3,⊥)} and
a query ψ(x, y) = R(x, y). Then certain(ψ,D) = {(1, 2)} but intuitively we should return
the entire relation RD since we are certain its tuples are in the answer. The reason we are
certain about it is that for every valuation h, the tuple (3, h(⊥)) is in h(D). We turn this
reasoning into a definition.

I Definition 4. Given an incomplete database D and a k-ary query Q defined over complete
databases, certain answers with nulls certain⊥(Q,D) is defined as the set of all tuples
ū ∈ adom(D)k such that h(ū) ∈ Q(h(D)) for all valuations h.

For instance, if a query is given by an FO formula with k free variables, then

certain⊥(ϕ,D) = {ū ∈ adom(D)k | EvalFO(ϕ, h(D), h(ū)) = 1 for every valuation h}.

Returning to the above example, we have certain⊥(ψ,D) = {(1, 2), (3,⊥)}, so the tuple (3,⊥)
is no longer omitted.

We now summarize properties of certain answers with nulls. The usual certain answers
can be obtained from certain answers with nulls by dropping tuples containing nulls, and
certain answers with nulls are always contained in the result of the simple FO evaluation of
formulae. Sometimes, but not always, they may coincide with the result of such an evaluation.

Formally, we have the following.

I Proposition 5. The following hold:
certain(ϕ(x̄), D) = certain⊥(ϕ,D) ∩ Const|x̄|.
certain⊥(ϕ,D) ⊆ EvalFO(ϕ,D) for every FO query ϕ.
If ϕ ∈ Qcert

FO , then certain⊥(ϕ,D) = EvalFO(ϕ,D).
There exist FO queries ϕ so that certain⊥(ϕ,D) 6= EvalFO(ϕ,D).

We can now state a more general description of the evaluation procedure Eval3v: the
output value 1 guarantees that a tuple belongs to certain answers with nulls for query ϕ, the
output value 0 guarantees that it belongs to certain answers with nulls for the negation ¬ϕ,
and output value 1

2 comes with no guarantees.

I Theorem 6. For every FO query ϕ(x̄) and every database D,

Eval3v(ϕ,D) ⊆ certain⊥(ϕ,D).

Moreover, if ā ∈ adom(D)|x̄| and Eval3v(ϕ,D, ā) = 0, then ā ∈ certain⊥(¬ϕ,D).

Theorem 3 is now an immediate corollary: if ā is a tuple of constants and Eval3v(ϕ,D, ā) =
1, then by Theorem 6, ā ∈ certain⊥(ϕ,D), and by Proposition 5, ā ∈ certain(ϕ,D).

Proof sketch. We first show an auxiliary result that ū ∈ certain⊥(ϕ,D) if and only if
EvalFO(ϕ, h(D), h(ū)) = 1 for every homomorphism h (rather than every valuation h). Then
the theorem is a consequence of the following:

Eval3v(ϕ,D, ν) = 1 ⇒ ∀ homomorphism h : EvalFO(ϕ, h(D), h(ν(x̄))) = 1 (*)

Eval3v(ϕ,D, ν) = 0 ⇒ ∀ homomorphism h : EvalFO(ϕ, h(D), h(ν(x̄))) = 0 (**)

ICDT 2015



102 SQL’s Three-Valued Logic and Certain Answers

This is shown by induction on ϕ; we provide the proof for the case of atomic formulae (for
which Eval3v differs from EvalFO) here.

If ϕ(x̄) is a relational atom R(x̄), then:

(*) If Eval3v(ϕ,D, ν) = 1 then ν(x̄) ∈ RD; in particular, h(ν(x̄)) ∈ h(RD) for every
homomorphism h, showing h(ν(x̄)) ∈ EvalFO(ϕ, h(D)).
(**) If Eval3v(ϕ,D, ν) = 0 then for each tuple t̄ ∈ RD we have that ν(x̄) ⇑ t̄ does not
hold. Thus for each homomorphism h, and each tuple t̄ ∈ RD, we have h(ν(x̄)) 6=
h(t̄). This means that h(x̄) 6∈ h(RD), and thus for each homomorphism h we have
EvalFO(ϕ, h(D), h(ν(x̄))) = 0.

If ϕ(x, y) is an equational atom x = y, then:

(*) If Eval3v(x = y,D, ν) = 1 then ν(x) = ν(y), and thus for for every homomorphism h,
we have h(ν(x)) = h(ν(y)); in particular, EvalFO(x = y, h(D), ν) = 1.
(**) If Eval3v(x = y,D, ν) = 0, then both ν(x) and ν(y) are constants and ν(x) 6= ν(y).
Since they are constants, every homomorphism leaves them intact, and thus EvalFO(x =
y, h(D), ν) = 0. J

Another corollary says that we can use Eval3v to find overapproximations of certain
answers:

I Corollary 7. For every FO query ϕ(x̄) we have

certain⊥(ϕ,D) ⊆ adom(D)|x̄| − Eval3v(¬ϕ,D).

As for the complexity of the procedure, one can easily show the following.

I Proposition 8. For each relational vocabulary σ and α ∈ {0, 1
2 , 1}, from every FO query

ϕ(x̄) one can compute FO queries ϕα(x̄) in the vocabulary that extends σ with a unary
predicate const(·) interpreted as the set of constants, such that, for every database D,

{ā ∈ adom(D)|x̄| | Eval3v(ϕ,D, ā) = α} = EvalFO(ϕα, D).

Consequently, data complexity of computing Eval3v(ϕ,D) is in AC0.

This gives us a complexity argument showing that there are cases when Eval3v fails to
produce all certain answers. A concrete example of strict containment of Eval3v in certain⊥
will be shown below in Section 5.1.

5.1 CQs and UCQs with inequalities
A common extension of conjunctive queries and their unions is by adding inequalities [1].
This is a very mild form of negation; essentially, we only allow negation to be applied to
equality atoms. Instead of writing them as ¬(x = y), it is common to use x 6= y in formulae,
and refer to them as inequality atoms. Then the ∃,∧-closure of relational, equality and
inequality atoms is referred to as CQs with inequalities, and the ∃,∧,∨-closure as UCQs
with inequalities. This class of queries is denoted by UCQ 6=.

We now present a particularly easy evaluation procedure that correctly accounts for Eval3v
producing value 1 for UCQs with inequalities, and thus gives us correctness guarantees for
those queries. This procedure uses two-valued, rather than three-valued, logic and only one
rule that separates it from EvalFO. To understand it, note for an inequality atom x 6= y, FO



L. Libkin 103

evaluation returns true if x and y are assigned different values – even if they are different
nulls. But actually the evaluation of conditions such as ⊥1 6= ⊥2 must be false, since ⊥1 and
⊥2 can be mapped, by a valuation, to the same element. For UCQ 6=, there is no risk with
assigning false rather than unknown, since negation will never be applied further on. This
lets us define the evaluation procedure for UCQ 6= by adding the following explicit rule for 6=
formulae to the EvalFO rules:

EvalUCQ6=(x 6= y,D, ν) =
{

1 if ν(x), ν(y) ∈ Const and ν(x) 6= ν(y)
0 otherwise

This evaluation is particularly easy to implement in SQL with the usual is not null
conditions in the where clause. And it has the desired correctness guarantees.

I Theorem 9. For every UCQ 6= query ϕ, we have

EvalUCQ6=(ϕ,D) = Eval3v(ϕ,D) ⊆ certain⊥(ϕ,D).

In particular, EvalUCQ6= has certainty guarantees for UCQ 6= queries.

Proof sketch. We prove, by induction on the formulae, that EvalUCQ6=(ϕ,D, ν) = 1 iff
Eval3v(ϕ,D, ν) = 1 for UCQ 6= queries. J

One cannot capture certain⊥(ϕ,D) precisely with the UCQ 6= evaluation procedure. In-
deed, consider the query ψ = ∃x∃y R(x, y) ∧ x 6= y and a database D with RD =
{(⊥, 1), (⊥, 2)}. One easily checks certain⊥(ψ,D) = certain(ψ,D) = true but at the same
time EvalUCQ6=(ψ,D) = 0. By Theorem 9, this also means that Eval3v(ψ,D) fails to capture
certain⊥(ϕ,D); this is the example promised at the end of the last section.

In fact there could be no polynomial-time evaluation procedure for finding certain answers
for UCQ 6= queries since they have coNP-complete data complexity, even without free variables.
Indeed, suppose we have a graph G = 〈V,E〉 where the set of vertices is {a1, . . . , an}. Create
a binary relation DG with adom(DG) = {⊥1, . . . ,⊥n} and pairs (⊥i,⊥j) for every edge
(ai, aj) ∈ E. Let ϕ ∈ UCQ 6= be given by ∃x DG(x, x) ∨ ∃x, y, z, u (x 6= y ∧ x 6= z ∧ x 6=
u ∧ y 6= z ∧ y 6= u ∧ z 6= u). Then certain(ϕ,DG) is true iff G is not 3-colorable.

5.2 Open world semantics
Another commonly used semantics of incompleteness is based on the open-world assumption,
or owa [1, 12, 21]. Under this assumption, after applying a valuation h to a database, finitely
many complete tuples can be added to it. That is,

[[D]]owa = {h(D) ∪D′ | h is a valuation and D′ is complete}.

Certain answers under owa are defined as certainowa(Q,D) =
⋂
{Q(D′) | D′ ∈ [[D]]owa}.

The evaluation procedure Eval3v no longer has certainty guarantees under owa. To see
this, consider D with relations RD = {(1, 2)} and SD = {(⊥1, 1), (2,⊥2)}. Let ϕ(x, y) =
R(x, y) ∧ ¬S(x, y). Since the tuple (1, 2) does not unify with either tuple in SD, we
have (1, 2) ∈ Eval3v(ϕ,D). However, under owa, it is not a certain answer: for instance,
the database D′ with RD

′ = {(1, 2)} and SD
′ = {(1, 1), (2, 2), (1, 2)} is in [[D]]owa, and

EvalFO(ϕ,D′) is empty.
Thus, our question is whether the approach of Eval3v, guaranteeing correctness for all

FO queries under cwa, can be extended to owa. Of course there is always a trivial positive
answer: the evaluation procedure that always returns 0 vacuously has correctness guarantees.

ICDT 2015



104 SQL’s Three-Valued Logic and Certain Answers

Since [[D]]cwa ⊆ [[D]]owa, certain answers under owa will be included in certain answers under
cwa, so the question really is how much we eliminate from the latter so that the result is still
meaningful, and provides certainty guarantees under owa. Note also that finding certain
answers under owa is undecidable [2] (even for data complexity [9]) which ties our hands
even more in terms of finding suitable approximations.

To understand the changes that need to be made under owa, consider again relational
atoms. For them, there is no way to assert with certainty that a tuple does not belong to a
relation, since each relation can be expanded under owa. Hence, the case when evaluation
produces 0 must go.

Next, look at existential formulae. Again we cannot state with certainty that the result
of evaluation of those is 0, as perhaps in some extension of the database there is a witness
for the existential formula, so the lowest value for evaluating such a formula is 1

2 , not 0.
Likewise, for universal formulae, one cannot state with certainty that the result of evaluation
is 1, as it requires checking the universal conditions in all extensions of the database, which
is an undecidable problem. Hence, the highest value in this case is 1

2 and not 1.
This explains the three changes that we make for the evaluation procedure. The procedure

Evalowa
3v has the range {0, 1

2 , 1} and differs from Eval3v in three rules:

Evalowa
3v (R(x̄), D, ν) =

{
1 if ν(x̄) ∈ RD
1
2 otherwise

Evalowa
3v (∃xϕ,D, ν) = max

{ 1
2 , max{Evalowa

3v (ϕ,D, ν[a/x]) | a ∈ adom(D)}
}

Evalowa
3v (∀xϕ,D, ν) = min

{ 1
2 , min{Evalowa

3v (ϕ,D, ν[a/x]) | a ∈ adom(D)}
}

Note that this procedure is the only one that modifies rules (5). These modifications are
sufficient for correctness under owa.

I Proposition 10. The evaluation algorithm Evalowa
3v has correctness guarantees under owa.

Returning to the example from the beginning of the subsection, note that the value
of Evalowa

3v (S(x, y), D, (1, 2)) is 1
2 (for Eval3v it would have been 0), and thus the result

Evalowa
3v (R(x, y) ∧ ¬S(x, y), D, (1, 2)) is 1

2 as well; in particular, (1, 2) 6∈ Evalowa
3v (ϕ,D) while

we had (1, 2) ∈ Eval3v(ϕ,D).

A remark on equivalence of queries under Eval3v. Under the usual FO semantics, called
EvalFO here, we are used to a number of equivalences that are not necessarily true when Eval3v
is used instead. Consider, for instance, a formula ϕ(x) = ∃y

(
R(x, y) ∧ (y = 1 ∨ y 6= 1)

)
. Of

course we expect it to be equivalent to ϕ′(x) = ∃yR(x, y). However, under the three-valued
semantics these are not equivalent: if RD = {(1,⊥)} and ν : x 7→ 1, then EvalFO(ϕ,D, ν) =
EvalFO(ϕ′, D, ν) = 1 = Eval3v(ϕ′, D, ν), but at the same time Eval3v(ϕ,D, ν) = 1

2 . This point
will be important for us in the next section, where we present an evaluation procedure of
relational algebra for databases with nulls.

6 Evaluation procedure for relational algebra

Queries that get executed in a DBMS are procedural queries, in particular, in the relational
case, they are written in relational algebra, or some of its extensions. We now present an
algorithm that provides an evaluation with correctness guarantees for relational algebra
expressions. Even though from the point of view of expressiveness, relational algebra is



L. Libkin 105

equivalent to FO, the equivalence itself, established under the standard two-valued semantics,
is not yet a guarantee that it will provide us with a desired evaluation procedure in the
three-valued world.

To expand on this, note that by Proposition 8, for every FO query ϕ(x̄) we have a
relational algebra expression eϕ which has access to the extra predicate const(·) so that eϕ
faithfully implements Eval3v(ϕ, ·). So it seems that starting with a relational algebra query
Q, we could find an equivalent FO query ϕQ and then consider eϕQ

to evaluate Q.
Reasoning of this sort, however, mixes the equivalence of FO and relational algebra

(that is true with respect to the usual two-valued FO evaluation) with the three-valued
evaluation. Still, from the equivalence of EvalFO(ϕQ, ·) and Q one can easily derive eϕQ

(D) =
Eval3v(ϕQ, D) ⊆ certain⊥(Q,D), so we do in fact get correctness guarantees with this
approach. Nonetheless, it not satisfactory for two reasons. First, the detour via translation
into FO and back to algebra may produce unnecessarily complicated expressions. Second,
this approach assumes a particular translation between relational algebra and FO (which of
course is not unique), and the quality of the resulting query depends on that translation.
For instance, we view expressions R and σA=1(R) ∪ σA 6=1(R) as equivalent, but using the
latter in eϕQ

can miss some answers with certainty guarantees due to the presence of nulls.
The bottom line is that it is better to have a direct evaluation procedure for relational

algebra that gives us correctness guarantees without going through both algebra-to-FO and
FO-to-algebra translations.

In the two-valued world sound translations for relational algebra have been considered in
the past [22]. Our goal is a bit different though as we have to provide specific correctness
guarantees, and relate them to SQL’s way of evaluating queries; in fact we shall produce
approximations for sets of tuples on which Eval3v returns 1 and 0.

We now explain the procedure for correct evaluation of relational algebra queries. First,
recall the operations of relational algebra. These are selection σ, projection π, cartesian
product ×, union ∪, intersection ∩, and difference −. To avoid the clutter, and in particular
to avoid renaming, we use the unnamed perspective for presenting relational algebra [1], that
is, for each expression returning an m-attribute relation, we simply assume that the names
of those attributes are ]1, . . . , ]m. As conditions θ in selections, we use positive Boolean
combinations of equalities and inequalities between attribute values and constants. For
instance, (]1 6= ]2) ∨ (]3 = 1) is a condition that can be used in selection. Note that such
conditions are closed under negation, simply by propagating it all the way to (in)equalities,
so we shall also refer sometimes to conditions ¬θ, meaning the result of such a propagation.
We refer to this standard relational algebra as RA.

We also consider an extension called RAnull. In this extension, conditions θ are positive
Boolean combinations of

equalities and inequalities between attributes, and
conditions const(]n) and null(]n) stating that the value of attribute ]n is a constant or a
null, respectively.

Our goal is to provide a translation RA → RAnull that associates with each query Q of
RA a query Q+ of RAnull such that Q+(D) ⊆ certain⊥(Q,D).

As noticed already, due to coNP-data complexity of certain⊥(Q,D), we cannot hope for
equality, so this correctness guarantee is the best we can count on.

We shall actually produce more. Let Q̄ be the query that computes the complement of
Q, i.e., for an n-ary Q, the result of Q̄(D) is adom(D)n −Q(D). Then we actually provide a
translation

Q 7→ (Q+, Q−)

ICDT 2015



106 SQL’s Three-Valued Logic and Certain Answers

R+ = R R− = R	

(Q1 ∪Q2)+ = Q+
1 ∪Q

+
2 (Q1 ∪Q2)− = Q−1 ∩Q

−
2

(Q1 ∩Q2)+ = Q+
1 ∩Q

+
2 (Q1 ∪Q2)− = Q−1 ∪Q

−
2

(Q1 −Q2)+ = Q+
1 ∩Q

−
2 (Q1 −Q2)− = Q−1 ∪Q

+
2

(σθ(Q))+ = σθ∗(Q+) (σθ(Q))− = Q− ∪ σ(¬θ)∗(adomar(Q))
(Q1 ×Q2)+ = Q+

1 ×Q
+
2 (Q1 ×Q2)− = Q−1 × adomar(Q2)

∪ adomar(Q1) ×Q−2
(πααα(Q))+ = πααα(Q+) (πααα(Q))− = πααα(Q−)− πααα(adomar(Q) −Q−)

Figure 1 Relational algebra translations.

of RA queries into a pair of RAnull queries such that

Q+(D) ⊆ certain⊥(Q,D) and Q−(D) ⊆ certain⊥(Q̄,D).

When this happens, we say that the translation Q 7→ (Q+, Q−) provides correctness
guarantees.

Since certain⊥(Q,D) ∩ certain⊥(Q̄,D) = ∅, this also means that Q+(D) ∩ Q−(D) = ∅.
One can think of Q+ and Q− as analogs of finding tuples for which Eval3v produces 0 or 1.
Everything that does not fall into the results of these two, is essentially ‘unknowns’.

We now provide the translations. We need three auxiliary elements: a translation θ 7→ θ∗

from RA conditions to RAnull conditions, one RA query, and one RAnull query. These are given
as follows:

The translation θ 7→ θ∗ is defined inductively. We assume that in conditions ]n = ]m or
]n 6= ]m, attributes ]n and ]m are different (otherwise they are easily eliminated).

If θ is (]n = ]m) or (]m = c), where c is a constant, then θ∗ = θ.
(]n 6= ]m)∗ = (]n 6= ]m) ∧ const(]n) ∧ const(]m).
(]n 6= c)∗ = (]n 6= c) ∧ const(]n).
(θ1 ∨ θ2)∗ = θ∗1 ∨ θ∗2 .
(θ1 ∧ θ2)∗ = θ∗1 ∧ θ∗2 .

Active domain query. We use adom as an RA query that returns the active domain of a
database; clearly it can be written as a π,∪-query, that takes the union of all projections
of all relations in the database.

Relative complement query. The relative complement of a k-ary relation R in database D
is

R	 = {ū ∈ adom(D)k | ¬∃t̄ ∈ R : ū ⇑ t̄ }.

It is not hard to see that R	 is expressible in RAnull. We show this formally in the proof
of Theorem 11. In fact this is the only expression where conditions null(]n) are used in
selections.

With these, translations of relational algebra are given by inductive rules presented in
Figure 1. We use abbreviation ar(Q) for the arity of Q, and ααα refers to a list of attributes.

I Theorem 11. The translation Q 7→ (Q+, Q−) in Figure 1 provides correctness guarantees.



L. Libkin 107

Proof sketch. Again, we show the following, by induction on relational algebra expressions:

ū ∈ Q+(D) ⇒ ∀ homomorphism h : h(ū) ∈ Q(h(D)) (X)

ū ∈ Q−(D) ⇒ ∀ homomorphism h : h(ū) 6∈ Q(h(D)) (XX)

We provide a couple of sample cases. Consider, for instance, the case when Q is R. Then
Q− = R	. Assume ū ∈ R	 and let h be a homomorphism. By definition, ū does not unify
with any of t̄ ∈ R, in particular, h(ū) cannot equal h(t̄), thus implying h(ū) 6∈ h(R).

Let θ = (]n 6= ]m), and assume Q = σθ(Q1) (so that Q+ = σθ∗(Q+
1 )). Suppose

ū ∈ σθ∗(Q+
1 (D)), and let h be a homomorphism. Since ū ∈ Q+

1 (D), we see, by the hypothesis,
that h(ū) ∈ Q1(h(D)). Furthermore, since θ∗ holds, we know that un and um, the nth and
the mth components of ū, are constants, and un 6= um. This means h(un) 6= h(um), proving
h(ū) ∈ σθ(Q1(h(D))). J

The translation in Figure 1 is not just one translation but rather a family of translations,
due to the following observation. A translation can be viewed as a mapping F that assigns
to each relational algebra operation ω (including nullary operations for base relations) two
queries F+

ω and F−ω . These queries are simply the queries that appear on the right in the
translation; for instance, for the translation scheme we used, F+

∩ is the intersection (since
the result of (Q1 ∩Q2)+ is the intersection of Q+

1 and Q+
2 ) and F

−
∩ is the union (since the

result of (Q1 ∩Q2)− is the union of Q−1 and Q−2 ).
Such a mapping F results in a translation Q 7→ F+

Q ,F
−
Q , where F+

Q and F−Q are queries
of the same type as Q (i.e., they operate on databases of the same schema and have the
same arity). Intuitively, these are analogs of Q+ and Q− that we had for the translation in
Figure 1.

Formally, they are defined as follows.

If ω is a base relation R, then F+
R and F−R take no arguments and F+

R = F+
R and

F−R = F−R .
That is, F+

R and F−R are queries that give us certainly positive and certainly negative
information about R.
If ω is a unary operation (σ or π), then F+

ω and F−ω take two arguments and F+
ω(Q) =

F+
ω (F+

Q ,F
−
Q ) and F−ω(Q) = F−ω (F+

Q ,F
−
Q ).

That is, if we already have queries F+
Q and F−Q describing certainly positive and certainly

negative answers for Q, the queries describing such answers for ω(Q) are obtained by
applying F+

ω and F−ω to those.
If ω is a binary operation (∪,∩,−,×), then F+

ω and F−ω take four arguments and
F+
ω(Q1,Q2) = F+

ω (F+
Q1
,F+

Q2
,F−Q1

,F−Q2
) and F−ω(Q1,Q2) = F−ω (F+

Q1
,F+

Q2
,F−Q1

,F−Q2
).

That is, if we already have queries F+
Qi

and F−Qi
describing certainly positive and certainly

negative answers for Qi, with i = 1, 2, the queries describing such answers for ω(Q1, Q2)
are again obtained by applying F+

ω and F−ω to those.

Given a translation F and another translation G that assigns to each operation ω queries
G+
ω and G−ω , we say that F is contained in G if F+

ω ⊆ G+
ω and F−ω ⊆ G−ω , where ⊆ refers to

the usual query containment.

I Proposition 12. Every translation that is contained in the translation of Figure 1 provides
correctness guarantees.

ICDT 2015



108 SQL’s Three-Valued Logic and Certain Answers

This proposition lets us adjust translations for the sake of efficiency without having to
worry about correctness guarantees. For instance, consider the rule

(Q1 ×Q2)− = Q−1 × adomar(Q2) ∪ adomar(Q1) ×Q−2

in Figure 1. This results in a rather expensive query, as one needs to compute a power of the
active domain. But we can replace it with the much simpler rule (Q1 ×Q2)− = Q−1 ×Q

−
2 ,

since Q−1 ×Q
−
2 is contained in the above query, giving us a more efficient query. Another

possible replacement is of the rule

(σθ(Q))− = Q− ∪ σ(¬θ)∗(adomar(Q))

that again requires computing the active domain with the very simple rule (σθ(Q))− = Q−.
In both cases the result is that the translated queries are significantly more efficient and
they still guarantee correctness of the overall translation in the sense that they produce
subsets of certain answers with nulls, or the usual certain answers if tuples with nulls are
removed. There is a price to pay for the efficiency though: we can get fewer answers in the
result. Hence one should decide how to resolve the efficiency vs the quality of approximation
tradeoff.

Another corollary concerns positive relational algebra, even extended with inequalities,
and it just follows from examining the basic translation of Figure 1. Define PosRA 6= as the
positive fragment of RA (i.e., σ, π,×,∪) where conditions in selections are allowed to use
inequalities. In terms of its expressiveness, this fragment corresponds to UCQ 6=.

I Corollary 13. Let Q be a PosRA 6= query, and let Q∗ be obtained from it by changing each
selection condition θ to θ∗. Then, for every database D, we have Q∗(D) ⊆ certain⊥(Q,D).

7 Conclusions

We have shown that small changes to the 3-valued query evaluation used in SQL produce
sound query answers, i.e., answers without false positives. We have presented such evaluation
procedures at the levels of both relational calculus and algebra, and also specialized them for
unions of conjunctive queries with inequalities.

The theoretical complexity of these procedures is very low, in fact it is as low as evaluating
relational calculus and algebra themselves, in terms of data complexity. The next obvious
step is to implement these algorithms to study their real-life applicability. As indicated at
the end of the last section, our translations – especially at the procedural level – are really
families of algorithms, with the efficiency vs quality of approximation tradeoff, so there is a
lot to play with, to find those that provide a good combination of both. Another natural
question is to consider other features of SQL. They include not only such common features as
aggregation and grouping, but also derived operations of relational algebra that are used in
implementation of SQL queries: for instance, the division operation for the implementation
of some universal queries, or semi-joins and anti-joins that can be used for implementing
subqueries.

Acknowledgment. I thank Cristina Sirangelo and the reviewers for their helpful comments
and suggestions. Work partially supported by EPSRC grant J015377.



L. Libkin 109

References
1 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2 S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and querying of sets of

possible worlds. Theoretical Computer Science, 78(1):158–187, 1991.
3 M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Foundations of Data Exchange. Cam-

bridge University Press, 2014.
4 G. Bruns and P. Godefroid. Model checking with multi-valued logics. In ICALP, pages

281–293, 2004.
5 K. Compton. Some useful preservation theorems. Journal of Symbolic Logic, 48(2):427–440,

1983.
6 C. J. Date. Database in Depth - Relational Theory for Practitioners. O’Reilly, 2005.
7 C. J. Date and H. Darwen. A Guide to the SQL Standard. Addison-Wesley, 1996.
8 A. Gheerbrant, L. Libkin, and C. Sirangelo. Naïve evaluation of queries over incomplete

databases. ACM Transactions on Database Systems, 39(4): 34 (2014).
9 A. Gheerbrant, L. Libkin, and T. Tan. On the complexity of query answering over incom-

plete XML documents. In ICDT, pages 169–181, 2012.
10 A. Gurfinkel and M. Chechik. Multi-valued model checking via classical model checking.

In CONCUR, pages 263–277, 2003.
11 L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio grows up: from research

prototype to industrial tool. In SIGMOD, pages 805–810, 2005.
12 T. Imielinski and W. Lipski. Incomplete information in relational databases. Journal of

the ACM, 31(4):761–791, 1984.
13 M. Lenzerini. Data integration: a theoretical perspective. In PODS, pages 233–246, 2002.
14 H. J. Levesque. A completeness result for reasoning with incomplete first-order knowledge

bases. In Principles of Knowledge Representation and Reasoning (KR), pages 14–23, 1998.
15 L. Libkin. Certain answers as objects and knowledge. In Principles of Knowledge Repre-

sentation and Reasoning (KR), 2014.
16 L. Libkin. Incomplete information: what went wrong and how to fix it. In PODS, pages

1–13, 2014.
17 W. Lipski. On semantic issues connected with incomplete information databases. ACM

Transactions on Database Systems, 4(3):262–296, 1979.
18 Y. Liu and H. J. Levesque. A tractability result for reasoning with incomplete first-order

knowledge bases. In IJCAI, pages 83–88, 2003.
19 B. Marnette, G. Mecca, P. Papotti, S. Raunich, and D. Santoro. ++Spicy: an opensource

tool for second-generation schema mapping and data exchange. PVLDB, 4(12):1438–1441,
2011.

20 M. Paterson and M. N. Wegman. Linear unification. J. Comput. Syst. Sci., 16(2):158–167,
1978.

21 R. Reiter. On closed world data bases. In Logic and Data Bases, pages 55–76, 1977.
22 R. Reiter. A sound and sometimes complete query evaluation algorithm for relational

databases with null values. Journal of the ACM, 33(2):349–347, 1986.

ICDT 2015



A Trichotomy in the Complexity of Counting
Answers to Conjunctive Queries
Hubie Chen1 and Stefan Mengel∗2

1 Universidad del País Vasco, E-20018 San Sebastián, Spain, and
IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain

2 LIX UMR 7161, École Polytechnique, France

Abstract
Conjunctive queries are basic and heavily studied database queries; in relational algebra, they
are the select-project-join queries. In this article, we study the fundamental problem of counting,
given a conjunctive query and a relational database, the number of answers to the query on the
database. In particular, we study the complexity of this problem relative to sets of conjunctive
queries. We present a trichotomy theorem, which shows essentially that this problem on a set
of conjunctive queries is either tractable, equivalent to the parameterized CLIQUE problem, or
as hard as the parameterized counting CLIQUE problem; the criteria describing which of these
situations occurs is simply stated, in terms of graph-theoretic conditions.

1998 ACM Subject Classification H.2.3 [Database Management]: Languages – Query languages,
F.1.3 [Computation by Abstract Devices]: Complexity measures and classes, G.2.2 [Discrete
Mathematics]: Graph Theory – Hypergraphs

Keywords and phrases database theory, query answering, conjunctive queries, counting com-
plexity

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.110

1 Introduction

Conjunctive queries are the most basic and most heavily studied database queries. They
can be formalized logically as formulas consisting of a sequence of existentially quantified
variables, followed by a conjunction of atomic formulas; in relational algebra, they are the
select-project-join queries (see e.g. [1]). Ever since the landmark 1977 article of Chandra and
Merlin [2], complexity-theoretic aspects of conjunctive queries have been a research subject
of persistent and enduring interest which continues to the present day (as a sampling, we
point to the works [13, 16, 10, 12, 18, 14, 17, 5]; see the discussions and references therein
for more information). The problem of evaluating a Boolean (closed) conjunctive query on a
relational database is equivalent to a number of well-known problems, including conjunctive
query containment, the homomorphism problem on relational structures, and the constraint
satisfaction problem [2, 13]. That this evaluation problem appears in many equivalent guises
attests to the foundational and primal nature of this problem, and it has correspondingly
been approached and studied from a wide variety of perspectives and motivations.

In this article, we study the fundamental problem of counting, given a conjunctive query
and a relational database, the number of query answers, that is, the number of assignments
that make the query true with respect to the database; we denote this problem by #CQ.

∗ Partially supported by a Qualcomm grant administered by École Polytechnique.

© Hubie Chen and Stefan Mengel;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 110–126

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.110
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


H. Chen and S. Mengel 111

In addition to being a natural problem in its own right, let us remark that all practical
query languages supported by database management systems have a counting operator. We
study the complexity of #CQ relative to sets of conjunctive queries, that is, we study a
problem family: each set of conjunctive queries gives rise to a restricted version of the general
problem. Our objective is to determine on which sets of conjunctive queries #CQ is tractable,
and more broadly, to understand the complexity behavior of the problem family at hand.
Throughout, we assume that each considered set of conjunctive queries is of bounded arity,
by which we mean that there is a constant bounding the arity of all relation symbols in all
queries in the set.1

Surprisingly, despite the natural and basic character of the counting problem #CQ,
the project of understanding its complexity behavior over varying sets of queries has been
carried out in previous work for only two particular types of conjunctive queries. In the case
of Boolean conjunctive queries, the problem #CQ specializes to the problem of deciding
whether or not such a query evaluates to true or false on a database. A classification of sets
of Boolean conjunctive queries was given by Grohe [12], showing essentially that this decision
problem is either polynomial-time tractable, or is hard under a typical complexity-theoretic
assumption from parameterized complexity, namely, that the parameterized Clique problem
is not fixed-parameter tractable (see Theorem 9).2 It is well-known that a conjunctive query
can be naturally mapped to a relational structure (see Definition 7); the tractable sets of
Grohe’s classification are such queries whose corresponding structures have cores of bounded
treewidth. The core of a structure A is, intuitively, the smallest structure that is (in a certain
sense) equivalent to the structure A, and bounded treewidth is a graph-theoretical condition
that can intuitively be taken as a notion of tree similitude. Following Grohe’s work, Dalmau
and Jonsson [6] studied the case of quantifier-free conjunctive queries (which they phrase as
the problem of counting homomorphisms between a given pair of relational structures). They
proved that bounded treewidth is the property that determines polynomial-time tractability
for this case; in contrast to Grohe’s theorem, the statement of their classification (Theorem 10)
does not refer to the notion of core, and is proved under the assumption that the counting
version #Clique of the parameterized Clique problem is not fixed-parameter tractable.

In this article, we present a trichotomy theorem describing the complexity of the counting
problem #CQ on each possible set of conjunctive queries. Our trichotomy theorem unifies,
generalizes, and directly implies the two discussed prior classifications. This trichotomy yields
that counting on a set of conjunctive queries is polynomial-time tractable, is interreducible
with the Clique problem, or admits a reduction from and is thus as hard as the counting
problem #Clique. In order to prove and state our trichotomy theorem, we work with a
notion of core of a (structure associated with a) conjunctive query whose definition crucially
takes into account which variables of the conjunctive query are free (Definition 12). We
also use a notion of hypergraph of a conjunctive query whose vertices are the free variables
of the query (Definition 21). The properties of a query set that determine which case of
our trichotomy theorem applies are whether or not the cores have bounded treewidth, and
whether or not the just-mentioned hypergraphs have bounded treewidth; these two conditions
correspond, respectively, to the conditions that describe the dichotomies for the Boolean case

1 It is known that when no such bound on the arity is assumed, the complexity of query evaluation can be
highly sensitive to the representation of database relations [4]. In contrast, natural representations are
equivalent under polynomial-time translation; thus, the study of bounded arity queries can be viewed
as the investigation of the representation-independent case.

2 This is equivalent to the assumption that the parameterized complexity class W[1] is not contained in
the parameterized complexity class FPT, which is the phrasing that Grohe employs.

ICDT 2015



112 A Trichotomy in the Complexity of Counting Answers to Conjunctive Queries

and the quantifier-free case. The proof of our trichotomy draws on recent work of Durand
and Mengel [8], who presented a classification for the problem #CQ based on hypergraphs
(see Theorem 11).

Note that it is readily verified that the classes of queries for which we show that #CQ is
tractable are equivalent to those described in recent work by Greco and Scarcello [11]. In
contrast to their work, we show that the promise version of #CQ is not only fixed-parameter
tractable on these classes of queries but can even be solved in polynomial time. Moreover, and
more importantly, we show that these classes are the only classes of queries for which #CQ
can be solved efficiently because all other classes of queries are intractable under standard
complexity assumptions.

In order to prove and present our trichotomy, we introduce a version of the case complexity
framework [3] which is suitable for dealing with counting problems. Among other features,
this framework facilitates the presentation of reductions between parameterized problems
which are restricted in terms of the permitted parameters (or slices); this is the type of
restriction we deal with here, as the parameter of an instance of #CQ is taken to be the
query, and we consider #CQ with respect to various query sets. This framework also allows
the straightforward derivation of complexity consequences as a function of the computability
assumption placed on the query sets; witness the derivation of Theorems 23 and 24 from
Theorem 22.

2 Preliminaries

For an integer i ≥ 1, we define πi to be the operator that, given a tuple, returns the value in
the ith coordinate.

We assume that the reader is familiar with basic graph theoretic notions. In particular,
we will use some very basic properties of treewidth, which can be found, for example, in [9,
Chapter 11] or in [15, Section 2.3].

2.1 Structures, homomorphisms and cores

A relational vocabulary is defined to be a set of relation symbols τ := {R1, R2, . . . , R`} where
each Ri has an arity ri. A relational structure A over τ is a tuple (A,RA

1 , . . . , R
A
` ) where

A is a set called the domain of A and RA
i ⊆ Ari is a relation of arity ri. All vocabularies

and structures in this article are assumed to be relational. We assume each structure in this
article to be finite in that it has a finite domain. We denote structures by the bold letters,
A,B, . . ., and their corresponding domains by A,B, . . ..

We assume each class of structures in this article to be of bounded arity, that is, for
each such class we assume there exists a constant c ≥ 1 such that the arity of each relation
of a structure in the class is at most c. Since in the bounded arity setting the sizes of all
reasonable encodings of a structure are polynomially related, we do not fix a specific encoding
but assume that all structures are encoded in any reasonable way.

I Definition 1. Let A and B be two structures over the same vocabulary τ . A homomorphism
from A to B is a function h : A → B such that for each relation symbol R ∈ τ and each
t = (t1, . . . , t`) ∈ RA we have (h(t1), . . . , h(t`)) ∈ RB. A homomorphism h from A to B
is called an isomorphism if h is bijective and h−1 is a homomorphism from B to A; when
such an isomorphism exists, we say that A and B are isomorphic. An isomorphism from a
structure to itself is called an automorphism.



H. Chen and S. Mengel 113

I Definition 2. Two structures A and B are homomorphically equivalent if there are
homomorphisms from A to B and from B to A.

A structure is a core if it is not homomorphically equivalent to a proper substructure of
itself. A structure B is a core of a structure a structure A if B is a substructure of A, B is
homomorphically equivalent to A, and B is a core.

We state two basic properties of cores of structures; due to the first, we will speak of the
core of a structure instead of a core. The second seems to be folklore; a proof can be found,
for example, in [9].

I Lemma 3. Every structure A has at least one core. Furthermore, every two cores B1 and
B2 of A are isomorphic.

I Lemma 4. Let A and B be two homomorphically equivalent structures, and let A′ and B′
be cores of A and B, respectively. Then A′ and B′ are isomorphic.

2.2 Complexity theory background
Throughout, we use Σ to denote an alphabet over which strings are formed. All problems to
be considered are viewed as counting problems. So, a problem is a mapping Q : Σ∗ → N. We
view decision problems as problems where, for each x ∈ Σ∗, it holds that Q(x) is equal to 0 or
1. We use FP (as usual) to denote the class of problems (which, again, are mappings Σ∗ → N)
that can be computed in polynomial time. A parameterization is a mapping κ : Σ∗ → Σ∗. A
parameterized problem is a pair (Q, κ) consisting of a problem Q and a parameterization κ.
A partial function T : Σ∗ → N is polynomial-multiplied with respect to a parameterization κ
if there exists a computable function f : Σ∗ → N and a polynomial p : N→ N such that, for
each x ∈ dom(T ), it holds that T (x) ≤ f(κ(x))p(|x|).

I Definition 5. Let κ : Σ∗ → Σ∗ be a parameterization. A partial mapping r : Σ∗ → Σ∗ is
FPT-computable with respect to κ if there exist a polynomial-multiplied function T : Σ∗ → N
(with respect to κ) with dom(T ) = dom(r) and an algorithm A such that, for each string
x ∈ dom(r), the algorithm A computes r(x) within time T (x); when this holds, we also say
that r is FPT-computable with respect to κ via A.

As is standard, we may and do freely interchange among elements of Σ∗, Σ∗ ×Σ∗, and N.
We define FPT to be the class that contains a parameterized problem (Q, κ) if and only if Q
is FPT-computable with respect to κ.

We now introduce a notion of reduction for counting problems, which is a form of Turing
reduction. We use ℘fin(A) to denote the set containing all finite subsets of A.

I Definition 6. A counting FPT-reduction from a parameterized problem (Q, κ) to a second
parameterized problem (Q′, κ′) consists of a computable function h : Σ∗ → ℘fin(Σ∗), and an
algorithm A such that:

on an input x, A may make oracle queries of the form Q′(y) with κ′(y) ∈ h(κ(x)), and
Q is FPT-computable with respect to κ via A.

We use Clique to denote the decision problem where (k,G) is a yes-instance when G is a
graph that contains a clique of size k ∈ N. By #Clique we denote the problem of counting,
given (k,G), the number of k-cliques in the graph G. The parameterized versions of these
problems, denoted by p-Clique and p-#Clique, are defined via the parameterization π1.
We will make tacit use of the following well-known facts: FPT is closed under counting FPT-
reduction; p-Clique is complete for W[1] under counting FPT-reduction; and, p-#Clique
complete for #W[1] under counting FPT-reduction.

ICDT 2015



114 A Trichotomy in the Complexity of Counting Answers to Conjunctive Queries

A promise problem is a pair 〈Q, I〉 where Q is a problem and I ⊆ Σ∗. When C is a
complexity class, define prom-C to contain a promise problem 〈Q, I〉 when there exists P ∈ C
such that, for all x ∈ I, it holds that P (x) = Q(x). A parameterized promise problem is
a pair (〈Q, I〉, κ) consisting of a promise problem 〈Q, I〉 and a parameterization κ; such a
problem will also be notated by 〈(Q, κ), I〉. When C is a parameterized complexity class,
define prom-C to contain a promise problem (〈Q, I〉, κ) when there exists a problem P such
that (P, κ) ∈ C and for all x ∈ I, it holds that P (x) = Q(x).

3 Conjunctive Queries and Computational Problems

A conjunctive query is a relational first-order formula (possibly with free variables) of the
form ∃v1 . . . ∃vn

∧m
i=1 αi where each αi is a predicate application, that is, an atomic formula

of the form R(~u) where R is a relation symbol and ~u is a tuple of variables. Since the only
type of queries that we are concerned with in this article are conjunctive queries, we will
sometimes simply use query to refer to a conjunctive query.

I Definition 7. To a conjunctive query φ over the vocabulary τ , we assign a structure
A = Aφ, called the natural model, as follows: the domain of A is var(φ); A is over the
vocabulary τ ; and for each relation symbol R ∈ τ , we set RA := {~a | R(~a) is an atom of φ}.

To each conjunctive query φ we assign the pair (A, S) where A is the natural model
of φ and S the set of its free variables. From such a pair (A, S), it is easy to reconstruct
the corresponding query φ: each tuple of a relation of A is made into an atom, and then,
one existentially quantifies the elements of A not in S to obtain φ. Because of this easy
correspondence between queries and pairs (A, S), in a slight abuse of notation, we do not
differentiate between pairs (A, S) and queries throughout. In particular, we will call a pair
(A, S) a query, and we will use C interchangably for classes of queries and of pairs (A, S).

Let φ be a conjunctive query with assigned pair (A, S) and let B be a structure. Then
a function h : S → B is a satisfying assignment of φ if and only if it can be extended to a
homomorphism from A to B; we denote the set of such functions by hom(A,B, S). In this
article, we are interested in the following counting problem.

#CQ
Input: A query (A, S) and a structure B.
Problem: Compute |hom(A,B, S)|.

In the case of a conjunctive query (A, ∅) without free variables, the problem #CQ amounts
to deciding whether or not there exists a homomorphism from A to B. We define this case
as the problem CQ.

CQ
Input: A query (A, ∅) and a structure B.
Problem: Decide if there exists a homomorphism from A to B.

We define p-#CQ to be the parameterized problem (#CQ, π1), that is, we take the
parameter of each instance ((A, S),B) to be (A, S). (Formally, we view each instance
of p-#CQ as a pair of strings, where the first component encodes the query, and the
second component encodes the structure.) In analogy to #CQ, we define p-CQ to be the
parameterized problem (CQ, π1).

We define the hypergraph of a query (A, S) to be the hypergraph H = (V,E) where
V is the domain of A and E := {dom(t) | t ∈ RA, RA is a relation of A} where dom(t)



H. Chen and S. Mengel 115

denotes the set of elements appearing in t. The treewidth of (A, S) is defined to be that of
its hypergraph. Dalmau, Kolaitis and Vardi [7] proved that CQ can be solved efficiently,
when the treewidth of the cores of the queries is bounded.

I Theorem 8 ([7]). Let k ∈ N be a fixed constant. Let Ck be the class of all structures with
cores of treewidth at most k. Then the promise problem 〈CQ, Ck × Σ∗〉 is in prom-FP.

Grohe [12] showed that this result is optimal.

I Theorem 9 ([12]). Let C be a recursively enumerable class of structures of bounded arity.
Assume FPT 6= W[1]. Then the following statements are equivalent:
1. 〈CQ, C × Σ∗〉 ∈ prom-FP.
2. 〈p-CQ, C × Σ∗〉 ∈ prom-FPT.
3. There is a constant c such that the cores of the structures in C have treewidth at most c.

Dalmau and Jonsson [6] considered the analogous question for #CQ for quantifier free
queries and found that cores do not help in this setting.

I Theorem 10 ([6]). Let Q be the class of all quantifier free conjunctive queries, i.e., queries
of the form (A, A). Let C be a recursively enumerable class of structures of bounded arity in
Q. Assume FPT 6= #W[1]. Then the following statements are equivalent:
1. 〈#CQ, C × Σ∗〉 ∈ prom-FP.
2. 〈p-#CQ, C × Σ∗〉 ∈ prom-FPT.
3. There is a constant c such that the structures in C have treewidth at most c.

It is common to consider classes of queries defined by restricting their associated hyper-
graph. For #CQ it turns out to be helpful to also encode which vertices of a hypergraph
correspond to free variables, which is formalized in the following definition. A pair (H, S)
where H is a hypergraph and S is a subset of the vertices of H is called an S-hypergraph.
The S-hypergraph of a query (A, S) is (H, S) where H is the hypergraph of A.

In [8], the following version of #CQ is considered.

#CQhyp

Input: An S-hypergraph (H, S) and an instance ((A, S),B) of #CQ where
H is the hypergraph of A.
Problem: Compute |hom(A,B, S)|.

We define p-#CQhyp to be the parameterized problem (#CQhyp, π1); here, an instance of
#CQhyp is viewed as a pair ((H, S), ((A, S),B)), on which the operator π1 returns (H, S).

It turns out that for #CQhyp a parameter called S-star size is of critical importance. Let
H = (V,E) be a hypergraph and S ⊆ V . Let C be the vertex set of a connected component
of H[V −S]. Let EC be the set of hyperedges {e ∈ E | e∩C 6= ∅} and VC :=

⋃
e∈EC

e. Then
H[VC ] is called an S-component of H. The size of a biggest independent set in H[VC ∩ S] is
called the S-star size of the S-component H[VC ]. The S-star size of (H, S) is then defined to
be the maximum S-star size taken over all S-components of (H, S). By the quantified star
size of a query (A, S) we refer to the S-star size of the S-hypergraph associated to (A, S).
For more explanations on these notions and examples see [15, Section 3.2].

I Theorem 11 ([8]). Let G be a recursively enumerable class of S-hypergraphs of bounded
arity. Assume that W[1] 6= FPT. Then the following statements are equivalent:
1. 〈#CQhyp,G × Σ∗〉 ∈ prom-FP.
2. 〈p-#CQhyp,G × Σ∗〉 ∈ prom-FPT.

ICDT 2015



116 A Trichotomy in the Complexity of Counting Answers to Conjunctive Queries

3. There is a constant c such that for each S-hypergraph (H, S) in G the treewidth of H and
the S-star size of H are at most c.

We have seen that for the problem CQ, cores of structures are crucial, while in the
classification due to Dalmau and Jonsson, they do not matter at all. Thus we introduce a
notion of cores for conjunctive queries that interpolates between these two extreme cases.
The idea behind the definition is that we require the homomorphisms between (A, S) and its
core to be the identity on the free variables, while they may map the quantified variables in
any way that leads to a homomorphism. This is formalized as follows.

I Definition 12. For a conjunctive query (A, S) where A is defined on vocabulary τ , we
define the augmented structure, denoted by aug(A, S), to be the structure over the vocabulary
τ ∪ {Ra | a ∈ S} where Raug(A,S)

a := {a}. We define the core of a conjunctive query of (A, S)
to be the core of aug(A, S).

I Example 13. Let (A, S) be a query without free variables, that is, where S = ∅; then the
core of (A, S) is the core of A. If (A, S) is quantifier-free, that is, where S = A, then the
core of (A, S) equals A.

The cores of conjunctive queries were essentially already studied by Chandra and Merlin
in a seminal paper [2] although the notation used there is different. We give a fundamental
result on conjunctive queries. We call two queries (A1, S) and (A2, S) equivalent queries if
for each structure B we have hom(A1,B, S) = hom(A2,B, S).

I Theorem 14 ([2]). If two conjunctive queries (A1, S) and (A2, S) have the same core (up
to isomorphism), then they are equivalent.

4 Case Complexity

In this section we develop a version of the case complexity framework advocated in [3]
which is suitable for classifying counting problems. A main motivation for this framework
is the growing amount of research on parameterized problems which are restricted by the
permitted values of the parameter. In particular, this kind of problem arises naturally in
query answering problems where one often restricts the admissible queries for the inputs (see
e.g. [12, 6, 3]). An aim of the case complexity framework as introduced in [3] is to facilitate
reductions between the considered restricted parameterized problems and to show results
independent of computability assumptions for the parameter.

The central notion for our framework is the following: A case problem consists of a
problem Q : Σ∗ × Σ∗ → N and a subset S ⊆ Σ∗, and is denoted Q[S]. When Q[S] is a case
problem, we define the following:

param-Q[S] is the parameterized problem (P, π1) where P (s, x) is defined as equal to
Q(s, x) if s ∈ S, and as 0 otherwise.
prom-Q[S] is the promise problem 〈Q,S × Σ∗〉.
param-prom-Q[S] is the parameterized promise problem (prom-Q[S], π1).

The case problem we consider in this paper will nearly exclusively be #CQ[C] where C is
a class a class of conjunctive queries. Nevertheless, we stress the fact that our framework
is fully generic and we believe that it will in the future also be useful for presenting and
proving complexity classifications for other problems.

We now introduce a reduction notion for case problems.



H. Chen and S. Mengel 117

I Definition 15. A counting slice reduction from a case problem Q[S] to a second case
problem Q′[S′] consists of

a computably enumerable language U ⊆ Σ∗ × ℘fin(Σ∗), and
a partial function r : Σ∗ × ℘fin(Σ∗) × Σ∗ → Σ∗ that has domain U × Σ∗ and is FPT-
computable with respect to (π1, π2) via an algorithm A that, on input (s, T, y), may make
queries of the form Q′(t, z) where t ∈ T ,

such that the following conditions hold:
(coverage) for each s ∈ S, there exists T ⊆ S′ such that (s, T ) ∈ U , and
(correctness) for each (s, T ) ∈ U , it holds (for each y ∈ Σ∗) that

Q(s, y) = r(s, T, y).

As usual in counting complexity, it will often not be necessary to use the full generality
of counting slice reductions. Therefore, we introduce a second, parsimonious notion of
reductions for case problems which is often general enough but easier to deal with.

I Definition 16. A parsimonious slice reduction from a case problem Q[S] to a second case
problem Q′[S′] consists of

a computably enumerable language U ⊆ Σ∗ × Σ∗, and
a partial function r : Σ∗×Σ∗×Σ∗ → Σ∗ that has domain U ×Σ∗ and is FPT-computable
with respect to (π1, π2)

such that the following conditions hold:
(coverage) for each s ∈ S, there exists s′ ∈ S′ such that (s, s′) ∈ U , and
(correctness) for each (t, t′) ∈ U , it holds (for each y ∈ Σ∗) that

Q(t, y) = Q′(t′, r(t, t′, y)).

We give some basic properties of counting slice reductions. Their proofs can be found in
the full version of this paper.

I Proposition 17. If Q[S] parsimoniously slice reduces to Q′[S′], then Q[S] counting slice
reduces to Q′[S′].

I Theorem 18. Counting slice reducibility is transitive.

The next two theorems give the connection between case complexity and parameterized
complexity. In particular, they show that, from a counting slice reduction, one can obtain
complexity results for the corresponding parameterized problems.

I Theorem 19. Let Q[S] and Q′[S′] be case problems. Suppose that Q[S] counting slice
reduces to Q′[S′], and that both S and S′ are computable. Then param-Q[S] counting FPT-
reduces to param-Q′[S′].

I Theorem 20. Let Q[S] be a case problem, and let K : Σ∗×Σ∗ → N be a problem. Suppose
that param-prom-Q[S] is in prom-FPT, S is computably enumerable, and that the case problem
K[Σ∗] counting slice reduces to Q[S]. Then the parameterized problem (K,π1) is in FPT.

In the remainder of the paper, we will show all our reductions in the case complexity
framework and then use Theorem 19 and Theorem 20 to derive parameterized complexity
results. This approach lets us give results on #CQ[C] for different complexity assumptions
on C without having to deal with these assumptions in the proofs. Thus we separate the
technicalities of the reductions from the assumptions on C which in our opinion gives a far
clearer presentation.

ICDT 2015



118 A Trichotomy in the Complexity of Counting Answers to Conjunctive Queries

5 Statement of the main results

In this section we present the main results of this paper which we will then prove in the
remainder of the paper. For the statement of the results we will use certain S-hypergraphs
that we get as a contraction of the S-hypergraphs of conjunctive queries. When deleting a
vertex v from a hypergraph, we delete v from the vertex set and all edges it appears in but
keep all edges, unless they become empty after the deletion of v.

I Definition 21. To every S-hypergraph (H, S) we define an S-hypergraph contract(H, S)
as follows: We add an edge {u, v} for any pair of vertices u, v that appears in a common
S-component of H. Then we delete the vertices in V (H) \ S. To a class G of S-hypergraphs
we define contract(G) := {contract(H, S) | (H, S) ∈ G}.

For a conjunctive query (A, S) let contract(A, S) be contract(H, S) where (H, S) is the
S-hypergraph of the core of (A, S). For a class C of conjunctive queries, set contract(C) :=
{contract(A, S) | (A, S) ∈ C}.

We first present a version of our main result using the framework of case complexity.

I Theorem 22. Let C be a class of conjunctive queries.
1. If the cores of C and contract(C) are of bounded treewidth, then prom-#CQ[C] ∈ prom-FP,

and hence param-prom-#CQ[C] ∈ prom-FPT.
2. If the cores of C are of unbounded treewidth but contract(C) is of bounded treewidth, then

#CQ[C] is equivalent to Clique[N] with respect to counting slice reductions.
3. If the treewidth of contract(C) is unbounded, then there is a counting slice reduction from

#Clique[N] to #CQ[C].

We will prove Theorem 22 in Section 7.5. Using the results on case complexity, we derive
from Theorem 22 two versions of the trichotomy phrased in terms of promise problems and
of non-promise problems, depending on whether or not the class C of conjunctive queries is
assumed to be recursively enumerable or computable, respectively.

I Theorem 23. Let C be a class of conjunctive queries which is recursively enumerable. In
the scope of this theorem, let us say that the class C is tractable if 〈#CQ, C ×Σ∗〉 ∈ prom-FP
and 〈p-#CQ, C × Σ∗〉 ∈ prom-FPT.
1. If the cores of C and contract(C) have bounded treewidth, then C is tractable.
2. If the cores of C have unbounded treewidth, then C is not tractable, unless p-Clique is in

FPT (and hence FPT = W[1]).
3. If contract(C) has unbounded treewidth, then C is not tractable, unless p-#Clique is in

FPT (and hence FPT = #W[1]).

Proof. (1) follows directly from item (1) of Theorem 22. (2) and (3) follow directly from the
respective items of Theorem 22 and Theorem 20. J

From Theorem 23, one can immediately derive, as corollaries, Theorem 9 and Theorem 10.
Let us use (p-#CQ � I) to denote the parameterized problem which is equal to #CQ on

I, and is equal to 0 elsewhere (and has the parameterization of p-#CQ).

I Theorem 24. Let C be a class of conjunctive queries which is computable.
1. If the cores of C and contract(C) have bounded treewidth, then (p-#CQ � C × Σ∗) is in

FPT.
2. If the cores of C have unbounded treewidth, and contract(C) has bounded treewidth, then

(p-#CQ � C × Σ∗) is equivalent to p-Clique under counting FPT-reduction.



H. Chen and S. Mengel 119

3. If contract(C) has unbounded treewidth, (p-#CQ � C × Σ∗) admits a counting FPT-
reduction from p-#Clique.

Proof. For (1), the FPT algorithm is to first decide, given an instance (φ,B), whether or
not φ ∈ C; if so, the algorithm invokes the algorithm of Theorem 22, otherwise, it returns 0.
(2) and (3) follow immediately from Theorem 22 and Theorem 19. J

6 Positive complexity results

In this section, we will prove a counting version of Theorem 8. We will use a lemma that is
probably well known, but as we could not find a reference, we give a proof for it in the full
version of this paper.

I Lemma 25. Let k ∈ N be a fixed constant. There exists a polynomial-time algorithm that,
given a structure A whose core has treewidth at most k, outputs a core of A.

Lemma 25 yields a counting version of Theorem 8 as an easy corollary.

I Corollary 26. Let C be a class of conjunctive queries such that the cores of the queries in C
have bounded quantified star size and bounded treewidth. Then prom-#CQ[C] ∈ prom-FP.

Proof. Let ((A, S),B) be an instance of prom-#CQ[C] with domain A. By the promise,
there is a constant c such that the treewidth and the quantified star size of the core of
(A, S) are at most c. We simply compute the core of (A, S) with Lemma 25 and delete from
it the relations Ra introduced when constructing aug(A). Call the resulting query (Â, S).
By construction, (A, S) and (Â, S) have the same core, so by Theorem 14 are equivalent.
Moreover, the treewidth and quantified star size of (Â, S) are bounded by c and thus Theorem
11 lets us solve the instance in polynomial time. J

Let us discuss Corollary 26.
Theorem 8 and thus also Lemma 25 crucially depends on the fact that we know by an

outside promise that the treewidth of the cores we consider is bounded. If this bound is not
satisfied, then the algorithm of Theorem 8 may give false positive results. Consequently, the
algorithm of Lemma 25 may compute a structure that is in fact not the core of the input
and then the algorithm of Corollary 26 gives the wrong count. Unfortunately, deciding if the
core of a conjunctive query has treewidth at most k is NP-complete [7] and even the problem
of deciding if a fixed structure is the core of a given structure is NP-complete. Thus there is
no efficient way of realizing that the core computed by the algorithm of Lemma 25 is wrong.

Consequently, while the result of Corollary 26 is very nice from a theoretical point of view
(we will see in the next section that it is in fact optimal), it is probably of limited value from
a more practical perspective. We see this as evidence that in fact parameterized complexity
is a framework better suited for the type of problem discussed in this paper. Note that in
this more relaxed setting of parameterized complexity, computing the core of a query by
brute force can easily be done in the allowed time, because the core depends only on the
query which is the parameter.

We now present a counting algorithm for #CQ[C] for certain classes C that has oracle
access to CQ, the decision version of #CQ. Let ALL be the class of all conjunctive queries.

I Lemma 27. Let C be a class of queries such that the treewidth of the S-hypergraphs in
contract(C) is bounded by a constant c. Then there is a counting slice reduction from #CQ[C]
to CQ[ALL].

ICDT 2015



120 A Trichotomy in the Complexity of Counting Answers to Conjunctive Queries

The idea of the proof is as follows: Since the treewidth of contract(C) is bounded, we know
that the unbounded treewidth of the cores does not originate from the structure of the free
variables but only from the way the quantified variables interact in the S-components. We
use the oracle for CQ[ALL] to solve subqueries of the original query in order to “contract” the
quantified variables into one variable per S-component. This results in an instance with the
same solutions that has bounded treewidth. We then solve this instance with the algorithm
of Theorem 11. The complete proof of Lemma 27 can be found in the full version of this
paper.

7 Hardness results

In this section we will prove the hardness results for Theorem 22. The main idea is reducing
from the hard cases of Theorem 11 in several steps.

7.1 Simulating unary relations

In this section we show that for queries whose augmented structure is a core we can simulate
unary relations on the variables of the query. These additional relations will later allow us to
tell the variables apart such that we can later simulate the case in which all atoms of the
queries have different relation symbols.

I Lemma 28. Let (A, S) be a conjunctive query such that aug(A, S) is a core. Then every
homomorphism h : A→ A with h|S = id is a bijection.

Proof. Clearly, h is also a homomorphism h : aug(A, S) → aug(A, S), because h(a) =
a ∈ R

aug(A,S)
a for every a ∈ S. But by assumption aug(A, S) is a core, so there is no

homomorphism from aug(A, S) to a proper substructure and thus h must be a bijection on
aug(A, S) and consequently also on A. J

We assign a structure A∗ to every structure A:

I Definition 29. To a structure A we assign the structure A∗ over the vocabulary τ ∪ {Ra |
a ∈ A} defined as A∗ := A ∪

⋃
a∈AR

A∗
a where RA∗

a := {a}.

Note that aug(A, S) and A∗ differ in which relations we add: For the structure aug(A, S)
we add Raug(A,S)

a for variables a ∈ S while for A∗ we add RA∗
a for all a ∈ A. Thus, A∗ in

general may have more relations than aug(A, S).
We now formulate the main lemma of this section whose proof uses ideas from [6].

I Lemma 30. Let C be a class of conjunctive queries such that for each (A, S) ∈ C the
augmented structure aug(A, S) is a core. Let C∗ := {(A∗, S) | (A, S) ∈ C}. Then there is a
counting slice reduction from p-#CQ[C∗] to p-#CQ[C].

Proof. Let ((A∗, S),B) be an input for #CQ[C∗]. Remember that A∗ and B are structures
over the vocabulary τ ∪ {Ra | a ∈ A}. For every query (A, S), the relation U of our counting
slice reduction contains ((A∗, S), (A, S)). Obviously, U is computable and satisfies the
coverage property.

We now will reduce the computation of the size |hom(A∗,B, S)| to the computation of
|hom(A,B′, S)| for different structures B′.



H. Chen and S. Mengel 121

Let D := {(a, b) ∈ A×B | b ∈ RB
a } and define a structure D over the vocabulary τ with

the domain D that contains for each relation symbol R ∈ τ the relation

RD := {((a1, b1), . . . , (ar, br)) |(a1, . . . , ar) ∈ RA, (b1, . . . , br) ∈ RB,

∀i ∈ [r] : (ai, bi) ∈ D}.

Let again π1 : D → A be the projection onto the first coordinate, i.e., π1(a, b) := a. Observe
that π1 is by construction of D a homomorphism from D to A.

We will several times use the following claim:

I Claim 1. Let h be a homomorphism from A to D with h(S) = S. Then π1 ◦ h is an
automorphism of A.

Proof. Let g := π1 ◦ h. As the composition of two homomorphisms, g is a homomorphism
from A to A. Furthermore, by assumption g|S is a bijection from S to S. Since S is finite,
there is i ∈ N such that gi|S = id. But gi is a homomorphism and thus, by Lemma 28, gi is
a bijection. It follows that g is a bijection.

Since A is finite, there is j ∈ N such that g−1 = gl. It follows that g−1 is a homomorphism
and thus g is an automporphism. J

Let N be the set of mappings h : S → D with π1 ◦ h = id that can be extended to a
homomorphism h′ : A→ D.

I Claim 2. There is a bijection between hom(A∗,B, S) and N .

Proof. For each h∗ ∈ hom(A∗,B, S) we define P (h∗) := h by h(a) := (a, h∗(a)) for a ∈ S.
From the extension of h∗ to A we get an extension of h that is a homomorphism and thus
h ∈ N . Thus P is a mapping P : hom(A∗,B, S)→ N .

We claim that P is a bijection. Clearly, P is injective. We we will show that it is
surjective as well. To this end, let h : S → D be a mapping in N and let he be a
homomorphism from A to D that is an extension of h. By definition of N such a he
must exist. By Claim 1 we have that π1 ◦ he is an automorphism, and thus (π1 ◦ he)−1

is a homomorphism. We set h′e := he ◦ (π1 ◦ he)−1. Obviously, h′e is a homomorphism
from A to D, because h′e is the composition of two homomorphisms. Furthermore, for
all a ∈ S we have h′e(a) = (he ◦ (π1 ◦ he))(a) = (he ◦ (π1 ◦ h))(a) = he(a) = h(a), so h′e
is an extension of h. Moreover π1 ◦ h′e = (π1 ◦ he) ◦ (π1 ◦ he)−1 = id. Hence, we have
h′e = id × ĥ for a homomorphism ĥ : A → B̂, where B̂ is the structure we get from B
by deleting the relations RB

a for a ∈ A. But by definition h′e(a) ∈ D for all a ∈ A and
thus ĥ(a) ∈ RB

a . It follows that ĥ is a homomorphism from A∗ to B. We set h∗ := ĥ|S .
Clearly, h∗ ∈ hom(A∗,B, S) and P (h∗) = h. It follows that P is surjective. This proves the
claim. J

Let I be the set of mappings g : S → S that can be extended to an automorphism of A.
Let N ′ be the set of mappings h : S → D with (π1 ◦ h)(S) = S that can be extended to
homomorphisms h′ : A→ D.

I Claim 3.

|hom(A∗,B, S)| = |N
′|
|I|

.

ICDT 2015



122 A Trichotomy in the Complexity of Counting Answers to Conjunctive Queries

Proof. Because of Claim 2 it is sufficient to show that

|N ′| = |N ||I|. (1)

We first prove that

N ′ = {f ◦ g | f ∈ N , g ∈ I}. (2)

The ⊇ direction is obvious. For the other direction let h ∈ N ′. Let h′ be the extension
of h that is a homomorphism h′ : A → D. By Claim 1, we have that g := π1 ◦ h′ is an
automorphism of A. It follows that g−1|S ∈ I. Furthermore, h ◦ g−1|S is a mapping from
S to D and h′ ◦ g−1 is an extension that is a homomorphism from A to D. Furthermore
(π1 ◦ h′ ◦ g−1|S)(a) = (g|S ◦ g−1|S)(a) = a for every a ∈ S and hence h′ ◦ g−1|S ∈ N and
h = h ◦ g−1|S ◦ g|S which proves the claim (2).

To show (1), we claim that for every f, f ′ ∈ N and every g, g′ ∈ I, if f 6= f ′ or g 6= g′,
then f ◦ g 6= f ′ ◦ g′. To see this, observe that f can always be written as f = id× f2 and
thus (f ◦ g)(a) = (g(a), f2(g(a)). Thus, if g and g′ differ, π1 ◦ f ◦ g 6= π1 ◦ f ′ ◦ g′ and thus
f ◦ g 6= f ′ ◦ g′. Also, if g = g′ and f 6= f ′, then clearly f ◦ g 6= f ′ ◦ g′. This completes the
proof of (1) and the claim. J

Clearly, the set I depends only on (A, S) and thus it can be computed by an FPT-
algorithm. Thus it suffices to show how to compute |N ′| in the remainder of the proof.

For each set T ⊆ S we define NT := {h ∈ hom(A,D, S) | (π1 ◦ h)(S) ⊆ T}. We have by
inclusion-exclusion

|N ′| =
∑
T⊆S

(−1)|S\T ||NT |. (3)

Observe that there are only 2|S| summands in (3) and thus if we can reduce all of them to
#CQ with the query (A, S) this will give us the desired counting slice reduction.

We will now show how to compute the |NT | by interpolation. So fix a T ⊆ S. Let NT,i
for i = 0, . . . , |S| consist of the mappings h ∈ hom(A,D, S) such that there are exactly i
elements a ∈ S that are mapped to h(a) = (a′, b) such that a′ ∈ T . Obviously, NT = NT,|S|
with this notation.

Now for each j = 1, . . . , |S| we construct a new structure Dj,T over the domain Dj,T . To
this end, for each a ∈ T , let a(1), . . . , a(j) be copies of a which are not in D. Then we set

Dj,T := {(a(k), b) | (a, b) ∈ D, a ∈ T, k ∈ [j]} ∪ {(a, b) | (a, b) ∈ D, a /∈ T}.

We define a mapping B : D → ℘(Dj,T ), where ℘(Dj,T ) is the power set of Dj,T , by

B(a, b) :=
{
{(a(k), b) | k ∈ [j]}}, if a ∈ T
{(a, b)}, otherwise.

For every relation symbol R ∈ τ we define RDT,j :=
⋃

(d1,...,ds)∈RD B(d1)× . . .×B(ds).
Then every h ∈ NT,i corresponds to ij mappings in hom(A,Dj,T , S). Thus for each j

we get
∑|S|
i=1 i

j |NT,i| = |hom(A,Dj,T , S)|. This is a linear system of equations and the
corresponding matrix is a Vandermonde matrix, so NT = NT,|S| can be computed with an
oracle for #CQ on the instances ((A, S),Dj,T ). The size of the linear system depends only
on |S|. Furthermore, ‖Dj‖ ≤ ‖D‖js ≤ ‖D‖s+1 where s is the bound on the arity of the
relations symbols in τ and thus a constant. It follows that the algorithm described above is
a counting slice reduction. This completes the proof of Lemma 30. J



H. Chen and S. Mengel 123

7.2 Reducing from hypergraphs to structures
In this section we show that we can in certain situations reduce from #CQhyp to #CQ. This
will later allow us to reduce from the hard cases in Theorem 11 to show the hardness results
of Theorem 22.

We proceed in several steps. Let in this section C be a class of conjunctive queries of
bounded arity. To every query (A, S) we construct a structure Â as follows; note that when
we use this notation, S will be clear from the context. Construct the augmented structure
aug(A, S) of A and compute its core. We define Â to be the structure that we get by
deleting the relations Ra for a ∈ S that we added in the construction of aug(A, S). We set
Ĉ := {(Â, S) | (A, S) ∈ C}.

Note that in any situation where we apply both theˆ- and ∗-operators, theˆis applied
before the ∗.

I Claim 4. There is a parsimonious slice-reduction from #CQ[Ĉ] to #CQ[C].

Proof. The relation U relates to every query (A, S) the query (Â, S). Certainly, U is
computable and by definition assigns to each query in Ĉ a query in C.

We have that Â is a substructure of A and there is a homomorphism from A to Â, because
there is a homomorphism from aug(A, S) to aug(Â, S). Hence, A and Â are homomorphically
equivalent and by Theorem 14 we have that (A, S) and (Â, S) are equivalent. Thus setting
r((A, S), (Â, S),B)) := B yields the desired parsimonious slice-reduction. J

Let Ĉ∗ := {(Â∗, S) | (Â, S) ∈ Ĉ}. Note that, by Lemma 30, there is a counting slice
reduction from p-#CQ[Ĉ∗] to p-#CQ[Ĉ].

Let now G be the class of S-hypergraphs associated to the queries in Ĉ.

I Claim 5. There is a parsimonious slice reduction from #CQhyp[G] to #CQ[Ĉ∗].

Proof. The relation U relates every S-hypergraph (H, S) in G to all queries (Â∗, S) with
the hypergraph (H, S). Certainly, U is computable and by definition of G it assigns to
S-hypergraph in G a query in Ĉ∗.

It remains to describe the function r. So let ((A, S),B) be a p-#CQ-instance such that
(A, S) has the S-hypergraph (H, S) ∈ G. We assume w.l.o.g. that every tuple appears only
in one relation of A. If this is not the case, say a tuple t appears in two relations RA

1 and
RA

2 , then we build a new instance as follows: Delete t from RA
1 and RA

2 , add a new relation
RA
t to A containing only t. Finally, set RB = RB1 ∩RB

2 . This operation does not change the
associated S-hypergraph, so this new instance still has the S-hypergraph (H, S). Moreover
it is easy to see that it has the same set of solutions.

Let the vocabulary of (Â, S) be τ . We construct a structure r((A, S), (Â∗, s),B) =: B̂
over the same relation symbols as Â∗, i.e., over the vocabulary τ ∪ {Ra | a ∈ Â}. The
structure B̂ has the domain B̂ := A×B where A is the domain of A and B is the domain
of B. For R̂ ∈ τ we set

R̂B̂ := {((a1, b1), . . . , (ak, bk)) |(a1, . . . , ak) ∈ R̂Â, (a1, . . . , ak) ∈ RA,

(b1, . . . , bk) ∈ RB}.

Furthermore, for the relations symbols R̂a that are added in the construction of Â∗ from Â
we set R̂B̂

a := {(a, b) | b ∈ B}, where B is the domain of B.
It is easy to see that from a satisfying assignment h : A→ B we get a homomorphism

h′ : Â∗ → B̂ by setting h′(a) := (a, h(a)). Furthermore, this construction is obviously

ICDT 2015



124 A Trichotomy in the Complexity of Counting Answers to Conjunctive Queries

bijective. Thus we get |hom(A,B, S)| = |hom(Â∗, B̂, S)|. Since B̂ can be constructed in
polynomial time in ‖A‖ and ‖B‖, this is a parsimonious slice reduction. J

I Corollary 31. Let C be a class of conjunctive queries of bounded arity and let G be the class
of S-hypergraphs of the cores of C. Then there is a counting slice reduction from #CQhyp[G]
to #CQ[C].

7.3 Strict star size
In this section we introduce a notion strict S-star size to simplify some of the arguments
in the next section. We define the strict S-star size of a hypergraph to be the maximum
number of vertices in S that are contained in one S-component of H.

I Lemma 32. Let G be a class of S-hypergraphs of bounded arity. If the strict S-star size of
the S-hypergraphs in G is unbounded, then there is a counting slice reduction from Clique[N]
to #CQhyp[G].

7.4 The main hardness results
In this section we use the results of the last sections to prove the hardness results of
Theorem 22.

The proof of Theorem 11 in [8] directly yields the following result.

I Lemma 33. Let G be a class of S-hypergraphs of bounded arity. If the treewidth of G is
unbounded, then there is a counting slice reduction from to Clique[N] to #CQhyp[G].

Combining Lemma 33 and Corollary 31 yields the following corollary.

I Corollary 34. Let C be a class of queries such that the treewidth of the cores of the queries
in C is unbounded. Then there is a counting slice reduction from Clique[N] to #CQ[C].

I Lemma 35. Let G be a class of hypergraphs such that contract(G) is of unbounded treewidth.
Then there is a counting slice reduction from #Clique[N] to #CQhyp[G].

Proof. Assume first that G is of unbounded strict S-star size. Then #CQhyp[G] is #W[1]-
hard by Lemma 32. So we assume in the remainder of the proof that there is a constant c
such that for every (H, S) in G every S-component of (H, S) contains only c vertices from S.

From Theorem 10 it follows that there is a counting slice reduction from #Clique[N] to
#CQhyp[contract(G)]. Therefore, it suffices to show parsimonious slice reduction (U, r) from
#CQhyp[contract(G)] to #CQhyp[G] to show the lemma.

The relation U is defined as U := {(contract(H, S), (H, S)) | (H, S) ∈ G}. By definition,
this satisfies the covering condition.

For the definition of r, consider an instance ((A, S),B) of #CQhyp[contract(G)] and
let H be the hypergraph of A. Moreover, let (H′, S) ∈ G be an S-hypergraph such that
(H, S) = contract(H′, S). W.l.o.g. assume that for every edge e of H, the structure A contains
one relation Re containing only a single tuple ~e where ~e contains the elements of e in an
arbitrary order. We construct an instance r((H, S), (H′, S), ((A, S),B)) = ((A′, S),B′).
Similarly to A, the structure A′ has for every edge e in H′ a relation Re that contains only
a single tuple ~e with the properties as before. For every S-component C of H we do the
following: Let DC be the tuples encoding the homomorphisms h from A[V (C)∩S] to B. For
every v ∈ V (C) \ S we let DC be the domain of v. Whenever two elements u, v ∈ V (C) \ S
appear in an edge, we set RB′ in such a way that for all tuples in RB

e the assignments to u



H. Chen and S. Mengel 125

and v coincide. Moreover, whenever u ∈ V (C) ∪ S and v ∈ V (C) \ S we allow only tuples
in which the assignment to u coincides with the assignment to u that is encoded in the
assignment to v. For all edges e of H′ with e \ S 6= ∅, we let RB′

e contain all tuples that
satisfy the two conditions above. Finally, for all edges e with e ∈ S we set RA′ := RA.

It is easy to verify that hom(A,B, S) = hom(A′,B′, S). Thus it only remains to show
that the construction can be done in polynomial time. Note first that the number of variables
from S in any S-component of H′ is bounded by c. Thus we can compute all domains DC in
time ‖B‖O(c). The rest of the construction can then be easily done in polynomial time. J

I Corollary 36. Let C be a class of conjunctive queries such that contract(C) is of unbounded
treewidth. Then there is a counting slice reduction from #Clique[N] to #CQ[C].

Proof. This follows by combination of Lemma 35 and Corollary 31. J

7.5 Putting things together
We now finally show Theorem 22 by putting together the results of the last sections.

Proof of Theorem 22.
1. follows directly from Corollary 26 with the observation that bounded treewidth of
contract(C) implies bounded S-star size.
2. is Corollary 34 and Lemma 27 using the fact that CQ[ALL] counting slice reduces to
Clique[N]; this follows from [9, Section 6.1].
3. is Corollary 36. J

8 Conclusion

In this paper we have proved a complete classification for the counting complexity of
conjunctive queries, continuing a line of work that spans several previous papers [6, 8, 11].
While this solves the bounded arity case completely, the most apparent open question is
what happens for the unbounded arity case. This case is rather well understood for the
decision version CQ of the problem [14], but for counting not much is known. In particular,
it is not known if the results of [14] can even be adapted to the quantifier free setting.

Another interesting problem would be to go from conjunctive queries to more expressive
query languages. This has been done with some success for decision problems (see e.g. [3]
and the references therein), but the situation for counting is much less clear. It is known
that counting and decision differ a lot at least in some settings, e.g. even very simple unions
of conjunctive queries yield hard counting problems [17, 15] while CQ for these queries is
very easy. Can we get a better understanding of counting complexity in this setting and how
it differs from decision?

To prove our results, we have extended the case complexity framework to counting
complexity. We are very optimistic that this will be helpful when studying the research
areas discussed above. Moreover, due to its generic nature, we feel that this framework
should also be of use outside of the query answering context and allow transparent proofs
and presentations in other areas of parameterized complexity.

Acknowledgements. Chen was supported by the Spanish project TIN2013-46181-C2-2-R,
by the Basque project GIU12/26, and by the Basque grant UFI11/45.

ICDT 2015



126 A Trichotomy in the Complexity of Counting Answers to Conjunctive Queries

References
1 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2 A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in relational

data bases. In STOC 1977, pages 77–90. ACM, 1977.
3 Hubie Chen. The tractability frontier of graph-like first-order query sets. CoRR,

abs/1407.3429v1, 2014. Conference version appeared in the proceedings of LICS ’14.
4 Hubie Chen and Martin Grohe. Constraint satisfaction with succinctly specified relations.

J. Comput. Syst. Sci., 76(8):847–860, 2010.
5 Hubie Chen and Moritz Müller. One hierarchy spawns another: Graph deconstructions

and the complexity classification of conjunctive queries. In LICS, 2014.
6 V. Dalmau and P. Jonsson. The complexity of counting homomorphisms seen from the

other side. Theor. Comput. Sci., 329(1-3):315–323, 2004.
7 V. Dalmau, P.G. Kolaitis, and M.Y. Vardi. Constraint Satisfaction, Bounded Treewidth,

and Finite-Variable Logics. In International Conference on Principles and Practice of
Constraint Programming 2002, pages 310–326, 2002.

8 A. Durand and S. Mengel. Structural tractability of counting of solutions to conjunctive
queries. Theory of Computing Systems, pages 1–48, 2014. accepted, to appear, final version
available at http://dx.doi.org/10.1007/s00224-014-9543-y.

9 J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. An EATCS Series, 2006.

10 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. J. Comput. Syst. Sci., 64(3):579–627, 2002.

11 Gianluigi Greco and Francesco Scarcello. Counting solutions to conjunctive queries: struc-
tural and hybrid tractability. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS’14, pages 132–143, 2014.

12 M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. J. ACM, 54(1), 2007.

13 P. Kolaitis and M. Vardi. Conjunctive-Query Containment and Constraint Satisfaction.
Journal of Computer and System Sciences, 61:302–332, 2000.

14 Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive
queries. J. ACM, 60(6):42, 2013.

15 S. Mengel. Conjunctive Queries, Arithmetic Circuits and Counting Complexity. PhD thesis,
University of Paderborn, 2013.

16 C. Papadimitriou and M. Yannakakis. On the Complexity of Database Queries. Journal
of Computer and System Sciences, 58(3):407–427, 1999.

17 R. Pichler and S. Skritek. Tractable counting of the answers to conjunctive queries. Journal
of Computer and System Sciences, 2013.

18 Nicole Schweikardt, Thomas Schwentick, and Luc Segoufin. Database theory: Query lan-
guages. In Mikhail J. Atallah and Marina Blanton, editors, Algorithms and Theory of
Computation Handbook, volume 2: Special Topics and Techniques, chapter 19. CRC Press,
second edition, Nov 2009.



Learning Tree Patterns from Example Graphs
Sara Cohen and Yaacov Y. Weiss

Rachel and Selim Benin School of Computer Science and Engineering
Hebrew University of Jerusalem
Jerusalem, Israel
{sara,yyweiss}@cs.huji.ac.il

Abstract
This paper investigates the problem of learning tree patterns that return nodes with a given set
of labels, from example graphs provided by the user. Example graphs are annotated by the user
as being either positive or negative. The goal is then to determine whether there exists a tree
pattern returning tuples of nodes with the given labels in each of the positive examples, but in
none of the negative examples, and, furthermore, to find one such pattern if it exists. These are
called the satisfiability and learning problems, respectively.

This paper thoroughly investigates the satisfiability and learning problems in a variety of
settings. In particular, we consider example sets that (1) may contain only positive examples,
or both positive and negative examples, (2) may contain directed or undirected graphs, and (3)
may have multiple occurrences of labels or be uniquely labeled (to some degree). In addition,
we consider tree patterns of different types that can allow, or prohibit, wildcard labeled nodes
and descendant edges. We also consider two different semantics for mapping tree patterns to
graphs. The complexity of satisfiability is determined for the different combinations of settings.
For cases in which satisfiability is polynomial, it is also shown that learning is polynomial. (This
is non-trivial as satisfying patterns may be exponential in size.) Finally, the minimal learning
problem, i.e., that of finding a minimal-sized satisfying pattern, is studied for cases in which
satisfiability is polynomial.

1998 ACM Subject Classification H.2.3 Query languages, I.2.6 Learning

Keywords and phrases tree patterns, learning, examples

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.127

1 Introduction

Node-labeled graphs (or simply graphs, for short) are a popular data model and are useful in
describing information about entities and their relationships. Traditional query languages
for graphs are often based on pattern matching, i.e., the query is a pattern with a tuple of
annotated nodes, called output nodes. Query results are simply tuples of nodes that are in the
image of the output nodes with respect to some mapping from the query to the graph. The
precise properties required of such a mapping depend on the setting (they may be required
to be injective, they may allow edges to be mapped to paths, etc.).

Formulating a query over a set of graphs that returns specific tuples of nodes can be
a difficult task. The graphs may be intricate, amalgamating many different relationships
among nodes into a single structure. Finding a precise query that returns exactly the tuples
of nodes of interest to the user may require extensive investigation into the precise structure
of the graphs, and thus, may be infeasible for the user.

In this paper we study the problem of learning tree patterns from a given set of graphs
with annotated tuples of interest. If tree patterns can be learned, then query formulation for

© Sara Cohen and Yaacov Weiss;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 127–143

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.127
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


128 Learning Tree Patterns from Example Graphs

g1

Med. Sea

Sea Border Sea Border

Israel Country1 Borders Country2 Egypt

Member Of Member Of

UN MIGA

p1

Borders

Country1 Country2

g2

Carib. Sea

Sea Border Sea Border

Cuba Country1 Country2 Jamaica

Member Of Member Of

UN MIGA

p2

*

Sea Border Sea Border

Country1 Country2

g3

Kosovo Country1 Borders Country2 Serbia

Member Of Member Of

UN MIGA

p3

UN

Member Of Member Of

Country1 Country2

Figure 1 Motivating example with data from the CIA fact-book.

the user can be simplified, by having the user simply provide examples, while the system
infers a satisfying pattern.

The ability to learn satisfying patterns is also of interest in other scenarios. For example,
it allows certain and possible answers to be identified and returned [7]. Intuitively, using the
terminology of [7], a certain (resp. possible) answer is one that is returned by all (resp. at
least one) patterns satisfying the given examples. It has been shown in [7] that the ability
to determine satisfiability of a set of examples immediately implies the ability to determine
whether an answer is certain or possible. Thus, even without learning the user’s precise
query, if satisfiability can be determined, then the system can provide the user with answers
that will (certainly or possibly) be of interest.

I Example 1. Consider graphs g1, g2, g3 in Figure 1. These graphs depict a small portion of
the information from the CIA fact-book, a labeled graph data source containing information
about countries around the world, and their relationships. Thus, for example, g1 describes
the relationships between Israel and Egypt. These countries border each other, and both
border the Mediterranean Sea. In addition, both Israel and Egypt are members of the
UN and of MIGA. Similarly, g2 contains information about the relationships of Cuba and



S. Cohen and Y. Weiss 129

Jamaica. Given both g1 and g2 as positive examples, one possible pattern that can be
inferred as holding between Country1 and Country2 is p2, i.e., that they both border on some
common sea. Another possible pattern that can be inferred as holding between Country1
and Country2 is that derived by replacing “UN” in p3 (of Figure 1) by a wildcard. We call
this pattern p4.

The goals of this paper are to (1) determine whether there exists a satisfying pattern for
a set of examples (e.g., “yes” for g1, g2), and to (2) develop methods to automatically find a
(minimal) satisfying pattern (e.g., p2, p4). As explained above, a by-product of these results
is the ability to determine whether a new (unlabeled) example is certainly, or possibly, of
interest to the user (e.g., g3 is possibly of interest, as the user may desire countries that are
members of the same organization, and this holds for each of g1, g2, g3).

The setting considered in this paper is as follows. We are given a set of graphs G,
containing both positive examples g+ and negative examples g−. In addition, we are given a
tuple of distinguished labels l1, . . . , ln. Depending on the setting, these labels may uniquely
identify a tuple of nodes in each graph of G, or may correspond to many different tuples
of nodes. In the former case, we say that G is output identifying, and in the latter, G is
arbitrary. Additional features of interest of the dataset ∆ = (G, (l1, . . . , ln)) include (1)
whether the graphs are uniquely labeled, in which case no labels appear more than once in a
graph, (2) whether the graphs are directed or undirected, and (3) whether there are only
positive examples, or both positive and negative examples.

We consider tree patterns that may contain (or prohibit) nodes with wildcards and/or
descendant edges. In addition, a tree pattern contains a designated tuple of output nodes.
Different semantics are defined for mapping tree patterns to graphs, depending on whether
we require such mappings to be injective or not. Intuitively, a given tree pattern satisfies a
positive (resp. negative) example, if there exists (resp. does not exist) a mapping from the
tree pattern to the graph that maps the output nodes to nodes with the distinguished labels.

Three problems of interest are defined and studied. First, the satisfiability problem is to
determine whether there exists a pattern satisfying a given dataset ∆. Second, the learning
problem is to find a pattern satisfying ∆, if one exists. Note that even if satisfiability is in
polynomial time, learning may still be difficult as satisfying patterns may be exponential
in size. Third, the minimal learning problem is to find a pattern satisfying ∆, that is of
minimal size. The complexity of these problems varies greatly depending on the given setting,
i.e., characteristics of the dataset, the type of patterns allowed, and the type of mappings
required from the patterns to the dataset. In some cases these problems are quite easy (i.e.,
in polynomial time), while in other cases even satisfiability is PSPACE-complete.

The main contributions of this paper are a thorough study of the three problems of interest,
in different combinations of settings. Our results are quite extensive and are summarized in
Table 1 for datasets with only positive examples, in Table 2 for datasets with both positive
and negative examples, and in Table 3 for the minimal learning problem. Thus, our work
clearly delineates in which cases learning is efficient, and thereby, provides the groundwork
for a system which induces tree patterns from user examples.

2 Related Work

While the problem at hand has not been studied in the past, there is significant previous
related work, falling into three general categories: learning queries from examples, graph
mining and explaining query results. We discuss relevant work in each of these areas.

ICDT 2015



130 Learning Tree Patterns from Example Graphs

Learning Queries from Examples. There is a wealth of work on using machine learning
techniques to learn XPath queries or tree patterns from positive and negative examples.
Most often, these works are in the context of wrapper induction.

The goal of [5, 2, 4, 1, 17, 22, 21, 23] is to learn a tree-like query, usually using equivalence
or membership questions. Intuitively, equivalence questions provide the user with a query (or
examples of results of a query) and ask the user if the computer-provided query is equivalent
to that of the user. Membership questions provide the user with an example, and ask the user
whether this example should be marked positively. Many negative results have been shown,
most notably, that tree automata cannot be learned in polynomial time with equivalence
questions [2], as well as a similar negative result for learning even simple fragments of
XPath [5]. Several of these works [17, 22] have been experimentally tested against wrapper
induction benchmarks, and have been shown to work extremely well. Among these works,
only [21] considers learning trees from graphs (but their setting differs significantly from
that considered here, e.g., graphs contain edge variables that can be replaced by additional
graphs, and the focus is on equivalence or subset queries). The above results are completely
different from (and complementary to) those of ours. Most significantly, we do not ask the
user questions of any type. The goal in this paper is quite simple: determine whether there
exists any satisfying pattern, and find one if possible.

Somewhat slightly related to our work is the definability problem for graph query
languages, studied in [3]. The goal in [3] is to determine whether a given relation over nodes
in a graph can be defined by a query in a given language. The language considered differs
significantly from ours, as they allow regular expressions and non-tree patterns. We note
that they also have only positive examples (while all other examples are implicitly negative,
and thus, there are no “non-labeled” examples), and they do not consider the problem of
learning minimal sized satisfying patterns.

In [7] the problem of learning tree patterns from tree examples was studied. It was also
shown that the ability to efficiently determine satisfiability is sufficient in order to efficiently
determine whether a new unlabeled example can possibly be positive (i.e., there exists a
satisfying pattern returning this answer), or is certainly positive (i.e., all satisfying patterns
return this answer). While [7] showed this result in the context of tree data, it carries over
to our framework.

Our paper differs very significantly from [7] – in its setting, scope and techniques. In [7],
only tree data was considered (i.e., all examples are trees), trees are always directed and
arbitrarily labeled, the width of the labels is exactly two (and always includes the root of
each example) and the number of examples is constant. In the current paper, we consider a
large number of different scenarios, all of which involve graph examples. Graph examples are
a much richer formalism than tree examples. This is true even though our patterns are trees,
as patterns must now choose between exponentially many alternative paths in a graph, and
can traverse a cycle arbitrarily many times. The current paper presents comprehensive results
on the many different possible settings (whereas [7] mostly focused on a single polynomial
case). Thus, the current paper is significantly larger in scope than [7]. We note also that
the techniques used in [7] are not applicable for the problems in the current paper as they
were heavily based on the fact that the data in all examples are trees (and on the additional
restrictions considered there), and do not carry over to a graph setting.

Graph Mining. Given a set of n graphs, the graph mining problem is to find subgraphs
that are common to at least k of these graphs, where k is a user provided parameter. One
commonly considered flavor of this problem is when the frequent subgraphs are trees. See [14]



S. Cohen and Y. Weiss 131

for a survey on frequent subgraph mining and [15] for recent theoretical results on the
complexity of frequent subgraph mining.

The results of this paper are closely related to the frequent subtree mining problem, for
the special case where k = n, i.e., when the subtree must appear in all graphs. In particular,
when there are only positive examples, and patterns cannot contain descendant edges, then
learning tree patterns is quite similar in spirit to subtree mining. However, in our setting,
the user also provides a tuple of distinguished labels that must be “covered” by the satisfying
patterns. This significantly differs from subtree mining, in which no constraints require that
specific subportions of the graph appear in any frequent subtree. It also makes determining
whether there exists a satisfying pattern significantly harder. For example, it is always easy
to find a single frequent subtree [15]; however, finding a satisfying pattern is often intractable.

Explaining Query Answers. Recently, there has been considerable interest in explaining
query results to a user, i.e., in justifying why certain tuples do, or do not, appear in a query
result. Most of this work, e.g., [6, 13, 19, 11], assumes that the query is given. Answers take
the form of provenance of tuples, or explanations as to which query clause caused tuples to
be eliminated. This is very different from our framework in which only the answers are given,
and not the queries.

On the other hand [26, 25, 8] explain query answers, by synthesizing a query from the
result. In [26], the focus is on generating a query that almost returns a given output (with
a precise definition for “almost”). In [25] missing tuples in a query result are explained by
generating a query that returns the query result, as well as the missing tuples. Finally, in [8]
the problem of synthesizing view definitions from data is studied. These works consider
relational databases and conjunctive queries, and the results are not immediately applicable
to other settings. However, the results in this paper can immediately be applied to the
problem of explaining query answers, for tree patterns over graph datasets. In particular, we
show in this paper how to synthesize (i.e., learn) a tree pattern from a set of examples.

3 Definitions

In this section, we present basic terminology used throughout the paper and formally define
the problems if interest.

Graphs and Examples. In this paper we consider labeled graphs that may be directed or
undirected. We use Σ to denote an infinite set of labels. Given a graph g, we use Vg to
denote the nodes of g, Eg to denote the edges of g and lg : Vg → Σ to denote the labeling
function that associates each node in g with a label from Σ.

We say that l is a unique label in g if there is precisely one node v for which lg(v) = l.
We say that a graph g is uniquely labeled if, for all u 6= v ∈ Vg it holds that lg(u) 6= lg(v).

A graph g, annotated with the superscript “+” or “−” is called an example. We say that
g+ is a positive example and g− is a negative example. We use ∆ to denote a pair (G, l̄)
where G is a set of examples, and l̄ = (l1, . . . , ln) is a tuple of distinct labels. We call ∆ a
dataset and l̄ the distinguished labels.

We distinguish several special types of datasets. In particular, ∆ is positive if G contains
only positive examples, ∆ is uniquely labeled if all graphs in G are uniquely labeled, and ∆ is
output identifying if, for all i ≤ n, we have that li is a unique label in all graphs in G. Note
that if ∆ is uniquely labeled, then it is also output identifying, but the opposite does not
hold in general. We require ∆ to contain only directed or only undirected graphs (and not a

ICDT 2015



132 Learning Tree Patterns from Example Graphs

mix of the two). In the former case, we say that ∆ is directed and in the latter, we say that
∆ is undirected.

I Remark. Recall that the goal of this paper is to learn patterns connecting a series of labels
in a graph. The special case of output identifying datasets is of particular interest, as it
is equivalent to the following problem: We are given a set of graphs, each of which has a
tuple of distinguished nodes. The goal is to find a pattern that returns the given tuples of
nodes from the positive examples, and does not return the tuples of nodes from the negative
examples. In other words, learning patterns from output-identifying datasets is the problem
of learning patterns connecting a given series of nodes from each example graph.

I Example 2. Consider the graphs g1, g2, g3 of Figure 1. The dataset ∆, defined as
({g+

1 , g
+
2 , g

−
3 }, (Country1,Country2)) contains undirected graphs, and both positive (g+

1 , g
+
2 )

and negative (g−3 ) examples. It is output identifying, as there is a single node in each graph
with label Country1 and a single node in each graph with label Country2. Note that the
graphs are not uniquely labeled. The dataset ∆′ = ({g+

1 , g
+
2 , g

−
3 }, (Sea Border,Member Of)),

which looks for patterns connecting the labels Sea Border and Member Of is not output
identifying.

Tree Patterns. Tree patterns (or simply patterns, for short) are used to extract tuples of
nodes from graphs. To be precise, a tree pattern is a pair p = (t, ō), where t is a labeled tree,
and ō is a tuple of nodes from t, called the output nodes, such that

The labels of t are drawn from the set Σ ∪ {∗} where ∗ is a special label, called the
wildcard.
The set of edges Et of t is the union of disjoint sets E/

t and E//
t , representing child and

descendant edges, respectively.
All leaf nodes in t are also output nodes (but not necessarily vice-versa).

As before, we use Vt and lt to denote the nodes and labeling function of t, respectively. We
will consider both undirected trees, and directed, rooted trees. When t is a directed rooted
tree, we use rt ∈ Vt to denote the root of t.

I Remark. In this paper we focus on learning tree patterns from example graphs. Tree
patterns in graphs have been of interest in the past, e.g., in the context of keyword proximity
search, as they represent tight relationships between nodes [9, 16, 12]. While we do not study
the problem of learning graph patterns directly, we note that this is somewhat less interesting
than tree patterns. In particular, if there are only positive examples, then whenever there is
a connected graph pattern satisfying the examples, there is also a connected tree pattern
(derived by removing edges). When negative examples are allowed, then the setting in
which there is a single positive and a single negative example already reduces to the graph
homomorphism problem, and thus, will not be tractable [10]. Thus, the additional expressive
power provided by graphs is either unnecessary (in the positive case) or quickly yields both
NP and Co-NP hardness (when negative examples are allowed).

Embeddings. An embedding from a tree pattern p = (t, ō) to a graph g, is a function
µ : Vt → Vg such that

µ maps (directed) edges in E
/
t to (directed) edges in Eg, i.e., for all (u, v) ∈ E

/
t ,

(µ(u), µ(v)) ∈ Eg;
µ maps (directed) edges in E//

t to (directed) paths in Eg, i.e., for all (u, v) ∈ E//
t , there is

a (directed) path from µ(u) to µ(v) in Eg of length at least 1;



S. Cohen and Y. Weiss 133

µ maps nodes v in Vt with a non-wildcard label to nodes in Vg with the same label, i.e.,
for all v ∈ Vt, either lt(v) = ∗ or lt(v) = lg(µ(v)).
Next we define when a tree pattern p satisfies a dataset ∆, using the notion of an

embedding. We note that in the following definition, and throughout this paper, we assume
that either (1) ∆ contains undirected graphs and p is an undirected tree or (2) ∆ contains
directed graphs and p is a directed rooted tree. Moreover, we assume that the tuple of
distinguished labels in ∆ has the same cardinality as the output nodes tuple in p.

Given a tree pattern p = (t, ō) and a dataset ∆ = (G, l̄), we will say that p satisfies ∆ if
for all g+ ∈ G, there exists an embedding µ from p to g such that lg(µ(ō)) = l̄;
for all g− ∈ G, there does not exist an embedding µ from p to g for which lg(µ(ō)) = l̄.

Similarly, we say that p injectively satisfies ∆, if for all positive examples g+, there exists
an injective embedding that maps ō to nodes with the labels l̄ in g+, and for all negative
examples g−, there does not exist an injective embedding that maps ō to nodes with the
labels l̄ in g−.
I Example 3. Figure 1 contains three tree patterns. The output nodes in these patterns are
denoted with a rectangular box. Consider the datasets

∆1 = ({g+
1 , g

+
2 , g

−
3 }, (Country1, Country2))

∆2 = ({g+
1 , g

−
2 , g

+
3 }, (Country1, Country2))

∆3 = ({g+
1 , g

+
2 }, (Country1,Country2)) .

The patterns p2 and p3 satisfy the datasets ∆1 and ∆3, but not ∆2. Note that every pattern
satisfying ∆1 will satisfy ∆3, but not vice-versa. Pattern p1 satisfies ∆2 (but not any of the
others). We note that the pattern derived by replacing “UN” in p3 with “∗”, satisfies ∆3, as
well as the dataset in which all three examples are positive.

Problems of Interest. Given a dataset, we will be interested in determining whether there
exists a satisfying pattern (or an injectively satisfying pattern), as well as in finding such a
pattern if one exists. Thus, our two problems of interest can be defined as follows.
I Problem 1 ((Injective) Satisfiability). Given a dataset ∆, determine whether there exists a
pattern p that (injectively) satisfies ∆.
I Problem 2 ((Injective) Learning). Given a dataset ∆, find a pattern p that (injectively)
satisfies ∆.

The complexity of these problems depends highly upon the types of patterns, embeddings
and datasets allowed. Thus, we will study these problems for a variety of settings, considering:
injective and arbitrary embeddings, patterns allowing/prohibiting wildcards and descendant
edges, directed and undirected datasets, and uniquely labeled, output distinguishing and
arbitrary datasets. We will also consider bounding various aspects of the problem (e.g., the
number of examples, the number of distinguished labels or the pattern size), and see how
this affects the complexity.

We note that the learning problem is at least as hard as the satisfiability problem. Indeed,
in some cases, satisfiability may be in polynomial time, but no polynomial size satisfying
pattern may exist. For the most part in this paper, we focus on satisfiability, as this problem
is usually already hard (i.e., not in polynomial time, unless P = NP). However, for cases in
which satisfiability is polynomial, we also consider the learning problem, and show how to find
a satisfying pattern (or compact representation of a satisfying pattern) in polynomial time.
Later, in Section 6, we consider a third problem of interest – that of finding a minimal-sized
satisfying pattern.

ICDT 2015



134 Learning Tree Patterns from Example Graphs

Table 1 Complexity of satisfiability for positive datasets.

Pattern Embedding Graph Data Additional Complexity
Features Type Type Set Conditions

1.1 {//}, {∗, //} – – – – PTIME (Thm. 5)
1.2 – – – – BoundP1 PTIME (Thm. 5)
1.3 ∅ – – unq – PTIME (Thm. 5)

1.4 – 1:m – – BoundE2 PTIME (Thm. 7)
1.5 {*} 1:m udt oident, unq – PTIME (Thm. 7)
1.6 {*} 1:m udt any ConD3 PTIME (Thm. 7)
1.7 {*} 1:m udt any BoundLD4 PTIME (Thm. 7)

1.8 {*} 1:1 – – – NPC (Thm. 8)
1.9 ∅ 1:1 – oident, any – NPC (Thm. 8)

1.10 {*} 1:m drt – – NPC (Thm. 9)
1.11 {*} 1:m udt any – NPC (Thm. 9)

1.12 ∅ 1:m udt oident, any – NPH (Thm. 10)
1.13 ∅ 1:m drt oident, any – PSPACE (Thm. 10)
1 bounded number of nodes in patterns 3 connected dataset
2 bounded number of examples 4 bounded number of distinct labels in dataset

4 Positive Datasets

In this section we consider the satisfiability and learning problems for positive datasets.
Table 1 summarizes the complexity of satisfiability for a variety of settings. Note that:

The first column is simply a running number, that will be convenient for reference later
in Table 3.
The second column specifies features allowed in the pattern. All patterns allow labeled
nodes and child edges. We note the set of additional features (wildcards and/or descendant
edges) allowed in each row. For example, the first row considers the complexity of
satisfiability when patterns can contain descendant edges (and possibly wildcards) and
the third row considers the complexity of satisfiability when no special features (neither
wildcards nor descendant edges) are allowed.
The third column specifies the type of satisfaction (i.e., embedding) allowed. We use 1:1
to denote injective embeddings and 1:m to denote arbitrary embeddings.
The fourth column indicates whether the graphs (in the dataset and pattern) are undi-
rected (udt) or directed (drt).
Finally, the fifth column indicates whether the dataset is uniquely labeled (unq), is output
identifying (oident) or can be arbitrary (any). Note that every dataset that is uniquely
labeled is also output identifying.

For table cells in which no value is specified (i.e., “–” appears), the complexity result holds
regardless of the value of the cell. Due to lack of space, all proofs are deferred to the appendix.
However, next to each theorem, we state the intuition behind the proof.

In the remainder of this section, we discuss the complexity of satisfiability and learning,
with an emphasis on when and why the problem becomes tractable or intractable. The
following example demonstrates one of the difficulties, namely that it is sometimes the case
that all satisfying patterns will be exponential in the size of the input.

I Example 4. Consider the dataset in Figure 2, defined as ∆ = ({g+
1 , g

+
2 , g

+
3 }, (S, F )).

It is not difficult to see that the smallest tree pattern which satisfies all examples has



S. Cohen and Y. Weiss 135

g1 S // A // A //
��

F g2 S // A // A // A //yy
F

g3 S // A // A // A // A // A //uu
F

Figure 2 Dataset ∆ = ({g+
1 , g+

2 , g+
3 }, (S, F )), for which satisfying patterns are large.

1 + 2 ∗ 3 ∗ 5 + 1 = 32 nodes – it is simply a path starting with a node labeled S, and then
containing 30 consecutive nodes labeled A, and finally ending with a node labeled F (with
the first and last nodes in the path being the output nodes).

Example 4 demonstrates that we cannot always expect the problem of learning from
positive examples to be polynomial, as the pattern that must be learned may itself be at
least exponential in size. The precise complexity of satisfiability and learning, given various
restrictions of the settings, is discussed next.

Polynomial Cases. We start by considering cases where both satfiability/injective satisfia-
bility and learning/injective learning, are tractable. Theorem 5 presents three such cases.
Intuitively, they all follow from the fact that the given restrictions imply that (1) there are
polynomially many (small) patterns that must be considered, in order to find a satisfying
pattern, should one exists and (2) it is possible to check in polynomial time whether such a
pattern satisfies the dataset.

I Theorem 5. The (injective) satisfiability and (injective) learning problems are in polynomial
time for positive datasets, if one of the following conditions holds
1. patterns may contain descendant edges;
2. patterns are bounded in size;
3. patterns can contain neither wildcards nor descendant edges, and datasets are uniquely

labeled.

Intuitively, (1) holds since when patterns can contain descendant edges, (injective)
satisfiability and (injective) learning reduce to the problem of graph reachability. Case (2) is
immediate, since it implies that there are a bounded number of patterns, each of bounded
size, that must be considered. We note that this is useful in practice, as the user may
sometimes only be interested in viewing small patterns, and may disregard large patterns as
appearing by chance.

To show Case (3), we need the following definition. Let g1, . . . , gm be graphs. We denote
by g1 ⊗ · · · ⊗ gm the multiplication graph g defined as follows:

Vg ⊆ Vg1 × · · · × Vgm is defined as the set {(v1, . . . , vm) | lg1(v1) = · · · = lgm(vm)};
lg((v1, . . . , vm)) = lg1(v1);
((v1, . . . , vm), (u1, . . . , um)) ∈ Eg if and only if (vi, ui) ∈ Egi

for all i ≤ m;

The following proposition is easy to show.

I Proposition 6. Let ∆ = ({g+
1 , . . . , g

+
m}, (l1, . . . , ln)) be a dataset. Let g = g1 ⊗ · · · ⊗ gm.

There exists a pattern p containing no descendant edges and no wildcards that satisfies ∆
if and only if there are sets V ⊆ Vg and E ⊆ Eg, and a tuple of nodes (o1, . . . , on) from V

such that all three of the following conditions hold: (1) (V,E) is a tree, (2) lg(oi) = li for all
i ≤ n and (3) every leaf node in (V,E) is in (o1, . . . , on).

We note that Proposition 6 deals with satisfaction, and does not specifically consider
injective satisfaction. Notwithstanding, Case (3) of Theorem 5 holds for both satisfiability

ICDT 2015



136 Learning Tree Patterns from Example Graphs

and injective satisfiability. Intuitively, the proof follows from the fact that the multiplication
graph is polynomial in size when the dataset is uniquely labeled, and from the fact that the
existence of an embedding implies the existence of an injective embedding in this case.1

We now consider cases in which satisfiability and learning is tractable, but the injective
versions are not. (We show intractability of the injection versions of these problems in the
next section.)

I Theorem 7. The satisfiability problem for positive datasets is in polynomial time, if one
of the following conditions holds:
1. the number of examples is bounded by a constant;
2. patterns can contain wildcards, the dataset is undirected and also

(a) either is output identifying,
(b) or is connected (i.e., all examples are connected graphs),
(c) or contains a bounded number of distinguished labels.

Moreover, a satisfying pattern can be found and compactly represented in polynomial time
and space.

To prove Case (1) of Theorem 7, we show that if ∆ is a satisfiable positive dataset
containing m examples, each of which contains a graph with at most k nodes, then there
exists a pattern satisfying ∆ of size at most km. Thus, if the number of examples is bounded,
then there exists a satisfying pattern of size polynomial in the input. Note that such patterns
can be enumerated and their satisfaction verified. (Injective satisfaction cannot, however, be
efficiently verified, and thus, we will see later that two examples are sufficient for intractability
of injective satisfiability.)

We now consider Case (2) of Theorem 7. This is proven by showing that if there exists
a satisfying pattern, then there is one of a special format, called an output-rooted pattern.
Such patterns (t, (o1, . . . , ok)) have only wildcard labeled nodes, and consist of a path from
o1 to each oi for 1 < i ≤ k. This format allows compact representation (as we only have
to store the path lengths, and not the actual paths). Moreover, checking for the existence
of such a satisfying output-rooted pattern can be reduced to the problem of determining
the existence of paths of odd or even lengths between pairs of nodes, which is solved by
2-coloring the graph. This holds as whenever there is a path of odd (resp. even) distance
between two nodes, it can be extended to arbitrarily large paths of odd (resp. even) distance,
by repeatedly traversing back and forth over some edge in the path.

Intractable Cases. We now consider cases in which satisfiability, or injective satisfiability,
is intractable (unless P = NP). We start by considering injective satisfiability for positive
datasets, and show that in every case not covered by the previous section, the problem is
NP-complete. We note that membership in NP is immediate, since only injective embeddings
are allowed, and hence, one must only consider tree patterns which are at most the size of
the smallest graph in any example. NP-hardness is shown by a reduction to the Hamiltonian
path problem.

I Theorem 8. Injective satisfiability is NP-complete for positive datasets if patterns may
contain wildcards, or if datasets are not uniquely labeled. This holds even if there are only
two examples in the dataset, and even if there are only two distinguished labels in the dataset.

1 Note that the tuple of distinguished labels of a dataset cannot contain repeated labels, by definition.



S. Cohen and Y. Weiss 137

Next, we consider the satisfiability problem. Theorem 7 showed cases in which the presence
of wildcards makes satisfiability polynomial. In Theorem 9 we show that in all remaining
cases (either directed datasets, or undirected datasets of arbitrary type), if wildcards are
allowed, satisfiability becomes NP-complete.

I Theorem 9. When patterns can contain wildcards, satisfiability is NP-complete if one of
the following conditions holds:
1. the dataset is directed;
2. the dataset is undirected, is not output identifying, has an unbounded number of distin-

guished labels and examples may be unconnected graphs.

For Case (1) of Theorem 9, both NP-hardness and membership in NP are not easy to
show. For NP-hardness, our proof is by a reduction from 3-SAT. However, since patterns
can contain wildcards, the reduction is intricate, as labels on nodes can no longer be used to
differentiate between truth assignments. Instead, in our proof we create examples containing
cycles of different prime lengths, and employ the Chinese Remainder Theorem to show that
the dataset constructed is satisfiable if and only if the given 3-SAT formula is satisfiable.

The principle difficulty in showing membership in NP is that satisfying patterns may be
exponential in size. Thus, we must show that if there is a satisfying pattern, we can find
one representable in polynomial size, and also verify the correctness of such a pattern in
polynomial time. The crux of the proof lies in two claims that we show. First, if there exists
a satisfying pattern, then there is one that has a very simple form (a tree which branches
only at the root), with paths that are not more than exponentially long, and hence, can be
compactly written. Second, it is possible to determine in polynomial time whether there is a
(not necessarily simple) path of a given length l from a given node u to another node v.

For Case (2) of Theorem 9, Membership in NP follows from the fact that if a satisfying
pattern exists, then it can be polynomially represented using an output-rooted pattern.
NP-hardness is shown by a reduction from 3-SAT.

The remaining case to be considered is when both wildcards and descendent edges
are prohibited, and the dataset is not uniquely labeled. For undirected graphs, the precise
complexity of satisfiability is unknown; however satisfiability is at least NP-hard. For directed
graphs, satisfiability is PSPACE complete.

I Theorem 10. When patterns cannot contain wildcards, satisfiability of positive datasets is
NP-hard for graphs that are undirected and PSPACE-complete for graphs that are directed.
This holds even if there are only two distinguished labels in the dataset, and even if the dataset
is output identifying.

NP-hardness for undirected graphs is shown by a reduction from 3-SAT. PSPACE-
completeness for directed graphs is shown by a reduction from the problem of determining
emptiness of the intersection of deterministic finite automata [18].

5 Datasets with Positive and Negative Examples

In this section, we explore (injective) satisfiability and (injective) learning for datasets that
may contain both positive and negative examples. Unsurprisingly, these problems are usually
significantly harder when negative examples are allowed. We present comprehensive results
on the complexity of satisfiability and learning. For the injective versions of these problems
we also present complexity results; however, there are some remaining open problems. Note
that, as before, we primarily consider the (injective) satisfiability problem, but in cases where
it is shown to be polynomial, we also consider (injective) learning. See Table 2 for a summary
of the satisfiability results of this section.

ICDT 2015



138 Learning Tree Patterns from Example Graphs

Table 2 Complexity of satisfiability for arbitrary datasets (which may contain both positive and
negative examples).

Pattern Embedding Graph Data Additional Complexity
Features Type Type Set Conditions

2.1 – – – – BoundP1 PTIME (Thm. 11)
2.2 ∅, {//} 1:m udt unq – PTIME (Thm. 12)
2.3 {∗}, {∗, //} 1:m udt unq BoundLD2 PTIME (Thm. 12)

2.4 ∅, {//} 1:1 – unq – NPC (Thm. 13)
2.5 – 1:m drt unq – NPC (Thm. 14)
2.6 {∗}, {∗, //} 1:m udt unq – NPC (Thm. 14)

2.7 – 1:m – oident, any – PSPACE (Thm. 15)
2.8 – 1:1 – – – NPH, Co-NPH, in ΣP

2 (Thm. 16)
1 bounded number of nodes in patterns 2 bounded number of distinct labels in dataset

Polynomial Cases. When datasets can contain negative examples, there are only few cases
in which satisfiability is tractable. In particular, for the special case where the patterns are of
bounded size, the problem remains polynomial. As before, this holds as there are a polynomial
number of different bounded patterns that must be considered, and all embeddings can be
polynomially enumerated and verified.

I Theorem 11. (Injective) Satisfiability and (injective) learning of datasets is in polynomial
time, regardless of the type of dataset and pattern, if the tree patterns are bounded in size.

Theorem 12 presents two additional cases in which satisfiability and learning are in
polynomial time. The first case, in which patterns cannot contain wildcards, is easily verified
using the multiplication graph of the positive examples. The second case, which allows for
wildcards, is shown by proving that the number of different patterns that must be considered
is polynomial in the size of the input. Once again, this requires the ability to bound lengths
of pattern paths over undirected graphs.

I Theorem 12. Satisfiability and learning of uniquely-labeled undirected datasets is in
polynomial time, if one of the following conditions hold:
1. patterns cannot contain wildcards;
2. patterns can contain wildcards, but only have a bounded number of distinguished labels.

Intractable Cases. Theorem 12 showed cases in which the fact that the dataset is uniquely
labeled yields tractability. Unfortunately, the following two theorems shows that this is not
always the case. First, we show that Case (1) of Theorem 12 no longer holds if injective
satisfiability is desired.

I Theorem 13. The injective satisfiability problem is NP-complete if the dataset is uniquely
labeled and the patterns cannot contain wildcards.

For the non-injective case, the following theorem shows that every case of uniquely labeled
datasets, other than those considered in Theorem 12, is NP-complete.

I Theorem 14. Satisfiability of uniquely-labeled datasets is NP-complete, if one of the
following conditions holds
1. the dataset is directed;
2. the patterns can contain wildcards, and there is an unbounded number of distinguished

labels.



S. Cohen and Y. Weiss 139

For Case (1), NP-hardness is shown by a reduction from 3-SAT. Membership in NP is
shown by proving that if a satisfying pattern exists, then there is one that has a representation
that is polynomial in the size of the input. We note that proving the latter (i.e., membership)
is quite intricate, and is based extensively on the fact that the datasets are uniquely-labeled.
Proving this result requires, among other claims, the ability to bound the length of paths in
a satisfying pattern. Thus, for example, we can show that in a directed path with k nodes,
whenever there is a path from a node u to a node v of length c > 2k2 · k!, there is also a
path from node u to node v of length c− k!.

For Case (2), membership is shown using the techniques from Theorem 12, while hardness
is shown by a reduction from 3-SAT.

The previous theorems fully cover the cases in which the dataset is uniquely labeled.
For datasets that are not uniquely labeled, satisfiability is PSPACE complete, regardless
of whether the dataset is directed or undirected, and regardless of the allowed features in
the patterns. In fact, whereas bounding the number of examples was sufficient to achieve
polynomial time for determining satisfiability of positive datasets, this is no longer the case
when negative examples are allowed. Satisfiability is PSPACE complete, for datasets that
are output identifying or arbitrary, even when there is only a single positive example and a
constant number of negative examples.

I Theorem 15. Satisfiability of datasets that are output identifying or arbitrary is PSPACE-
complete. This holds even if there are only two distinguished labels, a single positive example
and a constant number of negative examples.

We show the above result by a reduction to the problem of equivalence of NFAs [24].
This is achieved by creating examples in which satisfying patterns corresponds to words in
an NFA. We note that even when wildcards and descendant edges are technically allowed
within patterns, these features can be effectively ruled out using appropriately defined
negative examples. We note also that it is possible to use an undirected graph to simulate
an automaton (which is, in essence, a directed graph).

We now consider one remaining case of injective satisfiability. For arbitrary graphs,
injective satisfiability is NP-hard and Co-NP-hard, and is in ΣP

2 . NP-hardness follows from
Theorem 8, Co-NP-hardness can be shown by a reduction to the Hamiltonian path problem,
and containment in ΣP

2 is immediate.

I Theorem 16. The injective satisfiability problem is NP-hard, Co-NP-hard and in ΣP
2 if

the dataset can contain both positive and negative examples, and either the dataset is not
uniquely labeled, or patterns can contain wildcards.

6 Learning Minimal Tree Patterns

The previous sections dealt with the (injective) satisfiability and (injective) learning problems,
i.e., determining whether there exists a satisfying pattern for a dataset, and finding an
arbitrary such pattern. In this section we focus on finding a minimal satisfying pattern, i.e.,
a satisfying pattern of minimal size.

Formally, given a dataset ∆, we say that a pattern p = (t, ō), satisfying ∆, is minimal
if there does not exist a pattern p′ = (t′, ō′) such that (1) p′ satisfies ∆ and (2) t′ has less
nodes than t. This section studies the following problem:

I Problem 3 (Minimal (Injective) Learning). Given a dataset ∆, find a minimal pattern p
that (injectively) satisfies ∆.

ICDT 2015



140 Learning Tree Patterns from Example Graphs

Table 3 Complexity of minimal learning problem.

Case Num of Pos/ Pattern Embedding Graph Data Additional Complexity
Dist. Labels Neg Features Type Type Set Conditions

1.1 – + {//}, {∗, //} – – – – PTIME (Thm. 17)
1.2, 2.1 – – – – – – BoundP1 PTIME (Thm. 17)

1.3–1.7 var + ∅, {∗} – – – – NPC (Thm. 19)
1.3 const + ∅ – – unq – PTIME (Thm. 20)
1.4 const + – 1:m – – BoundE2 PTIME (Thm. 20)

1.5–1.7 const + {*} 1:m udt any – PTIME (Thm. 18)

2.2, 2.3 – ± – 1:m udt unq – NPC (Thm. 21)
1 bounded number of nodes in patterns 2 bounded number of examples

Obviously, the problem of finding a minimal satisfying pattern is no easier than determining
satisfiability or finding an arbitrary satisfying pattern. Under most conditions, both of the
latter problems are intractable. However, in the previous sections we identified several cases
in which satisfiability and learning are polynomial-time problems. For these cases, we study
the complexity of the problem of finding a minimal satisfying pattern. Finding such patterns
is clearly a problem of practical interest.

The complexity results are summarized in Table 3. We emphasize that the only cases
considered here are those for which satisfiability and learning have previously been shown to
be in polynomial time. Thus, cases not considered in this table are certainly intractable. All
columns other that the first three, appeared in previous tables. In addition:

The first column indicates the number in Table 1 or 2 of the case considered.
The second column indicates whether the number of distinguished labels in the dataset is
assumed to be constant (const) or whether this number is a variable of the input (var).
We note that it is natural to assume that the number of distinguished labels is constant,
as it is likely to a small number (whereas the examples may be large). As indicated in
the table, often the assumption that the number of distinguished labels is constant is
sufficient to achieve polynomial time.
The third column indicates whether the dataset contains only positive examples (+) or
both positive and negative (±). In previous sections this column was not needed as these
two different cases were presented in different tables.2

In the remainder of this section, we prove the complexity results summarized in Table 3.
We divide up the discussion by the type of proof technique used to derive the results.

Polynomial Number of Candidates. In some cases, given ∆, it is possible to define a
polynomial size set of patterns P , for which it is guaranteed that if ∆ is satisfiable, then
P must contain a minimal-size satisfying pattern. We will say that P is the set of minimal
pattern candidates. If P is polynomial in size, and can be efficiently found, then minimal
learning is clearly in polynomial time. The next theorem deals with two cases in which such
a polynomial size set of candidates can be efficiently found, and thus, minimal satisfying
and injectively satisfying patterns can be found in polynomial time. Both of these cases are
quite straightforward – descendent edges significantly simplify the candidates that must be
considered (in the first case), and the second case explicitly bounds the size of the candidates
considered.

2 As before, columns with “–” allow for any value, without affecting problem complexity.



S. Cohen and Y. Weiss 141

I Theorem 17. Let ∆ be a satisfiable dataset. Then, it is possible to find a minimal
(injectively) satisfying pattern in polynomial time if any of the following conditions hold:
1. ∆ is positive, and patterns can contain descendant edges;
2. there is a constant k, such that only patterns containing at most k nodes are to be returned;

The following theorem presents an additional case where the set of candidates for
satisfaction is polynomial. Note that bounding the number of distinguished labels infers a
bound on the number of leaf nodes in the patterns, which can be used to significantly reduce
the number of patterns considered.

I Theorem 18. Let ∆ be a satisfiable dataset with a constant number of distinguished labels.
Then, it is possible to find a minimal satisfying pattern in polynomial time if ∆ is positive
and undirected, and patterns can contain wildcards.

Reductions to the Steiner Tree Problem. We consider cases in which the problem of
finding a minimal satisfying pattern is similar to the problem of finding a Steiner tree in a
graph. The Steiner tree decision problem is: given a graph g, a set of nodes V , and a number
k, find a subtree of g of size at most k, containing V . It is well known that the Steiner tree
problem is NP-complete. However, it is solvable in polynomial time if the number of nodes
in V is constant, both if the graph is undirected [9], and if the graph is directed [20] (and a
rooted Steiner tree is desired).

I Theorem 19. Let ∆ be a positive dataset with an unbounded number of distinguished
labels and let k be a positive integer. Then, the problem of determining whether there exists a
pattern p that (injectively) satisfies ∆ and contains at most k nodes is NP-complete if no
descendant edges are allowed in the pattern.

Membership is easy, as given a pattern with k nodes, we can guess and verify embeddings
in polynomial time. Hardness is shown by a reduction from the Steiner tree problem.

When considering datasets with a constant number of labels, the minimal learning problem
sometimes becomes tractable. This is the case, in particular, in Theorem 20. The proof
leverages the aforementioned polynomial case for Steiner trees. In particular, in both cases
below, the multiplication graph of the examples is guaranteed to be polynomial in size, and
a Steiner tree in this graph can be used to generate a minimal satisfying pattern.

I Theorem 20. Let ∆ be a positive dataset with a constant number of distinguished labels.
Then, it is possible to find a minimal satisfying pattern in polynomial time if one of the
following conditions hold:
1. ∆ is uniquely labeled, and no wildcards are allowed in the patterns; or
2. ∆ contains a constant number of examples.

Datasets With Negative Examples. The final case that must be considered is one in which
the dataset can contain both positive and negative examples. Bounding the number of
distinguished labels no longer leads to tractability in this case.

I Theorem 21. Let ∆ be a dataset with both positive and negative examples, and with two
distinguished labels. Let k be a positive integer. Then, the problem of determining whether
there exists a pattern p that satisfies ∆ and contains at most k nodes is NP-complete if ∆ is
uniquely labeled and undirected.

Once again, membership in NP is immediate. We show NP-hardness by using the same
reduction from 3-SAT as in the proof of Theorem 13.

ICDT 2015



142 Learning Tree Patterns from Example Graphs

7 Conclusion

In this paper we extensively studied three problems – satisfiability, learning and minimal
learning, for datasets containing positive and negative example graphs, and a tuple of
distinguished labels. We have shown that the complexity of these problems is highly
dependent on the precise setting, i.e., that the presence or absence of specific features can
make these problems significantly easier or harder.

Many interesting problems have been left open for future work. First, from a practical
standpoint, we intend to investigate how these results can be integrated into a system, in
order to allow users to provide examples, instead of explicit queries. A second problem of
interest is to develop an algorithm that can find top-k satisfying patterns (preferably of
diverse structure), for some appropriately defined ranking problem,. Third, we intend to
study the problem of maximally satisfying the given examples, when there is no pattern
that can satisfy all examples. Finally, we intend to study classic machine learning questions
arising from this setting, such as investigating in which cases any specific hypothesis can
be guaranteed to be learned, given that the system can provide examples to the user, and
specifically ask whether these examples are positive. In machine learning terminology, this is
the problem of learning patterns from (equivalence/membership/subset etc.) queries.

Acknowledgments. The authors were supported by the Israel Science Foundation (Grant
1467/13) and the Ministry of Science and Technology (Grant 3-9617).

References
1 Thomas Amoth, Paul Cull, and Prasad Tadepalli. On exact learning of unordered tree

patterns. Machine Learning, 44:211–243, 2001.
2 Dana Angluin. Negative results for equivalence queries. Machine Learning, 5(2):121–150,

July 1990.
3 Timos Antonopoulos, Frank Neven, and Frédéric Servais. Definability problems for graph

query languages. In Proceedings of the 16th International Conference on Database Theory,
pages 141–152, New York, NY, USA, 2013. ACM.

4 Hiroki Arimura, Hiroki Ishizaka, and Takeshi Shinohara. Learning unions of tree patterns
using queries. Theor. Comput. Sci., 185(1):47–62, 1997.

5 Julien Carme, Michal Ceresna, and Max Goebel. Query-based learning of XPath expres-
sions. In ICGI, 2006.

6 Adriane Chapman and H. V. Jagadish. Why not? In SIGMOD. ACM, 2009.
7 Sara Cohen and Yaacov Y. Weiss. Certain and possible XPath answers. In ICDT, 2013.
8 Anish Das Sarma, Aditya Parameswaran, Hector Garcia-Molina, and Jennifer Widom. Syn-

thesizing view definitions from data. In ICDT, 2010.
9 S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. Networks, 1(3):195–207,

1971.
10 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman, 1979.
11 Melanie Herschel, Mauricio A. Hernández, and Wang-Chiew Tan. Artemis: a system for

analyzing missing answers. Proc. VLDB Endow., 2:1550–1553, August 2009.
12 Vagelis Hristidis, Yannis Papakonstantinou, and Andrey Balmin. Keyword proximity search

on XML graphs. In ICDE, 2003.
13 Jiansheng Huang, Ting Chen, AnHai Doan, and Jeffrey F. Naughton. On the provenance

of non-answers to queries over extracted data. PVLDB, 1(1):736–747, 2008.



S. Cohen and Y. Weiss 143

14 Chuntao Jiang, Frans Coenen, and Michele Zito. A survey of frequent subgraph mining
algorithms. Knowledge Eng. Review, 28(1):75–105, 2013.

15 Benny Kimelfeld and Phokion G. Kolaitis. The complexity of mining maximal frequent
subgraphs. In PODS, 2013.

16 Benny Kimelfeld and Yehoshua Sagiv. Finding and approximating top-k answers in keyword
proximity search. In PODS, 2006.

17 Raymond Kosala, Maurice Bruynooghe, Jan Van Den Bussche, and Hendrik Blocked. Infor-
mation extraction from web documents based on local unranked tree automaton inference.
In IJCAI, 2003.

18 D. Kozen. Lower bounds for natural proof systems. In FOCS, 1977.
19 Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu. WHY SO?

or WHY NO? Functional Causality for Explaining Query Answers. In Management of
Uncertain Data, 2010.

20 Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, Saket Saurabh, and Somnath
Sikdar. FPT algorithms for connected feedback vertex set. J. Comb. Optim., 24(2):131–
146, 2012.

21 Rika Okada, Satoshi Matsumoto, Tomoyuki Uchida, Yusuke Suzuki, and Takayoshi
Shoudai. Exact learning of finite unions of graph patterns from queries. In Algorithmic
Learning Theory, LNCS, pages 298–312. Springer Berlin Heidelberg, 2007.

22 Stefan Raeymaekers, Maurice Bruynooghe, and Jan Bussche. Learning (k,l)-contextual tree
languages for information extraction from web pages. Machine Learning, 71(2-3):155–183,
June 2008.

23 Slawek Staworko and Piotr Wieczorek. Learning twig and path queries. In ICDT, 2012.
24 L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In STOC,

1973.
25 Quoc Trung Tran and Chee-Yong Chan. How to conquer why-not questions. In SIGMOD,

2010.
26 Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. Query by output. In

SIGMOD. ACM, 2009.

ICDT 2015



Characterizing XML Twig Queries with Examples
Sławek Staworko1 and Piotr Wieczorek2

1 University of Lille 3, INRIA LINKS, CNRS
Lille, France
slawomir.staworko@inria.fr

2 University of Wrocław, Institute of Computer Science
Wrocław, Poland
piotrek@cs.uni.wroc.pl

Abstract
Typically, a (Boolean) query is a finite formula that defines a possibly infinite set of database
instances that satisfy it (positive examples), and implicitly, the set of instances that do not satisfy
the query (negative examples). We investigate the following natural question: for a given class
of queries, is it possible to characterize every query with a finite set of positive and negative
examples that no other query is consistent with.

We study this question for twig queries and XML databases. We show that while twig
queries are characterizable, they generally require exponential sets of examples. Consequently,
we focus on a practical subclass of anchored twig queries and show that not only are they
characterizable but also with polynomially-sized sets of examples. This result is obtained with
the use of generalization operations on twig queries, whose application to an anchored twig
query yields a properly contained and minimally different query. Our results illustrate further
interesting and strong connections between the structure and the semantics of anchored twig
queries that the class of arbitrary twig queries does not enjoy. Finally, we show that the class of
unions of twig queries is not characterizable.

1998 ACM Subject Classification H.2.3 Query languages, H.2.1 Normal forms

Keywords and phrases Query characterization, Query examples, Query fitting, Twig queries

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.144

1 Introduction

One of the central, if not defining, instruments in computer science is using a formula, a
finite syntactic object, to define a (possibly infinite) set of its models. A typical example
are regular expressions that define languages of words. Database queries also fall into this
category, which is best illustrated with Boolean queries: a query q defines the set of instances
satisfying q, positive examples, and implicitly the set of instances that do not satisfy q,
negative examples. In this paper, we study the question of (finite) characterizability: Can
every query be characterized with a finite set of examples? More precisely, given a class of
queries Q is it possible for every q ∈ Q to find a set of examples such that q is the only query
(modulo equivalence) in Q consistent with it i.e., a query satisfying all positive examples and
none of negative examples. And if it is possible, can we say anything about the number and
the sizes of the necessary examples?

The question of characterizability arises naturally in the context of learning/teaching [9, 6]
which deals with the problem of constructing a formula (query) consistent with a given set
of examples. However, research on characterizability has a number of potential applications
of independent interest because it yields way to generate a set of examples consistent with a

© Sławek Staworko and Piotr Wieczorek;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 144–160

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.144
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


S. Staworko and P. Wieczorek 145

given query. Such examples can be used, for instance, for elementary query engine debugging,
and query visualization and explanation. The exhaustive nature of the examples provided by
characterizability i.e., there is exactly one query satisfying the examples, may also be useful
in final, verification, stages of reverse engineering of database queries.

In this paper, we investigate the problem of characterizability for XML databases and
twig queries [2, 14]. XML documents can be seen as labeled unranked trees and twig queries
are tree-shaped patterns that additionally use a wildcard label ? (matching any label) and
descendant edges (matching a path of positive length). Twig queries are the core of virtually
any XML query language and have been extensively studied in the literature [4]. In particular,
learning twig queries from examples has been previously investigated [19, 5] and the current
paper can be seen as a continuation of this line of work and an attempt at deepening our
understanding of the relationship between a query and its examples.

In essence, our results show that characterizability is a measure of richness of the query
class, which is closely related to its expressive power. We show that unions of twig queries
are not characterizable because virtually any set of examples has infinitely many consistent
queries i.e., the class of unions of twig queries is very rich. On the other hand, the class of
twig queries is less rich, given a tree the number of twig queries satisfied in it is finite, which
allows to show that twig queries are characterizable.

While twig queries are characterizable with finite sets of examples, we show that the
number of necessary examples may be exponential. The main contribution of this paper is
showing that (polynomially) small sets of examples are sufficient to characterize anchored
twig queries [19]. In essence, this subclass of twig queries forbids descendant edges incident
to a ? node, which merely prevents from imposing conditions on ancestry with a lower
bound on depth: “a node x is a ancestor of node y and the path from x to y is of length
≥ k”, where k > 1. While the expressive power does not seem to be significantly restricted
from the practical point of view, this class of twig queries exhibits a very close relationship
between the structure and the semantics: containment of two twig queries is equivalent to
the existence of an embedding between the queries, an equivalence that does not hold for
arbitrary twig queries [13]. This relationship between the structure of the query and its
semantics goes even further [19]: the use of two positive examples of an anchored query q
allows to identify all queries that contain q. We continue to explore this relationship and
deepen its understanding by characterizing the structure of the semi-lattice of anchored twig
queries: for a given anchored twig query q we are interested in the number and the sizes of
the most specific anchored twig queries properly containing q, and interestingly, we show
that their number and their sizes are polynomially small (w.r.t. the size of q). This result is
essential in showing that anchored twig queries have polynomially-sized characterizing sets
of examples.

To understand the existence of an embedding, and hence the containment, between two
anchored twig queries, we study three generalization operations applied to twig queries (cf.
Fig. 5): 1) changing a label to ?, 2) changing the type of an edge from child to descendant,
and 3) removing a node. While natural and elementary, these operations capture precisely
the subclass of injective (ancestor-preserving) embeddings between queries: query p can be
obtained from a query q by applying a sequence of generalization operations if and only
if there is an injective embedding of q into p. Consequently, when applied, in a diligent
manner, to anchored twig queries they allow to characterize the semi-lattice of anchored
twig queries under injective semantics. We also show that anchored twig queries have unique
canonical forms which can be efficiently obtained by iteratively applying the operations
and the unique canonical form is in fact the (size-)minimal equivalent query. This further

ICDT 2015



146 Characterizing XML Twig Queries with Examples

illustrates the desirable properties of anchored twig queries as minimization for arbitrary
twig queries is known to be intractable [2, 13]. We point out, however, that classes of twig
queries properly containing anchored twig queries are known to have tractable minimization
based on operations reducing the query [11].

To extend the characterization results from injective to standard semantics, we identify
mapping overlap as the essential difference between the corresponding two type of embeddings:
unlike the injective embedding, the standard embedding of a query q into a query p may
map different fragments of q into the same fragment of p creating an overlap of the images
of the different fragments of q. To address this difference we explore using a duplication
operation that creates separate copies of the fragment of p thus eliminating the overlap.
However, this operation introduces redundancies and may increase arbitrarily the size of
the query. Consequently, it is applied together with different generalization operations to
avoid introducing redundancies and to avoid undesirable growth of the query we devise a
recursive pattern of applying duplication operations that allows to polynomially bound the
number of introduced copies. The number of the generalizations is linear in the size of the
original query, and thanks to applying the duplication operation in a controlled manner,
the size of each generalization is at most quadratic. The generalizations are then used to
construct a set of characterizing examples consisting of a polynomial number of examples
each of polynomially bounded size.

The main contributions of the paper are:
We formulate the problem of characterizability of a Boolean class of XML queries with
examples and study it for classes of twig queries.
We show that unions of twig queries are not characterizable while twig queries alone are
but the number of examples necessary to characterize a twig query may be exponential
in the size of the query.
We investigate characterizability of a rich subclass of anchored twig queries, and propose
a set of natural generalization operations that allows to characterize with a polynomially-
sized set of examples any anchored twig query under the injective (ancestor-preserving)
semantics.
We propose a duplication operation whose diligent use allows to extend the characteriz-
ability to anchored twig queries to the standard semantics.

Related work. Our work is closely related to the scenario of teaching [10, 9, 16] where the
set of examples to be presented is selected by a helpful teacher. Goldman and Kearns [9]
define a sequence of positive and negative examples to be a teaching sequence for a given
concept c if it uniquely specifies c in the concept class C. Hence, this is essentially the same
idea as in our case. They study the properties of a teaching dimension of a concept class
that is a minimum number of examples a teacher has to reveal in order to uniquely identify
any concept in the class. They consider, however, different concept classes then ours, namely
orthogonal rectangles and boolean formulas. Also, teaching sequences for other classes of
boolean formulas has been studied in [18, 3].

Recently, learning and verification of qhorn queries was studied in [1]. qhorn is a special
class of Boolean quantified queries whose underlying form is conjunctions of quantified Horn
expressions. In order to verify that a given query is equivalent to the one intended by a user,
a unique verification set of polynomial size is constructed. The verification set consists of
examples uniquely determining the given query. The verification algorithm classifies some
questions in the set as answers (positive examples) and others as non-answers (negative
examples). The query is incorrect if the user disagrees with any of the query’s classification
of questions in the verification set.



S. Staworko and P. Wieczorek 147

A number of notions of characterizability has been studied in the context of grammatical
inference [6]. Their work is related to Gold’s classical model [7, 8]. In the first approach
characteristic samples are constructed for a given algorithm. The algorithm must return a
concept consistent with the given sample and for any sample extending the characteristic sam-
ple for the concept c, it has to return c. In another variant characterizability is parametrized
with a set I of algorithms, i.e., for each concept c, its characteristic set must allow any
algorithm from I to identify c. Finally, they introduce the following notion: a concept class
C is polynomially characterizable iff for each concept c there exists a characteristic sample S
of polynomial size such that if another non-equivalent concept c′ is compatible with S then c
is not compatible with the characteristic sample for c′. In our case q is the only query that
is consistent with the characteristic sample for q.

In the learning scenario the main objective is to find a learning algorithm that produces
a formula (query) consistent with a given set of examples [7, 8, 6, 19, 20]. One typically
uses a weaker notion of characteristic sample w.r.t. a given learning algorithm. This
allows learner bias, collusion, e.g., using a fixed order on the alphabet in language inference.
Characterizability is stronger because it implies the existence of a characterizing sample
independent of the learning algorithm (no bias).

Organization. In Section 2 we recall basic notions on XML and twig queries. In Section 3 we
formalize the problem of characterizing queries with examples and show that unions of twig
queries are not characterizable. In Section 4 we show that twig queries are characterizable
but may require exponentially many examples. In Section 5 we recall anchored twig queries
and their fundamental properties. In Section 6 we present basic generalization operations,
show their connection with injective embeddings, and show how to use them to characterize
anchored twig queries under the injective semantics with polynomially small examples. In
Section 7 we show that the generalization operations can be used to minimize anchored twig
query and then show how to extend the approach used in Section 6 to construct polynomially
small sets of examples characterizing anchored twig queries in the standard semantics. In
Section 8 we summarize our results and outline future directions of study.

Acknowledgments. This paper is partially supported by the Polish National Science Centre
grant DEC-2013/09/B/ST6/01535.

2 Basic notions

In this section we recall basic notions used to model XML documents and twig queries.
Throughout this paper we assume an infinite set of node labels Σ which allows us to model
documents with textual values. Also, we fix one special label r ∈ Σ that we use on the root
nodes of all trees and queries.

Trees. We model XML documents with unranked trees whose nodes are labeled with
elements of Σ. Formally, a tree t is a tuple (Nt, roott, parentt, labt), where Nt is a nonempty
finite set of nodes, roott ∈ Nt is the root node, parentt : Nt \{roott} → Nt is a child-to-parent
function, and labt : Nt → Σ is a labeling function. By Tree we denote the set of all trees. An
example of a tree is presented in Fig. 1a. We define a number of additional notions. A leaf is
any node that has no children. A path in t from n to m (of length k) is a sequence of nodes
n = n1, . . . , nk = m such that parentt(ni) = ni−1 for 1 < i ≤ k. Then we also say that n is
an ancestor of m and m is a descendant of n. Note that those two terms are reflexive: every

ICDT 2015



148 Characterizing XML Twig Queries with Examples

r

a b

a

b

c

a

b

(a) Tree t0.

r

b

a?

(b) Twig query q0.

r

a b

a

b

c

a

b

r

b

a?

r

b

a?

(c) Embeddings of q0 in t0.

Figure 1 Tree, twig query, and embeddings.

node is its own ancestor and descendant. We add the adjective proper to indicate that n and
m are different nodes. The depth of a node is the length of the path from the root to the
node. The height of a tree t, denoted height(t), is the depth of its deepest leaf. The size of t,
denoted size(t), is the number of its nodes.

Queries. In general, a class of Boolean queries is a set Q with an implicitly given function
L : Q → 2Tree that maps every query q ∈ Q to the set L(q) ⊆ Tree of trees that satisfy q.
The base class of queries, that we study in this paper, are (Boolean) twig queries, known also
as tree patterns [2]. Basically, a twig query is an unranked tree that may additionally use
a distinguished wildcard symbol ? as a label and has two types of edges, child and proper
descendant, corresponding to the standard XPath axes. Fig. 1b contains example of a twig
queries: child edges are drawn with a single line and descendant edges with a double line.

Formally, a twig query q is a tuple (Nq, rootq, parentq, labq, edgeq), where Nq is a nonempty
finite set of nodes, rootq is the root node, parentq : Nq \ {rootq} → Nq is a child-to-parent
function, labp : Nq → Σ∪ {?} is a labeling function, and edgeq : Nq \ {rootq} → {child, desc}
is the function that indicates the type of the incoming edge of a non-root node. By Twig
we denote the set of all twig queries. We adapt the standard notions defined for trees (leaf,
path, etc.) to twig queries by ignoring the edgeq component of the query.

Embeddings. We define the semantics of twig queries using the notion of an embedding
which essentially maps nodes of the twig query to the nodes of the tree in a manner consistent
with the semantics of the edges and the node labels. In the sequel, for two x, y ∈ Σ ∪ {?} we
say that x matches y if y 6= ? implies x = y. Note that this relation is not symmetric: the
label a matches ? but ? does not match a. Formally, an embedding of a twig query q in a
tree t is a function λ : Nq → Nt such that:
1. λ(rootq) = roott,
2. labt(λ(n)) matches labq(n) for every node n of q,
3. λ(n) is a proper descendant of λ(parentq(n)) for every n ∈ Nq \ {rootq},
4. λ(n) is a child of λ(parentq(n)) for every n ∈ Nt \ {rootq} such that edgeq(n) = child.
Then, we say that t is satisfies q. Fig. 6 presents all embeddings of the query q0 in tree t0.
The language of a query q ∈ Twig is the set of all trees satisfying q

L(q) = {t ∈ Tree | t satisfies q}.

The notion of an embedding extends in a natural fashion to a pair of queries q, p ∈ Twig: an
embedding of q in p is a function λ : Nq → Np that satisfies the conditions 1, 2, and 3 above
(with t being replaced by p) and the following condition (which ensures that child edges are
mapped to child edges only):



S. Staworko and P. Wieczorek 149

4′. λ(n) is a child of λ(parentq(n)) and edgep(λ(n)) = child for every n ∈ Nq \ {rootq} such
that edgeq(n) = child.

Then, we write q 4 p. Because a tree can be seen as a twig query, we often abuse the notation
and write t 4 q to indicate that there is an embedding of q in t.

Query containment and equivalence. Given two queries q and p, q is contained in p, in
symbols q ⊆ p, iff L(q) ⊆ L(p). We say that q and p are equivalent, denoted q ≡ p, if
L(q) = L(p). It is well known that for twig queries, the existence of an embedding implies
containment but the converse does not hold in general [13]. There are also significant
computational differences: the containment of twig queries is coNP-complete [17, 15] whereas
testing the existence of an embedding is in PTIME.

3 Characterizing queries with examples

In this section we formally define characterizability of queries and show that unions of twig
queries are not characterizable.

An example is an element of Tree × {+,−}, a pair consisting of a tree and an indicator
of whether the example is positive (+) or negative (−). Every query q defines the set of its
examples L±(q):

L±(q) = L(q)× {+} ∪ (Tree \ L(q))× {−}.

Given a set of examples S, we denote by S+ = {t ∈ Tree | (t,+) ∈ S} and by S− = {t ∈
Tree | (t,−) ∈ S} the sets of respectively positive and negative examples in S. A query q is
consistent with examples S iff S+ ⊆ L(q) and S− ∩ L(q) = ∅ (or simply S ⊆ L±(q)).

I Definition 3.1. A class of queries Q is characterizable iff for every query q ∈ Q, there
exists a finite set of examples Char(q) characterizing q i.e., such that q is the only query in
Q consistent with Char(q) (modulo query equivalence).

Characterizability alone does not ensure any bound on the cardinality of the set of char-
acterizing examples nor any bound on their size. As we show later on, twig queries are
characterizable but the number of necessary examples may be exponential, which may be
undesirable for practical purposes. Therefore, we formalize a variant of characterizability
that ensures a more manageable size of the characterizing set of examples.

I Definition 3.2. A class of queriesQ is succinctly characterizable iff there exists a polynomial
poly(x) such that for every query q ∈ Q there exists a set of examples Char(q) characterizing
q and such that its cardinality is bounded by poly(size(q)) and so is the size of every of its
elements.

3.1 Non-characterizability of unions of twig queries
We now consider the class UTwig consists of finite subsets of twig queries Q = {q1, . . . , qk} ⊆
Twig interpreted in the natural fashion: L(Q) =

⋃
{L(q) | q ∈ Q}. The height of a nonempty

union of twig queries Q is the maximum height of a query in Q. Note that if the height of
tree t is superior to the height of a twig query q, then q is not satisfied in t. Naturally, the
same necessary condition hold for unions of twig queries.

We say that a query Q ∈ UTwig is unsaturated if the set of its negative examples
Tree \ L(Q) is infinite and contains trees of arbitrary height. The universal query {} is not
unsaturated because it has no negative examples. One can, however, easily see that UTwig

ICDT 2015



150 Characterizing XML Twig Queries with Examples

contains unsaturated queries e.g., the singleton query Q0 = {q0} with q0 from Fig. 1b is
unsaturated because any tree that whose root node does not have a b child is a negative
example of Q0.

Now, take any unsaturated query Q ∈ UTwig and a set of examples S consistent with Q.
Let U− = (Tree \ L(Q)) \ S− be the set of all negative examples of Q that are not used in
S. From U− we pick any element t whose height is greater than the height of any negative
example in S. We treat t as a twig query and construct Q′ = Q∪{t}. Clearly, Q′ is consistent
with S because all positive examples S+ are satisfied by Q ⊆ Q′ and none of the negative
examples satisfy the newly added query component t because the height of t is greater than
the height of any of the negative examples. Also, Q and Q′ are not equivalent because t
satisfies Q′ but not Q.

I Theorem 3.3. Unions of twig queries are not characterizable.

Finally, we point out that when applied with diligence the above procedure can be iterated
infinitely thus generating an infinite sequence of queries consistent with the given set of
examples.

4 Characterizability of Twig queries

In this section we show that Twig queries are characterizable but may require a number of
examples exponential in the size of the query.

I Proposition 4.1. Twig queries are characterizable.

Proof. For a tree t ∈ Tree we define the Twig-theory it generates Th(t) = {q ∈ Twig | t ∈
L(q)}, the set of all twig queries that are satisfied by t. First, we show that for any tree its
Twig-theory is finite modulo query equivalence. We observe that the height of any query
q ∈ Th(t) is bound by the height of t and the number of different labels in q is also bounded
by the number of different labels in t. Because we consider only non-equivalent members
of Th(t), no node of q has two identical subtrees rooted at any two children of the node.
The two observations above allow us to inductively prove that the number of non-equivalent
different queries in Th(t) is indeed finite.

Next, for a given twig query q we outline the construction of a characterizing set of
examples. For this, we construct a positive example tq0 obtained from q by replacing every
descendant edge by a child edge and using a fresh label a0 (not used in q) to replace every
?. Note that q ∈ Th(tq0) and that for any p ∈ Th(tq0) that is not equivalent to q there exists
a witness t of the non-equivalence of p and q, which we can use as a positive example, if t
satisfies q but not p, or as a negative example, if t satisfies p but not q. Since Th(tq0) contains
a finite number of queries modulo equivalence, only a finite number of examples is necessary
to construct a set of examples characterizing q. J

Now, we show that twig queries may require exponential number of examples to charac-
terize them.

I Proposition 4.2. For any natural number n there exists a twig query q such that any set
characterizing q contains at least 2n examples.

Proof. For a given natural number n we construct a query q and a set of twig queries U
such that:
1. for each p ∈ U we have p ⊆ q;



S. Staworko and P. Wieczorek 151

A0
i : ai

ai

ai

A1
i : ai

ai

q: r

A1
1

A0
2

A0
3

A0
n

A0
1

A1
2

A0
3

A0
n

. . .

A0
1

A0
2

A0
3

A1
n

(a) Query q

B0
i : ai

ai

B1
i : ai

?

ai

pv: r

Bk1
1

Bk2
2

Bkn
n

(b) Query pv for v = (k1, . . . , kn).

Figure 2 Twig query q requiring exponentially many examples w.r.t. pv.

2. for each p ∈ U we have q 6⊆ p; Moreover, no single positive example t can witness the fact
that any two distinct p1, p2 ∈ U are not equivalent to q;

3. U contains 2n queries.
Hence any set of examples S characterizing q will have at least 2n negative examples used to
distinguish q from queries in U . We construct the query q over the set of labels {a1, . . . an, r}
as illustrated in Fig. 2a.

We also construct an auxiliary set of queries W consists of patterns pv with v ranging
over all {0, 1}-vectors of length n, constructed as presented in Fig. 2b. We show that the set
W satisfies the conditions 2 and 3 and later we use it to construct the set U that satisfies all
conditions.

Clearly, for every vector v we have q 6⊆ pv essentially because A1
i 6⊆ Bki for any i ∈

{1, . . . , n} and k ∈ {0, 1}. Now, take two {0, 1}-vectors v = (k1, . . . , kn) and w = (k′1, . . . , k′n)
that differ at a position j ∈ {1, . . . , n} and w.l.o.g. assume that kj = 0 and k′j = 1. Suppose
now that there exists a tree t that witnesses both the facts q 6⊆ pv and q 6⊆ pw i.e., t satisfies
q but neither pv and pw. Let sj be the j-th branch of q i.e., the branch using A1

j . Since there
is an embedding of q into t, take the path in which the branch sj is embedded into

π = r · a1 · a1 · a1 · . . . aj−1 · aj−1 · aj−1 · aj · τ · aj · aj+1 · aj+1 · aj+1 · . . . an · an · an,

where τ is a possibly empty path fragment. Note that if τ is empty, then π 4 pv, and
thus, t 4 pv. However, if τ is not empty then π 4 pw, and thus, t 4 pw. This contradicts
the assumption that t does not satisfy both pv and pw. Consequently, every query p ∈ W
requires a unique positive example to distinguish it from q.

Now, for two twig queries p and q by p ∩ q we denote the twig query obtained by joining
p and q at the root node (which has the same label). The set of queries U is defined as
U = {q ∩ p | p ∈ W}. Because L(p ∩ q) = L(p) ∩ L(q), every element of U is properly
contained in q and every element of U still requires a separate example to distinguish it
from q. J

5 Anchored twig queries

In this section, we present the class of anchored twig queries and argue that they constitute
a subclass that is functionally very close to twig queries. We also present the construction

ICDT 2015



152 Characterizing XML Twig Queries with Examples

q0 r

a

b c

?
not anchored

≡

q′0 r

a

b c

?
anchored

q1 r

?

? b

ca
anchored

p0 r

?

?

a

≡

p′0 r

?

?

a

≡

p′′0 r

?

?

a
not anchored

Figure 3 Anchored and non-anchored twig queries.

of representative documents for a given anchored twig query and recall the relationships
between their structure and semantics with their important computational implications.

The class of anchored twig queries imposes restrictions on the mutual use of ? and the
descendant edges.

I Definition 5.1. A twig query is anchored if the following two conditions are satisfied:
1. A //-edge can be incident to a ?-node only if the node is a leaf.
2. A ?-node may be a leaf only if it is incident to a //-edge.
By AnchTwig we denote the set of all anchored twig queries.

A number of anchored and non-anchored queries is presented in Fig. 3. Note that the second
condition requiring a ? leaf to be incident to a descendant edge is merely technical: if the
rule is violated by some ? leaf, we can change its edge to a descendant edge and obtain an
equivalent query (cf. q0 ≡ q′0 in Fig. 3).

In essence, anchored twig queries do not allow the descendant edges touch ? except for
leaves and thus cannot express conditions on ancestry of nodes with a minimal distance
between them. For instance the query p0 (Fig. 3) checks for the existence of a node labeled
a at depth ≥ 2. We do not believe this restriction to be significant one from the practical
point of view.

The reason we use anchored queries is the close relationship between the structure of the
query and its semantics [19]: containment is equivalent to the existence of embedding. More
precisely, for any p, q ∈ AnchTwig we have p ⊆ q iff p 4 q. The same relationship does not
hold for queries that are not anchored e.g., the non-anchored query q0 and the anchored
query q′0 in Fig. 3 are equivalent and in particular q′0 ⊆ q0 but there is no embedding of
q0 into q′0. Consequently, testing the containment is reduced to testing the existence of an
embedding, and therefore, is in PTIME. This stands in contrast with coNP-completeness of
the containment of arbitrary twigs [17, 15].

The main tool used in proving the equivalence of containment and embedding for anchored
queries are containment characterizing trees [13, 19]. For an anchored query q of height k we
construct two trees:
tq

0 is obtained from q by replacing every descendant edge by a child edge and every ? with a
fresh label a0 that is not used by q.

tq
1 is obtained from q by replacing every ? by a1 and every descendant edge by a a2-path of

length k, a1 and a2 are two different fresh labels not used in q and different from a0.
An example of the construction is presented in Fig. 4.

The instrumental result follows.

I Lemma 5.2 ([19]). Take any anchored query q and construct t1
q as described above. For

any query p whose height is bounded by the height of q and that does not use the labels a1
and a2, tq1 4 p implies q 4 p.



S. Staworko and P. Wieczorek 153

q0 r

a

b ?

? d

c

tq0
0 r

a

b a0

a0 d

c

tq0
1 r

a

a1

a1 d

c

a2

a2

b

5
{

Figure 4 Construction of containment characterizing trees.

a
δ1−→ ?

x

y

δ2−→
x

y

x

y

z z′

δ3−→
x

z z′

Figure 5 One-step generalization operations (→).

The proof consists of an anchoring technique that normalizes the embedding of p into tq1 and
then translates it to an embedding of p into q. Note that if tq0 4 p, then the height of p is
bounded by the height of q and p does not use a1 and a2. Therefore if both tq0 and tq1 satisfy
p, then q ⊆ p.

The most important implication of Lemma 5.2 is that by using only two positive examples
tq0 and tq1 we only need to care about the queries that properly contain q and provide negative
examples to distinguish q from queries properly containing q. Although their number might
be quite large, we focus only on the most specific ones:

Φ(q) = {q′ ∈ AnchTwig | q ( q′ ∧ @q′′. q ( q′′ ( q′}.

From the view of the semi-lattice of anchored twig queries, we wish to gain an understanding
of its topology to characterize the (outbound) neighborhood of a query.

6 Generalization operations

In this section, we introduce a set of generalization operations and show their connection
with an injective embeddings and how the operations allow us to navigate the semi-lattice
of anchored twig queries under injective semantics. We use those findings to succinctly
characterize anchored twig queries under the injective semantics.

We employ simple generalization operations that we first define on arbitrary twig queries
and later on tailor them to anchored twig queries. There are 3 operations, presented in
Fig. 5, where dashed lines indicate optional arbitrary edges, x, y and z may have arbitrary
labels in Σ ∪ {?} while a ranges over Σ:
δ1 changes the label of a non-? node to ?;
δ2 changes a child edge to a descendant edges;
δ3 removes a node and connects all its children to the parent node with a descendant edge;

We say that q is one-step generalization of p, in symbols p → q, iff q is obtained by
performing one of the 3 generalization operations.

ICDT 2015



154 Characterizing XML Twig Queries with Examples

q0
r

a

bb

c

t0
r

a

d

bb

c

t1
r

a

b

b

c

q1
r

a b

? d

b c a b c

q2
r

o

o

o

a

b

o

d

b co

a co

bo o o

Figure 6 Injective embeddings t0 4◦ q0 and q2 4◦ q1.

6.1 Injective embeddings
There is a close connection between applying sequences of generalization operations and the
existence of a special kind of injective embeddings. Formally, an embedding of λ of q into p
is injective if it additionally satisfies the condition:
5. λ(n1) is an ancestor of λ(n2) in p if and only if n1 is an ancestor of n2 in q, for any two

nodes n1 and n2 of q.
We write p 4◦ q if there is an injective embedding of q into p. We define analogously the
injective embeddings of a twig query into a tree. Fig. 6 presents an example of an injective
embedding of q0 into t0.

We point out that any injective embedding is an injective function but the converse does
not necessarily holds (cf. q0 and t1 in Fig. 6). This however will not lead to confusion as
we do not consider embeddings that are injective functions while violating condition 5. We
define the injective semantics of twig queries as L◦(q) = {t ∈ Tree | t 4◦ q} and by q ⊆◦ p
denote L◦(q) ⊆ L◦(p). The anchoring technique of Lemma 5.2 can be easily adapted to
injective embeddings because injective embeddings are under closed composition.

I Corollary 6.1. For any p, q ∈ AnchTwig, p ⊆◦ q iff p 4◦ q iff p→∗ q.

The connection between the generalization operations and injective embeddings is quite
natural. While it is quite obvious that p →∗ q implies p 4◦ q, the converse is also true
because the existence of an injective embedding of q into p ensures that all fragments of q
match areas of p in a configuration that allows to easily identify the generalization operations
required to transform p into q, cf. the injective embedding of q1 into q2 in Fig. 6. Hence,

I Lemma 6.2. For arbitrary twig queries p, q ∈ Twig we have p→∗ q iff p 4◦ q .

Finally, we point out, however, alternative types of injective embeddings have been identified
and used in the literature (cf. [12]), for our purposes any type of injective embeddings can
be used. However, the set of necessary basic generalization operations (Fig. 5) depends on
the chosen type of injective embedding, and we have chosen the type of injective embeddings
known as ancestor-preserving embeddings because the generalization operations seems to be
the most natural.

6.2 Generalizations of anchored twig queries
We wish to use the connection between generalization operations and the containment in
order to map out the semi-lattice 〈AnchTwig,⊆◦〉 of anchored twig queries under the injective



S. Staworko and P. Wieczorek 155

q′′1 r

? b

c d
not anchored

δ1←−

q1 r

a b

c d

δ1−→

q′1 r

a ?

c d

q′′2 r

a

? c

not anchored

δ1←−

q2 r

a

b c

δ1−→

q′2 r

a

b ?

q′′3 r

? a

b
not anchored

δ2←−

q3 r

? a

b

δ2−→

q′3 r

? a

b

q′′′′4 r

a

c

δ3←−

q′′′4 r

a

b c

δ2←−

q4 r

a

b c

δ1−→

q′4 r

a

b ?

δ3−→

q′′4 r

a

b

δ3δ3

q5 r

a

b c

δ2−→

q′5 r

a

b c

δ3−→

q′′5 r

b c

δ3

q6 r

?

? ?

a b c ?

d e f?

δ3−→

q′6 r

? ?

a b c ?

d e f?

δ3−→

q′′6 r

?a b

c ?d

e f

?

δ3−→

q′′′6 r

a b c ?

d e f?

δ3−→

q′′′′6 r

a b c

d e

f

?

Figure 7 Applying generalization operations to anchored twig queries.

semantics. More precisely, for a given anchored query p we wish to know the set of anchored
queries Φ◦(p) in the immediate (outgoing) neighborhood of p.

Φ◦(q) = {q′ ∈ AnchTwig | q (◦ q′ ∧ @q′′ ∈ AnchTwig. q (◦ q′′ (◦ q′}.

Lemma 6.2 encourages us to approach this challenge with the use of generalization operations
tailored to anchored queries.

Given two anchored queries p, q ∈ AnchTwig, we say that q is an immediate anchored
generalization of p, in symbols p /◦ q, iff p →+ q and there is no z ∈ AnchTwig such that
p→+ z and z →+ q. Essentially, the immediate anchored generalization relation defines the
Hasse diagram of the semi-lattice of the anchored twig queries under injective semantics, and
therefore, Φ◦(p) = {p′ ∈ AnchTwig | p /◦ p′}. We next show how /◦ can be defined in terms
of a small number of macros consisting of sequences of generalization operations.

To obtain an immediate anchored generalization of an anchored twig query we apply
diligently the generalizations operations, making sure that: 1) the end result is an anchored
twig query and 2) there is no intermediate anchored twig query that can be obtained on
an alternative path. In particular, the first two generalization operations δ1 and δ2 can be
used as long as they do not yield a query that is not anchored (cf. q1, q2, and q3 in Fig. 7).
The δ3 is more involved. First of all, under certain conditions applying δ3 is not authorized
because an intermediate query can be reached with operations δ1 or δ2 (cf. q4 and q5 in
Fig. 7). Furthermore, while possibly violating the structural constraints of anchored queries,
δ3 can be applied to a non-leaf ? node provided that δ3 is applied to all neighboring ?-nodes
(cf. q6 in Fig. 7).

We state formally the manner in which the generalizations should be used on anchored
twig queries.

I Lemma 6.3 (/◦-operations). For any anchored twig queries p, q ∈ AnchTwig we have that
p /◦ q iff q is obtained from p by applying:

ICDT 2015



156 Characterizing XML Twig Queries with Examples

p0 r

a

b c

Φ◦

p′0 r

a

b c

p′′0 r

a

b ?

p′′′0 r

a

? c

Figure 8 Immediate anchored generalizations.

p0

r

a

b c

tp0
0 , +
r

a

b c

tp0
1 , +
r

a

a2 a2

a2 a2

b c

t
p′

0
1 ,−
r

a2

a2

a

a2 a2

a2 a2

b c

t
p′′

0
1 ,−
r

a

a2 a2

a2 a2

a1 c

t
p′′′

0
1 ,−
r

a

a2 a2

a2 a2

b a1

Figure 9 Characterizing query under the injective semantics.

1. δ1 to an inner node incident to child edges only;
2. δ1 to a leaf node incident to a descendant edge;
3. δ2 to an edge that is not incident to a ? node;
4. δ3 to a leaf node only if it is a ? node or if its parent is a ? node with other children;
5. δ3 to a non-? node incident to descendant edges only;
6. δ3 in a exhaustive manner to a connected area of ? nodes.

In the sequel we refer to the macros from Lemma 6.3 as /◦-operations. We point out
that from the point of view of /◦-operations, any connected area of ? nodes is seen as one
particular node and we identify it with its top most ? node. Note that the number of possible
different applications of /◦-operations to a query p is O(size(p)), and consequently, the Φ◦(p)
contains a polynomial number of queries each of size bounded by the size of p. An example
of construction of Φ◦ is presented in Fig. 8.

6.3 Characterizability of AnchTwig under injective semantics
Because the number of possible immediate anchored generalizations of a query p is O(size(p)),
we can characterize any anchored twig query p under injective semantics with the following
set of examples (with all tq1’s trees using a2-chains of the same length as tp1):

Char◦(p) = {(tp0,+), (tp1,+)} ∪
⋃
{(tq1,−) | q ∈ Φ◦(p)}.

An example of construction of the characterizing set of examples is presented in Fig. 9 for
the query p0 from Fig. 8.

To show that Char◦(p) does indeed characterizes p, take any query q consistent with
Char◦(p). Since q is satisfied by both tp0 and tp1, p 4◦ q and if p would be properly contained
by q, then q would satisfy one of the negative examples in Char◦(p).

I Theorem 6.4. Anchored twig queries are succinctly characterizable under injective seman-
tics.



S. Staworko and P. Wieczorek 157

r

a

b

c

?

b

c

d

? a

r

a

b

c

?

b

c

d

? a

r

a

b

c

?

b

c

d

? a

δ3−→

r

a

c ?

b

c

d

? a

δ1−→

r

a

? ?

b

c

d

? a

δ3−→

r

a

?

b

c

d

? a

δ3−→

r

a

?

b

c

d

a

Figure 10 Reducing a query.

7 Characterizability of Anchored Twig queries

In this section, we extend the approach presented in the previous section to the standard
semantics of twig queries. The main challenge is to handle possible overlaps of non-injective
embeddings and we introduce a duplication operation whose controlled use ensures succinct
characterizability. There is, however, a lesser challenge that we need to handle first, making
sure that applying a /◦-operation yields a more general query. Solving this challenge also
shows that minimization of anchored twig queries is tractable and can be implemented using
generalization operations which further illustrates the good behavior of the class of anchored
twig queries.

7.1 Reducing anchored twig queries
If we are to base the solution of characterizability on /◦-operations, we must be aware of the
difference between the two semantics, how it can affect the use of /◦-operations, and how to
overcome the difficulties that arise.

The difference between the semantics can be illustrated on the example of query q0 in
Fig. 1b: under the injective semantics it ensures the existence of a node b with at least two
different children, while such constraint cannot be expressed with the standard semantics
(note that neither of the embeddings in Fig. 6 and is ancestor-preserving). In fact, the leaf ?
node in the query q0 is redundant, can be removed, and a smaller equivalent query (under
the standard semantics) is obtained.

The implications on use of /◦-operations are as follows: if we take an anchored query
p and any p′ obtained by applying a /◦-operation., then p needs not properly included
in p′ because p and p′ may be equivalent under the standard semantics. To address this
obstacle we reduce the query p: iteratively apply generalization operations (cf. Fig. 10),
following /◦ at each step, as long as the query remains equivalent to the original one. Note
that a /◦-operation may remove some nodes, rename nodes to ?, and change child edges to
descendant edges. Essentially, it is a monotone process that finishes after O(size(p)) steps.
An anchored twig query p is reduced if it is the end result of this procedure, or more precisely,
if for no p′ ∈ Φ◦(p) we have p′ 4 p.

Interestingly, not only are reduced queries suitable for use in Φ◦ and can be obtained
efficiently, but also they are the unique minimal canonical representatives of all equivalent
queries.

Indeed, we show that an anchored twig query p is not minimal iff there exists an embedding
of p into p other than the identity map, and furthermore it maps at least two nodes to the
same target (an overlap). We can then carefully construct the image p′ of this embedding,
an anchored query whose set of nodes is the range of the embedding (see example in Fig. 10).

ICDT 2015



158 Characterizing XML Twig Queries with Examples

p′0 r

a

b c

p′′0 r

a

b ?

p′′′0 r

a

? c

p0 r

a

b c

q0
r

a

b

a

c

p∗0r

a

b c

a

b ?

a

? c

Figure 11 Immediate anchored generalizations versus an embedding with overlap p0 4 q0.

This query is smaller than p and the identity map is an injective embedding of p′ into p,
thus p /∗◦ p′. We point out that tractability of minimization of anchored twig queries is not a
novel result. [11] presents a class of twig queries properly containing AnchTwig for which
minimization is tractable. While the technique is similar to the presented above (but not
identical), it can possibly be used as a more efficient alternative only because we shown that
our reducing method also produces the minimal query.

I Theorem 7.1. For every anchored twig query q there exists a unique reduced equivalent
anchored twig query. Furthermore, this query is the size-minimal query equivalent to q and
can be obtained in time polynomial in the size of q.

7.2 Duplication operation
From now on, we use the standard semantics only. While using /◦-operations on a reduced
query p does construct a set of most specific queries properly containing p, it does not contain
all such queries. Take for instance the query p0 in Fig. 11 together with its immediate
anchored generalizations Φ◦(p0) = {p′0, p′′0 , p′′′0 }. Now take the query q0 (Fig. 11) that has an
embedding into p0, is not equivalent to p0 (there is no embedding of p0 into q0), and note
that it cannot be embedded into any of the immediate anchored generalizations of p0.

This is because the embedding of q0 into p0 overlaps at two a nodes of q0 whose subqueries
have been obtained with applying different generalization operations.

We address the problem of the overlap with what could be seen as a adding a duplication
operation to our system: this operation replaces a subquery rooted at a given node by a
number of identical copies (including the same type of the edge to the parent). Such an
operation would not, however, yield a query more general than the original query, but merely
an equivalent query with redundancies, and therefore, not even reduced. Consequently, we
investigate an augmented variant that applies the duplication operation and then generalizes
every copy. In Fig. 11 the query p∗0 is a query obtained as a result of applying this operation
to p0 at node a. We point out, however, that the definition of this operation is not sufficiently
precise: it is mutually dependent on the definition of generalization, which ideally should use
the new operation. Also, unlike previously used operations which could only decrease the size
of the input query, this operation has the potential to increase the size the query and when
used recursively multiple time, the bounds on the size of the output query are not clear. We
next settle these concerns with an appropriate recursive definition of query generalization.

We define generalizations of a query recursively on its subqueries. A subquery p of q
at a node n ∈ Nq \ {rootq} is essentially the query rooted at n but having additionally the
incoming edge (from the parent) which can be altered by applying /◦-operations to the root
node of q. Naturally, we apply only those operations that are allowed in the context of the
complete query q (thus as if knowing the label of the parent of the root node of p).

We fix a query q and let p be its subquery. A minimal generalization of p is any query
obtained by either:



S. Staworko and P. Wieczorek 159

q
r

a

b ?

c d e f

q′
r

a

b ?

c d e f

a

c d b b ?

? d c ? e f

a

b ? ? e f

c d e f

Figure 12 Constructing the minimal generalization q′ of a query q (q / q′).

1. applying a /◦-operation at the root node of p (appropriately to the context of the root
node in q)

2. replacing the subquery p′ rooted at a child of the root node of p with the set of all
minimal generalizations of p′.

The minimal generalizations of q are obtained by using only the second part of the definition
(because we do not apply generalization operation to the root node). We write q / q′ to
indicate that q′ is a minimal generalization of q. An example of constructing the minimal
generalization of a query is presented in Fig. 12.

A reduced anchored twig query q has at most a linear number of minimal generalizations
(equal to the number of children of the root node). It is not clear how big they can be given
that duplication takes place. We prove a polynomial bound on the size of q′ such that q / q′.
Let n be a node of q, with the path n = n0, n1, . . . , nk = rootq from n to the root of q, and
let `i be the number of children of ni for i ∈ {1, . . . , k}. We show with an inductive proof
that q′ contains O(`1 + · · ·+ `k) copies of the node n. Since `1 + · · ·+ `k is bounded by the
number of nodes of q, each node is duplicated at most size(q) times, and therefore, q′ is of
size O(size(q)2).

With an inductive proof on the structure of an arbitrary embedding between two queries
that are not equivalent, we show that the minimal generalizations of a query q are the only
outbound neighbors of q in the semi-lattice of anchored twig queries under the standard
semantics.

I Lemma 7.2. For any anchored twig query q, Φ(q) = {q′ ∈ AnchTwig | q / q′}.

Consequently, any anchored twig query q can be characterized with a polynomially-sized
set of examples Char(q) = {(tq0,+), (tq1,+)} ∪

⋃
{(tp1,−) | p ∈ Φ(q)} and their sizes are

polynomially bounded by the size of q.

I Theorem 7.3. Anchored twig queries are succinctly characterizable.

8 Conclusions and future work

In the present paper, we have identified and studied a novel problem of characterizing queries
with examples. Our results have demonstrated that characterizability is a measure of richness
of the query class, which is closely related to its expressive power. We have show that while
union of twig queries are not characterizable, twigs alone are but may require exponential
numbers of examples. Through the study of embeddings and generalization operations we
have shown that the class of anchored twig queries is characterizable with a polynomially
sized sets of examples.

Future work. We envision a number of possible future directions. We would like to extend
our study of embeddings to other types of queries that employ this mechanism of defining

ICDT 2015



160 Characterizing XML Twig Queries with Examples

their semantics: conjunctive relational queries and regular path queries for graphs. Naturally,
the goal would to be investigate the problem of characterizability of those database models.
We also intend to explore the use of the proposed constructions of characterizing sets of
examples in the context of grammatical inference [6, 7, 19].

References
1 A. Abouzied, D. Angluin, Ch. Papadimitriou, J. M. Hellerstein, and A. Silberschatz. Learn-

ing and verifying quantified boolean queries by example. In Proceedings of the 32Nd Sym-
posium on Principles of Database Systems, PODS ’13, pages 49–60. ACM, 2013.

2 S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Tree pattern query
minimization. VLDB Journal, 11(4):315–331, 2002.

3 M. Anthony, G. Brightwell, D. Cohen, and J. Shawe-Taylor. On exact specification by
examples. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
COLT ’92, pages 311–318, New York, NY, USA, 1992. ACM.

4 S. Cho, S. Amer-Yahia, L. V. S. Lakshmanan, and D. Srivastava. Optimizing the secure
evaluation of twig queries. In International Conference on Very Large Data Bases (VLDB),
pages 490–501, 2002.

5 S. Cohen and Y. Y. Weiss. Certain and possible XPath answers. In International Conference
on Database Theory (ICDT), 2013.

6 C. de la Higuera. Characteristic sets for polynomial grammatical inference. Machine
Learning, 27(2):125–138, 1997.

7 E. M. Gold. Language identification in the limit. Information and Control, 10(5):447–474,
1967.

8 E. M. Gold. Complexity of automaton identification from given data. Information and
Control, 37(3):302 – 320, 1978.

9 S. A. Goldman and M. J. Kearns. On the complexity of teaching. Journal of Computer
and System Sciences, 50(1):20 – 31, 1995.

10 S. A. Goldman, R. L. Rivest, and R. E. Schapire. Learning binary relations and total
orders. SIAM J. Comput., 22(5):1006–1034, 1993.

11 B. Kimelfeld and Y. Sagiv. Revisiting redundancy and minimization in an xpath fragment.
In EDBT 2008, 11th International Conference on Extending Database Technology, pages
61–72, 2008.

12 J. Michaliszyn, A. Muscholl, S. Staworko, P. Wieczorek, and Z. Wu. On injective embed-
dings of tree patterns. CoRR, abs/1204.4948, 2012.

13 G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath. Journal
of the ACM, 51(1):2–45, 2004.

14 F. Neven. Automata, logic, and XML. In Workshop on Computer Science Logic (CSL),
volume 2471 of Lecture Notes in Computer Science, pages 2–26. Springer, 2002.

15 F. Neven and T. Schwentick. XPath containment in the presence of disjunction, DTDs,
and variables. In International Conference on Database Theory (ICDT), pages 315–329.
Springer-Verlag, 2003.

16 S. Salzberg, A. L. Delcher, D. G. Heath, and S. Kasif. Learning with a helpful teacher.
In Proceedings of the 12th International Joint Conference on Artificial Intelligence., pages
705–711, 1991.

17 T. Schwentick. XPath query containment. SIGMOD Record, 33(1):101–109, 2004.
18 A. Shinohara and S. Miyano. Teachability in computational learning. New Generation

Comput., 8(4):337–347, 1991.
19 S. Staworko and P. Wieczorek. Learning twig and path queries. In International Conference

on Database Theory (ICDT), March 2012.
20 B. Ten Cate, V. Dalmau, and P. Kolaitis. Learning schema mappings. In International

Conference on Database Theory (ICDT), March 2012.



The Product Homomorphism Problem and
Applications
Balder ten Cate1 and Victor Dalmau2

1 LogicBlox Inc. and UC Santa Cruz
2 Universitat Pompeu Fabra

Abstract
The product homomorphism problem (PHP) takes as input a finite collection of structures
A1, . . . ,An and a structure B, and asks if there is a homomorphism from the direct product
A1⊗· · ·⊗An to B. We pinpoint the computational complexity of this problem. Our motivation
stems from the fact that PHP naturally arises in different areas of database theory. In particular,
it is equivalent to the problem of determining whether a relation is definable by a conjunctive
query, and the existence of a schema mapping that fits a given collection of positive and negative
data examples. We apply our results to obtain complexity bounds for these problems.

1998 ACM Subject Classification H.2 Database Management, G.2 Discrete Mathematics

Keywords and phrases Homomorphisms, Direct Product, Data Examples, Definability, Con-
junctive Queries, Schema Mappings

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.161

1 Introduction

Structure identification [7] refers to the general problem of finding a structural description
of some data. When the data is relational, this task is usually formalized as the problem
of determining whether a given relation can be represented in a given logical formalism.
The CQ-definability problem (also called existential inverse satisfiability problem in [6] and
PP-definability problem in [13]) is one of the most studied variants of this problem (see
[5, 6, 10, 13]). The input of the CQ-definability problem is a relation S and a finite set
R1, . . . , Rm of relations over the same domain than S, and the question is to decide whether
S is expressible by a conjunctive query over the instance I that consists of R1, . . . , Rm. This
question is not only relevant in the context of databases, but is also pertinent to constraint
satisfaction. From a constraint satisfaction perspective, CQ-definability can be viewed as
asking whether relation S can be expressed as the projection of the set of solutions of a
constraint satisfaction instance that uses relations from R1, . . . , Rm in its constraints [5] or,
equivalently, whether S belongs to the expressive power of R1, . . . , Rn [10]. In constraint
satisfaction, the notion of expressive power plays an important role in the so-called algebraic
approach in the study of the constraint satisfaction problem (see [10]). Another collection of
problems that can be viewed as instances of structure identification is the fitting problem for
schema mappings, where the input is a finite collection of data examples (I, J), where I and
J are database instances over a source schema and a target schema, respectively, and the
question is whether there exists a schema mapping that fits these data examples.

It turns out that the problems described above are closely related to a certain algorithmic
problem from graph theory: given a collection of graphs, or more generally, relational
structures A1, . . . ,An,B, is there a homomorphism from the direct product A1 ⊗ · · · ⊗An

to B. This problem, which we will refer to as the product homomorphism problem (PHP), is
© Balder ten Cate and Victor Dalmau;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 161–176

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.161
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


162 The Product Homomorphism Problem and Applications

clearly decidable in NExpTime: it suffices to materialize the (exponentially large) direct
product A1 ⊗ · · · ⊗An and guess a homomorphism from it to B. It was recently shown [13]
that PHP is NExpTime-complete if the arity of the relations in the schema is unbounded.
In this paper, we provide a simplified proof, and we establish that the same lower bound
holds under various restrictions, including for a fixed schema. We use this to establish tight
complexity bounds for CQ-definability as well as for various variants of the fitting problem
for schema mappings.

After reviewing basic definitions in Section 2, we study the product homomorphism
problem in Section 3. We then proceed with applications to instance-level query definability
(Section 4) and to fitting problems for schema mappings (Section 5). We conclude in Section 6.

2 Preliminaries

Schemas, Structures, Database Instances, and Homomorphisms

A schema is a nonempty finite set of relation symbols τ of specified arities. A (finite) structure
A of the schema τ (or, τ -structure), consists of a finite set A, called the domain of A and a
relation RA ⊆ Ar for every relation symbol R ∈ τ where r is the arity of R. Throughout the
paper we will use the same boldface and slanted capital letters to denote a structure and its
domain respectively.

Let A and B be structures of the same schema τ . A homomorphism h from A to B,
denoted h : A→ B, is a function from A to B, such that for every R ∈ R and every tuple
a = (a1, . . . , ar) ∈ RA, we have that tuple h(a), defined as (h(a1), . . . , h(ar)), belongs to
RB. We shall write A→ B to indicate that there is a homomorphism from A to B. When
A→ B and B→ A, then we say that A and B are homomorphically equivalent.

In Section 4 and Section 5 we will consider applications involving database instances.
Recall that a database instance is a finite structure with an unspecified domain. In other
words, the specification of a database instance includes the relations but does not include
the domain. For the purposes of this paper, the difference between finite structures and
database instances is inessential. This is because all notions and results in this paper are
invariant for homomorphic equivalence, and modulo homomorphic equivalence, the domain
of a structure can always be assumed to coincide with the active domain, that is, the set of
all elements occurring in the relations of the structure. We will therefore freely switch from
speaking about structures to speaking about instances in Section 4 and Section 5.

Direct products

An n-ary tuple a on A is any element of An (for n ≥ 1). For every 1 ≤ i ≤ n we shall use
a[i] to denote its ith component of a. Let R ⊆ An be a n-ary relation on A. Then the
projection, pri1,...,ij

R over coordinates i1, . . . , ij ∈ {1, . . . , n} is the j-ary relation defined as
{(a[i1], . . . , a[ij ]) | a ∈ R}.

Let a = (a1, . . . , an) ∈ An and b = (b1, . . . , bn) ∈ Bn be tuples of the same arity. The
direct product a⊗ b is the n-ary tuple on A⊗B defined as ((a1, b1), . . . , (an, bn)). Similarly,
if R ⊆ An and S ⊆ Bn are n-ary relations then the direct product, R⊗ S is defined to be
{a ⊗ b | a ∈ R, b ∈ S}. The direct product, A ⊗ B, of A and B is the τ -structure with
domain A⊗B such that RA⊗B = RA ⊗RB for every R ∈ τ . We shall use Π1≤i≤nRi as a
shorthand of R1 ⊗ · · · ⊗ Rn (note that the ⊗ operation is associative up to isomorphism).
Furthermore, we shall use Rn to denote Π1≤i≤nR.



B. ten Cate and V. Dalmau 163

The direct product construction is of fundamental importance in the study of graphs
and homomorphisms, as it turns out to capture the meet (or, least upper bound) operation
of the lattice of structures ordered by homomorphic embedding. That is, for all structures
B1, . . . ,Bn, we have (i) Π1≤i≤nBi → Bi for all 1 ≤ i ≤ n, and (ii) for all structures A, if
A→ Bi for all 1 ≤ i ≤ n, then A→ Π1≤i≤nBi.

It is important to distinguish direct products from the construction that is usually referred
to as cartesian product is database theory. Let R ⊆ Ar and S ⊆ Bs be relations of possibly
different arity. The cartesian product of R and S is the r+ s-ary relation on A∪B defined as

R× S = {(a1, . . . , ar, b1, . . . , bs) | (a1, . . . , ar) ∈ R, (b1, . . . , bs) ∈ S} .

Conjunctive queries

An n-ary conjunctive query q (for n ≥ 0) is specified by a first-order formula of the form
φ(x1, . . . , xn) = ∃y1, . . . , ym(α1 ∧ · · · ∧ αk), with m ≥ 0 and k ≥ 1, where α1, . . . , αk are
relational atomic formulas (i.e., atomic formulas not involving equality), and such that each
variable xi occurs in at least one atom αj . We denote by q(A) the n-ary relation over A
defined by q(A) = {a ∈ An | A |= φ(a[1], . . . , a[n])}. For simplicity, we assume that the
atoms in a conjunctive query do not contain any constants (although our results, suitably
adapted, can be shown to apply to queries with constants as well). A fundamental property
of conjunctive queries is that they are preserved by homomorphisms: if h : A → B is a
homomorphism and a ∈ q(A), then (h(a[1]), . . . , h(a[n])) ∈ q(B).

3 The Product Homomorphism Problem

The product homomorphism problem (PHP) takes as input a finite collection of relational
structures A1, . . . ,An and another relational structure B, all over the same schema, and asks
whether there is a homomorphism from the direct product A1⊗· · ·⊗An to B. This problem
is clearly solvable in non-deterministic exponential time. It follows from results in [13] that
the problem is NExpTime-complete. The proof, based on a reduction from an exponential
tiling problem, uses structures of bounded domain size but relations of unbounded arity.
We provide a self-contained proof of NExpTime-hardness of PHP, and we show that it
holds already for directed graphs, as well as for structures of bounded arity with a bounded
domain size (but without a bound on the number of relations). More precisely, we obtain:

I Theorem 1. The PHP is NExpTime-complete [13]. The lower bound holds already for
1. structures with binary relations and a bounded domain size;
2. structures with a single relation and a bounded domain size;
3. structures with a single binary relation

This completes the picture, since PHP is solvable in polynomial time when all three of the
above parameters (i.e., number of relations, arity, and domain size) are bounded, as follows
from the fact that, in this case, there are, up to isomorphism, only a bounded number of
possible structures that can be part of the input.

Theorem 1(1) is proved by an adaptation of the technique used in [13]. Theorem 1(2) is
proved by a reduction from 1(1). Theorem 1(3) is proved by a reduction from 1(2).

3.1 Proof of Theorem 1(1)
Proof. The proof will be a reduction from the exponential tiling problem which we now
define. A domino system is a finite structure D = (D,HD, V D) where the elements in its

ICDT 2015



164 The Product Homomorphism Problem and Applications

domain, D, are called tile types and HD, V D are binary relations on D, called the horizontal
and vertical adjacency relation, respectively. For N > 1, we use [N ] to denote the set
{0, . . . , N − 1}. A tiling of [N ]⊗ [N ] by D is any mapping ρ : [N ]⊗ [N ]→ D satisfying the
following conditions:

(ρ(i, j), ρ(i, j + 1)) ∈ HD for every i ∈ [N ] and j ∈ [N − 1]
(ρ(i, j), ρ(i+ 1, j)) ∈ V D for every i ∈ [N − 1] and j ∈ [N ]

The input of an exponential tiling problem is constituted by a domino system D, an integer
N > 1 (written in binary), and a sequence T0, . . . , Tn−1 ∈ D, with n ≤ N . The question is
whether there is a tiling ρ of [N ]⊗ [N ] such that ρ(0, j) = Tj for every j ∈ [n].

It is shown in [4] that the exponential tiling problem is NExpTime-hard. As discussed in
[13], there exists a single domino system D such that the problem remains coNExpTime-hard
even if the domino system in the input is required to be D and N = 2m for some m > 1.

Let us introduce a bit of notation. For every k ∈ [N ], let us denote by bk ∈ {0, 1}m

the m-bit binary representation of k, which we assume starts with the bit of highest weight.
Also, we shall use Π`A` as a shorthand for Π0≤`≤2mA`

Given an instance (D, N, T0, . . . , Tn−1), N = 2m of the exponential tiling problem we
construct in polynomial time an instance A1, . . . ,A2m, B, of the PHP. Each one of the
structures, A1, . . . ,A2m, has domain {0, 1}. In this way, there is a correspondence between
[N ]⊗[N ] and the domain of Π`A`. More precisely, we associate to every element (i, j) ∈ [N ]⊗
[N ] the tuple (x1, . . . , x2m) ∈ {0, 1}2m where (x1, . . . , xm) = bi and (xm+1, . . . , x2m) = bj .

The domain of B will be the set, D, of tile types, so that a map h from Π`A` to B can be
viewed as a way of assigning a tile type to each position on the [N ]⊗ [N ] grid. Furthermore,
by endowing the structures involved with suitable relations, we will ensure that every such
mapping h is an homomorphism from Π`A` to B if and only if it corresponds to a valid
tiling.

For ease of exposition, we will also allow unary relations in the instance of the PHP. It is
straightforward to replace the unary relations by binary ones.

Let H,V be binary relations on the domain {0, 1}2m that denote the horizontal and
vertical successor relations on [N ]⊗ [N ]. Formally

H = {(bibj ,bibj+1) | i ∈ [N ], j ∈ [N − 1]}

V = {(bibj ,bi+1bj) | i ∈ [N − 1], j ∈ [N ]}

where bibj ∈ {0, 1}2m denotes the 2m-ary bit string obtained concatenating bi and bj . Also,
let P0 = {b0b0}, . . . ,Pn−1 = {b0bn−1} be unary singleton relations on the domain {0, 1}2m

that denote the first n cells in the zero row of [N ]⊗ [N ].
In order to make our reduction work, we need to somehow make sure that the relations

H,V,P0, . . . ,Pn−1 are “available” in the product structure Π`A`, by choosing the relations
in structures A1, . . . ,A2m appropriately.

Let us say that an r-ary relation R over domain {0, 1}2m is factorizable if it can be
represented as a direct product R1⊗ · · · ⊗R2m where each R` is an r-ary relation over {0, 1}.

Intuitively, this means that if we include in each structure A` the relation R`, then the
product structure Π`A` will contain the relation R. Each of the unary relations P0, . . . ,Pn,
being a singleton, is trivially factorizable. Indeed, for every j ∈ [n], Pj = {0}m ⊗ {bj [1]} ⊗
· · · ⊗ {bj [m]}.

The binary relation H is not factorizable. However, it turns out to be a union of a small
number of factorizable relations, which will suffice for our purposes. For each k ∈ [m], let
Hk = H ∩ ({0, 1}2m−k−1 ⊗ {0} ⊗ {1}k ⊗ {0, 1}2m). In words, Hk is the subrelation of H
that contains all those (bibj ,bibj+1) ∈ H such that bj finishes with a zero followed by k



B. ten Cate and V. Dalmau 165

ones. Note that for every (bibj ,bibj+1) ∈ H, bj must contain one zero. It follows that
H =

⋃
k∈[m]Hk. Furthermore, it is easy to see that Hk factorizes as

Hk = id2m−k−1 ⊗ {(0, 1)} ⊗ {(1, 0)}k

where id = {(0, 0), (1, 1)} is the equality relation on {0, 1}.
Similarly, we can express V as

⋃
k∈[m] Vk where

Vk = idm−k−1 ⊗ {(0, 1)} ⊗ {(1, 0)}k ⊗ idm .

We are now ready to define the structures A1, . . . ,A2m and B. The scheme consists of
the relations H0, . . . ,Hm−1, V0, . . . , Vm−1, P0, . . . Pn−1. As mentioned above, the domain of
A` is {0, 1} for every 1 ≤ ` ≤ 2m. For k ∈ [n], 1 ≤ ` ≤ 2m, we define

PA`

k =
{
{bk[`−m]} if m < `

{0} otherwise

For k ∈ [m], 1 ≤ ` ≤ 2m, we define

HA`

k =


{(1, 0)} 2m− k < `

{(0, 1)} ` = 2m− k
id otherwise

V A`

k =


{(1, 0)} m− k < ` ≤ m
{(0, 1)} ` = m− k
id otherwise

The domain of structure B is the set, D, of all tile types. For k ∈ [n] we define PB
k = {Tk},

and for k ∈ [m], we define HB
k = HD, and V B

k = V D.
It follows from the definitions that PΠ`A`

k = Pk for all k ∈ [n] and that HΠ`A`

k = Hk and
V Π`A`

k = Vk for every k ∈ [m]. It follows that there is a homomorphism from Π`A` to B if
and only if there is a valid tiling. The reduction we have just defined can be easily carried
out in polynomial time. J

3.2 Proof of Theorem 1(2)
Proof. The proof proceeds by a reduction from the PHP with bounded domain size (The-
orem 1(1)). We shall show how to construct, given an instance A1, . . . ,An,B of the PHP
another one with only one relation in each structure. Furthermore, the reduction will only
increase the domain size of each structure by one.

Let R1, . . . , Rk be the relation symbols in the scheme. The most immediate way to do
the reduction consists in to replace, in every structure C among A1, . . . ,An,B, relations
RC

1 , . . . , R
C
k by a single relation RC

1 × · · · × RC
k . It is not difficult to see that a mapping

h : ΠiAi → B is an homomorphism in the original instance if and only is an homomorphism
in the instance obtained after the transformation. However, this transformation cannot be
carried out in polynomial time as computing the cartesian product of k relations requires
time exponential on k. To overcome this difficulty we shall apply first an step which will
reduce the number of relations to 2.

We can assume that all relation symbols R1, . . . , Rk have arity 2. This assumption
is not essential but simplifies slightly the presentation. Let C be any structure among
A1, . . . ,An,B and let 0 be a fresh element not occurring in B ∪

⋃
1≤i≤n Ai. We denote by

C∗ the structure with domain C ∪ {0} with the following relations:

ICDT 2015



166 The Product Homomorphism Problem and Applications

(i) a unary relation PC∗ = C

(ii) a 2k-ary relation RC∗ defined as

RC∗
= {02k} ∪

⋃
1≤j≤k

{02(j−1)} ×RC
j × {02(k−j)} .

That is, RC∗ contains all-zeroes tuple (0, · · · , 0), and, for every 1 ≤ j ≤ k and every
tuple (a, b) ∈ Rj (1 ≤ j ≤ k), the 2k-ary tuple (a1, . . . , a2k) where all coordinates are 0
with the exception of a2j−1 and a2j which are a and b respectively.

This transformation can be carried out in polynomial time and it increases the domain of
each structure with at most one element. We claim that ΠiA∗i → B∗ if and only if ΠiAi → B.

In one direction, suppose h∗ is an homomorphism from ΠiA∗i to B∗. It follows that h∗
must map every element of ΠiAi = PΠiA∗

i to an element of B = PB∗ . It is then easy to
see that the restriction h of h∗ with domain ΠiAi is in fact a homomorphism from ΠiAi

to B. Indeed, let 1 ≤ j ≤ k and let (a, b) ∈ RΠiAi
j . It follows by the definition of R, that

pr2j−1,2j R
C∗ = RC

j ∪ {(0, 0)} for every C among A1, . . . ,An,B. Consequently we have
that (a, b) ∈ pr2j−1,2j R

ΠiA∗i . It follows that h maps (a, b) to a tuple in RB
j ∪ {(0, 0)}. Since

this tuple must be in B2 we are done.
Conversely, suppose h is an homomorphism from ΠiAi to B. Let h∗ be the map from

ΠiA
∗
i to B∗ that extends h such that every element in ΠiA

∗
i containing a 0 is sent to the

element 0 of B∗. Formally, h∗(a) is defined to be h(a) whenever a ∈ ΠiAi and 0 otherwise.
We shall see that h∗ is an homomorphism from ΠiA∗i to B∗. Let a be any element in
PΠiA∗

i . It follows from the definition of relation P that a ∈ ΠiAi. Then, h∗(a) is h(a) which
necessarily belongs to B = PB∗ . Now, let a = (a1, . . . , a2k) be any tuple in RΠiA∗

i and let
J be the set containing all coordinates j ∈ {1, . . . , 2k} such that aj ∈ ΠiAi. It follows from
the definition of R that J is empty or is of the form {a2j−1, a2j} for some j ∈ {1, . . . , k}.
If J = ∅ then h∗(a) = (0, . . . , 0) ∈ RB∗ (h is applied component-wise). Now assume that
J = {a2j−1, a2j}. Note that h∗(ai) is h(ai) if i ∈ {2j − 1, 2j} and 0 otherwise. We have that
(a2j−1, a2j) ∈ RΠiA

j and hence (h(a2j−1), h(a2j)) ∈ RB
` . Consequently, h∗(a) ∈ RB. J

3.3 Proof of Theorem 1(3)
Proof. We shall give a reduction from the PHP with a single relation (Theorem 1(2)). Let
A1, . . . ,An,B be an instance of the PHP over a scheme containing a single r-ary relation
R. We may assume without loss of generality that, for each structure C = (C,RC) among
A1, . . . ,An,B, the projection of RC to the first coordinate is the entire domain C. This is
because we can always replace the r-ary relation R by the (r + 1)-ary relation C ×R. This
transformation can be carried out in polynomial time and it does not affect the existence or
non-existence of a homomorphism from ΠiAi to B.

For every i ∈ {1, . . . , n}, we denote by G(Ai) the digraph defined as follows. The nodes
of G(Ai) include all elements in Ai. Furthermore, for every tuple t ∈ RAi , G(Ai) contains r
additional nodes, which we denote t1, . . . , tr. Furthermore, we include the following edges:

(tj , tj+1) for every 1 ≤ j < r.
(t[j], tj) for every 1 ≤ j ≤ r.

We define G(B) as the digraph obtained from B in the same way, except that we further
add r − 1 additional elements s1, . . . , sr−1 called sink nodes. We also add edge (sj , sj+1) for
every 1 ≤ j < r − 1. Furthermore we add an edge from every element in B to every sink
node.



B. ten Cate and V. Dalmau 167

Claim: There is a homomorphism h′ : ΠiG(Ai) → G(B) if and only if there is a homo-
morphism h : ΠiAi → B.

In the remainder, we prove this claim, which immediately implies the theorem. We start
with the more difficult direction. Let h be a homomorphism from ΠiAi to B. We shall
define from h a homomorphism h′ from ΠiG(Ai) to G(B). Let v = (v1, . . . , vn) be a node of
ΠiG(Ai).

If vi ∈ Ai for every 1 ≤ i ≤ n then we say that v is of “type 1”. In this case we define
h′(v) = h(v).
If, for every 1 ≤ i ≤ n, vi = tji

i where ti ∈ RAi and ji ∈ {1, . . . , r} then:
If, in addition, there exists some j such that ji = j for every 1 ≤ i ≤ n then we say
that v is of “type 2”. Note that Πiti is a tuple in RP iiAi and hence h(Πiti) (where h
is applied component-wise) is a tuple in RB. In this case, define h′(v) to be h(Πiti)j .
Otherwise we say that v is of “type 3” and we set h(v′) to the sink node sj where
j = min{ji | 1 ≤ i ≤ n}. Observe that, in this case, necessarily j ≤ r − 1.

If v is not of any of the previous types then we say that is of “type 4”. In this case, we
shall prove there exists a vertex u of type 1 such that for every vertex w of type 2 the
following holds:

(v, w) is an edge of ΠiG(Ai)⇒ (u,w) is an edge of ΠiG(Ai) .

In this case we set h′(v) = h′(u). Let us define u to be (u1, . . . , un) where for every
1 ≤ i ≤ n, ui is defined as follows: If vi ∈ Ai then set ui = vi. Otherwise, vi = tji

i for
some ti ∈ RAi . Set ui to be ti[ji + 1] if ji < r and to be any arbitrary element in Ai

otherwise. Let w = (w1, . . . , wn) be any node of type 2. We shall prove that for every
1 ≤ i ≤ n, if (vi, wi) is an edge of G(Ai) then so is (ui, wi). The claim is obvious whenever
ui = vi. Assume now that vi = tji

i for some ti ∈ RAi . Since w is of type 2 it follows that
wi = tji+1

i . The claim follows from the fact that G(Ai) contains edge (ti[ji + 1], tji+1
i ).

Let us prove that h′ is indeed a homomorphism. Let (u, v) be an edge in ΠiG(Ai) and
let u = (u1, . . . , un) and v = (v1, . . . , vn). We shall prove that (h(u), h(v)) belongs to G(B)
by means of a case analysis on the types of u and v. Notice that v is necessarliy of type 2 or
3 since nodes of type 1 or 4 do not have incoming edges.

u is of type 1. If v is of type 3 the claim follows from the fact that G(B) has an edge from
every element in B to every sink vertex. Assume now that v is of type 2, that is, v is of
the form (tj1, . . . , tjn). Since (u, v) is an edge of ΠiG(Ai) and u is of type 1 it follows that
ui = ti[j] for every 1 ≤ i ≤ n. Hence u = (Πiti)[j] and, since h defines a homomorphism,
h(u) is the jth component of h(Πiti) (h is applied component-wise). Since h′(u) = h(u),
it follows that G(B) contains the edge from h′(u) to h′(v) = h(Πiti)j .
u is of type 2. Then necessarily there exists t1, . . . , tn and j such that u = (tj1, . . . , tjn)
and v = (tj+1

1 , . . . , tj+1
n ) and the claim follows directly from the definitions.

u is of type 3. Then v is necessarily of type 3 as well. Furthermore, it follows that if h′(u)
is sj then necessarily h′(v) = sj+1.
u is of type 4. It follows directly from the definition of h′(u) and the fact that every
vertex of type 3 is mapped by h′ to a sink node.

Conversely, let h′ be a homomorphism from ΠiG(Ai) to G(B). We start by showing
that there exists a conjunctive query q with r free variables x1, . . . , xr such that for every C
among A1, . . . ,An,B,

q(G(C)) = RC . (1)

ICDT 2015



168 The Product Homomorphism Problem and Applications

Let C be among A1, . . . ,An,B. Consider first the unary conjunctive query p(z1) stating
that there is a directed path of lenght r starting at z1. Formally,

p(z1) = ∃z2, . . . , zr+1(
∧

1≤j≤r

E(zj , zj+1))

where E is the edge relation.
By the construction of G(C) it follows that p(G(C)) is precisely the projection of RC to

the fist coordinate, which we have assumed to be C. Now we define q to be the conjunctive
query

q(x1, . . . , xr) = ∃y1 . . . yr(
∧

1≤j≤r

p(xj)
∧

1≤j≤r

E(xj , yj) ∧
∧

1≤j<r

E(yj , yj+1))

where we assume that p(x1), . . . , p(xn) use different existential variables. It is not difficult to
see that q satisfies (1).

With the help of q it is very easy to complete the proof. Indeed, Now, let t be any tuple in
RΠiAi . It follows that t = Πiti, where ti ∈ RAi for every 1 ≤ i ≤ n. It follows from (1) that
ti ∈ q(G(Ai)) for every 1 ≤ i ≤ n. Then, t ∈ q(ΠiG(Ai)) and therefore, since conjunctive
queries are preserved by homomorphisms, h(t) belongs to q(G(B)). It follows from (1) that
h(t) ∈ RB.

Note that for every digraph among G(A1), . . . , G(Am), G(B) the maximum length of a
directed path is r. This will be used in the proof of Theorem 2. J

4 First application: instance-level query definability

Instance-level query definability refers to definability of relations inside a given database
instance, with respect to some query language. We focus here on the CQ-definability problem,
which consists in deciding, given a database instance I and a relation S over the active
domain of I, whether there is a conjuctive query q such that q(I) = S. Recall that a database
instance, for present purposes, can be defined as a finite structure (note that conjunctive
queries are domain-independent).

It has been long known that the CQ-definability problem is decidable in coNExpTime
(see discussion and references in [13]). For the sake of completeness we include a short
description of the algorithm that places the problem in coNExpTime. To describe it, we
need to introduce the notion of polymorphism. A polymorphism of a relation S ⊆ Dr is any
operation f : Dk → D, k ≥ 0 such that the following holds: for every k (not necessarily
different) tuples t1, · · · , tk ∈ S, the tuple, f(t1, · · · , tk), obtained by applying f component-
wise to t1, · · · , tk, belongs also to S. It is well known (see for example [13]) that q(I) = S

for some conjunctive query q if and only if every m-ary operation that is a polymorphism
of all relations in I is also a polymorphism of S, where m is the size (number of tuples) of
S. The coNExpTime algorithm for the CQ-definability is a straightforward application of
the previous result: the algorithm, basically, guesses operation f and verifies that f is a
polymorphism of all relations in I but not of S.

Additionally, it was shown in [13] that the CQ-definability problem is coNExpTime-
complete, even for database instances with a bounded active domain size. However, the proof
used relations of arbitrarily large arity. We show that the same problem is coNExpTime-
complete for a fixed schema (but without a bound on the size of the domains of the database
instances).

I Theorem 2. The CQ-definability problem is coNExpTime-hard already for unary queries
over a fixed schema consisting of a single binary relation.



B. ten Cate and V. Dalmau 169

Proof. We shall give a reduction from the PHP with a single binary relation (Theorem 1(3)).
Let A1, . . . ,An,B be the input of PHP where the schema contains only a binary relation
R. Inspection of the proof of Theorem 1(3) shows that we may assume that, in each of
these stuctures, the maximum length of a directed path is precisely r, for some fixed natural
number r. Let C be the database instance consisting of the disjoint union of A1, . . . ,An

and B, extended with the facts R(ai, x) for all i ≤ n and x ∈ Ai, and R(b, x) for all x ∈ B,
where a1, . . . , an and b are fresh elements. Observe that each ai, and also b, by construction,
has an outgoing path of length r + 1, while no other elements have an outgoing path of
length r + 1. We make use of this below. Let S = {a1, . . . , an}. Then we claim that
A1 ⊗ ... ⊗An → B if and only if S is not definable inside C by a conjunctive query. In
one direction, if A1 ⊗ . . .⊗An → B then clearly S is not definable by a conjunctive query,
because, by homomorphism preservation, the same conjunctive query would have to select b.
On the other hand, if A1 ⊗ ... ⊗An 6→ B, then we can construct a query q defining S as
follows: first we take q1 = ∃y1, . . . , yk ψ(y1, . . . , yk) to be the canonical Boolean conjunctive
query of A1 ⊗ . . .⊗An, and, then, we define q(x) to be the unary conjunctive query

∃y1 . . . , yk (R(x, y1) ∧ · · · ∧R(x, yk) ∧ ψ(y1, . . . , yk))

expressing that q1 holds in the submodel of C consisting of all elements reachable (in one
step) from the element denoted by x. By construction, q(C) includes all of S and excludes
b. It is also easy to see that q(C) contains no elements other than a1, . . . , an and b (we are
using here the fact that structures A1, . . . ,An and B do not contain a path of length r + 1).
Therefore, q defines S. J

It is also natural to consider a generalized version of CQ-definability, where the input is a
finite sequence of pairs (I1, S1), . . . , (In, Sn), where each Ii is a database instance and each
Si is a relation over the active domain of Ii (all of the same arity), and the task is to decide
whether there is a conjunctive query q, such that, for all i ≤ n, q(Ii) = Si.

I Theorem 3. The generalized CQ-definability problem is coNExpTime-complete.

Proof. The lower bound follows immediately from Theorem 2. For the upper bound: let
(I1, S1), . . . , (In, Sn) be a given input for the generalized CQ-definability problem. We may
assume without loss of generality that the active domains of I1, . . . , In are disjoint. We
extend the schema with an additional binary relation E, and construct a new instance I
that is the disjoint union of I1, . . . , In, where E is interpreted as the equivalence relation
consisting of all pairs (a, b), such that a and b belong to the active domain of the same
instance Ii. Furthermore, let S = S1 ∪ · · · ∪ Sn.

Let q be any conjunctive query, over the original schema, such that q(Ii) = Si for all i ≤ n.
Let q′ be obtained from q by adding conjuncts E(x, y) for all pairs of variables x, y occurring
(free or bound) in the query q. Then it is easy to show that q′(I) = S. Conversely, let q be
any conjunctive query (possibly referring to the binary relation E) such that q(I) = S. Let
q′ be obtained from q by dropping all conjuncts involving the relation E. Then it is easy to
show that q′(Ii) = Si for all i ≤ n. We conclude that (I1, S1), . . . , (In, Sn) is a yes-instance
for the generalized CQ-definability problem if and only if (I, S) is a yes-instance for the
CQ-definability problem. J

Analogous to the CQ-definbility problem, one can consider the FO-definability problem,
where the task is to decide, given a database instance I and a relation S over the domain of I,
whether there is a first-order query q such that q(I) = S. This problem was considered, under
the name BP-PAIR, in [9], where it was observed that the Banchilon-Paredaens completeness

ICDT 2015



170 The Product Homomorphism Problem and Applications

theorem [3, 12] implies that this problem is in coNP and co-GI-hard, where GI is the class of
problems reducible to the graph-isomorphism problem. The same holds for the generalized
FO-definability problem, also known as BP-PAIRS. Determining the exact complexity of
BP-PAIR and BP-PAIRS is an open problem [9]. Recently, in [2], instance-level definability
was studied for regular path queries and for conjunctive regular path queries in the context
of graph databases.

5 Second application: the fitting problem for schema mappings

The fitting problem for schema mappings was introduced and studied in [1]. We briefly
review the relevant definitions. Fix two disjoint finite relational schemas, S and T, which
we will call the source schema and the target schema. A GLAV (Global-and-Local-As-View)
constraint is a first-order sentence of the form

∀x(φ(x)→ ∃yψ(x,y))

where φ(x) is a conjunction of one or more atomic relational formulas over the source schema
containing all the variables in x, and where ψ(x,y) is a conjunction of one or more relational
atomic formulas over the target schema containing all variables in y. As in the case of
conjunctive queries, for simplicity, we assume that the atoms in a GLAV constraint do not
contain constants. A GLAV schema mapping is a finite set of GLAV constraints.

GLAV schema mappings are used extensively in data exchange and in data integration
[11]. They provide the formal foundation for these data-interoperability tasks by specifying
the relationships between the two schemas. Two important special cases of GLAV schema
mappings are GAV (Global-As-View) schema mappings and LAV (Local-As-View) schema
mappings. These consists of GAV constraints, and LAV constraints, respectively. A GAV
constraint is a GLAV constraint whose consequent ψ(x) consists of a single atomic formula
without existential quantifiers, while a LAV constraint is a GLAV constraint whose antecedent
φ(x,y) consists of a single atomic formula. Finally, a 1GAV schema mapping is a GAV
schema mapping such that each relation from the target schema occurs in only one constraint.
We can think of a GAV schema mapping (or, a 1GAV schema mapping) as associating, to
each target relation, a UCQ view over the source (respectively, a CQ view over the source),
while we can think of a LAV schema mapping as associating, to each source relation, a CQ
view over the target. GAV, LAV, and GLAV schema mappings are the most widely studied,
and the most widely used, types of schema mappings.

Consider a schema mapping M and a pair (I, J), where I and J are database instances
over the source S and the target schema T, respectively. When (I, J), viewed as a single
database instance over the union of the two schemas, satisfies the constraints of M , then
we say that J is a solution of I (with respect to M). We say that J is a universal solution
for I (with respect to a schema mapping M), if J is a solution for I, and for every solution
J ′ of I, there is a homomorphism from h : J → J ′, where h(a) = a for all a in the active
domain of I. It was argued in [8] that universal solutions are the preferred solutions in data
exchange. Furthermore, it was shown in [8] that, in the case of GLAV schema mappings,
every source instance has a universal solution, and a universal solution can be constructed in
polynomial time (data complexity).

Several methodologies have been proposed and used for obtaining schema mappings in
practice. In particular, in [1], a data example-driven approach to schema mapping design is
advocated. An (unlabelled) data example, here, is a pair (I, J), where I is a finite structure
over the source schema and J is a finite structure over the target schema. Data examples



B. ten Cate and V. Dalmau 171

data examples LAV GAV 1GAV GLAV
universal NP-cmp [1] coNP-cmp [1] coNExpTime-cmp∗ Πp

2-cmp [1]
pos. & neg. coNExpTime-cmp∗ coNP-cmp∗ coNExpTime-cmp∗ in coN2ExpTime and

coNExpTime-hard∗

Figure 1 Complexity of variants of the fitting problem for schema mappings (* marks new
results).

can be used in different ways to describe a schema mapping. We say that a data example
(I, J) is a positive example for a schema mapping M if J is a solution for I with respect to
M , and it is a negative example otherwise. Finally, (I, J) is a universal example for M if J
is a universal solution for I with respect to M .

The fitting problem for GLAV (GAV, LAV) schema mappings with positive/negative/uni-
versal examples is the problem where the input is a finite collection of data examples, each
labeled as being a positive example or a negative example or a universal example, and the
problem is to decide whether there exists a GLAV (GAV, 1GAV, LAV) schema mapping that
is consistent with this marking (in other words, that “fits” these data examples). We will
follow the literature by considering the data complexity of this problem, where the input is
the collection of marked data examples, while the source and target schema are assumed
to be fixed. The fitting problem for universal examples was studied in [1]. It was shown
there that this problem is coNP-complete for GAV schema mappings; NP-complete for LAV
schema mappings; and Πp

2-complete for GLAV schema mappings. It was also shown in [1]
that if, for a given set of universal examples, a fitting GLAV (or GAV, LAV) schema mapping
exists, then there is one whose size is linear in the combined size of the data examples.

Although it is argued in [1] that universal examples are the most natural and well-behaved
type of data examples, it is also important to consider fitting problems where the input is a
collection of positive and negative examples. Indeed, for richer schema mapping languages
(beyond GLAV), in general, a given source instance may not have a universal solution, and
hence, we cannot always work with universal examples. Below, we determine the complexity
of the fitting problem with positive and negative examples, for the various schema mapping
languages introduced above. The main results are summarized in Figure 1.

First, we establish some convenient lemmas. First, the direct product construction
naturally generalizes to instances with designated elements. Let n,m ≥ 0 and let
(I1,a1), . . . , (In,an), where each In is an instance, over the same schema, and where each ai

is a sequence of m elements of the active domain of Ii (m ≥ 0). We denote by Π1≤i≤n(Ii,ai)
the pair (Π1≤i≤n(Ii),b), where b is the m-tuple that is the direct product of a1, . . . ,an.

We will make use of the following fundamental notion from database theory: the canonical
query of (I,a) is the query q(x) = ∃yψ(x,y) obtained by associating a first-order variable to
each element of the active domain of I, taking ψ to be conjunction of all facts of I using
these variables, and existentially quantifying all variables corresponding to elements that do
not belong to a. Note that the free variables x of the query are the variables that correspond
to the elements in a.

I Theorem 4. (i) Let E be a finite collection of positive and negative data examples over a
fixed source and target schema. If there exists a LAV schema mapping that fits E, then
there exists one of size at most 2O(n), where n is the total size of the data examples in
E.

(ii) The fitting problem for LAV schema mappings with positive and negative examples (over
a fixed source and target schema) is coNExpTime-complete.

ICDT 2015



172 The Product Homomorphism Problem and Applications

Proof. (i) Let E be a finite set of positive and negative labeled data examples with source
and target schemas S and T. Let F be the finite set consisting of all atomic formulas over
S, modulo variable renaming. For every R(x) ∈ F , let (J∗R(x),a∗R(x)) be the direct product
Π{(J,a) | (I, J) ∈ E is a positive data example and I |= R(a)}. Let qR(x) be the canonical
query of (J∗R(x),a∗R(x)). Take M∗ to be the schema mapping consisting of all LAV constraints
of the form ∀x(R(x)→ qR(x)(x)), for R(x) ∈ F .

Note that the size of M∗ is single exponential in ||E||: since the schemas S and T are
fixed, the number of formulas over S, modulo variable renaming, is bounded. Moreover, the
cardinality of S is bounded linearly by the number of facts in the data examples belonging
to E. It follows that M∗ consists of polynomially many LAV constraints, each of at most
singly exponential size.

Furthermore, it follows from the construction of M∗ that for every positively labeled
data example (I, J) ∈ E, J is a solution for I with respect to M∗. Indeed, consider any
LAV constraint ∀x(R(x) → qR(x)(x)) of M∗, and suppose R(a) ∈ I. By construction,
(J∗R(x),a∗R(x))→ (J,a), which means that qR(x)(a) is satisfied in J .

It remains to show that every negatively labeled data example (I, J) ∈ E falsifies at least
one LAV constraint fromM∗. For the sake of a contradiction, assume that this is not the case.
Let M be the LAV schema mapping that fits E, which we have assumed exists. We know
that (I, J) falsifies at least one LAV constraint from M . Let this LAV constraint be of the
form ∀x(R(x)→ ∃yψ(x,y), and let R(a) ∈ I be witness to the falsehood of this constraint in
(I, J). Since (I, J) satisfies all constraints of M∗, we know that qR(x), as we defined earlier,
is satisfied in (J,a). In other words, (J∗R(x),a∗R(x)) → (J,a). It follows that ∃yψ(x,y) is
not satisfied in (J∗R(x),a∗R(x)), in other words, the canonical instance of ∃yψ(x,y) does not
homomorphically map to (J∗R(x),a∗R(x)). At the same time, we know that ∃yψ(x,y) maps
homomorphically into each factor instance of which (J∗R(x),a∗R(x)) is the direct product. This
contradicts the basic property of direct products we described in Section 2, namely that every
structure that maps homomorphically into a collection of structures, maps homomorphically
into their direct product. Therefore, we have reached a contradiction.

(ii) The coNExpTime upper bound follows from the proof of item (i): we construct
M∗ from the given data examples, as described above. As we noted, it follows from the
construction that M∗ fits all positively labeled data examples in E. Therefore, we only need
to verify that M∗ fits the negatively labeled data examples in E. We use here the fact that
the problem of checking that a LAV constraint is satisfied in a data example belongs to NP
(which follows from the fact that LAV constraints are existential FO sentences).

Lower bound: by reduction from Theorem 1(3): let A1, . . . ,An and B be given, with a
single binary relation. Let T be the schema of these structures, and let S be the schema
consisting of a single unary relation P . By the way, in this case, every LAV schema mapping
is equivalent to one that consists of a single LAV constraint (this is because there is only
one possible left-hand side for the LAV constraints, due to the particular choice of S, and
multiple LAV constraints with the same left-hand side can be combined using conjunction of
the right-hand sides). Note that this already shows that in essence, here, we are concerned
with finding a fitting conjunctive query again (namely the right-hand side of the unique LAV
constraint). For each i ≤ n, consider the data example ({P (0)},Ai) where 0 is some fresh
value. The PHP then reduces to the complement of the question whether there is a LAV
schema mapping that fits the positively labeled examples ({P (0)},Ai) for i ≤ n and the
negatively labeled example ({P (0)},B). J

In contrast, the situation for GAV is quite different:



B. ten Cate and V. Dalmau 173

I Theorem 5. 1. Let E be a finite collection of positive and negative data examples over a
fixed source and target schema. If there exists a GAV schema mapping that fits E, then
there exists one whose size is polynomial in the total size of the data examples in E.

2. The fitting problem for GAV schema mappings with positive and negative examples is
coNP-complete.

Proof. For the complexity upper bound, we use the following decision procedure: let a finite
set of labeled data examples be given. For each negatively labeled example (I, J), we verify
that there is a target relation R and a tuple t of appropriate arity over the domain of I such
that (i) R(t) is absent in J ; and (ii) for every positively labeled example (I ′, J ′) (from the
given set of examples) and homomorphism h : I → I ′, R(h(t)) belongs to J ′. If this holds,
we answer Yes, otherwise No. Note that item (ii) involves a coNP test. Since this coNP test
is performed at most polynomially many times, this places the entire problem in coNP.

If the procedure answers Yes, then a fitting GAV schema mapping indeed exists, namely the
schema mapping containing, for each negatively labeled example (I, J), the GAV constraint
whose left-hand side is the canonical query of I (where each constant is replaced by a
corresponding fresh universally quantified variable) and whose right-hand side is the chosen
missing fact R(t) (where each constant is again replaced by the corresponding universally
quantified variable). It follows from item (ii) that this GAV constraint is indeed satisfied
in all the positively labeled examples. The GAV schema mapping consisting of all GAV
constraints constructed in this way (one for each negatively labeled data example) therefore
fits E. Note that this schema mapping is of poynomial size.

Conversely, if there is a fitting GAV schema mapping, then the above procedure will
answer Yes: in order for a GAV schema mapping to fit the examples, it must contain, for
each negatively labeled example (I, J), a GAV constraint that fails in (I, J). The conclusion
of this constraint (together with the homomorphism witnessing its failure in (I, J)) provides
the fact R(t) that is missing in J . Since the same GAV constraint holds in all positive data
examples, item (ii) above holds as well.

The coNP-hardness is shown by a reduction from (the complement of) the NP-complete
graph homomorphism problem. Indeed, is easy to see that, for any two graphs G,G′, we have
that G→ G′ if and only if there is no fitting GAV schema mapping for the set consisting of the
positively labeled data example (G′, ∅) and the negatively labeled data example (G, ∅). J

1GAV schema mappings have not been previously considered in the context of schema
mapping discovery. Therefore, we study the fitting problem both in the case with positive
and negative examples and with universal examples.

I Theorem 6. The following problems are coNExpTime-complete:
1. the fitting problem for 1GAV schema mappings with positive and negative examples
2. the fitting problem for 1GAV schema mappings with universal examples
In both settings it holds that, if there is a fitting schema mapping for a given set of data
examples, then there is one of whose size is exponential in the total size of the data examples.

Proof. Before we start, we note that, if M is a GAV schema mapping (in particular, a
1GAV schema mapping), then every source instance I has a universal solution J , such that
the active domain of J is included in the active domain of I (indeed, the chase procedure
described in [1] produces such universal solutions for GAV schema mappings). Moreover, if
J is a universal solution for I and the active domain of J is included in the active domain
of I, the definition of universality implies that J is a subinstance of every solution of I. In
addition, for every pair of instances I, J , we have that J is a universal solution for I with

ICDT 2015



174 The Product Homomorphism Problem and Applications

respect to a GAV schema mapping M if and only if J ′ is a universal solution for I with
respect to M , where J ′ is the subinstance of J induced by the active domain of I. We will
make use of these observations below.

First we show how coNExpTime-hardness of the fitting problem for 1GAV schema map-
pings with universal examples, by reduction from the CQ-definability problem (cf. Theorem 2)
Let (I, S) be a given input for the CQ-definability problem (for a fixed schema S), and let n be
the arity of the relation S. Let T be the schema that the single n-ary relation symbol T , and
let J be the T-instance given by the relation S. First, observe that, since the target schema
T consists of a single relation, every 1GAV schema mapping, in this case, consists of at most
one GAV constraint, which is of the form ∀xy(φ(x,y→ Tx) (where there may be a repetition
of variables in the T -atom). We can associate to this GAV constraint a conjunctive query
q(x) = ∃yφ(x,y) (and, conversely, each conjunctive query is associated to a GAV schema
mapping in this way). It is easy to see that a 1GAV schema mapping M fits the universal
example (I, J), if and only if the corresponding conjunctive query q(x) is such that q(I) = S.

Next, we reduce the fitting problem for 1GAV schema mappings with universal examples
to the fitting problem for 1GAV schema mappings with positive and negative examples. Let
E be a collection of universal examples over source and target schemas S,T. By our earlier
observations, we may assume without loss of generality that the data examples (I, J) ∈ E are
such that the active domain of J is included in the active domain of I. We define a set E′ of
positive and negative examples. For each (I, J) ∈ E, we include in E′ as positive examples
the pair (I, J) itself; and we include in E′ as negative examples all pairs (I, J ′) where J ′ is
a T-instance over the active domain of I such that J 6⊆ J ′. It is easy to show that a 1GAV
schema mappingM fits the positive and negative data examples in E′ if and only ifM fits the
universal examples in E. Moreover, the combined side of the data examples in E′ is polynomial
in the combined size of the data examples in E, given that the schemas S,T are fixed.

Finally, we will show that the fitting problem for 1GAV schema mappings with positive
and negative examples is in coNExpTime, and we will establish the existence of single
exponential size fitting 1GAV schema mappings. Let E be a finite set of data examples over
schemas S and T. We will restrict attention to the case where T = {T} (the generalization
to the case with several target relations is straightforward). Let n be the arity of T . For
each negatively labeled data example (I, J) ∈ E, by a missing fact of (I, J) we will mean
a fact T (a), with values a from the active domain of I, that does not belong to J . If a
negatively labeled example (I, J) ∈ E has no missing fact, then it is easy to see that no
1GAV schema mapping (and in fact, no GLAV schema mapping) fits E. Therefore, we may
assume that each negatively labeled data example has at least one missing fact. Let F be
the set of all functions that map each negatively labeled data example in E to one of its
missing facts. Note that F consists of singly exponentially many maps. We can associate
to each map f ∈ F a 1GAV schema mapping Mf , namely the schema mapping consisting
of the 1GAV constraint ∀x(qf (x) → Tx)), where qf is the canonical query of the direct
product Π{(I,a) | (I, J) ∈ E is a negatively labeled data example and f(I, J) = Ta}. It
follows from the construction that Mf fits every negatively labeled data example in E.

Claim: If there is a 1GAV schema mapping that fits E, then, for some f ∈ F , Mf fits E.

Note that the size of Mf is single exponential. The claim also implies the coNExpTime
complexity upper bound we are after: to check that there is no fitting 1GAV schema
mapping for E, it suffices to guess, for each f ∈ F , a positively labeled data example (I, J)
and a variable assignment witnessing the fact that (I, J) 6|= ∀x(qf (x) → Tx)). Note that
the exponentially many exponential-size non-deterministic guesses can be collected into a
single exponential size non-deterministic guess.



B. ten Cate and V. Dalmau 175

To prove the claim, let M ′ be a 1GAV schema mapping that fits E, and let its constraint
be of the form ∀~x(φ(x)→ T (x)). Let f be the map that sends each negatively labeled data
example (I, J) ∈ E to a missing target fact that witnesses the violation of the constraint in
(I, J). Recall that qf is the canonical query of (I∗,a∗) = Π{(I,a) | (I, J) ∈ E, I |= φ(a), J 6|=
T (a), f(I, J) = T (a)}. It follows that qf is falsified in all negatively labeled data examples
(I, J) ∈ E, and hence, M ′ fits all negatively labeled data examples in E (we had already
noted that M ′ fits all positively labeled data examples). J

The coNExpTime lower bound for the LAV case applies to the GLAV case as well (the
examples involved have a source instance that consists of a single fact, and it is easy to see
that, for such data examples, every GLAV constraint is equivalent to a LAV constraint of at
most the same size). The upper bound technique used in the LAV case can also be adapted
for GLAV schema mappings, but it no longer yields matching complexity and size bounds.

I Theorem 7. 1. Let E be a finite collection of data examples over a fixed source and target
schema. If there exists a GLAV schema mapping that fits E, then there exists one of size
at most 22O(n) , where n is the total size of the data examples in E.

2. The fitting problem for GLAV schema mappings with positive and negative examples is in
coN2ExpTime and coNExpTime-hard.

Proof. (sketch) Clearly, a fitting GLAV schema mapping needs to contain at most one
constraint per negative example (I, J) ∈ E. The left-hand side of that GLAV constraint
can, without loss of generality, be taken to be the canonical conjunctive query of I. The
right-hand side must be a CQ that fails in J under the natural variable assignment. Here, we
can apply the same technique as in the proof of Theorem 4: we can take the right-hand side
of the constraint to be the canonical query of the direct product of all J ′ with (I ′, J ′) ∈ E is
a positive data example and I → I ′. The same arguments used in the proof of Theorem 4
show that, if there exists any GLAV schema mapping that fits E, then the GLAV schema
mapping constructed here fits E.

Since the number of homomorphisms I → I ′ is in general exponential, the above construc-
tion, in general, involves taking the direct product of exponentially many instances. This gives
us a double exponential size GLAV constraint. By the same arguments used in the proof of
Theorem 4, we can derive a coN2ExpTime complexity upperbound for the fitting problem. J

6 Conclusion

We provided a detailed classification of the complexity of PHP under various restrictions.
We used these results to obtain tight complexity bounds for instance-level query definability
problems and for fitting problems for schema mappings. The precise complexity of the fitting
problem for GLAV schema mappings with respect to positive and negative data examples is
left as an open problem.

Acknowledgements. We are grateful to Ross Willard for discussions on the topic and for
comments on an earlier draft. Ten Cate is supported by NSF grant IIS-1217869. Dalmau is
supported by MICCIN grant TIN2013-48031-C4-1.

ICDT 2015



176 The Product Homomorphism Problem and Applications

References
1 Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang-Chiew Tan. Designing and

refining schema mappings via data examples. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, SIGMOD ’11, pages 133–144, New York,
NY, USA, 2011. ACM.

2 Timos Antonopoulos, Frank Neven, and Frédéric Servais. Definability problems for graph
query languages. In Proceedings of the 16th International Conference on Database Theory,
ICDT ’13, pages 141–152, New York, NY, USA, 2013. ACM.

3 F. Banchilon. On the completeness of query languages for relational databases. In Proceed-
ings of MFCS, pages 112–123, 1978.

4 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspect-
ives in Mathematical Logic. Springer, 1997.

5 Nadia Creignou, Phokion G. Kolaitis, and Bruno Zanuttini. Structure identification of
boolean relations and plain bases for co-clones. J. Comput. Syst. Sci., 74(7):1103–1115,
2008.

6 Victor Dalmau. Computational Complexity of Problems over Generalized Formulas. PhD
thesis, Universitat Politècnica de Catalunya, 2000.

7 Rina Dechter and Judea Pearl. Structure identification in relational data. Artif. Intell.,
58(1-3):237–270, 1992.

8 Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:
semantics and query answering. Theoretical Computer Science, 336(1):89 – 124, 2005.
Database Theory.

9 G.H.L. Fletcher, M. Gyssens, J. Paredaens, and D. Van Gucht. On the expressive power
of the relational algebra on finite sets of relation pairs. Knowledge and Data Engineering,
IEEE Transactions on, 21(6):939 –942, june 2009.

10 Peter Jeavons, David A. Cohen, and Marc Gyssens. How to determine the expressive power
of constraints. Constraints, 4(2):113–131, 1999.

11 Phokion G. Kolaitis. Schema mappings, data exchange, and metadata management. In Pro-
ceedings of the Twenty-fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’05, pages 61–75, New York, NY, USA, 2005. ACM.

12 J. Paredaens. On the expressive power of the relational algebra. Information Processing
Letters, 7(2):107 – 111, 1978.

13 Ross Willard. Testing expressibility is hard. In David Cohen, editor, CP, volume 6308 of
Lecture Notes in Computer Science, pages 9–23. Springer, 2010.



Regular Queries on Graph Databases
Juan L. Reutter1, Miguel Romero2, and Moshe Y. Vardi3

1 Pontificia Universidad Católica de Chile
jreutter@ing.puc.cl

2 Universidad de Chile
mromero@dcc.uchile.cl

3 Rice University
vardi@cs.rice.edu

Abstract
Graph databases are currently one of the most popular paradigms for storing data. One of the
key conceptual differences between graph and relational databases is the focus on navigational
queries that ask whether some nodes are connected by paths satisfying certain restrictions. This
focus has driven the definition of several different query languages and the subsequent study of
their fundamental properties.

We define the graph query language of Regular Queries, which is a natural extension of unions
of conjunctive 2-way regular path queries (UC2RPQs) and unions of conjunctive nested 2-way
regular path queries (UCN2RPQs). Regular queries allow expressing complex regular patterns
between nodes. We formalize regular queries as nonrecursive Datalog programs with transitive
closure rules. This language has been previously considered, but its algorithmic properties are
not well understood.

Our main contribution is to show elementary tight bounds for the containment problem
for regular queries. Specifically, we show that this problem is 2Expspace-complete. For all
extensions of regular queries known to date, the containment problem turns out to be non-
elementary. Together with the fact that evaluating regular queries is not harder than evaluating
UCN2RPQs, our results show that regular queries achieve a good balance between expressiveness
and complexity, and constitute a well-behaved class that deserves further investigation.

1998 ACM Subject Classification H.2.3 Languages – Query languages

Keywords and phrases Graph databases, conjunctive regular path queries, regular queries, con-
tainment

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.177

1 Introduction

Graph databases have become a popular data model over the last decade. Important
applications include the Semantic Web [3, 4], social network analysis [27], biological networks
[34], and several others. The standard model for a graph database is as an edge-labeled
directed graph [12, 30]: nodes represent objects and a labeled edge between nodes represents
the fact that a particular type of relationship holds between these two objects. For a survey
of graph databases, see [1, 5].

Conceptually, graph databases differ from relational databases in that the topology
of the data is as important as the data itself. Thus, typical graph database queries are
navigational, asking whether some nodes are connected by paths satisfying some specific
properties. The most basic query language for graph databases is that of regular-path queries
(RPQs) [24], which selects pairs of nodes that are connected by a path conforming to a

© Juan L. Reutter, Miguel Romero and Moshe Y. Vardi;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 177–194

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.177
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


178 Regular Queries on Graph Databases

regular expression. A natural extension of RPQs is the class of two-way regular-path queries
(2RPQs), which enable navigation of inverse relationships [14, 15]. In analogy to conjunctive
queries (CQs) and union of CQs (UCQs), the class of union of conjunctive two-way regular
path queries (UC2RPQs) enable us to perform unions, joins and projections over 2RPQs
[14]. The navigational features present in these languages are considered essential in any
reasonable graph query language [5].

More expressive languages have been studied, for example, in the context of knowledge
bases and description logics [11, 9, 8]. The class of nested two-way regular path queries
(N2RPQs) and the corresponding class of union of conjunctive N2RPQs (UCN2RPQs),
extends C2RPQs with an existential test operator, inspired in the language XPath [37, 7].
Typical results show that CN2RPQs is a well-behaved class, as it increases the expressive
power of C2RPQs without increasing the complexity of evaluation or containment [11, 8]. Yet
the regular patterns detected by 2RPQs and N2RPQs are still quite simple: they speak of
paths and a restricted form of trees. Thus, these languages cannot express queries involving
more complex regular patterns.

One key property that the query classes of UC2RPQs and UCN2RPQs fail to have is that
of algebraic closure. To see that, note that the relational algebra is defined as the closure of a
set of relational operators [2]. Also, the class of CQs is closed under select, project, and join,
while UCQs are also closed under union [2]. Similarly, the class of 2RPQs is closed under
concatenation, union, and transitive closure. In contrast, UC2RPQs and UCN2RPQs are
not closed under transitive closure. For example, the transitive closure of a binary UC2RPQ
query is not a UC2RPQ query. Thus, UC2RPQs and UCN2RPQs are not natural classes of
graph database queries.

In this paper we study the language of Regular Queries (RQ), which result from closing
the class of UC2RPQs also under transitive closure. We believe that RQ fully captures regular
patterns over graph databases. We define RQ as binary nonrecursive Datalog programs with
the addition of transitive closure rules of the form S(x, y)← R+(x, y). Such a rule defines S
as the transitive closure of the predicate R (which may be defined by other rules). The class
of RQ queries is a natural extension of UC2RPQs and UCN2RPQs and can express many
interesting properties that UCN2RPQs can not (see e.g. [11, 38, 36]), but its algorithmic
properties until now have not been well understood.

It is easy to see that the complexity of evaluation of regular queries is the same as
for UC2RPQs: NP-complete in combined complexity and NLogspace-complete in data
complexity. This is a direct consequence of the fact that regular queries are subsumed
by binary linear Datalog [21, 19]. Nevertheless, the precise complexity of checking the
containment of regular queries has been open so far. This is the focus of this paper.

The containment problem for queries asks, given two queries Ω and Ω′, whether the answer
of Ω is contained in the answer of Ω′, over all graph databases. Checking query containment
is crucial in several contexts, such as query optimization, view-based query answering,
querying incomplete databases, and implications of dependencies [13, 18, 28, 31, 26, 32]. A
non-elementary upper bound for regular query containment follows from [22, 23]. But, is the
complexity of the containment problem elementary or non-elementary? Given the importance
of the query-containment problem, a non-elementary lower bound for containment of regular
queries would suggest that the class may be too powerful to be useful in practice.

Our main technical contribution is to show elementary tight bounds for the containment
problem of regular queries. We attack this problem by considering an equivalent query
language, called nested unions of C2RPQs (nested UC2RPQs), which is of independent
interest. The intuition is that a regular query can be unfolded to construct an equivalent



J. L. Reutter, M. Romero, and M.Y. Vardi 179

nested UC2RPQ. This is remiscent of the connection between nonrecursive Datalog and
UCQs: each nonrecursive program can be unfolded to construct an equivalent UCQ [2].
Unfoldings of regular queries may involve an exponential blow up in size, and thus we can
think of regular queries as a succinct version of nested UC2RPQs. We also analyze the
impact of this succinctness on the complexity of the containment problem.

Remarkably, despite the considerable gain in expressive power that comes with nesting
UC2RPQs, we are able to show that checking containment of nested UC2RPQs is Expspace-
complete, i.e, it is not harder than checking containment of UC2RPQs [14]. Our proof is
based on two novel ideas:
1. We reduce containment of nested UC2RPQs, to containment of a 2RPQ in a nested

UC2RPQ. The reduction is based on a serialization technique, where we represent
expansions of nested UC2RPQs as strings, and modify the original nested UC2RPQs
accordingly.

2. We show that checking containment of a 2RPQ E in a nested UC2RPQ Γ can be done in
Expspace. Here, we exploit automata-theoretic techniques used before, e.g. in [14, 16, 19]
to show that containment of UC2RPQs is in Expspace. Nevertheless, our proof requires
a deep understanding and a significant refinement of these techniques. The essence of the
proof is a suitable representation of the partial mappings of Γ to the expansions of E.
This representation is robust against nesting and does not involve a non-elementary blow
up in size.

This result yields a 2Expspace upper bound for containment of regular queries, and we
also provide a matching lower bound. Thus, the succinctness of regular queries is inherent
and the containment problem is 2Expspace-complete.

There are several other languages that are either more expressive or incomparable to
regular queries. One of the oldest is GraphLog [21], which is equivalent to first-order logic
with transitive closure. More recent languages include extended CRPQs [6], which extends
CRPQs with path variables, XPath for graph databases [35, 33], and algebraic languages
such as [29, 36]. Although all these languages have interesting evaluation properties, the
containment problem for all of them is undecidable. Another body of research has focused
on fragments of Datalog with decidable containment problems. In fact, regular queries were
investigated in [11] (under the name of nested positive 2RPQs), but the precise complexity
of checking containment was left open, with non-elementary tight bounds provided only for
strict generalizations of regular queries [38, 10, 11]. Interestingly, the containment problem is
non-elementary even for positive first-order logic with unary transitive closure [11], which is a
slight generalization of regular queries. Thus, regular queries seems to be the most expressive
fragment of first-order logic with transitive closure that is known to have an elementary
containment problem.

Organization. We present preliminaries in Section 2. In Section 3 we introduce regular
queries. The containment problem of regular queries is analyzed in Section 4. Finally, in
Section 5 we conclude the paper by discussing realistic restrictions on regular queries and
future work. Due to space limitations, we only present the main ideas and intuitions behind
our proofs. Complete proofs will be given in the full version of the paper.

2 Preliminaries

Graph databases. Let Σ be a finite alphabet. A graph database G over Σ is a pair (V,E),
where V is a finite set of nodes and E ⊆ V × Σ × V . Thus, each edge in G is a triple

ICDT 2015



180 Regular Queries on Graph Databases

(v, a, v′) ∈ V ×Σ× V , whose interpretation is an a-labeled edge from v to v′ in G. We define
the finite alphabet Σ± = Σ∪ {a− | a ∈ Σ}, that is, Σ± is the extension of Σ with the inverse
of each symbol. The completion G± of a graph database G over Σ, is a graph database over
Σ± that is obtained from G by adding the edge (v′, a−, v) for each edge (v, a, v′) in G.

Conjunctive Queries. We assume familiarity with relational schemas and relational databases.
A conjunctive query (CQ) is a formula in the ∃,∧-fragment of first-order logic. We adopt a
rule-based notation: A CQ θ(x1, . . . , xn) over the relational schema σ is a rule of the form
θ(x̄) ← R1(ȳ1), . . . , Rm(ȳm), where x̄ are the free variables, the variables in some ȳi not
mentioned in x̄ are the existential quantified variables and Ri is a predicate symbol in σ,
for each 1 ≤ i ≤ m. The answer of a CQ θ(x1, . . . , xn) over a relational database D is the
set θ(D) = {ā | D |= θ(ā))}, of tuples that satisfies θ in D. As usual, if θ is a boolean CQ,
that is, it has no free variables, we identify the answer false with the empty relation, and
true with the relation containing the 0-ary tuple.

We want to use CQs for querying graph databases over a finite alphabet Σ. In order to
do this, given an alphabet Σ, we define the schema σ(Σ) that consists of one binary predicate
symbol Ea, for each symbol a ∈ Σ. For readability purposes, we identify Ea with a, for each
symbol a ∈ Σ. Each graph database G = (V,E) over Σ can be represented as a relational
database D(G) over the schema σ(Σ): The database D(G) consists of all facts of the form
Ea(v, v′) such that (v, a, v′) is an edge in G.

A conjunctive query over Σ is simply a conjunctive query over σ(Σ±). The answer θ(G)
of a CQ θ over G is θ(D(G±)). A union of CQs (UCQ) Θ over Σ is a set {θ1(x̄), . . . , θk(x̄)} of
CQs over Σ with the same free variables. The answer Θ(G) is

⋃
1≤j≤k θj(G), for each graph

database G.
A (U)CQ with equality is a (U)CQ where equality atoms of the form y = y′ are allowed.

Although each CQ with equality can be transformed into an equivalent CQ (without equality)
via identification of variables, in some cases it will be useful to work directly with CQs with
equality. If ϕ is a CQ with equality, then its associated CQ (without equality) is denoted by
neq(ϕ).

C2RPQs. The basic mechanism for querying graph databases is the class of two-way regular
path queries, or 2RPQs [15]. A 2RPQ E over Σ is a regular expression over Σ±. Intuitively, E
computes the pairs of nodes connected by a path that conforms to the regular language L(E)
defined by E. Formally, the answer E(G) of a 2RPQ E over a graph database G = (V,E)
is the set of pairs (v, v′) of nodes in V for which there is a word r1 · · · rp ∈ L(E) such that
(v, v′) is in the answer of the CQ θ(x, y)← r1(x, z1), . . . , rp(zp−1, y) over G. Note that, when
p = 0, r1 · · · rp = ε and θ(x, y) becomes x = y.

The analogue of CQs in the context of graph databases is the class of conjunctive 2RPQs,
or C2RPQs [14]. A C2RPQ is a CQ where each atom is a 2RPQ, instead of a symbol in σ(Σ±).
Formally, a C2RPQ γ(x̄) over Σ is rule of the form γ(x̄)← E1(y1, y

′
1), . . . , Em(ym, y′m), where

x̄ are the free variables, the variables in {y1, y
′
1, . . . , ym, y

′
m} not mentioned in x̄ are the

existential quantified variables and Ei is a 2RPQ over Σ, for each 1 ≤ i ≤ m. The answer
γ(G) of γ over a graph database G is defined in the obvious way. A union of C2RPQs
(UC2RPQ) Γ over Σ is a finite set {γ1(x̄), . . . , γk(x̄)} of C2RPQs over Σ with the same free
variables. We define Γ(G) to be

⋃
1≤j≤k γj(G), for each graph database G.

Datalog. While UC2RPQs extends UCQs with a limited form of transitive closure, Datalog
extends UCQs with full recursion. A Datalog program Π consists of a finite set of rules



J. L. Reutter, M. Romero, and M.Y. Vardi 181

of the form S(x̄) ← R1(ȳ1), . . . , Rm(ȳm), where S,R1, . . . , Rm are predicate symbols and
x̄, ȳ1, . . . , ȳm are tuples of variables. A predicate that occurs in the head of a rule is called
intensional predicate. The rest of the predicates are called extensional predicates. IDB(Π)
and EDB(Π) denote the set of intensional and extensional predicates, respectively. We
assume that each program has a distinguished intensional predicate called Ans.

Let P be an intensional predicate of a Datalog program Π and D a database with schema
EDB(Π). For i ≥ 0, P iΠ(D) denote the collection of facts about the intensional predicate
P that can be deduced from D by at most i applications of the rules in Π. Let P∞Π (D) be⋃
i≥0 P

i
Π(D). Then, the answer Π(D) of Π over D is Ans∞Π (D).

A predicate P depends on a predicate Q in a Datalog program Π, if Q occurs in the body
of a rule ρ of Π and P is the predicate at the head of ρ. The dependence graph of Π is a
directed graph whose nodes are the predicates of Π and whose edges capture the dependence
relation: there is an edge from Q to P if P depends on Q. A program Π is nonrecursive
if its dependence graph is acyclic, that is, no predicate depends recursively on itself. It is
well known that each nonrecursive program can be expressed as a UCQ, via unfolding of the
program.

A (nonrecursive) Datalog program over a finite alphabet Σ is a (nonrecursive) Datalog
program Π such that EDB(Π) = σ(Σ±). The answer Π(G) of a (nonrecursive) Datalog
program Π over a graph database G over Σ is Π(D(G±)).
I Remark. Typically, when we analyze a problem involving 2RPQs over Σ, we shall assume
that 2RPQs are represented as one-way nondeterministic finite automata (1NFA) over
alphabet Σ±. This does not affect the complexity of problems as we can translate a regular
expression to an equivalent automaton in polynomial time.

3 Regular Queries

We now introduce the class of Regular Queries (RQs) and establish some basic results
regarding the complexity of evaluation.

I Definition 1 (Regular query). A transitive closure rule is a rule of the form S(x, y) ←
R+(x, y), where S,R are predicate symbols and x, y are variables. We extend the notions of
intensional predicate, extensional predicate and dependence graph to a finite set of Datalog
and transitive closure rules in the natural way. A regular query Ω over a finite alphabet Σ is
a finite set of Datalog and transitive closure rules such that:
1. The extensional predicates of Ω belong to σ(Σ±).
2. There is a distinguished intensional predicate called Ans of arbitrary arity.
3. All intensional predicates, except maybe Ans, have arity 2.
4. The dependence graph of Ω is acyclic.

The semantics of regular queries is based on the semantics of Datalog. We define a
translation function λ that transforms a Datalog rule or a transitive closure rule into a set of
Datalog rules. If ρ is a Datalog rule then λ(ρ) = {ρ}. When ρ is a transitive closure rule of
the form ρ = S(x, y)← R+(x, y), then λ(ρ) contains the rules {S(x, y)← R(x, y), S(x, y)←
S(x, z), R(z, y)}. We translate each regular query Ω = {ρ1, . . . , ρk} into a Datalog program
λ(Ω) = λ(ρ1)∪· · ·∪λ(ρk). Then, the answer Ω(G) of a regular query Ω over a graph database
G is the answer of λ(Ω) over G.

I Example 2. Suppose we have a graph database of persons and its relationships. We have
relations knows, is a friend and is a good friend, abbreviated k, f and g, respectively. Thus
our alphabet is Σ = {k, f, g}. The following query returns all the pairs of persons connected

ICDT 2015



182 Regular Queries on Graph Databases

by a chain of potential friends: p and p′ are potential friends, if either they are friends, or p
just knows p′, but they are connected with the same person by a chain of good friends.

G(x, y)← g(x, y) R(x, y)← f(x, y) Ans(x, y)← R+(x, y)
S(x, y)← G+(x, y) R(x, y)← k(x, y), S(x, z), S(y, z)

By using ideas from [11], it can be shown that this query cannot be expressed by any
UCN2RPQ. J

Recall that the evaluation problem for regular queries asks, given a RQ Ω, a graph
database G and a tuple t̄, whether t̄ ∈ Ω(G). Each regular query can be translated to a
Datalog program, and in fact, this program is binary (all intensional predicates have arity 2,
except maybe by Ans) and linear (in the sense of [21]). As a consequence, we can derive
tight complexity bound for the evaluation problem [19, 21]. Interestingly, RQs are not harder
to evaluate than UCN2RPQs.

I Theorem 3. The evaluation problem for regular queries is NP-complete in combined
complexity and NLogspace-complete in data complexity.

4 Containment of Regular Queries

Given regular queries Ω and Ω′ over alphabet Σ, we say that Ω is contained in Ω′ if
Ω(G) ⊆ Ω′(G), for each graph database G over Σ. The containment problem for regular
queries asks, given two RQs Ω and Ω′, whether Ω is contained in Ω′. We devote the rest of
this paper to proving the following theorem:

I Theorem 4. The containment problem for regular queries is 2Expspace-complete.

We attack this problem by considering an equivalent language, called nested UC2RPQs.
As mentioned in the Introduction, each regular query can be unfolded to construct an
equivalent exponentially-sized nested UC2RPQ. Thus by considering first nested UC2RPQs,
we study the impact of succinctness in the complexity of the containment problem.

4.1 Containment of Nested UC2RPQs
To define formally the class of nested UC2RPQs we introduce a special type of rule. An
extended C2RPQ rule is a rule of the form S(x1, . . . , xn) ← R1(y1, y

′
1), . . . , Rm(ym, y′m),

where, for each 1 ≤ i ≤ m, either Ri is a 2RPQ or Ri is of the form Ri = P+
i , where Pi is a

binary predicate symbol. For a finite set Γ of extended C2RPQ rules, we define intensional
predicates and the dependence graph in the obvious way; now the 2RPQs mentioned in Γ
play the role of extensional predicates.

I Definition 5 (Nested UC2RPQ). A nested UC2RPQ Γ over Σ is a finite set of extended
C2RPQ rules such that:
1. All 2RPQs mentioned in Γ are defined over Σ.
2. There is a distinguished intensional predicate called Ans of arbitrary arity.
3. All intensional predicates, except possibly for Ans, have arity 2.
4. The dependence graph of Γ is acyclic.
5. For each intensional predicate S, there is a unique occurrence of S over rule bodies of Γ.



J. L. Reutter, M. Romero, and M.Y. Vardi 183

Conditions (1)-(4) describe the basic structure of a nested UC2RPQ, and are analogous
to that of regular queries. The key condition is Condition (5). It disallows the use of a
predicate several times in different parts of the program. If the predicate S was already
defined, then S can be used in the body of only one rule, and in the body of that rule, it
can be used only once. It is important to note that S can occur several times in the head of
rules, that is, it can be defined by more than one rule.

The semantics of nested UC2RPQs is defined in terms of the semantics of regular queries.
For each 2RPQ E, let δ(E) be an equivalent regular query. We define a translation function
λ that maps an extended C2RPQ rule to a set of Datalog or transitive closure rules. Let ρ
be an extended C2RPQ rule of the form S(x1, . . . , xn)← R1(y1, y

′
1), . . . , Rm(ym, y′m), then

λ(ρ) contains the following rules:
One rule of the form S(x1, . . . , xn)← P1(y1, y

′
1), . . . , Pm(ym, y′m), where P1, . . . , Pm are

distinct fresh predicate symbols.
For each 1 ≤ i ≤ m, if Ri = E is a 2RPQ, then we add rules in δ(E), where all the
predicate symbols in δ(E) expect by Ans are fresh symbols, and Ans is renamed to Pi.
If Ri = Q+, for a predicate symbol Q, then we add the rule Pi(x, y)← Q+(x, y).

We translate each nested UC2RPQ Γ = {ρ1, . . . , ρk} to a regular query λ(Γ) = λ(ρ1) ∪
· · · ∪ λ(ρk). Then, the answer Γ(G) of a nested UC2RPQ over a graph database G, is the
answer of λ(Γ) over G.

I Example 6. The following nested UC2RPQ corresponds to the unfolding of the query in
Example 2. Observe how the two occurrences of S now become two occurrences of distinct
predicates G1 and G2.

G1(x, y)← g(x, y) R(x, y)← f(x, y) Ans(x, y)← R+(x, y)
G2(x, y)← g(x, y) R(x, y)← k(x, y), G+

1 (x, z), G+
2 (y, z)

J

In this section, we provide tight complexity bounds for the containment problem for
nested UC2RPQs. As it turns out, checking containment of nested UC2RPQs is not harder
than checking containment of UC2RPQs.

I Theorem 7. The containment problem for nested UC2RPQs is Expspace-complete.

The lower bound holds trivially as containment of UC2RPQs is already Expspace-hard.
In order to prove the Expspace upper bound, we use the following approach:
1. We note that containment of nested UC2RPQs can be reduced to containment of boolean

nested UC2RPQs.
2. We show that containment of boolean nested UC2RPQs can be reduced to containment

of a boolean 2RPQ in a boolean nested UC2RPQ. The semantics of a boolean 2RPQ is
defined in the obvious way: the result is true if the answer of the 2RPQ is nonempty.

3. We prove an Expspace upper bound for containment of a boolean 2RPQ in a boolean
nested UC2RPQ.

Step (1) is straightforward and makes our subsequent arguments and definitions signifi-
cantly simpler. Thus, until the end of this section, we focus on boolean queries. When it is
clear from the context, we write 2RPQ and nested UC2RPQ, instead of boolean 2RPQ and
boolean nested UC2RPQ.

Step (2) is based on a serialization technique, where we represent expansions of nested
UC2RPQs as strings, and modify the original nested UC2RPQs accordingly. For step (3)

ICDT 2015



184 Regular Queries on Graph Databases

we combine automata-theoretic techniques [14] with a suitable representation of the partial
mappings from a nested UC2RPQ to an expansion of a 2RPQ. This representation is robust
against nesting, in the sense that does not involve a non-elementary blow up in size.

4.1.1 Reduction to Containment of 2RPQs in nested UC2RPQs
We now show that checking containment of two nested UC2RPQs Γ and Γ′ over Σ can be
reduced to checking containment of a 2RPQ Ẽ in a nested UC2RPQ Γ̃ over a larger alphabet
∆. We start by defining the notion of expansion, which is central in the analysis of nested
UC2RPQs.

Let Γ be a nested UC2RPQ over alphabet Σ and let S be an intensional predicate. We
denote by rules(S) the set of rules in Γ such that S occurs in the head of the rule. An
expansion ϕ of S is a CQ with equality over Σ of the form

ϕ(x1, . . . , xn)← ϕ1(y1, y
′
1), . . . , ϕm(ym, y′m)

such that there is a rule ρ ∈ rules(S) of the form S(x1, . . . , xn)← R1(y1, y
′
1), . . . , Rm(ym, y′m)

and the following two conditions hold (note that n = 0 if S = Ans; otherwise, n = 2):
1. For each 1 ≤ i ≤ m, if Ri = E is a 2RPQ, then ϕi(yi, y′i) is a CQ with equality of the

form
ϕi(yi, y′i)← r1(yi, z1), r2(z1, z2), . . . , rp(zp−1, y

′
i)

where, p ≥ 0, r1 · · · rp ∈ L(E), and the zj ’s are fresh variables. When p = 0, we have that
r1 · · · rp = ε, and ϕi(yi, y′i) becomes yi = y′i.

2. If Ri = Q+ for an intensional predicate Q, then ϕi(yi, y′i) is a CQ with equality of the
form

ϕi(yi, y′i)← φ1(w0, w1), φ2(w1, w2), . . . , φq(wq−1, wq)

where q ≥ 1, w0 = yi, wq = y′i, w1, . . . , wq−1 are fresh variables and, for each 1 ≤ j ≤ q,
there is an expansion ζ(t1, t2) of Q such that φj(wj−1, wj) is the CQ obtained from ζ(t1, t2)
by renaming t1, t2 by wj−1, wj , respectively, and renaming the rest of the variables by new
fresh variables. In particular, the quantified variables of distinct φi and φj are disjoint.

An expansion of a nested UC2RPQ is an expansion of its predicate Ans. In particular,
any expansion of a nested UC2RPQ is a boolean query. The intuition is that an expansion
of a nested UC2RPQ is simply an expansion of its associated Datalog program [19, 16].
Containment of nested UC2RPQs can be characterized in terms of containment of CQs.
This is an easy consequence of the semantics of CQs [17, 39] and the fact that each nested
UC2RPQ is equivalent to the union of its expansions.

I Proposition 8. Let Γ and Γ′ be two nested UC2RPQs. Then, Γ is contained in Γ′ if and
only if, for each expansion ϕ of Γ, there exists an expansion ϕ′ of Γ′ and a containment
mapping from neq(ϕ′) to neq(ϕ).

Here, the definition of containment mapping is slightly different to the usual definition
[17], due to the presence of inverses:

I Definition 9. If θ and θ′ are two boolean CQs over Σ, then a containment mapping µ
from θ′ to θ is a mapping from the variables of θ′ to the variables of θ such that, for each
atom r(y, y′) in θ′, with r ∈ Σ±, either r(µ(y), µ(y′)) is in θ or r−(µ(y′), µ(y)) is in θ.

Given two nested UC2RPQs Γ and Γ′ over Σ, we shall construct a 2RPQ Ẽ and a nested
UC2RPQ Γ̃ such that Γ is contained in Γ′ if and only if Ẽ is contained in Γ̃. Our reduction
is based on two ideas:



J. L. Reutter, M. Romero, and M.Y. Vardi 185

1. Expansions of Γ can be "serialized" and represented by serialized expansions, which are
strings over a larger alphabet ∆. More importantly, serialized expansions constitute a
regular language. Thus, we can construct a 2RPQ Ẽ such that L(Ẽ) is precisely the set
of serialized expansions of Γ. This technique has been already used before [14, 15].

2. Now we need to serialize Γ′. Proposition 8 basically tell us that Γ is contained in Γ′ iff Γ′
can be "mapped" to each expansion of Γ. We have replaced Γ by Ẽ. Thus, expansions
of Γ are replaced by serialized expansions. By modifying the 2RPQs mentioned in Γ′,
we construct a nested UC2RPQ Γ̃ such that Γ̃ can be mapped to a serialized expansion
W of Γ iff Γ′ can be mapped to the expansion of Γ represented by W . This is a new
technique and constitutes the crux of the reduction.

Serialization of Γ

We can represent each expansion ϕ of Γ, by a serialized expansion, that is, a string over a
suitable alphabet ∆. Suppose first that Γ is simply a C2RPQ, that is, a single rule of the
form Ans()← E1(y1, y

′
1), . . . , Em(ym, y′m). Then, an expansion ϕ corresponds to choose a

string ri = ri1, . . . , r
i
pi
∈ L(Ei), for each 1 ≤ i ≤ m. This can be represented by the string (a

similar representation is used in [14])

$y1r
1
1 · · · r1

p1
y′1$y2r

2
1 · · · r2

p2
y′2$ · · · $ymrm1 · · · rmpm

y′m$

Thus the alphabet ∆ contains Σ±, a separator $, and the variable set of Γ. Assume now
that Γ consists of two rules of the form

P (x, y)← F1(t1, t′1), . . . , Fn(tn, t′n) Ans()← P+(y1, y
′
1), E2(y2, y

′
2), . . . , Em(ym, y′m)

Suppose ϕ is the expansion of Γ resulting from choosing strings ri ∈ L(Ei), for each
2 ≤ i ≤ m, and for the atom P+(y1, y

′
1), choosing two intermediate variables z1 and z2, and

three expansions ϕ1, ϕ2, ϕ3 of P . Then, we represent ϕ by the string

$y1W1 ? $ ? W2 ? $ ? W3y
′
1$y2r

2y′2$ · · · $ymrmy′m$

where W1,W2,W3 are strings representing ϕ1, ϕ2, ϕ3, respectively, as defined before. Now,
the alphabet ∆ contains additionally the separator ? that represents fresh intermediate
variables that appear when we expand a transitive closure atom.

Applying this idea recursively, we can define serialized expansions for a general nested
UC2RPQ Γ. Additionally, it can be shown that serialized expansions can be detected by a
1NFA Ẽ over ∆. Moreover, we can construct Ẽ such that its size is polynomial in the size of
Γ. We say that Ẽ is the serialization of Γ.

Serialization of Γ′

We replaced Γ by Ẽ. Thus we replaced expansions of Γ by expansions of Ẽ, which are
of the form θW () ← w1(x0, x1), w2(x1, x2), . . . , wn(xn−1, xn), for a serialized expansion
W = w1 · · ·wn. Suppose W represents an expansion ϕ of Γ. Our goal is to construct Γ̃ such
that Γ̃ can be mapped to θW iff Γ′ can be mapped to neq(ϕ). To construct Γ̃, we modify Γ′
in order to translate mappings from Γ′ to neq(ϕ), into mappings from Γ̃ to θW (and vice
versa). Next we explain the main difficulties in the construction of Γ̃.

Let W be a serialized expansion representing an expansion ϕ of Γ. Note that some
symbols in W , as the variable symbols or the ? symbol, represent a particular variable in ϕ.
If the i-th symbol of W represents a variable in ϕ, we denote this variable by var(i). Note

ICDT 2015



186 Regular Queries on Graph Databases

also that equality atoms in ϕ define equivalence classes over the variables of ϕ. We write
y ≡ϕ y′ when the variables y, y′ belong to the same equivalence class. Thus it could be
possible that var(i) ≡ϕ var(j), or even that var(i) = var(j), for two distinct positions i < j in
W . This implies that var(i) and var(j) are renamed exactly to the same variable in neq(ϕ).
Then, in order to simulate mappings from Γ′ to neq(ϕ), we have to consider positions i and
j as equivalent, that is, we must be able to "jump" between positions i and j, whenever
necessary.

To overcome this problem, we introduce the notion of equality string. Equality strings
are strings over ∆± with the following key property. For positions 1 ≤ i < j ≤ |W |,
var(i) ≡ϕ var(j) iff there is an equality string that can be "folded" into W from i to j.
Intuitively, a string α can be folded into W if α can be read in W by a two-way automaton
that outputs symbol r, each time it is read from left-to-right, and symbol r−, each time it is
read from right-to-left. For instance, consider the string W = $y1b

−ay2$. Then, by−1 y1b
−aa−

can be folded into W from 3 to 4, and b−aa−ay2$ can be folded into W from 3 to 6.
Next we give some intuition about equality strings. Equality strings are concatenations

of basic equality strings. There are several types of basic equality strings, each one detecting
a particular type of connection between variables. For example, suppose Γ is a query over
alphabet {a, b} defined by the rules

Q(t, s)← b(t, s) Ans()← a(x, y), a+ ε(x, z), Q+(w, z), aa(a+ b)(w, u)

and consider the expansion ϕ of Γ obtained by choosing the strings ε and aab for the second
and last atom, respectively, and no intermediate variables for Q+(w, z). This expansion is
represented by the following serialized expansion W

$x · a · y$x · z$w · $t · b · s$ · z$w · aab · u$

Note that x and z are equivalent in ϕ, since it contains the atom x = z (as we chose
the string ε). Then any occurrence of x is equivalent to any occurrence of z in W . In
particular, the first occurrence of x is equivalent to the last occurrence of z. This is witnessed
by an "horizontal" equality string x · a · y$x · z$w · $t · b · s$ · z, that is, a string satisfying
the regular expression x∆∗xz∆∗z. In general, we have to consider expressions of the form
x∆∗xz1∆∗z1z2∆∗ · · · zkz∆∗z, for a sequence of variables z1, . . . , zk. Note also that the first
occurrence of w is equivalent to the occurrence of t in W . This is because t is the first free
variable of the expansion b(t, s), which is renamed to w in ϕ by definition. This is witnessed
by a "downward" equality string w$t. In these two examples, we need to know that x and z
are in the same "level" and that the “level" of t is the level of w minus 1. In order to achieve
this, we incorporate levels to the symbols in ∆, thus the actual definition of ∆ is slightly
more involved that the one presented here.

Now we are ready to serialize the nested UC2RPQ Γ′. Let w = w1 · · ·wp be a string
over Σ±. The serialization of w, denoted by serial(w), is the set of strings over ∆± of the
form α0w1α1w2α2 · · ·αp−1wpαp, where, for each 0 ≤ i ≤ p, the string αi is either ε or an
equality string. If L is a language over Σ±, then serial(L) is the language over ∆± defined
by serial(L) = {w′ | w′ ∈ serial(w), for some w ∈ L}. It can be shown that if A is a 1NFA
accepting the language L over Σ±, then there exists a 1NFA A′ over ∆± accepting precisely
serial(L). Moreover, the size of A′ is polynomial in the size of A and ∆.

The serialization Γ̃ of Γ′ is the nested UC2RPQ over ∆ obtained from Γ′ by replacing
each 2RPQ E in Γ′ by serial(E). It is important to note that the serialization Γ̃ of Γ′ depends
on both Γ and Γ′. This is because it depends on ∆ (which, at the same time, depends on Γ).
Observe also that the size of Γ̃ is polynomial in the size of ∆ and Γ′, and thus polynomial in



J. L. Reutter, M. Romero, and M.Y. Vardi 187

the size of Γ and Γ′. Furthermore, Ẽ and Γ̃ can be constructed in polynomial time from Γ
and Γ′. The following proposition concludes our reduction.

I Proposition 10. Let Ẽ and Γ̃ be the serialization of Γ and Γ′, respectively. Then, Γ is
contained in Γ′ if and only if Ẽ is contained in Γ̃.

The idea behind Proposition 10 is as follows. Suppose Γ is contained in Γ′. Let
θW ()← w1(x1, x2), w2(x3, x4), . . . , wn(xn, xn+1) be an expansion of Ẽ, whereW = w1 · · ·wn
is a serialized expansion representing ϕ. We know that there is a containment mapping µ
from neq(ϕ′) to neq(ϕ), for some expansion ϕ′ of Γ′. We have to find an expansion ψ of Γ̃
and a containment mapping ν from neq(ψ) to θW . The structure of neq(ψ) and neq(ϕ′) is
the same, except for the strings chosen when we expand 2RPQs. The internal variables of
an expansion are the fresh variables that appears when we expand 2RPQs (the zj ’s in the
definition of expansion). The rest of the variables are external variables. Thus, the idea is
that the external variables of neq(ψ) and neq(ϕ′) coincide, but the internal variables differ
according to the string chosen in both expansions. Now, for each external variable t in neq(ψ)
we define ν(t) as follows. Let s = µ(t) (we can apply µ to t as t is also an external variable of
neq(ϕ′)). Let y be a variable in ϕ that is renamed to s in the construction of neq(ϕ). Then,
we define ν(t) to be xj , for some 1 ≤ j ≤ n such that var(j) = y.

To conclude, we need to define the expansions of 2RPQs in neq(ψ) and extend ν to
the internal variables. Suppose that in neq(ϕ′) we expand a 2RPQ E, between external
variables t and t′, into the CQ a1(t, z2), a2(z2, z3), . . . , ak(zk, t′). We want to define an
expansion b1(t, o2), b2(o2, o3), . . . , b`(ok, t′) of serial(E) and extend ν to {o2, . . . , ok} (ν(t)
and ν(t′) are already defined). This amounts to finding a folding of B = b1 · · · b` into W
from i to j, where ν(t) = xi and ν(t′) = xj . We define B and this folding simultaneously.
We start with B = a1 · · · ak and analyze B from left to right. We examine the values
µ(t), µ(z2), . . . , µ(zk), µ(t′) in that order, and according to these values we fold B into W . If
all the values are internal variables, there is no problem: we can easily fold B into W . If we
see an external variable, we have a problem: we need to "jump" to an equivalent position in
order to continue our folding. Thus, we can interleave a suitable equality string α so we can
continue our folding into W . In this way, we end up with a string B ∈ L(serial(E)) (since we
only interleave equality strings with a1 · · · ak ∈ L(E)) and with a folding of B into W , as
required. The other direction of the proposition is similar.

4.1.2 Containment of 2RPQs in nested UC2RPQs: Upper Bound
Next we show that containment of a 2RPQ in a nested UC2RPQ is in Expspace. We exploit
automata-theoretic techniques along the lines of [14, 19, 16]. The main idea is to reduce
the complement of the containment problem of a 2RPQ E in a nested UC2RPQ Γ to the
non-emptiness of a suitable doubly exponential-sized 1NFA A. The crux of the construction
is an intermediate automaton AΓ that accepts all the (potential) expansions θ of E such
that there is a mapping from Γ to θ.

To show that checking containment of two UC2RPQs Γ′ and Γ is in Expspace, Calvanese
et al. exploit two-way NFAs (2NFAs) in order to construct an automaton AΓ that accepts
expansions θ of Γ′ such that Γ can be mapped to θ [14]. Moreover, they annotate the
expansions with variables of Γ, which indicate the potential mapping of Γ to the expansion.
This is possible because the number of possible annotations is bounded, as the number of
variables in the queries is bounded. But when Γ is a nested UC2RPQ the number of variables
involved in a mapping from Γ to θ is not bounded anymore, and thus it is by no means
obvious how to extend the techniques of [14] in this case. Instead, we follow a different

ICDT 2015



188 Regular Queries on Graph Databases

approach, and construct AΓ directly as a 1NFA. The automaton AΓ scans the input θ from
left to right and in each step, it guesses a "partial mapping" from Γ to θ. This is formalized
with the notion of cut, which we define next.

We use the fact that the expansions for a 2RPQ E over Σ are CQs of a very particular form,
that we call linear CQs: they are sequences r1(z1, z2), . . . , rp(zp, zp+1) where r1 · · · rp ∈ L(E)
and each zj is distinct. Thus if we want to decide whether a 2RPQ E is contained in a nested
UC2RPQ Γ, we need only to look at those expansions of Γ that can be flattened into a linear
CQ, i.e., those that can actually be mapped to some linear CQ. Formally, given an expansion
ϕ of Γ, a linearization of ϕ is a linear CQ θ such that there is a containment mapping from
neq(ϕ) to θ. Furthermore, the set of linearizations of Γ is the union of all linearizations of all
the expansions of Γ. As we mentioned before, the idea of this proof is to show that the set of
linearizations of a nested UC2RPQ Γ can be characterized by an 1NFA AΓ.

The depth of a nested UC2RPQ is the maximum length of a directed path from some
2RPQ to the Ans predicate in its dependence graph, minus 1. For instance, the query in
Example 6 has depth 2.

Cuts. Let Γ be a nested UC2RPQ of depth 0, defined by the rules

Ans(x1, . . . , xn) ← Γ1
1(u1

1, v
1
1), . . . ,Γ1

m1
(u1
m1
, v1
m1

),
...

... (1)
Ans(x1, . . . , xn) ← Γ`1(u`1, v`1), . . . ,Γ`m`

(u`m`
, v`m`

),

Let Aij be a 1NFA associated with the 2RPQ Γij , for each 1 ≤ i ≤ ` and 1 ≤ j ≤ mi. Let
Vars(Γ, i) be the set of variables appearing in the i-th rule of query (1) above. A cut of Γ is an
`-tuple (C1, . . . , C`), where each of the Ci’s is either ⊥ or a triple of form (Previ, Samei,Si),
with Samei ⊆ Previ ⊆ Vars(Γ, i) and where Si is an mi-tuple Si = (si1, . . . , simi

) containing
a state of each of the Aijs, 1 ≤ j ≤ mi.

Using the definition of cuts for UC2RPQs, we can naturally extend the definition for cuts
of queries of depth > 0. Assume that the rules in Γ with the answer predicate in the head
follow form (1) above (note that now some of the Γijs might be predicates P+ instead of
RPQs). Then cuts for Γ are again `-tuples (C1, . . . , C`), the only thing that changes is the
definition of Si = (si1, . . . , simi

), for the cases when Γij is not a 2RPQ but a predicate of form
P+(x, y). In this case, sij is a cut of query P . Furthermore, initial cuts are those in which
each Previ is empty, and final cuts are those in which at least one of the Previs is equal to
Vars(Γ, i). A cut marks a variable x if in all Cis that are not ⊥ we have that x belongs to
Samei.

Let us now give some intuition on the notion of cuts. Suppose Γ is a C2RPQ and µ is
a mapping from Γ to a linearization θ of Γ. If we look at position k in θ, then the partial
mapping of µ until this position can be represented by a cut (Prev, Same,S): Prev are the
variables that are mapped to positions smaller or equal than k and Same are the variables that
are mapped precisely to position k. The intuition of S is as follows. We know that 2RPQs of
the form F (y, y′) with y, y′ ∈ (Prev ∪ Same) are already satisfied when looking up to k. The
only information that is missing is that of the 2RPQs that are "cut" by (Prev ∪ Same), that
is, the 2RPQs of the form F (y, y′) such that y ∈ (Prev ∪ Same) and y′ 6∈ (Prev ∪ Same) (or
vice versa). Suppose that µ expands F in a linearization given by the string r1 · · · rp and let
s1, . . . , sp+1 be an accepting run of F over r1 · · · rp. Consider the mapping µ over r1 · · · rp
and suppose rj is the last symbol to be mapped in positions smaller that k. Then S contains
the state sj . Note that this is the only information we need to extend this partial mapping



J. L. Reutter, M. Romero, and M.Y. Vardi 189

to the one at position k + 1, and eventually to the global mapping µ. Since we are dealing
with UC2RPQs we also need to account for the case when a certain disjunct of Γ cannot be
mapped to a linearization: in this case the corresponding triple of the cut is set to ⊥.

The notion of cut is crucial for two reasons. First, transitions between cuts can be
captured by a 1NFA AΓ. Second, it is easy to see that the size of each cut is polynomial in
the size of Γ (here we use the fact that Γ is a nested UC2RPQ, instead of a regular query).
This implies that the set of all cuts, denoted by Cuts(Γ), is of exponential size in the size Γ.
This is important to obtain our desired Expspace upper bound.

Transition system based on cuts

Looking to characterize the set of linearizations of nested UC2RPQs, our next step is to
define a transition system T(Γ,w) defined over cuts of Γ and positions of a word w over Σ±,
i.e., over pairs from Cuts(Γ)× {1, . . . , p+ 1}.

Let us shed light on the intuition behind the system. We note first that our transition
system, while non-deterministic, can only advance to configurations relating greater or equal
positions in w. The idea is that a run of T(Γ,w) should non-deterministically guess the greatest
cuts, in terms of variables in Prev, that can be mapped to each position in w. For the same
reason, the transition system can only move towards configurations in which Prev is not
smaller that previous configurations.

I Example 11. Consider query Γ(x, y) ← g+(x, z), g+(y, z), stating that there is a path
labeled with g+ between both x and z, and y and z. It is not difficult to see that the CQ
θ = g(x, x′), g(x′, z), g(y′, z), g(y, y′) is a linearization of Γ. The string associated to θ is
w = ggg−g−. A valid run for T(Γ,w) over w starts in the initial cut in position 1. It moves to
cut ({x}, {x},S1), where S1 only needs to store the state where the automaton for query g+

is, after having read a g. We then advance to cut ({x, z}, {z},S2) in position 3, ({x, z}, {},S3)
in position 4, where now S3 again needs to store a state of the automaton for g+, and finally
to cut ({x, z, y}, {y},S4) in position 5. Since this last cut is final, we determine that T(Γ,w)
can advance form an initial state to a final state.

There is a technicality when formally defining this intuition, as variables x and y of Γ
need not be mapped right at the start or the end of the the computation of T(Γ,w). Thus to
state the correctness of this system we need to define a special type of run. Formally, given a
nested UC2RPQ Γ(x, y) and a word w, then pairs (C, p) and (C ′, p′) define an accepting run
for Γ over w if the following holds:

C marks x and C ′ marks y
There is an initial cut CI and a position pI of w such that one can go from (CI , pI) to
(C, p) by means of T(Γ,w).
There is a final cut CF and a position pF of w such that one can go from (C ′, p′) to
(CF , pF ) by means of T(Γ,w).

The following lemma states the correctness of our system.

I Lemma 12. Let Γ(x, y) be a nested UC2RPQ and w = r1, . . . , rp a string over Σ. There
are pairs (C, i) and (C ′, i′) over Cuts(Γ)× {1, . . . , p+ 1} that define an accepting run for Γ
over w if and only if there is an expansion ϕ of Γ and a containment mapping from neq(ϕ)
to the linear CQ Qw = r1(z1, z2), . . . rp(zp, zp+1) that maps x and y to variables zi and zi′ .

ICDT 2015



190 Regular Queries on Graph Databases

Cut Automata. A straightforward idea to continue with the proof is to use the system
T(Γ,w) to create a deterministic finite automaton that accepts all strings that represent the
set of linearizations of Γ. However, after a careful analysis one realizes that doing this in a
straightforward way results in a much more expensive algorithm, so a little bit of extra work
has to be done to avoid additional exponential blowups in our algorithm. In a nutshell, the
idea is to extend the alphabet with information about cuts. Given Γ and w, we add to each
symbol of w the information about which cuts are reachable from configurations of the form
(C, p) in T(Γ,w), where 1 ≤ p ≤ |w|+ 1.

Formally, from Σ± we construct the extended alphabet Σ(Γ)× Σ± as follows. Assume
that Cuts(Γ) contains a number N of cuts. Then

If Γ is a nested UC2RPQ of depth 0, Σ(Γ) is an N + 2 tuple of subsets of Cuts(Γ), i.e.,
Σ(Γ) = (2Cuts(Γ))N+2. In other words, Σ(Γ) contains a subset of Cuts(Γ) for each cut in
Cuts(Γ) plus two additional subsets.
Otherwise assume that Γ is of form (1), and that P is the set of predicates occurring
in the rules of Γ that are not 2RPQs. Then Σ(Γ) = (2Cuts(Γ))N+2 × XP∈P Σ(P ). In
other words, it is the cartesian product of the set (2Cuts(Γ))N+2 with each Σ(P ), for every
predicate P that is a subquery of Γ.

I Lemma 13. Let Γ be a nested U2CRPQ. Then the number of different symbols in Σ(Γ)
is double exponential w.r.t. the size of Γ. Furthermore, each symbol in Σ(Γ) is of size
exponential w.r.t. Γ.

Let us now give some intuition regarding this construction. Let w be a string from
Σ(Γ) × Σ±, and let τ(w) be its projection over Σ±. Each symbol (up, ap), for up ∈ Σ(Γ)
contains, in particular, N + 2 subsets of Cuts(Γ), where N = |Cuts(Γ)|. The first subset of
Cuts(Γ) represent all those cuts C such that there is a position p̂ in w and an initial cut Ĉ
of Γ such that (C, p) is reachable from (Ĉ, p̂) using T(Γ,τ(w)). The second subset of Cuts(Γ)
contains all those cuts C such that there is a final cut Ĉ and a position p̂ so that (Ĉ, p̂) can
be reached from (C, p) using T(Γ,τ(w)). We have N subsets remaining, namely one for each
cut C of Γ. For each such cut C, its corresponding subset C contains all those cuts Ĉ for
which the configuration (Ĉ, p) is reachable from (C, p) using T(Γ,τ(w)).

If a string w from Σ(Γ) × Σ± satisfies the above conditions, we say that w has valid
annotations w.r.t. Γ. We show:

I Lemma 14. Let Γ be a nested U2CRPQ. Then the language of all strings over Σ(Γ)×Σ±
that have valid annotations w.r.t. Γ is regular. Furthermore, one can build an 1NFA that
checks this language of size double-exponential in the size of Γ.

We can finally proceed to build the desired 1NFA AΓ that gives the strings corresponding
to the linearizations of a nested UC2RPQ Γ. This 1NFA needs to simulate the system T(Γ,w),
from an initial cut of a nested UC2RPQ Γ to a final cut in which all variables have already
been mapped. Of course, we have to check, for every subquery Γij(uij , vij) of Γ, whether this
query is indeed satisfied when starting in the position assigned to variable uij and finishing
on the position assigned to vij . Since we might need to check for more than one such query
at any given point, synchronizing all these checks is non-trivial. We do it by relying on the
annotations added to strings, as explained above.

I Lemma 15. Given a nested UC2RPQ Γ over Σ, one can construct, in exponential time, a
1NFA AΓ over alphabet Σ(Γ)× Σ± such that AΓ accepts a string w = r1, . . . , rp with valid
annotations w.r.t. Γ if and only if there are pairs (C, i) and (C ′, i′) over Cuts(Γ)×{1, . . . , p+
1} that define an accepting run for Γ over w.



J. L. Reutter, M. Romero, and M.Y. Vardi 191

Together with Lemma 12, this Lemma implies that AΓ characterizes all those strings w
that have valid annotations w.r.t. Γ such that τ(w) is accepted by Γ.

Main Proof. To decide containment of a 2RPQ E in a nested UC2RPQ Γ, we proceed as
follows:

Build an 1NFA AE for E, extended so that it works with the alphabet Σ(Γ)× Σ±.
Build the 1NFA AΣ(Γ) that checks for strings over Σ(Γ)× Σ± that are valid w.r.t. Γ.
Build the 1NFA AΓ, and complement it, obtaining the automaton (AΓ)C .

The language of (AΓ)C intersected with the language of AΣ(Γ) is precisely those strings
w with valid annotations such that its projection τ(w) over Σ± does not correspond to any
linearization of Γ. Thus, if we intersect this language with the one of AE , we have that the
resulting intersection is nonempty if and only if there is an expansion q for E that does not
correspond to any of the linearizations of Γ, i.e., if E is not contained in Γ.

Even though some of these automata can be of doubly exponential size w.r.t. E and Γ,
we can perform this algorithm in Expspace using a standard on-the-fly implementation. J

4.2 Containment of Regular Queries: upper and lower bounds
Expressing a regular query as a nested UC2RPQ may involve an exponential blow up in size.
Next we formalize this. Analogous to the case of nested UC2RPQs, the depth of a RQ is
the maximum length of a directed path from an extensional predicate to the Ans predicate
in its dependence graph, minus 1. For instance, the query in Example 2 has depth 2. The
height of a RQ or a nested UC2RPQ is the maximum size of rules(S) over all intensional
predicates S. Recall that rules(S) is the set of rules whose heads mention the predicate S.
Finally, the width of a RQ or a nested UC2RPQ is the maximum size of a rule body.

I Proposition 16. Let Ω be a regular query. Let h,w and d be the height, the width and the
depth of Ω, respectively. Then, Ω is equivalent to a nested UC2RPQ Γ of height at most
hO(wd), width at most wd+1, and depth at most d. In particular, the number of rules in Γ is
double-exponential in the size of Ω.

In view of this result, we cannot use Theorem 7 directly to show a 2Expspace upper
bound for the containment problem of two regular queries, as unfolding a regular query Ω
may result in a nested UC2RPQ Γ that is of double-exponential size with respect to Ω, and
thus the number of cuts in Γ might be of triple-exponential size with respect to Ω.

However, we can further refine the construction we have shown so that the number of
cuts depends exponentially only in the width and depth of Γ, but not on the height. The
idea is to define cuts of nested UC2RPQs not as a tuple (C1, . . . , C`) for each of the ` rules
in rules(Ans), but rather as a single triple (Prev,Same,S). Intuitively, this corresponds to
guessing a priori which disjunct or rule is to be used when witnessing linearizations of Γ.
Using this modified construction and Proposition 16 we can then show that the number of
cuts is again double-exponential in the size of Ω, which immediately leads to a 2Expspace
algorithm, following the ideas of the proof of Theorem 7.

In summary, the 2Expspace algorithm for containment of regular queries works as follows
(for simplicity we assume that the inputs are boolean queries).

1. Given regular queries Ω and Ω′, we unfold these queries to construct nested UC2RPQs Γ
and Γ′. By Proposition 16, we have that (i) |Γ′| is doubly-exponential in |Ω′|, (ii) the
width of Γ′ is single-exponential in |Ω′|, and (iii) the depth of Γ′ is polynomial in |Ω′|.
Similarly for Γ and Ω.

ICDT 2015



192 Regular Queries on Graph Databases

2. We construct from Γ and Γ′ the 2RPQ Ẽ and the nested UC2RPQ Γ̃ defined in the
reduction from Section 4.1.1. This is a polynomial-time reduction, thus basically all the
bounds from (1) still hold: |Ẽ| is doubly-exponential in |Ω|; |Γ̃| is doubly-exponential in
|Ω| and |Ω′| (note that Γ̃ now depends on Ω too); the width of Γ̃ is single-exponential in
|Ω′|; the depth of Γ̃ is polynomial in |Ω′|.

3. With the refined definition of cut explained above, we obtain that, for a nested UC2RPQ
Γ′′, the number of cuts is roughly |Γ′′|wd , where w and d is the width and depth of Γ′′,
respectively. Thus the number of cuts of our query Γ̃ is doubly-exponential in |Ω| and
|Ω′|. It follows that the size of the automata AẼ , AΣ(Γ̃) and (AΓ̃)C from Section 4.1.2 is
triple-exponential in |Ω| and |Ω′|. To decide whether Ω ⊆ Ω′, we check the intersection of
these automata for emptiness, which can be done in 2Expspace.

By combining techniques from [19, 14], we can show a matching lower bound for contain-
ment of regular queries. This conclude the proof of Theorem 4.

5 Conclusions

The results in this paper show that regular queries achieve a good balance between expressive-
ness and complexity: they are sufficiently expressive to subsume UC2RPQs and UCN2RPQs,
and they are not harder to evaluate than UCN2RPQs. While checking containment of
regular queries is harder than checking containment of UC2RPQs, it is still elementary.
Moreover, all generalizations of regular queries known to date worsen the complexity of the
containment problem to non-elementary or even undecidable. Thus we believe that regular
queries constitutes a well-behaved class that deserve further investigation.

There are several realistic restrictions on regular queries that lead to better complexity
bounds. For instance, it is easy to see that regular queries of bounded treewidth [20, 25] can
be evaluated in polynomial time in the size of the query and the database. For k ≥ 1, a
regular query has treewidth at most k, if the underlying graph of each rule has treewidth at
most k. Thus the good behavior of bounded treewidth C2RPQs [6] extends to regular queries.
Another natural restriction is that of bounded depth. As a corollary of our results in Section 4,
we have that containment for regular queries of bounded depth is Expspace-complete. This
is very interesting, as in many situations it may be natural to express regular queries as nested
UC2RPQs or to consider regular queries of small depth. In these cases, checking containment
is Expspace-complete, the same as for UC2RPQs. Note also that from Theorem 7, it follows
that containment of UCN2RPQs is Expspace-complete, which was not known to date.

An interesting research direction is to study the containment problem of a Datalog
program in a regular query. Decidability of this problem follows from [22, 23], nevertheless
the precise complexity is open. Although it is not clear how to extend the techniques
presented in this paper to containment of Datalog in regular queries, we conjecture that this
problem is elementary.

Acknowledgements. We’d like to thank Pablo Barceló for helpful discussions on regular
queries. The third author is grateful to Vincent Jugé for early discussions on containment of
regular queries. First and second authors are supported by the Millennium Nucleus Center
for Semantic Web Research Grant NC120004.



J. L. Reutter, M. Romero, and M.Y. Vardi 193

References

1 R. Angles, C. Gutierrez. Survey of graph database models. In ACM Comput. Surv., 40(1):1–
39, 2008.

2 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
3 M. Arenas, J. Peréz. Querying semantic web data with SPARQL. In PODS 2011, pages

305–316.
4 M. Arenas, C. Gutierrez, D. Miranker, J. Peréz, J. Sequeda. Querying Semantic Data on

the Web? SIGMOD Record, 41(4): 6–17 (2012).
5 P. Barceló. Querying graph databases. In PODS 2013, pages 175–188.
6 P. Barceló, L. Libkin, A. Lin, P. Wood. Expressive languages for path queries over graph-

structured data. In ACM TODS 38(4), 2012.
7 P. Barceló, J. Pérez, J. L. Reutter. Relative Expressiveness of Nested Regular Expressions.

In AMW 2012, pages 180–195.
8 M. Bienvenu, D. Calvanese, M. Ortiz, M. Simkus. Nested regular path queries in description

logics. In KR 2014.
9 M. Bienvenu, M. Ortiz, M. Simkus. Conjunctive regular path queries in lightweight descrip-

tion logics. In IJCAI 2013, pages 761–767.
10 P. Bourhis, M. Krotzsch, S. Rudolph. Query containment for highly expressive datalog

fragments. CoRR abs/1406.7801 (2014).
11 P. Bourhis, M. Krotzsch, S. Rudolph. How to Best Nest Regular Path Queries. In DL 2014,

Poster.
12 P. Buneman. Semistructured data. In PODS 1997, pages 117–121.
13 P. Buneman, S. B. Davidson, G. G. Hillebrand, D. Suciu. A query language and optimiza-

tion techniques for unstructured data. In SIGMOD 1996, pages 505-516.
14 D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Containment of conjunctive

regular path queries with inverse. In KR’00, pages 176–185.
15 D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Rewriting of regular expressions

and regular path queries. JCSS, 64(3):443–465, 2002.
16 D. Calvanese, G. de Giacomo, M. Y. Vardi. Decidable containment of recursive queries.

Theor. Comput. Sci. 336(1), pages 33–56, 2005.
17 A. Chandra, Ph. Merlin. Optimal implementation of conjunctive queries in relational data

bases. In STOC 1977, pp. 77–90.
18 S. Chaudhuri, R. Krishnamurthy, S. Potamianos, K. Shim. Optimizing queries with mate-

rialized views. In ICDE 1995, pages 190-200.
19 S. Chaudhuri, M. Y. Vardi. On the equivalence of recursive and nonrecursive Datalog

programs. J. Comput. Syst. Sci. 54(1), pages 61–78, 1997.
20 C. Chekuri, A. Rajaraman. Conjunctive query containment revisited. Theor. Comput. Sci.

239(2), pages 211–229, 2000.
21 M. Consens, A. Mendelzon. GraphLog: a visual formalism for real life recursion. In PODS

1990, pages 404–416.
22 B. Courcelle. The monadic second-order theory of graphs I – Recognizable sets of finite

graphs. Inform. and Comput., 85 (1972), pp. 263–267.
23 B. Courcelle. Recursive queries and context-free graph grammars Theoret. Comput. Sci.,

78 (1991), pp. 217–244.
24 I. Cruz, A. Mendelzon, P. Wood. A graphical query language supporting recursion. In

SIGMOD Record, 16(3):323–330, 1987.
25 V. Dalmau, P. Kolaitis, M. Vardi. Constraint satisfaction, bounded treewidth, and finite-

variable logics. In CP 2002, pp. 310–326.

ICDT 2015



194 Regular Queries on Graph Databases

26 R. Fagin, M. Y. Vardi. The theory of data dependencies - An overview. In ICALP 1984,
pages 1–22.

27 W. Fan. Graph pattern matching revised for social network analysis. In ICDT 2012, pages
8–21.

28 M. F. Fernández, D. Florescu, A. Y. Levy, D. Suciu. Verifying integrity constraints on web
sites. In IJCAI 1999, pages 614–619.

29 G. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, S. Vansummeren,
Y. Wu. Relative expressive power of navigational querying on graphs. In ICDT 2011, pages
197–207.

30 D. Florescu, A. Levy, A. Mendelzon. Database techniques for the World-Wide-Web: A
survey. In SIGMOD Record, 27(3):59–74, 1998.

31 M. Friedman, A. Y. Levy, T. D. Millstein. Navigational plans For data integration. In
AAAI/IAAI 1999, pages 67–73.

32 T. Imielinski, W. Lipski Jr. Incomplete information in relational databases. J. of the ACM
31(4), pages 761–791, 1984.

33 E. Kostylev, J. L. Reutter, D. Vrgoc. Containment of Data Graph Queries. In ICDT 2014,
pages 131–142.

34 Z. Lacroix, H. Murthy, F. Naumann, L. Raschid. Links and paths through life sciences data
Sources. In DILS 2004, pages 203–211.

35 L. Libkin, W. Martens, D. Vrgoc. Querying graph databases with XPath. In ICDT 2013,
pages 129–140.

36 L. Libkin, J. L. Reutter, D. Vrgoc. Trial for RDF: adapting graph query languages for RDF
data. In PODS 2013, pages 201–212.

37 J. Perez, M. Arenas, C. Gutierrez. nSPARQL: A navigational language for RDF. In J. of
Web Semantics 8, 255–270 (2010).

38 S. Rudolph, M. Krotzsch. Flag & check: data access with monadically defined queries. In
PODS 2013, pages 151–162.

39 Y. Sagiv and M. Yannakakis. Equivalences among relational expressions with the union
and difference operator. In J. of the ACM 27(4), 1980, pages 633–655.



Complexity and Expressiveness of ShEx for RDF
Sławek Staworko∗1, Iovka Boneva1, Jose E. Labra Gayo2,
Samuel Hym3, Eric G. Prud’hommeaux4, and Harold Solbrig5

1 LINKS, INRIA & CNRS, University of Lille, France
2 University of Oviedo, Spain
3 LIFL, University of Lille & CNRS, France
4 W3C, Stata Center, MIT
5 Mayo Clinic College of Medicine, Rochester, MN, USA

Abstract
We study the expressiveness and complexity of Shape Expression Schema (ShEx), a novel schema
formalism for RDF currently under development by W3C. A ShEx assigns types to the nodes of
an RDF graph and allows to constrain the admissible neighborhoods of nodes of a given type with
regular bag expressions (RBEs). We formalize and investigate two alternative semantics, multi-
and single-type, depending on whether or not a node may have more than one type. We study
the expressive power of ShEx and study the complexity of the validation problem. We show that
the single-type semantics is strictly more expressive than the multi-type semantics, single-type
validation is generally intractable and multi-type validation is feasible for a small (yet practical)
subclass of RBEs. To curb the high computational complexity of validation, we propose a natural
notion of determinism and show that multi-type validation for the class of deterministic schemas
using single-occurrence regular bag expressions (SORBEs) is tractable.

1998 ACM Subject Classification H.2.2 Schema and subschema

Keywords and phrases RDF, Schema, Graph topology, Validation, Complexity, Expressiveness

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.195

1 Introduction

Schemas have a number of important functions in databases. They describe the structure of
the database, and its knowledge is essential to any user trying to formulate and execute a
query or an update over a database instance. Typically, schemas allow for efficient algorithms
for validating the conformance of a given database instance. Schemas also capture the
intended meaning of the data stored in database instances and are important for static
analysis tasks such as query optimization.

Relational and XML databases have a number of well-established and widely accepted
schema formalisms e.g., the SQL Data Definition Language for relational databases and
W3C XML Schema and RELAX NG for XML databases. One of the reasons why the RDF
data model at its conception has been schema-free was to promote its use and ensure its
wide-spread adoption. Indeed, a number of existing RDF applications, such as the linked
open data initiative1, could not have had the same success if the published data had to
comply with a rigid schema. However, RDF is slowly but surely becoming an independent
database model [1], with applications that were previously considered only in the context of

∗ Contact author: slawomir.staworko@inria.fr
1 http://linkeddata.org/

© Sławek Staworko, Iovka Boneva, Jose E. Labra Gayo, Samuel Hym, Eric G. Prud’hommeaux,
and Harold Solbrig;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 195–211

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.195
http://linkeddata.org/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


196 ShEx for RDF

bug1 bug2

"04/12/2012" "Kaboom!"
"02/11/2013" "Bham!"

user1

"Mr. Smith"
"06/12/2012"

emp1

"Mrs. Smith" "eva@h.org"

related

related

reportedOn descr reportedOn
descr

reportedBy reportedBy

name
name email

reproducedBy

reproducedOn

<BugReport> {
descr xsd:string,
reportedBy @<User>,
reportedOn xsd:dateTime,
(reproducedBy @<Employee>,
reproducedOn xsd:dateTime)?,

related @<BugReport>*
}

<User> {
name xsd:string,
email xsd:string?

}

<Employee> {
(name xsd:string |
(first-name xsd:string,
last-name xsd:string)),

email xsd:string,
}

Figure 1 An example of a Shape Expression Schema and a valid RDF graph.

relational and XML databases, for instance data exchange [15, 2]. Such classical applications
often rely on the conformance of the data with a set of constraints. Not only has the
‘declarative definition of the structure of a graph for validation and description’ been clearly
identified [40] but also we currently see an emergence of approaches to address this need:
apart from the existing but somewhat inadequate RDF Schemas (RDFS) [8], we have OSLC
Resource Shapes (ResSh) [32], integrity constraints expressed in OWL [35], and SPARQL
queries generated with SPIN templates [5]. In this paper, we investigate Shape Expression
Schemas (ShEx) [30, 24], a novel schema formalism for RDF currently under development by
W3C [41].

A ShEx allows to define a set of types that impose structural constraints on nodes and
their immediate neighborhood. Figure 1 presents a simple example of a Shape Expression
Schema for an RDF database storing bug reports.

Essentially, the schema above says that a bug report has a description, a user who
reported it, and on what date. Optionally, a bug report may also have an employee who
successfully reproduced the bug, and on what date. Finally, a bug report can have a number
of related bug reports. For every user we wish to store his/her name and optionally email.
For an employee we wish to store his/her name, either as one string or split into the first
and last name, and email address.

A Shape Expression Schema defines a set of types to be associated to graph nodes. Each
type defines the admissible collection of outgoing edges and the types of the nodes they lead
to. Naturally, such a schema bears a strong resemblance to RELAX NG and DTDs which
also use regular expressions to describe the allowed collections of children of an XML node.
The most important difference comes from the fact that in XML, the children of a node are
ordered, and the regular expressions in DTDs and RELAX NG schemas define admissible
sequences of children, whereas for RDF graphs, no order on the neighborhood of a given
node can be assumed. As the regular expressions used in ShEx define bags (multisets) of
symbols rather than sequences, we call them regular bag expressions (RBEs).

The semantics of Shape Expression Schemas is quite natural. An RDF graph is valid if
it is possible to assign types to the nodes of the graph in a manner that satisfies all shape
expressions of the schema. A natural question arises: can a node be assigned more than



S. Staworko, I. Boneva, J. E. Labra Gayo, S. Hym, E. G. Prud’hommeaux, and H. Solbrig 197

one type? In most applications the multi-type semantics, which permits assigning multiple
types to a node, seems to be more natural. For instance, the RDF graph in Figure 1 requires
assigning both the type User and the type Employee to the node emp1 because emp1 has
reported bug2 and reproduced bug1. However, there are applications where the single-type
semantics may be more suitable e.g., when modeling graph transformations that visit every
node exactly once.

We first study the complexity of the validation problem i.e., checking if a given graph has a
valid typing w.r.t. the given schema. Naturally, this problem comes in two flavors, depending
on the chosen semantics, and we show significant computational differences between them.
While validation for both semantics is generally intractable, the multi-type semantics admits
tractable validation for a subclass RBE0 of disjunction-free expressions that use the Kleene
closure on symbols only. This fragment of RBEs is quite practical as it can, for instance,
very easily capture the topology of RDF graphs obtained by exported relational databases in
virtually any of the proposed approaches for this task (for survey, see [34]). More interestingly,
however, we show that the complexity of multi-type validation for ShEx using a class C of
RBEs is closely related (Turing reducible) to the complexity of the satisfiability problem for
C with intersection. We show that in general this problem is NP-complete, which stands in
contrast with its analogue for regular word expressions known to be PSPACE-complete [23].

To lower the complexity of validation, we introduce the notion of determinism. Essentially,
determinism requires that every shape expression uses at most one type with every label.
The shape expressions in Figure 1 are deterministic but the following shape expression is not.

<BugReport> {
descr xsd:string,
(reportedBy @<User> | reportedBy @<Employee>),
reportedOn xsd:dateTime,
(reproducedBy @<Employee>,
reproducedOn xsd:dateTime)?

related @<BugReport>*
}

This shape expression is not deterministic because reportedBy is used with two types:
User and Employee. For deterministic shape expression schemas, we are able to relate the
complexity of multi-type validation to the problem of checking membership of a bag of
symbols to the language of RBEs. While this problem is known to be NP-complete [22], it is
generally simpler than the satisfiability problem, and a number of tractable subclasses has
already been identified [6, 22]. All known tractable classes of RBEs require the expressions
to be single-occurrence i.e., every symbol of the alphabet is used at most once in an RBE. In
the present paper, we show that the full class of single-occurrence regular bag expressions
(SORBE) has in fact tractable membership. Finally, we consider the problem of validating
only a fragment of a graph with preassigned types for its root nodes and argue that for
deterministic ShEx using SORBEs, multi-type validation can be performed efficiently, and
show that single-type validation can be performed with a single pass over the graph.

Regarding expressiveness of ShEx, the requirement of exactly one type per node makes
the single-type semantics more restrictive, and therefore, capable of defining more refined
families of graphs than the multi-type semantics. We show that the single-type semantics
is in fact strictly more powerful than the multi-type semantics. We also show that both
semantics are closed under intersection but neither is closed under union or complement. We
then compare the expressive power of ShEx with two standard yardstick logics for graphs:
first-order logic (FOG) and existential monadic second-order logic (∃MSOG). ShEx are not
comparable with FOG but if the RBEs use the Kleene closure on symbols only (e.g. a∗), then

ICDT 2015



198 ShEx for RDF

ShEx using such expressions are captured by ∃MSOG. Finally, in our study we compare the
expressive power of ShEx with graph grammars, which are generally incomparable, and graph
acceptors/automata, which are typically less expressive.

While checking that the data values satisfy constraints is an important part of database
validation, in our study we focus only on the core capacity of Shape Expression Schemas
to define the graph topology, and therefore, ignore data values. While the exact array of
types of value constraints of ShEx is yet to be elaborated, our results identify important
computational obstacles that arise from the topology shaping properties of ShEx alone, and
furthermore, we present tractable algorithms that can serve as a basis for RDF validation with
a number of data value constraints. Our methodology can be compared to using automata
to model schema languages for XML databases: while virtually all schema languages for
XML allow to define constraints on data values, from simple domain checks in DTDs to key
constraints in XML Schema, the results on automata often translate directly to results for
schema languages for XML.

The main contributions of the present paper are:
1. We formalize two alternative semantics for ShEx, multi-type and single-type, depending

on whether or not a node may have more than one type.
2. We provide a comprehensive understanding of the complexity of validation and show

a very close relationship to the complexity of the problem of satisfiability of regular
bag expressions with intersection. We show that multi-type validation is tractable for a
practical subclass of RBE0.

3. We propose a notion of determinism for ShEx that allows to curb the complexity of
validation and (Turing) reduces validation to checking membership of a bag to the
language of RBE. Additionally, we show that single-occurrence regular bag expressions
(SORBE) enjoy a tractable membership problem which makes them an attractive candidate
for use in deterministic shape expression schemas.

4. We study the expressive power and basic properties of ShEx.

Related work. A number of approaches for validation of RDF has been previously proposed.
RDF Schema (RDFS) in essence allows to define a light ontology consisting of types of objects
(classes), inclusion dependencies between types (a hierarchy), and specification of the domain
and the range of the graph edges of a given label. However, the W3C recommendation
does not fix a semantics but only suggest two possible usages: 1) as an ontology allowing
to infer types of RDF objects and 2) as a constraint language. It should be noted that
only the first use is formalized [18] and it is a common belief that, despite its name, RDF
Schema is a basic ontology language rather than a schema language. We point out that
the constraints definable with RDFS can be easily captured with ShEx but the converse is
not the case. OSLC Resource Shapes (ResSh) [32] essentially extend RDFS by allowing to
specify cardinality constraints ?, ∗, +, and 1 on types which renders it equivalent to ShEx
using single-occurrence RBE0.

While OWL [13] is an ontology language geared towards inference, it can enforce cer-
tain constraints by capturing constraint violations with rules that trigger an inconsistency.
However, the class of constraints that can be enforced by OWL is limited due to the fact
that OWL is interpreted under open world assumption (OWA) and without unique name
assumption (UNA). Consequently, a modified semantics for OWL has been proposed [35]
that uses OWA when inferring new facts while employing closed word assumption (CWA)
and UNA when enforcing constraints. Since OWL with its standard semantics is widely
accepted, concerns have been raised [32] about the potential confusion arising from the mixed



S. Staworko, I. Boneva, J. E. Labra Gayo, S. Hym, E. G. Prud’hommeaux, and H. Solbrig 199

G0:

n0

n1

n2

n3

n4

a

b

b

a

b

c

a

G1: n0 n1 n2 n3
a b

c

c

G2: n0 n1 n2
a c

b

Figure 2 Edge-labeled oriented graphs.

semantics. Such formalisms is, however, very powerful and expressive, easily captures a rich
fragment of ShEx (equivalent to ∃MSOG), but its computational properties are yet to be
characterized. While [37] outlines a method of translating OWL constraints into SPARQL
queries, the size of the resulting SPARQL queries seems to depend on the size of the OWL
constrains. Currently, we do not know if it is reasonable to assume the size of schema for
RDF to be fixed as it may involve large vocabularies of types used by ontologies. This gives
a PSPACE upper bound while ShEx enjoys much lower (combined) complexity. Similar
criticism applies to other solutions based on SPARQL queries, such as SPIN [5], while they
are very powerful and expressive, their use may require significant computational resources.

Finally, we point out an important difference in semantics: while we investigate the
existence and construction of a valid typing, all approaches above assume the typing to be
given (with rdf:type edges) and only verify that the typing is valid. Our approach is more
general, we show how to verify the validity of a given typing and that it is the main source
of complexity. In particular, we propose a method constructing a maximal (multi-type) valid
typing and a method extending the given (possibly invalid) typing to one that is valid.

Organization. In Section 2 we present basic notions. In Section 3 we introduce Shape
Expression Schemas (ShEx) and define the single- and multi-type semantics. In Section 4 we
study the complexity of the validation problem for ShEx. In Section 5 we introduce a natural
notion of determinism for ShEx and identify a rich class of single-occurrence RBEs that
together render multi-type validation tractable. In Section 6 we analyze the expressive power
of ShEx. Finally, we conclude and discuss related and future work in Section 7. Because of
space restriction we omit the proofs: they can be found in the technical report [7].

2 Preliminaries

Because we wish to investigate only the capacity of ShEx to shape the graph topology, we
model RDF databases with standard graphs whose edges are labeled by elements of a finite
set. In [7] we show how a more general model can be employed without affecting the results.

2.1 Graphs
We assume a finite set Σ of edge labels. An edge-labeled graph (or simply a graph) is a pair
G = (V,E), where V is a finite set of nodes and E ⊆ V × Σ × V is the set of edges. In
Figure 2 we present a number of examples of edge-labeled graphs.

In our approach, we shape the topology of a graph based on the immediate outbound
neighborhood of nodes. The labeled outbound neighbourhood of the node n in the graph
G = (V,E) is essentially the set of edges outgoing from n, and is defined as out-lab-nodeG(n) =
{(a,m) ∈ Σ×V | (n, a,m) ∈ E}. For instance, out-lab-nodeG0(n0) = {(a, n1), (b, n2), (a, n3)}.
On occasions, we use only the collection of outgoing labels, ignoring their target nodes. Note,
however, that this collection needs not be representable as neither a set nor by a list of labels

ICDT 2015



200 ShEx for RDF

because a node may have multiple outgoing edges with the same label and its neighborhood
is not ordered. Take for instance node n0 in the graph G0: it has two outgoing a-edges
and one outgoing b-edge. Consequently, we employ bags, also known as multisets, which
essentially specify the number of occurrences of every symbol.

2.2 Bags of symbols
Let ∆ be a finite set of symbols (which is not necessarily Σ). A bag over ∆ is a function
w : ∆→ N that maps a symbol to the number of its occurrences. The empty bag ε has 0
occurrences of every symbol i.e., ε(a) = 0 for every a ∈ ∆. We write a ∈ w as a short for
w(a) 6= 0.

We present bags using the notation {|a, . . .|} with elements possibly being repeated. For
example, when ∆ = {a, b, c}, w0 = {|a, a, a, c, c|} represents the function w0(a) = 3, w0(b) = 0,
and w0(c) = 2. Now, for a given graph G = (V,E) and its node n ∈ V , we define the bag of
outbound labels of n in G as the bag out-labG(n) = {|a | (n, a,m) ∈ E|}. For instance, for the
graph G0 in Figure 2 and the node n0 we have out-labG0(n0) = {|a, a, b|}.

The bag union w1]w2 of two bags w1 and w2 is defined as [w1]w2](a) = w1(a)+w2(a) for
all a ∈ ∆. For instance, {|a, c, c|}]{|a, b|} = {|a, a, b, c, c|}. A bag language is a set of bags. The
bag union of two languages L1 and L2 is the language L1]L2 = {w1]w2 | w1 ∈ L1, w2 ∈ L2}.
Also, for a given bag language L, we define L0 = {ε} and Li = L ] Li−1 for i ≥ 0.

2.3 Regular bag expressions
A number of XML schema languages, including DTD, XML Schema, and RelaxNG, uses
regular expressions to define the content model (local structure) of types. The popularity of
using regular expressions (for words) in validation comes from the fact that they are easy to
grasp and to use by a wide range of potential users. Because in the context of RDF graphs
the nodes are not ordered, we employ regular expressions for bags, which replace the ordered
concatenation operator with its unordered version ||, and implicitly the Kleene star by the
unordered Kleene star. This family of expressions have been successfully employed to model
XML with unordered and mixed content model [6, 11].

A regular bag expression (RBE) defines bags by using disjunction “|”, unordered concatena-
tion “||”, and unordered Kleene star “∗”. Formally, RBEs over ∆ are defined with the following
grammar E ::= ε | a | E∗ | (E“|”E) | (E“||”E), where a ∈ ∆. Their semantics is defined as
follows: L(ε) = {ε}, L(a) = {{|a|}}, L(E1 | E2) = L(E1)∪L(E2), L(E1 ||E2) = L(E1)]L(E2),
and L(E∗) =

⋃
i≥0 L(E)i. We use two standard macros: E? := (ε | E) and E+ := (E || E∗).

We also use intervals on symbols a[n;m], where n ∈ N and m ∈ N ∪ {∞}, with the natural
semantics: L(a[n;m]) =

⋃
n≤i≤m L(a)i.

We define next different syntactic restrictions on RBEs. We denote RBE0 the class of
expressions constructed using only the || operator and arbitrary intervals on symbols. By
RBE1 we denote the RBEs of the form (a1,1 | · · · | a1,k1) || · · · ||(an,1 | . . . | an,kn), with ai,j ∈ ∆.
In the sequel, we also use RBE to denote the family of bag languages definable with regular
bag expressions, and it should be clear from the context whether “RBE” stands for the class
of expressions, or for the class of languages.

A number of important facts are known about RBE: it is closed under intersection, union,
and complement [27], testing membership w ∈ L(E) is NP-complete [22], and so is testing
the emptiness of L(E1) ∩ L(E2) [11]. Also, when a bag of symbols is viewed as vector of
natural numbers (obtained by fixing some total order on ∆), RBE is equivalent to the class
of semilinear sets and the class of vectors definable with Presburger arithmetic [17, 29].



S. Staworko, I. Boneva, J. E. Labra Gayo, S. Hym, E. G. Prud’hommeaux, and H. Solbrig 201

3 Shape Expression Schemas

In this section we formally introduce shape expressions schemas and propose two semantics
that we study in the remainder of the paper. We assume a finite set of edge labels Σ and
a finite set of types Γ. A shape expression is an RBE over Σ × Γ. In the sequel we write
(a, t) ∈ Σ × Γ simply as a :: t. A shape expression schema (ShEx), or simply schema, is a
tuple S = (Σ,Γ, δ), where Σ is a finite set of edge labels, Γ is a finite set of types, and δ is
a type definition function that maps elements of Γ to bag languages over Σ× Γ. We only
use shape expressions for defining bag languages of δ. Typically, we present a ShEx as a
collection of rules of the form t→ E to indicate that δ(t) = L(E), where t ∈ Γ and E is a
shape expression over Σ× Γ (naturally, no two rules shall have the same left-hand side). If
for some type t a rule is missing, the default rule is t→ ε. For a class of RBEs C, by ShEx(C)
we denote the class of shape expression schemas using only shape expressions in C. Two
example schemas follow:

S0 : t0 → a :: t1 || b :: t2 S1 : t0 → a :: t1 t3 → ε

t1 → (a :: t1 | b :: t2)∗ t1 → b :: t2 || c :: t3
t2 → b :: t2 | c :: t1 t2 → (b :: t2)? || c :: t3

The semantics of ShEx is natural: a graph is valid if it is possible to assign types to the
nodes of the graph in a manner that satisfies the type definitions of the schema. Two variants
of semantics can be envisioned depending on whether or not more than one type can be
assigned to a node.

3.1 Single-type semantics
We fix a graph G = (V,E) and a schema S = (Σ,Γ, δ). A single-type typing (or simply an
s-typing) of G w.r.t. S is a function λ : V → Γ that associates with every node n ∈ V its
type λ(n). An example of an s-typing of G0 (Figure 2) w.r.t. S0 is

λ0(n0) = t0, λ0(n1) = t1, λ0(n2) = t2, λ0(n3) = t1, λ0(n4) = t2.

Next, we identify the conditions that an s-typing needs to satisfy. Given a typing λ and a
node n ∈ V we define the labeled and typed out-neighborhood of n w.r.t. λ as the bag over
Σ× Γ

out-lab-typeλG(n) = {|a :: λ(m) | (n, a,m) ∈ E|}.
For instance, for the graph G0 and the typing λ0 we have out-lab-typeλ0

G0
(n1) = {|a :: t1, b ::

t2|} and out-lab-typeλ0
G0

(n4) = {|c :: t1|}.
Now, λ is a valid s-typing of S on G if and only if every node satisfies the type definition

of its associated type i.e., for every n ∈ V , out-lab-typeλG(n) ∈ δ(λ(n)). By Ls(S) we denote
the set of all graphs that have a valid s-typing w.r.t. the shape expression schema S. For a
class C of bag languages by ShExs(C) we denote the class of graph languages definable under
the single-type semantics with shape expression schemas using shape expressions from C only.
Naturally, λ0 is a valid typing of G0 w.r.t. S0. G1 also has a valid s-typing of S1:

λ1(n0) = t0, λ1(n1) = t1, λ1(n2) = t2, λ1(n3) = t3.

G2, however, does not have a valid s-typing w.r.t. S1.
Note that the notion of single-type semantics defined here is not to be confused with

single-type regular tree grammars introduced for XML [26]. In the latter, the term single-type
designates a syntactical restriction on regular tree grammars that guarantees an efficient
top-down validation.

ICDT 2015



202 ShEx for RDF

3.2 Multi-type semantics
Again, we assume a fixed graph G = (V,E) and a fixed schema S = (Σ,Γ, δ). A multi-type
typing (or simply an m-typing) of G w.r.t. S is a function λ : V → 2Γ that associates with
every node of G a set of types. For instance, an m-typing of G2 w.r.t. S1 is

λ2(n0) = {t0}, λ2(n1) = {t1, t2}, λ2(n2) = {t3}.

The labeled and typed out-neighborhood of a node is defined in the same way but note that
this time it is a bag over Σ× 2Γ. For instance, out-lab-typeλ2

G2
(n1) = {|b :: {t1, t2}, c :: {t3}|}.

Now, a flattening of a bag over Σ× 2Γ is any bag over Σ× Γ obtained by choosing one
type from every occurrence of every set. For instance, out-lab-typeλ2

G2
(n1) has two flattenings:

{|b :: t1, c :: t3|} and {|b :: t2, c :: t3|}. Formally, a flattening of a bag w over Σ× 2Γ is any bag
in the language of the following RBE1 expression Flatten(w) = ||a::T∈∈w(|t∈T a :: t), where
a :: T ∈∈ w indicates that the symbol a :: T is to be considered w(a :: T ) times. For instance,

Flatten({|a :: {t0, t1}, a :: {t0, t1}, b :: t1|}) = (a :: t0 | a :: t1) || (a :: t0 | a :: t1) || (b :: t1).

By fl-out-lab-typeλG(n) we denote the set of all flattenings of out-lab-typeλG(n) i.e.

fl-out-lab-typeλG(n) = L(Flatten(out-lab-typeλG(n))).

For instance, fl-out-lab-typeλ2
G2

(n1) = {{|b :: t1, c :: t3|}, {|b :: t2, c :: t3|}}. Note that while
Flatten(out-lab-typeλG(n)) is an expression of size polynomial in the size of G and S, the
cardinality of the set fl-out-lab-typeλG(n) may be exponential in the size of G and S. Now, λ
is a valid m-typing of G w.r.t. S if and only if:
1. it assigns at least one type to every node, λ(n) 6= ∅ for n ∈ V ,
2. every node satisfies the type definition of every type assigned to the node i.e., for every

n ∈ V and every t ∈ λ(n), fl-out-lab-typeλG(n) ∩ δ(t) 6= ∅.
For instance, λ2 is a valid multi-type typing of G2 w.r.t. S1. By Lm(S) we denote the set of
all graphs that have a valid m-typing w.r.t. S. For a class C of bag languages by ShExm(C)
we denote the class of graph languages definable under the multi-type semantics with shape
expressions schemas using shape expressions in C only.

4 Validation

In this section we consider the problem of validation: checking whether a given graph has a
valid typing w.r.t. a given ShEx. This problem has two parameters: 1) the kind of typing,
either single-type or multi-type and 2) the class of regular bag expressions used for type
definitions in the schema.

We first point out that the complexity of single-type validation for ShEx(RBE) is NP-
complete. The NP upper bound follows from the fact that the membership problem for RBE
is in NP. The lower bound is shown with a reduction from 3-colorability of graphs.

I Theorem 1. Single-type validation for ShEx(RBE) is NP-complete.

Proof Sketch. Under the single-type semantics, the following schema defines the set of
graphs with homomorphism into K3 i.e., all 3-colorable graphs:

tr → _ :: t∗b ||_ :: t∗g tg → _ :: t∗r ||_ :: t∗b tb → _ :: t∗g ||_ :: t∗r J

For the remaining of this section, we focus on multi-type validation and return briefly to
the single-type semantics in the next section.



S. Staworko, I. Boneva, J. E. Labra Gayo, S. Hym, E. G. Prud’hommeaux, and H. Solbrig 203

4.1 Semi-lattice of m-typings
We begin by presenting a downward refinement method that allows to construct a valid
m-typing. Take a graph G = (V,E) and a ShEx S, and let mTyping(G,S) be the set of all
valid m-typings of the graph G w.r.t. the schema S. mTyping(G,S) is a semi-lattice with
the meet operation t and the (induced) partial order defined as follows:

(λ1tλ2)(n) = λ1(n)∪λ2(n) for n ∈ V , and λ1 v λ2 iff ∀n ∈ V. λ1(n) ⊆ λ2(n).

The refinement method works as follows. We begin with the typing λ◦ that assigns to every
node the set of all types, i.e. λ◦(n) = Γ for all n ∈ V , and then we iteratively remove the
types that are not satisfied. Every iteration is an application of the one-step refinement
operator on m-typings defined as follows (with n ∈ V ):

[Refine(λ)](n) = {t ∈ λ(n) | fl-out-lab-typeλG(n) ∩ δ(t) 6= ∅}.

Clearly, Refine(λ) v λ, and therefore, the fix-point Refine∗(λ) is well-defined. We claim that
the procedure outlined above indeed constructs the maximal valid m-typing if one exists.

I Lemma 2. For any λ ∈ mTyping(G,S), λ v Refine∗(λ◦), where λ◦(n) = Γ for all n ∈ V .

In particular, G satisfies S if and only if Refine∗(λ◦) is valid, and then, Refine∗(λ◦) is the
v-maximal valid m-typing of G on S. We point out that there does not necessarily exist a
unique v-minimal valid m-typing.

4.2 Complexity of Validation
Using the above refinement procedure, we show that multi-type validation is NP-complete
for arbitrary regular bag expressions and later identify a tractable fragment.

In essence, performing the refinement procedure requires testing the nonemptyness of
the intersection fl-out-lab-typeλG(n) ∩ δ(t). Recall that fl-out-lab-typeλG(n) is defined by an
RBE1 expression, i.e. an expression of the form (a1,1 | · · · | a1,k1) || · · · || (an,1 | . . . | an,kn

).
Therefore, for a class of RBEs C we identify the following decision problem:

INTER1(C) = {(E0, E) ∈ RBE1 × C | L(E0) ∩ L(E) 6= ∅}.

Tractability of INTER1 is a necessary and sufficient condition for tractability of multi-type
validation for ShEx(C). On the one hand, we show that for any class C of RBEs there exists a
polynomial-time reduction from INTER1(C) to validation for ShExm(C). On the other hand,
the refinement procedure performs a polynomial number of INTER1 tests (with polynomially-
sized inputs). This observation allows us to characterize precisely the complexity of multi-type
validation for ShEx(RBE): the lower bound follows from an existing complexity results [11]
on testing emptiness of RBEs with intersection and the upper bound follows from a more
general result we prove, namely testing satisfiability of RBEs with intersection can be reduced
to finding integer solutions to a system of linear equations known to be in NP [28].

I Theorem 3. Multi-type validation for ShEx(RBE) is NP-complete.

4.3 The tractable subclass RBE0

When ShEx use only expressions in RBE0, the multi-type validation is tractable, which we
show by providing a polynomial algorithm for INTER1(RBE0). We point out that ShEx using

ICDT 2015



204 ShEx for RDF

s

C1

C2

a

b

c

t

1
11

1

1
01

0
1
0 1

0

1
0∞

0 1
1

∞
0

Figure 3 A flow network with a valid flow.

RBE0 are capable, for instance, of capturing the topology of RDF graphs obtained from
exporting relational databases to RDF [34].

We reduce INTER1(RBE0) to the circulation problem in flow networks. Recall that a
flow network is a directed graph with arcs having additionally assigned the amount of flow
they require (minimum flow) and the amount of flow they can accept (maximum flow). The
circulation problem is to find a valid flow i.e., an assignment of flow values to arcs of the flow
network so that the flow constraints of every arc are satisfied and at every node the sum of
incoming flow is equal to the sum of outgoing flow. This problem has been well-studied and
a number of efficient polynomial algorithms exist (cf. [19]).

We illustrate the reduction on the example of E0 = (a | c) || (b | c) and E = a? || b∗ || c.
The corresponding network NE0,E is presented in Figure 3 where the maximum flow (the
minimum flow) of an arc is indicated above (below respectively).

An example of a valid flow f in NE0,E , that corresponds to {|a, c|} ∈ L(E0) ∩ L(E), is
f(s, C1) = 1, f(C1, a) = 1, f(C2, b) = 0, f(s, C2) = 1, f(C1, c) = 0, f(C2, c) = 1, f(a, t) = 1,
f(b, t) = 0, f(c, t) = 1, and f(t, s) = 2.

I Theorem 4. Multi-type validation for ShEx(RBE0) is in PTIME.

5 Determinism

Determinism is a classical tool for decreasing the complexity of validation [20], which we
explore next. We propose a suitable and natural notion of determinism for ShEx and show
that multi-type validation for deterministic ShEx is not harder than membership of a bag
to the language of an RBE. This allows us to identify a large and practical class of single-
occurrence regular bag expressions (SORBE) that render validation tractable (Section 5.2).
We then investigate the problem of partial validation, where the conformance of only a
fragment of the input graph is to be checked (Section 5.3), and which we believe to be an
important practical use case of ShEx. We present an optimal algorithm for partial validation
which is tractable for classes of deterministic ShEx with tractable membership, for both
multi-type and single-type semantics.

5.1 Deterministic Shape Expressions
Essentially, the idea of determinism for a ShEx S = (Γ, δ) is that, knowing the type t of a
node n ∈ V and the label a of an outgoing edge (n, a,m) ∈ E we should know the type t′
that must be satisfied by m if n is to satisfy the type t.

Formally, a shape expression E is deterministic if every label a ∈ Σ is used with at most
one type t ∈ Γ in E. For instance, E1 = a :: t1 || b :: t∗2 || a :: t1 || c :: t2 is deterministic but
E2 = a :: t1 || b :: t∗2 || a :: t3 || c :: t2 is not because the symbol a is used with two different
types t1 and t3. Now, a shape expression schema S = (Σ,Γ, δ) is deterministic if it uses only



S. Staworko, I. Boneva, J. E. Labra Gayo, S. Hym, E. G. Prud’hommeaux, and H. Solbrig 205

deterministic shape expressions, and then, by δ(t, a) we denote the unique type used with
the symbol a in the expression used to define δ(t) (if a is used in this expression).

Recall that the tractability of the refinement method for multi-type validation presented in
Section 4.1 depends on the tractability of testing that fl-out-lab-typeλG(n) ∩ δ(t) is nonempty.
When the schema is deterministic, fl-out-lab-typeλG(n) ∩ δ(t) is nonempty if and only if 1)
the bag out-lab-typeδG(n, t) = {|a :: δ(t, a) | (n, a,m) ∈ E|} belongs to δ(t) and 2) for every
(n, a,m) ∈ E, δ(t, a) belongs to λ(m). Using this argument, we show that the tractability of
testing membership is a necessary and sufficient condition for the tractability of multi-type
validation for deterministic schemas. Formally, for a class C of RBEs, define the decision
problem

MEMB(C) = {(w,E) | E ∈ C, w ∈ L(E)}.

Then multi-type validation against a deterministic ShEx using RBEs from the class C is
tractable if and only if MEMB(C) is tractable.

5.2 Single-occurrence RBE (SORBE)
While the problem of membership of a bag to a language defined by an RBE is in general
intractable [22], we identify a rich and practical class of RBEs with tractable membership.
This class is obtained by disallowing repeating symbols, while allowing arbitrary intervals on
symbols, a restriction on regular expressions commonly imposed in the context of document
content models with evidence justifying its use [3, 10, 11, 16, 25]. Formally, a single-occurrence
regular bag expression (SORBE) over ∆ is an RBE that allows at most one occurrence of every
symbol of ∆ and allows the use of the Kleene’s plus on expressions E+ as well as arbitrary
intervals on symbols a[n;m]. Note that this also enables the use of the wildcard E? since it
can be defined using ε and the union operator without repeating any symbol of ∆.

I Theorem 5. MEMB(SORBE) is in PTIME.

Proof. We fix a bag of symbols w over ∆. For a regular bag expression E, by ∆(E) we
denote the subset of ∆ containing exactly the symbols used in E. For a subset X ⊆ ∆ by wX
we denote the bag over X obtained from w by removing all occurrences of symbols outside
of X. W.l.o.g. we assume that the Kleene’s plus E+ is used only if ε 6∈ L(E) (otherwise E+

can be replaced by E∗).
The algorithm recursively constructs for an expression E a set of integers I(E) such

that i ∈ I(E) iff w∆(E) ∈ L(E)i. This set is represented by an interval. Recall that an
interval [n;m] is a finite representation of the set {i | n ≤ i ≤ m}. It is empty if m < n

and we use ∅ to denote (the equivalence class of) all empty intervals. Also, the intersection
of two intervals can be obtained easily [n1;m1] ∩ [n2;m2] = [max{n1, n2}; min{m1,m2}]
and the component-wise addition A⊕ B = {a+ b | a ∈ A, b ∈ B} can be implemented as
[n1;m1]⊕ [n2;m2] = [n1 + n2;m1 +m2] with m+∞ =∞+m =∞ for any m ∈ N ∪ {∞}.
The algorithm is presented on Figure 4 (with 0/∞ = 0 and i/∞ = 1 for i ≥ 1).

Note that assigning I(E+) = [0; 0] when w∆(E) = ε is valid since we assume ε 6∈ L(E).
Naturally, w ∈ L(E) if and only if 1 ∈ I(E) and w uses only symbols present in E. J

We, therefore, immediately get

I Corollary 6. Multi-type validation for deterministic ShEx using SORBE is in PTIME.

We employ the single type requirement to reduce the NP-complete problem of exact set cover
to single-type validation against a deterministic ShEx using only single-occurrence RBE0
expressions.

ICDT 2015



206 ShEx for RDF

I(ε) = [0;∞],

I(a[n,m]) =
[
dw(a)/me; bw(a)/nc

]
,

I(E1 | E2) = I(E1)⊕ I(E2),
I(E1 || E2) = I(E1) ∩ I(E2),

I(E∗) =


[0;∞] if w∆(E) = ε,
[1;∞] if w∆(E) 6= ε and I(E) 6= ∅,
∅ otherwise,

I(E+) =


[0; 0] if w∆(E) = ε,
[1; max I(E)] if w∆(E) 6= ε and I(E) 6= ∅,
∅ otherwise.

Figure 4 Computing the interval I(E) for a SORBE E (Theorem 5).

I Theorem 7. Single-type validation for deterministic ShEx using SORBE is NP-complete.

5.3 Optimal validation algorithm
Some applications might not require testing validity of the whole graph, but rather checking
the validity of only a fragment that will be accessed by the application. Such a fragment can
be identified by a set of root nodes, entry points for navigating the graph, and typically, the
application will require the entry points to satisfy certain types. In this section, we show
how this scenario can be modeled with ShEx and present an efficient algorithm that works
with deterministic shape expressions.

For this, take a schema S = (Σ,Γ, δ) such that Γ contains a special universal type t>
with the definition δ(t>) = (Σ × Γ)∗. The language of S is the universal graph language,
as any node of any graph can be typed with t>. In essence, the universal type allows to
forgo validation of a node because all nodes implicitly satisfy t>. For instance, the rule
t0 → a :: t∗1 || (||b∈Σ,b6=ab :: t>) indicates that a node is valid for type t0 if all its neighbour
nodes reachable by an a-labelled edge are valid for type t1, but no constraint is imposed to
nodes reachable by labels other than a. Therefore, all such (non-a-label neighbour) nodes do
not need to be visited by the validation algorithm.

To carry out validation on a fragment of a graph identified by the entry points, we
introduce the notion of pre-typing, an assignment of required types to a selected set of nodes.
Formally, a pre-typing of a graph G (w.r.t. S) is a partial mapping λ_ : V → 2Γ. Now, the
objective is to find a valid extension of λ_ i.e., a valid m-typing λ of G w.r.t. S such that
λ_ v λ. Since we are not interested in typing the whole graph G, we focus on the smallest
possible valid extension of a given pre-typing λ. Interestingly, we can show the following.

I Lemma 8. For a deterministic ShEx S = (Σ,Γ, δ) with universal type, a graph G = (V,E),
and a pre-typing λ_ : V → 2Γ, if λ_ admits a valid extension, then it admits a unique
v-minimal valid extension.

We present an algorithm that constructs the minimal valid extension of a given pre-typing
λ_ of a given graph G w.r.t. a given deterministic Shape Expression Schema S with universal
type. For technical reasons, we represent a typing as binary relation between the set of



S. Staworko, I. Boneva, J. E. Labra Gayo, S. Hym, E. G. Prud’hommeaux, and H. Solbrig 207

Algorithm 1 MinValidExt(S,G, λ_)
Input: S = (Σ,Γ, δ) a deterministic ShEx,

G = (V,E),
λ_ ⊆ V × Γ a pre-typing;

Output: λ ⊆ V × Γ the minimal valid extension of λ_.
1: let F := λ_
2: let λ := ∅
3: while F 6= ∅ do
4: choose (n, t) ∈ F and remove it from F

5: let out-lab-typeδG(n, t) := {|(a, δ(t, a)) | (a,m) ∈ out-lab-nodeG(n)|}
6: if out-lab-typeδG(n, t) 6∈ δ(t) then
7: fail
8: λ := λ ∪ {(n, t)}
9: for (a,m) ∈ out-lab-nodeG(n) do

10: if δ(t, a) 6= t> and (m, δ(t, a)) 6∈ λ then
11: F := F ∪ {(m, δ(t, a))}
12: return λ

nodes and the set of types, and deliberately omit the universal type. More precisely, we use
a relation Rλ ⊆ V × (Γ \ {t>}) to represent the typing λ(n) = {t | (n, t) ∈ Rf} if (n, t) ∈ Rf
for some t ∈ Γ, and λ(n) = {t>} otherwise. Furthermore, we abuse notation and use λ
instead of Rλ. Recall that δ(t, a) is the unique type used together with the symbol a in δ(t).

This algorithm is a modified graph flooding algorithm that maintains a frontier set F of
pairs (n, t) for which it remains to be verified that the node n satisfies type t. Initially, this
set contains only the pairs specified by the pre-typing (line 1). The algorithm fails whenever
for some (n, t) ∈ F the outgoing edges of n do not satisfy the structural constraints given by
δ(t) (lines 5–7). If, however, the constraints are satisfied, any node m reachable from n is
added to F with an appropriate type unless the type is universal.

Note that a run of the algorithm considers the pair (n, t) at most once, and therefore the
main loop is executed at most |V | × |Γ| times. Once F is empty, the constructed λ represents
the minimal valid extension of λ_. This algorithm is optimal in the sense that it constructs
the minimal representation of the minimal valid extension and considers assigning a type to
a node only if it is required to construct the extension. Naturally, for single occurrence RBEs
the algorithm works in polynomial time.

I Theorem 9. Given a deterministic ShEx(SORBE) S, a graph G, and a pre-typing λ_ :
V → Γ, the algorithm MinValidExt(S,G, λ_) constructs in polynomial time the minimal valid
extension of λ_ if it exists, or fails otherwise.

A slight modification of this algorithm works for the single-type semantics too: in the
inner loop (lines 9–11) it suffices to add a check that neither F nor λ contain (m, t′) for
some t′ 6= δ(t, a), which prevents assigning two different types to the same node. As a result
such modified algorithm constructs an s-typing λ (with universal type omitted). Also, note
that with the single-type modification the while loop is executed at most |V | times, and the
algorithm considers each edge of the graph at most once, i.e. the algorithm makes a single
pass over the graph.

ICDT 2015



208 ShEx for RDF

G<: a

b

c

c

G�: a

b

c

c

Figure 5 Fork and diamond graphs.

6 Expressive power

This section outlines the results of our study of expressive power of ShEx. First, we consider
the first-order logic on graphs (FOG) over the standard signature consisting of relation names
(Ea)a∈Σ, and the existential monadic second-order logic on graphs (∃MSOG) allowing only
formulas of the form ∃X1, . . . , Xnϕ, where X1, . . . , Xn are monadic second order variables
and ϕ is an FO formula using additional atomic formulae of the form x ∈ Xi.

We say that a class of graph languages C separates a graph H from a graph G if there is
L ∈ C such that G ∈ L and H 6∈ L. Consider the fork G< and the diamond G� graphs in
Figure 5.

We observe that single-type semantics can easily separate G� from G< while it can be
easily shown that the multi-type semantics cannot. However, even the single-type semantics
cannot separate G< from G� while this separation is trivial for FOG and ∃MSOG. Also,
let Lcycle be the set of graphs labeled with Σ = {a, b} such that for every node n with an
incoming b-edge, there is a cycle reachable from n. It is a classic result that FOG cannot
define sets of graphs which contain cycles of unbounded size [14]. However, Lcycle can be
defined in both semantics with the following schema:

Scycle : t0 → (a :: t• | a :: t0)∗ || (b :: t•)∗ t• → (a :: t+• | b :: t•) || (a :: t0)∗ || (b :: t•)∗

The following table present a comparison of expressive power, indicating whether a language L
satisfying the constraints given in the first column can be expressed by each of the formalisms.

FOG ShExm ShExs ∃MSOG

L : G� ∈ L, G< ∈ L 3 3 3 3

L : G� 6∈ L, G< ∈ L 3 5 3 3

L : G� ∈ L, G< 6∈ L 3 5 5 3

Lcycle 5 3 3 3

It should also be noted that RBEs can express cardinality constraints e.g., (a || b)∗ means
that the number of a must be equal to the number of b, that cannot be captured by ∃MSOG.
However, if we limit the expressive power of the bag languages used in schemas to those that
can be captured by ∃MSOG, then the expressive power of schemas is captured by ∃MSOG, a
result easily proven with a simple adaptation of the standard translation of an automaton
to an existential monadic second-order formula [38]. For instance, the class RBE(a[n;m], ||, |)
of bag languages definable by RBE without the Kleene star operator but allowing arbitrary
intervals of symbols, can be captured by ∃MSOG. The restriction on the use of the Kleene
closure in defining unordered content models has been previously advocated for complexity
reasons in the context of XML [11], and we provide yet another reason.

The single-type semantics is in fact very powerful and can easily capture graph languages
defined by homomorphism into a fixed graph, as illustrated in the proof of Theorem 3. It
seems unlikely that the multi-type semantics is as powerful as suggested by complexity
arguments in the present paper. Both semantics have the same closure properties:



S. Staworko, I. Boneva, J. E. Labra Gayo, S. Hym, E. G. Prud’hommeaux, and H. Solbrig 209

Table 1 Summary of main complexity results for the validation problem.

RBE0 RBE SORBE SORBE SORBE
det. det. + λ_ + t>

multi-type PTIME (Thm. 3) NP-c. (Thm. 4) PTIME (Cor. 6 and Thm. 9)
single-type NP-c. (Thm. 1) NP-c. (Thm. 7) PTIME (Section 5.3)

I Theorem 10. ShExs and ShExm are not closed under union and complement. Both ShExs
and ShExm are closed under intersection.

The closure under intersection can be extended to a powerset technique, similar to the
determinisation technique of finite automata [21], that allows to show that the single-type
semantics is in fact more powerful than the multi-type semantics.

I Theorem 11. ShExs properly contains ShExm.

ShEx can be viewed as an automaton on edge-labeled (possibly infinite) trees obtained by
unraveling the input graph and we believe that such a model would correspond closely to Pres-
burger automata [33] if the latter were extended to infinite trees, taking a universal acceptance
condition. Interestingly, in this analogy the single-type semantics corresponds to deterministic
automata while multi-type semantics corresponds to nondeterministic ones. More recently,
k-Pebble automata on graphs have been proposed [31] but they are not comparable with
ShEx because the are capable of expressing arbitrary FO properties. Recognizable sets of
graphs as defined in [12] go beyond MSOG, and therefore, capture ShEx(RBE(a[n;m], ||, |)).

Finally, ShEx are incomparable with both the node replacement (NR) graph grammars,
and the hyperedge replacement (HR) graph grammars. On the one hand, the language {G�}
is definable by both HR and NR graph grammars with single initial graph and no rules. On
the other hand, ShEx can define languages that are not definable by neither HR nor NR
grammars: HR grammars can define only languages of graphs of bounded tree-width while
NR grammars cannot define a language containing infinitely many square grids.

7 Conclusions

We have investigated Shape Expressions Schemas (ShEx), a novel formalism of schemas
for RDF graphs currently under development by W3C. We have proposed two alternative
semantics, single-type and multi-type, studied their expressive power and the complexity of
the problem of validation. We have also proposed a notion of determinism in order to curb
down the complexity of validation. While the single-type semantics is in general intractable,
for multi-type validation we have identified two essential bottleneck complexity problems on
RBE, membership and satisfiability of RBEs with intersection, depending on whether or not
deterministic expressions are used. Summary of complexity results can be found in Table 1.

Our results on expressive power suggest that an unrestricted use of the Kleene closure
may render the proposed formalism too powerful and so far there exists little evidence of
its practical usability in the context of unordered content model [11, 6]. Complexity results
suggest that the single-type semantics may be too expensive for practical application unless
we wish to validate only a fragment of graph with a given pretyping. As for the multi-type
semantics, validation is tractable for a small yet practical fragment RBE0 and if we use
determinism, a richer class of SORBEs can be handled efficiently.

ICDT 2015



210 ShEx for RDF

Future work. In the future, we plan to investigate the impact of data value constraints
on complexity of validation. Our preliminary study shows that adding local data value
constraints, such as domain check, does not affect our results. However, the impact of
value constraints of global nature, such as key dependencies, remains to be investigated. We
also plan to thoroughly evaluate experimentally the proposed algorithms and compare with
existing validation approaches (SPIN, ICV) on both real-life and synthetically generated
data e.g., RDF export of TPC-H benchmark data [39]. Our preliminary experiments [7]
are very promising. Also, we would like to study the complexity of classical static analysis
problems such as schema containment and query validity in the presence of schema. Finally,
we would like devise inference algorithms for ShEx drawing inspiration from learning XML
twig queries [36] and schemas for XML [4, 3, 9].

References
1 M. Arenas, C. Gutierrez, and J. Pérez. Foundations of RDF databases. In Reasoning Web,

Int’l Summer School on Semantic Technologies for Information Systems, pages 158–204,
2009. Invited Tutorial.

2 M. Arenas, J. Pérez, Reutter J., C. Riveros, and J. Sequeda. Data exchange in the rela-
tional and RDF worlds. Invited talk at the Int’l Workshop on Semantic Web Information
Management (SWIM), June 2011.

3 G. J. Bex, F. Neven, T. Schwentick, and S. Vansummeren. Inference of concise regular
expressions and DTDs. ACM Transactions on Database Systems, 35(2), 2010.

4 G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML schema definitions from XML
data. In Int’l Conf. on Very Large Data Bases (VLDB), pages 998–1009, 2007.

5 J. Bolleman, S. Gehant, and N. Redaschi. Catching inconsistencies with the semantic web:
A biocuration case study. In Int’l Workshop on Semantic Web Applications and Tools for
Life Sciences (SWAT4LS), 2012.

6 I. Boneva, R. Ciucanu, and S. Staworko. Schemas for unordered XML on a DIME. Theory
of Computing Systems, 2014. To appear. Available at http://arxiv.org/abs/1311.7307.

7 I. Boneva, J. Emilio Labra Gayo, S. Hym, E. G. Prud’hommeau, H. Solbrig, and
S. Staworko. Validating RDF with shape expressions, April 2014. Available at
http://arxiv.org/abs/1404.1270.

8 D. Brickley and R. V. Guha. RDF Schema 1.1. http://www.w3.org/TR/rdf-schema,
February 2004.

9 R. Ciucanu and S. Staworko. Learning schemas for unordered XML. In Int’l Symp. on
Database Programming Languages (DBPL), 2013.

10 D. Colazzo, G. Ghelli, L. Pardini, and C. Sartiani. Linear inclusion for XML regular
expression types. In Int’l Conf. on Information and Knowledge Management (CIKM),
pages 137–146, 2009.

11 D. Colazzo, G. Ghelli, and C. Sartiani. Efficient inclusion for a class of XML types with
interleaving and counting. Information Systems, 34(7):643–656, 2009.

12 B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990.

13 M. Dean and M. Schreiber. OWL Web Ontology Language Reference. http://www.w3.
org/TR/owl-ref, February 2004.

14 H.-D. Ebbinghaus and J. Flum. Finite model theory. Springer, 1995.
15 J.D. Fernández, M.A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and A. Arias. Binary

RDF representation for publication and exchange (HDT). J. Web Semantics, 19:22–41,
2013.

16 G. Ghelli, D. Colazzo, and C. Sartiani. Linear time membership in a class of regular
expressions with interleaving and counting. In Int’l Conf. on Information and Knowledge
Management (CIKM), pages 389–398, 2008.

http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/owl-ref
http://www.w3.org/TR/owl-ref


S. Staworko, I. Boneva, J. E. Labra Gayo, S. Hym, E. G. Prud’hommeaux, and H. Solbrig 211

17 S. Ginsburg and Spanier E. H. Semigroups, presburger formulas, and languages. Pacific
Journal of Mathematics, 16(2):285–296, December 1966.

18 B. Glimm and O. Chimezie. SPARQL 1.1 Entailment Regimes. http://www.w3.org/TR/
sparql11-entailment/, 2012.

19 A. V. Goldberg, E. Tardos, and R. E. Tarjan. Network flow algorithms. In Algorithms and
Complexity, Volume 9, Paths, Flows, and VLSI-Layout, 1990.

20 B. Groz, S. Maneth, and S. Staworko. Deterministic regular expressions in linear time. In
ACM Symp. on Principles of Database Systems (PODS), May 2012.

21 J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley, 2nd edition, 2001.

22 E. Kopczynski and A. To. Parikh images of grammars: Complexity and applications. In
LICS, pages 80–89, 2010.

23 D. Kozen. Lower bounds for natural proof systems. In IEEE Symp. on Foundations of
Computer Science (FOCS), pages 254–266, 1977.

24 J. E. Labra Gayo, E. Prud’hommeaux, H. Solbrig, and J. M. Álvarez Rodríguez. Validating
and describing linked data portals using RDF Shape Expressions. In Workshop on Linked
Data Quality, September 2015.

25 M. Montazerian, P. T. Wood, and S. R. Mousavi. XPath query satisfiability is in PTIME
for real-world DTDs. In Int’l XML Database Symp. (Xsym), pages 17–30, 2007.

26 M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema languages
using formal language theory. ACM Trans. Internet Techn., 5(4):660–704, 2005.

27 D.C.O. Oppen. A 222pn

upper bound on the complexity of presburger arithmetic. Journal
of Computer and System Sciences, 16(3):323–332, 1978.

28 C. H. Papadimitriou. On the complexity of integer programming. Journal of the ACM,
28(4):765–768, October 1981.

29 R. J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
30 E. Prud’hommeaux, J. E. Labra Gayo, and H. Solbrig. Shape Expressions: An RDF

validation and transformation language. In Int’l Conf. on Semantic Systems, Sep. 2015.
31 J. L. Reutter and T. Tan. A formalism for graph databases and its model of computation.

In AMW, volume 749 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.
32 A. Ryman, A. Le Hors, and S. Speicher. Oslc resource shape: A language for defining

constraints on linked data. In Proc. of the WWW2013 Workshop on Linked Data on the
Web (LDOW). CEUR-WS.org, 2013.

33 H. Seidl, T. Schwentick, and A. Muscholl. Counting in trees. Logic and Automata, pages
575–612, 2008.

34 J. Sequeda, H. Tirmizi, S, Ó. Corcho, and D. P. Miranker. Survey of directly mapping SQL
databases to the Semantic Web. Knowledge Engineering Review, 26(4):445–486, 2011.

35 E. Sirin. Data validation with OWL integrity constraints. In Int’l Conf. on Web Reasoning
and Rule Systems (RR), pages 18–22, 2010.

36 S. Staworko and P. Wieczorek. Learning twig and path queries. In Int’l Conf. on Database
Theory (ICDT), March 2012.

37 J. Tao, E. Sirin, J. Bao, and D. L. McGuinness. Integrity constraints in OWL. In Int’l
Conf. on Artificial Intelligence (AAAI), 2010.

38 J. W. Thatcher and Wright J. B. Generalized finite automata with an application to a
decision problem of second-order logic. Mathematical System Theory, 2:57–82, 1968.

39 TPC. TPC benchmarks, http://www.tpc.org/.
40 W3C. RDF validation workshop report: Practical assurances for quality RDF data.

http://www.w3.org/2012/12/rdf-val/report, September 2013.
41 W3C. Shape expressions schemas, 2013. http://www.w3.org/2013/ShEx/Primer.

ICDT 2015

http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/sparql11-entailment/
http://www.tpc.org/


CONSTRUCT Queries in SPARQL
Egor V. Kostylev1, Juan L. Reutter2, and Martín Ugarte2

1 University of Oxford
egor.kostylev@cs.ox.ac.uk

2 PUC Chile
jreutter@ing.puc.cl, martinugarte@puc.cl

Abstract
SPARQL has become the most popular language for querying RDF datasets, the standard data
model for representing information in the Web. This query language has received a good deal
of attention in the last few years: two versions of W3C standards have been issued, several
SPARQL query engines have been deployed, and important theoretical foundations have been
laid. However, many fundamental aspects of SPARQL queries are not yet fully understood. To
this end, it is crucial to understand the correspondence between SPARQL and well-developed
frameworks like relational algebra or first order logic. But one of the main obstacles on the way
to such understanding is the fact that the well-studied fragments of SPARQL do not produce
RDF as output.

In this paper we embarrk on the study of SPARQL CONSTRUCT queries, that is, queries
which output RDF graphs. This class of queries takes rightful place in the standards and imple-
mentations, but contrary to SELECT queries, it has not yet attracted a worth-while theoretical
research. Under this framework we are able to establish a strong connection between SPARQL
and well-known logical and database formalisms. In particular, the fragment which does not
allow for blank nodes in output templates corresponds to first order queries, its well-designed
sub-fragment corresponds to positive first order queries, and the general language can be re-
stated as a data exchange setting. These correspondences allow us to conclude that the general
language is not composable, but the aforementioned blank-free fragments are. Finally, we enrich
SPARQL with a recursion operator and establish fundamental properties of this extension.

1998 ACM Subject Classification H.2.3 Languages – Query languages

Keywords and phrases RDF, SPARQL, Query Languages

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.212

1 Introduction

The Resource Description Framework (RDF) [25] is the World Wide Web consortium (W3C)
standard for representing linked data on the Web. Intuitively, an RDF graph is a set of
triples of internationalized resource identifiers (IRIs), where the first and last IRI in the
triples represent entity resources, and the middle one relates these resources.

SPARQL is a language for querying RDF datasets. Originally introduced in 2006 [33],
SPARQL was officially made the recommended language to query RDF data by W3C in
2008 [32]. A recent version of the standard, denoted SPARQL 1.1, was issued in 2013 [39].
Nowadays this language is recognised as one of the key standards of the Semantic Web
initiative and there are several SPARQL engines available to industry (e.g., [12, 18,37]).

The theoretical foundations of SPARQL were laid by Pérez et al. in their seminal work [27],
and a body of research has followed covering a variety of issues such as complexity of query
evaluation [4, 24, 29, 36], query optimisation [8, 9, 22, 30], federation [7], expressive power

© Egor V. Kostylev, Juan L. Reutter, and Martín Ugarte;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 212–229

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.212
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


E. V. Kostylev, J. L. Reutter, and M. Ugarte 213

Fran

Cristian name Cristian.cl

Fran.cl
works_at

“PUC Chile”name

works_at

mbox “cris@puc.cl”

works_at
“U Oxford”

Cristian

Fran
works_at

“PUC Chile”

works_at

mbox “cris@puc.cl”

works_at
“U Oxford”

(a)

?n ?w ?e
µ1 Fran PUC Chile
µ2 Cristian U Oxford cris@puc.cl
µ3 Cristian PUC Chile cris@puc.cl

Fran

Cristian name Cristian.cl

Fran.cl
works_at

“PUC Chile”name

works_at

mbox “cris@puc.cl”

works_at
“U Oxford”

Cristian

Fran
works_at

“PUC Chile”

works_at

mbox “cris@puc.cl”

works_at
“U Oxford”

(b) (c)

Figure 1 (a) RDF graph Gex; (b) answer of qsel over Gex is the set of mappings {µ1, µ2, µ3};
(c) answer of qcons over Gex is RDF graph.

[2, 31], and provenance tracking [15,17]. The impact of these studies in the Semantic Web
community has been astonishing, even influencing in the definition of the SPARQL standards.

Despite the key importance of SPARQL, the fundamental aspects of this language are still
not fully understood. Compared to the knowledge we have on other query languages such as
SQL, Datalog or even XPath, very little is known about SPARQL queries. To this end, it
is of particular importance to understand the correspondence between SPARQL and other
well-developed formalisms such as first order logic or relational algebra. One of the main
obstacles on the way to such understanding is the fact that the queries from well-studied
fragments of SPARQL produce not RDF graphs as answers, but sets of mappings (partial
evaluations), which is a different form for representing data.

I Example 1. As a classical example of SPARQL, let us consider the following query qsel:1

SELECT ?n, ?w, ?e
WHERE (
((?p, name, ?n) AND (?p, works_at, ?w))

OPT (?p, mbox, ?e)).

This query is intended to extract all names and affiliations of people for which a working place
is known, appending their emails when available in the RDF graph. Thus, when evaluated
on the RDF graph Gex from Figure 1(a), it gives as result a set of partial mappings from
the variables of qsel to IRIs in the RDF graph, as depicted in Figure 1(b), where each row
represents a mapping.

Returning mappings instead of tuples might appear just as a slight difference between
SPARQL and other query languages such as SQL, but it is known to lead to several
complications (see, e.g., [27, 31]). For example, when studying the expressive power of
SPARQL in [2, 31], the authors need some rather technical machinery to be able to even
compare SPARQL with relational query languages. The result is that, even if we now know

1 In this paper we follow the SPARQL syntax of [27], in particular, we shorten OPTIONAL to OPT.

ICDT 2015



214 CONSTRUCT Queries in SPARQL

that the SELECT fragment of SPARQL is equivalent in expressive power to relational algebra,
this is shown using proofs that are much more complicated than other similar results in
database theory, and it has been difficult to build upon this proofs to produce new results.

There are also practical consequences: while recursive queries have been part of SQL
for more than twenty years, we are still left without a comprehensive operator to define
recursive queries in SPARQL (SPARQL 1.1 includes the property paths primitive [39], but
this additional feature is very restrictive in expressing recursive queries [23]).

However, this complication is relevant only to the SELECT queries of SPARQL, which
have been considered in the theoretical literature almost exclusively. But there is also a class
of queries that output RDF graphs, namely the class of CONSTRUCT queries. The following
example illustrates how a user can specify such a query.

I Example 2. Let qcons be the following SPARQL CONSTRUCT query:

CONSTRUCT {(?n, works_at, ?w), (?n, mbox, ?e)}
WHERE (
((?p, name, ?n) AND (?p, works_at, ?w))

OPT (?p, mbox, ?e)).

This query has the same WHERE clause as qsel, but the form of the output is different. The
RDF graph resulting from the evaluation of this query over the dataset Gex is depicted in
Figure 1(c).

CONSTRUCT queries in SPARQL shape the class of effective queries whose inputs and
answers are RDF graphs, so it is conceivable that much more insight can be obtained by
comparing them to well-established query languages. But rather surprisingly, and despite
being an important part of the SPARQL standard, these queries have received almost no
theoretical attention. This can be partially explained by the fact that, as the examples above
suggest, the difference between these classes of queries might seem negligible. However, as
we show in this paper, this resemblance is often deceptive, and in many cases the properties
of these queries are different. For example, CONSTRUCT queries allow for blank nodes in
the templates specifying the answer triples, which is a feature unavailable in SELECT queries.
Trying to fill this gap, we conduct a thorough study of CONSTRUCT queries. We concentrate
on the AND-UNION-OPT-FILTER fragment, which is the core of SPARQL [27].

The first question studied in the paper is the expressive power of CONSTRUCT queries.
In particular, we show that if blank nodes are not allowed in the templates, then this language
is equivalent in expressive power to first order logic. Furthermore, if the underlying graph
patterns are enforced to belong to the class of well designed patterns (see [27]) then we
obtain a correspondence with positive first order logic. If, in turn, blank nodes in templates
are allowed, we establish that the expressive power of these queries is equivalent to that of a
well known class of mappings in data exchange.

These expressivity results lead to important conclusions on the composability of the
aforementioned classes of queries, that is, whether the composition of two queries can always
be expressed by another query in the same class. We show that the fragments without
blank nodes are composable, but if blank nodes are allowed in construct templates then this
important property is lost.

We also obtain results on the computational complexity of the evaluation of such queries:
for the blank-free language it is the same as for SELECT queries (PSPACE-complete), but for
the well-designed sublanguage there is a difference – it is Σp2-complete for the SELECT case
([22]), but drops to NP-complete in CONSTRUCT case.



E. V. Kostylev, J. L. Reutter, and M. Ugarte 215

Finally, the properties of CONSTRUCT queries allow us to develop an extension of
SPARQL with a form of recursion that resembles that of SQL. This proposal unifies several
formalisms for querying RDF data such as SPARQL 1.1 property paths [39], c-query answering
over OWL 2 RL entailment regime [16,20], navigational SPARQL [28], GraphLog [11], and
TriAL [23]. We are also able to pinpoint the expressivity of this extension to SPARQL by
comparing it with a fragment of Datalog.

Due to the space limitations, only ideas of most important proofs are exposed in the
main body of this paper. Complete proofs shall be given in the full version of this paper.

2 Preliminaries

RDF Graphs and Datasets

RDF graphs can be seen as edge-labeled graphs where edge labels can be node themselves,
and an RDF dataset is a collection of RDF graphs. Formally, let I and B be infinite pairwise
disjoint sets of IRIs and blank nodes,2 respectively, and T = I ∪B be the set of terms. Then
an RDF triple is a tuple (s, p, o) from T× I×T, where s is called the subject, p the predicate,
and o the object. An RDF graph is a finite set of RDF triples, and an RDF dataset is a set
{G0, 〈u1, G1〉, . . . , 〈un, Gn〉}, where G0, . . . , Gn are RDF graphs and u1, . . . , un are distinct
IRIs, such that the graphs Gi use pairwise disjoint sets of blank nodes. The graph G0 is called
default graph, and G1, . . . , Gn are called named graphs with names u1, . . . , un, respectively.
For a dataset D and IRI u we define grD(u) = G if 〈u,G〉 ∈ D and grD(u) = ∅ otherwise.
We also use G and D to denote the sets of all RDF graphs and datasets, correspondingly, as
well as blank(S) to denote the set of blank nodes appearing in S, which can be a triple, a
graph, etc.

SPARQL Syntax

SPARQL is the standard pattern-matching language for querying RDF datasets. Let V be
an infinite set {?x, ?y, . . .} of variables, disjoint from T. Similarly to blank(S), let var(S)
denote the set of variables appearing in S. SPARQL graph patterns are recursively defined
as follows:
1. a triple in (I ∪V)× (I ∪V)× (I ∪V) is a graph pattern, called a triple pattern;
2. if P1 and P2 are graph patterns then (P1 AND P2), (P1 OPT P2), and (P1 UNION P2) are

graph patterns, called AND-, OPT-, and UNION-patterns, correspondingly;
3. if P is a graph pattern and g ∈ I ∪V then (g GRAPH P ) is a graph pattern, called a

GRAPH-pattern;
4. if P is a graph pattern and R is a filter condition then (P FILTERR) is a graph pattern,

called a FILTER-pattern, where SPARQL filter conditions are constraints of the form:
– ?x = u, ?x =?y, isBlank(?x) or bound(?x) for ?x, ?y ∈ V and u ∈ I (called atomic

constraints3),
– ¬R, R1 ∧R2, or R1 ∨R2, for filter conditions R, R1 and R2.

The fragment of SPARQL graph patterns, as well as its generalisation to SELECT queries,
has drawn most of the attention in the Semantic Web community. In this paper we concentrate
on another class of queries, formalized next.

2 For the sake of simplicity we do not consider literals, but all the results in this paper hold if we introduce
them explicitly.

3 We use a simplified list of SPARQL atomic constraints, for the complete one see [39].

ICDT 2015



216 CONSTRUCT Queries in SPARQL

A SPARQL CONSTRUCT query, or c-query for short, is an expression

CONSTRUCT H WHERE P,

where H is a set of triples from (T ∪V)× (I ∪V)× (T ∪V), called a template, and P is
a graph pattern. We also distinguish c-queries without blank nodes in templates, called
blank-free, and c-queries without GRAPH-subpatterns in their patterns, called graph-free.
We use c-SPARQL to denote the class of all c-queries, and specify these restrictions with
subscripts bf and gf for the blank- and graph-free subclasses. For instance, c-SPARQLbf,gf
denotes the class of blank-free and graph-free c-queries.

SPARQL Semantics

The semantics of graph patterns is defined in terms of mappings; that is, partial functions
from variables V to terms T. The domain dom(µ) of a mapping µ is the set of variables
on which µ is defined. Two mappings µ1 and µ2 are compatible (written as µ1 ∼ µ2) if
µ1(?x) = µ2(?x) for all variables ?x in dom(µ1) ∩ dom(µ2). If µ1 ∼ µ2, then we write
µ1 ∪ µ2 for the mapping obtained by extending µ1 according to µ2 on all the variables in
dom(µ2) \ dom(µ1).

Given two sets of mappings M1 and M2, the join, union and difference between M1 and
M2 are defined respectively as follows:

M1 1M2 = {µ1 ∪ µ2 | µ1 ∈M1, µ2 ∈M2 and µ1 ∼ µ2},
M1 ∪M2 = {µ | µ ∈M1 or µ ∈M2},
M1 \M2 = {µ1 | µ1 ∈M1 and there is no µ2 ∈M2 such that µ1 ∼ µ2}.

Based on these, the left outer join operation is defined as

M1 1M2 = (M1 1M2) ∪ (M1 \M2).

Given a dataset D = {G0, 〈u1, G1〉, . . . , 〈un, Gn〉}, and a graph G among G0, . . . , Gn, the
evaluation JP KDG of a graph pattern P over D with respect to G is defined as follows:

1. if P is a triple pattern, then JP KDG = {µ : var(P )→ T | µ(P ) ∈ G};
2. if P = (P1 AND P2), then JP KDG = JP1KDG 1 JP2KDG ;
3. if P = (P1 OPT P2), then JP KDG = JP1KDG 1 JP2KDG ;
4. if P = (P1 UNION P2), then JP KDG = JP1KDG ∪ JP2KDG ;
5. if P = (g GRAPH P ′), then

JP KDG =


JP ′KDgrD(g) if g ∈ I

⋃
u∈I

(
JP ′KDgrD(u) 1 {µg 7→u}

)
if g ∈ V

where µg 7→u is the mapping with domain {g} and where µg 7→u(g) = u;
6. if P = (P ′ FILTER R), then JP KDG = {µ | µ ∈ JP ′KDG and µ |= R}, where a mapping µ

satisfies a built-in condition R, denoted by µ |= R, if one of the following holds:
– R is ?x = u, ?x ∈ dom(µ) and µ(?x) = u; or
– R is ?x =?y, ?x ∈ dom(µ), ?y ∈ dom(µ) and µ(?x) = µ(?y); or
– R is isBlank(?x) and ?x ∈ dom(µ) and µ(?x) ∈ B; or
– R is bound(?x) and ?x ∈ dom(µ); or
– R is a Boolean combination of other filter conditions and this combination is satisfied

according to the usual notions of {¬,∨,∧}.



E. V. Kostylev, J. L. Reutter, and M. Ugarte 217

in_country

“PUC Chile”

“U Oxford” England

Chile
type

country

type

in_country

Figure 2 RDF graph containing information about location of universities.

The evaluation JP KD of a pattern P over a dataset D with default graph G0 is JP KDG0
.

Next we define the semantics of c-queries. We concentrate for now on the class c-SPARQLbf
of queries, and discuss the semantics for full c-SPARQL in Section 5. The answer ans(q, D)
of a c-query q = CONSTRUCT H WHERE P in c-SPARQLbf over an input dataset D is
defined as

ans(q, D) = {µ(t) | µ ∈ JP KD, t is a triple in H and µ(t) is well-formed},

Note that the well-formedness condition disallows triples with blank nodes in predicate
positions. Next we provide an example to illustrate the use of the operators GRAPH and
CONSTRUCT. See [5] for examples on the rest of the operators.

I Example 3. Let G and G1 be the graphs depicted in Figure 1(a) and Figure 2, respectively.
Suppose we want to query the dataset D = {G, 〈country, G1〉} to obtain a new graph
with information about where workers live. This would be achieved by the next SPARQL
CONSTRUCT query:

CONSTRUCT {(?name, lives_in, ?country)} WHERE (
(?worker, name, ?name) AND (?worker, works_at, ?university) AND
(country GRAPH (?university, in_country, ?country)) ).

3 Blank-free c-Queries

We start our study with c-SPARQLbf , the language of c-queries without blank nodes in
their construct templates. This fragment has simple syntax and clear semantics, and it is of
fundamental importance in our study. In particular, it resembles SPARQL SELECT queries
in the sense that all the blank nodes in the answer graph of a c-SPARQLbf query already
appear in the input dataset.

The first problem we consider is the expressive power of c-SPARQLbf . As usual in
databases our yardstick is first order logic (FO) with safe negation. However, since we
are dealing with c-queries that input RDF graphs and datasets, it is only fair to compare
them with FO over a signature that corresponds to these entities. Formally, we specify the
following query language. Consider relational predicates Default, Named and IsBlank, of
arities 3, 4 and 1, respectively. Then the language FOrdf consists of all well-formed ternary
FO formulas over this signature. We always assume that the domain of FO structures is
the set T of terms, and that for all structures we have that IsBlank(b) holds for some b if
and only if b ∈ B, and IsBlank(b) implies that none of Default(a, b, c), Named(b, a, c, d)
and Named(d, a, b, c) hold for any a, c, and d. Thus the answers for this language are sets of
triples from T× I×T, essentially RDF graphs. Finally, the evaluation function for FOrdf is
the usual FO entailment |=adom over active domain semantics. This means that quantification

ICDT 2015



218 CONSTRUCT Queries in SPARQL

is realised over the finite set of all the terms from T appearing in the input database and
query (see [1] for formal definitions).

Note that the set of input databases of FOrdf have a straightforward one-to-one cor-
respondence with the set of input datasets of c-SPARQLbf queries, and the same holds
for answers of queries in these languages. This allows us to compare their expressive
power, for which we need the following definitions. A query language Q1 is contained in
a language Q2 if and only if there are bijections transI : I1 → I2, transO : O1 → O2
between their input sets Ii and answer sets Oi, and a function transQ : Q1 → Q2 such that
transO(eval1(q, I)) = eval2(transQ(q), transI(I)) holds for any q ∈ Q1 and I ∈ I1, where
evali are the evaluation functions of the languages. Two languages are equivalent if and only
if they contain each other.

We are ready to present our first result, claiming that the language of blank-free construct
queries is subsumed by first order logic.

I Lemma 4. The language c-SPARQLbf is contained in FOrdf .

To show this lemma one can use ideas similar to the ones presented in the reductions
from the language of SPARQL SELECT queries to non-recursive Datalog with safe negation
developed in [2] and [31]. Starting with a query Q, the idea of these reductions is to assemble
an extensional predicate for each subpattern of Q in a way such that the evaluation of that
predicate contains all the tuples that correspond to a mappings in the evaluation of the
subpattern. Since some of the variables of these mappings may not be assigned, the undefined
value is modelled by a special constant Null. We present a simpler reduction where Null
is not used, but instead we create a predicate for each subset of the set of variables of Q.
Avoiding predicate Null makes our proof much more simple and intuitive, and we make use
of this proof to obtain several results in the following section.

Proof (idea). First we establish an equivalence between graph patterns and FOrdf . Once
this is done we just need to project out those variables that are not on the construct template
and generate the corresponding triple. We do it as follows.

Given a graph pattern P , for every X ⊆ var(P ) we construct a formula ϕPX with X as
free variables, such that a mapping µ is in JP KD for a dataset D if and only if the variable
assignment defined by µ satisfies ϕPdom(µ) in the FOrdf structure corresponding to D. Having
such a formula for each set of variables makes it easier to define an inductive construction.
We illustrate this construction with the translation of patterns P of the form (P1 AND P2).
Consider, for every subset X of var(P ), the formula

ϕPX =
∨

X1⊆var(P1),X2⊆var(P2),X1∪X2=X

ϕP1
X1
∧ ϕP2

X2
,

where ϕPi

Xi
are the formulas constructed on the previous inductive step.

Finally, the ternary formula ϕq producing, for every dataset D, the set of triples which
correspond to the answer graph to the c-query q = CONSTRUCT H WHERE P over D
can be simply obtained from all ϕPX by means of disjunction, existential quantification and
checking that all the second arguments are not blank nodes. J

We illustrate this proof by means of the following example.

I Example 5. Recall the query qcons from Example 2. By simple inspection we see that
the domain of every mapping in the evaluation of the graph pattern is either {?p, ?n, ?w} or
{?p, ?n, ?w, ?e}. Hence, we only need to construct a formula for each of these sets, as the



E. V. Kostylev, J. L. Reutter, and M. Ugarte 219

formulas corresponding to other subsets of var(qcons) will be unsatisfiable. Following the
construction process, we obtain

ϕ{?p,?n,?w}(p, n, w) = Default(p,name, n) ∧Default(p,works_at, w) ∧
¬∃e Default(p,mbox, e),

ϕ{?p,?n,?w,?e}(p, n, w, e) = Default(p,name, n) ∧Default(p,works_at, w) ∧
Default(p,mbox, e),

where ‘?’ is omitted before variables to resemble the conventional FO notation. Having these,
we need to create the formula ϕqcons that always outputs exactly the same graph as qcons. As
discussed above, this formula can be constructed by projecting out the non-relevant variables
and checking that the triples are well-formed. In particular, we obtain

ϕqcons(x, y, z) = ¬IsBlank(y) ∧(
∃p, n, w

[
ϕ{?p,?n,?w}(p, n, w) ∧ (x = n ∧ y = works_at ∧ z = w)

]
∨

∃p, n, w, e
[
ϕ{?p,?n,?w,?e}(p, n, w, e) ∧ (x = n ∧ y = mbox ∧ z = e)

] )
.

Our next result is the inclusion in the other direction.

I Lemma 6. The language FOrdf is contained in c-SPARQLbf .

Proof (idea). The proof of this lemma is an inductive construction that exploits the idea
that the difference operation on mappings can be expressed in SPARQL by means of the
following application of optional matching [27]. Let

P1 MINUS P2 = (P1 OPT (P2 AND (?x1, ?x2, ?x3))) FILTER ¬bound(?x1),

where ?x1, ?x2 and ?x3 are mentioned neither in P1 nor in P2. It is readily verified that
JP1 MINUS P2KDG = JP1KDG \ JP2KDG for any dataset D and its graph G. Our construction
is again similar to the one in [2], where a reduction from non-recursive Datalog with safe
negation to SPARQL graph patterns is provided. J

Having these lemmas at hand we conclude the following theorem.

I Theorem 7. The languages c-SPARQLbf and FOrdf are equivalent in expressive power.

This result and its proof have a couple of immediate important consequences. First of
them is that the language c-SPARQLbf,gf of graph-free and blank-free c-queries is equivalent
to the fragment of FOrdf which does not allow for the quaternary predicate Named (we use
FOternary

rdf to denote this fragment). This comes from a straightforward inspection of the
proofs of the previous lemmas.

I Corollary 8. The languages c-SPARQLbf,gf and FOternary
rdf are equivalent in expressive

power.

As a side remark we note that even if the syntax of manipulating graph names in
SPARQL is very different from the syntax for manipulating subjects, predicates and objects,
semantically the values are treated very similarly, and they are equivalent in terms of
expressivity.

The second important consequence is that the blank-free fragment of c-SPARQL is
composable. Formally, a query language Q with the same input and answer sets I, and
evaluation function eval, is composable if and only if for every pair of queries q1, q2 ∈ Q there
is another query q ∈ Q such that eval(q1, eval(q2, I)) = eval(q, I) for any input database

ICDT 2015



220 CONSTRUCT Queries in SPARQL

I ∈ I. According to this definition, it makes no sense to talk about composability of the
language c-SPARQLbf of blank-free c-queries, because it does not satisfies the condition that
the sets of inputs and answers coincide. But queries in c-SPARQLbf,gf enjoy such a property,
and we can obtain composability of c-SPARQLbf,gf from composability of FOternary

rdf .

I Corollary 9. The language c-SPARQLbf,gf is composable.

We conclude this section with the complexity of the evaluation of blank-free c-queries.
The lower bounds of the following result carries almost verbatim from the lower bounds
in [27]. The upper bound is also very similar, the only additional step is guessing the values
of all the variables which are not mentioned in the template.

I Proposition 10. The problem of checking whether a triple is in the answer to a c-query
from c-SPARQLbf over a dataset is PSPACE-complete in general and in NLOGSPACE if the
c-query is fixed.4 The bounds hold also for c-queries from c-SPARQLbf,gf .

Hence the complexity of evaluating blank-free c-queries is the same as that of SPARQL
graph patterns, as well as of SPARQL SELECT queries.

4 OPT-free and Well-designed CONSTRUCT queries

The Semantic Web community has adopted the fragment of unions of well-designed graph
patterns as a good practice for writing SPARQL queries. This is mainly because enforcing
this property prevents users from writing graph patterns that do not agree with the open-
world nature of the Semantic Web (see [27] for a more detailed discussion). Furthermore,
restricting to unions of well-designed graph patterns drops the (combined) complexity of
evaluation from PSPACE-complete to coNP-complete, and to Σp

2-complete if projection is
allowed. Also, several optimization techniques have been developed for the evaluation of
well-designed queries (see [22,27]). In this section we study the properties of c-queries whose
graph patterns are unions of well-designed patterns. We concentrate on the sublanguages
of c-SPARQLbf,gf , leaving c-queries with blank nodes in templates for the next section, and
restricting to graph-free c-queries for brevity. Note, however, that all the relevant results in
this section hold also for c-queries with GRAPH-patterns.

We start with the definition of well-designed graph patterns, which are patterns using:
1. no UNION-subpatterns,
2. only FILTER-subpatterns (P FILTERR) such that all variables in R are mentioned in P ,
3. only OPT-subpatterns (P1 OPT P2) such that all variables in P2 which appear outside

this subpattern are mentioned in P1.

In this section we consider c-queries with graph patterns that are unions of well-designed
patterns. We also consider c-queries without OPT-subpatterns, called opt-free. We will
use superscripts uwd and of to specify sublanguages satisfying these restrictions, such as
c-SPARQLuwd

bf,gf . Note that c-SPARQLuwd
bf,gf contains c-SPARQLof

bf,gf , since although graph
patterns in opt-free c-queries are not a union of well-designed patterns per se, they can be
easily transformed into such by applying distributivity rules to push UNION outside and
techniques of [2] to enforce the condition on FILTER subpatterns. Somewhat surprisingly, the
next lemma shows that this containment holds in other direction as well, which means that
adding well-designed OPT to patterns does not increase the expressive power of c-queries.

4 The latter setting is known as data complexity of the problem (see [38]).



E. V. Kostylev, J. L. Reutter, and M. Ugarte 221

I Lemma 11. The language c-SPARQLuwd
bf,gf is contained in c-SPARQLof

bf,gf .

This result relies on the following fact: Consider a c-query CONSTRUCT H WHERE P in
c-SPARQLuwd

bf,gf . Then no triple in the answer to this query is generated by those mappings
obtained from the evaluation of P in which some of the variables from H are not defined.
This obviously does not hold for graph patterns themselves nor for SPARQL SELECT queries,
which explains the importance of well-designed OPT in those classes of queries.

An important corollary from the proof of the previous lemma is that a c-query in
c-SPARQLuwd

bf,gf can be efficiently transformed into an opt-free c-query. In other words, in the
context of c-queries well-designed OPT is not just dispensable, but also syntactic sugar.

I Corollary 12. Every c-query from c-SPARQLuwd
bf,gf can be transformed to an equivalent

c-query from c-SPARQLof
bf,gf in LOGSPACE.

We also relate the described languages to a fragment of first order logic, defined next. A
formula ϕ ∈ FOternary

rdf is ∃-positive if it is in the {∃,¬,∧,∨} fragment of FO where negation
is atomic and only appear over equalities or IsBlank atomic predicates. The language of all
such ∃-positive formulas is denoted ∃pos-FOternary

rdf .
The following result comes from a straightforward inspection of the reduction from

c-SPARQLbf to FOrdf (Lemma 4), as the only way to generate negation over the Default
predicate is by means of OPT patterns.

I Lemma 13. The language c-SPARQLof
bf,gf is contained in ∃pos-FOternary

rdf .

Quite similarly, an inspection of the proof of Lemma 6 shows that a transformation of an
existential formula in which the predicate Default only appears positively gives us a c-query
which does not use the OPT operator. Note, however, that this c-query can have negations
in the filter expressions.

I Lemma 14. The language ∃pos-FOternary
rdf is contained in c-SPARQLuwd

bf,gf .

We can now state the main theorem of this section.

I Theorem 15. The languages c-SPARQLuwd
bf,gf , c-SPARQLof

bf,gf and ∃pos-FO
ternary
rdf are equi-

valent in expressive power.

We obtain the composability of c-SPARQLuwd
bf,gf as a corollary.

I Corollary 16. The language c-SPARQLuwd
bf,gf is composable.

We conclude this section with the complexity of evaluation of c-SPARQLuwd
bf,gf . As it

is with expressive power, the complexity of evaluation for this fragment is lower than the
complexity of evaluation of SELECT queries with well-designed patterns, which is, as already
mentioned, Σp2-complete.

I Proposition 17. The problem of checking whether a triple is in the answer to a c-query
from c-SPARQLuwd

bf,gf over a dataset is NP-complete.

5 c-Queries with Blank Nodes in Templates

In this section we study the properties of c-queries with blank nodes in templates. Like in
the previous section we concentrate on c-SPARQLgf queries, that is, c-queries that do not
use GRAPH operator, and work with RDF graphs but not datasets. However, all relevant
results of this section transfer easily to the full class of c-SPARQL queries.

ICDT 2015



222 CONSTRUCT Queries in SPARQL

In order to define the semantics of c-queries with blank nodes, for every template H
and dataset D we fix a family F (H,D) of renaming functions. This family contains, for
every mapping µ from var(H) to the domain of D, an injective function fµ : blank(H) →
B \ blank(D). These functions must have pairwise disjoint ranges.

Then the answer ans(q, D) to a c-query q = CONSTRUCT H WHERE P over an input
dataset D is the RDF graph

ans(q, D) = {µ(fµ(t)) | µ ∈ JP KD, t is a triple in H and µ(fµ(t)) is well formed},

where fµ is the corresponding renaming function for µ in F (H,D).

I Example 18. Recall again the dataset from Figure 1 and consider the c-query

CONSTRUCT {(_:b, manages, ?n), (?n, mbox, ?e)}
WHERE (
((?p, name, ?n) AND (?p, works_at, ?w))

OPT (?p, mbox, ?e)),

where _:b is a blank node. This blank node is intended to create a new blank node for
each person, representing his manager. However, one must be cautious: the semantics
of blank nodes in c-queries creates one blank node per each of the mappings in the eval-
uation of the inner pattern, and thus two blank nodes are created for Cristian, since
there are two different mappings that assign Cristian to ?w. Recall that the evaluation
of the inner pattern of this query over the graph Gex of Figure 1 is the set of map-
pings {µ1, µ2, µ3}, according to Figure 1. If we set fµ1(_:b) =_:b1, fµ2(_:b) =_:b2
and fµ3(_:b) =_:b3 then the result of evaluating the query above over Gex contains the
triples (_:b1,manages,Fran), (_:b2,manages,Cristian),(_:b3,manages,Cristian) and
(Cristian,mbox,cris@puc.cl).

In order to understand the properties of c-SPARQLgf , we start with the study of its
expressive power. Since queries from this class can create values from scratch, it does not
make much sense to compare them with FO queries. Instead, we focus on the resemblance
between the semantics of blank nodes in c-SPARQLgf queries and the one of nulls in universal
solutions for data exchange problems (see [3] for a good introduction to the topic). In the
following we show that this resemblance is not a coincidence, since all c-queries in c-SPARQLgf
can be simulated by source-to-target dependencies in the context of data exchange, in the
following sense: Given a c-query q in c-SPARQLgf , one can construct a data exchange setting
such that the graph created by posing q over an RDF graph corresponds to the result of
exchanging this graph according to the data exchange setting (up to renaming of blank
nodes). This establishes that these two formalisms are, in a way, equivalent in expressive
power, and one of the most important consequences of this result is the non-composability of
queries in c-SPARQLgf , in contrast to the blank-free c-queries from the previous sections.

To state these results we recall some terminology on data-exchange. We begin by adapting
the definitions of [3, 13] to our context5. A dependency is an expression of the form

∀x̄ ∀ȳ (ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)) , (1)

where x̄, ȳ, and z̄ are disjoint tuples of variables and ϕ and ψ are first-order formulas. We
concentrate on a restricted class of dependencies, that we call source-to-target dependencies

5 Our definition differs slightly from the chase for RDF used in [10], but it follows the same spirit.



E. V. Kostylev, J. L. Reutter, and M. Ugarte 223

(or st-dependencies), which are those in which ϕ belongs to FOternary
rdf (i.e., formulas over

Default and IsBlank relations), and ψ is a conjunction of atoms over another ternary
relation OTriple. In data exchange terminology, sets of st-dependencies are usually known
as “mappings”, but since we already use this term for solutions of graph patterns, we call
them de-mappings, and denote DErdf the language of de-mappings.

The semantics of a de-mapping Σ in our context can be defined as follows. A first-order
structure over OTriple (called a target instance) is a solution under Σ for a structure over
Default and IsBlank (called a source instance), if the set Σ of dependencies holds in the
union of the source and target instances (recall that the domain of our structures is always
the set T of terms).

In data exchange one is usually interested in computing universal solutions for a source
instance and a de-mapping Σ. These are solutions that have homomorphic images to all
solutions. A typical way to compute universal solutions is by means of the chase procedure.
In traditional data exchange settings, this procedure repeatedly tests and enforces the
satisfaction of all dependencies that are not satisfied, instantiating each existential variable
in the right hand side of dependencies with a fresh null value. These nulls have very similar
semantics to the semantics of blank nodes in SPARQL settings, so we define the chase using
blanks.

Next we define the chase of a source instance S under a de-mapping Σ as a target instance
constructed by sequentially adding triples to OTriple. To compute this instance, for every
st-dependency of the form (1) in Σ proceed as follows. Take every assignment π : x̄ ∪ ȳ → T
such that S |=adom ϕ(π(x̄), π(ȳ)) and extend π by assigning a distinct fresh blank node from
B to each variable in z̄. Then add to the target instance the fact OTriple(π(v1), π(v2), π(v3))
for each conjunct OTriple(v1, v2, v3) in ψ, as long as π(v2) is not a blank node.

The result of the chase is deterministic up to renaming of the introduced blank nodes, so
we can consider DErdf as a query language with answers being the results of the chase. This
enables us to compare the expressive power of c-queries with that of data exchange settings.

I Theorem 19. The languages c-SPARQLgf and DErdf are equivalent in expressive power.

It is known that de-mappings are not composable in the data exchange scenario [14]. We
can adapt this argument into our context to obtain the following important negative result.

I Proposition 20. The language c-SPARQLgf is not composable.

Next we refine the results above for the language c-SPARQLuwd
gf . Since we have shown that

such queries are equivalent to positive FO, it would be reasonable to guess that c-SPARQLuwd
gf

is equivalent to the query language given by de-mappings where every dependency (1) is
such that the formula ϕ is a conjunction of atoms. This last language is, in fact, a very well
studied class of de-mappings, called GLAV-mappings (see, e.g., [13, 21]), and are denoted by
GLAVrdf in this paper.

Unfortunately, the following example shows that the previous intuition is not correct.

I Example 21. Consider the c-query

CONSTRUCT {(_:b, p, ?x), (_:b, p, ?y)}
WHERE ((?x, p, a) OPT (?x, p, ?y)).

Note that here the same blank needs to be added to both of the triples in the template
whenever a mapping that bounds both ?x and ?y exists. However, we also need to account

ICDT 2015



224 CONSTRUCT Queries in SPARQL

for mappings that bind only ?x. Hence, this c-query is not equivalent to the de-mapping

∀x∀y
(
Default(x, p, a) ∧Default(x, p, y) → ∃z (OTriple(z, p, x) ∧OTriple(z, p, y))

)
,

∀x
(
Default(x, p, a) → ∃z OTriple(z, p, x)

)
,

because it creates additional blank nodes whenever the same pair of IRIs witnesses both
dependencies. In fact, one can show that this c-query is not equivalent to any query in
GLAVrdf .

In the above example both the chase of the de-mapping and the answer to the CONSTRUCT
query are homomorphically equivalent, in the sense of [19]. This correspondence is not ac-
cidental, and an equivalence between GLAVrdf and c-SPARQLuwd

gf can be shown under this
relaxed notion of equivalence between RDF graphs. We omit these results for space reasons,
but we can show the following containment without introducing any additional notation.

I Proposition 22. The language GLAVrdf is contained in c-SPARQLuwd
gf .

Regardless, the following corollary is a consequence of the proof of Proposition 20. This
again goes in line with results for data exchange, since GLAV-mappings are not composable
in general.

I Corollary 23. The language c-SPARQLuwd
gf is not composable.

We conclude this section with the following observation. Example 21 is problematic as
we use the same blank nodes in two triples in the CONSTRUCT template. If we disallow
blank nodes we regain equivalence between c-queries and data exchange settings, since
c-SPARQLuwd

bf,gf is equivalent to the setting given by GAV-mappings, that is, GLAV-mappings
of the form (1) but without existential variables.

6 Adding Recursion to SPARQL

Recursion is an integral part of most practical query languages such as SQL:1999 [34]. The
recent version 1.1 of SPARQL also allows for some form of recursion, namely property paths
[39], a binary primitive based on two way regular path queries, a well-known query language
for graph databases [6]. However, as shown in e.g. [23,28], this recursion is limited and cannot
express several interesting and relevant queries. It is possible to simulate more recursion by
exploiting the power of entailment regimes like OWL 2 RL [16]. But to put it simple, this
formalism is also quite limited and, more important, not part of SPARQL 1.1 itself. The aim
of this section is to develop syntax and semantics for a full recursive operator in SPARQL
and study its properties.

Before starting the formal development we discuss what are the difficulties of introducing
recursion in SPARQL. The semantics in the majority of query languages that allow for
recursion is defined in terms of a fixed point operator. But to have such operator one needs to
be able to pose a query over the result of another query, that is, the query language must have
the same input and answer domains. Hence it is not possible to introduce recursion based on
SPARQL SELECT queries: they evaluate over a dataset, but answer a set of mappings. On
the contrary, we can do it for c-queries, since the output and input of these queries are RDF
graphs.

In this section we show how to apply our study of c-queries in the development of a
recursive operator for SPARQL. Our proposal resembles the syntax and semantics of such an
operator in the SQL:1999 standard. Let us explain our proposal by means of an example.



E. V. Kostylev, J. L. Reutter, and M. Ugarte 225

A1 A2prov:wasDerivedFrom A3 A4prov:wasDerivedFrom prov:wasDerivedFrom

U1 U2

pro
v:g
ene

ara
ted

prov:genearated

prov:genearated

prov:genearated

Figure 3 RDF graph storing provenance history of Wikipedia articles A1, A2, A3 and A4.

I Example 24. Consider the RDF graph in Figure 3, where a piece of the provenance
information about the history of Wikipedia pages is depicted, according to PROV data
model (see [26]). New articles are derived from their previous versions, and each version is
linked to the user that was responsible for its generation. When inspecting this graph, one
of the things we may be interested in is to obtain all triples of the form (A, same:user, A′)
such that A′ is an article derived from A by a path of revisions generated by the same user.
For example, in the graph of Figure 3, we would want to obtain triple (A3, same:user, A1),
among others. In SPARQL we propose to obtain all such triples by means of the following
query:

WITH RECURSIVE http://db.ing.puc.cl/temp AS
{

CONSTRUCT {(?x, ?u, ?y)}
WHERE
((?x, prov:wasDerivedFrom, ?y) AND

(?u,prov:generated,?x) AND (?u,prov:generated,?y))
UNION
((?x, prov:wasDerivedFrom, ?z) AND (?u,prov:generated,?x) AND

(http://db.ing.puc.cl/temp GRAPH (?z, ?u, ?y)))
}
CONSTRUCT (?x, same:user, ?y)
WHERE (http://db.ing.puc.cl/temp GRAPH (?x, ?u, ?y))

The intention of this query is as follows. The first line is the actual fixed point operator: it
specifies that the RDF graph http://db.ing.puc.cl/temp is a temporal graph, which is
iteratively computed until the least fixed point of the subsequent query is reached. In this ex-
ample, the iterated query in braces states that all the triples in http://db.ing.puc.cl/temp
are of the form (X,U, Y ), where Y is either a revision of X or is linked to X via a chain of
revisions of arbitrary length, but in which all revisions involved were generated by user U .
Finally, the CONSTRUCT part of the query in the end extracts the desired information from
the computed temporal graph http://db.ing.puc.cl/temp into the output graph.

In this example, as in the rest of the paper, we deal with CONSTRUCT queries, but of
course nothing prevents the main subquery to be of any other form (for example, one could
retrieve mappings using SELECT in the main subquery) We also concentrate on blank-free

ICDT 2015



226 CONSTRUCT Queries in SPARQL

c-queries and leave the study of recursive c-queries with blank nodes in the templates for
future work.

I Definition 25. A recursive c-query is either a blank-free c-query from c-SPARQLbf or an
expression of the form

WITH RECURSIVE t AS {q1} q2, (2)

where t is an IRI from I, q1 is a c-query from c-SPARQLbf , and q2 is a recursive c-query.
The set of all recursive c-queries is denoted rec-c-SPARQLbf .

We reinforce the idea that in this definition q1 is non-recursive, but q2 could be recursive
by itself, which allows us to compose recursive definitions.

Having the syntax at hand we define the semantic of recursive c-queries. Given datasets
D,D′ with default graphs G0 and G′0, we define D∪D′ as the dataset with the default graph
G0 ∪G′0 and grD∪D′(u) = grD(u) ∪ grD′(u) for any URI u.

I Definition 26. If a recursive query q from rec-c-SPARQLbf is a simple c-query, then
its answer ans(q, D) over a dataset D is defined according to the semantics of c-queries.
Otherwise, that is, if q is of the form (2), then the answer ans(q, D) is equal to ans(q2, Dlfp),
where Dlfp is the least fixed point of the sequence D0, D1, . . . with D0 = D and

Di+1 = D ∪ {〈t, ans(q1, Di)〉}, for i ≥ 0.

Naturally, the above definition makes sense only when the sequence D0, D1, . . . has a
(finite) fixed point. In this case, we say that the answer ans(q, D) is well-defined. By our
results on expressive power, one way to guarantee this is to require graph pattern of the
c-query q1 to be a union of well-designed patterns, since this implies that the sequence is
monotone. However, we can partially relax this condition and concentrate on the following
fragment of rec-c-SPARQLbf . A recursive c-query q is semi-positive iff it is either a simple
c-query, or it is of the form (2) with q2 semi-positive and every subpattern P in q1 satisfying
the following conditions:
1. if P is (g GRAPH P ′) with g ∈ V ∪ {t} then P ′ is well-designed, and
2. if P is (P1 OPT P2) then all subpatterns (g GRAPH P ′) of P2 are such that g ∈ I \ {t}.

The language of all semi-positive recursive c-queries is denoted by rec-c-SPARQLsemi
bf . They

always have fixed points, as desired.

I Proposition 27. For every recursive c-query q in rec-c-SPARQLsemi
bf and dataset D the

answer ans(q, D) is well-defined.

Next we study its expressive power of our language and show that it is equivalent to a
particular class of Datalog programs (see [1] for a good introduction on Datalog).

Let V be a vocabulary of relational predicates. A rule is an expression of the form

Pr(x̄)← ϕ(x̄, ȳ),

where x̄ and ȳ are tuples of variables, Pr is a predicate from V ∪ {OTriple}, and ϕ is a con-
junction of positive and negated atoms (including equalities) over I∪V ∪{Default,Named},
such that every variable from x̄ appears in ϕ. In such a rule, Pr(x̄) is the head and ϕ(x̄, ȳ)
is the body.

A Datalog program with rule-by-rule stratification is a sequence Π1, . . . ,Πn of sets of rules
for which there exist a set V = {Pr1, . . . , P rn} such that the following holds:



E. V. Kostylev, J. L. Reutter, and M. Ugarte 227

1. the head of each rule in Πi is the predicate Pri;
2. each Πi does not mention any Prj with j > i;
3. each Πi does not mention Pri in negated atoms.

Without loss of generality we assume that Prn = OTriple. The language of all Datalog
programs with rule-by-rule stratification is denoted by Datalogrbr

rdf . The semantics of these
programs over structures in the signature of FOrdf is the standard fixed point semantics (see,
e.g., [1] for a formal definition).

I Theorem 28. The languages rec-c-SPARQLsemi
bf and Datalogrbr

rdf are equivalent in expressive
power.

We conclude this section with some discussion on the relationship of the semi-positive
recursive SPARQL with other known formalisms. First, from the last theorem and the results
of [11] we may conclude that rec-c-SPARQLsemi

bf contains first order logic with transitive
closure. Second, it is a technicality to check that this query formalism contains SPARQL
1.1 property paths [39], c-query answering over OWL 2 RL entailment regime [16], the
algebra defined in [35], navigational SPARQL [28], as well as GraphLog [11] and TriAL [23]
query languages. Also, it is possible to show that none of these formalisms can express
all rec-c-SPARQLsemi

bf queries, that is, the containment is strict in all the cases. Hence, we
may conclude that rec-c-SPARQLsemi

bf is a clean unification of all these languages, and, as we
believe, it deserves a further dedicated studies, both theoretical and applied.

7 Conclusions and Future Work

We presented a thorough study of the expressive power and complexity of evaluation of
SPARQL CONSTRUCT queries. By studying these queries we provided a strong bridge
between SPARQL and well-developed frameworks such as first-order logic and Datalog. In
particular, we gave a clean proof of the equivalence between CONSTRUCT queries without
blank nodes and first-order logic, characterized well-designed CONSTRUCT queries by a
reduction into a positive fragment of first-order logic, and presented a translation between
the full fragment of CONSTRUCT queries and a specific setting for data exchange. Finally,
having a good understanding of these queries we were able to present a proposal for extending
SPARQL with recursion, which we proved to be equivalent in expressive power to Datalog
with rule-by-rule stratification.

CONSTRUCT queries are an important fragment of SPARQL since they provide the
standard language for querying RDF to produce RDF as output. Query languages with this
property have several advantages, such as allowing for composability and recursion. The
results in this paper present a first formal study of this fragment, and we believe the Semantic
Web community will take good advantage of them. As future work we would like to extend
our results to advance in the understanding of more expressive versions of SPARQL. There
is still a good deal of research to be done in characterizing CONSTRUCT queries allowing for
blank nodes in the template, as well as studying c-queries allowing for advanced SPARQL 1.1
operators. It is also left as future work to implement the recursive fragment, and to develop
and apply techniques for its optimization.

ICDT 2015



228 CONSTRUCT Queries in SPARQL

References

1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases, volume 8.
Addison-Wesley Reading, 1995.

2 Renzo Angles and Claudio Gutierrez. The expressive power of SPARQL. In ISWC, pages
114–129, 2008.

3 Marcelo Arenas, Pablo Barcelo, Leonid Libkin, and Filip Murlak. Relational and XML
data exchange. Synthesis Lectures on Data Management, 2(1):1–112, 2010.

4 Marcelo Arenas, Sebastián Conca, and Jorge Pérez. Counting beyond a yottabyte, or how
SPARQL 1.1 property paths will prevent adoption of the standard. In Proceedings of the
21st international conference on World Wide Web, pages 629–638. ACM, 2012.

5 Marcelo Arenas and Jorge Pérez. Querying semantic web data with SPARQL. In PODS,
pages 305–316, 2011.

6 Pablo Barceló Baeza. Querying graph databases. In Proceedings of the 32nd symposium
on Principles of database systems, pages 175–188. ACM, 2013.

7 Carlos Buil-Aranda, Marcelo Arenas, and Oscar Corcho. Semantics and optimization of
the SPARQL 1.1 federation extension. In The Semanic Web: Research and Applications,
pages 1–15. Springer, 2011.

8 MelisachewWudage Chekol, Jérôme Euzenat, Pierre Genevès, and Nabil Layaïda. SPARQL
query containment under SHI axioms. In AAAI, 2012.

9 MelisachewWudage Chekol, Jérôme Euzenat, Pierre Genevès, and Nabil Layaïda. SPARQL
query containment under RDFS entailment regime. In IJCAR, pages 134–148, 2012.

10 Rada Chirkova and George HL Fletcher. Towards well-behaved schema evolution. In
WebDB, 2009.

11 Mariano P. Consens and Alberto O. Mendelzon. GraphLog: a visual formalism for real life
recursion. In Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, pages 404–416. ACM, 1990.

12 Orri Erling and Ivan Mikhailov. RDF support in the virtuoso DBMS. In Networked
Knowledge-Networked Media, pages 7–24. Springer, 2009.

13 Ronald Fagin, Phokion G Kolaitis, Renée J Miller, and Lucian Popa. Data exchange:
semantics and query answering. Theoretical Computer Science, 336(1):89–124, 2005.

14 Ronald Fagin, Phokion G Kolaitis, Lucian Popa, and Wang-Chiew Tan. Composing schema
mappings: Second-order dependencies to the rescue. ACM Transactions on Database Sys-
tems (TODS), 30(4):994–1055, 2005.

15 Floris Geerts, Grigoris Karvounarakis, Vassilis Christophides, and Irini Fundulaki. Algeb-
raic structures for capturing the provenance of SPARQL queries. In ICDT, pages 153–164,
2013.

16 Birte Glimm and Chimezie Ogbuji. SPARQL 1.1 Entailment Regimes. W3C Recommend-
ation, 2013. Available at http://www.w3.org/TR/sparql11-entailment/.

17 Harry Halpin and James Cheney. Dynamic provenance for SPARQL updates. In ISWC,
2014.

18 Steve Harris, Nick Lamb, and Nigel Shadbolt. 4store: The design and implementation of
a clustered rdf store. In 5th International Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS2009), pages 94–109, 2009.

19 Aidan Hogan, Marcelo Arenas, Alejandro Mallea, and Axel Polleres. Everything you always
wanted to know about blank nodes. Web Semantics: Science, Services and Agents on the
World Wide Web, 2014.

20 Egor V. Kostylev and Bernardo Cuenca Grau. On the semantics of SPARQL queries with
optional matching under entailment regimes. In ISWC, 2014.

http://www.w3.org/TR/sparql11-entailment/


E. V. Kostylev, J. L. Reutter, and M. Ugarte 229

21 Maurizio Lenzerini. Data integration: A theoretical perspective. In Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems, pages 233–246. ACM, 2002.

22 Andrés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek. Static analysis and
optimization of semantic web queries. ACM Trans. Database Syst., 38(4):25, 2013.

23 Leonid Libkin, Juan Reutter, and Domagoj Vrgoč. TriAL for RDF: adapting graph query
languages for RDF data. In Proceedings of the 32nd symposium on Principles of database
systems, pages 201–212. ACM, 2013.

24 Katja Losemann and Wim Martens. The complexity of evaluating path expressions in
SPARQL. In Proceedings of the 31st symposium on Principles of Database Systems, pages
101–112. ACM, 2012.

25 Frank Manola and Eric Miller. RDF Primer. W3C Recommendation, 10 February 2004.
Available at http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

26 Paolo Missier, Khalid Belhajjame, and James Cheney. The w3c prov family of specifications
for modelling provenance metadata. In Proceedings of the 16th International Conference
on Extending Database Technology, pages 773–776. ACM, 2013.

27 Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of SPARQL.
ACM Trans. Database Syst., 34(3), 2009.

28 Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. nSPARQL: A navigational language
for RDF. Web Semantics: Science, Services and Agents on the World Wide Web, 8(4):255–
270, 2010.

29 François Picalausa and Stijn Vansummeren. What are real SPARQL queries like? In
SWIM, 2011.

30 Reinhard Pichler and Sebastian Skritek. Containment and equivalence of well-designed
SPARQL. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 39–50. ACM, 2014.

31 Axel Polleres and Johannes Peter Wallner. On the relation between SPARQL1.1 and answer
set programming. Journal of Applied Non-Classical Logics, 23(1-2):159–212, 2013.

32 Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF. W3C Re-
commendation, 2008. Available at http://www.w3.org/TR/rdf-sparql-query/.

33 Eric Prud’hommeaux, Andy Seaborne, et al. SPARQL query language for RDF, 2006.
34 Raghu Ramakrishnan, Johannes Gehrke, and Johannes Gehrke. Database management

systems, volume 3. McGraw-Hill New York, 2003.
35 Edward L Robertson. Triadic relations: An algebra for the semantic web. In Semantic

Web and Databases, pages 91–108. Springer, 2005.
36 Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of SPARQL query op-

timization. In ICDT, pages 4–33, 2010.
37 Andy Seaborne. ARQ-A SPARQL processor for Jena. Obtained through the Internet:

http://jena. sourceforge. net/ARQ/, 2010.
38 Moshe Y Vardi. The complexity of relational query languages. In Proceedings of the

fourteenth annual ACM symposium on Theory of computing, pages 137–146. ACM, 1982.
39 W3C SPARQL Working Group. SPARQL 1.1 Query language. W3C Recommendation, 21

March 2013. Available at http://www.w3.org/TR/sparql11-query/.

ICDT 2015

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-query/


Separability by Short Subsequences and Subwords
Piotr Hofman and Wim Martens

Department of Computer Science, University of Bayreuth, Germany

Abstract
The separability problem for regular languages asks, given two regular languages I and E, whether
there exists a language S that separates the two, that is, includes I but contains nothing from
E. Typically, S comes from a simple, less expressive class of languages than I and E. In general,
a simple separator S can be seen as an approximation of I or as an explanation of how I and E
are different. In a database context, separators can be used for explaining the result of regular
path queries or for finding explanations for the difference between paths in a graph database,
that is, how paths from given nodes u1 to v1 are different from those from u2 to v2. We study
the complexity of separability of regular languages by combinations of subsequences or subwords
of a given length k. The rationale is that the parameter k can be used to influence the size
and simplicity of the separator. The emphasis of our study is on tracing the tractability of the
problem.

1998 ACM Subject Classification H.1.0 Models and Principles – General, H.2 Database Man-
agement, F.4.3 Formal Languages – Decision problems

Keywords and phrases Separability, complexity, graph data, debugging

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.230

1 Introduction

More and more people today are being confronted with systems that are becoming increasingly
complex. Computers are becoming more and more powerful and, in the current boom of big
data, are making decisions based on rapidly growing data sets. When we use such systems, or
when we develop them, it is crucial that we have a sufficient understanding of why they do
what they do. For example, when a robot performs an unexpected action, a developer should
understand why the robot did the action before she can fix the error. Similarly, when a query
on a database returns an answer that should not be there, we need some understanding of
the data and the query before we can make a correction.

This motivates a need to search for explanations of the behavior of complex systems. We
want to make a first step towards investigating to which extent separation problems can be
useful for explaining the result of queries. Separation problems come from language theory
and study differences between languages. Assume that we have two regular word languages
I and E, given by their non-deterministic finite automata. A language S separates I from
E if it includes I and excludes E, that is I ⊆ S and S ∩ E = ∅. If S comes from a class of
languages S, it could be seen as an approximation of I within S. The language E can be
used to tune how closely S should approximate I. For example, if E is the complement of I,
then no approximation is possible and finding a separator reduces to finding an S ∈ S that
is equal to I.1 In this paper, we are mostly interested in separators that come from classes
of very simple languages that only express properties about subsequences and subwords.

1 In this case, separation corresponds to a rewritability or definability problem.

© Piotr Hofman and Wim Martens;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 230–246

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.230
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


P. Hofman and W. Martens 231

We claim that separation problems are rather general and seem to be helpful in a wide
range of scenarios. For example, separators can give users a description of why tuples are not
selected by a regular path query. Say that a regular path query r on a graph database G does
not return an answer (u, v) that we expected. In the usual semantics of regular path queries,
this means that there is no path from u to v that matches r in G. If we consider the graph
G as a finite automaton AG with initial state u and accepting state v, then a separator for r
and AG that is simple enough to be understandable by a human could provide a description
of why the expected tuple (u, v) was not in the answer. For example, if S = Σ∗aΣ∗bΣ∗ would
be a separator, it could mean that r requires paths to have an a-edge before a b-edge (since
r ⊆ S) but no such path exists from u to v. Notice that, in this scenario, AG is expected to
be much larger than r.

Similarly, separators may be useful to understand differences between subgraphs. More
precisely, consider a system that is abstracted as a (large) finite, edge-labeled graph G in
which each edge-label represents an action of the system. Assume that the system, after
having started in some initial state i, arrives, after a long up-time, in a certain undesirable
state s− whereas, according to common sense, it should have arrived in s+. As an aid to
understand why the system arrived in s− instead of s+ it may be helpful to compute a
separator between between the systems (G, i, s−) and (G, i, s+), consisting of all paths in
G that lead from i to s− and from i to s+, respectively. For example, if S = Σ∗aΣ∗bΣ∗
would be a separator, it would mean that all labels of paths from i to s− have a subsequence
ab, whereas this is not the case for any of the paths from i to s+. In this sense, S has the
potential to pinpoint a difference between (G, i, s−) and (G, i, s+) in simple terms.

In this paper we want to make a first step in this direction. More precisely, we study the
complexity of separability. That is, given two languages I and E and a class of separators
S, we study the complexity of deciding if there exists an S ∈ S that separates I from E.
Here, I and E are given as non-deterministic finite automata (or, equivalently, edge-labeled
graphs) and for S we consider languages that reason about the presence and/or absence of
certain subsequences or subwords.

Previous work [5, 15] considered separability with respect to piecewise testable languages.
A language is piecewise testable if it can be defined as a boolean combination of languages
of the form Σ∗a1Σ∗ · · ·Σ∗anΣ∗, where the ai are symbols from Σ. So, piecewise testable
languages reason about subsequences of words. It can be decided in PTIME if the language
of two given NFAs I and E can be separated by a piecewise testable language [5, 15].
Tractability of this problem may come as a slight surprise in the light that many basic static
analysis questions concerning NFAs (such as containment and universality, for example) are
already PSPACE-complete. However, in the case that a separator exists, it is not yet clear
from [5, 15] how to construct a separator that would be useful for explaining the behavior of
a system to a user. Indeed, the work shows that non-existence of a separator for I and E
can be witnessed by a polynomial-size common pattern but, if a separator exists, it can be a
complex boolean combination that reasons about long subsequences.

We want to come closer to simple separators by limiting the boolean combinations and the
length of the subsequences involved. That is, we look at unions, intersections, and positive
combinations of languages of the form Σ∗a1Σ∗ · · ·Σ∗anΣ∗ where n is bounded from above
by a given parameter k. We also investigate similar combinations of subword languages, that
is, languages of the form Σ∗a1a2 · · · anΣ∗. Our motivation to look at subsequence languages
and subword languages comes from our belief that these may be helpful in generating
understandable explanations: one does not have to be an expert in the internal design of a
system to understand that one can avoid the error state by “not performing action b after
action a”.

ICDT 2015



232 Separability by Short Subsequences and Subwords

Our results focus on finding which combinations of separators and languages I, E may lead
to favorable complexities for separability. Apart from the most general cases we consider, the
complexity results range from PTIME to ΠP

2 for separability by combinations of subsequence
languages and from PTIME to PSPACE for combinations of subword languages. For the
most general cases, our best current upper bound is NEXPTIME. Some of our results are
reductions to simpler problems, such as separability of a language from a word. These simpler
problems are interesting in their own respect. For example, it is also interesting to generate
a simple reason why, e.g., a regular expression cannot be matched in a very long text.

Finally, we stress that we think that a system for generating simple separators or
explanations should explore many different classes of separators. In this paper we only focus
on subwords or subsequences, but a simple explanation for, say, the behavior of a query may
also consist of completely different concepts. Just to mention one example, we intend to
investigate separability by Parikh images in the future as well. Kopczynsky and Widjaja
Lin [7] show that this approach could be feasible from a complexity point of view. A system
could then search in parallel for separators in a wide array of classes and offer the user the
simplest ones it can find.

The motivation in this paper mainly comes from explaining the results of queries, which is
also a significant motivation for provenance in databases, a very successful line of research (see,
e.g., [3, 23] for an overview). Storing and handling provenance in databases for explaining
the results of queries is an approach that is orthogonal to ours, since we do not rely on the
availability of provenance data. Another approach on explaining the results of queries, on
relational data, was recently taken by Roy and Suciu [18]. Their approach also does not
depend on the presence of provenance data and is based on intervention, which means that
they investigate which tuples significantly affect the result of the answer.

Related Work
This paper is directly motivated by [5, 15], where it was shown that it can be decided
in PTIME if two regular languages given by their NFA can be separated by a piecewise
testable language. Recently, this problem has also been shown to be PTIME-complete [24].
Separability by locally testable and locally threshold testable languages, which are closely
related to piecewise testable languages, was investigated by Place et al. [14]. They provide
algorithms to solve both problems in co-NEXPTIME and 2EXPSPACE respectively. In
addition they proved that both problems are coNP-hard. Place and Zeitoun recently proved
that deciding separability of regular languages by first-order-logic is in EXPTIME [16] if
the languages are given by their semigroups. For given NFAs, their techniques imply a
2EXPTIME upper bound. We also refer to [17] for an overview of these results.

Our approaches have roots in separability by piecewise testable and locally testable
languages. Piecewise testable languages were defined and studied by Simon [19, 20], who
showed that a regular language is piecewise testable iff its syntactic monoid is J-trivial
and iff both the minimal DFA for the language and the minimal DFA for the reversal are
partially ordered. Stern [21] proved that it is PTIME-decidable if a language, given by
its DFA, is piecewise testable. A language is locally testable if membership of a word can
be tested by inspecting its prefixes, suffixes and infixes, up to some length that depends
on the language. The problem if a given regular language is locally testable was posed
by McNaughton and Papert [12] and independently solved by McNaughton and Zalcstein
[11, 26] and by Brzozowski and Simon [2].

Separation is closely related to Craig interpolation [4]. Craig interpolants are defined
with respect to a given implication ϕ⇒ ψ and are formulas ρ such that ϕ⇒ ρ and ρ⇒ ψ.



P. Hofman and W. Martens 233

Moreover, ρ only contains atoms that occur in both ϕ and ψ. Hence, ρ can be seen as a
separator between ϕ and ¬ψ. Craig interpolants have been used for verifying safety in a
system in the context of model checking [6, 10]. The classical results on Craig interpolation
say that, in first-order logic, every valid implication has an interpolant. (So, for valid
implications, it is trivial to decide if an interpolant exists.) Lutz and Wolter investigated
complexity questions in the context of interpolants for the description logic ALC [8]. In
particular, they showed that deciding whether there is a uniform interpolant (over a given
signature) of a given TBox is 2EXPTIME-complete.

The concept of query inseparability was recently investigated by Botoeva et al. [1]. This
problem asks, for two knowledge bases K1 and K2 and a class C of queries, whether every
query in C has the same answer over K1 and K2.

Very recently, Masopust and Thomazo investigated the complexity of the characterization
problem for k-piecewise testable languages, that is, boolean combinations of Σ∗a1Σ∗ · · ·Σ∗anΣ∗
with n ≤ k [9]. The characterisation problem asks whether a given language is a k-piecewise
testable language.

2 Preliminaries

For a finite set S, we denote its cardinality by |S|. By Σ we always denote an alphabet, that
is, a finite set of symbols. A (Σ-)word w is a finite concatenation of symbols a1 · · · an, where
n ≥ 0 and ai ∈ Σ for all i = 1, . . . , n. The length of w, denoted by |w|, is n. The empty word
is denoted by ε and has length zero. The set of all Σ-words is denoted by Σ∗. A language is
a set of words.

We assume familiarity with finite automata and regular expressions. In regular expressions,
we also use sets to denote disjunctions of symbols. For example, Σ∗aΣ∗ denotes all words
that have an a.

We denote a (nondeterministic) finite automaton or NFA A as a tuple (Q,Σ, δ, q0, F ),
where Q is its finite set of states, δ : Q× Σ→ 2Q is the transition function, q0 ∈ Q is the
initial state, and F ⊆ Q is the set of accepting states. We sometimes use q1

a−→ q2 ∈ δ to
denote that q2 ∈ δ(q1, a). The size of A, denoted by |A|, is defined as |Q|+

∑
q,a |δ(q, a)|,

which is the total number of transitions and states. An NFA is deterministic (or a DFA)
when every δ(q, a) consists of at most one element.

For an automaton A or regular expression r we write L(A), resp., L(r) for their language.
We sometimes identify a regular expression r or automaton A with its language and write,
for example, w ∈ r instead of w ∈ L(r).

2.1 Subsequences and Subwords
Let v = a1 · · · an. If w ∈ Σ∗a1Σ∗ · · ·Σ∗anΣ∗, we say that v is a subsequence of w and we
denote it by v 4 w. Moreover v is a k-subsequence if it is a subsequence and has length
at most k. If w ∈ Σ∗vΣ∗, then v is a subword of w, denoted v E w. It is a k-subword if,
additionally, it has length at most k. For k ∈ N, a k-subsequence language is a language of
the form Σ∗a1Σ∗ · · ·Σ∗a`Σ∗ with ` ≤ k and a1, . . . , a` ∈ Σ. Similarly, a k-subword language
is a language of the form Σ∗a1a2 · · · a`Σ∗ with ` ≤ k and a1, . . . , a` ∈ Σ. A language
is a subsequence language, resp., subword language if there exists a k such that it is a
k-subsequence, resp., k-subword language.

We use the following notation on automata, expressions, and languages L:
k-Subseqs(L) (resp., k-Subwords(L)) is the set of k-subsequences (resp., k-subwords) of
words from the language L, (sometimes we identify a word w with a language {w} and
we use notation k-Subwords(w) instead of k-Subwords({w})),

ICDT 2015



234 Separability by Short Subsequences and Subwords

closure4(L) (resp., closureE(L)) is the set of words that contain a word from L as a
subsequence (resp., subword).

I Observation 1. For a given word w, one can construct in polynomial time a DFA of size
O(|w|2) which recognizes all words that are a subsequence of w.

As a corollary, notice that we can also construct a DFA of size O(k ·|w|2) for all k-subsequences
of a given word in polynomial time. This can be obtained from the DFA of Observation 1 by
taking a product with the state DFA that accepts all words of length at most k. (This DFA
has k + 1 states.)

I Observation 2. For a given word w and alphabet Σ one can construct in polynomial time
a DFA which accepts all Σ-words that are supersequences of w.

2.2 Separability
For two languages I and E, we say that language S separates I from E if S contains I and
is disjoint from E. Notation-wise, we will consistently use I for the language to be included
in S and E for the language to be excluded from S. We say that I is separable from E by a
class of languages S if there exists an S ∈ S that separates I from E.

We are interested in cases where the separating language S come from classes of simple
languages S, such as:

subsequence languages;
subword languages;
finite unions, intersections, positive combinations, or boolean combinations of subsequence-
or subword languages.

By boolean combinations we mean finite combinations of unions, intersections, and com-
plements. Positive combinations are boolean combinations that do not use complements.
We note that boolean combinations of subsequence languages are also known as piecewise
testable languages [19, 20].

We parametrize the families of separators by the length of the subsequences or subwords
that we allow. For example, if S is the class of unions of subsequence languages, then Sk
denotes the class of unions of k-subsequence languages. We study the following problem.

Problem: Separability of I from E by S (I, E , S: classes of languages)
Input: Languages I ∈ I, E ∈ E given by NFAs, and a parameter k ∈ N in unary.
Question: Is there an S ∈ Sk that separates I from E?

We consider variants of the separability problem where S comes from the aforementioned
simple classes of separator languages. The classes I and E are usually either regular languages
or singleton words.

The input parameter k serves as a measure for how complex we allow the separating
language to be, i.e., combinations of k-subsequence languages or k-subword languages. Of
course, since a separator can still be relatively complex even if k is small, we also want to
explore other parameters in future work.

When we speak about the complexity of separability, we always assume that I and E are
given as NFAs. We denote the sizes of these NFAs by |I| and |E| respectively. We assume
that k is provided in unary (or, alternatively, k should not be larger than the given NFAs)
to simplify some of the proofs.



P. Hofman and W. Martens 235

2.3 Inclusion and Exclusion Equivalence
In this section we provide tools that allow us to simplify some cases of separability. We say
that language I is inclusion-equivalent to I ′ with respect to a class of separators S if, for
every language E, we have that

I is separable from E by S ⇐⇒ I ′ is separable from E by S.

Similarly, E is exclusion-equivalent to E′ with respect to S if, for every language I,

I is separable from E by S ⇐⇒ I is separable from E′ by S.

We extend this terminology to automata, so that we can also say, for example, that A and
A′ are inclusion-equivalent or exclusion-equivalent if their languages are.

In the remainder of this section, we prove basic properties about inclusion- and exclusion
equivalent languages. The properties hold for general languages, so they do not require
regularity of I or E.

I Lemma 3. Let S be a class of separators. Let language I be inclusion-equivalent to I ′
w.r.t. S and E be exclusion-equivalent to E′ w.r.t. S. Then, for each S ∈ S,

S separates I from E iff S separates I ′ from E′.

We are not aware of any work that defines equivalences between languages up to sep-
arability, but we note that a similar notion appears in Place et al. [15]. They defined an
equivalence for separability of single words by a k-piecewise testable language, i.e., a boolean
combination of k-subsequences. Additionally they mentioned that, for a given k, there
exists a smallest k-piecewise testable language that contains a given regular language L.
However, without a restriction on k, a smallest piecewise testable language containing L, i.e.,
a canonical piecewise testable approximation for L, does not exist.

We believe that it is useful to think about equivalences between languages. Due to
non-existence of a smallest piecewise testable language equivalent to a given language L, we
do not have any nice characterisation for equivalences with respect to boolean combinations.
However, we provide characterizations for the weaker classes of separators we consider in this
paper. The characterizations apply to more general notions than subsequences or subwords.
More precisely, they hold for quasi-orders (preorder) on words.

I Definition 4. A quasi-order is a binary relation which is transitive and reflexive. A
well-quasi-order is a quasi order . such that any infinite sequence of elements x0, x1, x2, . . .

contains an increasing pair xi . xj with i < j.

We present the lemmas for quasi-orders here, but readers only interested in subsequences
or subwords can simply think about the subsequence (resp., subword) ordering 4 (E) when
reading them. There is one exception, however. For Lemma 6 we need a well-quasi-orders.
It is well-known that 4 is a well-quasi-order (due to Higman’s lemma) but E is not. Indeed,
for the infinite sequence xn = 10n1 (for increasing values of n), there is no i < j such that xi
is a subword of xj . However, as we will see later, the lemmas do apply for k-subsequences
and k-subwords.

Let . be a quasi-order on words over alphabet Σ. For a word w ∈ Σ∗, the .-language
induced by w is the language {u ∈ Σ∗ | w . u}, that is, the set of all words u that are at
least as large as w with respect to .. We usually leave the word w implicit and say that a
language is a .-language if there exists such a word w. Subsequence and subword languages
are examples of .-languages.

ICDT 2015



236 Separability by Short Subsequences and Subwords

I Lemma 5. For every quasi-order . on words, the following are equivalent for languages
E and E′:
(a) E is exclusion-equivalent to E′ w.r.t. .-languages;
(b) E is exclusion-equivalent to E′ w.r.t. unions of .-languages;
(c) E is exclusion-equivalent to E′ w.r.t. intersections of .-languages;
(d) E is exclusion-equivalent to E′ w.r.t. positive combinations of .-languages; and
(e) ∀w∈E∃w′∈E′ such that w . w′ and ∀w′∈E′∃w∈E such that w′ . w.

We now turn to a similar characterisation as Lemma 5 for inclusion-equivalence. For
inclusion-equivalence, however, the characterisation is no longer the same for all positive com-
binations. For example, {ab, aa} is inclusion-equivalent to {a} with respect to subsequence
languages and intersections thereof, but not with respect to unions or positive combinations
of subsequence languages.

We characterize these two cases in the following two lemmas.

I Lemma 6. Let . be a well-quasi-order on words. The following are equivalent for languages
I and I ′:
(a) I is inclusion-equivalent to I ′ w.r.t. unions of .-languages;
(b) I is inclusion-equivalent to I ′ w.r.t. positive combinations of .-languages;
(c) closure.(I) = closure.(I ′); and
(d) For every .-minimal element i ∈ I there is a .-minimal element in i′ ∈ I ′ such that

i . i′ and i′ . i.
Where closure.(I) is the set of all words that are larger or equal with respect to . than some
word from I.

I Lemma 7. For every quasi-order . on words, the following are equivalent for languages I
and I ′:
(a) I is inclusion-equivalent to I ′ w.r.t. .-languages;
(b) I is inclusion-equivalent to I ′ w.r.t. intersections of .-languages;
(c) ∩w∈I{u ∈ Σ∗ : u . w} = ∩w′∈I′{u ∈ Σ∗ : u . w′}

We now argue that Lemmas 5–7 can be used in the context of k-subword and k-subsequence
languages. To this end, for k ∈ N and words w1, w2, we define

w1 4k w2 if and only if k-Subseqs(w1) ⊆ k-Subseqs(w2).

Similarly, we say that w1 Ek w2 if k-Subwords(w1) ⊆ k-Subwords(w2). Since 4k and Ek are
well-quasi orders for every k ∈ N, we have that Lemmas 5–7 apply to k-subsequences and
k-subwords as well.

2.4 Witnesses for Non-Separability
We provide simple characterizations of non-separability that state, in each of the cases,
what kind of witness one should search for proving non-separability. We found these
characterizations to be quite useful in proofs.

I Lemma 8. Let I and E be two regular languages. Then I is not separable from E

(a) by a union of k-subsequence languages iff there exists a word wI ∈ I that can not be
separated from E, i.e., such that every k-subsequence s of wI appears in some word
ws ∈ E.

(b) by an intersection of k-subsequence languages iff there exists a word wE ∈ E that cannot
be separated from I, i.e., such that every k-subsequence that appears in every word from
I also appears in wE.



P. Hofman and W. Martens 237

(c) by a positive combination of k-subsequence languages iff there exists words wI ∈ I and
wE ∈ E such that k-Subseqs(wI) ⊆ k-Subseqs(wE).

(d) by a boolean combination of k-subsequences iff there exist words wI in I and wE in E
such that k-Subseqs(wI) = k-Subseqs(wE).

Item (d) from the lemma is rather standard and follows almost immediately from the
definition of k-piecewise testable languages by Simon [19, 20]; see also Lemma 4.1 in [17].

The corresponding lemma for k-subword languages is analogous. The different cases
in the lemma give a good idea of the different flavors of the separation problem when one
searches for a witness of non-separability. For example, in case (4), we are looking for words
in I and E that have precisely the same sets of k-subsequences. It is usually much harder
to argue that such witnesses are small than in, say, case (3) where only inclusion in one
direction is required.

3 A Tractable Case

The main result of this section is a tractability result of separability of I from E by k-
subsequences, by finite unions, intersections, and positive combinations thereof, if a certain
condition holds on E. The main idea is that we reduce E to a small language E′ which is
exclusion-equivalent and solve the separation problem of I and E′. Afterwards, we generalize
this to two more expressive form of separators, namely k-subsequences of constant-length
words, and finite unions thereof. Here, for a constant c, a k-subsequence of c-length words is
a language of the form

Σ∗w1Σ∗ · · ·Σ∗w`Σ∗

where ` ≤ k and each wi has length at most c. We think that such languages could be helpful
to separate languages in practice, because they seem to be rather expressive, potentially
simple to understand, yet have a tractable separation problem.

We need a little bit of terminology to get started. We call a set X ⊆ Q of states of an
automaton A = (Q,Σ, δ, q0, F ) a strongly connected component, or SCC, if it is a maximal
strongly connected component in the usual graph representation of A. Let X ⊆ Q be a set of
states of an automaton A = (Q,Σ, δ, q0, F ). We say that A′ is obtained from A by collapsing
X if A′ is the image of A under a homomorphism g : Q → (Q \ X) ] {qX} which is the
identity on Q \X and maps each u ∈ X to qX . Furthermore, qX is accepting in A′ if and
only if X contains an accepting state.

I Lemma 9. For a given automaton A let X be one of its SCCs. If A′ is obtained from
A by collapsing X, then A and A′ are exclusion-equivalent with respect to subsequence
languages, unions of subsequence languages, intersections of subsequence languages, and
positive combinations.

Notice that Lemma 9 is an easy corollary of Lemma 5. Furthermore, if A and A′ are
exclusion-equivalent with respect to subsequence languages then, for every fixed k ∈ N, they
are also exclusion-equivalent with respect to the (less expressive) k-subsequence languages.
(Similarly for unions, intersections, and positive combinations thereof.) Therefore, Lemma 9
relativises to k-subsequence languages.

The following notion, a core of an NFA, will be central in our search for tractable
separation. Basically, we will obtain tractability for separation of languages for which we can
find a small approximation of its core. The overall idea is similar to the idea of kernelization
in the context of finding fixed-parameter tractability, but, as far as we know, our approach
does not necessarily lead to a proof of fixed-parameter tractability of the general problem.

ICDT 2015



238 Separability by Short Subsequences and Subwords

I Definition 10. An NFA C is a core of a language E, if the following hold:
1. E and C are exclusion-equivalent w.r.t. positive combinations of subsequences,
2. C is minimal among all NFAs of exclusion-equivalent languages to E w.r.t. positive

combinations of subsequences.

So, the rationale of a core C is that it captures the whole complexity of E when it comes
to separation. When we want to decide whether I is separable from E, we can obtain the
correct result by deciding separability of I from C instead. The challenge is to be able
to compute a core (or sufficiently small approximation thereof) from the NFA of E. The
following observation gives us a first step.

I Observation 11. Each core of a regular language E contains no loops other than self-loops.

Proof. If a core C is not a DAG with self-loops then it contains a non-trivial SCC. Thus,
according to Lemma 9 we can collapse the non-trivial SCC and obtain a smaller core, which
contradicts the minimality of C. J

Hence, an initial approximation of a core of E can be obtained by collapsing all its SCCs.
We will see later that cores can be even smaller in general.

Observe that, in general, computing a core is at least NP-hard, because minimizing an
automaton which is a DAG is NP-hard [22]. Therefore we will search for approximations of
cores that we know how to compute efficiently.

3.1 Core-Approximations
Given an NFA A = (Q,Σ, δ, q0, F ), the following procedure computes an exclusion-equivalent
NFA C ′ that may be much smaller than A and therefore can be seen as an approximation of
a core.

For each SCC X ⊆ Q we collapse X. As collapsing SCCs does not change the exclusion-
equivalence class of an NFA, the obtained DAG D with self-loops is exclusion-equivalent
to A (Lemma 9). In a next step we collapse further to obtain a possibly even smaller
exclusion-equivalent NFA:

First, for every transition q1
a−→ q2 in D, we add a transition q1

ε−→ q2, thereby ob-
taining an ε-NFA Dε. Notice that, according to Lemma 5, languages Dε and D

are exclusion-equivalent w.r.t. (k-)subsequence languages, unions thereof, intersections
thereof, and positive combinations thereof.
Second, we take a weak bisimulation quotient of Dε. This step does not change the
language, so the exclusion-equivalence class trivially remains the same.

Bisimulation quotients are probably the simplest and best known heuristic to minimize an
NFA [13]. Weak bisimulation is simply the version of the bisimulation quotient that takes
ε-transitions into account. Weak bisimulation gives us a better refinement of the automaton
Dε than the ordinary bisimulation quotient. We illustrate a core-approximation in Figure 1.

We refer to the resulting automaton as a core-approximation of A. The subsequent results
in this section imply tractability of the separation problems whenever we can compute a
constant-size core-approximation.

3.2 Using Core-Approximations to Separate
We explain how an arbitrary language E′ that is exclusion-equivalent to E can be used to
separate I from E. In particular, the exposition applies to cores and core-approximations.



P. Hofman and W. Martens 239

b

a
a

a

c

a

a

(a) Automaton A(E)

b

a

c
a

(b) After collapsing SCCs

b

a

ε

ε

c

(c) After the second reduc-
tion

Figure 1 Illustration of a core-approximation.

In the cases of separability by k-subsequences and combinations thereof that have unions,
the number of states of E, and therefore also the number of states of E’s cores, gives an
upper bound for the length of the subsequences that we need to consider for separation.

I Lemma 12. If automata I and E are separable by a k-subsequence language (resp., union
of k-subsequence languages, or positive combination of k-subsequence languages), then they
are separable by an |E|-subsequence language (resp., union of |E|-subsequence languages, or
positive combination of |E|-subsequence languages).

These bounds can be used to obtain the following upper bounds on separability by
k-subsequence languages, intersections, unions, and positive combinations thereof. In the
Lemma, f denotes a function and poly denotes a polynomial function.

I Lemma 13. For a given automata I, E and a number k we can decide if I is separable
from E

(a) by a k-subsequence language in time O(poly(|I|) · Σ · f(|E|));
(b) by an intersection of k-subsequence languages in time O(poly(|I|) · |Σ||E|+1 · f(|E|));
(c) by a union of k-subsequence languages in time O(poly(|I|) · f(|E|)); and
(d) by a positive combination of k-subsequence languages in time O(poly(|I|) · f(|E|)).

Proof sketch. In the proof, f is an exponential function in cases (a) and (b) and double
exponential in (c) and (d), but we stress that we have not yet attempted any optimization.
All our algorithms are based on exhaustive checking of witnesses that fulfil certain constraints;
we provide a sketch for case (a).

(a) By Lemma 12 we know that we can bound k by |E|. Let X be the set of words u that
have length at most k and such that there is no v ∈ E such that u 4 v. We can separate I
from E if and only if there is a word s ∈ X that is a subsequence of every word in I. Without
loss of generality we can restrict ourselves to minimal words in X with respect to the 4 order.
Indeed, if w 4 w′ and closure4(w′) separates I from E then closure4(w) is also a separator.
The number of such minimal words is bounded by |ΣE |k + |Σ|, where ΣE is the alphabet
used in E. So, a naive algorithm could simply enumerate all |ΣE |k + |Σ| such minimal words
and test the conditions. Testing if such a word w does not have a supersequence in E can be
done in polynomial time by computing from w the DFA Aw of Observation 2 and testing if
its intersection with E is empty. Testing if w is a subsequence of every word in I can be

ICDT 2015



240 Separability by Short Subsequences and Subwords

answered by testing if I is included in L(Aw). Since Aw is deterministic, this can be done in
time polynomial in |I| and the length of w too. Thus, we get that the overall complexity is
bounded by (p1(|I|) + p2(|E|)) · (Σ + |ΣE ||E|), where p1 and p2 are polynomials. J

From Lemma 13, we immediately get tractability of separability if we can find a core-
approximation of E that has constant size. This is trivial, for example, if E has a constant
number of SCCs.

I Theorem 14. For a given automata I, E and a number k, if the core approximation of E
has constant size, we can decide in PTIME if I is separable from E by
(a) a k-subsequence language,
(b) an intersection of k-subsequence languages,
(c) a union of k-subsequence languages, and
(d) a positive combination of k-subsequence languages.

3.3 Sequences of Words
We now generalize the algorithm for Theorem 14 to deal with more expressive separators
that combine subsequences and subwords. For k and c in N, a language of k-subsequences
of c-words is a language of the form Σ∗w1Σ∗ · · ·Σ∗wkΣ∗ where each wi has length at most
c. In the remainder of this section, k should be thought of as an input to the separability
problem as before, and c should be thought of as a constant. Our aim is to show that, if c is
constant, then we can extend Theorem 14 to languages of k-sequences of c-words.

The idea consists of doing a preprocessing step on the NFA for E and then performing an
analogous construction as in the previous section. Essentially, the preprocessing step consists
of extending E’s alphabet such that it also reads c-tuples of Σ-symbols.

More formally, let A = (Q,Σ, δ, q0, F ) be an NFA. By A≤c = (Q,Σ≤c, δ≤c, q0, F ) we
denote the NFA obtained from A as follows:

Σ≤c := ]1≤i≤cΣi
for every a ∈ Σ and q ∈ Q, δ≤c(q, a) := δ(q, a)
for every (a1, . . . , ai) ∈ Σ≤c and q ∈ Q, δ≤c(q, (a1, . . . , ai)) is the set of states that can
be reached in A by reading the word a1 · · · ai, that is, ∪p∈δ≤c(q,(a1,...,ai−1))δ(p, ai).

That is, A≤c behaves exactly the same as A but, whenever it reads a tuple (a1, . . . , ai) it
behaves as if A would read the word a1 · · · ai.

When we have given automata I and E, we can use the core-approximation of E≤c
to separate I from E by languages of k-subsequences of c-words. Here, we construct the
core-approximation of E≤c (w.r.t. k-subsequences over Σ≤c) as explained in Section 3.1.

I Theorem 15. For a given automata I, E, a number k, and a constant c, if the core
approximation of E≤c has constant size, it is decidable in PTIME if I is separable from E by

a language of k-subsequence of c-words, or
a union of languages of k-subsequences of c-words.

The proof of the Theorem is obtained by minor adaptations in the proof of Theorem 14
(a) and (c) to deal with the different alphabet of E≤c. (To this end, we also need a slightly
different version of Lemma 12, adapted to the new alphabet. Its proof is analogous.)

We conclude this section by remarking that the approach we used to show Theorem 15
does not naively generalize to separators that have intersection. Basically, when intersection
is allowed, we cannot treat constant-length words as single symbols anymore. For example,
when ab and ba are treated as single symbols in Σ, then Σ∗abΣ∗ ∩ Σ∗baΣ∗ does not contain



P. Hofman and W. Martens 241

aba. When ab and ba are words of length two, then aba ∈ Σ∗abΣ∗ ∩ Σ∗baΣ∗. So, the naive
application of the former algorithm may return the wrong result.

4 Separability by k-Subsequences

In Sections 4 and 5 we present the result of a systematical investigation of the complexity
of separability in different constellations. More precisely, we consider all combinations of
separating I from E where I and E can be a regular language or a word. As possible
separators, in Section 4 we consider all combinations of k-subsequence languages that we
also considered before and, in Section 5 we consider the same combinations of k-subword
languages. We note that many complexity bounds are not yet tight.

The complexity landscape in this section shows separability by k-subsequences is often
hard, even if one of the languages is a singleton word. More precisely, if we restrict either I
or E (but not both) to be a single word, separation seems to remain NP- or coNP-hard in
almost all cases.2 Only when both I and E are words, we can prove that separability by
k-subsequence languages and combinations thereof is in PTIME. On the positive side, almost
all upper bounds lie within ΠP

2 which is lower than the typical PSPACE bound which one
expects for many static analysis problems for NFAs such as universality and containment.

I Theorem 16. Given NFAs for I and E, and a number k, separability of I from E

(a) by k-subsequence languages is NP-complete;
(b) by unions of k-subsequence languages is NP-hard and in ΠP

2 ;
(c) by intersections of k-subsequence languages is coNP-hard and in ΠP

2 ; and
(d) by positive combinations of k-subsequence languages is coNP-complete.
(e) by a boolean combinations of k-subsequence languages is coNP-hard and in NEXPTIME.

All hardness results already follow from Theorem 17, where I is a singleton. In cases (a)
and (b), we have reductions from SAT that use an acyclic NFA for E. However, the proof
requires non-determinism in the NFA. For (c), (d), and (e), we have several reductions. One is
from the Hamilton path problem and shows the problem is hard even if the automaton for E
acyclic, but it makes linearly many copies of the input graph for the Hamilton problem. The
other is from a problem investigated by Wood [25], doesn’t produce an acyclic automaton,
but has a shorter proof, which we present here. Hardness already holds for k = 1, which is a
sharp contrast with the PTIME upper bounds in Theorems 14 and 15.

4.1 Restricted Cases
We now consider severely restricted cases in which at least one of the two languages is
restricted to be a single word. If we restrict I to be a single word, then we see that all
separability problems become coNP-complete when the separator languages have intersection,
and NP-complete otherwise.

I Theorem 17. Given word wI , an NFA for E, and a number k, separability of wI from E

(a) by k-subsequence languages or by unions of k-subsequence languages is NP-complete;
(b) by intersections, positive combinations, or boolean combinations of k subsequence lan-

guages is coNP-complete.

2 There is one notable exception in which we do not yet know the precise complexity: Theorem 18(2).

ICDT 2015



242 Separability by Short Subsequences and Subwords

s x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

ε

F
F

F

ε

T
T

ε
F

F ε
T

T T

ε

F
F

F F

ε

T

Figure 2 Construction of ε-NFA for E in the proof of Theorem 17(a).

Proof sketch. We sketch the lower bound proofs. The hardness proof for (a) is by reduction
from SAT. For a given formula ϕ in conjunctive normal form, over the variables {x1, . . . , xk},
we construct wI and E such that ϕ is satisfiable if and only if wI can be separated from E

by a k-subsequence language.
More precisely, E is defined over the alphabet {T, F} and contains those words of length

k that correspond to valuations that do not satisfy the formula ϕ. Valuations are encoded
as words in a straightforward manner: a word X1 · · ·Xk with each Xi ∈ {T, F} encodes the
assignment that assigns xi true if and only if Xi = T . The construction of the automaton
to recognize E is in paragraph below. The word wI is defined as (TF )k. Since wI contains
every k-subsequence over {T, F}, the word wI can be separated from the language E by a
k-subsequence if and only if E 6= (T + F )k by Lemma 8. This is equivalent to the fact that
there is a valuation which satisfies the formula ϕ.

Clearly, k and wI can be constructed in polynomial time from ϕ. It remains to show how
to construct an NFA for E. Let ϕ = C1 ∧ · · · ∧ Cm. This NFA is a union of sub-automata
that accept those words of length k that encode valuations that do not satisfy Ci. Figure 2
contains and ε-NFA E for the formula ϕ = (x1 ∨¬x2 ∨x4)∧ (x2 ∨¬x3 ∨¬x4)∧ (x1 ∨x3 ∨x4).
Notice that this ε-NFA for E and thus also an NFA for E can be constructed in polynomial
time.

The coNP hardness for (b) is almost immediate from the NP-hardness of the following
problem [25]: Given a DFA A over alphabet Σ, is there a word in L(A) that contains every
letter in Σ?

Indeed, given the DFA A over Σ = {a1, . . . , an}, we can define wI = a1 · · · an and
E = L(A) and ask if there is an intersection of languages of the form Σ∗aiΣ∗ that separates
wI from E. Notice in this case, if there is a separator then the intersection ∩ni=1(Σ∗aiΣ∗) of
all such languages is a separator as well. So, wI is separable from E by an intersection of
1-subsequence languages if and only if it is separable by ∩ni=1(Σ∗aiΣ∗). This means that wI
is separable from E if and only if no word in L(A) contains every letter from Σ.

Given the proof for intersections, observe that if there exists a separator that uses positive
boolean combinations, namely of a form X1 ∪ X2 ∪ · · · ∪ Xn then one of of Xi separates
wI from E as well. Thus the problem for positive boolean combination is equivalent to the
problem for intersection and is coNP-hard as well. Finally, in the solution of the above
problem, negation does not help, as wE contains all letters from Σ. Thus solving the boolean
combination problem is equivalent to solving the intersection problem as well. J

The converse case in which we restrict E to be a single word shows a similar picture,
but note that we do not have a coNP lower bound or PTIME upper bound for separability



P. Hofman and W. Martens 243

by unions or positive combinations. For unions, for example, we need to decide if there
exists a word wI ∈ I such that all its k-subsequences appear in wE (Lemma 8). One can
easily construct a polynomial-size DFA for all k-subsequences that do not appear in wE , but
in general there is no small DFA for all words that contain a k-subsequence that does not
appear in wE . (The intuition is that such an automaton needs to guess which symbols to
use for the subsequence.) Therefore, checking if all words in I contain some k-subsequence
that does not appear in wE seems to be difficult.3 Conversely, for a hardness proof, the fact
that wE is a single word gives little freedom for encoding gadgets.

I Theorem 18. Given word wE, an NFA for I, and a number k, separability of I from wE
(a) by k-subsequence languages or by intersections of k-subsequence languages is NP-

complete;
(b) by unions or positive combinations of k-subsequence languages is in coNP; and
(c) by boolean combinations of k-subsequence languages is coNP-complete.

Hardness in case (a) is by reduction from the longest common subsequence problem. For
(c), the question is equivalent to Theorem 17(2) because the separators are closed under
complement.

Finally, when both languages are restricted to be a single word, separability can be
decided in PTIME by using standard automata techniques (Observation 1).

I Theorem 19. Given words wI , wE, and number k, separability of wI from wE by k-
subsequence languages or by unions, intersections, positive combinations, or boolean combi-
nations thereof is in PTIME.

5 Separability by k-Subwords

Analysis of subwords provides us a similar overview like in subsequence case, but the
complexities are more diverse. We see more cases that are tractable, but the arguments why
this is so are rather easy. The main reason why, in some cases, separability by k-subwords
seems to be easier than by subsequences is because a given word w can only have O(k|w|)
many subwords, whereas it can have exponentially many subsequences. That said, subwords
can also be used to reason about the distance between positions in a word. This can be
exploited to encode corridor tiling and which makes separability by boolean combinations of
k-sequences PSPACE-hard.

I Theorem 20. Given NFAs for I and E, and a number k, separability I from E

(a) by k-subword languages is in PTIME;
(b) by unions or positive combinations of k-subword languages is PSPACE-complete;
(c) by intersections of k-subword languages is coNP-complete; and
(d) by boolean combinations of k-subword languages is in NEXPTIME and PSPACE-hard.

5.1 Restricted Cases
When we restrict one of the languages to be a word, we see that separability becomes
coNP-complete at worst.

3 If I contains a polynomial number of shortest words, it can be done in polynomial time due to
Theorem 19.

ICDT 2015



244 Separability by Short Subsequences and Subwords

I Theorem 21. Given word wI , an NFA for E, and a number k, separability of wI from E

(a) by k-subword languages or by unions of k-subword languages is in PTIME; and
(b) by intersections, positive combinations, or boolean combinations of k subword languages

is coNP-complete.

I Theorem 22. Given word wE, an NFA for I, and a number k, separability of I from wE
(a) by k-subword languages or by unions, intersections, or positive combinations thereof is

in PTIME; and
(b) by boolean combinations of k-subword languages is coNP-complete.

Finally, for the sake of completeness, we mention that, when both languages are a word,
separation is trivially in PTIME.

I Theorem 23. Given words wI , wE, and number k, separability of wI from wE by k-subword
languages or by unions, intersections, positive combinations, or boolean combinations thereof
is in PTIME.

6 Separability by k-Prefixes and k-Suffixes

For the sake of completeness, we mention that deciding separability by combinations of
prefixes of length up to k is in polynomial time in all cases we consider. A k-prefix language
is a language of the form wΣ∗ where |w| ≤ k. All boolean combinations of k-prefix languages
are defined similarly as before.

I Observation 24. Given NFAs for I and E, and a number k, separation of I from E by k-
prefix languages, or by unions, intersections, positive combinations, and boolean combinations
thereof is in PTIME.

The proofs are rather straightforward adaptations of the corresponding proofs in [5].
Naturally, the observation also holds for k-suffix languages by a reduction that simply reverses
the NFAs for I and E.

7 Conclusions

Separation of regular languages seems to be a worthwhile approach to investigate for tackling
several problems in graph databases, for example, approximating regular path queries (by
specifying a query to be approximated and a second query of paths that should not be
matched), computing explanations of the results of regular path queries, and for computing
explanations of the differences between edge-labeled s-t-graphs in general.

When one searches for separators to provide explanations, it does not really matter to
a user which class of separators is considered, as long as the separator is simple enough to
understand and interpret. In fact, a system is likely to be perceived to be much more useful
and intelligent when it is able to return simple specimens from many classes of separators,
as opposed to complex specimens that come from a limited number of classes. Intuitively,
the former case corresponds to a situation where explanations can be very diverse and, in
the latter case explanations always have a similar flavor. In this paper we investigated to
which extent subsequences, subwords, and combinations thereof can be used to describe
the difference between regular languages (or graphs) I and E. Our main motivation for
considering subsequences and subwords are that we feel that they are easy to understand
and, at the same time, may be reasonably expressive. It was already shown in [5, 15] that,
for regular languages, deciding the existence of an arbitrarily complex separator involving



P. Hofman and W. Martens 245

subsequences, prefixes or suffixes is in PTIME. Here we made a step towards finding simpler
separators in the sense that we considered a given bound k on the length of the subwords
and subsequences involved. We showed that, if E can be reduced to a sufficiently small
substructure, its core-approximation, there is good hope that the difference between I and E
can be described in simple terms, if they can be separated.

Efficient construction of separators is clearly the goal of this line of research and is a
challenging problem. We would like to understand when separators exist, when they are
small, and when they are efficiently computable. This paper gives us better understanding of
this case, which can then serve as a basis towards producing separators that are, ultimately,
human readable.

Acknowledgments. We would like to thank the anonymous reviewers of ICDT 2015 for
many helpful remarks. This work was supported by DFG grant MA4938/2-1.

References
1 E. Botoeva, R. Kontchakov, V. Ryzhikov, F. Wolter, and M. Zakharyaschev. Query insep-

arability for description logic knowledge bases. In Principles of Knowledge Representation
and Reasoning (KR), 2014.

2 J. Brzozowski and I. Simon. Characterizations of locally testable events. Discrete Mathe-
matics, 4(3):243–271, 1973.

3 P. Buneman and W. C. Tan. Provenance in databases. In International Conference on
Management of Data (SIGMOD), pages 1171–1173, 2007.

4 W. Craig. Three uses of the herbrand-gentzen theorem in relating model theory and proof
theory. The Journal of Symbolic Logic, 22(3), 1957.

5 W. Czerwinski, W. Martens, and T. Masopust. Efficient separability of regular languages
by subsequences and suffixes. In International Conference on Automata, Languages and
Programming (ICALP), pages 150–161, 2013.

6 T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs.
In Principles of Programming Languages (POPL), pages 232–244, 2004.

7 E. Kopczynski and A. Widjaja To. Parikh images of grammars: Complexity and applica-
tions. In Logic in Computer Science (LICS), pages 80–89, 2010.

8 C. Lutz and F. Wolter. Foundations for uniform interpolation and forgetting in expressive
description logics. In International Joint Conference on Artificial Intelligence (IJCAI),
pages 989–995, 2011.

9 T. Masopust and M. Thomazo. On k-piecewise testability (preliminary report). CoRR,
abs/1412.1641, 2014.

10 K. L. McMillan. Applications of craig interpolants in model checking. In Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), pages 1–12, 2005.

11 R. McNaughton. Algebraic decision procedures for local testability. Mathematical Systems
Theory, 8(1):60–76, 1974.

12 R. McNaughton and S. Papert. Counter-free automata. The M.I.T. Press, 1971.
13 R. Paige and R. Tarjan. Three parition refinement algorithms. SIAM Journal on Comput-

ing, 16:973–989, 1987.
14 T. Place, L. van Rooijen, and M. Zeitoun. Separating regular languages by locally testable

and locally threshold testable languages. In Foundations of Software Technology and The-
oretical Computer Science (FSTTCS), pages 363–375, 2013.

15 T. Place, L. van Rooijen, and M. Zeitoun. Separating regular languages by piecewise
testable and unambiguous languages. In Mathematical Foundations of Computer Science
(MFCS), pages 729–740, 2013.

ICDT 2015



246 Separability by Short Subsequences and Subwords

16 T. Place and M. Zeitoun. Separating regular languages with first-order logic. In Computer
Science Logic – Logic in Computer Science (CSL-LICS), 2014.

17 L. Van Rooijen. Une approche combinatoire du problème de séparation pour les langages
réguliers. PhD thesis, Université de Bordeaux, 2014.

18 S. Roy and D. Suciu. A formal approach to finding explanations for database queries. In
International Conference on Management of Data (SIGMOD), pages 1579–1590, 2014.

19 I. Simon. Hierarchies of Events with Dot-Depth One. PhD thesis, Dept. of Applied Analysis
and Computer Science, University of Waterloo, Canada, 1972.

20 I. Simon. Piecewise testable events. In Proceedings of GI Conference on Automata Theory
and Formal Languages, pages 214–222. Springer, 1975.

21 J. Stern. Complexity of some problems from the theory of automata. Information and
Control, 66(3):163–176, 1985.

22 L. Stockmeyer and A. Meyer. Word problems requiring exponential time: Preliminary
report. In Symposium on Theory of Computing (STOC), pages 1–9, 1973.

23 W. C. Tan. Provenance in databases: Past, current, and future. IEEE Data Engineering
Bulletin, 30(4):3–12, 2007.

24 Š. Holub, G. Jirśková, and T. Masopust. On upper and lower bounds on the length of
alternating towers. In Mathematical Foundations of Computer Science (MFCS), Part I,
pages 315–326, 2014.

25 P. T. Wood. Containment for XPath fragments under DTD constraints. In International
Conference on Database Theory (ICDT), 2003. Full version, obtained through personal
communication.

26 Y. Zalcstein. Locally testable languages. Journal of Computer and System Sciences,
6(2):151–167, 1972.



Process-Centric Views of Data-Driven Business
Artifacts∗

Adrien Koutsos1 and Victor Vianu2

1 ENS Cachan, France
adrien.koutsos@ens-cachan.fr

2 UC San Diego & INRIA-Saclay
vianu@cs.ucsd.edu

Abstract
Declarative, data-aware workflow models are becoming increasingly pervasive. While these have
numerous benefits, classical process-centric specifications retain certain advantages. Workflow
designers are used to development tools such as BPMN or UML diagrams, that focus on control
flow. Views describing valid sequences of tasks are also useful to provide stake-holders with high-
level descriptions of the workflow, stripped of the accompanying data. In this paper we study the
problem of recovering process-centric views from declarative, data-aware workflow specifications
in a variant of IBM’s business artifact model. We focus on the simplest and most natural process-
centric views, specified by finite-state transition systems, and describing regular languages. The
results characterize when process-centric views of artifact systems are regular, using both linear
and branching-time semantics. We also study the impact of data dependencies on regularity of
the views.

1998 ACM Subject Classification H.2.3 Languages: Query languages, H.4.1 Office Automation:
Workflow management, B.4.4 Performance Analysis and Design Aids: Formal models, Verification

Keywords and phrases Workflows, data-aware, process-centric, views

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.247

1 Introduction

Data-driven workflows have become ubiquitous in a variety of application domains, including
business, government, science, health-care, social networks [37], crowdsourcing [7, 8], etc.
Such workflows resulted from an evolution away from the traditional process-centric approach
towards data-awareness. A notable exponent of this class is the business artifact model
pioneered in [31, 25], deployed by IBM in professional services. Business artifacts (or simply
“artifacts”) model key business-relevant entities, which are updated by a set of services that
implement business process tasks. This modeling approach has been successfully deployed in
practice [4, 3, 9, 14, 39]. In particular, the Guard-Stage-Milestone (GSM) approach [12, 23]
to artifact specification uses declarative services with pre- and post-conditions, parallelism,
and hierarchy. The OMG standard for Case Management Model and Notation (CMMN) [5],
announced last year, draws key foundational elements from GSM [28].

Declarative, high-level specification tools such as GSM allow to generate the application
code from the high-level specification. This not only allows fast prototyping and improves
programmer productivity but, as a side effect, provides new opportunities for automatic

∗ This work was partially supported by the National Science Foundation under award IIS-1422375.

© Adrien Koutsos and Victor Vianu;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 247–264

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.247
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


248 Process-Centric Views of Data-Driven Business Artifacts

verification. Indeed, the high-level specification is a natural target for verification, as it
addresses the most likely source of errors (the application’s specification, as opposed to the
less likely errors in the automatic generator’s implementation). This has spawned an entire
line of research seeking to trace the boundary of decidability of properties of such systems,
expressed in variants of temporal logic (see [18]).

While declarative specifications of workflows have many benefits, they also come with some
drawbacks. Workflow designers are used to traditional process-centric development tools, such
as BPMN (Business Process Model and Notation), workflow nets, and UML activity diagrams,
that focus on control flow while under-specifying or ignoring the underlying data. Such
process-centric views of workflows are also useful to provide stakeholders with customized
descriptions of the workflow, tailored to their role in the organization. For example, an
executive may only require a high-level summary of the business process. Descriptions of
the workflows as sequences of tasks stripped of data are intuitive and often sufficient for
many users. Thus, recovering the sequencing of tasks from declarative specification is often
desirable.

In this paper, we study views of business artifact runs consisting of the sequences of
services applied in each run1. This comes in two flavors, depending on whether we are
interested in linear runs alone, or in the more informative branching-time runs. We call these
the linear-time, resp. branching-time (service) views of the artifact system. The simplest
and most intuitive specification mechanism for such views consists of a finite-state transition
system, which can describe both ω-regular languages (for linear-time views), and regular
infinite trees of runs (for branching-time views).

I Example 1. To illustrate linear-time service views of declarative workflows, we consider a
variant of the running example of [11]. In the example, the customer can choose a product, a
shipment method and apply a coupon to the order. The order is filled in a sequential manner
as is customary on e-commerce web-sites. After the order is filled, the system awaits for
the customer to submit a payment. If the payment matches the amount owed, the system
proceeds to shipping the product. At any time before submitting a valid payment, the
customer may edit the order (select a different product) an unbounded number of times.
The linear-time service view of this workflow consists of the sequences of service names
that occur in all infinite runs of the system, and is specified by the finite-state transition
system shown in Figure 1. A more informative view, that captures the services applied in
branching-time runs of the system, is shown in Figure 2. Intuitively, the branching-time view
captures precisely which services may be applied at each point in a run. To understand the
difference with linear-time views, consider the states labeled edit coupon in Figures 1 and 2
(the latter highlighted in red). In the linear-time view specification, there is only one such
state, in which two actions can be taken: no coupon and apply coupon. However, the two
actions are not always applicable whenever the state edit coupon is reached. If no product
has an applicable coupon, the only action possible is no coupon. If for all products and
shipping method there is some applicable coupon, then both no coupon and apply coupon are
applicable. Finally, if some products have applicable coupons and others do not, then both
of the above cases may occur depending on the choice of product. The different cases are
captured by distinct states in the branching-time specification, while the information is lost
in the linear-time specification. Of course, the sequences of service names occurring in all
runs of the system are the same in both specifications.

1 In various formalizations of business artifacts, tasks are called services. As usual in program verification,
we take runs to be infinite, because many business processes run forever and because infinite runs
capture information lost by finite prefixes.



A. Koutsos and V. Vianu 249

edit prod

edit ship

edit coupon

processing

received payment

shipping

init

choose product

choose ship

no coupon

receive payment

payment ok

edit coupon apply coupon

edit prod

payment refused

ship

Figure 1 A linear-time process-centric view.

The main results of the paper establish under what circumstances the linear-time or
branching-time service views are regular (with effective specifications). We consider the
tuple artifact model used in [17, 11], and several natural restrictions derived from the GSM
design methodology, some of which have been considered in the context of verification [11].
We also consider the impact of database dependencies on regularity of the views. We show
that linear-time service views of tuple artifacts are ω-regular, but branching-time views are
not regular. We then consider artifacts obeying a natural restriction previously used in the
context of verification, called feedback freedom [11]. We show that branching-time views of
feedback-free artifacts are still not regular, but become so under a slightly stronger restriction
called global feedback freedom. This restriction is naturally obeyed by specifications resulting
from the GSM hierarchical design methodology.

It turns out that there is a tight connection between the result on view regularity and
the verification of artifact systems. Properties to be verified are specified using extensions
of the classical temporal logics LTL, CTL and CTL*, in which propositions are interpreted
as existential FO formulas on the tuple artifact and the underlying database. This yields
the logics LTL-FO, CTL-FO and CTL*-FO [17, 11, 20]. It can be shown that regularity
of the linear or branching-time service views for a class of artifact systems, with effectively
constructible specifications, implies decidability of LTL-FO, resp. CTL*-FO properties for
that class. The converse is false: decidability of LTL-FO or CTL*-FO properties may hold
even though the corresponding service views may not be regular. Thus, regularity is a
stronger result than decidability of verification. Indeed, our results imply that CTL*-FO
properties are decidable for globally feedback-free artifact systems. On the other hand,
we show that CTL-FO properties are undecidable for feedback-free artifact systems (also
implying non-regularity of their branching-time views).

The proof techniques developed here have additional side-effects beneficial to verification.
In our previous approaches to automatic verification of business artifacts [17, 11], given an
artifact specification A and an LTL-FO property ϕ, the verifier either certifies satisfaction
of the property or produces a counter-example run on some database D(A, ϕ) depending
on both A and ϕ. In contrast, the techniques of the present paper allow to show that,

ICDT 2015



250 Process-Centric Views of Data-Driven Business Artifacts

root

edit prod

edit ship

edit coupon

processing

received payment

shipping

choose product

choose ship

no coupon

receive payment

payment ok

edit prod

payment refused

ship

init

edit prod

edit ship

edit coupon

processing

received payment

shipping

choose product

choose ship

no coupon

receive payment

payment ok

edit prod

edit coupon apply coupon

payment refused

ship

init

edit prod

edit ship

edit coupon

processing

edit coupon

processing

received payment

shipping

choose product

choose ship

no coupon

receive payment

payment ok

choose ship

no coupon

receive payment

edit prod edit prod

edit coupon apply coupon

payment refused

ship

init

Figure 2 A branching-time process-centric view.

for specifications and properties without constants, there exists a single database D(A),
depending only on A, which serves as a universal counter-example for all LTL-FO properties
violated by A. Pre-computing such a database may allow more efficient generation of
counter-examples for specific LTL-FO properties.

Decidability results on verification of branching-time properties of infinite-state artifact
systems are scarce and require significant restrictions. In [22, 13], decidability results are
shown for properties expressed in an FO extension of µ-calculus, under restrictions on the
artifact system orthogonal to ours. In [2], the artifact model is extended to a multi-agent
setting, and decidability results are shown for properties expressed in an FO extension of CTL
that can also refer to each agent’s knowledge using a Kripke-style semantics. Decidability of
similar FO extensions of CTL is shown in [27] for the case when the database consists of a
single unary relation.

2 Background

After some basic definitions, we present the tuple artifact model, the languages LTL-FO and
CTL(∗)-FO, and review previous results on verification of LTL-FO properties.

We assume an infinite data domain dom. A relational schema is a finite set of relation
symbols with associated arities. An database instance over a relational schema DB is a
mapping I associating to each R ∈ DB a finite relation over dom with the same arity as R
(denoted arity(R)). We assume familiarity with first-order logic (FO) over relational schemas
(e.g., see [1, 26]). FO formulas may use equality and constants from dom.

Artifact systems. In the tuple artifact model, an artifact consists of a finite set of variables
whose values evolve during the workflow execution. Transitions are specified declaratively,
using pre-and-post conditions that may query an underlying database.



A. Koutsos and V. Vianu 251

I Definition 2. An artifact schema is a a tuple A = 〈x̄,DB〉 where x̄ is a finite sequence
x1, . . . , xk of artifact variables and DB is a relational schema.

For each x̄, we also define a set of variables x̄′ = {x′ | x ∈ x̄} where each x′ is a distinct
new variable. In a transition, a primed variable represents the value of the variable in the
new artifact.

I Definition 3. An instance of an artifact schema A = 〈x̄,DB〉 is a tuple A = 〈ν,D〉 where
ν is a valuation of x̄ into dom and D is a finite instance of DB.

I Definition 4. A service over an artifact schema A is a pair σ = 〈π, ψ〉 where:
π(x̄), called pre-condition, is a quantifier-free2 FO formula over DB with variables x̄;
ψ(x̄, x̄′), called post-condition, is a quantifier-free FO formula over DB with variables
x̄, x̄′.

I Definition 5. An artifact system is a triple Γ = 〈A,Σ,Π〉, where A is an artifact schema,
Σ is a non-empty set of services over A, and Π is a pre-condition restricting the value of the
initial artifact variables (as above, a quantifier-free FO formula over DB, with variables x̄).

I Definition 6. Let σ = 〈π, ψ〉 be a service over an artifact schema A = 〈x̄,DB〉, and let D
be an instance over DB. Let ν, ν′ be valuations of x̄. We say that ν′ is a possible successor
of ν w.r.t. σ and D (denoted ν σ−→ ν′ when D is understood) iff:

D |= π(ν), and
D |= ψ(ν, ν′).

Note that ψ(x̄, x̄′) need not bind x̄′ to the database, so ν′ may contain values not in D.

I Definition 7. Let Γ = 〈A,Σ,Π〉 be an artifact system, where A = 〈x̄,DB〉. A run of Γ on
database instance D over DB is an infinite sequence ρ = {(ρi, σi)}i≥0, where for each i ≥ 0,
ρi is a valuation of x̄, σi ∈ Σ, ρi

σi−→ ρi+1, and D |= Π(ρ0).

The assumption that runs are infinite is not a restriction, since finite runs can be artificially
extended to infinite runs by adding a self-looping transition. The linear-time semantics of
an artifact system Γ is provided by the set of all runs. Specifically, we denote by RunsD(Γ)
the set of all runs of Γ on database instance D, and by Runs(Γ) the union of RunsD(Γ) for
all databases D. The more informative branching-time semantics is provided by its tree of
runs, additionally capturing all choices of transitions available at each point in the run. More
precisely, TRunsD(Γ) is a labeled tree whose nodes are all finite prefixes of runs of Γ on D,
such that the children of a prefix are all prefixes extending it by one transition. Each node
ρ is labeled by the value of the last artifact tuple in ρ, and each edge from ρ to ρ.(ν, σ) is
labeled by σ. The global tree of runs TRuns∗(Γ) is the tree obtained by placing all trees
TRunsD(Γ) (for every database D) under a common root, connected by edges with a special
label init. The tree of runs allows to define properties in branching-time temporal logic, such
as “any client has the option of canceling a purchase at any time". Note that such a property
is not captured by the linear runs in Runs(Γ).

Temporal properties of artifact systems. Temporal properties are specified using exten-
sions of LTL (linear-time temporal logic) and CTL(∗) (branching-time temporal logics). We
begin with LTL. Recall that LTL is propositional logic augmented with temporal operators

2 ∃FO conditions can be easily simulated by additional artifact variables.

ICDT 2015



252 Process-Centric Views of Data-Driven Business Artifacts

G (always), F (eventually), X (next) and U (until) (e.g., see [32]). Informally, Gp says that
p holds at all times in the run, Fp says that p will eventually hold, Xp says that p holds
at the next configuration, and pUq says that q will hold at some point in the future and p
holds up to that point. For example, G(p→ Fq) says that whenever p holds, q must hold
sometime in the future.

The extension of LTL used in [11], called3 LTL-FO, is obtained from LTL by replacing
propositions with quantifier-free FO statements about particular artifact records in the run.
The statements use the artifact variables and the database. In addition, they may use global
variables, shared by different statements and allowing to refer to values in different records.
The global variables are universally quantified over the entire property. We illustrate LTL-FO
with a simple example.

I Example 8. The following specifies a desirable business rule for an e-commerce workflow
with artifact variables including amount_paid, amount_refunded, status, amount_owed
(with obvious meaning).

(ϕ) ∀xG((amount_paid = x ∧ amount_paid = amount_owed)
→ F(status = ”shipped” ∨ amount_refunded = x))

Property ϕ states that if a correct payment is submitted then at some time in the future
either the product is shipped or the customer is refunded the correct amount. Note the use
of universally-quantified variable x to relate the value of paid and refunded amounts across
distinct steps in the run sequence.

The branching-time extensions CTL-FO and CTL*-FO are defined analogously from
CTL and CTL*. Recall that CTL* augments LTL with path quantifiers A (for all) and E
(exists) while CTL restricts the use of path quantifiers so that they are always followed by a
temporal operator (see [21]).

We note that variants of LTL-FO have been introduced in [21, 35]. The use of globally
quantified variables is also similar in spirit to the freeze quantifier defined in the context of
LTL extensions with data by Demri and Lazić [15, 16].

Verification of artifact systems. We informally review the results of [17, 11] on verification
of LTL-FO properties of artifact systems. Classical model-checking applies to finite-state
transition systems. Checking that an LTL property holds is done by searching for a coun-
terexample run of the system. The finiteness of the transition system is essential and allows
to decide property satisfaction in pspace using an automata-theoretic approach (see e.g.
[10, 29]). In contrast, artifacts are infinite-state systems because of the presence of unbounded
data. The main idea for dealing with the infinite search space is to explore the space of runs
of the artifact system using symbolic runs rather than actual runs. This yields the following
result.

I Theorem 9. [17] It is pspace-complete to check, given an artifact system A and an
LTL-FO property ϕ, whether A satisfies ϕ.

Unfortunately, Theorem 9 fails even in the presence of simple data dependencies or
arithmetic. Specifically, as shown in [17, 11], verification becomes undecidable as soon as

3 The variant of LTL-FO used here differs from some previous ones in that the FO formulas interpreting
propositions are quantifier-free. By slight abuse we use here the same name.



A. Koutsos and V. Vianu 253

the database is equipped with at least one key dependency, or if the specification of the
artifact system uses simple arithmetic constraints allowing to increment and decrement by
one the value of some atributes. Hence, a restriction is needed to achieve decidability for
these extensions. We discuss this next.

To gain some intuition, consider the undecidability of verification for artifact systems
with increments and decrements. The proof of undecidability is based on the ability of such
systems to simulate counter machines, for which the problem of state reachability is known
to be undecidable [30]. To simulate counter machines, an artifact system uses an attribute
for each counter. A service performs an increment (or decrement) operations by “feeding
back” the incremented (or decremented) value into the next occurrence of the corresponding
attribute. To simulate counters, this must be done an unbounded number of times. To
prevent such computations, a restriction is imposed in [11], called feedback freedom, designed
to limit the data flow between occurrences of the same artifact variable at different times
in runs that satisfy the desired property. The formal definition considers, for each run, a
graph capturing the data flow among variables, and imposes a restriction on the graph.
Intuitively, paths among different occurrences of the same variable are permitted, but only
as long as each value of the variable is independent on its previous values. This is ensured
by a condition that takes into account both the artifact system and the property to be
verified, called feedback freedom. It turns out that artifact systems designed in a hierarchical
fashion by successive refinement, in the style of the Guard-Stage-Milestone approach [12, 23],
naturally satisfy the feedback freedom condition [19]. Indeed, there is evidence that the
feedback freedom condition is permissive enough to capture a wide class of applications of
practical interest. This is confirmed by numerous examples of real-life business processes
modeled as artifact systems, encountered in IBM’s practice [11].

Feedback freedom turns out to ensure decidability of verification in the presence of
arithmetic constraints, and also under a large class of data dependencies including key and
foreign key constraints on the database.

I Theorem 10. [11] It is decidable, given an artifact system Γ using arithmetic (linear
inequalities over Q) and whose database satisfies a set of key and foreign key constraints,
and an LTL-FO property ϕ such that (Γ, ϕ) is feedback free, whether every run of A on a
valid database satisfies ϕ.

Unfortunately, the complexity is non-elementary with respect to the number of artifact
variables.

3 Linear-time service views

In this section, we define linear-time service views of artifact systems and establish their
regularity. Throughout the paper, all results establishing regularity are effective, in the sense
that specifications can be effectively constructed.

We begin by recalling some basics on languages on infinite words. Let ∆ be a finite
alphabet. An ω-word over ∆ is an infinite sequence of symbols from ∆ and an ω-language is
a set of ω-words. An ω-language is ω-regular if it is accepted by a Büchi automaton (e.g.,
see [36]). A Büchi automaton is a non-deterministic finite-state automaton accepting the
infinite words for which some run of the automaton goes through an accepting state infinitely
often. A Büchi automaton in which every state is accepting is also referred to as a finite-state
transition system (or safety automaton, see [24]). Thus, a finite-state transition system
defines the ω-words for which there is some non-blocking run of the system with transitions
labeled by the symbols of the word.

ICDT 2015



254 Process-Centric Views of Data-Driven Business Artifacts

Let Γ = 〈A,Σ,Π〉 be an artifact system, where A = 〈x̄,DB〉. For each run ρ =
{(ρi, σi)}i≥0 of Γ, the service view of ρ, denoted S(ρ), consists of the ω-word (σi)i≥0. The
linear-time service view of Γ is Slin(Γ) = {S(ρ) | ρ ∈ Runs(Γ)}. We say that Slin(Γ) is
effectively ω-regular for a class of artifact systems if a Büchi automaton defining Slin(Γ) can
be effectively constructed from each Γ in that class.

We will show that Slin(Γ) is effectively ω-regular for artifact systems. To do so, we
will use symbolic representations of the runs of Γ. Let C be the set of constants used in
Γ. To each x ∈ x̄ we associate an infinite set of new variables {xi}i≥0, and we denote
x̄i = {xi | x ∈ x̄}. An equality type for variables ȳ is an equivalence relation on ȳ ∪ C in
which no distinct constants in C are equivalent. An isomorphism type of ȳ is a pair (H, ε)
where ε is an equality type for ȳ and H is an instance of DB using elements in ȳ ∪ C that is
consistent with ε.

I Definition 11. A symbolic run % of Γ is a sequence {(x̄i, Hi, εi, σi)}i≥0 such that, for each
i ≥ 0:
(i) (Hi, εi) is an isomorphism type of x̄i ∪ x̄i+1,
(ii) the pre-condition Π of Γ holds in the restriction of (H0, ε0) to x̄0,
(iii) (Hi, εi) and (Hi+1, εi+1) agree on x̄i+1,
(iv) the pre-condition of σi holds in the restriction of (Hi, εi) to x̄i, and
(v) the post-condition of σi holds in (Hi, εi).

We denote by SRuns(Γ) the set of symbolic runs of Γ.
It is easy to see that each run of Γ has a corresponding symbolic run, representing the

consecutive isomorphism types of the artifact tuples in the run. We make this more precise.
Let ≈ be the transitive closure of ∪i≥0εi. Clearly, ≈ is an equivalence relation on ∪i≥0x̄i ∪C.
It is easily seen that εi is the restriction of ≈ to x̄i ∪ x̄i+1 ∪ C. Let [xi]εi and [xi]≈ denote
the equivalence class of xi in εi, resp. ≈.

I Definition 12. Let {(x̄i, Hi, εi, σi)}i≥0 be a symbolic run of Γ. An enactment of % is a
triple (D, ρ, θ) where D is a database over DB, ρ = {(ρi, σi)}i≥0 is a run of Γ over D, and θ
is a mapping from (∪i≥0x̄i) to dom such that, for each i ≥ 0:

θ(xi) = ρi(x) for every x ∈ x̄,
if y, z ∈ x̄i ∪ x̄i+1 and (y, z) ∈ εi then θ(y) = θ(z)
the function θ̂ defined by θ̂([y]εi) = ρ(y) for y ∈ x̄i ∪ x̄i+1 is an isomorphism from Hi/εi
to D|(ρi ∪ ρi+1).

I Lemma 13. For every database D over DB and run ρ of Γ over D there exists a symbolic
run % of Γ and a mapping h from (∪i≥0x̄i) to dom such that (D, ρ, h) is an enactment of %.

Proof. The run % can be easily constructed by induction from ρ. J

Consider the converse of Lemma 13: does every symbolic run have an enactment on
some database? This is much less obvious. It is easy to construct, for each symbolic run
% = {(x̄i, Hi, εi, σi)}i≥0, a triple (D%, ρ, h) satisfying the definition of enactment except for
the finiteness of D%. This can be done as follows. The (infinite) domain of D% simply
consists of all equivalence classes of ≈, h maps each xi to [xi]≈, the relations are interpreted
as (∪i≥0Hi)/≈, and ρ is the image of % under h. However, it is far less clear that a finite
database D% exists with the same properties. Intuitively, different classes of ≈ must be
merged in order to obtain a finite domain, and this must be done consistently with the Hi’s.
We are able to show the following key result.



A. Koutsos and V. Vianu 255

I Theorem 14. Every symbolic run % = {(x̄i, Hi, εi, σi)}i≥0 of Γ has an enactment (D%, ρ, θ)
where the size of D% is exponential in |x̄|.

Proof. The roadmap of the proof is the following. We first define a normal form for artifact
systems, called linear propagation form, requiring that the only equalities in pre-and-post
conditions of services be of the form x = x′ where x ∈ x̄ (excepting equalities with constants).
We show that for every artifact system Γ we can construct an artifact system Γ̄ in linear-
propagation form, and a mapping h from the symbolic runs of Γ to symbolic runs of Γ̄, such
that from every enactment of h(%) one can construct an enactment of %. Finally, we show
that every symbolic run of an artifact system in linear-propagation form has an enactment.
This is done as follows. Consider an artifact system Γ = 〈A,Σ,Π〉 with A = 〈x̄,DB〉 in linear
propagation form. Recall that for a symbolic run % = {(x̄i, Hi, εi, σi)}i≥0 of Γ, we denote by
≈ the transitive closure of (∪i≥0εi) and by [xi]≈ the class of xi wrt ≈. Note that, because
Γ is in linear propagation form, we can assume that [xi]≈ contains only variables xj . We
define span([xi]≈) = {j | xj ≈ xi}. Clearly, each span is an interval. Next, for x ∈ x̄ we
define lane(x) = {[xi]≈ | i ≥ 0} (totally ordered by [xi]≈ ≤ [xj ]≈ iff i ≤ j). The remainder
of the proof consists of defining certain finite characteristics of equivalence classes of ≈, so
that different classes in a given lane can be collapsed if they share the same characteristics.
This yields an enactment of the symbolic run over the finite database whose elements are
the collapsed classes. We omit the rather involved technical details. J

We can now show the regularity of the service view of Γ. From Lemma 13 and Theorem
14 it follows that Slin(Γ) = {S(%) | % ∈ SRuns(Γ)}. We can construct a finite-state transition
system F(Γ) accepting the latter as follows:

States: the isomorphism types (H, ε) of x̄ ∪ x̄′,
Initial states: the states whose restrictions to x̄ satisfy Π
Transitions: (H, ε) σ−→ (H̄, ε̄) if (H, ε) satisfies items (iv)− (v) of Definition 11 for service
σ and (H, ε)|x̄′ and (H̄, ε̄)|x̄ are identical modulo renaming x̄′ to x̄.

The ω-language accepted by F(Γ) consists of the sequences of transition labels in all
infinite runs of the system starting from some initial state. By construction, this is precisely
{S(%) | % ∈ SRuns(Γ)}. Thus, we have the following.

I Theorem 15. Slin(Γ) is effectively ω-regular for artifact systems Γ.

Verification vs. ω-regularity. We note that the effective ω-regularity of Slin(Γ) implies
decidability of LTL-FO properties of artifact systems, but is strictly stronger. Decidability
of verification follows from ω-regularity because for each Γ and LTL-FO property ξ = ∀ȳϕf ,
and each choice of isomorphism type for ȳ, one can construct an artifact system Γϕf and an
LTL formula ϕ̄ such that Γ |= ϕf (ȳ) iff Slin(Γϕf ) |= ϕ̄. Essentially, Γϕf is obtained, for a
fixed choice of ȳ, by augmenting the artifact variables and pre-and-post conditions of each
service of Γ in order to record the truth values of the FO-components of ϕf in each transition.
Since a finite-state transition system specifying Slin(Γϕf ) can be effectively constructed, this
reduces verification to classical finite-state LTL model-checking, and yields decidability. The
converse is falsified by results of [34] which imply that artifact systems equipped with a total
order do not have ω-regular service views, yet verification of LTL-FO properties is decidable.

Universal test databases. The above results, notably Theorem 14, have some potentially
significant benefits for verification. We can show the following rather surprising result.

ICDT 2015



256 Process-Centric Views of Data-Driven Business Artifacts

I Theorem 16. Let Γ be a constant-free artifact system with k artifact variables. One can
construct a database D∗ of size double exponential in |x̄| such that for every constant-free
LTL-FO formula ξ over Γ, Γ |= ξ iff RunsD∗(Γ) |= ξ.

Proof. Consider an LTL-FO formula ξ over Γ. As shown in [11] (Lemma 3.3), global variables
can be easily eliminated, so one can assume that ξ = ϕf . Let % = {(x̄i, Hi, εi, σi)}i≥0 be a
symbolic run of Γ. Satisfaction of ξ by % is defined similarly to actual runs, by evaluating
each FO component of ϕf on the consecutive Hi/εi. Consider an enactment (D, ρ, θ) of %,
where ρ = {(ρi, σi)}i≥0. Because Hi/εi and D|(ρi ∪ ρi+1) are isomorphic, it is clear that
% |= ξ iff ρ |= ξ. This in conjunction with Lemma 13 and Theorem 14 shows that Γ |= ξ iff
every symbolic run of Γ satisfies ξ. Because each symbolic run has an enactment on some
database of size exponential in k, Runsk(Γ) = ∪{RunsD(Γ) | |D| ≤ exp(k)} are enactments
of all symbolic runs of Γ. Thus, Γ |= ξ iff all runs in Runsk(Γ) satisfy ξ. Suppose Γ and
ξ are constant free. There are finitely many non-isomorphic databases of size bounded by
exp(k), and let D∗ be their disjoint union. Clearly, Γ |= ξ iff all runs over D∗ satisfy ξ. The
size of D∗ is double exponential in k. J

Thus, D∗ acts as a universal test database (akin to an Armstrong relation) for satisfaction
of constant-free LTL-FO properties of Γ. In particular, a fixed D∗ can be pre-computed and
used to generate a counter-example run for every constant-free LTL-FO property violated
by Γ. In contrast, the counter-example databases constructed by the algorithms in [17, 11]
depend on both the specification and property. Note that, if Γ and ξ use some set C of
constants, then constructing a single universal test database is no longer possible: one needs
a separate database for each isomorphism type over C. Constructing the most concise test
databases possible, and evaluating the practical benefits, are important issues yet to be
explored.

4 Branching-Time Service Views

In this section we consider branching time service views of artifact systems. Let Γ = 〈A,Σ,Π〉
be an artifact system, where A = 〈x̄,DB〉. Recall the branching-time semantics of Γ, given by
TRuns∗(Γ). The branching-time service view of Γ, denoted T S∗(Γ), is the tree obtained from
TRuns∗(Γ) by ignoring the content of the nodes and retaining only the service labels of the
edges. We use the following definition of regularity for infinite trees: T S∗(Γ) is regular if it is
isomorphic to the unfolding of a finite-state transition system with edge labels (equivalently,
T S∗(Γ) has finitely many non-isomorphic subtrees). Analogously to the linear case, we say
that T S∗(Γ) is effectively regular for a class of artifact systems if such a finite-state transition
system can be effectively constructed from each Γ in that class.

As we shall see, it turns out that branching-time service views of artifact systems are
generally not regular. One might hope that regularity holds for artifacts obeying the natural
feedback-free property that has proven so effective in overcoming undecidability of LTL-FO
properties for specifications with dependencies and arithmetic [11]. Unfortunately, this is
not the case. Indeed, we show that even very simple CTL-FO properties are not decidable
for feedback-free artifacts, thus implying that their branching time service views are not
effectively regular.

I Theorem 17. It is undecidable, given an artifact system Γ and a CTL-FO formula ξ such
that (Γ, ξ) is feedback-free, whether Γ |= ξ.

Proof. The proof is by a reduction from the Post Correspondence Problem (PCP) [33].
We build upon a result of [17] (Theorem 4.2) showing that checking LTL-FO properties is



A. Koutsos and V. Vianu 257

undecidable for databases satisfying a functional dependency (FD). This uses a reduction
from the PCP. Next, we note that satisfaction of FDs by the database can be expressed as a
CTL-FO property. Using this, we wish to mimick the reduction from the PCP that works
for databases with FDs. However, there is a glitch: LTL-FO model checking is decidable
for feedback-free specifications and properties even in the presence of FDs. Thus, a direct
reduction from the linear-time case is not possible. Instead, we show how feedback freedom
can be circumvented collectively by different branches of the tree of runs while being obeyed
by each individual branch, and use this to adapt the PCP reduction to the branching-time
framework. J

Similarly to the linear-time case, it can be shown that effective regularity of T S∗(Γ)
implies decidability of CTL(∗)-FO properties. We therefore have the following.

I Corollary 18. T S∗(Γ) is not effectively regular for feedback-free4 artifact systems Γ.

Note that Corollary 18 does not exclude the possibility that T S∗(Γ) might be regular.
However, it says that even if this holds, a transition system defining T S∗(Γ) cannot be
effectively constructed from each Γ.

Intuitively, feedback-freedom is ineffective in the branching-time setting because the
restriction can be circumvented collectively by different branches of the tree of runs while
being obeyed by each individual branch. Fortunately, specifications resulting from hierarchical
design methodologies such as the Guard-Stage-Milestone discussed earlier, satisfy a stronger
restriction that holds in the global run, called global feedback freedom. In a nutshell, global
feedback freedom extends feedback freedom by having the computation graph take into
account connections among variables in the entire tree of runs rather than just individual
branches. We omit the technical details. We will show the following.

I Theorem 19. T S∗(Γ) is effectively regular for globally feedback-free artifact systems Γ.

The proof requires some technical development, which we sketch in the remainder of the
section. The basic idea is to show that there are only finitely many subtrees TRunsD(Γ) of
TRuns∗(Γ) up to bisimulation. Moreover, each is realized by a database of bounded size,
depending only on |x̄|. Since bisimilar trees have the same branching-time service views, this
establishes the theorem.

We recall the standard notion of bisimulation. Two infinite trees T , T ′ with labeled edges
are bisimilar if there exists a relation ∼ from the nodes of T to those of T ′ such that: (i)
root(T ) ∼ root(T ′), (ii) if α ∼ α′ and α σ−→ β then there exists β′ such that α′ σ−→ β′ and
β ∼ β′, and (iii) if α ∼ α′ and α′ σ−→ β′ then there exists β such that α σ−→ β and β ∼ β′.

We now present the main steps in the proof. Let Γ = 〈〈x̄,DB〉,Σ,Π〉 be an artifact
system, with |x̄| = k. As in the global feedback freedom definition, we assume that service
pre-and-post conditions are in CQ¬ form (conjunctions of literals). For a service σ = (π, ψ)
we denote by fσ(x̄, ȳ) the formula π(x̄) ∧ ψ(x̄, ȳ).

I Definition 20. The set Tn of n-types of x̄ is defined inductively as follows.
T0 = { true }
For n ≥ 0, Tn+1 consists of all formulas of the form∧

σ∈Σ0

∧
τ∈Tσ

∃ȳ(fσ(x̄, ȳ) ∧ τ(ȳ))

where ∅ 6= Σ0 ⊆ Σ and ∅ 6= Tσ ⊆ Tn.

4 An artifact system Γ is feedback free if (Γ, true) is feedback free.

ICDT 2015



258 Process-Centric Views of Data-Driven Business Artifacts

Let D be a database over DB and ν be a valuation of x̄. It is easy to check that,
for every ν that labels some node in TRunsD(Γ), and each n ≥ 0, there exists a unique
strongest5 τn ∈ Tn such that D, ν |= τn. We denote the latter by τn(D, ν). It is clear that
τn+1(D, ν)→ τn(D, ν) for every n ≥ 0.

Note that all subtrees of TRunsD(Γ) rooted at node labeled ν are isomorphic. Let
TRunsνD(Γ) be any such subtree. We will show that the sequence of types {τn(D, ν) | n ≥ 0}
provides sufficient information to determine TRunsνD(Γ) up to bisimilarity (Lemma 22).
Before however, we need the following key lemma.

I Lemma 21. Let Γ be a globally feedback-free artifact system. There exists b > 0, depending
only on |x̄|, such that for every database D, tuple ν labeling a node in TRunsD(Γ) and n ≥ 0,
τn(D, ν) is equivalent to an FO sentence of quantifier rank ≤ b.

Using the lemma, we can prove the following.

I Lemma 22. Let ν1, ν2 be valuations of x̄ labeling nodes in TRunsD(Γ). If τn(D, ν1) =
τn(D, ν2) for every n ≥ 0 then TRunsν1

D (Γ) and TRunsν2
D (Γ) are bisimilar.

From Lemma 21 it follows that for every D and reachable ν, there exists N > 0 such that
τn(D, ν) ≡ τN (D, ν) for every n ≥ N . We denote τN (D, ν) by τ∗(D, ν) and call it the type
of ν in D. Thus, τ∗(D, ν) is equivalent to {τn(D, ν) | n ≥ 0}. Observe that, by Lemma 21,
there are finitely many tuple types. The set of all tuple types is denoted by T .

Finally, we define database types as follows.

I Definition 23. The type of a database D is τ(D) = {τ∗(D, ν) | D |= Π(ν)}.

We have the following.

I Lemma 24. Let D1 and D2 be databases over DB such that τ(D1) = τ(D2). Then
TRunsD1(Γ) and TRunsD2(Γ) are bisimilar.

Note that, since there are finitely many tuple types, there are also finitely many database
types. Since a database type can be written as the conjunction of finitely many tuple types,
Lemma 21 also applies to database types, and each can be written as an ∃∗FO sentence.
Let d be the maximum number of existential quantifiers in these sentences. Thus, there are
finitely many equivalence classes of trees of database runs under bisimulation, and each has
a representative TRunsD(Γ) for some database D whose domain is of size ≤ d. Since trees
of runs equivalent under bisimulation have the same branching-time service views, it follows
that T S∗(Γ) is ω-regular, and a finite-state transition system defining it can be effectively
constructed from Γ. This concludes the proof of Theorem 19.

I Remark. Theorem 19 continues to hold for artifact systems extended with arithmetic
(e.g., linear constraints over Q). To see this, augment DB with a finite set C of relation
symbols with fixed interpretations as linear constraints over Q, and let the data domain be Q.
The definition of global freedom applies, by treating the relation symbols in C as arbitrary
relations, and Lemma 21 carries through. Also, satisfiability of a type involving mixed data
and arithmetic relations can be effectively tested: the only interaction between the two is via
equality types.

5 With respect to implication.



A. Koutsos and V. Vianu 259

As noted earlier, effective regularity of the branching-time service views of a class of
systems generally implies decidability of its CTL*-FO properties. In order for this to hold,
we must however extend the global feedback freedom restriction to pairs (Γ, ϕ) where Γ is
an artifact system and ϕ a CTL*-FO property. Taking into account the property is done
similarly to feedback-freedom. We can then show the following.

I Theorem 25. It is decidable, given an artifact system Γ and a CTL*-FO formula ϕ such
that (Γ, ϕ) is globally feedback free, whether Γ |= ϕ.

Proof. From a globally feedback-free (Γ, ϕ) one can construct a globally feedback-free artifact
system Γ̄ and a CTL* formula ϕ̄ such that Γ |= ϕ iff T S∗(Γ̄) |= ϕ̄. Since T S∗(Γ̄) is specified
by a finite-state transition system effectively constructed from Γ and ϕ, the result follows. J

5 The impact of data dependencies

In this section we consider the impact of data dependencies on the regularity of service
views. We consider tuple and equality generating dependencies. We briefly recall (see
[1] for details) that an equality-generating dependency (EGD) is an FO sentence of the
form ∀x̄(ϕ(x̄) → y = z), where ϕ is a conjunction of relational atoms and y, z ∈ x̄. A
tuple-generating dependency (TGD) is a sentence of the form ∀x̄(ϕ(x̄)→ ∃z̄ψ(x̄, z̄)), where
ϕ and ψ are conjunctions of relational atoms. If z̄ is empty, the dependency is called full; if
every atom in ψ(x̄, z̄) contains an existentially quantified variable in z̄, it is called embedded
(note that every TGD can be written as a conjunction of full and embedded TGDs). A set of
TGDs is acyclic if the following graph is acyclic: the nodes are database relations and there
is an edge from P to Q if P occurs in the body of a TGD whose head contains Q. Inclusion
dependencies are instances of TGDs and functional dependencies (FDs) are EGDs.

Linear-time service views. We first consider the impact of EGDs. Let Γ = 〈A,Σ,Π〉 be
an artifact system, where A = 〈x̄,DB〉. For a set ∆ of dependencies, S∆

lin(Γ) = {S(ρ) |
ρ ∈ RunsD(Γ), D |= ∆}. We say that S∆

lin(Γ) is effectively regular for a class A of artifact
systems and D of dependencies, if a Büchi automaton defining S∆

lin(Γ) can be effectively
constructed from each Γ in A and set ∆ of dependencies in D.

We can show the following.

I Theorem 26. S∆
lin(Γ) is not effectively ω-regular for artifact systems Γ and sets ∆ of

EGDs. Moreover, this holds even if ∆ consists of a single FD.

Proof. It can be shown that it is undecidable, given an artifact system Γ, a set ∆ of EGDs,
and a service σ, whether there exists a run of Γ on a database satisfying ∆ in which service
σ is used. This holds even if ∆ consists of a single FD. The result follows. J

Note that, similarly to Corollary 18, Theorem 26 leaves open the possibility that S∆
lin(Γ)

might be ω-regular.
I Remark. One might wonder if S∆

lin(Γ) can be characterized by some natural extension
of ω-regular languages. It turns out that Theorem 26 can be extended to any family L
of ω-languages with the following properties: (i) L is closed under intersection with ω-
regular languages, and (ii) emptiness of languages in L is decidable. This assumes a finite
specification mechanism for languages in L, and that (i) is effective, i.e. the specification of
the intersection of a language in L with the ω-language defined by a Büchi automaton must
be computable. One example of such L is the family of ω-context-free languages, defined by
infinitary extensions of pushdown automata and context-free grammars (see [6, 36]).

ICDT 2015



260 Process-Centric Views of Data-Driven Business Artifacts

We now consider TGDs. Rather surprisingly, the easy case is that of embedded TGDs.

I Theorem 27. S∆
lin(Γ) is effectively ω-regular for artifact systems Γ and sets ∆ of embedded

TGDs.

Proof. It is enough to show that every symbolic run % of Γ has an enactment on a database
satisfying ∆. Indeed, this implies that S∆

lin(Γ) = Slin(Γ), thus establishing effective ω-
regularity. Let % be a symbolic run of Γ. By Theorem 14, % has an enactment (D, ρ, θ). Let
d be some domain value not occurring in D or the constants of Γ. Observe that an extension
D̄ of D satisfying ∆ can be obtained by chasing D with the TGDs in ∆ so that d is used
as a witness to every existentially quantified variable in the head of a TGD. Since D̄ is an
extension of D, (D̄, ρ, θ) is also an enactment of %. J

For full TGDs we have the following.

I Theorem 28. There exists an artifact system Γ and set ∆ of full TGDs such that S∆
lin(Γ)

is not ω-regular.

Proof. Let the database schema of Γ consist of a binary relation R and ∆ be the full TGD
∀x∀y∀z (R(x, y) ∧R(y, z)→ R(x, z)), guaranteeing that R is transitive. Γ has one attribute
variable x and two services init and next. The global precondition is ¬R(0, 0) ∧ x = 0 where
0 is a constant. The pre-condition of init is x 6= 0 and its post-condition is x′ = 0. The
pre-condition of next is true and its post-condition is R(x, x′)∧¬R(x′, x′). Runs of Γ consist
of stepping through R using next, starting from 0, using only elements which do not belong
to a cycle, until init reinitializes x to 0 and the process is restarted. Since R is finite, S∆

lin(Γ)
consists of all ω-words of the form (next)n1 · init · (next)n2 · init · · · such that for each word
there exists N > 0 for which ni ≤ N for all i ≥ 1. It is easy to see that this language, and
therefore S∆

lin(Γ), is not ω-regular. J

It turns out that effective ω-regularity is recovered for acyclic full TGDs.

I Theorem 29. S∆
lin(Γ) is effectively ω-regular for artifact systems Γ and acyclic sets of full

TGDs ∆.

Proof. Recall the finite-state transition system F(Γ) used earlier to define Slin(Γ). Its
states consist of the isomorphism types of Γ, and edges are labeled by services. The same
transition system can be viewed as defining the language SRuns(Γ), by taking into account
the isomorphism type of each state in addition to the edge labels.

Consider ∆. A partial unfolding of a TGD is obtained by replacing one relational atom
R(z̄) in its body by the body of any TGD in ∆ with R in its head (if such exists), with
appropriate renaming of variables. Let ∆∗ by the closure of ∆ under partial unfoldings.
Obviously, ∆∗ and ∆ are equivalent. Because ∆ is acyclic, ∆∗ is finite.

The idea of the proof is to define a Büchi automaton B that accepts the runs of F(Γ)
that are inconsistent with some TGD in ∆∗. Using ∆∗ instead of ∆ facilitates this task
by allowing to ignore compositions of TGDs. Let ξ = ∀ȳ(∃z̄ϕ(ȳ, z̄) → R(ȳ)) in ∆∗. An
inconsistency with ξ occurs in a symbolic run % = {(x̄i, Hi, εi, σi)}i≥0 if for some j ≥ 0 and
ȳ ⊆ x̄j ∪ x̄j+1, ¬R(ȳ) is in Hj and there exist z̄ ⊆ ∪i≥0x̄i such that ϕ(ȳ, z̄) is satisfied by
∪i≥0Hi. It can be seen, using the construction in the proof of Theorem 14, that a symbolic
run is consistent with ∆∗ iff it has an enactment on a database satisfying ∆.

The Büchi automaton non-deterministically guesses an inconsistency. The first component
of the inconsistency, ¬R(ȳ), can be guessed by B whenever ¬R(ȳ) is in Hj for the current j.
To enable checking the second component of an inconsistency, the states of B also contain



A. Koutsos and V. Vianu 261

variables z̄. The values of the variables z̄ are non-deterministically guessed throughout the
run, and the connections between them, as specified by the isomorphism types, are recorded.
A run is accepted whenever ¬R(ȳ) and ϕ(ȳ, z̄) hold for some TGD and guessed ȳ and z̄. The
set of symbolic runs consistent with ∆∗ is then SRuns(Γ) ∩ Bc, where Bc is the complement
of B. Finally, S∆∗

lin (Γ) = h(SRuns(Γ) ∩ Bc), where h is the homomorphism removing the
isomorphism types and retaining just the service names. Since ω-regular languages are closed
under complement, intersection, and homomorphism (with effective constructions), S∆∗

lin (Γ)
is effectively ω-regular. J

We finally consider feedback-free artifact systems. Recall that these are particularly
well-behaved with respect to verification. In particular, while model-checking is undecidable
for artifact systems in the presence of FDs, it becomes decidable for feedback-free systems
[11]. One might hope that feedback-free systems are similarly well-behaved with respect to
linear service views. Indeed, in contrast to Theorems 26 and 28, we have the following.

I Theorem 30. S∆
lin(Γ) is effectively ω-regular for feedback-free artifact systems Γ and sets

∆ of EGDs and full TGDs.

Proof. The approach is similar to that of [11] for showing decidability of model-checking.
Consider a symbolic run % = {(x̄i, Hi, εi, σi)}i≥0 of Γ. For each i ≥ 0, let νi(x̄i) be the
formula ∃x̄0 . . . ∃x̄i−1(Π(x̄0) ∧

∧
0≤j<i σj(x̄j , x̄j+1)). Intuitively, νi(x̄i) completely specifies

the constraints placed on x̄i by the first i transitions. Let Φ = {∃x̄iνi(x̄i) | i ≥ 0}. It can
be shown that there exists an enactment of % on a database D satisfying ∆ iff D |= Φ ∪∆
(this uses the finiteness of D and a pigeonhole argument). As shown in [11], because Γ is
feedback-free, each formula in Φ can be rewritten as a formula of quantifier rank bounded
by |x̄|2. Since there are finitely many non-equivalent formulas of bounded quantifier rank
[26], Φ is equivalent to a single ∃FO formula ϕ. Moreover, because all formulas in ∆ are
universally quantified, if % has an enactment on a database satisfying ∆, it also has an
enactment on such a database whose domain is bounded by the number of variables (say v) in
ϕ. Thus, S∆

lin(Γ) = ∪{Slin(RunsD(Γ)) | D |= ∆, |dom(D)| ≤ v}. Since each Slin(RunsD(Γ))
is ω-regular, S∆

lin(Γ) is effectively ω-regular. J

Branching-time service views. We now consider briefly the impact of data dependencies on
branching-time service views. Recall that these views are not regular, even for feedback-free
systems. However, by Theorem 19, the views are regular for globally feedback-free systems.

Let Γ = 〈A,Σ,Π〉 be an artifact system, where A = 〈x̄,DB〉. For a set ∆ of dependencies
over DB, TRuns∗∆(Γ) is the tree obtained by placing all TRunsD(Γ) under a common root,
where D |= ∆. The branching-time service view, denoted T S∗∆(Γ), is obtained as before from
TRuns∗∆(Γ) by ignoring the content of the nodes and retaining only the service labels of the
edges.

In the presence of data-dependencies, we have the following.

I Theorem 31. T S∗∆(Γ) is effectively regular for globally feedback-free artifact systems Γ
and sets ∆ of EGDs and full TGDs.

Proof. Recall the proof of Theorem 19 and the formulas ∃∗FO defining database types,
whose number of existential quantifiers is bounded by some b depending only on Γ. Note
that the EGDs and full TGDs in ∆ can be expressed by a sentence in ∀∗FO. Suppose
there is a database D of type τ satisfying ∆. Then there exists D0 ⊆ D, whose domain
consists of b witnesses to the existentially quantified variables of τ , that also has type τ and
satisfies ∆. Thus, every database type that includes an instance satisfying ∆, also has a

ICDT 2015



262 Process-Centric Views of Data-Driven Business Artifacts

representative satisfying ∆ whose domain is bounded by b. It follows that T S∗∆(Γ) is regular,
and a specification can be effectively constructed from Γ and ∆. J

I Remark. Theorem 31 alternatively holds for sets ∆ of EGDs and arbitrary TGDs (full and
embedded), as long as the set of TGDs is acyclic.

6 Conclusions

We considered the problem of extracting process-centric views from highly declarative, data-
driven workflows. Classical process-centric workflow specification frameworks provide a
variety of means for describing the valid sequences (or trees) of events in the workflow, with
finite-state transition diagrams at their core. We considered views consisting of the sequences
of services applied during linear or branching-time runs of an artifact system. The results
establish when such views are regular and can be specified effectively by finite-state transition
systems. Thus, we showed that linear-time service views are regular, while branching-time
views are regular only under certain restrictions (satisfied naturally by systems produced by
hierarchical design methodologies in the spirit of GSM). We also considered the impact of
data dependencies (tuple and equality generating dependencies) on regularity of views. We
showed that linear-time views are no longer regular in presence of FDs or cyclical full TGDs,
but remain regular with acyclic or embedded TGDs. Regularity of branching-time service
views is preserved in the presence of EGDs and full TGDs.

Our results also have some interesting connections to verification. For instance, the
techniques developed to show regularity of linear-time views yield potentially more efficient
ways to generate counterexample databases witnessing violation of LTL-FO properties. As a
side-effect of results on branching-time service views, we showed that CTL-FO properties are
undecidable for artifact systems, but model-checking CTL*-FO becomes decidable under the
same restrictions guaranteeing regularity of branching-time views.

Several interesting questions remain to be investigated. If a class of declarative workflows
does not have regular service views, two courses of action are plausible. First, one might seek
an extension of regular languages powerful enough to describe the views while remaining
palatable to users. Alternatively, one might opt for a regular approximation of the view,
resulting from relaxations that users are likely to find reasonable. In all cases, the views
could be made more expressive and informative by augmenting the purely process-centric
specifications with light-weight annotations on transitions with conditions on the data, in
the spirit of BPEL and YAWL [38]. Besides the technical problems per se, this brings into
play interesting HCI and usability issues.

References
1 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, 1995.
2 F. Belardinelli, A. Lomuscio, and F. Patrizi. An abstraction technique for the verification

of artifact-centric systems. In Proc. Intl. Conf. on Knowledge Representation, 2012.
3 K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, and F. Y. Wu. Artifact-centered

operational modeling: Lessons from customer engagements. IBM Sys. Journal, 46(4), 2007.
4 K. Bhattacharya et al. A model-driven approach to industrializing discovery processes in

pharmaceutical research. IBM Systems Journal, 44(1), 2005.
5 BizAgi and Cordys and IBM and Oracle and SAP AG and Singularity (OMG Submit-

ters) and Agile Enterprise Design and Stiftelsen SINTEF and TIBCO and Trisotech (Co-
Authors). Case Management Model and Notation (CMMN), FTF Beta 1, Jan. 2013. OMG
Document Number dtc/2013-01-01, Object Management Group.



A. Koutsos and V. Vianu 263

6 L. Boasson and M. Nivat. Adherences of languages. J. Comput. System Sci., 20(3), 1980.
7 A. Bozzon, M. Brambilla, S. Ceri, and A. Mauri. Reactive crowdsourcing. In 22nd Interna-

tional World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013,
pages 153–164, 2013.

8 A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio. Pattern-based specification
of crowdsourcing applications. In Web Engineering, 14th International Conference, ICWE
2014, Toulouse, France, July 1-4, 2014. Proceedings, pages 218–235, 2014.

9 T. Chao et al. Artifact-based transformation of IBM Global Financing: A case study. In
BPM, 2009.

10 E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.
11 E. Damaggio, A. Deutsch, and V. Vianu. Artifact systems with data dependencies and

arithmetic. ACM Transactions on Database Systems, 37(3), 2012. Preliminary version in
ICDT 2011.

12 E. Damaggio, R. Hull, and R. Vaculín. On the equivalence of incremental and fixpoint
semantics for business artifacts with guard-stage-milestone lifecycles. Information Systems,
38:561–584, 2013.

13 G. De Giacomo, R. De Masellis, and R. Rosati. Verification of conjunctive artifact-centric
services. Int. J. Cooperative Inf. Syst., 21(2):111–140, 2012.

14 H. de Man. Case management: Cordys approach. BP Trends (www.bptrends.com), 2009.
15 S. Demri and R. Lazić. LTL with the Freeze Quantifier and Register Automata. In LICS,

2006.
16 S. Demri, R. Lazić, and A. Sangnier. Model checking freeze LTL over one-counter automata.

In FoSSaCS, 2008.
17 A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of data-centric

business processes. In ICDT, 2009.
18 A. Deutsch, R. Hull, and V. Vianu. Automatic verification of data-driven systems. Sigmod

Record, 2014.
19 A. Deutsch, Y. Li, and V. Vianu. Hierarchical artifact systems. In preparation.
20 A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven web appli-

cations. JCSS, 73(3):442–474, 2007.
21 E. Allen Emerson. Temporal and modal logic. In J. Van Leeuwen, editor, Handbook of

Theoretical Computer Science, Volume B: Formal Models and Sematics, pages 995–1072.
North-Holland Pub. Co./MIT Press, 1990.

22 B. Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, and M. Montali. Verification of
relational data-centric dynamic systems with external services. In PODS, 2013.

23 R. Hull, E. Damaggio, R. De Masellis, F. Fournier, M. Gupta, F. Heath III, S. Hobson,
M. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculín. Business artifacts
with guard-stage-milestone lifecycles: Managing artifact interactions with conditions and
events. In ACM DEBS, 2011.

24 Dimitri Isaak and Christof Löding. Efficient inclusion testing for simple classes of unam-
biguous -automata. Inf. Process. Lett., 112(14-15), 2012.

25 S. Kumaran, P. Nandi, T. Heath, K. Bhaskaran, and R. Das. ADoc-oriented programming.
In Symp. on Applications and the Internet (SAINT), 2003.

26 Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
27 A. Lomuscio and J. Michaliszyn. Model checking unbounded artifact-centric systems. In

Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth In-
ternational Conference, KR 2014, Vienna, Austria, July 20-24, 2014, 2014.

28 M. Marin, R. Hull, and R. Vaculín. Data centric BPM and the emerging case management
standard: A short survey. In BPM Workshops, 2012.

ICDT 2015



264 Process-Centric Views of Data-Driven Business Artifacts

29 S. Merz. Model checking: a tutorial overview. In Modeling and verification of parallel
processes. Springer-Verlag New York, 2001.

30 Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, 1967.
31 A. Nigam and N. S. Caswell. Business artifacts: An approach to operational specification.

IBM Systems Journal, 42(3), 2003.
32 Amir Pnueli. The temporal logic of programs. In FOCS, 1977.
33 E. L. Post. Recursive unsolvability of a problem of Thue. J. of Symbolic Logic, 12:1–11,

1947.
34 L. Segoufin and S. Torunczyk. Automata based verification over linearly ordered data

domains. In STACS, 2011.
35 M. Spielmann. Verification of relational transducers for electronic commerce. JCSS.,

66(1):40–65, 2003.
36 Wolfgang Thomas. Automata on infinite objects. In Jan van Leeuwen, editor, Handbook

of Theoretical Computer Science (Vol. B). Elsevier, 1990.
37 W. van der Aalst and M. Song. Mining social networks: Uncovering interaction patterns

in business processes. In Business Process Management, volume 3080 of Lecture Notes in
Computer Science, pages 244–260. Springer Berlin Heidelberg, 2004.

38 W. van der Aalst and A. ter Hofstede. YAWL: Yet another workflow language. Information
Systems, 30(4), 2005.

39 W.-D. Zhu et al. Advanced Case Management with IBM Case Manager. Available at
http://www.redbooks.ibm.com/abstracts/sg247929.html?Open.



On The I/O Complexity of Dynamic Distinct
Counting∗

Xiaocheng Hu1, Yufei Tao1, Yi Yang2, Shengyu Zhang1, and
Shuigeng Zhou2

1 Chinese University of Hong Kong
Hong Kong, China
{xchu, taoyf, syzhang}@cse.cuhk.edu.hk

2 Fudan University
Shanghai, China
{yyang1, sgzhou}@fudan.edu.cn

Abstract
In dynamic distinct counting, we want to maintain a multi-set S of integers under insertions to
answer efficiently the query: how many distinct elements are there in S? In external memory,
the problem admits two standard solutions. The first one maintains S in a hash structure, so
that the distinct count can be incrementally updated after each insertion using O(1) expected
I/Os. A query is answered for free. The second one stores S in a linked list, and thus supports
an insertion in O(1/B) amortized I/Os. A query can be answered in O(NB logM/B

N
B ) I/Os by

sorting, where N = |S|, B is the block size, and M is the memory size.
In this paper, we show that the above two naive solutions are already optimal within a polylog

factor. Specifically, for any Las Vegas structure using NO(1) blocks, if its expected amortized
insertion cost is o( 1

logB ), then it must incur Ω( N
B logB ) expected I/Os answering a query in the

worst case, under the (realistic) condition that N is a polynomial of B. This means that the
problem is repugnant to update buffering: the query cost jumps from 0 dramatically to almost
linearity as soon as the insertion cost drops slightly below Ω(1).

1998 ACM Subject Classification F.2.2. [Analysis of algorithms and problem complexity]: Non-
numerical algorithms and problems

Keywords and phrases Distinct counting, lower bound, external memory

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.265

1 Introduction

This paper studies the dynamic distinct counting problem defined as follows. Let [2w] represent
the set of integers {0, 1, ..., 2w − 1}, where w is the number of bits in a machine word. We
want to support two operations on an initially empty multi-set S:

Insert(e): add an integer e ∈ [2w] to S.
Query: report the number of distinct elements in S.1

∗ Xiaocheng Hu and Yufei Tao were supported in part by Projects GRF 4168/13 and GRF 142072/14
from HKRGC. Yi Yang and Shuigeng Zhou were supported in part by the Research Innovation Program
of Shanghai Municipal Education Commission under grant No. 13ZZ003. Shengyu Zhang was supported
in part by Project GRF 4194/13 from HKRGC.

1 This problem should not be confused with ε-approximate distinct counting [10], where a query is allowed
to return only an approximate answer.

© Xiaocheng Hu, Yufei Tao, Yi Yang, Shengyu Zhang, and Shuigeng Zhou;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 265–276

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.265
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


266 On The I/O Complexity of Dynamic Distinct Counting

This is a classic problem in computer science. Indeed, distinct queries are useful in such a
large variety of contexts that database systems have made them a first-class citizen with
direct SQL support: select distinct count(...).

We consider the problem in the standard external memory (EM) model of computation
(a.k.a. the I/O model). In this model, a machine has M words of memory, and a disk of an
unbounded size. The disk has been formatted into disjoint blocks of size B words. It holds
that M ≥ 2B, i.e., the memory can accommodate at least two blocks. An I/O either reads
a block from the disk into memory, or conversely writes B words from memory to a disk
block. The cost of an algorithm is measured as the number of I/Os performed. The space of
a structure is measured as the number of blocks occupied. CPU computation is free, but
can take place only on memory data. We use N to denote the problem size (e.g., for the
dynamic distinct counting problem, N equals the number of insertions). A structure is said
to consume polynomial space if its space consumption is bounded by NO(1) in the worst case.

Dynamic distinct counting admits two standard solutions:
The first one is to maintain S in a hash structure (e.g., [6]) of linear space O(N/B).
Given an Insert(e), by probing the bucket of e, one can incrementally maintain the
distinct count in O(1) expected I/Os. A query can be answered by simply returning this
count for free.
The second solution organizes S in a linked list with the last block pinned in memory.
The block is flushed to the disk after it has accumulated Ω(B) elements. This achieves
the lowest amortized cost of O(1/B) I/Os per insertion. A query can be answered by
sorting S from scratch using O(NB logM/B

N
B ) I/Os [1].

Rather naive as these solutions may appear, they still represent the best update-query
tradeoffs to this date.

1.1 Our Results
In this paper, we show that both of the aforementioned naive solutions – exactly how a DBMS
supports dynamic distinct counting – are already optimal up to a small factor. Specifically,
no Las Vegas structure of polynomial space can do much better than Ω(N/B) in query cost
if it must support fast updates:

I Theorem 1. Let tu be the expected amortized insertion cost of a polynomial-space Las
Vegas structure for dynamic distinct counting, and tq be its expected query cost, where both
expectations are taken over the random choices made by the structure. In the scenario where
N = Bc,M = Bc

′ (for any integer constants c′ ≥ 1 and c ≥ c′ + 1), and 3 logN ≤ w =
O(logN), if tu = o( 1

logB ), then tq = Ω( N
B logB ).

The theorem holds even for structures that defy the indivisibility assumption2. Further-
more, by fitting in some typical values for N,M , and B, one would quickly realize that N
and M are almost always polynomials of B in practice.

Theorem 2 indicates that dynamic element counting is “repugnant” to update buffering.
When there is no buffering (e.g., hashing), one can achieve tu = O(1) and tq = 0 (free
queries). On the other hand, if tu needs to be improved by just an ω(logB) factor, tq surges
dramatically to almost Ω(N/B), that is, any query algorithm must spend nearly the same
cost as reading the entire dataset S.

2 This assumption says that every data element must be stored as an atom occupying a word. Thus, one
cannot, for example, compress the bits of an element to save space.



X. Hu, Y. Tao, Y. Yang, S. Zhang, and S. Zhou 267

Technical Overview. We will consider instead the dynamic element distinctness problem,
where we want to support two operations on an initial empty multi-set S:

Insert(e): add an integer e ∈ [2w] to S.
Query: report whether all the elements in S are distinct.

A structure solving dynamic distinct counting also solves dynamic element distinctness
with exactly the same space, query, and update cost: first obtain the number x of distinct
elements in S, and declares that all elements in S are distinct if and only if x equals the
number of insertions in history. Therefore, a lower bound on the latter problem also carries
over to the former. Indeed, the main result of this paper is:

I Theorem 2. Let tu be the expected amortized insertion cost of a polynomial-space Las
Vegas structure for the dynamic element distinctness problem, and tq be its expected query
cost, where both expectations are taken over the random choices made by the structure. In
the scenario where N = Bc,M = Bc

′ (for any integer constants c′ ≥ 1 and c ≥ c′ + 1), and
3 logN ≤ w = O(logN), if tu = o( 1

logB ), then tq = Ω( N
B logB ).

We establish Theorem 2 by working under the cell-probe model. An immediate obstacle
is that, every insertion obviously must probe at least one cell (recall that the cell-probe
model is stateless, i.e., no information is passed between two operations), which is at odds
with our goal of having an o(1) bound on tu. A main idea behind our techniques is to prove
a tradeoff between the query cost and the cost of a group of N/B = Ω(M) insertions. Then,
by requiring each group to probe o(N/B) cells, we get essentially an o(1) amortized bound
on tu, thus overcoming the obstacle. The tradeoff (between the query and group update
costs) is obtained by a novel reduction from set disjointness.

1.2 Previous Work: Lower Bounds in EM with o(1) Update Cost
In the EM model, an important line of research is to understand the limitation of buffering,
or more specifically: what is the best query time achievable if the amortized update cost
needs to be o(1)? Our work belongs to this category of work. In this subsection, we review
the existing results under the category to the best of our knowledge.

The offline version of the dynamic element distinctness problem, where the goal is to
determine if a static set S has duplicate elements, is known to require at least cNB logM/B

N
B

I/Os, for some constant c, in EM under the indivisibility assumption [2, 3]. This implies
the following dynamic lower bound: if tu ≤ c

2B logM/B
N
B , then tq = Ω(NB logM/B

N
B ). In

turn, this tradeoff implies that no structure (obeying the indivisibility assumption) with o(1)
update cost can answer a query faster than sorting when logM/B(N/B) = Ω(B), that is, N
is exponential in B. In the more realistic settings where N and M are polynomials of B,
however, the tradeoff loses its significance because it requires the impossible that tu = o(1/B).
The above discussion also applies to dynamic distinct counting.

There is considerable work [4, 9, 12, 13, 15] in understanding the I/O complexity of
the dynamic membership problem, where the goal is to maintain a set S of elements under
insertions, such that queries of the following form “does element e belong to S?” can be
answered efficiently. The lower bounds by Brodal and Fagerberg [4] and Wei et al. [13] were
proved under the indivisibility assumption, while the others hold without the assumption.
More specifically, the techniques of Yi and Zhang [15] are geared to establish a tradeoff of
the following form (abusing notations slightly, let tu, tq be the expected amortized insertion
cost and expected query cost respectively also for dynamic membership): if tq ≤ 1 + δ where
δ is a sufficiently small constant, then tu = Ω(1). Verbin and Zhang [12] showed a different

ICDT 2015



268 On The I/O Complexity of Dynamic Distinct Counting

tradeoff: if tu ≤ 1 − ε where 0 < ε < 1 is any constant, then tq = Ω(logB N). Iacono and
Patrascu [9] presented an alternative tradeoff between tu and the worst-case query cost tworst

q :
if tu ≤ 1− ε, then tworst

q = Ω( logN
log(B·tu) ).

The results in both [9] and [15] were derived from the chronogram technique [7, 11]. The
hard input consists of an insertion sequence followed by a single query. The sequence is then
divided into subsequences, called epochs, whose lengths increase geometrically when they are
ordered reverse chronologically. The crux of a lower-bound argument is to show that when
tu is small, for every epoch, the query must read at least a block “exclusively belonging to”
that epoch with constant probability. Thus, the expected query cost is at least the number
of epochs. Unfortunately, the chronogram technique does not appear to be the right tool for
dynamic element distinctness. This is because the number of epochs is logarithmic to the
number N of insertions, thus making it difficult to prove a super-logarithmic lower bound
on the query cost. Our goal, as shown in Theorem 2, is to establish an almost linear lower
bound.

Finally, Yi [14] studied dynamic 1d range reporting, where the goal is to maintain a set S
of elements from an ordered domain under insertions so that the following queries can be
answered efficiently: given a range [e1, e2] where e1, e2 are elements from the domain, report
S ∩[e1, e2]. He presented lower bound tradeoffs between the amortized insertion cost and the
query cost of deterministic structures, based on a dynamic version of the indexability model
[8], and thus, still inheriting the indivisibility assumption.

2 An I/O Lower Bound of Dynamic Element Distinctness

2.1 Cell-Probe Model
The core of Theorem 2 is a lower bound in a cell-probe model of computation defined as
follows. The machine is equipped with a CPU and an array of memory cells of size wB bits.
The CPU has a register of an unbounded size. A cell probe either reads or writes a cell. The
cost of an algorithm is measured as the number of cells probed (CPU calculation is free).
The space of a structure is measured as the number of cells occupied.

For a deterministic structure, an operation can be modeled as follows. At the beginning,
the register contains nothing but the operation’s input parameter. At each step, the operation
probes a cell c, such that the address of c and whether the probe is a read or a write are
both functions of the register. If the probe is a read, the register is updated as a function of
the register’s current form and the contents of c. If it is a write, then the value written to c
is a function of the register, after which the register is updated as a function of its current
form. We model a randomized structure by assuming that it has free access to a random bit
sequence, and that it behaves as a deterministic structure after the sequence has been fixed.

2.2 Hard Input
Set N = Bc and M = Bc

′ where c and c′ can be any integer constants such that c′ ≥ 1 and
c ≥ c′ + 1. Fix w to be any integer such that 3 logN ≤ w = O(logN). We use the term
(N/B)-subset to refer to a set of N/B (distinct) integers from [2w]. We consider a variant of
the element distinctness problem where a structure maintains an initially empty multi-set S
under two operations:

G-Insert(G): add an (N/B)-subset G to S.
Query: decide whether the elements of S are distinct.

We refer to the above as the element distinctness with group insertions (EDGI) problem.



X. Hu, Y. Tao, Y. Yang, S. Zhang, and S. Zhou 269

Our hard input consists of a sequence Σ of B batches, where each batch has two operations:
a G-Insert(G) followed by a single Query, where G is taken uniformly at random from all
the

( 2w

N/B

)
possible (N/B)-subsets. At the end of Σ, S has exactly N elements, but they are

not necessarily distinct. We denote by ΣΣΣ the set of all possible sequences as generated above.
Note that Σ follows the uniform distribution over ΣΣΣ. We say that a structure uses polynomial
space if it occupies at most NO(1) cells when it processes any Σ of ΣΣΣ. Our discussion will
focus only on such structures.

2.3 Set Disjointness
This is a communication complexity problem – denoted as Disj henceforth – defined as follows.
Alice is given a subset X of [2w], and Bob is given a subset Y of [2w]. Their goal is to
determine whether X ∩Y = ∅ by sending each other messages, each being a sequence of
bits, according to a pre-agreed protocol Π. For our purpose, it suffices to consider that Π
is deterministic defined as follows. The person sending the first message is always fixed
(regardless of X and Y ). Then, Alice and Bob take turns to send messages, such that
every message is a function of the previous messages and the sender’s input. We denote
by ΠA(X,Y ) the bit sequence concatenating chronologically all the messages sent by Alice
on input (X,Y ), and by |ΠA(X,Y )| the number of bits in ΠA(X,Y ). Let ΠB(X,Y ) and
|ΠB(X,Y )| be defined similarly for Bob.

We denote by III the set of all possible inputs (X,Y ) to Disj. Let µ be a probability density
function (pdf) over III, namely, µ(X,Y ) gives the probability that Alice’s and Bob’s subsets
are X and Y , respectively. Define:

αµ(Π) =
∑

(X,Y )∈III

|ΠA(X,Y )| · µ(X,Y )

βµ(Π) =
∑

(X,Y )∈III

|ΠB(X,Y )| · µ(X,Y ).

We call αµ(Π) the µ-average Alice cost of Π, and βµ(Π) the µ-average Bob cost of Π.
We will be particularly interested in the scenario where X and Y have specific sizes n

and m, respectively, where n and m are integers in [1, 2w]. Let IIIn,m represent the set of all
possible inputs (X,Y ) to Disj such that |X| = n and |Y | = m. When the input to Disj is
drawn only from IIIn,m, we will refer to Disj as (n,m)-Disj.

We use unifn,m to denote the uniform distribution µ over IIIn,m, namely, µ(X,Y ) =
1/|IIIn,m| if (X,Y ) ∈ IIIn,m, while µ(X,Y ) = 0 for any (X,Y ) ∈ III − IIIn,m. The appendix
contains a proof for the following tradeoff between αunifn,m(Π) and βunifn,m(Π):

I Theorem 3. When 3 · max{logn, logm} ≤ w = o(min{n,m}), for any deterministic
protocol Π solving (n,m)-Disj, it must hold that either αunifn,m(Π) = Ω(n) or βunifn,m(Π) =
Ω(m).

2.4 Cell-Probe Lower Bound for EDGI
Let us fix a deterministic polynomial-space cell-probe structure Υ on the EDGI problem.
For each sequence Σ ∈ ΣΣΣ, denote by T (Σ) the cost of Υ (in the number of cells probed) in
processing Σ. Note that T (Σ) is a random variable because Σ is uniformly distributed in ΣΣΣ.
Next, we analyze the expectation of T (Σ).

Recall that Σ consists of B batches, each of which has a G-Insert operation followed by
a query. Let Gi (1 ≤ i ≤ B) be the (N/B)-subset added to S by the G-Insert operation in

ICDT 2015



270 On The I/O Complexity of Dynamic Distinct Counting

the i-th batch of Σ. We say that Σ is i-distinct if Gj ∩Gj′ = ∅ for each pair of j, j′ satisfying
1 ≤ j < j′ ≤ i. Denote by Ti(Σ) the number of cells probed by Υ in handling the i-th batch.
Thus, T (Σ) =

∑
i Ti(Σ). By the linearity of expectation, we know: E[T (Σ)] =

∑
i E[Ti(Σ)].

We prove in Section 3 the following relationship between set disjointness and EDGI:

I Lemma 4. For each i ∈ [1, B − 1], there exists a deterministic protocol Π solving the
(N/B, iN/B)-Disj problem with αunifN/B,iN/B (Π) ≤ λ ·O(logN) and βunifN/B,iN/B (Π) ≤ λ ·wB,
where λ = E[Ti+1(Σ) | Σ is i-distinct].

Combining Lemma 4 and Theorem 3, we have the following when w ≥ 3 logN :

E[Ti+1(Σ) | Σ is i-distinct] = Ω
(

min
{

N

B logN ,
iN

wB2

})
. (1)

I Observation 5. When w ≥ 3 logN , it must hold that Pr[Σ is B-distinct] ≥ 1/2.

Proof.

Pr[Σ is B-distinct] ≥ 1−
∑

1≤i<j≤B

∑
x∈[2w]

Pr[x ∈ Gi ∧ x ∈ Gj ]

= 1−
(
B

2

)
· 2w ·

(
N/B

2w

)2

≥ 1− 1
2B

2 · 2w · N2

B2 · 22w

≥ 1/2. (by w ≥ 3 logN)

J

When 3 logN ≤ w = Θ(logN), we have from the above:

E[T (Σ)] ≥
B∑

i=1+B/2

E[Ti(Σ)]

≥
B−1∑
i=B/2

E[Ti+1(Σ) | Σ is i-distinct] ·Pr[Σ is i-distinct]

≥ (1/2)
B−1∑
i=B/2

E[Ti+1(Σ) | Σ is i-distinct]

(as Pr[Σ is i-distinct] ≥ Pr[Σ is B-distinct])

≥ (1/2)
B−1∑
i=B/2

Ω
(

N

B logN

)
(by (1))

= Ω
(

N

logN

)
(2)

where the last inequality used the fact that N
B logN = Θ( iN

wB2 ) for i ∈ [B/2, B] and w =
Θ(logN). Now it is easy to obtain the following lower bound:

I Lemma 6. Given N = Bc for some integer constant c ≥ 2, and w such that 3 logN ≤
w = O(logN), for any Las Vegas polynomial-space structure, there is at least a sequence
Σ0 ∈ ΣΣΣ such that the structure requires Ω(N/ logB) expected cost processing Σ0.

Proof. We have proved that when Σ is uniformly distributed in ΣΣΣ, every deterministic
structure must incur Ω(N/ logN) = Ω(N/ logB) expected cost in processing Σ (applying (2)
and logN = Θ(logB)). The lemma then follows from Yao’s minimax principle. J



X. Hu, Y. Tao, Y. Yang, S. Zhang, and S. Zhou 271

2.5 From Cell-Probe to EM
Still set N = Bc and M = Bc

′ (for integer constants c′ ≥ 1 and c ≥ c′ + 1), and 3 logN ≤
w = O(logN). In this scenario, next we show that if an EM structure Υ′ solves the dynamic
element distinctness problem with expected amortized insertion cost tu and expected query
cost tq, then there is a cell-probe structure Υ for the EDGI problem, such that for every
sequence Σ ∈ ΣΣΣ, Υ processes Σ in tuN + tqB + 4M expected cost.

The main idea is to simulate Υ′ in the cell-probe model by setting aside M/B fixed cells
to preserve the memory of Υ′ across two operations – refer to those cells as the state cells. In
addition, at any moment, every disk block occupied by Υ′ corresponds to a unique cell with
the same contents. At the beginning, Υ (in the cell-probe model) and Υ′ (in the EM model)
are empty, and so are the state cells. Υ behaves according to how Υ′ works. Consider, in
general, the processing of the i-th (1 ≤ i ≤ B) batch (G-Insert(G),Query) of Σ. Υ first
reads the M/B state cells so that the (cell-probe) CPU register contains all the information
in the memory of Υ′ (in EM). Then, we invoke the insertion algorithm of Υ′ to insert the
N/B elements of G to Υ′ (the ordering does not matter). In this process, (i) whenever Υ′
reads (writes) a block, Υ reads (writes) the block’s corresponding cell; (ii) whenever Υ′
performs CPU computation, Υ performs the same computation in the register. After Υ′ has
finished inserting the elements of G, Υ writes the memory of Υ′ to the state cells with cost
M/B. At this point, Υ has completed the operation G-Insert(G). In the same manner, Υ
handles a Query by first reading the state cells, simulating Υ′, and then writing the state
cells. By definitions of tu and tq, Υ′ performs at most tuN + tqB expected I/Os in doing N
insertions and B queries. Hence, Υ probes at most tuN + tqB + 4M cells in expectation,
noticing that 4M/B probes are needed for reading and writing the state cells in each batch
of Σ.

We thus know from Lemma 6 that tuN + tqB + 4M = Ω(N/ logB), which gives tu +
tqB
N + 4/B = Ω(1/ logB) as N ≥MB. Thus, if tu = o(1/ logB), then tq must be Ω( N

B logB ),
as claimed in Theorem 2.

I Remark. Echoing the high level description in Section 1.1, it is worth mentioning that
Lemma 6 implies an update-query tradeoff for EDGI. Let τu be the expected amortized
G-Insert cost of an EDGI structure, and τq be its expected query cost. If the structure
uses polynomial space, the lemma shows that τuB + τqB = Ω(N/ logB).

3 Reduction from Set Disjointness to EDGI

In this section, which serves as a proof of Lemma 4, let us set n = N/B and m = iN/B.
As before, denote by Υ the (deterministic) EDGI structure in the context of the lemma.
Consider the S after having processed the first i batches of Σ. Note that S is a set (as
opposed to a multi-set) because Σ is i-distinct. Let G be the (N/B)-subset to be inserted in
the (i+ 1)-th batch. Clearly, S ∩G = ∅ if and only if the query of the (i+ 1)-th batch returns
“distinct”. Based on this observation, next we design a protocol for the (N/B, iN/B)-Disj
problem that works by asking Alice and Bob to simulate the execution of Υ.

Let us first introduce some notions useful in the subsequent discussion. Let G1, ..., Gi
be (N/B)-subsets of [2w] that are mutually disjoint. These i subsets make an i-distinct
sequence G = (G1, G2, ..., Gi). In general, given G, we define S(G) = ∪ij=1Gj . Let GGG be
the set of all different i-distinct sequences. Define g = |GGG|, which equals (2w)!

(2w−m)!((N/B)!)i .
Conditioned on the fact that Σ is i-distinct, every i-distinct sequence has 1/g probability
of being the sequence of (N/B)-subsets that are added to S by the first i batches of Σ.

ICDT 2015



272 On The I/O Complexity of Dynamic Distinct Counting

Furthermore, since Υ is deterministic, every G defines an instance of Υ – denoted as Υ(G) –
which is exactly the cell contents after Υ has processed i batches: (G-Insert(G1),Query),
..., (G-Insert(Gi),Query).

Fix a G and therefore Υ(G). Given an (N/B)-subset X, let C(Υ(G), X) be the cost of
processing batch (G-Insert(X),Query) on Υ(G). Define:

C(G) = 1(2w

n

) ∑
X

C(Υ(G), X). (3)

In other words, C(G) is the average C(Υ(G), X) over all the possible X.

Now, fix Y as an (iN/B)-subset of [2w]. Consider the set Z(Y ) of i-distinct sequences G
such that S(G) = Y , that is, each G ∈ Z(Y ) is a possible way to break Y into a sequence of
(N/B)-subsets. Let z = minG∈Z(Y ) C(G). Define G(Y ) to be the G ∈ Z(Y ) with the smallest
C(G); if multiple i-distinct sequences G of Z(Y ) satisfy C(G) = z, define G(Y ) to be the first
one among them in lexicographical order. Note that G(Y ) is indeed a function of Y by the
determinism of Υ.

We are now ready to describe a protocol for (n,m)-Disj. Let X and Y be the inputs of
Alice and Bob, respectively. Bob first identifies G(Y ) and builds a structure Υ = Υ(G(Y ))
locally with no communication. Then, Alice simulates what the cell-probe CPU does to
perform a batch (G-Insert(X),Query) on Υ. Specifically, she maintains locally a set R of
cells to simulate the CPU register. R is initially empty. Whenever G-Insert(X) writes a cell
c, she does not communicate any bit, but simply adds c to R, i.e., R remembers the address
and contents of c. Whenever G-Insert(X) reads a cell c, Alice first checks whether c ∈ R. If
so, she takes the contents of c directly from R. Otherwise, she requests c from Bob by sending
O(logN) bits to address c – note that O(logN) suffices because Υ uses polynomial space –
and then, Bob sends back the contents of c in wB bits. Without clearing R, Alice proceeds to
simulate Query in the same manner. At the end, if Query reports “disjoint”, Alice notifies
Bob in one bit that X ∩Y = ∅; otherwise, her notification bit indicates X ∩Y 6= ∅.

We argue that the protocol, denoted as Π, has low αunifn,m(Π) and βunifn,m(Π). Note that
the protocol executes in rounds, in each of which Alice and Bob communicate O(logN) and
wB bits, respectively. Let r(X,Y ) be the number of rounds in the protocol on input (X,Y ).
Define r̄ = 1

(2w

n )(2w

m )
∑
X,Y r(X,Y ), namely, r̄ is the average number of rounds over all the

inputs to (n,m)-Disj. Hence, αunifn,m(Π) ≤ r̄ ·O(logN) and βunifn,m(Π) ≤ r̄ · wB.

Since our protocol ensures r(X,Y ) ≤ C(Υ(G(Y )), X), the following relationship becomes
obvious:

r̄ ≤ 1(2w

n

)(2w

m

) ∑
X,Y

C(Υ(G(Y )), X). (4)

Next, we complete the proof of Lemma 4 by showing that the right hand side of (4) is at
most E[Ti+1(Σ) | Σ is i-distinct] through the following derivation:



X. Hu, Y. Tao, Y. Yang, S. Zhang, and S. Zhou 273

1(2w

n

)(2w

m

) ∑
X,Y

C(Υ(G(Y )), X) ≤ 1(2w

n

)(2w

m

) ∑
X,Y

 ((N/B)!)i

m!
∑
G∈Z(Y )

C(Υ(G), X)


(Note: |Z(Y )| = m!/((N/B)!)i, and
C(Υ(G(Y )), X) ≤ C(Υ(G), X) for every G ∈ Z(Y ))

= 1(2w

n

)(2w

m

) ((N/B)!)i

m!
∑
X,G∈GGG

C(Υ(G), X)

(Note: Every G ∈ GGG belongs to the Z(Y ) of a unique Y )

= 1(2w

n

)
· g

∑
X,G∈GGG

C(Υ(G), X)

= E[Ti+1(Σ) | Σ is i-distinct].

References

1 Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM (CACM), 31(9):1116–1127, 1988.

2 Lars Arge, Mikael Knudsen, and Kirsten Larsen. A general lower bound on the I/O-
complexity of comparison-based algorithms. In Algorithms and Data Structures Workshop
(WADS), pages 83–94, 1993.

3 Lars Arge and Peter Bro Miltersen. On showing lower bounds for external-memory com-
putational geometry problems. DIMACS Series in Discrete Mathematics, pages 139–159,
1999.

4 Gerth Stølting Brodal and Rolf Fagerberg. Lower bounds for external memory dictionaries.
In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 546–554, 2003.

5 Anirban Dasgupta, Ravi Kumar, and D. Sivakumar. Sparse and lopsided set disjointness
via information theory. In APPROX-RANDOM, pages 517–528, 2012.

6 Erik D. Demaine, Friedhelm Meyer auf der Heide, Rasmus Pagh, and Mihai Patrascu.
De dictionariis dynamicis pauco spatio utentibus (lat. on dynamic dictionaries using little
space). In Latin American Symposium on Theoretical Informatics (LATIN), pages 349–361,
2006.

7 Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data
structures. In Proceedings of ACM Symposium on Theory of Computing (STOC), pages
345–354, 1989.

8 Joseph M. Hellerstein, Elias Koutsoupias, Daniel P. Miranker, Christos H. Papadimitriou,
and Vasilis Samoladas. On a model of indexability and its bounds for range queries. Journal
of the ACM (JACM), 49(1):35–55, 2002.

9 John Iacono and Mihai Patrascu. Using hashing to solve the dictionary problem. In
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
570–582, 2012.

10 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In Proceedings of ACM Symposium on Principles of Database
Systems (PODS), pages 41–52, 2010.

11 Mihai Patrascu and Erik D. Demaine. Lower bounds for dynamic connectivity. In Proceed-
ings of ACM Symposium on Theory of Computing (STOC), pages 546–553, 2004.

ICDT 2015



274 On The I/O Complexity of Dynamic Distinct Counting

12 Elad Verbin and Qin Zhang. The limits of buffering: a tight lower bound for dynamic
membership in the external memory model. In Proceedings of ACM Symposium on Theory
of Computing (STOC), pages 447–456, 2010.

13 Zhewei Wei, Ke Yi, and Qin Zhang. Dynamic external hashing: the limit of buffering. In
Proceedings of Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
253–259, 2009.

14 Ke Yi. Dynamic indexability and the optimality of B-trees. Journal of the ACM (JACM),
59(4), 2012.

15 Ke Yi and Qin Zhang. On the cell probe complexity of dynamic membership. In Proceedings
of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 123–133,
2010.

A Proof of Theorem 3

Set W = 2w. Recall that the set disjointness problem Disj was defined by having (X,Y )
drawn from the domain of [W ]. We will from now on denote the problem as DisjW , namely,
by indicating the domain size explicitly. Also, it will be convenient to regard an input (X,Y )
to DisjW as a pair of W -dimensional vectors xxx = (x0, x1, ..., xW−1) and yyy = (y0, y1, ..., yW−1)
such that for each i ∈ [W ]:

xi = 1 if i ∈ X, or = 0 otherwise;
yi = 1 if i ∈ Y , or = 0 otherwise.

We will use |xxx| to denote the number of 1’s in xxx (similarly, |yyy|).
We will build our proof on a result of [5] of Dasgupta, Kumar, and Sivakumar. They

considered DisjW under a distribution of (xxx,yyy) parameterized by real values p, q ∈ [0, 1] –
denoted as randp,qW – where, independently for each i ∈ [W ]: (i) xi equals 1 with probability
p, and (ii) independently, yi = 1 with probability q. They proved3:

I Lemma 7 ([5]). For any deterministic protocol Π solving DisjW , it holds that either
αrandp,q

W
(Π) = Ω(pW ) or βrandp,q

W
(Π) = Ω(qW ).

Theorem 3, on the other hand, is concerned with distribution unifn,mW , that is, the uniform
distribution over the set of all inputs (xxx,yyy) ∈ {0, 1}W × {0, 1}W satisfying |xxx| = n and
|yyy| = m. We will defer the proof of the next lemma till later:

I Lemma 8. Suppose that max{n,m} ≤
√
W/2, and that we are given a deterministic

protocol Π for (n,m)-DisjW . Then, for any n′ ∈ [n/2, n] and m′ ∈ [m/2,m], there is a
deterministic protocol Πn′,m′ for (n′,m′)-DisjW/2 such that

αunifn′,m′
W/2

(Πn′,m′) < 3 · αunifn,m
W

(Π), and βunifn′,m′
W/2

(Πn′,m′) < 3 · βunifn,m
W

(Π).

Now, given a deterministic protocol Π solving (n,m)-DisjW , we design a protocol Π′ for
DisjW/2. Given an input (xxx′, yyy′) to DisjW/2, Π′ works as follows:

If |xxx′| /∈ [n/2, n], Alice sends xxx to Bob, who then sends back the result with one more bit.
Conversely, if |yyy′| /∈ [m/2,m], Bob sends yyy to Alice, who then sends back the result.
In all other cases, Alice and Bob send n′ = |xxx′| and m′ = |yyy′|, respectively, after which
they run the protocol Πn′,m′ of Lemma 8 that is obtained from Π for (n′,m′)-DisjW/2.

3 By combining Lemmas 5-8 of [5] with parameters θ = 0, α = p and β = q.



X. Hu, Y. Tao, Y. Yang, S. Zhang, and S. Zhou 275

Next we argue that Π is efficient under the distribution randp,qW/2 with

p = (3n/4)/(W/2), and q = (3m/4)/(W/2).

Define out to be the event where either |xxx′| /∈ [n/2, n] or |yyy′| /∈ [m/2,m] holds. Clearly:

αrandp,q

W/2
(Π′) ≤ Pr[out](O(1) +W/2) + Pr[¬out](2 logW + α′),

where

α′ =
∑

n′∈[ n
2 ,n],

m′∈[ m
2 ,m]

(
Pr
[
|xxx′| = n′, |yyy′| = m′ | ¬out

]
· αunifn′,m′

W/2
(Πn′,m′

)
)
≤ 3 · αunifn,m

w
(Π). (5)

(by Lemma 8)

By Chernoff’s bounds, Pr[out] ≤ e−Ω(n) which, together with w = o(n), gives Pr[out]W/2 =
o(n). Therefore:

αrandp,q

W/2
(Π′) = o(n) + 2 logW + 3 · αunifn,m

w
(Π) = o(n) + 3 · αunifn,m

w
(Π).

Similar analysis shows that

βrandp,q

W/2
(Π′) = o(m) + 3βunifn,m

W
(Π).

On the other hand, Lemma 7 states that either αrandp,q

W/2
(Π′) = Ω(pW/2) = Ω(n) or

βrandp,q

W/2
(Π′) = Ω(qW/2) = Ω(m). Therefore, either αunifn,m

W
(Π) = Ω(n) or βunifn,m

W
(Π) =

Ω(m), as claimed.

B Proof of Lemma 8

It suffices to consider that Π never incurs more than W bits of communication. Let us define
T to be the set consisting of all triplets (S,U, V ) satisfying both conditions below:

S, U , and V are pairwise disjoint subsets of [W ];
|S| = W/2, |U | = n− n′, and |V | = m−m′.

Given a triplet (S,U, V ), we design a protocol ΠSUV for DisjW/2 as follows. Upon an input
(xxx′, yyy′) ∈ {0, 1}W/2 × {0, 1}W/2, ΠSUV runs Π on (xxx,yyy) where

xxx is the W -dimensional vector such that
the projection of xxx onto the subspace defined by S gives xxx′;
xi = 1 for all i ∈ U ; xi = 0 for all i ∈ [W ]− S − U .

yyy is defined in the same way after replacing xxx′ with yyy′, and U with V .

It is easy to verify that ΠSUV is correct on all (xxx′, yyy′).
For each b ∈ {0, 1} and any xxx ∈ {0, 1}W , define xxxb = {i ∈ [W ] | xi = b}, namely, the set

of dimensions on which xxx takes the value b. Now, we induce from unifn,mW a distribution ν on
T , by using the following 5-step process to generate a triplet (S,U, V ):
1. Pick (xxx,yyy) according to unifn,mW , subject to the constraint that |xxx1 ∩ yyy1| ≤ min{n′,m′}.
2. Pick uniformly at random U ⊆ xxx1 ∩ yyy0 with |U | = n− n′ (this is always possible because
|xxx1 ∩ yyy0| = n− |xxx1 ∩ yyy1| ≥ n− n′).

3. Pick uniformly at random V ⊆ xxx0 ∩ yyy1 with |V | = m−m′.
4. Pick uniformly at random S′ ⊆ xxx0∩yyy0 with |S′| = W/2−|U |−|V | (this is always possible

because |xxx0 ∩yyy0| = W − |xxx1 ∪ yyy1| ≥W − (n+m) > W/2).
5. Finally, let S = [W ]− U − V − S′ (note that |S| is always W/2).

ICDT 2015



276 On The I/O Complexity of Dynamic Distinct Counting

Denote by δ the probability that an input (xxx,yyy) drawn from unifn,wW satisfies |xxx1 ∩yyy1| >
min{n′,m′}. Applying the fact n′ ≥ n/2, we know

Pr[|xxx1 ∩ yyy1| > n′] ≤
(
n

n/2

)(
W − n/2
m− n/2

)
/

(
W

m

)
≤
(
n

n/2

)(m− n/2
W

)n/2
≤ (4/

√
W )n/2,

and similarly Pr[|xxx1 ∩ yyy1| > m′] ≤ (4/
√
W )m/2. Therefore,

δ ≤ Pr[|xxx1 ∩ yyy1| > n′] + Pr[|xxx1 ∩ yyy1| > m′] = o(1/W ).

Observe that

αunifn,m
W

(Π) = E(xxx,yyy)←unifn,m
W

[∣∣ΠA(xxx,yyy)
∣∣]

≥ (1− δ) ·E(S,U,V )←νE(xxx′,yyy′)←unifn′,m′
W/2

[∣∣ΠSUV
A (xxx′, yyy′)

∣∣]
= (1− δ) ·E(S,U,V )←ν

[
αunifn′,m′

W/2
(ΠSUV )

]
.

Turning this around gives

E(S,U,V )←ν

[
αunifn′,m′

W/2
(ΠSUV )

]
≤
αunifn,m

W
(Π)

1− δ = (1 + o(1)) · αunifn,m
W

(Π).

By Markov’s inequality, if we draw (S,U, V ) from ν, αunifn′,m′
W/2

(ΠSUV ) ≤ 2.5(1 + o(1)) ·
αunifn,m

W
(Π) < 3αunifn,m

W
(Π) holds with probability at least probability 1 − 1/2.5 = 0.6.

Similarly, with probability at least 0.6 we have βunifn′,m′
W/2

(ΠSUV ) < 3βunifn,m
W

(Π). Therefore,
both are true simultaneously with a positive probability, thus completing the proof.



Shared-Constraint Range Reporting
Sudip Biswas1, Manish Patil1, Rahul Shah1, and
Sharma V. Thankachan2

1 Louisiana State University, USA
{sbiswa7,mpatil,rahul}@csc.lsu.edu

2 Georgia Institute of Technology, USA
sharma.thankachan@gatech.edu

Abstract
Orthogonal range reporting is one of the classic and most fundamental data structure problems.
(2,1,1) query is a 3 dimensional query with two-sided constraint on the first dimension and one
sided constraint on each of the 2nd and 3rd dimension. Given a set of N points in three dimension,
a particular formulation of such a (2, 1, 1) query (known as four-sided range reporting in three-
dimension) asks to report all those K points within a query region [a, b]×(−∞, c]× [d,∞). These
queries have overall 4 constraints. In Word-RAM model, the best known structure capable of
answering such queries with optimal query time takes O(N logεN) space, where ε > 0 is any
positive constant. It has been shown that any external memory structure in optimal I/Os must
use Ω(N logN/ log logB N) space (in words), where B is the block size [Arge et al., PODS 1999].
In this paper, we study a special type of (2, 1, 1) queries, where the query parameters a and c

are the same i.e., a = c. Even though the query is still four-sided, the number of independent
constraints is only three. In other words, one constraint is shared. We call this as a Shared-
Constraint Range Reporting (SCRR) problem. We study this problem in both internal as well as
external memory models. In RAM model where coordinates can only be compared, we achieve
linear-space and O(logN +K) query time solution, matching the best-known three dimensional
dominance query bound. Whereas in external memory, we present a linear space structure with
O(logB N+log logN+K/B) query I/Os. We also present an I/O-optimal (i.e., O(logB N+K/B)
I/Os) data structure which occupies O(N log logN)-word space. We achieve these results by
employing a novel divide and conquer approach. SCRR finds application in database queries
containing sharing among the constraints. We also show that SCRR queries naturally arise in
many well known problems such as top-k color reporting, range skyline reporting and ranked
document retrieval.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases data structure, shared constraint, multi-slab, point partitioning

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.277

1 Introduction

Orthogonal range searching is one of the central data structure problems which arises in
various fields. Many database applications benefit from the structures which answer range
queries in two or more dimensions. Goal of orthogonal range searching is to design a data
structure to represent a given set of N points in d-dimensional space, such that given an
axis-aligned query rectangle, one can efficiently list all points contained in the rectangle. One
simple example of orthogonal range searching data structure represents a set of N points in
1-dimensional space, such that given a query interval, it can report all the points falling within
the interval. A balanced binary tree taking linear space can support such queries in optimal

© Sudip Biswas, Manish Patil, Rahul Shah, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 277–290

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.277
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


278 Shared-Constraint Range Reporting

O(logN +K) time. Orthogonal range searching gets harder in higher dimensions and with
more constraints. The hardest range reporting, yet having a linear-space and optimal time
(or query I/Os in external memory) solution is the three dimensional dominance reporting
query, also known as (1, 1, 1) query [1] with one-sided constraint on each dimension. Here the
points are in three-dimensions and the query asks to report all those points within an input
region [q1,∞)× [q2,∞)× [q3,∞). A query of the form [q1, q2]× [q3,∞) is known as (2, 1)
query, which can be seen as a particular case of (1, 1, 1) query. However, four (and higher)
sided queries are known to be much harder and no linear-space solution exists even for the
simplest two dimensional case which matches the optimal query time of three dimensional
dominance reporting. In Word-RAM model, the best result (with optimal query time) is
O(N logεN) words [10], where N is the number of points and ε > 0 is an arbitrary small
positive constant. In external memory, there exists an Ω(N logN/ log logB N)-space lower
bound (and a matching upper bound) for any two-dimensional four-sided range reporting
structure with optimal query I/Os [6]. Therefore, we cannot hope for a linear-space or
almost-linear space structure with O(logB N +K/B) I/Os for orthogonal range reporting
queries with four or more constraints. The model of computation we assume is a unit-cost
RAM with word size logarithmic in n. In RAM model, random access of any memory cell
and basic arithmetic operations can be performed in constant time.

Motivated by database queries with constraint sharing and several well known problems
(More details in Section 2), we study a special four sided range reporting query problem,
which we call as the Shared-Constraint Range Reporting (SCRR) problem. Given a set P of
N three dimensional points, the query input is a triplet (a, b, c), and our task is to report all
those points within a region [a, b]× (−∞, a]× [c,∞). We can report points within any region
[a, b]× (−∞, f(a)]× [c,∞), where f(·) is a pre-defined monotonic function (using a simple
transformation). The query is four sided with only three independent constraints. Many
applications which model their formulation as 4-sided problems actually have this sharing
among the constraints and hence better bounds can be obtained for them using SCRR data
structures. Formally, we have the following definition.

I Definition 1. A SCRR query QP(a, b, c) on a set P of three dimensional points asks to
report all those points within the region [a, b]× (−∞, a]× [c,∞).

The following theorems summarize our main results.

I Theorem 2 (SCRR in Ram Model). There exists a linear space RAM model data structure
for answering SCRR queries on the set P in O(logN +K) time, where N = |P| and K is
the output size.

I Theorem 3 (Linear space SCRR in External Memory). SCRR queries on the set P can
be answered in O(logB N + log logN + K/B) I/Os using an O(N)-word structure, where
N = |P|, K is the output size and B is the block size.

I Theorem 4 (Optimal Time SCRR in External Memory). SCRR queries on the set P can be
answered in optimal O(logB N +K/B) I/Os using an O(N log logN)-word structure, where
N = |P|, K is the output size and B is the block size.

Our Approach. Most geometric range searching data structures use point partitioning
scheme with appropriate properties, and recursively using the data structure for each
partition. Our paper uses a novel approach of partitioning the points which seem to fit SCRR
problem very well. Our data structure uses rank-space reduction on the given point-set,
divide the SCRR query data structure based on small and large output size, takes advantage



S. Biswas, M. Patil, R. Shah, and S. V. Thankachan 279

of some existent range reporting data structure to obtain efficient solution and then bootstrap
the data structure for smaller ranges.

Related Work. The importance of two-dimensional three-sided range reporting is mirrored
in the number of publications on the problem. The general two-dimensional orthogonal range
searching has been extensively studied in internal memory [2, 3, 4, 11, 12, 13, 9, 7]. The
best I/O model solution to the three-sided range reporting problem in two-dimensions is
due to Arge et al. [6], which occupies linear space and answers queries in O(logB N +K/B)
I/Os. Vengroff and Vitter [20] addressed the problem of dominance reporting in three
dimensions in external memory model and proposed O(N logN) space data structure that
can answer queries in optimal O(logB N + K/B) I/Os. Recently, Afshani [1] improved
the space requirement to linear space while achieving same optimal I/O bound. For the
general two-dimensional orthogonal range reporting queries in external memory settings
Arge et al. [6] gave O((N/B) log2 N/ log2 logB N) blocks of space solution achieving optimal
O(logB N +K/B) I/Os. Another external memory data structure is by Arge et al. [5] where
the query I/Os is O(

√
N/B+ k/B) and the index space is linear. In the case when all points

lie on a U × U grid, the data structure of Nekrich [19] answers range reporting queries in
O(log logB U +K/B) I/Os. In [19] the author also described data structures for three-sided
queries that use O(N/B) blocks of space and answer queries in O(log logB U +K/B) I/Os on
a U × U grid and O(log(h)

B N) I/Os on an N ×N grid for any constant h > 0. Very recently,
Larsen and Pagh [17] showed that three-sided point reporting queries can be answered in
O(1 +K/B) I/Os using O(N/B) blocks of space.

Outline. In section 2, we show how SCRR arises in database queries and relate SCRR
problem to well known problems of colored range reporting, ranked document retrieval, range
skyline queries and two-dimensional range reporting. In section 3 we discuss rank-space
reduction of the input point-set to make sure no two points share the same x-coordinate. In
section 4 we introduce a novel way to partition the point-set for answering SCRR queries
which works efficiently for larger output size. Section 5 explains how to answer SCRR queries
for smaller output size. Using these two data structures, section 6 obtains linear space and
O(logN +K) time data structure for SCRR queries in RAM model thus proving theorem 2.
Section 7 discusses SCRR queries in external memory, which includes a linear space but
sub-optimal I/O and an optimal I/O but sub-optimal space data structures.

2 Applications

In this section, we show application of SCRR in database queries and list some of the
well known problems, which could be directly reduced to SCRR. We start with two simple
examples to illustrate shared constraint queries in database:

1. National Climatic Data Center contains data for various geographic locations. Sustained
wind speed and gust wind speed are related to the mean wind speed for a particular time.
Suppose we want to retrieve the stations having (sustained_wind_speed, gust_wind_
speed) satisfying criteria 1: mean_wind_speed < sustained_wind_speed < max_wind
_speed and criteria 2: gust_wind_speed < mean_wind_speed. Here mean_wind_
speed and max_wind_speed comes as query parameters. Note that both these criteria
have one constraint shared, thus effectively reducing number of independent constraints
by one. By representing each station as the 2-dimensional point (sustained_wind_speed,
gust_wind_speed), this query translates into the orthogonal range query specified by the

ICDT 2015



280 Shared-Constraint Range Reporting

(unbounded) axis-aligned rectangle [mean_wind_speed : max_wind_speed] × (−∞ :
mean_wind_speed].

2. Consider the world data bank which contains data for Gross domestic product (gdp),
and we are interested in those countries that have gdp within the range of minimum and
maximum gdp among all countries and gdp growth is greater than certain proportion
of the minimum gdp. Our query might look like: min_gdp < gdp < max_gdp and
c × min_gdp < gdp_growth, where c is a constant. Here min_gdp and max_gdp
comes as query parameters. The constraint on gdp_growth is proportional to the lower
constraint of gdp, which means the number of independent constraint is only two. This
query can be similarly converted to orthogonal range reporting problem by representing
each country as the point (gdp, gdp_growth), and asking to report all the points contained
in the (unbounded) axis-aligned rectangle [min_gdp : max_gdp] × [c×min_gdp : ∞).

We can take advantage of such sharing among constraints to construct more effective data
structure for query answering. This serves as a motivation for SCRR data structures. Below
we show the relation between SCRR and some well known problems.

Colored Range Reporting. In colored range reporting, we are given an array A, where each
element is assigned a color, and each color has a priority. For a query [a, b] and a threshold
c (or a parameter K) we have to report all distinct colors with priority ≥ c (or K colors
with highest priority) within A[a, b] [15]. We use the chaining idea by muthukrishnan [18] to
reduce the colored range reporting to SCRR problem.

We map each element A[i] to a weighted point (xi, yi) such that (1) xi = i, (2) yi is the
highest j < i such that both A[i] and A[j] have the same color (if such a yi does not exist
then yi = −∞) and (3) its weight wi is same as the priority of color associated with A[i].
Then, the colored range reporting problem is equivalent to the following SCRR problem:
report all points in [a, b] × (−∞, a) with weight ≥ c. By maintaining a additional linear
space structure, for any given a, b and K, a threshold c can be computed in constant time
such that number of colors reported is at least K and at most Ω(K) (we defer details to the
full version). Then, by finding the Kth color with highest color among this (using selection
algorithm) and filtering out colors with lesser priority, we shall obtain the top-K colors in
additional O(K/B) I/Os or O(K) time.

Document Retrieval Problems. In string databases or in string retrieval systems, we have
a collection D of documents (strings) of total length N . Define score(P, d), the score of
a document d with respect to a pattern P , which is a function of the locations of all P ’s
occurrences in d. Then our goal is to preprocess D and maintain a structure such that, given
a query pattern P and a threshold c, all those documents di with score(P, di) ≥ c can be
retrieved efficiently. Hon et. al. [14] showed that the document retrieval problem can be
reduced to the following problem: Given a collection of N intervals (yi, xi) with weights wi
and a query (a, b, c), output all the intervals such that yi ≤ a ≤ xi ≤ b and wi ≥ c. This is
precisely the SCRR problem that we have investigated in this article.

Range Skyline Queries. Given a set S of N points in two-dimensions, a point (xi, yi) is
said to be dominated by a point (xj , yj) if xi < xj and yi < yj . Skyline of S is subset of
S which consists of all the points in S which are not dominated by any other point in S.
In Range-Skyline problem, the emphasis is to quickly generate those points within a query
region R, which are not dominated by any other point in R. There exists optimal solutions



S. Biswas, M. Patil, R. Shah, and S. V. Thankachan 281

Figure 1 Special Two-dimensional Range Reporting Query.

in internal as well as external memory models for the case where R is a three-sided region of
the form [a, b]× [c,+∞) [16, 8].

We can reduce the range skyline query to SCRR by mapping each two-dimensional input
point pi = (xi, yi) to a three-dimensional point x′i, y′i, z′i as follows: (1) x′i = xi, (2) y′i is the
the x-coordinate of the leftmost point dominating pi and (3) z′i = yi. Then range skyline
query with three-sided region [a, b] × [c,+∞) as input can be answered by reporting the
output of SCRR query [a, b]× (−∞, a]× [c,+∞).

Two-dimensional Range Reporting. Even though general four-sided queries are known to
be hard as noted earlier, we can efficiently answer “special" four-sided queries efficiently. Any
four-sided query with query rectangle R with one of its corners on the line x = y can be
viewed as a SCRR query. In fact any query rectangle R which intersect with x = y line (or a
predefined monotonic curve) can be reduced to SCRR (Figure 1).

3 Rank-Space Reduction of Points

We use rank-space reduction on the given point-set. Although rank-space reduction does not
save any space for our data structure, it helps to avoid predecessor/successor search while
querying and facilitate our partitioning technique. Without loss of generality, we assume that
the points pi = (xi, yi, zi) ∈ P satisfy the following conditions: xi ≤ xi+1 for all i ∈ [1, N − 1]
and also yi ≤ xi for all i ∈ [1, N ]. Note that xi ≤ xi+1 can be ensured by sorting the point-set
with respect to their x-coordinates and any point not satisfying yi ≤ xi can not be answer of
our SCRR query, so we can remove them from consideration. In this section, we describe
how to transform each point pi = (xi, yi, zi) ∈ P to a point p′i = (x′i, y′i, z′i) ∈ P ′ with the
following additional properties guaranteed:

Points in P ′ are on an [1, N ]× [1, N ]× [1, N ] grid (i.e., xi, yi, zi ∈ [1, N ])
x′i < x′i+1 for all i ∈ [1, N − 1]. If yi ≤ yj (resp., zi ≤ zj), then y′i ≤ y′j (resp., z′i ≤ z′j)
for all i, j ∈ [1, N − 1].

Such a mapping is given below: (1) The x-coordinate of the transformed point is same as
the rank of that point itself. i.e., x′i = i (ties are broken arbitrarily), (2) Let yi ∈ (xk−1, xk],
then y′i = k, (3) Replace each zi by the size of the set. i.e., z′i = {j|zj ≤ zi, j ∈ [1, N ]}. We
now prove the following lemma.

I Lemma 5. If there exists an S(N)-space structure for answering SCRR queries on P ′ in
optimal time in RAM model (or I/Os in external memory), then there exists an S(N)+O(N)-
space structure for answering SCRR queries on P in optimal time (or I/Os).

ICDT 2015



282 Shared-Constraint Range Reporting

OS0 OS2 OS3OS1

y

x
1 2 4 8

OS0 OS2 OS3OS1

y

x
1 2 4 8 OSi

E

D

CBA

Figure 2 Point partitioning schemes: (a) Oblique slabs (b) Step partitions.

Proof. Assume we have an S(N) space structure for SCRR queries on P ′. Now, whenever a
query QP(a, b, c) comes, our first task is to identify the parameters a′, b′ and c′ such that a
point pj is an output of QP(a, b, c) if and only if p′j is an output of QP(a′, b′, c′) and vice
versa. Therefore, if point p′j is an output for QP(a′, b′, c′), we can simply output pj as an
answer to our original query. Based on our rank-space reduction, a′, b′ and c′ are given as
follows: (1) xa′−1 < a ≤ xa′ (assume x′0 = 0), (2) xb′ ≤ b < xb′+1 (assume x′N+1 = N + 1),
(3) Let zj be the successor of c, then c′ = z′j .

By maintaining a list of all points in P in the sorted order of their x-coordinate values
(along with a B-tree or binary search over it), we can compute a′ and b′ in O(logN) time(or
O(logB N) I/Os). Similarly, c′ can also be computed using another list, where the points
in P are arranged in the sorted order of z-coordinate value. The space occupancy of this
additional structure is O(N). Notice that this extra O(logN) time or O(logB N) I/Os is
optimal if we do not assume any thing about the coordinate values of points in P. J

4 The Framework

In this section we introduce a new point partitioning scheme which will allow us to reduce
the SCRR query into a logarithmic number of disjoint planar 3-sided or three dimensional
dominance queries. From now onwards, we assume points in P to be in rank-space (Section 3).
We begin by proving the result summarized in following theorem.

I Lemma 6. By maintaining an O(|P|)-word structure, any SCRR query QP(·, ·, ·) can be
answered in O(log2 N +K) time in the RAM model, where K is the output size.

For simplicity, we treat each point pi ∈ P as a weighted point (xi, yi) in an [1, N ]× [1, N ]
grid with zi as its weight. The proposed framework utilizes divide-and-conquer technique
based on the following partitioning schemes:

Oblique Slabs: We partition the [1, N ]×[1, N ] grid into multi-slabs OS0, OS1, ..., OSdlogNe
induced by lines x = y + 2i for i = 0, 1, ...dlogNe as shown in figure 2(a). To be precise,
OS0 is the region between the lines x = y and x = y+1 and OSi for i = 1, 2, 3, ..., dlogNe
be the region between lines x = y + 2i−1 and x = y + 2i.
Step Partitions: Each slab OSi for i = 1, 2, ... is further divided into regions with right-
angled triangle shape (which we call as tiles) using axis parallel lines x = (2(i−1) ∗ (1 + j))
and y = 2(i−1) ∗ j for j = 1, 2, ... as depicted in Figure 2(b). OS0 is divided using axis
parallel lines x = j and y = j for j = 1, 2, ....Notice that the (axis parallel) boundaries of
these triangles within any particular oblique slab looks like a step function.

Our partitioning scheme ensures property summarized by following lemma.

I Lemma 7. Any region [a, b]× [1, a] intersects with at most O(logN) tiles.



S. Biswas, M. Patil, R. Shah, and S. V. Thankachan 283

Proof. Let φi be the area of a tile in the oblique slabOSi. Note that φ0 = 1
2 and φi = 1

2 (2i−1)2

for i ∈ [1, dlogNe]. And let Ai be the area of the overlapping region between OSi and the
query region [a, b]× [1, a]. Now our task is to simply show Ai/φi is a constant for all values
of i. Assume b = n in the extreme case. Then the overlapping region between OSi and
[a, n]× [1, a] will be trapezoid in shape and its area is given by φi+1 − φi (See Figure 2(c)
for a pictorial proof). Therefore number of tiles needed for covering this trapezoidal region is
Ai/φi = O(1). Which means the entires region can be covered by O(logN) tiles (O(1) per
oblique slab). J

In the light of the above lemma, a given SCRR query QP(a, b, c) can be decomposed
into O(logN) subqueries of the type QPt

(a, b, c). Here Pt be the set of points within the
region covered by a tile t. In the next lemma, we show that each of the QPt

(a, b, c) can be
answered in optimal time (i.e., O(log |Pt|) plus O(1) time per output). Therefore, in total
O(N)-space, we can maintain such structures for every tile t with at least one point within
it. Then by combining with the result in lemma 7, the query QP(a, b, c) can be answered in
O(logN ∗ logN +K) = O(log2 N +K) time, and lemma 6 follows.

I Lemma 8. Let Pt be the set of points within the region covered by a tile t. Then a SCRR
query QPt

(a, b, c) can be answered in O(log |Pt|+ k) time using a linear-space (i.e., O(|Pt|)
words) structure, where k is the output size.

Proof. The first step is to maintain necessary structure for answering all possible axis aligned
three-dimensional dominance queries over the points in Pt, which takes linear-space (i.e.,
O(|Pt|) words or O(|Pt| log |Pt|) bits). Let α and β be the starting and ending position of
the interval obtained by projecting tile t to x-axis (see Figure 3). Then if the tile t intersects
with the query region [a, b]× [1, a], then we have the following cases (see Figure 3):
1. α ≤ a ≤ β ≤ b: In this case, all points in pi ∈ Pt implicitly satisfy the condition xi ≤ b.

Therefore QPt
(a, b, c) can be obtained by a three sided query with [a,N ]× [1, a]× [c,N ]

as the input region or a two dimensional dominance query with [a,N ]× [1, N ]× [c,N ] as
the input region (Figure 3(a)).

2. a ≤ α ≤ β ≤ b: In this case, all points in pi ∈ Pt implicitly satisfy the condition xi ∈ [a, b].
Therefore, QPt(a, b, c) can be obtained by a two dimensional dominance query with
[1, N ]× [1, a]× [c,N ] as the input region (Figure 3(b)).

3. a ≤ α ≤ b ≤ β: In this case, all points in pi ∈ Pt implicitly satisfy the condition xi ≥ a.
Therefore QPt(a, b, c) can be obtained by a three dimensional dominance query with
[1, b]× [1, a]× [c,N ] as the input region (Figure 3(c)).

4. α ≤ a ≤ b ≤ β: Notice that the line between the points (a, a) and (b, a) are completely
outside (and above) the tile t. Therefore, all points in pi ∈ Pt implicitly satisfy the
condition yi ≤ a. Therefore, QPt

(a, b, c) can be obtained by a three sided query with
[a, b]× [1, N ]× [c,N ] as the input region (Figure 3(d)).

Note that tiles can have two orientations. We have discussed four cases for one of the tile
orientations. Cases for other orientation is mirror of the above four cases and can be handled
easily. J

5 Towards O(log N + K) Time Solution

Our result in lemma 6 is optimal for K ≥ log2 N . In this section, we take a step forward to
achieve more efficient time solution for smaller values of K using multi-slab ideas. Using a
parameter ∆ (to be fixed later), we partition the [1, N ]× [1, N ] grid into L = dN/∆e vertical

ICDT 2015



284 Shared-Constraint Range Reporting

Q

a βα b

Q

a βα b

Q

βα ba

Q

a bα β

Figure 3 QP(a, b, c) and tile t intersections.

y

x
δ2 δ3 δL· · ·

y

3

41 2

δα δα+1 δβ· · · · · ·
a b

5
δα

δα+1

x

Figure 4 Divide-and-conquer scheme using ∆

slabs (Figure 4(a)). Multi-slabs V S0, V S1, ..., V SL are the slabs induced by lines x = i∆ for
i = 0, 1, ..., L. Denote by δi (i ∈ [0, L]) the minimum x-coordinate in V Si. For notational
convenience, we define δL+1 =∞. By slight abuse of notation, we use V Si to represent the
set of points in the corresponding slab.

A query QP with (a, b, c) as an input is called inter-slab query if it overlaps two or more
vertical slabs, otherwise if it is entirely contained within a single vertical slab we call it an
intra-slab query. In this section, we propose a data structure that can answer inter-slab
queries optimally.

I Lemma 9. Inter-slab SCRR queries can be answered in O(logN +K) time in RAM model
using a data structure occupying O(N) words space, where K represents the number of output.

Proof. Given a query QP(a, b, c) such that a ≤ b, let α, β be integers that satisfy δα ≤ a <
δα+1 and δβ ≤ b < δβ+1. The x interval of an inter-slab query i.e. [a, b] spreads across at
least two vertical slabs. Therefore, QP can be decomposed into five subqueries Q1

P , Q2
P , Q3

P ,
Q4
P and Q5

P as illustrated in Figure 4(b). These subqueries are defined as follows.

Q1
P is the part of QP which is in [δα, δα+1)× [1, δα)× [c,N ].

Q2
P is the part of QP which is in [δβ , δβ+1)× [1, δα+1)× [c,N ].

Q3
P is the part of QP which is in [δα+1, δβ)× [δα, δα+1)× [c,N ].

Q4
P is the part of QP which is in [δα+1, δβ)× [1, δα)× [c,N ].

Q5
P is the part of QP which is in [δα, δα+1)× (δα, δα+1)× [c,N ].

If α+ 1 = β then we only need to consider subqueries Q1
P , Q2

P and Q5
P . Each of these

subqueries can now be answered as follows.



S. Biswas, M. Patil, R. Shah, and S. V. Thankachan 285

Answering Q1
P . The subquery Q1

P can be answered by retrieving all points in V Sα∩[a,N ]×
[1, N ] with weight ≥ c. This is a two-dimensional dominance query in V Sα. This can be
achieved by maintaining a three-dimensional dominance query structure for RAM model [1]
for the points in V Si for i = 1, . . . , L separately. The query time will be O(log |V Sα|+K1) =
O(logN +K1), where K1 is the output size and index space is O(

∑L
i=1 |V Si|) = O(N) words.

Answering Q2
P . To answer subquery Q2

P we will retrieve all points in V Sβ∩[1, b)×[1, a) with
weight ≥ c. By maintaining a collection of three-dimensional dominance query structures [1]
occupying linear space overall, Q2

P can be answered in O(logN +K2) time, where K2 is the
output size.

Answering Q3
P . To answer subquery Q3

P , we begin by partitioning the set of points P
into L horizontal slabs HS1, HS2, . . . ,HSL induced by lines y = i∆, such that HSi =
P ∩ [δi+1, N ] × [δi, δi+1). The subquery Q3

P can now be answered by retrieving all points
in HSα ∩ [1, δβ) × [1, a) with weight ≥ c. This can be achieved by maintaining a three-
dimensional dominance query structure [1] for the points in HSi for i = 1, ..., L separately.
Since each point in S belongs to at most one HSi the overall space can be bounded by O(N)
words and the query time can be bounded by O(log |HSα|) + K3) = O(logN + K3) time,
with K3 being the number of output.

Answering Q5
P . To answer subquery Q5

P we will retrieve all points in V Sα ∩ (a,N ]× [1, a)
with weight ≥ c. By maintaining a collection of three-dimensional dominance query structures
occupying linear space overall as described in earlier subsections, Q5

P can be answered in
O(log |V Sα|+K5) = O(logN +K5) time, where K5 is the output size.

Answering Q4
P . We begin by describing a naive way of answering Q4

P by using a collection
of three-dimensional dominance query structures built for answering Q1

P . We query V Si to
retrieve all the points in V Si ∩ [1, N ]× [1, δα) with weight ≥ c for i = α+ 1, ..., β − 1. Such
a query execution requires O((β − α+ 1) logN +K4) time, where K4 is the output size. We
are required to spend O(logN) time for each vertical slab even if the query on a particular
V Si does not produce any output. To answer subquery Q4

P in O(logN +K4) time, we make
following crucial observations: (1) All three boundaries of Q4

P are on the partition lines, (2)
The left boundary of Q4

P (i.e., line x = δα+1) is always the successor of the top boundary
(i.e., line y = δα), (3) The output size is bounded by O(log2 N).

We use these observations to construct following data structure: Since the top left and
bottom right corner of Q4

P falls on the partition lines, there are at most (N/∆)2 possible
different rectangles for Q4

P . For each of these we store at most top-O(log2 N) points in
sorted order of their weight. Space requirement of this data structure is O((N/∆)2 log2 N)
words. Query algorithm first identifies the rectangle that matches with Q4

P among (N/∆)2

rectangles and then simply reports the points with weight greater than c in optimal time.
Finally to achieve linear space, we choose ∆ =

√
N logN .

Thus, we can obtain K = K1 + K2 + K3 + K4 + K5 output in O(K) time. Also, in
the divide and conquer scheme, the point sets used for answering subqueries Q1

P , ..., Q
5
P

are disjoint, hence all reported answers are unique. Now given a query QP(a, b, c), if the
subquery Q4

P in the structure just described returns K4 = log2 N output, it suggest that
output size K > log2 N . Therefore, we can query the structure in lemma 6 and still retrieve
all output in optimal time. This completes the proof of lemma 9. J

ICDT 2015



286 Shared-Constraint Range Reporting

y

US0

US1

US2

BS0 BS1 BS2 BS3

LS1 LS2 LS3

x

y

QUSj

BSj

QLSj

x

Figure 5 Optimal time SCRR query data structure.

6 Linear Space and O(log N + K) Time Data Structure in RAM
Model

In this section, we show how to obtain our O(logN +K) time result stated in Theorem 2
via bootstrapping our previous data structure.

We construct ψ1, ψ2, ..., ψdlog logNe levels of data structures, where ψ1 =
√
N logN and

ψi =
√
ψi−1 logψi−1, for i = 2, 3, ..., dlog logNe. At each level, we use multi-slabs to

partition the points. More formally, at each level ψi, the [1, N ]× [1, N ] grid is partitioned
into g = dN/ψie vertical slabs or multi-slabs. At level ψi, multi-slabs BS0, BS1, ..., BSg
are the slabs induced by lines x = jψi for j = 0, 1, ..., g. Each multi-slab BSj is further
partitioned into disjoint upper partition USj and lower partition LSj (Figure 5). Below we
describe the data structure and query answering in details.

For a multi-slab BSj and a SCRR query, USj can have more constraints than LSj ,
making it more difficult to answer query on USj . Our idea is to exclude the points of USj
from each level, and build subsequent levels based on only these points. Query answering for
LSj can be done using the inter-slab query data structure and three-sided range reporting
data structure.

At each level ψi, we store the data structure described in Lemma 9 capable of answering
inter-slab queries by taking slab width ∆ =

√
ψi logψi. Also we store separate three-sided

range reporting data structures for each LSj , j = 0, 1, ..., g. The points in USj at level
ψi (for i = 1, · · · , dlog logNe − 1) are removed from consideration. These removed points
are considered in subsequent levels. Note that the inter-slab query data structure stored
here is slightly different from the data structure described in lemma 9, since we removed
the points of USj (region 5 of figure 4b). ψdlog logNe is the bottom level and no point
is removed from here. Level ψi+1 contains only the points of all the USj partitions from
previous level ψi, and again the upper partition points are removed at level ψi+1. More
specifically, level ψ1 contains an inter-slab query data structure and

√
N logN number of

separate two-dimensional three-sided query data structures over each of the lower partitions
LSj . Level ψ2 contains

√
N logN number of data structures similar to level ψ1 corresponding

to each of the upper partitions USj of level ψ1. Subsequent levels are constructed in a similar
way. No point is repeated at any level, two-dimensional three-sided query data structures
and inter-slab query data structures take linear space, giving linear space bound for the
entire data structure.

A SCRR query QP can be either an inter-slab or an intra-slab query at level ψi (illustrated
in figure 6). An intra-slab SCRR query QP can be divided into QUSi

and QLSi
. QLSi

is



S. Biswas, M. Patil, R. Shah, and S. V. Thankachan 287

three-sided query in LSi, which can be answered by the three-sided range reporting structure
stored at LSi. QUSi

is issued as a SCRR query for level ψi+1 and can be answered by
traversing at most dlog logNe levels. An inter-slab SCRR query QP can be decomposed
into 5 sub-queries: Q1, Q2, Q3, Q4 and Q5. Q1, Q2, Q3 and Q4 can be answered using
the optimal inter-slab query data structure of lemma 9 in similar way described in details
in section 5. Again Q5 is issued as a SCRR query for level ψi+1 and can be answered in
subsequent levels. At each level O(logψi +Ki) time is needed where Ki is the output size
obtained at level ψi. Since no point is repeated at any level, all reported answers are unique.
At most log logN levels need to be accessed for answering QP . Total time is bounded by
O(

∑log logN
i=1 (logψi) + log logN +

∑log logN
i=1 (Ki)) = O(logN +K), thus proving theorem 2.

7 SCRR Query in External Memory

In this section we discuss two external memory data structures for SCRR query, one achieving
optimal I/O and another achieving linear space. Both these data structures are obtained by
modifying our RAM model data structure. We use the multi-slab ideas similar to section 5.
We assume points in P to be in rank-space. We begin by stating external memory variants
of lemma 6 and lemma 9.

I Lemma 10. By maintaining an O(N)-word structure, any SCRR query QP(·, ·, ·) can be
answered in O(log2(N/B) +K/B) I/Os, where K is the output size.

Proof. We use dlog(N/B)e number of oblique slabs induced by lines x = y + 2iB for
i = 0, 1, ...dlog(N/B)e. Each oblique slab is partitioned into tiles using axis parallel lines
x = (2(i−1) ∗ (1 + j))B and y = 2(i−1) ∗ jB for j = 1, 2, .... It can be easily shown that any
SCRR query QP(a, b, d) intersects with at most O(log(N/B)) tiles, each of which can be
resolved in linear space and optimal I/Os using three-dimensional query structure [1] in each
tile, achieving O(log2(N/B) +K/B) total I/Os. J

I Lemma 11. Inter-slab SCRR queries can be answered in O(logB N +K/B) I/Os using a
data structure occupying O(N) words space, where K represents the number of outputs.

Proof. This can be achieved by using a data structure similar to the one described in lemma 9
with ∆ =

√
NB logB N . We use external memory counterparts for three sided and three

dimensional dominance reporting and for answering query Q4
p we maintain top O(log2

BN)
points from each of the rectangle. J

7.1 Linear Space Data Structure
The linear space data structure is similar to the RAM model linear space and optimal time
structure described in section 6. Major difference is we use ψi =

√
ψi−1B logB ψi−1 for

bootstrapping and use the external memory counterparts of the data structures.
We construct ψ1, ψ2, ..., ψdlog logNe levels of data structures, where ψ1 =

√
NB logB N

and any ψi =
√
ψi−1B logB ψi−1. At each level ψi, the [1, N ]× [1, N ] grid is partitioned into

g = dN/ψie vertical slabs. Multi-slabs BSj , upper partition USj and lower partition LSj
for j = 0, 1, ..., g are defined similar to section 6.

At each level ψi, we store the data structure described in Lemma 11 capable of answering
inter-slab queries in optimal I/Os by taking slab width ∆ =

√
ψiB logB ψi. Also we store sep-

arate three-sided external memory range reporting data structures for each LSj , j = 0, 1, ..., g.
In order to maintain linear space, the points in USj at level ψi (for i = 1, · · · , dlog logNe−1)

ICDT 2015



288 Shared-Constraint Range Reporting

y

QUSi

BSi

QLSi

x

y

Bα Bα+1 Bβ· · · · · ·
a b

Q5 Q3

Q4Q1 Q2

Figure 6 Intra-slab and Inter-slab query for linear space data structure.

are removed from consideration. These removed points are considered in subsequent levels.
ψdlog logNe is the bottom level and no point is removed from here. Level ψi+1 contains only
the points of all the USj partitions from previous level ψi, and again the upper partition
points are removed at level ψi+1. External memory two-dimensional three-sided query data
structures and optimal inter-slab query data structures for external memory take linear space,
and we avoided repetition of points in different levels, thus the overall data structure takes
linear space.

Query answering is similar to section 6. If the SCRR query QP is intra-slab, then QP can
be divided into QUSi

and QLSi
. QLSi

is three-sided query in LSi, which can be answered by
the three-sided range reporting structure stored at LSi. QUSi

is issued as a SCRR query
for level ψi+1 and can be answered by traversing at most dlog logNe levels. An inter-slab
SCRR query QP can be decomposed into 5 sub-queries: Q1, Q2, Q3, Q4 and Q5. Q1, Q2,
Q3 and Q4 can be answered using the optimal inter-slab query data structure of lemma 11
in similar way described in details in section 5. Again Q5 is issued as a SCRR query for
level ψi+1 and can be answered in subsequent levels. At each level O(logB ψi +Ki/B) I/Os
are needed where Ki is the output size obtained at level ψi. Since no point is repeated at
any level, all reported answers are unique. At most log logN levels need to be accessed for
answering QP . Total I/O is bounded by O(

∑log logN
i=1 (logB ψi)+log logN+

∑log logN
i=1 (Ki/B))

= O(logB N + log logN +K/B) thus proving theorem 3.

7.2 I/O Optimal Data Structure
I/O optimal data structure is quite similar to the linear space data structure. The major
difference is the points in USj at level ψi (for i = 1, · · · , dlog logNe − 1) are not removed
from consideration. Instead at each USj we store external memory data structure capable of
answering inter-slab query optimally(Lemma 11). All the points of USj (j = 0, 1, ..., g) of
level ψi (for i = 1, · · · , dlog logNe − 1) are repeated in the next level ψi+1. This will ensure
that we will have to use only one level to answer the query. For LSj (j = 0, 1, ..., g), we
store three-sided query structures. Since there are log logN levels, and at each level data
structure uses O(N) space, total space is bounded by O(N log logN). To answer a query QP ,
we query the structures associated with ψi such that QP is an intra-slab query for ψi and is
inter-slab for ψi+1. We can decompose the query QP into QUS and QLS , where QUS(QLS)
falls completely within USj(LSj). Since, QUS is an inter-slab query for the inter-slab query
data structure stored at USj , it can be answered optimally. Also QLS is a simple three-sided
query for which output can be retrieved in optimal time using the three-sided structure of
LSj . This completes the proof for Theorem 4.



S. Biswas, M. Patil, R. Shah, and S. V. Thankachan 289

8 Conclusions

In many applications which require range queries, some of the input constraints are shared
and not really independent. We give first non trivial indexes for handling such cases breaking
the currently known O(N logεN) space barrier for four-sided queries in Word-RAM model.
In Word-RAM model, we obtained linear space and optimal time index for answering SCRR
queries. Our optimal I/O index in external memory takes O(N log logN) words of space
and answer queries optimally. We also present a linear space index for external memory.
We leave it as an open problem to achieve optimal space bounds, avoiding the O(log logN)
blowup in external memory model. Also it will be interesting to see whether such results can
be obtained in Cache Oblivious model.

Acknowledgements. This work is supported by US NSF Grants CCF–1017623, CCF–
1218904.

References

1 Peyman Afshani. On dominance reporting in 3d. In ESA, pages 41–51, 2008.
2 Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogonal range reporting in

three and higher dimensions. In FOCS, pages 149–158, 2009.
3 Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogonal range reporting:

query lower bounds, optimal structures in 3-d, and higher-dimensional improvements. In
Symposium on Computational Geometry, pages 240–246, 2010.

4 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures for ortho-
gonal range searching. In FOCS, pages 198–207, 2000.

5 Lars Arge, Mark de Berg, Herman J. Haverkort, and Ke Yi. The priority r-tree: A prac-
tically efficient and worst-case optimal r-tree. In SIGMOD Conference, pages 347–358,
2004.

6 Lars Arge, Vasilis Samoladas, and Jeffrey Scott Vitter. On two-dimensional indexability
and optimal range search indexing. In PODS, pages 346–357, 1999.

7 Jon Louis Bentley. Multidimensional divide-and-conquer. Commun. ACM, 23(4):214–229,
1980.

8 Gerth Stølting Brodal and Kasper Green Larsen. Optimal planar orthogonal skyline count-
ing queries. CoRR, abs/1304.7959, 2013.

9 Timothy M. Chan, Kasper Green Larsen, and Mihai Patrascu. Orthogonal range searching
on the ram, revisited. In Symposium on Computational Geometry, pages 1–10, 2011.

10 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM Journal on Computing, 17(3):427–462, 1988.

11 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM J. Comput., 17(3):427–462, 1988.

12 Bernard Chazelle. Lower bounds for orthogonal range searching i. the reporting case. J.
ACM, 37(2):200–212, 1990.

13 Bernard Chazelle. Lower bounds for orthogonal range searching ii. the arithmetic model.
J. ACM, 37(3):439–463, 1990.

14 Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter. Space-
efficient frameworks for top-k string retrieval. J. ACM, 61(2):9, 2014.

15 Marek Karpinski and Yakov Nekrich. Top-k color queries for document retrieval. In SODA,
pages 401–411, 2011.

ICDT 2015



290 Shared-Constraint Range Reporting

16 Casper Kejlberg-Rasmussen, Yufei Tao, Konstantinos Tsakalidis, Kostas Tsichlas, and
Jeonghun Yoon. I/o-efficient planar range skyline and attrition priority queues. In PODS,
pages 103–114, 2013.

17 Kasper Green Larsen and Rasmus Pagh. I/o-efficient data structures for colored range and
prefix reporting. In SODA, pages 583–592, 2012.

18 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 657–666, 2002.

19 Yakov Nekrich. External memory range reporting on a grid. In ISAAC, pages 525–535,
2007.

20 Darren Erik Vengroff and Jeffrey Scott Vitter. Efficient 3-d range searching in external
memory. In STOC, pages 192–201, 1996.



Optimal Broadcasting Strategies for Conjunctive
Queries over Distributed Data
Bas Ketsman∗ and Frank Neven

Hasselt University and transnational University of Limburg
Belgium
first.lastname@uhasselt.be

Abstract
In a distributed context where data is dispersed over many computing nodes, monotone queries
can be evaluated in an eventually consistent and coordination-free manner through a simple but
naive broadcasting strategy which makes all data available on every computing node. In this pa-
per, we investigate more economical broadcasting strategies for full conjunctive queries without
self-joins that only transmit a part of the local data necessary to evaluate the query at hand. We
consider oblivious broadcasting strategies which determine which local facts to broadcast inde-
pendent of the data at other computing nodes. We introduce the notion of broadcast dependency
set (BDS) as a sound and complete formalism to represent local optimal oblivious broadcasting
functions. We provide algorithms to construct a BDS for a given conjunctive query and study
the complexity of various decision problems related to these algorithms.

1998 ACM Subject Classification H.2.3 Query Languages, H.2.4 Distributed databases

Keywords and phrases Coordination-free evaluation, conjunctive queries, broadcasting

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.291

1 Introduction

We assume the setting introduced in the context of declarative networking [6, 14], where
queries are specified on a logical level over a global schema and are evaluated by multiple
computing nodes over which the input database is distributed. These nodes can perform
local computations and communicate asynchronously with each other via messages. The
model then operates under the assumption that messages can never be lost but can be
arbitrarily delayed. It is known that every monotone query can be evaluated in an eventually
consistent and coordination-free manner through a naive broadcasting strategy that makes
all data available to all nodes [14].1 Indeed, every computing node sends all its local data to
every other node and reevaluates the query every time new data arrives. This evaluation is
eventually consistent as, because of monotonicity, no facts will be derived which later have
to be retracted and, furthermore, when all transmitted data has arrived, the output of every
node will correspond to the result of the query. In addition, the computation requires no
coordination between the nodes.

Obviously, the above strategy leads to a very careless evaluation as the whole database
is send to every node and every node independently computes the complete answer for the
targeted query. In the present paper, we are interested in more economical broadcasting

∗ PhD Fellow of the Research Foundation – Flanders (FWO)
1 Actually, this observation is the straightforward part of the CALM-conjecture [14]. It is the converse

direction which is more surprising: that every query which can be evaluated in an eventually consistent
and coordination-free manner has to be monotone [6].

© Bas Ketsman and Frank Neven;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 291–307

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.291
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


292 Optimal Broadcasting Strategies for Conjunctive Queries over Distributed Data

strategies where only a subset of the local data is transmitted and where each computing
node contributes to the answer of the query by outputting only a subset of the answer tuples.
The result of the query then is the union of the tuples output by the computing nodes. In
particular, we focus on full conjunctive queries without self-joins and we consider oblivious
broadcasting strategies where every computing node determines which facts will be broadcast
solely on the content of its own local database (so, oblivious of the data at other nodes).
These facts are referred to as broadcast facts. Facts that are not initially broadcast are called
static. We illustrate the ideas behind such strategies by means of an example.

I Example 1. Let Q1 be the query Q1(x, y, z) ← A(x, y), B(y, x), C(x, z) and let I =
{A(1, 2), A(2, 2), B(2, 1), B(2, 2), B(4, 4), C(1, 3)} be a database instance. Consider a network
of two computing nodes c and c′ containing the facts I(c) = {A(2, 2), B(2, 1), B(2, 2)} and
I(c′) = {A(1, 2), B(4, 4), C(1, 3)}, respectively.
Naive broadcasting strategy. The naive broadcasting algorithm outlined above sends all facts
in I(c) to c′ and all facts in I(c′) to c. Eventually, both c and c′ receive all data and both of
them compute the result of the query, that is, Q1(I) = {(1, 2, 3)}.
Improved oblivious broadcasting strategy. The just described strategy is clearly oblivious
but also rather wasteful. Therefore consider the following strategy which broadcasts all
of the C-facts but none of the A-facts. Furthermore, a B-fact B(i, j) is broadcast only
when A(j, i) does not occur in the local database. Executing this strategy for every com-
puting node in our example results in c broadcasting the set {B(2, 1)} while c′ broad-
casts {B(4, 4), C(1, 3)}. So, eventually, I∗(c) = {A(2, 2), B(2, 1), B(2, 2), B(4, 4), C(1, 3)}
and I∗(c′) = {A(1, 2), B(2, 1), B(4, 4), C(1, 3)}. Here, we denote by I∗(d) the instance
at node d when all transmitted messages have arrived. Therefore, Q1(I∗(c)) = ∅ and
Q1(I∗(c′)) = {(1, 2, 3)}, and Q1(I) equals Q1(I∗(c))∪Q1(I∗(c′)). Intuitively, this strategy is
correct in general as the following invariant holds for every computing node d: when a fact
B(i, j) is not broadcast at a node d, then every satisfying valuation V for Q on I that maps
(x, y) to (i, j) can be realized locally in I∗(d). Notice that, a similar strategy reversing the
roles of A- and B-facts would work as well.

We will formalize oblivious broadcasting functions as generic mappings. This means that
decisions on whether to broadcast facts do not depend only on the name of the predicate
but can also depend on the equality type of the fact under consideration. Therefore, the
following strategy would be valid as well: always broadcast facts of the form C(i, j) with
i 6= j and keep all facts of the form C(i, i) static; broadcast all B-facts; broadcast a fact
A(i, j) only when the fact C(i, i) is not present in the local database. While not immediately
obvious, this strategy correctly computes Q on every distributed database.

Both strategies will be presented more formally in Section 5 in terms of broadcast
dependency sets and are formalized further in Example 12(1) and 12(3). J

In this paper, we make the following contributions:
(i) We provide a semantical characterization of when an oblivious broadcasting function

(OBF) correctly evaluates a given conjunctive query. While it is desirable to construct
OBFs that minimize the overall amount of transmitted facts over all distributed databases,
we show that there is no optimal OBF for any conjunctive query with at least two
distinct atoms in its body. Therefore, we turn to a slightly weaker notion of optimality,
called local optimal, which requires that an OBF is optimal w.r.t. the local instance at
every computing node. Intuitively, this means that no broadcast fact can be made static
without sacrificing correctness. We provide a semantical characterization for when an
OBF is local optimal for a given conjunctive query.



B. Ketsman and F. Neven 293

(ii) We introduce the notion of a broadcast dependency set (BDS) as a formalism to specify
OBFs. In brief, a BDS S is a set of pairs (τ, T ) where τ is a partial atomic type and T
is a set of partial atomic types. Every such pair encodes a rule that can be interpreted
roughly as follows: when a fact f matches type τ , it will be broadcast at a computing
node c when the set of facts induced by T is not present at c. We present necessary
and sufficient syntactic conditions for when a BDS is correct for a given query and also
for when it is local optimal w.r.t. that query. Furthermore, we study the complexity of
deciding whether a BDS is correct for a query and whether it is local optimal. Finally,
and most importantly, we show that the formalism of BDS is expressively complete w.r.t.
local optimal OBFs by obtaining that every local optimal OBF can be represented by a
BDS. In fact, every local optimal OBF can already be represented by a BDS that only
uses complete types, that is, types where the equalities between all variables are fully
specified.

(iii) Based on the syntactic criteria of when a BDS is correct for Q and when it is local
optimal, we obtain an algorithm bds-build(Q) that computes a local optimal OBF
(represented as a BDS) for a given conjunctive query Q. When restricting to open types
(these are types without restrictions on the equalities between variables), bds-build(Q)
computes a local optimal OBF in time polynomial in the size of Q. When considering
complete types, bds-build(Q) computes a local optimal OBF in time exponential in
the size of Q simply because there are exponentially many complete types.

Outline. We discuss related work in Section 2 and introduce the necessary definitions and
concepts in Section 3. In Section 4, we discuss oblivious broadcasting functions and local
optimality. In Section 5, we discuss broadcast dependency sets and study their properties.
In Section 6, we provide an algorithm to construct a local optimal oblivious broadcasting
function for a given conjunctive query. We conclude in Section 7.

2 Related Work

CALM. The approach in this paper is motivated by the work on the CALM-conjecture.
Hellerstein [14] formulated the CALM-principle which suggests a link between logical mono-
tonicity and distributed consistency without the need for coordination. The latter principle is,
for instance, embedded in BLOOM, a declarative language for distributed programming, for
which practical program analysis technique have been developed detecting potential consist-
ency anomalies [3, 4, 11]. Ameloot et al. [6] formalized (and proved) the CALM-conjecture
in terms of relational transducer networks. Zinn et al. [19] showed that the generalization of
the conjecture to stronger variants of relational transducer networks fails. Ameloot et al. [5]
then subsequently provided a more fine-grained answer to the CALM-conjecture by relating
these stronger variants of relational transducer networks to weaker notions of monotonicity.
All of these works considered naive evaluation strategies that broadcast all of the local data.
In particular, none of these works considered more economic broadcasting evaluation of
conjunctive queries.

Massive parallel model. The networked relational transducer model is just one paradigm
for studying distributed query evaluation. In the massively parallel (MP) model, introduced
by Koutris and Suciu [15], computation proceeds in a sequence of parallel steps, each followed
by global synchronization of all servers. In this model, evaluation of conjunctive queries [15, 7]
as well as skyline queries [2] have been considered. Recently, Beame et al. [8] proved a

ICDT 2015



294 Optimal Broadcasting Strategies for Conjunctive Queries over Distributed Data

matching upper and lower bound for the amount of communication needed to compute a
full conjunctive query without self-joins in one communication round. The upper bound
is provided by a randomized algorithm called Hypercube which dates back to Ganguli et
al. [13] and was described by Afrati and Ullman [1] in the context of MapReduce algorithms.
Hypercube is motivated by modern massively distributed systems like, for instance, Spark [18],
where entire computations reside in main memory, replay is used to recover, and the dominant
cost is that of communication. We note that one-round Hypercube is coordination-free and
can be easily employed within the framework of relational transducer networks as well. A
characteristic of Hypercube-style algorithms is that the space of computing nodes (over which
the input data will be distributed) needs to be known in advance. The broadcasting strategies
considered in this paper are motivated by a cloud computing setting where data is already
initially distributed and the complete space of computing nodes is not necessarily known in
advance. In this respect, Hypercube-style and broadcasting algorithms are orthogonal.

Relevance. One approach to minimize data transfer for a query Q, is to find the smallest
subset J of a distributed instance I for which Q(I) = Q(J) and then only broadcast the
relevant subset J . Determining which part of a database is relevant for answering a query
is a problem that arises in different contexts. For instance, causality in databases aims to
determine which tuples in the database instance caused the output to a query [16, 17]. Then,
the contingency set asks for the smallest set K such that Q(I) 6= Q(I −K). So, any set
I −K extended with one element is relevant. Similarly, “where” and “why” provenance refer
to the location(s) in the source databases from which the output was extracted or by which
the output was influenced [10, 9]. Fan et al. [12] study the problem of scale independence
where, through access patterns, the result of a query depends only on a bounded part of the
database. It would be interesting to investigate how these different approaches translate to
a distributed setting. Most surely, any lower bounds for the sequential setting imply lower
bounds for the distributed setting, but upper bounds need to take into account that the
initial database instance I is distributed as well.

3 Preliminaries

Instances and queries. For a finite set S, we denote by |S| its cardinality and by 2S its
powerset. We denote {1, . . . , n} by [n], for n ∈ N. We assume an infinite set dom of data
values. A database schema σ is a collection of relation names R where every R has arity
ar(R) > 0. We call R(d̄) a fact when R is a relation name and d̄ is a tuple in dom. We say
that a fact R(d1, . . . , dk) is over a database schema σ if R ∈ σ and ar(R) = k. A (database)
instance I over σ is simply a finite set of facts over σ. We denote by Adom(I) the set of
all values that occur in facts of I. When I = {f}, we simply write Adom(f) rather than
Adom({f}). A query over a schema σ to a schema σ′ is a generic mapping Q from instances
over σ to instances over σ′. Genericity means that for every permutation π of dom and
every instance I, Q(π(I)) = π(Q(I)). For the remainder of the paper, we assume given a
database schema σ over which all queries are defined and do not refer to it anymore. A query
Q is monotone if Q(I) ⊆ Q(J) for all instances I, J with I ⊆ J . We only consider monotone
queries in the sequel.

Conjunctive queries. Let var be the universe of variables, disjoint from dom. An atom A

is of the form R(u1, . . . , uk) where R is a relation name and each ui ∈ var. We call R the
predicate and denote it by pred(A). We denote the variables occurring in A by Vars(A) =



B. Ketsman and F. Neven 295

{u1, . . . , uk}. We say that A is an atom over the database schema σ if pred(A) ∈ σ and
k = ar(pred(A)). A conjunctive query Q (CQ) is an expression of the form A0 ← A1, . . . , An,
where for every i ∈ [n], Ai is an atom over the schema and A0 is an atom not over the
schema. In particular, A0 is the head of Q, denoted headQ, and A1, . . . , An is the body of Q,
denoted bodyQ. By Vars(Q) we denote all the variables occurring in Q. A valuation for Q
on an instance I is a function V : Vars(Q) → Adom(I). The application of V to an atom
A = R(u1, . . . , uk), denoted V (A), results in the fact R(a1, . . . , ak) where ai = V (ui) for
each i ∈ [k]. The valuation V is said to be satisfying for Q if V (A) ∈ I for all atoms A in
the body of Q. In that case, V derives the fact V (A0). The result of Q on I, denoted Q(I)
is defined as the set of facts that can be derived by satisfying valuations.

In what follows, we assume that every CQ is full and does not contain self-joins. Formally,
we require that pred(Ai) 6= pred(Aj) for i 6= j and Vars(A0) =

⋃
i∈[n] Vars(Ai). That is, every

atom has a unique relation symbol and all variables occurring in the body occur in the head as
well. For instance, Q1(x, y, z)← A(x, y), B(x, z), C(y, y) is full and does not contain self-joins,
while Q2(x, y)← A(x, y), B(x, z), C(y, y) is not full and Q3(x, y, z)← A(x, y), A(x, z), C(y, y)
contains a self-join.

Distributed database. A network N is a nonempty finite set of values from dom, which
we call nodes. A distribution of an instance I over N is a function H that maps each c ∈ N
to an instance such that I =

⋃
c∈N H(c). Notice that facts can be replicated. We also refer

to each of the H(c) as the local instances. We consider a model where nodes have unlimited
computational power and can send messages to all other nodes. These messages can never
be lost but can be arbitrarily delayed.

4 Oblivious broadcasting

We refrain from introducing the formalism of relational transducer networks from [6], but
present a simpler setting more suitable for our needs. In particular, the relational transducer
networks needed in this paper only perform two actions: decide which facts to broadcast
(and transmit those) and evaluate the query under consideration whenever new data arrives.
The only parameter is the used broadcasting strategy and, therefore, forms the focus of our
formalization. In brief, we consider broadcasting strategies where computing nodes partition
their local database into static and broadcast facts. Static facts are kept local while broadcast
facts, as the name already indicates, are sent to all other nodes in the network. As we
only consider conjunctive queries which are monotone, the target query can be recomputed
whenever new data arrives.

4.1 Oblivious broadcasting functions
We now formally define oblivious broadcasting function.

I Definition 2. An oblivious broadcasting function (OBF) f is a generic mapping that maps
instances to instances such that f(J) ⊆ J for all instances J .

An OBF specifies which local facts are broadcast. Specifically, f(J) are the broadcast facts
while J \ f(J) are the static facts. We use the term oblivious as broadcast facts only depend
on the local database instance and their choice is independent of the facts at other computing
nodes. An OBF f is naive when there are no static facts, that is, f(J) = J for all instances J .

Given a CQ Q, an instance I, a distribution H of I, and a network N , an OBF f implies
a broadcasting algorithm in the following way. Let B(f,H) =

⋃
c∈N f(H(c)) be the set of

ICDT 2015



296 Optimal Broadcasting Strategies for Conjunctive Queries over Distributed Data

broadcast facts. Then, define eval(Q, f,H) =
⋃
c∈N Q(H(c) ∪B(f,H))) as the union of the

query result at every computing node over the local instance extended with all broadcast
facts.2

I Remark. We note that the function eval(Q, f,H) implies an evaluation that can be executed
by a transducer program πf,Q at every node c as follows: (1)R = ∅, outputQ(H(c)), broadcast
f(H(c)); (2) whenever a fact f arrives, R = R ∪ {f}, output Q(H(c) ∪R). Correctness then
follows from the genericity and monotonicity of f . We refer to the execution strategy induced
by eval(Q, f,H) as a broadcasting algorithm. Coordination-freeness intuitively follows as
πf,Q never waits. Formally, a transducer is coordination-free [6] if there is a so-called ideal
distribution, on which the query is already computed by a prefix of a run that does not
process any of the incoming facts. For πf,Q this is the distribution that puts the complete
instance at every node. We refer to [6] for a more formal treatment of coordination-freeness.

I Definition 3. An OBF f is correct for a CQ Q when Q(I) = eval(Q, f,H) for all instances
I and all distributions H of I.

When f is correct for Q, we also say that f is an OBF for Q. The following lemma
characterizes correctness in that two compatible facts residing at different computing nodes
can never be both static. Indeed, if they are, then the valuation witnessing compatibility is
never realized at any computing node and consequently f can not be correct for Q.

We say that two distinct facts f and g are compatible w.r.t Q, denoted f ∼Q g, when they
are assigned to two atoms from the body of Q under one valuation, i.e., there is a valuation
V for Q and atoms A,B ∈ bodyQ, such that V (A) = f and V (B) = g.

I Lemma 4. Let Q be a CQ and f be an OBF. Then, the following are equivalent:
1. f is correct for Q; and
2. there are no instances I, J , and facts f, g, with f ∼Q g, g 6∈ I, f 6∈ J such that f 6∈ f(I∪{f})

and g 6∈ f(J ∪ {g}).

Proof. (1)⇒(2) We start by showing that every OBF for Q satisfies the above condition.
The proof is by contraposition, so we assume that there are instances I and J and compatible
facts f and g w.r.t. Q, where g 6∈ I and f 6∈ J , but f 6∈ f(I ∪ {f}) and g 6∈ f(J ∪ {g}). Let K
be an instance and let V be a satisfying valuation for Q on K witnessing compatibility of f
and g. Then consider a network N = {1, 2, 3} and an instance L = I ∪ J ∪ V (bodyQ) with
the following distribution H: H(1) = I ∪ {f}, H(2) = J ∪ {g}, and H(3) = V (bodyQ) \ {f,g}.
Clearly, V (headQ) ∈ Q(L). As Q is full, V (headQ) 6∈

⋃
c∈N Q(H(c) ∪ B(f,H)) because

none of the computing nodes contain both f and g, and f and g are not broadcast. Thus,
Q(I) 6=

⋃
x∈N Q(H(x) ∪B(f,H)) = eval(Q, f,H) and f is not an OBF for Q.

(2)⇒(1) It remains to show that if the above condition is satisfied, then f is an OBF for Q.
For this, let I be an instance, N a network, and H a distribution of I over N . We prove that
Q(I) = eval(Q, f,H) =

⋃
c∈N Q(H(c) ∪B(f,H)). As Q is monotone, Q(H(c) ∪B(f,H)) ⊆

Q(I) for every c ∈ N . Hence, it suffices to show that Q(I) ⊆
⋃
c∈N Q(H(c) ∪ B(f,H)).

Thereto, let f ∈ Q(I), let V be a satisfying valuation for Q over I for which V (headQ) = f.
Let J = V (bodyQ) \B(f,H), and c a node for which |H(c) ∩ J | is maximal. We claim that
J ⊆ H(c), obviously implying that f will be derived at node c. Towards a contradiction,
assume there is an fi ∈ J \H(c). As fi ∈ I there is a d ∈ N , c 6= d, such that fi ∈ H(d).
Moreover, by choice of c, |H(d) ∩ J | ≤ |H(c) ∩ J | and thus there must be a fact fj ∈ H(c)

2 To simplify notation, in the definition of B and eval, we do not mention I and N as they are implied
by H.



B. Ketsman and F. Neven 297

that is not in H(d). However, as fi ∼Q fj , fi 6∈ H(c), and fj 6∈ H(d), instances H(d), H(c),
and facts fi, fj contradict condition (2). J

4.2 Local optimality
We are interested in OBFs that transmit as little data as possible. Thereto, we investigate
sensible notions of optimality. We fix a query Q, an instance I, a distribution H of I, and a
network N . The total number of transmitted facts equals ||B(f,H)|| =

∑
c∈N |f(H(c))|. Of

course, ||B(f,H)|| ≥ |B(f,H)|.

I Definition 5. An OBF f for a CQ Q is optimal iff ||B(f,H)|| ≤ ||B(g,H)|| for every other
OBF g for Q and for every instance I and distribution H.

Intuitively, an OBF is optimal when it transmits the least amount of data over all instances
and all distributions. The next result, however, shows that this notion of optimality, although
desirable, is unattainable.

I Lemma 6. There is no optimal OBF for any conjunctive query with at least two distinct
atoms in its body.

Proof. Let Q be the conjunctive query A0 ← A1, . . . , An with n ≥ 2. Towards a contradiction
assume there is an optimal OBF f for Q. Let I be the canonical instance for Q where for
every i ∈ [n], the relation pred(Ai) is interpreted by the fact Ai.3 Now, consider a network
N = [n] and a distribution H that places every fact in I on a distinct node. As all of the n
facts in I need to be gathered at one node, at least n− 1 facts must be broadcast. Let g be
the fact in I that is not broadcast by f and assume w.l.o.g. that pred(g) = An. As the OBF
that broadcasts all Ai-facts for i < n and keeps all An-facts static is correct for Q and only
transmits n− 1 facts on I, by assumption on the minimality of f , ||B(f,H)|| = n− 1. Now,
consider I ′ = I \ {g}. And let H ′ equal H restricted to only facts in I ′ over N . Then, as
g is not broadcast in H, ||B(f,H)|| = ||B(f,H ′)||. However, the OBF that broadcasts all
Ai-facts for i > 1 and keeps all A1-facts static is correct for Q and only broadcasts n − 2
facts on I ′ contradicting the optimality of f . J

We next turn to a different form of optimality. For two OBFs f and g, we say that f is
included in g, denoted f ⊆ g, iff f(I) ⊆ g(I) for every instance I.

I Definition 7. An OBF f for a CQ Q is local optimal iff for every other broadcasting
function g for Q, g ⊆ f implies f = g.

Intuitively, when f is local optimal there is no subdivision of f that transmits only a strict
subset of the facts broadcast by f .

The next lemma gives a sufficient criteria for when an OBF can not be local optimal.
Specifically, a condition is given for when a broadcast fact f can be kept static and a more
economical OBF f ′ can be derived.

I Lemma 8. Let Q be a CQ and let f be an OBF for Q. If there is an instance I and fact
f for which f ∈ f(I ∪ {f}), but there is no instance J and no fact g for which f ∼Q g, g 6∈ I,
f 6∈ J , and g 6∈ f(J ∪ {g}), then there is an OBF f ′ for Q for which f ′ ( f .

3 Notice that we abuse the notation and interpret variables as values.

ICDT 2015



298 Optimal Broadcasting Strategies for Conjunctive Queries over Distributed Data

Proof. Assume f , I, and f as given by the statement of the lemma. The proof is now by
construction. Let If,J be the set of facts that (by genericity) relate the same way to J , as f
to I. That is, If,J = {π(f) | π a permutation s.t. π(I) = J}. Then, define f ′ as the mapping
where for every instance J , f ′(J) = f(J) \ If,J . Notice that f ′ ( f by construction of f ′.
Furthermore, f ′ is generic and is an oblivious broadcasting function. It remains to show that
f ′ is an oblivious broadcasting function for Q. Towards a contradiction, assume that f ′ is
not an oblivious broadcasting function for Q. Then, by Lemma 4, there are instances J1 and
J2 and facts g1 and g2, for which g1 ∼Q g2,g2 6∈ J1, g1 6∈ J2, and g1 6∈ f ′(J1 ∪ {g1}) and
g2 6∈ f ′(J2 ∪ {g2}). As f is an oblivious broadcasting function for Q, it holds that

g1 ∈ f(J1 ∪ {g1}) or g2 ∈ f(J2 ∪ {g2}).

Say that g1 ∈ f(J1 ∪ {g1}). Then, g1 ∈ If,J1 , implying J1 = π(I) and g1 = π(f) for some
permutation π. As Q does not contain self-joins and g1 ∼Q g2, this means that g2 6∈ If,J .
Therefore, g2 6∈ f(J2 ∪ {g2}) which contradicts the condition of the lemma (taking π−1(g1)
and π−1(J2) as g and J , respectively). J

The following lemma now characterizes when an OBF for a query is local optimal.

I Lemma 9. Let Q be a CQ and let f be an OBF for Q. The following are equivalent:
1. f is local optimal; and
2. for every instance I and fact f for which f ∈ f(I ∪ {f}), there is an instance J and a fact

g such that f ∼Q g, g 6∈ I, f 6∈ J , and g 6∈ f(J ∪ {g}).

Proof. We can assume that Q contains at least two atoms. Indeed, when Q contains one
atom, the only local optimal OBF is the one that broadcasts no facts and the lemma trivially
holds. The direction from (1) to (2) follows from Lemma 8.

(2)⇒(1) Let f be an OBF for Q. Towards a contradiction assume that f is not local
optimal. That is, there exists another OBF f ′ for Q such that f ′ ( f . In particular, there is
an instance I and a fact f such that f 6∈ f ′(I ∪ {f}), while f ∈ f(I ∪ {f}). By Lemma 4, for
every fact g with f ∼Q g where g 6∈ I, and for every instance J , where f 6∈ J , it must be that
g ∈ f ′(J ∪ {g}). The latter then implies that for every such g and J , g ∈ f(J ∪ {g}) which
contradicts condition (2) of the present lemma. J

5 Broadcasting functions based on dependency sets

In this section, we introduce the notion of a broadcast dependency set (BDS) as a formalism
to specify OBFs. We present necessary and sufficient conditions for when a BDS induces an
OBF which is correct for a given query and also for when it is local optimal. Furthermore,
we study the complexity of the corresponding decision problems. Finally, we show that every
local optimal OBF can be represented by a BDS thereby obtaining that BDS is complete as
a representation formalism for local optimal OBFs.

5.1 Broadcast dependency sets
Let Q be the CQ A0 ← A1, . . . , An. We assume Q is full and does not contain self-joins.
Therefore an atom Ai in bodyQ is uniquely identified by its predicate pred(Ai). For a predicate
R, we denote by atom(R) the unique atom A ∈ bodyQ for which pred(A) = R.

For a finite set of variables X, a partial (equality) type over X is a pair of binary relations
ϕ = (Eϕ, Iϕ) representing equalities and inequalities among elements in X. Formally, we
require that Eϕ ∪ Iϕ ⊆ X × X, Eϕ is an equivalence relation, and Iϕ is irreflexive and



B. Ketsman and F. Neven 299

symmetric. We abuse notation and also use ϕ to denote the formula
∧
{x = y | (x, y) ∈

Eϕ} ∧
∧
{x 6= y | (x, y) ∈ Iϕ}. We tacitly assume that partial types are always consistent.

That is, we always assume that there is a tuple ā such that the formula ϕ(ā) evaluates to true.
When for all (x, y) ∈ X ×X, either (x, y) ∈ Eϕ or (x, y) ∈ Iϕ, then ϕ completely specifies
all relations between variables in X and we call ϕ a type. For emphasis, we sometimes say
complete type rather than just type even though type always means complete type.

A partial atomic type (over Q) is a pair τ = (Rτ , ϕτ ), where Rτ is a database predicate
and ϕτ is a partial type over Vars(atom(Rτ )), that is, the variables occurring in the unique
atom A ∈ bodyQ for which pred(A) = Rτ . By Vars(τ) we denote the variables over which
τ is defined, i.e., Vars(τ) = Vars(atom(Rτ )). Sometimes we write atom(τ) to abbreviate
atom(Rτ ). We say that τ is an atomic type when ϕτ is a type. To improve readability,
we denote partial atomic types with τ and (complete) atomic types with ω. We denote
by PTypes(Q) and Types(Q) the set of all partial atomic types and atomic types over Q,
respectively.

A fact f is of type τ or satisfies τ , denoted f |= τ , when there is a valuation h from the
variables in atom(Rτ ) onto Adom(f) such that h(atom(Rτ )) = f and the formula ϕτ evaluates
to true where each xi is substituted by h(xi). Notice that h is unique for f. Hereafter we will
refer to h as Vf. By type(f), we denote the unique atomic type satisfied by f when it exists.
As atomic types are defined w.r.t. Q, type(f) is not always defined. Indeed, when f = R(a, b)
(with a 6= b) and atom(R) = R(x, x), then there is no τ with f |= τ . Two partial atomic
types τ, τ ′ are compatible w.r.t. Q, denoted τ ∼Q τ ′, when there are facts f and g with f |= τ

and g |= τ ′ such that f ∼Q g. We say that τ implies τ ′, denoted τ |= τ ′, if for all facts f,
f |= τ implies f |= τ ′. We can think of a partial atomic type as a disjunction of types for a
shared predicate symbol. Define Types(τ) = {ω ∈ Types(Q) | ω |= τ} as the set of all atomic
types ω which imply τ . Notice that, ω |= τ iff ω ∈ Types(τ) for any atomic type ω. For a set
of partial atomic types T , we use Types(T ) as an abbreviation for

⋃
τ∈T Types(τ).

For a set of variables X and Y , and a partial atomic type τ , X ⊆τ Y if for all x ∈ X
either x ∈ Y or there is an y ∈ Y such that (x, y) ∈ Eϕτ . That is, X is a subset of Y when
taking the equalities in Eϕτ into account. For instance, let τ be a type such that (y, z) ∈ Eϕτ ,
then {x, y, z} ⊆τ {x, y}.

For a set of pairs S, we define Keys(S) = {a | (a, b) ∈ S} and Values(S) = {b | (a, b) ∈ S}.

I Definition 10. A broadcast dependency set (BDS) for a CQ Q is a set S of pairs (τ, T ),
where τ ∈ PTypes(Q) is a key, and T ∈ 2PTypes(Q) is a dependency set, such that the following
holds:
1. (τ, T ) ∈ S and (τ, T ′) ∈ S implies T = T ′;
2. τ, τ ′ ∈ Keys(S) implies Types(τ) ∩ Types(τ ′) = ∅; and,
3. (τ, T ) ∈ S implies Vars(τ ′) ⊆τ ′ Vars(τ) for every τ ′ ∈ T .

The above definition states that (1) every key can have at most one value in S; (2) every
complete type implies at most one partial type τ ∈ Keys(S); and, (3) the set of variables
of atom(τ ′) is included in the set of variables of atom(τ) taking into account the equalities
in Eτ ′ . We first explain informally how a BDS represents an OBF. Let f be a fact in the
local instance at a computing node. When type(f) is undefined, then f is static as f can never
participate in any satisfying valuation. For instance this happens when f = R(a, b) with
a 6= b and Q contains the atom R(x, x). Every pair (τ, T ) ∈ S now specifies a condition on
facts: when f |= τ then f is broadcast only if a set of facts implied by T (to be formalized
below) is not present at the local instance. Furthermore, when there is no τ ∈ Keys(S) for
which f |= τ , f is broadcast as well. In this light, conditions (1) and (2) ensure that every

ICDT 2015



300 Optimal Broadcasting Strategies for Conjunctive Queries over Distributed Data

local fact f is matched by at most one partial type τ ∈ Keys(S); and, condition (3) ensures
that when f |= τ then Vf can be extended in a unique way to a valuation for every τ ′ ∈ T
that is consistent with f, that is, for which type(f) ∼Q τ ′.

Next, we formally define how every BDS S implies an OBF fS . Given a fact f, if there
is no τ ∈ Keys(S) for which f |= τ then f is always broadcast. Otherwise, by condition (1)
and (2) of Definition 10, there is exactly one τ ∈ Keys(S) such that f |= τ . Recall that
Vf is the valuation (defined above) such that Vf(atom(τ)) = f. Then, by condition (3) of
Definition 10, Vf can also be interpreted as a valuation for every atom(τ ′) for every τ ′ ∈ T for
which type(f) ∼Q τ ′. Indeed, for every y ∈ Vars(τ ′) \Vars(τ) there is a variable x ∈ Vars(τ)
for which (x, y) ∈ Eτ ′ . Therefore, define for every y ∈ Vars(τ ′),

Vf,τ ′(y) =
{
Vf(y) if y ∈ Vars(τ); and,
Vf(x) if y 6∈ Vars(τ) and (x, y) ∈ Eτ ′ .

As we only consider Vf,τ ′ for which type(f) ∼Q τ ′, the above is well-defined.
Now, f is broadcast when the local instance does not contain all the facts Vf,τ ′(atom(τ ′))

for which τ ′ ∈ T and type(f) ∼Q τ ′. We refer to these facts as the dependency fact set. To
formally define fS , we set Dep(f, T ) = {Vf,τ ′(atom(τ ′)) | τ ′ ∈ T and type(f) ∼Q τ ′}. Then,
define Dep(f,S) as Dep(f, T ) when there is a (τ, T ) ∈ S for which f |= τ . Otherwise, Dep(f,S)
is undefined.

I Definition 11. For a CQ Q and a BDS S for Q, define fS as the function that maps every
instance J to the set fS(J) of those facts f ∈ J for which (1) type(f) ∈ Types(Q); and, (2)
Dep(f,S) is undefined or Dep(f,S) 6⊆ J .

Intuitively, f is static only when type(f) 6∈ Types(Q) (f can not participate in any satisfying
valuation) or the dependency fact set Dep(f,S) is present at the local instance.

I Example 12. (1) For a simple example of a BDS S and OBF fS , recall query Q1 from
Example 1, being Q1(x, y, z)← A(x, y), B(y, x), C(x, z). Let ϕ = (∅, ∅), that is, ϕ imposes
no restrictions. Let τA = (A,ϕ) and τB = (B,ϕ). Then, S = {(τB , {τA}), (τA, ∅)} is a
BDS for Q1. Indeed, every partial atomic type occurs at most once as a key. There is no
(complete) atomic type that implies both τA and τB . Furthermore, the variable containment
condition between τA and τB is satisfied. Notice that fS simulates exactly the broadcast
dependency function which is described in Example 1.

(2) Consider the query Q2(x, y, z) ← A(x, y, z), B(x, y, z), C(z, z). For simplicity, we
define partial types through formulas. Then, define τB = (B, true), τx=y

A = (A, x =
y), τy=z

A = (A, y = z), τ 6=A = (A, x 6= y ∧ y 6= z), τ 6=B = (B, x 6= y ∧ y 6= z). Then,
S = {(τB , {τx=y

A , τy=z
A }), (τ 6=A , {τ

6=
B })} is a BDS for Q2. To illustrate how OBF fS works,

let I = {A(1, 2, 3), B(1, 2, 3), A(1, 1, 2), B(1, 1, 2), A(1, 2, 2), B(1, 2, 2), C(3, 4), C(3, 3)} be a
database instance. Then, fS(I) = {A(1, 1, 2), A(1, 2, 2), C(3, 3)}. Indeed, the facts A(1, 1, 2),
A(1, 2, 2), C(3, 3) do not match a key in S and their type occurs in Types(Q). So they are
broadcast. The fact C(3, 4) is not broadcast as its type does not occur in Types(Q) (C(3, 4)
does not match C(z, z)). The fact f1 = B(1, 1, 2) matches τB and Dep(f1, {τx=y

A , τy=z
A }) =

{A(1, 1, 2)} ⊆ I. Therefore, B(1, 1, 2) is static. Similarly, the fact f2 = B(1, 2, 2) matches
τB and Dep(f2, {τx=y

A , τy=z
A }) = {A(1, 2, 2)} ⊆ I. Therefore, B(1, 2, 2) is static as well. The

fact f3 = A(1, 2, 3) is static as it matches τA and Dep(f3, {τ 6=b }) = {B(1, 2, 3)} ⊆ I. The fact
f4 = B(1, 2, 3) is static as it matches τB and Dep(f4, {τx=y

A , τy=z
A }) = ∅.

(3) For an example where condition (3) of Definition 10 does not reduce to ordinary
variable containment, consider again query Q1 from Example 1. Let τC = (C, x = z), and



B. Ketsman and F. Neven 301

τA = (A, true). Then, S = {(τA, {τC}), (τC , ∅)} is a BDS for Q1. Notice that condition
Vars(C) 6⊆ Vars(A) but Vars(τC) ⊆τC Vars(τA).

(4) Our final example shows that dependencies can be circular. Let Q3(x, y, z) ←
A(x, y), B(y, z), C(z, x). Let τA = (A, x = y), τB = (B, x = y), and τC = (C, x = y). Then,
S = {(τA, {τB}), (τB , {τC}), (τC , {τA})} is an OBF for Q1. Though correctness of S for
Q follows from Lemma 13, we provide some intuition. Let I = {A(1, 1), B(1, 1), C(1, 1)}
be a database instance. Consider a network containg the nodes c1, c2, and c3. When
I(c1) = {A(1, 1)}, I(c2) = {B(1, 1)}, and I(c3) = {C(1, 1)}, then all three facts will be
broadcast. Now, assume one of the nodes contains two of the facts in I, w.l.o.g., say
I(c1) = {A(1, 1), B(1, 1)}. Then, exactly one of the facts in I(c1) is broadcast; i.e., B(1, 1).
Now, suppose that C(1, 1) is mapped on some node, say c2, but that C(1, 1) is not broadcast.
Then it must be that A(1, 1) is mapped on c2 as well. So, broadcasting B(1, 1) indeed suffices
to guarantee correctness. J

Note that not every BDS for Q induces an OBF which is correct for Q. Indeed, the
following lemma provides equivalent semantic and syntactic conditions for an OBF fS to be
correct for a query.

I Lemma 13. Let Q be a CQ and let S be a BDS for Q. Then the following are equival-
ent:
1. fS is an OBF for Q;
2. there are no instances I, J , and facts f, g, with f ∼Q g, g 6∈ I, f 6∈ J such that f 6∈ fS(I∪{f})

and g 6∈ fS(J ∪ {g}); and
3. there are no (complete) atomic types ω1, ω2, and pairs (τ1, T1), (τ2, T2) ∈ S, with ω1 ∼Q ω2,

ω1 |= τ1, ω2 |= τ2 such that ω1 6∈ Types(T2) and ω2 6∈ Types(T1).

Proof. (1)⇔(2) Because fS is an OBF, the equivalence follows immediately from Lemma 4.
(2)⇒(3) The proof is by contraposition. So, assume that there are two (complete) atomic

types ω1, ω2, and pairs (τ1, T1), (τ2, T2) ∈ S, with ω1 ∼Q ω2, ω1 ∈ Types(τ1), ω2 ∈ Types(τ2)
such that ω1 6∈ Types(T2) and ω2 6∈ Types(T1). Now, because ω1 ∼Q ω2, there are facts f and
g, with f ∼Q g, type(f) = ω1, and type(g) = ω2. Define I = Dep(f,S) and J = Dep(g,S).
Observe that by definition of Dep, ω1 6∈ Types(T2) implies f 6∈ Dep(g,S) and ω2 6∈ Types(T1)
implies g 6∈ Dep(f,S). Hence, f 6∈ J and g 6∈ I. Moreover, by definition of fS , it is always
the case that f 6∈ fS(Dep(f,S)∪ {f}) and g 6∈ fS(Dep(g,S)∪ {g}). Therefore, f 6∈ fS(I ∪ {f})
and g 6∈ fS(J ∪ {g}), which contradicts condition (2).

(3)⇒(2) Again, the proof is by contraposition. So, assume that there is an instance I and
J and facts f and g where f ∼Q g, g 6∈ I and f 6∈ J , but f 6∈ fS(I ∪ {f}) and g 6∈ fS(J ∪ {g}).
As f ∼Q g, we have ω1 ∼Q ω2 for ω1 = type(f) and ω2 = type(g). Then, by construction of
fS there are (τ1, T1), (τ2, T2) ∈ S with type(f) ∈ Types(τ1) and type(g) ∈ Types(τ2). Now,
f 6∈ fS(I ∪ {f}) and g 6∈ fS(J ∪ {g}) implies Dep(f,S) ⊆ I and Dep(g,S) ⊆ J . If we assume
that type(g) ∈ Types(T1) then g ∈ Dep(f,S) (as g = Vf,type(g)(atom(type(f)))), and therefore
g ∈ I which leads to a contradiction. Hence, type(g) 6∈ Types(T1). A similar argument
shows that type(f) 6∈ Types(T2). So, we have found ω1, ω2, (τ1, T2), and (τ2, T2) contradicting
condition (3). J

Notice that the OBFs of Example 12 are all correct for the given query.
Two partial atomic types τ1, τ2 are said to be equal, denoted τ1 = τ2, when Types(τ1) =

Types(τ2). We say that a BDS S is harmonious when every two partial types in S are either
disjoint or equal. That is, when for every two partial atomic types τ1, τ2 ∈ Keys(S) ∪ {τ ′ ∈
T | T ∈ Values(S)}, either τ1 = τ2 or Types(τ1) ∩ Types(τ2) = ∅.

ICDT 2015



302 Optimal Broadcasting Strategies for Conjunctive Queries over Distributed Data

I Theorem 14. Let Q be a CQ and let S be a BDS for Q. Deciding whether fS is correct
for Q is conp-complete and in ptime when S is harmonious.

5.2 Local optimality
Next, we turn to local optimal OBFs. The following lemma provides equivalent semantic and
syntactic conditions for an OBF to be local optimal. Regarding condition (3), the intuition
is as follows. While condition (3c) is the syntactic counterpart of condition (2), conditions
(3a) and (3b) specify optimality requirements which are inherent to the formalism of BDS.
More specifically, condition (3a) specifies that every atomic type implying a partial type in
a dependency set in S must also imply a key in S. Indeed, when an atomic type does not
imply a key, every local fact of this type is always broadcast and therefore present at every
computing node. The atomic type can therefore be removed from every dependency set it
occurs in. When Condition (3b) fails for an atomic type ω, S can be adapted to broadcast less
while preserving correctness for Q by adding the pair (ω, {τ | τ ∼Q ω, τ ∈ Types(Keys(S))}).

I Lemma 15. Let Q be a CQ, S a BDS for Q, and fS an OBF for Q. The following are
equivalent:
1. fS is local optimal;
2. for every instance I and fact f for which f ∈ fS(I ∪ {f}), there is an instance J and a

fact g such that f ∼Q g, g 6∈ I, f 6∈ J , and g 6∈ fS(J ∪ {g}); and,
3. S satisfies the following conditions:

(a) for (τ, T ) ∈ S and ω ∈ Types(T ), ω ∼Q τ implies ω |= τ ′ for some τ ′ ∈ Keys(S);
(b) for every ω ∈ Types(Q) \Types(Keys(S)), there is a partial atomic type τ1 ∈ Keys(S)

and a ω1 ∈ Types(τ1) such that ω ∼Q ω1 and Vars(ω1) 6⊆ω1 Vars(ω); and
(c) for (τ1, T1), (τ2, T2) ∈ S, where ω1 ∈ Types(τ1), ω2 ∈ Types(τ2), and ω1 ∼Q ω2:

ω1 ∈ Types(T2) implies ω2 6∈ Types(T1).

Deciding whether fS is local optimal for arbitrarily given BDS S turns out to be hard
(c.f., Theorem 16). Therefore, we also consider the special case of open BDSs. We say that a
partial type ϕ = (E, I) is open when it enforces no restrictions. That is, when E = I = ∅. A
partial atomic type (R,ϕ) is open when ϕ is. We say that a BDS S is open when it only
contains open partial atomic types. Notice that a BDS that is open is also harmonious (but
not vice versa).

Similarly to Theorem 14, we have the following decidability result for local optimal OBFs.

I Theorem 16. Let Q be a CQ and let S be a BDS for Q for which fS is correct for Q.
Deciding whether fS is local optimal is in conp and in ptime when S is open.

It remains open though whether deciding local optimality is conp-complete or in ptime
(even for harmonious BDS). For harmonious BDS, condition (1) and (3) of Lemma 15 are
verifiable in polynomial time.

Next, we show that every local optimal OBF can be represented by a BDS thereby
obtaining that BDSs (satisfying the conditions in Lemma 15) are a complete representation
of local optimal OBFs. Let Q be a CQ and let f be an OBF for Q. We call a fact f
semi-static for f when there is an atomic type ω and an instance I such that f 6∈ f(I ∪ {f})
and type(f) = ω. That is, f has an atomic type and there is an instance for which f is not
broadcast. We say that a semi-static fact f (for f) depends on a fact g, when f 6∈ f(I ∪ {f})
implies g ∈ I for every instance I. With every semi-static fact f, we associate the set Df
containing exactly all facts on which f depends. Thus, f 6∈ f(I ∪ {f}) implies Df ⊆ I.

We make use of the following lemma in the proof of Theorem 18.



B. Ketsman and F. Neven 303

I Lemma 17. Let Q be a CQ, and f be a local optimal OBF for Q. Let f be semi-static for
f . Then, f 6∈ f(Df ∪ {f}). Furthermore, g ∈ Df implies
1. g is semi-static and g ∼Q f;
2. Adom(g) ⊆ Adom(f);
3. Vars(atom(g)) ⊆type(g) Vars(atom(f)); and
4. g = Vf,type(g)(atom(g));

We are now ready to prove completeness. The proof of the following theorem shows that
the formalism of BDS that only uses complete atomic types can already represent every local
optimal OBF.

I Theorem 18 (Completeness). Let Q be a CQ and f a local optimal OBF for Q. Then,
there is a BDS S for Q such that f = fS .

Proof. We start by noting that if f is semi-static for f , then every g with type(f) = type(g)
is semi-static for f as well. Therefore, we say that an atomic type τ is semi-static for f when
there is a semi-static fact f with type(f) = τ . The proof is by construction. Let S be the
set of pairs (τ,Dτ ) where τ is semi-static for f and Dτ = Types(Df), where f is a fact with
atomic type τ .

We first show that S is a BDS and then that f = fS . Notice that, S has only finitely
many pairs, because there are only finitely many distinct atomic-types, and every set in
Values(S) is finite by construction. Let (τ, T ) ∈ S, and τ ′ ∈ T . By construction of S, τ
is a semi-static atomic type for f and for every atomic type τ there is at most one pair
(τ, T ) ∈ S. Furthermore, T = Dτ . Let f be a fact of type τ . Then, f is a semi-static fact
for f and there is a g ∈ Df, such that type(g) = τ ′. By Lemma 17(3), Vars(atom(τ ′)) =
Vars(atom(g)) ⊆type(g) Vars(atom(f)) = Vars(atom(τ)). So, S is a broadcast dependency set
for query Q.

Next, we show that f = fS . For this, we assume Df = Dep(f, Dtype(f)) (which is argued
below) and show that f 6∈ f(I ∪ {f}) iff f 6∈ fS(I ∪ {f}).

Let f be a fact and I an instance, such that f 6∈ f(I ∪ {f}). If f has no atomic type, then
it is never broadcast by fS . So, assume f has an atomic type. Then it must be that Df ⊆ I.
However, because (type(f), Dtype(f)) ∈ S and Df = Dep(f, Dtype(f)), Dep(f,S) ⊆ I. Hence, by
definition of fS , f 6∈ fS(I ∪ {f}).

For fact f and instance I, where f ∈ f(I ∪ {f}), Lemma 9 implies that f has an atomic
type. Either, f is always broadcast by f , or it is semi-static for f. The former implies that
there is no pair in S of the form (type(f), T ). So, f is broadcast by fS as well. The latter
implies by Lemma 17 that Df 6⊆ I and there is a pair (type(f), Dtype(f)) ∈ S. In particular,
because Dep(f, Dtype(f)) = Df, Dep(f, Dtype(f)) 6⊆ I, which implies that f 6∈ fS(I ∪ {f}).

It remains to show that Df = Dep(f, Dtype(f)). Because g ∈ Df, implying type(g) ∈
Dtype(f), it follows by Lemma 17(4) that g ∈ Dep(f, Dtype(f)). For the reverse direction,
let g ∈ Dep(f, Dtype(f)), which implies type(g) ∈ Dtype(f). So, there must be some fact
g′, which is of the same type as g, in Df. In particular, because Df ⊆ Dep(f, Dtype(f)),
g′ = Vf,type(g′)(atom(g′)). However, because g = Vf,type(g)(atom(g)), atom(g) = atom(g’),
and type(g′) = type(g), it must be that g = g′. So, indeed g ∈ Df. J

6 Algorithms for constructing a BDS

Lemma 13 and Lemma 15 yield a natural algorithm for constructing a local optimal OBF for
a given conjunctive query Q by simply starting from S = ∅ and adding new pairs in a one
by one fashion till no more pairs can be added. More formally, we introduce the algorithm

ICDT 2015



304 Optimal Broadcasting Strategies for Conjunctive Queries over Distributed Data

Input: conjunctive query Q
Param: sequence of partial types R
S = ∅;
foreach τ ∈ R do

addPair = true;
Values = ∅;
foreach τ ′ ∈ Keys(S), where τ ′ ∼Q τ do

Values = Values ∪{τ ′};
if Vars(τ ′) 6⊆τ ′ Vars(τ) then

addPair = false;
end

end
if addPair then
S = S ∪ {(τ,Values)};

end
end
return S

Algorithm 1: Algorithm bds-build.

bds-build, given in Algorithm 1. As there are exponentially many (in the size of Q) partial
atomic types, we parameterize bds-build by a sequence R of partial atomic types.4 The
algorithm then produces a set of pairs (τ, T ) ∈ PTypes(Q)× 2PTypes(Q).

The following theorem obtains the correctness of bds-build. The complexity follows
directly from the size of R which is polynomial in the size of Q for open types and exponential
for complete types.

I Theorem 19. For a conjunctive query Q and a sequence R consisting of exactly the complete
(respectively, open) types, bds-build(Q) computes a BDS S for Q in time exponential
(respectively, polynomial) in the size of Q such that fS is correct for Q and local optimal.

I Example 20. We illustrate bds-build by means of an example.
Consider the conjunctive query Q(x, y, z, w)← A(x, y, z), B(x, y, z), C(z, w).

1. Open types. Observe that query Q has three open types, being τA = (A, true), τB =
(B, true), and τC = (C, true). Let R = (τA, τB , τC). Then, bds-build computes a
BDS by starting from S = ∅, expanding S to {(τA, ∅)} in the first iteration and to
{(τA, ∅), (τB , {τA})} in the second iteration. During the last iteration, S is not changed
anymore, because Vars(τA) 6⊆τA Vars(τC).

2. Complete types. The (complete) atomic types for Q are

τ 6=X = (X,x 6= y ∧ y 6= z ∧ x 6= z), τx=z
X = (X,x = z ∧ z 6= y ∧ y 6= z),

τx=y
X = (X,x = y ∧ x 6= z ∧ y 6= z), τy=z

X = (X,x 6= y ∧ y = z ∧ z 6= x),

τ=
X = (X,x = y ∧ x = z ∧ y = z), τ=

C = (C, z = w), and τ 6=C = (C, z 6= w),

where X ∈ {A,B}.5 Let R = (τ 6=B , τ=
C , τ

6=
C , τ

x=z
B , τx=y

A , τ 6=A , τ
x=z
A , τ=

A , τ
=
B , τ

y=z
A , τx=y

B , τy=z
B ).

4 We use a sequence rather than a set R to keep bds-build deterministic.
5 For convenience we represent atomic types here by partial atomic types with sufficient (but not complete)
conditions; e.g., we write (C, x = y) to denote (C, x = y ∧ y = x). Nevertheless, all of the listed pairs
indeed correspond to a single (complete) atomic type.



B. Ketsman and F. Neven 305

Then, the output of algorithm bds-build(Q) is the BDS S = {(τ 6=B , ∅), (τx=z
B , ∅), (τx=y

A , ∅),
(τ 6=A , {τ

6=
B }), (τx=z

A , {τx=z
B }), (τ=

A , ∅), (τ=
B , {τ=

A }), (τ
y=z
A , ∅), (τx=y

B , {τx=y
A }), (τy=z

B , {τy=z
A })}.

Observe that the atomic types τ=
C and τ 6=C are not part of S because the variable

containment condition is not satisfied by the earlier included atomic type τ 6=B .
Observe that the constructed BDS S can be simplified by merging multiple atomic types
into partial atomic types; e.g., for S ′ = {(τA, {τ 6=B , τx=z

B }), (τB , {τx=y
A , τ=

A , τ
y=z
A })}, we

have fS = fS′ . J

Notice that when R consists of the complete or open atomic types, adding pairs to a
given BDS S as is done by bds-build(Q) results in a BDS S ′ that describes an OBF that
broadcasts strictly less facts, i.e., fS′ ( fS . That is, adding pairs optimizes the OBF.

I Remark. By construction, bds-build(Q) prevents any circular dependencies by stratifying
the construction of S so that partial atomic types can only depend on partial atomic types
that where added before. As illustrated in Example 12(4), dependencies in a BDS can also
be circular. To allow for these bds-build can be modified as follows: as an alternative
for adding pairs (τ, T ) where every existing key that is compatible with τ is included in
T , we can allow adding pairs where some keys that are compatible with τ are in T , and
for every other compatible key, their respective value set is expandend to contain τ ; i.e.,
allowing pairs of the form (τ,D), where D is a subset of C = {ω′ ∈ Keys(S) | ω′ ∼Q ω}
satisfying Vars(ω′) ⊆ω′ Vars(ω) for every ω′ ∈ D, and where every existing pair (ω′, T ),
where ω′ ∈ C \D, is expanded to (ω′, T ∪ {ω}). Particularly notice that when a given BDS
S is changed to S ′ by adding a pair and expanding at least one of the existing pairs as
described above, the inherent nature of the described OBF changes, so that not necessarily
fS′ ( fS .

I Remark. Although the machinery developed throughout this paper is motivated by gaining
a better understanding of the spectrum of local optimal OBFs, the reader may notice that
when no (statistical) information on the actual distribution of the data is available, there is
no basis to favor one local optimal OBF over another.

In fact, there is already a very simple algorithm to find an arbitrary local optimal OBF
for given CQ Q which is as good as any local optimal one (when no additional information
on the distribution of the data is available). Indeed, consider an arbitrary order on the
predicates of Q:

For every local fact f, with predicate R, if there is an earlier predicate S such that
some variable in Vars(S) is not in Vars(R), f is broadcast; otherwise, f is broadcast
only if all the facts induced by Vf on query Q are in the local instance.

Of course, not every local optimal OBF can take this form.

7 Discussion

We investigated local optimal oblivious broadcasting functions represented by the formalism
of broadcast dependency sets. We obtained semantical and syntactical characterizations,
showed completeness of BDSs for representing local optimal OBFs, and gave an algorithm for
constructing local optimal OBFs for a given conjunctive query. We present several directions
for future work: more expressive query languages, incorporating background knowledge, and
non-oblivious broadcast functions.

An obvious question is how to generalize our results to the class of all conjunctive queries
(possibly extended with negation) or even to (subsets of) Datalog. Of course, to evaluate non-

ICDT 2015



306 Optimal Broadcasting Strategies for Conjunctive Queries over Distributed Data

monotonic queries in a coordination-free manner, computing nodes need more information
on how data is distributed (c.f., [6]).

We only discussed how to build a BDS when no information about the way data is
distributed is available. Indeed, the best one can do is to let a BDS cover as much types
as possible, but at the same time introduce as little dependencies as possible, as these are
likely to fail when data is arbitrarily distributed. It would be interesting to devise optimal
broadcasting algorithms taking more background knowledge into account like information
about clustering of attributes, foreign keys, or cardinality of relations.

Another interesting direction for future work is to investigate non-oblivious broadcasting
functions where over time, when new messages arrive, static facts can become broadcast
facts (but not vice versa). Such functions are initially more conservative keeping more facts
static and only broadcast facts when there is some evidence that they can be used at another
computing node. For instance, consider the setting of Example 1. Rather than immediately
sending B(i, j) whenever A(j, i) is locally absent, broadcasting is suspended until a C-fact
of the form C(j, k) is received. The rationale is that a B-fact that can not contribute to a
locally satisfying valuation, should only be broadcast when some evidence is received that it
could potentially contribute to a satisfying valuation on a remote node. For our example
this means that c waits to send B(2, 1) until C(1, 3) arrives. Moreover, B(4, 4) is never sent.
While non-oblivious strategies might seem more attractive as they transmit fewer tuples,
such strategies, while remaining coordination-free, can increase the overall evaluation time.

Acknowledgment. We thank Phokion Kolaitis for raising the question whether it is always
necessary to broadcast all the data in the context of the work in [5]. We thank the reviewers
for their in-depth comments and numerous suggestions for improving the presentation of the
results.

References
1 F. N. Afrati and J. D. Ullman. Optimizing joins in a map-reduce environment. In Interna-

tional Conference on Extending Database Technology (EDBT), pages 99–110, 2010.
2 Foto N. Afrati, Paraschos Koutris, Dan Suciu, and Jeffrey D. Ullman. Parallel skyline

queries. In International Conference on Database Theory (ICDT), pages 274–284, 2012.
3 Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak. Consistency analysis

in bloom: a CALM and collected approach. In Conference on Innovative Data Systems
Research (CIDR), pages 249–260, 2011.

4 Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and David Maier. Blazes: Coordina-
tion analysis for distributed programs. In International Conference on Data Engineering
(ICDE), pages 52–63. IEEE, 2014.

5 Tom J. Ameloot, Bas Ketsman, Frank Neven, and Daniel Zinn. Weaker forms of monoton-
icity for declarative networking: a more fine-grained answer to the CALM-conjecture. In
Symposium on Principles of Database Systems (PODS), pages 64–75. ACM, 2014.

6 Tom J. Ameloot, Frank Neven, and Jan Van den Bussche. Relational transducers for
declarative networking. Journal of the ACM, 60(2):15, 2013.

7 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. In Symposium on Principles of Database Systems (PODS), pages 273–284,
2013.

8 Paul Beame, Paraschos Koutris, and Dan Suciu. Skew in parallel query processing. In
Symposium on Principles of Database Systems (PODS), pages 212–223, 2014.

9 Peter Buneman, James Cheney, Wang Chiew Tan, and Stijn Vansummeren. Curated data-
bases. In Symposium on Principles of Database Systems (PODS), pages 1–12. ACM, 2008.



B. Ketsman and F. Neven 307

10 Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A characteriza-
tion of data provenance. In International Conference on Database Theory (ICDT), volume
1973 of Lecture Notes in Computer Science, pages 316–330. Springer, 2001.

11 Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein, and David Maier.
Logic and lattices for distributed programming. In Symposium on Cloud Computing
(SoCC), page 1. ACM, 2012.

12 Wenfei Fan, Floris Geerts, and Leonid Libkin. On scale independence for querying big data.
In Symposium on Principles of Database Systems (PODS), pages 51–62. ACM, 2014.

13 Sumit Ganguly, Abraham Silberschatz, and Shalom Tsur. Parallel bottom-up processing
of datalog queries. Journal of Logic Programming, 14(1&2):101–126, 1992.

14 Joseph M. Hellerstein. The declarative imperative: experiences and conjectures in distrib-
uted logic. SIGMOD Record, 39(1):5–19, 2010.

15 Paraschos Koutris and Dan Suciu. Parallel evaluation of conjunctive queries. In Symposium
on Principles of Database Systems (PODS), pages 223–234, 2011.

16 Alexandra Meliou, Wolfgang Gatterbauer, Joseph Y. Halpern, Christoph Koch, Kather-
ine F. Moore, and Dan Suciu. Causality in databases. IEEE Data Engineering Bulletin,
33(3):59–67, 2010.

17 Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu. The com-
plexity of causality and responsibility for query answers and non-answers. Proceedings of
the VLDB Endowmen (PVLDB), 4(1):34–45, 2010.

18 Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pages 15–28. USENIX Association,
2012.

19 Daniel Zinn, Todd J. Green, and Bertram Ludäscher. Win-move is coordination-free (some-
times). In International Conference on Database Theory (ICDT), pages 99–113, 2012.

ICDT 2015



Datalog Queries Distributing over Components
Tom J. Ameloot∗1, Bas Ketsman†1, Frank Neven1, and Daniel Zinn2

1 Hasselt University & transnational University of Limburg
Martelarenlaan 42, Hasselt, Belgium
firstname.lastname@uhasselt.be

2 LogicBlox, Inc
1416 NW 46th St., Suite 301, Seattle, WA 98103, USA
daniel.zinn@logicblox.com

Abstract
We investigate the class D of queries that distribute over components. These are the queries
that can be evaluated by taking the union of the query results over the connected components
of the database instance. We show that it is undecidable whether a (positive) Datalog program
distributes over components. Additionally, we show that connected Datalog¬ (the fragment of
Datalog¬ where all rules are connected) provides an effective syntax for Datalog¬ programs that
distribute over components under the stratified as well as under the well-founded semantics. As
a corollary, we obtain a simple proof for one of the main results in previous work [19], namely,
that the classic win-move query is in F2 (a particular class of coordination-free queries).

1998 ACM Subject Classification H.2.3 Query Languages, H.2.4 Distributed databases

Keywords and phrases Datalog, stratified semantics, well-founded semantics, coordination-free
evaluation, distributed databases

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.308

1 Introduction

A Datalog program is called connected when the graph of every rule is connected; here, the
graph of a rule views the variables of the rule as vertices and each positive body atom as a
hyperedge. For instance, the canonical program computing the transitive closure of a binary
relation

TC(x, y)← E(x, y)
TC(x, y)← E(x, z), TC(z, y)

is connected, while the program

A(x, y)← E(x, z), E(y, z′)

is not as E(x, z) and E(y, z′) do not share a common variable. The definition of connectedness
can also be extended to Datalog¬ (with negation), where the negative body atoms of a rule
do not contribute to the graph of this rule. While connected Datalog programs are very
natural, as a logic they are not well-understood. The earliest reference to connected Datalog
is by Guessarian [11] who obtained a decidability result for boundedness of a subclass of

∗ Postdoctoral Fellow of the Research Foundation – Flanders (FWO)
† PhD Fellow of the Research Foundation – Flanders (FWO)

© Tom J. Ameloot, Bas Ketsman, Frank Neven, and Daniel Zinn;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 308–323

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.308
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


T. J. Ameloot, B. Ketsman, F. Neven, and D. Zinn 309

connected Datalog programs. Ameloot et al. [4] obtained that every connected stratified
Datalog¬ program distributes over components, that is, the program can be evaluated by
taking the union of the query results over the connected components of the database instance
(cf. Section 3 for a formal definition). We denote by D the class of queries that distribute
over components.

In this paper, we investigate the relationship between connected Datalog¬ and the class
D. This investigation is motivated by a general theme in model theory that considers
the relationship between syntactic and semantic properties of logic. In the context of
Datalog, results of this type have for example been obtained for the class of queries preserved
under homomorphisms, denoted by H. For instance, Feder and Vardi [10] showed that all
queries in semi-positive Datalog¬ that are preserved under homomorphisms can already be
expressed in Datalog itself. That is, semi-positive Datalog¬ ∩ H = Datalog. Dawar and
Kreutzer [9] showed that the latter result can not be extended to least fixed-point logic
(LFP): LFP ∩H 6⊆ Datalog. The main result of this paper is that both under the stratified
as well as under the well-founded semantics, we have connected Datalog¬ = Datalog¬ ∩D.
Additionally, we show that, even when we forbid negation in rules, it is undecidable whether
a given (positive) Datalog program is in D . Our main result therefore shows that connected
Datalog¬ is an effective syntax for queries in Datalog¬ ∩D (both under the stratified and
under the well-founded semantics).

Apart from the model theoretic motivation mentioned above, the results in this paper also
provide more insight in some of the recent results concerning coordination-free evaluation.
Datalog has attracted quite a bit of attention as a declarative programming language for
distributed systems, see e.g. [14, 1, 16]. In fact, Hellerstein [12] argues that the theory of
declarative database query languages can provide a foundation for the next generation of
parallel and distributed programming languages. In this respect, programs (queries) are
specified on a logical level over a global schema and are computed by multiple computing nodes
over which the input database is distributed. These nodes can perform local computations
and communicate asynchronously with each other via messages. The model operates under
the assumption that messages can never be lost but can be arbitrarily delayed. As the
global barriers raised by the need for synchronization are an inherent source of inefficiency
in such systems, a number of researchers started investigating classes of queries that can be
evaluated in a coordination-free manner [8, 19, 5, 3, 4]. In a coordination-free evaluation,
communication between nodes can only transfer data and can not be used to coordinate.1
Zinn, Green, and Ludäscher [19] introduced various classes of coordination-free queries: F0,
F1, and F2. Membership of the classical non-monotonic win-move query in F2 is one of
the main results in [19], where the authors describe a distributed query evaluation strategy
that is specific for the win-move query. The results in this paper provide a more in-depth
explanation of that result. Indeed, letting V denote the class of so-called value-driven queries
that have nonempty output only on inputs containing values, we explain that every query in
D ∩V is also in the class F2. This implies that every connected Datalog¬ program in V is
in F2 as well. Since win-move is a connected Datalog¬ program, and is value-driven, it then
follows immediately that win-move is in F2.

In this paper, we also briefly discuss semi-connected Datalog¬ programs, a relaxation of
connected Datalog¬ introduced in previous work [4]: under the well-founded semantics, the
queries expressible by semi-connected Datalog¬ programs remain in the class F2.

1 We refer to [5, 4] for a formal definition of coordination-freeness.

ICDT 2015



310 Datalog Queries Distributing over Components

Outline. This paper is organized as follows. Section 2 presents preliminaries on databases,
and on Datalog¬ together with its stratified and well-founded semantics. Section 3 recalls
distribution over components; additionally, we present an undecidability result and we discuss
the relationship with weaker forms of monotonicity. Next, Section 4 discusses a syntactic
restriction of Datalog¬, called connected Datalog¬; and, we show that under the stratified
semantics, this restriction captures the queries that both distribute over components and that
are expressible in Datalog¬. This capturing result is subsequently generalized in Section 5 to
the well-founded semantics. Section 6 briefly discusses how a relaxation of the connectedness
restriction behaves under the well-founded semantics. We conclude in Section 7. Many of
the technical proofs are moved to the appendix due to space limitations. Proof sketches are
given in the main body.

2 Preliminaries

2.1 Database Basics
A (database) schema σ is a finite set of pairs (R, k), also denoted as R(k), where R is a
relation name and k ∈ N its associated arity. We assume an infinite universe dom of atomic
data values. A fact is a pair (R, ā), also denoted as R(ā), where R is a relation name and
ā is a (possibly empty) tuple of values over dom. We say that fact R(a1, . . . , ak) is over
database schema σ if R(k) ∈ σ. If k = 0 then the fact is called nullary. A (database) instance
I over σ is a finite set of facts over σ. The active domain of a fact f , denoted adom(f), is
the set of values occurring in f . For an instance I, we define adom(I) =

⋃
f∈I adom(f). For

a subset σ′ ⊆ σ, we write I|σ′ to denote the maximal subset of I that is over σ′.
A query Q over input schema σ1 and output schema σ2 is a function that maps instances

over σ1 to instances over σ2. We consider only queries that are generic: these queries are
independent of the concrete data values. More formally, a query Q is generic if for all inputs
I, and all permutations ρ of dom, we have ρ(Q(I)) = Q(ρ(I)).

2.2 Datalog with Negation
We recall here the language Datalog with negation [2], denoted Datalog¬.

Atoms and rules

We assume a separate universe var of variables. An atom is a pair (R, ū), also denoted as
R(ū), where R is a relation name and ū is a (possibly empty) tuple of variables over var.
We say that an atom R(u1, . . . , uk) is over a database schema σ if R(k) ∈ σ. A rule ϕ is a
tuple (headϕ, posϕ,negϕ) where headϕ is an atom, and posϕ and negϕ are both sets of atoms.
We call headϕ the head; and we call posϕ and negϕ respectively the positive body atoms and
the negative body atoms. We only consider rules ϕ where each variable in headϕ and negϕ
also occurs in posϕ. We say that ϕ is over a database schema σ when all its atoms are
over σ. A rule ϕ may also be written in the conventional syntax, e.g., when headϕ = T (ū),
posϕ = {R1(u1), . . . , Rm(um)} and negϕ = {S1(v1), . . . , Sn(vn)} then we may write ϕ as:

T (ū)← R1(u1), . . . , Rm(um),¬S1(v1), . . . ,¬Sn(vn).

The ordering of atoms to the right of the arrow is arbitrary.
A valuation for rule ϕ is a function V that maps each variable in ϕ to a value in dom.

Applying V to atoms of ϕ results in facts: we substitute each variable u by V (u). We say



T. J. Ameloot, B. Ketsman, F. Neven, and D. Zinn 311

that V is satisfying for ϕ on an instance I, when V (posϕ) ⊆ I and V (negϕ) ∩ I = ∅. In that
case, the pair (ϕ, V ) is said to derive the fact V (headϕ) on instance I.

Programs

A Datalog program with negation over a schema σ is a set P of rules over σ. The class of
such programs is denoted by Datalog¬. For a Datalog¬ program P , we also write sch(P ) to
denote the (minimal) schema that P is over. We define idb(P ) ⊆ sch(P ) as the relations
of sch(P ) that appear in rule heads. We also define edb(P ) = sch(P ) \ idb(P ).2 Intuitively,
edb(P ) can be seen as the input relations for P . Various semantics can be given to Datalog¬

programs. In this paper we use the stratified semantics and the well-founded semantics.

2.3 Stratified Semantics

We recall the stratified semantics of Datalog¬ [2].

Semi-positive programs

We call a Datalog¬ program P semi-positive when its rules only apply negation to relations
in edb(P ). More formally, for all rules ϕ in P , the set negϕ is over edb(P ). The semantics of
such a program P can be defined as follows. Consider the following function TP , called the
(inflationary) immediate consequence operator of P : TP maps any instance J over sch(P ) to
J ∪ A where A = {V (headϕ) | ϕ ∈ P, V is a satisfying valuation for ϕ on J}. Now, for an
input I over edb(P ), consider the following infinite sequence of instances: I0, I1, I2, . . . where
I0 = I and Ii = TP (Ii−1) for all i ≥ 1. Because TP only adds facts, and is limited to adom(I),
there is an index k such that Ik = Ik+1, i.e., there is a fixpoint. The output of P on I is
defined as this fixpoint.

Syntactic stratification

Let P be a Datalog¬ program. We call P syntactically stratifiable (or simply stratified) if we
can partition the rules of P into a sequence of Datalog¬ subprograms P1, . . . , Pn such that:

Rules with the same head relation occur in the same subprogram;
In each subprogram Pi, relations R of positive body atoms either belong to edb(P ) or all
rules computing R must be in some subprogram Pj with j ≤ i; and,
In each subprogram Pi, relations R of negative body atoms either belong to edb(P ) or all
rules computing R must be in some subprogram Pj with j < i.

Each subprogram is also called a stratum. Note that negation is only applied to relations
computed in strictly lower strata. So, each stratum by itself is a semi-positive program. Given
a syntactic stratification P1, . . . , Pn, the output of P on an input I over edb(P ), denoted
P (I), is defined as Pn(Pn−1(. . . (P1(I)) . . .)), i.e., we first apply stratum P1, then stratum
P2, etc. All syntactic stratifications give the same result [2].

We say that a query Q with input schema σ1 and output schema σ2 is computed by a
stratified Datalog¬ program P if for all inputs I for Q, we have Q(I) = P (I)|σ2

using the
stratified semantics of P .

2 The abbreviations “idb” and “edb” respectively stand for intensional schema and extensional schema.

ICDT 2015



312 Datalog Queries Distributing over Components

2.4 Well-founded Semantics
Let P be a Datalog¬ program. We define the well-founded semantics of P using the alternating
fixpoint computation [18].

Negation on assumptions

Let ϕ be a rule in P , and let J be an instance over sch(P ). A valuation V for ϕ is said
to be J-neg-satisfying for ϕ on an instance I if V (posϕ) ⊆ I and V (negϕ) ∩ J = ∅. In
contrast to the semantics of semi-positive programs from above, J-neg-satisfaction tests
negative body atoms against the fixed database instance J . Next, consider the following
function T JP , called the (inflationary) immediate consequence operator of P with assumptions
J : function T JP maps each instance K over sch(P ) to K ∪ A where A = {V (headϕ) |
ϕ ∈ P, V is a J-neg-satisfying valuation for ϕ on K}. Now, for an instance I over sch(P ),
consider the following infinite sequence of instances: I0, I1, I2, . . . where I0 = I and Ii =
T JP (Ii−1) for all i ≥ 1. Because T JP only adds facts, and is limited to adom(I), there is an
index k such that Ik = Ik+1, i.e., there is a fixpoint, denoted as T̂ JP,I .

Antimonotone operator

Let I be an input over edb(P ). Let ΓP,I denote the function that maps each instance J over
sch(P ) to T̂ JP,I . Note that for any two instances J1 and J2 with J1 ⊆ J2, the J2-neg-satisfying
valuations are also J1-neg-satisfying, so ΓP,I(J2) ⊆ ΓP,I(J1). For this reason, we call ΓP,I
antimonotone. We similarly see that ΓP,I(ΓP,I(J1)) ⊆ ΓP,I(ΓP,I(J2)), so function ΓP,I ◦ ΓP,I
is monotone. Next, consider the following infinite sequence of instances: I0, I1, I2, . . . where
I0 = ∅ and Ii = ΓP,I(Ii−1) for all i ≥ 1.3 Since ΓP,I ◦ ΓP,I is monotone, the subsequence
I0, I2, I4, . . . converges to a fixpoint, i.e., there is a number k ≥ 0 such that I2k = I2k+2.4
This implies that index 2k + 1 is a fixpoint for the subsequence with uneven indices, i.e.,
I2k+1 = I2k+3. Now, the well-founded semantics of P on I produces both a set of true facts
and a set of true or undefined facts, denoted as Pt(I) and Pt∨u(I) respectively. Formally, they
are defined as Pt(I) = I2k and Pt∨u(I) = I2k+1. Intuitively, for the facts in Pt∨u(I) \ Pt(I),
we can not compute whether they are definitely present in the output or definitely absent
from the output. So, the well-founded semantics essentially assigns one of three truth values
to facts over sch(P ): true, false, and undefined.

We say that a query Q with input schema σ1 and output schema σ2 is computed by P
under the well-founded semantics if for all inputs I for Q, we have Q(I) = Pt(I)|σ2

.

I Example 1. We recall the well-known win-move Datalog¬ program P [2]:

win(x)← move(x, y),¬win(y).

The win-move program represents a game as follows. The input relation move is viewed as a
graph. A game on this graph starts with one node x of the graph marked with a flag. Next,
two players, called 1 and 2, take turns to move the flag from the currently flagged node to
one of its successor nodes, and player 1 always gets the first turn. A player looses when

3 There is an alternating fixpoint: the inner fixpoint is given by ΓP,I(J) = T̂ J
P,I , the outer fixpoint is

obtained by iterating ΓP,I . Applying ΓP,I to an underestimate yields an overestimate and vice versa.
4 To see this, we start with I0 = ∅ ⊆ I2. Next, since ΓP,I ◦ΓP,I is monotone, we have I2 = ΓP,I ◦ΓP,I(I0) ⊆

ΓP,I ◦ΓP,I(I2) = I4. This reasoning can be repeated to see I4 ⊆ I6, etc. Since derived facts are restricted
to adom(I), we eventually arrive at a fixpoint.



T. J. Ameloot, B. Ketsman, F. Neven, and D. Zinn 313

there are no successor nodes during his or her turn. Now, we say that player 1 has a winning
strategy at node x, if player 1 can always force a win when starting at node x. That is, no
matter how player 2 moves, eventually, player 1 will move the flag to a node where player 2
cannot move anymore.

The relation win computes the nodes for which player 1 has a winning strategy. For
example, letting σ = {win(1)}, on the input I = {move(a, b),move(b, a),move(a, c)}, we
have Pt(I)|σ = Pt∨u(I)|σ = {win(a)}; the winning strategy for player 1 is to move the
flag from a to c. As another example, consider the instance J = I ∪ {move(c, d)}. We
have Pt(J)|σ = {win(c)} and Pt∨u(J)|σ = {win(a),win(b),win(c)}. Facts in Pt∨u(J) \Pt(J)
represent drawn positions, that is, neither player can force a win and the game goes on
indefinitely. The absence of win(d) indicates that player 1 has no winning strategy at node d
(because player 1 can not make a move there).

The win-move program is non-monotone: win(a) ∈ Pt(I) but win(a) /∈ Pt(J). J

3 Distribution over Components

We recall distribution over components [4]. We call an instance J connected if for all values
a, b ∈ adom(J), there exists a sequence f1, . . . ,fn of facts in J such that a ∈ adom(f1),
b ∈ adom(fn), and adom(f i) ∩ adom(f i−1) 6= ∅ for all i ∈ {2, . . . , n}. Possibly n = 1.
Intuitively, any two values are connected by at least one chain of facts, where subsequent
facts share at least one value.5

Now, for an instance I, we call a subinstance J ⊆ I a component of I if (i) J includes all
nullary facts of I; (ii) J is connected and is maximal with this property in I. This implies that
adom(J)∩adom(I\J) = ∅. We write co(I) to denote the set of components of I.6 For example,
the components of I = {R(a, b), R(b, c), S(c), T (d), U( )} are {R(a, b), R(b, c), S(c), U( )} and
{T (d), U( )}.

We say that a query Q distributes over components if for all inputs I for Q we have
Q(I) =

⋃
J∈co(I)Q(J), i.e., the centralized output of Q on I is precisely obtained when we

parallelize Q over the components of I. Let D denote the class of queries that distribute
over components.

3.1 Undecidability
To gain additional insight into distribution over components, we consider decidability of this
semantical property for the concrete setting of Datalog¬. First, we call a Datalog¬ program
positive if its rules contain no negative body atoms. To denote the class of such programs,
we simply write ‘Datalog’. For evaluating Datalog programs, we will assume the intuitive
semantics of semi-positive Datalog¬ programs (cf. Section 2.3). Interestingly, despite the
restriction,

I Theorem 2. Membership in D is undecidable for queries computable by Datalog programs.

Proof. First, from previous work by Shmueli [17], we know that it is impossible to decide
whether two Datalog programs P1 and P2, each with a single non-nullary output relation,
are equivalent. This problem was shown to be undecidable by a reduction from equivalence

5 Equivalently, one could demand that the Gaifman graph of J is connected, where we view adom(J) as
the set of vertices and each fact of J as a hyperedge.

6 The nullary facts are given to each component because there is no natural preference for how to distribute
these facts to any particular component.

ICDT 2015



314 Datalog Queries Distributing over Components

of context-free grammars. We point out that this reduction actually constructs connected
programs (see Section 4.1 for a formal definition). So, equivalence, and thus containment,
of two connected Datalog programs, each with a single non-nullary output relation, is
undecidable. Our proof below reduces this latter containment problem to deciding whether a
Datalog program distributes over components.

Let P1 and P2 be two connected Datalog programs with the same edb schema σ1 and
each having one k-ary intended output relation, denoted A1 and A2 respectively, where
k ≥ 1. Both programs may use auxiliary idb relations, but for convenience we assume that
idb(P1) and idb(P2) have no relation names in common. We define the following auxiliary
program P ′, where T and S are relation names not yet used in P1 and P2, and all variables
are assumed to be pairwise different:

T (ū)← A1(ū), S(z).
T (ū)← A2(ū).

Now consider the program P ∗ = P1 ∪ P2 ∪ P ′. Note that edb(P ∗) = σ1 ∪ {S(1)}. Although
program P ∗ is positive, it is not connected due to the first rule of P ′. The S-atom plays
the role of a guard: relation A1 flows into relation T if S is nonempty. Let Q be the query
computed by P ∗ over output schema σ2 = {T (k)}. To finish the proof, we show that Q ∈ D
if and only if P1 is contained in P2.

Suppose that P1 is contained in P2. First, we define program P c as P ∗ but without the
first rule of P ′. Note that P c is connected. For any input I over edb(P ∗), since A1(ā) ∈ P1(I)
implies A2(ā) ∈ P2(I) by containment, we have P c(I)|σ2

= P ∗(I)|σ2
= Q(I). And since P c

is a connected program, we can apply Proposition 6 (in Section 4.2), to know Q ∈ D.
Suppose that P1 is not contained in P2. In particular, there is some input I over σ1 for

which there is a tuple ā with A1(ā) ∈ P1(I) and A2(ā) /∈ P2(I). Letting d be a new value
outside adom(I), we define the instance I ′ = I ∪ {S(d)}. During the computation of P ∗(I ′),
the first rule of subprogram P ′ has access to A1(ā) and S(d), giving T (ā) ∈ P ∗(I ′). But,
the first rule of P ′ can never be satisfied on any J ∈ co(I ′), because by choice of value d,
component J does not simultaneously contain non-nullary facts over σ1 and {S(1)}. Moreover,
for any J ∈ co(I ′), we have A2(ā) /∈ P2(J): since program P2 is unaware of S-facts, we have
A2(ā) /∈ P2(I ′) and monotonicity of P2 implies that A2(ā) can not be produced on any subset
of I ′. Overall, we have T (ā) /∈ P ∗(J) for all J ∈ co(I ′). Hence, Q /∈ D. J

We now readily observe that:

I Corollary 3. Membership in D is undecidable for queries computable by stratified Datalog¬

programs.

3.2 Weaker Forms of Monotonicity
We briefly relate D to the classesMdistinct andMdisjoint [4]. The classMdistinct consists of
the domain-distinct-monotone queries: for such queries Q, we have Q(I) ⊆ Q(I ∪ J) for all
instances I and J where each f ∈ J satisfies adom(f) * adom(I).7 Intuitively, Q behaves
monotonically when adding facts that contain at least one new value.

We observe that D *Mdistinct: over a schema {R(1), S(2)}, consider the query Q1 =
R − π1(S), where π1 projects onto the first component. To see Q1 ∈ D, note that when

7 This implies that J contains no nullary facts.



T. J. Ameloot, B. Ketsman, F. Neven, and D. Zinn 315

forming components, the S-facts are always grouped together with those R-facts they subtract
from. To see Q1 /∈Mdistinct, consider the instances I = {R(a)} and J = {S(a, b)}; note that
Q1(I) * Q1(I ∪ J).

We also observe thatMdistinct * D: over a schema {R(1), S(1)}, consider the query Q2
that computes the cross product T = R× S. Query Q2 is monotone, hence Q2 ∈Mdistinct.
To see Q2 /∈ D, consider the instance I = {R(a), S(b)}. On the full input I, query Q2
produces T (a, b), but this fact is not produced on component {R(a)} nor on component
{S(b)}.

Next, the class Mdisjoint consists of the domain-disjoint-monotone queries: for such
queries Q, we have Q(I) ⊆ Q(I ∪ J) for all instances I and J where J contains no nullary
facts and adom(I) ∩ adom(J) = ∅.8

We observe that D *Mdisjoint: over a schema {R(1)}, take the query Q3 that outputs
true (in a nullary relation T ) if R = ∅. We see that Q3 ∈ D: if there are multiple
components in an input I then each component contains one R-fact, implying that relation
T remains empty on each component, giving the same result as the centralized execution
Q3(I). Also, Q3 /∈Mdisjoint, because on the instances I = ∅ and J = {R(a)}, we have
Q(I) = {T ( )} * Q(I ∪ J) = ∅.

We also observe that Mdisjoint * D: take the same query Q2 from above. Since
Mdistinct ⊆Mdisjoint, we have Q2 ∈Mdisjoint. But Q2 /∈ D as shown above.

When we exclude queries like Q3, the remaining queries of D are included inMdisjoint.
Formally, we call a query Q value-driven if for all inputs I for Q with adom(I) = ∅, we
have Q(I) = ∅. Intuitively, the query produces nothing in absence of values. Let V denote
the class of such queries. We observe that D ∩ V ⊆Mdisjoint: for a query Q ∈ D ∩ V ,
(i) for an input I with adom(I) = ∅, we have Q(I) = ∅ ⊆ Q(I ∪ J) for all instances
J ; and (ii) for an input I with adom(I) 6= ∅, and an instance J without nullary facts
and with adom(I) ∩ adom(J) = ∅, we have co(I) ⊆ co(I ∪ J), so using Q ∈ D, we see
Q(I) =

⋃
K∈co(I)Q(K) ⊆

⋃
L∈co(I∪J)Q(L) = Q(I ∪ J).

4 Connected Datalog

We can not decide for queries computed by stratified Datalog¬ programs whether they
distribute over components (Corollary 3). However, in this section we show there is a
fragment of stratified Datalog¬ that captures precisely the queries of D expressible in
stratified Datalog¬.

4.1 Connected Syntax
We recall the language of connected Datalog¬, denoted con-Datalog¬ [4]. We extend the
definition in this previous work, however, to explicitly deal with nullary relations. Nullary
relations allow more programming flexibility, and they allow boolean computation in absence
of input values, e.g., when only a set of nullary facts is given.

As notational convenience, for an atom a we write var(a) to denote the set of variables
occurring in a. Also, for a rule ϕ we write var(ϕ) to denote the set of variables in ϕ. Now,
very similarly to connected database instances, we say that a rule ϕ is connected when for
any two variables u, v ∈ var(ϕ) there is a sequence of atoms a1, . . . ,an in posϕ such that

8 The queries inMdisjoint are conceptually similar to the first order sentences preserved under closed
extensions, studied by Compton [7].

ICDT 2015



316 Datalog Queries Distributing over Components

u ∈ var(a1), v ∈ var(an), and var(ai) ∩ var(ai−1) 6= ∅ for all i ∈ {2, . . . , n}. Possibly n = 1.
Negative body atoms do not contribute to the connectedness of a rule. Note that rules
without variables are always connected.

Next, for a Datalog¬ program P , we say that nullary relations of edb(P ) are global (for
all components) because the nullary input facts are given to all components by definition.
Similarly, we say a nullary relation of idb(P ) is global if all its rules, and the rules of the
idb-relations it depends on, do not use variables.9 So, the term “global” means that these
nullary relations will have the same contents on every component. Also, we say that a nullary
relation S(0) ∈ idb(P ) is value-detecting when (i) for each non-nullary relation R(k) ∈ edb(P ),
program P contains a rule isomorphic to ‘S( ) ← R(u1, . . . , uk)’, using pairwise distinct
variables; and, (ii) there are no other rules for S in P . Such value-detecting relations can
only be used to see if the input contains values.

Now, we say that a Datalog¬ program P is connected when
1. every rule of P is connected by itself; and,
2. the only nullary relations used in rule bodies are global or value-detecting.
Nullary relations that are neither global nor value-detecting may still be used for directly
representing output.

Note that the win-move program from Example 1 is connected. Below we consider other
examples of connected programs.

I Example 4. Consider the following semi-positive con-Datalog¬ program P with edb(P ) =
{A(1), B(1), R(2)}:

reach(x)← A(x).
reach(y)← reach(x), R(x, y).
T (x)← reach(x),¬B(x).

Thinking of relation R as edges of a graph, this program computes all nodes reachable from
set A but outside set B. J

I Example 5. As an example using nullary relations, here is a stratified con-Datalog¬

program P , with edb(P ) = {R(2), S(0), T (0), U (1)}, whose meaning is discussed below:

xor( )← S( ),¬T ( ).
xor( )← ¬S( ), T ( ).

V (x)← xor( ), U(x).
V (y)← V (x), R(x, y).

values( )← R(x, y).
values( )← U(x).
W ( )← ¬values( ), xor( ).

Suppose that V and W are the output relations. For the nullary relations of idb(P ), note
that xor is global, values is value-detecting, and W is neither global nor value-detecting (and
hence may not be used in rule bodies). In the presence of values, again thinking of relation R
as edges of a graph, program P finds in relation V the nodes reachable from U on condition
that the exclusive or S ⊕ T is true. In absence of values, P outputs S ⊕ T in relation W .

9 Focusing on idb(P ), a relation R depends on another relation S if there is a path from R to S in the
so-called dependency graph of P , where the relations of idb(P ) are the vertices and there is an edge
from a relation A to a relation B if a rule with head relation A uses B in its body (either positively or
negatively).



T. J. Ameloot, B. Ketsman, F. Neven, and D. Zinn 317

Note that V and W are never simultaneously nonempty (although they can be simultan-
eously empty). The output behavior strongly depends on the presence or absence of values;
value-detecting relations are needed to achieve this effect. J

4.2 Results
We recall the following result [4]:

I Proposition 6. Every query computable by a stratified con-Datalog¬ program distributes
over components.

The sketch below provides an intuitive understanding.

Proof (sketch). The positive body atoms in connected rules are all strung together. This
way, connected rules can only combine facts from the same component, causing derived
non-nullary facts to be connected to their originating component. Essentially, a con-Datalog¬

program derives facts “inside” components. So, the program does not notice when we separate
the components.

For completeness, we also discuss the details of nullary relations. First, note that a
value-detecting relation S is nonempty on the entire (nondistributed) input if and only if
relation S is nonempty on all individual components: this property is trivially true when
there is only one component; and, when there is more than one component, they each have
non-nullary facts.

Next, since each component contains by definition all nullary input facts, nullary facts
derived purely from nullary input facts can be seen as “global flags”. These global flags may
be injected into per-component computations (as represented by rules with variables).10

Lastly, nullary relations that are neither global nor value-detecting, can be seen as per-
component flags. The syntactic restriction prevents using such flags in further computation.
Without this restriction, per-component flags could be combined in a cross-component fashion,
preventing distribution over components. J

Within stratified Datalog¬, a new result is that the converse direction also holds:

I Proposition 7. Every query computable by a stratified Datalog¬ program, and distributing
over components, can be computed by a stratified con-Datalog¬ program.

Proof (sketch). Let Q be a query computable by a stratified Datalog¬ program P , with
the additional assumption that Q distributes over components. Let σ1 and σ2 denote the
input and output schema of Q. The proof is constructive: we transform P into a stratified
con-Datalog¬ program α(P ) such that for all inputs I over σ1, we have α(P ) (I)|σ2

= Q(I),
i.e., α(P ) also computes Q. The main idea behind α(P ) is that it uses connected rules
to separate the original computation over the components (as sketched for Proposition 6).
Concretely, α(P ) is defined as a union of four subprograms: α(P ) = P ↑∪P#∪P ↓∪P null. In
particular, there are two parts: subprogram (P ↑∪P#∪P ↓) is executed in case there are values
in the input, and otherwise the subprogram P null is executed (on just the nullary input facts).
Roughly speaking, the order P ↑, P#, P null, P ↓ aligns with a syntactic stratification for α(P ).
Below we explain each subprogram in turn. We also provide an illustration in Example 8.
As notation, for any schema σ, we define the extended schema #(σ) = {R(k+1)

# | R(k) ∈ σ}.

10This usage is illustrated by Example 5.

ICDT 2015



318 Datalog Queries Distributing over Components

First, P ↑ transforms the input instance I over σ1 to its component-extended version over
#(σ1), denoted #(I): each original input fact is tagged at the front with the “identifier” of
the component it belongs to.11 However, we have no choice-mechanism that allows us to
pick just one value for this identifier; hence, each fact is tagged with all values occurring
in its component. To illustrate, if I = {R(a), R(c), S(a, b), T ( )}, having two components
{R(a), S(a, b), T ( )} and {R(c), T ( )}, then P ↑ produces #(I) = {R#(a, a), R#(b, a), R#(c, c),
S#(a, a, b), S#(b, a, b), T#(a), T#(b), T#(c)}.

Next, letting A be a variable not yet used in P , the program P# is obtained from P

by changing each atom R(ū) (including head atoms) to R#(A, ū). Note that P# is over
#(sch(P )). The presence of variable A guarantees that all rules in P# are connected.
Moreover, satisfying valuations now only use sets of facts whose first value is the same,
i.e., the facts share the same component-identifier. Hence, when we execute P# over #(I),
the computation proceeds in a per-component fashion. Because the original program P

distributes over components, program P# correctly simulates P when the input contains
values (see below for more discussion). To obtain output over σ2, the third program P ↓

projects the relations of #(σ2) back to σ2.
The subprogram (P ↑ ∪ P# ∪ P ↓) will only do something if there are values in the input:

at the very least, variable A needs to be assigned a value when evaluating P#. But even
if adom(I) = ∅, in which case there is only one component, the original program P could
still do useful boolean operations (e.g., as in Example 5). This computation is preserved by
program P null, that contains only the rules of P without variables, after extending the output
rules with an additional negative body atom ¬values( ), where values is a value-detecting
nullary relation outside sch(P ). The atom ¬values( ) acts as a guard, so the output rules
will not fire when there are values. J

I Example 8. We illustrate the construction used in the proof of Proposition 7. Consider the
following Datalog¬ program P with edb(P ) = {R(1), S(1), T (2)} and idb(P ) = {U (2), V (2)}:

U(x, y)← R(x), S(y).
V (x, y)← U(x, y), T (x, y).

Assuming that V is the output relation, although the first rule of P is not connected, P
distributes over components because of the join with input relation T . The transformed
version of P is α(P ) = P ↑ ∪ P# ∪ P ↓ ∪ P null. Note that P null = ∅ as P contains no rules
without variables. Next, the program P ↑ that tags input facts with their component values,
contains the following rules, where ‘con’ is an auxiliary relation to detect which values are
connected:

con(x, x)← R(x).
con(x, x)← S(x).
con(x, y)← T (x, y).
con(x, y)← con(y, x).
con(x, y)← con(x, z), con(z, y).

R#(A, x)← R(x), con(x,A).
S#(A, x)← S(x), con(x,A).
T#(A, x, y)← T (x, y), con(x,A).

Next, program P# is as follows:

U#(A, x, y)← R#(A, x), S#(A, y).
V#(A, x, y)← U#(A, x, y), T#(A, x, y).

11Nullary facts are tagged with all identifiers, since by definition they belong to all components.



T. J. Ameloot, B. Ketsman, F. Neven, and D. Zinn 319

Lastly, to project output back to V , program P ↓ contains the rule: V (x, y)← V#(A, x, y).
Intuitively, whenever the rule for relation U# combines a fact R#(c, a) and a fact S#(c, b)

where a 6= b, the shared tag c implies (through program P ↑) that there is some T -fact
connecting values a and b in the input, i.e., R(a) and S(b) belong to the same component. So,
the rule for relation U# works “inside” components, considering fewer pairs of R-facts and
S-facts compared to the original rule for relation U . But, since P distributes over components
(assuming output relation V ), the output of α(P ) is the same as P for all inputs. J

Let Datalog¬s and con-Datalog¬s denote the classes of queries computable by respect-
ively stratified Datalog¬ programs and stratified con-Datalog¬ programs. By combining
Proposition 6 and Proposition 7, we may write:

I Theorem 9. Datalog¬s ∩D = con-Datalog¬s.

5 Connected Well-founded Datalog

In the following, we extend our results on class D and stratified Datalog¬ to the well-founded
semantics. The proofs for the well-founded semantics build upon the results for the stratified
semantics by constructing, for each Datalog¬ program P and an input instance I, a stratified
Datalog¬ program that simulates the well-founded semantics of P for the specific instance I.
We start with the following result:

I Proposition 10. Every query computable by a con-Datalog¬ program under the well-
founded semantics distributes over components.

Proof (sketch). Let Q be a query computable by a con-Datalog¬ program P under the
well-founded semantics. Let I be an input for Q. We have to show Q(I) =

⋃
J∈co(I)Q(J). We

first transform P to a stratified con-Datalog¬ program uk(P ), where each successive stratum
simulates an outer step in the alternating fixpoint computation of P , where k indicates
that 2k steps are simulated in total.12 This technique is inspired by the doubled program
construction [15]. Although only a constant number of steps can be simulated this way, for the
specific instance I, we can choose k sufficiently large so that uk(P ) simulates Pt(I) and Pt(J)
for each J ∈ co(I). Letting σ denote the output schema of Q, we have uk(P ) (I)|σ = Q(I)
and uk(P ) (J)|σ = Q(J) for each J ∈ co(I). Next, because uk(P ) is a stratified con-Datalog¬

program, we can apply Proposition 6 to know uk(P ) (I)|σ =
⋃
J∈co(I) uk(P ) (J)|σ, resulting

in Q(I) =
⋃
J∈co(I)Q(J), as desired. J

Now, Proposition 10 combined with the inclusion D ∩ V ⊆Mdisjoint from Section 3.2,
gives rise to the following corollary:

I Corollary 11. Every query computable by a con-Datalog¬ program under the well-founded
semantics, and being value-driven, is domain-disjoint-monotone.

Corollary 11 can be used to obtain an alternative proof for one of the main results in
previous work by Zinn et al. [19], namely, that the win-move query (Example 1) is in the
class F2, as we now explain. First, F2 is the class of queries that can be computed in a
coordination-free manner under so-called domain-guided distribution policies: here, nodes of
a network are made responsible for values of dom, and each input fact f is distributed to all
those nodes responsible for at least one value of adom(f). Coordination-freeness means that

12The ‘u’ in uk(P ) stands for unrolling.

ICDT 2015



320 Datalog Queries Distributing over Components

for any input, there exists a domain-guided distribution policy under which the nodes do not
have to share input facts in order to compute the query. Now, since the win-move Datalog¬

program is connected, and this program is value-driven, Corollary 11 gives us that win-move
is inMdisjoint. Further applying the resultMdisjoint = F2 [4], we obtain that win-move is
in F2.

We also have the converse result of Proposition 10:

I Proposition 12. Every query computable by a Datalog¬ program under the well-founded
semantics, and distributing over components, can be computed by a con-Datalog¬ program
under the well-founded semantics.

Proof (sketch). Let Q be a query computable by a Datalog¬ program P under the well-
founded semantics. Let α(P ) = P ↑ ∪ P# ∪ P ↓ ∪ P null be the con-Datalog¬ program as
defined in the proof for Proposition 7. If P is not stratified then P#, and by extension
α(P ), is also not stratified. We now outline the main arguments to demonstrate that α(P )
computes the query Q under the well-founded semantics. Let I be an input for Q. If I
contains no values then the output of α(P ) on I is just the output of P null on I, and P null

correctly simulates P on such inputs. We also sketch the main steps for the case that I
contains values. Let σ denote the output schema of Q. First, because P computes Q under
the well-founded semantics, we have Q(I) = Pt(I)|σ. Next, as in the proof of Proposition 10,
we convert P to a stratified Datalog¬ program uk(P ), with sufficiently large k ∈ N such
that: Q(I) = uk(P ) (I)|σ. Now, considering the transformation ᾱ(D) = D↑ ∪D# ∪D↓ for
any Datalog¬ program D, it can be shown that ᾱ may be applied to the right hand side, to
obtain: Q(I) = ᾱ(uk(P )) (I)|σ. Subsequently, we can use a technical lemma to know that
operations uk and ᾱ commute, i.e., ᾱ(uk(P )) (I)|σ = uk(ᾱ(P )) (I)|σ. We can up front also
choose k large enough to correctly simulate the well-founded semantics of ᾱ(P ) on I, so that
uk(ᾱ(P )) (I)|σ = ᾱ(P )t (I)|σ. Finally, since P null is constructed to output nothing when
adom(I) 6= ∅, we have Q(I) = ᾱ(P )t (I)|

σ
= α(P )t (I)|

σ
, as desired. J

Let Datalog¬wf and con-Datalog¬wf denote the classes of queries computable under the
well-founded semantics by respectively Datalog¬ programs and con-Datalog¬ programs. By
combining Proposition 10 and Proposition 12, we may write:

I Theorem 13. Datalog¬wf ∩D = con-Datalog¬wf .

6 Semi-connected Well-founded Datalog

Previous work has considered a relaxation of connected Datalog¬, called semi-connected [4].
We refer to Section 4.1 for the definition of connected Datalog¬, including the notions of
global and value-detecting nullary relations. Now, we say that a Datalog¬ program P is
semi-connected if we can partition the rules of P into two subprograms P1 and P2 such that:
1. P1 is a con-Datalog¬ program;13
2. P2 is a semi-positive program satisfying the following conditions: (i) idb(P2)∩sch(P1) = ∅,

and (ii) nullary relations occurring in rule bodies of P2 are either global or value-detecting
within the entire program P .

Note that the entire schema of P1 can be used as input for P2. So, P2 can negate relations of
idb(P1), as demonstrated by Example 15. Subprogram P1 or P2 could be empty. Subprogram

13Note that this includes restrictions on nullary atoms in rule bodies.



T. J. Ameloot, B. Ketsman, F. Neven, and D. Zinn 321

P1 is not necessarily stratified, but we may view P2 as a last computation step of P that
possibly uses non-connected rules. If P is stratified then we may view P2 as the last stratum.
We denote the language of semi-connected Datalog¬ programs as semicon-Datalog¬.

Recall the query classesMdisjoint and V from Section 3.2. Queries of V computable by
stratified semicon-Datalog¬ programs are inMdisjoint [4]. We can now confirm that this
result is maintained under the well-founded semantics:

I Theorem 14. Every query computable by a semicon-Datalog¬ program under the well-
founded semantics, and being value-driven, is inMdisjoint.

Proof (sketch). Let Q be a query that is computed by a semicon-Datalog¬ program P under
the well-founded semantics, and being value-driven. Let I and J be two inputs for Q such
that J contains no nullary facts and adom(I)∩adom(J) = ∅. We show that Q(I) ⊆ Q(I ∪J).
Following the proof idea for Proposition 10, we convert P to a stratified program uk(P ) with
k sufficiently large to correctly simulate the alternating fixpoint computation of P on the
instances I and I ∪ J . Importantly, if P is semi-connected then uk(P ) is also semi-connected.
Letting σ be the output schema of Q, it can be shown that uk(P ) (I)|σ ⊆ uk(P ) (I ∪ J)|σ,
using similar techniques as in previous work [4]. Next, because uk(P ) correctly simulates the
well-founded semantics of P on instances I and I ∪ J , and Q is computed by P , we obtain
Q(I) ⊆ Q(I ∪ J), as desired. J

We illustrate the use of Theorem 14 with the following example.

I Example 15. Building upon the win-move example (Example 1), the following program
outputs true (in nullary relation T ) if there are at least two nodes at which player 1 has a
winning strategy:

win(x)← move(x, y),¬win(y).
same(x, x)← move(x, y).
same(y, y)← move(x, y).

T ( )← win(x),win(y),¬same(x, y).

Note that negation on relation same simulates nonequality. This program is not stratified
due to the embedding of the win-move program; so, we apply the well-founded semantics.
Moreover, this program is not connected due to the last rule. But, the program is still
semi-connected. It is also value-driven. Hence we can apply Theorem 14 to know that the
query expressed by this program is inMdisjoint. Next, usingMdisjoint = F2 [4], we know
this query can be computed in a coordination-free manner under domain-guided distribution
policies. J

Relating to the class D, the following simple example shows that not all queries com-
putable by semicon-Datalog¬ programs under the well-founded semantics distribute over
components:14

I Example 16. Consider the following semicon-Datalog¬ program P , with edb(P ) = {R(1)}
and idb(P ) = {S(1), T (2)}, where T is the intended output relation:

S(x)← R(x).
T (x, y)← S(x), S(y).

14The query of Example 15 also does not distribute over components, e.g., on an input consisting of two
disjoint move-subgraphs, in each of which there is precisely one winning node.

ICDT 2015



322 Datalog Queries Distributing over Components

The first rule is connected, whereas the second rule is not. For the input I = {R(a), R(b)}, the
output of P on I under the well-founded semantics (or stratified semantics) is {T (a, a), T (b, b),
T (a, b), T (b, a)}. The facts T (a, b) and T (b, a), however, can not be computed when we
distribute P over the components {R(a)} and {R(b)}. J

7 Discussion

In this paper, we have shown that although membership of positive Datalog programs in
D is undecidable, connected Datalog¬ provides an effective syntax for Datalog¬ ∩D both
under the stratified as well as under the well-founded semantics. In addition, the latter result
provides an alternative explanation for why the non-monotonic win-move query is in F2.

In theory, any query in D (and therefore any query in connected Datalog¬) can be
evaluated without any communication over a network using a distribution where every
computing node is assigned, as a local instance, a union of connected components of the
global database instance (and every connected component is assigned to at least one computing
node). However, as finding connected components is expensive, it is unlikely that there are
many datasets for which such a distribution of data is practical. Still, it would be interesting
to investigate properties of Datalog¬ programs that imply distributions of data that give
rise to communication-free evaluation.

Hull and Yoshikawa [13] introduced a declarative formalism in the style of stratified
Datalog¬ in the context of object databases. Using their formalism, Cabibbo [6] showed,
among other things, that semi-positive Datalog¬ extended with value invention captures
the class of all queries preserved under extensions. The latter type of result can be seen as
evidence that semi-positive Datalog¬ is a core fragment of Datalog¬ for the class of queries
preserved under extensions. In analogy, we expect that con-Datalog¬ is somehow the right
Datalog¬ fragment for D and conjecture that con-Datalog¬ extended with value invention
captures the class D.

References
1 S. Abiteboul, Z. Abrams, S. Haar, and T. Milo. Diagnosis of asynchronous discrete event

systems: Datalog to the rescue! In PODS, pages 358–367. ACM Press, 2005.
2 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
3 P. Alvaro, N. Conway, J.M. Hellerstein, and D. Maier. Blazes: Coordination analysis for

distributed programs. In IEEE 30th International Conference on Data Engineering, pages
52–63. IEEE, 2014.

4 T.J. Ameloot, B. Ketsman, F. Neven, and D. Zinn. Weaker forms of monotonicity for
declarative networking: A more fine-grained answer to the CALM-conjecture. In PODS,
pages 64–75. ACM Press, 2014.

5 T.J. Ameloot, F. Neven, and J. Van den Bussche. Relational transducers for declarative
networking. J. ACM, 60(2):15:1–15:38, 2013.

6 L. Cabibbo. The expressive power of stratified logic programs with value invention. In-
formation and Computation, 147(1):22–56, 1998.

7 K.J. Compton. Some useful preservation theorems. Journal of Symbolic Logic, 48:427–440,
1983.

8 N. Conway, W.R. Marczak, P. Alvaro, J.M. Hellerstein, and D. Maier. Logic and lattices
for distributed programming. In Proceedings of the Third ACM Symposium on Cloud
Computing, pages 1:1–1:14. ACM Press, 2012.

9 A. Dawar and S. Kreutzer. On Datalog vs. LFP. In Proceedings of the 35th International
Colloquium on Automata, Languages and Programming, pages 160–171. Springer, 2008.



T. J. Ameloot, B. Ketsman, F. Neven, and D. Zinn 323

10 T. Feder and M.Y. Vardi. Homomorphism closed vs. existential positive. In LICS, pages
311–320. IEEE Computer Society, 2003.

11 I. Guessarian. Deciding boundedness for uniformly connected datalog programs. In S. Abite-
boul and P.C. Kanellakis, editors, ICDT, volume 470 of Lecture Notes in Computer Science,
pages 395–405. Springer, 1990.

12 J.M. Hellerstein. The declarative imperative: experiences and conjectures in distributed
logic. SIGMOD Record, 39(1):5–19, 2010.

13 R. Hull and M. Yoshikawa. ILOG: Declarative creation and manipulation of object identi-
fiers. In VLDB, pages 455–468. Morgan Kaufmann Publishers Inc., 1990.

14 T. Jim and D. Suciu. Dynamically distributed query evaluation. In PODS, pages 28–39.
ACM Press, 2001.

15 D.B. Kemp, D. Srivastava, and P.J. Stuckey. Bottom-up evaluation and query optimization
of well-founded models. Theor. Comput. Sci., 146(1&2):145–184, 1995.

16 B.T. Loo, T. Condie, M. Garofalakis, D.E. Gay, J.M. Hellerstein, P. Maniatis, R. Ra-
makrishnan, T. Roscoe, and I. Stoica. Declarative networking: Language, execution and
optimization. In SIGMOD, pages 97–108. ACM Press, 2006.

17 O. Shmueli. Equivalence of Datalog queries is undecidable. The Journal of Logic Program-
ming, 15(3):231–241, 1993.

18 A. Van Gelder. The alternating fixpoint of logic programs with negation. J. Comput. Syst.
Sci., 47(1):185–221, 1993.

19 D. Zinn, T.J. Green, and B. Ludäscher. Win-move is coordination-free (sometimes). In
ICDT, pages 99–113. ACM Press, 2012.

ICDT 2015



Distributed Streaming with Finite Memory
Frank Neven1, Nicole Schweikardt2, Frédéric Servais1, and
Tony Tan1

1 Hasselt University and Transnational University of Limburg
2 Humbold-University Berlin

Abstract
We introduce three formal models of distributed systems for query evaluation on massive data-
bases: Distributed Streaming with Register Automata (DSAs), Distributed Streaming with Re-
gister Transducers (DSTs), and Distributed Streaming with Register Transducers and Joins
(DSTJs). These models are based on the key-value paradigm where the input is transformed
into a dataset of key-value pairs, and on each key a local computation is performed on the values
associated with that key resulting in another set of key-value pairs. Computation proceeds in
a constant number of rounds, where the result of the last round is the input to the next round,
and transformation to key-value pairs is required to be generic. The difference between the three
models is in the local computation part. In DSAs it is limited to making one pass over its input
using a register automaton, while in DSTs it can make two passes: in the first pass it uses a finite-
state automaton and in the second it uses a register transducer. The third model DSTJs is an
extension of DSTs, where local computations are capable of constructing the Cartesian product of
two sets. We obtain the following results: (1) DSAs can evaluate first-order queries over bounded
degree databases; (2) DSTs can evaluate semijoin algebra queries over arbitrary databases; (3)
DSTJs can evaluate the whole relational algebra over arbitrary databases; (4) DSTJs are strictly
stronger than DSTs, which in turn, are strictly stronger than DSAs; (5) within DSAs, DSTs and
DSTJs there is a strict hierarchy w.r.t. the number of rounds.

1998 ACM Subject Classification C.2.4 Distributed Systems, H.2.4 Systems, H.2.6 Database
Machines

Keywords and phrases Distributed systems, relational algebra, semijoin algebra, register auto-
mata, register transducers

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.324

1 Introduction

Recent years have seen a massive growth in parallel and distributed computations based on
the key-value paradigm. This was fostered by the emergence of popular systems such as
Hadoop [31] and Spark [25], which support this paradigm, as well as by many specialised
systems built on top of them such as Hive [29], Pig [15], Shark [32], etc.

In brief, the key-value paradigm works as follows. An input dataset D is first transformed
into another dataset D′ of key-value pairs which is then distributed across a cluster of
machines, where values with the same key are sent to the same server. The main computation
is performed on D′, where values in different servers can be processed in parallel. Take, for
example, the Pig Latin1 script below for computing the query A(x, y) ∧ ¬B(y):

1 See [24, 23, 15] and the references therein for more details about Pig Latin and the Pig system.

© Frank Neven, Nicole Schweikardt, Frédéric Servais, and Tony Tan;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 324–341

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.324
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


F. Neven, N. Schweikardt, F. Servais, and T. Tan 325

1. A = load ‘A.txt’ as (x,y);
2. B = load ‘B.txt’ as (y);
3. C = cogroup A by y, B by y;
4. D = filter C by IsEmpty(B);
5. E = foreach D generate flatten(A); // E is the result of A(x, y) ∧ ¬B(y)

In brief, the Pig system converts this script into a Hadoop’s MapReduce program that does the
following. The mapper maps each tuple A(a, b) into a key-value pair (key = b, val = A(a, b));
and each tuple B(b) into (key = b, val = B(b)). This is done in the script’s step 3. For each
key c, it checks whether there is an A-tuple and a B-tuple. It collects only those keys in
which there is A-tuple, but no B-tuple. This is done in step 4. It will then store only the
A-tuples from the collected keys. This is done in step 5.

This example highlights one of the most appealing features of the key-value paradigm:
ease of parallelisation. Since computations for different keys are independent, they can be
computed in parallel by assigning each key to a server that is responsible for its computation.
Typically one server can be assigned with many keys, and in Hadoop such assignments are
done using random hash function by default.

We are aware that the key-value paradigm is often called the map-reduce paradigm,
and rightly so. However, in many systems communities the name map-reduce refers to
Hadoop’s MapReduce and excludes Spark, even though Spark does support map-reduce like
computations. The difference between map-reduce in Hadoop and Spark lies in, among many
other aspects, the implementation of fault tolerance and data storage [25, 33]. Since our
focus is on the theory, and to avoid confusion, we opt for the name key-value paradigm.

Many algorithms and systems have been built based on the key-value paradigm. We will
discuss some of them in the related work section at the end of Section 1. In the database
setting, SQL-queries are the standard class of queries. Recently, systems such as Pig, Hive,
and Shark have been built to support SQL-like queries on massive datasets, and have been
widely used in both academia and industry. However, still lacking is a detailed study of their
theoretical foundations.

In this paper we aim to contribute to filling this gap. Our goal is to determine computing
mechanisms that are necessary and sufficient for evaluating relational algebra, which is the
foundation of the SQL query language. To this end, we introduce three models for distributed
computations based on the key-value paradigm and compare their expressiveness with rela-
tional algebra: Distributed Streaming with register Automata (DSAs), Distributed Streaming
with register Transducers (DSTs), and Distributed Streaming with register Transducers and
Joins (DSTJs). In introducing new models, we must be aware that systems like Pig, Hive, or
Shark are fully automated in the sense that an input query is automatically converted into a
program in Hadoop (for Pig and Hive) or Spark (in the case of Shark). The models must be
simple enough to allow for such automation, while still being strong enough to capture a
useful class of queries (in our case, relational algebra or suitable fragments thereof).

Brief description of our models. To avoid clutter, we start by defining our models for
Boolean queries over directed finite graphs, which is the simplest form of database.

For Boolean queries each model consists of three components: (1) a mapper that maps
each element in the input to a bag of key-value pairs; (2) a reducer that computes for each
key separately on the bag of values associated to that key and outputs a bag of values; (3) an
aggregator that determines the final output yes/no from a bag of values. They can perform
multiple rounds of computation, where the output of the reducer is passed as input to the
next mapper. The aggregator is consequently only applied at the very end to determine the

ICDT 2015



326 Distributed Streaming with Finite Memory

result. For non-Boolean queries, we discard the aggregator, and set the output of the last
reducer as the output of the computation.2

The difference between DSAs/DSTs/DSTJs and the general key-value paradigm lies on
the specific, concrete models of computations assigned to the map, reduce, and aggregator
functions. In fact, the models assigned are very simple as we will briefly explain below.

In DSAs the mappers are generic functions that map deterministically a tuple to a bag of
key-value pairs based on the equality type of the input tuple. They are essentially functions
that neither can invent values nor interpret values, except for the equality test among the data
values. The reducers and aggregators in DSAs are commutative3 finite memory automata [17],
also called register automata [22]. These are finite automata extended with a fixed number of
registers where each register can hold a data value. The automata change states depending
on the current state and equality tests among the values currently stored in the registers and
those in the input tuple. In the reduce phase, the input values are fed to the automaton one
by one (hence, the name “streaming”). After having read the last input item, it outputs a
finite bag of values of constant size depending on the final configuration. The automaton
from the aggregator component is used to pass through the output of the last reduce phase
to determine the end result.

Note that the computation performed by a DSA’s mapper, reducer, or aggregator process
the input only once while using at most logarithmic space. Furthermore, the number of
elements in the output of reducers within the DSA model does not depend on the length
of its input but only on the reducer itself. Hence, DSAs are rather limited as they need to
summarise an input stream by a fixed number of output values. In particular, DSAs cannot
transform a stream of values into another stream of values. To allow for this, we introduce
the second model, DSTs. DSTs use the same mappers and aggregators as DSAs, but it has
available more powerful reducers. In DSTs, a reducer makes two passes over the input: in
the first pass it uses a commutative finite state automaton to gather some finite information
on the input, and in the second pass it uses a commutative register transducer that for each
input value outputs a bag of values. A register transducer works essentially like a register
automaton. It has a fixed number of registers where each register can hold a data value.
Depending on the current state and the equality tests among the values in the registers
and in the input tuple, it can change its state and at the same time output a bag of values.
Hence, a register transducer can transform a stream of values into another stream of values.

Note that it seems very unlikely that DSAs or DSTs can compute Boolean queries that
involve join operations, where there can be a quadratic blow-up in the size of intermediate
results. In fact, as we will show later, both DSAs and DSTs cannot detect the existence of
a triangle in a given graph, and hence, cannot perform join operations. This motivates us
to introduce the third model called DSTJs. Again, the only difference between DSTJs and
DSTs lies on the reducers. In DSTJs, the reducers can be of two types: a register transducer
(as used by DSTs), or an abstract function that performs a Cartesian product between two
subsets of the input values; the latter is a natural abstraction of the join transformation
supported by the RDD data structure in Spark [26, 25, 33]. By definition, DSTJs hence
can perform join operations. We will show later that DSTJs can evaluate the whole class of
relational algebra queries.

2 We note that although the aggregator component is not common in the key-value paradigm, it does
exist. See, for example, the system Bagel [8]. For Boolean queries such as “Are there at least 1000
triangles?”, it is more convenient and efficient to add an aggregator component that aggregates all the
output, rather than adding an extra round to simulate the aggregator.

3 Commutativity is necessary to ensure that the output is independent of the order in which the input
tuples are processed.



F. Neven, N. Schweikardt, F. Servais, and T. Tan 327

Main results. The main results in this paper are the following:

1. DSTJs are strictly stronger than DSTs, which are strictly stronger than DSAs; and within
each of the 3 models there is a strict expressiveness hierarchy w.r.t. the number of rounds;

2. neither DSAs nor DSTs can detect the presence of a triangle in a graph (hence, neither
DSAs nor DSTs can do joins);

3. when restricting attention to bounded degree databases, DSAs can evaluate relational
algebra (and, even more, first-order sentences with modulo counting quantifiers)

4. over arbitrary databases, DSTs can evaluate the semijoin algebra while DSAs can not;
5. over arbitrary databases, DSTJs can evaluate the relational algebra while DSTs can not.

The relations among DSAs, DSTs and DSTJs with the classical database queries are
illustrated as follows.4

DSA ( DST ( DSTJ

⊆ ⊆ ⊆

FO (= rel. alg.) over semijoin algebra relational algebra
bounded degree databases

These results emphasise that, albeit simple, DSAs, DSTs, and DSTJs are pretty expressive.
In fact, they also highlight that the power of the key-value paradigm here lies within the
ability to group values according to a common key.

Related Work. The key-value paradigm, or map-reduce paradigm, attracted a lot of
attention since its inception into Google in the mid 2000s [13, 14]. Arguably it can be viewed
as a subclass of the BSP model introduced by Valiant back in 1990 [30], in which the keys play
a special role in determining the distribution of the data. We discuss the work most related
to the setting of the present paper. We are aware of [5, 1, 4, 2, 9, 10, 11, 19, 20, 21, 27, 28].
Karloff et al. [18] introduce a rigorous computation model for the MapReduce programming
paradigm where (randomised) mappers and reducers are implemented by a RAM with
sublinear space and polynomial time. It is typical that in the map-reduce computation the
reducers considered so far in the literature, such as [2, 4, 27], while limited in the number
of data it can access, can be arbitrarily strong, typically polynomial time machines in the
number of original input items. This is obviously orthogonal with our models here, where
the power of the reducers are limited.

Map-reduce as a framework for the evaluation of special classes of queries, especially
the join queries, has been considered by a number of articles. However, it is not that
clear how to extend them to full relational algebra. We mention here some of the work
along this line. Afrati and Ullman [5] study the evaluation of join queries and take the
amount of communication, calculated as the sum of the sizes of the input to reducers, as
a complexity measure. Evaluation of transitive closure and datalog queries in MapReduce
has been investigated in [1, 6]. Afrati et al. [4] study the tradeoff between parallelism and
communication cost in a map-reduce setting. In particular, the authors established lower
and upper bounds on communication costs for a number of typical problems in databases.
All the lower bounds are established only for one round computation.

Most of the existing MapReduce algorithms assume the number of keys generated is
bounded by a constant, equating the number of keys with the number of available servers.

4 It is a classic result by Codd [12] that first-order logic and relational algebra are equivalent in terms of
expressiveness.

ICDT 2015



328 Distributed Streaming with Finite Memory

See, for example, the algorithm for enumerating the triangles in [27] and arbitrary sample
subgraphs in [2, 4]. This is orthogonal to our approach, where the number of generated keys
can be proportional to the number of vertices in the input graph, and parallelisation can
be achieved by automatically hashing the keys to the available servers. A more thorough
discussion on generic mappers is provided in Section 3.

Koutris and Suciu [19] introduce the massively parallel (MP) model of computation, where
computations proceed in a sequence of parallel steps, each followed by a global synchronisation
of all servers. In this model, evaluation of conjunctive queries [9, 19] as well as skyline
queries [3] have been considered. The MP model can be implemented in the map-reduce
setting, with the hash functions fully specified. Again, the bounds, especially the lower
bounds, are established mainly for one round of computation.

Another setting, but orthogonal to the MapReduce framework, is that of declarative
networking where distributed computations and networking protocols are modeled and
programmed using formalisms based on Datalog [7, 16].

Outline. We give a formal definition of the key-value paradigm in Section 2. In Section 3
we present the notion of generic mappers. Then, in Sections 4–6 we provide the formal
definitions of DSAs, DSTs, and DSTJs, respectively, and study their expressiveness. In
Section 7 we establish the relations between our DSA/DST/DSTJ models and the classical
semijoin algebra and relational algebra. We conclude in Section 8.

2 The key-value paradigm

We start by introducing some notations. Let N be the set of natural numbers {1, 2, . . .}. For
m ∈ N, we let [m] = {1, . . . ,m}. Let S and T be sets. We write Pow(S) or 2S to denote
the set of all finite subsets of S, and we write P(S, T ) and F(S, T ) to denote the class of all
partial functions and all functions from S to T , respectively. We write Bags(S) to denote
the set of all finite bags over S (i.e., all finite multisets built from elements in S). Instead of
B ∈ Bags(S), we sometimes write B v S. We write χ

B to denote the characteristic function
of the bag B. That is, for every x ∈ S, χ

B(x) returns the multiplicity of x in B. We say
that A is a subbag of B, if χ

A(x) ≤ χ
B(x), for every x ∈ S.

We fix an infinite set D of data values. In this paper, we are mostly concerned with
(finite, directed) graphs G = (V,E), where V ⊆ D and E ⊆ V × V . Such graphs are always
presented in the form of a sequence of pairs (a1, b1), . . . , (an, bn) where each pair (ai, bi)
indicates that there is an edge from vertex ai to vertex bi. In view of this, elements of D will
also be called vertices, or nodes. We use the words vertex and node interchangeably, and
we write V (G) and E(G) to denote G’s set of vertices and edges, respectively. We refer to
Section 7 for a generalisation to relations of higher arity, where the input is a stream of facts
of the form R(a1, . . . , am), where R is an arbitrary relation symbol.

We assume we are given two sets K and V denoting the domain of keys and values,
respectively. We call an element (key, val) ∈ K × V a key-value pair and an element
(key, B) ∈ K × Bags(V) a key-bag-value pair. To differentiate them from the standard
tuple, we will write 〈key : val〉 and

〈
key : B

〉
to denote key-value and key-bag-value pairs,

respectively.
A key-value paradigm (KVP) instance is a tuple M = (map1, red1, . . . ,map`, red`, agg)

where ` ∈ N. We say thatM has ` rounds. The components ofM are defined as follows:
map1 is an initial mapper which maps an edge e ∈ D×D to a finite bag over K×V;
for each i ≥ 2, mapi is a mapper which maps a value in V to a finite bag over K×V;



F. Neven, N. Schweikardt, F. Servais, and T. Tan 329

e1, e2, e3, . . .G =

?
map1

〈
key1 : val1

〉
,
〈
key2 : val2

〉
,
〈
key3 : val3

〉
, . . .M1 =

((((((((((((((((9

��������)

hhhhhhhhhhhhhhhhz〈
key1 : B1

〉

?
red1

〈
key2 : B2

〉

?
red1

· · · · · · · · · · · · · · · · · · · · · · · · 〈
keyn : Bn

〉

?
red1

val11, val12, val13, . . .R1 =

......

val`1, val`2, val`3, . . .R` =

?

agg

yes/no

Figure 1 The flow of computation in an ` round key-value paradigm computation.

for each i ∈ [`], redi is a reducer which maps a key key ∈ K and finite bag B v V of
values to a finite bag B′ v V of values; and,
agg is an aggregator which determines the output ofM; agg is a function mapping a finite
bag over V to the value yes or no.

For a bag B v K×V, define keys(B) = {key | ∃ val ∈ V, 〈key : val〉 ∈ B} as the set of keys
occurring in B, and values(key, B) = {{val | 〈key : val〉 ∈ B}} as the bag of values occurring in
B with key key. Here, we use double braces {{...}} to indicate bags, i.e., if B contains i copies
of tuple 〈key : val〉, then values(key, B) contains i copies of val.

On input G = (V,E), the outputM(G) ∈ {yes, no} is computed as follows:
M1 =

⋃
e∈E map1(e) and R1 =

⋃
key∈keys(M1) red1(key, values(key,M1)).

For each i ∈ {2, . . . , `},
Mi =

⋃
val∈Ri−1

mapi(val) and Ri =
⋃

key∈keys(Mi)

redi(key, values(key,Mi))

Finally,M(G) = agg(R`).
We write Mi(G) and Ri(G) to indicate that the bags Mi and Ri are obtained when the input
graph is G. We say thatM(G) is the output ofM on input graph G.

Figure 1 illustrates the flow of computation in an `-round KVP instance. As mentioned
in Section 1, the models DSA/DST/DSTJ introduced in this paper follow the key-value
paradigm, where the mappers are required to be generic (see Section 3), and the reducers
and aggregators are specified by extensions of finite automata (see Sections 4–6).

3 Generic mappers

In this section we instantiate the key and value sets K and V, and define formally the notion
of generic mappers. We fix a finite alphabet Σ and a number k ∈ N. We reserve # to be

ICDT 2015



330 Distributed Streaming with Finite Memory

a special symbol not in D, intended to represent an empty spot or an empty register. D#
denotes the set D∪{#}. We usually write a, b, c, . . . to denote elements of D# and ā, b̄, c̄, . . .
for elements of Dk

# with k ∈ N. When ā ∈ Dk
#, we tacitly assume that ā = a1, . . . , ak.

Define Ak as Σ×Dk
#. Both K and V will be interpreted as Ak. The purpose of σ in

(σ, ā) ∈ Σ ×Dk
# is to encode a finite amount of information about the vertices in ā. For

t = (σ, ā) ∈ Ak, we call σ the label of t.
A D-bijection is a 1-1 mapping π : D# → D#, where π(#) = #. We extend π to tuples

in the canonical way. Let R and S be finite sets and let f be a function from R ×Dm
# to

Bags(S ×Dn
#) for some m,n ∈ N. The function f is generic if the following two conditions

hold: (1) For all (r, c̄) ∈ R×Dm
# , if (s, d̄) ∈ f(r, c̄), then all non-# values in d̄ are from c̄; i.e.,

f cannot invent new values. (2) For every D-bijection π, χ
f(r,c̄)(s, d̄) = χ

f(r,π(c̄))(s, π(d̄));
i.e., f cannot interpret values in D.

Let us briefly comment on our choice of generic mappers. In the theoretical studies of
MapReduce computations, a mapper is typically a hash function, which maps the data items
to the available machines; see, for example, [5, 2, 9, 10, 19, 21, 27]. This is different to our
model here, where the mappers are generic functions that map a value deterministically
to a set of key-value pairs. Such mappers are not uncommon. For example, the mappers
generated by the Pig system [15] are essentially generic mappers similar to the ones studied
in this paper; see [23, Section 4.2]. We will give a more detailed comparison between our
model and the Pig system at the end of Section 7.

Obviously, the generic mappers can generate as many keys as the number of tuples in the
input database. However, this does not mean that the system needs one machine for one
key. In the classic example of a MapReduce program for “word count” [13], the mapper is
a generic function and the number of keys produced equals the number of different words
in the input text. But one would hardly insist that it requires one machine for each key.
Rather, to achieve parallelisation, the system automatically hashes the keys to the available
machines5, and the processor evaluates the values for each key separately, one key at a time.
Of course, specific hash functions may be desirable to achieve optimisation in some settings,
say when the input datasets have been preprocessed, or when some statistics about the input
are known. This is out of the scope of our paper. Our goal is to study the sufficient and
necessary computation mechanism to evaluate relational algebra in a general setting, where
nothing is known about the data or the available machines.

To end this section, let us describe how generic mappers can be specified. We let
[k]# := [k] ∪ {#}. The equality type τ of a tuple (d1, . . . , dk) is the undirected graph with
vertex set [k]#, where for i, j ∈ [k] there is an edge between vertices i and j iff di = dj , and
there is an edge between vertices i and # iff di = #. A generic mapper can be specified
by a table that assigns to each equality type τ over [k]# a list p1, . . . , ps of patterns, each
of the form 〈ki : vi〉, where ki = (σi, j1, . . . , jk) and vi = (σ′i, j′1, . . . , j′k) with σi, σ

′
i ∈ Σ

and j1, . . . , jk, j′1, . . . , j′k ∈ [k]#. On input of a tuple (σ, d1, . . . , dk) ∈ Ak, the mapper then
determines the equality type τ of (d1, . . . , dk), looks up the according patterns p1, . . . , ps,
and for each such pi outputs the key-value pair 〈keyi : vali〉 with keyi = (σi, dj1 , . . . , djk

) and
vali = (σ′i, dj′1 , . . . , dj′k ), where d# is defined to be the value #. Generic initial mappers are
specified accordingly, where only equality types over {1, 2,#} for input tuples (d1, d2) ∈ D×D
are considered.

5 By default, the Hadoop system [31] takes a random hash function to hash the keys, which in practice
works well. Theoretically this is not surprising. A standard application of Chernoff bounds guarantees
that the keys are assigned to all machines uniformly (up to a small constant factor). Nevertheless,
Hadoop also provides a platform for the user to specify his/her own hash functions.



F. Neven, N. Schweikardt, F. Servais, and T. Tan 331

4 Distributed streaming with register automata (DSA)

In this section we introduce DSAs and study their expressiveness. We start with RA-reducers
and RA-aggregators, which are reducers and aggregators instantiated with register automata.
Following this, we present the formal definition of DSAs, and establish their expressiveness,
as well as a hierarchy on the number of rounds.

RA-reducers. We start with the notion of register transition systems, which are essentially
register automata [17, 22]. Intuitively, they work as follows. The input is a sequence of
elements of Ak, and each register can hold an element of D#. For every input (σ, ā) ∈ Ak,
the system changes its state depending on σ and equality tests among the vertices in ā and
the vertices currently stored in the registers. The formal definition reads as follows.

I Definition 1. For r ∈ N, an r-register transition system over Ak is a tuple S = 〈Q, δ〉,
where r ≥ k, Q is a finite set of states, and δ is a transition function from Q×Σ×F([k], 2[r])
to P([r], [k])×Q.6

The intuitive meaning of a transition in δ is as follows. If on input (σ, ā) the system is in
state q, and the data value ai appears in exactly the registers in f(i) for each i ∈ [k], and
δ(q, σ, f) = (g, q′), then the system can enter state q′ and replace the content of each register
j with ag(j) for each j ∈ [r].

A configuration of S is an element of Q×Dr
#. An element (σ, ā) ∈ Ak induces a relation

`(σ,ā) on the configurations of S defined as follows: (q, ū) `(σ,ā) (q′, v̄), if δ(q, σ, f) = (g, q′)
and

f(i) = {j | uj = ai} for each i ∈ [k], and
for each i ∈ [r], if g(i) is defined, then vi = ag(i) and if g(i) is undefined, then vi = ui.

Let t = t1 · · · tn be a sequence of elements of Ak. A run of S on t starting from a configura-
tion (q, ū) is a sequence (q0, ū0), . . . , (qn, ūn) of configurations, where (q0, ū0) = (q, ū) and
(qi−1, ūi−1) `ti (qi, ūi) for each i ∈ [n].

We now define reducers in terms of transition systems.

I Definition 2. An RA-reducer over Ak is a tuple red = (S, ρin, ρout), where S = 〈Q, δ〉 is
an r-register transition system over Ak and r ≥ k; ρin is a function that maps an element of
Ak to a configuration of S; and, ρout is a function that maps a configuration of S to a finite
bag over Ak. Both ρin and ρout are required to be generic.

Intuitively, each reducer gets as input a key-bag-value pair
〈
key : B

〉
where ρin(key)

identifies the initial configuration from which the run of S is started. The output then is
ρout(c), where c is the last configuration of the run.

Formally, let
〈
key : B

〉
∈ Ak × Bags(Ak) be a key-bag-value pair, and let t1, . . . , tm be

an enumeration of the elements in B.7 The output red(key, B) is defined as ρout(qm, ūm) for
the run (q0, ū0), . . . , (qm, ūm) of S on t1t2 · · · tm with (q0, ū0) = ρin(key).

Obviously, the run of S on B depends on the order in which t1, . . . , tm are presented.
However, we want to insist that the output red(key, B) is the same regardless of the order in
which the elements in B are arranged. Therefore, we require RA-reducers to be commutative

6 Note that unlike the definition of register automata in [17] and [22], in a transition system we do not
specify the initial state, the final states and the initial content of the registers. We will, however, use
the standard register automata to define the aggregator.

7 Since B is a bag, some elements can appear multiple times in the enumeration.

ICDT 2015



332 Distributed Streaming with Finite Memory

in the following sense: If t = t1 · · · tm and t′ = tπ(1) · · · tπ(m) are two enumerations of the
elements of B (for some permutation π of [m]), and (qm, ūm) and (q′m, ū′m) are the final
configurations of the runs of S on t and t′, respectively, starting in configuration ρin(key),
then ρout(qm, ūm) = ρout(q′m, ū′m).

Note that by definition of a transition system, an RA-reducer can never get stuck and
always processes the complete input. The output of an RA-reducer is therefore well-defined.

RA-aggregator. An r-register automaton over Ak is an r-register transition system S =
〈Q, δ〉 together with a designated initial state q0, a set of final states F ⊆ Q and an initial
content of the registers ū0. We will write A = 〈Q, δ, q0, F, ū0〉 to denote an r-register
automaton.

The configurations of A and the relations `(σ,ā) are defined similarly as for a transition
system. The only difference is that in a register automaton, we insist that the run should
start from the configuration (q0, ū0).

Formally, let t = t1 · · · tn be a sequence of elements of Ak. The run (q0, ū0), · · · , (qn, ūn)
of A on t is accepting (and A accepts t) iff qn ∈ F . The automaton is commutative when
A accepts t1 · · · tn if and only if A accepts tπ(1) · · · tπ(n) for every sequence t = t1 · · · tn of
elements of Ak and for every permutation π on [n]. For commutative register automata
we can safely regard the input sequence as a finite bag B, where we consider an arbitrary
enumeration of the elements in B and in which context we simply say that either A accepts
B or not.

I Definition 3. An RA-aggregator is a commutative r-register automaton A over Ak with
r ≥ k.

Obviously, an RA-aggregator A can be viewed as a function from finite bags of Ak to
{yes, no}, where A(B) = yes, if A accepts B, and A(B) = no, otherwise.

Definition of DSA. An `-round DSA is a tupleM = (map1, red1, . . . ,map`, red`, agg), where
each mapi is a generic mapper, each redi is an RA-reducer, and agg is an RA-aggregator.

We say thatM accepts a graph G, if agg(R`(G)) = yes, in which case, we writeM(G) =
yes. Here, R` is as defined in Section 2. By G(M) we denote the class of all graphs accepted
byM, and we say that G(M) is the class of graphs recognised byM.

I Example 4. Consider inputs of the form (d1, s1), . . . , (dn, sn), where each tuple (di, si)
indicates that data value di is stored on server si. Let INTERSECT be the problem to decide
whether there is a data value that is stored on more than one server. It can easily be formalised
as a 1-round DSAM = (map1, red1, agg) over Ak for k = 1 and Σ = {σblank, σdisj, σndisj}.

The initial mapper map1 assigns to each input tuple (di, si) ∈ D×D a single key-value
pair 〈key : val〉 with key = (σblank, di) and val = (σblank, si). Thus, the initial mapper can be
specified by a table which assigns to each equality type τ the single pattern p = 〈k : v〉 with
k = (σblank, 1) and v = (σblank, 2).

The reducer red1 is an RA-reducer over Ak (for k = 1), with a single register, with state
set Q = {q0, q1, q2}, and with ρin(key) = (q0,#) for all key ∈ Ak. The transition function δ
ensures that when reading a symbol (σ, s) ∈ Ak, the RA-reducer proceeds as follows: If the
current state is q0 (i.e., the automaton performs its first step), then the automaton stores
the value s in its register and changes to state q1. If the current state is q1, and the value s
is different from the value stored in the register, then the automaton changes to state q2;
otherwise (i.e., s coincides with the value stored in the register), the automaton remains in
state q1. If the current state is q2, then the automaton simply remains in this state.



F. Neven, N. Schweikardt, F. Servais, and T. Tan 333

Gm

a1r -PPPPPPq
@
@
@
@
@
@R

a2r -��
��

��1

Q
Q
Q
Q
QQs

...

am
r -�
�
�
�
��3

�
�
�
�
�
��

b1r -PPPPPPq
@
@
@
@
@
@R

b2r -��
��

��1

Q
Q
Q
Q
QQs

...

bm
r -�
�
�
�
��3

�
�
�
�
�
��

c1r -PPPPPPq
@
@
@
@
@
@R

c2r -��
��

��1

Q
Q
Q
Q
QQs

...

cm
r -�
�
�
�
��3

�
�
�
�
�
��

d1r -PPPPPPq
@
@
@
@
@
@R

d2r -��
��

��1

Q
Q
Q
Q
QQs

...

dm
r -�
�
�
�
��3

�
�
�
�
�
��

e1r
e2r
...

em
r

a1r -PPPPPPq
@
@
@
@
@
@R

a2r -��
��

��1

Q
Q
Q
Q
QQs

...

am
r

*
�
�
�
�
��3

�
�
�
�
�
��

b1r -PPPPPPq
@
@
@
@
@
@R

b2r -��
��
��1

Q
Q
Q
Q
QQs

...

bm
r -�
�
�
�
��3

�
�
�
�
�
��

G̃m

c1r -PPPPPPq
@
@
@
@
@
@R

c2r -��
��
��1

Q
Q
Q
Q
QQs

...

cm
r -�
�
�
�
��3

�
�
�
�
�
��

d1r -PPPPPPq
@
@
@
@
@
@R

d2r -��
��

��1

Q
Q
Q
Q
QQs

...

dm
r

I

�
�
�
�
��3

�
�
�
�
�
��

e1r
e2r
...

em
r

Figure 2 DSAs cannot differentiate between Gm on the left and G̃m on the right.

The function ρout maps the final configuration (q, v) to (σndisj,#) if q = q2, and to
(σdisj,#) otherwise. Finally, the aggregator agg is a simple finite automaton which receives as
input a list of items in Ak and accepts if, and only if, at least one these items is of the form
(σndisj,#). This completes the description of a 1-round DSA which solves the INTERSECT
problem. �

Expressiveness of DSAs and a hierarchy on the number of rounds. The rest of this
section is devoted to our study of the expressiveness of DSAs.

We start by showing that on general graphs DSAs cannot compute joins; in fact, they
cannot even test if an input graph contains a triangle. Let TRIANGLE be the class of all
graphs G that contain a directed triangle.

I Theorem 5. There is no DSA that recognises TRIANGLE.

Proof (sketch). Consider the graphs Gm and G̃m depicted in Figure 2. While G̃m contains
a triangle, Gm does not. We show that for every DSAM there is an m ∈ N such thatM
cannot distinguish between Gm and G̃m, i.e.,M(Gm) =M(G̃m). The number m we choose
here is bigger than the number r of registers ofM, and the proof relies on a careful analysis
of the computation ofM, utilising the fact that mappers ofM are generic and reducers of
M are generic and commutative. Briefly, it is based on the fact that for every vertex u, its
neighbourhoods in both Gm and G̃m are “the same”. Moreover, since m ≥ r + 1, by just
looking at the u and its neighbourhood, the DSA M cannot differentiate whether u is a
vertex in Gm or G̃m. This holds for every vertex u in Gm and G̃m (both have the same set
of vertices), and implies thatM cannot differentiate Gm and G̃m. J

Concerning the graphs Gm and G̃m used in the above proof, note that the maximum
length of a walk8 in Gm is 4, while G̃m contains walks of arbitrary lengths. Thus, we obtain
the following where, for ` ∈ N, we define `-WALK as the class of all graphs that contain a
walk of length `.

I Corollary 6. Let ` ≥ 5. There is no DSA that recognises `-WALK.

However, when restricting attention to bounded degree graphs, DSAs are quite powerful:
they can recognise all properties definable in first-order logic with modulo counting quantifiers.
That is, first-order logic enriched by quantifiers of the form ∃imodmxψ, stating that the
number of nodes x satisfying ψ is congruent i modulo m, for integers m ≥ 1 and i ∈
{0, . . . ,m−1}.

8 A walk of length ` is a sequence of ` edges (a0, a1), (a1, a2), . . . , (a`−1, a`) in which repetition of
vertices/edges is allowed.

ICDT 2015



334 Distributed Streaming with Finite Memory

For a vertex u in a graph G, define in-deg(u) and out-deg(u) as the in-degree and the
out-degree of u, respectively, and let deg(u) = in-deg(u) + out-deg(u), and let deg(G) =
maxu∈V (G)(deg(u)) be the degree of G.

I Theorem 7. Let d ≥ 2 and let ϕ be a sentence of first-order logic with modulo counting
quantifiers. There is a DSAMϕ,d such that G(Mϕ,d) = {G : deg(G) ≤ d and G |= ϕ}.

For d, ` ≥ 0, define 2`-WALKd to be the class of all graphs G such that deg(G) ≤ d and
there is a walk of length 2` in G.

I Theorem 8.
1. For every d, ` ≥ 0, there is an `-round DSAM such that G(M) = (2`)-WALKd.
2. For every ` ≥ 0, there is no `-round DSA that recognises (2`+1)-WALK2.
3. For every ` ∈ N, (`+1)-round DSAs are strictly more expressive than `-round DSAs.

5 Distributed streaming with register transducers (DST)

In this section we introduce the model DST, which is stronger than the DSA-model. As
mentioned earlier, the only difference between DSTs and DSAs is on the reducer level. Within
a DSA, a reducer is a register automaton that makes one pass over its input, and upon
finishing this pass, it outputs a finite bag of values determined by its final configuration. In
contrast, within a DST, a reducer is an RT-reducer which consists of two components: a
finite-state automaton and a transducer system; and makes two passes over the input. In
the first pass, it uses its finite-state automaton to read the input, but does not produce any
output. The final state of the first pass serves as the initial state for the transducer system
to make another pass on the input. During this second pass, the transducer outputs a bag of
values for each input value (hence the name transducer).

In the next few paragraphs we present the formal definition of DSTs. We start by
extending Definition 1 to transducer systems.

I Definition 9. For r ∈ N, an r-register transducer system over Ak is a tuple T = 〈Q, δ, µ〉,
where r ≥ k, Q is a finite set of states, δ is a transition function from Q× Σ× F([k], 2[r])
to P([r], [k]) × Q, and µ is a transducer function from Q × Σ × F([k], 2[r]) to Bags(Σ ×
F([k], [r+k])).

Thus, an r-register transducer system T = 〈Q, δ, µ〉 is a transition system 〈Q, δ〉 extended
with a transducer function µ. The meaning of δ is the same as before, while the meaning
of µ is as follows. If on input (σ, ā) the automaton is in configuration (q, ū), and for each
i ∈ [k], the data value ai appears in exactly the registers in f(i), then the transducer function
outputs the finite bag C v Ak which is obtained from C̃ := µ(q, σ, f) by replacing every
(σ′, h) ∈ C̃ with the value (σ′, v̄) where, for each i ∈ [k],

vi =
{

uh(i) if h(i) ≤ r
ah(i)−r if h(i) ≥ r+1

(i.e., the function h tells us for each of the k positions i of v̄, that the value at this position
should be the value at the h(i)-th position of the tuple ūā). We say that C is the output of
µ from (σ, ā) and (q, ū).

Let t = t1 · · · tn be a sequence of elements of Ak. When starting with a configuration
(q, ū), the transducer system T = 〈Q, δ, µ〉 processes t as follows: It runs the transition system
〈Q, δ〉 on t starting with configuration (p0, v̄0) := (q, ū), resulting in a run (p0, v̄0), . . . , (pn, v̄n).



F. Neven, N. Schweikardt, F. Servais, and T. Tan 335

During this run, on reading each ti it outputs the bag Ci, defined as the output of µ from ti
and (pi−1, v̄i−1).

The union C of the bags C1, . . . , Cn is the output of the transducer system T on t from
the configuration (q, ū).9

I Definition 10. An RT-reducer over Ak is a tuple red = (A, T , ρin), where A is a commut-
ative finite-state automaton10 over the alphabet Σ and T is an r-register transducer system
over Ak for r ≥ k, and ρin is a function that maps an element of Ak to a state of A. As
before, ρin is required to be generic.

As input, an RT-reducer red = (A, T , ρin) receives a key-bag-value pair 〈key : B〉 ∈
Ak × Bags(Ak). Let t = t1 · · · tm be an enumeration of the elements in B. First, the finite
state automaton A reads only the labels in t starting from the state ρin(key), and ends in a
configuration, say q. Then, the transducer system T reads t starting from the configuration
(q, ā), where ā is the data values component in key. The output of red on 〈key : B〉 is the
output of T on t. As in the case of RA-reducers, we want to insist that the output red(key, B)
is independent of the order of elements in B read by T . Therefore, we require RT-reducers
to be commutative.

Finally, we are ready to define DST.

I Definition 11. An `-round DST is a tupleM = (map1, red1, . . . ,map`, red`, agg), where
each mapi is a generic mapper, each redi is an RT-reducer, and agg is an RA-aggregator.

The notion of acceptance, along with the notionsM(G) (for a graph G) and G(M), are
defined in the same way as for DSAs. Note that we require the reducer to make two passes
on the values, where a finite state automaton is making the first pass, and a transducer is
making the second pass. Without two passes, semijoin algebra cannot be captured. The rest
of this section is devoted to our study of the expressiveness of DSTs.

Our first result states that for DSTs, ` rounds are sufficient and necessary to recognise
the existence of a walk of length 2`. Recall that `-WALK (for ` ∈ N) is the class of all graphs
that contain a walk of length `.

I Theorem 12.
1. For each ` ∈ N there is an `-round DSTM such that G(M) = (2`)-WALK.
2. For each ` ∈ N, there is no `-round DST that recognises (2`+2)-WALK.
3. For every ` ∈ N, (`+1)-round DSTs are strictly more expressive than `-round DSTs.

In particular, 6-WALK can be recognised by a DST. From Corollary 6, we know that no
DSA can recognise 6-WALK. Furthermore, by modifying the proof of Theorem 5, we can
also show that DSTs are still not powerful enough to solve the TRIANGLE problem. These
two facts are stated formally as follows:

I Theorem 13.
DSTs are strictly stronger than DSAs.
There is no DST that recognises TRIANGLE.

9 We should remark that although register transducers are very natural extension of register automata,
we are not aware of any literature where they have been studied previously.

10A finite state automaton A is commutative, if for every sequence σ1 · · ·σm, for every permutation π on
[m], on reading the sequence σ1 · · ·σm and σπ(1) · · ·σπ(m), the automaton ends in the same state.

ICDT 2015



336 Distributed Streaming with Finite Memory

6 Distributed streaming with register transducers and joins

In this section we introduce the strongest model of this paper, called Distributed streaming
with register transducers and joins (DSTJ). It is designed specifically to capture relational
algebra. The difference between DSTJs and DSTs is again on the reducer level. In DSTJs, a
reducer can be of two types: an RT-reducer or a joiner, which is simply an abstract function
that performs the Cartesian product between two sets. Its formal definition is as follows.

A joiner is a triplet J = (α, β, γ), where α, β, γ are symbols from Σ. A joiner J = (α, β, γ)
works as follows. The input is a key-bag-value pair

〈
key : VAL

〉
. Let key = (ζ, ā). The joiner

J outputs the bag {{(α, āb̄c̄) | (β, b̄) ∈ VAL and (γ, c̄) ∈ VAL}}.
Next, we define a relational reducer as a reducer that can choose either an RT-reducer or

a joiner to process its values.

I Definition 14. A relational reducer is a tuple R = (F,J , T ), where F : Σ→ {C, T} is a
function that maps σ ∈ Σ to either C or T , J is a joiner, and T is an RT-reducer.

On input of a key-bag-value pair
〈
key : VAL

〉
, a relational reducer does the following:

Let key = (σ, t). If F (σ) = C, the relational reducer runs the joiner J on
〈
key : VAL

〉
. If

F (σ) = T , it runs the RT-reducer T on
〈
key : VAL

〉
.

I Definition 15. An `-round DSTJ is a tupleM = (map1, red1, . . . ,map`, red`, agg), where
each mapi is a generic mapper, each redi is a relational reducer, and agg is an RA-aggregator.

The notion of acceptance, along with the notionsM(G) (for a graph G) and G(M), are
defined in the same way as for DSTs. The rest of this section is devoted to the expressiveness
of DSTJs. Our first expressiveness result states that DSTJ can recognise the existence of a
triangle.

I Lemma 16. There is a 2-round DSTJM such that G(M) = TRIANGLE.

Proof (sketch). Intuitively, in the first roundM collects all pairs (u, v) where there is path of
length 2 from u to v. In the second round on each pair (u, v) output in the first round, it checks
whether there is an edge from v to u. If so, it outputs a special symbol γ. The aggregator
simply checks whether γ appears among the values output by the reducer in the second
round. We note that this algorithm is very similar to the algorithm MR-Node-Iterator++
in [27]. J

Combining Lemma 16 and Theorem 13, we obtain:

I Theorem 17. DSTJs are strictly stronger than DSTs.

In a graph G, a cycle of length m is sequence of edges (u1, u2), . . . , (um−1, um), (um, u1) ∈
E(G). It is not necessary that the vertices u1, . . . , um are pairwise different. For m ≥ 3,
define the class m-CYCLE where a graph G ∈ m-CYCLE if and only if G contains a cycle
of length m.

I Theorem 18. For each positive integer ` ≥ 1, the following holds.
1. There is an `-round DSTJM such that G(M) = 2`-CYCLE.
2. For each ` ∈ N, there is no `-round DSTJM such that G(M) = 2`+1-CYCLE.
3. (`+1)-round DSTJs are strictly more expressive than `-round DSTJs.



F. Neven, N. Schweikardt, F. Servais, and T. Tan 337

7 Semijoin algebra and relational algebra

In this section we study the connections between the models DSA/DST/DSTJ and the
semijoin algebra and the relational algebra. To this end, we define the corresponding model
for DSA/DST/DSTJ for non-Boolean queries on general databases.

We fix a finite vocabulary τ of relation symbols with associated arities and assume every
database DB to be over τ . For a relation symbol R and a tuple of values ā whose arity
matches the arity of R, we call R(ā) a fact. Clearly, a database is just a finite set of facts.
The initial mapper will now receive as input an enumeration of all the facts in the database.

Here we assume that Σ contains τ , and as before, Ak denotes Σ×Dk
#. A fact R(ā) can

then be viewed as an element of Ak by padding an appropriate number of #’s at the end
of ā. Similarly, an element (R, ā) ∈ Dk

# can be viewed as an R-fact by discarding the #
components. To avoid being pedantic, we will view elements of Ak as facts, and vice versa.

I Definition 19. For every X ∈ {DSA,DST,DSTJ}, an `-round DB-X over Ak is a tuple
M = (map1, red1, . . . ,map`, red`), where each mapi is a generic mapper, and each redi is
an RA-reducer, an RT-reducer, and relational reducer, when X is DSA, DST and DSTJ,
respectively.

On an input database DB, for each i ∈ [`], the bags Mi(DB) of key-value pairs and the
bags Ri(DB) of values are defined as in Section 2. For every X ∈ {DSA,DST,DSTJ}, on
input of a database DB, the output of a DB-XM is defined as the tuples from R`(DB).

Note that in the lower bounds proved in the previous sections are for models with
aggregator components, which the non-Boolean models do not have. Obviously, all the lower
bounds for the Boolean queries carry over to their non-Boolean counterparts. Next, we
are going to show that on classes of bounded degree databases, DB-DSA can evaluate the
relational algebra; while over general databases, DB-DST and DB-DSTJ can evaluate the
semijoin algebra and the relational algebra, respectively. In the following e(DB) denotes the
result of evaluating the expression e on the database DB.

I Theorem 20.
1. For every relational algebra expression e and an integer d > 0, there is a DB-DSAMe

such that for every database DB of degree at most d,Me(DB) = e(DB).
2. For every semijoin algebra expression e, there is a DB-DST Me such that for every

database DB,Me(DB) = e(DB).
3. For every relational algebra expression e, there is a DB-DSTJ Me such that for every

database DB,Me(DB) = e(DB).
Moreover, eachMe can be constructed effectively.

Proof. Proof of (1). We are going to show that on bounded degree databases, each RA
operation can be simulated by one round DSAM = (map, red), in which the tuples output
by the reducer has the same label T . Its generalisation for arbitrary RA-expression can be
established via straightforward induction. Note that the bounded degree is only needed for
the semijoin and join operations.

Union: R ∪ S.
The mapper works as follows. On input t, if t is R(ā), it outputs

〈
T (ā) : R(ā)

〉
; if t is

S(ā), it outputs
〈
T (ā) : S(ā)

〉
; otherwise, it outputs nothing. The reducer red works as

follows. On key t, it outputs t itself.
Intersection: R ∪ S.

ICDT 2015



338 Distributed Streaming with Finite Memory

The mapper works like in the case R ∪ S. The reducer red works as follows. On key t, it
checks whether there are two tuples, one with label R and another with label S. If so, it
outputs t itself. Otherwise, it outputs nothing.
Difference: R− S.
The mapper works like in the case R ∪ S. The reducer red works as follows. On key t, it
checks whether there is a tuple with label R and there is no tuple with label S. If so, it
outputs t itself. Otherwise, it outputs nothing.
Selection: σi=j(R).
The mapper works as follows. On input t, if t is R(ā) and ai = aj it outputs

〈
T (ā) : T (ā)

〉
;

otherwise, it outputs nothing. The reducer red works as follows. On key t, it outputs t
itself.
Projection: πi1,...,im(R).
The mapper works as follows. On input t, it outputs

〈
T (ai1 , . . . , aim) : T (ai1 , . . . , aim)

〉
,

if t is R(ā). Otherwise, it outputs nothing. The reducer red works as follows. On key t,
it outputs t itself.
Semijoin: Rnθ S.
Let I and J be the projection of θ to its first and second coordinates. The mapper works
as follows. On input t, if t is R(ā), it outputs

〈
T (πI(ā)) : R(ā))

〉
; if t is S(ā), it outputs〈

T (πJ(ā)) : S(πJ(ā)))
〉
; otherwise, it outputs nothing. The reducer red works as follows.

On key t, it passes through its input, while remembering all the R-facts in its registers.
Since the input dataabse DB is of bounded degree, say ≤ d, the number R-facts associated
with one particular key is also bounded by d. So we can choose the number of registers
in red to be kd, where k is the arity of R, to accommodate all the R-facts and S-facts. If
there is at least an S-fact among its input, it outputs all the R-facts. Otherwise, if there
is no S-fact among its input, it outputs nothing.
Join: R onθ S.
As in the semijoin case, let I and J be the projection of θ to its first and second coordinates.
The mapper works in the same manner as in the semijoin case. The reducer red works as
follows. On key t, it passes through its input, while remembering all the R-facts and all
its S-facts in its registers. Similar to the semijoin case, since DB is of bounded degree, say
≤ d, the number R-facts and S-facts associated with one particular key is also bounded
by d. So we can choose the number of registers in red to be (k + l)d, where k and l are
the arities of R and S, respectively, to accommodate all the R-facts and S-facts. If there
is at least one R-fact and one S-fact among its input, it outputs all the combination of
the join among the R-facts and S-facts in the input. Otherwise, if there is no S-fact or if
there is no R-fact, it outputs nothing.

Proof of (2). Note that for union, intersection, difference, selection and projection, one-round
DSA presented above works for arbitrary database. Hence, it is sufficient to show that
semijoin operation Rnθ S over arbitrary graph can be done in one-round DST.

Let I and J be the projection of θ to its first and second coordinates. The mapper works
as in the case of semijoin above. The reducer red works as follows. On key t, in the first pass
it checks whether there is an S-fact among the input, which can be done trivially by a finite
state automaton. If there is an S-fact, in the second pass on each R-fact R(ā) in the input,
it outputs T (ā). If there is no S-fact, in the second pass it does nothing and output nothing.

Proof of (3): Again, since all the other operations can be evaluated by DSA and DST,
it is sufficient to show that join operation R onθ S over arbitrary database can be done in
one-round DSTJ. The mapper works similarly as in the case of join above. Then the reducer
uses joiner to pair off the R-tuples with S-tuples. J



F. Neven, N. Schweikardt, F. Servais, and T. Tan 339

Note that 6-WALK can be expressed in the semijoin algebra, and TRIANGLE can be
expressed in the relational algebra. Thus, it follows that DB-DSA and DB-DST cannot
evaluate all semijoin algebra and relational algebra expressions, respectively.

Comparison with Pig. To end this section, we give a brief description of the Pig system,
and relate it to our models here. For more details, we refer the reader to [15, 23]. In
short, Pig is a system built on the Hadoop system to evaluate queries on a large relational
database written in a language called Pig Latin. Upon receiving an input query, Pig generates
a MapReduce program that evaluates the query on a given database, where the number
of rounds corresponds linearly to the number of (CO)GROUP and JOIN queries. For each
(CO)GROUP query it generates a mapper that assigns keys to tuples based on the BY clauses
in the query, i.e. projecting the tuples to fields in the BY clauses. The JOIN operations are
handled in one of two ways: (i) rewrite into a COGROUP followed by a FOR EACH operation,
which yields a parallel hash-join or sort-merge join, or (ii) use fragment-replicate join. Either
way requires one round of MapReduce computation, and can be captured by the joiner.

Obviously, two independent subqueries can be evaluated simultaneously in a one round
MapReduce job. Typically a MapReduce compilation of Pig Latin script looks as follows:

load - filter,
for each

- group,
cogroup

map1 red1

- · · · · · · - group,
cogroup

mapi redi

- · · · · · ·

The (CO)GROUP commands form the boundary between the map and reduce phase. In
the current implementation of Pig, the commands in between the boundaries are pushed into
the reduce function. Obviously, the FILTER and FOR EACH command can be implemented as
one of RA-reducer or RT-reducer, and JOIN as joiner. Hence, one round in the Pig system
corresponds to one round of either DSA, DST, or DSTJ.

8 Conclusion

We introduced three simple abstractions of the key-value paradigm in terms of finite memory
automata and transducers. Our results emphasise that, even though the proposed models
are simple, they form a relevant subclass of MapReduce. In particular, DSTJs can evaluate
the whole relational algebra, while DSTs can evaluate the semijoin algebra which forms an
important subset of the relational algebra. Furthermore, on the class of bounded degree
graphs (and analogously, also for bounded degree databases), DSAs can evaluate all Boolean
queries formulated in relational algebra or first-order logic with modulo counting quantifiers.
In fact, on this class, we believe DSAs to be equivalent to first-order logic with modulo
counting quantifiers. A direction for future research is to extend the current model with
arithmetic and aggregation, as SQL queries support modest forms of counting.

Acknowledgements. We thank the anonymous referees for their helpful and inspiring
comments. We also thank Jan Van den Bussche for inspiring discussions. The fourth author
is supported by FWO Pegasus Marie Curie Fellowship.

ICDT 2015



340 Distributed Streaming with Finite Memory

References
1 F. Afrati, V. Borkar, M. Carey, N. Polyzotis, and J. Ullman. Map-reduce extensions and

recursive queries. In ICDE, 2011.
2 F. Afrati, D. Fotakis, and J. Ullman. Enumerating subgraph instances using map-reduce.

In ICDE, 2013.
3 F. Afrati, P. Koutris, D. Suciu, and J. Ullman. Parallel skyline queries. In ICDT, 2012.
4 F. Afrati, A. Dash Sarma, S. Salihoglu, and J. Ullman. Upper and lower bounds on the

cost of a map-reduce computation. PVLDB, 6(4):277–288, 2013.
5 F. Afrati and J. Ullman. Optimizing joins in a map-reduce environment. In EDBT, 2010.
6 F. Afrati and J. Ullman. Transitive closure and recursive datalog implemented on clusters.

In EDBT, 2012.
7 T. Ameloot, F. Neven, and J. Van den Bussche. Relational transducers for declarative

networking. Journal of the ACM, 60(2):15, 2013.
8 Apache Bagel. Bagel. http://spark.apache.org/docs/0.7.3/bagel-programming-guide.html.
9 P. Beame, P. Koutris, and D. Suciu. Communication steps for parallel query processing.

In PODS, 2013.
10 P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing. In PODS, 2014.
11 F. Chierichetti, R. Kumar, and A. Tomkins. Max-cover in map-reduce. In WWW, 2010.
12 E. Codd. A relational model of data for large shared data banks. Communication of the

ACM, 13(6):377–387, 1970.
13 J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In

OSDI, 2004.
14 J. Dean and S. Ghemawat. Mapreduce: a flexible data processing tool. Communication of

the ACM, 53(1):72–77, 2010.
15 A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam, C. Olston, B. Reed,

S. Srinivasan, and U. Srivastava. Building a highlevel dataflow system on top of mapreduce:
The pig experience. PVLDB, 2(2):1414–1425, 2009.

16 J. Hellerstein. The declarative imperative: experiences and conjectures in distributed logic.
SIGMOD Record, 39(1):5–19, 2010.

17 M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer Science,
134(2):329–363, 1994.

18 H. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for mapreduce. In SODA,
2010.

19 P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In PODS, 2011.
20 R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani. Fast greedy algorithms in mapre-

duce and streaming. In SPAA, 2013.
21 S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: a method for solving graph

problems in mapreduce. In SPAA, 2011.
22 F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite

alphabets. ACM Transactions on Computational Logic, 5(3):403–435, 2004.
23 C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign

language for data processing. In SIGMOD Conference, 2008.
24 Apache Pig. Pig. http://pig.apache.org/.
25 Apache Spark. Spark. http://spark.apache.org.
26 Apache Spark. Spark programming guide. http://spark.apache.org/docs/latest/

programming-guide.html.
27 S. Suri and S. Vassilvitskii. Counting triangles and the curse of the last reducer. In WWW,

2011.
28 Y. Tao, W. Lin, and X. Xiao. Minimal mapreduce algorithms. In SIGMOD, 2013.

http://pig.apache.org/
http://spark.apache.org
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html


F. Neven, N. Schweikardt, F. Servais, and T. Tan 341

29 A. Thusoo, J. Sen Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu, and
R. Murthy. Hive - a petabyte scale data warehouse using hadoop. In ICDE, 2010.

30 L. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

31 T. White. Hadoop - The Definitive Guide: Storage and Analysis at Internet Scale (3. ed.,
revised and updated). O’Reilly, 2012.

32 R. Xin, J. Rosen, M. Zaharia, M. Franklin, S. Shenker, and I. Stoica. Shark: Sql and rich
analytics at scale. In SIGMOD, 2013.

33 M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In NSDI, 2012.

ICDT 2015



From Causes for Database Queries to Repairs and
Model-Based Diagnosis and Back
Babak Salimi1 and Leopoldo Bertossi2

1 Carleton University, School of Computer Science, Ottawa, Canada
bsalimi@scs.carleton.ca

2 Carleton University, School of Computer Science, Ottawa, Canada
bertossi@scs.carleton.ca

Abstract
In this work we establish and investigate connections between causality for query answers in data-
bases, database repairs wrt. denial constraints, and consistency-based diagnosis. The first two
are relatively new problems in databases, and the third one is an established subject in knowledge
representation. We show how to obtain database repairs from causes and the other way around.
Causality problems are formulated as diagnosis problems, and the diagnoses provide causes and
their responsibilities. The vast body of research on database repairs can be applied to the newer
problem of determining actual causes for query answers and their responsibilities. These con-
nections, which are interesting per se, allow us, after a transition -inspired by consistency-based
diagnosis- to computational problems on hitting sets and vertex covers in hypergraphs, to obtain
several new algorithmic and complexity results for database causality.

1998 ACM Subject Classification H.2.3 [Database Management] Languages, H.2.4 [Database
Management] Systems, I.2.3 [Artificial Intelligence] Deduction and Theorem Proving, I.2.4 [Ar-
tificial Intelligence] Knowledge Representation Formalisms and Methods, F.1.3 [Computation of
Abstract Devices] omplexity Measures and Classes

Keywords and phrases causality, diagnosis, repairs, consistent query answering, integrity con-
straints

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.342

1 Introduction

When querying a database, a user may not always obtain the expected results, and the
system could provide some explanations. They could be useful to further understand the
data or check if the query is the intended one. Actually, the notion of explanation for a query
result was introduced in [41], on the basis of the deeper concept of actual causation.

A tuple t is an actual cause for an answer ā to a conjunctive query Q from a relational
database instance D if there is a contingent set of tuples Γ, such that, after removing Γ from
D, ā is still an answer, but after further removing t from Dr Γ, ā is not an answer anymore.
Here, Γ is a set of tuples that has to accompany ā for it to be a cause. Actual causes and
contingent tuples are restricted to be among a pre-specified set of endogenous tuples, which
are admissible, possible candidates for causes, as opposed to exogenous tuples, which may
also be present in the database. In rest of this paper, whenever we simply say “cause”, we
mean “actual cause”.

In applications involving large data sets, it is crucial to rank potential causes by their
responsibilities [42, 41], which reflect the relative (quantitative) degrees of their causality for
a query result. The responsibility measure for a cause is based on its contingency sets: the
smallest (one of) its contingency sets, the strongest it is as a cause.

© Babak Salimi and Leopoldo Bertossi;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 342–362

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.342
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


B. Salimi and L. Bertossi 343

Actual causation, as used in [41], can be traced back to [29, 30], which provides a model-
based account of causation on the basis of counterfactual dependence. Responsibility was
introduced in [18], to capture the intuitive notion of degree of causation.

Apart from the explicit use of causality, research on explanations for query results has
focused mainly, and rather implicitly, on provenance [12, 13, 14, 21, 36, 34, 53]. A close
connection between causality and provenance has been established in [41]. However, causality
is a more refined notion that identifies causes for query results on the basis of user-defined
criteria, and ranks causes according to their responsibilities [42].

Consistency-based diagnosis [47], a form of model-based diagnosis [52, sec. 10.3], is an
area of knowledge representation. The problem here is, given the specification of a system in
some logical formalism and a usually unexpected observation about the system, to obtain
explanations for the observation, in the form of a diagnosis for the unintended behavior.

In a different direction, a database instance, D, that is expected to satisfy certain integrity
constraints may fail to do so. In this case, a repair of D is a database D′ that does satisfy
the integrity constraints and minimally departs from D. Different forms of minimality can
be applied and investigated. A consistent answer to a query from D and wrt. the integrity
constraints is a query answer that is obtained from all possible repairs, i.e. is invariant or
certain under the class of repairs. These notions were introduced in [2] (surveys of the area
can be found in [7, 9]). Although not in the context of repairs, consistency-based diagnosis
has been applied to consistency restoration of a database wrt. integrity constraints [27].

These three forms of reasoning, namely inferring causes from databases, consistency-based
diagnosis, and consistent query answering (and repairs) are all non-monotonic [49]. For
example, a (most responsible) cause for a query result may not be such anymore after
the database is updated. Furthermore, they all reflect some sort of uncertainty about the
information at hand. In this work we establish natural, precise, useful, and deeper connections
between these three reasoning tasks.

More precisely, we unveil a strong connection between computing causes and their
responsibilities for conjunctive query answers, on one hand, and computing repairs in
databases wrt. denial constraints, on the other. These computational problems can be
reduced to each other. In order to obtain repairs wrt. a set of denial constraints from
causes, we investigate causes for queries that are unions of conjunctive queries, and develop
algorithms to compute causes and responsibilities.

We show that inferring and computing actual causes and their responsibilities in a
database setting become diagnosis reasoning problems and tasks. Actually, a causality-based
explanation for a conjunctive query answer can be viewed as a diagnosis, where in essence the
first-order logical reconstruction of the relational database provides the system description
[48], and the observation is the query answer. We also establish a bidirectional connection
between diagnosis and repairs.

Being the causality problems the main focus of this work, we take advantage of algorithms
and complexity results both for consistency-based diagnosis; and database repairs and
consistent query answering [9]. In this way, we obtain new complexity results for the main
problems of causality, namely computing actual causes, determining their responsibilities,
and obtaining most responsible causes; and also for their decision versions. In particular,
we obtain fixed-parameter tractable algorithms for some of them. More precisely, our main
results are as follows:1 (the complexity results are all in data complexity)

1 A few of the results included here appear in [49].

ICDT 2015



344 From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

1. For a boolean conjunctive query and its associated denial constraint (the former being
its violation view), we establish a precise connection (characterization and computa-
tional reductions) between actual causes for the query (being true) and the subset- and
cardinality-repairs of the instance wrt. the denial constraint. We obtain causes from
repairs.

2. We obtain repairs from causes, for which we extend the treatment of causality to unions
of conjunctive queries (to represent multiple denial constraints). We characterize an
actual cause’s responsibility in terms of cardinality-repairs. We provide algorithms to
compute causes and their (minimal) contingency sets for unions of conjunctive queries.
The causes can be computed in PTIME.

3. We establish a precise connection between consistency-based diagnosis for a boolean
conjunctive query being unexpectedly true according to a system description, and causes
for the query being true. In particular, we show how to compute actual causes, their
contingency sets, and responsibilities using the diagnosis characterization. Hitting-set-
based algorithmic approaches to diagnosis inspire our algorithmic/complexity approaches
to causality.

4. We reformulate the causality problems as hitting set problems and vertex cover problems
on hypergraphs, which allows us to apply results and techniques for the latter to causality.

5. (a) Checking minimal contingency sets can be done in PTIME. (b) The responsibility
(decision) problem for conjunctive queries becomes NP-complete. (c) However, it is fixed-
parameter tractable when the parameter is the inverse of the responsibility bound. (d)
The functional problem of computing the causes’ responsibilities is FPNP(log(n))-complete,
and deciding most responsible causes is PNP(log(n))-complete.

6. The structure of the resulting hitting-set problem allows us to obtain efficient parameter-
ized algorithms and good approximation algorithms for computing causes and minimal
contingency sets.

7. On the basis of the causality/repair connection, and the dichotomy result for causality
[41], we obtain a dichotomy result for the complexity of deciding the existence of repairs
of a certain size wrt. single, self-join-free denial constraints.

8. We discuss extensions and open issues that deserve investigation.

The paper is structured as follows. Section 2 introduces technical preliminaries for
relational databases, causality in databases, database repairs and consistent query answering,
consistency-based diagnosis, and relevant complexity classes. Section 3 characterizes actual
causes and responsibilities in terms of database repairs. Section 3 characterizes repairs and
consistent query answering in terms of causes and contingency sets for queries that are
unions of conjunctive queries; and presents an algorithm for computing both of the latter.
Section 5 formulates causality problems as consistency-based diagnosis problems, and the
latter as repair problems. Section 6 shows complexity and algorithmic results; in particular a
fixed-parameter tractability result for causes’ responsibilities. Finally, Section 7 discusses
several relevant issues, connections and open problems around causality in databases. Proofs
of results without an implicit proof in this paper can be found in [50].

2 Preliminaries

We consider relational database schemas of the form S = (U,P), where U is the possibly
infinite database domain of constants and P is a finite set of database predicates2 of fixed

2 As opposed to built-in predicates (e.g. 6=) that we assume do not appear, unless explicitly stated
otherwise.



B. Salimi and L. Bertossi 345

arities. A database instance D compatible with S can be seen as a finite set of ground atomic
formulas (in databases aka. atoms or tuples), of the form P (c1, ..., cn), where P ∈ P has arity
n, and c1, . . . , cn ∈ U . A conjunctive query (CQ) is a formula Q(x̄) of the first-order (FO)
logic language, L(S), associated to S of the form ∃ȳ(P1(t̄1)∧ · · · ∧Pm(t̄m)), where the Pi(t̄i)
are atomic formulas, i.e. Pi ∈ P , and the t̄i are sequences of terms, i.e. variables or constants.
The x̄ in Q(x̄) shows all the free variables in the formula, i.e. those not appearing in ȳ. If x̄
is non-empty, the query is open. If x̄ is empty, the query is boolean (a BCQ), i.e. the query
is a sentence, in which case, it is true or false in a database, denoted by D |= Q and D 6|= Q,
respectively. A sequence c̄ of constants is an answer to an open query Q(x̄) if D |= Q[c̄], i.e.
the query becomes true in D when the variables are replaced by the corresponding constants
in c̄.

An integrity constraint is a sentence of language L(S), and then, may be true or false
in an instance for schema S. Given a set IC of integrity constraints, a database instance
D is consistent if D |= IC; otherwise it is said to be inconsistent. In this work we assume
that sets of integrity constraints are always finite and logically consistent. A particular class
of integrity constraints is formed by denial constraints (DCs), which are sentences κ of the
form: ∀x̄¬(A1(x̄1) ∧ · · · ∧An(x̄n), where x̄ =

⋃
x̄i and each Ai(x̄i) is a database atom, i.e.

predicate A ∈ P. (The atoms may contain constants.) Denial constraints are exactly the
negations of BCQs.

Causality and Responsibility. Assume that the database instance is split in two, i.e. D =
Dn∪Dx, where Dn and Dx denote the sets of endogenous and exogenous tuples, respectively.
A tuple t ∈ Dn is called a counterfactual cause for a BCQ Q, if D |= Q and D r {t} 6|= Q.
A tuple t ∈ Dn is an actual cause for Q if there exists Γ ⊆ Dn, called a contingency set,
such that t is a counterfactual cause for Q in D r Γ [41]. We will concentrate mostly on
CQs. However, the definition of actual causes and contingency sets can be applied without a
change to monotone queries in general [41].

The responsibility of an actual cause t for Q, denoted by ρ
D
(t), is the numerical value

1
|Γ|+1 , where |Γ| is the size of the smallest contingency set for t. We can extend responsibility
to all the other tuples in Dn by setting their value to 0. Those tuples are not actual causes
for Q.

I Example 1. Consider D = Dn = {R(a4, a3), R(a2, a1), R(a3, a3), S(a4), S(a2), S(a3)},
and the query Q : ∃x∃y(S(x) ∧R(x, y) ∧ S(y)). It holds: D |= Q.

Tuple S(a3) is a counterfactual cause for Q. If S(a3) is removed from D, Q is not true
anymore. Therefore, the responsibility of S(a3) is 1. Besides, R(a4, a3) is an actual cause
for Q with contingency set {R(a3, a3)}. If R(a3, a3) is removed from D, Q is still true, but
further removing R(a4, a3) makes Q false. The responsibility of R(a4, a3) is 1

2 , because its
smallest contingency sets have size 1. Likewise, R(a3, a3) and S(a4) are actual causes for Q
with responsibility 1

2 .
For the same Q, but with D = {S(a3), S(a4), R(a4, a3)}, and the partition Dn =

{S(a4), S(a3)} and Dx = {R(a4, a3)}, it turns out that both S(a3) and S(a4) are coun-
terfactual causes for Q. J

Notation: CS(Dn, Dx,Q) denotes the set of actual causes for BCQ Q (being true) from
instance D = Dn ∪Dx. When Dn = D and Dx = ∅, we sometimes simply write: CS(D,Q).

Database Repairs. Given a set IC of integrity constraints, a subset repair (simply, S-repair)
of a possibly inconsistent instance D for schema S is an instance D′ for S that satisfies

ICDT 2015



346 From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

IC and makes ∆(D,D′) = (D rD′) ∪ (D′ rD) minimal under set inclusion. Srep(D, IC)
denotes the set of S-repairs of D wrt. IC [2]. Similarly, D′ is a cardinality repair (simply
C-repair) of D if D′ satisfies IC and minimizes |∆(D,D′)|. Crep(D, IC) denotes the class of
C-repairs of D wrt. IC. C-repairs are S-repairs of minimum cardinality.

For DCs, S-repairs and C-repairs are obtained from the original instance by deleting
an S-minimal, resp. C-minimal, set of tuples.3 More generally, different repair semantics
may be considered to restore consistency wrt. general integrity constraints. They depend
on the kind of allowed updates on the database (i.e. tuple insertions/deletions, changes
of attribute values), and the minimality conditions on repairs (e.g. subset-minimality,
cardinality-minimality, etc.). Given D and IC, a repair semantics determines a class of
intended or preferred repairs [9, sec. 2.5].

Given a repair semantics, RS, c̄ is a consistent answer to an open query Q(x̄) if D′ |= Q[c̄]
for every RS-repair D′. A BCQ is consistently true if it is true in all RS-repairs. If c̄ is a
consistent answer to Q(x̄) wrt. S-repairs, we say it is an S-consistent answer. Similarly for
C-consistent answers. Consistent query answering for DCs under S-repairs was investigated
in detail [17]. C-repairs and consistent query answering were investigated in detail in [39].
(Cf. [9] for more references.)

Consistency-Based Diagnosis. Consistency-based diagnosis, a form of model-based dia-
gnosis [52, sec. 10.4], considers problems M = (SD,COMPS , OBS), where SD is the
description in logic of the intended properties of a system under the explicit assumption
that all the components in COMPS , are working normally. OBS is a FO sentence that
represents the observations. If the system does not behave as expected (as shown by the
observations), then the logical theory obtained from SD ∪ OBS plus the explicit assump-
tion, say

∧
c∈COMPS ¬Ab(c), that the components are indeed behaving normally, becomes

inconsistent. Ab is an abnormality predicate.4

The inconsistency is captured via the minimal conflict sets, i.e. those minimal subsets
COMPS ′ of COMPS , such that SD∪OBS∪{

∧
c∈COMPS′ ¬Ab(c)} is inconsistent. As expected,

different notions of minimality can be used at this point.
A minimal diagnosis forM is a minimal subset ∆ of COMPS , such that SD ∪OBS ∪

{¬Ab(c) | c ∈ COMPS r ∆} ∪ {Ab(c) | c ∈ ∆} is consistent. That is, consistency is restored
by flipping the normality assumption to abnormality for a minimal set of components, and
those are the ones considered to be (jointly) faulty. The notion of minimality commonly
used is S-minimality, i.e. a diagnosis that does not have a proper subset that is a diagnosis.
We will use this kind of minimality in relation to diagnosis. Diagnosis can be obtained from
conflict sets [47].

Complexity Classes. We recall some complexity classes [46] used in this paper. FP is the
class of functional problems associated to decision problem in the class PTIME, i.e. that
are solvable in polynomial time. PNP (or ∆P

2 ) is the class of decision problems solvable
in polynomial time by a machine that makes calls to an NP oracle. For PNP(log(n)) the
number of calls is logarithmic. It is not known if PNP(log(n)) is strictly contained in PNP.
FPNP(log(n)) is similarly defined.

3 We will usually say that a set is S-minimal in a class of sets C if it minimal under set inclusion in C.
Similarly, a set is C-minimal if it is minimal in cardinality within C.

4 Here, and as usual, the atom Ab(c) expresses that component c is (behaving) abnormal(ly).



B. Salimi and L. Bertossi 347

3 Actual Causes From Database Repairs

Let D = Dn ∪Dx be an instance for schema S, and Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)) a BCQ.
Q may be unexpectedly true, i.e. D |= Q. Now, ¬Q is logically equivalent to the DC
κ(Q) : ∀x̄¬(P1(x̄1) ∧ · · · ∧ Pm(x̄m)). The requirement that ¬Q holds can be captured by
imposing κ(Q) on D. Due to D |= Q, it holds D 6|= κ(Q). So, D is inconsistent wrt. κ(Q),
and could be repaired.

Repairs for (violations of) DCs are obtained by tuple deletions. Intuitively, a tuple that
participates in a violation of κ(Q) in D is an actual cause for Q. S-minimal sets of tuples
like this are expected to correspond to S-repairs for D and κ(Q). More precisely, given an
instance D = Dn ∪ Dx, a BCQ Q, and a tuple t ∈ Dn, we consider the class containing
the sets of differences between D and those S- or C-repairs that do not contain t, and are
obtained by removing a subset of Dn:

DFs(D,Dn, κ(Q), t) = {D rD′ | D′ ∈ Srep(D,κ(Q)), t ∈ (D rD′) ⊆ Dn}, (1)
DFc(D,Dn, κ(Q), t) = {D rD′ | D′ ∈ Crep(D,κ(Q)), t ∈ (D rD′) ⊆ Dn}. (2)

It holds DFc(D,Dn, κ(Q), t) ⊆ DFs(D,Dn, κ(Q), t). Now, any s ∈ DFs(D,Dn, κ(Q), t)
can be written as s = s′ ∪ {t}. From the S-minimality of S-repairs, D r (s′ ∪ {t}) |= κ(Q),
but Dr s′ |= ¬κ(Q), i.e. Dr (s′ ∪ {t}) 6|= Q, but Dr s′ |= Q. So, t is an actual cause for Q
with contingency set s′.

I Proposition 2. Given D = Dn ∪Dx, and a BCQ Q, t ∈ Dn is an actual cause for Q iff
DFs(D,Dn, κ(Q), t) 6= ∅. J

I Proposition 3. Given D = Dn ∪Dx, a BCQ Q, and t ∈ Dn:
(a) If DFs(D,Dn, κ(Q), t) = ∅, then ρ(t) = 0.
(b) Otherwise, ρ(t) = 1

|s| , where s ∈ DF
s(D,Dn, κ(Q), t) and there is no s′ ∈ DFs(D,Dn,

κ(Q), t) such that |s′| < |s|. J

I Corollary 4. Given D = Dn ∪Dx, and a BCQ Q, t ∈ Dn is a most responsible actual
cause for Q iff DFc(D,Dn, κ(Q), t) 6= ∅. J

I Example 5. (ex. 1 cont.) Consider the same instance D and query Q. In this case, the
DC κ(Q) is, in Datalog notation, a negative rule: ← S(x), R(x, y), S(y).

Here, Srep(D,κ(Q)) = {D1, D2, D3} and Crep(D,κ(Q)) = {D1}, with D1 = {R(a4, a3),
R(a2, a1), R(a3, a3), S(a4), S(a2)}, D2 = {R(a2, a1), S(a4), S(a2), S(a3)}, D3 = {R(a4, a3),
R(a2, a1), S(a2), S(a3)}.

For tuple R(a4, a3), DFs(D,D, κ(Q), R(a4, a3)) = {DrD2} = {{R(a4, a3), R(a3 , a3)}},
which, by Propositions 2 and 3, confirms that R(a4, a3) is an actual cause, with responsibility
1
2 . For tuple S(a3), DFs(D,D, κ(Q), S(a3)) = {D r D1} = {S(a3)}. So, S(a3) is an
actual cause with responsibility 1. Similarly, R(a3, a3) is an actual cause with responsibility
1
2 , because DF

s(D,D, κ(Q), R(a3, a3)) = {D r D2, D r D3} = {{R(a4, a3), R(a3, a3)},
{R(a3, a3), S(a4)}}.

It holds DFs(D, D, κ(Q), S(a2)) = DFs(D,D, κ(Q), R(a2, a1)) = ∅, because all repairs
contain S(a2), R(a2, a1). This means they do not participate in the violation of κ(Q) or
contribute to make Q true. So, they are not actual causes for Q, confirming the result in
Example 1.
DFc(D,D, κ(Q), S(a3)) = {S(a3)}. From Corollary 4, S(a3) is the most responsible

cause. J

ICDT 2015



348 From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

I Remark 6. The results in this section can be easily extended to unions of BCQs without
built-ins, i.e. essentially FO monotone queries without built-ins. This can be done by
associating a DC to each disjunct of the query, and considering the corresponding problems
for database repairs wrt. several DCs (cf. Section 4.1). J

4 Database Repairs From Actual Causes

We now characterize repairs for inconsistent databases wrt. a set of DCs in terms of actual
causes, and reduce their computation to computation of causes. Consider an instance D for
schema S, and a set of DCs Σ on S. For each κ ∈ Σ, of the form κ : ← A1(x̄1), . . . , An(x̄n),
consider its associated violation view defined by a BCQ, namely Vκ: ∃x̄(A1(x̄1)∧· · ·∧An(x̄n)).
Next, consider the query obtained as the union of the individual violation views: V Σ :=∨
κ∈Σ V

κ, a union of BCQs (UBCQs). Clearly, D violates (is inconsistent wrt.) Σ iff D |= V Σ.
It is easy to verify that D is consistent wrt. Σ iff CS(D, ∅, V Σ) = ∅, i.e. there are no actual
causes for V Σ to be true when all tuples are endogenous.

Now, let us collect all S-minimal contingency sets associated with an actual cause t for
V Σ:

CT (D,Dn, V Σ, t) := {s ⊆ Dn | D r s |= V Σ, D r (s ∪ {t}) 6|= V Σ, and (3)
∀s′′ $ s, D r (s′′ ∪ {t}) |= V Σ}.

Notice that for s ∈ CT (D,Dn, V Σ, t), t /∈ s. If t ∈ CS(D, ∅, V Σ) and s ∈ CT (D,Dn, V Σ, t),
from the definition of actual cause and the S-minimality of s, its holds that s′′ = s ∪ {t} is
an S-minimal subset of D with D r s′′ 6|= V Σ. So, D r s′′ is an S-repair for D. Then, the
following holds.

I Proposition 7. For an instance D and a set DCs Σ, D′ ⊆ D is an S-repair for D wrt. Σ
iff, for every t ∈ D rD′: t ∈ CS(D, ∅, V Σ) and D r (D′ ∪ {t}) ∈ CT (D,D, V Σ, t). J

To establish a connection between most responsible actual causes and C-repairs, collect the
most responsible actual causes for V Σ:

MRC(D,V Σ) := {t ∈ D | t ∈ CS(D, ∅, V Σ), 6 ∃t′ ∈ CS(D, ∅, V Σ) with ρ(t′) > ρ(t)}.

I Proposition 8. For instance D and set of DCs Σ, D′ ⊆ D is a C-repair for D wrt. Σ iff,
for every t ∈ D rD′: t ∈MRC(D,V Σ) and D r (D′ ∪ {t}) ∈ CT (D,D, V Σ, t). J

Actual causes for V Σ, with their contingency sets, account for the violation of some κ ∈ Σ.
Removing those tuples from D should remove the inconsistency. From Propositions 7 and 8
we obtain:

I Corollary 9. Given an instance D and a set DCs Σ, the instance obtained from D by
removing an actual cause, resp. a most responsible actual cause, for V Σ together with any of
its S-minimal, resp. C-minimal, contingency sets forms an S-repair, resp. a C-repair, for D
wrt. Σ. J

I Example 10. Consider D = {P (a), P (e), Q(a, b), R(a, c)} and Σ = {κ1, κ2}, with κ1 : ←
P (x), Q(x, y) and κ2 : ← P (x), R(x, y). The violation views are V κ1 : ∃xy(P (x) ∧ Q(x, y))
and V κ2 : ∃xy(P (x) ∧R(x, y)). For V Σ := V κ1 ∨ V κ2 , D |= V Σ. D is inconsistent wrt. Σ.

With all tuples endogenous, CS(D, ∅, V Σ) = {P (a), Q(a, b), R(a, c)}. Its elements are
associated with sets of S-minimal contingency sets: CT (D,D, V Σ, Q(a, b)) = {{R(a, c)}},



B. Salimi and L. Bertossi 349

CT (D,D, V Σ, R(a, c)) = {{Q(a, b)}}, CT (D,D, V Σ, P (a)) = {∅}. From Corollary 9, and
CT (D,D, V Σ, R(a, c)), D1 = D r ({R(a, c)} ∪ {Q(a, b)}) = {P (a), P (e)} is an S-repair. So
is D2 = D r ({P (a)} ∪ ∅) = {P (e), Q(a, b), R(a, c)}. These are the only S-repairs.

Furthermore,MRC(D,V Σ) = {P (a)}. From Corollary 9, D2 is also a C-repair for D. J

An actual cause t with any of its S-minimal contingency sets determines a unique S-repair.
The last example shows that, with different combinations of a cause and one of its contingency
sets, we may obtain the same repair (e.g. for the first two CT s). So, we may have more
minimal contingency sets than minimal repairs. However, we may still have exponentially
many minimal contingency sets, so as we may have exponentially many minimal repairs.

I Example 11. Consider D = {R(1, 0), R(1, 1), . . . , R(n, 0), R(n, 1), S(1), S(0)} and the DC
κ : ← R(x, y), R(x, z), S(y), S(z). D is inconsistent wrt. κ. There are exponentially many
S-repairs of D: D′ = D r {S(0)}, D′′ = D r {S(1)}, D1 = D r {R(1, 0), . . . , R(n, 0)}, ...,
D2n = D r {R(1, 1), . . . , R(n, 1)}. The C-repairs are only D′ and D′′.

For the BCQ V κ associated to κ, D |= V κ, and S(1) and S(0) are actual causes for V κ
(courterfactual causes with responsibility 1). All tuples in R are actual causes, each with
exponentially many S-minimal contingency sets. For example, R(1, 0) has the S-minimal
contingency set {R(2, 0), . . . , R(n, 0)}, among exponentially many others (any set built with
just one element from each of the pairs {R(2, 0), R(2, 1)}, ..., {R(n, 0), R(n, 1)} is one). J

The characterization results obtained so far extend those in [49] for single DCs.

4.1 Causes for unions of conjunctive queries
If we want to compute repairs wrt. sets of DCs from causes for UBCQs using, say Corollary 9,
we first need an algorithm for computing the actual causes and their (minimal) contingency
sets for UBCQs. These algorithms could be used as a first stage for the computation of
S-repairs and C-repairs wrt. sets of DCs. However, these algorithms (cf. Section 4.2) are
also interesting per se.

The PTIME algorithm for computing actual causes in [41] is for single conjunctive queries,
but does not compute the actual causes’ contingency sets. Actually, doing the latter increases
the complexity, because deciding responsibility5 of actual causes is NP-hard [41] (which would
be tractable if we could efficiently compute all (minimal) contingency sets).6 In principle,
an algorithm for responsibilities can be used to compute C-minimal contingency sets, by
iterating over all candidates, but Example 11 shows that there can be exponentially many of
them.

We first concentrate on the problem of computing actual causes for UBCQs, without
their contingency sets, which requires some notation.

I Definition 12. Given Q = C1 ∨ · · · ∨ Ck, with each Ci a BCQ, and an instance D:
(a) S(D) is the collection of all S-minimal subsets of D that satisfy a disjunct Ci of Q;
(b) Sn(D) consists of the S-minimal subsets s of Dn for which there exists a s′∈ S(D) with

s ⊆ s′ and sr s′ ⊆ Dx. J

Sn(D) contains all S-minimal sets of endogenous tuples that simultaneously (and possibly
accompanied by exogenous tuples) make the query true. It is easy to see that S(D) and

5 For a precise formulation, see Definition 31.
6 Actually, [41] presents a PTIME algorithm for computing responsibilities for a restricted class of CQs.

ICDT 2015



350 From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

Sn(D) can be computed in polynomial time in the size of D. Now, generalizing a result for
CQs in [41], actual causes for a UBCQs can be computed in PTIME in the size of D without
computing contingency sets.

I Proposition 13. Given D = Dx ∪Dn and a UBCQ Q.
(a) t is an actual cause for Q iff there is s∈Sn(D) with t ∈ s.
(b) The decision problem (about membership of) CPD := {(Dx, Dn, t) | t ∈ Dn, and t ∈
CS(Dn, Dx,Q)} belongs to PTIME . J

I Example 14. (ex. 10 cont.) Consider the query Q : ∃xy(P (x) ∧Q(x, y)) ∨ ∃xy(P (x) ∧
R(x, y)), and assume that for D, Dn = {P (a), R(a, c)} and Dx = {P (e), Q(a, b)}. It
holds S(D) = {{P (a), Q(a, b)}, {P (a), R(a, c)}}. Since {P (a)} ⊆ {P (a), R(a, c)}, Sn(D) =
{{P (a)}}. So, P (a) is the only actual cause for Q. J

4.2 Contingency sets for unions of conjunctive queries

It is possible to develop a (naive) algorithm that accepts as input an instance D = Dn ∪Dx,
and a UBCQ Q, and returns CS(D,Dn,Q), and also, for each t ∈ CS(D,Dn,Q), its (set of)
S-minimal contingency sets CT (D,Dn,Q, t). The basis for the algorithm is a correspondence
between the actual causes for Q with their contingency sets and a hitting-set problem.7

More precisely, for a fixed UBCQ Q, consider the hitting-set framework Hn(D) =
〈Dn,Sn(D)〉, with Sn(D) as in Definition 12. Different decision problems can be imposed
on it. The S-minimal hitting sets (HSs) for Hn(D) correspond to actual causes with their
S-minimal contingencies for Q. Most responsible causes for Q are in correspondence with
minimum hitting sets for Hn(D). Notice that these hitting sets are all subsets of Dn.

I Proposition 15. For D = Dx ∪Dn and a UBCQ Q, it holds:
(a) t is an actual cause for Q with S-minimal contingency set Γ iff Γ ∪ {t} is an S-minimal

HS for Hn(D).
(b) t is a most responsible actual cause for Q with C-minimal contingency set Γ iff Γ ∪ {t}

is a minimum HS for Hn(D). J

I Example 16. (ex. 10 and 14 cont.) D and Q are as before, but we now all tuples are
endogenous. Here, S(D) = Sn(D) = {{P (a), Q(a, b)}, {P (a), R(a, c)}}. Hn(D) has two
S-minimal HSs: H1 = {P (a)} and H2 = {Q(a, b), R(a, c)}. Each of them implicitly contains
an actual cause (any of its elements) with an S-minimal contingency set (what’s left after
removing the actual cause). H1 is also the C-minimal hitting set, and contains the most
responsible actual cause, P (a). J

I Remark 17. For Hn(D) = 〈Dn,Sn(D)〉, Sn(D) can be computed in PTIME, and its
elements are bounded in size by |Q|, which is the maximum number of atoms in one of Q’s
disjuncts. This is a special kind of hitting-set problems. For example, deciding if there is a
hitting set of size at most k as been called the d-hitting-set problem [44], and d is the bound
on the size of the sets in the set class. In our case, d would be |Q|. J

7 If C is a collection of non-empty subsets of a set S, a subset S′ ⊆ S is a hitting set for C if, for every
C ∈ C, C ∩ S′ 6= ∅. S′ is an S-minimal HS if no proper subset of it is also an HS. S is a minimum HS
is it has minimum cardinality.



B. Salimi and L. Bertossi 351

4.3 Causality, repairs and consistent answers
Corollary 9 and Proposition 15 can be used to compute repairs. If the classes of S- and
C-minimal HSs for Hn(D) (with Dn = D) are available, computing S- and C-repairs will
be in PTIME in the sizes of those classes. However, it is well known that computing
minimal HSs is a complex problem. Actually, as Example 11 implicitly shows, we can have
exponentially many of them in |D|; so as exponentially many minimal repairs for a D wrt. a
denial constraint.8 So, the complexity of contingency sets computation is in line with the
complexities of computing hitting sets and repairs.

The computation of causes, contingency sets, and most responsible causes via minim-
al/minimum HS computation can then be used to compute repairs and decide about repair
questions. Since the HS problems in our case are of the d-hitting set kind, good algorithms
and approximations for the latter (cf. Section 6.1) could be used in the context of repairs
(all this via Corollary 9 and Proposition 15).

Consider an instance D (with all tuples endogenous) and a set Σ of DCs. For the
disjunctive violation view V Σ, the following result is obtained from Propositions 7 and 8,
and Corollary 9.

I Corollary 18. For an instance D and set DCs Σ, it holds:
(a) For every t ∈ CS(D,V Σ), there is an S-repair that does not contain t.
(b) For every t ∈MRC(D,V Σ), there is a C-repair that does not contain t.
(c) For every D′ ∈ Srep(D,Σ) and D′′ ∈ Crep(D,Σ), DrD′ ⊆ CS(D,V Σ) and DrD′′ ⊆
MRC(D,V Σ). J

For a projection-free, and a possibly non-boolean CQ Q, we are interested in its consistent
answers from D wrt. Σ. For example, for Q(x, y, z) : R(x, y) ∧ S(y, z), the S-consistent
(C-consistent) answers would be of the form (a, b, c), where R(a, b) and S(b, c) belong to all
S-repairs (C-repairs) of D. From Corollary 18, (a, b, c) is an S-consistent, resp. C-consistent,
answer iff R(a, b) and S(b, c) belong to D, but they are not actual causes, resp. most
responsible actual causes, for V Σ.

I Proposition 19. For an instance D, a set of DCs Σ, and a projection-free CQ Q(x̄) :
P1(x̄1) ∧ · · · ∧ Pk(x̄k):
(a) c̄ is an S-consistent answer iff, for each i, Pi(c̄i) ∈ (D r CS(D,V Σ)).
(b) c̄ is a C-consistent answer iff, for each i, Pi(c̄i) ∈ (D rMRC(D,V Σ)). J

I Example 20. (ex. 10 cont.) Consider Q(x) : P (x). We had CS(D,V Σ) = {P (a), Q(a, b),
R(a, c)},MRC(D,V Σ) = {P (a)}. Then, a is both an S- and a C-consistent answer. J

Notice that Proposition 19 can easily be extended to conjunction of ground atomic queries.
Actually, from it we obtain the following result that will be useful later on.

I Corollary 21. Given D, a set of DCs Σ, the ground atomic query Q: P (c) is C-consistently
true if P (c) ∈ D and it is not a most responsible cause for V Σ. J

I Example 22. For D = {P (a, b), R(b, c), R(a, d)} and the DC κ :← P (x, y), R(y, z): CS(D,
V κ) = MRC(D,V κ) = {P (a, b), R(b, c)}. From Proposition 19, the ground atomic query
Q : R(a, d) is both S- and C-consistently true in D wrt. κ, because, D r CS(D,V κ) =
D rMRC(D,V κ) = {R(a, d)}. J

8 An example of this kind for FDs is given in [4]. However, FDs form a special class of DCs that involve
equality. Consequently, their violation views involve inequality.

ICDT 2015



352 From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

The CQs considered in Proposition 19 and its Corollary 21 are not the particularly interesting,
but will use those results to obtain relevant results for causality later on, e.g. Theorem 41.

5 Diagnosis: Query Answer Causality and Repairs

Let D = Dn ∪ Dx be an instance for schema S, and Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)), a
BCQ. Assume Q is, possibly unexpectedly, true in D. So, for the associated DC κ(Q) :
∀x̄¬(P1(x̄1) ∧ · · · ∧ Pm(x̄m)), D 6|= κ(Q). Q is our observation, for which we want to find
explanations, using a consistency-based diagnosis approach.

For each predicate P ∈ P, we introduce predicate AbP , with the same arity as P . A
tuple in its extension is abnormal for P . The “system description”, SD, includes, among
other elements, the original database, expressed in logical terms, and the DC being true
“under normal conditions”. More precisely, we consider the following diagnosis problem,
M = (SD, Dn,Q), associated to Q. The FO system description, SD, contains the following
elements:
(a) Th(D), which is Reiter’s logical reconstruction of D as a FO theory [48] (cf. Example

23).
(b) Sentence κ(Q)Ab, which is κ(Q) rewritten as follows:

κ(Q)Ab : ∀x̄¬(P1(x̄1) ∧ ¬AbP1(x̄1) ∧ · · · ∧ Pm(x̄m) ∧ ¬AbPm(x̄m)). (4)

This formula can be refined by applying the abnormality predicate, Ab, to endogenous
tuples only. For this we need to use additional auxiliary predicates EndP , with the same
arity of P ∈ S, which contain the endogenous tuples in P ’s extension (see Example 23).

(c) The inclusion dependencies: ∀x̄(AbP (x̄)→ P (x̄)), ∀x̄(EndP (x̄)→ P (x̄)), and ∀x̄(AbP (x̄)
→ EndP (x̄)), for each P ∈ P.
The last entry, Q, in M is the observation, which together with SD will produce and

inconsistent theory, because we make the initial and explicit assumption that all the abnor-
mality predicates are empty (equivalently, that all tuples are normal), i.e. we consider, for
each predicate P , the sentence9

∀x̄(AbP (x̄)→ false), (5)

where, false is a propositional atom that is always false. Actually, the second entry inM
tells us how we can restore consistency, namely by (minimally) changing the abnormality
condition on tuples in Dn. In other words, the rules (5) are subject to qualifications: some
endogenous tuples may be abnormal. Each diagnosis shows an S-minimal set of endogenous
tuples that are abnormal.

I Example 23. (ex. 1 cont.) For the instance D = {S(a3), S(a4), R(a4, a3)}, with Dn =
{S(a4), S(a3)}, consider the diagnostic problem M = (SD, {S(a4), S(a3)}, Q), with SD
containing:
(a) Predicate completion axioms: ∀xy(R(x, y) ↔ x = a4 ∧ y = a3), ∀x(S(x) ↔ x =

a3 ∨ x = a4), ∀xy(EndR(x, y) ↔ false), ∀x(EndS(x)↔ x = a3 ∨ x = a4).
Unique names assumption: a4 6= a3.

(b) κ(Q)Ab : ∀xy¬(S(x) ∧ EndS(x) ∧ ¬AbS(x) ∧R(x, y) ∧ EndR(x, y) ∧ ¬AbR(x, y) ∧
S(y) ∧ ¬AbS(y)).

9 Notice that these can also be seen as DCs, since they can be written as ∀x̄¬AbP (x̄).



B. Salimi and L. Bertossi 353

(c) ∀xy(AbR(x, y)→ R(x, y)), ∀x(AbS(x)→ S(x)), ∀xy(EndR(x, y)→ R(x, y)),
∀x(EndS(x)→ S(x)), ∀xy(AbR(x, y)→ EndR(x, y)), ∀x(AbS(x)→ EndS(x)).

The normality assumptions for tuples are: ∀xy(AbR(x, y) → false), ∀x(AbS(x) →
false). J

Now, the observation is Q (being true), obtained by evaluating query Q on (theory of) D.
In this case, D 6|= κ(Q). Since all the abnormality predicates are assumed to be empty, κ(Q)
is equivalent to κ(Q)Ab, which also becomes false wrt D. As a consequence, SD∪{(5)}∪{Q}
is an inconsistent FO theory. A diagnosis is a set of endogenous tuples that, by becoming
abnormal, restore consistency.

I Definition 24.
(a) A diagnosis forM is a ∆ ⊆ Dn, such that SD∪{AbP (c̄) | P (c̄) ∈ ∆}∪{¬AbP (c̄) | P (c̄) ∈

D r ∆} ∪ {Q} is consistent.
(b) D(M, t) denotes the set of S-minimal diagnoses forM that contain a tuple t ∈ Dn. (c)
MCD(M, t) denotes the set of C-minimal diagnoses in D(M, t). J

By definition, MCD(M, t) ⊆ D(M, t). Diagnoses for M and actual causes for Q are
related.

I Proposition 25. Consider D = Dn ∪ Dx, a BCQ Q, and the diagnosis problem M
associated to Q. Tuple t ∈ Dn is an actual cause for Q iff D(M, t) 6= ∅. J

The responsibility of an actual cause t is determined by the cardinality of the diagnoses
inMCD(M, t).

I Proposition 26. For D = Dn ∪Dx, a BCQ Q, the associated diagnosis problemM, and
a tuple t ∈ Dn, it holds:
(a) ρ

D
(t) = 0 iffMCD(M, t) = ∅.

(b) Otherwise, ρ
D
(t) = 1

|s| , where s ∈MCD(M, t). J

I Example 27. (ex. 23 cont.) M has two diagnosis: ∆1 = {S(a3)} and ∆4 = {S(a4)}. Here,
D(M, S(a3)) =MCD(M, S(a3)) = {{S(a3)}} and D(M, S(a4)) = MCD(M, S(a4)) = {{
S(a4)}}. From Propositions 25 and 26, S(a3) and S(a4) are actual cases, with responsibility 1.

J

In consistency-based diagnosis, minimal diagnoses can be obtained as S-minimal HSs of
the collection of S-minimal conflict sets (cf. Section 2) [47]. In our case, conflict sets are
S-minimal sets of endogenous tuples that, if not abnormal (only endogenous ones can be
abnormal), and together, and possibly in combination with exogenous tuples, make (4) false.
It is easy to verify that the conflict sets ofM coincide with the sets in S(Dn) (cf. Definition
12 and Remark 17). As a consequence, conflict sets forM can be computed in PTIME, the
HSs forM contain actual causes for Q, and the HS problem for the diagnosis problems is of
the d-hitting-set kind. The connection between consistency-based diagnosis and causality
allows us, in principle, to apply techniques for the former, e.g. [25, 43], to the latter.

I Example 28. (ex. 23 cont.) The diagnosis problemM = (SD, {S(a4), S(a3)}, Q) gives
rise to the HS framework Hn(D) = 〈{S(a4), S(a3)}, {{(S(a3), S(a4)}}〉, with {S(a3), S(a4)}
corresponding to the conflict set c = {S(a4), S(a3)}. Hn(D) has two minimum HSs: {S(a3)}
and {S(a4)}, which are the S-minimal diagnosis for M. Then, the two tuples are actual
causes for Q (cf. Proposition 25). From Proposition 26, ρ

D
(S(a3)) = ρ

D
(S(a4)) = 1. J

The solutions to the diagnosis problem can be used for computing repairs.

ICDT 2015



354 From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

I Proposition 29. Consider a database instance D with only endogenous tuples, a set of
DCs of the form κ : ∀x̄¬(P1(x̄1)∧ · · · ∧Pm(x̄m), and their associated “abnormality” integrity
constraints10 in (4) (in this case we do not need EndP atoms). Each S-minimal diagnosis
∆ gives rise to an S-repair of D, namely D∆ = D r {P (c̄) ∈ D | AbP (c̄) ∈ ∆}; and every
S-repair can be obtained in this way. Similarly, for C-repairs using C-minimal diagnoses. J

I Example 30. (ex. 27 cont.) The instance D = {S(a3), S(a4), R(a4, a3)} has three (both
S- and C-) repairs wrt. the DC κ : ∀xy¬(S(x) ∧ R(x, y) ∧ S(y)), namely D1 = {S(a3)},
D2 = {S(a4)}, and D3 = {R(a4, a3)}. They can be obtained as D∆1 , D∆2 , D∆3 from the
only (S- and C-) diagnoses, ∆1 = {S(a3)}, ∆4 = {S(a4)}, ∆3 = {R(a4, a3)}, resp. J

The kind of diagnosis problem we introduced above can be formulated as a preferred-repair
problem [9, sec. 2.5] (see [51] for a general approach to prioritized repairs). For this, it is
good enough to materialize tables for the auxiliary predicates AbP and EndP , and consider
the DCs of the form (4) (with the EndP atoms if not all tuples are endogenous), plus the
DCs (5). The initial extensions for the AbP predicates are empty. If D is inconsistent wrt.
this set of DCs, the S-repairs that are obtained by only inserting endogenous tuples into the
extensions of the AbP predicates correspond to S-minimal diagnosis, and each S-minimal
diagnosis can be obtained in this way.

6 Complexity Results

There are three main computational problems in database causality. For a BCQ Q and
database D, they are:
(a) The causality problem (CP) that is about computing the actual causes for Q.
(b) The responsibility problem (RP) that is about computing the responsibility ρ

D
(t) of a

given actual cause t. Since a tuple that is not an actual cause has responsibility 0, the
latter problem subsumes the former.

(c) Computing the most responsible actual causes (MRC).
These problems have corresponding decision versions. Both CP and its decision version,
CPD, are solvable in polynomial time [41], which can be extended to UBCQs (cf. Proposition
13). We consider the decision version of the second problem.

I Definition 31. For a BCQ Q, the responsibility decision problem (RPD) is (deciding
about membership of) RPD(Q) = {(Dx, Dn, t, v) | t ∈ Dn, v ∈ {0} ∪ { 1

k | k ∈ N+},
D := Dx ∪Dn |= Q and ρ

D
(t) > v}. J

The complexity analysis of RPD in [41] is restricted to conjunctive queries without
self-joins, for which a dichotomy result holds: depending on the syntactic structure of a
query, RPD is either in PTIME or is NP-hard. Here, we generalize the complexity analysis
for RPD to general CQs.

We will also investigate the decision version, MRCD, of MRC, i.e. about deciding most
responsible actual causes. This is a natural problem, because actual causes with the highest
responsibility tend to provide most interesting explanations for query answers [41, 42].

I Definition 32. For a BCQ Q, the most responsible cause decision problem isMRCD(Q)
= {(Dx, Dn, t) | t ∈ Dn and 0 < ρ

D
(t) is a maximum for D := Dx ∪Dn}. J

10Notice that these are not denial constraints.



B. Salimi and L. Bertossi 355

We start by analyzing a more basic decision problem: S-minimal contingency checking
(MCCD).

I Definition 33. For a BCQ Q,MCCD(Q) := {(Dx, Dn, t,Γ) | Γ ∈ CT (Dn∪Dx, Dn, Q, t)}
(cf. (3)). J

Due to the results in Sections 3 and 4, it clear that there is a close connection between
MCCD and the S-repair checking problem in consistent query answering [9, chap. 5], about
deciding if instance D′ is an S-repair of instance D wrt. a set of integrity constraints. Actually,
the following result is obtained from the membership of the S-repair checking problem of
LOGSPACE for DCs [1, prop. 5].

I Proposition 34. For a BCQ Q,MCCD(Q) ∈ PTIME . J

We could also consider the decision problem defined as in Definition 33, but with C-
minimal Γ. We will not use results about this problem in the following. Furthermore, its
connection with the C-repair checking problem is less direct. As one can see from Section
3, C-minimal contingency sets correspond to a repair semantics somewhere between the
S-minimal and C-minimal repair semantics (a subclass of Srep, but a superclass of Crep): It
is about an S-minimal repair with minimum cardinality that does not contain a particular
tuple.

Now we establish that RPD is NP-complete for CQs in general. The NP-hardness is
shown in [41]. Membership of NP is obtained using Proposition 34.

I Theorem 35.
(a) For every BCQ Q, RPD(Q) ∈ NP.
(b) [41] There are CQs Q for which RPD(Q) is NP-hard. J

In order to better understand the complexity of the problem, RP, of computing respons-
ibility, we will investigate the functional, non-decision version of the problem.

The main source of complexity when computing responsibilities is related to the hitting-
set problem associated to Hn(D) = 〈Dn,Sn(D)〉 in Remark 17. In this case, it is about
computing the cardinality of a minimum hitting set that contains a given vertex (tuple) t.
That this is a kind of d-hitting-set problem [44] will be useful in Section 6.1.

Our responsibility problem can also be seen as a vertex cover problem on the hypergraph
Gn(D) = 〈Dn,En(D)〉 associated to Hn(D) = 〈Dn,Sn(D)〉. In it, the set of hyperedges
En(D) coincides with the collection Sn(D). Determining the responsibility of a tuple t
becomes the problem on hypergraphs of determining the size of a minimum vertex cover
(VC)11 that contains vertex t (among all VCs that contain the vertex). Again, in this problem
the hyperedges are bounded by |Q|.12

I Example 36. For Q : ∃xy(P (x) ∧ R(x, y) ∧ P (y)), and D = Dn = {P (a), P (c), R(a, c),
R(a, a)}, S(D) = Sn(D) = {{P (a), R(a, a)}, {P (a), P (c), R(a, c)}}. D is the set of vertices
of hypergraph Gn(D), and its hyperedges are {P (a), R(a, a)}, {P (a), P (c), R(a, c)}. The
following are the minimal VCs: vc1 = {P (a)}, vc2 = {P (c), R(a, a)}, vc3 = {R(a, a), R(a, c)}.
Then, P (a) is an actual cause with responsibility 1. The other tuples are actual causes with
responsibility 1

2 . J

11A set of vertices is a VC for a hypergraph if it intersects every hyperedge. Obviously, when we talk of
minimum VC, we are referring to minimal in cardinality.

12We recall that repairs of databases wrt. DCs can be characterized as maximal independent sets of
conflict hypergraphs (conflict graphs in the case of FDs) whose vertices are the database tuples, and
hyper-edges connect tuples that together violate a DC [4, 17].

ICDT 2015



356 From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

To simplify the presentation, we will formulate and address our computational problems as
problems for graphs (instead of hypergraphs). However, our results still hold for hypergraphs
[39]. Actually, the following representation lemma holds.

I Lemma 37. There is a fixed database schema S and a BCQ Q ∈ L(S), without built-ins,
such that, for every graph G = (V,E) and v ∈ V , there is an instance D for S and a tuple
t ∈ D, such that the size of a minimum VC of G containing v equals the responsibility of t
as an actual cause for Q. J

Having represented our responsibility problem as a graph-theoretic problem, we first
consider the following membership minimal VC problem (MMVC): Given a graph G = (V,E),
a vertex v ∈ V, determine the size of a minimum VC of G that contains v.

I Lemma 38. Given a graph G and a vertex v in it, there is a graph G′ extending G that
can be constructed in polynomial time in |G|, such that the size of a minimum VC for G that
contains v and the size of a minimum VC for G′ coincide. J

From this lemma and the FPNP(log(n))-completeness of determining the size of a maximum
clique in a graph [35], we obtain:

I Proposition 39. MMVC problem for graphs is FPNP(log(n))-complete. J

From Lemma 37 and Proposition 39 we obtain the complexity result for RP. Membership
can also be obtained from Theorem 35.

I Theorem 40.
(a) For every BCQ without built-ins, Q, computing the responsibility of a tuple as a cause

for Q is in FPNP(log(n)).
(b) There is a database schema and a BCQ Q, without built-ins, such that computing the

responsibility of a tuple as a cause for Q is FPNP(log(n))-complete. J

Now we address the most responsible causes problem, MRCD. We use the connection
with consistent query answering of Section 4.3, namely Corollary 21, and the PNP (log(n))-
completeness of consistent query answering under the C-repair semantics for queries that are
conjunctions of ground atoms and a particular DC [39, theo. 4].

I Theorem 41.
(a) For every BCQ without built-ins,MRCD(Q) ∈ PNP(log(n)).
(b) There is a database schema and a BCQ Q, without built-ins, for whichMRCD(Q) is

PNP(log(n))-complete. J

From Proposition 15 and the FPNP(log(n))-completeness of determining the size of C-
repairs for DCs [39, theo. 3], we obtain the following for the computation of the highest
responsibility value.

I Proposition 42.
(a) For every BCQ without built-ins, computing the responsibility of the most responsible

causes is in FPNP(log(n)).
(b) There is a database schema and a BCQ Q, without built-ins, for which computing the

responsibility of the most responsible causes is FPNP(log(n))-complete. J



B. Salimi and L. Bertossi 357

6.1 FPT of responsibility
We need to cope with the intractability of computing most responsible causes. The area of
fixed parameter tractability (FPT) [26] provides tools to attack this problem. In this regard,
we recall that a decision problem with inputs of the form (I, p), where p is a distinguished
parameter of the input, is fixed parameter tractable (or belongs to the class FPT), if it can
be solved in time O(f(|p|) · |I|c), where c and the hidden constant do not depend on |p| or
|I|, and f does not depend on |I|.

In our case, the parameterized version of the decision problem RPD(Q) (cf. Definition
31) is denoted with RPDp(Q), and the distinguished parameter is k, such that v = 1

k . That
RPDp(Q) belongs to FPT can be obtained from its formulation as a d-hitting-set problem
(d being the fixed upper bound on the size of the sets in the set class); in this case about
deciding if there is a HS that contains the given tuple t that has cardinality smaller that k.
This problem belongs to FPT.

I Theorem 43. For every BCQ Q, RPDp(Q) belongs to FPT, where the parameter is the
inverse of the responsibility bound. J

The proof of this result is interesting per se, and we sketch it here. First, there is a
PTIME parameterized algorithm for the d-hitting-set problem about deciding if there is a
HS of size at most k that runs in time O(ek + n), with n the size of the underlying set and
e = d− 1 + o(d−1) [44]. In our case, n = |D|, and d = |Q| (cf. also [24]).

Now, to decide if the responsibility of a given tuple t is greater than v = 1
k , we consider

the associated hypergraph Gn(D), and we decide if it has a VC that contains t and whose size
is less than k. In order to answer this, we use Lemma 38, and build the extended hypergraph
G′. The size of a minimum VC for G′ gives the size of the minimum VC of Gn(D) that
contains t. If Gn(D) has a VC that contains t of size less than k, then G′ has a VC of size
less than k. If G′ has a VC of size less than k, its minimum size for a VC is less than k.
Since this minimum is the same as the size of a minimum VC for Gn(D) that contains t,
Gn(D) has a VC of size less than k that contains t. As a consequence, it is good enough
to decide if G′ has a VC of size less than k. For this, we use the HS formulation of this
hypergraph problem, and the already mentioned FPT algorithm.

This result and the corresponding algorithm show that the higher the required responsib-
ility degree, the lower the computational effort needed to compute the actual causes with
at least that level of responsibility. In other terms, parameterized algorithms are effective
for computing actual causes with high responsibility or most responsible causes. In general,
parameterized algorithms are very effective when the parameter is relatively small [26].

Now, in order to compute most responsible causes, we could apply, for each actual cause t,
the just presented FPT algorithm on the hypergraph Gn(D), starting with k = 1, i.e. asking
if there is VC of size less than 1 that contains t. If the algorithm returns a positive result,
then t is a counterfactual cause, and has responsibility 1. Otherwise, the algorithm will be
launched with k = 2, 3, . . . , |Dn|, until a positive result is returned. (The procedure can be
improved through binary search on k = 1, 2, 3, . . . ,m, with m possibly much smaller than
|D|.)

The complexity results and algorithms provided in this section can be extend to UBCQs.
This is due to Remark 6 and the construction of Sn(D), which the results in this section
build upon.

For the d-hitting-set problem there are also efficient parameterized approximation al-
gorithms [11]. They could be used to approximate the responsibility problem. Furthermore,
approximation algorithms developed for the minimum VC problem on bounded hypergraphs

ICDT 2015



358 From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

[31, 45] should be applicable to approximate most responsible causes for query answers. Via
the causality/repair connection (cf. Section 4.3), it should be possible to develop approxim-
ation algorithms to compute S-repairs of particular sizes, C-repairs, and consistent query
answers wrt. DCs.

6.2 The causality dichotomy’s reflection on repairs
In [41] the class of linear CQs is introduced. For them, computing tuple responsibilities
is tractable. Roughly speaking, a BCQ is linear if its atoms can be ordered in a way that
every variable appears in a continuous sequence of atoms, e.g. Q1 : ∃xvyu(A(x) ∧ S1(x, v) ∧
S2(v, y) ∧ R(y, u) ∧ S3(y, z)) is linear, but not Q2 : ∃xyz(A(x) ∧ B(y) ∧ C(z) ∧W (x, y, z)),
for which RPD is NP-hard [41]. The class of BCQs for which computing responsibility (more
precisely, our RPD decision problem) is tractable can be extended to weakly linear.13 Now,
the dichotomy result in [41] says that for a BCQ Q without self-joins, RDP is tractable
when Q is weakly-linear, but NP-hard, otherwise. Due to the causality/repair connection of
Section 4, we can obtain the following results for database repairs.

I Theorem 44.
(a) For single weakly-linear DCs, C-repair checking and deciding if the size of a C-repair is

larger than a bound are both tractable.14
(b) For single, self-join free DCs κ, and the problem RepSize(κ) of deciding if there is a

repair D′ for a given input instance D and a tuple t ∈ D with |D′| ≥ m and t 6∈ D′,15
the following dichotomy holds: (b1) If κ is weakly-linear, RepSize(κ) is tractable. (b2)
Otherwise, it is NP-complete. J

This dichotomy result for repairs shows that interesting results in one of the areas
(causality, in this case) have counterparts in some of the others. The form the reincarnation
of the known result takes in the new area (repairs, in this case) is interesting per se.

Notice that both problems in (a) in Theorem 44 may be intractable even for single
DCs [39]. More specifically, C-repair checking can be coNP-hard for single DCs [39, 1].
Actually, the single DC used in [39, lemma 4] is of the form κ : ← V (x), V (y), E(x, y, z),
whose associated BCQ is not weakly-linear. As a matter of fact, this BCQ is a NP-hard for
RDP [41].

7 Discussion and Conclusions

In this research we have unveiled and formalized some first interesting relationships between
causality in databases, database repairs, and consistency-based diagnosis. These connections
allow us to apply results and techniques developed for each of them to the others. This is
particularly beneficial for causality in databases, where still a limited number of results and
techniques have been obtained or developed.

The connections we established here inspired complexity results for causality, e.g. The-
orems 40 and 41, and were used to prove them. We appealed to several non-trivial results
(and the proofs thereof) about repairs/CQA obtained in [39]. It is also the case that the
well-established hitting-set approach to diagnosis inspired a similar approach to causal

13Computing sizes of minimum contingency sets is reduced to the max-flow/min-cut problem in a network.
14A DC κ is weakly-linear if the corresponding BCQ V κ is weakly-linear. In this way any adjective that

applies to BCQs can be applied to DCs.
15More precisely, D′ is a subset of D that satisfies κ. Here, 0 ≤ m ≤ n = |D|.



B. Salimi and L. Bertossi 359

responsibility, which in its turn allowed us to obtain results about its fixed-parameter tract-
ability. It is also the case that diagnostic reasoning, as a form of non-monotonic reasoning,
can provide a solid foundation for causality in databases and query answer explanation, in
general [15, 16].

Our work creates a theoretical basis for deeper and mathematically more complex
investigations. In particular, it also opens interesting research directions, some of which are
briefly discussed below.

Preferred causes for queries. In Section 3 we characterized causes and most responsible
causes in terms of S-repairs and C-repairs, resp. This could be generalized by using the
notion of preferred repair [51]. These are repairs whose minimization correspond to a priority
relationship, �, between instances. Let assume it defines a corresponding class of preferred
repairs, �Rep. Inspired by (1), we can define, for a BCQ Q: DF�(D,Dn, κ(Q), t) :=
{D r D′ | D′ ∈ �Rep(D,κ(Q)), t ∈ (D r D′) ⊆ Dn}, and, t ∈ Dn is a �-cause iff
DF�(D,Dn, κ(Q), t) 6= ∅. In this way, a whole class of preferences on causes can be
introduced, which is natural problem [42].16

Endogenous repairs. The partition of a database into endogenous and exogenous tuples
may also be of interest in the context of repairs. Considering that we should have more
control on endogenous tuples than on exogenous ones, which may come from external sources,
it makes sense to consider endogenous repairs. They are obtained by updates (of any kind) on
endogenous tuples. For example, in the case of DCs, endogenous repairs would be obtained
by deleting endogenous tuples only. If there are no repairs based on endogenous tuples,
a preference condition could be imposed on repairs [54, 51], privileging those that change
exogenous the least. (Of course, it could also be the other way around, that is we may feel
more inclined to change exogenous tuples than our endogenous ones.)

As a further extension, it could be possible to assume that combinations of (only)
exogenous tuples never violate the integrity constraints, which could be checked at upload
time. In this sense, there would be a part of the database that is considered to be consistent,
while the other is subject to possible repairs. (For slightly related research, see [28].)

Objections to causality. Causality as introduced by Halpern and Pearl in [29, 30], aka.
HP-causality, is the basis for the notion of causality in [41]. HP-causality has been the object
of some criticism [32], which is justified in some (more complex, non-relational) settings,
specially due to the presence of different kinds of logical variables (or lack thereof). In our
context the objections do not apply: variables just say that a certain tuple belongs to the
instance (or not); and for relational databases the closed-world assumption applies. In [32],
the definition of HP-causality is slightly modified. In our setting, this modified definition
does not change actual causes or their properties.

ASP specification of causes. S-repairs can be specified by means of answer set programs
(ASPs) [3, 6], and C-repairs too, with the use of weak program constraints [3]. This should
allow for the introduction of ASPs in the context of causality, for specification and reasoning.
There are also ASP-based specifications of diagnosis [23] that could be brought into a more
complete picture.

16 In [40] the possibility of introducing weights in the partition is considered, in this way imposing a form
of preference on causes.

ICDT 2015



360 From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

Causes and functional dependencies, and beyond. Functional dependencies are DCs with
conjunctive violation views with inequality, and are still monotonic. There is much research
on repairs and consistent query answering for functional dependencies, and more complex
integrity constraints [9]. In causality, mostly CQs without built-ins have been considered. The
repair connection could be exploited to obtain results for causality and CQs with inequality,
and also other classes of queries.

View updates and abduction. Abduction [19, 22] is another form of model-based diagnosis,
and is related to the subjects investigated in this work.The view update problem, about
updating a database through views, is a classical problem in databases that has been treated
through abduction [33, 20]. User knowledge imposed through view updates creates or reflects
uncertainty about the base data, because alternative base instances may give an account of
the intended view updates. The view update problem, specially in its particular form of of
deletion propagation, has been recently related in [37, 38] to causality as introduced in [41].
(Notice only tuple deletions are used with violation views and repairs associated to DCs.)

Database repairs are also related to the view update problem. Actually, answer set
programs (ASP) for database repairs [6] implicity repair the database by updating intentional,
annotated predicates. Even more, in [8], in order to protect sensitive information, databases
are explicitly and virtually “repaired” through secrecy views that specify the information
that has to be kept secret. These are prioritized repairs that have been specified via ASPs.
Abduction has been explicitly applied to database repairs [5]. The deep interrelations
between causality, abductive reasoning, view updates and repairs are the objects of our
ongoing research efforts [10].

Acknowledgments. Research funded by NSERC Discovery, and the NSERC Strategic
Network on Business Intelligence (BIN). Conversations with Alexandra Meliou during Leo
Bertossi’s visit to U. of Washington in 2011 are much appreciated. He is also grateful to
Dan Suciu and Wolfgang Gatterbauer for their hospitality. L. Bertossi is grateful to Benny
Kimelfeld for stimulating conversations. Part of the research was developed by L. Bertossi
at LogicBlox and The Center for Semantic Web Research (Chile). Their support is much
appreciated.

References
1 Afrati , F. and Kolaitis, P. Repair Checking in Inconsistent Databases: Algorithms and

Complexity. Proc. ICDT 2009 pp. 31-41.
2 Arenas, M., Bertossi, L. and Chomicki, J. Consistent Query Answers in Inconsistent Data-

bases. Proc. ACM PODS, 1999, pp. 68-79.
3 Arenas, M., Bertossi, L. and Chomicki, J. Answer Sets for Consistent Query Answers.

Theory and Practice of Logic Programming, 2003, 3(4&5):393-424.
4 Arenas, M., Bertossi, L., Chomicki, J., He, X., Raghavan, V. and Spinrad, J. Scalar

Aggregation in Inconsistent Databases. Theoretical Computer Science, 2003, 296:405-434.
5 Arieli, O., Denecker, M., Van Nuffelen, B. and Bruynooghe, M. Coherent Integration of

Databases by Abductive Logic Programming. J. Artif. Intell. Res., 2004, 21:245-286.
6 Barcelo, P., Bertossi, L. and Bravo, L. Characterizing and Computing Semantically Correct

Answers from Databases with Annotated Logic and Answer Sets. In Semantics of Databases,
Springer LNCS 2582, 2003, pp. 1-27.

7 Bertossi, L. Consistent Query Answering in Databases. ACM SIGMOD Record, 2006,
35(2):68-76.



B. Salimi and L. Bertossi 361

8 Bertossi, L. and Li, L. Achieving Data Privacy through Secrecy Views and Null-Based
Virtual Updates. IEEE Transaction on Knowledge and Data Engineering, 2013, 25(5):987-
1000.

9 Bertossi, L. Database Repairing and Consistent Query Answering. Morgan & Claypool,
Synthesis Lectures on Data Management, 2011.

10 Bertossi, L. and Salimi, B. Unifying Causality, Diagnosis, Repairs and View-Updates in
Databases. Presented at the First International Workshop on Big Uncertain Data (BUDA
2014). Posted at: arXiv:1405.4228 [cs.DB].

11 Brankovic, L., and H. Fernau, H. Parameterized Approximation Algorithms for Hitting
Set. In Approximation and Online Algorithms, 2012, Springer LNCS 7164, pp. 63-76.

12 Buneman, P., Khanna, S. and Tan, W. C. Why and Where: A Characterization of Data
Provenance. Proc. ICDT, 2001, pp. 316–330.

13 Buneman, P. and Tan, W. C. Provenance in Databases. Proc. ACM SIGMOD, 2007, pp.
1171–1173.

14 Cheney, J., Chiticariu, L. and Tan, W. C. Provenance in Databases: Why, How, And
Where. Foundations and Trends in Databases, 2009, 1(4): 379-474.

15 Cheney, J., Chong, S., Foster, N., Seltzer, M. I. and Vansummeren, S. Provenance: A
Future History. OOPSLA Companion (Onward!), 2009, pp. 957–964.

16 Cheney, J. Is Provenance Logical? Proc. LID, 2011, pp. 2–6.
17 Chomicki, J. and Marcinkowski, J. Minimal-Change Integrity Maintenance Using Tuple

Deletions. Information and Computation, 2005, 197(1-2):90-121.
18 Chockler, H. and Halpern, J. Y. Responsibility and Blame: A Structural-Model Approach.

J. Artif. Intell. Res., 2004, 22:93-115.
19 Console, L. and Torasso, P. A Spectrum of Logical Definitions of Model-Based Diagnosis.

Computational Intelligence, 1991, 7:133-141.
20 Console, L., Sapino M. L. and Theseider-Dupre, D. The Role of Abduction in Database

View Updating. J. Intell. Inf. Syst., 1995, 4(3): 261-280.
21 Cui, Y., Widom, J. and Wiener, J. L. Tracing the Lineage of View Data in a Warehousing

Environment. ACM Trans. Database Syst., 2000, 25(2):179-227.
22 Eiter, T., Gottlob, G. and Leone, N. Abduction from Logic Programs: Semantics and

Complexity. Theor. Comput. Sci., 1997, 189(1-2):129-177.
23 Eiter, Th., Faber, W., Leone, N. and Pfeifer, G. The Diagnosis Frontend of the DLV System.

AI Commun., 1999, 12(1-2):99-111.
24 Fernau, H. Parameterized Algorithmics for d-Hitting Set. Int. J. Comput. Math., 2010,

87(14):3157-3174.
25 Feldman, A., Provan G., and Gemund A.V. Approximate model-based diagnosis us-

ing greedy stochastic search. Journal of Artificial Intelligence Research (JAIR), 2010,
87(14):3157-3174.

26 Flum, J. and Grohe, M. Parameterized Complexity Theory. Texts in Theoretical Computer
Science, Springer Verlag, 2006.

27 Gertz, M. Diagnosis and Repair of Constraint Violations in Database Systems. PhD Thesis,
Universität Hannover, 1996.

28 Greco, S., Pijcke, F. and Wijsen, J. Certain Query Answering in Partially Consistent
Databases. PVLDB, 2014, 7(5):353-364.

29 Halpern, J., and Pearl, J. Causes and Explanations: A Structural-Model Approach: Part
1 Proc. UAI, 2001, pp. 194-202.

30 Halpern, J., and Pearl, J. Causes and Explanations: A Structural-Model Approach: Part
1. British J. Philosophy of Science, 2005, 56:843-887.

ICDT 2015



362 From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

31 Halperin, E. Improved Approximation Algorithms for the Vertex Cover Problem in Graphs
and Hyper-Graphs. Proc. ACM-SIAM Symposium on Discrete Algorithms, 2000, pp. 329-
337.

32 Halpern, J. Appropriate Causal Models and Stability of Causation. Proc. KR’14, 2014.
33 Kakas A. C. and Mancarella, P. Database Updates through Abduction. Proc. VLDB, 1990,

pp. 650-661.
34 Karvounarakis, G. and Green, T. J. Semiring-Annotated Data: Queries and Provenance?

SIGMOD Record, 2012, 41(3):5-14.
35 Krentel, M. The Complexity of Optimization Problems. J. Computer and Systems, 1988,

36:490-509.
36 Karvounarakis, G. Ives, Z. G. and Tannen, V. Querying Data Provenance. Proc. ACM

SIGMOD, 2010, pp. 951–962.
37 Kimelfeld, B. A Dichotomy in the Complexity of Deletion Propagation with Functional

Dependencies. Proc. ACM PODS, 2012.
38 Kimelfeld, B., Vondrak, J. and Williams, R. Maximizing Conjunctive Views in Deletion

Propagation. ACM Trans. Database Syst., 2012, 37(4):24.
39 Lopatenko, A. and Bertossi, L. Complexity of Consistent Query Answering in Databases

under Cardinality-Based and Incremental Repair Semantics. Proc. ICDT, 2007, Springer
LNCS 4353, pp. 179-193. Extended version posted at: arXiv:cs/0604002 [cs.DB].

40 Meliou, A., Gatterbauer, W. and Suciu, D. Bringing Provenance to its Full Potential Using
Causal Reasoning. Proc. TaPP, 2011.

41 Meliou, A., Gatterbauer, W. Moore, K. F. and Suciu, D. The Complexity of Causality and
Responsibility for Query Answers and Non-Answers. Proc. VLDB, 2010, pp. 34-41.

42 Meliou, A., Gatterbauer. W., Halpern, J. Y., Koch, C., Moore K. F. and Suciu, D. Causality
in Databases. IEEE Data Eng. Bull, 2010, 33(3):59-67.

43 Mozetic, I, Holzbaur, C. Controlling the Complexity in Model-Based Diagnosis Annals of
Mathematics and Artificial Intelligence, 1994, 11(1-4): 297-314.

44 Niedermeier, R. and Rossmanith, P. An efficient fixed-parameter algorithm for 3-hitting
set. In J. Discrete Algorithms, 2003 1(1):89-102.

45 Okun, M. On Approximation of the Vertex Cover Problem in Hypergraphs. In Discrete
Optimization, 2005,2(1):101-111.

46 Papadimitriou, Ch. Computational Complexity. Addison-Wesley, 1994.
47 Reiter, R. A Theory of Diagnosis from First Principles. Artificial Intelligence, 1987,

32(1):57-95.
48 Reiter, R. Towards a Logical Reconstruction of Relational Database Theory. In On Con-

ceptual Modelling, Springer, 1984, pp. 191-233.
49 Salimi, B. and Bertossi, L. Causality in Databases: The Diagnosis and Repair Connections.

Presented at The 15th International Workshop on Non-Monotonic Reasoning (NMR 2014).
Posted at: arXiv:1404.6857 [cs.DB].

50 Salimi, B. and Bertossi, L. From Causes for Database Queries to Repairs and Model-Based
Diagnosis and Back. Extended version of this paper. Posted at: arXiv:1412.4311 [cs.DB].

51 Staworko, S., Chomicki, J. and Marcinkowski, J. Prioritized Repairing and Consistent
Query Answering in Relational Databases. Ann. Math. Artif. Intell., 2012, 64(2-3):209-
246.

52 Struss, P. Model-based Problem Solving. In Handbook of Knowledge Representation, chap.
10. Elsevier, 2008.

53 Tannen, V. Provenance Propagation in Complex Queries. In Buneman Festschrift, 2013,
Springer LNCS 8000, pp. 483-493.

54 Yakout, M., Elmagarmid, A., Neville, J., Ouzzani, M. and Ilyas, I. Guided Data Repair.
PVLDB, 2011, 4(5):279-289.



On the Relationship between Consistent Query
Answering and Constraint Satisfaction Problems
Carsten Lutz1 and Frank Wolter2

1 Fachbereich Informatik, Universität Bremen, Germany
clu@uni-bremen.de

2 Department of Computer Science, University of Liverpool, UK
wolter@liverpool.ac.uk

Abstract
Recently, Fontaine has pointed out a connection between consistent query answering (CQA) and
constraint satisfaction problems (CSP) [22]. We investigate this connection more closely, identi-
fying classes of CQA problems based on denial constraints and GAV constraints that correspond
exactly to CSPs in the sense that a complexity classification of the CQA problems in each class is
equivalent (up to FO-reductions) to classifying the complexity of all CSPs. We obtain these classes
by admitting only monadic relations and only a single variable in denial constraints/GAVs and
restricting queries to hypertree UCQs. We also observe that dropping the requirement of UCQs
to be hypertrees corresponds to transitioning from CSP to its logical generalization MMSNP
and identify a further relaxation that corresponds to transitioning from MMSNP to GMSNP
(also know as MMSNP2). Moreover, we use the CSP connection to carry over decidability of
FO-rewritability and Datalog-rewritability to some of the identified classes of CQA problems.

1998 ACM Subject Classification H.2.4 [Systems]: Relational databases

Keywords and phrases Consistent Query Answering, Constraint Satisfaction, Data Complexity,
Dichotomies, Rewritability

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.363

1 Introduction

In modern applications of database systems, it cannot always be guaranteed that the data is
consistent with the relevant integrity constraints; for example, inconcistency occurs easily
when the data is extracted from the web or integrated from multiple sources. A prominent
approach to address this problem is consistent query answering (CQA) as introduced in [3]
where one returns the certain answers over all minimal repairs of the inconsistent database,
see also the surveys [7, 15, 41]. Since the data complexity of CQA can be coNP-complete or
higher [2, 14, 16, 38], CQA is in general significantly harder than traditional query answering.
This observation has resulted in a lot of research activity aiming to more precisely clarify the
computational complexity of CQA, separating in particular the easy cases from the hard ones.
Here, ‘easy’ might mean different things. The ideal result is that a CQA problem CQA(C, q),
defined by a set C of integrity constraints and a query q, is rewritable into a first-order
logic (FO) query q̂ and thus answers can be computed by a classical RDBMS and in AC0
data complexity [24, 39]. If FO-rewritability is not attainable, one might at least hope for
Datalog-rewritability or PTime data complexity. Ultimate goals of this research programme
would be to classify the exact complexity of every CQA problem and, closely related, to
decide for a given CQA problem whether it is easy in some relevant sense, say whether
it admits an FO-rewriting. Completely classifying the border between PTime and coNP

© Carsten. Lutz and Frank Wolter;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 363–379

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.363
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


364 On the Relationship between CQA and CSP

prominently involves solving dichotomy questions: for some important classes of integrity
constraints and queries, it has been conjectured that CQA is in PTime or coNP-hard for
every problem in the class [1, 40, 41]. In fact, with today’s methods one cannot hope to
completely classify the complexity of a class of CQA problems if that class does not have
such a dichotomy.

Despite serious efforts, comprehensive results for dichotomies in CQA have so far been
elusive. For several restricted cases which all require that the query to be answered is
free of self-joins, dichotomies were obtained in [27, 40, 28]. An explanation of why general
dichotomy results for CQA are difficult to obtain was recently given by Fontaine [22], who
linked CQA with the area of constraint satisfaction problems (CSPs). CSPs constitute a
subclass of NP that contains many relevant NP-complete problems such as 3SAT, 3COL,
and integer programming over bounded domains, and it is widely believed that this class is
computationally more well-behaved than NP itself. In particular, a long-standing conjecture
due to Feder and Vardi states that CSPs enjoy a dichotomy between PTime and NP [20].
Massive research efforts in logic, complexity, and algebra have been directed towards proving
this conjecture, and although steady progress has been made, the conjecture is still open. In
contrast, strong results have been obtained on the FO-definability and Datalog-definability
of CSPs, the counterpart of FO- and Datalog-rewritability in CQA: while both problems are
undecidable for the entire class NP, they are decidable and NP-complete for CSPs [30, 5, 23].

Fontaine’s main result in [22] links the Feder-Vardi conjecture to dichotomies in CQA
under GAV constraints by showing that for every CSP problem CSP(A) defined by some
template A, there is a CQA problem CQA(C, q) with C a set of GAV constraints and q a
union of conjunctive queries (UCQ) such that CQA(C, q) and the complement coCSP(A)
of CSP(A) are PTime-equivalent, that is, they have the same complexity up to PTime-
reductions. Consequently, establishing a dichotomy between PTime and coNP for CQA
with GAV constraints and UCQs implies the Feder-Vardi conjecture. The aim of this paper
is to study the CSP-CQA connection in more detail, focussing on denial constraints and GAV
constraints which have both received significant attention in CQA [17, 16, 8, 2, 37, 38, 22].
In particular, we aim to identify classes of CQA problems that exactly correspond to the
class of CSPs in the sense that classifying the complexity of problems from both classes is
equivalent in a strong sense.

Our first main observation is that CSPs correspond to CQA problems whose (denial or
GAV) constraints involve only monadic relation symbols and only a single variable and in
which the query to be answered is a UCQ in which all CQs take the form of a hypertree (all
queries in this paper are Boolean). More specifically, let a monadic disjointness constraint
(MDiC) be of the form ∀x¬(P1(x) ∧ · · · ∧ Pn(x)) and a monadic GAV constraint (MGAV)
be of the form ∀x (P1(x) ∧ · · · ∧ Pn(x) → Q(x)). We use (MDiC, tUCQ) to denote the
class of all CQA problems whose constraints are MDiCs and whose query is a UCQ in
which every CQ is a hypertree in the sense that its incidence graph is a tree (without
multi-edges), and likewise for (MGAV, tUCQ). We then show that (i) for every CSP(A)
there is a problem CQA(C, q) in (MDiC, tUCQ) such that coCSP(A) and CQA(C, q) are
FO-equivalent (that is, they have the same complexity up to FO-reductions), (ii) for every
problem in (MDiC, tUCQ) there is one from (MGAV, tUCQ) that is FO-equivalent, and
(iii) for every problem CQA(C, q) in (MGAV, tUCQ) there is a CSP(A) such that CQA(C, q)
and coCSP(A) are FO-equivalent. This improves upon the main result of [22] in several ways.
First, the CQA problems constructed in [22] involve constraints that contain non-monadic
relations and the UCQs used there are not hypertrees since they include multi-edges; we thus
identify much more restricted CQA classes whose complexity classification is already as hard



C. Lutz and F. Wolter 365

as classifying CSPs; second, we also translate from CQA to CSP and thus show that a PTime
vs. coNP dichotomy for (MDiC, tUCQ) and (MGAV, tUCQ) is equivalent to the Feder-Vardi
conjecture (instead of only implying it); and third, we replace PTime-equivalence with
FO-equivalence which (a) means that not only a PTime vs. (co)NP dichotomy carries over,
but any complexity classification that involves complexity classes closed under FO-reductions
(such as LogSpace), and (b) enables us to transfer results from CSP to the classes of CQA
problems that we have identified.

Regarding (b), we show that for (MDiC, tUCQ) and (MGAV, tUCQ), rewritability into
FO and into Datalog are decidable, referring to the version of Datalog which allows negation in
front of body atoms that use a monadic EDB relation. Our approach yields NExpTime upper
bounds for these problems and we demonstrate that the complexity is indeed high (despite
the fact that we deal with rather restricted CQA problems) by establishing a PSpace lower
bound for FO-rewritability, leaving the exact complexity open. We also transfer Bulatov’s
result that CSPs whose templates have at most three elements enjoy a dichotomy between
PTime and NP [13] to CQA, identifying a (rather restricted) corresponding fragment of
(MDiC, tUCQ) that has a dichotomy between PTime and coNP.

We then investigate the effect of dropping the requirement that queries are hypertrees
while maintaining all restrictions on integrity constraints, which gives rise to the classes
of CQA problems (MDiC,UCQ) and (MGAV,UCQ). We show that this corresponds to
transitioning from CSP to its logical generalization MMSNP, which was introduced by Feder
and Vardi when studying the descriptive complexity of CSP [20] and has received considerable
interest, see e.g. [33, 11]. More precisely, we establish results that exactly parallel (i) to
(iii) above, replacing tUCQs with UCQs and CSP with MMSNP. Again, all reductions
are FO-reductions. The known results that CSP ⊆ MMSNP and that for every MMSNP
problem there is a CSP problem that is PTime-equivalent [20, 29] then also yields that
(MDiC,UCQ) has a dichotomy between PTime and coNP if and only if this is the case for
(MDiC, tUCQ), and likewise for the corresponding CQA classes based on MGAVs. This does
not imply, though, that a full complexity classification of these classes is equivalent since
the relation between CSP and MMSNP in terms of FO-reductions is open. These results
also shed some light on the decidability of FO- and Datalog-rewritability in (MDiC,UCQ)
and (MGAV,UCQ), which is equivalent to the decidability of FO-definability of MMSNP
problems, an open problem. Finally, we generalize (MDiC,UCQ) by giving up the restriction
that integrity constraints are monadic and comprise only a single variable, instead requiring
that every atom in the integrity constraint comprises the same variables in the same order.
We then show that this corresponds to the transition from MMSNP to GMSNP [10] (also
known as MMSNP2 [32]), which means to replace monadicity as stipulated in MMSNP for
certain relations with a guardedness condition.

Some proof details are deferred to the appendix of the long version of this paper available
at http://www.informatik.uni-bremen.de/tdki/research/papers.html.

2 Preliminaries

A schema is a finite collection S = (S1, . . . , Sk) of relation symbols with associated non-zero
arity. A fact over S is an expression of the form S(a1, . . . , an) where S ∈ S is an n-ary
relation symbol, and a1, . . . , an are elements of some fixed, countably infinite set const of
constants. An instance I over S is a finite set of facts over S. The active domain adom(I)
of I is the set of all constants that occur in the facts of I. We will frequently use boldface
notation for tuples, such as in a = a1 · · · an.

ICDT 2015

http://www.informatik.uni-bremen.de/tdki/research/papers.html


366 On the Relationship between CQA and CSP

A conjunctive query (CQ) takes the form q = ∃xϕ(x) where ϕ is a conjunction of
relational atoms, neither constants nor equality allowed. A union of conjunctive queries
(UCQ) is a disjunction of CQs. Note that we consider only Boolean queries for simplicity,
see the conclusion for some further remarks on this issue.

A denial constraint (DC) has the form ∀x¬ϕ(x), where ϕ is a conjunction of relational
atoms. A global as view constraint (GAV) takes the form ∀xϕ(x) → S(x) where ϕ is a
conjunction of relational atoms. Let I be an instance and C a set of constraints. An instance
J is a minimal repair of I w.r.t. C if J satisfies all constraints in C and there is no instance J ′
such that J ′ satisfies all constraints in C and I ∆ J ′ ( I ∆ J , where ‘∆’ denotes symmetric
difference. We generally omit ‘w.r.t. C’ when C is clear from the context. For a query q, we
write I |=C q if every minimal repair J of I satisfies J |= q.

A consistent query answering (CQA) problem, denoted CQA(C, q), is defined by a set
of constraints C and a query q. As input, an S-instance I is given where S is the set of
relation symbols used in C or q. The question is whether I |=C q. We use (DC,UCQ) to
denote the set of problems CQA(C, q) where C is a set of DCs and q a UCQ, and likewise
for (GAV,UCQ) and other combinations of constraint language and query language.

In this paper, all considered decision problems take instances over some fixed schema as
inputs. For two such decision problems P1, P2, we write P1 �p P2 if P1 reduces to P2 by a
polynomial time reduction. We write P1 �FO P2 if P1 reduces to P2 by an FO-reduction,
defined as in [26]. However, most of our FO-reductions are of the following simple form.
For problems P1 and P2 over schemas S1 and S2, a map T that assigns to each S1-instance
I an S2-instance T (I) is FO-definable if for every k-ary relation symbol R in S2, there is
an FO-formula ϕR over S1 (equality and constants allowed) with k free variabes such that
R(a) ∈ T (I) iff I |= ϕR[a], for all a in adom(I). Such a map gives rise to an FO-reduction of
P1 to P2 if for all S1-instances I, we have I ∈ P1 iff T (I) ∈ P2. FO-reductions of this simple
form differ from the general case in that (i) no arithmetic operations are admitted in the
formulas ϕR and (ii) the domain of the T (I) cannot be larger than the domain of I. With
FO-equivalence and PTime-equivalence of two problems P1 and P2, denoted P1 ≈FO P2 and
P1 ≈p P2, we mean that there are reductions between P1 and P2 in both directions. For two
classes of decision probems C1 and C2, we write C1 �FO C2 if for every problem p1 ∈ C1, there
is a problem p2 ∈ C2 such that p1 �FO p2 and p2 �FO p1. We write C1 ≈FO C2 and say that
C1 and C2 are FO-equivalent if C1 �FO C2 and C2 �FO C1. The definition of C1 �p C2 and
C1 ≈p C2 is analogous, but based on polynomial time reductions.

Let A be an instance over schema S. The constraint satisfaction problem CSP(A) is to
decide, given an instance I over S, whether there is a homomorphism from I to A, which
we denote with I → A. In this context, A is called the template of CSP(A). We will
generally and w.l.o.g. assume that the template is a core, that is, every automorphism is an
isomorphism. It is often useful to further assume that the template A admits precoloring,1
that is, for each a ∈ adom(A), there is a unary relation symbol Pa ∈ S such that Pa(b) ∈ A
iff b = a [18]. It is known that for every template A (which is a core), there is a template A′
that admits precoloring such that CSP(A) ≈FO CSP(A′) [31]. We use coCSP(A) to denote
the complement problem of CSP(A) and coCSP to denote the set of all problems coCSP(A)
whose template A admits precoloring.

The logic MMSNP was introduced by Feder and Vardi as a descriptive complexity
counterpart of CSPs [20]. Since we will mostly be concerned with the complement of
MMSNP, we refrain from giving the original definition and directly introduce its complement,

1 This property is also known as ‘full idenpotence’ and ‘pointedness’.



C. Lutz and F. Wolter 367

which can conveniently be defined as (negation-free) monadic disjunctive Datalog [10].
A monadic disjunctive Datalog (MDDLog) rule ρ has the form R1(y1) ∧ · · · ∧ Rn(yn) →
S1(x1)∨· · ·∨Sm(xm) withm ≥ 0, n > 0, and S1, . . . , Sm monadic. Every variable that occurs
in the head S1(x1)∨· · ·∨Sm(xm) of ρ is also required to occur in ρ’s body R1(y1)∧· · ·∧Rn(yn).
Empty rule heads are denoted ⊥. An MDDLog program Π is a finite set of MDDLog rules
with a selected nullary goal relation goal that does not occur in rule bodies and only in
goal rules of the form R1(x1) ∧ · · · ∧Rn(xn)→ goal(). Relation symbols that occur in the
head of at least one rule of Π are intensional (IDB), and all remaining relation symbols
in Π are extensional (EDB). Every MDDLog program Π defines a decision problem: given
an S-instance I, where S is the set of EDB relations in Π, decide whether I |= Π, that is,
whether in every extension of I that satisfies all non-goal rules in Π, the body of at least one
goal rule applies. We use coMMSNP to denote the class of all these decision problems and
MMSNP to denote the class of their complements.

3 Relating CQA and CSP

We identify fragments of (DC,UCQ) and (MGAV,UCQ) that are FO-equivalent to coCSP.
They involve restrictions on the admitted constraints as well as on the admitted queries. A
denial constaint is called a monadic disjointness constraint (MDiC) if all relation symbols
that occur in it are monadic and it contains only a single variable; a GAV is called monadic or
an MGAV if it satisfies the same conditions. MDiCs and MGAVs are clearly rather restricted
classes of constraints. Note, however, that they are useful for speaking about type systems.
For example, the MDiC ∀x¬(person(x) ∧ process(x)) asserts disjointness of the types person
and process while the MGAV ∀x (professor(x)→ person(x)) ensures a subsumption between
the types professor and person.

While we restrict constraints to MDiCs and MGAVs, UCQs are required to contain only
CQs that have the shape of a hypertree. The incidence graph of a CQ q is the bipartite
undirected graph whose nodes are the variables and the atoms in q and whose edges connect
a variable x with each atom R(x) such that x ∈ x. A CQ is a hypertree conjunctive query
(tCQ) if its incidence graph is a tree (without multi-edges). A hypertree UCQ (tUCQ) is
a UCQ in which every CQ is a tCQ. Our notion of hypertree CQ is rather restrictive, see
e.g. [6, 25] for more general forms of hypertrees; our form of hypertrees, though, is known to
be intimately connected to the expressive power of CSPs [34].

Before proceeding, we observe the following connection between MDiCs and MGAVs.

I Lemma 1. (MDiC,Q) �FO (MGAV,Q) for Q ∈ {UCQ, tUCQ}. Moreover, given a problem
CQA(C, q) from (MDiC,Q) one can construct a problem CQA(C ′, q′) in (MGAV,Q) such
that CQA(C, q) ≈FO CQA(C ′, q′) in polynomial time.

Proof. Let CQA(C, q) be a problem from (MDiC,Q) over schema S. Define C ′ = {∀xϕ(x)→
M(x) | ∀x¬ϕ(x) ∈ C} where M is a fresh monadic relation symbol and q′ = q ∨ ∃xM(x).
We show that CQA(C, q) �FO CQA(C ′, q′) and vice versa. For the former, we observe that
for all S-instances I, we have I |=C q iff I |=C′ q′. For the latter, it is easy to show that,
for all S ∪ {M}-instances I, we have I |=C′ q′ iff I |= ∃xM(x) or I |=C q. Clearly, these
reductions can be implemented as FO-reductions. J

Our aim is to show that (MDiC, tUCQ) ≈FO (MGAV, tUCQ) ≈FO coCSP. By Lemma 1,
it suffices to show that coCSP �FO (MDiC, tUCQ) and (MGAV, tUCQ) �FO coCSP. We
start with the former, improving upon a reduction by Fontaine [22] which shows that
coCSP �p (GAV,UCQ). Consider CSP(A) over schema S where A admits precoloring. We

ICDT 2015



368 On the Relationship between CQA and CSP

construct a problem CQA(CA, qA) from (MDiC, tUCQ) over schema S′ which extends S
with unary relation symbols Qa, a ∈ adom(A) (these symbols should be distinguished from
the monadic relation symbols Pa in S, a ∈ adom(A), which exist since A admits precoloring).
CA contains one monadic disjointness constraint:

∀x¬
∧

a∈adom(A)

Qa(x).

For each a ∈ adom(A), we use cona(x) to denote the conjunction
∧

e∈adom(A)\{a}Qe(x). The
tUCQ qA contains the following tCQ for each R ∈ S of arity n and each a = a1 · · · an ∈
adom(A)n such that R(a) 6∈ A:

∃x1 · · · ∃xn (cona1(x1) ∧ · · · ∧ conan(xn) ∧R(x1, . . . , xn)).

To understand the construction of CQA(CA, qA), consider the reduction from CSP(A) to
the complement of CQA(CA, qA). Given an S-instance I that is an input to CSP(A), we
construct an S′-instance T ↑(I) by adding Qa(b) for all b ∈ adom(I) and all a ∈ adom(A).
Then each minimal repair J of T ↑(I) must satisfy, for each b ∈ adom(I), J |= cona[b]
for a unique a ∈ adom(A). In this way, J represents a function h that assigns to each
b ∈ adom(I) the unique a ∈ adom(A) such that Qa(b) 6∈ J . If J 6|= qA, then h must clearly
be a homomorphism. Indeed, we show in the appendix that I → A iff T ↑(I) 6|=CA

qA.

I Lemma 2. coCSP(A) �FO CQA(CA, qA) and CQA(CA, qA) �FO coCSP(A).

Proof. The first reduction was already described above. Clearly, T ↑ is FO-definable and
thus the reduction is an FO-reduction. For the converse reduction, let I be an S′-instance.
Denote by X the set of b ∈ adom(I) such that there are at least two distinct a1, a2 ∈ adom(A)
with neither Qa1(b) ∈ I nor Qa2(b) ∈ I. Then T ↓(I) is obtained from I by dropping all facts
that involve a constant from X or a relation symbol in S′ \ S, and adding all facts Pa(b)
such that Qe(b) ∈ I iff e 6= a for all e ∈ adom(A). Note that it is crucial here that A admits
precoloring as we use the relation symbols Pa. Clearly T ↓(I) is FO-definable. We show in
the appendix that I 6|=CA

qA iff T ↓(I)→ A. J

It is easy to see that, given A, we can construct CQA(CA, qA) in polynomial time. We
have thus established the following.

I Theorem 3. For every CSP template A that admits precoloring, there is a problem
CQA(C, q) from (MDiC,tUCQ) that satisfies CQA(C, q) ≈FO coCSP(A) and can be construc-
ted in polynomial time.

We now show that (MGAV, tUCQ) �FO coCSP. Let CQA(C, q0) be over schema S with
C a set of MGAVs and q0 a hypertree UCQ. We use S(1) to denote the restriction of S to
monadic relation symbols and S(>1) for the restriction of S to non-monadic symbols. In the
following, we define a CSP template AC,q0 over schema S′ = S(>1) ∪ {PΓ | Γ ⊆ S(1)}. Note
that there is an obvious natural translation of S-instances into corresponding S′-instances
and vice versa; for example, an S′-instance I is translated to an S-instance J by replacing
every fact PΓ(a) with P (a) for all P ∈ Γ. The change of schema is used to deal with the
complication that the ‘yes’-instances of each CSP are closed under homomorphic pre-images
while the ‘no’-instances of CQA problems from (MGAV, tUCQ) are not (unless the schema
is modified in the described way). For any set Γ ⊆ S(1), we use rep(Γ) to denote the set of all
sets Γ′ ⊆ S(1) such that {P (a) | P ∈ Γ′} is a minimal repair of the instance {P (a) | P ∈ Γ}.



C. Lutz and F. Wolter 369

Let Q be the set of all connected subqueries of CQs in q0 (which are again hypertrees) and
of all queries of the form P (x), P ∈ S(1). A place is a pair (q, x) with q ∈ Q and x ∈ var(q).
A type t is a set of places. The type tpI(a) realized by constant a in instance I is the set of all
places (q, x) such that there is a homomorphism h from q to I that takes x to a. We say that
a type t is realizable if there is an instance I such that I satisfies all constraints in C and t is
realized by some constant in I; we say that t avoids q0 if (q, x) /∈ t for any disjunct q of q0
and x ∈ var(q). For R ∈ S of arity n, we say that a tuple (t1, . . . , tn) of types is R-coherent
if for any instance I and tuples of constants (a1, . . . , an) such that tpI(ai) = ti for 1 ≤ i ≤ n,
after adding to I the fact R(a1, . . . , an), we still have tpI(ai) = ti for 1 ≤ i ≤ n. Now, the
template AC,q0 is defined as follows:

the constants in AC,q0 are the pairs 〈t,Γ〉 with t a realizable type that avoids q0 and
Γ ⊆ S(1) such that t|S(1) ∈ rep(Γ) where t|S(1) is the restriction of t to schema S(1);
AC,q0 contains all facts of the form PΓ(〈t,Γ〉);
AC,q0 contains all facts R(〈t1,Γ1〉, . . . , 〈tn,Γn〉), R of arity n, if (t1, . . . , tn) is R-coherent.

To understand the construction, consider the reduction from the complement of CQA(C, q0)
to CSP(AC,q0) and let I be an S-instance that is an input to the former. We replace I with
the corresponding S′-instance T ↑(I) obtained from I by dropping all facts that involve a
monadic relation and adding PΓa

(a) for every element a ∈ I, where Γa = {P | P (a) ∈ I}.
Then, a homomorphism h from T ↑(I) to AC,q0 defines the repair of I that is obtained by
repairing the monadic relations at each a ∈ adom(I) as suggested by h(a) = 〈t,Γ〉, namely
to remove all P (a) with (P (x), x) /∈ t. Indeed, we show in the appendix that I 6|=C q0 iff
T ↑(I) → AC,q0 . It is again easy to see that T ↑(I) is FO-definable. For later use, we note
explicitly that an FO-formula ϕPΓ for defining PΓ in T ↑(I) is given by

ϕPΓ(x) =
∧

P∈Γ
P (x) ∧

∧
P∈S(1)\Γ

¬P (x).

It is also interesting to note that the S-instance IA obtained from the template AC,q0 by
dropping all facts PΓ(〈t,Γ〉) and adding P (〈t,Γ〉) for all (P (x), x) ∈ t is a universal minimal
repair in the following sense: (i) it is a minimal repair of the S-instance that corresponds to
AC,q0 and (ii) any minimal repair of any S-instance homomorphically maps to IA.

I Lemma 4. CQA(C, q0) �FO coCSP(AC,q0) and coCSP(AC,q0) �FO CQA(C, q0).

Proof. The first reduction was described above. Correctness is proved in full detail in the
appendix. For the second reduction, let an S′-instance I be given. If there exists a ∈ adom(I)
with PΓ(a), P∆(a) ∈ I for some Γ 6= ∆, then there is no homomorphism from I to AC,q0 and
“false” is returned. Otherwise define an S-instance T ↓(I) by dropping all facts of the form
PΓ(a) and adding P (a) whenever PΓ(a) ∈ I with P ∈ Γ. We show in the appendix that
T ↓(I)→ AC,q0 iff I 6|=C q0. Clearly T ↓(I) is FO-definable. J

I Theorem 5. For every problem CQA(C, q) from (MGAV,tUCQ), there is a CSP template
A that satisfies coCSP(A) ≈FO CQA(C, q) and can be constructed in single exponential time.

Summarizing Theorems 3 and 5, we thus obtain the following FO-equivalences.

I Corollary 6. (MDiC, tUCQ) ≈FO (MGAV, tUCQ) ≈FO coCSP.

It follows that there is a dichotomy between PTime and coNP for (MDiC, tUCQ) and
(MGAV, tUCQ) if and only if the Feder-Vardi conjecture is true, and more generally that
classifying the complexity of these classes of CQA problems is equivalent to classifying the
complexity of CSPs (up to FO reductions).

ICDT 2015



370 On the Relationship between CQA and CSP

4 FO- and Datalog-Rewritability

We exploit the reductions from the previous section and recent results concerning the FO-
and Datalog-definability of CSPs to show that FO-rewritability and Datalog-rewritability
are decidable in (MDiC, tUCQ) and (MGAV, tUCQ). A problem CQA(C, q) over schema S
is FO-rewritable if there is a Boolean FO-query q̂C,q such that for all S-instances I, we have
I |=C q iff I |= q̂C,q. Thus, FO-rewritability ensures that CQA(C, q) can be implemented
using a conventional RDBMS. Datalog-rewritability is defined accordingly, where we refer to
the version of Datalog that admits negated monadic EDB atoms in rule bodies. Without
such atoms, Datalog-rewritability would be an extremely elusive property, as illustrated by
the trivial problem CQA(C, q) where C = {∀x¬(A1(x) ∧A2(x))} and q = ∃xA1(x), which
can be rewritten into A1(x) ∧ ¬A2(x)→ goal(), but not into any Datalog program without
negated monadic EDB atoms. Note that in constrast to consistent query answering problems,
a class coCSP(A) is Datalog-definable with negated EDB atoms in rule bodies if and only
if it is definable by a negation-free Datalog program [21]. We rely on the following results
from [30, 5, 23].

I Theorem 7. Given a CSP template A, it is NP-complete to decide whether coCSP(A) is
FO-definable. The same is true for Datalog-definability.

Since the reductions between CQA(C, q) and coCSP(AC,q) used in the proof of Theorem 5
are FO-reductions, it follows immediately that CQA(C, q) is FO-rewritable if and only if
coCSP(AC,q) is FO-definable [26]. Given that AC,q can be constructed in single exponential
time, we obtain a NExpTime upper bound for deciding FO-rewritability of CQA problems
in (MDiC, tUCQ) and (MGAV, tUCQ).

I Theorem 8. Given (C, q) such that CQA(C, q) is from (MDiC, tUCQ) or (MGAV, tUCQ),
it is decidable in NExpTime whether CQA(C, q) is FO-rewritable. Both problems are
PSpace-hard.

Proof (Sketch). The PSpace lower bounds are proved in the appendix by a non-trivial
reduction of the word problem of polynomially space-bounded Turing machines. Similar
reductions have been used to establish PSpace-hardness of boundedness in linear monadic
datalog [19] and of certain FO-rewritability problems in ontology-based data access [9]. The
general idea is to start with a DTM M that solves a PSpace-complete problem and to first
modify it so that M terminates when started in any configuration (which must not even
be reachable from an initial configuration). Then, one crafts a problem CQA(C, q) such
that if M accepts an input x, then any FO-rewriting of CQA(C, q) would have to query for
the existence of unboundedly long paths of facts that represent an accepting computation
of M on x, repeated over and over again. Clearly, this contradicts the locality of FO-
queries. For technical reasons, we actually cannot ensure that the first computation on the
mentioned paths starts with the initial configuration for x. However, M terminates from any
configuration, and the second computation on the paths (as well as all subsequent ones) are
guaranteed to start with the initial configuration for x. Details are given in the appendix. We
note that C consists only of a single constraint, which is of the form ∀x¬(B(x)∧B′(x)). J

The exact complexity remains open, but we speculate that the problems in Theorem 8 are
at least ExpTime-hard. To obtain complexity bounds for Datalog-rewritability, we inspect
the FO-formulas required to define T ↑(I) and T ↓(I) in the proof of Lemma 4.

I Lemma 9. Let CQA(C, q0) and AC,q0 be as in Lemma 4. Then
CQA(C, q0) is Datalog-rewritable iff coCSP(AC,q0) is Datalog-definable.



C. Lutz and F. Wolter 371

Proof. Let Π be a Datalog program that defines coCSP(AC,q0). Replace in Π all body atoms
PΓ(x) with

∧
P∈Γ P (x) ∧

∧
P∈S(1)\Γ ¬P (x) and denote the resulting program by Π′. It can

be verified using the proof of Lemma 4 that I |=C q0 iff I |= Π′ for all S-instances I. Thus
Π′ is a Datalog-rewriting of CQA(C, q0).

Conversely, assume that Π is a Datalog-rewriting of CQA(C, q0). Replace every rule ρ
in Π by a set of rules as follows. For every variable x in ρ, replace the set S of conjuncts
in the body of ρ that are of the form P (x) and ¬P (x), P ∈ S(1), by any atom PΓ(x) such
that S ⊆ {P (x) | P ∈ Γ} ∪ {¬P (x) | P ∈ S(1) \ Γ}. Moreover, add PΓ(x) ∧ PΛ(x)→ goal()
as a new rule for all Γ,Λ ⊆ S(1) with Γ 6= Λ. Denote the resulting program by Π′. It can be
verified using the proof of Lemma 4 that Π′ defines coCSP(AC,q0). J

The following is a consequence of Lemma 4, Lemma 9, and Theorem 7.

I Theorem 10. Given (C, q) such that CQA(C, q) is from (MDiC, tUCQ) or (MGAV, tUCQ),
it is decidable in NExpTime whether CQA(C, q) is Datalog-rewritable.

We do not have any non-trivial lower bound. Finally, we observe that, thanks to
allowing negation in Datalog-rewritings as described above, FO-rewritability implies Datalog-
rewritability.

I Theorem 11. In (MDiC, tUCQ) and (MGAV, tUCQ), FO-rewritability implies (non-
recursive) Datalog-rewritability.

Proof. It was observed by Atserias (and follows from Rossman’s homomorphism preservation
theorem) that for any CSP template A, coCSP(A) being FO-definable implies that coCSP(A)
is UCQ-definable [4, 35]. Thus FO-rewritability of CQA(C, q) implies FO-definability of
coCSP(AC,q). The latter implies UCQ-definability of coCSP(AC,q) which implies (non-
recursive) Datalog-definability of coCSP(AC,q). The latter implies (non-recursive) Datalog-
rewritability of CQA(C, q). J

5 A Dichotomy Result

For restricted classes of CSPs, a dichotomy between PTime and NP has been established.
The most notable results include Schaefer’s famous dichotomy theorem for templates with
at most two elements [36] and its generalization to three element templates obtained much
later by Bulatov [13]. It is natural to ask whether these dichotomies transfer to restricted
classes of CQA problems. In this section, we identify a subclass of (MDiC, tUCQ) for which
this is the case, thus obtaining a dichotomy between PTime and coNP.

We consider the class of problems CQA(C, q0) such that C consists of a single MDiC
of the form ∀x¬(A1(x) ∧ A2(x)) and q0 is a tUCQ such that, in every tCQ in q0, there is
at most one atom with a relation symbol distinct from A1, A2. Let us call a problem of
this form a restricted binary CQA problem where ‘binary’ refers to the number of atoms
allowed in the MDiC. Note that the resulting class r2CQA of CQA problems is not trivial
since a straightforward analysis of the proof of Theorem 3 shows that 2coCSP �FO r2CQA,
where icoCSP is the class of complements of all problems that can be defined by a CSP
template with at most i elements. Consequently, establishing a PTime / coNP dichotomy
for r2CQA implies Schaefer’s theorem; we actually find it remarkable that a class of CQA
problems as simple as 2rCQA turns out to be that complex. In the following, we show that
r2CQA �FO 3coCSP and thus obtain a dichotomy between PTime and coNP for r2CQA by
Bulatov’s result.

ICDT 2015



372 On the Relationship between CQA and CSP

Let CQA(C, q0) be a restricted binary CQA problem over schema S. We define a CSP
template AC,q0 over schema S′ = (S \ {A1, A2}) ∪ {PΓ | Γ ⊆ {A1, A2}} as follows:
1. the constants in AC,q0 are 0, 1, 2;
2. AC,q0 contains the facts P∅(0), P{A1}(1), P{A2}(2), P{A1,A2}(1), and P{A1,A2}(2);
3. AC,q0 contains the fact R(i1, . . . , ik), R ∈ S \ {A1, A2} and ij ∈ {1, 2}, when q0 does not

evaluate to true on the S-instance {R(i1, . . . , ik)} ∪ {Aij (ij) | 1 ≤ j ≤ k}.
The general idea is the same as in the proof of Theorem 5, that is, a homomorphism h from
an S′-instance J to AC,q0 defines a repair of the corresponding S-instance I. In fact, for any
situation A1(a), A2(a) ∈ I we must have h(a) ∈ {1, 2} and in the repair of I described by h we
then keep Ah(a) and remove A3−h(a). The element 0 in AC,q0 is needed as a homomorphism
target for constants a ∈ adom(I) such that neither A1(a) nor A2(a) are in I.

I Lemma 12. CQA(C, q0) �FO coCSP(AC,q0) and coCSP(AC,q0) �FO CQA(C, q0).

The FO-reductions used for proving Lemma 12 are identical to those in the proof of
Lemma 4, but of course the correctness proofs differ. Details are given in the appendix.

I Theorem 13. Every binary restricted CQA problem is in PTime or coNP-complete.

6 Relating CQA and MMSNP

The classes of CQA problems identified so far all require queries to be hypertree UCQs. We
now show that the transition from hypertree UCQs to unrestricted UCQs corresponds to
the transition from CSP to MMSNP: while classifying the complexity of (MDiC, tUCQ) and
(MGAV, tUCQ) is equivalent to classifying the complexity of coCSP (up to FO-reductions),
classifying (MDiC,UCQ) and (MGAV,UCQ) is equivalent in the same sense to classifying
coMMSNP. Since it is known that MMSNP ≈p CSP, the results in this section also imply
that there is a dichotomy between PTime and coNP for (MDiC, tUCQ) if and only if there
is such a dichotomy for (MDiC,UCQ) if and only if the Feder-Vardi conjecture holds (and
likewise for the corresponding CQA languages based on MGAVs). They also yield some
insight into the problem of deciding FO-rewritability in (MDiC,UCQ) and (MGAV,UCQ):
these problems are decidable if and only if FO-definability in MMSNP is decidable, which is
an open problem.

Recall that coMMSNP is the class of problems definable by an MDDLog program. Thus,
let Π be an MDDLog program over schema S and assume that Q is the set of IDB relations
in Π. A Q-type is a subset t ⊆ Q. We say that Π admits precoloring if the EDB schema S
includes a monadic relation symbol St for each Q-type t and Π includes rules (i) St(x)→ Q(x)
for all Q-types t and all Q ∈ t and (ii) St(x) ∧Q(x)→ ⊥ for all Q-types t and all Q ∈ Q \ t;
the St relations are not allowed to be used in any other rule. We use coMMSNPpre to
denote the class of all problems defined by a MDDLog program that admits precoloring and
MMSNPpre to denote the class of their complements. Recall that we can w.l.o.g. assume
CSPs to admit precoloring. The following result says that the same is true for (co)MMSNP.

I Theorem 14 (Bodirsky and Madelaine [12]). MMSNP �FO MMSNPpre.

We start with establishing a counterpart of Theorem 3. Let Π be an MDDLog program
over schema S that admits precoloring with IDB relations Q, as above. We use tp to denote
the set of all Q-types. Construct a problem CQA(CΠ, qΠ) in (MDiC,UCQ) over schema S′
which extends S with unary relation symbols Qt, t ∈ tp (to be distinguished from the EDB



C. Lutz and F. Wolter 373

relations St required because Π admits precoloring). CΠ contains one monadic disjointness
constraint:

∀x¬
∧
t∈tp

Qt(x).

For each Q-type t, we use cont(x) to denote the conjunction
∧

t′∈tp\{t}Qt′(x). We now
construct the UCQ qΠ, which contains the following two kinds of CQs.
1. Consider each non-goal rule

ρ =
∧

1≤i≤n

Ri(xi) ∧
∧

1≤i≤m

Si(yi)→
∨

1≤i≤`

S′i(zi)

where all Ri are from S and all Si and S′i are from Q. Let x1, . . . , xk be the variables
in ρ. Then include in qΠ the following CQ, for all sequences of Q-types t1, . . . , tk such
that (i) if S(xi) occurs the body of ρ with S ∈ Q, then S ∈ ti and (ii) if S(xi) occurs in
the head of ρ, then S /∈ ti:∧

1≤i≤n

Ri(xi) ∧
∧

1≤i≤k

conti(xi) ∧
∧

1≤i≤`

cont′
i
(zi);

2. Consider each goal rule

ρ =
∧

1≤i≤n

Ri(xi) ∧
∧

1≤i≤m

Si(yi)→ goal()

where all Ri are from S and all Si are from Q. Let x1, . . . , xk be the variables in ρ. Then
include in qΠ the following CQ, for all sequences of Q-types t1, . . . , tk such that if S(xi)
occurs in the body of ρ with S ∈ Q, then S ∈ ti:∧

1≤i≤n

Ri(xi) ∧
∧

1≤i≤k

conti
(xi).

The above construction parallels the one used in the proof of Theorem 3, with Q-types
playing the role of elements of the CSP template. In the reduction from Π to CQA(CΠ, qΠ),
we are given an S-instance I and construct an S′-instance T ↑(I) by adding Qt(a) for all
a ∈ adom(I) and all Q-types t. Then each minimal repair J of T ↑(I) must satisfy, for each
a ∈ adom(I), J |= cont[a] for a unique Q-type t and thus assigns to each a ∈ adom(I) a
Q-type ta. In this way, it describes a unique S ∪Q-instance I ′ that is obtained from I by
adding P (a) whenever P ∈ ta. If J 6|= qΠ, then I ′ satisfies all non-goal rules of Π, but no
goal rule applies. Indeed, we show in the appendix that I |= Π iff T ↑(I) |=CΠ qΠ. We also
give an FO-reduction from CQA(CΠ, qΠ) to Π, which is again similar to what is done in the
proof of Theorem 3.

I Theorem 15. For every MDDLog program Π that admits precoloring, there is a problem
CQA(C, q) from (MDiC,UCQ) that satisfies CQA(C, q) ≈FO Π and can be constructed in
polynomial time.

We now show that (MGAV,UCQ) �FO coMMSNP. Let CQA(C, q) be from (MGAV,UCQ)
with schema S. We define an MDDLog program ΠC,q over EDB schema S′ = S(>1) ∪ {PΓ |
Γ ⊆ S(1)} where the PΓ are fresh monadic relation symbols. Recall from Section 3 that for
each Γ ⊆ S(1), rep(Γ) denotes the corresponding set of repairs. The IDB relations of ΠC,q

ICDT 2015



374 On the Relationship between CQA and CSP

are Q = S(1) ∪ {QΓ | Γ ⊆ S(1)} where the QΓ are monadic. The rules of ΠC,q are as follows:

PΓ(x) →
∨

Λ∈rep(Γ)

QΛ(x) for each Γ ⊆ S(1)

QΓ(x) → P (x) for each Γ ⊆ S(1), P ∈ Γ
PΓ(x) ∧ PΛ(x) → goal() for all distinct Γ,Λ ⊆ S(1)

q′ → goal() for each disjunct q′ of q.

I Lemma 16. CQA(C, q) �FO ΠC,q and ΠC,q �FO CQA(C, q).

The reductions used for establishing this lemma are exactly the FO-reductions from the
proof of Lemma 4. In the appendix, we prove that these reductions are correct also in this
case.

I Theorem 17. For every CQA problem in (MGAV,UCQ), there is an FO-equivalent
MDDLog program Π that can be constructed in single exponential time.

We thus obtain the following equivalences.

I Corollary 18.
1. (MDiC,UCQ) ≈FO (MGAV,UCQ) ≈FO coMMSNP;
2. (MDiC,UCQ) ≈p (MDiC, tUCQ) and (MGAV,UCQ) ≈p (MGAV, tUCQ).

Since the FO-reductions in the proof of Lemma 16 are identical to those in the proof
of Lemma 4, all arguments used in Section 4 for relating FO- and Datalog-rewritability
of CQA problems with hypertree UCQs to the FO- and Datalog-definability of CSPs can
also be used to relate, in exactly the same way, CQA problems with unrestricted UCQs to
MMSNP. Consequently, we obtain that FO-rewritability in (MDiC,UCQ) and (MGAV,UCQ)
is decidable iff FO-definability in MMSNP is decidable and the former is at most exponentially
harder than the latter.

7 Relating CQA and GMSNP

Monadic disjointness constraints are surely a rather restricted class of denial constraints. In
this section, we analyze a slightly more powerful class obtained by dropping the monadicity
of MDiCs while still retaining some ‘uniformity’ accross the atoms in the constraint. More
precisely, a disjointness constraint (DiC) has the form ∀x¬(R1(x) ∧ · · · ∧ Rn(x)) where
all relations Ri have the same arity and all atoms Ri(x) use the same variables from x in
the same order (multiple occurrences are allowed). We show that the connection between
(MDiC,UCQ) and coMMSNP established in Section 6 can be lifted to (DiC,UCQ) and a
generalization of coMMSNP called coGMSNP that corresponds to replacing MDDLog with
frontier-guarded disjunctive Datalog [10]. It is straightforward to define a corresponding
generalization of GAV constraints and to establish analogous results for them, but for
simplicity we refrain from doing so.

Recall that we defined coMMSNP in terms of MDDLog. A frontier-guarded disjunctive
Datalog (GDDLog) rule takes the form R1(y1)∧ · · · ∧Rk(yk)→ S1(z1)∨ · · · ∨Sm(zm) where
the IDB predicates need not be monadic and for each head atom Si(zi), there must be a
body atom Rj(yj) with zi ⊆ yj . A GDDLog program is then defined in the obvious way
(with nullary goal predicate) and we use coGMSNP to denote the class of decision problems
that are defined by a GDDLog program. GMSNP, which is also known as MMSNP2 [32],



C. Lutz and F. Wolter 375

is considered an interesting candidate for a generalization of MMSNP that is still PTime-
equivalent to CSP. It is, however, an open problem whether this is really the case. We
nevertheless believe that relating (DiC,UCQ) and coGMSNP provides interesting additional
insight into the computational complexity of CQA. Note that coGMSNP is also closely
related to ontology-based data access with the guarded fragment of FO [10].

What we actually show in this section is coGMSNPpre �FO (DiC,UCQ) �FO coGMSNP
where GMSNPpre is a version of GMSNP that admits precoloring defined as follows in
analogy with MMSNPpre. Let Π be a GDDLog program over schema S, assume that Q
is the set of IDB relations in Π, and let m be the maximal arity of relations in Q. Fix
variables x1, . . . , xm. For i ≤ m, an i-type is a set t of relational atoms using relation
symbols from Q and variables from xi := x1 · · ·xi. We say that Π admits precoloring if
the EDB schema S includes a relation symbol St of arity i for each i-type t, i ≤ m, and Π
includes rules (i) St(xi) → R(xi1 , . . . , xi`

) for all i-types t and all R(xi1 , . . . , xi`
) ∈ t and

(ii) St(xi) ∧R(xi1 , . . . , xi`
)→ ⊥ for all i-types t and all R(xi1 , . . . , xi`

) /∈ t with R ∈ Q and
xi1 , . . . , xi`

∈ xi; the St relations are not allowed to be used in any other rule. We leave it
open whether coGMSNP �p coGMSNPpre, but consider it likely that this is the case given
the corresponding result for MMSNP mentioned in Section 6.

We start with proving coGMSNPpre �FO (DiC,UCQ), first observing that it suffices to
consider GDDLog programs of a certain form, which we introduce next. Let Q be a schema
that consists of relations which all have the same arity m. A Q-type is a set of relational
atoms R(x) with R ∈ Q and where x is a permutation of x1 · · ·xm. We say that a GDDlog
program Π with IDB relations Q is normalized if it satisfies the following conditions:
1. all EDB and IDB relations (except the goal relation) have the same arity m, each variable

may occur at most once in each head and body atom, and Π includes all rules of the form
R(. . . , x, . . . , x, . . .)→ ⊥ for each EDB and IDB relation R;

2. the EDB schema S includes a relation symbol St of aritym for each Q-type t and Π includes
rules (i) St(x1, . . . , xm)→ R(xi1 , . . . , xim) for all Q-types t and all R(xi1 , . . . , xim) ∈ t and
(ii) St(x1, . . . , xm)∧R(xi1 , . . . , xim

)→ ⊥ for all Q-types t and atoms R(xi1 , . . . , xim
) 6∈ t,

where R ∈ Q and xi1 . . . xim is a permutation of x1 . . . xm; the St relations are not allowed
to be used in any other rule.2

Working with normalized programs will simplify the subsequent constructions.

I Lemma 19. For every GDDLog program Π that admits precoloring, there is a normalized
GDDLog-Program Π′ with Π ≈FO Π′.

Let Π be a normalized GDDLog program over schema S, let Q be the set of IDB relations
in Π and m the unique arity of relations in Π. We define a CQA setup CQA(CΠ, qΠ) from
(DiC,UCQ) over schema S′, that is, S extended with one relation Qt of arity m for each
Q-type t. For an S′-instance J , and a tuple a ∈ adom(J)m, we say that a is assigned Q-type
t in J if there is a permutation b of a and a Q-type t̂ such that (i) Qt′(b) ∈ J if t′ 6= t̂

for all Q-types t′ and (ii) t̂ is obtained from t by permuting the variables x1 · · ·xm in the
same way in which the constants in a are permuted in b, that is, if a = a1 · · · am and
b = ai1 · · · aim

, then t̂ = t[xi1 · · ·xim
/x1 · · ·xm]. We say that J is proper if every S-guarded

tuple3 a ∈ adom(J)m is assigned a unique Q-type. A proper S′-instance J represents an

2 Note that this is different from requiring Π to admit precoloring because admitting precoloring is about
i-types whereas for normalized programs we use Q-types. In fact, a program in normal form cannot
admit precoloring in the original sense because the conditions on the rules required for normality and
admitting precoloring are incompatible.

3 A tuple a ∈ adom(I)m is S-guarded if I contains some fact R(a) with R ∈ S.

ICDT 2015



376 On the Relationship between CQA and CSP

S-instance and an S ∪Q-instance: the former is the reduct of J to schema S and the latter
is obtained by starting with that reduct and then adding the fact R(ai1 , . . . , aim

) whenever
a = a1 · · · am ∈ adom(J)m is assigned Q-type t and R(xi1 , . . . , xim

) ∈ t. Intuitively, the
latter instance is supposed to represent an extension of the former instance obtained by
applying the rules in Π.

We now define CQA(CΠ, qΠ). The set CΠ contains one disjointness constraint, namely

∀x1 · · · ∀xm ¬
( ∧

t a Q-type
Qt(x1, . . . , xm)

)
.

For a Q-type t, we use Ct(x) to denote the conjunction
∧

t′ a Q-type,t′ 6=t Qt′(x). A CQ q over
schema S′ is forbidden if for each proper S′-instance J such that the S ∪Q-instance I of
J satisfies all non-goal rules in Π and no goal-rule of Π applies in I, we have J 6|= q. The
UCQ qΠ consists of the following CQs:

1. all forbidden CQs q over schema S′ such that
a. the number of variables in q is bounded by the maximum number of variables in a

rule body in Π;
b. for every atom R(x) there is a Q-type t and a permutation y of x such that Ct(y) is a

subconjunction of q;
2. all CQs Ct(x) ∧ Ct′(y) such that y is a permutation of x and t′ 6= t[y/x].

I Lemma 20. Π �FO CQA(CΠ, qΠ) and CQA(CΠ, qΠ) �FO Π.

Proof. For the first reduction, assume that an S-instance I is given. Define an S′-instance
T ↑(I) as the extension of I with all facts Qt(a) such that t is a Q-type and a ∈ adom(I)m.
We show in the appendix that I |= Π iff T ↑(I) |=CΠ qΠ. Clearly, T ↑ is FO-definable.

For the second reduction, let I be an S′-instance. Let T ↓(I) be the S-instance obtained
from the reduct of I to schema S by the following sequence of operations:
1. drop each fact R(a) such that for every permutation b of a, there are distinct Q-types t

and t′ such that neither Qt(b) nor Qt′(b) are in I;
2. add St(a) for each S-guarded tuple a ∈ adom(I)m that is assigned Q-type t in I (the

assignment need not be unique).
We show in the appendix that I |=CΠ qΠ iff T ↓(I) |= Π. Again T ↓ is clearly FO-definable. J

I Theorem 21. For every GDDLog program Π that admits precoloring, there is an FO-
equivalent problem CQA(C, q) from (DiC,UCQ).

We now turn towards showing that (DiC,UCQ) �FO coGMSNP. Let CQA(C, q) over
schema S be given with C a set of disjointness constraints. Let m be the maximum arity of
a relation in S. Fix variables x1, . . . , xm. For i ≤ m, an i-type is a set of atoms R(x1, . . . , xi)
with R ∈ S (all variables occur in fixed order and are distinct). We use tpi to denote the
set of all i-types. For an S-instance I and a ∈ adom(I)i, we use tpI(a) denote the i-type
realized at a in I, that is, the set of all atoms R(x1, . . . , xi) such that R(a) ∈ I.

We define a GDDLog program ΠC,q over schema S′ = {Rt | t ∈ tpi, i ≤ m}. The
quantified relations in ΠC,q are S ∪ {Qt | t ∈ tpi, i ≤ m} where the arities are defined
in the obvious way. The disjointness constraints in C assign to each i-type t and each
sequence of variables x ∈ {x1, . . . , xm}i (repetitions allowed) a set of possible minimal repairs
(which are also i-types), denoted with repx(t). Formally, repx(t) are the minimal repairs
of {R(x) | R(x1, . . . , xi) ∈ t} viewed as an instance. Note that different sequences x may
give rise to different repair sets for the same i-type t since the constraints in C might use
variables multiple times in the same atom. The rules of ΠC,q are as follows:



C. Lutz and F. Wolter 377

1. for each i-type t, i ≤ m, and each x ∈ {x1, . . . , xm}i: Rt(x)→
∨

t′∈repx(t)

Qt′(x)

2. for each i-type t, i ≤ m, and each R(x1, . . . , xi) ∈ t: Qt(x1, . . . , xi)→ R(x1, . . . , xi)
3. for all distinct i-types t, t′, i ≤ m: Rt(x1, . . . , xi) ∧Rt′(x1, . . . , xi)→ goal()
4. for each CQ q′ in q: q′ → goal()

I Lemma 22. CQA(C, q) �FO ΠC,q and ΠC,q �FO CQA(C, q).

Proof. For the first reduction, let an S-instance I be given. Define an S′-instance T ↑(I) that
consists of all facts RtpI(a)(a) with a ∈ adom(I)i, i ≤ m. Clearly, T ↑ is FO-definable. We
show in the appendix that I |=C q iff T ↑(I) |= ΠC,q.

For the second reduction, let an S′-instance I be given. If Rt(a), Rt′(a) ∈ I for any
a ∈ dom(I)i, i ≤ m, and t 6= t′, then answer ‘inconsistent’. Otherwise, replace each fact Rt(a)
with the set of facts {R(a) | R(x) ∈ t}, and call the result T ↓(I). Clearly, T ↓ is FO-definable.
We show in the appendix that I |= ΠC,q iff T ↓(I) |=C q. J

I Theorem 23. For every CQA problem in (DiC,UCQ), there is an FO-equivalent GDDLog
program Π.

8 Conclusion

We find it intriguing that very simple integrity constraints such as MDiCs and MGAVs
combined with structurally simple queries such as tUCQs result in classes of CQA problems
that are as difficult to analyze as CSPs, and that slight generalizations (such as DiCs) result in
entering essentially unknown terrain (in the form of GMSNP). We believe that the CSP-CQA
connection is not yet explored to the end. For example, the known non-dichotomy between
PTime and NP for MMSNP extended with inequality [20] gives rise to the speculation that
(MDiC,UCQ 6=) might have no dichotomy between PTime and coNP either, where UCQ 6=

denotes the class of UCQs that also admit inequality atoms. The proof of such a result
will not be entirely simple, though, as it seems to require a version of Ladner’s theorem
that relates to Ladner’s original theorem in a similar way in which the mortality problem of
Turing machines relates to the halting problem. We leave this as future work.

Another interesting question is whether larger and more natural classes of CQA problems,
such as those based on unrestricted denial constraints or on some form of functional depend-
ency also have natural counterparts in the world of CSP and MMSNP. In fact, it is not
even clear whether the correspondence between (MDiC, tUCQ) and coCSP can be extended
from monadic disjointness constraints to monadic denial constraints in which relations are
still required to be monadic, but where more than one variable can be used. For example,
the constraint ∀x∀y ¬(A(x) ∧B(y)) is a monadic denial constraint, but not an MDiC. The
main challenge is to deal with the problem that the ‘yes’-instances of each CSP are closed
under homomorphic pre-images while the ‘no’-instances of CQA problems are not. Simply
changing the monadic relations in the schema as in the proof of Theorem 5 is no longer
sufficient because, in contrast to MDiCs, monadic denial constraints are not local to a single
constant. We believe, however, that even if it should turn out that such differences prevent
the CQA-CSP connection from gracefully extending beyond the classes of CQA problems
considered here, it might still be possible to carry over techniques and intuitions from the
CSP/MMSNP world, which has seen frantic development in the last decade.

Acknowledgements. We want to thank Manuel Bodirsky, Hubie Chen, and André Hernich
for interesting and helpful discussions.

ICDT 2015



378 On the Relationship between CQA and CSP

References
1 Foto N. Afrati and Phokion G. Kolaitis. Repair checking in inconsistent databases: al-

gorithms and complexity. In Proc. of ICDT, volume 361 of ACM International Conference
Proceeding Series, pages 31–41. ACM, 2009.

2 Marcelo Arenas and Leopoldo E. Bertossi. On the decidability of consistent query answering.
In Proc. of AMW, volume 619 of CEUR Workshop Proceedings. CEUR-WS.org, 2010.

3 Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query answers in
inconsistent databases. In Proc. of PODS, pages 68–79. ACM Press, 1999.

4 Albert Atserias. On digraph coloring problems and treewidth duality. In Proc. of LICS,
pages 106–115, 2005.

5 Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width. In
Proc. of FOCS, pages 595–603, 2009.

6 Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the desirability of
acyclic database schemes. J. ACM, 30(3):479–513, 1983.

7 Leopoldo E. Bertossi. Consistent query answering in databases. SIGMOD Record, 35(2):68–
76, 2006.

8 Leopoldo E. Bertossi, Loreto Bravo, Enrico Franconi, and Andrei Lopatenko. The com-
plexity and approximation of fixing numerical attributes in databases under integrity con-
straints. Inf. Syst., 33(4-5):407–434, 2008.

9 Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. First-order rewritability of atomic
queries in Horn description logics. In Proc. of IJCAI. IJCAI/AAAI, 2013.

10 Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data
access: a study through disjunctive datalog, CSP, and MMSNP. In Proc. of PODS, pages
213–224. ACM, 2013.

11 Manuel Bodirsky, Hubie Chen, and Tomás Feder. On the complexity of MMSNP. SIAM
J. Discrete Math., 26(1):404–414, 2012.

12 Manuel Bodirsky and Florent Madeleine. Feder and Vardi’s logic revisited. In preparation.
13 Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-

element set. J. ACM, 53(1):66–120, 2006.
14 Andrea Calì, Domenico Lembo, and Riccardo Rosati. On the decidability and complexity

of query answering over inconsistent and incomplete databases. In Proc. of PODS, pages
260–271. ACM, 2003.

15 Jan Chomicki. Consistent query answering: Five easy pieces. In Proc. of ICDT, volume
4353 of LNCS, pages 1–17. Springer, 2007.

16 Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance using tuple
deletions. Inf. Comput., 197(1-2):90–121, 2005.

17 Jan Chomicki, Jerzy Marcinkowski, and Slawomir Staworko. Computing consistent query
answers using conflict hypergraphs. In Proc. of CIKM, pages 417–426. ACM, 2004.

18 David Cohen and Peter Jeavons. The complexity of constraint languages, chapter 8. Elsevier,
2006.

19 Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. Decidable
optimization problems for database logic programs (preliminary report). In Proc. of STOC,
pages 477–490. ACM, 1988.

20 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998.

21 Tomás Feder and Moshe Y. Vardi. Homomorphism closed vs. existential positive. In 18th
IEEE Symposium on Logic in Computer Science (LICS 2003), 22-25 June 2003, Ottawa,
Canada, Proceedings, pages 311–320, 2003.



C. Lutz and F. Wolter 379

22 Gaëlle Fontaine. Why is it hard to obtain a dichotomy for consistent query answering? In
Proc. of LICS, pages 550–559. IEEE Computer Society, 2013.

23 Ralph Freese, Marcin Kozik, Andrei Krokhin, Miklós Maróti, Ralph KcKenzie, and Ross
Willard. On Maltsev conditions associated with omitting certain types of local structures. In
preparation. Manuscript available from http://www.math.hawaii.edu/~ralph/Classes/
619/OmittingTypesMaltsev.pdf.

24 Ariel Fuxman and Renée J. Miller. First-order query rewriting for inconsistent databases.
In Proc. of ICDT, volume 3363 of LNCS, pages 337–351. Springer, 2005.

25 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. J. Comput. Syst. Sci., 64(3):579–627, 2002.

26 Neil Immerman. Descriptive complexity. Springer, 1999.
27 Phokion G. Kolaitis and Enela Pema. A dichotomy in the complexity of consistent query

answering for queries with two atoms. Inf. Process. Lett., 112(3):77–85, 2012.
28 Paraschos Koutris and Dan Suciu. A dichotomy on the complexity of consistent query an-

swering for atoms with simple keys. In Proc. of ICDT, pages 165–176. OpenProceedings.org,
2014.

29 Gábor Kun. Constraints, MMSNP and expander relational structures. Combinatorica,
33(3):335–347, 2013.

30 Benoit Larose, Cynthia Loten, and Claude Tardif. A characterisation of first-order con-
straint satisfaction problems. Logical Methods in Computer Science, 3(4), 2007.

31 Benoit Larose and Pascal Tesson. Universal algebra and hardness results for constraint
satisfaction problems. Theor. Comput. Sci., 410(18):1629–1647, 2009.

32 Florent R. Madelaine. Universal structures and the logic of forbidden patterns. Logical
Methods in Computer Science, 5(2), 2009.

33 Florent R. Madelaine and Iain A. Stewart. Constraint satisfaction, logic and forbidden
patterns. SIAM J. Comput., 37(1):132–163, 2007.

34 Jaroslav Nesetril. Many facets of dualities. In Bonn Workshop of Combinatorial Optimiz-
ation, pages 285–302, 2008.

35 Benjamin Rossman. Homomorphism preservation theorems. J. ACM, 55(3), 2008.
36 Thomas J. Schaefer. The complexity of satisfiability problems. In Proc. of STOC, pages

216–226. ACM, 1978.
37 Slawomir Staworko and Jan Chomicki. Consistent query answers in the presence of universal

constraints. Inf. Syst., 35(1):1–22, 2010.
38 Balder ten Cate, Gaëlle Fontaine, and Phokion G. Kolaitis. On the data complexity of

consistent query answering. In Proc. if ICDT, pages 22–33. ACM, 2012.
39 Jef Wijsen. On the first-order expressibility of computing certain answers to conjunctive

queries over uncertain databases. In Proc. of PODS, pages 179–190. ACM, 2010.
40 Jef Wijsen. Charting the tractability frontier of certain conjunctive query answering. In

Proc. of PODS, pages 189–200. ACM, 2013.
41 Jef Wijsen. A survey of the data complexity of consistent query answering under key

constraints. In Proc. of FoIKS, volume 8367 of LNCS, pages 62–78. Springer, 2014.

ICDT 2015

http://www.math.hawaii.edu/~ralph/Classes/619/OmittingTypesMaltsev.pdf
http://www.math.hawaii.edu/~ralph/Classes/619/OmittingTypesMaltsev.pdf


On the Data Complexity of Consistent Query
Answering over Graph Databases
Pablo Barceló and Gaëlle Fontaine

Department of Computer Science
University of Chile
pbarcelo@dcc.uchile.cl, gaelle@dcc.uchile.cl

Abstract
Areas in which graph databases are applied – such as the semantic web, social networks and
scientific databases – are prone to inconsistency, mainly due to interoperability issues. This raises
the need for understanding query answering over inconsistent graph databases in a framework that
is simple yet general enough to accommodate many of its applications. We follow the well-known
approach of consistent query answering (CQA), and study the data complexity of CQA over
graph databases for regular path queries (RPQs) and regular path constraints (RPCs), which are
frequently used. We concentrate on subset, superset and symmetric difference repairs. Without
further restrictions, CQA is undecidable for the semantics based on superset and symmetric
difference repairs, and ΠP

2 -complete for subset repairs. However, we provide several tractable
restrictions on both RPCs and the structure of graph databases that lead to decidability, and
even tractability of CQA. We also compare our results with those obtained for CQA in the
context of relational databases.

1998 ACM Subject Classification H.2.3 Database Management – Query Languages

Keywords and phrases graph databases, regular path queries, consistent query answering, de-
scription logics, rewrite systems

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.380

1 Introduction

Query languages for graph databases are typically navigational, in the sense that they allow
for recursively traversing the labeled edges while checking for the existence of a path whose
label satisfies a particular regular condition (see, e.g., [39, 5]). The basic building block for
navigational languages over graph databases is the class of regular path queries, or RPQs
[14]. Each RPQ is a regular expression L, and its evaluation L(G) over a graph database G
corresponds to a binary relation that contains all pairs of nodes in G that are linked by some
path whose label matches L. The evaluation problem for RPQs can be solved in NLogspace
in data complexity; that is, when the RPQ is fixed (cf., [5]).

Although graph databases are schema-less, it is possible to enforce data consistency over
them using path constraints [1, 9]. These constraints have been used in several scenarios
that are based on the graph database paradigm, e.g., to express local knowledge about
semi-structured data [1]; to enforce restrictions over object-oriented databases, XML and
RDF [36, 12, 22, 3, 30]; and to capture ontological hierarchies in the context of description
logics (DLs) [16, 17]. Here we concentrate on a simple class of path constraints based on
RPQs that was introduced by Abiteboul and Vianu; namely, the regular path constraints,
or RPCs [1]. An RPC is an expression of the form L1 v L2, where L1 and L2 are RPQs.
In the graph database and DL contexts, a graph database G satisfies L1 v L2 if and only
if L1(G) ⊆ L2(G) [26, 16, 17] (but we also consider a more restrictive semantics for RPCs,

© Pablo Barceló and Gaëlle Fontaine;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 380–397

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.380
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


P. Barceló and G. Fontaine 381

motivated by their application over semi-structured data, following the original proposal of
Abiteboul and Vianu). RPCs are a constituent part of the semantics of graph data and can
also be used in the optimization process for RPQ evaluation [1].

An important problem when dealing with dependencies is that databases might be
inconsistent, i.e., the databases might fail to satisfy the integrity constraints. In the case
of graph database applications, high levels of inconsistency appear due to interoperability
and distribution (e.g., in RDF and social/scientific networks [27, 40]). As an example,
inconsistency might arise while integrating several sources into a single RDF graph, or while
performing statistical inference on a scientific or social network. This raises the need for
developing an inconsistency-tolerant semantics for graph databases in a simple yet general
framework that abstracts away from its many implementations. In order to tackle this
problem, we use the widespread approach of consistent query answering (as first introduced
in the seminal work of Arenas, Bertossi and Chomicki [2]), which we now describe.

The approach is based on the notion of repair, which represents a possible minimal way
in which consistency over the data could be restored. More formally, a repair is a database
that satisfies the constraints and “minimally differs” from the original database. In general, a
database does not admit a unique repair. This leads to an inconsistency-intolerant semantics
based on the consistent answers of a query, i.e., the answers that hold in every possible
repair. The problem of computing consistent answers to a query is known as consistent query
answering (CQA).

Here we study the data complexity of CQA over graph databases in the scenario in which
queries are RPQs and constraints are RPCs. That is, we study the complexity of evaluating
consistent answers over an inconsistent graph database G for a fixed RPQ L under a fixed
set Γ of RPCs. We explain next the context and main contributions of our work.

The context. The complexity of CQA has received considerable attention over different data
models, notions of repairs and classes of constraints. Under the relational model, for instance,
this problem has been studied for set-based [2, 18, 24], cardinality-based [29], and attribute-
based repairs [37]; for constraints expressed as traditional functional dependencies, inclusion
dependencies and denial constraints (see, e.g., [11, 19, 25, 38, 28, 24]); and for constraints
expressed as tuple-generating dependencies (tgds) and equality-generating dependencies
(egds) that arise in the context of data integration and data exchange [18].

CQA has also been studied in depth in the DL context, starting from the work of Lembo
and Ruzzi [31]. The DL semantics is open-world in nature, meaning that the non-presence of
a fact is not sufficient to ensure that the negation of the fact holds. This implies that in the
DL context the only meaningful set-based repairs are the subset repairs; i.e., those that allow
to restore consistency with respect to the DL constraints (i.e., the ones in the TBox) only by
deleting facts from the database (i.e., the ABox). It is worth mentioning that the notion of
DL repair is slightly different to its relational counterpart: A DL repair is not a subinstance
that satisfies the constraints in the TBox, but one that does not lead to a contradiction in
conjunction with those constraints [31, 32].

Some applications of graph databases, such as RDF, are open-world in nature. However,
graph databases are not tied to this interpretation and may also accommodate closed-world
applications. Therefore, there should be no a priori restriction on the class of set-based
repairs one allows in this context. We thus study CQA for graph databases under the three
usual notions of set-based repairs: subset, superset, and symmetric difference repairs [18].

Our contributions. We first look at the data complexity of CQA over graph databases
under subset repairs. The problem is in ΠP

2 , and we prove that it is complete for this class in

ICDT 2015



382 On the Data Complexity of Consistent Query Answering over Graph Databases

restricted cases. Moreover, it remains intractable even under an approximation semantics
(based on the intersection of all subset repairs) that is motivated by the DL context [32].

In order to deal with this high complexity, we provide tractable cases by restricting the
class of RPCs or the class of graph databases allowed. In the first case, we prove that the
problem is tractable if RPCs are in LAV form, i.e., if they are of the form a v L, where a
is a single letter. This result is, in a sense, tight, since allowing a single RPC of the form
ab v c, for symbols a, b and c, leads to intractability. In the case of restrictions on graph
databases, by applying a deep result of Courcelle [20] we obtain that the data complexity of
CQA under subset repairs is tractable over graph databases of bounded treewidth.

We then move to study CQA under superset and symmetric difference repairs, and prove
that in both cases the problem is undecidable. However, we obtain decidability by either
restricting the class of RPCs allowed or their semantics. Let us consider first the restrictions
on RPCs. We prove that if RPCs are in LAV form then the data complexity of CQA is
tractable when dealing with symmetric difference repairs. We leave open whether CQA is
also decidable under the semantics of superset repairs, but prove that at least tractability
in data complexity is not preserved. We then prove that if RPCs are in GAV form, i.e., if
they are of the form L v a, where a is a single letter, our CQA problem is tractable under
the semantics of superset repairs, but intractable under symmetric difference repairs. With
respect to restrictions on the semantics of RPCs, we prove that by forcing RPCs to be read
from a particular node in the graph database, called the origin (which corresponds to the
original semantics Abiteboul and Vianu defined for these constraints), the problem can be
solved in coNP under superset repairs.

Comparison with previous results. The main difference between the query and constraint
languages we study here (RPQs and RPCs) and the ones studied in the relational context,
is that our languages allow recursion while CQA has been studied in the relational world
mostly in the absence of recursive features. Interestingly, our results show that recursion
does not add to the complexity of the problems studied. In fact, almost all of our lower
bounds hold in the restricted setting in which RPQs do not mention the Kleene-star and
RPCs are word constraints of the form w1 v w2, for words w1 and w2 [1].

If we interpret graph databases as relational databases, word constraints can be represented
as tgds. The tgds corresponding to word constraints have a special restricted structure and
are called chain tgds. On the other hand, CQA under tgds has been intensively studied [18],
and it is tempting to think that lower bounds obtained in such setting could be adapted
to work in our scenario. This is not the case, however, as those proofs do not apply to the
class of chain tgds. Actually, the proofs of our lower bounds are considerably more involved
than the ones for arbitrary tgds. As a side-effect, we obtain that several of our lower bounds
extend to CQA in the relational case for queries defined as unions of CQs under chain tgds.

DL databases are (essentially) graph databases. In such scenario, ΠP
2 -hardness results

have been obtained by Rosati for the data complexity of CQA under subset repairs, in
particular, for the case when queries are unions of CQs and constraints are expressed in the
logic ALC [35]. However, constraints in this logic cannot be directly expressed as RPCs due
to the presence of negation. Furthermore, the notion of repair in [35] is different to ours.

Organisation of the paper. Preliminaries are in Section 2. Results about the subset repair
semantics are in Section 3, and those about the semantics of superset and symmetric difference
repairs are in Section 4. Comparison with previous work is in Section 5 and conclusions in
Section 6. Due to space constraints, complete proofs are in the appendix.



P. Barceló and G. Fontaine 383

2 Preliminaries

Graph databases and regular path queries. As it is customary in the graph database
literature [14, 15, 39, 5], we consider graph databases to be finite, edge-labeled and directed
graphs. Formally, let Σ be a finite alphabet. A graph database G = (V,E) over Σ consists of
a finite set V of nodes and a set of labeled edges E ⊆ V × Σ× V . We interpret each tuple
(u, a, v) ∈ E, for u, v ∈ V and a ∈ Σ, as an edge from node u to node v whose label is a. If
G = (V,E) and G′ = (V ′, E′) are graph databases over Σ, we write G ⊆ G′ to denote that
V ⊆ V ′ and E ⊆ E′. If in addition it is not the case that G′ = G, we write G ( G′.

Navigational query languages for graph databases, such as the one of RPQs, express
properties of paths. Formally, a path π in G = (V,E) of length m (where m > 0) from
node v0 to node vm is a sequence of the form (v0, a1, v1)(v1, a2, v2) . . . (vm−1, am, vm), where
(vi−1, ai, vi) is an edge in E, for each 1 ≤ i ≤ m. The label of π, denoted λ(π), is the string
a1a2 . . . am ∈ Σ∗. A path π of length 0 is simply a node v and its label λ(π) is the empty
string ε.

Here we concentrate on the simplest navigational language for graph databases, namely,
regular path queries, or RPQs [14]. An RPQ is a regular expression L over Σ. The evaluation
L(G) of L over a graph database G = (V,E) is the set of pairs (u, v) of nodes in V for which
there is a path π in G from u to v such that λ(π) satisfies L. If L does not mention the
Kleene-star (i.e., if L defines a finite language) then we say that L is non-recursive. It is
well-known (cf., [5]) that computing L(G), for an RPQ L and a graph database G, can be
solved in polynomial time (and in NLogspace if L is fixed, that is, in data complexity).

Regular path constraints. Graph database constraints based on the class of RPQs are
known as regular path constraints [1, 26], or RPCs. Formally, an RPC over Σ is an expression
of the form L1 v L2, where L1 and L2 are RPQs over Σ. A word constraint is an RPC in
which both L1 and L2 are words.

An RPC L1 v L2 expresses that the evaluation of the RPQ L1 is contained in the
evaluation of the RPQ L2 [26]. Formally, a graph database G satisfies L1 v L2, denoted
G |= L1 v L2, if and only if L1(G) ⊆ L2(G). If Γ is a finite set of constraints, we write
G |= Γ to denote that for each RPC L1 v L2 in Γ it is the case that G |= L1 v L2. It follows
from previous remarks that the problem of checking whether G |= Γ, for a fixed set Γ of
RPCs, is in NLogspace.

I Example 1. Let Γ be the following set of RPCs:
1. child_of v son_of ∪ daughter_of.
2. brother_of · (brother_of ∪ sister_of) v brother_of.
3. sister_of · (brother_of ∪ sister_of) v sister_of.
4. child_of · (brother_of ∪ sister_of) v is_nephew ∪ is_niece.
Intuitively, the first RPC expresses that if u is a child of v, then u is a son or a daughter of
v. The second and third RPCs express that if u is a brother (resp., sister) of v and v is a
sibling of w, then v is a brother (resp., sister) of w. The forth RPC states that each child of
a person v is the niece or nephew of every sibling of v. J

Repairs. A repair of a database D under a set of constraints Γ is a database D′ that satisfies
Γ but “minimally” differs from D [2]. We formalise this idea for graph databases and RPCs
below, following closely its formalisation in the relational context [2].

The symmetric difference between two relational databases D and D′ is defined as a
database D ⊕D′ that contains those “facts” that belong to D but not to D′ or to D′ but

ICDT 2015



384 On the Data Complexity of Consistent Query Answering over Graph Databases

not to D. We can analogously define the symmetric difference between two graph databases
G = (V,E) and G′ = (V ′, E′) over the same alphabet Σ, as the graph database

G⊕G′ :=
(
V0, (E ⊕ E′)

)
,

where E ⊕E′ := (E \E′) ∪ (E′ \E) and V0 is the set of nodes occurring in E ⊕E′. That is,
the nodes (resp., edges) of G⊕G′ are those nodes (resp., edges) that appear in either G or
G′ but not in both. Notice that G⊕G′ is also a graph database over Σ.

Three notions of set-based repairs have been studied in the literature [18]: the subset,
superset and symmetric difference repairs (⊆–, ⊇–, and ⊕–repairs, respectively). We introduce
them below in the context of graph databases. Let G = (V,E) and G′ = (V ′, E′) be two
graph databases over Σ, and assume that Γ is a finite set of RPCs over Σ. Then:
1. G′ is a ⊕-repair (i.e., symmetric difference repair) of G under Γ, if (1) G′ |= Γ, and (2)

there is no graph database G′′ over Σ such that G′′ |= Γ and G⊕G′′ ( G⊕G′.
2. G′ is a ⊆-repair (i.e., subset repair) of G under Γ, if G′ ⊆ G and G′ is a ⊕-repair of G.

Equivalently, if (1) G′ ⊆ G, (2) G′ |= Γ, and (3) there is no graph database G′′ over Σ
such that G′′ |= Γ and G′ ( G′′ ⊆ G.

3. G′ is a ⊇-repair (i.e., superset repair) of G under Γ, if G ⊆ G′ and G′ is a ⊕-repair of G.
Equivalently, if (1) G ⊆ G′, (2) G′ |= Γ, and (3) there is no graph database G′′ over Σ
such that G′′ |= Γ and G ⊆ G′′ ( G′.

I Example 2 (Example 1 cont.). Consider a graph database G whose set of edges is

{(a, child_of, b), (b, sister_of, c), (c, brother_of, d)}.

Then G has two ⊆-repairs under Γ: {(b, sister_of, c)} and {(c, brother_of, d)}. On the
other hand, G has eight ⊇-repairs under Γ. One of them is the one that extends G with
edges:

{(a, son_of, b), (b, sister_of, d), (a, is_nephew, c), (a, is_nephew, d)}.

Finally, G has seven ⊕-repairs under Γ that are neither ⊆-repairs nor ⊇-repairs. One of
them is {(b, sister_of, c), (c, brother_of, d), (b, sister_of, d)}. J

Repairs might not exist in some situations. Consider an RPC of the form L v ε, where ε
is the empty word, and a graph database G that consists of nodes u and v linked by a path
labeled in L. Assume that G has a ⊇-repair H. Then it must be the case that u = v in H,
which is impossible. As the the next lemma shows, repairs exist in all other cases.

I Lemma 3. Let G = (V,E) be a graph database and Γ a finite set of RPCs over Σ.
Then:
1. There is a ⊆-repair and a ⊕-repair of G under Γ.
2. If Γ contains no RPC of the form L v ε, then there is a ⊇-repair of G under Γ.

Proof. Let G = (V,E) be a graph database and Γ a finite set of RPCs. The empty
database G∅ = (∅, ∅) satisfies Γ. Hence, there is an ⊆-repair H of G under Γ such that
G∅ ⊆ H ⊆ G. By definition, H is also a ⊕-repair of G under Γ. Consider now the graph
database Gc = (V, V × Σ × V ). It is easy to see that Gc satisfies Γ since Γ contains no
RPC of the form L v ε. Since G ⊆ Gc, there is a ⊇-repair H of G under Γ such that
G ⊆ H ⊆ Gc. J



P. Barceló and G. Fontaine 385

Consistent query answering. We are now ready to define our most important notion, that
of a consistent answer to an RPQ. The consistent answers are the pairs of nodes that belong
to the evaluation of the RPQ over every single repair of the original graph database.

I Definition 4 (Consistent answers). Assume that ? ∈ {⊕,⊆,⊇}. Let G = (V,E) be a
graph database, Γ a set of RPCs and L an RPQ, all of them over Σ. We define the set
?-Cons(G,L,Γ) of ?-consistent answers of L over G under Γ as:

?-Cons(G,L,Γ) =
⋂
{L(G′) | G′ is a ?-repair of G under Γ}. J

I Example 5. (Example 1 cont.) Consider the RPQ L = child_of · sister_of. The
pair (a, d) belongs to ⊇-Cons(G,L,Γ). This pair also belongs to ⊇-Cons(G,L′,Γ), for L′ =
is_nephew ∪ is_niece. On the other hand, the only way in which a pair (u, v) can belong
to ⊆-Cons(G,L′′,Γ), for an RPQ L′′, is when u = v = c and L′′ = ε. J

Here we study the data complexity of the problem of computing certain answers. We
formalise this decision problem as follows. Assume that L is an RPQ and Γ is a finite set of
RPCs over Σ. We denote by ?-CQA(L,Γ) the problem of, given a graph database G = (V,E)
over Σ and a pair (u, v) of nodes in V , checking whether (u, v) ∈ ?-Cons(G,L,Γ).

3 CQA under Subset Repairs

We start by proving that under the subset repair semantics our CQA problem is ΠP
2 -complete.

This holds even in the case in which all RPCs are word constraints and the RPQ is non-
recursive.

I Theorem 6.
1. For each RPQ L and finite set Γ of RPCs over the same alphabet Σ, it is the case that
⊆-CQA(L,Γ) is in ΠP

2 .
2. There exist a finite alphabet Σ, a non-recursive RPQ L and a finite set Γ of word

constraints over Σ, such that ⊆-CQA(L,Γ) is ΠP
2 -complete.

Proof. We sketch the hardness proof, i.e., that there is a non-recursive RPQ L and a set Γ
of word constraints such that ⊆-CQA(L,Γ) is ΠP

2 -hard. We do so by providing a reduction
from the quantified boolean satisfaction problem for ΠP

2 to ⊆-CQA(L,Γ).
Let φ be a quantified boolean formula of the form ∀X∃Y ψ, where X,Y are disjoint sets of

variables and ψ is of the form (z11∨ z12∨ z13)∧ · · · ∧ (zn1∨ zn2∨ zn3), for zij ∈ {x,¬x, y,¬y |
x ∈ X, y ∈ Y } (1 ≤ i ≤ n, 1 ≤ j ≤ 3). For all i, j, we define uij as the variable zij if
zij ∈ X ∪ Y , or we define uij as u if zij is of the form ¬u. Without loss of generality, we
may assume that in each clause Ci := zi1 ∨ zi2 ∨ zi3, there is at least one variable in1 Y .

We will define the RPQ L, the constraints Γ and associate a graph database Gφ with φ
in such a way that

φ is satisfiable iff (ns, ns) ∈⊆ −Cons(Gφ, L,Γ).

where ns is a node of Gφ.

1 Suppose for example that the clause C1 of ψ contains only variables in X. We construct a new formula
ψ′ defined by (z11 ∨ z12 ∨ y) ∨ (¬y ∨ z13 ∨ z13) ∨ C2 ∧ · · · ∧ Cn, where y is a new fresh variable. We
define Y ′ as Y ∪ {y}. Then ∀X∃Y ψ is satisfiable iff ∀X∃Y ′ψ′ is satisfiable.

ICDT 2015



386 On the Data Complexity of Consistent Query Answering over Graph Databases

It is convenient to start defining a graph database G′φ over alphabet

Σ = {t, f, t0, f0, a, y, z, w, d, s, e, r−,−, r−,+, r+,−, r+,+}.

The nodes of G′φ are the following set:

V := {nij | 1 ≤ i ≤ n, 1 ≤ j ≤ 3} ∪ {nt, nf , ns}.

With each variable uij , we associate a node id nij in V . Observe that even if uij = ukl (with
(i, j) 6= (k, l)), the associated nodes are distinct. We also have three special nodes ns, nt and
nf . We let < be an arbitrary irreflexive partial order over {1, . . . , n} × {1, 2, 3} such that (a)
for each 1 ≤ i, k ≤ n and 1 ≤ j, l ≤ 3, if uij = ukl, then (i, j) < (k, l) or (k, l) < (i, j), and
(b) for each (i, j), where 1 ≤ i ≤ n and 1 ≤ j ≤ 3, there is at most one pair (k, l) such that
(k, l) is a “successor” of (i, j) with respect to < (where we say that (k, l) is a successor of
(i, j) if (i, j) < (k, l) and there is no (k′, l′) such that (i, j) < (k′, l′) < (k, l)).

The set of edges of G′φ is defined as the union of all the sets below:

Et = {(nij , t, nij) | 1 ≤ i ≤ n, 1 ≤ j ≤ 3} Ef = {(nij , f, nij) | 1 ≤ i ≤ n, 1 ≤ j ≤ 3}
Et0 = {(nt, t0, nt)} Ef0 = {(nf , f0, nf )}
Ea = {(nij , a, ns) | uij ∈ Y } Ey = {(ns, y, ns)}
Ez = {(nij , z, nt), (nij , z, nf ) | uij ∈ Y } Ew = {{(nt, w, ns), (nf , w, ns)}
Ed = {(nij , d, nkl) | (i, j) < (k, l)} Es = {(u, s, v) | u, v ∈ V }
Er∼] = {(nij , r∼], ni(j+1)) | zij =∼ uij , zi(j+1) = ]ui(j+1), 1 ≤ i ≤ n, 1 ≤ j ≤ 2}
Ee = ∅

where ∼, ] belong to {+,−} and +u := u, −u := ¬u.
The intuition is as follows. There is no edge with label e and there is an edge with label

s between any two nodes. For the labels t and f , each node nij associated with a variable
admits loops with labels t and f . The ⊆-repairs will be such that each such node admit at
most one loop, either with label t or f . This allows us to define a partial map associating a
truth value with each node nij (> if the loop has label t and ⊥ if the loop has label f). The
special node nt has a loop with label t0 and the special node nf has a loop with label f0.

The labels r++, r−+, r+− and r−− express which variables occur in the same clause
and whether each variable occurs positively or negatively. The label d specifies which nodes
corresponds to the same variable. The constraints will be such that in a ⊆-repair, two nodes
linked by d (corresponding to the same variables) admit loops with the same label (t or
f). This implies that the partial mapping associating a truth value to each node (> if the
loop has label t and ⊥ if the loop has label f), corresponds to a partial valuation over the
variables in X ∪ Y .

The special node ns admits a loop with label y. That loop will act as a “witness”. If that
loop appears in a repair, we will say that the node ns gets activated. When ns is activated
in a repair, the idea is that each node nij associated with a variable in Y admits a loop with
label t or f . That is, each such a node receives a truth value (> if the loop has label t and ⊥
otherwise). Conversely, if in a repair one node associated with a variable in Y admits a loop
with label t or f , then the presence of that loop “activates” the node ns (i.e. ns admits a
loop with label y). As a consequence, all the nodes associated with variables in Y will admit
a loop. Basically, the node ns guarantees that either all the nodes associated with variables
in Y admit a loop, or none of those nodes admits a loop.

In order to encode in the graph database which variables belong to Y , we add an edge
with label a between the source ns and each node of the form nij with uij ∈ Y . We also add
an edge with label z from nij to the special node nt and from nij to nf .



P. Barceló and G. Fontaine 387

We use the nodes nt and nf in the following way. Recall that in a given ⊆-repair, the
(possible) truth value of a node is given by the label (either t or f) of the loop of the node.
Now, for the nodes associated with variables in Y , we have an extra way of encoding the
truth value. If the truth value of a node nij (with uij ∈ Y ) is true, this will also be witnessed
by an arrow with label z from nij to the special node nt (and the other arrow with label z
from nij to nf is deleted). If the truth value is false, this will be witnessed by an arrow with
label z from nij to nf .

We now define the set Γ of constraints. We have six different sets of constraints (C1),
(C2), (C3), (C4), (C5) and (C6) in Γ. The set (C2) contains the constraint

tf v e.

Since e is empty, it says that a node cannot admit both a loop with label t and f . The set
(C3) contains the two constraints

td v dt
fd v df.

It expresses that if two nodes are linked by d (hence, they are associated with the same
variable), then they must admit a loop with the same label (in case they admit a loop). This
guarantees that the partial map associating a truth value to each node (depending on the
label of the loop), can be transformed into a partial valuation over the variables. The set of
constraints (C4) is given by

F (j)rjkF (k)rklF (l) v e,

where j, k, l ∈ {+,−}, F (+) = f and F (−) = t. These constraints express that the formula
ψ is not false under the partial valuation associated with the repair.

The constraints (C5) are given by

zt0 v tz
zf0 v fz.

They express that if a node associated with a variable in Y is linked to the node nt, then it
admits a loop with label t. Similarly, if such a node is linked to the node nf , then it admits
a node with label f .

Indeed, let us look for example at the constraint zt0 ⊆ tz. Suppose that there is a path
with label zt0 from a node u to a node v. By definition of t0 and z, this can only happen if
u is a node of the form nij (with uij ∈ Y ) and v is the node nt. Now since zt0 ⊆ tz, this
implies that nij admits a loop with label t.

The set (C6a) contains the two constraints

ta v ay
fa v ay

while the constraint (C6b) is given by ay ⊆ zw. The constraints (C6a) express that if one
node associated with a variable in Y admits a loop with label t or f , then the node ns is
activated (i.e. admits a loop with label y). Indeed, if there is a path with label ta from a
node u to a node v, then, u must be a node of the form nij admitting a loop with label t
and v is the node ns. Moreover, since nij admits an outgoing edge with label a, nij must be
associated with a variable in Y . Since ta ⊆ ay, the presence of the loop with label t and the
fact that uij belongs to Y imply that there is an edge with label y. That is, ns is activated.

ICDT 2015



388 On the Data Complexity of Consistent Query Answering over Graph Databases

The constraint (C6b) expresses that if the node ns is activated (admits a loop with label y),
then each node nij associated with a variable in Y is linked either to the node nt or to the
node nf . Together with the contraints (C5), this means that if ns is activated, then each
node nij associated with a variable in Y admits a loop with label t or f .

We define an RPQ L′ as sys. This RPQ evaluates to V × V in the ⊆-repairs admitting
a y-labeled edge, i.e., the repairs in which ns is activated. Recall that this means that the
partial valuation associated with the repair assigns a truth value to all the variables in Y .

We would like to prove that φ is satisfiable iff (ns, ns) belongs to ⊆-Cons(G′φ, L′,Γ). Now
the implication from left to right is not true. The problem is that since we are allowed to
delete edges in order to obtain a repair, we may loose some “relevant information”. For
example, in a repair, we may loose an edge with label a encoding the fact that a node is
associated with a variable in Y . In such repairs, it might not be the case that (ns, ns) belongs
to the answer of L′.

The solution is to extend the graph database G′φ with a set of extra edges E, define a new
graph Gφ, and add a set of constraints (C1). If in a repair H of Gφ we lost some “relevant
information”, the constraints (C1) will be such that at least one extra edge in E occurs in H.
We then modify the RPQ L′ into an RPQ L, in such a way that if a graph database contains
a new edge in E, then the evaluation of L consists of all the pairs of nodes. Hence, in all the
repairs in which we lose some relevant information, the answer of the RPQ contains any pair
of nodes.

As an example, we show how to modify the graph G′φ into a graph Ga, add new
constraints (C1d) and modify the RPQ L into a RPQ La in such a way that if in a repair H
of Ga, we “lost” an edge with label a, then H trivially satisfies2 Ld. We define Ga by adding
the following edges

Ea′ = {(nij , a′, nij) | (nij , a, ns) ∈ Ea}.

That is, we add a loop with label a′ to all the nodes who must admit an outgoing edge with
label a. We define (C1d) as the following constraint

a′a ⊆ e.

Using the maximality property of the repairs, we can show that this constraint ensure that
in each repair H, exactly one of the following properties holds: (a) we did not loose any edge
with label a, and there is no edge with label a′ or e, (b) there is an edge with label a′ or e.
Case (a) means that we did not lost any “relevant information” with respect to the label a.
In case (b), the fact that we lost that information is witnessed by the fact that in the repair,
there is an edge with label a′ or e.

Finally we let La be the RPQ s(y+ a′ + e)s. That is, La is equivalent to sys+ s(a′ + e)s.
There are two possibilities for a repair to be such that (ns, ns) belongs to La: either (ns, ns)
belongs to L′ or there is an edge with label a′ or e. Those two possibilities corresponds to
cases (a) and (b) of the previous paragraph. J

Semantics based on the intersection of subset repairs. In order to obtain good complexity
bounds for CQA in the DL context, Lembo et al. introduced a sound approximation of
the CQA semantics based on the idea of evaluating queries over the intersection of all

2 For a complete definition of G, (C1) and L, we should make such modifications for the labels d, r++,
r−+, r+−, r−−, t0, f0 and w.



P. Barceló and G. Fontaine 389

subset repairs [32]. This approximation leads to tractability for inconsistency-tolerant query
answering over some DLs of interest (e.g., for DL-LiteA). Although the repairs studied in
the DL context are different to ours, it makes sense to study the pertinence of this semantics
as a tool for establishing tractability results also in the graph database context.

Formally, let L be an RPQ and Γ a finite set of RPCs over Σ. We define ∩-CQA(L,Γ) as
the problem of, given a graph database G = (V,E) over Σ and a pair (u, v) of nodes in V ,
checking whether (u, v) belongs to the evaluation of L over the intersection of all ⊆-repairs
of G under Γ. (The intersection of graph databases G1 = (V1, E1) and G2 = (V2, E2) over Σ
is the graph database (V1 ∩ V2, E1 ∩ E2)).

We prove below that the approximation semantics is not easier to evaluate than the
original one. Therefore, in order to obtain tractability for our CQA problem it is necessary
to look for restrictions that are proper to the scenario of graph databases.

I Proposition 7. There exist a finite alphabet Σ, a non-recursive RPQ L and a finite set Γ
of word constraints over Σ, such that ∩-CQA(L,Γ) is ΠP

2 -hard.

3.1 Tractable restrictions
Due to the inherent high complexity of our CQA problem under the subset repair semantics,
it is important to look for meaningful restrictions leading to tractability. We provide two
such restrictions in this section. The first one is based on the class of LAV RPCs, and the
second one on the class of graph databases of bounded treewidth.

Restricting RPCs. In the relational case, the data complexity of CQA for unions of CQs
under the class of LAV tgds (i.e., tgds with a single atom in the left-hand side [33]) is
tractable. This actually holds for any of the three repair semantics [18]. The direct analogue
of LAV tgds in our setting is the class of LAV RPCs, which are RPCs with a single symbol
in the left-hand side. Formally, a LAV RPC over Σ is an RPC of the form a v L, where
a ∈ Σ and L is an RPQ over Σ. We can leverage the techniques used to study CQA under
LAV tgds to prove tractability in data complexity for our CQA problem under LAV RPCs.

I Theorem 8. For each RPQ L and finite set Γ of LAV RPCs over the same alphabet Σ, it
is the case that ⊆-CQA(L,Γ) is in NLogspace.

It is interesting to also consider RPCs based on the class of GAV tgds [33], that only
allow for one symbol on the right-hand side. That is, a GAV RPC over Σ is of the form
L v a, for L an RPQ over Σ and a ∈ Σ. While this restriction improves the complexity of
the CQA problem, it does not lead to tractability.

I Proposition 9.
1. For each RPQ L and finite set Γ of GAV RPCs over the same alphabet Σ, it is the case

that ⊆-CQA(L,Γ) is in coNP.
2. There exist a finite alphabet Σ, a non-recursive RPQ L over Σ and a single GAV RPC of

the form ab v c, where a, b, c ∈ Σ, such that ⊆-CQA(L,Γ) is coNP-complete.

Note that in the setting of relational databases, the data complexity of consistent query
answering for unions of conjunctive queries with respect to GAV constraints was also shown
to be complete for the class coNP [18]. It is worth mentioning that we obtained the upper
bound of Proposition 9 using techniques from the relational case.

The second part of the previous proposition shows that, in a sense, the tractability result
for LAV RPCs in Theorem 8 is optimal: Allowing two-letter words on the left-hand side of
RPCs leads to intractability, even if the right-hand side consists of a single letter.

ICDT 2015



390 On the Data Complexity of Consistent Query Answering over Graph Databases

Restricting graph databases. Our CQA problem under the subset repair semantics can be
reformulated as a monadic second-order logic (MSO) evaluation problem over a relational
representation of graph databases. This allows us to apply results establishing the tractability
of MSO over structures of bounded treewidth [20]. From those results, we obtain tractability
for the CQA problem over graph databases of bounded treewidth.

Formally, let G = (V,E) be a graph database. A tree decomposition of G is a pair (T, λ),
where T is a tree and λ : T → 2V maps each node t in T to a nonempty set λ(t) of nodes in
V , that satisfies the following conditions:

The set {t ∈ T | v ∈ λ(t)} is a connected subset of T .
For each edge (u, a, v) ∈ E, it is the case that {u, v} ⊆ λ(t), for some t ∈ T .

The width of the tree decomposition (T, λ) is max {|λ(t)| − 1 | t ∈ T}. The treewidth of G is
the minimum width of a tree decomposition of G. For instance, the treewidth of G is one if
and only if the underlying undirected graph of G is a tree.

We then obtain the following:

I Theorem 10. Let L be an RPQ and Γ a set of RPCs. Then ⊆-CQA(L,Γ) can be solved
in linear time over graph databases of treewidth ≤ k, for each k ≥ 1.

4 CQA under Superset and Symmetric Difference Repairs

We prove in this section that our CQA problem is undecidable under the semantics of ⊇-
and ⊕-repairs. This holds even if RPQs are non-recursive and RPCs are word constraints:

I Theorem 11. Assume ? ∈ {⊇,⊕}. There exist a finite alphabet Σ, a non-recursive RPQ
L and a set Γ of word constraints over Σ, such that ?-CQA(L,Γ) is undecidable.

In order to prove this theorem we establish a connection with the implication problem
for RPCs [1, 26]. Recall that this is the problem of, given a finite set Γ of RPCs and an
RPC L1 v L2, checking whether Γ |= L1 v L2, i.e., if G |= Γ implies G |= L1 v L2, for
every graph database G. Grahne and Thomo proved this problem to be undecidable, even
for word constraints, using a reduction from the word rewriting problem [26]. We develop
nontrivial adaptations of such reduction to prove Theorem 11. The reason why we have
to develop such adaptations is that there exist differences in nature between CQA and the
implication problem for constraints. First, in the CQA problem we do not reason about
all graph databases that satisfy the constraints (as in the case of the implication problem),
but only about those that minimally differ from the original graph database. Note that in
the special case of the superset semantics, this first problem does not apply. Indeed, given
a graph database G, the intersection of the answers of a monotone query L over all the
⊇-repairs is equal to the intersection of the answers of L over all the databases containing G
and satisfying the constraints.

Second, we study the data complexity of the CQA problem, and, therefore, our goal is to
prove undecidability of CQA for a fixed set of RPCs and a fixed RPQ. This is different to the
case of the implication problem in which RPCs and RPQs define the input, and, therefore,
cannot be fixed.

Proof of Theorem 11. We only prove the case when ? is ⊇. We start by recalling the basic
notions of rewrite systems. Let ∆ be a finite alphabet. A semi-Thue rewrite system R over
∆ is a finite subset of ∆∗ ×∆∗. A rewrite system R induces a single-step reduction relation
→R over ∆∗ defined as:

→R = {(v, w) | v = xty, w = xuy, for some (t, u) ∈ R and x, y ∈ ∆∗}.



P. Barceló and G. Fontaine 391

We let →∗R be the reflexive transitive closure of →R. The problem of testing whether a pair
(u, v) belongs to →∗R is called the rewrite problem for R. It is well known that there is a
semi-Thue rewrite system R0 over ∆ such that the rewrite problem for R0 is undecidable
(see e.g., [8]).

We prove that ⊇-CQA(L,Γ) is undecidable using a reduction from the rewrite problem
for R0. Let ∆̂ = ∆ ∪ {â | a ∈ ∆} ∪ {$}, where the â’s and $ are fresh symbols. We define a
set Γ of RPCs and an RPQ L over ∆̂, such that there is an algorithm that takes as input
two words w1 and w2 over ∆ and constructs a graph database G over ∆̂ with a node n0 such
that w1 →∗R0

w2 iff (n0, n0) ∈ ⊇-Cons(G,L,Γ). The set Γ consists of all RPCs of the form:

u v v,

a$â v $,

for (u, v) ∈ R0 and a ∈ ∆. We define the RPQ L as the letter $.
Let w1 and w2 be two words in ∆∗. We assume that

w1 = w11w12 . . . w1k,

w2 = w21w22 . . . w2l,

where w1i, w2j ∈ ∆ (1 ≤ i ≤ k, 1 ≤ j ≤ l). We define the graph database G = (V,E) over
∆̂ as follows. The set V of nodes of G is {ni : 0 ≤ i ≤ k} ∪ {mi : 0 < i < l}. Let us define
m0 = n0 and ml = nk. Then the set E of edges of G is defined as E1 ∪ E2 ∪ E3, where E1,
E2 and E3 are as follows:

E1 = {(ni−1, a, ni) | w1i = a, 1 ≤ i ≤ k},
E2 = {(mi, â,m(i−1)) | w2i = a, 1 ≤ i ≤ l},
E3 = {(nk, $, nk)}.

Notice that G consists of a path with label w1 from n0 to nk and a path with label
ŵ2lŵ2(l−1) . . . ŵ21 from nk to n0. The node nk admits a loop with label $.

The intuition is as follows. We start with the path with label w1 in G0. The idea is that
if w1 →∗R0

w2, then applying the constraints of the form u v v in Γ, we will construct a path
with label w2. The query is $, and thus we have to check whether n0 admits a loop with
label $ in every repair.

Intuitively, the presence of a path with label w2 from n0 to nk is witnessed by a loop
with label $ at n0. This is due to the presence of the constraints of the form a$â v $ in Γ.
Indeed, suppose that s0w21s1w22 . . . sl is a path with label w2 from n0 to nk (where each
si is a node, and thus s0 = n0 and sl = nk). Then, by induction on 0 ≤ i ≤ l, using the
constraints a$â v $ and the fact that nk admits a loop with label $, we can prove that there
is an edge with label $ from sl−i to ml−i. In particular, there is an edge with label $ from s0
to m0. Since s0 = m0 = n0, this implies that n0 admits a loop with label $.

We have to prove that w1 →∗R0
w2 iff (n0, n0) ∈ ⊇-Cons(G,L,Γ). The proof of the

implication from left to right follows basically from the intuition that we gave in the previous
two paragraphs. For the implication from right to left, suppose that (n0, n0) ∈ ⊇-Cons(G,L,Γ).
We have to prove that w1 →∗R0

w2. The strategy is as follows.
(a) We construct a graph database H such that G ⊆ H and H |= Γ. Moreover, if there is a

path with label w2 from n0 to nk in H, then w1 →∗R0
w2.

(b) Since H0 |= Γ, there is a repair H ′ of G under Γ such that G ⊆ H ′ ⊆ H. As the
consistent answer of L = $ contains the pair (n0, n0), this implies that n0 admits a loop
with label $ in H ′. In particular, n0 admits a loop with label $ in H.

ICDT 2015



392 On the Data Complexity of Consistent Query Answering over Graph Databases

(c) We prove that if n0 admits a loop with label $ in H, then there is a path with label w2
from n0 to nk in H. Together with (a), this finishes the proof that w1 →∗ w2.
The construction of the graph database H uses ideas from the construction in the

undecidability proof of [26]. In fact, H is an extension of the graph database used in such
construction. Let k0 be the maximum of {k, l}. We define the set of nodes V ′ of H as:

{[u] | u ∈ ∆∗, |u| ≤ k0} ∪ {mi : 0 < i < l}.

We identify n0 with [ε]. For all 1 ≤ i ≤ k, we identify ni with [w11 . . . w1i]. In particular, nk
is [w1]. Note that this implies that the set V of nodes of G is a subset of V ′.

Let E′1 be the relation:

E′1 = {([u], a, [v]) | v →∗R0
ua}.

The graph H0 := (V ′, E′1) is precisely the graph constructed in the undecidability proof
of [26]. We now define H as the graph (V ′, E′1 ∪ E′2 ∪ E′3), where E′2 and E′3 are as follows:

E′2 = {(mi, â,m(i−1)) | w2i = a, 1 ≤ i ≤ l},
E′3 = {([u], $,m(l−i)) | there is a path with label w2(l−i+1) . . . w2l

from [u] to nk in H0}.

If i = l, by convention, we define w2(l−i+1) . . . w2l as the empty word ε. Notice that G ⊆ H.
We skip the details of the proof that (a), (b) and (c) hold. An important part of this

proof of is to show that if there is a path with label w2 from n0 to nk in H, then w1 →∗R0
w2.

This can be obtained as an immediate consequence of Lemma 2 in the proof of Theorem 2
in [26]. Notice that although it might be impossible to construct the graph database H (since
E′1 is defined in terms of the rewrite problem for R0), our proof only requires the existence
of such graph database. J

4.1 Decidable restrictions
Since the CQA problem in this context is undecidable, it is crucial to look for decidable
(and, ideally, tractable) restrictions of it. We provide three such restrictions in this section:
The first one is based on the class of LAV RPCs, while the second one is based on the class
of GAV RPCs. The third one is obtained by modifying RPC interpretation to be from the
origin. It is worth noticing that the restriction to classes of graph databases of bounded
treewidth, which leads to tractability under the semantics of subset repairs, is not useful in
this context: The undecidability result in Theorem 11 holds even over graph databases of
treewidth two.

Restriction to the class of LAV RPCs. As mentioned before, in the relational scenario
the CQA problem for unions of CQs under LAV tgds is tractable, no matter which repair
semantics is used. We already stated a similar result for CQA over graph databases under
LAV RPCs and the subset repair semantics (Theorem 8). We can further extend those
techniques to obtain tractability for our CQA problem under the semantics of ⊕-repairs.

I Theorem 12. For each RPQ L and finite set Γ of LAV RPCs over the same alphabet Σ,
it is the case that ⊕-CQA(L,Γ) is in NLogspace.

The case of the ⊇-repair semantics is different: We do not know whether LAV RPCs yield
decidability in this context, but we prove next that at least they do not yield tractability in
data complexity. This establishes a first difference in complexity between CQA under LAV
tgds in the relational context and under LAV RPCs over graph databases.



P. Barceló and G. Fontaine 393

I Proposition 13. There exist a finite alphabet Σ, a non-recursive RPQ L, and a finite set
Γ of LAV RPCs (without Kleene-star) over Σ, such that ⊇-CQA(L,Γ) is coNP-hard.

Notice that, unlike all previous lower bounds, the one in Proposition 13 is not stated in
terms of the class of word constraints. In fact, the techniques developed for studying CQA
under tgds in the relational case [18] can be adapted to show that under a set Γ of LAV
word constraints the problem ⊇-CQA(L,Γ) is tractable.

Restriction to the class of GAV RPCs. In the case of the symmetric difference semantics,
it is easy to adapt the proof of Proposition 9 in order to show that when restricting to GAV
RPCs, our CQA problem is coNP-hard. Note that in the relational case, a similar result
holds.

I Proposition 14.
1. For each RPQ L and finite set Γ of GAV RPCs over the same alphabet Σ, it is the case

that ⊕-CQA(L,Γ) is in coNP.
2. There exist a finite alphabet Σ, a non-recursive RPQ L over Σ and a single GAV RPC of

the form ab v c, where a, b, c ∈ Σ, such that ⊕-CQA(L,Γ) is coNP-complete.

In the case of the superset semantics, the restriction to GAV RPCs leads to tractability.
Given a graph database G and a set of GAV RPCs Γ, using a classical chase argument, we
can easily compute in Logspace the unique superset repair of G with respect to Γ. This is
identical to what happens in the setting of relational databases.

I Proposition 15. For each RPQ L and finite set Γ of GAV RPCs over the same alphabet
Σ, it is the case that ⊇-CQA(L,Γ) is in NLogspace.

Modifying the interpretation of RPCs. In the original proposal of Abiteboul and Vianu,
RPQs, and therefore RPCs, are only evaluated from a particular node called the origin.
This is motivated by their application over semi-structured data. Formally, let o be a fixed
node id that we identify as the origin. A graph database G = (V,E), satisfies L1 v L2
from the origin, denoted G |=o L1 v L2, if and only if the origin o belongs to V and
{v ∈ V | (o, v) ∈ L1(G)} ⊆ {v ∈ V | (o, v) ∈ L2(G)}. If Γ is a set of RPCs, we write G |=o Γ
if G |=o L1 v L2, for each RPC L1 v L2 in Γ.

We can now modify the definition of repairs and consistent answers with respect to the
restricted |=o interpretation of RPCs. Assume ? ∈ {⊆,⊇,⊕}. An {o, ?}-repair of a graph
database G under a set of RPCs Γ is defined exactly as an ?-repair of G under Γ, except
that now the satisfaction of the RPCs in Γ is defined with respect to the relation |=o. (For
safety reasons, we assume that G contains the origin o in this case). For instance, G′ is a
{o,⊇}-repair of G under Γ, if (1) G ⊆ G′, (2) G′ |=o Γ, and (3) there is no graph database
G′′ such that G ⊆ G′′ ( G′ and G′′ |=o Γ.

Furthermore, if L is an RPQ and Γ is a finite set of RPCs, we define {o, ?}-CQA(L,Γ) as
the problem of, given a graph database G = (V,E) and a pair (u, v) of nodes in V , checking
whether (u, v) is an {o, ?}-consistent answer of L over G under Γ, i.e., if (u, v) ∈ L(G′), for
each {o, ?}-repair G′ of G under Γ.

By interpreting RPCs under the relation |=o, we obtain decidability for our CQA problem
under the semantics of ⊇-repairs. We do not know whether this can be extended to the
semantics of ⊕-repairs. Notice the difference with the restriction to LAV RPCs we studied
before: For the latter we could only obtain decidability under the ⊕-repairs semantics.

ICDT 2015



394 On the Data Complexity of Consistent Query Answering over Graph Databases

I Theorem 16. For each RPQ L and finite set Γ of RPCs over the same alphabet Σ, it is
the case that {o,⊇}-CQA(L,Γ) is in coNP.

The difference here is that the implication problem for RPCs becomes decidable if RPCs
are interpreted under the relation |=o [1]. We adapt the techniques used to prove this fact in
order to obtain Theorem 16.

We do not know whether the bound in Theorem 16 is tight. Interestingly, we can show
that a slight extension on the query language leads to intractability. We reduce from the
problem of 3-colorability. Assume we are given an undirected graph H. From H we construct
a graph database G = (V,E), such that (1) V corresponds to the set of nodes of H plus the
origin o, and (2) E contains edges (o, a, v), for each node v in H, and (u, e, v) and (v, e, u),
for each edge {u, v} in H. Assume that Γ consists of the single constraint a v c1 ∪ c2 ∪ c3.
Intuitively, this tells us that a ⊇-repair of G contains, for each node v 6= o, one, and only
one, edge of the form (o, ci, v), for 1 ≤ i ≤ 3. This edge represents the color assigned to node
v by an assignment of three colors to the nodes of H.

It is not hard to prove that H is 3-colorable if and only if there exists a ⊇-repair G′ of G
such that no two nodes linked by an edge labeled e in G′ are assigned the same color. This
is equivalent to checking that it is not the case that there are paths labeled cie and ci in G′,
for 1 ≤ i ≤ 3, that start in the origin o and reach the same node v. While this cannot be
expressed as an RPQ, it can be easily expressed as an RPQ with inverses [14]. The query is
Q :=

⋃
1≤i≤3 ciec

−
i , where c

−
i represents a backward traversal of an edge labeled ci. We then

have that H is 3-colorable if and only if (o, o) is not an {o,⊇}-consistent answer of Q over G
under Γ. This query can also be expressed as a conjunction of two RPQs [13].
I Remark. The restriction presented in this section does not help reducing the complexity
under the semantics of ⊆-repairs. In fact, it can be proved that all lower bounds obtained in
Section 3 continue to hold for the semantics of {o,⊆}-repairs. This is done in the appendix.

5 Comparison with CQA in the relational context

We compare our results with previous results on CQA obtained in the relational context.
We assume familiarity with relational schemas and CQs. Tuple-generating dependencies,
or tgds, define one of the most important classes of relational database constraints. They
subsume several other classes of interest, such as inclusion dependencies. In addition,
they have important applications in data integration, data exchange and ontological query
answering [33, 23, 10]. Formally, a tgd over a relational schema σ is a formula of the form
∀x̄(φ(x̄) → ψ(x̄)), where both φ(x̄) and ψ(x̄) are CQs over σ and each variable in x̄ is
mentioned in φ(x̄). A relational database D over σ satisfies this tgd if D |= φ(ā) implies
D |= ψ(ā), for each tuple ā of elements in D of the same length than x̄.

As mentioned in the introduction, each word constraint can be naturally seen as a tgd
over the standard relational representation of graph databases. However, lower bounds for
CQA under tgds in the relational setting, such as the ones obtained by ten Cate et al. [18],
cannot be used to obtain lower bounds for CQA under word constraints (or even RPCs) in
the graph database context. This is because word constraints correspond to a restricted class
of tgds defined by chain CQs (which we call chain tgds). However, none of the lower bounds
developed for the data complexity of CQA under tgds applies to this class.

We formalise the class of chain tgds as follows. Let σ be a relational schema that contains
only binary relation symbols. A chain CQ over σ is a CQ of the form

φ(x, y) := ∃u1u2 . . . um−1
(
R1(x, u1) ∧R2(u1, u2) ∧ · · · ∧Rm−1(um−1, y)

)
,



P. Barceló and G. Fontaine 395

where each Ri is a relation symbol in σ [21]. That is, the underlying directed graph of a chain
CQ is a path. A chain tgd is one of the form ∀x∀y(φ(x, y)→ ψ(x, y)), where both φ(x, y)
and ψ(x, y) are chain CQs. It is easy to see that each word constraint can be represented as
a chain tgd over the standard relational representation of graph databases (in which, for each
a ∈ Σ, there is a binary relation symbol Ea that contains all pairs of nodes that are linked
by an a-labeled edge in the graph database). Conversely, each chain tgd is the representation
of a word constraint.

This allows us to use our proof techniques to obtain lower bounds for CQA under the
restricted class of chain tgds in the relational context:

I Proposition 17.
1. Consider a semantics based on subset repairs of relational databases. There is a relational

schema σ that contains only binary relation symbols, a finite set T of chain tgds and a
union Q of CQs over σ, such that the problem of evaluating certain answers for Q under
T is ΠP

2 -hard. The same holds for the semantics based on the intersection of all subset
repairs.

2. Consider a semantics based on superset repairs of relational databases. There is a
relational schema σ that contains only binary relation symbols, a finite set T of chain
tgds and a union Q of CQs over σ, such that evaluating certain answers for Q under T
is undecidable. The same holds for the semantics of symmetric difference repairs.

6 Conclusions and Future Work

In this work we initiated the study of CQA over graph databases. The data complexity of
the problem is in general undecidable or highly intractable, which motivated our search for
decidable, and even tractable restrictions. In the case of subset repair semantics we obtain
tractability by either restricting to the class of LAV RPCs or to the class of graph databases
of bounded treewidth. The class of LAV RPCs also yields tractability for our problem under
the semantics of ⊕-repairs. On the other hand, for the semantics of superset repairs we
obtain decidability if RPCs are interpreted from the origin or if we restrict to the class of
GAV RPCs.

Several questions regarding CQA under the semantics of ⊇- and ⊕-repairs remain open.
For instance, we do not know if CQA under ⊇-repairs is decidable when RPCs are in LAV
form. Neither do we know whether CQA under ⊕-repairs is decidable when RPCs are
interpreted from the origin. We plan to study this in the future.

It would also be interesting to look for different kinds restrictions that yield decidability for
our CQA problem. For instance, in the relational scenario it is possible to obtain tractability
in data complexity for CQA under ⊇- and ⊕-repair semantics if the set Γ of tgds is weakly
acyclic [18]. The reason is that in this case there is a polynomial that bounds the size of each
repair of a database D under Γ. We would like to develop a meaningful adaptation of this
notion to the scenario of RPCs in search for similar positive results. This is more difficult
than in the relational case, however, since the notion of acyclicity will have to consider how
regular expressions interact with each other. Another way in which positive results for our
CQA problem under ⊇- and ⊕-repair semantics could be obtained, is by restricting to classes
of RPCs for which the implication problem is decidable. This includes, for instance, classes
of word constraints for which the associated rewrite problem is decidable [26].

While our work concentrates on queries defined as RPQs, all upper bounds presented in
the paper continue to hold in the extended scenario in which queries are defined as conjunctive
RPQs (CRPQs) [13]. In turn, CRPQs might lead to an expressive class of conjunctive RPCs,

ICDT 2015



396 On the Data Complexity of Consistent Query Answering over Graph Databases

which are expressions of the form φ(x̄) v ψ(x̄), for CRPQs φ and ψ. It is interesting to study
how the positive results presented in this paper can be extended to be applied over this class
of constraints.

Acknowledgements. We are grateful to Aidan Hogan and Leonid Libkin for their helpful
comments in earlier versions of the paper. Carsten Lutz and Meghyn Bienvenu also provided
us with important insights on the nature of DL repairs. Barceló and Fontaine are funded by
the Millennium Nucleus Center for Semantic Web Research under Grant NC120004. Fontaine
is also funded by Fondecyt postdoctoral grant 3130491.

References

1 S. Abiteboul, V. Vianu. Regular path queries with constraints. JCSS, 58(3), pages 428–452,
1999.

2 M. Arenas, L. E. Bertossi, Jan Chomicki. Consistent query answers in inconsistent data-
bases. In PODS 1999, pages 68–79.

3 M. Arenas, W. Fan, L. Libkin. On the complexity of verifying consistency of XML specific-
ations. SIAM J. Comput. 38(3), pages 841–880, 2008.

4 F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.). The de-
scription logic handbook: Theory, implementation, and applications. Cambridge University
Press, 2003.

5 P. Barceló. Querying graph databases. In PODS 2013, pages 175–188.
6 M. Bienvenu. On the complexity of consistent query answering in the presence of simple

ontologies. In AAAI 2012.
7 M. Bienvenu, R. Rosati. Tractable approximations of consistent query answering for robust

ontology-based data access. In IJCAI 2013.
8 R. Book, F. Otto String. Rewriting Systems. Springer Verlag, 1993.
9 P. Buneman, W. Fan, S. Weinstein. Path constraints in semi-structured databases. J. Com-

put. Syst. Sci. 61(2), pages 146–193, 2000.
10 A. Calì, G. Gottlob, M. Kifer. Taming the infinite chase: Query answering under expressive

relational constraints. J. Artif. Intell. Res. (JAIR) 48, pages 115–174, 2013.
11 Andrea Calì, D. Lembo, R. Rosati. On the decidability and complexity of query answering

over inconsistent and incomplete databases. In PODS 2003, pages 260–271.
12 D. Calvanese, G. de Giacomo, M. Lenzerini. Structured objects: Modeling and reasoning.

In DOOD 1995, pages 229–246.
13 D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Containment of conjunctive

regular path queries with inverse. In KR 2000, pages 176–185.
14 D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Rewriting of regular expressions

and regular path queries. JCSS, 64(3), pages 443–465, 2002.
15 D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Reasoning on regular path queries.

SIGMOD Record 32(4), pages 83–92, 2003.
16 D. Calvanese, G. de Giacomo, M. Lenzerini. Conjunctive query containment and answering

under description logic constraints. ACM Trans. Comput. Log. 9(3), 2008.
17 D. Calvanese, M. Ortiz, M. Simkus. Containment of regular path queries under description

logic constraints. In IJCAI 2011, pages 805–812.
18 B. ten Cate, G. Fontaine, Ph. G. Kolaitis. On the data complexity of consistent query

answering. In ICDT 2012, pages 22–33.
19 J. Chomicki, J. Marcinkowski. Minimal-change integrity maintenance using tuple deletions.

Inf. Comput. 197(1–2), pages 90–121, 2005.



P. Barceló and G. Fontaine 397

20 B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite hraphs.
Inf. Comput. 85(1), pages 12–75, 1990.

21 G. Dong. On datalog linearization of chain queries. Theoretical Studies in Computer Science
1992, pages 181–206.

22 W. Fan, J. Siméon: Integrity constraints for XML. J. Comput. Syst. Sci., 66(1), pages
254–291, 2003.

23 R. Fagin, Ph. G. Kolaitis, R. J. Miller, L. Popa. Data exchange: semantics and query
answering. Theor. Comput. Sci. 336(1), pages 89–124, 2005.

24 G. Fontaine. Why is it hard to obtain a dichotomy for consistent query answering? In LICS
2013, pages 550–559.

25 A. Fuxman, R. J. Miller. First-order query rewriting for inconsistent databases. J. Comput.
Syst. Sci. 73(4), pages 610–635, 2007.

26 G. Grahne, A. Thomo. Query containment and rewriting using views for regular path
queries under constraints. In PODS 2003, pages 111–122.

27 A. Hogan, A. Harth, A. Passant, S. Decker, A. Polleres. Weaving the pedantic web. In
LDOW 2010.

28 Ph. G. Kolaitis, Enela Pema. A dichotomy in the complexity of consistent query answering
for queries with two atoms. Inf. Process. Lett. 112(3), pages 77–85, 2012.

29 A. Lopatenko, L. E. Bertossi. Complexity of consistent query answering in databases under
cardinality-based and incremental repair semantics. In ICDT 2007, pages 179–193.

30 G. Lausen, M. Meier, M. Schmidt. SPARQLing constraints for RDF. In EDBT 2008, pages
499–509.

31 D. Lembo, M. Ruzzi. Consistent query answering over description logic ontologies. In DL
2007.

32 D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D. Fabio Savo. Inconsistency-tolerant se-
mantics for description logics. In RR 2010, pages 103–117.

33 M. Lenzerini. Data integration: A theoretical perspective. In PODS 2002, pages 233–246.
34 Th. Lukasiewicz, M. V. Martinez, G. I. Simari. Complexity of inconsistency-tolerant query

answering in Datalog+/-. In OTM Conferences 2013, pages 488–500.
35 R. Rosati. On the complexity of dealing with inconsistency in description logic ontologies.

In IJCAI 2011, pages 1057–1062.
36 K.-D. Schewe, B. Thalheim, J. W. Schmidt, I. Wetzel. Integrity enforcement in object-

oriented databases. In FMLDO 1992, pages 174–195.
37 J. Wijsen. Condensed representation of database repairs for consistent query answering. In

ICDT 2003, pages 375–390.
38 J. Wijsen. Certain conjunctive query answering in first-order logic. ACM Trans. Database

Syst. 37(2), 9, 2012.
39 P. T. Wood. Query languages for graph databases. SIGMOD Record 41(1), pages 50–60,

2012.
40 Y. Yuan, G. Wang, L. Chen, H. Wang. Efficient subgraph similarity search on large prob-

abilistic graph databases. In PVLDB 5(9), pages 800–811, 2012.

ICDT 2015


	p000-00-frontmatter
	p001-01-cormode
	Introduction
	Outline

	Privacy Preliminaries
	First-person privacy: Users (over)sharing their own data
	Second-person privacy: information spreads fast
	Third-person privacy: private data release
	Privacy, Utility and Trust
	Privacy versus Security

	Privacy Principles
	Protecting Personally Identifiable Information
	Quasi-identifiers
	The data minimization principle
	Data Correlations
	Aggregations and Differential Privacy: Safety in Numbers
	Privacy Checklist

	Privacy Pinch-points
	Location and Mobility Data
	Joining private data sets
	Synthetic data sets
	Graph Structured Data
	Inference and Privacy
	Data-as-a-Service

	Conclusion

	p013-02-schweikardt
	p015-03-pagh
	Introduction
	Techniques for high-dimensional similarity joins
	Approximation
	Candidate set generation
	Locality-sensitive hashing.
	Aggregation

	Addressing the issue of false negatives
	Addressing the issue of data locality
	Conclusion and open problems

	p025-04-burdick
	Introduction
	A Declarative Framework for Linking Entities: Basics
	A Naive Semantics Based on Maximal Solutions
	Maximum-Value Solutions
	Connection to Probabilistic Approaches
	Comparison to Probabilistic Matching
	Comparison to Markov Logic Networks for Entity Resolution
	Markov Logic Networks: Preliminaries
	Translation to L0(, w)

	Deterministic vs. Probabilistic: Discussion

	More Expressive Languages
	Results for L1 and L2

	Related Work
	Concluding Remarks

	p044-05-francis
	Introduction
	Preliminaries
	Necessary Conditions and First Results
	Asymptotic Determinacy
	Behavior graph
	Negative direction: building counter-examples
	Positive direction: computing a rewriting

	The case of small queries
	Conclusions

	p060-06-schuster
	Introduction
	Preliminaries
	Games with regular target languages
	Games with XML Schema target languages
	Validation of parameters and Insertion
	Validation of parameters
	Insertion rules

	Conclusion

	p076-07-koutris
	Introduction
	Preliminaries
	Main Techniques
	Query Plans for Inequalities
	Color-coding Technique and Generalization of Theorem 1
	CQs and Inequalities with Polynomial Combined Complexity
	CQs with Polynomial Combined Complexity for All Inequalities
	Conclusion

	p094-08-libkin
	Introduction
	Preliminaries
	Evaluation procedures for FO queries
	Evaluation procedures with certainty guarantees
	Certain answers with nulls
	CQs and UCQs with inequalities
	Open world semantics

	Evaluation procedure for relational algebra
	Conclusions

	p110-09-chen
	Introduction
	Preliminaries
	Structures, homomorphisms and cores
	Complexity theory background

	Conjunctive Queries and Computational Problems
	Case Complexity
	Statement of the main results
	Positive complexity results
	Hardness results
	Simulating unary relations
	Reducing from hypergraphs to structures
	Strict star size
	The main hardness results
	Putting things together

	Conclusion

	p127-10-cohen
	Introduction
	Related Work
	Definitions
	Positive Datasets
	Datasets with Positive and Negative Examples
	Learning Minimal Tree Patterns
	Conclusion

	p144-11-staworko
	Introduction
	Basic notions
	Characterizing queries with examples
	Non-characterizability of unions of twig queries

	Characterizability of Twig queries
	Anchored twig queries
	Generalization operations
	Injective embeddings
	Generalizations of anchored twig queries
	Characterizability of AnchTwig under injective semantics

	Characterizability of Anchored Twig queries
	Reducing anchored twig queries
	Duplication operation

	Conclusions and future work

	p161-12-ten-cate
	Introduction
	Preliminaries
	The Product Homomorphism Problem
	Proof of Theorem 1(1)
	Proof of Theorem 1(2)
	Proof of Theorem 1(3)

	First application: instance-level query definability
	Second application: the fitting problem for schema mappings
	Conclusion

	p177-13-reutter
	Introduction
	Preliminaries
	Regular Queries
	Containment of Regular Queries
	Containment of Nested UC2RPQs
	Reduction to Containment of 2RPQs in nested UC2RPQs
	Containment of 2RPQs in nested UC2RPQs: Upper Bound

	Containment of Regular Queries: upper and lower bounds

	Conclusions

	p195-14-staworko
	Introduction
	Preliminaries
	Graphs
	Bags of symbols
	Regular bag expressions

	Shape Expression Schemas
	Single-type semantics
	Multi-type semantics

	Validation
	Semi-lattice of m-typings
	Complexity of Validation
	The tractable subclass RBE0

	Determinism
	Deterministic Shape Expressions
	Single-occurrence RBE (SORBE)
	Optimal validation algorithm

	Expressive power
	Conclusions

	p212-15-kostylev
	Introduction
	Preliminaries
	Blank-free c-Queries
	OPT-free and Well-designed CONSTRUCT queries
	c-Queries with Blank Nodes in Templates
	Adding Recursion to SPARQL
	Conclusions and Future Work

	p230-16-hofman
	Introduction
	Preliminaries
	Subsequences and Subwords
	Separability
	Inclusion and Exclusion Equivalence
	Witnesses for Non-Separability

	A Tractable Case
	Core-Approximations
	Using Core-Approximations to Separate
	Sequences of Words

	Separability by k-Subsequences
	Restricted Cases

	Separability by k-Subwords
	Restricted Cases

	Separability by k-Prefixes and k-Suffixes
	Conclusions

	p247-17-koutsos
	Introduction
	Background
	Linear-time service views
	Branching-Time Service Views
	The impact of data dependencies
	Conclusions

	p265-18-hu
	Introduction
	Our Results
	Previous Work: Lower Bounds in EM with o(1) Update Cost

	An I/O Lower Bound of Dynamic Element Distinctness
	Cell-Probe Model
	Hard Input
	Set Disjointness
	Cell-Probe Lower Bound for EDGI
	From Cell-Probe to EM

	Reduction from Set Disjointness to EDGI
	Proof of Theorem 3
	Proof of Lemma 8

	p277-19-biswas
	Introduction
	Applications
	Rank-Space Reduction of Points
	The Framework
	Towards O(logN +K) Time Solution
	Linear Space and O(logN +K) Time Data Structure in RAM Model
	SCRR Query in External Memory
	Linear Space Data Structure
	I/O Optimal Data Structure

	Conclusions

	p291-20-ketsman
	Introduction
	Related Work
	Preliminaries
	Oblivious broadcasting
	Oblivious broadcasting functions
	Local optimality

	Broadcasting functions based on dependency sets
	Broadcast dependency sets
	Local optimality

	Algorithms for constructing a BDS
	Discussion

	p308-21-ameloot
	Introduction
	Preliminaries
	Database Basics
	Datalog with Negation
	Stratified Semantics
	Well-founded Semantics

	Distribution over Components
	Undecidability
	Weaker Forms of Monotonicity

	Connected Datalog
	Connected Syntax
	Results

	Connected Well-founded Datalog
	Semi-connected Well-founded Datalog
	Discussion

	p324-22-neven
	Introduction
	The key-value paradigm
	Generic mappers
	Distributed streaming with register automata (DSA)
	Distributed streaming with register transducers (DST)
	Distributed streaming with register transducers and joins
	Semijoin algebra and relational algebra
	Conclusion

	p342-23-salimi
	Introduction
	Preliminaries
	Actual Causes From Database Repairs
	Database Repairs From Actual Causes
	Causes for unions of conjunctive queries
	Contingency sets for unions of conjunctive queries
	Causality, repairs and consistent answers

	Diagnosis: Query Answer Causality and Repairs
	Complexity Results
	FPT of responsibility
	The causality dichotomy's reflection on repairs

	Discussion and Conclusions

	p363-24-lutz
	Introduction
	Preliminaries
	Relating CQA and CSP
	FO- and Datalog-Rewritability
	A Dichotomy Result
	Relating CQA and MMSNP
	Relating CQA and GMSNP
	Conclusion

	p380-25-barcelo
	Introduction
	Preliminaries
	CQA under Subset Repairs
	Tractable restrictions

	CQA under Superset and Symmetric Difference Repairs
	Decidable restrictions

	Comparison with CQA in the relational context
	Conclusions and Future Work


