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—— Abstract

The Liquid Metal project at IBM Research aimed to design and implement a new programming
language called Lime to address some of the challenges posed by heterogeneous systems. Lime is
a Java-compatible programming language with features designed to facilitate high level synthesis
to hardware (FPGAs). This article reviews the language design from the outset, and highlights
some of the earliest design decisions. We also describe how these decisions were revised recently

to accommodate important requirements that arise in networking and cryptography.
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1 Introduction

Over the coming decade, the mix of computational elements that comprise a “computer”
will grow increasingly heterogeneous. Already many systems exploit both general CPUs and
graphics processors (GPUs) for general purpose computing. The ubiquity of GPUs, and their
efficiency for certain computational problems, make them attractive hardware accelerators.
Other forms of hardware accelerators include field programmable gate arrays (FPGAs) and
fixed-function accelerators for cryptography, XML parsing, regular expression matching, and
physics engines.

Although programming technologies exist for CPUs, GPUs, FPGAs, and various acceler-
ators in isolation, current programming methods suffer from at least three major deficiencies.
First, disparate architectures must be programmed with disparate languages or dialects, thus
challenging a single programmer or programming team to work equally well on all aspects of
a project. Second, current solutions provide relatively little attention to co-execution, the
problem of orchestrating distinct computations on different architectures that must work
seamlessly together. Third, current systems force an early static decision as to what will
execute where, a decision that is costly to revisit as a project evolves. This is exacerbated by
the fact that some of the accelerators, especially FPGAs, are notoriously difficult to program
well and place a heavy engineering burden on programmers.

2 One Language, or Three

We designed Lime as a programming language for systems which connect a host general
purpose processor (CPU) to a specialized device such as a GPU or FPGA. In general, the
system may encompass more than one CPU, GPU or FPGA.
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Figure 1 The Lime IDE is an Eclipse plugin available at http://lime.mybluemix.net.

Consider a program as a collection of components, some of which run on the CPU, and
some which run on the device. Clearly we need to describe the host program, the device
program, and how to coordinate these two components and their communication. Lime
allows a developer to program all three aspects using a single language and semantic rules
which are neither host or device specific. This is convenient for the developer, provided the
language implementation can deliver reasonable performance compared to using a plurality
of languages.

Central to the Lime programming language lies the notion of dataflow graphs, where
nodes encapsulate computation and edges describe data communication between nodes. Lime
provides features for constructing planar and irreducible dataflow graphs which we call task
graphs.

A task graph may execute entirely on the host or entirely on the device. Alternatively,
the graph may be partitioned into subgraphs, some of which run on the host and some on
the device. Thus the nodes in the graph can run on the parts of the system they are best
suited for. Moreover, it may be desirable to migrate nodes between processors, in response
to run time characteristics.

Lime empowers a skilled programmer to develop an application, whose parts are intended

to run on different processors in the system, using a single language and semantic domain.

Instead of writing code in multiple languages and using different tools to compile and assemble
the source for each processor in the system, Lime makes it possible to program using a
single language, a single compilation toolchain, and a single virtual runtime to execute the
application on the heterogeneous system (Figure 1).

We did not always think of Lime as consisting of three languages — the host and device
languages, and the task graph language — but this has proven increasingly helpful as we think
about applying the salient features of Lime to other languages.

3 Salient Features

We highlight some of the Lime language features using the example code in Figure 2.

The Figure shows a valid Lime program that is also a valid Java program. The class
HelloWorld defines a method getChar to read a character from standard input, and a
method toLowerCase to convert a character to its lowercase counterpart. The main method
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1 public class HelloWorld {

2 public static void main(String[] args) {
3 while (true) {

4 System.out.print(

5 toLowerCase(

6 getChar()));

7 }

8 3

9 static char getChar() {

10 try {

11 return (char) System.in.read();
12 } catch (Exception e) {

13 return ’\0’;

14 }

15 }

16 static char toLowerCase(char c) {

17 return (’A’ <= c && c <= ’Z’) 7

18 (char) (c + ’a’ - ’A’) : c;
19 }

20 }

Figure 2 Lime example.

public static void main(String[] args) {
var tg = task getChar
=> task toLowerCase
=> task System.out.print(char);
var te = tg.create();
te.start();
te.finish();

00 ~NO O WN -

}

Figure 3 Task graph example.

composes getChar, toLowerCase and System.out.print to display the lowercased input
characters to standard output.

The function composition on lines 4—6 describes a pipeline. Pipelining provides opportu-
nities for parallelizing, where different stages of the pipeline may overlap in time to increase
throughput. When composing functions in imperative or functional languages, the first stage
of the pipeline is most deeply nested and appears last in an expression. Similarly, the last
stage of the pipeline appears first. In contrast, task graph construction in Lime allows a
more natural description of pipelines: left to right, and top to bottom.

The snippet in Figure 3 shows a Lime task graph that is equivalent to the function
composition in Figure 2. Here we use the task and => (connect) operators, and also
demonstrate the use of local type inference using the var keyword. The task operator is
applied to the same methods used in the previous example to create the tasks that make
up the task graph!. This is akin to lifting in functional reactive programming [8]. In
contrast to the main method in Figure 2, the pipeline is now more readily apparent. The
design of the task graph language was initially influenced by the Streamlt programming
language [13], although unlike Streamlt, task graph construction in Lime may describe richer
graph topologies, including non-planar graphs.

A task consumes data from an input channel (if any), applies the method, and writes its
results to an output channel (if any). The connect operator abstracts communication between

L A modifier is needed on the declaration of toLowerCase in order to apply the task operator. This is
described later.
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nodes in the task graph. If the entire graph runs on the host (device), then all communication
is through the host (device) memory. However if say getChar and System.out.print run on
the host, but toLowerCase runs on the device, the connect operator implies communication
between the host and device memories.

The programmer communicates their intent for host and device partitioning using relo-
cation brackets around individual tasks as in ([ task toLowerCase ]), or task graphs in
general [2]. We introduced this feature into the language because partitioning task graphs
automatically between host and device presents too many practical and technical challenges.
To understand why, note that Lime separates the graph construction (lines 2-4) from instanti-
ation and execution (lines 5-7). This separation allows us to statically elaborate task graphs
during compilation which is necessary for synthesis of hardware circuits. The hardware
synthesis tools are time consuming to run, that even for this simple example it may take
several minutes before a bitfile is produced for an FPGA. The bitfile is used to program the
FPGA and realize the desired circuit. It is common to spend tens of minutes or hours in
hardware synthesis for substantial programs.

In order to statically elaborate task graphs for hardware synthesis, while also using the
expressive power of an imperative and object-oriented language for constructing task graphs
(see [2] for examples), the Lime compiler statically checks the task graph construction for
repeatable shape which guarantees it can extract the static structure needed for hardware
synthesis. By repeatable, we mean compile-time constant but not limited to primitives [3].

The relocation brackets allow a program to constrain repeatable checks to only relevant
parts of the program. Further, they facilitate gentle migration between host and device code
since the programmer can move the brackets around in their code during development and
testing. The feature is also useful for writing libraries because relocation brackets may be
nested and composed.

The methods shown in the example may be used either in an imperative context or in a
task graph context. In the former, the method is invoked explicitly by the programmer. In
the latter, the task graph runtime invokes the methods repeatedly until one of a number
of termination conditions is met. The two ways of using methods is convenient because
the programmer can reuse existing code where necessary, and perform unit testing without
invoking the task graph machinery. The dual-uses also informs the compiler of important
characteristics that may be used in optimizing the implementation of a task graph. Specifically,
the compiler will know the size of the input arguments and return values, and can infer an
I/0 rate. As an example, toLowerCase consumes one character and produces one character
per invocation. Hence the compiler can use this information much in the same way that rate
information is used to optimize synchronous dataflow programs [9].

More recently, we generalized the task programming model in Lime to permit the
expression of tasks that directly manipulate input and output channels. In doing so, we
increased the power of the language so that it is more natural to write tasks that consume or
produce a variable number of values per invocation, such as those that arise in compression
and networking applications. One may rewrite the toLowerCase method using an explicit
In channel, an Out channel, or both as shown in Figure 4.

Note the use of the local keyword. This method modifier prohibits access to mutable
global state, and hence limits side-effects of a method to those reachable through its input
arguments. The local modifier is required on methods that have both input arguments and
return values if they are to be lifted to task nodes. This is motivated by the desire to limit
and confine side-effects for internal nodes in a task graph because they are usually migrated
from the host to the device.

35

SNAPL 2015



36

Growing a Software Language for Hardware Design

// local modifier prohibits access to mutable global data
static local char toLowerCase(char c) {
return (A’ <= c && c <= ’Z’) 7 (char) (c + ’a’ - ’A’) : c;

}

// using an In channel to read input characters
static local char toLowerCase(In<char> in) {
var ¢ = in.get();
return toLowerCase(c);

}

// using an Out channel to return results
static local void toLowerCase(char c, Out<char> out) {
out.put (toLowerCase(c));

}

// using both In and Out channels to read input characters and return results
static local void toLowerCase(In<char> in, Out<char> out) {

var ¢ = in.get();

out.put (toLowerCase(c));

}

Figure 4 Task example using explicit channels.

In combination with value typed arguments, which are immutable types, the compiler
can determine if a static method is pure in the functional programming sense. Primitive
types in Lime are examples of values types. The language also provides a value keyword to
modify class definitions and impart value semantics on a type declaration. The local modifier
may apply to class constructors. This in turn permits the application of the task operator to
instance methods of objects (rather than static methods), thereby creating tasks that may
retain state across invocations.

All four versions of toLowerCase in Figure 4 are semantically identical when the task
operator is applied. They vary only in the amount of rate of information they communicate to
the compiler. In general, tasks that use explicit channel operations offer weaker compile-time
guarantees about deadlock freedom because this style of programming inherits well-known
problems attributed to Kahn Process Networks (KPN).

We further generalized the Lime task model to include non-determinism. This was
motivated by functional requirements in networking applications where one may need to
implement a timely merge operation. In our pursuit of a relaxed task model, we considered
various relaxations of KPN to include non-determinism (e.g., [5]) as well as more general
process models such as CSP [7] and Actors [1]. Most of these are broader than our needs
for FPGA programming purposes. A summary of relevant literature by Lee and Parks [10]
lists five ways of relaxing KPN to include non-determinism. One of these is to add the
ability to test input channels for readiness. The analysis shows that this single relaxation is
expressively equivalent to several others. Since any one relaxation is sufficient, we preferred
the input testing relaxation because we found it to be the simplest to incorporate into our
programming language.

The relaxation of the task model from its initial inception implied we could elide some
of the specialized tasks in Lime in favor of library implementations. There is a trade-off
however in that library functions in general may not have intrinsic guarantees and place a
greater burden on the compiler to analyze their behavior for the sake of optimization.

There are many more features of the language that are not described here. We refer the
interested reader to the Lime language manual [12]. The features described here highlight
some of the earliest and latest design choices of the language.
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4 Language Interoperability

Lime is an extension of the Java programming language and aimed for interoperability with
Java from the outset, so that we may reuse existing ecosystems and libraries. Inter-language
operability also made it possible to apply a gentle migration strategy to port existing Java
code to Lime. In our own work, we quite often applied this strategy by starting with working
Java source programs, and introducing Lime features to realize the promise of hardware
synthesis.

Java was a logical choice because it is supported by mature development environments and
programming tools, it executes in a managed runtime, is often optimized with a just-in-time
(JIT) compiler. We thought we would get to the point of “JITing the hardware” — that is,
the Lime virtual machine and JIT can exploit runtime information to further specialize the
generated hardware designs, or to dynamically migrate code through a heterogeneous system
in order to run code where it is best suited at a particular time.

Interoperability between Lime and Java presented a number advantages, but also some
challenges particularly in the context of generics and arrays.

The Lime generic type system does not elide all types by erasure because doing so implies
the hardware backend cannot specialize the control and data paths where appropriate. In
hardware design, better performance is achieved through specificity rather than genericity.
Lime generic types do not attempt to be fully compatible with existing Java generics.
Rather, the Lime programmer must mark particular generic types as Java-compatible
where desired.
Arrays are a important data structure in Lime, as in many programming languages. Lime
revises array semantics compared to Java with two goals in mind. First, it is possible
to declare arrays that are immutable (as in int[[1] is a read only array of integers).
Second, one may establish static bounds on the sizes of arrays (as in int [5] or int [[5]1]
for mutable and immutable integer arrays with five elements). Array bounds guarantee
that array indexing exceptions will not happen. This in turn permits simpler and more
efficient hardware design. It is not feasible to achieve the expanded semantics of Lime
arrays while using the identical representation to that used in Java, hence arrays (like
generic types) are an area of tension between the expressivity requirements of Lime and
its Java compatibility goals. This requires the programmer to make a type distinction
between Java arrays and Lime arrays using designated syntax.

In retrospect, we might have used a different base language to build upon, or in an even
greater departure, we could have aimed for Java interoperability but designed a minimalist
language from a clean-slate. Chisel [4] for example supports hardware design as an embedded
language in Scala [11]. There are of course many endeavors to raise the level of abstraction
used to program hardware and commercial synthesis tools are increasingly offering viable C,
C++ and OpenCL programming options for FPGAs.

5  Auto-tuning shapes

The task graph construction in Lime may use the full power of the language. That is, graph
construction may use generic types and methods, recursive or iterative constructs, etc. An
example is shown in Figure 5. This example introduces a few more Lime features so we will
define these first. The task keyword appears in the method declaration to indicate this is a
method that creates a task graph. This enforces a number of checks by the type system that
ensure graph shapes are repeatable. Among these is a requirement that the resultant graph
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static task <N extends int, V extends Value> IsoTask repeat(IsoTask<V,V>[[N]] filters) {
return task split V[[N]] => task [ filters ] => task join V[[N]];
}

Figure 5 Example of a generic graph constructor.

is isolated — that is constructed from local methods. The type of such tasks is IsoTask<?,7>.
We did not explicitly state this before but the type of task toLowerCase, for all versions
of toLowerCase shown in Figure 4 is IsoTask<char,char>. The first type argument is the
type of the input channel, and the second type argument is the type of the output channel.

The type parameters to repeat in Figure 5 are N which is an ordinal type (an integer),
and V which is any value type. The former is used as a bound on the array filters, and
also to parameterize Lime system tasks for distributing and merging values with the split
and join tasks. The syntax task [ filters ] denotes a set of tasks that are parallel. The
composition of the splitter, parallel tasks, and joiner forms a split-join which describes task
parallelism akin to fork-join parallelism.

In many examples which use split-joins to parallelize computation within a task graph, it
is desirable to tune the width of the split-join. In other words, one may want to experiment
with different values of N. The Lime language design lends itself well to automating such
experimentation. This is desirable because FPGAs are resource-constrained and the synthesis
tools are not entirely predictable, requiring a time-consuming exploration to determine
suitable split-join widths.

6 An FPGA example

Applications with a high compute-to-communication ratio generally offer opportunities for
accelerators as the cost of data serialization and transfer between the host and the device
can be amortized against a large, and hopefully granular, computation. One such example is
homomorphic encryption [6] which allows arbitrary but bounded computation on encrypted
data without leaking information about the input, output, or intermediate results. Both
plaintext and ciphertext are in the form of large polynomials where the degree is in the
thousands and the coefficients are hundreds of bits. At the heart of the computation are
costly polynomial multiplications which dominate execution time. One acceleration strategy
is to offload only these operations to an FPGA while leaving the rest of the computation
and higher-level application logic on the CPU.

We implemented the polynomial multiplication using a quadratic algorithm in Lime and
leveraged the support of objects to express “bigint” and polynomials as datatypes with
various operations. Generics allowed the reuse of lower-level implementation types. The
table below shows some results from using Lime to generate the FPGA design for a Nallatech
287 FPGA card. We report the end-to-end performance (op time), the clock frequency for
the circuit in the FPGA (freq), and the resource utilization for three primary ingredients
— logic cells (LUT), memory (BRAM), and DSP units which are specialized floating-point
units available in FPGAs — as a percentage of total resources available in the FPGA.

‘ Lime
Op Time 83.3 ms
Freq 100 Mhz
LUT 11.8%
BRAM 23%
DSP 1.2%




J. Auerbach, D. Bacon, P. Cheng, S. Fink, R. Rabbah, and S. Shukla

We also implemented the algorithm in C and used a commercial high-level synthesis
(HLS) tool to generate a comparable FPGA design. The performance of the Lime generated
design lags approximately 2x behind that of the C generated design.

However, Lime allowed us to avoid programming against a lower level of abstraction
in which object inlining was performed manually. We believe that the performance gap is
due to the relative immaturity of the low-level code generation in our compiler where poor
scheduling led to a relatively low frequency. LUT consumption is similar in both designs
although the Lime design used far more BRAM and far fewer DSPs.

BRAM usage stems from a design with many pipelining stages and the lack of aggressive
FIFO sizing optimization between tasks. In addition, the Lime design contains monitoring
and features for reliability, availability and serviceability that we omitted in the C-based
design.

Interestingly, despite the numerical nature of the application, the Lime design used very
few DSP units, suggesting that if the BRAM issues can be ameliorated, we can horizontally
scale the Lime design for greater performance. However, deeper investigation into what
fraction of LUTs were used to generate mathematical units are needed to confirm.

7 Status and Concluding Remarks

The Lime development environment is available as an Eclipse plug-in [12]. We integrated
support for FPGA simulation and synthesis so that the entire programming experience is
accessible to software developers who have little experience with hardware design and FPGA
synthesis tools. A Lime program can run on any Java Virtual Machine, so the programmer
can develop and debug on a standard workstation with no specialized hardware. The compiler
can translate all Lime code to JVM bytecode, and can additionally compile a subset of the
language to Verilog for execution on an FPGA or simulator. The subset of the language
that is compiled for the FPGA (or GPU) is considered the device language although there is
no formal distinction between the host and device languages in Lime. The Lime compiler
endeavors to make clear through diagnostics when a task that is within a repeatable graph is
excluded from synthesis.
Lime encourages an incremental development path starting from Java:
1. Prototype the program in Java,
2. Add Lime constructs to express types and invariants which allow the compiler to generate
Verilog for selected components,
3. Deploy the program with a JVM and a Verilog simulator for performance tuning, and
4. Synthesize a bitfile and deploy on an FPGA.

We have written more than 200K lines of Lime code to date, and developed several
substantial applications drawn from many domains that include low-latency messaging,
financial algorithmics, encryption, compression, codecs, and game engines. For some of these,
we have benchmarked the compiler against hand-tuned FPGA implementations. One of the
challenges in doing this systematically is the lack of an adequate benchmark suite with tuned
software and hardware implementations to use as a baseline. Such a benchmark suite would
allow us to bound performance in two ways: “from below” to measure FPGA performance
compared to software implementations, and “from above” to measure generated hardware
designs against manually crafted designs.
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