
On Randomness Extraction in AC0
Oded Goldreich1, Emanuele Viola2, and Avi Wigderson3

1 Department of Computer Science, Weizmann Institute of Science
Rehovot, Israel
oded.goldreich@weizmann.ac.il

2 College of Computer and Information Science, Northeastern University
Boston, MA 02115, USA
viola@ccs.neu.edu

3 School of Mathematics, Institute for Advanced Study
Princeton, NJ 08540, USA
avi@ias.edu

Abstract
We consider randomness extraction by AC0 circuits. The main parameter, n, is the length of the
source, and all other parameters are functions of it. The additional extraction parameters are
the min-entropy bound k = k(n), the seed length r = r(n), the output length m = m(n), and
the (output) deviation bound ε = ε(n).

For k ≤ n/ logω(1) n, we show thatAC0-extraction is possible if and only if mr ≤ 1+poly(logn)·
k
n ; that is, the extraction rate m/r exceeds the trivial rate (of one) by an additive amount
that is proportional to the min-entropy rate k/n. In particular, non-trivial AC0-extraction (i.e.,
m ≥ r + 1) is possible if and only if k · r > n/poly(logn). For k ≥ n/ logO(1) n, we show that
AC0-extraction of r + Ω(r) bits is possible when r = O(logn), but leave open the question of
whether more bits can be extracted in this case.

The impossibility result is for constant ε, and the possibility result supports ε = 1/poly(n).
The impossibility result is for (possibly) non-uniform AC0, whereas the possibility result hold for
uniform AC0. All our impossibility results hold even for the model of bit-fixing sources, where k
coincides with the number of non-fixed (i.e., random) bits.

We also consider deterministic AC0 extraction from various classes of restricted sources. In
particular, for any constant δ > 0, we give explicit AC0 extractors for poly(1/δ) independent
sources that are each of min-entropy rate δ; and four sources suffice for δ = 0.99. Also, we
give non-explicit AC0 extractors for bit-fixing sources of entropy rate 1/poly(logn) (i.e., having
n/poly(logn) unfixed bits). This shows that the known analysis of the “restriction method” (for
making a circuit constant by fixing as few variables as possible) is tight for AC0 even if the
restriction is picked deterministically depending on the circuit.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases AC0, randomness extractors, general min-entropy sources, block sources,
bit-fixing sources, multiple-source extraction

Digital Object Identifier 10.4230/LIPIcs.CCC.2015.601

1 Introduction

Randomness extractors, hereafter referred to as extractors, are procedures that transform
sources of “weak randomness” into sources of almost perfect randomness. The feasibility of
such a transformation depends on the specific notion of “weak randomness”, and in most
cases the transformation must be provided with a short (perfectly) random seed. Indeed, this

© Oded Goldreich, Emanuele Viola, and Avi Wigderson;
licensed under Creative Commons License CC-BY

30th Conference on Computational Complexity (CCC’15).
Editor: David Zuckerman; pp. 601–668

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2015.601
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

602 On Randomness Extraction in AC0

fundamental problem has several versions, and each of them comes with a set of parameters.
(See Shaltiel’s survey [53] for a wide perspective as well as for a snapshot of the state of the
art a decade ago.)

The most popular and general notion of weak randomness is parameterized by a probability
bound, denoted 2−k, such that no outcome may appear with probability that exceeds it. In
such a case, k is called the min-entropy of the source. Additional parameters of the extraction
problem include the length of the source, denoted n, the length of the seed, denoted r, the
length of the (extracted) output, denoted m, and an upper bound on its deviation (from
perfect randomness), denoted ε. In fact, n is viewed as the main parameter, and all other
parameters are stated as functions of n. A function E : {0, 1}n × {0, 1}r → {0, 1}m is called
a (k, ε)-extractor if for every X of min-entropy k it holds that E(X,Ur) is ε-close to Um,
where U` denotes the uniform distribution over {0, 1}`. It is called a strong (k, ε)-extractor
if for such X’s it holds that E(X,Ur) ◦ Ur is ε-close to Um+r. (Note that if E is a strong
(k, ε)-extractor, then E′(x, u) = E(x, u) ◦ u is an (k, ε)-extractor.)

When ignoring computational issues, the exact trade-off between the various extraction
parameters is known, but much research has been devoted to obtaining explicit constructions
that approach the optimal bounds. Traditionally, an extractor is called explicit if it can be
computed efficiently (i.e., in polynomial-time) or alternatively if Boolean circuits computing
it can be constructed in poly(n)-time. It is known that some constructions are even more
explicit than that; for example, the popular constructions of universal hashing functions [15]
(known as the “mother of all extractors”) are computable by highly uniform AC0[2] circuits
(i.e., constant-depth circuits of polynomial-size with parity gates). The same holds for
Trevisan’s celebrated extractor [54]. Can one get any lower (indeed to AC0)? This is the
question we study here.1

1.1 The most relevant prior work

Our starting point is the following negative result by Viola [57].

I Theorem 1.1 (severe limitations on extraction in AC0 [57, Thm. 6.4]). If a (k, 0.999)-
extractor E : {0, 1}n × {0, 1}0.999m → {0, 1}m is computable by a circuit C (with negations
and unbounded fan-in and and or gates), then size(C) ≥ exp(Ω(n/k)1/(depth(C)−1)). In
particular, if E can be computed by a family of AC0 circuits, then there exists a positive
polynomial p such that k(n) ≥ n/p(logn) for all sufficiently large n.

This result rules out AC0-extractors that either extract from entropy k = n/ logω(1) n or
use a seed length r that is sublinear in the output length. However, the result leaves open the
possibility that (non-trivial) AC0-extractors exist for other settings of parameters. Indeed,
when making only the non-triviality requirement (i.e., m = r + 1), two such extractors
existed in the literature. First, AC0 circuits can extract one bit from a source of logarithmic
min-entropy when using a very long seed; specifically, when r = n = m− 1. (This can be
done by sampling input-output pairs of the inner product function [34], cf. [6, 58].) Second,
non-trivial AC0-extractors exist for min-entropy k ≥ n/poly logn (using the “sample-then-

1 In fact, one may even go lower and ask whether randomness extraction is possible in NC0. Actually,
such extractors were presented in [5, Sec. 5.3] for the case of m = n and r = Θ(n− k). We note that
these parameters are inferior to the parameters in Theorem 1.7, but they are the best possible for NC0

(since if an extractor of locality d extracts m = r + 1 bits such that d ·m ≤ n− k, then the entropy of
the output bits must come from the seed because n− k bits of the source may be fixed).

O. Goldreich, E. Viola, and A. Wigderson 603

extract” paradigm developed by Nisan and Zuckerman [46] and refined by Vadhan [55]). In
fact, this AC0-extractor can extract logarithmically many bits.

I Theorem 1.2 (following [55, Thm. 7.4]). For every k(n) = n/poly(logn) and ε(n) =
1/poly(n), there exist (non-explicit) AC0 circuits that compute a strong (k(n), ε(n))-extractor
E : {0, 1}n × {0, 1}O(logn) → {0, 1}Θ(logn). Furthermore, the circuits have depth 4 +⌈

log(n/k(n))
log logn

⌉
.

The proof of Theorem 1.2 follows the proof of [55, Thm. 7.4], which combines an adequate
sampler with an adequate extractor using the (sample-then-extract) composition theorem
of [55, Thm. 6.3]. We note that both the sampler and the extractor used in the original
proof of [55, Thm. 7.4] are non-explicit; furthermore, the (optimal) extractor used there is
probably not computable by constant-depth circuits of poly(n)-size (let alone explicit ones).
Instead, we shall use the (non-optimal) explicit extractor of [29, Sec. 5], which is computable
by (uniform) constant-depth circuits of size poly(n). The resulting AC0-extractor inherits
the non-explicitness of the sampler used in the proof of [55, Thm. 7.4]. Jumping ahead, we
mention that we provide an explicit version of Theorem 1.2 (see Theorem 3.1) by using a
new explicit sampler (see Theorem 3.2).

Hence, while a non-explicit AC0-extractor for k ≥ n/poly(logn) is implicit in prior work,
the explicit version (as stated in Theorem 3.1) relies on our new sampler (i.e., Theorem 3.2).
In any case, the foregoing results do not refer to the general trade-offs between the parameters
k, r and m that allow extraction to be performed in AC0.

1.2 Our main results
We study the following general question.

Parameters enabling extraction in AC0: For which values of k, r and m are (k, n−3)-
extractors E : {0, 1}n × {0, 1}r(n) → {0, 1}m(n) computable in AC0?

Recall that, for logarithmic seed length (i.e., r(n) = O(logn)), a min-entropy bound
of k(n) > n/poly(logn) is a necessary condition (even for m(n) = r(n) + Ω(logn) (see
Theorem 1.1)), whereas m(n) = r(n) + O(logn) is achievable (by Theorem 1.2). These
results mark the boundaries (between impossible and possible) as a function of k when
r(n) = O(logn) and m(n) = r(n) + Θ(logn). Indeed, this boundary refers to a line
(k, r = O(logn),m = r + Θ(logn)) in the three dimensional space (k, r,m) ∈ [n]3. Our
work is aimed at mapping the entire space, and it achieves this goal for k < n/ logω(1) n. In
this setting, we show that AC0-extraction is possible if and only if mr ≤ 1 + poly(logn) · kn ;
that is, the extraction rate m/r exceeds 1 by an additive amount that is proportional to the
min-entropy rate k/n. The region of k ≥ n/poly(logn) remains partially unmapped (as
indicated in Problem 1.6 below).

In general, our impossibility results are for constant ε, and the possibility results support
ε = 1/poly(n). The impossibility results are for (possibly non-uniform) AC0, whereas all but
one of our possibility results hold for uniform AC0 (assuming that the relevant functions (i.e.,
k, r,m and ε) are poly(n)-time computable). All impossibility results hold even for the model
of bit-fixing sources, where k coincides with the number of non-fixed (i.e., random) bits.

When we write k(n) < n/poly(logn) we mean that, for every positive polynomial p and
all sufficiently large n, it holds that k(n) < n/p(logn). When we write k(n) ≥ n/poly(logn)
we mean that there exists a polynomial p such that, for all sufficiently large n, it holds that
k(n) ≥ n/p(logn).

CCC 2015

604 On Randomness Extraction in AC0

With these preliminaries in place, we turn to describe our main results. In the case of
strong extraction we obtain a very clear dichotomy.

I Theorem 1.3 (strong extraction in AC0).
impossibility: Strong extraction, even of a single bit, is impossible in AC0 for k(n) <
n/poly(logn), regardless of the length of the seed.
possibility: Strong extraction of m0 = Ω(logn) bits is possible in uniform AC0 for any
k(n) ≥ n/poly(logn), using a seed of length O(logn). Furthermore, in this case, for every
t < k/2m0, strong extraction of t ·m0 bits is possible using a seed of length O(t · logn).

[The impossibility result follows by Theorem 5.4. The possibility result follows by Part 2 of
Corollary 6.4, which in turn is based on Theorem 3.1 (combined with Theorem 6.3 for the
furthermore part).]

We comment that, for k(n) ≥ n/poly(logn), one can extract poly-logarithmically many
bits in AC0 using a seed of logarithmic length but at an error rate of 1/poly(logn); this can
be done by using Trevisan’s extractors [54] (insead of the extractor of [29, Sec. 5]). We now
turn to ordinary (i.e., non-strong) extraction, starting with the minimal case of non-trivial
extraction.

I Theorem 1.4 (ordinary extraction in AC0, the case of m = r + 1).
impossibility: Extraction of r(n)+1 bits is impossible in AC0 for r(n)·k(n) < n/poly(logn).
possibility: There exists a constant c > 2 such that, for every k(n) ≥ c · log(n/ε) and every
r(n) ≥ (n · log3 n)/k(n), extraction of r(n) + min(poly(logn), k(n)/2) bits is possible in
uniform AC0.

[The impossibility result follows by Part 1 of Theorem 5.5, whereas the possibility result
follows by Corollary 6.2.]

I Theorem 1.5 (ordinary extraction in AC0, the case of m = r + Θ(r)).
impossibility: Extraction of r(n)+Ω(r(n)) bits is impossible in AC0 for k(n) < n/poly(logn),
regardless of r.
possibility: There exists a constant c > 0 such that, for every k(n) ≥ n/poly(logn) and
every r(n) ∈ [Ω(logn), k(n)/c], extraction of (1 + c) · r(n) bits is possible in uniform AC0

using a seed of length r(n).
[The impossibility result follows by Part 2 of Theorem 5.5, whereas the possibility result (of
Theorem 1.5) follows by the possibility result of Theorem 1.3.]

Note that the impossibility result of Theorem 5.5 establishes the same bound as Viola’s [57,
Thm. 6.4] (see Theorem 1.1), but does so for bit-fixing sources.

Let us restate the message of Theorem 1.5: It says that extracting m(n) = r(n) + Θ(r(n))
bits is impossible if k(n) < n/poly(logn) (regardless of the size of r), whereas if k(n) ≥
n/poly(logn) then using a seed of length r(n) = Ω(logn) we can extract r(n) + Ω(r(n)) bits.
However, it is not clear whether we cannot extract significantly more bits in the latter case.

I Open Problem 1.6 (extracting more bits at rate of at least 1/poly(logn)). Can one extract
more than poly(logn) · r(n) bits in AC0 using a seed of length r(n) = Ω(logn), when
k(n) > n/poly(logn)? In particular, can one extract more than poly(logn) bits using a seed
of logarithmic length? For starters, what about the special case of constant min-entropy rate,
that is, k(n) = Ω(n)?

We conjecture that the answer is negative and provide some evidence for this conjecture
in Section 4.2. Recall that for k(n) ≥ n/poly(logn), we can extract poly-logarithmically
many bits using a seed of logarithmic seed but at an error rate of 1/poly(logn); see Part 2

O. Goldreich, E. Viola, and A. Wigderson 605

of Corollary 3.6. Indeed, a minor open problem regarding this case is to reduce the error
rate to 1/poly(n).

Theorems 1.4 and 1.5 can be interpolated, and they indeed follow as special cases of the
following generalization (which is our main result).

I Theorem 1.7 (ordinary extraction in AC0, the general case of m = r +m′).
impossibility: For any m′(n) ≥ 1, extraction of r(n) +m′(n) bits is impossible in AC0 if
k(n) < m′(n)

r(n)+m′(n) ·
n

poly(logn) (equiv., if (r(n) +m′(n)) · k(n) < m′(n) · n/poly(logn)).
possibility: There exists a constant c > 1 such that for every k(n), m′(n), and r(n) such
that k(n) ≥ c · (m′(n) + log(n/ε)), extraction of r(n) +m′(n) bits is possible in uniform
AC0 in each of the following two cases.
1. For r(n) · k(n) ≥ dm′(n)/poly(logn)e ·O(n log2 n) and k(n) > poly(logn);
2. For r(n) = n. Furthermore, for r(n) · k(n) ≥ n/poly(logn), we have m′(n) =

Ω(k(n))− poly(logn).
[The impossibility result follows by Theorem 5.5, whereas the possibility result follows by
Corollary 6.4.]

The result of Theorem 1.7 is almost tight for k(n) < n/poly(logn): Extraction of
r(n) +m′(n) bits is impossible in AC0 if r(n) · k(n) +m′(n) · k(n) < m′(n) · n/poly(logn),
which is equivalent (in this case) to r(n) · k(n) < m′(n) · n/poly(logn), but is possible if
r(n) · k(n) ≥ m′(n) · n/poly(logn) (provided that poly(logn) < m′(n) ≤ k(n) − O(logn)).
Hence, what we really do not know refers to the range of k(n) ≥ n/poly(logn); that is, to
Problem 1.6.

A different perspective on Theorem 1.7 is obtained by considering the relation between
k/n and m′/r.

Theorem 1.7 asserts that for m′/r ∈ [0,Θ(1)], extraction in AC0 is possible if k/n ≥
f(n) ·m′/r for some f(n) = 1/poly(logn) and impossible if k/n < f ′(n) ·m′/r for every
f ′(n) = 1/poly(logn). Recall that Theorems 1.1 and 1.2 only refer to the case ofm′/r = Θ(1),
whereas Theorem 1.7 covers all m′/r ∈ [0,Θ(1)]. Problem 1.6 refers to m′/r = ω(1) (or
actually to m′/r = (logn)ω(1)).

We highlight the fact that non-trivial extraction (i.e., m′(n) = 1) is possible in AC0 if
and only if k · r > n/poly(logn). In contrast, the threshold for “significant” AC0-extraction,
that is m′ = Ω(r), is k > n/poly(logn). Hence, for r > poly(logn), there is a gap between
the min-entropy bound that allows non-trivial AC0-extraction and the min-entropy required
for extracting r + Ω(r) bits in AC0.

Extraction with respect to restricted sources

In relation to Problem 1.6, we mention that both in the model of block sources and in the
model of bit-fixing sources, we can extract more than poly-logarithmically many bits using a
seed of logarithmic length, where in both cases the min-entropy rate is at least 1/poly(logn)
(and extraction is in AC0). In fact, in both cases, n/poly(logn) bits are extracted.

I Theorem 1.8 (extraction in AC0 for bit-fixing sources and block sources). For any k(n) ≥
n/poly(logn), extraction of n/poly(logn) bits using a seed of length O(logn) is possible in
uniform AC0 for bit-fixing sources in which k(n) of the n bits are not fixed. Ditto for block
sources with Θ(k(n)/ logn) blocks such that each block has conditional min-entropy Ω(logn).

[See Corollary 4.3 and Theorem 5.2.]
Recall that the bit-fixing model allows for deterministic extractors, which work even for

lower min-entropy rates, but these extractors are not computable by AC0 (which is to be

CCC 2015

606 On Randomness Extraction in AC0

expected in light of the fact that our impossibility results hold for the bit-fixing model). Still,
it is possible that whenever extraction in AC0 is possible for bit-fixing sources, it is also
possible via deterministic extractors. We show that this is essentially the case.

I Theorem 1.9 (deterministic extraction in AC0 for bit-fixing sources). For any k(n) ≥
n/poly(logn), deterministic extraction of n/poly(logn) bits is possible in AC0 for bit-fixing
sources in which k(n) of the n bits are not fixed.

[See Theorem 5.8.] Unlike all previously mentioned results, this possibility result only claims
the existence of AC0 circuits (but does not provide an explicit construction). We mention
(see Theorem 5.18) that we can construct explicit AC0 circuits that compute a deterministic
disperser for this class of sources (i.e., we present a circuit that is not constant on any such
source).

A circuit complexity perspective (w.r.t random restrictions). A (deterministic) extractor
for bit-fixing sources in which k(n) of the n bits are random constitutes a circuit that is not
trivialized (i.e., does not simplify to a constant) under any restriction that keeps k(n) of the
variables alive.2 Hence, Hastad’s analysis [32] of the random restriction method [1, 24, 60],
which implies that any depth d circuit of size s(n) trivializes under a random restriction
that keeps n/O(logd−1 s(n)) variables alive, is optimal in a very strong sense: Not only
that there exist AC0 circuits that do not trivialize under a random restriction that keeps
n/poly(logn) variables alive, but these circuits are not trivialized under any restriction that
keeps n/poly(logn) variables alive. In other words, a restriction that is carefully selected
based on the target circuit cannot achieve significantly better parameters than a random
restriction (i.e., cannot trivialize the circuit while leaving significantly more variables alive).
There are contexts in which circuit-dependent restriction yields stronger lower bounds than
its randomized counterpart. These contexts include AC0 circuits of nearly-linear size [16],
and of threshold circuits of nearly-linear size [35].

Deterministic extraction from several independent sources. Another model allowing for
deterministic extractors is the model of two or more independent sources each having
min-entropy at least k(n)

(cf., e.g., [17, 7, 8, 38]). While this model allows for deterministic extractors, which work
even for min-entropy rates below 1/poly(logn), the known extractors are not computable by
AC0 (which is to be expected in light of the fact that our impossibility results hold also for
this model). We show that deterministic extraction in AC0 is possible also in this model.

I Theorem 1.10 (deterministic extraction in AC0 for the multi-source model). For any constant
δ > 0, there exist explicit AC0-extractors for poly(1/δ) independent sources that are each of
min-entropy rate δ. For δ = 0.99, four sources suffice.

See Section 7. In the two-source model, we only obtain such extractors for rates that
approach 1 (i.e., δ ≥ 1− log−4 n).

1.3 Techniques
Our results build on known results and known techniques. These are augmented by several
new constructions of various pseudorandom objects including

2 In fact, the same holds for dispersers, which are functions that map any such source to a non-trivial
distribution.

O. Goldreich, E. Viola, and A. Wigderson 607

two alternative constructions of averaging samplers (see Sections 3.2 and 3.4, respectively);
anAC0-extractor for bit-fixing sources extracting n/poly(logn) bits using a logarithmically
long seed (see Section 5.1);
a deterministic AC0-extractor for bit-fixing sources extracting poly(logn) bits (see Sec-
tion 5.3);
a deterministic two-source AC0-extractor (see Section 7.1);
deterministic many-source AC0-extractors for lower entropy rate (see Sections 7.2 and 7.3).

These and other contributions are mentioned in Section 1.5, where we emphasize interesting
aspects that are not mentioned here. In the current section, we focus on a few common
themes that re-occur in several proofs. Similar ideas were used before, but we found the
current incarnations useful and worthy of highlighting.

Generating pseudorandom partitions

Loosely speaking, the problem is to generate a pseudorandom partition of [n] into m equal-
sized sets such that each set has a strong hitting or sampling property. We wish to do
this using a logarithmic amount of randomness and for m = n/poly(logn). Specifically,
Lemma 5.3 asserts a pseudorandom partition generator for n/m = O(ρ−1 log(1/ε))2 such
that each set of density ρ is hit by each subset of the partition with probability at least 1− ε.

The idea is to use a fixed partition of [n] into n/m disjoint m-cycles and a standard hitter
of sample complexity

√
n/m. Hoping that this hitter generates a set that hits each cycle at

most once, we augment this set to a cover of all n/m cycles, and use the m “shifts” of this
augmented set as a partition. Using a suitable implementation, the aforementioned hope
does materialize with constant probability, and we augment the construction so to obtain a
good partition with overwhelmingly high probability. (The proof of Lemma 5.3 presents a
specific instantiation of this idea that is implementable in uniform AC0.)

Somewhat related problems arise in the proofs of Theorems 3.2 and 3.8. In these proofs,
we need to construct a sampler that generates a very large set (say of size n1/3) of distinct
elements. This is relatively easy if the elements of the sample are pairwise independent.
Getting sets of size greater than

√
n requires additional ideas, which appear in the proof of

Theorem 3.8.
In the latter case we rely on the fact that the number of occurrences of each element

in the sample is not large, and that this number can be computed using a high quality
hashing scheme. We then include each element in the final sample with probability that
is proportional to the number of occurrences in the first sample, while noting that this
random sieving preserves the sampling property of the first sample. (We warn that the
implementation of this procedure in AC0 is not straightforward.)

Combining various pseudorandom properties

As hinted above, we may want to have a good sampler that uses samples that are uniformly
distributed in the domain in a O(1)-wise independent manner. The problem is that good
samplers use random walks on expander graphs, and in this case the samples are each
uniformly distributed but they are not even pairwise independent.

The solution is to XOR an O(1)-wise independent sequence with the vertices visited in
the random walk (see Claim 3.4). We show that the combined sampler inherits the properties
of each of the original samplers. Indeed, such combinations were used before for different
properties (e.g., Impagliazzo and Wigderson [36] de-randomized Yao’s XOR Lemma by

CCC 2015

608 On Randomness Extraction in AC0

XORing the output of the “projected seed generator” of [45] with the output of a random
walk generator).

1.4 The perspective of error reduction
As articulated by Zuckerman [63], there is a close relation between randomness extractors
that are computable in a natural complexity class such as AC0 and error-reduction procedures
computable in that class. The error-reduction procedures referred to here are confined to
generating several inputs, applying the original circuit to each of these inputs, and ruling
by majority. Hence, these procedures are closely related to averaging samplers (as defined
implicitly in the next paragraph).

Specifically, a (k, 0.1)-extractor E : {0, 1}n × {0, 1}r → {0, 1}m yields a sampler S :
{0, 1}n → ({0, 1}m)2r such that for every f : {0, 1}m → {0, 1} with probability at least
1 − 2 · 2−(n−k) it holds that 2−r ·

∑
s∈S(Un) f(s) = (1 ± 0.1) · E[f(Um)]. (Just use S(x) =

{E(x, σ) : σ ∈ {0, 1}r}.) The converse holds too (by using E(x, σ) = S(x)σ): A sampler
S : {0, 1}n → ({0, 1}m)2r that satisfies Pr[2−r ·

∑
s∈S(Un) f(s) = (1 ± 0.1) · E[f(Um)]] >

1−0.1·2−(n−k) for every f : {0, 1}m → {0, 1}, yields a (k, 0.2)-extractor E : {0, 1}n×{0, 1}r →
{0, 1}m. For simplicity, let us ignore the small slackness (i.e., 0.1 vs 0.2, and 2 vs 0.1) in the
following discussion.

In light of the tight relationship between the extractor and the sampler in the foregoing
paragraph it holds that, for r = O(logn) and any length parameter m, having (k, 0.1)-
extractors in AC0 and having samplers with error 2−(n−k) computable in AC0 is equivalent.
Note that efficient error-reduction requires m(n) = nΩ(1), since n represents the length of
the input to the sampler and m(n) the length of the sampled strings, which means that
n = poly(m(n)) must hold.

Recall that Theorem 1.1 refers to relatively weak extractors; that is, ones that extracts
a constant factor more bits than the length of the seed (i.e., m(n) ≥ (1 + Ω(1)) · r(n)). It
asserts that AC0 circuits cannot compute such extractors for min-entropy rate that is smaller
than 1/poly(logn). In contrast, recall that AC0[2] (i.e., AC0 with parity gates) circuits
can compute very good extractors (e.g., Trevisan’s [54]); for example, such circuits can
compute (k, ε)-extractors with a logarithmically long seed for k(n) = m(n)2 =

√
n (and

ε(n) = 1/poly(n)).
Nevertheless, Theorem 1.1 says nothing about AC0-extraction from sources of higher

min-entropy rate (i.e., rate at least 1/poly(logn)). Actually, Theorem 1.2 says that AC0-
extraction is possible in this case, but it only provides for extracting logarithmically many bits
(i.e., m(n) = O(logn)), whereas efficient error-reduction requires m(n) = nΩ(1). Furthermore,
Vadhan’s approach [55], which underlies the proof of Theorem 1.2, seems to yield AC0-
extractors of logarithmic seed length only when the output length is polylogarithmic, even
when the min-entropy rate is a constant. The question (see Problem 1.6) is whether one can
extract more randomness under these conditions (i.e., using a source of constant min-entropy
and a logarithmically long seed).

While a positive resolution regarding m(n) = nΩ(1) would imply efficient error-reduction
for AC0, a bypass was found recently. Specifically, a recent revision of [30] (posted in
June 2014) establishes error-reduction for AC0 at the same level that would have been
implied by the best AC0-extractors that are not ruled out by Theorem 1.1. That is, it offers
error-reduction at a level that corresponds to min-entropy k(n) = n/poly(logn), output
length m(n) = nΩ(1), and logarithmic seed length (i.e., r(n) = O(logn)).

This was obtained by observing that we do not really need information-theoretic extractors
(computable in AC0), but rather extractors (computable in AC0) that output distributions

O. Goldreich, E. Viola, and A. Wigderson 609

that fool all AC0 circuits. Alternatively, it suffices to extract randomness for auxiliary circuits
obtained by shrinking the input of the original AC0 circuits by using the pseudorandom
generator of Nisan [44, 45]. Hence, randomness-efficient error-reduction for AC0 was obtained
without presenting an AC0-extractor with the corresponding parameters. In other words,
there is a gap (at least in our knowledge) between general error-reduction implementable in
AC0 (via samplers as reviewed above) and error-reduction for AC0, which may be defined as
obtaining samplers that satisfy the sampling requirement only with respect to functions that
f that are computable in AC0.

This gap in our knowledge provides a new motivation for resolving Problem 1.6, but
now a resolution in the negative direction would be more interesting. Such a result would
mean that, for a natural choice of parameters, randomness-efficient error-reduction for AC0

exists while a corresponding AC0-extractor does not exist (where the correspondence between
parameters is as in the standard relation articulated by Zuckerman [63]).

1.5 A roadmap and additional comments on the technical contents
Following the preliminaries, this write-up proceeds as follows. In Section 3, we prove
Theorem 3.1, which is based on a non-explicit construction of Vadhan [55, Thm. 7.4]. Our
improvement boils down to presenting an explicit “averaging sampler” with parameters that
are comparable to the non-explicit construction. One key observation underlying the new
construction is that the relaxed notion of averaging sampler as defined by Vadhan in [55,
Def. 6.1] can be composed and manipulated in ways that are not possible with the standard
definition of averaging samplers. The reason is that Vadhan’s notion is actually a hybrid of
the notions of hitters and (standard) averaging samplers. Using the new sampler one can also
improve the parameters in some of Vadhan’s explicit constructions of local extractors [55].

In general, Section 3 demonstrates the relevance of the study of local extractor to
extraction in AC0. In particular, local extractors yield constant-depth circuits of size that is
exponential in the seed length and in the locality. In some cases, the size can be made even
smaller (e.g., sub-exponential in the locality).

In Section 4 we consider block-sources. In Section 4.1 we show that applying an extractor
to individual blocks of a block-source, while using the same seed in all applications, yields
an extractor. This result seems to be folklore, but we believe that it is a very useful one,
since we think that this extraction strategy is a natural thing to do when actually having
a block-source. This is relevant to the context of AC0, because the resulting extractor
preserve the computational complexity of the original extractor. In Section 4.2 we consider
the difficulty of converting an arbitrary high min-entropy source into a block-source: Loosely
speaking, we show that two natural approaches to this task fail.

In Section 5 we consider AC0-extractors for bit-fixing sources. In Section 5.1, we present
our first construction, which uses a randomized procedure that outputs a partition of [n] into
small subsets that intersect any set of sufficient density (with high probability). The procedure
uses a logarithmic amount of randomness and is explicit (and hence is implementable by
uniform AC0 circuits). It yields an AC0-extractor that uses a logarithmically long seed
and extracts n/poly(logn) bits from bit-fixing sources of min-entropy n/poly(logn). In
Section 5.3 we combine the latter extractor with a new deterministic extractor (which
extracts poly-logarithmically many bits), and obtain a deterministic extractor that essentially
matches the performance of the seeded extractor. The former deterministic extractor is
based on a new AC0-reduction of the task of extraction from (oblivious) bit-fixing sources of
entropy rate that tends to 0 (i.e., 1/poly(logn)) to the task of extraction from non-oblivious
bit-fixing sources of entropy rate that tends to 1 (i.e., 1− 1/poly(logn)), whereas the latter

CCC 2015

610 On Randomness Extraction in AC0

task was treated by Ajtai and Linial [4].3 Indeed, the reduction is from a more restricted
type of sources to a broader type of sources, but the sources of the more restricted type have
significantly lower entropy.

The parameters obtained by these extractors are essentially optimal, with respect to
AC0-extraction from bit-fixing sources. Indeed, in Section 5.2, we present impossibility
results that extend those that are stated in Theorem 1.1:

One result asserts that that AC0 circuits cannot compute a strong extractor for bit-fixing
sources when the number of “unfixed” (i.e., random) bits is n/(logn)ω(1) (regardless of the
seed length). In general, Section 5.2 provides proofs of all our impossibility results, showing
that the relevant bounds hold even for extractors that should only work for bit-fixing sources.

In Section 5.4 we show that the foregoing impossibility results regarding extraction
from bit-fixing sources do not hold for a restricted class of such sources, called zero-fixing
sources [19], consisting of bit-fixing sources in which all fixed bits are set to zero. We show
that AC0 circuits, which use a seed of logarithmic length, can extract from zero-fixing sources
that contain only a logarithmic number of random bits.

Turning back to general sources of min-entropy k, in Section 6 we consider extraction with
a seed of linear length. In Section 6.1 we generalize Viola’s construction [58, Lem. 4.3] of a
non-trivial extractor in AC0 to one that outputs poly(logn) additional bits (rather than one).
In Section 6.2 we show that independent applications of an extractor (i.e., with independently
distributed seeds) yield an extractor, provided that the total number of extracted bits does
not exceed the min-entropy bound. This is a naive result, which relies on well-known ideas,
but it is advantageous in the context of AC0 because the resulting extractor preserve the
computational complexity of the original extractor. Indeed, this simple observation is pivotal
in establishing the general upper bound of Theorem 1.7, which presents a trade-off between
the seed length and the number of (additional) bits extracted.

In Section 7, we consider deterministic AC0-extractor for several independent sources.
Leaving open the question of extraction from pairs of sources of some constant min-entropy
rate, we prove the existence of AC0-extractors for pairs of sources of min-entropy rate
1− log−4 n. This is obtained by presenting a uniform AC0-reduction of the task at hand to the
task of extraction from non-oblivious bit-fixing sources of entropy rate 1−O(log−3 n). (Unlike
in Section 5.3 here the reduction is between incomparable types of sources and the target
sources have lower entropy.) We also present, for any constant δ > 0, explicit AC0-extractors
for poly(1/δ) independent sources that are each of min-entropy rate δ, whereas for δ = 0.99
four sources suffice.

Finally, in Section 8, we list and restate open problems that are mentioned in various
parts of the paper.

2 Preliminaries

By “circuits” we mean Boolean circuits with negations and unbounded fan-in and and or
gates. Since we deal with a very low complexity class (i.e., AC0), it is important to be
careful about the representation of objects. In particular, elements of [n] = {1, 2, . . . , n} are
represented as (blog2 nc+ 1)-bit long strings, and subsets of [n] are represented as (unsorted)

3 In non-oblivious bit-fixing sources the fixed bits may be determined as a function of the values of the
random bits, whereas in (oblivious) bit-fixing sources the fixed bits are set indepedently of the values of
the random bits. The connection between influence of sets as studies in [4] and deterministic extraction
from non-oblivious bit-fixing sources was made in [41].

O. Goldreich, E. Viola, and A. Wigderson 611

sequences over [n]. This convention is important for supporting an efficient implementation
of the projection operation; that is, for a sequence x = (x1, . . . , xn) ∈ {0, 1}n and I ⊆ [n],
we let XI denote the projection of x on I (i.e., if I = (i1, . . . , it), then XI = (xi1 , . . . , xit)).
Indeed, the mapping (x, (i1, . . . , it)) 7→ x(i1,...,it) is computable in uniform AC0 (e.g., by
having the jth output bit equal

∨
i∈[n](xi ∧ (i= ij))).4

By logn we mean log2 n, whereas by poly(n) we mean any (unspecified) positive poly-
nomial. In several statements (e.g., Theorem 1.1), we preferred to use 0.999 (resp., 0.499)
rather than “for every constant smaller than one” (resp., “for every constant smaller than
half”).

Another general convention is that multiple occurrences of the same random variable
mean that the same random value is assigned in all occurrences; that is, if X is a random
variable, then (X,X,X) represents the random variable obtained by selecting x according to
X and outputting (x, x, x). By U` we denote a random variable that is uniformly distributed
over {0, 1}`.

Below we review the basic definitions regarding extractors as well as some results regarding
locally computable extractors.

2.1 General extractors
We recommend Shaltiel’s survey [53] for a general introduction to randomness extractors.

I Definition 2.1 (min-entropy and (n, k)-sources). The min-entropy of a random variable
X, denoted H∞(X), is minx{log2(1/Pr[X = x])}. An (n, k)-source is a random variable X
assuming values in {0, 1}n such that H∞(X) ≥ k.

(Indeed, maxx{|Pr[X = x]} ≤ 2−H∞(X).) In the following definition, ∆[X ;Y] denotes the
statistical difference (a.k.a variation distance) between X and Y ; that is,

∆[X ;Y] def= 1
2 ·
∑
v

|Pr[X = v]−Pr[Y = v]| = max
S
{Pr[X ∈ S]−Pr[Y ∈ S]}

I Definition 2.2 ((seeded) randomness extractors). The function E : {0, 1}n × {0, 1}r →
{0, 1}m is called an ε-error extractor for a class of sources C if for every X in C it holds that
∆[E(X,Ur) ;Um] ≤ ε. It is called a strong ε-error extractor for C if for every X in C it holds
that ∆[E(X,Ur) ◦ Ur ;Um ◦ Ur] ≤ ε. When C is the class of (n, k)-sources, we call E a
(k, ε)-extractor.

Note that
∆[E(X,Ur) ◦ Ur ;Um ◦ Ur] = Es←Ur [∆[E(X, s) ;Um]].

We say that an extractor is explicit if a circuit computing it can be constructed in poly(n)-
time. Indeed, to make sense of this definition, one should consider a family of extractors
parameterized by n; that is, we actually consider the family {En : {0, 1}n × {0, 1}r(n) →
{0, 1}m(n)}n∈N such that En is an (k(n), ε(n))-extractor. Likewise, when using asymptotic
notation in reference to an extractor E : {0, 1}n × {0, 1}r → {0, 1}m, we actually refer to a

4 In contrast, if I ⊆ [n] is represented by the n-bit long indicator vector χ = (χ1, . . . , χn) such that χi = 1
if i ∈ I and χi = 0 otherwise, then the mapping (x, I) 7→ xI is not computable in AC0. The reason is
that counting (i.e., computing

∑
i∈[n] bi) is AC

0-reducible to the foregoing operation by setting x = 1n

and measuring the length of xI , where I = {i ∈ [n] : bi = 1}, while relying on (b1, . . . , bn) being an
admissible representation of I.

CCC 2015

612 On Randomness Extraction in AC0

family as above; that is, we always view the source length (i.e., n) as a varying parameter
(which determines all other parameters; e,g., r = r(n), m = m(n), etc). Furthermore, we
assume that k, r,m : N → N are monotonically non-decreasing and that ε : N → [0, 1]
is monotonically non-increasing. These conventions are used extensively throughout this
write-up.

2.2 Local extractors
Locally computable extractors were systematically studied by Vadhan [55]. These constructs
as well as some of Vadhan’s techniques (see especially [55, Sec. 6]) are used by us towards
constructing extractors that can be computed in AC0.

I Definition 2.3 (t-local extractors). The extractor E : {0, 1}n × {0, 1}r → {0, 1}m is called
t-local if of every s ∈ {0, 1}r the residual function fs(x) def= E(x, s) depends on at most t bits
of x.

For the case of constant min-entropy rate, we have the following result.

I Theorem 2.4 (special case of [55, Thm. 8.5]). For every constants δ, β > 0 and ε(n) =
1/poly(n), there exists an explicit O(logn)-local strong (δn, ε(n))-extractor E : {0, 1}n ×
{0, 1}β·m(n) → {0, 1}m(n) for m(n) = Θ(logn). Furthermore, the extractor is computable in
uniform AC0.

The furthermore claim is not stated in [55], but it follows from the main claim by combining
the circuits that compute the residual functions (obtained by fixing the seed). Specifically,
we combine depth-two circuits that compute the residual functions (where each function
depends on O(logn) bits), with depth-two circuits that select the adequate function, obtaining
depth-three circuits. For the case of min-entropy rate 1/poly(logn), we mention the following
non-explicit construction.

I Theorem 2.5 (special case of [55, Thm. 7.4]). For every k(n) = n/poly(logn) and ε(n) =
1/poly(n), there exists an (non-explicit) (2n/k(n))-local strong (k(n), ε(n))-extractor E :
{0, 1}n × {0, 1}O(logn) → {0, 1}Ω(logn).

(Note that here the seed is longer than the output, but the result is non-trivial since the
extractor is strong.) While the relevance of Theorem 2.4 to our study was demonstrated in
its furthermore-part, the relevance of Theorem 2.5 is less clear and arises from the technique
used in its proof. The point is that the proof of Theorem 2.5 is based on the composition
theorem of [55, Thm. 6.3], which implies that combining an adequate sampler with an
adequate extractor yields an extractor that can be computed more efficiently than standard
extractors. Loosely speaking, the sampler is used to sample relatively few bits in the source,
and the extractor is applied to the resulting sequence of bits, which approximately maintains
the entropy rate of the source. Thus, the complexity of the resulting extractor is related to
the complexity of sampling and to the complexity of extraction from a much shorter source.
(This fact will be extensively used in Section 3.)

The sample-and-extract paradigm goes back to the work Nisan and Zuckerman [46], but
the point here is using it in order to reduce the computational complexity of extraction.

Furthermore, better parameters are obtained by using the following relaxed notion of an
averaging sampler, introduced by Vadhan [55], which is a hybrid of a sampler and a hitter
(see discussion following the definition).

O. Goldreich, E. Viola, and A. Wigderson 613

I Definition 2.6 (averaging samplers, relaxed [55, Def. 6.1]5). A function S : {0, 1}r → [n]t is
called a (µ, µ′, γ)-averaging sampler if for every f : [n]→ [0, 1] such that ρ(f) def= Ei∈[n][f(i)] ≥
µ it holds that

PrI←S(Ur)

[
1
t

∑
i∈I

f(i) < µ′

]
≤ γ. (1)

Furthermore, it is required that |S(u)| = t for every u ∈ {0, 1}r; that is, the sampler must
always generate t distinct elements.

The standard notion of a (δ, γ)-averaging sampler is obtained from Definition 2.6 by requiring
that S is an (µ, µ − δ, γ)-averaging sampler for every µ ∈ [0, 1]. (Note that in such a case
an upper bound on the probability that 1

t

∑
i∈I f(i) > ρ(f) + δ follows by considering

the function 1 − f .) The definition of a (µ, γ)-hitter is obtained from Definition 2.6 by
replacing Eq. (1) with PrI←S(Ur)[

∑
i∈I f(i) = 0] ≤ γ. (Indeed, the latter definition remains

intact if one only considers Boolean functions f : [n] → {0, 1} (such that ρ(f) ≥ µ).)6
(In Appendix A.1 we prove two useful features of such averaging samplers, although these
features are not essential to this write-up.)

The relevance of averaging samplers to our project is captured by the following composition
theorem of Vadhan [55].

I Theorem 2.7 (sample-then-extract [55, Thm. 6.3]7). For any 0 < 3τ < δ ≤ 1, let µ =
(δ − 2τ)/ log(1/τ) and µ′ = (δ − 3τ)/ log(1/τ). Suppose that the following two conditions
hold.
1. S : {0, 1}r → [n]t is a (µ, µ′, γ)-averaging sampler;
2. E0 : {0, 1}t × {0, 1}r0 → {0, 1}m is a ((δ − 3τ) · t, ε0)-extractor.
Then, E : {0, 1}n × {0, 1}r0+r → {0, 1}m defined by E(x, (s0, s)) = E0(xS(s), s0) is a (δ ·
n, ε0 + γ + exp(−Ω(τn)))-extractor. Furthermore, if E0 is strong then so is E.

For any β ∈ (0, 1), setting τ = (1− β)δ/3 and assuming that δ = ω(log(1/ε)/n), we obtain
the following simplified form.

I Corollary 2.8 (Theorem 2.7, specialized). For any β ∈ (0, 1) and δ = ω(log(1/ε)/n), let
µ′ = Θ(δ/ log(1/δ)) and µ = 1+2β

3β · µ = (1 + Ω(1)) · µ′. Suppose that the following two
conditions hold.
1. S : {0, 1}r → [n]t is a (µ, µ′, ε)-averaging sampler;
2. E0 : {0, 1}t × {0, 1}r0 → {0, 1}m is a (βδ · t, ε)-extractor.
Then, E : {0, 1}n×{0, 1}r0+r → {0, 1}m defined by E(x, (s0, s)) = E0(xS(s), s0) is a (δ ·n, 3ε)-
extractor. Alternatively, if δ = Ω(log(1/γ)/n) and S is a (µ, µ′, γ)-averaging sampler, then
E is a (δ · n, ε+ γΩ(1))-extractor. Furthermore, if E0 is strong then so is E.

Indeed, when using Corollary 2.8 one should artificially set the error parameter of both
constructs in the hypothesis to be the maximum of their actual values. Note that if both S
and E0 are computable in (uniform) AC0, then so is E.

5 The formulation in [55, Def. 6.1] is slightly different: Firstly, the current (µ, µ′, γ)-averaging sampler
corresponds to a (µ, µ − µ′, γ)-averaging sampler in [55, Def. 6.1]. Secondly, the “distinct element
condition” is an integral part of Definition 2.6, whereas it is an additional feature in [55, Def. 6.1].

6 See the proof of [28, Thm. 5.10], which is adapted in the proof of Claim A.2.
7 The formulation in [55, Thm. 6.3] is slightly different: See Footnote 5.

CCC 2015

614 On Randomness Extraction in AC0

3 Local extractors and extraction in AC0

In this section, we use local extractors and the ideas underlying their construction to obtain
extractors computable in AC0. This approach was already used in proving Theorem 2.4, and
we stated our intention to use it towards proving Theorems 1.2 and 3.1. Let us spell out
how Theorem 2.4 was proved, in order to clarify the connection between local extraction and
extraction in AC0.

Theorem 2.4 asserts an (explicit) extractor of logarithmic locality and logarithmic seed
length. This means that for any possible seed, the residual extraction function depends only
on logarithmically many bits in the source, which implies that these residual functions can
be computed by depth-two circuits of polynomial size. Combining the polynomially many
circuits that correspond to all possible fixing of the seed, we obtain the desired AC0-extractor.

Note that the foregoing argument can be turned around: It implies that if AC0 cannot
compute extractors with logarithmic seed length for certain parameters, then such extractors
cannot have logarithmic locality. We mention that Bogdanov and Guo [11] proved a
logarithmic lower bound on the locality of extractors, which (unlike our lower bounds)
applies also to the case of k(n) = Ω(n), but this does not rule out AC0-extractors (see
Theorem 2.4).

Turning to Theorem 1.2 and its explicit version (captured by Theorem 3.1), recall that
its proof is based on Vadhan’s sample-then-extract technique (as stated in [55, Thm. 6.3]
and restated in Corollary 2.8). The starting point is the proof of Theorem 2.5, which uses
a sampler (of a logarithmically long seed) that samples poly-logarithmically many bits of
the source. Unlike Vadhan, we cannot afford an arbitrary extractor here, so instead we use
an extractor that can be computed by (explicit) constant-depth circuits of poly(n)-size (see
Section 3.1 for details). In addition, we make the entire construction explicit by using a new
explicit sampler (instead of the non-explicit sampler used originally in [55]). Thus, we obtain:

I Theorem 3.1 (an explicit version of Theorem 1.2). For every k(n) = n/poly(logn) and
ε(n) = 1/poly(n), there exist explicit AC0 circuits that compute a strong (k(n), ε(n))-
extractor E : {0, 1}n × {0, 1}O(logn) → {0, 1}Θ(logn). Furthermore, the circuits have depth
4 +

⌈
log(n/k(n))

log logn

⌉
.

The new explicit sampler, presented in Section 3.2, uses a seed of logarithmic length, and
so it is trivially implemented by uniform AC0 circuits. As stated in Corollary 3.5, combining
this sampler with Corollary 2.8, the construction of AC0-extractors for (n, k)-sources reduces
to the construction of poly(n)-circuits of constant depth for extraction from (t,Ω(k/n) · t)-
sources, where t = poly(n/k). Since k = n/poly(logn), we can afford constant-depth circuits
of size exp(tc) for a sufficiently small constant c > 0.

The applications of the new sampler are spelled out in Section 3.3. Since the new
extractor works only for t = Õ(n1/3) (or for constant error γ > 0), it does not suffice for the
application in Section 6, and so we present (in Section 3.4) an alternative sampler that works
essentially for any t and any error γ = 1/poly(n), which suffices for the latter application.
The alternative version uses a seed of polylogarithmic length, which forces us to detail its
implementation in AC0.

3.1 Proving Theorem 1.2
As a warm-up, we prove Theorem 1.2, which asserts that for every k(n) = n/poly(logn) and
ε(n) = 1/poly(n), there exist AC0 circuits that compute a strong (k(n), ε(n))-extractor E :
{0, 1}n×{0, 1}O(logn) → {0, 1}O(logn). (Furthermore, the circuits have depth 4 + log(n/k(n))

log logn .)

O. Goldreich, E. Viola, and A. Wigderson 615

Proof Sketch. We slightly modify the proof of [55, Thm. 7.4], which combines an averaging
sampler with an extractor (using [55, Thm. 6.3] (see Corollary 2.8)), while setting δ =
k(n)/n = 1/poly(logn), m = Θ(logn) and t = O(m/δ). Specifically, instead of using the
(optimal) non-explicit extractor asserted in [55, Lem. 7.1], which may not be computable
in AC0, we shall use the strong (k0, ε)-extractor E0 : {0, 1}t × {0, 1}O(logn) → {0, 1}m(n)

asserted in [29, Sec. 5], where k0 = O(m+ log(1/ε)). Recall that this extractor uses a seed
of length O(m+ log(t/ε)) = O(logn). (At this point we use the same non-explicit averaging
sampler as in the original proof; that is, the sampler of [55, Lem. 7.2.].)

The key observation is that E0 can be computed by (uniform) poly(n)-size circuits of
depth 2 + logm t = 3 + log(n/k(n))

logm , since the residual computation (resulting when fixing
the seed) amounts to a linear combination (over GF(2O(log t))) of O(log t)-bit long blocks
of the t-bit source viewed as a sequence of t/O(log t) elements over a field of size poly(t).
The sampler itself uses a logarithmically long seed, and thus can be computed by depth two
circuits of polynomial size. J

Towards the explicit version

The foregoing proof, which follows the proof of [55, Lem. 7.1], combines an adequate sampler
with an adequate extractor using the composition theorem of [55, Thm. 6.3]. Recall that we
replaced the extractor used in the original proof by an alternative extractor, which happens
to be explicit. In order to obtain an explicit version of the foregoing construction (i.e., prove
an explicit version of Theorem 1.2), we also need to replace the non-explicit sampler used in
the original proof. This will be done in Section 3.3, after designing an explicit sampler (in
Section 3.2).

3.2 A new averaging sampler
As stated in Section 3.1, a central ingredient in our constructions is a new sampler that
uses a seed of logarithmic length regardless of the density (i.e., µ) of the functions that
it semi-approximates, where by “semi-approximates” we refer to the relaxed notion of an
averaging sampler (as reviewed in Definition 2.6).

I Theorem 3.2 (an averaging sampler with logarithmic seed length). Let α ∈ (0, 1) be an
arbitrary constant. Then, for every µ > n−1/3/poly(logn) and γ ≥ 1/poly(n), there exists an
explicit (µ, αµ, γ)-averaging sampler S : {0, 1}O(logn) → [n]t for any t ∈ [Θ(µ−1 log(n/γ)),
Õ(n1/3)]. An analogous result holds for any µ > 1/n, t = Ω(1/µ), and any constant γ > 0.

That is, the main claim requires µ > n−1/3 and allows γ ≥ 1/poly(n), whereas the alternative
allows any µ > 0 (equiv., µ > 1/n) but provide only for constant γ > 0. (The constant 1/3,
in the exponent, can be replaced by any constant smaller than 1/2.)

Proof. We first establish the result for a constant γ, and then extend it to arbitrary
γ ≥ 1/poly(n). Our starting point is the observation that the pairwise-independence
generator yields a (µ, αµ, γ)-averaging sampler with t = Θ(1/γµ) samples. Basically, the
behavior of this generator with respect to the relaxed notion of averaging samplers (as in
Definition 2.6) is similar to its behavior with respect to the notion of hitters (i.e., the sample
size is linearly related to O(1/µ)).

I Claim 3.3 (the pairwise independence generator as an averaging sampler). Let F be a finite
field, t < |F |, and φ1, . . . , φt be t distinct non-zero elements of F . Consider G : F 2 → F t

CCC 2015

616 On Randomness Extraction in AC0

such that, for every r, s ∈ F ,

G(r, s) = (r + φ1s, r + φ2s, . . . , r + φts).

Then, for any constants α, β ∈ (0, 1), selecting uniformly and independently r ∈ F and
s ∈ F \ {0}, and outputting G(r, s) yields a (µ, αµ, β)-averaging sampler for µ = Ω(1/t).

We shall also use the fact that each of the elements in the sample is uniformly distributed in F .
An alternative construction that enjoys all the above features is the expander neighborhood
generator (see, e.g., [28, Apdx. C.2]), when instantiated with Ramanujan graphs (see [42]).

Proof. The proof is by a straightforward adaptation of the proof of the hitting property (see,
e.g., [28, Apdx. C.2]). Specifically, for r and s selected uniformly in F , and any function
f : F → [0, 1] such that ρ(f) ≥ µ, denoting by ζj the value of f(r + φjs), we have

Pr

 t∑
j=1

ζj < α · ρ(f) · t

 ≤ Pr

∣∣∣∣∣∣t · ρ(f)−
t∑

j=1
ζj

∣∣∣∣∣∣ > (1− α) · t · ρ(f)

≤ t · (1− ρ(f)) · ρ(f)

((1− α) · t · ρ(f))2

<
1

(1− α)2 · µ · t

where the second inequality uses Chebyshev’s Inequality. Avoiding the choice of s = 0
guarantees that the t elements in G(r, s) are indeed disjoint, while skewing the probability
by at most 1/|F | = o(1). J

Establishing the alternative claim (of the theorem) and moving on. Associating [n] with
the non-zero elements of a finite field (of size approximately n)8 and using any t ≥ O(1/µ), we
obtain an (µ, αµ, β)-averaging sampler that uses a seed of length 2 logn (as in the alternative
claim).

In order to reduce the error probability to γ = 1/poly(n), we shall use a random walk of
length ` = O(log(n/γ)) on a constant-degree expander over the vertex set [n2] to generate
seeds for the generator G of Claim 3.3. Actually, in order to guarantee that these seeds do
not generate samples that intersect, we will shift these seeds using a O(1)-wise independent
sequence over [n]2, and discard a small part of the resulting sample. The point is that
this combination yields a sequence that maintains the sampling features of the expander
random walk and the property that each O(1) elements of the sequence are independently
and uniformly distributed in the set. (At this point, we shall discard the few repetitions.)

I Claim 3.4 (a randomized version of the “random walk on an expander” hitter). For every
constants ε > 0 and c ∈ N and a varying m, let ` = O(logm) be sufficiently large, and
consider the following generator, denoted G′, that uses a seed of length O(logm).
1. The generator uses the first part of the seed to generate a random walk of length ` on a

poly(1/ε)-regular expander with vertex set Zm. Denote the sequence of visited vertices by
(v1, . . . , v`).

2. The generator uses the second part of the seed to generate a 2c-wise independent sequence
of ` elements in Zm, denoted (s1, . . . , s`).

8 The discrepancy between the field size and n can be ignored (e.g., by using a slightly bigger field and
mapping elements out of [n] is some standard manner).

O. Goldreich, E. Viola, and A. Wigderson 617

3. For every i ∈ [`], the generator computes v′i ← vi + si mod m.
4. The generator outputs the sequence of the first `′ = `− c distinct elements in the sequence

(v′1, . . . , v′`), and outputs (1, .., `′) if |{v′i : i ∈ [`]}| < `− c.
Then, the foregoing generator is a (1− ε, 1−O(

√
ε), exp(−Ω(`))-averaging sampler.

In other words, for every constants ε > 0 and c ∈ N, the generator G′ : {0, 1}O(logm) →
(Zm)O(logm) is a (1− ε, 1−O(

√
ε),m−c)-averaging sampler.

Proof. We first upper bound the probability that |{v′i : i ∈ [`]}| < `− c. Fixing any sequence
of vi’s (as selected in Step 1), we consider the probability space generated by Step 3. For
the bad event to occur, there must be a set of 2c indices, denoted I, such that the set
SI

def= {vi + si mod m : i ∈ I} has cardinality smaller than c. Since for every 2c-subset I it
holds that Pr[|SI | < c] <

(
m
c

)
· (c/m)2c < (c2/m)c, the bad event occurs with probability

at most
(
`
2c
)
· (c2/m)c < (c2`2/m)c < 2−Ω(`), provided that `/ logm is a sufficiently large

constant.
We now analyze the sampling property of the sequence of all v′i’s, while noting that any

subsequence of length `′ will do almost as well (since the omission causes a loss of at most
c = o(

√
ε`) units). Fixing an arbitrary function f : Zm → [0, 1] such that ρ(f) ≥ 1− ε, we

now fix an arbitrary sequence (s1, . . . , s`) as selected in Step 2. This selection induces `
auxiliary functions f1, . . . , f` such that fi(x) = f(x+ si mod m), since under this definition
f(v′i) = fi(vi). Setting ε′ = 6

√
ε, we shall prove that

Pr

∑
i∈[`]

fi(vi) < ` · (1− ε′)

 = exp(−Ω(`)), (2)

where (v1, . . . , v`) is generated as in Step 1. We recall the general Expander Random Walk
Theorem (see [28, Thm. A.4]), which asserts that for Boolean functions bi : [m] → {0, 1}
it holds that Pr[

∑
i∈[`] bi(vi) = `] <

∏
i∈[`] min(1, ρ(bi) + ε)1/2, where ε upper bounds the

(square of) the spectral gap of the expander (i.e., the expander was chosen so that this
upper bound holds). Hence, Eq. (2) follows for Boolean fi’s by considering all ε′`-subsets
I ⊂ [`] and setting bi = 1 − fi if i ∈ I and bi = 1 otherwise. Specifically, the probability
that

∑
i∈[`] fi(vi) < (1− ε′) · ` is upper bounded by

(
`
ε′`

)
· (2ε)ε′`/2, since this event can occur

only if there exists a ε′`-subset I such that for every i ∈ I it holds that fi(vi) = 0 (whereas
ρ(fi) ≥ 1− ε).9 Now, using(

`

ε′`

)
· (2ε)ε

′`/2 < (3`/ε′`)ε
′` · (2ε)ε

′`/2

= (1/2)ε
′`/2,

where the equality uses ε′ = 6
√
ε, and the claim follows (for Boolean f).

Observing that any averaging sampler for Boolean functions also works for general
functions (see Claim A.2), the claim is established. In this case, we can establish that the
generator is a (1−0.5ε, 1−O(

√
ε), exp(−Ω(`))-averaging sampler. An alternative argument for

the current setting may proceed by defining auxiliary Boolean functions f ′i such that f ′i(x) = 1
if and only if fi(x) ≥ 1− ε1/3, noting that ρ(f ′i) ≥ 1− ε2/3, and using ε′ = O(ε1/3). (This

9 Note that, for this I, we have ρ(bi) ≤ ε for i ∈ I and bi ≡ 1 otherwise. Hence,
∑

i∈I fi(vi) = 0 if and
only if

∑
i∈I bi(vi) = |I|, which holds if and only if

∑
i∈[`] bi(vi) = `, whereas the probability of the

latter event is upper bounded by
∏
i∈[`] min(1, ρ(bi) + ε)1/2 ≤ (2ε)|I|/2.

CCC 2015

618 On Randomness Extraction in AC0

alternative only establishes that the generator is a (1− ε, 1−O(ε1/3), exp(−Ω(`))-averaging
sampler, which is good enough for our application.) J

Establishing the main claim of the theorem. The theorem follows by combining the
samplers asserted in Claims 3.3 and 3.4. Specifically, we use G′ of Claim 3.4 to generate a
sequence of `′ seeds for the generator G of Claim 3.3 (i.e., we set m = n2 and associate Zm
with (F \ {0})2 ≡ [n]2). Actually, we might as well use the sequence of all ` seeds defined in
Step 3 of G′ (since we are going to make our own omissions anyhow). We set the constant
parameter β in Claim 3.3 so to fit ε in Claim 3.4 (i.e., β = ε), while picking the constant
parameter α < 1 as large as we wish (and ditto w.r.t t ∈ [Θ(µ−1 log(n/γ)), Õ(n1/3)]).
That is, the combined generator maps its seed s ∈ {0, 1}O(logn) to the sequence of sets
G(s1), . . . , G(s`), where (s1, . . . , s`)← G′(s).

The combined generator satisfies the average sampling property of Eq. (1); that is, for
every f : [n]→ [0, 1] such that ρ(f) ≥ µ, with probability at least 1− γ, the ` · t-sized sample,
denoted I, satisfies (1/|I|) ·

∑
i∈I f(i) ≥ (1 − O(

√
ε)) · αµ. This is the case since at least

1 − O(
√
ε) fraction of the seeds generated by G′ produce samples that have an f -average

of at least αµ. (Indeed, the one-sided flavor of Eq. (1) allows to discard the exceptional
seeds.) Since ε > 0 and 1 − α > 0 can be made arbitrarily small constants, we can have
(1− O(

√
ε)) · α be arbitrarily close to one. We note that the sampling guarantee remains

valid also if we omit any o(`) of the ` samples (produced by the ` seeds generated by G′).
The question is whether the sample I contains no repetitions. Recall that G generates

samples that have no repetitions, and that the t elements in each sample are each uniformly
distributed in [n]. For any desired c, the seeds generated by G′ are 2c-wise independent. Now,
consider a random graph R with vertices corresponding to the ` seeds and edges connecting
a pair of seeds if and only if the corresponding samples intersect. We claim that, with
probability at least 1− (`2t2/n)c, this graph has an independent set of size `− 2c.

To prove the last claim note that if the graph has no vertex cover of size 2c, then it must
have a matching of size greater than c. We shall show that even having a matching of size
c is unlikely. Denoting the number of possible matching of size c in an `-vertex graph by
M <

(
`
2c
)
· (2c!) < `2c, note that the probability that the graph R has a matching of size

c is upper bounded by M · (t2/n)c < (`2t2/n)c, because we consider M · (t2)c events, and
each event occurs with probability (1/n)c. Specifically, each event corresponds to a choice of
c disjoint pairs of seeds and a choice of a pair of samples per each pair of seeds, and this
sequence of 2c samples is uniformly distributed in [n]2c. (Here we use the fact that the seeds
generated by G′ are uniformly distributed in an 2c-wise independent manner, and that each
sample generated by G is uniformly distributed in [n].)

Recalling that t = Õ(n1/3) and ` = O(logn) (and γ = 1/poly(n)), and that c is a constant
chosen at our discretion, we conclude that with probability 1 − γ the graph contains an
independent set of size `− 2c, which means that the ` seeds generate at least `− 2c disjoint
samples. The final sampler outputs the union of `− 2c disjoint samples, and an arbitrary
sequence of (`− 2c) · t elements otherwise (i.e., if such a collection of disjoint samples does
not exist). By the foregoing analysis this final sampler also satisfies the average sampling
property of Eq. (1). J

3.3 Applications to explicit constructions of extractors
We first describe the implication of the new averaging sampler on randomness extraction in
AC0 (from (n, k)-sources). We start by spelling out the construction obtained by instantiating
Corollary 2.8 with the averaging sampler of Theorem 3.2.

O. Goldreich, E. Viola, and A. Wigderson 619

I Corollary 3.5 (using the averaging sampler of Theorem 3.2). Let β ∈ (0, 1) be a constant,
δ > n−1/3 and t ∈ [Θ(δ−1 log2 n), Õ(n1/3)]. Suppose that E0 : {0, 1}t × {0, 1}r0 → {0, 1}m is
a (βδ · t, ε)-extractor that is computable by (uniform) constant-depth circuits of poly(n)-size.
Then, there exists a (δ · n, 3 ·max(ε, poly(1/n)))-extractor E : {0, 1}n × {0, 1}r0+O(logn) →
{0, 1}m that is computable by (uniform) AC0 circuits. Furthermore, the depth of the circuits
for E is only one unit more than the depth of the circuits for E0, and if E0 is strong then so
is E.

(The constant 1/3 can be replaced by any constant smaller than 1/2.)

Proof. Towards invoking Corollary 2.8, we set µ′ = βδ/O(log(1/δ)) and µ = 1+2β
3β ·µ

′. We use
the (µ, µ′, 1/poly(n))-averaging sampler S : {0, 1}O(logn) → [n]t of Theorem 3.2, while noting
that µ′/µ = 3β/(1 + 2β) is a constant smaller than 1, whereas µ > n−1/3/poly(logn) and
t = Ω(δ−1 log2 n) = Ω(µ−1 logn). Invoking Corollary 2.8, while noting that δ = ω((logn)/n)
and that S is computable by uniform DNFs (resp., CNFs) of poly(n)-size, we obtain the
desired extractor. J

Next, combining Corollary 3.5 with known extractors, which can be computed by constant-
depth circuits of poly(n)-size, we derive the following –

I Corollary 3.6 (extraction in AC0 with seed of logarithmic length).
1. (Theorem 3.1, restated): For every k(n) ≥ n/poly(logn) and ε(n) = 1/poly(n), there

exist explicit AC0 circuits that compute a strong (k(n), ε(n))-extractor E : {0, 1}n ×
{0, 1}O(logn) → {0, 1}Θ(logn). Furthermore, the circuits have depth 4 +

⌈
log(n/k(n))

log logn

⌉
.

2. For every k(n) ≥ n/poly(logn), m(n) = poly(logn), and ε(n) = 1/poly(logn), there
exist explicit AC0 circuits that compute a strong (k(n), ε(n))-extractor E : {0, 1}n ×
{0, 1}O(logn) → {0, 1}m(n). Furthermore, the circuits have depth 3 +

⌈
log(m(n)·n/k(n))

log logn

⌉
.

The extractor of Part 2 has longer output (i.e., m(n) = poly(logn) rather than m(n) =
O(logn)), but weaker quality than the extractor of Part 1 (i.e., ε(n) = 1/poly(logn) rather
than ε(n) = 1/poly(n)). We cannot afford the error-reduction procedures of [49], since these
procedures seem sequential in nature. But it may be possible to implement the extractor
of [31] (or another adequate extractor) by constant-depth circuits of sub-exponential size;
in general, for a parameter ` (to be set to O(logn)) and any δ > 1/poly(`) and t = poly(`),
we merely need exp(−Ω(`))-error extractors for (δt, t)-sources that are implementable by
constant-depth circuits of exp(`)-size and extract (δt)Ω(1) bits.

Proof. Starting with Corollary 3.5, the two parts are proved by providing corresponding
extractors. Specifically, we set β = 1/2, δ = k(n)/n and t = Θ((logn)c · δ−1), for a constant
c ≥ 1 selected below, and pick an adequate extractor E0 : {0, 1}t × {0, 1}r0 → {0, 1}m.

For Part 1 we set c = 1 and use the strong (δt/2, ε)-extractor E0 : {0, 1}t × {0, 1}r0 →
{0, 1}m asserted in [29, Sec. 5], which supports r0 = O(m) for m = Θ(δt) − log(1/ε).
Using ε = 1/poly(n) and t = Ω(δ−1 logn), we have m = Θ(logn), and all claims follow,
since (as detailed next) E0 can be computed by (uniform) poly(n)-size circuits of depth
2 + dlogm te = 3 + d(log(n/k(n)))/ logme.

To see that E0 can be computed by (uniform) poly(n)-size circuits of depth 2 + dlogm te,
we consider all poly(n) possible fixings of its seed, and observe that E0 can be computed
by a depth-two circuit that selects the appropriate residual circuit. As noted in Section 3.1,
viewing the t-bit source as a sequence of t/O(log t) elements over a field F of size poly(t), the
residual computation (for each fixing of the seed to E0) amounts to a linear combination (over

CCC 2015

620 On Randomness Extraction in AC0

F) of these field elements. Such linear combinations can be computed by depth 1 + dlogm te
circuits of poly(n)-size.

Turning to Part 2, we set c = logm
log logn + 1 (i.e., m = (logn)c−1) and use the strong

(δt/2, ε)-extractor E0 : {0, 1}t × {0, 1}r0 → {0, 1}m asserted by Trevisan [54], which supports
r0 = O(log(t/ε)) and m = (δt/2)(c−1)/c, provided that δt/2 > tΩ(1) and ε = 1/poly(t).
Recalling that the residual computations corresponding to Trevisan’s extractor amounts to a
linear combination of the t bits, we conclude that these linear combinations can be computed
by depth 1 + dloglogn te = 1 + dc+ loglogn(n/k(n))e circuits of poly(n)-size. J

Application to explicit constructions of local extractors

Combining Theorem 3.2 with [55, Thm. 6.3] (see Corollary 2.8), yields improved parameters
for explicit local extractors. Further improvement is obtained by using better extractors (i.e.,
the current state-of-art extractors of Guruswami et al. [31, Thm. 1.5]) than those available
to Vadhan [55].10

I Corollary 3.7 (implications to locally computable extractors). For every constant α ∈ (0, 1),
k = Ω(poly(logn)) and ε = 1/poly(n), and every t ≥ min(Θ((n/k) log2 n), n), there exists an
explicit construction of a t-local (k, ε)-extractor E : {0, 1}n × {0, 1}O(logn) → {0, 1}α·(k/n)·t.

Proof Sketch. Assume that t < n, since otherwise the claim is trivial (using t = n and [31,
Thm. 1.5]). Now, setting δ = k(n)/n, µ = δ/O(log(1/δ)) and t ≥ Θ(µ−1 logn), combine the
(µ, αµ, 0.3ε)-averaging sampler of Theorem 3.2 (which maps {0, 1}O(logn) to [n]t) with the
(αδt, 0.3ε)-extractor of Guruswami et al. [31, Thm. 1.5] (set to map {0, 1}t × {0, 1}O(log(t/ε))

to {0, 1}α2δt), where the combination is via Corollary 2.8. This yields extraction of α2δt

bits. J

3.4 An alternative averaging sampler
The drawback of the averaging sampler presented in Theorem 3.2 is that it does not apply
to the case that both µ < n−1/2 and γ < 1/n2 (or so). This was good enough for the
applications to extraction in AC0 presented in Section 3.3, but is not sufficient for other
applications (see, e.g., Section 6, and specifically Corollary 6.2).

Recall that the reason for the lower bound on µ is that we needed t2 > µ−2 to be
(significantly) smaller than n, so that we may expect two random t-subsets of [n] to be
disjoint. The latter condition was used for establishing the claim that the sampler always
generate distinct elements (as required in the furthermore clause of Definition 2.6). We now
achieve the latter goal while using a seed of length O(logn)2, rather than O(logn), which
suffices for our application (i.e., Corollary 6.2).

I Theorem 3.8 (an averaging sampler for all densities). Let α ∈ (0, 1) be an arbitrary constant.
Then, for every µ > 1/n and γ ≥ 1/poly(n), there exist explicit constant-depth poly(n)-size
circuits Cn : {0, 1}O(logn)2 → [n]t that compute a (µ(n), αµ(n), γ(n))-averaging sampler for
any t ∈ [Θ(µ−1 log2 n), 0.1n].

Proof Sketch. Our starting point is the simple (pairwise independence) averaging sampler
G asserted in Claim 3.3. Setting ` = O(logn), we consider ` independent invocations of

10The latter improvement is in the output length and in some cases in the deviation parameter ε. Specifically,
using only extractors that were available to Vadhan (i.e., [54, 49]), one can extract Ω((k/n) · t)0.999 bits
(rather than Ω((k/n) · t) bits) for ε = max(poly(1/n), exp(−t1−o(1))).

O. Goldreich, E. Viola, and A. Wigderson 621

G and the sequence of ` · t elements generated. Denoting this sequence (or multi-set) by
S, note that each element occurs in S at most ` times, since the sets generated by G have
no repetitions. Denoting the number of occurrences of i (in the multi-set S) by qi, we use
an `-wise independent sequence of length n over [`] in order to select each i ∈ [n] with
probability qi/`, resulting in a set S′ (with no repetitions).

Using an `th moment inequality (see Appendix A.2) it can be shown that the probability
that the number of sampled elements is (1± ε) · t is greater than 1− (ε−2`2/t)`/2, since the
expected number is ` · t/` (whereas t ≥ 2ε−2`2 = O(log2 n), since we refer to any constant
ε > 0). Fixing any f : [n]→ [0, 1] such that ρ(f) ≥ µ, and assuming that

∑
i∈S f(i) ≥ αµ · `t

(which occurs with probability at least 1− γ (cf. the proof of Theorem 3.2)), we apply the
same reasoning to the f -value of the random set S′. Specifically, since t = Ω(µ−1 log2 n), it
follows that for any constant ε > 0 the probability that

∑
i∈S′ f(i) < (1 − ε) · αµ · t, is at

most (ε−2`2/αµt)`/2 < γ (where here we use t ≥ 2ε−2α−1µ−1`2 = O(µ−1 log2 n)). Finally,
we augment the set S′ so to obtain a set of size exactly (1 + 2ε) · t.

It is left to show that the foregoing sampler can be implemented by uniform constant-
depth circuits of poly(n)-size. This is not straightforward. Hence, the foregoing description
is merely an intuitive motivation and the actual implementation proceeds as follows.
1. Obtaining the multi-set S (by using ` invocations of G), and generating an `-wise

independent sequence (p1, . . . , pn) ∈ [`]n.
The implementation of this step by uniform constant-depth circuits of size poly(n) is
straightforward for G and quite standard for the `-wise independent sequence. The con-
struction of an `-wise independent sequence over [`] is actually performed over GF(2logn),
and involves taking various linear combinations of ` field elements, which constitute the
seed of the `-wise independence generator.

2. Computing the number of occurrences of each element (in S) and producing the set S′.
Specifically, the element e ∈ [n] in included in S′ if and only if it occurs in S at least pe
times (i.e., qe ≥ pe), where (p1, . . . , pn) is the sequence produced in Step 1.
This can be done by uniform constant-depth circuits of size poly(n) because the number
of occurrences of element e ∈ [n] in S equals the cardinality of the maximal set I ⊆ [`]
such that each index in I corresponds to an invocation of G that produced a sample that
contains e. Specifically, the condition to check for each set I is that for every i ∈ I there
exists j ∈ [t] such that ri + φjsi = e, where (ri, si) is the seed used in the ith invocation
of G. (Alternatively, we can count the number of occurrences of each e ∈ [n] in S by
using a counter for small values, as in Step 3(b).) Indeed, we obtain a representation of
S as an n-long sequence over {0, 1, . . . , `}, and produce (or sieve out) the set S′ using
the same representation, which means that S′ is represented as an n-bit long sequence.
The above actions can be performed by uniform constant-depth circuits of size 2`·poly(n) =
poly(n). Note, however, that the set S′ is not in the standard format that we use
throughout this paper, which is a format that seems essential for having AC0 circuits
compute a mapping of the form (x, S′) 7→ xS′ . The next steps are aimed at putting S′ in
the standard format.

3. Making progress towards obtaining a standard representation of S′ (as a sequence of
elements of [n]) is done as follows.
a. First, we select an `-wise independent hash function h : [n]→ [t/`3] and hash S′ ⊂ [n]

to [t/`3] such that, with probability at least 1− γ, each image i ∈ [t/`3] is assigned
(1 ± 2ε) · `3 elements of S′. (The probabilistic claim holds by virtue of the `-wise
independent hash function we use, while noting that (1− e) · `3 > 2ε−2 · `2.)

b. Next, we rank the elements of S′ that are hashed by h to each image i ∈ [t/`3].

CCC 2015

622 On Randomness Extraction in AC0

This is done by using a (uniform AC0) counter for small values (i.e., a uniform AC0

circuits that counts the number of ones a string of length n, when guaranteed that
this number does not exceed poly(logn)).11 An explicit construction of such a counter
was presented in [48], improving over [3, Sec. 5] (and subsequent works).12

Here, we count for each e ∈ (S′ ∩h−1(i)) the number of elements in S′ that are smaller
than e and are hashed by h to h(e) (i.e., we compute

∑
e′∈[n] χe′ , where χe′ = 1 if

e′ ∈ S′ and h(e′) = h(e)).
At the end of the current step we obtain a representation of S′ as a sequence of t/`3
(sorted) sets that are each of size (1±2ε) · `3, where the latter claim holds with probability
1− 2γ. This is closed to the desired format, but is not quite there.
Note that the current step can be performed by uniform constant-depth circuits of size
poly(n), where the key observation is that such circuits can rank poly(logn) many elements
that reside in an array of length n. (The implementation of that `-wise independent
hash functions from [n] to [n/`3] is similar to the implementation of `-wise independent
sequences over [`] discussed in Step 1.)

4. Obtaining a standard representation of the augmented set S′ (as a sequence of elements
of [n]) is done as follows. Indeed, obtaining the standard representation is linked to
augmenting the set S′ to a set of size exactly (1 + 2ε) · t.
Using an `-wise independent sequence of length t over [n], we first select t elements of [n],
while noting that (with probability at least 1− γ) we obtain at least t/2 distinct elements
that are not in S′. (Here we use t ≤ 0.1n.) Furthermore, the number of additional
elements mapped to each image of the (`-wise independent) hash function h (used in
Step 3) is at most (1 + ε) · `3 and the number of additional elements not in S′ that are
mapped to this image under h is at least `3/2.
Denoting the multi-set of additional elements by A and fixing a good hash function h,
note that for every i ∈ [t/`3] it holds that (i) |S′∩h−1(i)| = (1±2ε) ·`3, (ii) |A∩h−1(i)| ≤
(1 + ε) · `3, and (iii) |(A \ S′) ∩ h−1(i)| ≥ `3/2. Now, we rank the O(`3) elements of A
that are mapped by h to each image i ∈ [t/`3], just as we did with S′ in Step 3, and use
the two rankings in order to obtain a list of (1 + 2ε) · `3 elements that are mapped (by h)
to i such that this list contains all elements in S′ ∩ h−1(i). (Specifically, we place the
jth elements of S′ ∩ h−1(i) in position j, and the jth element of A ∩ h−1(i) in position
|S′ ∩ h−1(i)|+ j ≤ (1 + 2ε)`3.)13 At this point we have the desired format.

If any of these steps failed, which happened with probability O(γ), then we just output a
fixed sequence. J

I Corollary 3.9 (using the averaging sampler of Theorem 3.8). Let β ∈ (0, 1) be a constant,
δ = Ω(logn)/n and t ∈ [Θ(δ−1 log3 n), 0.1n]. Suppose that E0 : {0, 1}t × {0, 1}r0 → {0, 1}m
is a (βδ · t, ε)-extractor that is computable by (uniform) constant-depth circuits of poly(n)-size.
Then, there exists a (δ · n, ε+ poly(1/n))-extractor E : {0, 1}n × {0, 1}r0+O(logn)2 → {0, 1}m
that is computable by (uniform) AC0 circuits.

11These circuit can also detect the case that the guarantee is violated.
12An alternative construction is presented in Appendix A.3.
13Alternatively, we can just rank the the O(`3) elements of S′ ∪A that are mapped by h to each image
i ∈ [t/`3], while considering the elements of S′ as smaller than those of A. Either way, the fact that
A is a multi-set is irrelevant to our analysis, and the procedure just uses each element of A as if it
has appeared with multiplicity 1. In contrast, one should not ignore multiplicity when considering the
multi-set S, since multiplicity may have an effect on the sampling properties of S.

O. Goldreich, E. Viola, and A. Wigderson 623

Proof Sketch. As in the proof of Corollary 3.5, towards invoking Corollary 2.8, we set
µ′ = βδ/O(log(1/δ)) and µ = 1+2β

3β · µ
′. But here we use the (µ, µ′, 1/poly(n))-averaging

sampler S : {0, 1}O(logn)2 → [n]t of Theorem 3.8, while noting that δ = Ω((logn)/n)
and t = Ω(µ−1 log2 n). Invoking the alternative part of Corollary 2.8, while noting that
δ = Ω((logn)/n), the claim follows. J

4 Extraction from Block Sources

We consider block sources as defined by Chor and Goldreich [17], and not their generalization
as used by Zuckerman [61, 62] (see also [46]) and subsequent works.

I Definition 4.1 (block sources [17]14). An (n, (`, b))-block source is a sequence of (possibly
dependent) random variables X = (X1, . . . , Xn) ∈ {0, 1}n` such that for every i ∈ [n] and
x1, . . . , xi ∈ {0, 1}` it holds that

Pr[Xi = xi|X1 ◦ · · · ◦Xi−1 = x1 ◦ · · · ◦ xi−1] ≤ 2−b

It follows that Pr[X1 ◦ · · · ◦ Xn = x1 ◦ · · · ◦ xn] ≤ (2−b)n, which means that X is an
(n`, nb)-source.

A short discussion

Zuckerman and subsequent works considered a generalized definition of block sources with
varying block-length, where typically the blocks lengths decrease drastically (e.g., |Xi| <
|Xi−1|/2). This was used as a methodological step towards constructing extractors for general
min-entropy sources. While the study of randomness extractors for general min-entropy
sources proved to have numerous applications (most of which were not envisioned originally),
we believe that the original motivation of extracting high-quality randomness out of low-quality
sources of randomness is extremely important. Furthermore, we believe that block sources
are a very realistic model of poor sources of randomness, and hence we believe that extracting
high-quality randomness from such sources is of great importance.

Of course, one can extract randomness from block sources by using a corresponding
extractor for general min-entropy sources, since any ε-error extractor for (n`, nb)-sources
is an ε-error extractor for (n, (`, b))-sources. Yet, more advantageous constructions may be
possible for block sources, because the latter are a very restricted special case. In particular,
it may be desirable to extract randomness on-the-fly (i.e., in a block-by-block manner), rather
than wait for the entire source outcome, and it may be desirable to do so without storing
much information. (Of course, this is impossible for general min-entropy sources.)

4.1 A simple extractor
The following construction extract randomness separately from each block, using the same
random seed, and without sharing any other information among the (block-based) steps of
the extraction process. We stress that using the same seed for extraction from all the blocks
harms the quality of the output in a small and minimal manner.

14Actually, block sources were defined in [17] as being an infinite sequence of random variables that satisfy
the (conditional) min-entropy bound.

CCC 2015

624 On Randomness Extraction in AC0

I Theorem 4.2 (a simple extractor for block sources). Let E : {0, 1}`×{0, 1}r → {0, 1}m be a
strong (b, ε)-extractor. Then, E′ : {0, 1}n`×{0, 1}r → {0, 1}nm defined by E′(x1◦· · ·◦xn, s) =
E(x1, s) ◦ · · · ◦ E(xn, s) is a strong n · ε-error extractor for (n, (`, b))-block sources.

Theorem 4.2 seems to be folklore. In particular, it follows as a special case of Lemma 5.7
of Guruswami et al. [31], but this fact is not transparent because their result refers to a
“block chaining” construction; that is, in their construction, the original seed is used on the
last block, and extraction from the ith block (via Ei) is used both for obtaining a part of
the output and a seed for extraction from the i − 1st block.15 Given a strong extractor
E as above, one should first define an auxiliary extractor E1(x, s) = (s, E(x, s)), and then
apply [31, Lem. 5.7] with Ei = E1 (for all i’s). (For sake of self-containment, we provide a
direct and detailed proof of Theorem 4.2.)

Proof. We need to upper bound the statistical distance between Unm+r and E(X1, Ur) ◦
· · · ◦ E(Xn, Ur) ◦ Ur, where all occurrences of Ur represent the same outcome and X =
(X1, . . . , Xn) ∈ {0, 1}n` is an (n, (`, b))-block source. We prove the claim by induction
on n, where the base case (of n = 1) is immediate by the hypothesis regarding E. In
the induction step we proceed as follows, using the notation X[j,k] = (Xj , . . . , Xk) and
E′(X[j,k], Ur) = E(Xj , Ur) ◦ · · · ◦ E(Xk, Ur), where the choice of i ∈ [n − 1] is immaterial
(i.e., any i ∈ [n− 1] will do):

∆[E′(X,Ur) ◦ Ur ;Unm ◦ Ur]
= ∆[E′(X[1,i], Ur) ◦ E′(X[i+1,n], Ur) ◦ Ur ;Uim ◦ U(n−i)m ◦ Ur]
≤ ∆[E′(X[1,i], Ur) ◦ E′(X[i+1,n], Ur) ◦ Ur ;E′(X[1,i], Ur) ◦ U(n−i)m ◦ Ur]

+ ∆[E′(X[1,i], Ur) ◦ U(n−i)m ◦ Ur ;Uim ◦ U(n−i)m ◦ Ur]
≤ ∆[X[1,i] ◦ E′(X[i+1,n], Ur) ◦ Ur ;X[1,i] ◦ U(n−i)m ◦ Ur] (3)

+ ∆[E′(X[1,i], Ur) ◦ Ur ;Uim ◦ Ur] (4)

where the last inequality uses the fact that ∆[Π(Y) ; Π(Z)] ≤∆[Y ;Z] holds for any random
process Π. Using the induction hypothesis (regarding extraction from the (i, (`, b))-source
X[1,i]), Eq. (4) is upper bounded by i · ε. So we turn to analyze Eq. (3). Letting X ′x denote
the distribution of X[i+1,n] conditioned on X[1,i] = x, we get

∆[X[1,i] ◦ E′(X[i+1,n], Ur) ◦ Ur ;X[1,i] ◦ U(n−i)m ◦ Ur]
= Ex←X[1,i] [∆[E′(X ′x, Ur) ◦ Ur ;U(n−i)m ◦ Ur]
≤ (n− i) · ε

where the inequality uses the induction hypothesis regarding extraction from the (n− i, (`, b))-
source X ′x. The claim follows. J

Relevance to the study of extraction in AC0

Theorem 4.2 reduces the complexity of extraction from (n, (`, b))-block sources to the com-
plexity of extraction from (`, b)-sources. In particular, we get –

15 Specifically, in [31, Lem. 5.7], E′(x1◦· · ·◦xn, s) = y1◦· · ·◦yn (or rather E′(x1◦· · ·◦xn, s) = s0◦y1◦· · ·◦yn),
where sn = s and (si−1, yi)← Ei(xi, si) for i = n, . . . , 1.

O. Goldreich, E. Viola, and A. Wigderson 625

I Corollary 4.3 (AC0 extractors for block sources). For every `(n) = poly(logn) and ε(n) =
1/poly(n) there exist b(n) = O(logn) and explicit AC0 circuits that compute a strong ε(n)-
error extractor E : {0, 1}n·` × {0, 1}O(logn) → {0, 1}n·Ω(logn) for (n, (`, b))-block sources.
Furthermore, the circuits have depth 4 + log(`(n)/b(n))

log logn .

Note that b(n)/`(n) is the min-entropy rate of the source.

Proof. Wishing to use the construction of Theorem 4.2, we (again) use the (b, ε)-extractor
E : {0, 1}`(n) × {0, 1}O(logn) → {0, 1}Ω(logn) asserted in [29, Sec. 5]. As noted in the proof
of Theorem 3.1, this extractor can be computed by (uniform) poly(n)-size circuits of depth
3 + logm(n) `(n) = 4 + (log(`(n)/b(n)))/ log logn. J

4.2 On converting min-entropy sources into block sources

In light of the relative ease of extracting randomness from block sources, it is natural to try
to convert general min-entropy sources into block sources. Such conversion is intended to be
easier than extraction; specifically, it amounts to sampling bits of the original source and
arranging them in blocks.

This idea goes back to Zuckerman’s work [61, 62], but in all known incarnations each
block is sampled using fresh randomness. This is typically not a problem when the number
of blocks is small, but in our context we wish the number of blocks to be large. The
question addressed here is whether conversion is possible using randomness complexity that
is significantly smaller than the number of desired blocks.

Following is a definition that captures what we mean by conversion, which we call blocking
(i.e., converting into a block source). Loosely speaking, a blocker is given a general (n, δn)-
source, and needs to “produce” a block source with m > 1 blocks such that each blocks has
min-entropy rate at least δ′ (conditioned on prior blocks). Of course, we consider δ′ ∈ (0, δ)
and blocks of length s ≤ n/m. In terms of the following definition of blockers, we ask whether
we may have r = o(m).

I Definition 4.4 (converting general min-entropy sources to block sources). For n,m, s, r ∈ N
and ε, δ, δ′ ∈ [0, 1], consider a generator S : {0, 1}r → ([n]s)m, which on input a seed
u ∈ {0, 1}r outputs an m-long sequence of s-subsets of [n], denoted (S1(u), . . . , Sm(u)). We
say that S is a (δ, δ′, ε)-blocker if for every (n, δn)-source X, for at least 1− ε of the choices
of u ∈ {0, 1}r, it holds that (XS1(u), . . . , XSm(u)) is an (m, (s, δ′s))-block source.

Definition 4.4 is analogous to the strong version of extraction (i.e., strong extractors). A
milder requirement is that (XS1(Ur),, XSm(Ur)) is ε-close to a (m, (s, δ′s))-block source.
For simplicity, we consider the stronger notion first and postpone the consideration of the
milder notion to later (see Remarks 4.2.1 and 4.2.2).

While we do not resolve the foregoing question, we present two illustrations for its
difficulty. First, we show that the requirements from a blocker must be more demanding
than the requirements from a generator of a sequence of disjoint sets in which each set in the
sequence has good sampling properties. This is shown for the case of m = 2, albeit using a
somewhat contrived construction. Next, we show that a natural construction fails too; this
is shown for m = nΩ(1) and r = O(logn). In both cases, the reader may think of small but
constant values of δ > δ′ > 0 and of s = poly(logn). (Recall that randomness extraction
from block sources can be performed in AC0 when the block length is poly-logarithmic.)

CCC 2015

626 On Randomness Extraction in AC0

4.2.1 1st illustration: Sampling does not suffice (even for two blocks)
Here we show that a “two-set sampler” is not necessarily a good blocker. We shall show this
by considering a very general and natural definition of a two-set sampler, and show that
there exists such constructs that fails as blockers.

We shall refer to a rather generic notion of a two-set sampler that generates pairs of sets
such that some property P is satisfied for each individual set. The property P is actually
a collection of conditions (or properties), and it is required that each condition is satisfied
(with specified probability). Of course, it is also required that the two generated sets are
disjoint.

I Definition 4.5 (two-set sampler w.r.t a class of properties {Pi}). For n, s, r ∈ N, let
S : {0, 1}r → [n]s × [n]s and denote (S1(u), S2(u)) = S(u). For ε ∈ [0, 1] and Pi ⊆ [n]s for
every i ∈ [t], we say that S is a two-set sampler w.r.t (ε, {Pi : i ∈ [t]}) if the following two
conditions hold:
1. For each σ ∈ {1, 2} and i ∈ [t], it holds that Pr[Sσ(Ur) ∈ Pi] ≥ 1− ε.
2. For every u ∈ {0, 1}r, the sets S1(u) and S2(u) are disjoint.
A natural class of properties are those that correspond to a (δ, ε)-averaging sampler. In this
case, the properties correspond to subsets of [n] and the property corresponding to a set
T ⊆ [n] consists of all s-subsets having (ρ(T)± δ) · s elements in T , where ρ(T) is the density
of T in [n].

We could have stated the result only for averaging samplers (i.e., for the aforementioned
properties that correspond to them), but we believe that it good to state it in greater
generality. Since {Pi} is totally generic, it is not clear that two-set samplers w.r.t it exist.
For this reason, the following theorem assumes the existence of a two-set sampler w.r.t {Pi}.
Furthermore, we also require that {Pi} is closed under relabeling of [n]; that is, for every
permutation π : [n]→ [n] and every i there exists a j such that Pj = {π(A) : A ∈ Pi}. Note
that the properties corresponding to averaging samplers are indeed closed under relabeling of
[n]. The following theorem says that whenever two-set samplers (w.r.t P) exist at all, there
exists such samplers that fail as blockers (for the case of m = 2).

I Theorem 4.6 (two-set samplers are not necessarily blockers). Let n, s ∈ N such that
n = ω(s2), ε ∈ [0, 1], and P = {Pi ⊆ [n]s} be a collection of properties that is closed under
relabeling of [n]. If there exists a two-set sampler w.r.t (ε,P), then there exists a two-set
sampler w.r.t (2ε,P) that is not a (0.5, o(1), 1− o(1))-blocker. Furthermore, there exists an
(n, 0.5n)-source X such that given X, with probability at least 1− 2s2/n, this two-set sampler
outputs a source of two blocks such that the second block is totally determined by the first
block.

Proof. We start with an arbitrary two-set sampler w.r.t (ε,P), denoted S : {0, 1}r →
[n]s × [n]s. Consider a random matching π : [n]→ [n] (i.e., a random bijection π such that
π(i) 6= i and π(π(i)) = i for every i ∈ [n]), and note that, w.v.h.p, for an 1−O(s2/n) fraction
of the u’s it holds that π(S1(u)) ∩ S1(u) = ∅. Let us call such u’s good for π, and note that
there exists a matching π for which the fraction of good u’s is at least 1−O(s2/n) = 1− o(1).
Fix such a π and define a new two-set sampler S′, which uses a seed (u, u′) ∈ {0, 1}2r, as
follows:
1. If π(S1(u)) ∩ S1(u) = ∅, let S′(u, u′) = (S1(u), π(S1(u))) and call u good;
2. Otherwise (i.e., π(S1(u)) ∩ S1(u) 6= ∅) let S′(u, u′) = S(u′).
Note that 1 − o(1) of the u’s are good, and that S′ is a two-set sampler w.r.t (2ε,P). To
prove the latter assertion, let us first consider S′1(U2r), and denote the set of good r-bit

O. Goldreich, E. Viola, and A. Wigderson 627

strings by G. Then, for every Pi,

Pr[S′1(U2r) 6∈ Pi] = Pru←Ur [S1(u) 6∈ Pi ∧ u ∈ G] + Pr(u,u′)←U2r [S1(u′) 6∈ Pi ∧ u 6∈ G]
< Pru←Ur [S1(u) 6∈ Pi] + Pr(u,u′)←U2r [S1(u′) 6∈ Pi].

The same analysis applies to the second set (i.e., S′2(U2r)), except that here S1(u) is replaced
by S1(π(u)) and the “closure under relabeling” hypothesis is used. Specifically, suppose that
Pj = {π−1(A) : A ∈ Pi}, then:

Pr[S′2(U2r) 6∈ Pi] = Pru←Ur [S1(π(u)) 6∈ Pi ∧ u ∈ G] + Pr(u,u′)←U2r [S2(u′) 6∈ Pi ∧ u 6∈ G]
< Pru←Ur [S1(π(u)) 6∈ Pi] + Pr(u,u′)←U2r [S2(u′) 6∈ Pi]
= Pru←Ur [S1(u) 6∈ Pj] + Pru′←Ur [S2(u′) 6∈ Pi].

Hence, S′ is a two-set sampler w.r.t (2ε,P). In contrast to this fact, as shown next, it turns
out that S′ fails miserably as a blocker.

Let X be uniform over the set of strings {x : (∀i∈ [n]) xi = xπ(i)}, which has cardinality
2n/2. This means that X has min-entropy n/2. On the other hand, whenever u is good, we
have that XS′2(u) is determined by XS′1(u), since in this case S′2(u) = π(S′1(u)), which implies
XS′2(u) = Xπ(S′1(u)) = XS′1(u). Hence, with probability at least 1 − 2s2/n = 1 − o(1) (i.e.,
whenever u is good), the second block in the source (XS′1(u), XS′2(u)) has min-entropy zero
conditioned on the first block. J

I Remark (non-strong blocking fails too). Actually, the proof of Theorem 4.6 applies also to
the weaker notion of blocking in which it is only required that (XS′1(Ur), XS′2(Ur)) is ε-close
to a (2, (s, δ′s))-block source. The proof implies that (XS′1(Ur), XS′2(Ur)) is 2s2/n-close to a
source in which the second block equals the first block, and thus has no conditional entropy
at all. It follows that this sampled source is far from any block source in which the second
block has even just few bits of min-entropy.

Digest

Note that Theorem 4.6 does not refer to the randomness complexity of the two-set sampler. In
such a setting, we know that blockers (let alone for m = 2) do exist. Hence what Theorem 4.6
asserts is only that requirements regarding the sampling features of individuals sets generated
by a two-set samplers do not imply that this two-set sampler is a blocker.

The reason that two-set samplers may fail as blockers is that their definition makes too mild
requirements regarding the relation between the two generated sets. Indeed, Definition 4.4
only requires that these two sets be disjoint. The proof of Theorem 4.6 capitalizes on this
fact and uses a fixed matching of elements between all pairs of sets (i.e., for a fixed matching
π, the elements of the second set are typically the π-mates of the elements of the first set).

4.2.2 2nd illustration: A natural candidate that fails
The proof of Theorem 4.6 relies on a contrived example and shows that such an example
exists no matter what “sampling property” (regarding individual sets) is considered. Here
we take an opposite approach: We consider a natural construction (and do not specify
the sampling properties that it satisfies). Specifically, we shall present a natural multi-set
sampler, which we believe most readers may find a natural candidate for a good blocker,
and show that it actually fails as a blocker. The multi-set sampler (and candidate blocker)
refers to the case of m = nΩ(1), s = poly(logn), and r = O(logn). (Recall that these are

CCC 2015

628 On Randomness Extraction in AC0

the parameters that we want in order to extract nΩ(1) bits in AC0 via conversion to block
sources.)

A rhetoric question: What is more natural than trying the standard O(1)-wise independent
generator? Indeed, let us consider it.

I Construction 4.7 (constant-wise independent multi-set sampler). Let F be a finite field
of size n and c ≥ 2 be a constant, and consider the c-wise independent generator, denoted
G : F c → Fn, such that G(u) = (g1(u), . . . , gn(u)) and gj(u1, . . . , uc) =

∑
i∈[c] uiα

i−1
j , where

α1, . . . , αn are distinct field elements. For m = nΩ(1) and s = poly(logn), consider the
sampler S(u) = (S1(u), . . . , Sm(u)) such that Si(u) = {g(i−1)s+1(u), . . . , gis(u)}.

Note that S : F c → (F s)m, which means that this sampler has a seed of length c log2 n. Is
this sampler not a natural candidate for a blocker? Well, as we show next, it fails badly.

Preliminaries: We assume that for some d ∈ N it holds that ms ∈ (0.9± 0.1) · n1/d (or
so).16 Let F = Kd, where K is a finite field, and let H ⊂ K of sufficiently small constant
density (say, density 1/3cd). Hence, k def= |Hd| = Ω(n), since n = |Kd| and |H| = Ω(|K|).
A class of (affine) sources: Next, for any f : Hd → K, consider its low-degree extension
f ′ : Kd → K, and let X ∈ Kn be uniformly distributed among all d-variate polynomials
of individual degree |H|; that is, for a uniformly distributed f : Hd → K, let Xα = f ′(α)
for every α ∈ Kd ≡ [n]. So X has “min-entropy” k (in units of symbols in K). Indeed,
this is a source over the alphabet K (rather than over {0, 1}).
By the way, it is an affine source, since the values of all Xα’s (i.e., the polynomial f ′) are
determined as linear combination of the values at α ∈ Hd (i.e., the function f).
The foregoing sampler S as a candidate blocker : Now, for any u = (u1, . . . , uc) ∈ [n]c ≡
(Kd)c, the sampler S : (Kd)c → ((Kd)s)m produces the sampled source (XS1(u), . . . , XSm(u)).
Recall that ms ∈ (0.9± 0.1) · |K| and |H| = |K|/3cd.

Let X be a generic source from the above class. Plugging in the definition of Si, note that
the jth element in the ith block of the sampled source is Xg(i−1)s+j(u) = XCu(α(i−1)s+j), where
Cu(α) =

∑
`∈[c] u`α

`−1. Now, suppose that α1, . . . , αms ∈ F = Kd are all in the base field K
(which is possible since ms < |K|). Then, it suffices to define Cu on K (i.e., Cu : K → Kd),
which means that Cu is a (c− 1)-degree curve over Kd (i.e., it is a curve over Kd, defined
based on u ∈ (Kd)c, with a free parameter in K).

Recalling that X is defined in term of the low-degree extension f ′ of a random function
f : Hd → K, we have XCu(α(i−1)s+j) = f ′(Cu(α(i−1)s+j)), where f ′ ◦ Cu : K → K (via Kd)
is a degree (c− 1)d|H| univariate polynomial over K (since f ′ is a d-variate polynomial of
individual degree |H| and Cu is a curve of degree c−1). Hence, for every seed u of the sampler,
less than cd|H| symbols of the sampled source determine all other symbols (of the sampled
source); in particular, the first cd|H|/s blocks of the sampled source (XS1(u), . . . , XSm(u))
fully determine the remaining m− (cd|H|/s) blocks. Recall that cd|H|/s = |K|/3s < m/2
(by our choice of H and K). J

I Remark (non-strong blocking fails too). Since there are only polynomially many curves Cu,
using few additional symbols (let alone few additional blocks), we can determine which curve
is used, and determine the remaining blocks based on this. Typically, each additional symbol

16After all, if the above sampler is a good blocker for m = nΩ(1) and s = poly(logn), then it should be a
good blocker also when n is an integer power of ms (or so).

O. Goldreich, E. Viola, and A. Wigderson 629

read from the sampled source, beyond the cd|H| symbols that suffice for extrapolation, cuts
the number of possible curves by a factor of |K|.

Critique

One may raise two reasonable objections to our example. (1) We considered sources over a
large (non-binary) alphabet K; (2) We made the sampler use the |K| elements of K ⊂ Kd

as the coefficients in the c-wise independent sequence (of length |K|). We believe that both
objections are not acute.

Objection (1) can be addressed by encoding the elements of K by binary strings of length
` = log |K|. This requires an analogous modification of the sampler in which indices in [n]
are replaced by `-sets of [n`] (i.e., i is replaced by {(i− 1)`+ 1, . . . , i`}).17 (Alternatively,
one may argue that the question for arbitrary alphabets is as natural.) Objection (2) can
be addressed by claiming that the construction should work regardless of the choice of field
elements, let alone that the same argument holds when choosing field elements that reside
on any line (or low degree curve) in Kd (instead of residing in K). Indeed, we do not recall
any application of c-wise independence that insists on an “non-structured” choice of the field
elements (whenever there is a choice at all). Actually, it is quite natural to use a structured
choice of field elements.

4.2.3 Discussion
Note that both counterexamples utilize affine sources, whereas it is possible to convert affine
sources (having min-entropy at least k = n/poly(logn)) into block sources (using a seed of
logarithmic length and obtaining blocks of length s = poly(n/k)). Specifically, as hinted
up-front, it is well known that conversion into m blocks is possible if one is willing to use a
seed of length r = O(m logn) (by repeated sampling with fresh random seeds). Since the
number of affine sources is less than 2n2 , we may infer that there exists a set of O(n2/δε)
such that for an affine source of min-entropy δn at least a 1− ε fraction of these seeds yield
an (m, (s, 0.5δs))-block source.

The forgoing argument cannot be applied to general (n, δn)-sources, since their number
is too large. But it is not inconceivable that a more refine counting argument may work.
More generally, we ask –

I Open Problem 4.8 (blockers of logarithmic randomness). Does there exist a (δ, δ′, o(1))-
blockers S : {0, 1}O(logn) → ([n]s)m for constant δ′ ∈ (0, δ) ⊂ (0, 1) and m = ω(1)? What
about m = nΩ(1) and s = poly(logn)?

A positive answer to the latter question is a sufficient but possibly not necessary condition
for a positive resolution of Problem 1.6. Of course, a negative resolution of Problem 1.6
would imply a negative answer to Problem 4.8.

5 Extraction from Block-Fixing Sources

In this section, we consider AC0 extractors for bit-fixing sources, a model first considered by
Chor et al. [18]. In this model the min-entropy bound k denotes the number of bits that are
random in the source, whereas the other n− k bits are fixed obliviously of the values of the

17 Indeed, this merely moves the problem from the alphabet to the sampler (which now samples indices by
taking all indices in each sampled block), and one may object to viewing such a sampler as natural.

CCC 2015

630 On Randomness Extraction in AC0

random bits.18 Actually, we consider a generalization to block-fixing sources, first considered
in [41].

I Definition 5.1 (block-fixing sources [18, 41]). An (n, k, `)-block-fixing source is a sequence
of random variables X = (X1, . . . , Xn) ∈ {0, 1}n` such that there exists a set of at least k
indices I ⊆ [n] and a sequence (x1, . . . , xn) ∈ {0, 1}n` such that XI is uniformly distributed
over {0, 1}|I|` and Xi = xi for every i ∈ [n] \ I. The special case of ` = 1 is referred to as a
(n, k)-bit-fixing source; that is, a (n, k, 1)-block-fixing source is called a (n, k)-bit-fixing source.

Note that extractors for block-fixing sources need not preserve the block structure in their
output, although the extractors presented in Theorem 5.2 do preserve this structure. In
general, for every `, an ε-error extractor for (n`, k`)-bit-fixing sources is an ε-error extractor
for (n, k, `)-block-fixing sources, and ditto for strong extractors. It is also easy to see that if
E : {0, 1}n × {0, 1}r(n) → {0, 1}m(n) is a strong ε-error extractor for (n, k)-bit-fixing sources,
then E′ : {0, 1}`·n × {0, 1}r(n) → {0, 1}`·m(n) given by

E′((x1,1, . . . , xn,`), s) = E((x1,1, . . . , xn,1), s) ◦ · · · ◦ E((x1,`, . . . , xn,`), s)

is a strong `ε-error extractor for (n`, k`)-bit-fixing sources. (An analogous statement for
ordinary extractors seems to require using ` different seeds, and so the seed length becomes
` · r(n).)

In Section 5.1, we present (strong) extractors for (n, n/poly(logn), `)-block-fixing sources
that use a seed of logarithmic length and extract n`/poly(logn) bits, whereas in Section 5.3
we present deterministic extractors of similar performance. Both extractors work in AC0,
which is optimal in light of the results presented in Section 5.2 (assuming that ` ≤ poly(logn)).
Specifically, in Section 5.2, we prove that there exist no strong AC0 extractors for min-entropy
lower than n/poly(logn) (regardless of the seed length). We also show that the same holds
for ordinary extractors that output (1 + Ω(1)) · r(n) bits when using a seed of length r(n).

5.1 Extraction with a logarithmically long seed
Although extraction from bit-fixing sources is possible without using a random seed (see [18,
41]), the known deterministic (i.e., seedless) extractors are not computable in AC0. In this
section we present seeded extractors (for bit-fixing sources) that are computable in AC0 (and
use seeds of logarithmic length). In Section 5.3, following ideas of Gabizon et al. [26], we
shall use the aforementioned seeded extractors to obtain deterministic extractors of similar
performance, based on new deterministic extractors that extract poly-logarithmically many
bits.

I Theorem 5.2 (seeded extractor for block-fixing sources). Let k : N→ N and ε : N→ [0, 1]
be such that k(n) ≥ n/poly(logn) and ε(n) ≥ 1/poly(n). Then, there exists a function
E : {0, 1}n` × {0, 1}O(logn) → {0, 1}poly(k(n)/n)·n` that is computable in uniform AC0 and
constitutes a strong ε-error extractor for (n, k, `)-block-fixing sources.

Theorem 5.2 is related to results of Gabizon et al. [26, Sec. 6], but the parameters are
quite different: Most importantly, their extractors are not in AC0, although they could have
obtained such extractors with a different setting of the parameters in their construction.

18 Indeed, such sources are sometimes called oblivious bit-fixing sources, in order to distinguish them from
non-oblivious bit-fixing sources [41] in which the remaining n − k bits are fixed as a function of the
values of the k random bits.

O. Goldreich, E. Viola, and A. Wigderson 631

Likewise, they extract only m(n) = k(n)Ω(1) bits. On the other hand, they treat any
k(n) ≥ poly(logn) and use a seed of length O(log k(n)). The pivot of our solution is the use
of a new pseudorandom partition generator, captured by Lemma 5.3.

Proof. For sake of simplicity, we consider the case of ` = 1, and denote the bits of the
source by x1 ◦ · · · ◦ xn. The basic idea, which goes back to Gabizon et al. [26, Sec. 6], is to
use a random partition of the source into many short sources, and extract bits from each
of these short sources by XORing the corresponding bits. That is, we use the seed of the
extractor to generate (pseudo)random subsets, denoted S1, . . . , Sm ⊂ [n], and output the
bits ⊕j∈Sixj for i = 1, . . . ,m. This works provides that each of the Si’s contains a location
of a random (i.e., non-fixed) bit of the original source, and that these (non-fixed) locations
are distinct. Furthermore, the Si’s should each be of size poly(logn) so to allow for the XOR
to be implemented by constant-depth poly(n)-size circuits.

The first idea that comes to mind is to generate the subsets by repeatedly invoking an
ordinary sampler (cf. [28]), using related seeds, but this seems to require that m <

√
n. An

alternative approach, which also goes back to Gabizon et al. [26, Sec. 6], is to generate a
pseudorandom partition of [n] into m subsets of equal size. Unfortunately, the techniques
used in [26, Sec. 5] also seems to require that m <

√
n, whereas we seek m = n/poly(logn).

Furthermore, we need to generate such a partition using a seed of logarithmic length and each
subset in the partition should have a strong hitting property (i.e., as stated in the second
condition of the following claim). (We comment that similar problems arise in the proof of
Theorems 3.2 and 3.8, but the parameters and hitting requirements there are different.)

I Lemma 5.3 (pseudorandom partitions with a strong hitting property). For δ, γ > 0 and
n, t ∈ N such that t = Θ(δ−1 log(1/γ))2 divides n, let m = n/t and r = O(log(n/γ)). Then,
there exists an explicit function G : {0, 1}r → ([n]t)m such that the following two conditions
hold.
1. For every u ∈ {0, 1}r the m-sequence G(u) is a partition of [n]; that is, for every j1 6= j2

it holds that G(u)j1 and G(u)j2 are disjoint t-subsets of [n].
2. For every T ⊆ [n] of density δ, with probability at least 1− γ, each subset in G(Ur) hits

T ; that is, Pr[∃j ∈ [m] s.t. G(Ur)j ∩ T = ∅] ≤ γ.

Proof. Our starting point is an ordinary hitter H : {0, 1}r′ → [n]s, where r′ = O(log(n/γ′)
and s = O(δ−1 log(1/γ′)), that hits each set of density δ with probability at least 1 − γ′.
We further assume that every two sample points of this hitter are uniformly distributed
independently of one another. Note that the combined hitter of [28, Apdx. C.3] satisfies the
first requirement, whereas the second requirement can be achieved by “randomizing” the
original sample via a sequence of pairwise independent “shifts” (cf. Claim 3.4).19 Associating

19Alternatively, we can apply the sampler used in the proof of Theorem 3.2 (with c = 1), but set the
parameters in order to satisfy hitting rather than sampling. The difference between the two versions
is that shifting the samples (as proposed in the main text) is different from shifting the seeds used
to generate the subsamples. Specifically, recall that the combined hitter of [28, Apdx. C.3] has the
form H ′′(u) = ∪i∈[t′′]H

′
i(vi), where (v1, . . . , vt′′)←W (u) is a random walk on an expander and H ′i is

a pairwise independence generator. In the main text we suggested using pairwise independent shifts
of the sample ∪i∈[t′′]H

′(vi), whereas in the proof of Theorem 3.2 we used the sample ∪i∈[t′′]H
′(v′i),

where (v′1, . . . , v′t′′) is obtained by a pairwise independent shift of (v1, . . . , vt′′). In the analysis of the
first alternative one relies on the generalized hitting property of H ′, whereas in the analysis of the
second alternative one relies on the generalized hitting property of W , where generalized hitting refers to
generating a sequence (σ1, . . . , σs) such that for every sequence of sets (T1, . . . , Ts) (each of density δ)
with probability at least 1− γ there exists an i ∈ [s] such that σi ∈ Ti. Note that the standard analyses
of both H ′ and W extends to this case.

CCC 2015

632 On Randomness Extraction in AC0

[n] with [t]× Zm and using t = s2, it follows that with probability at least half, the sample
((i1, j1), . . . , (is, js)) ← H(Ur′) contains no collision on the first coordinate (i.e., for every
a 6= b it holds that ia 6= ib). Hence, conditioned on this event, for every set T of density
δ, the probability that H(Ur′) hits T is at least 1− 2γ′. Consider the following generator
G′ : {0, 1}r′ → ([n]t)m:

1. On input u ∈ {0, 1}r′ , obtain ((i1, j1), . . . , (is, js))← H(u). If there exist a 6= b such that
ia = ib, then output a fixed partition (S0, . . . , Sm−1) of [n] ≡ [t]× Zm into t-subsets; for
example, Sj = {(i, j) : i ∈ [t]}. In this case we say that u is bad.

2. Otherwise (i.e., for every a 6= b it holds that ia 6= ib), for every i ∈ [t] and j ∈ Zm, let
pi,j = (i, ja+j mod m) if i = ia and pi,j = (i, j) otherwise (i.e., i 6∈ {i1, . . . , is}). For every
j ∈ Zm, define G′j(u) = {pi,j : i ∈ [t]}, and output the m-sequence (G′0(u), . . . , G′m−1(u)).
In this case we say that u is good, and it holds that

G′0(u) = {(ia, ja) : a ∈ [s]} ∪ {(i, 0) : i ∈ ([t] \ {i1, . . . , is})}

and G′j(u) = {(i, j′ + j mod m) : (i, j′) ∈ G′0(u)}.

Note that in each case the output sequence is a partition of [n] ≡ [t] × Zm. In the “good
case” (i.e., of a good u) this follows since G′0(u) = {(i, g(i)) : i ∈ [t]} for some function
g : Zm → Zm (i.e., g(ia) = ja for a ∈ [s] and g(i) = 0 for i 6∈ {i1, . . . , is}) and G′j(u) =
{(i, g(i) + j mod m) : i ∈ [t]}. The foregoing properties of H imply that, with probability at
least half Ur′ is good, whereas conditioned on this event the probability that G′j(Ur′) ∈ T is
at least 1− 2γ′, for every set T of density δ and for every j ∈ Zm.

Let us reflect for a moment on the structure of the generator G′. It uses a fixed partition of
[n] ≡ [t]×Zm into t cycles, each of length m, where the ith cycle consists of {(i, j) : j ∈ Zm}.
Assuming that the sample H(u) ∈ ([t]×Zn)s hits exactly s cycles, we augmented the sample
to a cover of all cycles by adding (dummy) elements of the form (i, 0) for every uncovered
cycle. (Of course, this cannot damage the hitting property.) Finally, we use the m “shifts”
of the resulting set S0 as a partition, where the jth shift of the set S0 ⊂ [t] × Zm equals
{(i, j′ + j) : (i, j′) ∈ S0}. In case the initial sample hits less than s cycles (i.e., some cycle is
hit by more than a single point in the sample), the generator outputs a fixed partition. The
only problem is that the latter bad event may occur with constant probability (of at most
1/2), whereas we want it to occur (in the final generator) with probability smaller than γ.

The desired generator G is obtained by taking a random walk of length t′ = O(log(1/γ))
on a constant degree expander with vertex set {0, 1}r′ , and outputting G′(v) where v is the
first vertex on the walk that is good. If no such vertex exists, then we just output the fixed
partition, but this event occurs with probability at most γ/2.

Denoting the random walk by (v1, . . . , vt′), recall that the probability that some vj is good
is at least 1− exp(−Ω(t′)) > 1− (γ/2). We show that conditioned on this event, for every T
of density δ, with probability at least 1−(3γ/4)−(8t′mγ′/γ), each set in the partition output
by G hits the set T . This is shown by considering only the indices j ∈ [t′] such that with
probability at least γ/4t′ vertex vj is the first vertex in the walk that is good. Specifically,
denote by Gj the event that vj is good, and let G′j denote the event Gj ∧ ¬(∨j′<jGj′). Let
J = {j ∈ [t′] : Pr[G′j] ≥ γ/4t′} and note that Pr[∨j∈JG′j] > 1− (γ/2)− t′ · (γ/4t′) = 1−3γ/4.
On the other hand, for each j ∈ J , the probability that each set in G(vj) hits T is at least
1− 2mγ′. Let use denote this event by Hj . Then, the probability that all sets output by G

O. Goldreich, E. Viola, and A. Wigderson 633

hit T is at least∑
j∈J

Pr[G′j] ·Pr[Hj |G′j] ≥ Pr[∨j∈JG′j] ·min
j∈J
{Pr[Hj |G′j]}

≥
(

1− 3γ
4

)
·min
j∈J

{
1− Pr[¬Hj]

Pr[G′j]

}
.

Using Pr[¬Hj] ≤ 2mγ′ and Pr[G′j] ≥ γ/4t′ (for any j ∈ J), we obtained the claimed lower
bound of (1− 3γ/4) · (1− (2mγ′)/(γ/4t′)) > (1− 3γ/4) + (8t′mγ′/γ).

Setting γ′ = γ2/32t′m, it follows that each set output by G hits a set T of density δ with
probability at least 1− γ. Noting that G uses a seed of length r = r′ +O(t′) = O(log(n/γ)),
the lemma follows. J

Wrapping up. We set δ = k(n)/n = 1/poly(logn) and γ = ε = 1/poly(n), and use
Lemma 5.3 with s = O(δ−1 log(1/γ)) and t = s2 = O(δ−1 logn)2, which implies m = n/t =
Ω(δ2n/ log2 n) = n/poly(logn) and r = O(logn). The extractor E(x, u) outputs y1 ◦ · · · ◦ ym
such that yj = ⊕i∈G(u)j+1xi. Since G can be computed by uniform depth-two circuits of
size poly(n) and t = poly(logn), it follows that E is in uniform AC0. In analyzing the
performance of E on an arbitrary (n, k)-bit-fixing source, let T denote the set of k unfixed
bits in the source, and note that the output bits (i.e., yj ’s) depend on disjoint sets of bits
in the source and that with probability at least 1 − γ each output bit depends on some
unfixed bit of the source. The theorem follows for ` = 1, and the argument for general ` is
identical. J

5.2 Impossibility results
The following impossibility result asserts the optimality of Theorem 5.2 with respect to the
parameter k (i.e., the number of random blocks in the source): While Theorem 5.2 asserts
strong extractors that are computable in AC0 for any k(n) = n/(logn)O(1), the following
result asserts that this is not possible for any k(n) = n/(logn)ω(1).

I Theorem 5.4 (impossibility of strong extraction in AC0). Suppose that E : {0, 1}n` ×
{0, 1}r → {0, 1} is computable by s(n)-size circuits of depth d = d(n). If E is a strong
0.499-error extractor for (n, k, `)-block-fixing sources, then k > n/(` ·O(log s(n))d−1).

Recall that ` = 1 corresponds to bit-fixing sources. Note that the current result regarding
(n, k)-bit-fixing sources implies that if a strong (0.499/`)-error extractor for (n, k, `)-block-
fixing sources is computable in AC0, then k ≥ n/poly(logn). We conjecture that this holds
even for 0.499-error extractor for (n, k, `)-block-fixing sources; that is, we conjecture that the
linear dependence on `, in the foregoing results, can be eliminated.

Before proving Theorem 5.4 we note that it is incomparable but related to Theorem 1.1
(i.e., Viola’s [57, Thm. 6.4]): Theorem 5.4 refers to strong extractors that output a single bit,
whereas Theorem 1.1 applies to ordinary extractors that output a constant factor more bits
than their seed length. (A version that refers to ordinary extractors is presented later; see
Theorem 5.5.) An important advantage of Theorem 5.4 over Theorem 1.1 is that it refers
to a much more restricted class of sources (i.e., (n, k, 1)-block-fixing sources rather than
(n, k)-sources).

Proof. For simplicity, we start with the case of ` = 1. Fixing any value σ ∈ {0, 1}r of the
seed, consider the residual depth d circuit of size s = s(n), denoted Cσ, that computes the

CCC 2015

634 On Randomness Extraction in AC0

mapping x 7→ E(x, σ). Invoking the “average sensitivity bound” of Linial et al. [39], as
improved by Boppana [12], for every Cσ we have∑

i∈[n]

Ii(Cσ) < B
def= O(log s)d−1, (5)

where for any Boolean function f : {0, 1}n → {0, 1}

Ii(f) def= Prx←Un [f(x) 6= f(x⊕ 0i−110n−i)]. (6)

(See background in [37, Sec. 12.4] and [47, Chap. 2].)
It follows that there exists a set of εn/B indices I ⊆ [n] such that Eσ←Ur [

∑
i∈I Ii(Cσ)] < ε,

since the expectation over all |I|-sized subsets is smaller than ε. Furthermore, there exists a
string z ∈ {0, 1}n such that

Eσ←Ur

[∑
i∈I

Prx←Un
[
Cσ(x) 6= Cσ(x⊕ 0i−110n−i)

∣∣∣x[n]\I = z[n]\I

]]
< ε (7)

and there exists a set G ⊆ {0, 1}r of density at least 1 −
√
ε such that for every σ ∈ G it

holds that∑
i∈I

Prx←Un
[
Cσ(x) 6= Cσ(x⊕ 0i−110n−i)

∣∣∣x[n]\I = z[n]\I

]
<
√
ε. (8)

Fixing I and z as above, consider an (n, |I|, 1)-block-fixing source X = (X1, . . . , Xn) such
that Xi = zi if i ∈ [n] \ I and Xi is random otherwise. We next show that, for every σ ∈ G
there exists a bit yσ so that Pr[Cσ(X) = yσ] > 1−

√
ε,

To prove the above claim, assume that p def= Pr[Cσ(X) = yσ] ≤ 1 −
√
ε and p ≥ 1/2

(w.l.o.g.). Then, Prx,y←Un [Cσ(x) 6= Cσ(y)|x[n]\I = y[n]\I = z[n]\I] = 2p(1− p) ≥
√
ε. This

implies that there exists s ∈ {0, 1}n such that s[n]\I = 0n−|I| and Pr[Cσ(X) 6= Cσ(X ⊕ s)] ≥√
ε, which contradicts Eq. (8), since

Pr[Cσ(X) 6= Cσ(X ⊕ s)] ≤
∑
i:si=1

Pr[Cσ(X) 6= Cσ(X ⊕ 0i−110n−i)]

≤
∑
i∈I

Pr[Cσ(X) 6= Cσ(X ⊕ 0i−110n−i)].

(The first inequality uses the fact that X ≡ X ⊕ s′ for every s′ ∈ {0, 1}n such that s′[n]\I =
0n−|I|.)

We have established that for every σ ∈ G, it holds that Pr[E(X,σ) = yσ] > 1−
√
ε, for

some bit yσ, whereas Pr[U1 = yσ] = 1/2. It follows that ∆[E(X,Ur) ◦ Ur ;U1 ◦ Ur], which
equals Eu←Ur [∆[E(X,u) ;U1]], is greater than Pr[Ur ∈ G] · (1−

√
ε−0.5) ≥ (1−

√
ε) · (0.5−√

ε) > 0.5− 2
√
ε. Hence, if E is a strong (0.5− 2

√
ε)-error extractor for (n, k, 1)-block-fixing

sources, then k > εn/B.
The argument for general ` > 1 proceeds analogously, except that here we have n · `

variables/indices, which are partitioned into n blocks. We first consider the set L of all
indices in [n] × [`] such that for every (i, j) ∈ L it holds that Eσ←Ur [Ii,j(Cσ)] < 2B/n,
where B = O(log s)d−1 (as in Eq. (5)). Recalling that

∑
(i,j)∈[n]×[`] Eσ←Ur [Ii,j(Cσ)] < B,

it follows that |L| ≥ n` − n/2. We consider the set L′ ⊆ [n] of blocks such that i ∈ L′ if
for every j ∈ [`] it holds that (i, j) ∈ L. Then, |L′| ≥ n/2. We now select an arbitrary
set I ′ ⊆ L′ of size εn/2`B, let I = I ′ × [`], and proceed as before, while noting that (as

O. Goldreich, E. Viola, and A. Wigderson 635

before) it holds that Eσ←Ur [
∑

(i,j)∈I Ii,j(Cσ)] < ε, since |I| · 2B/n = ε. That is, we fix I,
z = (z1, . . . , zn) ∈ ({0, 1}`)n and G (as before), and note that for every σ ∈ G it holds that∑

(i,j)∈I

Prx←Un`
[
Cσ(x) 6= Cσ(x⊕ 0idx(i,j)−110n−idx(i,j))

∣∣∣x[n]\I = z[n]\I

]
<
√
ε, (9)

where idx(i, j) = (i − 1) · ` + j. Now, consider an (n, |I ′|, `)-block-fixing source X =
(X1, . . . , Xn) such that Xi = zi if i ∈ [n] \ I ′ and Xi is random (i.e., distributed as U`)
otherwise. Then, for every σ ∈ G there exists a bit yσ so that Pr[Cσ(X) = yσ] > 1 −

√
ε,

since otherwise Eq. (9) is contradicted. The claim follows as before, but note that |I ′| =
|I|/` = εn/2`B. J

I Theorem 5.5 (impossibility of ordinary extraction in AC0). Suppose that E : {0, 1}n ×
{0, 1}r → {0, 1}m is computable by s(n)-size circuits of depth d = d(n), and let m′ = m− r.
Suppose that δ > 0 satisfies

(
m
bδm′c

)
< 1 + δ · 2m′ , which is satisfied whenever either δ < 1/m′

or δ ≤ 1/3 logm. Then, if E is a (1 − 2δ − 2−m′)-error extractor for (n, k, 1)-block-fixing
sources, then k > δ3m′n

m·O(log s(n))d−1 . In particular:
1. If m = r + 1 (i.e., m′ = 1) and E is a 0.499-error extractor for (n, k, 1)-block-fixing

sources, then k > n
m·O(log s(n))d−1 .

2. If m = r+ Ω(r) (i.e., m′ = Ω(r)) and E is a 0.999-error extractor for (n, k, 1)-block-fixing
sources, then k > n/O(log s(n))d−1.

Setting δ = min(o(1), 1/3 logm), the general case implies that if E is a (1− 2−m′ − o(1))-
error extractor for (n, k, 1)-block-fixing sources, then k > m′n

Õ(m)·O(log s(n))d−1
. Theorem 5.5

generalizes Theorem 1.1, which only refers to the case of m′ = Ω(r). Another important
advantage of Theorem 5.5 over Theorem 1.1 is that it refers to a much more restricted class
of sources (i.e., (n, k, 1)-block-fixing sources rather than (n, k)-sources).20

Proof. The proof is very similar to the proof of Theorem 5.4, except that we consider 2r ·m
residual circuits Cσ,j such that Cσ,j(x) computes the jth bit of E(x, σ). Specifically, we again
derive a set of εn/B indices I ⊆ [n] and a string z ∈ {0, 1}n such that

Eσ←Ur,j∈R[m]

[∑
i∈I

Prx←Un
[
Cσ,j(x) 6= Cσ,j(x⊕ 0i−110n−i)

∣∣∣x[n]\I = z[n]\I

]]
< ε, (10)

where j ∈R [m] denotes that j is distributed uniformly in [m]. We shall again fix I and z as
above, and consider an (n, |I|, 1)-block-fixing source X = (X1, . . . , Xn) such that Xi = zi if
i ∈ [n] \ I and Xi is random otherwise. We set ε = δ3m′/m, and denote Cσ(x) = E(x, σ).
Now, letting dist(y, z) denote the Hamming distance between the m-bit long strings y and
z (i.e., dist(y1 · · · ym, z1 · · · zm) = |{i ∈ [m] : yi 6= zi}|), we get

Eσ←Ur

[∑
i∈I

Ex←X
[
dist(Cσ(x), Cσ(x⊕ 0i−110n−i))

]]
< m · ε = δ3m′. (11)

20We mention that the proceeding version of [57] contains a result that is more closely related to
Theorem 5.5: The (n, k)-source used in the proof there also belongs to a very restricted class; specifically,
the source is a randomized process that produces an output by starting with 0n and taking k/36 steps
such that at each step a random position is selected (with repetitions) and its value is flipped.

CCC 2015

636 On Randomness Extraction in AC0

Hence, there exists a set G ⊆ {0, 1}r of density at least 1− δ such that for every σ ∈ G it
holds that∑

i∈I
Ex←X

[
dist(Cσ(x), Cσ(x⊕ 0i−110n−i))

]
< δ2m′. (12)

Then, for every σ ∈ G there exists a string yσ ∈ {0, 1}m so that E[dist(Cσ(X), yσ)] < δ2m′,
because for two independent samples x and x′ drawn from X, it holds that

Ex,x′ [dist(Cσ(x), Cσ(x′)]

≤ max
s∈{0,1}n:s[n]\I=0n−|I|

{
Ex←X [dist(Cσ(x), Cσ(x⊕ s)]

}
≤ max
s:s[n]\I=0n−|I|

{ ∑
i:si=1

Ex←X
[
dist(Cσ(x), Cσ(x⊕ 0i−110n−i))

]}

which (by Eq. (12)) is smaller than δ2m′. Hence, for every σ ∈ G, it holds that
Pr[dist(Cσ(X), yσ) ≤ δm′] ≥ 1 − δ. Defining S = {yσ : σ ∈ G}, we note that, with
probability at least (1 − δ)2, the Hamming distance between E(X,Ur) and S (i.e., the
distance to the closest string in S) is at most bδm′c. On the other hand, the prob-
ability that Um is at Hamming distance at most bδm′c from S is upper bounded by
(m
bδm′c)·|S|

2m < 2−m′ + 4δ, since |S| ≤ 2r = 2m−m′ and
(

m
bδm′c

)
< 1 + δ · 2m′ . It follows

that ∆[E(X,Ur) ;Um] > (1− δ)− (2−m′ + δ), whereas X has δ3m′n/mB random bits. J

5.3 Deterministic extractors
Recall that the bit-fixing model allows for deterministic extractors (e.g., E(x) = ⊕i∈[n]xi),
which work for even lower min-entropy rate than those that are impossible for AC0, but indeed
these extractors are not computable in AC0. Still, it is possible that whenever extraction in
AC0 is possible for bit-fixing sources, this is also possible via deterministic extractors. We
show that this is indeed the case. Our proof proceeds in three steps: First, we present AC0

circuits that extract a single bit (see Theorem 5.8), next we use them to present AC0 circuits
that extract poly-logarithmically many bits (see Theorem 5.15), and finally we combine these
with the extractor of Theorem 5.2 to extract n/poly(logn) bits.

Recall that a deterministic extractor (a.k.a seedless extractor) is one that gets no seed (i.e.,
has seed length r(n) ≡ 0). By definition, any deterministic extractor is strong. An obvious
deterministic extractor for (n, k)-bit-fixing sources, which is implementable in AC0 when
k(n) ≥ n− poly(logn), is E(x) = ⊕i∈[n−k(n)+1]xi. A first indication that one can do much
better is provided by Ajtai and Linial’s non-explicit construction of AC0 circuits in which
“large sets have small influence” [4, Sec. 5]. As shown in [41, Lem. 6.1], such circuits are
deterministic extractors for non-oblivious bit-fixing sources.

I Definition 5.6 (non-oblivious bit-fixing sources [41]). A non-oblivious (n, k)-bit-fixing source
is a sequence of random variables X = (X1, . . . , Xn) ∈ {0, 1}n such that there exists a set of
at least k indices I ⊆ [n] and a sequence of functions f1, . . . , fn : {0, 1}|I| → {0, 1} such that
XI is uniformly distributed over {0, 1}|I| and Xi = fi(XI) for every i ∈ [n] \ I.

Bit-fixing sources as in Definition 5.1 are a special case in which the fi’s are constant functions.
Such sources are sometimes called oblivious bit-fixing sources. Clearly, any ε-extractor for
non-oblivious (n, k)-bit-fixing sources is an ε-extractor for (oblivious) (n, k)-bit-fixing sources.

O. Goldreich, E. Viola, and A. Wigderson 637

I Theorem 5.7 (deterministic extraction in AC0 for non-oblivious bit-fixing sources [4, Sec. 5]).
There exist AC0 circuits C : {0, 1}n → {0, 1} such that, for every k, it holds that C is a
deterministic O((1− k/n) · log2 n)-error extractors for non-oblivious (n, k)-bit-fixing sources.

As shown in [41, Lem. 6.1&6.2], the error probability of extractors of the foregoing type
is captured by the notion of influence of sets. For a Boolean function f : {0, 1}n → {0, 1}
and a set S ⊂ [n], the influence of S on f , denoted IS(f), is defined as the maximum
of Prx←Un [f(x) 6= f(g(x))], taken over all functions g : {0, 1}n → {0, 1}n that satisfy
g(x)[n]\S = x[n]\S for every x ∈ {0, 1}n (i.e., g only changes the values of x at location in
S and does so depending on the entire input).21 Ajtai and Linial [4, Sec. 5] proved that
there exist balanced AC0 circuits C : {0, 1}n → {0, 1} such that the influence of every set of
density ρ on C is O(log2 n) · ρ, where f is balanced if Pr[f(Un) = 1] = 0.5. Hence, these
circuits are deterministic O(ρ log2 n)-error extractors for the corresponding set of sources
(i.e., non-oblivious (n, n− ρn)-bit-fixing sources).

Theorem 5.7 is meaningful only for min-entropy rate approaching 1; that is, it is only
meaningful for non-oblivious (n, k)-bit-fixing sources with k ≥ n−O(n/ log2 n). This is not
an artifact of the proof (nor even of the fact that the extractor is in AC0): As shown by
Kahn, Kalai, and Linial [40] any deterministic ε-extractor for non-oblivious (n, k)-bit-fixing
sources must satisfy k ≥ n− Ω(ε−1n/ logn). However, for oblivious (n, k)-bit-fixing sources,
one can achieve a min-entropy rate that approaches 0; that is, a deterministic AC0-extractor
for oblivious (n, k)-bit-fixing sources with any k ≥ n/poly(logn).

I Theorem 5.8 (deterministic extraction in AC0 for bit-fixing sources). For every k(n) ≥
n/poly(logn) and every ε(n) > 1/poly(logn), there exist deterministic ε-error extractors
E : {0, 1}n → {0, 1} for (n, k)-bit-fixing sources such that the extractors are computable in
AC0.

Our proof of Theorem 5.8 builds upon Theorem 5.7, and thus inherits the non-uniformity of
the latter. In addition, our own reduction of Theorem 5.8 to Theorem 5.7 is non-explicit,
due to our use of a probabilistic analysis of the rank of rectangular matrices [10].

Proof. Our starting point is the extractor of non-oblivious bit-fixing sources asserted in
Theorem 5.7. Denoting the corresponding AC0 circuit by C : {0, 1}n → {0, 1}, our plan
is to construct a new circuit C ′ : {0, 1}n′ → {0, 1}, where n′ = Õ(n), by feeding each
input of C with the parity of a random subset of poly(logn) inputs of C ′. Specifically,
C ′(x) = C(L1(x), . . . , Ln(x)), where each Li is a random linear function generated by
selecting each xi with probability p = poly(logn)/n. Indeed, these Li’s can be computed by
a constant-depth circuits of size poly(n).

Suppose that, for any choice V of δn′ = k(n′) ≥ n variables (i.e., xi’s), at least n− ρ · n
of the linear functions (i.e.,. Li’s) are linearly independent as functions in the variables in V .
Then, any fixing of n′ − k(n′) of the x-variables, leaves at least n− ρn of the functions (i.e.,
the Li’s) linearly independent, which means that assigning random values to k(n′) of the
inputs of C ′ (and setting the rest arbitrarily but obliviously of the random values) yields a
random assignment to n− ρn of the inputs of C.

In anticipation of considering the influence of sets of ρn inputs on C, we set ρ =
ε/Θ(logn)2 = 1/poly(logn), which guarantees that the influence of such sets is at most ε.
Next, we set m = ρ · n and n′ = Õ(n), and seek a sparse n-by-n′ Boolean matrix M such

21The influence of a single variable, as defined in Eq. (6), is a special case: Indeed, when considering the
influence of the variable i, it suffices to consider g(x) = x⊕ 0i−110n−i.

CCC 2015

638 On Randomness Extraction in AC0

that (1) each row of M has at most poly(logn) one-entries, and (2) any n-by-n sub-matrix
of M has rank at least n−m. If we had such a matrix, then we can let its rows serve as the
Li’s and be done (for k(n′) = n = n′/poly(logn′)).

While we believe that such a matrix exists, we were not able to prove this conjecture.
Instead, we take a somewhat longer route. First, we construct a matrix with properties as
above over a finite field of quasi-polynomial (in n) size. Then, we use this construction to
get a matrix with such properties for a finite field of poly-logarithmic (in n) size. Lastly, we
show how to use the latter in our context. These three steps are captured by the following
three claims.

I Claim 5.9 (a desired matrix over a finite field of quasi-polynomial size). For any m ∈
[n/poly(logn), n] and n′ ∈ [Ω(n log2 n), Õ(n)], and every finite field F of cardinality q ≥
exp(n′/m), there exist an n-by-n′ matrix M over F that satisfies the following two proper-
ties.
1. Each row of M has at most poly(logn) non-zero entries.
2. Each n-by-n sub-matrix of M has rank at least n−m.

Proof. Setting p = (logn)/n, consider selecting a random sparse n-by-n′ matrix M over F
by setting each entry to 0 with probability 1− p, and letting it be a uniformly distributed
nonzero value otherwise. (The choices for the various entries are independent of one another.)
Then, with probability at least 1− n · exp(−Ω(pn′)) ≥ 1− exp(−Ω(logn)3), each row of M
has Θ(pn′) = poly(logn) non-zero entries.

In proving the second property, we use a result of Blomer et al. [10] that asserts that an
n-by-n matrix distributed as above has rank smaller than n−m with probability O(q−m).
Applying a union bound, we infer that the second property fails with probability at most(

n′

n

)
·O(q−m) < (n2)n · exp(−Ω(n log2 n)/m)m

= exp(O(n logn)) · exp(−Ω(n log2 n)),

where the inequality uses log q ≥ Ω(n′/m) = Ω(n log2 n)/m. The claim follows. J

I Claim 5.10 (a desired matrix over a finite field of poly-logarithmic size). For any m ∈
[n/poly(logn), o(n)] and n′ ∈ [Ω(n log2 n), Õ(n)], every finite field F ′ of cardinality q′ =
poly(n′/m), and n′′ = poly(q) · n′, there exist an n-by-n′′ matrix M ′ over F ′ that satisfies
the following two properties.
1. Each row of M ′ has at most poly(logn) non-zero entries.
2. Each n-by-(2n/n′) · n′′ sub-matrix of M ′ has rank at least n−m.

Proof. Let F be a finite field of size exp(Θ(n′/m)) and M be a matrix as guaranteed by
Claim 5.9. Let ` = dlog |F |e = Θ(n′/m) = poly(logn). For some q′ = poly(n′/m) and
`′ = poly(q′), consider a linear error correcting code mapping GF(q′)` to GF(q′)`′ such
that this code has relative distance at least 1 − (n/n′). (For example, the Reed-Solomon
code of degree ` over GF(q′) uses `′ = q′ and has relative distance 1 − (`/q′), whereas
`/q′ < n/n′ provided that q′ ≥ (n′/m)2.) Now, encode each element of F (viewed as an
`-long sequence over GF(q′)) by the corresponding codeword, obtaining an n-by-n′`′ matrix
M ′ over F ′ = GF(q′). We may assume that F ′ is a sub-field of F ; in fact, we should pick F
to satisfy this condition (as well as the other conditions stated above).

Letting n′′ = n′ · `′ = poly(logn) · n, note that the number of nonzero entries in each row
of M ′ is at most poly(logn) · `′ = poly(logn), since each row of M has at most poly(logn)
non-zeros. This establishes the first property of M ′.

O. Goldreich, E. Viola, and A. Wigderson 639

To establish the second property of M ′, consider an arbitrary choice of (2n/n′) · (n′`′) =
2n`′ columns of M ′, and let M ′′ denote the corresponding sub-matrix. Considering the
partition of the columns of M ′ into n′ blocks of length `′ (each encoding a symbol of F),
we infer that at least n of these blocks contain more than `′n/n′ chosen columns. Let us
call these blocks heavy. Recalling that the linear code has absolute distance `′ − (`′n/n′),
we infer that any linear combination of the rows of the sub-matrix M ′′ that yields the zero
vector must yield zero in the column of M that corresponds to each of the heavy blocks
(because a codewords with more than `′n/n′ zeros must encode the zero of F (viewed as
the all-zero sequence of GF(q′)`)). Recalling that there are n heavy blocks, it follows that
an F ′-linear combination of the rows of M ′′ that yields the zero vector must yield zero in
at least n columns of M . Using the second property of M , it follows that this F ′-linear
combination must contain more than n−m rows, and the claim follows. J

I Construction 5.11 (a kind of condenser22). Let m,n′, q′, n′′ and M ′ be as in Claim 5.10,
and suppose that q′ is a power of two. Let δ = 4n/n′ and s = Θ((q′ logn)2/δ), and
consider the following transformation of (z1,1, . . . , zn′′,s) ∈ {0, 1}n

′′s into an n-bit long string
x = (x1, . . . , xn).
1. For each i ∈ [n′′], compute zi =

∑
j∈[s] zi,j mod q′.

Viewing each zi as an element of GF(q′) ≡ Zq′ , let z = (z1, . . . , zn′′) ∈ GF(q′)n′′ .
2. Compute (y1, . . . , yn) = M ′z ∈ GF(q′)n. For each i ∈ [n], let xi be the result of applying

some balanced predicate to yi (e.g., xi is the least significant bit of yi).23

Note that these computation can be carried out by constant-depth circuits of size poly(n),
since q′ = poly(logn), n′ = Õ(n) and each row of M ′ has at most poly(logn) non-zero
entries.

I Claim 5.12 (analysis of Construction 5.11). If the input to Construction 5.11 is taken
from an (n′′s, δn′′s)-bit-fixing source, then there exist n−m bits in the output with a joint
distribution that is n−ω(1)-close to Un−m.

Proof. If a δ fraction of the input bits are random, then for at least a δ/2 fraction of
i ∈ [n′′], called good, at least a δ/2 fraction of the bits zi,1, . . . , zi,s are random. (Recall that
random bits are independent of one another, whereas the other bits are fixed.) As shown
by Kamp and Zuckerman [41], the sum modulo q′ of the bits of a (s, δ′s)-bit-fixing source
is exp(−Ω(δ′s/(q′)2))-close to the uniform distribution on Zq′ . Hence, for each good i it
holds that zi is exp(−Ω(δs/(q′)2))-close to the uniform distribution on Zq′ (and the zi’s
are independent of one another). By the choice of s = Ω(q′ logn)2/δ, it follows that zI is
exp(−Ω(log2 n))-close to be uniform over GF(q′)|I|, where I denotes the set of good i’s and
|I| ≥ δn′′/2.

Consider the column of M ′ that correspond to the good i’s. By the second property of
M ′ (and using δ = 4n/n′), it holds that the rank of the corresponding n-by-(2n/n′) · n′′
sub-matrix is at least n −m. Denoting a set of n −m linearly independent rows by R, it
follows that yR is exp(−Ω(log2 n))-close to be uniform over GF(q′)n−m, and a corresponding
statement holds for xR with respect to {0, 1}n−m. The claim follows. J

22For any δ ≥ 1/poly(logn) and any ρ ≥ 1/poly(logn), this construction “condenses” an (n′′s, δn′′s)-
bit-fixing source, into a non-oblivious (n, (1− ρ) · n)-bit-fixing source. Thus, the min-entropy rate is
significantly increased (from δ to 1− ρ), but the output source belong to a wider class of sources.

23For this reason we need q′ to be even.

CCC 2015

640 On Randomness Extraction in AC0

Wrapping up. The final construction is as follows. Let C : {0, 1}n → {0, 1} be the
AC0 circuit guaranteed by Theorem 5.7. Setting ρ = ε/O(logn)2 ≥ 1/poly(logn) and
δ = k(n2)/n2 ≥ 1/poly(logn), we use n′′ = 4n/δ = Õ(n) and invoke Construction 5.11. Let
C ′′ : {0, 1}n′′s → {0, 1}n be the AC0 circuit provided by Construction 5.11, and note that
δ ≤ k(n′′s)/n′′s (since we may assume that k(t)/t is non-increasing in t). We define the final
circuit C ′ : {0, 1}n′′s → {0, 1} as the composition of C and C ′′; that is, C ′(z) = C(C ′′(z)).
Using Claim 5.12, we infer that for any (n′′s, δn′′s)-bit-fixing source Z, it holds that C ′′(Z)
is n−ω(1)-close to a source in which n− ρn of the bits are totally random (and the rest may
be determined as a function of them). By Theorem 5.7, in this case C(C ′′(Z)) is ε-close to a
random bit.24 Hence, C ′ is an ε-error extractor for for (n′′s, k(n′′s))-bit-fixing sources, which
establishes the claim of the theorem. J

I Remark (Construction 5.11, revisited). While the output of Construction 5.11 is not an
affine combination of its input bits, it is n−ω(1)-close to an affine source of min-entropy at
least n−m (cf. [25]). This is due to the following two facts:
1. The vector (z1, . . . , zn′′) ∈ ({0, 1}`′′)n′′ produced in Step 1 is n−ω(1)-close to a (n′′, δn′′/2, `′′)-

block-fixing source, where 2`′′ = q′.
2. The vector x is a GF(2)-linear combination of the bits of z, since y is a GF(2`′′)-linear

combination of the blocks of z (viewed as elements of GF(2`′′)).
Hence, the bits of x are affine combinations of the non-fixed bits of z′, where z′ is the
(n′′, δn′′/2, `′′)-block-fixing source that is n−ω(1)-close to (z1, . . . , zn′′). Since the affine
transformation of z′ to x has rank at least n−m in the non-fixed variables of z′, our claim
follows.
We now improve the construction asserted by Theorem 5.8 in two ways. First we show that
the error of the extraction can be reduced (to a negligible in n level), and then we show
that poly(logn) bits can be extracted (rather than a single one). We start by observing that
XORing values extracted from disjoint portions of a bit-fixing source yields an extractor of
smaller error (alas it is guaranteed to work only for bit-fixing sources of a larger amount of
min-entropy).25

I Theorem 5.13 (error reduction for deterministic extraction from bit-fixing sources). Suppose
that E : {0, 1}n → {0, 1} is an ε-error extractor for (n, k)-bit-fixing sources. Then, for
every t ∈ N, the function E′ : {0, 1}tn → {0, 1}, given by E′(x1, . . . , xt) = ⊕i∈[t]E(xi) is an
εdtk/ne-error extractor for (tn, 2tk)-bit-fixing sources.

Indeed, as detailed in Corollary 5.14 below, applying Theorem 5.13 to Theorem 5.8 yields a
similar deterministic AC0 extractor but for error rates that are smaller than 1/poly(n).

Proof. Letting δ = k/n, we note that the existence of 2δtn random bits in the source
(X1, . . . , Xt) ∈ ({0, 1}n)t implies that for at least a δ fraction of the indices i ∈ [t] the source
Xi is a (n, δn)-bit-fixing source (whereas the t sources are independent of one another). Since
each of these dδte extractions yields a bit that is ε-close to uniform (whereas the t bits are
independent of one another), the claim follows. J

I Corollary 5.14 (improved error in deterministic AC0-extractors for bit-fixing sources). For
every k(n) ≥ n/poly(logn) and every ε(n) ≥ exp(−poly(logn)), there exist deterministic

24Recall that ε(n) ≥ 1/poly(logn), which is much larger than the n−ω(1) deviation created by C′′.
25 Indeed, there is a trade-off, which we do not elaborate, between the amount of error reduction and the

increase in the required min-entropy.

O. Goldreich, E. Viola, and A. Wigderson 641

ε-error extractors E : {0, 1}n → {0, 1} for (n, k)-bit-fixing sources such that the extractors
are computable in AC0.

Proof. Let E0 : {0, 1}n0 → {0, 1} be the 0.1-error extractor for (n0, k(k0)/2)-bit-fixing
sources provided by Theorem 5.8. Letting t = Θ((n0/k(n0)) log(1/ε(n0))) = poly(logn0) and
n = t · n0, and applying Theorem 5.13, the claim follows, since t-wise XOR can be computed
by constant-depth circuits of poly(n)-size. J

Extracting slightly more bits

Applying the same idea as underlying the proof of Theorem 5.13, we can extract poly-
logarithmically many bits rather than one.

I Theorem 5.15 (Corollary 5.14, revisited). For every k(n) ≥ n/poly(logn) and every ε(n) ≥
exp(−poly(logn)), there exist deterministic ε-error extractors E : {0, 1}n → {0, 1}poly(logn)

for (n, k)-bit-fixing sources such that the extractors are computable in AC0.

Proof. We proceed in two steps, first obtaining an extractor that outputs double-logarithmically
many bits, and next using it to establish the claim of the theorem. As in the proof of Corol-
lary 5.14 (and other results), we shall use the fact that t-wise sums can be computed by
constant-depth circuits of exp(tc)-size, for any constant c > 0.

I Claim 5.16 (Corollary 5.14, revisited). For every k(n) ≥ n/poly(logn), ε(n) ≥ exp(−poly(logn)),
and `1(n) = O(log logn), there exist deterministic ε-error extractors E : {0, 1}n → {0, 1}`1(n)

for (n, k)-bit-fixing sources such that the extractors are computable in AC0.

Proof. Letting δ = k(n2)/n2 and t = 22`1δ−1 log(1/ε(n2)) = poly(logn), we note that the
existence of δtn random bits in the source (X1, . . . , Xt) ∈ ({0, 1}n)t implies that for at least
a δ/2 fraction of the indices i ∈ [t] the source Xi is a (n, δn/2)-bit-fixing source (whereas
the t sources are independent of one another). Applying the extractor of Corollary 5.14 to
each of the t sources, we obtain a (t, δt/2)-bit-fixing source (or rather a t-bit string that is
exp(−poly(logn))-close to such a source). Computing the sum of these t outputs modulo
2`1 (and invoking again the result of Kamp and Zuckerman [41]), we obtain a value that is
exp(−Ω(δt/22`1))-close (i.e., ε/2-close) to uniform over Z2`1 . This yields an ε-error extractor
of `1 bits for (tn, δtn)-bit-fixing sources, and the claim follows. J

Extracting poly(logn) many bits. For any `(n) = poly(logn), we will use an 0.1-biased
sample space S ⊂ {0, 1}` of size poly(`) (cf., e.g., [27, Sec. 8.5.2]), and let `1 = log |S| =
O(log logn). For any ε(n) ≥ exp(−poly(logn)), and k(n) ≥ n/poly(logn), we again let
δ = k/n. This time we set t = Θ(` + log(1/ε))/δ = poly(logn), and consider a (tn, δtn)-
bit-fixing source, denoted (X1, . . . , Xt) ∈ ({0, 1}n)t, inferring that at least δ/2 fraction of
the n-bit long Xi’s are (n, δn/2)-bit-fixing sources. Applying the extractor of Claim 5.16
to each of these t sources, we obtain t strings, each of length `1, such that at least δt/2
of these strings are ε-close to being uniformly distributed in {0, 1}`1 . In other words, we
obtain a (t, δt/2, `1)-block fixing source. Denoting the ith block in this source by yi, and
viewing it as an element of [2`1] ≡ {0, 1}`1 , we just output ⊕i∈[t]syi , where sj is the jth

string in S. This `-bit output is 0.1δt/2-biased, since for any α ∈ {0, 1}` it holds that
〈α,⊕i∈[t]syi〉2 = ⊕i∈[t]〈α, syi〉2, where 〈·, ·〉2 denotes inner product mod 2. It follows that
the output is (2`/2 · 0.1δt/2)-close to the uniform distribution over {0, 1}`, and the theorem
follows (using sufficiently large t = O(`+ log(1/ε))/δ). J

CCC 2015

642 On Randomness Extraction in AC0

Extracting many more bits

Using the composition theorem of Gabizon et al. [26, Thm. 7.1], we obtain deterministic
extractors that are computable in AC0 and extract n/poly(logn) bits. The aforementioned
composition result requires three ingredients: (1) an adequate deterministic extractor (pro-
vided by Theorem 5.15), (2) an adequate seeded extractor (provided by Theorem 5.2), and
(3) an adequate averaging sampler (provided by Theorem 3.8). We shall rely on the fact that
the composition theorem of [26, Thm. 7.1] preserves AC0 complexity.

I Theorem 5.17 (deterministic AC0 extraction of n/poly(logn) bits from bit-fixing sources).
For every k(n) ≥ n/poly(logn) and every ε(n) ≥ 1/poly(n), there exist deterministic ε-error
extractors E : {0, 1}n → {0, 1}n/poly(logn) for (n, k)-bit-fixing sources such that the extractors
are computable in AC0.

Proof. We start by reviewing the composition theorem of Gabizon et al. [26, Thm. 7.1],
which is pivotal to our proof. The composition theorem of Gabizon et al. [26, Thm. 7.1]
requires three ingredients (for some parameters µ, µ′, ε′, ε′′ etc):26

1. A deterministic ε′-error extractor E′ : {0, 1}n → {0, 1}r+r′′ for (n, µ′t)-bit-fixing sources;
2. A seeded ε′′-error extractor E′′ : {0, 1}n × {0, 1}r′′ → {0, 1}m for (n, µn − t)-bit-fixing

sources;
3. An (µ, µ′, γ)-averaging sampler S : {0, 1}r → [n]t.
It yields a deterministic ε-error extractor E : {0, 1}n → {0, 1}m for (n, µn)-bit-fixing sources
and ε = ε′′ + 2r+3 · ε′ + 3γ that operates as follows. Denoting the first r (resp., last r′′) bits
of E′ by E′1(x) (resp., E′2(x)), it holds that E(x) = E′′(x[n]\S(E′1(x)) ◦ 0t, E′2(x)). Hence, if
each of the three ingredients is computable by constant-depth poly(n)-size circuits, then E
is in AC0.

Setting µ = k(n)/n = 1/poly(logn), we shall use µ′ = µ/2 and t = k(n)/2 so that
µ′t = n/poly(logn) and µn − t = n/poly(logn). Furthermore, we shall use ε′ = 2− log3 n,
ε′′ = γ = 1/poly(n), m = n/poly(logn), r′′ = O(logn) and r = O(logn)2. The required
deterministic extractor is provided by Theorem 5.15, the seeded extractor is provided by
Theorem 5.2, and the required averaging sampler is provided by Theorem 3.8. Hence we
obtain AC0 circuits computing E : {0, 1}n → {0, 1}m, which is a deterministic ε-error
extractor for ε = 2r+3 · ε′ + 1/poly(n) = 1/poly(n). J

An explicit disperser

Recall that a deterministic disperser for a class of sources is a function that defines an onto
mapping from the support of each source in the class to the range of the function. That is,
D : {0, 1}n → {0, 1}m is a deterministic disperser for a class of sources if for every source X
in the class and over every v ∈ {0, 1}m it holds taht Pr[D(X)=v] > 0.

26Actually, we present a special case of [26, Thm. 7.1], whereas the original version refers to a generalization
of the notion of an averaging sampler. Loosely speaking, a (µ, µ′, µ′′, γ)-averaging sampler is defined as
in Definition 2.6, except that it refers to functions f : [n]→ [0, 1] such that ρ(f) = µ and also requires
that Pr[

∑
i∈S(Ur)

f(i) > t · µ′′] ≤ γ. Indeed, such an (µ, µ′, 1, γ)-averaging sampler is an (µ, µ′, γ)-
averaging sampler as in Definition 2.6. We comment that using the original form of [26, Thm. 7.1]
allows to obtain somewhat better parameters, by showing that a small variant on the construction
establishing Theorem 3.8 yields the required (µ, µ′, µ′′, γ)-averaging sampler. (Specifically, we shall set
the parameters of the pairwise independent sampler, used in the latter proof, so that its error probability
is o(µ) rather than a constant, and establish the assertion for µ′′ = 2` · µ and γ = 1/poly(n), where
` = O(log(1/γ)).)

O. Goldreich, E. Viola, and A. Wigderson 643

I Theorem 5.18 (deterministic disperser in AC0 for bit-fixing sources). For every k(n) ≥
n/poly(logn), there exist explicit AC0 circuits D : {0, 1}n → {0, 1} that constitute a disperser
for (n, k)-bit-fixing sources.

Proof. The first observation is that the Hamming weight of the outcome of any (n, k)-bit-
fixing source is spread (unevenly) over an interval of k values. Hence, if we partition [n]
into consecutive intervals of length k/10, then at least ten of these intervals will be assigned
non-zero weight.27 Our disperser outputs the least significant bit of the index of the interval
in which the source’s outcome resides. The second observation is that for outcomes that reside
in the middle portion of the interval we can determine the relevant index by approximate
counting. Details follow.

Let ρ = k/n = 1/poly(logn) and ε = ρ/50, and recall that Ajtai [2] (see also [59])
provided explicit AC0 circuits that compute the Hamming weight of n-bit strings up to an
additive deviation of εn. Denoting this circuit by C, consider the circuit C ′(x) that computes
bC(x)/εnc ∈ {0, 1, . . . , 1/ε}. Then, C ′(x) ∈ [bwt(x)/εnc ± 2], where wt(x) def=

∑
i∈[n] xi.

Hence, for every v ∈ [10/ρ] it holds that

5v+4∑
i=5v

Pr[C ′(X) = i] ≥ Pr [bwt(X)/εnc = 5v + 2] ,

which means that if the latter term is positive then so if the former. Our disperser D outputs
the least significant bit of bC ′(x)/5c.

For an arbitrary (n, k)-bit fixing source X, let u = b50E[wt(X)]/kc. Then, for every
u′ ∈ [u ± 10], it holds that Pr[b50wt(X)/kc = u′] > 0. It follows that Pr[bC ′(X)/5c =
bu/5c] > 0 and Pr[bC ′(X)/5c = bu/5c ± 1] > 0, whereas in these two cases D outputs
different values (since the least significant bit of bu/5c is different from the least significant
bit of bu/5c ± 1). J

5.4 Extraction from zero-fixing sources
The impossibility results regarding bit-fixing sources (presented in Section 5.2) do not hold
for a restricted class of such sources that was recently introduced by Cohen and Shinkar [19].
This class, called zero-fixing sources, consists of bit-fixing sources in which all fixed bits are
set to zero.

I Definition 5.19 (zero-fixing sources [19]). An (n, k)-zero-fixing source is a sequence of
random variables X = (X1, . . . , Xn) ∈ {0, 1}n such that there exists a set of at least k indices
I ⊆ [n] such that XI is uniformly distributed over {0, 1}|I| and Xi = 0 for every i ∈ [n] \ I.

As shown next, there exist strong AC0-extractors for zero-fixing sources of logarithmic
min-entropy, which was shown to be impossible for bit-fixing sources (see Theorem 5.4).

I Theorem 5.20 (seeded AC0-extractor for zero-fixing sources). Let k,m : N → N and
ε : N→ [0, 1] be such that m(n) = O(logn) and k(n) = 2m(n) +O(log(1/ε)) ≤ poly(logn).
Then, there exists a function E : {0, 1}n × {0, 1}O(logn) → {0, 1}m(n) that is computable in
uniform AC0 and constitutes a strong ε-error extractor for (n, k)-zero-fixing sources.

27 Indeed, it is likely that almost all the probability mass is concentrated in one interval (since the
probability mass is concentrated in an interval of length o(k2/3), but this does not contradict the
foregoing.

CCC 2015

644 On Randomness Extraction in AC0

Proof. On input x ∈ {0, 1}n and a seed s ∈ {0, 1}O(logn), the proposed extractor operates in
two stages. In the first stage, which is deterministic, the extractor determines the first k = k(n)
locations that are assigned the value 1 in x′ = (x′1, . . . , x′n+k) def= x1k; that is, it determines
i1 < · · · < ik ≤ n+k such that the ik-bit long prefix of x′ equals 0i1−110i2−i1−11 ·0ik−ik−1−11
In other words, for each j ∈ [k], the extractor determines ij as the smallest i such that∑
`∈[i] x

′
` = j. (This is done using counters that count up to k + 1 ≤ poly(logn), while

applying such counters to the strings x′1 · · ·x′i, for i ∈ [n+ k].)
In the second stage, which uses the seed s, we apply a (k, ε)-extractor to the sequence

(i1, . . . , ik), which is viewed as a string of length k logn. Here, again, we can use the extractor
of [29, Sec. 5], while relying on the fact that k logn = poly(logn).

Note that if X is a (n, k)-zero-fixing extractor, then the sequence determined by the
first stage has min-entropy at least k. To verify the claim, consider the set I of the first k
non-fixed (i.e., random) bits in X. Then, the random set {i ∈ I : Xi = 1} has min-entropy k,
since each of the 2k possible subsets is equally likely. J

Deterministic extraction

While our deterministic AC0-extractors for bit-fixing sources are not explicit (see Section 5.3),
we show a very simple explicit construction for the case of zero-fixing sources (of comparable
min-entropy rate). In fact, we prove a stronger result.

I Theorem 5.21 (deterministic AC0-extractors for zero-fixing sources).
1. Let k : N→ N and ε : N→ [0, 1] be such that k(n) ≥ n/poly(logn) and ε(n) ≥ 1/poly(n).

Then, there exists a function E : {0, 1}n → {0, 1}n/poly(logn) that is computable in uniform
AC0 and constitutes an ε-error extractor for (n, k)-zero-fixing sources.

2. Let k : N → N and ε : N → [0, 1] be such that k(n) = Θ(ε(n)−3 logn) = poly(logn).
Then, there exists a function E : {0, 1}n → {0, 1} that is computable in uniform AC0 and
constitutes an ε-error extractor for (n, k)-zero-fixing sources.

Proof Sketch. Starting with Part 1 and letting δ = k(n)/n ≥ 1/poly(logn), we first present
a simple extractor that outputs a single bit (and later apply the transformations underlying
the proofs of Theorems 5.15 and 5.17). We consider a partition of the source into consecutive
3t/δ-bit long blocks, where t = Θ(ε−3

0 logn) for any desired constant ε0 > 0. The extractor
picks the first block that contains at least t ones, and outputs the parity of the bits in that
block. (Recall that the block length is 3t/δ = poly(logn).)

Towards the analysis, we fix an arbitrary (n, k)-zero-fixing source, and let ki denote the
number of random bits in the ith block, where i = 1, . . . , δn/3t. We consider corresponding
random variables, Y1, . . . , Yδn/3t, such that Yi denotes the sum of the bits in the ith block.
Clearly, there exists a block i such that ki ≥ 3t. Note that if ki < t, then the ith block will
never be selected. On the other hand, if ki ≥ t, then, with probability at least 1− o(1/n), it
holds that Yi = (0.5±ε0)·ki. Hence, with probability at least 1−o(1), some block i is selected,
and it holds that ki ≥ (2 − 2ε0) · t. Furthermore, for such a block i (i.e., ki ≥ 2t − 2ε0t),
the parity of the bits in the block (i.e., Yi mod 2) has bias O(ε0), also when conditioned
on Yi ≥ t. To verify the last claim consider a pairing of the odd-parity strings of length
ki ≥ 2t− 2ε0t with the even-parity strings obtained by flipping the last bit. Now omit the
strings that have Hamming weight smaller than t, and note that only an O(ε0) fraction of the
remaining strings are left unmatched (since this omission may leave unmatched only strings
of Hamming weight t, whereas Pr[Yi= t] = (1 +O(ε0))j ·Pr[Yi= t+ j] for every j ∈ [ε−1

0]).
Part 1 follows by applying the transformations that underlie the proofs of Theorems 5.13,

5.15 and 5.17. Each of these transformations improves some parameter (i.e., error or output

O. Goldreich, E. Viola, and A. Wigderson 645

length) of deterministic AC0-extractors for bit-fixing sources of min-entropy n/poly(logn).
The point is that these transformation only use the fact that certain sub-sources derived from
the given bit-fixing source are bit-fixing sources with certain parameters (where sub-sources
are projections of the source on some locations).28

The same holds for zero-fixing sources.
Turning to Part 2, we consider the following extractor, which, for every ` = 0, 1, . . . ,

log(n/k(n)), uses a family of n2 pairwise independent hashing functions h : [n]→ [2`]. On
input x ∈ {0, 1}n, the extractor finds ` such that for most h : [n] → [2`] it holds that
Sh

def= {i ∈ [n] : xi = 1 &h(i) = 1} has cardinality at least (1 − ε(n)) · k(n) and at most
(2 + ε(n)) · k(n). It then picks the first of these (majority) h’s, and outputs the parity of
|Sh|. (This is done by using a counter that counts till 3k(n) = poly(logn); note that hashing
functions in these families can be computed by depth-two circuits of size poly(n).)

Towards the analysis, we fix an arbitrary (n, k)-zero-fixing source X, and let I denote
the set of random (i.e., non-fixed) bit locations in it. Then, there exists an ` such that
|I| is in [2`+1 · k, 2`+2 · k), where k = k(n), and a hashing function h : [n] → [2`] such
that |{i ∈ I : h(i) = 1}| ∈ (2k − εk, 4k + ε), where ε = ε(n). Using an analysis as in
Part 1, we infer that with high probability the pair (`, h) chosen by the extractor satisfies
|{i∈ I : h(i)=1}| ∈ (2k − 2εk, 4k + 2εk), where here we use the fact that for the majority
of the h’s it holds that |Sh| ∈ [(1 − ε) · k, (2 + ε) · k]. Similarly, we conclude that, for the
selected h, the parity of |Sh| has bias O(ε), and Part 2 follows. J

I Remark (zero-block-fixing sources, generalizing Definition 5.19). An (n, k, `)-zero-block-fixing
source is a sequence of random variables X = (X1, . . . , Xn) ∈ {0, 1}n` such that there exists
a set of at least k indices I ⊆ [n] such that XI is uniformly distributed over {0, 1}|I|` and
Xi = 0` for every i ∈ [n] \ I. Extraction from such a source is quite easy, since each non-fixed
block is clearly identified as such (and is uniformly distributed on {0, 1}` \ {0`}).

6 Extraction with long seeds

In this section we present extractors that use very long seeds, which is indeed uncustomary
in the studies of extractors, but the point is that these extractors establish the tightness
of Theorem 5.5. Recall that (Part 1 of) of Theorem 5.5 establishes lower bounds on the
relationship between the min-entropy k(n) and the seed-length r(n) for any non-trivial
extractor computable in AC0. Specifically, it asserts that k(n) · r(n) ≥ n/poly(logn) must
hold (for any non-trivial extraction in AC0). The point of the current section is showing that
these bounds are tight. Specifically, we shall show that k(n) · r(n) ≥ n/poly(logn) suffices
for trivial extraction in AC0.

We shall first show (see Section 6.1) that AC0 circuits can extract n + poly(logn)
bits using a seed of length n, provided that k(n) ≥ poly(logn). Actually, we show that
r(n) + poly(logn) bits can be extracted in AC0 provided that k(n) · r(n) ≥ n/poly(logn)
(and k(n) ≥ poly(logn)). This is a special case of a more general result (presented in
Section 6.2) that asserts that r(n) + m′(n) bits can be extracted in AC0 provided that
k(n) · r(n) ≥ m′(n) · n/poly(logn) (and m′(n) ≤ k(n)/2 and k(n) ≥ poly(logn)). The
latter result is obtained by combining extractors presented in previous part of this write-up
(including the one presented in Section 6.1) with a simple scheme that amounts to repeated
extraction with independent seeds.

28This holds also for [26, Thm. 7.1], which is used within the proof of Theorem 5.17.

CCC 2015

646 On Randomness Extraction in AC0

6.1 Extraction with a seed of linear length
The following construction generalizes an AC0-computable extractor presented by Viola [58,
Lem. 4.3], where the original construction corresponded to the case ` = 1.

I Theorem 6.1 (the inner product extractor). Let n, ` ∈ N such that `/2 is a power of 3 and
` ≤ poly(logn). Then, there exists a (` + 3 log(2/ε), ε)-extractor, E : {0, 1}n × {0, 1}n →
{0, 1}n+`, computable by uniform AC0.

The requirement that ` be of a special form (i.e., `/2 is a power of 3) can be dropped when
` = O(logn). This special form is only used for asserting the existence of (uniform) circuits
of constant depth and size poly(n) for computing inverses in GF(2`).

Proof. Our starting point is the strong extractor E′ : {0, 1}n × {0, 1}n → {0, 1}` that views
its input source x and seed r as n/`-long sequences over GF(2`) and outputs their inner
product, where the arithmetics is of the said field. That is, E′(x, r) =

∑
i∈[t] xiri, where

t = n/`, x = (x1, . . . , xt) and r = (r1, . . . , rt). Note that for a random r, the mapping
x 7→ E′(x, r) is pairwise independent, and so E′ is a strong (`+ 3 log(2/ε), ε)-error extractor
(by the Leftover Hashing Lemma, see, e.g., [27, Thm. D.4]). Hence, E′′(x, r) = r ◦E′(x, r) is
an (`+ 3 log(2/ε), ε)-error extractor with output length n+ `.

Wishing to obtainAC0 circuits, we define E(x, s) = E′′(x, f(x, s)) = (f(x, s), E′(x, f(x, s))),
where f(x, s) = (f1(x, s), . . . , ft(x, s)) ∈ GF(2`)t is defined as follows.

Fictitiously define s0 = 0 ∈ GF(2`) and x0 = 1 ∈ GF(2`).
Let prvx(i) = j ∈ {0, 1, . . . , i − 1} denote the index of the last non-zero element that
precedes i; that is, prvx(i) = j ∈ {0, 1, . . . , i− 1} if xj 6= 0 and xj+1 = · · · = xi−1 = 0.
Finally, define fi(x, s) = si if xi = 0 and fi(x, s) = (si − sprvx(i))/xi otherwise.

In particular, f(0t, s) = s and fi(1t, s) = si − si−1 (for every i ∈ [t]). Note that for ` = 1, we
have fi(x, s) = si if xi = 0 and fi(x, s) = si − sprvx(i) otherwise.

Before showing that E is in AC0, we analyze its output distribution. Note that, for every
fixed x, the mapping s 7→ f(x, s) is a bijection, and it follows that f(x, Un) is distributed
identically to Un. Hence, E(x, Un) = (f(x, Un), E′(x, f(x, Un)) is distributed identically
to E′′(x, Un) = (Un, E′(x, Un)), since in both distributions the last ` bits are obtained
by applying the same function (i.e., E′(x, ·)) to the first n bits. It follows that E′′ is an
(`+ 3 log(2/ε), ε)-error extractor with output length n+ `. It is left to show that E can be
computed in uniform AC0.

Turning to the complexity of E, we first consider the computation of E′(x, f(x, s)). Note
that E′(0t, r) = 0 ∈ GF(2`) for every r, whereas for x 6= 0t, it holds that E′(x, f(x, s)) equals∑

i∈[t]

xifi(x, s) =
∑
i:xi 6=0

xifi(x, s)

=
∑
i:xi 6=0

xi · (si − sprvx(i))/xi

=
∑
i:xi 6=0

si −
∑
i:xi 6=0

sprvx(i)

which equals si for the largest i such that xi 6= 0. Hence, E′(x, f(x, s)) =
∨
i∈[n] χi · si,

where χi = ((xi 6= 0) ∧
∧
i<k≤n(xk = 0)) and σ · (τ1, . . . , τ`) = (σ ∧ τ1, . . . , σ ∧ τ`) for every

σ ∈ {0, 1} and (τ1, . . . , τ`) ∈ {0, 1}` ≡ GF(2`).
Finally, we consider the computation of the fi’s. We first note that prvx(i) can be

computed by uniform AC0 (by computing the bits ((xj 6= 0) ∧
∧
j<k<i(xk = 0)) for j ∈

{0, 1, . . . , i − 1}). Next, we note that for ` = poly(logn), addition and multiplication in

O. Goldreich, E. Viola, and A. Wigderson 647

GF(2`) are computable by (uniform) constant-depth circuits of poly(n)-size.29 We can take
inverses in GF(2`) by raising to the power 2`−2, but the question is whether this can be done
in by (uniform) circuits of constant depth and size exp(`c) for any desired c > 0. Fortunately,
for ` of the form 2 · 3i, the answer is positive – see [33, Cor. 6 (2)]. J

An alternative construction

As an alternative generalization of the extractor presented by Viola [58, Lem. 4.3], consider
using the seed (which will now have length 2n rather than n) as a description of a sequence
of n′ = n/` Toeplitz matrices, denoted T = (T1, . . . , Tn′), where each Ti is a `-by-` matrix.30
Likewise, we view the source x as a sequence (x1, . . . , xn′) ∈ ({0, 1}`)n′ , and output E′(x, T) =
(T, Tx), where Tx =

∑
i∈[n′] Tixi. Recall that E′ is a strong (`+ 3 log(2/ε), ε)-error extractor;

again, this follows by the the Leftover Hashing Lemma (using the fact that x 7→ E′(x, Un) is
pairwise independent).

It is simpler to implement this extractor in AC0 when using affine transformations based on
`-by-` Toeplitz matrices; that is, rather than the Ti’s we use Ai = (Ti, bi)’s, where bi ∈ {0, 1}`,
and output the pair ((A1, . . . , An′), v) such that v =

∑
i∈[n′](Tixi + bi). That is, for A =

(A1, . . . , An′), where Ai = (Ti, bi), the extractor is defined by E(x,A) = (A,
∑
i∈[n′](Tixi+bi)).

Indeed, v =
∑
i∈[n′] Tixi +

∑
i∈[n′] bi, but it is useful to have this redundancy. Specifically,

the AC0 implementation of E uses its seed to determine (A1, . . . , An′), where Ai = (Ti, bi),
but then outputs (((T1, b

′
1), . . . , (Tn′ , b′n′)), Tn′xn′ + bn′) such that b′i = bi+ (Ti−1xi−1 + bi−1),

where T0x0 + b0 = 0`. The key observation is that Tn′xn′ + bn′ equals the last ` bits of
E(x, ((T1, b

′
1), . . . , (Tn′ , b′n′))). This holds because∑

i∈[n′]

(Tixi + b′i) =
∑
i∈[n′]

(Tixi + bi + Ti−1xi−1 + bi−1)

= Tn′xn′ + bn′ .

Turning back to the construction that uses linear (rather than affine) transformations, we
mention that it can be implemented by using the first column in each matrix Ti that
corresponds to a 1-entry in xi.

Using a shorter seed when the min-entropy is ω(log3 n)

Combining the extractor of Theorem 6.1 with a suitable averaging sampler, we obtain the
following.

I Corollary 6.2 (on the tightness of Theorem 5.5). For any k = Ω(logn) and r ≥ T
def=

min(n,Θ(n log3 n)/k), there exists a (k, poly(1/n))-extractor, E : {0, 1}n×{0, 1}r → {0, 1}r+`,
where ` = min(Ω(k), poly(logn)), that is computable by uniform AC0.

We stress the fact that Corollary 6.2 implies an extractor that outputs m(n) = r(n) +
Ω(logn) > r(n) bits using a seed of length r(n) = O(n log3 n)/k(n) (provided that k(n) =
Ω(logn)). Hence, non-trivial extraction in AC0 (i.e., m(n) > r(n)) is possible whenever
k(n) · r(n) = O(n log3 n) (provided k(n) = Ω(logn)). Recall that (Part 1 of) Theorem 5.5

29 In particular, recall that multiplication in GF(2`) reduces to computing inner products mod 2 of
`-bit long vectors, whereas such computation can be carried out by depth d = O(1) circuits of size
exp(`1/(d−1)) = poly(n).

30As usual, each Toeplitz matrix is represented by its first row and its first column. For notational
simplicity we view strings as either row or column vectors, according to their use.

CCC 2015

648 On Randomness Extraction in AC0

asserts that k(n) ·m(n) = Ω(n/poly(logn)) must hold for any non-trivial extraction in AC0.
Loosely speaking, the combination of these results implies that non-trivial extraction in AC0

is possible if and only if k(n) ·m(n) = Θ̃(n).

Proof. (The case of T = n follows immediately from Theorem 6.1, and we focus on the case
that T < 0.1n (since otherwise, we can artificially increase T to n and act accordingly).)
Assuming that T ≤ 0.1n, we combine an adequate averaging sampler with the extractor of
Theorem 6.1, where the combination uses the sample-then-extract paradigm (as stated in
Corollary 2.8). Actually, we plug the extractor of Theorem 6.1 into Corollary 3.9, which
already incorporate the adequate sampler. Specifically, when invoking Corollary 3.9, we set
r0 = t = r −O(logn)2 and δ = k(n)/n (and use ε = 1/poly(n) and (say) β = 1/2).31 J

6.2 Repeated extraction with independent seeds
The following straightforward scheme for repeated extraction is wasteful in its use of the
seed, but its appeal lies in the fact that it preserves the computational complexity of the
original extractor. The key observation underlying its analysis is that (typical) conditioning
on m′ bits extracted from an (n, k)-source yields an (n, k −m′ − 1)-source; this observation
is at least implicit in numerous works regarding randomness extraction.

I Theorem 6.3 (repeated extraction). Let n, k, r,m, t ∈ N and ε ∈ [0, 1]. If E : {0, 1}n ×
{0, 1}r → {0, 1}m is a (k, ε)-extractor, then Et : {0, 1}n × {0, 1}tr → {0, 1}tm defined by
Et(x, s1 ◦ · · · ◦ st) = E(x, s1) ◦ · · · ◦ E(x, st) is a (k + (t− 1) · (m+ 1), (2t− 1) · ε)-extractor.
An analogous statement holds for strong extractors.

(Hence, the quality of extraction is harmed in a small manner, especially when t � k/m.
Indeed, the result is meaningful only if k + (t− 1)(m+ 1) < n.)

Proof. We first prove the version that refers to ordinary extractors.32 We proceed by
induction on t, proving that for any (n, k + (t− 1)(m+ 1))-source X the statistical distance
between Utm and Et(X,Utd) is at most (2t− 1) · ε. The base case (of t = 1) is immediate
by the hypothesis regarding E. In the induction step we proceed as follows, while writing
Et(x, s1 ◦ · · · ◦ st) = Et−1(x, s1 ◦ · · · ◦ st−1) ◦ E(x, st):

∆[Et(X,Utr) ;Utm]
= ∆[Et−1(X,U(t−1)r) ◦ E(X,Ur) ;U(t−1)m ◦ Um]
≤ ∆[Et−1(X,U(t−1)r) ◦ E(X,Ur) ;U(t−1)m ◦ E(X,Ur)]

+∆[U(t−1)m ◦ E(X,Ur) ;U(t−1)m ◦ Um]
≤ ∆[Et−1(X,U(t−1)r) ◦ E(X,Ur) ;U(t−1)m ◦ E(X,Ur)] + ∆[E(X,Ur) ;Um], (13)

where the last inequality uses ∆[Π(Y) ; Π(Z)] ≤∆[Y ;Z] (for any random process Π). Using
the hypothesis regarding E, the second term of Eq. (13) is upper bounded by ε. So we turn
to analyze the first term of Eq. (13). We shall use the following notation:

We let k′ = k + (t− 1)(m+ 1) and recall that X is an (n, k′)-source;

31We mention that an essentially weaker statement, which refers only to k ≥ n2/3, follows by instantiating
Corollary 3.5 with the extractor of Theorem 6.1. In this case, the resulting extractor has seed length
r = t+O(logn) rather than t+O(logn)2, but this gain is insignificant because in both cases t = Ω(log3 n).

32The proof of the version that refers to strong extraction is very similar, and will be presented later.

O. Goldreich, E. Viola, and A. Wigderson 649

We let Y denote the distribution of E(X,Ur);
For any y in the support of Y , we let X ′y denote the distribution of X conditioned on
E(X,Ur) = y.

Using these notations we have

∆[Et−1(X,U(t−1)r) ◦ E(X,Ur) ;U(t−1)m ◦ E(X,Ur)]
= Ey←Y [∆[Et−1(X ′y, U(t−1)r) ;U(t−1)m]]
≤ max

y:H∞(X′y)≥k′−m−1

{
∆[Et−1(X ′y, Ur) ;U(t−1)m]

}
(14)

+Pry←Y [H∞(X ′y) < k′ −m− 1], (15)

where the inequality uses the fact that ∆[;] is upper bounded by 1. We upper bound
Eq. (14) by using the induction hypothesis, while noting that in this case X ′y is an (n, k +
(t− 1)(m+ 1)−m− 1)-source. Hence, Eq. (14) is upper bounded by (2(t− 1)− 1) · ε. To
bound Eq. (15), we first observe that

Pry←Y
[
Pr[E(X,Ur) = y] < 0.5 · 2−m

]
< ε, (16)

because otherwise the hypothesis regarding E is violated. (Specifically, let B = {y :
Pr[E(X,Ur) = y] < 0.5 · 2−m}, then Pr[Um = y] = 2−m > 2 · Pr[Y = y] for every y ∈ B,
which implies Pr[Um ∈ B] > 2 ·Pr[Y ∈ B], and so Pr[Y ∈ B] ≥ ε implies ∆[Y ;Um] > ε.)
Now, using Eq. (16), it follows that

Pry←Y [H∞(X ′y) < k′ −m− 1]
≤ Pry←Y

[
Pr[E(X,Ur)=y] < 2−m−1]

+Pry←Y
[
∃x s.t. Pr[X ′y=x] > 2−k

′+m+1
∣∣∣Pr[E(X,Ur)=y] ≥ 2−m−1

]
≤ ε+ Pry←Y

[
∃x s.t. Pr[X=x|E(X,Ur)=y] > 2−k

′+m+1
∣∣∣Pr[E(X,u)=y] ≥ 2−m−1

]
.

(17)

Next, note that for every x ∈ {0, 1}n and y ∈ {0, 1}m, it holds that

Pr[X ′y = x] = Pr[X = x|E(X,Ur) = y] ≤ Pr[X = x]
Pr[E(X,Ur) = y]

where equality holds if and only if Pr[E(x, Ur) = y] = 1. Hence, for y such that Pr[E(X,Ur) =
y] ≥ 2−m−1, and for every x, it holds that

Pr[X = x|E(X,Ur) = y] ≤ Pr[X = x]
Pr[E(X,Ur) = y]

≤ 2−k
′+m+1

which means that the second term in Eq. (17) is zero. Hence, Eq. (15) is upper bounded by ε,
and the induction claim follows, since Eq. (13) is upper bounded by ε+ (2(t− 1)− 1) · ε+ ε.

The case of strong extractors. We now turn to the version that refers to strong extractors,
and proceed as in the ordinary case subject to adequate modifications. (Indeed, the reader
may want to skip the rest of the proof.) Denoting E′t(x, u) = Et(x, u) ◦ u (and E′(x, u) =

CCC 2015

650 On Randomness Extraction in AC0

E(x, u) ◦ u), we prove (by induction on t) that for any (n, k + (t− 1)(m+ 1))-source X the
statistical distance between Utm+tr and E′t(X,Utr) is at most (2t− 1) · ε. Here we use:

∆ [E′t(X,Utr)Utm+tr]
= ∆[E′t−1(X,U(t−1)r) ◦ E′(X,Ur) ;U(t−1)(m+r) ◦ Um+r]
≤∆[E′t−1(X,U(t−1)r) ◦ E′(X,Ur) ;U(t−1)(m+r) ◦ E′(X,Ur)] + ∆[E′(X,Ur) ;Um+r].

(18)

Using the (strong) hypothesis regarding E, the second term of Eq. (18) is upper bounded by
ε. So we turn to analyze the first term of Eq. (18). We shall use the following notation:

For any u ∈ {0, 1}r, we let Yu denote the distribution of E(X,u);
For any u ∈ {0, 1}r and y in the support of Yu, we let X ′u,y denote the distribution of X
conditioned on E(X,u) = y.

Using these notations we have

∆[E′t−1(X,U(t−1)r) ◦ E′(X,Ur) ;U(t−1)(m+r) ◦ E′(X,Ur)]
= Eu←Ur;y←Yu [∆[E′t−1(X ′u,y, U(t−1)r) ;U(t−1)(m+r)]]
≤ max

u,y:H∞(X′u,y)≥k′−m−1

{
∆[E′t−1(X ′u,y, Ur) ;U(t−1)(m+r)]

}
(19)

+Pru←Ur;y←Yu [H∞(X ′u,y) < k′ −m− 1]. (20)

We upper bound Eq. (19) by using the induction hypothesis, while noting that in this case
X ′u,y is an (n, k + (t − 1)(m + 1) −m − 1)-source. Hence, Eq. (19) is upper bounded by
(2(t− 1)− 1) · ε. To bound Eq. (20), we first observe that

Pru←Ur;y←Yu
[
Pr[E(X,u) = y] < 0.5 · 2−m

]
< ε (21)

because otherwise the hypothesis regarding E is violated. (Specifically, let B = {(u, y) :
Pr[E(X,u) = y] < 0.5 · 2−m}, then Pr[Ur+m ∈ B] > 2 ·Pr[(Ur, YUr) ∈ B], since Pr[Um =
y] > 2 ·Pr[Yu = y] for every (u, y) ∈ B.) It follows that

Pru←Ur;y←Yu [H∞(X ′u,y) < k′ −m− 1]
≤ Pru←Ur;y←Yu

[
Pr[E(X,u)=y] < 2−m−1] (22)

+Pru←Ur;y←Yu

[
∃x s.t. Pr[X ′u,y=x] > 2−k

′+m+1
∣∣∣Pr[E(X,u)=y] ≥ 2−m−1

]
,(23)

where Eq. (22) is upper bounded by ε. Next, note that for every x ∈ {0, 1}n, u ∈ {0, 1}r and
y ∈ {0, 1}m, it holds that

Pr[X ′u,y = x] = Pr[X = x|E(X,u) = y] ≤ Pr[X = x]
Pr[E(X,u) = y]

where equality holds if and only if E(x, u) = y. Hence, for u and y such that Pr[E(X,u) =
y] ≥ 2−m−1, and for every x, it holds that

Pr[X = x|E(X,u) = y] ≤ Pr[X = x]
Pr[E(X,u) = y]

≤ 2−k
′+m+1

which means that the the second term in Eq. (23) is zero. Hence, Eq. (20) is upper bounded by
ε, and the induction claim follows (since Eq. (18) is upper bounded by ε+(2(t−1)−1)·ε+ε). J

O. Goldreich, E. Viola, and A. Wigderson 651

Applications to the study of extraction in AC0

Combining Theorem 6.3 with the various extractors presented in this work, we obtain.

I Corollary 6.4 (on extraction in AC0 using a long seed). For every ε : N→ (0, 1] such that
ε(n) ≥ 1/poly(n) and every constant α < 1, there exist explicit AC0 circuits that compute
(k, ε)-extractors, E : {0, 1}n × {0, 1}r(n) → {0, 1}m(n), for the following relation between r,m
and k.
1. For any k(n) = Ω(n), we can have any m(n) ≤ α · k(n) with any r(n) = max(β ·

m(n),Ω(logn)), for any constant β > 0. Furthermore, the extractor is strong and the
AC0 circuits have depth three.

2. For any k(n) ≥ n/poly(logn), we can have any m(n) ≤ α · k(n) with r(n) = max(β ·
m(n),Ω(logn)), for any constant β > 0. Furthermore, the extractor is strong and the
AC0 circuits have depth 4 + log(n/k(n))

log logn .
3. For any constant c > 0 and k(n) ≥ O(logn)c+3, we can have any m′(n) = m(n)− r(n) ≤

α · k(n) with r(n) · k(n) = m′(n) · n/(logn)c. In particular:
We can have m′(n) = α · k(n) and r(n) = n/(logn)c.
We can have m′(n) = min(α · k(n), (logn)c) and r(n) = n/k(n).

In addition, for any k(n) = Ω(logn) we can have m′(n) = m(n) − r(n) = min(α ·
k(n), poly(logn)) and r(n) = n.

Note that in Part 1 the output length exceeds the seed length, whereas in the other parts
the output is shorter. The extractors in Parts 1 and 2 are strong, but this is not the case
(and cannot be the case) in Part 3. The additional claim (in Part 3) is merely a restating of
Theorem 6.1, which also appears as a special case of Corollary 6.2.

Proof. In all parts, t = t(n) denotes the number of times that the basic extractor E0 :
{0, 1}n × {0, 1}r0(n) → {0, 1}m0(n) is invokes; that is, we will derive m(n) = t(n) ·m0(n) and
r(n) = t(n) · r0(m).

Part 1 (resp., Part 2) is obtained by combining Theorem 2.4 (resp., Theorem 3.1) with
the second part of Theorem 6.3 (i.e., the part referring to strong extractors). In both parts
we have r0(n) = Θ(logn); in Part 1 we can have any m0(n) = r0/β = O(r0(n)), whereas in
Part 2 we have some m0(n) = Ω(r0(n)). Note that the extractor asserted in Theorem 2.4
can be implemented by depth-three AC0 circuits.

Part 3 combines Corollary 6.2 with the first part of Theorem 6.3 (i.e., the part referring
to ordinary extractors). Here we use r0 = min(n,O(n log3 n)/k(n)) and m′0 = m0 − r0 =
min(αk(n), (logn)c+3). Hence, for k(n) ≥ O(logn)c+3, we have r0 · k(n) = m′0 · n/O(logn)c,
which yields r(n)·k(n) = m′(n)·n/O(logn)c for r(n) = t(n)·r0(n) andm′(n) = t(n)·m′0(n) ≤
αk(n). J

7 Extraction from several independent sources

While deterministic extraction is not possible from a single general (n, n−1)-source, it is known
to be possible when having a constant number of independent sources (cf., e.g., [17, 7, 8, 38]).
We ask whether such extraction is possible in AC0, provided that the min-entropy rate is at
least 1/poly(logn). Considering extraction from a constant number of independent sources,
note that the impossibility results in Section 5.2 can be adapted to rule out min-entropy
rates below 1/poly(logn). Details follow.

We view the c sources as a single source of length cn in which the n-bit long parts are
independent of one another. Applying the proof of Theorem 5.4 to such a generic source,

CCC 2015

652 On Randomness Extraction in AC0

yields a bit-fixing source of length cn in which ck bits are random. These ck positions are
“typical” (w.r.t an averaging argument) and so we can make sure that there are approximately
k random bits in each n-bit long part of the source. This proves that AC0-extraction
from a constant number of sources is impossible if all sources have min-entropy rate below
n/poly(logn). However, above that level of min-entropy, AC0-extraction is possible when
using a seed of logarithmic length. Hence, it is reasonable to ask whether deterministic
AC0-extractors can meet this performance (as in the case of bit-fixing sources).

7.1 Extraction from two independent sources
In this section, we consider AC0-extractors for pairs of independent sources, a model first
considered by Vazirani [56] (for Santha-Vazirani sources [52]). Recall that Chor and Goldre-
ich [17] showed that inner-product mod 2 yields a good extractor for pairs of independent
sources provided that each source has min-entropy rate above half; in fact, it yields an
ε-extractor for any pair consisting of an (n, k1)-source and an (n, k2)-source such that
k1 + k2 > n + 1 + 2 log(1/ε). A natural question that arises is whether such a seedless
extractor can operate in AC0. Specifically:

I Definition 7.1 (a (seedless) two-source extractor). The function E : {0, 1}n × {0, 1}n →
{0, 1}m is called a ((k1, k2), ε)-extractor if for every pair of independent random variables
(X,Y) such thatX is a (n, k1)-source and Y is a (n, k2)-source it holds that ∆[E(X,Y) ;Um] ≤
ε.

We ask whether a ((0.51n, 0.51n), 0.01)-extractor can be computed in AC0. So far, we only
know of ((k, k), 0.01)-extractors in AC0 for k(n) = n− (n/ log4 n) and m = 1.

I Theorem 7.2 (two-source deterministic extractor in AC0). For k(n) = n− (n/ log4 n) and
ε(n) = n−ω(1), there exists a ((k, k), ε)-extractor in AC0 (extracting a single bit).

The constant 4 in the exponent is an arbitrary constant greater than three.

Proof. First, we shall see how to extract a single bit with error O(1/ logn) from sources
of rate 1 − log−3 n. Consider a partition of each of the two sources into blocks of length
` = log2 n; that is, let X = (X1, . . . , Xn/`) and Y = (Y1, . . . , Yn/`) such that |Xi| = |Yi| = `.
We shall prove (see Claim 7.3 below) that each source is exp(−Ω(`))-close to a source in
which at least a 1 − 10 log−3 n fraction of the blocks have min-entropy rate at least 0.7
conditioned on the previous blocks.

Next, we apply the inner-product mod 2 extractor [17] on each pair of corresponding
blocks, obtaining a sequence Z of n′ def= n/` bits such that at least 1 − 20 log−3 n of them
are “quasi-random” conditioned on the previous bits; that is, Zi is the inner-product mod 2
of Xi and Yi and for all but at most 20n′/ log3 n of the indices i ∈ [n′] it holds that
Pr[Zi=1|Z[i−1] =α] = 0.5± exp(−Ω(`)) for every α ∈ {0, 1}i−1. Applying the extractor of
Theorem 5.7 (which was used in the proof of Theorem 5.8) to Z, we extract a bit with bias
O(1/ logn). (Indeed, a sequence as above is n · exp(−Ω(`))-close to a non-oblivious bit-fixing
source of length n/` with 20n/(` log3 n) bits that are fixed as an arbitrary function of the
random bits.)33

Finally, to reduce the error of the extractor, we use a source of higher min-entropy rate
(1− log−4 n), which we break into logn parts such that each part has conditional min-entropy

33Given a sequence of n′ = n/` bits in which k′ bits are quasi-random conditioned on the previous bits,
note that the subsequence of quasi-random bits is close to being uniformly distributed in {0, 1}k

′
.

O. Goldreich, E. Viola, and A. Wigderson 653

rate at least 1 − log−3 n. Applying the foregoing extractor to each part, we get logn bits
such that each bit has bias O(1/ logn) conditioned on the previous ones. XORing these bits,
we obtain a bit with bias O(1/ logn)logn = n−ω(1). The proof is completed once we prove
the following claim.

I Claim 7.3 (on the number of blocks with high conditional min-entropy). Let X = (X1, . . . , Xn′)
be a (n, δn)-source such that |Xi| = ` = n/n′, and δ′, ε′ ∈ (0, 1) such that ε′` ≥ logn.
Then, X is exp(−Ω(ε′`))-close to a source X ′ for which there exists a set I ⊆ [n′] of
cardinality at least δ−δ′

1−δ′ · n
′ such that for every i ∈ I and x ∈ {0, 1}n it holds that

Pr[X ′i=xi|X ′[i−1] =x[i−1]] ≤ 2−(δ′−2ε′)`.

For the above application we set δ = 1 − log−3 n, δ′ = 0.9, and ε′ = 0.1. Hence, δ−δ′
1−δ′ =

1− 1−δ
1−δ′ = 1− 10 · (1− δ) and δ′ − 2ε′ = 0.7.

Proof. As in many known cases, the proof proceeds via analyzing the collision probability.
Recall that the collision probability of a random variable Z, denoted CP[Z], equals Pr[Z(1) =
Z(2)], where Z(1) and Z(2) are two independent copies of the random variable Z; that
is, CP[Z] =

∑
z Pr[Z = z]2. Using the fact that X has min-entropy δn, we infer that

CP[X] ≤ 2−δn. Hence, it holds that

∏
i∈[n′]

Pr[X(1)
i =X

(2)
i |X

(1)
[i−1] =X

(2)
[i−1]] ≤ 2−δn

′·`, (24)

where X(1) and X(2) are two independent copies of X. We call i good if Pr[X(1)
i =

X
(2)
i |X

(1)
[i−1] =X

(2)
[i−1]] ≤ 2−δ′`, and infer that at least a δ−δ′

1−δ′ fraction of the i’s are good.34

We next observe that, for every good i, there exists a set Si−1 ⊆ {0, 1}(i−1)` such that
Pr[X[i−1] ∈ Si−1] ≥ 1− 2−ε′` and for every z ∈ Si−1 it holds that

Pr[X(1)
i =X

(2)
i |X

(1)
[i−1] =X

(2)
[i−1] =z] ≤ 2−(δ′−ε′)`. (25)

Moving back to a min-entropy upper bound, for any good i and every z ∈ Si−1, let Hi,z
def=

{xi : Pr[Xi=xi|X[i−1] =z] > 2−(δ′−2ε′)`}. Then, Pr[Xi∈Hi,z|X[i−1] =z] ≤ 2−ε′` holds (for
any good i and z ∈ Si−1).35 Let X ′ = X if for every good i it holds that X[i−1] ∈ Si−1 and
Xi ∈ Hi,X[i−1] , and X ′ be uniform otherwise. Then, X ′ is O(n′ · 2−ε′`)-close to X, and for
every good i and every x ∈ {0, 1}n it holds that Pr[X ′i = xi|X ′[i−1] = x[i−1]] ≤ 2−(δ′−2ε′)`.
The claim follows. J

This completes the proof of the theorem. J

34Denoting the set of good i’s by G, we have (2−`)|G| · (2−δ
′`)n

′−|G| ≤ 2−δn
′·`, and it follows that

(1− δ′)|G| ≥ (δ − δ′)n′.
35Let Y and Y ′ be distributed independently and identically to Xi conditioned on X[i−1] = z (i.e., Pr[Y =
y] = Pr[Xi = y|X[i−1] = z]), and H def= {y : Pr[Y = y] > 2−(δ′−2ε′)`}. Then, Pr[Y =Y ′] ≤ 2−(δ′−ε′)`

implies Pr[Y ∈H] ≤ 2−ε
′`. See farther discussion in Remark 7.1.

CCC 2015

654 On Randomness Extraction in AC0

Digest

Note that the sequence Z extracted at the first part (of the main step) is apparently more
restricted than a non-oblivious bit-fixing source, but it is not an (oblivious) bit-fixing source.
Hence, we applied the extractor of Theorem 5.7 to Z, rather than applying the AC0-extractors
for bit-fixing sources that can handle lower min-entropy. Of course, there is room in between,
and one may capitalize on it, but currently we do not see a way of doing so. Indeed, the point
is trying to obtain AC0-extraction for two independent sources of some constant min-entropy
rate. (In Section 7.2, we achieve the corresponding goal for four sources.)

I Remark (from conditional collision probability to conditional min-entropy). The proof of
Claim 7.3 relies on transforming an upper bound on conditional collision probability to a
lower bound on conditional min-entropy. For the benefit of future applications, we distill the
corresponding claim here.

Let X(1) and X(2) be two independent copies of X, and let f, g : {0, 1}∗ → {0, 1}∗.
If Pr[f(X(1))=f(X(2))|g(X(1))=g(X(2))] ≤ ε · 2−k, then X is 2

√
ε-close to X ′ such

that Pr[f(X ′)=v|g(X ′)=u] ≤ 2−k for every u, v.

The proof of this claim proceeds in two steps. First, we infer that there exists a set S such
that Pr[g(X)∈S] ≥ 1 −

√
ε and Pr[f(X(1)) = f(X(2))|g(X(1)) = g(X(2)) = s] ≤

√
ε · 2−k

for every s ∈ S. Next, for every s ∈ S and every v, we show that X is
√
ε-close to X ′ that

satisfies Pr[f(X ′)=v|g(X ′)=s] ≤ 2−k. This is shown by considering the random variable
Xs defined as f(X) conditioned on g(X) = s, letting H = {v : Pr[Xs = v] > 2−k}, and
noting that CP[Xs] ≥ Pr[Xs∈H] ·minv∈H{Pr[Xs=v]}, which implies

√
ε2−k ≥ CP[Xs] >

Pr[Xs∈H] · 2−k. The claim follows by letting X ′ be X conditioned on both g(x) ∈ S and
f(X) 6∈ H.

I Remark (reducing two-source extraction to extraction from non-oblivious block-fixing sources).
As stated above, the core of the proof of Theorem 7.2 is a transformation of a pair of
independent sources, each having min-entropy rate δ > 0.75, into a non-oblivious bit-fixing
source of min-entropy rate at least 1− 4 · (1− δ)− o(1), where here we use Claim 7.3 with
any constant δ′ > 0.5 and ε′ = 1/ logn (rather than with δ′ = 0.9 and ε′ = 0.1). Similarly,
we can transform such a pair of sources into a non-oblivious block-fixing source with block
length Ω(log2 n), by using an extractor that outputs Ω(`) bits [17, 20]. Hence, deterministic
two-source AC0-extractors for some constant min-entropy rate exist if such extractors exist
for a non-oblivious block-fixing source of some constant rate and super-logarithmic block
length.

Recall that there exist no deterministic extractors for non-oblivious bit-fixing source of any
(non-trivial) constant min-entropy rate [40]. Such a result is not known for extraction from
non-oblivious block-fixing source of (any constant min-entropy rate and) super-logarithmic
block length, although it was conjectured more than a decade ago in [23, Conj. 2.2]. Hence,
ruling out two-source extractors for any constant rates requires settling the latter conjecture.

7.2 Extraction from four independent sources
In this section, we consider AC0-extractors from a constant number of independent sources,
showing that such extractor exist for four independent sources of some constant min-entropy
rate. In Section 7.3, we shall show how to extract from independent sources of any constant
min-entropy rate, but we shall use a larger number of sources (which depends on the rate).
In both section, we shall refer to the following definition, which generalizes Definition 7.1.

O. Goldreich, E. Viola, and A. Wigderson 655

I Definition 7.4 (a (seedless) multi-source extractor). For a constant integer c ≥ 2, the
function E : ({0, 1}n)c → {0, 1}m is called a ((k1, . . . , kc), ε)-extractor if for every sequence
of c independent random variables (X(1), . . . , X(c)) such that X(i) is a (n, ki)-source for
i = 1, .., ., c, it holds that ∆[E(X(1), . . . , X(c)) ;Um] ≤ ε.

Indeed, Definition 7.1 corresponds to the special case of c = 2.
While Theorem 7.2 applies to (two) sources of min-entropy rate of the form 1− o(1), the

following result holds for (four) sources of min-entropy rate that is bounded away from 1.
Furthermore, while Theorem 7.2 does not assert uniform AC0 circuits, the following result
does assert such circuits.

I Theorem 7.5 (four-source deterministic extractor in AC0). For k(n) = 0.99n and ε(n) =
n−ω(1), there exists a ((k, k, k, k), ε)-extractor in uniform AC0 (extracting poly-logarithmically
many bits).

Proof Sketch. The general strategy is to use the first two sources in order to sample
polylogarithmically many bits of the third and fourth sources, and then extract out of the
selected sub-sources. Thus, in a sense, we construct a condenser that transforms the second
pair of sources into a pair of short sources that maintains a sufficiently high min-entropy
rate; specifically, the resulting sources have min-entropy rate at least 0.51 (whereas the
original ones had min-entropy rate 0.99). This conversion is performed using the imperfect
randomness that exists in the first pair of sources.

Specifically, we will consider a partition of each source into n′ = n/` blocks of length
` = log2 n, denoted X(i) = (X(i)

1 , . . . , X
(i)
n′), and apply a two-source extractor E′ : {0, 1}` ×

{0, 1}` → [n′/`], which is computable by constant-depth poly(n)-size circuits (e.g., E′
computes bilinear functions [17, 20]), to the blocks of the first two sources. We view these n′
outcomes (i.e., E′(X(1)

j , X
(2)
j) for j ∈ [n′]) as an assignment of blocks indexed by [n′] into

n′′ = n′/` cells (i.e., block j is assigned to cell E′(X(1)
j , X

(2)
j)), and pick a cell cmin ∈ [n′/`]

with a minimal number of blocks (breaking ties arbitrarily).36
Finally, we apply a second two-source extractor E′′ : {0, 1}`2 × {0, 1}`2 → {0, 1}Ω(`) to

the sub-sources X(3)
j1
· · ·X(3)

j`′
and X(4)

j1
· · ·X(4)

j`′
, where (j1, . . . , j`′) is the sequence of blocks

assigned to cell cmin and `′ ≤ `. (If `′ < `, then we pad the said sequence of blocks to the
full length of `2.)

Intuitively, the first extractor E′ uses blocks in the first pair of sources (i.e., X(1) and
X(2)) in order to assign blocks of the second pair of sources into cells. Pairs of blocks of
sufficiently high min-entropy (in X(1) and X(2)) will assign the corresponding blocks (of X(3)

and X(4)) to a random cell, but other pairs of blocks (in X(1) and X(2)) may assign blocks (of
X(3) and X(4)) arbitrarily. Still, each cell is assigned many blocks that have sufficiently high
min-entropy in the second pair of sources. Hence, the smallest cell, denoted cmin, contains
blocks of X(3) and X(4) that have average min-entropy rate that exceeds 0.5, and applying
the extractor E′′ to these blocks (of X(3) and X(4)) will yield an almost random output.
Note that the value cmin may not be random; it is merely determined as the index of the
smallest cell.

36 Indeed, this strategy is inspired by Feige’s protocol for leader election [22], and it was already employed
in the context of O(1)-source extraction by Li [38]. Here, we pick the smallest cell in order to guarantee
that the total length of the blocks assigned to it is small. This guarantees both that E′′ can be computed
by constant-depth circuits of poly(n)-size and that the min-entropy rate of blocks (of X(3) and X(4)) in
this cell exceeds half. Jumping ahead, we mention that in the proof of Theorem 7.6 we shall only rely
on the first implication (and the second implication will not hold).

CCC 2015

656 On Randomness Extraction in AC0

In order to analyze the quality of this construction, we first invoke Claim 7.3. Specifically,
for δ = 0.99 and some constant δ′, ε′ ∈ (0, 1), we say that a block index j ∈ [n′] is good
for the ith source if Pr[X ′j = xj |X ′[j−1] = x[j−1]] ≤ 2−(δ′−2ε′)`, for every x, where X ′ is
exp(−Ω(ε′`))-close to X(i). Recall that at least a δ−δ′

1−δ′ = 1− 1−δ
1−δ′ fraction of the blocks are

good for each source. We call j good if it is good for all four sources, and conclude that at
least a 1− 4 · 1−δ

1−δ′ > 1/2 fraction of the blocks are good. Hence, with very high probability,
each cell is assigned at least (1− 4 · 1−δ

1−δ′ − o(1)) · ` good blocks, and the min-entropy of the
blocks assigned to each cell is at least (1 − 4 · 1−δ

1−δ′ − o(1)) · ` · (δ′ − 2ε′)`. The analysis is
completed by selecting δ′ and ε′ such that (1− 4 · 1−δ

1−δ′) · (δ
′ − 2ε′) is strictly larger than 1/2

(e.g., using δ′ = 0.9 and ε′ = 0.01 we get a lower bound of 0.52).
We wish to emphasize a key point regarding the foregoing probabilistic analysis. Recall

that blocks are defined as “good” (for a particular source) based on their conditional min-
entropy. That is, the jth block (of the ith source) is good if the conditional min-entropy of
that block, conditioned on the prior j − 1 blocks of this source, exceeds a specific threshold.
It follows that if the jth block is good for both the first and second sources, then the jth

block (of the third and fourth sources) will be assigned a random cell, conditioned on the
assignment of the prior j − 1 blocks. Similarly, the blocks assigned to the smallest cell (i.e.,
cmin) are defined as good in the same sense, which implies that their total min-entropy is
sufficiently high, since it is the sum of their individual conditional min-entropies. Hence, if a
ρ fraction of the blocks assigned to the smallest cell are good, then each of these blocks has
conditional min-entropy rate at least δ′′ = δ′ − 2ε′ (conditioned on the prior blocks), and the
total min-entropy rate of the blocks in this cell is at least ρ · δ′′.

What remains is implementing the determination the smallest cell and its contents by
constant-depth circuits of poly(n)-size. This can be done using techniques as in the proof
of Theorem 3.8. Specifically, we refer to the ranking procedure applied in Step 3(b) of the
proof.37 Lastly, note that the foregoing extractor outputs Ω(`) bits, where ` = log2 n. The
proof remains intact when setting ` to be any larger poly-logarithmic function. J

7.3 Extraction from poly(1/δ) sources of rate δ
Looking at the four-source extractor (presented in the proof of Theorem 7.5), one may notice
that there are two main reasons for the high constant lower bound on the min-entropy rate
(i.e., 0.99) used there. One is that we used a bilinear two-source extractor, whereas we have
such extractors only for rate greater than 0.5 (and, in general, explicit two-source extractors
are known [13] only for constant rate that is slightly smaller than 0.5).38 The second reason
is that we use blocks that are “good” (i.e., have sufficient min-entropy rate) with respect to
all sources.

But if we are willing to use more sources, we may reach an arbitrary low constant rate.
Firstly, we will use the multi-source extractors of Barak et al. [7], which can extract from any
constant rate ρ > 0 using poly(1/ρ)-many sources of such rate. The crucial observation is that
these extractors compute polynomials (of degree that is smaller than the number of sources)
over a finite field, and they can be computed by constant-depth circuits of sub-exponential
size. Since we shall be applying these extractors to sub-sources of polylogarithmic (in n)
length, we can afford this size, which is poly(n).

37Recall that our ranking procedure amount to counting (in uniform AC0) the number of marked elements
in an array of length n′, when guaranteed that this number does not exceed poly(logn). An explicit
construction of such a counter was presented in [48], improving over [3, Sec. 5] (and subsequent works).

38The said constant is not specified in [13], and is estimated to be higher than 0.49.

O. Goldreich, E. Viola, and A. Wigderson 657

Secondly, there is no need to insist on using only blocks that are good for all sources; we
can use blocks that are good for a constant fraction of the sources. This assertion relies on
the fact that the extractors of [7] work well also when applied to many (independent) sources
such that only a constant fraction of these sources are good (i.e., have sufficient min-entropy).
The latter fact is based on two observations:
1. The extractors of [7] iterate the three-source extractor E3(x, y, z) = xy + z, where x, y, z

are field elements. Hence, assuming that Pr[X=0] = 0 and ditto for Y , the min-entropy
of E3(X,Y, Z) is at least the maximum among the min-entropy of the three sources. (The
condition can be guaranteed by redefining each of the sources so that it never assumes
the value zero, while noting that this reduces the min-entropy of the source by at most
one unit.)

2. By the entropy increasing lemma of [7], the min-entropy of E3(X,Y, Z) is at least a
constant factor larger than the minimum among the min-entropy of the three sources,
as long at this value does not exceed 0.9`, where 2` is the size of the field. Using the
following tree marking game, this implies that the iterative extraction procedure of [7],
which applies E3 at the internal nodes of a ternary tree (while the sources are placed at
the leaves), produces output of min-entropy at least 0.9`.
Consider a full ternary tree of height h such that a ρ fraction of the leaves are marked 1
(corresponding to good sources of sufficiently high min-entropy rate), and the other leaves
are marked 0 (corresponding to bad sources). Going from the leaves to the root, the
following marking rule is applied: If the children of a node are all marked i > 0, then the
parent is marked i+ 1 (corresponding to an application of the entropy increasing lemma
of [7]), otherwise the parent is marked by the maximum of its children (corresponding to
preservation of entropy asserted in Observation 1). Then, as shown in Claim 7.7 (below),
for every fixed ρ > 0 and any (allowed) marking of the leaves, the minimal possible
marking of the root is unbounded as a function of h.

Plugging these observations into the framework of the proof of Theorem 7.5, while replacing
each pair of sources by many independent sources, we get uniform AC0-extractors for
poly(1/δ)-sources of min-entropy rate δ, for any δ > 0.

I Theorem 7.6 (deterministic extractor in AC0 for poly(1/δ) sources of constant rate δ). For
any constants δ > 0 and γ > 1, setting t = poly(1/δ), there exists a uniform AC0 function
E : ({0, 1}n)t → {0, 1}Θ(logγ n) that constitutes a ((δn, . . . , δn), n−ω(1))-extractor.

Proof Sketch. We partition the t sources into two sets; a set of t1 sources will be used
to select a small cell, and the remaining t2 = t − t1 sources will be used for the actual
extraction based on sub-sources determined by the selected cell. That is, as in the proof of
Theorem 7.5, we partition each source into n′ = n/` blocks, each of length ` = logγ n, and use
two multi-source extractors, denoted E′ and E′′, for sources of length ` and `2, respectively.
However, here the first extractor (i.e., E′) uses t1 � 2 sources and the second extractor (i.e.,
E′′) uses t2 � 2 sources. Furthermore, here E′ extracts a slightly longer string, which is
interpreted as an element in [n′]× [n′/`]. Specifically, such (b, c) ∈ [n′]× [n′/`] is interpreted
as placing the bth block in cell number c. That is, the pair extracted from the jth block
(of the first t1 sources) does not assign block j to some cell, but rather assigns a hopefully
random block to a hopefully random cell, where these hopes are materialized if extraction
from the jth block succeeds (i.e., if this block has sufficient min-entropy in sufficiently many
sources).

Specifically, the first stage of the extractor will use the iterated extraction procedure of [7].
Recall that this procedure is based on the extractor E3 : F 3 → F that operates over the finite

CCC 2015

658 On Randomness Extraction in AC0

field F (of prime cardinality) such that E3(x, y, z) = xy+z and |F | ≈ 2`. Actually, we shall use
a minor modification of E3 that avoids zero elements by letting E′3(x, y, z) = g(x)g(y) + g(z),
where g(0) = 1 and g(x) = x for all x ∈ F \ {0}. Note that the behaviour of E′3 with
respect to sources of min-entropy k is captured by the behaviour of E3 with respect to
sources of min-entropy k − 1, since H∞(g(X)) ≥ H∞(X) − 1, where H∞(V) denotes the
min-entropy of the random variable V . The extractor E′ : F 3i → F is defined recursively (as
in [7]) by E′(x1, . . . , x3i) = E′3(y1, y2, y3), where yj = E′(x(j−1)·3i−1+1, . . . , xj·3i−1). Actually,
E′(x1, . . . , xt1) is redefined as the first 2 logn′ − log ` bits of E′(x1, . . . , xt1) (as defined
above). Recall that E′ will be applied n′ times, where the jth application takes as input
(X(1)

j , . . . , X
(t1)
j), where X(i)

j is the jth block of the ith source. We shall detail the second
stage of the final extractor at a later point.

Towards analyzing this construction, we first invoke Claim 7.3 (using δ′ = δ/2 and
ε′ = δ/12). Saying that a block j is good for the ith source if its conditional min-entropy rate
exceeds δ/3, we infer that at least δ/2 of the blocks are good for each specific source (i.e.,
the ith source). (Actually, the bound refers to the conditional min-entropy of a source that
is close to the ith source.) Hence, at least δ/4 of the blocks are good for at least δ/4 of the
(first t1) sources. Let us call such a block good, and analyze extraction from it using the two
foregoing observations. We establish the second observation by proving the following.

I Claim 7.7 (analysis of the tree marking game). Consider a full ternary tree of height h
such that at least ρ · 3h leaves are assigned the value 1 and the other leaves are assigned the
value 0. Assign an internal node the value i+ 1 if all its children are assigned the value i > 0,
and otherwise assign it the maximum value that is assigned to its children. Then, for every
fixed ρ ≥ 0.9h, the value assigned to the root is at least h/100.

Proof. Let us turn the table around and denote by Nh(i) the maximal number of leaves that
may be assigned the value 1 in a ternary tree in which the root is assigned a value that is
smaller or equal to i. Clearly, Nh(i) ≥ Nh(i− 1) and Nh+1(i) ≥ Nh(i). Note that for a tree
consisting of a single vertex (i.e., h = 0), it holds that N0(0) = 0 and N0(i) = 1 for every
i ≥ 1. The key observation is that

Nh+1(i) = max(3 ·Nh(i− 1), 2 ·Nh(i) +Nh(i− 1)) = 2 ·Nh(i) +Nh(i− 1).

It follows that Nh(i) = 2h +
∑
j∈[h] 2j−1 ·Nh−j(i − 1), for every i ≥ 1. Next, for h, i ≥ 1,

one can prove by induction on i that Nh(i) =
∑i−1
j=0 2h−j ·

(
h
j

)
. Our last technical claim is

that Nh(i) ≥ 2.7h implies i ≥ h/100. Suppose, towards the contradiction that i < h/100.
Then, Nh(i) =

∑i−1
j=0 2h−j ·

(
h
j

)
< 2h · 2H2(0.01)·h, which is upper bounded by 2h+0.1h < 2.2h,

in contradiction to Nh(i) ≥ 2.7h. Turning back to the main claim, we note that if a δ ≥ 0.9h
fraction of the leaves are assigned the value 1 and the root is assigned the value i, then
Nh(i) ≥ δ · 3h, which implies that i ≥ h/100. J

Now, assuming that the jth block is good, we claim that E′(X(1)
j , . . . , X

(t1)
j) is exp(−Ω(`))-

close to the uniform distribution over [n′]× [n′/`] (independently of prior blocks). This is
the case since the jth block is good for at least an δ/4 fraction of the sources, whereas the
values analyzed in Claim 7.7 (with ρ = δ/4) reflect the min-entropy of the corresponding
extracted field element. Specifically, leaves assigned the value 1 correspond to blocks with
(conditional) min-entropy rate of at least δ/3; internal nodes with value i+ 1 having children
that have value i > 0 correspond to the application of E′3 to random variables of min-entropy
rate at least min((1 + Ω(1))i · δ/3, 0.9) (see [7, Lem. 3.1]); whereas the other internal nodes
correspond to the application of E′3 that maintain the maximum min-entropy rate of the

O. Goldreich, E. Viola, and A. Wigderson 659

three random variables to which E′3 is applied.39 Hence, using h = Θ(log(1/δ)), we obtain at
level h− 1 of the tree (i.e., at the children of the root) three independent sources such that
each of them has (conditional) min-entropy rate at least 0.9, where the conditioning is over
the values of prior blocks. Using [43, Lem. 13], while relying on the fact that E3(r, y, s) may
be viewed as a universal hashing function mapping y to ry + s (based on the key (r, s)), we
are done.

Again, we wish to emphasize a key point regarding the foregoing probabilistic analysis.
Recall that blocks are defined as good for a specific source based on their conditional min-
entropy in that source. A block is globally good if it is good for sufficiently many sources (out
of the first t1 sources). Hence, extaction from a good block yields a quasi-random outcome,
conditioned on the values of all prior blocks (and the corresponding outcomes that were
extracted). As detailed next, a similar analysis will apply to the blocks (of the remaining t2
sources) assigned to any specific cell.

It is time to detail the second stage of the final extractor. This stage uses the remaining
t2 = t − t1 sources. First, the n′ outcomes obtained in the first stage are interpreted
as an assignment of blocks to cells; specifically, block b is assigned to cell c if the pair
(b, c) ∈ [n′]× [n′/`] appears in this n′-long sequence of outcomes. Then, a cell with a minimal
number of assigned blocks is picked, and the extractor E′′ (which is analogous to the extractor
E′ that was used in the first stage) is applied to the corresponding t2 sub-sources; specifically,
if the selected cell was assigned the blocks j1, . . . , j`′ , where `′ ≤ `, then E′′ is applied to the
t2 sub-sources X(t1+1)

j1
· · ·X(t1+1)

j`′
, . . . , X

(t)
j1
· · ·X(t)

j`′
.

Defining good blocks (for a specific source, and globally good blocks) as in the first stage
(albeit for the last t2 sources), we infer that (with very high probability) each cell is assigned
at least ((δ/4)2 − o(1)) · ` good blocks, since at least δ/4 of the assignments are random and
the density of good blocks is at least δ/4. (Recall that a block is good if it is good for at
least a δ/4 fraction of the last t2 sources, and that being good for a source means having
conditional min-entropy rate at least δ/3.) In this case (i.e., for a typical assignment of blocks
to cells), the average min-entropy rate of the blocks assigned to the smallest cell is at least
((δ/4)2 − o(1)) · δ/3 = Ω(δ3), where the average is taken over the last t2 sources. It follows
that Ω(δ3) of the corresponding sub-sources (i.e., the sources restricted to the blocks assigned
to a cell) have min-entropy rate of Ω(δ3). Applying Claim 7.7 (this time with ρ = Θ(δ3) and
again with h = Θ(log(1/ρ))), we infer that the final output is close to uniform.

Finally, note that all operations (including the arithmetics in the finite fields, which
have size exp(poly(logn))) can be implemented by constant-depth circuits of size poly(n)
(see [9, 50]).40 J

Trading-off sources for error

Following Barak et al. [8], we can reduce the number of sources to a fixed constant (i.e., five)
independent of the constant min-entropy rate of these sources, but this comes at the expense
of increasing the extraction error to a larger o(1).

I Theorem 7.8 (deterministic extractor in AC0 for five sources of constant rate δ). For
any constants δ > 0 there exists a uniform AC0 function E : ({0, 1}n)5 → {0, 1}ω(1) that
constitutes a ((δn, δn, δn, δn, δn), o(1))-extractor.

39Recall that the min-entropy of g(X)g(Y) + g(Z) is at least the maximum of the min-entropy of these
three (independent) random variables, where we use the fact that Pr[g(X)=0] = 0 (and ditto for Y).

40Alternatively, one can use constructions over finite fields of characteristic two, and use the bounds
stated in [Sec. 2.8]Z4 rather than [7, Lem. 3.14].

CCC 2015

660 On Randomness Extraction in AC0

Indeed, the three-source extractor in [8, Thm. 1.1] is only claimed to extract a constant
number of bits with constant error, but the proof (as is) establishes functions of the form
logΩ(1) n and log−Ω(1) n, respectively. Our result just inherits these bounds.

Proof Sketch. We follow the strategy of the proof of Theorem 7.6, while implementing the
two stages of extraction in a different manner. Specifically, the first extraction stage (which
used the t1-sources extractor E′) will be performed by the two-source somewhere extractor
of [8, Thm. 6.2], whereas the second extraction stage (which used the t2-sources extractor E′′)
will be performed by the three-source extractor of [8, Thm. 1.1]. These two extractors will be
applied to poly(logn)-bit long blocks of the various sources, and they can be implemented
by explicit constant-depth poly(n)-size circuits, since the computations involved reduce to
applications of the three-source extractor E3 of [7] and the bilinear extractor of [17, 20].41

Note that the two-source somewhere extractor of [8, Thm. 6.2] outputs a constant number
of strings such that one of them is random (or rather an output-dependent choice of an element
in the output sequence yields a distribution that is close to being uniform). Nevertheless, if
we assign to cell c all blocks with index b such that (b, c) appeared in the output sequence of
some invocation of the two-source somewhere extractor, then the analysis of the first stage
remains valid, except that now the total size of the cells is a constant factor bigger. (Indeed,
if E′ : {0, 1}` × {0, 1}` → ([n′] × [n′/`])O(1) is the two-source somewhere extractor in use,
then we use the O(1)-long output sequence E′(X(1)

j , X
(2)
j) for each j ∈ [n′].)

In the second stage, we shall use a three-source extractor E′′ that can handle min-entropy
rate that is a constant factor smaller than the bound used in the proof of Theorem 7.6. Note
that this extractor only outputs a small number of bits with an o(1) deviation from the
uniform distribution.

In the analysis of both stages, we invoke Claim 7.3 and infer that in each source at least
δ/2 of the blocks have (conditional) min-entropy rate of at least δ/3. The problem is that, in
order for extraction to work, we need (many) blocks that have sufficient min-entropy in each
of the first two sources (resp., each of the last three sources). This problem is solved for
the first two sources by using poly(1/δ) matchings over [n′], rather than the single matching
{(j, j)}j∈[n′]. Specifically, we use (partial) matchings that correspond to a partition of the
edges of an expander graph into partial monotone functions. Such expanders are called
monotone [21] and were constructed in [14]. Monotonicity is important here because the
definition of a good block refers to the conditional min-entropy of the block, which in turn
refers to a fixed order.

In light of the above, the first extraction stage is actually as follows. Let f1, . . . , ft :
[n′]→ [n′] be partial monotone functions such that t = poly(1/δ) and for any set S of density
δ/2 it holds that ∪i∈[t]fi(S) has density at least 1− δ/4. (The second condition follows by
applying the exapander mixing lemma to the graph ([n′],∪i∈[t]{(v, fi(v)) : v ∈ [n′]}.)42 For
every j ∈ [n′] and i ∈ [t′], where t′ = poly(1/δ) is the length of the sequence output by
E′ : {0, 1}`×{0, 1}` → ([n′]× [n′/ logn])t′ , we compute the t′-long sequence E′(X(1)

j , X
(2)
fi(j)),

and assign block b to cell c if (b, c) appeared in that sequence.
Now, letting B1 (resp., B2) denote the set of blocks that are good for the first (resp.,

second) source, it follows that |B1|, |B2| ≥ δn′/2. Hence, (∪i∈[t]fi(B1)) ∩B2 has density at

41For the second extractor (i.e., the three-source extractor of [8, Thm. 1.1]) the corresponding construction
in [8, Thm. 1.1] also apply an optimal two-source extractor, but it is applied on strings of very short
length.

42 If fi is undefined on v, then fi(v) is ignored in the various expressions; for example fi(S ∪ {v}) = fi(S)
and (v, fi(v)) ∪W = W .

O. Goldreich, E. Viola, and A. Wigderson 661

least δ/4, and there exists i ∈ [t] such that {(j, fi(j)) : j ∈B1 ∧ fi(j)∈B2} has density at
least δ/4t. For this i and for every j ∈ B1 ∩ f−1

i (B2), it holds that the jth block in the
first source (resp., the fi(j)th block in the second source) has min-entropy rate at least δ/3
conditioned on the prior blocks, where the blocks are ordered according to j (and we use
fi(j′) < fi(j) for j′ < j). Hence, the corresponding assignment (based on extraction from
these two blocks (i.e., X(1)

j and X(2)
fi(j))) will be somewhere random, conditioned on the prior

assignment. It follows that at least δ/4t
t′ = poly(δ) fraction of the blocks will be assigned

at random, which guarantees that (w.v.h.p.) every cell will be assigned at least poly(δ) · `
random blocks. (Recall that extraction from at least δ/4t blocks will be somewhere random,
which essentially means that one of the t′ extracted outputs is random.)

In the second extraction stage we shall also use matchings of the blocks of one source
with blocks of the second source, but here we need to match the blocks of one source with
blocks of two other sources, which can be done just in the same manner. (Indeed, we shall
use a Monotone expander for density δ/2 and monotone degree t = poly(δ) to determine the
matching of blocks of X(3) and blocks of X(4) (as done for X(1) and X(2)), but we shall use
a Monotone expander for density δ/4t and monotone degree t′′ = poly(δ/t) to determine the
matching of blocks of X(3) and blocks of X(5).) J

8 Open Problems (collected and restated)

In this section we collect and restate open problems that are mentioned in various parts of
the paper. We start with problems regarding general min-entropy sources.

Extraction from general min-entropy sources

The main open problem was stated as Problem 1.6. It refers to extracting more than
poly-logarithmically many bits from a source of constant (or even 1/poly(logn)) min-entropy
rate using a logarithmically long seed. More generally, we have –

I Open Problem 8.1 (Problem 1.6, restated). Can extractors computable in AC0 achieve an
extraction rate that is greater than a poly-logarithmic function (i.e., m(n)/r(n) > poly(logn))
when the min-entropy rate is at least 1/poly(logn) and r(n) = Ω(logn)?

Recall that for k(n) ≥ n/poly(logn) and r(n) = O(logn), we have AC0-extractors either for
the case of m(n) = r(n) + Ω(logn) and ε(n) = 1/poly(n) (see Part 1 of Corollary 3.6) or for
the case of m(n) = poly(logn) and ε(n) = 1/poly(logn) (see Part 2 of Corollary 3.6). We
left open the following problem.

I Open Problem 8.2 (closing a gap w.r.t the error parameter). For k(n) ≥ n/poly(logn)
and r(n) = O(logn), can AC0-extractors extract more than logarithmically many bits with
1/poly(n) error? Moreover, for any polynomial p, can they extract p(logn) bits with error
ε(n) = 1/p(n)?

Turning back to Problem 8.1, recall that a positive resolution of Problem 4.8 (which refers
to converting general sources to block sources) is a sufficient but unnecessary condition for
a positive resolution of a version of Problem 8.1 (when both are qualified with respect to
constant min-entropy rate).

I Open Problem 8.3 (Problem 4.8, restated). Does there exist a (δ, δ′, o(1))-blockers S :
{0, 1}O(logn) → ([n]s)m for constants δ ∈ (0, 1) and δ′ ∈ (0, δ) and some unbounded m =
ω(1)? What about m = nΩ(1) and s = poly(logn)? And what about δ ≥ 1/poly(logn) and
δ − δ′ ≥ 1/poly(logn)?

CCC 2015

662 On Randomness Extraction in AC0

Extraction from restricted sources

While we proved the existence of deterministic AC0-extractors for bit-fixing sources and for
pairs of independent sources, our results in these cases have deficiencies.

Firstly, in the two-source model we only obtained deterministic AC0-extractors for entropy
rate that tends to 1 (see Theorem 7.2). Recall that non-explicit functions (outside of AC0) can
extract from pairs of sources of logarithmic min-entropy [17, Thm. 7], but the impossibility
results in Section 5.2 can be adapted to rule out min-entropy rates below 1/poly(logn). On
the other hand, above that level of min-entropy AC0-extraction with logarithmic seed length
is possible. Hence, it is reasonable to ask whether deterministic AC0-extractors can meet
this performance (as in the case of bit-fixing sources).

I Open Problem 8.4 (two-source deterministic extraction in AC0). Does there exists a
((k, k), ε)-extractor in AC0 (even extracting just a single bit) for any k(n) = n/poly(logn)
and ε(n) = 1/poly(n)?

For starters, one may consider the case of constant min-entropy rate; that is, is any
(Ω(n),Ω(n),Ω(1))-extractor computable in AC0? Recall that AC0 circuits can extract from
four sources of some constant (i.e., 0.99) min-entropy rate (cf. Theorem 7.5), and they can ex-
tract from poly(1/δ)-many sources of any constant min-entropy rate δ > 0 (cf. Theorem 7.6).

We mention that, as shown by Chor and Goldreich [17, Sec. 4], any function that is a
(Ω(n),Ω(n),Ω(1))-extractor has Ω(n) distributional communication complexity with respect
to the uniform distribution. Whether such a function exists in AC0 is open. (Note that the
Ω(n) distributional communication complexity of set disjointness is not with respect to the
uniform distribution.)

A second deficiency in the aforementioned results regarding deterministic extractors is
that these AC0-extractors are non-explicit. Hence, we ask for explicit versions of these results.
Since all results for the bit-fixing source model are obtained by uniform AC0-reductions from
Theorem 5.8, it suffices to have an explicit version of the latter.

I Open Problem 8.5 (explicit version of Theorem 5.8 – deterministic extraction in uniform
AC0 for bit-fixing sources). For every k(n) ≥ n/poly(logn) and every ε(n) > 1/poly(logn),
present deterministic ε-error extractors E : {0, 1}n → {0, 1} for (n, k)-bit-fixing sources such
that the extractors are computable in uniform AC0.

For extraction from pairs of sources, our first challenge is to provide an explicit construction
that matches the parameters of Theorem 7.2. However, since we believe that Theorem 7.2
can be improved w.r.t the required min-entropy rate, we state a more general challenge.

I Open Problem 8.6 (two-source deterministic extraction in uniform AC0). For every k, ε such
that the existence of ((k, k), ε)-extractor in AC0 is established, provide an explicit construction
(i.e., a construction in uniform AC0).

An intermediate step towards resolving Problems 8.5 and 8.6 is providing an explicit con-
struction of a deterministic extractor for non-oblivious bit-fixing sources with parameters
matching those in Theorem 5.7. Such an explicit construction would be of independent
interest. Actually, for our current applications, it will suffice to establish the following:

I Open Problem 8.7 (explicit version of Theorem 5.7 – deterministic extraction in uniform
AC0 for non-oblivious bit-fixing sources). For some ρ = 1/poly(logn), provide uniform AC0

circuits C : {0, 1}n → {0, 1} such that C is balanced and the influence of every set of density
ρ on C is at most 0.1.

Recall that the non-explicit circuits of Ajtai and Linial [4] (i.e., Theorem 5.7) support
ρ = 1/O(logn)2.

O. Goldreich, E. Viola, and A. Wigderson 663

Acknowledgments. We are grateful to Ronen Shaltiel and Salil Vadhan for useful discussions.
O.G. was partially supported by the Minerva Foundation with funds from the Federal German
Ministry for Education and Research. E.V. was supported by NSF grant CCF-1319206.
Work done in part while E.V. was a visiting scholar at Harvard University, with support
from Salil Vadhan’s Simons Investigator grant. A.W. was partially supported by NSF grant
CCF-1412958.

References

1 Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–

48, 1983.
2 Miklós Ajtai. Approximate counting with uniform constant-depth circuits. In Advances in

computational complexity theory, pages 1–20. Amer. Math. Soc., Providence, RI, 1993.
3 Miklos Ajtai and Michael Ben-Or. A Theorem on Probabilistic Constant Depth Computa-

tions. In 16th ACM Symp. on the Theory of Computing, 471–474, 1984.
4 Miklos Ajtai and Nathan Linial. The influence of large coalitions. Combinatorica,

Vol. 13 (2), pages 129–145, 1993.
5 Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On Pseudorandom Generators with

Linear Stretch in NC. Computational Complexity, Vol. 17(1), pages 38–69, 2008. Prelimi-
nary version in 10th RANDOM, 2006.

6 László Babai. Random oracles separate PSPACE from the polynomial-time hierarchy. In-
formation Processing Letters, 26(1):51–53, 1987.

7 Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting Randomness Using Few
Independent Sources. SIAM Journal on Computing, Vol. 36(4), pages 1095–1118, 2006.
Preliminary version in 45th FOCS, 2004.

8 Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simulating
independence: new constructions of condensers, ramsey graphs, dispersers, and extractors.
Journal of the ACM, Vol. 57(4), 2010. Preliminary version in 37th STOC, 2005.

9 Paul Beame, Stephen Cook, and James Hoover. Log-Depth Circuits for Division and
Related Problems. SIAM Journal on Computing, Vol. 15, pages 994–1003, 1986.

10 Johannes Blomer, Richard M. Karp and Emo Welzl. The rank of sparse random matrices
over finite fields. Random Struct. Algorithms, Vol. 10(4), pages 407–419, 1997.

11 Andrej Bogdanov and Siyao Guo. Sparse extractor families for all the entropy. In ACM
Innovations in Theoretical Computer Science conf. (ITCS), pages 553–560, 2013.

12 Ravi B. Boppana. The Average Sensitivity of Bounded-Depth Circuits. Information Pro-
cessing Letters, 63(5), pages 257–261, 1997.

13 Jean Bourgain. More on the Sum-Product Phenomenon in Prime Fields and its Applica-
tions. Int. J. Number Theory, Vol. 1, pages 1–32, 2005.

14 Jean Bourgain and Amir Yehudayoff. Monotone Expansion. In 44th ACM Symp. on the
Theory of Computing, pages 1061–1078, 2012.

15 Larry Carter and Mark N. Wegman. Universal Hash Functions. Journal of Computer and
System Science, Vol. 18, pages 143–154, 1979.

16 Shiva Chaudhuri and Jaikumar Radhakrishnan. Deterministic restrictions in circuit com-
plexity. In 28th ACM Symp. on the Theory of Computing, pages 30–36, 1996.

17 Benny Chor and Oded Goldreich. Unbiased Bits from Sources of Weak Randomness and
Probabilistic Communication Complexity. SIAM Journal on Computing, Vol. 17(2), pages
230–261, 1988. Preliminary version in 26th FOCS, 1985.

18 Benny Chor, Joel Friedman, Oded Goldreich, Johan Hastad, Steven Rudich, and Roman
Smolensky. The Bit Extraction Problem or t-Resilient Functions. In 26th IEEE Symp. on
Foundations of Computer Science, pages 396–407, 1985.

CCC 2015

664 On Randomness Extraction in AC0

19 Gil Cohen and Igor Shinkar. Zero-Fixing Extractors for Sub-Logarithmic Entropy. ECCC,
TR14-160, 2014.

20 Yevgeniy Dodis, Ariel Elbaz, Roberto Oliveira, and Ran Raz. Improved Randomness
Extraction from Two Independent Sources. In 8th RANDOM, Springer LNCS, pages 334–
344, 2004.

21 Zeev Dvir and Avi Wigderson. Monotone Expanders: Constructions and Applications.
Theory of Computing, Vol. 6(1), pages 291–308, 2010.

22 Uriel Feige. Noncryptographic Selection Protocols. In 40th IEEE Symp. on Foundations
of Computer Science, pages 142–153, 1999.

23 Ehud Friedgut. Influences in Product Spaces: KKL and BKKKL Revisited. Comb., Prob.
& Comp., Vol. 13(1), pages 17–29, 2004.

24 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

25 Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large fields.
Combinatorica, Vol. 28 (4), pages 415–440, 2008. Preliminary version in 46th FOCS, 2005.

26 Ariel Gabizon, Ran Raz, and Ronen Shaltiel. Deterministic Extractors for Bit-Fixing
Sources by Obtaining an Independent Seed. SIAM Journal on Computing, Vol. 36 (4),
pages 1072–1094, 2006. Preliminary version in 45th FOCS, 2004.

27 Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Uni-
versity Press, 2008.

28 Oded Goldreich. A Sample of Samplers: A Computational Perspective on Sampling. In
Studies in Complexity and Cryptography. Springer LNCS 6650, pages 302–332, 2011.

29 Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties:
A quality-size trade-off for hashing. Random Structures and Algorithms, Vol. 11(4), pages
315–343, 1997. Preliminary version in 26th STOC, 1994.

30 Oded Goldreich and Avi Wigderson. Derandomizing algorithms that err extremely rarely. In
46th ACM Symp. on the Theory of Computing, pages 109–118, 2014. Full version available
from ECCC, TR13-152, 2013.

31 Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced expanders
and randomness extractors from Parvaresh–Vardy codes. Journal of the ACM, Vol. 56(4),
2009. Preliminary version in ECCC, TR06-134, 2006.

32 Johan Hastad. Almost Optimal Lower Bounds for Small Depth Circuits. Advances in
Computing Research: a research annual, Vol. 5 (Randomness and Computation, S. Micali,
ed.), pages 143–170, 1989. Extended abstract in 18th STOC, 1986.

33 Alexander Healy and Emanuele Viola. Constant-Depth Circuits for Arithmetic in Finite
Fields of Characteristic Two. In STACS, pages 672–683, 2006. See also ECCC, TR05-087,
2005.

34 Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as
subset sum. J. of Cryptology, 9(4):199–216, 1996.

35 Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. Size-Depth Tradeoffs for
Threshold Circuits. SIAM Journal on Computing, Vol. 26(3), pages 693–707, 1997. Pre-
liminary version in 25th STOC, 1993.

36 Russell Impagliazzo and Avi Wigderson. P=BPP if E requires exponential circuits: De-
randomizing the XOR Lemma. In 29th ACM Symp. on the Theory of Computing, pages
220–229, 1997.

37 Statsys Jukna. Boolean Function Complexity: Advances and Frontiers. Algorithms and
Combinatorics, Vol. 27, Springer, 2012.

38 Xin Li. Extractors for a Constant Number of Independent Sources with Polylogarithmic
Min-Entropy. In 54th IEEE Symp. on Foundations of Computer Science, pp. 100–109,
2013,

O. Goldreich, E. Viola, and A. Wigderson 665

39 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant Depth Circuits, Fourier Trans-
form, and Learnability. Journal of the ACM, Vol. 40(3), pages 607–620, 1993. Preliminary
version in 30th FOCS, 1989.

40 Jeff Kahn, Gil Kalai, and Nathan Linial. The Influence of Variables on Boolean Functions
(Extended Abstract). In 29th IEEE Symp. on Foundations of Computer Science, pages
68-80, 1988.

41 Jesse Kamp and David Zuckerman. Deterministic Extractors for Bit-Fixing Sources and
Exposure-Resilient Cryptography. SIAM Journal on Computing, Vo. 36(5), pages 1231–
1247, 2007. Preliminary version in 44th FOCS, 2003.

42 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
Vol. 8(3), pages 261–277, 1988. Preliminary version in 18th STOC, 1986.

43 Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The Computational Complexity of
Universal Hashing. Theor. Comput. Sci., Vol. 107(1), pages 121–133, 1993. Preliminary
version in 22nd STOC, 1990.

44 Noan Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, Vol. 11 (1),
pages 63–70, 1991.

45 Noam Nisan and Avi Wigderson. Hardness vs Randomness. Journal of Computer and
System Science, Vol. 49, No. 2, pages 149–167, 1994. Preliminary version in 29th FOCS,
1988.

46 Noam Nisan and David Zuckerman. Randomness is Linear in Space. Journal of Computer
and System Science, 52(1):43–52, 1996. Preliminary version in 25th STOC, 1993.

47 Ryan O’Donnell. Analysis of Boolean Functions Hardcover. Cambridge University Press,
2014.

48 Prabhakar Ragde and Avi Wigderson. Linear-Size Constant-Depth Polylog-Treshold Cir-
cuits. Information Processing Letters, Vol. 39(3), pages 143–146, 1991.

49 Ran Raz, Omer Reingold, Salil P. Vadhan. Error Reduction for Extractors. In 40th IEEE
Symp. on Foundations of Computer Science, pages 191–201, 1999.

50 John Reif. On Threshold Circuits and Polynomial Computation. In 2nd Conf. on Structure
in Complexity Theory, pages 118–123, 1987.

51 Omer Reingold, Ronen Shaltiel, and Avi Wigderson. Extracting Randomness via Repeated
Condensing. SIAM Journal on Computing, Vol. 35 (5), pages 1185–1209, 2006. Preliminary
version in 41st FOCS, 2000.

52 Miklos Santha and Umesh V. Vazirani. Generating Quasi-random Sequences from Semi-
random Sources. Journal of Computer and System Science, Vol. 33(1), pages 75–87 (1986).
Preliminary version in 25th FOCS, 1984.

53 Ronen Shaltiel. Recent Developments in Explicit Constructions of Extractors. In Cur-
rent Trends in Theoretical Computer Science: The Challenge of the New Century, Vol 1:
Algorithms and Complexity, World scietific, 2004. (Editors: G. Paun, G. Rozenberg and
A. Salomaa.) Preliminary version in Bulletin of the EATCS 77, pages 67–95, 2002.

54 Luca Trevisan. Extractors and Pseudorandom Generators. Journal of the ACM, Vol. 48 (4),
pages 860–879, 2001. Preliminary version in 31st STOC, 1999.

55 Salil P. Vadhan. Constructing Locally Computable Extractors and Cryptosystems in the
Bounded-Storage Model. Journal of Cryptology, Vol. 17(1), pages 43–77, 2004.

56 Umesh V. Vazirani. Towards a Strong Communication Complexity Theory or Generating
Quasi-Random Sequences from Two Communicating Slightly-random Sources (Extended
Abstract). In the 17th ACM Symp. on the Theory of Computing, pages 366–378, 1985.

57 Emanuele Viola. The complexity of constructing pseudorandom generators from hard func-
tions. Computational Complexity, Vol. 13 (3-4), pages 147–188, 2005. Preliminary version
in 18th CCC, 2003.

CCC 2015

666 On Randomness Extraction in AC0

58 Emanuele Viola. On Constructing Parallel Pseudorandom Generators from One-Way Func-
tions. In the 20th IEEE Conf. on Computational Complexity, pages 183–197, 2005.

59 Emanuele Viola. On Approximate Majority and Probabilistic Time. Computational Com-
plexity, Vol. 18 (3), pages 337–375, 2009. Preliminary version in 22nd CCC, 2007.

60 Andrew Yao. Separating the polynomial-time hierarchy by oracles. In 26th IEEE Symp. on
Foundations of Computer Science (FOCS), pages 1–10, 1985.

61 David Zuckerman. General Weak Random Sources. In 31st IEEE Symp. on Foundations
of Computer Science, pages 534–543, 1990.

62 David Zuckerman. Simulating BPP Using a General Weak Random Source. In 32nd IEEE
Symp. on Foundations of Computer Science, pages 79–89, 1991.

63 David Zuckerman. Randomness-optimal oblivious sampling. Random Structures and Algo-
rithms, Vol. 11(4), pages 345–367, 1997. Preliminary version in 28th STOC, 1996.

64 David Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number. Theory of Computing, Vol. 3, pages 103–128, 2007.

A Appendices

Appendix A.1 presents some observations made in passing, regarding a notion used in this
work. In contrast, Appendix A.2 presents a known (but not well-known) result that is used
in this work. Lastly, Appendix A.3 presents a somewhat different solution to the problem of
counting upto poly(logn) in AC0.

A.1 On the robustness of averaging samplers
We prove two “robustness claims” regarding the notion of (relaxed) averaging samplers (as
in Definition 2.6). These claims are not essential to the current write-up, but we consider it
worthy to present them. The first claim asserts that samplers that perform well for Boolean
functions also perform well for general functions.

I Definition A.1 (Boolean averaging samplers, a restriction of Definition 2.6). A function
S : {0, 1}r → [n]t is called a Boolean (µ, µ′, γ)-averaging sampler if Eq. (1) holds for every
f : [n]→ {0, 1} such that ρ(f) def= Ei∈[n][f(i)] ≥ µ.

The aforementioned claim, stated and proved next, is analogous to the corresponding claim
for standard averaging samplers (cf. [28, Thm. 5.10]).

I Claim A.2 (Boolean vs general averaging samplers). Let µ, µ′, ε ∈ (0, 1] and n > t =
Ω(µε−2 log(1/γ)). If S : {0, 1}r → [n]t is a Boolean (µ, µ′, γ)-averaging sampler, then S is a
(µ+ ε, µ′ − ε, 3γ)-averaging sampler.

The hypothesis n > t = Ω(µε−2 log(1/γ)) is not a real restriction when ε = Ω(µ− µ′), since
any (µ, µ′, γ)-sampler must satisfy it (cf., e.g., the discussion in [28]).43

Proof. The proof mimics the proof of the corresponding claim for standard averaging samplers
(cf. [28, Thm. 5.10]). For any function f : [n]→ [0, 1] such that ρ(f) ≥ µ+ ε, we consider
a mental experiment in which the sampler is invoked on a random Boolean function that
reflects f . Specifically, we consider a random Boolean function b : [n] → {0, 1} such that
b(i) = 1 with probability f(i) and b(i) = 0 otherwise, for every i ∈ [n] and independently of

43 Indeed, one alternative ending of the proof of Claim 3.4 uses Claim A.2; in that application, µ and µ′
are both constants in (0, 1), and ε = (1−mu)/2.

O. Goldreich, E. Viola, and A. Wigderson 667

the setting of all other values. Then, with probability at least 1− exp(−(ε/µ)2 · µn) > 1− γ
(over the choice of b), it holds that ρ(b) ≥ ρ(f) − ε ≥ µ. In this case, with probability
at least 1 − γ (over the choice of I when b is fixed arbitrarily), the sample I chosen by
the Boolean averaging sampler satisfies

∑
i∈I b(i) ≥ µ′. Lastly, with probability at least

1− exp(−(ε/µ)2 · µt) > 1− γ (over the choice of b when I is fixed arbitrarily), it holds that∑
i∈I f(i) ≥

∑
i∈S b(i)− ε ≥ µ′ − ε. The claim follows. J

The second claim asserts an upwards translation of the performance guarantee of (relaxed)
averaging samplers. Note that the translation (from (µ, µ′, γ) to (m ·µ,m ·µ′,m ·γ)) preserves
the relative error (i.e., (µ− µ′)/µ) rather that the absolute error (i.e., µ− µ′).

I Claim A.3 (upward translation of the performance guarantee). If S : {0, 1}r → [n]t is a
(µ, µ′, γ)-averaging sampler, then for every m ∈ N it holds that S is a (m · µ,m · µ′,m · γ)-
averaging sampler. The same holds with respect to Boolean averaging samplers.

The claim holds trivially for any (µ, µ′, γ)-averaging sampler that is actually a standard
averaging sampler (i.e., one that approximates the average value of any function up to an
addition term of µ− µ′ with error probability 1− γ).

Proof. The claim is proved by considering auxiliary functions that share the “weight” of the
target function f such that each auxiliary function takes approximately an equal share of
the weight of f . Specifically, given f : [n]→ [0, 1] such that Ei∈[n][f(i)] ≥ m · µ, consider m
auxiliary functions fj : [n] → [0, 1] such that f(i) =

∑
j∈[m] fj(i) and Ei∈[n][fj(i)] ≥ µ for

every j ∈ [m]. Note that if f is Boolean then (w.l.o.g.) so are the fj ’s. Now, by Eq. (1), for
every j ∈ [m] it holds that

PrI←S(Ur)

[
1
t

∑
i∈I

fj(i) < µ′

]
≤ γ

and the claim follows by a union bound. J

A.2 A standard high moment inequality
The following concentration bound for somewhat independent random variables is well known
to the experts, but is hard to find in standard texts.

I Lemma A.4 (folklore). Let ζ1, . . . , ζn be identical random variables that are distributed in
[0, 1] in a 2k-wise independent manner, and let M = E[

∑
i∈[n] ζi]. Then, for any ε > 0, it

holds that

Pr

∣∣∣∣∣∣
∑
i∈[n]

ζi −M

∣∣∣∣∣∣ > ε ·M

 < (ε−2k2/M
)k
.

Proof. Let ζi = ζi −E[ζi] and note that E[ζi] = 0. By Markov’s inequality and linearity of
expectation, we have

Pr

∣∣∣∣∣∣
∑
i∈[n]

ζi −M

∣∣∣∣∣∣ > ε ·M

 ≤
E
[(∑

i∈[n] ζi

)2k
]

(ε ·M)2k

=

∑
i1,...,i2k∈[n] E

[∏
j∈[2k] ζij

]
(ε ·M)2k (26)

CCC 2015

668 On Randomness Extraction in AC0

Now, the key observation is that terms in which some variable appears exactly once do not
contribute to the sum in Eq. (26). In general, by virtue of 2k-wise independence, for any t ≤ 2k,
a term in which variables indexed j1, . . . , jt occur with multiplicities e1, . . . , et contributes
E
[∏

`∈[t] ζ
e`
j`

]
=
∏
`∈[t] E[ζe`j`]. Denoting by S(n, 2k, j) the set of 2k-long sequences over [n]

in which exactly j variables appear and each of these variables appears with multiplicity at
least two, we have

∑
i1,...,i2k∈[n]

E

 ∏
j∈[2k]

ζij

 =
∑
j∈[k]

∑
(i1,...,i2k)∈S(n,2k,j)

E

 ∏
j∈[2k]

ζij

≤

∑
j∈[k]

|S(n, 2k, j)| · (M/n)j

where the inequality uses the fact that for every e ≥ 2 it holds that E[ζei] ≤ E[ζei] ≤ E[ζi] =
M/n. Using |S(n, 2k, j)| <

(
n
j

)
· j2k < nj · k2k/2, we get

Pr

∣∣∣∣∣∣
∑
i∈[n]

ζi −M

∣∣∣∣∣∣ > ε ·M

 <
0.5k2k ·

∑
j∈[k] n

j · (M/n)j

(ε ·M)2k

<
k2k

(ε2 ·M)k

and the lemma follows. J

A.3 Counting few ones in a long string
We consider the problem of counting the number of ones in a string, when guaranteed that
this number is small. Specifically, for ` = poly(logn), given an n-bit string x such that
s

def=
∑
i∈[n] xi ≤ `, we seek explicit AC0-circuits that compute s. A solution to this problem

has been known for decates; see [48], improving over [3, Sec. 5] (and subsequent works). For
sake of elegancy, we present a somewhat different solution here.

We use a small (i.e., poly(n)-sized) familty of pairwise independent hash functions mapping
[n] to [`2]. Such functions can be described by string of length 2 logn, and so they can be
generically evaluated by depth-two circuits of poly(n) size. A random function in such family
H shatters any set of size ` with constant probability; that is, for every set I ⊂ [n] such that
|I| ≤ ` it holds that Prh∈H [|h(I)| = |I|] = Ω(1) (since the collision probability is 1/`2).

Now, on input x as above, we enumerate all h ∈ H, compute for every h the value of∑
v∈[`2](

∨
i∈h−1(v) xi), and take the maximum value. Indeed, if h shatters I = {i : xi=1},

then the value we computed equals
∑
i∈[n] xi. The above computation is in AC0 since we

compute a `2-wise sum (of some unbounded ors).44

44 Indeed,
∨
i∈h−1(v) xi can be computed as

∨
i∈[n](xi ∨ (h(i)=v)).

	Introduction
	The most relevant prior work
	Our main results
	Techniques
	The perspective of error reduction
	A roadmap and additional comments on the technical contents

	Preliminaries
	General extractors
	Local extractors

	Local extractors and extraction in AC0
	Proving Theorem 1.2
	A new averaging sampler
	Applications to explicit constructions of extractors
	An alternative averaging sampler

	Extraction from Block Sources
	A simple extractor
	On converting min-entropy sources into block sources
	1st illustration: Sampling does not suffice (even for two blocks)
	2nd illustration: A natural candidate that fails
	Discussion

	Extraction from Block-Fixing Sources
	Extraction with a logarithmically long seed
	Impossibility results
	Deterministic extractors
	Extraction from zero-fixing sources

	Extraction with long seeds
	Extraction with a seed of linear length
	Repeated extraction with independent seeds

	Extraction from several independent sources
	Extraction from two independent sources
	Extraction from four independent sources
	Extraction from poly(1/) sources of rate

	Open Problems (collected and restated)
	Appendices
	On the robustness of averaging samplers
	A standard high moment inequality
	Counting few ones in a long string

