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Abstract
Does every Boolean tautology have a short propositional-calculus proof? Here, a propositional-
calculus (i.e. Frege) proof is any proof starting from a set of axioms and deriving new Boolean
formulas using a fixed set of sound derivation rules. Establishing any super-polynomial size lower
bound on Frege proofs (in terms of the size of the formula proved) is a major open problem in
proof complexity, and among a handful of fundamental hardness questions in complexity theory
by and large. Non-commutative arithmetic formulas, on the other hand, constitute a quite weak
computational model, for which exponential-size lower bounds were shown already back in 1991
by Nisan [20], using a particularly transparent argument.

In this work we show that Frege lower bounds in fact follow from corresponding size lower
bounds on non-commutative formulas computing certain polynomials (and that such lower bounds
on non-commutative formulas must exist, unless NP=coNP). More precisely, we demonstrate
a natural association between tautologies T to non-commutative polynomials p, such that:

if T has a polynomial-size Frege proof then p has a polynomial-size non-commutative arith-
metic formula; and conversely, when T is a DNF, if p has a polynomial-size non-commutative
arithmetic formula over GF (2) then T has a Frege proof of quasi-polynomial size.

The argument is a characterization of Frege proofs as non-commutative formulas: we show that
the Frege system is (quasi-) polynomially equivalent to a non-commutative Ideal Proof System
(IPS), following the recent work of Grochow and Pitassi [10] that introduced a propositional proof
system in which proofs are arithmetic circuits, and the work in [35] that considered adding the
commutator as an axiom in algebraic propositional proof systems. This gives a characterization
of propositional Frege proofs in terms of (non-commutative) arithmetic formulas that is tighter
than (the formula version of IPS) in Grochow and Pitassi [10], in the following sense:
(i) The non-commutative IPS is polynomial-time checkable – whereas the original IPS was

checkable in probabilistic polynomial-time; and
(ii) Frege proofs unconditionally quasi-polynomially simulate the non-commutative IPS – whereas

Frege was shown to efficiently simulate IPS only assuming that the decidability of PIT for
(commutative) arithmetic formulas by polynomial-size circuits is efficiently provable in Frege.
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1 Introduction

1.1 Propositional proof complexity

The field of propositional proof complexity aims to understand and analyze the computational
resources required to prove propositional statements. The problems the field poses are
fundamental, difficult and go back to the work of Cook and Reckhow [8], who showed the
immediate relevance of these problems to the NP vs. coNP problem (and thus the P vs. NP
problem).

Among the major unsolved questions in proof complexity, is whether the standard
propositional logic calculus, either in the form of the Sequent Calculus, or equivalently, in
the axiomatic form of Hilbert proofs (i.e., Frege proofs), is polynomially bounded; that
is, whether every propositional tautology (or unsatisfiable formula) has a proof whose size
is polynomially bounded (refutation, resp.) in the size of the formula proved. Here, we
consider the size of proofs as the number of symbols it takes to write them down, where
each formula in the proof is written as a Boolean formula (in other words we count the total
number of logical gates appearing in the proof where each proof-line is a formula). It is
known [29] that all Frege proof-systems (formally, a Frege proof system is any propositional
proof system with a fixed number of axiom schemes and sound derivation rules that is also
implicationally complete, and in which proof-lines are written as propositional formulas (see
e.g., [14] and Definition 2.4 below)) as well as the Gentzen sequent calculus (with the cut
rule) are polynomially equivalent to each other, and hence it does not matter precisely which
rules, axioms, and logical-connectives we use.

Complexity-wise, the Frege proof system is considered a very strong system alas a poorly
understood one. The qualification strong here has several meanings: first, that no super-
polynomial lower bound is known for Frege proofs. Second, that there are not even good
hard candidates for the Frege system (see [4, 17, 18] for a further discussion on hard proof
complexity candidates). Third, that for most hard instances (e.g., the pigeonhole principle
and Tseitin tautologies) that are known to be had for weaker systems (e.g., resolution, cutting
planes, etc.), there are known polynomial bounds on Frege proofs. Fourth, that proving
super-polynomial lower bounds on Frege proofs seems to a certain extent out of reach of
current techniques. And finally, that by the common (mainly informal) correspondence
between circuits and proofs – namely, the correspondence between a circuit-class C and a
proof system in which every proof-line is written as a circuit from C (to be more precise, one
has to associate a circuit class C with a proof system in which a family of proofs is written
such that every proof-line in the family is a circuit family from C) – Frege system corresponds
to the circuit class of polynomial-size log(n)-depth circuits denoted NC1 (equivalently, of
polynomial-size formulas [32]), considered to be a strong computational model for which no
(explicit) super-polynomial lower bounds are currently known.

Accordingly, proving lower bounds on Frege proofs is considered an extremely hard task.
In fact, the best lower bound known today is only quadratic [14], which uses a fairly simple
syntactic argument. If we put further impeding restrictions on Frege proofs, like restricting
the depth of each formula appearing in a proof to a certain fixed constant, exponential lower
bounds can be obtained [1, 21, 21]. Although these constant-depth Frege exponential-size
lower bounds go back to Ajtai’s result from 1988, they are still in some sense the state-of-the-
art in proof complexity lower bounds (beyond the important developments on weaker proof
systems, such as resolution and its weak extensions). Constant-depth Frege lower bounds
use quite involved probabilistic arguments, mainly specialized switching lemmas tailored for
specific tautologies (namely, counting tautologies, most notable of which are the Pigeonhole
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Principle tautologies). Even random k-CNF formulas near the satisfiability threshold are not
known to be hard for constant-depth Frege (let alone hard for [unrestricted depth] Frege).

All of the above goes to emphasize the importance, basic nature and difficulty in under-
standing the complexity of strong propositional proof systems, while showing how little is
actually known about these systems.

1.2 Prominent directions for understanding propositional proofs
As we already mentioned, there is a guiding line in proof complexity which states a correspond-
ence between the complexity of circuits and the complexity of proofs. This correspondence is
mainly informal, but there are seemingly good indications showing it might be more than
a superficial analogy. One of the most compelling evidence for this correspondence is that
there is a precise formal correspondence (cf. [7]) between the first-order logical theories of
bounded arithmetic (whose axioms state the existence of sets taken from a given complexity
class C) to propositional proof systems (in which proof-lines are circuits from C).

Another facet of the informal correspondence between circuit complexity and proof
complexity is that circuit hardness can sometimes be used to obtain proof complexity
hardness. The most notable example of this are the lower bounds on constant-depth Frege
proofs mentioned above: constant-depth Frege proofs can be viewed as propositional logic
operating with AC0 circuits, and the known lower bounds on constant depth Frege proofs (cf.
[1, 16, 21]) use techniques borrowed from AC0 circuits lower bounds. The success in moving
from circuit hardness towards proof-complexity hardness has spurred a flow of attempts to
obtain lower bounds on proof systems other than constant depth Frege. For example, Pudlák
[22] and Atserias et al. [2] studied proofs based on monotone circuits, motivated by known
exponential lower bounds on monotone circuits. Raz and Tzameret [28, 27, 34] investigated
algebraic proof systems operating with multilinear formulas, motivated by lower bounds on
multilinear formulas for the determinant, permanent and other explicit polynomials [24, 23].
Atserias et al. [3], Krajíček [15] and Segerlind [31] have considered proofs operating with
ordered binary decision diagrams (OBDDs), and the second author [35] initiated the study
of proofs operating with non-commutative formulas (see Sec. 1.5 for a comparison with the
current work).

Until quite recently it was unknown whether the correspondence between proofs and
circuits is two-sided, namely, whether proof complexity hardness (of concrete known proof sys-
tems) can imply any computational hardness. An initial example of such an implication from
proof hardness to circuit hardness was given by Raz and Tzameret [28]. They showed that a
separation between algebraic proof systems operating with arithmetic circuits and multilinear
arithmetic circuits, resp., for an explicit family of polynomials, implies a separation between
arithmetic circuits and multilinear arithmetic circuits. In a recent significant development
about the complexity of strong proof systems, Grochow and Pitassi [10] demonstrated a
much stronger correspondence. They introduced a natural propositional proof system, called
the Ideal Proof System (IPS for short), for which any super-polynomial size lower bound on
IPS implies a corresponding size lower bound on arithmetic circuits, and formally, that the
permanent does not have polynomial-size arithmetic circuits. The IPS is defined as follows:

I Definition 1.1 (Ideal Proof System (IPS) [10]). Let F1(x), . . . , Fm(x) be a system of
polynomials in the variables x1, . . . , xn, where the polynomials x2

i − xi, for all 1 ≤ i ≤ n, are
part of this system. An IPS refutation (or certificate) that the Fi’s polynomials have no 0-1
solutions is a polynomial C(x, y) in the variables x1, . . . , xn and y1, . . . , ym, such that:
1. F (x1, . . . , xn, 0) = 0; and
2. F (x1, . . . , xn, F1(x), . . . , Fm(x)) = 1.
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The essence of IPS is that a proof (or refutation) is a single polynomial that can be
written simply as an arithmetic circuit or formula. The advantage of this formulation is that
now we can obtain direct connections between circuit/formula hardness (i.e., “computational
hardness”) and hardness of proofs. Grochow and Pitassi showed indeed that a lower bound on
IPS written as an arithmetic circuit implies that the permanent does not have polynomial-size
algebraic circuits (Valiant’s conjectured separation VNP 6=VP [36]); And similarly, a lower
bound on IPS written as an arithmetic formula implies that the permanent does not have
polynomial-size algebraic formulas (VNP 6=VPe, ibid).

Under certain assumptions, Grochow and Pitassi [10] were able to connect their result
to standard propositional-calculus proof systems, i.e., Frege and Extended Frege. Their
assumption was the following: Frege has polynomial-size proofs of the statement expressing
that the PIT for arithmetic formulas is decidable by polynomial-size Boolean circuits (PIT for
arithmetic formulas is the problem to decide whether an input arithmetic formula computes
the (formal) zero polynomial). They showed that under this assumption super-polynomial
lower bounds on Frege proofs imply that the permanent does not have polynomial-size
arithmetic circuits. This, in turn, can be considered as a (conditional) justification for the
apparent difficulty in proving lower bounds on strong proof systems (We focus only on the
relevant results about Frege proofs from [10]; and not the results about Extended Frege in
[10]; the latter proof system operates, essentially, with Boolean circuits, in the same way
that Frege operates with Boolean formulas (equivalently NC1 circuits)).

1.3 Overview of results and proofs
1.3.1 Sketch
In this paper we contribute to the understanding of strong proof systems such as Frege, and
to the fundamental search for lower bounds on these systems, by formulating a very natural
proof system – a non-commutative variant of the ideal proof system – which we show captures
unconditionally (up to a quasi-polynomial-size increase) propositional Frege proofs. A proof
in the non-commutative IPS is simply a single non-commutative polynomial written as a
non-commutative formula. This gives a fairly compelling and simple new characterization
of the proof complexity of propositional Frege proofs. Moreover, it brings new hope for
achieving lower bounds on strong proof systems, by reducing the task of lower bounding
Frege proofs to the following seemingly much more manageable task: proving matrix rank
lower bounds on the matrices associated with certain non-commutative polynomials (in the
sense of Nisan [20]; see below for details).

We also tighten the results in Grochow and Pitassi [10], in the sense that we show that
in order to obtain a characterization of Frege proofs in terms of an ideal proof system it is
advantageous to consider non-commutative polynomials instead of commutative ones (as
well as to add the commutator axioms). This shows that, at least for Frege, and in the
framework of the ideal proof system, lower bounds on Frege proofs do not necessarily entail
in themselves very strong computational lower bounds.

1.3.2 Some preliminaries: non-commutative polynomials and formulas
A non-commutative polynomial over a given field F and with the variables X := {x1, x2, . . .}
is a formal sum of monomials with coefficients from F such that the product of variables is
non-commuting. For example, x1x2 − x2x1 + x3x2x

2
3 − x2x

3
3, x1x2 − x2x1 and 0 are three

distinct polynomials in F〈X〉. The ring of non-commutative polynomials with variables X
with coefficients from F is denoted F〈X〉.
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A polynomial (i.e., a commutative polynomial) over a field is defined in the same way as
a non-commutative polynomial except that now the product of variables is commutative;
that is, it is a sum of (commutative) monomials.

A non-commutative arithmetic formula (non-commutative formula for short; see Definition
2.5) is a fan-in two labeled tree, with edges directed from leaves towards the root, such that
the leaves are labeled with field elements (for a given field F) or variables x1, . . . , xn, and
internal nodes (including the root) are labeled with a plus + or product × gates. A product
gate has an order on its two children (holding the order of non-commutative product). A
non-commutative formula computes a non-commutative polynomial in the natural way (see
Definition 2.5).

Exponential-size lower bounds on non-commutative formulas (over any field) were es-
tablished by Nisan [20]. The idea (in retrospect) is quite simple: first transform a non-
commutative formula into an algebraic branching program (ABP); and then show that
the number of nodes in the ith layer of an ABP computing a degree d homogenous non-
commutative polynomial f is bounded from below by the rank of the degree i-partial-derivative
matrix of f . (The degree i partial derivative matrix of f is the matrix whose rows are all
non-commutative monomials of degree i and columns are all non-commutative monomials
of degree d − i, such that the entry in row M and column N is the coefficient of the d
degree monomial M ·N in f .) Thus, lower bounds on non-commutative formulas follow from
quite immediate rank arguments (e.g., the partial derivative matrices associated with the
permanent and determinant can easily be shown to have high ranks).

1.3.3 Non-commutative ideal proof system
Recall the IPS refutation system in Definition 1.1 above. We use the idea introduced in [35],
that considered adding the commutator x1x2 − x2x1 as an axiom in propositional algebraic
proof systems, to define a refutation system that polynomially simulates Frege:

I Definition 1.2 (Non-commutative IPS). Let F be a field. Assume that F1(x) = F2(x) =
· · · = Fm(x) = 0 is a system of non-commutative polynomial equations from F〈x1, . . . , xn〉,
and suppose that the following set of equations (axioms) are included in the Fi(x)’s:
Boolean axioms: xi · (1− xi) , for all 1 ≤ i ≤ n ;
Commutator axioms: xi · xj − xj · xi , for all 1 ≤ i < j ≤ n .

Suppose that the Fi(x)’s have no common 0-1 solutions. (One can check that the Fi(x)’s
have no common 0-1 solutions in F iff they do not have a common 0-1 solution in every
F-algebra.) A non-commutative IPS refutation (or certificate) that the system of Fi(x)’s
is unsatisfiable is a non-commutative polynomial F(x, y) in the variables x1, . . . , xn and
y1, . . . , ym (i.e. F ∈ F〈x, y〉), such that:
1. F(x1, . . . , xn, 0) = 0; and
2. F(x1, . . . , xn, F1(x), . . . , Fm(x)) = 1.

We always assume that the non-commutative IPS refutation is written as a non-
commutative formula. Hence the size of a non-commutative IPS refutation is the minimal
size of a non-commutative formula computing the non-commutative IPS refutation.

The main result of this paper is that the non-commutative IPS (over either Q or Zq,
for any prime q) polynomially simulates Frege; and conversely, Frege quasi-polynomially
simulates the non-commutative IPS (over GF (2)). We explain the results in what follows.

For the purpose of the next theorem, we use a standard translation of propositional
formulas T into non-commutative arithmetic formulas:
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I Definition 1.3. Let tr(xi) := xi, for variables xi; tr(false) := 1; tr(true) := 0; and by
induction on the size of the propositional formula: tr(¬T1) := 1 − tr(T1); tr(T1 ∨ T2) =
tr(T1) · tr(T2) and finally tr(T1 ∧ T2) = 1− ((1− tr(T1)) · (1− tr(T2))).

For a non-commutative formula f denote by f̂ the non-commutative polynomial computed
by f . Thus, T is a propositional tautology (i.e., a Boolean formula that is satisfied by
every assignment) iff t̂r(T ) = 0 for every 0-1 assignment to the underlying variables of the
non-commutative polynomial.

I Theorem 1.4. Let F be either Q or Zq, for a prime q. The non-commutative IPS refutation
system, when refutations are written as non-commutative formulas over F, polynomially
simulates the Frege system. More precisely, for every propositional tautology T, if T has
a polynomial-size Frege proof then there is a non-commutative IPS certificate (over F) of
tr(¬T ) that has a polynomial non-commutative formula size.

The proof of Theorem 1.4 proceeds as follows. To simulate Frege proofs we use an
intermediate proof system F-PC formulated by Grigoriev and Hirsch [9]. The F-PC system
(Definition 2.7) is akin to the polynomial calculus refutation system [6], except that we
operate in F-PC with arithmetic formulas treated as syntactic terms, instead of writing
polynomials throughout the proof as sum of monomials. We have the two rules of polynomial
calculus: from a pair of previously derived polynomials f, g we can derive af + bg for a, b ∈ F,
and from f we can derive xi · f , for any variable xi. We also have local rewriting rules, that
can operate on any sub-formula of an arithmetic formula appearing in the proof. These
rewriting rules express simple operations on polynomials like commutativity of addition and
product, associativity, distributivity, etc.

Grigoriev and Hirsch [9] showed that F-PC polynomially simulates Frege proofs, and
that for tree-like Frege proofs the polynomial simulation yields tree-like F-PC proofs. Since
tree-like Frege is polynomially equivalent to Frege (because Frege proofs can always be
balanced to depth which is logarithmic in their size; cf. [14] for a proof), we have that
tree-like F-PC polynomially simulates (dag-like) Frege proofs.

To conclude Theorem 1.4 it therefore remains to prove that non-commutative IPS
polynomially simulates tree-like F-PC proofs. This can be proved by induction on the
number of lines in the F-PC proofs. The interesting case in the induction is the simulation
of the commutativity rewrite-rule for products by the non-commutative IPS system, which is
done using the commutator axioms.

Now, since we write refutations as non-commutative formulas we can use the polynomial-
time deterministic Polynomial Identity Testing algorithm for non-commutative formulas,
devised by Raz and Shpilka [26], to check in deterministic polynomial-time the correctness
of non-commutative IPS refutations. Therefore, we obtain:

I Corollary 1.5. The non-commutative IPS is a sound and complete Cook-Reckhow refutation
system. That is, it is a sound and complete refutation system for unsatisfiable propositional
formulas in which refutations can be checked for correctness in deterministic polynomial-time.

This should be contrasted with the original (commutative) IPS of [10], for which verifica-
tion of refutations is done in probabilistic polynomial time (using the standard Schwartz-Zippel
[30, 37] PIT algorithm).

The major consequence of Theorem 1.4 is that to prove a super-polynomial Frege lower
bound it is now sufficient to prove a super-polynomial lower bound on non-commutative
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formulas computing certain polynomials. Specifically, it is enough to prove that any non-
commutative IPS certificate F(x, y) (which is simply a non-commutative polynomial) has
a super-polynomial non-commutative formula size; and yet in another words, it suffices to
show that any such F must have a super-polynomial total rank according to the associated
partial-derivatives matrices discussed before.

We now consider the other direction, namely, whether Frege can simulate the non-
commutative IPS. We show that it does for CNFs (this is the case considered in [10]), over
GF (2), and with only a quasi-polynomial increase in size. For convenience, we use a slightly
different translation of clauses to non-commutative formulas than Definition 1.3:

I Definition 1.6. Given a Boolean formula f we define the non-commutative formula
translation tr′(f) as follows. Let tr′(x) := 1 − x and tr(¬x) := x, for x a variable. And
let tr′(f1 ∨ . . . ∨ fr) := tr′(f1) · · · tr′(fr) (where the sequence of products stands for a tree of
product gates with tr′(fi) as leaves). Further, for a clause ki in a CNF φ = k1 ∧ k2 . . . ∧ km,
denote by Qφi the non-commutative formula translation tr′(ki) of ki, where i = 1, 2, . . . ,m.

I Theorem 1.7. For a CNF φ = k1 ∧ . . . ∧ km where Qφ1 , . . . , Qφm are the corresponding
non-commutative formulas for the clauses, if there is a non-commutative IPS refutation of
size s of Qφ1 , . . . , Qφm over GF (2), then there is a Frege proof of size sO(log s) of ¬φ.

The proof of Theorem 1.7 consists of several separate steps of independent interest.
Essentially, the argument is a short Frege proof for a reflection principle for the non-
commutative IPS system (a reflection principle for a given proof system P is a statement
that says that if a formula is provable in P than the formula is also true). The argument
becomes rather complicated because we need to prove properties of the evaluation procedure
of non-commutative formulas, within the restricted framework of propositional Frege proofs.

The quasi-polynomial blowup in Theorem 1.7 depends solely on the fact that the reflection
principle for non-commutative IPS is efficiently provable (apparently) only when the non-
commutative IPS certificate is written as a sum of homogenous non-commutative formulas,
as we now explain. Note that it is not known whether any arithmetic formula can be turned
into a (sum of) homogenous formulas with only a polynomial increase in size (in contrast to
the standard efficient homogenization of arithmetic circuits by Strassen [33]). Recently Raz
[25] showed how to transform an arithmetic formula into (a sum of) homogenous formulas
with only a quasi-polynomial increase in size. In Lemma 5.6 we show that:
1. The same construction in [25] holds also for non-commutative formulas.
2. This construction for non-commutative formulas can be carried out efficiently inside

Frege. That is, if F is a non-commutative formula of size s computing a homogenous
non-commutative polynomial over GF (2) and F ′ is a homogenous non-commutative
formula computing the same polynomial with size sO(log s) (existing by [25]), then Frege
admits an sO(log s) size proof of F ≡ F ′.

Before we homogenize the non-commutative formulas (according to Raz’ construction [25])
we need to balance them, so that their depth is logarithmic in their size. We inspect that the
recent construction of Hrubeš and Wigderson [11], for balancing non-commutative formulas
with division gates (incurring at most a polynomial increase in size) results in a division-free
formula, when the initial non-commutative formula is division-free itself. Therefore, we can
assume that the non-commutative IPS certificate is already balanced.

To prove Theorem 1.7 we thus start with a non-commutative IPS certificate π over GF (2)
of the polynomial translation of the CNF φ, written as a balanced non-commutative formula
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(over GF (2)). We then consider this non-commutative polynomial identity over GF (2) as
a Boolean tautology by replacing plus gates with XOR and product gates with AND. We
convert this Boolean tautology to a homogenous representation (as described above, using a
simulation of [25]). Now, we have a Boolean tautology which we denote by π.

We wish to prove ¬φ in Frege, using the fact that π is a (massaged version of a) non-
commutative IPS certificate. To this end we essentially construct an efficient Frege proof of
the correctness of the Raz and Shpilka non-commutative formulas PIT algorithm [26]. The
PIT algorithm in [26] uses some basic linear algebraic concepts that might complicate the
proof in Frege. However, since we only need to show the existence of short Frege proofs for the
PIT algorithm’s correctness, we can supply witnesses to witness the desired linear algebraic
objects needed in the proof (these witnesses will be a sequence of linear transformations).

Furthermore, to reason inside Frege directly about the algorithm of [26] is apparently
impossible, since this algorithm first converts a non-commutative formula into an algebraic
branching program (ABP); but apparently the evaluation of ABPs cannot be done with
Boolean formulas (and accordingly Frege possibly cannot reason about the evaluation of
ABPs). The reason for this apparent inability of Frege to reason about ABP’s evaluation
is that an ABP is a “sequential" object (an evaluation of an ABP seems to follow from
the source to sink, level by level), while Frege operates with formulas, which are “parallel”
objects (evaluation of [balanced] formulas can be done in logarithmic time, in case we
have enough [separate] processors to perform parallel sub-evaluations of the formula). To
overcome this obstacle we show how to perform Raz and Shpilka’s PIT algorithm directly on
non-commutative formulas, without converting the formulas first into ABPs. This technical
contribution takes a large part of the argument. We are thus able to prove the following
statement, which might be interesting by itself:

I Lemma 1.8. If a non-commutative homogeneous formula F (x) over GF (2) of size s is
identically zero, then the corresponding Boolean formula ¬Fbool(x) (where Fbool results by
replacing + with XOR and · with AND in F (x)) can be proved with a Frege proof of size at
most sO(1).

1.4 Significance and discussion
The propositional-calculus is one of the most natural and central notions in logic, and within
proof complexity it has a dominant role as a strong proof system whose structure and
complexity is poorly understood. In that respect, our characterization of Frege proofs (and
thus propositional-calculus) simply as non-commutative polynomials whose non-commutative
formula size corresponds (up to a quasi-polynomial factor) to the size of Frege proofs, should
be considered a valuable contribution. Since non-commutative formulas constitute a weak
model of computation that is quite well understood, and since the Frege system is considered
a strong proof system, and it is not entirely out of the way that Frege – or at least its
extension, Extended Frege – is polynomially bounded (i.e., admits polynomial-size proofs
for every tautology), our results showing the correspondence between Frege proofs and
non-commutative formulas are quite surprising.

This correspondence, between non-commutative formulas and proofs, also gives renewed
hope for progress on the major fundamental lower bounds problems in proof complexity: it
reduces the problem of proving lower bounds on Frege proofs to the problem of establishing
rank lower bounds on matrices associated with non-commutative polynomials, where the non-
commutative polynomials are given “semi-explicitly” (that is, they are given in terms of the
properties of the non-commutative IPS (Definition 1.2)). It is already known that rank lower

CCC 2015



420 A New Characterization of Propositional Proofs

bounds yielding strong non-commutative formulas lower bounds are fairly simple (cf. [20]).
This then provides a quite compelling evidence that Frege lower bounds, although mostly
considered out of reach of current techniques, might not be very far away. Furthermore, our
result simplifies greatly the high level-lower bound approach laid out in [10]: the suggested
lower bound approach in [10] proposed to move from (commutative) arithmetic circuits lower
bounds towards proof complexity lower bounds; but for (commutative) arithmetic circuits
there are no known explicit lower bounds, in contrast to non-commutative formulas which
constitute a well understood circuit class: both explicit exponential lower bounds and a
deterministic PIT algorithms are known for non-commutative formulas.

The new characterization of Frege proofs also sheds light on the correspondence between
circuits and proofs in proof complexity: in the framework of the ideal proof system, a Frege
proof can be seen from the computational perspective as a non-commutative formula.

We also tighten the results of [10]. Namely, by showing that already the non-commutative
version of the IPS is sufficient to simulate Frege. As well as by showing unconditional efficient
simulation of the non-commutative IPS by Frege.

While proving that Frege quasi-polynomially simulates the non-commutative IPS, we
demonstrate new simulations of algebraic complexity constructions within proof complexity;
these include the homogenization for formulas of Raz [25] and the PIT algorithm for non-
commutative formulas by Raz and Shpilka [26]. These proof complexity simulations adds
to the known previous such simulations shown in Hrubeš and Tzameret [13] and might be
interesting by themselves.

Lastly, this work emphasizes the importance and usefulness of non-commutative models
of computation in proof complexity (see [12, 18] for more on this).

1.5 Comparison with previous work
As discussed before, our main characterization of the Frege system is based on a non-
commutative version of the IPS system from Grochow and Pitassi [10]. As described above,
the non-commutative IPS gives a tighter characterization than the (commutative) IPS in
[10]. Thus, our proof system is seemingly weaker than the original (formula version of) IPS,
and hence apparently closer to capture the Frege system.

Proofs in the original (formula version of the) IPS are arithmetic formulas, and thus any
super-polynomial lower bound on IPS refutations implies VNP 6=VPe, or in other words, that
the permanent does not have polynomial-size arithmetic formulas (Joshua Grochow [personal
communication]). This gives a justification of the considerable hardness of proving IPS lower
bounds. On the other hand, an exponential-size lower bound on our non-commutative IPS
gives only a corresponding lower bound on non-commutative formulas, for which exponential-
size lower bounds are already known [20]. Since Frege is quasi-polynomially equivalent to
the non-commutative IPS, this means that exponential-size lower bounds on Frege implies
merely – at least in the context of the Ideal Proof System – corresponding lower bounds on
non-commutative formulas, a result which is however already known. This implies again
that there is no strong concrete justification to believe that Frege lower bounds are beyond
current techniques.

The work in [35] dealt with propositional proof systems over non-commutative formulas.
The difference with the current work is that [35] formulated all proof systems as variants
of the polynomial calculus and hence the characterization of a proof system in terms of a
single non-commutative polynomial is lacking from that work (as well as the consequences
we obtained in the current work).
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2 Preliminaries

2.1 Frege proof systems
I Definition 2.1 (Boolean formula). Given a set of input variables x1, . . . , xn, a Boolean
formula on the inputs is a rooted tree of fan-in at most two, with edges directed from leaves
to the root. Internal nodes are labeled with the Boolean gates ∨,∧,¬, and the fan-in of ∨,∧
is two and the fan-in of ¬ is one. The leaves are labeled either with input variables or with
0, 1 (identified with the truth values false and true, resp.). The entire formula computes the
function computed by the gate at the root. Given a formula F , the size of the formula is
the number of Boolean gates in F.

Informally, a Frege proof system is just a standard propositional proof system for proving
propositional tautologies (one learns in a basic logic course), having axioms and deduction
rules, where proof-lines are written as Boolean formulas. The size of a Frege proof is the
number of symbols it takes to write down the proof.

The problem of demonstrating super-polynomial size lower bounds on propositional proofs
(called also Frege proofs) asks whether there is a family (Fn)∞n=1 of propositional tautological
formulas for which there is no polynomial p such that the minimal Frege proof size of Fn is
at most p(|Fn|), for all n ∈ Z+ (where |Fn| denotes the size of the formula Fn).

I Definition 2.2 (Frege rule). A Frege rule is a sequence of propositional formulas A0(x), . . . ,
Ak(x), for k ≤ 0, written as A1(x),...,Ak(x)

A0(x) . In case k = 0, the Frege rule is called an axiom
scheme. A formula F0 is said to be derived by the rule from F1, . . . , Fk if F0, . . . , Fk are all
substitution instances of A1, . . . , Ak, for some assignment to the x variables (that is, there
are formulas B1, . . . , Bn such that Fi = Ai(B1/x1, . . . , Bn/xn), for all i = 0, . . . , k). The
Frege rule is said to be sound if whenever an assignment satisfies the formulas in the upper
side A1, . . . , Ak, then it also satisfies the formula in the lower side A0.

I Definition 2.3 (Frege proof). Given a set of Frege rules, a Frege proof is a sequence of
Boolean formulas such that every proof-line is either an axiom or was derived by one of the
given Frege rules from previous proof-lines. If the sequence terminates with the Boolean
formula A, then the proof is said to be a proof of A. The size of a Frege proof is the the
total sizes of all the Boolean formulas in the proof.

A proof system is said to be implicationally complete if for all set of formulas T , if T
semantically implies F , then there is a proof of F using (possibly) axioms from T . A proof
system is said to be sound if it admits proofs of only tautologies (when not using auxiliary
axioms, like in the T above).

I Definition 2.4 (Frege proof system). Given a propositional language and a set P of sound
Frege rules, we say that P is a Frege proof system if P is implicationally complete.

Note that a Frege proof is always sound since the Frege rules are assumed to be sound.
We do not need to work with a specific Frege proof system, since a basic result in proof
complexity states that every two Frege proof systems, even over different languages, are
polynomially equivalent [29].

2.2 Algebraic proof systems
In this section, we give the definitions the algebraic proof systems Polynomial Calculus over
Formulas (F-PC) defined by Grigoriev and Hirsch [9]. We start with the definition of a
non-commutative formula:
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I Definition 2.5 (Non-commutative formula). Let F be a field and x1, x2, . . . be variables.
A noncommutative arithmetic formula (or noncommutative formula for short) is a labeled
tree, with edges directed from the leaves to the root, and with fan-in at most two, such that
there is an order on the edges coming into a node (the first edge is called the left edge and
the second one the right edge). Every leaf of the tree (namely, a node of fan-in zero) is
labeled either with an input variable xi or a field F element. Every other node of the tree is
labeled either with + or × (in the first case the node is a plus gate and in the second case a
product gate). We assume that there is only one node of out-degree zero, called the root. A
noncommutative formula computes a noncommutative polynomial in F〈x1, . . . , xn〉 in the
following way. A leaf computes the input variable or field element that labels it. A plus
gate computes the sum of polynomials computed by its incoming nodes. A product gate
computes the noncommutative product of the polynomials computed by its incoming nodes
according to the order of the edges. (Subtraction is obtained using the constant −1.) The
output of the formula is the polynomial computed by the root. The depth of a formula is the
maximal length of a path from the root to the leaf. The size of a noncommutative formula
f is the total number of nodes in its underlying tree, and is denoted |f |.

The definition of (a commutative) arithmetic formula is almost identical:

I Definition 2.6 (Arithmetic formula). An arithmetic formula is defined in a similar way
to a noncommutative formula, except that we ignore the order of multiplication (that is, a
product node does not have order on its children and there is no order on multiplication
when defining the polynomial computed by a formula).

Given a pair of non-commutative formulas F and G and a variable xi, we denote by
F [G/xi] the formula F in which every occurrence of xi is substituted by the formula G.

Note that an arithmetic formula is a syntactic object. For example, x1 + x2 and x2 + x1
are different formulas because commutativity might not hold (even if commutativity holds,
we will regard them as different formulas. And in the proof system F-PC they can be derived
from each other via the “commutativity of addition”).

2.2.1 Polynomial calculus over formulas F-PC system
The F-PC proof system defined by Grigoriev and Hirsch [9] operates with arithmetic formulas
(as purely syntactic terms).

I Definition 2.7 (F-PC [9]). Fix a field F. Let F := {f1, . . . , fm} be a collection of formulas
computing polynomials from F[x1, . . . , xn] (note here that we are talking about formulas
(treated as syntactic terms), and not polynomials. Also notice that all formulas in F-PC are
(commutative) formulas computing (commutative) polynomials). Let the set of axioms be
the following formulas:
Boolean axioms xi · (1− xi) , for all 1 ≤ i ≤ n .

A sequence π = (Φ1, . . . ,Φ`) of formulas computing polynomials from F[x1, . . . , xn] is said
to be an F-PC proof of Φ` from F , if for every i ∈ [`] we have one of the following:
1. Φi = fj , for some j ∈ [m];
2. Φi is a Boolean axiom;
3. Φi was deduced by one of the following inference rules from previous proof-lines Φj ,Φk ,

for j, k < i:
Product

Φ
xr · Φ

, for r ∈ [n] .



F. Li, I. Tzameret, and Z. Wang 423

Addition

Φ Θ
a · Φ + b ·Θ , for a, b ∈ F .

(Where Φ, xr · Φ,Θ, a · Φ, b ·Θ are formulas constructed as displayed; e.g., xr · Φ is the
formula with product gate at the root having the formulas xr and Φ as children.)(In
[9] the product rule of F-PC is defined so that one can derive Θ · Φ from Φ, where Θ
is any formula, and not just a variable. However, the definition of F-PC in [9] and our
Definition 2.7 polynomially-simulate each other.)

4. Φi was deduced from previous proof-line Φj , for j < i, by one of the following rewriting
rules expressing the polynomial-ring axioms (where f, g, h range over all arithmetic
formulas computing polynomials in F[x1, . . . , xn]):
Zero rule 0 · f ↔ 0
Unit rule 1 · f ↔ f

Scalar rule t↔ α, where t is a formula containing no variables (only field F elements)
that computes the constant α ∈ F.

Commutativity rules f + g ↔ g + f , f · g ↔ g · f
Associativity rule f + (g + h)↔ (f + g) + h , f · (g · h)↔ (f · g) · h
Distributivity rule f · (g + h)↔ (f · g) + (f · h)

(The semantics of an F-PC proof-line pi is the polynomial equation pi = 0.) An F-PC
refutation of F is a proof of the formula 1 from F . The size of an F-PC proof π is defined
as the total size of all formulas in π and is denoted by |π|.

I Definition 2.8 (Tree-like F-PC). A system F-PC is a tree-like F-PC if every derived
arithmetic formula in the proof system is used only once (and if it is needed again, it must
be derived once more).

2.2.1.1 Translation of Boolean formulas into polynomial equations

The proof system F-PC can be considered as a propositional proof system for Boolean
tautologies (namely, Boolean formulas that are true under any assignment). Given a Boolean
formula T in the propositional variables x1, . . . , xn we can transform T into a set of polynomial
equations by encoding it into a set of arithmetic formulas where each clause in the CNF
corresponds to an arithmetic formula by replacing ∧ with ×, ∨ with + and ¬x with 1− x;
and for each variable xi, add x2

i − xi (called the Boolean axioms) to guarantee that every
satisfying assignment to the variables is a 0-1 assignment. Then the given CNF is a tautology
if and only if the set of arithmetic formulas have no common root.

I Definition 2.9 (Polynomially Simulation). Let P1,P2 be two proof systems for the same
language L (in case the proof systems are for two different languages we fix a translation from
one language to the other, as described above). We say that P2 polynomially simulates P1 if
given a P1 proof (or refutation) π of a F , then there exists a proof (respectively, refutation)
of F in P2 of size polynomial in the size of π. In case P2 polynomially simulates P1 while P1
does not polynomially simulates P2 we say that P2 is strictly stronger than P1.

In [9], it was shown that F-PC, as well as tree-like F-PC, polynomially simulate Frege.
We repeat the argument for the convenience of the reader:

I Theorem 2.10 ([9]). Tree-like F-PC polynomially simulates Frege.

Proof. The following was shown in [9]:
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I Theorem 2.11 (Theorem 3, [9]). The system F-PC polynomially simulates the Frege
system.

Moreover, inspecting the proof of the above theorem, we can observe that tree-like Frege
proofs are simulated by tree-like F-PC proofs:

I Lemma 2.12. Tree-like F-PC polynomially simulates tree-like Frege systems.

But Krajíček showed that tree-like Frege and Frege are polynomially equivalent:

I Theorem 2.13 ([14]). Tree-like Frege proofs polynomially simulate Frege proofs.

Thus, by this theorem and by Lemma 2.11, tree-like F-PC polynomially simulates the Frege
system. J

3 The non-commutative ideal proof system

The non-commutative ideal proof system (non-commutative IPS for short) is an algebraic
refutation system in which a refutation is a single non-commutative polynomial. In the
next section we show that when the non-commutative IPS refutations are written as non-
commutative formulas then the non-commutative IPS polynomially simulates tree-like F-PC,
and hence polynomially simulates the Frege proof system (by [9]).

I Definition 3.1 (Non-commutative IPS). Let F be a field. Assume that F1(x) = F2(x) =
· · · = Fm(x) = 0 is a system of non-commutative polynomial equations from F〈x1, . . . , xn〉,
and suppose that the following set of equations (axioms) are included in the Fi(x)’s:
Boolean axiom: xi · (1− xi) , for all 1 ≤ i ≤ n ;
Commutator axiom: xi · xj − xj · xi , for all 1 ≤ i < j ≤ n .

Suppose that the Fi(x)’s have no common 0-1 solutions. (One can check that the Fi(x)’s
have no common 0-1 solutions in F iff they do not have a common 0-1 solution in every
F-algebra.) A non-commutative IPS refutation (or certificate) that the system of Fi(x)’s
is unsatisfiable is a non-commutative polynomial F(x, y) in the variables x1, . . . , xn and
y1, . . . , ym (i.e. F ∈ F〈x, y〉), such that:
1. F(x1, . . . , xn, 0) = 0; and
2. F(x1, . . . , xn, F1(x), . . . , Fm(x)) = 1.

In this paper we assume that the non-commutative IPS refutation is written as a non-
commutative formula. Hence the size of a non-commutative IPS refutation is the minimal
size of a non-commutative formula computing the non-commutative IPS refutation.

I Comment. 1. The identities in items 1 and 2 in Definition 3.1 are formal identities of
polynomials (i.e., in 1 the polynomial in the left hand side has a zero coefficient for every
monomial, and in 2 the only nonzero monomial is the monomial 1).

2. In order to prove that a system of commutative polynomial equations {Pi = 0} (where
each Pi is expressed as an arithmetic formula) has no common roots in non-commutative
IPS, we write each Pi as a non-commutative formula (in some way; note that there is no
unique way to do this).

3. When we write P ·Q−Q · P where P,Q are formulas (e.g., xi and xj , resp.), we mean
((P ·Q) + (−1 · (Q · P ))).
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4 Non-commutative ideal proof system polynomially simulates Frege

Here we show that the non-commutative IPS polynomially simulates Frege.

I Theorem 4.1 (restatement of Theorem 1.4). The non-commutative IPS refutation system,
when refutations are written as non-commutative formulas, polynomially simulates Frege
systems. More precisely, for every propositional tautology T , if T has a polynomial-size Frege
proof then there is a non-commutative IPS certificate (with integer coefficients) of polynomial
non-commutative formula size.

Recall that Raz and Shpilka [26] gave a deterministic polynomial-time PIT algorithm for
non-commutative formulas (over any field):

I Theorem 4.2 (PIT for non-commutative formulas [26]). There is a deterministic polynomial-
time algorithm that decides whether a given noncommutative formula over a field F computes
the zero polynomial 0. (We assume here that the field F can be efficiently represented (e.g.,
the field of rationals).)

Now, since we write refutations as non-commutative formulas we can use the theorem
above to check in deterministic polynomial-time the correctness of non-commutative IPS
refutations, obtaining:

I Corollary 4.3 (restatement of Corollary 1.5). The non-commutative IPS is a sound and com-
plete Cook-Reckhow refutation system. That is, it is a sound and complete refutation system
for unsatisfiable propositional formulas in which refutations can be checked for correctness in
deterministic polynomial-time.

To prove Theorem 4.1, we will show in Section 4.1 that the non-commutative IPS polynomially-
simulates tree-like F-PC (Definition 2.7), which suffices to complete the proof due to Theorem
2.10.

4.1 Non-commutative IPS polynomially simulates tree-like F-PC
For convenience, let Ci,j denote the commutator axiom xi · xj − xj · xi, for i, j ∈ [n], i 6= j.

I Theorem 4.4. Non-commutative IPS polynomially simulates Tree-like F-PC (Defini-
tion 2.7).

Proof. Let F1, . . . , Fm be arithmetic formulas over the variables x1, . . . , xn. Note that an
arithmetic formula is a syntactic term in which the children of gates are ordered. We thus
can treat a (commutative) arithmetic formula as a non-commutative arithmetic formula
by taking the order on the children of products gates to be the order of non-commutative
multiplication.

Suppose F-PC has a poly(n)-size tree-like refutation π := (L1, . . . , Lk) of the Fi’s (i.e.,
a proof of the polynomial 1 from F1, . . . , Fm), where each Lj is an arithmetic formula.
We construct a corresponding non-commutative IPS refutation of the Fi’s from this F-PC
tree-like refutation. Denote by |π| the size of π. We have the following:

I Lemma 4.5. For each i ∈ [k], there exists a non-commutative formula φi such that:
1. φi(x, 0) = 0;
2. φi(x, Ft, Cj,j′) = Li, where t ∈ [m], j, j′ ∈ [n], j < j′; (this is an abuse of notation

meaning φi(x, F1, . . . , Fm, C1,2, C1,3 . . . , Cn−1,n). We use a similar abuse of notation in
the sequel.)
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3. |φi| ≤
(∑

`∈Ai
|L`|

)4, where Ai ⊂ [k] refers to the indices of the F-PC proof-lines involved
in deriving Li. (For example, if Li is derived by Lα and Lα is derived by Lβ for some
β < α < i ∈ [k], then we say that α, β are both involved for deriving Li.)

Note that if the lemma holds, then φk will be a non-commutative IPS proof because it
has the property that φk(x, 0) = 0 and φk(x, Ft, Cj,j′) = Lk = 1, where t ∈ [m], j, j′ ∈

[n], j 6= j′. And its size is bounded by
(∑

`∈Ak
|L`|

)4 ≤
(∑

`∈[k] |L`|
)4
≤ O(|π|4). Thus,

non-commutative IPS polynomially simulates tree-like F-PC. J

We construct φi by induction on the length k of the refutation π. That is, for i from 1 to k,
we construct the non-commutative formula φi(x, y) according to Li, as follows:

Case 1:

The Li is the input axiom Fj for some j ∈ [m].
Let φi := yj . Obviously, φi(x, 0) = 0, φi(x, Ft, Cα,β) = Fj = Li and |φi| = 1 ≤ |Li|4.

Case 2:

The Li is derived from an inference rule from previous proof-lines Lj , Lj′ , for j, j′ < i. Then
we divide this case into two parts.

Part (1): The Li is derived from the addition rule Li = aLj + bLj′ . Put φi := aφj + bφj′

where a, b ∈ F. Thus, φi(x, 0) = aφj(x, 0) + bφj′(x, 0) = 0, φi(x, Ft, Cα,β) = aLj + bLj′ = Li

and |φi| = |φj | + |φj′ | + 3 ≤
(∑

`∈Aj
|L`|

)4
+
(∑

`∈Aj′ |L`|
)4

+ 3 ≤
(∑

`∈Ai
|L`|

)4 (where
the right most inequality holds since π is a tree-like refutation and hence Aj ∩Aj′ = ∅).
Part (2): The Li is derived from the product rule Li = xr ·Lj′ for r ∈ [n]. Put φi := (xr ·φj).
Then φi(x, 0) = xr · φj(x, 0) = 0, φi(x, Ft, Cα,β) = xr · Lj = Li and |φi| = |φj | + 2 ≤(∑

`∈Aj
|L`|

)4
+ 2 ≤

(∑
`∈Ai

|L`|
)4.

Case 3:

The Li is derived from Lj by a rewriting rule excluding the commutative rule of multiplication.
Let φi := φj . The non-commutative φi satisfies the properties claimed trivially since all
the rewriting rules (excluding the commutative rule of multiplication) express the non-
commutative polynomial-ring axioms, and thus cannot change the polynomial computed by
a non-commutative formula. And |φi| = |φj | ≤

(∑
`∈Ai

|L`|
)4.

Case 4:

The Li is derived from Lj by a single application of the commutative rule of multiplication.
Then by Lemma 4.6 below, we can construct a non-commutative formula φLi,Lj such that
φi := (φj + φLi,Lj

) satisfies the desired properties (stated in Lemma 4.5).

I Lemma 4.6. Let Li, Lj be non-commutative formulas such that Li can be derived from
Lj via the commutative rule of multiplication. Then there is a non-commutative formula
φLi,Lj

(x, y) in variables {x`, yα,β , ` ∈ [n], α < β ∈ [n]}, such that:
1. φLi,Lj

(x, 0) = 0;
2. φLi,Lj (x,Cα,β) = Li − Lj;
3.
∣∣φLi,Lj

∣∣ ≤ |Li|2 |Lj |2.
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Proof. We define the non-commutative formula φLi,Lj
inductively as follows:

If Li = (P ·Q), and Lj = (Q · P ), then φLi,Lj
is defined to be the formula constructed in

Lemma 4.7 below.
If Li = (P ·Q), Lj = (P ′ ·Q′).
Case 1. If P = P ′, then let φLi,Lj

:= (P · φQ,Q′).
Case 2. If Q = Q′, then let φLi,Lj

:= (φP,P ′ ·Q).
If Li = (P +Q), Lj = (P ′ +Q′).
Case 1. If P = P ′, then let φLi,Lj

= φQ,Q′ .
Case 2. If Q = Q′, then let φLi,Lj = φP,P ′ .

By induction, one could check the construction satisfies the desired properties. J

I Lemma 4.7. For any pair P,Q of two non-commutative formulas there exists a non-
commutative formula F in variables {x`, yi,j , ` ∈ [n], i < j ∈ [n]} such that:
1. F (x, 0) = 0;
2. F (x,Ci,j) = P ·Q−Q · P ;
3. |F | = |P |2 |Q|2. e

Proof. Let s(P,Q) denote the smallest size of F satisfying the above properties. We will
show that s(P,Q) ≤ |P |2 · |Q|2 by induction on max(|P | , |Q|).

Base case: |P | = |Q| = 1.
In this case both P and Q are constants or variables, thus s(P,Q) = 1 ≤ |P |2 |Q|2.

In the following induction step, we consider the case that |P | ≥ |Q| (which is symmetric
for the case |P | < |Q|).

Induction step: Assume that |P | ≥ |Q| (the case |P | < |Q| is similar).
Case 1: The root of P is addition.

Let P = (P1 + P2). We have (after rearranging):

P ·Q−Q · P = ((P1 ·Q−Q · P1) + (P2 ·Q−Q · P2))

By induction hypothesis, we have s(P,Q) ≤ s(P1, Q) + 1 + s(P2, Q) ≤ |P1|2 |Q|2 + 1 +
|P2|2 |Q|2 ≤ (|P1|+ |P2|+ 1)2 |Q|2 = |P |2 · |Q|2.
Case 2: The root of P is a product gate.

Let P = (P1 · P2). By rearranging:

P ·Q−Q · P = ((P1 · (P2 ·Q−Q · P2)) + ((P1 ·Q−Q · P1) · P2))

By induction hypothesis, we have s(P,Q) = |P1|+ 1 + s(P2, Q) + 1 + s(P1, Q) + 1 + |P2| ≤
|P1|+ 1 + |P2|2 |Q|2 + 1 + |P1|2 |Q|2 + 1 + |P2| ≤ (|P1|+ |P2|+ 1)2 |Q|2 = |P |2 · |Q|2. J

5 Frege quasi-polynomially simulates non-commutative IPS

In this section we prove that the Frege system quasi-polynomially simulates the non-
commutative IPS (over GF (2)). Together with Theorem 4.4, this gives a new characterization
(up to a quasi-polynomial increase in size) of propositional Frege proofs as non-commutative
arithmetic formulas.

We use the notation in Section 1.3.3: for a clause ki in a CNF φ = k1∧ . . .∧km, we denote
by Qφi the non-commutative formula translation tr′(ki) of the clause ki (Definition 1.6).
Thus, ¬x is translated to x, x is translated to 1− x and f1 · · · fr is translated to

∏
i tr′(fi)
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(considered as a tree of product gates with tr′(fi) as leaves), and where the formulas are over
GF (2) (meaning that 1− x is in fact 1 + x).

I Theorem 5.1 (Main quasi-polynomial simulation). For a 3CNF φ = k1 ∧ . . . ∧ km where
Qφ1 , . . . , Q

φ
m are the corresponding polynomial equations for the clauses, if there is a non-

commutative IPS refutation of size s of Qφ1 , . . . , Qφm over GF (2), then there is a Frege proof
of size sO(log s) of ¬φ.

The rest of the section is dedicated to proving Theorem 5.1. Due to lack of space we refer
the reader to the full version of this work [19] for complete proofs. Here we shall only outline
the main parts of the proof (see also Section 1.3.3).

5.1 Balancing non-commutative formulas
First we show that a non-commutative formula of size s can be balanced to an equivalent
formula of depth O(log s), and thus we can assume that the non-commutative IPS certificate
is already given as a balanced formula (this is needed for what follows). Both the statement
of the balancing construction and its proof are similar to Proposition 4.1 in Hrubeš and
Wigderson [11] (which in turn is similar to the case of commutative formulas with division
gates in Brent [5]). Note that a formula of a logarithmic depth must have a polynomial-size.
(Thus, in what follows, without loss of generality we will assume that F is given already in
a balanced form, namely has depth O(log s) and polynomial-size which, for simplicity, we
denoted as s.)

I Lemma 5.2. Assume that a non-commutative polynomial p can be computed by a formula of
size s. Then p can be computed by a formula of depth O(log s) (and hence of polynomial-size).

5.2 The reflection principle
Here we show that the existence of a non-commutative IPS refutation of size s and depth
O(log s), implies the existence of a Frege proof with size sO(log s) of ¬φ. This is done by
proving a reflection principle for the non-commutative IPS system in Frege. As mentioned in
the introduction, informally, a reflection principle for a given proof system P is a statement
that says that if a formula is provable in P then the formula is also true. Thus, suppose we
have a short Frege-proof of the reflection principle for P , having the form:

“([π] is a P -proof of [T ]) −→ T”,

where [T ] and [π] are some reasonable encodings of the tautology T and its P -proof π,
respectively. Then, we can easily obtain a Frege proof of T assuming we have a P -proof of T .

Let F be a non-commutative formula over GF (2) and let Qφ(x) denote the vector
(Qφ1 , . . . , Qφm) (see Theorem 5.1). First, note that F is a non-commutative IPS proof of φ
only if it has the following two properties:

F
(
x, 0
)

= 0, F
(
x,Q

φ(x)
)

= 1, (1)

showing the unsatisfiability of Qφ(x) = 0, and hence showing ¬φ is a tautology. We can
treat F as a Boolean formula, as follows:

I Definition 5.3 (Booleanization Fbool). Let F (x) be a non-commutative formula over GF (2)
in the (algebraic) variables x. We denote by Fbool(p) the Boolean formula in the (propositional)
variables p obtained by turning every plus gate and multiplication gate to ⊕ (i.e., XOR)



F. Li, I. Tzameret, and Z. Wang 429

and ∧ gates, respectively, and turning the input variables x into the propositional variables
p. We sometimes write F and Fbool without explicitly mentioning the x and p variables,
respectively.

When we consider F = F (x, y) (with both the x and y variables), Fbool denotes the Boolean-
ization of F when the variables x are replaced by p and the variables y are still written as
y. Note that for any 0-1 assignment, F and Fbool have the same value. Therefore, by the
properties in (1), we know:

¬Fbool
(
p, 0
)
, Fbool

(
p,Q

φ

bool(p)
)

(2)

are both tautologies (though we still need to proof that their Frege proofs are short).
To conclude Theorem 5.1, we first prove in Frege ¬φ based on (2) (this is done in Lemma

5.4 below which is not hard to establish), and then we show that there exists an sO(log s)

Frege proof of (2) (which is done in Lemma 5.5 in the next section, and requires much more
work).

I Lemma 5.4.
((
¬Fbool

(
p, 0
))
∧ Fbool

(
p,Q

φ

bool(p)
))
→ ¬φ can be proved with a polynomial-

size Frege proof.

Having this lemma, it remains to show a quasi-polynomial-size proof of (2). We denote
¬Fbool

(
p, 0
)
and ¬

(
1⊕ Fbool

(
p,Q

φ

bool(p)
))

by

F ′bool(p), F ′′bool(p), respectively. (3)

Note that the substitutions of the constants 0 or the constant depth formulae Qφbool in F
cannot increase the depth of F too much (i.e., can add at most a constant to the size of F ).
In other words, the depths of the formulae in (3) are still O(log s).

5.3 Non-commutative formula identities have quasi-polynomial-size
proofs

Recall that a (commutative or non-commutative) multivariate polynomial f is homogeneous
if every monomial in f has the same total degree. For each 0 ≤ j ≤ d, denote by f (j) the
homogenous part of degree j of f , that is, the sum of all monomials (together with their
coefficient from the field) in f of total degree j. We say that a formula is homogeneous if
each of its gates computes a homogeneous polynomial (see Definition 2.5 for the definition of
a polynomial computed by a gate or a formula).

To complete the proof of Theorem 5.1 it remains to prove the following:

I Lemma 5.5. If a non-commutative formula F (x) with 0-1 coefficients of size s and depth
O(log s) is identically zero, then the corresponding Boolean formula ¬Fbool(p) admits a Frege
proof of size sO(log s).

5.4 Homogenization of non-commutative formulas has short Frege
proofs

To complete the proof of Lemma 5.5 it remains to prove Lemmas 5.6 and 1.8 in what follows.
Lemma 5.6 states that Raz’ construction from [25] for homogenizing arithmetic formulas is
efficiently provable in Frege (and is also applicable to non-commutative formulas):
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I Lemma 5.6. If F is a non-commutative formula of size s and depth O(log s) and
F (0), . . . , F (s) are the homogenous formulae computing F ’s homogenous parts of degrees
0, . . . , s, respectively, constructed according to [25], then there exists an sO(log s)-size Frege
proof of:

s+1⊕
i=0

F (i) ↔ Fbool.

5.5 Homogenous non-commutative formula identities have
polynomial-size Frege proofs

To conclude Theorem 5.1 it remains to prove Lemma 5.7 below, which is the main technical
lemma of the whole argument. It states that a non-commutative syntactic-homogenous
formula identity over GF (2) has polynomial-size Frege proofs (considered as a Boolean
tautology). The proof of this lemma is somewhat lengthy as it entails us to show that
the Raz and Shpilka polynomial-time PIT algorithm for non-commutative formulas can be
“simulated” efficiently with Frege proofs. Here we just state formally Lemma 1.8 and refer
the reader to the full version of the paper [19] for a complete proof of this lemma.

I Lemma 5.7 (Main technical lemma). There exists a constant c such that if a non-
commutative syntactic homogeneous formula F (x) over GF (2) of size s is identically zero,
then the corresponding Boolean tautology ¬Fbool(p) can be proved with a Frege proof of size
at most sc (for sufficiently large s).

Acknowledgements. We thank Joshua Grochow for helpful comments.
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