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Abstract
This paper investigates the role of interaction and coins in quantum Arthur-Merlin games (also
called public-coin quantum interactive proof systems). While the existing model restricts the
messages from the verifier to be classical even in the quantum setting, the present work introduces
a generalized version of quantum Arthur-Merlin games where the messages from the verifier can
be quantum as well: the verifier can send not only random bits, but also halves of EPR pairs.
This generalization turns out to provide several novel characterizations of quantum interactive
proof systems with a constant number of turns. First, it is proved that the complexity class
corresponding to two-turn quantum Arthur-Merlin games where both of the two messages are
quantum, denoted qq-QAM in this paper, does not change by adding a constant number of turns
of classical interaction prior to the communications of qq-QAM proof systems. This can be
viewed as a quantum analogue of the celebrated collapse theorem for AM due to Babai. To prove
this collapse theorem, this paper presents a natural complete problem for qq-QAM: deciding
whether the output of a given quantum circuit is close to a totally mixed state. This complete
problem is on the very line of the previous studies investigating the hardness of checking properties
related to quantum circuits, and thus, qq-QAM may provide a good measure in computational
complexity theory. It is further proved that the class qq-QAM1, the perfect-completeness variant
of qq-QAM, gives new bounds for standard well-studied classes of two-turn quantum interactive
proof systems. Finally, the collapse theorem above is extended to comprehensively classify the
role of classical and quantum interactions in quantum Arthur-Merlin games: it is proved that, for
any constant m ≥ 2, the class of problems having m-turn quantum Arthur-Merlin proof systems
is either equal to PSPACE or equal to the class of problems having two-turn quantum Arthur-
Merlin proof systems of a specific type, which provides a complete set of quantum analogues of
Babai’s collapse theorem.
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1 Introduction

Background and motivation. Interactive proof systems [9, 4] play a central role in compu-
tational complexity and have many applications such as probabilistically checkable proofs
and zero-knowledge proofs. The aim of such a system is the verification of an assertion
(e.g., verifying if an input is in a language) by a party implementing a polynomial-time
probabilistic computation, called the verifier, interacting with another party with unlimited
power, called the prover, in polynomially many turns. Two definitions are given on the
secrecy of the coin which the verifier can flip: Goldwasser, Micali, and Rackoff [9] defined
private-coin proof systems, where the prover cannot see the outcomes of coin flips, while
Babai [4] defined public-coin proof systems, where the prover can see all the outcomes of
coin flips. Public-coin interactive proof systems are often called Arthur-Merlin games or
Arthur-Merlin proof systems, since the verifier was called Arthur and the prover was called
Merlin in Ref. [4].

It is natural to expect that the power of interactive proof systems depends on the
number of turns of interaction. Babai [4] showed, however, that as long as the number
of turns is a constant at least two, the number of turns does not affect the power of
Arthur-Merlin proof systems, i.e., AM(m) = AM(2) for any constant m ≥ 2 (the collapse
theorem), where AM(m) is the class of problems having m-turn Arthur-Merlin proof systems.
Goldwasser and Sipser [10] then showed that a private-coin interactive proof system can be
simulated by an Arthur-Merlin proof system by adding two turns, and thus, these two types
of interactive proof systems are computationally equivalent. By the above results, the class
of problems having interactive proof systems of a constant number of turns is equal to AM(2)
(regardless of definitions with public coins or private coins), and this class is nowadays called
AM. The class AM is believed to be much smaller than PSPACE, as it is contained in ΠP

2
in the second level of the polynomial-time hierarchy [22, 4]. On the contrary, the class of
problems having more general interactive proof systems of polynomially many turns, called
IP, does coincide with PSPACE [26, 23, 28] (again regardless of definitions with public coins
or private coins [10, 29]).

Quantum interactive proof systems were introduced by Watrous [34], and the class of
problems having quantum interactive proof systems is called QIP. In the quantum world, the
importance of the number of turns in interactive proof systems is drastically changed. The
first paper on quantum interactive proofs [34] already proved the surprising power of quantum
interactive proof systems with a constant number of turns, by showing that any problem in
PSPACE has a three-turn quantum interactive proof system. Kitaev and Watrous [16] then
proved that any quantum interactive proof system can be simulated by a three-turn quantum
interactive proof system, namely, QIP = QIP(3), where QIP(m) denotes the class of problems
having m-turn quantum interactive proof systems. Finally, the recent result QIP = PSPACE
by Jain, Ji, Upadhyay, and Watrous [13] completely characterized the computational power of
quantum interactive proof systems with three turns or more. In contrast, despite a number of
intensive studies [33, 36, 14, 12], still very little is known on the class QIP(2) corresponding
to two-turn quantum interactive proof systems, and characterizing the computational power
of two-turn quantum interactive proof systems is one of the main open problems in this field.

A public-coin version of quantum interactive proof systems was first introduced by
Marriott and Watrous [24], named quantum Arthur-Merlin proof systems, where the messages
from the verifier are restricted to classical strings consisting only of outcomes of polynomially
many attempts of a fair coin flip. They then showed that three-turn quantum Arthur-Merlin
proof systems can simulate three-turn standard quantum interactive proof systems, and
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hence the corresponding class, denoted QMAM, coincides with QIP = PSPACE. They also
investigated the case of two-turn quantum Arthur-Merlin proof systems and showed that the
corresponding class, denoted QAM, is included in BP · PP, a subclass of PSPACE obtained
by applying the BP operator to the class PP, which is still the only nontrivial upper bound
known for QAM.

Results and their meanings. This paper introduces a “fully quantum” version of quantum
Arthur-Merlin proof systems, which generalizes the existing quantum Arthur-Merlin proof
systems in Ref. [24]. In this generalized model, the verifier can send quantum messages, but
these messages can be used only for sharing EPR pairs with the prover, i.e., the verifier at
his/her turn first generates polynomially many EPR pairs and then sends one half of each of
them to the prover. Recall that classical public-coin messages can be interpreted as messages
for sharing uniform randomness between the verifier and the prover. In this context, sharing
EPR pairs would be the most natural quantum analogue of sharing randomness, and thus,
the model introduced above may be viewed as a natural full-quantum version of quantum
Arthur-Merlin proof systems.

The main interest in this model is again on the two-turn case, as allowing three or
more turns in this model obviously hits the PSPACE ceiling. Let qq-QAM be the class
of problems having two-turn “fully quantum” Arthur-Merlin proof systems, i.e., two-turn
quantum interactive proof systems in which the first message from the verifier consists only
of polynomially many halves of EPR pairs. Note that the only difference from the existing
class QAM lies in the type of the message from the verifier: uniform random classical bits
are replaced by halves of EPR pairs. The main goal of this paper is to investigate the
computational power of this class qq-QAM in order to figure out the advantages offered by
sharing EPR pairs rather than classical randomness, and more generally, to make a step
forward in the understanding of two-turn quantum interactive proof systems.

While the class qq-QAM is the main target of investigation, this paper further studies the
power of various models of quantum Arthur-Merlin proofs with quantum/classical messages.
For any constant m ≥ 1 and any message-types t1, . . . , tm in {c, q}, let tm · · · t1-QAM(m) be
the class of problems having m-turn quantum interactive proof systems with the following
restrictions:

For any odd j, 1 ≤ j ≤ m, the (m− j + 1)st message (or the jth message counting from
the last), which is the message from the prover sent at the (m− j + 1)st turn, is a
quantum message if tj = q, and is restricted to a classical message if tj = c.
For any even j, 1 ≤ j ≤ m, at the (m− j + 1)st turn, which is a turn for the verifier, the
verifier first generates polynomially many EPR pairs and then sends halves of them if
tj = q, while the verifier first flips a fair coin polynomially many times and then sends
their outcomes if tj = c.

The class tm · · · t1-QAM(m) may be simply written as tm · · · t1-QAM when there is no ambi-
guity in the number of turns: for instance, qq-QAM(2) may be abbreviated to qq-QAM. Note
that the classes QAM and QMAM defined in Ref. [24] are exactly the classes cq-QAM and
qcq-QAM, respectively. The class cc-QAM corresponds to two-turn public-coin quantum inter-
active proofs with classical communications: the verifier sends a question consisting only of out-
comes of polynomially many attempts of a fair coin flip, then the prover responds with polyno-
mially many classical bits, and the final verification is done by the verifier via polynomial-time
quantum computation. By definition, AM ⊆ cc-QAM ⊆ cq-QAM ⊆ qq-QAM ⊆ QIP(2).

As mentioned above, the main target in this paper is the class qq-QAM. First, it is proved
that the power of qq-QAM proof systems does not change by adding a constant number of
turns of classical interaction prior to the communications of qq-QAM proof systems.
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I Theorem 1.1. For any constant m ≥ 2, c · · · cqq-QAM(m) = qq-QAM.

In stark contrast to this, as mentioned before and will be stated clearly in Theorem 1.7,
adding one turn of prior quantum interaction gives qq-QAM proof systems the full power of
quantum interactive proof systems (i.e., the resulting class is PSPACE). Hence, Theorem 1.1
may be viewed as a quantum analogue of Babai’s collapse theorem [4] for the class qq-QAM.

The proof of Theorem 1.1 comes in three parts: The first part proves that, for any
constant m ≥ 4, c · · · cqq-QAM(m) is necessarily included in ccqq-QAM. The second part
proves that cqq-QAM is included in qq-QAM. Finally, the third part proves that ccqq-QAM
is included in qq-QAM, by using the containment proved in the second part.

The first part is proved by carefully extending the argument in Babai’s collapse theorem.
The core idea of Babai’s proof is that, by a probabilistic argument applied to a parallel
repetition of the original proof system, the order of the verifier and the prover in the first
three turns of the original system can be switched, which results in another proof system
that has fewer number of turns. When proving the first part, the messages of the first three
turns of the original m-turn quantum Arthur-Merlin proof system are classical, and thus,
the argument in Babai’s collapse theorem still works.

The proof of the second part is one of the highlights of this paper. The main difficulty in
proving this part (and the third part) is that the argument used in Babai’s collapse theorem
fails when any of the first three turns is quantum in the starting proof system.

To overcome this difficulty, this paper first provides a natural complete promise problem
for qq-QAM, namely, the Close Image to Totally Mixed (CITM) problem, which
asks to check if the image of a given quantum circuit can be close to a totally mixed state,
formally defined as follows.

Close Image to Totally Mixed Problem: CITM(a, b)

Input: A description of a quantum circuit Q acting on qall qubits that has qin spec-
ified input qubits and qout specified output qubits.

Yes Instances: There exists a qin-qubit state ρ such that D
(
Q(ρ), (I/2)⊗qout

)
≤ a.

No Instances: For any qin-qubit state ρ, D
(
Q(ρ), (I/2)⊗qout

)
≥ b.

Here, D(·, ·) denotes the trace distance, Q(ρ) is the qout-qubit output state of Q when
the input state was ρ (i.e., the reduced state obtained by tracing out the space corresponding
to the (qall − qout) non-output qubits after applying Q to ρ⊗ (|0〉〈0|)⊗(qall−qin)), and I is the
identity operator of dimension two (and thus, (I/2)⊗qout corresponds to the totally mixed
state of qout qubits). The following completeness result is proved.

I Theorem 1.2. For any constants a and b in (0, 1) such that (1− a)2 > 1− b2, CITM(a, b)
is qq-QAM-complete under polynomial-time many-one reduction.

Then the core idea for proving the second part is to use the structure of this complete
problem that yes-instances are witnessed by the existence of a quantum state (i.e., the ∃
quantifier appears in the first place), while no such witness quantum state exists for no-
instances (i.e., the ∀ quantifier appears in the first place). This makes it possible to incorporate
the first turn of the cqq-QAM system into the input quantum state of the complete problem
CITM (as the quantifier derived from the first turn of the cqq-QAM system matches the
quantifier derived from the complete problem CITM), and thus, any problem in cqq-QAM
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can be reduced in polynomial time to the CITM problem with appropriate parameters,
which is in qq-QAM.

Actually, for the proof, whether the image of a constructed quantum circuit can be
close to a totally mixed state is partly evaluated by using the maximum output entropy of
quantum channels, which shows implicitly the qq-QAM-completeness of another problem
that asks to check whether the maximum output entropy of a quantum channel is larger than
a given value or not. More formally, the following Maximum Output Quantum Entropy
Approximation (MaxOutQEA) problem is also qq-QAM-complete.

Maximum Output Quantum Entropy Approximation Problem: MaxOutQEA

Input: A description of a quantum circuit that specifies a quantum channel Φ, and
a positive integer t.

Yes Instances: Smax(Φ) ≥ t+ 1.

No Instances: Smax(Φ) ≤ t− 1.

Here, Smax(·) denotes the maximum output von Neumann entropy. Namely, for any quantum
channel Φ, Smax(Φ) = maxρ S(Φ(ρ)), where S(·) denotes the von Neumann entropy and Φ(ρ)
is the output quantum state of Φ when the input quantum state to it was ρ.

I Theorem 1.3. MaxOutQEA is qq-QAM-complete under polynomial-time many-one
reduction.

Finally, the third part of the proof of Theorem 1.1 is obtained by first providing a
randomized reduction from a problem in ccqq-QAM to a problem in cqq-QAM, and then
using the containment proved in the second part for the resulting problem in cqq-QAM.

Besides its usefulness in proving Theorem 1.1, the complete problem CITM is of indepen-
dent interest in the following sense. Recall that problems with formulations similar to CITM
have already been studied, and were crucial to understand and characterize several complexity
classes related to quantum interactive proof systems: testing closeness between the images
of two given quantum circuits is QIP-complete [27] (and hence PSPACE-complete), testing
closeness between the state produced by a given circuit and the image of another quantum
circuit is QIP(2)-complete [32] (see also Ref. [12]), testing closeness between the two states
produced by two given quantum circuits is QSZK-complete [33, 35], and testing closeness
between the state produced by a quantum circuit and the totally mixed state is NIQSZK-
complete [18, 8]. Theorem 1.2 shows that the class qq-QAM, besides its theoretical interest in
the context of interactive proofs, is a very natural one that actually corresponds to a concrete
computational problem that is on this line of studies investigating the hardness of checking
properties related to quantum circuits. Since CITM corresponds to the remaining pattern
(image versus totally mixed state), Theorem 1.2 provides the last piece for characterizing the
hardness of these kinds of computational problems.

The complete problem MaxOutQEA is also on the very line of the previous studies.
Indeed, it is known that the following problems characterize the power of various models
of quantum interactive proofs: deciding which of the two states produced by two given
quantum circuits has higher entropy is QSZK-complete [6], and checking whether the entropy
of the state produced by a given quantum circuit is larger than a given value or not is
NIQSZK-complete [6, 8]. Along this line, MaxOutQEA is the first entropy-related problem
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that characterizes the power of quantum interactive proofs without zero-knowledge property,
which may be worthy of note.

It is further proved that the class cq-QAM (i.e., the standard QAM) is necessarily
contained in the one-sided bounded error version of qq-QAM of perfect completeness, denoted
by qq-QAM1 (throughout this paper, the perfect completeness version of each complexity
class is indicated by adding the subscript “1”).

I Theorem 1.4. cq-QAM ⊆ qq-QAM1.

One useful property when proving this theorem is that the proof of Theorem 1.1 does not
harm the perfect completeness property, i.e., the equality c · · · cqq-QAM1(m) = qq-QAM1
also holds for any constant m ≥ 2. Especially, the class ccqq-QAM1 is included in the
class qq-QAM1, and thus, one has only to prove that cq-QAM is included in ccqq-QAM1.
This can be proved by combining the classical technique due to Cai [7] for proving AM = AM1
(which itself originates in the proof of BPP ⊆ ΣP

2 due to Lautemann [22]), and the recent
result that any problem in QMA has a one-sided bounded error quantum Merlin-Arthur
proof system of perfect completeness in which Arthur and Merlin initially share a constant
number of EPR pairs [20] (which in particular implies that QMA is included in qq-QAM1).
Now the point is that, using two classical turns, the classical technique in Ref. [7] can be
used to generate polynomially many instances of a (promise) QMA problem, all of which are
QMA yes-instances if the input was a yes-instance, while at least one of which is a QMA
no-instance with high probability if the input was a no-instance. Hence, by making use of
the proof system in Ref. [20] for each QMA instance, which essentially runs polynomially
many attempts of a protocol of qq-QAM type in parallel to check that none of them results
in rejection, one obtains a proof system of ccqq-QAM type with perfect completeness.

An immediate corollary of this theorem is the first nontrivial upper bound for QAM in
terms of quantum interactive proofs.

I Corollary 1.5. QAM ⊆ QIP1(2).

Here, QIP1(2) denotes the class of problems having two-turn quantum interactive proof
systems of perfect completeness. This also improves the best known lower bound of
QIP1(2) (from QMA shown in Ref. [20] to QAM). By using the fact MQA = MQA1 (a.k.a.,
QCMA = QCMA1) stating that classical-witness QMA systems can be made perfectly com-
plete [15], a technique similar to the proof of Theorem 1.4 proves that perfect completeness
is achievable in cc-QAM.

I Theorem 1.6. cc-QAM = cc-QAM1.

Finally, results similar to Theorem 1.1 can be derived for other complexity classes
related to generalized quantum Arthur-Merlin proof systems. Namely, the following complete
characterization is proved on the power of generalized quantum Arthur-Merlin proofs involving
a constant number of turns, which can be viewed as the complete set of quantum analogues
of Babai’s collapse theorem.

I Theorem 1.7. The following four properties hold:
(i) For any constant m ≥ 3 and any message-types t1, . . . , tm in {c, q}, if there exists an

index j ≥ 3 such that tj = q, then tm · · · t1-QAM(m) = PSPACE.
(ii) For any constant m ≥ 2 and any message-type t in {c, q}, c · · · cqt-QAM(m) = qq-QAM.
(iii) For any constant m ≥ 2, c · · · cq-QAM(m) = cq-QAM (= QAM).
(iv) For any constant m ≥ 2, c · · · c-QAM(m) = cc-QAM.
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Further related work. There are several studies in which relevant subclasses of qq-QAM
were treated. The class QMAconst-EPR was introduced in Ref. [20] to give an upper bound of
QMA by its one-sided bounded error subclass QMAconst-EPR

1 with perfect completeness. This
QMAconst-EPR is an obvious subclass of qq-QAM with a restriction that the first message
from the verifier consists of not polynomially many but a constant number of halves of EPR
pairs. The class qq-QAM may be called QMApoly-EPR, following the notation in Ref. [20].
Another subclass of qq-QAM is the class NIQSZK studied in Refs. [18, 8] that corresponds to
non-interactive quantum statistical zero-knowledge proof systems, where the zero-knowledge
property must also be satisfied.

Organization of the paper. Section 2 summarizes the notions and properties that are used
throughout this paper. Section 3 presents formal definitions of generalized quantum Arthur-
Merlin proof systems. Section 4 provides a sketch of a proof of the qq-QAM-completeness of
the CITM problem. Section 5 then proves Theorem 1.1, the collapse theorem for qq-QAM.
This essentially shows the qq-QAM-hardness of the MaxOutQEA problem also. Section 6
treats the inclusion of the standard QAM in qq-QAM1 (Theorem 1.4). Section 7 proves
Theorem 1.7, the complete classification of the complexity classes derived from generalized
quantum Arthur-Merlin proof systems. Finally, Section 8 concludes the paper with some
open problems. A proof of the MaxOutQEA problem being in qq-QAM is provided in
the appendix, which completes the proof of the qq-QAM-completeness of MaxOutQEA
(Theorem 1.3). Some of the technical proofs are relegated to the full version [19] of this
paper.

2 Preliminaries

Throughout this paper, let N and Z+ denote the sets of positive and nonnegative integers,
respectively, and let Σ = {0, 1} denote the binary alphabet set. A function f : Z+ → N is
polynomially bounded if there exists a polynomial-time deterministic Turing machine that
outputs 1f(n) on input 1n. A function f : Z+ → [0, 1] is negligible if, for any polynomially
bounded function g : Z+ → N, the inequality f(n) < 1/g(n) holds for all but finitely many
values of n.

Quantum fundamentals. We assume the reader is familiar with the quantum formalism,
including pure and mixed quantum states, density operators, and measurements, as well
as the quantum circuit model (see Refs. [25, 17, 37], for instance). Some notations and
properties are summarized here for later use.

For each k in N, let C(Σk) denote the 2k-dimensional complex Hilbert space whose
standard basis vectors are indexed by the elements in Σk. In this paper, all Hilbert spaces
are complex and have dimension a power of two. For a Hilbert space H, let L(H) denote the
set of linear operators over H (i.e., the set of linear mappings from H to itself), and let D(H)
denote the set of density operators over H. For Hilbert spaces H and K, let C(H,K) denote
the set of quantum channels from D(H) to D(K) (i.e., the set of linear mappings from L(H)
to L(K) that are completely positive and trace-preserving). As usual, let

|Φ+〉 = 1√
2

(|00〉+ |11〉)

denote the two-qubit state in C(Σ2) that forms an EPR pair, and let

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
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denote the Pauli operators. For convenience, we may identify a unitary operator with the
unitary transformation it induces. In particular, for a unitary operator U , the induced
unitary transformation is also denoted by U .

For a linear operator A, the trace norm of A is defined by

‖A‖tr = tr
√
A†A.

For a Hilbert space H and two quantum states ρ and σ in D(H), the trace distance
between ρ and σ is defined by

D(ρ, σ) = 1
2‖ρ− σ‖tr.

For Hilbert spaces H and K and two quantum channels Φ and Ψ in C(H,K), the minimum
output trace distance between Φ and Ψ is defined by

Dmin(Φ,Ψ) = min
{
D(Φ(ρ),Ψ(σ)) : ρ, σ ∈ D(H)

}
.

The minimum output trace distance satisfies the following property. The proof is found in
the full version [19] of this paper.

I Lemma 2.1. For any Hilbert spaces H and K, any quantum channels Φ and Ψ in C(H,K),
and any k in N,

1−
[
1− (Dmin(Φ,Ψ))2] k

2 ≤ Dmin
(
Φ⊗k,Ψ⊗k

)
≤ kDmin(Φ,Ψ).

For any quantum state ρ, the von Neumann entropy of ρ is defined by

S(ρ) = − tr(ρ log ρ).

A special case of the von Neumann entropy is the Shannon entropy of a probability distribu-
tion µ, which is defined by

H(µ) = S(µ)

by viewing probability distributions as special cases of quantum states with diagonal density
operators.

For Hilbert spaces H and K and a quantum channel Φ in C(H,K), the maximum output
von Neumann entropy of Φ is defined by

Smax(Φ) = max
{
S(Φ(ρ)) : ρ ∈ D(H)

}
.

This paper uses the following two properties on von Neumann entropy.
The first lemma provides an upper bound on the von Neumann entropy of a mixture of

quantum states [25, Theorem 11.10].

I Lemma 2.2. For any Hilbert space H and any quantum state ρ in D(H) such that
ρ =

∑
j µjρj for some probability distribution µ = {µj} and quantum states ρj in D(H),

S(ρ) ≤ H(µ) +
∑
j

µj S(ρj).

The second lemma describes relations between the von Neumann entropy of a quantum
state and the trace distance between the state and the totally mixed state (a similar statement
appeared in the full version of Ref. [8] without a proof). The proof of the statement described
here is found in the full version [19] of this paper.

I Lemma 2.3. For any quantum state ρ of n qubits, it holds that(
1−D

(
ρ, (I/2)⊗n

)
− 2−n

)
n ≤ S(ρ) ≤ n− log 1

1−D(ρ, (I/2)⊗n) + 2.
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Quantum circuits. Following conventions, this paper defines quantum Arthur-Merlin proof
systems in terms of quantum circuits. In particular, this paper uses the following notion of
polynomial-time uniformly generated families of quantum circuits.

A quantum circuit is specified by a series of quantum gates, each of which is applied to
some designated set of qubits. It is assumed that any quantum circuit is composed of gates
in some reasonable, universal, finite set of quantum gates. A description of a quantum circuit
is a string in Σ∗ that encodes the specification of the quantum circuit. The encoding must
be a “natural” one, i.e., the number of gates in a circuit encoded is not more than the length
of the description of that circuit, and each gate of the circuit is specifiable by a deterministic
procedure in time polynomial with respect to the length of the description.

A family {Qx}x∈Σ∗ of quantum circuits is polynomial-time uniformly generated if there
exists a polynomial-time deterministic procedure that, on input x in Σ∗, outputs a description
of Qx. For convenience, we may identify a circuit Qx with the unitary operator it induces.

For the results in which perfect completeness is concerned, this paper assumes a gate
set with which the Hadamard and any classical reversible transformations can be exactly
implemented. Note that this assumption is satisfied by many standard gate sets such as the
Shor basis [31] consisting of the Hadamard, i-phase-shift, and Toffoli gates, and the gate set
consisting of the Hadamard, Toffoli, and NOT gates [30, 2]. Moreover, as the Hadamard
transformation in a sense can be viewed as a quantum analogue of the classical operation of
flipping a fair coin, our assumption would be the most natural quantum correspondence to
the tacit classical assumption in randomized complexity theory that fair coins and perfect
logical gates are available. Hence, the authors believe that the condition above is very
reasonable and not restrictive.

Since non-unitary and unitary quantum circuits are equivalent in computational power [3],
it is sufficient to treat only unitary quantum circuits, as defined above. Nevertheless, for
readability, most procedures in this paper will be described using intermediate projective
measurements and unitary operations conditioned on the outcome of the measurements.
All of these intermediate measurements can be deferred to the end of the procedure by a
standard technique so that the procedure becomes implementable with a unitary circuit.

3 Generalized quantum Arthur-Merlin proof systems

A generalized quantum Arthur-Merlin proof system consists of a polynomial-time quantum
verifier and an all-powerful quantum prover. For any constant m ≥ 1 and any message-type tj
in {c, q} for each j in {1, . . . ,m}, a generalized quantum Arthur-Merlin proof system is of
tm · · · t1-QAM type if the message at the (m− j + 1)st turn is quantum (resp. is restricted
to classical) for each j such that tj = q (resp. tj = c).

Formally, an m-turn quantum verifier V for generalized quantum Arthur-Merlin proof
systems is a polynomial-time computable mapping of the form V : Σ∗ → Σ∗. For each x in Σ∗,
V (x) is interpreted as a description of a quantum circuit acting on (qV(|x|) +mqM(|x|)) qubits
with a specification of a qV(|x|)-qubit quantum register V and each qM(|x|)-qubit quantum
register Mj for j in {1, . . . ,m}, for some polynomially bounded functions qV, qM : Z+ → N.
One of the qubits in V is designated as the output qubit. At the (m− j + 1)st turn for
any even j such that 2 ≤ j ≤ m− 1, V receives a message from a prover, either classical or
quantum, which is stored in the quantum register Mm−j . When the system is of tm · · · t1-
QAM type, at the (m− j + 1)st turn for any even j such that 2 ≤ j ≤ m, if tj = c, V flips a
fair coin qM(|x|) times to obtain a binary string r of length qM(|x|), then sends r to the prover,
and stores r in the quantum register Mm−j+1, while if tj = q, V generates qM(|x|) EPR
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pairs |Φ+〉⊗ qM(|x|), then sends the second halves of them to the prover, and stores the first
halves of them in Mm−j+1. Upon receiving a message at the mth turn from the prover,
either classical or quantum, which is stored in the quantum register Mm, V prepares the
qV(|x|)-qubit quantum register V, all the qubits of which are initialized to the |0〉 state. V
then performs the final verification procedure by applying the circuit V (x) to (V,M1, . . . ,Mm)
and then measuring the output qubit in the computational basis, where the outcome |1〉 is
interpreted as “accept”, and the outcome |0〉 is interpreted as “reject”.

Similarly, an m-turn quantum prover P for generalized quantum Arthur-Merlin proof
systems is a mapping from Σ∗ to a sequence of dm/2e unitary transformations with a
specification of quantum registers they acts on. No restrictions are placed on the complexity
of P . For each x in Σ∗, P (x) is interpreted as a sequence of dm/2e unitary transforma-
tions P (x)2dm/2e−1, . . . , P (x)3, P (x)1 acting on (qM(|x|) + qP(|x|)) qubits with a specification
of a qP(|x|)-qubit quantum register P, for some polynomially bounded function qM : Z+ → N
and some function qP : Z+ → N. At the beginning of the protocol, P prepares the qP(|x|)-qubit
quantum register P (and a qM(|x|)-qubit quantum register M1 also, if m is odd). Without
loss of generality, one can assume that all the qubits in P (and in M1 when P prepares
it) are initialized to the |0〉 state at the beginning of the protocol. At the (m− j + 1)st
turn for any odd j such that 1 ≤ j ≤ m− 1, P receives a message from the verifier, either
classical or quantum, which is stored in the quantum register Mm−j+1. When the system
is of tm · · · t1-QAM type, at the (m− j + 1)st turn for any odd j such that 1 ≤ j ≤ m, P
applies P (x)j to (Mm−j+1,P). If tj = c, P further measures each qubit in Mm−j+1 in the
computational basis. P then sends Mm−j+1 to the verifier.

An m-turn generalized quantum Arthur-Merlin proof system Π is then specified by each
message-type tj in {c, q} for j in {1, . . . ,m} and anm-turn quantum verifier V for generalized
quantum Arthur-Merlin proof systems. An m-turn quantum prover P for tm · · · t1-QAM-type
systems is compatible with Π if the function qM of P is the same as that of V . In what follows,
provers are always assumed to be compatible. For any generalized quantum Arthur-Merlin
proof system Π, let MAPx(Π) denote the maximum acceptance probability in Π on input x
in Σ∗, which is the maximum of the acceptance probability of the verifier in Π on input x
over all quantum provers compatible with Π. The complexity class tm · · · t1-QAM(m, c, s)
derived from generalized quantum Arthur-Merlin proof systems of tm · · · t1-QAM type, with
completeness c and soundness s, is defined as follows.

I Definition 3.1. Given a constant m in N, functions c, s : Z+ → [0, 1] satisfying c > s, and
each message-type tj in {c, q} for j in {1, . . . ,m}, a promise problem A = (Ayes, Ano) is in
tm · · · t1-QAM(m, c, s) if there exists an m-turn quantum verifier V for generalized quantum
Arthur-Merlin proof systems, such that, for the tm · · · t1-QAM-type proof system Π specified
by V and for every input x in Σ∗,
(Completeness) if x is in Ayes, MAPx(Π) is at least c(|x|), and
(Soundness) if x is in Ano, MAPx(Π) is at most s(|x|).

Using this definition, the classes tm · · · t1-QAM(m) and tm · · · t1-QAM1(m) of problems
having generalized quantum Arthur-Merlin proof systems of tm · · · t1-QAM type with two-
sided bounded error, and those with one-sided bounded error of perfect completeness,
respectively, are defined as follows.

I Definition 3.2. Given a constant m in N and each message-type tj in {c, q} for j
in {1, . . . ,m}, a promise problem A = (Ayes, Ano) is in tm · · · t1-QAM(m) iff A is in
tm · · · t1-QAM(m, 1− ε, ε) for some negligible function ε : Z+ → [0, 1].
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I Definition 3.3. Given a constant m in N and each message-type tj in {c, q} for j
in {1, . . . ,m}, a promise problem A = (Ayes, Ano) is in tm · · · t1-QAM1(m) iff A is in
tm · · · t1-QAM(m, 1, ε) for some negligible function ε : Z+ → [0, 1].

In the case where the number of turns is clear, the parameter m may be omitted, e.g.,
ccqq-QAM(4) may be abbreviated as ccqq-QAM.

Similar to general quantum interactive proof systems, the perfect parallel repetition
theorem holds for generalized quantum Arthur-Merlin proof systems.

I Lemma 3.4. For any generalized quantum Arthur-Merlin proof system Π, for any k in
N and the generalized quantum Arthur-Merlin proof system Π⊗k resulting from the k-fold
parallel repetition of Π, and for every input x in Σ∗, it holds that

MAPx
(
Π⊗k

)
=
(
MAPx(Π)

)k
.

Proof. Fix any number m of turns and any message-types t1, . . . , tm in {c, q}. For any proof
system Π of tm · · · t1-QAM type, let Q(Π) be the m-turn (general) quantum interactive
proof system that exactly simulates Π as follows: on every input x in Σ∗, the verifier in
Q(Π) behaves exactly in the same manner as Arthur in Π except that, upon receiving the
jth message from a prover (resp. sending the jth message to a prover), if tj = c in Π, the
verifier of Q(Π) first makes sure that the received message (resp. the sent message) is indeed
classical by taking a copy of the message by CNOT operations (and the copied message
will never be touched in the rest of the protocol). Clearly, it is meaningless for a malicious
prover in Q(Π) to send a quantum message when the original message-type was classical in
Π. Therefore, for every input x, the maximum acceptance probability in Q(Π) is exactly
MAPx(Π). Now from the perfect parallel repetition theorem for general quantum interactive
proofs [11], the k-fold parallel repetition (Q(Π))⊗k of Q(Π) has its maximum acceptance
probability exactly

(
MAPx(Π)

)k for every x. As the proof system (Q(Π))⊗k is identical to
the m-turn (general) quantum interactive proof system Q(Π⊗k) that exactly simulates the
proof system Π⊗k of tm · · · t1-QAM type that is the k-fold parallel repetition of Π, it holds
that MAPx

(
Π⊗k

)
=
(
MAPx(Π)

)k for every x, as claimed. J

Using Lemma 3.4, one can show the following amplification properties on generalized
quantum Arthur-Merlin proof systems, which ensure that Definitions 3.2 and 3.3 give a
robust definition in terms of completeness and soundness parameters.

I Lemma 3.5. For any constant m in N, any message-types t1, . . . , tm in {c, q}, any
polynomially bounded function p : Z+ → N, and any polynomial-time computable functions
c, s : Z+ → [0, 1] satisfying c− s ≥ 1

q for some polynomially bounded function q : Z+ → N,

tm · · · t1-QAM(m, c, s) ⊆ tm · · · t1-QAM(m, 1− 2−p, 2−p).

I Lemma 3.6. For any constant m in N, any message-types t1, . . . , tm in {c, q}, any
polynomially bounded function p : Z+ → N, and any polynomial-time computable function
s : Z+ → [0, 1] satisfying 1− s ≥ 1

q for some polynomially bounded function q : Z+ → N,

tm · · · t1-QAM(m, 1, s) ⊆ tm · · · t1-QAM(m, 1, 2−p).

Proofs of Lemmas 3.5 and 3.6 (Sketch). Lemma 3.6 is immediate from Lemma 3.4 by
considering a parallel repetition of an appropriately many number of times.

To prove Lemma 3.5, as in Refs. [1, 21, 14], one first makes the completeness exponentially
close to one, while keeping the soundness bounded away from one, by performing a sufficiently
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Verifier’s qq-QAM Protocol for CITM(a, b)

1. Prepare qout-qubit registers S1 and S2, and generate qout EPR pairs |Φ+〉⊗qout in (S1,S2)
so that the jth qubit of S1 and that of S2 form an EPR pair, for every j in {1, . . . , qout}.
Send S2 to the prover.

2. Receive a (qall − qout)-qubit quantum register R from the prover. Apply the unitary
transformation U†Qx

to (R,S1). Accept if all the qubits in A are in state |0〉, and reject
otherwise, where A is the quantum register consisting of the last (qall − qin) qubits of
(R,S1) (i.e., the non-input qubits of Qx).

Figure 1 Verifier’s qq-QAM protocol for CITM.

many number of attempts of a given system in parallel and accepting only when a reasonably
large fraction of the attempts results in acceptance. Lemma 3.5 is then immediate from
Lemma 3.4 by running this system of almost-perfect completeness in parallel appropriately
many times. The rigorous proof is found in the full version [19] of this paper. J

4 qq-QAM-completeness of CITM

This section proves Theorem 1.2, which states that the CITM problem is complete for the
class qq-QAM.

First, it is proved that CITM(a, b) is in qq-QAM for appropriately chosen parame-
ters a and b. The proof is a special case of the proof of the Close Image problem being in
QIP(2) [32, 12].

I Lemma 4.1. For any constants a and b in [0, 1] satisfying (1− a)2 > 1− b2, CITM(a, b)
is in qq-QAM.

Proof (Sketch). Let Qx be a quantum circuit of an instance x of CITM(a, b) acting on
qall qubits with qin specified input qubits and qout specified output qubits. Without loss of
generality, one can assume that the first qin qubits correspond to the input qubits, and the last
qout qubits correspond to the output qubits. Let UQx

denote the unitary operator induced
by Qx. We construct a verifier V of the qq-QAM proof system with completeness (1− a)2

and soundness 1− b2 as follows (recall that a and b are constants in the interval [0, 1] such
that (1− a)2 > 1− b2, and thus this qq-QAM proof system is sufficient for the claim).

Let S1 and S2 be quantum registers of qout qubits. The verifier V first generates qout EPR
pairs |Φ+〉⊗qout in (S1,S2) so that the jth qubit of S1 and that of S2 form an EPR pair,
for every j in {1, . . . , qout}. Then V sends S2 to the prover. Upon receiving a quantum
register R of (qall − qout) qubits, V applies the unitary transformation U†Qx

to (R,S1). Letting
A be the quantum register consisting of the last (qall − qin) qubits of the register (R,S1) (i.e.,
corresponding to the non-input qubits of Qx), V accepts x if and only if all the qubits in A
are in state |0〉. Figure 1 summarizes the protocol of the verifier V .

The claim follows from a rigorous analysis of this protocol, which is relegated to the full
version [19] of this paper. J

Now the CITM problem is proved to be hard for qq-QAM.

I Lemma 4.2. For any constants a and b satisfying 0 < a < b < 1, CITM(a, b) is hard for
qq-QAM under polynomial-time many-one reduction.
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Algorithm Corresponding to Quantum Circuit Qx

1. Prepare quantum registers V and M, each of qV and qM qubits, respectively. Denote by
S and S the quantum registers consisting of the last qS and first (qV − qS) qubits of V,
respectively. The last (qS + qM) qubits of (V,M) = (S,S,M) (i.e., all the qubits in (S,M))
are designated as the input qubits, while the last qS qubits of V = (S,S) (i.e., all the
qubits in S) are designated as the output qubits.

2. Flip a fair coin, and proceed to Step 2.a if it results in “Heads”, and proceed to Step 2.b
if it results in “Tails”.
a. Output all the qubits in S.
b. Perform Vx over (V,M) = (S,S,M). If the first qubit of V is in state |1〉, output the

totally mixed state (I/2)⊗qS (by first generating the totally mixed state using fresh
ancillae, and then swapping the qubits in S with the generated totally mixed state),
and output |0〉⊗qS otherwise (by swapping the qubits in S with qS fresh ancillae).

Figure 2 The construction of the quantum circuit Qx.

Proof (Sketch). Let A = (Ayes, Ano) be a problem in qq-QAM. Then A has a qq-QAM proof
system with completeness c and soundness s for some appropriately chosen constants c and s
satisfying 0 < s < c < 1. Let V be the quantum verifier witnessing this proof system. Fix an
input x, and let V and M be quantum registers consisting of qV and qM qubits, respectively,
where V corresponds to the private qubits of V and M corresponds to the message qubits V
would receive on input x. Without loss of generality, one can assume that the first qubit
of V is the output qubit of V , and the last qS qubits of V form the quantum register S
corresponding to the halves of the EPR pairs V would keep until the final verification
procedure is performed. Let S be the quantum register of (qV − qS) qubits consisting of the
first (qV − qS) qubits of V (i.e., all the private qubits of V but those belonging to S). Denote
by Vx the unitary operator induced by this V on input x.

We construct a quantum circuit Qx that exactly implements the following algorithm. The
circuit Qx expects to receive a (qS + qM)-qubit state as its input, and prepares the quantum
registers V = (S,S) and M, where the input state is expected to be stored in (S,M). Then
with probability one-half, Qx just outputs the state in the register S. Otherwise Qx performs
Vx over (V,M) = (S,S,M), and outputs the totally mixed state (I/2)⊗qS if the first qubit of
V is in state |1〉 (i.e., if the system is in an accepting state of the original verifier V ), and
outputs (|0〉〈0|)⊗qS if the first qubit of V is in state |0〉 (i.e., if the system is in a rejecting
state of the original verifier V ). Figure 2 summarizes the construction of the circuit Qx.

The qq-QAM-hardness of CITM(a, 1/20) for any positive constant a < 1/20 follows from
a rigorous analysis of the properties of this circuit by appropriately choosing c and s, which
is found in the full version [19] of this paper. The qq-QAM-hardness of CITM(a, b) for any
constants a and b satisfying 0 < a < b < 1 then follows from Lemma 2.1 by first creating an
instance Qx of CITM(a/k, 1/20) according to the construction above, for k =

⌈
2 ln(1/(1−b))

ln(400/399)
⌉
,

and then constructing another circuit Q′x that places k copies of Qx in parallel. J

From Lemmas 4.1 and 4.2, Theorem 1.2 follows. Note that, with essentially the same
proofs as those of Lemmas 4.1 and 4.2, one can show that for any b in (0, 1), CITM(0, b) is
in qq-QAM1 and is hard for qq-QAM1, and thus, the following corollary holds.

I Corollary 4.3. For any constant b in (0, 1), CITM(0, b) is qq-QAM1-complete under
polynomial-time many-one reduction.
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I Remark. The proofs of Lemmas 4.1 and 4.2 actually also show that the variant of the CITM
problem where the number of output qubits of the circuit is a fixed constant independent
of instances is complete for the class QMAconst-EPR introduced in Ref. [20], and thus, it is
QMA-complete since QMAconst-EPR = QMA [5].

5 Collapse theorem for qq-QAM

This section proves Theorem 1.1, the quantum analogue of Babai’s collapse theorem [4]
stating that c · · · cqq-QAM(m) = qq-QAM for any constant m ≥ 2.

First, it is proved that for any constant m ≥ 4, c · · · cqq-QAM(m) ⊆ ccqq-QAM holds,
meaning that the first (m− 4) classical turns can be removed. The proof essentially relies on
the observation that the techniques used in the classical result by Babai [4] can be applied
to the quantum setting as well.

I Lemma 5.1. For any constant m ≥ 4, c · · · cqq-QAM(m) ⊆ ccqq-QAM.

Proof. It suffices to show that c · · · cqq-QAM(m) ⊆ c · · · cqq-QAM(m− 1) for any odd con-
stant m ≥ 5, and c · · · cqq-QAM(m) ⊆ c · · · cqq-QAM(m− 2) for any even constant m ≥ 6.

Let A = (Ayes, Ano) be a problem in c · · · cqq-QAM(m). By Lemma 3.5, A has an m-turn
c · · · cqq-QAM proof system Π with completeness 1− 2−8 and soundness 2−8. Without loss
of generality, one can assume that, for every input of length n, every classical message
exchanged consists of l(n) bits for some polynomially bounded function l : Z+ → N.

First consider the case with odd m, where the first turn is for the prover. Fix an input x in
Σ∗, and let wx(y, r) be the maximum of the probability that the prover can make the verifier
accept, under the condition that the first message from the prover is y in Σl(|x|) and the
second message from the verifier is r in Σl(|x|). Then, the maximum acceptance probability
in Π is given by MAPx(Π) = maxy∈Σl(|x|){E[wx(y, r)]}, where the expectation is taken over
the uniform distribution with respect to r in Σl(|x|). Note that MAPx(Π) ≥ 1− 2−8 if x is
in Ayes, and MAPx(Π) ≤ 2−8 if x is in Ano.

Consider the (m− 1)-turn c · · · cqq-QAM proof system Π′ specified by the following
protocol of the verifier: At the first turn, the verifier sends k(|x|) strings r1, . . . , rk(|x|) chosen
uniformly at random from Σl(|x|), for some polynomially bounded function k : Z+ → N. Upon
receiving a string y in Σl(|x|) and k(|x|) strings z1, . . . , zk(|x|) in Σl(|x|) at the third turn, the
verifier enters the simulations of the last (m− 3) turns of communications of Π, by running
in parallel k(|x|) attempts of such simulations, where the jth attempt assumes that the first
three messages in the original proof system Π were y, rj , and zj , respectively, for each j
in {1, . . . , k(|x|)}. The verifier accepts if and only if more than k(|x|)/2 attempts result in
acceptance in these simulations of Π. Figure 3 summarizes the protocol of this verifier in Π′.

In fact, the construction of this proof system Π′ is exactly the same as in Ref. [4] except
that the last two messages exchanged are quantum and the final verification of the verifier is
a polynomial-time quantum computation in the present case. The analysis in Ref. [4] works
also in the present case, since it only relies on the fact that wx(y, r) gives the conditional
probability defined above, and from Lemma 3.4, the perfect parallel repetition theorem holds
for general quantum Arthur-Merlin proof systems. In particular, the following property holds
also in the present case (see Lemmas 3.3 and 3.4 of Ref. [4]).

I Claim 1. 1− 2k(|x|)(1−MAPx(Π)
)k(|x|)/2 ≤ MAPx(Π′) ≤ 2k(|x|)+l(|x|)(MAPx(Π)

)k(|x|)/2.
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Verifier’s Protocol for Reducing the Number of Turns by One (for Odd m)

1. Send k(|x|) strings r1, . . . , rk(|x|), each chosen uniformly at random from Σl(|x|), to the
prover, for some polynomially bounded function k : Z+ → N.

2. Receive a string y in Σl(|x|) and k(|x|) strings z1, . . . , zk(|x|) in Σl(|x|) from the prover.
Run in parallel k(|x|) attempts of the (m− 3)-turn protocol that simulates the last
(m− 3) turns of communications of the original m-turn c · · · cqq-QAM proof system Π
on input x, where the jth attempt assumes that the first three messages in Π were y, rj ,
and zj , respectively, for each j in {1, . . . , k(|x|)}. Accept if more than k(|x|)/2 attempts
result in acceptance in these simulations of Π, and reject otherwise.

Figure 3 Verifier’s protocol in Π′ for reducing the number of turns by one when m is odd.

Now let k =
⌈ 2+l

3
⌉
. If x is in Ayes, then MAPx(Π′) is at least

1− 2k(|x|)(1−MAPx(Π)
)k(|x|)/2 ≥ 1− 2k(|x|)(2−8)k(|x|)/2 ≥ 1− 1

2l(|x|)+2 ≥
3
4 ,

while if x is in Ano, then MAPx(Π′) is at most

2k(|x|)+l(|x|)(MAPx(Π)
)k(|x|)/2 ≤ 2k(|x|)+l(|x|)(2−8)k(|x|)/2 ≤ 1

4 ,

which completes the proof for the case with odd m.
Next consider the case with even m, where the first message is a random string from

a verifier. Let Π(−1) be the (m− 1)-turn c · · · cqq-QAM proof system that on input (x, r)
simulates the last (m− 1) turns of Π on x under the condition that the first message in Π was
r in Σl(|x|). Let B = (Byes, Bno) be the following promise problem in c · · · cqq-QAM(m− 1):

Byes =
{

(x, r) : MAP(x,r)
(
Π(−1)) ≥ 2/3

}
, Bno =

{
(x, r) : MAP(x,r)

(
Π(−1)) ≤ 1/3

}
.

Note that, if x is in Ayes, then (x, r) is in Byes for at least (1− 3 · 2−8)-fraction of the
choices of r. Similarly, if x is in Ano, then (x, r) is in Bno for at least (1− 3 · 2−8)-fraction
of the choices of r. By the result for the case with odd m above, it holds that B is in
c · · · cqq-QAM(m− 2). Thus, there exists an (m− 2)-turn c · · · cqq-QAM proof system Π(−2)

for B such that if (x, r) is in Byes, MAP(x,r)
(
Π(−2)) is at least 2/3, while if (x, r) is in Bno,

MAP(x,r)
(
Π(−2)) is at most 1/3. Note that the first turn of Π(−2) is a turn for the verifier,

and thus, one can merge the turn for sending r with the first turn of Π(−2). This results
in an (m− 2)-turn c · · · cqq-QAM proof system Π′′ for A in which at the first turn the new
verifier sends a string r in Σl(|x|) chosen uniformly at random in addition to the original
first message of the verifier in Π(−2) on input (x, r), and then behaves exactly in the same
manner as the verifier in Π(−2) on input (x, r) in the rest of the protocol. If x is in Ayes,
MAPx(Π′′) is at least (1− 3 · 2−8) · (2/3) > 5/8, while if x is in Ano, MAPx(Π′′) is at most
3 · 2−8 + (1− 3 · 2−8) · (1/3) < 3/8, which is sufficient for the claim, due to Lemma 3.5. J

Second, using the fact that CITM is qq-QAM-complete, it is proved that cqq-QAM is
included in qq-QAM.

I Lemma 5.2. cqq-QAM ⊆ qq-QAM.

Proof. Let A = (Ayes, Ano) be a problem in cqq-QAM. Then, A has a cqq-QAM proof
system Π with completeness 2/3 and soundness 1/3. Let l : Z+ → N be the polynomially
bounded function that specifies the length of the first message in Π. Consider the qq-QAM
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proof system Πqq that on input (x,w) simulates the last two turns of Π on x under the
condition that the first message in Π was w in Σl(|x|). Let B = (Byes, Bno) be the following
promise problem in qq-QAM:

Byes =
{

(x,w) : MAP(x,w)
(
Πqq) ≥ 2/3

}
, Bno =

{
(x,w) : MAP(x,w)

(
Πqq) ≤ 1/3

}
.

Note that for any x, if x is in Ayes, there exists a string w in Σl(|x|) such that (x,w) is in
Byes, and if x is in Ano, for every string w in Σl(|x|), (x,w) is in Bno.

Let p : Z+ → N be a non-decreasing polynomially bounded function, which will be fixed
later. First notice that B has a qq-QAM proof system that satisfies completeness 1− 2−p and
soundness 2−p (the existence of such a proof system is ensured by Lemma 3.5). Starting from
this qq-QAM proof system, the proof of Lemma 4.2 implies the existence of a polynomial-
time algorithm that, given (x,w), computes a description of a quantum circuit Qx,w of
qin(|x|) input qubits and qout(|x|) output qubits with the following properties:
(i) if (x,w) is in Byes, there exists a quantum state ρ consisting of qin(|x|) qubits such that

D
(
Qx,w(ρ), (I/2)⊗ qout(|x|)) ≤ 2−p(|x|+|w|)−1 < 2−p(|x|), and

(ii) if (x,w) is in Bno, for any quantum state ρ consisting of qin(|x|) qubits, it holds that
D
(
Qx,w(ρ), (I/2)⊗ qout(|x|)) > 1/20.

Let q : Z+ → N be another non-decreasing polynomially bounded function satisfying
q(n) ≥ max{l(n) + 4, n} for any n in Z+. Considering the quantum circuit Q′x,w that runs
k(|x|) copies of Qx,w in parallel for the polynomially bounded function k =

⌈ 2 ln 2
ln(400/399)q

⌉
and

taking p = q + dlog ke, it follows from Lemma 2.1 (with Φ being the transformation induced
by Qx,w and Ψ being the transformation that receives an input state of qin(|x|) qubits and
always outputs the totally mixed state (I/2)⊗ qout(|x|) regardless of the input) that
(i) if x is in Ayes, there exist a string w in Σl(|x|) and a quantum state ρ′ consisting of

q′in(|x|) qubits such that D
(
Q′x,w(ρ′), (I/2)⊗ q′out(|x|)) < 2−q(|x|), and

(ii) if x is in Ano, for any string w in Σl(|x|) and any quantum state ρ′ consisting of
q′in(|x|) qubits, it holds that D

(
Q′x,w(ρ′), (I/2)⊗ q′out(|x|)) > 1− 2−q(|x|),

where q′in = kqin and q′out = kqout.

Now consider the quantum circuit Rx of
(
l(|x|) + q′in(|x|)

)
input qubits and q′out(|x|) out-

put qubits that corresponds to the following algorithm:
1. Measure all the l(|x|) qubits in the quantum register W in the computational basis to

obtain a classical string w in Σl(|x|), where W corresponds to the first l(|x|) qubits of the
input qubits.

2. Compute from (x,w) a description of the quantum circuit Q′x,w. Perform the circuit Q′x,w
with qubits in the quantum register R as its input qubits, where R corresponds to the
last q′in(|x|) qubits of the input qubits of Rx. Output the qubits corresponding to the
output qubits of Q′x,w.

We claim that the circuit Rx satisfies the following two properties:
(i) if x is in Ayes, there exists a quantum state σ consisting of

(
l(|x|) + q′in(|x|)

)
qubits such

that D
(
Rx(σ), (I/2)⊗ q′out(|x|)) < 2−q(|x|), and

(ii) if x is in Ano, for any quantum state σ consisting of
(
l(|x|) + q′in(|x|)

)
qubits, it holds

that D
(
Rx(σ), (I/2)⊗ q′out(|x|)) > 1/ q′out(|x|).

In fact, the item (i) is obvious from the construction of Rx.
To prove the item (ii), suppose that x is in Ano. Then, for any string w in Σl(|x|) and any

quantum state ρ′ of q′in(|x|) qubits, it holds that D
(
Q′x,w(ρ′), (I/2)⊗ q′out(|x|)) > 1− 2−q(|x|).
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From Lemma 2.2 and the second inequality of Lemma 2.3, it follows that

S(Rx(σ)) < l(|x|)+q′out(|x|)−q(|x|)+2 ≤ q′out(|x|)−2 ≤
(

1− 1
q′out(|x|)

−2−q
′
out(|x|)

)
q′out(|x|).

Hence, the first inequality of Lemma 2.3 ensures that D
(
Rx(σ), (I/2)⊗ q′out(|x|)) > 1/ q′out(|x|).

Finally, consider the quantum circuit R′x that runs k′(|x|) copies of Rx in parallel
for the polynomially bounded function k′ =

⌈ 2 ln(1/2)
ln(1−(1/(q′out)2))

⌉
≤ 2(q′out)2. Assuming that(

q′out(|x|)
)2 ≤ 2q(|x|)−4 (otherwise |x| is at most some fixed constant since q′out is a polynomi-

ally bounded function and q(|x|) ≥ |x|, and thus, it can be checked trivially whether x is in
Ayes or in Ano), it follows from Lemma 2.1 that
(i) if x is in Ayes, there exists a quantum state σ consisting of q′′in(|x|) qubits such that

D
(
R′x(σ), (I/2)⊗ q′′out(|x|)) < 1/8, and

(ii) if x is in Ano, for any quantum state σ consisting of q′′in(|x|) qubits, it holds that
D
(
R′x(σ), (I/2)⊗ q′′out(|x|)) > 1/2,

where q′′in = k′(l + q′in) and q′′out = k′q′out.

Thus, R′x is a yes-instance of CITM(1/8, 1/2) if x is in Ayes, while R′x is a no-instance of
CITM(1/8, 1/2) if x is in Ano. This implies that any problem A in cqq-QAM is reducible to
CITM(1/8, 1/2) in polynomial time, and thus in qq-QAM by Lemma 4.1, which completes
the proof. J

I Remark. Combined with Lemma 2.3, the reduction from the problem B to the circuit Q′x,w
in the proof of Lemma 5.2 essentially shows the qq-QAM-hardness of the MaxOutQEA
problem. On the other hand, the fact that MaxOutQEA is in qq-QAM is easily proved
by a straightforward modification of the arguments in Refs. [6, 8] that place the Quantum
Entropy Approximation (QEA) problem in NIQSZK. Hence, the MaxOutQEA problem
is also qq-QAM-complete, giving Theorem 1.3. A rigorous proof of MaxOutQEA being
in qq-QAM is presented in Appendix A, and a separate proof of the qq-QAM-hardness of
MaxOutQEA is found in the full version [19] of this paper.

Finally, using Lemma 5.2, it is proved that ccqq-QAM ⊆ qq-QAM.

I Lemma 5.3. ccqq-QAM ⊆ qq-QAM.

Proof. Let A = (Ayes, Ano) be a problem in ccqq-QAM. By Lemma 3.5, one can assume
that A has a ccqq-QAM proof system Π with completeness 1− 2−8 and soundness 2−8.
Let l : Z+ → N be the polynomially bounded function that specifies the length of the first
message in Π. Consider the cqq-QAM proof system Π(−1) that on input (x, r) simulates
the last three turns of Π on x assuming that the first message in Π was r in Σl(|x|). Let
B = (Byes, Bno) be the following promise problem in cqq-QAM:

Byes =
{

(x, r) : MAP(x,r)
(
Π(−1)) ≥ 2/3

}
, Bno =

{
(x, r) : MAP(x,r)

(
Π(−1)) ≤ 1/3

}
.

Note that, if x is in Ayes, then (x, r) is in Byes for at least (1− 3 · 2−8)-fraction of the choices
of r, while if x is in Ano, then (x, r) is in Bno for at least (1− 3 · 2−8)-fraction of the choices
of r. By Lemma 5.2, it holds that B is in qq-QAM. Thus, there exists a qq-QAM proof
system Π′ for B such that MAP(x,r)(Π′) is at least 2/3 if (x, r) is in Byes, while MAP(x,r)(Π′)
is at most 1/3 if (x, r) is in Bno. Here, the first turn of Π′ is a turn for the verifier, and
thus one can merge the turn for sending r with the first turn of Π′. This results in another
qq-QAM proof system Π′′ for A in which at the first turn the new verifier sends a string r in
Σl(|x|) chosen uniformly at random in addition to the original first message of the verifier
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in Π′ on input (x, r), and then behaves exactly in the same manner as the verifier in Π′ on
input (x, r) in the rest of the protocol. Notice that sending a random string r of length l(|x|)
can be exactly simulated by sending the halves of l(|x|) EPR pairs and measuring in the
computational basis all the remaining halves of them that the verifier possesses. If x is in Ayes,
MAPx(Π′′) is at least (1− 3 · 2−8) · (2/3) > 5/8, while if x is in Ano, MAPx(Π′′) is at most
3 · 2−8 + (1− 3 · 2−8) · (1/3) < 3/8, which is sufficient for the claim, due to Lemma 3.5. J

Now one inclusion of Theorem 1.1 is immediate from Lemmas 5.1 and 5.3, and the other
inclusion is trivial, which completes the proof of Theorem 1.1.

In fact, all the proofs of Lemmas 5.1, 5.2, and 5.3 can be easily modified to preserve the
perfect completeness property, and the following corollary holds.

I Corollary 5.4. For any constant m ≥ 2, c · · · cqq-QAM1(m) = qq-QAM1.

Proof. The proof of Lemma 5.1 can be modified so that it preserves the perfect completeness
property by taking Byes to be the set of (x, r)’s such that MAP(x,r)

(
Π(−1)) is one, and

using Lemma 3.6 instead of Lemma 3.5. This shows that c · · · cqq-QAM1(m) is included
in ccqq-QAM1 for any constant m ≥ 4. With a similar modification to the set Byes as well
as using Corollary 4.3 instead of Theorem 1.2, the proof of Lemma 5.2 can be modified
to present a reduction from any problem in cqq-QAM1 to CITM(0, b), which shows that
cqq-QAM1 is included in qq-QAM1. Using this inclusion instead of Lemma 5.2 and again
with a similar modification to Byes and a replacement of Lemma 3.5 by Lemma 3.6, the
proof of Lemma 5.3 can be modified so that ccqq-QAM1 is shown to be in qq-QAM1. J

6 QAM versus one-sided error qq-QAM

This section shows that qq-QAM proof systems of perfect-completeness are already as
powerful as the standard QAM proof systems of two-sided bounded error (Theorem 1.4).
As mentioned at the end of Section 5, the collapse theorem for qq-QAM holds even for
the perfect-completeness variants. In particular, the inclusion ccqq-QAM1 ⊆ qq-QAM1
holds. Hence, for the proof of Theorem 1.4, it suffices to show that any problem in cq-QAM
(= QAM) is necessarily in the class ccqq-QAM1. As mentioned earlier, this can be shown by
combining the classical technique in Ref. [7] for proving AM = AM1, which originates in the
proof of BPP ⊆ ΣP

2 due to Lautemann [22], and the recent result that sharing a constant
number of EPR pairs can make QMA proofs perfectly complete [20].

Proof of Theorem 1.4 (Sketch). Intuitively, with two classical turns of communications,
the classical technique in Ref. [7] can be used to generate polynomially many instances
of a (promise) QMA problem such that all these instances are QMA yes-instances if the
input was a yes-instance, while at least one of these instances is a QMA no-instance with
high probability if the input was a no-instance (some of the QMA instances may violate
the promise if the input was a no-instance, but this does not matter, as the important
point is that at least one instance is a no-instance in this case). Now one makes use of the
QMAconst-EPR

1 proof system in Ref. [20] for each QMA instance, by running polynomially
many attempts of such a system in parallel to see that none of them results in rejection.
The resulting proof system is thus of ccqq-QAM type, as QMAconst-EPR

1 proof systems are
special cases of qq-QAM proof systems. The perfect completeness of this proof system follows
from the fact that all the QMA instances generated from an input of yes-instance are QMA
yes-instances, and all of them are accepted without error in the attempts of the QMAconst-EPR

1
system due to the perfect completeness property of the system. The soundness of this proof
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system follows from the fact that at least one QMA instance generated from an input of
no-instance is a QMA no-instance with high probability, for which the QMAconst-EPR

1 proof
system results in rejection with reasonably high probability, due to the soundness property
of it. The rigorous proof is found in the full version [19] of this paper. J

The fact that perfect completeness is achievable in cc-QAM (Theorem 1.6) can be
proved in a similar fashion, except that now one uses the fact MQA = MQA1 (a.k.a.,
QCMA = QCMA1) that any classical-witness QMA proofs can be made perfectly complete
shown in Ref. [15] instead of the inclusion QMA ⊆ QMAconst-EPR

1 . Each QMA instance in
the argument above are replaced by an MQA (QCMA) instance in this case. Notice that no
additional turn is necessary in this case, as the second turn is a classical turn for a prover
and witnesses for the MQA instances can be sent also at this turn. Hence, the resulting proof
system corresponding to Π′′ is immediately a cc-QAM proof system of perfect completeness.

7 Collapse theorem for general quantum Arthur-Merlin proof systems

Before the proof of Theorem 1.7, first observe the simple fact that one can always replace
classical turns by quantum ones without diminishing the verification power, by letting the
verifier simulate classical turns by quantum turns via CNOT applications.

I Proposition 7.1. For any constant m in N, any j in {1, . . . ,m}, and any message-
types t1, . . . , tm in {c, q},

tm · · · tj+1 tj tj−1 · · · t1-QAM(m) ⊆ tm · · · tj+1 q tj−1 · · · t1-QAM(m).

As generalized quantum Arthur-Merlin proofs are nothing but a special case of gen-
eral quantum interactive proofs, it is obvious that for any constant m and any message-
types t1, . . . , tm in {c, q}, tm · · · t1-QAM(m) is contained in QIP = PSPACE [13]. As men-
tioned in Section 1, Marriott and Watrous [24] proved that qcq-QAM (= QMAM) already
hits the ceiling, i.e., coincides with QIP. Next lemma states that one can slightly improve
this and even the third message is not necessary to be quantum to have the full power of
quantum interactive proofs. The proof is based on a simulation of the original qcq-QAM
system by a qcc-QAM system using quantum teleportation.

I Lemma 7.2. qcq-QAM ⊆ qcc-QAM.

Proof (Sketch). Let A = (Ayes, Ano) be a problem in qcq-QAM, meaning that A has a
qcq-QAM proof system Π with completeness 2/3 and soundness 1/3 that is specified by the
protocol of the verifier of the following form for every input x:
1. Receive a quantum register M1 from the prover, and then send a random string r to the

prover.
2. Receive a quantum register M2 from the prover. Prepare a private quantum register V,

and perform the final verification procedure over (M1,M2,V).

Let l : Z+ → N be the polynomially bounded function that specifies the number of qubits
in M2. Consider the teleportation-based simulation of Π by the qcc-QAM proof system Π̃,
where the verifier performs the following protocol for every input x:
1. Receive a quantum register S1 of l(|x|) qubits, in addition to the quantum register M1,

from the prover. Send a random string r to the prover as would be done in Π.
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2. Receive a binary string b of length 2 l(|x|) from the prover. Apply Xbj,1Zbj,2 to the jth
qubit of S1, for each j in {1, . . . , l(|x|)}, where bj,1 and bj,2 denote the (2j − 1)st and
(2j)th bits of b, respectively. Finally, prepare his/her private quantum register V as in Π,
and simulate the final verification procedure of the verifier in Π with (M1,S1,V).

The claim follows from a rigorous analysis of this protocol, which is relegated to the full
version [19] of this paper. J

With Lemma 7.2 in hand, Theorem 1.7 is proved as follows.

Proof of Theorem 1.7. For the item (i), first notice that qcq-QAM is shown to be in
qccc-QAM by an argument very similar to the proof of Lemma 7.2, with not the honest
prover but the verifier preparing the EPR pairs. As qcq-QAM = QMAM = QIP = PSPACE,
together with Lemma 7.2, this implies that qccc-QAM = qcc-QAM = PSPACE. As adding
more turns to qt3t2t1-QAM and qt2t1-QAM proof systems does not diminish the verification
power for any t1, t2, and t3 in {q, c}, this establishes the claim in the item (i).

For the item (ii), again with a similar argument to the proof of Lemma 7.2, it holds
that c · · · cqq-QAM(m) is included in c · · · cqc-QAM(m) for any constant m ≥ 2, and thus,
combined with Theorem 1.1 and Proposition 7.1, the claim follows.

For the item (iii), it suffices to show that, for any constant m ≥ 3, c · · · cq-QAM(m) is
included in c · · · cq-QAM(m− 1). The case with m ≥ 5 is proved with an argument similar to
that in the proof of Lemma 5.1, since the first three (resp. four) turns of the m-turn c · · · cq-
QAM proof systems are classical when m is odd (resp. when m is even). In the case where
m = 3, one modifies the construction of Π′ in the proof of Lemma 5.1 so that the message
from the prover at the second turn (corresponding to Step 2 of Π′) is quantum, consisting of
(k(|x|) + 1) parts: the Y part and each Zj part for j in {1, . . . , k(|x|)}, corresponding to y
and each zj in Step 2 of Π′. In order to force the content in the Y part to be classical, the
verifier simply measures each qubit in the Y part in the computational basis. The analysis
in the proof of Lemma 5.1 then works with the case where m = 3, i.e., the case where a
ccq-QAM system is simulated by a cq-QAM system. The case where m = 4 can then be
proved using this result with m = 3, with the same argument as in the proof of Lemma 5.1.

Finally, for the item (iv), it suffices to show that, for any constant m ≥ 3, c · · · c-QAM(m)
is included in c · · · c-QAM(m− 1), which easily follows from an argument similar to that in
the proof of Lemma 5.1, since all the messages are classical. J

8 Conclusion

This paper has introduced the generalized model of quantum Arthur-Merlin proof systems to
provide some new insights on the power of two-turn quantum interactive proofs. A number of
open problems are listed below concerning generalized quantum Arthur-Merlin proof systems
and other related topics:

Is there any natural problem, other than CITM and MaxOutQEA, in qq-QAM that is
not known to be in the standard QAM? Or is qq-QAM equal to QAM?
Currently no upper-bound is known for qq-QAM other than QIP(2). Can a better
upper-bound be placed on qq-QAM? Is qq-QAM contained in BP · PP?
Does qq-QAM = qq-QAM1? In other words, is perfect completeness achievable in
qq-QAM? Similar questions remain open even for QIP(2) and QAM.
What happens if some of the messages are restricted to be classical in the standard
quantum interactive proof systems? Does a collapse theorem similar to the qq-QAM
case hold even with the QIP(2) case? More precisely, is the power of m-turn quantum
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interactive proof systems equivalent to QIP(2) for any constant m ≥ 2, when the first
(m− 2) turns are restricted to exchange only classical messages?

For the last question above, note that one might be able to show a similar collapse theorem
even with QIP(2) when the verifier cannot use quantum operations at all during the first
(m− 2) turns (possibly by extending the argument due to Goldwasser and Sipser [10] to
replace the classical interaction of the first (m− 2) turns by an m-turn classical public-
coin interaction, and then applying arguments similar to those in this paper, using some
appropriate QIP(2)-complete problem like the Close Image problem [32, 12], although
the authors do not know if this approach works). A more difficult, but more natural and
interesting case is where the verifier can use quantum operations to generate his/her classical
messages even for the first (m− 2) turns, to which the Goldwasser-Sipser technique does not
seem to apply any longer. A collapse theorem for such a case, if provable, would be very
helpful when trying to put more problems in QIP(2) and more generally investigating the
properties of two-turn quantum interactive proof systems.
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A qq-QAM-completeness of MaxOutQEA

This section presents a proof of the MaxOutQEA problem being in qq-QAM. As the
proof of Lemma 5.2 essentially shows the qq-QAM-hardness of MaxOutQEA (a separate
proof of which is found in the full version [19] of this paper), this proves Theorem 1.3, the
qq-QAM-completeness of MaxOutQEA.

I Lemma A.1. MaxOutQEA is in qq-QAM.

Proof. We present a reduction from the MaxOutQEA problem to the CITM problem
(with some appropriate parameters), by modifying the reduction from the QEA problem to
the Quantum State Closeness to Totally Mixed (QSCTM) problem presented in
the full version of Ref. [8], which relies on the analysis found in Section 5.3 of Ref. [6].

Let x = (Q, t) be an instance of MaxOutQEA, where Q is a description of a quantum
circuit that specifies a quantum channel Φ, and t is a positive integer. For simplicity, in
what follows, we identify the description Q and the quantum circuit it induces. Suppose
that Q acts on mall qubits with min specified input qubits and mout specified output qubits.
Let q and ε be two functions that appear in Eqs. (5.1) and (5.2) of Ref. [6]1 to be specified
later. We consider the quantum circuit Q⊗ q(|x|) that runs q(|x|) copies of Q in parallel,
and the (qt, d, ε)-quantum extractor E on q(|x|)mout qubits given in Ref. [6, Section 5.3],
which is written as E = 1

2d

∑2d

j=1Ej , where Ej(ρ) = UjρU
†
j for unitary operators Uj . Let

R be the quantum circuit that runs Q⊗ q(|x|) and then applies E to the output state of
q(|x|)mout qubits. By following the analysis found in Ref. [6], one can show that
(i) if x = (Q, t) is a yes-instance of MaxOutQEA, there exists a quantum state ρ consisting

of q(|x|)min qubits such that D(R(ρ), (I/2)⊗ q(|x|)mout) ≤ 3
2ε, and

(ii) if x = (Q, t) is a no-instance of MaxOutQEA, for any quantum state ρ consisting of
q(|x|)min qubits, it holds that D

(
R(ρ), (I/2)⊗ q(|x|)mout

)
≥ 1

4 q(|x|)mout
.

In fact, the item (i) follows from exactly the same analysis as in Ref. [6], by taking
ρ = σ⊗ q(|x|) with σ being a quantum state of min qubits such that S(Q(σ)) ≥ t+ 1 (the
condition Smax(Φ) ≥ t+ 1 ensures the existence of such a state σ).

1 Rigorously speaking, q in the present case corresponds to q
2 in the left-hand sides of Eqs. (5.1) and (5.2) of

Ref. [6]. This is due to the fact that the MaxOutQEA problem in this paper is defined using threshold
values t + 1 and t − 1, while the QEA problem in Ref. [6] is defined using threshold values t + 1

2 and t − 1
2 .
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To prove the item (ii), first notice that, if x = (Q, t) is a no-instance of MaxOutQEA,
it holds that S(Q(σ)) ≤ Smax(Φ) ≤ t− 1 for any quantum state σ of min qubits. Take an
arbitrary quantum state ρ of q(|x|)min qubits. By Lemma 2.2, it holds that

S(R(ρ)) = S

(
1
2d

2d∑
j=1

Uj Q
⊗ q(|x|)(ρ)U†j

)
≤ S

(
Q⊗ q(|x|)(ρ)

)
+ d.

For each j in {1, . . . , q(|x|)}, let Rj be the output quantum register of the jth copy of Q
(hence, the whole output state Q⊗ q(|x|)(ρ) of Q⊗ q(|x|) is in

(
R1, . . . ,Rq(|x|)

)
), and let σRj

be
the reduced state of Q⊗ q(|x|)(ρ) of mout qubits obtained by tracing out all the qubits except
those in Rj . By the subadditivity of von Neumann entropy, it follows that

S
(
Q⊗ q(|x|)(ρ)

)
≤
q(|x|)∑
j=1

S(σRj ) ≤
q(|x|)∑
j=1

max
σ

S(Q(σ)) ≤ (t− 1) q(|x|),

which implies that

S(R(ρ)) ≤ (t− 1) q(|x|) + d.

Now the item (ii) follows from exactly the same analysis as in Ref. [6].
To complete the reduction, similarly to the full version of Ref. [8], one takes ε = 2−k for

a polynomially bounded function k : Z+ → N such that k(n) ≥ n for any n in Z+ and
k(n) ∈ O(n), and a polynomially bounded function q : Z+ → N such that q(n) ∈ Θ(n4)
so that Eqs. (5.1) and (5.2) of Ref. [6] are satisfied. Consider the quantum circuit R′
that runs r(|x|) copies of R in parallel for a polynomially bounded function r : Z+ → N
such that r(n) =

⌈ 2 ln(1/2)
ln(1−(1/(2 q(n)mout)2))

⌉
≤ 2(2 q(n)mout)2 for all n in Z+. Assuming that

r(|x|) ≤ 2|x|/12 (otherwise |x| is at most some fixed constant as r is a polynomially bounded
function, and thus, it can be checked trivially whether x = (Q, t) is a yes-instance or a
no-instance), it follows from Lemma 2.1 that
(i) if x = (Q, t) is a yes-instance of MaxOutQEA, there exists a quantum state σ consisting

of r(|x|) q(|x|)min qubits such that D
(
R′(σ), (I/2)⊗ r(|x|) q(|x|)mout

)
≤ 1/8, and

(ii) if x = (Q, t) is a no-instance of MaxOutQEA, for any quantum state σ consisting of
r(|x|) q(|x|)min qubits, it holds that D

(
R′(σ), (I/2)⊗ r(|x|) q(|x|)mout

)
≥ 1/2.

Hence, MaxOutQEA is reducible to CITM(1/8, 1/2) in polynomial time, and thus in
qq-QAM by Lemma 4.1. J
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