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Abstract
We show that the deterministic number-on-forehead communication complexity of set disjointness
for k parties on a universe of size n is Ω(n/4k). This gives the first lower bound that is linear
in n, nearly matching Grolmusz’s upper bound of O(log2(n) + k2n/2k). We also simplify the
proof of Sherstov’s Ω(

√
n/(k2k)) lower bound for the randomized communication complexity of

set disjointness.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases communication complexity, number-on-forehead model, set disjointness,
lower bounds

Digital Object Identifier 10.4230/LIPIcs.CCC.2015.88

1 Introduction

Given a family of k sets F = (X1, . . . , Xk) over the universe [n], the disjointness function is
defined as

Disjoint(F) =
{

1 if
⋂k
i=1Xi = ∅,

0 otherwise.

We study the communication complexity of computing disjointness in the number-on-
forehead model [9]. We consider k parties that attempt to compute Disjoint(F) by exchanging
messages about X1, . . . , Xk, until one of the parties announces the value of Disjoint(F). The
i’th party can see all of the inputs except for Xi, and can send messages that depend on
the inputs she sees and all previous messages. All messages are visible to all parties. The
communication complexity is the minimum number of bits that needs to be transmitted
to compute Disjoint(F). In a randomized communication protocol, the parties use shared
randomness to pick a deterministic communication protocol, and then run the chosen
deterministic protocol. The protocol computes Disjoint(F) correctly if it outputs Disjoint(F)
with probability at least 2/3, for every family F . For formal definitions of multiparty
communication complexity and its significance, we refer the reader to [23].
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Grolmusz [19] gave a beautiful deterministic protocol showing that Disjoint(F) can be
computed deterministically with communication O(log2(n) + k2n/2k). Chattopadhyay [11]
used similar ideas to give a protocol with communication O(k log(n) + n/2k). This paper is
about proving lower bounds on the communication complexity.

1.1 Motivation and related work
Lower bounds on multiparty communication complexity are important because several
computational models such as circuits, branching programs, and propositional proofs can be
used to obtain efficient communication protocols. Strong enough communication complexity
lower bounds for the computation of any explicit function can therefore be used to prove lower
bounds on these models [3, 15, 2, 30, 40]. In particular, lower bounds on the communication
complexity of disjointness have many applications (see the recent survey [13]). Such lower
bounds imply lower bounds on proof systems [6], circuit lower bounds [21, 32, 28, 39], lower
bounds on communication for problems related to combinatorial auctions [16, 26, 25, 17, 20,
29], and oracle separations for complexity classes [1].

Attempts to prove lower bounds for disjointness have led to many interesting ideas. When
the number of parties is k = 2, Kalyanasundaram and Schnitger [22] proved that Ω(n)
communication is required in the randomized setting. Alternate proofs and tight bounds have
since been obtained [31, 4, 8] using methods involving information theory. These methods
have found many other applications that we do not discuss here.

When k is large, Tesson [38] and Beame, Pitassi, Segerlind and Wigderson [7] proved
that the deterministic communication complexity is Ω(log(n)/k). Then Sherstov [34, 35]
introduced the pattern matrix method for proving lower bounds in the case k = 2. The
method was used to separate certain circuit classes by relating their complexity to analytic
properties of boolean functions, like their approximate degree. This technique was generalized
to k > 2 by Chattopadhyay [10], Lee and Shraibman [24], and Chattopadhyay and Ada [12].
These last two papers proved lower bounds of the type Ω

(
n1/(k+1)/22O(k)) on the randomized

communication complexity. Beame and Huynh-Ngoc [5] extended these methods further to
prove that the randomized communication complexity is at least 2Ω

(√
log(n)/k

)
2−k. Finally,

Sherstov [36, 37] proved the best known lower bounds prior to our work, showing that the
randomized communication complexity is at least Ω(

√
n/(k2k)). In fact, Sherstov proved

lower bounds for a broader class of functions, as we discuss below.
These results use powerful techniques such as Fourier analysis, Gowers norms, directional

derivatives, and bounds on the approximate degree. The last two works of Sherstov are the
main inspiration for our work.

1.2 Results
In what follows, k is the number of players in the number-on-forehead model, and n is the
size of the universe. For an integer m, we denote by [m] the set {1, 2, . . . ,m}, and for two
real numbers a and b, we denote by [a, b] the interval {x ∈ R : a ≤ x ≤ b}.

Our work follows the ideas in the recent papers of Sherstov [36, 37]. We prove a linear
lower bound on the deterministic multiparty communication complexity o f disjointness:

I Theorem 1.1. The deterministic communication complexity of disjointness is Ω
(
n
4k

)
.

Given our interpretation of Sherstov’s work in [36], the proof of Theorem 1.1 is short.
We also simplify the proof of the randomized lower bound from [37]:
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I Theorem 1.2 ([37]). The randomized communication complexity of disjointness is Ω
(√

n
k2k

)
.

Sherstov proved lower bounds for functions of the type f(Disjoint(F1), . . . ,Disjoint(Fm)),
where f is a multivariate function, and F1, . . . ,Fm are families on disjoint parts of the
universe. In our proof, we focus on the case where f is symmetric. We symmetrize his proof
by viewing f as a univariate function f : {0, 1, . . . ,m} → {0, 1}, rather than as a multivariate
function.

The proof begins by bounding the discrepancy of the parity of several independent
instances of disjointness. Here we use two different bounds that Sherstov proved [36, 37], as
black boxes. The first bound, stated as Theorem 2.1 in this paper, is used for the deterministic
case, and the second, stated as Theorem 2.2, is used in the randomized case.

The rest of Sherstov’s proof of Theorem 1.2 is a method to control the error in an
approximation of the function f , using the bounds on the discrepancy. In the symmetrized
proof, this corresponds to a bound on the error in an approximation of the Kronecker delta
function (i.e. the univariate function f that is the indicator of m). We bound the error via
the following theorem, which shows that every polynomial that is not correlated with any
parity has a low-degree approximation:

I Theorem 1.3. Let m be a power of 2. For j ∈ [m], let J denote the smallest power of 2
such that J ≥ j. Let Y1, . . . , Ym ∈ {0, 1} be distributed uniformly and independently. Suppose
f is a real univariate polynomial of degree at most m, and δ ≥ 0 is such that for every
j ≥ d > 0,∣∣E [f((Y1 + . . .+ Yj)m/J) · (−1)Y1+...+Yj

]∣∣ ≤ 2−12Jδ. (1)

Then there exists a polynomial g of degree at most d− 1 such that |g(x)− f(x)| ≤ δ for all
x ∈ [0,m].

To prove Theorem 1.3, we define a useful basis b0(x), . . . , bm(x) for the space of polyno-
mials, where each bi is of degree i. Given this basis, the polynomial g is just the projection of
f to the space spanned by b0, . . . , bd−1. This basis may be of independent interest. For the
analogous part of the proof, Sherstov finds a low-degree approximation of f using a different
basis. We prove Theorem 1.3 in Section 3.

Finally, we state a corollary that may be useful in other applications.

I Corollary 1.4. There exists a function `(k) ≤ O(k24k) with the following property.
Suppose each family Fi, i ∈ [m], is supported on a disjoint universe of size `. Let
f : {0, 1, . . . ,m} → {0, 1} be an arbitrary function. If the randomized communication
complexity of f(

∑m
i=1 Disjoint(Fi)) is C, then there exists a polynomial g of degree at most

C − 1 such that |f(x)− g(x)| ≤ 1/3 + 2−3C for all x ∈ {0, 1, . . . ,m}.

The proof of the corollary follows easily from the ideas in Section 2.2.

2 The lower bounds

Without loss of generality, we assume that n = m`, where m is a power of 2 and ` is a
function of k to be determined. Any family F = (X1, . . . , Xk) can be described using the m
families F1, . . . ,Fm, each over a universe of size `, defined as

Fi = (X1 ∩ [(i− 1)`+ 1, i`], . . . , Xk ∩ [(i− 1)`+ 1, i`]). (2)
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Distribution µ on F1 ⊆ 2[`]

Let S1, . . . , Sk−1 ⊆ [`] be uniformly random sets conditioned on |S1 ∩ S2 ∩ . . . ∩ Sk−1| = 1. Let
Sk ⊆ [`] be uniform and independent. Set

F1 = (S1, . . . , Sk−1, Sk).

Figure 1 The distribution µ.

Moreover,

Disjoint(F) =
{

1 if
∑m
i=1 Disjoint(Fi) = m,

0 otherwise.

In order to prove Theorems 1.1 and 1.2, we consider distributions on families F , where
each Fi is independent and identically distributed. Sherstov shows that there are distributions
of this type under which every protocol with small communication complexity must have low
correlation with (−1)

∑m

i=1
Disjoint(Fi).

2.1 The lower bound for deterministic protocols

Consider the distribution µ given in Figure 1 as a way to sample each Fi. The following
theorem is an easy consequence of Theorem 4.2 in [36], and the fact that every communication
protocol can be expressed as a sum of cylinder intersections:

I Theorem 2.1 ([36]). If each family Fi is sampled independently according to µ, and π is
a k party protocol with communication complexity C, then

∣∣∣E [π(F) · (−1)
∑m

i=1
Disjoint(Fi)

]∣∣∣ ≤ 2C ·
(

2k−1 − 1√
`

)m
.

The proof of Theorem 2.1 involves ideas analogous to [3] and some subtle reasoning about
the distribution µ. For completeness, we give a full exposition of the proof in Appendix B.
Given Theorem 2.1, Theorem 1.1 easily follows:

Proof of Theorem 1.1. Let π be a deterministic protocol that computes Disjoint(F) with
communication complexity C. When Disjoint(F) = 1, we have (−1)

∑m

i=1
Disjoint(Fi) = (−1)m

and π(F) = 1. On the other hand, when Disjoint(F) = 0, we have π(F) = 0. In addition,
Pr[Disjoint(Fi) = 1] = 1/2 for all i ∈ [m], which implies Pr[Disjoint(F) = 1] = 2−m. Thus,∣∣∣E [π(F) · (−1)

∑m

i=1
Disjoint(Fi)

]∣∣∣ = 2−m. (3)

Now set ` = 16(2k−1 − 1)2. Theorem 2.1 and (3) imply that

2C · ((2k−1 − 1)/
√
`)m ≥ 2−m ⇒ C ≥ m = Ω

( n
4k
)
.

J
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Distribution γ on F1 ⊆ 2[`]

We define a distribution on k × ` boolean matrices. Given a matrix M sampled from this
distribution, define the family F1 by setting the i’th set Si = {j ∈ [`] : Mi,j = 1}. Let t be such
that ` = 2k−1 + t(2k − 1). Sample M as follows:
1. For each v ∈ {0, 1}k such that v 6= 1k, let M have t columns equal to v.
2. Let b ∈ {0, 1} be uniformly random. For each u ∈ {0, 1}k such that

∑k

i=1 ui = b mod 2,
add a column to M that is equal to u.

3. Permute the columns of M using a uniformly random permutation of [`].

Figure 2 The distribution γ.

2.2 The lower bound for randomized protocols
The proof of Theorem 1.1 does not give anything meaningful in the randomized setting, since
it may be the case that a randomized protocol has no correlation with (−1)

∑m

i=1
Disjoint(Fi).

To prove lower bounds on the randomized communication, following Sherstov, we use a more
complicated distribution on inputs, as well as approximation theory.

For the rest of this section, we work with the distribution γ described in Figure 2. Note
that under this distribution, Pr[Disjoint(F1) = 1] = 1/2. A crucial feature of this distribution
is the following symmetric structure: if ρ : [`] → [`] is a uniformly random permutation
independent of F1, then the families (F1, ρ(F1)) have the same joint distribution as two
independent samples (F1,F ′1) from γ conditioned on Disjoint(F1) = Disjoint(F ′1). Here by
ρ(F1) we mean the family obtained by permuting the underlying universe. In analogy with
Theorem 2.1, Sherstov shows (Corollary 4.19 in [37]) that no protocol can be significantly
correlated with (−1)

∑m

i=1
Disjoint(Fi) under the distribution γ:

I Theorem 2.2 ([37]). If each family Fi is sampled independently according to γ, and π is
a protocol with communication complexity C, then

∣∣∣E [π(F) · (−1)
∑m

i=1
Disjoint(Fi)

]∣∣∣ ≤ 2C ·
(
c0k

24k

`

)m/4
,

where c0 > 0 is a universal constant.

The proof of Theorem 2.2 is delicate, mainly due to the symmetric structure of the
distribution γ (especially if one wishes to optimize the dependence on k). This symmetric
structure is, on the other hand, very useful, and we shall exploit it next.

Given any protocol π computing Disjoint(F), define fπ as the unique degree m polynomial
so that for all t ∈ {0, 1, . . . ,m},

fπ(t) = Pr
[
π(F) = 1

∣∣∣∣∣
m∑
i=1

Disjoint(Fi) = t

]
. (4)

Since the protocol computes Disjoint(F) with probability at least 2/3, we have that
|fπ(t)| ≤ 1/3, for t = 0, 1, . . . ,m − 1, and |1 − fπ(m)| ≤ 1/3. The following well known
theorem [18, 33, 27] shows that any such function must have degree

√
m/3:

I Theorem 2.3 ([18, 33, 27]). Let ε ∈ (0, 1/2). If f : [0,m] → R is a polynomial such
that |f(t)| ≤ ε for t = 0, 1, . . . ,m − 1, and |1 − f(m)| ≤ ε, then the degree of f is at least√
m(1− 2ε)/3.
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Protocol τπ,j(F1, . . . ,Fj)

1. Let J denote the smallest power of 2 such that J ≥ j. Note that m/J is an integer, since
m is assumed to be a power of 2.

2. Using public randomness, sample J − j families Fj+1,Fj+2, . . . ,FJ according to γ, condi-
tioned on the event that Disjoint(Fj+1) = Disjoint(Fj+2) = Disjoint(FJ) = 0.

3. Let G = (F1, . . . ,F1,F2, . . . ,F2, . . . ,FJ , . . . ,FJ) be the m families obtained by repeating
each family Fi exactly m/J times.

4. Let ρ1, ρ2, . . . , ρm : [`]→ [`], η : [m]→ [m] be independent uniformly random permutations
chosen using public randomness.

5. Output π(ρ1(Gη(1)), ρ2(Gη(2)), . . . , ρm(Gη(m))).

Figure 3 The protocol τπ,j .

Theorem 2.3 is proved via a clever reduction to Markov’s bound on the magnitude of
derivatives in bounded polynomials. We include the short proof in Appendix A. We remark
that Theorem 2.3 is tight — one can use Chebyshev polynomials to give a polynomial f of
degree O(

√
m) satisfying the constraints. We shall prove that if the communication of π is

much less than
√
n/(k2k), then Theorems 2.2 and 1.3 imply that fπ can be approximated by

a polynomial whose degree is much less than
√
m, contradicting Theorem 2.3.

We analyze the behavior of π under several carefully chosen input distributions, and use
the symmetric structure of the distributions together with Sherstov’s correlation bounds to
show that fπ has low correlation with parity. We then appeal to Theorem 1.3 to conclude
that fπ has a low degree approximation. We formalize this plan by describing m protocols
τπ,1, . . . , τπ,m, each simulating π with a different distribution on inputs.

Define the protocol τπ,j as in Figure 3. The protocol τπ,j takes j families of sets F1, . . . ,Fj .
If each of F1, . . . ,Fj is in the support of γ, then the protocol τπ,j , using shared public
randomness and no communication, generates m families H1, . . . ,Hm that are independently
distributed according to γ, conditioned on

m∑
i=1

Disjoint(Hi) = (m/J)
j∑
i=1

Disjoint(Fi).

This distribution of H1, . . . ,Hm is as stated due to the symmetric structure of γ, which is
discussed in the second paragraph of this section. Finally, τπ,j simulates π on H1, . . . ,Hm.

The key properties of τπ,j are summarized in the following lemma.

I Lemma 2.4. Let j ≤ m.
1. The communication complexity of τπ,j equals that of π.
2. Let F1, . . . ,Fj be fixed families of sets, each in the support of γ. Then,

Pr[τπ,j(F1, . . . ,Fj) = 1] = fπ

((
j∑
i=1

Disjoint(Fi)
)
m/J

)
.

Lemma 2.4 and Theorem 2.2 together imply that the correlation of fπ with parity is
small:

CCC 2015



94 Lower Bounds for Multiparty Disjointness

I Lemma 2.5. Let J be the smallest power of 2 so that J ≥ j. If the communication
complexity of π is C, and Y1, . . . , Yj ∈ {0, 1} are uniformly random and independent, then

E
[
fπ((Y1 + . . .+ Yj)m/J) · (−1)Y1+...+Yj

]
≤ 2C ·

(
c0k

24k

`

)j/4
,

where c0 > 0 is a universal constant.

Proof. If F1 is distributed according to γ, then Disjoint(F1) is a uniformly random bit. Thus,

E
[
fπ((Y1 + . . .+ Yj)m/J) · (−1)Y1+...+Yj

]
= E

[
fπ

((
j∑
i=1

Disjoint(Fi)
)
m/J

)
· (−1)

∑j

i=1
Disjoint(Fi)

]

Using Lemma 2.4,

= E
[
τπ,j(F1, . . . ,Fj) · (−1)

∑j

i=1
Disjoint(Fi)

]
≤ 2C ·

(
c0k

24k

`

)j/4
,

where the last inequality is by Theorem 2.2, since the communication complexity of τπ,j is
equal to that of π. J

Given Lemma 2.5, the proof is completed as follows:

Proof of Theorem 1.2. We set ` = 216·4c0k
24k, so that the right hand side of Lemma 2.5

is 2C−16j . Fix any randomized protocol π that computes Disjoint(F) on the distribution
induced by γ with C bits of communication. Let fπ be as defined in (4).

By Lemma 2.5, fπ satisfies the hypothesis of Theorem 1.3, with d = C. Thus we conclude
that there is a degree C−1 polynomial g that agrees with fπ up to an error of 2−3C . Theorem
2.3 implies that

C ≥
√
m(1− 2(1/3 + 2−3C))/3 ⇒ C ≥ Ω(

√
n/(k2k)).

J

3 Approximating functions that are not correlated with parity

Here we prove Theorem 1.3, which shows that if a polynomial has low correlation with
parity, then it can be approximated by a low degree polynomial. We restate the theorem for
convenience.

I Theorem 1.3 (restated). Let m be a power of 2. For j ∈ [m], let J denote the smallest
power of 2 such that J ≥ j. Let Y1, . . . , Ym ∈ {0, 1} be distributed uniformly and independently.
Suppose f is a real univariate polynomial of degree at most m, and δ ≥ 0 is such that for
every j ≥ d > 0,∣∣E [f((Y1 + . . .+ Yj)m/J) · (−1)Y1+...+Yj

]∣∣ ≤ 2−12Jδ. (5)

Then there exists a polynomial g of degree at most d− 1 such that |g(x)− f(x)| ≤ δ for all
x ∈ [0,m].
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In what follows, let Y1, . . . , Ym ∈ {0, 1} be independent and uniformly random bits, and
let I, J be the smallest powers of 2 such that I ≥ i and J ≥ j.

To prove the theorem, we define a useful basis for the space of polynomials. Let b0(x) = 1.
For i > 0, let1

bi(x) = 2i
(
xI/m

i

)
= 2ix(x−m/I)(x− 2m/I) . . . (x− (i− 1)m/I)

i! · (m/I)i .

Since bi is of degree i, the polynomials b0, . . . , bm form a basis for the space of polynomials
of degree at most m. To prove Theorem 1.3, we express f in this basis and then argue that
all coefficients corresponding to high degree terms are negligible. The polynomials in our
basis can be bounded by the following lemma:

I Lemma 3.1. For every i ∈ {0, 1, . . . ,m}, maxx∈[0,m] |bi(x)| ≤ 8i.

Proof. We show that the maximum of bi is attained when x = m, and so

max
x∈[0,m]

|bi(x)| = |bi(m)| = 2i
(
mI/m

i

)
≤ 2i · 2I ≤ 8i.

Note that the magnitude of bi is symmetric around the point (i− 1)m/(2I),

|bi(x+ (i− 1)m/(2I))| = |bi(−x+ (i− 1)m/(2I))|.

So the maximum is attained with x ∈ [(i− 1)m/(2I),m]. For any such x that is not a root
of bi,∣∣∣∣bi(x+m/I)

bi(x)

∣∣∣∣ =
∣∣∣∣ x+m/I

x− (i− 1)m/I

∣∣∣∣ ≥ ∣∣∣∣x+m/I

x

∣∣∣∣ > 1,

proving that the maximum is attained with x ∈ [m − m/I,m]. For such x, every term
(x− jm/I) with j ∈ {0, 1, . . . , i−1} in bi(x) is non-negative, and so the maximum is attained
when x = m. J

The basis polynomials behave nicely under the random experiments from (1):

I Lemma 3.2. For all i ∈ {0, 1, 2, . . . ,m} and j ∈ [m],

∣∣E [bi((Y1 + . . .+ Yj)m/J) · (−1)Y1+...+Yj
]∣∣


= 0 if i < j,
= 1 if i = j,
= 0 if j < i ≤ J ,
≤ 8i if J < i.

Proof. When i < j, the polynomial bi(y1 + . . .+ yj) has degree i in the variables y1, . . . , yj .
Since every monomial must exclude one of the j variables, the contribution of each of the
monomials to the expectation is 0. When i = j, bi((y1 + . . . + yi)m/I) = 2i

(
y1+...+yi

i

)
is

non-zero only when y1 = y2 = . . . = yi = 1. Thus the expectation is 2−i · 2i
(
i
i

)
= 1 in this

case. When j < i ≤ J , we have I = J . Since for r ∈ [i − 1], bi(rm/I) = 2i
(
r
i

)
= 0, the

expectation is 0. When i > J , by Lemma 3.1, the expectation is at most 8i. J

Theorem 1.3 now follows by straightforward induction:

1 Here and below we think of
(
x
i

)
= x(x−1)(x−2)...(x−(i−1))

i! as a real polynomial in the variable x.
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Proof of Theorem 1.3. Write f(x) =
∑m
j=0 ajbj(x), and let g(x) be the degree d− 1 poly-

nomial g(x) =
∑d−1
j=0 ajbj(x). To prove the theorem, we show that |g(x)− f(x)| ≤ δ for all

x ∈ [0,m]. Lemma 3.2 and (1) imply that for j = d, . . . ,m,

|aj | −
m∑

i=J+1
8i|ai| ≤ |E

[
f((Y1 + . . .+ Yj)m/J) · (−1)Y1+...+Yj

]
| ≤ 8−4Jδ

⇒ |aj | ≤ 8−4Jδ +
m∑

i=J+1
8i|ai|. (6)

We now prove by induction that for j = m,m− 1, . . . , d,
J∑
t=j
|at| ≤ 8−3Jδ. (7)

When m/2 < j ≤ m, (6) implies
m∑
t=j
|at| ≤ (m/2)8−4mδ ≤ 8−3mδ.

In the general case (6) implies

(2/J)
J∑
t=j
|at| ≤ 8−4Jδ +

m∑
t=J+1

8t|at| ≤ 8−4Jδ +
log(m)∑

r=log(J)+1

82r
2r∑

t=1+2r−1

|at|

Applying the induction hypothesis, we get

≤ 8−4Jδ +
log(m)∑

r=log(J)+1

82r

8−3·2r

δ ≤ 8−4Jδ + 8−4Jδ

∞∑
q=0

8−q ≤ 8−3J(2/J)δ,

which proves the general case of (7).
Finally, for every x ∈ [0,m], Lemma 3.1 and (7) imply

|g(x)− f(x)| ≤
m∑
j=d
|aj ||bj(x)| ≤

logm∑
r=dlog de

8−3·2r

δ · 82r

≤ 8−2dδ

∞∑
q=0

8−2q ≤ δ.

J
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A Approximation theory

The proof relies on a fundamental theorem of Markov, relating the degree of a bounded
polynomial to the maximum value of its derivative.

I Theorem 1.1 (Markov’s Theorem [14]). Let g : [−1, 1] → [−1, 1] be computed by a
polynomial of degree d. Then |g′(y)| ≤ d2 for every y ∈ [−1, 1].

Markov’s theorem allows us to prove the statement about approximation that we need:

Proof of Theorem 2.3. Let d be the degree of f and let D = maxx∈[0,m] |f ′(x)|. We can
bound f using D as follows. The value |f(j)| is at most 1 + ε for j ∈ {0, 1, . . . ,m}, and so
|f(x)| ≤ 1 + ε+D/2 for x ∈ [0,m]. On the other hand, D ≥ f(m)−f(m−1)

1 ≥ 1− 2ε.
Now consider the degree d polynomial g : [−1, 1]→ [−1, 1] given by g(y) = f(my/2+m/2)

1+ε+D/2 .
Since g′(y) = (m/2)f ′(my/2+m/2)

1+ε+D/2 , there is a y ∈ [−1, 1] such that |g′(y)| = Dm/2
1+ε+D/2 . By

Theorem 1.1,

d2 ≥ Dm/2
1 + ε+D/2 ≥

m(1/2− ε)
1 + ε+ 1/2− ε = 2m(1/2− ε)

3 ,

so
d ≥

√
m(1− 2ε)/3.

J
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B Bounding the discrepancy for the deterministic case

Here we give the proof of Theorem 2.1 [36]. Let F = (T1, . . . , Tk). We shall need to analyze
the discrepancy on a more general class of distributions. Let each family Fi be sampled
independently according to the distribution µ, on a universe of size `i. Let g(F) be a cylinder
intersection, that is, g(F) =

∏k
i=1 gi(F) where each gi is 0/1 valued and does not depend on

Ti. We shall prove that

∣∣∣E [g(F) · (−1)
∑m

i=1
Disjoint(Fi)

]∣∣∣ ≤ m∏
i=1

2k−1 − 1√
`i

, (8)

which implies Theorem 2.1, since every communication protocol with communication C can
be expressed as a sum of 2C cylinder intersections. We prove (8) by induction on k.

When k = 2, convexity implies that∣∣∣E [g(F) · (−1)
∑m

i=1
Disjoint(Fi)

]∣∣∣2
≤ E
T2

[
g1(F) E

T1

[
g2(F) · (−1)

∑m

i=1
Disjoint(Fi)

]2]
≤ E
T2

[
E
T1

[
g2(F) · (−1)

∑m

i=1
Disjoint(Fi)

]2]
= E
T2,T1,T ′1

[
g2(F) · g2(F ′) · (−1)

∑m

i=1
Disjoint(Fi)+Disjoint(F ′i)

]
≤ E
T1,T ′1

[∣∣∣∣E
T2

[
(−1)

∑m

i=1
Disjoint(Fi)+Disjoint(F ′i)

]∣∣∣∣] ,
where here F = (T1, T2) and F ′ = (T ′1, T2). Now for every fixing of T1, T

′
1, the inner

expectation is 1 when T1 = T ′1, and otherwise it is 0. Thus,

∣∣∣E [g(F) · (−1)
∑m

i=1
Disjoint(Fi)

]∣∣∣2 ≤ Pr[T1 = T ′1] =
m∏
i=1

1
`i
,

proving the base case.
When k > 2, we again use convexity to bound∣∣∣E [g(F) · (−1)

∑m

i=1
Disjoint(Fi)

]∣∣∣2
≤ E
T2,...,Tk

g1(F) E
T1

 k∏
j=2

gj(F) · (−1)
∑m

i=1
Disjoint(Fi)

2


≤ E
T1,T ′1

∣∣∣∣∣∣ E
T2,...,Tk

 k∏
j=2

gj(F) · gj(F ′)

 (−1)
∑m

i=1
Disjoint(Fi)+Disjoint(F ′i)

∣∣∣∣∣∣
 , (9)

where here F = (T1, T2, . . . , Tk) and F ′ = (T ′1, T2, . . . , Tk). Recall that the first k − 1 sets of
Fi and F ′i each intersect in exactly one element. Let Z = (Z1, Z2, . . . , Zm), where Zi is the
indicator random variable for the event that these two elements are not the same in Fi and
F ′i . Let Q = T1 \ T ′1, Q′ = T ′1 \ T1, and denote by Qi, Q′i the intersection of these sets with
the i’th part of the universe (see (2)). Let R denote all the intersections of the sets T2, . . . , Tk

CCC 2015



100 Lower Bounds for Multiparty Disjointness

with the elements that are not in Q,Q′. By convexity of the absolute value function,

(9) ≤ E
T1,T ′1,R,Z

∣∣∣∣∣∣ E
T2,...,Tk

 k∏
j=2

gj(F) · gj(F ′)

 (−1)
∑m

i=1
Disjoint(Fi)+Disjoint(F ′i)

∣∣∣∣∣∣


≤ E
Z,Q,Q′

[ ∏
i:Zi=1

(2k−2 − 1)2√
|Qi| · |Q′i|

]
, (10)

where the last inequality follows from the fact that after fixing T1, T
′
1, Z,R, the inner

expectation can be bounded by the inductive hypothesis applied to the families where Zi = 1,
over the disjoint universes Qi, Q′i, and the cylinder intersection defined by

∏k
j=2 gj(F)gj(F ′).

Apply the arithmetic-mean-geometric-mean inequality to conclude that

(10) ≤ E
Z,Q,Q′

[ ∏
i:Zi=1

(2k−2 − 1)2 1
2

(
1
|Qi|

+ 1
|Q′i|

)]
. (11)

Since (even conditioned on the value of Z) the size of Qi is distributed identically to the size
of Q′i, we have

(11) = E
Z,Q

[ ∏
i:Zi=1

(2k−2 − 1)2

|Qi|

]

≤
m∏
i=1

(
Pr[Zi = 0] + E

Zi,Qi

[
Zi(2k−2 − 1)2

|Qi|

])
, (12)

where here we adopt the convention that Zi/|Qi| is 0 when Zi = 0, |Qi| = 0. We shall prove
that for all i,

Pr[Zi = 0] ≤ 2k−1 − 1
`i

, (13)

and

E
Zi,Qi

[
Zi
|Qi|

]
≤ 2(2k−1 − 1)
`i(2k−2 − 1) . (14)

Inequalities (13) and (14) imply that

(12) ≤
m∏
i=1

(
2k−1 − 1

`i
+ 2(2k−1 − 1)(2k−2 − 1)2

`i(2k−2 − 1)

)

=
m∏
i=1

(
2k−1 − 1 + (2k−1 − 1)(2k−1 − 2)

`i

)
=

m∏
i=1

(2k−1 − 1)2

`i
,

as required.
It only remains to prove (13) and (14). Fix i for the rest of the proof. We start with (13).

Let S1, . . . , Sk be the intersections of T1, . . . , Tk with the i’th part of the universe, and let
S′1 be the intersection of T ′1 with the i’th part of the universe. Observe that for all w 6= ∅,

Pr
[
Zi = 0

∣∣∣∣ ∩k−1
j=2 Sj = w

]
= 1
|w|

.

The total number of choices for sets S1, . . . , Sk−1 can be counted as the number of ways to
pick the common intersection point, times the number of configurations for the rest of the
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universe: `i · (2k−1 − 1)`i−1. Of these, the number of configurations with ∩k−1
j=2Sj = w can be

counted as the number of choices for the common intersection point in w, times the number
of configurations for the rest of the universe: |w| · (2k−1 − 2)`i−|w|. So the probability that
the two intersection points are the same is

Pr[Zi = 0] = 1
`i · (2k−1 − 1)`i−1 ·

∑
w 6=∅

|w| · (2k−1 − 2)`i−|w|

|w|

≤ 1
`i · (2k−1 − 1)`i−1 · (2

k−1 − 2 + 1)`i = 2k−1 − 1
`i

,

proving (13).
Next we prove (14). Let p = 2k−2−1

2(2k−1−1) . Let V = S1 ∩ . . . ∩ Sk−1 be the intersection set
of size 1. We claim that for every non-empty set q, and singleton v,

Pr[Zi = 1, Qi = q, V = v]
{
≤ p|q|−1(1− p)`i−|q|/`i when v ⊆ q,
= 0 otherwise.

(15)

When V is not contained in Qi, the value of Zi is always 0. On the other hand, when v ⊆ q,

Pr[Zi = 1, Qi = q, V = v] ≤ Pr[Qi = q, V = v]
= (1/`i) · Pr[Qi = q|V = v]

≤ p|q|−1(1− p)`i−|q|/`i,

since every element e /∈ v is included in Qi with probability p, independent of all other such
elements. Indeed such an element is included in S1 with probability 2k−2−1

2k−1−1 , and given that
it is included in S1, it is excluded from S′1 with probability 1/2.

When |Qi| = 0, we have that Zi = 0, and so Zi/|Qi| = 0 by our convention. Thus (15)
gives

E
Z,Qi

[
Zi
|Qi|

]
≤

∑
v:|v|=1

∑
q:v⊆q

p|q|−1(1− p)`i−|q|/`i
|q|

= 1
p`i

∑
q 6=∅

p|q|(1− p)`i−|q|

≤ 1
p`i
· (1− p+ p)`i = 2(2k−1 − 1)

`i(2k−2 − 1) ,

proving (14).
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