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Abstract
Suppose that a circular fire spreads in the plane at unit speed. A fire fighter can build a barrier
at speed v > 1. How large must v be to ensure that the fire can be contained, and how should
the fire fighter proceed? We provide two results. First, we analyze the natural strategy where
the fighter keeps building a barrier along the frontier of the expanding fire. We prove that this
approach contains the fire if v > vc = 2.6144 . . . holds. Second, we show that any “spiralling”
strategy must have speed v > 1.618, the golden ratio, in order to succeed.
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1 Introduction

Fighting wildfires and epidemics has become a serious issue in the last decades. Professional
fire fighters need models and simulation tools on which strategic decisions can be based; for
example see [5]. Thus, a good understanding of the theoretical foundations seems necessary.

Substantial work has been done on the fire fighting problem in graphs; see, e.g., the
survey article [3]. Here, initially one vertex is on fire. Then an immobile firefighter can be
placed at one of the other vertices. Next, the fire spreads to each adjacent vertex that is not
defended by a fighter, and so on. The game continues until the fire cannot spread anymore.
The objective, to save a maximum number of vertices from the fire, is NP-hard to achieve,
even for trees.

A more geometric setting has recently been studied in [6]. Suppose that inside a simple
polygon P a candidate set of disjoint diagonal barriers has been defined. If a fire starts at
some point inside P one wants to build a subset of these barriers in order to save a maximum
area from the fire. But each point on a barrier must be built before the fire arrives there.
This maximization problem is also NP-hard, even if the candidate barriers are the diagonals
of a convex polygon, but there exists an 11.65 approximation algorithm.

In this paper we study a purely geometric version of the fire fighter problem. Suppose
there is a circular fire of initial radius A in the plane, centered at the origin. The fire spreads
at unit speed. Initially, the plane is empty, except for a single fire fighter who is placed on
the boundary of the fire. The fighter can move at speed v, and build a barrier along his path.
The fire cannot cross this barrier, and the fighter cannot move into the fire. Will the fighter
be able to contain the fire, and how should she proceed to achieve this?

Clearly, the answer depends on speed v. For v = 1 the fighter can barely save herself by
moving along a straight line away from the fire.
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Figure 1 The race between the fire and the fighter for speed v = 3.738. The firebreak was
constructed from p0 to p2 whereas the fire expands along the outer side of the barrier up to point q.
Can the fire figther finally catch the fire?

At speed v > 2π + 1, the fire fighter can move a distance x away from the fire and build
a complete circular barrier before the fire can reach it. This requires (x+ 2π(x+A))/v ≤ x
or (2π + 1) + 2πA/x ≤ v.

What happens in between 1 and 2π+ 1? In this paper we show that a speed v > 2.6144 is
sufficient to contain a fire, and that a speed v > 1.618 is necessary, at least for a reasonably
large class of strategies.

The first bound is established in the following way. We consider a conscientious fire
fighter who tries to contain the fire by building a barrier along its ever expanding frontier, at
her maximum speed v. Let us denote this strategy by FF (short for Follow Fire). A spiralling
barrier curve results. While the fighter keeps building the barrier, the fire is coming after her
along the outside of the barrier, as shown in Figure 1. Intuitively, the fighter can only win
this race, and contain the fire, if the last coil of the barrier hits the previous one.

In the hand-drawn example shown in Figure 2 this happens in the second round if
v = 4.1932; but for smaller values of v, more rounds may be necessary.

We have the following result.

I Theorem 1.
(i) Strategy FF contains the fire if v > vc ≈ 2.6144 holds.
(ii) As v decreases to vc, the number of rounds to containment tends to infinity.

Although strategy FF is rather simple, the proof of Theorem 1 is not. First, we establish
a recursive system of linear differential equations associated with each round. They can be
solved easily by standard methods, but the resulting recursions are complicated. Therefore,
we apply techniques from analytic combinatorics. We look at the generating function F (Z)
that arises from these recursions, and find a presentation of F (Z) as a ratio of analytic
functions. The denominator equals

ewZ − sZ = 0, (1)

where w = 2π+α
sinα and s = e(2π+α) cotα are functions of a real variable α which equals

cos−1(1/v) in our setting. Our targets are the coefficients of F (Z); they are linked to the
zeroes of equation 1.
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Figure 2 At speed v = 4.1932 the fire will be fully contained by the fire figther’s barrier in the
second round.

Let αc ≈ 1.1783 be the smallest positive solution of s = ew, corresponding to vc ≈ 2.6144.
For this value of α, equation 1 has a real zero Z = 1/w, as direct substitution shows. For
α > αc, corresponding to v > vc, this real zero splits into a complex zero z0 = ρ(cosφ+sinφ i)
and its conjugate, where φ ∈ (0, π), and no real zeroes of equation 1 remain.

At this point, part (i) of Theorem 1 follows from a Theorem of Pringsheim’s in complex
function theory; see Section 6. To find out how many rounds it takes to contain the fire, we
apply Cauchy’s residue theorem and find that their number is ≈ π/φ. Since φ, the angle of
the complex root z0, tends to zero as z0 becomes real for α → αc, part (ii) of Theorem 1
also follows. How j, the number of rounds, depends on v is shown in Figure 3. For speeds
v ≥ 3 strategy FF needs at most 4 rounds to contain the fire.

In addition to the above upper bound we prove the following lower bound. To this end we
restrict ourselves to the class of “spiralling” strategies that visit the four coordinate half-axes
in cyclic order, and at increasing distances from the origin. Note that strategy FF is spiralling
even though the fighter’s distance to the origin may be decreasing: the barrier’s intersection
points with any ray from 0 are in increasing order since the curve does not self-intersect.
Here we have the following.

I Theorem 2. In order to enclose the fire, a spiralling strategy must be of speed

v >
1 +
√

5
2 ≈ 1.618,

the golden ratio.

The proof of Theorem 2 is given in Section 7. An (almost) complete proof of Theorem 1 (i)
is given in the main text; only for some details we refer to the technical report of this paper;
see [7]. Proving part (ii) of Theorem 1 requires considerably more work; we sketch only
the essential ideas in the main text. A complete proof of (i) and (ii), which can be read
independently of the main text, is given in the Appendix of the technical report [7].
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Figure 3 The approximate number of rounds needed by strategy FF, as a function of speed v.

2 The barrier curve generated by strategy FF

We would like to show how the barrier curve shown in Figure 2 has been developed. A more
detailed view of the starting situation of Figure 2 from p0 to p2 is depicted in Figure 4.

Consider some point p in the first round between p0 and p1 as shown in Figure 4. If α
denotes the angle between the fighter’s velocity vector at p and the ray from 0 through p,
the fighter advances at speed v cosα away fromat 0. This implies v cosα = 1 because the
fire expands at unit speed and the fighter stays on its frontier, by definition of strategy FF.
Consequently, the barrier curve between p0 and p1 is part of a logarithmic spiral centered
at 0, whose tangents forms the angle α = cos−1(1/v) with the extensions of the rays from 0
through p.

In polar coordinates a logarithmic spiral (with excentricity α) is defined by (ϕ,A · eϕ cotα)
and the barrier curve from p0 to p1 is represented by the interval ϕ ∈ [0, 2π]. The curve
length of the logarithmic spiral of excentricity α around origin O between two points C
and D appearing on the spiral in this order is given by 1

cosα (|DO| − |CO|), where |CO| and
|DO| denote the distances from D and C to the origin 0, respectively. Thus, for example the
curve length from p0 to p1 is given by l1 = A

cos(α) · (e
2π cot(α) − 1).

From point p1 on, the geodesic shortest paths π(p) from 0 to p, along which the fire
spreads, start with segment 0p0, followed by segment p0p, until the fighter reaches the point
p2 on the barrier’s tangent to p0; see Figure 4. Thus, by the previous argument, between
p1 and p2 the barrier curve constructed by FF is part of a logarithmic spiral of excentricity
α now centered at p0. This spiral starts at p1 with distance A′ = A(e2π cot(α) − 1) from
its origin p0, and the curve length from p1 to p2 is given by l′2 = A′

cos(α) (eα cot(α) − 1) =
A

cos(α) (e2π cot(α) − 1)(eα cot(α) − 1). This means that the overall curve length from p0 to p2 is
given by l1 + l′2 = l2 = A

cos(α) (e2π cot(α) − 1)eα cot(α).
How does the curve constructed by FF develop from p2 on? We turn over to Figure 2.

From p2 on, the geodesic shortest path π(p) from 0 to fighter’s current position p starts
wrapping around the existing spiral part of the curve, beginning at p0. The last edge of π(p)
ending at p will be called the free string in the sequel. The fire will be contained if and only
if the free string ever attains length 0.

Thus, after the first round the curve is drawn by endpoint p of the free string. But unlike
an involute, the string is not normal to the outer layer. Rather, its extension beyond p forms
the angle α with the barrier’s tangent at p. This causes the string to grow in length by cosα

SoCG’15
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Figure 4 The first part of the barrier curve constructed by FF consists of two different logarithmic
spirals of excentricity α where α = cos−1(1/v) holds. Namely, a logarithmic spiral around the origin
0 from p0 to p1 and a logarithmic spiral around p0 from p1 to p2. At p2 the fire figther’s curve starts
wrapping around the constructed barrier as show in Figure 2.

for each unit drawn. At the same time, part of the string gets wrapped around the inner
layer. It is this interplay between growing and shrinking that we will investigate below. Note
that the curve starting at p2 is no longer a logarithmic spiral.

As the fighter is building the barrier at speed 1/ cosα, the fire is coming after her at unit
speed along the outside of the barrier, as indicated in Figure 1. Thus, each barrier point p is
caught by fire twice, once from the inside, when the fighter passes through p, and a second
time from the outside, if the fire is not stopped before.

3 Linkages

That the innermost part of the curve consists of two different spiral segments, around 0 and
around p0, carries over to subsequent layers. The structure of the curve can be described as
follows. Let

l1 = A

cos(α) · (e
2π cot(α) − 1)

l2 = A

cos(α) · (e
2π cot(α) − 1)eα cot(α)

denote the curve lengths from p0 to p1 and p2, respectively, as derived before in Section 2.
For l ∈ [0, l1] let F0(l) denote the segment connecting 0 to the point of curve length l; see
the sketch given in Figure 5.

At the endpoint of F0(l) we construct the tangent and extend it until it hits the next layer
of the curve, creating a segment F1(l), and so on. This construction gives rise to a “linkage”
connecting adjacent layers of the curve. Each edge of the linkage is turned counterclockwise
by α with respect to its predecessor. The outermost edge of a linkage is the free string
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0 p0 p1

p2F0(l)

F1(l)
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φ1

φ0

φ2
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l

α

F2(l1)

F1(l1) =φ1(l1)

= φ2(l1)

p

F3(0) = φ2(l2)

Figure 5 A sketch of the general situation. Two types of linkages defining subsegments of the
curve.

mentioned above. As parameter l increases from 0 to l1, edge F0(l), and the whole linkage,
rotate counterclockwise. While F0(0) equals the line segment from the center to p0, edge
F0(l1) equals segment 0p1.

Analogously, let l ∈ [l1, l2], and let φ0(l) denote the segment from p0 to the point at curve
length l from p1. This segment can be extended into a linkage in the same way. We observe
that

Fj+1(l1) = φj+1(l1) (2)
Fj+1(0) = φj(l2) (3)

hold. But initially, we have F0(l) = A+ cos(α) l and φ0(l) = cos(α) l, so that F0(l1) 6= φ0(l1).
Clearly, each point on the curve can be reached by a linkage, as tangents can be constructed
backwards. We refer to the two types of linkages by F -type and φ-type.

4 Analysis

A detailed proof of the following general facts is given in the Appendix of the technical report
[7] in Lemma 7 and 8. We present the intuitive ideas here.

As the endpoint of a taut string of length F , tangent to a smooth curve C at some point
p, is moved in direction α, as shown in Figure 6 (i), the length l of the wrapped string grows
at rate r sinα/F , where r denotes the curve’s radius of curvature at p. (Intuitively, the more
perpendicular motion w acts on the string and the larger the osculating circle, the more
of the string gets wrapped; but the larger F , the smaller is the effect of the perpendicular
motion.)

The center of the osculating circle at p is known to be the limit of the intersections of the
normals of all points near p with the normal at p. If, instead of the normals, we consider the
lines turned by the angle π/2− α, their limit intersection point has distance r sinα from p;
an example is shown in Figure 6 (ii) for the case where curve C itself is a circle.

SoCG’15
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α
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r r sinα
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p

p

π/2− α

w

Figure 6 In (i), the wrapped string grows at a rate of r sinα/F . In (ii), the turned normals meet
at a point r sinα away from p.

For the barrier curve, the limit intersection point of the turned normals near p is just the
tangent point from p to the previous layer of the curve. If we denote by Li the length of
the barrier curve from p0 to the outer endpoint of the ith edge of an F -linkage, the above
observations imply the following for Lj−1, Fj and Fj−1 as functions of Lj .

L′j−1

L′j
=

L′j−1

1 = r sinα
Fj

= Fj−1

Fj
.

Now we change the former variable Lj to Lj(l) for l ∈ [0, l1] introduced in Section 3.
Observing that the derivatives of the inner functions cancel out we obtain

I Lemma 3.

L′j−1(l)
L′j(l)

= Fj−1(l)
Fj(l)

.

By multiplication, Lemma 3 generalizes to non-consecutive edges. Thus,

Fj(l)
F0(l) =

L′j(l)
l′

= L′j(l) (4)

holds.
On the other hand, a point p on the jth layer of the barrier curve has geodesic distance

Lj−1(l) + Fj(l) from the initial fire of radius A, and the fire arrives at p (from the inside)
simultaneously with the fighter, who has then completed a barrier of length Lj(l) at speed
1/ cosα. This yields, Fj(l) + Lj−1(l) = cosαLj(l) and after taking derivatives,

F ′j(l) + L′j−1(l) = cosαL′j(l). (5)

From 5 and 4 we obtain a linear differential equation for Fj(l),

F ′j(l) −
cos(α)
F0(l) Fj(l) = − Fj−1(l)

F0(l) .
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The textbook solution for y′(x) + f(x)y(x) = g(x) is

y(x) = exp(−a(x))
(∫

g(t) exp(a(t)) dt+ κ

)
,

where a =
∫
f and κ denotes a constant that can be chosen arbitrarily. In our case,

a(l) =
∫
− cos(α)
A+ cos(α) l = − ln(F0(l))

because of F0(l) = A+ cos(α) l, and we obtain

Fj(l) = F0(l)
(
κj −

∫
Fj−1(t)
F 2

0 (t) dt
)
. (6)

Next, we consider a linkage of φ-type, for parameters l ∈ [l1, l2], and obtain analogously

φj(l) = φ0(l)
(
λj −

∫
φj−1(t)
φ2

0(t) dt
)
. (7)

Now we determine the constants κj , λj such that the solutions 6 and 7 describe a contiguous
curve. To this end, we must satisfy conditions 2 and 3.

We define κ0 := 1 and

κj+1 := φj(l2)
F0(0) +

∫
Fj(t)
F 2

0 (t)dt|l=0

so that 6 becomes

Fj+1(l) = F0(l)
(φj(l2)
F0(0) −

∫ l

0

Fj(t)
F 2

0 (t) dt
)
,

which, for l = 0, yields Fj+1(0) = φj(l2) (condition 3).
Similarly, we set λ0 := 1 and

λj+1 := Fj+1(l1)
φ0(l1) +

∫
φj(t)
φ2

0(t)dt|l=l1

so that 7 becomes

φj+1(l) = φ0(l)
(Fj+1(l1)
φ0(l1) −

∫ l

l1

φj(t)
φ2

0(t) dt
)
,

and for l = l1 we get Fj+1(l1) = φj+1(l1) (condition 2).
For simplicity, let us write

Gj(l) := Fj(l)
F0(l) and χj(l) := φj(l)

φ0(l) , (8)

which leads to

Gj+1(l) = φ0(l2)
F0(0) χj(l2) −

∫ l

0

Gj(t)
F0(t) dt (9)

χj+1(l) = F0(l1)
φ0(l1) Gj+1(l1) −

∫ l

l1

χj(t)
φ0(t) dt. (10)

In order to find out if the fire fighter is successful we only need to check the values of Fj(l)
at the end of each round, as the following lemma shows.

SoCG’15
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I Lemma 4. The curve encloses the fire if and only if there exists an index j such that
Fj(l1) ≤ 0 holds.

Proof. The free string shrinks to zero if and only if there exist an index j and argument l
such that Fj(l) ≤ 0 or φj(l) ≤ 0. Clearly, Gj and Fj have identical signs, as well as χj and
φj do. Suppose that Gj > 0 and Gj+1(l) = 0, for some j and some l ∈ [0, l1]. By 9, function
Gj+1 is decreasing, therefore Gj+1(l1) ≤ 0. Now assume that Gi > 0 holds for all i, and
that we have χj−1 > 0 and χj(l) = 0 for some j and some l ∈ [l1, l2]. By 10 this implies
χj(l2) ≤ 0, and from 9 we conclude Gj+1 ≤ 0, in particular Gj+1(l1) ≤ 0. J

5 Recursions

The integrals in 9 and 10 disappear by iterated substitution. This process is not entirely
trivial, and the calculations can be found in Section C in the Appendix of the technical
report [7]. After plugging in values, one obtains cross-wise recursions

Fj(l1) = F0(l1)
F0(0)

j∑
ν=0

(−1)ν

ν!

( 2π
sinα

)ν
φj−1−ν(l2) (11)

φj(l2) = φ0(l2)
φ0(l1)

j∑
ν=0

(−1)ν

ν!

( α

sinα

)ν
F̂j−ν(l1) (12)

where φ−1(l2) := F0(0), F̂0(l1) := φ0(l1), and F̂i+1(l1) := Fi+1(l1).
In order to solve the cross-wise recursions 11 and 12 for the numbers Fj(l1) we define the

formal power series

F (X) :=
∞∑
j=0

Fj X
j and φ(X) :=

∞∑
j=0

φj X
j

where Fj := Fj(l1) and φj := φj(l2), for short. From 11 we obtain

F (X) = F0

F0(0) e
− 2π

sinαX
(
X φ(X) + F0(0)

)
, (13)

and from 12,

φ(X) = φ0

φ0(l1) e
− α

sinαX
(
X F (X)− F0 + φ0(l1)

)
; (14)

both equalities can be easily verified by computing the products and comparing coefficients.
Now we substitute 14 into 13, solve for F (X), divide both sides by F0 and expand by e 2π+α

sinα

to obtain
F (X)
F0

= evX − r X

ewX − sX
, (15)

where v, r, w, s are the following functions of α:

v = α

sinα and r = eα cotα

w = 2π + α

sinα and s = e(2π+α) cotα. (16)

Note that here the parameter v does no longer represent the speed parameter, the speed is
given by 1

cosα .
It is possible to expand the inverse of the denominator in 15 into a power series. This

leads to interesting expressions for the Fj ; but how to derive their signs seems not obvious.
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6 Singularities and Residues

Now we consider the right hand side of (15) as a function

f(z) := evz − r z

ewz − s z
, (17)

of a complex variable, z. Both numerator and denominator of f are analytic on the complex
plane. Thus, singularities of f can only arise from zeroes of the denominator ewZ − sZ. This
equation has received some attention in the area of delay differential equations [2]. As in the
Introduction, let αc ≈ 1.1783 be the unique solution of s = ew in (0, π/2], corresponding to
speed vc = 1/ cosαc ≈ 2.6144.

I Lemma 5. For α = αc, equation ewZ − sZ has a real root 1/w ≈ 0.1238. For α > αc
(corresponding to speed v > vc), this root splits into a complex conjugate pair z0 and z0, whose
absolute values are < 0.31. All other zeroes of numerator and denominator in 15 are strictly
complex, and of absolute values ≥ 1. Function f(z) in 17 has only poles as singularities.

For a proof of Lemma 5 see Lemmata 10 to 13 in the Appendix of the technical report [7].
From now on we assume that α > αc holds. Now we would like to make use of a general

Theorem concerning the sign of coefficients of power series within their convergence radius,
in order to prove the first part of Theorem 1.

I Theorem 6 (Pringsheim’s Theorem (see for example [4, p. 240]). Let h(z) =
∑∞
n=0 anz

n

be a power series with finite convergence radius R. If h(z) has non-negative coefficients, aj,
then point z = R is a singularity of h(z).

Proof of Theorem 1 (i). Let α > αc. Because of the singularities z0 and z0, the power
series expansion of f(z) in 17 has a finite radius, R, of convergence. If all coefficients Fi
were ≥ 0 then, by Pringsheim’s Theorem function f(z) would have a singularity at R. But,
by Lemma 5, there can be only complex singularities. Thus, there must be coefficients Fj < 0,
proving that the fire fighter succeeds. J

Now we sketch the proof of Theorem 1(ii). A complete version can be found in the
Appendix Sections E and F of the technical report [7]. This will also lead to another, and
constructive, proof of part (i) of Theorem 1.

We are using a technique described in [4, p. 258 ff.]. Let Γ denote the circle of radius 0.9
around the origin. By Cauchy’s Residue Theorem,

1
2π i

∫
Γ

f(u)
uj+1 du =

∑
z inside Γ

res(z)

holds, where the sum is over all residues of the poles of f(z)
zj+1 encircled by Γ. By Lemma 5,

these poles are z0, z0, and 0, which has residue Fj/F0. Computing the residues of z0, z0
yields

Fj
F0

= sin(jφ+ p) |z0|−j

|z0 − x0|
Θ(1) + 1

2π i

∫
Γ

f(u)
uj+1 du, (18)

where z0 = ρ(cosφ+ sinφ i), with 0 < φ < π, and x0 = (1/w, 0) is the limit of z0 as αc tends
to α. The rightmost term’s absolute value is upper bounded by the maximum of |f(z)| on Γ,
times 0.9−j ; its influence turns out to be negligible.

SoCG’15
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p0

p1

x
x

y

pi−1

pi

pi+1

A(i) (ii)

AA

Figure 7 Proof of Lemma 7.

The oscillation sin(tφ+ p) has wavelength 2π/φ. For j near its negative minimum, the
value of 18 becomes negative. This proves that the fire fighter will succeed in containing the
fire in round j, for some j ≤ c · 2π/φ (in fact, one can choose c = 1). As α decreases towards
αc, both φ and phase p tend to zero, but

lim
α→αc

p

φ
≈ 1.315

holds. This value denotes how much the graph of sin(tφ+p) is shifted to the left, as compared
to sin t. We see that j must increase through almost the whole positive halfwave of sin(tφ+p)
before negative values can occur. Since wavelength 2π/φ goes to infinity, so does the number
of rounds the fire fighter needs. This completes the proof of Theorem 1. All details are given
in the Appendix of the technical report [7].

7 Lower bound

Let us recall that a barrier building strategy S is spiralling if it starts on the boundary of a
fire of radius A, and visits the four coordinate half-axes in counterclockwise order and at
increasing distances from the origin.

Now let S be a spiralling strategy of maximum speed v ≤ (1 +
√

5)/2 ≈ 1.618, the golden
ratio. We can assume that S proceeds at constant speed v. Let p0, p1, p2, . . . denote the
points on the coordinate axes visited, in this order, by S. The following lemma shows that S
cannot succeed because there is still fire burning outside the barrier on the axis previously
visited.

I Lemma 7. Let A be the initial fire radius. When S visits point pi+1, the interval [pi, pi +
sign(pi)A] on the axis visited before is on fire.

Proof. The proof is by induction on i. Suppose strategy S builds a barrier of length x

between p0 and p1, as shown in Figure 7 (i). During this time the fire advances x/v along
the positive X-axis, so that A+ x/v ≤ p1 ≤ x must hold, or

x

v
≥ 1

v − 1A > A;

the last inequality follows from v < 2. Thus, the fire has enough time to move a distance
of A from p0 downwards along the negative Y -axis.



R. Klein, E. Langetepe, and Ch. Levcopoulos 779

Figure 8 A completion time optimal single closed loop solution for v ≈ 6.25 starts with a line
segment outside the fire and ends with a logarithmic spiral along the boundary of the fire. A single
loop solution exists only for v ≥ 3.7788 . . .

Now let us assume that strategy S builds a barrier of length y between pi and pi+1, as
shown in Figure 7 (ii). By induction, the interval of length A below pi−1 is on fire. Also,
when the fighter moves on from pi, there must be a burning interval of length at least A+x/v

on the positive Y -axis which is not bounded by a barrier from above. This is clear if pi+1 is
the first point visited on the positive Y -axis, and it follows by induction, otherwise. Thus,
we must have A+ x/v + y/v ≤ pi+1 ≤ y, hence

y

v
≥ 1

v − 1A + 1
v(v − 1)x > A+ x,

since the assumption on v implies v2 ≤ v + 1. This shows that the fire can crawl along
the barrier from pi−1 to pi, and a distance A to the right, as the fighter moves to pi+1,
completing the proof of Theorem 2. J

8 Conclusions

A number of interesting questions arise. Are there strategies that can contain the fire at a
speed v < vc? How about starting points away from the fire? Given a speed v ≥ vc, there
can be many barrier curves that contain a fire. Which one should the figther choose, to
minimize the time to completion, or the area burned? Is it possible to generalize to fires of
more realistic shapes, as they result under the influence of wind as for example suggested
in [5]? These problems define a new and nice area in the field of path planning in dynamic
environments, where obstacle shapes depend on the agent’s actions.

For practical purposes, one would wish for a strategy that contains the fire in a single
closed round. Also, starting points away from the fire could be allowed. If the fighter is free
to pick her starting point she can contain the fire in a single closed round if, and only if,
her speed is at least v ≥ 3.7788 . . . In this case the shortest possible (i.e., completion time
optimal) solution consists of a line segment q0q1 followed by a segment of a logarithmic spiral

SoCG’15
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of excentricity α, where v = 1
cos(α) . See Figure 8 for an example of the time optimal single

closed loop for α = 1.41 and v ≈ 6.25.
A single closed loop solution only exists for

α > arctan
(

3
2π

W
( 3

2π
)) ≈ 74.66◦

in which W denotes Lambert’s W function [1] defined by the functional equationW (x) eW (x) =
x. This gives α ≥ 1.3029 . . . or v ≥ 3.7788 . . .
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