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Abstract
Given a real-valued function f defined over a manifold M embedded in Rd, we are interested in
recovering structural information about f from the sole information of its values on a finite sample
P . Existing methods provide approximation to the persistence diagram of f when geometric noise
and functional noise are bounded. However, they fail in the presence of aberrant values, also
called outliers, both in theory and practice.

We propose a new algorithm that deals with outliers. We handle aberrant functional values
with a method inspired from the k-nearest neighbors regression and the local median filtering,
while the geometric outliers are handled using the distance to a measure. Combined with topo-
logical results on nested filtrations, our algorithm performs robust topological analysis of scalar
fields in a wider range of noise models than handled by current methods. We provide theoretical
guarantees and experimental results on the quality of our approximation of the sampled scalar
field.
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1 Introduction

Consider a network of sensors measuring a quantity such as the temperature, the humidity,
or the elevation. These sensors also compute their positions and communicate these data
to others. However, they are not perfect and can make mistakes such as providing some
aberrant values. Can we still recover topological structure from the measured quantity?

This is an instance of a scalar field analysis problem. Given a manifold M embedded
in Rd and a scalar field f : M → R, we want to extract topological information about f ,
knowing only its values on a finite set of points P . The critical points of a function, that is,
peaks (local maxima), pits (local minima), and passes (saddle points) constitute important
topological features of the function. In addition, the prominence of these features also
contains valuable information, which the geographers use to distinguish between a summit
and a local maximum in its shadow. Such information can be captured by the so-called
topological persistence, which studies the sub-level sets f−1((−∞, α]) of a function f and the
way their topology evolves as parameter α increases. In the case of geography, we can use
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© Mickaël Buchet, Frédéric Chazal, Tamal K. Dey, Fengtao Fan, Steve Y. Oudot, and Yusu Wang;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 827–841

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.827
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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the negated elevation as a function to study the topography. Peaks will appear depending on
their altitude and will merge into other topological features at saddle points. This provides a
persistence diagram describing the lifespan of features where the peaks with more prominence
have longer lifespans.

When the domain M of the function f is triangulated, one classical way of computing
this diagram is to linearly interpolate the function f on each simplex and then apply the
standard persistence algorithm to this piecewise-linear function [16]. For cases where we only
have pairwise distances between input points, one can build a family of simplicial complexes
and infer the persistent homology of the input function f from them [6] (this construction
will be detailed in Section 2).

Both of these approaches can provably approximate persistent homology when the input
points admit a bounded noise, i.e., when the Hausdorff distance between P and M is bounded
and the L∞-error on the observed value of f is also bounded. What happens if the noise is
unbounded? A faulty sensor can provide completely wrong information or a bad position.
Previous methods no longer work in this setting. Moreover, a sensor with a good functional
value but a bad position can become an outlier in function value at its measured position
(see Section 3.1 for an example). In this paper, we study the problem of analyzing scalar
fields in the presence of unbounded noise both in the geometry and in the functional values.
To the best of our knowledge, there is no other method to handle such combined unbounded
geometric and functional noise with theoretical guarantees.

Contributions

We consider a general sampling condition. Intuitively, a sample (P, f̃) of a function f : M→ R
respects our condition if: (i) the domain M is sampled densely and there is no cluster of
noisy samples outside M (roughly speaking, no area outside M has a higher sampling density
than on M), and (ii) for any point of P , at least half of its k nearest neighbors have a
functional value with an error less than a threshold s. This condition allows functional
outliers that may have a value arbitrarily far away from the true one. It encompasses the
previous bounded sampling conditions as well as other sampling conditions such as bounded
Wasserstein distance for geometry, or generative models like an additive Gaussian noise.
Connection to some of these classical sampling conditions can be found in the full version of
the paper [1].

We show how to approximate the persistence diagram of f knowing only its observed
value f̃ on the set P . We achieve this goal through three main steps:
1. Using the observations f̃ , we provide a new estimator f̂ to approximate f . This estimator

is inspired by the k-nearest neighbours regression technique but differs from it in an
essential way.

2. We filter geometric outliers using a distance to a measure function.
3. We combine both techniques in a unified framework to estimate the persistence diagram

of f .
The two sources of noise, geometric and functional, are not independent. The interdependency
is first identified by assuming appropriate sampling conditions, and then untangled by separate
steps in our algorithm.

Related work

A framework for scalar field topology inference with theoretical guarantees has been previously
proposed in [6]. However, it is limited to a bounded noise assumption, which we aim to relax.
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For handling the functional noise only, the traditional non-parametric regression mostly
uses kernel-based or k-NN estimators. The k-NN methods are more versatile [13]. Neverthe-
less, the kernel-based estimators are preferred when there is structure in the data. However,
the functional outliers destroy the structure on which kernel-based estimators rely. These
functional outliers can arise as a result of geometric outliers (see Section 3.1). Thus, in a
way, it is essential to be able to handle functional outliers when the input has geometric
noise. Functional outliers can also introduce a bias that hampers the robustness of a k-NN
regression. For example, if all outliers’ values are greater than the actual value, a k-NN
regression will shift towards a larger value. Our approach leverages the k-NN regression idea
while trying to avoid the sensitivity to this bias.

Various methods for geometric denoising have also been proposed in the literature. If
the generative model for noise is known a priori, one can use de-convolution to remove
noise. Some methods have been specifically adapted to use topological information for such
denoising [14]. In our case where the generative model is unknown, we use a filtering by the
value of the distance to a measure, which has been successfully applied to infer the topology
of a domain under unbounded noise [4].

2 Preliminaries for Scalar Field Analysis

In [6], Chazal et al. presented an algorithm to analyze the scalar field topology using persistent
homology which can handle bounded Hausdorff noise both in geometry and in observed
function values. Our approach follows the same high level framework. Hence in this section,
we introduce necessary preliminaries along with some of the results from [6].

Riemannian manifold and its sampling.

Consider a compact Riemannian manifold M. Let dM denote the geodesic metric on M.
Consider the open Riemannian ball BM(x, r) := {y ∈ M | dM(x, y) < r} centered at x ∈ M.
BM(x, r) is strongly convex if for any pair (y, y′) in the closure of BM(x, r), there exists a
unique minimizing geodesic between y and y′ whose interior is contained in BM(x, r). Given
any x ∈ M, let %(x) denote the supremum of the value of r such that BM(x, r) is strongly
convex. As M is compact, the infimum of all %(x) is positive and we denote it by %(M), which
is called the strong convexity radius of M.

A point set P ⊆ M is a geodesic ε-sample of M if for every point x of M, the distance
from x to P is less than ε in the metric dM. Given a c-Lipschitz scalar function f : M→ R,
we aim to study the persistent homology of f . However, the scalar field f : M→ R is only
approximated by a discrete set of sample points P and a function f̃ : P → R. The goal of
this paper is to retrieve the topological structure of f from f̃ when some forms of noise are
present both in the positions of P and in the function values of f̃ .

Persistent homology.

As in [6], we infer the persistent homology of f using well-chosen persistence modules. A
filtration {Fα}α∈R is a family of sets Fα totally ordered by inclusions Fα ⊆ Fβ . Following [3],
a persistence module is a family of vector spaces {Φα}α∈R with a family of homomorphisms
φβα : Φα → Φβ such that for all α ≤ β ≤ γ, φγα = φγβ ◦ φβα. Given a filtration F = {Fα}α∈R
and α ≤ β, the canonical inclusion Fα ↪→ Fβ induces a homomorphism at the homology
level H∗(Fα)→ H∗(Fβ). These homomorphisms and the homology groups of Fα form the
so-called persistence module of F .

SoCG’15



830 Topological Analysis of Scalar Fields with Outliers

The persistence module of the filtration F = {Fα}α∈R is said to be q-tame when all the
homomorphisms H∗(Fα)→ H∗(Fβ) have finite rank [5]. Its algebraic structure can then be
described by the persistence diagram Dgm(F), which is a multiset of points in R2 describing
the lifespan of the homological features in the filtration F . For technical reasons, Dgm(F)
also contains every point of the diagonal y = x with countably infinite multiplicity. See [10]
for a more formal discussion of the persistence diagrams.

Persistence diagrams can be compared using the bottleneck distance dB [8]. Given two
multisets with the same cardinality, possibly infinite, D and E in R2, we consider the set B
of all bijections between D and E. The bottleneck distance (under L∞-norm) is then defined
as:

dB(D,E) = inf
b∈B

sup
x∈D
||x− b(x)||∞. (1)

Two filtrations {Uα} and {Vα} are said to be ε-interleaved if, for any α, we have Uα ⊂
Vα+ε ⊂ Uα+2ε. Recent work in [3, 5] shows that two interleaved filtrations induce close
persistence diagrams in the bottleneck distance.

I Theorem 2.1. Let U and V be two q-tame and ε-interleaved filtrations. Then the persistence
diagrams of these filtrations verify dB(Dgm(U),Dgm(V )) ≤ ε.

Nested filtrations

The scalar field topology of f : M→ R is studied via the topological structure of the sub-level
sets filtration of f . More precisely, the sub-level sets of f are defined as Fα = f−1((−∞, α])
for any α ∈ R. The collection of sub-level sets forms a filtration F = {Fα}α∈R connected
by natural inclusions Fα ⊆ Fβ for any α ≤ β. Our goal is to approximate the persistence
diagram Dgm(F) from the observed scalar field f̃ : P → R. We now describe the results of
[6] for approximating Dgm(F) when P is a geodesic ε-sample of M. These results will later
be useful for our approach.

To simulate the sub-level sets filtration {Fα} of f , we introduce Pα = f̃−1((−∞, α]) ⊆ P
for any α ∈ R. The points in Pα intuitively sample the sub-level set Fα. To estimate the
topology of Fα from these discrete samples Pα, we consider the δ-offset P δ of the point set P ,
i.e., we grow geodesic balls of radius δ around the points of P . This gives us a union of balls
that serves as a proxy for f−1((−∞, α]). The nerve of this collection of balls, also known
as the Čech complex, Cδ(P ), has many interesting properties but is difficult to compute in
high dimensions. We consider an alternate complex called the Vietoris-Rips complex Rδ(P )
that is easier to compute. It is defined as the maximal simplicial complex with the same
1-skeleton as the Čech complex. The Čech and Rips complexes are related in any metric
space: ∀δ > 0, Cδ(P ) ⊂ Rδ(P ) ⊂ C2δ(P ).

Even though a single Vietoris-Rips complex may not capture the homology of the manifold
M, a pair of nested complexes can recover it using the inclusions Rδ(Pα) ↪→ R2δ(Pα) [7].
Specifically, for a fixed δ > 0, consider the following commutative diagram induced by
inclusions, for α ≤ β:

H∗(Rδ(Pβ))H∗(Rδ(Pα))

H∗(R2δ(Pα)) H∗(R2δ(Pβ))
φβα

iα iβ

As the diagram commutes for all α ≤ β, {Im(iα), φβα|Im(iα)} defines a persistence module.
We call it the persistent homology module of the filtration of nested pairs {Rδ(Pα) ↪→



M. Buchet, F. Chazal, T. K. Dey, F. Fan, S. Y. Oudot, and Y. Wang 831

R2δ(Pα)}α∈R. This construction can also be done for any filtration of nested pairs. Using
this construction, one of the main results of [6] is:

I Theorem 2.2 (Theorems 2 and 6 of [6]). Let M be a compact Riemannian manifold and let
f : M→ R be a c-Lipschitz function. Let P be a geodesic ε-sample of M. If ε < 1

4%(M), then
for any δ ∈

[
2ε, 1

2%(M)
)
, the persistent homology modules of f and of the filtration of nested

pairs {Rδ(Pα) ↪→ R2δ(Pα)} are 2cδ-interleaved. Therefore, the bottleneck distance between
their persistence diagrams is at most 2cδ.

Furthermore, the k-dimensional persistence diagram for the filtrations of nested pairs
{Rδ(Pα) ↪→ R2δ(Pα)} can be computed in O(|P |kN +N logN +N3) time, where N is the
number of simplices of {R2δ(P∞)}, and |P | denotes the cardinality of the sample set P .

It has been observed that, in practice, the persistence algorithm often has a running time
linear in the number of simplices, which reduces the above complexity to O(|P |+N logN)
in a practical setting.

We say that f̃ has a precision of ξ over P if |f̃(p)− f(p)| ≤ ξ for any p ∈ P . We then
have the following result for the case when we only have this functional noise:

I Theorem 2.3 (Theorem 3 of [6]). Let M be a compact Riemannian manifold and let
f : M→ R be a c-Lipschitz function. Let P be a geodesic ε-sample of M such that the values
of f on P are known with precision ξ. If ε < 1

4%(M), then for any δ ∈
[
2ε, 1

2%(M)
)
, the

persistent homology modules of f and of the filtration of nested pairs {Rδ(Pα) ↪→ R2δ(Pα)}
are (2cδ+ξ)-interleaved. Therefore, the bottleneck distance between their persistence diagrams
is at most 2cδ + ξ.

Geometric noise was considered in the form of bounded noise in the estimate of the
geodesic distances between points in P . It translated into a relation between the measured
pairwise distances and the real ones. With only geometric noise, one has the following
stability result. It was stated in this form in the conference version of the paper.

I Theorem 2.4 (Theorem 4 of [6]). Let M, f be defined as previously and P be an ε-sample
of M in its Riemannian metric. Assume that, for a parameter δ > 0, the Rips complexes
Rδ(·) are defined with respect to a metric d̃(·, ·) which satisfies ∀x, y ∈ P, dM(x,y)

λ ≤ d̃(x, y) ≤
ν + µdM(x,y)

λ , where λ ≥ 1 is a scaling factor, µ ≥ 1 is a relative error and ν ≥ 0 an additive
error. Then, for any δ ≥ ν + 2µ ελ and any δ′ ∈ [ν + 2µδ, 1

λ%(M)], the persistent homology
modules of f and of the filtration of nested pairs {Rδ(Pα) ↪→ Rδ′(Pα)} are cλδ′-interleaved.
Therefore, the bottleneck distance between their persistence diagrams is at most cλδ′.

3 Functional Noise

In this section, we focus on the case where we have only functional noise in the observed
function f̃ . Suppose we have a scalar function f defined on a Riemannian manifold M
embedded in Rd. Note that the results of section 3 hold if Rd is replaced by a metric space
X. We are given a geodesic ε-sample P ⊂ M, and a noisy observed function f̃ : P → R.
Our goal is to approximate the persistence diagram Dgm(F) of the sub-level set filtration
F = {Fα = f−1((−∞, α])}α from f̃ . We assume that f is c-Lipschitz with respect to the
intrinsic metric of the Riemannian manifold M. Note that this does not imply a Lipschitz
condition on f̃ .

SoCG’15
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Bone without noise Bone with gaussian noise Bone after magical filter

Figure 1 Bone example after applying Gaussian perturbation and magical filter

3.1 Functional sampling condition
Previous work on functional noise focused on bounded noise (e.g, [6]) or noise with zero-mean
(e.g, [15]). However, there are many practical scenarios where the observed function f̃ may
contain these previously considered types of noise combined with aberrant function values in
f̃ . Hence, we propose below a more general sampling condition that allows such combinations.

Motivating examples

First, we provide some motivating examples for the need of handling aberrant function values
in f̃ , where f̃(p) at some sample point p can be totally unrelated to the true value f(p).
Consider a sensor network, where each node returns some measures. Such measurements can
be imprecise, and in addition to that, a sensor may experience failure and return a completely
wrong measure that has no relation with the true value of f . Similarly, an image could be
corrupted with impulse noise where there are random pixels with aberrant function values,
such as random white or black dots.

More interestingly, outliers in function values can naturally appear as a result of (extrinsic)
geometric noise present in the discrete samples. For example, imagine that we have a process
that can measure the function value f : M → R with no error. However, the geometric
location p̃ of a point p ∈ M can be wrong. In particular, p̃ can be close to other parts of the
manifold, thereby although p̃ has the correct function value f(p), it becomes a functional
outlier among its neighbors (due to the wrong location of p̃). See Figure 1 for an illustration.
The function defined on this bone-like curve is the geodesic distance to a base point. The two
sides of the narrow neck have very different function values. Now, suppose that the points
are sampled uniformly on M and their position is then perturbed by an additive Gaussian
noise. Then, points from one side of this neck can be sent closer to the other side, causing
aberrant values in the observed function.

In fact, even if we assume that we have a “magic filter” that can project each sample back
to the closest point on the underlying manifold M, the result is a new set of samples where all
points are on the manifold and thus can be seen as having no geometric noise; however, this
point set now contains functional noise which is actually caused by the original geometric
noise. Note that such a magic filter is the goal of many geometric denoising methods. A
perfect algorithm in this sense cannot remove or may even cause more aberrant functional
noise. This motivates the need for handling functional outliers (in addition to traditional
functional noise) as well as processing noise that combines geometric and functional noise
together and that does not necessarily have zero-mean.

Another case where our approach is useful concerns with missing data. Assuming that
some of the functional values are missing, we can replace them by anything and act as if
they were outliers. Without modifying the algorithm, we obtain a way to handle the local
loss of information.
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Functional sampling condition

To allow both aberrant and more traditional functional noise, we introduce the following
sampling condition. Let P ⊂ M be a geodesic ε-sample of the underlying manifold M.
Intuitively, our sampling condition requires that for every point p ∈ P , locally there is a
sufficient number of sample points with reasonably good function values. Specifically, we fix
two parameters k and k′ with the condition that k ≥ k′ > 1

2k. Let NNk
P (p) denote the set of

the k-nearest neighbors of p in P in the extrinsic metric. We say that a discrete scalar field
f̃ : P → R is a (k, k′,∆)-functional-sample of f : M→ R if the following holds:

∀p ∈ P,
∣∣∣{q ∈ NNk

P (p)
∣∣ |f̃(q)− f(p)| ≤ ∆

}∣∣∣ ≥ k′ (2)

Intuitively, this sampling condition allows up to k−k′ samples around a point p to be outliers
(whose function values deviates from f(p) by at least ∆). In the full version [1], we consider
two standard functional sampling conditions used in the statistical learning community and
look at what they correspond to in our setting.

3.2 Functional Denoising

Given a scalar field f̃ : P → R which is a (k, k′,∆)-functional-sample of f : M → R, we
now aim to compute a denoised function f̂ : P → R from the observed function f̃ , and we
will later use f̂ to infer the topology of f : M→ R. Below we describe two ways to denoise
the noisy observation f̃ : one of which is well-known, and the other one is new. As we will
see later, these two treatments lead to similar theoretical guarantees in terms of topology
inference. However, they have different characteristics in practice, which are discussed in the
full version [1].

k-median denoising

In the k-median treatment, we simply perform the following: given any point p ∈ P , we set
f̂(p) to be the median value of the set of f̃ values for the k-nearest neighbors NNk

P (p) ⊆ P
of p. We call f̂ the k-median denoising of f̃ . The following observation is straightforward:

I Observation 1. If f̃ : P → R is a (k, k′,∆)-functional-sample of f : M→ R with k′ ≥ k/2,
then we have |f̂(p)− f(p)| ≤ ∆ for any p ∈ P , where f̂ is the k-median denoising of f̃ .

Disparity-based denoising

In the k-median treatment, we choose a single value from the k-nearest neighbors of a sample
point p and set it to be the denoised value f̂(p). This value, while within ∆ distance to the
true value f(p) for k′ ≥ k/2, tends to have greater variability among neighboring sample
points. Intuitively, taking the average (such as k-means) makes the function f̂(p) smoother,
but it is sensitive to outliers. We combine these ideas together, and use the following concept
of disparity to help us identify a subset of points from the k-nearest neighbors of a sample
point p to estimate f̂(p).

Given a set Y = {x1, . . . , xl} of l sample points from P , we define its disparity w.r.t. f̃
as:

φ(Y ) = 1
l

l∑
i=1

(f̃(xi)− µ(Y ))2, where µ(Y ) = 1
l

l∑
i=1

f̃(xi).

SoCG’15
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µ(Y ) and φ(Y ) are respectively the average and the variance of the observed function values
for points from Y . Intuitively, φ(Y ) measures how tight the function values (f̃(xi)) are
clustered. Now, given a point p ∈ P , we define

Ŷp = argmin
Y⊆NNk

P
(p),|Y |=k′

φ(Y ), and ẑp = µ(Ŷp).

That is, Ŷp is the subset of k′ points from the k-nearest neighbors of p that has the smallest
disparity and ẑp is its mass center. It turns out that Ŷp and ẑp can be computed by the
following sliding-window procedure: (i) Sort NNk

P (p) = {x1, . . . , xk} according to f̃(xi). (ii)
For every k′ consecutive points Yi = {xi, . . . , xi+k′−1} with i ∈ [1, k − k′ + 1], compute
its disparity φ(Yi). (iii) Set Ŷp = argminYi,i∈[1,k−k′] φ(Yi), and return µ(Ŷp) as ẑp. In the
disparity-based denoising approach, we simply set f̂(p) := ẑp as computed above. The
approximation guarantee of f̂ for the function f is given by the following Lemma.

I Lemma 3.1. If f̃ : P → R is a (k, k′,∆)-functional-sample of f : M→ R with k′ ≥ k
2 , then

we have |f̂(p) − f(p)| ≤
(

1 + 2
√

k−k′

2k′−k

)
∆ for every p ∈ P , where f̂ is the disparity-based

denoising of f̃ . In particular, if k′ ≥ 2
3k, then |f̂(p)− f(p)| ≤ 3∆ for every p ∈ P .

Proof. Let Y∆ = {x ∈ NNk
P (p) : |f̃(x) − f(p)| ≤ ∆} be the set of points in NNk

P (p)
whose observed function values are within distance ∆ from f(p). Since f̃ is a (k, k′,∆)-
functional-sample of f , it is clear that |Y∆| ≥ k′. Let Y ′∆ ⊂ Y∆ be a subset with k′

elements, Y ′∆ = {x′i}k
′

i=1. By the definitions of Y∆ and Y ′∆, one can immediately check that
|f̃(x′i) − µ(Y ′∆)| ≤ 2∆ where µ(Y ′∆) = 1

k′

∑k′

i=1 f̃(x′i). This inequality then gives an upper
bound of the disparity φ(Y ′∆),

φ(Y ′∆) = 1
k′

∑k′

i=1(f̃(x′i)− µ(Y ′∆))2

≤ 1
k′

∑k′

i=1(2∆)2

= 4∆2
.

Recall from the sliding window procedure that Ŷp = argminYi,i∈[1,k−k′] φ(Yi) and ẑp =
µ(Ŷp). Denote A1 = Ŷp ∩ Y∆ and A2 = Ŷp \A1. Since f̃ is a (k, k′,∆)-functional-sample of
f , the size of A2 is at most k − k′ and |A1| ≥ 2k′ − k. If |ẑp − f(p)| ≤ ∆, nothing needs
to be proved. Without loss of generality, one can assume that f(p) + ∆ ≤ ẑp. Denote
δ = ẑp − (f(p) + ∆). The disparity of φ(Ŷp) can then be estimated.

φ(Ŷp) = 1
k′

(∑
x∈A1

(f̃(x)− ẑp)2 +
∑
x∈A2

(f̃(x)− ẑp)2)
≥ 1

k′

(
|A1|δ2 +

∑
x∈A2

(f̃(x)− ẑp)2)
≥ 1

k′

(
|A1|δ2 + 1

|A2| (
∑
x∈A2

f̃(x)− |A2|ẑp)2
)

= 1
k′

(
|A1|δ2 + 1

|A2| (
∑
x∈A1

f̃(x)− |A1|ẑp)2
)

≥ 1
k′

(
|A1|δ2 + 1

|A2| (|A1|δ)2
)

= 1
k′ δ

2
(
|A1|
|A2| (|A1|+ |A2|)

)
≥ 1

k′ δ
2
(
k′|A1|
|A2|

)
≥ 2k′−k

k−k′ δ
2

where the third line uses the inequality
∑n
i=1 a

2
i ≥ 1

n (
∑n
i=1 ai)2, and the fourth line uses the

fact that (|A1| + |A2|)ẑp =
∑
x∈Ŷp

f̃(x). Since Ŷp = argminYi,i∈[1,k−k′] φ(Yi), it holds that
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φ(Ŷp) ≤ φ(Y ′∆). Therefore,

2k′ − k
k − k′

δ2 ≤ 4∆2.

It then follows that δ ≤ 2
√

k−k′

2k′−k∆ and |f̂(p)− f(p)| ≤
(

1 + 2
√

k−k′

2k′−k

)
∆ since ẑp = f̂(p).

If k′ ≥ 2
3k, then 1 + 2

√
k−k′

2k′−k ≤ 1 + 2 = 3, meaning that |f̂(p)− f(p)| ≤ 3∆ in this case. J

I Corollary 3.2. Given a (k, k′,∆)-functional-sample of f : M→ R with k′ ≥ k/2, we can
compute a new function f̂ : P → R such that |f̂(p)− f(p)| ≤ ξ∆ for any p ∈ P , where ξ = 1
under k-median denoising, and ξ =

(
1 + 2

√
k−k′

2k′−k

)
under the disparity-based denoising.

Hence after the k-median denoising or the disparity-based denoising, we obtain a new
function f̂ whose value at each sample point is within ξ∆ precision to the true function value.
We can now apply the scalar field topology inference framework from [6] (as introduced in
Section 2) using f̂ as input. In particular, set Lα = {p ∈ P | f̂(p) ≤ α}, and let Rδ(X)
denote the Rips complex over points in X with parameter δ. We approximate the persistence
diagram induced by the sub-level sets filtration of f : M→ R from the filtrations of nested
pairs {Rδ(Lα) ↪→ R2δ(Lα)}α. It follows from Theorem 2.3 that:

I Theorem 3.3. Let M be a compact Riemannian manifold and let f : M→ R be a c-Lipschitz
function. Let P be a geodesic ε-sample of M, and f̃ : P → R a (k, k′,∆)-functional-sample
of f . Set ξ = 1 if Pα is obtained via k-median denoising, and ξ =

(
1 + 2

√
k−k′

2k′−k

)
if Pα

is obtained via disparity-based denoising. If ε < 1
4%(M), then for any δ ∈

[
2ε, 1

2%(M)
)
, the

persistent homology modules of f and the filtration of nested pairs {Rδ(Pα) ↪→ R2δ(Pα)} are
(2cδ + ξ∆)-interleaved. Therefore, the bottleneck distance between their persistence diagrams
is at most 2cδ + ξ∆.

The above theoretical results are similar for k-median and disparity-based methods with a
slight advantage for the k-median. However, interesting experimental results can be obtained
when the Lipschitz condition on the function is removed, for example with images, where
the disparity based method appears to be more resilient to large amounts of noise than the
k-median denoising method. Illustrating examples can be found in the full version [1].

4 Geometric noise

In the previous section, we assumed that we have no geometric noise in the input. In
this section, we deal with the case where there is only geometric noise in the input, but
no functional noise of any kind. Specifically, for any point p ∈ P , we assume that the
observed value f̃(p) is equal to the true function value f(π(p)) where π(p) is the nearest
point projection of p to the manifold. If p is on the medial axis of M, the projection π is
arbitrary to one of the nearest points. As we have alluded before, general geometric noise
implicitly introduces functional noise because the point p may have become a functional
aberration of its orthogonal projection π(p) ∈ M. This error will be ultimately dealt with in
Section 5 when we combine the results on purely functional noise from the previous section
with the results on purely geometric noise in this section.
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4.1 Sampling condition
Distance to a measure

The distance to a measure is a tool introduced to deal with geometrically noisy datasets,
which are modelled as probability measures [4]. Given a probability measure µ on a metric
space X, we define the pseudo-distance δm(x) for any point x ∈ Rd and a mass parameter
m ∈ (0, 1] as δm(x) = inf{r ∈ R|µ(B(x, r)) ≥ m}. The distance to a measure is then defined
by averaging this quantity:

dµ,m(x) =

√
1
m

∫ m

0
δl(x)2 dl.

The Wasserstein distance is a standard tool to compare two measures. Given two
probability measures µ and ν on a metric space X, a transport plan π is a probability measure
over X× X such that for any A×B ⊂ X× X, π(A× X) = µ(A) and π(X×B) = ν(B). Let
Γ(µ, ν) be the set of all transport plans between between measures µ and ν. The Wassserstein
distance is then defined as the minimum transport cost over Γ(µ, ν):

W2(µ, ν) =

√
min

π∈Γ(µ,ν)

∫
X×X

dX(x, y)2 dπ(x, y),

where dX(x, y) is the distance between x and y in the metric space X. The distance to a
measure is stable with respect to the Wasserstein distance as shown in [4]:

I Theorem 4.1 (Theorem 3.5 of [4], Theorem 3.2 of [2]). Let µ and ν be two probability
measures on X and m ∈ (0, 1]. Then, ||dµ,m − dν,m||∞ ≤ 1√

m
W2(µ, ν).

We will mainly use the distance to empirical measures in this paper. (See [2, 4, 12] for
more details on distance to a measure and its approximation.) Given a finite point set P , its
associated empirical measure µP is defined as the sum of Dirac masses: µP = 1

|P |
∑
p∈P δp.

The distance to this empirical measure for a point x can then be expressed as an average
of its distances to the k = m|P | nearest neighbors where m is the mass parameter. For the
sake of simplicity, k will be assumed to be an integer. The results also hold for other values
of k. However, a non integer k introduces unnecessary technical difficulties. Denoting by
pi(x) the i-th nearest neighbors of x in P , one can write:

dµP ,m(x) =

√√√√1
k

k∑
i=1

d(pi(x), x)2.

Geometric sampling condition

Our sampling condition treats the input point data as a measure and relates it to the
manifold (where input points are sampled from) via distance-to-measures with the help of
two parameters.

I Definition 4.2. Let P ⊂ Rn be a discrete sample and M ⊂ Rn a smooth manifold. Let
µP denote the empirical measure of P . For a fixed mass parameter m > 0, we say that P is
an (ε, r)-sample of M if the following holds:

∀x ∈ M, dµP ,m(x) ≤ ε; and (3)

∀x ∈ Rn, dµP ,m(x) ≤ r =⇒ d(x,M) ≤ dµP ,m(x) + ε. (4)
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The parameter ε captures the distance to the empirical measure for points in M and intuitively
tells us how dense P is in relation to the manifold M. The parameter r intuitively indicates
how far away we can deviate from the manifold, while keeping the noise sparse enough so as
not to be mistaken for signal. We remark that if a point set is an (ε, r)-sample of M then
it is an (ε′, r′)-sample of M for any ε′ ≥ ε and r′ ≤ r. In general, the smaller ε is and the
bigger r is, the better an (ε, r)-sample is.

For convenience, denote the distance function to the manifold M by dπ : Rn → R,
x 7→ d(x,M). We have the following interleaving relation:

∀α < r − ε, d−1
π (]−∞, α]) ⊂ d−1

µP ,m(]−∞, α+ ε]) ⊂ d−1
π (]−∞, α+ 2ε]) (5)

To see why this interleaving relation holds, let x be a point such that d(x,M) ≤ α. Thus
d(π(x), x) ≤ α. Using the hypothesis (3), we get that dµP ,m(π(x)) ≤ ε. Given that the
distance to a measure is a 1-Lipschitz function we then obtain that dµP ,m(x) ≤ ε+ α.

Now let x be a point such that dµP ,m(x) ≤ α+ ε ≤ r. Using the condition on r in (4) we
get that d(x,M) ≤ dµP ,m(x) + ε ≤ α+ 2ε which concludes the proof of Eqn (5).

Eqn (5) gives an interleaving between the sub-level sets of the distance to the measure µ
and the offsets of the manifold M. By Theorem 2.1, this implies the proximity between the
persistence modules of their respective sub-level sets filtrations . Observe that this relation is
in some sense analogous to the one obtained when two compact sets A and B have Hasudorff
distance of at most ε:

∀α, d−1
A (]−∞, α]) ⊂ d−1

B (]−∞, α+ ε]) ⊂ d−1
A (]−∞, α+ 2ε]). (6)

Relation to other sampling conditions

Our sampling condition encompasses several other existing sampling conditions. While the
parameter ε is natural, the parameter r may appear to be artificial. It bounds the distances
at which we can observe the manifold through the scope of the distance to a measure. In
most classical sampling conditions, r is equal to ∞ and thus we obtain a similar relation as
for the classical Hausdorff sampling condition in Eqn (6).

One notable noise model where r 6=∞ is when there is an uniform background noise in
the ambient space Rd, sometimes called clutter noise. In this case, r depends on the difference
between the density of the relevant data and the density of the noise. For other sampling
conditions like Wassertein, Gaussian, Hausdorff sampling conditions, r = ∞. Detailed
relations and proofs for the Wasserstein and Gaussian sampling conditions can be found in
the full version [1].

4.2 Scalar field analysis under geometric noise
In the rest of the paper, we assume that M is a manifold with positive reach ρM (minimum
distance between M and its medial axis) and whose curvature is bounded by cM. Assume
that the input P is an (ε, r)-sample of M for a given m ∈ (0, 1], where

ε ≤ ρM
6 , and r > 2ε. (7)

As discussed at the beginning of this section, we assume that there is no intrinsic functional
noise, that is, for every p ∈ P , the observed function value f̃(p) = f(π(p)) is the same as the
true value for the projection π(p) ∈ M of this point. Our goal now is to show how to recover
the persistence diagram induced by f : M→ R from its observations f̃ : P → R on P .
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838 Topological Analysis of Scalar Fields with Outliers

Taking advantage of the interleaving (5), we can use the distance to the empirical measure
to filter the points of P to remove geometric noise. In particular, we consider the set

L = P ∩ d−1
µP ,m(]−∞, η]) where η ≥ 2ε. (8)

We will then use a similar approach as the one from [6] for this set L. The optimal choice for
the parameter η is 2ε. However, any value with η ≤ r and η + ε < ρM works as long as there
exist δ and δ′ satisfying the conditions stated in Theorem 2.4.

Let L̄ = {π(x)|x ∈ L} denote the orthogonal projection of L onto M. To simulate sub-level
sets f−1(]−∞, α] of f : M→ R, consider the restricted sets Lα := L ∩ (f ◦ π)−1(]−∞, α])
and let L̄α = π(Lα). By our assumption on the observed function f̃ : P → R, we have:
Lα = {x ∈ L|f̃(x) ≤ α}.

Let us first recall a result about the relation between Riemannian and Euclidian metrics
(e.g. [9]). For any two points x, y ∈ M with d(x, y) ≤ ρM

2 one has:

d(x, y) ≤ dM(x, y) ≤
(

1 + 4d(x, y)2

3ρ2
M

)
d(x, y) ≤ 4

3d(x, y). (9)

As a direct consequence of our sampling condition, for each point x ∈ M, there exists a
point p ∈ L at distance less than 2ε: Indeed, for each x ∈ M, since dµP ,m(x) ≤ ε, there must
exist a point p ∈ P such that d(x, p) ≤ ε. On the other hand, since the distance to measure
is 1-Lipschitz, we have dµP ,m(p) ≤ dµP ,m(x) + d(x, p) ≤ 2ε. Hence p ∈ L as long as η ≥ 2ε.
We will use the extrinsic Vietoris-Rips complex built on top of points from L to infer the
scalar field topology. Using the previous relation Eqn (9), we obtain the following result
which states that the Euclidean distance for nearby points in L approximates the geodesic
distance on M.

I Proposition 4.3. Let λ = 4
3

ρM
ρM−(η+ε) , and assume that 2ε ≤ η ≤ r and ε + η < ρM. Let

x, y ∈ L be two points from L such that d(x, y) ≤ ρM
2 −

η+ε
2 . Then,

dM(π(y), π(x))
λ

≤ d(x, y) ≤ 2(η + ε) + dM(π(x), π(y)).

Proof. Let x and y be two points of L such that d(x, y) ≤ ρM
2 −

η+ε
2 . As dµP ,m(x) ≤ η ≤ r,

Eqn (4) implies d(π(x), x) ≤ η + ε. Therefore, d(π(x), π(y)) ≤ ρM
ρM−(η+ε)d(x, y) [11, Theorem

4.8,(8)]. This implies d(π(x), π(y)) ≤ ρM
2 and following (9), dM(π(x), π(y)) ≤ 4

3d(π(x), π(y)).
This proves the left inequality in the Proposition. The right inequality follows from

d(x, y) ≤ d(π(x), x) + d(π(y), y) + dM(π(x), π(y)) ≤ 2(η + ε) + dM(π(x), π(y)).

J

I Theorem 4.4. Let M be a compact Riemannian manifold and let f : M → R be a
c-Lipschitz function. Let P be an (ε, r)-sample of M , and L be as introduced in Eqn
(8). Assume ε ≤ ρM

6 , r > 2ε, and 2ε ≤ η ≤ r. Then, for any δ ≥ 2η + 6ε and
any δ′ ∈

[
2η + 2ε+ 8

3
ρM

ρM−(η+ε)δ,
3
4
ρM−(η+ε)

ρM
%(M)

]
, H∗(f) and H∗(Rδ(Lα) ↪→ Rδ′(Lα)) are

4
3

cρMδ
′

ρM−(η+ε) -interleaved.

Proof. First, note that L̄ is a 2ε-sample of M in its geodesic metric. It follows from the
definition of dµP ,m that, for any point x ∈ M, the nearest point p ∈ L to x satisfies
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d(x, p) ≤ dµP ,m(x) ≤ ε. Hence d(x, π(p)) ≤ d(x, p) + d(p, π(p)) ≤ 2d(x, p) ≤ 2ε. Now we
apply Theorem 2.4 to L̄ by using d̃(π(x), π(y)) := d(x, y); and setting λ = µ = 4

3
ρM

ρM−(η+ε) ,
ν = 2(η + ε): the requirement on the distance function d̃ in Theorem 2.4 is satisfied due to
Proposition 4.3. The claim then follows. J

Since M is compact, f is bounded due to the Lipschitz condition. We can look at
the limit when α → ∞. There exists a value T such that for any α ≥ T , Lα = L and
f−1((−∞, α]) = M. The above interleaving means that H∗(M) and H∗(Rδ(L)) ↪→ Rδ′(L))
are interleaved. However, both objects do not depend on α and this gives the following
inference result:

I Corollary 4.5. H∗(M) and H∗(Rδ(L)) ↪→ Rδ′(L)) are isomorphic under conditions specified
in Theorem 4.4.

5 Scalar Field Topology Inference under Geometric and Functional
Noise

Our constructions can be combined to analyze scalar fields in a more realistic setting. Our
combined sampling condition follows conditions (3) and (4) for the geometry. We adapt
condition (2) to take into account the geometry and introduce the following conditions: we
assume that there exist η ≥ 2ε and s such that:

∀p ∈ d−1
µ,m((−∞, η, ]), |{q ∈ NNk(p)| |f̃(q)− f(π(p))| ≤ s}| ≥ k′ (10)

Note that in (10), we are using f(π(p)) as the “true" function value at a sample p which
may be off the manifold M. The condition on the functional noise is only for points close to
the manifold (under the distance to a measure). Combining the methods from the previous
two sections, we obtain the combined noise algorithm where η is a parameter greater than 2ε.

We propose the following 3-steps algortihm. It starts by handling outliers in the geometry
then it makes a regression on the function values to obtain a smoothed function f̂ before
running the existing algorithm for scalar field analysis [6] on the filtration L̂α = {p ∈ L|f̂(p) ≤
α}.

Combined noise algorithm

1. Compute L = P ∩ d−1
µ,m((−∞, η]).

2. Replace functional values f̃ by f̂ for points in L using either k-median or disparity based
method.

3. Run the scalar field analysis algorithm from [6] on (L, f̂).

I Theorem 5.1. Let M be a compact smooth manifold embedded in Rd and f a c-Lipschitz
function on M. Let P ⊂ Rd be a point set and f̃ : P → R be observed function values such
that hypotheses (3), (4), (7) and (10) are satisfied. For η ≥ 2ε, the combined noise algorithm
has the following guarantees:

For any δ ∈
[
2η + 6ε, %(M)

2

]
and any δ′ ∈

[
2η + 2ε+ 8

3
ρM

ρM−(η+ε)δ,
3
4
ρM−(η+ε)

ρM
%(M)

]
, H∗(f)

and H∗(Rδ(L̂α) ↪→ Rδ′(L̂α)) are
(

4
3

cρMδ
′

ρM−(η+ε) + ξs
)
-interleaved where ξ = 1 if we use the

k-median and ξ =
(

1 + 2
√

k−k′

2k′−k

)
if we use the disparity method for Step 2.
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840 Topological Analysis of Scalar Fields with Outliers

Proof. First, consider the filtration induced by Lα = {x ∈ L|f(π(x)) ≤ α}; that is, we first
imagine that all points in L have correct function values (equals to the true value of their
projection on M). By Theorem 4.4, for

δ ∈
[
2η + 6ε, %(M)

2

]
and δ′ ∈

[
2η + 2ε+ 8

3
ρM

ρM − (η + ε)δ,
3
4
ρM − (η + ε)

ρM
%(M)

]
,

H∗(f) and H∗(Rδ(Lα) ↪→ Rδ′(Lα)) are 4
3

cρMδ
′

ρM−(η+ε) -interleaved.
Next, consider L̂α = {p ∈ L|f̂(p) ≤ α}, which leads to a filtration based on the smoothed

function values f̂ (not observed values). Recall that our algorithm returns H∗(Rδ(L̂α) ↪→
Rδ′(L̂α)). We aim to relate this persistence module withH∗(Rδ(Lα) ↪→ Rδ′(Lα)). Specifically,
fix α and let (x, y) be an an edge of Rδ(Lα). This means that d(x, y) ≤ 2δ, f(π(x)) ≤ α,
f(π(y)) ≤ α. Corollary 3.2 can be applied to the function f ◦ π due to hypothesis (10).
Hence |f̂(x)− f(π(x))| ≤ ξs and |f̂(y)− f(π(y))| ≤ ξs. Thus (x, y) ∈ Rδ(L̂α+ξs). One can
reverse the role of f̂ and f and get an ξs-interleaving of {Rδ(Lα)} and {Rδ(L̂α)}. This gives
rise to the following commutative diagram since all arrows are induced by inclusions.

H∗(Rδ(Lα)) H∗(Rδ(Lα+2ξs)) H∗(Rδ(Lα+4ξs))

H∗(Rδ(L̂α+ξs)) H∗(Rδ(L̂α+3ξs)) H∗(Rδ(L̂α+5ξs))

H∗(Rδ′(Lα)) H∗(Rδ′(Lα+2ξs)) H∗(Rδ′(Lα+4ξs))

H∗(Rδ′(L̂α+ξs)) H∗(Rδ′(L̂α+3ξs)) H∗(Rδ′(L̂α+5ξs))

Thus the two persistence modules induced by filtrations of nested pairs {Rδ(Lα) ↪→ Rδ′(Lα)}
and {Rδ(L̂α) ↪→ Rδ′(L̂α)} are ξs-interleaved. Combining this with the interleaving between
H∗(Rδ(Lα) ↪→ Rδ′(Lα)) and H∗(f), we obtain the stated results. J

We note that, while this theorem assumes a setting where we can ensure theoretical
guarantees, the algorithm can be applied in a more general setting still producing good
results.
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