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Abstract
Let S be a subset of Rd with finite positive Lebesgue measure. The Beer index of convexity b(S)
of S is the probability that two points of S chosen uniformly independently at random see each
other in S. The convexity ratio c(S) of S is the Lebesgue measure of the largest convex subset
of S divided by the Lebesgue measure of S. We investigate the relationship between these two
natural measures of convexity of S.

We show that every set S ⊆ R2 with simply connected components satisfies b(S) 6 α c(S)
for an absolute constant α, provided b(S) is defined. This implies an affirmative answer to the
conjecture of Cabello et al. asserting that this estimate holds for simple polygons.

We also consider higher-order generalizations of b(S). For 1 6 k 6 d, the k-index of convexity
bk(S) of S ⊆ Rd is the probability that the convex hull of a (k+1)-tuple of points chosen uniformly
independently at random from S is contained in S. We show that for every d > 2 there is a
constant β(d) > 0 such that every set S ⊆ Rd satisfies bd(S) 6 β c(S), provided bd(S) exists.
We provide an almost matching lower bound by showing that there is a constant γ(d) > 0 such
that for every ε ∈ (0, 1] there is a set S ⊆ Rd of Lebesgue measure one satisfying c(S) 6 ε and
bd(S) > γ ε

log2 1/ε > γ c(S)
log2 1/ c(S) .
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1 Introduction

For positive integers k and d and a Lebesgue measurable set S ⊆ Rd, we use λk(S) to denote
the k-dimensional Lebesgue measure of S. We omit the subscript k when it is clear from the
context. We also write ‘measure’ instead of ‘Lebesgue measure’, as we do not use any other
measure in the paper.

For a set S ⊆ Rd, let smc(S) denote the supremum of the measures of convex subsets
of S. Since all convex subsets of Rd are measurable [12], the value of smc(S) is well defined.
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Moreover, Goodman’s result [9] implies that the supremum is achieved on compact sets S,
hence it can be replaced by maximum in this case. When S has finite positive measure, let
c(S) be defined as smc(S)/λd(S). We call the parameter c(S) the convexity ratio of S.

For two points A,B ∈ Rd, let AB denote the closed line segment with endpoints A and B.
Let S be a subset of Rd. We say that points A,B ∈ S are visible one from the other or see
each other in S if the line segment AB is contained in S. For a point A ∈ S, we use Vis(A,S)
to denote the set of points that are visible from A in S. More generally, for a subset T of S,
we use Vis(T, S) to denote the set of points that are visible in S from T . That is, Vis(T, S)
is the set of points A ∈ S for which there is a point B ∈ T such that AB ⊆ S.

Let Seg(S) denote the set {(A,B) ∈ S×S : AB ⊆ S} ⊆ (Rd)2, which we call the segment
set of S. For a set S ⊆ Rd with finite positive measure and with measurable Seg(S), we
define the parameter b(S) ∈ [0, 1] by

b(S) := λ2d(Seg(S))
λd(S)2 .

If S is not measurable, or if its measure is not positive and finite, or if Seg(S) is not
measurable, we leave b(S) undefined. Note that if b(S) is defined for a set S, then c(S) is
defined as well.

We call b(S) the Beer index of convexity (or just Beer index) of S. It can be interpreted
as the probability that two points A and B of S chosen uniformly independently at random
see each other in S.

1.1 Previous results
The Beer index was introduced in the 1970s by Beer [2, 3, 4], who called it ‘the index of
convexity’. Beer was motivated by studying the continuity properties of λ(Vis(A,S)) as
a function of A. For polygonal regions, an equivalent parameter was later independently
defined by Stern [19], who called it ‘the degree of convexity’. Stern was motivated by the
problem of finding a computationally tractable way to quantify how close a given set is
to being convex. He showed that the Beer index of a polygon P can be approximated by
a Monte Carlo estimation. Later, Rote [17] showed that for a polygonal region P with n
edges the Beer index can be evaluated in polynomial time as a sum of O(n9) closed-form
expressions.

Cabello et al. [7] have studied the relationship between the Beer index and the convexity
ratio, and applied their results in the analysis of their near-linear-time approximation
algorithm for finding the largest convex subset of a polygon. We describe some of their
results in more detail in Subsection 1.3.

1.2 Terminology and notation
We assume familiarity with basic topological notions such as path-connectedness, simple
connectedness, Jordan curve, etc. The reader can find these definitions, for example, in
Prasolov’s book [16].

Let ∂S, S◦, and S denote the boundary, the interior, and the closure of a set S, respectively.
For a point A ∈ R2 and ε > 0, let Nε(A) denote the open disc centered at A with radius ε.
For a set X ⊆ R2 and ε > 0, let Nε(X) =

⋃
A∈X Nε(A). A neighborhood of a point A ∈ R2

or a set X ⊆ R2 is a set of the form Nε(A) or Nε(X), respectively, for some ε > 0.
A closed interval with endpoints a and b is denoted by [a, b]. Intervals [a, b] with a > b

are considered empty. For a point A ∈ R2, we use x(A) and y(A) to denote the x-coordinate
and the y-coordinate of A, respectively.

SoCG’15
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P

(0, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (2n− 2, 1) (2n− 1, 1)
. . .

Figure 1 A star-shaped polygon P with b(P ) > 1
n

− ε and c(P ) 6 1
n
. The polygon P with

4n − 1 vertices is a union of n triangles (0, 0)(2i, 1)(2i + 1, 1), i = 0, . . . , n − 1, and of a triangle
(0, 0)(0, δ)((2n− 1)δ, δ), where δ is very small.

A polygonal curve Γ in Rd is a curve specified by a sequence (A1, . . . , An) of points of Rd
such that Γ consists of the line segments connecting the points Ai and Ai+1 for i = 1, . . . , n−1.
If A1 = An, then the polygonal curve Γ is closed. A polygonal curve that is not closed is
called a polygonal line.

A set X ⊆ R2 is polygonally connected, or p-connected for short, if any two points of X
can be connected by a polygonal line in X, or equivalently, by a self-avoiding polygonal line
in X. For a set X, the relation “A and B can be connected by a polygonal line in X” is an
equivalence relation on X, and its equivalence classes are the p-components of X. A set S is
p-componentwise simply connected if every p-component of S is simply connected.

A line segment in Rd is a bounded convex subset of a line. A closed line segment includes
both endpoints, while an open line segment excludes both endpoints. For two points A and
B in Rd, we use AB to denote the open line segment with endpoints A and B. A closed line
segment with endpoints A and B is denoted by AB.

We say that a set S ⊆ Rd is star-shaped if there is a point C ∈ S such that Vis(C, S) = S.
That is, a star-shaped set S contains a point which sees the entire S. Similarly, we say that
a set S is weakly star-shaped if S contains a line segment ` such that Vis(`, S) = S.

1.3 Results
We start with a few simple observations. Let S be a subset of R2 such that Seg(S) is
measurable. For every ε > 0, S contains a convex subsetK of measure at least (c(S)−ε)λ2(S).
Two random points of S both belong to K with probability at least (c(S) − ε)2, hence
b(S) > (c(S)− ε)2. This yields b(S) > c(S)2. This simple lower bound on b(S) is tight, as
shown by a set S which is a disjoint union of a single large convex component and a large
number of small components of negligible size.

It is more challenging to find an upper bound on b(S) in terms of c(S), possibly under
additional assumptions on the set S. This is the general problem addressed in this paper.

As a motivating example, observe that a set S consisting of n disjoint convex components
of the same size satisfies b(S) = c(S) = 1

n . It is easy to modify this example to obtain, for
any ε > 0, a simple star-shaped polygon P with b(P ) > 1

n − ε and c(P ) 6 1
n , see Figure 1.

This shows that b(S) cannot be bounded from above by a sublinear function of c(S), even
for simple polygons S.

For weakly star-shaped polygons, Cabello et al. [7] showed that the above example is
essentially optimal, providing the following linear upper bound on b(S).

I Theorem 1 ([7, Theorem 5]). For every weakly star-shaped simple polygon P , we have
b(P ) 6 18 c(P ).
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For polygons that are not weakly star-shaped, Cabello et al. [7] gave a superlinear bound.

I Theorem 2 ([7, Theorem 6]). Every simple polygon P satisfies

b(P ) 6 12 c(P )
(

1 + log2
1

c(P )

)
.

Moreover, Cabello et al. [7] conjectured that even for a general simple polygon P , b(P )
can be bounded from above by a linear function of c(P ). The next theorem, which is the
first main result of this paper, confirms this conjecture. Recall that b(S) is defined for a set
S if and only if S has finite positive measure and Seg(S) is measurable. Recall also that a
set is p-componentwise simply connected if its polygonally-connected components are simply
connected. In particular, every simply connected set is p-componentwise simply connected.

I Theorem 3. Every p-componentwise simply connected set S ⊆ R2 whose b(S) is defined
satisfies b(S) 6 180 c(S).

It is clear that every simple polygon satisfies the assumptions of Theorem 3, hence we
directly obtain the following, which confirms the conjecture of Cabello et al. [7].

I Corollary 4. Every simple polygon P ⊆ R2 satisfies b(P ) 6 180 c(P ).

The main restriction in Theorem 3 is the assumption that S is p-componentwise simply
connected. This assumption cannot be omitted, as shown by the set S = [0, 1]2 rQ2, where
it is easy to verify that c(S) = 0 and b(S) = 1.

A related construction shows that Theorem 3 fails in higher dimensions. To see this,
consider again the set S = [0, 1]2 rQ2, and define a set S′ ⊆ R3 by

S′ := {(tx, ty, t) : t ∈ [0, 1] and (x, y) ∈ S}.

Again, it is easy to verify that c(S′) = 0 and b(S′) = 1, although S′ is simply connected,
even star-shaped.

Despite these examples, we will show that meaningful analogues of Theorem 3 for higher
dimensions and for sets that are not p-componentwise simply connected are possible. The
key is to use higher-order generalizations of the Beer index, which we introduce now.

For a set S ⊆ Rd, we define the set Simpk(S) ⊆ (Rd)k+1 by

Simpk(S) := {(A0, . . . , Ak) ∈ Sk+1 : Conv({A0, . . . , Ak}) ⊆ S},

where the operator Conv denotes the convex hull of a set of points. We call Simpk(S) the
k-simplex set of S. Note that Simp1(S) = Seg(S).

For an integer k ∈ {1, 2, . . . , d} and a set S ⊆ Rd with finite positive measure and with
measurable Simpk(S), we define bk(S) by

bk(S) :=
λ(k+1)d(Simpk(S))

λd(S)k+1 .

Note that b1(S) = b(S). We call bk(S) the k-index of convexity of S. We again leave bk(S)
undefined if S or Simpk(S) is non-measurable, or if the measure of S is not finite and positive.

We can view bk(S) as the probability that the convex hull of k + 1 points chosen
from S uniformly independently at random is contained in S. For any S ⊆ Rd, we have
b1(S) > b2(S) > · · · > bd(S), provided all the bk(S) are defined.

We remark that the set S = [0, 1]d r Qd satisfies c(S) = 0 and b1(S) = b2(S) = · · · =
bd−1(S) = 1. Thus, for a general set S ⊆ Rd, only the d-index of convexity can conceivably
admit a nontrivial upper bound in terms of c(S). Our next result shows that such an upper
bound on bd(S) exists and is linear in c(S).

SoCG’15
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I Theorem 5. For every d > 2, there is a constant β = β(d) > 0 such that every set S ⊆ Rd
with defined bd(S) satisfies bd(S) 6 β c(S).

We do not know if the linear upper bound in Theorem 5 is best possible. We can, however,
construct examples showing that the bound is optimal up to a logarithmic factor. This is
our last main result.

I Theorem 6. For every d > 2, there is a constant γ = γ(d) > 0 such that for every
ε ∈ (0, 1], there is a set S ⊆ Rd satisfying c(S) 6 ε and bd(S) > γ ε

log2 1/ε , and in particular,
we have bd(S) > γ c(S)

log2 1/ c(S) .

In this extended abstract, some proofs have been omitted due to space constraints. The
omitted proofs can be found in the full version of this paper [1].

2 Bounding the mutual visibility in the plane

The goal of this section is to prove Theorem 3. Since the proof is rather long and complicated,
let us first present a high-level overview of its main ideas.

We first show that it is sufficient to prove the estimate from Theorem 3 for bounded open
simply connected sets. This is formalized by the next lemma, whose proof is omitted.

I Lemma 7. Let α > 0 be a constant such that every open bounded simply connected set
T ⊆ R2 satisfies b(T ) 6 α c(T ). It follows that every p-componentwise simply connected set
S ⊆ R2 with defined b(S) satisfies b(S) 6 α c(S).

Suppose now that S is a bounded open simply connected set. We seek a bound of the form
b(S) = O(c(S)). This is equivalent to a bound of the form λ4(Seg(S)) = O(smc(S)λ2(S)).
We therefore need a suitable upper bound on λ4(Seg(S)).

We first choose in S a diagonal ` (i.e., an inclusion-maximal line segment in S), and show
that the set S r ` is a union of two open simply connected sets S1 and S2 (Lemma 10). It is
not hard to show that the segments in S that cross the diagonal ` contribute to λ4(Seg(S)) by
at most O(smc(S)λ2(S)) (Lemma 14). Our main task is to bound the measure of Seg(Si ∪ `)
for i = 1, 2. The two sets Si ∪ ` are what we call rooted sets. Informally, a rooted set is a
union of a simply connected open set S′ and an open segment r ⊆ ∂S′, called the root.

To bound λ4(Seg(R)) for a rooted set R with root r, we partition R into levels L1, L2, . . . ,
where Lk contains the points of R that can be connected to r by a polygonal line with k
segments, but not by a polygonal line with k − 1 segments. Each segment in R is contained
in a union Li ∪ Li+1 for some i > 1. Thus, a bound of the form λ4(Seg(Li ∪ Li+1)) =
O(smc(R)λ2(Li ∪ Li+1)) implies the required bound for λ4(Seg(R)).

We will show that each p-component of Li ∪Li+1 is a rooted set, with the extra property
that all its points are reachable from its root by a polygonal line with at most two segments
(Lemma 11). To handle such sets, we will generalize the techniques that Cabello et al. [7]
have used to handle weakly star-shaped sets in their proof of Theorem 1. We will assign to
every point A ∈ R a set T(A) of measure O(smc(R)), such that for every (A,B) ∈ Seg(R),
we have either B ∈ T(A) or A ∈ T(B) (Lemma 13). From this, Theorem 3 will follow easily.

To proceed with the proof of Theorem 3 for bounded open simply connected sets, we
need a few auxiliary lemmas.

I Lemma 8. For every positive integer d, if S is an open subset of Rd, then the set Seg(S)
is open and the set Vis(A,S) is open for every point A ∈ S.
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Proof. Choose a pair of points (A,B) ∈ Seg(S). Since S is open and AB is compact, there
is ε > 0 such that Nε(AB) ⊆ S. Consequently, for any A′ ∈ Nε(A) and B′ ∈ Nε(B), we
have A′B′ ⊆ S, that is, (A′, B′) ∈ Seg(S). This shows that the set Seg(S) is open. If we fix
A′ = A, then it follows that the set Vis(A,S) is open. J

I Lemma 9. Let S be a simply connected subset of R2 and let ` and `′ be line segments
in S. It follows that the set Vis(`′, S) ∩ ` is a (possibly empty) subsegment of `.

Proof. The statement is trivially true if ` and `′ intersect or have the same supporting
line, or if Vis(`′, S) ∩ ` is empty. Suppose that these situations do not occur. Let A,B ∈ `
and A′, B′ ∈ `′ be such that AA′, BB′ ⊆ S. The points A,A′, B′, B form a (possibly self-
intersecting) tetragon Q whose boundary is contained in S. Since S is simply connected, the
interior of Q is contained in S. If Q is not self-intersecting, then clearly AB ⊆ Vis(`′, S).
Otherwise, AA′ and BB′ have a point D in common, and every point C ∈ AB is visible in
R from the point C ′ ∈ A′B′ such that D ∈ CC ′. This shows that Vis(`′, S) ∩ ` is a convex
subset and hence a subsegment of `. J

Now, we define rooted sets and their tree-structured decomposition, and we explain how
they arise in the proof of Theorem 3.

A set S ⊆ R2 is half-open if every point A ∈ S has a neighborhood Nε(A) that satisfies
one of the following two conditions:
1. Nε(A) ⊆ S,
2. Nε(A) ∩ ∂S is a diameter of Nε(A) splitting it into two subsets, one of which (including

the diameter) is Nε(A) ∩ S and the other (excluding the diameter) is Nε(A) r S.
The condition 1 holds for points A ∈ S◦, while the condition 2 holds for points A ∈ ∂S. A
set R ⊆ R2 is a rooted set if the following conditions are satisfied:
1. R is bounded,
2. R is p-connected and simply connected,
3. R is half-open,
4. R ∩ ∂R is an open line segment.
The open line segment R ∩ ∂R is called the root of R. Every rooted set, as the union of a
non-empty open set and an open line segment, is measurable and has positive measure.

A diagonal of a set S ⊆ R2 is a line segment contained in S that is not a proper subset of
any other line segment contained in S. Clearly, if S is open, then every diagonal of S is an
open line segment. It is easy to see that the root of a rooted set is a diagonal. The following
lemma allows us to use a diagonal to split a bounded open simply connected subset of R2

into two rooted sets. It is intuitively clear, and its formal proof is omitted.

I Lemma 10. Let S be a bounded open simply connected subset of R2, and let ` be a diagonal
of S. It follows that the set S r ` has two p-components S1 and S2. Moreover, S1 ∪ ` and
S2 ∪ ` are rooted sets, and ` is their common root.

Let R be a rooted set. For a positive integer k, the kth level Lk of R is the set of points
of R that can be connected to the root of R by a polygonal line in R consisting of k segments
but cannot be connected to the root of R by a polygonal line in R consisting of fewer than k
segments. We consider a degenerate one-vertex polygonal line as consisting of one degenerate
segment, so the root of R is part of L1. Thus L1 = Vis(r,R), where r denotes the root of R.
A k-body of R is a p-component of Lk. A body of R is a k-body of R for some k. See Figure 2
for an example of a rooted set and its partitioning into levels and bodies.
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r

RB′ = B
A′

A



d(A, r)





d(B) = d(B, r)




d(A)

Figure 2 Example of a rooted set R partitioned into six bodies. The three levels of R are
distinguished with three shades of gray. The segment A′B′ is the base segment of AB.

We say that a rooted set P is attached to a set Q ⊆ R2 r P if the root of P is subset
of the interior of P ∪Q. The following lemma explains the structure of levels and bodies.
Although it is intuitively clear, its formal proof requires quite a lot of work and is omitted.

I Lemma 11. Let R be a rooted set and (Lk)k>1 be its partition into levels. It follows that
1. R =

⋃
k>1 Lk; consequently, R is the union of all its bodies;

2. every body P of R is a rooted set such that P = Vis(r, P ), where r denotes the root of P ;
3. L1 is the unique 1-body of R, and the root of L1 is the root of R;
4. every j-body P of R with j > 2 is attached to a unique (j − 1)-body of R.

Lemma 11 yields a tree structure on the bodies of R. The root of this tree is the unique
1-body L1 of R, called the root body of R. For a k-body P of R with k > 2, the parent of P
in the tree is the unique (k− 1)-body of R that P is attached to, called the parent body of P .

I Lemma 12. Let R be a rooted set, (Lk)k>1 be the partition of R into levels, ` be a closed
line segment in R, and k > 1 be minimum such that `∩Lk 6= ∅. It follows that ` ⊆ Lk∪Lk+1,
`∩Lk is a subsegment of ` contained in a single k-body P of R, and `∩Lk+1 consists of at
most two subsegments of ` each contained in a single (k + 1)-body whose parent body is P .

Proof. The definition of the levels directly yields ` ⊆ Lk ∪ Lk+1. The segment ` splits into
subsegments each contained in a single k-body or (k + 1)-body of R. By Lemma 11, the
bodies of any two consecutive of these subsegments are in the parent-child relation of the
body tree. This implies that ` ∩ Lk lies within a single k-body P . By Lemma 9, ` ∩ Lk is a
subsegment of `. Consequently, ` ∩ Lk+1 consists of at most two subsegments. J

In the setting of Lemma 12, we call the subsegment ` ∩ Lk of ` the base segment of `,
and we call the body P that contains ` ∩ Lk the base body of `. See Figure 2 for an example.

The following lemma is the crucial part of the proof of Theorem 3.

I Lemma 13. If R is a rooted set, then every point A ∈ R can be assigned a measurable set
T(A) ⊆ R2 so that the following is satisfied:
1. λ2(T(A)) < 87 smc(R);
2. for every line segment BC in R, we have either B ∈ T(C) or C ∈ T(B);
3. the set {(A,B) : A ∈ R and B ∈ T(A)} is measurable.

Proof. Let P be a body of R with the root r. First, we show that P is entirely contained in
one closed half-plane defined by the supporting line of r. Let h− and h+ be the two open
half-planes defined by the supporting line of r. According to the definition of a rooted set, the
sets {D ∈ r : ∃ε > 0: Nε(D) ∩ h− = Nε(D) ∩ (P r r)} and {D ∈ r : ∃ε > 0: Nε(D) ∩ h+ =
Nε(D)∩ (P r r)} are open and partition the entire r, hence one of them must be empty. This
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A = A′

HF

D

C

B′
B

r

T ′ E
T

Figure 3 Illustration for the proof of Claim 1 in the proof of Lemma 13.

implies that the segments connecting r to P rr lie all in h− or all in h+. Since P = Vis(r, P ),
we conclude that P ⊆ h− or P ⊆ h+.

According to the above, we can rotate and translate the set R so that r lies on the x-axis
and P lies in the half-plane {B ∈ R2 : y(B) > 0}. For a point A ∈ R, we use d(A, r) to
denote the y-coordinate of A after such a rotation and translation of R. We use d(A) to
denote d(A, r) where r is the root of the body of A. It follows that d(A) > 0 for every A ∈ R.

Let γ ∈ (0, 1) be a fixed constant whose value will be specified at the end of the proof.
For a point A ∈ R, we define the sets

V1(A) := {B ∈ Vis(A,S) : |A′B′| > γ|AB|, A ∈ Vis(r′′, R), d(A′, r′′) > d(B′, r′′)},
V2(A) := {B ∈ Vis(A,S) : |A′B′| > γ|AB|, A /∈ Vis(r′′, R), d(A′, r′′) > d(B′, r′′)},
V3(A) := {B ∈ Vis(A,S) : |A′B′| < γ|AB|, |AA′| > |BB′|},

where r′′ denotes the root of the base body of AB and A′ and B′ denote the endpoints
of the base segment of AB such that |AA′| < |AB′|. These sets are pairwise disjoint, and
we have A ∈

⋃3
i=1 Vi(B) or B ∈

⋃3
i=1 Vi(A) for every line segment AB in R. If for some

B ∈
⋃3
i=1 Vi(A) the point A lies on r′′, then we have B ∈ V1(A) and V1(A) ⊆ r′′.

For the rest of the proof, we fix a point A ∈ R. We show that the union
⋃3
i=1 Vi(A) is

contained in a measurable set T(A) ⊆ R2 with λ2(T(A)) < 87 smc(R) that is the union of
three trapezoids. We let P be the body of A and r be the root of P . If P is a k-body with
k > 2, then we use r′ to denote the root of the parent body of P .
I Claim 1. V1(A) is contained in a trapezoid T1(A) with area 6γ−2 smc(R).

Let H be a point of r such that AH ⊆ R. Let T ′ be the r-parallel trapezoid of height d(A)
with bases of length 8 smc(R)

d(A) and 4 smc(R)
d(A) such that A is the center of the larger base and H

is the center of the smaller base. The homothety with center A and ratio γ−1 transforms T ′
into the trapezoid T := A+ γ−1(T ′ −A). Since the area of T ′ is 6 smc(R), the area of T is
6γ−2 smc(R). We show that V1(A) ⊆ T . See Figure 3 for an illustration.

Let B be a point in V1(A). Using similar techniques to the ones used by Cabello et
al. [7] in the proof of Theorem 1, we show that B ∈ T . Let A′B′ be the base segment of AB
such that |AA′| < |AB′|. Since B ∈ V1(A), we have |A′B′| > γ|AB|, A ∈ Vis(r′′, R), and
d(B, r′′) 6 d(A, r′′), where r′′ denotes the root of the base level of AB. Since A is visible
from r′′ in R, the base body of AB is the body of A and thus A = A′ and r = r′′. As we
have observed, every point C ∈ {A} ∪AB′ satisfies d(C, r) = d(C) > 0.

Let ε > 0. There is a point E ∈ AB′ such that |B′E| < ε. Since E lies on the base
segment of AB, there is F ∈ r such that EF ⊆ R. It is possible to choose F so that
AH and EF have a point C in common where C 6= F,H. Let D be a point of AH with
d(D) = d(E). The point D exists, as d(H) = 0 6 d(E) 6 d(A). The points A,E, F,H
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form a self-intersecting tetragon Q whose boundary is contained in R. Since R is simply
connected, the interior of Q is contained in R and the triangles ACE and CFH have area
at most smc(R).

The triangle ACE is partitioned into triangles ADE and CDE with areas 1
2 (d(A) −

d(D))|DE| and 1
2 (d(D)−d(C))|DE|, respectively. Therefore, we have 1

2 (d(A)−d(C))|DE| =
λ2(ACE) 6 smc(R). This implies

|DE| 6 2 smc(R)
d(A)− d(C) .

For the triangle CFH, we have 1
2d(C)|FH| = λ2(CFH) 6 smc(R). By the similarity of the

triangles CFH and CDE, we have |FH| = |DE|d(C)/(d(E)− d(C)) and therefore

|DE| 6 2 smc(R)
d(C)2 (d(E)− d(C)).

Since the first upper bound on |DE| is increasing in d(C) and the second is decreasing in
d(C), the minimum of the two is maximized when they are equal, that is, when d(C) =
d(A)d(E)/(d(A) + d(E)). Then we obtain |DE| 6 2 smc(R)

d(A)2 (d(A) + d(E)). This and 0 6
d(E) 6 d(A) imply E ∈ T ′. Since ε can be made arbitrarily small and T ′ is compact, we
have B′ ∈ T ′. Since |AB′| > γ|AB|, we conclude that B ∈ T . This completes the proof of
Claim 1.
I Claim 2. V2(A) is contained in a trapezoid T2(A) with area 3(1− γ)−2γ−2 smc(R).

We assume the point A is not contained in the first level of R, as otherwise V2(A) is
empty. Let p be the r′-parallel line that contains the point A and let q be the supporting
line of r. Let p+ and q+ denote the closed half-planes defined by p and q, respectively, such
that r′ ⊆ p+ and A /∈ q+. Let O be the intersection point of p and q.

Let T ′ ⊆ p+ ∩ q+ be the trapezoid of height d(A, r′) with one base of length 4 smc(R)
(1−γ)2d(A,r′)

on p, the other base of length 2 smc(R)
(1−γ)2d(A,r′) on the supporting line of r′, and one lateral

side on q. The homothety with center O and ratio γ−1 transforms T ′ into the trapezoid
T := O + γ−1(T ′ − O). Since the area of T ′ is 3(1 − γ)−2 smc(R), the area of T is 3(1 −
γ)−2γ−2 smc(R). We show that V2(A) ⊆ T . See Figure 3 for an illustration.

Let B be a point of V2(A). We use A′B′ to denote the base segment of AB such that
|AA′| < |AB′|. By the definition of V2(A), we have |A′B′| > γ|AB|, A /∈ Vis(r′′, R), and
d(B, r′′) 6 d(A, r′′), where r′′ denotes the root of the base body of AB. By Lemma 12 and
the fact that A /∈ Vis(r′′, R), we have r′ = r′′. The bound d(A, r′) > d(B, r′) thus implies
A′ ∈ r ∩ p+ and B ∈ q+. We have d(C, r′) = d(C) > 0 for every C ∈ A′B′.

Observe that (1 − γ)d(A, r′) 6 d(A′, r′) 6 d(A, r′). The upper bound is trivial, as
d(B, r′) 6 d(A, r′) and A′ lies on AB. For the lower bound, we use the expression A′ =
tA+ (1− t)B′ for some t ∈ [0, 1]. This gives us d(A′, r′) = td(A, r′) + (1 − t)d(B′, r′). By
the estimate |A′B′| > γ|AB|, we have

|AA′|+ |BB′| 6 (1− γ)|AB| = (1− γ)(|AB′|+ |BB′|).

This can be rewritten as |AA′| 6 (1− γ)|AB′| − γ|BB′|. Consequently, |BB′| > 0 and γ > 0
imply |AA′| 6 (1− γ)|AB′|. This implies t > 1− γ. Applying the bound d(B′, r′) > 0, we
conclude that d(A′, r′) > (1− γ)d(A, r′).

Let (Gn)n∈N be a sequence of points from A′B′ that converges to A′. For every n ∈ N,
there is a point Hn ∈ r′ such that GnHn ⊆ R. Since r′ is compact, there is a subsequence of
(Hn)n∈N that converges to a point H0 ∈ r′. We claim that H0 ∈ q. Suppose otherwise, and
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Figure 4 Illustration for the proof of Claim 2 in the proof of Lemma 13.

let q′ 6= q be the supporting line of A′H0. Let ε > 0 be small enough so that Nε(A′) ⊆ R. For
n large enough, GnHn is contained in an arbitrarily small neighborhood of q′. Consequently,
for n large enough, the supporting line of GnHn intersects q at a point Kn such that
GnKn ⊆ Nε(A′), which implies Kn ∈ r ∩Vis(r′, R), a contradiction.

Again, let ε > 0. There is a point E ∈ A′B′ such that |B′E| < ε. Let D′ be a point
of q with d(D′, r′) = d(E). Let δ > 0. There are points G ∈ A′B′ and H ∈ r′ such
that G ∈ Nδ(A′) and GH ⊆ R ∩ Nδ(q). If δ is small enough, then d(E) 6 d(A′, r′) −
δ 6 d(G) 6 d(A′, r′). Let D be the point of GH with d(D) = d(E). The point E
lies on A′B′ and thus it is visible from a point F ∈ r′. Again, we can choose F so
that the line segments EF and GH have a point C in common where C 6= F,H. The
points E,F,H,G form a self-intersecting tetragon Q whose boundary is in R. The interior
of Q is contained in R, as R is simply connected. Therefore, the area of the triangles
CEG and CFH is at most smc(R). The argument used in the proof of Claim 1 yields
|DE| 6 2 smc(R)

d(G)2 (d(G) +d(E)) 6 2 smc(R)
(d(A′,r′)−δ)2 (d(A′, r′) +d(E)). This and the fact that δ (and

consequently |D′D|) can be made arbitrarily small yield |D′E| 6 2 smc(R)
d(A′,r′)2 (d(A′, r′) + d(E)).

This together with d(A′, r′) > (1− γ)d(A, r′) yield |D′E| 6 2 smc(R)
(1−γ)2d(A,r′)2 (d(A, r′) + d(E)).

This and 0 6 d(E) 6 d(A, r′) imply E ∈ T ′. Since ε can be made arbitrarily small and T ′ is
compact, we have B′ ∈ T ′. Since |A′B′| > γ|AB| > γ|A′B|, we conclude that B ∈ T . This
completes the proof of Claim 2.

I Claim 3. V3(A) is contained in a trapezoid T3(A) with area (4(1− γ)−2 − 1) smc(R).

By Lemma 9, the points of r that are visible from A in R form a subsegment CD of r.
The homothety with center A and ratio 2(1− γ)−1 transforms the triagle T ′ := ACD into
the triangle T ′′ := A+ 2(1− γ)−1(T ′ −A). See Figure 5 for an illustration. We claim that
V3(A) is a subset of the trapezoid T := T ′′ r T ′.

Let B be an arbitrary point of V3(A). Consider the segment AB with the base segment
A′B′ such that |AA′| < |AB′|. Since B ∈ V3(A), we have |A′B′| < γ|AB| and |AA′| > |BB′|.
This implies |AA′| > 1−γ

2 |AB| > 0 and hence A 6= A′ and B /∈ P . From the definition of C
and D, we have A′ ∈ CD. Since |AA′| > 1−γ

2 |AB| and B /∈ P , we have B ∈ T .
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Figure 5 Illustration for the proof of Claim 3 in the proof of Lemma 13.

The area of T is (4(1− γ)−2− 1)λ2(T ′). The interior of T ′ is contained in R, as all points
of the open segment CD are visible from A in R. The area of T ′ is at most smc(R), as its
interior is a convex subset of R. Consequently, the area of T is at most (4(1−γ)−2−1) smc(R).
This completes the proof of Claim 3.

To put everything together, we set T(A) :=
⋃3
i=1 Ti(A). It follows that

⋃3
i=1 Vi(A) ⊆

T(A) for every A ∈ R. Clearly, the set T(A) is measurable. Summing the three estimates on
areas of the trapezoids, we obtain

λ2(T(A)) 6
(
6γ−2 + 3(1− γ)−2γ−2 + 4(1− γ)−2 − 1

)
smc(R)

for every point A ∈ R. We choose γ ∈ (0, 1) so that the value of the coefficient is minimized.
For x ∈ (0, 1), the function x 7→ 6x−2 + 3(1− x)−2x−2 + 4(1− x)−2 − 1 attains its minimum
86.7027 < 87 at x ≈ 0.5186. Altogether, we have λ2(T(A)) < 87 smc(R) for every A ∈ R.

It remains to show that the set {(A,B) : A ∈ R and B ∈ T(A)} is measurable. For every
body P of R and for i ∈ {1, 2, 3}, the definition of the trapezoid Ti(A) in Claim i implies that
the set {(A,B) : A ∈ P and B ∈ Ti(A)} is the intersection of P × R2 with a semialgebraic
(hence measurable) subset of (R2)2 and hence is measurable. There are countably many
bodies of R, as each of them has positive measure. Therefore, {(A,B) : A ∈ R and B ∈ T(A)}
is a countable union of measurable sets and hence is measurable. J

Let S be a bounded open subset of the plane, and let ` be a diagonal of S that lies on
the x-axis. For a point A ∈ S, we define the set

S(A, `) := {B ∈ Vis(A,S) : AB ∩ ` 6= ∅ and |y(A)| > |y(B)|}.

The following lemma is a slightly more general version of a result of Cabello et al. [7].

I Lemma 14. Let S be a bounded open simply connected subset of R2, and let ` be its
diagonal that lies on the x-axis. It follows that λ2(S(A, `)) 6 3 smc(S) for every A ∈ S.

Proof. Using an argument similar to the proof of Lemma 8, we can show that the set
{B ∈ Vis(A,S) : AB ∩ ` 6= ∅} is open. Therefore, S(A, `) is the intersection of an open set
and the closed half-plane {(x, y) ∈ R2 : y 6 −y(A)} or {(x, y) ∈ R2 : y > −y(A)}, whichever
contains A. Consequently, the set S(A, `) is measurable for every point A ∈ S.

We clearly have λ2(S(A, `)) = 0 for points A ∈ S r Vis(`, S). By Lemma 9, the set
Vis(A,S) ∩ ` is an open subsegment CD of `. The interior T ◦ of the triangle T := ACD is
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contained in S. Since T ◦ is a convex subset of S, we have λ2(T ◦) = 1
2 |CD| · |y(A)| 6 smc(S).

Therefore, every point B ∈ S(A, `) is contained in a trapezoid of height |y(A)| with bases of
length |CD| and 2|CD|. The area of this trapezoid is 3

2 |CD| · |y(A)| 6 3 smc(S). Hence we
have λ2(S(A, `)) 6 3 smc(S) for every point A ∈ S. J

Proof of Theorem 3. In view of Lemma 7, we can assume without loss of generality that
S is an open bounded simply connected set. Let ` be a diagonal of S. We can assume
without loss of generality that ` lies on the x-axis. According to Lemma 10, the set S r `

has exactly two p-components S1 and S2, the sets S1 ∪ ` and S2 ∪ ` are rooted sets, and ` is
their common root. By Lemma 13, for i ∈ {1, 2}, every point A ∈ Si ∪ ` can be assigned a
measurable set Ti(A) so that λ2(Ti(A)) < 87 smc(Si∪`) 6 87 smc(S), every line segment BC
in Si ∪ ` satisfies B ∈ Ti(C) or C ∈ Ti(B), and the set {(A,B) : A ∈ Si ∪ ` and B ∈ Ti(A)}
is measurable. We set S(A) := Ti(A) ∪S(A, `) for every point A ∈ Si with i ∈ {1, 2}. We
set S(A) := T1(A) ∪ T2(A) for every point A ∈ ` = S r (S1 ∪ S2). Let

S := {(A,B) : A ∈ S and B ∈ S(A)} ∪ {(B,A) : A ∈ S and B ∈ S(A)} ⊆ (R2)2.

It follows that the set S is measurable.
Let AB be a line segment in S, and suppose |y(A)| > |y(B)|. Then either A and B are in

distinct p-components of S r ` or they both lie in the same component Si with i ∈ {1, 2}. In
the first case, we have B ∈ S(A), since AB intersects ` and S(A, `) ⊆ S(A). In the second
case, we have B ∈ Ti(A) ⊆ S(A) or A ∈ Ti(B) ⊆ S(B). Therefore, we have Seg(S) ⊆ S.
Since both Seg(S) and S are measurable, we have

λ4(Seg(S)) 6 λ4(S) 6 2
∫
A∈S

λ2(S(A)),

where the second inequality is implied by Fubini’s Theorem. Using the bound λ2(S(A)) 6
90 smc(S), we obtain

λ4(Seg(S)) 6 2
∫
S

90 smc(S) = 180 smc(S)λ2(S).

Finally, this bound can be rewritten as b(S) = λ4(Seg(S))λ2(S)−2 6 180 c(S). J

3 General dimension

In this section, we sketch the proofs of Theorem 5 and Theorem 6. The detailed proofs can
be found in the full version of this paper [1]. In both proofs, we use the operator Aff to
denote the affine hull of a set of points.

Sketch of the proof of Theorem 5. Let T = (B0, B1, . . . , Bd) be a (d+ 1)-tuple of distinct
affinely independent points of S, ordered in such a way that the following two conditions
hold:
1. the segment B0B1 is the diameter of T , and
2. for i = 2, . . . , d − 1, the point Bi has the maximum distance to Aff({B0, . . . , Bi−1})

among the points Bi, Bi+1, . . . , Bd.
For i = 1, . . . , d− 1, we define Boxi(T ) inductively as follows:
1. Box1(T ) := B0B1,
2. for i = 2, . . . , d−1, Boxi(T ) is the box containing all the points P ∈ Aff({B0, B1, . . . , Bi})

with the following two properties:
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a. the orthogonal projection of P to Aff({B0, B1, . . . , Bi−1}) lies in Boxi−1(T ), and
b. the distance of P to Aff({B0, B1, . . . , Bi−1}) does not exceed the distance of Bi to

Aff({B0, B1, . . . , Bi−1}),
3. Boxd(T ) is the box containing all the points P ∈ Rd such that the orthogonal projection of

P to Aff({B0, B1, . . . , Bd−1}) lies in Boxd−1(T ) and λd(Conv({B0, B1, . . . , Bd−1, P})) 6
λd(S) c(S).

It can be verified that if T ∈ Simpd(S), then Boxd(T ) contains the point Bd. Also, it can be
shown that the λd-measure of Boxd(T ) is equal to z := 2d−2d! smc(S), which is independent
of T . From this, we can deduce that the measure of Simpd(S) is at most (d + 1)λd(S)dz,
and hence bd(S) is at most (d+ 1)z/λd(S), which is of order c(S). J

Sketch of the proof of Theorem 6. To obtain a set S with arbitrarily small convexity ratio
c(S) and with the d-index of convexity bd(S) of order c(S)/ log2 (1/ c(S)), we let S be the
open d-dimensional box (0, 1)d with n points removed. We show that no matter which
n-tuple of points we remove from the box, the d-index of convexity bd(S) is still of order
Ω( 1

n ). Moreover, we show that for some constant α = α(d) > 0 it is possible to remove
n = α 1

ε log2
1
ε points from the box such that every convex subset of (0, 1)d with measure at

least ε contains a removed point. That is, we obtain c(S) 6 ε and bd(S) > γε/ log2 (1/ε) for
some constant γ = γ(d) > 0. Such an n-tuple of points to be removed is called an ε-net for
convex subsets of (0, 1)d. To find it, we first use John’s Lemma [11] to reduce the problem
to finding, for a suitably smaller ε′, an ε′-net for ellipsoids restricted to (0, 1)d. Then, we
apply a continuous version of the well-known Epsilon Net Theorem for families with bounded
Vapnik-Chervonenkis dimension due to Haussler and Welzl [10] (see also [14]). J

It is a natural question whether the bound for bd(S) in Theorem 6 can be improved
to bd(S) = Ω(c(S)). In the plane, this is related to the famous problem of Danzer and
Rogers (see [6, 15] and Problem E14 in [8]) which asks whether for given ε > 0 there is a set
N ′ ⊆ (0, 1)2 of size O( 1

ε ) with the property that every convex set of area ε within the unit
square contains at least one point from N ′.

If this problem was to be answered affirmatively, then we could use such a set N ′ to stab
(0, 1)2 in our proof of Theorem 6 which would yield the desired bound for b2(S). However it
is generally believed that the answer is likely to be nonlinear in 1

ε .

4 Other variants and open problems

We have seen in Theorem 3 that a p-componentwise simply connected set S ⊆ R2 whose
b(S) is defined satisfies b(S) 6 α c(S), for an absolute constant α 6 180. Equivalently, such
a set S satisfies smc(S) > b(S)λ2(S)/180.

By a result of Blaschke [5] (see also Sas [18]), every convex set K ⊆ R2 contains a triangle
of measure at least 3

√
3

4π λ2(K). In view of this, Theorem 3 yields the following consequence.

I Corollary 15. There is a constant α > 0 such that every p-componentwise simply connected
set S ⊆ R2 whose b(S) is defined contains a triangle T ⊆ S of measure at least α b(S)λ2(S).

A similar argument works in higher dimensions as well. For every d > 2, there is a
constant β = β(d) such that every convex set K ⊆ Rd contains a simplex of measure at
least βλd(K) (see e.g. Lassak [13]). Therefore, Theorem 5 can be rephrased in the following
equivalent form.
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I Corollary 16. For every d > 2, there is a constant α = α(d) > 0 such that every set
S ⊆ Rd whose bd(S) is defined contains a simplex T of measure at least α bd(S)λd(S).

What can we say about sets S ⊆ R2 that are not p-componentwise simply connected? First
of all, we can consider a weaker form of simple connectivity: we call a set S p-componentwise
simply 4-connected if for every triangle T such that ∂T ⊆ S we have T ⊆ S. We conjecture
that Theorem 3 can be extended to p-componentwise simply 4-connected sets.

I Conjecture 17. There is an absolute constant α > 0 such that every p-componentwise
simply 4-connected set S ⊆ R2 whose b(S) is defined satisfies b(S) 6 α c(S).

What does the value of b(S) say about a planar set S that does not satisfy even a weak
form of simple connectivity? Such a set may not contain any convex subset of positive
measure, even when b(S) is equal to 1. However, we conjecture that a large b(S) implies the
existence of a large convex set whose boundary belongs to S.

I Conjecture 18. For every ε > 0, there is a δ > 0 such that if S ⊆ R2 is a set with
b(S) > ε, then there is a bounded convex set C ⊆ R2 with λ(C) > δλ(S) and ∂C ⊆ S.

Theorem 3 shows that Conjecture 18 holds for p-componentwise simply connected sets,
with δ being a constant multiple of ε. It is possible that even in the general setting of
Conjecture 18, δ can be taken as a constant multiple of ε.

Motivated by Corollary 15, we propose a stronger version of Conjecture 18, where the
convex set C is required to be a triangle.

I Conjecture 19. For every ε > 0, there is a δ > 0 such that if S ⊆ R2 is a set with
b(S) > ε, then there is a triangle T ⊆ R2 with λ(T ) > δλ(S) and ∂T ⊆ S.

Note that Conjecture 19 holds when restricted to p-componentwise simply connected sets,
as implied by Corollary 15.

We can generalise Conjecture 19 to higher dimensions and to higher-order indices of
convexity. To state the general conjecture, we introduce the following notation: for a set
X ⊆ Rd, let

(
X
k

)
be the set of k-element subsets of X, and let the set Skelk(X) be defined by

Skelk(X) :=
⋃

Y ∈( X
k+1)

Conv(Y ).

If X is the vertex set of a d-dimensional simplex T = Conv(X), then Skelk(X) is often called
the k-dimensional skeleton of T . Our general conjecture states, roughly speaking, that sets
with large k-index of convexity should contain the k-dimensional skeleton of a large simplex.
Here is the precise statement.

I Conjecture 20. For every k, d ∈ N such that 1 6 k 6 d and every ε > 0, there is a δ > 0
such that if S ⊆ Rd is a set with bk(S) > ε, then there is a simplex T with vertex set X
such that λd(T ) > δλd(S) and Skelk(X) ⊆ S.

Corollary 16 asserts that this conjecture holds in the special case of k = d > 2, since
Skeld(X) = Conv(X) = T . Corollary 15 shows that the conjecture holds for k = 1 and d = 2
if S is further assumed to be p-componentwise simply connected. In all these cases, δ can be
taken as a constant multiple of ε, with the constant depending on k and d.

Finally, we can ask whether there is a way to generalize Theorem 3 to higher dimensions,
by replacing simple connectivity with another topological property. Here is an example of
one such possible generalization.
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I Conjecture 21. For every d > 2, there is a constant α = α(d) > 0 such that if S ⊆ Rd is
a set with defined bd−1(S) whose every p-component is contractible, then bd−1(S) 6 α c(S).

A modification of the proof of Theorem 5 implies that Conjecture 21 is true for star-shaped
sets S.
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