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Abstract
We study a natural intrinsic definition of geometric simplices in Riemannian manifolds of arbit-
rary finite dimension, and exploit these simplices to obtain criteria for triangulating compact
Riemannian manifolds. These geometric simplices are defined using Karcher means. Given a
finite set of vertices in a convex set on the manifold, the point that minimises the weighted sum
of squared distances to the vertices is the Karcher mean relative to the weights. Using barycentric
coordinates as the weights, we obtain a smooth map from the standard Euclidean simplex to the
manifold. A Riemannian simplex is defined as the image of the standard simplex under this bary-
centric coordinate map. In this work we articulate criteria that guarantee that the barycentric
coordinate map is a smooth embedding. If it is not, we say the Riemannian simplex is degenerate.
Quality measures for the “thickness” or “fatness” of Euclidean simplices can be adapted to apply
to these Riemannian simplices. For manifolds of dimension 2, the simplex is non-degenerate if it
has a positive quality measure, as in the Euclidean case. However, when the dimension is greater
than two, non-degeneracy can be guaranteed only when the quality exceeds a positive bound
that depends on the size of the simplex and local bounds on the absolute values of the sectional
curvatures of the manifold. An analysis of the geometry of non-degenerate Riemannian simplices
leads to conditions which guarantee that a simplicial complex is homeomorphic to the manifold.
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1 Introduction

The standard definition of a Euclidean simplex as the convex hull of its vertices is not useful
for defining simplices in general Riemannian manifolds. Besides the problem that convex
hulls are difficult to compute, the resulting objects could not be used as building blocks for
triangulations: a minimising geodesic between two points on a shared facet would have to lie
within the facet, which is not a realisable constraint in general. A more detailed discussion
and references can be found in the full version [9] of this work.

Given the vertices, a geometric Euclidean simplex can also be defined as the domain on
which the barycentric coordinate functions are non-negative. This definition does extend
to general Riemannian manifolds in a natural way. The construction is based on the fact
that the barycentric coordinate functions can be defined by a “centre of mass” construction.
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256 Riemannian Simplices and Triangulations

Suppose {v0, . . . , vn} ⊂ Rn, and (λi)0≤i≤n is a set of non-negative weights that sum to 1. If
u is the unique point that minimises the function

y 7→
n∑
i=0

λidRn(y, vi)2, (1)

where dRn(x, y) = |x− y| is the Euclidean distance, then u =
∑
λivi, and if the vi are affinely

independent, then the λi are the barycentric coordinates of u in the simplex [v0, . . . , vn].
We can view a given set of barycentric coordinates λ = (λ0, . . . , λn) as a point in Rn+1.

The set ∆n of all points in Rn+1 with non-negative coefficients that sum to 1 is called the
standard Euclidean n-simplex . Thus the minimisation of the function (1) defines a map from
the standard Euclidean simplex to the Euclidean simplex [v0, . . . , vn] ⊂ Rn.

If instead the points {vi} lie in a sufficiently small neighbourhood W in a Riemannian
manifold M , then, by using the metric of the manifold instead of dRn in Equation (1), we
obtain a function Eλ : W → R that has a unique minimum xλ ∈W . In this way we obtain a
mapping λ 7→ xλ from ∆n to W . We call the image of this map an intrinsic simplex, or a
Riemannian simplex.

Karcher [10] studied such centre of mass constructions extensively in the Riemannian
setting, and this kind of averaging technique is often called “Karcher means”. More recently,
Rustamov [13] introduced barycentric coordinates on a surface via Karcher means. Sander [14]
used the method in arbitrary dimensions to define Riemannian simplices as described above.
We are not aware of any published work exploiting this notion of Riemannian simplices prior
to that of Rustamov [13] and Sander [14], although the idea was known much earlier [1,
§ 6.1.5].

Our work is motivated by a desire to develop general sampling density criteria for
triangulations of manifolds. To this end we need to establish a property that Sander did not
consider. We need to ensure that the map from the Euclidean simplex to the manifold is a
smooth embedding. This ensures that the barycentric coordinates mapped to the manifold
do in fact provide a local system of coordinates. If the map is not an embedding, we call
the Riemannian simplex degenerate. Independently, von Deylen [16] has also treated the
question of degeneracy of Riemannian simplices. His work includes a detailed analysis of the
geometry of the barycentric coordinate map, and several applications. He does not address
the problem of sampling density criteria for triangulation.

A Euclidean simplex is non-degenerate if and only if its vertices are affinely independent.
We show that a Riemannian simplex is non-degenerate if and only if, for every point in
the simplex, the vertices are affinely independent when they are lifted by the inverse of the
exponential map to the tangent space at that point.

In a two dimensional manifold this condition is satisfied for a triangle as long as the
vertices do not lie on a common geodesic. Similar to the Euclidean case, such a configuration
can be avoided by applying an arbitrarily small perturbation to the vertices. However, when
the dimension is greater than two, a non-trivial constraint on simplex quality is required;
one that cannot be attained by an arbitrarily small perturbation of the vertices.

In order to define a Riemannian simplex, we need the vertices to lie in a geodesically
convex set, and this imposes a bound on the edge lengths with respect to an upper bound
on the local sectional curvatures. For a surface, this is the only real constraint needed to
ensure a non-degenerate simplex. In higher dimensions, we require the simplex size to be
constrained also by a lower bound on the sectional curvatures.



R. Dyer, G. Vegter, and M. Wintraecken 257

Outline and main results

In Section 2 we present the framework for centre of mass constructions, and introduce the
barycentric coordinate map and Riemannian simplices. Riemannian simplices are defined
(Definition 2) as the image of the barycentric coordinate map, so they are “filled in” geometric
simplices. Each of the three subsequent sections is devoted to presenting one of our three
main results: conditions for non-degeneracy of Riemannian simplices, Theorem 6; conditions
for triangulation, Theorem 11; and the geometric fidelity of the resulting triangulation,
Theorem 14.

In Section 3 we establish criteria to ensure that a Riemannian simplex is non-degenerate.
In the tangent space at any point in a Riemannian simplex σM , there is a Euclidean simplex
σ(x) that is a natural approximation of σM . We give a characterisation of non-degeneracy
of σM in terms of these Euclidean simplices: σM is non-degenerate if and only if σ(x) is a
non-degenerate Euclidean simplex for every x ∈ σM (Proposition 4).

The thickness of a Euclidean simplex, defined in Section 3.1, is a measure of its quality,
i.e., how far it is from being degenerate. We choose a representative σ(p) for some p ∈ σM
and observe that all the σ(x) are geometrically small perturbations of σ(p). We then exploit
previous results on the stability of Euclidean simplex quality [2, Lemma 8] to establish a
simple inequality, relating the thickness of σ(p) to the edge lengths of σM and a bound on
the absolute value of the local sectional curvatures, which when satisfied guarantees that all
the σ(x) are non-degenerate. It then follows, from the above-mentioned Proposition 4, that
σM is non-degenerate, and this is Theorem 6.

In Section 4 we develop our criteria for triangulating manifolds. A triangulation of a
manifold M is a homeomorphism H : |A| →M , where A is an abstract simplicial complex,
and |A| is its carrier (topological realisation).1 We establish properties of maps whose
differentials are all small perturbations of a fixed linear isometry, and use these properties to
reveal conditions under which the star of a vertex in a manifold complex will be embedded
into M . This allows us to express, in Proposition 8, generic conditions that ensure that a
simplicial complex is homeomorphic to M . We then demonstrate that the differential of the
barycentric coordinate map can be bounded as required by Proposition 8, and thus arrive at
our triangulation criteria expressed in Theorem 11.

The triangulation H : |A| →M is defined by the barycentric coordinate map on each of
the simplices. The quantative aspect of the triangulation criteria is expressed in terms of a
scale parameter h which bounds the edge lengths of the Riemannian simplices defined by the
triangulation. This bound on h is of the same character as the non-degeneracy criteria: it
depends on a thickness bound t0 governing the quality of the simplices involved, and also on
a bound on the absolute value of the sectional curvatures.

The complex A in Theorem 11 naturally admits a piecewise linear metric by assigning
edge lengths to the simplices given by the geodesic distance in M between the endpoints.
In Section 5 we observe that in order to ensure that this does in fact define a piecewise-flat
metric, we need to employ slightly stronger constraints on the scale parameter h. In this
case, the complex A becomes a good geometric approximation of the original manifold, as
expressed in Theorem 14, which states that the metric distortion of H is proportional to h2.

1 In fact the triangulations of interest to us have the property that the restriction of H to each simplex
in |A| is a smooth embedding, and also the star of each simplex admits a piecewise linear embedding
into Rn. These additional properties ensure that A represents the unique piecewise linear structure
associated with M . See Thurston [15, Thm 3.10.2], or Munkres [12, Cor. 10.13] for details.
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2 Riemannian simplices

In this section we summarise the essential properties of Karcher means, and define Riemannian
simplices. We work with an n-dimensional Riemannian manifold M . The centre of mass
construction developed by Karcher [10] hinges on the notion of convexity in a Riemannian
manifold. A set B ⊆M is convex if any two points x, y ∈ B are connected by a minimising
geodesic γxy that is unique in M , and contained in B. For c ∈M , the geodesic ball of radius
r centred at c is the set BM (c; r) of points in M whose distance from c is less than r, and we
denote its closure by BM (c; r). If r is smaller than ρ0, defined below (4), then BM (c; r) will
be convex [5, §6.4].

Recall that the exponential map at p ∈M sends a vector v in the tangent space TpM to
the point expp(v) defined by the geodesic of length |v| emanating from p in the direction v.
The exponential map is a diffeomorphism when restricted to a ball whose radius is smaller
than the injectivity radius.

In our context, we are interested in finding a weighted centre of mass of a finite set
{p0, . . . pj} ⊂ B ⊂M , where the containing set B is open, and its closure B is convex. The
centre of mass construction is based on minimising the function Eλ : B → R defined by

Eλ(x) = 1
2
∑
i

λidM (x, pi)2, (2)

where the λi ≥ 0 are non-negative weights that sum to 1, and dM is the geodesic distance
function on M . Karcher’s first simple observation is that the minima of Eλ must lie in the
interior of B, i.e., in B itself. This follows from considering the gradient of Eλ:

grad Eλ(x) = −
∑
i

λi exp−1
x (pi). (3)

At any point x on the boundary of B, the gradient vector lies in a cone of outward pointing
vectors. It follows that the minima of Eλ lie in B. The more difficult result that the minimum
is unique, Karcher showed by demonstrating that Eλ is convex. If B ⊆M is a convex set, a
function f : B → R is convex if for any geodesic γ : I → B, the function f ◦ γ is convex. If f
has a minimum in B, it must be unique. By Equation (3), it is the point x where∑

i

λi exp−1
x (pi) = 0.

Our results will require a bound Λ on the absolute value of the sectional curvatures in
M . However, the definition of Riemannian simplices only requires an upper bound on the
sectional curvatures, which we denote by Λ+. We denote the injectivity radius of M by ι.
We have the following result [10, Thm 1.2]:

I Lemma 1 (Unique centre of mass). If {p0, . . . , pj} ⊂ Bρ ⊂M , and Bρ is an open ball of
radius ρ with

ρ < ρ0 = min
{
ι

2 ,
π

4
√

Λ+

}
(4)

(if Λ+ ≤ 0 we take 1/
√

Λ+ to be infinite), then on any geodesic γ : I → Bρ, we have

d2

dt2 Eλ(γ(t)) ≥ C(Λ+, ρ) > 0, (5)

where C(Λ+, ρ) is a positive constant depending only on Λ+ and ρ. In particular, Eλ is
convex and has a unique minimum in Bρ, characterised by the vanishing of the gradient (3).
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I Definition 2 (Riemannian simplex). If a finite set σj = {p0, . . . , pj} ⊂M in an n-manifold
is contained in an open geodesic ball Bρ whose radius, ρ, satisfies Equation (4), then σj is
the set of vertices of a geometric Riemannian simplex, denoted σjM , and defined to be the
image of the map

Bσj :∆j →M

λ 7→ argmin
x∈Bρ

Eλ(x).

We say that σjM is non-degenerate if Bσj is a smooth embedding; otherwise it is degenerate.

I Remark. Lemma 1 demands that a Riemannian simplex be contained in a ball whose
radius is constrained by ρ0. Thus Riemannian simplices always have edge lengths less than
2ρ0. If the longest edge length, L(σM ), of σM is less than ρ0, then σM must be contained
in the closed ball of radius L(σM ) centred at a vertex. Indeed, any open ball centred at a
vertex whose radius is larger than L(σM ), but smaller than ρ0, must contain the vertices
and have a convex closure. The simplex is thus contained in the intersection of these balls.
If L(σM ) ≥ ρ0, then a ball of radius L(σM ) need not be convex. In this case we claim only
that σM is contained in a ball of radius 2ρ0 centred at any vertex.

Define an i-face of σjM to be the image of an i-face of ∆j . Since an i-face of ∆j may be
identified with ∆i (e.g., by an order preserving map of the vertex indices), the i-faces of
σjM are themselves Riemannian i-simplices. In particular, if τ and µ are the vertices of
Riemannian simplices τM and µM , and σi = τ ∩ µ, then the Riemannian i-simplex σiM is a
face of both τM and µM . The edges of a Riemannian simplex are the Riemannian 1-faces.
We observe that these are geodesic segments. We will focus on full dimensional simplices.
Unless otherwise specified, σM will refer to a Riemannian simplex defined by a set σ of n+ 1
vertices in our n-dimensional manifold M .

The barycentric coordinate map Bσ is differentiable. This follows from the implicit
function theorem, as is shown by Buser and Karcher [5, §8.3.3], for example.

A Riemannian simplex is not convex in general, but by Karcher’s observation it is
contained in any open set that contains the vertices and has a convex closure. Thus the
simplex is contained in the intersection of such sets.

Equation (4) gives an upper bound on the size of a Riemannian simplex that depends only
on the injectivity radius and an upper bound on the sectional curvature. For example, in a
non-positively curved manifold, the size of a well defined Riemannian simplex is constrained
only by the injectivity radius. However, if the dimension n of the manifold is greater than 2,
we will require also a lower bound on the sectional curvatures in order to ensure that the
simplex is non-degenerate.

3 Non-degeneracy criteria

In this section we establish geometric criteria that ensure that a Riemannian simplex is
non-degenerate. We first review the properties of Euclidean simplices, including the thickness
quality measure, which parameterises how far a simplex is from being degenerate. We observe
that we can bound the change in the thickness of a simplex if the edge lengths are perturbed
a small amount.

Next we examine the differential of the barycentric coordinate map, and arrive at a
characterisation of non-degenerate Riemannian simplices in terms of affine independence
(Proposition 4). The Rauch comparison theorem is a central result in Riemannian geometry

SoCG’15
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which allows us to bound the metric distortion of the exponential map. Combined with
the stability of the thickness of Euclidean simplices, this bound on the metric distortion
yields conditions which ensure that a Riemannian simplex meets the affine independence
characterisation of non-degeneracy, resulting in Theorem 6.

3.1 The stability of Euclidean simplex quality
A Euclidean simplex σ of dimension j is defined by a set of j + 1 points in Euclidean space
σ = {v0, . . . , vj} ⊂ Rn. In general we work with abstract simplices, even though we attribute
geometric properties to the simplex, inherited from the embedding of the vertices in the
ambient space. When we wish to make the dimension explicit, we write it as a superscript,
thus σj is a j-simplex. Traditional “filled in” geometric simplices are denoted by boldface
symbols; σE = conv(σ) is the convex hull of σ.

A Euclidean simplex σ = {v0, . . . , vj} ⊂ Rn has a number of geometric attributes. An
i-face of σ is a subset of i+ 1 vertices, and a (j − 1) face of a j-simplex is a facet. The facet
of σ that does not have vi as a vertex is denoted σvi . The altitude of vi ∈ σ is the distance
from vi to the affine hull of σvi , denoted avi(σ). The longest edge length is denoted L(σ).
When there is no risk of confusion, we will omit explicit reference to the simplex, and ignore
the distinction between the vertices and their labels. Thus we write L, and ai instead of
L(σ) and avi(σ).

The thickness of σj , defined as

t(σj) =
{

1 if j = 0
minv∈σj avjL otherwise.

If t(σj) = 0, then σj is degenerate. We say that σj is t0-thick, if t(σj) ≥ t0. If σj is t0-thick,
then so are all of its faces. We write t for the thickness if the simplex in question is clear.

The barycentric coordinate functions λi associated to σj are affine functions on the affine
hull of the simplex λi : aff(σj) → R that satisfy λi(vj) = δij and

∑j
i=0 λi = 1. It is often

convenient to choose one of the vertices, v0 say, of σ to be the origin. We let P be the matrix
whose ith column is vi− v0. Then the barycentric coordinate functions λi are linear functions
for i > 0, and they are dual to the basis defined by the columns of P . This means that if we
represent the function λi as a row vector, then the matrix Q whose ith row is λi satisfies
QP = Ij×j .

A full dimensional Euclidean simplex σ is non-degenerate, if and only if the corresponding
matrix P is non-degenerate. In particular, if σ is full dimensional (i.e., j = n), then Q = P−1.
Suppose σ ⊂ Rn is an n-simplex. If ξ ∈ Rn, let λ(ξ) = (λ1(ξ), . . . , λn(ξ))T. Then λ(ξ) is the
vector of coefficients of ξ − v0 in the basis defined by the columns of P . I.e., ξ − v0 = Pλ(ξ).

The quality of a simplex σ is closely related to the quality of P , which can be quantified
by means of its singular values. In fact, we are only interested in the smallest and largest
singular values. The smallest singular value, sk(P ) = inf |x|=1 |Px|, vanishes if and only if the
matrix P does not have full rank. The largest singular value is the same as the operator norm
of P , i.e., s1(P ) = ‖P‖ = sup|x|=1 |Px|. The thickness of σ provides a lower bound [3, Lem.
2.4] on the smallest singular value of P . Specifically, for a j-simplex, we have sj(P ) ≥

√
jtL.

The crucial property of thickness for our purposes is its stability. If two Euclidean
simplices with corresponding vertices have edge lengths that are almost the same, then their
thicknesses will be almost the same. This allows us to quantify a bound on the smallest
singular value of the matrix associated with one of the simplices, given a bound on the other,
as shown in the following Lemma [2, Lem. 8]:
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I Lemma 3 (Thickness under distortion). Suppose that σ = {v0, . . . , vk} and σ̃ = {ṽ0, . . . , ṽk}
are two k-simplices in Rn such that

| |vi − vj | − |ṽi − ṽj | | ≤ C0L(σ) with C0 = ηt(σ)2

4 and 0 ≤ η ≤ 1,

for all 0 ≤ i < j ≤ k. Let P be the matrix whose ith column is vi−v0, and define P̃ similarly.
Then

sk(P̃ ) ≥ (1− η)sk(P ) and t(σ̃) ≥ 4
5
√
k

(1− η)t(σ).

3.2 The affine independence criterion for non-degeneracy
In this subsection we show that a Riemannian simplex σM is non-degenerate if and only if, for
any x ∈ σM , the lift of the vertices by the inverse exponential map yields a non-degenerate
Euclidean simplex. The expression for the differential of the barycentric coordinate map
obtained in Equation (7) below is the result of a particular case of an argument presented by
Buser and Karcher [5, §8.3] in a more general setting.

A Riemannian simplex σM is defined by its vertices σ = {p0, . . . , pn} ⊂ M , which are
constrained to lie in a convex ball Bρ ⊆M . For any x ∈ Bρ we define a Euclidean simplex
σ(x) ⊂ TxM by σ(x) = {v0(x), . . . , vn(x)}, where vi(x) = exp−1

x (pi). The vertices pi ∈ Bρ
are considered fixed, but x ∈ Bρ is a variable. We continue to use a boldface symbol when
we are referring to a simplex as a set of non-negative barycentric coordinates, and normal
type refers to the finite vertex set; the convex hull of σ(x) is σE(x).

We work in a domain U ⊆ Rn defined by a chart φ : W → U with Bρ ⊆ W ⊆ M . Let
σ̃ = φ(σ) be the image of the vertices of a Riemannian n-simplex σM ⊂ Bρ. Label the
vertices of σ̃ = {ṽ0, . . . , ṽn} such that ṽi = φ(pi), and assume ṽ0 is at the origin. The affine
functions λi : u 7→ λi(u) are the barycentric coordinate functions of σ̃. We consider grad Eλ,
introduced in Equation (3), now to be a vector field that depends on both u ∈ U and x ∈ Bρ.
Specifically, we consider the vector field ν : U ×Bρ → TM defined by

ν(u, x) = −
n∑
i=0

λi(u)vi(x). (6)

Let b : σ̃E → σM be defined by b = Bσ ◦ L, where L is the canonical linear isomorphism
that takes the vertices of σ̃ to those of ∆n, and Bσ is the barycentric coordinate map
introduced in Definition 2. This map is differentiable, by the arguments presented by Buser
and Karcher, and ν(u, b(u)) = 0 for all u ∈ σ̃E. Regarding ν as a vector field along b, its
derivative may be expanded as

∂uν + (∇ν) db = 0,

where ∂uν denotes the differential of ν(u, x) with x fixed, ∇ν is the covariant differential of
ν(u, x) with u fixed, and db is the differential of b, our barycentric coordinate map onto σM ,
i.e., dbu : TuRn → TxM .

Our objective is to exhibit conditions that ensure that db is non-degenerate. It follows from
the strict convexity condition (5) of Lemma 1 that the map ∇ν : w 7→ ∇wν is non-degenerate.
Indeed, if w ∈ TxM for some x ∈ Bρ, there is a geodesic γ : I → Bρ with γ′(0) = w, and
d2

dt2 Eλ(γ(t))
∣∣
t=0 = 〈∇wν, w〉γ(0) > 0. Therefore, we have that

db = − (∇ν)−1
∂uν, (7)

and thus db is full rank if and only if ∂uν is full rank.

SoCG’15
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From (6) we observe that when x is fixed, ν is the unique affine map Rn ⊃ U → TxM , that
sends the vertices of σ̃ to the corresponding vertices of σ(x). In particular, (∂uν)v = (∂uν)w for
all v, w ∈ U . Thus ∂uν is the unique linear map that sends the basis {ṽi} to {

(
vi(x)−v0(x)

)
}.

We choose an arbitrary linear isometry to establish a coordinate system on TxM , and
let P be the matrix whose ith column is

(
vi(x)− v0(x)

)
. Then, if P̃ is the matrix whose ith

column is ṽi, we obtain [9] the matrix expression for ∂uν:

∂uν = −PP̃−1. (8)

From Equation (8) we conclude that ∂uν is full rank if and only if P is of full rank, and
this is the case if and only if σ(x) is a non-degenerate Euclidean simplex, i.e., its vertices
{vi(x)} are affinely independent.

We observe that if db is non-degenerate on σM , then b must be injective. Indeed, if
x = b(u), then {λi(u)}, the barycentric coordinates of u with respect to σ̃, are also the
barycentric coordinates of the origin in TxM , with respect to the simplex σ(x). Thus if
b(u) = x = b(ũ), then λi(u) = λi(ũ), and we must have ũ = u by the uniqueness of the
barycentric coordinates.

In summary, we have

I Proposition 4. A Riemannian simplex σM ⊂M is non-degenerate if and only if σ(x) ⊂
TxM is non-degenerate for every x ∈ σM .

3.3 Metric distortion of exponential transition
Now we choose the coordinate chart φ to be the inverse of the exponential map at some
fixed point p ∈ Bρ. Specifically, we set φ = u ◦ exp−1

p : W → Rm, where u : TpM → Rn
is an arbitrary linear isometry that defines the u-coordinate functions in U = φ(W ). The
Euclidean simplex σ̃ in the coordinate domain can now be identified with σ(p).

Our goal now is to estimate the metric distortion incurred when we map a simplex from
one tangent space to another via the exponential maps. This will enable us to establish
conditions ensuring that σ(x) is non-degenerate, based on quality assumptions on σ(p).
Specifically, we want to bound the difference in the corresponding edge lengths of σ(p) and
σ(x), and since the exponential transition function

exp−1
x ◦ expp : TpM → TxM, (9)

maps σ(p) to σ(x), it suffices to bound the metric distortion of exp−1
x and expp. This is

accomplished by the bounds on the norm of the differential of the exponential map obtained
from the Rauch Comparison Theorem (c.f. Buser and Karcher [5, §6.4]). For our purposes
the theorem can be stated [9] as:

I Lemma 5 (Rauch Theorem). Suppose the sectional curvatures inM are bounded by |K| ≤ Λ.
If v ∈ TpM satisfies |v| = r < π

2
√

Λ
, then for any vector w ∈ Tv(TpM) ∼= TpM , we have(

1− Λr2

6

)
|w| ≤

∣∣(d expp)vw
∣∣ ≤ (1 + Λr2

2

)
|w| .

If x, p, y ∈ Bρ, with y = expp(v), then |v| < 2ρ, and
∣∣exp−1

x (y)
∣∣ < 2ρ, and Lemma 5 tells us

that∥∥∥d (exp−1
x ◦ expp

)
v

∥∥∥ ≤ ∥∥∥(d exp−1
x

)
y

∥∥∥∥∥∥(d expp
)
v

∥∥∥ ≤ 1 + 5Λρ2.
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The image of the line between vi(p) and vj(p) in TpM , under the map exp−1
x ◦ expp, is a

curve between vi(x) and vj(x) in TxM , whose length is bounded by

|vi(x)− vj(x)| ≤ (1 + 5Λρ2) |vi(p)− vj(p)| .

We can do the same argument the other way, so

|vi(p)− vj(p)| ≤ (1 + 5Λρ2) |vi(x)− vj(x)| ,

and we find∣∣ |vi(x)− vj(x)| − |vi(p)− vj(p)|
∣∣ ≤ 5Λρ2(1 + 5Λρ2) |vi(p)− vj(p)|
≤ 21Λρ2 |vi(p)− vj(p)| when ρ < ρ0.

Letting P be the matrix associated with σ(p), and using C0 = 21Λρ2, in Lemma 3, we
find that the matrix P̃ associated with σ(x) in Proposition 4 is non-degenerate if σ(p) satisfies
a thickness bound of t0 > 10

√
Λρ, and we have

I Theorem 6 (Non-degeneracy criteria). Suppose M is a Riemannian manifold with sectional
curvatures bounded by |K| ≤ Λ, and σM is a Riemannian simplex, with σM ⊂ Bρ ⊂ M ,
where Bρ is an open geodesic ball of radius ρ with

ρ < ρ0 = min
{
ι

2 ,
π

4
√

Λ

}
.

Then σM is non-degenerate if there is a point p ∈ Bρ such that the lifted Euclidean simplex
σ(p) has thickness satisfying

t(σ(p)) > 10
√

Λρ.

The ball Bρ may be chosen so that this inequality is necessarily satisfied if

t(σ(p)) > 10
√

ΛL(σM ), (10)

where L(σM ) is the geodesic length of the longest edge in σM .

The last assertion follows from the remark following Definition 2: If L(σM ) < ρ0, then σM
is contained in a closed ball of radius L(σM ) centred at one of the vertices.

4 Triangulation criteria

Suppose we have a finite set of points S in a compact Riemannian manifold M , and an
(abstract) simplicial complex A whose vertex set is S, and such that every simplex in A
defines a non-degenerate Riemannian simplex. When can we be sure that A triangulates
M? Consider a convex ball Bρ centred at p ∈ S. We require that, when lifted to TpM , the
simplices near p triangulate a neighbourhood of the origin. If we require that the simplices
be small relative to ρ, and triangulate a region that extends to near the boundary of the
lifted ball, then Riemannian simplices outside of Bρ cannot have points in common with the
simplices near the centre of the ball, and it is relatively easy to establish a triangulation.

Instead, we aim for finer local control on the geometry. We establish conditions (Lemma 7)
that ensure that the complex consisting of simplices incident to p, (i.e., the star of p) is
embedded. In order to achieve this, we require finer control on the differential of the map
into the manifold than bounds on its singular values.
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264 Riemannian Simplices and Triangulations

We are interested in smooth maps from non-degenerate closed Euclidean simplices of
dimension n into an n-dimensional manifold M . We will work within coordinate charts, so
our primary focus will be on maps of the form F : σnE → Rn. Requiring that F be smooth
on the closed set σnE means that its partial derivatives are continuous on σnE. Equivalently,
F can be extended to a smooth map on an open neighbourhood of σnE. We demand that
dFu is always close to the same linear isometry T : Rn → Rn for all u ∈ σE:

‖dFu − T‖ ≤ η. (11)

This is a stronger constraint than can be obtained by a bound of the form (1 − η) |w| ≤
|dFuw| ≤ (1 + η) |w|, as in the Rauch theorem (Lemma 5). In this latter case we can only
say that ‖dFu − Tu‖ ≤ η, where Tu is a linear isometry that depends on u.

A simplicial complex C is embedded in Rn if the vertices lie in Rn and the convex hulls
of any two simplices in C either do not interesect, or their intersection is the convex hull of a
simplex in C. We identify |C|, the carrier of C, with the union of these geometric simplices;
the complex naturally inherits a piecewise flat metric from the embedding.

If p is a vertex in C, we define the star of p to be the subcomplex star(p) of C consisting
of all simplices that contain p, together with the faces of these simplices. We say that star(p)
is a full star if |star(p)| is a closed topological ball of dimension n with p in its interior, and
C contains no simplices of dimension greater than n.

The scale of C is an upper bound on the length of the longest edge in C, and is denoted by
h. We say that C is t0-thick if each simplex in C has thickness greater than t0. The dimension
of C is the largest dimension of the simplices in C. We call a complex of dimension n an
n-complex. If every simplex in C is the face of an n-simplex, then C is a pure n-complex.

A map F : |C| → Rn is smooth on C if for each σ ∈ C the restriction F
∣∣
σE

is smooth. This
means that d(F

∣∣
σE

) is well defined, and even though dF is not well defined, we will use this
symbol when the particular restriction employed is either evident or unimportant. When the
underlying complex on which F is smooth is unimportant, we simply say that F is piecewise
smooth.

The strong constraint on the differential allows us to ensure that thick stars are embedded:

I Lemma 7 (Embedding a star). Suppose C = star(p) is a t0-thick, pure n-complex embedded
in Rn such that all of the n-simplices are incident to a single vertex, p, and p ∈ int(|C|) (i.e.,
star(p) is a full star). If F : |C| → Rn is smooth on C, and satisfies

‖dF − Id‖ < nt0 (12)

on each n-simplex of C, then F is an embedding.

The proof [9, Lem. 14] hinges on the fact that thickness provides a lower bound on the
angle between a radial ray from p and a facet on the boundary of star(p). Together with the
bound on the differential of F , this enables us to demonstrate that the boundary of star(p)
is embedded by F . Then, since each simplex individually is embedded by F , topological
considerations imply that star(p) itself is embedded by F .

We use this observation to establish conditions that ensure that a map H : |A| →M is a
homeomorphism. If H is such that for every vertex in A, the restriction of H to |star(p)| is
an embedding, then H is a covering map. So if H is injective, it is a triangulation. Injectivity
is established by constraining the size of the simplices relative to the injectivity radius of
M , and by implicitly constraining the metric distortion associated with H. We obtain the
following proposition, which generically models the situation we will work with when we
describe a triangulation by Riemannian simplices:
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I Proposition 8 (Triangulation). Let A be a manifold simplicial n-complex with finite vertex
set S, and M a compact Riemannian manifold with an atlas {(Wp, φp)}p∈S indexed by S.
Suppose H : |A| →M satisfies:
1. For each p ∈ S the secant map of φp ◦ H restricted to |star(p)| is a piecewise linear

embedding Lp : |star(p)| → Rn such that each simplex σ ∈ Cp = Lp(star(p)) is t0-thick,
and |Cp| ⊂ BRn(Lp(p);h), with Lp(p) ∈ int(|Cp|). The scale parameter h must satisfy
h < ι

4 , where ι is the injectivity radius of M .
2. For each p ∈ S, φp : Wp

∼=−→ Up ⊂ Rn is such that B = BRn(Lp(p); 3
2h) ⊆ Up, and∥∥(dφ−1

p )u
∥∥ ≤ 4

3 , for every u ∈ B.
3. The map

Fp = φp ◦H ◦ L−1
p : |Cp| → Rn

satisfies

‖(dFp)u − Id‖ ≤ nt0
2

on each n-simplex σ ∈ Cp, and every u ∈ σE.
Then H is a smooth triangulation of M .

Proof. By Lemma 7, Fp is a homeomorphism onto its image. It follows then that H
∣∣
|star(p)|

is an embedding for every p ∈ S. Therefore, since |A| is compact, H : |A| →M is a covering
map.

Given x ∈ |A|, with x ∈ σE, and p a vertex of σE, let x̃ = Lp(x) ∈ |Cp|. Then
the bound on dF implies that |Fp(x̃)− Lp(p)| ≤

(
1 + nt0

2
)
h ≤ 3

2h, so Fp(x̃) ∈ B. Since
φ−1
p ◦ Fp(x̃) = H(x), and

∣∣(dφ−1
p )F (u)(dFp)u

∣∣ ≤ 4
3

(
1 + nt0

2

)
≤ 2

for any u ∈ σE ⊂ |Cp|, we have that dM (H(p), H(x)) ≤ 2h.
Suppose y ∈ |A| with H(y) = H(x). Let τ ∈ A with y ∈ τE, and q ∈ τ a vertex. Then

dM (H(p), H(q)) ≤ 4h < ι. Thus there is a path γ from H(x) to H(p) to H(q) to H(y) = H(x)
that is contained in the topological ball BM (H(p); ι), and is therefore null-homotopic. Since
H is a covering map, this implies that x = y. Thus H is injective, and therefore defines a
smooth triangulation. J

In the context of the barycentric coordinate mapping defining Riemannian simplices, we
obtain the desired strong bound on the differential by means of a refinement of the Rauch
theorem due to Buser and Karcher [5, §6.4], which for our purposes may be stated as:

I Lemma 9 (Strong Rauch Theorem). Assume the sectional curvatures on M satisfy |K| ≤ Λ,
and suppose there is a unique minimising geodesic between x and p. If v = exp−1

p (x), and

|v| = dM (p, x) = r ≤ π

2
√

Λ
,

then∥∥(d expp)v − Txp
∥∥ ≤ Λr2

2 ,

where Txp denotes the parallel transport operator along the unique minimising geodesic from
p to x.
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266 Riemannian Simplices and Triangulations

Given three points x, y, p ∈ Bρ in a convex ball, we use further results of Buser and
Karcher [5, §6] to obtain a bound on ‖Txp − TxyTyp‖ with respect to ρ and a bound on the
absolute value of the sectional curvatures. This result together with Lemma 9 yields a bound
of the desired form (11) on the differential of exponential transition functions:

I Proposition 10 (Strong exponential transition bound). Suppose the sectional curvatures on
M satisfy |K| ≤ Λ. Let v ∈ TpM , with y = expp(v). If x, y ∈ BM (p; ρ), with

ρ <
1
2ρ0 = 1

2 min
{
ι

2 ,
π

4
√

Λ

}
,

then∥∥d(exp−1
x ◦ expp)v − Txp

∥∥ ≤ 6Λρ2.

Proposition 10 in turn allows us to obtain the desired form of bound on the differential (7)
of the barycentric coordinate map so that we can exploit Proposition 8 to obtain sampling
criteria for triangulating a Riemannian manifold, our main result:

I Theorem 11. Suppose M is a compact n-dimensional Riemannian manifold with sectional
curvatures K bounded by |K| ≤ Λ, and A is an abstract simplicial complex with finite vertex
set S ⊂M . Fix a thickness bound t0 > 0, and let

h = min
{
ι

4 ,
√
nt0

6
√

Λ

}
. (13)

If
1. for every p ∈ S, the vertices of star(p) are contained in BM (p;h), and the balls
{BM (p;h)}p∈S cover M ;

2. for every p ∈ S, the restriction of the inverse of the exponential map exp−1
p to the vertices

of star(p) ⊂ A defines a piecewise linear embedding of |star(p)| into TpM , realising star(p)
as a full star such that every simplex σ(p) has thickness t(σ(p)) ≥ t0,

then A triangulates M , and the triangulation is given by the barycentric coordinate map on
each simplex.

5 The piecewise flat metric

The complex A described in Theorem 11 naturally inherits a piecewise flat metric from
the construction. The length assigned to an edge {p, q} ∈ A is the geodesic distance in M
between its endpoints: `pq = dM (p, q). We first describe conditions which ensure that this
assignment of edge lengths does indeed make each σ ∈ A isometric to a Euclidean simplex.
With this piecewise flat metric on A, the barycentric coordinate map is a bi-Lipschitz map
between metric spaces H : |A| →M , and we estimate the metric distortion of this map.

If G is a symmetric positive definite n × n matrix, then it can be written as a Gram
matrix, G = PTP for some n× n matrix P . Then P describes a Euclidean simplex with one
vertex at the origin, and the other vertices defined by the column vectors. The matrix P is
not unique, but if G = QTQ, then Q = OP for some linear isometry O. Thus a symmetric
positive definite matrix defines a Euclidean simplex, up to isometry.

If σ = {p0, . . . , pn} ⊂ Bρ, is the vertex set of a Riemannian simplex σM , we define the
numbers `ij = dM (pi, pj). These are the edge lengths of a Euclidean simplex σE if and only
if the matrix G defined by

Gij = 1
2(`20i + `20j − `2ij) (14)

is positive definite.
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The same kind of argument that bounds the thickness of a simplex subjected to small
distortions of its edge lengths, Lemma 3, allows us to ensure that the numbers `ij do define
a Euclidean simplex σE if they are close enough to the edge lengths of a Euclidean simplex,
σ(p) whose thickness is bounded below. Then, again exploiting the Rauch Theorem 5, we
find we need a slightly tighter bound on the scale parameter in order to ensure that A admits
a piecewise flat metric:

I Proposition 12. If the requirements of Theorem 11 are satisfied when the scale para-
meter (13) is replaced with

h = min
{
ι

4 ,
t0

6
√

Λ

}
,

then the geodesic distances between the endpoints of the edges in A define a piecewise flat
metric on A such that each simplex σ ∈ A satisfies

t(σ) > 3
4
√
n
t0.

In the context of Theorem 11 the barycentric coordinate map on each simplex defines a
piecewise smooth homeomorphism H : |A| →M . If the condition of Proposition 12 is also
met, then A is naturally endowed with a piecewise flat metric. We wish to compare this
metric with the Riemannian metric on M . It suffices to consider an n-simplex σ ∈ A, and
establish bounds on the singular values of the differential dH. If p ∈ σ, then we can write
H
∣∣
σE

= b ◦ Lp, where Lp : σE → σE(p) is the linear map that sends σ ∈ A to σ(p) ∈ TpM .
A bound on the metric distortion of a linear map that sends one Euclidean simplex to

another is a consequence of the following (reformulation of [2, Lemma 9]):

I Lemma 13 (Linear distortion bound). Suppose that P and P̃ are non-degenerate k × k
matrices such that

P̃TP̃ = PTP + E. (15)

Then there exists a linear isometry Φ : Rk → Rk such that∥∥P̃P−1 − Φ
∥∥ ≤ s1(E)

sk(P )2 .

Taking P and P̃ to represent σE(p) and σE, we can bound |Lp| and
∣∣L−1
p

∣∣, and combined
with the bounds on db that we have already estimated, we obtain the desired bounds on dH,
and we find:

I Theorem 14 (Metric distortion). If the requirements of Theorem 11, are satisfied with the
scale parameter (13) replaced by

h = min
{
ι

4 ,
t0

6
√

Λ

}
,

then A is naturally equipped with a piecewise flat metric dA defined by assigning to each edge
the geodesic distance in M between its endpoints.

If H : |A| → M is the triangulation defined by the barycentric coordinate map in this
case, then the metric distortion induced by H is quantified as

|dM (H(x), H(y))− dA(x, y)| ≤ 50Λh2

t20
dA(x, y),

for all x, y ∈ |A|.
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6 Discussion

Traditional demonstrations that smooth manifolds can be triangulated [6, 17, 18] involve
establishing a lower bound on simplex quality that is invariant under some kind of refinement
operation, and showing that a triangulation will be achieved when the scale parameter is
sufficiently small. Theorem 11 provides a means to explicitly quantify “sufficiently small” in
this context. Similarly, an analysis of more recent triangulation algorithms in computational
geometry [8, 4] could exploit Theorem 11 to quantify a sufficient sampling density.

We refer to the criteria of Theorem 11 as sampling criteria, even though they require
a simplicial complex for their definition. Although there is no explicit constraint on the
minimal distance between points of S, one is implicitly imposed by the quality constraint
on the Riemannian simplices. The required sampling density depends on the quality of the
Riemannian simplices, which leaves open the question of what kind of quality of simplices
can we hope to attain. A Delaunay complex conforming to the requirements of Theorem 11
can be constructed [2] with the thickness t0 bounded by 2−O(n3), and even in flat manifolds,
e.g., Euclidean space, the situation is not better in general [7], but in this case, at least in
dimension 3, dramatic improvements can be made if the placement of sample points can be
structured according to a lattice [11].

More work needs to be done to understand the limitations imposed by the thickness
bound t0 that appears in the density contraint (13), but there is another aspect to the bound
that merits more attention. The non-degeneracy criterion established in Theorem 6 demands
that the Riemannian simplices be “almost flat”. In other words, if the bound on the absolute
value of the sectional curvatures in the neighbourhood is very large, then the simplex must be
very small. However, we know that in spaces of constant curvature, where the Riemannian
simplex coincides with the usual definition of a simplex as the convex hull of its vertices,
the simplices are not constrained to be small. In hyperbolic space the edge lengths of a
non-degenerate simplex can be arbitrarily large. It seems that a more refined bound on
the scale should depend on the amount the sectional curvatures deviate from some fixed
constant, that need not be 0. Given upper and lower bounds Λ+ and Λ− on the sectional
curvatures, our preliminary unpublished calculations demonstrate a bound on simplex quality
for non-degeneracy involving Λ+ − Λ− when Λ− > 0. The same analysis in the hyperbolic
setting (Λ+ < 0) yields a more complicated expression.
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