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Abstract
We refine the bound on the packing number, originally shown by Haussler, for shallow geometric
set systems. Specifically, let V be a finite set system defined over an n-point set X; we view
V as a set of indicator vectors over the n-dimensional unit cube. A δ-separated set of V is
a subcollection W, s.t. the Hamming distance between each pair u,v ∈ W is greater than δ,
where δ > 0 is an integer parameter. The δ-packing number is then defined as the cardinality
of the largest δ-separated subcollection of V. Haussler showed an asymptotically tight bound
of Θ((n/δ)d) on the δ-packing number if V has VC-dimension (or primal shatter dimension) d.
We refine this bound for the scenario where, for any subset, X ′ ⊆ X of size m ≤ n and for
any parameter 1 ≤ k ≤ m, the number of vectors of length at most k in the restriction of V
to X ′ is only O(md1kd−d1 ), for a fixed integer d > 0 and a real parameter 1 ≤ d1 ≤ d (this
generalizes the standard notion of bounded primal shatter dimension when d1 = d). In this case
when V is “k-shallow” (all vector lengths are at most k), we show that its δ-packing number is
O(nd1kd−d1/δd), matching Haussler’s bound for the special cases where d1 = d or k = n. We
present two proofs, the first is an extension of Haussler’s approach, and the second extends the
proof of Chazelle, originally presented as a simplification for Haussler’s proof.
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1 Introduction

Let V be a set system defined over an n-point set X. We follow the notation in [19], and view
V as a set of indicator vectors in Rn, that is, V ⊆ {0, 1}n. Given a subsequence of indices
(coordinates) I = (i1, . . . , ik), 1 ≤ ij ≤ n, k ≤ n, the projection V|I of V onto I (also referred
to as the restriction of V to I) is defined as

V|I = {(vi1 , . . . ,vik ) | v = (v1, . . . ,vn) ∈ V} .

With a slight abuse of notation we write I ⊆ [n] to state the fact that I is a subsequence of
indices as above. We now recall the definition of the primal shatter function of V:
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I Definition 1 (Primal Shatter Function [21, 27]). The primal shatter function of V ⊆ {0, 1}n
is a function, denoted by πV, whose value at m is defined by πV(m) = maxI⊆[n],|I|=m |V|I |. In
other words, πV(m) is the maximum possible number of distinct vectors of V when projected
onto a subsequence of m indices.

From now on we say that V ⊆ {0, 1}n has primal shatter dimension d if πV(m) ≤ Cmd,
for all m ≤ n, where d > 1 and C > 0 are constants. A notion closely related to the primal
shatter dimension is that of the VC-dimension:

I Definition 2 (VC-dimension [19, 32]). An index sequence I = (i1, . . . , ik) is shattered by V

if V|I = {0, 1}k. The VC-dimension of V, denoted by d0 is the size of the longest sequence I
shattered by V. That is, d0 = max{k | ∃I = (i1, i2, . . . , ik), 1 ≤ ij ≤ n, with V|I = {0, 1}k}.

The notions of primal shatter dimension and VC-dimension are interrelated. By the
Sauer-Shelah Lemma (see [29, 31] and the discussion below) the VC-dimension of a set
system V always bounds its primal shatter dimension, that is, d ≤ d0. On the other hand,
when the primal shatter dimension is bounded by d, the VC-dimension d0 does not exceed
O(d log d) (which is straightforward by definition, see, e.g., [16]).

A typical family of set systems that arise in geometry with bounded primal shatter (resp.,
VC-) dimension consists of set systems defined over points in some low-dimensional space
Rd, where V represents a collection of certain simply-shaped regions, e.g., halfspaces, balls,
or simplices in Rd. In such cases, the primal shatter (and VC-) dimension is a function of d;
see, e.g., [16] for more details. When we flip the roles of points and regions, we obtain the
so-called dual set systems (where we refer to the former as primal set systems). In this case,
the ground set is a collection S of algebraic surfaces in Rd, and V corresponds to faces of
all dimensions in the arrangement A(S) of S, that is, this is the decomposition of Rd into
connected open cells of dimensions 0, 1, . . . , d induced by S. Each cell is a maximal connected
region that is contained in the intersection of a fixed number of the surfaces and avoids
all other surfaces; in particular, the 0-dimensional cells of A(S) are called “vertices”, and
d-dimensional cells are simply referred to as “cells”; see [30] for more details. The distinction
between primal and dual set systems in geometry is essential, and set systems of both kinds
appear in numerous geometric applications, see, once again [16] and the references therein.

δ-packing

The length ‖v‖ of a vector v ∈ V under the L1 norm is defined as
∑n
i=1 |vi|, where vi is the

ith coordinate of v, i = 1, . . . , n. The distance ρ(u,v) between a pair of vectors u,v ∈ V is
defined as the L1 norm of the difference u− v, that is, ρ(u,v) =

∑n
i=1 |ui − vi|. In other

words, it is the symmetric difference distance between the corresponding sets represented by
u, v.

Let δ > 0 be an integer parameter. We say that a subset of vectors W ⊆ {0, 1}n is
δ-separated if for each pair u,v ∈W, ρ(u,v) > δ. The δ-packing number for V, denote it by
M(δ,V), is then defined as the cardinality of the largest δ-separated subset W ⊆ V. A key
property, originally shown by Haussler [19] (see also [8, 9, 11, 27, 33]), is that set systems of
bounded primal shatter dimension admit small δ-packing numbers. That is:

I Theorem 3 (Packing Lemma [19, 27]). Let V ⊆ {0, 1}n be a set of indicator vectors of primal
shatter dimension d, and let 1 ≤ δ ≤ n be an integer parameter. Then M(δ,V) = O((n/δ)d),
where the constant of proportionality depends on d.

We note that in the original formulation in [19] the assumption is that the set system has
a finite VC-dimension. However, its formulation in [27], which is based on a simplification of
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the analysis of Haussler by Chazelle [8], relies on the assumption that the primal shatter
dimension is d, which is the actual bound that we state in Theorem 3. We also comment
that a closer inspection of the analysis in [19] shows that this assumption can be replaced
with that of having bounded primal shatter dimension (independent of the analysis in [8]).
We describe these considerations in Section 2.1.

Previous work. In his seminal work, Dudley [11] presented the first application of chaining,
a proof technique due to Kolmogorov, to empirical process theory, where he showed the
bound O((n/δ)d0 logd0 (n/δ)) on M(δ,V), with a constant of proportionality depending
on the VC-dimension d0 (see also previous work by Haussler [18] and Pollard [28] for an
alternative proof and a specification of the constant of proportionality). This bound was later
improved by Haussler [19], who showed M(δ,V) ≤ e(d0 +1)

( 2en
δ

)d0 (see also Theorem 3), and
presented a matching lower bound, which leaves only a constant factor gap, which depends
exponentially in d0. In fact, the aforementioned bounds are more general, and can also be
applied to classes of real-valued functions of finite “pseudo-dimension” (the special case of
set systems corresponds to Boolean functions), see, e.g., [18], however, we do not discuss this
generalization in this paper and focus merely on set systems V of finite primal shatter (resp.,
VC-) dimension.

The bound of Haussler [19] (Theorem 3) is in fact a generalization of the so-called
Sauer-Shelah Lemma [29, 31], asserting that |V| ≤ (en/d0)d0 , where e is the base of the
natural logarithm, and thus this bound is O(nd0). Indeed, when δ = 1, the corresponding
δ-separated set should include all vectors in V, and then the bound of Haussler [19] becomes
O(nd0), matching the Sauer-Shelah bound up to a constant factor that depends on d0.

There have been several studies extending Haussler’s bound or improving it in some
special scenarios. We name only a few of them. Gottlieb et al. [15] presented a sharpening of
this bound when δ is relatively large, i.e., δ is close to n/2, in which case the vectors are
“nearly orthogonal”. They also presented a tighter lower bound, which considerably simplifies
the analysis of Bshouty et al. [6], who achieved the same tightening.

A major application of packing is in obtaining improved bounds on the sample complexity
in machine learning. This was studied by Li et al. [22] (see also [18]), who presented an
asymptotically tight bound on the sample complexity, in order to guarantee a small “relative
error.” This problem has been revisited by Har-Peled and Sharir [17] in the context of
geometric set systems, where they referred to a sample of the above kind as a “relative
approximation”, and showed how to integrate it into an approximate range counting machinery,
which is a central application in computational geometry. The packing number has also been
used by Welzl [33] in order to construct spanning trees of low crossing number (see also [27])
and by Matoušek [26, 27] in order to obtain asymptotically tight bounds in geometric
discrepancy.

Our result

In the sequel, we refine the bound in the Packing Lemma (Theorem 3) so that it becomes
sensitive to the length of the vectors v ∈ V, based on an appropriate refinement of the
underlying primal shatter function. This refinement has several geometric realizations. Our
ultimate goal is to show that when the set system is “shallow” (that is, the underlying vectors
are short), the packing number becomes much smaller than the bound in Theorem 3.

Nevertheless, we cannot always enforce such an improvement, as in some settings the
worst-case asymptotic bound on the packing number is Ω((n/δ)d) even when the set system
is shallow; see [14] for an example.
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Therefore, in order to obtain an improvement on the packing number of shallow set
systems, we may need further assumptions on the primal shatter function. Such assumptions
stem from the random sampling technique of Clarkson and Shor [10], which we define as
follows. Let V be our set system. We assume that for any sequence I of m ≤ n indices,
and for any parameter 1 ≤ k ≤ m, the number of vectors in V|I of length at most k is only
O(md1kd−d1), where d is the primal shatter dimension and 1 ≤ d1 ≤ d is a real parameter.1
When k = m we obtain O(md) vectors in total, in accordance with the assumption that the
primal shatter dimension is d, but the above bound is also sensitive to the length of the
vectors as long as d1 < d. From now on, we say that a primal shatter function of this kind
has the (d, d1) Clarkson-Shor property.

Let us now denote by M(δ, k,V) the δ-packing number of V, where the vector length of
each element in V is at most k, for some integer parameter 1 ≤ k ≤ n. By these assumptions,
we can assume, without loss of generality, that k ≥ δ/2, as otherwise the distance between
any two elements in V must be strictly less than δ, in which case the packing is empty. In
Sections 2– 3 we present two proofs for our main result, stated below:

I Theorem 4 (Shallow Packing Lemma). Let V ⊆ {0, 1}n be a set of indicator vectors, whose
primal shatter function has a (d, d1) Clarkson-Shor property, and whose VC-dim is d0. Let
δ ≥ 1 be an integer parameter, and k an integer parameter between 1 and n, and suppose
that k ≥ δ/2. Then:

M(δ, k,V) = O

(
nd1kd−d1

δd

)
,

where the constant of proportionality depends on d (and d0).

This problem has initially been addressed by the second author in [13] as a major tool to
obtain size-sensitive discrepancy bounds in set systems of this kind, where it has been shown
M(δ, k,V) = O

(
nd1kd−d1 logd (n/δ)

δd

)
. The analysis in [13] is a refinement over the technique

of Dudley [11] combined with the existence of small-size relative approximations (see [13]
for more details). In the current analysis we completely remove the extra logd (n/δ) factor
appearing in the previous bound. In particular, when d1 = d (where we just have the original
assumption on the primal shatter function) or k = n (in which case each vector in V has
an arbitrary length), our bound matches the tight bound of Haussler, and thus appears as
a generalization of the Packing Lemma (when replacing VC-dimension by primal shatter
dimension). We present two proofs for Theorem 4, the first is an extension of Haussler’s
approach (Section 2), and the second is an extension of Chazelle’s proof [8] to the Packing
Lemma (Section 3).

2 First Proof: Refining Haussler’s Approach

2.1 Preliminaries
Overview of Haussler’s Approach

For the sake of completeness, we repeat some of the details in the analysis of Haussler [19]
and use similar notation for ease of presentation.

Let V ⊆ {0, 1}n be a collection of indicator vectors of bounded primal shatter dimension
d, and denote its VC-dimension by d0. By the discussion above, d0 = O(d log d). From now

1 We ignore the cases where d1 < 1, as it does not seem to appear in natural set systems – see below.
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100 Two Proofs for Shallow Packings

on we assume that V is δ-separated, and thus a bound on |V| is also a bound on the packing
number of V. The analysis in [19] exploits the method of “conditional variance” in order to
conclude

|V| ≤ (d0 + 1) ExpI
[
|V|I |

]
= O

(
d log dExpI

[
|V|I |

])
, (1)

where ExpI
[
|V|I |

]
is the expected size of V when projected onto a subset I = {i1, . . . , im−1}

of m− 1 indices chosen uniformly at random without replacements from [n], and

m :=
⌈

(2d0 + 2)(n+ 1)
δ + 2d0 + 2

⌉
= O

(
d0n

δ

)
= O

(
nd log d

δ

)
. (2)

See a preliminary version of this paper for details, as well as the facts that m ≤ n and I
consists of precisely m− 1 indices [14, Appendix B].

Moreover, we refine Haussler’s analysis to include two natural extensions (see [14, Ap-
pendix B] for details): (i) Obtain a refined bound on ExpI

[
|V|I |

]
: This extension is a direct

consequence of Inequality (1). In the analysis of Haussler ExpI
[
|V|I |

]
is replaced by its upper

bound O(md), resulting from the fact that the primal shatter dimension of V (and thus of
V|I ) is d, from which we obtain that for any choice of I, |V|I | = O((m−1)d) = O(md), with a
constant of proportionality that depends on d, and thus the packing number is O((n/δ)d), as
asserted in Theorem 3.2 However, in our analysis we would like to have a more subtle bound
on the actual expected value of |V|I |. In fact, the scenario imposed by our assumptions on
the set system eventually yields a much smaller bound on the expectation of |V|I |, and thus
on |V|. We review this in more detail below. (ii) Relaxing the bound on m. We show that
Inequality (1) is still applicable when the sample I is slightly larger than the bound in (2), as
a stand alone relation, this may result in a suboptimal bound on |V|, however, this property
will assist us to obtain local improvements over the bound on |V|, eventually yielding the
bound in Theorem 4. Specifically, in our analysis we proceed in iterations, where at the first
iteration we obtain a preliminary bound on |V| (Corollary 6), and then, at each subsequent
iteration j > 1, we draw a sample Ij of mj − 1 indices where

mj := m log(j) (n/δ) = O

(
d0n log(j) (n/δ)

δ

)
, (3)

m is our choice in (2), and log(j)(·) is the jth iterated logarithm function. Then, by a
straightforward generalization of Haussler’s analysis (described in [14, Appendix B]), we
obtain, for each j = 2, . . . , log∗ (n/δ):

|V| ≤ (d0 + 1) ExpIj

[
|V|Ij
|
]
. (4)

We note that since the bounds (1)–(4) involve a dependency on the VC-dimension d0, we
will sometimes need to explicitly refer to this parameter

in addition to the primal shatter dimension d. Nevertheless, throughout the analysis we
exploit the relation d ≤ d0 = O(d log d), mentioned in Section 1.

2 We note, however, that the original analysis of Haussler [19] does not rely on the primal shatter
dimension, and the bound on ExpI

[
|V|I |

]
is just O(md0 ) due to the Sauer-Shelah Lemma.
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2.2 Overview of the approach.

We next present the proof of Theorem 4. In what follows, we assume that V is δ-separated.
We first recall the assumption that the primal shatter function of V has a (d, d1) Clarkson-
Shor property, and that the length of each vector v ∈ V under the L1 norm is most k. This
implies that V consists of at most O(nd1kd−d1) vectors.

Since the Clarkson-Shor property is hereditary, then this also applies to any projection of
V onto a subset of indices, implying that the bound on |V|I | is at most O(md1kd−d1), where
I is a subset of m− 1 indices as above. However, due to our sampling scheme we expect that
the length of each vector in V|I should be much smaller than k, (e.g., in expectation this
value should not exceed k(m− 1)/n), from which we may conclude that the actual bound
on |V|I | is smaller than the trivial bound O(md1kd−d1). Ideally, we would like to show that
this bound is O(md1(km/n)d−d1) = O(nd1kd−d1/δd), which matches our asymptotic bound
in Theorem 4 (recall that m = O(n/δ)). However, this is likely to happen only in case where
the length of each vector in V|I does not exceed its expected value, or that there are only
a few vectors whose length deviates from its expected value by far, whereas, in the worst
case there might be many leftover “long” vectors in V|I . Nevertheless, our goal is to show
that, with some carefulness one can proceed in iterations, where initially I is a slightly larger
sample, and then at each iteration we reduce its size, until eventually it becomes O(m) and
we remain with only a few long vectors. At each such iteration V|I is a random structure
that depends on the choice of I and may thus contain long vectors, however, in expectation
they will be scarce!

Specifically, we proceed over at most log∗ (n/δ) iterations, where we perform local
improvements over the bound on |V|, as follows. Let |V|(j) be the bound on |V| after the
jth iteration is completed, 1 ≤ j ≤ log∗ (n/δ). We first show in Corollary 6 that for the
first iteration, |V| ≤ |V|(1) = O

(
nd1kd−d1 logd (n/δ)

δd

)
, with a constant of proportionality that

depends on d. Then, at each further iteration j ≥ 2, we select a set Ij of mj − 1 =
O(n log(j) (n/δ)/δ) indices uniformly at random without replacements from [n] (see (3) for
the bound on mj). Our goal is to bound ExpIj

[
|V|Ij
|
]
using the bound |V|(j−1), obtained

at the previous iteration, which, we assume by induction to be O
(
nd1kd−d1 (log(j−1) (n/δ))d

δd

)
(note that the actual constant of proportionality in our recursive scheme is 1, see Lemma 8),
where the base case j = 2 is shown in Corollary 6.

A key property in the analysis is then to show that the probability that the length of
a vector v ∈ V|Ij

(after the projection of V onto Ij) deviates from its expectation decays
exponentially (Lemma 7). Note that in our case this expectation is at most k(mj − 1)/n.
This, in particular, enables us to claim that in expectation the overall majority of the
vectors in V|Ij

have length at most O(k(mj − 1)/n), whereas the remaining longer vectors
are scarce. Specifically, since the Clarkson-Shor property is hereditary, we apply it to
V|Ij

and conclude that the number of its vectors of length at most O(k(mj − 1)/n) is

only O
(
nd1kd−d1 (log(j) (n/δ))d

δd

)
, with a constant of proportionality that depends on d. On

the other hand, due to Lemma 7 and our inductive hypothesis, the number of longer
vectors does not exceed O

(
nd1kd−d1

δd

)
, which is dominated by the first bound. We thus

conclude ExpIj

[
|V|Ij
|
]

= O
(
nd1kd−d1 (log(j) (n/δ))d

δd

)
. Then we apply Inequality (4) in order

to complete the inductive step, whence we obtain the bound on |V|(j), and thus on |V|. These
properties are described more rigorously in Lemma 8, where derive a recursive inequality
for |V|(j) using the bound on ExpIj

[
|V|Ij
|
]
. We emphasize the fact that the sample Ij is

SoCG’15



102 Two Proofs for Shallow Packings

always chosen from the original ground set [n], and thus, at each iteration we construct a
new sample from scratch, and then exploit our observation in (4).

In what follows, we also assume that δ ≤ n/2(d0+1) (where d0 is the VC-dim), as otherwise
the bound on the packing number is a constant that depends on d and d0 by the Packing
Lemma (Theorem 3). This assumption is crucial for the recursive analysis presented in this
section – see below.

2.3 The First Iteration

In order to show our bound on |V(1)|, we form a subset I1 = (i1, . . . , im1) of m1 = |I1| =
O
(
dn log (n/δ)

δ

)
indices3 with the following two properties: (i) each vector in V is mapped to a

distinct vector in V|I1
, and (ii) the length of each vector in V|I1

does not exceed O(k ·m1/n).

I Lemma 5. A sample I1 as above satisfies properties (i)–(ii), with probability at least 1/2.

A set I1 as above exists by the considerations in [13]. See also a preliminray version of
this paper for further details [14, Appendix C].

We next apply Lemma 5 in order to bound |V|I1
|. We first recall that the (d, d1) Clarkson-

Shor property of the primal shatter function of V is hereditary. Incorporating the bound on
m1 and property (ii), we conclude that

|V|I1
| = O

(
md1

1

(
km1

n

)d−d1
)

= O

(
nd1kd−d1 logd (n/δ)

δd

)
,

with a constant of proportionality that depends on d. Now, due to property (i), |V| ≤ |V|I1
|,

we thus conclude:

I Corollary 6. After the first iteration we have: |V| ≤ |V|(1) = O
(
nd1kd−d1 logd (n/δ)

δd

)
, with

a constant of proportionality that depends on d.

I Remark. We note that the preliminary bound given in Corollary 6 is crucial for the analysis,
as it constitutes the base for the iterative process described in Section 2.4. In fact, this step
of the analysis alone bypasses our refinement to Haussler’s approach, and instead exploits
the approach of Dudley [11].

2.4 The Subsequent Iterations: Applying the Inductive Step

Let us now fix an iteration j ≥ 2. As noted above, we assume by induction on j that the
bound |V|(j−1) on |V| after the (j − 1)th iteration is O

(
nd1kd−d1 (log(j−1) (n/δ))d

δd

)
. Let Ij be a

subset of mj − 1 indices, chosen uniformly at random without replacements from [n], with
mj given by (3). Let v ∈ V, and denote by v|Ij

its projection onto Ij . The expected length
Exp[‖v|Ij

‖] of v|Ij
is at most k(mj − 1)/n = O(d0k log(j) (n/δ)/δ). We next show (see a

preliminary version of this paper [14, Appendix D] for the proof):

3 In this particular step we use a different machinery than that of Haussler [19]; see the proof of Lemma 5
and our remark after Corollary 6. Therefore, |I1| = m1, rather than m1 − 1. Furthermore, the constant
of proportionality in the bound on m1 depends just on the primal shatter dimension d instead of the
VC-dimension d0 as in (3).
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I Lemma 7 (Exponential Decay Lemma).

Prob
[
‖v|Ij

‖ ≥ t · k(mj − 1)
n

]
< 2−tk(mj−1)/n,

where t ≥ 2e is a real parameter and e is the base of the natural logarithm.

We now proceed as follows. Recall that we assume k ≥ δ/2, and by (3) we have
mj = O

(
d0n log(j) (n/δ)

δ

)
. it follows from Lemma 7 that

Prob
[
‖v|Ij

‖ ≥ C · k(mj − 1)
n

]
<

1
(log(j−1) (n/δ))D

, (5)

where C ≥ 2e is a sufficiently large constant, and D > d0 is another constant whose choice
depends on C and d0, and can be made arbitrarily large. Since d0 ≥ d we obviously have
D > d. We next show:

I Lemma 8. Under the assumption that k ≥ δ/2, we have, at any iteration j ≥ 2:

|V|(j) ≤ A(d0 + 1) · n
d1kd−d1(log(j) (n/δ))d

δd
+ (d0 + 1) · |V|(j−1)

(log(j−1) (n/δ))D
, (6)

where |V|(l) is the bound on |V| after the lth iteration, and A > 0 is a constant that depends
on d (and d0) and the constant of proportionality determined by the Clarkson-Shor property
of V.

Proof. We in fact show:

ExpIj

[
|V|Ij
|
]
≤ A · n

d1kd−d1(log(j) (n/δ))d

δd
+ |V|(j−1)

(log(j−1) (n/δ))D
,

and then exploit the relation |V| ≤ (d0 + 1) ExpIj

[
|V|Ij
|
]
(Inequality (4)), in order to

prove (6).
In order to obtain the first term in the bound on ExpIj

[
|V|Ij
|
]
, we consider all vectors

of length at most C · k(mj−1)
n (where C ≥ 2e is a sufficiently large constant as above) in

the projection of V onto a subset Ij of mj − 1 indices (in this part of the analysis Ij can
be arbitrary). Since the primal shatter function of V has a (d, d1) Clarkson-Shor property,
which is hereditary, we obtain at most

O(mj
d1(k(mj − 1)/n)d−d1) = O

(
nd1kd−d1(log(j) (n/δ))d

δd

)

vectors in V|Ij
of length smaller than C · k(mj−1)

n = O(k log(j) (n/δ)
δ ). It is easy to verify that

the constant of proportionality A in the bound just obtained depends on d, d0, and the
constant of proportionality determined by the Clarkson-Shor property of V.

Next, in order to obtain the second term, we consider the vectors v ∈ V that are mapped
to vectors v|Ij

∈ V|Ij
with ‖v|Ij

‖ > C · k(mj−1)
n . By Inequality (5):

Exp
[∣∣∣∣{v ∈ V | ‖v|Ij

‖ > C · k(mj − 1)
n

}∣∣∣∣] < |V|
(log(j−1) (n/δ))D

,

and recall that |V|(j−1) is the bound on |V| after the previous iteration j − 1. This completes
the proof of the lemma. J
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I Remark. We note that the bound on ExpIj

[
|V|Ij
|
]
consists of the worst-case bound on

the number of short vectors of length at most C ·k(mj−1)/n, obtained by the Clarkson-Shor
property, plus the expected number of long vectors.

Wrapping up. We now complete the analysis and solve Inequality (6). Our initial assump-
tion that δ ≤ n/2(d0+1), and the fact that D > d is sufficiently large, imply that the coefficient
of the recursive term is smaller than 1, for any 2 ≤ j ≤ 1 + log∗ (n/δ)− log∗ (d0 + 1).4 Then,
using induction on j, one can verify that the solution is

|V|(j) ≤ 2A(d0 + 1)n
d1kd−d1(log(j) (n/δ))d

δd
, (7)

for any 2 ≤ j ≤ 1 + log∗ (n/δ)− log∗ (d0 + 1).
We thus conclude |V|(j) = O

(
nd1kd−d1 (log(j) (n/δ))d

δd

)
. In particular, at the termination of

the last iteration j∗ = 1 + log∗ (n/δ)− log∗ (d0 + 1), we obtain:

|V| ≤ |V|(j
∗) = O

(
nd1kd−d1

δd

)
,

with a constant of proportionality that depends on d (and d0). This at last completes the
proof of Theorem 4.

3 Second Proof: Refining Chazelle’s Approach

In this section, we shall prove a size-sensitive version of Haussler’s upper bound for δ-
separated systems in set-systems of bounded primal shatter dimension building on Chazelle’s
presentation of Haussler’s proof, (which has been described by Matoušek as “a magician’s
trick") as explained in [27]. By Haussler’s result [19], we know that M = O(n/δ)d =
(n/δ)d1(l/δ)d2 .g(n, l, δ)d, where g(n, l, d) = O((n/l)d2). We would like to show the optimum
upper bound for g is independent of n, l. We shall show that the optimal bound (up to
constants) is in fact, g = c∗, where c∗ is the fixed point of f(x) = c′ log x, with c′ > 1
independent of n, l, δ.

Intuition

We provide some intuition for our extension of the Haussler/Chazelle proof below (at least to
the reader familiar with it). A naïve attempt to extend Chazelle’s proof to shallow packings,
fails, because (as in the previous proof), one chooses a random subsequence I, and estimates
the number of projections on I, caused by δ-packed vectors of bounded size. For a given
vector, its projection on I can be much larger than expected. However, we shall choose A′
in a way that the number of such “bad" vectors, is at most a constant times their expected
number. This allows us to get the final bound in a single iteration.

Details

Before we give the details of the second proof, we will need the definition of unit distance
graph of a set system which will play central role in the proof of the theorem.

4 We observe that 2 ≤ 1+log∗ (n/δ)−log∗ (d0 + 1) ≤ log∗ (n/δ), due to our assumption that δ ≤ n/2(d0+1),
and the fact that d0 ≥ 1.
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I Definition 9 (Unit distance graph). For a set system V, unit distance graph UD(V) is a
graph with vertex set V and a pair {v1, v2} is an edge if ρ(v1,v2) = 1.

Consider a random subsequence of indices I = (i1, . . . , is) where each i ∈ [n] is selected
with probability p = 36d0K

δ , where K ≥ 1 is a parameter to be fixed later. Define V1 := V|I .
Consider the unit distance graph UD(V1). For each set v1 ∈ V1, define the weight of v1 as:
w(v1) := #{v ∈ V : v|I = v1}. Observe that∑

v1∈V1

w(v1) = M(δ, k,V).

Let E be the edge set of UD(V1). Now define the weight of an edge e = {v1,v′1} ∈ E as
w(e) := min(w(v1), w(v′1)). Let W :=

∑
e∈E w(e). We claim that

I Lemma 10. W ≤ 2d0
∑

v1∈V1
w(v1) = 2d0M(δ, k,V).

Proof. The proof is based on the following lemma, proved by Haussler [19] for set systems
with bounded VC-dimension. The following version appears in Matoušek’s book [27]:

I Lemma 11 ([19]). Let V be a set-system with VC-dimension d0. Then the unit-distance
graph UD(V) has at most d0|V| edges.

Since the VC-dimension of V1 is bounded by d0 from the hereditary property of VC-dimension,
the lemma implies that there exists a vertex v1 ∈ V1, whose degree is at most 2d0. Removing
v1, the total vertex weight drops by w(v1), and the total edge weight drops by at most
2d0w(v1). Continuing the argument until all vertices are removed, we get the claim. J

Next, we shall prove a lower bound on the expectation Exp[W ]. Choose a random
element ij ∈ {i1, . . . , is}. Let V2 := V|I′ where I

′ = (i1, . . . , ij−1, ij+1, . . . , is), i.e., by
abuse of notation I ′ = I \ {ij}. Note that I ′ is a random subsequence where each i ∈ [n]
was chosen with probability p′ = p − 1/n. Crucially, one can consider the above process
equivalent to first choosing I ′ by selecting each element of [n] with probability p′, and then
selecting a uniformly random element ij ∈ [n] \ I ′ with probability 1/n.

Let E1 ⊂ E be those edges (v1,v′1) of E where vectors v1 and v′1 differ in the coordinate
ij , and let

W1 :=
∑
e∈E1

w(e).

We need to lower bound Exp[W1]. Given I ′, let

Y = Y (I ′) := #{v ∈ V : ‖v|I′‖ > c(k/δ)},

i.e., the number of vectors in V, each of whose norm after projecting onto I ′ is more than
c(l/δ), (where c shall be chosen appropriately). Let Nice denote the event

(Y ≤ 8 Exp[Y ]) ∩
(
np

2 ≤ s ≤
3np
2

)
= NY ∩NS .

Conditioning W on Nice, we get:

Exp[W ] = Prob [Nice] Exp[W |Nice] + Prob
[
Nice

]
Exp[W |Nice]

> Prob [Nice] Exp[W |Nice]

By Markov’s Inequality, see [4, App. A], we have

Prob
[
NY
]

= Prob [Y ≥ 8 Exp[Y ]] ≤ 1/8,
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and using Chernoff Bounds, see [4, App. A], with the fact that n/δ ≥ 1, we get

Prob
[
NS
]

= Prob [|s− np| > np/2] ≤ 2e(−36d0Kn/3.22δ) << 1/4.

This implies

Prob [Nice = NY ∩NS ] ≥ 1−Prob
[
NS
]
−Prob

[
NY
]
≥ 7/8− e(−4d0K) ≥ 3/4,

where the last inequality follows from the fact that d0K ≥ 1.
Hence,

Exp[W ] ≥ (3/4) Exp[W |Nice] ≥ 3(np/2)
4 Exp[W1|Nice], (8)

where the last inequality follows by symmetry of the choice of ij from I, and the lower bound
on s when the event Nice holds.

Hence, Exp[W ] ≥
( 3np

8
)

Exp[W1|Nice]. So to lower bound Exp[W ] up to constants,
it suffices just to lower bound Exp[W1|Nice]. Let W2 denote W1|Nice. Consider now
Exp[W2|A′]. That is, consider a fixed subsequence I ′ whose length is between np/2 and
3np/2, and which is such that the number of vectors v ∈ V whose norm after projection onto
I ′ in more than ck/δ, is at most 8 Exp[Y ]. We shall lower bound Exp[W2|I ′] for this choice
of I ′.

By definition, W1 =
∑
e∈E1

w(e). Consider the equivalence classes of V formed by their
projection onto I ′:

V = V′1 ∪ . . . ∪ V′r.

Define Bad ⊂ [r] to be those indices j for which V′j is such that

∀v ∈ V′j : ‖v|I′‖ > 8c(k/δ).

Further, let Good be [r] \Bad. Since Nice holds, we have:∑
j∈Bad

|V′j | ≤ 8 Exp[Y ].

We first estimate the contribution of the classes in Good, to the total weight. Consider a
class V′i such that i ∈ Good. Let V′′1 ⊂ V′i be those vectors in V′i which contains 1 in the
ij-th coordinate, and let V′′2 = V′i \ V′′1 . Let b = |V′i|, b1 = |V′′1 | and b2 = |V′′2 |. Then the edge
e ∈ E1 formed by the projection of V′i onto I, has weight

w(e) = min(b1, b2) ≥ b1b2

b
. (9)

Observe that in Inequality (9), b is a constant as the subsequence I ′ is fixed and the product
b1b2 is the random variable that depends on the choice of ij . The product b1b2 is the number
of ordered pairs of vectors (v,v′), with v and v′ in V′i, such that v and v′ differs only in the
ij-th coordinate. For a given ordered pair (v,v′) of distinct vectors v,v′ ∈ V′i, the probability
v and v′ differ in the ij-th coordinate is δ

n−s+1 , which is at least δ
n . Therefore, the expected

contribution of (v,v′) to b1b2 is at least δ
n and this implies

Exp[b1b2] ≥ b(b− 1)δ
n

.

And this further implies the together with Inequality (9) that the weight of e (conditioned
on Nice and I ′) is at least:

Exp[w(e)|Nice ∩ I ′] ≥ 1
b

Exp[b1b2] ≥ b(b− 1)
b

.
δ

n
= (b− 1) δ

n
= (|V′i| − 1) δ

n
.
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Hence, the expected weight of Exp[W2|I ′] is:

Exp[W2|I ′] ≥
∑
e∈E1

Exp[w(e)|Nice ∩ I ′] ≥
∑

i∈Good

(|V′i| − 1) δ
n

But by (d, d1) Clarkson-Shor property, we have that

∀i ∈ Good, |(V′i)|I′ | ≤ Cs
d1(ckp)d−d1 .

Substituting in the lower bound for Exp[W2], we get:

Exp[W2|A′] ≥
(( ∑

i∈Good

|V′i|

)
− C(1.5np)d1(ckp)d−d1

)
δ

n

≥

(
|V| − 8 Exp[Y ]− C(6dK)d.(1.5)d1cd−d1

(n
δ

)d1
(
k

δ

)d−d1
)
δ

n

≥

(
M(δ, k,V)− 8 Exp[Y ]− C1K

d
(n
δ

)d1
(
k

δ

)d−d1
)
δ

n

where in the first inequality, we used the fact that the event NS ⊂ Nice holds, and in the
last line, C1 = C.(6d)d2d1cd−d1 . Since the above holds for each I ′ which satisfies Nice, we
get that

Exp[W2] ≥
(
M(δ, k,V)− 8 Exp[Y ]− C1K

d
(n
δ

)d1
(
l

δ

)d−d1
)
δ

n
,

Using equation (8), and comparing with the upper bound on W ,

(3np/8) Exp[W1|Nice] ≤ Exp[W ] ≤ 2d0M(δ, k,V),

and substituting the lower bound Exp[W1|Nice], and solving for M(δ, k,V), we get

M(δ, k,V) ≤
(27K/4)

(
8 Exp[Y ] + C1K

d
(
n
δ

)d1 (k
δ

)d−d1
)

(27K/4− 1) .

The following lemma therefore, completes the proof:

I Lemma 12. For K = max{1, (ln g)/36}, Exp[Y ] ≤ C2
(
n
δ

)d1 (k
δ

)d2 .

Indeed, substituting the choice of K and the value of Exp[Y ] from Lemma 12, we get that

gd
(n
δ

)d1
(
k

δ

)d−d1

= M(δ, k,V)

≤
C1K

d
(
n
δ

)d1 (k
δ

)d−d1 + 8C2
(
n
δ

)d1 (k
δ

)d−d1

1− 4/27K

≤ C3K
d
(n
δ

)d1
(
k

δ

)d−d1

≤ C4(max{1, log g})d
(n
δ

)d1
(
k

δ

)d−d1

where the shorthand g = g(n, l, δ). This implies that gd ≤ C4(max{1, log g})d, or g ≤
C5 max{1, log g}. Since for any g growing with n, l, or δ, we would have g >> C5 log g for
sufficiently large n, k or δ, this inequality is only satisfiable when g is a constant function of
n, l, δ. i.e. g ≤ c∗, where c∗ is independent of n, k, δ.

It only remains to prove Claim 12:
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Proof of Lemma 12. The proof follows easily from Chernoff Bounds. Fix v ∈ V. Let
Z = ‖v|I′‖. Then Exp[Z] = ‖v‖p′ = kp′. Since I ′ is a random subsequence chosen with
probability p′ = p− 1/n, the probability that

Z ≥ ckp′ = 36cdKk
δ

− ck

n

is upper bounded using Chernoff bounds, see [4, App. A], as:

Prob [Z −Exp[Z] > (c− 1) Exp[Z]] ≤ e(−Exp[Z]) ≤ e(−36dKk/δ),

for c = 1.01e and n ≥ 100, say. Hence the expected number Exp[Y ] of vectors, each of whose
norm when projected onto I ′ in more than 36cdKk/δ elements, is at most:

Exp[Y ] ≤M(δ, k,V)e(−36dKk/δ) ≤M(δ, k,V)e(−18dK),

since k ≥ δ/2. Substituting the value of M(δ, k,V) and also K in terms of f , we have

Exp[Y ] ≤ gd
(n
δ

)d1
(
k

δ

)d−d1

e(−18dK) ≤
(n
δ

)d1
(
k

δ

)d−d1

ed(ln g−18K) ≤
(n
δ

)d1
(
k

δ

)d−d1

for K ≥ (ln g)/18. J

This completes the proof of Theorem 4.

4 Concluding Remarks and Further Research

We briefly mention a few applications of Theorem 4:
(i) Smaller packing numbers for several natural geometric set systems under the shallowness

assumption. Letting d > 1 be an integer parameter, this includes set systems of points
and halfspaces in d-dimensions, balls in d-dimensions, parallel slabs of arbitrary width
in d-dimensions, as well as dual set systems defined over (d− 1)-variate (not necessarily
continuous or totally defined) functions F of constant description complexity. These
results are described in detail in a preliminary version of this paper [14, Appendix B].

(ii) Spanning trees with low total conflict number. This is based on the machinery of
Welzl [33] to construct spanning trees of low crossing number (see also [27]). Here the
tree spans V (representing, say, a set of regions defined over n points in d-space), and
the “conflict number” of an edge (u, v) is the symmetric difference distance between u
and v. See [14, Appendix B] for further details.

(iii) Geometric discrepancy. Following the previous work of the second author [13], the
new bound in Theorem 4 leads to an improved discrepancy bound that is sensitive to
the size of the sets in various geometric set systems, including point and halfspaces in
d-dimensions, this is mentioned in [14] and described in detail in the preliminary work
of the first and the third author [12]. As a consequence, it is shown in [12] how to derive
an improved bound on relative (ε, δ)-approximations by adapting the approach in [13].
Last, but not least, it is shown in [12] that the bound in Theorem 4 leads to better
bounds on the discrepancy of geometric set systems of low degree, as long as d1 = 1.
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