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Abstract
In classical homotopy theory, the homotopy hypothesis asserts that the fundamental ω-groupoid
construction induces an equivalence between topological spaces and weak ω-groupoids. In the
light of Voevodsky’s univalent foundations program, which puts forward an interpretation of
types as topological spaces, we consider the question of transposing the homotopy hypothesis
to type theory. Indeed such a transposition could stand as a new approach to specifying higher
inductive types. Since the formalisation of general weak ω-groupoids in type theory is a difficult
task, we only take a first step towards this goal, which consists in exploring a shortcut through
strict ω-categories.

The first outcome is a satisfactory type-theoretic notion of strict ω-category, which has hsets
of cells in all dimensions. For this notion, defining the ‘fundamental strict ω-category’ of a type
seems out of reach. The second outcome is an ‘incoherently strict’ notion of type-theoretic ω-
category, which admits arbitrary types of cells in all dimensions. These are the ‘wild’ ω-categories
of the title. They allow the definition of a ‘fundamental wild ω-category’ map, which leads to
our (partial) homotopy hypothesis for type theory (stating an adjunction, not an equivalence).

All of our results have been formalised in the Coq proof assistant. Our formalisation makes
systematic use of the machinery of coinductive types.
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1 Introduction

Martin-Löf type theory offers an alternative to the classical set-theoretic approach to math-
ematics. The univalent foundations program [23] advocates understanding sets as a very
special kind of types (so-called 0-types, or hsets). Conversely, types should be understood
in set-theoretic terms as some kind of topological spaces, hsets corresponding to those
whose connected components are contractible. And, indeed, types have been interpreted as
ω-groupoids of various flavours, most notably simplicial [13] and globular [3, 16, 24]. Now, on
the set-theoretic side, the homotopy hypothesis states that topological spaces and ω-groupoids
are equivalent [22]. This work addresses the question of coining a type-theoretic counterpart
of this homotopy hypothesis.

We here propose a preliminary and partial version which barely expresses that the
‘fundamental ω-groupoid’ functor has a kind of left adjoint (instead of being an equivalence).
For our proposal, it is sufficient to choose an appropriate target category T of ‘ω-groupoids’,
together with an appropriate ‘fundamental ω-groupoid’ functor π : Type T. Indeed, we
may then express our partial homotopy hypothesis as follows:
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I Hypothesis 1. There exist L : T Type and η : ∀C,T(C, π(L(C))) such that for each C : T
and T : Type, the map

η(C)? : T(π(L(C)), π(T )) T(C, π(T ))

given by precomposition with η(C) is an equivalence.

The idea of a ‘fundamental ω-category’ map goes back to van den Berg/Garner and
Lumsdaine [3, 16]. There, the ‘fundamental’ ω-categories extracted from types are definitely
weak, because expressions like f ◦ (g ◦ h) and (f ◦ g) ◦ h (for suitable cells f, g, h and
higher categorical composition ◦) may differ definitionally. However, they are always equal
propositionally, so when reasoning inside type theory as we do, the distinction becomes
invisible. Based on this observation, we here explore the shortcut of a ‘fundamental strict
ω-category’ map.

Thus, our first task is to transpose to type theory the classical notion of strict ω-category.
This is the subject of Section 3 (after a brief recap on set-theoretic strict ω-categories in
Section 2). There we face a crucial choice concerning the type of cells in all dimensions. If we
take these types to be hsets, we get an honest notion of strict ω-category. While if we allow
these types to be arbitrary, we get an ‘incoherently strict’ notion, which we call wild. In wild
ω-categories, some coherence diagrams usually showing up in definitions of weak ω-categories
make sense, but are not required to commute – even weakly, hence the name ‘wild’.

Now the crucial point is that we are able to define a ‘fundamental wild ω-category’ map,
while a strict one seems out of reach – a difficulty previously observed by Altenkirch et al. [2]
in a similar context.

Let us mention another crucial choice faced when defining both notions. Indeed, we
have to express equations as commuting diagrams of morphisms between globular types.
Because such morphisms form a coinductive type, there are two standard choices [8] for
their equality (identity types and bisimilarity). However, we weren’t able to define our
‘fundamental ω-category’ map using either of them, so we work with a third, coarser one
(Definition 8). (Of course, using identity types or bisimilarity yields other, perfectly sensible
definitions.)

Altogether this yields in Section 5 a first version of our hypothesis with T the type for
wild ω-categories. Our hypothesis essentially asserts that new types may be constructed
from the homotopical information carried by any wild ω-category. This is clearly akin to the
assumption of existence for higher inductive types [23], as well as to the Rezk completion for
precategories in [1] and we briefly discuss the relationship.

In Section 6, we get back to ω-groupoids, as opposed to ω-categories. We briefly discuss
problems and solutions concerning the definition of wild ω-groupoids and a perhaps more
primitive formulation of our homotopy hypothesis involving them. We finally conclude and
sketch further directions in Section 7.

A note on the formalisation

This paper presents informally a mathematical development based not on set theory but
on Martin-Löf type theory enriched with coinduction. All our definitions and statements
have been formalised in the Coq proof assistant [21]. The formalisation is available as [9].
The code is composed of 2750 lines of definitions/theorems and less than 800 lines of proofs
(as given by coqwc). Definitions and theorems constitute 75% of the formalisation, which is
a lot. This is because coqwc only counts as proof what is coded using the tactic language,
whereas most of our proofs are coded directly in Gallina. The reason for this is that the
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228 Wild ω-Categories for the Homotopy Hypothesis in Type Theory

computational content of many of our proofs turned out to be crucial for their usability
at later stages. This phenomenon has also been observed, e.g., of the Coq/HoTT library
(https://github.com/HoTT/HoTT).

2 Set-theoretic strict ω-categories

Before presenting our definition of wild and strict ω-categories in type theory, we briefly
sketch the traditional set-theoretic definition of strict ω-categories. We refer the reader to
Lafont et al. [15] for further detail.

The base for strict ω-categories is the notion of globular sets, which are generally defined
as presheaves over the so-called globular category Glob:

[0] [1] [2] . . . [n] [n+ 1] . . .
s0

t0

s1

t1

sn

tn

where for all n, sn+1 ◦ sn = tn+1 ◦ sn and sn+1 ◦ tn = tn+1 ◦ tn.

I Notation 1. We denote by spn the composite sp−1◦ . . .◦sn, which returns the n-dimensional
source of a p-cell. Similarly, we use tpn.

The idea is just that a globular set X has objects, the elements of X[0], 1-cells between
them, and so on, each (n+ 1)-cell having parallel n-cells as source and target. E.g., a typical
2-cell looks like this:

x y,

α·s1

α·t1

α

where we use the standard shorthand notation, e.g., α · s1 for X(s1)(α). In the picture,
x = α · t1 · s0 = α · s1 · s0 and y = α · t1 · t0 = α · s1 · t0.

We first concentrate on the data for composition and the so-called interchange law. A
strict ω-category is a globular set X equipped (among other data), for all n < p, with a
partial, binary composition operation on p-cells, defined on a pair (β, α) when the iterated
source β · spn of β matches the iterated target α · tpn (recall Notation 1). The result is denoted
by β ◦n α. Each such composition operation is required to be associative on the nose.

The source and target of such a composition are given by obvious globular intuition,
generally not even spelled out. When p = n+ 1, composition is like categorical composition,
i.e., we have (β ◦n α) · sn = α · sn and similarly (β ◦n α) · tn = β · tn. When p > n + 1,
composition is more like horizontal composition of 2-cells in a 2-category, as in

x y z,

α·s1

α·t1

α

β·s1

β·t1

β

so we have
(β ◦n α) · sp−1 = (β · sp−1) ◦n (α · sp−1)

and similarly for tp−1.
The crux of the definition of strict ω-category is the interchange law, which generalises

the perhaps more well-known 2-categorical interchange law. It says that whenever n < p < q

and α, α′, β, β′ are adequately composable q-cells, we have

(β′ ◦p β) ◦n (α′ ◦p α) = (β′ ◦n α′) ◦p (β ◦n α).

Graphically, for n = 0, p = 1, q = 2, both ways of composing the diagram below coincide:

https://github.com/HoTT/HoTT 
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x y z.
α

α′

β

β′

Finally, we require identities idx : x x for all n-cells x ∈ X[n]. Let idpx denote the
iteration idid...idx

, p times (with id0
x = x). Identities should satisfy

idpx ◦n α = α β ◦n idpx = β idβ◦nα = idβ ◦n idα, (1)

for all x ∈ X[n], p ≥ 1, α, and β such that α · tn+p
n = x and β · sn+p

n = x.
While this presentation is perfectly sensible when working in set theory, it is less convenient

in type theory because many properties of the structure are imposed by equations rather
than obtained by construction. For instance, compatibility between source and target maps
in globular sets relies on equations. Using equations introduces a lot of non-definitional
equalities that are very hard to deal with. On the contrary, we will see in the next section
that our use of coinductive definitions allows us to define structures more computationally,
thus avoiding the common pitfall of using equations.

3 Wild and strict ω-categories

In this section, we present our definition of wild and strict ω-categories. Our heavy use
of coinduction is inspired by Cheng and Leinster’s account [7] of Trimble’s ω-categories,
as well as by Lafont et al.’s presentation [15] of, e.g., weak equivalences. We start with
globular types, a type-theoretic counterpart of globular sets. Essentially, a wild ω-category
is a globular type equipped with identities and compositions in all dimensions, satisfying
unitality and associativity axioms, and such that, at each dimension, composition preserves
higher-dimensional identities and compositions. A strict ω-category is a wild ω-category
whose underlying globular type is a globular hset, i.e., consists of hsets in all dimensions.
The main goal of the present section is to give a precise meaning to the previous sketch of
definition. Indeed, this is not completely straightforward, and we will explicitly discuss our
design choices.

3.1 Globular types
The coinductive presentation of globular sets, which we’ll here call globular types, is well-
known and extremely simple:

I Definition 1. A globular type X consists of a type |X|, plus for all x, y ∈ |X|, a globular
type X[x, y].

Many of our definitions will, like the previous one, be coinductive or corecursive, and we will
systematically omit to mention this feature. For instance, a morphism X Y of globular
types consists of

a function |f | : |X| |Y | between object types, and
for all x, x′ ∈ |X|, a morphism fx,x′ : X[x, x′] Y [|f |(x), |f |(x′)] of globular types.

Of course, morphisms of globular types compose.
We also need a definition of the cartesian product of globular types:

I Definition 2. The product X × Y of two globular types X and Y is defined by
|X × Y | = |X| × |Y | and
for all x, x′ ∈ |X| and y, y′ ∈ |Y |, (X × Y )[(x, y), (x′, y′)] = X[x, x′]× Y [y, y′].
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3.2 Data for composition and identities
Let us now start our definition of wild ω-categories.

In the following definition of composition for globular types, we choose to tie together
infinitely many elementary compositions into a morphism of globular types:

I Definition 3. To equip a globular type X with ω-categorical composition is to give:
for all x, y, z ∈ |X|, a morphism compX(x, y, z) : X[x, y]×X[y, z] X[x, z] of globular
types,
and, for all x, y ∈ |X|, ω-categorical composition on X[x, y].

In the terminology of Section 2, the function |compX | between object types represents
composition for p = n + 1, whereas compositions for p > n + 1 are packed in higher-
dimensional components (compX)(f,g),(f ′,g′). Similarly:

I Definition 4. To equip a globular type X with ω-categorical identities is to give:
for all x ∈ |X|, an element idXx ∈ |X[x, x]|, and
for all x, y ∈ |X|, ω-categorical identities on X[x, y].

I Definition 5. An ω-precategory is a globular type equipped with ω-categorical composition
and identities.

I Remark. Our use of ‘precategory’ conflicts with [1], where it is used for ‘not-necessarily-
univalent’ categories. However, it coincides with Cheng’s [6].

Most notions defined so far on globular types lift to ω-precategories, namely the object
type |X|, the hom-ω-precategory X[x, y], and cartesian product X × Y . We lift notations
accordingly. However, lifting the notion of morphism of globular types requires some work,
which we now do, yielding the notion of ω-functor.

3.3 Omega-functors
It is not straightforward to define what it means for a morphism F : X Y of globular types
between ω-precategories to preserve composition.

Let us treat the object level first, and consider any x, x′, x′′ ∈ |X|. The idea is that F
preserves composition at x, x′, x′′ iff the diagram

X[x, x′]×X[x′, x′′] X[x, x′′]

Y [|F |x, |F |x′]× Y [|F |x′, |F |x′′] Y [|F |x, |F |x′′],

compX (x,x′,x′′)

Fx,x′×Fx′,x′′

compY (|F |x,|F |x′,|F |x′′)

Fx,x′′ (2)

commutes.
To give a meaning to this commutation, we need to choose a notion of equality of globular

morphisms. Because globular morphisms form a coinductive type, identity types are expected
to be too fine as a notion of equality between them [8]. The standard choice for this is
bisimilarity:

I Definition 6. Two globular morphisms F,G : X Y are bisimilar iff
for all x ∈ |X|, |f |(x) = |g|(x), and
for all x, x′ ∈ |X|, fx,x′ and (px)∗((px′)∗(gx,x′)) are bisimilar,

where p∗(−) denotes transport [23] along p and px is the given equality |f |(x) = |g|(x).
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Transport is necessary here in order to compare fx,x′ : X[x, x′] Y [|f |(x), |f |(x′)] and
gx,x′ : X[x, x′] Y [|g|(x), |g|(x′)].

Bisimilarity would be a very reasonable notion of equality between globular morphisms.
However, we were not able to construct the ‘fundamental wild ω-category’ of a type for the
resulting notion of wild ω-category. So we here decide to use the following extensional and
inductive definition (based on globular cells).

I Definition 7. We define the type of globular n-cells of an ω-precategory A, noted cellnA,
by induction on the natural number n as

cell0 A := |A|, and
celln+1 A :=

∑
a,a′:|A| celln(A[a, a′]).

Given a globular morphism F : A B and c : cellnA, the globular cell Fc of B obtained by
applying F to c can by defined inductively by
|F |c when n = 0, and
(|F |a, |F |a′, Fa,a′c′) when c = (a, a′, c′).

I Definition 8. Two globular morphisms F,G : A B are extensionally equal iff

for all n ∈ N and c ∈ cellnA, Fc = Gc.

We may now settle the following (obviously proof-relevant) definition:

I Definition 9. A morphism F : X Y of globular types between ω-precategories preserves
composition iff

for all x, x′, x′′ ∈ |X|, the square (2) commutes extensionally, and
for all x, x′ ∈ |X|, Fx,x′ preserves composition.

Preservation of composition will be used below in Definition 12 to express the interchange law.
E.g., consider any ω-precategory X, and x, y, z ∈ |X|. Viewing compX(x, y, z) as a morphism
of globular types between ω-precategories, saying that it preserves composition amounts to
stating the interchange law of Section 2, specialised to n = 0. For instance, on objects, it means
that, taking X in (2) to be X[x, y] × X[y, z], for all f, f ′, f ′′ ∈ X[x, y], g, g′, g′′ ∈ X[y, z],
a ∈ X[x, y][f, f ′], a′ ∈ X[x, y][f ′, f ′′], b ∈ X[y, z][g, g′], and b′ ∈ X[y, z][g′, g′′], we have
(b′ • b) ◦ (a′ • a) = (b′ ◦ a′) • (b ◦ a) (using some hopefully clear notation).

We may treat preservation of identities in a similar way:

I Definition 10. A morphism F : X Y of globular types between ω-precategories preserves
identities iff

for all x ∈ |X|, |Fx,x|(idXx ) = idY|F |(x), and
for all x, y ∈ |X|, Fx,y preserves identities.

This will again be used in Definition 12 to enforce the third law of (1). Indeed, for any
ω-precategory X, and x, y, z ∈ |X|, saying that compX(x, y, z) preserves identities entails,
e.g., that the identity on any pair (f, g) ∈ |X[x, y]×X[y, z]| should be mapped by

X[x, y][f, f ]×X[y, z][g, g] X[x, z][g ◦ f, g ◦ f ](compX (x,y,z))(f,g),(f,g)

to the identity on g ◦ f (abbreviating |compX(x, y, z)|(f, g) to g ◦ f).

I Definition 11. A morphism of globular types between ω-precategories is an ω-functor iff
it preserves composition and identities.
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3.4 Wild ω-categories
It is now routine to extend the previous techniques to define associativity as extensional
commutation in all dimensions of all diagrams

X[x, y]×X[y, z]×X[z, t] X[x, z]×X[z, t]

X[x, y]×X[y, t] X[x, t]

compX (x,y,z)×X[z,t]

X[x,y]×compX (y,z,t)

compX (x,y,t)

compX (x,z,t)

and unitality as extensional commutation in all dimensions of all diagrams

X[x, y] X[x, x]×X[x, y]

X[x, y]×X[y, y] X[x, y],

〈pidxq◦!,X[x,y]〉

〈X[x,y],pidyq◦!〉

compX (x,y,y)

compX (x,x,y)

where ! : A 1 denotes the unique morphism to the terminal globular type with 1 at all
stages (for all A), and pidxq : 1 X[x, x] maps the unique element of |1| to idx, the unique
endo 1-cell over it to ididx

, and so on.
We may at last define the type ω-wCat of wild ω-categories:

I Definition 12. A wild ω-category is an ω-precategory, satisfying associativity and unitality,
whose compositions are ω-functors in all dimensions. Morphisms ω-wCat(C,D) between wild
ω-categories C and D are simply ω-functors between the underlying ω-precategories.

The complete formal definition of wild ω-categories is given in the file omega_categories.v [9].

3.5 Strict ω-categories
The definition of wild ω-categories is not satisfactory as a type-theoretic account of strict
ω-categories. As a matter of fact, wild ω-categories are not even weak ω-categories. Indeed,
they appear to lack some coherence conditions. For instance, for any wild ω-category X,
f ∈ |X[x, y]| and g ∈ |X[y, z]|, there are two proofs of g ◦ (idy ◦ f) = g ◦ f (the less trivial one
goes to (g ◦ idy) ◦ f and then simplifies). These proofs induce by transport two 2-cells, say l
and r. In weak higher categories, one imposes that l and r are related by a ‘coherence’ 3-cell.
This is not the case in our wild ω-categories, which may thus be viewed as ‘incoherently’
weak ω-categories.

One perhaps reassuring perspective is that wild ω-categories can be restricted to ω-
categories where all higher coherences are trivially satisfied. This is the case when the
involved types are all hsets, which leads to:

I Definition 13. A strict ω-category is a wild ω-category X such that |X| is an hset and for
all x, y ∈ |X|, X[x, y] is a strict ω-category. We call ω-sCat the type of strict ω-categories.

Strict ω-categories are intuitively close to set-theoretic strict ω-categories, and, as sugges-
ted by a referee, we expect their interpretation in standard models such as the simplicial
model [13] to coincide with set-theoretic ω-categories. However, as we have seen, our defini-
tion relies on extensional equality (Definition 8), where identity types or bisimilarity could
have been used. We thus in fact have three notions of strict ω-categories, and it is not entirely
clear that all three are interpreted in the simplicial model as set-theoretic strict ω-categories.
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As previously observed in a similar context [2], it seems impossible to define any satis-
factory ‘fundamental strict ω-category’. That is why we devote the rest of the paper to the
definition of the ‘fundamental wild ω-category’ and use it to propose (partial) homotopy
hypotheses.

4 Fundamental wild ω-category

We have defined wild ω-categories, and now turn to the definition of the ‘fundamental wild
ω-category’ map π : Type ω-wCat. This is essentially an internal variant of van den Berg
and Garner’s [3] and Lumsdaine’s [16] constructions, with wild ω-categories instead of weak
ω-categories. For any type T , we first easily define the globular type underlying π(T ). We
then explain the definition of composition, which is a good example of how we had to
generalise some of our statements in order to be able to tie the coinduction loop. We refer
the reader to the formalisation for complete definitions and proofs. The part on composition
is technical and may safely be skipped: the sequel only makes use of Theorem 16.

We start by defining the globular type underlying the fundamental wild ω-category.

I Definition 14. For any type T , the underlying globular type of π(T ) (still denoted by
π(T ) by abuse of notation) has T itself as its type of objects, and (π(T ))[x, y] = π(x = y)
for all x, y ∈ T .

We now turn to defining composition on π(T ). The definition of composition seems to
introduce a lot of choices. Indeed, let us start by fixing x, y, z ∈ T and look at what
π(x = y)× π(y = z) π(x = z) is on objects (i.e., on 1-cells in π(T )). The obvious choice is
concatenation of equality proofs, which we denote by (a : x = y), (b : y = z) 7→ (a � b) [23].
But actually, here we need to choose between two different definitions of concatenation,
depending on whether a or b is eliminated first. Fortunately, it is well known that both
definitions are equal, so the choice does not really matter.

Actually, this situation occurs at every dimension: the definition of composition is
not unique, but all potential candidates are equal. This claim is justified by the work of
Lumsdaine [16], where he constructs the operad PMLId of all definable composition laws over
a (generic) type and shows that this operad is contractible. Contractibility means that all
possible choices of composition are equal. The difficulty is to show that our particular choice
of composition gives rise to a wild ω-category. For lack of space, we will only sketch the
definition of our compositions, referring to the formalisation [9] for details.

Let us start with the definition of π(x = y)× π(y = z) π(x = z) in low dimensions, for
x, y, z ∈ T . On objects, we have seen that the obvious choice is concatenation. On 1-cells,
consider a, a′ : x = y, b, b′ : y = z, together with e : a = a′ and f : b = b′. How to compose e
and f into a proof of a �b = a′ �b′? We consider, for all types A,B,C and map ϕ : A B C,
the obvious function ap2A,B,C,ϕ of type

∀a, a′ ∈ A, b, b′ ∈ B, e ∈ (a = a′), f ∈ (b = b′), ϕ a b = ϕ a′ b′.

Applying this with A = (x = y), B = (y = z), C = (x = z), and ϕ = �, we indeed get
ap2 a a′ b b′ e f of type a � b = a′ � b′ (omitting the subscript of ap2 for readability). To now
deal with 2-cells, considering e′ : a = a′, f ′ : b = b′, u : e = e′, and v : f = f ′, we again apply
ap2, with A = (e = e′), B = (f = f ′), C = (ϕ′ e f = ϕ′ e′ f ′), with ϕ′ e f = ap2 a a′ b b′ e f
for all e, f . In the next dimension, we’ll need a different ϕ′′ with one more layer of ap2.

It would be obvious how to formalise this process coinductively if it weren’t for the first
level, where � is used. The trick is thus to abstract over this. Here, things become slightly

TLCA’15



234 Wild ω-Categories for the Homotopy Hypothesis in Type Theory

more verbose, and we apologise to the reader: for all types A,B,C, functions ϕ : A B C,
and elements a, a′ ∈ A and b, b′ ∈ B, we coinductively define a morphism of globular types

comp2A,B,C,ϕ(a, a′, b, b′) : π(a = a′)× π(b = b′) π(ϕ a b = ϕ a′ b′)

(the ‘2’ refers to ap2) by
mapping e : a = a′ and f : b = b′ to ap2 ϕ e f : ϕ a b = ϕ a′ b′,
and then defining (comp2A,B,C,ϕ(a, a′, b, b′))(e,f),(e′,f ′) to be

comp2A[a,a′],B[b,b′],C[ϕ a b,ϕ a′ b′],ap2 ϕ(e, e′, f, f ′). (3)

This is well-defined, since (comp2A,B,C,ϕ(a, a′, b, b′))(e,f),(e′,f ′) should have type

(π(a = a′)× π(b = b′))[(e, f), (e′, f ′)] π(ϕ a b = ϕ a′ b′)[ap2 ϕ e f, ap2 ϕ e′ f ′],

i.e.,

π(a = a′)[e, e′]× π(b = b′)[f, f ′] π(ϕ a b = ϕ a′ b′)[ap2 ϕ e f, ap2 ϕ e′ f ′],

or equivalently
π(e = e′)× π(f = f ′) π(ap2 ϕ e f = ap2 ϕ e′ f ′),

which is indeed the type of (3). It is now routine to define, for all types A and elements
a, a′, a′′ ∈ A,

hcompA(a, a′, a′′) : π(a = a′)× π(a′ = a′′) π(a = a′′)

by
mapping e : a = a′ and f : a′ = a′′ to e � f , with
hcompA(a, a′, a′′)(e,f),(e′,f ′) = comp2(a=a′),(a′=a′′),(a=a′′),(λe.λf.e � f)(e, e′, f, f ′).

This is again well-defined, because the latter has type

π(e = e′)× π(f = f ′) π(e � f = e′ � f ′),

i.e.,
π(a = a′)[e, e′]× π(a′ = a′′)[f, f ′] π(a = a′′)[e � f, e′ � f ′],

as expected.

I Definition 15. This yields composition structure on π(T ), for any T :
for all x, y, z ∈ T , we let compπ(T )(x, y, z) = hcompT (x, y, z);
for all x, y ∈ T , we get composition structure on π(x = y) by coinduction hypothesis.

One may similarly define identity structure and show:

I Theorem 16. This ω-precategory structure makes π(T ) into a wild ω-category.

Proof. Let us say a few words about the proof. It resorts to a high level of generalisation to
tie the coinduction loop for each law of ω-categories. In particular, a more explicit coinductive
definition of the interchange law is developed and proved equivalent to the compact version
that composition preserves composition. This explicit interchange law, plus a proof that
composition in all dimensions sends pairs of proofs by reflexivity to some proof by reflexivity,
enables us to prove the interchange law by coinduction, using elimination of identity types,
a.k.a. path induction. The other laws are dealt with similarly. The complete proof is given
in the file type_to_omega_cat.v [9]. J
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5 Partial Homotopy Hypothesis

The classical homotopy hypothesis states an equivalence between spaces and ω-groupoids. It
can be formulated either at the level of so-called homotopy categories [12], or at the level
of model categories [11] or even at the level of (∞, 1)-categories [22]. On the type-theoretic
side, we propose our first partial homotopy hypothesis:

I Hypothesis 1. There exist L : ω-wCat Type and η : ∀C,ω-wCat(C, π(L(C))) such that
for each wild ω-category C and type T , the map

η(C)? : ω-wCat(π(L(C)), π(T )) ω-wCat(C, π(T ))

given by precomposition with η(C) is an equivalence.

We conjecture that Hypothesis 1 is consistent, and more precisely that it holds in
the groupoid model [10]. Indeed, in this model, small types are small discrete groupoids
and (small) wild ω-categories are the set-theoretic, strict ω-categories of Section 2. The
fundamental wild ω-category π(T ) of any small discrete groupoid T is a discrete globular
set, equipped with the only possible additionnal structure. Thus, morphisms from any strict
ω-category C into π(T ) are just maps from C[0] to T compatible with (the equivalence
relation induced by) C[1]. Hence we can define L(C) to be the quotient C[0]/C[1], η(C)
being induced by the quotient map.

This indicates in particular that Hypothesis 1 is consistent with the Univalence Axiom.
But it also shows that the asserted adjunction may be far from an equivalence. An easy way
of strengthening our hypothesis is to require η(C) to be a weak equivalence, in the sense
of [15]:

I Definition 17. An ω-functor F : C D is a weak equivalence iff
for all d ∈ |D|, there exists c ∈ |C| such that |D[|F |(c), d]| is inhabited, and
for all c, c′ ∈ |C|, Fc,c′ is a weak equivalence.

Another possibility is to state a proper adjunction between L and π and ask both its unit
and counit to be weak equivalences in the appropriate sense. We haven’t yet investigated
such strengthened hypotheses.

For now, let us modestly check how our hypothesis implies the existence of a type
corresponding to the standard type-theoretic circle. For this purpose we introduce the wild
ω-category S1 as follows: it has a single object ?, and S1[?, ?] is the discrete wild ω-category
on N-many objects with composition given by addition. Of course, we could have worked
with Z instead. Assuming our hypothesis, we prove the expected, non-dependent induction
principle for L(S1), together with (propositional versions of) computational rules.

I Theorem 18. There exists a term inhabiting the non-dependent recursion principle of the
circle

L(S1)rec : ∀T ∈ Type, b ∈ T, l ∈ (b = b), L(S1) T,

satisfying (propositionally) the expected computational laws:

L(S1)β,? : ∀T, b, l, L(S1)rec T b l (η ?) = b,

L(S1)β,1 : ∀T, b, l, p∗((ap (L(S1)rec T b l) (η?,? 1))) = l,

where p∗(−) denotes transport [23] along p = L(S1)β,? T b l.
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Proof. Any ω-functor from S1 is determined by the images of ? and 1 ∈ S1[?, ?]. Using
the inverse of the equivalence given by Hypothesis 1, this induces an essentially unique
ω-functor π(L(S1)) π(T ), from which we extract the underlying map L(S1) T . Using
the retraction part of the equivalence given by Hypothesis 1, we deduce the computational
laws. The complete proof1 is given in the file homotopy_hypothesis.v [9]. J

This suggests that Hypothesis 1 may imply existence of certain higher inductive types [23].
The basic idea of higher inductive types is to generate not only the elements of an inductive
type, but also equality proofs between them, and so on. Lumsdaine and Shulman [17] propose
a semantics for them (in particular) in (∞, 1)-toposes, using so-called strictly Reedy-functorial
path objects. Closer to implementation, Sojakova [19] proposes an operational definition of
higher inductive types as so-called homotopy-initial algebras. Both accounts fix a particular
syntax for higher inductive types.

If, along the lines of Theorem 18, we could show that the partial homotopy hypothesis
entails adequate induction principles, it could be understood as specifying higher inductive
types, in a syntax-independent way. Of course, this would only be a definition from the
internal point of view, i.e., the corresponding computational behaviour would not be accounted
for.

So, given any candidate syntax for (or combinatorial description of) higher inductive
types, this opens the option of describing ‘the corresponding’ wild ω-category, from which
Hypothesis 1 would yield the desired type and reasoning principles.

I Remark. It is well-known that set-theoretic strict ω-categories cannot represent all homotopy
types. E.g., they do not model the homotopy type of the 2-sphere [18]. Depending on the
ambient type theory, wild ω-categories may be much more expressive than strict ω-categories.
Nevertheless, we suspect that even in such cases, they may not adequately represent all
types.

Let us consider a few example syntaxes.
To start with, Ahrens et al.’s categories [1] straightforwardly embed into wild ω-categories,

and are enough to specify (a groupoidal version of) S1 as above (but not S2). Their categories
may express ‘non-freeness’ properties of composition. E.g., we may consider the category
obtained by quotienting S1 under 1 + 1 = 1, i.e., replace N by booleans and addition with
sup. Or similarly quotient under 1 + 1 = 0, i.e., work with Z/2Z. Also, it seems plausible to
extend their Yoneda-based Rezk completion procedure—which (in their terms) constructs
a (univalent) category from a precategory—to a proof of our hypothesis for categories.
Please note, however, that they work in homotopy type theory, and their construction uses
univalence (because the category of sets needs to be univalent) and higher inductive types
(through propositional truncation).

A different ‘syntax’ is offered by globular types themselves, and we may hope for a
type-theoretic analogue of the standard adjunction computing the free strict ω-category
associated to any globular set. In contrast this syntax does not allow to express non-freeness
properties. E.g., we may express S1, but none of the quotients of S1 evoked above. Also, we
cannot express the higher inductive type for S2 with one base point b and an equality proof
on reflb, because we cannot talk about identities. However, we can perfectly consider the
globular set with two base points 0 and 1, two 1-cells s, t : 0 1, and two 2-cells s t.

1 The proof that the constructed ω-functor from S1 actually preserves composition remains incomplete at
the time of writing.
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Finally, the most expressive such syntax would probably be offered by computads [20],
a.k.a. polygraphs [5, 15]. A computad is essentially a graph, together with a set of 2-cells
between parallel paths, together with a set of 3-cells between parallel paths of 2-cells, and
so on. In particular, one may talk about identities and composition in all dimensions. And
indeed, any strict ω-category is weakly equivalent to some strict ω-category which is free on
a computad [15].

6 Towards ω-groupoids

In the fundamental wild ω-category π(T ) associated to any type T , all cells are invertible.
We will see below that defining general ω-groupoids is not straightforward. Nevertheless,
following Ahrens et al. [1], we have an economical, yet a bit restrictive definition:

I Definition 19. A wild ω-category X is a univalent ω-groupoid when for all x, y ∈ |X|,
the map (x = y) |X[x, y]| (induced by transporting idx) is an equivalence (of types) [23],
and X[x, y] is a univalent ω-groupoid.

This univalence automatically entails existence of inverses in a very strong sense. In particular,
for any wild ω-category X and x, y, z ∈ |X|, the diagram

(x = y)× (y = z) (x = z)

|X[x, y]| × |X[y, z]| |X[x, z]|

(extensionally) commutes in Type, so that, if X is univalent, inverses in the ω-groupoidal
sense have to be inverses in the identity type sense. The above definition has to be about
ω-groupoids, as it implies that all cells are invertible. We prove:

I Proposition 1. The ω-category π(T ) is a univalent ω-groupoid, for all types T .

I Proposition 2. For all univalent ω-groupoids G, there is a type T and an extensional
equivalence π(T ) ' G.

By extensional equivalence we here mean an equivalence e : |π(T )| ' |G| of types, such that
for all x, y ∈ T the map π(x = y) |G[e x, e y]| induced by e is an extensional equivalence.

Proof. Take T = |G|. J

We conclude this section by considering perhaps more primitive versions of our hypothesis
using some notion of ω-groupoid rather than ω-categories. Of course, univalent ω-groupoids
are not interesting for this purpose, so we seek a definition of what it means for some
(possibly higher) cell in a wild ω-category to be invertible. We first review possible notions
of ω-groupoids and transpose a result of Cheng [6] showing that two of them are equivalent.
We then get back to ω-groupoidal statements of our hypothesis.

Brown et al. [4] use strict inverses, i.e., for them an ω-groupoid is an ω-category in
which for every n-cell f : x y there is an n-cell g : y x such that g ◦n−1 f = idx and
f ◦n−1 g = idy (for n > 0). Others [20, 12, 18] consider weak inverses, in several apparently
different ways. A recent preprint [14] shows that two such definitions coincide, namely those
of Street [20], and Kapranov and Voevodsky [12]. The latter had previously been shown
by Simpson [18] to be equivalent to an apparently stronger definition. Finally, Cheng [6]
shows that these definitions are further equivalent to a seemingly weaker definition when
required of the whole ω-category. A bit more precisely, Cheng defines the notion of a dual
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to an n-cell in an ω-category, which is in general weaker than that of a weak inverse in the
sense of [20, 12, 14]. But she shows that for a given ω-category, having all duals is equivalent
to having all weak inverses. We now show how to recover this equivalence in our setting.

It is easy to define what it means for a wild ω-category to have all duals.

I Definition 20. In a wild ω-category X, for all x, y ∈ |X| and f ∈ |X[x, y]|, a dual for f is
a 1-cell g ∈ |X[y, x]| such that there exist 2-cells inhabiting

|X[y, y][f ◦ g, idy]| and |X[x, x][g ◦ f, idx]|.

We then say that X has all duals iff for all x, y ∈ |X| and f ∈ |X[x, y]|, f has a dual, and
for all x, y ∈ |X|, X[x, y] has all duals.

The notion of weak inverse is a bit harder. We follow the coinductive presentation of [15]
(a definition considered ‘unsound’ by Cheng, but which Coq readily accepts!).

I Definition 21. We pose the following mutually coinductive definitions:
two objects x and y of a wild ω-category X are equivalent, notation x ∼ y, iff there exists
a reversible 1-cell f ∈ |X[x, y]|;
a 1-cell f ∈ |X[x, y]| is reversible when it has a weak inverse;
a weak inverse for a 1-cell f ∈ |X[x, y]| is a 1-cell g ∈ |X[y, x]| such that g ◦ f ∼ idx and
f ◦ g ∼ idy.

I Definition 22. A wild ω-category has all weak inverses when for all x, y ∈ |X|, any
f ∈ |X[x, y]| is reversible, and X[x, y] has all weak inverses.

I Proposition 3. Any wild ω-category has all duals iff it has all weak inverses.

This allows us to comfortably state a first definition of ω-groupoid:

I Definition 23. A wild ω-groupoid is a wild ω-category with all duals.

One possible problem with this definition is that, ideally, being an ω-groupoid should be a
mere property of ω-categories, i.e., for all X, the type ‘X has all weak inverses’ should be a
mere proposition [23]. The very definition of univalence [23] suggests that having all duals
might not suffice and that one may have to resort to some sensible notion of ω-adjunction
in this context, but there does not seem to be any commonly accepted such notion in the
literature, and we leave the question open.

There is one possible solution if we wish to delve into HoTT — except for this paragraph,
our whole development remains within Martin-Löf type theory with coinduction. Namely,
we could truncate the naive definition above. Indeed, according to the naive definition above,
a wild ω-groupoid is a wild ω-category, equipped with a choice of duals for all cells in all
dimensions. So we may define brutal ω-groupoids to denote wild ω-categories for which there
exists, in the mere propositional sense, duals for all cells in all dimensions. It would however
be preferable to have a mere property without resorting to truncation, as is done in the
standard treatment of the univalence axiom.

We conclude this section by stating a groupoidal variant of our hypothesis. Since we have
several candidate definitions for general ω-groupoids, we state our hypothesis taking this as
a parameter. So let ω-Gpd denote some type of ω-groupoids.

I Hypothesis 2. There exist L : ω-Gpd Type and η : ∀G ∈ ω-Gpd, ω-wCat(G, π(L(G)))
such that for each ω-groupoid G and type T , the following map is an equivalence:

η(G)? : ω-wCat(π(L(G)), π(T )) ω-wCat(G, π(T )).
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I Remark. We here use ω-functors as morphisms of ω-groupoids. An alternative would be to
require morphisms of ω-groupoids to preserve weak inverses. If we could refine the type of
inverses to a given morphism into a mere proposition, then both possibilities would coincide.

7 Conclusion and Future Work

We have defined wild and strict ω-categories, as well as wild and univalent ω-groupoids. We
have constructed a ‘fundamental ω-groupoid’ map from types into all of these notions but
strict ω-categories. We have stated a few variants of our partial homotopy hypothesis which
postulates some correspondence between types and the given ω-dimensional structure. We
have loosely related such hypotheses to the existence of higher inductive types and to the
Rezk completion for one-dimensional categories.

The main remaining issue in our development is that we have used a rather coarse notion
of equality between globular morphisms (Definition 8) in order to be able to define our
‘fundamental wild ω-category’ map. We wonder whether this could be done using a more
standard notion like bisimilarity.

As explained in the introduction, this paper grew out of an attempt to use strict, as
opposed to weak, ω-groupoids in the statement of a type-theoretic homotopy hypothesis.
Beyond the issues raised by the definition of type-theoretic ω-groupoids (Section 6), it now
seems likely that the lack of coherence of wild ω-categories disqualifies them for the full
homotopy hypothesis.

Our main future challenge is thus clearly to propose a type-theoretic notion of weak
ω-category allowing the definition of a ‘fundamental weak ω-category’ map. Assuming that
we succeed in defining weak ω-categories, stating a full version of the homotopy hypothesis
would first require us to define weak ω-groupoids properly. Thus, we expect the discussion of
Section 6 about weak inverses to also be relevant in the weak case. Namely, we will need to
investigate whether ‘having all duals’ is a mere property of weak ω-categories, and, if not,
how to refine it into one. Finally, a full version of the homotopy hypothesis would essentially
assert the existence of an infinite-dimensional generalisation of the Rezk completion. We
wonder whether the construction of [1] could be adapted to this setting.
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