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Abstract
We study nominal anti-unification, which is concerned with computing least general generaliza-
tions for given terms-in-context. In general, the problem does not have a least general solution,
but if the set of atoms permitted in generalizations is finite, then there exists a least general
generalization which is unique modulo variable renaming and α-equivalence. We present an al-
gorithm that computes it. The algorithm relies on a subalgorithm that constructively decides
equivariance between two terms-in-context. We prove soundness and completeness properties of
both algorithms and analyze their complexity. Nominal anti-unification can be applied to prob-
lems were generalization of first-order terms is needed (inductive learning, clone detection, etc.),
but bindings are involved.
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1 Introduction

Binders are very common in computer science, logic, mathematics, linguistics. Functional
abstraction λ, universal quantifier ∀, limit lim, integral

∫
are some well-known examples of

binders. To formally represent and study systems with binding, Pitts and Gabbay [15, 13, 14]
introduced nominal techniques, based on the idea to give explicit names to bound entities. It
makes a syntactic distinction between atoms, which can be bound, and variables, which can
be substituted. This approach led to the development of the theory of nominal sets, nominal
logic, nominal algebra, nominal rewriting, nominal logic programming, etc.

Equation solving between nominal terms (maybe together with freshness constraints) has
been investigated by several authors, who designed and analyzed algorithms for nominal
unification [30, 18, 19, 20, 6, 5], nominal matching [7], equivariant unification [9], and
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permissive nominal unification [10, 11]. However, in contrast to unification, its dual problem,
anti-unification, has not been studied for nominal terms previously.

The anti-unification problem for two terms t1 and t2 is concerned with finding a term t

that is more general than the original ones, i.e., t1 and t2 should be substitutive instances
of t. The interesting generalizations are the least general ones, which retain the common
structure of t1 and t2 as much as possible. Plotkin [23] and Reynolds [25] initiated research
on anti-unification in the 1970s, developing generalization algorithms for first-order terms.
Since then, anti-unification has been studied in various theories, including some of those with
binding constructs: calculus of constructions [22], Mλ [12], second-order lambda calculus
with type variables [21], simply-typed lambda calculus where generalizations are higher-order
patterns [3], just to name a few.

The problem we address in this paper is to compute generalizations for nominal terms.
More precisely, we consider this problem for nominal terms-in-context, which are pairs of a
freshness context and a nominal term, aiming at computing their least general generalizations
(lgg). However, it turned out that without a restriction, there is no lgg for terms-in-context,
in general. Even more, a minimal complete set of generalizations does not exist. This is in
sharp contrast with the related problem of anti-unification for higher-order patterns, which
always have a single lgg [3]. The reason is one can make terms-in-context less and less general
by adding freshness constraints for the available (infinitely many) atoms, see Example 2.7.
Therefore, we restrict the set of atoms which are permitted in generalizations to be fixed and
finite. In this case, there exists a single lgg (modulo α-equivalence and variable renaming)
for terms-in-context and we design an algorithm to compute it in O(n5) time.

There is a close relation between nominal and higher-order pattern unification: One can
be translated into the other by the solution-preserving translation defined in [8, 18, 20] or
the translation defined for permisive terms in [10, 11]. We show that for anti-unification,
this method, in general, is not applicable. Even if one finds conditions under which such
a translation-based approach to anti-unification works, due to complexity reasons it is still
better to use the direct nominal anti-unification algorithm developed in this paper.

Computation of nominal lgg’s requires to solve the equivariance problem: Given two
terms s1 and s2, find a permutation of atoms which, when applied to s1, makes it α-
equivalent to s2 (under the given freshness context). This is necessary to guarantee that the
computed generalization is least general. For instance, if the given terms are s1 = f(a, b) and
s2 = f(b, a), where a, b are atoms, the freshness context is empty, and the atoms permitted in
the generalization are a, b, and c, then the term-in-context 〈{c#X, c#Y }, f(X,Y )〉 generalizes
〈∅, s1〉 and 〈∅, s2〉, but it is not their lgg. To compute the latter, we need to reflect the
fact that generalizations of the atoms are related to each other: One can be obtained from
the other by swapping a and b. This leads to an lgg 〈{c#X}, f(X, (a b)·X)〉. To compute
the permutation (a b), an equivariance problem should be solved. Equivariance is already
present in α-Prolog [28] and Isabelle [27]. We develop a rule-based algorithm for equivariance
problems, which computes in quadratic time the justifying permutation if the input terms
are equivariant, and fails otherwise.

Both anti-unification and equivariance algorithms are implemented in the anti-unification
algorithm library [2] and can be accessed from http://www.risc.jku.at/projects/stout/
software/.

Various variants of anti-unification, such as first-order, higher-order, or equational anti-
unification have been used in inductive logic programming, logical and relational learning [24],
reasoning by analogy [16], program synthesis [26], program verification [21], etc. Nominal
anti-unification can, hopefully, contribute in solving similar problems in nominal setting or
in first-order settings where bindings play an important role.

http://www.risc.jku.at/projects/stout/software/
http://www.risc.jku.at/projects/stout/software/
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In this paper, we mainly follow the notation from [20]. Long proofs can be found in the
technical report [4].

2 Nominal Terms

In nominal signatures we have sorts of atoms (typically ν) and sorts of data (typically δ) as
disjoint sets. Atoms (typically a, b, . . .) have one of the sorts of atoms. Variables (typically
X,Y, . . .) have a sort of atom or a sort of data, i.e. of the form ν | δ. In nominal terms,
variables can be instantiated and atoms can be bound. Nominal function symbols (typically
f, g, . . .) have an arity of the form τ1 × · · · × τn → δ, where δ is a sort of data and τi are
sorts given by the grammar τ ::= ν | δ | 〈ν〉τ . Abstractions have sorts of the form 〈ν〉τ.

A swapping (a b) is a pair of atoms of the same sort. A permutation is a (possibly empty)
sequence of swappings. We use upright Greek letters (e.g., π, ρ) to denote permutations.
Nominal terms (typically t, s, u, r, q, . . .) are given by the grammar:

t ::= f(t1, . . . , tn) | a | a.t | π·X

where f is an n-ary function symbol, a is an atom, π is a permutation, and X is a variable.
They are called respectively application, atom, abstraction, and suspension. The sorts of
application and atomic terms are defined as usual, the sort of a.t is 〈ν〉τ where ν is the sort
of a and τ is the sort of t, and the sort of π·X is the one of X.

The inverse of a permutation π = (a1 b1) . . . (an bn) is the permutation (an bn) . . . (a1 b1),
denoted by π−1. The empty permutation is denoted by Id. The effect of a swapping over
an atom is defined by (a b) • a = b, (a b) • b = a and (a b) • c = c, when c /∈ {a, b}. It is
extended to the rest of terms: (a b) • f(t1, . . . , tn) = f((a b) • t1, . . . , (a b) • tn), (a b) • (c.t) =
((a b) • c) . ((a b) • t), and (a b)•π·X = (a b)π·X, where (a b)π is the permutation obtained by
concatenating (a b) and π. The effect of a permutation is defined by (a1 b1) . . . (an bn) • t =
(a1 b1) • ((a2 b2) . . . (an bn) • t). The effect of the empty permutation is Id • t = t. We extend
it to suspensions and write X as the shortcut of Id ·X.

The set of variables of a term t is denoted by Vars(t). A term t is called ground if Vars(t) =
∅. The set of atoms of a term t or a permutation π is the set of all atoms which appear in it and
is denoted by Atoms(t), Atoms(π) respectively. For instance, Atoms(f(a.g(a), (b c)·X, d) =
{a, b, c, d}. We write Atoms(t1, . . . , tn) for the set Atoms(t1) ∪ · · · ∪Atoms(tn).

f ε

a. 1

b. 1.1

g 1.1.1

(a b)·X 1.1.1.1 a 1.1.1.2

h 2

c 2.1

Figure 1 The tree form
and positions of the term
f(a.b.g((a b)·X, a), h(c)).

Positions in terms are defined with respect to their tree
representation in the usual way, as strings of integers. However,
suspensions are put in a single leaf node. For instance, the tree
form of the term f(a.b.g((a b)·X, a), h(c)), and the corresponding
positions are shown in Fig. 1. The symbol f stands in the position
ε (the empty sequence). The suspension is put in one node of
the tree, at the position 1.1.1.1. The abstraction operator and
the corresponding bound atom together occupy one node as well.
For any term t, t|p denotes the subterm of t at position p. For
instance, f(a.b.g((a b)·X, a), h(c))|1.1 = b.g((a b)·X, a).

Every permutation π naturally defines a bijective function
from the set of atoms to the sets of atoms, that we will also rep-
resent as π. Suspensions are uses of variables with a permutation
of atoms waiting to be applied once the variable is instantiated. Occurrences of an atom a are
said to be bound if they are in the scope of an abstraction of a, otherwise are said to be free. We
denote by FA(t) the set of all atoms which occur freely in t: FA(f(t1, . . . , tn)) =

⋃n
i=1 FA(ti),
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FA(a) = {a}, FA(a.t) = FA(t) \ {a}, and FA(π·X) = Atoms(π). FA-s(t) is the set of all
atoms which occur freely in t ignoring suspensions: FA-s(f(t1, . . . , tn)) =

⋃n
i=1 FA-s(ti),

FA-s(a) = {a}, FA-s(a.t) = FA-s(t) \ {a}, and FA-s(π·X) = ∅.
The head of a term t, denoted Head(t), is defined as: Head(f(t1, . . . , tn)) = f , Head(a) =

a, Head(a.t) = ., and Head(π·X) = X.
Substitutions are defined in the standard way, as a mapping from variables to terms of the

same sort. We use Greek letters σ, ϑ, ϕ to denote substitutions. The identity substitution is
denoted by ε. Furthermore, we use the postfix notation for substitution applications, i.e. tσ
denotes the application of a substitution σ to a term t, and similarly, the composition of two
substitutions σ and ϑ is written as σϑ. Composition of two substitutions is performed as
usual. Their application allows atom capture, for instance, a.X{X 7→ a} = a.a, and forces
the permutation effect: π·X{X 7→ t} = π • t, for instance, (a b)·X{X 7→ f(a, (a b)·Y )} =
f(b, (a b)(a b)·Y ). The notions of substitution domain and range are also standard and are
denoted, respectively, by Dom and Ran.

A freshness constraint is a pair of the form a#X stating that the instantiation of X cannot
contain free occurrences of a. A freshness context is a finite set of freshness constraints. We
will use ∇ and Γ to denote freshness contexts. Vars(∇) and Atoms(∇) denote respectively
the set of variables and atoms of ∇.

We say that a substitution σ respects a freshness context ∇, if for all X, FA-s(Xσ) ∩ {a |
a#X ∈ ∇} = ∅.

The predicate ≈, which stands for α-equivalence between terms, and the freshness
predicate # were defined in [29, 30] by the following theory:

∇ ` a ≈ a
∇ ` t ≈ t′

∇ ` a.t ≈ a.t′
a 6= a′ ∇ ` t ≈ (a a′) • t′ ∇ ` a#t′

∇ ` a.t ≈ a′.t′

a#X ∈ ∇ for all a such that π • a 6= π′ • a
∇ ` π·X ≈ π′ ·X

∇ ` t1 ≈ t′1 · · · ∇ ` tn ≈ t′n
∇ ` f(t1, . . . tn) ≈ f(t′1, . . . , t′n)

where the freshness predicate # is defined by

a 6= a′

∇ ` a#a′ (#-atom)
∇ ` a#a.t (#-abst-1) a 6= a′ ∇ ` a#t

∇ ` a#a′.t (#-abst-2)

(π−1 • a#X) ∈ ∇
∇ ` a#π·X

(#-susp.) ∇ ` a#t1 · · · ∇ ` a#tn
∇ ` a#f(t1, . . . tn) (#-application)

Their intended meanings are:
1. ∇ ` a#t holds, if for every substitution σ such that tσ is a ground term and σ respects

the freshness context ∇, we have a is not free in tσ;
2. ∇ ` t ≈ u holds, if for every substitution σ such that tσ and uσ are ground terms and σ

respects the freshness context ∇, tσ and uσ are α-equivalent.

Based on the definition of the freshness predicate, we can design an algorithm, which we call
FC, which solves the following problem: Given a set of freshness formulas {a1#t1, . . . , an#tn},
compute a minimal (with respect to ⊆) freshness context ∇ such that ∇ ` a1#t1, . . . ,∇ `
an#tn. Such a ∇ may or may not exist, and the algorithm should detect it. The algorithm
can be found in the technical report [4]. It is simply a bottom-up application of the rules of
the freshness predicate, starting from each of the ∇ ` a1#t1, . . . ,∇ ` an#tn. It succeeds if
each branch of such a derivation tree is either closed (i.e., ends with the application of the
#-atom or the #-abst-1 rule), or ends with an application of the #-susp. rule, producing
a membership atom of the form a#X ∈ ∇ for some a and X. In this case we say that the
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desired ∇ is the set of all such a#X freshness atoms, and write FC({a1#t1, . . . , an#tn}) = ∇.
(Hence, ∇ is empty when all branches are closed.) It fails if at least one branch of the
derivation tree produces ∇ ` a#a for some a, i.e., no rule applies to it. In this case we write
FC({a1#t1, . . . , an#tn}) = ⊥. The following theorem is easy to verify:

I Theorem 2.1. Let F be a set of freshness formulas and ∇ be a freshness context. Then
FC(F ) ⊆ ∇ iff ∇ ` a#t for all a#t ∈ F .

I Corollary 2.2. FC(F ) = ⊥ iff there is no freshness context that would justify all formulas
in F .

Given a freshness context ∇ and a substitution σ, we define ∇σ = FC({a#Xσ | a#X ∈
∇}). The following lemma is straightforward:

I Lemma 2.3. σ respects ∇ iff ∇σ 6= ⊥.

When ∇σ 6= ⊥, we call ∇σ the instance of ∇ under σ.
It is not hard to see that (a) if σ respects ∇, then σ respects any ∇′ ⊆ ∇, and (b) if σ

respects ∇ and ϑ respects ∇σ, then σϑ respects ∇ and (∇σ)ϑ = ∇(σϑ).

I Definition 2.4. A term-in-context is a pair 〈∇, t〉 of a freshness context and a term.
A term-in-context 〈∇1, t1〉 is more general than a term-in-context 〈∇2, t2〉, written 〈∇1,

t1〉 � 〈∇2, t2〉, if there exists a substitution σ, which respects ∇1, such that ∇1σ ⊆ ∇2 and
∇2 ` t1σ ≈ t2.

We write ∇ ` t1 � t2 if there exists a substitution σ such that ∇ ` t1σ ≈ t2.
Two terms-in-context p1 and p2 are equivalent (or equi-general), written p1 ' p2, iff

p1 � p2 and p2 � p1. The strict part of � is denoted by ≺, i.e., p1 ≺ p2 iff p1 � p2 and not
p2 � p1. We also write ∇ ` t1 ' t2 iff ∇ ` t1 � t2 and ∇ ` t2 � t1.

I Example 2.5. We give some examples to demonstrate the relations we have just defined:
〈{a#X}, f(a)〉 ' 〈∅, f(a)〉. We can use {X 7→ b} for the substitution applied to the first
pair.
〈∅, f(X)〉 � 〈{a#X}, f(X)〉 (with σ = ε), but not 〈{a#X}, f(X)〉 � 〈∅, f(X)〉.
〈∅, f(X)〉 � 〈{a#Y }, f(Y )〉 with σ = {X 7→ Y }.
〈{a#X}, f(X)〉 6� 〈∅, f(Y )〉, because in order to satisfy {a#X}σ ⊆ ∅, the substitution
σ should map X to a term t which contains neither a (freely) nor variables. But then
∅ ` f(t) ≈ f(Y ) does not hold. Hence, together with the previous example, we get 〈∅,
f(Y )〉 ≺ 〈{a#X}, f(X)〉.
〈{a#X}, f(X)〉 6� 〈{a#X}, f(a)〉. Notice that σ = {X 7→ a} does not respect {a#X}.
〈{b#X}, (a b)·X〉 � 〈{c#X}, (a c)·X〉 with the substitution σ = {X 7→ (a b)(a c)·X}.
Hence, we get 〈{b#X}, (a b)·X〉 ' 〈{c#X}, (a c)·X〉, because the � part can be shown
with the help of the substitution {X 7→ (a c)(a b)·X}.

I Definition 2.6. A term-in-context 〈Γ, r〉 is called a generalization of two terms-in-context
〈∇1, t〉 and 〈∇2, s〉 if 〈Γ, r〉 � 〈∇1, t〉 and 〈Γ, r〉 � 〈∇2, s〉. It is the least general generalization,
(lgg in short) of 〈∇1, t〉 and 〈∇2, s〉 if there is no generalization 〈Γ′, r′〉 of 〈∇1, t〉 and 〈∇2, s〉
which satisfies 〈Γ, r〉 ≺ 〈Γ′, r′〉.

Note that if we have infinite number of atoms in the language, the relation ≺ is not
well-founded: 〈∅, X〉 ≺ 〈{a#X}, X〉 ≺ 〈{a#X, b#X}, X〉 ≺ · · · . As a consequence, two
terms-in-context may not have an lgg and not even a minimal complete set of generalizations:1

1 Minimal complete sets of generalizations are defined in the standard way. For a precise definition, see,
e.g., [1, 17].

RTA 2015
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I Example 2.7. Let p1 = 〈∅, a1〉 and p2 = 〈∅, a2〉 be two terms-in-context. Then in any
complete set of generalizations of p1 and p2 there is an infinite chain 〈∅, X〉 ≺ 〈{a3#X},
X〉 ≺ 〈{a3#X, a4#X}, X〉 ≺ · · · , where {a1, a2, a3, . . .} is the set of all atoms of the language.
Hence, p1 and p2 do not have a minimal complete set of generalizations.

This example is a proof of the theorem, which characterizes the generalization type of
nominal anti-unification:2

I Theorem 2.8. The problem of anti-unification for terms-in-context is of nullary type.

However, if we restrict the set of atoms which can be used in the generalizations to be
fixed and finite, then the anti-unification problem becomes unitary. (We do not prove this
property here, it will follow from the Theorems 6.2 and 6.3 in Sect. 6.)

I Definition 2.9. We say that a term t (resp., a freshness context ∇) is based on a set of
atoms A iff Atoms(t) ⊆ A (resp., Atoms(∇) ⊆ A). A term-in-context 〈∇, t〉 is based on A
if both t and ∇ are based on it. We extend the notion of A-basedness to permutations,
calling π A-based if it contains only atoms from A. Such a permutation defines a bijection,
in particular, from A to A. If p1 and p2 are A-based terms-in-context, then their A-based
generalizations are terms-in-context which are generalizations of p1 and p2 and are based
on A. An A-based lgg of A-based terms-in-context p1 and p2 is a term-in-context p, which is
an A-based generalization of p1 and p2 and there is no A-based generalization p′ of p1 and p2
which satisfies p ≺ p′.

The problem we would like to solve is the following:

Given: Two nominal terms t and s of the same sort, a freshness context ∇, and a finite set
of atoms A such that t, s, and ∇ are based on A.

Find: A term r and a freshness context Γ, such that the term-in-context 〈Γ, r〉 is an A-based
least general generalization of the terms-in-context 〈∇, t〉 and 〈∇, s〉.

Our anti-unification problem is parametric on the set of atoms we consider as the base,
and finiteness of this set is essential to ensure the existence of an lgg.

3 Motivation of Using a Direct Nominal Anti-Unification Algorithm

In [20], relation between nominal unification (NU) and higher-order pattern unification
(HOPU) has been studied. In particular, it was shown how to translate NU problems into
HOPU problems and how to obtain nominal unifiers back from higher-order pattern unifiers.
It is tempting to use the same translation for nominal anti-unification (NAU), using the
algorithm from [3] to solve higher-order anti-unification problems over patterns (HOPAU),
but it turns out that the generalization computed in this way is not always based on the
same set of the atoms as the input:

I Example 3.1. We consider the following problem: Let the set of atoms be A1 = {a, b}. The
terms to be generalized are a.b and b.a, and the freshness context is ∇ = ∅. According to [20],
translation to higher-order patterns gives the anti-unification problem λa, b, a. b , λa, b, b. a,
whose lgg is λa, b, c.X(a, b). However, we can not translate this lgg back to an A1-based
term-in-context, because it contains more bound variables than there are atoms in A1.

2 Generalization types are defined analogously to unification types: unary, finitary, infinitary, and nullary,
see [17].
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On the other hand, the translation would work for the set of atoms A2 = {a, b, c}:
Back-translating λa, b, c.X(a, b) gives the A2-based lgg 〈{c#X}, c.X〉.

The reason why the translation-based approach does not work for A-based NAU is that
A is finite, while in higher-order anti-unification there is an infinite supply of fresh (bound)
variables. If we assumed A to be infinite, there would still be a mismatch between NAU and
the corresponding HOPAU: NAU, as we saw, is nullary in this case, while HOPAU is unitary.
The reason of this contrast is that from infinitely many nominal generalizations, there is only
one which is a well-typed higher-order generalization.

One might think that the translation-based approach would still work, if one considers
only nominal anti-unification problems where the set of atoms is large enough for the input
terms-in-context. However, there is a reason that speaks against NAU-to-HOPAU translation:
complexity. The translation approach leads to a quadratic increase of the input size (Lemma
5.6 in [20]). The HOPAU algorithm in [3] runs in cubic time with respect to the size of its
input. Hence, the translation-based approach leads to an algorithm with runtime complexity
O(n6). In contrast, the algorithm developed in this paper has runtime complexity O(n5),
and requires no back and forth translations.

4 The Lattice of More General Terms-In-Context

The notion of more general term defines an order relation between classes of terms (modulo
some notion of variable renaming). In most cases, we have actually a meet-semilattice, since,
given two terms, there always exists a greatest lower bound (meet) that corresponds to their
anti-unifier. On the contrary, the least upper bound (join) of two terms only exists if they are
unifiable. For instance, the two first-order terms f(a,X1) and f(X2, b) have a meet f(Y1, Y2),
and, since they are unifiable, also a join f(a, b). Notice that unifiability and existence of a
join are equivalent if both terms do not share variables (for instance f(a,X) and f(X, b) are
both smaller than f(a, b), hence joinable, but they are not unifiable). With this restriction
one do not loose generality: The unification problem t1 ≈? t2 (sharing variables), can be
reduced to f(t1, t2) ≈? f(X,X) (not sharing variables), where f is some binary symbol and
X a fresh variable. Therefore, in the first-order case, the problem of searching a most general
unifier is equivalent to the search of the join of two terms, and the search of a least general
generalization to the search of the meet. Notice that meet and join are unique up to some
notion of variable renaming. For instance, the join of f(a,X,X ′) and f(Y, b, Y ′) is f(a, b, Z)
for any renaming of Z by any variable.

In the nominal case, we consider the set of terms-in-context (modulo variable renaming)
with the more general relation. The following lemma establishes a correspondence between
joinability and unifiability.

I Lemma 4.1. Given two terms-in-context 〈∇1, t1〉 and 〈∇2, t2〉 with disjoint sets of variables,
〈∇1, t1〉 and 〈∇2, t2〉 are joinable if, and only if, {t1 ≈? t2} ∪ ∇1 ∪ ∇2 has a solution (is
unifiable).

Like in first-order unification, the previous lemma allows us to reduce any nominal
unification problem P = {a1#u1, . . . , am#um, t1 ≈ s1, . . . , tn ≈ sn} into the joinability of the
two terms-in-context 〈∅, f(X,X)〉 and 〈FC({a1#u1, . . . , am#um}), f(g(t1, . . . , tn), g(s1, . . . ,

sn))〉 where f and g are any appropriate function symbols, and X is a fresh variable.
The nominal anti-unification problem is already stated in terms of finding the meet of

two terms-in-context, with the only proviso that all terms and contexts must be based on
some finite set of atoms.
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5 Nominal Anti-Unification Algorithm

The triple X : t , s, where X, t, s have the same sort, is called the anti-unification triple,
shortly AUT, and the variable X is called a generalization variable. We say that a set of
AUTs P is based on a finite set of atoms A, if for all X : t , s ∈ P , the terms t and s are
based on A.

I Definition 5.1. The nominal anti-unification algorithm is formulated in a rule-based way
working on tuples P ; S; Γ; σ and two global parameters A and ∇, where

P and S are sets of AUTs such that if X : t , s ∈ P ∪ S, then this is the sole occurrence
of X in P ∪ S;
P is the set of AUTs to be solved;
A is a finite set of atoms;
The freshness context ∇ does not constrain generalization variables;
S is a set of already solved AUTs (the store);
Γ is a freshness context (computed so far) which constrains generalization variables;
σ is a substitution (computed so far) mapping generalization variables to nominal terms;
P , S, ∇, and Γ are A-based.

We call such a tuple a state. The rules below operate on states.

Dec: Decomposition
{X : h(t1, . . . , tm) , h(s1, . . . , sm)} ·∪P ; S; Γ; σ

=⇒ {Y1 : t1 , s1, . . . , Ym : tm , sm} ∪ P ; S; Γ; σ{X 7→ h(Y1, . . . , Ym)},
where h is a function symbol or an atom, Y1, . . . , Ym are fresh variables of the corresponding
sorts, m ≥ 0.

Abs: Abstraction
{X : a.t , b.s} ·∪P ; S; Γ; σ =⇒ {Y : (c a) • t , (c b) • s} ∪ P ; S; Γ; σ{X 7→ c.Y },

where Y is fresh, c ∈ A, ∇ ` c#a.t and ∇ ` c#b.s.

Sol: Solving
{X : t , s} ·∪P ; S; Γ; σ =⇒ P ; S ∪ {X : t , s}; Γ ∪ Γ′; σ,

if none of the previous rules is applicable, i.e. one of the following conditions hold:
(a) both terms have distinct heads: Head(t) 6= Head(s), or
(b) both terms are suspensions: t = π1 ·Y1 and s = π2 ·Y2, where π1, π2 and Y1, Y2 are not

necessarily distinct, or
(c) both are abstractions and rule Abs is not applicable: t = a.t′, s = b.s′ and there is no

atom c ∈ A satisfying ∇ ` c#a.t′ and ∇ ` c#b.s′.
The set Γ′ is defined as Γ′ := {a#X | a ∈ A ∧ ∇ ` a#t ∧ ∇ ` a#s}.

Mer: Merging
P ; {X : t1 , s1, Y : t2 , s2} ·∪S; Γ; σ =⇒
P ; {X : t1 , s1} ∪ S; Γ{Y 7→ π·X}; σ{Y 7→ π·X},

where π is an Atoms(t1, s1, t2, s2)-based permutation such that ∇ ` π • t1 ≈ t2, and ∇ `
π • s1 ≈ s2.

The rules transform states to states. One can easily observe this by inspecting the rules.
Given a finite set of atoms A, two nominal A-based terms t and s, and an A-based

freshness context ∇, to compute A-based generalizations for 〈∇, t〉 and 〈∇, s〉, we start with
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{X : t , s}; ∅; ∅; ε, where X is a fresh variable, and apply the rules as long as possible. We
denote this procedure by N. A Derivation is a sequence of state transformations by the rules.
The state to which no rule applies has the form ∅;S; Γ;ϕ, where Mer does not apply to S.
We call it the final state. When N transforms {X : t , s}; ∅; ∅; ε into a final state ∅;S; Γ;ϕ,
we say that the result computed by N is 〈Γ, Xϕ〉.

Note that the Dec rule works also for the AUTs of the form X : a , a. In the Abs rule, it
is important to have the corresponding c in A. If we take A = A2 in Example 3.1, then Abs
can transform the AUT between t and s there, but if A = A1 in the same example, then Abs
is not applicable. In this case the Sol rule takes over, because the condition (c) of this rule is
satisfied.

The condition (b) of Sol helps to compute, e,g, 〈∅, X〉 for identical terms-in-context 〈∅,
(a b)·Y 〉 and 〈∅, (a b)·Y 〉. Although one might expect that computing 〈∅, (a b)·Y 〉 would be
more natural, from the generalization point of view it does not matter, because 〈∅, X〉 is as
general as 〈∅, (a b)·Y 〉.

I Example 5.2. We illustrate N with the help of some examples:
Let t = f(a, b), s = f(b, c), ∇ = ∅, and A = {a, b, c, d}. Then N performs the following
transformations:

{X : f(a, b) , f(b, c)}; ∅; ∅; ε =⇒Dec

{Y : a , b, Z : b , c}; ∅; ∅; {X 7→ f(Y, Z)} =⇒2
Sol

∅; {Y : a , b, Z : b , c}; {c#Y, d#Y, a#Z, d#Z}; {X 7→ f(Y, Z)} =⇒Mer

∅; {Y : a , b}; {c#Y, d#Y }; {X 7→ f(Y, (a b)(b c)·Y )}

Hence, p = 〈{c#Y, d#Y }, f(Y, (a b)(b c)·Y )〉 is the computed result. It generalizes the
input pairs: p{Y 7→ a} � 〈∇, t〉 and p{Y 7→ b} � 〈∇, s〉. The substitutions {Y 7→ a} and
{Y 7→ b} can be read from the final store. Note that 〈{c#Y }, f(Y, (a b)(b c)·Y )〉 would be
also an A-based generalization of 〈∇, t〉 and 〈∇, s〉, but it is strictly more general than p.
Let t = f(b, a), s = f(Y, (a b)·Y ), ∇ = {b#Y }, and A = {a, b}. Then N computes the
term-in-context 〈∅, f(Z, (a b)·Z)〉. It generalizes the input pairs.
Let t = f(g(X), X), s = f(g(Y ), Y ), ∇ = ∅, and A = ∅. It is a first-order anti-unification
problem. N computes 〈∅, f(g(Z), Z)〉. It generalizes the input pairs.
Let t = f(a.b,X), s = f(b.a, Y ), ∇ = {c#X}, A = {a, b, c, d}. Then N computes the
term-in-context p = 〈{c#Z1, d#Z1}, f(c.Z1, Z2)〉. It generalizes the input pairs: p{Z1 7→
b, Z2 7→ X} = 〈∅, f(c.b,X)〉 � 〈∇, t〉 and p{Z1 7→ a, Z2 7→ Y } = 〈∅, f(c.a, Y )〉 � 〈∇, s〉.

6 Properties of the Nominal Anti-Unification Algorithm

The Soundness Theorem states that the result computed by N is indeed an A-based general-
ization of the input terms-in-context:

I Theorem 6.1 (Soundness of N). Given terms t and s and a freshness context ∇, all based
on a finite set of atoms A, if {X : t , s}; ∅; ∅; ε =⇒+ ∅; S; Γ; σ is a derivation obtained by
an execution of N, then 〈Γ, Xσ〉 is an A-based generalization of 〈∇, t〉 and 〈∇, s〉.

The Completeness Theorem states that for any given A-based generalization of two input
terms-in-context, N can compute one which is at most as general than the given one.

I Theorem 6.2 (Completeness of N). Given terms t and s and freshness contexts ∇ and Γ,
all based on a finite set of atoms A. If 〈Γ, r〉 is an A-based generalization of 〈∇, t〉 and 〈∇, s〉,
then there exists a derivation {X : t , s}; ∅; ∅; ε =⇒+ ∅; S; Γ′; σ obtained by an execution
of N, such that 〈Γ, r〉 � 〈Γ′, Xσ〉.
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Depending on the selection of AUTs to perform a step, there can be different derivations in
N starting from the same AUT, leading to different generalizations. The next theorem states
that all those generalizations are the same modulo variable renaming and α-equivalence.

I Theorem 6.3 (Uniqueness Modulo '). Let t and s be terms and ∇ be a freshness context
that are based on the same finite set of atoms. Let {X : t , s}; ∅; ∅; ε =⇒+ ∅; S1; Γ1; σ1
and {X : t , s}; ∅; ∅; ε =⇒+ ∅; S2; Γ2; σ2 be two maximal derivations in N. Then 〈Γ1,

Xσ1〉 ' 〈Γ2, Xσ2〉.

Theorems 6.1, 6.2, and 6.3 imply that nominal anti-unification is unitary: For any A-based
∇, t, and s, there exists an A-based lgg of 〈∇, t〉 and 〈∇, s〉, which is unique modulo ' and
can be computed by the algorithm N.

Now we study how lgg’s of terms-in-context depend on the set of atoms the terms-in-
context are based on. The following lemma states the precise dependence.

I Lemma 6.4. Let A1 and A2 be two finite sets of atoms with A1 ⊆ A2 such that the
A1-based terms-in-context 〈∇, t〉 and 〈∇, s〉 have an A1-based lgg 〈Γ1, r1〉 and an A2-based
lgg 〈Γ2, r2〉. Then Γ2 ` r1 � r2.

Proof. 〈Γ1, r1〉 and 〈Γ2, r2〉 are unique modulo '. Let Di be the derivation in N that
computes 〈Γi, ri〉, i = 1, 2. The number of atoms in A1 and A2 makes a difference in the
rule Abs: If there are not enough atoms in A1, an Abs step in D2 is replaced by a Sol step
in D1. It means that for all positions p of r1, r2|p is also defined. Moreover, there might
exist a subterm r1|p, which has a form of suspension, while r2|p is an abstraction. For such
positions, r1|p � r2|p. For the other positions p′ of r1, r1|p′ and r2|p′ may differ only by
names of generalization variables or by names of bound atoms.

Another difference might be in the application of Sol in both derivations: It can happen
that this rule produces a larger Γ′ in D2 than in D1, when transforming the same AUT.

Hence, if there are positions p1, . . . , pn in r1 such that r1|pi
= πi ·X, then there exists

a substitution ϕX such that Γ2 ` πi ·Xϕ ≈ r2|pi , 1 ≤ i ≤ n. Taking the union of all ϕX ’s
where X ∈ Vars(r1), we get ϕ with the property Γ2 ` r1ϕ ≈ r2. J

Note that, in general, we can not replace Γ2 ` r1 � r2 with Γ2 ` r1 ' r2 in Lemma 6.4.
The following example illustrates this:

I Example 6.5. Let t = a.b, s = b.a, ∇ = ∅, A1 = {a, b}, and A2 = {a, b, c}. Then for 〈∇,
t〉 and 〈∇, s〉, 〈∅, X〉 is an A1-based lgg and 〈{c#X}, c.X〉 is an A2-based lgg. Obviously,
{c#X} ` X � c.X but not {c#X} ` c.X � X.

This example naturally leads to a question: Under which additional conditions can we
have Γ2 ` r1 ' r2 instead of Γ2 ` r1 � r2 in Lemma 6.4? To formalize a possible answer to
it, we need some notation.

Let the terms t, s and the freshness context ∇ be based on the same set of atoms
A. The maximal subset of A, fresh for t, s, and ∇, denoted fresh(A, t, s,∇), is defined as
A \ (Atoms(t, s) ∪Atoms(∇)).

If A1 ⊆ A2 are two sets of atoms such that t, s,∇ are at the same time based on both A1
and A2, then fresh(A1, t, s,∇) ⊆ fresh(A2, t, s,∇).

Let ‖t‖Abs stand for the number of abstraction occurrences in t. |A| stands for the
cardinality of the set of atoms A. We say that a set of atoms A is saturated for A-based t, s
and ∇, if |fresh(A, t, s,∇)| ≥ min{‖t‖Abs , ‖s‖Abs}.

The following lemma answers the question posed above:



A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret 67

I Lemma 6.6. Under the conditions of Lemma 6.4, if A1 is saturated for t, s,∇, then
Γ2 ` r1 ' r2.

Proof. Let Di be the derivation in N that computes 〈Γi, ri〉, i = 1, 2. Note that in each of
these derivations, the number of Abs steps does not exceed min{‖t‖Abs , ‖s‖Abs}. Since A1 is
saturated for t, s,∇ and A1 ⊆ A2, A2 is also saturated for t, s,∇. Hence, whenever an AUT
between two abstractions is encountered in the derivation Di, there is always c ∈ A1 available
which satisfies the condition of the Abs rule. Therefore, such AU-E’s are never transformed
by Sol. We can assume without loss of generality that the sequence of steps in D1 and D2 are
the same. we may also assume that we take the same fresh variables, and the same atoms
from fresh(A1, t, s,∇) in the corresponding steps in D1 and D2. Then the only difference
between these derivations is in the Γ’s, caused by the Sol rule which might eventually make
Γ2 larger than Γ1. The σ’s computed by the derivations are the same and, therefore, r1 and
r2 are the same (modulo the assumptions on the variable and fresh atom names). Hence,
Γ2 ` r1 ' r2. J

In other words, this lemma answers the following pragmatic question: Given t, s and
∇, how to choose a set of atoms A so that (a) t, s, ∇ are A-based and (b) in the A-based
lgg 〈Γ, r〉 of 〈∇, t〉 and 〈∇, s〉, the term r generalizes s and t in the “best way”, maximally
preserving similarities and uniformly abstracting differences between s and t. The answer is:
Besides all the atoms occurring in t, s, or ∇, A should contain at least m more atoms, where
m = min{‖t‖Abs , ‖s‖Abs}.

Besides that, the lemma also gives the condition when the NAU-to-HOPAU translation
can be used for solving NAU problems: The set of permitted atoms should be saturated.

7 Deciding Equivariance

Computation of π in the condition of the rule Mer above requires an algorithm that solves the
following problem: Given nominal terms t, s and a freshness context ∇, find an Atoms(t, s)-
based permutation π such that ∇ ` π • t ≈ s. This is the problem of deciding whether t and
s are equivariant with respect to ∇. In this Section we describe a rule-based algorithm for
this problem, called E.

Note that our problem differs from the problem of equivariant unification considered
in [9]: We do not solve unification problems, since we do not allow variable substitution. We
only look for permutations to decide equivariance constructively and provide a dedicated
algorithm for that.

The algorithm E works on tuples of the form E; ∇; A; π (also called states). E is a set
of equivariance equations of the form t ≈ s where t, s are nominal terms, ∇ is a freshness
context, and A is a finite set of atoms which are available for computing π. The latter holds
the permutation to be returned in case of success.

The algorithm is split into two phases. The first one is a simplification phase where
function applications, abstractions and suspensions are decomposed as long as possible. The
second phase is the permutation computation, where given a set of equivariance equations
between atoms of the form a ≈ b we compute the permutation which will be returned in case
of success. The rules of the first phase are the following:

Dec-E: Decomposition
{f(t1, . . . , tm) ≈ f(s1, . . . , sm)} ·∪E; ∇; A; Id =⇒ {t1 ≈ s1, . . . , tm ≈ sm} ∪E;∇;A; Id.
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Alp-E: Alpha Equivalence
{a.t ≈ b.s} ·∪E; ∇; A; Id =⇒ {(ć a) • t ≈ (ć b) • s} ∪ E; ∇; A; Id,

where ć is a fresh atom of the same sort as a and b.

Sus-E: Suspension
{π1 ·X ≈ π2 ·X} ·∪E; ∇; A; Id =⇒ {π1 •a ≈ π2 •a | a ∈ A∧a#X 6∈ ∇}∪E; ∇; A; Id.

The rules of the second phase are the following:

Rem-E: Remove
{a ≈ b} ·∪E; ∇; A; π =⇒ E; ∇; A \ {b}; π, if π • a = b.

Sol-E: Solve
{a ≈ b} ·∪E; ∇; A; π =⇒ E; ∇; A \ {b}; (π • a b)π, if π • a, b ∈ A and π • a 6= b.

Note that in Alp-E, ć is fresh means that ć /∈ A and, therefore, ć will not appear in π.
These atoms are an auxiliary means which play a role during the computation but do not
appear in the final result.

Given nominal terms t, s, freshness context ∇, we construct a state {t ≈ s}; ∇; Atoms(t,
s); Id. We will prove that when the rules transform this state into ∅; ∇; A; π, then π is an
Atoms(t, s)-based permutation such that ∇ ` π • t ≈ s. When no rule is applicable, and the
set of equations is not empty, we will also prove that there is no solution, hence we fail and
return ⊥.

I Example 7.1. We illustrate the algorithm E on examples:
Consider the equivariance problem E = {a ≈ a, a.(a b)(c d)·X ≈ b.X} and ∇ = {a#X}:

{a ≈ a, a.(a b)(c d)·X ≈ b.X}; {a#X}; {a, b, c, d}; Id =⇒ Alp-E

{a ≈ a, (é a)(a b)(c d)·X ≈ (é b)·X}; {a#X}; {a, b, c, d}; Id =⇒ Sus-E

{a ≈ a, é ≈ é, c ≈ d, d ≈ c}; {a#X}; {a, b, c, d}; Id =⇒ Rem-E

{é ≈ é, c ≈ d, d ≈ c}; {a#X}; {b, c, d}; Id =⇒ Rem-E

{c ≈ d, d ≈ c}; {a#X}; {b, c, d}; Id =⇒ Sol-E

{d ≈ c}; {a#X}; {b, c}; (c d) =⇒ Rem-E

∅; {a#X}; {b}; (c d).

For E = {a.f(b,X) ≈ b.f(a,X)} and ∇ = {a#X}, E returns ⊥.
For E = {a.f(b, (a b)·X) ≈ b.f(a,X)} and ∇ = {a#X}, E returns (b a).
For E = {a.b.(a b)(a c)·X = b.a.(a c)·X} and ∇ = ∅, E returns Id.
For E = {a.b.(a b)(a c)·X = a.b.(b c)·X} and ∇ = ∅, E returns ⊥.

The Soundness Theorem for E states that, indeed, the permutation the algorithm computes
shows that the input terms are equivariant:

I Theorem 7.2 (Soundness of E). Let {t ≈ s}; ∇; A; Id =⇒∗ ∅; ∇; B; π be a derivation in
E, then π is an A-based permutation such that ∇ ` π • t ≈ s.

We now prove an invariant lemma that is used in the proof of completeness Theorem 7.4.
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I Lemma 7.3 (Invariant Lemma). Let A be a finite set of atoms, E1 be a set of equiv-
ariance equations for terms based on A, π1 be an A-based permutation and A1 ⊆ A. Let
E1;∇;A1; π1 =⇒ E2;∇;A2; π2 be any step performed by a rule in E. Let Γ = {ć#X | X ∈
Vars(E1), ć is a fresh variable}. Let µ be an A-based permutation such that ∇∪Γ ` µ• t ≈ s,
for all t ≈ s ∈ E1. Then
1. ∇∪ Γ ` µ • t′ ≈ s′, for all t′ ≈ s′ ∈ E2.
2. If µ−1 • b = π

−1
1 • b, for all b ∈ A \A1, then µ−1 • b = π

−1
2 • b, for all b ∈ A \A2.

Proof. By case distinction on the applied rule.
Dec-E: The proposition is obvious.
Alp-E: In this case it follows from the definitions of ≈ and permutation application.
Sus-E: In this case t = τ1 ·X, s = τ2 ·X, and by the assumption we have∇ ` µτ1 ·X ≈ τ2 ·X.

By the definition of≈, it means that we have a#X ∈ ∇, for all atoms a such that µτ1•a 6= τ2•a.
Hence, for all a ∈ A with a#X /∈ ∇ we have ∇ ` µτ1 • a ≈ τ2 • a. This implies that µ also
solves the equations in E2, hence item 1 of the lemma.

Item 2 of the lemma is trivial for these three rules, since A1 = A2 and π1 = π2 = Id.
Rem-E: The item 1 is trivial. To prove the item 2, note that t = a, s = b, π1 = π2 and we

only need to show µ−1 • b = π
−1
2 • b. By the assumption we have ∇ ` µ • a ≈ b. Since a and

b are atoms, the latter simply means that µ • a = b. From the rule condition we also know
that π1 • a = b. From these two equalities we get µ−1 • b = a = π

−1
2 b.

Sol-E: The item 1 is trivial also in this case. To prove the item 2, note that t = a, s = b,
π2 = (π1 • a b)π1 and we only need to show µ−1 • b = π

−1
2 • b. By the assumption we have

∇ ` µ • a ≈ b, which means that µ • a = b and, hence, a = µ−1 • b. As for π
−1
2 • b, we have

π
−1
2 • b = π

−1
1 (π1 • a b) • b = π

−1
1 • (π1 • a) = a. Hence, we get µ−1 • b = a = π

−1
2 • b. J

I Theorem 7.4 (Completeness of E). Let A be a finite set of atoms, t, s be A-based terms,
and ∇ be a freshness context. If ∇ ` µ • t ≈ s holds for some A-based permutation µ, then
there exists a derivation {t ≈ s}; ∇; A; Id =⇒∗ ∅; Γ; B; π, obtained by an execution of E,
such that π • a = µ • a for any atom a ∈ FA(t).

8 Complexity Analysis

We represent a permutations π as two hash tables. One for the permutation itself, we call it
Tπ, and one for the inverse of the permutation, called Tπ−1 . The key of a hash tables is an
atom and we associate another atom, the mapping, with it. For instance the permutation
π = (a b)(a c) is represented as Tπ = {a 7→ c, b 7→ a, c 7→ b} and Tπ−1 = {a 7→ b, b 7→ c, c 7→ a}.
We write Tπ(a) to obtain from the hash table Tπ the atom which is associated with the key
a. If no atom is associated with the key a then Tπ(a) returns a. We write Tπ(a 7→ b), to set
the mapping such that Tπ(a) = b. As the set of atoms is small, we can assume a perfect
hash function. It follows, that both defined operations are done in constant time, leading to
constant time application of a permutation. Swapping application to a permutation (a b)π is
also done in constant time in the following way: Obtain c = Tπ−1(a) and d = Tπ−1(b) and
perform the following updates:
(a) Tπ(c 7→ b) and Tπ(d 7→ a),
(b) Tπ−1(b 7→ c) and Tπ−1(a 7→ d).

We also represent set membership of atoms to a set of atoms A with a hash table ∈A
from atoms to Booleans such that ∈A (a) = true iff a ∈ A. We also have a list LA of the
atoms representing the entries of the table such that ∈A (a) = true to easily know all atoms
in A.
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Finally we also represent set membership of freshness constraints to a freshness environ-
ment ∇ with a hash table ∈∇.

I Theorem 8.1. Given a set of equivariance equations E, and a freshness context ∇. Let m
be the size of ∇, and let n be the size of E. The algorithm E has O(n2 +m) time complexity.

Proof. Collecting the atoms from E in a separate set A does not affect the space complexity
and can be done in time O(n). The freshness environment ∇ will not be modified by rule
applications and membership test in the rule Sus-E can be done in constant time. We only
have to construct the corresponding hash tables in time O(m). We analyze complexity of
both phases.

For the first phase, notice that all rules can be applied only O(n) many times, since
Dec-E removes two function symbols and Alp-E two abstraction, and Sus-E two suspensions.
The resulting equations after this phase only contain atoms. However, notice that the size
of these equations is not necessarily linear. Every time we apply Alp-E a new swapping is
applied to both subterms. This swappings may increase the size of suspensions occurring
bellow the abstraction. Since there are O(n) many suspensions and O(n) many abstractions,
the final size of suspensions is O(n2). This is the size of the atom equations at the beginning
of the second phase. We can see that the application of Dec-E rule has O(1) time complexity
(with the appropriate representation of equations).

The application of Alp-E rule requires to find a fresh atom not in A, this can be done in
constant time. Later, a swapping has to be applied twice. Swapping application requires
traversing the term hence has O(n) time complexity. The application of Sus-E requires to
traverse LA (O(n)) and check for freshness membership in ∈∇ (O(1)). Finally it has to add
equations like (π1 • a ≈ π2), this requires to build Tπ1 and Tπ2 that can be done in O(n)
time complexity and allow us to build each equation in O(1) time. Summing up, this phase
has O(n2) time complexity.

For the second phase, notice that both rules Rem-E and Sol-E remove an equation and
do not introduce any other one. Hence, potentially having O(n2) many equations in this
phase, these equations can be applied O(n2) may times. We construct a hash table Tπ for π

that will be maintained and used by both rules. Each application has time complexity O(1).
Rem-E uses Tπ to check for applicability and if it is applied, it only removes b from A, hence
updating ∈A (notice that we do not care about LA in this second phase of the algorithm).
Sol-E uses ∈A and Tπ to check for applicability and if it is applied, it only removes b from A

(hence updating ∈A), and updates Tπ. Summing up, this phase maintains the overall O(n2)
time complexity. J

I Theorem 8.2. The nominal anti-unification algorithm N has O(n5) time complexity and
O(n4) space complexity, where n is the input size.

Proof. By design of the rules and theorem 6.3 we can arrange a maximal derivation like {X0 :
t0 , s0}; ∅; ∅; ε =⇒∗Dec,Abs,Sol ∅;Sl; Γl;σl =⇒∗Mer ∅;Sm; Γm;σm, postponing the application of
Mer until the end. Rules Dec, Abs and Sol can be applied O(n) many times. However, notice
that every application of Abs may increase the size of every suspension below. Hence, the
size of the store Sl is O(n2), although it only contain O(n) equations, after an exhaustive
derivation {X0 : t0 , s0}; ∅; ∅; ε =⇒∗Dec,Abs,Sol ∅;Sl; Γl;σl.

Now we turn to analyzing the transformation phase ∅;Sl; Γl;σl =⇒∗Mer ∅;Sm; Γm;σm. Let
Sl = {X1 : t1 , s1, . . . , Xk : tk , sk} and ni be the size of Xi : ti , si, 1 ≤ i ≤ k, then∑k
i=1 ni = O(n2) and k = O(n). From theorem 8.1 we know that solving the equivariance

problem for two AUPs Xi : ti , si and Xj : tj , sj and an arbitrary freshness context ∇
requires O((ni + nj)2 +m) time and space, where m is the size of ∇ with m = O(n).
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Merging requires to solve this problem for each pair of AUPs. This leads to the time
complexity

∑k
i=1
∑k
j=i+1 O((ni +nj)2 +m) ≤ O(

∑k
i=1
∑k
j=1(ni +nj)2) +O(

∑k
i=1
∑k
j=1 m).

The second sum is
∑k
i=1
∑k
j=1 m = k2m = O(n3). Now we estimate an upper bound for

the sum
∑k
i=1
∑k
j=1(ni + nj)2 =

∑k
i=1
∑k
j=1 n

2
i +

∑k
i=1
∑k
j=1 2ninj +

∑k
i=1
∑k
j=1 n

2
j ≤∑k

i=1 kn
2
i + 2

(∑k
i=1 ni

)(∑k
j=1 nj

)
+
∑k
i=1(

∑k
j=1 nj)2 ≤ k(

∑k
i=1 ni)2 + 2O(n2)O(n2) +∑k

i=1 O(n2) = kO(n2)2 + 2O(n2)2 + kO(n2)2 = O(n5), resulting into the stated bounds.
The space is bounded by the space required by a single call to the equivariance algorithm

with an imput of size O(n2), hence O(n4). J

9 Conclusion

The problem of anti-unification for nominal terms-in-context is sensitive to the set of atoms
permitted in generalizations: If this set is infinite, there is no least general generalization.
Otherwise there exists a unique lgg. If this set is finite and satisfies the notion of being
saturated, defined in the paper, then the lgg retains the common structure of the input
nominal terms maximally.

We illustrated that, similar to some other theories where unification, generalization, and
the subsumption relation are defined, the nominal terms-in-contexts form a join-meet lattice
with respect to the subsumption relation, where the existence of join is unifiability, and the
meet corresponds to least general generalization.

We designed an anti-unification algorithm for nominal terms-in-context. It contains a
subalgorithm that constructively decides whether two terms are equivariant with respect
to the given freshness context. We proved termination, soundness, and completeness of
these algorithms, investigated their complexities, and implemented them. Given a fixed
set of atoms A, the nominal anti-unification algorithm computes a least general A-based
term-in-context generalization of the given A-based terms-in-context, and requires O(n5)
time and O(n4) space for that, where n is the size of the input. The computed lgg is unique
modulo α-equivalence and variable renaming.
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