
Transforming Cycle Rewriting into String
Rewriting
David Sabel1 and Hans Zantema2,3

1 Goethe University Frankfurt am Main, Institute for Computer Science
Frankfurt am Main, Germany
sabel@ki.informatik.uni-frankfurt.de

2 TU Eindhoven, Department of Computer Science,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
h.zantema@tue.nl

3 Radboud University Nijmegen, Institute for Computing and Information
Sciences,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstract
We present new techniques to prove termination of cycle rewriting, that is, string rewriting on
cycles, which are strings in which the start and end are connected. Our main technique is to
transform cycle rewriting into string rewriting and then apply state of the art techniques to prove
termination of the string rewrite system. We present three such transformations, and prove for
all of them that they are sound and complete. Apart from this transformational approach, we
extend the use of matrix interpretations as was studied before. We present several experiments
showing that often our new techniques succeed where earlier techniques fail.

1998 ACM Subject Classification F.4.2 Grammars and other rewriting systems

Keywords and phrases rewriting systems, string rewriting, termination

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.285

1 Introduction

String rewriting can not only be applied on strings, but also on cycles. Cycles can be seen
as strings of which the left end is connected to the right end, by which the string has no
left end or right end any more. Applying string rewriting on cycles is briefly called cycle
rewriting. Rewriting behavior is strongly influenced by allowing cycles, for instance, in string
rewriting the single rule ab→ ba is terminating, but in cycle rewriting it is not, since the
string ab represents the same cycle as ba. From the viewpoint of graph transformation,
cycle rewriting is very natural. For instance, in [2] it was shown that if all rules of a graph
transformation system are string rewrite rules, termination of the transformation system
coincides with termination of the cycle rewrite system, and not with termination of the string
rewrite system.

In many areas cycle rewriting is more natural than string rewriting. For instance, the
problem of 5 dining philosophers can be expressed as a cycle F T F T F T F T F T where F
denotes a fork, and T denotes a thinking philosopher. Writing L for a philosopher who has
picked up her left fork, but not her right fork, and E for an eating philosopher, a classical
(deadlocking) modeling of the dining philosophers problem (for arbitrary many philosophers)
can be expressed by the cycle rewrite system consisting of the rules F T → L, LF → E,
E → F T F . As a cycle rewrite system this is clearly not terminating.

© David Sabel and Hans Zantema;
licensed under Creative Commons License CC-BY

26th International Conference on Rewriting Techniques and Applications (RTA’15).
Editor: Maribel Fernández; pp. 285–300

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2015.285
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

286 Transforming Cycle Rewriting into String Rewriting

So both string rewriting and cycle rewriting provide natural semantics for string rewrite
systems, also called semi-Thue systems. Historically, string rewriting got a lot of attention
as being a particular case of term rewriting, while cycle rewriting hardly got any attention
until recently.

In [18] a first investigation of termination of cycle rewriting was made. Some techniques
were presented to prove cycle termination, implemented in a tool torpacyc. Further a
transformation φ was given such that for every string rewriting system (SRS) R, string
termination of R holds if and only if cycle termination of φ(R) holds. As a consequence,
cycle termination is undecidable. However, for making use of the strong power of current
tools for proving termination of string rewriting in order to prove cycle termination, we need
a transformation the other way around: transformations ψ such that for every SRS R, cycle
termination of R holds if and only if string termination of ψ(R) holds. The ‘if’ direction in
this ‘if and only if’ is called ‘sound’, the ‘only if’ is called complete. A new way to prove
cycle termination of an SRS R is to apply a tool for proving termination of string rewriting
to ψ(R) for a sound transformation ψ. The main topic of this paper is to investigate such
transformations, and to exploit them to prove termination of cycle rewriting.

A similar approach to exploit the power of tools for termination of term rewriting to prove
a modified property was used before in [8, 7]. However, there the typical observation was that
the complete transformations were complicated, and for non-trivial examples termination
of ψ(R) could not be proved by the tools, while for much simpler sound (but incomplete)
transformations ψ, termination of ψ(R) could often be proved by the tools. In our current
setting this is different: we introduce a transformation split, for which we prove that it is
sound and complete, but we show that for several systems R for which all approaches from
[18] fail, cycle termination of R can be concluded from an automatic termination proof of
split(R) generated by AProVE [6, 1] or TTT2 [12, 15].

It can be shown that if strings of size n exist admitting cycle reductions in which for every
rule the number of applications of that rule is more than linear in n, then all techniques from
[18] fail to prove cycle termination. Nevertheless, in quite simple examples this may occur
while cycle termination holds. As an example consider the following.

A number of people are in a circle, and each of them carries a number, represented in
binary notation with a bounded number of bits. Each of them may increase his/her number
by one, as long as it fits in the bounded number of bits. Apart from that, every person may
increase the number of bits of the number of its right neighbor by two. In order to avoid
trivial non-termination, the latter is only allowed if the leading bit of the number is 0, and
the new leading bit is put to 1, and the other to 0, by which effectively one extra bit is added.
We will prove that this process will always terminate by giving an SRS in which all of the
above steps can be described by a number of cycle rewrite steps, and prove cycle termination.

In order to do so we write P for person, and 0 and 1 for the bits of the binary number.
For carry handling we introduce an extra symbol c of which the meaning is a 1 with a carry.
Assume for every person its number is stored left from it. So if the number ends in 0, by
adding one this last bit 0 is replaced by 1, expressed by the rule 0P → 1P . In case the
number ends in 1, a carry should be created, since c represents a 1 with a carry this is
expressed by the rule 1P → cP . Next the carry should be processed. In case it is preceded
by 0, this 0 should be replaced by 1, while the c is replaced by 0; this is expressed by the
rule 0c → 10. In case it is preceded by 1, a new carry should be created while again the
old carry is replaced by 0; this is expressed by the rule 1c→ c0. In this way adding one to
any number in binary notation can be expressed by a number of rewrite steps, as long as no
overflow occurs. Finally, we have to add a rule to extend the bit size of the number of the

D. Sabel and H. Zantema 287

right neighbor: the leading bit should be 0, while it is replaced by 100: adding two extra bits
of which the leading one is 1 and the other is 0. This is expressed by the rule P 0→ P 100.
Summarizing: we have to prove cycle termination of the SRS consisting of the five rules

0P → 1P, 1P → cP, 0c→ 10, 1c→ c0, P 0→ P 100.

This is fundamentally impossible by the techniques presented in [18]: by one of the techniques
the last rule can be removed, but starting in 0nP a reduction can be made in which all of the
remaining four rules are applied an exponential number of times, by which the techniques
from [18] fail.

In this paper we give two ways to automatically prove that cycle termination holds for
the above example R: TTT2 succeeds in proving termination of split(R), and the other is a
variant of matrix interpretations for which we show that it proves cycle termination.

The paper is organized as follows. Section 2 recalls the basics of cycle rewriting. The
main section Section 3 presents three transformations split, rotate, and shift, and proves
soundness and completeness of all of them. In Section 4 the matrix approach is revisited and
extended. In Section 5 experiments on implementations of our techniques are reported. We
conclude in Section 6.

2 Preliminaries

A signature Σ is a finite alphabet of symbols. With Σ∗ we denote the set of strings over Σ.
With ε we denote the empty string and for u, v ∈ Σ∗, we write uv for the concatenation
of the strings u and v. With |u| we denote the length of string u ∈ Σ∗ and for a ∈ Σ and
n ∈ IN, an denotes n replications of symbol a, i.e. a0 = ε and ai = aai−1 for i > 0.

Given a binary relation →, we write →i for i steps, →≤i for at most i steps, →<i for
at most i− 1 steps, →∗ for the reflexive-transitive closure of →, and →+ for the transitive
closure of →R. For binary relations →1 and →2, we write →1 .→2 for the composition of
→1 and →2, i.e. a→1 .→2 c iff there exists a b s.t. a→1 b and b→2 c.

A string rewrite system (SRS) is a finite set R of rules `→ r where `, r ∈ Σ∗. The rewrite
relation →R ⊆ (Σ∗ × Σ∗) is defined as follows: if w = u`v ∈ Σ∗ and (` → r) ∈ R, then
w →R urv. The prefix-rewrite relation ↪→R is defined as: if w = `u ∈ Σ∗ and (`→ r) ∈ R,
then w ↪→R ru. The suffix-rewrite relation ↪→R is defined as: if w = u` ∈ Σ∗ and (`→ r) ∈ R,
then w ↪→

R ur.
A (finite or infinite) sequence of rewrite steps w1 →R w2 →R · · · is called a rewrite

sequence (sometimes also a reduction or a derivation). An SRS R is non-terminating if there
exists a string w ∈ Σ∗ and an infinite rewrite sequence w →R w1 →R w2 · · · . Otherwise, R
is terminating.

We recall the notion of cycle rewriting from [18]. A string can be viewed as a cycle,
i.e. the last symbol of the string is connected to the first symbol. To represent cycles by
strings, we define the equivalence relation ∼ as follows:

u ∼ v iff u = w1w2 and v = w2w1 for some strings w1, w2 ∈ Σ∗

With [u] we denote the equivalence class of string u w.r.t. ∼.
The cycle rewrite relation ◦→R ⊆ (Σ/∼× Σ/∼) of an SRS R is defined as

[u] ◦→R [v] iff ∃w ∈ Σ∗ : u ∼ `w, (`→ r) ∈ R, and v ∼ rw

The cycle rewrite relation ◦→R is called non-terminating iff there exists a string w ∈ Σ∗ and
an infinite sequence [w] ◦→R [w1] ◦→R [w2] ◦→R · · · . Otherwise, ◦→R is called terminating.

We recall some known facts about cycle rewriting.

RTA 2015

288 Transforming Cycle Rewriting into String Rewriting

I Proposition 1 (see [18]). Let Σ be a signature, R be an SRS, and u, v ∈ Σ∗.
1. If u→R v then [u] ◦→R [v].
2. If ◦→R is terminating, then →R is terminating.
3. Termination of →R does not necessarily imply termination of ◦→R.
4. Termination of ◦→R is undecidable.
5. For every SRS R there exists a transformed SRS φ(R) s.t. the following three properties

are equivalent:
→R is terminating.
→φ(R) is terminating.
◦→φ(R) is terminating.

For an SRS R, the last property implies that termination of→R can be proved by proving
termination of the translated cycle rewrite relation ◦→φ(R). In [18] it was used to show
that termination of cycle rewriting is undecidable and for further results on derivational
complexity for cycle rewriting.

3 Transforming Cycle Termination into String Termination

Proposition 1 and the involved transformation φ, which transforms string rewriting into
cycle rewriting, provide a method to prove string termination by proving cycle termination.
However, it does not provide a method to prove termination of the cycle rewrite relation
◦→R by proving termination of the string rewrite relations →R or →φ(R). Hence, in this
section we develop transformations ψ s.t. termination of →ψ(R) implies termination of ◦→R.
We call such a transformation ψ sound. However, there are “useless” sound transformations,
for instance, transformations where ψ(R) is always non-terminating. So at least one wants
to find sound transformations which permit to prove termination of non-trivial cycle rewrite
relations. However, a better transformation should fulfill the stronger property that →ψ(R)
is terminating if and only if ◦→R is terminating. If termination of ◦→R implies termination
of →ψ(R), then we say ψ is complete. For instance, for a complete transformation, non-
termination proofs of →ψ(R) also imply non-termination of ◦→R. Hence, our goal is to find
sound and complete transformations ψ.

We will introduce and discuss three transformations split, rotate, and shift where the
most important one is the transformation split, since it has the following properties: The
transformation is sound and complete, and as our experimental results show, it behaves
well in practice when proving termination of cycle rewriting. The other two transformations
rotate and shift are also sound and complete, but rather complex and – as our experimental
results show – they do not behave as well as the transformation split in practice. We include
all three transformations in this paper to document some different approaches to transform
cycle rewriting into string rewriting.

While we will analyze the transformation split in detail and prove its soundness and
completeness, for the other two transformations we briefly list their properties where the
corresponding proofs can be found in the longer version [13] of this paper.

3.1 The Transformation Split
The idea of the transformation split is to perform a single cycle rewrite step [u] ◦→R [v] step
which uses rule (`→ r) ∈ R, by either applying a string rewrite step u→R v or by splitting
the rule (` → r) into two rules (`A → rA) and (`B → rB), where ` = `A `B and r = rArB.
Then a cycle rewrite step can be simulated by a prefix and a subsequent suffix rewrite step:

D. Sabel and H. Zantema 289

first apply rule `B → rB to a prefix of u and then apply rule `A → rA to a suffix of the
obtained string.

I Example 2. Let R = {abc→ bbbb} and [bcdda] ◦→R [bbddbb]. The rule abc→ bbbb can
be split into the rules a→ bb and bc→ bb s.t. bcdda ↪→{bc→bb} bbdda ↪→{a→bb} bbddbb.

We describe the idea of the transformation split more formally. It uses the following
observation of cycle rewriting: if [u] ◦→R [v], then u ∼ `w, (`→ r) ∈ R, and v ∼ rw. From
u ∼ `w follows that u = u1u2 and `w = u2u1 for some u1, u2. We consider the cases for u2:

1. If ui = ε (for i = 1 or i = 2), then u = `w and u ↪→R rw by a prefix string-rewrite step.
2. If ` is a prefix of u2, i.e. `u′2 = u2, then w = u′2u1, u = u1 `u

′
2 →R u1ru

′
2, and

u1ru
′
2 ∼ rw.

3. If u2 is a proper prefix of `, then there exist `A, `B with ` = `A `B s.t. u2 = `A and `B is
a true prefix of u1, i.e. u1 = `Bw and u = u1u2 = `Bw`A ↪→{`B→rB} rBw`A

↪→
{`A→rA}

rBwrA ∼ rw if rArB = r.

The three cases show that a cycle rewrite step [u] ◦→{`→r} [v] can either be performed
by applying a string rewrite step u→{`→r} v′ where v′ ∼ v (cases 1 and 2) or in case 3 by
splitting ` → r into two rules `A → rA and `B → rB such that u ↪→{`B→rB} u

′ replaces a
prefix of u by rB and u′ ↪→{`A→rA} v

′ replaces a suffix of u′ by rA s.t. v′ ∼ v.
For splitting a rule (` → r) into rules `A → rA and `B → rB, we may choose any

decomposition of r for rA and rB (s.t. r = rA rB). We will work with rA = r and rB = ε.
The above cases for cycle rewriting show that a sound transformation of the cycle rewrite

relation ◦→R into a string rewrite relation is the SRS which consists of all rules of R and
all pairs of rules `B → ε and `A → r for all (` → r) ∈ R and all `A, `B with |`A| > 0,
|`B | > 0, and ` = `A `B . However, this transformation does not ensure that the rules evolved
by splitting are used as prefix and suffix rewrite steps only. Indeed, the transformation
in this form is useless for nearly all cases, since whenever the right-hand side r of a rule
(` → r) ∈ R contains a symbol a ∈ Σ which is the first or the last symbol in `, then the
transformed SRS is non-terminating. For instance, for R = {aa→ aba} the cycle rewrite
relation ◦→R is terminating, while the rule a→ aba (which would be generated by splitting
the left-hand side of the rule) leads to non-termination of the string rewrite relation. Note
that this also holds if we choose any other decomposition of the right-hand side. Hence, in
our transformation we introduce additional symbols to ensure:

`B → ε can only be applied to a prefix of the string.
`A → r can only be applied to a suffix of the string.
If `B → ε is applied to a prefix, then also `A → r must be applied, in a synchronized
manner (i.e. no other rule `′B → ε or `′A → r′ can be applied in between).

In detail, we will prepend the fresh symbol B to the beginning of the string, and append
the fresh symbol E to the end of the string. These symbols guarantee, that prefix rewrite
steps `u ↪→(`→r) ru can be expressed with usual string rewrite rules by replacing the left
hand side ` with B` and analogous for suffix rewrite steps u` ↪→(`→r) ur by replacing the
left hand side ` with `E. Let (`i → ri) be the ith rule of the SRS which is split into two rules
`B → ε and `A → ri, where `A `B = `i. After applying the rule `B → ε to a prefix of the
string, the symbol B will be replaced by the two fresh symbols W (for “wait”) and Ri,j where
i represents the ith rule and j means that `i has been split after j symbols (i.e. |`A| = j). The
fresh symbol L is used to signal that the suffix has been rewritten by rule `A → r. Finally, we
use a copy of the alphabet, to ensure completeness of the transformation: for an alphabet Σ,

RTA 2015

290 Transforming Cycle Rewriting into String Rewriting

we denote by Σ a fresh copy of Σ, i.e. Σ = {a | a ∈ Σ}. For a word w ∈ Σ∗ with w ∈ Σ∗ we
denote the word w where every symbol a is replaced by a. Analogously, for a word w ∈ Σ∗

with w ∈ Σ we denote w where every symbol a is replaced by the symbol a.

I Definition 3 (The transformation split). Let R = {`1 → r1, . . . , `n → rn} be an SRS over
alphabet Σ. Let Σ be a fresh copy of Σ and let B,E,W,Ri,j , L be fresh symbols (fresh for
Σ ∪ Σ). The SRS split(R) over alphabet Σ ∪ Σ ∪ {B,E,L,W} ∪

⋃n
i=1{Ri,j | 1 ≤ j < |`i|}

consists of the following string rewrite rules:

`i → ri for every rule (`i → ri) ∈ R (splitA)
aL→ La for all a ∈ Σ (splitB)

WL→ B (splitC)

and for every rule (`i → ri) ∈ R, for all 1 ≤ j < |`i| and `A `B = `i with |`A| = j:

B`B →WRi,j (splitD)
Ri,j `AE→ LriE (splitE)

Ri,j a→ aRi,j for all a ∈ Σ (splitF)

We describe the intended use of the rules and the extra symbols. The symbols B and E mark
the start and the end of the string, i.e. for a cycle [u] the SRS split(R) rewrites BuE.

Let [u] ◦→R [w]. The rule (splitA) covers the case that also u→R w holds. Now assume
that for w′ ∼ w we have u ↪→{`B→ε} v

↪→
{`A→r} w

′ (where (`A`B → r) ∈ R). Rule (splitD)
performs the prefix rewrite step and replaces B by W to ensure that no other such a rule
can be applied. Additionally, the symbol Ri,j corresponding to the rule and its splitting is
added to ensure that only the right suffix rewrite step is applicable. Rule (splitF) moves the
symbol Ri,j to right and rule (splitE) performs the suffix rewrite step. Rules (splitB) and
(splitC) are used to finish the simulation of the cycle rewrite step by using the symbol L to
restore the original alphabet and to finally replace WL by B.

I Example 4. For R1 = {aa→ aba} the transformed string rewrite system split(R1) is:

aa → aba (splitA) aL → La (splitB) bL → Lb (splitB)
WL → B (splitC) Ba → WR1,1 (splitD) R1,1aE → LabaE (splitE)
R1,1a → aR1,1 (splitF) R1,1 b → bR1,1 (splitF)

For instance, the cycle rewrite step [aba] ◦→R1 [baba] is simulated in the transformed system
by BabaE→WR1,1 baE→WbR1,1aE→WbLabaE→WLbabaE→ BbabaE. As a further
example, for R2 = {abc→ cbacba, aa→ a} the transformed SRS split(R2) is:

abc → cbacba (splitA) aa → a (splitA) WL → B (splitC)
aL → La (splitB) bL → Lb (splitB) cL → Lc (splitB)
Bbc → WR1,1 (splitD) Bc → WR1,2 (splitD) Ba → WR2,1 (splitD)
R1,1aE → LcbacbaE (splitE) R1,2abE → LcbacbaE (splitE) R2,1aE → LaE (splitE)
R1,1a → aR1,1 (splitF) R1,2a → aR1,2 (splitF) R2,1a → aR2,1 (splitF)
R1,1 b → bR1,1 (splitF) R1,2 b → bR1,2 (splitF) R2,1 b → bR2,1 (splitF)
R1,1 c → cR1,1 (splitF) R1,2 c → cR1,2 (splitF) R2,1 c → cR2,1 (splitF)

Termination of split(R1) and split(R2) can be proved by AProVE and TTT2.

I Proposition 5 (Soundness of split). If →split(R) is terminating then ◦→R is terminating.

Proof. By construction of split(R), it holds that if [u] ◦→R [v], then Bu′E →+
split(R) Bv′E

with u ∼ u′ and v ∼ v′. Thus for every infinite sequence [w1] ◦→R [w2] ◦→R · · · there exists
an infinite sequence B w′1 E→split(R) B w′2 E→split(R) · · · with wi ∼ w′i for all i. J

D. Sabel and H. Zantema 291

3.1.1 Completeness of Split
We use type introduction [17] and use the sorts A, A, C, and T , and type the symbols used
by split(R) (seen as unary function symbols, and seen as a term rewrite system) as follows:

L :: A→ A

B :: A→ T

W :: A→ T

E :: C → A

a :: A→ A for all a ∈ Σ
a :: A→ A for all a ∈ Σ
Ri,j :: A→ A for all Ri,j

We also add a constant c of sort C to the alphabet, s.t. ground terms for any sort exist.
First one can verify that all rewrite rules of split(R) are well-typed: (splitA) rewrites terms
of sort A, (splitB), (splitE), and (splitF) rewrite terms of sort A, and (splitC) and (splitD)
rewrite terms of sort T . Since there are no collapsing and duplicating rules, type introduction
can be used (see [17]), i.e. (string) termination of the typed system is equivalent to (string)
termination of the untyped system.

We consider ground terms of the sorts A, A, C, and T . For simplicity we use the
representation as strings (instead of terms), and we write E instead of Ec. First we show
that our analysis of non-termination can be restricted to terms of sort T :

I Lemma 6. If a term w of sort S with S ∈ {A,A,C} admits an infinite reduction w.r.t.
split(R), then there exists a term w′ of sort T , which admits an infinite reduction.

Proof. The only term of sort C is the constant c which is a normal form. If a term w of sort
A admits an infinite reduction w.r.t. →split(R), then also the term Bw of type T admits an
infinite reduction w.r.t. →split(R). If a term w of sort A admits an infinite reduction w.r.t.
→split(R), then also the term Ww of type T admits an infinite reduction w.r.t. →split(R). J

Inspecting the typing of the symbols shows:

I Lemma 7. Any term of sort T is of one of the following forms:
BuE where u ∈ Σ∗

WwLuE where w ∈ Σ∗ and u ∈ Σ∗

WwRi,juE where w ∈ Σ∗ and u ∈ Σ∗

We define a mapping from terms of sort T into strings over Σ as follows:

I Definition 8. For a term w :: T , the string Φ(w) ∈ Σ∗ is defined according to the cases of
Lemma 7:

Φ(BuE) := u

Φ(WwLuE) := wu

Φ(WwRi,juE) := `Bwu if (B`B →WRi,j) ∈ split(R)

I Lemma 9. Let w be of sort T and w →split(R) w
′. Then Φ(w) ◦→∗R Φ(w′).

Proof. We inspect the cases of Lemma 7 for w:
If w = BuE where u ∈ Σ∗, then the step w →split(R) w

′ can use a rule of type (splitA) or
(splitD). If rule (splitA) is applied, then Φ(w)→R Φ(w′) and thus Φ(w) ◦→R Φ(w′). If
rule (splitD) is applied, then w = B`2u

′ →split(R) WRi,ju′ = w′ and Φ(w) = `2u
′ = Φ(w′).

If w = WvLuE where v ∈ Σ∗ and u ∈ Σ∗, then the step w →split(R) w
′ can use rules of

type (splitA), (splitB), or (splitC). If rule (splitA) is used, then Φ(w) →R Φ(w′) and
thus Φ(w) ◦→R Φ(w′). If rule (splitB) or (splitC) is used, then Φ(w) = Φ(w′).

RTA 2015

292 Transforming Cycle Rewriting into String Rewriting

If w = WvRi,juE where v ∈ Σ∗ and u ∈ Σ∗, then the step w →split(R) w
′ can use a rule of

type (splitA), (splitE), or (splitF). If rule (splitA) is used, then Φ(w)→R Φ(w′) and thus
Φ(w) ◦→R Φ(w′). If rule (splitF) is used, then Φ(w) = Φ(w′). If rule (splitE) is used, then
w = WvRi,j `AE and w′ = WvLriE and Φ(w) = `B v`A ∼ `A`Bv →R riv ∼ vri = Φ(w′)
and thus Φ(w) ◦→R Φ(w′). J

I Theorem 10 (Soundness and completeness of split). The transformation split is sound and
complete, i.e. →split(R) is terminating if, and only if ◦→R is terminating.

Proof. Soundness is proved in Proposition 5. It remains to show completeness. W.l.o.g. we
assume that →R is terminating, since otherwise ◦→R is obviously non-terminating. Type
introduction and Lemma 6 show that it is sufficient to construct a non-terminating cycle
rewrite sequence for any term w of sort T where w has an infinite→split(R)-reduction. For every
infinite reduction w →split(R) w1 →split(R) w2 · · · we use Lemma 9 to construct a cycle rewrite
sequence Φ(w) ◦→∗R Φ(w1) ◦→∗R Φ(w2) · · · . It remains to show that the constructed sequence
is infinite: one can observe that the infinite sequence must have infinitely many applications
of rule (splitE) (which is translated by Φ(·) into exactly one ◦→R-step), since every sequence
of (splitA)∨(splitB)∨(splitC)∨(splitD)∨(splitF)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→-steps is terminating (since we assumed that →R is
terminating). J

3.2 Alternative Transformations
We first present the general ideas of the transformations rotate and shift before giving their
definitions. We write y for the relation which moves the first element of a string to the end,
i.e. auy ua for every a ∈ Σ and u ∈ Σ∗. We write uy|·| v if, and only if uy<|u| v holds.
Clearly, u ∼ v holds if and only if uy<|u| v holds. For a string rewrite system R, we define
len(R) as the size of the largest left-hand side of the rules in R, i.e. len(R) = max(`i→ri)∈R |`i|.

Using these notations we present two approaches to simulate cycle rewriting by string
rewriting. One approach is to shift at most len(R)− 1 symbols from the left end to the right
end and then to apply a string rewrite step (this is the relation y<len(R) .→R). Another
approach is to first rotate the string and then to apply a prefix rewrite step (this is the
relation y|·| . ↪→R).

I Example 11. As in Example 2, let R = {abc→ bbbb} and [bcdda] ◦→R [bbddbb].
For the first approach (“shift”) we shift symbols from the left end to the right end

of the string until abc becomes a substring. Then we apply a string rewrite step, i.e.
bcdday<len(R) .→R ddbbbb, since bcdday cddaby ddabc→R ddbbbb.

For the second approach (“rotate“), we rotate the string (by iteratively shifting symbols)
until abc becomes a prefix. Then we apply a prefix rewrite step, i.e. bcdday|·| . ↪→R bbbbdd,
since bcdday cddaby ddabcy dabcdy abcdd ↪→R bbbbdd.

It is quite easy to verify that the following proposition holds:

I Proposition 12. Let R be an SRS. If ◦→R is non-terminating, then
1. y<len(R) .→R admits an infinite reduction, and
2. y|·| . ↪→R admits an infinite reduction.

For an SRS R the SRS shift(R) encodes the relation y<len(R) .→R and the SRS rotate(R)
encodes the relation y|·| . ↪→R where extra symbols are used to separate the steps, and
copies of the alphabet underlying R are used to ensure completeness of the transformations.
We provide the definitions and some explanations of the transformations shift and rotate,

D. Sabel and H. Zantema 293

but for space reasons we exclude their proofs of soundness and completeness. They can
be found in the longer version [13] of this paper. For the remainder of the section, we fix
an SRS R over alphabet ΣA = {a1, . . . , an}. Let us write ΣB ,ΣC ,ΣD,ΣE for fresh copies
of the alphabet ΣA. We use the following notation to switch between the alphabets: for
X,Y ∈ {A,B,C,D,E} and w ∈ ΣX we write LwM

Y
to denote the copy of w in the alphabet

Y where every symbol is translated from alphabet X to alphabet Y .

I Definition 13 (The transformation shift). Let R be an SRS over alphabet ΣA and let N =
max(0, len(R)−1). The SRS shift(R) over the alphabet ΣA∪ΣB∪ΣC∪{B,E,W,V,M, L,R,D}
(where B,E,W,V,M, L,R,D are fresh for ΣA ∪ ΣB ∪ ΣC) consists of the following rules:

B→WMN V (shiftA)
M→ ε (shiftB)

MVa→ VLaM
B

for all a ∈ ΣA (shiftC)
ba→ ab for all a ∈ ΣA and all b ∈ ΣB (shiftD)
bE→ LbM

A
E for all b ∈ ΣB (shiftE)

WV→ RL (shiftF)
La→ LaM

C
L for all a ∈ ΣA (shiftG)

L`→ Dr for all (`→ r) ∈ R (shiftH)
cD→ DLcM

A
for all c ∈ ΣC (shiftI)

RD→ B (shiftJ)

The rules (shiftA) - (shiftE) encode the relation y<len(R), i.e. for uv ∈ Σ∗A with |u| < len(R),
the string BuvE is rewritten into WVvuE by these five rules. The sequence of symbols M
generated by rule (shiftA) denotes the potential of moving at most len(R)− 1 symbols. The
rules (shiftB) and (shiftC) either remove one from the potential or start the moving of one
symbol. The rule (shiftD) performs the movement of a single symbol until it reaches the end
of the string and rule (shiftE) finishes the movement.

The remaining rewrite rules perform a single string rewrite step, i.e. for a rule (`→ r) ∈ R
the string WVw1 `w2 E is rewritten to Bw1rw2E by rules (shiftF) - (shiftJ).

This shows that if u y<len(R) v →R w, then BuE →+
shift(R) BwE and thus by Proposi-

tion 12 soundness of the transformation shift holds.

I Definition 14 (The transformation rotate). Let R be an SRS over alphabet ΣA. The
SRS rotate(R) over the alphabet ΣA ∪ ΣB ∪ ΣC ∪ ΣD ∪ ΣE ∪ {Begin, End, Rewrite, Goright,
Guess, Rotate, Cut, Moveleft, Wait, Finish, Finish2} (where Begin, End, Rewrite, Goright, Guess,
Rotate, Cut, Moveleft, Wait, Finish, and Finish2 are fresh for ΣA ∪ ΣB ∪ ΣC ∪ ΣD ∪ ΣE) is:

BeginEnd→ Rewrite End (rotateA)
Begina→ RotateCutLaM

D
Guess for all a ∈ ΣA (rotateB)

Guessa→ LaM
D

Guess for all a ∈ ΣA (rotateC)
Guessa→ MoveleftLaM

C
Wait for all a ∈ ΣA (rotateD)

GuessEnd→ FinishEnd (rotateE)
dMoveleftc→ MoveleftcLdM

B
for all c ∈ Σc and all d ∈ ΣD (rotateF)

CutMoveleftc→ LcM
E

CutGoright for all c ∈ ΣC (rotateG)
Gorightb→ LbM

D
Goright for all b ∈ ΣB (rotateH)

GorightWaita→ MoveleftLaM
C

Wait for all a ∈ ΣA (rotateI)
GorightWaitEnd→ FinishEnd (rotateJ)

dFinish→ FinishLdM
A

for all d ∈ ΣD (rotateK)

RTA 2015

294 Transforming Cycle Rewriting into String Rewriting

CutFinish→ Finish2 (rotateL)
eFinish2→ Finish2LeM

A
for all e ∈ ΣE (rotateM)

RotateFinish2→ Rewrite (rotateN)
Rewrite`→ Beginr for all (`→ r) ∈ R (rotateO)

We describe the intended use of the rewrite rules, where we ignore the copies of the alphabet
in our explanations. The goal is that for any string w ∈ Σ∗A, the string BeginwEnd is
rewritten to BeginuEnd, where w y|·| . ↪→R u. The prefix rewrite step is performed by the
last rule (rotateO). All other rules perform the rotation y|·| s.t. BeginwEnd is rewritten
into RewritevEnd where w ∼ v. Instead of moving symbols from the front to the end (as y
does), the rules move a suffix of the string in front of the string (which has the same effect).

The first rewrite rule (rotateA) covers the case that w is empty. If w = a1 . . . an, then
first choose a position to cut the string into two parts w1w2. The symbol Guess is used for
the non-deterministic selection of the position. Rule (rotateB) starts the rotate phase and the
guessing, rule (rotateC) shifts the Guess-marker and rule (rotateD) stops the guessing. Rule
(rotateE) covers the case that w2 = ε and no rotation will be performed. After stopping the
guessing, every symbol of w2 is moved in front of w1, resulting in w2w1. A typical situation
is ak+1 . . . ama1 . . . akam+1 . . . an and now the symbol am+1 must be moved in between am
and a1. To keep track of the position of a1, the symbol Cut (inserted in front of a1) marks
the original beginning, and to keep track of the position of ak, the symbol Wait (inserted
after ak) marks this position. The symbol Moveleft guards the movement of am+1 (by rule
(rotateF)). When arriving at the right place (rule (rotateG)), the symbol Goright is used to
walk along the string (rule (rotateH)) to find the next symbol which has to be moved (rule
(rotateI)). If all symbols are moved, rule (rotateJ) is applied to start the clean-up phase.
There the symbols Finish and Finish2 are used to remove the markers and to replace the
copied symbols of the alphabet with the original ones (rules (rotateK) – (rotateN)).

The construction of rotate(R) shows that BeginuEnd →∗rotate(R) BeginwEnd whenever
uy|·| v ↪→R w. Thus Proposition 12 implies soundness of rotate.

In the long version [13] of this paper, we also prove completeness of both transformations
shift and rotate and thus the following theorem holds:

I Theorem 15 (see [13]). The transformations shift and rotate are sound and complete.

4 Trace Decreasing Matrix Interpretations

In this section we present a variant of matrix interpretations suitable for proving cycle
termination. The basics of matrix interpretations for string and term rewriting were presented
in [9, 10, 5, 11]. The special case of tropical and arctic matrix interpretations for cycle
rewriting was presented in [18], in the setting of type graphs. This section extends matrix
interpretations for cycle rewriting along the lines suggested by Johannes Waldmann.

Fix a dimension d > 0. Define Md to be the set of d × d matrices A over IN for which
A11 > 0. On Md we define the relations > and ≥ by

A > B ⇐⇒ A11 > B11 ∧ ∀i, j : Aij ≥ Bij , A ≥ B ⇐⇒ ∀i, j : Aij ≥ Bij .

Write × for matrix multiplication. Note that (A × B) ∈ Md whenever A,B ∈ Md. The
following lemma is easily checked.

I Lemma 16. Let A,B,C ∈Md.
If A > B then A× C > B × C and C ×A > C ×B,

D. Sabel and H. Zantema 295

If A ≥ B then A× C ≥ B × C and C ×A ≥ C ×B.

A matrix interpretation 〈·〉 for a signature Σ is defined to be a mapping from Σ to Md.
It is extended to 〈·〉 : Σ∗ →Md by defining inductively 〈ε〉 = I and 〈ua〉 = 〈u〉 × 〈a〉 for all
u ∈ Σ∗, a ∈ Σ, where I is the identity matrix.

I Theorem 17. Let R′ ⊆ R be SRSs over Σ and let 〈·〉 : Σ→Md such that

◦→R′ is terminating,
〈`〉 ≥ 〈r〉 for all (`→ r) ∈ R′, and
〈`〉 > 〈r〉 for all (`→ r) ∈ R \R′.

Then ◦→R is terminating.

Proof. For a square matrix A of dimension d, its trace tr(A) is defined to be
∑d
i=1 Aii:

the sum of its diagonal. It is well known and easy to check that tr(A × B) = tr(B × A)
for all A,B. As a consequence we obtain tr(〈u〉) = tr(〈v〉) for u, v satisfying u ∼ v. Since
A > B implies tr(A) > tr(B) and A ≥ B implies tr(A) ≥ tr(B), from Lemma 16 we obtain
tr(〈u〉) ≥ tr(〈v〉) if u→R′ v, and tr(〈u〉) > tr(〈v〉) if u→R\R′ v. Combining these observations
yields tr(〈u〉) ≥ tr(〈v〉) if [u] ◦→R′ [v], and tr(〈u〉) > tr(〈v〉) if [u] ◦→R\R′ [v].

Assume an infinite ◦→R reduction exists: [u1] ◦→R [u2] ◦→R [u3] ◦→R [u4] ◦→R · · · .
Since ◦→R′ is terminating, it contains infinitely many steps [ui] ◦→R\R′ [ui+1], all giving
rise to tr(〈ui〉) > tr(〈ui+1〉), while all other steps give rise to tr(〈ui〉) ≥ tr(〈ui+1〉). As tr(〈·〉)
always yields a natural number, this yields an infinite descending sequence of natural numbers,
contradiction. J

Although this proof is not very hard, it is quite subtle: it is essential to first use the full
order on matrices and disallow A11 to be 0 in order to obtain Lemma 16, and next apply
the trace to get the same interpretations for u and v if u ∼ v. It is not essential to apply
this approach to natural numbers with usual addition and multiplication: other well-founded
semirings can be used as well. Using the semiring IN ∪ {∞} with minimum as semiring
addition and + as semiring multiplication yields tropical matrix interpretations. Using the
semiring IN ∪ {−∞} with maximum as semiring addition and + as semiring multiplication
yields arctic matrix interpretations. For general theory on matrix interpretations for term
rewriting we refer to [10, 5]. Validity of tropical and arctic matrix interpretations for cycle
rewriting has been proved in [18], in the setting of type graphs.

The original versions of matrix interpretations in [9, 5] fail for proving cycle termination
since they succeed in proving termination of aa → bc, bb → ac, cc → ab, for which cycle
termination does not hold due to [ccaa] ◦→ [abaa] ◦→ [abbc] ◦→ [aacc]. The main difference
is that in our setting the interpretation of symbols is multiplication by a matrix, while in
[9, 5] it combines such a matrix multiplication by adding a vector.

The search for an application of Theorem 17 has been implemented in our tool torpacyc,
extending the version presented in [18]. It is done by transforming the requirements to SMT
format and calling the external SMT solver Yices [3, 16]. As an example consider the system
from the introduction:

0P → 1P, 1P → cP, 0c→ 10, 1c→ c0, P 0→ P 100.

First by finding a tropical matrix interpretation, the last rule is removed by torpacyc. Next
the following matrices are found:

〈P 〉 =
(

1 0
1 0

)
, 〈0〉 =

(
1 2
0 2

)
, 〈1〉 =

(
1 1
0 2

)
, 〈c〉 =

(
1 0
0 2

)
.

RTA 2015

296 Transforming Cycle Rewriting into String Rewriting

For these interpretations we obtain 〈0P 〉 > 〈1P 〉, 〈1P 〉 > 〈cP 〉, 〈0c〉 ≥ 〈10〉 and 〈1c〉 ≥ 〈c0〉,
hence by Theorem 17 it suffices to prove cycle termination of 0c→ 10, 1c→ c0, for which
torpacyc finds a simple counting argument.

4.1 Limitations of the Method
In this section we give an example where the matrix approach fails and the transformational
approach succeeds.

The method for proving cycle termination induced by Theorem 17 has similar limitations
as the method of matrix interpretations in [10] for string termination: Since the entries of
a product of n matrices are bounded by an exponential function in n, the method cannot
prove cycle termination of systems which allow reduction sequences where every rewrite rule
is applied more often than exponentially often.

I Example 18. The rewrite system R1 := {ab→ bca, cb→ bbc} allows for string derivations
of a length which is a tower of exponentials (see [10]), i.e. the string ak bk has such a long
derivation, since the derivation abn →∗R1

b2n−1 cna exists and this can be iterated for
every a in ak. Moreover, the number of applications of the first and of the second rule
of R1 is a tower of exponentials. This shows that the matrix interpretations in [10] are
unable to prove string termination of R1. The system φ(R1) := {RE → LE, aL →
La′, bL → Lb′, cL → Lc′, Ra′ → aR,Rb′ → bR,Rc′ → cR, abL → bcaR, cbL → bbcR}
uses the transformation φ from [18] and transforms the string rewrite system R1 into a
cycle rewrite system s.t. R1 is string terminating iff φ(R1) is cycle terminating. One can
verify that [abnLE] ◦→∗φ(R1) [b2n−1 cnaLE] which can also be iterated s.t. [ak bkLE] has a
cycle rewriting sequence whose length is a tower of k exponentials. Inspecting all nine rules
of φ(R1), the number of applications of any of the rules in this rewrite sequence is also a
tower of k exponentials and thus it is impossible to prove cycle termination of φ(R1) using
Theorem 17. Consequently, our tool torpacyc does not find a termination proof for φ(R1).

I Remark 19. As expected our tool torpacyc does not find a termination proof for φ(R1)
from Example 18. On the other hand, with our transformational approach a cycle termination
can be proved: AProVE proves strings termination of split(φ(R1)).

A further question is whether matrix interpretations are limited to cycle rewrite systems
with exponential derivation lengths only. The following example shows that this is not true:

I Example 20. The SRS R2 := {ab→ baa, cb→ bbc} (see [10]) has derivations of doubly
exponential length (since ack b→∗R2

b2k

a22k

ck and any rewrite step adds one symbol), but
its string termination can be proved by relative termination and matrix interpretations by
first removing the rule cb→ bbc and then removing the other rule. This is possible, since
the second rule is applied only exponentially often. For cycle rewriting the encoding φ from
[18] is φ(R2) = {RE → LE, aL → La′, bL → Lb′, cL → Lc′, Ra′ → aR,Rb′ → bR,Rc′ →
cR, abL→ baaR, cbL→ bbcR} and φ(R2) is cycle terminating iff R2 is string terminating.
The system φ(R2) also has doubly exponential cycle derivations, e.g. [ack bLE] ◦→∗φ(R2)

[b2k

a22k

ckLE]. However, torpacyc proves cycle termination of φ(R2) by first removing the
last rule using the matrix interpretation

〈R〉 =
(

1 2
1 0

)
, 〈E〉 =

(
2 0
0 0

)
, 〈L〉 =

(
1 2
1 0

)
, 〈a〉 =

(
1 0
0 1

)
, 〈a′〉 =

(
1 0
0 1

)
,

〈b〉 =
(

1 2
0 1

)
, 〈b′〉 =

(
1 0
1 1

)
, 〈c〉 =

(
3 0
0 1

)
, 〈c′〉 =

(
1 0
1 3

)
.

D. Sabel and H. Zantema 297

Thereafter the remaining rules (which now only have derivations of exponential length) are
eliminated by matrix interpretations and counting arguments.

Note that the methods in [18] are not able to prove cycle termination of φ(R2), since
they can only remove rules which are applied polynomially often in any derivation.

Also the transformational approach successfully proves cycle termination of φ(R2): TTT2
proves string termination of split(φ(R2)). Interestingly, we did not find a termination proof
of split(φ(R2)) using AProVE.

5 Tools and Experimental Results

We implemented the search for matrix interpretations described in Section 4 in torpacyc.
We also implemented a tool which transforms an SRS by split, rotate, or shift. We also
automatized the proof of cycle termination by a command line tool which can either use
torpacyc to prove cycle termination or by first performing one of the transformations, and
then using one of the termination provers AProVE or TTT2 to prove string termination of the
transformed problem. Also two kinds of combinations of both approaches are implemented:

variant 1: first torpacyc tries to find a termination proof and if no proof is found, the
(perhaps simplified) cycle rewrite system is transformed into a string rewrite system by
split and then used as input for AProVE or TTT2.
variant 2: first string non-termination of the rewrite system is checked by AProVE or TTT2.
If a non-termination proof is found, then also the cycle rewrite system is non-terminating.
Otherwise, the same procedure as in variant 1 is used.

The automatic transformation and the prover can also be used online via a web in-
terface available via http://www.ki.informatik.uni-frankfurt.de/research/cycsrs/
where also the tools and experimental data can be found.

5.1 Experiments

A problem for doing experiments is that no real appropriate test set is available. We played
around with several examples like the ones in this paper, but we were also interested in
larger scale experiments. To that end we chose two problem sets. The first set is the
SRS_Standard-branch of the Termination Problem Data Base [14], which is a benchmark set
for proving termination of string rewrite systems. The second set consists of 50 000 randomly
generated cycle rewrite systems of size 12 over an alphabet of size 3. For all problems we
tried to prove cycle termination using the following methods (all with a time limit of 60
seconds):

torpacyc: We applied torpacyc to the problems, where version 2014 is described in [18]
and version 2015 includes the matrix interpretations described in Section 4.
split, rotate, shift: We transformed the problem by the transformation into a string ter-
mination problem and then applied the termination provers AProVE or TTT2, respectively.
combinations: We also tried the combination of the methods as described before (using
AProVE and TTT2) where for variant 1, torpacyc as well as the second termination prover
had a time limit of 30 seconds, and for variant 2, both – the non-termination check and
torpacyc – had a time limit of 15 seconds, and the termination prover applied to the
transformed problem (i.e. AProVE or TTT2) had a time limit of 30 seconds.

RTA 2015

http://www.ki.informatik.uni-frankfurt.de/research/cycsrs/

298 Transforming Cycle Rewriting into String Rewriting

Table 1 Results of proving cycle termination of the problems in SRS_Standard of the TPDB.

combination string
torpacyc split rotate shift variant 1 variant 2 termination
2014 2015 AProVE TTT2 AProVE TTT2 AProVE TTT2 AProVE TTT2 AProVE TTT2 any AProVE TTT2

yes 36 46 40 30 10 6 10 8 55 55 54 54 63 652 627

no 0 0 309 168 45 0 65 0 310 161 335 173 336 97 38

maybe 1289 1269 966 1117 1260 1309 1240 1307 950 1099 926 1088 916 566 650

5.1.1 String Rewrite Systems of the Termination Problem Data Base
We tested all 1315 string rewrite problems of the SRS_Standard-branch of the Termination
Problem Data Base [14]. Table 1 shows the summary of the performed tests, where in the
column titled with“any” the output of all tools are combined (per problem). The last two
columns show the results of proving string termination of the original problems in our test
environment using AProVE and TTT2. Note that a non-termination proof of string rewriting
also implies non-termination of cycle rewriting, which does not hold for termination proofs.
The results show that having sound and complete transformations is advantageous (compared
to having sound transformations only), since we were able to prove cycle non-termination for
336 problems by the transformational approach (and by using string non-termination). Note
that torpacyc (in both version) has no technique to prove non-termination.

However, the results also show that most of the problems in the test set are too hard to be
proved by the techniques (only 399 out of 1315 problems were shown to be terminating or non-
terminating). This is not really surprising since the test set contains already ‘hard’ instances
for proving string termination as shown by the results in the last two columns. Moreover,
a substantial part of the problems is expected not to be cycle terminating, for instance by
containing a renaming of ab → ba. This is confirmed by the result of non-termination by
split and AProVE for over 300 of the systems.

Comparing the three transformations, the transformation split leads to much better
results than the other two transformations, which holds for termination and for non-
termination proofs. Ignoring the non-termination results (since torpacyc does not check
for non-termination), the following observations are made: the new version of torpacyc
indeed improves the former version, the power of the transformation split together with
AProVE compared to torpacyc 2015 is more or less equal, while other transformations and
back-ends do not perform as well as these tools. The combination of techniques increases the
power, not only since the different tools perform well on different problems, but also, since
torpacyc passes its output (a perhaps simplified SRS) to the string termination prover.

5.1.2 Randomly Generated String Rewrite Systems
As a further test set which contains much simpler problems than the former test set, we
generated 50 000 SRSs of size 12 over an alphabet of size 3, where only SRSs with at least one
rule (`→ r) with |r| ≥ |`| are considered (to rule out obviously terminating problems), SRSs
with rules (`→ u`v) are not considered (to rule out obviously non-terminating problems),
only SRSs without collapsing rules are considered (since torpacyc 2014 cannot handle such
problems), and no alpha-equivalent (i.e. renamed and reordered) SRSs are generated.

The summarized results of applying our methods to this problem set are shown in Table 2.

D. Sabel and H. Zantema 299

Table 2 Results of proving cycle termination of 50 000 randomly generated problems of size 12
over an alphabet of size 3.

combination
torpacyc split rotate shift variant 1 variant 2

2014 2015 AProVE TTT2 AProVE TTT2 AProVE TTT2 AProVE TTT2 AProVE TTT2 any

yes 46981 46929 47017 47073 36967 36260 37053 37027 47071 46967 47064 47015 47124

no 0 0 2331 2201 184 0 771 0 2328 2011 2334 2174 2339

maybe 3019 3071 652 726 12849 13740 12176 12973 601 1022 602 811 537

Most of the problems are cycle terminating and both versions of torpacyc as well as the
transformation split together with AProVE or TTT2 can show termination of most of the
problems. The problems seem to be too simple to separate the power of these successful
approaches and their combinations. However, for the two transformations rotate and shift,
the results show their lack in power, since no proof is found for roughly a quarter of all
problems.

6 Conclusions

We developed new techniques to prove cycle termination. The main approach is to reduce
the problem of cycle termination to the problem of string termination by applying a sound
and complete transformation from cycle into string rewriting. We presented and analyzed
three such transformations. Apart from that we provided a variant of matrix interpretations
which improves the approach presented in [18]. Our implementations and the corresponding
experimental results show that both techniques are useful in the sense that they apply for
several examples for which the earlier techniques failed.

Together with the sound and complete transformation φ in the reverse direction from [18],
the existence of a sound and complete transformation like split implies that the problems
of cycle termination and string termination of SRSs are equivalent in a strong sense. For
instance, it implies that they are in the same level of the arithmetic hierarchy, which is
Π0

2-complete along the lines of [4]. Alternatively, Π0
2-completeness of cycle termination can

be concluded from the sound and complete transformation φ combined with the observation
that cycle termination is in Π0

2.

Acknowledgments. We thank Johannes Waldmann for fruitful remarks, in particular for
his suggestions leading to Section 4 on trace decreasing matrix interpretations. We also
thank the anonymous reviewers for their valuable comments.

RTA 2015

300 Transforming Cycle Rewriting into String Rewriting

References
1 Homepage of AProVE, 2015. http://aprove.informatik.rwth-aachen.de.
2 H. J. Sander Bruggink, Barbara König, and Hans Zantema. Termination analysis for

graph transformation systems. In Josep Diaz, Ivan Lanese, and Davide Sangiorgi, editors,
Proc. 8th IFIP International Conference on Theoretical Computer Science, volume 8705 of
Lecture Notes in Comput. Sci., pages 179–194. Springer, 2014.

3 Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer-Aided
Verification (CAV’2014), volume 8559 of Lecture Notes in Comput. Sci., pages 737–744.
Springer, 2014.

4 Jörg Endrullis, Herman Geuvers, Jakob Grue Simonsen, and Hans Zantema. Levels of
undecidability in rewriting. Inf. Comput., 209(2):227–245, 2011.

5 Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpretations for proving
termination of term rewriting. J. Autom. Reasoning, 40(2-3):195–220, 2008.

6 Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs, Carsten
Otto, Martin Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski, and
René Thiemann. Proving termination of programs automatically with AProVE. In
Stéphane Demri, Deepak Kapur, and Christoph Weidenbach, editors, Proc. 7th Interna-
tional Joint Conference on Automated Reasoning (IJCAR’14), volume 8562 of Lecture Notes
in Comput. Sci., pages 184–191. Springer, 2014.

7 Jürgen Giesl and Aart Middeldorp. Transformation techniques for context-sensitive rewrite
systems. J. Funct. Program., 14(4):379–427, 2004.

8 Jürgen Giesl and Hans Zantema. Liveness in rewriting. In Robert Nieuwenhuis, editor,
Proc. 14th Conference on Rewriting Techniques and Applications (RTA), volume 2706 of
Lecture Notes in Comput. Sci., pages 321–336. Springer, 2003.

9 Dieter Hofbauer and Johannes Waldmann. Termination of {aa->bc, bb->ac, cc->ab}. Inf.
Process. Lett., 98(4):156–158, 2006.

10 Dieter Hofbauer and Johannes Waldmann. Termination of string rewriting with matrix
interpretations. In Frank Pfenning, editor, Proc. 17th Conference on Rewriting Techniques
and Applications (RTA), volume 4098 of Lecture Notes in Comput. Sci., pages 328–342.
Springer, 2006.

11 Adam Koprowski and Johannes Waldmann. Arctic termination ...below zero. In Andrei
Voronkov, editor, Proc. 19th Conference on Rewriting Techniques and Applications (RTA),
volume 5117 of Lecture Notes in Comput. Sci., pages 202–216. Springer, 2008.

12 Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp. Tyrolean termin-
ation tool 2. In Ralf Treinen, editor, Proc. 20th Conference on Rewriting Techniques and
Applications (RTA), volume 5595 of Lecture Notes in Comput. Sci., pages 295–304. Springer,
2009.

13 David Sabel and Hans Zantema. Transforming cycle rewriting into string rewriting (exten-
ded version). http://www.ki.informatik.uni-frankfurt.de/research/cycsrs/SZ15.
pdf, 2015.

14 The termination problem data base, 2015. http://termination-portal.org/wiki/TPDB.
15 Homepage of TTT2, 2015. http://cl-informatik.uibk.ac.at/software/ttt2/.
16 Homepage of Yices, 2015. http://yices.csl.sri.com/.
17 Hans Zantema. Termination of term rewriting: Interpretation and type elimination. J.

Symb. Comput., 17(1):23–50, 1994.
18 Hans Zantema, Barbara König, and Harrie Jan Sander Bruggink. Termination of cycle re-

writing. In Gilles Dowek, editor, Proc. Joint 25th Conference on Rewriting Techniques and
Applications and 12th Conference on Typed Lambda Calculi and Applications (RTATLCA),
volume 8560 of Lecture Notes in Comput. Sci., pages 476–490. Springer, 2014.

http://aprove.informatik.rwth-aachen.de
http://www.ki.informatik.uni-frankfurt.de/research/cycsrs/SZ15.pdf
http://www.ki.informatik.uni-frankfurt.de/research/cycsrs/SZ15.pdf
http://termination-portal.org/wiki/TPDB
http://cl-informatik.uibk.ac.at/software/ttt2/
http://yices.csl.sri.com/

	Introduction
	Preliminaries
	Transforming Cycle Termination into String Termination
	The Transformation Split
	Completeness of Split

	Alternative Transformations

	Trace Decreasing Matrix Interpretations
	Limitations of the Method

	Tools and Experimental Results
	Experiments
	String Rewrite Systems of the Termination Problem Data Base
	Randomly Generated String Rewrite Systems

	Conclusions

