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Abstract
We refine matrix interpretations for proving termination and complexity bounds of term rewrite
systems we restricting them to domains that satisfy a system of linear inequalities. Admissibility
of such a restriction is shown by certificates whose validity can be expressed as a constraint
program. This refinement is orthogonal to other features of matrix interpretations (complexity
bounds, dependency pairs), but can be used to improve complexity bounds, and we discuss its
relation with the usable rules criterion. We present an implementation and experiments.
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1 Introduction

To prove termination of a rewrite system, we can give an interpretation of function sym-
bols that defines a well-founded monotone algebra that is compatible with the rules [30].
By restricting the class of interpretations, we get termination proof methods that can be
automated, in the sense that the interpretation is determined by a finite set of paramet-
ers that can be computed by a program. An early instance is polynomial interpretations
[7], where the parameters are the coefficients of polynomials. We are concerned here with
vector-valued interpretations, where the parameters are coefficients (for the matrix repres-
entations) of multi-linear functions [13, 11]. The domain for these interpretations is Nd,
ordered by x > y iff x1 > y1 ∧ x2 ≥ y2 ∧ . . . ∧ xd ≥ yd. This order is non-total, and the
method can prove non-simple termination.

Several variants and modifications have been investigated, and we list some that are
relevant for the present investigation:

By restricting the shape of matrices, we can prove not just termination, but polynomial
derivational complexity [18, 28].
Vector-valued interpretations can be used to define reduction pairs for termination proofs
in the dependency pair framework [2]. The main point here is that monotonicity con-
straints can be relaxed.
Instead of vectors and linear functions over (N, +, ·), we can take vectors and linear
functions over other semirings, e.g., the arctic semiring (N ∪ {−∞}, max, +) [14]. In
this semiring, monotonicity of operations is different (from N), in a way that this is
well-suited to the dependency pair framework.
Returning to Nd, we may consider different orders on that domain [19].

In the present paper, we modify matrix interpretations in yet another way: we keep the
semiring (N) and order > on Nd, but restrict the domain of interpretations by additional
linear inequalities. We obtain a convex polyhedral domain D ⊆ Nd. Using such domains is a
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standard approach in static analysis of imperative programs that is routinely used in optim-
izing compilers (cf. the Parma Polyhedral Library [3] for the GNU Compiler Collection). In
the context of automated termination analysis of rewrite systems, polyhedral domains were
first suggested by Lucas and Meseguer [17]. In the present paper, we substantially extend
their idea.

Let us illustrate the method by an example.

I Example 1. The goal is to prove termination and polynomial derivational complexity of
the string rewriting system

R = {fg → ff, gf → gg},

where the string fg is an abbreviation for the term f(g(x)), etc. We define a domain
D = {(x1, x2, x3) ∈ N3 | x3 ≥ x2 + 1}. This set is non-empty, e.g., (0, 0, 1) ∈ D. Then both

[f ](x1, x2, x3) = (x1 + 2x2 + 1, 0, x3 + 1)
[g](x1, x2, x3) = (x1 , x3, x3 + 1)

map D into D. Now we combine interpretations:

[fg](x) = (x1 + 2x3 + 1, 0, x3 + 2),
[ff ](x) = (x1 + 2x2 + 2, 0, x3 + 2).

The point is now that ∀x ∈ D : [fg](x) > [ff ](x) even though we don’t have a point-wise
inequality between corresponding coefficients in the first component: the coefficient of x2 in
[fg](x)1 is zero, and the coefficient of x2 in [ff ](x)1 is two.

By the condition that defines D, we have

[fg](x)1 ≥ x1 + 2x3 + 1 ≥ x1 + (2x2 + 2) + 1 > x1 + 2x2 + 2 = [ff ](x)1.

Additionally, we verify (without using D conditions)

[gf ](x) = (x1 + 2x2 + 1, x3 + 1, x3 + 2) > (x1, x3 + 1, x3 + 2) = [gg](x).

We also note that [f ] and [g] are strictly monotone w.r.t. >, since all coefficients are
non-negative, and the coefficient of x1 in the first component is positive.

This proves that [·] is a strictly monotone D-valued interpretation that is strictly com-
patible with the rewrite system R. So, the interpretation certifies termination of R [11].

Moreover, the coefficient matrices of [·] are upper triangular, so we actually proved
polynomial derivational complexity [18]. By closer inspection (there are just two occurrences
of 1 on the main diagonals) the complexity is quadratic. This property of R was known
before, e.g., CaT [15] proves it via root labelling [22]. Ours seems to be the first “direct”
proof.

In the remainder of the paper, we formally define and justify the method (Sections 3
and 4), discuss modifications with respect to derivational complexity (Section 6) and the
dependency pair method (Sections 7) with the usable-rules criterion (Section 8) and finally
(Section 9) describe an implementation and experiments.
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320 Matrix Interpretations on Polyhedral Domains

2 Notation and Preliminaries

A ranked signature maps function symbols to arities, e.g., Σ = {(a, 2), (f, 1), (g, 1)}. The
size ‖Σ‖ of a signature is

∑
(f,k)∈Σ) k, e.g., ‖Σ‖ = 4. We consider terms in Term(Σ, V ) with

symbols from Σ and variables from V . We denote by Var(t) the set of variables appearing
in a term t, and by |t| the size of the term (the number of its positions). A rewrite rule is a
pair (l, r) ∈ Term(Σ, V )2, written l → r, and a set R of rewrite rules defines a relation →R

on Term(Σ) in the usual way. We write →1 ◦ →2 for the product of relations →1 and →2.
For a relation →, we denote by →k its k-fold product, by →+ its transitive closure, and
by →∗ its transitive reflexive closure. We write →1 / →2 for the relation →∗2 ◦ →1 ◦ →∗2.
We say a relation → is well-founded if there is no infinite →-chain. A rewrite system R is
called terminating if →R is well-founded. A rewrite system R is called terminating relative
to a rewrite system S if →R / →S is well-founded. The derivational complexity dc→ of a
relation → on terms describes the length of →-chains as a function of the size of the start
term. Formally, dc→ : N → N ∪ {∞} is the function s 7→ sup{k | ∃t1, t2 ∈ Term(Σ) : |t1| ≤
s ∧ t1 →k t2}. This is in fact a function N → N in case → is terminating and finitely
branching. We write dcR for dc→R

and dcR/S for dc→R/→S
.

An algebra A for signature Σ is given by a domain DA, and for each k-ary symbol f from
Σ, a k-ary function [f ]A : Dk

A → DA. The algebra then maps each t ∈ Term(Σ) to an element
of DA, also denoted [t]A, and by extension, each t ∈ Term(Σ, V ) with |V ar(t)| = k, to a
k-ary function [t]A : Dk

A → DA. An algebra is monotone w.r.t. an order >A on its domain
if each [f ]A is monotone in each argument: xi >A x′i implies [f ]A(x1, . . . , xi, . . . , xk) >A

[f ]A(x1, . . . , x′i, . . . , xk). An algebra with order >A is well-founded if >A is well-founded. A
Σ-algebra A is compatible with relation → if x → y implies [x]A > [y]A. If A is clear from
the context, we write [t] for [t]A, and > for >A, etc.

A d-dimensional matrix interpretation defines an algebra with domain Nd, the order is
given by x > y iff x1 > y1 ∧ x2 ≥ y2 ∧ . . . ∧ xd ≥ yd, and the interpretation of a k-ary
symbol f is given by a multi-linear function of shape [f ](x1, . . . , xk) = F0 +

∑
i Fixi, where

F0 is a vector (the absolute part), and F1, . . . , Fk are matrices (the coefficients for the linear
part). Because of this presentation, we think of vectors x1, . . . , xk, F0 as column vectors.
All coefficients in F0, F1, . . . , Fk are nonnegative (because [f ] must map into Nd). A matrix
interpretation is monotone w.r.t. > if each top left entry of F1, . . . , Fk is positive. A matrix
interpretation is strictly (weakly) compatible with a rule (l, r) with |Var(l)∪Var(r)| = k if the
interpretations [l] and [r], which can be written as [l] = F0 +

∑
i Fixi, [r] = G0 +

∑
i Gixi,

verify F0 > G0 (F0 ≥ G0) and for all 1 ≤ i ≤ k, Fi ≥ Gi (here, ≥ on matrices is the
point-wise extension of ≥ on N).

I Example 2. For {f(g(x))→ f(f(x)), g(f(x))→ g(g(x))}, the interpretation

[f ](x1) =

0
0
1

+

1 1 0
0 0 0
0 1 1

 · x1, [g](x1) =

1
1
0

+

1 0 2
0 1 1
0 0 0

 · x1

is monotone and compatible with the rules, since

[fg](x1) =

2
0
2

+

1 1 3
0 0 0
0 1 1

 · x1 > [ff ](x1) =

0
0
2

+

1 1 0
0 0 0
0 1 1

 · x1

[gf ](x1) =

3
2
0

+

1 3 2
0 1 1
0 0 0

 · x1 > [gg](x1) =

2
2
0

+

1 0 2
0 1 1
0 0 0

 · x1
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We note that it is decidable whether a given d-dimensional matrix interpretation is
monotone, and compatible with a given R. The decision procedure is a straight-line program
(the control flow does not depend on the data), so we can derive a constraint system from
it, and use it to compute a suitable interpretation, once R is given. The constraint language
contains inequalities between polynomials (called QFNIA in [4]). Because of its intractability,
one often restricts unknown numbers to finite ranges, and represents them as bit vectors
(using QFBV in [4]), in binary, or even unary [8].

3 Interpretations on Polyhedral Domains

We now define the concepts, and illustrate them by formalizing Example 1.

I Definition 3. A polyhedral interpretation A with domain dimension d ∈ N and constraint
dimension c ∈ N for a ranked signature Σ consists of

(the polyhedral domain) a matrix CA ∈ Qc×d and a vector BA ∈ Qc×1,
describing the set DA = {x | x ∈ Qd, x ≥ 0 ∧ CAx + BA ≥ 0}
(the underlying interpretation) for each (f, k) ∈ Σ,
a (column) vector F0 ∈ Nd×1, and a list of k square matrices F1, . . . , Fk ∈ Nd×d,
describing a function [f ]A : (Nd)k → Nd : (x1, . . . , xk) 7→ F0 +

∑
i Fixi

Subscript A is omitted when it can be inferred from the context.
Note that we use rational numbers (Q) for describing the constraints (this fits with the

theory of linear algebra that we will need) but natural numbers for the interpretation (this
fits with well-foundedness of the domain). In examples, and in our implementation (see
Section 9), we will substitute Z for Q.

I Example 4 (Example 1 continued). The signature is Σ = {(f, 1), (g, 1)}, the domain
dimension is d = 3, the constraint dimension is c = 1, the domain is described by C =(
0 −1 1

)
, B =

(
−1
)

, and the underlying interpretation is

[f ](x) =

1 2 0
0 0 0
0 0 1

x +

1
0
1

 , [g](x) =

1 0 0
0 0 1
0 0 1

x +

0
0
1

 .

Since we will later determine polyhedral interpretations by solving constraint systems,
we collect information that helps to determine their size. In particular, we are interested in
how many extra constraints we need, compared to the standard matrix method.

I Observation 5. A domain description (in Def. 3) contains c · (d + 1) unknowns.

Properties of a polyhedral interpretation will be derived from the existence of a valid
certificate, which contains a part that refers to the domain, and a part that refers to the
rewrite system. These certificates are derived from a general principle

I Lemma 6 (Inhomogenous Farkas’ Lemma). ([25, 26]) A linear inequality aTx ≤ p is a
consequence of a solvable system of inequalities Ax ≤ b iff there is some y ≥ 0 with a = AT y

and yT b ≤ p.

In other words, the conclusion is implied by a nonnegative linear combination of the
premises. Our certificates are in fact representations of the coefficients in that linear com-
bination.

Given a polyhedral interpretation A for signature Σ, we ask for (f, k) ∈ Σ whether
[f ]A : Dk → D. We have the representation [f ](x1, . . . , xk) = F0 +

∑
i Fixi, with F0 ≥

RTA 2015



322 Matrix Interpretations on Polyhedral Domains

0, . . . , Fi ≥ 0, and we know that the arguments are from the domain: ∀i : xi ∈ D, that is,
∀i : xi ≥ 0 ∧Cxi + B ≥ 0. We combine all these assumptions, and collect them in a matrix
(with k · (d + c) rows, k · d + 1 columns)

I 0 . . . 0 0
0 I 0 0
...

. . .
0 0 . . . I 0
C 0 . . . 0 B

0 C 0 B
...

. . .
0 0 . . . C B


(1)

Do we have [f ](x1, . . . , xk) ∈ D? In other words, do these inequalities imply C(F0 +∑
i Fixi) + B ≥ 0? (Note that [f ](x1, . . . , xk) ≥ 0 is already implied by Fi ≥ 0 and xi ≥ 0.)

In our matrix notation, the conclusion is(
CF1 CF2 . . . CFk CF0 + B

)
with c rows, k · d + 1 columns. For each of the c inequalities (rows) from the conclusion,
Lemma 6 gives one coefficient per each of the k·(c+d) assumptions. In total, we have kc(c+d)
coefficients, and we can arrange them as matrices V1, . . . , Vk ∈ Qc×d+ , W1, . . . , Wk ∈ Qc×c+
and get

V1 + W1C = CF1 ∧ . . . ∧ Vk + WkC = CFk ∧
∑
i

WiB ≤ CF0 + B.

Since Vi ≥ 0 we can simplify the equations to inequalities, obtaining

I Lemma 7. The function (x1, . . . , xk) 7→ F0 +
∑
i Fixi with Fi ≥ 0 maps Dk → D if and

only if there exist Wi ∈ Qc×c+ with

W1C ≤ CF1 ∧ . . . ∧WkC ≤ CFk ∧
∑
i

WiB ≤ CF0 + B.

Now we consider compatibility of the interpretation A with a rewrite rule (l, r) with
|Var(l) ∪ Var(r)| = k. Then the difference of interpretations [l]A − [r]A is a linear function
∆ : (x1, . . . , xk) 7→ ∆0 +

∑
i ∆ixi. When xi ∈ D, we want ∆(x1, . . . , xk) > 0 or ≥ 0 (strict

or weak compatibility). So, the conclusion (d rows) is(
∆1 ∆2 . . . ∆k ∆0

)
,

resp. ∆′0 in the last component, where ∆′0 is obtained from ∆0 by decreasing the first
component by 1. Again by Lemma 6, there are coefficients Ti, Ui ∈ Qd×c+ with

T1 + U1C = ∆1 ∧ . . . ∧ Tk + UkC = ∆k ∧
∑
i

UiB ≤ ∆0,

and we simplify (since Ti ≥ 0) all equations to inequalities, and obtain

I Lemma 8. A polyhedral interpretation A is strictly (weakly, respectively) compatible with
a rewrite rule (l, r) with |Var(l) ∪ Var(r)| = k and ([l] − [r])(x1, . . . , xk) = ∆0 +

∑
i ∆ixi if

and only if there exist matrices Ui ∈ Qd×c+ such that

U1C ≤ ∆1 ∧ . . . ∧ UkC < ∆k ∧
∑
i

UiB ≤ ∆0 (≤ ∆0, resp.)
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4 Certificates for Polyhedral Interpretations

We use one direction of Lemmata 7 and 8 to define certificates for properties of polyhedral
interpretations.

I Definition 9. A domain certificate for a polyhedral interpretation consists of
a vector n ∈ Qd+ which is called valid if Cn + B ≥ 0.
for each (f, k) ∈ Σ with [f ](x1, . . . , xk) = F0 +

∑
i Fixi,

matrices W1, . . . Wk ∈ Qc×c+ which are called valid if
∀1 ≤ i ≤ k : CFi ≥WiC and CF0 + B ≥ (

∑
i Wi)B

I Observation 10. The domain certificate contains d + ‖Σ‖ · c2 unknowns. Validity of the
domain certificate can be checked with 1 + |Σ| matrix multiplications in (c× d) · (d× 1), |Σ|
matrix multiplications in (c× c) · (c× 1), ‖Σ‖ matrix multiplications in (c× d) · (d× d), |Σ|
matrix multiplications in (c× c) · (c× d).

There are also additions and comparisons, but their cost is dominated by multiplication.

I Example 11 (Example 4 continued). We take n =
(
0 0 1

)T which is valid since Cn+B =(
0 −1 1

) (
0 0 1

)T − 1 = 0, and for both f and g, the choice W1 = (0) is valid since
CF1 ≥ 0 and CG1 ≥ 0 and CF0 + B = CG0 + B = 0.

I Lemma 12. The following statements are equivalent:
polyhedral interpretation A has a valid domain certificate,
DA is non-empty, and for each (f, k) ∈ Σ, the function [f ]A maps Dk

A into DA.

Proof. This follows from Lemma 7. Additionally, we give an explicit computation that
shows one direction of the equivalence: For y = [f ](x1, . . . , xk) = F0 +

∑
i Fixi, we have

y ∈ D by the chain of inequalities Cy + B = C(F0 +
∑

Fixi) + B = CF0 +
∑
i CFixi + B ≥

CF0 +
∑
i WiCxi + B ≥ CF0 −

∑
WiB + B ≥ 0. J

I Definition 13. A compatibility certificate for polyhedral interpretation A w.r.t. rewrit-
ing system R contains, for each rule (l, r) ∈ R with |Var(l) ∪ Var(r)| = k and ([l]A −
[r]A)(x1, . . . , xk) = ∆0 +

∑
i ∆ixi, matrices U1, . . . , Uk ∈ Qd×c+ , which are called valid if

∀i : ∆i ≥ UiC and
∆0 ≥

∑
i UiB (then the certificate is called weak for that rule)

or ∆0 >
∑
i UiB (then the certificate is called strict for that rule)

For the following, we need notation ‖R‖ =
∑
{|Var(l) ∪ Var(r)| | (l, r) ∈ R}.

I Observation 14. The compatibility certificate contains ‖R‖ · d · c unknowns. Validity of
the compatibility certificate can be checked with ‖R‖ matrix multiplications in (d×c) ·(c×d),
and |R| matrix multiplications in (d× c) · (c× 1), assuming ∆i are already given.
I Example 15 (Example 4 continued). For rule (fg, ff), we compute

[fg](x) =1 0 2
0 0 0
0 0 1

x +

1
0
2

 ,

[ff ](x) =1 2 0
0 0 0
0 0 1

x +

2
0
2

 ,

∆(fg,ff) =0 −2 2
0 0 0
0 0 0

x +

−1
0
0

 .

A valid strict certificate for this rule is U
(fg,ff)
1 =

(
2 0 0

)T , since
U1C =

2
0
0

(0 −1 1
)

=

0 −2 2
0 0 0
0 0 0

 ≤ ∆1, U1B =

2
0
0

 (−1) =

−2
0
0

 < ∆0
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For rule (gf, gg), we compute

[gf ](x) =1 2 0
0 0 1
0 0 1

x +

1
1
2

 ,

[gg](x) =1 0 0
0 0 1
0 0 1

x +

0
1
2

 ,

∆(gf,gg) =0 2 0
0 0 0
0 0 0

x +

1
0
0

 .

and a valid strict certificate is U
(gf,gg)
1 =

(
0 0 0

)T .
I Lemma 16. These statements are equivalent:

polyhedral interpretation A has a valid compatibility certificate w.r.t. rewrite system R

A is strictly compatible with the rules of R for which the certificate is strict, and weakly
compatible with the rules for which the certificate is weak.

Proof. This follows from Lemma 8. Additionally, we give an explicit computation for
one direction. For (l, r) ∈ R, we have ([l]A − [r]A)(x1, . . . , xk) = ∆0 +

∑
i ∆ixi ≥ ∆0 +∑

i UiCxi ≥ ∆0 −
∑
i UiB which is ≥ 0 or > 0. J

From previous observations, and assuming that matrix multiplication in (a× b) · (b× c)
can be done with O(a · b · c) elementary operations, we obtain the following, which is the
basis for our implementation, see Section 9.

I Theorem 17. The validity of the certificate of a polyhedral interpretation with domain
dimension d and constraint dimension c for a rewrite system R over signature Σ is decidable.
The certificate can be represented by d + ‖Σ‖c2 + ‖R‖cd unknowns and O(‖Σ‖cd2 + |Σ|c2d +
‖R‖cd2 + |R|cd) elementary constraints.

5 Polyhedral Interpretations for Termination and Complexity

Polyhedral interpretations can be used for proofs of termination:

I Theorem 18. If a polyhedral interpretation has a valid domain certificate, and a strict
compatibility certificate for a rewrite system R, and a weakly compatibility certificate for
a rewrite system S, and the underlying interpretation is monotone, then R is terminating
relative to S.

Proof. The polyhedral interpretation defines a well-founded monotone algebra on a subset
of (Nd, >) that is compatible with →R /→S . J

Compared to the standard matrix method, we kept the order, restricted the domain, and
changed the test for compatibility: we can now use properties of the polyhedral domain,
and thus ease the requirement of comparing coefficients of [l]A > [r]A point-wise.

I Example 19. 1 We apply the method to problem Ex16_Luc06_C from the TPDB [21].

1 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/41269410

http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/41269410
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active(f(X, X))→ mark(f(a, b)), active(b)→ mark(a),
active(f(X1, X2))→ f(active(X1), X2), f(mark(X1), X2)→ mark(f(X1, X2)),

proper(f(X1, X2))→ f(proper(X1), proper(X2)),
proper(a)→ ok(a), proper(b)→ ok(b),

f(ok(X1), ok(X2))→ ok(f(X1, X2)),
top(mark(X))→ top(proper(X)), top(ok(X))→ top(active(X))

we remove active(b)→ mark(a) and then use interpretation

mark 7→
(

0
0

)
+
(

1 0
0 1

)
· x1, f 7→

(
1
2

)
+
(

1 3
0 0

)
· x1 +

(
1 0
0 0

)
· x2,

a 7→
(

1
0

)
, b 7→

(
0
1

)
, ok 7→

(
0
0

)
+
(

1 0
0 1

)
· x1, top 7→

(
0
1

)
+
(

1 2
1 1

)
· x1,

active 7→
(

0
0

)
+
(

1 0
0 1

)
· x1, proper 7→

(
0
0

)
+
(

1 0
0 1

)
· x1

on a domain restricted by
(
−1
)

+
(
1 1

)
· x ≥ 0. Equivalently, x1 + x2 ≥ 1, so just (0, 0)T

is excluded from the domain. Rule active(f(X, X))→ mark(f(a, b)) is interpreted by

[lhs] =
(

1
2

)
+
(

2 3
0 0

)
· x1, [rhs] =

(
2
2

)
+
(

0 0
0 0

)
· x1,

Note the absolute parts are not decreasing: (1 2)T 6> (2 2)T . This rule has a strong
compatibility certificate (2 0)T . In effect, we add twice the domain constraint, to prove the
decrease in the first component. Starting from the right-hand side: 2 ≤ 2+2(−1+x11+x12) =
x11+x12 < 1+2x11+3x12. Then other rules can be removed by the standard matrix method.

This termination problem was solved in the 2014 competition only by AProVE [12], using
back-transformation to CSR QTRSToCSRProof. 2

The previous example suggests that polyhedral interpretations are strictly more powerful
than standard matrix interpretations (even when these are combined with other methods),
but we currently have no proof. At least we can be sure that they are not less powerful:

I Observation 20. For any domain and constraint dimension: A polyhedral interpreta-
tion with domain constraint B = 0, C = 0 is a standard matrix interpretation.
A polyhedral interpretation with constraint dimension 0 is a standard matrix interpreta-
tion.

Proof. First part: take n = 0, Wi = 0, Ui = 0 and verify that the compatibility condition
reduces to ∆0 ≥ 0(> 0, resp.) and ∆i ≥ 0. Second part: The matrices in the domain
certificate have extension 0× 0, the matrices in the compatibility certificate have extension
d× 0, so they are zero matrices, and the first part applies. J

Even if we do have constraints, we can ignore them, to obtain a statement on derivational
complexity. Recall that the height function dcA of a well-founded monotone Σ-algebra A on
(DA, >A) is the function s 7→ sup{dc>A

([t]A) | t ∈ Term(Σ), |t| ≤ s}.

2 http://nfa.imn.htwk-leipzig.de/termcomp/display_proof/26921465
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I Lemma 21. If a polyhedral interpretation A is monotone and strictly compatible with a
rewrite system R, then dcR is bounded by the height dcA of the matrix interpretation that
underlies A.

Proof. Each →R-chain is mapped to a >-chain in the polyhedral domain D, which is also
a >-chain in Nd. J

We mention two consequences.
The original matrix method is limited because matrix products grow at most exponen-

tially: with matrix interpretations, it is impossible to reduce a termination problem by
“removing a rule” that is used more than exponentially often. E.g., no matrix interpreta-
tion can remove a rule from {ab → bca, cb → bbc} [13], and polyhedral constraints will not
change that.

If we have a polyhedral interpretation A that is compatible with R and where the un-
derlying matrix interpretation grows polynomially only, then we have a proof that dcR is
polynomially bounded. The introductory Example 1 already applies this. We will show in
the next section that we can do better in some cases, by not ignoring the information in the
constraints.

6 Improving Polynomial Growth Bounds

We show that polyhedral constraints can serve to lower a bound for polynomial growth of a
matrix interpretation.

Recall that for each component of a vector valued interpretation we can assign a degree
of growth, and the degree of the interpretation is the degree of the first component.

If the interpretation uses upper triangular matrices (of dimension d), the degree of the
i-th component is at most d + 1 − i, and there is a refinement where the degree can be
reduced further if all matrices have zero diagonal entries at index (i, i).

Now polyhedral constraints for triangular matrices in some cases bound the i-th com-
ponent from above by some positive linear combination of components with higher indices,
that is, of lower degree.

As a special case, the very last component could be bounded by a constant, as in the
following example.

I Example 22. TRS/secret06/jambox/5 3 The rewrite system

{a(a(y, 0), 0)→ y, c(c(y))→ y, c(a(c(c(y)), x))→ a(c(c(c(a(x, 0)))), y)}

has a compatible polyhedral interpretation that uses upper triangular matrices

0 7→

0
0
0
0

 , c 7→

0
0
0
2

+

1 1 0 1
0 1 2 0
0 0 1 1
0 0 0 0

·x1, a 7→

1
0
0
0

+

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

·x1+

1 2 2 2
0 1 4 4
0 0 1 1
0 0 0 0

·x2

with domain restriction
(
2
)

+
(
0 0 0 −1

)
· x ≥ 0. The restriction means that x4 ≤ 2. (By

inspecting the interpretation, the domain for x4 is found to be {0, 2}.) There are 4 non-zero
positions on the main diagonal, so the naive degree bound is 4. The domain constraint says

3 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/40307443
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that x4 is bounded by 2, so the degree of x3 is at most linear, x2 at most quadratic, and x1
at most cubic.

The states 3, 4 of the underlying automaton are in fact an unambiguous component, so
degree 3 would have been detected by the method from [28], which is however more expensive
to implement.

This example was not solved in the 2014 complexity competition.

I Example 23. For system ExProp7_Luc06_GM (not solved in 2014 complexity competi-
tion), we find a compatible polyhedral upper triangular interpretation 4 with constraint(
0 0 −1 1

)
x + 2 ≥ 0. That is x4 + 2 ≥ x3, so the degree of x3 is linear (not quadratic),

and this reduces the degree estimate for the interpretation as a whole.

7 Polyhedral Constraints and the Dependency Pair Method

The dependency pair (DP) method [2] can use reduction pairs that come from matrix in-
terpretations [11]. We briefly recap the notation. Given Σ, the marked signature Σ# is
{(f#, k) | (f, k) ∈ Σ}. We use sort symbols {O, #} and say that (f, k) ∈ Σ has type
Ok → O, while f# has type Ok → #. For t = f(t1, . . . , tk) ∈ Term(Σ, V ), we write t# for
f#(t1, . . . , tk) ∈ Term(Σ∪Σ#, V ). The root symbol of a term t is root(t). The set of defined
symbols of a rewrite system R over Σ is Def(R) = {root(l) | (l, r) ∈ R}. The dependency
pairs of R are DP(R) = {(l#, s#) | (l, r) ∈ R, root(s) ∈ Def(R), s E r, s 6E l}. Termination of
R is then proved by a reduction pair (>,≥) where DP(R) ⊆> and R ⊆≥.

In this context, a d-dimensional matrix interpretation defines an extended monotone
algebra by interpreting sort O by (Nd,≥), sort # by (N1, >), and function symbols by
multilinear functions (respecting the sorts) as before.

For this basic version of the DP method with matrix interpretations, we can apply
polyhedral constraints with the following (inessential) modifications:

We do not need strict monotonicity, so the top-left entries of matrices are unconstrained.

We restrict the domain for sort O only (not #). That is, we need domain certificates
only for symbols from Σ (not Σ#).

Compatibility certificates are needed for all rules. For rules from R, this is done as
before, and for rules from DP(R), the target domain is N1, so the matrices Ui in the
compatibility certificates have extension (1× c).

The DP method allows for many enhancements, which we do not discuss here, but use in
examples.

I Example 24. We consider the termination problem TRS_Standard/Various_04/11

{f(0, 1, x)→ f(h(x), h(x), x), h(0)→ 0, h(g(x, y))→ y}

4 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/40858473
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After DP transformation, we look at the SCC that contains
{f#(0, 1, x)→ f#(h(x), h(x), x)}, and apply the matrix interpretation 5

0 7→
(

1
1

)
, 1 7→

(
0
2

)
, h 7→

(
0
0

)
+
(

0 1
1 0

)
· x1, g 7→

(
0
0

)
+
(

0 0
0 0

)
· x1 +

(
0 1
1 0

)
· x2,

f 7→
(

0
0

)
+
(

0 0
0 0

)
· x1 +

(
0 0
0 0

)
· x2 +

(
0 0
0 0

)
· x3,

f# 7→
(
0
)

+
(
1 0

)
· x1 +

(
0 1

)
· x2 +

(
1 1

)
· x3

with constraint
(
2
)
+
(
−1 −1

)
·x ≥ 0. The interpretation of f#(0, 1, x)→ f#(h(x), h(x), x)

is

[lhs] =
(
3
)

+
(
1 1

)
· x1, [rhs] =

(
0
)

+
(
2 2

)
· x1.

We can verify that adding the domain constraint to the value of the right-hand side gives
(2) + (1 1) ·x1 which is in the proper point-wise relation to the left-hand side. This problem
was solved in the 2014 termination competition only by Mu-Term [16] and AProVE [12],
using innermost rewriting and narrowing. 6

I Example 25. For TRS_Standard/Endrullis_06/pair2simple2

{p(a(x0), p(a(a(a(x1))), x2))→ p(a(x2), p(a(a(b(x0))), x2))}

we find an interpretation 7

b 7→

0
0
0

+

0 0 1
0 0 0
0 0 0

 · x1, a 7→

0
0
1

+

0 1 0
0 0 3
0 0 0

 · x1,

p 7→

0
0
0

+

1 0 0
0 0 0
0 0 0

 · x1 +

1 1 0
0 0 0
0 0 0

 · x2,

p# 7→
(
0
)

+
(
0 0 0

)
· x1 +

(
1 0 1

)
· x2

with polyhedral constraint dimension two:
(

2
1

)
+
(

0 −1 1
0 0 −1

)
· x ≥ 0.

Rule p(a(x0), p(a(a(a(x1))), x2))→ p(a(x2), p(a(a(b(x0))), x2)) is interpreted by

[lhs] =

3
0
0

+

0 1 0
0 0 0
0 0 0

 · x1 +

0 0 0
0 0 0
0 0 0

 · x2 +

1 1 0
0 0 0
0 0 0

 · x3

[rhs] =

0
0
0

+

0 0 0
0 0 0
0 0 0

 · x1 +

0 0 0
0 0 0
0 0 0

 · x2 +

1 2 0
0 0 0
0 0 0

 · x3,

and the (weak) compatibility certificate is

0 0
0 0
0 0

 ,

0 0
0 0
0 0

 ,

1 1
0 0
0 0


This problem was solved in the 2014 competition with recursive path order 8 and it seems

there is no compatible standard matrix interpretation.

5 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/40515447
6 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/26924062
7 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/40849733
8 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/26919296

http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/40515447
http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/26924062
http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/40849733
http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/26919296
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8 Polyhedral Constraints and the DP Method with Usable Rules

The DP method with the “usable rules” extension [2] requires the following change. It is
required that the reduction pair is Cε-compatible (for a fresh function symbol C, we need
[C](x, y) ≥ x ∧ [C](x, y) ≥ y.) For a reduction pair that comes from an interpretation, this
means that its domain must allow to construct least upper bounds.

Let us make explicit how this works for the standard matrix method: the domain
is Nd, the (weak) order is component-wise ≥, the least upper bound sup(x, y) of x =
(x1, . . . , xd), y = (y1, . . . , yd) is (max(x1, y1), . . . , max(xn, yn)), so sup(x, y) ∈ Nd trivially.

Now consider some polyhedral domain D ⊆ Nd. The order we use on D is exactly the
order on Nd as before, so the least upper bound is the same as well. But it is not always
true that x, y ∈ D implies sup(x, y) ∈ D.

I Example 26. In dimension 2, consider the constraint x1 + x2 ≤ 1. This means D =
{(0, 0), (0, 1), (1, 0)}. Then sup((0, 1), (1, 0)) = (1, 1) /∈ D.

Indeed we would obtain erroneous termination statements when using the “usable rules”
extension with polyhedral constraints on domains that are not sup-closed. 9

We now give a sufficient condition for a polyhedral domain to allow sup.

I Theorem 27. Let C ∈ Qc×d, B ∈ Qc×1 describe a domain D = {x | x ≥ 0, Cx + B ≥
0} ⊆ Qd. If each row of C contains at most one negative entry, then x, y ∈ D implies
sup(x, y) ∈ D.

Proof. We analyze the i-th constraint, given by row c = Ci, and entry b = Bi. We need to
show c · sup(x, y) + b ≥ 0. We can write c = c+ + c− where c+ = sup(c, 0) and c− = inf(c, 0).
(all entries in c+ are ≥ 0, all entries in c− are ≤ 0). Multiplication by c+ is monotone: if
x ≤ z, then c+x ≤ c+z. If c has no negative entry, then c = c+, so multiplication by c is
monotone, and we have c·sup(x, y)+b ≥ cx+b ≥ 0. Assume c has one negative entry ck < 0.
Without loss of generality, we have xk ≥ yk (if not, swap x with y). Then c−·sup(x, y) = c−x.
We have c · sup(x, y)+ b = c+ · sup(x, y)+c− · sup(x, y)+ b ≥ c+x+c−x+ b = cx+ b ≥ 0. J

The condition in Theorem 27 is easily implemented in a constraint program.

9 Implementation and Experiments

We extended to the implementation of matrix interpretations in matchbox [29] by adding
polyhedral constraints. The constraint system already has unknowns for the interpretation,
and we added unknowns for the domain constraint and certificate, and for the compatibility
certificates. The constraint program already computes the interpretation of rules (with
compression) [5], and we added the validity constraints for domain and compatibility.

To prove termination of a rewrite system, we have (as usual) one parameter d ∈ N, for
the dimension of the interpretation domain, and now an extra parameter c ∈ N: the number
of inequalities (the height of the C matrix). We found that already c = 1 is often helpful,
see most examples in this paper.

According to Sections 3 and 4, unknowns should be from Q for the domain constraint,
and Q+ for certificates. Since we don’t know of a competitive constraint solver over Q, we
restrict to Z for the domain constraint, and N for certificates. Experiments suggest that

9 http://nfa.imn.htwk-leipzig.de/termcomp/show_job_pair/40422582
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most domain constraints use small numbers, so we further restrict to {−1, 0, 1} for C (not
for B).

The constraint system consists of (in)equalities between polynomials, so it is expressible
in the QFNRA (QFNIA, resp.) logic [4]. With a bit-blasting approach in mind, we can also
use QFBV (bit vectors). Our implementation allows us to choose between Boolector [6] as
a QFBV-solver, or built-in bit-blasting, and then MiniSat [10] as a SAT-solver.

The following data is typical of how polyhedral constraints increase the size of the con-
straint systems:

I Example 28 (Example 22 continued). For TRS/secret06/jambox/5, with domain dimen-
sion 4, and bit width 4, matchbox’ built-in bit-blaster was applied. The number of vari-
ables/clauses is: for constraint dimension 0 (the original matrix method): 31614/40256, for
constraint dimension 1: 39867/67064.

We have two remarks on BV-solving/bit-blasting:
Overflow is forbidden in our context, but allowed in the QFBV standard. So each

arithmetical operation (add, mul) is immediately followed by computing the overflow and
asserting that it is false. We use functions saddo, smulo provided in Boolector’s API.

We need signed numbers. Among the unknowns, just C and B may contain negative
numbers, but signed numbers will propagate into the validity constraints. We note that while
we have additions of signed numbers, all multiplications have at most one signed factor.

In both cases (no overflow, some signs are known), a constraint solver could exploit this
information statically. We especially think that “non-overflowing arithmetic” would be a
useful addition to the QFBV-standard.

We were running our implementation on the termination and complexity problems of
the 2014 termination competition (TPDB version 8). The main purpose was to extract
interesting examples, used in this paper. These examples show that there are several cases
where polyhedral constraints allow a matrix termination proof where none was given in the
last competition, or only proofs that use other methods.

We checked the effect that polyhedral constraints have when added to a base version of
matchbox with arctic and natural matrix interpretations. We observe different behaviour in
less than 10 % of the benchmarks.

We also compared Boolector and bit-blasting/MiniSat back-ends. Our conclusion is that
Boolector wins by a small margin.

A web page with that presents our experimental data is provided. 10

10 Discussion

Related work. Polyhedral constraints for interpretations in termination proofs where first
suggested by Lucas and Meseguer [17]. Our contribution is to provide an actual implement-
ation that handles the case where interpretation and domain constraints are unknown, and
extensions (to complexity analysis, dependency pairs, and usable rules).

We mentioned that polyhedral analysis of imperative programs, especially loops, is a
standard method. The difference to analysis of rewriting systems is: the semantics of the
imperative program is literally given by the numerical values and operations appearing in
the program text (e.g., in int y = 2*x+1, the symbol 2 denotes the number 2, and the
symbol + denotes addition). For rewrite systems, a priori there is no semantics, so it has

10 http://www.imn.htwk-leipzig.de/~waldmann/etc/polyhedral/
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to be determined during the analysis (e.g., it will be defined via an interpretation). This
means that for polyhedral domains for rewrite systems, we cannot use directly the methods
developed for imperative programs.

Certification. It seems straightforward (in principle) to integrate polyhedral domains for
matrix interpretations into the CeTA certification framework [23]. To check validity of
domain and compatibility certificates, we just need to verify the calculations from Section 4,
while a certified proof of Farkas’ Lemma (Section 3) is not needed.

Challenges in Rewriting. There are two long-standing challenges: find a matrix interpret-
ation that gives a tight complexity bound for {a2b2 → b3a3} (z001), and for {a2 → bc, b2 →
ac, c2 → ab} (z086). For both rewrite systems, matrix interpretations with exponential
growth are known, while the growth of rewrite sequences is known to be polynomial (z001
by matchbounds, z086 by a manual proof [1]). Can we prove polynomial derivational com-
plexity via matrix interpretations on a polyhedral domain? So far, we did not succeed—using
several days of CPU time.

Extensions: Order. It may be interesting to analyze different orders on polyhedral do-
mains, as Neurauter et al. [20] did for the full standard domain Nd. We might get more
termination proofs, or better complexity bounds. It is to be expected that monotonicity,
which is now easy (top left coefficient ≥ 1), needs to be replaced with something more
elaborate, that requires a certificate.

Extensions: Negative Coefficients. Can we allow negative coefficients in interpretations
(in F0, F1, . . . , Fk)? We then need to make sure that x ≥ 0 is respected (by extra domain
certificates), and require additional “monotonicity certificates”.

Extensions: Domain. We can perhaps even drop the x ≥ 0 restriction, This implies changes
in other certificates, and requires an extra “well-foundedness certificate” that shows that
values for the first component of interpretations are bounded from below.

Extensions: Semiring. Another direction for extension is to choose a different underlying
semiring, e.g., arctic or tropical, and apply results from tropical linear algebra. At least in
principle, it is clear what to do: a polyhedral domain [9] is described as {x | A1 · x + b1 ≤
x ≤ A2 · x + b2} (since addition is not invertible, we cannot move the right-hand-side x to
the left) and certificates must be constructed accordingly.

Acknowledgments. I am grateful to Alfons Geser, Dieter Hofbauer, and anonymous re-
viewers for discussions and comments, and to René Thiemann and Harald Zankl for help
with their software. The Starexec platform [24] and Starexec-Presenter [27] software proved
to be very helpful for running experiments and analyzing data. Armin Biere made available
Boolector [6] for use as an alternative solver back-end.
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