
The Eureka Programming Model for Speculative
Task Parallelism
Shams Imam and Vivek Sarkar

Rice University, Houston, TX, USA, {shams,vsarkar}@rice.edu

Abstract
In this paper, we describe the Eureka Programming Model (EuPM) that simplifies the expression
of speculative parallel tasks, and is especially well suited for parallel search and optimization ap-
plications. The focus of this work is to provide a clean semantics for, and efficiently support, such
“eureka-style” computations (EuSCs) in general structured task parallel programming models. In
EuSCs, a eureka event is a point in a program that announces that a result has been found. A
eureka triggered by a speculative task can cause a group of related speculative tasks to become
redundant, and enable them to be terminated at well-defined program points. Our approach
provides a bound on the additional work done in redundant speculative tasks after such a eureka
event occurs.

We identify various patterns that are supported by our eureka construct, which include search,
optimization, convergence, and soft real-time deadlines. These different patterns of computations
can also be safely combined or nested in the EuPM, along with regular task-parallel constructs,
thereby enabling high degrees of composability and reusability. As demonstrated by our imple-
mentation, the EuPM can also be implemented efficiently. We use a cooperative runtime that uses
delimited continuations to manage the termination of redundant tasks and their synchronization
at join points. In contrast to current approaches, EuPM obviates the need for cumbersome man-
ual refactoring by the programmer that may (for example) require the insertion of if checks and
early return statements in every method in the call chain. Experimental results show that solu-
tions using the EuPM simplify programmability, achieve performance comparable to hand-coded
speculative task-based solutions and out-perform non-speculative task-based solutions.

1998 ACM Subject Classification D.1.3 [Programming Techniques] Concurrent Programming –
Parallel Programming

Keywords and phrases Async-Finish Model, Delimited Continuations, Eureka Model, Parallel
Programming, Speculative Parallelism, Task Cancellation, Task Termination

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.421

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.1.1.6

1 Introduction

A wide range of problems, such as combinatorial optimization, constraint satisfaction, image
matching, genetic sequence similarity, iterative optimization methods, can be reduced to tree
or graph search problems [26, 1, 33]. A pattern common to such algorithms to solve these
problems is a eureka event, a point in the program which announces that a result has been
found. Such an event curtails computation time by avoiding further exploration of a solution
space or by causing the successful termination of the entire computation. For example, in
optimization problems, a eureka event declares (and updates) the currently best-known result
and can prune the computation by causing the termination of specific tasks that cannot

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Shams Imam and Vivek Sarkar;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 421–444

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.421
http://dx.doi.org/10.4230/DARTS.1.1.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

422 The Eureka Programming Model

provide a better result. On the other hand, in satisfiability problems, the first eureka event
can trigger the termination of the entire computation as a proof of existence has been found.

With the advent of the multicore era, future growth in application performance will
primarily come from increased parallelism. While many efforts have focused on programming
models that expose increased amounts of deterministic parallelism, we believe that it is also
important to explore new programming model directions for speculative parallelism. Eureka-
Style Computations (EuSCs) include search and optimization problems that could benefit
greatly from speculative parallelism. However, writing parallel programs is a non-trivial,
bug-prone, and complex endeavor in general, and the addition of speculation to current
models can further add to the complexity. There is, hence, a need for programming models
that support simple specification of parallel EuSC algorithms, combined with efficient parallel
implementations.

One of the challenges in EuSCs is the efficient termination of multiple active tasks once
a solution is published. Current termination techniques include the use of (a) terminating
processes and threads [37], (b) exceptions for control flow as used in Microsoft’s Task Parallel
Library [25] and Java thread interrupts in blocking calls [34], (c) function-scoped cancellation
points in Cilk abort [15] and OpenMP 4.0 [31], and (d) manual cooperative termination
tokens as in Intel Thread Building Blocks [27]. As explained in Section 3, all these solutions
have their limitations and are inadequate for supporting parallel EuSCs with high productivity
and performance.

In this paper, we introduce the Eureka Programming Model (EuPM), an explicitly task
parallel programming model that simplifies the expression of parallel EuSCs. The EuPM
builds on a structured task parallel programming model (summarized in Section 2). It
works by exploiting parallelism opportunities in computations that are divided into several
speculative tasks; these tasks are called speculative because their results may or may not be
needed. Section 3 motivates our approach to terminating speculative tasks once a result
is published. Our solution uses a simplified cooperative termination technique that only
requires a single method call at each eureka point - a point in a program that announces
that a result has been found. The EuPM is described in Section 4. It promotes out-of-order
executions and the constructs in our EuPM are expressive enough to encode many parallel
programming patterns common to EuSCs (Section 5). These different patterns can also be
safely combined or nested, thereby enabling both composability and reusability (Section 6).

We have implemented the EuPM as a Java-based task parallel cooperative runtime that
runs on a standard Java Virtual Machine, and it is summarized in Section 7. Our approach
could be implemented for parallel C++ programs as well. The burden of performing code
transformations to ensure that all redundant tasks are terminated cleanly at well-defined
program points is assumed by the compiler and runtime. We evaluate the performance of
search and optimization benchmarks, when using standard task-based solutions, hand-coded
cooperative speculative task-based solutions, and solutions based on our EuPM. Experimental
results (Section 8) show that the EuPM solutions can deliver significant performance and
productivity improvements over standard task-based solutions. The EuPM abstraction
achieves acceptable overheads with performance that is comparable to that of hand-coded
speculative task-based solutions, while the EuPM solutions are simpler to write. Section 9
discusses related work, and we summarize our conclusions and identify opportunities for
future work in Section 10.

In summary, the contributions of this paper are as follows:
Introduction of the Eureka Programming Model (EuPM) to simplify the expression and
management of speculative parallel tasks, which are especially important for parallel
search and optimization applications.

S. Imam and V. Sarkar 423

A manifestation of the EuPM as a standard Java API, with compiler support for the
cooperative termination of avoidable tasks at well-defined program points.
Identification of various patterns that are well-suited for the eureka construct, but hard
to implement using current parallel programming models. These patterns include search,
optimization, convergence, and soft real-time deadlines.
An implementation of the EuPM in a cooperative runtime for task parallelism that uses
delimited continuations.
An empirical evaluation of the productivity and performance benefits of the EuPM
implementation on various EuSC benchmarks.

2 Background and Motivating Example

In the task-parallel model, the application execution can be modeled as a directed acyclic
graph, where nodes represent computational tasks and edges define the data dependences
among them. A runtime system then efficiently schedules tasks whose dependences have
been satisfied over the available processing units, usually implemented as worker threads.
The management of actual threads and related thread pools is done by the runtime and is
transparent to the tasks in the program.

2.1 Async-Finish Programming Model
The Async/Finish Model (AFM) is a structured variant of the task-parallel Fork/Join Model.
In the AFM, a task can fork a group of child tasks. These child tasks can recursively fork
additional tasks. All these descendant tasks can potentially run in parallel with each other.
Further, a parent/ancestor task can selectively join on a subset of child/descendant tasks to
wait for their completion.

Tasks are created at fork points, the statement async 〈stmt〉 causes the parent task to
create a new child task to execute 〈stmt〉 (logically) in parallel with the parent task. An inner
async is allowed to read and operate on a variable declared in an outer scope. The runtime
is responsible for the scheduling of tasks created by asyncs. The finish construct represents
a join operation. The task executing finish 〈stmt〉 has to wait for all transitively spawned
child tasks inside 〈stmt〉 to terminate before it can proceed past the finish construct. All
computations execute inside a global finish scope for the main program: the computation
is allowed to terminate when all tasks nested inside the global finish terminate. This rule
ensures that each executing task has a unique Immediately Enclosing Finish (IEF) [6, 40, 38].

Listing 1 shows a sample program that uses async and finish constructs to preserve
task dependences while exploiting available parallelism. Note that until all forked tasks
(Task A, Task B, Task B1, and Task B2) reach the join point, Task C cannot be executed.
The scopes of async and finish can span method boundaries that simplify parallelizing
sequential programs. asyncs are inserted to wrap statements that can be executed in parallel
and then these asyncs are wrapped inside finish blocks to ensure the parallel version
produces the same result as the sequential version. async-finish style computations are
guaranteed to be deadlock-free [6]. In addition, in the absence of data races, these programs
are deterministic [38].

2.2 Parallel Search of 2D Array
We will consider a well-understood parallel programming example as a motivating example
where speculative computation may be used for parallelization. We build on this example in

ECOOP’15

424 The Eureka Programming Model

Listing 1 async-finish program using async and finish con-
structs for synchronization. (Listings use pseudo-code syntax.)
1 class AsyncFinishPrimer {
2 def main(args) {
3 finish // the global finish
4 println ("Task O") // Task -O
5 finish
6 async // Task -A
7 println ("Task A")
8 async // Task -B
9 println ("Task B")
10 async // Task -B1 created by Task -B
11 println ("Task B1")
12 async // Task -B2 created by Task -B
13 println ("Task B2")
14 // wait for tasks A, B, B1 and B2
15 println ("Task C") // Task -C
16 } }

the rest of the paper to discuss various concepts and explain different EuSC variants. The
example performs the parallel search of a 2D array to find the index of a particular item if it
exists. The eureka event occurs when the item is found. The parallel version may expand
(or generate) more states than a serial version. We are ready to tolerate such redundancy in
the hope of a faster execution time in finding the result.

Listing 2 async-finish parallel search.
1 class ParallelSearch {
2 def atomicRefFactory () {
3 return new AtomicRef ([-1, -1])
4 }
5 def doWork (matrix , goal) {
6 val token = atomicRefFactory ()
7 finish
8 for rowIndices in matrix . chunks ()
9 async

10 for (r in rowIndices)
11 procRow (matrix (r), r, goal , token)
12 // return either [-1, -1] or
13 // valid index [i, j] matching goal
14 return token .get ()
15 }
16 def procRow (array , r, goal , token) {
17 for (c in array . length ())
18 if goal. match (array (c)) // eureka !!!
19 token .set ([r, c])
20 return
21 } }

Listing 2 displays an im-
plementation of such a paral-
lel search using the async and
finish constructs. Using the
atomicRefFactory() method, the
program initializes a token con-
tainer to invalid indices at line 6.
Tasks are spawned at line 9 and en-
closed in the finish scope declared
at line 7. The finish scope ensures
that all spawned tasks complete be-
fore the result is returned at line 14.
To overcome the overheads of task-
ing, a common strategy while work-
ing with arrays is to chunk the data.
Each async processes a chunk of
data using the for loop at line 10.
The eureka event occurs at line 19
when the search successfully finds a match to the goal and updates the token atomic variable.
Since we are interested in any result, we use set instead of a compare-and-swap operation.
After the eureka event, the procRow method promptly returns.

Listing 2 highlights a few inefficiencies, also common to other EuSCs, while using async-
finish style parallelism. Firstly, there is the need to pass the task-specific token variable
to each relevant method in the call chain to allow triggering the eureka event. Secondly,
returning early from procRow doesn’t terminate the task as the task can continue to process
other iterations of the for loop at line 10. Next, there are other tasks executing concurrently
which need to be terminated. If these tasks are long running, there can be a potentially large
wait time before the finish scope ends, and the result is returned. Finally, as per async-
finish semantics, all tasks (including those sitting in the work queue) will be executed even

S. Imam and V. Sarkar 425

after the result is known. We discuss existing solutions to these problems in terminating
tasks and the drawbacks of such solutions in Section 3.

3 Task Termination Strategies

It is well-known that speculative computation can yield performance improvements over
conventional approaches to parallel computing [4, 32]. The speculative tasks can be started
eagerly before they are known to be required, for example, by spawning parallel tasks to
search disjoint fragments of a data structure. Once a solution is found, other attempts at
solving the problem may be avoided (in optimization) or terminated (in search). Eagerly
terminating such tasks improves performance by minimizing the amount of unnecessary
computations. One of the challenges in EuSCs is the efficient coordination of the termination
of several related tasks. Supporting termination requires ensuring that a task can stop
gracefully and leave the system in a state that is known to be valid.

One approach is terminating processes and threads [37]. This is not a scalable solution
as the runtime then needs to spawn additional processes or worker threads to maintain the
parallelism in the application. When worker threads are terminated repeatedly, the overheads
of resource initialization cause the performance of the application to degrade. In addition,
terminating a task abruptly might cause a computation to be interrupted asynchronously
which can cause havoc in the programmer’s understanding of the code’s behavior. As in [24],
we believe that it should not be possible to terminate a task in any execution state, but only
at places where certain program invariants hold such that the execution may be interrupted
safely. As a result, a preemptive approach is not desirable, and a cooperative approach where
the task actively decides when to terminate is preferred.

One cooperative approach is the use of exceptions for control flow [25, 34]. Using
exceptions allows the task to terminate with the runtime providing the exception handler to
process that exception. It has the benefit that only specific program points defined by the
programmer need to be edited to insert the throw clause; the bodies of callees need not be
modified1. Use of exceptions to terminate tasks fail when users provide custom handlers that
inadvertently catch the exception being thrown. This prevents the exception from reaching
the handler provided by the runtime and thus interferes with the termination logic. A
compiler can rewrite the exception handlers to immediately rethrow these special exceptions
and prevent user code from interfering with termination logic [2]. However, this policy fails
to work in the presence of inaccessible functions (whose source code is not directly available
for modification). In addition, native support for throw code is comparatively inefficient even
in the absence of filling the stack trace. The frequent use of exception handlers for control
flow program execution logic is expensive and should be avoided.

Another cooperative approach is function-scoped cancellation points [15, 31]. For example,
possible locations for cancellation points in Listing 2 would be at lines 9 to 11 which include
the scope at which the async was declared. These work better as the compiler rewrites the
code to support task termination; however, the limitation is that cancellation is not possible
when the code is executing in a nested function call.

Another approach is manual cooperative termination via cancellation tokens or interrupt
checking [27, 34]. Within long-running tasks, manually inserted periodic termination checks
allow the task to determine if further work is avoidable (i.e. the task can be terminated).
The granularity of checks controls the trade-off between the responsiveness of termination of

1 Callee signatures may need to be modified to include the exception, however.

ECOOP’15

426 The Eureka Programming Model

Listing 3 Parallel search with manual cooperative termination.
1 class ParallelCooperativeSearch {
2 def atomicRefTokenFactory () {
3 return new AtomicRefToken ([-1, -1])
4 }
5 def doWork (matrix , goal) {
6 val token = atomicRefTokenFactory ()
7 finish
8 for rowIndices in matrix . chunks ()
9 async
10 for r in rowIndices
11 procRow (matrix (r), r, goal , token)
12 // cooperative termination check
13 if token . isResolved ()
14 return
15 return token .get ()
16 }
17 def procRow (array , r, goal , token) {
18 for c in array . length ()
19 // cooperative termination check
20 if token . isResolved ()
21 return
22 if goal. match (array (c))
23 token .set ([r, c])
24 return
25 } }

tasks and the overhead of such check calls. Listing 3 displays the program from Listing 2
with support for manual cooperative termination. This approach is cumbersome to write
as the programmer needs to manually transform all methods to support this style with an
additional token parameter. It also requires if checks and early return statements (lines
13-14 and 20-21). Inserting such checks in the source code is awkward and impossible in
the case of calls to inaccessible functions. If the computation includes inaccessible functions
in the call stack, we need to wait for the body of each such function to complete before
termination can be effected.

3.1 Delimited Continuation-based Cooperative Termination

Delimited Continuations (DeConts) were introduced by Felleisen in 1988 [14] where he
referred to them as prompts. Other variants for DeConts include the shift/reset mechanism
introduced by Danvy and Filinski [10]. Continuations represent the rest of a computation
from any given point. They refer to the ability to capture the state of a computation at that
point; the computation can later be resumed from that point by resuming the continuation. In
contrast, DeConts represent the rest of the computation from a well-defined outer boundary,
i.e. a sub-computation. DeConts work even in the presence of inaccessible functions in the
call stack. When a computation is suspended, DeCont cause control to return to the caller of
the boundary function irrespective of the functions (including inaccessible ones) that are in
the call path. DeConts are hence a good choice when a limited part of the computation needs
to be saved/restored [11]. Many mainstream languages offer support for various forms of
DeConts, such as Boost coroutines in C++ [29], Kilim framework in Java [41], shift/reset
in Scala [39], Ruby fibers [21], etc. DeConts are notorious for being hard to use and to
understand by developers (as opposed to compilers and runtime systems). Hence, in a system
that uses DeConts, an approach that does not expose a developer to DeConts is desirable.

Our approach to termination is cooperative and relies on the transparent use of DeConts.
DeConts are required to let the control return to the runtime by safely unrolling the task’s
call stack but not the runtime worker’s call stack, after which the runtime can perform

S. Imam and V. Sarkar 427

cleanup as if the task terminated or returned normally. The termination approach involves
coordination between the code that requests termination (task that resolves a eureka) and
the task that responds to termination (other executing tasks that have become redundant).
Our approach guarantees that early termination of tasks can only occur at at well-defined
program points: one of the check points or at points that resolve a eureka. If a task needs
to be terminated, the call stack is unwound and control returned to the runtime via the
use of DeConts. Such tasks are not resumed, so, unlike general DeConts, the state of the
computation at that point need not be saved. Introducing a method call for the check
introduces some overhead, so tasks can decide if they are terminable and how responsive
they want to be to interruption. We expect a sweet spot, where a balance is reached between
the overheads incurred by checks and the gains from early task termination. The optimal
frequency of checking is application-specific and is determined by the developer. While
the programmer does not need to hard-code exceptions and if checks on cancellation, our
approach attempts to merge the benefits of using:
(a) Exceptions: There is no need for repeated if checks every time a method returns from

a terminable method in the call chain. Only specific program points need to be edited
to insert a method call. No exceptions are used for control flow, and the approach is
unaffected by the presence of exception handlers.

(b) Cancellation tokens: It allows the programmer to determine the frequency of checks
to terminate a task and determine responsiveness. However, our approach does not
require changing the signature to add an additional parameter, the cancellation token
is discovered implicitly by the task (further described in Section 4). Also, the body of
inaccessible functions do not need to complete before termination of a terminable task
can be effected.

The main limitation of our cooperative approach is that the programmer has to determine
the frequency of the check calls and manually insert the termination check calls. These
termination checks can also be inserted automatically by a compiler. Previous work by Feeley
on balanced polling [13] and in the Jikes VM yieldpoints [44] provide a scheme to automatically
insert these calls while minimizing overhead. Another limitation of our approach is that
termination should not be triggered in a critical section that is implemented with programmer-
defined locks. Acquiring a lock but failing to ensure that it is released can cause termination
of the overall computation to be arbitrarily delayed; this issue plagues all the cooperative
schemes discussed above. The issue can be circumvented by the use of managed resource
control techniques that allow the runtime to track the lock(s) obtained by the user code
while executing critical sections. These locks obtained by a task can then be released by
the runtime when requested to do so. Such techniques include the use of custom virtual
machines or language constructs to execute the critical section. For example, the Habanero
programming model [23] includes such a language construct, called isolated, which would
work with terminated tasks.

4 Programming with Eurekas

Parallel programming models ideally enable programmers to express parallel algorithms using
abstractions that hide all but the relevant information to reduce complexity and to increase
programmer productivity. Our goal is to define the Eureka Programming Model (EuPM) so
that it can be used to write parallel programs for EuSCs more productively than current
parallel programming models. In this section, we first introduce the Eureka construct that
is used by speculative tasks to trigger eureka events. Next, we describe how parallelism is

ECOOP’15

428 The Eureka Programming Model

Figure 1 Life-cycle of Eureka. The states and transitions will become clearer when we introduce
the different Eureka patterns in Section 5.

expressed via speculative tasks in the EuPM. We also explain how the termination of a single
task, as well as a group of tasks, is supported in the EuPM.

4.1 Eureka Construct and API
A Eureka is a new construct that provides support for speculative parallelism in an async-
finish setting. Once a Eureka construct has been resolved by reaching a stable value, it
enables detection of a group of speculative tasks that can be terminated. It abstracts away
implementation details, facilitates encapsulating any mutable state, and provides an API to
allow tasks to concurrently notify eureka events as well as to query the state of the eureka
object. Encapsulation simplifies data race avoidance while attending to concurrent eureka
events triggered by speculative tasks.

As seen in Figure 1, a Eureka object has a well-defined life cycle; it can only transition
between the states in response to eureka events. During its life cycle, a Eureka is in one of
the following states:
(a) new: an instance of the Eureka has been created and initialized; however, it has not yet

received any eureka events.
(b) updating: the Eureka has received at least one eureka event, and its internal state has

not reached a stable value (e.g. computing minimum during optimization).
(c) resolved: the Eureka has reached a stable value; any subsequent eureka events may be

ignored. Once a Eureka enters the resolved state, all speculative tasks that can trigger
eureka events to update this Eureka become terminable and can be terminated.

We have developed an interface which supports basic behavior needed by tasks in EuSCs.
This Eureka interface can be used to support a wide variety of patterns in EuSCs including
search, optimization, and convergence. User’s can also use this interface to build their custom
implementations for Eurekas. The operations that can be performed on a Eureka, eu, are
defined by the following interface:
(a) offer(auxiliaryData): Notifies eu that a eureka event has been triggered; additional

information used to mutate the internal state of eu is available in auxiliaryData. This
operation enables eu to transition to different states in its lifecycle (as shown in Figure 1).
Whether or not the event resolves eu, it can cause the task invoking this operation to
terminate at a well-defined program point.

(b) check(auxiliaryData): This operation allows a speculative task to check whether it
has become terminable as, e.g., eu has been resolved. If the task has become terminable,
a call to check will cause the task to be terminated. By accepting an argument, check
enables the caller to pass additional values that can be used to determine whether to
terminate a task.

(c) isResolved(): Allows a speculative task to query whether eu has been resolved. This
method returns a boolean value and never causes a task to be terminated.

S. Imam and V. Sarkar 429

(d) get(): If eu has been resolved, it returns the resolved value. Otherwise, a transitory
value of eu is returned. One is guaranteed to receive the resolved value if this operation
is invoked outside the finish scope on which eu was registered (e.g. as we will see in
the explanation of Listing 4 line-12).

4.2 Eureka Programming Model (EuPM)
The EuPM is an extension of the task-parallel async-finish model where speculative tasks
are created using the async keyword. Through the hierarchical nature of async and finish
blocks, we advocate a structured approach to parallel programming of EuSCs. The task
executing a finish has to wait for all transitively spawned child tasks created inside the
finish scope to terminate before it can proceed. A finish block can register on a Eureka,
eu, with the following pseudocode syntax (the library API includes eu as a parameter to
the finish API): finish(eu) 〈stmt〉. The finish construct simplifies the identification of
the group of tasks that participate in a eureka-style synchronization on a particular Eureka
instance.

All tasks having the same immediately enclosing finish (IEF) belong to the same group
and inherit the registration on the Eureka instance, eu, from the finish scope. Finish scopes
with different Eureka instance registrations can be nested allowing composability of different
speculative computations. Similarly, multiple finish blocks can register on the same Eureka
instance, eu, to represent that different speculative sub-computations are linked. When one
of the speculative tasks resolves eu it makes other tasks from the same or different groups
also registered on eu to become redundant and terminable. If none of the tasks trigger a
eureka event that resolves the registered eu, the computation completes normally when all
tasks inside each finish scope complete.

The EuPM specific operations that a task, T, can perform on a Eureka, eu, are defined
as follows:
(a) new: Task T can create a new instance of the Eureka construct, eu, and obtain a handle

to it. The reference eu can now be used to register on new finish scopes. The creator
task can pass the reference of eu to other tasks.

(b) registration: eu can be explicitly registered on a finish scope. Note that the task that
created eu cannot register on eu. A newly spawned task, T, implicitly registers on eu
only if the IEF of T was explicitly registered on eu. Currently, we do not provide a
mechanism for an async task to explicitly register on eu.

(c) offer: This method retrieves the Eureka instance, eu, that the task is registered on
and invokes the eu.offer() method to notify eu of a eureka event. This simplifies the
computation body of T where method calls do not need to add an extra parameter to
pass eu down the call chain. Invoking this method can cause the task to terminate
(depending on the implementation of eu).

(d) check: A task indirectly performs a check on eu by invoking the static check method.
Like the previous operation, it retrieves eu to make the call eu.check(). Invoking this
method can cause the task to terminate (depending on the terminating logic of eu), so
programmers need to ensure that side-effects introduced by T are in a consistent state
at the program point where this method was invoked.

With the EuPM, a programmer can focus on writing operational code explicitly specifying
potentially parallel operations, leaving the underlying details of parallel execution and
termination detection to the runtime system. The EuPM places no requirements on the
use of a shared-memory infrastructure. Like the async-finish model, the EuPM presented
in this paper is also applicable to a distributed environment. One of the key features of a

ECOOP’15

430 The Eureka Programming Model

system that supports EuSCs is the efficiency with which the eureka events are triggered. The
EuPM provides the abstraction, static offer method, that simplifies how eureka events are
triggered in tasks. Invalid calls to check/offer from a task not executing in a EuSC (i.e.
finish scope not registered on a Eureka) results in a runtime error.

Another feature is the efficiency with which the state of the program can be updated after
the result has been found. The EuPM needs to provide a means to easily detect tasks that
need to be terminated and a mechanism to guarantee effective termination of terminable tasks.
Once a Eureka instance, eu, moves to the resolved state, all incomplete tasks belonging to a
finish scope registered on eu become terminable. Any ready tasks belonging to the resolved
finish scope can be terminated by removing them from the work queue – each task is assumed
to contain an implicit check call at the start of the task execution. Redundant executing
tasks are terminated at program points where the check method is invoked. This allows
tasks to terminate cooperatively in a programmer controlled manner and, more importantly,
simplifies reasoning about the correctness of the speculatively parallel program.

Listing 4 Parallel search using the Eureka model.
1 class ParallelEurekaSearch {
2 def eurekaFactory () {
3 return new SearchEureka ([-1, -1])
4 }
5 def doWork (matrix , goal) {
6 val eu = eurekaFactory ()
7 finish (eu) // eureka registration
8 for rowIndices in matrix . chunks ()
9 async

10 for r in rowIndices
11 procRow (matrix (r), r, goal)
12 return eu.get ()
13 }
14 def procRow (array , r, goal) {
15 for c in array . length ()
16 check ([r, c]) // coop. term. check
17 if goal. match (array (c))
18 offer ([r, c]) // trigger eureka
19 } }

Listing 4 displays the paral-
lel search program of Listing 2
using async and finish con-
structs in the EuPM. We cre-
ate the SearchEureka instance,
eu, inside the factory method
eurekaFactory. This instance, eu,
is registered by the finish scope
defined on line 7. Hence, all async
tasks launched at line 9 are auto-
matically registered on eu and be-
long to the same group. The tasks
trigger the eureka event by invok-
ing the offer method at line 18.
There is no need for an explicit
return statement in procRow, as offer on a SearchEureka causes the task to terminate.
To enable cooperative termination, there are also calls to check (line 16) to check the state of
the registered eureka implicitly. When eu has been resolved, check will cause the terminable
tasks to terminate. Eventually, all tasks inside the finish block at line 7 will complete
execution or be terminated, and the computation will proceed to line 12 and the result will
be returned. Note that, like Listing 3, the final answer in this example is nondeterministic,
but there are no data races involved. It should be noted that this program (19 lines) required
fewer lines of code than the equivalent program in Listing 3 (25 lines). In addition, the code
in Listing 3 is more complicated and error-prone than the code in Listing 4. As we will see
in Section 5, we will build on this example to explore various EuSC patterns with minimal
change in the kernel code (lines 5 to 19 of Listing 4).

5 Parallel Patterns and Eureka Variants

In this section, we describe frequently occurring patterns that arise in EuSCs and how they
can be solved using the EuPM. These patterns include computations that produce both
deterministic and non-deterministic results.

S. Imam and V. Sarkar 431

5.1 Parallel Search
Search is a well-known pattern in EuSCs. It is a non-deterministic computation in the sense
that if the goal is present at multiple locations in the data structure being searched, any
of those locations is an acceptable result. Searching disjoint partitions of a data structure
can be done in parallel though it may considerably increase the amount of work that the
algorithm performs. Such parallelism is speculative since more than one partition may
contain a solution. Once the result is discovered, all parallel searching entities should ideally
be terminated as quickly as possible to minimize doing redundant work. With respect to the
EuPM, this means that the first eureka event triggered by a task will resolve the Eureka
instance, eu, registered by the task. Hence, a SearchEureka construct is designed to be
resolved by the first eureka event it processes, and it promptly terminates the task that
triggered the event. Any subsequent calls to check or offer by other tasks registered on eu
result in those tasks being terminated.

The same concept can be used for termination detection in the finish statement with
regards to exception semantics. If any async throws an exception, then it can resolve an
implicit SearchEureka registered by the finish scope. All other asyncs belonging to the
same IEF can then be terminated at their next check/offer checkpoint. The IEF can
then rethrow the exception thrown by the async. This offers an alternate strategy to the
MultiException scheme [6] where a collection of all exceptions thrown by all async’s in the
IEF is rethrown.

5.2 Count Eureka
Another variant of a parallel search is where we wish to know the first K results that match
a query. This pattern is inspired by the ParallelTry command in Mathematica 7 [47]. In
this pattern, we wish to terminate the computation when at least K of the asynchronous
computations have completed successfully. Any evaluations still underway after K results
have been received are avoidable and should be terminated. Like the SearchEureka pattern,
the CountEureka pattern produces non-deterministic results as the results received are
dependent on the scheduling of parallel tasks and the arrival of concurrent eureka events.

The program from Listing 4 can be modified to use the CountEureka construct by
changing the factory method. A CountEureka is initialized with a count K and is resolved
after exactly K eureka events have been triggered. Once resolved, any calls to offer and
check cause the calling task to be terminated. A call to CountEureka.get() returns a list
of values of maximum length K instead of a single value. If none of the tasks triggered
a eureka, then an empty list is returned. In general, a SearchEureka can be viewed as a
CountEureka with a count of 1.

5.3 N-Version Eureka
N-Version Programming [7] uses software redundancy to achieve fault-tolerance. In N-
Version Programming, there are multiple functionally equivalent implementations of the
same specification. These implementations can run be independently in parallel to compute
results; the results are notified using eureka events. Using a decision algorithm, such as
when any N (≥ 2) agree on their results, the eureka is resolved. The agreed upon value is
accepted as the result matching the specification, and other computations are terminated.
This pattern also produces non-deterministic results as the final result is dependent on the
scheduling of parallel tasks and the arrival of concurrent eureka events from the independent
implementations.

ECOOP’15

432 The Eureka Programming Model

5.4 Optimization Eureka

Many problems from artificial intelligence can be defined as combinatorial optimization
problems. For example, Branch and Bound (BnB) is a widely used tool for solving large-scale
NP-hard combinatorial optimization problems [8]. A BnB algorithm searches the complete
space of solutions for a given problem for the best solution. Subproblems are derived from
the originally given problem through the addition of new constraints. An objective function
computes the lower/upper bounds for each subproblem. The upper bound is the worst
value for the potential optimal solution; the lower bound is the best value. The entire tree
maintains a global upper bound (GUB): this is the best upper bound of all nodes. Nodes
with a lower bound higher than the GUB are eliminated from the tree because branching
these sub-problems will not lead to the optimal solution. In many practical cases, the amount
of pruning that occurs in this type of BnB algorithm can be very significant.

In parallel implementations, pruning the branches of the search tree may lead to ter-
minating existing computations. The structure of the BnB search requires the ability to
terminate individual subtrees of the search tree [35]. A BnB version of our array search
example is where we are interested in finding the lowest index of the goal item if it exists
in the array. We can achieve this by modifying the factory method in Listing 4 to return a
MinimaEureka instance. In our EuPM, the GUB is available in the MinimaEureka instance,
eu, that a speculative task is registered on and can be retrieved by a call to eu.get(). Calls
to check and offer pass the current known upper bound or solution, respectively, as the
argument. If the argument in the offer call is lower than the GUB, the GUB is updated
in the MinimaEureka instance, otherwise the current task is terminated. Similarly, calls to
check terminate a task if the argument is larger than the currently known GUB in eu.

5.5 Soft Deadlines

For soft real-time systems [5] the goal is to meet a certain subset of deadlines to optimize
some application-specific criteria. If a soft real-time task takes longer than the allotted time
since its creation to complete, then it needs to be terminated with its latest results. Another
similar notion is that of engines that abstract the notion of timed preemption [20]. An
engine is run by giving it a quantity of abstract time units that measure computation. If
the engine completes its computation before running out of units, it returns the result of its
computation and the quantity of remaining units. If it runs out of units, the computation is
terminated. Unlike Haynes’ original notion of engines, nesting of engines is allowed in our
model thus allowing time units to be divided among parallel sub-tasks if required.

In our soft deadline version of the array search example, the deadlines could be overall
execution time (soft real-time) or number of comparison operations performed (abstract time
units). The eureka version of these programs helps the system by releasing the resources
of the tasks which have already missed their deadlines and allocating more resources to
the other tasks which can still potentially meet their deadlines. We support both kinds of
Eurekas in the form of TimerEureka and EngineEureka, respectively. A TimerEureka, eu
is resolved when either the first eureka event is triggered or the computation runs out of
time since the creation of eu. An EngineEureka, eu is resolved when either the first eureka
event is triggered or the computation runs out of time units (measured by the sum total of
the arguments to check). These Eureka instances can trigger the termination of a group
of tasks without an explicit offer from a task. Note that since tasks only get cancelled
when they invoke check, tasks can run for much longer than the allotted time unless the
user is careful with the calls to check. This is consistent with our philosophy of allowing the
programmer to determine responsiveness (Section 3).

S. Imam and V. Sarkar 433

5.6 Convergence Iterations

Listing 5 Example of an iterative method using the
Eureka model.
1 class ParallelEurekaConvergence {
2 def eurekaFactory (initVal , tolerance) {
3 val pred = (a, b) -> {
4 Math.abs(decimalDiff (a, b)) <= tolerance
5 }
6 return new ConvergenceEureka (initVal , pred)
7 }
8 def doWork () {
9 val maxIters = 100

10 val initVal = INFINITY
11 val tolerance = 1e -4
12 val eu = eurekaFactory (initVal , tolerance)
13 finish (eu) {
14 // arrays to store task handles
15 val xs = newArray (maxIters + 1)
16 val ys = newArray (maxIters + 1)
17 val rs = newArray (maxIters + 1)
18 xs [0] = async { return xInit }
19 ys [0] = async { return yInit }
20 rs [0] = async { return initVal }

22 for (i in 1 to maxIters) {
23 xs[i] = async {
24 await (xs[i - 1]) // dependence
25 check ()
26 return f(xs[i - 1])
27 }
28 ys[i] = async {
29 await (ys[i - 1]) // dependence
30 check ()
31 return g(ys[i - 1])
32 }
33 rs[i] = async {
34 check ()
35 await (xs[i], ys[i], rs[i - 1])
36 val iterRes = h(xs[i], ys[i])
37 // converge if rs[i] and rs[i -1] close
38 offer (iterRes)
39 return iterRes
40 } } }
41 return eu.get ()
42 } }

Iterative methods [17] refer to a
wide range of techniques that use
successive approximations to ob-
tain more accurate solutions to a
set of equations at each step. Ex-
amples of iterative methods include
the Jacobi method, Gauss-Seidel
method, and the Successive over-
relaxation method. An iterative
method is called convergent if the
corresponding sequence converges
for given initial approximations.
Speculatively parallelizing an iter-
ative algorithm results in creating
tasks for computations of future it-
erations.

Listing 5 displays an exam-
ple which computes r using the
equation: xi+1 = f(xi), yi+1 =
g(yi), ri = h(xi, yi) and converges
when successive values of r become
close. The parallel version launches
maxIters iterations ahead of time
(line 22) and parallelizes the compu-
tation to respect the dependences
(using the await clause). The
await(T1, ..., TN) clause in a
task causes it to be suspended from
execution until the execution of
tasks T1, ..., TN has completed.
The await clause in line 35 ensures that values of r are offered to eu in the expected order.
Once convergence is reached (i.e. when true is returned by the call to predicate inside eu
with the current and new value) eu is resolved and all tasks spawned by the computation
need to be terminated. Note that this includes tasks that may be transitively suspended on
await clauses as each await task is assumed to contain an implicit check call at the start of
task execution (Section 4.2). Calls to check in the asyncs and possibly inside methods f, g,
and h ensure executing tasks can be terminated early.

6 Reusability and Composability of Eureka Components

Abstractions and productivity are among the most important requirements for programming
models. Further, it is important for the abstractions to be as orthogonal as possible, so as to
aid composability and reusability. Constructing reusable components aids in programmer
productivity by simplifying building of larger systems from relatively simpler parts. While
current approaches to support EuSCs lack composability and reusability in general, we show
in this section that all the different styles of eureka computations presented in Section 5 can
be safely combined or nested thereby enabling general composability and reusability.

ECOOP’15

434 The Eureka Programming Model

Listing 6 Example of a parallel search on two elements of an 2-D array using the Eureka model.
1 class ParallelEurekaDoubleSearch {
2 def eurekaFactory () {
3 val initValue = [-1, -1]
4 return new SearchEureka (initValue)
5 }
6 def doWork (matrix , goal1 , goal2) {
7 val eu1 = eurekaFactory ()
8 val eu2 = eurekaFactory ()
9 val eu = eurekaComposition (AND , eu1 , eu2)
10 finish (eu) // eureka registration
11 for rowIndices in matrix . chunks ()
12 async
13 for r in rowIndices
14 procRow (matrix (r), r, goal1 , goal2)
15 // eu.get () returns pair of values
16 return eu.get ()
17 }
18 def procRow (array , r, g1 , g2) {
19 for c in array . length ()
20 // pair of values for eu1 and eu2
21 val checkArg = [[r, c], [r, c]]
22 // cooperative termination check
23 check (checkArg)
24 val loopElem = array (c)
25 val res1 = g1. match (loopElem) ? [r, c] : null
26 val res2 = g2. match (loopElem) ? [r, c] : null
27 // pair of values for eu1 and eu2
28 val foundIdx = [res1 , res2]
29 // possible eureka event
30 offer (foundIdx)
31 } }

6.1 Composability by Component Composition

Component composition involves the systematic combining of independent components to
form useful components. Such incremental aggregation of existing components yields further
components. This method is scalable as code replication is avoided while implementing new
functionality. In the EuPM, independent Eurekas can be combined to form new Eurekas.
The constituent Eurekas are used as encapsulated black-box components and are accessed
solely through their exposed interfaces (the check and offer operations).

We support basic logical conjunctive and disjunctive binary composition semantics for
Eurekas. Calls to offer and check need to be passed a pair of values, one for each component
Eureka. The conjunctive composition of Eurekas is considered resolved only when both
the constituent Eurekas are resolved. A disjunctive composition of Eurekas is considered
resolved when either of the constituent Eurekas is resolved. Since the state of a Eureka
instance evolves monotonically (once resolved a Eureka always remains resolved), the binary
composed Eureka also preserves monotonicity, i.e., resolution of a Eureka is a stable property.

Listing 6 shows an example with a conjunctive eureka. We extend the example from
Listing 4 to search for two target items in parallel and report a success only when both
items are found. The example creates two search Eurekas and then creates a conjunctive
eureka, eu, at line 9. This eu is used to register on the finish scope and launch the parallel
search tasks on individual rows. Each call to check and offer now passes a pair of values
(lines 23 and 30). The internal implementation delegates the individual values from the pairs
to the component Eurekas. These individual values may end up resolving only one of the
component Eurekas. The overall conjunctive eureka, eu, is resolved when both component
Eurekas are resolved, possibly from different calls to offer in different tasks. Once eu has
been resolved, calls to check (line 23) will result in the task being terminated.

S. Imam and V. Sarkar 435

6.2 Reusability by leveraging Functional Decomposition
Function decomposition refers to the process of splitting a computation into multiple frag-
ments. These fragments are invoked as helper functions and their results combined to
produce the overall result. Alternatively, it can also be viewed as the functional composition
of existing functions so that the results of these function calls are used to evaluate a larger
computation. Reuse is achieved by building functions on top of existing functions. Such uses
of functions for individual computation fragments simplify maintainability and avoid code
duplication.

In the EuPM, we enable opportunities for functional decomposition by allowing the
nesting of EuSCs with finish and async statements. This nesting can be arbitrarily deep
and allows exposing nested fork-join parallelism opportunities in distinct EuSCs. Nesting of
finish blocks registered on Eureka instances is allowed and enables composability of different
speculative computations. Each finish scope registered on the same Eureka instance forms a
single group. When different EuSCs are nested, calls to offer are delegated to the registered
Eureka on the IEF of the currently executing task. However, calls to check are recursively
delegated to registered Eureka instances up the nested finish scope hierarchy. This allows
the innermost EuSC to continue to work as before, but tasks may be aborted if Eurekas up
the hierarchy have been resolved by other parallel tasks. Thus, nesting EuSCs causes a tree
hierarchy of Eurekas to become linked whereby resolving a Eureka up the hierarchy causes
computations lower in the tree to be terminated.

This nesting mechanism is explained in Listing 7 which shows an example to do a search
in a multidimensional array. The solution reuses the doWork function from Listing 4 and is
thus performing functional composition. Nested EuSCs are also created at line 14 where an
individual Eureka instance is created for every row (line 13) in the leading dimension of the
array in the recursive call. When the Eureka, eu, is resolved for a dimension N1, it causes
all nested eureka computations processing dimension N2 (where N2 < N1) to be treated as
resolved. As a result, subsequent calls to check (at line 17) in the redundant tasks of the
nested computations will cause the tasks to terminate. After returning from a call to a
nested eureka computation, the result is either returned immediately (for the base case at
line 11) or processed further (line 18). Further processing involves updating the result index
with the value for the current dimension before offering the result via offer (line 20).

7 Implementation

Figure 2 Features supported by a Eureka task
parallel runtime.

Despite any productivity promises, a parallel
programming model must be implementable
in an efficient and scalable fashion for it to
be accepted by programmers. Our imple-
mentation of the EuPM is an extension of
a Java-based task parallel runtime [23] that
supports cooperative scheduling of async-
finish style computations, though our ideas
can also be implemented in other languages
including C/C++. Figure 2 highlights the
features and responsibilities of the task-
parallel Eureka runtime in our model. These include implementation of efficient eureka
variants; management and scheduling of the speculative tasks; classification of tasks into
eureka groups; termination of redundant tasks; and synchronization and coordination of tasks

ECOOP’15

436 The Eureka Programming Model

Listing 7 Example of parallel search on a multidimensional array using function decomposition
and nested eureka computations in the Eureka model.
1 class ParallelEurekaArraySearch {
2 def eurekaFactory (dim) {
3 val initValue = array (dim).fill (-1)
4 return new SearchEureka (initValue)
5 }
6 def doWork (matrix , dim , goal) {
7 if (dim < 2)
8 throw IllegalArgumentException (" Invalid dimension : " + dim)
9 else if dim == 2
10 // reuse by call to existing eureka computation Listing 4
11 return ParallelEurekaSearch . doWork (matrix , goal)
12 else
13 val eu = eurekaFactory (dim)
14 finish (eu) // nested eureka registration from recursive calls
15 for i in matrix . length ()
16 async
17 check (array (dim -1).fill (-1). insert (i)) // termination check
18 val resIndices = doWork (matrix (i), dim -1, goal)
19 if isIndexNonNegative (resIndices)
20 offer (copy(resIndices). insert (i))
21 return eu.get ()
22 } }

inside finish blocks. The challenges in the implementation of the EuPM involve effective
load balancing of tasks, terminating tasks in a group efficiently, and supporting Eurekas in a
scalable manner.

Our implementation supports all the Eureka variants described in Section 5 based on the
API defined in Section 4.1. The key challenge is to support the synchronization by keeping
each thread busy without any blocking. We rely on Java’s support for atomic variables
to implement the Eurekas and detect when a Eureka has been resolved. In particular, we
rely heavily on the use of compare-and-swap operations, on AtomicBoolean and AtomicLong
instances. This ensures thread safety and avoids data races in the concurrent calls to check
and offer on the Eureka.

Figure 3 Execution of parallel Eureka tasks in
a work-stealing environment.

Our runtime uses the help-first policy [18]
and maintains an independent stack for each
task. Hence, any worker thread may execute
a task, and we can use either work-stealing
or work-sharing scheduling policies in our
runtime. Since subproblems are generated
and consumed dynamically, we rely on the
load balancing algorithm provided by Java’s
ForkJoinPool. The ForkJoinPool is an op-
timized thread pool, which employs a work-
stealing mechanism to efficiently distribute
submitted tasks among its pool threads. Fig-
ure 3 displays how the runtime uses work-
stealing threads to schedule tasks. Each task also maintains a reference to its IEF and
inherits the Eureka registration from its IEF. This Eureka instance is stored in the IEF and
used as the recipient while delegating calls to check and offer. Thus the tasks registered
with the same Eureka instance are implicitly grouped together and become terminable when
the Eureka is resolved. The tasks are eagerly terminated when there is a call to check or
offer. Tasks executing inside a finish scope not registered with a Eureka (e.g. FIN-0)
execute as regular async-finish style tasks without support for early termination.

S. Imam and V. Sarkar 437

As mentioned in Section 3, we rely on a cooperative task termination technique. When
a task needs to be terminated at one of the check points, the call stack is unwound and
control returned to the runtime via the use of Delimited Continuations (DeConts) [14]. Our
implementation conforms to the constraints imposed by a standard Java Virtual Machine
(JVM). In particular, standard JVMs do not provide support for DeConts or for storing
and restoring the stack that we need to support cooperative termination. We have built a
cooperative runtime that schedules tasks in the presence of end-of-finish synchronization
constraints without blocking underlying worker threads using the strategy described in [22].
The DeConts created are thread independent and can be resumed on any worker thread.
This strategy is known to provide a more scalable solution than other schemes that use
thread-blocking operations [22].

We use an extended version of the open source bytecode weaver provided by the Kilim
framework [41] to support DeConts. The Kilim bytecode weaver works by transforming
the code of methods which can terminate. It recognizes such methods by the presence of
a SuspendableException exception in the method signature. It is important to note that
no actual exceptions are thrown or caught which minimizes the overhead of capturing and
resuming continuations. Instead, the transformation performed is similar to a continuation
passing style transformation, except that only methods that can suspend are transformed.
The weaver also allocates custom state objects to store local variables to enable restoring the
computation. We extended Kilim to enable execution of parallel tasks run by worker threads
in the ForkJoinPool. Then we added support for terminated tasks. Such tasks are never
resumed, so unlike general DeConts the state of the computation at that point need not be
stored. This avoids additional memory allocation and garbage collection overheads while
suspending the DeCont.

Next, we extended the classical async-finish constructs with support for the proposed
finish and eureka constructs used in EuSCs. We provide support for EuPM finish
constructs that register on a Eureka, eu, and each time a task is spawned from the finish
scope, the task is also registered on eu. Nested finish scopes can register on different Eureka
instances as each finish scope maintains its own Eureka. This enables composability of
different speculative computations. Static helper methods, such as check and offer, then
retrieve the Eureka, eu, registered with the currently executing task from its IEF before
delegating the call on eu. Whenever a eureka is resolved, the finish scope, f, is notified, and
all tasks whose IEF is f and that are in the work queue are terminated immediately. In-flight
executing tasks belonging to f are terminated at check or offer points as termination is
cooperative. Terminating executing tasks is done by suspending the current DeCont and
flagging it as terminated, so that the runtime can perform cleanup operations and schedule
other tasks for execution. Once all of these tasks have been successfully terminated, the
end-of-finish point for f is resumed.

8 Experimental Results

The benchmarks were run on individual nodes in an IBM POWER7 compute cluster. Each
node contains 256GB of RAM and four eight-core IBM POWER7 processors running at
3.8GHz each. The software stack includes IBM Java SDK Version 7, and our implementation
of the cooperative runtime version 0.1.2. We configured each benchmark to run using 32
worker threads and run for thirty iterations in six separate JVM invocations using the same

ECOOP’15

438 The Eureka Programming Model

Table 1 Configurations of the benchmarks: SLS on a 1, 000 × 2, 500, 000 array, with the result
located at index (350, 875000). UTS using the UTS T1 configuration, a geometric tree with a
branching factor of 4 and a maximum height of 12; graph of size 164 million. SUD on a 25×25 board
with 196 unsolved entries. NQK computes first 250 thousand solutions on board size of 15 × 15.
UTP tree using the UTS T3 configuration, a binomial tree with a maximum height of 11; 700 goal
nodes; and graph of size 13 million nodes. FLP on a 64 × 64 grid with 14 cells. TSP on 24 cities.
KMC with 3 million points partitioned into 15 clusters. J2D using an array of size 5, 000 × 5, 000
with a block size of 1, 000. DLS on a 1, 000 × 2, 500, 000 array, with the results located at index (100,
250000) and (350, 875000). CS on a 20 × 20 × 60 × 15, 000 array, with the result located at index (8,
8, 24, 6000).

Benchmark Name Acronym Source (Eureka Pattern) Description

Single Linear Search SLS Authors (Section 5.1) Search for a single item in a 2D array.

Unbalanced Tree Search UTS UTS [30], (Section 5.1) Search for a goal node in UTS trees which represent characteristics of various
parallel unbalanced search applications.

Sudoku SUD Authors (Section 5.1) Solving a Sudoku puzzle by exploring a game tree.

NQueens first K solutions NQK Authors (Section 5.2) Find first K solutions to placing N queens on a chessboard such that no
queen can attack any other.

UT Shortest Path UTP Authors (Section 5.4) Trees from the UTS benchmark, adds edge weights to find shortest path to
any goal node.

BOTS Floorplan FLP BOTS [12], (Section 5.4) Compute the optimal floorplan distribution of a number of cells using branch
and bound technique.

Traveling Salesman Problem TSP R. Wiener [46], (Section 5.4) Solved using a branch and bound algorithm.
Jacobi 2D J2D Authors (Section 5.6 style) Stencil computation with iterative convergence.
K-Means Clustering KMC Authors (Section 5.6 style) An iterative refinement technique which converges to a local optimum.
Double Linear Search DLS Authors (Section 6.1) Search for two items in a 2D array.
Composite Search CS Authors (Section 6.2) Search for a single item in a multi-dimensional array.

JVM configuration flags2. The arithmetic mean of the best fifty execution times (from the
hundred and eighty iterations) are reported. Using the best execution time allows us to
minimize the effects of JVM warm up, just-in-time compilation, and garbage collection.

Speculative Execution Benchmarks: The benchmarks are described in Table 1. The
benchmarks include some of our motivating examples, search benchmarks, game puzzles,
greedy algorithms, branch and bound algorithms, and a stencil computation. We present
empirical evaluation of our implementation of the EuPM (EU) relative to variants that:
(a) provide no support for early termination of async-finish tasks (AF); (b) use function-
scoped cancellation points for termination of speculative async-finish tasks3 (FS); (c) use
exceptions for termination of speculative async-finish tasks4 (EX); and (d) use if checks
and return statements via cancellation tokens speculative async-finish tasks (CT). The
results for execution time and productivity metrics are described below.

Execution Times Comparison: We compare the performance of the different Eureka pat-
terns in the benchmarks. The comparison with the AF versions shows that most of these
benchmarks benefit from speculation. In fact, in some of the benchmarks (e.g. SUD, TSP) the
non-speculative variant does not complete execution. In other benchmarks, e.g. SLS, UTS,
NQK, FLP, the non-speculative versions perform higher numbers of abstract operations (e.g.
comparisons, arithmetic operations, nodes visited, etc.) which reflects in larger execution
time compared to the speculative variants.

In general, the benchmarks SLS – J2D use a single eureka pattern and the EX, CT, and EU
variants perform similarly. EU performs much better than the FS variant since the EU variant,
like EX and CT, can trigger task cancellation even inside nested function calls. Overall, the

2 -XX:-UseGCOverheadLimit -Xmx65536m -XX:+UseParallelGC -XX:+UseParallelOldGC.
3 if checks and return happen only at the body of the async, not inside nested function calls.
4 Our implementation minimizes overheads as it does not terminate worker threads, and it does not fill

the stack trace of the abort exceptions.

S. Imam and V. Sarkar 439

Table 2 Benchmark execution time metrics, DNC means Did Not Complete inside 30 minutes.
Except SUD, all the benchmarks had a coefficient of variation (CoV, ratio of the standard deviation
to the arithmetic mean) less than 2 percent for the execution time of each variant. For SUD the
CoV was about 10 percent for each variant.

Name
Execution Time (in seconds) Ratio of Exec. Time Abstract Operations (×103)

AF FS EX CT EU AF:EU FS:EU EX:EU CT:EU AF FS EX CT EU

SLS 58.37 17.70 16.61 16.71 16.85 3.46 1.05 0.99 0.99 2,476 845 798 800 806
UTS 15.89 8.81 5.94 5.81 5.76 2.76 1.53 1.03 1.01 1,571 512 444 446 437
SUD DNC 5.52 5.53 5.48 5.72 0.96 0.97 0.96 146 148 142 152
NQK 24.90 3.33 3.86 3.20 3.96 6.28 0.84 0.97 0.81 1,711 216 210 212 216
UTP 2.95 2.73 2.58 2.37 2.48 1.19 1.10 1.04 0.96 233 233 189 189 189
FLP 38.35 30.25 7.83 7.94 8.04 4.83 3.79 0.98 0.98 688 523 232 233 231
TSP DNC 1.51 1.18 1.19 1.11 1.35 1.06 1.07 857 839 839 754
KMC 15.22 12.26 12.32 12.56 12.44 1.22 0.99 0.99 1.01 1,125 916 916 916 917
J2D 16.35 13.01 13.21 13.04 13.10 1.25 0.99 1.01 1.00 1,125 902 902 903 903
DLS-AND 169.67 50.94 47.67 48.15 47.87 3.54 1.06 1.00 1.01 500 172 164 162 163
DLS-OR 169.00 4.65 0.53 0.53 0.54 315.17 8.66 0.99 0.99 490 15 2 2 2
CS 7.33 7.36 7.44 7.55 2.86 2.56 2.57 2.60 2.64 360 360 360 360 135

>4.15 1.53 1.08 1.06 >1,027 474 434 433 409
Geometric Mean Arithmetic Mean

Table 3 Productivity metrics for benchmark kernels. LoC was computed using cloc command
while CC and DE were computed using the CodePro Analytix Eclipse plugin. LoC for common
support code are not reported in the table, the arithmetic mean for support code LoC is 240.

Name
Lines of Code Cyclomatic Complexity Development Effort (×103)

AF FS EX CT EU AF FS EX CT EU AF FS EX CT EU

SLS 72 75 79 78 69 1.66 1.77 1.88 1.88 1.55 11.22 12.16 14.84 12.97 10.8
UTS 76 84 88 87 81 1.50 1.70 1.80 1.80 1.60 7.63 11.66 12.74 12.15 9.2
SUD 86 94 98 97 92 1.60 1.80 1.90 1.90 1.70 15.62 21.55 23.49 22.61 19.0
NQK 81 87 94 93 85 1.60 1.70 1.80 1.80 1.60 16.12 18.90 22.91 20.72 17.5
UTP 85 101 105 104 91 1.70 1.81 1.90 1.90 1.54 11.63 19.84 24.30 21.34 13.7
FLP 115 115 116 115 108 1.91 2.00 2.08 2.08 2.00 62.89 64.42 65.47 65.97 70.9
TSP 89 101 105 104 99 1.60 1.80 1.90 1.90 1.54 22.28 33.79 35.83 35.28 27.8
KMC 115 127 128 127 135 1.38 1.69 1.69 1.69 1.46 46.57 51.24 55.98 51.24 56.8
J2D 146 152 156 155 148 1.64 1.78 1.85 1.85 1.53 111.70 116.83 127.58 119.18 104.4
DLS 80 85 89 88 79 1.88 2.22 2.33 2.33 1.66 16.80 19.46 22.42 19.99 17.4
CS 108 131 139 138 107 1.61 1.70 1.82 1.82 1.61 39.37 73.43 87.35 84.67 43.7

A. Mean 96 105 109 108 99 1.64 1.82 1.90 1.90 1.62 32.89 40.30 44.81 42.37 35.6
%age of EU -3.75 5.30 9.41 8.41 1.63 12.25 17.76 17.76 -7.49 13.33 26.02 19.17

EU variants compete favorably with the other speculative variants (EX and CT). On most
benchmarks, the EU, EX and CT variants perform within 5% of each other, both in terms of
execution time and the number of abstract operations. This shows that our EU abstractions
and different Eureka patterns do not add significant overhead in their implementations.
Note that our implementation uses delimited continuations without modifying the VM; the
performance of our implementation would be greatly improved by using native support for
DeConts in the VM. Work by Stadler et al. [42] to provide such native support in a Java VM
reported over two orders magnitude speedup on micro-benchmarks compared to a bytecode
transformation approach. Additionally, we decided to exclude benchmarks that further
highlight the limitations of the other approaches (e.g. inaccessible functions, user exception
handlers) to allow a fairer comparison between all the approaches. These benchmarks would
show our EU approach in “an even more” positive light.

The DLS benchmark uses binary composition of EU Eurekas and performs similarly to
EX and CT confirming that no significant overhead is introduced by the composition. The
CS benchmark is interesting as the hierarchical nature of the computation allows the EU
variant to terminate other tasks searching on different leading indices. The CT, EX, and FS
variants cannot implement such hierarchical information easily and end up doing redundant
computation even after the goal element has been found. This causes them to perform as
much work (in terms of abstract operations) as the non-speculative version and causing
larger execution times than the EU version.

ECOOP’15

440 The Eureka Programming Model

Productivity Metrics Comparison: The most commonly used software productivity metric
is program size or lines of code (LoC) to compare programs that use the same language and
coding standards. There are other quantitative evaluation techniques for productivity apart
from measuring LoC. McCabe introduced the Cyclomatic Complexity (CC) metric [28] based
on the control flow structure of programs. CC represents the complexity of the algorithm, and
poorly designed solutions have high CC values. Halstead’s metrics [19] are also well-known
measure of software complexity. The Development Effort (DE) metric represents the effort
required to convert an algorithm to an actual code in a specific programming language.

We report values for LoC, CC, and DE for all our benchmark kernels in Table 3. We
compare the metrics for the AF variants with four variants (FS, EX, CT and EU) which
implement different task cancellation strategies. Overall, the EU versions require less LoC,
CC, and DE being at least 5%, 12%, and 13% better, respectively, than any of the other
speculative variants. More importantly, the percentage improvements are even larger when
compared to the closest performing speculative variants – EX and CT. In addition, as explained
in Section 3, the EU versions do not suffer from any of the drawbacks compared to the other
speculative methods. On average, the EU solutions for the kernels are only slightly larger
than the AF variants requiring three extra LoC, some extra DE (7.5%), while the CC is
actually smaller. This shows that, for the benchmark kernels, minimal effort was required to
transform the AF versions into speculative versions using our proposed model. In particular,
the comparatively low value of DE for the EU variant also reflects positively upon the usability
of the Eureka API. In summary, the EU solutions are more productive to implement than
the FS, EX, and CT variants in terms of all three productivity metrics.

9 Related Work

Kolesnichenko et al. provide a comprehensive classification and evaluation of task termination
techniques [24]. C# natively supports interruptive cancellation by throwing exceptions, and
since the release of TPL also cooperative techniques [25]. Python supports interruptive
cancellation of non-started tasks via executors and terminative cancellation of already started
ones [37]. Java supports interruptive cancellations natively [34]. Pthreads library supports
both termination and interruption of threads [3].

Burton [4] and Osborne [32] have both worked with speculative computation before. Bur-
ton proposes a deterministic feature that has simple semantics, i.e. produces the same result
as a sequential computation. Osborne uses numerical priorities to order computations [32],
in his work task priorities propagate among dependent (sponsored) tasks. The eureka scope
of tasks is determined when they are stated ahead of time in OR clauses or as branches of
a conditional. Computation termination is via the cancellation token approach where a
programmer manually checks termination in each function. Compared to our model, Burton
and Osborne style speculative execution support only the parallel search eureka pattern.

Prabhu et al. [36] propose two language constructs to declaratively express value specu-
lation opportunities. Their approach relies on speculating the value of a computation and
executing possible future computations that consume this value in parallel with the producer
of the value. Our approach does not rely on value speculation and does not need to deal with
the rollback of side-effects from mispredicted consumer tasks. Instead, we use speculative
tasks in the EuPM to support a multitude of EuSCs.

Leaving the system in an inconsistent state is one of the problems with preemptive
termination approaches. MVM [9] and J-SEAL2 [2] solve this problem by introducing
isolation containers to segregate the data operated upon by tasks. Tasks cannot directly

S. Imam and V. Sarkar 441

share objects, and the only way for tasks to communicate is to use standard, copying
communication mechanisms. Containers communicate via synchronous receive operations
to pass notifications. Termination is effected on isolation containers by other containers;
termination kills all worker threads assigned to individual containers. Our approach minimizes
overheads as it avoids copying data, killing threads, and communicating via synchronous
operations. In addition, creating containers is an expensive operation whereas, in our
approach, creating multiple eureka sub-computations is cheap as it is akin to creating a task.

Cilk allows speculative work to be terminated through the use of Cilk’s abort state-
ment [15] inside function-scoped inlets. Cilk does not provide guarantees of when child
tasks will be terminated, in fact, child tasks can be spawned even after the execution of
an abort statement. However, the main difference is that in the EuPM only a subset of
tasks can be terminated in contrast to terminating all child tasks via Cilk inlets. Perez and
Malecha show several methods for implementing abort as a library in the Cilk++ system [35]
by mechanically translating programs into continuation-passing style. Like our approach,
spawned computations periodically poll to determine if they should terminate. While this
transformation is simple, the problem with it is that it is not modular because it changes the
signatures of functions that use the abort mechanism. This breaks the possibility for separate
compilation without explicit annotations specifying which functions should be compiled to
work with inlets and abort.

Ada offers a statement, abort, which allows a task to make abnormal any other visible
task [16]. The abort statement will stop execution of the named task by the time it reaches
a synchronization point, e.g. delay statement that suspends the execution of a task for some
units of time. Unfortunately, the use of delay statements (even those with delays of 0.0)
can be expensive operations, as each delay statement forces the runtime system to perform a
context switch. In our approach, a task cannot directly cancel another task, it influences
cancellation by triggering eureka events. Also, our check construct does not force a task to
context switch, making it much cheaper to implement.

Both MPI and OpenMP support task grouping and cancellation. MPI provides termina-
tion support via the MPI_Abort function that terminates an MPI execution environment [45].
This function call makes a best attempt effort to terminate all tasks in the group of the
communicator. OpenMP 4.0 API [31], released in July 2013, supports features to terminate
parallel OpenMP execution cleanly. Tasks can be grouped to support deep task synchro-
nization, and task groups can be terminated to reflect completion of cooperative tasking
activities such as search. Threads check at user-defined cancellation points if cancellation
has been requested. The cancellation points must be lexically nested in the type of construct
specified in the clause; i.e. we cannot cancel from inside a method call. Our approach
poses no such limitation on where a task can request cancellation and where the user-defined
cancellation points can be placed in the program.

Tahan et al. [43] also propose a cancellation policy for OpenMP similar to Ada’s abort
where a task can cause the cancellation of a group of tasks (possibly not belonging to the
same group as the currently executing task). In our approach a task can request cancellation
of other tasks belonging to the same group. Like our approach, however, their approach also
causes child tasks to inherit the cancellation properties from the parent task. Unlike our
approach, certain tasks can be protected from being cancelled even though they belong to a
cancelled group, and the task cancellation scheme is based on interrupts and exceptions. We
chose to avoid such protected tasks to avoid any confusion and to keep the EuPM clean and
simple.

ECOOP’15

442 The Eureka Programming Model

10 Summary and Future Work

We introduced the Eureka parallel programming model (EuPM) that simplifies the expression
of speculative parallel tasks in search and optimization algorithms. We have demonstrated
the power of the EuPM as a mechanism for codifying various parallel eureka patterns. The
constructs we propose simplify writing EuSCs and improve programmer productivity. Our
implementation shows that the EuPM can also be implemented efficiently, especially with
the need to terminate tasks cooperatively. Our performance results on benchmarks show
that our implementation performs close to manual hand-coded versions while being shorter
and less complex to write. We believe that our implementation techniques of the EuPM can
easily be ported to other languages as well. We are planning to extend support for further
eureka patterns and providing dynamic task priorities in EuSCs.

Availability

A supplementary artifact endorsed by the Artifact Evaluation Committee is available free of
charge on the Dagstuhl Research Online Publication Server (DROPS). The artifact contains
the source code of our library implementations of the different Eurekas and the different
benchmarks used to simplify repeatability of all the experimental data. Public distributions
of the Eureka implementation in Habanero-Java library are available for download at http:
//wiki.rice.edu/confluence/display/PARPROG/HJ+Library. The EuPM has also been
taught in the introductory parallel programming class for second-year undergraduate students
at Rice University (COMP 322). Additional documentation and code examples, are available
in the course lecture and lab materials at http://wiki.rice.edu/confluence/display/
PARPROG/COMP322.

Acknowledgments. We are grateful to the anonymous reviewers for their suggestions on
improving the presentation of the paper. We would also like to thank Suguman Bansal, Brad
Chamberlain, Prasanth Chatarasi, Tom Hildebrandt, Siam Hussain, Deepak Majeti, Sri Raj
Paul, Alina Sbîrlea, Dragos Sbîrlea, and Hamim Zafar for their feedback on early drafts of
this paper.

References
1 S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic Local Alignment

Search Tool. Journal of molecular biology, 215(3):403–410, October 1990.
2 Walter Binder. Design and Implementation of the J-SEAL2 Mobile Agent Kernel. In

SAINT’01, pages 35–, 2001.
3 Bradford Nichols and Dick Buttlar and Jacqueline Proulx Farrell. Pthreads Programming:

Chapter 4 – Managing Pthreads. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1996.
4 F. Warren Burton. Speculative computation, parallelism, and functional programming.

IEEE Trans. Computers, 34(12):1190–1193, 1985.
5 Giorgio Buttazzo, Giuseppe Lipari, Luca Abeni, and Marco Caccamo. Soft Real-Time

Systems: Predictability vs. Efficiency. Plenum Publishing Co., 2005.
6 Philippe Charles and et al. X10: An Object-Oriented Approach to Non-uniform Cluster

Computing. SIGPLAN Not., 40:519–538, October 2005.
7 Liming Chen and A. Avizienis. N-Version Programming: A Fault-Tolerance Approach to

Reliability of Software Operation. In FTCS-25, Jun 1995.
8 Jens Clausen. Branch and Bound Algorithms – Principles and Examples. Parallel Com-

puting in Optimization, pages 239–267, 1997.

http://wiki.rice.edu/confluence/display/PARPROG/HJ+Library
http://wiki.rice.edu/confluence/display/PARPROG/HJ+Library
http://wiki.rice.edu/confluence/display/PARPROG/COMP322
http://wiki.rice.edu/confluence/display/PARPROG/COMP322

S. Imam and V. Sarkar 443

9 Grzegorz Czajkowski and Laurent Daynés. Multitasking Without Comprimise: A Virtual
Machine Evolution. In OOPSLA’01, pages 125–138, 2001.

10 Olivier Danvy and Andrzej Filinski. Abstracting Control. In LFP’90, pages 151–160, 1990.
11 Iulian Drago and et al. Continuations in the Java Virtual Machine. In ICOOOLPS’2007,

2007.
12 Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard Ayguade.

Barcelona OpenMP Tasks Suite. In ICPP’09, 2009.
13 Marc Feeley. Polling Efficiently on Stock Hardware. In FPCA’93, pages 179–187. ACM,

1993.
14 Mattias Felleisen. The Theory and Practice of First-Class Prompts. In POPL’88, 1988.
15 Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation of the

Cilk-5 Multithreaded Language. In PLDI’98, pages 212–223, 1998.
16 J. Goldenberg and G. Levine. Ada’s Abort Statement: License to Kill. Ada Letters,

IX(6):97–103, September 1989.
17 Anne Greenbaum. Iterative Methods for Solving Linear Systems. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 1997.
18 Yi Guo, Rajkishore Barik, Raghavan Raman, and Vivek Sarkar. Work-First and Help-First

Scheduling Policies for Async-Finish Task Parallelism. In IPDPS’09, pages 1–12, 2009.
19 Maurice H. Halstead. Elements of Software Science. Elsevier Science Inc., New York, NY,

USA, 1977.
20 Christopher T. Haynes and Daniel P. Friedman. Engines Build Process Abstractions. In

LFP’84, 1984.
21 Ilya Grigorik. Untangling Evented Code with Ruby Fibers. https://www.igvita.com/

2010/03/22/untangling-evented-code-with-ruby-fibers/, 2010.
22 Shams Imam and Vivek Sarkar. Cooperative Scheduling of Parallel Tasks with General

Synchronization Patterns. In ECOOP’14, 2014.
23 Shams Imam and Vivek Sarkar. Habanero-Java Library: a Java 8 Framework for Multicore

Programming. In PPPJ’14. ACM, 2014.
24 Alexey Kolesnichenko, Sebastian Nanz, and Bertrand Meyer. How to Cancel a Task. In

Proceedings of MUSEPAT’13, pages 61–72. Springer, 2013.
25 Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The Design of a Task Parallel

Library. In OOPSLA’09, pages 227–242, 2009.
26 Wei-Ming Lin, Wei Xie, and Bo Yang. Performance Analysis for Parallel Solutions to

Generic Search Problems. In SAC’97, pages 422–430, 1997.
27 Andrey Marochko. Exception Handling and Cancellation in TBB – Part II, May 2008.
28 T. J. McCabe. A Complexity Measure. IEEE Trans. on Soft. Engineering, 2(4), July 1976.
29 Oliver Kowalke. Introduction (Boost Coroutines). http://www.boost.org/doc/libs/1_

53_0/libs/coroutine/doc/html/coroutine/intro.html, 2009.
30 Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P. Sadayappan, and Chau-

Wen Tseng. UTS: An Unbalanced Tree Search Benchmark. In LCPC’06, pages 235–250,
2007.

31 OpenMP API, Version 4.0. http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf,
July 2013.

32 Randy B. Osborne. Speculative computation in multilisp. In LFP’90, pages 198–208, 1990.
33 W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison.

National Academy of Sciences of the United States of America, 85(8):2444–2448, April
1988.

34 Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and David Holmes.
Java Concurrency in Practice. Addison-Wesley Professional, 2005.

35 Ruben Perez and Gregory Malecha. Speculative Parallelism in Cilk++, 2012.

ECOOP’15

https://www.igvita.com/2010/03/22/untangling-evented-code-with-ruby-fibers/
https://www.igvita.com/2010/03/22/untangling-evented-code-with-ruby-fibers/
http://www.boost.org/doc/libs/1_53_0/libs/coroutine/doc/html/coroutine/intro.html
http://www.boost.org/doc/libs/1_53_0/libs/coroutine/doc/html/coroutine/intro.html
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

444 The Eureka Programming Model

36 Prakash Prabhu, Ganesan Ramalingam, and Kapil Vaswani. Safe Programmable Specula-
tive Parallelism. In PLDI’10, pages 50–61, 2010.

37 Python Software Foundation. concurrent.futures — Launching parallel tasks, August 2014.
38 Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. Efficient

Data Race Detection for Async-Finish Parallelism. In RV’10, pages 368–383, 2010.
39 Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing First-class Polymorphic

Delimited Continuations by a Type-directed Selective CPS-transform. In ICFP’09, 2009.
40 Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer. Phasers: a Unified

Deadlock-Free Construct for Collective and Point-to-Point Synchronization. In ICS’08,
pages 277–288, 2008.

41 Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-Typed Actors for Java. In
ECOOP’08, 2008.

42 Lukas Stadler, Christian Wimmer, Thomas Würthinger, Hanspeter Mössenböck, and John
Rose. Lazy Continuations for Java Virtual Machines. In PPPJ’09, 2009.

43 Oussama Tahan, Mats Brorsson, and Mohamed Shawky. Introducing Task Cancellation to
OpenMP. In 8th Int’l Workshop on OpenMP, IWOMP 2012, pages 73–87, June 2012.

44 The Jikes RVM Project. Threading and Yieldpoints. http://jikesrvm.org/Threading+
and+Yieldpoints, 2007.

45 The Open MPI Project. MPI_Abort. https://www.open-mpi.org/doc/v1.8/man3/MPI_
Abort.3.php, 2014.

46 Richard Wiener. Branch and Bound Implementations for the Traveling Salesperson Prob-
lem. Journal of Object Technology, 2(2), 2003.

47 Wolfram. Solve Optimization Problems with Speculative Parallelism, November 2008.

http://jikesrvm.org/Threading+and+Yieldpoints
http://jikesrvm.org/Threading+and+Yieldpoints
https://www.open-mpi.org/doc/v1.8/man3/MPI_Abort.3.php
https://www.open-mpi.org/doc/v1.8/man3/MPI_Abort.3.php

	Introduction
	Background and Motivating Example
	Async-Finish Programming Model
	Parallel Search of 2D Array

	Task Termination Strategies
	Delimited Continuation-based Cooperative Termination

	Programming with Eurekas
	Eureka Construct and API
	Eureka Programming Model (EuPM)

	Parallel Patterns and Eureka Variants
	Parallel Search
	Count Eureka
	N-Version Eureka
	Optimization Eureka
	Soft Deadlines
	Convergence Iterations

	Reusability and Composability of Eureka Components
	Composability by Component Composition
	Reusability by leveraging Functional Decomposition

	Implementation
	Experimental Results
	Related Work
	Summary and Future Work

