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Abstract
Correctness of concurrent objects is defined in terms of conditions that determine allowable
relationships between histories of a concurrent object and those of the corresponding sequential
object. Numerous correctness conditions have been proposed over the years, and more have been
proposed recently as the algorithms implementing concurrent objects have been adapted to cope
with multicore processors with relaxed memory architectures.

We present a formal framework for defining correctness conditions for multicore architectures,
covering both standard conditions for totally ordered memory and newer conditions for relaxed
memory, which allows them to be expressed in uniform manner, simplifying comparison. Our
framework distinguishes between order and commitment properties, which in turn enables a
hierarchy of correctness conditions to be established. We consider the Total Store Order (TSO)
memory model in detail, formalise known conditions for TSO using our framework, and develop
sequentially consistent variations of these. We present a work-stealing deque for TSO memory
that is not linearizable, but is correct with respect to these new conditions. Using our framework,
we identify a new non-blocking compositional condition, fence consistency, which lies between
known conditions for TSO, and aims to capture the intention of a programmer-specified fence.
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1 Introduction

This paper studies correctness conditions for concurrent objects, i.e., objects consisting of
operations acting on shared data that may be executed concurrently by multiple processes.
Because the operation calls of concurrent objects may overlap (as opposed to occurring one
after another), their correctness is judged using a correctness condition, which is a relation
on the behaviours of the concurrent object and its sequential specification object, i.e., a
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correctness condition provides an answer to the question: In what sense does a concurrent
object implement its sequential specification?

Correctness conditions for concurrent objects has been the subject of study for nearly three
decades and numerous conditions have been proposed. Shavit makes the case that different
correctness conditions are needed in different circumstances [31]; weaker conditions provide
greater scope for optimisation, but fewer behavioural guarantees. One cannot however,
continually weaken correctness conditions in search of greater performance. Programmers
require strong correctness conditions that ensure an abstract specification object (whose
behaviours are understandable) can be safely substituted by a concurrent object (which
provides better performance) within the programs that use these objects. The existence
of these two opposing goals has meant that the number of accepted correctness conditions
has actually increased over time (e.g., [31, 25]), instead of being consolidated into a unified
correctness notion.

Most correctness conditions, including linearizability [23], have been developed under the
assumption that hardware ensures totally ordered memory,1 where reads and writes within a
process are guaranteed to be executed in program order. Due to their use of local buffers,
modern multicore architectures are not totally ordered, and only provide relaxed memory
guarantees [1, 33], meaning memory instructions may be executed in a different order to that
specified by the program. Such reorderings can be avoided by introducing fence instructions
in the program code, however, because fence instructions hamper performance, programmers
try to limit their usage. This however, causes a direct tension between correctness and
optimisation possibilities. For example, it has been shown that to ensure linearizability of
many data structures under relaxed memory, there are “laws of order” that force fence
instructions to be used, and hence, linearizability itself has become a bottleneck to efficiency
[3]. In the face of this result, we once again look to define suitable correctness conditions
weaker than linearizability [12, 32].

Although numerous correctness conditions exist (and more are proposed each year), a
unified framework within which different correctness conditions can be defined and formally
compared has thus far not been developed. With the advent of correctness conditions for
relaxed memory architectures, it is becoming difficult to judge the comparative strengths of
different conditions. This paper presents a systematic study of correctness conditions for
concurrent objects executed in multicore architectures. We do not aim to characterise the
memory models themselves (for such a study see [2]), but rather characterise properties of a
concurrent object executing in some memory architecture.

We make the following contributions.
1. We develop a framework that enables one to systematically develop and reason about

correctness conditions for concurrent objects. For each property we distinguish between
its order conditions, which define allowable orderings of concrete operations, and commit
conditions, which provide guarantees about the operations whose effect must have taken
place. This distinction is the first, to our knowledge, providing a separation of concerns
when defining correctness.

2. Within this framework, we formalise well-known correctness conditions for totally ordered
memory, providing insight into the relationships between them.

3. To cope with relaxed memory, we define partial commitment conditions where the effects

1 Architectures with totally ordered memory are also referred to as sequentially consistent architectures
[26]. In this paper, we use sequential consistency to refer to a property on the histories of a concurrent
object as done in [4]. Sequential consistency is formalised in Definition 10.
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of some completed operation calls are delayed beyond their returns due to pending writes
in the buffers of the calling processes.

4. We study a specific weak memory model, TSO, and formalise known correctness conditions
for it (weak flush consistency [12] and weak ξ-quiescent consistency [32]) that are weaker
than linearizability, as they allow more reorderings and only ensure partial commitment.

5. Using our framework, we develop a new condition, fence consistency, a non-blocking
compositional condition that lies between the existing conditions for TSO memory.

6. We show that the Chase-Lev work-stealing deque [7] where the put operation returns
without fencing is not linearizable under TSO memory, but does satisfy a weaker condition,
flush consistency, which is a sequentially consistent version of the condition defined in
[12]. This condition is strictly weaker than linearizability and stronger than ξ-quiescent
consistency (which is the sequentially consistency version of the condition in [32]).

7. We prove a hierarchy for the correctness conditions in this paper based on order and
commitment properties.

2 Background

This section provides the background for the rest of the paper; we introduce the Chase-Lev
work-stealing dequeue (as defined by [7]), which serves as a running example for the rest of
this paper. We also informally introduce notions of correctness for concurrent objects for
totally ordered memory, and the Total Store Order memory model.

2.1 Work-Stealing Deque
Work-stealing double ended queues (abbreviated to deques) are often used for load balancing
in multiprocessor systems. Each worker process has a deque, which it uses to record tasks to
be performed. Thus, a worker executes put and take operations that, respectively, add tasks
to and remove tasks from its deque. Load balancing is achieved by allowing other, so-called
“thief” processes, whose own deques are empty, to execute steal operations that remove
elements from the deque. To avoid contention between the worker and thief processes, put
and take operate at different ends of the deque from steal operations – a worker adds and
removes tasks at the tail, whereas thieves steal tasks from the head. Because the worker and
thieves operate at different ends of the deqeue, contention between the worker and thieves
occurs when the deque has one element. Resolving these cases is in general difficult [13].
Fig. 1 presents a simplified version of the Chase-Lev work-stealing deque. The shared state
consists of an array, items, of tasks (represented as integers) and variables Head and Tail,
which mark the part of the array containing the elements of the deque. The other variables
are local to the operations in which they occur.

2.2 Correctness Conditions
Correctness of a concurrent object is judged with respect to an abstract sequential specification
[22]. The abstract specification of the deque object implementation in Fig. 1 is given in Fig. 2,
consisting of a deque variable dq, represented as a sequence of tasks, and atomic operations
put, take and steal; task is a local variable within the take and steal operations.

An object cannot execute by itself; rather it is the clients of an object that execute its
operations. Correctness defines a relationship between histories of the concrete and abstract
systems, which record the interactions between the client and an object via the object’s
external interface. Typically, a history records invocation and return events of operation
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void put(int task) {
P1 tl := Tail;
P2 items[tl] := task;
P3 Tail := tl + 1; }

int steal() {
S1 while true {
S2 hd := Head;
S3 if hd ≥ Tail
S4 return emp;
S5 task := items[hd];
S6 if cas(Head,hd,hd+1)
S7 return task; } }

int take() {
T1 tl := Tail - 1;
T2 Tail := tl;
T3 hd := Head;
T4 if hd > tl {
T5 Tail := hd;
T6 return emp; }
T7 task := items[tl];
T8 if tl > hd
T9 return task;

T10 Tail := hd + 1;
T11 if cas(Head,hd,hd+1)
T12 return task;
T13 else return emp; } }

Figure 1 Chase-Lev work-stealing deque.

void put(int task) {
atomic {

dq := dq a〈 task 〉
} }

int steal {
atomic {

if dq = 〈 〉 then
return emp

else
task := head(dq) ;
dq := tail(dq) ;
return task } }

int take {
atomic {

if dq = 〈 〉 then
return emp

else
task := last(dq) ;
dq := init(dq) ;
return task } }

Figure 2 Abstract work-stealing deque.

calls. Concurrent histories may consist of both overlapping and non-overlapping operation
calls, inducing a partial order on events. Correctness conditions define how, if at all, this
order is maintained in the corresponding abstract history. There are several well-known
existing correctness conditions for totally ordered memory [22].

Sequential consistency is a simple condition requiring the order of operation calls in
a concrete history for a single process to be preserved. Operation calls performed by
different processes may be reordered in the abstract history even if the operation calls do
not overlap in the concrete history.
Linearizability strengthens sequential consistency by requiring the order of non-overlapping
operations to be preserved. Operation calls that overlap in the concrete history may be
reordered when mapping to an abstract history.
Quiescent consistency is weaker than linearizability, but is incomparable to sequential
consistency. A concurrent object is said to be quiescent at some point m in its history if
none of its operations are executing at m. Quiescent consistency requires the order of
operation calls separated by a quiescent point to be preserved. Operation calls that are
not separated by a quiescent point may be reordered, including operations performed by
the same process.

It has already been shown that the Chase-Lev deque from Fig. 1 is linearizable [7]. Since
linearizability implies both sequential and quiescent consistency, the Chase-Lev deque is also
both sequentially and quiescently consistent.

2.3 Total Store Order (TSO) Memory
Modern multi-core architectures use local buffers to allow more efficient use of shared
memory (see Fig. 3). For optimisation purposes, many architectures only provide relaxed

ECOOP’15



474 Defining Correctness Conditions for Concurrent Object

. . . . .

Shared memory lock

Core nCore 1

B
uffer

n

B
uffer

1

......

Figure 3 TSO architecture.

word x=0, y=0;

Process p {
p1: x := 1 ;
p2: r1 := y }

Process q {
q1: y := 1 ;
q2: r2 := x }

Figure 4 TSO example.

memory guarantees. We consider Total Store Order (TSO) memory as implemented by x86
processors. A general definition of TSO is given in [1], an operational semantics in [30], and
an interval-based semantics in [14].

Here, a write by a processor core is not immediately committed to shared memory.
Instead it is enqueued as a pending write in the local buffer and only becomes visible to other
processes after it is flushed, which commits the pending write in the buffer to shared memory.
Hence, there is a discrepancy between the time at which a write is executed and the time at
which the effect of the write becomes visible to other processes. In TSO, pending writes are
flushed in a FIFO order. In addition, using a method known as Intra-Process Forwarding
[1], when reading a memory location, a processor core fetches the value of the last pending
write from its local buffer if available and from shared memory otherwise. Due to pending
writes and intra-process forwarding, from an external perspective, read and write instructions
within a process appear to be reordered [1], i.e., total memory order is not maintained.

I Example 1. Consider the program in Fig. 4, where processes p and q modify shared
variables x and y, both of which are initialised to 0. Under totally ordered memory, when
the program terminates, at least one of r1 or r2 would have the value 1. However, under
TSO memory, it is possible for the program to terminate so that both r1 and r2 read the
original values of x and y, i.e., both r1 and r2 are 0 at termination. One such execution
sequence is 〈 p1, p2, q1, q2, flush(p), flush(p), flush(q), flush(q) 〉, where p1 denotes
execution of the statement at line p1 (similarly p2, etc.), and flush(p) denotes execution of
a hardware-controlled flush event for process p (similarly flush(q)). The write to x at p1 is
not seen by process q until p’s buffer is flushed, and symmetrically for the write to y at q1.
Hence, it is possible for q to read a value 0 for x at q2 even though q2 is executed after p1.

To avoid instruction reordering, a core may acquire a global lock (depicted in Fig. 3),
which prevents all other cores from accessing shared memory. This lock is used to implement
(coarse-grained) atomic operations such as cas [30]. In particular, a cas operation locks the
buffer, performs the compare and swap, fully flushes the buffer, then releases the lock.

I Example 2. Suppose we wish to establish the postcondition that either r1 or r2 has value
1 for the program in Fig. 4. The only possibility is to introduce fence instructions between
p1 and p2, and between q1 and q2 in Fig. 4. Note that both fence instructions are necessary,
otherwise, r1 = r2 = 0 remains a possible outcome of the program.

3 Defining Correctness for Concurrent Objects

The correctness conditions described in Section 2.2 are all defined in terms of an abstract
sequential history which is related in a certain way to a given execution of the concurrent
object in question. This relationship can be defined more precisely in terms of a mapping
function that maps elements in the concrete history to those of the corresponding abstract
history. Mapping functions are inspired by the encoding of linearizability in [10], which has
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led to a complete simulation-based method for proving linearizability [29]. Our conditions
for relaxed memory are also amenable to integration with such proof methods.

3.1 A Framework for Specifying Correctness
As already discussed, correctness conditions are defined in terms of histories of the abstract
(sequential) and concrete (concurrent) systems. In order to make these comparable, while
capturing the relevant information about concurrent executions, histories record just the
invocation and return of each operation call. In a concurrent history, operation calls may be
interleaved with those of other processes, so the invocation and return of a given call may be
separated by any number of invocations and returns of other processes, while in a sequential
history, the invocation of an operation call is immediately followed by its corresponding
return.

For correctness conditions under totally ordered memory it turns out that invocation and
response events are all that must be recorded. However, relaxed memory architectures often
require additional events such as buffer flushes to be recorded [5, 17, 6]. Thus, assuming that
process identifiers have type P, operations names have type I , and the inputs and outputs of
operations have type V , we define events and histories as follows: 2

Event =̂ inv〈〈P × I ×V 〉〉 | ret〈〈P × I ×V 〉〉 History =̂ seqEventC
where EventC ⊇ Event is the set of concrete events; the set EventC will be specialised in later
sections. We say that two events e1 and e2 are matching if they form an invocation/return
pair for the same operation performed by the same process:

matching(e1, e2) =̂ inv?(e1) ∧ ret?(e2) ∧ e1.pr = e2.pr ∧ e1.i = e2.i

where inv? and ret? are true for invocation and return events, respectively, and e.pr and
e.i denote the process and operation corresponding to an event e, respectively; similarly,
e.v denotes e’s input/outputs. Indices m and n form a matching pair in a history h if they
identify a pair of matching events and there is no invocation or return performed by the
same process between them:

mp(m,n, h) =̂ matching(h(m), h(n)) ∧
∀ k : dom h • m < k < n ∧ h(k).pr = h(m).pr ⇒ h(k) 6∈ Event

Note that in the case of totally ordered memory EventC = Event, i.e., all elements of a
history h are in Event. Hence, the second conjunct of mp(m, n, h) simplifies to ∀ k : dom h •
m < k < n ⇒ h(k).pr 6= h(m).pr . However, this is not the case for the histories in Section 4,
and there, the consequent of the second conjunct does not trivially reduce to false.

An index m is a pending invocation in history h if h(m) is an invocation that is not
followed by a matching return in h:

pi(m, h) =̂ inv?(h(m)) ∧ ∀ k : dom h • m < k ⇒ ¬matching(h(m), h(k))

A history is sequential if it is either empty or an alternating sequence of matching invocations
and returns starting with an invocation:

sequential(h) =̂ h = 〈 〉 ∨ (inv?(h(0)) ∧ ∀ k : dom h • inv?(h(k)) ∧ k + 1 ∈ dom h ⇒
matching(h(k), h(k + 1))

2 We generally use Z mathematical notation [34]. This definition says that any element of Event is of the
form inv(p, i, v) or ret(p, i, v), where p ∈ P, i ∈ I and v ∈ V . We also write inv(p, op) for invocations
with no inputs, and ret(p, op) for returns with no outputs. In this paper, we assume that sequences are
indexed from 0 onwards.
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As in [23], we assume each process calls at most one operation at a time. We say a history h
is well formed if each h|p is sequential, where h|p denotes a history h restricted to all events
by process p; for the rest of this paper we assume that all histories are well-formed. A history
h is legal if each return is preceded by some matching invocation:

legal(h) =̂ ∀n : dom h • ret?(h(n))⇒ ∃m : dom h • m < n ∧ mp(m,n, h)

A correctness condition between a concurrent history h and a sequential history hs is
defined in terms of a mapping function, f : N 7→ N, which is an injective partial function
from indices of h to indices of hs. Injectivity ensures that each element of h occurs at most
once in hs, while partiality provides the flexibility needed to represent delayed operation
calls under relaxed memory architectures (where some completed operation calls may not
appear in the abstract history).

I Example 3. Consider concurrent history h and sequential history hs below:

h =̂ 〈inv(q1, steal), inv(w, put, 1), ret(q1, steal, emp), ret(w, put)〉
hs =̂ 〈inv(q1, steal), ret(q1, steal, emp)〉

The mapping function from h to hs is {0 7→ 0, 2 7→ 1}. In this example, we assume that due
to TSO the put operation has not yet taken effect.

In our framework, one only needs to define predicates on h and f ; the corresponding
sequential history is hs = {f (k) 7→ h(k) | k ∈ dom f }.

I Example 4. Sequence h = 〈a, b, c, d〉 is the set of mappings {0 7→ a, 1 7→ b, 2 7→ c, 3 7→ d}.
Hence, if f = {2 7→ 0, 0 7→ 1, 1 7→ 2, 3 7→ 3} then hs = {0 7→ c, 1 7→ a, 2 7→ b, 3 7→ d} =

〈c, a, b, d〉.

We distinguish between two types of predicates on h and f : order conditions, which
describe the allowable orders of events when mapping h to hs (via f ), and commitment
conditions, which describe the events of h that must occur in hs (due to occurrence of their
corresponding index in f ). We write P(v) if P is a predicate with free variables v.

I Definition 5. Suppose Q(h, f ) is a predicate on history h and mapping function f , m is
a vector over type N, P(h,m) is a predicate on h and m, and QR(f ,m) and QD(f ,m) are
predicates on f and m. We say that Q(h, f ) is:

an order condition iff Q(h, f ) is of the form ∀m : dom f • P(h,m) ⇒ QR(f ,m), where
QR(f ,m) is a predicate on the range of f and m only, and
a commitment condition iff Q(h, f ) is of the form ∀m : dom h • P(h,m) ⇒ QD(f ,m),
where QD(f ,m) is a predicate on the domain of f and m only.

To reduce clutter, for predicates R, R1 and R2 on a history h, mapping function f , and
boolean operator ⊕, we define:

R1 ≡ R2 =̂ ∀ h, f • legal(h)⇒ R1(h, f ) = R2(h, f )
R1 V R2 =̂ ∀ h, f • legal(h) ∧ R1(h, f )⇒ R2(h, f )

(R1 ⊕ R1)(h, f ) =̂ R1(h, f )⊕ R2(h, f )

Using these concepts, we now define what it means for a mapping function to be valid.
We formalise this definition using an order property vmf ord, which ensures that for any
matching pair m,n in h mapped by f , index f (n) immediately follows f (m):

vmf ord(h, f ) =̂ ∀m,n : dom f • mp(m,n, h)⇒ f (n) = f (m) + 1
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and a commitment property vmf com, which ensures that for any matching pair m, n in h,
the invocation h(m) is mapped by f iff the return h(n) is also mapped by f :

vmf com(h, f ) =̂ ∀m,n : dom h • mp(m,n, h)⇒ (m ∈ dom f ⇔ n ∈ dom f )

Note that vmf ord conforms to the structure of an order condition as defined in Definition 5,
since predicate P(h,m) is instantiated to mp(m,n, h) and QR(f ,m) is instantiated to
f (n) = f (m) + 1. Similarly, vmf com conforms to the structure of a commitment condition
as defined in Definition 5; P(h,m) is instantiated to mp(m, n, h) and QD(h,m) instantiated
to m ∈ dom f ⇔ n ∈ dom f .

We say a function f is a valid mapping function if, for any history h, the domain of f is
contained in the domain of h, the range of f is a consecutive sequence starting from 0, only
invocation/return events are mapped by f , matching pairs in h are mapped to consecutive
events in the target abstract history, and f only maps matching pairs. Assuming [m..n] is the
set of naturals from m to n inclusive, we formalise validity for mapping functions as follows:

VMF(h, f ) =̂ dom f ⊆ dom h ∧ (∃n : N • ran f = [0..n − 1]) ∧
(∀n : dom f • h(n) ∈ Event) ∧ vmf ord(h, f ) ∧ vmf com(h, f )

We can now define a correctness condition to be a conjunction of ordering and commitment
conditions, along with a requirement that we have a valid mapping function.

I Definition 6. A correctness condition is a predicate R(h, f ) over a history h and mapping
function f , whose definition has the form:

R(h, f ) =̂ VMF(h, f ) ∧ (
∧

i OCi(h, f )) ∧ (
∧

j CCj(h, f ))

where each OCi is an order condition and each CCj is a commitment condition.

Note that the conjunct vmf ord in VMF means that pending invocations in h are never
mapped by f . However, when formalising correctness conditions, one must also consider
incomplete histories, which contain pending invocations whose effects have already taken
place and are observable to other processes [23].

I Example 7. Consider a history HE1 =̂ 〈inv(w, put, 7), inv(q, steal), ret(q, steal, 7)〉 of
the Chase-Lev deque (Fig. 1). This history is incomplete because the invocation of the put
operation has not returned. However, its effect has clearly taken place because the steal
operation returns 7.

To reason about such histories, Herlihy and Wing [23] consider history extensions, which are
constructed from a history h by concatenating a sequence of returns corresponding to some of
the pending invocations of h. For example, HE1 may be extended to HE1

a 〈ret(w, put)〉 to
enable the extended history to be mapped abstractly. Note that a history may have several
possible extensions. For example, for the history:

HE2 =̂ 〈inv(w, put, 7), inv(q1, steal), ret(w, put), inv(q2, steal)〉

the following are some of many possible extensions:

HE3 =̂ HE2
a 〈ret(q1, steal, emp)〉

HE4 =̂ HE2
a 〈ret(q2, steal, 7), ret(q1, steal, emp)〉

Pending invocations in an incomplete history may remain pending in the extended history.
For example, in H3, the second steal operation is still pending. Herlihy and Wing define a
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function complete to remove all pending histories from a history, and define linearizability of
a history h in terms of complete(he), where he is some extension of h. However, reasoning
about complete(he) is often cumbersome because removal of pending invocations causes the
indices of he to shift. This is exacerbated by the non-determinism of history extensions.

In our framework, because correctness is defined using an explicit mapping function,
we can avoid using the complete function. In particular, after extending an incomplete
history with return events, we can simply leave out pending invocations when mapping this
extended history, simplifying the definitions and the proofs. We now lift correctness to the
level of concurrent objects. This definition is tied to the fact that every concurrent object is
inherently an implementation of some sequential abstract counterpart.

I Definition 8. A concurrent object C implementing an abstract object A is correct with
respect to a correctness condition R, denoted C |=A R, iff for any legal history h of C ,
there exists an extension he of h, a mapping function f such that R(he, f ) holds, and a valid
sequential history hs of A such that hs = {f (k) 7→ he(k) | k ∈ dom f }.

The next theorem states that if a concurrent object implements an abstract object for
some notion of correctness, then it also implements the abstract object with respect to a
weaker correctness condition.

I Theorem 9. Suppose C is a concurrent object, A an abstract object and R1, R2 are
correctness conditions such that R1 V R2. If C |=A R1 then C |=A R2.

The proof is straightforward by expanding the definitions and using the fact that legal is
extension closed, i.e., if legal(h) holds and he is an extension of h, then legal(he) holds.

3.2 Specifying Correctness Conditions for Totally Ordered Memory
We now use our framework to formalise the conditions for totally ordered memory from
Section 2.2: sequential consistency, linearizability and quiescent consistency. There are
already existing formalisations of each of these in the literature, e.g., using partial orders.
However, using our framework, we are able to distinguish between the different types of
properties that form each condition.

Each correctness condition in Section 2.2 implies a total commitment condition, which
means that all completed operation calls in a given history h must be mapped by f to some
operation call in a sequential history.

total(h, f ) =̂ ∀m : dom h • h(m) ∈ Event ∧ ¬pi(m, h)⇒ m ∈ dom f

Sequential consistency is defined in terms of an order condition sc, which states operation
calls in h by the same process are not reordered by f when mapped to a sequential history.

sc(h, f ) =̂ ∀m,n : dom f • m < n ∧ h(m).pr = h(n).pr ∧
ret?(h(m)) ∧ inv?(h(n))⇒ f (m) < f (n)

I Definition 10. A concurrent object C implementing an abstract object A is sequentially
consistent iff C |=A SC , where 3 SC =̂ VMF ∧ sc ∧ total.

3 Note that by definition of ≡ and pointwise lifting, SC (h, f ) ≡ VMF(h, f ) ∧ sc(h, f ) ∧ total(h, f ) for any
history h and mapping function f .
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Linearizability [23] is a straightforward extension to sequential consistency, strengthening
the order condition so that an operation call is not reordered with another operation call
that is invoked after the first operation returns.

lin(h, f ) =̂ ∀m,n : dom f • m < n ∧ ret?(h(m)) ∧ inv?(h(n))⇒ f (m) < f (n)

I Definition 11. A concurrent object C implementing an abstract object A is linearizable
iff C |=A LIN , where LIN =̂ VMF ∧ lin ∧ total.

It is straightforward to link this definition to the formalisation by Derrick et al [10], which
has in turn been linked with Herlihy and Wing’s original definition.

Quiescent consistency, as informally described by Shavit [31], has been formalised in [9]
and is defined in terms of bijections between a concurrent history and its corresponding
abstract history. We first define a quiescent point as an index m in a history h at which
there are no pending invoked operation calls. We use h[m..n] to denote the projection of the
elements of h from index m to n, inclusive, i.e., h[m..n] = 〈h(m), h(m+1), . . . , h(n−1), h(n)〉.

qp(m, h) =̂ ∀n : dom h • (n ≤ m => ¬pi(n, h[0..m]))

The ordering condition for quiescent consistency states that f does not reorder two indices in
h separated by a quiescent point.

qc ord(h, f ) =̂ ∀m, k,n : dom f • m < k < n ∧ qp(k, h)⇒ f (m) < f (n)

I Definition 12. A concurrent object C implementing an abstract object A is quiescent
consistent iff C |=A QC , where QC =̂ VMF ∧ qc ord ∧ total.

A benefit of our formalisation is that it is now straightforward to formally prove that
linearizability implies both sequential consistency and quiescent consistency, the former is
because lin V sc holds, while the latter is because lin V qc. It is well known that SC V LIN
and QC V LIN are both false; constructing counter-examples is straightforward [22].

4 Correctness Conditions for Total Store Order Memory

We now explore notions of correctness for concurrent objects in relaxed memory architec-
tures. In particular, we focus on the potential for optimisation for TSO architectures. To
simplify development of correctness conditions, we present each correctness condition as an
instantiation of a number of high-level steps. We formalise two recently defined notions of
correctness [12, 32], develop sequentially consistent variations of these, then develop a new
correctness condition, fence consistency.

4.1 Minimising fence instructions in TSO
Correctness conditions that hold for a concurrent object under totally ordered memory may
no longer hold in the presence of relaxed memory. For our running example, under TSO
memory, consider the following scenario. After initialisation, suppose two complete put
operations as well as their flushes have been executed. Thus, the deque is of size two with
tasks a0 and a1 at array indices 0 and 1, and Head = 0 and Tail = 2. Suppose w invokes a
take, which executes up to line T4 without executing any flushes, setting its local variables
hd and tl to 0 and 1, respectively. Now suppose two thief processes q1 and q2 invoke and
execute steal operations up to completion, stealing both a0 and a1. The worker may now
continue executing take, and return some unspecified value for task because the test at T8
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int take() {
T1 tl := Tail - 1;
T2 Tail := tl;
T3 fence ;
T4 hd := Head;
T5 if hd > tl {
T6 Tail := hd;
T7 return emp; }

T8 task := items[tl];
T9 if tl > hd

T10 return task;
T11 Tail := hd + 1;
T12 if cas(Head,hd,hd+1)
T13 return task;
T14 else return emp; } }

Figure 5 Chase-Lev take operation modified for TSO.

succeeds. Such an execution cannot be proved to implement Fig. 2 for any sensible definition
of correctness.

Liu et al. [27] have shown that linearizability can be restored provided (i) a fence is
introduced immediately after P3 in the put operation, and (ii) the take operation in Fig. 1
is replaced by the take in Fig. 5, where a fence has been introduced after T2. As memory
barriers in the form of fence instructions are expensive, our question is: Are there conditions
weaker than linearizability that would allow only one fence to be used such that the behaviours
one obtains are still sensible? Although removing a single fence instruction may not seem
like a big change, because a client may execute several put operations consecutively, there is
a potential for a high level of efficiency gains. Furthermore, since data structures such as
deques are used to implement underlying system mechanisms such as schedulers [16] and
operating system kernels [28], avoiding fence instructions can provide system-wide benefits.

It turns out that a fence after T2 is needed to avoid the scenario described above. In the
other case, it turns out that the object is not linearizable, because the following is possible:

〈inv(w, put, x), ret(w, put), inv(q, steal), ret(q, steal, emp)〉 (1)

This occurs because the effect of a put operation only occurs after the write at P3 is flushed.
Therefore, the steal operation may read an older value causing it to return emp. We
argue that such histories should be allowed – it is perfectly sensible for the steal and put
operations to be reordered because the effect of the put has merely been delayed by buffer
effects, whereby the put operation continues to execute beyond its return event. We therefore,
set out to formally define correctness conditions that would accept histories such as (1), e.g.,
for the Chase-Lev deque under TSO memory where no fence instructions are introduced
after P3.

Behaviours in TSO memory in which the effect of an operation is delayed beyond its
return are already accepted as being correct for many implementations, e.g., spinlock [12, 28],
Burns’ mutex [35] and the sequence lock [32]. However, a precise notion of correctness in
these scenarios has thus far not been developed. Even less is known about the implications
of accepting more histories than allowed by linearizability.

4.2 Defining Correctness Conditions
It turns out that there are several possibilities for interpreting correctness for delayed
operations. We describe a sequence of steps for defining correctness conditions for TSO
memory, where each step identifies an aspect of the condition that must be considered.
Picking a particular instantiation at each step, leads to a particular correctness condition.

I Step 1 (Determine the events to be recorded in histories). For the conditions on totally
ordered memory in Section 2.2, histories only needed to record invocation/response events.
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For TSO memory, it is often necessary to record additional events, with rules on how these
events are recorded. Formally, these additional events are recorded by instantiating EventC .

For example, for weak ξ-quiescent consistency (as defined in Section 4.3), we record an
additional event ξ(p), thus EventC ::= Event | ξ〈〈P〉〉. Event ξ(p) is triggered (i.e., recorded)
if either (i) a transition causes the buffer of process p to become empty, or (ii) if process p
returns from an operation call when p’s buffer is empty. For case (i), 〈ξ(p)〉 is concatenated,
while for case (ii) the two-event sequence 〈ret(p, op, v), ξ(p)〉 is concatenated to the end of
the history4. Note that a transition causing p’s buffer to become empty may be caused by a
CPU-controlled buffer flush, which may occur after p has already returned. We assume ξ(p)
is not recorded if the buffer of p is already empty in the prestate of a non-return transition,
and if p returns when its buffer is non-empty, then only 〈ret(p, op, v)〉 is concatenated to the
end of the history. 2

We explain the next two steps assuming EventC ::= Event | ξ〈〈P〉〉 has been fixed as
defined in Step 1. For our examples below, we assume that the deque is initially empty, w
denotes the worker process, and q, q1, q2 and q3 denote thief processes.

I Step 2 (Determine what operations can be reordered). A common feature of the correctness
conditions discussed in Section 2.2 is that operation calls whose active intervals overlap may
be reordered. For totally ordered memory, an operation call may be considered to be active
from its invocation to its return.

In the context of TSO memory, because some operation calls may return with non-empty
buffers, there is additional flexibility in defining what counts as an active operation [12, 32, 35].
One possibility is to think of an operation call by a process p as being active until buffer of
process p becomes empty. Consider the following history, which is possible for the deque in
Fig. 1 but with the take operation from Fig. 5.

HC1 =̂ 〈inv(w, put, x), ret(w, put), inv(q1, steal), ret(q1, steal, emp), ξ(q1),
inv(q2, steal), ret(q2, steal, emp), ξ(q2), ξ(w), inv(q3, steal),
ξ(q3), ret(q3, steal, x), ξ(q3)〉

HC1 cannot be linearized with respect to the abstract deque (Fig. 2) – HC1 restricted to
invocations and responses only is sequential and the steal occurs after the put has completed,
yet the steal returns empty. However, in the context of TSO memory with the interpretation
that returned operations calls by process p are active until p’s buffer is empty, HC1 can be
explained by the following sequential history:

〈inv(q1, steal), ret(q1, steal, emp), inv(q2, steal), ret(q2, steal, emp),
inv(w, put, x), ret(w, put), inv(q3, steal), ret(q3, steal, x)〉 2

It turns out that there are varying ways of defining active operations. In this paper we
explore two possibilities: the first (inspired by [32]) allows an operation call to be active
as long as the buffer of its calling process is non-empty, and the second (inspired by [12])
is more restricted, allowing an operation call to be active only as long as the final write
corresponding to the operation call has not been flushed.

I Step 3 (Determine the commitment conditions). The conditions in Section 2.2 for totally
ordered memory are all total, i.e., any operation call that has returned must be mapped to
some abstract operation call. Total conditions are appropriate for such architectures because

4 Note that there are other alternatives to recording case (ii) in the history; e.g., one could use a special
“return empty” event that is distinct from ret events to obtain EventC ::= Event | retξ〈〈P×O×V 〉〉 | ξ〈〈P〉〉.
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hardware guarantees that each write is immediately committed to shared memory when the
write instruction is executed, making its effect visible to other concurrent threads.

On the other hand, in relaxed memory models, write instructions may be cached in local
buffers, and thus not seen by other processes until the buffers are flushed. Hence, when an
operation call returns, the effect of the operation may not have have occurred in shared
memory. We refer to a returned operation call that has taken effect as a committed operation
call and as uncommitted, otherwise. To take delayed operation calls (due to buffer effects) into
account, we allow correctness conditions to be defined using partial commitment conditions,
allowing some completed operation calls to not be mapped to any abstract operations. When
specifying partial commitment conditions, it turns out that one must additionally define
conditions that dictate when an operation must become committed.

For TSO memory, one possible instantiation of this step is to require that all operation
calls of process p that have returned prior to ξ(p) occurring must have committed. For
example, consider the following history:

HC2 =̂ 〈inv(w, put, x), ret(w, put), ξ(w), inv(w, put, y), ret(w, put),
inv(q, steal), ret(q, steal, x), ξ(q)〉

History HC2 cannot be judged consistent against sequential histories 〈 〉 or 〈inv(w, put, x),
ret(w, put)〉 because due to ξ(w), the first put operation must be committed, and due to
ξ(q), the steal must have also been committed. Note that ξ(p) represents that latest point
at which commitments of completed operations of process p must occur; the commitment
condition does not prevent operations from committing earlier. Thus, for example, both
sequential histories below satisfy the requirement:

〈inv(w, put, x), ret(w, put), inv(q, steal), ret(q, steal, x)〉
〈inv(w, put, x), ret(w, put), inv(q, steal), ret(q, steal, x), inv(w, put, y), ret(w, put)〉 2

Note that the conditions in Section 2.2 can also be defined using these three steps. For all
three conditions, EventC ::= Event (Step 1), and the commitment condition is total, which
states completed operation calls must appear in any corresponding sequential history (Step
3). The three conditions only differ in terms of their order properties, sc, lin and qc, which
are different instantiations of Step 2.

4.3 Weak ξ-Quiescent Consistency
Smith et al. [32] prove correctness of a sequence lock algorithm in TSO memory with respect
to quiescent consistency [31]. An object is considered to be quiescent in a history if none of
its operations calls are pending in the history and the buffer of each process that has called
an operation of the object is empty. Note that the buffer of a process calling an operation
may become empty after the operation has returned. Reordering of operations across a
quiescent point is disallowed.

This condition may be formalised by instantiating the steps in Section 4.2. For Step 1,
we use EventC ::= Event | ξ〈〈P〉〉 because we must reason about empty buffers. We say such
a history h is legal iff h|Event (i.e., h restricted to invocations and return events) is legal.
Histories of this type are extension closed. For Step 2, as in [32], we say an operation call is
active until the object becomes quiescent. Finally, for Step 3, we require that all operation
calls be committed when the object becomes quiescent – until then operation calls remain
uncommitted.

An index m is quiescent iff the last completed operation call for each process p has been
followed by ξ(p). We say that p ∈ P is quiescent between indices m and n of history h iff m is
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a return for p, the buffer of p becomes empty at some point between m and n, and p does not
invoke any new operation between m and n. Thus, we define the following, where empty?(e)
holds iff e = ξ(p) for some p ∈ P, and invp?(e) =̂ inv?(e) ∧ e.pr = p, and predicates retp?
and emptyp? are similarly defined.

qb(m,n, p, h) =̂ m < n ∧ retp?(h(m)) ∧ (∃ k : m + 1..n • h(k) = ξ(p)) ∧
(∀ k : m + 1..n • ¬invp?(h(k)))

Using qb, we define a quiescent point m in history h as follows.

qpξ(m, h) =̂ ∀ p : P,n : dom h • n < m ∧ invp?(h(n))⇒ ∃ k : dom h • qb(k,m, p, h)

Then we define the order and commitment conditions for weak ξ-consistency as follows. Order
condition wqc ordξ states that two events separated by a quiescent point are not reordered.

wqc ordξ(h, f ) =̂ ∀m,n : dom f • (∃ k : N • m < k < n ∧ qpξ(k, h))⇒ f (m) < f (n)

The commitment condition wqc comξ requires all operation calls occurring before a quiescent
point to be committed.

wqc comξ(h, f ) =̂ ∀m,n : dom h • m ≤ n ∧ qpξ(n, h) ∧ h(m) ∈ Event ⇒ m ∈ dom f

I Definition 13. A concurrent object C implementing an abstract object A is weakly
ξ-quiescent consistent iff C |=A WQCξ, where WQCξ =̂ VMF ∧ wqc ordξ ∧ wqc comξ.

Weak ξ-quiescent consistency is a straightforward generalisation of quiescent consistency, and
hence, we omit example histories here. This definition is weak because it does not guarantee
sequential consistency, i.e., operations calls within a process may be reordered. However,
weak ξ-quiescent consistency follows the condition defined in [32], which in turn is based on
quiescent consistency [9, 22, 31]. In Section 4.5, we motivate a new correctness condition,
then strengthen WQCξ accordingly so that it guarantees sequential consistency. Defining
such variations in our framework is straightforward.

4.4 Weak Flush Consistency
We now formalise the correctness condition defined by Derrick et al. [12], which we refer
to in this paper as weak flush consistency. Informally, weak flush consistency captures the
idea that an operation call may be considered to be active only until the last pending write
corresponding to the operation call is flushed. This differs from weak ξ-quiescent consistency,
since an operation call may become inactive even if the buffer of the calling process is
non-empty.

Derrick et al. [12] define weak flush consistency in terms of linearizability of transformed
histories. Their (deterministic) transformation algorithm proceeds as follows: (i) the final
flush corresponding to each operation call is located, (ii) the actual return is moved to this
flush, and (iii) all remaining flushes are removed from the history. The standard definition
of linearizability is then applied to the transformed histories. For example, consider the
following history, where φk(p) denotes k consecutive flush events of process p:

〈inv(w, put, x), ret(w, put), inv(w, put, y), inv(q, steal), φ(q), φ3(w),
ret(q, steal, emp), ret(w, put)〉

This history is transformed to

〈inv(w, put, x), inv(w, put, y), inv(q, steal), ret(w, put), ret(q, steal, emp), ret(w, put)〉
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then judged consistent because it is linearizable with respect to the sequential history:

〈inv(q, steal), ret(q, steal, emp), inv(w, put, x), ret(w, put), inv(w, put, y), ret(w, put)〉

Using our framework, we can define weak flush consistency directly, i.e., without perform-
ing such a history transformation. This involves two small extensions to the Event type.
First, we record each flush event. Second, because the number of writes each operation
call performs is potentially non-deterministic, we additionally record each write event to
identify the last flush corresponding to each operation call. Thus, for Step 1, we define
EventC ::= Event | ω〈〈P〉〉 | φ〈〈P〉〉. Here, ω(p) denotes a write by process p, and φ(p) records
a flush for process p. We assume write?(e) and flush?(e) hold iff event e is a write and flush,
respectively. We assume that only writes and flushes executed by the concurrent object
in question are recorded in the histories, and that writes are executed between matching
invocations and responses. Hence, we say such a history h is legal iff h|Event is legal and ω(p)
only occurs in h when p is executing some operation. Legality of histories of this type are
also extension closed.

For Step 2, we say an operation call that completes after executing l writes remains active
until each of these l writes have been flushed, or until the return occurs, whichever is later.
To formalise this, we define a function num, which counts the number of events in h that
satisfy event predicate ep (mapping an event to a boolean) up to and including index m:

num(ep,m, h) =̂ size({h(k) | 0 ≤ k ≤ m ∧ ep(h(k))})

The order condition for weak flush consistency counts the number of writes, say l, that have
occurred when an operation call, say L, by process p returns. Any operation invoked after
these l flushes have occurred may not be reordered with L. Thus, we obtain:

wflc ord(h, f ) =̂ ∀m,n : dom f •(
∃ p : P • m < n ∧ retp?(h(m)) ∧ inv?(h(n)) ∧

num(writep?,m, h) ≤ num(flushp?,n, h)

)
⇒ f (m) < f (n)

Note that num(writep?,m, h) counts all writes by process p since initialisation.
For Step 3, we say that completed operation calls whose last write has been flushed

must commit. Weak flush consistency has two commitment conditions. The first condition,
wflc com1, states that an operation call is committed whenever all writes executed by that
operation call have been flushed and the call returns. The second, wflc com2, requires than
an operation call L that executes l writes that are not flushed before L returns is committed
whenever l flushes of the calling process have occurred.

wflc com1(h, f ) =̂ ∀n : dom h •(
∃ p : P • retp?(h(n)) ∧

num(flushp?,n, h) = num(writep?,n, h)

)
⇒ n ∈ dom f

wflc com2(h, f ) =̂ ∀ k,n : dom h •(
∃ p : P • n < k ∧ retp?(h(n)) ∧ flushp?(k)

num(writep?,n, h) = num(flushp?, k, h)

)
⇒ n ∈ dom f

I Definition 14. A concurrent object C implementing an abstract object A is weakly flush
consistent iff C |=A WFLC , where WFLC =̂ VMF ∧ wflc ord ∧ wflc com1 ∧ wflc com2.

I Example 15. Consider the histories below, neither of which is linearizable, where ωk(p)
denotes k consecutive ω(p) events.
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〈inv(w, put, x), ω3(w), ret(w, put), φ2(w), inv(q, steal), φ(w), ω3(q),
φ3(q), ret(q, steal, emp)〉

(2)

〈inv(w, put, x), ω3(w), ret(w, put), φ3(w), inv(q, steal), ω3(q), φ3(q),
ret(q, steal, emp)〉

(3)

History (2) is weakly flush consistent; the steal operation is invoked before the final flush of
the put occurs, and hence the active intervals of the put and steal overlap, allowing the
steal to be ordered before the put, i.e., (2) is flush consistent with respect to sequential
history 〈inv(q, steal), ret(q, steal, emp), inv(w, put, x), ret(w, put)〉. On the other hand, (3)
is not weakly flush consistent because the active intervals of put and steal do not overlap,
namely, the steal is invoked after the final flush of put has occurred, and hence, cannot be
ordered before the put.

4.5 Sequential Consistency for TSO Memory
Both weak ξ-quiescent consistency and weak flush consistency allow operation calls for the
same process to be reordered, i.e., sequential consistency may be violated. If sequential
consistency is required, the following history should be judged incorrect even though both
put operation calls are “active” over the interval in which the steal occurs.

HC3 =̂ 〈inv(w, put, x), ret(w, put), inv(w, put, y), ret(w, put),
inv(q, steal), ξ(q), ret(q, steal, y), ξ(q), ξ(w)〉

Because put operations add elements to the end of the deque and steal operations remove
elements from the beginning, the only way to explain HC3 is by reordering the first two put
calls, violating sequential consistency. It turns out that sequential consistency is an important
property. In fact, it is equivalent to observational refinement between a concrete object
and its abstract specification for data independent clients [15]. The notion of observational
refinement is based on observing the initial and final values of variables of client programs.

An implementation C of a data structure is an observational refinement of an imple-
mentation A of the same data structure, if every observable behaviour of any client
program using C can also be observed when the program uses A instead. [15, pg 412]

Data independence states that each process accesses only local variables or resources in its
client operations. We therefore define sequentially consistent versions of weak ξ-quiescent
consistency and weak flush consistency. This is straightforward in our framework and involves
adding the already defined order condition sc as a conjunct, i.e., the sequentially consistent
versions are obtained via a different instantiation of Step 2.

I Definition 16. Suppose C is a concurrent object implementing an abstract object A. We
say C is

ξ-quiescent consistent iff C |=A QCξ, where QCξ =̂ WQCξ ∧ sc
flush consistent iff C |=A FLC , where FLC =̂ WFLC ∧ sc.

It is possible to prove that the deque in Fig. 1 is flush consistent under TSO memory.
The argument is complex and combines the most sophisticated types of reasoning from
linearizability proofs (i.e., those that require reasoning about future behaviour [29, 21] and
about linearization points in other operations [11, 8]) with the additional complexities of
reasoning about delayed operations [12, 32]. We use the term commit point to refer to the
atomic program statement that causes the effect of an operation to be felt abstractly; this is
analogous to a linearization point in a linearizability proof [10, 8]. We provide a proof sketch
for this argument below.
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I Proposition 17. The work-stealing deque in Fig. 1 is flush consistent under TSO with
respect to the abstract deque in Fig. 2.

Proof. A standard representation relation is used to relate the concrete array used by Fig. 1
with the abstract sequence in Fig. 2. We assume the existence of a program counter variable
pcp for each process p, with value idle if p is currently not invoking any operation and value
P1, . . . ,P3,S1, . . .S7,T1, . . .T14 corresponding to the labels in Fig. 1, otherwise.

To cope with delayed operations, we record operation calls that have returned without
committing in an auxiliary variable g ∈ P → seqEvent. Each invocation by process p
appends a corresponding invoke event in g(p), and each return that has not committed
appends the corresponding return event to g(p). Therefore, g(p) records the sequence
of uncommitted calls by p in real-time order. To ensure sequential consistency, pending
operations are committed by process p by removing the first two elements from g(p) (which
must be an invocation/return), then executing the corresponding operation abstractly. The
commit points of the algorithm are as follows.

A flush by a worker process of a pending write to Tail when pcw ∈ {idle,T1,T2}. The
only possible pending operation in this case is put, which is committed.
A flush by a worker process of a pending write to Tail when pcw = T3, which commits the
first pending operation g(w). There are two cases depending on the value of head(g(w)).
If head(g(w)).i = put, then the flush corresponds to committing a completed put (that
has already returned). Otherwise, there are 3 further cases. The two simpler cases are:
(i) if Tail > Head in the post state, then the flush must commit the currently executing
take operation, and (ii) if Tail < Head, then the flush must commit a take that returns
emp. The difficult case is if Tail = Head in the post state, which signifies the case where
there is only one task in the deque, causing the current take operation to race with a
steal operation executed by another process. If there is an active steal operation at S4
or S5, there are two possible outcomes, depending on the future execution of the program:

the active steal operation succeeds and the take returns emp (via T14), or
the take succeeds and the steal tries again.

One of the two outcomes must be determined at this flush because any other operations
steal invoked (by a third process) after the flush has been executed will return emp.
Note that if there is no active steal operation at line S4 or S5, then the only possible
future outcome is that the take succeeds.
The fence at T3. This commits all pending put operations. Then, commits the executing
take, or a take and a steal depending on whether Tail > Head, Tail < Head or
Tail = Head holds in the post state, as in the flush case described above.
A successful cas at S6. Assuming the steal is executed by a process p 6= w, there are
two cases, depending on the value of g(p). If g(p) = 〈inv(p, steal,⊥)〉, then the steal has
not yet been committed earlier, and the successful cas commits the steal. Otherwise,
g(p) = 〈ret(p, steal, tout)〉 holds, i.e., the steal has been committed earlier (by a flush
or fence as above), and hence, the cas is not a commit point.

J

Interestingly, the cas at T12 is not a commit point because the take operation must have
already been committed either at the fence at T3 or an earlier flush.

Using a weaker condition than linearizability has allowed us to prove correctness with
respect to a standard sequential abstract specification. This differs from [6, 17], where
linearizability is established, but the abstract specification differs from what one would
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expect. In particular, [6] uses an abstraction that executes using TSO semantics, whereas
[17] includes additional non-determinism to cope with buffer effects at the concrete level.

4.6 Fence Consistency
ξ-quiescent consistency is simple, but provides relatively weak guarantees about a program’s
behaviour; flush consistency on the other hand is a conservative weakening of linearizability
(providing strong behavioural guarantees), but is relatively complex as both writes and flushes
need to be recorded in a history. Following the formalisations in the preceding sections, we
identify a new correctness condition, fence consistency, that is weaker than flush consistency,
but stronger than ξ-quiescent consistency. The condition aims to capture the fact that in
many cases, if the buffer of a process p becomes empty at say index m of a history, then
completed operation calls for p before m should not be reordered with operations invoked
after m. This means that the event corresponding to a “buffer becoming empty” is a barrier
to reordering, which is precisely the intention of a programmer specified fence instruction.
This condition is potentially useful for developing algorithms that offer more optimisation
possibilities than flush consistency.

Fence consistency has the characteristics of both flush consistency and ξ-quiescent con-
sistency. Like ξ-quiescent consistency, for Step 1 we instantiate EventC ::= Event | ξ〈〈P〉〉
and record ξ(p) for p ∈ P events in the same way. Step 2 is similar to flush consistency:
we say an operation call is active until the buffer of the calling process is empty; operation
calls may only be reordered if the intervals in which they are active overlap. For Step 3, we
require operation calls executed by process p to be committed when p’s buffer becomes empty.
Finally, we require sequential consistency. The ordering condition for fence consistency states
that if ξ(p) occurs at an index k of history h, then any operation calls of process p completed
(i.e., returned) before k are not reordered with an operation call by any process invoked after
k, i.e.,

fc ord(h, f ) =̂ ∀m,n : dom f • ret?(h(m)) ∧ inv?(h(n)) ∧
(∃ k : dom h • m < k < n ∧ empty?(h(k)) ∧ h(m).pr = h(k).pr)
⇒ f (m) < f (n)

Furthermore, if ξ(p) occurs at an index k of history h, then all completed operation calls of
p occurring before k must have been committed, i.e.,

fc com(h, f ) =̂ ∀n, k : dom h • n < k ∧ ret?(h(n)) ∧ empty?(h(k)) ∧
h(n).pr = h(k).pr ⇒ n ∈ dom f

I Definition 18. A concurrent object C implementing an abstract object A is fence consistent
iff C |=A FC , where FC =̂ VMF ∧ sc ∧ fc ord ∧ fc com.

I Example 19. In a fence consistent history, ξ(p) does not prevent an operation call for p
that is still executing from being reordered. This is for good reason. For example, consider
the following history of the Chase-Lev deque:
〈inv(w, put, x), ξ(w), ret(w, put), inv(q, steal), ret(q, steal, emp), ξ(q), ξ(w)〉 (4)

Here, we know that even though an ξ(w) occurs between inv(w, put, x) and ret(w, put),
process w’s buffer is non-empty when the put returns because ret(w, put) is not immediately
followed by ξ(w). Therefore, a steal operation may read an old value of Tail. Fence
consistency states that the put operation is active until the second ξ(w) occurs, allowing (4)
to be judged consistent with respect to to the sequential history:

〈inv(q, steal), ret(q, steal, emp), inv(w, put, x), ret(w, put)〉 2
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I Example 20. Fence consistency does not require an operation call to commit unless ξ(p)
occurs after the operation call has returned. For example, the history
〈inv(w, put, x), ξ(w), ret(w, put), inv(q, steal), ret(q, steal, emp), ξ(q)〉 (5)

is fence consistent with respect to history 〈inv(q, steal), ret(q, steal, emp)〉, where the effect
of the put has not yet been reflected abstractly.

The next two theorems establish that fence consistency is both non-blocking and composi-
tional. The non-blocking property pertains to total operations, which are operations for which
a return is well-defined in any system state. A correctness condition is non-blocking iff total
operations can always complete, i.e., are never prevented from completing by the correctness
condition itself. A correctness condition R is compositional if for any multi-object system,
the system as a whole satisfies R iff each object of the system satisfies R, which ensures
that R can be proved in a modular manner. The lack of compositionality of sequential
consistency was a key motivation for Herlihy and Wing to introduce linearizability, which is
compositional [23], and hence, we see compositionality as being an important property.

I Lemma 21. Suppose m ∈ domh such that pi(m, h) holds, h(m).i is a total operation, and
e is an event such that matching(h(m), e) holds. Then, FC (h, f )⇒ ∃ f ′ • FC (h a 〈e〉, f ′).

I Lemma 22. Suppose h is a history, f is a mapping function, hr is a sequence of returns
and hr ′ a permutation of hr. Then FC (h a hr , f )⇒ ∃ f ′ • FC (h a hr ′, f ′).

I Theorem 23 (Fence consistency is non-blocking). Suppose FC (he, f ), where he extends
history h and f is a matching function. If m ∈ domh is an index such that pi(m, h) and
h(m).i is a total operation, then there exists an event e such that matching(h(m), e), an
extension he′ of h a 〈e〉, and a mapping function f ′ such that FC (he′, f ′).

Proof. Suppose he = h a hr . Because h(m).i is total, the return event e is well defined. We
must now show that he is fence consistent.

If m ∈ dom f , then because pi(m, h) ∧ vmf com(he, f ) holds, e ∈ ran hr . Furthermore,
by Lemma 22, there must exist an hr ′ such that ran(hr ′) = ran(hr)\{e} (i.e., 〈e〉a hr ′ is
a permutation of hr) and FC (h a 〈e〉a hr ′, f ′) holds.
Otherwise, i.e., m 6∈ dom f , we have

FC (he, f )

⇒∃ f ′ • FC (he a 〈e〉, f ′) , by Lemma 21

⇔∃ f ′ • FC (h a hr a 〈e〉, f ′) , definition of he

⇔∃ f ′′ • FC (h a 〈e〉a hr , f ′) , Lemma 22 J

Compositionality refers to histories of multiple concurrent objects [22]. To formalise
this, one must consider histories in which the object corresponding to each event may be
distinguished, and hence the event types above must be extended with object names. We
assume e.obj returns the object corresponding to event e. For an object z and history h, we
let h|z denote the subhistory of h with all events of object z. Prior to our new result that
fence consistency is compositional (Theorem 24), we give a new proof of compositionality for
linearizability.

I Theorem 24 (Linearizability is compositional). For any history h, there exists an extension
he of h and a mapping function f such that LIN (he, f ) if, and only if, for each object z, there
exists an extension hez of h|z and a mapping function fz such that LIN (hez , fz).
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Figure 6 Assumed minimal reordering.
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Figure 7 Swapped ordering.

Proof. The only if direction is trivial.
For the other direction, for each object z, suppose LIN (hez , fz) holds for some extension

hez of h|z and mapping function fz . The proof is by contradiction. Suppose that for every
extension he of h, and every mapping f to a sequential history, we have:

¬LIN (he, f )
= ¬VMF(he, f ) ∨ ¬lin(he, f ) ∨ ¬total(he, f ) , by definition
= VMF(he, f ) ∧ total(he, f )⇒ ¬lin(he, f ) , by logic

Thus, we assume VMF(he, f ) ∧ total(he, f ) and prove ¬lin(he, f ).
For ¬lin(he, f ) to hold, by definition, there must exist indices n, m′ in he such that

n < m′ ∧ ret?(he(n)) ∧ inv?(he(m′)) ∧ f (n) > f (m′), i.e., n and m′ are indices of operation
calls where he(n) returns before he(m′), and f reorders these calls when mapping to hs.
Suppose he(n).obj = z and he(m′).obj = z ′, and let an and am′ be the operation calls
corresponding to he(n) and he(m′) in hs, respectively. If z = z ′, we get an immediate
contradiction to the assumption that there exists an hez and fz such that LIN (hez , fz) holds.
Therefore, we assume z 6= z ′.

Now, pick an f such that the number of reordered operation calls that invalidate lin(he, f )
are minimal, then pick n,m′ ∈ dom f such that f (n)− f (m′) is minimal and n, m′ violate
lin(he, f ). Because ret?(he(n)) ∧ inv?(he(m′)), the smallest possible value of f (n)− f (m′) is
3, which occurs if, in hs, the operation call an occurs immediately after am′. However, in
this case, because z 6= z ′, operation calls an and am′ commute, i.e., there must exist another
valid sequential history in which the order of an and am′ are swapped, and we obtain a
contradiction to f (n) > f (m′). Therefore, assume f (n)− f (m′) > 3, i.e., some finite number
of operation calls a1, a2, . . . ak , occur between f (m′) and f (n) in hs.

Consider a1, and suppose the invocation/return events corresponding to a1 occur at
m1 and n1 in he, respectively. We must have m1 < n ∧ m′ < n1, otherwise, we obtain
a contradiction to minimality of f (n) − f (m′) (see Fig. 6). Let y = a1.obj be the object
corresponding to a1. We now have two cases.

Case y 6= z ′. Because operations of different objects commute, calls a1 and am′ may be
swapped in hs, to produce another valid sequential history hs′ and mapping f ′ such that
f ′(n)− f ′(m′) < f (n)− f (m′), contradicting minimality of f (n)− f (m′) (see Fig. 7).
Case y = z ′. Here, a1 and am′ may not be swapped, however, we must have a2.obj =
a3.obj = · · · = ak .obj = z ′, otherwise, we may swap the first ai such that ai .obj 6= z ′ with
each of am′, a1 . . . ai−1 to again contradict minimality of f (n)− f (m′). However, we now
have ak .obj = z ′ and an.obj = z, i.e., ak .obj 6= an.obj, so ak and an may be swapped to
produce a valid sequential history, giving us our final contradiction. J
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I Theorem 25 (Fence consistency is compositional). For any history h, there exists an
extension he of h and a mapping function f such that FC (he, f ) if, and only if, for each
object z, there exists an extension hez of h|z and a mapping function fz such that FC (hez , fz).

Proof. The only if direction is trivial.
For the other direction, for each object z, suppose FC (hez , fz) holds for some extension

hez of h|z and mapping function fz . The proof is by contradiction. Suppose that for every
extension he of h, and every mapping f to a sequential history, we have:

¬FC (he, f )
= ¬VMF(he, f ) ∨ ¬sc(he, f ) ∨ ¬fc ord(he, f ) ∨ ¬fc com(he, f ) , by definition
= VMF(he, f ) ∧ sc(he, f ) ∧ fc com(he, f )⇒ ¬fc ord(he, f ) , by logic

Assuming VMF(he, f ) ∧ sc(he, f ) ∧ fc com(he, f ) holds, we attempt to prove ¬fc ord(he, f ).
For ¬fc ord(he, f ), by definition, there must exist indices n, m′ in he such that

n < l < m′ ∧ f (n) > f (m′) (6)
ret?(he(n)) ∧ empty?(he(l)) ∧ inv?(he(m′)) ∧ he(n).pr = he(l).pr (7)

By (6), f reorders operation calls he(n) and he(m′), and by (7), n, l and m′ are indices
corresponding to a return, empty and invocation, respectively and both he(n) and he(l)
correspond to the same process. We assume he(n).obj = z and he(m′).obj = z ′, and let an
and am′ be the operation calls corresponding to he(n) and he(m′) in hs, respectively. If
z = z ′, we get an immediate contradiction to the existence of an extension hez of h|z and
mapping function fz such that FC (hez , fz). Therefore, we assume z 6= z ′.

Pick an f as well as indices n and m′ as in Theorem 24. For the minimal value of
f (n)− f (m′) (i.e., if f (n)− f (m′) = 3) we obtain a contradiction as in Theorem 24. Therefore,
assume f (n) − f (m′) > 3, i.e., some finite number of operation calls a1, a2, . . . ak , occur
between f (m′) and f (n) in hs. Consider ak , and suppose the invocation/return events
corresponding to ak occur at mk and nk in he, respectively. We have that ak .obj 6= z
(otherwise we get a contradiction to minimality by swapping ak and am′) and cases:

If l < mk or nk < l, because ak .obj 6= z we obtain an immediate contradiction to the
assumption that an and am′ are different objects such that f (n)− f (m′) is minimal.
Else if mk < n ∧ m′ < nk , the proof proceeds as in Theorem 24.
Else if n < mk < l, then ak .obj = z, otherwise we can swap ak and an to contradict
minimality of f (n) − f (m′). In fact ai .obj = z must hold for all 1 ≤ i ≤ k. But now
am′.obj 6= a1.obj, and hence can be swapped, once again contradicting minimality.
Finally, if l < nk < m′, we obtain our final contradiction to minimality of f (n)− f (m′)
using a similar argument to n < mk < l. J

5 A Correctness Condition Hierarchy

As we’ve seen, there are several different correctness conditions that are appropriate for
different types of algorithms over different memory architectures. The literature includes
many others (e.g., k-linearizability [20], eventual consistency [36], quantitative quiescent
consistency [25]), which we have not covered in this paper.

Using our framework, for the conditions we have considered, it is possible to formally
establish a hierarchy based on order and commitment properties. We first link ξ-quiescent,
fence and flush consistency. Fence and flush consistency are defined on histories that
consider slightly different aspects of a system’s behaviour. To relate the two conditions, we
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consider histories in which writes and flushes as well as buffer empty events are recorded.
To this end, we define Eventξ ::= Event | ξ〈〈P〉〉, Eventφ ::= Event | ω〈〈P〉〉 | φ〈〈P〉〉 and
EventC ::= Eventξ | Eventφ, with the understanding that 〈φ(p), ξ(p)〉 is concatenated
to the history if the flush φ(p) causes the buffer of process p to become empty, while
〈ret(p, op, out), ξ(p)〉 is concatenated whenever ret(p, op, out) occurs and the buffer of p is
empty. A history h is legal if both h|Eventφ and h|Eventξ are legal. This definition of legal is
also extension closed.

I Proposition 26.
1. FLC V FC, but not vice versa, and
2. FC V QCξ, but not vice versa.

Proof.
1. The forward direction follows by expanding the definitions of FLC and FC , then using

the fact that both wflc ord V fc ord and wflc com1 ∧ wflc com2 V fc com. To show the
other direction does not hold, consider the following history, where p, q ∈ P and enq, deq
are enqueue and dequeue operations on a concurrent queue, respectively. The history is
clearly a legal fence consistent history, but it is not flush consistent.

〈inv(p, enq, 1), ω(p), ret(p, enq), inv(p, enq, 2), ω(p), φ(p), inv(q, deq),
ret(p, enq), φ(p), ξ(p), ret(q, deq, emp), ξ(q)〉

2. The forward direction follows by expanding the definitions of FC and WQCξ, then using
the fact that both fc ord V wqc ordξ and fc com V wqc comξ hold.
To show the other direction does not hold, consider the following history, where q1, q2, q3 ∈
P and enq, deq are enqueue and dequeue operations on a concurrent queue, respectively.
The history is clearly ξ-quiescent consistent, but not fence consistent.

〈inv(q1, enq, 1), ret(q1, enq), inv(q2, enq, 2), ξ(q1), inv(q3, enq, 3), ret(q2, enq),
ξ(q2), ret(q3, enq), ξ(q3), inv(q1, deq), ret(q1, deq, 3)〉

J

It is also possible to link correctness conditions on totally ordered memory with those on
TSO memory. It is straightforward to prove the following propositions.

I Proposition 27. If h is legal, then for any mapping function f , LIN (h, f )⇒ FLC (h, f ).

One may think of totally ordered memory as being a special case of TSO memory where
the buffer is always empty. Here, using the strategy for recording histories of type Historyξ
described in Section 4.2, under totally ordered memory, the return for each process p is
immediately followed by ξ(p), i.e.,

ret emp(h) =̂ ∀n : dom h, p : P • retp?(h(n))⇒ n + 1 ∈ dom h ∧ emptyp?(h(n + 1))

I Proposition 28. If h is legal and ret emp(h) holds, then for any mapping function f ,
LIN (h, f )⇔ FC (h, f ) and QC (h, f )⇔WQCξ(h, f ).

One may also think of totally ordered memory as being a type of TSO memory where
flushes occur immediately after each write. Here, using the strategy for recording histories of
type Historyφ defined in Section 4.4, we obtain the following property, which states that for
any process p, a flush for p immediately follows each write by p.

imm fl(h) =̂ ∀n : dom h, p : P • ωp?(h(n))⇒ n + 1 ∈ dom h ∧ φp(h(n + 1))

I Proposition 29. Suppose h ∈ Historyφ is legal and imm fl(h) holds. Then for any mapping
function f , LIN (h, f )⇔ FLC (h, f ).
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QC (h, f )

SC (h, f )

LIN (h, f )

ret emp(h)

imm fl(h)

FC (h, f )

FLC (h, f )

QCξ(h, f )

Partial commitmentTotal commitment

WQCξ(h, f )

WFLC (h, f )
sc(h, f )

sc(h, f )ret emp(h)

Figure 8 Reltionships between correctness conditions for a history h and mapping function f .
The arrows represent implication with dashed versions representing conditional implication; the
label on each arrow represents the required condition. The conditions within solid boxes ensure
sequential consistency.

An overview of the hierarchy is presented in Fig. 8, where we assume h is a legal history
and f a mapping function. Each solid arrow in Fig. 8 denotes implication, and each dashed
arrow denotes conditional implication with the condition corresponding to the label. Note
that Fig. 8 allows one to easily deduce transitivity properties, e.g., if FC (h, f ) and ret emp(h)
hold, then SC (h, f ) holds.

6 Conclusions

Correctness of a concurrent object is defined with respect to a correctness condition, which
is a relation on its behaviours against those of a sequential specification object. Algorithms
implementing such objects must cope with the additional challenges of distributed memory;
the low-level effects of write buffers in most modern processors (e.g., x86, ARM) only provide
relaxed memory guarantees. The end goals of programmers that use concurrent objects and
designers that develop algorithm for concurrent objects differ, a large number of correctness
conditions have been defined in the literature. We have provided a framework within which
these can be formalised, which in turn allows the relative strengths of different conditions to
be compared.

Within our framework, we have defined well-known conditions for totally ordered memory
(sequential consistency, linearizability and quiescent consistency), as well as newly developed
conditions for TSO memory (weak ξ-quiescent consistency and weak flush consistency).
To characterise implementations that are also sequentially consistent, we define stricter
variations of both conditions that guarantee sequential consistency. We identify and develop
a new compositional condition for TSO architectures, fence consistency, which is weaker than
flush consistency, but stricter than ξ-quiescent consistency. Notable in our framework is the
capability of specifying partial commitment properties, which provide the flexibility needed
to cope with delayed operation effects due to relaxed memory.

The study of correctness conditions for concurrent objects under relaxed memory is new [12,
32, 35, 17, 6]. Of these, [12, 17, 6, 35] consider linearizability, but [17, 6] facilitate optimisation
(via fence removal) by weakening the abstract specification, while [12, 35] weaken definition
of linearizability so that the interval of execution for an operation is expanded. We believe
flush consistency to be equivalent to the weaker definition of linearizability given in [35],
however because Travkin et al. [35] do not provide a formal definition, this is difficult to verify.
Jagadeesan et al [24] provide a framework that enables one to develop correctness conditions
for many different relaxed memory models by decoupling buffer effects from the correctness
conditions at hand, however, they only formalise sequential consistency and linearizability.
More recently, Batty et al. [5] have developed methods for proving observational refinement
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directly for C11 specifications, which are weaker than TSO. They develop a compositional
correctness condition that is stricter than linearizability when C11 is restricted to totally
ordered behaviours. Using our framework to formalise their correctness condition to compare
them to the conditions in this paper is a subject of further study. Future work will also
consider correctness conditions for software transactional memory [19].

This paper has mainly considered correctness conditions from an algorithm designer’s
perspective. Satisfying the requirements of programmers introduces another dimension to
this problem (e.g., [18]). Our work does not differ from, say [17, 6], in that observational
refinement is only assured for data independent clients. Extending our results to cope with
other real-world issues such as ownership transfer (like [17, 6]) is a subject of future work.
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