
Modular Termination Verification
Bart Jacobs1, Dragan Bosnacki2, and Ruurd Kuiper2

1 iMinds-DistriNet, Department of Computer Science, KU Leuven, Belgium
bart.jacobs@cs.kuleuven.be

2 Eindhoven University of Technology, The Netherlands
{d.bosnacki,r.kuiper}@tue.nl

Abstract
We propose an approach for the modular specification and verification of total correctness proper-
ties of object-oriented programs. We start from an existing program logic for partial correctness
based on separation logic and abstract predicate families. We extend it with call permissions
qualified by an arbitrary ordinal number, and we define a specification style that properly hides
implementation details, based on the ideas of using methods and bags of methods as ordinals,
and exposing the bag of methods reachable from an object as an abstract predicate argument.
These enable each method to abstractly request permission to call all methods reachable by it
any finite number of times, and to delegate similar permissions to its callees. We illustrate the
approach with several examples.

1998 ACM Subject Classification F.3.1 Logics and Meanings of Programs

Keywords and phrases Termination, program verification, modular verification, separation logic,
well-founded relations

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.664

1 Introduction

Software plays a significant role in ever more areas of human activity, and in ever more
applications with high reliability requirements, where failures caused by software defects
could affect human safety, system security, or mission success. In many cases, software
verification through testing provides insufficient assurance of the absence of defects. Formal
program verification, where the program’s source code is analyzed to obtain mathematical
certainty that all of a program’s possible executions satisfy certain formalized requirements,
is in such cases a promising complementary approach.

Formal program verification approaches can be roughly divided into two categories: whole-
program approaches and modular approaches. In a whole-program approach, a complete,
closed program must be available before any results can be obtained. In such an approach,
a method call is verified by verifying the method’s implementation, taking into account
the particular context of the call. If a call is dynamically bound, all potential callees are
inspected. A major advantage of a whole-program approach is that typically, besides the
source code itself and a formalization of the overall correctness property being verified, little
or no additional user input is required. A disadvantage is that modifying any part of the
program invalidates the results obtained.

In a modular approach, on the other hand, the object of verification is not whole programs,
but program modules, coherent sets of classes and interfaces, developed independently, that
satisfy a well-defined module specification. A module need not be closed: it may refer
to classes and interfaces not defined by the module itself, but by other modules which it
imports. A module should use only those elements (classes, interfaces, methods) from an

© Bart Jacobs, Dragan Bosnacki, and Ruurd Kuiper;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 664–688

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.664
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B. Jacobs, D. Bosnacki, and R. Kuiper 665

imported module that are specified as exported (or public) by that module’s specification;
only those elements are guaranteed to still be present in future versions of the imported
module. Verifying a module means proving that it satisfies its specification, assuming that
imported modules satisfy theirs.

In a modular approach, a method call is verified by assuming that it satisfies the called
method’s specification. If the call is dynamically bound, only the specification of the statically
resolved method is considered. Separately, it is checked that each overriding method satisfies
the specification of each method it overrides. In this approach, after modifying a method,
it is sufficient to check that the method still satisfies its specification, to ensure that any
properties verified previously still hold.

A major issue in modular verification is the question of the specification approach: what
should a module specification look like? The approach should be sufficiently expressive to be
able to capture precisely the dependencies that a module’s clients (i.e. those other modules
that import the module) may have upon it, but it should also be sufficiently abstract so
that proper information hiding is achieved: a module’s specification should not unnecessarily
constrain the current implementation or its future evolution. Any modification that does not
break clients should be allowed.

In recent years, great progress has been made in specification approaches for partial
correctness, the property that the program never reaches a incorrect state. However, we
are not aware of any existing approach for modular specification of total correctness of
object-oriented programs, the property that additionally the program terminates.

In this paper, we propose such an approach.
For sequential programs, termination means absence of infinite loops and absence of

infinite recursion. In the remainder of this paper, we assume the program has no loops; this
can be achieved by turning each loop into a recursive method.

The main difficulty in defining a specification approach for modular verification of
termination of object-oriented programs, is in dealing with dynamic binding. This can be
understood as follows. Firstly, we assume that the module import graph is acyclic. (That is,
no module directly or indirectly imports itself. If there is such a cycle, its members should
be consolidated into a single module.) This assumption allows us to think of the program
as consisting of layers, such that modules only import modules from lower layers. In the
absence of dynamic binding, all method calls are either internal within a module, or descend
into a lower layer. (Indeed, a module should refer only to the classes and interfaces it defines
itself and the ones it imports.) Therefore, any cycle in the call graph is necessarily internal to
a module, so proving absence of infinite recursion is not directly a module specification issue.
Indeed, the number of non-intra-module calls in a call stack below a given call is bounded by
the static depth of the caller, i.e. the number of layers below it.

In contrast, in the presence of dynamic binding, if we define an intra-module call as a call
where the caller module knows statically (based on its specification and the specifications of
the modules it imports) that the callee is internal to itself, then the number of non-intra-
module calls in a chain of calls is not bounded, so absence of infinite intra-module recursion
does not imply absence of infinite recursion. This is the main problem addressed in this
paper.

For example, consider the program of Fig. 1. In this program, we can consider interface
RealFunc as well as classes Math, Identity, and Loopy to each constitute a separate module,
where Math imports RealFunc, and Identity and Loopy each import both RealFunc and Math.
Notice that none of these modules contain intra-module method calls; nonetheless, whereas
method Identity.test correctly returns the derivative of the identity function at argument 42,

ECOOP’15

666 Modular Termination Verification

interface RealFunc {
float apply(float x);
}
class Math {

static float derivative(RealFunc f,float x)
{ f.apply(x + 1)− f.apply(x) }
}

class Identity implements RealFunc {
float apply(float x) { x }
static float test()
{ Math.derivative(new Identity(), 42) }
}
class Loopy implements RealFunc {

float apply(float x)
{ Math.derivative(this, x) }
static float test()
{ Math.derivative(new Loopy(), 42) }

}

Figure 1 An example program without intra-module recursion but with infinite inter-module
recursion.

method Loopy.test performs infinite inter-module recursion between methods Loopy.apply
and Math.derivative.

In this paper, we propose:
a program logic for expressing module specifications that specify total correctness proper-
ties of methods exported by these modules, such as termination of method Identity.test;
a corresponding proof system for verifying modules against their specifications that is
sound, i.e. if a proof exists in this proof system for each module of a program, then
each method satisfies its specified total correctness properties, implying that the proof
system does not allow the verification of a specification that states that method Loopy.test
terminates; also, the proof system is modular, meaning that each module’s proof uses only
the specifications, not the implementations of imported modules, and does not depend at
all on other modules, such that the proof of Math.derivative uses only the specification of
module RealFunc, and does not depend on the existence or non-existence, or the content,
of modules Identity and Loopy, and the proof of Identity.test uses only the specification of
Math.derivative and not its implementation; and
a specification style for writing specifications in this program logic such that they perform
proper information hiding, e.g. such that method Math.derivative’s specification is satisfied
equally by alternative implementations that are more complex (and more accurate).

Our approach is based on the observation that any dynamically bound call is a call on
an object. This object, together with the objects reachable from it via field dereferences,
constitutes a data structure. At any point during program execution, the data structures
existing in memory at that point are of finite size, and were composed of objects of classes
from different modules in a finite number of composition steps. The core idea of our approach,
then, is to associate with each data structure, at each point in time, a dynamic depth. This
is roughly the number of objects in the data structure. More precisely, to allow each module,
even while operating on a data structure, to create new data structures composed from
classes in lower-layer modules and perform calls on them, we track each object’s module,
so the dynamic depth is (more or less) the multiset of modules contributing objects to the
data structure. By using these dynamic depths as part of a recursion measure, we obtain a
specification style that performs proper information hiding.

The rest of this paper is structured as follows. To define our approach precisely, we start
from an existing modular specification and verification approach for partial correctness of

B. Jacobs, D. Bosnacki, and R. Kuiper 667

object-oriented programs, based on separation logic to deal with aliased mutable memory
and abstract predicate families to achieve properly abstract specifications. We recall this
existing approach in Sec. 2. In Sec. 3, we extend the program logic of this partial correctness
approach with call permissions to obtain a program logic for total correctness. This logic
is based on the well-known tools for reasoning about termination, well-founded relations
and ordinal numbers. However, this logic is not the main contribution of the paper. The
main issue addressed in this paper is: how to use this logic to write module specifications
that are both expressive and abstract? In Sec. 4, in three steps we build up our modular
specification approach, and we illustrate and motivate it through a sequence of examples. In
Sec. 5, we briefly discuss how we added support for our approach to our program verification
tool VeriFast. We discuss related work in Sec. 6 and we conclude in Sec. 7.

2 Separation logic and abstract predicate families

We start from an existing approach for modular specification and verification of partial
correctness properties of object-oriented programs, based on separation logic [9, 2] and
abstract predicate families [10]. We introduce the approach informally in Sec. 2.1. We
formally define the approach in Sec. 2.2.

2.1 An Example
We present our approach in the context of a simple Java-like programming language. Consider
the program in Fig. 4. It defines an interface IntFunc, two classes, PlusN and Twice, that
implement the interface, and a class Program with a method main that composes a complex
object and performs a dynamically bound call on it. An object new PlusN(y) represents
a function that takes an integer x and returns the value x + y. An object new Twice(f),
where f is itself an IntFunc object, represents a function that maps a value x to f(f(x)).

Annotations, which have no effect on the run-time behavior of the program and serve
only for modular specification and verification, are shown on a gray background. Besides the
presence of annotations, the main differences of our programming language with Java are
inspired by Scala: fields are declared in a parenthesized list after the class name instead of in
the body of the class; new expressions specify an initial value for each field; and the final
expression in a method body determines the return value, without the need for a return
keyword. (Note: unlike in Scala, field names are not in scope in the class body; to access a
field f , one must write this.f .)

To enable modular verification, each method has a contract, i.e. a specification consisting
of a precondition and a postcondition (prefixed by keywords req and ens, respectively).
Note, however, that no contract is declared explicitly for methods apply of classes PlusN
and Twice; they inherit their contract from method apply of interface IntFunc, which they
override.

While this example program does not perform heap mutation (i.e. it does not modify
any fields of any objects), our approach supports this fully. Therefore, method specifications
should specify not only what should be true on entry to the method and what should be
true on exit from the method, but also which object fields are modified by the method, and
which are not. This is known as the frame condition. For this purpose we use separation
logic. One way to understand separation logic, when applied to a Java-like programming
language with garbage collection, is by saying that it drops the assumption that reachable
objects are allocated. Furthermore, we drop the assumption that all fields of a given object
are allocated together. When verifying a program using separation logic, we need to prove

ECOOP’15

668 Modular Termination Verification

that whenever the program accesses a field, that field is allocated. As a result, a method’s
precondition needs to state which fields it expects to be allocated. Since a verified method
accesses only fields whose allocatedness is asserted by its precondition, we can infer that any
fields that are allocated at a given call site but whose allocatedness is not asserted by the
callee’s precondition, remain unchanged by the call.

For example, consider the following example program:

class Account(int balance) {
static void transfer(Account from,Account to, int amount)

req from.balance 7→ b1 ∗ to.balance 7→ b2;
ens from.balance 7→ b1− amount ∗ to.balance 7→ b2 + amount;

{
int bal1 := from.balance; from.balance := bal1− amount;
int bal2 := to.balance; to.balance := bal2 + amount;
}

}

This program transfers an amount of money between two bank accounts. The separation
logic assertion from.balance 7→ b1 asserts that field balance of object from is allocated and
has value b1. Such a points-to assertion is the only way in separation logic assertions to
specify the value of a field. This way, it is syntactically enforced that a separation logic
assertion does not refer to the value of unallocated fields.

A separating conjunction P ∗Q, where P and Q are separation logic assertions, asserts
that the heap (i.e. the set of allocated fields, with their values) can be split into two disjoint
parts (i.e. where all of the fields that are allocated in one part are not allocated in the other
part) such that P holds for one part, and Q holds for the other part. Therefore, it follows
from the precondition of transfer that from and to are not the same object.

Notice that the variables b1 and b2 are free variables of the contract of transfer. The
meaning of such free variables in this paper is as follows: free variables of the precondition
are implicitly universally quantified at the level of the contract; their scope extends to the
postcondition as well. That is, method transfer should satisfy its contract for all possible
values of b1 and b2. (Variables that are free only in the postcondition are existentially
quantified at the level of the postcondition; see the examples later in this paper.)

Verifying a method with precondition P , postcondition Q, and body B, means proving the
Hoare triple ` {P} B {Q} using the proof rules of the program logic. The proof rules of the
logic of this section are shown in Fig. 7. Notice that the precondition of proof rule Mutate
mentions only the field being modified. Information about other fields can be preserved using
rule Frame. Notice also that there is no proof rule for sequential composition. Indeed, we
treat a sequential composition c; c′ as a shorthand for a let command τ x = c; c′, for some
arbitrary type τ and some fresh variable x. As a result, we can derive the usual proof rule
for sequential composition:

Seq
` {P} c {Q} ` {Q} c′ {R}

` {P} c; c′ {R}

A proof tree for method transfer is shown in Fig. 2. We abbreviated the identifiers
in obvious ways. Notice that we treat assertions semantically; e.g. since the assertions
f.b 7→ b1−a ∗ t.b 7→ b2 and t.b 7→ b2 ∗ f.b 7→ b1−a are equivalent, we treat them as equal.

We show the same proof tree in the more convenient form of a proof outline in Fig. 3.

B. Jacobs, D. Bosnacki, and R. Kuiper 669

Lookup
(d)

Mutate
(e)

Let
(c)

Frame
(b)

Lookup
(h)

Mutate
(i)

Let
(g)

Frame
(f)

Seq
(a)

(a) {f.b 7→ b1 ∗ t.b 7→ b2}
int bal1 := f.b; f.b := bal1− a; int bal2 := t.b; t.b := bal2 + a
{f.b 7→ b1− a ∗ t.b 7→ b2 + a}

(b) {f.b 7→ b1 ∗ t.b 7→ b2} int bal1 := f.b; f.b := bal1− a {f.b 7→ b1− a ∗ t.b 7→ b2}
(c) {f.b 7→ b1} int bal1 := f.b; f.b := bal1− a {f.b 7→ b1− a}
(d) {f.b 7→ b1} f.b {f.b 7→ b1 ∧ res = b1}
(e) {f.b 7→ b1} f.b := b1− a {f.b 7→ b1− a}
(f) {f.b 7→ b1−a ∗ t.b 7→ b2} int bal2 := t.b; t.b := bal2 + a {f.b 7→ b1−a ∗ t.b 7→ b2 + a}
(g) {t.b 7→ b2} int bal2 := t.b; t.b := bal2 + a {t.b 7→ b2 + a}
(h) {t.b 7→ b2} t.b {t.b 7→ b2 ∧ res = b2}
(i) {t.b 7→ b2} t.b := b2 + a {t.b 7→ b2 + a}

Figure 2 Proof tree for method transfer.

{f.b 7→ b1 ∗ t.b 7→ b2}
{f.b 7→ b1} Frame
int bal1 := f.b;
{f.b 7→ b1 ∧ bal1 = b1}

f.b := bal1− a;
{f.b 7→ b1− a}
{f.b 7→ b1− a ∗ t.b 7→ b2}
{t.b 7→ b2} Frame
int bal2 := t.b;
{t.b 7→ b2 ∧ bal2 = b2}

t.b := bal2 + a
{t.b 7→ b2 + a}
{f.b 7→ b1− a ∗ t.b 7→ b2 + a}

Figure 3 Proof outline for method transfer.

ECOOP’15

670 Modular Termination Verification

By the soundness of the program logic, the fact that we succeeded in proving this Hoare
triple implies that every execution of method transfer that starts in a state that satisfies the
precondition (for certain values of b1 and b2) will not access unallocated memory and, if it
terminates, its final state satisfies the postcondition (for the same values of b1 and b2).

Returning now to the example program of Fig. 4, we see that method apply of class
PlusN accesses field this.y; therefore, its precondition should assert that this field is allocated.
However, since method apply overrides the corresponding method of interface IntFunc, we
have to conclude that the precondition of method apply in interface IntFunc should assert
that this.y is allocated. Clearly, it would not make sense for the interface method’s contract
to assert this directly. Rather, at the level of the interface, method apply’s precondition
should assert abstractly that whatever fields belong to the object’s representation should be
allocated. The specification approach supports this by means of abstract predicate families.
An abstract predicate is simply a named and possibly parameterized separation logic assertion.
An abstract predicate family is an abstract predicate declared at the level of an interface, and
defined at the level of each of the classes that implement the interface. Predicate IntFunc
declared in interface IntFunc is such an abstract predicate family.1 Its intended meaning at
the level of interface IntFunc is that it asserts the allocatedness of the fields belonging to the
IntFunc object, as well as any validity constraints over their values. It corresponds to what is
known as a class invariant in some other modular verification approaches. It is then natural
that method apply asserts this predicate in its precondition and in its postcondition.

Notice that class PlusN defines this predicate to assert allocatedness of field this.y. (The
underscore denotes existential quantification of the field value; i.e. the assertion does not
assert anything about the field value.) Therefore, method apply of class PlusN verifies.

Method apply of class Twice calls the apply method of the object pointed to by its f field.
Therefore, the definition of predicate IntFunc at the level of class Twice asserts not only the
allocatedness of field this.f, but also the predicate f.IntFunc.2

2.2 Formal Definition
We formally define the program logic for partial correctness that we start from.

The syntax of the programming language and the annotations is shown in Fig. 5.
We assume a set of interface names ι ∈ ItfNames and a set of class names C ∈ ClassNames.

The types τ of the programming language include at least the types int of integers and
bool of booleans, and the interface types ι and class types C. Correspondingly, the values
v ∈ Values of the programming language include at least the integers z ∈ Z and the booleans
b ∈ B, and the object references o ∈ ObjRefs. We will assume additional types and values
whenever useful for particular examples.

The expressions include the literal values v, the variable references x, and the pure
operations op(e) that map a sequence of argument values to a result value. The separation
logic assertions P include the boolean expressions e, asserting that the expression evaluates
to true; the points-to assertions e.f 7→ e, asserting that the indicated field is present in the

1 In this paper we adopt the convention of using the name of the interface also as the name of its abstract
predicate family (when it declares exactly one abstract predicate family, which is usually the case);
however, this is an arbitrary choice. Another reasonable name would be valid.

2 Note that such a recursive reference to predicate IntFunc inside a definition of IntFunc never causes
well-definedness problems, provided that each reference to a predicate inside a predicate definition is in
a positive position, i.e. not underneath a negation or on the left-hand side of an implication; in that
case, the set of predicate definitions of a program, seen as a system of equations, always has a solution.
See also Sec. 2.2.

B. Jacobs, D. Bosnacki, and R. Kuiper 671

class PlusN(int y) implements IntFunc {
predicate IntFunc() = this.y 7→ ;
int apply(int x)
{ int y := this.y; x + y }
static IntFunc createPlusN(int y)

req true; ens result.IntFunc();
{ new PlusN(y) }

}
class Program {

static void main()
req true; ens true;

{
IntFunc f1 := PlusN.createPlusN(10);
IntFunc f2 := Twice.createTwice(f1);
IntFunc f3 := Twice.createTwice(f2);
f3.apply(42)

}
}

interface IntFunc {
predicate IntFunc();
int apply(int x);

req this.IntFunc();
ens this.IntFunc();

}
class Twice(IntFunc f)

implements IntFunc {
predicate IntFunc() =

this.f 7→ f ∗ f.IntFunc();
int apply(int x) {

IntFunc f := this.f;
int y := f.apply(x);
f.apply(y)

}
static IntFunc createTwice(IntFunc f)

req f.IntFunc();
ens result.IntFunc();

{ new Twice(f) }
}

Figure 4 Example program annotated with partial correctness specifications.

τ ::= int | bool | ι | C | · · ·
e ::= v | x | op(e)
P ::= e | e.f 7→ e | P ∗ P | P ∧ P | P ∨ P | e.p(e)
c ::= e | τ x := c; c | if e then c else c | { c }

| C.m(e) | e.m(e) | new C(e) | e.f | e.f := e

pdecl ::= predicate p(τ x);
pdef ::= predicate p(τ x) = P ;

imdef ::= τ m(τ x); req P ; ens P ;
mkind ::= static | instance
cmdef ::= mkind τ m(τ x) req P ; ens P ; { c }

idef ::= interface ι { pdecl imdef }
cdef ::= class C(τ f) implements ι { pdef cmdef }
tdef ::= idef | cdef

program ::= tdef

Figure 5 Syntax of the programming language and the annotations.

ECOOP’15

672 Modular Termination Verification

heap and holds the indicated value; the separating conjunction P ∗P , asserting that the heap
can be split into two parts such that one conjunct holds in one part, and the other conjunct
holds in the other part; regular conjunction and disjunction; and predicate assertions e.p(e),
asserting that the indicated predicate holds with the indicated argument values. p ranges
over predicate names.

Like expressions, commands c return a value; unlike expressions, they may also access
the heap and have side-effects. The commands include the expressions; a let-like construct
τ x := c; c′ that first executes c, binds the result to variable x of type τ , and then executes
c′; conditional commands; parenthesized commands; static and instance method calls; object
creation, field lookup, and field mutation commands.

A predicate declaration specifies a predicate name and a parameter list; a predicate
definition additionally specifies a body.

An interface method specifies a return type, a method name, a parameter list, and a
contract consisting of a precondition and a postcondition. A class method additionally
specifies a kind (kind instance is the default and is usually left implicit) and a body.

An interface definition declares a number of predicate families and a number of interface
methods. A class definition declares a list of fields (empty if omitted), an implemented
interface (interface Empty, that declares no predicate families and no methods, if omitted), a
number of predicate family instances, and a number of class methods.

The type definitions are the interface definitions and the class definitions. A program is a
sequence of type definitions.

We assume a function classOf : ObjRefs → ClassNames such that infinitely many object
references map to any given class. A heap h ∈ Heaps = ObjRefs × FieldNames ⇀ Values
is a partial function from pairs of object references and field names to values. We do not
allow instantiation of classes that have no fields; therefore, the set of allocated objects can
be derived from dom(h).

We define the semantics of programs by means of a big-step relation (h, c) ⇓ γ that
relates a pre-heap and a closed command (i.e. a command with no free variables) to an
outcome γ, which is either of the form (n, v, h′) where n ∈ N is the number of execution
steps performed, v is the result value, and h′ is the post-heap, or an exception E, which is
either Failure(n), where n ∈ N is the number of execution steps performed, or Divergence.
We define n+ γ as follows: n+ (n′, v, h′) = (n+n′, v, h′); n+ Failure(n′) = Failure(n+n′);
n+ Divergence = Divergence. We define the big-step relation coinductively [8] by means
of the rules shown in Fig. 6.

Note that h] h′ is undefined if dom(h) ∩ dom(h′) 6= ∅.
We now define the meaning of assertions. To interpret an assertion, we need an inter-

pretation for the predicates it uses. A predicate interpretation I is a set I ⊆ ObjRefs ×
PredNames×Values∗ ×Heaps. If (o, p, v, h) ∈ I, this means that according to interpretation
I, predicate assertion o.p(v) is true in heap h. We now define the truth I, h � P of a closed
assertion P under a predicate interpretation I and a heap h:

I, h � v ⇔ v = true
I, h � o.f 7→ v ⇔ (o, f) 7→ v ∈ h
I, h � P ∗ P ′ ⇔ ∃h1, h2. h = h1] h2 ∧ I, h1 � P ∧ I, h2 � P ′

I, h � P ∧ P ′ ⇔ I, h � P ∧ I, h � P ′
I, h � P ∨ P ′ ⇔ I, h � P ∨ I, h � P ′
I, h � o.p(v) ⇔ (o, p, v, h) ∈ I

Given a predicate interpretation I, we can interpret the predicate definitions of a program to

B. Jacobs, D. Bosnacki, and R. Kuiper 673

γ ::= (n, v, h) | E
E ::= Failure(n) | Divergence (h, v) ⇓ (1, v, h)

(h, c) ⇓ (n, v, h′) (h′, c′[v/x]) ⇓ γ

(h, τ x := c; c′) ⇓ n+ γ
===================================

(h, c) ⇓ E

(h, τ x := c; c′) ⇓ 1 + E
======================

class C · · · { · · · static τ m(τ x) { c } · · · } (h, c[v/x]) ⇓ γ

(h,C.m(v)) ⇓ 1 + γ
==

classOf(o) = C

class C · · · { · · · instance τ m(τ x) { c } · · · } (h, c[o, v/this, x]) ⇓ γ

(h, o.m(v)) ⇓ 1 + γ
==

classOf(o) = C class C(τ f) · · · h′ = h] {o.f 7→ v}

(h,new C(v)) ⇓ (1, o, h′)
==

(o, f) ∈ dom(h)

(h, o.f) ⇓ (1, h((o, f)), h)
=======================

(o, f) /∈ dom(h)

(h, o.f) ⇓ Failure(1)
====================

(o, f) ∈ dom(h)

(h, o.f := v) ⇓ (1, v, h[(o, f) := v])
================================

(o, f) /∈ dom(h)

(h, o.f := v) ⇓ Failure(1)
========================

Figure 6 Coinductive big-step semantics (h, c) ⇓ γ of the programming language.

obtain a new predicate interpretation F (I):

classOf(o) = C

class C · · · { · · · predicate p(τ x) = P ; · · · } y = FV(P [v/x]) I, h � P [v/x,w/y]
(o, p, v, h) ∈ F (I)

Notice that free variables in a predicate body are implicitly existentially quantified.
It is easy to check that F is monotonic: I ⊆ I ′ ⇒ F (I) ⊆ F (I ′). (This would not be the

case if our assertion language included negation or implication of assertions.) Therefore, by
the Knaster-Tarski theorem, Ifix =

⋂
{I | F (I) ⊆ I} is the least fixpoint of F . We adopt Ifix

as the meaning of predicates.
We are now ready to define the meaning of Hoare triples (for partial correctness):

� {P} c {Q} ⇔ ∀h, γ. Ifix, h � P ∧ (h, c) ⇓ γ ⇒ γ � Q

where satisfaction γ � Q of a postcondition by an outcome is defined as:

Divergence � Q
Ifix, h � Q[v/res]

(n, v, h) � Q

The proof rules are shown in Fig. 7.
Notice that in method contracts, free variables in the precondition are universally quanti-

fied across the contract; their scope extends to the postcondition as well. Variables that are
free only in the postcondition are existentially quantified in the postcondition.

We say that a class implements an interface method if the class has a method of the same
name, return type, and parameter list, whose body satisfies the interface method’s contract.

ECOOP’15

674 Modular Termination Verification

Expr
` {true} v {res = v}

Let
` {P} c {Q} ∀v. ` {Q[v/res]} c′[v/x] {R}

` {P} τ x := c; c′ {R}

StaticCall
class C · · · { · · · static τ m(τ x) req P ; ens Q; · · · }

y = FV(P) \ x z = FV(Q) \ x, result, y
` {P [v/x,w/y]} C.m(v) {∃w′. Q[v/x,w/y, w′/z, res/result]}

DynamicCall
interface ι { · · · τ m(τ x); req P ; ens Q; · · · }
y = FV(P) \ this, x z = FV(Q) \ this, x, result, y

` {P [o/this, v/x, w/y]} o.m(v) {∃w′. Q[o/this, v/x, w/y, w′/z, res/result]}

New
class C(τ f) · · ·

` {true} new C(v) {~(f,v)∈(f,v) res.f 7→ v}

Lookup
` {o.f 7→ v} o.f {o.f 7→ v ∧ res = v}

Mutate
` {o.f 7→ } o.f := v {o.f 7→ v}

Conseq
� P ⇒ P ′ ` {P ′} c {Q′} � Q′ ⇒ Q

` {P} c {Q}

Frame
` {P} c {Q}

` {P ∗R} c {Q ∗R}

Disj
` {P} c {Q} ` {P ′} c {Q}

` {P ∨ P ′} c {Q}

Program
program = tdef ` tdef ok

` program ok

Interface
` idef ok

Class
C ` cmdef ok interface ι { pdecl imdef } ` C implements imdef

` class C(· · ·) implements ι { pdef cmdef } ok

StaticMethod
y = FV(P) \ x z = FV(Q) \ x, result, y

∀v, w. ` {P [v/x,w/y]} c[v/x] {∃w′. Q[v/x, res/result, w/y, w′/z]}
C ` static τ m(τ x) req P ; ens Q; { c } ok

InstanceMethod
y = FV(P) \ this, x z = FV(Q) \ this, x, result, y

∀o, v, w. ` {P [o/this, v/x, w/y]} c[o/this, v/x] {∃w′. Q[o/this, v/x, res/result, w/y, w′/z]}
C ` instance τ m(τ x) req P ; ens Q; { c } ok

Implements
class C(· · ·) · · · { · · · instance τ m(τ x) req P ′; ens Q′; { c } · · · }

y = FV(P) \ this, x z = FV(Q) \ this, x, result, y
∀o, v, w. ` {P [o/this, v/x, w/y]} c[o/this, v/x] {∃w′. Q[o/this, v/x, res/result, w/y, w′/z]}

` C implements τ m(τ x); req P ; ens Q;

Figure 7 Proof rules of the program logic for partial correctness.

B. Jacobs, D. Bosnacki, and R. Kuiper 675

An alternative approach would be to check compatibility of the class method’s contract with
the interface method’s contract [11].

The rule of consequence uses validity of implications. We define � P ⇒ P ′ as ∀h. Ifix, h �
P ⇒ Ifix, h � P ′. In particular, we can fold and unfold predicates if we know the class of the
object:

class C · · · { · · · predicate p(τ x) = P ; · · · }
� classOf(o) = C ∧ o.p(v)⇒ P [o/this, v/x] � classOf(o) = C ∧ P [o/this, v/x]⇒ o.p(v)

We assume ` program ok.
The proof rules are sound: ` {P} c {Q} ⇒ � {P} c {Q}. By the following lemma:

I Lemma 1.

∀n, P, c,Q. ` {P} c {Q} ⇒
∀h, h0, hF , γ. h = h0] hF ∧ Ifix, h0 � P ∧ (h, c) ⇓ γ ⇒
γ 6= Failure(n)
∧ (∀h′, v. γ = (n, v, h′)⇒ ∃h′0. h′ = h′0] hF ∧ Ifix, h

′
0 � Q[v/res])

Proof. By well-founded induction on n. Fix some n0 and assume the lemma holds for all
n < n0. We prove that it holds for n = n0. By nested induction on the derivation of
` {P} c {Q}. J

3 Call Permissions

In the preceding section, we recalled a state-of-the-art approach from the literature for
modular specification and verification of partial correctness properties of object-oriented
programs. We are now ready to present the contributions of this paper. In this section,
we extend the program logic of the preceding section to obtain a logic for total correctness
properties. However, it is possible to write specifications in the logic of this section that overly
constrain implementations, i.e. that distinguish implementations that are observationally
indistinguishable. In the next section, we present a specification style for writing specifications
in the logic of this section that perform proper information hiding.

How to extend the program logic of Sec. 2 so that it verifies the absence of infinite
recursion? We wish to impose an additional proof obligation at method call sites, such
that during any program execution only a finite number of method calls occur. Since we
are already using separation logic, which can be interpreted as a logic of permissions, we
introduce the notion of call permissions. If we make available to a program’s main method
only a finite stock of call permissions, and each call consumes a call permission, then it
follows that an execution can perform only finitely many calls.

Note that we should not count call permissions merely using a natural number. This
would mean each method’s specification would state an upper bound on the number of calls
it performs. That would seem to require much tedious and brittle bookkeeping, and cause
problems if the number of calls depends on nondeterministic phenomena such as user input.

The well-known solution to the counting issue in termination proofs is the use of well-
founded relations. A well-founded relation is one that admits no infinite descending chains,
or, equivalently, where each nonempty set has a minimal element. In this paper, we will
more specifically use ordinals, well-founded relations that are additionally strict total orders,

ECOOP’15

676 Modular Termination Verification

and for which useful conventional notations exist.34
We briefly review the ordinal theory used in this paper. The finite ordinals are the

natural numbers, with their usual order. The set of finite ordinals is denoted ω. The product
α · β of two sets of ordinals is the set of pairs (a, b) ∈ α × β, with their lexicographical
ordering (with the least significant element first): (a, b) < (a′, b′) iff b < b′ or b = b and
a < a′. The exponentiation αβ of two sets of ordinals is the set of functions f : β → α

where only finitely many arguments map to nonzero values; the order is a generalization
of the lexicographic order: f < f ′ iff f 6= f ′ and f(b) < f ′(b) where b is the maximum
argument such that f(b) 6= f ′(b). In particular, ωX yields the multisets (or bags) of elements
of X, with multiset order. We denote bags using fat braces: {[a, b, c]} = 0] {[a]}] {[b]}] {[c]},
where 0 denotes the empty multiset: 0 = λx. 0, and M] M ′ denotes multiset union:
M]M ′ = (λx. M(x) +M ′(x)). In order to descend down the multiset order starting from a
multiset M , one can replace any element of M with any number of lesser elements of X, any
number of times. For example, {[0, 0, 1, 2, 2, 2]} < {[0, 0, 0, 3]}.

Our program logic is based on the notion that at each point during a program’s execution,
it has a stock of call permissions in the form of a bag of ordinals Λ ∈ ωOrdinals (for some
fixed set of ordinals Ordinals). We admit ghost execution steps that reduce the stock of call
permissions to a lesser one. Furthermore, at each call, an element is removed from the bag.
It follows that the program terminates: an infinite execution would constitute an infinite
descending chain in ωOrdinals.

We extend our separation logic with an assertion for call permissions:

P ::= o.f 7→ v | P ∗ P | call perm(α) | · · ·

We interpret assertions under a predicate interpretation, a heap and a stock of call permissions:

I, h,Λ � call perm(α) ⇔ α ∈ Λ
I, h,Λ � P ∗ P ′ ⇔ ∃h1,Λ1, h2,Λ2. h = h1] h2 ∧ Λ = Λ1] Λ2

∧ I, h1,Λ1 � P ∧ I, h2,Λ2 � P ′

The meaning of Hoare triples is now defined as follows:

� {P} c {Q} ⇔ ∀h,Λ, γ. Ifix, h,Λ � P ∧ (h, c) ⇓ γ ⇒ γ �Λ Q

where satisfaction γ �Λ Q of a postcondition by an outcome under a given stock of call
permissions is now defined as follows:

Λ′ ≤ Λ Ifix, h,Λ′ � Q[v/res]
(n, v, h) �Λ Q

Notice that divergence is no longer considered to satisfy a postcondition.
The only proof rules that change are the rule of consequence and the rules for method

calls. For the rule of consequence of our logic, we use a notion of implication that allows
weakening of the stock of call permissions:

Conseq
P v P ′ ` {P ′} c {Q′} Q′ v Q

` {P} c {Q}

3 Our implementation of the proposed proof system (see Sec. 5) supports arbitrary well-founded relations.
4 Technically, the ordinals are the equivalence classes of well-ordered sets under isomorphism. A well-

ordered set is a set with a well-ordering, i.e. a well-founded strict total order. In an abuse of terminology,
we will identify each such equivalence class with each of its members.

B. Jacobs, D. Bosnacki, and R. Kuiper 677

P v P ′ ⇔ ∀h,Λ. Ifix, h,Λ � P ⇒ ∃Λ′ ≤ Λ. Ifix, h,Λ′ � P ′

We then have call perm(1) v call perm(0) ∗ call perm(0), and, more generally, call perm(1)
v ~ni=1 call perm(0), for any n, where ~bi=a P (i) represents iterated separating conjunction:

~bi=a P (i) =
{

true if b < a

P (a) ∗~bi=a+1 otherwise

In case i does not appear in P , we abbreviate ~ni=1 P to n · P . So, for any α′ < α and
any n, we have call perm(α) v n · call perm(α′).

The proof rules for method calls are as follows:

StaticCall
class C · · · { · · · static τ m(τ x) req P ; ens Q; · · · }

y = FV(P) \ x z = FV(Q) \ x, result, y
` {call perm() ∗ P [v/x,w/y]} C.m(v) {∃w′. Q[v/x,w/y,w′/z, res/result]}

InstanceCall
interface ι { · · · τ m(τ x); req P ; ens Q; · · · }

y = FV(P) \ this, x z = FV(Q) \ this, x, result, y θ = o/this, v/x, w/y
` {call perm() ∗ P [θ]} o.m(v) {∃w′. Q[θ, w′/z, res/result]}

Soundness follows from the following lemma:

I Lemma 2.

∀Λ, c, P,Q. ` {P} c {Q} ⇒
∀h, h0, hF ,Λ0,ΛF , γ. h = h0] hF ∧ Λ = Λ0] ΛF ∧ Ifix, h0,Λ0 � P ∧ (h, c) ⇓ γ ⇒
∃n, h′, h′0, v,Λ′,Λ′0. γ = (n, v, h′) ∧ h′ = h′0] hF ∧ Λ′ = Λ′0] ΛF ∧ Λ′ ≤ Λ
∧ Ifix, h

′
0,Λ′0 � Q[v/res]

Proof. By well-founded induction on (|c|,Λ), where |c| is the syntactic size of command c.
By nested induction on the derivation of ` {P} c {Q}. J

4 Modular Specifications for Total Correctness

Now that we have call permissions, how do we use them to write modular specifications?
Clearly, each method should require some call permissions from its caller in order to be able
to perform calls itself. But how much? Which ordinal?

We introduce our modular specification approach incrementally, as follows. We first
consider the case where the program performs upcalls, static method calls into lower5 layers,
only, in Sec. 4.1, and obtain a modular specification approach for this setting. In Sec. 4.2,
we extend this approach so that it supports recursive static methods. Finally, in Sec. 4.3, we
consider the general case, with dynamically bound instance method calls, and obtain the final
version of the approach. Each of Sec. 4.1–4.3 corresponds to a different value for parameter
Ordinals of the logic of Sec. 3. In Sec. 4.4, we show additional examples, illustrating how the
approach deals with the advanced scenarios of interface methods taking objects as arguments
and programs written in continuation-passing style.

5 The clash of metaphors is unfortunate, but both terms are well-established.

ECOOP’15

678 Modular Termination Verification

4.1 Upcalls Only

It should not be necessary for a method to ask specifically for call permissions for each call it
performs. In particular, as discussed in Sec. 1, we assume a model where a program consists
of layers where each layer is built on top of lower layers to offer functionality to higher layers.
In this model, a method’s contract should not reveal whether, or how often, the method
calls into lower layers. This is clearly an implementation detail that should not concern the
method’s clients. To support this notion, we assume that class definitions that appear earlier
in a program text constitute lower layers with respect to class definitions that appear later.
Similarly, within a class definition, we assume that methods that appear earlier constitute
lower layers with respect to methods that appear later. To enable abstraction over calls to
lower-layer methods, we will use class methods as ordinals, ordered by their position in the
program text.

Using this approach, if all calls in a program call static methods in lower layers, it is
sufficient for each method C.m to require call perm(C.m). Indeed, a valid proof outline is
shown in Fig. 8.

Methods main and sqrt, before performing their nested call, using property m′ < m⇒
call perm(m) v 2 · call perm(m′), replace the incoming call permission qualified by their own
name with two copies of a call permission qualified by their callee’s name (using rule Conseq
on p. 676). One copy is consumed at the start of the call, the other is passed into the callee
as required by its precondition (per rule StaticCall on p. 677).

Formally, in this subsection we take

ClassMethods = {C.m | class C · · · { · · · τ m(· · ·) · · · }}
Ordinals = ClassMethods

4.2 Static Recursion

Of course, in most programs not all calls, even if they call static methods, call lower-layer
methods, especially since our programming language does not have loops. How to deal with
recursive methods? First of all, we assume that lower layers are developed before higher
layers, and therefore lower layers never call static methods in higher layers. It follows that
each cycle in a program’s graph of calls to static methods is contained entirely within a single
module. In our approach, then, all such members of a recursive cycle should be private to
the module, and therefore their contracts need not be abstract. Separate public methods
should be provided that call into the cycle but are not part of it.

An example is shown in Fig. 9.
Notice that each of the members of the cycle requires call permission for the maximum

member. The contracts of isOddIter and isEvenIter are not abstract, but those of isOdd and
isEven are.

Notice that the coefficient of the call permission in the contracts of the recursive methods
serves the role of the classical recursion measure.

However, sometimes a recursion measure cannot easily be expressed as a simple natural
number. To support such recursion measures, we move, for the set of ordinals that we use
to qualify call permissions, from methods to pairs of local ordinals and methods (where the
method is the most significant component), given some fixed set LocOrd of local ordinals.
Formally, we take

Ordinals = LocOrd · ClassMethods

B. Jacobs, D. Bosnacki, and R. Kuiper 679

class Math {
static int sqrtHelper(int x)

req 0 ≤ x ∧ call perm(Math.sqrtHelper);
ens true

{ · · · }
static int sqrt(int x)

req 0 ≤ x ∧ call perm(Math.sqrt);
ens true;

{
{2 · call perm(Math.sqrtHelper)}

Math.sqrtHelper(x)
}

}

class Program {
static void main()

req call perm(Program.main);
ens true;

{
{2 · call perm(Math.sqrt)}

Math.sqrt(42)
}
}

Figure 8 A program with calls to lower-layer static methods only.

class Math {
static bool isOddIter(int x)

req 0 ≤ x ∧
x · call perm(Math.isEvenIter);

ens result = (x mod 2 = 1);
{

if x = 0 then false else
Math.isEvenIter(x − 1)

}
static bool isEvenIter(int x)

req 0 ≤ x ∧
x · call perm(Math.isEvenIter);

ens result = (x mod 2 = 0);
{

if x = 0 then true else
Math.isOddIter(x − 1)

}

static bool isOdd(int x)
req 0 ≤ x ∧ call perm(Math.isOdd);
ens result = (x mod 2 = 1);

{ Math.isOddIter(x) }
static bool isEven(int x)

req 0 ≤ x ∧ call perm(Math.isEven);
ens result = (x mod 2 = 0);

{ Math.isEvenIter(x) }
}

Figure 9 Recursion measured by a natural number.

ECOOP’15

680 Modular Termination Verification

Public methods C.m should request call perm((0, C.m)). A classic example is the Ackermann
function:

class Math {
static int ackermannIter(int m, int n)

req 0 ≤ m ∧ 0 ≤ n ∧ call perm(((m, n),Math.ackermannIter));
ens result = Ack(m, n);

{
if n = 0 then m + 1
else if m = 0 then Math.ackermannIter(1, n− 1)
else {

int r := Math.ackermannIter(m− 1, n);
Math.ackermannIter(r, n− 1)

}
}
static int ackermann(int m, int n)

req 0 ≤ m ∧ 0 ≤ n ∧ call perm((0,Math.ackermann));
ens result = Ack(m, n);

{ Math.ackermannIter(m, n) }
}

The proof of method ackermann uses the property ∀m,n. ((m,n),Math.ackermannIter) <
(0,Math.ackermann). This example assumes ω · ω ⊆ LocOrd.

4.3 Dynamic Binding
We are now ready to consider the case of programs that call interface methods. Consider a
method integrate for computing the integral of a real function over an interval:

interface RealFunc {
double apply(double x);
}
class Math {

static double integrate(double a,double b,RealFunc f)
{ · · · }
}

What call permissions should method integrate request of its caller? Clearly, the method
should be allowed to call method apply of object f. And it should be allowed to call it
not just once, but arbitrarily often. Since the calls of f.apply might occur inside recursive
helper functions measured by arbitrary ordinals, there is no single ordinal that can obviously
serve as an upper bound. Furthermore, method integrate should be allowed to pass f to
library methods in lower layers, and those should themselves be specified abstractly without
revealing how often they call f.

To solve this problem, we move, for the set of ordinals that we use to qualify call
permissions, from pairs of local ordinals and methods to pairs of local ordinals and bags of
methods:

MethodBags = ωClassMethods

Ordinals = LocOrd ·MethodBags
Note that set ClassMethods includes both the static methods and the instance methods.

B. Jacobs, D. Bosnacki, and R. Kuiper 681

Public methods C.m in programs that do not call interface methods should request
call perm((0, {[C.m]})).

The following contract for method integrate allows it to call f.apply arbitrarily often, and
to delegate a similar permission to lower-layer static methods:

static double integrate(double a,double b,RealFunc f)
req call perm((0, {[Math.integrate, f.apply]}));

Note that we use o.m as a shorthand for classOf(o).m.
However, we are not done. Indeed, when calling f.apply, we need not just the call

permission that is consumed by the call itself, but also the call permissions requested by
f.apply’s precondition. What should those be?

f.apply should be allowed to call static methods at layers below itself, so it should at least
receive a call permission qualified by its own name. However, there are other methods that
it should be allowed to call as well. Indeed, through the fields of its this object, i.e. through
the fields of f, this method may be able to reach directly or indirectly any number of objects
and might need to perform any number of calls on any number of methods thereof. The
method should request permission for those calls as well.

But how can it abstractly request permission to call these methods, hidden inside its
private data structures, with whose existence its clients should not otherwise be concerned?

We solve this problem by allowing the bag of methods reachable from an object to be
named abstractly by exposing it as an argument of the predicate family that describes the
object.

Consider first the partial-correctness specification for interface RealFunc in Fig. 10(a).
We extend it for total correctness as shown in Fig. 10(b).

We adapt the contract of method integrate accordingly:

static double integrate(double a,double b,RealFunc f)
req f.RealFunc(d) ∗ call perm((0, {[Math.integrate]}] d));

A simple implementation of interface RealFunc is shown in Fig. 11.
Notice that method createLinearFunc’s postcondition provides an upper bound on d. This

enables the caller (who is necessarily in a higher layer than createLinearFunc) to produce
the call permissions required to call result.apply. Notice also that this upper bound does
not constrain method createLinearFunc’s implementation, if we assume that a method only
allocates (through new) objects of classes defined in its own layer or in lower layers.

A slightly more involved implementation is shown in Fig. 12.
Notice that class Sum’s instance of predicate family RealFunc defines its d parameter

(which we call the dynamic depth since it gives a measure of the number of layers of abstraction
of which the object is composed) as the multiset union of its own apply method and the
referenced objects’ dynamic depths. Indeed, as a general pattern, an object’s dynamic depth
should typically be defined as the union of its own methods and the dynamic depths of the
objects stored in its fields. This allows the object to call those objects’ methods, assuming
their contracts follow the standard pattern exemplified by the contract of RealFunc.apply.

Notice also how this definition enables the successful verification of method apply.
Method createSum’s precondition follows the general pattern: request a call permission

qualified by a multiset that is the union of the method itself and the dynamic depths of
any objects being passed into the method. Its postcondition follows a general pattern for
methods that return a new object: the new object’s dynamic depth is bounded by the same

ECOOP’15

682 Modular Termination Verification

interface RealFunc {
predicate RealFunc();
double apply(double x);

req this.RealFunc();
ens this.RealFunc();

}
(a) Partial correctness

interface RealFunc {
predicate RealFunc(MethodBag d);
double apply(double x);

req this.RealFunc(d) ∗ call perm((0, d));
ens this.RealFunc(d);

}
(b) Total correctness

Figure 10 Annotations for interface RealFunc.

class LinearFunc(double a,double b) implements RealFunc {
predicate RealFunc(MethodBag d) = this.a 7→ ∗ this.b 7→ ∧ d = {[this.apply]};

double apply(double x) { double a := this.a; double b := this.b; a · x + b }
static RealFunc createLinearFunc(double a,double b)

req call perm((0, {[LinearFunc.createLinearFunc]}));
ens result.RealFunc(d) ∧ d < {[LinearFunc.createLinearFunc]};

{ new LinearFunc(a, b) }
}

Figure 11 A simple implementation of interface RealFunc.

class Sum(RealFunc f1,RealFunc f2) implements RealFunc {
predicate RealFunc(MethodBag d) =

this.f1 7→ f1 ∗ f1.RealFunc(d1) ∗ this.f2 7→ f2 ∗ f2.RealFunc(d2)
∧ d = {[this.apply]}] d1] d2;

double apply(double x) {
RealFunc f1 := this.f1; RealFunc f2 := this.f2;
double r1 := f1.apply(x); double r2 := f2.apply(x); r1 + r2
}
static RealFunc createSum(RealFunc f1,RealFunc f2)

req f1.RealFunc(d1) ∗ f2.RealFunc(d2) ∗ call perm((0, {[Sum.createSum]}] d1] d2));
ens result.RealFunc(d) ∧ d < {[Sum.createSum]}] d1] d2;

{ new Sum(f1, f2) }
}

Figure 12 An implementation of interface RealFunc.

B. Jacobs, D. Bosnacki, and R. Kuiper 683

class Math {
static double integrateIter(double a,double dx, int n,RealFunc f)

req 0 ≤ n ∧ f.RealFunc(d) ∗ call perm((n, {[Math.integrateIter]}] d));
ens f.RealFunc(d);

{
if n = 0 then 0 else {

double y := f.apply(a); double ys := Math.integrateIter(a + dx, dx, n− 1, f);
y × dx + ys

}
}
static double integrate(double a,double b,RealFunc f)
{ Math.integrateIter(a, (b− a)/1000, 1000, f) }

}
class Program {

static main()
req call perm((0, {[Program.main]}));
ens true;

{
{12 · call perm((0, {[2 · LinearFunc, 2 · Sum,Math]}))}

RealFunc f1 := LinearFunc.createLinearFunc(2, 3);
RealFunc f2 := LinearFunc.createLinearFunc(5, 6);
RealFunc f3 := LinearFunc.createLinearFunc(5, 6);
RealFunc f4 := Sum.createSum(f1, f2);
RealFunc f5 := Sum.createSum(f3, f4);
Math.integrate(0, 100, f5)
}

}

Figure 13 An implementation of method integrate and a client program.

multiset used to qualify the call permission in the precondition. It follows that any caller of
this method can also call the new object’s methods.

An implementation of method integrate and an example client program are shown in
Fig. 13.

The proof outline for method main starts by reducing the incoming call permission to
twelve copies of a call permission that is greater than each of the call permissions required
for the six calls and the six preconditions. (We use a class name as an abbreviation for its
greatest method.) Indeed, we have the inequalities shown in Fig. 14.

4.4 Further Examples
An example of an interface method that takes as an argument another object is shown in
Fig. 15. Notice that method intersects’ precondition asserts a single call permission qualified
by the multiset union of the dynamic depth of the receiver and the dynamic depth of the
argument object.

Our approach supports methods written in continuation-passing style (CPS). To illustrate

ECOOP’15

684 Modular Termination Verification

d1, d2, d3 < {[LinearFunc.createLinearFunc]}
d4 < {[Sum.createSum]}] d1] d2

< {[Sum.createSum, LinearFunc.createLinearFunc]}
d5 < {[Sum.createSum]}] d3] d4

< {[2 · LinearFunc.createLinearFunc, 2 · Sum.createSum]}

Figure 14 Inequalities relevant for the proof of the integrate client program. Symbols d1, . . . , d5
denote the dynamic depths of objects f1, . . . , f5.

interface IntSet {
predicate IntSet(MethodBag d);
bool contains(int x);

req this.IntSet(d) ∗ call perm((0, d));
ens this.IntSet(d);

bool intersects(IntSet other);
req this.IntSet(d) ∗ other.IntSet(do) ∗ call perm((0, d] do));
ens this.IntSet(d) ∗ other.IntSet(do);

}
class Empty() implements IntSet {

predicate IntSet(MethodBag d) = d = {[this.∗]};
bool contains(int x) { false }
bool intersects(IntSet other) { false }
static IntSet createEmpty()

req call perm((0, {[Empty.createEmpty]}));
ens result.IntSet(d) ∧ d < {[Empty.createEmpty]};

{ new Empty() }
}
class Insert(int elem, IntSet set) implements IntSet {

predicate IntSet(MethodBag d) =
this.elem 7→ elem ∗ this.set 7→ set ∗ set.IntSet(ds) ∧ d = {[this.∗]}] ds;

bool contains(int x) {
int elem := this.elem;
if x = elem then true else { IntSet set := this.set; set.contains(x) }
}
bool intersects(IntSet other) {

int elem := this.elem; bool contains := other.contains(elem);
if contains then true else { IntSet set := this.set; set.intersects(other) }
}
static IntSet createInsert(int elem, IntSet set)

req set.IntSet(ds) ∗ call perm((0, {[Insert.createInsert]}] ds));
ens result.IntSet(d) ∧ d < {[Insert.createInsert]}] ds;

{ new Insert(elem, set) }
}

Figure 15 An interface method that takes as an argument another object. {[o.∗]} denotes the bag
of all instance methods of o.

B. Jacobs, D. Bosnacki, and R. Kuiper 685

interface ContainsCont {
predicate ContainsCont(IntSet set,MethodBag d);

Nothing invoke(bool result);
req this.ContainsCont(set, d) ∗ set.IntSet(d);

}
interface IntersectsCont {

predicate IntersectsCont(IntSet set,MethodBag d, IntSet other,MethodBag do);
Nothing invoke(bool result);

req this.IntersectsCont(set, d, other, do) ∗ set.IntSet(d) ∗ other.IntSet(do);
}
interface IntSet {

Nothing containsCPS(int x,ContainsCont cont);
req this.IntSet(d) ∗ call perm((0, d)) ∗ cont.ContainsCont(this, d);

Nothing intersectsCPS(IntSet other, IntersectsCont cont);
req this.IntSet(d) ∗ other.IntSet(do) ∗ call perm((0, d] do))
∗ cont.ContainsCont(this, d, other, do);

}

Figure 16 Continuation-passing-style versions of contains and intersects. All postconditions are
false and are not shown.

this, we add CPS versions of methods contains and intersects to the IntSet example. See
Figs. 16 and 17. After methods containsCPS and intersectsCPS are finished computing their
result value, they do not return to the caller (as indicated by return type Nothing, which has
no values); rather, they call method invoke of the continuation object cont, passing the result
value as an argument. The predicate definitions and constructor methods remain unchanged
and are not repeated.

Notice that the continuation interfaces do not follow the general specification pattern.
Indeed, since the invoke methods are invoked only once, any call permissions they need can
be passed via the ContainsCont or IntersectsCont predicate, respectively.

Notice that InvokeCont1.invoke and InvokeCont2.invoke each require a single call permission
in order to perform the nested invoke call. It is passed via the predicate. The ordinal is
irrelevant and is existentially quantified. In contrast, InvokeCont3.invoke needs to call
set.intersectsCPS and for that needs a properly qualified call permission. The call permission
that the InvokeCont3 object needs to pass to the InvokeCont2 object can be derived from it.

5 Implementation

We integrated the logic into the program verification tool VeriFast. Although VeriFast
supports C and Java, for now we have added support for verification of termination only
for C programs. We introduced the function specification clause terminates, to indicate
that a function should terminate. In order to reduce specification overhead for functions
that do not perform callbacks, our implementation offers a ghost command that allows a
function to produce out of thin air any call permission whose bag of functions is less than

ECOOP’15

686 Modular Termination Verification

class Empty() implements IntSet {
Nothing containsCPS(int x,ContainsCont cont) { cont.invoke(false) }
Nothing intersectsCPS(IntSet other, IntersectsCont cont) { cont.invoke(false) }

}
class InsertCont1(ContainsCont cont) implements ContainsCont {

predicate ContainsCont(IntSet set,MethodBag d) =
this.cont 7→ cont ∗ cont.ContainsCont(set0, d0)
∗ set0.elem 7→ ∗ set0.set 7→ set ∗ call perm() ∧ d0 = {[set0.∗]}] d;

Nothing invoke(bool result) { ContainsCont cont := this.cont; cont.invoke(result) }
}
class InsertCont2(IntersectsCont cont) implements IntersectsCont {

predicate IntersectsCont(IntSet set,MethodBag d, IntSet other,MethodBag do) =
this.cont 7→ cont ∗ cont.IntersectsCont(set0, d0, other, do)
∗ set0.elem 7→ ∗ set0.set 7→ set ∗ call perm() ∧ d0 = {[set0.∗]}] d;

Nothing invoke(bool result) { IntersectsCont cont := this.cont; cont.invoke(result) }
}
class InsertCont3(Insert set0, IntSet other, IntersectsCont cont) implements ContainsCont {

predicate ContainsCont(IntSet set,MethodBag d) =
this.other 7→ set ∗ this.cont 7→ cont ∗ cont.IntersectsCont(set0, ds0, set, d)
∗ this.set0 7→ set0 ∗ (set0.IntSet(ds0) ∧ ds0 = {[set0.∗]}] ds1)
∗ call perm((0, {[InsertCont3.invoke]}] ds1] d));

Nothing invoke(bool result) {
Insert set0 := this.set0; IntSet other := this.other; IntersectsCont cont := this.cont;
if result then cont.invoke(true) else {

IntSet set := set0.set; IntersectsCont cont1 := new InsertCont2(cont);
set.intersectsCPS(other, cont1)

}
}

}
class Insert(int elem, IntSet set) implements IntSet {

Nothing containsCPS(int x,ContainsCont cont) {
int elem := this.elem; if x = elem then cont.invoke(true) else {

IntSet set := this.set; ContainsCont cont1 := new InsertCont1(cont);
set.containsCPS(x, cont1)

}
}
Nothing intersectsCPS(IntSet other, IntersectsCont cont) {

int elem := this.elem; ContainsCont cont1 := new InsertCont3(this, other, cont);
other.containsCPS(elem, cont1)
}

}

Figure 17 Implementations of containsCPS and intersectsCPS in classes Empty and Insert.

B. Jacobs, D. Bosnacki, and R. Kuiper 687

itself (considered as a singleton bag). In exchange, our implementation consumes at a call
site not just any call permission, but only a call permission whose function bag includes the
function being called:

f ∈ d
function f(x) req P ; ens Q; { c } y = FV(P) \ x z = FV(Q) \ x, result, y
f0 ` {call perm((α, d)) ∗ P [v/x,w/y]} f(v) {∃w′. Q[v/x,w/y, w′/z, res/result]}

∀v, w. f ` {P [v/x,w/y]} c {∃w′. Q[v/x,w/y,w′/z, res/result]}
y = FV(P) \ x z = FV(Q) \ x, result, y
` function f(x) req P ; ens Q; { c } ok

d < {[f]}
f ` {true} produce call perm {call perm((α, d))}

Our implementation is included in the latest VeriFast release, which is available at
http://www.cs.kuleuven.be/~bartj/verifast/.

The distribution includes, in the directory examples/termination, the examples simple -
recursion.c (the isEven example), ackermann.c, funcptr.c (corresponding to the IntFunc example
of this paper), and cons.c (corresponding to the IntSet example).

6 Related Work

We are not aware of existing approaches for modular specification and verification of termi-
nation of object-oriented programs. However, work on modular verification of termination in
different settings does exist.

The proof assistant Coq includes a pure functional programming language with higher-
order functions. Coq checks that all functions terminate. However, Coq’s type system
prevents a function from being passed as an argument to itself. Our approach supports
methods that call themselves through dynamic binding, and can prove their termination.

Koka [4] is a functional programming language with effect inference, including the
divergence effect. However, the inference algorithm is limited: it rules out recursion through
the heap, which our approach supports.

Dafny [5] is a programming language that supports verification of termination, with
powerful metrics. However, Dafny does not support dynamic binding of method calls.

Most closely related to ours is the work, e.g. [1, 12, 6], on proving well-definedness of
specifications for object-oriented programs where the specifications themselves involve calls
of methods of the program being specified. In most such approaches, in order to ensure
that such specifications make sense and that axioms generated from such specifications are
consistent, proof obligations are imposed to verify that methods called from specifications are
pure (i.e., side-effect-free) and that they terminate. Our notion of dynamic depth of a data
structure can be seen as a refinement of the depth of the ownership tree (a natural number)
used as a recursion measure by some of this work [1, 6]. In these approaches, the ownership
graph is frozen for the duration of the execution of a pure method, so if calls descend down
an ownership tree, they terminate. In our approach, however, to support non-pure methods
that create new data structures composed of lower-layer classes, we track not just the number
of objects comprising a data structure; rather, we track the multiset of the modules that
define their classes.

ECOOP’15

http://www.cs.kuleuven.be/~bartj/verifast/

688 Modular Termination Verification

7 Conclusion

We propose an approach for the modular specification and verification of total correctness
properties of sequential object-oriented programs involving dynamically bound method calls.
As far as we know, it is the first such approach. We propose a specification style that does
not constrain implementations unnecessarily.

We have implemented our approach in a verification tool and validated it on a handful of
small but challenging example programs. Further experimentation is needed, however, to see
if our approach conveniently handles all program patterns.

In the extended version of this paper [3], we discuss how to combine our approach with an
approach for modular verification of absence of deadlock, such as [7], to obtain an approach
for modular verification of termination of multithreaded programs. By using dynamic depths
as wait levels, the approach allows acquisitions of private locks to be introduced into existing
methods without changing their contracts. We also show how the approach supports proving
termination of compare-and-swap loops, and proving liveness of non-terminating programs.

Acknowledgements. The authors would like to thank Matthew Parkinson for his helpful
comments, and K. Rustan M. Leino for pointing out to them the usefulness of ordinals and
multiset order for termination verification. This work was supported in part by EU project
ADVENT and by project G.0058.13 of the Research Foundation – Flanders (FWO).

References

1 Ádám Darvas and Peter Müller. Reasoning about method calls in interface specifications.
Journal of Object Technology, 5(5):59–85, 2006.

2 Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data
structures. In POPL, 2001.

3 Bart Jacobs, Dragan Bosnacki, and Ruurd Kuiper. Modular termination verification: ex-
tended version. Technical Report CW 680, Dept. Comp. Sci., KU Leuven, 2015.

4 Daan Leijen. Koka: Programming with row polymorphic effect types. In Mathematically
Structured Functional Programming, 2014.

5 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
LPAR, 2010.

6 K. Rustan M. Leino and Ronald Middelkoop. Proving consistency of pure methods and
model fields. In FASE, 2009.

7 K. Rustan M. Leino, Peter Müller, and Jan Smans. Deadlock-free channels and locks. In
ESOP, 2010.

8 Keiko Nakata and Tarmo Uustalu. Trace-based coinductive operational semantics for While.
In TPHOLs, 2009.

9 Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs
that alter data structures. In CSL, 2001.

10 Matthew J. Parkinson and Gavin M. Bierman. Separation logic and abstraction. In POPL,
2005.

11 Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstraction and inheritance.
In POPL, 2008.

12 Arsenii Rudich, Ádám Darvas, and Peter Müller. Checking well-formedness of pure-method
specifications. In FM, 2008.

	Introduction
	Separation logic and abstract predicate families
	An Example
	Formal Definition

	Call Permissions
	Modular Specifications for Total Correctness
	Upcalls Only
	Static Recursion
	Dynamic Binding
	Further Examples

	Implementation
	Related Work
	Conclusion

