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Abstract
Dynamic languages, such as PHP and JavaScript, are widespread and heavily used. They pro-
vide dynamic features such as dynamic type system, virtual and dynamic method calls, dynamic
includes, and built-in dynamic data structures. This makes it hard to create static analyses,
e.g., for automatic error discovery. Yet exploiting errors in such programs, especially in web
applications, can have significant impacts. In this paper, we present static analysis framework
for PHP, automatically resolving features common to dynamic languages and thus reducing the
complexity of defining new static analyses. In particular, the framework enables defining value
and heap analyses for dynamic languages independently and composing them automatically and
soundly. We used the framework to implement static taint analysis for finding security vulner-
abilities. The analysis has revealed previously unknown security problems in real application.
Comparing to existing state-of-the-art analysis tools for PHP, it has found more real problems
with a lower false-positive rate.
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1 Introduction

To analyze programs precisely and soundly, static analysis needs to resolve method calls,
include statements, and accesses to data structures. Since in dynamic languages, targets of
method calls and include statements can depend on information about values (and types) of
expressions, value analysis tracking values of all primitive data types present in the language
needs to be performed. Moreover, due to frequent use of dynamic data structures such as
associative arrays and objects, value analysis needs to be combined with heap analysis. These
depend on each other also the other way round – since array indices and object properties
can be accessed using arbitrary expressions, heap analysis needs value analysis to evaluate
these expressions. This makes any end-user static analysis that takes this into account overly
complex.
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Table 1 Propagation of tainted data.

Lattice (L,v,t) (Bool, =⇒ ,∨)
Initial value init(v) true if v ∈ $_POST ∪ $_GET ∪ ...

false otherwise
Transfer function JLHS = RHSK var =

∨
r∈RHS

r if var ∈ LHS

var = var otherwise
JstK var = var if st is not assignment

In this paper we present a static analysis framework for languages with dynamic fea-
tures [10] based on abstract interpretation [1]. The framework automatically resolves dynamic
features and makes it possible to define static analyses without taking these features explicitly
into account.

In particular, our contributions include:
The architecture of the static analysis framework for dynamic languages and the way
dynamic features are automatically resolved.
Description of all necessary analyses that are needed to automatically resolve dynamic
features. We define value analysis that tracks values of all primitive data types of PHP.
We articulate our assumptions on heap analysis to take dynamic index and property
accesses into account – indices and properties are created when they are accessed for
the first time and accesses can be performed using arbitrary value expressions, yielding
statically unknown values.
Composition of all necessary analyses allowing to define these analyses independently.
Here the main challenge is defining the interplay of value analysis and heap analysis
taking dynamic features into account. The composition is sound; if the analyses being
composed are sound, the resulting analysis is sound as well.

2 Motivation

As a motivation example, consider static taint analysis, which is often used for security analysis
of web applications. It can be used for detection of security problems, e.g., vulnerability
of an application to SQL injection and cross-site scripting attacks. Static taint analysis
can be described as follows. The program point that reads user-input, session ids, cookies,
or any other data that can be manipulated by a potential attacker is called source, while
a program point that prints out data to a browser, queries a database, etc. is referred to
as sink. Data at a given program point are tainted if they can pass from a source to this
program point. Tainted data are sanitized if they are processed by a sanitization routine (e.g.,
htmlspecialchars in PHP) to remove potentially malicious parts. Program is vulnerable if
it contains a sink that uses data that are tainted and not sanitized.

Static taint analysis can be performed by computing the propagation of tainted data and
then checking whether tainted data can reach a sink. The specification of forward data-flow
analysis computing the propagation of tainted data is shown in Tab. 11. The analysis is
specified by the lattice of data-flow facts and lattice operators, the initial values of variables,
and the transfer function.

Consider now the code in Fig. 1. The code contains two vulnerabilities to XSS attack [7].
The first vulnerability corresponds to the call at line (25), the second vulnerability corresponds

1 For simplicity we omit the specification of sanitization.
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1 class Templ {
2 function log($msg) {...}
3 }
4 class Templ1 : Templ {
5 function show($msg) { sink($msg); }
6 }
7 class Templ2 : Templ {
8 function show($msg) { not_sink($msg); }
9 }

10 function initialize(&$users) {
11 $users[’admin’][’addr’] = get_admin_addr_from_db();
12 }
13 switch (DEBUG) {
14 case true: $mode = "log"; break;
15 default: $mode = "show";
16 }
17 switch ($_GET[’skin’]) {
18 case ’skin1’: $t = new Templ1(); break;
19 default: $t = new Templ2();
20 }
21 initialize($users);
22 $id = $_GET[’userId’];
23 $users[$id][’name’] = $_GET[’name’];
24 $users[$id][’addr’] = $_GET[’addr’];
25 $t−>$mode($users[$id][’name’]);
26 $t−>$mode($users[’admin’][’addr’]);

Figure 1 Running example.

to the call at line (26). In both cases the method show of Templ1 can be called (line (5)) with
the parameter $msg being tainted and going to the sink. Taint analysis defined using our
framework uses just the information in Tab. 1 and can still detect both vulnerabilities. This
is possible only because the framework automatically resolves control flow and accesses to
built-in data structures. That is, the framework computes that the variable $t can point to
objects of types Templ1 and Templ2 and that the variable $mode can contain values "show"
and "log". Based on this information, it automatically resolves calls at lines (25) and (26).
As the framework automatically reads the data from and updates the data to associative
arrays and objects, tainted data written at line (23) are read at line (25). Moreover, at line
(24), the tainted data are automatically propagated to index $users[’admin’][’addr’]
defined at line (11). Consequently, the access of this index at line (26) reads this tainted
data.

3 Static Analysis Framework

The architecture of the framework is shown in Fig. 2. The analysis is split into two phases. In
the first phase, the framework computes control flow of the analyzed program together with
the shape of the heap and information about values of variables, array indices and object
properties and evaluates expressions used for accessing data. The control flow is captured
in the intermediate representation (IR), while the other information can be accessed using
the data representation. In the second phase, end-user analyses of the constructed IR are
performed.

Data representation allows accessing analysis states. In particular, it allows reading and
writing values, and modifying shape of data structures. Next, it performs join and widening
of analysis states and defines their partial order. Importantly, data representation defines

ECOOP’15
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PHP
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Figure 2 Architecture of the framework.

the interplay of heap, value, and declaration analyses allowing each analysis to define these
operations independently on other analyses.

The implementation of heap analysis tracks the shape of the heap and must provide
information that the value analysis needs to read values from data structures, update values
to data structures, and to join values stored in data structures.

The implementation of the first phase must provide information necessary for computing
control flow of the program and the information that the heap analysis needs to access data.
That is, it must define value analysis that tracks values of PHP primitive types, evaluates value
expressions modeling native operators, native functions, and implicit conversions. Next, the
implementation must define declaration analysis handling declarations of functions, classes,
and constants. Finally, it must compute targets of throw statements, include statements,
and function and method calls.

The implementations of end-user analyses define additional value analyses. In contrast to
value analysis for the first phase, which must track values of PHP primitive types, end-user
value analyses can use an arbitrary value domain. This is possible because
1. control flow is already computed,
2. the shape of the heap is computed and dynamic data accesses are resolved (i.e., value

expressions specifying data accesses are evaluated). That is, all information that the data
representation needs to determine accessed variables, array indices, and object properties
is available.

3. Data representation combines heap, value, and declaration analyses automatically.

3.1 Intermediate Representation
The intermediate representation (IR) of our analysis is a graph, in which each node contains
an instruction. There are two types of nodes in the graph – value nodes and non-value nodes.
Value nodes compute and store representation of values while non-value nodes perform other
actions. The graph has two types of edges. Flow edges represent potential control flow
between instructions of the program – they define ordering in which program instructions
can be executed. Value edges connect nodes that use values (e.g., operators) with nodes that
represent these values (e.g., operands).

Each node has associated an analysis state stored in data representation. The state is
modified by transfer function defined for the node and the resulting state is propagated to
successor nodes connected with flow edges. If a node has more predecessors the states of
predecessors are joined.

Note that transfer functions for most of the value nodes are defined as identity – they
do not modify the analysis state. That is, most of the value nodes just compute values
(e.g., evaluate expressions) or compute information that specify data access to values (e.g.,
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compute possible names of variables that they represent). This information is stored in data
representation, but it is not a part of the analysis state and thus it is not propagated to
successor nodes. Instead, nodes that use these values (e.g. operator nodes) are connected
with value nodes (e.g. operands) using value edges. If an operand value is needed when
evaluating the operator, the value edge is used to get the value from the operand.

I Example 1. As an example, consider the intermediate representation corresponding to the
statement $$a=b($c). The statement assigns the value computed by function b to a variable
with the name given by the value of variable $a. The resulting intermediate representation
is depicted in Fig. 3. Note that the node corresponding to the assignment instruction is
connected using a value edge with the source of the assignment (the node containing the value
computed by the function b) and with the target of the assignment (the node representing
the assigned variable – $). Next, the latter node is connected using a value edge with the
node representing possible names of the assigned variable (node $a).

The nodes can be of different types. In the following, we denote value nodes by adding
superscript V ; for each node, its parameters are the value nodes that are connected with the
node using value edges:
variableV [nV ]: represents a variable – stores the information necessary for accessing the

variable in data representation. The parameter nV is the value node that represents the
name of the variable. Note that reading nV yields an arbitrary value from the abstract
string domain and can thus represent more concrete string values – names. Consequently,
the variable node can represent more concrete variables.

property-useV [oV , fV ], index-useV [aV , iV ]: property-useV stores the information for ac-
cessing a property of the given object. Parameter oV is the value node storing the
representation of the object and fV is the value node storing the name of the property.
Again, reading oV and fV yields abstract values and the property-useV node can get
representation of more properties. The index-useV is similar and it is used for accessing
arrays.

assignV [lV , rV ]: represents the assignment of the right operand rV to the left operand lV
and stores the information for accessing this value. While the parameter lV is a value
node whose type can be variable, property-use, and item-use, the parameter rV is an
arbitrary value node.

aliasV [lV , rV ]: represents the alias statement. The alias statement is similar to the assign-
ment statement. However, besides performing the assignment, the alias statement creates
explicit alias between its parameters and both parameters of the alias statement must be
variables, object properties, or array indices.

expressionV [e, oV
1 , ..., oV

n ]: represents the expression e with operands oV
1 , ..., o

V
n . It stores

the representation of the result.
assume[c]: represents assumption implied, e.g., by if and while statements. It indicates

whether the condition c is satisfiable. If the condition is unsatisfiable, the flow is not
propagated to descendant nodes. If the condition is satisfiable, the analysis state is refined
according to the condition and then propagated to descendant nodes.

constant-declaration[d]: represents declaration of a constant.
function-declaration[d]: represents declaration of a function.
class-declaration[d]: represents declaration of a class.
callV [nV , oV , a], constructV [nV , a]: represents a call of a function whose name is specified

using the value node nV on an object specified using the value node oV with arguments
specified using a list of value nodes a. The constructV nodes are similar to callV nodes

ECOOP’15
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$c b() $a $ =

Figure 3 Intermediate representation of the statement $$a=b($c). Solid edges are flow edges,
dashed edges are value edges.

and are used for new expressions. Note that reading nV , oV , and elements of a yields
abstract values that can represent more concrete values.

return[eV ]: represents a return from a function. eV represents the value of a return expres-
sion.

include[pV ]: represents the inclusion of the script given by the path specified by the value
node pV . Again, a path can represent more concrete values.

eval[cV ]: evaluates the code fragment specified by value node cV .
native-methoda[]: represents execution of a native method or a native function with argu-

ments specified using a list of value nodes a.
extension[f, a]: is used to dynamically extend the control from IR node f . This is necessary

when the information needed to determine the control flow from the node is computed by
the analysis. This is the case of calls to functions, methods and constructors, and the
include and eval statements. During analysis, for each dynamically discovered control
flow from the node, a single extension node is added. Parameter f is the node that is
extended. Parameter a is used in the cases that the control flow is extended because
of a function, method, and constructor call and it is a list of value nodes representing
parameters of the call.

extension-sink[n]: represents a join point of all the extensions of node n.
try-scope-start[c] and try-scope-end[c] : represent the start and the end of a try block.

Parameter c represents catch blocks associated with the try block.
throw[vV ]: represents the throw statement. Parameter vV is the node representing the

value to be thrown.
catch[vV ]: represents a catch block. It contains a node representing the first node of the

catch block as a flow child. Parameter vV is the node representing the value to be thrown.

3.2 Building IR
To determine control flow of the analyzed application, the information from value analysis is
needed. Thus, the IR is built gradually during the analysis.

Initially, IR for the entry script of the application (typically index.php) is built. This
IR contains caller nodes – the nodes corresponding to function, method, and constructor
calls, script inclusions, and eval statements. Since at this point, the information needed
to compute control flow from these nodes is not yet available, the control flow is initially
directed to the nodes that follow the calls.

The control flow is then extended during static analysis. When processing a caller
node, the analysis framework provides the first phase implementation with all information
already computed by the analysis that is relevant to determine the control flow. Using this
information, the first phase implementation finds appropriate function or method definitions
or scripts to be included, and it computes IRs representing their control flow. The first phase
implementation can build new IRs or use existing IRs, which are then shared among multiple
caller nodes. This way, the first phase implementation can control context sensitivity. Finally,
the control flow of the caller nodes is extended with computed IRs.
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Before call

After call

Caller node

Before call

After call

Caller node

extension extension

IR 1 IR 2

extension-sink

Before call

After call

Caller node

extension extension

IR

extension-sink

Before call

Caller node

After call

extension-sink

A B C

Figure 4 Building IR. Initial IR – the control flow of the caller node has not yet been extended
(A). IR after processing the caller node during static analysis. The control flow of the caller node is
extended with two IRs – IR 1 and IR 2 (B). Single IR shared between multiple caller nodes (C).

IRs are not connected to caller nodes directly – extension node is inserted between each
caller node and the entry node of the connected IR and extension-sink node is inserted
between each final node of the IR and the node following the call. While an extension node
binds actual parameters to formal parameters for function, method, and constructor calls, an
extension-sink joins states of final nodes of all the IRs that extend the corresponding caller
node.

I Example 2. Fig. 4-A shows IR after it is initially built. Fig. 4-B shows IR after extending
the caller node during the analysis. In this case, the caller is extended with more IRs – this
can happen, e.g., if a method is called on an object that can be of more types. Fig. 4-C
shows the case when a single IR is shared by multiple callers.

3.3 Analysis Domain
The states of our abstract domain have the form of State = H × V × F where H is a state
of the heap analysis, V is a state of the value analysis, and F is a state of the declaration
analysis. The heap analysis tracks the shape of the heap and approximates concrete heap
locations with heap identifiers (HId), while the value analysis tracks values on heap identifiers.
While the heap analysis and value analysis need to interplay, the declaration analysis is
independent from both.

Declaration Analysis
Declaration analysis is necessary, because in PHP and other dynamic languages, the names
of functions, classes, and constants are bound to concrete definitions during runtime. The
analysis thus needs to track these definitions. A state of a declaration analysis F is a set of
class, function, and constant declarations and lattice operators of the analysis are 〈F ,⊆,∪,∩〉.

ECOOP’15
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I Example 3. Consider the following PHP code:
1
2 if ($_GET[1]) {
3 class A {
4 public $a = 2;
5 function f($p) { return $p + 1;}
6 }
7 } else {
8 class A {
9 public $a = −1;

10 function f($p) { return $p − 1;}
11 }
12 }
13 $x = new A();
14 $y = $x−>f($x−>a); // $y can be −2, 0, 1, 3

Since the condition at line (1) is statically unknown, the declaration analysis computes
that both declarations of class A can be used at line (12). Consequently, the call at line
(13) can be done with two possible arguments and has two possible callees resulting in four
possible results.

Heap Analysis
In PHP and other dynamic languages, variables as well as array indices and object properties
need not be declared and can be accessed with arbitrary expressions, which can yield statically
unknown values. If a specified variable, index, or object property exists, it is overwritten; if
not, it is created.

To be able to capture this semantics, the heap analysis approximates arrays, objects,
array indices, object fields, and even variables2 with heap identifiers and the heap analysis
can create new heap identifiers both during assignment and join operation. Whenever a
new heap identifier is created, it is initialized with an existing heap identifier that stores
values from statically unknown assignments to the new identifier that could happen before
the creation.

Creation of new heap identifiers corresponds to materialization in shape analysis [20].
The summary heap identifiers summarize all the heap elements that could be updated by
statically unknown assignments and have not been materialized yet3. When there is a need to
distinguish a heap element from other heap elements summarized by the same summary heap
identifier, a new heap identifier is materialized from the summary identifier. This happens,
e.g., when an array index is assigned for the first time with a statically known target. In
this case, the array index is approximated by the summary heap identifier representing all
indices that could be updated only by statically unknown assignments in the pre-state and
by the newly materialized heap identifier in the post-state. Materializations are defined as a
set of pairs of heap identifiers Mat = P(HId×HId). The meaning of a single materialization
is that the first heap identifier from the pair is materialized from the second, summary heap
identifier.

Note that materialization makes the naming scheme of the heap analysis flow-dependent –
depending on the program location, a concrete heap element can be approximated by different
heap identifiers. This makes an interplay of the heap analysis and the value analysis more

2 Variables are treated as indices of a special associative array representing the symbol table.
3 Heap elements that have not been assigned by any assignment are summarized by a special heap

identifier uninit.
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Root

users

users

?

?

users-?

name ?

id

admin

users-admin

?addr

Heap id Value

id {AnyString}

? {UndefString}

Users-admin-addr {admin}

Users-admin-? {UndefString}

Users-?-name {UndefString, AnyString}

Users-?-? {UndefString}

uninit {UndefString}

HeapValue

uninit

Figure 5 The heap and string part of the value component of the state after the update at line
23 in Fig. 1.

challenging. Since the value analysis tracks values on heap identifiers, materializations, which
change the naming scheme, need to be applied also to value analysis. Later, we define this
application using the standard abstract interpretation interface of the value analysis. This
makes it possible to update the state of the value analysis automatically, without modifying
the value analysis ad-hoc. That is, any value analysis that complies with the standard
abstract interpretation interface can be used.

I Example 4. Fig. 5 shows the heap and value component of the analysis state after the
update at line 23 in Fig. 1. In the following, we use the heap domain developed in [11] and
the set domain as a value domain. Note that the value domain tracks values just over these
heap identifiers that can contain values. Other heap identifiers are present only in the heap
domain.

The heap component of the state contains heap identifier Root representing the array
corresponding to the symbol table and heap identifier uninit representing the uninitialized
heap elements. The symbol table array contains three heap identifiers (id, users, and ?),
which represent program variables ($id and $users) and statically unknown variables. For
heap identifier id, value analysis tracks the value AnyString, while heap identifier users is
present only in the heap domain and points to another array. Heap identifier users-admin
represents index $users[admin], while heap identifier users-? represents statically unknown
indices of array $users. Both heap identifiers represent arrays corresponding to the next
dimensions of array $users. Finally, heap identifiers users-admin-addr, users-admin-name,
users-admin-?, users-?-name, and users-?-? represent indices of these arrays. Since
these heap identifiers store values, they are tracked by the value analysis.

We assume that heap analysis is provided with lattice operators 〈H,vH ,tH ,uH〉. Oper-
ator vH specifies a partial order, tH is the join operator, and uH is the meet operator. The
semantics of heap analysis is given by transfer function J·KH : H 7→ H.

Moreover, we assume that the heap analysis provides function read : AE 7→ P(HId) for
reading data from the heap. The function returns a set of heap identifiers identified by
given access expression. Access expression is obtained from IR nodes of type variableV ,
property-useV , and index-useV . In the case of variableV , access expression is just the set
of values, in the case of property-useV , and index-useV , it is a sequence of sets of values.
Each set from the sequence contains values that can be used to access the corresponding
dimension of an array or the corresponding object in the object reference chain. That is,

ECOOP’15
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access expressions can represent multi-dimensional updates. This is necessary in order to
model semantics of non-decomposable multi-dimensional updates [11].

I Example 5. Consider reading the values stored at index $users[10][’name’] from the
state depicted in Fig. 5. The access expression for the index is {users} {10} {′name′}.
Calling the read function provided by the heap component with this access expression as
argument returns the heap identifier users-?-name. This heap identifier is then used to get
the resulting values from the value domain. The value domain returns values UndefString
and AnyString meaning that the index $users[10][’name’] can be uninitialized and can
contain statically unknown string value.

Similarly, when reading the index $users[$_GET[1]][’name’], the access expression is
{users}{∗}{′name′}, the read function returns heap identifiers users-?-name and users-
admin-name, and the subsequent call to the value domain returns values UndefString,
AnyString, and ’addr’.

We additionally assume that the heap analysis provides function joinToValue : H ×H 7→
Mat×Mat. This function takes the heap parts of analysis states to be joined as arguments
and for each joined analysis state, it returns materializations of the heap identifiers created
when performing the join operation.

Finally, we assume that heap analysis provides function assignToValue : H × AE 7→
Mat× P(HId)× P(HId). This function takes an analysis state before the assignment and
the access expression identifying the target of the expression as arguments and returns a
triple: (i) materializations of heap identifiers created when performing the assignment, (ii)
the heap identifiers representing heap elements that certainly must be updated, and (iii) the
heap identifiers representing heap elements that only may be updated.

Value Analysis
The states of the value analysis have a form of V = V1 × V2 where V1 is a state of the value
analysis in the first phase and V2 is a state of the value analysis in the second phase (end-user
analysis). The first phase of the analysis modifies the first component of the state V1, the
second phase of the analysis modifies the second component of the state V2.

The user of the framework can define both the value analysis in the first phase and
the value analysis in the second phase. However, since values that are used to compute
control-flow and targets of data accesses are computed in the first phase, the user is more
constrained in the first phase.

Second phase

The domain for the second phase tracks information over heap identifiers and it is provided
with lattice operators 〈V2,vV2

,tV2
,uV2

〉, transfer function J·KV2
: V2 7→ V2, and widening

operator OV2
.

First phase

In the first phase, the value analysis tracks values of PHP primitive types over heap identifiers:

V1 = HId 7→ Value1

Value1 = Undef×Null× Bool×Num× String
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Since PHP has dynamic type system – variables, array indices, and object properties do
not have declared types, and they can store values of different types depending on context –,
Value1 can store values of all primitive types.

To define the value analysis of the first phase, the user of the framework must for
each component C of Value1 provide the framework with lattice operators 〈C,vC ,tC ,uC〉,
transfer function J·KC : C 7→ C, and widening operator OC . The lattice operators for Value1
are defined component-wise. Moreover, for each pair (C1, C2) of components of Value1,
functions ConvC1C2

: C1 7→ C2 and ConvC2C1
: C2 7→ C1 must be provided. These functions

are used to model type conversions, which are ubiquitous in dynamic languages.
It should be noted that even though value analysis in the first phase is defined indepen-

dently of heap analysis, which simplifies its definition, intricate value semantics of PHP makes
the definition inherently complex. The framework thus provides default implementations of
all components of Value1 including transition functions for PHP native operators and library
functions. For the default implementation of the numeric component, we used the interval
domain. For the default implementation of the string component, we used the domain based
on sets of strings. Its lattice structure is 〈P(String),⊆〉 where String are concrete strings.
To make the height of the lattice finite and thus guarantee termination, the size of sets is
limited by a constant; value AnyString represents the sets of larger sizes.

I Example 6. This example illustrates the states of Value1 with the default implementation
of its components.

The abstract value (⊥,⊥,AnyBool,⊥,⊥) represents concrete values true and false of
type Boolean, the abstract value (undef,⊥,⊥, true, {"foo", "bar"}) represents the following
concrete values: uninitialized value, the Boolean true, the string "foo", and the string
"bar".

3.4 Lattice Order and Meet

The lattice order vState and meet operator uState for analysis states are defined component-
wise:

(h1, v1, f1) vstate (h2, v2, f2) ⇐⇒ h1 vH h2 ∧ v1 vV v2 ∧ f1 ⊆ f2

(h1, v1, f1) ustate (h2, v2, f2) = (h1 uH h2, v1 uV v2, f1 ∩ f2)

3.5 Applying Materializations to Value Analysis

Materializations allow the heap analysis to create new heap identifiers during the assignment
and join operations. As discussed in Sect. 3.3, materializations change the naming scheme of
the heap analysis; since value analysis tracks values of heap identifiers, these changes must
be applied also to the value domain. This is carried out by function applyMaterializations :
(V ×Mat) 7→ V that applies materializations to a state of the value analysis:

applyMaterializations(v,M) = vn where M = {(t1, s1), (t2, s2), ..., (tn, sn)},
v0 = v,∀j ∈ [1..n] : vj = Jtj = sjKV (vj−1)

ECOOP’15
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3.6 Join and Widening
The join of two facts is defined as the set of all facts that are implied independently by any.
The join and widening of two states (h1, v1, f1) and (h2, v2, f2) are defined as follows:

(h1, v1, f1) tstate (h2, v2, f2) = (h1 tH h2, v′1 tV v′2, f1 ∪ f2)

(h1, v1)Ostate(h2, v2) = (h1 tH h2, v′1OV v
′
2, f1 ∪ f2)

(m1,m2) = joinToValue(h1, h2)

v′1 = applyMaterializations(v1,m1)

v′2 = applyMaterializations(v2,m2)

The declaration and heap parts of input states are joined independently on other parts.
To perform the join of value parts, heap analysis provides value analysis with materializations
of heap identifiers in each joined state. Then, the materializations are applied to the value
components of joined states and finally, the updated value parts are joined. Note that the
latter two operations are done just by means of standard abstract interpretation interface
provided by value analysis.

I Example 7. Fig. 6 shows joining value and heap components of two states (v1, h1) and
(v2, h2). For brevity we omit declaration components.

First, the heap components of analysis states are joined. For the first state to be
joined, heap analysis materializes heap identifiers arr-1-3, arr-1-?, and arr-?-? from
the heap identifier uninit representing undefined heap identifier. That is, there were no
statically-unknown assignments that could update the materialized identifiers. Application
of materializations to the value component of the first analysis state to be joined thus just
adds the materialized identifiers and initializes them with value UndefString.

For the second state, heap analysis materializes heap identifiers arr-1-?, arr-1-2, and
arr-1-3. Since there was statically-unknown assignment that could update the latter
identifier, this identifier is materialized from the identifier arr-?-3 representing the target of
this statically-unknown assignment. Application of materializations to the value component
of the second analysis state to be joined thus initializes the identifier arr-1-3 with values
UndefString and ’second’.

Finally, the value components of analysis states after applying materializations v′1 and v′2
have the same set of heap identifiers and can be joined independently on the heap components.

3.7 Transfer Functions
For each kind of node in the intermediate representation, a transfer function maps an abstract
state before the node to an abstract state after the node.

We describe the transfer function for the node assignV [lV , rV ], where both parameters
lV and rV are nodes of type variableV , property-useV , or index-useV . Each of these nodes
allows getting an access expression, which provides heap analysis information necessary
for accessing heap identifiers representing heap locations stored in the node. The access
expression for the left-hand side of the assignment lV is lV .AE, the access expression for the
right-hand side of the assignment rV is rV .AE.

To define the transfer function, we first define function strongUpdate : V × P(HId) ×
P(HId) 7→ V . The first parameter is a state of value analysis that is being updated, the
second parameter is the set of heap identifiers that are updated, and the last parameter is
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Figure 6 Joining value and heap components of two states (v1, h1) and (v2, h2). The corresponding
code (A), value and heap components of joined states (B), applying materializations to value
components of states to be joined (C), result of the join (D). For the sake of space, the heap
identifiers that have just value UndefString are not depicted in value components.

the set of heap identifiers representing new values:

strongUpdate(v, T, S) = vn where T = {t1, t2, ..., tn}, v0 = v

∀j ∈ [1..n] : vj =
⊔
s∈S

Jtj = sKV (vj−1)

Next, we define function weakUpdate : V × P(HId)× P(HId) 7→ V :

weakUpdate(v, T, S) =
⊔

t∈T,s∈S

v tV Jt = sKV (v)

While after strong update, heap identifiers can have just new values, after weak update,
they either can have the original values or the new ones [18]. This effect is approximated by
joining the analysis state before the update with the analysis state after the update.
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The transfer function for updating the state (h, v) with assignV [lV , rV ] is defined as:

JassignV [lV , rV ]Kstate(h, v, f) = (JlV .AE = rV .AEKH(h), v′′′, f)
(m,umust, umay) = assignToValue(h, lV .AE)
v′ = applyMaterializations(v,m)
v′′ = strongUpdate(v′, umust, read(h, rV .AE))
v′′′ = weakUpdate(v′′, umay, read(h, rV .AE))

The transfer function for the heap part of the state is defined by the heap domain itself,
and it is not influenced by the value domain. To define the transfer function for the value
part of the state, the heap domain provides the value domain with necessary information
via function assignToValue. This information consists of: (1) m – information necessary
to materialize the heap identifiers that were defined by the assignment (2) heap identifiers
representing the heap elements that are certainly targets of the assignment, and (3) heap
identifiers representing the heap elements that may be targets of the assignment.

Then, the materializations are applied to the value domain. Finally, the heap identifiers
that are certainly targets of the assignment are strongly updated with values of the heap
identifiers read from the right-hand side of the assignment, and the heap identifiers that only
may be targets of the assignment are weakly updated. The same way as in the case of the
join operation, all these updates are performed just by means of the transfer function for the
assignment provided by value analysis.

I Example 8. Fig. 7 illustrates the transition function for the assignment at line 24 in Fig. 1
($users[$id][’addr’] = $_GET[’addr’]). First, the access expressions for the source and
the target of the assignment are obtained from the corresponding IR nodes. For the source
of the assignment, the access expression is {_GET}{addr}, for the target of the assignment,
the access expression is {users}{AnyString}{addr}. Note that in the latter case, the value
for the second dimension of the access is specified by the variable $id.

Second, the access expressions are used to specify the update. During the update, the
heap component materializes the heap identifier users-?-addr and this change is propagated
to the value component via the function applyMaterializations. Note that since there have
not been any statically unknown assignments that could update this heap identifier, it is
materialized from the identifier uninit representing undefined values. That is, the identifier
users-?-addr is added to the value component and initialized with UndefString.

Finally, the heap component specifies that identifiers users-?-addr and users-ad-
min-addr are weakly updated and the update is propagated to the value component. Since
the target of the assignment is not statically known, no heap identifiers are strongly updated.

3.8 Summary Heap Identifiers

Value analyses are designed to track information on local variables, while we use them to
track information on heap identifiers, which can represent many concrete heap locations –
summary identifiers [9]. For an example of summary identifiers, consider heap identifiers
representing targets of statically unknown assignments and heap identifiers representing a
single allocation-site in that many concrete heap locations can be allocated. While value
analysis can treat heap identifiers that represent a single heap location exactly the same
way as local variables, for summary identifiers, it must take into account that they represent
more heap locations.
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Figure 7 Transfer function for the assignment. The code of the assignment (A). The value and
the heap component (v, h) of the state before the assignment (B). Applying materialization of the
identifier users-?-addr to the value component of the state (C). The value component v′′ and the
heap component of the state after the assignment (D). For the sake of space, the heap identifiers
that have just value UndefString are not depicted in value components.

First, summary heap identifiers must be always weakly updated. In our framework, heap
analysis has to take this into account in function assignToValue, which defines identifiers
that are weakly and strongly updated by the assignment. This is enough for non-relational
value domains – these value domains can otherwise treat summary heap identifiers the same
way as local variables.

However, in the case of relational value domains, it is additionally necessary to treat
differently assignments from summary heap identifiers. Consider the code:

1 1
2 $a = $users[$_GET[1]];
3 $b = $users[$_GET[2]];
4 if ($a != $b) {...}

Our heap analysis represents both $users[$_GET[1]] and $users[$_GET [2]] by the same
summary heap identifier users-?. Our technique would thus abstract the semantics of
assignment at line (1) as Ja = users−?KV and the semantics of assignment at line (2) as
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Jb = users−?KV . If v werte a relational domain, the analysis would relate both identifiers a
and b with the summary identifier users-? and incorrectly infer that the if-then branch
can never be reached. This problem was studied by Gopan [9] et. al., who showed that it is
wrong to correlate summarized identifiers with non-summarized ones and they proposed a
way to extend existing relational domains to deal with this problem.

In our framework, the value domain in the first phase is non-relational and all value
domains for end-user analyses that we have implemented so far are also non-relational. To
use relational value analyses, these analyses need to be extended to summary dimensions
as described by Gopan [9] and the heap analysis has to additionally provide the framework
with the information which heap identifiers are summaries.

3.9 Soundness
Our analysis framework allows for defining sound analyses. If the semantics of heap analysis,
the semantics of value analysis, and the semantics of declaration analysis plugged into our
framework are sound, the semantics of the resulting composed analysis is sound as well. In
the following, we will state the fundamental assumptions on value and heap analyses4. The
traditional soundness argument in abstract interpretation is:

I Definition 9 (Soundness of analysis semantics). Given a set of abstract states S, abstract
semantics J·KS , a set of concrete states S, concrete semantics J·KS , and concretization function
γ : S 7→ P(S), the abstract semantics J·KS is sound with respect to the concrete semantics
J·KS iff for each statement st and analysis state s ∈ S it holds:

(JstKS(s) = s′ ∧ JstKS(γ(s)) = s′) =⇒ s′ ⊆ γ(s′)

Hence, to prove the soundness of the analysis semantics, it is necessary to define the
structure of concrete states, their semantics, concretization function, and then prove that it
satisfies proposition of Def. 9.

The soundness argument is based on the assumption that the heap semantics and the
value semantics are sound. While for the value semantics, the soundness can be specified
just using Def. 9 and we can thus use any sound value analysis in our framework, for the
heap semantics, we must pose further assumptions.

First, we assume that function read provided by heap analysis complies with the semantics
of concrete dereferencing. That is, for each abstract state and each access expression, the
heap identifiers returned by function read must represent all concrete locations given by
dereferencing using the access expression in all the concretizations of the abstract state.

Next, we assume that the updates given by semantics function assignToValue are sound
with respect to the semantics of concrete dereferencing. That is, for the left hand site of
assignment, the heap identifiers representing updates given by function assignToValue and
an access expression in an abstract state must represent all concrete heap locations R given
by dereferencing using the access expression in all the concretizations of the abstract state.
Moreover, all the heap identifiers that are in the strong-update set (umust) must exactly
represent all the heap locations in set R and all the other heap identifiers that represent the
sets of heap locations with non-empty intersection with R must be in the may-update set
(umay).

4 We will omit the declaration analysis. It needs not interplay with the other analyses and can be treated
completely separately.
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Finally, we assume that the materializations produced by heap analysis are coherent
with respect to the modifications of heap analysis. That is, (1) in the post-state, the heap
identifiers that are not sources of materializations must represent the same concrete heap
locations as in the pre-state, (2) for each heap identifier that is materialized and its source it
must hold that in the post-state each of them represents the subset of the heap locations
represented by the source of the materialization in the pre-state, and (3) in the post-state
both heap identifiers together must represent all the heap locations represented by the source
of the materialization in the pre-state.

Note that we do not require different heap identifiers to represent non-overlapping
portions of concrete heap. That is, there can exist two different heap identifiers with
overlapping concretizations, i.e., there exists a concrete heap location approximated by both
heap identifiers. This allows using heap analyses modeling the semantics of assignment
by reference more precisely [11]. Consider, e.g., the statement $a = &$b. In the concrete
semantics, the statement makes $a and $b pointing to the same heap location. We allow
heap analysis to model this concrete location by more heap identifiers with overlapping
concretizations – e.g., heap identifier i1 for variable $a and heap identifier i2 for variable
$b. To be sound, heap analysis must update these heap identifiers coherently – e.g., if heap
identifier i1 is updated, heap identifier i2 is updated as well. This is guaranteed by the
soundness of updates stated above. Heap identifiers with overlapping concretizations can
enable more strong updates. Consider the following example:
1 if ($_GET[’INPUT’]) $a = &$b;
2 else $a = &$c;
3 $a = 1;

There are two concrete heap locations in this example. If heap analysis uses less than
three heap identifiers to represent these concrete locations, it must perform weak update at
line 3. In case of three heap identifiers, their concretizations must overlap; it allows heap
analysis to perform strong update on the heap identifier for $a and weak updates of those
for $b and $c.

4 Evaluation

To evaluate the precision and scalability of our framework, we used it to implement static
taint analysis and we applied it to the NOCC webmail client5 and a benchmark application
comprising of a fragment of the myBloggie weblog system6, with a total of over 16 kLoC.
The benchmark application contains 13 security problems; the number of problems contained
in the webmail client is not known.

We compared the results of our analysis with Pixy [15] and Phantm [17], the state-of-
the-art tools for security analysis and error discovery in PHP applications. Both these tools
compute control-flow of analyzed applications, model PHP data structures, and perform value
analysis. Both these tools detect accesses to uninitialized elements. In addition, Phantm
detects type mismatch errors and Pixy detects taint errors, i.e., flows of sensitive data to
critical commands. Our analysis detects both type of errors.

Tab. 2 shows the summary of results. Out of 13 errors in the benchmark application, 8
errors were accesses to uninitialized elements and 5 errors were taint errors. Since Pixy is
not designed to detect taint errors we did not use taint errors to assess the error coverage

5 http://nocc.sourceforge.net/
6 http://mybloggie.mywebland.com/

ECOOP’15

http://nocc.sourceforge.net/
http://mybloggie.mywebland.com/


706 Framework for Static Analysis of PHP Applications

Table 2 Comparison of tools for static analysis of PHP. W/C/F/T: Warnings / error Coverage
(in %) / False-positives rate (in %) / analysis Time (in s).

myBloggie NOCC 1.9.4
Lines 648 15,605

W C F T W C F T
Our framework 16 100 19 0.9 34 NA 62 84
Pixy 16 69 44 0.6 NA
Phantm 43 38 93 2.5 426 NA NA 90

for Pixy. The table shows that the analysis defined using our framework outperforms
the other tools both in error coverage and number of false positives when analyzing the
benchmark application. As to the analysis of NOCC, while Pixy was even not able to
analyze the application, Phantm reported a huge number of alarms, which together with a
high false-positive rate made its output almost useless7.

Our analysis discovered all 13 problems in myBloggie. One of the false alarms reported
by our analysis is caused by imprecise modeling of the built-in function date. Our analysis
only models this function by types and deduced that any string value can be returned by
this function. However, while the first argument of the function is "F", the function returns
only strings corresponding to English names of months. When the value returned by this
function is used to access the index of an array, our analysis incorrectly reports that an
undefined index of the array can be accessed. Two remaining false alarms are caused by
path-insensitivity of the analysis. The sanitization and sink commands are guarded by the
same condition, however, there is a joint point between these conditions, which discards the
effect of sanitization from the perspective of path-insensitive analysis.

Our analysis found three previously unknown vulnerabilities in the NOCC email client
and ten other problems (e.g., calling a function with an argument that is not declared and
superfluous implicit conversions). False-positive alarms were caused by imprecise modeling
of PHP built-in functions, path-insensitivity of the analysis, and using non-relational value
domains.

5 Related Work

The present work builds on a large body of work on static program analysis of dynamic
languages. The pioneering works [12, 30, 26, 27] omit modeling some of the important parts
of the analyzed languages. The unmodeled parts include references, dynamic accesses to
associative arrays, and object-oriented features.

Pixy [16] performs security taint analysis of PHP programs and provides information
about the flow of tainted data. Pixy performs a flow-sensitive, interprocedural, and context-
sensitive data flow analysis along with literal and alias analysis to achieve precise results. Its
main limitations include an incomplete support for statically-unknown updates to associative
arrays, ignoring classes and the eval command, omitting type inference, and a limited
support for handling file inclusion and aliasing. Alias analysis introduced in Pixy incorrectly
models aliasing when associative arrays and objects are involved.

7 Because of a huge number of alarms reported by Phantm, we assessed its false-positives rate just for
myBloggie, not for NOCC.
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Andromeda static taint analyzer [24] fights the problem of scalability of taint analysis by
computing data-flow propagations on demand. It uses forward data-analysis to propagate
tainted data and ignores propagation of other data. If tainted data are propagated to
the heap, it uses backward analysis to compute all targets to which the data should be
propagated. Andromeda analyzes Java, .NET, and JavaScript applications. The drawback of
the approach is that it propagates only taint information. Especially for dynamic languages,
the control-flow of the application can depend on other kind of information which is then
not available. To reduce this problem, Andromeda uses F4F [21], which reduces the amount
of information that is not known statically.

Phantm [17] is a PHP 5 static analyzer for type mismatch based on data-flow analysis;
it aims at detection of type errors. To obtain precise results, Phantm is flow-sensitive, i.e.,
it is able to handle situations when a single variable can be of different types depending
on program location. However, it omits updates of associative arrays and objects with
statically-unknown values and aliasing, which can lead to both missing errors and reporting
false positives.

TAJS [14] is a JavaScript static program analysis infrastructure that infers type in-
formation. To gain precise results, the analysis is context-sensitive and precisely models
intricate semantics of JavaScript, including prototype objects and associative arrays, dynamic
accesses to these data structures, and implicit conversions. It tackles the problem that
dynamic features of JavaScript make it impossible to construct control-flow before static
analysis by constructing control-flow on-the-fly during the analysis. Since TAJS models
JavaScript semantics precisely, it has been successfully used to enable additional analyses.
In [4, 5], the TAJS program analysis infrastructure is used to build a tool for refactoring
JavaScript programs and in [13] TAJS is used to enable technique of statically resolving eval
constructs. However, TAJS combines heap and value (type) analysis ad-hoc, which results
in intricate lattice structure and transfer functions. Next, TAJS assumes that updates to
multi-dimensional arrays and objects can be decomposed to updates of length one. While
this is true for JavaScript, this assumption leads to loss of precision in the case of some other
dynamic languages such as PHP and Perl.

Since the excess of information that are only available at runtime pose a major problem
to static analysis, several techniques have been developed that try to enable static anal-
ysis of dynamic languages by making this information statically available prior to static
analysis. F4F [21] focuses on static taint analysis of web applications that use frameworks.
They use a semi-automatically generated specification of framework-related behaviors to
reduce the amount of statically-unknown information, which arises, e.g., from reflective
calls. Phantm [17] reduces the number of information that static analysis must compute
and possibly overapproximate by first executing the application, collecting this information
and then invoking static analysis from a particular runtime state. Wei et. al. [28] reduce
the number of statically-unknown information in JavaScript by using a technique of blended
static analysis [2]. They first execute a test suite and for each test they record its execution
trace. Then, for each execution trace, they extract its call graph, types of created objects,
and dynamically generated code and perform static analysis of the application with using
this information. Finally, they combine solutions from different execution traces into a single
solution for the application.

Recently, there has flourished a rich body of work on precise and sound points-to analysis
for dynamic languages. Sridharan et. al. [22] present static flow-insensitive points-to analysis
for JavaScript modeling objects in JavaScript using associative arrays that can be accessed by
arbitrary expressions. To enhance the precision and scalability of the analysis, they identify
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correlations between dynamic property read and write accesses. If the updated location
and stored value can be accessed by the same first class entity (variable), it is extracted to
a function parametrized by this entity; this function is then analyzed context-sensitively
with the context being the variable. Thus, the correlation between the update and store
is preserved. Wei et al. [29] present points-to analysis for JavaScript. Their analysis is
partially flow-sensitive – it stores points-to information for every CFG segment with a single
state-update statement. Next, their analysis is context-sensitive – to reflect the fact that
properties can be added to objects at runtime, it uses a receiver object, its chain of prototype
objects, its local properties and their object values as a context. This makes it possible
to differentiate between two calls received by the object with the same creation site but
different properties. Finally, to perform more strong updates in case of property-writes they
use access path edges in their points-to representation. For a property-write (e.g., $x->p =
$y) where the dereferenced variable ($x) points to more objects, weak-updates of properties
in these objects (p) are performed. However, the access path edge (<x, p>) is strongly
updated. If the property is read and there exists a corresponding access path edge, it is
used instead of points-to edges (for $z = $x->p the access path edge <x, p> is used and
just objects pointed-to by variable $x are read). In our previous work [11], we presented
points-to analysis for PHP modeling associative arrays that could be accessed using arbitrary
expressions. Additionally, our analysis precisely models the semantics of PHP explicit aliases
and the semantics of multi-dimensional updates – in PHP or Perl, updates create indices if
they do not exist and initialize them with empty arrays if needed; on contrary, read accesses
do not.

While heap and value static analyses have been studied mainly as orthogonal problems,
to support verification of real programs, they usually need to be combined together [6, 25].
Since in dynamic languages, data structures can be dynamically accessed with arbitrary
expressions, this problem of combining heap and static value analysis is particularly relevant
in this domain.

Clousot [3] preprocesses the program applying heap analysis, and uses a value numbering
algorithm to compute under-approximation of must-alias to replace heap accesses with heap
identifiers. Value analysis then tracks values of variables and also of the heap identifiers.
While the approach allows for using arbitrary value analysis, it only allows for using specific
heap analysis, which cannot use the information provided by value analysis, and the technique
is not sound.

Miné et. al. [19] combine type based pointer analysis and numeric value analyses in a
generic way. The pointer analysis models pointer arithmetic, union types and records of
stack variables in C programs. The general limitation of this technique is that it relies on
type based heap analysis, which is too coarse for many applications. In particular, their
technique does not support summary nodes and dynamic allocation.

Fu [8] combines numeric value analysis and points-to analysis. His method uses points-to
analysis to partition possibly infinite set of heap references into a finite set of abstract
locations (heap identifiers) and use value analysis to track values of variables and also of heap
identifiers. The method is both generic – it allows for reusing existing analyses as black-boxes
– and automatic – it does not require any annotations specific to a particular heap and value
analysis to be provided. The fundamental limitation of the technique is that it relies on
flow-independent naming scheme for points-to analysis. That is, a concrete reference is
always mapped to the same abstract location independently of program location. On one
hand, this assumption allows the technique to assume that change of the heap component of
the analysis state has no effect on the value component of the state and that two states can
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be joined component-wise. On the other hand, this assumption poses a substantial limitation
to modeling of adding new object fields and array indices using statically-unknown updates.
To illustrate the limitation, consider that a statically-unknown index of an empty array $a
is updated ($a[rand()]=..). At this point, points-to analysis must represent all concrete
indices of the array with a single abstract location h. Next, if a concrete index of the array,
e.g., $a[1], is updated ($a[1]=..), the analysis must still represent the index $a[1] with
h and thus cannot distinguish this index from other indices in $a. That is, a statically
unknown update makes the updated array (object) index-insensitive (field-insensitive) for all
indices (fields) added after the update. As both modeling statically-unknown updates and
field-sensitivity of heap analysis is crucial for static analysis of dynamic languages [23, 29],
the assumption of flow-independent naming scheme is too limiting in this context.

Ferrara [6] introduced the concept of substitutions overcoming the limitation of flow-
indepenent naming scheme when combining value and heap analysis. Substitutions allow
heap analysis to materialize and summarize abstract locations, i.e., to replace a single abstract
location in the pre-state with more abstract locations in the post-state and to replace more
abstract locations in the pre-state with a single abstract location in the post-state. Ferrara
defined how the analyses are composed when the substitutions are given and showed the
assumptions on the heap and the value analyses in order to make their composition sound.
However, his work cannot be directly applied in the context of dynamic languages. First, it
does not model dynamically added fields and indices to objects and arrays, which is essential
for dynamic languages. Then, Ferrara allows only heap analyses with non-overlapping heap
identifiers. As we explain in Section 3.9, some heap analyses developed for dynamic languages
use overlapping heap identifiers to perform more strong updates. Moreover, his work does
not allow heap analyses to explicitly specify which updates are strong and which updates
are weak thus reducing the precision of the composed analysis. In our work we focused
specifically on heap analyses for dynamic languages overcoming these limitations.

6 Conclusion

In this paper, we presented a framework for static analysis of dynamic languages, in particular
PHP applications.

The framework employs a two-phase analysis architecture – in the first phase, the dynamic
constructs present in the analyzed code are resolved, while the analysis in the second phase
can proceed in a way similar to a one for a language without dynamic features. This way,
the framework provides a developer with high-level API for implementing various kind of
analyses upon the code without the need to cope with dynamic features of the language.
To allow resolving dynamic features, the framework combines heap, value, and declaration
analyses. We described the necessary requirements on these analyses and the way these
analyses are composed together generically and soundly. That is, our framework allows for
combining various heap and value analyses while guaranteeing that if the analyses being
composed are sound, the composed analysis is sound as well.

The framework is provided with default implementations of heap analyses and first phase
analyses. To demonstrate usefulness of our framework, we implemented taint analysis of
PHP application and applied it on real PHP application. We have shown that the tool is
able to reveal real (previously unknown) security holes, while producing less false-positive
alarms comparing to other state-of-the-art tools.

As for future work, we aim at improving the performance and precision of the analyzes
provided by the framework especially in terms of scaling to large applications. In particular,
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this includes the scalability improvements of the heap analysis, implementation of more
choices of context-sensitivity, and devising precise modeling of more library functions. Next,
we plan to enhance our implementation of security analysis and use the framework for
implementing additional end-user analyses.
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