
31st International Symposium on
Computational Geometry

SoCG’15, June 22–25, 2015, Eindhoven, The Netherlands

Edited by

Lars Arge
János Pach

LIPIcs – Vo l . 34 – SoCG’15 www.dagstuh l .de/ l ip i c s

Editors
Lars Arge János Pach
MADALGO, Aarhus University EPFL / Rényi Institute
Aarhus, Denmark Lausanne, Switzerland / Budapest, Hungary
large@madalgo.au.dk pach@renyi.hu

ACM Classification 1998
F.2.2 [Analysis of Algorithms and Problem Complexity] Nonnumerical Algorithms and Problems –
Geometrical problems and computations, G.2.1 [Discrete Mathematics] Combinatorics, I.3.5 [Computer
Graphics] Computational Geometry and Object Modeling

ISBN 978-3-939897-83-5

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-83-5.

Publication date
June, 2015

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.SOCG.2015.i

ISBN 978-3-939897-83-5 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-83-5
http://www.dagstuhl.de/dagpub/978-3-939897-83-5
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.i
http://www.dagstuhl.de/dagpub/978-3-939897-83-5
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (Chair, RWTH Aachen)
Pascal Weil (CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

SoCG’15

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Dedicated to the memories of Ferran Hurtado and Jiří Matoušek.

Contents

Foreword xiii

Conference Organization xv

External Reviewers xvii

Sponsors xix

Session 1: Best Paper

Combinatorial Discrepancy for Boxes via the γ2 Norm
Jiří Matoušek and Aleksandar Nikolov . 1

Session 2: Multimedia Previews

Tilt: The Video – Designing Worlds to Control Robot Swarms with Only Global Signals
Aaron T. Becker, Erik D. Demaine, Sándor P. Fekete, Hamed Mohtasham Shad, and
Rose Morris-Wright . 16

Automatic Proofs for Formulae Enumerating Proper Polycubes
Gill Barequet and Mira Shalah . 19

Visualizing Sparse Filtrations
Nicholas J. Cavanna, Mahmoodreza Jahanseir, and Donald R. Sheehy 23

Visualizing Quickest Visibility Maps
Topi Talvitie . 26

Session 3a

Sylvester-Gallai for Arrangements of Subspaces
Zeev Dvir and Guangda Hu . 29

Computational Aspects of the Colorful Carathéodory Theorem
Wolfgang Mulzer and Yannik Stein . 44

Semi-algebraic Ramsey Numbers
Andrew Suk . 59

A Short Proof of a Near-Optimal Cardinality Estimate for the Product of a Sum Set
Oliver Roche-Newton . 74

A Geometric Approach for the Upper Bound Theorem for Minkowski Sums of Convex
Polytopes

Menelaos I. Karavelas and Eleni Tzanaki . 81

Two Proofs for Shallow Packings
Kunal Dutta, Esther Ezra, and Arijit Ghosh . 96

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

viii Contents

Session 3b

Shortest Path in a Polygon using Sublinear Space
Sariel Har-Peled . 111

Optimal Morphs of Convex Drawings
Patrizio Angelini, Giordano Da Lozzo, Fabrizio Frati, Anna Lubiw, Maurizio Patrignani,
and Vincenzo Roselli . 126

1-String B2-VPG Representation of Planar Graphs
Therese Biedl and Martin Derka . 141

Spanners and Reachability Oracles for Directed Transmission Graphs
Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth 156

Recognition and Complexity of
Point Visibility Graphs

Jean Cardinal and Udo Hoffmann . 171

Geometric Spanners for Points Inside a Polygonal Domain
Mohammad Ali Abam, Marjan Adeli, Hamid Homapour,
and Pooya Zafar Asadollahpoor . 186

Session 4a

An Optimal Algorithm for the Separating Common Tangents of Two Polygons
Mikkel Abrahamsen . 198

A Linear-Time Algorithm for the Geodesic Center of a Simple Polygon
Hee Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, Matias Korman, and
Eunjin Oh . 209

On the Smoothed Complexity of Convex Hulls
Olivier Devillers, Marc Glisse, Xavier Goaoc, and Rémy Thomasse 224

Finding All Maximal Subsequences with Hereditary Properties
Drago Bokal, Sergio Cabello, and David Eppstein . 240

Session 4b

Riemannian Simplices and Triangulations
Ramsay Dyer, Gert Vegter, and Mathijs Wintraecken . 255

An Edge-Based Framework for Enumerating 3-Manifold Triangulations
Benjamin A. Burton and William Pettersson . 270

Order on Order Types
Alexander Pilz and Emo Welzl . 285

Limits of Order Types
Xavier Goaoc, Alfredo Hubard, Rémi de Joannis de Verclos, Jean-Sébastien Sereni, and
Jan Volec . 300

Contents ix

Session 5a

Combinatorial Redundancy Detection
Komei Fukuda, Bernd Gärtner, and May Szedlák . 315

Effectiveness of Local Search for Geometric Optimization
Vincent Cohen-Addad and Claire Mathieu . 329

On the Shadow Simplex Method for Curved Polyhedra
Daniel Dadush and Nicolai Hähnle . 345

Session 5b

Pattern Overlap Implies Runaway Growth in Hierarchical Tile Systems
Ho-Lin Chen, David Doty, Ján Maňuch, Arash Rafiey, and Ladislav Stacho 360

Space Exploration via Proximity Search
Sariel Har-Peled, Nirman Kumar, David M. Mount, and Benjamin Raichel 374

Star Unfolding from a Geodesic Curve
Stephen Kiazyk and Anna Lubiw . 390

Session 6: Invited Talk

The Dirac-Motzkin Problem on Ordinary Lines and the Orchard Problem
Ben J. Green . 405

Session 7a

On the Beer Index of Convexity and Its Variants
Martin Balko, Vít Jelínek, Pavel Valtr, and Bartosz Walczak . 406

Tight Bounds for Conflict-Free Chromatic Guarding of Orthogonal Art Galleries
Frank Hoffmann, Klaus Kriegel, Subhash Suri, Kevin Verbeek, and Max Willert . . 421

Low-Quality Dimension Reduction and High-Dimensional Approximate Nearest Neighbor
Evangelos Anagnostopoulos, Ioannis Z. Emiris, and Ioannis Psarros 436

Restricted Isometry Property for General p-Norms
Zeyuan Allen-Zhu, Rati Gelashvili, and Ilya Razenshteyn . 451

Session 7b

Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs
Ulrich Bauer, Elizabeth Munch, and Yusu Wang . 461

On Generalized Heawood Inequalities for Manifolds: A Van Kampen–Flores-type
Nonembeddability Result

Xavier Goaoc, Isaac Mabillard, Pavel Paták, Zuzana Patáková, Martin Tancer, and Uli
Wagner . 476

SoCG’15

x Contents

Comparing Graphs via Persistence Distortion
Tamal K. Dey, Dayu Shi, and Yusu Wang . 491

Bounding Helly Numbers via Betti Numbers
Xavier Goaoc, Pavel Paták, Zuzana Patáková, Martin Tancer, and Uli Wagner . . . 507

Session 8a

Polynomials Vanishing on Cartesian Products: The Elekes-Szabó Theorem Revisited
Orit E. Raz, Micha Sharir, and Frank de Zeeuw . 522

Bisector Energy and Few Distinct Distances
Ben Lund, Adam Sheffer, and Frank de Zeeuw . 537

Incidences between Points and Lines in Three Dimensions
Micha Sharir and Noam Solomon . 553

The Number of Unit-Area Triangles in the Plane: Theme and Variations
Orit E. Raz and Micha Sharir . 569

On the Number of Rich Lines in Truly High Dimensional Sets
Zeev Dvir and Sivakanth Gopi . 584

Realization Spaces of Arrangements of Convex Bodies
Michael Gene Dobbins, Andreas Holmsen, and Alfredo Hubard 599

Session 8b

Computing Teichmüller Maps between Polygons
Mayank Goswami, Xianfeng Gu, Vamsi P. Pingali, and Gaurish Telang 615

On-line Coloring between Two Lines
Stefan Felsner, Piotr Micek, and Torsten Ueckerdt . 630

Building Efficient and Compact Data Structures for Simplicial Complexes
Jean-Daniel Boissonnat, Karthik C. S., and Sébastien Tavenas 642

Shortest Path to a Segment and Quickest Visibility Queries
Esther M. Arkin, Alon Efrat, Christian Knauer, Joseph S. B. Mitchell, Valentin
Polishchuk, Günter Rote, Lena Schlipf, and Topi Talvitie . 658

Trajectory Grouping Structure under Geodesic Distance
Irina Kostitsyna, Marc van Kreveld, Maarten Löffler, Bettina Speckmann, and Frank
Staals . 674

From Proximity to Utility: A Voronoi Partition of Pareto Optima
Hsien-Chih Chang, Sariel Har-Peled, and Benjamin Raichel . 689

Session 9a

Faster Deterministic Volume Estimation in the Oracle Model via Thin Lattice Coverings
Daniel Dadush . 704

Contents xi

Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings
Timothy M. Chan and Konstantinos Tsakalidis . 719

A Simpler Linear-Time Algorithm for Intersecting Two Convex Polyhedra in Three
Dimensions

Timothy M. Chan . 733

Session 9b

Approximability of the Discrete Fréchet Distance
Karl Bringmann . 739

The Hardness of Approximation of Euclidean k-Means
Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy,
and Ali Kemal Sinop . 754

A Fire Fighter’s Problem
Rolf Klein, Elmar Langetepe, and Christos Levcopoulos . 768

Session 10a

Approximate Geometric MST Range Queries
Sunil Arya, David M. Mount, and Eunhui Park . 781

Maintaining Contour Trees of Dynamic Terrains
Pankaj K. Agarwal, Thomas Mølhave, Morten Revsbæk, Issam Safa, Yusu Wang, and
Jungwoo Yang . 796

Hyperorthogonal Well-Folded Hilbert Curves
Arie Bos and Herman J. Haverkort . 812

Session 10b

Topological Analysis of Scalar Fields with Outliers
Mickaël Buchet, Frédéric Chazal, Tamal K. Dey, Fengtao Fan, Steve Y. Oudot, and Yusu
Wang . 827

On Computability and Triviality of Well Groups
Peter Franek and Marek Krčál . 842

Geometric Inference on Kernel Density Estimates
Jeff M. Phillips, Bei Wang, and Yan Zheng . 857

Session 11: Invited Talk

Modeling Real-World Data Sets
Susanne Albers . 872

SoCG’15

Foreword

The research papers, the abstracts of invited talks, and the descriptions of videos and
multimedia presentations in this volume constitute the proceedings of the 31st International
Symposium on Computational Geometry (SoCG’15), which was held as part of CG Week
2015 at TU Eindhoven, the Netherlands, June 22-25, 2015.

There were 154 papers submitted to SoCG’15 of which the program committee selected
59 for presentation after a substantial review process involving 241 external reviewers. The
online submission and the review were conducted using EasyChair. Several papers have been
selected for the special issues of Discrete & Computational Geometry and the Journal of
Computational Geometry dedicated to SoCG’15.

In addition to the technical papers, four submissions—three videos and one applet—were
received in response to the Call for Video and Multimedia. All four were reviewed and
accepted for presentation. The extended abstracts that describe the accepted submissions
are included in this proceedings. The final versions of the videos for the accepted submissions
will be archived at http://www.computational-geometry.org.

The Best Paper Award went to the paper “Combinatorial Discrepancy for Boxes via the
γ2 Norm” by Jiří Matoušek and Aleksandar Nikolov. The Best Student Presentation Award
will be determined at the symposium based on input of the attendees. We thank all authors
of submitted papers, videos and multimedia presentations. We also thank all people who
gave their time for the quality and success of this conference, especially the local organizers,
the external reviewers, and the program committee members.

Lars Arge
Program Committee co-chair

MADALGO, Aarhus University

János Pach
Program Committee co-chair
EPFL and Rényi Institute

Wolfgang Mulzer
Video and Multimedia Committee chair

FU Berlin

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.computational-geometry.org
http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Conference Organization

SoCG Program Committee

Lars Arge (co-chair, MADALGO, Aarhus University)
János Pach (co-chair, EPFL and Rényi Institute)
Boris Aronov (New York University, Polytechnic)
Anne Driemel (TU Eindhoven)
John Hershberger (Mentor Graphics)
Akitoshi Kawamura (University of Tokyo)
Stefan Langerman (Université Libre de Bruxelles)
Kasper Green Larsen (MADALGO, Aarhus University)
Nabil Mustafa (Université Paris-Est and ESIEE Paris)
Amir Nayyeri (Oregon State University)
Marcus Schaefer (DePaul University)
Donald Sheehy (University of Connecticut)
Anastasios Sidiropoulos (Ohio State University)
Michiel Smid (Carleton University)
Monique Teillaud (INRIA)
Csaba Tóth (California State University, Northridge)
Antoine Vigneron (KAUST)
Haitao Wang (Utah State University)

Multimedia Program Committee

Wolfgang Mulzer (chair, Freie Universität Berlin)
Esther Ezra (Georgia Institute of Technology)
Matthias Henze (Freie Universität Berlin)
Matias Korman (National Institute of Informatics, Tokyo)
Maarten Löffler (Utrecht University)
Ludmila Scharf (Freie Universität Berlin)
Christiane Schmidt (Hebrew University of Jerusalem)
Stefanie Wuhrer (Universität des Saarlandes)

Workshop Program Committee

Stefan Langerman (chair, Université Libre de Bruxelles)
Franz Aurenhammer (TU Graz)
Jean Cardinal (Université Libre de Bruxelles)
Mark de Berg (TU Eindhoven)
Olivier Devillers (INRIA)
Vida Dujmovic (University of Ottawa)
John Iacono (New York University, Polytechnic)
Micha Sharir (Tel Aviv University)
31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

xvi Conference Organization

Young Researchers Forum Program Committee

Rodrigo I. Silveira (chair, Universitat Politècnica de Catalunya)
Benjamin Burton (The University of Queensland)
David Eppstein (University of California, Irvine)
Matthew Katz (Ben-Gurion University)
Matias Korman (National Institute of Informatics, Tokyo)
Maarten Löffler (Utrecht University)
Csaba Tóth (California State University, Northridge)
Anna Lubiw (University of Waterloo)

Local Organizers

Bettina Speckmann (co-chair, TU Eindhoven)
Marc van Kreveld (co-chair, Utrecht University)
Patty Koorn (TU Eindhoven)
Maarten Löffler (Utrecht University)
Arthur van Goethem (TU Eindhoven)

Steering Committee

Jeff Erickson (chair, University of Illinois at Urbana-Champaign)
David Eppstein (secretary, University of California, Irvine)
Mark de Berg (TU Eindhoven)
Joseph S. B. Mitchell (Stony Brook University)
Günter Rote (Freie Universität Berlin)

Additional Reviewers

Amirali Abdullah
Karim Adiprasito
Pankaj K. Agarwal
Hee-Kap Ahn
Oswin Aichholzer
Susanne Albers
Noga Alon
Greg Aloupis
Alexandr Andoni
Sunil Arya
Dominique Attali
Franz Aurenhammer
Arturs Backurs
Sang Won Bae
Martin Balko
Boaz Barak
Luis Barba
Abdul Basit
Ulrich Bauer
Huxley Bennett
Edvin Berglin
Daniel Binham
Johannes Blömer
Jean-Daniel Boissonnat
Nicolas Bonichon
Glencora Borradaile
Magnus Bakke Botnan
Karl Bringmann
Tobias Brunsch
Kevin Buchin
Maike Buchin
Norbert Bus
Lilian Buzer
Jaroslaw Byrka
Andreas Bärtschi
Sergio Cabello
Jean Cardinal
Nicholas Cavanna
Frédéric Cazals
Erin Chambers
Timothy M. Chan
Frédéric Chazal

Bernard Chazelle
Otfried Cheong
Tobias Christ
Ken Clarkson
Vincent Cohen-Addad
Éric Colin de Verdière
Atlas F. Cook IV
Jean Cousty
Artur Czumaj
Mirela Damian
Mark de Berg
Jean-Lou De Carufel
Frank de Zeeuw
Olivier Devillers
Tamal Dey
Michael Gene Dobbins
Philippe Duchon
Ingo van Duijn
Laurent Dupont
Stephane Durocher
Ramsay Dyer
José-Miguel Díaz-Báñez
Khaled Elbassioni
Amr Elmasry
David Eppstein
Jeff Erickson
Thomas Erlebach
Esther Ezra
Brittany Terese Fasy
Sándor Fekete
Vissarion Fisikopoulos
Hervé Fournier
Kyle Fox
Fabrizio Frati
Radoslav Fulek
Shashidhara Ganjugunte
Jie Gao
Leszek Gasieniec
Subir Ghosh
Matt Gibson
Marc Glisse
Xavier Goaoc

Andrzej Grzesik
Joachim Gudmundsson
Larry Guth
Dan Halperin
Thomas Dueholm Hansen
Sariel Har-Peled
Herman Haverkort
Barry Hayes
Meng He
Martin Held
Yasuaki Hiraoka
Udo Hoffmann
Xiaocheng Hu
Ruqi Huang
Stefan Huber
John Iacono
Piotr Indyk
Hiro Ito
Takehiro Ito
Yoichi Iwata
Justin Iwerks
Mahmoodreza Jahanseir
Minghui Jiang
Allan Grønlund Jørgensen
Shahin Kamali
Menelaos I. Karavelas
Alexander Kasprzyk
Matthew Katz
Mark Keil
Michael Kerber
Masashi Kiyomi
Rolf Klein
Christian Knauer
Tsvi Kopelowitz
Matias Korman
Nirman Kumar
Vitaliy Kurlin
Michael Lampis
Sylvain Lazard
Francis Lazarus
Jian Li
Minming Li

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

xviii Additional Reviewers

Shi Li
Bernard Lidicky
Jyh-Ming Lien
André Lieutier
Nutan Limaye
Chih-Hung Liu
Benjamin Lund
Maarten Löffler
Pedro Machado
Manhães de Castro
Takanori Maehara
Clément Maria
Liam Mencel
Wouter Meulemans
Frédéric Meunier
David L. Millman
Joseph S. B. Mitchell
Scott Mitchell
Hiroyuki Miyata
Luis Montejano
Pat Morin
Sonoko Moriyama
Guillaume Moroz
Dmitriy Morozov
David Mount
Wolfgang Mulzer
Satoshi Murai
Quentin Mérigot
Jelani Nelson
Huy L. Nguyen
Bengt J. Nilsson
Joseph O’Rourke
Yoshio Okamoto
Yota Otachi
Steve Oudot
Ozgur Ozkan
Andreas Paffenholz
Evanthia Papadopoulou
Periklis Papakonstantinou

Salman Parsa
Amit Patel
Maurizio Patrignani
Michael Payne
Richard Peng
Seth Pettie
Jeff Phillips
Vincent Pilaud
Alexander Pilz
Valentin Polishchuk
Attila Por
Marc Pouget
Eric Price
Benjamin Raichel
Mathias Rav
Saurabh Ray
Orit Raz
Daniel Reem
Marcel Roeloffzen
Alfred Rossi
Günter Rote
Joachim Rubinstein
Heiko Röglin
Chandan Saha
Toshiki Saitoh
Raman Sanyal
Rik Sarkar
Maria Saumell
Lars Schewe
Jean-Marc Schlenker
Micha Sharir
Jonathan Shewchuk
Rodrigo Silveira
Marcelo Siqueira
Rene Sitters
Arkadiy Skopenkov
Christian Sohler
Noam Solomon
József Solymosi

Bettina Speckmann
Frank Staals
William Steiger
Yannik Stein
Noah Stephens-Davidowitz
Jian Sun
Kanat Tangwongsan
Shin-Ichi Tanigawa
Takahisa Toda
Takeshi Tokuyama
Marc van Kreveld
Kasturi Varadarajan
Ameya Velingker
Suresh Venkatasubramanian
Sander Verdonschot
Costin Vilcu
Lukas Vokrinek
Nicolai Vorobjov
Uli Wagner
Bei Wang
Yusu Wang
Rephael Wenger
Carola Wenk
Andrew Winslow
David Woodruff
Ge Xia
Jinhui Xu
Chee Yap
Alper Yildirim
Yelena Yuditsky
Joshua Zahl
Wuzhou Zhang
Gelin Zhou
Hang Zhou
Binhai Zhu
Günter M. Ziegler
Rade Zivaljevic
Anastasios Zouzias

Sponsors

We gratefully acknowledge the financial support received from the sponsors of CG Week
2015: TU Eindhoven, European Science Foundation (ESF), Royal Netherlands Academy of
Arts and Sciences (KNAW), Netherlands Organisation for Scientific Research (NWO), NWO
Gravitation Programme Networks, Center for Massive Data Algorithmics (MADALGO),
European Association for Theoretical Computer Science (EATCS).

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Combinatorial Discrepancy for Boxes
via the γ2 Norm
Jiří Matoušek∗1 and Aleksandar Nikolov2

1 Department of Applied Mathematics
Charles University
Malostranské nám. 25 118 00 Praha 1, Czech Republic, and
Department of Computer Science
ETH Zurich
8092 Zurich, Switzerland
matousek@kam.mff.cuni.cz

2 Microsoft Research
Redmond, WA, USA
alenik@microsoft.com

Abstract
The γ2 norm of a realm×n matrix A is the minimum number t such that the column vectors of A
are contained in a 0-centered ellipsoid E ⊆ Rm that in turn is contained in the hypercube [−t, t]m.
This classical quantity is polynomial-time computable and was proved by the second author
and Talwar to approximate the hereditary discrepancy herdiscA as follows: γ2(A)/O(logm) ≤
herdiscA ≤ γ2(A) · O(

√
logm). Here we provide a simplified proof of the first inequality and

show that both inequalities are asymptotically tight in the worst case.
We then demonstrate on several examples the power of the γ2 norm as a tool for proving

lower and upper bounds in discrepancy theory. Most notably, we prove a new lower bound of
Ω(logd−1 n) for the d-dimensional Tusnády problem, asking for the combinatorial discrepancy of
an n-point set in Rd with respect to axis-parallel boxes. For d > 2, this improves the previous best
lower bound, which was of order approximately log(d−1)/2 n, and it comes close to the best known
upper bound of O(logd+1/2 n), for which we also obtain a new, very simple proof. Applications
to lower bounds for dynamic range searching and lower bounds in differential privacy are given.

1998 ACM Subject Classification G.2.1 Combinatorics, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases discrepancy theory, range counting, factorization norms

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.1

1 Introduction

Discrepancy and hereditary discrepancy. Let V = [n] := {1, 2, . . . , n} be a ground set and
F = {F1, F2, . . . , Fm} be a system of subsets of V . The discrepancy of F is

discF := min
x∈{−1,1}n

disc(F , x),

where the minimum is over all choices of a vector x ∈ {−1,+1}n of signs for the points, and
disc(F , x) := maxi=1,2,...,m

∣∣∑
j∈Fi

xj
∣∣. (A vector x ∈ {−1, 1}n is usually called a coloring in

this context.)

∗ Research supported by the ERC Advanced Grant No. 267165.

© Jiří Matoušek and Aleksandar Nikolov;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Combinatorial Discrepancy for Boxes via the γ2 Norm

This combinatorial notion of discrepancy originated in the classical theory of irregularities
of distribution, as treated, e.g., in [8, 20, 3], and more recently it has found remarkable
applications in computer science and elsewhere (see [43, 15, 31] for general introductions
and, e.g., [25] for a recent use).

For the subsequent discussion, we also need the notion of discrepancy for matrices: for
an m× n real matrix A we set discA := minx∈{−1,1}n ‖Ax‖∞. If A is the incidence matrix
of the set system F as above (with aij = 1 if j ∈ Fi and aij = 0 otherwise), then the matrix
definition coincides with the one for set systems.

A set system F with small, even zero, discrepancy may contain a set system with large
discrepancy. This phenomenon was exploited in [14] for showing that, assuming P 6=NP,
no polynomial-time algorithm can distinguish systems F with zero discrepancy from those
with discrepancy of order

√
n in the regime m = O(n), which practically means that discF

cannot be approximated at all in polynomial time.
A better behaved notion is the hereditary discrepancy of F , given by

herdiscF := max
J⊆V

disc(F|J),

were F|J denotes the restriction of the set system F to the ground set J , i.e., {F ∩J : F ∈ F}.
Similarly, for a matrix A, herdiscA := maxJ⊆[n] discAJ where AJ is the submatrix of A
consisting of the columns indexed by the set J .

At first sight, hereditary discrepancy may seem harder to deal with than discrepancy. For
example, while discF ≤ k has an obvious polynomial-time verifiable certificate, namely, a
suitable coloring x ∈ {−1, 1}n, it is not at all clear how one could certify either herdiscF ≤ k
or herdiscF > k in polynomial time.

However, hereditary discrepancy has turned out to have significant advantages over
discrepancy. Most of the classical upper bounds for discrepancy of various set systems
actually apply to hereditary discrepancy as well. A powerful tool, introduced by Lovász,
Spencer and Vesztergombi [28] and called the determinant lower bound, works for hereditary
discrepancy and not for discrepancy. The determinant lower bound for a matrix A is the
following algebraically defined quantity:

detlbA = max
k

max
B
| detB|1/k,

where B ranges over all k×k submatrices of A. Lovász et al. proved that herdiscA ≥ 1
2 detlbA

for all A. Later it was shown in [29] that detlbA also bounds herdiscA from above up to a
polylogarithmic factor; namely, herdiscA = O(detlb(A) log(mn)

√
logn).

While the quantity detlbA enjoys some pleasant properties, there is no known polynomial-
time algorithm for computing it. Bansal [4] provided a polynomial-time algorithm that, given
a system F with herdiscF ≤ D, computes a coloring x witnessing discF = O(D log(mn)).
However, this is not an approximation algorithm for the hereditary discrepancy in the
usual sense, since it may find a low-discrepancy coloring even for F with large hereditary
discrepancy.

The γ2 factorization norm. The first polynomial-time approximation algorithm with a
polylogarithmic approximation factor for hereditary discrepancy was found by the second
author, Talwar, and Zhang [37]. Their result was further strengthened and streamlined by
the second author and Talwar [35], who showed that hereditary discrepancy is approximated
by geometrically defined quantity which turns out to be equivalent to the γ2 factorization
norm from Banach space theory.1 This connection was implicit in [37].

1 This equivalence was pointed out to us by Noga Alon and Assaf Naor.

J. Matoušek and A. Nikolov 3

Let the `∞ norm ‖E‖∞ of an ellipsoid E be defined as the largest `∞ norm of any point in
E. The geometric quantity studied in [35] is the minimum `∞ norm of a 0-centered ellipsoid
E that contains all column vectors of A. As noticed by several experts, this quantity is equal
to the γ2 norm of A, taken as a linear operator from `n1 to `m∞, which is also defined as

γ2(A) := min{‖B‖2→∞‖C‖1→2 : A = BC}.

Above, ‖ · ‖p→q stands for the `p → `q operator norm, and B,C range over linear operators.
Treating B and C as matrices, it is easy to see that ‖B‖2→∞ is equal to the largest Euclidean
norm of row vectors of B, and ‖C‖1→2 is equal to the largest Euclidean norm of column
vectors of C. We will use both the definition in terms of ellipsoids and the one in terms of a
factorization of A. We use the notation γ2(F) for a set system F to mean the γ2 norm of
the incidence matrix of F .

In [35] it was shown that γ2(A) can be approximated to any desired accuracy in polynomial
time, and the following two inequalities relating γ2(A) to herdiscA were proved: for every
matrix A with m rows,

herdiscA ≥ γ2(A)
O(logm) , and (1)

herdiscA ≤ γ2(A) ·O(
√

logm) (2)

These results together provide an O(log3/2 m)-approximation algorithm for herdiscA. (As
we will see in Section 4.1 below, (1) is actually valid with log min{m,n} instead of logm.)

The upper bounds guaranteed by inequality (2) are not constructive, in the sense that
we do not know of a polynomial-time algorithm that computes a coloring achieving the
upper bound. Nevertheless, the algorithms of Bansal [4] or Rothvoss [40] can be used to find
colorings with discrepancy γ2(A) ·O(logm) in polynomial time.

Results on the γ2 norm. A number of useful properties of γ2 are known, such as the non-
obvious fact that it is indeed a norm [46] (we give an example of how the triangle inequality
fails for detlb), and the fact that it is is multiplicative under the Kronecker product (or tensor
product) of matrices [26]. We further prove a stronger form of the triangle inequality for
matrices supported on disjoint subsets of the columns.

Linial, Mendelson, Schechtman and Shraibman [27] observed that for sign matrices A,
γ2(A) can be formulated as the optimal value of a semidefinite program. Lee, Shraibman,
and Špalek used generalized the semidefinite program to arbitrary real matrices, and used
it to derive a dual characterization of γ2. We use this characterization to give a simplified
proof of inequality (1). We also prove that γ2(A) is between detlbA and O(detlb(A) logm).

We show that both inequalities (1) and (2) are asymptotically tight in the worst case.
For (1), the asymptotic tightness is demonstrated on the following simple example: for the
system In of initial segments of {1, 2, . . . , n}, whose incidence matrix is the lower triangular
matrix Tn with 1s on the main diagonal and below it, we prove that the γ2 norm is of order
logn, while the hereditary discrepancy is well known to be 1.

Applications in discrepancy theory. In the second part of the paper we apply the γ2 norm
to prove new results on combinatorial discrepancy, as well as to give simple new proofs of
known results.

The most significant result is a new lower bound for the d-dimensional Tusnády’s problem;
before stating it, let us give some background.

SoCG’15

4 Combinatorial Discrepancy for Boxes via the γ2 Norm

The “great open problem.” Discrepancy theory started with a result conjectured by Van
der Corput [18, 19] and first proved by Van Aardenne-Ehrenfest [1, 2], stating that every
infinite sequence (u1, u2, . . .) of real numbers in [0, 1] must have a significant deviation from a
“perfectly uniform” distribution. Roth [39] found a simpler proof of a stronger bound, and he
re-cast the problem in the following setting, dealing with finite point sets in the unit square
[0, 1]2 instead of infinite sequences in [0, 1]:

Given an n-point set P ⊂ [0, 1]2, the discrepancy of P is defined as

D(P,R2) := sup
{∣∣∣|P ∩R| − nλ2(R ∩ [0, 1]d)

∣∣∣ : R ∈ R2

}
,

where R2 denotes the set of all 2-dimensional axis-parallel rectangles (or 2-dimensional
intervals), of the form R = [a1, b1]× [a2, b2], and λ2 is the area (2-dimensional Lebesgue mea-
sure). More precisely, D(P,R2) is the Lebesgue-measure discrepancy of P w.r.t. axis-parallel
rectangles. Further let D(n,R2) = infP :|P |=nD(P,R2) be the best possible discrepancy of
an n-point set.

Roth proved that D(n,R2) = Ω(
√

logn), while earlier work of Van der Corput yields
D(n,R2) = O(logn). Later Schmidt [41] improved the lower bound to Ω(logn).

Roth’s setting immediately raises the question about a higher-dimensional analog of the
problem: letting Rd stand for the system of all axis-parallel boxes (or d-dimensional intervals)
in [0, 1]d, what is the order of magnitude of D(n,Rd)? There are many ways of showing
an upper bound of O(logd−1 n), the first one being the Halton–Hammersley construction
[24, 23], and Roth’s lower bound method yields D(n,Rd) = Ω(log(d−1)/2 n). In these bounds,
d is considered fixed and the implicit constants in the O(.) and Ω(.) notation may depend on
it.

Now, over 50 years later, the upper bound is still the best known, and Roth’s lower bound
has been improved only a little: first for d = 3 by Beck [7] and by Bilyk and Lacey [10], and
then for all d by Bilyk, Lacey, and Vagharshakyan [11]. The lower bound from [11] has the
form Ω((logn)(d−1)/2+η(d)), where η(d) > 0 is a constant depending on d, with η(d) ≥ c/d2

for an absolute constant c > 0. Thus, the upper bound for d ≥ 3 is still about the square of
the lower bound, and closing this significant gap is called the “great open problem” in the
book [8].

Tusnády’s problem. Here we essentially solve a combinatorial analog of this problem. In
the 1980s Tusnády raised a question which, in our terminology, can be stated as follows. Let
P ⊂ R2 be an n-point set, and let R2(P) := {R ∩ P : R ∈ R2} be the system of all subsets
of P induced by axis-parallel rectangles R ∈ R2. What can be said about the discrepancy of
such a set system for the worst possible n-point P? In other words, what is

disc(n,R2) = max{discR2(P) : |P | = n}?

We stress that for the Lebesgue-measure discrepancy D(n,Rd) we ask for the best
placement of n points so that each rectangle contains approximately the right number of
points, while for disc(n,R2) the point set P is given by an adversary, and we seek a ±1
coloring so that the points in each rectangle are approximately balanced.

Tusnády actually asked if disc(n,R2) could be bounded by a constant independent of n.
This was answered negatively by Beck [5], who also proved an upper bound of O(log4 n). His
lower bound argument uses a “transference principle,” showing that the function disc(n,R2)
in Tusnády’s problem cannot be asymptotically smaller than the smallest achievable Lebesgue-
measure discrepancy of n points with respect to axis-aligned boxes. (This principle is actually

J. Matoušek and A. Nikolov 5

simple to prove and quite general; Simonovits attributes the idea to V.T. Sós.) The upper
bound was improved to O((logn)3.5+ε) by Beck [6], to O(log3 n) by Bohus [12], and to the
current best bound of O(log2.5 n) by Srinivasan [44].

The obvious d-dimensional generalization of Tusnády’s problem was attacked by similar
methods. All known lower bounds so far relied on the transference principle mentioned above.
The current best upper bound for d ≥ 3 is O(logd+1/2 n) due to Larsen [25], which is a a
slight strengthening of a previous bound of O(logd+1/2 n

√
log logn) from [30].

Here we improve on the lower bound for the d-dimensional Tusnády’s problem significantly;
while up until now the uncertainty in the exponent of logn was roughly between (d− 1)/2
and d+ 1/2, we reduce it to d− 1 versus d+ 1/2.

I Theorem 1. For every fixed d ≥ 2 and for infinitely many values of n, there exists an
n-point set P ⊂ Rd with

discRd(P) = Ω(logd−1 n),

where the constant of proportionality depends only on d.

From the point of view of the “great open problem,” this result is perhaps somewhat
disappointing, since it shows that, in order to determine the asymptotics of the Lebesgue-
measure discrepancy D(n,Rd), one has to use some special properties of the Lebesgue
measure—combinatorial discrepancy cannot help, at least for improving the upper bound.

Using the γ2 norm as the main tool, our proof of Theorem 1 is surprisingly simple. In
a nutshell, first we observe that, since the target bound is polylogarithmic in n, instead
of estimating the discrepancy for some cleverly constructed n-point set P , we can bound
from below the hereditary discrepancy of the regular d-dimensional grid [n]d, where [n] =
{1, 2, . . . , n}. By a standard and well known reduction, instead of all d-dimensional intervals
in Rd, it suffices to consider only “anchored” intervals, of the form [0, b1]× · · · × [0, bd]. Now
the main observation is that the set system Gd,n induced on [n]d by anchored intervals is
a d-fold product of the system In of one-dimensional intervals mentioned earlier, and its
incidence matrix is the d-fold Kronecker product of the matrix Tn.

Thus, by the properties of the γ2 norm established earlier, we get that γ2(Gd,n) is of order
logd n, and inequality (1) finishes the proof of Theorem 1.

At the same time, using the other inequality (2), we obtain a new proof of the best known
upper bound disc(n,Rd) = O(logd+1/2 n), with no extra effort. This proof is very different
from the previously known ones and relatively simple.

The same method also gives a surprisingly precise upper bound on the discrepancy of
the set system of all subcubes of the d-dimensional cube {0, 1}d, where this time d is a
variable parameter, not a constant as before. This discrepancy has previously been studied in
[16, 17, 36], and it was known that it is between 2c1d and 2c2d for some constants c2 > c1 > 0.
In Section 5.1 we show that it is 2(c0+o(1))d, for c0 = log2(2/

√
3) ≈ 0.2075.

Immediate applications in computer science. Our lower bound for Tusnády’s problem
implies a lower bound of √tutq = Ω(logd n) on the update time tu and query time tq
of constant multiplicity oblivious data structures for orthogonal range searching in Rd in
the group model. This lower bound is tight up to a constant. The relationship between
hereditary discrepancy and differential privacy from [33] and the lower bound for Tusnády’s
problem imply that the necessary error for computing orthogonal range counting queries
under differential privacy is Ω(logd−1 n), which is best possible up to a factor of logn.

SoCG’15

6 Combinatorial Discrepancy for Boxes via the γ2 Norm

Our lower and upper bounds on the discrepancy of subcubes of the Boolean cube {0, 1}d
and the results from [37] imply that the necessary and sufficient error for computing marginal
queries on d-attribute databases under differential privacy is (2/

√
3)d+o(d).

General theorems on discrepancy. Transferring the various properties of the γ2 norm into
the setting of hereditary discrepancy via inequalities (1), (2), we obtain general results about
the behavior of discrepancy under operations on set systems. In particular, we get a sharper
version of a result of [29] concerning the discrepancy of the union of several set systems, and
a new bound on the discrepancy of a set system F in which every set F ∈ F is a disjoint
union F1∪ · · ·∪Ft, where F1, . . . ,Ft are given set systems and Fi ∈ Fi, i = 1, 2, . . . , t. These
consequences are presented in the full version of the paper.

Other problems in combinatorial discrepancy: new simple proofs. In the full version
we also we revisit two set systems for which discrepancy has been studied extensively:
arithmetic progressions in [n] and intervals in k permutations of [n]. In both of these cases,
asymptotically tight bounds have been known. Using the γ2 norm we recover almost tight
upper bounds, up to a factor of

√
logn, with very short proofs.

2 Properties of the γ2 norm

2.1 Known properties of γ2

The γ2 norm has various favorable properties, which make it a very convenient and powerful
tool in studying hereditary discrepancy, as we will illustrate later on. We begin by recalling
some classical facts. It is clear that γ2(A) is monotone non-increasing under removing rows
or columns of A. From the definition of γ2(A) in terms of factorization of matrices, we also
see that γ2(A) = γ2(AT). Moreover, it is well-known (see e.g. [46]) that γ2 is indeed a norm
and therefore satisfies the triangle inequality, i.e. for any two m× n matrices A and B we
have

γ2(A+B) ≤ γ2(A) + γ2(B). (3)

Remark on the determinant lower bound. Here is an example showing that the determinant
lower bound of Lovász et al. does not satisfy the (exact) triangle inequality: for

A =
(

1 1
0 1

)
, B =

(
1 0
−1 1

)
,

we have detlbA = detlbB = 1, but detlb(A+B) =
√

5.
It may still be that the determinant lower bound satisfies an approximate triangle

inequality, say in the following sense: detlb(A1 + · · ·+At)
?
≤ O(t) ·maxi detlbAi. However,

at present we can only prove this kind of inequality with O(t3/2) instead of O(t).

On ellipsoids. An ellipsoid E in Rm is often defined as {x ∈ Rm : xTAx ≤ 1}, where A is
a positive definite matrix. Here we will mostly work with the dual matrix D = A−1. Using
this dual matrix we have (see, e.g., [42])

E = E(D) = {z ∈ Rm : zTx ≤
√
xTDx for all x ∈ Rm}. (4)

This definition can also be used for D only positive semidefinite; if D is singular, then E(D)
is a flat (lower-dimensional) ellipsoid.

J. Matoušek and A. Nikolov 7

2.2 Putting matrices side-by-side
I Lemma 2. Let A,B be matrices, each with m rows, and let C be a matrix in which each
column is a column of A or of B. Then

γ2(C)2 ≤ γ2(A)2 + γ2(B)2.

Proof. After possibly reordering the columns of C, we can write C = Ã+ B̃, where the first
k columns of Ã are among the columns of A and the remaining ` columns are zeros, and the
last ` columns of B̃ are among the columns of B and the first k are zeros.

Since the γ2 norm is, by definition, monotone under the removal of columns, we have
a := γ2(Ã) ≤ γ2(A), b := γ2(B̃) ≤ γ2(B).

Let E1 = E(D1) and E2 = E(D2) be ellipsoids witnessing γ2(Ã) and γ2(B̃), respectively.
We claim that the ellipsoid E(D1 +D2) contains all columns of Ã and also all columns of B̃.
This is clear from the definition of the ellipsoid E(D) = {z : zTx ≤

√
xTDx for all x}, since

for every x, we have xT (D1 +D2)x = xTD1x+xTD2x ≥ xTD1x by positive semidefiniteness
of D2. All the diagonal entries of D1 are bounded above by a2, those of D2 are at most b2,
and hence ‖E‖∞ ≤

√
a2 + b2. J

I Lemma 3. If C is a block-diagonal matrix with blocks A and B on the diagonal, then
γ2(C) = max(γ2(A), γ2(B)).

Proof. If D1 is the dual matrix of the ellipsoid witnessing γ2(A) and similarly for D2 and B,
then the block-diagonal matrix D with blocks D1 and D2 on the diagonal defines an ellipsoid
containing all columns of C. This is easy to check using the formula (4) defining E(D) and
the fact that a sum of positive definite matrices is positive definite. J

2.3 Dual formulation
Let ‖A‖∗ denote the nuclear norm of a matrix A, which is the sum of the singular values
of A (other names for ‖A‖∗ are Schatten 1-norm, trace norm, or Ky Fan n-norm; see the
text by Bhatia [9] for general background on symmetric matrix norms). Using a semidefinite
formulation of γ2, and the duality theory for semidefinite programming, Lee, Shraibman and
Špalek [26] derived a dual characterization of the γ2 norm as a maximization problem.

I Theorem 4 ([26, Thm. 9]). We have

γ2(A) = max{‖P 1/2AQ1/2‖∗ : P,Q diagonal,nonnegative,TrP = TrQ = 1}.

Several times we will use this theorem with A a square matrix and P = Q = 1
nIn, in

which case it gives γ2(A) ≥ 1
n‖A‖∗.

2.4 Kronecker product
Let A be an m×n matrix and B a p× q matrix. We recall that the Kronecker product A⊗B
is the following mp× nq matrix, consisting of m× n blocks of size p× q each:a11B a12B . . . a1nB

...
...

...
...

am1B am2B . . . amnB

In [26] it was shown that γ2 is multiplicative with respect to the Kronecker product:

I Theorem 5 ([26, Thm. 17]). For every two matrices A,B we have

γ2(A⊗B) = γ2(A) · γ2(B).

SoCG’15

8 Combinatorial Discrepancy for Boxes via the γ2 Norm

3 The γ2 norm for intervals

In this section we deal with a particular example: the system In of all initial segments
{1, 2, . . . , i}, i = 1, 2, . . . , n, of {1, 2, . . . , n}. Its incidence matrix is Tn, the n × n matrix
with 0s above the main diagonal and 1s everywhere else.

It is well known, and easy to see, that herdiscTn = 1. We will prove that γ2(Tn) is of
order logn. This shows that the γ2 norm can be logn times larger than the hereditary
discrepancy, and thus the inequality (1) is asymptotically tight.

Moreover, this example is one of the key ingredients in the proof of the lower bound on
the d-dimensional Tusnády problem.

I Proposition 6. We have γ2(Tn) = Θ(logn).

The upper bound follows from the observation herdiscTn = 1 and the inequality (1)
relating γ2 to herdisc. It can also be proved directly using, for example, a decomposition
into dyadic intervals. In the next section we prove the lower bound.

3.1 Lower bound on γ2(Tn)
Proof of the lower bound in Proposition 6. The nuclear norm ‖Tn‖∗ can be computed
exactly (we are indebted to Alan Edelman and Gil Strang for this fact); namely, the singular
values of Tn are

1
2 sin (2j−1)π

4n+2

, j = 1, 2, . . . , n.

Using the inequality sin x ≤ x for x ≥ 0, we get

γ2(Tn) ≥ 1
n
‖Tn‖∗ ≥

2n+ 1
πn

n∑
j=1

1
2j − 1 = Ω(logn),

as needed.
The singular values of Tn can be obtained from the eigenvalues of the matrix Sn :=

(TnTTn)−1 which, as is not difficult to check, has the following simple tridiagonal form:

2 −1 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . −1 2 −1
0 0 0 0 . . . 0 −1 1

(the 1 in the lower right corner is exceptional; the rest of the main diagonal are 2s). By
general properties of eigenvalues and singular values, if λ1, . . . , λn are the eigenvalues of Sn,
then the singular values of Tn are λ−1/2

1 , . . . , λ
−1/2
n . The eigenvalues of Sn are computed, as

a part of more general theory, in Strang and MacNamara [45, Sec. 9]; the calculation is not
hard to verify since they also give the eigenvectors explicitly.

One can also calculate the characteristic polynomial pn(x) of Sn: it satisfies the recurrence
pn+1 = (2− x)pn − pn−1 with initial conditions p1 = 1− x and p0 = 1, from which one can
check that pn(x) = Un

(2−x
2
)
− Un−1

(2−x
2
)
, where Un is the degree-n Chebyshev polynomial

of the second kind. The claimed roots of pn can then be verified using the trigonometric
representation of Un. J

J. Matoušek and A. Nikolov 9

4 Deviation of the γ2 norm from the hereditary discrepancy

Here we consider the inequalities (1) and (2) relating γ2 and herdisc. For the first one we
provide a simplified and elementary proof, and for the second one we briefly recall the proof
and prove asymptotic optimality.

We have already seen in Section 3 that (1) is asymptotically tight. Let us first mention a
simple but perhaps useful observation, which gives a somewhat weaker result.

There are examples of set systems F1,F2 on an n-point set X such that |F1|, |F2| = O(n),
herdiscF1 and herdiscF2 are bounded by a constant (actually by 1), and herdisc(F1 ∪F2) =
Ω(logn) [38, 34]. Therefore, no quantity obeying the triangle inequality (possibly up to a
constant), such as the γ2 norm, can approximate herdisc with a factor better than logn.

4.1 The γ2 norm is at most logm times the determinant lower bound
We establish the following inequalities relating the γ2 norm to the determinant lower bound.

I Theorem 7. For any m× n matrix A of rank r,

detlbA ≤ γ2(A) ≤ O(log r) · detlbA.

Inequality (1) is an immediate consequence of the second inequality in the theorem (and
of r ≤ min{m,n}):

γ2(A) ≤ O(log min{m,n}) · detlbA ≤ O(log min{m,n}) herdiscA,

where the last inequality uses the Lovász–Spencer–Vesztergombi bound herdiscA ≥ 1
2 detlbA.

In [35], inequality (1) was proved by using a sophisticated tool, the restricted invertibility
principle of Bourgain and Tzafriri; see [13, 47]. Our proof of Theorem 7 is based only on
elementary linear algebra and the determinant lower bound.

Before we prove Theorem 7, we need a lemma similar to an argument in [29].

I Lemma 8. Let A be an k × n matrix, and let W be a nonnegative diagonal unit-trace
n× n matrix. Then there exists a k-element set J ⊆ [n] such that

|detAJ |1/k ≥
√
k/e · | detAWAT |1/2k.

Proof of Theorem 7. For the inequality detlbA ≤ γ2(A), we first observe that if B is a
k × k matrix, then

|detB|1/k ≤ 1
k
‖B‖∗ (5)

Indeed, the left-hand side is the geometric mean of the singular values of B, while the
right-hand side is the arithmetic mean.

Now let B be a k × k submatrix of A with detlbA = | detB|1/k; then

detlbA = | detB|1/k ≤ 1
k
‖B‖∗ ≤ γ2(B) ≤ γ2(A).

For the second inequality γ2(A) ≤ O(logm) · detlbA, we compare detBBT and the
nuclear norm of B for a carefully chosen (rectangular) matrix B. First let P0 and Q0 be
diagonal unit-trace matrices with γ2(A) = ‖P 1/2

0 AQ
1/2
0 ‖ as in Theorem 4. For brevity, let us

write Ã := P
1/2
0 AQ

1/2
0 , and let σ1 ≥ σ2 ≥ · · · ≥ σr > 0 be the nonzero singular values of Ã.

SoCG’15

10 Combinatorial Discrepancy for Boxes via the γ2 Norm

By a standard bucketing argument (see, e.g., [29, Lemma 7]), there is some t > 0 such
that if we set K := {i ∈ [m] : t ≤ σi < 2t}, then

∑
i∈K

σi ≥ Ω(1
log r)

m∑
i=1

σi.

Let us set k := |K|.
Next, we define a suitable k × n matrix with singular values σi, i ∈ K. Let Ã = UΣV T

be the singular-value decomposition of Ã, with U and V orthogonal and Σ having σ1, . . . , σr
on the main diagonal.

Let ΠK be the k ×m matrix corresponding to the projection on the coordinates indexed
by K; that is, ΠK has 1s in positions (1, i1), . . . , (k, ik), where i1 < . . . < ik are the elements
of K. The matrix ΠKΣ = ΠKU

T ÃV = UTKÃV has singular values σi, i ∈ K, and so does
the matrix UTKÃ, since right multiplication by the orthogonal matrix V T does not change
the singular values.

This k×m matrix UTKÃ is going to be the matrix B alluded to in the sketch of the proof
idea above. We have

|detBBT |1/2k =
(∏
i∈K

σi

)1/k
≥ 1

2k
∑
i∈K

σi = Ω
(1
k log r

)
γ2(A).

It remains to relate detBBT to the determinant of a square submatrix of A, and this is
where Lemma 8 is applied—actually applied twice, once for columns, and once for rows.

First we set C := UTKP
1/2
0 A; then B = CQ

1/2
0 . Applying Lemma 8 with C in the role of

A and Q0 in the role of W , we obtain a k-element index set J ⊆ [n] such that

|detCJ |1/k ≥
√
k/e · | detBBT |1/2k.

Next, we set D := P
1/2
0 AJ , and we claim that detDTD ≥ (detCJ)2. Indeed, we have

CJ = UTKD, and, since U is an orthogonal transformation, (UTD)T (UTD) = DTD. Then,
by the Binet–Cauchy formula,

detDTD = det(UTD)T (UTD) =
∑
L

(detUTLD)2

≥ (detUTKD)2 = (detCJ)2.

The next (and last) step is analogous. We have DT = ATJP
1/2
0 , and so we apply Lemma 8

with ATJ in the role of A and P0 in the role of W , obtaining a k-element subset I ⊆ [m] with
|detAI,J |1/k ≥

√
k/e · | detDTD|1/2k (where AI,J is the submatrix of A with rows indexed

by I and columns by J).
Following the chain of inequalities backwards, we have

detlbA ≥ |detAI,J |1/k ≥
√
k/e · | detDTD|1/2k ≥

√
k/e · | detCJ |1/k

≥ (k/e)|detBBT |1/2k = Ω
(1

log r
)
γ2(A),

and the theorem is proved. J

4.2 The hereditary discrepancy can be
√

logm times larger than γ2

Next, we show that
√

logm in inequality (2) cannot be replaced by any asymptotically
smaller factor.

J. Matoušek and A. Nikolov 11

I Theorem 9. For all m, there are m× n matrices A, with n = Θ(logm), such that

herdiscA ≥ Ω(
√

logm) · γ2(A).

Proof. A very simple example is the incidence matrix A of the system of all subsets of [n],
with m = 2n, whose discrepancy is n/2 = Θ(logm). Indeed, the characteristic vectors of all
sets fit into the ball of radius

√
n, and hence γ2(A) = γ2(AT) ≤

√
n = O(

√
logm), where we

used the fact that γ2 is invariant under transposition. J

5 On Tusnády’s problem

Proof of Theorem 1. The proof was already sketched in the introduction, so here we just
present it slightly more formally. Let Ad ⊆ Rd be the set of all anchored axis-parallel boxes,
of the form [0, b1] × · · · × [0, bd]. Clearly disc(n,Ad) ≤ disc(n,Rd), and since every box
R ∈ Rd can be expressed as a signed combination of at most 2d anchored boxes, we have
disc(n,Rd) ≤ 2d disc(n,Ad).

Let us consider the d-dimensional grid [n]d ⊂ Rd (with nd points), and let Gd,n = Ad([n]d)
be the subsets induced on it by anchored boxes. It suffices to prove that herdiscGd,n =
Ω(logd−1 n), and for this, in view of inequality (1), it is enough to show that γ2(Gd,n) =
Ω(logd n).

Now Gd,n is (isomorphic to) the d-fold product Idn of the system of initial segments in
{1, 2, . . . , n}, and so γ2(Gd,n) = γ2(Tn)d = Θ(logd n) (Theorem 5 and Proposition 6).

This finishes the proof of the lower bound. To prove the upper bound disc(n,Rd) =
O(logd+1/2 n), we consider an arbitrary n-point set P ⊂ Rd. Since the set system Ad(P)
is not changed by a monotone transformation of each of the coordinates, we may assume
P ⊆ [n]d. Hence

disc(Ad(P)) ≤ herdiscGd,n ≤ O(γ2(Gd,n)
√

lognd) = O(logd+1/2 n).

J

5.1 Discrepancy of boxes in high dimension
Chazelle and Lvov [16, 17] investigated the hereditary discrepancy of the set system Cd :=
Rd({0, 1}d), the set system induced by axis-parallel boxes on the d-dimensional Boolean cube
{0, 1}d. In other words, the sets in Cd are subcubes of {0, 1}d. Unlike for Tusnády’s problem
where d was considered fixed, here one is interested in the asymptotic behavior as d→∞.

Chazelle and Lvov proved herdisc Cd = Ω(2cd) for an absolute constant c ≈ 0.0477,
which was later improved to c = 0.0625 in [36] (in relation to the hereditary discrepancy of
homogeneous arithmetic progressions). Here we obtain an optimal value of the constant c:

I Theorem 10. The system Cd of subcubes of the d-dimensional Boolean cube satisfies

herdisc Cd = 2c0d+o(d),

where c0 = log2(2/
√

3) ≈ 0.2075. The same bound holds for the system Ad({0, 1}d) of all
subsets of the cube induced by anchored boxes.

Proof. The number of sets in Cd is 3d, and so in view of inequalities (1) and (2) it suffices to
prove γ2(Cd) = γ2(Ad({0, 1}d)) = 2c0d.

SoCG’15

12 Combinatorial Discrepancy for Boxes via the γ2 Norm

The system Cd is the d-fold product Cd1 , and so by Theorem 5, γ2(Cd) = γ2(C1)d. The
incidence matrix of C1 is

A =

1 1
1 0
0 1

 .

To get an upper bound on γ2(A), we exhibit an appropriate ellipsoid; it is more convenient
to do it for AT , since this is a planar problem. The optimal ellipse containing the rows of A
is {x ∈ R2 : x2

1 + x2
2 − x1x2 ≤ 1}; here are a picture and the dual matrix:

D =
(

4
3

1
3

1
3

4
3

)
.

Hence γ2(A) ≤ 2/
√

3. The same ellipse also works for the incidence matrix of the system
A1({0, 1}), which is the familiar lower triangular matrix T2.

There are several ways of bounding γ2(T2) ≤ γ2(A) from below. For example, we can use
Theorem 4 with

P =
(

1
3 0
0 2

3

)
, Q =

(
2
3 0
0 1

3

)
.

With some effort (or a computer algebra system) one can check that the singular values of
P 1/2T2Q

1/2 are 1√
3 ±

1
3 , and hence the nuclear norm is 2/

√
3 as needed.

Alternatively, one can also check the optimality of the ellipse above by elementary
geometry, or exhibit an optimal solution of the dual semidefinite program for γ2(T2). J

Other set systems. In the full version of the paper we use the properties of γ2 to give
new simple proofs of other upper and lower bounds in discrepancy theory. In particular, we
revisit two set systems that have been studied extensively: arithmetic progressions in [n] and
intervals of k permutations on [n]. While the bounds we get are slightly suboptimal, the
proofs are very short.

6 Applications in Computer Science

Range searching in the oblivious group model. A range searching problem is defined by
a system F of subsets of a set P ⊆ Rd. The input is an assignment of weights to P , where
each weight is an element of a commutative group; a query is specified by a range F ∈ F
may ask, for example, whether for the sum of the weights of points in F or whether it is
non-zero. The goal is to maintain a data structure that supports fast queries. One of the best
studied special cases is orthogonal range searching, in which F is induced by axis-aligned
boxes, i.e. F = Rd(P).

Following Fredman [22] and Larsen [25], we define an oblivious data structure for a
range searching problem given by F as a factorization A = BC, where A ∈ {0, 1}m×n is
the incidence matrix of F , and B, C are integer matrices. The update time tu is defined
as the maximum number of non-zero entries of a column of C, and the query time tq is the

J. Matoušek and A. Nikolov 13

maximum number of non-zero entries of a row of B. The multiplicity ∆ is the maximum
absolute value of an entry in B or C. The motivation is that the actual data structure kept
in memory is y = Cx, where x are the weights assigned to P , and queries are answered by
computing the appropriate entry of By. Then, updating a single weight requires updating at
most tu cells in the data structure, and answering a query requires reading at most tq cells.

By the factorization definition of γ2, we have that for any oblivious data structure for F ,
γ2(F) ≤ |∆|√tutq. In the proof of Theorem 1 we showed that for Gd,n = Ad([n]d) (recall
Ad is the set of axis-aligned boxes anchored at 0), γ2(Gd,n) = Θ((logn)d). Therefore, for
any oblivious data structure for orthogonal range searching on P with constant multiplicity,
tutq = Ω((logn)d). This lower bound is tight up to constants. The best previous lower bound
was due to Larsen [25] and was on the order of (logn)(d−1)/2.

Differential Privacy. Differential privacy is a popular definition of privacy for data analysis
algorithms. Informally, it states that an algorithm is private if its output distribution is
almost the same when we add or remove one person’s data from the input; see the book [21]
for the formal definition. A class of problems of general interest in differential privacy are
counting problems, in which a database is a multiset of elements of a universe U , and a
family of queries is specified by a system F of subsets of U . A query given by a set F ∈ F
asks for the number of elements of F that are in the database D (counted with multiplicity).
In [37] it was shown that, up to factors logarithmic in |F|, the optimal worst-case error for
answering the queries specified by F is equal to γ2(F). A query set of special interest is
the one given by the set system Cd of subcubes of the d-dimensional boolean cube, which
corresponds to the set of marginal queries on a d-dimensional database. For these queries,
Theorem 10 shows that the optimal worst-case error is on the order of 2c0d±o(d), where
c0 = log2(2/

√
3). The best previous upper bound was 2d/2+o(d).

Acknowledgments. We would like to thank Alan Edelman and Gil Strang for invaluable
advice concerning the singular values of the matrix in Proposition 6, and Van Vu for
recommending the right experts for this question. We would also like to thank Noga Alon
and Assaf Naor for pointing out that the geometric quantity in [35, 32] is equivalent to the
γ2 norm. We also thank Imre Bárány and Vojtěch Tůma for useful discussions.

References
1 T. van Aardenne-Ehrenfest. Proof of the impossibility of a just distribution of an infinite

sequence of points. Nederl. Akad. Wet., Proc., 48:266–271, 1945. Also in Indag. Math. 7,
71-76 (1945).

2 T. van Aardenne-Ehrenfest. On the impossibility of a just distribution. Nederl. Akad. Wet.,
Proc., 52:734–739, 1949. Also in Indag. Math. 11, 264-269 (1949).

3 J.R. Alexander, J. Beck, and W.W.L. Chen. Geometric discrepancy theory and uniform
distribution. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Com-
putational Geometry, chapter 10, pages 185–207. CRC Press LLC, Boca Raton, FL, 1997.

4 N. Bansal. Constructive algorithms for discrepancy minimization. http://arxiv.org/abs/
1002.2259, also in FOCS’10: Proc. 51st IEEE Symposium on Foundations of Computer
Science, pages 3–10, 2010.

5 J. Beck. Balanced two-colorings of finite sets in the square. I. Combinatorica, 1:327–335,
1981.

6 J. Beck. Balanced two-colorings of finite sets in the cube. Discrete Mathematics, 73:13–25,
1989.

SoCG’15

http://arxiv.org/abs/1002.2259
http://arxiv.org/abs/1002.2259

14 Combinatorial Discrepancy for Boxes via the γ2 Norm

7 J. Beck. A two-dimensional van Aardenne-Ehrenfest theorem in irregularities of distribu-
tion. Compositio Math., 72:269–339, 1989.

8 J. Beck and W.W.L. Chen. Irregularities of Distribution. Cambridge University Press,
Cambridge, 1987.

9 Rajendra Bhatia. Matrix analysis, volume 169 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1997.

10 D. Bilyk and M.T. Lacey. On the small ball inequality in three dimensions. Duke Math.
J., 143(1):81–115, 2008.

11 D. Bilyk, M.T. Lacey, and A. Vagharshakyan. On the small ball inequality in all dimensions.
J. Funct. Anal., 254(9):2470–2502, 2008.

12 G. Bohus. On the discrepancy of 3 permutations. Random Struct. Algo., 1:215–220, 1990.
13 J. Bourgain and L. Tzafriri. Invertibility of large submatrices with applications to the

geometry of banach spaces and harmonic analysis. Israel journal of mathematics, 57(2):137–
224, 1987.

14 M. Charikar, A. Newman, and A. Nikolov. Tight hardness results for minimizing discrep-
ancy. In Proc. 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), San
Francisco, California, USA, pages 1607–1614, 2011.

15 B. Chazelle. The Discrepancy Method. Cambridge University Press, Cambridge, 2000.
16 B. Chazelle and A. Lvov. A trace bound for the hereditary discrepancy. Discrete Comput.

Geom., 26(2):221–231, 2001.
17 B. Chazelle and A. Lvov. The discrepancy of boxes in higher dimension. Discrete Comput.

Geom., 25(4):519–524, 2001.
18 J. G. van der Corput. Verteilungsfunktionen I. Akad. Wetensch. Amsterdam, Proc., 38:813–

821, 1935.
19 J. G. van der Corput. Verteilungsfunktionen II. Akad. Wetensch. Amsterdam, Proc.,

38:1058–1066, 1935.
20 M. Drmota and R. F. Tichy. Sequences, discrepancies and applications (Lecture Notes in

Mathematics 1651). Springer-Verlag, Berlin etc., 1997.
21 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foun-

dations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.
22 Michael L. Fredman. The complexity of maintaining an array and computing its partial

sums. J. ACM, 29(1):250–260, 1982.
23 J.H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating

multi-dimensional integrals. Numer. Math., 2:84–90, 1960.
24 J.M. Hammersley. Monte Carlo methods for solving multivariable problems. Ann. New

York Acad. Sci., 86:844–874, 1960.
25 K. G. Larsen. On range searching in the group model and combinatorial discrepancy. SIAM

Journal on Computing, 43(2):673–686, 2014.
26 Troy Lee, Adi Shraibman, and Robert Špalek. A direct product theorem for discrepancy. In

Proceedings of the 23rd Annual IEEE Conference on Computational Complexity, CCC 2008,
23-26 June 2008, College Park, Maryland, USA, pages 71–80. IEEE Computer Society,
2008.

27 Nati Linial, Shahar Mendelson, Gideon Schechtman, and Adi Shraibman. Complexity
measures of sign matrices. Combinatorica, 27(4):439–463, 2007.

28 L. Lovász, J. Spencer, and K. Vesztergombi. Discrepancy of set-systems and matrices.
European J. Combin., 7:151–160, 1986.

29 J. Matoušek. The determinant bound for discrepancy is almost tight. Proc. Amer. Math.
Soc., 141(2):451–460, 2013.

30 J. Matoušek. On the discrepancy for boxes and polytopes. Monatsh. Math., 127(4):325–336,
1999.

J. Matoušek and A. Nikolov 15

31 J. Matoušek. Geometric Discrepancy (An Illustrated Guide), 2nd printing. Springer-Verlag,
Berlin, 2010.

32 Jiří Matoušek and Aleksandar Nikolov. Combinatorial discrepancy for boxes via the
ellipsoid-infinity norm. To appear in SoCG 15., 2014.

33 S. Muthukrishnan and A. Nikolov. Optimal private halfspace counting via discrepancy. In
STOC ’12: Proceedings of the 44th symposium on Theory of Computing, pages 1285–1292,
New York, NY, USA, 2012. ACM.

34 A. Newman, O. Neiman, and A. Nikolov. Beck’s three permutations conjecture: A coun-
terexample and some consequences. In Proc. 53rd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 253–262, 2012.

35 A. Nikolov and K. Talwar. Approximating hereditary discrepancy via small width ellipsoids.
Preprint arXiv:1311.6204, 2013.

36 A. Nikolov and K. Talwar. On the hereditary discrepancy of homogeneous arithmetic
progressions. To Appear in Proceedings of AMS, 2013.

37 A. Nikolov, K. Talwar, and Li Zhang. The geometry of differential privacy: the sparse and
approximate cases. In Proc. 45th ACM Symposium on Theory of Computing (STOC), Palo
Alto, California, USA, pages 351–360, 2013. Full version to appear in SIAM Journal on
Computing as The Geometry of Differential Privacy: the Small Database and Approximate
Cases.

38 D. Pálvölgyi. Indecomposable coverings with concave polygons. Discrete Comput. Geom.,
44(3):577–588, 2010.

39 K.F. Roth. On irregularities of distribution. Mathematika, 1:73–79, 1954.
40 Thomas Rothvoß. Constructive discrepancy minimization for convex sets. CoRR,

abs/1404.0339, 2014. To Appear in FOCS 2014.
41 W.M. Schmidt. On irregularities of distribution VII. Acta Arith., 21:45–50, 1972.
42 A. Seeger. Calculus rules for combinations of ellipsoids and applications. Bull. Australian

Math. Soc., 47(01):1–12, 1993.
43 J. Spencer. Ten Lectures on the Probabilistic Method. CBMS-NSF. SIAM, Philadelphia,

PA, 1987.
44 A. Srinivasan. Improving the discrepancy bound for sparse matrices: better approximations

for sparse lattice approximation problems. In Proc. 8th ACM-SIAM Symposium on Discrete
Algorithms, pages 692–701, 1997.

45 G. Strang and S. MacNamara. Functions of difference matrices are Toeplitz plus Hankel.
SIAM Review, 2014. To appear.

46 Nicole Tomczak-Jaegermann. Banach-Mazur distances and finite-dimensional operator ide-
als, volume 38 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Long-
man Scientific & Technical, Harlow; copublished in the United States with John Wiley &
Sons, Inc., New York, 1989.

47 R. Vershynin. John’s decompositions: Selecting a large part. Israel Journal of Mathematics,
122(1):253–277, 2001.

SoCG’15

Tilt: The Video – Designing Worlds to Control
Robot Swarms with Only Global Signals
Aaron T. Becker1, Erik D. Demaine2, Sándor P. Fekete3,
Hamed Mohtasham Shad1, and Rose Morris-Wright1

1 Department of Electrical and Computer Engineering, University of Houston
Houston, TX 77004, USA
atbecker@uh.edu

2 CSAIL, MIT
Cambridge, MA 02139, USA
edemaine@mit.edu

3 Department of Computer Science, TU Braunschweig
38106 Braunschweig, Germany
s.fekete@tu-bs.de

Abstract
We present fundamental progress on the computational universality of swarms of micro- or nano-
scale robots in complex environments, controlled not by individual navigation, but by a uniform
global, external force. More specifically, we consider a 2D grid world, in which all obstacles and
robots are unit squares, and for each actuation, robots move maximally until they collide with
an obstacle or another robot. The objective is to control robot motion within obstacles, design
obstacles in order to achieve desired permutation of robots, and establish controlled interaction
that is complex enough to allow arbitrary computations. In this video, we illustrate progress
on all these challenges: we demonstrate NP-hardness of parallel navigation, we describe how to
construct obstacles that allow arbitrary permutations, and we establish the necessary logic gates
for performing arbitrary in-system computations.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems – Geometrical
problems and computations, F.1.1 Models of Computation–Bounded-action devices

Keywords and phrases Particle swarms, global control; complexity, geometric computation

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.16

1 Introduction: Global Motion Control

One of the exciting new directions of robotics is the design and development of micro- and
nanorobot systems, with the goal of letting a massive swarm of robots perform complex
operations in a complicated environment. Due to scaling issues, individual control of the
involved robots becomes physically impossible: while energy storage capacity drops with
the third power of robot size, medium resistance decreases much slower. A possible answer
lies in applying a global, external force to all particles in the swarm. This is what many
current micro- and nanorobot systems with many robots do: the whole swarm is steered
and directed by an external force that acts as a common control signal; see our paper [8] for
detailed references. These common control signals include global magnetic or electric fields,
chemical gradients, and turning a light source on and off.

Clearly, having only one global signal that uniformly affects all robots at once poses
a strong restriction on the ability of the swarm to perform complex operations. The only

© Aaron T. Becker, Erik D. Demaine, Sándor P. Fekete, Hamed Mohtasham Shad, Rose Morris-Wright;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 16–18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A.T. Becker, E. D. Demaine, S. P. Fekete, H.Mohtasham Shad, R.Morris-Wright 17

Figure 1 Gravity-fed hardware implementation of particle computation. The reconfigurable
prototype is set up as a fan-out gate using a 2×1 robot (white).

hope for breaking symmetry is to use interactions between the robot swarm and obstacles
in the environment. The key challenge is to establish if interactions with obstacles are
sufficient to perform complex operations, ideally by analyzing the complexity of possible
logical operations.

This resembles the logic puzzle Tilt [9], and dexterity ball-in-a-maze puzzles such as Pigs
in Clover and Labyrinth, which involve tilting a board to cause all mobile pieces to roll or
slide in a desired direction. Problems of this type are also similar to sliding-block puzzles
with fixed obstacles [3, 5, 6, 7], except that all particles receive the same control inputs, as in
the Tilt puzzle. Another connection is Randolph’s Ricochet Robots [4], a game that allows
individual and independent control of the involved particles.

2 The Problems

We consider a two-dimensional grid world, with some cells occupied and others free. Initially,
the planar square grid is filled with some unit-square particles (each occupying a cell of the
grid) and some fixed unit-square blocks. All particles are commanded in unison: a valid
command is “Go Up” (u),“Go Right” (r),“Go Down” (d), or “Go Left” (l). All particles move
in the commanded direction until they hit an obstacle or another particle. A representative
command sequence is 〈u, r, d, l, d, r, u, . . .〉. We call these global commands force-field moves.
We assume we can bound the minimum particle speed and can guarantee all particles have
moved to their maximum extent.

Three of the most basic problems are as follows.

1. Given a map of an environment, along with initial and goal positions for each particle,
does there exist a sequence of inputs that will bring each particle to its goal position?

2. Given an initial matrix arrangement of particles, how can we design a set of obstacles,
such that any permutation can be realized with a relatively simple sequence of moves?

3. Can we establish sets of obstacles, particles, and moves, such that the resulting motion
can be used for carrying out arbitrary computation strictly within the system, i.e., without
an intelligent observer?

SoCG’15

http://youtu.be/EJSv8ny31r8

18 Tilt: The Video

We have provided answers for these problems in our previous papers [2, 8, 1]. Here we
present a compact visual demonstration, in part based on a real-world realization, showing
that further applications and extensions are possible.

3 The Video

The video consists of a number of animation sequences, as well as several scenes demonstrating
real-world model environments.

In the first part of the video, we describe the underlying model, based on a physical
realization, and motivate the background from micro- and nano-robotics. We then proceed
to sketch the elements and overall construction for an NP-hardness proof, resolving one
aspect of the complexity of the first problem. (A separate argument shows that the problem
of minimizing the number of moves for achieving a target configuration is in fact PSPACE-
complete, but this is omitted.) In the third part of the video, we demonstrate how to solve
the second problem: We can design relatively simple sets of obstacles that allow arbitrary
matrix permutations, based on simple clockwise and counterclockwise subsequences of moves.
Finally, the fourth and last part shows some of the key components for carrying out universal
computation, demonstrated on a physical model for simple components, and animations for
overall construction.

References
1 Aaron T. Becker, Erik D. Demaine, Sándor P. Fekete, Golnaz Habibi, and James McLurkin.

Reconfiguring massive particle swarms with limited, global control. In 9th International
Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and
Distributed Robotics (ALGOSENSORS), volume 8343 of Springer LNCS, pages 51–66, 2013.

2 Aaron T. Becker, Erik D. Demaine, Sándor P. Fekete, and James McLurkin. Particle
computation: Designing worlds to control robot swarms with only global signals. In 2014
IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong,
China, May 31 - June 7, 2014, pages 6751–6756, 2014.

3 Erik D. Demaine, Martin L. Demaine, and Joseph O’Rourke. PushPush and Push-1 are
NP-hard in 2D. In Proceedings of the 12th Annual Canadian Conference on Computational
Geometry (CCCG), pages 211–219, August 2000.

4 Birgit Engels and Tom Kamphans. Randolphs robot game is NP-hard! Electronic Notes
in Discrete Mathematics, 25:49–53, 2006.

5 Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles
and other problems through the nondeterministic constraint logic model of computation.
arXiv:cs/0205005, cs.CC/0205005, 2002.

6 Michael Hoffmann. Motion planning amidst movable square blocks: Push-* is NP-hard. In
Canadian Conference on Computational Geometry, pages 205–210, June 2000.

7 Markus Holzer and Stefan Schwoon. Assembling molecules in ATOMIX is hard. Theoretical
Computer Science, 313(3):447–462, 2004.

8 Hahmed Mohtasham Shad, Rose Morris-Wright, Erik D. Demaine, Sándor P. Fekete, and
Aaron T. Becker. Particle computation: Device fan-out and binary memory. In 2015 IEEE
International Conference on Robotics and Automation, ICRA Seattle, USA, May 26 - 30,
2015, page to appear, 2015.

9 ThinkFun. Tilt: Gravity fed logic maze. http://www.thinkfun.com/tilt.

http://www.thinkfun.com/tilt

Automatic Proofs for Formulae Enumerating
Proper Polycubes
Gill Barequet and Mira Shalah

Department of Computer Science
The Technion – Israel Institute of Technology
Haifa 32000, Israel
{barequet,mshalah}@cs.technion.ac.il

Abstract
This video describes a general framework for computing formulae enumerating polycubes of
size n which are proper in n−k dimensions (i.e., spanning all n−k dimensions), for a fixed value
of k. (Such formulae are central in the literature of statistical physics in the study of percolation
processes and collapse of branched polymers.) The implemented software re-affirmed the already-
proven formulae for k ≤ 3, and proved rigorously, for the first time, the formula enumerating
polycubes of size n that are proper in n−4 dimensions.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Labeling

Keywords and phrases Polycubes, inclusion-exclusion

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.19

1 Introduction

A d-dimensional polycube of size n is a connected set of n cubes in d dimensions, where
connectivity is through (d−1)-dimensional faces. A polycube is said to be proper in d

dimensions if the convex hull of the centers of its cubes is d-dimensional. Following Lunnon [8],
let DX(n, d) denote the number of polycubes of size n that are proper in d dimensions.

Enumeration of polycubes and computing their asymptotic growth rate are important
problems in combinatorics and discrete geometry, originating in statistical physics [5]. Poly-
cubes (polyominoes in 2D) play a fundamental role in statistical physics in the analysis of
percolation processes and collapse of branched polymers. To-date, no formula is known for
Ad(n), the number of polycubes of size n in d dimensions, for any value of d, let alone in the
general case. The main interest in DX stems from the formula Ad(n) =

∑d
i=0
(

d
i

)
DX(n, i) [8].

In a matrix listing the values of DX, the top-right triangular half and the main diagonal
contain only 0s. This gives rise to the question of whether a pattern can be found in the
sequences DX(n, n− k), where k < n is the ordinal number of the diagonal.

Klarner [6] showed that the limit λ2 = limn→∞
n
√
A2(n) exists. Much later Madras [10]

proved the convergence of the sequence (A2(n+ 1)/A2(n))∞n=1 to λ2 (a similar claim holds
in any dimension d). Thus, λ2 is the growth rate limit of polyominoes. Its exact value
has remained elusive till these days. The best known lower and upper bounds on λ2 are
roughly 4.0025 [2] and 4.6496 [7], respectively. Significant progress in estimating λd has
been obtained in statistical physics, although the computations usually relied on unproven
assumptions and on formulae for DX(n, n− k) interpolated empirically from known values of
Ad(n). Peard and Gaunt [12] predicted that for k > 1, the diagonal formula DX(n, n−k) has
the pattern 2n−2k+1nn−2k−1(n− k)hk(n), where hk(n) is a polynomial in n, and conjectured
formulae for hk(n) for k ≤ 6. Luther and Mertens [9] conjectured a formula for k = 7.

© Gill Barequet and Mira Shalah;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 19–22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20 Automatic Proofs for Formulae Enumerating Proper Polycubes

x3

x1

x2 31 1

1

22

11 1′′

1′

2

31′ 1

2′2

3

2′2

3 1 1′′

1′

3

2

1′

(a) Polycube (b) Adjacency graph (c) Four spanning trees

Figure 1 A polycube P , the corresponding graph γ(P), and spanning trees of γ(P).

It is easy to show that DX(n, n− 1) = 2n−1nn−3 (seq. A127670 in OEIS [11]). Barequet
et al. [4] proved rigorously that DX(n, n−2) = 2n−3nn−5(n−2)(2n2−6n+9) (seq. A171860).
The proof uses a case analysis of the possible structures of spanning trees of the polycubes,
and the various ways in which cycles can be formed in their cell-adjacency graphs. Similarly,
Asinowski et al. [1] proved that DX(n, n− 3) = 2n−6nn−7(n− 3)(12n5 − 104n4 + 360n3 −
679n2 + 1122n− 1560)/3, again, by counting spanning trees of polycubes, yet the reasoning
and the calculations were significantly more involved. The inclusion-exclusion principle
was applied in order to count correctly polycubes whose cell-adjacency graphs contained
certain subgraphs, so-called “distinguished structures.” In comparison with k = 2, the
number of such structures is substantially higher, and the ways in which they can appear
in spanning trees are much more varied. The latter proof provided a better understanding
of the difficulties that one would face in applying this technique to higher values of k. The
number of distinguished structures grows rapidly, and their inclusion relations are much more
complicated. As anticipated, it is impractical to achieve a similar proof manually for k > 3.

In this video we describe a theoretical set-up [3] for proving the formula for DX(n, n− k),
for a fixed k. Using our implementation of this method, we could prove the following theorem.

I Theorem 1. DX(n, n− 4) = 2n−7nn−9(n− 4)(8n8 − 128n7 + 828n6 − 2930n5 + 7404n4 −
17523n3 + 41527n2 − 114302n+ 204960)/6.

2 Method

Denote by Pn the set of polycubes of size n proper in n−k dimensions. Let P ∈ Pn, and
let γ(P) denote the directed edge-labeled graph that is constructed as follows: The vertices
of γ(P) correspond to the cells of P ; two vertices of γ(P) are connected by an edge if
the corresponding cells of P are adjacent; and an edge has label i (1 ≤ i ≤ n − k) if the
corresponding cells have different i-coordinate. The direction of the edge is from the lower
to the higher cell (see Figure 1). Since P 7→ γ(P) is an injection, it suffices to count the
graphs obtained from the members of Pn in this way. We count these graphs by counting
their spanning trees. A spanning tree of γ(P) has n−1 edges labeled by numbers from the
set {1, 2, ..., n− k}; all these labels are present, otherwise the polycube is not proper in n−k
dimensions. Hence, n−k edges of the spanning tree are labeled with the labels 1, 2, ..., n− k,
and the remaining k−1 edges are labeled with repeated labels from the same set. There
is a bijection between the possibilities of repeated edge labels and the partitions of k−1.
Specifically, each partition p =

∑h
i=1 ai ∈ Π(k−1) corresponds to h repeated labels in the

spanning tree, such that the ith repeated label appears ai+1 times. In such case, we say that
the tree is labeled according to p. When we consider a spanning tree of γ(P), we distinguish
a repeated label i that appears r times by i, i′, ..., i′(r−1). However, when considering γ(P),
repeated labels are assumed not to be distinguished. Every repeated label must occur an
even number of times in any cycle of γ(P). In addition, the number of cycles in γ(P) and the
length of each such cycle are bounded from above due to the limited multiplicity of labels.

G. Barequet and M. Shalah 21

(e)(a) (c) (d) (f)(b) (g) (h)

`

i

i′

j

j′

`j′j′ii i′ i i′

j′

j

i i′ i′′

`

jj j′ j′′ j′′′

`1`2

jj

` i

i′

i

i′

j

j′

`
`

j′′

j′
j

`

Figure 2 (a–g) A few distinguished structures for k = 4 (note that (f) is disconnected); (h) A
cycle structure. A dotted line is drawn between every pair of neighboring cells and around every
pair of coinciding cells.

In order to compute |Pn|, we consider all possible directed edge-labeled trees of size n
with edge labels as conjectured, and count only those that represent valid polycubes. In this
process two things may happen:

(a) Cells may coincide (Figures 2(a,d)). A tree with overlapping cells is invalid; and
(b) Two cells which are not connected by a tree edge may be adjacent (Figures 2(b,e)). Such
a tree corresponds to a polycube P with cycles in γ(P), hence, its spanning tree is not unique.
In order to count correctly, we consider small structures (Figure 2), contained in these trees,
which cause the problems above. The counting involves a delicate inclusion-exclusion analysis
of the structures. See the video and [3] for more details.

3 The Video

The video illustrates the framework described above. First, it defines polycubes and explains
what “proper polycubes” are. Then, it describes the importance of polycubes in combinatorics,
discrete geometry, and statistical physics. The video then turns to defining DX(n, n − k)
and showing how it is computed automatically, using examples from the case k = 4. The
video displays a few lemmas and formulas, defines distinguished structures, shows how they
are generated, and explains the inclusion-exclusion graph built to obtain the sought formula.
Finally, the video presents the results obtained by our program.

The video was produced on a 2.53GHz DELL 64 processor PC with 4GB of RAM. The
animations were designed using the Autodesk Maya 2015 (student version) modeling software
and Microsoft PowerPoint 2010. The video was constructed by Windows Live Movie Maker.

References
1 A. Asinowski, G. Barequet, R. Barequet, and G. Rote, Proper n-cell polycubes in n−3

dimensions, J. of Integer Sequences, 15 (2012), #12.8.4.
2 G. Barequet, G. Rote, and M. Shalah, λ > 4, 30th European Workshop on Computational

Geometry, Ein-Gedi, Israel, March 2014.
3 G. Barequet and M. Shalah, Automatic proofs for formulae enumerating proper polycubes,

Proc. 31st European Workshop on Computational Geometry, Ljubljana, Slovenia, 4 pp.,
March 2015.

4 R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional
polycubes, Combinatorica, 30 (2010), 257–275.

5 S.R. Broadbent and J.M. Hammersley, Percolation processes: I. Crystals and mazes, Proc.
Cambridge Philosophical Society, 53 (1957), 629–641.

6 D.A. Klarner, Cell growth problems, Canadian J. of Mathematics, 19 (1967), 851–863.
7 D.A. Klarner and R. L. Rivest, A procedure for improving the upper bound for the number

of n-ominoes, Canadian J. of Mathematics, 25 (1973), 585–602.

SoCG’15

22 Automatic Proofs for Formulae Enumerating Proper Polycubes

8 W.F. Lunnon, Counting multidimensional polyominoes, The Comp. Journal, 18 (1975),
366–367.

9 S. Luther and S. Mertens, Counting lattice animals in high dimensions, J. of Statistical
Mechanics: Theory and Experiment, 9 (2011), 546–565.

10 N. Madras, A pattern theorem for lattice clusters, Annals of Combinatorics, 3 (1999),
357–384.

11 The On-Line Encyclopedia of Integer Sequences OEIS, available at http://oeis.org
12 P. J. Peard and D. S. Gaunt, 1/d-expansions for the free energy of lattice animal models of

a self-interacting branched polymer, J. Physics, A: Mathematical and General, 28 (1995),
6109–6124.

http://oeis.org

Visualizing Sparse Filtrations∗

Nicholas J. Cavanna, Mahmoodreza Jahanseir, and
Donald R. Sheehy

Department of Computer Science, University of Connecticut
Storrs, CT, USA
nicholas.j.cavanna@uconn.edu, {reza,donald}@engr.uconn.edu

Abstract
Over the last few years, there have been several approaches to building sparser complexes that
still give good approximations to the persistent homology [5, 4, 3, 2, 1]. In this video, we have
illustrated a geometric perspective on sparse filtrations that leads to simpler proofs, more general
theorems, and a more visual explanation. We hope that as these techniques become easier to
understand, they will also become easier to use.

1998 ACM Subject Classification F.2.2 Geometrical problems and computations, G.2.1 Combi-
natorial algorithms

Keywords and phrases Topological Data Analysis, Simplicial Complexes, Persistent Homology

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.23

1 The Shape of Data

Topological data analysis is concerned with finding the underlying shape of a data set. Often,
a union of balls called offsets is used to approximate the shape and fill in the space between
points. The topology of the balls can be represented as a simplicial complex called a nerve.
Every subset of balls with a common intersection contributes one simplex to the nerve: an
edge for each pairwise intersection, a triangle for each 3-way intersection, etc. (see Fig. 1).

Instead of looking at just one radius, we can look at the offsets at all radii from zero
to infinity. A growing space like this is called a filtration. The nerves give a corresponding
simplicial filtration. Persistent homology is a way to study the changes in topology over the
course of a filtration. The output is called a persistent barcode and marks the components,
holes, and voids as well as their lifespans. The Nerve Theorem and its persistent variant
guarantee that the barcode for the offsets is the same as that of the nerve filtration.

Nerve complexes get very big very fast, even when restricting to subsets of constant size.
A common variant that doesn’t assume Euclidean metrics is the Rips complex and it suffers
similar difficulties.

At larger scales, fewer points are needed to give a good approximation. The sparser
subsample of our point set at scale α is obtained by calculating an ε-net, i.e. a subset where
each pair is at least ε apart and the ε-radius balls centered on the points of the net cover
the input. However, removing points cause the nerve of balls to no longer be a filtration,
because a filtration is, by definition a monotonely growing space. For a simplicial complex,
this means that simplices appear, but never disappear. We solve this problem by viewing
the offset filtration as a nerve of objects one dimension higher as illustrated below.

If we visualize the scale parameter as another dimension, a growing ball traces out a cone
(below, left). This cone is modified in two ways. First, we assign a maximum radius to each

∗ Partially supported by the National Science Foundation under grant number CCF-1464379.

© Nicholas J. Cavanna, Mahmoodreza Jahanseir, and Donald R. Sheehy;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 23–25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24 Visualizing Sparse Filtrations

Figure 1 The nerve has an edge for each pairwise intersection, a triangle for each 3-way intersection
(right), etc.

Figure 2 A point set sampled on a sphere, its offsets, and its (sparsified) nerve complex.

point (middle). Next, we truncate the cone at the height when the point will be removed
from the filtration (right). Truncating the cone simulates the removal of the corresponding
ball. The cone has not been removed, it just no longer intersects the time slices above the
“removal” time.

The maximum radius and height are chosen so that the top of the cone is sure to be
covered at the time it is removed.

These cones form a new filtration one dimension higher. Their nerve is the desired sparse
filtration.

N. J. Cavanna, M. Jahanseir, and D. R. Sheehy 25

In this example, one can imagine flattening all the cones onto one level set, and since all
the cones are stacked on each other, there won’t be any loss of homological information. The
sublevel sets of the cones are homotopy equivalent to the level sets, which implies they have
the same homology. By the persistent nerve lemma we know that the nerve has the same
persistent homology as the sublevel sets, thus we can calculate the persistent homology of
our sparsified offsets by computing the persistent homology of the sparse nerve filtration.

The sparsification algorithm can cut down the asymptotic size of filtrations from poly-
nomial to linear, while still achieving a close approximation to the persistence diagram.
The video aims to provide a simple, geometric explanation for the topological guarantees of
such sparse filtrations. It avoids the complexity of zig-zag inclusions maps from previous
work by considering time as an extra spatial dimension. The construction and its analysis
easily generalizes to Rips and other related complexes, and although the example input was
two-dimensional, the construction works in any number of dimensions.

2 Production

In order to create the video, we used Processing to create the visualizations, iMovie to piece
together the soundtrack and the visualizations, and Javaplex through Matlab to calculate
the barcodes. We thank Julia Sheehy for supplying the narration.

References
1 Magnus Bakke Botnan and Gard Spreemann. Approximating persistent homology in Eu-

clidean space through collapses. Applicable Algebra in Engineering, Communication and
Computing, pages 1–29, 2015.

2 Mickaël Buchet, Frédéric Chazal, Steve Y. Oudot, and Donald Sheehy. Efficient and robust
persistent homology for measures. In ACM-SIAM Symposium on Discrete Algorithms, 2015.

3 Tamal K. Dey, Fengtao Fan, and Yusu Wang. Computing topological persistence for sim-
plicial maps. In Proceedings of the 30th Annual Symposium on Computational Geometry,
pages 345–354, 2014.

4 Michael Kerber and R. Sharathkumar. Approximate Čech complexes in low and high
dimensions. In 24th International Symposium on Algorithms and Computation (ISAAC
2013), volume LNCS 8283, pages 666–676, 2013.

5 Donald R. Sheehy. Linear-size approximations to the Vietoris-Rips filtration. Discrete &
Computational Geometry, 49(4):778–796, 2013.

SoCG’15

Visualizing Quickest Visibility Maps
Topi Talvitie

Department of Computer Science, University of Helsinki, Finland

Abstract
Consider the following modification to the shortest path query problem in polygonal domains:
instead of finding shortest path to a query point q, we find the shortest path to any point that
sees q. We present an interactive visualization applet visualizing these quickest visibility paths.
The applet also visualizes quickest visibility maps, that is the subdivision of the domain into cells
by the quickest visibility path structure.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases path planning, visibility

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.26

1 Introduction

Finding shortest paths within a polygonal domain is a classical problem in computational
geometry. The query version of the shortest path problem for a fixed point s is

Shortest Path Query: Given a point q, how should we move from s to reach q?

The problem of shortest path queries is solved by building a shortest path map for s, defined
as the decomposition of the domain into cells such that the shortest paths to all points
q within that cell is the same (the only changing vertex is the endpoint q). Consider a
modification of this problem, where we only need to see the query point:

Quickest Visibility Query: Given a point q, how should we move from s to see q?

This kind of query would be natural in applications where it is important to only see or
become seen by the target point, for example for inspecting the query point or establishing
communication with it. Quickest visibility queries were first studied in the case of simple
polygons in [2]. This visualization accompanies the paper [1] which presents algorithms
for the general case of polygons with holes and improves the results in the case of simple
polygons. The visualization applet demonstrates the core concepts of quickest visibility
queries: quickest visibility paths, quickest visibility maps and visibility wave propagation.
These are briefly outlined below. For more formal definitions and proofs please refer to [1].

2 Quickest visibility paths

A quickest visibility path (QVP) from s to q is the shortest path from s to some endpoint t

such that q is visible from t. It is possible that q is directly visible from s. In that case, the
quickest visibility path is the path of length zero from s to s (Fig. 1a). If t lies in the interior
of the domain, the path always enters t orthogonally to line tq, because otherwise we could
adjust the location of t to shorten the path (Fig. 1b). Otherwise t is either in a vertex of a
polygon (Fig. 1c) or on an edge of a polygon such that tq contains a polygon vertex (Fig. 1d).

© Topi Talvitie;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 26–28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. Talvitie 27

(a) q is directly visible from s. Therefore s = t and
the QVP has length 0.

(b) t lies in free space. The QVP and tq meet
orthogonally in t.

(c) t lies on a polygon vertex. (d) t lies on a polygon edge. Segment tq touches a
polygon vertex.

Figure 1 The four different types of quickest visibility paths from s to q. The quickest visibility
path is drawn as a solid yellow line.

3 Quickest visibility maps

A quickest visibility map (QVM) for a polygonal domain and a source point s is the subdivision
of the domain into cells such that for all points q within a cell, the QVP from s to q has the
same structure. We say that two QVPs have the same structure if the paths differ only in
the last point q, and in the case of paths of type shown in Fig. 1b, the second-to-last point t

that moves when point q moves. See Fig. 2 for an example of a QVM.
Once a QVM has been built for source point s, one can query quickest visibility paths

from s to any q by using point location query data structures to find the QVM cell q lies
in. Therefore QVM is the analogue of shortest paths maps in the case of quickest visibility
paths.

4 Implementation

The visualization applet consists of two parts: the backend library, implemented in C++,
and the user interface, implemented in JavaScript.

The backend implements an algorithm for finding the quickest visibility path to a given
query point. It does not use quickest visibility maps, as exact QVM construction would very
complicated to implement. Instead, it handles quickest visibility paths of types shown in
figures 1a, 1c and 1d by querying shortest paths using the visibility graph. That leaves only
visibility paths of type where the path endpoint lies in free space (Fig. 1b), which can be
found by iterating all polygon vertices v visible to q, and all points from which the extension
of vq is orthogonally visible. This can be implemented simultaneously for all v as two ray

SoCG’15

28 Visualizing Quickest Visibility Maps

Figure 2 A screenshot from the visualization applet, showing the subdivision of the polygonal
domain by the red lines into the quickest visibility map for source point s.

sweeps around q to both directions in O(n log n) time with the help of precomputed shortest
paths to all polygon vertices.

The user interface contains a polygon editor, in which the user can edit the polygon and
set the source point s. It visualizes quickest visibility paths using the backend library. It
draws the QVM by querying the quickest visibility paths to a dense grid of points in the
domain, drawing points of the QVM edges in locations where adjacent grid query points
have different quickest visibility paths. A local optimization algorithm is used to improve
the precision of the QVM edges.

The visualization is a client-side HTML5/JavaScript applet. The backend library is
compiled from C++ to JavaScript using the Emscripten compiler. The precomputation used
for drawing the QVM edges is parallelized using Web Workers, which makes the loading
phase faster in multi-core systems. The applet should work on all modern browsers, including
the newest versions of all major web browsers.

Acknowledgments. The research was supported by the University of Helsinki Research
Funds.

References
1 E. M. Arkin, A. Efrat, C. Knauer, J. S. B. Mitchell, V. Polishchuk, G. Rote, L. Schlipf,

and T. Talvitie. Shortest path to a segment and quickest visibility queries. In SoCG, 2015.
2 R. Khosravi and M. Ghodsi. The fastest way to view a query point in simple polygons. In

European Workshop on Computational Geometry, pages 187–190. Technische Universiteit
Eindhoven, 2005.

Sylvester-Gallai for Arrangements of Subspaces
Zeev Dvir1 and Guangda Hu2

1 Department of Computer Science and Department of Mathematics,
Princeton University
35 Olden Street, Princeton, NJ 08540-5233, USA
zeev.dvir@gmail.com

2 Department of Computer Science, Princeton University
35 Olden Street, Princeton, NJ 08540-5233, USA
guangdah@cs.princeton.edu

Abstract
In this work we study arrangements of k-dimensional subspaces V1, . . . , Vn ⊂ C`. Our main
result shows that, if every pair Va, Vb of subspaces is contained in a dependent triple (a triple
Va, Vb, Vc contained in a 2k-dimensional space), then the entire arrangement must be contained
in a subspace whose dimension depends only on k (and not on n). The theorem holds under
the assumption that Va ∩ Vb = {0} for every pair (otherwise it is false). This generalizes the
Sylvester-Gallai theorem (or Kelly’s theorem for complex numbers), which proves the k = 1 case.
Our proof also handles arrangements in which we have many pairs (instead of all) appearing in
dependent triples, generalizing the quantitative results of Barak et. al. [1].

One of the main ingredients in the proof is a strengthening of a theorem of Barthe [3] (from
the k = 1 to k > 1 case) proving the existence of a linear map that makes the angles between
pairs of subspaces large on average. Such a mapping can be found, unless there is an obstruction
in the form of a low dimensional subspace intersecting many of the spaces in the arrangement
(in which case one can use a different argument to prove the main theorem).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Sylvester-Gallai, Locally Correctable Codes

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.29

1 Introduction

The Sylvester-Gallai (SG) theorem states that for n points v1,v2, . . . ,vn ∈ R`, if for every
pair vi,vj there is a third point vk on the line passing through vi,vj , then all points must lie
on a single line. This was first posed by Sylvester [14], and was solved by Melchior [13]. It was
also conjectured independently by Erdös [9] and proved shortly after by Gallai. We refer the
reader to the survey [4] for more information about the history and various generalizations of
this theorem. The complex version of this theorem was proved by Kelly [11] (see also [8, 7]
for alternative proofs) and states that if v1,v2, . . . ,vn ∈ C` and for every pair vi,vj there is
a third vk on the same complex line, then all points are contained in some complex plane
(over the complex numbers, there are planar examples and so this theorem is tight).

In [7] (based on earlier work in [1]), the following quantitative variant of the SG theorem
was proved. For a set S ⊂ C` we denote by dim(S) the smallest d such that S is contained
in a d-dimensional subspace of C`.

I Theorem 1.1 ([7]). Given n points v1,v2, . . . ,vn ∈ C`, if for every i ∈ [n] there exists at
least δn values of j ∈ [n] \ {i} such that the line through vi and vj contains a third point vk,
then dim{v1,v2, . . . ,vn} ≤ 10/δ.

© Zeev Dvir and Guangda Hu;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 29–43

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30 Sylvester-Gallai for Arrangements of Subspaces

(The dependence on δ is asymptotically tight). From here on, we will work with ho-
mogeneous subspaces (passing through zero) instead of affine subspaces (lines/planes etc).
The difference is not crucial to our results and the affine version can always be derived by
intersecting with a generic hyperplane. In this setting, the above theorem will be stated
for a set of one-dimensional subspaces, each spanned by some vi (and no two vi’s being a
multiple of each other) and collinearity of vi,vj ,vk is replaced with the three vectors being
linearly dependent (i.e., contained in a 2-dimensional subspace).

One natural high dimensional variant of the SG theorem, studied in [10, 1], replaces 3-wise
dependencies with t-wise dependencies (e.g, every triple is in some coplanar four-tuple). In
this work, we raise another natural high-dimensional variant in which the points themselves
are replaced with k-dimensional subspaces. We consider such arrangements with many 3-wise
dependencies (defined appropriately) and attempt to prove that the entire arrangement lies
in some low dimensional space. We will consider arrangements V1, . . . , Vn ⊂ C` in which
each Vi is k-dimensional and with each pair satisfying Vi1 ∩ Vi2 = {0}. A dependency can
then be defined as a triple Vi1 , Vi2 , Vi3 of k-dimensional subspaces that are contained in a
single 2k-dimensional subspace. The pair-wise zero intersections guarantee that every pair
of subspaces defines a unique 2k-dimensional space (their span) and so, this definition of
dependency behaves in a similar way to collinearity. For example, we have that if Vi1 , Vi2 , Vi3
are dependent and Vi2 , Vi3 , Vi4 are dependent then also Vi1 , Vi2 , Vi4 are dependent. This
would not hold if we allowed some pairs to have non zero intersections. In fact, if we allow
non-zero intersection then we can construct an arrangement of two dimensional spaces with
many dependent triples and with dimension as large as

√
n (see below). We now state our

main theorem, generalizing Theorem 1.1 (with slightly worse parameters) to the case k > 1.
We use the standard V +U notation to denote the subspace spanned by all vectors in V ∪U .
We use big ‘O’ notation to hide absolute constants.

I Theorem 1.2. Let V1, V2, . . . , Vn ⊂ C` be k-dimensional subspaces such that Vi∩Vi′ = {0}
for all i 6= i′ ∈ [n]. Suppose that, for every i1 ∈ [n] there exists at least δn values of
i2 ∈ [n] \ {i1} such that Vi1 + Vi2 contains some Vi3 with i3 6∈ {i1, i2}. Then

dim(V1 + V2 + · · ·+ Vn) = O(k4/δ2).

The condition Vi ∩ Vi′ = {0} is needed due to the following example. Set k = 2 and
n = `(`− 1)/2 and let {e1, e2, . . . , e`} be the standard basis of R`. Define the n spaces to
be Vij = span{ei, ej} with 1 ≤ i < j ≤ `. Now, for each (i, j) 6= (i′, j′) the sum Vij + Vi′j′

will contain a third space (since the size of {i, j, i′, j′} is at least three). However, this
arrangement has dimension ` >

√
n.

The bound O(k4/δ2) is probably not tight and we conjecture that it could be improved to
O(k/δ), possibly with a modification of our proof. One can always construct an arrangement
with dimension 2k/δ by partitioning the subspaces into 1/δ groups, each contained in a single
2k dimensional space.

Overview of the proof: A preliminary observation is that it suffices to prove the theorem
over R. This is because an arrangement of k-dimensional complex subspaces can be translated
into an arrangement of 2k-dimensional real subspaces (this is proved at the end of Section 2).
Hence, we will now focus on real arrangements.

The proof of the theorem is considerably simpler when the arrangement of subspaces
V1, . . . , Vn satisfies an extra ‘robustness’ condition, namely that every two spaces have an
angle bounded away from zero. More formally, if for every two unit vectors v1 ∈ Vi1 and
v2 ∈ Vi2 we have |〈v1,v2〉| ≤ 1− τ for some absolute constant τ > 0. This condition implies

Z.Dvir and G.Hu 31

that, when we have a dependency of the form Vi3 ⊂ Vi1 + Vi2 , every unit vector in Vi3 can be
obtained as a linear combination with bounded coefficients (in absolute value) of unit vectors
from Vi1 , Vi2 . Fixing an orthogonal basis for each subspace and using the conditions of the
theorem, we are able to construct many local linear dependencies between the basis elements.
We then show (using the bound on the coefficients in the linear combinations) that the space
of linear dependencies between all basis vectors, considered as a subspace of Rkn, contains
the rows of an nk × nk matrix that has large entries on the diagonal and small entries off
the diagonal. Since matrices of this form have high rank (by a simple spectral argument), we
conclude that the original set of basis vectors must have small dimension.

To handle the general case, we show that, unless some low dimensional subspace W
intersects many of the spaces Vi in the arrangement, we can find a change of basis that makes
the angles between the spaces large on average (in which case, the previous argument works).
This gives us the overall strategy of the proof: If such a W exists, we project W to zero and
continue by induction. The loss in the overall dimension is bounded by the dimension of W ,
which can be chosen to be small enough. Otherwise (if such W does not exist) we apply the
change of basis and use it to bound the dimension.

The change of basis is found by generalizing a theorem of Barthe [3] (see [6] for a more
accessible treatment) from the k = 1 case (arrangement of points) to higher dimension.
We state this result here since we believe it could be of independent interest. To state the
theorem we must first introduce the following, somewhat technical, definition.

I Definition 1.3 (admissible basis set, admissible basis vector). Given a list of vector spaces
V = (V1, V2, . . . , Vn) (Vi ⊆ R`), a set H ⊆ [n] is called a V-admissible basis set if

dim(
∑
i∈H

Vi) =
∑
i∈H

dim(Vi) = dim(
∑
i∈[n]

Vi),

i.e. if every space with index in H has intersection {0} with the span of the other spaces
with indices in H, and the spaces with indices in H span the entire space

∑
i∈[n] Vi.

A V-admissible basis vector is any indicator vector 1H of some V-admissible basis set H
(where the i-th entry of 1H equals 1 if i ∈ H and 0 otherwise).

The following theorem is proved in Section 3.

I Theorem 1.4. Given a list of vector spaces V = (V1, V2, . . . , Vn) (Vi ⊆ R`) with V1 + V2 +
· · ·+ Vn = R` and a vector p ∈ Rn in the convex hull of all V-admissible basis vectors. Then
there exists an invertible linear map M : R` 7→ R` such that

n∑
i=1

pi ProjM(Vi) = I`×`,

whereM(Vi) is the linear space obtained by applyingM on Vi, and ProjM(Vi) is the orthogonal
projection matrix onto M(Vi).

The connection to the explanation given in the proof overview is as follows: If there is no
subspace W of low dimension that intersects many of the spaces V1, . . . , Vn then, one can
show that there exists a vector p in the convex hull of all V-admissible basis vectors such that
the entries of p are not too small. This is enough to show that the average angle between
pairs of spaces is large since otherwise one can derive a contradiction to the inequality which
says that the sum of orthogonal projections of any unit vector must be relatively small.

The proof of the one dimensional case in [3] proceeds by defining a strictly convex function
f(t1, . . . , tm) on Rm and shows that the function is bounded. This means that there must

SoCG’15

32 Sylvester-Gallai for Arrangements of Subspaces

exist a point in which all partial derivatives of f vanish. Solving the resulting equations gives
an invertible matrix that defines the required change of basis. We follow a similar strategy,
defining an appropriate bounded function f(t1, . . . , tm, R1, . . . , Rn) in more variables, where
the extra variables R1, . . . , Rn represent the action of the orthogonal group O(k) on each
of the spaces. However, in our case, we cannot show that f is strictly convex and so a
maximum might not exist. However, we are still able to show that there exists a point in
which all partial derivatives are very small (smaller than any ε > 0), which is sufficient for
our purposes.

Connection to Locally Correctable Codes. A q-query Locally Correctable Code (LCC)
over a field F is a d-dimensional subspace C ⊂ Fn that allows for ‘local correction’ of
codewords (elements of C) in the following sense. Let y ∈ C and suppose we have query
access to y′ such that yi = y′i for at least (1 − δ)n indices i ∈ [n] (think of y′ as a noisy
version of y). Then, for every i, we can probabilistically pick q positions in y′ and, from
their (possibly incorrect values), recover the correct value of yi with high probability (over
the choice of queries). LCC’s play an important role in theoretical computer science (mostly
over finite fields but recently also over the reals, see [5]) and are still poorly understood.
In particular, when q is constant greater than 2, there are exponential gaps between the
dimension of explicit constructions and the proven upper bounds. In [2] it was observed that
q-LCCs are essentially equivalent to configurations of points with many local dependencies1.
A variant of Theorem 1.1 shows for example that the maximal dimension of a 2-LCC in Rn
has dimension bounded by (1/δ)O(1). Our results can be interpreted in this framework as
dimension upper bounds for 2-query LCC’s in which each coordinate is replaced by a ‘block’
of k coordinates. Our results then show that, even under this relaxation, the dimension still
cannot increase with n. The case of 3-query LCC’s over the reals is still wide open (some
modest progress was made recently in [6]) and we hope that the methods developed in this
work could lead to further progress on this tough problem.

Organization. In Section 2, we define the notion of (α, δ)-systems (which generalizes the SG
condition) and reduce our k-dimensional Sylvester-Gallai theorem to a more general theorem,
Theorem 2.6, on the dimension of (α, δ)-systems (this part also includes the reduction from
complex to real arrangements). Then, in Section 3, we prove the generalization of Barthe’s
theorem (Theorem 1.4). Finally, in Section 4, we prove our main result regarding (α, δ)-
systems. Due to the page limit, some of the proof are available in the full version of this
paper.

Acknowledgements. We would like to thank Patrick Devlin for helpful discussions on
strengthening Theorem 1.4.

2 Reduction to (α, δ)-systems

The notion of an (α, δ)-system is used to ‘organize’ the dependent triples in the arrangement
in a more convenient form so that each space is in many triples and every pair of spaces is
together only in a few dependent triples. We also allow dependent pairs as those might arise
when we apply a linear map on the arrangement.

1 One important difference is that LCC’s give rise to configurations where each point can repeat more
than once.

Z.Dvir and G.Hu 33

I Definition 2.1 ((α, δ)-system). Given a list of vector spaces V = (V1, V2, . . . , Vn) (Vi ⊆ R`),
we call a list of sets S = (S1, S2, . . . , Sw) an (α, δ)-system of V (α ∈ Z+, δ > 0) if
1. Every Sj is a subset of [n] of size either 3 or 2.
2. If Sj contains 3 elements i1, i2 and i3, then Vi1 ⊆ Vi2 + Vi3 , Vi2 ⊆ Vi1 + Vi3 and

Vi3 ⊆ Vi1 + Vi2 . If Sj contains 2 elements i1 and i2, then Vi1 = Vi2 .
3. Every i ∈ [n] is contained in at least δn sets of S.
4. Every pair {i1, i2} (i1 6= i2 ∈ [n]) appears together in at most α sets of S.

Note that we allow δ > 1 in an (α, δ)-systems. This is different from the statement of
the Sylvester-Gallai theorem where δ ∈ [0, 1]. We have the following 3 simple observations,
which are proved in the full version of this paper.

I Lemma 2.2. Let S = (S1, S2, . . . , Sw) be an (α, δ)-system of some vector space list V.
Then δn2/3 ≤ w ≤ αn2/2 and δ/α ≤ 3/2.

I Lemma 2.3. Let V = (V1, V2, . . . , Vn) (Vi ⊆ R`) be a list of vector spaces and S =
(S1, S2, . . . , Sw) be a list of sets. If w ≥ δn2 and S satisfies the first, second and fourth
requirements in Definition 2.1, then there exists a sublist V ′ of V and a sublist S ′ of S such
that |V ′| ≥ δn/(2α) and S ′ is an (α, δ/2)-system of V ′.

I Lemma 2.4. Let V = (V1, V2, . . . , Vn) (Vi ⊆ R`) be a list of vector spaces with an (α, δ)-
system S = (S1, S2, . . . , Sw). Then for any linear map P : R` 7→ R`, S is also an (α, δ)-system
of V ′ = (V ′1 , V ′2 , . . . , V ′n), where V ′i = P (Vi).

Theorem 1.2, will be derived from the following, more general statement, saying that the
dimension d is small if there is a (α, δ)-system.

I Definition 2.5 (k-bounded). A vector space V ⊆ R` is k-bounded if dimV ≤ k.

I Theorem 2.6. Let V = (V1, V2, . . . , Vn) (Vi ⊆ R`) be a list of k-bounded vector spaces with
an (α, δ)-system and d = dim(V1 + V2 + · · ·+ Vn), then d = O(α2k4/δ2).

We can easily reduce the high dimensional Sylvester-Gallai problem in C` (Theorem 1.2)
to the setting of Theorem 2.6 in R` as shown below.

Proof of Theroem 1.2 using Theorem 2.6. Let Bj = {vj1,vj2, . . . ,vjk} be a basis of Vj .
Define

V ′j = span
{

Re(vj1),Re(vj2), . . . ,Re(vjk), Im(vj1), Im(vj2), . . . , Im(vjk)
}
∀j ∈ [n].

I Claim 2.7. V ′j = {Re(v) : v ∈ Vj} for every j ∈ [n].

Proof. For every v′ ∈ V ′j , there exist λ1, λ2, . . . , λk, µ1, µ2, . . . , µk ∈ R such that

v′ =
k∑
s=1

(
λs Re(vjs) + µs Im(vjs)

)
=

k∑
s=1

(
λs Re(vjs) + µs Re(−ivjs)

)
= Re

(
k∑
s=1

(λs − iµs)vjs

)
.

Since λ1, λ2, . . . , λk, µ1, µ2, . . . , µk can take all values in R, we can see the claim is proved. J

I Claim 2.8 ([1, Lemma 2.1]). Given a set A with r ≥ 3 elements, we can construct a family
of r2 − r triples of elements in A with following properties: 1) Every triple contains three
distinct elements; 2) Every element of A appears in exactly 3(r − 1) triples; 3) Every pair of
two distinct elements in A is contained together in at most 6 triples.

SoCG’15

34 Sylvester-Gallai for Arrangements of Subspaces

We call a 2k-dimensional subspace U ⊂ C` special if it contains at least three of
V1, V2, . . . , Vn. We define the size of a special space as the number of spaces among
V1, V2, . . . , Vn contained in it. For a special space with size r, we take the r2 − r triples of
indices of the spaces in it with the properties in Claim 2.8. Let S be the family of all these
triples. We claim that S is a (6, 3δ)-system of V = (V ′1 , V ′2 , . . . , V ′n).

For every triple {j1, j2, j3} ∈ S, we can see that Vj1 , Vj2 , Vj3 are contained in the same
2k-dimensional special space. And by Vj1 ∩Vj2 = {0}, the space must be Vj1 +Vj2 and hence
Vj3 ⊆ Vj1 + Vj2 . By Claim 2.7,

V ′j3
= {Re(v) : v ∈ Vj3} ⊆ {Re(u) + Re(w) : u ∈ Vj1 ,w ∈ Vj2} = V ′j1

+ V ′j2
.

Similarly, V ′j1
⊆ V ′j2

+ V ′j3
and V ′j2

⊆ V ′j1
+ V ′j3

. One can see that every pair in [n] appears in
at most 6 triples because the corresponding two spaces are contained in at most one special
space, and the pair appears at most 6 times in the triples constructed from this special space.
For every j ∈ [n], there are at least δn values of j′ ∈ [n] \ {j} such that there is a special
space containing Vj and Vj′ . This implies that the number of triples that j appears in is∑

special space U
Vj⊆U

3
(

size(U)− 1
)

= 3
∑

special space U
Vj⊆U

∣∣{j′ 6= j : Vj′ ⊆ U}
∣∣ ≥ 3δn.

Therefore S is a (6, 3δ)-system of V. By Theorem 2.6,

dim(V ′1 + V ′2 + · · ·+ V ′n) = O(62(2k)4/(3δ)2) = O(k4/δ2).

Note that

V1 + V2 + · · ·+ Vn ⊆ span
{

Re(vjs), Im(vjs)
}
j∈[n],s∈[k] (span with complex coefficients),

V ′1 + V ′2 + · · ·+ V ′n = span
{

Re(vjs), Im(vjs)
}
j∈[n],s∈[k] (span with real coefficients).

We thus have dim(V1 + V2 + · · ·+ Vn) ≤ dim(V ′1 + V ′2 + · · ·+ V ′n) = O(k4/δ2). J

3 A generalization of Barthe’s Theorem

We prove Theorem 1.4 in the following 3 subsections. In the fourth and last subsection, we
state a convenient variant of the theorem (Theorem 3.8) that will be used later in the proof
of our main result. The idea of the proof is similar to [3] (see also [6, Section 5]), which
considers the maximum point of a function, and using the fact that all derivatives are 0
the result is proved. Here we consider a similar function f defined in Section 3.1. However,
since our problem is more complicated, it is unclear whether we can find a maximum point
at which all derivatives are 0. Instead we will show that there is a point with very small
derivatives in Section 3.2, which is sufficient for our proof of the theorem in Section 3.3.

3.1 The function and basic properties
Let k1, k2, . . . , kn be the dimensions of V1, V2, . . . , Vn respectively and m = k1 + k2 + · · ·+ kn.
Throughout our proof, we use pairs (i, j) with i ∈ [n], j ∈ [ki] to denote the element of [m]
of position

∑
i′<i ki′ + j. We define a vector γ ∈ Rm as

γij = pi ∀i ∈ [n], j ∈ [ki].

Z.Dvir and G.Hu 35

For every i ∈ [n], we fix {vi1,vi2, . . . ,viki} to be some basis of Vi (not necessarily orthonor-
mal). A set I ⊆ [m] is called a good basis set if

I =
⋃
i∈H

{
(i, 1), (i, 2), . . . , (i, ki)

}
for some V-admissible basis set H. We can see that for any good basis set I, the set
{vij : (i, j) ∈ I} is a basis of R`. For a list of vectors a1,a2, . . . ,aq (q ∈ Z+), we use
[a1,a2, . . . ,aq] to denote the matrix consisting of columns a1,a2, . . . ,aq.

Let O(s) be the group of s × s orthogonal matrices. The function f : Rm ×O(k1) ×
O(k2)× · · · ×O(kn) 7→ R is defined as

f(t, R1, . . . , Rn) = 〈γ, t〉 − ln det

 ∑
i∈[n],j∈[ki]

etijxijx
T
ij

 ,

where, for every i ∈ [n], the vectors xij are given by

[xi1, . . . ,xiki
] = [vi1, . . . ,viki

]Ri.

We note that here for every i ∈ [n], j ∈ [ki], xij is a function of Ri and {xi1, . . . ,xiki
} is

another basis of Vi.
The next lemma shows that the function f is bounded over its domain. The proof is

similar to Proposition 3 in [3]. The proofs are given in the full version of this paper.

I Lemma 3.1. There is a constant C ∈ R such that f(t, R1, . . . , Rn) ≤ C for all t ∈ Rm
and Ri ∈ O(ki) (i ∈ [n]).

3.2 Finding a point with small derivatives
We first define some notation. Let

X =
∑

i∈[n],j∈[ki]

etijxijx
T
ij

be a matrix valued function of t, R1, R2, . . . , Rn. Then

f(t, R1, . . . , Rn) = 〈γ, t〉 − ln det(X).

Note that X is always a positive definite matrix, since for any w 6= 0,

wTXw =
∑

i∈[n],j∈[ki]

etij 〈xij ,w〉2 > 0,

when x11, . . . , . . . ,xnkn
span the entire space (implied by V1 +V2 + · · ·+Vn = R`). Define M

to be the `× ` full rank matrix satisfying MTM = X−1. We note that M is also a function
of t, R1, R2, . . . , Rn.

In a later part of the proof we will show that the linear map obtained from M satisfies
the requirement in Theorem 1.4 when t, R1, R2, . . . , Rn take appropriate values. We first
find an appropriate value of (R1, R2, . . . , Rn) = (R∗1(t), R∗2(t), . . . , R∗n(t)) for every t ∈ Rm,
and then find some t∗ with specific properties.

I Lemma 3.2. For every t ∈ Rm, there exists
(
R∗1(t), R∗2(t), . . . , R∗n(t)

)
satisfying

1. f
(
t, R∗1(t), R∗2(t), . . . , R∗n(t)

)
= maxR1,R2,...,Rn

{
f(t, R1, R2, . . . , Rn)

}
.

SoCG’15

36 Sylvester-Gallai for Arrangements of Subspaces

2. For every i ∈ [n], if tij = tij′ for some j 6= j′ ∈ [ki], then

〈Mxij ,Mxij′〉 = 0,

where [xi1, . . . ,xiki
] = [vi1, . . . ,viki

]R∗i (t).

Proof. The first condition can be satisfied by the compactness of O(k1)×O(k2)×· · ·×O(kn).
We will show how to change (R∗1(t), R∗2(t), . . . , R∗n(t)), which already satisfies the first
condition, so that it satisfies the second condition while preserving the first condition.

Fix an i ∈ [n] and partition the indices of (ti1, ti2, . . . , tiki
) into equivalence classes

J1, J2, . . . , Jb ⊆ [ki] such that for j, j′ in the same class tij = tij′ and for j, j′ in different
classes tij 6= tij′ . We use tJr

to denote the value of tij for j ∈ Jr, and LJr
to denote the

matrix consisting of all columns xij with j ∈ Jr. The terms in X that depend on Ri are

∑
r∈[b]

etJr

∑
j∈Jr

xijx
T
ij

 =
∑
r∈[b]

(
etJr · LJrL

T
Jr

)
=
∑
r∈[b]

(
etJr · LJrQrQ

T
r L

T
Jr

)
,

where Qr can be taken to be any |Jr| × |Jr| orthogonal matrix. This means that if we
change R∗i (t) to R∗i (t) diag(Q1, . . . , Qb) (here diag(Q1, . . . , Qb) denotes the matrix in which
the submatrix with row and column indices Jr is Qr), or equivalently change LJr

to LJr
Qr

for every r ∈ [b], the matrix X does not change, hence M and f do not change, and the first
condition is preserved as f is still the maximum for the fixed t.

For every r ∈ [b], we can find a Qr such that the columns of MLJrQr are orthogonal
(consider the singular value decomposition ofMLJr

). Change R∗i (t) to R∗i (t) diag(Q1, . . . , Qb)
and the second condition is satisfied while preserving the first condition. Doing this for every
i we can obtain an (R∗1(t), R∗2(t), . . . , R∗n(t)) satisfying both conditions. J

From now on we use R∗1(t), R∗2(t), . . . , R∗n(t) to denote the matrices satisfying the condi-
tions in Lemma 3.2.

I Lemma 3.3. For any ε > 0, there exists t∗ ∈ Rm such that for every i ∈ [n], j ∈ [ki].∣∣∣∣ ∂f∂tij
(
t∗, R∗1(t∗), R∗2(t∗), . . . , R∗n(t∗)

)∣∣∣∣ ≤ ε.
This lemma follows immediately from the following, more general lemma, proved in the

full version of this paper.

I Lemma 3.4. Let A ⊆ Rh (h ∈ Z+) be a compact set. Let f : Rm × A 7→ R and
y∗ : Rm 7→ A be functions satisfying the following properties:
1. f(x, y) is bounded and continuous on Rm ×A.
2. For every x ∈ Rm, f(x, y∗(x)) = maxy∈A{f(x, y)}.
3. For every fixed y ∈ A, f(x, y) as a function of x is differentiable on Rm.
Then, for every ε > 0, there exists an x∗ ∈ Rm such that for every i ∈ [m],∣∣∣∣ ∂f∂xi

(
x∗, y∗(x∗)

)∣∣∣∣ ≤ ε.
3.3 Proof of Theorem 1.4
Fix some ε > 0. We apply Lemma 3.3 and obtain a t∗. In the remaining proof we will use X,
M and xij (i ∈ [n], j ∈ [ki]) to denote their values when t = t∗ and Ri = R∗i (t∗) (i ∈ [n]).

Z.Dvir and G.Hu 37

I Lemma 3.5. 〈Mxij ,Mxij′〉 = 0 for every i ∈ [n] and j 6= j′ ∈ [ki].

Proof. We fix i0 ∈ [n], j0 6= j′0 ∈ [ki0] and prove 〈Mxi0j0 ,Mxi0j′0〉 = 0. If t∗i0j0
= t∗i0j′0

, this
is guaranteed by Lemma 3.2. We only consider the case that t∗i0j0

6= t∗i0j′0
.

Let θ ∈ R be a variable, and define x′ij for i ∈ [n], j ∈ [ki] as follows.

x′ij =

cos θ · xi0j0 − sin θ · xi0j′0 (i, j) = (i0, j0),
sin θ · xi0j0 + cos θ · xi0j′0 (i, j) = (i0, j′0),
xij otherwise.

We consider the following function h : R 7→ R,

h(θ) = 〈γ, t∗〉 − ln det

 ∑
i∈[n],j∈[ki]

et
∗
ijx′ijx

′
ij
T

 .

I Claim 3.6. h(θ) has a maximum at θ = 0.

Proof. Let R(θ) be the ki0 × ki0 orthogonal matrix obtained from the identity matrix by
changing the (j0, j0), (j′0, j′0) entries to cos θ, the (j0, j

′
0) entry to sin θ, and the (j′0, j0) entry

to − sin θ. We can see R(0) is the identity matrix and

[x′i01, . . . ,x
′
i0ki0

] = [xi01, . . . ,xi0ki0
]R(θ).

Therefore for all θ ∈ R.

h(θ) = f
(
t∗, R∗1(t∗), . . . , R∗i0−1(t∗), R∗i0(t∗) ·R(θ), R∗i0+1(t∗), . . . , R∗n(t∗)

)
≤ f

(
t∗, R∗1(t∗), . . . , R∗i0−1(t∗), R∗i0(t∗), R∗i0+1(t∗), . . . , R∗n(t∗)

)
= h(0).

Thus the claim is proved. J

Using d
ds ln det(A) = tr(A−1 d

dsA) for an invertible matrixA (Theorem 4 in [12, Chapter 9]),
we can calculate the derivative of h.

dh

dθ
(0) =− tr

[
X−1

(
et
∗
i0j0

d

dθ

∣∣∣∣
θ=0

x′i0j0
x′i0j0

T + e
t∗

i0j′0
d

dθ

∣∣∣∣
θ=0

x′i0j′0x
′
i0j′0

T
)]

=− tr
[
X−1

(
et
∗
i0j0

d

dθ

∣∣∣∣
θ=0

(cos θ · xi0j0 − sin θ · xi0j′0)(cos θ · xi0j0 − sin θ · xi0j′0)T

+ e
t∗

i0j′0
d

dθ

∣∣∣∣
θ=0

(sin θ · xi0j0 + cos θ · xi0j′0)(sin θ · xi0j0 + cos θ · xi0j′0)T
)]

=− et
∗
i0j0 tr

[d

dθ

∣∣∣∣
θ=0

(cos θ ·Mxi0j0 − sin θ ·Mxi0j′0)(cos θ ·Mxi0j0 − sin θ ·Mxi0j′0)T
]

− e
t∗

i0j′0 tr
[d

dθ

∣∣∣∣
θ=0

(sin θ ·Mxi0j0 + cos θ ·Mxi0j′0)(sin θ ·Mxi0j0 + cos θ ·Mxi0j′0)T
]

=− et
∗
i0j0
[
− 2 · 〈Mxi0j0 ,Mxi0j′0〉

]
− e

t∗
i0j′0
[
2 · 〈Mxi0j0 ,Mxi0j′0〉

]
=2(et

∗
i0j0 − e

t∗
i0j′0) · 〈Mxi0j0 ,Mxi0j′0〉.

Since h(0) is the maximum, we have dh
dθ (0) = 0. By t∗i0j0

6= t∗i0j′0
, the above equation implies

〈Mxi0j0 ,Mxi0j′0〉 = 0. J

SoCG’15

38 Sylvester-Gallai for Arrangements of Subspaces

Finally we are able to prove Theorem 1.4.

Proof of Theorem 1.4. With a slight abuse of notation, we also use M to denote the linear
map defined by the matrix M . We show that M satisfies the requirement in Theorem 1.4.
Let uij = Mxij/‖Mxij‖ (i ∈ [n], j ∈ [ki]). Then {ui1,ui2, . . . ,uiki

} is an orthonormal
basis of M(Vi), and

ProjM(Vi) = [ui1,ui2, . . . ,uiki
]

 uTi1
...
uTiki

 =
ki∑
j=1

uiju
T
ij . (1)

We define

εij = ∂f

∂tij

(
t∗, R∗1(t∗), R∗2(t∗), . . . , R∗n(t∗)

)
∈ [−ε, ε].

Again using d
ds ln det(A) = tr(A−1 d

dsA) for an invertible matrix A, we have

εij = pi − tr
(
X−1et

∗
ijxijx

T
ij

)
= pi − et

∗
ij · tr

(
Mxijx

T
ijM

T
)

= pi − et
∗
ij · ‖Mxij‖2.

By the definition of X and M ,

M−1(MT)−1 = X =
∑

i∈[n],j∈[ki]

et
∗
ijxijx

T
ij =⇒

∑
i∈[n],j∈[ki]

et
∗
ij (Mxij)(Mxij)T = I`×`.

Therefore

∑
i∈[n],j∈[ki]

(pi − εij)uijuTij =
∑

i∈[n],j∈[ki]

et
∗
ij‖Mxij‖2

(
Mxij
‖Mxij‖

)(
Mxij
‖Mxij‖

)T
= I`×`.

By (1),

∥∥∥ n∑
i=1

pi ProjM(Vi)−I`×`
∥∥∥ =

∥∥∥ ∑
i∈[n],j∈[ki]

εijuiju
T
ij

∥∥∥ ≤ ε ∑
i∈[n],j∈[ki]

‖uijuTij‖ ≤ εm.

Let M = M/‖M‖, we can see that M(Vi) and M(Vi) are the same linear space, hence

∥∥∥ n∑
i=1

pi ProjM(Vi)−I`×`
∥∥∥ ≤ εm.

Take ε→ 0, noting that M is contained in a compact set, there must exist a matrix M∗ such
that

n∑
i=1

pi ProjM∗(Vi) = I`×`.

It remains to show that M∗ is invertible. Assume it is not invertible, then there is a nonzero
vector w orthogonal to the range of M∗. We have ProjM∗(Vi)(w) = 0 for every i ∈ [n]. This
contradicts the fact that the sum of pi ProjM∗(Vi) is the identity matrix. Therefore M∗ is
invertible. Thus Theorem 1.4 is proved. J

Z.Dvir and G.Hu 39

3.4 A convenient form of Theorem 1.4
We give Theorem 3.8 which is implied by Theorem 1.4 and is the form that will be used in our
proof. Before stating the theorem, we need to define admissible sets and admissible vectors
as Definition 3.7, which have weaker requirements than admissible basis sets and admissible
basis vectors (Definition 1.3) as they are not required to span the entire arrangement.

I Definition 3.7 (admissible set, admissible vector). Given a list of vector spaces V =
(V1, V2, . . . , Vn) (Vi ⊆ R`), a set H ⊆ [n] is called a V-admissible set if dim(

∑
i∈H Vi) =∑

i∈H dim(Vi), i.e. if every space with index in H has intersection {0} with the span of the
other spaces with indices in H. A V-admissible vector is any indicator vector 1H of some
V-admissible set H.

I Theorem 3.8. Given a list of vector spaces V = (V1, V2, . . . , Vn) (Vi ⊆ R`) and a vector
p ∈ Rn in the convex hull of all V-admissible vectors. Then there exists an invertible linear
map M : R` 7→ R` such that for any unit vector w ∈ R`,

n∑
i=1

pi‖ProjM(Vi)(w)‖2 ≤ 1,

where ProjM(Vi)(w) is the projection of w onto M(Vi).

The simple derivation of Theorem 3.8 from Theorem 1.4 is included in the full version of
this paper.

4 Proof of the main Theorem

Theorem 2.6 will follow from the following theorem using a simple recursive argument,
provided in the full version of this paper.

I Theorem 4.1. Let V = (V1, V2, . . . , Vn) (Vi ∈ R`) be a list of k-bounded vector spaces with
an (α, δ)-system and d = dim(V1 + V2 + · · ·+ Vn), then for any β ∈ (0, 1), at least one of
these two cases holds:
1. d ≤ 40αk3/(βδ),
2. There is a sublist of q ≥ δn/(20α) spaces (Vi1 , Vi2 , . . . , Viq) such that there are nonzero

vectors z1 ∈ Vi1 , z2 ∈ Vi2 , . . . ,zq ∈ Viq with

dim(z1, z2, . . . ,zq) ≤ βd.

4.1 Proof of Theorem 4.1 – a special case
In this subsection, we consider the case that all vector spaces are ‘well separated’.

I Definition 4.2. Two vector spaces V, V ′ ⊆ R` are τ -separated if |〈u,u′〉| ≤ 1− τ for any
two unit vectors u ∈ V and u′ ∈ V ′.

We will use the following two simple lemmas about τ -separated spaces (both are proved
in the full version of this paper.)

I Lemma 4.3. Given two vector spaces V, V ′ ⊆ R` that are τ -separated and let B =
{u1,u2, . . . ,uk1} and B′ = {u′1,u′2, . . . ,u′k2

} be orthonormal bases for V, V ′ respectively.
For any unit vector u ∈ V + V ′, if we write u as

u = λ1u1 + λ2u2 + · · ·+ λk1uk1 + µ1u
′
1 + µ2u

′
2 + · · ·+ µk2u

′
k2
,

then the coefficients satisfy λ2
1 + λ2

2 + · · ·+ λ2
k1

+ µ2
1 + µ2

2 + · · ·+ µ2
k2
≤ 1

τ .

SoCG’15

40 Sylvester-Gallai for Arrangements of Subspaces

I Lemma 4.4. Given two vector spaces V, V ′ ⊆ R` and let B = {u1,u2, . . . ,uk1} be an
orthonormal basis of V . If V and V ′ are not τ -separated, there must exist j ∈ [k1] such that
‖ProjV ′(uj)‖2 ≥ (1− τ)2/k1, where ProjV ′(uj) is the projection of uj onto V ′.

We will need the following lower bound for the rank of a diagonal dominating matrix.
The proof is included in the full version of this paper.

I Lemma 4.5. Let D = (dij) be a complex m×m matrix and L,K be positive real numbers.
If dii = L for every i ∈ [m] and

∑
i 6=j |dij |2 ≤ K, then rank(D) ≥ m−K/L2.

The following theorem handles the ‘well separated case’ of Theorem 4.1.

I Theorem 4.6. Let V = (V1, V2, . . . , Vn) (Vi ∈ R`) be a list of k-bounded vector spaces with
an (α, δ)-system S = (S1, S2, . . . , Sw) and d = dim(V1 + V2 + · · ·+ Vn). If for every j ∈ [w]
and {i1, i2} ⊆ Sj, Vi1 and Vi2 are τ -separated, then d ≤ αk/(τδ).

Proof. Let k1, k2, . . . , kn be the dimensions of V1, V2, . . . , Vn, and m = k1 + k2 + · · · + kn.
For every i ∈ [n], fix Bi = {ui1,ui2, . . . ,uiki} to be some orthonormal basis of Vi. We use A
to denote the m× ` matrix whose rows are uT11, . . . , . . . ,u

T
nkn

. We will bound d = rank(A)
by constructing a high rank m×m matrix D satisfying DA = 0.

For s ∈ [m], we use ψ(s) ∈ [n] to denote the number satisfying

k1 + k2 + · · ·+ kψ(s)−1 + 1 ≤ s ≤ k1 + k2 + · · ·+ kψ(s)−1 + kψ(s).

In other words, the s-th row of A is a vector in Bψ(s).

I Claim 4.7. For every s ∈ [m], there is a vector ys ∈ Rm satisfying yTs A = 0T , yss = dδne,
and

∑
t 6=s y

2
st ≤ αdδne/τ .

Proof. Say the s-th row of A is uT , where u ∈ Bψ(s). Let J ⊆ [w] be a set of size |J | = dδne
such that for every j ∈ J , Sj contains ψ(s). We construct a vector cj for every j ∈ J as
follows.

If Sj contains 3 elements {ψ(s), i, i′}, we have λ1, λ2, . . . , λki , µ1, µ2, . . . , µki′ ∈ R such
that

u− λ1ui1 − λ2ui2 − · · · − λkiuiki − µ1ui′1 − µ2ui′2 − · · · − µki′ui′ki′ = 0.

We can obtain from this equation a vector cj such that cTj A = 0T , cjs = 1, and by
Lemma 4.3 ∑

t6=s
c2
jt = λ2

1 + λ2
2 + · · ·+ λ2

ki
+ µ2

1 + µ2
2 + · · ·+ µ2

ki′
≤ 1
τ
.

If Sj contains 2 elements {ψ(s), i}, there exist λ1, λ2, . . . , λki
with λ2

1 + λ2
2 + · · ·+ λ2

ki
= 1

such that
u− λ1ui1 − λ2ui2 − · · · − λkiuiki = 0.

We can obtain from this equation a vector cj such that cTj A = 0T , cjs = 1, and∑
t6=s

c2
jt = λ2

1 + λ2
2 + · · ·+ λ2

ki
= 1 ≤ 1/τ.

In either case we obtain a cj such that cTj A = 0T , cjs = 1 and
∑
t 6=s c

2
jt ≤ 1/τ . We define

ys =
∑
j∈J

cj .

Z.Dvir and G.Hu 41

We have yTs A = 0T and yss = dδne. We consider
∑
t 6=s y

2
st. From the above construction of

cj , we can see cjt 6= 0 (t 6= s) only when ψ(t) 6= ψ(s) and {ψ(s), ψ(t)} ⊆ Sj . Hence for every
t 6= s, there are at most α nonzero values in {cjt}j∈J . It follows that

∑
t 6=s

y2
st =

∑
t 6=s

∑
j∈J

cjt

2

≤ α
∑
t6=s

∑
j∈J

c2
jt

 = α
∑
j∈J

∑
t 6=s

c2
jt

 ≤ αdδne
τ

.

Thus the claim is proved. J

Define D to be the matrix consists of rows yT1 ,yT2 , . . . ,yTm. Then every entry on the
diagonal of D is dδne, and the sum of squares of all entries off the diagonal is at most
αdδnem/τ . Apply Lemma 4.5 on D, and we have

rank(D) ≥ m− αdδnem/τ
dδne2

= m− αm

τdδne
≥ m− αk

τδ
.

By DA = 0, the rank of A is d ≤ αk/(τδ). J

4.2 Proof of Theorem 4.1 – general case
Now we prove Theorem 4.1. We assume that the first case of Theorem 4.1 does not hold, i.e.
d > 40αk3/(βδ). We will show the second case holds.

I Lemma 4.8. If the second case of Theorem 4.1 does not hold, i.e. for any sublist of
q ≥ δn/(20α) spaces (Vi1 , Vi2 , . . . , Viq) and nonzero vectors z1 ∈ Vi1 , z2 ∈ Vi2 , . . . ,zq ∈ Viq ,

dim(z1, z2, . . . ,zq) > βd,

then there exists a distribution D on V-admissible sets and an I ⊆ [n] with |I| ≥ (1−δ/(10α))n
such that for every i ∈ I,

Pr
H∼D

[i ∈ H] ≥ βd

kn
.

Proof. Fix q = dδn/(20α)e. By assumption d > 40αk3/(βδ), we have n ≥ d/k > 10α/δ. It
follows that q < δn/(10α). We can also see δn/(10α) < n by δ/α ≤ 3/2 (Lemma 2.2).

We will find a distribution using the following claim.

I Claim 4.9. For a subset E ⊆ [n] of size greater than q, we can find a V-admissible set
H ⊆ E with size at least βd/k.

Proof. Initially let H = ∅. In each step we pick an i0 ∈ E with Vi0
⋂∑

i∈H Vi = {0}, and
add i0 to H. If such an i0 does not exist, the procedure terminates. If |H| < βd/k, then for
every i0 ∈ E, Vi0 has a nonzero vector contained in the space

∑
i∈H Vi, which has dimension

at most βd. This contradicts the condition that the second case of Theorem 4.1 does not
hold. Hence |H| ≥ βd/k, and the claim is proved. J

We repeatedly find a V-admissible sets H1, H2, . . . such that Hi ⊆ [n] \ (H1 ∪ · · · ∪Hi−1) and
|Hi| ≥ βd/k using the above claim. We can find at most

n− q
βd/k

≤ nk

βd

such V-admissible sets in total. Let I be the union of these V-admissible sets. We have
|I| ≥ n− q ≥ (1− δ/(10α))n. Let D be the uniform distribution on these V-admissible sets.
We can see that the probability PrH∼D[i ∈ H] ≥ βd/(kn) for every i ∈ I. Thus the lemma
is proved. J

SoCG’15

42 Sylvester-Gallai for Arrangements of Subspaces

Assume the second case of Theorem 4.1 does not hold and apply Lemma 4.8. For i ∈ [n],
we use ki to denote the dimension of Vi, and pi to denote PrH∼ D[i ∈ H]. Then pi ≥ βd/(kn)
for every i ∈ I.

I Lemma 4.10. The vector p = (p1, p2, . . . , pn) is in the convex hull of V-admissible vectors.

Proof. For every V-admissible set H, we use qH to denote the probability that H is picked
according to D, and 1H to denote the V-admissible vector corresponding to H. Then,

p = (p1, p2, . . . , pn) =
∑

V-admissible H
qH1H

and pi is exactly the probability that i ∈ H. J

We apply Theorem 3.8 with the p = (p1, p2, . . . , pn), and obtain an invertible linear map
M : R` 7→ R` such that for any unit vector w ∈ R`,

n∑
i=1

pi‖ProjV ′
i
(w)‖2 ≤ 1,

where V ′i denotes M(Vi). Since pi ≥ βd/(kn) for every i ∈ I, we have∑
i∈I
‖ProjV ′

i
(w)‖2 ≤ kn

βd
. (2)

We will reduce the problem to the special case discussed in the previous subsection. We
say a pair {i1, i2} ⊆ [n] is bad if V ′i1 , V

′
i2

are not 1
2 -separated. Let S = (S1, S2, . . . , Sw) be

the (α, δ)-system of V. By Lemma 2.4, S is also an (α, δ)-system of V ′ = (V ′1 , V ′2 , . . . , V ′n).
We estimate the number of sets among S1, S2, . . . , Sw containing a bad pair.

I Lemma 4.11. For every i0 ∈ I, there are at most δn/(10α) values of i ∈ I such that V ′i0
and V ′i are not 1

2 -separated.

Proof. Let {u1,u2, . . . ,uki0
} be an orthonormal basis of V ′i0 . For any i that V

′
i0

and V ′i are
not 1

2 -separated, by Lemma 4.4, there must be j ∈ [ki0] such that

‖ProjV ′
i
(uj)‖2 ≥ 1

4ki0
≥ 1

4k .

For every j0 ∈ [ki0], we set w = uj0 in inequality (2). The number of i’s such that
‖ProjV ′

i
(uj0)‖ ≥ 1/(4k) is at most

kn

βd

/
1
4k = 4k2n

βd
.

Since there are ki0 ≤ k values of j0 ∈ [ki0], the number of i’s that V ′i0 and V ′i are not
1
2 -separated is at most

k · 4k2n

βd
≤ 4k3n

βd
≤ δn

10α.

In the last inequality we used the assumption d > 40αk3/(βδ). J

The number of bad pairs is at most

|[n] \ I| · n+ |I| · δn10α ≤
δn2

10α + δn2

10α = δn2

5α .

Z.Dvir and G.Hu 43

We remove all Sj ’s that contains a bad pair and use S ′ to denote the list of the remaining sets.
Since each pair appears at most α times, we have removed at most δn2/5 sets. Originally we
have at least δn2/3 sets by Lemma 2.2. Now we have at least δn2/3− δn2/5 ≥ δn2/10 sets.
By Lemma 2.3, there is a sublist V ′′ = (V ′i1 , V

′
i2
, . . . , V ′iq) (q ≥ δn/(20α)) of V ′ and a sublist

S ′′ of S ′ such that S ′′ is an (α, δ/20)-system of V ′′.
Since we have removed all bad pairs, V ′′ and S ′′ must satisfy the conditions of Theorem 4.6.

By Theorem 4.6,

dim(V ′i1 + V ′i2 + · · ·+ V ′iq) ≤ αk
1
2 · δ/20

= 40αk
δ
≤ βd.

In the last inequality we used the assumption d > 40αk3/(βδ). Recall that the linear map M
is invertible. So the space Vi1 +Vi2 + · · ·+Viq has the same dimension as V ′i1 +V ′i2 + · · ·+V ′iq .
Therefore there are q ≥ δn/(20α) spaces Vi1 , Vi2 , . . . , Viq within dimension βd. The second
case of Theorem 4.1 holds.

In summary, under the assumption d > 40αk3/(βδ) we have shown the second case of
Theorem 1.4 is always satisfied. Therefore Theorem 4.1 is proved. J

References
1 Boaz Barak, Zeev Dvir, Avi Wigderson, and Amir Yehudayoff. Fractional Sylvester-Gallai

theorems. Proceedings of the National Academy of Sciences, 110(48):19213–19219, 2013.
2 Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. Rank bounds for design

matrices with applications to combinatorial geometry and locally correctable codes. In
Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, STOC’11,
pages 519–528, 2011.

3 Franck Barthe. On a reverse form of the Brascamp-Lieb inequality. Inventiones mathemat-
icae, 134(2):335–361, 1998.

4 P. Borwein and W. O. J. Moser. A survey of Sylvester’s problem and its generalizations.
Aequationes Mathematicae, 40(1):111–135, 1990.

5 Zeev Dvir. On matrix rigidity and locally self-correctable codes. computational complexity,
20(2):367–388, 2011.

6 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Breaking the quadratic barrier for 3-
LCC’s over the reals. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, STOC’14, pages 784–793, 2014.

7 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Improved rank bounds for design matrices
and a new proof of Kelly’s theorem. Forum of Mathematics, Sigma, 2, 10 2014.

8 Noam Elkies, Lou M Pretorius, and Konrad J Swanepoel. Sylvester-Gallai theorems for
complex numbers and quaternions. Discrete & Computational Geometry, 35(3):361–373,
2006.

9 P. Erdös, Richard Bellman, H. S. Wall, James Singer, and V. Thébault. Problems for
solution: 4065-4069. The American Mathematical Monthly, 50(1):65–66, 1943.

10 Sten Hansen. A generalization of a theorem of Sylvester on the lines determined by a finite
point set. Mathematica Scandinavica, 16:175–180, 1965.

11 L. M. Kelly. A resolution of the Sylvester-Gallai problem of J.-P. Serre. Discrete & Com-
putational Geometry, 1(1):101–104, 1986.

12 Peter D. Lax. Linear algebra and its applications. Pure and Applied Mathematics. Wiley-
Interscience, 2007.

13 E. Melchior. Uber vielseite der projektive ebene. Deutsche Math., 5:461–475, 1940.
14 J. J. Sylvester. Mathematical question 11851. Educational Times, 59:98, 1893.

SoCG’15

Computational Aspects of the Colorful
Carathéodory Theorem
Wolfgang Mulzer∗ and Yannik Stein†

Institut für Informatik, Freie Universität Berlin, Germany
{mulzer, yannikstein}@inf.fu-berlin.de

Abstract
Let P1, . . . , Pd+1 ⊂ Rd be d-dimensional point sets such that the convex hull of each Pi contains
the origin. We call the sets Pi color classes, and we think of the points in Pi as having color i. A
colorful choice is a set with at most one point of each color. The colorful Carathéodory theorem
guarantees the existence of a colorful choice whose convex hull contains the origin. So far, the
computational complexity of finding such a colorful choice is unknown.

We approach this problem from two directions. First, we consider approximation algorithms:
an m-colorful choice is a set that contains at most m points from each color class. We show
that for any fixed ε > 0, an dεde-colorful choice containing the origin in its convex hull can be
found in polynomial time. This notion of approximation has not been studied before, and it is
motivated through the applications of the colorful Carathéodory theorem in the literature. In
the second part, we present a natural generalization of the colorful Carathéodory problem: in
the Nearest Colorful Polytope problem (NCP), we are given sets P1, . . . , Pn ⊂ Rd that do not
necessarily contain the origin in their convex hulls. The goal is to find a colorful choice whose
convex hull minimizes the distance to the origin. We show that computing local optima for the
NCP problem is PLS-complete, while computing a global optimum is NP-hard.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems – Geometrical
problems and computations

Keywords and phrases colorful Carathéodory theorem, high-dimensional approximation, PLS

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.44

1 Introduction

Let P ⊂ Rd be a point set. Carathéodory’s theorem [6, Theorem 1.2.3] states that if
~0 ∈ conv(P), there is a subset P ′ ⊆ P of at most d+ 1 points with ~0 ∈ conv(P ′). Bárány [3]
gives a generalization to the colorful setting.

I Theorem 1.1 (Colorful Carathéodory Theorem [3]). Let P1, . . . , Pd+1 ⊂ Rd be point sets
(the color classes). If ~0 ∈ conv(Pi), for i = 1, . . . , d + 1, there is a colorful choice C with
~0 ∈ conv(C). Here, a colorful choice is a set with at most one point from each color class.

Theorem 1.1 implies Carathéodory’s theorem by setting P1 = · · · = Pd+1. Moreover,
there are many variants with weaker assumptions [7]. While Carathéodory’s theorem can be
cast as a linear system and thus be implemented in polynomial time, very little is known
about the algorithmic complexity of the colorful Carathéodory theorem [4]. This question

∗ Supported in part by DFG Grants MU 3501/1 and MU 3501/2.
† Supported by the Deutsche Forschungsgemeinschaft within the research training group ‘’Methods for
Discrete Structures” (GRK 1408).

© Wolfgang Mulzer and Yannik Stein;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 44–58

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

W. Mulzer and Y. Stein 45

is particularly interesting because Sarkaria’s proof [13] of Tverberg’s theorem1 [15] gives a
polynomial-time reduction from computing Tverberg partitions to computing a colorful choice
with the origin in its convex hull. Both problems lie in Total Function NP (TFNP), the
complexity class of total search problems that can be solved in non-deterministic polynomial
time. It is well known that no problem in TFNP is NP-hard unless NP = coNP [5]. Recently,
Meunier and Sarrabezolles [8] have shown that a related problem is complete for a subclass
of TFNP: given d+ 1 pairs of points P1, . . . , Pd+1 ∈ Qd and a colorful choice that contains
the origin in its convex hull, it is PPAD-complete [12] to find another colorful choice that
contains the origin in its convex hull.

Since we have no exact polynomial-time algorithms for the colorful Carathéodory theorem,
approximation algorithms are of interest. This was first considered by Bárány and Onn [4]
who described how to find a colorful choice whose convex hull is “close” to the origin. Let
ε, ρ > 0 be parameters. We call a set ε-close if its convex hull has distance at most ε to the
origin. Given sets P1, . . . , Pd+1 ∈ Qd s.t. (i) each Pi contains a ball of radius ρ centered at the
origin in its convex hull, (ii) all points p ∈ Pi fulfill 1 ≤ ‖p‖ ≤ 2, and (iii) the points in all sets
can be encoded using L bits, one can find a colorful choice C that is ε-close to the origin in
time poly(L, log(1/ε), 1/ρ) on the Word-Ram with logarithmic costs. If 1/ρ = O(poly(L)),
the algorithm actually finds a colorful choice with the origin in its convex hull.

However, when using the colorful Carathéodory theorem in the proof of another statement,
it is often crucial that the convex hull of the colorful choice contains the origin. Being “close”
is not enough. On the other hand, allowing multiple points from each color class may have a
natural interpretation in the reduction. For example, this is the case in Sarkaria’s proof [13]
of Tverberg’s theorem, in the proof of the First Selection Lemma2 [6, Theorem 9.1.1], and
in the proof of the colorful Kirchberger theorem3 [2]. This motivates a different notion
of approximation: we need a “colorful” set with the origin in its convex hull, but we may
take more than one point from each color. More formally, given a parameter m and sets
P1, . . . , Pd+1 ∈ Qd, find a set C s.t. ~0 ∈ conv(C) and s.t. for all Pi, we have |C ∩ Pi| ≤ m.
In contrast to the setting considered by Bárány and Onn, we have no general position
assumption. Surprisingly, this notion does not seem to have been studied before.

Coming from another direction, as a first step towards understanding what makes
the problem hard, we consider the Nearest Colorful Polytope (NCP) problem, a natural
generalization inspired by the proof of Theorem 1.1. Given color classes P1, . . . , Pn ⊂ Rd, not
necessarily containing the origin in their convex hulls, find a colorful choice whose convex hull
minimizes the distance to the origin. We study two variants: the local search problem, where
we want to find a colorful choice whose convex hull cannot be brought closer to the origin by
exchanging a single point with another point of the same color; and the global search problem,
where we want to compute a colorful choice with minimum distance to the origin. We refer
to these problems as L-NCP and G-NCP, respectively. L-NCP is particularly interesting
since Bárány’s proof of the colorful Carathéodory theorem gives a local search algorithm.
The NP-hardness proof of G-NCP settles an open problem by Bárány and Onn [4]. This
question was also answered independently by Meunier and Sarrabezolles [8].

1 Tverberg’s theorem states that a point set P ⊂ Rd can be partitioned into d|P |/(d + 1)e sets whose
convex hulls have a nonempty intersection.

2 Let P ⊂ Rd. Then, the First Selection Lemma guarantees that there is a point contained in “many”
simplices that are defined by d + 1 points in P .

3 The colorful Kirchberger theorem says that given “many” Tverberg partitions, there is a Tverberg
partition containing exactly one point from each Tverberg partition.

SoCG’15

46 Computational Aspects of the Colorful Carathéodory Theorem

1.1 Our Results
Given sets P1, . . . , Pn ⊂ Rd, we call a set C containing at most m points from each set Pi
an m-colorful choice. A 1-colorful choice is also called perfect colorful choice. All presented
algorithms are analyzed on the Real-Ram model with unit costs. We begin with an
approximation algorithm based on a simple dimension reduction argument.

I Proposition 1.2. Let P1, . . . , Pbd/2c+1 ⊂ Rd be bd/2c+ 1 sets of size at most d + 1 that
each contain the origin in their convex hulls. Then, a (dd/2e+ 1)-colorful choice containing
the origin in its convex hull can be computed in O(d5) time.

Generalizing the algorithm from Proposition 1.2, we can further improve the approximation
guarantee by repeatedly combining approximations for lower dimensional linear subspaces.
This can be seen as a counterpart to Mulzer and Werner’s approximation algorithm for
Tverberg partitions [11].

I Theorem 1.3. Let P1, . . . , Pd+1 ⊂ Rd be sets of size at most d+ 1 s.t. ~0 ∈ conv(Pi) for all
i = 1, . . . , d+ 1. Then, for any ε = Ω(d−1/6), an dεde-colorful choice containing the origin
in its convex hull can be computed in dO((1/ε) ln(1/ε)) time.

In particular, for any constant ε the algorithm from Theorem 1.3 runs in polynomial
time. Given Θ(d2 log d) color classes, we can also improve the naive dO(d) algorithm for
finding a perfect colorful choice. This algorithm follows the structure of Miller and Sheehy’s
approximation algorithm for Tverberg partitions [10].

I Proposition 1.4. Let P1, . . . , Pn ⊂ Rd be n = Θ(d2 log d) sets of size at most d + 1 s.t.
~0 ∈ conv(Pi), for i = 1, . . . , n. Then, a perfect colorful choice can be computed in dO(log d)

time.

On the other hand, if we are given only two color classes, we can achieve a d−Θ(
√
d)

approximation guarantee. Note that a d(d+ 1)/2e-colorful choice is the best possible in this
scenario if we assume general position.

I Proposition 1.5. Let P,Q ⊂ Rd be two sets of size at most d+ 1 that contain the origin
in their convex hulls. Then, a (d−Θ(

√
d))-colorful choice can be computed in O(d4) time.

On the hardness side, we show that a generalization of the colorful Carathéodory problem,
the Local Search Nearest Colorful Polytope (L-NCP) problem, is complete for the complexity
class polynomial-time local search (PLS). Using essentially the same reduction, we can also
prove that finding a global optimum for NCP (G-NCP) is NP-hard and answer a question
by Bárány and Onn [4].

I Theorem 1.6. L-NCP is PLS-complete.

I Theorem 1.7. G-NCP is NP-hard.

2 Approximating the Colorful Carathéodory Theorem

Throughout the paper, we denote for a given point set P = {p1, . . . , pn} ⊂ Rd by
span(P) = {

∑n
i=1 αipi | αi ∈ R} its linear span and by span(P)⊥ = {v ∈ Rd | ∀p ∈

span(P) : 〈v, p〉 = 0} the subspace orthogonal to span(P);
aff(P) = {

∑n
i=1 αipi | αi ∈ R,

∑n
i=1 αi = 1} its affine hull;

pos(P) = {
∑n
i=1 µipi | µi ≥ 0} all linear combinations with nonnegative coefficients;

W. Mulzer and Y. Stein 47

conv(P) = {
∑n
i=1 λipi | λi ≥ 0,

∑n
i=1 λi = 1} its convex hull; and by

dim(P) the dimension of span(P).
Furthermore, we say that a set P ⊂ Rd is in general position if for every k ≤ d, no k + 2
points lie in a k-flat and if no proper subset of P contains the origin in its convex hull. We
also use the following constructive version of Carathéodory’s theorem:

I Lemma 2.1. Let P ⊂ Rd be a set of O(d) points that contains the origin in its convex
hull. In O(d4) time, we can find a subset P ′ ⊆ P of at most d+ 1 points in general position
such that P ′ contains the origin in its convex hull.

2.1 Simple Approximations
Since there are no known approximation algorithms for computing m-colorful choices, even
simple ones are of interest to gain some intuition for the problem. It is a straightforward
exercise to show that a (d− 1)-colorful choice can be computed in polynomial time. However,
even m = d− 2 seems to be nontrivial.

In this section, we present two algorithms that both compute a (d+ 1)/2-colorful choice
in O(d5) time, but differ in the number of required color classes. The following lemma is
the key ingredient of both algorithms. It enables us to replace each color class Pi by two
points v1, v2, so that each point represents half of the points in Pi. We call the points v1, v2
representatives for Pi. Now, a perfect colorful choice for the representatives will correspond
to a d(d + 1)/2e-colorful choice for the original points. The presented algorithms differ
only in the way the perfect colorful choice is computed for this special case of the colorful
Carathéodory problem. The first one uses basic linear algebra, while the second one is based
on a simple dimension reduction argument.

I Lemma 2.2. Let P ⊂ Rd, 2 ≤ |P | ≤ d+ 1, be a set in general position that contains the
origin in its convex hull. Then, for every partition of P into two sets P1, P2, there is a vector
v 6= ~0 s.t. v ∈ pos(P1) and −v ∈ pos(P2). This vector can be found in O(d3) time.

Proof. Write ~0 as ~0 =
∑
p∈P λpp, such that λp ≥ 0 for all p ∈ P and such that

∑
p∈P λp = 1.

The coefficients λp can be computed in O(d3) time. Since P is in general position, we have
λp > 0 for all p ∈ P . Set v =

∑
p∈P1

λpp. By construction, we have v 6= ~0, v ∈ pos(P1), and
−v ∈ pos(P2). J

In the first algorithm, we partition each set Pi into two sets Pi,1, Pi,2 of equal size and
apply Lemma 2.2 to obtain d+1 representatives v1, . . . , vd+1. The set {v1, . . . , vd+1} must be
linearly dependent. Depending on the sign of the coefficients in the nontrivial ~0-combination,
we replace each representative vi by either Pi,1 or Pi,2.

I Proposition 2.3. Let P1, . . . , Pd+1 ⊂ Rd be d+ 1 sets s.t. |Pi| ≤ d+ 1 and s.t. Pi contains
the origin in its convex hull, for i = 1, . . . , d+ 1. Then, a d(d+ 1)/2e-colorful choice can be
computed in O(d5) time.

Proof. First, prune each set Pi, i = 1, . . . , d+ 1, with Lemma 2.1. This requires O(d5) time.
Assume w.l.o.g. that all sets still contain at least two points (since otherwise at least one
set contains the origin). Partition each set Pi arbitrarily into two sets Pi,1, Pi,2 of equal size
and let v1, . . . , vd+1 be the vectors obtained by applying Lemma 2.2 to the partitions. Since
these vectors are linearly dependent, we can express ~0 as ~0 =

∑d+1
i=1 µivi where µj 6= 0 for at

least one j ∈ {1, . . . , d+ 1}. The coefficients µi can be computed in O(d3) time by solving a
linear system of equations. For each vector vi with µi > 0, take Pi,1 (since vi ∈ pos(Pi,1)),

SoCG’15

48 Computational Aspects of the Colorful Carathéodory Theorem

~0

p1

p2

p3

P1

q1 q2

q3

P2

r1

r2

r3

P3

v1

v2

v3

(a)

x

y

v

~0p1

p2

p3

P
Q

(b)

Figure 1 (a) Example of Proposition 2.3 in two dimensions. The color classes are partitioned into
P1 = {p1}∪̇{p2, p3}, P2 = {q3}∪̇{q1, q2}, and P3 = {r1}∪̇{r2, r3}. The set C = {p1}∪̇{q3}∪̇{r2, r3}
is a 2-colorful choice. (b) Example of Proposition 1.2 in two dimensions. The representative v is
computed for the partition P = {p2, p3}∪̇{p1}. W.l.o.g. assume v lies on the x-axis. The set Q is a
recursively computed approximation that contains the origin in its convex hull if projected onto the
y-axis. The set C = Q ∪ {p2, p3} is a 2-colorful choice containing the origin in its convex hull.

otherwise Pi,2 (since −vi ∈ pos(Pi,2)). Figure 1(a) shows an example in two dimensions. The
overall running time is dominated by the initial pruning step. J

Lemma 2.2 can also be used to reduce the dimension by one. We repeat this until
the dimension is small enough, i.e., dd/2e, and then simply apply Lemma 2.1 in the low
dimensional space. This algorithm requires only bd/2c+ 1 color classes instead of d+ 1. We
will generalize it in the next section.

Proof of Proposition 1.2. We prune P1 with Lemma 2.1. If |P1| = 1, we have P1 = {~0}, and
P1 is a valid approximation. If |P1| ≥ 2, we partition P1 arbitrarily into two sets P1,1, P1,2
of equal size. We apply Lemma 2.2 to obtain a vector v. We project the remaining color
classes onto the orthogonal subspace span(v)⊥ and recursively compute a (dd/2e+ 1)-colorful
choice C̃ for the projection. Let C ′ be the d-dimensional point set corresponding to C̃. If the
convex hull of C ′ intersects pos(v), we set C = C ′ ∪ P1,2 (since −v ∈ pos(Pi,2)), otherwise,
we set C = C ′ ∪ Pi,1 (since v ∈ pos(Pi,1)). In both cases, C is a (dd/2e+ 1)-colorful choice
with the origin in its convex hull. See Figure 1(b). If only one color is left, i.e., if we are
in dimension d − bd/2c = dd/2e, we prune this color with Lemma 2.1 and we return the
resulting set of size at most dd/2e+ 1.

Each invocation of Lemma 2.1 and of Lemma 2.2 takes O(d4) time. The recursion depth
is bounded by bd/2c+ 1, which results in a total running time of O(d5), as claimed. J

2.2 Approximation by Rebalancing
The algorithm from Proposition 1.2 prunes half of the points from each color class in a
complete run. We generalize this approach in two respects. First, we repeatedly prune points
to improve the approximation guarantee. Second, we reduce the dimensionality in each step
by more than one to improve the running time.

Let P1, . . . , Pd+1 ⊂ Rd be the color classes and dεde be the desired approximation guar-
antee. Throughout the execution of the algorithm, we maintain a temporary approximation
C ⊂ P1 ∪ · · · ∪Pd+1 that contains the origin in its convex hull, but may have more than dεde

W. Mulzer and Y. Stein 49

points of the same color. Initially, C is a complete color class. Using the following lemma,
we can replace a single point in C by an approximate colorful choice for the orthogonal space
span(C)⊥.

I Lemma 2.4. Let C ⊂ Rd, |C| = k ≤ d+ 1, be a set in general position that contains the
origin in its convex hull. Furthermore, let Q ⊂ Rd be a set of size O(d) whose orthogonal
projection onto span(C)⊥ contains the origin in its convex hull. Then, there is a point c ∈ C
computable in O(d4) time s.t. ~0 ∈ conv(Q ∪ C \ {c}).

Proof. Write Q as Q = {q1, . . . , ql}. Each qi can be expressed as q̃i + ĉi, where q̃i denotes
the orthogonal projection of qi onto span(C)⊥ and ĉi ∈ span(C). By our assumption, the
origin is a convex combination of q̃1, . . . , q̃l: ~0 =

∑l
i=1 λiq̃i, where λi ≥ 0 and

∑l
i=1 λi = 1.

Consider the convex combination q =
∑l
i=1 λiqi of points in Q with the same coefficients.

Since q =
∑l
i=1 λiqi =

∑l
i=1 λi(q̃i + ĉi) =

∑l
i=1 λiĉi, q is contained in span(C).

By our assumption, we have ~0 ∈ conv(C). Since C is in general position, this implies
pos(C) = span(C). Thus, there are k − 1 points cj1 , . . . , cjk−1 in C s.t. pos(cj1 , . . . , cjk−1)
contains −q. We can take c ∈ C as the single point that does not appear in cj1 , . . . , cjk−1 .

This point can be found in O(d4) time by solving k ≤ d + 1 linear equation systems
L1, . . . , Lk, where Lj is defined as

∑
ci∈C,i6=j αici = −q. Since C is in general position, all

(k − 1)-subsets of C are a basis for span(C). Thus, the linear systems have unique solutions.
Furthermore, because C contains the origin in its convex hull, one of the linear systems has
a solution with no negative coefficients. J

Unfortunately, we cannot control which point is replaced when applying Lemma 2.4. We
always want to replace a point whose color appears more than dεde times in C. Generalizing
Lemma 2.2, the next lemma enables us to compute representatives for partitions of arbitrary
size. Instead of applying Lemma 2.4 to C, we replace one of the representatives for C. By
choosing the partition for the representatives appropriately, we can influence the color of the
removed points.

I Lemma 2.5. Let C ⊂ Rd, |C| ≤ d+ 1, be a set in general position that contains the origin
in its convex hull and let C1, . . . , Cm be a partition of C. Then, we can find in O(d3) time a
set C ′ = {c′1, . . . , c′m} ⊂ Rd with the following properties:
1. ∀i = 1, . . . ,m: c′i ∈ pos(Ci) \ {~0}
2. ~0 ∈ conv(C ′)
3. dim(C ′) = m− 1
We call the points in C ′ representatives for C with respect to the partition C1, . . . , Cm.

Proof. Since C contains the origin in its convex hull, we can write ~0 as ~0 =
∑
c∈C λcc, where

all λc > 0, since C is in general position. Define c′j as c′j =
∑
c∈Cj

λcc for all i = 1, . . . ,m.
Properties 1. and 2. can be easily verified for the set C ′ = {c′1, . . . , c′m}. Furthermore, c′1 can
be expressed as a linear combination of the other points in C ′: c′1 = −(c′2 + · · ·+ c′m). Thus,
dim(C ′) < m. On the other hand, we have dim(C ′) ≥ m− 1 due to general position. This
proves Property 3. J

Now, we are ready to put everything together. The algorithm repeatedly replaces points
in C by a recursively computed approximate colorful choice for a linear subspace. We are
given as input the color classes P1, . . . , Pd+1 ⊂ Rd, each containing the origin in its convex
hull, a recursion depth threshold jmax ∈ N and two parameter functionsM,D : N0 → N that
control the dimension reduction. The first function returns for a given recursion depth the
desired approximation guarantee. After completion, the algorithm outputs anM(0)-colorful

SoCG’15

50 Computational Aspects of the Colorful Carathéodory Theorem

choice. The second function, D : N0 → N, controls the dimension reduction. It returns for a
given recursion depth j the desired dimension of the problem. We require the parameter
functions to have the following properties.

I Definition 2.6 (Feasible Parameter Functions). LetM,D : N0 → N be two functions. We
call (M,D) jmax-feasible if the functions fulfill the following conditions
1. M and D are strictly decreasing over the interval [0, jmax − 1] and can be computed in

O(d4) time;
2. D(0) = d; and
3. for all j < jmax, the following inequalities hold⌊

D(j) + 1
M(j)−M(j + 1)

⌋
(i)
≤ D(j)−D(j + 1)

(ii)
≤ M(j).

Suppose we have a jmax-feasible pair (M,D) of parameter functions and we are at
recursion depth j. As long as the parameter functions are feasible, that is j < jmax, we
apply our dimension reduction argument. Otherwise, we compute a perfect colorful choice
by brute-force.

Assume we have not yet reached the recursion depth threshold (j < jmax). That is, the
input points are D(j)-dimensional and we want to compute anM(j)-colorful choice. We
initialize the temporary approximation C with a complete color class and prune it with
Lemma 2.1. As long as C is not an M(j)-colorful choice, we repeat the following steps:
we partition C into k = D(j) − D(j + 1) + 1 sets C1, . . . , Ck, where the points from each
color in C are distributed evenly among the k sets. Let ni = |Pi ∩ C| denote the number
of points from Pi in C. Since the parameter functions are feasible, we have k ≤M(j) + 1.
Hence, each set in the partition contains at least one point from each color class Pi for which
ni ≥M(j) + 1. Applying Lemma 2.5, we compute representatives C ′ = {c′1, . . . , c′k} for this
partition. Note that dim(C ′) = k − 1 and that dim(span(C ′)⊥) = D(j)− k + 1 = D(j + 1).

We call a color class Pi light if ni ≤M(j)−M(j + 1); otherwise we call Pi heavy. Light
color classes can be reused in the recursion since adding anM(j + 1)-colorful choice that
consists of points from light color classes to our temporary approximation C does not increase
the amount of points from any color class over the desired approximation guaranteeM(j).
We find D(j + 1) + 1 light color classes and project these orthogonally onto span(C ′)⊥. Let
P̃j1 , . . . , P̃jD(j+1)+1 denote the projections. Next, we recursively compute anM(j+1)-colorful
choice Q̃ for the space orthogonal to span(C ′) with (P̃j1 , . . . , P̃jD(j+1)+1 , j + 1,M,D, jmax)
as input. Let Q be the point set whose projection gives Q̃. Using Lemma 2.4, we compute
a point c′j ∈ C ′ s.t. conv(Q ∪ C ′ \ c′j) contains the origin. We replace the subset Cj of C
by Q and prune C again with Lemma 2.1. Since each representative c′i is contained in the
cone pos(Ci), Q ∪ C \ Cj still contains the origin in its convex hull and hence the invariant
is maintained. Thus, in one iteration of the algorithm, at least one point from each color
class Pi for which ni >M(j) is replaced by points from light color classes. This is repeated
until no color class appears more thanM(j) times in C. See Algorithm 2.1 for pseudocode.

We first prove correctness and afterwards analyze the running time for a specific pair of
feasible parameter functions.

I Lemma 2.7 (Correctness of Algorithm 2.1). Let P1, . . . , Pd+1 ⊂ Rd be sets s.t. |Pi| ≤ d+ 1
and s.t. ~0 ∈ conv(Pi), for i = 1, . . . , d + 1. Furthermore, let M,D : N0 → N be a pair
of jmax-feasible parameter functions. On input (P1, . . . , Pd+1, 0,M,D, jmax), Algorithm 2.1
returns anM(0)-colorful choice.

W. Mulzer and Y. Stein 51

Algorithm 2.1: Approximation by Rebalancing
input: P1, . . . , Pd′+1 ⊂ Rd′ s.t. ~0 ∈ conv(Pi) for all i = 1, . . . , d′ + 1, recursion depth

j ∈ N0 (initially 0), approximation parameter functionM : N0 → N, dimension
parameter function D : N0 → N, recursion depth threshold jmax

1 if j = jmax then
2 return brute force computed perfect colorful choice
3 C ← P1
4 Prune C with Lemma 2.1.
5 d′′ ← D(j + 1); k ← d′ − d′′ + 1
6 while C is not anM(j)-colorful choice do
7 Partition C into k sets C1, . . . , Ck s.t. for all color classes Pi and all pairs of indices

1 ≤ l1, l2 ≤ k, we have |#(Pi ∩ Cl1)−#(Pi ∩ Cl2 |)| ≤ 1.
8 Apply Lemma 2.5 to C1, . . . , Ck. Let C ′ = {c′1, . . . , c′k} be the set of the

representatives.
9 Find d′′ + 1 color classes Pj1 , . . . , Pjd′′+1 s.t. |C ∩ Pji | ≤ M(j)−M(j + 1).

10 for i = 1 to d′′ + 1 do
11 P̃ji

← orthogonal projection of Pji
onto span(C ′)⊥

12 Q← recurse(P̃j1 , P̃j2 , . . . , P̃jd′′+1 , j + 1,M, D, jmax)
13 Apply Lemma 2.4 to C ′ and Q to find a point c′i ∈ C ′ s.t. ~0 ∈ conv(Q ∪ C ′ \ {c′i}).
14 C ←

(⋃k+1
j=1,j 6=i Cj

)
∪Q

15 Prune C with Lemma 2.1.
16 return C

Proof. We prove correctness by showing that the algorithm respects the parameter functions
D andM. By our discussion above it is clear that the dimension in the jth recursion is D(j)
for j < jmax. Next, we show that in the jth recursion, the returned colorful choice is an
M(j)-colorful choice. The prove is by induction on the recursion depth. We have two base
cases. First, if j = jmax, a perfect colorful choice is computed in line 2. SinceM(j) ≥ 1, a
perfect colorful choice is always anM(j)-colorful choice. Second, if C pruned with Lemma 2.1
in line 4 or line 15 is already anM(j)-colorful choice, the algorithm terminates, too. Hence,
the induction hypothesis holds in both base cases. Assume now that the current recursion
depth is j < jmax and the induction hypothesis holds for all j′ > j. Let C(t) denote the set
C after t iterations of the while-loop in the jth recursion. We show the following invariant:
(α) ~0 ∈ conv(C(t)),
(β) for all color classes Pi, i = 2, . . . , d+ 1, we have |C(t) ∩ Pi| ≤ M(j), and
(γ) |C(t−1) ∩ P1| > |C(t) ∩ P1|, for t ≥ 1.
The invariant implies that the while-loop terminates and anM(j)-colorful choice is returned.
Before the first iteration, the invariant holds since C(0) = P1. Assume we are now in iteration
t and the invariant holds for all previous iterations. Due to Lemmas 2.5 and 2.4, we have
~0 ∈ conv(C(t)) and thus Property (α) holds. By the induction hypothesis, the recursively
computed set Q in line 12 is anM(j+ 1)-colorful choice. Since we use only light color classes
in the recursion, adding the points from Q to C(t) does not violate Property (β) of the
invariant. It remains to show that we can always find D(j + 1) + 1 light color classes. Since
C is pruned to at most D(j) + 1 points at the end of each while-loop iteration, the number
of heavy color classes is upper bounded by

⌊
D(j)+1

M(j)−M(j+1)

⌋
. This is at most D(j)−D(j + 1)

sinceM,D are feasible in the current recursion depth. Therefore, there are always at least
D(j + 1) + 1 light color classes.

SoCG’15

52 Computational Aspects of the Colorful Carathéodory Theorem

Finally, we need to check that the number of points from P1 in C(t) is strictly less
than in C(t−1). Again, sinceM,D are feasible in recursion depth j, we haveM(j) + 1 ≥
D(j) − D(j + 1) + 1 = k. Since C(t−1) was not an M(j)-colorful choice (otherwise the
while-loop would have terminated), C(t−1) contains at leastM(j) + 1 points from P1. Hence,
each set Ci in line 7 contains at least one point from P1. Since one of these sets is removed
in line 14 and Q does not contain the color P1, Property (γ) of the invariant also holds. J

I Remark. Before the applications of Lemmas 2.4 and 2.5 in Algorithm 2.1, we ensure general
position by pruning the points with Lemma 2.1. Hence although Lemmas 2.4 and 2.5 require
general position, the input of Algorithm 2.1 does not need to be in general position.

Proof of Theorem 1.3. We use Algorithm 2.1 with parameter functions M(j) = dε(1 −
ε/2)j/2de and D(j) = d(1−ε/2)jde. In particular, we reduce the dimension by (ε/2)d in each
step of the recursion. However, in the jth recursion, we do not compute an dεD(j)e-colorful
choice, but a d(1 − ε)−j/2εD(j)e-colorful choice. This “slack” increases throughout the
recursion. It can be shown thatM and D are

(4
3ε (ln(ε3d)−O(1))

)
-feasible. The proof is

rather tedious and thus omitted from this extended abstract due to the space limitation. It
can be found in the full version. Now, Lemma 2.7 guarantees correctness.

It remains to analyze the running time. If the dimension becomes smaller than the
desired approximation guarantee, that is D(j) + 1 ≤ M(j), pruning C with Lemma 2.1
in line 4 already gives a valid approximation. For ε = Ω(d−1/5), it can be shown that
M(j∗) ≥ D(j∗) + 1 for j∗ = d(4/ε) ln(2/ε)e. Now, for ε = Ω(d−1/6), the parameter functions
are feasible up to recursion depth j∗. Hence, the algorithm does not terminate with computing
a perfect colorful choice by brute force in line 2, but always with a pruning step.

During each iteration of the while-loop, the maximum number of points from each color
class is reduced by one until the desired approximation guarantee is reached. Thus, the
total number of iterations is bounded by D(j) + 1−M(j) = O(d). Each iteration requires
O(D(j)4) = O(d4) time. This results in dO((1/ε) ln(1/ε)) total running time as claimed. J

2.3 Varying the Number of Color Classes
First, we consider the case that we have “many” color classes: given Θ(d2 log d) color classes,
our algorithm computes a perfect colorful choice in dO(log d) time by repeatedly combining
m-colorful choices (for some m) to one dm/2e-colorful choice. The algorithm follows the
structure of the Miller-Sheehy approximation algorithm for Tverberg partitions [10] and
improves the brute force dO(d) algorithm. Second, we present an algorithm that computes a
(d−Θ(

√
d))-colorful choice given only two color classes in O(d4) time.

I Lemma 2.8. Let C1, . . . , Cd+1 ⊂ Rd be m-colorful choices s.t. |Ci| ≤ d + 1 and s.t.
~0 ∈ conv(Ci) for i = 1, . . . , d+ 1. Furthermore, no color appears in more than one set Ci.
Then, a dm/2e-colorful choice C s.t. ~0 ∈ conv(C) can be computed in O(d5) time.

Proof. First, we prune each set Ci with Lemma 2.1. This requires O(d5) time. Next, we
proceed as in the proof of Proposition 2.3 where we treat the sets Ci as the color classes.
This time however, we do not partition a set Ci into two arbitrary sets Ci,1, Ci,2 of equal
size, but we distribute the points from each color class in Ci evenly among the both sets. J

Proof of Proposition 1.4. Let A be an array of size k = Θ(log d). We set c0 = d + 1 and
ci = dci−1/2e, for i = 1, . . . , k − 1. The ith cell of A stores a collection of ci-colorful choices,
such that each color class appears in exactly one colorful choice in A. Initially, A[0] contains
all Θ(d2 log d) color classes. We repeat the following steps, until we have computed a perfect

W. Mulzer and Y. Stein 53

colorful choice: let i be the maximum index s.t. A[i] contains some d+ 1 sets C1, . . . , Cd+1.
We apply Lemma 2.8 to obtain one ci+1-colorful choice C. Let C ′ be the set C pruned
with Lemma 2.1. If C ′ is a perfect colorful choice, we return it. Otherwise, we add it to
A[i+ 1]. Furthermore, we add all colors that were removed during the pruning to A[0]. As
these colors do not appear anywhere else in A, the invariant is maintained. We claim that
a combination of d + 1 sets in A[k] for k = dlog(d + 1)e + 1 results in a perfect colorful
choice. We have cj ≤ d+1

2k + 2. Thus, sets in A[dlog(d + 1)e] are 3-colorful choices, sets
in A[dlog(d + 1)e + 1] = A[k] are 2-colorful choices and the combination of d + 1 sets in
A[k] gives a perfect colorful choice. It remains to show that we can always make progress.
The array has k = Θ(log d) levels and each colorful choice has at most d colors. Thus, for
d2k + 1 = Θ(d2 log d) colors, the pigeonhole principle implies that there is a cell with d+ 1
sets.

Let us consider the running time. One combination step takes O(d5) time. To compute a
set in level i, we have to compute d+ 1 sets in level i− 1. Hence, computing one set in level
k + 1 takes dO(log d) time. J

Proof of Proposition 1.5. Let P and Q be the two color classes. Let k be a parameter to
be determined later. We prune P with Lemma 2.1 and partition it into k sets P1, . . . , Pk of
equal size. We apply Lemma 2.5 to obtain representatives P ′ = {p′1, . . . , p′k} for these sets
and project Q onto the (d − k + 1)-dimensional subspace span(P ′)⊥. Again, we prune Q
with Lemma 2.1 and apply Lemma 2.4 to replace one point p′i of P ′ with Q. Thus, the set
C =

⋃k
j=1,j 6=i Pi ∪Q contains the origin its convex hull and has at most max{d(d+ 1)(1−

1/k)e, d− k + 2} points of each color. Setting k = Θ(
√
d) gives the result. J

3 The Nearest Colorful Polytope Problem

The complexity class Polynomial-Time Local Search (PLS) contains local search problems
for which a single improvement step can be carried out in polynomial time. In contrast to
complexity classes for decision problems such as P and NP, the existence of a solution (a
local optimum) to a PLS problem is always guaranteed. Instead, the difficulty lies in finding
the solution. Mathematically, a PLS problem A is a relation A ⊆ I × S, where I is the set
of problem instances and S is the set of candidate solutions. The relation A is in PLS if

problem instances I ∈ I and candidate solutions s ∈ S are polynomial-time verifiable and
the size of the valid candidate solutions for an instance I is polynomial in the size of I;
there is a polynomial-time computable function B : I → S that returns some candidate
solution (the base solution) for each instance;
there is a polynomial-time computable function C : I × S → N that assigns costs to each
instance-solution pair;
there is a polynomial-time computable neighborhood function N : I × S → 2S assigning
each candidate solution a set of neighboring candidate solutions; and
for every instance I ∈ I, A contains exactly the pairs (I, s) so that s is a local optimum
for I; i.e., all elements in N (I, s) have smaller costs in a maximization problem and larger
costs in a minimization problem.

The computational problem modeled by A is: given I ∈ I, find an s ∈ S s.t. (I, s) ∈ A.
The following algorithm is called the standard algorithm: start with the base solution B(I)
and use N to improve until a local optimum is reached. Each iteration takes polynomial
time, but the total number of iterations may be exponential. There are examples where it is
PSPACE-hard to find the solution given by the standard algorithm [1, Chapter 2].

SoCG’15

54 Computational Aspects of the Colorful Carathéodory Theorem

To define hardness with respect to PLS, we need an appropriate notion of reduction. A
PLS-reduction from a PLS-problem A to a PLS-problem B is given by two polynomial-time
computable functions f : IA → IB and g : IA × SB → SA such that f maps A-instances to
B-instances and g maps local optima for B to local optima for A. Thus, if A is PLS-reducible
to B, we can convert any algorithm for B into an algorithm for A with polynomial-time
overhead. We call B PLS-complete if all problems in PLS are PLS-reducible to B.

Like PPAD, PLS is a subset of the class Total Function NP (TFNP). TFNP contains
search problems whose solution can be verified in polynomial time. No problem in TFNP can
be NP-hard unless NP = coNP [5]. On the other hand, it is not believed that PLS-complete
problems can be solved in polynomial time, although this would not break any assumptions
on complexity classes. For more information see one of the several main publications on the
topic [1, 9, 14, 5]. In the language of PLS, L-NCP is defined as follows:

I Definition 3.1 (L-NCP).
Instances INCP. Set families P = {P1, . . . , Pn} in Rd, where each Pi ⊂ Rd is a color.
Solutions SNCP. All perfect colorful choices, i.e., sets with exactly one point of each color.
Cost function CNCP. Let SNCP be a colorful choice. Then, CNCP(SNCP) = ‖ conv(SNCP)‖1,

where ‖ conv(SNCP)‖1 = min{‖q‖1 | q ∈ conv(SNCP)}. We want to minimize CNCP.
Neighborhood NNCP. The neighbors NNCP(SNCP) of a colorful choice SNCP are all colorful

choices that can be obtained by swapping one point with another point of the same color.
We reduce the following PLS-complete problem [14, Corollary 5.12] to L-NCP.

I Definition 3.2 (Max-2SAT/Flip).
Instances IM2SAT. All weighted 2-CNF formulas

∧d
i=1 Ci, where each clause Ci is the dis-

junction of at most two literals and has weight wi ∈ N+.
Solutions SM2SAT. Let x1, x2, . . . , xn be the variables appearing in the clauses. Then, every

complete assignment A : {x1, . . . , xn} → {0, 1} of these variables is a solution.
Cost function CM2SAT. The cost of an assignment is the sum of the weights of all satisfied

clauses. We want to maximize the cost function.
Neighborhood NM2SAT. The neighbors NM2SAT(A) of an assignment A are all assignments

obtained by flipping (i.e., negating) a single variable in A.

Proof of Theorem 1.6. Let IM2SAT = (C1, . . . , Cd, w1, . . . , wd, x1, . . . , xn) be an instance of
M2SAT. We construct an instance INCP of L-NCP in which each colorful choice encodes
an assignment to the variables in IM2SAT. Furthermore, the distance to the origin of the
convex hull of a colorful choice in INCP will be the total weight of all unsatisfied clauses of
the encoded assignment for IM2SAT.

For each variable xi, we introduce a color class Pi = {pi, pi} consisting of two points in Rd
that encode whether xi is set to 1 or 0. We assign the jth dimension to the jth clause and set
(pi)j = −nwj , if xi = 1 satisfies clause j, and (pi)j = wj , otherwise. Similarly, (pi)j = −nwj ,
if xi = 0 satisfies Cj , and (pi)j = wj otherwise. A colorful choice S of P1, . . . , Pn corresponds
to the assignment in IM2SAT where xi is 1 if pi ∈ S and 0 if pi ∈ S. More formally, we define
a mapping g : IM2SAT × SNCP → SM2SAT between the solutions of the L-NCP instance and
the M2SAT instance in the following way:

g(IM2SAT, SNCP)(xi) =
{

1 if pi ∈ SNCP, and
0 if pi ∈ SNCP.

The main idea is to construct an instance of L-NCP in which the convex hull of a colorful
choice S contains the origin if projected onto the dimensions corresponding to the satisfied

W. Mulzer and Y. Stein 55

x

y

p1, p2 = (−9, 6)

p2, p3 = (3,−18)

p1, p3, h3 = (3, 6) h1 = (39, 6)

h2 = (3, 78)

Figure 2 Construction of the point sets corresponding to the M2SAT instance (x1∨x2)∧ (x2∨x3)
with weights 3 and 6, respectively.

clauses. Furthermore, if projected onto the subspace corresponding to the unsatisfied clauses,
the distance of conv(S) to the origin will be equal to the total weight of those clauses.

We introduce additional helper color classes to decrease the distance to the origin in
dimensions that correspond to satisfied clauses. In particular, we have for each clause Cj a
color class Hj = {hj} consisting of a single point, where

(hj)k =

(d+ 1)
(

(n+ 2)− d
d+1

)
wj if k = j, and

wk otherwise.

The last helper color class Hd+1 = {hd+1} again contains a single point, but now all
coordinates are set to the clause weights, i.e., (hd+1)j = wj for j = 1, . . . , d. See Fig. 2.

The remaining proof is divided into two parts: (i) for every colorful choice SNCP of the
L-NCP problem instance {P1, . . . , Pn, H1, . . . ,Hd+1}, the cost CNCP(SNCP) is lower-bounded
by the total weight of unsatisfied clauses in g(SNCP); and (ii) this lower bound is tight, i.e.,
the distance of the convex hull of any colorful choice SNCP to the origin is at most the total
weight of unsatisfied clauses in g(SNCP).

Both claims together imply that CNCP(SNCP) equals the total weight of unsatisfied clauses
for the assignment g(SNCP), which proves the theorem. Consider some local optimum S∗NCP
of the L-NCP instance. By definition, the costs of all other colorful choices that can be
obtained from S∗NCP by exchanging one point with another of the same color are greater or
equal to CNCP(S∗NCP). That is, the total weight of unsatisfied clauses in g(S∗NCP) cannot be
decreased by flipping a variable, which is equivalent to g(S∗NCP) being a local optimum of
the M2SAT instance.
(i) Let SNCP be a colorful choice and assume some clause Cj is not satisfied by g(SNCP).

By construction, the jth coordinate of each point q in SNCP is at least wj . Thus, the
jth coordinate of every convex combination of the points in SNCP is at least wj . This
implies (i).

(ii) Given a colorful choice SNCP, we construct a convex combination of SNCP that gives a
point p whose distance to the origin is exactly the total weight of unsatisfied clauses in
g(SNCP). Let in the following part Ak denote the set of clauses Cj that are satisfied
by exactly k literals with respect to g(SNCP), for k = 0, 1, 2. As a first step towards
constructing p, we show the existence of an intermediate point in the convex hull of the
helper classes.

I Lemma 3.3. There is a point h ∈ conv(H1, . . . ,Hd+1) whose jth coordinate is (n+ 2)wj
if j ∈ A2 and wj otherwise.

SoCG’15

56 Computational Aspects of the Colorful Carathéodory Theorem

Proof. Take h =
∑
a∈A2

1
d+1ha +

(
1− |A2|

d+1

)
hd+1. Then, for j ∈ A0 ∪A1, we have

(h)j =
∑
a∈A2

1
d+ 1(ha)j +

(
1− |A2|

d+ 1

)
(hd+1)j

j /∈A2=
∑
a∈A2

1
d+ 1wj +

(
1− |A2|

d+ 1

)
wj = wj .

And for j ∈ A2, we have

(h)j =
∑
a∈A2

1
d+ 1(ha)j +

(
1− |A2|

d+ 1

)
(hd+1)j

= 1
d+ 1hj +

∑
a∈A2\{j}

1
d+ 1(ha)j +

(
1− |A2|

d+ 1

)
(hd+1)j

=
(

(n+ 2)− d

d+ 1

)
wj + d

d+ 1wj = (n+ 2)wj ,

as desired. J

Let li ∈ Pi be the point from Pi in SNCP. Consider p =
∑n
i=1

1
n+1 li + 1

n+1h. We show
that (p)j = wj , for j ∈ A0, and (p)j = 0, otherwise. Let us start with j ∈ A0. Since g(SNCP)
does not satisfy Cj , the jth coordinate of the points l1, . . . , ln is wj . Also, (h)j = wj , by
Lemma 3.3. Thus, (p)j = wj . Consider now some j ∈ A1 and let b be s.t. the point lb
corresponds to the single literal that satisfies Cj .

(p)j =
n∑
i=1

1
n+ 1(li)j + 1

n+ 1(h)j

= 1
n+ 1(lb)j +

n∑
i=1,i6=b

1
n+ 1(li)j + 1

n+ 1(h)j = −n
n+ 1wj + n

n+ 1wj = 0.

Finally, consider some j ∈ A2 and let b1, b2 be the indices of the two literals that satisfy Cj .

(p)j =
n∑
i=1

1
n+ 1(li)j + 1

n+ 1(h)j

= 1
n+ 1(lb1)j + 1

n+ 1(lb2)j +
n∑

i=1,i/∈{b1,b2}

1
n+ 1(li)j + 1

n+ 1(h)j

= −2n
n+ 1wj + n− 2

n+ 1wj + n+ 2
n+ 1wj = 0

This concludes the proof of (ii). J

Proof of Theorem 1.7. The proof of Theorem 1.6 can be adapted easily to reduce 3SAT
to G-NCP. Given a set of clauses C1, . . . , Cd, we set the weight of each clause to 1 and
construct the same point sets as in the PLS reduction. Additionally, we introduce for each
clause Cj a new helper color class H ′j = {h′j}, where

(h′i)j =

(d+ 1)
(

(2n+ 2)− d
d+1

)
if i = j, and

1 otherwise.

Let S now be any colorful choice and A = g(S) the corresponding assignment. As in the
PLS-reduction, we define the sets Ak, k = 0, . . . , 3, to contain all clauses that are satisfied

W. Mulzer and Y. Stein 57

by exactly k literals in the assignment A. Then, the following point h is contained in the
convex hull of the helper points:

h =
∑
a∈A2

ha
d+ 1 +

∑
a′∈A3

h′a′

d+ 1 +
(

1− |A2|
d+ 1

)
hd+1.

Again, the convex combination p =
∑n
i=1

1
n+1 li + 1

n+1h results in a point in the convex
hull of S whose distance to the origin is the number of unsatisfied clauses, where li ∈ Pi
denotes the point from Pi that is contained in S. Together with Claim (i) from the proof of
Theorem 1.6, 3SAT can be decided by knowing a global optimum S∗ to the NCP problem: if
the distance from conv(S∗) to the origin is 0, g(S∗) is a satisfying assignment. If not, there
exists no satisfying assignment at all. J

As mentioned in the introduction, we can adapt the proof of Theorem 1.7 to answer a
question by Bárány and Onn [4]. Again, this result was obtained independently by Meunier
and Sarrabezolles [8].

I Corollary 3.4. Let P1, . . . , Pn ⊂ Rd be an input for G-NCP. Then, G-NCP is still NP-hard
if we require n = d+ 1.

Proof. Let F be a 3SAT formula with d clauses and n variables. As in the proof of
Theorem 1.7, we construct n+ 2d+ 1 =: d′ + 1 point sets in Rd s.t. there is a colorful choice
containing the origin in its convex hull if and only if F is satisfiable. Since d′ > d, we can lift
the point sets to Rd′ by appending 0-coordinates. Then, we have d′ + 1 point sets s.t. there
is a colorful choice containing the origin in its convex hull if and only if F is satisfiable. J

4 Conclusion

We have proposed a new notion of approximation for the colorful Carathéodory theorem and
presented an abstract approximation scheme. By choosing the parameters carefully, we obtain
a polynomial-time algorithm that computes dεde-colorful choices for any constant ε > 0.
One of the key motivations for studying this kind of approximation was the tight connection
to approximating Tverberg’s theorem. Here, approximation means computing a Tverberg
partition of smaller size than guaranteed by Tverberg’s theorem. Unfortunately, if we convert
the algorithm from Theorem 1.3 to an approximation algorithm for Tverberg’s theorem using
Sarkaria’s proof, we obtain an algorithm with a trivial approximation guarantee. However,
the approximation guarantee of the algorithm from Theorem 1.3 is right at the threshold:
any efficient algorithm computing an dµ-colorful choice for some µ < 1 results in a nontrivial
efficient approximation algorithm for Tverberg’s theorem. This is particularly interesting
as no deterministic nontrivial efficient approximating algorithm for Tverberg’s theorem is
known. The existence of such an algorithm was conjectured by Miller and Sheehy [10].

In the second part, we have studied the complexity of a natural generalization of the
colorful Carathéodory theorem, the Nearest Colorful Polytope problem, in two settings. First,
we proved that the corresponding local search problem L-NCP is PLS-complete by a reduction
to Max2SAT. Using an adaptation of this reduction, we proved that the problem becomes
NP-hard if we restrict the solutions to global optima. Although the PLS-completeness of
L-NCP together with Bárány’s proof indicate that PLS is the right complexity class to show
hardness of the colorful Carathéodory problem, there is a striking difference between the
colorful Carathéodory problem and any known PLS-complete problem: the costs of local
optima are known a-priori. While a PLS-complete problem with this property would not lead
to a contradiction, this creates a major stumbling block in the construction of a reduction.

SoCG’15

58 Computational Aspects of the Colorful Carathéodory Theorem

We conclude with open problems.
The algorithm from Theorem 1.3 computes in polynomial time an dεde-colorful choice
for any fixed ε. A more careful analysis shows that the algorithm needs only cε color
classes, where cε > 0 is a constant depending on ε. Hence, the algorithm does not use its
complete input. Can this be used to further improve the approximation guarantee?
Is it possible to compute an o(d)-colorful choice in polynomial time and in particular, is
it possible to compute an O(1)-colorful choice in polynomial time?
On the other hand, can it be shown that computing an O(1)-colorful choice is as hard as
computing a perfect colorful choice?
In Section 2.3, we show that many color classes help to find a perfect colorful choice. Can
a perfect colorful choice be computed in polynomial time if we have poly(d) color classes?

Acknowledgements. We would like to thank Fréderic Meunier and Pauline Sarrabezolles
for interesting discussions on the colorful Carathéodory problem and for hosting us during a
research stay at the École Nationale des Ponts et Chaussées. Furthermore, we would like to
thank the anonymous reviewers for their helpful and encouraging comments.

References
1 Emile Aarts and Jan Karel Lenstra, editors. Local search in combinatorial optimization.

Princeton University Press, 2003.
2 Jorge L. Arocha, Imre Bárány, Javier Bracho, Ruy Fabila, and Luis Montejano. Very

colorful theorems. Discrete Comput. Geom., 42(2):142–154, 2009.
3 Imre Bárány. A generalization of Carathéodory’s theorem. Discrete Math., 40(2–3):141–152,

1982.
4 Imre Bárány and Shmuel Onn. Colourful linear programming and its relatives. Math. Oper.

Res., 22(3):550–567, 1997.
5 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local

search? J. Comput. System Sci., 37(1):79–100, 1988.
6 Jiří Matoušek. Lectures on discrete geometry. Springer, 2002.
7 Frédéric Meunier and Antoine Deza. A further generalization of the colourful Carathéodory

theorem. In Discrete geometry and optimization, volume 69 of Fields Inst. Commun., pages
179–190. Springer, New York, 2013.

8 Frédéric Meunier and Pauline Sarrabezolles. Colorful linear programming, Nash equilib-
rium, and pivots. arxiv:1409.3436, 2014.

9 Wil Michiels, Emile Aarts, and Jan Korst. Theoretical aspects of local search. Monographs
in Theoretical Computer Science. Springer, Berlin, 2007.

10 Gary L. Miller and Donald R. Sheehy. Approximate centerpoints with proofs. Comput.
Geom., 43(8):647–654, 2010.

11 Wolfgang Mulzer and Daniel Werner. Approximating Tverberg points in linear time for
any fixed dimension. Discrete Comput. Geom., 50(2):520–535, 2013.

12 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. System Sci., 48(3):498–532, 1994.

13 Karanbir S. Sarkaria. Tverberg’s theorem via number fields. Israel J. Math., 79(2–3):317–
320, 1992.

14 Alejandro A. Schäffer and Mihalis Yannakakis. Simple local search problems that are hard
to solve. SIAM J. Comput., 20(1):56–87, 1991.

15 Helge Tverberg. Further generalization of Radon’s theorem. J. London Math. Soc., 43:352–
354, 1968.

Semi-algebraic Ramsey Numbers
Andrew Suk

University of Illinois at Chicago
851 S. Morgan St., Chicago, IL 60607, USA
suk@uic.edu

Abstract
Given a finite point set P ⊂ Rd, a k-ary semi-algebraic relation E on P is the set of k-tuples
of points in P , which is determined by a finite number of polynomial equations and inequalities
in kd real variables. The description complexity of such a relation is at most t if the number
of polynomials and their degrees are all bounded by t. The Ramsey number Rd,tk (s, n) is the
minimum N such that any N -element point set P in Rd equipped with a k-ary semi-algebraic
relation E such that E has complexity at most t, contains s members such that every k-tuple
induced by them is in E or n members such that every k-tuple induced by them is not in E.

We give a new upper bound for Rd,tk (s, n) for k ≥ 3 and s fixed. In particular, we show that
for fixed integers d, t, s

Rd,t3 (s, n) ≤ 2n
o(1)

,

establishing a subexponential upper bound on Rd,t3 (s, n). This improves the previous bound of
2nC1 due to Conlon, Fox, Pach, Sudakov, and Suk where C1 depends on d and t, and improves
upon the trivial bound of 2nC2 which can be obtained by applying classical Ramsey numbers
where C2 depends on s. As an application, we give new estimates for a recently studied Ramsey-
type problem on hyperplane arrangements in Rd. We also study multi-color Ramsey numbers
for triangles in our semi-algebraic setting, achieving some partial results.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Ramsey theory, semi-algebraic relation, one-sided hyperplanes, Schur
numbers

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.59

1 Introduction

Classical Ramsey numbers. A k-uniform hypergraph H = (P,E) consists of a vertex set
P and an edge set E ⊂

(
P
k

)
, which is a collection of subsets of P of size k. The Ramsey

number Rk(s, n) is the minimum integer N such that every k-uniform hypergraph on N

vertices contains either s vertices such that every k-tuple induced by them is an edge, or
contains n vertices such that every k-tuple induced by them is not an edge.

Due to its wide range of applications in logic, number theory, analysis, and geometry,
estimating Ramsey numbers has become one of the most central problems in combinatorics.
For diagonal Ramsey numbers, i.e. when s = n, the best known lower and upper bounds for
Rk(n, n) are of the form1 R2(n, n) = 2Θ(n), and for k ≥ 3,

twrk−1(Ω(n2)) ≤ Rk(n, n) ≤ twrk(O(n)),

1 We write f(n) = O(g(n)) if |f(n)| ≤ c|g(n)| for some fixed constant c and for all n ≥ 1; f(n) = Ω(g(n))
if g(n) = O(f(n)); and f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)) hold. We write
f(n) = o(g(n)) if for every positive ε > 0 there exists a constant n0 such that f(n) ≤ ε|g(n)| for all
n ≥ n0.

© Andrew Suk;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 59–73

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.59
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

60 Semi-algebraic Ramsey Numbers

where the tower function twrk(x) is defined by twr1(x) = x and twri+1 = 2twri(x) (see
[21, 18, 19, 20]). Erdős, Hajnal, and Rado [19] conjectured that Rk(n, n) = twrk(Θ(n)), and
Erdős offered a $500 reward for a proof. Despite much attention over the last 50 years, the
exponential gap between the lower and upper bounds for Rk(n, n), when k ≥ 3, remains
unchanged.

The off-diagonal Ramsey numbers, i.e. Rk(s, n) with s fixed and n tending to infinity,
has also been extensively studied. Unlike Rk(n, n), the lower and upper bounds for Rk(s, n)
are much more comparable. It is known [5, 25, 8, 9] that R2(3, n) = Θ(n2/ logn) and, for
fixed s > 3

Ω
(
n

s+1
2 −ε

)
≤ R2(s, n) ≤ O

(
ns−1) , (1)

where ε > 0 is an arbitrarily small constant. Combining the upper bound in (1) with the
results of Erdős, Hajnal, and Rado [20, 19] demonstrates that

twrk−1(Ω(n)) ≤ Rk(s, n) ≤ twrk−1(O(n2s−4)), (2)

for k ≥ 3 and s ≥ 2k. See Conlon, Fox, and Sudakov [14] for a recent improvement.

Semi-algebraic setting. In this paper, we continue a sequence of recent works on Ramsey
numbers for k-ary semi-algebraic relations E on Rd (see [10, 17, 13, 33]). Before we give its
precise definition, let us recall two classic Ramsey-type theorems of Erdős and Szekeres.

I Theorem 1 ([21]). For N = (s− 1)(n− 1) + 1, let P = (p1, . . . , pN) ⊂ R be a sequence of
N distinct real numbers. Then P contains either an increasing subsequence of length s, or a
decreasing subsequence on length n.

In fact, there are now at least 6 different proofs of Theorem 1 (see [32]). The other well-known
result from [21] is the following theorem, which is often referred to as the Erdős-Szekeres
cups-caps Theorem. Let X be a finite point set in the plane in general position.2 We say
that X = (pi1 , . . . , pis) forms an s-cup (s-cap) if X is in convex position and its convex hull
is bounded above (below) by a single edge.

I Theorem 2 ([21]). For N =
(
n+s−4
s−2

)
+ 1, let P = (p1, . . . , pN) be a sequence of N points

in the plane in general position. Then P contains either an s-cup or an n-cap.

Theorems 1 and 2 can be generalized using the following semi-algebraic framework.
Let P = {p1, . . . , pN} be a sequence of N points in Rd. Then we say that E ⊂

(
P
k

)
is a semi-algebraic relation on P with complexity at most t, if there are t polynomials
f1, . . . , ft ∈ R[x1, . . . , xkd] of degree at most t, and a Boolean function Φ such that for
1 ≤ i1 < · · · < ik ≤ N ,

(pi1 , . . . , pik) ∈ E ⇔ Φ(f1(pi1 , . . . , pik) ≥ 0, . . . , ft(pi1 , . . . , pik) ≥ 0) = 1.

We say that the relation E ⊂
(
P
k

)
is symmetric if (pi1 , . . . , pik) ∈ E iff for all permutation π,

Φ(f1(pπ(i1), . . . , pπ(ik)) ≥ 0, . . . , ft(pπ(i1), . . . , pπ(ik)) ≥ 0) = 1.

Point sets P ⊂ Rd equipped with a k-ary semi-algebraic relation E ⊂
(
P
k

)
are often used

to model problems in discrete geometry, where the dimension d, uniformity k, and complexity

2 No two members share the same x-coordinate, and no three members are collinear.

A. Suk 61

t are considered fixed but arbitrarily large constants. Since we can always make any relation
E symmetric by increasing its complexity to t′ = t′(k, d, t), we can therefore simplify our
presentation by only considering symmetric relations.

Let Rd,tk (s, n) be the minimum integer N such that every N -element point set P in Rd
equipped with a k-ary (symmetric) semi-algebraic relation E ⊂

(
P
k

)
, which has complexity

at most t, contains s points such that every k-tuple induced by them is in E, or contains n
points such that no k-tuple induced by them is in E. Alon, Pach, Pinchasi, Radoičić, and
Sharir [6] showed that for k = 2, we have

Rd,t2 (n, n) ≤ nC , (3)

where C = C(d, t). Roughly speaking, C ≈ t
(
d+t
t

)
. Conlon, Fox, Pach, Sudakov, and Suk

showed that one can adapt the Erdős-Rado argument in [20] and establish the following
recursive formula for Rd,tk (s, n).

I Theorem 3 ([13]). Set M = Rd,tk−1(s− 1, n− 1). Then for every k ≥ 3,

Rd,tk (s, n) ≤ 2C1M logM ,

where C1 = C1(k, d, t).

Together with (3) we have Rd,tk (n, n) ≤ twrk−1(nC), giving an exponential improvement
over the Ramsey numbers for general k-uniform hypergraphs. Conlon et al. [13] also gave a
construction of a geometric example that provides a twrk−1(Ω(n)) lower bound, demonstrating
that Rd,tk (n, n) does indeed grow as a (k − 1)-fold exponential tower in n.

However, off-diagonal Ramsey numbers for semi-algebraic relations are much less under-
stood. The best known upper bound for Rd,tk (s, n) is essentially the trivial bound

Rd,tk (s, n) ≤ min
{
Rd,tk (n, n), Rk(s, n)

}
.

The crucial case is when k = 3, since any significant improvement on estimating Rd,t3 (s, n)
could be used in combination with Theorem 3 to obtain a better bound for Rd,tk (s, n), for
k ≥ 4. The trivial bound implies that

Rd,t3 (s, n) ≤ 2n
C

, (4)

where C is a large constant depending on d, t, and s.
The main difficulty in improving (4) is that the Erdős-Rado upper bound argument [20]

will not be effective. Roughly speaking, the Erdős-Rado argument reduces the problem
from 3-uniform hypergraphs to graphs, producing a recursive formula similar to Theorem 3.
This approach has been used repeatedly by many researchers to give upper bounds on
Ramsey-type problems arising in triple systems [14, 13, 33, 30]. However, it is very unlikely
that any variant of the Erdős-Rados upper bound argument will establish a subexponential
upper bound for Rd,t3 (s, n).

With a more novel approach, our main result establishes the following improved upper
bound for Rd,t3 (s, n), showing that the function Rd,t3 (s, n) is indeed subexponential in n.

I Theorem 4. For fixed integers d, t ≥ 1 and s ≥ 4, we have Rd,t3 (s, n) ≤ 2no(1)
. More

precisely,
Rd,t3 (s, n) ≤ 22c

√
(log n)(log log n)

,

where c = c(d, t, s).

SoCG’15

62 Semi-algebraic Ramsey Numbers

Combining Theorems 4 and 3 we have the following.

I Corollary 5. For fixed integers d, t ≥ 1, k ≥ 3, and s ≥ k + 1, we have

Rd,tk (s, n) ≤ twrk−1(no(1)).

For d ≥ 2 and t ≥ 1, the classic cups-caps construction of Erdős and Szekeres [21] shows that
Rd,t3 (s, n) ≥ Ω(ns−2), and together with the semi-algebraic stepping-up lemma proven in [13]
(see also [16]) we have Rd,tk (s, n) ≥ twrk−2(Ω(ns−2)) for s, d ≥ 2k.

In Section 5, we give an application of Theorem 4 to a recently studied problem on
hyperplane arrangements in Rd.

Monochromatic triangles. Let R2(s;m) = R2(s, . . . , s︸ ︷︷ ︸
m

) denote the smallest integer N such

that any m-coloring on the edges of the complete N -vertex graph contains a monochromatic
clique of size s, that is, a set of s vertices such that every pair from this set has the same
color. For the case s = 3, the Ramsey number R2(3;m) has received a lot of attention over
the last 100 years due to its application in additive number theory [31] (more details are
given in Section 6.1). It is known (see [24, 31]) that

Ω(3.19m) ≤ R2(3;m) ≤ O(m!).

Our next result states that we can improve the upper bound on R2(3;m) in our semi-
algebraic setting. More precisely, let Rd,t2 (3;m) be the minimum integer N such that every N -
element point set P in Rd equipped with symmetric semi-algebraic relations E1, . . . , Em ⊂

(
P
2
)
,

such that each Ei has complexity at most t and
(
P
2
)

= E1 ∪ · · · ∪ Em, contains three points
such that every pair induced by them belongs to Ei for some fixed i.

I Theorem 6. For fixed d, t ≥ 1 we have

Rd,t2 (3;m) < 2O(m log logm).

We also show that for fixed d ≥ 1 and t ≥ 5000, the function Rd,t2 (3;m) does indeed grow
exponentially in m.

I Theorem 7. For d ≥ 1 and t ≥ 5000 we have

Rd,t2 (3;m) ≥ c(1681)m/7 ≥ c(2.889)m,

where c is an absolute constant.

Organization. In the next two sections, we recall several old theorems on the arrangement of
surfaces in Rd and establish a result on point sets equipped with multiple binary relations. In
Section 4, we combine the results from Sections 2 and 3 to prove our main result, Theorem 4.
We discuss a short proof of our application in Section 5, and our results on monochromatic
triangles in Section 6.

We systemically omit floor and ceiling signs whenever they are not crucial for the sake of
clarity of our presentation. All logarithms are assumed to be base 2.

A. Suk 63

2 Arrangement of surfaces in Rd

In this section, we recall several old results on the arrangement of surfaces in Rd. Let
f1, . . . , fm be d-variate real polynomials of degree at most t, with zero sets Z1, . . . , Zm, that
is, Zi = {x ∈ Rd : fi(x) = 0}. Set Σ = {Z1, . . . , Zm}. We will assume that d and t are fixed,
and m is some number tending to infinity. A cell in the arrangement A(Σ) =

⋃
i Zi is a

relatively open connected set defined as follows. Let ≈ be an equivalence relation on Rd,
where x ≈ y if {i : x ∈ Zi} = {i : y ∈ Zi}. Then the cells of the arrangement A(Σ) are the
connected components of the equivalence classes. A vector σ ∈ {−1, 0,+1}m is a sign pattern
of f1, . . . , fm if there exists an x ∈ Rd such that the sign of fj(x) is σj for all j = 1, . . . ,m.
The Milnor-Thom theorem (see [7, 29, 34]) bounds the number of cells in the arrangement
of the zero sets Z1, . . . , Zm and, consequently, the number of possible sign patterns (see all
[35]).

I Theorem 8 (Milnor-Thom). Let f1, . . . , fm be d-variate real polynomials of degree at most t.
The number of cells in the arrangement of their zero sets Z1, . . . , Zm ⊂ Rd and, consequently,
the number of sign patterns of f1, . . . , fm is at most(

50mt
d

)d
,

for m ≥ d ≥ 1.

While the Milnor-Thom Theorem bounds the number of cells in the arrangement A(Σ),
the complexity of these cells may be very large (depending on m). A long standing open
problem is whether each cell can be further decomposed into semi-algebraic sets3 with
bounded description complexity (which depends only on d and t), such that the total number
of cells for the whole arrangement is still O(md). This can be done easily in dimension 2
by a result of Chazelle et al. [11]. Unfortunately in higher dimensions, the current bounds
for this problem are not tight. In dimension 3, Chazelle et al. [11] established a near tight
bound of O(m3β(m)), where β(m) is an extremal slowly growing function of m related to
the inverse Ackermann function. For dimensions d ≥ 4, Koltun [26] established a general
bound of O(m2d−4+ε) for arbitrarily small constant ε, which is nearly tight in dimension 4.
By combining these bounds with the standard theory of random sampling [4, 12, 6], one can
obtain the following result which is often referred to as the Cutting Lemma. We say that the
surface Zi = {x ∈ Rd : fi(x) = 0} crosses the cell ∆ ⊂ Rd if Zi ∩∆ 6= ∅ and Zi does not
fully contain ∆.

I Lemma 9 (Cutting Lemma). For d, t ≥ 1, let Σ be a family of m algebraic surfaces (zero
sets) in Rd of degree at most t. Then for any integer r ≥ 1, there exists a decomposition of
Rd into at most c1r2d relatively open connected sets (cells), where c1 = c1(d, t), such that
each cell is crossed by at most m/r surfaces from Σ.

As an application, we prove the following lemma (see [27, 3] for a similar result when Σ
is a collection of hyperplanes).

I Lemma 10. For d, t ≥ 1, let P be an N -element point set in Rd and let Σ be a family of
m surfaces of degree at most t. Then for any integer ` > logm, we can find ` disjoint subsets

3 A real semi-algebraic set in Rd is the locus of all points that satisfy a given finite Boolean combination
of polynomial equations and inequalities in the d coordinates.

SoCG’15

64 Semi-algebraic Ramsey Numbers

Pi and ` cells ∆i, with ∆i ⊃ Pi, such that each subset Pi contains at least N/(4`) points
from P , and every surface in Σ crosses at most c2`1−1/(2d) cells ∆i, where c2 = c2(d, t).

Proof. We first find ∆1 and P1 as follows. Let ` > logm and let c1 be as defined in Lemma 9.
Given a family Σ of m surfaces in Rd, we apply Lemma 9 with parameter r = (`/c1)1/(2d),
and decompose Rd into at most ` cells, such that each cell is crossed by at most m

(`/c1)1/(2d)

surfaces from Σ. By the pigeonhole principle, there is a cell ∆1 that contains least N/` points
from P . Let P1 be a subset of exactly bN/`c points in ∆1 ∩ P . Now for each surface from
Σ that crosses ∆1, we “double it" by adding another copy of that surface to our collection.
This gives us a new family of surfaces Σ1 such that

|Σ1| ≤ m+ m

(`/c1)1/(2d) = m

(
1 + 1

(`/c1)1/(2d)

)
.

After obtaining subsets P1, . . . , Pi such that |Pj | = bN` (1 − 1
`)j−1c for 1 ≤ j ≤ i, cells

∆1, . . . ,∆i, and the family of surfaces Σi such that

|Σi| ≤ m
(

1 + 1
(`/c1)1/(2d)

)i
,

we obtain Pi+1, ∆i+1, Σi+1 as follows. Given Σi, we apply Lemma 9 with the same parameter
r = (`/c1)1/(2d), and decompose Rd into at most ` cells, such that each cell is crossed by at
most |Σi|

(`/c1)1/(2d) surfaces from Σi. Let P ′ = P \ (P1 ∪ · · · ∪ Pi). By the pigeonhole principle,
there is a cell ∆i+1 that contains at least

|P ′|
` ≥

(
N −

i∑
j=1

N
` (1− 1

`)j−1

)
/`

= N
`

(
1− 1

`

i∑
j=1

(1− 1
`)j−1

)

= N
`

(
1− 1

`

)(
1− 1

` −
1
`

i−1∑
j=1

(1− 1
`)j−1

)

= N
`

(
1− 1

`

)i
points from P ′. Let Pi+1 be a subset of exactly bN` (1− 1/`)ic points in ∆i+1 ∩ P ′. Finally,
for each surface from Σi that crosses ∆i+1, we “double it" by adding another copy of that
surface to our collection, giving us a new family of surfaces Σi+1 such that

|Σi+1| ≤ |Σi|+ |Σi|
(`/c1)1/(2d)

= |Σi|
(

1 + 1
(`/c1)1/(2d)

)
≤ m

(
1 + 1

(`/c1)1/(2d)

)i+1
.

Notice that |Pi| ≥ N/(4`) for i ≤ `. Once we have obtained subsets P1, . . . , P` and cell
∆1, . . . ,∆`, it is easy to see that each surface in Σ crosses at most O(r1−1/(2d)) cells ∆i.
Indeed suppose Z ∈ Σ crosses κ cells. Then by the arguments above, there must be 2κ copies
of Z in Σ`. Hence we have

A. Suk 65

2κ ≤ m
(

1 + 1
(`/c1)1/(2d)

)`
≤ mec1`

1−1/(2d)
.

Since ` ≥ logm, we have
κ ≤ c2`1−1/(2d),

for sufficiently large c2 = c2(d, t). J

3 Multiple binary relations

Let P be a set of N points in Rd, and let E1, . . . , Em ⊂
(
P
2
)
be binary (symmetric) semi-

algebraic relations on P such that Ei has complexity at most t. The goal of this section is to
find a large subset P ′ ⊂ P such that

(
P ′

2
)
∩ Ei = ∅ for all i, given that the clique number in

the graphs Gi = (P,Ei) are small.
First we recall a classic theorem of Dilworth (see also [23]). Let G = (V,E) be a graph

whose vertices are ordered V = {v1, . . . , vN}. We say that E is transitive on V if for
1 ≤ i1 < i2 < i3 ≤ N , (vi1 , vi2), (vi2 , vi3) ∈ E implies that (vi1 , vi3) ∈ E.

I Theorem 11 (Dilworth). Let G = (V,E) be an N -vertex graph whose vertices are ordered
V = {v1, . . . , vN}, such that E is transitive on V . If G has clique number ω, then G contains
an independent set of size N/ω.

I Lemma 12. For integers m ≥ 2 and d, t ≥ 1, let P be a set of N points in Rd equipped
with (symmetric) semi-algebraic relations E1, . . . , Em ⊂

(
P
2
)
, where each Ei has complexity

at most t. Then there is a subset P ′ ⊂ P of size N1/(c3 logm), where c3 = c3(d, t), and a fixed
ordering on P ′ such that each relation Ei is transitive on P ′.

Proof. We proceed by induction on N . Let c3 be a sufficiently large number depending only
on d and t that will be determined later. For each relation Ei ⊂

(
P
2
)
, let fi,1, . . . , fi,t be

polynomials of degree at most t and let Φi be a boolean function such that

(p, q) ∈ Ei ⇔ Φi(fi,1(p, q) ≥ 0, . . . , fi,t(p, q) ≥ 0) = 1.

For each p ∈ P , i ∈ {1, . . . ,m}, and j ∈ {1, . . . , t}, we define the surface Zp,i,j = {x ∈
Rd : fi,j(p, x) = 0}. Then let Σ be the family of Nmt surfaces in Rd defined by

Σ = {Zp,i,j : p ∈ P, 1 ≤ i ≤ m, 1 ≤ j ≤ t}.

By applying Lemma 9 to Σ with parameter r = (mt)2, there is a decomposition of Rd
into at most c1(mt)4d cells such that each cell has the property that at most N/(mt) surfaces
from Σ crosses it. We note that c1 = c1(d, t) is defined in Lemma 9. By the pigeonhole
principle, there is a cell ∆ in the decomposition such that |∆ ∩ P | ≥ N/(c1(mt)4d). Set
P1 = ∆ ∩ P .

Let P2 ⊂ P \ P1 such that each point in P2 gives rise to mt surfaces that do not cross ∆.
More precisely,

P2 = {p ∈ P \ P1 : Zp,i,j does not cross ∆,∀i, j}.

Notice that
|P2| ≥ N −

N

mt
− N

c1(mt)4d ≥
N

4 .

We fix a point p0 ∈ P1. Then for each q ∈ P2, let σ(q) ∈ {−1, 0,+1}mt be the sign pattern
of the (mt)-tuple (f1,1(p0, q), f1,2(p0, q), . . . , fm,t(p0, q)). By Theorem 8, there are at most

SoCG’15

66 Semi-algebraic Ramsey Numbers

(
50mt2
d

)d
distinct sign vectors σ. By the pigeonhole principle, there is a subset P3 ⊂ P2 such

that
|P3| ≥

|P2|
(50/d)dmdt2d

,

and for any two points q, q′ ∈ P3, we have σ(q) = σ(q′). That is, q and q′ give rise to vectors
with the same sign pattern. Therefore, for any p, p′ ∈ P1 and q, q′ ∈ P3, we have (p, q) ∈ Ei
if and only if (p′, q′) ∈ Ei, for all i ∈ {1, . . . ,m}.

Let c4 = c4(d, t) be sufficiently large such that |P1|, |P3| ≥ N
c4m4d . By the induction

hypothesis, we can find subsets P4 ⊂ P1, P5 ⊂ P3, such that

|P4|, |P5| ≥
(

N

c4m4d

) 1
c3 log m

≥ N
1

c3 log m

2 ,

where c3 = c3(d, t) is sufficiently large, and there is an ordering on P4 (and on P5) such that
each Ei is transitive on P4 (and on P5). Set P ′ = P4 ∪ P5, which implies |P ′| ≥ N

1
c3 log m .

We will show that P ′ has the desired properties. Let π and π′ be the orderings on P4 and P5
respectively, such that Ei is transitive on P4 and on P5, for every i ∈ {1, . . . ,m}. We order
the elements in P ′ = {p1, . . . , p|P ′|} by using π and π′, such that all elements in P5 comes
after all elements in P4.

In order to show that Ei is transitive on P ′, it suffices to examine triples going across P4
and P5. Let pj1 , pj2 ∈ P4 and pj3 ∈ P5 such that j1 < j2 < j3. By construction of P4 and
P5, if (pj1 , pj2), (pj2 , pj3) ∈ Ei, then we have (pi1 , pi3) ∈ Ei. Likewise, suppose pj1 ∈ P4 and
pj2 , pj3 ∈ P5. Then again by construction of P4 and P5, if (pj1 , pj2), (pj2 , pj3) ∈ Ei, then we
have (pi1 , pi3) ∈ Ei. Hence Ei is transitive on P ′, for all i ∈ {1, . . . ,m}, and this completes
the proof. J

By combining the two previous results, we have the following.

I Lemma 13. For m ≥ 2 and d, t ≥ 1, let P be a set of N points in Rd equipped with
(symmetric) semi-algebraic relations E1, . . . , Em ⊂

(
P
2
)
, where each Ei has complexity at

most t. If graph Gi = (P,Ei) has clique number ωi, then there is a subset P ′ ⊂ P of size
N1/(c3 log m)

ω1···ωm
, where c3 = c3(d, t) is defined above, such that

(
P ′

2
)
∩ Ei = ∅ for all i.

Proof. By applying Lemma 12, we obtain a subset P1 ⊂ P of size N
1

c3 log m , and an ordering
on P1 such that Ei is transitive on P1 for all i. Then by an m-fold application of Theorem 11,
the statement follows. J

4 Proof of Theorem 4

Let P be a point set in Rd and let E ⊂
(
P
3
)
be a semi-algebraic relation on P . We say that

(P,E) is K(3)
s -free if every collection of s points in P contains a triple not in E. Suppose

we have ` disjoint subsets P1, . . . , P` ⊂ P . For 1 ≤ i1 < i2 < i3 ≤ `, we say that the
triple (Pi1 , Pi2 , Pi3) is homogeneous if (p1, p2, p3) ∈ E for all p1 ∈ Pi1 , p2 ∈ Pi2 , p3 ∈ Pi3 , or
(p1, p2, p3) 6∈ E for all p1 ∈ Pi1 , p2 ∈ Pi2 , p3 ∈ Pi3 . For p1, p2 ∈ P1∪· · ·∪P` and i ∈ {1, . . . , `},
we say that the triple (p1, p2, i) is good, if (p1, p2, p3) ∈ E for all p3 ∈ Pi, or (p1, p2, p3) 6∈ E
for all p3 ∈ Pi. We say that the triple (p1, p2, i) is bad if (p1, p2, i) is not good and p1, p2 6∈ Pi.

I Lemma 14. Let P be a set of N points in Rd and let E ⊂
(
P
3
)
be a (symmetric) semi-

algebraic relation on P such that E has complexity at most t. Then for r = N1/(30d)

tc2
, where

c2 is defined in Lemma 10, there are disjoint subsets P1, . . . , Pr ⊂ P such that

A. Suk 67

1. |Pi| ≥ N1/(30d)

tc2
,

2. all triples (Pi1 , Pi2 , Pi3), 1 ≤ i1 < i2 < i3 ≤ r, are homogeneous, and
3. all triples (p, q, i), where i ∈ {1, . . . , r} and p, q ∈ (P1 ∪ · · · ∪ Pr) \ Pi, are good.

Proof. We can assume that N > (tc2)30d, since otherwise the statement is trivial. Since E
is semi-algebraic with complexity t, there are polynomials f1, . . . , ft of degree at most t, and
a Boolean function Φ such that

(p1, p2, p3) ∈ E ⇔ Φ(f1(p1, p2, p3) ≥ 0, . . . , ft(p1, p2, p3) ≥ 0) = 1.

For each p, q ∈ P and i ∈ {1, . . . , t}, we define the surface Zp,q,i = {x ∈ Rd : fi(p, q, x) = 0}.
Then we set

Σ = {Zp,q,i : p, q ∈ P, 1 ≤ i ≤ t}.

Thus we have |Σ| = N2t. Next we apply Lemma 10 to P and Σ with parameter ` =
√
N ,

and obtain subsets Q1, . . . , Q` and cells ∆1, . . . ,∆`, such that Qi ⊂ ∆i, |Qi| = b
√
N/4c, and

each surface in Σ crosses at most c2N1/2−1/(4d) cells ∆i. We note that c2 = c2(d, t) is defined
in Lemma 10 and

√
N ≥ log(tN2). Set Q = Q1 ∪ · · · ∪Q`. Each pair (p, q) ∈

(
Q
2
)
gives rise

to 2t surfaces in Σ. By Lemma 10, these 2t surfaces cross in total at most 2tc2N1/2−1/(4d)

cells ∆i. Hence there are at most 2tc2N5/2−1/(4d) bad triples of the form (p, q, i), where
i ∈ {1, . . . ,

√
N} and p, q ∈ Q \Qi. Moreover, there are at most 2tc2N2−1/(4d) bad triples

(p, q, i), where both p and q lie in the same part Qj and j 6= i.
We uniformly at random pick r = N1/(30d)

tc2
subsets (parts) from the collection {Q1, . . . , Q`},

and r vertices from each of the subsets that were picked. For a bad triple (p, q, i) with p and
q in distinct subsets, the probability that (p, q, i) survives is at most(

r√
N

)3(
r√
N/4

)2
= 16

(tc2)5N
1/(6d)−5/2.

For a bad triple (p, q, i) with p, q in the same subset Qj , where j 6= i, the probability that
the triple (p, q, i) survives is at most(

r√
N

)2(
r√
N/4

)2
= 16

(tc2)4N
2/(15d)−2.

Therefore, the expected number of bad triples in our random subset is at most(
16

(tc2)5N
1/(6d)−5/2

)(
tc2N

5/2−1/(4d)
)

+
(

16
(tc2)4N

2/(15d)−2
)(

tc2N
2−1/(4d)

)
< 1.

Hence we can find disjoint subsets P1, . . . , Pr, such that |Pi| ≥ r = N1/(30d)

tc2
, and there are no

bad triples (p, q, i), where i ∈ {1, . . . , r} and p, q ∈ (P1 ∪ · · · ∪ Pr) \ Pi.
It remains to show that every triple (Pi1 , Pi2 , Pi3) is homogeneous for 1 ≤ i1 < i2 <

i3 ≤ r. Let p1,∈ Pi1 , p2 ∈ Pi2 , p3 ∈ Pi3 and suppose (p1, p2, p3) ∈ E. Then for any choice
q1,∈ Pi1 , q2 ∈ Pi2 , q3 ∈ Pi3 , we also have (q1, q2, q3) ∈ E. Indeed, since the triple (p1, p2, i3)
is good, this implies that (p1, p2, q3) ∈ E. Since the triple (p1, q3, i2) is also good, we have
(p1, q2, q3) ∈ E. Finally since (q2, q3, i1) is good, we have (q1, q2, q3) ∈ E. Likewise, if
(p1, p2, p3) 6∈ E, then (q1, q2, q3) 6∈ E for any q1,∈ Pi1 , q2 ∈ Pi2 , q3 ∈ Pi3 . J

We are finally ready to prove Theorem 4, which follows immediately from the following
theorem.

SoCG’15

68 Semi-algebraic Ramsey Numbers

I Theorem 15. Let P be a set of N points in Rd and let E ⊂
(
P
3
)
be a (symmetric) semi-

algebraic relation on P such that E has complexity at most t. If (P,E) is K(3)
s -free, then

there exists a subset P ′ ⊂ P such that
(
P ′

3
)
∩ E = ∅ and

|P ′| ≥ 2
(log log N)2

cs log log log N ,

where c = c(d, t).

Proof. The proof is by induction on N and s. The base cases are s = 3 or N ≤ (tc2)30d,
where c2 is defined in Lemma 10. When N ≤ (tc2)30d, the statement holds trivially for
sufficiently large c = c(d, t). If s = 3, then again the statement follows immediately by taking
P ′ = P .

Now assume that the statement holds if s′ ≤ s,N ′ ≤ N and not both inequalities are
equalities. We apply Lemma 14 to (P,E) and obtain disjoint subsets P1, . . . , Pr, where
r = N1/(30d)

tc2
, such that |Pi| ≥ N1/(30d)

tc2
, every triple of parts (Pi1 , Pi2 , Pi3) is homogeneous,

and every triple (p, q, i) is good where i ∈ {1, . . . , r} and p, q ∈ (P1 ∪ · · · ∪ Pr) \ Pi.
Let P0 be the set of N

1/(30d)

tc2
points obtained by selecting one point from each Pi. Since

(P0, E) is K(3)
s -free, we can apply the induction hypothesis on P0, and find a set of indices

I = {i1, . . . , im} such that

log |I| ≥

(
log log N1/(30d)

tc2

)2

cs log log log N1/(30d)

tc2

≥ (1/2) log logN,

and for every triple i1 < i2 < i3 in I all triples with one point in each Pij does not satisfy E.
Hence we have m =

√
logN , and let Qj = Pij for 1 ≤ j ≤ m.

For each subset Qi, we define binary semi-algebraic relations Ei,j ⊂
(
Qi

2
)
, where j 6= i, as

follows. Since E ⊂
(
P
3
)
is semi-algebraic with complexity t, there are t polynomials f1, . . . , ft

of degree at most t, and a Boolean function Φ such that (p1, p2, p3) ∈ E if and only if

Φ(f1(p1, p2, p3) ≥ 0, . . . , ft(p1, p2, p3) ≥ 0) = 1.

Fix a point q0 ∈ Qj , where j 6= i. Then for p1, p2 ∈ Qi, we have (p1, p2) ∈ Ei,j if and only if

Φ(f1(p1, p2, q0) ≥ 0, . . . , ft(p1, p2, q0) ≥ 0) = 1.

Suppose there are 2(logN)1/4 vertices in Qi that induces a clique in the graph Gi,j =
(Qi, Ei,j). Then these vertices would induce a K(3)

s−1-free subset in the original (hypergraph)
(P,E). By the induction hypothesis, we can find a subset Q′i ⊂ Qi such that

|Q′i| ≥ 2
((1/4) log log N)2

cs−1 log log log N ≥ 2
(log log N)2

cs log log log N ,

for sufficiently large c, such that
(
Q′i
3
)
∩E = ∅ and we are done. Hence we can assume that

each graph Gi,j = (Qi, Ei,j) has clique number at most 2(logn)1/4 . By applying Lemma 13 to
each Qi, where Qi is equipped with m− 1 semi-algebraic relations Ei,j , j 6= i, we can find
subsets Ti ⊂ Qi such that

|Ti| ≥
|Qi|1/(c3 logm)

2(logN)1/4
√

logN
= 2

log N

30dc3 log(
√

log N)

2(logN)3/4 ≥ 2
log N

c5 log log N ,

where c5 = c5(d, t), and
(
Ti

2
)
∩Ej = ∅ for all j 6= i. Therefore, we now have subsets T1, . . . , Tm,

such that

A. Suk 69

1. m =
√

logN ,
2. for any triple (Ti1 , Ti2 , Ti3), 1 ≤ i1 < i2 < i3 ≤ m, every triple with one vertex in each

Tij is not in E,
3. for any pair (Ti1 , Ti2), 1 ≤ i1 < i2 ≤ m, every triple with two vertices Ti1 and one vertex

in Ti2 is not in E, and every triple with two vertices Ti2 and one vertex in Ti1 is also not
in E.

By applying the induction hypothesis to each (Ti, E), we obtain a collection of subsets
Ui ⊂ Ti such that

log |Ui| ≥

(
log
(

logN
c5 log logN

))2

cs log log
(

logN
c5 log logN

) ≥ (log logN − log(c5 log logN))2

cs log log logN ,

and
(
Ui

3
)
∩ E = ∅. Let P ′ =

m⋃
i=1

Ui. Then by above we have
(
P ′

3
)
∩ E = ∅ and

log |P ′| ≥ (log logN − log(c5 log logN))2

cs log log logN + 1
2 log logN

≥ (log logN)2 − 2(log logN) log(c5 log logN) + (log(c5 log logN))2

cs log log logN + 1
2 log logN

≥ (log logN)2

cs log log logN ,

for sufficiently large c = c(d, t). J

5 Application: One-sided hyperplanes

Let us consider a finite set H of hyperplanes in Rd in general position, that is, every d

members in H intersect at a distinct point. Let OSHd(s, n) denote the smallest integer
N such that every set H of N hyperplanes in Rd in general position contains s members
H1 such that the vertex set of the arrangement of H1 lies above the xd = 0 hyperplane, or
contains n members H2 such that the vertex set of the arrangement of H2 lies below the
xd = 0 hyperplane.

In 1992, Matoušek and Welzl [28] observed that OSH2(s, n) = (s−1)(n−1)+1. Dujmović
and Langerman [15] used the existence of OSHd(n, n) to prove a ham-sandwich cut theorem
for hyperplanes. Again by adapting the Erdős-Rado argument, Conlon et al. [13] showed
that for d ≥ 3,

OSHd(s, n) ≤ twrd−1(c6sn logn), (5)

where c6 is a constant that depends only on d. See Eliáš and Matoušek [17] for more related
results, including lower bound constructions.

Since each hyperplane hi ∈ H is specified by the linear equation

ai,1x1 + · · ·+ ai,dxd = bi,

we can represent hi ∈ H by the point h∗i ∈ Rd+1 where h∗i = (ai,1, . . . , ai,d, bi) and let
P = {h∗i : hi ∈ H}. Then we define a relation E ⊂

(
P
d

)
such that (h∗i1 , . . . , h

∗
id

) ∈ E if
and only if hi1 ∩ · · · ∩ hid lies above the hyperplane xd = 0 (i.e. the d-th coordinate of the
intersection point is positive). Clearly, E is a semi-algebraic relation with complexity at most
t = t(d). Therefore, as an application of Theorem 4 and Corollary 5, we make the following
improvement on (5).

SoCG’15

70 Semi-algebraic Ramsey Numbers

I Theorem 16. For fixed s ≥ 4, we have OSH3(s, n) ≤ 2no(1) . For fixed d ≥ 4 and s ≥ d+1,
we have

OSHd(s, n) ≤ twrd−1(no(1)).

6 Monochromatic triangles

In this section, we will prove Theorem 6.

Proof of Theorem 6. We proceed by induction on m. The base case when m = 1 is trivial.
Now assume that the statement holds for m′ < m. Set N = 2cm log logm, where c = c(d, t)
will be determined later, and let E1, . . . , Em ⊂

(
P
2
)
be (symmetric) semi-algebraic relations

on P such that
(
P
2
)

= E1 ∪ · · · ∪ Em, and each Ei has complexity at most t. For sake of
contradiction, suppose P does not contain three points such that every pair of them is in Ei
for some fixed i.

For each relation Ei, there are t polynomials fi,1, . . . , fi,t of degree at most t, and a
Boolean function Φi such that

(p, q) ∈ Ei ⇔ Φi(fi,1(p, q) ≥ 0, . . . , fi,t(p, q) ≥ 0) = 1.

For 1 ≤ i ≤ m, 1 ≤ j ≤ t, p ∈ P , we define the surface Zi,j,p = {x ∈ Rd : fi,j(p, x) = 0},
and let

Σ = {Zi,j,p : 1 ≤ i ≤ m, 1 ≤ j ≤ t, p ∈ P}.

Hence |Σ| = mtN . We apply Lemma 9 to Σ with parameter r = 2tm, and decompose Rd
into c1(2tm)2d regions ∆i, where c1 = c1(t, d) is defined in Lemma 9, such that each region
∆i is crossed by at most tmN/r = N/2 members in Σ. By the pigeonhole principle, there
is a region ∆ ⊂ Rd, such that |∆ ∩ P | ≥ N

c1(2tm)2d , and at most N/2 members in Σ crosses

∆. Let P1 be a set of exactly
⌊

N
c1(2tm)2d

⌋
points in P ∩∆, and let P2 be the set of points in

P \ P1 that does not give rise to a surface that crosses ∆. Hence

|P2| ≥ N −
N

c1(2tm)2d −
N

2 ≥
N

4 .

Therefore, each point p ∈ P2 has the property that p × P1 ⊂ Ei for some fixed i. We
define the function χ : P2 → {1, . . . ,m}, such that χ(p) = i if and only if p× P1 ⊂ Ei. Set
I = {χ(p) : p ∈ P2} and m0 = |I|, that is, m0 is the number of distinct relations (colors)
between the sets P1 and P2. Now the proof falls into 2 cases.

Case 1. Suppose m0 > logm. By the assumption, every pair of points in P1 is in Ei for some
i ∈ {1, . . . ,m} \ I. By the induction hypothesis, we have

2cm log logm

c1(2tm)2d ≤ |P1| ≤ 2c(m−m0) log logm.

Hence
cm0 log logm ≤ log(c1(2tm)2d) ≤ 2d log(c12tm),

which implies

m0 ≤
2d log(c12tm)
c log logm ,

and we have a contradiction for sufficiently large c = c(d, t).

A. Suk 71

Case 2. Suppose m0 ≤ logm. By the pigeonhole principle, there is a subset P3 ⊂ P2, such
that |P3| ≥ N

4m0
and P1 × P3 ⊂ Ei for some fixed i. Hence every pair of points p, q ∈ P3

satisfies (p, q) 6∈ Ei, for some fixed i. By the induction hypothesis, we have

2cm log logm

4m0
≤ |P3| ≤ 2c(m−1) log logm.

Therefore
c log logm ≤ log(4m0) ≤ log(4 log(m)),

which is a contradiction since c is sufficiently large. This completes the proof of Theorem 6. J

6.1 Lower bound construction and Schur numbers
Before we prove Theorem 7, let us recall a classic Theorem of Schur [31] which is considered
to be one of the earliest applications of Ramsey Theory. A subset of numbers P ⊂ R is said
to be sum-free if for any two (not necessarily distinct) elements x, y ∈ P , their sum x+ y is
not in P . The Schur number S(m) is defined to be the maximum integer N for which the
integers {1, . . . , N} can be partitioned into m sum-free sets.

Given a partition {1, . . . , N} = P1 ∪ · · · ∪ Pm into m parts such that Pi is sum-free, we
can define an m-coloring on the edges on a complete (N + 1)-vertex graph which does not
contain a monochromatic triangle as follows. Let V = {1, . . . , N + 1} be the vertex set, and
we define the coloring χ :

(
V
2
)
→ m by χ(x, y) = i iff |x− y| ∈ Pi. Now suppose for sake of

contradiction there are vertices x, y, z that induces a monochromatic triangle, say with color
i, such that x < y < z. Then we have y− x, z− y, z− x ∈ Pi and (y− x) + (z− y) = (z− x),
which is a contradiction since Pi is sum free. Therefore S(m) < R2(3;m).

Since Schur’s original 1916 paper, the lower bound on S(m) has been improved by several
authors [2, 1, 22], and the current record of S(m) ≥ Ω(3.19m) is due to Fredricksen and
Sweet [24]. Their lower bound follows by computing S(6) ≥ 538, and using the recursive
formula

S(m) ≥ c`(2S(`) + 1)m/`,

which was established by Abbott and Hanson [1]. Fredricksen and Sweet also computed
S(7) ≥ 1680, which we will use to prove Theorem 7.

I Lemma 17. For each integer ` ≥ 1, there is a set P` of (1681)` points in R equipped with
semi-algebraic relations E1, . . . , E7` ⊂

(
P`

2
)
, such that

1. E1 ∪ · · · ∪ E7` =
(
P`

2
)
,

2. Ei has complexity at most 5000,
3. Ei is translation invariant, that is, (x, y) ∈ Ei iff (x+ C, y + C) ∈ Ei, and
4. the graph G`,i = (P`, Ei) is triangle free for all i.

Proof. We start be setting P1 = {1, 2, . . . , 1681}. By [24], there is a partition on {1, . . . , 1680} =
A1 ∪ · · · ∪A7 into seven parts, such that each Ai is sum-free. For i ∈ {1, . . . , 7}, we define
the binary relation Ei on P1 by

(x, y) ∈ Ei ⇔ (1 ≤ |x− y| ≤ 1680) ∧ (|x− y| ∈ Ai).

Since |Ai| ≤ 1680, Ei has complexity at most 5000. By the arguments above, the graph
G1,i = (P1, Ei) is triangle free for all i ∈ {1, . . . , 7}. In what follows, we blow-up this
construction so that the statement holds.

Having defined P`−1 and E1,, E7`−7, we define P` and E`−6, . . . , E` as follows. Let
C = C(`) be a very large constant, say C > (5000 ·max{P`−1})2. We construct 1681

SoCG’15

72 Semi-algebraic Ramsey Numbers

translated copies of P`−1, Qi = P`−1 + iC for 1 ≤ i ≤ 1681, and set P` = Q1 ∪ · · · ∪Q1681.
For 1 ≤ j ≤ 7, we define the relation E`−7+j by

(x, y) ∈ E`−7+j ⇔ (C/2 ≤ |x− y| ≤ 1682C) ∧ (∃z ∈ Aj : ||x− y|/C − z| < 1/1000).

Clearly E1, . . . , E7` satisfy properties (1), (2), and (3). The fact that G`,i = (P`, Ei) is
triangle follows from the same argument as above. J

Theorem 7 immediately follows from Lemma 17.

References
1 H. L. Abbott and D. Hanson. A problem of schur and its generalizations. Acta Arith.,

20:175–187, 1972.
2 H. L. Abbott and L. Moser. Sum-free sets of integers. Acta Arith., 11:392–396, 1966.
3 P. K. Agarwal and J. Erickson. Optimal partition trees. In In Proc. 26th Ann. ACM

Sympos. Comput. Geom., pages 1–10, 2010.
4 P.K. Agarwal and J. Erickson. Geometric range searching and its relatives. In J. E. Good-

man B. Chazelle and R. Pollack, editors, Advances in Dicsrete and Computational Geo-
metry, pages 1–56, 1998.

5 M. Ajtai, J. Komlós, and E. Szemerédi. A note on ramsey numbers. J. Combin. Theory
Ser. A, 29:354–360, 1980.

6 N. Alon, J. Pach, R. Pinchasi, R. Radoičić, and M. Sharir. Crossing patterns of semi-
algebraic sets. J. Combin. Theory Ser. A, 111:310–326, 2005.

7 S. Basu, R. Pollack, and M. F. Roy. Algorithms in Real Algebraic Geometry. Springer-
Verlag, Berlin, 2nd edition edition, 2006.

8 T. Bohman. The triangle-free process. Adv. Math., 221:1653–1677, 2009.
9 T. Bohman and P. Keevash. The early evolution of the h-free process. Invent. Math.,

181:291–336, 2010.
10 B. Bukh and M. Matoušek. Erdős-Szekeres-type statements: Ramsey function and decid-

ability in dimension 1. Duke Math. Journal, 63:2243–2270, 2014.
11 B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. A singly exponential stratification

scheme for real semi-algebraic varieties and its applications. Theor. Comput. Sci., 84:77–
105, 1991.

12 K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geo-
metry, ii. Discrete Comput. Geom., 4:387–421, 1989.

13 D. Conlon, J. Fox, J. Pach, B. Sudakov, and A. Suk. Ramsey-type results for semi-algebraic
relations. Trans. Amer. Math. Soc., 366:5043–5065, 2014.

14 D. Conlon, J. Fox, and B. Sudakov. Hypergraph ramsey numbers. J. Amer. Math. Soc.,
23:247–266, 2010.

15 V. Dujmović and S. Langerman. A center transversal theorem for hyperplanes and ap-
plications to graph drawing. In In Proc. 27th Ann. ACM Sympos. Comput. Geom., pages
117–124, 2011.

16 M. Eliáš, J. Matoušek, E. Roldán-Pensado, and Z. Safernová. Lower bounds on geometric
Ramsey functions. SIAM J. Discrete Math, 28:1960–1970, 2014.

17 M. Eliáš and J. Matoušek. Higher-order Erdős-Szekeres theorems. Advances in Mathemat-
ics, 244:1–15, 2013.

18 P. Erdős. Some remarks on the theory of graphs. Bull. Amer. Math. Soc., 53:292–294,
1947.

19 P. Erdős, A. Hajnal, and R. Rado. Partition relations for cardinal numbers. Acta Math.
Acad. Sci. Hungar., 16:93–196, 1965.

A. Suk 73

20 P. Erdős and R. Rado. Combinatorial theorems on classifications of subsets of a given set.
Proc. London Math. Soc., 3:417–439, 1952.

21 P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compos. Math., 2:463–470,
1935.

22 G. Exoo. A Lower Bound for Schur numbers and multicolor Ramsey numbers of K3.
Electronic J. Combinatorics, 1:1–3, 1994.

23 J. Fox, J. Pach, B. Sudakov, and A. Suk. Erdős-Szekeres-type theorems for monotone paths
and convex bodies. Proceedings of the London Mathematical Society, 105:953–982, 2012.

24 H. Fredricksen and M. Sweet. Symmetric sum-free partitions and lower bounds for schur
numbers. Electronic J. Combinatorics, 7:1–9, 2000.

25 J. H. Kim. The ramsey number r(3, t) has order of magnitude t2/ log t. Random Structures
Algorithms, 7:173–207, 1995.

26 V. Koltun. Almost tight upper bounds for vertical decompositions in four dimensions. J.
ACM, 51:699–730, 2004.

27 J. Matoušek. Efficient partition trees. Discrete Comput. Geom., 8:315–334, 1992.
28 J. Matoušek and E. Welzl. Good splitters for counting points in triangles. J. Algorithms,

13:307–319, 1992.
29 J. Milnor. On the betti numbers of real varieties. Proc. Amer. Math. Soc., 15:275–280,

1964.
30 D. Mubayi and A. Suk. A ramsey-type result for geometric `-hypergraphs. European

Journal of Combinatorics, 41:232–241, 2014.
31 I. Schur. Über die Kongruenz xm + ym = zm mod p. Jahresber. Deutch. Math. Verein.,

25:114–117, 1916.
32 M. J. Steele. Variations on the monotone subsequence theme of Erdős and Szekeres. In

D. Aldous, editor, Discrete Probability and Algorithms, IMA Volumes in Mathematics and
its Applications, pages 111–131, Berlin, 1995. Springer.

33 A. Suk. A note on order-type homogeneous point sets. Mathematika, 60:37–42, 2014.
34 R. Thom. Sur l’homologie des variétés algébriques réelles. In Differential and Combinatorial

Topology (A Symposium in Honor of Marston Morse), pages 255–265, Princeton, N.J., 1965.
Princeton University.

35 H. E. Warren. Lower bounds for approximation by nonlinear manifold. Trans. Amer. Math.
Soc., 133:167–178, 1968.

SoCG’15

A Short Proof of a Near-Optimal Cardinality
Estimate for the Product of a Sum Set∗

Oliver Roche-Newton

Johann Radon Institute for Computational and Applied Mathematics (RICAM)
69 Altenberger Straße, Linz, Austria
o.rochenewton@gmail.com

Abstract
In this note it is established that, for any finite set A of real numbers, there exist two elements
a, b ∈ A such that

|(a+A)(b+A)| � |A|2

log |A| .

In particular, it follows that |(A + A)(A + A)| � |A|2
log |A| . The latter inequality had in fact

already been established in an earlier work of the author and Rudnev [8], which built upon the
recent developments of Guth and Katz [2] in their work on the Erdős distinct distance problem.
Here, we do not use those relatively deep methods, and instead we need just a single application of
the Szemerédi-Trotter Theorem. The result is also qualitatively stronger than the corresponding
sum-product estimate from [8], since the set (a+A)(b+A) is defined by only two variables, rather
than four. One can view this as a solution for the pinned distance problem, under an alternative
notion of distance, in the special case when the point set is a direct product A × A. Another
advantage of this more elementary approach is that these results can now be extended for the
first time to the case when A ⊂ C.

1998 ACM Subject Classification G.2.1 Combinatorics

Keywords and phrases Szemerédi-Trotter Theorem, pinned distances, sum-product estimates

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.74

1 Introduction

In this note, we consider a variation on the sum-product problem, in which the aim is to
show that certain sets defined by a combination of additive and multiplicative operations
will always be large. For example, given a finite set A of real numbers, define

(A−A)(A−A) := {(a− b)(c− d) : a, b, c, d ∈ A}.

By the same heuristic arguments that support the Erdős-Szemerédi sum-product conjecture,
one expects that (A−A)(A−A) will always be large in comparison to the input set A. In
[8], the following1 bound was established which showed that this is indeed the case:

|(A−A)(A−A)| � |A|2

log |A| . (1)

∗ The author was supported by the Austrian Science Fund (FWF): Project F5511-N26, which is part of
the Special Research Program “Quasi-Monte Carlo Methods: Theory and Applications".

1 Here and throughout this paper, for positive values X and Y the notation X � Y is used as a shorthand
for X ≥ cY , for some absolute constant c > 0. If both X � Y and X � Y hold, we may write X ≈ Y .

© Oliver Roche-Newton;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 74–80

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.74
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

O. Roche-Newton 75

The same argument in [8] yields the same lower bound for |(A+ A)(A+ A)|. Some other
interesting results in this direction can be found in [1], [3], [4], [6], [7] and [11], amongst
others.

In all of the aforementioned works, incidence geometry plays a central role. An extremely
influential result in this area is the Szemerédi-Trotter Theorem, which says that, given finite
sets P and L of points and lines respectively in R2, the number of incidences between P and
L satisfies the upper bound

|{(p, l) ∈ P × L : p ∈ l}| � |P |2/3|L|2/3 + |P |+ |L|. (2)

The quantity on the left hand side of the above inequality is usually denoted by I(P,L).
Incidence geometry also played a central role in the recent landmark work of Guth and Katz
[2] on the Erdős distinct distances problem. Guth and Katz established an incidence bound
for points and lines in R3, which was then used to prove that for any finite set P of points in
R2, the set of distinct distances determined by P has near-linear size. To be precise, they
proved that

|{d(p, q) : p, q ∈ P}| � |P |
log |P | , (3)

where d(p, q) denotes the Euclidean distance between p and q. Note that the example
P = [N]× [N], where [N] = {1, 2, . . . , N}, illustrates that this bound is close to best possible.

One of the tools that Guth and Katz use in their analysis is the Szemerédi-Trotter
Theorem. They also introduced polynomial partitioning, and utilise some non-trivial facts
from algebraic geometry.

In [8] the authors considered the pseudo-distance R(p, q) in place of d(p, q), where R(p, q)
denotes the (signed) area of the axis-parallel rectangle with p and q at opposite corners. To
be precise, for two points p = (p1, p2) and q = (q1, q2) in the plane, we define

R(p, q) := (p1 − q1)(p2 − q2)

It was then possible to apply the incidence result of Guth and Katz to establish that

|{R(p, q) : p, q ∈ P}| � |P |
log |P | , (4)

and (1) followed as a corollary after taking P = A×A. Once again, the example P = [N]×[N]
shows that this bound is close to best possible.

In this note, we prove the following result which strengthens (1):

I Theorem 1. For any set A ⊂ R, there exist elements a, a′ ∈ A such that

|(A− a)(A− a′)| � |A|2

log |A| .

Here, we obtain quadratic growth for a set which depends on only two variables. There
are similarities here with the Erdős pinned distance problem, where the aim is to show that,
for any finite set P ⊂ R2, there exists p ∈ P such that

|{d(p, q) : q ∈ P}| � |P |√
log |P |

.

This harder version of the Erdős distinct distance problem remains open, with the current
best-known result, due to Katz and Tardos [5], stating that there exists p ∈ P such that

|{d(p, q) : q ∈ P}| � |P |α,

SoCG’15

76 A Short Proof of a Near-Optimal Cardinality Estimate for the Product of a Sum Set

where α ≈ 0.864. However, Theorem 1 shows that, if we instead consider the pseudo-distance
R(p, q) then we have a near-optimal bound for the corresponding pinned distance problem, in
the special case when P = A×A is a direct product. Such a result, even with the additional
direct product restriction, is not currently known for Euclidean distance.

Another advantage of the approach in this paper is that the proof is relatively straight-
forward. In particular, we obtain a new proof of (1), and in fact a stronger result, without
utilising the Guth-Katz machinery.

This paper is closely related to work contained in the PhD thesis of Jones [3] on the
growth of sets of real numbers. In fact, the main lemma here, the forthcoming Lemma 3,
forms part of the proof of [3, Theorem 5.2], although it is expressed rather differently there
in terms of the notion of the cross-ratio. Consequently, we are able to give a new proof of
Theorem 5.2 from [3]; that is we establish the following three-variable expander bound∣∣∣∣{a− ba− c

: a, b, c ∈ A
}∣∣∣∣� |A|2

log |A| .

It appears that the proof here is more straightforward than the one originally given by
Jones [3].

The only major tool needed in this paper is the Szemerédi-Trotter Theorem. In particular,
we use the following standard corollary of (2) which bounds the number of rich lines in an
incidence configuration:

I Corollary 2 (Szemerédi-Trotter Theorem). Let P be a set of points in R2 and let k ≥ 2 be
a real number. Define Lk to be the set of lines containing at least k points from P . Then

|Lk| �
|P |2

k3 + |P |
k
. (5)

In particular, if k ≤ |P |1/2, then

|Lk| �
|P |2

k3 . (6)

2 Energy bound

I Lemma 3. Let Q denote the number of solutions to the equation

(a− b)(a′ − c′) = (a− c)(a′ − b′) (7)

such that a, a′, b, b′, c, c′ ∈ A. Then

Q� |A|4 log |A|.

Proof. First of all, the number solutions to (7) of the form

(a− b)(a′ − c′) = (a− c)(a′ − b′) = 0,

is at most 4|A|4. Also, there are at most |A|4 trivial solutions whereby b = c. Now, let Q∗
denote the number of solutions to

(a− b)(a′ − c′) = (a− c)(a′ − b′) 6= 0, b 6= c. (8)

This is the same as the number of solutions to
a− b
a′ − b′

= a− c
a′ − c′

6= 0, b 6= c. (9)

O. Roche-Newton 77

Let P = A×A and let L(P) denote the set of lines determined by P . That is, L(P) is the
set of lines supporting 2 or more points from the set. Note that a, a′, b, b′, c and c′ satisfy (9)
only if the points (a′, a), (b′, b) and (c′, c) from P are collinear and distinct. Therefore,

Q∗ ≤
∑

l∈L(P)

|l ∩ P |3

�
∑
j

∑
2j≤|l∩P |<2j+1

|l ∩ P |3,

where j ranges over all positive integers such that 2j ≤ |A|. Note that there are no lines in
L(P) which contain more than |A| points from P , which is why this sum does not need to
include any larger values of j.

For the aforementioned range of values for j, it follows from Corollary 2, and in particular
bound (6), that

|{l : |l ∩ P | ≥ 2j}| � |P |2

(2j)3 .

Therefore,

Q∗ �
∑
j

|P |2 � |A|4 log |A|.

Finally, Q� |A|4 +Q∗ � |A|4 log |A|, as required. J

I Corollary 4. For any finite set A ⊂ R,∣∣∣∣{a− ba− c
: a, b, c ∈ A

}∣∣∣∣� |A|2

log |A| .

Proof. Let

n(x) :=
∣∣∣∣{(a, b, c) ∈ A3 : a− b

a− c
= x

}∣∣∣∣
denote the number of representations of x as an element of the set in question. We know that

|A|3 � |A|3 − |A|2 =
∑
x

n(x).

Also, the quantity
∑
x n

2(x) is strictly2 less than the number of solutions to (7). Therefore,
it follows from the Cauchy-Schwarz inequality and Lemma 3 that

|A|6 �

(∑
x

n(x)
)2

≤
∣∣∣∣{a− ba− c

: a, b, c ∈ A
}∣∣∣∣∑

x

n2(x)

�
∣∣∣∣{a− ba− c

: a, b, c ∈ A
}∣∣∣∣ |A|4 log |A|,

and the result follows after rearranging this inequality. J

2 The quantity
∑

x
n2(x) is the number of solutions to (7), minus the number of solutions for which a = c

or a′ = c′.

SoCG’15

78 A Short Proof of a Near-Optimal Cardinality Estimate for the Product of a Sum Set

2.1 Remarks
Let E∗(A,B) be the multiplicative energy of A and B; that is, the number of solutions to

ab = a′b′

such that a, a′ ∈ A and b, b′ ∈ B. Using this notation, Lemma 3 can be expressed in the
form of the following bound:∑

a,a′∈A
E∗(a−A, a′ −A)� |A|4 log |A|. (10)

See [6, Lemma 2.4] for a similar bound on the sum of multiplicative energies after different
additive shifts.

The proof of Lemma 3 can undergo a number of small modifications in order to deduce
slightly different results involving multiple sets A,B,C, · · · ∈ R of approximately the same
size. For example, if we instead take P = (A ∪ B) × (A ∪ B), where |B| ≈ |A|, then the
number of solutions to (9) such that a, a′ ∈ A and b, b′, c, c′ ∈ B is less than the number of
collinear triples in the point set P . After repeating the argument of Lemma 3, it follows that∑

a,a′∈A
E∗(a−B, a′ −B)� |A|4 log |A|. (11)

In particular, if B = −A, this yields∑
a,a′∈A

E∗(a+A, a′ +A)� |A|4 log |A|. (12)

3 Proof of Theorem 1

It follows from (10) that there exist a, a′ ∈ A such that

E∗(a−A, a′ −A)� |A|2 log |A|. (13)

We also have the following well-known bound for the multiplicative energy, which follows
from an application of the Cauchy-Schwarz inequality:

E∗(A,B) ≥ |A|
2|B|2

|AB|
. (14)

After comparing (13) and (14), it follows that

|(A− a)(A− a′)| � |A|2

log |A| ,

as required. J

3.1 Remark
By the same argument, but utilising (12) in place of (10), it also follows that there exist
a, a′ ∈ A such that

|(A+ a)(A+ a′)| � |A|2

log |A| .

O. Roche-Newton 79

4 The complex setting

As stated in the abstract, an advantage of this more straightforward approach is that it
allows for results that were previously only known for sets of real numbers to be extended to
the complex setting. The only tool used in the proofs of Theorem 1 and Corollary 4 is the
Szemerédi-Trotter Theorem. It is now known that this theorem holds for sets of points and
lines in C2 (this was first proven by [10], with a more modern proof given by Zahl [12]; see
also Solymosi and Tao [9]).

One can therefore repeat the analysis of this paper verbatim in the complex setting,
applying the complex Szemerédi-Trotter Theorem in place of the real version, and deduce
exactly the same results for a set A of complex numbers.

In particular, we deduce that for any finite set A ⊂ C, there exist a, a′ ∈ A such that

|(A− a)(A− a′)| � |A|2

log |A| (15)

and it follows that

|(A−A)(A−A)| � |A|2

log |A| . (16)

Since the earlier proof of (16) for real A in [8] was based on the three dimensional incidence
bounds in [2], it was not previously known that this bound extended to the complex setting.
Similarly, the approach in this paper can be used to show that for any finite set A ⊂ C, we
have∣∣∣∣{a− ba− c

: a, b, c ∈ A
}∣∣∣∣� |A|2

log |A| .

Acknowledgements. I am grateful to Brendan Murphy for his helpful feedback. I am also
grateful to Ilya Shkredov for helpful conversations and especially for his interpretation of the
work of Jones [3].

References
1 G. Elekes, M. Nathanson and I. Ruzsa, “Convexity and sumsets”, J Number Theory. 83

(1999), 194–201.
2 L. Guth and N.H. Katz, “On the Erdös distinct distance problem in the plane”, Ann. of

Math. 181 (2015), no. 1, 155–190.
3 T. G. F. Jones, “New quantitative estimates on the incidence geometry and growth of finite

sets”, Ph.D thesis, arXiv:1301.4853 (2013).
4 T.G.F. Jones, “New results for the growth of sets of real numbers”, arXiv:1202.4972

(2012).
5 N.H. Katz and G. Tardos, “A new entropy inequality for the Erdős distance problem”,

Towards a theory of geometric graphs, Contemp. Math. 342 (2004), 119–126.
6 B. Murphy, O. Roche-Newton and I. Shkredov, “Variations on the sum-product problem”,

to appear in SIAM J. Discrete Math., preprint arxiv:1312.6438 (2013).
7 O. Raz, M. Sharir and J. Solymosi, “Polynomials vanishing on grids: The Elekes-Rónyai

problem revisited”, to appear in Amer. J. Math., preprint arxiv:1401.7419 (2014).
8 O. Roche-Newton and M. Rudnev, “On the Minkowski distances and products of sum sets”,

to appear in Israel J. Math., preprint arxiv:1203.6237 (2012).

SoCG’15

80 A Short Proof of a Near-Optimal Cardinality Estimate for the Product of a Sum Set

9 J. Solymosi and T. Tao, “An incidence theorem in higher dimensions”, Discrete Comput.
Geom. 48 (2012), 255–280.

10 C. Tóth, “The Szemerédi-Trotter theorem in the complex plane”, arXiv:math/0305283.
11 P. Ungar, “2N non collinear points determine at least 2N directions”, J. Combin. Theory

Ser. A 33 (1982), 343–347.
12 J. Zahl, “A Szemerédi-Trotter type theorem in R4”, arXiv:1203.4600.

A Geometric Approach for the Upper Bound
Theorem for Minkowski Sums of Convex
Polytopes∗

Menelaos I. Karavelas1,2 and Eleni Tzanaki2

1 Department of Mathematics and Applied Mathematics
University of Crete, Heraklion, Greece
mkaravel@uoc.gr

2 Institute of Applied and Computational Mathematics
Foundation for Research and Technology – Hellas, Heraklion, Greece
etzanaki@uoc.gr

Abstract
We derive tight expressions for the maximum number of k-faces, 0 ≤ k ≤ d − 1, of the Minkowski
sum, P1+⋯+Pr, of r convex d-polytopes P1, . . . , Pr in Rd, where d ≥ 2 and r < d, as a (recursively
defined) function on the number of vertices of the polytopes. Our results coincide with those
recently proved by Adiprasito and Sanyal [1]. In contrast to Adiprasito and Sanyal’s approach,
which uses tools from Combinatorial Commutative Algebra, our approach is purely geometric
and uses basic notions such as f - and h-vector calculus, stellar subdivisions and shellings, and
generalizes the methodology used in [10] and [9] for proving upper bounds on the f -vector of
the Minkowski sum of two and three convex polytopes, respectively. The key idea behind our
approach is to express the Minkowski sum P1 + ⋯ + Pr as a section of the Cayley polytope C
of the summands; bounding the k-faces of P1 + ⋯ + Pr reduces to bounding the subset of the
(k + r − 1)-faces of C that contain vertices from each of the r polytopes. We end our paper with
a sketch of an explicit construction that establishes the tightness of the upper bounds.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems – Geometrical
problems and computations, G.2.1 Combinatorics

Keywords and phrases Convex polytopes, Minkowski sum, upper bound

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.81

1 Introduction

Given two sets A and B in Rd, d ≥ 2, their Minkowski sum A+B is the set {a+b ∣ a ∈ A, b ∈ B}.
The Minkowski sum definition can be extended naturally to any number of summands:
A[r] ∶= A1 +A2 +⋯ +Ar = {a1 + a2 +⋯ + ar ∣ ai ∈ Ai,1 ≤ i ≤ r}. Minkowski sums have a wide
range of applications, including algebraic geometry, computational commutative algebra,
collision detection, computer-aided design, graphics, robot motion planning and game theory,
just to name a few (see also [1], [9] and the references therein).

In this paper we focus on convex polytopes, and we are interested in computing the
worst-case complexity of their Minkowski sum. More precisely, given r d-polytopes P1, . . . , Pr

∗ The work in this paper has been partially supported by the European Union (European Social Fund –
ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning”
of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALIS – UOA
(MIS 375891).

© Menelaos I. Karavelas and Eleni Tzanaki;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 81–95

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.81
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

82 A Geometric Approach for the Upper Bound Theorem for Minkowski Sums

in Rd, we seek tight bounds on the number of k-faces fk(P[r]), 0 ≤ k ≤ d − 1, of their
Minkowski sum P[r] ∶= P1 +P2 +⋯+Pr. This problem, which can be seen as a generalization
of the Upper Bound Theorem (UBT) for polytopes [14], has a history of more than 20 years.
Gritzmann and Sturmfels [7] were the first to consider the problem, and gave a complete
answer for it, for any number of d-polytopes in Rd, in terms of the number of non-parallel
edges of the r polytopes. More than 10 years later, Fukuda and Weibel [5] proved tight upper
bounds on the number of k-faces of the Minkowski sum of two 3-polytopes, expressed either
in terms of the number of vertices or number of facets of the summands. Fogel, Halperin,
and Weibel [4] extended one of the results in [5], and expressed the number of facets of the
Minkowski sum of r 3-polytopes in terms of the number of facets of the summands. Quite
recently Weibel [16] provided a relation for the number of k-faces of the Minkowski sum of
r ≥ d summands in terms of the k-faces of the Minkowski sums of subsets of size at most
d− 1 of these summands. This result should be viewed in conjunction with a result by Sanyal
[15] stating that the number of vertices of the Minkowski sum of r d-polytopes, where r ≥ d,
is strictly less than the product of the vertices of the summands (whereas for r < d this is
indeed possible). About 3 years ago, the authors of this paper proved the first tight upper
bound on the number of k-faces for the Minkowski sum of two d-polytopes in Rd, for any
d ≥ 2 and for all 0 ≤ k ≤ d − 1 (cf. [10]), a result which was subsequently extended to three
summands in collaboration with Konaxis (cf. [9]).

In a recent paper, Adiprasito and Sanyal [1] provide the complete resolution of the Upper
Bound Theorem for Minkowski sums (UBTM). In particular, they show that there exists,
what they call, a Minkowski-neighborly family of r d-polytopes N1, . . . ,Nr, with f0(Ni) = ni,
1 ≤ i ≤ r, such that for any r d-polytopes P1, P2, . . . , Pr ⊂ Rd with f0(Pi) = ni, 1 ≤ i ≤ r,
fk(P[r]) is bounded by above by fk(N[r]), for all 0 ≤ k ≤ d−1. The majority of the arguments
in the UBTM proof by Adiprasito and Sanyal make use of powerful tools from Combinatorial
Commutative Algebra. The high-level layout of the proof is analogous to McMullen’s proof
of the UBT, as well as the proofs of the UBTM in [10] and [9] for two and three summands,
respectively:
1. Consider the Cayley polytope C ⊂ Rd+r−1 of the r polytopes P1, P2, . . . , Pr, and identify

their Minkowski sum as a section of C with an appropriately defined d-flat W . Let
F ⊂ Rd+r−1 be the faces of C that intersectW , and let K be the closure of F under subface
inclusion (K is a (d + r − 1)-polytopal complex). By the Cayley trick, there is a bijection
between the faces of F and the faces of P[r]; as a result, to bound the number of faces of
P[r] it suffices to bound the number of faces of F .

2. Define the h-vector h(F) of F , and prove the Dehn-Sommerville equations for h(F),
relating its elements to the elements of h(K).

3. Prove a recurrence relation for the elements of h(F).
4. Use the recurrence relation above to prove upper bounds for hk(F), for all 0 ≤ k ≤ ⌊d+r−1

2 ⌋.
5. Prove upper bounds for hk(K), for all 0 ≤ k ≤ ⌊d+r−1

2 ⌋.
6. Provide necessary and sufficient conditions under which the elements of both h(F) and

h(K) are maximized for all k. These conditions are conditions on the lower half of the
h-vector of F . Due to the relation between the f - and h-vectors of F , these are also
conditions for the maximality of the elements of f(F).

7. Describe a family of polytopes for which the necessary and sufficient conditions hold;
clearly, such a family establishes the tightness of the upper bounds.

In Adiprasito and Sanyal’s proof steps 2, 3 and 4 are proved by introducing a powerful new
theory that they call the relative Stanley-Reisner theory for simplicial complexes. The focus
of this theory is on relative simplicial complexes, and is able to reveal properties of such
complexes not only under topological restrictions, but also account for their combinatorial

M. I. Karavelas and E. Tzanaki 83

and geometric structure. To apply their theory, Adiprasito and Sanyal consider the simplicial
complex K and then define F as a relative simplicial complex (they call them the Cayley and
relative Cayley complex, respectively). They then apply their relative Stanley-Reisner theory
to F to establish the Dehn-Sommerville equations of step 2, the recurrence relation of step
3 and finally the upper bounds for h(F) in 4. Steps 5 and 6 are done by clever algebraic
manipulation of the h-vectors of F and K, by exploiting the geometric properties of K, and
by making use of the recurrence relation in step 3. Step 7 is reduced to results by Matschke,
Pfeifle, and Pilaud [13] and Weibel [16].

Our contribution. In what follows, we provide a completely geometric proof of the UBTM,
that generalizes the technique we used in [10] and [9] for two and three summands to the case
of r summands, when r < d. Instead of relying on algebraic tools, we use basic notions from
combinatorial geometry, such as stellar subdivisions and shellings. Our proof, in essence,
differs from that of Adiprasito and Sanyal in steps 2, 3, 4 and 5 of the layout above (the
remaining steps do not use tools from Combinatorial Commutative Algebra anyway).

In more detail, to prove the various intermediate results, towards the UBTM, we consider
the Cayley polytope C and we perform a series of stellar subdivisions to get a simplicial
polytope Q. From the analysis of the combinatorial structure of Q, we derive the Dehn-
Sommerville equations of step 2 (see Sections 3 and 4), as well as the recurrence relation of
step 3 (see Section 5). This recurrence relation is then used for establishing the upper bounds
for the elements of h(F) and h(K) (see Section 6). We end with a construction similar to
the one presented in [13, Theorem 2.6], that establishes the tightness of the upper bounds
(see Section 7). Due to space limitations, the majority of the proofs have been omitted; the
interested reader may refer to the full version of the paper [11].

2 Preliminaries

Let P be a d-dimensional polytope, or d-polytope for short. Its dimension is the dimension
of its affine span. The faces of P are ∅, P , and the intersections of P with its supporting
hyperplanes. The ∅ and P faces are called improper, while the remaining faces are called
proper. Each face of P is itself a polytope, and a face of dimension k is called a k-face. Faces
of P of dimension 0, 1, d−2 and d−1 are called vertices, edges, ridges, and facets, respectively.

A d-dimensional polytopal complex or, simply, d-complex, C is a finite collection of
polytopes in Rd such that (i) ∅ ∈ C , (ii) if P ∈ C then all the faces of P are also in C and
(iii) the intersection P ∩Q for two polytopes P and Q in C is a face of both. The dimension
dim(C) of C is the largest dimension of a polytope in C . A polytopal complex is called pure
if all its maximal (with respect to inclusion) faces have the same dimension. In this case the
maximal faces are called the facets of C . A polytopal complex is simplicial if all its faces
are simplices. A polytopal complex C ′ is called a subcomplex of a polytopal complex C if
all faces of C ′ are also faces of C . For a polytopal complex C , the star of v in C , denoted
by star(v,C), is the subcomplex of C consisting of all faces that contain v, and their faces.
The link of v, denoted by C /v, is the subcomplex of star(v,C) consisting of all the faces of
star(v,C) that do not contain v.

A d-polytope P , together with all its faces, forms a d-complex, denoted by C (P). The
polytope P itself is the only maximal face of C (P), i.e., the only facet of C (P), and is called
the trivial face of C (P). Moreover, all proper faces of P form a pure (d − 1)-complex, called
the boundary complex C (∂P), or simply ∂P , of P . The facets of ∂P are just the facets of P .

For a (d − 1)-complex C , its f -vector is defined as f(C) = (f−1, f0, f1, . . . , fd−1), where

SoCG’15

84 A Geometric Approach for the Upper Bound Theorem for Minkowski Sums

fk = fk(C) denotes the number of k-faces of P and f−1(C) ∶= 1 corresponds to the empty face
of C . From the f -vector of C we define its h-vector as the vector h(C) = (h0, h1, . . . , hd),
where hk = hk(C) ∶= ∑

k
i=0(−1)k−i(d−i

d−k
)fi−1(C), 0 ≤ k ≤ d.

Denote by Y a generic subset of faces of a polytopal complex C , and define its dimension
dim(Y) as the maximum of the dimensions of its faces. Let dim(Y) = δ − 1; then we may
define (if not already properly defined), the h-vector h(Y) of Y as:

hk(Y) =
δ

∑
i=0

(−1)k−i(δ − i
δ − k

)fi−1(Y). (2.1)

We can further define the m-order g-vector of Y according to the following recursive formula:

g
(m)

k (Y) =

⎧⎪⎪
⎨
⎪⎪⎩

hk(Y), m = 0,
g
(m−1)
k (Y) − g

(m−1)
k−1 (Y), m > 0.

(2.2)

Clearly, g(m)(Y) is nothing but the backward m-order finite difference of h(Y); therefore:

g
(m)

k (Y) =
m

∑
i=0

(−1)i(m
i
)hk−i(Y), k,m ≥ 0. (2.3)

Observe that for m = 0 we get the h-vector of Y, while for m = 1 we get what is typically
defined as the g-vector.

The relation between the f - and h-vector of Y is better manipulated using generating
functions. We define the f -polynomial and h-polynomial of Y as follows:

f(Y; t) =
δ

∑
i=0
fi−1t

δ−i
= fδ−1 + fδ−2t+⋯+ f−1t

δ, h(Y; t) =
δ

∑
i=0
hit

δ−i
= hδ + hδ−1t+⋯+ h0t

δ,

where, we simplified fi(Y) and hi(Y) to fi and hi. In this set-up, the relation between the
f -vector and h-vector (cf. (2.1)) can be expressed as:

f(Y; t) = h(Y; t + 1), or, equivalently, as h(Y; t) = f(Y; t − 1). (2.4)

2.1 The Cayley embedding, the Cayley polytope and the Cayley trick
Let P1, P2, . . . , Pr be r d-polytopes with vertex sets V1,V2, . . . ,Vr, respectively. Let e0,e1,

. . . ,er−1 be an affine basis of Rr−1 and call µi ∶ Rd → Rr−1 × Rd the affine inclusion given
by µi(x) = (ei−1,x), 1 ≤ i ≤ r. The Cayley embedding C(V1,V2, . . . ,Vr) of the point sets V1,

V2, . . . ,Vr is defined as C(V1,V2, . . . ,Vr) = ⋃
r
i=1 µi(Vi). The polytope corresponding to the

convex hull conv(C(V1,V2, . . . ,Vr)) of the Cayley embedding C(V1,V2, . . . ,Vr) of V1,V2, . . . ,

Vr is typically referred to as the Cayley polytope of P1, P2, . . . , Pr.
The following lemma, known as the Cayley trick for Minkowski sums, relates the Minkowski

sum of the polytopes P1, P2, . . . , Pr with their Cayley polytope.

I Lemma 2.1 ([8, Lemma 3.2]). Let P1, P2, . . . , Pr be r d-polytopes with vertex sets V1,V2,

. . . ,Vr ⊂ Rd. Moreover, let W be the d-flat defined as { 1
r
e0 + ⋯ + 1

r
er−1} ×Rd ⊂ Rr−1 ×Rd.

Then, the Minkowski sum P[r] has the following representation as a section of the Cayley
embedding C(V1,V2, . . . ,Vr) in Rr−1 ×Rd:

P[r] ≅ C(V1,V2, . . . ,Vr) ∩W

∶= {conv{(ei−1,v) ∣ 1 ≤ i ≤ r} ∩W ∶ (ei−1,v) ∈ C(V1,V2, . . . ,Vr),1 ≤ i ≤ r}.

Moreover, F is a facet of P[r] if and only if it is of the form F = F ′ ∩W for a facet F ′ of
C(V1,V2, . . . ,Vr) containing at least one point (ei−1,v) for all 1 ≤ i ≤ r.

M. I. Karavelas and E. Tzanaki 85

Let C[r] be the Cayley polytope of P1, P2, . . . , Pr, and call F[r] the set of faces of C[r]
that have non-empty intersection with the d-flat W . A direct consequence of Lemma 2.1 is a
bijection between the (k − 1)-faces of W and the (k − r)-faces of F[r], for r ≤ k ≤ d + r − 1.
This further implies that:

fk−1(F[r]) = fk−r(P[r]), for all r ≤ k ≤ d + r − 1. (2.5)

In what follows, to keep the notation lean, we identify Vi ∶= µi(Vi) with its pre-image Vi.
For any ∅ ⊂ R ⊆ [r], we denote by CR the Cayley polytope of the polytopes Pi where i ∈ R. In
particular, if R = {i} for some i ∈ [r], then C{i} ≡ Pi. We shall assume below that C[r] is “as
simplicial as possible”. This means that we consider all faces of C[r] to be simplicial, except
possibly for the trivial faces {CR}

1, ∅ ⊂ R ⊆ [r]. Otherwise, we can employ the so called
bottom-vertex triangulation [12, Section 6.5, pp. 160–161] to triangulate all proper faces of
C[r] except for the trivial ones, i.e., {CR}, ∅ ⊂ R ⊆ [r]. The resulting complex is polytopal
(cf. [2]) with all its faces being simplices, except possibly for the trivial ones. Moreover, it
has the same number of vertices as C[r], while the number of its k-faces is never less than
the number of k-faces of C[r].

For each ∅ ⊂ R ⊆ [r], we denote by FR the set of faces of CR having at least one vertex
from each Vi, i ∈ R, and we call it the set of mixed faces of CR. We trivially have that
F{i} ≡ ∂Pi. We define the dimension of FR to be the maximum dimension of the faces in
FR, i.e., dim(FR) = maxF ∈FR dim(F) = d + ∣R∣ − 2. Under the “as simplicial as possible”
assumption above, the faces in FR are simplices. We denote by KR the closure, under subface
inclusion, of FR. By construction, KR contains: (1) all faces in FR, (2) all faces that are
subfaces of faces in FR, and (3) the empty set. It is easy to see that KR does not contain any
of the trivial faces {CS}, ∅ ⊂ S ⊆ R, and thus, KR is a pure simplicial (d + ∣R∣ − 2)-complex.
It is also easy to verify that:

fk(KR) = ∑
∅⊂S⊆R

fk(FS), −1 ≤ k ≤ d + ∣R∣ − 2, (2.6)

where in order for the above equation to hold for k = −1, we set f−1(FS) = (−1)∣S∣−1 for
all ∅ ⊂ S ⊆ R. In what follows we use the convention that fk(FR) = 0, for any k < −1 or
k > d + ∣R∣ − 2.

A general form of the Inclusion-Exclusion Principle states that if f and g are two
functions defined over the subsets of a finite set A, such that f(A) = ∑∅⊂B⊆A g(B), then
g(A) = ∑∅⊂B⊆A(−1)∣A∣−∣B∣f(B) [6, Theorem 12.1]. Applying this principle to (2.6), we deduce
that:

fk(FR) = ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣ fk(KS), −1 ≤ k ≤ d + ∣R∣ − 2. (2.7)

In the majority of our proofs that involve evaluation of f - and h-vectors, we use generating
functions as they significantly simplify calculations. The starting point is to evaluate f(KR; t)
(resp., f(FR; t)) in terms of the generating functions f(FS ; t) (resp., f(KS ; t)), ∅ ⊂ S ⊆ R,
for each fixed choice of ∅ ⊂ R ⊆ [r]. Then, using (2.4) we derive the analogous relations
between their h-vectors.

1 We denote by {CR} the polytope CR as a trivial face itself (without its non-trivial faces).

SoCG’15

86 A Geometric Approach for the Upper Bound Theorem for Minkowski Sums

Recalling that dim(KR) = d + ∣R∣ − 2 and dim(FS) = d + ∣S∣ − 2 we have:

f(KR; t) =
d+∣R∣−1
∑
k=0

fk−1(KR)t
d+∣R∣−1−k (2.6)

=

d+∣R∣−1
∑
k=0

∑
∅⊂S⊆R

fk−1(FS)t
d+∣R∣−1−k

= ∑
∅⊂S⊆R

t∣R∣−∣S∣
d+∣R∣−1
∑
k=0

fk−1(FS)t
d+∣S∣−1−k

= ∑
∅⊂S⊆R

t∣R∣−∣S∣f(FS ; t).
(2.8)

Rewriting the above relation as t−∣R∣f(KR; t) = ∑∅⊂S⊆R t
−∣S∣f(FS ; t) and using Möbious

inversion, we get:

f(FR; t) = ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣t∣R∣−∣S∣f(KS ; t). (2.9)

Setting t ∶= t − 1 in (2.8) we have:

h(KR; t) = f(KR; t − 1) = ∑
∅⊂S⊆R

(t − 1)∣R∣−∣S∣f(FS ; t − 1)

= ∑
∅⊂S⊆R

(t − 1)∣R∣−∣S∣h(FS ; t) = ∑
∅⊂S⊆R

g(∣R∣−∣S∣)
(FS ; t).

(2.10)

Similarly, from (2.9) we obtain:

h(FR; t) = ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣g(∣R∣−∣S∣)
(KS ; t). (2.11)

Comparing coefficients in the above generating functions, we deduce that:

hk(KR) = ∑
∅⊂S⊆R

g
(∣R∣−∣S∣)
k (FS), for all 0 ≤ k ≤ d + ∣R∣ − 1, and (2.12)

hk(FR) = ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣g
(∣R∣−∣S∣)
k (KS), for all 0 ≤ k ≤ d + ∣R∣ − 1. (2.13)

3 The construction of the auxiliary simplicial polytope Q[r]

The proper faces of the Cayley polytope C[r] of P1, . . . , Pr are the faces in each FR, ∅ ⊂ R ⊆ [r]

as well as all trivial faces {CR} with ∅ ⊂ R ⊂ [r]. Since the latter are not necessarily simplices,
the Cayley polytope C[r] may not be simplicial. In order to exploit the combinatorial structure
of C[r], we add auxiliary points on C[r] so that the resulting polytope, denoted by Q[r], is
simplicial.

The main tool for describing our construction is stellar subdivisions. Let P ⊂ Rd be a
d-polytope, and consider a point yF in the relative interior of a face F of ∂P . The stellar
subdivision st(yF , ∂P) of ∂P over F , replaces F by the set of faces {yF , F

′} where F ′ is a
non-trivial face of F . It is a well-known fact that stellar subdivisions preserve polytopality
(cf. [3, pp. 70–73]), in the sense that the newly constructed complex is combinatorially
equivalent to a polytope each facet of which lies on a distinct supporting hyperplane.

Our goal is to triangulate each face {CR}, ∅ ⊂ R ⊂ [r], of C[r] so that the boundaries of
the resulting complexes, denoted by QS , ∅ ⊂ S ⊆ [r], are simplicial polytopes. We obtain
this by performing a series of stellar subdivisions. First set QS ∶= CS , for all ∅ ⊂ S ⊆ [r].
Then, we add auxiliary vertices as follows:

for s from 1 to r − 1
for all S ⊆ [r] with ∣S∣ = s

choose yS ∈ relint(QS)
for all T with S ⊂ T ⊆ [r]

QT ∶= st(yS ,QT)

(3.1)

M. I. Karavelas and E. Tzanaki 87

The recursive step of the previous definition is well defined due to the fact that for any fixed
s, the order in which we add the auxiliary points yS is independent of the S chosen, since the
relative interiors of all QS with ∣S∣ = s are pairwise disjoint. At the end of the s-th iteration,
the faces of each QT of dimension less than d+ s− 1 are simplices. At the end of the iterative
procedure above, and in view of the fact that stellar subdivisions preserve polytopality, the
above construction results in simplicial (d + ∣R∣ − 1)-polytopes QR, for all ∅ ⊂ R ⊆ [r].

The next lemma shows how the iterated stellar subdivisions performed in (3.1) are
captured in the enumerative structure of QR.

I Lemma 3.1. For all ∅ ⊂ R ⊆ [r] we have:

f(∂QR; t) = f(FR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣

∑
i=0

i!Si+1
∣R∣−∣S∣+1t

∣R∣−∣S∣−if(FS ; t), (3.2)

f(∂QR; t) = f(KR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣−2
∑
i=0

(i + 1)!Si+1
∣R∣−∣S∣t

∣R∣−∣S∣−if(KS ; t), (3.3)

where Skm = 1
k! ∑

k
i=0(−1)k−i(k

i
)im, m ≥ k ≥ 0, are the Stirling numbers of the second kind.

The h-vector relations stemming from the f -vector relations above are the subject of the
following lemma.

I Lemma 3.2. For all ∅ ⊂ R ⊆ [r] we have:

h(∂QR; t) = h(FR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣−1
∑
j=0

Ej
∣R∣−∣S∣

tj+1 h(FS ; t), (3.4)

h(∂QR; t) = h(KR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣−1
∑
j=0

Ej
∣R∣−∣S∣

tj h(KS ; t), (3.5)

where Ekm = ∑
k
i=0(−1)i(m+1

i
)(k + 1 − i)m, m ≥ k + 1 > 0, are the Eulerian numbers.

4 The Dehn-Sommerville equations

A very important structural property of the Cayley polytope CR is, what we call, the
Dehn-Sommerville equations. For a single polytope they reduce to the well-known Dehn-
Sommerville equations, whereas for two or more summands they relate the h-vectors of
the sets FR and KR. The Dehn-Sommerville equations for CR are one of the major key
ingredients for establishing our upper bounds, as they permit us to reason for the maximality
of the elements of h(FR) and h(KR) by considering only the lower halves of these vectors.

I Theorem 4.1 (Dehn-Sommerville equations). Let CR be the Cayley polytope of the d-polytopes
Pi, i ∈ R. Then, the following relations hold:

td+∣R∣−1h(FR; 1
t
) = h(KR; t) (4.1)

or, equivalently,

hd+∣R∣−1−k(FR) = hk(KR), 0 ≤ k ≤ d + ∣R∣ − 1. (4.2)

Proof. We prove our claim by induction on the size of R, the case ∣R∣ = 1 being the Dehn-
Sommerville equations for a d-polytope. We next assume that our claim holds for all ∅ ⊂ S ⊂ R

SoCG’15

88 A Geometric Approach for the Upper Bound Theorem for Minkowski Sums

and prove it for R. The ordinary Dehn-Sommerville relations, written in generating function
form, for the (simplicial) (d + ∣R∣ − 1)-polytope QR imply that:

h(∂QR; t) = td+∣R∣−1h(∂QR; 1
t
). (4.3)

In view of relation (3.4) of Lemma 3.2, the right-hand side of (4.3) becomes:

td+∣R∣−1h(FR; 1
t
) + td+∣R∣−1

∑
∅⊂S⊂R

∣R∣−∣S∣−1
∑
j=0

Ej
∣R∣−∣S∣

t−j−1h(FS ; 1
t
). (4.4)

Using relation (3.5), along with the induction hypothesis, the left-hand side of (4.3) becomes:

h(KR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣−1
∑
j=0

Ej
∣R∣−∣S∣

tjh(KS ; t) (4.5)

= h(KR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣−1
∑
j=0

Ej
∣R∣−∣S∣

t∣R∣−∣S∣−j−1h(KS ; t) (4.6)

= h(KR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣−1
∑
j=0

Ej
∣R∣−∣S∣

t∣R∣−∣S∣−j−1td+∣S∣−1h(FS ; 1
t
)

= h(KR; t) + ∑
∅⊂S⊂R

∣R∣−∣S∣−1
∑
j=0

Ej
∣R∣−∣S∣

td+∣R∣−j−2h(FS ; 1
t
), (4.7)

where to go from (4.5) to (4.6) we changed variables and used the well-known symmetry of
the Eulerian numbers, namely, Ekm = Em−k−1

m , for all m ≥ k + 1 > 0.
Now, substituting (4.4) and (4.7) in (4.3), we deduce that td+∣R∣−1h(FR; 1

t
) = h(KR; t),

which is, coefficient-wise, equivalent to (4.2). J

5 The recurrence relation for h(FR)
The subject of this section is the generalization, for the h-vector of FR, ∅ ⊂ R ⊆ [r], of the
recurrence relation

(k + 1)hk+1(∂P) + (d − k)hk(∂P) ≤ nhk(∂P), 0 ≤ k ≤ d − 1, (5.1)

that holds true for any simplicial d-polytope P ⊂ Rd. This is the content of the next theorem.

I Theorem 5.1 (Recurrence inequality). For any ∅ ⊂ R ⊆ [r] we have:

hk+1(FR) ≤
nR − d − ∣R∣ + 1 + k

k + 1
hk(FR)+∑

i∈R

ni
k + 1

gk(FR∖{i}), 0 ≤ k ≤ d+ ∣R∣− 2, (5.2)

where: (1) nR = ∑i∈R ni, and, (2) gk(F∅) = gk(∅) = 0, for all k.

Sketch of proof. To prove the inequality in the statement of the theorem, we generalize
McMullen’s steps in the proof of his Upper Bound theorem [14].

Our starting point is relation (5.1) applied to the simplicial (d + ∣R∣ − 1)-polytope QR,
expressed in terms of generating functions:

(d + ∣R∣ − 1)h(∂QR; t) + (1 − t)h′(∂QR; t) = ∑
v∈vert(∂QR)

h(∂QR/v; t). (5.3)

M. I. Karavelas and E. Tzanaki 89

Exploiting the combinatorial structure of QR in order to express: (1) h(∂QR) in terms of
h(FS), ∅ ⊂ S ⊆ R, and (2) h(∂QR/v) in terms of h(FS/v), ∅ ⊂ S ⊆ R, and h(FS), ∅ ⊂ S ⊂ R,
relation (5.3) yields:

(d + ∣R∣ − 1)h(FR; t) + (1 − t)h′(FR; t) = ∑
v∈VR

h(FR/v; t),

the element-wise form of which is:

(k + 1)hk+1(FR) + (d + ∣R∣ − 1 − k)hk(FR) = ∑
v∈VR

hk(FR/v), 0 ≤ k ≤ d + ∣R∣ − 2.

Noticing that hk(FR/v) is equal to ∑∅⊂S⊆R(−1)∣R∣−∣S∣
∑v∈VS g

(∣R∣−∣S∣)
k (KS/v) (by the Inclusion-

Exclusion Principle; see also relations (2.12) and (2.13)), and using a particular shelling of
∂QR, we show that:

∑
∅⊂S⊆R

(−1)∣R∣−∣S∣
∑
v∈VS

g
(∣R∣−∣S∣)
k (KS/v) ≤ ∑

∅⊂S⊆R

(−1)∣R∣−∣S∣
∑
v∈VS

g
(∣R∣−∣S∣)
k (KS).

The right-hand side of the above relation simplifies to nR hk(FR)+∑i∈R ni gk(FR∖{i}), which
in turn suggests the following inequality:

(k + 1)hk+1(FR) + (d + ∣R∣ − 1 − k)hk(FR) ≤ nR hk(FR) +∑
i∈R

ni gk(FR∖{i}) (5.4)

that holds true for all 0 ≤ k ≤ d + ∣R∣ − 2. Solving in terms of hk+1(FR) results in (5.2). J

6 Upper bounds

Let S1, . . . , Sr be a partition of a set S into r sets. We say that A ⊆ ⋃
1≤i≤r

Si is a spanning
subset of S if A ∩ Si ≠ ∅ for all 1 ≤ i ≤ r.

I Definition 6.1. Let Pi, i ∈ R, be d-polytopes with vertex sets Vi, i ∈ R. We say that their
Cayley polytope CR isR-neighborly if every spanning subset of ⋃i∈R Vi of size ∣R∣ ≤ ` ≤ ⌊

d+∣R∣−1
2 ⌋

is a face of CR (or, equivalently, a face of FR). We say that the Cayley polytope CR is
Minkowski-neighborly if, for every ∅ ⊂ S ⊆ R, the Cayley polytope CS is S-neighborly.

The following lemma characterizes R-neighborly Cayley polytopes in terms of the f - and
h-vector of FR.

I Lemma 6.2. The following are equivalent:
(i) CR is R-neighborly,
(ii) f`−1(FR) = ∑∅⊂S⊆R(−1)∣R∣−∣S∣(

nS
`
), for all 0 ≤ ` ≤ ⌊

d+∣R∣−1
2 ⌋,

(iii) h`(FR) = ∑∅⊂S⊆R(−1)∣R∣−∣S∣(
nS−d−∣R∣+`

`
), for all 0 ≤ ` ≤ ⌊

d+∣R∣−1
2 ⌋,

where ni is the number of vertices of Pi and nS = ∑i∈S ni.

From the recurrence relation in Theorem 5.1 we arrive at the following theorem. The
proof is by induction on k.

I Theorem 6.3. For any ∅ ⊂ R ⊆ [r] and 0 ≤ k ≤ d + ∣R∣ − 1, we have:

gk(FR) ≤ ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣(
nS−d−∣R∣−1+k

k
), and (6.1)

hk(FR) ≤ ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣(
nS−d−∣R∣+k

k
), (6.2)

where nS = ∑i∈S ni. Equalities hold for all 0 ≤ k ≤ ⌊
d+∣R∣−1

2 ⌋ if and only if the Cayley polytope
CR is R-neighborly.

SoCG’15

90 A Geometric Approach for the Upper Bound Theorem for Minkowski Sums

Before proceeding with proving upper bounds for the h-vectors of FR and KR we need to
define the following functions.

I Definition 6.4. Let d ≥ 2, ∅ ⊂ R ⊆ [r], m ≥ 0, 0 ≤ k ≤ d + ∣R∣ − 1, and ni ∈ N, i ∈ R, with
ni ≥ d + 1. We define the functions Φ(m)

k,d (nR) and Ψk,d(nR) via the following conditions:
1. Φ(0)

k,d(nR) = ∑∅⊂S⊆R(−1)∣R∣−∣S∣(
nS−d−∣R∣+k

k
), 0 ≤ k ≤ ⌊

d+∣R∣−1
2 ⌋,

2. Φ(m)

k,d (nR) = Φ(m−1)
k,d (nR) −Φ(m−1)

k−1,d (nR), m > 0,

3. Ψk,d(nR) = ∑∅⊂S⊆R Φ(∣R∣−∣S∣)
k,d (nS),

4. Φ(0)
k,d(nR) = Ψd+∣R∣−1−k,d(nR),

where nR stands for the ∣R∣-dimensional vector whose elements are the values ni, i ∈ R.

Notice that Φ(0)
k,d(nR) and Ψk,d(nR) are well defined, though in a recursive manner (in

the size of R), since for any k > ⌊
d+∣R∣−1

2 ⌋, we have:

Φ(0)
k,d(nR) = Ψd+∣R∣−1−k,d(nR) = ∑

∅⊂S⊆R

Φ(∣R∣−∣S∣)

d+∣R∣−1−k,d(nS)

= Φ(0)
d+∣R∣−1−k,d(nR) + ∑

∅⊂S⊂R

Φ(∣R∣−∣S∣)

d+∣R∣−1−k,d(nS)

= ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣(
nS−k−1
d+∣R∣−1−k) + ∑

∅⊂S⊂R

Φ(∣R∣−∣S∣)

d+∣R∣−1−k,d(nS), (6.3)

where the second sum in (6.3) is to be understood as 0 when ∣R∣ = 1. In other words,
Φ(0)
k,d(nR), and, thus, also Φ(m)

k,d (nR) for any m > 0, is fully defined for some R and any k,
once we know the values Φ(`)

k,d(nS) for all ∅ ⊂ S ⊂ R, for all 0 ≤ k ≤ d + ∣S∣ − 1, and for all
1 ≤ ` ≤ ∣R∣ − 1. Moreover, it is easy to verify that Φ(0)

k,d(nR) satisfies the following recurrence
relation:

Φ(0)
k+1,d(nR) =

nR − d − ∣R∣ + k + 1
k + 1

Φ(0)
k,d(nR)+∑

i∈R

ni
k + 1

Φ(1)
k,d(nR∖{i}), 0 ≤ k < ⌊

d+∣R∣−1
2 ⌋. (6.4)

The next theorem provides upper bounds for the h-vectors of FR and KR, as well as
necessary and sufficient conditions for these upper bounds to be attained.

I Theorem 6.5. For all 0 ≤ k ≤ d + ∣R∣ − 1, we have:
(i) hk(FR) ≤ Φ(0)

k,d(nR),
(ii) hk(KR) ≤ Ψk,d(nR).
Equalities hold for all k if and only if the Cayley polytope CR is Minkowski-neighborly.

Proof. To prove the upper bounds we use recursion on the size of ∣R∣. For ∣R∣ = 1, the
result for both hk(FR) and hk(KR) comes from the UBT for d-polytopes. For ∣R∣ > 1, we
assume that the bounds hold for all S with ∅ ⊂ S ⊂ R, and for all k with 0 ≤ k ≤ d + ∣S∣ − 1.
Furthermore, the upper bound for hk(FR) for k ≤ ⌊

d+∣R∣−1
2 ⌋ is immediate from Theorem 6.3.

To prove the upper bound for hk(KR), 0 ≤ k ≤ ⌊
d+∣R∣−1

2 ⌋, we use the following expansion for
hk(KR) (cf. [1, Lemma 5.14]):

hk(KR) =
⌊
∣R∣
2 ⌋

∑
j=0

∣R∣−2j
∑

s=c−2j−1
∑
S⊆R
∣S∣=s

(
∣R∣ − s

2j
)(hk−2j(FS) −

1
2j + 1 ∑i∈S

hk−2j−1(FS∖{i}))

+

⌊
∣R∣
2 ⌋

∑
j=0

∑
S⊂R

∣S∣=c−2j+1

(
∣R∣ − ∣S∣

2j
)(hk−2j(FS) −

1
2j + 1 ∑i∈S

hk−2j−1(FS∖{i})) ,

(6.5)

M. I. Karavelas and E. Tzanaki 91

where c depends on k, d and ∣R∣. Under the assumption that r < d, it is easy to show that:

hk−2j(FS) −
1

2j + 1 ∑i∈S
hk−2j−1(FS∖{i}) ≤ Φ(0)

k−2j,d(nS) −
1

2j + 1 ∑i∈S
Φ(0)
k−2j−1,d(nS∖{i}). (6.6)

Substituting the upper bound from (6.6) in (6.5), and reversing the derivation logic for (6.5),
we deduce that hk(KR) ≤ Ψk,d(nR).

For k > ⌊
d+∣R∣−1

2 ⌋ we have:

hk(FR) = hd+∣R∣−1−k(KR) ≤ Ψd+∣R∣−1−k,d(nR) = Φ(0)
k,d(nR), and,

hk(KR) = hd+∣R∣−1−k(FR) ≤ Φ(0)
d+∣R∣−1−k,d(nR) = Ψk,d(nR).

The necessary and sufficient conditions are easy consequences of the equality claim in
Theorem 6.3. J

For any d ≥ 2, ∅ ⊂ R ⊆ [r], 0 ≤ k ≤ d + ∣R∣ − 1, and ni ∈ N, i ∈ R, with ni ≥ d + 1, let

Ξk,d(nR) = ∑
∅⊂S⊆R

(−1)∣R∣−∣S∣fk(Cd+∣R∣−1(nS)) +
⌊
d+∣R∣−2

2 ⌋

∑
i=0

(
i

k−d−∣R∣+1+i) ∑
∅⊂S⊂R

Φ(∣R∣−∣S∣)
i,d (nS),

where Cδ(n) stands for the cyclic δ-polytope with n vertices. It is straightforward to verify
that for 0 ≤ k ≤ ⌊

d+∣R∣−1
2 ⌋, Ξk,d(nR) simplifies to ∑∅⊂S⊆R(−1)∣R∣−∣S∣(

nS
k
). We are finally ready

to state and prove the main result of the paper.

I Theorem 6.6. Let P1, . . . , Pr be r d-polytopes, r < d, with n1, . . . , nr vertices respectively.
Then, for all 1 ≤ k ≤ d, we have:

fk−1(P[r]) ≤ Ξk+r,d(n[r]).

Equality holds for all 0 ≤ k ≤ d if and only if the Cayley polytope C[r] of P1, . . . , Pr is
Minkowski-neighborly.

Proof. We start by recalling that:

fk−1(F[r]) =
d+r−1
∑
i=0

(
d+r−1−i
k−i

)hi(F[r]).

In view of Theorem 6.5, the above expression is bounded from above by:

⌊ d+r−1
2 ⌋

∑
i=0

(
d+r−1−i
k−i

)Φ(0)
i,d (n[r]) +

d+r−1
∑

i=⌊ d+r−1
2 ⌋+1

(
d+r−1−i
k−i

)Φ(0)
i,d (n[r]) (6.7)

=

⌊ d+r−1
2 ⌋

∑
i=0

(
d+r−1−i
k−i

)Φ(0)
i,d (n[r]) +

⌊ d+r−2
2 ⌋

∑
i=0

(
i

k−d−r+1+i) ∑
∅⊂R⊆[r]

Φ(r−∣R∣)

i,d (nR) (6.8)

=

d+r−1
2

∑
∗

i=0
((
d+r−1−i
k−i

) + (
i

k−d−r+1+i)) ∑
∅⊂R⊆[r]

(−1)r−∣R∣(
nR−d−r+i

i
)

+

⌊ d+r−2
2 ⌋

∑
i=0

(
i

k−d−r+1+i) ∑
∅⊂R⊂[r]

Φ(r−∣R∣)

i,d (nR) (6.9)

= ∑
∅⊂R⊆[r]

(−1)r−∣R∣fk(Cd+r−1(nR)) +
⌊ d+r−2

2 ⌋

∑
i=0

(
j

k−d−r+1+i) ∑
∅⊂R⊂[r]

Φ(r−∣R∣)

i,d (nR), (6.10)

where to go:

SoCG’15

92 A Geometric Approach for the Upper Bound Theorem for Minkowski Sums

from (6.7) to (6.8) we changed the variable of the second sum from i to d + r − 1 − i, and
used conditions 3 and 4 of Definition 6.4,
from (6.8) to (6.9) we wrote the explicit expression of Φ(0)

i,d (n[r]) from relation (6.3),
from (6.9) to (6.10) we used that the number of (k−1)-faces of a cyclic δ-polytope with n

vertices is ∑
∗
δ
2
i=0 ((

δ−i
k−i

) + (
i

k−δ+i
)) (

n−δ−1+i
i

), where
δ
2

∑
∗

i=0
Ti denotes the sum of the elements

T0, T1, . . . , T⌊ δ2 ⌋ where the last term is halved if δ is even.

Finally, observing that the expression in (6.10) is nothing but Ξk,d(n[r]), and recalling
that fk−1(F[r]) = fk−r(P[r]), we arrive at the upper bound in the statement of the theorem.
The equality claim is immediate from Theorem 6.5. J

7 Tight bound construction

In this section we show that the bounds in Theorem 6.6 are tight. Before getting into the
technical details, we outline our approach. We start by considering the (d−r+1)-dimensional
moment curve, which we embed in r distinct subspaces of Rd. We consider the r copies of the
(d− r + 1)-dimensional moment curve as different curves, and we perturb them appropriately,
so that they become d-dimensional moment-like curves. The perturbation is controlled via a
non-negative parameter ζ, which will be chosen appropriately. We then choose points on
these r moment-like curves, all parameterized by a positive parameter τ , which will again be
chosen appropriately. These points are the vertices of r d-polytopes P1, P2, . . . , Pr, and we
show that, for all ∅ ⊂ R ⊆ [r], the number of (k − 1)-faces of FR, where ∣R∣ ≤ k ≤ ⌊

d+∣R∣−1
2 ⌋,

becomes equal to Ξk,d(nR) for small enough positive values of ζ and τ . Our construction
produces projected prodsimplicial-neighborly polytopes (cf. [13]). For ζ = 0 our polytopes are
essentially the same as those in [13, Theorem 2.6], while for ζ > 0 we get deformed versions
of those polytopes. The positivity of ζ allows us to ensure the tightness of the upper bound
on fk(P[r]), not only for small, but also for large values of k.

At a more technical level, the proof that fk−1(FR) = Ξk,d(nR), for all ∣R∣ ≤ k ≤ ⌊
d+∣R∣−1

2 ⌋,
is performed in two steps. We first consider the cyclic (d − r + 1)-polytopes P̂1, . . . , P̂r,
embedded in appropriate subspaces of Rd. The P̂i’s are the unperturbed, with respect to ζ,
versions of the d-polytopes P1, P2, . . . , Pr (i.e., the polytope P̂i is the polytope we get from Pi,
when we set ζ equal to zero). For each ∅ ⊂ R ⊆ [r] we denote by ĈR the Cayley polytope of
P̂i, i ∈ R, seen as a polytope in Rd, and we focus on the set F̂R of its mixed faces. Recall that
the polytopes P̂i, i ∈ R, are parameterized by the parameter τ ; we show that there exists a
sufficiently small positive value τ⋆ for τ , for which the number of (k − 1)-faces of F̂R is equal
to Ξk,d(nR) for all ∣R∣ ≤ k ≤ ⌊

d+∣R∣−1
2 ⌋. For τ equal to τ⋆, we consider the polytopes P1, P2,

. . . , Pr (with τ set to τ⋆), and show that for sufficiently small ζ (denoted by ζ◊), fk−1(FR)

is equal to Ξk,d(nR).
In the remainder of this section we describe our construction in detail. For each 1 ≤ i ≤ r,

we define the d-dimensional moment-like curve2:

γi(t; ζ) =
i−th coordinate

(ζtd−r+2, . . . , ζtd−r+i, t, ζtd−r+i+2, . . . , ζtd+1, t2, . . . , td−r+1
),

and the d-polytope

2 The curve γi(t; ζ), ζ > 0, is the image under an invertible linear transformation, of the curve γ̂i(t) =
(t, t2, . . . , td−r+i, td−r+i+2, . . . , td+1

). Polytopes whose vertices are n distinct points on this curve are
combinatorially equivalent to the cyclic d-polytope with n vertices.

M. I. Karavelas and E. Tzanaki 93

Pi ∶= conv ({γi(yi,1; ζ), . . . ,γi(yi,ni ; ζ)}) , (7.1)

where the parameters yi,j belong to the sets Yi = {yi,1, . . . , yi,ni}, 1 ≤ i ≤ r, whose elements
are determined as follows. Choose

n[r] + d + r arbitrary real numbers xi,j and Ms, such that:
0 < xi,1 < xi,1 + ε < xi,2 < xi,2 + ε < ⋯ < xi,ni + ε, for 1 ≤ i ≤ r − 1,
0 < xr,1 < xr,1 + ε < xr,2 < xr,2 + ε < ⋯ < xr,nr + ε <M

′
1 < ⋯ <M ′

d+r,
where ε > 0 is sufficiently small and xi,ni < xi+1,1 for all i, and
r non-negative integers β1, β2, . . . , βr, such that β1 > β2 > ⋯ > βr−1 > βr ≥ 0.

We then set yi,j ∶= xi,jτ
βi , ỹi,j ∶= (xi,j + ε)τ

βi and Mi ∶= M ′
iτ
βr , where τ is a positive

parameter. The yi,j ’s, ỹi,j ’s and Mi’s are used to define determinants whose value is positive
for a small enough value of τ . The positivity of these determinants is crucial in defining
supporting hyperplanes for the Cayley polytopes ĈR and CR in Lemmas 7.1 and 7.2 below.

Next, for each 1 ≤ i ≤ r, we define P̂i ∶= limζ→0+ Pi. Clearly, each P̂i is a cyclic (d − r + 1)-
polytope embedded in the (d − r + 1)-flat Fi of Rd, where Fi = {xj = 0 ∣ 1 ≤ j ≤ r and j ≠ i}.
The following lemma establishes the first step towards our construction.

I Lemma 7.1. There exists a sufficiently small positive value τ⋆ for τ , such that, for any
∅ ⊂ R ⊆ [r], the set of mixed faces F̂R of the Cayley polytope of the polytopes P̂1, . . . , P̂r
constructed above, has

fk−1(F̂R) = Ξk,d(nR), ∣R∣ ≤ k ≤ ⌊
d+∣R∣−1

2 ⌋.

Proof. Let Ui be the set of vertices of P̂i for 1 ≤ i ≤ r and set U ∶= ∪ri=1Ui. The objective in
the proof is, for each ∅ ⊂ R ⊆ [r] and each spanning subset U of the partition U = ∪i∈RUi, to
exhibit a supporting hyperplane of the (d+∣R∣−1)-dimensional Cayley polytope ĈR, containing
exactly the vertices in U . In that respect, our approach is similar in spirit to the proof
showing, by defining supporting hyperplanes constructed from Vandermonde determinants,
that the cyclic n-vertex d-polytope Cd(n) is neighborly (see, e.g., [17, Corollary 0.8]).

In our proof we need to involve the parameter ζ before taking the limit ζ → 0+. This is due
to the fact that, when ∅ ⊂ R ⊂ [r], the information of the relative position of the polytopes
P̂i, i ∈ R, is lost if we set ζ = 0 from the very first step. To describe our construction, we
write each spanning subset U of U as the disjoint union of non-empty sets Ui, i ∈ R, where
Ui = U ∩Ui and ∣Ui∣ = κi ≤ ni. For this particular U , we define the linear equation:

HU(x) = lim
ζ→0+

(−1)
∣R∣(∣R∣−1)

2 +σ(R)ζ ∣R∣−rDU(x; ζ), (7.2)

where x = (x1, x2, . . . , xd+∣R∣−1), and DU(x; ζ) is the (d + ∣R∣) × (d + ∣R∣) determinant:
whose first column is (1,x)⊺,
the next κi, i ∈ R, pairs of columns are (1,ei−1,γi(yi,j ; ζ))⊺ and (1,ei−1,γi(ỹi,j ; ζ))⊺

where e0, . . . ,e∣R∣−1 is the standard affine basis of R∣R∣−1, yi,j ∈ {y ∈ Yi ∣ γi(y; 0) ∈ Ui}, and
the last s ∶= d + ∣R∣ − 1 −∑i∈R κi columns are (1,e∣R∣−1,γ ∣R∣−1(Mi; ζ))⊺, 1 ≤ i ≤ s; these
columns exist only if s > 0.

The quantity σ(R) above is a non-negative integer counting the total number of row swaps
required to shift, for all j ∈ [r] ∖R, the (∣R∣ + j)-th row of DU(x; ζ) to the bottom of the
determinant, so that the powers of yi,j in each column are in increasing order (notice that if
R ≡ [r] no such row swaps are required). Moreover, σ(R) depends only on R and not on the
choice of the spanning subset U of U.

The equation HU(x) = 0 is the equation of a hyperplane in Rd+∣R∣−1 that passes through
the points in U . We claim that, for any choice of U , and for all vertices u in U ∖U , we have

SoCG’15

94 A Geometric Approach for the Upper Bound Theorem for Minkowski Sums

HU(u) > 0. To prove our claim, notice first that, for each j ∈ [r] ∖R, the (∣R∣ + j)-th row
of the determinant DU(u; ζ) will contain the parameters yd−r+1+j

i,j , ỹd−r+1+j
i,j and Md−r+1+j

i ,
multiplied by ζ. After extracting ζ from each of these rows and shifting them to their proper
position (i.e., the position where the powers along each column increase), we will have a
term ζr−∣R∣ and a sign (−1)σ(R) (induced from the σ(R) row swaps required altogether).
These terms cancel out with the term (−1)σ(R)ζ ∣R∣−r in (7.2). We can, therefore, transform
HU(u) in the form of the determinant DN(Z;α1, . . . , αm), Z = {zi,j ∣ 1 ≤ i ≤ ρ,1 ≤ j ≤ νi},
N = (ν1, ν2, . . . , νm), 0 ≤ α1 < α2 < ⋯ < αm, shown below:

DN(Z;α1, . . . , αm) ∶= (−1)
ρ(ρ−1)

2

RRR

zα1
1,1 ⋯ zα1

1,ν1
0 ⋯ 0 ⋯ 0 ⋯ 0

0 ⋯ 0 zα1
2,1 ⋯ zα1

2,ν2
⋯ 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

0 ⋯ 0 0 ⋯ 0 ⋯ zα1
ρ,1 ⋯ zα1

ρ,ν1

zα2
1,1 ⋯ zα2

1,ν1
0 ⋯ 0 ⋯ 0 ⋯ 0

0 ⋯ 0 zα2
2,1 ⋯ zα2

2,ν2
⋯ 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

0 ⋯ 0 0 ⋯ 0 ⋯ zα2
ρ,1 ⋯ zα2

ρ,νn

zα3
1,1 ⋯ zα3

1,ν1
zα3

2,1 ⋯ zα3
2,ν2

⋯ zα3
n,1 ⋯ zα3

n,νn

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

zαm1,1 ⋯ zαm1,ν1
zαm2,1 ⋯ zαm2,ν2

⋯ zαmρ,1 ⋯ zαmρ,νn

RRR

,

by means of the following determinant transformations:
1. By subtracting rows 2 to ∣R∣ of HU(u) from its first row.
2. By shifting the first column of HU(u) to the right, so that all columns of HU(u) are

arranged in increasing order with respect to their parameters zi,j . Clearly, this can be
done with an even number of column swaps.

The determinant DN(Z;α1, . . . , αm) is strictly positive for all τ between 0 and some value
τ̂(R,U,u), that, depends (only) on the choice of R, U and u. Since there is a finite
number of possible such determinants, the value τ̂⋆ ∶= minR,U,u τ̂(R,U,u) is necessarily
positive. Choosing some τ⋆ ∈ (0, τ̂⋆) makes all these determinants simultaneously positive;
this completes our proof. J

The following lemma establishes the second (and last) step of our construction.

I Lemma 7.2. There exists a sufficiently small positive value ζ◊ for ζ, such that, for any
∅ ⊂ R ⊆ [r], the set FR of mixed faces of the Cayley polytope CR of the polytopes P1, . . . , Pr
in (7.1) has

fk−1(FR) = Ξk,d(nR), for all ∣R∣ ≤ k ≤ ⌊
d+∣R∣−1

2 ⌋.

Proof. Briefly speaking, the value ζ◊ is determined by replacing the limit ζ → 0+ in the
previous proof, by a specific value of ζ for which the determinants we consider are positive.

More precisely, let Ui be the set of vertices of Pi, 1 ≤ i ≤ r, and set U ∶= ∪ri=1Ui. Our goal
is, for each ∅ ⊂ R ⊆ [r] and each spanning subset U of the partition U = ∪i∈RUi, to exhibit a
supporting hyperplane of the Cayley polytope CR, containing exactly the vertices in U . To
this end, we define the hyperplane H̃U(x; ζ) = 0, x = (x1, x2, . . . , xd+∣R∣−1), with

H̃U(x; ζ) = (−1)
∣R∣(∣R∣−1)

2 +σ(R)ζ ∣R∣−rDU(x; ζ), ζ > 0, (7.3)

where DU(x; ζ) is the determinant in the proof of Lemma 7.1, where we have set τ to τ⋆.
Clearly, for each u ∈ U ∖ U , we have limζ→0+ H̃U(u; ζ) = HU(u) > 0. This immediately
implies that for each combination of R, U and u there exists a value ζ̂(R,U,u) such that,

M. I. Karavelas and E. Tzanaki 95

for all ζ ∈ (0, ζ̂(R,U,u)), H̃U(u; ζ) > 0. Since the number of possible combinations for R, U
and u is finite, the minimum ζ̂◊ ∶= minR,U,u{ζ̂(R,U,u)} is well defined and positive. Taking
ζ◊ to be any value in (0, ζ̂◊), satisfies our demands. J

Acknowledgments. The authors would like to thank Christos Konaxis for useful discussions
and comments on earlier versions of this paper, as well as Vincent Pilaud for discussions
related to the tightness construction presented in the paper.

References
1 Karim A. Adiprasito and Raman Sanyal. Relative Stanley-Reisner theory and Upper Bound

Theorems for Minkowski sums, 2014. arXiv:1405.7368v3 [math.CO].
2 G. Ewald and G. C. Shephard. Stellar Subdivisions of Boundary Complexes of Convex

Polytopes. Mathematische Annalen, 210:7–16, 1974.
3 Günter Ewald. Combinatorial Convexity and Algebraic Geometry. Graduate Texts in

Mathematics. Springer, 1996.
4 Efi Fogel, Dan Halperin, and Christophe Weibel. On the Exact Maximum Complexity of

Minkowski Sums of Polytopes. Discrete Comput. Geom., 42:654–669, 2009.
5 Komei Fukuda and Christophe Weibel. f -vectors of Minkowski Additions of Convex Poly-

topes. Discrete Comput. Geom., 37(4):503–516, 2007.
6 R. L. Graham, M. Grotschel, and L. Lovasz. Handbook of Combinatorics, volume 2. MIT

Press, North Holland, 1995.
7 Peter Gritzmann and Bernd Sturmfels. Minkowski Addition of Polytopes: Computational

Complexity and Applications to Gröbner bases. SIAM J. Disc. Math., 6(2):246–269, 1993.
8 Birkett Huber, Jörg Rambau, and Francisco Santos. The Cayley Trick, lifting subdivisions

and the Bohne-Dress theorem on zonotopal tilings. J. Eur. Math. Soc., 2(2):179–198, 2000.
9 Menelaos I. Karavelas, Christos Konaxis, and Eleni Tzanaki. The maximum number of

faces of the Minkowski sum of three convex polytopes. J. Comput. Geom., 6(1):21–74,
2015.

10 Menelaos I. Karavelas and Eleni Tzanaki. The maximum number of faces of the Minkowski
sum of two convex polytopes. In Proceedings of the 23rd ACM-SIAM Symposium on Dis-
crete Algorithms (SODA’12), pages 11–28, 2012.

11 Menelaos I. Karavelas and Eleni Tzanaki. A geometric approach for the upper bound
theorem for Minkowski sums of convex polytopes, 2015. arXiv:1502.02265v2 [cs.CG].

12 Jiří Matoušek. Lectures on Discrete Geometry. Graduate Texts in Mathematics. Springer-
Verlag New York, Inc., New York, 2002.

13 B. Matschke, J. Pfeifle, and V. Pilaud. Prodsimplicial-neighborly polytopes. Discrete
Comput. Geom., 46(1):100–131, 2011.

14 P. McMullen. The maximum numbers of faces of a convex polytope. Mathematika, 17:179–
184, 1970.

15 Raman Sanyal. Topological obstructions for vertex numbers of Minkowski sums. J. Comb.
Theory, Ser. A, 116(1):168–179, 2009.

16 Christophe Weibel. Maximal f-vectors of Minkowski Sums of Large Numbers of Polytopes.
Discrete Comput. Geom., 47(3):519–537, 2012.

17 Günter M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995.

SoCG’15

http://arxiv.org/abs/1405.7368v3
http://arxiv.org/abs/1502.02265v2

Two Proofs for Shallow Packings
Kunal Dutta1, Esther Ezra2, and Arijit Ghosh1

1 D1: Algorithms & Complexity
Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
{kdutta,agosh}@mpi-inf.mpg.de

2 Department of Computer Science and Engineering
Polytechnic Institute of NYU, Brooklyn, NY 11201-3840, USA; and
School of Mathematics
Georgia Institute of Technology, Atlanta, Georgia 30332, USA
esther@courant.nyu.edu

Abstract
We refine the bound on the packing number, originally shown by Haussler, for shallow geometric
set systems. Specifically, let V be a finite set system defined over an n-point set X; we view
V as a set of indicator vectors over the n-dimensional unit cube. A δ-separated set of V is
a subcollection W, s.t. the Hamming distance between each pair u,v ∈ W is greater than δ,
where δ > 0 is an integer parameter. The δ-packing number is then defined as the cardinality
of the largest δ-separated subcollection of V. Haussler showed an asymptotically tight bound
of Θ((n/δ)d) on the δ-packing number if V has VC-dimension (or primal shatter dimension) d.
We refine this bound for the scenario where, for any subset, X ′ ⊆ X of size m ≤ n and for
any parameter 1 ≤ k ≤ m, the number of vectors of length at most k in the restriction of V
to X ′ is only O(md1kd−d1), for a fixed integer d > 0 and a real parameter 1 ≤ d1 ≤ d (this
generalizes the standard notion of bounded primal shatter dimension when d1 = d). In this case
when V is “k-shallow” (all vector lengths are at most k), we show that its δ-packing number is
O(nd1kd−d1/δd), matching Haussler’s bound for the special cases where d1 = d or k = n. We
present two proofs, the first is an extension of Haussler’s approach, and the second extends the
proof of Chazelle, originally presented as a simplification for Haussler’s proof.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Computations
on discrete structures, Geometrical problems and computations, F.1.2 [Modes of Computation]
Probabilistic computation

Keywords and phrases Set systems of bounded primal shatter dimension, δ-packing and Haussler’s
approach, relative approximations, Clarkson-Shor random sampling approach

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.96

1 Introduction

Let V be a set system defined over an n-point set X. We follow the notation in [19], and view
V as a set of indicator vectors in Rn, that is, V ⊆ {0, 1}n. Given a subsequence of indices
(coordinates) I = (i1, . . . , ik), 1 ≤ ij ≤ n, k ≤ n, the projection V|I of V onto I (also referred
to as the restriction of V to I) is defined as

V|I = {(vi1 , . . . ,vik) | v = (v1, . . . ,vn) ∈ V} .

With a slight abuse of notation we write I ⊆ [n] to state the fact that I is a subsequence of
indices as above. We now recall the definition of the primal shatter function of V:

© Kunal Dutta, Esther Ezra, and Arijit Ghosh;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 96–110

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.96
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

K. Dutta, E. Ezra, and A. Ghosh 97

I Definition 1 (Primal Shatter Function [21, 27]). The primal shatter function of V ⊆ {0, 1}n
is a function, denoted by πV, whose value at m is defined by πV(m) = maxI⊆[n],|I|=m |V|I |. In
other words, πV(m) is the maximum possible number of distinct vectors of V when projected
onto a subsequence of m indices.

From now on we say that V ⊆ {0, 1}n has primal shatter dimension d if πV(m) ≤ Cmd,
for all m ≤ n, where d > 1 and C > 0 are constants. A notion closely related to the primal
shatter dimension is that of the VC-dimension:

I Definition 2 (VC-dimension [19, 32]). An index sequence I = (i1, . . . , ik) is shattered by V

if V|I = {0, 1}k. The VC-dimension of V, denoted by d0 is the size of the longest sequence I
shattered by V. That is, d0 = max{k | ∃I = (i1, i2, . . . , ik), 1 ≤ ij ≤ n, with V|I = {0, 1}k}.

The notions of primal shatter dimension and VC-dimension are interrelated. By the
Sauer-Shelah Lemma (see [29, 31] and the discussion below) the VC-dimension of a set
system V always bounds its primal shatter dimension, that is, d ≤ d0. On the other hand,
when the primal shatter dimension is bounded by d, the VC-dimension d0 does not exceed
O(d log d) (which is straightforward by definition, see, e.g., [16]).

A typical family of set systems that arise in geometry with bounded primal shatter (resp.,
VC-) dimension consists of set systems defined over points in some low-dimensional space
Rd, where V represents a collection of certain simply-shaped regions, e.g., halfspaces, balls,
or simplices in Rd. In such cases, the primal shatter (and VC-) dimension is a function of d;
see, e.g., [16] for more details. When we flip the roles of points and regions, we obtain the
so-called dual set systems (where we refer to the former as primal set systems). In this case,
the ground set is a collection S of algebraic surfaces in Rd, and V corresponds to faces of
all dimensions in the arrangement A(S) of S, that is, this is the decomposition of Rd into
connected open cells of dimensions 0, 1, . . . , d induced by S. Each cell is a maximal connected
region that is contained in the intersection of a fixed number of the surfaces and avoids
all other surfaces; in particular, the 0-dimensional cells of A(S) are called “vertices”, and
d-dimensional cells are simply referred to as “cells”; see [30] for more details. The distinction
between primal and dual set systems in geometry is essential, and set systems of both kinds
appear in numerous geometric applications, see, once again [16] and the references therein.

δ-packing

The length ‖v‖ of a vector v ∈ V under the L1 norm is defined as
∑n
i=1 |vi|, where vi is the

ith coordinate of v, i = 1, . . . , n. The distance ρ(u,v) between a pair of vectors u,v ∈ V is
defined as the L1 norm of the difference u− v, that is, ρ(u,v) =

∑n
i=1 |ui − vi|. In other

words, it is the symmetric difference distance between the corresponding sets represented by
u, v.

Let δ > 0 be an integer parameter. We say that a subset of vectors W ⊆ {0, 1}n is
δ-separated if for each pair u,v ∈W, ρ(u,v) > δ. The δ-packing number for V, denote it by
M(δ,V), is then defined as the cardinality of the largest δ-separated subset W ⊆ V. A key
property, originally shown by Haussler [19] (see also [8, 9, 11, 27, 33]), is that set systems of
bounded primal shatter dimension admit small δ-packing numbers. That is:

I Theorem 3 (Packing Lemma [19, 27]). Let V ⊆ {0, 1}n be a set of indicator vectors of primal
shatter dimension d, and let 1 ≤ δ ≤ n be an integer parameter. Then M(δ,V) = O((n/δ)d),
where the constant of proportionality depends on d.

We note that in the original formulation in [19] the assumption is that the set system has
a finite VC-dimension. However, its formulation in [27], which is based on a simplification of

SoCG’15

98 Two Proofs for Shallow Packings

the analysis of Haussler by Chazelle [8], relies on the assumption that the primal shatter
dimension is d, which is the actual bound that we state in Theorem 3. We also comment
that a closer inspection of the analysis in [19] shows that this assumption can be replaced
with that of having bounded primal shatter dimension (independent of the analysis in [8]).
We describe these considerations in Section 2.1.

Previous work. In his seminal work, Dudley [11] presented the first application of chaining,
a proof technique due to Kolmogorov, to empirical process theory, where he showed the
bound O((n/δ)d0 logd0 (n/δ)) on M(δ,V), with a constant of proportionality depending
on the VC-dimension d0 (see also previous work by Haussler [18] and Pollard [28] for an
alternative proof and a specification of the constant of proportionality). This bound was later
improved by Haussler [19], who showed M(δ,V) ≤ e(d0 +1)

(2en
δ

)d0 (see also Theorem 3), and
presented a matching lower bound, which leaves only a constant factor gap, which depends
exponentially in d0. In fact, the aforementioned bounds are more general, and can also be
applied to classes of real-valued functions of finite “pseudo-dimension” (the special case of
set systems corresponds to Boolean functions), see, e.g., [18], however, we do not discuss this
generalization in this paper and focus merely on set systems V of finite primal shatter (resp.,
VC-) dimension.

The bound of Haussler [19] (Theorem 3) is in fact a generalization of the so-called
Sauer-Shelah Lemma [29, 31], asserting that |V| ≤ (en/d0)d0 , where e is the base of the
natural logarithm, and thus this bound is O(nd0). Indeed, when δ = 1, the corresponding
δ-separated set should include all vectors in V, and then the bound of Haussler [19] becomes
O(nd0), matching the Sauer-Shelah bound up to a constant factor that depends on d0.

There have been several studies extending Haussler’s bound or improving it in some
special scenarios. We name only a few of them. Gottlieb et al. [15] presented a sharpening of
this bound when δ is relatively large, i.e., δ is close to n/2, in which case the vectors are
“nearly orthogonal”. They also presented a tighter lower bound, which considerably simplifies
the analysis of Bshouty et al. [6], who achieved the same tightening.

A major application of packing is in obtaining improved bounds on the sample complexity
in machine learning. This was studied by Li et al. [22] (see also [18]), who presented an
asymptotically tight bound on the sample complexity, in order to guarantee a small “relative
error.” This problem has been revisited by Har-Peled and Sharir [17] in the context of
geometric set systems, where they referred to a sample of the above kind as a “relative
approximation”, and showed how to integrate it into an approximate range counting machinery,
which is a central application in computational geometry. The packing number has also been
used by Welzl [33] in order to construct spanning trees of low crossing number (see also [27])
and by Matoušek [26, 27] in order to obtain asymptotically tight bounds in geometric
discrepancy.

Our result

In the sequel, we refine the bound in the Packing Lemma (Theorem 3) so that it becomes
sensitive to the length of the vectors v ∈ V, based on an appropriate refinement of the
underlying primal shatter function. This refinement has several geometric realizations. Our
ultimate goal is to show that when the set system is “shallow” (that is, the underlying vectors
are short), the packing number becomes much smaller than the bound in Theorem 3.

Nevertheless, we cannot always enforce such an improvement, as in some settings the
worst-case asymptotic bound on the packing number is Ω((n/δ)d) even when the set system
is shallow; see [14] for an example.

K. Dutta, E. Ezra, and A. Ghosh 99

Therefore, in order to obtain an improvement on the packing number of shallow set
systems, we may need further assumptions on the primal shatter function. Such assumptions
stem from the random sampling technique of Clarkson and Shor [10], which we define as
follows. Let V be our set system. We assume that for any sequence I of m ≤ n indices,
and for any parameter 1 ≤ k ≤ m, the number of vectors in V|I of length at most k is only
O(md1kd−d1), where d is the primal shatter dimension and 1 ≤ d1 ≤ d is a real parameter.1
When k = m we obtain O(md) vectors in total, in accordance with the assumption that the
primal shatter dimension is d, but the above bound is also sensitive to the length of the
vectors as long as d1 < d. From now on, we say that a primal shatter function of this kind
has the (d, d1) Clarkson-Shor property.

Let us now denote by M(δ, k,V) the δ-packing number of V, where the vector length of
each element in V is at most k, for some integer parameter 1 ≤ k ≤ n. By these assumptions,
we can assume, without loss of generality, that k ≥ δ/2, as otherwise the distance between
any two elements in V must be strictly less than δ, in which case the packing is empty. In
Sections 2– 3 we present two proofs for our main result, stated below:

I Theorem 4 (Shallow Packing Lemma). Let V ⊆ {0, 1}n be a set of indicator vectors, whose
primal shatter function has a (d, d1) Clarkson-Shor property, and whose VC-dim is d0. Let
δ ≥ 1 be an integer parameter, and k an integer parameter between 1 and n, and suppose
that k ≥ δ/2. Then:

M(δ, k,V) = O

(
nd1kd−d1

δd

)
,

where the constant of proportionality depends on d (and d0).

This problem has initially been addressed by the second author in [13] as a major tool to
obtain size-sensitive discrepancy bounds in set systems of this kind, where it has been shown
M(δ, k,V) = O

(
nd1kd−d1 logd (n/δ)

δd

)
. The analysis in [13] is a refinement over the technique

of Dudley [11] combined with the existence of small-size relative approximations (see [13]
for more details). In the current analysis we completely remove the extra logd (n/δ) factor
appearing in the previous bound. In particular, when d1 = d (where we just have the original
assumption on the primal shatter function) or k = n (in which case each vector in V has
an arbitrary length), our bound matches the tight bound of Haussler, and thus appears as
a generalization of the Packing Lemma (when replacing VC-dimension by primal shatter
dimension). We present two proofs for Theorem 4, the first is an extension of Haussler’s
approach (Section 2), and the second is an extension of Chazelle’s proof [8] to the Packing
Lemma (Section 3).

2 First Proof: Refining Haussler’s Approach

2.1 Preliminaries
Overview of Haussler’s Approach

For the sake of completeness, we repeat some of the details in the analysis of Haussler [19]
and use similar notation for ease of presentation.

Let V ⊆ {0, 1}n be a collection of indicator vectors of bounded primal shatter dimension
d, and denote its VC-dimension by d0. By the discussion above, d0 = O(d log d). From now

1 We ignore the cases where d1 < 1, as it does not seem to appear in natural set systems – see below.

SoCG’15

100 Two Proofs for Shallow Packings

on we assume that V is δ-separated, and thus a bound on |V| is also a bound on the packing
number of V. The analysis in [19] exploits the method of “conditional variance” in order to
conclude

|V| ≤ (d0 + 1) ExpI
[
|V|I |

]
= O

(
d log dExpI

[
|V|I |

])
, (1)

where ExpI
[
|V|I |

]
is the expected size of V when projected onto a subset I = {i1, . . . , im−1}

of m− 1 indices chosen uniformly at random without replacements from [n], and

m :=
⌈

(2d0 + 2)(n+ 1)
δ + 2d0 + 2

⌉
= O

(
d0n

δ

)
= O

(
nd log d

δ

)
. (2)

See a preliminary version of this paper for details, as well as the facts that m ≤ n and I
consists of precisely m− 1 indices [14, Appendix B].

Moreover, we refine Haussler’s analysis to include two natural extensions (see [14, Ap-
pendix B] for details): (i) Obtain a refined bound on ExpI

[
|V|I |

]
: This extension is a direct

consequence of Inequality (1). In the analysis of Haussler ExpI
[
|V|I |

]
is replaced by its upper

bound O(md), resulting from the fact that the primal shatter dimension of V (and thus of
V|I) is d, from which we obtain that for any choice of I, |V|I | = O((m−1)d) = O(md), with a
constant of proportionality that depends on d, and thus the packing number is O((n/δ)d), as
asserted in Theorem 3.2 However, in our analysis we would like to have a more subtle bound
on the actual expected value of |V|I |. In fact, the scenario imposed by our assumptions on
the set system eventually yields a much smaller bound on the expectation of |V|I |, and thus
on |V|. We review this in more detail below. (ii) Relaxing the bound on m. We show that
Inequality (1) is still applicable when the sample I is slightly larger than the bound in (2), as
a stand alone relation, this may result in a suboptimal bound on |V|, however, this property
will assist us to obtain local improvements over the bound on |V|, eventually yielding the
bound in Theorem 4. Specifically, in our analysis we proceed in iterations, where at the first
iteration we obtain a preliminary bound on |V| (Corollary 6), and then, at each subsequent
iteration j > 1, we draw a sample Ij of mj − 1 indices where

mj := m log(j) (n/δ) = O

(
d0n log(j) (n/δ)

δ

)
, (3)

m is our choice in (2), and log(j)(·) is the jth iterated logarithm function. Then, by a
straightforward generalization of Haussler’s analysis (described in [14, Appendix B]), we
obtain, for each j = 2, . . . , log∗ (n/δ):

|V| ≤ (d0 + 1) ExpIj

[
|V|Ij
|
]
. (4)

We note that since the bounds (1)–(4) involve a dependency on the VC-dimension d0, we
will sometimes need to explicitly refer to this parameter

in addition to the primal shatter dimension d. Nevertheless, throughout the analysis we
exploit the relation d ≤ d0 = O(d log d), mentioned in Section 1.

2 We note, however, that the original analysis of Haussler [19] does not rely on the primal shatter
dimension, and the bound on ExpI

[
|V|I |

]
is just O(md0) due to the Sauer-Shelah Lemma.

K. Dutta, E. Ezra, and A. Ghosh 101

2.2 Overview of the approach.

We next present the proof of Theorem 4. In what follows, we assume that V is δ-separated.
We first recall the assumption that the primal shatter function of V has a (d, d1) Clarkson-
Shor property, and that the length of each vector v ∈ V under the L1 norm is most k. This
implies that V consists of at most O(nd1kd−d1) vectors.

Since the Clarkson-Shor property is hereditary, then this also applies to any projection of
V onto a subset of indices, implying that the bound on |V|I | is at most O(md1kd−d1), where
I is a subset of m− 1 indices as above. However, due to our sampling scheme we expect that
the length of each vector in V|I should be much smaller than k, (e.g., in expectation this
value should not exceed k(m− 1)/n), from which we may conclude that the actual bound
on |V|I | is smaller than the trivial bound O(md1kd−d1). Ideally, we would like to show that
this bound is O(md1(km/n)d−d1) = O(nd1kd−d1/δd), which matches our asymptotic bound
in Theorem 4 (recall that m = O(n/δ)). However, this is likely to happen only in case where
the length of each vector in V|I does not exceed its expected value, or that there are only
a few vectors whose length deviates from its expected value by far, whereas, in the worst
case there might be many leftover “long” vectors in V|I . Nevertheless, our goal is to show
that, with some carefulness one can proceed in iterations, where initially I is a slightly larger
sample, and then at each iteration we reduce its size, until eventually it becomes O(m) and
we remain with only a few long vectors. At each such iteration V|I is a random structure
that depends on the choice of I and may thus contain long vectors, however, in expectation
they will be scarce!

Specifically, we proceed over at most log∗ (n/δ) iterations, where we perform local
improvements over the bound on |V|, as follows. Let |V|(j) be the bound on |V| after the
jth iteration is completed, 1 ≤ j ≤ log∗ (n/δ). We first show in Corollary 6 that for the
first iteration, |V| ≤ |V|(1) = O

(
nd1kd−d1 logd (n/δ)

δd

)
, with a constant of proportionality that

depends on d. Then, at each further iteration j ≥ 2, we select a set Ij of mj − 1 =
O(n log(j) (n/δ)/δ) indices uniformly at random without replacements from [n] (see (3) for
the bound on mj). Our goal is to bound ExpIj

[
|V|Ij
|
]
using the bound |V|(j−1), obtained

at the previous iteration, which, we assume by induction to be O
(
nd1kd−d1 (log(j−1) (n/δ))d

δd

)
(note that the actual constant of proportionality in our recursive scheme is 1, see Lemma 8),
where the base case j = 2 is shown in Corollary 6.

A key property in the analysis is then to show that the probability that the length of
a vector v ∈ V|Ij

(after the projection of V onto Ij) deviates from its expectation decays
exponentially (Lemma 7). Note that in our case this expectation is at most k(mj − 1)/n.
This, in particular, enables us to claim that in expectation the overall majority of the
vectors in V|Ij

have length at most O(k(mj − 1)/n), whereas the remaining longer vectors
are scarce. Specifically, since the Clarkson-Shor property is hereditary, we apply it to
V|Ij

and conclude that the number of its vectors of length at most O(k(mj − 1)/n) is

only O
(
nd1kd−d1 (log(j) (n/δ))d

δd

)
, with a constant of proportionality that depends on d. On

the other hand, due to Lemma 7 and our inductive hypothesis, the number of longer
vectors does not exceed O

(
nd1kd−d1

δd

)
, which is dominated by the first bound. We thus

conclude ExpIj

[
|V|Ij
|
]

= O
(
nd1kd−d1 (log(j) (n/δ))d

δd

)
. Then we apply Inequality (4) in order

to complete the inductive step, whence we obtain the bound on |V|(j), and thus on |V|. These
properties are described more rigorously in Lemma 8, where derive a recursive inequality
for |V|(j) using the bound on ExpIj

[
|V|Ij
|
]
. We emphasize the fact that the sample Ij is

SoCG’15

102 Two Proofs for Shallow Packings

always chosen from the original ground set [n], and thus, at each iteration we construct a
new sample from scratch, and then exploit our observation in (4).

In what follows, we also assume that δ ≤ n/2(d0+1) (where d0 is the VC-dim), as otherwise
the bound on the packing number is a constant that depends on d and d0 by the Packing
Lemma (Theorem 3). This assumption is crucial for the recursive analysis presented in this
section – see below.

2.3 The First Iteration

In order to show our bound on |V(1)|, we form a subset I1 = (i1, . . . , im1) of m1 = |I1| =
O
(
dn log (n/δ)

δ

)
indices3 with the following two properties: (i) each vector in V is mapped to a

distinct vector in V|I1
, and (ii) the length of each vector in V|I1

does not exceed O(k ·m1/n).

I Lemma 5. A sample I1 as above satisfies properties (i)–(ii), with probability at least 1/2.

A set I1 as above exists by the considerations in [13]. See also a preliminray version of
this paper for further details [14, Appendix C].

We next apply Lemma 5 in order to bound |V|I1
|. We first recall that the (d, d1) Clarkson-

Shor property of the primal shatter function of V is hereditary. Incorporating the bound on
m1 and property (ii), we conclude that

|V|I1
| = O

(
md1

1

(
km1

n

)d−d1
)

= O

(
nd1kd−d1 logd (n/δ)

δd

)
,

with a constant of proportionality that depends on d. Now, due to property (i), |V| ≤ |V|I1
|,

we thus conclude:

I Corollary 6. After the first iteration we have: |V| ≤ |V|(1) = O
(
nd1kd−d1 logd (n/δ)

δd

)
, with

a constant of proportionality that depends on d.

I Remark. We note that the preliminary bound given in Corollary 6 is crucial for the analysis,
as it constitutes the base for the iterative process described in Section 2.4. In fact, this step
of the analysis alone bypasses our refinement to Haussler’s approach, and instead exploits
the approach of Dudley [11].

2.4 The Subsequent Iterations: Applying the Inductive Step

Let us now fix an iteration j ≥ 2. As noted above, we assume by induction on j that the
bound |V|(j−1) on |V| after the (j − 1)th iteration is O

(
nd1kd−d1 (log(j−1) (n/δ))d

δd

)
. Let Ij be a

subset of mj − 1 indices, chosen uniformly at random without replacements from [n], with
mj given by (3). Let v ∈ V, and denote by v|Ij

its projection onto Ij . The expected length
Exp[‖v|Ij

‖] of v|Ij
is at most k(mj − 1)/n = O(d0k log(j) (n/δ)/δ). We next show (see a

preliminary version of this paper [14, Appendix D] for the proof):

3 In this particular step we use a different machinery than that of Haussler [19]; see the proof of Lemma 5
and our remark after Corollary 6. Therefore, |I1| = m1, rather than m1 − 1. Furthermore, the constant
of proportionality in the bound on m1 depends just on the primal shatter dimension d instead of the
VC-dimension d0 as in (3).

K. Dutta, E. Ezra, and A. Ghosh 103

I Lemma 7 (Exponential Decay Lemma).

Prob
[
‖v|Ij

‖ ≥ t · k(mj − 1)
n

]
< 2−tk(mj−1)/n,

where t ≥ 2e is a real parameter and e is the base of the natural logarithm.

We now proceed as follows. Recall that we assume k ≥ δ/2, and by (3) we have
mj = O

(
d0n log(j) (n/δ)

δ

)
. it follows from Lemma 7 that

Prob
[
‖v|Ij

‖ ≥ C · k(mj − 1)
n

]
<

1
(log(j−1) (n/δ))D

, (5)

where C ≥ 2e is a sufficiently large constant, and D > d0 is another constant whose choice
depends on C and d0, and can be made arbitrarily large. Since d0 ≥ d we obviously have
D > d. We next show:

I Lemma 8. Under the assumption that k ≥ δ/2, we have, at any iteration j ≥ 2:

|V|(j) ≤ A(d0 + 1) · n
d1kd−d1(log(j) (n/δ))d

δd
+ (d0 + 1) · |V|(j−1)

(log(j−1) (n/δ))D
, (6)

where |V|(l) is the bound on |V| after the lth iteration, and A > 0 is a constant that depends
on d (and d0) and the constant of proportionality determined by the Clarkson-Shor property
of V.

Proof. We in fact show:

ExpIj

[
|V|Ij
|
]
≤ A · n

d1kd−d1(log(j) (n/δ))d

δd
+ |V|(j−1)

(log(j−1) (n/δ))D
,

and then exploit the relation |V| ≤ (d0 + 1) ExpIj

[
|V|Ij
|
]
(Inequality (4)), in order to

prove (6).
In order to obtain the first term in the bound on ExpIj

[
|V|Ij
|
]
, we consider all vectors

of length at most C · k(mj−1)
n (where C ≥ 2e is a sufficiently large constant as above) in

the projection of V onto a subset Ij of mj − 1 indices (in this part of the analysis Ij can
be arbitrary). Since the primal shatter function of V has a (d, d1) Clarkson-Shor property,
which is hereditary, we obtain at most

O(mj
d1(k(mj − 1)/n)d−d1) = O

(
nd1kd−d1(log(j) (n/δ))d

δd

)

vectors in V|Ij
of length smaller than C · k(mj−1)

n = O(k log(j) (n/δ)
δ). It is easy to verify that

the constant of proportionality A in the bound just obtained depends on d, d0, and the
constant of proportionality determined by the Clarkson-Shor property of V.

Next, in order to obtain the second term, we consider the vectors v ∈ V that are mapped
to vectors v|Ij

∈ V|Ij
with ‖v|Ij

‖ > C · k(mj−1)
n . By Inequality (5):

Exp
[∣∣∣∣{v ∈ V | ‖v|Ij

‖ > C · k(mj − 1)
n

}∣∣∣∣] < |V|
(log(j−1) (n/δ))D

,

and recall that |V|(j−1) is the bound on |V| after the previous iteration j − 1. This completes
the proof of the lemma. J

SoCG’15

104 Two Proofs for Shallow Packings

I Remark. We note that the bound on ExpIj

[
|V|Ij
|
]
consists of the worst-case bound on

the number of short vectors of length at most C ·k(mj−1)/n, obtained by the Clarkson-Shor
property, plus the expected number of long vectors.

Wrapping up. We now complete the analysis and solve Inequality (6). Our initial assump-
tion that δ ≤ n/2(d0+1), and the fact that D > d is sufficiently large, imply that the coefficient
of the recursive term is smaller than 1, for any 2 ≤ j ≤ 1 + log∗ (n/δ)− log∗ (d0 + 1).4 Then,
using induction on j, one can verify that the solution is

|V|(j) ≤ 2A(d0 + 1)n
d1kd−d1(log(j) (n/δ))d

δd
, (7)

for any 2 ≤ j ≤ 1 + log∗ (n/δ)− log∗ (d0 + 1).
We thus conclude |V|(j) = O

(
nd1kd−d1 (log(j) (n/δ))d

δd

)
. In particular, at the termination of

the last iteration j∗ = 1 + log∗ (n/δ)− log∗ (d0 + 1), we obtain:

|V| ≤ |V|(j
∗) = O

(
nd1kd−d1

δd

)
,

with a constant of proportionality that depends on d (and d0). This at last completes the
proof of Theorem 4.

3 Second Proof: Refining Chazelle’s Approach

In this section, we shall prove a size-sensitive version of Haussler’s upper bound for δ-
separated systems in set-systems of bounded primal shatter dimension building on Chazelle’s
presentation of Haussler’s proof, (which has been described by Matoušek as “a magician’s
trick") as explained in [27]. By Haussler’s result [19], we know that M = O(n/δ)d =
(n/δ)d1(l/δ)d2 .g(n, l, δ)d, where g(n, l, d) = O((n/l)d2). We would like to show the optimum
upper bound for g is independent of n, l. We shall show that the optimal bound (up to
constants) is in fact, g = c∗, where c∗ is the fixed point of f(x) = c′ log x, with c′ > 1
independent of n, l, δ.

Intuition

We provide some intuition for our extension of the Haussler/Chazelle proof below (at least to
the reader familiar with it). A naïve attempt to extend Chazelle’s proof to shallow packings,
fails, because (as in the previous proof), one chooses a random subsequence I, and estimates
the number of projections on I, caused by δ-packed vectors of bounded size. For a given
vector, its projection on I can be much larger than expected. However, we shall choose A′
in a way that the number of such “bad" vectors, is at most a constant times their expected
number. This allows us to get the final bound in a single iteration.

Details

Before we give the details of the second proof, we will need the definition of unit distance
graph of a set system which will play central role in the proof of the theorem.

4 We observe that 2 ≤ 1+log∗ (n/δ)−log∗ (d0 + 1) ≤ log∗ (n/δ), due to our assumption that δ ≤ n/2(d0+1),
and the fact that d0 ≥ 1.

K. Dutta, E. Ezra, and A. Ghosh 105

I Definition 9 (Unit distance graph). For a set system V, unit distance graph UD(V) is a
graph with vertex set V and a pair {v1, v2} is an edge if ρ(v1,v2) = 1.

Consider a random subsequence of indices I = (i1, . . . , is) where each i ∈ [n] is selected
with probability p = 36d0K

δ , where K ≥ 1 is a parameter to be fixed later. Define V1 := V|I .
Consider the unit distance graph UD(V1). For each set v1 ∈ V1, define the weight of v1 as:
w(v1) := #{v ∈ V : v|I = v1}. Observe that∑

v1∈V1

w(v1) = M(δ, k,V).

Let E be the edge set of UD(V1). Now define the weight of an edge e = {v1,v′1} ∈ E as
w(e) := min(w(v1), w(v′1)). Let W :=

∑
e∈E w(e). We claim that

I Lemma 10. W ≤ 2d0
∑

v1∈V1
w(v1) = 2d0M(δ, k,V).

Proof. The proof is based on the following lemma, proved by Haussler [19] for set systems
with bounded VC-dimension. The following version appears in Matoušek’s book [27]:

I Lemma 11 ([19]). Let V be a set-system with VC-dimension d0. Then the unit-distance
graph UD(V) has at most d0|V| edges.

Since the VC-dimension of V1 is bounded by d0 from the hereditary property of VC-dimension,
the lemma implies that there exists a vertex v1 ∈ V1, whose degree is at most 2d0. Removing
v1, the total vertex weight drops by w(v1), and the total edge weight drops by at most
2d0w(v1). Continuing the argument until all vertices are removed, we get the claim. J

Next, we shall prove a lower bound on the expectation Exp[W]. Choose a random
element ij ∈ {i1, . . . , is}. Let V2 := V|I′ where I

′ = (i1, . . . , ij−1, ij+1, . . . , is), i.e., by
abuse of notation I ′ = I \ {ij}. Note that I ′ is a random subsequence where each i ∈ [n]
was chosen with probability p′ = p − 1/n. Crucially, one can consider the above process
equivalent to first choosing I ′ by selecting each element of [n] with probability p′, and then
selecting a uniformly random element ij ∈ [n] \ I ′ with probability 1/n.

Let E1 ⊂ E be those edges (v1,v′1) of E where vectors v1 and v′1 differ in the coordinate
ij , and let

W1 :=
∑
e∈E1

w(e).

We need to lower bound Exp[W1]. Given I ′, let

Y = Y (I ′) := #{v ∈ V : ‖v|I′‖ > c(k/δ)},

i.e., the number of vectors in V, each of whose norm after projecting onto I ′ is more than
c(l/δ), (where c shall be chosen appropriately). Let Nice denote the event

(Y ≤ 8 Exp[Y]) ∩
(
np

2 ≤ s ≤
3np
2

)
= NY ∩NS .

Conditioning W on Nice, we get:

Exp[W] = Prob [Nice] Exp[W |Nice] + Prob
[
Nice

]
Exp[W |Nice]

> Prob [Nice] Exp[W |Nice]

By Markov’s Inequality, see [4, App. A], we have

Prob
[
NY
]

= Prob [Y ≥ 8 Exp[Y]] ≤ 1/8,

SoCG’15

106 Two Proofs for Shallow Packings

and using Chernoff Bounds, see [4, App. A], with the fact that n/δ ≥ 1, we get

Prob
[
NS
]

= Prob [|s− np| > np/2] ≤ 2e(−36d0Kn/3.22δ) << 1/4.

This implies

Prob [Nice = NY ∩NS] ≥ 1−Prob
[
NS
]
−Prob

[
NY
]
≥ 7/8− e(−4d0K) ≥ 3/4,

where the last inequality follows from the fact that d0K ≥ 1.
Hence,

Exp[W] ≥ (3/4) Exp[W |Nice] ≥ 3(np/2)
4 Exp[W1|Nice], (8)

where the last inequality follows by symmetry of the choice of ij from I, and the lower bound
on s when the event Nice holds.

Hence, Exp[W] ≥
(3np

8
)

Exp[W1|Nice]. So to lower bound Exp[W] up to constants,
it suffices just to lower bound Exp[W1|Nice]. Let W2 denote W1|Nice. Consider now
Exp[W2|A′]. That is, consider a fixed subsequence I ′ whose length is between np/2 and
3np/2, and which is such that the number of vectors v ∈ V whose norm after projection onto
I ′ in more than ck/δ, is at most 8 Exp[Y]. We shall lower bound Exp[W2|I ′] for this choice
of I ′.

By definition, W1 =
∑
e∈E1

w(e). Consider the equivalence classes of V formed by their
projection onto I ′:

V = V′1 ∪ . . . ∪ V′r.

Define Bad ⊂ [r] to be those indices j for which V′j is such that

∀v ∈ V′j : ‖v|I′‖ > 8c(k/δ).

Further, let Good be [r] \Bad. Since Nice holds, we have:∑
j∈Bad

|V′j | ≤ 8 Exp[Y].

We first estimate the contribution of the classes in Good, to the total weight. Consider a
class V′i such that i ∈ Good. Let V′′1 ⊂ V′i be those vectors in V′i which contains 1 in the
ij-th coordinate, and let V′′2 = V′i \ V′′1 . Let b = |V′i|, b1 = |V′′1 | and b2 = |V′′2 |. Then the edge
e ∈ E1 formed by the projection of V′i onto I, has weight

w(e) = min(b1, b2) ≥ b1b2

b
. (9)

Observe that in Inequality (9), b is a constant as the subsequence I ′ is fixed and the product
b1b2 is the random variable that depends on the choice of ij . The product b1b2 is the number
of ordered pairs of vectors (v,v′), with v and v′ in V′i, such that v and v′ differs only in the
ij-th coordinate. For a given ordered pair (v,v′) of distinct vectors v,v′ ∈ V′i, the probability
v and v′ differ in the ij-th coordinate is δ

n−s+1 , which is at least δ
n . Therefore, the expected

contribution of (v,v′) to b1b2 is at least δ
n and this implies

Exp[b1b2] ≥ b(b− 1)δ
n

.

And this further implies the together with Inequality (9) that the weight of e (conditioned
on Nice and I ′) is at least:

Exp[w(e)|Nice ∩ I ′] ≥ 1
b

Exp[b1b2] ≥ b(b− 1)
b

.
δ

n
= (b− 1) δ

n
= (|V′i| − 1) δ

n
.

K. Dutta, E. Ezra, and A. Ghosh 107

Hence, the expected weight of Exp[W2|I ′] is:

Exp[W2|I ′] ≥
∑
e∈E1

Exp[w(e)|Nice ∩ I ′] ≥
∑

i∈Good

(|V′i| − 1) δ
n

But by (d, d1) Clarkson-Shor property, we have that

∀i ∈ Good, |(V′i)|I′ | ≤ Cs
d1(ckp)d−d1 .

Substituting in the lower bound for Exp[W2], we get:

Exp[W2|A′] ≥
((∑

i∈Good

|V′i|

)
− C(1.5np)d1(ckp)d−d1

)
δ

n

≥

(
|V| − 8 Exp[Y]− C(6dK)d.(1.5)d1cd−d1

(n
δ

)d1
(
k

δ

)d−d1
)
δ

n

≥

(
M(δ, k,V)− 8 Exp[Y]− C1K

d
(n
δ

)d1
(
k

δ

)d−d1
)
δ

n

where in the first inequality, we used the fact that the event NS ⊂ Nice holds, and in the
last line, C1 = C.(6d)d2d1cd−d1 . Since the above holds for each I ′ which satisfies Nice, we
get that

Exp[W2] ≥
(
M(δ, k,V)− 8 Exp[Y]− C1K

d
(n
δ

)d1
(
l

δ

)d−d1
)
δ

n
,

Using equation (8), and comparing with the upper bound on W ,

(3np/8) Exp[W1|Nice] ≤ Exp[W] ≤ 2d0M(δ, k,V),

and substituting the lower bound Exp[W1|Nice], and solving for M(δ, k,V), we get

M(δ, k,V) ≤
(27K/4)

(
8 Exp[Y] + C1K

d
(
n
δ

)d1 (k
δ

)d−d1
)

(27K/4− 1) .

The following lemma therefore, completes the proof:

I Lemma 12. For K = max{1, (ln g)/36}, Exp[Y] ≤ C2
(
n
δ

)d1 (k
δ

)d2 .

Indeed, substituting the choice of K and the value of Exp[Y] from Lemma 12, we get that

gd
(n
δ

)d1
(
k

δ

)d−d1

= M(δ, k,V)

≤
C1K

d
(
n
δ

)d1 (k
δ

)d−d1 + 8C2
(
n
δ

)d1 (k
δ

)d−d1

1− 4/27K

≤ C3K
d
(n
δ

)d1
(
k

δ

)d−d1

≤ C4(max{1, log g})d
(n
δ

)d1
(
k

δ

)d−d1

where the shorthand g = g(n, l, δ). This implies that gd ≤ C4(max{1, log g})d, or g ≤
C5 max{1, log g}. Since for any g growing with n, l, or δ, we would have g >> C5 log g for
sufficiently large n, k or δ, this inequality is only satisfiable when g is a constant function of
n, l, δ. i.e. g ≤ c∗, where c∗ is independent of n, k, δ.

It only remains to prove Claim 12:

SoCG’15

108 Two Proofs for Shallow Packings

Proof of Lemma 12. The proof follows easily from Chernoff Bounds. Fix v ∈ V. Let
Z = ‖v|I′‖. Then Exp[Z] = ‖v‖p′ = kp′. Since I ′ is a random subsequence chosen with
probability p′ = p− 1/n, the probability that

Z ≥ ckp′ = 36cdKk
δ

− ck

n

is upper bounded using Chernoff bounds, see [4, App. A], as:

Prob [Z −Exp[Z] > (c− 1) Exp[Z]] ≤ e(−Exp[Z]) ≤ e(−36dKk/δ),

for c = 1.01e and n ≥ 100, say. Hence the expected number Exp[Y] of vectors, each of whose
norm when projected onto I ′ in more than 36cdKk/δ elements, is at most:

Exp[Y] ≤M(δ, k,V)e(−36dKk/δ) ≤M(δ, k,V)e(−18dK),

since k ≥ δ/2. Substituting the value of M(δ, k,V) and also K in terms of f , we have

Exp[Y] ≤ gd
(n
δ

)d1
(
k

δ

)d−d1

e(−18dK) ≤
(n
δ

)d1
(
k

δ

)d−d1

ed(ln g−18K) ≤
(n
δ

)d1
(
k

δ

)d−d1

for K ≥ (ln g)/18. J

This completes the proof of Theorem 4.

4 Concluding Remarks and Further Research

We briefly mention a few applications of Theorem 4:
(i) Smaller packing numbers for several natural geometric set systems under the shallowness

assumption. Letting d > 1 be an integer parameter, this includes set systems of points
and halfspaces in d-dimensions, balls in d-dimensions, parallel slabs of arbitrary width
in d-dimensions, as well as dual set systems defined over (d− 1)-variate (not necessarily
continuous or totally defined) functions F of constant description complexity. These
results are described in detail in a preliminary version of this paper [14, Appendix B].

(ii) Spanning trees with low total conflict number. This is based on the machinery of
Welzl [33] to construct spanning trees of low crossing number (see also [27]). Here the
tree spans V (representing, say, a set of regions defined over n points in d-space), and
the “conflict number” of an edge (u, v) is the symmetric difference distance between u
and v. See [14, Appendix B] for further details.

(iii) Geometric discrepancy. Following the previous work of the second author [13], the
new bound in Theorem 4 leads to an improved discrepancy bound that is sensitive to
the size of the sets in various geometric set systems, including point and halfspaces in
d-dimensions, this is mentioned in [14] and described in detail in the preliminary work
of the first and the third author [12]. As a consequence, it is shown in [12] how to derive
an improved bound on relative (ε, δ)-approximations by adapting the approach in [13].
Last, but not least, it is shown in [12] that the bound in Theorem 4 leads to better
bounds on the discrepancy of geometric set systems of low degree, as long as d1 = 1.

K. Dutta, E. Ezra, and A. Ghosh 109

References
1 P. K. Agarwal, A. Efrat, and M. Sharir. Vertical decomposition of shallow levels in 3-

dimensional arrangements and its applications. SIAM J. Comput., 29(2000):912–953.
2 P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. Discrete

Comput. Geom. (1997).
3 P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of

Ppoints. J. ACM, 51(4):606–635 (2004).
4 N. Alon and J. H. Spencer. The Probabilistic Method. 2nd Edition, Wiley-Interscience,

New York, USA, 2000.
5 A. Auger and B. Doerr. Theory of Randomized Search Heuristics:Foundations and Recent

Developments, World Scientific Publishing, 2011.
6 N. H. Bshouty, Y. Li, and P. M. Long. Using the doubling dimension to analyze the

generalization of learning algorithms. J. Comput. System Sci., 75(6):323–335 (2009).
7 T. M. Chan. Dynamic coresets. Discrete Comput. Geom., 42: 469–488 (2009).
8 B. Chazelle. A note on Haussler’s packing lemma. Unpublished manuscript, Princeton

(1992).
9 B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite VC-dimension.

Discrete Comput. Geom., 4:467–489 (1989).
10 K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geo-

metry, II. Discrete Comput. Geom., 4:387–421 (1989).
11 R. M. Dudley. Central limit theorems for empirical measures. Ann. Probab., 6(6):899–1049

(1978).
12 K. Dutta and A. Ghosh. Size sensitive packing number for Hamming cube and its con-

sequences. CoRR abs/1412.3922 (2014).
13 E. Ezra. A size-sensitive discrepancy bound for set systems of bounded primal shatter

dimension. In Proc. Twenty-Fifth Annu. ACM-SIAM Sympos. Discrete Algorithms, pages
1378–1388 (2014).

14 E. Ezra. Shallow Packings in Geometry. CoRR abs/1412.5215 (2014).
15 L. Gottlieb, A. Kontorovich, and E. Mossel. VC bounds on the cardinality of nearly

orthogonal function classes. Discrete Math., 312(10):1766–1775 (2012).
16 S. Har-Peled. Geometric Approximation Algorithms, Mathematical Surveys and Mono-

graphs, Vol. 173 (2011).
17 S. Har-Peled and M. Sharir, Relative (p, ε)-approximations in geometry, Discrete Comput.

Geom., 45(3):462–496 (2011).
18 D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other

learning applications. In Information and Computation, 100(1):78–150 (1992).
19 D. Haussler. Sphere packing numbers for subsets of the Boolean n-cube with bounded

Vapnik-Chervonenkis dimension. J. Combinatorial Theory Ser. A, 69:217–232 (1995).
20 D. Haussler, N. Littlestone, M. K. Warmuth. Predicting {0, 1}-functions on randomly

drawn points. Information and Computation, 115(2), 248–292 (1994).
21 D. Haussler and E. Welzl. ε-nets and simplex range queries. Discrete Comput. Geom.,

2:127–151 (1987).
22 Y. Li, P. M. Long, and A. Srinivasan. Improved bounds on the sample complexity of

learning. J. Comput. Sys. Sci., 62(3):516–527 (2001).
23 S. Lovett and R. Meka. Constructive discrepancy minimization by walking on the edges.

In Proc. 53th Annu. IEEE Symp. Found. Comput. Sci., 61–67, (2012).
24 J. Matoušek, Lectures on Discrete Geometry, Springer-Verlag New York (2002).
25 J. Matoušek. Reporting points in halfspaces. Comput. Geom. Theory Appl., 2:169–186

(1992).

SoCG’15

110 Two Proofs for Shallow Packings

26 J. Matoušek. Tight upper bounds for the discrepancy of halfspaces. Discrete Comput.
Geom., 13:593–601 (1995).

27 J. Matoušek. Geometric Discrepancy, Algorithms and Combinatorics, Vol. 18, Springer
Verlag, Heidelberg (1999).

28 D. Pollard. Convergence of Stochastic Processes, Springer-Verlag (1984).
29 N. Sauer. On the density of families of sets. J. Combin. Theory, Ser A, 13(1): 145–147

(1972).
30 M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applic-

ations. Cambridge University Press, New York (1995).
31 S. Shelah. A combinatorial problem, stability and order for models and theories in infinitary

languages. Pacific J. Math., 41:247–261 (1972).
32 V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of

events to their probabilities. Theory Prob. Appl., 16(2):264–280 (1971).
33 E. Welzl. On spanning trees with low crossing numbers. In Data Structures and Efficient

Algorithms, Final Report on the DFG Special Joint Initiative, volume 594 of Lect. Notes in
Comp. Sci., Springer-Verlag, Heidelberg, pp. 233–249 (1992).

Shortest Path in a Polygon using Sublinear Space∗

Sariel Har-Peled

Department of Computer Science, University of Illinois
201 N. Goodwin Avenue, Urbana, IL, 61801, USA
sariel@illinois.edu

Abstract
We resolve an open problem due to Tetsuo Asano, showing how to compute the shortest path in a
polygon, given in a read only memory, using sublinear space and subquadratic time. Specifically,
given a simple polygon P with n vertices in a read only memory, and additional working memory of
sizem, the new algorithm computes the shortest path (in P) in O(n2/m) expected time, assuming
m = O(n/ log2 n). This requires several new tools, which we believe to be of independent interest.

Specifically, we show that violator space problems, an abstraction of low dimensional linear-
programming (and LP-type problems), can be solved using constant space and expected linear
time, by modifying Seidel’s linear programming algorithm and using pseudo-random sequences.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, I.1.2 Algorithm,
I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Shortest path, violator spaces, limited space.

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.111

1 Introduction

Space might not be the final frontier in the design of algorithms but it is an important
constraint. Of special interest are algorithms that use sublinear space. Such algorithms arise
naturally in streaming settings, or when the data set is massive, and only a few passes on
the data are desirable. Another such setting is when one has a relatively weak embedded
processor with limited high quality memory. For example, flash memory can withstand
around 100,000 rewrites before starting to deteriorate. Specifically, imagine a hybrid system
having a relatively large flash memory, with significantly smaller RAM. That is to a limited
extent the setting in a typical smart-phone1.

The model. The input is provided in a read only memory, and it is of size n. We have O(m)
available space which is a read/write space (i.e., the work space). We assume, as usual, that
every memory cell is a word, and such a word is large enough to store a number or a pointer.
We also assume that the input is given in a reasonable representation2. A survey of this
computational model and related work is provided in the introduction of Asano et al. [1, 2].

The problem. We are given a simple polygon P with n vertices in the plane, and two points
s, t ∈ P – all provided in a read-only memory. We also have O(m) additional read-write
memory (i.e., work space). The task is to compute the shortest path from s to t inside P.

∗ Work on this paper was partially supported by a NSF AF awards CCF-1421231, and CCF-1217462.
1 For example, a typical smart-phone in 2014 have 2GB of RAM and 16GB of flash memory. I am sure

these numbers would be laughable in a few years. So it goes.
2 In some rare cases, the “right” input representation can lead directly to sublinear time algorithms. See

the work by Chazelle et al. [5].

© Sariel Har-Peled;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 111–125

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.111
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

112 Shortest Path in a Polygon using Sublinear Space

Asano et al. [1] showed how to solve this problem, in O(n2/m) time, using O(m) space.
The catch is that their solution requires quadratic time preprocessing. In a talk by Tetsuo
Asano, given in a workshop in honor of his 65th birthday (during SoCG 2014), he posed the
open problem of whether this quadratic preprocessing penalty can be avoided. This work
provides a positive answer to this question.

s
t

If linear space is available. The standard algorithm [17] for
computing the shortest path in a polygon, triangulates the
polygon, (conceptually) computes the dual graph of the trian-
gulation, which yields a tree, with a unique path between the
triangles that contains the source s, and the target t. This path
specifies the sequence of diagonals crossed by the shortest path,
and it is now relatively easy to walk through this sequence
of triangles and maintain the shortest paths from the source
to the two endpoints of each diagonal. These paths share a
prefix path, and then diverge into two concave chains (known
together as a funnel). Once arriving to the destination, one
computes the unique tangent from the destination t to one of
these chains, and the (unique) path, formed by the prefix together with the tangent, defines
the shortest path, which can be now extracted in linear time. See figure on the right for
illustration.

Sketch of the new algorithm. The basic idea is to decompose the polygon into bigger pieces
than triangles. Specifically, we break the polygon into canonical pieces each of size O(m). To
this end, we break the given polygon P into dn/me polygonal chains, each with at most m
edges. We refer to such a chain as a curve. We next use the notion of corridor decomposition,
introduced3 by the author [14], to (conceptually) decompose the polygon into canonical
pieces (i.e., corridors). Oversimplifying somewhat, each corridor is a polygon having portions
of two of the input curves as floor and ceiling, and additional two diagonals of P as gates. It
is relatively easy, using constant space and linear time, to figure out for such a diagonal if
it separates the source from the destination. Now, start from the corridor containing the
source, and figure out which of its two gates the shortest path goes through. We follow this
gate to the next corridor and continue in this fashion till we reach the destination. Assuming
that computing the next piece can be done in roughly linear time, this algorithm solves the
shortest path problem in O(n2/m) time, as walking through a piece takes (roughly) linear
time, and there are O(n/m) pieces the shortest path might go through. (One also needs
to keep track of the funnel being constructed during this walk, and prune parts of it away
because of space considerations.)

Point-location queries in a canonical decomposition. To implement the above, we need
a way to perform a point-location query in the corridor decomposition, without computing
it explicitly. Here we are interested in any canonical decomposition that partition the
underlying space into cells. Such a partition is induced by a set of objects, and every cell

3 Many somewhat similar decomposition ideas can be found in the literature (for example, the decom-
position of a polygon into monotone polygons so that the pieces, and thus the original polygon, can
be triangulated [3]). Nevertheless, this specific decomposition scheme [14] is right for our nefarious
purposes, but the author would not be surprised if it was known before. Well, at least this footnote is
new!

S. Har-Peled 113

is defined by a constant number of objects. Standard examples of such partitions are (i)
vertical decomposition of segments in the plane, or (ii) bottom vertex triangulation of the
Voronoi diagram of points in R3. Roughly speaking, any partition that complies with the
Clarkson-Shor framework [8] is such a canonical decomposition.

If space and time were not a constraint, we could build the decomposition explicitly, Then
a standard point-location query in the history DAG would yield the desired cell. Alternatively,
one can perform this point-location query in the history DAG implicitly, without building
the DAG before hand, but it is not obvious how to do so with limited space. Surprisingly,
at least for the author, this task can be solved using techniques related to low-dimensional
linear programming.

Violator spaces. Low dimensional linear programming can be solved in linear time [18].
Sharir and Welzl [23] introduced LP-type problems, which are an extension of linear pro-
gramming. Intuitively, but somewhat incorrectly, one can think about LP-Type algorithms
as solving low-dimensional convex programming, although Sharir and Welzl [23] used it to
decide in linear time if a set of axis-parallel rectangles can be stabbed by three points (this
is quite surprising as this problem has no convex programming flavor). LP-type problems
have the same notions as linear programming of bases, and an objective function. The
function scores such bases, and the purpose is to find the basis that does not violate any
constraint and minimizes (or maximizes) this objective. A natural question is how to solve
such problems if there is no scoring function of the bases.

This is captured by the notion of violator spaces [20, 21, 10, 11, 4]. The basic idea is that
every subset of constraints is mapped to a unique basis, every basis has size at most δ (δ is
the dimension of the problem, and is conceptually a constant), and certain conditions on
consistency and monotonicity hold. Computing the basis of a violator space is not as easy as
solving LP-type problems, because without a clear notion of progress, one can cycle through
bases (which is not possible for LP-type problems). See Šavroň [21] for an example of such
cycling. Nevertheless, Clarkson’s algorithm [7] works for violator spaces [4].

We revisit the violator space framework, and show the following:
(A) Because of the cycling mentioned above, the standard version of Seidel’s linear program-

ming algorithm [22] does not work for violator spaces. However, it turns out that a
variant of Seidel’s algorithm does work for violator spaces.

(B) We demonstrate that violator spaces can be used to solve the problem of point-location
in canonical decomposition. While in some cases this point-location problem can be
stated as LP-type problem, stating it as a violator space problem seems to be more
natural and elegant.

(C) The advantages of Seidel’s algorithm is that except for constant work space, the only
additional space it needs is to store the random permutations it uses. We show that
one can use pseudo-random generators (PRGs) to generate the random permutation,
so that there is no need to store it explicitly. This is of course well known – but the
previous analysis [19] for linear programming implied only that the expected running
time is O(n logδ−1 n), where δ is the combinatorial dimension. Building on Mulmuley’s
work [19], we do a somewhat more careful analysis, showing that in this case one can
use backward analysis on the random ordering of constraints generated, and as such the
expected running time remains linear.

This implies that one can solve violator space problems (and thus, LP and LP-type
problems) in constant dimension, using constant space, in expected linear time.

SoCG’15

114 Shortest Path in a Polygon using Sublinear Space

Paper organization. We present the new algorithm for computing the basis of violator
spaces in Section 2. The adaptation of the algorithm to work with constant space is described
in Section 2.3. We described corridor decomposition and its adaptation to our setting in
Section 3. We present the shortest path algorithm in Section 4.

2 Violator spaces and constant space algorithms

First, we review the formal definition of violator spaces [20, 21, 10, 11, 4]. We then show
that a variant of Seidel’s algorithm for linear programming works for this abstract settings,
and show how to adapt it to work with constant space and in expected linear time.

2.1 Formal definition of violator space

Before dwelling into the abstract framework, let us consider the following concrete example –
hopefully it would help the reader in keeping track of the abstraction.

I Example 1. We have a set H of n segments in the plane, and we would like to compute the
vertical trapezoid of A|(H) that contains, say, the origin, where A|(H) denote the vertical
decomposition of the arrangement formed by the segments of H. Specifically, for a subset
X ⊆ H, let τ(X) be the vertical trapezoid in A|(X) that contains the origin. The vertical
trapezoid τ(X) is defined by at most four segments, which are the basis of X. A segment
f ∈ H violates τ = τ(X), if it intersects the interior of τ(X). The set of segments of H that
intersects the interior of τ , denoted by cl(τ) or cl(X), is the conflict list of τ .

Somewhat informally, violator space identifies a vertical trapezoid τ = τ(X), by its
conflict list cl(X), and not by its geometric realization (i.e., τ).

I Definition 2. A violator space is a pair V = (H, cl), where H is a finite set of constraints,
and cl : 2H → 2H is a function, such that:

Consistency: For all X ⊆ H, we have that cl(X) ∩X = ∅.
Locality: For all X ⊆ Y ⊆ H, if cl(X) ∩ Y = ∅ then cl(X) = cl(Y).
Monotonicity: For all X ⊆ Y ⊆ Z ⊆ H, if cl(X) = cl(Z) then cl(X) = cl(Y) = cl(Z).

A set B ⊆ X ⊆ H is a basis of X, if cl(B) = cl(X), and for any proper subset B′ ⊂ B, we
have that cl(B′) 6= cl(B). The combinatorial dimension, denoted by δ, is the maximum size
of a basis.

Note that consistency and locality implies monotonicity. For the sake of concreteness, it
would also be convenient to assume the following (this is strictly speaking not necessary for
the algorithm).

I Definition 3. For any X ⊆ H there is a unique cell τ(X) associated with it, where for
any X,Y ⊆ H, we have that if cl(X) 6= cl(Y) then τ(X) 6= τ(Y). Consider any X ⊆ H,
and any f ∈ H. For τ = τ(X), the constraint f violates τ if f ∈ cl(X) (or alternatively, f
violates X).

Finally, we assume that the following two basic operations are available:
violate(f,B): Given a basis B (or its cell τ = τ(B)) and a constraint f , it returns true
if f violates τ .

S. Har-Peled 115

compBasis(X): Given a set X with at most (δ+ 1)2 constraints, this procedure computes
basis(X), where δ is the combinatorial dimension of the violator space4. For δ a constant,
we assume that this takes constant time.

2.1.1 Examples

Linear programming as a violator space. Consider an instance I of linear programming
in Rd. Our interpretation is somewhat convoluted, but serves as a preparation for the next
example. The instance I induces a polytope P in Rd, which is the feasible domain. The
vertices V of the polytope P induce a triangulation (assuming general position) of the sphere
of directions, where a direction v belongs to a vertex p, if and only if p is an extreme vertex
of P in the direction of v. Now, the objective function of I specifies a direction vI , and in
solving the LP, we are looking for the extreme vertex of P in this direction.

Put differently, every subset H of the constraints of I, defines a triangulation T (H) of
the sphere of directions. So, let the cell of H, denoted by τ = τ(H), be the spherical triangle
in this decomposition that contains vI . The basis of H is the subset of constraints that define
τ(H). A constraint f of the LP violates τ if the vertex induced by the basis basis(H) (in the
original space), is on the wrong side of f .

Thus solving the LP instance I = (H, vI) is no more than performing a point-location
query in the spherical triangulation T (H), for the spherical triangle that contains vI .

Doing point-location via violator spaces. Example 1 hints to a more general setup. So
consider a space decomposition into canonical cells induced by a set of objects. For example,
segments in the plane, with the canonical cells being the vertical trapezoids. More generally,
consider any decomposition of a domain into simple canonical cells induced by objects, which
complies with the Clarkson-Shor framework [8]. Examples of this include point-location in a
(i) Delaunay triangulation, (ii) bottom vertex triangulation in an arrangement of hyperplanes,
and (iii) many others.

I Lemma 4. Consider a canonical decomposition of a domain into simple cells, induced by
a set of objects, that complies with the Clarkson-Shor framework [8]. Then, performing a
point-location query in such a domain is equivalent to computing a basis of a violator space.

Proof. This follows readily from definition, see the full version [15] for details. J

It seems that for all of these point-location problems, one can solve them directly as
LP-type problems. However, stating these problems as violator space problems is more
natural as it avoids the need to explicitly define an artificial ordering over the bases, which
can be quite tedious and not immediate.

2.2 The algorithm for computing the basis of a violator space

The input is a violator space V = (H, cl) with n = |H| constraints, having combinatorial
dimension δ.

4 We consider basis(X) to be unique (that is, we assume implicitly that the input is in general position).
This can be enforced by using lexicographical ordering, if necessary, among the defining bases always
using the lexicographical minimum one.

SoCG’15

116 Shortest Path in a Polygon using Sublinear Space

solveVS
(
W,X

)
:

〈f1, . . . , fm〉: A random permutation of the constraints of X.
B0 ← compBasis(W)
for i = 1 to m do

if violate(fi, Bi−1) then
Bi ← solveVS

(
W ∪Bi−1 ∪ {fi} , {f1, . . . , fi}

)
else

Bi ← Bi−1

return Bm

Figure 2.1 The algorithm for solving violator space problems. The parameter W is a set of O(δ2)
witness constraints, and X is a set of m constraints. The function return basis(W ∪X). To solve a
given violator space, defined implicitly by the set of constraints H, and the functions violate and
compBasis, one calls solveVS({} , H).

2.2.1 Description of the algorithm
The algorithm is a variant of Seidel’s algorithm [22] – it picks a random permutation of the
constraints, and computes recursively in a randomized incremental fashion the basis of the
solution for the first i constraints. Specifically, if the ith constraint violates the basis Bi−1
computed for the first i− 1 constraints, it calls recursively, adding the constraints of Bi−1
and the ith constraint to the set of constraints that must be included whenever computing a
basis (in the recursive calls). The resulting code is depicted in Figure 2.1.

The only difference with the original algorithm of Seidel, is that the recursive call gets the
set W ∪Bi−1 ∪ {fi} instead of basis(Bi−1 ∪ {fi}) (which is a smaller set). This modification
is required because of the potential cycling between bases in a violator space.

2.2.2 The analysis
The key observation is that the depth of the recursion of solveVS is bounded by δ, where
δ is the combinatorial dimension of the violator space. Indeed, if fi violates a basis, the
constraints added to the witness set W guarantee that any subsequent basis computed in
the recursive call contains fi, as testified by the following lemma.

I Lemma 5. Consider any set X ⊆ H. Let B = basis(X), and let f be a constraint in
H \X that violates B. Then, for any subset Y such that B ∪ {f} ⊆ Y ⊆ X ∪ {f} , we have
that f ∈ basis(Y).

Proof. Assume that this is false, and let Y be the bad set with B′ = basis(Y), such that
f /∈ B′. Since f ∈ Y , by consistency, f /∈ cl(Y), see Definition 2. By definition cl(Y) = cl(B′),
which implies that f /∈ cl(B′); that is, f does not violate B′.

Now, by monotonicity, we have cl(Y) = cl(Y \ {f}) = cl(B′). By assumption, B ⊆ Y \{f},
which implies, again by monotonicity, as B ⊆ Y \{f} ⊆ X, that cl(X) = cl(Y \ {f}) = cl(B),
as B = basis(X). But that implies that cl(B) = cl(Y) = cl(B′). As f /∈ cl(Y), this implies
that f does not violate B, which is a contradiction. J

I Lemma 6. The depth of the recursion of solveVS, see Figure 2.1p116, is at most δ, where
δ is the combinatorial dimension of the given instance.

Proof. Consider a sequence of k recursive calls, with W0 ⊆ W1 ⊆ W2 ⊆ · · · ⊆ Wk as the
different values of the parameter W of solveVS, where W0 = ∅ is the value in the top-level
call. Let f ′i , for i = 1, . . . , k, be the constraint whose violation triggered the ith level call.

S. Har-Peled 117

Observe that f ′i ∈ Wi, and as such all these constraints must be distinct (by consistency).
Furthermore, we also included the basis B′i, that f ′i violates, in the witness set Wi, which
implies, by Lemma 5, that in any basis computation done inside this recursive call, it must
be that f ′i ∈ basis(Wj), for any j ≥ i. As such, we have f ′1, . . . , f ′k ∈ basis(Wk). Since a basis
can have at most δ elements, this is possible only if k ≤ δ, as claimed. J

I Theorem 7. Given an instance of violator space V = (H, cl) with n constraints, and
combinatorial dimension δ, the algorithm solveVS(∅, H), see Figure 2.1, computes basis(H).
The expected number of violation tests performed is bounded by O(δδn). Furthermore, the
algorithm performs in expectation O

(
(δ lnn)δ

)
basis computations (on sets of constraints

that contain at most δ(δ + 1) constraints).
In particular, for constant combinatorial dimension δ, with violation test and basis

computation that takes constant time, this algorithm runs in O(n) expected time.

See the full version [15] for the proof of the above theorem.

2.3 Solving violator space problem with constant space and linear time
The key observation for turning solveVS into an algorithm that uses little space, is observing
that the only thing we need to store (implicitly) is the random permutation used by solveVS.

2.3.1 Generating a random permutation using pseudo-random
generators

To avoid storing the permutation, one can use pseudo-random techniques to compute the
permutation on the fly. For our algorithm, we do not need a permutation - any random
sequence that has uniform distribution over the constraints and is sufficiently long, would
work.

I Lemma 8. For any integer φ > 0, a prime integer n, and an integer constant c′ ≥ 12, one
can compute a random sequence of numbers X1, . . . , Xc′n ∈ JnK = {1, . . . , n}, such that:
(A) The probability of Xi = j is 1/n, for any i ∈ JnK and j ∈ Jc′nK.
(B) The sequence is φ-wise independent.
(C) Using O(c′φ) space, given an index i, one can compute Xi in O(φ) time.

Proof. This is a standard pseudo-random generator (PRG) technique, described in detail
by Mulmuley [19, p. 399]. We outline the idea. Randomly pick φ coefficients α0, . . . , αφ ∈
{0, . . . , n− 1} (uniformly and independently), and consider the random polynomial f1(x) =∑φ
i=0 αix

i, and set p(x) = (f(x) mod n). Now, set Xi = 1 + p(i), for i = 1, . . . , n. It is easy
to verify that the desired properties hold. To extent this sequence to be of the desired length,
pick randomly c′ such polynomials, and append their sequence together to get the desired
longer sequence. It is easy to verify that the longer sequence is still φ-wise independent. J

The following lemma testifies that this PRG sequence, with good probability, contains the
desired basis (as such, conceptually, we can think about it as being a permutation of JnK).

I Lemma 9. Let B ⊆ JnK be a specific set of δ numbers. For any integer φ ≥ 8 + 2δ
and consider φ-wise independent random sequence of numbers X = 〈X1, . . . , Xc′n〉, each
uniformly distributed in JnK, where c′ is any constant ≥ 4(5 + dln δe)2. Then, the probability
that the elements of B do not appear in X is bounded by, say, 1/20.

See the full version [15] for the proof of the above lemma.

SoCG’15

118 Shortest Path in a Polygon using Sublinear Space

I Remark. There are several low level technicalities that one needs to address in using such
a PRG sequence instead of a truly random permutation:
(A) Repeated numbers are not a problem: the algorithm solveVS (see Figure 2.1p116) ignores

a constraint that is being inserted for the second time, since it can not violate the current
basis.

(B) Verifying the solution: The sequence (of the indices) of the constraints used by the
algorithm would be first X1, . . . , Xc′n. This sequence might miss some constraints that
violates the computed solution.
As such, in the second stage, the algorithm check if any of the constraints 1, 2, . . . , n
violates the basis computed. If a violation was found, then the sequence generated failed,
and the algorithm restart from scratch – resetting the PRG used in this level, regenerating
the random keys used to initialize it, and rerun it to generate a new sequence.

(C) Independence between levels: We will use a different PRG for each level of the recursion
of solveVS. Specifically, we generate the keys used in the PRG in the beginning of
each recursive call. Since the depth of the recursion is δ, that would increase the space
requirement by a factor of δ.

(D) If the subproblem size is not a prime: In a recursive call, the number of constraints given
(i.e., m) might not be a prime. To this end, the algorithm can store (non-uniformly),
a list of primes, such that for any m, there is a prime m′ ≥ m that is at most twice
bigger than m5. Then the algorithm generates the sequence modulo m′, and ignores
numbers that are larger than m. This implies that the sequence might contain invalid
numbers, but such numbers are only a constant fraction of the sequence, so ignoring
them does not change the running time analysis of our algorithm. (More precisely, this
might cause the running time of the algorithm to deteriorate by a factor of exp(O(δ)),
but as we consider δ to be a constant, this does not effect our analysis.)

One needs now to prove that backward analysis still works for our algorithm for violator
spaces. The proof of the following lemma is implied by a careful tweaking of Mulmuley’s
analysis – we provide the details in the full version of the paper [15].

I Lemma 10 (See [15]). Consider a violator space V = (H, cl) with n = |H|, and combinator-
ial dimension δ. Let i > 2δ, and let X = X1, . . . , Xc′n be a random sequence of constraints of
H generated by φ-wise independent distribution (with each Xi having a uniform distribution),
where φ > 6δ + 9 and c′ ≥ 4(5 + dln δe)2 are constants. Then, for i > 2δ, the probability that
Xi violates B = basis(X1, . . . , Xi−1) is O(1/i).

2.3.2 The result
I Theorem 11. Given an instance of violator space V = (H, cl) with n constraints, and
combinatorial dimension δ, one can compute basis(H) using O

(
δ2 log2 δ

)
space. For some

constant ζ = O
(
δ log2 δ

)
, we have that:

(A) The expected number of basis computations is O
(
(ζ lnn)δ

)
, each done over O(δ2) con-

straints.
(B) The expected number of violation tests performed is O

(
ζδn
)
.

(C) The expected running time (ignoring the time to do the above operations) is O
(
ζδn
)
.

5 That is, the program hard codes a list of such primes. The author wrote a program to compute such a
list of primes, and used it to compute 50 primes that cover the range all the way to 1015 (the program
run in a few seconds). However, it seems a bit redundant to include a list of such primes here. The
interested reader can have a look here: http://sarielhp.org/blog/?p=8700.

http://sarielhp.org/blog/?p=8700

S. Har-Peled 119

(i) (ii) (iii)

Figure 3.1 An example of a corridor decomposition for a polygon: (i) Input curves, medial-
axis and active vertices, (ii) their critical circles, and their spokes, and (iii) the resulting corridor
decomposition.

Proof. The algorithm is described above. As for the analysis, it follows readily by plugging
Lemma 10 into the proof of Theorem 7.

The only non-trivial technicality is to handle the case that the PRG sequence fails to
contain the basis. Formally, abusing notations somewhat, consider a recursive call on the
constraints indexed by JnK, ad let B be the desired basis of the given subproblem. By
Lemma 9, the probability that B is not contained in the generated PRG is bounded by 1/20 –
and in such a case the sequence has to be regenerated till success. As such, in expectation,
this has a penalty factor of (say) 2 on the running time in each level. Overall, the analysis
holds with the constants deteriorating by a factor of (at most) 2δ. J

I Remark. Note, that the above pseudo-random generator technique is well known, but using
it for linear programming by itself does not make too much sense. Indeed, pseudo-random
generators are sometimes used as a way to reduce the randomness consumed by an algorithm.
That in turn is used to derandomize the algorithm. However, for linear programming
Megiddo’s original algorithm was already linear time deterministic. Furthermore, Chazelle
and Matoušek [6], using different techniques showed that one can even derandomize Clarkson’s
algorithm and get a linear running time with a better constant.

Similarly, using PRGs to reduce space of algorithms is by now a standard technique in
streaming, see for example the work by Indyk [16], and references therein.

3 Corridor decomposition

3.1 Construction
The decomposition here is similar to the decomposition described by the author in a recent
work [14].

I Definition 12 (Breaking a polygon into curves). Let the polygon P have the vertices v1, . . . vn
in counterclockwise order along its boundary. Let σi be the polygonal curve having the
vertices v(i−1)m+1, v(i−1)m+2, v(i−1)m+3, . . . , vim+1, for i = 1, . . . , n− 1, where

n = b(n− 1)/mc+ 1.

The last polygonal curve is σn = v(n−1)m+1, v(n−1)m+2, . . . vn, v1. Note, that given P in a
read only memory, one can encode any curve σi using O(1) space. Let Γ = {σ1, . . . , σn} be
the resulting set of polygonal curves. From this point on, a curve refers to a polygonal curve
generated by this process.

SoCG’15

120 Shortest Path in a Polygon using Sublinear Space

(i) (ii) (iii)

Figure 3.2 Another example of a corridor decomposition for a polygon: (i) Input polygon and
its curves and its medial-axis (the thick lines are the angle bisectors for the obtuse angles where two
curves meet), (ii) active vertices and their spokes (with a reduced medial axis), and iii) the resulting
corridor decomposition.

(i) (ii) (iii)

Figure 3.3 Corridor decomposition for disjoint curves: (i) Input curves, the medial-axis, and
active vertices, (ii) the critical circles, and their spokes, and (iii) the resulting corridor decomposition.

Corridor decomposition for the whole polygon. Next, consider the medial axis of P
restricted to the interior of P. A vertex v of the medial axis corresponds to a disk D, that
touches the boundary of P in two or three points (by general position assumption, not in any
larger number of points). The medial axis has the topological structure of a tree.

To make things somewhat cleaner, we pretend that there is a little hole centered at every
vertex of the polygon if it is the common endpoint of two curves. This results in a medial
axis edge that comes out of the vertex as an angle bisector, both for an acute angle (where a
medial-axis edge already exists), and for obtuse angles, see Figure 3.1 and Figure 3.2.

A vertex of the medial axis is active if its disk touches three different curves of Γ. It is
easy to verify that there are O(n) active vertices. The segments connecting an active vertex
to the three (or two) points of tangency of its empty disk with the boundary of P are its
spokes. Introducing these spokes breaks the polygon into the desired corridors.

Corridor decomposition for a subset of the curves. For a subset Ψ ⊆ Γ, of total complexity
t, one can apply a similar construction. Again, compute the medial axis of the curves of Ψ,
by computing, in O(t log t) time, the Voronoi diagram of the segments used by the curves
[9], and extracting the medial axis (it is now a planar graph instead of a tree). Again, by
considering the active vertices, building their associated spokes, results in a decomposition
into corridors. For technical reasons, it is convenient to add a large bounding box, and
restrict the construction to this domain, treating this frame as yet another input curve.
Figure 3.3 depicts one such corridor decomposition.

Let C(Ψ) denote this resulting decomposition into corridors.

S. Har-Peled 121

3.1.1 Properties of the resulting decomposition
Every corridor in the resulting decomposition C(Ψ) is defined by a constant number of input
curves. Specifically, consider the set of all possible corridors; that is F =

⋃
Υ⊆Γ C(Υ). Next,

consider any corridor C ∈ F, then there is a unique defining set D(C) ⊆ Ψ (of at most 4
curves). Similarly, such a corridor has stopping set (or conflict list) of C, denoted by K(C).

Consider any subset S ⊆ Γ. It is easy to verify that the following two conditions hold:
(i) For any C ∈ C(S), we have D(C) ⊆ S and S ∩K(C) = ∅.
(ii) If D(C) ⊆ S and K(C) ∩ S = ∅, then C ∈ C(S).
Namely, the corridor decomposition complies with the technique of Clarkson-Shor [8] (see
also [13, Chapter 8]).

3.2 Computing a specific corridor
Let p be a point in the plane, and let Γ be a set of n interior disjoint curves (stored in a
read only memory), where each curve is of complexity m. Let n be the total complexity of
these curves (we assume that n = Θ(m n)). Our purpose here is to compute the corridor
C ∈ C(Γ) that contains p. Formally, for a subset Ψ ⊆ Γ, we define the function w(Ψ), to be
the defining set of the corridor C ∈ C(Ψ) that contains p. Note, that such a defining set has
cardinality at most δ = 4.

Basic operations. We need to specify how to implement the two basic operations:
(A) (Basis computation) Given a set of O(1) curves, we compute their medial axis, and

extract the corridor containing p. This takes O(m logm) time.
(B) (Violation test) Given a corridor C, and a curve σ, both of complexity O(m), we can

check if σ violates the corridor by checking if an arbitrary vertex of σ is contained in
C (this takes O(m) time to check), and then check in O(m) time, if any segment of σ
intersects the doors of the corridor on its two sides. This takes O(m) time.

I Lemma 13. Given a polygon P with n vertices, stored in read only memory, and let m be
a parameter. Let Γ be the set of n curves resulting from breaking P into polygonal curves each
with m vertices, as described in Definition 12. Then, given a query point p inside P, one can
compute, in O(n+m logm log4 n) expected time, the corridor of C(Γ) that contains p. This
algorithm uses O(1) additional space.

See the full version [15] for the proof of the above lemma.

4 Shortest path in a polygon in sublinear space

Let P be a simple polygon with n edges in the plane, and let s and t be two points in P,
where s is the source, and t is the target. Our purpose here is to compute the shortest path
between s and t inside P. The vertices of P are stored in (say) counterclockwise order in an
array stored in a read only memory. Let m be a prespecified parameter that is (roughly) the
amount of additional space available for the algorithm.

4.1 Updating the shortest path through a corridor
A corridor has two doors – a door is made of two segments, with a middle endpoint in the
interior of the polygon, and the other endpoints on the boundary of the polygon. The rest of
the boundary of the corridor is made out two chains from the original polygon.

SoCG’15

122 Shortest Path in a Polygon using Sublinear Space

Ci

si µopt

4i

si

C ′
i

qi

si µopt

C ′
i

qi
ui

pi

πi

π′′
i

π′
i

(i) (ii) (iii)

Figure 4.1 (i) The state in the beginning of the ith iteration. (ii) The clipped polygon C′i.
(iii) The funnel created by the shortest paths from si to the two spoke endpoints.

Given two rays σ and σ′, that share their source vertex v (which lies inside P), consider
the polygon Q that starts at v, follows the ray σ till it hits the boundary of P, then trace the
boundary of P in a counterclockwise direction till the first intersection of σ′ with ∂P, and
then back to v. The polygon Q = P〈σ, σ′〉 is the clipped polygon. See Figure 4.1.

A geodesic is the shortest path between two points (restricted to lie inside P). Two
geodesics might have a common intersection, but they can cross at most once. Locally,
inside a polygon, a geodesic is a straight segment. For our algorithm, we need some basic
operations:
(A) isPntIn(p): Given a query point p, it decides if p is inside P. This is done by scanning

the edges of P one by one, and counting how many edges crosses the vertical ray shooting
from p downward. This operation takes linear time (in the number of vertices of P).

(B) isInSubPoly(p, σ, σ′): returns true if p is in the clipped polygon P〈σ, σ′〉. It is easy to
verify that this can be implemented to work in linear time and constant space.

Using vertical and horizontal rays shot from s, one can decide, in O(n) time, which
quadrant around s is locally used by the shortest path from s to t. Assume that this path is
in the positive quadrant. It would be useful to think about geodesics starting at s as being
sorted angularly. Specifically, if τ and τ ′ are two geodesic starting at s, then τ is to the left
of τ ′, if the first edge of τ is counterclockwise to the first edge of τ ′. If the prefix of τ and τ ′
is non-empty, we apply the same test to the last common point of the two paths. Let τ ≺ τ ′
denote that τ is to the left of τ ′.

In particular, if the endpoint of the rays σ, σ′ is the source vertex s, and the geodesic
between s and t lies in P〈σ, σ′〉, then given a third ray π lying between σ and σ′, the shortest
path between s and t in P must lie completely either in P〈σ, π〉 or P〈π, σ′〉, and this can be
tested by a single call to isInSubPoly for checking if t is in P〈π, σ′〉.

4.1.1 Limiting the search space

I Lemma 14. Let P, s and t be as above, and µ be the shortest path from s to t in P. Let
pq be the last edge in the shortest path τ from s to q, where q is in P. Then, one can decide
in O(n) time, and using O(1) space, if µ ≺ τ , where n is the number of vertices of P.

See the full version [15] for the proof of the above lemma.

S. Har-Peled 123

pi

qi

e

x

Figure 4.2 Funnel reduction.

4.1.2 Walking through a corridor
In the beginning of the ith iteration of the algorithm it would maintain the following quantities
(depicted in Figure 4.1 (i)):
(A) si: the current source (it lies on the optimal shortest path µopt between s and t).
(B) Ci: The current corridor.
(C) 4i: A triangle having si as one of its vertices, and its two other vertices lie on a spoke

of Ci. The shortest path µopt passes through si, and enters Ci through the base of 4i,
and then exists the corridor through one of its “exit” spokes.

The task at hand is to trace the shortest path through Ci, in order to compute where the
shortest path leaves the corridor.

I Lemma 15. Tracing the shortest path µopt through a single corridor takes O
(
n logm +

m logm log4 n
)
expected time, using O(m) space.

Proof. We use the above notation. The algorithm glues together 4i to Ci to get a new
polygon. Next, it clips the new polygon by extending the two edges of 4i from si. Let C ′i
denote the resulting polygon, depicted in Figure 4.1 (ii). Let the three vertices of C ′i forming
the two “exit” spokes be pi, qi, ui. Next, the algorithm computes the shortest path from si
to the three vertices pi, qi, ui inside C ′i, and let πi, π′i, π′′i be these paths, respectively (this
takes O(|C ′i|) = O(m) time [12]). Using Lemma 14 the algorithm decides if πi ≺ µopt ≺ π′i or
π′i ≺ µopt ≺ π′′i . We refer to a prefix path (that is part of the desired shortest path) followed
by the two concave chains as a funnel – see Figure 4.1 (iii) and Figure 4.2 for an example.

Assume that πi ≺ µopt ≺ π′i, and let Fi be the funnel created by these two shortest paths,
where piqi is the base of the funnel. If the space bounded by the funnel is a triangle, then
the algorithm sets its top vertex as si+1, the funnel triangle is 4i+1, and the algorithm
computes the corridor on the other side of piqi using the algorithm of Lemma 13, set it as
Ci+1, and continues the execution of the algorithm to the next iteration.

So the problem is when funnel chains are “complicated” concave polygons (with at most
O(m) vertices), see Figure 4.2. As long as the funnel Fi is not a triangle, pick a middle edge
e on one side of the funnel, and extend it till it hits the edge pipi+1, at a point x. This breaks
Fi into two funnels, and using the algorithm of Lemma 14 on the edge e, decide which of
these two funnels contains the shortest path µopt, and replace Fi by this funnel. Repeat this
process till Fi becomes a triangle. Once this happens, the algorithm continues to the next
iteration as described above. Clearly, this funnel “reduction” requires O(logm) calls to the
algorithm of Lemma 14.

Note, that the algorithm “forgets” the portion of the funnel that is common to both
paths as it moves from Ci to Ci+1. This polygonal path is a part of the shortest path µopt

SoCG’15

124 Shortest Path in a Polygon using Sublinear Space

computed by the algorithm, and it can be output at this stage, before moving to the next
corridor Ci+1.

In the end of the iteration, this algorithm computes the next corridor Ci+1 by calling the
algorithm of Lemma 13. J

4.2 The algorithm
The overall algorithm works by first computing the corridor C1 containing the source s1 = s

using Lemma 13. The algorithm now iteratively applies Lemma 15 till arriving to the
corridor containing t, where the remaining shortest path can be readily computed. Since
every corridor gets visited only once by this walk, we get the following result.

I Theorem 16. Given a simple polygon P with n vertices (stored in a read only memory), a
start vertex s, a target vertex t, and a space parameter m, one can compute the length of the
shortest path from s to t (and output it), using O(m) additional space, in O

(
n2/m

)
expected

time, if m = O(n/ log2 n). Otherwise, it is O
(
n2

m + n logm log4 n
)
.

Proof. The algorithm is described above, and let n = b(n− 1)/mc + 1. There are O(n)
corridors, and this bounds the number of iterations of the algorithm. As such, the overall
expected running time is O

(
n
(
n logm+m logm log4 n

))
= O

(
n2

m logm+ n logm log4 n
)
.

To get a better running time, observe that the extra log factor (on the first term), is rising
out of the funnel reduction O(logm) queries inside each corridor, done in the algorithm of
Lemma 15. If instead of reducing a funnel all the way to constant size, we reduce it to have
say, at most dm/4e edges (triggered by the event that the funnel has at least m/2 edges),
then at each invocation of Lemma 15, only a constant number of such queries would be
performed. One has to adapt the algorithm such that instead of a triangle entering a new
corridor, it is a funnel. The adaptation is straightforward, and we omit the easy details. The
improved running time is O

(
n2

m + n logm log4 n
)
. J

5 Conclusions

The most interesting open problem remaining from our work, is whether one can improve
the running time for computing the shortest path in a polygon with O(m) space to be faster
than O(n2/m).

Acknowledgments. The author became aware of the low-space shortest path problem
during Tetsuo Asano talk in the Workshop in honor of his 65th birthday during SoCG 2014.
The author thanks him for the talk, and the subsequent discussions. The author also thanks
Pankaj Agarwal, Chandra Chekuri, Jeff Erickson and Bernd Gärtner for useful discussions.
The authors also thanks the anonymous referees for their detailed comments, and their
patience with the numerous typos in the submitted version.

References
1 T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, and A. Schulz. Memory-

constrained algorithms for simple polygons. Comput. Geom. Theory Appl., 46(8):959–969,
2013.

2 T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, and A. Schulz. Reprint
of: Memory-constrained algorithms for simple polygons. Comput. Geom. Theory Appl.,
47(3):469–479, 2014.

S. Har-Peled 125

3 M. de Berg, O. Cheong, M. van Kreveld, and M. H. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Santa Clara, CA, USA, 3rd edition, 2008.

4 Y. Brise and B. Gärtner. Clarkson’s algorithm for violator spaces. Comput. Geom. Theory
Appl., 44(2):70–81, 2011.

5 B. Chazelle, D. Liu, and A. Magen. Sublinear geometric algorithms. SIAM J. Comput.,
35(3):627–646, 2005.

6 B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization
problems in fixed dimension. J. Algorithms, 21:579–597, 1996.

7 K. L. Clarkson. Las Vegas algorithms for linear and integer programming. J. Assoc. Comput.
Mach., 42:488–499, 1995.

8 K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geo-
metry, II. Discrete Comput. Geom., 4:387–421, 1989.

9 S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174, 1987.
10 B. Gärtner, J. Matoušek, L. Rüst, and P. Šavroň. Violator spaces: Structure and algorithms.

In Proc. 14th Annu. European Sympos. Algorithms (ESA), pages 387–398, 2006.
11 B. Gärtner, J. Matoušek, L. Rüst, and P. Šavroň. Violator spaces: Structure and algorithms.

Discrete Appl. Math., 156(11):2124–2141, 2008.
12 L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. J.

Comput. Syst. Sci., 39(2):126–152, October 1989.
13 S. Har-Peled. Geometric Approximation Algorithms, volume 173 of Mathematical Surveys

and Monographs. Amer. Math. Soc., Boston, MA, USA, 2011.
14 S. Har-Peled. Quasi-polynomial time approximation scheme for sparse subsets of polygons.

In Proc. 30th Annu. Sympos. Comput. Geom. (SoCG), pages 120–129, 2014.
15 S. Har-Peled. Shortest path in a polygon using sublinear space. CoRR, abs/1412.0779,

2014.
16 P. Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream

computation. J. Assoc. Comput. Mach., 53(3):307–323, 2006.
17 D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear

barriers. Networks, 14:393–410, 1984.
18 N. Megiddo. Linear programming in linear time when the dimension is fixed. J. Assoc.

Comput. Mach., 31:114–127, 1984.
19 K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms.

Prentice Hall, Englewood Cliffs, NJ, 1994.
20 L. Y. Rüst. The P -Matrix Linear Complementarity Problem – Generalizations and Special-

izations. PhD thesis, ETH, 2007. Diss. ETH No. 17387.
21 P. Šavroň. Abstract models of optimization problems. PhD thesis, Charles University, 2007.

http://kam.mff.cuni.cz/~xofon/thesis/diplomka.pdf.
22 R. Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete

Comput. Geom., 6:423–434, 1991.
23 M. Sharir and E. Welzl. A combinatorial bound for linear programming and related prob-

lems. In Proc. 9th Sympos. Theoret. Aspects Comput. Sci., volume 577 of Lect. Notes in
Comp. Sci., pages 569–579, London, UK, 1992. Springer-Verlag.

SoCG’15

http://kam.mff.cuni.cz/~xofon/thesis/diplomka.pdf

Optimal Morphs of Convex Drawings∗

Patrizio Angelini1, Giordano Da Lozzo1, Fabrizio Frati1,
Anna Lubiw2, Maurizio Patrignani1, and Vincenzo Roselli1

1 Department of Engineering, Roma Tre University, Italy
{angelini,dalozzo,frati,patrigna,roselli}@dia.uniroma3.it

2 Cheriton School of Computer Science, University of Waterloo, Canada
alubiw@uwaterloo.ca

Abstract
We give an algorithm to compute a morph between any two convex drawings of the same plane
graph. The morph preserves the convexity of the drawing at any time instant and moves each
vertex along a piecewise linear curve with linear complexity. The linear bound is asymptotically
optimal in the worst case.

1998 ACM Subject Classification G.2.2. Graph Theory

Keywords and phrases Convex Drawings, Planar Graphs, Morphing, Geometric Representations

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.126

1 Introduction

Convex drawings of plane graphs are a classical topic of investigation in geometric graph
theory. A characterization [25] of the plane graphs that admit convex drawings and a linear-
time algorithm [10] to test whether a graph admits a convex drawing are known. Convex
drawings in small area [5, 8, 11], orthogonal convex drawings [18, 19, 25], and convex drawings
satisfying further geometric constraints [16, 17] have also been studied. It is intuitive, but far
from trivial to prove, that the space of the convex drawings of any n-vertex plane graph G is
connected; i.e., the points in R2n, each corresponding to the two-dimensional coordinates of
a convex drawing of G, form a connected set. Expressed in yet another way, there exists
a convex morph between any two convex drawings Γs and Γt of the same plane graph G,
that is, a continuous deformation from Γs to Γt so that the intermediate drawing of G is
convex at any instant of the deformation. The main result of this paper is the existence of a
convex morph between any two convex drawings of the same plane graph such that each
vertex moves along a piecewise linear curve with linear complexity during the deformation.

The existence of a convex morph between any two convex drawings of the same plane graph
was first proved by Thomassen [24] more than 30 years ago. His result confirmed a conjecture
of Grünbaum and Shepard [15] and improved upon a result of Cairns [9], stating that
there exists a continuous deformation, called a morph, between any two straight-line planar
drawings of the same plane graph such that any intermediate straight-line drawing is planar.
More recently, motivated by applications in computer graphics, animation, and modeling, a
number of algorithms for morphing graph drawings have been designed [12, 13, 14, 21, 22].
These algorithms aim to construct morphs that preserve the topology of the given drawings
at any time, while guaranteeing that the trajectories of the vertices are “nice” curves.

∗ Work partially supported by MIUR project AMANDA “Algorithmics for MAssive and Networked DAta”,
prot. 2012C4E3KT_001, and by NSERC of Canada. Because of space limitations some proofs are only
sketched here; complete proofs will be found in the full version of the paper.

© Patrizio Angelini, Giordano Da Lozzo, Fabrizio Frati, Anna Lubiw, Maurizio Patrignani,
and Vincenzo Roselli;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Eds.: Lars Arge and János Pach; pp. 126–140

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.126
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Angelini, G. Da Lozzo, F. Frati, A. Lubiw, M. Patrignani, and V. Roselli 127

Straight-line segments are undoubtedly the most readable and appealing curves for the
vertex trajectories. However, linear morphs – morphs in which the vertices move along
straight lines – do not always exist [12]. A natural way to overcome this problem is to
allow vertices to move along piecewise linear curves. Since trajectories of large complexity
would have a dramatically detrimental impact on the readability of the morph, an important
goal is to minimize the complexity of these curves. This problem is formalized as follows.
Let Γs and Γt be two planar straight-line drawings of a plane graph G. Find a sequence
Γs = Γ1, . . . ,Γk = Γt of planar straight-line drawings of G such that, for 1 ≤ i ≤ k − 1, the
linear morph transforming Γi into Γi+1, called a morphing step, is planar and k is small.

The first polynomial upper bound for this problem was recently obtained by Alamdari et
al. [1]. The authors proved that a morph between any two planar straight-line drawings of the
same n-vertex connected plane graph exists with O(n4) morphing steps. The O(n4) bound
was later improved to O(n2) [4] and then to a worst-case optimal O(n) bound by Angelini et
al. [3]. The algorithm of Angelini et al. [3] can be extended to work for disconnected graphs
at the expense of an increase in the number of steps to O(n1.5) [2].

In this paper we give an algorithm to construct a convex morph between any two convex
drawings of the same n-vertex plane graph with O(n) morphing steps. Our algorithm
preserves the convexity of the drawing at any time instant and in fact preserves strict
convexity, if the given drawings are strictly-convex. The linear bound is tight in the worst
case, as can be shown by adapting the lower bound construction of Angelini et al. [3]. We
remark that Thomassen’s algorithm [24] constructs convex morphs with an exponential
number of steps. To the best of our knowledge, no other algorithm is known to construct a
convex morph between any two convex drawings of the same plane graph.

The outline of our algorithm is simple. Let Γs and Γt be two convex drawings of the
same convex graph G, that is, a plane graph that admits a convex drawing. Determine a
connected subgraph G′ of G such that removing G′ from G results in a smaller convex graph
G′′. Then G′ lies inside one face f of G′′. Morph Γs into a drawing Γ′s of G and morph Γt
into a drawing Γ′t of G such that the cycle of G corresponding to f is delimited by a convex
polygon in Γ′s and in Γ′t. These morphs consist of one morphing step each. Remove G′ from
Γ′s and Γ′t to obtain two convex drawings Γ′′s and Γ′′t of G′′. Finally, recursively compute a
morph between Γ′′s and Γ′′t . Since f remains convex throughout the whole morph from Γ′′s to
Γ′′t , a morph of G from Γ′s to Γ′t can be obtained from the morph of G′′ from Γ′′s to Γ′′t by
suitably drawing G′ inside f at each intermediate step of such a morph. The final morph
from Γs to Γt consists of the morph from Γs to Γ′s followed by the morph from Γ′s to Γ′t, and
then the reverse of the morph from Γt to Γ′t. Our algorithm has two main ingredients.

The first ingredient is a structural decomposition of convex graphs that generalizes a
well-known structural decomposition of triconnected planar graphs due to Barnette and
Grünbaum [6]. The latter states that any subdivision of a triconnected planar graph contains
a path whose removal results in a subdivision of a smaller triconnected planar graph. For
convex graphs we can prove a similar theorem which states, roughly speaking, that any
convex graph contains a path, or three paths incident to the same vertex, whose removal
results in a smaller convex graph. Our approach is thus based on removing a subgraph from
the input graph. This differs from the recent papers on morphing graph drawings [1, 3, 4],
where the basic operation is to contract (i.e. move arbitrarily close) a vertex to a neighbor.
One of the difficulties of the previous approach was to determine a trajectory for a contracted
vertex inside the moving polygon of its neighbors. By removing a subgraph and forcing the
newly formed face to be convex, we avoid this difficulty.

The second ingredient is a relationship between unidirectional morphs and level planar
drawings of hierarchical graphs, which allows us to compute the above mentioned morphs

SoCG’15

128 Optimal Morphs of Convex Drawings

between Γs and Γ′s and between Γt and Γ′t with one morphing step. This relationship was
first observed by Angelini et al. [3]. However, in order to use it in our setting, we need to
prove that every strictly-convex graph admits a strictly-convex level planar drawing; this
strengthens a result of Hong and Nagamochi [16] and might be of independent interest.

We leave open the question whether any two straight-line drawings of the same plane
graph G can be morphed so that every intermediate drawing has polynomial size (e.g., the
ratio between the length of any two edges is polynomial in the size of G during the entire
morph). In order to solve this problem positively, our approach seems to be better than
previous ones; intuitively, subgraph removals are more suitable than vertex contractions for a
morphing algorithm that doesn’t blow up the size of the intermediate drawings. Nevertheless,
we haven’t yet been able to prove that polynomial-size morphs always exist.

2 Definitions and Preliminaries

In this section we give some definitions and preliminaries.

Drawings and Embeddings. A straight-line planar drawing Γ of a graph maps vertices
to points in the plane and edges to internally disjoint straight-line segments. Drawing Γ
partitions the plane into topologically connected regions, called faces. The bounded faces
are internal and the unbounded face is the outer face. A vertex (an edge) is external if it
is incident to the outer face and internal otherwise. A vertex x is convex, flat, or concave
in an incident face f in Γ, if the angle at x in f is smaller than, equal to, or larger than π
radians, respectively. Drawing Γ is convex (strictly-convex) if for each vertex v and each face
f vertex v is incident to, v is either convex or flat (is convex) in f , if f is internal, and v is
either concave or flat (is concave) in f , if f is the outer face. A planar drawing determines a
clockwise ordering of the edges incident to each vertex. Two planar drawings of a connected
planar graph are equivalent if they determine the same clockwise orderings and have the
same outer face. A plane embedding is an equivalence class of planar drawings. A graph with
a plane embedding is a plane graph. A convex (strictly-convex) graph is a plane graph that
admits a convex (resp. strictly-convex) drawing with the given plane embedding.

Subgraphs and Connectivity. A subgraph G′ of a plane graph G is regarded as a plane
graph whose plane embedding is obtained from G by removing all the vertices and edges not
in G′. We denote by G − e (by G − S) the plane graph obtained from G by removing an
edge e of G (resp. a set S of vertices and their incident edges).

We denote by deg(G, v) the degree of a vertex v in a graph G. A graph G is biconnected
(triconnected) if removing any vertex (resp. any two vertices) leaves G connected. A separation
pair in a graph G is a pair of vertices whose removal disconnects G. A biconnected plane
graph G is internally triconnected if introducing a new vertex in the outer face of G and
connecting it to all the vertices incident to the outer face of G results in a triconnected graph.
Thus, internally triconnected plane graphs form a super-class of triconnected plane graphs.
A split component of a graph G with respect to a separation pair {u, v} is either an edge
(u, v) or a maximal subgraph G′ of G that does not contain edge (u, v), that contains vertices
u and v, and such that {u, v} is not a separation pair of G′; we say that {u, v} determines
the split components with respect to {u, v}. For an internally triconnected plane graph G,
every separation pair {u, v} determines two or three split components; further, in the latter
case, one of them is an edge (u, v) not incident to the outer face of G.

P. Angelini, G. Da Lozzo, F. Frati, A. Lubiw, M. Patrignani, and V. Roselli 129

A subdivision G′ of a graph G is a graph obtained from G by replacing each edge (u, v)
with a path between u and v; the internal vertices of this path are called subdivision vertices.
Given a subgraph H of G, the subgraph H ′ of G′ corresponding to H is obtained from H by
replacing each edge (u, v) with a path with the same number of vertices as in G′.

Convex Graphs. Convex graphs have been thoroughly studied, both combinatorially and
algorithmically. Most of the known results about convex graphs are stated in the following
setting. The input consists of a plane graph G and a convex polygon P representing the
cycle C delimiting the outer face of G. The problem asks whether G admits a convex
drawing in which C is represented by P . The known characterizations for this setting imply
characterizations and recognition algorithms for the class of convex graphs (with no constraint
on the representation of the cycle delimiting the outer face). Quite surprisingly, the literature
seems to lack explicit statements of the characterizations in this unconstrained setting. Here
we present two theorems, whose proofs can be easily derived from known results [10, 16, 25].

I Theorem 1. A plane graph is convex if and only if it is a subdivision of an internally
triconnected plane graph.

I Theorem 2. A plane graph is strictly-convex if and only if it is a subdivision of an
internally triconnected plane graph and every degree-2 vertex is external.

Monotonicity. A straight arc xy is a straight line segment directed from a point x to a
point y; xy is monotone with respect to an oriented straight line d if the projection of x on
d precedes the projection of y on d according to the orientation of d. A path (u1, . . . , un) is
d-monotone if uiui+1 is monotone with respect to d, for i = 1, . . . , n− 1; a polygon Q is
d-monotone if it contains two vertices s and t such that the two paths between s and t in
Q are both d-monotone. A path P (a polygon Q) is monotone if there exists an oriented
straight line d such that P (resp. Q) is d-monotone. We have the following.

I Lemma 3 (Angelini et al. [3]). Let Q be a convex polygon and d be an oriented straight
line not orthogonal to any straight line through two vertices of Q. Then Q is d-monotone.

I Lemma 4. Let Q1 and Q2 be strictly-convex polygons sharing an edge e and lying on
opposite sides of the line through e. Let Pi be the path obtained from Qi by removing edge e,
for i = 1, 2. The polygon Q composed of P1 and P2 is monotone.

Proof sketch. Q is monotone with respect to a line l orthogonal to e – unless Q contains
edges parallel to e, in which case a slight perturbation of l suffices. J

Morphing. A linear morph 〈Γ1,Γ2〉 between two straight-line planar drawings Γ1 and Γ2 of
a plane graph G moves each vertex at constant speed along a straight line from its position in
Γ1 to its position in Γ2. A linear morph is planar if no crossing or overlap occurs between any
two edges or vertices during the transformation. A linear morph is convex (strictly-convex) if
it is planar and each face is delimited by a convex (resp. strictly-convex) polygon at any time
instant of the morph. A convex linear morph is called a morphing step. A unidirectional
linear morph [7] is a linear morph in which the straight-line trajectories of the vertices are
parallel. A convex morph (a strictly-convex morph) 〈Γs, . . . ,Γt〉 between two convex drawings
Γs and Γt of a plane graph G is a finite sequence of convex (resp. strictly-convex) linear
morphs that transforms Γs into Γt. A unidirectional (strictly-) convex morph is such that
each of its morphing steps is unidirectional.

SoCG’15

130 Optimal Morphs of Convex Drawings

3 Decompositions of Convex Graphs

Our morphing algorithm relies on a lemma stating that, roughly speaking, any convex graph
has a “simple” subgraph whose removal results in a smaller convex graph. A similar result is
known for a restricted graph class, namely the subdivisions of triconnected planar graphs.

On the way to proving that every triconnected planar graph is the skeleton of a convex
polytope in R3, Barnette and Grünbaum [6] proved that every subdivision of a triconnected
planar graph G can be decomposed as follows (see also [20]). Starting from G, repeatedly
remove a path whose internal vertices have degree two in the current graph, until a subdivision
of K4 is obtained. Barnette and Grünbaum proved that there is such a decomposition in
which every intermediate graph is a subdivision of a simple triconnected plane graph.

We now present a lemma that generalizes Barnette and Grünbaum’s decomposition
technique so that it applies to convex (not necessarily triconnected) graphs.

I Lemma 5. Let G be a convex graph. There exists a sequence G1, . . . , G` of graphs such
that: (i) G1 = G; (ii) G` is the simple cycle C delimiting the outer face of G; (iii) for each
1 ≤ i ≤ `, graph Gi is a subgraph of G and is a subdivision of a simple internally triconnected
plane graph Hi; and (iv) for each 1 ≤ i < `, graph Gi+1 is obtained either:

by deleting the edges and the internal vertices of a path (u1, u2, . . . , uk) with k ≥ 2 from
Gi, where u2, . . . , uk−1 are degree-2 internal vertices of Gi; or
by deleting a degree-3 internal vertex u of Gi as well as the edges and the internal vertices
of three paths P1, P2, and P3 connecting u with three vertices of the cycle C delimiting
the outer face of G, where P1, P2, and P3 are vertex-disjoint except at u and the internal
vertices of P1, P2, and P3 are degree-2 internal vertices of Gi.

Proof. Set G1 = G. Suppose that a sequence G1, . . . , Gi has been determined. If Gi = G`
is the cycle delimiting the outer face of G, then we are done. Otherwise, we distinguish two
cases, based on whether Gi is a subdivision of a triconnected plane graph or not.

Suppose first that Gi is a subdivision of a triconnected plane graph Hi. We construct
graphs Gi, . . . , G` one by one, in reverse order. Throughout the construction, we maintain
the following invariant for every ` ≥ j > i. Suppose that Hj contains an internal edge (u, v)
that is also an edge of Hi. Then there exists no path in Hi that connects u and v, that is
different from edge (u, v), and all of whose internal vertices are not in Hj .

Let G` be the cycle C delimiting the outer face of Gi. Next, we determine G`−1 (see
Fig. 1(a)). Let Ci be the cycle delimiting the outer face of Hi. Since Hi is triconnected
and has at least four vertices, there exist three paths that connect an internal vertex v of
Hi with vertices of Ci, that share no vertices other than v, and whose internal vertices are
not in Ci (see Theorem 5.1 in [23]). Among all the triples of paths with these properties,
choose a triple (Px, Py, Pz) involving the largest number of vertices of Hi. Paths Px, Py, and
Pz and cycle Ci form a graph GH`−1 that is a subdivision of K4. The subgraph G`−1 of Gi
corresponding to GH`−1 is hence a subdivision of K4 in which v is the only degree-3 internal
vertex. The invariant is satisfied since Px, Py, and Pz involve the largest number of vertices
of Hi. Further, G` is obtained from G`−1 by deleting a degree-3 internal vertex v of G`−1 as
well as the edges and the internal vertices of Px, Py, and Pz, as required by the lemma.

Next, assume that a sequence G`, . . . , Gj has been determined, for some j ≤ ` − 1. If
Gj = Gi, then we are done. Otherwise, Gj−1 is obtained by adding a path P to Gj . The
choice of P distinguishes two cases (as in the proof of Theorem 2 in [6]).

In Case (A), a vertex z exists such that deg(Gj , z) = 2 and deg(Gi, z) ≥ 3. Then, consider
the unique path Pxy in Gj that contains z as an internal vertex, whose internal vertices have
degree two in Gj , and whose end-points x and y have degree at least three in Gj . Note

P. Angelini, G. Da Lozzo, F. Frati, A. Lubiw, M. Patrignani, and V. Roselli 131

Px

PyPz
v

x

y

Pxy

u1

uk

u2

Pz

x

y

Pxy

u1
uk

u2

Pz

u1

uk

u2

P

(a) (b) (c) (d)

Figure 1 Illustration for the proof of Lemma 5 if Gi is a subdivision of a triconnected plane
graph Hi. White vertices belong to Hj , Gj , Hi, and Gi; grey vertices belong to Gj , Hi, and Gi,
and not to Hj ; black vertices belong to Gj and Gi, and not to Hj and Hi. (a) Graph G`−1. (b)–(d)
Graph Gj and path P , together forming graph Gj−1; (b) and (c) illustrate Case (A) with uk having
degree two and greater than two in Gj , respectively, while (d) depicts Case (B).

that (x, y) is an edge of Hj . Since {x, y} is not a separation pair in Hi, there exists a path
P = (u1, u2, . . . , uk) in Gi such that u1 is an internal vertex of Pxy, vertex uh does not
belong to Gj , for every 2 ≤ h ≤ k − 1, and uk is a vertex of Gj not in Pxy. Choose the path
with these properties involving the largest number of vertices of Hi. Observe that uk might
have degree two (as in Fig. 1(b)) or greater than two (as in Fig. 1(c)) in Gj .

In Case (B), there exists no vertex z such that deg(Gj , z) = 2 and deg(Gi, z) ≥ 3 (see
Fig. 1(d)). Since Gj is different from Gi, there exists a path P = (u1, u2, . . . , uk) in Gi
such that u1 and uk belong to Hj , and u2, . . . , uk−1 do not belong to Gj . Also, a path P
satisfying these properties exists such that u1 is an internal vertex of Hi (otherwise Hi would
contain a separation pair composed of two external vertices). Choose a path P involving the
largest number of vertices of Hi, subject to the constraint that u1 is an internal vertex of Hi.

In both cases, path P has to be embedded inside a face f of Gj , according to the plane
embedding of Gi. Since Gj contains the cycle delimiting the outer face of Gi, we have that
f is an internal face of Gj . Graph Gj−1 is obtained by inserting P in f . Since P and Gj are
subgraphs of Gi, graph Gj−1 is a subgraph of Gi. Also, it satisfies the invariant since P is
chosen as a path involving the largest number of vertices of Hi. It remains to prove that
Gj−1 is a subdivision of a simple triconnected plane graph Hj−1. Let Hj−1 be the graph
obtained from Gj−1 by replacing each maximal path whose internal vertices have degree two
with a single edge. Thus, Gj−1 is a subdivision of Hj−1.

I Claim 1. Graph Hj−1 is plane, simple, and triconnected.

Proof sketch. First, Hj−1 is a plane graph since Gj−1 is a plane graph. Second, in Case
(A) Hj−1 is simple because Hj is simple and u1 does not belong to Hj ; further, it can be
proved that Hj−1 contains no separation pair (hence it is triconnected) because Hj contains
three internally disjoint paths between any pair of vertices and because each of u1 and uk
contains three internally disjoint paths to vertices of Hj . Third, in Case (B) Hj−1 is simple
because of the invariant and it is triconnected because Hj is triconnected. J

We now turn to the case in which Gi is not a subdivision of a triconnected plane graph.
In this case Gi is a subdivision of a simple internally triconnected plane graph Hi with
minimum degree three and containing some separation pairs. Recall that Hi has either two
or three split components with respect to any separation pair {u, v}.

Suppose that a separation pair {u, v} exists in Hi determining three split components.
Since Hi is internally triconnected, one of these split components is an internal edge (u, v) of
Hi corresponding to a path P = (u = u1, . . . , uk = v) in Gi, where u2, . . . , uk−1 are degree-2
internal vertices of Gi. Let Gi+1 = Gi−{u2, . . . , uk−1} and let Hi+1 = Hi−(u, v). Note that

SoCG’15

132 Optimal Morphs of Convex Drawings

u

v

(a) (b) (c) (d) (e) (f)
v

u

x

P1

P2

P3

(g) (h) (i) (j) (k)

Figure 2 Illustration for the proof of Lemma 5 if Gi is not a subdivision of a triconnected plane
graph Hi. The faces of D1, . . . , Dm not incident to Q are colored gray in Gi, . . . , Gi+m−1. The faces
of M1, . . . , Mm not incident to (u, v) are colored gray in Hi, . . . , Hi+m−1. (a) Graph Gi. (b) Graph
Hi and separation pair {u, v}. (c) Graph L. (d) Graph D = D1. (e) Graph M = M1. (f) Graph
Gi+1. (g) Graph Hi+1. (h) Graph Gi+2. (i) Graph Hi+2. (j) Graph Gi+3. (k) Graph Hi+3.

Gi+1 is a subdivision of Hi+1. Then Hi+1 is an internally triconnected simple plane graph,
given that Hi is an internally triconnected simple plane graph with three split components
with respect to {u, v}.

Suppose next that every separation pair of Hi determines two split components, as in
Fig. 2(a). Let {u, v} be a separation pair of Hi determining two split components A and B
such that A does not contain any separation pair of Hi different from {u, v}, as in Fig. 2(b),
(e.g., let {u, v} be a separation pair such that the number of vertices in A is minimum among
all separation pairs). Let L be the subgraph of Hi composed of A and of the path Q between
u and v that delimits the outer face of Hi and that belongs to B; see Fig. 2(c). Let D be
the subgraph of Gi corresponding to L; see Fig. 2(d). The graph M obtained from L by
replacing Q with an edge (u, v), shown in Fig. 2(e), is triconnected, given that the vertex
set of A does not contain any separation pair of Hi different from {u, v}. Thus, D is a
subdivision of a simple triconnected plane graph M .

By means of the same algorithm described in the case in which Gi is a subdivision of a
triconnected plane graph, we determine a sequence D1, . . . , Dm of subdivisions of triconnected
plane graphs M1, . . . ,Mm, where D1 = D, M1 = M , and Mm = K3. Further, we define
a sequence Hi+1, . . . ,Hi+m−1 of graphs where, for each 2 ≤ j ≤ m − 1, graph Hi+j−1 is
obtained from Hi by replacing M with Mj (see Figs. 2(b), 2(g), and 2(i)), and where Hi+m−1
is obtained from Hi by replacing M with an edge (u, v) (see Fig. 2(k)). Analogously, we
define a sequence Gi+1, . . . , Gi+m−1 of graphs where, for each 2 ≤ j ≤ m, graph Gi+j−1 is
obtained from Gi by replacing D with Dj (see Figs. 2(a), 2(f), 2(h), and 2(j)). Then, for
each 2 ≤ j ≤ m, graph Gi+j−1 is a subdivision of Hi+j−1. Further, for each 1 ≤ j ≤ m− 2,
graph Gi+j is obtained from Gi+j−1 by deleting the edges and the internal vertices of a
path (u1, . . . , uk) with k ≥ 2, where u2, . . . , uk−1 are degree-2 internal vertices of Gi+j−1.
Moreover, graph Gi+m−1 is obtained by deleting from Gi+m−2 a degree-3 internal vertex x
as well as the edges and the internal vertices of three paths P1, P2, and P3, as required by the
lemma. Finally, since M2, . . . ,Mm are simple triconnected plane graphs, Hi+1, . . . ,Hi+m−1
are simple internally triconnected plane graphs.

Note that Hi+m−1 is obtained from Hi by replacing A with edge (u, v), hence {u, v}
is not a separation pair in Hi+m−1. Thus, the repetition of the described transformations
over different separation pairs {u, v} eventually leads to a graph Gx that is the subdivision
of a simple triconnected plane graph Hx; then a sequence Gx, . . . , G` of subdivisions of
triconnected plane graphs such that G` is a subdivision of K3 is determined as above. J

P. Angelini, G. Da Lozzo, F. Frati, A. Lubiw, M. Patrignani, and V. Roselli 133

4 Convex Drawings of Hierarchical Convex Graphs

A hierarchical graph is a tuple (G,d, L, γ) where G is a graph, d is an oriented straight line
in the plane, L is a set of parallel lines orthogonal to d, and γ is a function that maps each
vertex of G to a line in L so that adjacent vertices are mapped to distinct lines. The lines in L
are ordered as they are encountered when traversing d according to its orientation (we write
l1 < l2 if a line l1 precedes a line l2 in L). Furthermore, each line li ∈ L is oriented so that d

cuts li from the right to the left of li; a point a precedes a point b on li if a is encountered
before b when traversing li according to its orientation. For the sake of readability, we will
often write G instead of (G,d, L, γ) to denote a hierarchical graph. A level drawing of a
hierarchical graph G maps each vertex v to a point on the line γ(v) and each edge (u, v) of
G with γ(u) < γ(v) to an arc uv monotone with respect to d. A hierarchical graph G with
a prescribed plane embedding is a hierarchical plane graph if there is a level planar drawing
Γ of G that respects the prescribed plane embedding. A path (u1, . . . , uk) in G is monotone
if γ(ui) < γ(ui+1), for 1 ≤ i ≤ k − 1. An st-face in a hierarchical plane graph G is a face
delimited by two monotone paths connecting two vertices s and t, where s is the source and
t is the sink of the face. Furthermore, G is a hierarchical-st plane graph if every face of G is
an st-face; note that a face f of G is an st-face if and only if the polygon delimiting f in a
straight-line level planar drawing of G is d-monotone.

In this section we give an algorithm to construct strictly-convex level planar drawings of
hierarchical-st strictly-convex graphs, that are hierarchical-st plane graphs (G,d, L, γ) such
that G is a strictly-convex graph. We have the following.

I Theorem 6. Every hierarchical-st strictly-convex graph admits a drawing which is simul-
taneously strictly-convex and level planar.

Proof. Let (G,d, L, γ) be a hierarchical-st strictly-convex graph, in the following simply
denoted by G, and let C be the cycle delimiting the outer face f of G. Construct a strictly-
convex level planar drawing PC of C in which the clockwise order of the vertices along PC is
the same as prescribed in G. Hong and Nagamochi [16] showed an algorithm to construct a
(non-strictly) convex level planar drawing Γ of G in which C is represented by PC . We show
how to modify Γ into a strictly-convex level planar drawing of G.

We give some definitions. Let s and t be the vertices of G such that γ(s) < γ(u) < γ(t),
for every vertex u 6= s, t of G. Given a vertex v of G, the leftmost (rightmost) top neighbor of
v is the neighbor x of v with γ(x) > γ(v) such that for the neighbor y of v counter-clockwise
(clockwise) following x we have that either γ(y) < γ(v), or γ(y) > γ(v) and both x and y
are incident to f (this only happens when v = s). The leftmost and the rightmost bottom
neighbor of v are defined analogously. Also, the leftmost (rightmost) top path of v is the
monotone path P from v to t obtained by initializing P = (v) and by repeatedly adding the
leftmost (resp. rightmost) top neighbor of the last vertex. The leftmost and rightmost bottom
path of v are defined analogously. Let v be a vertex of G that is flat in a face g of Γ; v is
an internal vertex of G, since PC is strictly-convex. Let x and y be the neighbors of v in g;
then either γ(x) < γ(v) < γ(y) or γ(y) < γ(v) < γ(x). Assume the former. If g lies to the
left of path (x, v, y) when traversing it from x to y, then we say that v is a left-flat vertex
in Γ, otherwise v is a right-flat vertex. By Theorem 2 and since v is an internal vertex of
G, we have deg(G, v) ≥ 3, hence v cannot be both a left-flat and a right-flat vertex in Γ. A
left-flat (right-flat) path in Γ is a maximal path whose internal vertices are all left-flat (resp.
right-flat) vertices and are all flat in the same face (see Fig. 3(a)). Let Q = (x, . . . , y) be a
left-flat path in Γ; the elongation EQ of Q is the monotone path between s and t obtained
by concatenating the rightmost bottom path of x, Q, and the rightmost top path of y. Let

SoCG’15

134 Optimal Morphs of Convex Drawings

Gl(Q)
Gr(Q)

s

x

Q

y

t

ui

wi

y

π

x

π

π π

Q∗

g

Gr(Q
∗)

π

y

x

Q∗

g

w
hl hr

w′h′l
h′r

ui

Gr(Q
∗)

u′i

(a) (b) (c)

Figure 3 (a) A left-flat path Q (red thick line), its elongation E(Q) (red and black thick lines),
graphs Gr(Q) (gray) and Gl(Q) (yellow). (b) Drawing Γ. (c) Drawing Γ′.

Gl(Q) (Gr(Q)) be the subgraph of G whose outer face is delimited by the cycle composed of
EQ and of the leftmost (resp. rightmost) top path of s. For a right-flat path Q in Γ, the
elongation EQ of Q, and graphs Gl(Q) and Gr(Q) are defined analogously.

In order to modify Γ into a strictly-convex level planar drawing of G, we proceed by
induction on the number a(Γ) of flat angles in Γ. If a(Γ) = 0, then Γ is strictly-convex and
there is nothing to be done. If a(Γ) ≥ 1, then there exists a path Q that is either a left-flat
path or a right-flat path in Γ. Assume the former, the other case is symmetric. Also, assume
w.l.o.g. up to a rotation of the axes, that the lines in L are horizontal.

Ideally, we would like to move the internal vertices of Q to the right, so that the polygon
delimiting the face on which the internal vertices of Q are flat becomes strictly-convex. There
is one obstacle to such a modification, though: An internal vertex of Q might be the first or
the last vertex of a left-flat path Q′; thus, moving that vertex to the right would cause the
polygon delimiting the face on which the internal vertices of Q′ are flat to become concave
(in Fig. 3(a) moving ui to the right causes an angle incident to wi to become concave). We
now argue that there is a left-flat path Q∗ such that Gr(Q∗) contains no internal left-flat
path; then we modify Γ by moving the internal vertices of Q∗ to the right.

Let Q∗ = (x, . . . , y) be a left-flat path such that the number of internal vertices of Gr(Q∗)
is minimum. Suppose, for a contradiction, that Gr(Q∗) contains an internal left-flat path Q′.
Then Gr(Q′) has less internal vertices than Gr(Q∗), since Gr(Q′) is a subgraph of Gr(Q∗)
and the internal vertices of Q′ are internal vertices of Gr(Q∗) and external vertices of Gr(Q′).
This contradiction proves that Gr(Q∗) does not contain any internal left-flat path.

We construct a convex drawing Γ′ of G with a(Γ′) < a(Γ). Initialize Γ′ = Γ and remove
the internal vertices of Q∗. Let ε > 0 be to be determined later. Consider segment xy,
its mid-point z, and a point p in the half-plane to the right of xy such that segment zp is
orthogonal to xy and has length ε. Let a be the arc of circumference between x and y passing
through p. Place each internal vertex v of Q∗ at the intersection point of γ(v) with a, which
exists since Q∗ is monotone. Denote by Γ′ the resulting drawing. We have the following.

I Claim 2. The following statements hold, provided that ε is sufficiently small: (i) Γ′ is
convex; (ii) every vertex that is flat in an incident face in Γ′ is flat in the same face in Γ;
and (iii) every internal vertex of Q∗ is convex in every incident face in Γ′.

Proof sketch. Moving the internal vertices of Q∗ from xy to a results in these vertices being
convex in the unique face g of Gl(Q∗) they are all incident to in Γ′. Further, the difference
between the size of any angle in Γ′ and the size of the corresponding angle in Γ tends to 0 as
ε→ 0; in particular, angles that are flat in Γ either have the same or smaller size in Γ′ (see
w in Figs. 3(b)–(c)), given that Gr(Q∗) does not contain any internal left-flat path. J

Claim 2 implies that Γ′ is convex and that a(Γ′) < a(Γ). The theorem follows. J

P. Angelini, G. Da Lozzo, F. Frati, A. Lubiw, M. Patrignani, and V. Roselli 135

v1
v2

vn

`

q1 qn

vk

v2
v1

vn
v1
v2

vn

q1 qn

vk

v1 vn

v1

v2

vn

`

q1 qn

v1

v2
vn

(a) (b) (c) (d)

Figure 4 (a) Drawings Γs (black circles and black lines) and Γ′s (white circles and blue lines),
together with points q1, . . . , qn. (b) Morph 〈Γ′s, . . . , Γ〉 after two steps. (c) Drawing Γ. (d) Drawings
Γt (black circles and black lines) and Γ′t (white circles and blue lines), together with points q1, . . . , qn.

5 A Morphing Algorithm

In this section we give algorithms to morph convex drawings of plane graphs. We start with
a lemma about unidirectional linear morphs. Two level planar drawings Γ1 and Γ2 of a
hierarchical plane graph (G,d, L, γ) are left-to-right equivalent if, for any line li ∈ L, for any
vertex or edge x of G, and for any vertex or edge y of G, we have that x precedes (follows) y
on li in Γ1 if and only if x precedes (resp. follows) y on li in Γ2. We have the following.

I Lemma 7. The linear morph 〈Γ1,Γ2〉 between two left-to-right equivalent strictly-convex
level planar drawings Γ1 and Γ2 of a hierarchical-st strictly-convex graph (G,d, L, γ) is
strictly-convex and unidirectional.

Proof sketch. Morph 〈Γ1,Γ2〉 is planar and unidirectional [3]. Also, it is strictly-convex
since an angle v̂uz that is convex in Γ1 and in Γ2 stays convex during 〈Γ1,Γ2〉; this descends
from the planarity of 〈Γ1,Γ2〉 if γ(u) < γ(v), γ(z) or γ(v), γ(z) < γ(u) and from the fact that
u, v, and z are never aligned during 〈Γ1,Γ2〉 if γ(z) < γ(u) < γ(v) (see [7]). J

We now describe an algorithm to construct a strictly-convex morph between any two
strictly-convex drawings Γs and Γt of a plane graph G with n vertices and m internal faces.
The algorithm works by induction on m and consists of at most 2n+ 2m morphing steps.

In the base case we have m = 1, hence G is a cycle. We have the following.

I Claim 3. There exists a strictly-convex unidirectional morph with at most 2n+ 2 steps
between any two strictly-convex drawings Γs and Γt of cycle G.

Proof Sketch. Let v1, . . . , vn be the vertices of G as they appear clockwise around G. Let `
be a straight line not orthogonal to any line through two vertices of G in Γs and in Γt. Draw
a circumference C enclosing both Γs and Γt. Morph Γs (Γt) into a drawing Γ′s (Γ′t) such
that all the vertices of G are on C (see Fig. 4(a) and Fig. 4(d)) with a single strictly-convex
morphing step which is unidirectional in the direction orthogonal to ` (each vertex moves in
the direction that does not make it collide with the initial drawing of G).

Consider n points q1, . . . , qn in this clockwise order on C both in Γ′s and in Γ′t such that
the arc of C between q1 and qn containing q2 does not contain any vertex of G. Morph
Γ′s (Γ′t) into a drawing Γ of G in which vi is placed at qi, for 1 ≤ i ≤ n, as follows (see
Figs. 4(a)–(c)). Let vk be the first vertex of G encountered when clockwise traversing C from
qn. For j = k − 1, . . . , 1, k, . . . , n, move vj to pj . These morphs consist of n unidirectional
strictly-convex morphing steps each. Hence, 〈Γs,Γ′s, . . . ,Γ, . . . ,Γ′t,Γt〉 is a unidirectional
strictly-convex morph between Γs and Γt with 2n+ 2 morphing steps. J

SoCG’15

136 Optimal Morphs of Convex Drawings

In the inductive case we have m > 1. Then we apply Lemma 5 to G in order to obtain a
graph G′ with m′ < m internal faces. We proceed as follows.

Assume first that, according to Lemma 5, a degree-3 internal vertex u of G as well as
the edges and the internal vertices of paths P1, P2, and P3 can be removed from G resulting
in a convex graph G′, where: (i) P1, P2, and P3 respectively connect u with vertices u1, u2,
and u3 of the cycle C delimiting the outer face f of G; (ii) P1, P2, and P3 are vertex-disjoint
except at u; and (iii) the internal vertices of P1, P2, and P3 are degree-2 internal vertices of
G. Graph G has no degree-2 internal vertices, since it is strictly-convex (see Theorem 2),
hence P1, P2, and P3 are edges (u, u1), (u, u2), and (u, u3), respectively.

Vertex u lies in the interior of triangle ∆(u1, u2, u3) both in Γs and in Γt, since deg(G, u) =
3 and the angles incident to u are smaller than π both in Γs and in Γt. Hence, the position of u
is a convex combination of the positions of u1, u2, and u3 both in Γs and in Γt (the coefficients
of such convex combinations might be different in Γs and in Γt). Further, no vertex other
than u and no edge other than those incident to u lie in the interior of triangle ∆(u1, u2, u3)
in Γs and Γt, since these drawings are strictly-convex. With a single unidirectional linear
morph, move u in Γs to the point that is a convex combination of the positions of u1, u2,
and u3 with the same coefficients as in Γt. This morph is strictly-convex since u stays inside
∆(u1, u2, u3) at any time instant. Let Γ′s be the resulting drawing of G.

Let Q1, Q2, and Q3 be the polygons delimiting the faces of G incident to u in Γs. Let Λ′s
be the drawing of G′ obtained from Γ′s by removing u and its incident edges. We claim that
Λ′s is strictly-convex. Indeed, every internal face of G′ different from the face fu that used to
contain u is also a face in Γ′s, hence it is delimited by a strictly-convex polygon. Further,
every internal angle of the polygon delimiting fu is either an internal angle of Q1, Q2, or Q3,
hence it is smaller than π, since Γ′s is strictly-convex, or is incident to u1, u2, or u3; however,
these vertices are concave in f , hence they are convex in fu 6= f . Analogously, the drawing
Λ′t of G′ obtained from Γt by removing u and its incident edges is strictly-convex.

Inductively construct a unidirectional convex morph 〈Λ′s = Λ0, . . . ,Λ` = Λ′t〉 with
` ≤ 2(n− 1) + 2(m− 2) morphing steps. For each 1 ≤ j ≤ `− 1, draw u in Λj at a point that
is the convex combination of the positions of u1, u2, and u3 with the same coefficients as
in Γ′s and in Γt; denote by Γj the resulting drawing of G. Morph 〈Γ′s = Γ0, . . . ,Γ` = Γt〉 is
strictly-convex and unidirectional. Namely, in every morphing step 〈Γj ,Γj+1〉, vertex u moves
between two points that are convex combinations of the positions of u1, u2, and u3 with the
same coefficients, hence it moves parallel to each of u1, u2, and u3 (from which 〈Γ0, . . . ,Γ`〉
is unidirectional) and it stays inside ∆(u1, u2, u3) at any time instant of 〈Γj ,Γj+1〉 (from
which 〈Γ0, . . . ,Γ`〉 is strictly-convex). Thus, 〈Γs,Γ′s = Γ0, . . . ,Γ` = Γt〉 is a unidirectional
strictly-convex morph between Γs and Γt with `+ 1 ≤ 2n+ 2m− 5 morphing steps.

Assume next that, according to Lemma 5, the edges and the internal vertices of a path
P , whose internal vertices are degree-2 internal vertices of G, can be deleted from G so
that the resulting graph G′ is convex. Graph G has no degree-2 internal vertices, since it is
strictly-convex (see Theorem 2), hence P is an edge (u, v). Removing (u, v) from Γs (from
Γt) results in a drawing Λs (resp. Λt) of G′ which is not, in general, convex, since vertices u
and v might be concave in the face fuv of G′ that used to contain (u, v), as in Fig. 5. By
Lemma 4, there exists an oriented straight line ds such that the polygon Quv representing
the cycle Cuv delimiting fuv is ds-monotone. By slightly perturbing the slope of ds, we can
assume that it is not orthogonal to any line through two vertices of G′. Let L′s be the set
of parallel and distinct lines through vertices of G′ and orthogonal to ds. Let γ′s be the
function that maps each vertex of G′ to the line in L′s through it. We have the following.

I Lemma 8. (G′,ds, L
′
s, γ
′
s) is a hierarchical-st convex graph.

P. Angelini, G. Da Lozzo, F. Frati, A. Lubiw, M. Patrignani, and V. Roselli 137

u v

y

x

ds

u v

y

x

ds

x

y

ds

v

ds

x

y

w u v

(a) (b) (c) (d)

Figure 5 Drawings (a) Γs, (b) Λs, (c) Λ′′s , and (d) Γ′s.

Analogously, there exists an oriented straight line dt that leads to define a hierarchical-st
convex graph (G′,dt, L

′
t, γ
′
t) for which Λt is a straight-line level planar drawing.

We now distinguish three cases, based on whether deg(G′, u),deg(G′, v) > 2 (Case 1),
deg(G′, u) = 2 and deg(G′, v) > 2 (Case 2), or deg(G′, u) = deg(G′, v) = 2 (Case 3). The
case in which deg(G′, u) > 2 and deg(G′, v) = 2 is symmetric to Case 2.

In Case 1 graph G′ is strictly-convex, since it is convex and all its internal vertices have
degree greater than two. By Theorem 6, (G′,ds, L

′
s, γ
′
s) and (G′,dt, L

′
t, γ
′
t) admit strictly-

convex level planar drawings Λ′s and Λ′t, respectively. Let Γ′s (Γ′t) be the strictly-convex level
planar drawing of (G,ds, L

′
s, γ
′
s) (resp. of (G,dt, L

′
t, γ
′
t)) obtained by inserting edge (u, v) as

a straight-line segment in Λ′s (resp. Λ′t). Drawings Γs and Γ′s (Γt and Γ′t) are left-to-right
equivalent. This is argued as follows. First, since G is a plane graph, its outer face is
delimited by the same cycle C in both Γs and Γ′s; further, the clockwise order of the vertices
along C is the same in Γs and in Γ′s (recall that Theorem 6 allows us to arbitrarily prescribe
the strictly-convex polygon representing C). Consider any two vertices or edges x and y
both intersecting a line ` in L′s; assume this line to be oriented in any way. Suppose, for
a contradiction, that x precedes y on ` in Γs and follows y on ` in Γ′s. Since Γs and Γ′s
are strictly-convex, there exists a ds-monotone path Px (Py) containing x (resp. y) and
connecting two vertices of C. Then Px and Py properly cross, contradicting the planarity of
Γs or of Γ′s, or they share a vertex which has a different clockwise order of its incident edges in
the two drawings, contradicting the fact that Γs and Γ′s are drawings of the same plane graph.
By Lemma 7, linear morphs 〈Γs,Γ′s〉 and 〈Γt,Γ′t〉 are strictly-convex and unidirectional.

Inductively construct a unidirectional strictly-convex morph 〈Λ′s = Λ0,Λ1, . . . ,Λ` = Λ′t〉
with ` ≤ 2n + 2(m − 1) morphing steps between Λ′s and Λ′t. For each 0 ≤ j ≤ `, draw
edge (u, v) in Λj as a straight-line segment uv; let Γj be the resulting drawing of G. We
have that morph 〈Γ′s = Γ0,Γ1, . . . ,Γ` = Γ′t〉 is strictly-convex and unidirectional given that
〈Λ0,Λ1, . . . ,Λ`〉 is strictly-convex and unidirectional and given that, at any time instant of
〈Λ0,Λ1, . . . ,Λ`〉, segment uv splits the strictly-convex polygon delimiting fuv into two strictly-
convex polygons. Thus, 〈Γs,Γ′s = Γ0,Γ1, . . . ,Γ` = Γ′t,Γt〉 is a unidirectional strictly-convex
morph between Γs and Γt with `+ 2 ≤ 2n+ 2m morphing steps.

In Case 2 let G′′ be the graph obtained from G′ by replacing path (x, u, y) with edge (x, y),
where x and y are the only neighbors of u in G′. Graph G′′ is strictly-convex, since G′ is
convex and is a subdivision of G′′, and since all the internal vertices of G′′ have degree greater
than two. Moreover, since (G′,ds, L

′
s, γ
′
s) and (G′,dt, L

′
t, γ
′
t) are hierarchical-st convex graphs,

it follows that (G′′,ds, L
′′
s , γ
′′
s) and (G′′,dt, L

′′
t , γ
′′
t) are hierarchical-st strictly-convex graphs,

where L′′s = L′s \ {γ′s(u)}, L′′t = L′t \ {γ′t(u)}, γ′′s (z) = γ′s(z) for each vertex z in G′′, and
γ′′t (z) = γ′t(z) for each vertex z in G′′. By Theorem 6, (G′′,ds, L

′′
s , γ
′′
s) and (G′′,dt, L

′′
t , γ
′′
t)

admit strictly-convex level planar drawings Λ′′s and Λ′′t , respectively.
We modify Λ′′s into a drawing Γ′s of (G,ds, L

′
s, γ
′
s), as in Fig. 5. Assume w.l.o.g. that

SoCG’15

138 Optimal Morphs of Convex Drawings

γ′s(x) < γ′s(u) < γ′s(y). Let w be the intersection point of γ′s(u) and xy in Λ′′s (where line
γ′s(u) is the same as in Λs). Let C ′′uv be the facial cycle of G′′ such that the facial cycle Cuv
of G′ is a subdivision of C ′′uv. Insert u in the interior of C ′′uv, on γ′s(u), at distance ε > 0
from w. Remove edge (x, y) from Λ′′s and insert edges (u, v), (u, x), and (u, y) as straight-line
segments. Denote by Γ′s the resulting drawing. We have the following.

I Claim 4. Γ′s is a strictly-convex level planar drawing of (G,ds, L
′
s, γ
′
s), provided that ε > 0

is sufficiently small.

A strictly-convex level planar drawing Γ′t of (G,dt, L
′
t, γ
′
t) can be constructed analogously

from Λ′′t . Drawings Γs and Γ′s (Γt and Γ′t) are left-to-right equivalent, which can be proved as
in Case 1. By Lemma 7, morphs 〈Γs,Γ′s〉 and 〈Γt,Γ′t〉 are strictly-convex and unidirectional.

Inductively construct a unidirectional strictly-convex morph 〈Λ′′s = Λ0,Λ1, . . . ,Λ` = Λ′′t 〉
with ` ≤ 2(n−1)+2(m−1) morphing steps between Λ′′s and Λ′′t . Let 0 < ξ < 1 be sufficiently
small so that the following holds true: For every 0 ≤ j ≤ `, insert u in Λj at a point which is
a convex combination of the positions of x, y, and v with coefficients (1−ξ

2 , 1−ξ
2 , ξ), remove

edge (x, y), and insert edges (u, x), (u, y), and (u, v) as straight-line segments; then the
resulting drawing Γj of G is strictly-convex. Such a ξ > 0 exists. Namely, placing v as a
convex combination of the positions of x, y, and v results in angles incident to u and v that
are all convex. Moreover, as ξ → 0, the point at which u is placed approaches segment xy,
hence the size of any angle incident to x or y approaches the size of an angle incident to x or
y in Λj , and the latter is strictly less than π radians.

With a single unidirectional strictly-convex linear morph, move u in Γ′s to the point
that is a convex combination of the positions of x, y, and v with coefficients (1−ξ

2 , 1−ξ
2 , ξ);

denote by Γ′′s the drawing of G obtained from this morph. Analogously, let 〈Γ′t,Γ′′t 〉 be a
unidirectional strictly-convex linear morph, where the point at which u is placed in Γ′′t is a
convex combination of the positions of x, y, and v with coefficients (1−ξ

2 , 1−ξ
2 , ξ).

For each 0 ≤ j ≤ ` − 1, Γj and Γj+1 are left-to-right equivalent strictly-convex level
planar drawings of the hierarchical-st strictly-convex graph (G,dj , Lj , γj), where dj is an
oriented straight line orthogonal to the direction of morph 〈Λj ,Λj+1〉, Lj is the set of
lines through vertices of G orthogonal to dj , and γj maps each vertex of G to the line
in Lj through it. In particular, Γj and Γj+1 are strictly-convex drawings of G since Λj
and Λj+1 are strictly-convex drawings of G′′ and by the choice of ξ; further, every face
of G is an st-face in Γj and Γj+1 by Lemmata 3 and 4; moreover, u moves parallel to
the other vertices since 〈Λj ,Λj+1〉 is unidirectional and since the points at which u is
placed in Γj and Γj+1 are convex combinations of the positions of x, y, and v with the
same coefficients. By Lemma 7, 〈Γj ,Γj+1〉 is strictly-convex and unidirectional. Hence,
〈Γs,Γ′s,Γ′′s ,= Γ0,Γ1, . . . ,Γ` = Γ′′t ,Γ′t,Γt〉 is a unidirectional strictly-convex morph between
Γs and Γt with `+ 4 ≤ 2n+ 2m morphing steps.

Case 3 is very similar to Case 2, hence we only sketch the algorithm here. Let G′′ be
the graph obtained from G′ by replacing paths (xu, u, yu) and (xv, v, yv) with edges (xu, yu)
and (xv, yv), respectively, where xu and yu (xv and yv) are the only neighbors of u (resp. v)
in G′; (G′′,ds, L

′′
s , γ
′′
s) and (G′′,dt, L

′′
t , γ
′′
t) are hierarchical-st strictly-convex graphs, where

L′′s = L′s \ {γ′s(u), γ′s(v)}, L′′t = L′t \ {γ′t(u), γ′t(v)}, γ′′s (z) = γ′s(z) for each vertex z in G′′, and
γ′′t (z) = γ′t(z) for each vertex z in G′′. By Theorem 6, (G′′,ds, L

′′
s , γ
′′
s) and (G′′,dt, L

′′
t , γ
′′
t)

admit strictly-convex level planar drawings Λ′′s and Λ′′t , respectively. We modify Λ′′s into a
strictly-convex level planar drawing Γ′s of (G,ds, L

′
s, γ
′
s) by inserting u (v) on γ′s(u) (resp.

γ′s(v)) at distance ε > 0 from the intersection point of γ′s(u) with segment xuyu (of γ′s(v)

P. Angelini, G. Da Lozzo, F. Frati, A. Lubiw, M. Patrignani, and V. Roselli 139

with segment xvyv) in the interior of the facial cycle of G′′ such that the facial cycle Cuv of
G′ is a subdivision of C ′′uv. Analogously, we modify Λ′′t into a strictly-convex level planar
drawing Γ′t of (G,dt, L

′
t, γ
′
t). Drawings Γs and Γ′s (Γt and Γ′t) are left-to-right equivalent.

Inductively construct a unidirectional strictly-convex morph 〈Λ′′s = Λ0, . . . ,Λ` = Λ′′t 〉
with ` ≤ 2(n − 2) + 2(m − 1) morphing steps. Let ξ > 0 be sufficiently small so that
for every 0 ≤ j ≤ `, inserting u (v) in Λj at a convex combination of the positions of
xu, yu, xv, and yv with coefficients (1−ξ

2 , 1−ξ
2 , ξ2 ,

ξ
2) (resp. (ξ2 ,

ξ
2 ,

1−ξ
2 , 1−ξ

2)), removing edges
(xu, yu) and (xv, yv), and inserting edges (xu, u), (yu, u), (xv, v), (yv, v), and (u, v) results
in a strictly-convex drawing Γj of G. With a unidirectional strictly-convex linear morph
〈Γ′s,Γ′′s 〉, move u in Γ′s to the point that is a convex combination of the positions of xu, yu,
xv, and yv with coefficients (1−ξ

2 , 1−ξ
2 , ξ2 ,

ξ
2). With a unidirectional strictly-convex linear

morph 〈Γ′′s ,Γ′′′s 〉, move v in Γ′′s to the point that is a convex combination of the positions of
xu, yu, xv, and yv with coefficients (ξ2 ,

ξ
2 ,

1−ξ
2 , 1−ξ

2). Define morph 〈Γ′t,Γ′′t ,Γ′′′t 〉 analogously.
For each 0 ≤ j ≤ `− 1, Γj and Γj+1 are left-to-right equivalent strictly-convex level planar
drawings of the hierarchical-st strictly-convex graph (G,dj , Lj , γj), where dj is an oriented
line orthogonal to the direction of morph 〈Λj ,Λj+1〉, Lj is the set of lines through vertices
of G and orthogonal to dj , and γj maps each vertex of G to the line in Lj through it. By
Lemma 7, 〈Γs,Γ′s,Γ′′s ,Γ′′′s = Γ0, . . . ,Γ` = Γ′′′t ,Γ′′t ,Γ′t,Γt〉 is a unidirectional strictly-convex
morph between Γs and Γt with `+ 6 ≤ 2n+ 2m morphing steps. We get the following.

I Theorem 9. There exists an algorithm to construct a strictly-convex unidirectional morph
with O(n) morphing steps between any two strictly-convex drawings of the same n-vertex
plane graph.

A simple enhancement of the above described algorithm allows us to extend our results
to (non-strictly) convex drawings of convex graphs. We have the following.

I Theorem 10. There exists an algorithm to construct a convex unidirectional morph with
O(n) morphing steps between any two convex drawings of the same n-vertex plane graph.

Proof sketch. First, with O(n) unidirectional convex morphing steps we morph Γs (Γt)
into a convex drawing Γ′s (resp. Γ′t) such that the polygon delimiting the outer face of G is
strictly-convex. This is done by moving, during each morphing step, all the internal vertices
of a maximal path incident to the outer face whose internal vertices have degree two.

Second, we consider each maximal path P = (u1, . . . , uk) such that u2, . . . , uk−1 are
degree-2 internal vertices of G; with a single linear morph in the direction of u1uk, we move
each of u2, . . . , uk−1 in Γ′s to the point which is a convex combination of the positions of
u1 and uk with the same coefficients as in Γ′t. Over all such paths P this amounts to O(n)
unidirectional convex morphing steps; denote by Γ′′s the resulting drawing of G.

Third, we replace each maximal path P = (u1, . . . , uk) such that u2, . . . , uk−1 are degree-2
internal vertices of G with an edge (u1, uk) in G, Γ′′s , and Γ′t; we obtain a strictly-convex
graph G′, and two strictly-convex drawings Λ′′s and Λ′t of G′. We compute a strictly-convex
unidirectional morph 〈Λ′′s = Λ0, . . . ,Λ` = Λ′t〉 with ` ∈ O(n) morphing steps as in Theorem 9.
For each 0 ≤ j ≤ `, we reinsert the internal vertices of each path P = (u1, . . . , uk) in Λj at
the points that are the convex combinations of the positions of u1 and uk in Λj with the same
coefficients as in Γ′′s and in Γ′t. Each morphing step 〈Γj ,Γj+1〉 is convex and unidirectional,
since ui moves between two points that are convex combinations of the positions of u1 and
uk with the same coefficients. Hence, 〈Γs, . . . ,Γ′s, . . . ,Γ′′s = Γ0,Γ1, . . . ,Γ` = Γ′t, . . . ,Γt〉 is a
unidirectional convex morph between Γs and Γt with O(n) morphing steps. J

SoCG’15

140 Optimal Morphs of Convex Drawings

References
1 S. Alamdari, P. Angelini, T. M. Chan, G. Di Battista, F. Frati, A. Lubiw, M. Patrig-

nani, V. Roselli, S. Singla, and B. T. Wilkinson. Morphing planar graph drawings with a
polynomial number of steps. In SODA, pages 1656–1667, 2013.

2 G. Aloupis, L. Barba, P. Carmi, V. Dujmovic, F. Frati, and P. Morin. Compatible
connectivity-augmentation of planar disconnected graphs. In SODA, pages 1602–1615,
2015.

3 P. Angelini, G. Da Lozzo, G. Di Battista, F. Frati, M. Patrignani, and V. Roselli. Morphing
planar graph drawings optimally. In ICALP, volume 8572 of LNCS, pages 126–137, 2014.

4 P. Angelini, F. Frati, M. Patrignani, and V. Roselli. Morphing planar graph drawings
efficiently. In GD, volume 8242 of LNCS, pages 49–60, 2013.

5 I. Bárány and G. Rote. Strictly convex drawings of planar graphs. Documenta Mathematica,
11:369–391, 2006.

6 D. Barnette and B. Grünbaum. On Steinitz’s theorem concerning convex 3-polytopes and
on some properties of planar graphs. In Many Facets of Graph Theory, volume 110 of
Lecture Notes in Mathematics, pages 27–40. Springer, 1969.

7 F. Barrera-Cruz, P. Haxell, and A. Lubiw. Morphing planar graph drawings with unidirec-
tional moves. Mexican Conference on Discr. Math. and Comput. Geom., 2013.

8 N. Bonichon, S. Felsner, and M. Mosbah. Convex drawings of 3-connected plane graphs.
Algorithmica, 47(4):399–420, 2007.

9 S. Cairns. Deformations of plane rectilinear complexes. Am. Math. Mon., 51:247–252, 1944.
10 N. Chiba, T. Yamanouchi, and T. Nishizeki. Linear algorithms for convex drawings of

planar graphs. In Progress in Graph Theory, pages 153–173. Academic Press, New York,
NY, 1984.

11 M. Chrobak and G. Kant. Convex grid drawings of 3-connected planar graphs. Int. J.
Comput. Geometry Appl., 7(3):211–223, 1997.

12 C. Erten, S. G. Kobourov, and C. Pitta. Intersection-free morphing of planar graphs. In
GD, volume 2912 of LNCS, pages 320–331, 2004.

13 C. Friedrich and P. Eades. Graph drawing in motion. J. Graph Alg. Ap., 6:353–370, 2002.
14 C. Gotsman and V. Surazhsky. Guaranteed intersection-free polygon morphing. Computers

& Graphics, 25(1):67–75, 2001.
15 B. Grunbaum and G.C. Shephard. The geometry of planar graphs. Camb. Univ. Pr., 1981.
16 S. H. Hong and H. Nagamochi. Convex drawings of hierarchical planar graphs and clustered

planar graphs. J. Discrete Algorithms, 8(3):282–295, 2010.
17 S. H. Hong and H. Nagamochi. A linear-time algorithm for symmetric convex drawings of

internally triconnected plane graphs. Algorithmica, 58(2):433–460, 2010.
18 M. S. Rahman, S. I. Nakano, and T. Nishizeki. Rectangular grid drawings of plane graphs.

Comput. Geom., 10(3):203–220, 1998.
19 M. S. Rahman, T. Nishizeki, and S. Ghosh. Rectangular drawings of planar graphs. J. of

Algorithms, 50:62–78, 2004.
20 J. M. Schmidt. Contractions, removals, and certifying 3-connectivity in linear time. SIAM

J. Comput., 42(2):494–535, 2013.
21 V. Surazhsky and C. Gotsman. Controllable morphing of compatible planar triangulations.

ACM Trans. Graph, 20(4):203–231, 2001.
22 V. Surazhsky and C. Gotsman. Intrinsic morphing of compatible triangulations. Internat.

J. of Shape Model., 9:191–201, 2003.
23 C. Thomassen. Planarity and duality of finite and infinite graphs. J. Comb. Theory, Ser.

B, 29(2):244–271, 1980.
24 C. Thomassen. Deformations of plane graphs. J. Comb. Th. Ser. B, 34(3):244–257, 1983.
25 C. Thomassen. Plane representations of graphs. In J. A. Bondy and U. S. R. Murty, editors,

Progress in Graph Theory, pages 43–69. Academic Press, New York, NY, 1984.

1-String B2-VPG Representation of Planar
Graphs∗

Therese Biedl and Martin Derka

David R. Cheriton School of Computer Science, University of Waterloo
200 University Ave W, Waterloo, ON N2L 3G1, Canada
{biedl,mderka}@uwaterloo.ca

Abstract
In this paper, we prove that every planar graph has a 1-string B2-VPG representation – a string
representation using paths in a rectangular grid that contain at most two bends. Furthermore,
two paths representing vertices u, v intersect precisely once whenever there is an edge between u

and v.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Graph drawing, string graphs, VPG graphs, planar graphs

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.141

1 Preliminaries

One way of representing graphs is to assign to every vertex a curve so that two curves cross
if and only if there is an edge between the respective vertices. Here, two curves u, v cross
means that they share a point s internal to both of them and the boundary of a sufficiently
small closed disk around s is crossed by u, v, u, v (in this order). The representation of
graphs using crossing curves is referred to as a string representation, and graphs that can be
represented in this way are called string graphs.

In 1976, Ehrlich, Even and Tarjan showed that every planar graph has a string repres-
entation [9]. It is only natural to ask if this result holds if one is restricted to using only
some “nice” types of curves. In 1984, Scheinerman conjectured that all planar graphs can be
represented as intersection graphs of line segments [12]. This was proved first for bipartite
graphs [8, 11] with the strengthening that every segment is vertical or horizontal. The result
was extended to triangle-free graphs, which can be represented by line segments with at most
three distinct slopes [7].

Since Scheinerman’s conjecture seemed difficult to prove for all planar graphs, interest
arose in possible relaxations. Note that any two line segments can generally intersect at
most once. Define 1-String to be the class of graphs that are intersection graphs of curves
(of arbitrary shape) that intersect at most once. We also say that graphs in this class have
a 1-string representation. The original construction of string representations for planar
graphs given in [9] requires curves to cross multiple times. In 2007, Chalopin, Gonçalves and
Ochem showed that every planar graph is in 1-String [4, 5]. With respect to Scheinerman’s
conjecture, while the argument of [4, 5] shows that the prescribed number of intersections
can be achieved, it provides no idea on the complexity of curves that is required.

Another way of restricting curves in string representations is to require them to be
orthogonal, i.e., to be paths in a grid. Call a graph a VPG-graph (as in “Vertex-intersection

∗ Research supported by NSERC. The second author was supported by the Vanier CGS.

© Therese Biedl and Martin Derka;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 141–155

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.141
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

142 1-String B2-VPG Representation of Planar Graphs

graph of Paths in a Grid”) if it has a string representation with orthogonal curves. It is easy
to see that all planar graphs are VPG-graphs (e.g. by generalizing the construction of Ehrlich,
Even and Tarjan). For bipartite planar graphs, curves can even be required to have no
bends [8, 11]. For arbitrary planar graphs, bends are required in orthogonal curves. Recently,
Chaplick and Ueckerdt showed that 2 bends per curve always suffice [6]. Let B2-VPG be
the graphs that have a string representation where curves are orthogonal and have at most
2 bends; the result in [6] then states that planar graphs are in B2-VPG. Unfortunately, in
Chaplick and Ueckerdt’s construction, curves may cross each other repeatedly, and so it does
not prove that planar graphs are in 1-String.

The conjecture of Scheinerman remained open until 2009 when it was proved true by
Chalopin and Gonçalves [3].

Our Results: In this paper, we show that every planar graph has a string representation
that simultaneously satisfies the requirements for 1-String (any two curves cross at most
once) and the requirements for B2-VPG (any curve is orthogonal and has at most two bends).
Our result hence re-proves, in one construction, the results by Chalopin et al. [4, 5] and the
result by Chaplick and Ueckerdt [6].

I Theorem 1. Every planar graph has a 1-string B2-VPG representation.

Our approach is inspired by the construction of 1-string representations from 2007 [4, 5].
The authors proved the result in two steps. First, they showed that triangulations without
separating triangles admit 1-string representations. By induction on the number of separating
triangles, they then showed that a 1-string representation exists for any planar triangulation,
and consequently for any planar graph.

In order to show that triangulations without separating triangles have 1-string repres-
entations, Chalopin et al. [5] used a method inspired by Whitney’s proof that 4-connected
planar graphs are Hamiltonian [13]. Asano, Saito and Kikuchi later improved Whitney’s
technique and simplified his proof [1]. Our paper uses the same approach as [5], but borrows
ideas from [1] and develops them further to reduce the number of cases.

2 Definitions and Basic Results

Let us begin with a formal definition of a 1-string B2-VPG representation.

I Definition 2 (1-string B2-VPG representation). A graph G has a 1-string B2-VPG repres-
entation if every vertex v of G can be represented by a curve v such that:
1. Curve v is orthogonal, i.e., it consists of horizontal and vertical segments.
2. Curve v has at most two bends.
3. Curves u and v intersect at most once, and u intersects v if and only if (u, v) is an edge

of G.

We always use v to denote the curve of vertex v, and write vR if the representation R is
not clear from the context. We also often omit “1-string B2-VPG” since we do not consider
any other representations.

Our technique for constructing representations of a graph uses an intermediate step
referred to as a “partial 1-string B2-VPG representation of a W-triangulation that satisfies
the chord condition with respect to three chosen corners.” We define these terms, and related
graph terms, first.

T. Biedl and M. Derka 143

A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn so
that no edges intersect except at common endpoints. All graphs in this paper are planar.
We assume throughout the paper that one combinatorial embedding of the graph has been
fixed by specifying the clockwise (CW) cyclic order of incident edges around each vertex.
Subgraphs inherit this embedding, i.e., they use the induced clockwise orders. A facial
region is a connected region of R2 − Γ where Γ is a planar drawing of G that conforms
with the combinatorial embedding. The circuit bounding this region can be read from the
combinatorial embedding of G and is referred to as a face. The outer-face is the one that
corresponds to the unbounded region; all others are called interior faces. The outer-face
cannot be read from the embedding; we assume throughout this paper that the outer-face of
G has been specified. Subgraphs inherit the outer-face by using as outer-face the one whose
facial region contains the facial region of the outer-face of G. An edge of G is called interior
if it does not belong to the outer-face.

A triangulated disk is a planar graph G for which the outer-face is a simple cycle and
every interior face is a triangle. A separating triangle is a cycle C of length 3 such that G has
vertices both inside and outside the region bounded by C (with respect to the fixed embedding
and outer-face of G). Following the notation of [5], a W-triangulation is a triangulated disk
that does not contain a separating triangle. A chord of a triangulated disk is an interior edge
for which both endpoints are on the outer-face.

For two vertices X, Y on the outer-face of a connected planar graph, define PXY to be
the counter-clockwise (CCW) path on the outer-face from X to Y (X and Y inclusive). We
often study triangulated disks with three specified distinct vertices A, B, C called the corners.
A, B, C must appear on the outer-face in CCW order. We denote PAB = (a1, a2, . . . , ar),
PBC = (b1, b2, . . . , bs) and PCA = (c1, c2, . . . , ct), where ct = a1 = A, ar = b1 = B and
bs = c1 = C.

I Definition 3 (Chord condition). A W-triangulation G satisfies the chord condition with
respect to the corners A, B, C if G has no chord within PAB , PBC or PCA, i.e., no interior
edge of G has both ends on PAB , or both ends on PBC , or both ends on PCA.1

I Definition 4 (Partial 1-string B2-VPG representation). Let G be a connected planar graph
and E′ ⊆ E(G) be a set of edges. An (E′)-1-string B2-VPG representation of G is a 1-string
B2-VPG representation of the subgraph (V (G), E′), i.e., curves u, v cross if and only if (u, v)
is an edge in E′. If E′ consists of all interior edges of G as well as some set of edges F on
the outer-face, then we write (int ∪ F) representation instead.

In our constructions, we use (int ∪ F) representations with F = ∅ or F = e, where e is
an outer-face edge incident to corner C of a W-triangulation. Edge e is called the special
edge, and we sometimes write (int ∪ e) representation, rather than (int ∪ {e}) representation.

2.1 2-Sided, 3-Sided and Reverse 3-Sided Layouts
To create representations where vertex-curves have few bends, we need to impose geometric
restrictions on representations of subgraphs. Unfortunately, no one type of layout seems
sufficient for all cases, and we will hence have three different layout types whose existence we
will prove in parallel.

1 For readers familiar with [5] or [1]: A W-triangulation that satisfies the chord condition with respect
to corners A, B, C is called a W-triangulation with 3-boundary PAB , PBC , PCA in [5], and the chord
condition is the same as Condition (W2b) in [1].

SoCG’15

144 1-String B2-VPG Representation of Planar Graphs

I Definition 5 (2-sided layout). Let G be a connected planar graph and A, B be two distinct
outer-face vertices. An (int ∪ F) B2-VPG representation of G has a 2-sided layout (with
respect to corners A, B) if:
1. There exists a rectangle Θ that contains all intersections of curves and such that the top

of Θ is intersected, from right to left in order, by the curves of the vertices of PAB , and
the bottom of Θ is intersected, from left to right in order, by the curves of the vertices of
PBA.

2. The curve v of an outer-face vertex v has at most one bend. (By 1., this implies that A
and B have no bends.)

I Definition 6 (3-sided layout). Let G be a connected planar graph and A, B, C be three
distinct vertices in CCW order on the outer-face of G. Let F be a set of exactly one outer-face
edge incident to C. An (int ∪ F) B2-VPG representation of G has a 3-sided layout (with
respect to corners A, B, C) if:
1. There exists a rectangle Θ containing all intersections of curves so that

(i) the top of Θ is intersected, from right to left in order, by the curves of the vertices
on PAB ;

(ii) the left side of Θ is intersected, from top to bottom in order, by the curves of the
vertices on PBbs−1 , possibly followed by C; 2

(iii) the bottom of Θ is intersected, from right to left in order, by the curves of vertices
on Pc2A in reversed order, possibly followed by C;2

(iv) curve bs = C = c1 intersects the boundary of Θ exactly once; it is the bottommost
curve to intersect the left side of Θ if the special edge in F is (C, c2), and C is the
leftmost curve to intersect the bottom of Θ if the special edge in F is (C, bs−1).

5. The curve v of an outer-face vertex v has at most one bend. (By 1., this implies that B
has precisely one bend.)

6. A and C have no bends.

We sometimes refer to the rectangle Θ for both 2- and 3-sided representation as a bounding
box. Figure 1 (which will serve as base case later) shows such layouts for a triangle and
varying choices of F . We also need the concept of a reverse 3-sided layout, which is similar
to the 3-sided layout except that B is straight and A has a bend. Formally, it satisfies
conditions 1(ii-iv) and (2). 1(i) is replaced by “the right side of Θ is intersected, from bottom
to top in order, by the curves of the vertices on PAB” and (3) is replaced by “B and C have
no bends.”

2.2 Private Regions

Our proof starts with constructing representation for triangulations without separating
triangles. The construction is then extended to all triangulations by merging representations
of subgraphs obtained by splitting at separating triangles. To permit the merge, we apply
the technique used in [5] (and re-discovered in [10]): With every triangular face, create a
region that intersects the curves of vertices of the face in a predefined way and does not
intersect anything else, specifically any other private regions. Following the notation of [10],
we call this a private region (but we use a different shape).

2 Recall (bs−1, C) and (C, c2) are the two incident edges of C on the outer-face.

T. Biedl and M. Derka 145

A

B

C

Θ

AB C

B B B

B
B

B
B

AB C

Θ

AB C

Θ

A A A

AA

AA
Θ

B

C A

Θ
B

C
A

Θ

B

A
C Θ

C A

B

Figure 1 (int ∪ F) representations of a triangle: (Top) 2-sided representations for
F ∈ {{(A, C)}, {(B, C)}, ∅}. (Bottom) 3-sided and reverse 3-sided representations for F ∈
{{(A, C)}, {(B, C)}}. Private regions are shaded in grey.

c

b

a

c

b

a c

b

a

c

b

a

c

b

a

c

b

a c

b

a

c

b

a

Figure 2 The private region of a triangle a, b, c with possible rotations and flips.

I Definition 7 (Chair-shape). A chair-shaped area is a region bounded by a 10-sided ortho-
gonal polygon with CW (clockwise) or CCW (counter-clockwise) sequence of interior angles
90°, 90°, 270°, 270°, 90°, 90°, 90°, 90°, 270°, 90°. See also Figure 2.

I Definition 8 (Private region). Let G be a planar graph with a partial 1-string B2-VPG
representation R and let f be a facial triangle in G. A private region of f is a chair-shaped
area Φ inside R such that:
1. Φ is intersected by no curves except for the ones representing vertices on f .
2. All the intersections of R are located outside of Φ.
3. For a suitable labeling of vertices of f as {a, b, c}, Φ is intersected by two segments of a

and one segment of b and c. The intersections between these segments and Φ occur at
the edges of Φ as depicted in Figure 2.

3 Constructions for W-Triangulations

Our key tool for proving Theorem 1 is the following lemma:

I Lemma 9. Let G be a W-triangulation that satisfies the chord condition with respect
to corners A, B, C. For any e ∈ {(C, bs−1), (C, c2)}, G has an (int ∪ e) 1-string B2-VPG

SoCG’15

146 1-String B2-VPG Representation of Planar Graphs

representation with 3-sided layout and an (int ∪ e) 1-string B2-VPG representation with
reverse 3-sided layout. Both representations have a chair-shaped private region for every
interior face.

The proof of Lemma 9 will use induction on the number of vertices. To combine the
representations of subgraphs, we sometimes need them to have a 2-sided layout, and hence
prove the following result:

I Lemma 10. Let G be a W-triangulation that satisfies the chord condition with respect
to corners A, B, C. Then G has an (int ∪ F) 1-string B2-VPG representation with 2-sided
layout with respect to A, B and for any set F of at most one outer-face edge incident to C.
Furthermore, this representation has a chair-shaped private region for every interior face
of G.

Notice that for Lemma 9 the special edge must exist (this is needed in Case 1 to find
private regions), while for Lemma 10, F is allowed to be empty.

We will prove both lemmas simultaneously by induction on the number of vertices. First,
let us make an observation that will greatly help to reduce the number of cases. Define
G rev to be the graph obtained from graph G by reversing the combinatorial embedding, but
keeping the same outer-face. This effectively switches corners A and B, and replaces special
edge (C, c2) by (C, bs−1) and vice versa. If G satisfies the chord condition with respect to
corners (A, B, C), then G rev satisfies the chord condition with respect to corners (B, A, C).
(With this new order, the corners are CCW on the outer-face of G rev, as required.)

Presume we have a 2-sided/3-sided/reverse 3-sided representation of G rev. Then we can
obtain a 2-sided representation of G by flipping the 2-sided one of G rev horizontally, i.e.,
along the y-axis. We can obtain a 3-sided/reverse 3-sided representation of G by flipping
the reverse 3-sided/3-sided representation of G rev diagonally (i.e., along the line defined by
(x = y)). Hence for all the following cases, we may (after possibly applying the above flipping
operation) either make a restriction on which edge the special edge is, or we only need to
give the construction for 3-sided, but not for reverse 3-sided layout.

Now we begin the induction. In the base case, n = 3, so G is a triangle, and the
three corners A, B, C must be the three vertices of this triangle. The desired (int ∪ F)
representations for all possible choices of F are depicted in Figure 1. The induction step for
n ≥ 4 is divided into three cases which we describe in separate subsections.

3.1 C has degree 2
Since G is a triangulated disk with n ≥ 4, (bs−1, c2) is an edge. Define G′ := G − C and
F ′ := {(bs−1, c2)}. We claim that G′ satisfies the chord condition for corners A′ := A, B′ := B

and a suitable choice of C ′ ∈ {bs−1, c2}, and argue this as follows. If c2 is not incident to a
chord that ends on PBC , then set C ′ := c2; clearly the chord condition holds for G′. If c2 is
incident to such a chord, then bs−1 cannot be incident to a chord by planarity and the chord
condition for G. So, in this case with the choice C ′ := bs−1 the chord condition holds for G′.
Thus in either case, we can apply induction to G′.

To create a 2-sided representation of G, we use a 2-sided (int ∪ F ′) representation R′

of G′. We introduce a new vertical curve C placed between bs−1 and c2 below R′. Add
a bend at the upper end of C and extend it leftwards or rightwards. If the special edge e

exists, then extend C until it hits the curve of the other endpoint of e; else extend it only far
enough to allow for the creation of the private region.

To create a 3-sided representation of G, we use a 3-sided (int∪F ′) representation R′ of G′.
Note that regardless of which vertex is C ′, we have bs−1 as bottommost curve on the left and

T. Biedl and M. Derka 147

C A

B

c2

bs-1 G'

c2

bs-1

B

A
C

R'

c2

bs-1

B

A
C

R'

c2bs-1 AC

R'

Bc2bs-1 AC

R'

Bc2bs-1 AC

R'

B

Figure 3 Case 1: C has degree 2. (Top) 3-sided representation. (Bottom) 2-sided representation.

c2 as leftmost curve on the bottom. Introduce a new horizontal segment representing C which
intersects c2 if F = {(C, c2)}, or a vertical segment which intersects bs−1 if F = {(C, bs−1)}.

In both constructions, after suitable lengthening, the curves intersect the bounding box
in the required order. One can find the chair-shaped private region for the only new face
{C, c2, bs−1} as shown in Figure 3. Observe that no bends were added to the curves of R′

and that C has the required number of bends in both representations.
Since we have given the constructions for both possible special edges, we can obtain the

reverse 3-sided representation by diagonally flipping a 3-sided representation of G rev.

3.2 G has a chord incident to C

By the chord condition, this chord has the form (C, ai) for some 1 < i < r. Select the chord
that minimizes i. The graph G can be split along the chord (C, ai) into two graphs G1 and
G2. Both G1 and G2 are bounded by simple cycles, hence they are triangulated disks. No
edges were added, so neither G1 nor G2 contains a separating triangle. So, both of them are
W-triangulations.

We select (C, A, ai) as corners for G1 and (ai, B, C) as corners for G2 and can easily
verify that G1 and G2 satisfy the chord condition with respect to those corners:

G1 has no chords on PAai or PCA as they would violate the chord condition in G. There
is no chord on PaiC as it is a single edge.
G2 has no chords on PaiB or PBC as they would violate the chord condition in G. There
is no chord on PaiC as it is a single edge.

So we can apply induction to both G1 and G2, obtain representations R1 and R2 for them,
and combine them suitably. In the 3-sided case, we will do so for all possible choices of
special edge, and hence need not give the constructions for reverse 3-sided layout as explained
earlier.

Case 2(a): F = ∅ or F = {(C, bs−1)}. Inductively construct a 2-sided (int ∪ (C, ai))
representation R1 of G1. Inductively, construct an (int ∪ F) representation R2 of G2, which
should be 2-sided if we want the result to be 2-sided and 3-sided if we want the result to be
3-sided. Note that either way CR2 and aR2

i on the bottom side of R2 with CR2 to the left
of aR2

i .

SoCG’15

148 1-String B2-VPG Representation of Planar Graphs

G1

G2

C A

B

ai
bs-1

B

C

ai

ai

C

A

R2

R1

bs-1

C

ai

ai

C

A

R2

R1

bs-1B

Figure 4 Case 2(a): Constructing an (int ∪ (C, bs−1)) representation when C is incident to a
chord, in 2-sided (middle) and 3-sided (right) layout.

ai = u5 = uq

u3

u4

u2

A

B

C

GQ

G2

c2=u1

C

c2 = u1

u2 u3 u4

ai = u5 = uq A

B

R2

RQ

Figure 5 Case 2(b)1: C is incident to a chord, F = (C, c2), and c2 6= A.

Rotate R1 by 180°, and translate it so that it is below R2 with aR1

i in the same column
as aR2

i . Stretch R1 horizontally as needed until CR1 is in the same column as CR2 . Then
aR

i and CR for R ∈ {R1, R2} can each be unified without adding bends by adding vertical
segments. The curves of outer-face vertices of G then cross (after suitable lengthening) the
bounding box in the required order. See also Figure 4.

Every interior face f of G is contained in G1 or G2 and hence has a private region in R1
or R2. As our construction does not make any changes inside the bounding boxes of R1 and
R2, the private region of f is contained in R as well.

Case 2(b): F = {(C, c2)}. For the 2-sided construction, we apply the reversal trick:
Construct a 2-sided representation of G rev with suitable selection of corners (here Case 2(a)
then applies) and flip it horizontally.

For the 3-sided construction, we need a different approach, which is quite similar to
Case 1 in [1, Proof of Lemma 2]. Let GQ = G1 −C, and observe that it is bounded by Pc2A,
PA,ai

, and the path formed by the neighbours c2 = u1, u2, . . . , uq = ai of C in CCW order.
We must have q ≥ 2, but possibly G1 is a triangle {C, A, ai} and GQ then degenerates into
an edge. If GQ contains at least three vertices, then none of u2, . . . , uq−1 belongs to PAB

since chord (C, ai) was chosen closest to A, and so GQ is a W-triangulation.
We divide the proof into two subcases, depending on whether A 6= c2 or A = c2. As the

constructions are sufficiently simple, we refer the reader to Figures 5 and 6 here. A detailed
description is in [2, Case 2(b)].

T. Biedl and M. Derka 149

ai = u5 = uq

u3

u4

u2
A = c2 = u1

B

C

GQ

G2

C

ai = u5 = uq

u4

B A = c2 = u1

u2u3

R2

a2 = u2 = uq

A = c2 = u1

B

C

GQ

G2

C

a2 = u2 = uqB A = c2 = u1

R2

RQ

Figure 6 Case 2(b)2: Construction when C is incident to a chord, c2 = A, and (A, ai, C) is not a
face (top), and when (A, ai, C) is a face (bottom). We only show the 3-sided constructions.

3.3 G has no chords incident with C and deg(C) ≥ 3
We will give explicit constructions for 2-sided, 3-sided and reverse 3-sided layout, and may
hence (after applying the reversal trick) assume that the special edge, if it exists, is (C, c2).

Let u1, . . . , uq be the neighbours of vertex C in clockwise order, starting with bs−1 and
ending with c2. We know that q = deg(C) ≥ 3 and that u2, . . . , uq−1 are not on the outer-face,
since C is not incident to a chord. Let uj be a neighbour of C that has at least one neighbour
other than C on PCA, and among all those, choose j to be minimal. Such a j exists because
G is triangulated and therefore uq−1 is adjacent to both C and uq. We distinguish two
sub-cases.

Case 3(a): j 6= 1. Denote the neighbours of uj on Pc2A by t1, . . . , tx in the order in which
they appear on Pc2A. Separate G into subgraphs as follows (see also Figure 7):

The right graph GR is bounded by (A, PAB. . . , B, PBu1. . . , u1, u2, . . . , uj , tx, PtxA. . . , A).
Let GB be the graph bounded by (uj , t1, Pt1tx. . . , tx, uj). We are chiefly interested in its
subgraph GQ := GB − uj .
Let GL be the graph bounded by (C, PCt1. . . , t1, uj , C). We are chiefly interested in its
subgraph G0 := GL − {uj , C}.

The idea is to obtain representations of these subgraphs and then to combine them
suitably. We first explain how to obtain the representation RR used for GR. Clearly GR is a
W-triangulation, since u2, . . . , uj are interior vertices of G, and hence the outer-face of GR is
a simple cycle. Set AR := A and BR := B. If B 6= u1 then set CR := u1 and observe that
GR satisfies the chord condition with respect to these corners:

GR does not have any chords with both ends on PARBR
= PAB, PBRu1 ⊆ PBC , or

PtxAR
⊆ PCA since G satisfies the chord condition.

If there were any chords between a vertex in u1, . . . , uj and a vertex on PCRAR
, then by

CR = u1 the chord would either connect two neighbours of C (hence give a separating
triangle of G), or connect some ui for i < j to PCA (contradicting the minimality of j),

SoCG’15

150 1-String B2-VPG Representation of Planar Graphs

C A

bs-1 = u1

t1 t4=tx

G0

GR

uj

uq = c2= t 0

u2

B

G1 G2

GQ

t2 t3

G3

C A

bs-1 = u1

t2 t4=tx
G1 G2

GR

uj=uq-1

uq = c2 = t1

u2

G3

B

t3

GQ

Figure 7 Case 3: Splitting the graph when deg(C) ≥ 3 and no chord is incident to C. (Left)
j < q − 1; G0 is non-trivial. (Right) j = q − 1; G0 = {c2}.

or connect uj to some other vertex on PtxA (contradicting that tx is the last neighbour
of uj on PCA). Hence no such chord can exist either.

If B = u1, then set CR := u2 (which exists by q ≥ 3) and similarly verify that it satisfies
the chord condition as PBRCR

is the edge (B, u2). Since CR ∈ {u1, u2} in both cases, we can
apply induction on GR and obtain an (int ∪ (u1, u2)) representation RR. We use as layout
for RR the type that we want for G, i.e., use a 2-sided/3-sided/reverse 3-sided layout if we
want G to have a 2-sided/3-sided/reverse 3-sided representation.

Next consider the graph G0, which is bounded by uj+1, . . . , uq, Pc2t1 and the neighbours
of uj in CCW order between t1 and uj+1. We distinguish two cases:
(1) j = q − 1, and hence t1 = uq = c2 and G0 consists of only c2. In this case, the

representation of R0 consists of a single vertical line segment c2.
(2) j < q − 1, so G0 contains at least three vertices uq−1, uq and t1. Then G0 is a W-

triangulation since C is not incident to a chord and by the choice of t1. Also, it satisfies
the chord condition with respect to corners A0 := c2, B0 := t1 and C0 := uj+1 since the
three paths on its outer-face are sub-paths of PCA or contained in the neighbourhood of
C or uj . In this case, construct a 2-sided (int ∪ (uj+1, uj+2)) representation R0 of G0
with respect to these corners inductively.
Finally, we create a representation RQ of GQ = GB − uj . If GQ is a single vertex or a

single edge, then simply use vertical segments for the curves of its vertices. Otherwise, we
can show:

I Claim 11. GQ has a 2-sided (int ∪ ∅) 1-string B2-VPG representation with respect to
corners t1 and tx.

Proof. GQ is not necessarily 2-connected, so we cannot apply induction directly. Instead
we break it into x− 1 graphs G1, . . . , Gx−1, where for i = 1, . . . , x− 1 graph Gi is bounded
by Ptiti+1 as well as the neighbours of uj between ti and ti+1 in CCW order. Note that Gi

is either a single edge, or it is bounded by a simple cycle since uj has no neighbours on
PCA between ti and ti+1. In the latter case, use Bi := ti, Ai := ti+1, and Ci an arbitrary
third vertex on Ptiti+1 ⊆ PCA, which exists since the outer-face of Gi is a simple cycle and
(ti, ti+1, uj) is not a separating triangle. Observe that Gi satisfies the chord condition since
all paths on the outer-face of Gi are either part of PCA or in the neighbourhood of uj . Hence
by induction there exists a 2-sided (int ∪ ∅) representation Ri of Gi. If Gi is a single edge
(ti, ti+1), then let Ri consists of two vertical segments ti and ti+1.

Since each representation Ri has at its leftmost end a vertical segment ti and at its
rightmost end a vertical segment ti+1, we can combine all these representations by aligning

T. Biedl and M. Derka 151

uj

G1 G2
G3

t1 t2 t3
t4 = tx

→

Θ

G1

G2

G3

(empty)

t1 t2 t3 t4 = tx

Figure 8 Left: Graph GB . The boundary of GQ is shown bold. Right: Merging 2-sided (int ∪ ∅)
representations of Gi, 1 ≤ i ≤ 3, into a 2-sided (int ∪ ∅) representation of GQ.

tRi

i and tRi+1

i horizontally and filling in the missing segment. See also Figure 8. One easily
verifies that the result is a 2-sided (int ∪ ∅) representation of GQ. J

We now explain how to combine these three representations RR, RQ and R0; see also
Figure 9. Translate RQ so that it is below RR with tRR

x and tRQ
x in the same column; then

connect these two curves with a vertical segment. Rotate R0 by 180° and translate it so
that it is below RR and to the left and above RQ, and tR0

1 and tRQ

1 are in the same column;
then connect these two curves with a vertical segment. Notice that the vertical segments
of uRR

2 , . . . , uRR

j are at the bottom left of RR. Horizontally stretch R0 and/or RR so that
uRR

2 , . . . , uRR

j are to the left of the vertical segment of uR0

j+1, but to the right (if j < q − 1)
of the vertical segment of uR0

j+2. There are such segments by j > 1.
Introduce a new horizontal segment C and place it so that it intersects curves uq, . . . , uj+2,

u2, . . . , uj, uj+1 (after lengthening them, if needed). For a 2-sided layout also attach a vertical
segment to C. If j < q − 1 then top-tangle uq, . . . , uj+2 leftwards (see [2, Section 2.2] for a
precise definition of this operation). Bottom-tangle u2, . . . , uj rightwards. The construction
hence creates intersections for all edges in the path u1, . . . , uq, except for (uj+2, uj+1) (which
was represented in R0) and (u2, u1) (which was represented in RR).

Bend and stretch uRR

j rightwards so that it crosses the curves of all its neighbours in
G0 ∪ GQ. Finally, consider the path between the neighbours of uj CCW from uj+1 to tx.
Create intersections for any edge on this path that is interior in G by top-tangling their
curves rightwards.

One verifies that the curves intersect the bounding boxes as desired. The constructed
representations contain private regions for all interior faces of GR, GQ and G0 by induction.
The remaining faces are of the form (C, ui, ui+1), 1 ≤ i < q, and (uj , wk, wk+1) where wk and
wk+1 are two consecutive neighbours of uj on the outer-face of G0 or GQ. Private regions
for those faces are shown in Figure 9.

Case 3(b): j = 1, i.e., there exists a chord (bs−1, ci). In this case we cannot use the
above construction directly since bs−1 ends on the left (in the 3-sided construction) while
we need uj to end at the bottom and not to be on the outer-face. However, if we use a
different vertex as uj (and argue carefully that the chord condition then holds), then the
same construction works.

Recall that u1, . . . , uq are the neighbours of corner C in CW order starting with bs−1
and ending with c2. We know that q ≥ 3 and u2, . . . , uq−1 are not on the outer-face. Now
define j′ as follows: Let uj′ , j′ > 1 be a neighbour of C that has at least one neighbour on
PCA other than C, and choose uj′ so that j′ is minimal while satisfying j′ > 1. Such a j′

exists since uq−1 has another neighbour on PCA, and by q ≥ 3 we have q − 1 > 1. Now,

SoCG’15

152 1-String B2-VPG Representation of Planar Graphs

t1 t2 t3

C

R0

RQ

RR
bs-1

B

Auj

uq=c2=t0

u2

uj+1

uj+2

t4 = tx

t1 t2 t3
C

R0

RQ

RR

bs-1B Auj

uq=c2=t0

u2

uj+1

uj+2

t4 = tx t1
C

R0

RR

bs-1B uj

uq=c2=t0

u2

uj+1

uj+2

RQ

. . .

t1 t2 t3

C

R0

RQ

RR
bs-1

B

Auj

uq=c2=t0

u2

uj+1

uj+2

t4 = tx

Figure 9 Case 3: Combining subgraphs when deg(C) ≥ 3, there is no chord incident with C, and
F ⊆ {(C, c2)}. (Top left) 3-sided and (top right) reverse 3-sided construction. (Bottom) 2-sided
construction for the case F = {(C, c2)} and F = ∅. The construction matches the graph depicted in
Figure 7 left.

separate G as in the previous case, except use j′ in place of j. Thus, define t1, . . . , tx to be
the neighbours of uj′ on Pc2A, in order, and separate G into three graphs as follows:

The right graph GR is bounded by (A, PAB. . . , B, PBu1. . . , u1, u2, . . . , uj′ , tx, PtxA. . . , A).
Let GB be the graph bounded by (uj′ , t1, Pt1tx. . . , tx, uj′). Define GQ := GB − uj′ .
Let GL be the graph bounded by (C, PCt1. . . , t1, uj′ , C). Define G0 := GL − {uj′ , C}.

Observe that the boundaries of all the graphs are simple cycles, and thus they are
W-triangulations. Select (AR := A, BR := B, CR := u2) to be the corners of GR and argue
the chord condition as follows:

GR does not have any chords on PCRAR
as such chords would either contradict minimality

of j′, or violate the chord condition in G.
GR does not have any chords of PARBR

= PAB .
GR does not have any chords on PBbs−1 as it is a sub-path of PBC and they would violate
the chord condition in G. It also does not have any chords in the form (CR = u2, b`), 1 ≤
` < s− 1 as they would have to intersect the chord (bs−1, ci), violating the planarity of
G. Hence, GR does not have any chords on PCRAR

.
Notice in particular that the chord (u1, ci) of GR is not a violation of the chord condition
since we chose u2 as a corner.

Hence, we can obtain a representation RR of GR with 2-sided, 3-sided and reverse 3-sided
layout and special edge (u1 = bs−1, u2). For graphs GQ and G0 the corners are chosen, the
chord condition is verified, and the representations are obtained exactly as in Case 3a. Since
the special edge of GR is (u1, u2) as before, curves u1 and u2 are situated precisely as in
Case 3a, and we merge representations and find private regions as before.

T. Biedl and M. Derka 153

C

B

A

Θ

Figure 10 Completing a 3-sided (int ∪ (B, C)) representation by adding intersections for (A, B)
and (A, C).

This ends the description of the construction in all cases, and hence proves Lemma 9 and
Lemma 10.

4 From 4-Connected Triangulations to All Planar Graphs

In this section, we prove Theorem 1. Observe that Lemma 9 essentially proves it for 4-
connected triangulations. As in [5] we extend it to all triangulations by induction on the
number of separating triangles.

I Theorem 12. Let G be a triangulation with outer-face (A, B, C). G has a 1-string B2-VPG
representation with a chair-shaped private region for every interior face f of G.

Proof. Our approach is exactly the same as in [5], except that we must be careful not to add
too many bends when merging subgraphs at separating triangles, and hence must use 3-sided
layouts. Formally, we proceed by induction on the number of separating triangles. In the
base case, G has no separating triangle, i.e., it is 4-connected. As the outer-face is a triangle,
G clearly satisfies the chord condition. Thus, by Lemma 9, it has a 3-sided (int ∪ (B, C))
representation R with private region for every face. R has an intersection for every edge
except for (A, B) and (A, C). These intersection can be created by tangling B, A and C, A
suitably (see Figure 10). Recall that A initially did not have any bends, so it has 2 bends
in the constructed representation of G. The existence of private regions is guaranteed by
Lemma 9.

Now assume for induction that G has k + 1 separating triangles. Let ∆ = (a, b, c) be an
inclusion-wise minimal separating triangle of G. It was shown in [5] that the subgraph G2
induced by the vertices inside ∆ is either an isolated vertex, or a W-triangulation (A, B, C)
such that the vertices on PAB are adjacent to b, the vertices on PBC are adjacent to c,
and the vertices on PCA are adjacent to a. Furthermore, G2 satisfies the chord condition.
Also, graph G1 = G−G2 is a W-triangulation that satisfies the chord condition and has k

separating triangles. By induction, G1 has a representation R1 with a chair-shaped private
region for every interior face f . Let Φ be the region for face ∆. Permute a, b, c, if needed, so
that the naming corresponds to the one needed for the private region.

Case 1: G2 is a single vertex v. Represent v by inserting into Φ an orthogonal curve v
with 2 bends that intersects a, b and c. The construction, together with private regions for
the newly created faces (a, b, v), (a, c, v) and (b, c, v), is shown in Figure 11 (left).

Case 2: G2 is a W-triangulation. Recall that G2 satisfies the chord condition with respect
to corners (A, B, C). Apply Lemma 9 to construct a 3-sided (int ∪ (C, bs−1)) representation
R2 of G2. Let us assume that (after possible rotation) Φ has the orientation shown in

SoCG’15

154 1-String B2-VPG Representation of Planar Graphs

a b

c

v
a

b
c

R1

v

a b

c

A

BC
G2 a

b
c

R1

A

C

B

R2

Figure 11 Separating triangle with one vertex and the construction (left), and separating triangle
enclosing a W-triangulation and the construction (right).

Figure 11 (right); if it had the symmetric orientation then we would do a similar construction
using a reverse 3-sided representation of G2. Place R2 inside Φ as shown in Figure 11 (right).
Stretch the curves representing vertices on PCA, PAB and PBbs−1 downwards, upwards and
leftwards respectively so that they intersect a, b and c. Top-tangle leftwards the curves
A = a1, a2, . . . , ar = B. Left-tangle downwards the curves B = b1, b2, . . . , bs−1 and
bend and stretch C downwards so that it intersects a. Bottom-tangle leftwards the curves
C = c1, . . . , ct = A. It is easy to verify that the construction creates intersection for all
the edges between vertices of ∆ and the outer-face of G2. The tangling operation then
creates intersections for all the outer-face edges of G2 except edge (C, bs−1), which is already
represented in R2.

Every curve that receives a new bend represents a vertex on the outer-face of G2, which
means that it initially had at most 1 bend. Curve A is the only curve that receives 2 new
bends, but this is allowed as A does not have any bends in R2. Hence, the number of bends
for every curve does not exceed 2.

Private regions for faces formed by vertices a, b, c and vertices on the outer-face of G2
can be found as shown in Figure 11 right. J

With Theorem 12 in hand, we can show our main result: every planar graph has a 1-string
B2-VPG representation.

Proof of Theorem 1. If G is a planar triangulated graph, the claim holds by Theorem 12.
So, assume that G is a planar graph. Then stellate the graph, i.e., insert a vertex into each
non-triangulated face and connect it to all vertices on that face. It is well known that after
at most 3 repetitions, the construction produces a 3-connected triangulated graph G′ such
that G is an induced subgraph of G′. Apply Theorem 12 to construct a 1-string B2-VPG
representation R′ of G′. By removing curves representing vertices that are not in G, we
obtain a 1-string B2-VPG representation of G. J

5 Conclusions and Outlook

We showed that every planar graph has a 1-string B2-VPG representation, i.e., a represent-
ation as an intersection graph of strings where strings cross at most once and each string
is orthogonal with at most two bends. One advantage of this is that the coordinates to
describe such a representation are small, since orthogonal drawings can be deformed easily
such that all bends are at integer coordinates. Every vertex curve has at most two bends
and hence at most 3 segments, so the representation can be made to have coordinates in an
O(n)×O(n)-grid with perimeter at most 3n. Note that none of the previous results provided
an intuition of the required size of the grid.

T. Biedl and M. Derka 155

Following the steps of our proof, it is not hard to see that our representation can be found
in linear time, since the only non-local operation is to test whether a vertex has a neighbour
on the outer-face. This can be tested by marking such neighbours whenever they become
part of the outer-face. Since no vertex ever is removed from the outer-face, this takes overall
linear time.

The representation constructed in this paper uses curves of 8 possible shapes for planar
graphs. One can in fact verify that the 2-sided layout (which only uses 2-sided layouts in
its recursions) uses only 4 possible shapes: C, Z and their horizontal mirror images. Hence
for triangulations without separating triangles (and, after stellating, all 4-connected planar
graphs) 4 shapes suffice. A natural question is if one can restrict the number of shapes
required to represent all planar graphs.

Bringing this effort further, is it possible to restrict the curves even more? Felsner et
al. [10] asked the question whether every planar graph is the intersection graph of only two
shapes, namely {L, Γ}. As they point out, a positive result would provide a different proof of
Scheinerman’s conjecture. Somewhat inbetween: is every planar graph the intersection graph
of xy-monotone orthogonal curves, preferably in the 1-string model and with few bends?

References
1 Takao Asano, Shunji Kikuchi, and Nobuji Saito. A linear algorithm for finding Hamiltonian

cycles in 4-connected maximal planar graphs. Discr. Applied Mathematics, 7(1):1 – 15, 1984.
2 Therese C. Biedl and Martin Derka. 1-string B2-VPG representation of planar graphs.

CoRR, abs/1411.7277, 2014.
3 Jérémie Chalopin and Daniel Gonçalves. Every planar graph is the intersection graph of

segments in the plane: extended abstract. In ACM Symposium on Theory of Computing,
STOC 2009, pages 631–638. ACM, 2009.

4 Jérémie Chalopin, Daniel Gonçalves, and Pascal Ochem. Planar graphs are in 1-string. In
ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pages 609–617. SIAM, 2007.

5 Jérémie Chalopin, Daniel Gonçalves, and Pascal Ochem. Planar graphs have 1-string
representations. Discrete & Computational Geometry, 43(3):626–647, 2010.

6 Steven Chaplick and Torsten Ueckerdt. Planar graphs as VPG-graphs. J. Graph Algorithms
Appl., 17(4):475–494, 2013.

7 Natalia de Castro, Francisco Javier Cobos, Juan Carlos Dana, Alberto Márquez, and Marc
Noy. Triangle-free planar graphs and segment intersection graphs. J. Graph Algorithms
Appl., 6(1):7–26, 2002.

8 Hubert de Fraysseix, Patrice Ossona de Mendez, and János Pach. Representation of planar
graphs by segments. Intuitive Geometry, 63:109–117, 1991.

9 Gideon Ehrlich, Shimon Even, and Robert Endre Tarjan. Intersection graphs of curves in
the plane. J. Comb. Theory, Ser. B, 21(1):8–20, 1976.

10 Stefan Felsner, Kolja B. Knauer, George B. Mertzios, and Torsten Ueckerdt. Intersection
graphs of L-shapes and segments in the plane. In Mathematical Foundations of Computer
Science (MFCS’14), Part II, volume 8635 of Lecture Notes in Computer Science, pages
299–310. Springer, 2014.

11 Irith Ben-Arroyo Hartman, Ilan Newman, and Ran Ziv. On grid intersection graphs. Dis-
crete Mathematics, 87(1):41–52, 1991.

12 Edward R. Scheinerman. Intersection Classes and Multiple Intersection Parameters of
Graphs. PhD thesis, Princeton University, 1984.

13 Hassler Whitney. A theorem on graphs. The Annals of Mathematics, 32(2):387–390, 1931.

SoCG’15

Spanners and Reachability Oracles for Directed
Transmission Graphs∗

Haim Kaplan1, Wolfgang Mulzer2, Liam Roditty3, and
Paul Seiferth2

1 School of Computer Science, Tel Aviv University, Israel
haimk@post.tau.ac.il

2 Institut für Informatik, Freie Universität Berlin, Germany
{mulzer,pseiferth}@inf.fu-berlin.de

3 Department of Computer Science, Bar Ilan University, Israel
liamr@macs.biu.ac.il

Abstract
Let P ⊂ Rd be a set of n points, each with an associated radius rp > 0. The transmission graph
G for P has vertex set P and an edge from p to q if and only if q lies in the ball with radius rp
around p. Let t > 1. A t-spanner H for G is a sparse subgraph of G such that for any two vertices
p, q connected by a path of length ` in G, there is a p-q-path of length at most t` in H. We show
how to compute a t-spanner for G if d = 2. The running time is O(n(logn + log Ψ)), where Ψ
is the ratio of the largest and smallest radius of two points in P . We extend this construction
to be independent of Ψ at the expense of a polylogarithmic overhead in the running time. As a
first application, we prove a property of the t-spanner that allows us to find a BFS tree in G for
any given start vertex s ∈ P in the same time.

After that, we deal with reachability oracles for G. These are data structures that answer
reachability queries: given two vertices, is there a directed path between them? The quality of an
oracle is measured by the space S(n), the query time Q(n), and the preproccesing time. For d = 1,
we show how to compute an oracle with Q(n) = O(1) and S(n) = O(n) in time O(n logn). For
d = 2, the radius ratio Ψ again turns out to be an important measure for the complexity of the
problem. We present three different data structures whose quality depends on Ψ: (i) if Ψ <

√
3,

we achieve Q(n) = O(1) with S(n) = O(n) and preproccesing time O(n logn); (ii) if Ψ ≥
√

3 , we
get Q(n) = O(Ψ3√n) and S(n) = O(Ψ5n3/2); and (iii) if Ψ is polynomially bounded in n, we use
probabilistic methods to obtain an oracle with Q(n) = O(n2/3 logn) and S(n) = O(n5/3 logn)
that answers queries correctly with high probability. We employ our t-spanner to achieve a fast
preproccesing time of O(Ψ5n3/2) and O(n5/3 log2 n) in case (ii) and (iii), respectively.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems – Geometrical
Problems and Computations

Keywords and phrases Transmission Graphs, Reachability Oracles, Spanner, Intersection Graph

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.156

1 Introduction

A common model for wireless sensor networks is the unit-disk graph: each sensor p is
modeled by a unit disk centered at p, and there is an edge between two sensors iff their disks
intersect [7]. Intersection graphs of disks with arbitrary radii have also been used to model

∗ This work is supported by GIF project 1161 & DFG project MU/3501/1.

© Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 156–170

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.156
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth 157

sensors with different transmission radii [2, Chapter 4]. Intersection graphs of disks are
undirected, however. For some networks we may want a directed model. In such networks, a
sensor p that can transmit information to a sensor q may not be able to receive information
from q. This motivated various researchers to consider what we call here transmission
graphs[16, 15]. A transmission graph G is defined for a set of points P ⊂ R2 where each
point p ∈ P has a (transmission) radius rp associated with it. Each vertex of G corresponds
to a point of P , and there is a directed edge from p to q iff q lies in the disk D(p) of radius
rp around p. We can weight each edge pq of G by its Euclidean length |pq| and treat G
as a weighted graph. We study (approximate) shortest path and reachability problems for
transmission graphs.

Even though transmission graphs have a linear size representation, they may be very dense,
even with Θ(n2) edges (similar to many other geometric intersection graphs). Thus, if one
applies a standard graph algorithm, like breadth first search (BFS), to a dense transmission
graph, it runs slowly, since it requires an explicit representation of all the edges in the graph.
Thus, given an transmission graph G implicitly as points with radii, it is desirable to construct
a sparse approximation of G that preserves connectivity and proximity properties. For any
t > 1, a subgraph H of G is a t-spanner for G if the distance between any pair of vertices p
and q in H is at most t times the distance between p and q in G, i.e., dH(p, q) ≤ t · dG(p, q)
for any pair p, q (see [14] for an overview of spanners for geometric graphs). Fürer and
Kasivisawnathan show how to compute a t-spanner for unit- and general disk graphs using a
variant of the Yao graph [9, 17]. Peleg and Roditty [15] give a construction for t-spanners in
transmission graphs in any metric space with bounded doubling dimension. However, except
for the unit-disk case, the running times of these algorithms depend on the number of edges
in the intersection graph. We avoid this dependency and give an almost linear time algorithm
that constructs a t-spanner of a transmission graph for the Euclidean metric in the plane.
Our construction is based on the Yao graph[17]. The basic Yao graph is a spanner for the
complete graph defined by n points in the plane (with Euclidean distances). To determine the
points adjacent to a particular point q, we divide the plane by equally spaced rays emanating
from q and connect q to the closest point in each wedge (the number of wedges increases as t
gets smaller). Transmission graphs, being directed, pose a severe computational difficulty as
we want to consider, in each wedge, only the points p with q ∈ D(p) and pick the closest to q
only among those. Our spanner construction generalizes the Yao graph in this manner. We
further need to relax this construction in a subtle way, without hurting the approximation too
much, in order to construct the spanner efficiently. Even with a good approximation in terms
of a t-spanner at hand, we sometimes wish to obtain exact solutions for certain problems on
disk graphs. Working in this direction, Cabello and Jejĉiĉ gave an O(n logn) time algorithm
for computing a BFS tree in a unit-disk graph, rooted at any given vertex [3]. For this, they
exploited the special structure of the Delaunay triangulation of the disk centers. We show
that our spanner admits similar properties for transmission graphs. As a first application of
our spanner, we get an efficient algorithm to compute a BFS tree in a transmission graph.

A classical data structure problem for a directed graph G is to construct a space efficient
reachability oracle that can answer reachability queries quickly. In a reachability query we
get two vertices p and q and we would like to determine if there is a directed path from p to
q. The quality of a reachability oracle for a graph G with n vertices is measured by three
parameters: the query time Q(n), the space requirement S(n), and the preprocessing time.
In the planar case, efficient reachability oracles exist and a recent result by Holm, Rotenberg
and Thorup achieves optimal parameters [11]. However, for general directed graphs, there
are no nontrivial results, and special cases, such as transmission graphs, are of great interest.

SoCG’15

158 Spanners and Reachability Oracles for Directed Transmission Graphs

We give efficient constructions of reachability oracles for transmission graphs by exploiting
their geometry. For points in 1D, we give an O(n) space oracle with query time O(1). In 2D
it turns out that the ratio Ψ of the largest and smallest radius of points in P is an important
complexity measure for transmission graphs. We give three oracles for different ranges of Ψ.

Our Contribution and Organization of the Paper. In Section 2, we show how to compute,
for every fixed t > 1, a t-spanner H of G. Our construction is quite generic and can be
adapted to several situations. In the simplest case, if the spread Φ (i.e., the ratio between
the largest and the smallest distance in P) is bounded, we can obtain a t-spanner in time
O(n(logn+ log Φ)) (Section 2.1). With a little more work, we can weaken the assumption to
a bounded radius ratio Ψ (the ratio between the largest and smallest radius in P), giving a
running time of O(n(logn+ log Ψ)) (Section 2.2). Using even more advanced data structures,
we can compute a t-spanner in expected time O(n log6 n), without any dependence on Φ
or Ψ (Section 2.3). Our spanners have several applications. For one, we adapt a result by
Cabello and Jejĉiĉ [3] to show that once a spanner is at hand, we can compute the BFS-tree
of any given vertex p ∈ P with additional time O(n logn) (Section 2.4). Furthermore, we
use t-spanners to obtain efficient preprocessing algorithms for reachability oracles.

The remaining paper is dedicated to these reachability oracles. We will see that in 1D
transmission graphs admit a rich structure that can be exploited to construct a simple linear
space reachability oracle with constant query time and O(n logn) preprocessing time. This
construction is described in Section 3. Unfortunately, in 2D most of their structure vanishes.
However, if the radius ratio Ψ is less than

√
3, we show how to make the transmission graph

planar in O(n logn) time, while preserving the reachability structure and keeping the number
of vertices linear in n. Now we can construct a reachability oracle for the resulting planar
graph. A recent construction of Holm, Rotenberg and Thorup [11] gives a distance oracle for
planar graphs in linear time that takes linear space and can answer a query in O(1) time.
This construction is in Section 4.1. When Ψ ≥

√
3 we do not know how to planarize G.

Fortunately, we can use a separation theorem by Alber and Fiala that allows us to find a small
and balanced separator with respect to the area of the union of the disks [1]. This allows
us to build a reachability oracle with query time O(Ψ3√n) and space and preprocessing
time O(Ψ5n3/2). See Section 4.2. When Ψ is even larger but still polynomially bounded
in n, we use random sampling combined with a quad tree of logarithmic depth to obtain
a reachability oracle with query time O(n2/3 logn), space O(n5/3 logn), and preprocessing
time O(n5/3 log2 n). Refer to Section 4.3.

Many of our constructions rely on planar grids. For i = 0, 1, . . . , we define Qi to be the
grid at level i. It consists of axis-parallel squares with diameter 2i that partition the plane
in grid-like fashion (the cells). Qi is aligned so that the origin is a vertex of the grid. The
distance between two grid cells is the smallest distance of any two points contained in them.
Furthermore, we assume that the input is scaled so that the distance of the closest pair in P
is 1. We assume that in our model of computation we can find for any given point the grid
cell that contains it in O(1) time. For space reasons, all proofs in this extended abstract are
omitted. We refer the interested and ambitious reader to the full version.

2 Spanners and BFS Trees

2.1 Efficient Spanner Construction
Let P ⊂ R2 be a point set with radii, and let Φ = maxp,q∈P |pq|/minp 6=q∈P |pq| be the spread
of P . First, we give a spanner construction for the transmission graph G of P that depends
on the spread of P . In Section 2.2, we will weaken this to a dependence on the radius ratio.

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth 159

I Theorem 2.1. Let G be the transmission graph for a two-dimensional n-point set P with
spread Φ. For any t > 1, we can compute a t-spanner for G in time O(n(logn+ log Φ)).

Our construction creates a subgraph H of G that is similar to the Yao graph [17], but
modified to take the disks into account. Ideally, our spanner should look as follows: we pick
a suitable integer k, and we take a set C of k cones with opening angle 2π/k that partition
the plane and that have the origin as apex. For each vertex q ∈ P , we attach the cones in C
to q, and in each translated cone we pick the closest vertex p ∈ P with q ∈ D(p). We add the
edge pq to H. The resulting graph has O(kn) edges, and using standard techniques, one can
show that it is a t-spanner for large enough k. This construction seems to be folklore [5, 15].

However, the standard algorithms for computing the Yao graph do not seem to adapt
easily for our setting without affecting the running time. Thus, we need a more sophisticated
construction that gives a graph with similar properties. The idea is to partition each cone
Cq attached to q into “intervals” obtained by intersecting Cq with annuli centered at q
whose inner and outer radius grows exponentially; see Figure 1. Each of these intervals is
discretized by covering it with O(1) grid cells whose diameter is relatively small compared to
the distance between the interval and q. This enforces two properties that help us to find an
approximately shortest incoming edge for q in Cq: we only need to consider edges from the
interval that is closest to q since these edges will be shorter than any edge from any later
interval; and if there are multiple edges from the same grid cell to q, it suffices to pick only
one of them since their endpoints are close together.

q
p
r

s

Figure 1 A cone Cq covered by discretized inter-
vals. We only need one of the edges −→pq, −→rq for H.

We define a decomposition of P that
represents the discretized intervals by
a neighborhood relation between grid
cells. Given this decomposition, there
is a simple (rather inefficient) rule how to
pick incoming edges for each q ∈ P such
that the resulting graph H is a spanner.
We first give the definition of the decom-
position and prove that H is a t-spanner
if we pick the parameters appropriately.
Then we show how compute the decomposition using a quadtree T . Finally, we use the
structure of T to find the edges within the desired time bound. Let c > 2 be a large constant.
For a grid cell σ, let mσ be the point in P ∩ σ with the largest radius.

I Definition 2.2. Let G be the transmission graph of a point set P ⊂ R2. A c-separated
annulus decomposition for G consists of a finite set Q ⊂

⋃∞
i=0Qi, a symmetric neighborhood

relation N ⊆ Q×Q, and assigned sets Rσ ⊆ P ∩ σ for each σ ∈ Q so that (i) for all
(σ, σ′) ∈ N , diam(σ) = diam(σ′) and d(σ, σ′) ∈ [(c − 2) diam(σ), 2cdiam(σ)); and (ii) for
every edge −→pq of G, there is a (σ, σ′) ∈ N with p ∈ σ, q ∈ σ′, and with either p ∈ Rσ or
q ∈ D(mσ).

For σ ∈ Q, we define N(σ) = {σ′ | (σ, σ′) ∈ N}. Definition 2.2(i) implies |N(σ)| = O(1).

Getting a Spanner. Let t > 1 be the desired stretch. Depending on t, we pick suitable
constants c (separation parameter) and k (number of cones). Let Q be a c-separated annulus
decomposition for G. To obtain a t-spanner H ⊆ G, we pick the incoming edges for each
point q ∈ P and each cone C ∈ C as in Alg. 1. For σ ∈ Q let Cσ be the translated copy of C
that has the center of σ as apex and let C2

σ be the cone obtained by doubling the opening
angle of Cσ. Instead of Cq we use the cones C2

σ with q ∈ σ to find incoming edges for q. This
gives the generality needed for later extensions of this algorithm.

SoCG’15

160 Spanners and Reachability Oracles for Directed Transmission Graphs

1 Qq ← cells of Q that contain q
2 Sort Qq by the diameter of the cells in increasing order; give q the status active
3 while q is active do
4 σ ← next largest cell in Qq
5 foreach cell σ′ ∈ N(σ) that is contained in C2

σ do
6 if there is a r ∈ Rσ′ ∪ {mσ′} with q ∈ D(r) then
7 take an arbitrary such r, add the edge rq to H, and set q to be inactive.

Algorithm 1: Selecting the incoming edges for q and the cone Cq.

For each cone C ∈ C and each q ∈ P there is only one σ ∈ Qq that produces incoming
edges for q: after σ is processed, q is inactive. Since we have k cones and since |N(σ)| = O(1),
q has O(k) incoming edges, for a total of O(n) edges in H. To show that H is a t-spanner,
we use induction on the rank of the edge lengths. The proof is done in a similar manner as
for standard Yao graphs, but with a few additional twists.

I Lemma 2.3. For any t > 1, there are constants c and k such that H is a t-spanner for G.

Finding the Decomposition. Let c > 3 be the separation parameter. We scale P s.t. the
smallest distance in P is c. A quadtree for P is a rooted tree T in which each internal node
has degree four. Each node v of T has an associated cell σv from a grid Qi, i ≥ 0, and we
say that v has level i. If v is an internal node, the cells of its four children partition σv into
four congruent squares, each with half the diameter of σv. We describe how to compute a
quadtree T for P s.t. the cells of T form the set Q for the c-separated annulus decomposition.

We construct T level-wise. Let L be the smallest integer such that there is a cell σ ∈ QL
that (possibly after shifting) contains P . Since c is constant and since P has spread Φ, the
scaled point set has diameter cΦ, and we can take L = O(log Φ). We create the root node
v and set σv = σ. This will be level L. To construct level i − 1, given level i, we do the
following for each level i node v whose cell σv is non-empty: take the four cells of Qi−1
that partition σv and create four nodes w1, . . . , w4. To each of the four nodes w1, . . . , w4 we
assign one of the four cells, and we make w1, . . . , w4 children of v. This process stops at level
0. The scaling of P ensures that a cell of a level 0 node contains at most one point of P .

We now set Q = {σv | v ∈ T}. We let (σv, σw) ∈ N if v and w have the same level and if
d(σv, σw) ∈ [(c−2) diam(σv), 2cdiam(σv)). As Rσv

we take all points in σv ∩P whose radius
is between (c− 2) diam(σv) and 2(c+ 1) diam(σv). To see that this satisfies Definition 2.2(ii),
consider an edge pq of G with q ∈ σv and p ∈ σ′ ∈ N(σv). Since D(p) must intersect σv, we
have rp ≥ (c− 2) diam(σv). Thus, we have either p ∈ Rσ′ or rp > 2(c+ 1) diam(σ′). In the
second case for any r ∈ σ′ with radius rr ≥ rp the disk D(r) fully contains σv. In particular
this holds for r = mσ′ . Since Def. 2.2(i) is satisfied by construction, we get the next lemma.

I Lemma 2.4. The set Q with N and the assignment Rσ described above is a c-separated
annulus decomposition for G.

Finding the Edges. To find the edges for the spanner H more quickly, we use the cells of
Q to group the points and find incoming edges for multiple points at once. We process the
cells of Q by increasing diameter, following the structure of the quadtree T .

Fix one cone C ∈ C of the k cones we want to process. For σ ∈ Q, let C2
σ be the cone with

opening angle 4π/k whose apex is the center of σ obtained by translating C and doubling
its opening angle. We give all points in P the status active. We process T in level-order,

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth 161

`
R

Q

Figure 2 The lower envelope (orange), the points Q (red) and R (blue), and the sweepline (green).

starting with level 0. For each v ∈ T , we select incoming edges for the active points Q in
σv ∩ P as in Algorithm 2. First we sort Q by x and y-direction in linear time, using the
sorted lists of v’s children (preproccesing). Let σ′ ∈ N(σv) be a neighbor of σv. The sorting
enables us to efficiently find incoming edges for points in Q from points in R = Rσ′ ∪ {mσ′}
(edge selection): Q and R are separated by a line ` that is parallel to either the x or the y
axis, namely one of the supporting lines of the boundary of σv. We can compute the lower
envelope E of the disks in R and sweep over Q in ` direction, see Fig. 2. This takes time
linear in |Q| since Q is sorted in ` direction. To check whether the current point q ∈ Q is
contained in a disk of R, we only need to test the disk of the arc of E intersected by the
sweepline through q orthogonal to `. We summarize the above discussion in Lemma 2.5.

I Lemma 2.5. Let Q,R, and ` be as above with |Q| = n and |R| = m. Suppose that Q is
sorted along ` and that ` separates Q and R. We can compute in time O(m logm+ n) for
each q ∈ Q one disk from R that contains it, provided that such a disk exists.

The edges selected by Algorithm 2 have the same properties as the edges selected by
Algorithm 1. Thus, by Lemma 2.3, the resulting graph is a t-spanner.

1 for i = 0, . . . , L do
2 foreach v ∈ T of level i do
3 Q← active points in σv ∩ P

// preproccesing
4 Sort Q in x and y-direction by merging the sorted lists of the children of v

foreach σ′ ∈ N(σv) contained in C2
σv

do
5 R← Rσ′ ∪ {m′σ}

// edge selection
6 For each q ∈ Q find a r ∈ R with q ∈ D(r), if it exists; add the edge −→rq to H
7 Set all q ∈ Q for which at least one incoming edge was found to inactive

Algorithm 2: Selecting the edges for H for a fixed cone C.

Running Time. By Lemma 2.5, we can argue that the running time of Algorithm 2 is
dominated by the edge selection step. Since T has depth O(log Φ), each p ∈ P takes part in
O(log Φ) edge selections as a point in Q for incoming edges, taking O(1) time for that point
(by Lemma 2.5). Furthermore, each point is in O(1) different sets Rσ and thus takes part in
O(1) edges selections as a disk-center in R, taking O(log |R|) = O(logn) time for that point.
Thus, we have a total running time of O(n(log Φ + logn)), as stated in the next lemma.

I Lemma 2.6. The construction of the spanner H of G takes O(n(log Φ + logn)) time.

Theorem 2.1 follows by combining Lemmas 2.3 and 2.6.

SoCG’15

162 Spanners and Reachability Oracles for Directed Transmission Graphs

2.2 From Bounded Spread to Bounded Radius Ratio
Let P ⊂ R2 be a point set with radii and let Ψ be the radius ratio of P . We extend the
spanner construction from Section 2.1 to be depended on the radius ration Ψ of P .

I Theorem 2.7. Let G be the transmission graph for a n-point set P ⊂ R2 with radius ratio
Ψ. For any t > 1, we can compute a t-spanner for G in O(n(logn+ log Ψ)) time.

The main observation is that the spread is irrelevant in our setting: points that are close
together form a clique in G and can be handled through classic spanners, and points that
are far away from each other form distinct components and can be dealt with independently.

Given t, we pick large enough constants k and c. Then, we scale the input such that the
smallest radius is c. Let M = O(Ψ) be the largest radius. First, we partition P into sets
that are far away from each other and can be handled separately.

I Lemma 2.8. In O(n logn) time, we can partition P into sets P1, . . . , P` so that each Pi
has diameter O(nΨ) and so that for any i 6= j, no point in Pi can reach a point of Pj in G.

By Lemma 2.8, we may assume that our input point set has diameter O(nΨ). As in
Section 2.1, we can compute a quadtree T for P with L levels and L = O(log(nΨ)): take a
large enough grid cell that contains P and recursively subdivide each non-empty cell into four
cells of half the diameter. We stop when the diameter of the cells is 1. Unlike in Section 2.1,
the set of the cells of all nodes of T does not yield a c-separated annulus decomposition for
G. In particular, Definition 2.2(ii) is not true anymore. Therefore, there can be edges in G
that do not go between neighboring cells. These are the short edges.

First, we handle very short edges: let v ∈ T be a level 0 node and let σv ∈ Q0 be the
cell of v. Let Q ⊆ P be all points that lie in cells of Q0 with distance at most c/2− 3 from
σ. Since any pair of points in Q has distance at most c, the set Q forms a clique in G. We
compute a (classic) t-spanner for Q in O(|Q| log |Q|) time [14]. Since any p ∈ P participates
in O(c2) such spanners, we generate O(n) edges in total and require O(n logn) time.

Second, we handle not quite so short edges: for each q ∈ P , let v be the level 0 node of T
whose cell σv contains q. For any cell σ ∈ Q0 with d(σv, σ) ∈ (c/2 − 3, c − 2), we take an
arbitrary point r ∈ σ ∩ P and add the edge −→rq to our spanner. All these edges have length
at most c and are therefore valid edges in G. This takes O(n) time and creates O(n) edges.

Finally, we handle the remaining edges: for this, we mark all points of P as active, and
we run Algorithm 2 from Section 2.1 starting from level 0 of T . Call the resulting graph H.

As in Lemma 2.3, induction on the rank of the edges lengths shows that H is a t-spanner.

I Lemma 2.9. The graph H is a t-spanner for G if c and k are large enough constants.

Using Lemma 2.9, Theorem 2.7 follows in the same way as in Section 2.1. The running time
analysis goes exactly as in Lemma 2.6, but the quadtree now has O(logn+ log Ψ) levels.

2.3 Spanners for Unbounded Spread and Radius Ratio
We show how eliminate the bounded radius ratio assumption at the expense of using a more
involved data structure and of losing a polylog factor in the running time. Let P ⊂ R2 and
the desired stretch factor t > 1 be given. Assume that the closest pair in P has distance 1.

First we compute a compressed quadtree T for P . It is a rooted tree in which each internal
node has degree 1 or 4. Each node v has an associated cell σv from a grid Qi. To keep
the notation simple, we write diam(v) for diam(σv) = 2i, and for two nodes v, w, we write
d(v, w) for d(σv, σw). If v has degree 4, then the associated cells of its children partition

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth 163

σv into 4 congruent squares of half the diameter, and at least two of them are non-empty.
If v has degree 1, then the associated cell of the only child w of v has diameter at most
diam(v)/4. Furthermore, there are no points from P in σv \ σw. Each internal node of T
contains at least 2 points from P in its cell and each leaf at most 1 point. A compressed
quadtree for P with O(n) nodes can be computed in O(n logn) time [10].

Our goal is to use the algorithm from Section 2.1 on the compressed quadtree T . There
are two problems with this: since the depth of T can be linear, we cannot consider all points
for incoming edges in each level, as in Algorithm 2. Instead we use Chan’s dynamic nearest
neighbor data structure to quickly identify the relevant points. It has the following properties.

I Theorem 2.10 (Chan [6]). There exists a dynamic data structure that maintains a planar
point set S such that (i) we can insert a point into S in expected, amortized time O(log3 n);
(ii) we can delete a point from S in expected, amortized time O(log6 n); and (iii) given a
query point q, we can find the nearest neighbor for q in S in worst-case time O(log2 n).

Furthermore, the cells of T do not form a c-separated annulus decomposition anymore. The
notion of neighborhood needs to be adapted to accommodate internal nodes of degree 1 and to
ensure that Definition 2.2(ii) holds. We fix this by inserting O(n) additional nodes into T that
have the desired properties. To find these nodes, we use the well-separated pair decomposition
algorithm of Callahan and Kosaraju [4]. Let a large enough constant c be given. As in
Section 2.1, we define the neighborhood relation N as the pairs (σv, σw) whose nodes v and w
have the same level in T and that satisfy d(σv, σw) ∈ [(c− 2) diam(σv), 2cdiam(σv)). The set
Rσv

are all points in σv ∩ P whose radius is between (c− 2) diam(σv) and 2(c+ 1) diam(σv).

I Lemma 2.11. For any c > 0 we can in O(n logn) time insert O(n) nodes into the
compressed quadtree T s.t. Q = {σv | v ∈ T} with N and the assignment Rσ is a c-separated
annulus decomposition for G. In the same time we can compute N and Rσv for each σv ∈ Q.

Finding the Edges. To find the edges for the spanner H ⊆ G, we choose constants k and c
depending on t. The algorithm proceeds as follows: we compute a compressed quadtree T
for P . To obtain a c-separated annulus decomposition Q, N , Rσv

for G, we augment T with
O(n) nodes as in Lemma 2.11. We create the dynamic nearest neighbor (NN) data structure
from Theorem 2.10 for each leaf node v of T whose cell σv is non-empty. We sort all cells of
nodes of T by increasing diameter. A point is called active if it is in the NN data structure
of some v, thus initially all points of P are active. Fix a cone C. For σ ∈ Q let C2

σ be the
cone whose apex is the center of σ and such that C2

σ is obtained from C by translating and
doubling the opening angle to 4π/k. To select the spanner edges for C, we consider the
nodes of T in increasing order and perform two steps for each node v, similar to Algorithm 2
of Section 2.1: let w be the child of v that has the most active points in its NN structure.
To get the NN data structure for v, we insert all active points of the remaining children of v
into the NN data structure of w (preproccesing). Since w has the most points, overall each
point is inserted O(logn) times in some NN structure. Then we do the edge selection for all
σ′ ∈ N(σv) contained in C2

σv
using the NN structure of v; see Algorithm 3. We take each

point r ∈ Rσ′ ∪ {mσ′} and repeatedly query the NN structure of v. Let q be the result. If rq
constitutes an edge in G, we call the query successful, add rq to H, delete q, and do another
query with r. Otherwise, we proceed with the next point of R. Each such query causes O(1)
additional insertion/deletions to a NN structure. If it was successful, we charge these costs
to the created edge. Otherwise, we charge the costs to this point r. Since each point p ∈ P
is in O(1) sets Rσ, it can only be responsible for O(1) unsuccessful queries. Thus, since H
has n vertices and O(n) edges, we can to prove the next lemma.

SoCG’15

164 Spanners and Reachability Oracles for Directed Transmission Graphs

I Lemma 2.12. The algorithm has total expected running time O(n log6 n).

The edges selected by this procedure have the same properties as the edges selected by
Algorithm 1. Thus, by Lemma 2.3 we obtain a t-spanner H, which establishes Theorem 2.10.

// preproccesing
1 Let w be the child of v whose NN structure contains the most points
2 Insert all points of each child w′ 6= w of v into the NN structure of w
3 foreach σ′ ∈ N(σv) contained in C2

σv
do

4 foreach r ∈ R = Rσ′ ∪ {mσ′} do
// edge selection

5 q ← NN(v, r) // query NN structure of v with r

6 while q ∈ D(r) and q 6= ∅ do
7 add the edge rq to H; delete q from NN(v); q ← NN(v, r)
8 reinsert all deleted points into NN(v)
9 delete all q from NN(v) for which at least one edge rq was found

Algorithm 3: Selecting incoming edges for the points of a node v of T and a cone C.

2.4 From Spanners to BFS Trees
We show how to compute BFS trees for a transmission graph G. Let the desired root s ∈ P
be given. We apply a technique that Cabello and Jejĉiĉ used for unit-disk graphs [3]. Denote
by dh(s, p) the BFS distance from s to p in G. For i ∈ N0 let Wi ⊆ P be the vertices p ∈ P
with dh(s, p) = i. Cabello and Jejĉiĉ used the Delaunay triangulation (DT) to efficiently
identify Wi+1, given W0, . . . ,Wi. Our t-spanner provides similar properties for transmission
graphs as the DT does for unit-disk graphs.

I Lemma 2.13. Let H be the t-spanner for G from Theorem 2.7 for t small enough, and let
v ∈Wi+1, for some i ≥ 0. Then there is a vertex u ∈Wi and a path u = ql, . . . , q1 = v in H
with dh(s, qj) = i+ 1 for j = l − 1, . . . , 1.

1 W0 ← {s}; d[s] = 0; π[s] = s; i = 0; and, for p ∈ P \ {s}, d[p] =∞ and π[p] = NIL
2 while Wi 6= ∅ do
3 compute power diagram with point location structure PDi of Wi

4 queue Q←Wi ; Wi+1 ← ∅
5 while Q 6= ∅ do
6 p← dequeue(Q)
7 foreach edge pq of H do
8 u← PDi(q) // query PDi with q

9 if q ∈ D(u) and d[q] =∞ then
10 enqueue(Q, q); d[q] = i+ 1; π[q] = u; add q to Wi+1

11 i← i+ 1

Algorithm 4: Compute the BFS tree for G with root s using H.

The BFS tree for s is computed iteratively; see Alg. 4 for pseudocode. Initially, we set
W0 = {s}. Now assume we computed everything up to Wi. By Lemma 2.13, all vertices in

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth 165

Wi+1 can be reached from Wi in the subgraph of H induced by Wi ∪Wi+1. Thus, we can
compute Wi+1 as follows: for each u ∈Wi, start a BFS search in H from u. Every time we
encounter a new vertex q, we check if it lies in a disk of Wi. If so, we add q to Wi+1 and add
the new neighbors of q to the queue. Otherwise, we discard q for now. To test whether q lies
in a disk of Wi, we use the power diagram. This weighted version of the Voronoi Diagram
represents the union of the Wi-disks as a planar subdivision. It takes O(|Wi| log |Wi|) time
to compute, and augmented with a point location structure it supports the following queries
in time O(log |Wi|): given a point q, find a disk in Wi that contains it, if it exists [12, 13].

Each edge pq of H is considered at most twice by Alg. 4, and each time we query a power
diagram with q (in O(logn) time). Since H is sparse, the total time is O(n logn).

3 Reachability Oracles for 1-dimensional Graphs

In this section we prove the following theorem.

I Theorem 3.1. Let G be the transmission graph of an n-point set P ⊂ R. We can construct
in O(n logn) time a reachability oracle for G with S(n) = O(n) and Q(n) = O(1).

Let C be the set of strongly connected components (SCCs) of G and let C ∈ C. We say that
C can reach a point p ∈ P if there is a path in G from a point in C to p. We say that C can
reach an SCC D ∈ C if C can reach a point in D. By strong connectivity, this means that
all points in C can reach all points in D. Next, we define several points related to C: the
leftmost point of C, l(C), is the point in C with the smallest x-coordinate; the left reachpoint
of C, lr(C), is the leftmost point in R that lies in a ball around a point in P reachable from
C; and the direct left reachpoint of C, dl(C), is the leftmost point in R that lies in a ball
around a point in C, i.e., dl(C) = minp∈C(p− rp). The right versions r(C), rr(C), and dr(C)
are defined analogously. The interval of C, IC , is defined as IC = [l(C), r(C)].

I Lemma 3.2. Let C ∈ C be an SCC, and let p ∈ C a point in C. For any q ∈ P , there is a
path in G from p to q if and only if q ∈ [lr(C), rr(C)].

Lemma 3.2 suggests the following reachability oracle with O(n) space and O(1) query
time: for each C ∈ C, store the reachpoints lr(C) and rr(C); and for each point p ∈ P , store
the SCC of G that contains it. Given two query points p, q, we look up the SCC C for p,
and we return YES iff q ∈ [lr(C), rr(C)]. It remains to describe an efficient preprocessing
algorithm. To find the reachpoints quickly, we investigate the structure of the SCCs in G.

I Lemma 3.3. The intervals {IC | C ∈ C} for the SCCs form a laminar set family, i.e., for
any C,D ∈ C, we have either IC ∩ ID = ∅, IC ⊆ ID, or ID ⊆ IC .

By Lemma 3.3, we can obtain a forest with vertex set C by considering the set containment
relation on the intervals {IC | C ∈ C}. If necessary, we add a common root node to get a
tree T . The next lemma characterizes the left and right reachpoints.

I Lemma 3.4. Let C ∈ C. The left reachpoint lr(C) of C is either dl(C) or dl(D), where D
is a sibling of C in T . The situation for the right reachpoints is analogous.

Reachability Between Siblings. By Lemma 3.4, for an SCC C ∈ C, it suffices to search for
lr(C) and rr(C) among the siblings of C in T . Let C1, . . . , Ck be the children of a node in
T , sorted from left to right according to their intervals. To compute the left reachpoints
of C1, . . . , Ck, we set lr(C1) = dl(C1) and we push C1 onto an empty stack S. Then we go

SoCG’15

166 Spanners and Reachability Oracles for Directed Transmission Graphs

through C2, . . . , Ck, from left to right. For the current child Ci, we initalize the tentative left
reachpoint lr(Ci) = dl(Ci). While the current tentative reachpoint lies to the left of the right
interval endpoint for the top of the stack, we pop the stack and we update the tentative
reachpoint of Ci to the left reachpoint of the popped component, if it lies further to the left.
Then we push Ci onto the stack and proceed to the next child; see Algorithm 5.

1 lr(C1)← dr(C1); push C1 onto an empty stack S
2 for i← 2 to k do
3 lr(Ci)← dr(Ci)
4 while S 6= ∅ and lr(Ci) ≤ r(top(S)) do
5 D ← pop(S); lr(Ci)← min{lr(Ci), lr(D)}
6 push Ci onto S

Algorithm 5: Computing left reachpoints.

The right reachpoints are computed analogously. Since each SCC is pushed/popped at most
once onto/from S, and sorting the SSCs needs O(n logn) time, we get the following lemma.

I Lemma 3.5. We can compute the reachability for all nodes in T in O(n logn) time.

It remains to find the SCCs without explicitly constructing G. To do so, we can use the
Kosaraju-Sharir algorithm [8] together with geometric data structures that allow us to
efficiently find unvisited edges. See the full version for details. This establishes Theorem 3.1.

4 Reachability Oracles for 2-dimensional Graphs

4.1 Ψ is less than
√

3
Suppose that Ψ ∈ [1,

√
3). We show that we can planarize G by first removing unnecessary

edges and then resolving edge crossings by adding O(n) additional vertices. This will not
change the reachability between the original vertices. The existence of efficient reachability
oracles then follows from known results for planar graphs. We prove the following lemma.

I Lemma 4.1. Let G be the transmission graph for a planar n-point set P , such that Ψ <
√

3.
In time O(n logn), we can find a plane graph H = (V,E) s.t. (i) |V | = O(n) and |E| = O(n);
(ii) P ⊆ V ; (iii) for any p, q ∈ P , p can reach q in G iff p can reach q in H.

Given Lemma 4.1, we can obtain the following result by constructing the distance oracle
from Holm, Rotenberg and Thorup for H[11]. It has O(1) query time and needs O(n) space.

I Theorem 4.2. Let G be the transmission graph for a two-dimensional set P of n points
and let Ψ be the ratio between the largest and smallest radius in P . If Ψ <

√
3, we can

construct in O(n logn) time a reachability oracle for G with S(n) = O(n) and Q(n) = O(1).

We prove Lemma 4.1 in three steps. First, we show how to reduce the number of edges in G
to O(n) without changing the reachability. Then we show how to remove the crossings from
G. Finally, we argue that we can combine these two operations to get the desired result.

Pruning the Graph. We construct a sparse subgraph H ⊆ G with the same reachability as
G but with O(n) edge crossings. Consider the grid Q0 whose cells have side length 1/

√
2.

Let σ ∈ Q0 be a grid cell. We say that an edge of G lies in σ if both endpoints are contained

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth 167

in σ. The neighborhood N(σ) of σ consists of the 7 × 7 block of cells in Q0 with σ at the
center. Two grid cells are neighboring if they lie in each other’s neighborhood. For any edge
in G, its two endpoints must lie in neighboring grid cells. We assign each point in P to the
cell of Q0 that contains it. The subgraph H has P as vertex set, and we pick the edges as
follows: for each non-empty cell σ, let Pσ ⊆ P be the points in σ. We compute the Euclidean
minimum spanning tree (EMST) Tσ of Pσ, and for each edge pq of Tσ, we add the directed
edges pq and qp to H. Then, for cell σ′ ∈ N(σ), we check if there are any edges from σ to σ′
in G. If so, we add an arbitrary such edge to H. The following lemma states properties of H.

I Lemma 4.3. The graph H a) has the same reachability as G; b) has O(n) edges; c) can
be constructed in O(n logn) time; and d) has O(n) edge crossings if it is drawn in the plane
with vertex set P .

Removing the Crossings. Suppose an edge pq of G and an edge uv of G cross at a point x.
To eliminate the crossing, we add x as a new site to the graph, and we replace pq and uv by
the four new edges px, xq, ux and xv. Furthermore, if qp is an edge of G, we replace it by
the two edges qx, xp, and if vu is an edge of G, we replace it by the two edges vx, xu. We
say that this resolves the crossing between p, q, u and v. Let G̃ be the graph obtained by
iteratively resolving all crossings in G. We can show that the reachability on the vertices of
G stays the same in G̃. Intuitively speaking, the Ψ < 3 restriction forces the vertices to be
close together. This guarantees the existence of additional edges between p, q, u, v in G and
these edges are always sufficient to cover all new paths introduced by resolving the crossing.

I Lemma 4.4. For any two sites p, q ∈ P , if p can reach q in G̃ then p can reach q in G.

Putting it together. To prove Lemma 4.1, we first construct the sparse subgraph H as in
Lemma 4.3 in time O(n logn). Then we iteratively resolve all crossings in H to obtain H̃.
Since H has O(n) crossings that can be found in the same time, this takes O(n) time.

Let p, q ∈ P . We must argue that p can reach q in G if and only if p can reach q in H̃.
Let G̃ be the graph obtained by resolving the crossings in G, as in Lemma 4.4. We know that
the reachability between p and q is the same in G, H, and G̃. Furthermore, if p can reach q
in H, then also in H̃, and if p can reach q in H̃, then also in G̃, because (a subdivision of)
every edge of H̃ is present in G̃. Thus, H̃ and G have the same reachability properties.

4.2 Ψ is constant

Our goal is to prove the following theorem:

I Theorem 4.5. Let G be the transmission graph for an n-point set P ⊂ R2 and let Ψ be
the ratio between the largest and smallest radius of the points in P . We can construct a
reachability oracle for G with S(n) = O(Ψ5n3/2) and Q(n) = O(Ψ3√n) in time O(Ψ5n3/2).

Let D be the disks induced by P . Let µ(D) be the area occupied by
⋃
D :=

⋃
D∈DD. Alber

and Fiala show how to compute a separator for disks with respect to µ(·) [1].

I Theorem 4.6 (Theorem 4.12 in [1]). There exist positive constants α < 1 and β such that
the following holds: let D be a set of n disks and Ψ the ratio of the largest and the smallest
radius in D. Then we can find in time O(Ψ2n) a partition A ∪ B ∪ S of D satisfying (i)⋃
A ∩

⋃
B = ∅, (ii) µ(S) ≤ Ψ2β

√
µ(D) and (iii) µ(A), µ(B) ≤ αµ(D).

SoCG’15

168 Spanners and Reachability Oracles for Directed Transmission Graphs

To obtain the data structure, consider the grid Q = Q0 whose cells have diameter 1. All
vertices in one cell form a clique in G, so it suffices to determine the reachability for one of
them. For each non-empty cell σ ∈ Q we pick an arbitrary vertex as the representative of σ.
Let PD be the set of all representatives for D. We recursively create a separator tree T that
contains all needed reachability information: compute A,B, and S according to Theorem 4.6.
We create a node v of the separator tree. Let Qv be all cells in Q that intersect

⋃
S, and let

Pv be their representatives and Dv all disks with centers in Qv. For each s ∈ Pv, we store all
representatives of PD that s can reach and all the representatives that can be reached by
s in the transmission graph induced by D (this graph is a subgraph of G). We recursively
compute separator trees for A \ Dv and B \ Dv, and we connect them to v.

For the space requirement, we can show that |PD| = O(µ(D)) for any set of disks D.

I Lemma 4.7. Let D be a set of n disks with radius at least 1. Then the number of cells in
Q0 that intersect

⋃
D is O(µ(D)).

Then, the space requirement S(µ(D)) for a set of disks D with respect to µ(·) is

S(µ(D)) = S((1− α)µ(D)) + S(αµ(D)) +O(Ψ2µ(D)3/2), (1)

where the last term accounts for storing reachability between the O(Ψ2
√
µ(D)) vertices of PS

and the O(µ(D) vertices of PA ∪PB. For µ(D) = O(1), we have S(µ(D)) = O(1), and Eqn. 1
solves to S(µ(D)) = O(Ψ2µ(D)3/2). Since µ(D) = O(nΨ2), the total space is O(Ψ5n3/2).

Performing a Query. Let p, q ∈ P be given. We may assume that p and q are representative
for their cells. If p = q, we say YES. If p 6= q, we let vp and vq be the nodes in T with p ∈ Pvp

and q ∈ Pvq
, respectively. Let u be least common ancestor of vp and vq. It can be found in

O(logn) time by walking up the tree. Let L be the path from u to the root of T . We check
for each s ∈

⋃
v∈L Pv whether p can reach s and s can reach q. If so, we say YES. If there

is no such s, we say NO. Since |Pv| decreases geometrically along L, the running time is
dominated by the root, and it is O(Ψ2µ(D)1/2). Bounding µ(D) by O(Ψ2n), the total query
time is be O(Ψ3√n). We now argue correctness. First, note that we will say YES only if
there is a path from p to q. Now suppose there is a path π in G from p to q, where p 6= q and
p, q are representatives. Let vp, vq be the nodes in T for p and q, let u be their least common
ancestor, and L be the path from u to the root. By construction,

⋃
v∈LDv must contain a

disk for a point r in π. We pick r such that the corresponding node v is closest to the root.
Let s be the representative for the cell containing r. Then there is an edge from r to s and
from s to r, so p can reach s and s can reach q in the transmission graph of v. Thus, when
walking along L, the algorithm will discover s and the connection between p and q.

Preprocessing Time. We compute for each node v in T a spanner Hv for the corresponding
transmission graph, as in Theorem 2.7. Since we are only interested in the reachability Hv,
we can choose t > 1 to be some small constant. Since T has O(logn) levels, the total running
time for this step is O(n logn(logn+ log Ψ)). Then we go through all the nodes v ∈ T . For
each s ∈ Pv, we compute a BFS tree in Hv with root s. Next, we reverse all edges in Hv and
we again compute BFS-trees for all s ∈ Pv in the transposed graph. This gives the necessary
information we want to store for s. Since the amount of work is proportional to the total
size of the BFS-trees, we get a total running time of O(Ψ5n3/2). Theorem 4.5 now follows.

4.3 Ψ is polynomially bounded
Now we assume that Ψ is bounded by some polynomial in n. Then we can show the following.

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth 169

I Theorem 4.8. Let G be the transmission graph for a two-dimensional set P of n points and
let Ψ be the ratio between the largest and smallest radii of the points in P . If Ψ = O(poly(n)),
we can construct a reachability oracle for G in O(n5/3 log2 n) time with S(n) = O(n5/3 logn)
and Q(n) = O(n2/3 logn). All queries are answered correctly with high probability.

We scale everything such that the smallest radius in P is 1. Our approach is as follows: let
p, q ∈ P . If there is a p-q-path with “many” vertices, we detect this by taking a large enough
random sample S ⊆ P and by storing the reachability information for every vertex in S. If
there is a path from p to q with “few” vertices, then p must be “close” to q, where “closeness”
is defined relative to the largest radius along the path. The radii from P can lie in O(log Ψ)
different scales, and for each scale we store few local information to find such a “short” path.

First we consider long paths. Let 0 < α < 1 be some constant to be determined later.
First, we show that a random sample can be used to detect paths with many vertices.

I Lemma 4.9. We can sample a set S ⊂ P of size O(nα logn) s.t. the following holds w.h.p.:
for any p, q ∈ P , if there is a path π from p to q in G of length at least n1−α, then π ∩S 6= ∅.

We find such a sample S, and for each s ∈ S, we store two Boolean arrays that indicate for
each p ∈ P whether p can reach s and whether s can reach p. This needs space O(n1+α logn).

Now we treat short paths. Let L = dlog Ψe. We consider L grids Q0, . . . ,QL, s.t. the
cells in Qi have diameter 2i. For each σ ∈ Qi, let Qσ ⊆ P be the vertices p ∈ P ∩ σ with
rp ∈ [2i, 2i+1). Qσ forms a clique in G, and for each p ∈ Qσ, the disk D(p) covers σ. The
neighborhood N(σ) is defined as the set of all cells from Qi that have distance at most
2i+1n1−α from σ. We have |N(σ)| = O(n2−2α). Let Pσ ⊆ P be the points that lie in cells
of N(σ). For every i = 0, . . . , L and for every σ ∈ Qi with Qσ 6= ∅, we fix an arbitrary
representative point qσ ∈ Qσ. For every point p ∈ P , we store for every i ∈ {0, . . . , L} a
sorted list of all cells σ ∈ Qi with p ∈ Pσ such that qσ can be reached from p and a list of
all cells σ ∈ Qi with p ∈ Pσ such that qσ can reach p. A point in P appears in at most
O(n2−2α log Ψ) point sets Pσ, so the total space requirement is O(n3−2α log Ψ).

Performing a Query. Let p, q ∈ P be given. To decide whether p can reach q, we first
check all O(nα logn) points in S. If there is an s ∈ S such that p reaches s and such that
s reaches q, we return YES. Otherwise, for i = 0, . . . , L, we walk through the lists of cells
whose representative point is reachable from p at level i and through the list of cells whose
representative point can reach q at level i to check whether they contain a common element.
Since the lists are sorted, this can be done in time linear in the list size, as in merge sort. If
any of these pairs of lists contains a common cell, we return YES. Otherwise, we return NO.

For correctness, first note that we return YES only if there is a path from p to q. Now
assume that there is a path π from p to q. If π has more than n1−α vertices, then by
Lemma 4.9, the sample S hits π w.h.p., and the algorithm returns YES. Otherwise, let r
be the vertex of π with the largest radius, and let i be such that rr ∈ [2i, 2i+1). Let σ be
the cell of Qi that contains r. Since π has at most n1−α vertices and each edge of π has
length at most 2i+1, the path π lies in N(σ). In particular, both p and q are contained in
cells of N(σ). Since r ∈ Qσ and since Qσ forms a clique in G, the representative point qσ of
σ can be reached from p and can reach q. By the symmetry of neighborhood definition, σ is
contained in the list of reachable cells from p and in the lists of cells that can reach q. This
common cell will be detected when checking the corresponding lists for p and q at level i.

Time and Space Requirements. For long paths we need O(nα logn) time: for every s ∈ S
we test in O(1) time whether p can reach s and whether s can reach q. For short paths

SoCG’15

170 Spanners and Reachability Oracles for Directed Transmission Graphs

there are O(log Ψ) levels, and at each level we step through two lists of size O(n2−2α).
Since we assume log Ψ = O(logn), the tradeoff for the query time is at α = 2/3, yielding
Q(n) = O(n2/3 logn). The same α is the tradeoff for the space usage, which is O(n5/3 logn).

For the preprocessing, we first compute the reachability arrays for each s ∈ S. To do so,
we build the spanner H for G from Section 2.2 in time O(n logn). Then, for each s ∈ S we do
a BFS search in H and its transposed graph. This gives all vertices that s can reach and that
can be reached by s in O(n3/2 logn) total time. Now, we do the preprocessing for short paths.
For each i = 0, . . . , L and each cell σ ∈ Qi that has a representative qσ we do the following:
consider the points Pσ. We compute the spanner Hσ from Section 2.2 for Pσ. For each qσ, we
do a BFS search in Hσ and its transposed graph starting from qσ. This gives all p ∈ Pσ that
reach qσ and that are reachable from qσ. The running time is dominated by constructing the
spanners. Since each point p ∈ P is contained in O(n2−2α log Ψ) = O(n2/3 logn) different
Pσ, and since constructing Hσ takes O(|Pσ|(log Ψ + log |Pσ|)) time, the preprocessing time
for the short paths is O(n5/6 log2 n).

Acknowledgements. We thank Paz Carmi and Günter Rote for valuable comments.

References
1 Jochen Alber and Jirí Fiala. Geometric separation and exact solutions for the parameterized

independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004.
2 Azzedine Boukerche. Algorithms and Protocols for Wireless Sensor Networks. Wiley Series

on Parallel and Distributed Computing). Wiley-IEEE Press, 1st edition, 2008.
3 Sergio Cabello and Miha Jejĉiĉ. Shortest paths in intersection graphs of unit disks. Comput.

Geom., 48(4):360–367, 2015.
4 Paul Callahan and Rao Kosaraju. A decomposition of multidimensional point sets with

applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):67–90, 1995.
5 Paz Carmi, 2014. Personal communication.
6 Timothy M. Chan. A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor

queries. J. ACM, 57(3):Art. 16, 15, 2010.
7 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete

Math., 86(1-3):165–177, 1990.
8 Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction to

Algorithms. MIT Press, 2nd edition, 2001.
9 Martin Fürer and Shiva Prasad Kasiviswanathan. Spanners for geometric intersection

graphs with applications. J. Comput. Geom., 3(1):31–64, 2012.
10 Sariel Har-Peled. Geometric Approximation Algorithms. AMS, 2011.
11 Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Planar Reachability in Linear Space and

Constant Time. CoRR, arXiv:1411.5867, 2014.
12 Hiroshi Imai, Masao Iri, and Kazuo Murota. Voronoi Diagram in the Laguerre Geometry

and its Applications. SICOMP, 14(1):93–105, 1985.
13 D. Kirkpatrick. Optimal Search in Planar Subdivisions. SICOMP, 12(1):28–35, 1983.
14 G. Narasimhan and M. Smid. Geometric spanner networks. Cambridge Univ. Press, 2007.
15 David Peleg and Liam Roditty. Localized spanner construction for ad hoc networks with

variable transmission range. TOSN, 7(3), 2010.
16 P. v. Rickenbach, R. Wattenhofer, and A. Zollinger. Algorithmic Models of Interference in

Wireless Ad Hoc and Sensor Networks. IEEE ACM T NETWORK, 17(1):172–185, 2009.
17 Andrew Chi-Chih Yao. On Constructing Minimum Spanning Trees in k-Dimensional Spaces

and Related Problems. SICOMP, 11(4):721–736, 1982.

Recognition and Complexity of
Point Visibility Graphs
Jean Cardinal1 and Udo Hoffmann∗2

1 Université libre de Bruxelles (ULB)
Brussels, Belgium
jcardin@ulb.ac.be

2 TU Berlin
Berlin, Germany
uhoffman@math.tu-berlin.de

Abstract
A point visibility graph is a graph induced by a set of points in the plane, where every vertex
corresponds to a point, and two vertices are adjacent whenever the two corresponding points are
visible from each other, that is, the open segment between them does not contain any other point
of the set.

We study the recognition problem for point visibility graphs: given a simple undirected
graph, decide whether it is the visibility graph of some point set in the plane. We show that
the problem is complete for the existential theory of the reals. Hence the problem is as hard as
deciding the existence of a real solution to a system of polynomial inequalities. The proof involves
simple substructures forcing collinearities in all realizations of some visibility graphs, which are
applied to the algebraic universality constructions of Mnëv and Richter-Gebert. This solves a
longstanding open question and paves the way for the analysis of other classes of visibility graphs.

Furthermore, as a corollary of one of our construction, we show that there exist point visibility
graphs that do not admit any geometric realization with points having integer coordinates.

1998 ACM Subject Classification I.3.5 Computational geometry

Keywords and phrases point visibility graphs, recognition, existential theory of the reals

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.171

1 Introduction

Visibility between geometric objects is a cornerstone notion in discrete and computational
geometry, that appeared as soon as the late 1960s in pioneering experiments in robotics [17].
Visibility is involved in major themes that helped shape the field, such as art gallery and
motion planning problems [5, 8, 21]. However, despite decades of research on those topics, the
combinatorial structures induced by visibility relations in the plane are far from understood.

Among such structures, visibility graphs are arguably the most natural. In general, a
visibility graph encodes the binary, symmetric visibility relation among sets of objects in the
plane, where two objects are visible from each other whenever there exists a straight line of
sight between them that does not meet any obstacle. More precisely, a point visibility graph
associated with a set P of points in the plane is a simple undirected graph G = (P,E) such
that two points of P are adjacent if and only if the open segment between them does not

∗ Supported by the Deutsche Forschungsgemeinschaft within the research training group “Methods for
Discrete Structures” (GRK 1408).

© Jean Cardinal and Udo Hoffmann;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 171–185

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.171
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

172 Recognition and Complexity of Point Visibility Graphs

contain any other point of P . Note that the points play both roles of vertices of the graph
and obstacles. In what follows, we will use the abbreviation PVG for point visibility graph.

1.1 Our results
We consider the recognition problem for point visibility graphs: given a simple undirected
graph G = (V,E), does there exists a point set P such that G is isomorphic to the visibility
graph of P? More concisely, the problem consists of deciding the property of being a point
visibility graph of some point set.

As is often the case for geometric graphs, the recognition problem appears to be intractable
under usual complexity-theoretic assumptions. We actually characterize the problem as
complete for the existential theory of the reals; hence recognizing point visibility graphs
is as hard as deciding the existence of a solution to an arbitrary system of polynomial
inequalities over the reals. Equivalently, this amounts to deciding the emptiness of a
semialgebraic set. This complexity class is intimately related to fundamental results on
oriented matroids and pseudoline arrangements starting with the insights of Mnëv on the
algebraic universality properties of these structures [20]. The notation ∃R has been proposed
recently by Schaefer [27] to refer to this class, motivated by the continuously expanding
collection of problems in computational geometry that are identified as complete for it.

The only known inclusion relations for ∃R are NP ⊆ ∃R ⊆ PSPACE. It is known from
the Tarski-Seidenberg Theorem that the first-order theory of real closed fields is decidable,
but polynomial space algorithms for problems in ∃R have been proposed only much more
recently by Canny [4].

Whenever a graph is known to be a point visibility graph, the description of the point
set as a collection of pairs of integer coordinates constitutes a natural certificate. Since it is
not known whether ∃R ⊆ NP , we should not expect such a certificate to have polynomial
size. In fact, we show that there exist point visibility graphs all realizations of which have an
irrational coordinate, and point visibility graphs that require doubly exponential coordinates
in any realization.

1.2 Related work and Connections
The recognition problem for point visibility graphs has been explicitly stated as an important
open problem by various authors [14], and is listed as the first open problem in a recent
survey from Ghosh and Goswami [9].

A linear-time recognition algorithm has been proposed by Ghosh and Roy for planar
point visibility graphs [10]. For general point visibility graphs they showed that recognition
problem lies in ∃R. More recently, Roy [26] published an ingenious and rather involved
NP-hardness proof for recognition of arbitrary point visibility graphs. Our result clearly
implies NP-hardness as well, and, in our opinion, has a more concise proof.

Structural aspects of point visibility graphs have been studied by Kára, Pór, and Wood [14],
Pór and Wood [24], and Payne et al. [23]. Many fascinating open questions revolve around
the big-line-big-clique conjecture, stating that for all k, ` ≥ 2, there exists an n such that
every finite set of at least n points in the plane contains either k pairwise visible points or `
collinear points.

Visibility graphs of polygons are defined over the vertices of an arbitrary simple polygon in
the plane, and connect pairs of vertices such that the open segment between them is completely
contained in the interior of the polygon. This definition has also attracted a lot of interest
in the past twenty years. Ghosh gave simple properties of visibility graphs of polygons and

J. Cardinal and U. Hoffmann 173

conjectured that they were sufficient to characterize visibility graphs [6, 7]. These conjectures
have been disproved by Streinu [31] via the notion of pseudo-visibility graphs, or visibility
graphs of pseudo-polygons [22]. A similar definition is given by Abello and Kumar [1].
Roughly speaking, the relation between visibility and pseudo-visibility graphs is of the same
nature as that between arrangements of straight lines and pseudolines. Although, as Abello
and Kumar remark, these results somehow suggest that the difficulty in the recognition task
is due to a stretchability problem, the complexity of recognizing visibility graphs of polygons
remains open, and it is not clear whether the techniques described in this paper can help
characterizing it. The influential surveys and contributions of Schaefer about ∃R-complete
problems in computational geometry form an ideal point of entry in the field [27, 28]. Among
such problems, let us mention recognition of segment intersection graphs [15], recognition
of unit distance graphs and realizability of linkages [13, 28], recognition of disk and unit
disk intersection graphs [19], computing the rectilinear crossing number of a graph [3],
simultaneous geometric graph embedding [16], and recognition of d-dimensional Delaunay
triangulations [2].

1.3 Outline of the paper

In Section 2, we provide two simple visibility graph constructions, the fan and the generalized
fan, all geometric realizations of which are guaranteed to preserve a specified collection of
subsets of collinear points. The proofs are elementary and only require a series of basic
observations.

In Section 3, we give two applications of the fan construction. In the first, we show
that there exists a point visibility graph that does not have any geometric realization on
the integer grid. In other words, all geometric realizations of this point visibility graph
are such that at least one of the points has an irrational coordinate. Another application
of the fan construction follows, where we show that there are point visibility graphs each
grid realization of which require coordinates of values 22

3√n where n denotes the number of
vertices of the point visibility graph.

The main result of the paper is given in Section 4. We first recall the main notions and
tools used in the results from Mnëv [20], Shor [29], and Richter-Gebert [25] for showing that
realizability of abstract order types is complete for the existential theory of the reals. We
then combine these tools with the generalized fan construction to produce families of point
visibility graphs that can simulate arbitrary arithmetic computations over the reals.

1.4 Notations

For the sake of simplicity, we slightly abuse notations and do not distinguish between a
vertex of a point visibility graph and its corresponding point in a geometric realization. We
denote by G[P ′] the induced subgraph of a graph G = (P,E) with the vertex set P ′ ⊆ P .
For a point visibility realization R we denote by R[P ′] the induced subrealization containing
only the points P ′. The PVG of this subrealization is in general not an induced subgraph of
G. By N(p) we denote the open neighbourhood of a vertex p.

The line through two points p and q is denoted by `(p, q) and the open segment between
p and q by pq. We will often call pq the sightline between p and q, since p and q see each
other iff pq ∩ P = ∅. We call two sightlines p1q1 and p2q2 non-crossing if p1q1 ∩ p2q2 = ∅.

For each point p all other points of G lie on deg(p) many rays Rp
1, . . . , R

p
deg(p) originating

from p.

SoCG’15

174 Recognition and Complexity of Point Visibility Graphs

2 Point visibility graphs preserving collinearities

We first describe constructions of point visibility graphs, all the geometric realizations of
which preserve some fixed subsets of collinear points.

2.1 Preliminary observations

p
p

qq

Figure 1 (Lemma 1) Left: a point sees points on consecutive rays with small angle. Right: a
vertex of deg(q) = 1 in G[N(p)] lies on the boundary of an empty halfspace.

In the realization of a PVG, the point p sees exactly deg(p) many vertices, hence all other
points lie on deg(p) rays of origin p.

I Lemma 1. Let q ∈ N(p) be a degree-one vertex in G[N(p)]. Then all points lie on one
side of the line `(p, q). Furthermore, the neighbor of q lies on the ray that forms the smallest
angle with qp.

Proof. If the angle between two consecutive rays is smaller than π, then every vertex on one
ray sees every vertex on the other ray. Hence one of the angles incident to q is at least π and
the neighbour of q lies on the other incident ray. J

I Corollary 2. If G[N(p)] is an induced path, then the order of the path and the order of the
rays coincide.

Proof. By Lemma 1 the two endpoints of the path lie on rays on the boundary of empty
halfspaces. Thus all other rays form angles which are smaller than π, and thus they see their
two neighbors of the path on their neighboring rays. J

I Observation 3. Let q, q 6= p, be a point that sees all points of N(p). Then q is the second
point (not including p) on one of the rays emerging from p.

Proof. Assume q is not the second point on one of the rays. Then q cannot see the first
point on its ray which is a neighbor of p. J

This also shows the following observation.

I Observation 4. Let q, q 6= p, be a point that is not the second point on one of the rays
from p and sees all but one (r) of the neighbors of p. Then q lies on the ray of r.

2.2 Fans and generalized fans
We have enough tools by now to show the uniqueness of a PVG obtained from the following
construction, which is depicted in Figure 2. Consider a set S of segments between two lines
` and `′ intersecting in a point p. For each intersection of a pair of segments, construct a ray
of origin p and going through this intersection point. Add two segments s1 and s2 between `
and `′, such that s1 is the closest and s2 is the second closest segments to p.

J. Cardinal and U. Hoffmann 175

`

`′

s2s1

a
b

c d

e
p

Figure 2 A fan: a vertex is placed on each intersection of two lines/segments.

We now put a point on each intersection of the segments and rays and construct the
PVG of this set of points. We call this graph the fan of S. Since we have the choice of the
position of the segments s1 and s2 we can avoid any collinearity between a point on s1 or s2
and points on other segments, except for the obvious collinearities on one ray. Thus every
point sees all points on s1 except for the one of the ray it lies on.

I Lemma 5. All realizations of a fan preserve collinearities between points that lie on one
segment and between points that lie on one ray.

Proof. We first show that the distribution of the points onto the rays of p is unique. By
construction the points on s2 see all the points on s1, which are exactly the neighbors of
p. Thus by Observation 3 the points from s2 are the second points of a ray. Since there is
exactly one point for each ray on s2, all the other points are not second points on a ray. By
construction each of the remaining points sees all but one point of s1. Observation 4 gives a
unique ray a point lies on. The order of the rays is unique by Corollary 2. On each ray the
order of the points is as constructed, since the PVG of points on one ray is an induced path.

Now we have to show that the points originating from one segment are still collinear.
Consider three consecutive rays R1, R2, R3. We consider a visibility between a point p1 on
R1 and one point p3 on R3 that has to be blocked by a point on R2. Let p2 be the original
blocker from the construction. For each point on R2 that lies closer to p there is a sightline
blocked by this point, and for each point that lies further away from p there is a sightline
blocked by this point. For each of those points pick one sightline that corresponds to an
original segment and p1p3. This set of sightlines is non-crossing, since the segments only
intersect on rays by assumption. So we have a set of non-crossing sightlines and the same
number of blockers available. Since the order on each ray is fixed, and the sightlines intersect
R2 in a certain order, the blocker for each sightline is uniquely determined and has to be
the original blocker. By transitivity of collinearity all points from the segments remain
collinear. J

To show the hardness of PVG recognition in the existential theory of the reals in Section 4
we need a unique realization property for the following generalization of a fan.

Consider again two lines ` and `′ and a set of n segments S located between those lines.
We assume for now that ` and `′ are parallel, i.e., their intersection point p lies on the line
at infinity, and horizontal. Now we are not interested in preserving the exact arrangement
of the segments S in a PVG, but only in keeping the segments straight, and the order of
the segments on ` and on `′ as described by S. For that purpose we add three parallel and
equidistant segments s1, s2, s3 to the left of all segments of S. Below `′ and above ` we add
5n equidistant rays each, that are parallel to ` and `′ and start on the point at infinity p.
Let ε be the distance between two consecutive rays in one bundle. We choose ε such that
(5n)4ε is smaller that the distance of any intersection of segments in S to ` or `′. We call

SoCG’15

176 Recognition and Complexity of Point Visibility Graphs

`′

`s3s1

a

b
c d

e

((5n)4 + 5n)× 3-grid}
5n}

}5n

}(5n)4

}(5n)4
`

`′

s3s1

a
b

c d
e

p

s0

Figure 3 Left: a bundle of a generalized fan above and below each intersection. Right: the
generalized fan with the segment s0 and the point p.

such a set of 5n rays a bundle. Above the bundle close to ` and below the bundle close
to `′ we add (5n)4 segments starting on s3 and ending in p. The segments are parallel to
the rays of the bundles and are also equidistant with distance ε to their close bundle. The
bundles together with the (5n)4 segments forms what we will call the extended bundle. The
equidistance property is preserved according to the following lemma.

I Lemma 6. Consider a realization of a PVG of an r × q integer grid, r ≥ 6, q ≥ 3, such
that the points of each of the r rows lie on a horizontal line. Then – up to a projective
transformation – the horizontal lines are equally spaced, the verticals are parallel, and also
equally spaced.

Now we apply a projective transformation, such that the intersection point p of ` and `′
does not lie on the line at infinity as shown in Figure 3. We add a segment s0 between ` and
`′ that lies between p and s1. Again we take all the intersection points between segments,
rays or lines as points and construct the visibility graph of those points. Note that we can
add s0, such that each point on s0 sees all points that do not lie on its ray or s0. A visibility
graph constructed in this way will be called a generalized fan. In Lemma 7 we show that
all realizations of a generalized fan preserve the collinearities between the points on the
segments.

Let us briefly consider the differences between a fan and a generalized fan. In the fan in
Figure 2 the vertical order of the intersection points is a > b > c > d > e. In contrast, the
generalized construction, shown on the left of Figure 3, allows different vertical orders on
those points. In Figure 4 we used three bundles instead of two bundles to fix the orders. In
the proof of Lemma 7 it will turn out that all realizations for this construction also preserve
collinearities. In this case we have a further restriction on the vertical order of the intersection
points: the points a and b must lie above the middle bundle, and the points c, d, e must
lie below. This restricts the possible vertical orders of intersection points to some linear
extensions of the partial order shown in Figure 3. To indicate that a and b lie above c, d and
e we introduce the notation {a, b} > {c, d, e}. This notation captures exactly the restriction
we can add to the horizontal orders of a fan: given a realization of the segments S between
the lines ` and `′ it is possible to add bundles between some intersection points, partitioning
the intersection points of the segments into subsets I1, . . . , Ik. Now every realization of the
PVG respects the vertical order I1 > · · · > Ik of the intersection points. If |Ij | = 1, one line
through an intersection point as in Figure 2 can also be used.

I Lemma 7. All realizations of a generalized fan preserve collinearities between points that
lie on one segment and between points that lie on one ray.

J. Cardinal and U. Hoffmann 177

`

`′

s3s1

}5n

}5n

a b
c d

e

p

}5n

a b

c d e

Figure 4 A generalized fan with several bundles.

uk

s′k

vk

wk

sk

Figure 5 A clockwise orientation of (uk, vk, wk) forces the triple on a right segment s′
k to be

oriented clockwise.

Proof. The argument showing that the distribution of the points onto the rays starting at p
and the order of the rays remains as constructed is identical to the proof of Lemma 5. So
we only have to show that the points from the segments stay collinear. We do this in two
steps. In the first one we show that the points on segments within one extended bundle stay
collinear. We will use this in a second step to show that the segments in two consecutive
bundles stay aligned.

We proceed with the first step. First note that the points from one segment within one
bundle stay collinear in each realization by the same arguments as in Lemma 5. The same
holds for the points on a segment sk, k ∈ {0, . . . , 3}, and the intersection with the (5n)4

segments. So for the first step we only have to show that the segments s0, . . . , s3 in extended
bundles stay aligned. Therefore we consider the lowest ray of the bundle close to `′ and
two neighboring segments. The points on the segments sk stay collinear on those three rays,
because four non-crossing sightlines have to be blocked by four points. Now consider the two
lowest rays of the bundle close to `′, and the (5n)4 segments below. Assume that the points
on one of the segments s0, . . . , s4 do not stay aligned for one sk. Then the points on sk that
lie on the two lowest rays uk (lowest) and vk (second lowest) and the lowest segment wk

form the convex hull of all the points on sk that lie in between, see Figure 5. In this triangle
there are (5n)4 − 1 non-crossing sightlines that have to be blocked. This implies that one of
the other segments sl have to support blockers. If the triple (uk, vk, wk) is oriented clockwise
some the blockers have to be supported by a segment s′k to the right, or by one to the left
otherwise. In the clockwise case the three according points on the convex hull of the s′k have
to be oriented clockwise as well. Since a symmetric case holds for the counterclockwise case
we obtain a contradiction for the rightmost clockwise or leftmost counterclockwise oriented
triple.

So it is left to show that the two subsegments within consecutive bundles stay aligned.
We will refer to those subsegments as the upper and the lower part of a segment. First
note that the segments sk, k ∈ {0, . . . , 3} stay aligned in consecutive extensions of a bundle,
thus they cannot provide blockers for sightlines between upper and lower part on the other
segments.

SoCG’15

178 Recognition and Complexity of Point Visibility Graphs

s′

s′′

(5n)4}
b (0, 0)

q = (N,N)

b
b0,1

b2,5

x = y

Figure 6 Left: A blocker on b. Right: The situation after the coordinate transformation.

We assume the points from one original segment s are not all collinear in a realization
of the fan. We denote by s′ and s′′ respectively the lower and upper part of s. If s′ and s′′
are not aligned then one of the two lower points of s′′ does not lie on the supporting line of
s′. We denote this point by q. Between q and the points on s′ there are at least (5n)4 − 1
non-crossing sightlines that have to be blocked. At most n of those sightlines can be blocked
from points on the upper bundle, namely the points from the lowest ray if q lies on the
second lowest ray. The other blockers lie on the other n − 1 lower parts of the segments.
From the pigeonhole principle there is a lower part b of a segment that provides at least
d(5n− n− 1)/(n− 1)e = 5 blockers for sightlines between q and points on s′. We will show
that this is not possible.

By first reversing the projective transformation applied in the construction of the gener-
alized fan, and then applying Lemma 6, we can assume that the lines in the lower bundle are
parallel and equidistant, as shown in Figure 6. Now we use an affine transformation such
that the points of s′ have coordinates (0, i) for i ∈ {−k, . . . , r − 1 − k}, where k is chosen
such that the lowest point blocked by a point on b has coordinates (0, 0). By another linear
transformation we can ensure that q = (N,N) for some N > 0. We can now use the segments
starting from s3 to give a lower bound on N : the segments above the bundle of s′ are also
equidistant with the same distance as the lines in the bundle, since the segments extend the
grid. Since q lies on a parallel line above those rays we know that N > (5n)4.

The points on b that block visibilities between points on s′ from q also have y-coordinates
in {0, . . . , r − 1 − k}, since they lie on lines in the same bundle as s′. Let us assume that
the point bij on b has y-coordinate j and blocks the visibility of (0, i) from q. Then the
x-coordinate of bij is x = (j − i) N

N−i . We consider the sets M := {(i, j) | bij is a blocker}
and M ′ := {(j − i) | bij is a blocker}. We will obtain a contradiction in the following two
cases.

Case 1. |M ′| < 3: In this case there are three points in M with the same value for j − i.
Those points on b have the coordinates of the form (cN

N−i , c+ i) where c = j − i is constant.
This is a parameterization of a hyperbola. No three points for i < N on this curve are
collinear, which contradicts that they all lie on the segment b.

Case 2: |M ′| ≥ 3: In this case there are three blockers b0, b1, b2 with pairwise different
values for j − i. Assume without loss of generality that b0 = (x0, j0) blocks (0, 0) from q,
b1 = (x1, j1) blocks (0, i1), and b2 = (x2, j2) blocks (0, i2). Then the x-coordinates of bk is
given by xk = (jk − ik) N

N−ik
. The difference of the x-coordinate of two consecutive points

on b is dmin := xk−x0
jk−j0

. Calculating dmin using the expression above once with b1 and once
with b2 leads to the following equation.

J. Cardinal and U. Hoffmann 179

Figure 7 The Perles configuration.

(j2 − i2) N
N−i2

− j0

j2 − j0
=

(j1 − i1) N
N−i1

− j0

j1 − j0

⇔ (i12j0 − i12j2 − i1j0j2 + i1j1j2 − i22j0 + i2
2j1 + i2j0j1 − i2j1j2)N

+(−i1j0 + i1j2 + i2j0 − i2j1)N2 + i1i2j0(j2 − j1) = 0

Since all coefficients in the last equation are integral we obtain that i1i2j0(j2 − j1) is a
multiple of N . This is a contradiction to N > (5n)4 since each of the factors is bounded by
5n and is nonzero. J

3 Drawing point visibility graphs on grids

We give a first simple application of the fan construction.

I Theorem 8. There exists a point visibility graph every geometric realization of which has
at least one point with one irrational coordinate.

Proof. We use the so-called Perles configuration of 9 points on 9 lines illustrated in Fig. 7.
It is known that for every geometric realization of this configuration in the Euclidean plane,
one of the points has an irrational number as one of its coordinate [12]. We combine this
construction with the fan construction described in the previous section. Hence we pick
two lines ` and `′ intersecting in a point p, such that all lines of the configuration intersect
both ` and `′ in the same wedge. Note that up to a projective transformation, the point
p may be considered to be on the line at infinity and ` and `′ taken as parallel. We add
two non-intersecting segments s1 and s2 close to p, that do not intersect any line of the
configuration. We then shoot a ray from p through each of the points, and construct the
visibility graph of the original points together with all the intersections of the rays with
the lines and the two segments s1, s2. From Lemma 5, all the collinearities of the original
configuration are preserved, and every realization of the graph contains a copy of the Perles
configuration. J

Also note that point visibility graphs that can be realized with rational coordinates do
not necessarily admit a realization that can stored in polynomial space in the number of
vertices of the graph. To support this, consider a line arrangement A, and add a point p in an
unbounded face of the arrangement, such that all intersections of lines are visible in an angle
around p that is smaller than π. Construct rays ` and `′ through the extremal intersection
points and p. From Lemma 5, the fan of this construction gives a PVG that fixes A. Since
there are line arrangements that require integer coordinates of values 22Θ(|A|) [11] and the

SoCG’15

180 Recognition and Complexity of Point Visibility Graphs

fan has Θ(|A|3) points we get the following worst-case lower bound on the coordinates of
points in a representation of a PVG.

I Corollary 9. There exists a point visibility graph with n vertices every realization of which
requires coordinates of values 22Θ(3√n) .

4 ∃R-completeness reductions

The existential theory of the reals (∃R) is a complexity class defined by the following complete
problem. We are given a well-formed quantifier-free formula F (x1, . . . , xk) using the numbers
0 and 1, addition and multiplication operations, strict and non-strict comparison operators,
Boolean operators, and the variables x1, . . . , xk, and we are asked whether there exists an
assignment of real values to x1, . . . , xk, such that F is satisfied. This amounts to deciding
whether a system of polynomial inequalities admits a solution over the reals. The first
main result connecting this complexity class to a geometric problem is the celebrated result
of Mnëv, who showed that realizability of order types, or – in the dual – stretchability of
pseudoline arrangements, is complete in this complexity class [20]. In what follows, we use
the simplified reductions due to Shor [29] and Richter-Gebert [25]. The latter is in turn well
explained in a recent manuscript by Matoušek [18]. We refer the curious reader to those
references for further details.

The orientation of an ordered triple of points (p, q, r) indicates whether the three points
form a clockwise or a counterclockwise cycle, or whether the three points are collinear. Let
P = {p1, . . . , pn} and an orientation O of each triple of points in P be given. The pair (P,O)
is called an (abstract) order type. We say that the order type (P,O) is realizable if there
are coordinates in the plane for the points of P , such that the orientations of the triples of
points match those prescribed by O.

In order to reduce the order type realizability problem to solvability of a system of strict
polynomial inequalities, we have to be able to simulate arithmetic operations with order types.
This uses standard constructions introduced by von Staudt in his “algebra of throws” [30].

4.1 Arithmetics with order types
To carry out arithmetic operations using orientation predicates, we associate numbers with
points on a line, and use the cross-ratio to encode their values.

The cross ratio (a, b; c, d) of four points a, b, c, d ∈ R2 is defined as

(a, b; c, d) := |a, c| · |b, d|
|a, d| · |b, c|

,

where |x, y| is the determinant of the matrix obtained by writing the two vectors as columns.
The two properties that are useful for our purpose is that the cross-ratio is invariant under
projective transformations, and that for four points on one line, the cross-ratio is given by
−→ac·
−→
bd−→

ad·
−→
bc
, where −→xy denotes the oriented distance between x and y on the line.

We will use the cross-ratio the following way: We fix two points on a line and call them 0
and 1. On the line through those points we call the point at infinity ∞. For a point a on
this line the cross-ratio x := (a, 1; 0,∞) results in the distance between 0 and a scaled by
the distance between 0 and 1. Because the cross-ratio is a projective invariant we can fix one
line and use the point a for representing the value x. In this way, we have established the
coordinates on one line.

J. Cardinal and U. Hoffmann 181

a
b

c

de

∞ 0 x y x+ y
`

`∞ `∞

`
0 x y1∞

a b

c

x · y

d

f

Figure 8 Gadgets for addition (left) and multiplication (right) on a line.

For computing on this line, the gadgets for addition and multiplication depicted in
Figure 8 can be used. Let us detail the case of multiplication. We are given the points
∞ < 0 < 1 < x < y on the line `, and wish to construct a point on ` that represents the
value x · y. Take a second line `∞ that intersects ` in ∞, and two points a, b on this line.
Construct the segments by, b1 and ax. Denote the intersection point of ax and b1 by c. Call
d the intersection point of by and `(0, c). The intersection point of ` and `(d, a) represents
the point x · y =: z on `, i.e., (z, 1; 0,∞) = (x, 1; 0,∞) · (y, 1; 0,∞). In a projective realization
of the gadget in which the line `∞ is indeed the line at infinity, the result can be obtained
by applying twice the intercept theorem, in the triangles with vertices 0, d, y and 0, d, z,
respectively. To add the cross ratios of two points on a line, a similar construction is given
in Figure 8.

4.2 The reduction for order types

Using the constructions above we can already model a system of strict polynomial inequalities.
However, it is not clear how we can determine the complete order type of the points without
knowing the solution of the system. Circumventing this obstacle was the main achievement
of Mnëv [20]. We cite one of the main theorems in a simplified version.

I Theorem 10 ([29],[25]). Every primary semialgebraic set V ⊆ Rd is stably equivalent
to a semialgebraic set V ′ ⊆ Rn, with n = poly(d), for which all defining equations have
the form xi + xj = k or xi · xj = xk for certain 1 ≤ i ≤ j < k ≤ n, where the variables
1 = x1 < x2 < · · · < xn are totally ordered.

A primary semialgebraic set is a set defined by polynomial equations and strict polynomial
inequalities with coefficients in Z. Although we cannot give a complete definition of stable
equivalence within the context of this paper, let us just say that two semialgebraic sets V and
V ′ are stably equivalent if one can be obtained from the other by rational transformations
and so-called stable projections, and that stable equivalence implies homotopy equivalence.
From the computational point of view, the important property is that V is the empty set if
and only V ′ is, and that the size of the description of V ′ in the theorem above is polynomial
in the size of the description of V . We call the description of a semialgebraic set V ′ given in
the theorem above the Shor normal form.

We can now encode the defining relations of a semialgebraic set given in Shor normal form
using abstract order types by simply putting the points ∞, 0, 1, x1, . . . , xn in this order on `.
To give a complete order type, the orientations of triples including the points of the gadgets
and the positions of the gadget on `∞ have to be specified. This can be done exploiting the
fact that the distances between the points a and b of each gadget and their position on `∞
can be chosen freely. We refer to the references mentioned above for further details. We
next show how to implement these ideas to construct a graph GV associated with a primary
semialgebraic set V , such that GV has a PVG realization if and only if V 6= ∅.

SoCG’15

182 Recognition and Complexity of Point Visibility Graphs

5 ∃R-completeness of PVG recognition

The idea to show that PVG recognition is complete in ∃R is to encode the gadgets described
in the previous section in a generalized fan. We therefore consider the gadgets not as a
collection of points with given order types, but as a collection of segments between the lines
` and `∞ with given crossing information, i.e., a certain arrangement of the segments of the
fan.

We will consider the addition and multiplication gadgets given in Fig. 8, and for a copy
gi of the addition gadget, denote by ai, bi, ci, di, and ei the points corresponding to gi, and
similarly for the multiplication gadget. To formalize the freedom we have in choosing the
points ai and bi for each addition or multiplication gadget gi, we make the following two
observations. The points of a gadget that do not lie on ` are denoted by Pi.

I Observation 11 ([25],[18]). The points ai and bi can be positioned arbitrarily on `∞. The
position of the other points of Pi is fully determined by ai, bi and the input values on `.

I Observation 12 ([25],[18]). All points of Pi are placed close to ai if ai and bi are placed
close to each other. (For each ε > 0 there exists a δ > 0, such |ai− bi| < δ implies |p− q| < ε

for all p, q ∈ Pi.)

With those two observations in hand, we show we can place the points of the gadgets on
`∞ one by one, such that we have a partial information on the relative height of the crossings
of the involved segments. This partial information can be combined with the generalized fan
construction to force the exact encoding.

Here we need a generalized fan since we cannot obtain the full information of the height
all the crossings with the segments of other gadgets, since the position and distance of the
other segments of gadgets is influenced by the solution of the inequality system.

For simplicity, we can work in the projective plane. This allows us to apply a projective
transformation such that the point ∞ is mapped onto the line at infinity, and the lines ` and
`∞ are parallel. Furthermore we can assume ` and `∞ are horizontal lines. In this setting we
have to specify a order on the y-coordinate of the intersection points of the segments/the
points of the gadgets. Therefore we fix one order of the gadgets g1, g2, . . . , gl on `∞.

I Lemma 13. Let V be a nonempty primary semialgebraic set given in Shor normal form and
let g1, gi−1, gi, . . . , gl be the gadgets realizing the defining equations, such that gj is realizing
an addition if j < i and a multiplication otherwise. Then there exists a realization such that
the order of the y-coordinates of the intersection points is given by

a1 = · · · = al = b1 = · · · = bl = fi = · · · = fl (1)
> el > dl > cl > · · · > ei > di > ci (2)

> ei−1 > ci−1 = di−1 > · · · > e1 > c1 = d1 (3)
> I2 > · · · > Il (4)

> 0 = x1 = x2 = · · · = xk, (5)

where Ij denotes the intersections between the segments of the gadget gk with the segments
of the gadgets gj for j < k.

Proof. We fix one solution for the relations defining V . The points on ` are fixed realizing
this solution. We place the points ai and bi such that the other points of the gadgets realize
the order of the y-coordinates described in the lemma.

J. Cardinal and U. Hoffmann 183

{ε

`∞

`

{ε c
d

a b

e

Figure 9 The vertical order of the points in the reduction.

First note that the order of the points within one gadget is determined as described by
the construction of the gadgets. The points corresponding to variables are also on ` and the
points a, b and f all lie on `∞. Thus the total relations given in (1) and (5), as well as the
relations between each triple of points belonging to one gadget in (2) and (3) are satisfied in
all realizations.

We place the points ai and bi of the gadgets inductively. Assume that we have placed
the first i− 1 gadgets such that the inequalities above are satisfied. Now there exists a real ε
such that none of the points of the gadgets lies in an ε-neighborhood of ` or `∞, see Figure 9.
For this reason there exists an axis-aligned rectangle of height ε with lower boundary on `,
such that every segment drawn so far intersects the upper and the lower boundary of this
rectangle (the lower grey box in Figure 9). We now place ai such that all segments that
are constructed for the gadget gi (blue) intersect the right boundary of this rectangle. This
can be achieved by placing ai further than the intersection point of `∞ and the supporting
line of the diagonal with positive slope of the rectangle (the red segment in Figure 9). This
shows that (4) can be satisfied.

To show the inequalities in (2) and (3) hold it remains to check that the points ci, di

(and eventually ei) can be placed in an ε-neighborhood of `∞. This can be done, using
Observation 12, by placing bi close to ai. J

I Theorem 14. The recognition of point visibility graphs is ∃R-complete.

Proof. For a proof that PVG recognition is in ∃R we refer to [10]. For the hardness part,
the idea of the proof is the following. For a semialgebraic set V we compute the Shor normal
form and denote the corresponding primary semialgebraic set by V ′. For V ′, we can construct
the arrangement of pseudosegments that are attached on the lines ` and `∞. By inverting
the projective transformation applied in Lemma 13 we can construct a generalized fan GV of
the pseudosegments between ` and `∞, such that in any PVG realization the order of the
intersection points of the segments satisfies the inequalities in Lemma 13.

The bundles and rays for the generalized fan are added, such that the possible vertical
orders are fixed to the ones described in Lemma 13, see Figure 9: We add an orange ray from
p through each of the points ci, di and ei of each gadget gi, i ∈ [l]. This fixes the inequalities
in lines (2)-(3). A green bundle is added before and after each of the sets Ij , j ∈ {2, . . . , l},
such that (4) is satisfied.

From this generalized fan we want to construct a point visibility graph GV . Here we
have to be a careful with collinearities between point that do not lie on one segment or one
ray. Therefore, we show that we can construct the edges and nonedges between points on
different segments and different rays, such that they do not restrict too many solutions of
our strict inequality system. First notice that we can avoid collinearities between points
on segments of different gadgets by perturbing the positions of the points ai bi, the exact

SoCG’15

184 Recognition and Complexity of Point Visibility Graphs

position of the bundles, and the distance of the rays within a bundle (we have this freedom in
the proof of Lemma 13). So we can assume that the only collinearities of points on different
segments appear between segments in one gadget. In the addition gadget we have no three
segments that intersect in one point. By perturbing the position of the bundles we can avoid
collinearities in those gadgets.

In the multiplication gadget we are in the situation that we have three segments 0, 1, x
(and 0, y, x·y) that intersect in one point. If the ratio of those three points on ` is rational they
are (after projective transformations) columns in the integer grid. If those are intersected
by a bundle we obtain the points on projective transformation of the integer grid and
thus collinearities. The point here is that we can compute during the construction which
collinearities appear: the solutions of the original strict inequality system form an open set.
In this set we can assume that our solution consists of sufficiently independent numbers,
e.g. they are algebraically independent over Q, such that 0, 1, x and 0, y, x · y only have a
rational ratio if x is a coefficient of the inequality system. In this case we can calculate the
collinearities. Otherwise, we can perturb the bundles ai and bi to avoid collinearities. Hence
all collinearities between points on different segments can be computed and do not influence
the solvability of the inequality system. This way we can determine all edges of GV .

The number of vertices of the graph GV is polynomial in the size of V since calculating
the Shor normal form of V gives a description of V ′ which has size polynomial in the size
of V . The number of segments, bundles, rays, and the size of a bundle in the fan are all
polynomial in the number of operations in the Shor normal form. All calculations in this
construction can be done in polynomial time.

For the ∃R-hardness it remains to show that the graph GV is a point visibility graph if
and only if V (and thus V ′) is nonempty. To show that V is nonempty if GV has a PVG
realization we observe that the collinearities from a ray and from a segments stay collinear
in each realization by Lemma 7. Thus the gadgets implementing the calculations on ` are
preserved. Using the cross-ratio as described in Subsection 4.1 a PVG realization encodes a
point in V ′, and V is nonempty if GV has a PVG realization.

We show that there exists a PVG realization if V and V ′ are nonempty. We consider a
solution x ∈ V ′ and place the points corresponding to the variables on a line `. With points
in this position the gadgets implementing the calculations can be realized between ` and `∞,
such that the intersection points of the segments satisfy the order in Lemma 13. J

Acknowledgments. We thank an anonymous referee for pointing out an error in the original
proof of Lemma 7. The revised proof is largely based on the suggested fix.

References

1 James Abello and Krishna Kumar. Visibility graphs and oriented matroids. Discrete &
Computational Geometry, 28(4):449–465, 2002.

2 Karim A. Adiprasito, Arnau Padrol, and Louis Theran. Universality theorems for inscribed
polytopes and Delaunay triangulations. ArXiv e-prints, 2014.

3 Daniel Bienstock. Some provably hard crossing number problems. Discrete and Computa-
tional Geometry, 6:443–459, 1991.

4 John Canny. Some algebraic and geometric computations in PSPACE. In STOC ’88, pages
460–467. ACM, 1988.

5 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 2008 (third edition).

J. Cardinal and U. Hoffmann 185

6 Subir K. Ghosh. On recognizing and characterizing visibility graphs of simple polygons. In
1st Scandinavian Workshop on Algorithm Theory (SWAT), pages 96–104, 1988.

7 Subir K. Ghosh. On recognizing and characterizing visibility graphs of simple polygons.
Discrete & Computational Geometry, 17(2):143–162, 1997.

8 Subir K. Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, 2007.
9 Subir K. Ghosh and Partha P. Goswami. Unsolved problems in visibility graphs of points,

segments, and polygons. ACM Computing Surveys (CSUR), 46(2):22, 2013.
10 Subir K. Ghosh and Bodhayan Roy. Some results on point visibility graphs. In Algorithms

and Computation (WALCOM), volume 8344 of Lecture Notes in Computer Science, pages
163–175. Springer, 2014.

11 Jacob E. Goodman, Richard Pollack, and Bernd Sturmfels. The intrinsic spread of a
configuration in Rd. Journal of the American Mathematical Society, pages 639–651, 1990.

12 Branko Grünbaum. Convex Polytopes, volume 221 (2nd ed.) of Graduate Texts in Math-
ematics. Springer-Verlag, 2003.

13 Michael Kapovich and John J. Millson. Universality theorems for configuration spaces of
planar linkages. Topology, 41:1051–1107, 2002.

14 Jan Kára, Attila Pór, and David R. Wood. On the chromatic number of the visibility graph
of a set of points in the plane. Discrete & Computational Geometry, 34(3):497–506, 2005.

15 Jan Kratochvíl and Jirí Matoušek. Intersection graphs of segments. Journal of Combinat-
orial Theory. Series B, 62(2):289–315, 1994.

16 Jan Kynčl. Simple realizability of complete abstract topological graphs in P. Discrete and
Computational Geometry, 45(3):383–399, 2011.

17 Tomás Lozano-Pérez and Michael A. Wesley. An algorithm for planning collision-free paths
among polyhedral obstacles. Commun. ACM, 22(10):560–570, October 1979.

18 Jiří Matoušek. Intersection graphs of segments and ∃R. ArXiv e-prints, 2014.
19 Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs.

Journal of Combinatorial Theory, Series B, 103(1):114 – 143, 2013.
20 Nicolai E. Mnëv. The universality theorems on the classification problem of configuration

varieties and convex polytopes varieties. In Topology and geometry—Rohlin seminar, pages
527–543. Springer, 1988.

21 Joseph O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.
22 Joseph O’Rourke and Ileana Streinu. Vertex-edge pseudo-visibility graphs: Characteriza-

tion and recognition. In Symposium on Computational Geometry, pages 119–128, 1997.
23 Michael S. Payne, Attila Pór, Pavel Valtr, and David R. Wood. On the connectivity of

visibility graphs. Discrete & Computational Geometry, 48(3):669–681, 2012.
24 Attila Pór and David R. Wood. On visibility and blockers. JoCG, 1(1):29–40, 2010.
25 Jürgen Richter-Gebert. Mnëv’s universality theorem revisited. In Proceedings of the Sémin-

aire Lotharingien de Combinatoire, pages 211–225, 1995.
26 Bodhayan Roy. Point visibility graph recognition is NP-hard. ArXiv e-prints, 2014.
27 Marcus Schaefer. Complexity of some geometric and topological problems. In 17th Inter-

national Symposium on Graph Drawing (GD), pages 334–344, 2009.
28 Marcus Schaefer. Realizability of graphs and linkages. In Thirty Essays on Geometric

Graph Theory. Springer, 2012.
29 Peter W. Shor. Stretchability of pseudolines is NP-hard. Applied Geometry and Discrete

Mathematics–The Victor Klee Festschrift, 4:531–554, 1991.
30 Karl Georg Christian Staudt. Geometrie der Lage. Verlag von Bauer und Raspe, 1847.
31 Ileana Streinu. Non-stretchable pseudo-visibility graphs. Comput. Geom., 31(3):195–206,

2005.

SoCG’15

Geometric Spanners for Points Inside a Polygonal
Domain
Mohammad Ali Abam, Marjan Adeli, Hamid Homapour, and
Pooya Zafar Asadollahpoor

Department of Computer Engineering, Sharif University of Technology, Iran
abam@sharif.edu, {madeli, homapour, zafar}@ce.sharif.edu

Abstract
Let P be a set of n points inside a polygonal domain D. A polygonal domain with h holes (or
obstacles) consists of h disjoint polygonal obstacles surrounded by a simple polygon which itself
acts as an obstacle. We first study t-spanners for the set P with respect to the geodesic distance
function π where for any two points p and q, π(p, q) is equal to the Euclidean length of the
shortest path from p to q that avoids the obstacles interiors. For a case where the polygonal
domain is a simple polygon (i.e., h = 0), we construct a (

√
10 + ε)-spanner that has O(n log2 n)

edges. For a case where there are h holes, our construction gives a (5 + ε)-spanner with the size
of O(n

√
h log2 n).

Moreover, we study t-spanners for the visibility graph of P (V G(P), for short) with respect
to a hole-free polygonal domain D. The graph V G(P) is not necessarily a complete graph or
even connected. In this case, we propose an algorithm that constructs a (3 + ε)-spanner of size
O(n4/3+δ). In addition, we show that there is a set P of n points such that any (3− ε)-spanner
of V G(P) must contain Ω(n2) edges.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Geometric Spanners, Polygonal Domain, Visibility Graph

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.186

1 Introduction

Background. Let G = (V,E) be an undirected edge-weighted graph and let dG(p, q) be the
length of the weighted shortest path from p to q in G. Let t ≥ 1 be a real number. The
subgraph S = (V,ES) of G is called a t-spanner if for any two vertices p, q ∈ V , we have
dS(p, q) ≤ t · dG(p, q). Any path from p to q in S whose weight is at most t · dG(p, q) is called
a t-path. The dilation or stretch factor of S is the minimum t for which S is a t-spanner of
G. The size of S is defined as the number of edges in ES .

t-spanners have been mostly studied on complete graphs coming from finite metric spaces.
Let (P, d) be a finite metric space where P is a set of n points. Consider the complete graph
Gc over P where wt(p, q) = d(p, q) (wt denotes weight) for any two points p, q ∈ P. For any
t-spanner S of Gc, we have dS(p, q) ≤ t ·d(p, q). Indeed, the spanner S approximates distances
in the metric space up to a factor of t. The t-spanner S is usually called the t-spanner of the
metric space (P, d). In this paper, we are interested in spanners in a geometric context, i.e.,
the metric space comes from a geometric space like the Euclidean space. Here, the graph Gc
is the complete Euclidean graph on P (i.e., weights are the Euclidean distances). A geometric
t-spanner is an Euclidean graph S on P such that dS(p, q) ≤ t · |pq| for all points p, q ∈ P
where |pq| denotes the Euclidean distance between p and q.

In some applications like road networks, when constructing spanners, the main goal is to
obtain a small dilation while not using too many edges. However, one may want to obtain

© Mohammad Ali Abam, Marjan Adeli, Hamid Homapour, and Pooya Zafar Asadollahpoor;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 186–197

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.186
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M.A. Abam, M. Adeli, H. Homapour and P. Zafar Asadollahpoor 187

spanners with a number of additional properties such as small weight – weight proportional
to the weight of a Minimum Spanning Tree (MST) – and bounded degrees.

Previous work. Althöfer et al. [7] were first to study sparse spanners on edge-weighted
graphs that have the triangle-inequality property. They showed that for any integer number
t > 0, there is a (2t+ 1)-spanner with O(n1+1/t) edges where n is the number of vertices.
This can be applied to any metric space (P, d) as the complete graph over P in the metric
space has the triangle-inequality property. Geometric spanners have been attracted a lot
of attention over the past two decades. It has been shown that for any set of n points in
Rd and any ε > 0, there is a (1 + ε)-spanner with O(n/εd−1) edges – see the recent book
by Narasimhan and Smid [13] and references therein for this and many other results on
geometric spanners. When the doubling dimension of a metric space is bounded, similar
results to the Euclidean setting are possible [12, 14].

Let the points of P be in a surfaceM∈ R3 and let dM(p, q) be the weight of the shortest
(i.e., the minimum weight) path from p to q onM for any two points p, q ∈ P. Obviously,
(P, dM) is a metric space and its doubling dimension is not necessarily bounded. Therefore,
results to metric spaces with bounded doubling dimension cannot be applied to the metric
space (P, dM) and now the main question is: is it possible to obtain a spanner with a
constant stretch factor and a near-linear number of edges for the metric space (P, dM)?
Abam et al. [3] considered a special case where the surfaceM is a plane containing several
pillars with width and length of zero but with non-negative height. They assume the points of
P lie at the top of the pillars. This variant can be seen as a set of n weighted points in a plane
in which for any two points p and q, their distance is defined to be wt(p) + |pq|+wt(q) where
wt(x) is the weight of point x and |pq| is the Euclidean distance of p and q. They presented
a (5 + ε)-spanner with a linear number of edges for any given ε > 0. They also showed that
whenM is the boundary of a convex object, it is possible to obtain (1 + ε)-spanner with a
linear number of edges.

Problem statement. Suppose a set P of n points are given inside a polygonal domain D
which consists of a simple polygon containing h disjoint polygonal holes. The holes and the
simple-polygon boundary can be seen as obstacles. Consider the metric space (P, π) where
π(p, q) for any points p, q ∈ P is equal to the Euclidean length of the shortest path from p to
q that avoids the obstacles interiors; the so-called the geodesic distance of p and q. Moreover,
let V G(P) be the visibility graph of P with respect to the polygonal domain D, i.e., p, q ∈ P
are connected in V G(P) iff the segment pq avoids the obstacles interiors. Note that V G(P)
is not necessarily a complete graph or even a connected graph. In this paper, we investigate
the existence of t-spanners with few edges for both the metric space (P, π) and V G(P). Note
that the polygonal domain D can be seen as a surface. Indeed, obstacles can be seen as
walls, tall enough such that any shortest path between two points p and q avoids the walls.
Therefore, the metric space (P, π) is a special case of the metric space (P, dM) whereM is
a surface in R3.

Our results. The first part of our work as explained in Section 2 is devoted to the metric
space (P, π). For a case where the polygonal domain D is a simple polygon (i.e., h = 0), we
construct a (

√
10 + ε)-spanner that has O(n log2 n) edges. We extend this result to the case

where there are h holes. We show that our construction gives a (5 + ε)-spanner with the size
of O(n

√
h log2 n) for any given ε > 0. The diameter of both spanners is 2. As the second

part of our work, in Section 3 we study t-spanners for V G(P). We first show how to obtain

SoCG’15

188 Geometric Spanners for Points Inside a Polygonal Domain

a (3 + ε)-spanner for any given ε > 0 of size O(n4/3+δ) for some δ > 0 and then we show
that there is a set P of n points such that any (3− ε)-spanner of P must have Ω(n2) edges.

2 Spanners for the metric space (P, π)

Let P be a set of n points inside a polygonal domain D which is a simple polygon containing
h polygonal disjoint obstacles. Let π(p, q) for any two points p, q ∈ P be the geodesic distance
of p and q with respect to D. We first present our spanner construction when h = 0 in
Section 2.1 and then give our general spanner construction in Section 2.2.

2.1 Spanners for points inside a simple polygon
Our spanner construction is based on the SSPD [2, 4] as defined next. For a set Q of n
points in Rd (i.e., the d-dimensional Euclidean space), a pair decomposition of Q is a set
of pairs of subsets of Q, such that for every pair of points of p, q ∈ Q there exists a pair
(A,B) in the decomposition such that p ∈ A and q ∈ B or vice versa. For a point set A,
let radius(A) be the radius of the minimum enclosing disc of A. An s-Semi-Separated Pair
Decomposition (s-SSPD) of Q is a pair decomposition of Q such that for every pair (A,B),
the distance between A and B (i.e. the distance of their minimum enclosing discs) is larger
than s times the minimum of the radius(A) and radius(B). For a point set Q and a constant
s > 0, we know there exists an s-SSPD whose weight,

∑
|A|+ |B| over all pairs, is O(n logn).

The SSPD was introduced to overcome the obesity problem of the Well-Separated Pair
Decomposition (WSPD) [9, 15]: there is a set of n points, such that for any WSPD of it,∑
|A|+ |B| over all pairs in the WSPD is Ω(n2).

Spanner construction. For the given ε > 0, we first explain our spanner construction and
then prove that the resulting spanner S is a (

√
10 + ε)-spanner. Our construction is as

follows. We partition the simple polygon D into two simple sub-polygons using a vertical
segment ` (called the splitting segment) in such a way that each sub-polygon contains at
most two-thirds of the points of P – see [8] for details. For each point p ∈ P, we compute
the point p` ∈ ` which has the minimum geodesic distance to p among all points on `. We
call p` the projection of p into ` and for a subset A of P, we define C`(A) to be a point of
A whose geodesic distance to ` is the smallest. We then compute an s-SSPD for projected
points p` where s = 4/ε. Note that some points may have the same projection on `. In this
case we treat them as different points while constructing the SSPD. For each pair (A,B)
in the SSPD where radius(A) ≤ radius(B), we add edge (p, C`(P(A))) to the spanner S for
all points p whose p` ∈ A ∪ B where P(A) = {p ∈ P|p` ∈ A} – recall that an edge (p, q)
corresponds to the shortest geodesic path between p and q. We recursively process both
simple sub-polygons.
Spanner size. Let T (n) be the size of the resulting spanner S. Clearly, T (n) =

∑
(|A|+

|B|) + T (n1) + T (n2) where n1 + n2 = n and n1, n2 ≥ n/3. Since
∑

(|A|+ |B|) = O(n logn)
by the SSPD property, we can simply conclude that the spanner size is O(n log2 n).

It remains to show that the resulting spanner S is a (
√

10 + ε)-spanner. We first state
the following lemma which plays a key role in our proof showing S is a (

√
10 + ε)-spanner.

I Lemma 1. Suppose ABC is a right triangle with ∠CAB = 90. Let H be a y-monotone
path between B and D such that the region bounded by AB, AD, and H is convex where D
is some point on edge AC. We have 3|H|+ |DC| ≤

√
10|BC| where |.| denotes the Euclidean

length.

M.A. Abam, M. Adeli, H. Homapour and P. Zafar Asadollahpoor 189

D

C

A B

H

D′

Figure 1 A right triangle and a y-monotone convex chain inside it.

Proof. We claim |H|2 + |DC|2 ≤ |BC|2 and will prove it later. For any two real numbers x
and y, we know (x2 + y2)(32 + 12) ≥ (3x+ y)2. By setting x = |H| and y = |DC|, we get
3|H|+ |DC| ≤

√
10|BC| as desired.

To prove |H|2 + |DC|2 ≤ |BC|2, let D′ be the point on BC with the same y-coordinate
with D. Since H is a convex chain inside triangle DD′B with endpoints D and B, we know

|H| ≤ |BD′|+ |D′D|.

Using the above well-known geometric inequality, we have

|H|2 + |DC|2 ≤ (|BD′|+ |D′D|)2 + |DC|2

= |BD′|2 + 2|BD′|.|D′D|+ |D′D|2 + |DC|2

= |BD′|2 + 2|BD′|.|D′D|+ |D′C|2

≤ |BD′|2 + 2|BD′|.|D′C|+ |D′C|2

= (|BD′|+ |D′C|)2 = |BC|2

J

Now, we are ready to prove the main result of this section.

I Lemma 2. The resulting spanner S of the above construction is a (
√

10 + ε)-spanner with
diameter 2.

Proof. Any two points p, q ∈ S lie at different sides of the splitting segment ` at one
step of the recursive construction. At this step, there is a semi-separated pair (A,B) that
p` ∈ A and q` ∈ B or vise versa. WLOG assume p` ∈ A and q` ∈ B and moreover assume
radius(A) ≤ radius(B). Let c = C`(P(A)) which of course is a point of P – see Fig. 2. We
recall that among all points whose projections are in A, point c has the minimum geodesic
distance to `.

According to our construction at this step of the recursion, edges (p, c) and (q, c) are added
to S. Thus, the length of the shortest path between p and q in S is at most π(p, c) + π(c, q).
We next show that π(p, c) + π(c, q) ≤ (

√
10 + ε)π(p, q). This implicitly shows the diameter

of S is 2.
Let SP(x, y) be the shortest path from point x to y with respect to D for any two points

x and y. By the definition of π, the Euclidean length of SP(x, y) is π(x, y). SP(p, q) definitely
intersects ` at some point, say r. Let p′ (q′) be the point at which SP(p, q) and SP(p, p`)
(SP(q, q`)) get separated – see Fig. 2 to get insight to our notations. It is clear both SP(p′, p`)

SoCG’15

190 Geometric Spanners for Points Inside a Polygonal Domain

p
c c`

p`

q`

q

`

r

p′

q′

hp′

hq′

Figure 2 The splitting segment ` partitions the simple polygon into two simple sub-polygons such
that each part has at most two-thirds of the points. The projections of points into ` are depicted
with subscript `.

SP(q′, q`) are y-monotone convex chains. SP(p, q) consists of SP(p, p′), SP(p′, r), SP(r, q′)
and SP(q′, q). We know π(p′, r) ≥ |p′r| and π(q′, r) ≥ |q′r|. If we let hp′ and hq′ be the
perpendicular projections of p′ and q′ on `, in both triangles q′hq′r and p′hp′r, the conditions
of Lemma 1 hold. All these observations help us to prove the lemma as follows.

Since the distance function π has the triangle-inequality property, we have:

π(p, c) ≤ π(p, p`) + |p`c`|+ π(c`, c)
π(c, q) ≤ π(c, c`) + |c`q`|+ π(q`, q).

Considering |c`q`| ≤ |c`p`|+ |p`r|+ |rq`| and π(c, c`) ≤ π(p, p`), therefore:

π(p, c) + π(c, q) ≤ 3π(p, p`) + 2|p`c`|+ |p`r|+ |rq`|+ π(q`, q)
= 3π(p, p′) + 3π(p′, p`) + 2|p`c`|+ |p`r|+ |rq`|+ π(q`, q′) + π(q′, q).

We can apply Lemma 1 to both triangles q′hq′r and p′hp′r and get the following inequalities

3π(p′, p`) + |p`r| ≤
√

10π(p′, r)
|rq`|+ π(q`, q′) ≤

√
10π(r, q′).

These together yield:

3π(p′, p`) + |p`r|+ |rq`|+ π(q`, q′) ≤
√

10π(p′, q′).

Finally, since in the semi-separated pair (A,B) the distance between each two points in A is
at most 2

s times of the distance between each two points of A and B, we can get:

|p`c`| ≤
2
s
|p`q`| ≤

2
s
π(p, q).

If we set s = 4
ε , the following inequality holds:

M.A. Abam, M. Adeli, H. Homapour and P. Zafar Asadollahpoor 191

(a) (b) (c)

`

p

q

p`

q`

r

p

c

q

xε

y

x = 3.y

l

d

l � d

`

Figure 3 (a) Tight example for the given algorithm in Section 2.1, (b) Any (2− ε)-spanner in a
simple polygonal domain must contain Ω(n2) edges, (c) The key property in Lemma 1 does not hold
anymore for a polygonal domain with holes.

π(p, c) + π(c, q) ≤ 3π(p, p′) +
√

10π(p′, q′) + 2|p`c`|+ π(q′, q)

≤ (
√

10 + 4
s

)π(p, q).

J

Tight example. As a tight example for our construction, consider the simple polygon in
Fig. 3(a) in which π(p, q) equals

√
10y while the shortest path in S is 10y.

Lower bound. Consider the simple polygon in Fig. 3(b). When d gets close to 0, π(p, q)
gets close to 2l for any two points p and q. If there is no edge between p and q, the shortest
path in S must go through at least one intermediate vertex, say t. Therefore, the length
of the shortest path from p to q, which is at least π(p, t) + π(t, q), becomes greater than
(2− ε)π(p, q) if d is chosen small enough. This implies that to get a (2− ε)-spanner, we need
all edges.

Putting all this together, we get the following theorem.

I Theorem 3. Let ε > 0 be a given real number. Suppose a set P of n points is given inside
a simple polygon D. There is a (

√
10 + ε)-spanner with diameter 2 of size O(n log2 n) for

the metric space (P, π). Moreover, there is a set P of n points such that any (2− ε)-spanner
of the metric space (P, π) must contain Ω(n2) edges.

2.2 Spanners for points inside a polygonal domain with h holes
Suppose the polygonal domain D contains h disjoint polygonal holes. Our spanner construc-
tion is based on the following decomposition.

I Lemma 4. The polygonal domain D with h holes can be decomposed into O(h) simple
polygons using O(h) vertical segments (called splitting segments) avoiding the holes interiors
such that each simple polygon has at most 3 splitting segments on its boundary.

Proof. As the first step, from the leftmost and rightmost points of each obstacle, we draw
two vertical extensions; one going downward until an obstacle is hit and one going upward
until an obstacle is hit – see Fig. 4(a). This clearly decomposes the polygonal domain into

SoCG’15

192 Geometric Spanners for Points Inside a Polygonal Domain

(a) (b)

Figure 4 (a) Planar decomposition of the polygonal domain D (first step), (b) Decomposing
regions with more than three vertical extensions (second step).

O(h) simple polygons. But one simple polygon may have m > 3 vertical extensions on its
boundary. In this case, as the second step, we draw O(m) vertical extensions inside the simple
polygon and decompose it into O(m) simple polygons such that each new simple polygon
has at most three vertical extensions on its boundary. To do that, we first draw a vertical
extension such that on each of its side there are roughly half of the vertical extensions. We
continue recursively on both sides – see Fig. 4(b). The number of the extra vertical extensions
satisfies this recursion: T (m) = 2T (m/2) + 1, T (3) = 0. Therefore, T (m) = O(m). As
each vertical extension of the first step of the construction is adjacent to at most two simple
polygons, the total number of the extra extensions is O(h). J

Suppose the decomposition described in Lemma 4 is available to us. We construct a
vertex-weighted graph GD as follows. We assign a vertex to each simple polygon and associate
it with the number of points in P that are contained in that simple polygon as its weight.
We connect two vertices if their corresponding simple polygons are adjacent. Obviously, GD
is a planar graph with O(h) vertices. Our divide-and-conquer construction algorithm uses
the following well-known theorem for planar graphs.

I Theorem 5 ([6]). Suppose G = (V,E) is a planar vertex-weighted graph with |V | = m. Then,
there is a (

√
m)-separator for G, i.e., V can be partitioned into three sets A, B and C such that

(i) |C| = O(
√
m), (ii) there is no edge between A and B and (iii) wt(A), wt(B) ≤ 2/3wt(V),

where wt(X) is the weight summation over all vertices in X.

Theorem 5 can be applied to the graph GD as it is a planar graph. In the following, we
explain in details how to construct a spanner S for the metric space (P, π).

1. We first construct GD and compute its O(
√
h)-separator. Let A, B and C be the three

sets defined in Theorem 5.
2. We collect O(

√
h) splitting segments into a set H. More precisely, for each vertex of C

(we know |C| = O(
√
h)), we add at most the three splitting segments that appear on the

boundary of the simple polygon corresponding to the vertex.
3. For each splitting segment ` in H, we apply one recursive step of the given algorithm in

Section 2.1.
4. We recursively process the induced subgraphs on A and B until one vertex is left.

Each vertex at the last level of the recursion corresponds to a simple polygon in the
decomposition of Lemma 4. For each such simple polygon, we apply the whole algorithm
given in Section 2.1.

M.A. Abam, M. Adeli, H. Homapour and P. Zafar Asadollahpoor 193

Spanner size. Like the argument given in Section 2.1, at each step of the recursion, for each
splitting segment, we add O(n logn) edges, and in total for O(

√
h) splitting segments we

add O(
√
hn logn) edges. The whole recursive algorithm except at the leaves of the recursion

tree, adds O(
√
hn log2 n) edges. At the leaf v, we add O(nv log2 nv) edges where nv is the

number of points inside the corresponding simple polygon. We know
∑
nv = n and therefore,

the total added edges at the leaves is O(n log2 n). All this together state that the spanner
size is O(

√
hn log2 n).

Stretch factor. It is tempting to believe that using the argument of Section 2.1, we can
show that the spanner S is a (

√
10 + ε)-spanner. But unfortunately, a key property that

Lemma 1 relies on, does not hold anymore for a polygon domain with holes. This key
property is: SP(p, r) (i.e., the shortest path from p to r) and SP(p, p`) topologically are the
same. When there are holes, this may not happen as depicted in Fig. 3(c). In the figure,
SP(p, r) goes above the specified hole and SP(p, p`) goes below that hole. Fortunately, we
still can show that the spanner S has a constant stretch factor.

I Lemma 6. The resulting spanner S of the above construction is a (5 + ε)-spanner of the
metric space (P, π) .

Proof. Consider the top level of our recursive construction. The polygonal domain D is
partitioned into three components, one of which is the separator – see Fig. 5. For any
two points p and q which are (i) not in the same component or (ii) in the same separator
component but in different simple polygons, the shortest paths from p to q intersects at
least one of O(

√
h) splitting segments collected from the separator. Let ` be such a splitting

segment. Consider the step of the algorithm working on `. There is a semi-separated pair
(A,B) such that p` ∈ A and q` ∈ B or vice versa. WLOG assume p` ∈ A and q` ∈ B and
assume radius(A) ≤ radius(B). If we let c = C`(P(A)), we know edges (p, c) and (q, c) exist
in spanner S. Hence, the shortest path between p and q in S is at most π(p, c) + π(c, q).
According to the triangle inequality of π, we have:

π(p, c) ≤ π(p, p`) + |p`c`|+ π(c`, c)
π(c, q) ≤ π(c, c`) + |c`q`|+ π(q`, q).

We know:
π(c, c`) :
π(c, c`) ≤ π(p, p`) ≤ π(p, q)

π(p, p`) + π(q`, q) :
π(p, p`) + π(q`, q) ≤ π(p, r) + π(r, q) = π(p, q)

|c`q`| :
since |p`r| ≤ π(p`, p) + π(p, r) and π(p, p`) ≤ π(p, r) (the same holds for q and q`), then :
|c`q`| ≤ |c`p`|+ |p`q`|

≤ 2
s
π|p`q`|+ |p`q`|

≤ (2
s

+ 1)(|p`r|+ |rq`|)

≤ (2
s

+ 1)(2π(p, q))
|p`c`| :
From c`, p` ∈ A, q` ∈ B and the SSPD property, we have:
|p`c`| ≤

2
s
|p`q`| ≤

4
s
π(p, q)

SoCG’15

194 Geometric Spanners for Points Inside a Polygonal Domain

Component 1

Component 2

Separator

Figure 5 Any path from one component to another one must intersect the separator’s boundaries.

All this together give us:

π(p, q) ≤ π(p, c) + π(c, q) ≤ (5 + 8
s

)π(p, q)

We just need to set s = 8
ε . Considering the top level of the recursive construction in the proof

can be adjusted to the level at which properties (i) or (ii) are satisfied or both points p and
q lie in a simple polygon and their shortest path does not intersect any splitting segments of
the separators. In the latter, since we run the whole algorithm of Section 2.1, certainly there
is a (

√
10 + ε)-path between p and q. J

To summarize, we get the following theorem.

I Theorem 7. Let ε > 0 be a given real number. Suppose a set P of n points is given inside
a simple polygon D containing h holes. There is a (5 + ε)-spanner with diameter 2 of size
O(n
√
h log2 n) for the metric space (P, π).

3 Spanners for the visibility graph

Let P be a set of n points inside a simple polygon D (i.e., a polygonal domain without hole).
Let V G(P) be the visibility graph of P , which is not necessarily connected. Here, the goal is
to find a t-spanner S with few edges of V G(P), that is, for any two points p, q ∈ P, their
shortest distance in S is at most t times their shortest distance in V G(P).

Since V G(P) is a special case of weighted graphs holding triangle-inequality property, by
applying the algorithm given in [7] we can get the following spanner.

I Theorem 8. For any integer t > 0, there is a (2t+ 1)-spanner S such that the number of
edges in S is O(n1+1/t).

If we set t = 1, the above theorem gives us a 3-spanner of size O(n2). We next show that
it is possible to get (3 + ε)-spanner of size O(n4/3+δ) for any ε > 0.

Spanner construction. We first decompose D using a splitting segment ` into two simple
polygons DL and DR each containing at most 2/3n points of P . Let V G`(P) be the subgraph
of V G(P) containing every edge of V G(P) that intersects `. We next explain how to find a

M.A. Abam, M. Adeli, H. Homapour and P. Zafar Asadollahpoor 195

(a) (b)

`

Figure 6 (a) The visibility cone of a point. (b) Any (3− ε)-spanner of the visibility graph has
size of Ω(n2).

(3 + ε)-spanner of V G`(P) with O(n4/3+δ) edges. By recursing on DL and DR, we can get a
(3 + ε)-spanner of V G(P) with O(n4/3+δ) edges.

The main idea is to represent V G`(P) which is a bipartite graph, as the union of some
complete bipartite graphs and find a spanner for each complete bipartite graph. Let σ(p)
be the visibility cone of p, that is, all half-lines originating from p and intersecting ` – see
Fig. 6(a). (p, q) is an edge of V G`(P) if and only if q ∈ σ(p) and p ∈ σ(q). For ease of
presentation, we call points in DL and DR red points and blue points, respectively. We map
each σ(p) to a segment in the dual plane by the standard transformation [11] where a point
(a, b) is mapped to the line y = ax+ b and vice versa. It is easy to see that (p, q) is an edge
of V G`(P) if and only if the segments corresponding to σ(p) and σ(q) intersect each other.
Therefore, the edges in V G`(P) correspond to the intersection of two segments sets and vice
versa. Let us call them red segments (corresponding to the red points) and blue segments
(corresponding to the blue points). We then construct a segment-intersection-searching data
structure [5] for the red segments, which is a multilevel partition tree, each of whose nodes
is associated with a canonical subset of red segments. The total size of canonical subsets
is O(n4/3+δ). For every blue segment, all red segments intersecting it can be reported as a
union of O(n1/3+δ) pairwise disjoint canonical subsets which is useful to construct a clique
cover of V G` without computing all intersections. Therefore, we can represent V G`(P) as
the union of some complete bipartite graphs with the total size O(n4/3+δ). We then compute
a (3 + ε)-spanner of size O(m logm) for each complete bipartite graph with m vertices as
described in [1].

Lower bound. Consider a set of n/2 points on a segment whose endpoints are (0, 0) and
(0, α) and a set of n/2 points on a segment whose endpoints are (1, 0) and (1, α). We can
put all n points in a simple polygon as depicted in Fig. 6(b) such that every point on each
segment can see any point on the other segment and any two points on a segment cannot
see each other. Let p and q be two points on the different segments. For an spanner S of
the visibility graph, if the edge (p, q) does not exist in the spanner, any path between p

and q in S must have at least three edges and since the length of each edge is almost the
length of (p, q) – we can choose α small enough depending on ε – the spanner cannot be a
(3− ε)-spanner. Therefore, the spanner must have every edge of the visibility graph which
implies the spanner size is Ω(n2).

Putting all together, we get the following result.

SoCG’15

196 Geometric Spanners for Points Inside a Polygonal Domain

1
2
n

1
6

n
1
6 n

1
2

n
1
2

Figure 7 Lower bound construction.

I Theorem 9. For any given ε > 0, there is a (3 + ε)-spanner of V G(P) that contains
O(n4/3+δ) edges for some δ > 0. Moreover, there is a set P such that any (3− ε)-spanner of
the visibility graph V G(P) has size of Ω(n2).

I Remark. If the polygonal domain D has h holes, we can apply the technique of Section 2.2
to get a (3 + ε)-spanner of size O(

√
hn4/3+δ). Moreover, it is possible to find a set P of n

points such that any (5− ε)-spanner must have Ω(n4/3) edges. An instance of the line-point
incidence problem [10] with Ω(n4/3) incidences can be used to construct the desired instance.
To sketch the overall plan, we introduce two sets A (red points) and B (blue points) inside a
polygon domain with holes such that (i) for any p, p′ ∈ A and q, q′ ∈ B, |pq| is almost |p′q′|
and (ii) two points from A cannot see each other and the same holds for B, and (iii) there
is no cycle of length 4 in the bipartite visibility graph and (iv) the number of edges in the
visibility graph is Ω(n 4

3). All this together mean the girth is at least 6 and all edges have
almost the same weight. Therefore, any (5− ε)-spanner must contain Ω(n 4

3) edges. To get
the desired point set, consider a

√
n×
√
n grid as depicted in Fig. 7. The number of grid

points (p, q) inside the black square where GCD(p, q) = 1 is Ω(n 1
3). Look at each of these

points as a vector. For each vector, we draw a line parallel to the vector from each grid
point. The number of different lines for each vector is O(n 2

3) and the number of incidences
is obviously n. In total we have O(n) lines and Ω(n 4

3) incidences. We can look at the lines
as blue segments. We also put n red parallel segments in the grid points with the negative
slope α and very small length. Now, we dualize the segments to cones with the standard
transformation. Let A and B be the dual of red and blue segments respectively – note that
points in A and B are apexes of the cones. We can put some obstacles such that for every
point in A or B, the dual of the visibility cone is exactly the corresponding segment in our
incidence construction. It is easy to see that A and B satisfy the required properties by
making α and the scale of the grid smaller.

Acknowledgements. The first author would like to thank Pankaj Agarwal and Mark de
Berg who initiated the problem and gave valuable suggestions. Moreover, we would like to
thank the anonymous reviewers for their valuable comments.

References
1 Mohammad Ali Abam, Paz Carmi, Mohammad Farshi, and Michiel Smid. On the power

of the semi-separated pair decomposition. Computational Geometry, 46(6):631–639, 2013.
2 Mohammad Ali Abam, Mark De Berg, Mohammad Farshi, and Joachim Gudmundsson.

Region-fault tolerant geometric spanners. Discrete & Computational Geometry, 41(4):556–
582, 2009.

M.A. Abam, M. Adeli, H. Homapour and P. Zafar Asadollahpoor 197

3 Mohammad Ali Abam, Mark De Berg, Mohammad Farshi, Joachim Gudmundsson, and
Michiel Smid. Geometric spanners for weighted point sets. Algorithmica, 61(1):207–225,
2011.

4 Mohammad Ali Abam and Sariel Har-Peled. New constructions of sspds and their applic-
ations. Computational Geometry, 45(5):200–214, 2012.

5 Pankaj K Agarwal and Micha Sharir. Applications of a new space-partitioning technique.
Discrete & Computational Geometry, 9(1):11–38, 1993.

6 Noga Alon, Paul Seymour, and Robin Thomas. Planar separators. SIAM Journal on
Discrete Mathematics, 7(2):184–193, 1994.

7 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993.

8 Prosenjit Bose, Jurek Czyzowicz, Evangelos Kranakis, Danny Krizanc, and Anil Mahesh-
wari. Polygon cutting: Revisited. In Proceedings of Japanese Conference on Discrete &
Computational Geometry (JCDCG’98), volume 1763 of LNCS, pages 81–92. Springer, 1998.

9 Paul B Callahan and S Rao Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM,
42(1):67–90, 1995.

10 Kenneth L Clarkson, Herbert Edelsbrunner, Leonidas J Guibas, Micha Sharir, and Emo
Welzl. Combinatorial complexity bounds for arrangements of curves and spheres. Discrete
& Computational Geometry, 5(1):99–160, 1990.

11 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 2008.

12 Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional metrics
and their applications. SIAM Journal on Computing, 35(5):1148–1184, 2006.

13 Giri Narasimhan and Michiel Smid. Geometric spanner networks. Cambridge University
Press, 2007.

14 Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In
Proceedings of Annual ACM symposium on Theory of computing, pages 281–290, 2004.

15 Kasturi R Varadarajan. A divide-and-conquer algorithm for min-cost perfect matching
in the plane. In Proceedings of Annual Symposium on Foundations of Computer Science,
pages 320–331, 1998.

SoCG’15

An Optimal Algorithm for the Separating
Common Tangents of Two Polygons
Mikkel Abrahamsen∗

Department of Computer Science, University of Copenhagen
Universitetsparken 5
DK-2100 Copanhagen Ø
Denmark
miab@di.ku.dk

Abstract
We describe an algorithm for computing the separating common tangents of two simple polygons
using linear time and only constant workspace. A tangent of a polygon is a line touching the
polygon such that all of the polygon lies to the same side of the line. A separating common
tangent of two polygons is a tangent of both polygons where the polygons are lying on different
sides of the tangent. Each polygon is given as a read-only array of its corners. If a separating
common tangent does not exist, the algorithm reports that. Otherwise, two corners defining
a separating common tangent are returned. The algorithm is simple and implies an optimal
algorithm for deciding if the convex hulls of two polygons are disjoint or not. This was not
known to be possible in linear time and constant workspace prior to this paper.

An outer common tangent is a tangent of both polygons where the polygons are on the same
side of the tangent. In the case where the convex hulls of the polygons are disjoint, we give an
algorithm for computing the outer common tangents in linear time using constant workspace.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases planar computational geometry, simple polygon, common tangent, op-
timal algorithm, constant workspace

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.198

1 Introduction

The problem of computing common tangents of two given polygons has received some attention
in the case where the polygons are convex. For instance, it is necessary to compute outer
common tangents of disjoint convex polygons in the classic divide-and-conquer algorithm for
the convex hull of a set of n points in the plane by Preparata and Hong [12]. They give a
naïve linear time algorithm for outer common tangents since that suffices for an O(n logn)
time convex hull algorithm. The problem is also considered in various dynamic convex hull
algorithms [5, 8, 11]. Overmars and van Leeuwen [11] give an O(logn) time algorithm for
computing an outer common tangent of two disjoint convex polygons when a separating line
is known, where each polygon has at most n corners. Kirkpatrick and Snoeyink [9] give an
O(logn) time algorithm for the same problem, but without using a separating line. Guibas
et al. [7] give an Ω(log2 n) lower bound on the time required to compute an outer common
tangent of two intersecting convex polygons, even if it is known that they intersect in at
most two points. They also describe an algorithm achieving that bound.

∗ Research partly supported by Mikkel Thorup’s Advanced Grant from the Danish Council for Independent
Research under the Sapere Aude research career programme.

© Mikkel Abrahamsen;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 198–208

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.198
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Abrahamsen 199

Touissaint [13] considers the problem of computing separating common tangents of
convex polygons and notes that the problem occurs in problems related to visibility, collision
avoidance, range fitting, etc. He gives a linear time algorithm. Guibas et al. [7] give an
O(logn) time algorithm for the same problem.

All the here mentioned works make use of the convexity of the polygons. If the polygons
are not convex, one can use a linear time algorithm to compute the convex hulls before
computing the tangents [6, 10]. However, if the polygons are given in read-only memory, it
requires Ω(n) extra bits to store the convex hulls. In this paper, we also obtain linear time
while using only constant workspace, i.e. O(logn) bits. For the outer common tangents, we
require the convex hulls of the polygons to be disjoint. There has been some recent interest
in constant workspace algorithms for geometric problems, see for instance [1, 2, 3, 4].

The problem of computing separating common tangents is of special interest because
these only exist when the convex hulls of the polygons are disjoint, and our algorithm detects
if they are not. Thus, we also provide an optimal algorithm for deciding if the convex hulls
of two polygons are disjoint or not. This was to the best of our knowledge not known to be
possible in linear time and constant workspace prior to our work.

1.1 Notation and some basic definitions
Given two points a and b in the plane, the closed line segment with endpoints a and b is
written ab. When a 6= b, the line containing a and b which is infinite in both directions is
written L(a, b).

Define the dot product of two points x = (x0, x1) and y = (y0, y1) as x · y = x0y0 + x1y1,
and let x⊥ = (−x1, x0) be the counterclockwise rotation of x by the angle π/2. Now, for
three points a, b, and c, we define T (a, b, c) = sgn((b− a)⊥ · (c− b)), where sgn is the sign
function. T (a, b, c) is 1 if c is to the left of the directed line from a to b, 0 if a, b, and c are
collinear, and −1 if c is to the right of the directed line from a to b. We see that

T (a, b, c) = T (b, c, a) = T (c, a, b) = −T (c, b, a) = −T (b, a, c) = −T (a, c, b).

We also note that if a′ and b′ are on the line L(a, b) and appear in the same order as a and
b, i.e., (b− a) · (b′ − a′) > 0, then T (a, b, c) = T (a′, b′, c) for every point c.

The left half-plane LHP(a, b) is the closed half plane with boundary L(a, b) lying to the
left of directed line from a to b, i.e., all the points c such that T (a, b, c) ≥ 0. The right
half-plane RHP(a, b) is just LHP(b, a).

Assume for the rest of this paper that P0 and P1 are two simple polygons in the plane with
n0 and n1 corners, respectively, where Pk is defined by its corners pk[0], pk[1], . . . , pk[nk − 1]
in clockwise or counterclockwise order, k = 0, 1. Indices of the corners are considered modulo
nk, so that pk[i] and pk[j] are the same corner when i ≡ j (mod nk).

We assume that the corners are in general position in the sense that P0 and P1 have no
common corners and the combined set of corners

⋃
k=0,1{pk[0], . . . , pk[nk − 1]} contains no

three collinear corners.
A tangent of Pk is a line ` such that ` and Pk are not disjoint and such that Pk is

contained in one of the closed half-planes defined by `. The line ` is a common tangent of P0
and P1 if it is a tangent of both P0 and P1. A common tangent is an outer common tangent
if P0 and P1 are on the same side of the tangent, and otherwise the tangent is separating.
See Figure 1.

For a simple polygon P , we let H(P) be the convex hull of P . The following lemma is a
well-known fact about H(P).

SoCG’15

200 An Optimal Algorithm for the Separating Common Tangents of Two Polygons

P0

P1

Figure 1 Two polygons P0 and P1 and their four common tangents as thick lines. The edges of
the convex hulls which are not edges of P0 or P1 are dashed.

I Lemma 1. For a simple polygon P , H(P) is a convex polygon and the corners of H(P)
appear in the same cyclic order as they do on P .

The following lemma states folklore properties of tangents of polygons.

I Lemma 2. A line is a tangent of a polygon P if and only if it is a tangent of H(P).
Under our general position assumptions, the following holds: If one of H(P0) and H(P1)
is completely contained in the other, there are no outer common tangents of P0 and P1.
Otherwise, there are two or more. There are exactly two if P0 and P1 are disjoint. If
H(P0) and H(P1) are not disjoint, there are no separating common tangents of P0 and P1.
Otherwise, there are exactly two.

2 Computing separating common tangents

In this section, we assume that the corners of P0 and P1 are both given in counterclockwise
order. We prove that Algorithm 1 returns a pair of indices (s0, s1) such that the line
L(p0[s0], p1[s1]) is a separating common tangent with Pk contained in RHP(p1−k[s1−k], pk[sk])
for k = 0, 1. If the tangent does not exist, the algorithm returns NULL. The other separating
common tangent can be found by a similar algorithm if the corners of the polygons are given
in clockwise order and ‘= 1’ is changed to ‘= −1’ in lines 3 and 10.

The algorithm traverses the polygons in parallel one corner at a time using the indices
t0 and t1. We say that the indices (s0, s1) define a temporary line, which is the line
L(p0[s0], p1[s1]). We update the indices s0 and s1 until the temporary line is the separating
common tangent. At the beginning of an iteration of the loop at line 2, we traverse one corner
pu[tu] of Pu, u = 0, 1. If the corner happens to be on the wrong side of the intermediate line,
we make the temporary line pass through that corner by updating su to tu and we reset t1−u

to s1−u + 1. The reason for resetting t1−u is that a corner of P1−u which was on the correct
side of the old temporary line can be on the wrong side of the new line and thus needs be
traversed again.

We show that if the temporary line is not a separating common tangent after each polygon
has been traversed twice by the loop beginning at line 2, then the convex hulls of the polygons
are not disjoint. Therefore, if a corner is found to be on the wrong side of the line defined by

M. Abrahamsen 201

P0

P1

s
(0)
0

s
(0)
1

s
(7)
0

s
(12)
1

Figure 2 Algorithm 1 running on two polygons P0 and P1. The corners pk[s(i)
k] are marked and

labeled as s
(i)
k for the initial values s

(0)
k and after each iteration i where an update of sk happens.

The segments p0[s(i)
0]p1[s(i)

1] on the temporary line are dashed.

Algorithm 1: SeparatingCommonTangent(P0, P1)
1 s0 ← 0; t0 ← 1; s1 ← 0; t1 ← 1; u← 0
2 while t0 < 2n0 or t1 < 2n1
3 if T (p1−u[s1−u], pu[su], pu[tu]) = 1
4 su ← tu
5 t1−u ← s1−u + 1
6 tu ← tu + 1
7 u← 1− u
8 for each u← {0, 1}
9 for each t← {0, . . . , nu − 1}

10 if T (p1−u[s1−u], pu[su], pu[t]) = 1
11 return NULL

12 return (s0, s1)

(s0, s1) in the loop beginning at line 8, no separating common tangent can exist and NULL is
returned. Let s(i)

k be the value of sk after i = 0, 1, . . . iterations of the loop at line 2. We
always have s(0)

k = 0 due to the initialization of sk. See Figure 2.
Assume that s0 is updated in line 4 in iteration i. The point p0[s(i)

0] is in the half-plane
LHP(p1[s(i−1)

1], p0[s(i−1)
0]), but not on the line L(p1[s(i−1)

1], p0[s(i−1)
0]). Therefore, we have

the following observation.

I Observation 3. When sk is updated, the temporary line is rotated counterclockwise around
s1−k by an angle less than π.

Assume in the following that the convex hulls of P0 and P1 are disjoint so that separating
common tangents exist. Let (r0, r1) be the indices that define the separating common tangent
such that Pk is contained in RHP(p1−k[r1−k], pk[rk]), i.e., (r0, r1) is the result we are going
to prove that the algorithm returns.

Since H(Pk) is convex, the temporary line always divides H(Pk) into two convex parts.
If we follow the temporary line from p1−k[s1−k] in the direction towards pk[sk], we enter

SoCG’15

202 An Optimal Algorithm for the Separating Common Tangents of Two Polygons

H(Pk) at some point x and thereafter leave H(Pk) again at some point y. We clearly have
x = y if and only if the temporary line is a tangent to H(Pk), since if x = y and the line
was no tangent, H(Pk) would only be a line segment. The part of the boundary of H(Pk)
counterclockwise from x to y is in RHP(p1−k[s1−k], pk[sk]) whereas the part from y to x is
on LHP(p1−k[s1−k], pk[sk]). We therefore have the following observation.

I Observation 4. Let d be the index of the corner of H(Pk) strictly after y in counterclockwise
order. There exists a corner pk[t] of Pk such that T (p1−k[s1−k], pk[sk], pk[t]) = 1 if and only
if T (p1−k[s1−k], pk[sk], pk[d]) = 1.

Let ck be the index of the first corner of H(Pk) when following H(Pk) in counterclockwise
order from y, ck = 0, . . . , nk − 1. If y is itself a corner of H(Pk), we have pk[ck] = y.
By observation 4 we see that T (p1−k[s1−k], pk[sk], pk[ck]) ≥ 0 with equality if and only if
pk[ck] = pk[sk] = y. Let c(0)

k be ck when only line 1 has been executed. Consider now the
value of ck after i = 1, 2, . . . iterations of the loop at line 2. Let c(i)

k = ck and add nk to c(i)
k

until c(i)
k ≥ c

(i−1)
k . This gives a non-decreasing sequence of indices c(0)

k , c
(1)
k , . . . of the first

corner of H(Pk) in LHP(p1−k[s1−k], pk[sk]). Actually, we prove in the following that we need
to add nk to c(i)

k at most once before c(i)
k ≥ c

(i−1)
k . If rk < c

(0)
k we add nk to rk. Thus we

have 0 = s
(0)
k ≤ c(0)

k ≤ rk < 2nk.
The following lemma intuitively says that the algorithm does not “jump over” the correct

solution and it expresses the main idea in our proof of correctness.

I Lemma 5. After each iteration i = 0, 1, . . . and for each k = 0, 1 we have

0 ≤ s(i)
k ≤ c

(i)
k ≤ rk < 2nk.

Proof. We prove the lemma for k = 0. From the definition of r0, we get that 0 = s
(0)
0 ≤

c
(0)
0 ≤ r0 < 2n0. Since the sequence s(0)

0 , s
(1)
0 , . . . is non-decreasing, the inequality 0 ≤ s(i)

k is
true for every i.

Now, assume inductively that s(i−1)
0 ≤ c

(i−1)
0 ≤ r0 and consider what happens during

iteration i. If neither s0 nor s1 is updated, the statement is trivially true from the induction
hypothesis, so assume that an update happens.

By the old temporary line we mean the temporary line defined by (s(i−1)
0 , s

(i−1)
1) and the

new temporary line is the one defined by (s(i)
0 , s

(i)
1). The old temporary line enters H(P0) at

some point x and exits at some point y when followed from p1[s(i−1)
1]. Likewise, let v be the

point where the new temporary line exits H(P0) when followed from p1[s(i)
1]. The point x

exists since the convex hulls are disjoint.
Assume first that the variable u in the algorithm is 0, i.e., a corner of the polygon P0 is

traversed. In this case s(i−1)
1 = s

(i)
1 .

We now prove s(i)
0 ≤ c

(i)
0 . Assume that p0[s(i−1)

0] 6= p0[c(i−1)
0]. The situation is depic-

ted in Figure 3. In this case T (p1[s(i−1)
1], p0[s(i−1)

0], p0[c(i−1)
0]) = 1. Hence, the update

happens when p0[c(i−1)
0] is traversed or earlier, so s(i)

0 ≤ c
(i−1)
0 ≤ c

(i)
0 . Assume now that

p0[s(i−1)
0] = p0[c(i−1)

0]. We cannot have c(i)
0 = c

(i−1)
0 since T (p1[s(i)

1], p0[s(i)
0], p0[c(i−1)

0]) =
−T (p1[s(i−1)

1], p0[s(i−1)
0], p0[s(i)

0]) = −1, therefore c(i)
0 > c

(i−1)
0 . Consider the corner p0[c′] on

H(P0) following p0[c(i−1)
0] in counterclockwise order, c′ > c

(i−1)
0 . Due to the minimality of c′,

we have c′ ≤ c(i)
0 . By Observation 4, T (p1[s(i−1)

1], p0[s(i−1)
0], p0[c′]) = 1. Therefore, s0 must

be updated when p0[c′] is traversed or earlier, so s(i)
0 ≤ c′ ≤ c

(i)
0 .

For the inequality c
(i)
0 ≤ r0, consider the new temporary line in the direction from

p1[s(i−1)
1] to p0[s(i)

0]. We prove that v is in the part of H(P0) from y counterclockwise to r0.
The point p0[s(i)

0] is in the polygon Q defined by the segment xy together with the part of

M. Abrahamsen 203

P0

P1

r0

r1
s

(i−1)
0

s
(i−1)
1

c
(i−1)
0

x

y

s
(i)
0

c
(i)
0

v

w

Figure 3 An update of s0 happens in iteration i from s
(i−1)
0 to s

(i)
0 and p0[c0] moves forward on

H(P0) from p0[c(i−1)
0] to p0[c(i)

0]. The relevant corners are marked and labeled with their indices.
The polygon C from the proof of Lemma 5 is drawn with thick lines.

H(P0) from y counterclockwise to x. Therefore, the new temporary line enters and exits Q.
It cannot exit through the segment xy, since the old and new temporary lines intersect at
p1[s(i−1)

1], which is in H(P1). Therefore, v must be on the part of H(P0) from y to x. If r0
is on the part of H(P0) from x counterclockwise to y, then v is on the part from y to r0 as
we wanted.

Otherwise, assume for contradiction that the points appear in the order y, p0[r0], v, x
counterclockwise alongH(P0), where p0[r0] 6= v 6= x. The endpoints of the segment p1[s(i−1)

1]x
are on different sides of the tangent defined by (r0, r1), so the segment intersects the tangent
at a point w. The part of H(P0) from p0[r0] to x and the segments xw and wp0[r0] form a
simple polygon C, see Figure 3 for an example. The new temporary line enters C at the point
v, so it must leave C after v. The line cannot cross H(P0) after v since H(P0) is convex. It
also cannot cross the segment xw at a point after v since the old and the new temporary line
cross before v, namely at p1[s(i−1)

1]. The tangent defined by (r0, r1) and the new temporary
line intersect before v since the endpoints of the segment p1[s(i−1)

1]v are on different sides of
the tangent. Therefore, the line cannot cross the segment wp0[r0] at a point after v. Hence,
the line cannot exit C. That is a contradiction.

Therefore, v is on the part of H(P0) from y to p0[r0] and hence the first corner p0[c(i)
0] of

H(P0) after v must be before or coincident with p0[r0], so that c(i)
0 ≤ r0.

Assume now that u = 1 in the beginning of iteration i, i.e., a corner of the other polygon
P1 is traversed. In that case, we have s(i)

0 = s
(i−1)
0 ≤ c(i−1)

0 ≤ c(i)
0 , and we need only prove

c
(i)
0 ≤ r0. Observation 3 gives that v is in the part of H(P0) from y to x, since the new
temporary line is obtained by rotating the old temporary line counterclockwise around
p0[s(i−1)

0] by an angle less than π. That v appears before p0[r0] on H(P0) counterclockwise
from y follows from exactly the same arguments as in the case u = 0. This completes the
proof. J

I Lemma 6. If the temporary line is different from the tangent defined by (r0, r1), then
T (p0[s0], p1[s1], p1[r1]) = 1 or T (p1[s1], p0[s0], p0[r0]) = 1.

Proof. Assume not. There are points of the temporary line on each side of the tangent
because it is separating, so the temporary line and the tangent cross each other in a point a.

SoCG’15

204 An Optimal Algorithm for the Separating Common Tangents of Two Polygons

The point a is on the segment p0[r0]p1[r1], since otherwise p0[r0] and p1[r1] would be on the
same side of the temporary line, so T (p0[s0], p1[s1], p1[r1]) = 1 or T (p1[s1], p0[s0], p0[r0]) = 1.
Choose a point dR on the temporary line in RHP(p0[r0], p1[r1]) which is so far away from
a that all intersections between the line and the polygons are on the same side of dR as
a. Choose dL in a similar way in LHP(p0[r0], p1[r1]). We have −1 = T (p0[r0], p1[r1], dR) =
T (p0[r0], a, dR) = −T (dR, a, p0[r0]), so the supports must appear in the order s0, s1 when
traveling along the temporary line from dR towards a for T (p1[s1], p0[s0], p0[r0]) ≤ 0 to hold.

We also have that p0[s0] is on the segment adL since p0[s0] ∈ LHP(p0[r0], p1[r1]) and
p1[s1] is on the segment adR since p1[s1] ∈ RHP(p0[r0], p1[r1]). Hence, the order of the
supports from dR towards a is s1, s0. That is a contradiction. J

We are now ready to prove that Algorithm 1 has the desired properties.

I Theorem 7. If the polygons P0 and P1 have separating common tangents, Algorithm 1
returns a pair of indices (s0, s1) defining a separating common tangent such that Pk is
contained in RHP(p1−k[s1−k], pk[sk]) for k = 0, 1. If no separating common tangents exist,
the algorithm returns NULL. The algorithm runs in linear time and uses constant workspace.

Proof. Assume first that separating common tangents do not exist. Then the test in line 10
makes the algorithm return NULL due to some corner pu[t] on the wrong side of the temporary
line.

Assume now that separating common tangents do exist and that the temporary line is not
the desired tangent. Without loss of generality, we may assume that T (p1[s1], p0[s0], p0[r0]) =
1 by Lemma 6. Lemma 5 gives that p0[r0] will be traversed if no other update of s0 or s1
happens. Therefore, an update happens before the loop at line 2 finishes. We conclude that
when the loop finishes, the pair (s0, s1) defines the separating common tangent as stated.

When an update happens in iteration i of the loop at line 2, the sum s0+s1 is increased by a
value which is at least i−j

2 , where j ≥ 0 was the previous iteration where an update happened.
Inductively, we see that the number of iterations is always at most 2(s0+s1)+t0−s0+t1−s1 ≤
2(t0 + t1) ≤ 4(n0 + n1). J

3 Computing outer common tangents

In this section, we assume that two polygons P0 and P1 are given such that their convex
hulls are disjoint. We assume that the corners p0[0], . . . , p0[n0 − 1] of P0 are given in
counterclockwise order and the corners p1[0], . . . , p1[n1− 1] of P1 are given in clockwise order.
We say that the orientation of P0 and P1 is counterclockwise and clockwise, respectively. We
prove that Algorithm 2 returns two indices (s0, s1) that define an outer common tangent
such that P0 and P1 are both contained in RHP(p0[s0], p1[s1]).

As in the case of separating common tangents, we define s(i)
k as the value of sk after

i = 0, 1, . . . iterations of the loop at line 2 of Algorithm 2. See Figure 4. For this algorithm,
we get a slightly different analogue to Observation 3:

I Observation 8. When sk is updated, the temporary line is rotated around s1−k in the
orientation of P1−k by an angle less than π.

Let y be the point where the temporary line enters H(Pk) when followed from p1−k[s1−k]
and x the point where it exits H(Pk). We have the following analogue of Observation 4.

I Observation 9. Let d be the index of the corner of H(Pk) strictly after y following the
orientation of Pk. There exists a corner pk[t] of Pk such that T (p0[s0], p1[s1], pk[t]) = 1 if
and only if T (p0[s0], p1[s1], pk[d]) = 1.

M. Abrahamsen 205

P0

P1

s
(0)
0

s
(0)
1

s
(1)
0

s
(2)
1

s
(3)
0

s
(6)
1

s
(9)
0

s
(10)
1

s
(12)
1

s
(14)
1

s
(15)
0

s
(16)
1s

(19)
0

Figure 4 Algorithm 2 running on two polygons P0 and P1. The corners pk[s(i)
k] are marked and

labeled as s
(i)
k for the initial values s

(0)
k and after each iteration i where an update of sk happens.

The segments p0[s(i)
0]p1[s(i)

1] on the temporary line are dashed.

Algorithm 2: OuterCommonTangent(P0, P1)
1 s0 ← 0; t0 ← 1; s1 ← 0; t1 ← 1; u← 0
2 while t0 < 2n0 or t1 < 2n1
3 if T (p0[s0], p1[s1], pu[tu]) = 1
4 su ← tu
5 t1−u ← s1−u + 1
6 tu ← tu + 1
7 u← 1− u
8 return (s0, s1)

Let ck be the index of the first corner ofH(Pk) after y following the orientation of Pk, where
pk[ck] = y if y is itself a corner of H(Pk). By Observation 9, we have T (p0[s0], p1[s1], pk[ck]) ≥
0 with equality if and only if pk[ck] = pk[sk] = y. Define a non-decreasing sequence
c

(0)
k , c

(1)
k , . . . of the value of ck after i = 0, 1, . . . iterations as we did for separating tangents.

Also, let the indices (r0, r1) define the outer common tangent that we want the algorithm
to return such that c(0)

k ≤ rk < 2nk. We can now state the analogue to Lemma 5 for outer
common tangents.

I Lemma 10. After each iteration i = 0, 1, . . . and for each k = 0, 1 we have

0 ≤ s(i)
k ≤ c

(i)
k ≤ rk < 2nk.

Proof. Assume k = 0 and the induction hypothesis s(i−1)
0 ≤ c

(i−1)
0 ≤ r0. The inequality

s
(i)
0 ≤ c

(i)
0 can be proven exactly as in the proof of lemma 5. Therefore, consider the inequality

c
(i)
0 ≤ r0 and assume that an update happens in iteration i.

Let the old temporary line and the new temporary line be the lines defined by the indices
(s(i−1)

0 , s
(i−1)
1) and (s(i)

0 , s
(i)
1), respectively. Let y and x be the points where the old temporary

line enters and exits H(P0) followed from p1[s(i−1)
1], respectively, and let v be the point where

the new temporary line enters H(P0). The points y and v exist since the convex hulls of P0
and P1 are disjoint.

SoCG’15

206 An Optimal Algorithm for the Separating Common Tangents of Two Polygons

P0

P1

r0 r1

r1

s
(i−1)
0

s
(i−1)
1

x

y

`0

`1

Figure 5 The area A from the proof of Lemma 10 in grey. The relevant corners are marked and
labeled with their indices.

Assume first that the variable u in the algorithm equals 0 when the update happens. We
prove that v is in the part of H(P0) from y to p0[r0] following the orientation of P0, which is
counterclockwise. The point p0[s(i)

0] is in the simple polygon Q bounded the part of H(P0)
from y counterclockwise to x and the segment xy. Therefore, the new temporary line must
enter Q to get to p0[s(i)

0]. It cannot enter through xy, since the old and new temporary line
cross at p1[s(i−1)

1] which is not in H(Pk) by assumption. Therefore, it must enter through
the part of H(P0) from y to x, so v is in this part. If r0 is not in the part of H(P0) from y to
x, it is clearly true that v is in the part from y to p0[r0]. Otherwise, assume for contradiction
that the points appear on H(P0) in the order y, p0[r0], v, x and p0[r0] 6= v 6= x. Let `0 be the
half-line starting at p0[r0] following the tangent away from p1[r1], and let `1 be the half-line
starting at x following the old temporary line away from p1[s(i−1)

1]. The part of H(P0) from
p0[r0] to x and the half-lines `0 and `1 define a possibly unbounded area A outside H(P0), see
Figure 5. We follow the new temporary line from p1[s(i−1)

1] towards v. The point p1[s(i−1)
1]

is not in A and the new temporary line exits A at v since it enters H(P0) at v, so it must
enter A somewhere at a point on the segment p1[s(i−1)

1]v. It cannot enter through H(P0)
since H(P0) is convex. It cannot enter through `0 since v and p1[s(i−1)

1] are on the same side
of the outer common tangent. It cannot enter through `1 since the old and new temporary
line intersect in p1[s(i−1)

1], which is not in A. That is a contradiction, so v is on the part of
H(P0) from y to p0[r0]. Hence, the first corner after y is coincident with or before p0[r1], i.e.,
c

(i)
0 ≤ r0.

Assume now that u = 1 in the beginning of iteration i so that a corner of the polygon P1
is traversed. Observation 8 gives that v is on the part of H(P0) from y counterclockwise to
x. It follows that v appears before p0[r0] on H(P0) counterclockwise from y from exactly the
same arguments as in the case u = 0. J

We have the following equivalent of Lemma 6 which, however, has a different proof.

I Lemma 11. If the temporary line is different from the tangent defined by (r0, r1), then
T (p0[s0], p1[s1], p0[r0]) = 1 or T (p0[s0], p1[s1], p1[r1]) = 1.

Proof. Assume not. The points p0[s0] and p1[s1] are both in RHP(p0[r0], p1[r1]). Therefore,
the temporary line cannot be parallel with the tangent, since in that case we would have
T (p0[s0], p1[s1], p0[r0]) = 1. Let a be the intersection point between the tangent and
the temporary line. The point a cannot be in the interior of the segment p0[r0]p1[r1],

M. Abrahamsen 207

P0

P1

s
(0)
0

s
(0)
1

Figure 6 Two polygons P0 and P1 where Algorithm 2 does not work for the initial values of s0

and s1 as shown. The correct tangent is drawn as a dashed line.

since in that case, p0[r0] and p1[r1] would be on different sides of the temporary line, so
T (p0[s0], p1[s1], p0[r0]) = 1 or T (p0[s0], p1[s1], p1[r1]) = 1. Assume without loss of generality
that a is on the half-line from p0[r0] going away from p1[r1]. Also assume that p0[s0] 6= a, since
otherwise p0[s0] = a = p0[r0] and −1 = T (p0[r0], p1[r1], p1[s1]) = −T (p0[s0], p1[s1], p1[r1]).
Now, 1 = T (p1[r1], p0[r0], p0[s0]) = T (p1[r1], a, p0[s0]) = −T (p0[s0], a, p1[r1]). This forces
p1[s1] to be on the segment p0[s0]a.

From a, the orders of the points are p1[s1], p0[s0] and p0[r0], p1[r1] along the temporary line
and the tangent, respectively. The points ap1[s1]p0[r0] form a triangle ∆0 and ap0[s0]p1[r1]
form a larger triangle ∆1 containing ∆0. The part ∆1 \∆0 of ∆1 not in ∆0 is therefore
a quadrilateral p0[s0]p1[s1]p0[r0]p1[r1] with all inner angles less than π, so the diagonals
p0[s0]p0[r0] and p1[s1]p1[r1] cross each other. Hence, the convex hulls of P0 and P1 are not
disjoint. J

We can now prove the stated properties of Algorithm 2 in much the same way as the
proof of Theorem 7.

I Theorem 12. If the polygons P0 and P1 have disjoint convex hulls, Algorithm 2 returns a
pair of indices (s0, s1) defining an outer common tangent such that P0 and P1 are contained
in RHP(s0, s1). The algorithm runs in linear time and uses constant workspace.

4 Concluding Remarks

We have described an algorithm for computing the separating common tangents of two simple
polygons in linear time using constant workspace. We have also described an algorithm
for computing outer common tangents using linear time and constant workspace when the
convex hulls of the polygons are disjoint. Figure 6 shows an example where Algorithm 2 does
not work when applied to two disjoint polygons with overlapping convex hulls. In fact, if
there was no bound on the values t0 and t1 in the loop at line 2, the algorithm would update
s0 and s1 infinitely often and never find the correct tangent. An obvious improvement is to
find an equally fast and space efficient algorithm which does not require the convex hulls to
be disjoint. An algorithm for computing an outer common tangent of two polygons, when
such one exists, also decides if one convex hull is completely contained in the other. Together
with the algorithm for separating common tangents presented in Section 2, we would have
an optimal algorithm for deciding the complete relationship between the convex hulls: if one
is contained in the other, and if not, whether they are disjoint or not. However, keeping in
mind that it is harder to compute an outer common tangent of intersecting convex polygons

SoCG’15

208 An Optimal Algorithm for the Separating Common Tangents of Two Polygons

than of disjoint ones [7], it would not be surprising if it was also harder to compute an outer
common tangent of general simple polygons than simple polygons with disjoint convex hulls
when only constant workspace is available.

References
1 M. Abrahamsen. An optimal algorithm computing edge-to-edge visibility in a simple poly-

gon. In Proceedings of the 25th Canadian Conference on Computational Geometry, CCCG,
pages 157–162, 2013.

2 T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, and A. Schulz. Memory-
constrained algorithms for simple polygons. Computational Geometry: Theory and Applic-
ations, 46(8):959–969, 2013.

3 T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-work-space algorithms for geometric
problems. Journal of Computational Geometry, 2(1):46–68, 2011.

4 L. Barba, M. Korman, S. Langerman, and R.I. Silveira. Computing the visibility polygon
using few variables. In Proceedings of the 22nd International Symposium on Algorithms
and Computation, ISAAC, volume 7014 of Lecture Notes in Computer Science, pages 70–
79. Springer, 2011.

5 G.S. Brodal and R. Jacob. Dynamic planar convex hull. In Proceedings of the 43rd annual
IEEE Symposium on Foundations of Computer Science, FOCS, pages 617–626, 2002.

6 R.L. Graham and F.F. Yao. Finding the convex hull of a simple polygon. Journal of
Algorithms, 4(4):324–331, 1983.

7 Leonidas Guibas, John Hershberger, and Jack Snoeyink. Compact interval trees: A data
structure for convex hulls. International Journal of Computational Geometry & Applica-
tions, 1(1):1–22, 1991.

8 J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algorithm. BIT
Numerical Mathematics, 32(2):249–267, 1992.

9 D. Kirkpatrick and J. Snoeyink. Computing common tangents without a separating line. In
Proceedings of the 4th International Workshop on Algorithms and Data Structures, WADS,
volume 955 of Lecture Notes in Computer Science, pages 183–193. Springer, 1995.

10 A.A. Melkman. On-line construction of the convex hull of a simple polyline. Information
Processing Letters, 25(1):11–12, 1987.

11 M.H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. Journal
of Computer and System Sciences, 23(2):166–204, 1981.

12 F.P. Preparata and S.J. Hong. Convex hulls of finite sets of points in two and three
dimensions. Communications of the ACM, 20(2):87–93, 1977.

13 G.T. Toussaint. Solving geometric problems with the rotating calipers. In Proceedings of
the IEEE Mediterranean Electrotechnical Conference, MELECON, pages A10.02/1–4, 1983.

A Linear-Time Algorithm for the Geodesic Center
of a Simple Polygon
Hee Kap Ahn∗3, Luis Barba1,2, Prosenjit Bose1,
Jean-Lou De Carufel1, Matias Korman4,5, and Eunjin Oh3

1 School of Computer Science, Carleton University, Ottawa, Canada
jit@scs.carleton.ca, jdecaruf@cg.scs.carleton.ca

2 Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium
lbarbafl@ulb.ac.be

3 Department of Computer Science and Engineering, POSTECH,
77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, Korea
{heekap, jin9082}@postech.ac.kr

4 National Institute of Informatics (NII), Tokyo, Japan
korman@nii.ac.jp

5 JST, ERATO, Kawarabayashi Large Graph Project

Abstract
Let P be a closed simple polygon with n vertices. For any two points in P , the geodesic distance
between them is the length of the shortest path that connects them among all paths contained
in P . The geodesic center of P is the unique point in P that minimizes the largest geodesic
distance to all other points of P . In 1989, Pollack, Sharir and Rote [Disc. & Comput. Geom.
89] showed an O(n logn)-time algorithm that computes the geodesic center of P . Since then, a
longstanding question has been whether this running time can be improved (explicitly posed by
Mitchell [Handbook of Computational Geometry, 2000]). In this paper we affirmatively answer
this question and present a linear time algorithm to solve this problem.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Geodesic distance, facility location, 1-center problem, simple polygons

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.209

1 Introduction

Let P be a simple polygon with n vertices. Given two points x, y in P , the geodesic path
π(x, y) is the shortest path contained in P connecting x with y. If the straight-line segment
connecting x with y is contained in P , then π(x, y) is a straight-line segment. Otherwise,
π(x, y) is a polygonal chain whose vertices (other than its endpoints) are reflex vertices of P .
We refer the reader to [20] for more information on geodesic paths.

The geodesic distance between x and y, denoted by |π(x, y)|, is the sum of the Euclidean
lengths of each segment in π(x, y). Throughout this paper, when referring to the distance
between two points in P , we mean the geodesic distance between them. To ease the
description, we assume that each vertex of P has a unique farthest neighbor. This general
position condition was also assumed by Aronov et al. [2] and can be obtained by applying a
slight perturbation to the positions of the vertices [10].

∗ The work by H.-K. Ahn and E. Oh was supported by the NRF grant 2011-0030044 (SRC-GAIA) funded
by the Korea government (MSIP).

© Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, Matias Korman, and Eunjin Oh;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 209–223

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.209
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

210 A Linear-Time Algorithm for the Geodesic Center of a Simple Polygon

Given a point x ∈ P , a (geodesic) farthest neighbor of x, is a point fP (x) (or simply f(x))
of P whose geodesic distance to x is maximized.

Let FP (x) be the function that maps each x ∈ P to the distance to a farthest neighbor of
x (i.e., FP (x) = |π(x, f(x))|). A point cP ∈ P that minimizes FP (x) is called the geodesic
center of P . Similarly, a point s ∈ P that maximizes FP (x) (together with f(s)) is called
a geodesic diametral pair and their distance is known as the geodesic diameter. Asano and
Toussaint [3] showed that the geodesic center is unique (whereas it is easy to see that several
geodesic diametral pairs may exist).

In this paper, we show how to compute the geodesic center of P in O(n) time. Due to
lack of space, some proofs are omitted. For a full version of this paper refer to [1].

1.1 Previous Work
Since the early 1980s the problem of computing the geodesic center (and its counterpart,
the geodesic diameter) has received a lot of attention from the computational geometry
community. Chazelle [7] gave the first algorithm for computing the geodesic diameter (which
runs in O(n2) time using linear space). Afterwards, Suri [25] reduced it to O(n logn)-time
without increasing the space constraints. Finally, Hershberger and Suri [14] presented a fast
matrix search technique, one application of which is a linear-time algorithm for computing
the diameter. The first algorithm for computing the geodesic center was given by Asano and
Toussaint [3], and runs in O(n4 logn)-time. In 1989, Pollack, Sharir, and Rote [23] improved
it to O(n logn) time. Since then, it has been an open problem whether the geodesic center
can be computed in linear time (indeed, this problem was explicitly posed by Pollack et
al. [23] and later by Mitchell [20, Chapter 27]).

Several variations of these two problems have been considered. Indeed, the same problem
has been studied under different metrics. For example, the L1 geodesic distance [6], the link
distance [9, 15, 24] (where we look for the path with the minimum possible number of bends
or links), or even rectilinear link distance [21, 22] (a variation of the link distance in which
only isothetic segments are allowed). The diameter and center of a simple polygon for both
the L1 and rectilinear link metrics can be computed in linear time (whereas O(n logn) time is
needed for the link distance). Another natural extension is the computation of the diameter
and center in polygonal domains (i.e., polygons with one or more holes). Polynomial time
algorithms are known for both the diameter [4] and center [5], although the running times
are significantly larger (i.e., O(n7.73) and O(n12+ε), respectively).

1.2 Outline
In order to compute the geodesic center, cP , Pollack et al. [23] introduce a linear time
chord-oracle. Given a chord C that splits P into two sub-polygons, this oracle determines
which sub-polygon contains cP . Combining this operation with an efficient search on a
triangulation of P , Pollack et al. narrow the search of cP within a triangle (and find the
center using optimization techniques). Their approach however, does not allow them to
reduce the complexity of the problem in each iteration, and hence it runs in Θ(n logn) time.

The general approach of our algorithm described in Section 6 is similar: partition P

into O(1) cells, use an oracle to determine which cell contains cP , and recurse within the
cell. Our approach differs however in two important aspects that allows us to speed-up the
algorithm. First, we do not use the chords of a triangulation of P to partition the problem
into cells. We use instead a cutting of a suitable set of chords. Secondly, we compute a set
Σ of O(n) functions, each defined in a triangular domain contained in P , such that their

H.-K. Ahn, L. Barba, P. Bose, J.-L. De Carufel, M. Korman, and E. Oh 211

upper envelope, φ, coincides with FP . Thus, we can “ignore” the polygon P and focus only
on finding the minimum of the function φ.

The search itself uses ε-nets and cutting techniques, which guarantee that both the size of
the cell containing cP and the number of functions of Σ defined in it decrease by a constant
fraction (and thus leads to an overall linear time algorithm). This search has however two
stopping conditions, (1) reach a subproblem of constant size, or (2) find a triangle containing
cP . In the latter case, we show that φ is a convex function when restricted to this triangle.
Thus, finding its minimum becomes an optimization problem that we solve in Section 7 using
cuttings in R3. The key of this approach lies in the computation of the functions in Σ and
their triangular domains. Each function g ∈ Σ is defined in a triangular domain 4 contained
in P and is associated to a particular vertex w of P . Intuitively speaking, g maps points in
4 to their (geodesic) distance to w. We guarantee that, for each point x ∈ P , there is one
function g ∈ Σ defined in a triangle containing x, such that g(x) = FP (x). To compute these
triangles and their corresponding functions, we proceed as follows.

In Section 2, we use the matrix search technique introduced by Hershberger and Suri [14]
to decompose the boundary of P , denoted by ∂P , into connected edge-disjoint chains. Each
chain is defined by either (1) a consecutive list of vertices that have the same farthest neighbor
v (we say that v is marked if it has such a chain associated to it), or (2) an edge whose
endpoints have different farthest neighbors (such edge is called a transition edge).

In Section 3, we consider each transition edge ab of ∂P independently and compute
its hourglass. Intuitively, the hourglass of ab, Hab, is the region of P between two chains,
the edge ab and the chain of ∂P that contains the farthest neighbors of all points in ab.
Inspired by a result of Suri [25], we show that the sum of the combinatorial complexities of all
hourglasses defined on a transition edge is O(n). (The combinatorial complexity—or simply
complexity—of a geometric object is the total number of vertices and edges that define it.)
In addition, we provide a new technique to compute all these hourglasses in linear time.

In Section 5 we show how to compute the functions in Σ and their respective triangles.
We distinguish two cases: (1) Inside each hourglass Hab of a transition edge, we use a
technique introduced by Aronov et al. [2] that uses the shortest-path trees of a and b in
Hab to construct O(|Hab|) triangles with their respective functions (for more information on
shortest-path trees refer to [11]). (2) For each marked vertex v we compute triangles that
encode the distance from v. Moreover, we guarantee that these triangles cover every point of
P whose farthest neighbor is v. Overall, we compute the O(n) functions of Σ in linear time.

2 Decomposing the boundary

In this section, we decompose ∂P into chains of consecutive vertices that share the same
farthest neighbor and edges of P whose endpoints have distinct farthest neighbors.

Using a result from Hershberger and Suri [14], in O(n) time we can compute the farthest
neighbor of each vertex of P . Recall that the farthest neighbor of each vertex of P is always
a convex vertex of P [3] and is unique by our general position assumption. The (farthest)
Voronoi region of a vertex v of P is the set of points R(v) = {x ∈ P : FP (x) = |π(x, v)|}
(including boundary points).

We mark the vertices of P that are farthest neighbors of at least one vertex of P .
Let M denote the set of marked vertices of P (clearly this set can be computed in O(n)
time after applying the result of Hershberger and Suri). In other words, M contains all
vertices of P whose Voronoi region contains at least one vertex of P . Given a vertex v

of P , the vertices of P whose farthest neighbor is v appear contiguously along ∂P [2].

SoCG’15

212 A Linear-Time Algorithm for the Geodesic Center of a Simple Polygon

P
v6 v1

v2

v3

v4

v5

Figure 1 Each vertex of the boundary of P
is assigned with a farthest neighbor which is
then marked. The boundary is then decomposed
into vertex-disjoint chains, each associated with a
marked vertex, joined by transition edges (blue)
whose endpoints have different farthest neighbors.

Therefore, after computing all these farthest
neighbors, we effectively split the boundary
into subchains, each associated with a differ-
ent vertex of M ; see Figure 1.

Given two points x and y on ∂P , let
∂P (x, y) be the polygonal chain that starts
at x and follows the boundary of P clockwise
until reaching y. We say that three (non-
empty) disjoint sets A,B and C contained in
∂P are in clockwise order if B ⊂ ∂P (a, c) for
any a ∈ A and any c ∈ C. (To ease notation,
we say that three points x, y, z ∈ ∂P are in
clockwise order if {x}, {y} and {z} are in
clockwise order).

Let a and b be the endpoints of a trans-
ition edge of ∂P such that b is the clockwise
neighbor of a along ∂P . Because ab is a transition edge, we know that f(a) 6= f(b). Recall
that we have computed f(a) and f(b) in the previous step and note that a, b, f(a), f(b) are
in clockwise order.

For any vertex v ∈ ∂P such that f(a) 6= v 6= f(b) and f(a), v, f(b) are in clockwise order,
we know that there cannot be a vertex u of P such that f(u) = v. As proved by Aronov et
al. [2, Corollary 2.7.4], if there is a point x on ∂P whose farthest neighbor is v, then x must
lie on the open segment (a, b). In other words, the Voronoi region R(v) restricted to ∂P is
contained in (a, b).

3 Hourglasses

For any polygonal chain C = ∂P (p0, pk), the hourglass of C, denoted by HC , is the simple
polygon contained in P bounded by C, π(pk, f(p0)), ∂P (f(p0), f(pk)) and π(f(pk), p0); see
Figure 2. We call C and ∂P (f(p0), f(pk)) the top and bottom chains of HC , respectively,
while π(pk, f(p0)) and π(f(pk), p0) are referred to as the walls of HC . We say that the
hourglass HC is open if its walls are vertex-disjoint. We say C is a transition chain if
f(p0) 6= f(pk) and neither f(p0) nor f(pk) are interior vertices of C. In particular, if an edge
ab of ∂P is a transition chain, we say that it is a transition edge (see Figure 2).

I Lemma 1 (Restatement of Lemma 3.1.3 of [2]). If C is a transition chain of ∂P , then the
hourglass HC is an open hourglass.

In the remainder of the paper, all the hourglasses considered are defined by a transition
chain. That is, they are open and their top and bottom chains are edge-disjoint.

The following lemma is depicted in Figure 2 and is a direct consequence of the Ordering
Lemma proved by Aronov et al. [2, Corollary 2.7.4].

I Lemma 2. Let C1, C2, C3 be three edge-disjoint transition chains of ∂P in clockwise order.
Then, the bottom chains of HC1 , HC2 and HC3 are also edge-disjoint and are in clockwise
order.

Let γ be a geodesic path joining two points on the boundary of P . We say that γ separates
two points x1 and x2 of ∂P if the points of X = {x1, x2} and the endpoints of γ alternate
along the boundary of P (x1 and x2 could coincide with the endpoints of γ in degenerate

H.-K. Ahn, L. Barba, P. Bose, J.-L. De Carufel, M. Korman, and E. Oh 213

P

f(p3)

f(p0)

C

p0 p1
p2

HC

q2

q0

q1 f(q0)

f(q2)

p3

f(t1)

f(t0)

t0

t1

f(p3)

f(p0)

C

p0
p2 p3

p1

Figure 2 Given two edge-disjoint transition chains, their hourglasses are open and the bottom
chains of their hourglasses are also edge-disjoint. Moreover, these bottom chains appear in the same
cyclic order as the top chains along ∂P .

cases). We say that a geodesic path γ separates an hourglass H if it separates the points of
its top chain from those of its bottom chain.

I Lemma 3. Let C1, . . . , Cr be edge-disjoint transition chains of ∂P . Then, there is a set
of t ≤ 10 geodesic paths γ1, . . . , γt with endpoints on ∂P such that for each 1 ≤ i ≤ r there
exists 1 ≤ j ≤ t such that γj separates HCi

. Moreover, this set can be computed in O(n)
time.

A chord of P is an edge joining two non-adjacent vertices a and b of P such that ab ⊆ P .
Therefore, a chord splits P into two sub-polygons.

I Lemma 4 (Restatement of Lemma 3.4.3 of [2]). Let C1, . . . , Cr be a set of edge-disjoint
transition chains of ∂P in clockwise order. Then each chord of P appears in O(1) hourglasses
among HC1 , . . . ,HCr

.

I Lemma 5. Let x, u, y, v be four vertices of P in clockwise order. Given the shortest-path
trees Tx and Ty of x and y in P , respectively, such that Tx and Ty can answer lowest common
ancestor (LCA) queries in O(1) time, we can compute the path π(u, v) in O(|π(u, v)|) time.
Moreover, all edges of π(u, v), except perhaps one, belong to Tx ∪ Ty.

I Lemma 6. Let P be a simple polygon with n vertices. Given k disjoint transition chains
C1, . . . , Ck of ∂P , it holds that

k∑
i=1
|HCi

| = O(n).

Proof. Because the given transition chains are edge-disjoint, Lemma 2 implies that the
bottom chains of their respective hourglasses are also edge-disjoint. Therefore, the sum of
the complexities of all the top and bottom chains of these hourglasses is O(n). To bound
the complexity of their walls we use Lemma 4. Since no chord is used more than a constant
number of times, it suffices to show that the total number of chords used by all these
hourglasses is O(n).

To prove this, we use Lemma 3 to construct O(1) splitting chains γ1, . . . , γt such that for
each 1 ≤ i ≤ k, there is a splitting chain γj that separates the top and bottom chains of HCi

.
For each 1 ≤ j ≤ t, let Hj = {HCi

: the top and bottom chain of HCi
are separated by γj}.

Since the complexity of the shortest-path trees of the endpoints of γj is O(n) [11], and from
the fact that the chains C1, . . . , Ck are edge-disjoint, Lemma 5 implies that the total number

SoCG’15

214 A Linear-Time Algorithm for the Geodesic Center of a Simple Polygon

of edges in all the hourglasses of Hj is O(n). Moreover, because each of these edges appears
in O(1) hourglasses among C1, . . . , Ck, we conclude that∑

H∈Hj

|H| = O(n).

Since we have only O(1) splitting chains, our result follows. J

3.1 Building hourglasses

Let E be the set of transition edges of ∂P . Given a transition edge ab ∈ E, we say that
Hab is a transition hourglass. In this section, we present an algorithm that computes each
transition hourglass of P in O(n) time.

By Lemma 3 we can compute a set of O(1) separating paths such that for each transition
edge ab, the transition hourglass Hab is separated by one (or more) paths in this set. For each
endpoint of the O(1) separating paths we compute its shortest-path tree in linear time [8, 11].
In addition, we preprocess these trees in linear time to support LCA queries [13]. Both
computations need linear time per endpoint and use O(n) space. Since we do this process
for a constant number of endpoints, overall this preprocessing takes O(n) time.

Let γ be a separating path. Note that γ separates the boundary of P into two chains S
and S′ such that S ∪ S′ = ∂P . Let H(γ) be the set of transition hourglasses separated by γ
whose transition edge is contained in S (whenever an hourglass is separated by more than
one path, we pick one arbitrarily). Note that we can classify all transition hourglasses into
the sets H(γ) in O(n) time (since O(1) separating paths are considered).

We claim that we can compute all transition hourglasses of H(γ) in O(n) time. By
construction, the wall of each of these hourglasses consists of a (geodesic) path that connects
a point in S with a point in S′. Let u ∈ S and v ∈ S′ be two vertices such that π(u, v) is
the wall of a hourglass in H(γ). Because LCA queries can be answered in O(1) time [13],
Lemma 5 allows us to compute this path in O(|π(u, v)|) time. Therefore, we can compute all
hourglasses of H(γ) in O(

∑
H∈H(γ) |H|+ n) = O(n) time by Lemma 6. Because only O(1)

separating paths are considered, we obtain the following result.

I Lemma 7. The total complexity of the transition hourglasses of all transition edges of P
is O(n). Moreover, all these hourglasses can be constructed in O(n) time.

4 Funnels

Let C = (p0, . . . , pk) be a chain of ∂P and let v be a vertex of P not in C. The funnel
of v to C, denoted by Sv(C), is the simple polygon bounded by C, π(pk, v) and π(v, p0);
see Figure 3 (a). Note that the paths π(v, pk) and π(v, p0) may coincide for a while before
splitting into edge-disjoint chains. A subset R ⊂ P is geodesically convex if for every x, y ∈ R,
the path π(x, y) is contained in R. This funnel Sv(C) is then the minimum geodesically
convex set that contains v and C. See Lee and Preparata [16] or Guibas et al. [11] for more
details on funnels.

I Lemma 8. Let v be a vertex of P and let C be a transition chain such that R(v)∩∂P ⊆ C
and v 6∈ C. Then, R(v) is contained in the funnel Sv(C)

H.-K. Ahn, L. Barba, P. Bose, J.-L. De Carufel, M. Korman, and E. Oh 215

C

P

Sv(C)

a)

v

b)

v0 vk

v

C

P

Sv(C)

Figure 3 a) The funnel Sv(C) of a vertex v and a chain C contained in ∂P are depicted. b) The
decomposition of Sv(C) into apexed triangles produced by the shortest-path map of v.

4.1 Funnels of marked vertices
Recall that for each marked vertex v ∈M , we know at least of one vertex on ∂P such that v
is its farthest neighbor.

I Lemma 9. Let x be a point in P . If f(x) = v for some marked vertex v ∈ M , then
x ∈ Sv(Cv).

For any marked vertex v, let u1, . . . , uk−1 be the vertices of P such that v = f(ui) and
assume that u1, . . . , uk−1 are in clockwise order. Let u0 and uk be the neighbors of u1 and
uk−1 other than u2 and uk−2, respectively. Note that both u0u1 and uk−1uk are transition
edges of P . Thus, we can assume that their transition hourglasses have been computed.

Let Cv = (u0, . . . , uk) and consider the funnel Sv(Cv). We call Cv the main chain
of Sv(Cv) while π(uk, v) and π(v, u0) are referred to as the walls of the funnel. Because
v = f(u1) = f(uk−1), we know that v is a vertex of both Hu0u1 and Huk−1uk

. By definition,
we have π(v, u0) ⊂ Hu0u1 and π(v, uk) ⊂ Huk−1uk

. Thus, we can explicitly compute both
paths π(v, u0) and π(v, uk) in O(|Hu0u1 |+ |Huk−1uk

|) time. So, overall, the funnel Sv(Cv)
can be constructed in O(k + |Hu0u1 |+ |Huk−1uk

|) time. Recall that, by Lemma 6, the total
sum of the complexities of the transition hourglasses is O(n). In particular, we can bound
the total time needed to construct the funnels of all marked vertices by O(n).

Since the complexity of the walls of these funnels is bounded by the complexity of the
transition hourglasses used to compute them, by Lemma 7 we get that

∑
v∈M
|Sv(Cv)| = O

(
n+

∑
ab∈E

|Hab|

)
= O(n).

I Lemma 10. The total complexity of the funnels of all marked vertices of P is O(n).
Moreover, all these funnels can be constructed in O(n) time.

5 Covering the polygon with apexed triangles

An apexed triangle 4 = (a, b, c) with apex a is a triangle contained in P with an associated
distance function g4(x), called the apex function of 4, such that (1) a is a vertex of P , (2)
b, c ∈ ∂P , and (3) there is a vertex w of P , called the definer of 4, such that

g4(x) =
{
−∞ if x /∈ 4 ,

|xa|+ |π(a,w)| = |π(x,w)| if x ∈ 4 .

SoCG’15

216 A Linear-Time Algorithm for the Geodesic Center of a Simple Polygon

a b

f(b) f(a)

va vb

4v
a b

f(b) f(a)

va vb

4v

u1u3
u2

s1 s2

v v

Figure 4 (left) A vertex v visible from the segment ab lying on the bottom chain of Hab, and the
triangle 4v which contains the portion of ab visible from v. (right) The children u1 and u2 of v are
visible from ab while w3 is not. The triangle 4v is split into apexed triangles by the rays going from
u1 and u2 to v.

In this section, we show how to find a set of O(n) apexed triangles of P such that the upper
envelope of their apex functions coincides with FP (x). To this end, we first decompose the
transition hourglasses into apexed triangles that encode all the geodesic distance information
inside them. For each marked vertex v ∈M , we construct a funnel that contains the Voronoi
region of v. We then decompose this funnel into apexed triangles that encode the distance
from v.

5.1 Inside the transition hourglass
Let ab be a transition edge of P such that b is the clockwise neighbor of a along ∂P . Let
Bab denote the open bottom chain of Hab. As noticed above, a point on ∂P can be farthest
from a vertex in Bab only if it lies in the open segment ab. That is, if v is a vertex of Bab
such that R(v) 6= ∅, then R(v) ∩ ∂P ⊂ ab. In fact, not only is this Voronoi region inside Hab

when restricted to the boundary of P , but we can further bound its location and show that
R(v) ⊂ Hab. The next result follows directly from Lemma 8.

I Corollary 11. Let v be a vertex of Bab. If R(v) 6= ∅, then R(v) ⊂ Hab.

Our objective is to compute O(|Hab|) apexed triangles contained in Hab, each with its
distance function, such that the upper envelope of these apex functions coincides with FP (x)
restricted to Hab where it “matters”.

The same approach was already used by Pollack et al. in [23, Section 3]. Given a segment
contained in the interior of P , they show how to compute a linear number of apexed triangles
such that FP (x) coincides with the upper envelope of the corresponding apex functions in
the given segment. While the construction we follow is analogous, we use it in the transition
hourglass Hab instead of the full polygon P . Therefore, we have to specify what is the
relation between the upper envelope of the computed functions and FP (x). We will show
that the upper envelope of the apex functions computed in Hab coincides with FP (x) inside
the Voronoi region R(v) of every vertex v ∈ Bab.

Let Ta and Tb be the shortest-path trees in Hab from a and b rooted at a and b, respectively.
We can compute these trees in O(|Hab|) time [11]. For each vertex v such that f(a), v and
f(b) are in clockwise order, let va and vb be the neighbors of v in the paths π(v, a) and
π(v, b), respectively. We say that a vertex v is visible from ab if va 6= vb. Note that if a vertex
is visible, then the extension of these segments must intersect the top segment ab. Therefore,
for each visible vertex v, we obtain a triangle 4v as shown in Figure 4.

We further split 4v into a series of triangles with apex at v as follows: Let u be a child
of v in either Ta or Tb. As noted by Pollack et al., v can be of three types, either (1) u is not

H.-K. Ahn, L. Barba, P. Bose, J.-L. De Carufel, M. Korman, and E. Oh 217

visible from ab (and is hence a child of v in both Ta and Tb); or (2) u is visible from ab, is a
child of v only in Tb, and vbvu is a left turn; or (3) u is visible from ab, is a child of v only in
Ta, and vavu is a right turn.

Let u1, . . . , uk−1 be the children of v of type (2) sorted in clockwise order around v. Let
c(v) be the maximum distance from v to any invisible vertex in the subtrees of Ta and Tb
rooted at v; if no such vertex exists, then c(v) = 0. Define a function dl(v) on each vertex v
of Hab in a recursive fashion as follows: If v is invisible from ab, then dl(v) = c(v). Otherwise,
let dl(v) be the maximum of c(v) and max{dl(ui) + |uiv| : ui is a child of v of type (2)}.
Symmetrically, we define a function dr(v) using the children of type (3) of v.

For each 1 ≤ i ≤ k − 1, extend the segment uiv passed v until it intersects ab at a point
si. Let s0 and sk be the intersections of the extensions of vva and vvb with the segment ab.
We define k apexed triangles contained in 4v as follows. For each 0 ≤ i ≤ k − 1, consider
the triangle 4(si, v, si+1) whose associated apexed (left) function is

fi(x) =
{
|xv|+ maxj>i{c(v), |vuj |+ dl(uj)} if x ∈ 4(si, v, si+1) ,
−∞ otherwise .

In a symmetric manner, we define a set of apexed triangles induced by the type (3) children
of v and their respective apexed (right) functions.

Let g1, . . . , gr and 41, . . . ,4r respectively be an enumeration of all the generated apex
functions and apexed triangles such that gi is defined in the triangle 4i. Because each
function is determined uniquely by a pair of adjacent vertices in Ta or in Tb, and since these
trees have O(|Hab|) vertices, we conclude that r = O(|Hab|).

Note that for each 1 ≤ i ≤ r, the apexed triangle 4i has two vertices on the segment ab
and a third vertex, say ai, being its apex such that for each x ∈ 4i, gi(x) = |π(x,wi)| for
some vertex wi of Hab. Recall that wi is called the definer of 4i. Intuitively, 4i defines a
portion of the geodesic distance function from wi in a constant complexity region.

I Lemma 12. Given a transition edge ab of P , we can compute a set Aab of O(|Hab|) apexed
triangles in O(|Hab|) time with the property that for any point p ∈ P such that f(p) ∈ Bab,
there is an apexed triangle 4 ∈ Aab with apex function g and definer equal to f(p) such
that
1. p ∈ 4 and
2. g(p) = FP (p).

In other words, Lemma 12 says that no information on farthest neighbors is lost if we
only consider the functions of Aab within Hab. In the next section we construct a set of
apexed triangles (and their corresponding apex functions), so as to encode the distance from
the vertices of M .

5.2 Inside the funnels of marked vertices

We now proceed to split a given funnel into O(|Sv(Cv)|) apexed triangles that encode the
distance function from v. To this end, we use the algorithm described by Guibas et al. [12,
Section 2] to compute the shortest-path map of v in Sv(Cv) in O(|Sv(Cv)|) time. This
algorithm produces a partition of Sv(Cv) into O(|Sv(Cv)|) interior disjoint triangles with
vertices on ∂P , such that each triangle consists of all points in Sv(Cv) whose shortest path
to v consists of the same sequence of vertices; see Figure 3 (b). Let 4 be a triangle in this
partition and let a be its apex, i.e., the first vertex found along each path π(x, v), where

SoCG’15

218 A Linear-Time Algorithm for the Geodesic Center of a Simple Polygon

x ∈ 4. We define the apex function g4(x) of 4 as follows:

g4(x) =
{
|xa|+ |π(a, v)| if x ∈ 4 ,

−∞ otherwise .

Therefore, for each x ∈ 4, g4(x) = |π(x, v)|.

I Lemma 13. The shortest-path map of v in Sv(Cv) can be computed in O(|Sv(Cv)|) time
and produces O(|Sv(Cv)|) interior disjoint apexed triangles such that their union covers
Sv(Cv). Moreover, for each point x ∈ R(v), there is an apexed triangle 4 with apex function
g(x) such that (1) x ∈ 4 and (2) g(x) = FP (x).

Proof. The above procedure splits Sv(Cv) into O(|Sv(Cv)|) apexed triangles, such that the
apex function in each of them is defined as the geodesic distance to v. By Lemma 9, if
x ∈ R(v), then x ∈ Sv(Cv). Therefore, there is an apexed triangle 4 with apex function g(x)
such that x ∈ 4 and g(x) = |π(x, v)| = FP (x). Thus, we obtain properties (1) and (2). J

6 Prune and search

With the tools introduced in the previous sections, we can describe a prune and search
algorithm to compute the geodesic center. The idea of the algorithm is to partition P into
O(1) cells using ε-nets, determine in which cell of P the center lies and recurse on that cell
as a new subproblem with smaller complexity.

We can discard all apexed triangles that do not intersect the new cell containing the
center. Using cuttings to produce this partition of P , we can show that both the complexity
of the cell containing the center, and the number of apexed triangles that intersect it decrease
by a constant fraction in each iteration of the algorithm. This process is then repeated until
either of the two objects has constant descriptive size.

Let τ be the set of all apexed triangles computed in previous sections. Lemmas 6 and 12
bound the number of apexed triangles constructed inside the transition hourglasses, while
Lemmas 10 and 13 do so inside the funnels of the marked vertices. We obtain the following.

I Corollary 14. The set τ consists of O(n) apexed triangles.

Let φ(x) be the upper envelope of the apex functions of the triangles in τ (i.e., φ(x) =
max{g(x) : 4 ∈ τ and g(x) is the apex function of 4}). The following result is a direct
consequence of Lemmas 12 and 13, and shows that the O(n) apexed triangles of τ not only
cover P , but their apex functions suffice to reconstruct the function FP (x).

I Lemma 15. The functions φ(x) and FP (x) coincide in the domain of points of P , i.e., for
each p ∈ P , φ(p) = FP (p).

Given a chord C of P , a half-polygon of P is one of the two simple polygons in which C
splits P . A k-cell of P is a simple polygon obtained as the intersection of at most k half-
polygons. Because a k-cell is the intersection of geodesically convex sets, it is also geodesically
convex. The recursive algorithm described in this section takes as input a 4-cell R (initially
equal to P) containing the geodesic center of P and the set of apexed triangles of τ that
intersect R. In each iteration, it produces a new 4-cell of smaller complexity that intersects
just a fraction of the apexed triangles and contains the geodesic center of P . By recursing
on this new cell, the complexity of the problem is reduced in each iteration.

Let R be a 4-cell of P containing the geodesic center of P and let τR be the set of
apexed triangles of τ that intersect R. Let mR = max{|R|, |τR|}, where |R| denotes the

H.-K. Ahn, L. Barba, P. Bose, J.-L. De Carufel, M. Korman, and E. Oh 219

N

P

N

P

R′

RR

Figure 5 The ε-net N splits R into O(1) sub-polygons that are further refined into a 4-cell
decomposition using O(1) ray-shooting queries from the vertices of the arrangement defined by N .

combinatorial complexity of R. Recall that, by construction of the apexed triangles, for each
triangle of τR at least one and at most two of its boundary segments are chords of P . Let C
be the set containing all chords that belong to the boundary of a triangle of τR. Therefore,
|C| ≤ 2|τR| ≤ 2mR.

To construct ε-nets, we need some definitions (for more information on ε-nets refer to [18]).
Let ϕ be the set of all open 4-cells of P . For each t ∈ ϕ, let Ct = {C ∈ C : C ∩ t 6= ∅} be the
set of chords of C induced by t. Finally, let ϕC = {Ct : t ∈ ϕ} be the family of subsets of C
induced by ϕ. Consider the set system (C, ϕC) (denoted by (C, ϕ) for simplicity).

Let ε > 0 (the exact value of ε will be specified later). Because the VC-dimension of
the set system (C, ϕ) is finite [1], we can compute an ε-net N of (C, ϕ) in O(|C|/ε) = O(mR)
time [18]. The size of N is O(1

ε log 1
ε) = O(1) and its main property is that any 4-cell that

does not intersect a chord of N will intersect at most ε|C| chords of C.
Observe that N partitions R into O(1) sub-polygons (not necessarily 4-cells). We further

refine this partition to obtain 4-cells. That is, we shoot vertical rays up and down from
each endpoint of N , and from the intersection point of any two segments of N , see Figure 5.
Overall, this partitions R into O(1) 4-cells such that each either (i) is a convex polygon
contained in P of at most four vertices, or otherwise (ii) contains some chain of ∂P . Since
|N | = O(1), the whole decomposition can be computed in O(mR) time (the intersections
between segments of N are done in constant time, and for the ray shooting operations we
walk along the boundary of R once).

In order to determine which 4-cell contains the geodesic center of P , we extend each edge
of a 4-cell to a chord C. This can be done with two ray-shooting queries (each of which
takes O(mR) time). We then use the chord-oracle from Pollack et al. [23, Section 3] to decide
which side of C contains cP . The only requirement of this technique is that the function
FP (x) coincides with the upper envelope of the apex functions when restricted to C, which
is true by Lemma 15 and from the fact that τR consists of all the apexed triangles of τ that
intersect R. Because the chord-oracle described by Pollack et al. [23, Section 3] runs in time
linear in the number of functions defined on C, we can decide in total O(mR) time in which
side of C the geodesic center of P lies. Since our decomposition into 4-cells has constant
complexity, we need to perform O(1) calls to the oracle before determining the 4-cell R′ that
contains the geodesic center of P .

The chord-oracle computes the minimum of FP (x) restricted to the chord before determ-
ining the side containing the minimum. In particular, if cP lies on any chord bounding R′,
then the chord-oracle will find it. Therefore, we can assume that cP lies in the interior of R′.
Moreover, since N is a ε-net, we know that at most ε|C| chords of C intersect R′.

We can show that the complexity of R′ also decreases: since |C| ≤ 2|τR| ≤ 2mR, at most
2εmR apexed triangles intersect R′. Because FP (x) is defined in each point of R′, Lemma 15

SoCG’15

220 A Linear-Time Algorithm for the Geodesic Center of a Simple Polygon

implies that each vertex of R′ is covered by at least one apexed triangle of τR. Since each
apexed triangle can cover at most three vertices, by the pigeonhole principle we conclude
that R′ can have at most 6εmR vertices. Otherwise, an apexed triangle would contain at
least four vertices of R′. Thus, if we choose ε = 1/12, we guarantee that both the size of the
4-cell R′ and the number of apexed triangles in τR′ are at most mR/2.

In order to proceed with the algorithm on R′ recursively, we need to compute the set
τR′ with the at most ε|C| apexed triangles of τR that intersect R′ (i.e., prune the apexed
triangles that do not intersect with R′). For each apexed triangle 4 ∈ τR, we can determine
in constant time if it intersects R′ (either one of the endpoints is in R′ ∩ ∂P or the two
boundaries have non-empty intersection in the interior of P). Overall, we need O(mR) time
to compute the at most ε|C| triangles of τR that intersect R′.

By recursing on R′, we guarantee that after O(logmR) iterations, we reduce the size of
either τR or R′ to constant. In the former case, the minimum of FP (x) can be found by
explicitly constructing φ in O(1) time. In the latter case, we triangulate R′ and apply the
chord-oracle to determine which triangle will contain cP . The details needed to find the
minimum of φ(x) inside this triangle are given in the next section.

I Lemma 16. In O(n) time we can find either the geodesic center of P or a triangle
containing the geodesic center.

7 Finding the center within a triangle

In order to complete the algorithm it remains to show how to find the geodesic center of P
for the case in which R′ is a triangle. If this triangle is in the interior of P , it may happen
that several apexed triangles of τ fully contain R′. Thus, the pruning technique used in the
previous section cannot be further applied. We solve this case with a different approach.

Recall that φ(x) denotes the upper envelope of the apex functions of the triangles in τ ,
and the geodesic center is the point that minimizes φ. The key observation is that, as it
happened with chords, the function φ(x) restricted to R′ is convex.

Let 41,42, . . . ,4m be the set of m = O(n) apexed triangles of τ that intersect R′. Let
ai and wi be the apex and the definer of 4i, respectively. Let gi(x) be the apex function of
4i such that

g(x) =
{
|xai|+ κi if x ∈ 4i ,
−∞ otherwise ,

where κi = |π(ai, wi)| is a constant.
By Lemma 15, φ(x) = FP (x). Therefore, the problem of finding the center is equivalent

to the following optimization problem in R3:

(P1). Find a point (x, r) ∈ R3 minimizing r subject to x ∈ R′ and

gi(x) ≤ r, for 1 ≤ i ≤ m.

Thus, we need only to find the solution to (P1) to find the geodesic center of P . We use
some remarks described by Megiddo in order to simplify the description of (P1) [19].

To simplify the formulas, we square the equation |xai| ≤ r − κi:

‖x‖2 − 2x · ai + ‖ai‖2 = |xai|2 ≤ (r − κi)2 = r2 − 2rκi + κ2
i .

And finally for each 1 ≤ i ≤ m, we define the function hi(x, r) as follows:

hi(x, r) =
{
‖x‖2 − 2x · ai + ‖ai‖2 − r2 + 2rκi − κ2

i if x ∈ 4i ,
−∞ otherwise .

H.-K. Ahn, L. Barba, P. Bose, J.-L. De Carufel, M. Korman, and E. Oh 221

Therefore, our optimization problem can be reformulated as:

(P2). Find a point (x, r) ∈ R3 such that r is minimized subject to x ∈ R′ and

hi(x, r) ≤ 0 and r > max{κi}, for 1 ≤ i ≤ m.

Let h′i(x, r) = ‖x‖2 − 2x · ai + ‖ai‖2 − r2 + 2rκi − κ2
i be a function defined in the entire

plane and let (P2′) be an optimization problem analogous to (P2) where every instance of
hi(x, r) is replaced by h′i(x, r). The optimization (P2′) was studied by Megiddo in [19]. We
provide some of the intuition used by Megiddo to solve this problem.

Although the functions h′i(x, r) are not linear, they all have the same non-linear terms.
Therefore, for i 6= j, we get that h′i(x, r) = h′j(x, r) defines a separating plane

γi,j = {(x, r) ∈ R3 : 2(κi − κj)r − 2(ai − aj) · x+ ‖ai‖2 − ‖aj‖2 − κ2
i + κ2

j = 0} .

As noted by Megiddo [19], this separating plane has the following property: If the solution
(x, r) to (P2′) is known to lie to one side of γi,j , then we know that one of the constraints is
redundant. Thus, to solve (P2′) it sufficed to have a side-decision oracle to determine in
which side of a plane γi,j the solution lies. Megiddo showed how to implement this oracle in
a way that the running time is proportional to the number of constraints [19].

Once we have such an oracle, Megiddo’s problem can be solved using a prune and search
approach: pair the functions arbitrarily, and consider the set of m/2 separating planes
defined by these pairs. For some constant t, compute a 1/t-cutting in R3 of the separating
planes. A 1/t-cutting is a partition of the plane into O(t3) = O(1) convex regions each of
which is of constant complexity and intersects at most m/2t separating planes. A cutting
of planes can be computed in linear time in R3 for any t = O(1) [17]. After computing the
cutting, determine in which of the regions the minimum lies by performing O(1) calls to the
side-decision oracle. Because at least (t − 1)m/2t separating planes do not intersect this
constant complexity region, for each of them we can discard one of the constraints as it
becomes redundant. Repeating this algorithm recursively we obtain a linear running time.

To solve (P2) we follow a similar approach, but our set of separating planes needs to be
extended in order to handle apex functions as they are only defined in the same way as in
(P2′) in a triangular domain. Note that no vertex of an apexed triangle can lie inside R′.

7.1 Optimization problem in a convex domain
In this section we describe our algorithm to solve the optimization problem (P2). To this
end, we pair the apexed triangles arbitrarily to obtain m/2 pairs. By identifying the plane
where P lies with the plane Z0 = {(x, y, z) : z = 0}, we can embed each apexed triangle in
R3. A plane-set is a set consisting of at most five planes in R3. For each pair of apexed
triangles (4i,4j) we define its plane-set as follows: For each chord of P bounding either 4i
or 4j (at most two chords on each triangle), consider the line extending this chord and the
vertical extrusion of this line in R3, i.e., the plane containing this chord orthogonal to Z0.
Moreover, consider the separating plane γi,j . The set containing these planes is the plane-set
of the pair (4i,4j).

Let Γ be the union of all the plane-sets defined by the m/2 pairs of apexed triangles.
Because the plane-set of each pair (4i,4j) consists of at most five planes and contains at
least one plane unique to this pair, say γi,j , we infer that m/2 ≤ |Γ| ≤ 5m/2.

Compute a 1/t-cutting of Γ in O(m) time for some constant t to be specified later. Because
t is constant, this 1/t-cutting splits the space into O(1) convex regions, each bounded by a

SoCG’15

222 A Linear-Time Algorithm for the Geodesic Center of a Simple Polygon

constant number of planes [17]. Using a side-decision algorithm (to be specified later), we
can determine the region Q of the cutting that contains the solution to (P2). Because Q
is the region of a 1/t-cutting of Γ, we know that at most |Γ|/t planes of Γ intersect Q. In
particular, at most |Γ|/t plane-sets intersect Q and hence, at least (t− 1)|Γ|/t plane-sets do
not intersect Q. Since |Γ| ≥ m/2, at least (t− 1)m/2t plane-sets do not intersect Q.

Let (4i,4j) be a pair such that its plane-set does not intersect Q. Let Q′ be the
projection of Q on the plane Z0. Because the plane-set of this pair does not intersect Q, we
know that Q′ intersects neither the boundary of 4i nor that of 4j . Two cases arise:
Case 1. If either 4i or 4j does not intersect Q′, then we know that their apex function is

redundant and we can drop the constraint associated with this apexed triangle.
Case 2. If Q′ ⊂ 4i ∩4j , then we need to decide which constraint to drop. To this end, we

consider the separating plane γi,j . Notice that inside the vertical extrusion of 4i ∩4j
(and hence in Q), the plane γi,j has the property that if we know which side of it contains
the solution, then one of the constraints can be dropped. Since γi,j does not intersect Q
as γi,j belongs to the plane-set of (4i,4j), we can decide which side of γi,j contains the
solution to (P2) and drop one of the constraints.

Regardless of the case, if the plane-set of a pair (4i,4j) does not intersect Q, then we
can drop one of its constraints. Since at least (t − 1)m/2t plane-sets do not intersect Q,
we can drop at least (t − 1)m/2t constraints. By choosing t = 2, we are able to drop at
least (t− 1)m/2t = m/4 constraints. Consequently, after O(m) time, we are able to drop
m/4 apexed triangles. By repeating this process recursively, we end up with a constant size
problem in which we can compute the upper envelope of the functions explicitly and find the
solution to (P2) using exhaustive search. Thus, the running time of this algorithm is bounded
by the recurrence T (m) = T (3m/4) +O(m) which solves to O(m). Because m = O(n), we
can find the solution to (P2) in O(n) time.

It remains to describe the side-decision algorithm. Given a plane γ, we want to decide in
which side of γ lies the solution to (P2). To this end, we solve (P2) restricted to γ, i.e., with
the additional constraint (x, r) ∈ γ. This approach was used by Megiddo [19], the idea is
to recurse by reducing the dimension of the problem. Another approach is to use a slight
modification of the chord-oracle described by Pollack et al. [23, Section 3].

Once the solution to (P2) restricted to γ is known, we can follow the same idea used by
Megiddo [19] to find the side of γ containing the global solution to (P2). That is, we find
the apex functions that define the minimum restricted to γ. Since φ(x) = FP (x) is locally
defined by these functions, we can decide in which side the minimum lies using convexity.
We obtain the following result.

I Lemma 17. Let R′ be a convex trapezoid contained in P such that R′ contains the geodesic
center of P . Given the set of all apexed triangles of τ that intersect R′, we can compute the
geodesic center of P in O(n) time.

The following theorem summarizes the result presented in this paper.

I Theorem 18. We can compute the geodesic center of any simple polygon P of n vertices
in O(n) time.

References
1 Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, Matias Korman, and

Eunjin Oh. A linear-time algorithm for the geodesic center of a simple polygon. CoRR,
abs/1501.00561, 2015.

H.-K. Ahn, L. Barba, P. Bose, J.-L. De Carufel, M. Korman, and E. Oh 223

2 Boris Aronov, Steven Fortune, and Gordon Wilfong. The furthest-site geodesic Voronoi
diagram. Discrete & Computational Geometry, 9(1):217–255, 1993.

3 T. Asano and G.T. Toussaint. Computing the geodesic center of a simple polygon. Technical
Report SOCS-85.32, McGill University, 1985.

4 Sang Won Bae, Matias Korman, and Yoshio Okamoto. The geodesic diameter of polygonal
domains. Discrete & Computational Geometry, 50(2):306–329, 2013.

5 Sang Won Bae, Matias Korman, and Yoshio Okamoto. Computing the geodesic centers of
a polygonal domain. In Proceedings of CCCG, 2014.

6 Sang Won Bae, Matias Korman, Yoshio Okamoto, and Haitao Wang. Computing the L1
geodesic diameter and center of a simple polygon in linear time. In Proceedings of LATIN,
pages 120–131, 2014.

7 Bernard Chazelle. A theorem on polygon cutting with applications. In Proceedings of
FOCS, pages 339–349, 1982.

8 Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational
Geometry, 6(1):485–524, 1991.

9 H.N. Djidjev, A. Lingas, and J.-R. Sack. An O(n logn) algorithm for computing the link
center of a simple polygon. Discrete & Computational Geometry, 8:131–152, 1992.

10 Herbert Edelsbrunner and Ernst Peter Mücke. Simulation of simplicity: a technique to
cope with degenerate cases in geometric algorithms. ACM Trans. on Graphics, 9(1):66–
104, 1990.

11 Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E Tarjan.
Linear-time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2(1-4):209–233, 1987.

12 Leonidas J Guibas and John Hershberger. Optimal shortest path queries in a simple poly-
gon. Journal of computer and system sciences, 39(2):126–152, 1989.

13 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing, 13(2):338–355, 1984.

14 John Hershberger and Subhash Suri. Matrix searching with the shortest-path metric. SIAM
Journal on Computing, 26(6):1612–1634, 1997.

15 Y. Ke. An efficient algorithm for link-distance problems. In Proceedings of SoCG, pages
69–78, 1989.

16 Der-Tsai Lee and Franco P Preparata. Euclidean shortest paths in the presence of rectilinear
barriers. Networks, 14(3):393–410, 1984.

17 Jiří Matoušek. Approximations and optimal geometric divide-and-conquer. Journal of
Computer and System Sciences, 50(2):203–208, 1995.

18 Jiří Matoušek. Construction of epsilon nets. In Proc. of SoCG, pages 1–10. ACM, 1989.
19 Nimrod Megiddo. On the ball spanned by balls. Discrete & Computational Geometry,

4(1):605–610, 1989.
20 J. S. B. Mitchell. Geometric shortest paths and network optimization. In J.-R. Sack and

J. Urrutia, editors, Handbook of Computational Geometry, pages 633–701. Elsevier, 2000.
21 B.J. Nilsson and S. Schuierer. Computing the rectilinear link diameter of a polygon. In

Proceedings of CG, pages 203–215, 1991.
22 B.J. Nilsson and S. Schuierer. An optimal algorithm for the rectilinear link center of a

rectilinear polygon. Computational Geometry: Theory and Applications, 6:169–194, 1996.
23 Richard Pollack, Micha Sharir, and Günter Rote. Computing the geodesic center of a

simple polygon. Discrete & Computational Geometry, 4(1):611–626, 1989.
24 S. Suri. Minimum Link Paths in Polygons and Related Problems. PhD thesis, Johns Hopkins

Univ., 1987.
25 Subhash Suri. Computing geodesic furthest neighbors in simple polygons. Journal of

Computer and System Sciences, 39(2):220–235, 1989.

SoCG’15

On the Smoothed Complexity of Convex Hulls∗

Olivier Devillers1, Marc Glisse2, Xavier Goaoc3, and Rémy
Thomasse4

1 Inria, Centre de recherche Nancy – Grand Est, France
CNRS, Loria, France
Université de Lorraine, France

2 Inria, Centre de recherche Saclay – Île-de-France, France
3 LIGM, Université Paris-Est Marne-la-Vallée, France
4 Inria, Centre de recherche Sophia Antipolis – Méditerranée, France

Abstract
We establish an upper bound on the smoothed complexity of convex hulls in Rd under uniform
Euclidean (`2) noise. Specifically, let {p∗1, p∗2, . . . , p∗n} be an arbitrary set of n points in the unit
ball in Rd and let pi = p∗i + xi, where x1, x2, . . . , xn are chosen independently from the unit
ball of radius δ. We show that the expected complexity, measured as the number of faces of all
dimensions, of the convex hull of {p1, p2, . . . , pn} is O

(
n2− 4

d+1 (1 + 1/δ)d−1
)
; the magnitude δ

of the noise may vary with n. For d = 2 this bound improves to O
(
n

2
3 (1 + δ−

2
3)
)
.

We also analyze the expected complexity of the convex hull of `2 and Gaussian perturbations
of a nice sample of a sphere, giving a lower-bound for the smoothed complexity. We identify the
different regimes in terms of the scale, as a function of n, and show that as the magnitude of the
noise increases, that complexity varies monotonically for Gaussian noise but non-monotonically
for `2 noise.

1998 ACM Subject Classification G.3 Probabilistic algorithms

Keywords and phrases Probabilistic analysis, Worst-case analysis, Gaussian noise

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.224

1 Introduction

In this paper we study the smoothed complexity [9] of convex hulls, a structure whose
importance in computational geometry no longer needs arguing. This smoothed complexity
analysis includes two, distinct, technical difficulties. It first requires to study the average
complexity of the convex hull of a random perturbation of a given, initial, point set; that is,
perform average-case analysis albeit for an atypical probability distribution. It then asks
to control the maximum of that expected complexity over all choices of the initial point
set. We present new insights on both issues for two noise models: uniform, bounded-radius,
Euclidean noise and Gaussian noise.

Motivations. Combinatorial structures induced by geometric data are some of the basic
building blocks of computational geometry, and typical examples include convex hulls or
Voronoi diagrams of finite point sets, lattices of polytopes obtained as intersections of sets of
half-spaces, intersection graphs or nerves of families of balls . . . The size of these structures

∗ Part of this work is supported by: ANR blanc PRESAGE (ANR-11-BS02-003), Région PACA and
Institut Universitaire de France.

© Olivier Devillers and Marc Glisse and Xavier Goaoc, and Rémy Thomasse;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 224–239

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.224
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

O. Devillers, M. Glisse, X. Goaoc, and R. Thomasse 225

usually depends not only on the number n of geometric primitives (points, half-spaces,
balls . . .), but also on their relative position: for instance, the number of faces of the Voronoi
diagram of n points in Rd is Θ(n) if these points lie on a regular grid but Θ

(
ndd/2e) when

they lie on the moment curve. A simple, conservative, measure is the worst-case complexity,
which expresses, as a function of n, the maximum complexity over all inputs of size n.
For geometric structures, the worst-case bounds are often attained by generic but brittle
constructions: the high complexity remains if sufficiently small perturbations are applied,
but vanishes under large enough perturbations. One may wonder about the relevance of
worst-case bounds in practical situations, where input points come from noisy measurements
and are represented using bounded precision. Assessing this relevance requires to quantify
the stability of worst-case examples. This is precisely what the smoothed complexity captures.

Smoothed complexity model. The smoothed complexity of the convex hull in Rd is the
quantity

max
p∗1 ,p

∗
2 ,...,p

∗
n∈K

E [card(CH ({p∗1 + x1, p
∗
2 + x2, . . . , p

∗
n + xn}))]

where K is some bounded domain in Rd of fixed size, card(CH(X)) denotes the combinatorial
complexity, ie the total number of faces of all dimensions, of the convex hull of X, and
x1, x2, . . . , xn are independent random variables, usually identically distributed. The goal
is to express this bound as a function of the number n of points and some parameter that
describes the amplitude of the perturbations xi’s. The only examples of smoothed complexity
analysis of geometric structures (rather than algorithms) that we are aware of are some
aspects of random polytopes related to the simplex algorithm [9] and visibility maps on
terrains [3]. In this paper we consider two types of perturbation, the `2 perturbation where
the xi’s are drawn independently from the ball of radius δ > 0 centered at the origin, and the
Gaussian perturbation where the xi’s are drawn independently from the d-dimensional
multivariate Gaussian distribution with mean vector ~0 and covariance matrix σ2Id. We will
assume that the domain K containing the initial point set is the unit ball centered at the
origin, so that the ratio between the initial configuration and the perturbation is entirely
contained in the perturbation parameter, δ or σ.

New results. Our first result is the following upper bound (Theorem 7) on the smoothed
complexity of the convex hull under `2 perturbation:

max
p∗1 ,p

∗
2 ,...,p

∗
n∈K

E [card(CH ({p∗1 + x1, p
∗
2 + x2, . . . , p

∗
n + xn}))] = O

(
n2− 4

d+1

(
1 + 1

δ

)d−1
)
.

(Refer to Figure 1.) For d = 2 this bound improves to O
(
n

2
3 (1 + δ−

2
3)
)
, cf Corollary 9.

Here K is the unit ball in Rd. The bound is asymptotic as n→∞ and the constant in the
O() depends on d but is independent of δ, which may vary with n. The proof essentially
decomposes the initial point set into a “boundary” part and an “interior” part and controls
each contribution separately. The classification is very flexible and emerges naturally from a
witness-collector mechanism [4] proposed by some of the authors to measure the complexity
of random geometric structures.

Going in the other direction, one may wonder which original point sets {p∗i }1≤i≤n ⊂ K
are extremal for the smoothed complexity. In the plane, two natural candidates are the
case where the p∗i ’s are all at the origin, and the case where the p∗i ’s form a regular n-gon

SoCG’15

226 On the Smoothed Complexity of Convex Hulls

�2.5 �2 �1.5 �1 �0.5 0 0.5 1
0

0.5

1

1.5

log(�)
log n

lo
g
(b

ou
n
d
)

lo
g

n

Dimension 2

smoothed upper bound
perturbation of a n-gon
average-case bound
worst-case bound

�0.4 �0.3 �0.2 �0.1 0 0.1 0.2 0.3 0.4

1

2

3

4

5

6

log(�)
log n

lo
g
(b

ou
n
d
)

lo
g

n

Dimension 8

smoothed upper bound
perturbation of a sample of a sphere
average-case bound
worst-case bound

Figure 1 A comparison of our smoothed complexity bound of Theorem 7 and two lower bounds,
where the initial points are placed respectively at the vertices of a unit-size n-gon (Theorems 10)
and in the origin. The left-hand figure is for d = 2, the right-hand figure is for d = 8, and all bounds
are for uniform `2 perturbation. A data point with coordinates (x, y) means that for a perturbation
with δ of magnitude nx the expected size of the convex hull grows as ny, subpolynomial terms being
ignored. The worst-case bound is given as a reference. The constants in the O() and Ω() have been
ignored as their influence vanishes as n → ∞ in this coordinate system.

�3 �2.5 �2 �1.5 �1 �0.5 0 0.5 1 1.5 2 2.5 3

0.4

0.6

0.8

1

log(�)
log n

lo
g
(|C

H
|)

lo
g

n

n = 102

n = 103

n = 104

�3 �2.5 �2 �1.5 �1 �0.5 0 0.5 1 1.5 2 2.5 3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(�)
log n

lo
g
(|C

H
|)

lo
g

n
n = 102

n = 103

n = 104

Figure 2 Experimental results for the complexity of the convex hull of a perturbation of the
regular n-gon inscribed in the unit circle. Left: Gaussian perturbation of variance σ2. Right: `2

perturbation of amplitude δ. Each data point corresponds to an average over 1000 experiments.

inscribed in K. The former case corresponds to a classical model of random polytopes and is
well understood (see below). Experiments for the latter case suggest a surprising difference
in the behaviour of `2 and Gaussian perturbations (refer to Figure 2): while for Gaussian
perturbation the expected complexity consistently decreases as the amplitude of the noise
increases, for `2 perturbation some non-monotonicity appears.

Motivated by these observations we performed a complete analysis of the expected
complexity of the convex hull of `2 perturbations of a good sample of the unit sphere and of
Gaussian perturbations of a a regular n-gon. Our bounds (Theorems 10 and 13) delineate the
main regimes in (δ, n) and (σ, n); they confirm the existence of the observed non-monotonicity
for `2 perturbation and its absence for Gaussian perturbation, and provide a complete analysis
of a candidate lower-bound for the smoothed complexity (see Figure 1).

Related work. This work builds on a previous work by some of the authors to develop a
method to derive, with minimum effort, rough estimates on the complexity of some random
geometric hypergraphs [4]. The smoothed complexity bound uses ingredients from that
witness-collector method in a new way. Theorems 10 and 13 build on one of the case-analysis
from that work, extend it to all scales of perturbation and to Gaussian noise, and dispose
of extraneous log factors using an idea which we learned from [5] and systematize here
(Lemma 3).

O. Devillers, M. Glisse, X. Goaoc, and R. Thomasse 227

The only previous bound on the smoothed complexity of convex hulls is due to Damerow
and Sohler [2]. Their main insight is a quantitative version of the following intuitive assertion:
if the magnitude of the perturbations is sufficiently large compared to the scale of the initial
input, the initial position of the points does not matter and smoothed complexity can be
subsumed by some average-case analysis (up to constant factors).1 A smoothed complexity
bound then follows by a simple rescaling argument.2

It should first be noted that the rescaling argument only applies to bound the number of
vertices of the convex hull since faces of higher dimension may come from more than one
cell. Next, Damerow and Sohler argue that the average-case bound controls the smoothed
complexity for dominating points; in several situations the dominating points largely out-
number the extreme points, so this bound may be overly conservative. Last, our analysis
gives finer bounds than the rescaling argument of Damerow and Sohler alone. Consider
for instance the perturbation of the vertices of the unit-size n-gon by a Gaussian noise of
standard deviation σ. The rescaling argument yields3 that the number of dominant points

is O
(

log(σn)
√

logn
σ

)
. Our technique bounds the size of the convex hull by O

(
4
√

logn√
σ

)
for

σ ∈
[

log4 n
n2 , 1√

logn

]
and O(

√
logn) for σ > 1√

logn
.

Our work is also related to the classical question of the expected complexity of random
polytopes. Starting with the seminal articles of Renyi and Sulanke [7, 8] in the 1960’s, a
series of works in stochastic geometry led to precise quantitative statements (eg. central
limit theorems) for models such as convex hulls of points sampled i.i.d. from a Gaussian
distribution or the uniform measure on a convex body; we refer the interested reader to the
recent survey of Reitzner [6]. Our work departs from this line of research by refining the
model rather than the estimates; to put it bluntly, we content ourselves with Θ()’s in place
of central limit theorems but aim for analyzing more complicated probabilistic models where
points are not identically distributed and laws are not given explicitly.

2 The Witness-Collector technique

Analyzing the smoothed complexity of convex hulls, or other geometric structures such as
Delaunay triangulations, reduces to the following core problem. We are given a range space
(Rd, R), a finite set P ⊆ Rd of random independent points, and want to estimate the expected
complexity of some geometric hypergraph H = {P ∩ r : r ∈ R} induced by R on P . In plain
English, a subset Q ⊂ P is a hyperedge of H if and only if there exists r ∈ R such that
r ∩ P = Q. When the ranges are the half-spaces delimited by hyperplanes, the set of vertices
of any k-dimensional face of the convex hull of P is an element of H of cardinality k + 1; the
converse is true for the vertices (k = 0) and if it may fail for higher dimensional faces, the

1 Specifically, they show that if n points from a region of diameter r are perturbed by a Gaussian noise of
standard deviation Ω(r

√
logn) or a `∞ noise of amplitude Ω(r 3

√
n/ logn) then the expected number of

dominating point is the same as in the average-case analysis.
2 Split the input domain into cells of size r = O(σ/

√
logn), assume that each cell contains all of the

initial point set, and charge each of them with the average-case bound.
3 Split the original domain into cells of size r = O(σ/

√
logn). The input points are distributed evenly

(up to constant factors) between Θ(1/r) of these cells. Each such cell contains m = O(rn) input points
and contributes on average O(logm) dominating points – here considering dominating points make a

difference. Altogether, the expected number of dominating points is O
(log(rn)

r

)
= O

(√
logn log(σn)

σ

)
.

SoCG’15

228 On the Smoothed Complexity of Convex Hulls

overcounting often turns out to be negligible. Our goal is thus to estimate the complexity
of H(k+1), the set of hyperedges of H of size k + 1. From now on we focus on bounding
card(H(k)) in the case where R is the set of half-spaces in Rd.

2.1 Static witness-collector pairs
To estimate the complexity of a geometric hypergraph H(k) we follow a simple and general
approach dubbed the witness-collector method. The idea is to break down R into a small
number of subsets of ranges R1 ∪ R2 ∪ . . . ∪ Rm and associate to each Ri two regions, a
witness Wi and a collector Ci, with the following properties:
(a) Wi contains at least k points of P with high probability,
(b) Ci contains on average a small number of points of P ,
(c) if Wi contains k points of P then Ci contains every hyperedge of {P ∩ r : r ∈ Ri}.
Condition (c) ensures that when a set Wi contains at least k points of P , it witnesses that
all hyperedges induced by Ri are collected by Ci. In particular the expected number of
hyperedges of H of size k, conditioned on the event that every witness contains at least k
points of P , is bounded from above by

E
[
card(C1 ∩ P)k + card(C2 ∩ P)k + . . .+ card(Cm ∩ P)k

]
.

By (a), the conditioning event fails with small probability, so if that happens we can afford to
use the worst-case bound

(card(P)
k

)
. This bound is expressed in terms of the E

[
card(Ci ∩ P)k

]
whereas (b) controls E [card(Ci ∩ P)]; this is not an issue as long as the position of the points
are independent random variables:

I Lemma 1 ([4, Lemma 2]). If X =
∑n
i=1 Xi, where the Xi are independently distributed

random variables with value in {0, 1} and E [X] ≥ 1 then E
[
Xk
]

= O
(

E [X]k
)
.

By a Chernoff bound, Condition (a) reduces to controlling the expectation of card(Wi ∩ P):

I Lemma 2 ([4, Lemma 1]). Let P be a set of n random points of Rd independently distributed.
If W is a region that contains on average at least k logn points of P then the probability
that W contains less than k points of P is O(n−k).

The simplest use of this approach consists in placing explicitly fixed pairs of witnesses and
collectors that “cover” the distribution to analyze (see [4] for several examples). This typically
results in bounds containing some extra log factors (coming from Lemma 2).

2.2 Adaptive witness-collector pairs
When using Lemma 2 to ensure Condition (a), we increase the expected size of each Wi ∩ P
so that all witnesses contain enough points for most realizations of P . Since we typically need
that Wi ⊆ Ci, this also overloads the collectors and results in the extra log factors mentioned
above. An idea to obtain sharper bounds, first introduced in [5], is to make Wi and Ci
random variables depending on the random point set P . By tailoring the witness-collector
pairs to each realization of the point set P , very few collectors will need to be large, and
those will be negligible in the total.

More formally, we again break down R into a small number of subsets of ranges R1 ∪
R2 ∪ . . . ∪ Rm and associate to each Ri a sequence {(W j

i , C
j
i)}j≤log2n of witness-collector

pairs. We replace (a)–(c) by the following conditions for all j:

O. Devillers, M. Glisse, X. Goaoc, and R. Thomasse 229

(a’) E
[
card(W j

i ∩ P)
]

= Ω(j),

(b’) E
[
card(Cji ∩ P)

]
= O(j),

(c’) if W j
i contains k points of P then Cji contains every hyperedge of {P ∩ r : r ∈ Ri},

(d’) W j
i ⊆W

j+1
i ,

(e’) W j
i ⊆ C

j
i ,

I Lemma 3. Let (Rd, R) be a range space, P ⊆ Rd a set of n random, independent points,
and H the hypergraph induced by R on P . Assume that R = R1 ∪ R2 ∪ . . . ∪ Rm and that
for each i ∈ {1, 2, . . . ,m} we have a sequence {(W j

i , C
j
i)}j≤log2 n of witness-collector pairs

satisfying (a’), (b’), (c’), (d’) and (e’) for all i, j. Then E
[
card(H(k))

]
= O(m).

Proof. Let i ∈ {1, 2, . . . ,m}. We let di denote the smallest j such that W j
i contains at

least k points and Ci = Cdii , or, if no such W j
i exists, di =∞ and Ci = Rd. (So di and Ci

are random variables depending on P .) All hyperedges of H of size k that are induced by Ri
are, by (c’) and the definition of di, contained in Ci.

We claim that for some λ > 0, depending only on the constant in the Ω() in (a’), we
have P [di ≥ j] = O

(
e−λj

)
for j ≤ log2 n. Indeed, observe that card(W j

i ∩ P) is a sum
of independently distributed random variables (one per point of P) with values in {0, 1}.
Letting αj = E

[
card(W j

i ∩ P)
]
, Chernoff’s bound yields that for any 0 < γ < 1,

P
[
card(W j

i ∩ P) ≤ (1− γ)αj
]
≤ e−

γ2αj
2 .

Setting γ = 1− k
αj

we have

P [di > j] = P
[
card(W j

i ∩ P) ≤ k
]
≤ e−

γ2αj
2

and the claim follows by (a’).
We also claim that (b’) implies that E

[
card(Cji ∩ P) | di ≥ j

]
= O(j). Indeed, working

with the complement C̄ji of Cji , E
[
card(C̄ji ∩ P)

]
=
∑
p∈P P

[
p /∈ Cji

]
. For any T ⊂ P we

have

E
[
card(C̄ji ∩ P) | W j

i ∩ P = T
]

=
∑

p∈P\T

P
[
p /∈ Cji | p /∈W

j
i

]
≥

∑
p∈P\T

P
[
p /∈ Cji

]

by (e’). Thus, E
[
card(C̄ji ∩ P)

]
≤ E

[
card(C̄ji ∩ P) | W j

i ∩ P = T
]

+ card(T). Total proba-
bilities let us decompose the event di ≥ j (equivalent, by (d’), to card(W j−1

i ∩ P) < k):

E
[
card(C̄ji ∩ P) | di ≥ j

]
=

∑
T/ card(T)<k

E
[
card(C̄ji ∩ P) | W j−1

i ∩ P = T
]

P
[
W j−1
i ∩ P = T | card(W j−1

i ∩ P) < k
]

≥
(

E
[
card(C̄ji ∩ P)

]
− k
) ∑
T/ card(T)<k

P
[
W j−1
i ∩ P = T | card(W j−1

i ∩ P) < k
]

= E
[
card(C̄ji ∩ P)

]
− k

Moving back to the complement (P has n points in total),

E
[
card(Cji ∩ P) | di ≥ j

]
≤ E

[
card(Cji ∩ P)

]
+ k = O(j),

SoCG’15

230 On the Smoothed Complexity of Convex Hulls

and each collector Ci contains on average few points:

E [card(Ci ∩ P)] =
log2n∑
j=1

E
[
card(Cji ∩ P) · 1di=j

]
+ E [n · 1di=∞]

≤
log2n∑
j=1

E
[
card(Cji ∩ P) · 1di≥j

]
+ E [n · 1di=∞]

=
log2n∑
j=1

E
[
card(Cji ∩ P) | di ≥ j

]
P [di ≥ j] +n · P [di =∞]

=
log2n∑
j=1

O(j)O(e−λj)+nO(n−k) = O(1)

and, by Lemma 1, the number of hyperedges is E
[
card(H(k))

]
= O(m). J

We can turn the O() of Lemma 3 into a Θ() by using an additional condition:

I Lemma 4. Assume that the conditions of Lemma 3 are satisfied and that the sequence
{(W j

i , C
j
i)}j≤n of witness-collector pairs also satisfies

(f’)
There exist γ > 0 independent of n and I ⊆ {1, 2, . . . ,m} of size Ω(m) such that
P
[
W 1
i ∩W 1

j ∩ P 6= ∅
]

= 0 for distinct i, j ∈ I, and for i ∈ I, P
[
W 1
i ∩H(1) 6= ∅

]
≥ γ.

If each point of P is in at least one hyperedge of size k then E
[
card(H(k))

]
is Θ(m).

Proof. Lemma 3 already implies that E
[
card(H(k))

]
= O(m). Since each vertex of the

hypergraph H is in at least one hyperedge of size k, card(H(k)) ≥ 1
k card(H(1)). Condition (f’)

ensures that E
[
card(H(1))

]
≥ γ card(I) = Ω(m), which terminates the proof. J

We note that the extra condition of the lemma holds for the hypergraphs that we study in
this paper, where the ranges are half-spaces. Indeed, here H(1) is exactly the set of vertices
of the convex hull of P , and every vertex belongs to at least one k-dimensional face.

2.3 Example: application to Gaussian polygons
To demonstrate how the witness-collector technique works we give a simple proof of the
two-dimensional case of a classical bound on the complexity of Gaussian polytopes [7].

Q(x)

x
0

1
2

51

We first recall a few technical properties of Gaus-
sian distributions. The Q−function is defined as the tail
probability of the standard Gaussian distribution, so if
X ∼ N (0, 1)

∀x ∈ R, Q(x) = P [X > x] = 1√
2π

∫ ∞
x

e−
t2
2 dt

We use the following upper and lower bounds:

I Claim 5. For x > 0,

x

1 + x2
1√
2π
e−

x2
2 < Q(x) < 1

x

1√
2π
e−

x2
2 .

O. Devillers, M. Glisse, X. Goaoc, and R. Thomasse 231

Proof. The upper bound comes from

Q(x) =
∫ ∞
x

1√
2π
e−

t2
2 dt <

∫ ∞
x

t√
2πx

e−
t2
2 dt =

∫ ∞
x2
2

e−t

x
√

2π
dt = 1√

2πx
e−

x2
2

and the lower bound comes from the fact that(
1 + 1

x2

)
Q(x) =

∫ ∞
x

(
1 + 1

x2

)
1√
2π
e−

t2
2 dt >

∫ ∞
x

(
1 + 1

t2

)
1√
2π
e−

t2
2 dt = e−

x2
2

x
√

2π
.

J

We use the so-called Lambert function W0 defined as the solution of the functional equation
f(x)ef(x) = x [1, Equation (3.1)]. Let us emphasize that for x ≥ 0 its definition is non-
ambiguous and satisfies [1, Equations (4.6) and (4.9)]

W0 (x) = log(x)− log log(x) + o(1) (1)

We can now prove the announced bound:

I Theorem 6. Let P = {p1, p2, . . . , pn} be n points i.i.d in R2, pi ∼ N (0, I2). For any
fixed k, the expected number of k−dimensional faces of the convex hull of P is Θ

(√
logn

)
.

Proof. We break the set of half-planes R into smaller range spaces R1, . . . , Rm by covering
the space of directions, seen as the unit circle ∂B(0, 1), by circular arcs Sc1, . . . , Scm of angle

α = Θ
(

1√
logn

)
and inner normals ~u1, . . . , ~um. We have m = Θ

(1
α

)
arcs for the cover.

We construct each witness as a semi-infinite strip with inner direction ~ui (see the green
region in the figure below). For i ≤ m and j ≤ log2 n, the witness W j

i is defined as the set of
points p = x~vi+y~ui (where (~vi, ~ui) is an orthonormal
basis) such that |x| ≤ 1 and y > h(j), where h(j) =√
W0

(
n2

j2

)
is called the height of the witness. The

collector Cji is defined as the union of the half-planes
in Ri that do not contain W j

i (see the blue region in
the figure on the right), so that Condition (c’), (d’)
and (e’) hold.

Every point p ∈ P writes p = xi~vi+yi~ui with xi, yi ∼
N (0, 1) independent. Thus, the probability for p to
be in W j

i is P
[
yi > h(j)

]
P [|xi| < 1] = Θ

(
Q(h(j))

)
.

Claim 5 yields Q(x) ∼x→∞ 1
x

1√
2π e
− x2

2 , so

B(0, 1)

Sci

Cj
i

↵

~ui

h(j)

h̃

W j
i

2

Q(h(j))=Q

(√
W0

(
n2

j2

))
∼ 1
√

2π
√
W0

(
n2

j2

)e− 1
2 W0

(
n2
j2

)
= 1
√

2π
√
W0
(
n2
j2

)
e
W0
(
n2
j2

) = j

n
√

2π

and E
[
card(W j

i ∩ P)
]

= nΘ
(
Q(h(j))

)
= Θ(j). Condition (a’) therefore holds.

To compute the expected number of points in Cji , we just compute the expected number
of points in one of the extreme half-planes, see the figure above. The height of the left-hand

SoCG’15

232 On the Smoothed Complexity of Convex Hulls

half-plane is h̃ =
(
h(j) − tan

(
α
2
))

cos
(
α
2
)

= h(j) −O (α), so the expected number of points
in the collector is bounded by 2nQ

(
h̃
)
and using Equation (1),

nQ
(
h̃
)
≤ nQ

(
h(j)

) Q
(
h̃
)

Q
(
h(j)

) = jO

(
e−

1
2 (h̃2−h2

(j))h(j)

h̃

)

= jeO(h(j)α) = je
O
(√

log n
j α
)

= O(j)

so we obtain E
[
card(Cji ∩ P)

]
= O (j). So Condition (b’) also holds and Lemma 3 ensures

that E
[
card(H(k))

]
is O(m) = O(

√
logn).

For the lower bound, observe that for n large enough W 1
i is inside a wedge of angle

O(α) from the origin so a constant fraction of the W 1
i are disjoint. Moreover, we have

P
[
W 1
i ∩H(1) 6= ∅

]
= 1 − P

[
W 1
i ∩ P = ∅

]
. Since E

[
card(W 1

i ∩ P)
]

= Θ(1), Chernoff’s
bound ensures that for any 0 < β < 1 we have

P
[
W 1
i ∩ P = ∅

]
≤ P

[
card(W 1

i ∩ P) ≤ β
]
≤ e−

(1−β)2Θ(1)
2 ,

so P
[
W 1
i ∩H(1) 6= ∅

]
is bounded from below by a positive constant. Condition (f’) of

Lemma 4 is thus verified and, by Lemma 4, E
[
card(H(k))

]
is also Ω(m) = Ω(

√
logn). J

3 A smoothed complexity bound for `2 perturbations

Let Kx ⊆ Rd denote the ball of radius x centered at the origin. We define the intersection
depth of a half-space W and a ball B(p, ρ) with center p and radius ρ as ρ− d(p,W).

Let P ∗ be a set of n points, chosen arbitrarily in K1 and let P be a random perturbation
of P ∗ obtained by applying to each point, independently, a `2 perturbation of amplitude δ.
We let H denote the geometric hypergraph induced on P by the set R of half-spaces in Rd.
Using the witness-collector technique we prove the following smoothed complexity bound:

I Theorem 7. For any fixed k ≥ 1, E
[
card(H(k))

]
= O

(
n2− 4

d+1
(
1 + 1

δ

)d−1
)

The bound is asymptotic, for n→∞, and the constant hidden in the O() depends on k and
d, but is uniform in δ. In particular δ can be a function of n. Before we prove Theorem 7
some remarks are in order:

In dimension 2, the bound asserts that for any input in K1, a `2 noise of amplitude
δ � n−1/3 suffices to guarantee an expected sub-linear complexity.
In dimension 3, the bound exceeds the worst-case bound and is thus trivial.
In dimension d, for any input in K1 a `2 noise of amplitude δ � n−4/(d2−1) suffices to
guarantee an expected sub-quadratic complexity.

Proof. We break up the setR of ranges. To that end, we consider a covering Sc1, Sc2, . . . , Scm
of ∂K1+δ by m spherical caps of radius r = δn−

2
d+1 ; a minimal-size covering uses m =

O
(
n2− 4

d+1
(
1 + 1

δ

)d−1
)
. For i ∈ {1, 2, . . . ,m} we consider the set of directions of outer

normals to ∂K1+δ in a point of Sci, and let Ri denote the set of half-spaces in Rd with inner
normal in that set.

We next set up, for each Ri, a family {(Cji ,W
j
i)}j of witness-collector pairs. Let ~ui denote

the normal to ∂K1+δ in the center of the cap Sci. Each witness W j
i is a half-space with

inner-normal ~ui whose intersection-depth with K1+δ is set so that it contains on average j

O. Devillers, M. Glisse, X. Goaoc, and R. Thomasse 233

p⇤

~ui

h

Wj
i

hw

Sci
d~ui~ui+1

r

d~ui~ui+1

r

 2+2�
 2rh

1+�

Figure 3 Setup for Claim 8.

points of P . Each collector Cji is defined as the union of half-spaces with inner direction in
Sci that do not contain W j

i ∩K1+δ. This construction readily satisfies Conditions (a’), (c’),
(d’) and (e’). Moreover, we claim that for any perturbed point p ∈ P we have (Claim 8):

P
[
p ∈ Cji

]
= O

(
1
n

+ P
[
p ∈W j

i

])

This implies that E
[
card(Cji ∩ P)

]
= O

(
E
[
card(W j

i ∩ P)
])

= O(j) and therefore that our
construction also satisfies Condition (b’). The statement of the theorem then follows from
Lemma 3. J

I Claim 8. P
[
p ∈ Cji

]
= O

(
1
n + P

[
p ∈W j

i

])
for any perturbed point p ∈ P .

Proof. Let p∗ ∈ P ∗ and p its perturbed copy. We fix some indices 1 ≤ i ≤ m and
1 ≤ j ≤ dlog2 ne and write w = P

[
p ∈W j

i

]
and c = P

[
p ∈ Cji

]
. Let ν denote the volume of

a (d− 1)-dimensional ball of radius 1. The volume of the intersection of a ball of radius δ
with a halfspace that cuts it with depth t is

f(t, δ) = ν

t∫
0

(
2xδ − x2) d−1

2 dx

(In particular f(2δ, δ) = Vol (Kδ).) Note that t 7→ f(t, δ) is increasing on [0, 2δ] for any
fixed δ. Moreover, for 0 < t ≤ λt ≤ 2δ we have:

f(λt, δ) = ν

t∫
0

λ
d−1

2
(
2xδ − λx2) d−1

2 λdx ≤ ν
t∫

0

λ
d+1

2
(
2xδ − x2) d−1

2 dx = λ
d+1

2 f(t, δ)

Refer to Figure 3-left and let hw denote the intersection depth at which W j
i inter-

sects B(p∗, δ). Observe that Cji ∩P is contained in a half-space C̃ji that intersects K1+δ with
depth at most hw + h. Since the diameter of C̃ji ∩ P is at most 2 + 2δ, considerations on
similar triangles (see Figure 3-right) show that h ≤ 2r. If hw ≤ 2r then we obtain the first

SoCG’15

234 On the Smoothed Complexity of Convex Hulls

part of the announced bound on c:

c ≤ f(2r + h, δ)
f(2δ, δ) ≤ f(4δn−

2
d+1 , δ)

f(2δ, δ) = f(4n−
2
d+1 , 1)

f(2, 1) = 1
f(2, 1)

4n−
2
d+1∫

0

(
2x− x2) d−1

2 dx

≤ 1
f(2, 1)

4n−
2
d+1∫

0

(2x)
d−1

2 dx = O

(
1
n

)
.

If hw > 2r then we can assume that c > 2w, as otherwise the claim holds trivially. In
particular hw ≤ δ. For n large enough (independently of δ), we also have h < δ and the
depths of intersection of both W j

i and C̃ji are in the interval [0, 2δ]. We then have

c ≤ f(hw + h, δ)
f(2δ, δ) =

f
((

1 + h
hw

)
hw, δ

)
f(2δ, δ) ≤

(
1 + h

hw

) d+1
2

w ≤ 2
d+1

2 w,

the last inequality coming from hw > 2r ≥ h. J

In two dimensions, this bound can be combined with the rescaling argument of Damerow
and Sohler:

I Corollary 9. For d = 2, the smoothed complexity of the convex hull of n points placed in
the unit disk and perturbed by a `2 noise of amplitude δ is O

(
(1 + δ−2/3)n2/3).

(This bound implies that in dimension 2, for any input in K1, an `2 noise of amplitude
δ � n−1/2 suffices to guarantee an expected sub-linear complexity, improving on Theorem 7.)

Proof. We cover K1, which contains the initial points, by Θ(1/r2) cells of size r. Fix some
ordering on these cells and let Pi denote the set of perturbed points whose unperturbed
points were initially in the ith cell. We can bound the number of vertices of the convex hull
of the perturbed point set by the sum of the number of points on the convex hulls of each of
the Pi’s.

So let ni denote the number of initial points contained in the ith cell. We apply the
previous bound, noting that the scale of the initial point set was multiplied by r; since the
combinatorial structure of the convex hull is unchanged by scaling, this is equivalent to
multiplying the scale of the noise by 1/r. The expected number of vertices on the convex
hull of Pi is therefore

E [card(CH(Pi))] = O
(
n

2
3
i

(
1 + r

δ

))
Summing over all cells we get

E [card(CH(P))] = O

(1 + r

δ

)O(r−2)∑
i=1

n
2
3
i

Recall that the ni sum to n. Using the concavity of x 7→ x

2
3 , we have

O(r−2)∑
i=1

n
2/3
i = O

(
r−2(r2n)2/3

)
= O

(
(n/r)2/3

)
For δ ≥ 1 we use the bound O(n2/3) from Theorem 7. For δ < 1 we use the previous
bound with r = δ. Altogether we obtain that the expected number of vertices of CH(P) is
O
(
(1 + δ−2/3)n2/3). J

O. Devillers, M. Glisse, X. Goaoc, and R. Thomasse 235

4 Perturbing a convex polyhedron by a uniform `2 noise

We now turn our attention to a class of configurations that are natural candidates to maximize
the smoothed complexity of convex hulls in 2 and 3 dimensions. Recall that an (ε, κ)-sample
of a surface is a point set such that any ball of radius ε centered on the surface contains
between 1 and κ points of the set.

I Theorem 10. Let P ∗ = {p∗i : 1 ≤ i ≤ n} be an
(

Θ
(
n

1
1−d

)
,Θ(1)

)
-sample of the unit

sphere in Rd and let P = {pi = p∗i + δxi} where x1, x2, . . . , xn are independent random
variables chosen uniformly in the unit ball. For any fixed k, E

[
card(H(k))

]
is

Θ(n) if δ ∈ [0, n
2

1−d),

Θ
(
n
d−1
2d δ

1−d2
4d

)
if δ ∈ (n

2
1−d , 1),

Θ
(
n
d−1
2d δ

(1−d)2
4d

)
if δ ∈ (1, n

2
d+1),

Θ
(
n
d−1
d+1

)
if δ ∈ (n

2
d+1 ,+∞).

As for Theorem 7, the bounds are asymptotic, for n→∞ and the constants hidden in the
Θ() depend on k and d, but are uniform of δ. In particular, δ can be a function of n. Before
we prove Theorem 10 some remarks are in order:

The first bound merely reflects that a point remains extreme when the noise is small
compared to the distance to the nearest hyperplane spanned by points in its vicinity.
The last bound is of the order of magnitude of the expected number of (k − 1)-faces
in the convex hull of n random points chosen independently in a ball of radius δ; this
confirms, and quantifies, the intuition that the position of the original points no longer
matters when the amplitude of the noise is really large compared to the scale of the initial
configuration.
The second and third bounds reveal that as the amplitude of the perturbation increases,
the expected size of the convex hull does not vary monotonically (see Figure 2): the
lowest expected complexity is achieved by applying a noise of amplitude roughly the
diameter of the initial configuration.

Proof. Let h be the maximal depth at which a half-space containing k points of P on
average intersects K1+δ; such a half-space intersects ∂K1+δ in a spherical cap of radius
r =

√
2 (1 + δ)h− h2 which is Θ

(√
(1 + δ)h

)
since h ≤ 1 + δ. We break up R in smaller

range spaces R1, R2, . . . , Rm by covering ∂K1+δ by spherical caps Sc1, Sc2, . . . , Scm of
radius r, and letting Ri stand for the set of half-spaces in Rd with inner normal in Sci. We

need and can take m = Θ
((1+δ

r

)d−1) = Θ
((1+δ

h

) d−1
2

)
.

Let ~ui denote the normal to ∂K1+δ in the center of the cap Sci. For j = 1, 2, . . . , log2 n

we define W j
i as the half-space with inner normal ~ui and containing on average j points of P .

We let Cji be the union of half-spaces of Ri that do not contain W j
i ∩K1+δ. As defined,

these pairs of witness-collectors satisfy Conditions (a’), (c’), (d’) and (e’) of Lemma 3.
First we remark that it is easy to extract from the W 1

i a family of size Ω(m) such that the
W 1
i ∩ P are disjoint, since W 1

i ∩K1+δ is seen from the origin with an angle Θ
(1
m

)
. Second,

the extremal point in direction ~ui is in W 1
i as soon as W 1

i is non empty. Thus we have
P
[
W 1
i ∩H(1) 6= ∅

]
= 1 − P

[
W 1
i ∩ P = ∅

]
. Since E

[
card(W 1

i ∩ P)
]

= 1, Chernoff’s bound
ensures that for any 0 < β < 1 we have

P
[
W 1
i ∩ P = ∅

]
≤ P

[
card(W 1

i ∩ P) ≤ β
]
≤ e−

(1−β)2
2 ≤ e− 1

2 ≤ 0.61,

so P
[
W 1
i ∩H(1) 6= ∅

]
≥ 0.39 and Condition (f’) of Lemma 4 is verified.

SoCG’15

236 On the Smoothed Complexity of Convex Hulls

We claim that Cji ∩K1+δ is contained in the half-space Dj
i with inner normal ~ui and

cutting Sci in a cap of radius 3rji , where r
j
i denotes the radius of the capW

j
i ∩∂K1+δ. Indeed,

for any half-space X, the region X ∩K1+δ is the convex hull of X ∩ ∂K1+δ. It follows that
X ∈ Ri does not contain W j

i if and only if X ∩ ∂K1+δ does not contain W j
i ∩ ∂K1+δ. This

implies that for any X ∈ Ri the cap X ∩ ∂K1+δ is contained in a cap with same center as
W j
i ∩ ∂K1+δ and radius 3rji . A half-space cutting out a cap of radius rx in ∂K1+δ intersects

K1+δ with depth hx = Θ
(
r2
x

1+δ

)
. Tripling the radius of a cap thus multiplies the depth of

intersection by 9. Claim 12 then implies that

E
[
card(Cji ∩ P)

]
≤ E

[
card(Dj

i ∩ P)
]

= O
(

E
[
card(W j

i ∩ P)
])

= O(j).

By Lemmas 3 and 4 we thus have

E
[
card(H(k))

]
= Θ(m) = Θ

((
1 + δ

h

) d−1
2
)
.

The expressions for the various ranges of δ are then obtained by plugging the expressions for
h obtained from Claim 11. J

I Claim 11. A half-space W such that E [card(W ∩ P)] = k intersects K1+δ with depth

Θ
(
n

2
1−d

)
if δ ∈ [0, n

2
1−d), Θ

(
δ
d+1
2d n−

1
d

)
if δ ∈ (n

2
1−d , n

2
d+1),

Θ
(
δn−

2
d+1

)
if δ ≥ n

2
d+1 .

Proof. The set of points in ∂K1 at which we can center a ball of radius δ that intersects
W ∩ ∂K1+δ is a spherical cap of radius

√
2h− h2 = Θ

(√
h
)

and (d − 1)-dimensional

area Θ
(
h
d−1

2

)
, if h→ 0, and Θ(1) otherwise.

By the sampling condition, each ball of radius n
1

1−d centered on ∂K1 contains Θ(1) points
of P ∗. In total there are thus Θ

(
nh

d−1
2

)
points p∗ ∈ P ∗ such that (p∗ + Kδ) ∩W 6= ∅ if

h→ 0, and Θ(n) otherwise. For the rest of this proof call such a point relevant. How much
a relevant point contributes to E [card(W ∩ P)] depends on the magnitude of δ:
If δ ≤ n

2
1−d then for at least a constant fraction (depending only on d) of the relevant points

p∗, the ball B(p∗, δ) is contained inW . It follows that Θ
(
nh

d−1
2

)
≤ k and h = Θ

(
n

2
d−1

)
.

If n
2

1−d ≤ δ ≤ n
2

d+1 then each relevant point p∗ contributes at most

Vol (W ∩ (p∗ + δK))
Vol (δK) = O

(
h (δh)

d−1
2

δd

)
= O

((
h

δ

) d+1
2
)

and, again, at least a constant fraction (depending only on d) of the relevant points

contribute at least a fraction of that. It follows that Θ
(
nh

d−1
2
(
h
δ

) d+1
2

)
≤ k. This

simplifies into h = Θ
(
δ
d+1
2d n−

1
d

)
.

If δ ≥ n
2

d+1 then again each relevant point p∗ contributes Θ
((

h
δ

) d+1
2

)
, and the number

of relevant points is Θ
(

min
((
nh

d−1
2

)
, n
))

. Assuming that the minimum is realized as(
nh

d−1
2

)
yields to h = Θ

(
δ
d+1
2d n−

1
d

)
≥ Θ(1) meaning that W touches a linear number of

B(p∗i , δ) and a linear number of points are relevant. Thus, the number of relevant points
is Θ(n), and this gives h = Θ

(
n−

2
d+1 δ

)
. J

O. Devillers, M. Glisse, X. Goaoc, and R. Thomasse 237

I Claim 12. Let W and W ′ be two half-spaces that intersect K1+δ with depth h and 9h
respectively, then E [card(W ′ ∩ P)] = O(E [card(W ∩ P)]).

Proof. The proof of Claim 11 shows that the number of points, in all the cases, depends
on a polynomial of h. Thus, multiplying the depth by 9 multiplies the expected number of
points by a constant (depending only on d). J

5 Gaussian perturbation of a polygon

We now investigate the same class of configurations as in Section 4, replacing the uniform `2

noise by a Gaussian noise. Since the calculations are more involved we only consider the
two-dimensional case. Our result is the following:

I Theorem 13. Let P ∗ = {p∗i , 0 ≤ i < n} be a regular n-gon of radius 1 in R2 and let
P = {pi = p∗i + xi} where x1, x2, . . . , xn are independent Gaussian variables distributed
according to N (0, σ2I2). The expected size of the convex hull of P is

O(n) if σ ∈
[
0, log4 n

n2

]
, O

(
4
√

log (n
√
σ)√

σ

)
if σ ∈

[
log4 n

n2 ,
1√

logn

]
,

O(
√

logn) if σ ∈
[

1√
logn

,+∞
)
.

(Here also the bound is asymptotic, for n→∞, and the constant hidden in the O() depends
on k and d, but is uniform in σ. In particular σ can be a function of n.)

B(0, 1)

C(w, h, ~u,↵)

↵

~u

h

W (w, h, ~u)

w

h̃

Preliminary computations. We proceed as in
the proof of Theorem 6 but the tuning of the
parameters is more tedious. We decompose the
set of half-planes into subsets with normals in
a given circle arc of angle α. We let W (w, h, ~u)
denote the semi-infinite strip with width w and
bounded by a half-plane with inner-normal ~u and
distance h away from the origin (cf the picture
on the right). We also let C(w, h, ~u, α) denote
the union of the half-planes with inner normal
making an angle at most α/2 with ~u and that do
not contain W (w, h, ~u).

The witnesses and collectors can be adjusted
using the following calculations:

I Lemma 14. In each of the following situations we have E [card(W (w, h, ~u) ∩ P)] = Θ (j)
and E [card(C(w, h, ~u, α) ∩ P)] = Θ (E [card(W (w, h, ~u) ∩ P)]):

(i) j2e
n2 < σ <

√
W0

(
n2

j2

)
, w = 2σ(1 + 1√

h−1), h = 1 + σ

√
3
2W0

(
2
3

(
n
√
σ
j

) 4
3
)
,

and α = σ
g+√g with g = σ

√
3
2W0

(
2
3 (n
√
σ)

4
3
)
, or

(ii) σ ≥
√
W0

(
n2

j2

)
, w = 2(1+σ), h = 1+σ

√
W0

(
n2

j2

)
and α = σ

g+√g with g = σ
√
W0 (n2).

SoCG’15

238 On the Smoothed Complexity of Convex Hulls

Sketch of proof. The witness W (w, h, ~u) is a semi-infinite vertical strip and the collector
C(w, h, ~u, α) is the union of two half-planes of height h̃. The proof proceeds by considering
two horizontal half-planes H and H̃ at, respectively, distance h and h̃ away from the origin.

Given σ, we set h so that card(H ∩ P) is on average Θ(j). We call the highest points
of P ∗ W-relevant, the threshold being set so that relevant points still contribute Θ(j) points
on average to card(H ∩ P). Letting w0 denote the width of a vertical strip covering the
relevant points of P ∗, we set the width w to be w0 +σ so that these relevant points contribute
Θ(j) to card(W (w, h, ~u) ∩ P).

Let q∗ be the point with normal ~u on K1 and q = q∗ + x with x distributed according to
N (0, σ2I2). We call a point p∗ ∈ P ∗ C-relevant if P

[
p ∈ H̃

]
≥ P [q ∈ H]. We bound from

above the contribution of C-irrelevant points to H̃ by some constant times the contribution of
all points to the half-plane H. It follows that E [card(P ∩W)] ' 2 E

[
card(P ∩ H̃)

]
= O(j).

It remains to tune w and α to obtain the value of h̃ giving the correct amount of relevant
points. J

Proof of Theorem 13. We cover the space of directions S1, envisioned as the unit circle
∂B(0, 1), by circular arcs Sc1, Sc2, . . . , Scm. Each circle arc Sci has center ~ui and makes
an angle α = Θ

(1
m

)
that depends on σ and n. We break up R in smaller range spaces

R1, R2, . . . , Rm where Ri denotes the set of half-planes with inner normal in Sci. We define
the witnesses

(
W j
i

)
1≤j≤log2 n

and the collectors
(
Cji

)
1≤j≤log2 n

with the usual goals in mind:

W j
i should have inner normal ~ui and contain Θ(j) points on average, and Cji is defined as

the union of the half-spaces in Ri that do not contain W j
i .

We first use Lemma 14 to find suitable values of hj and wj , that depend on σ and n, such
that we can set W j

i = W (wj , hj , ~ui). We then get, again from Lemma 14, a suitable value
of α that ensures that setting Cji = C(wj , hj , ~ui, α) satisfies our objectives. This family of
witness-collectors satisfies Conditions (a’)–(e’) so Lemma 3 yields that E [CH(P)] = O

(1
α

)
.

We now split the range of σ according to the conditions of Lemma 14 where we set
j = log2 n. Using W0 (x) ∼x→∞ log x we obtain three regimes:

I1 =
[
0, log4 n

n2

]
, I2 =

[
log4 n

n2 ,
√

logn
]

and I3 =
[√

logn,+∞
]
.

We further split I2 by observing that for σ ≈ log4 n
n2 the behaviour of 1

α is dominated by
√
g

σ = O

(
4
√

log (n√σ)
√
σ

)
whereas for σ ≈

√
logn it is dominated by g

σ = O
(√

logn
)
. (Inside

I3, 1
α is always dominated by g

σ .) The switch occurs around the solution σ0(n) of g = √g,

which solves into σ0(n) = Θ
(

1√
logn

)
. The upper end of I2 yields the same behaviour as I3,

so we merge them to obtain the three regimes of Theorem 13. J

References

1 Robert M. Corless, Gaston H. Gonnet, D.E.G. Hare, David J. Jeffrey, and Donald E. Knuth.
On the Lambert W function. Advances in Computational Mathematics, 5(1):329–359, 1996.
doi:10.1007/BF02124750.

2 Valentina Damerow and Christian Sohler. Extreme points under random
noise. In Proc. 12th European Sympos. Algorithms, pages 264–274, 2004.
doi:10.1007/978-3-540-30140-0_25.

http://dx.doi.org/10.1007/BF02124750
http://dx.doi.org/10.1007/978-3-540-30140-0_25

O. Devillers, M. Glisse, X. Goaoc, and R. Thomasse 239

3 Mark de Berg, Herman Haverkort, and Constantinos P. Tsirogiannis. Visibility maps of
realistic terrains have linear smoothed complexity. Journal of Computational Geometry,
1:57–71, 2010. url:jocg.org/index.php/jocg/article/view/12.

4 Olivier Devillers, Marc Glisse, and Xavier Goaoc. Complexity analysis of random geometric
structures made simpler. In Symposium on Computational Geometry, pages 167–176, 2013.
doi:10.1145/2462356.2462362.

5 Marc Glisse, Sylvain Lazard, Julien Michel, and Marc Pouget. Silhouette of a random
polytope. Research Report 8327, INRIA, 2013. url:hal.inria.fr/hal-00841374/.

6 Matthias Reitzner. Random polytopes. In New perspectives in stochastic geometry, pages
45–76. Oxford Univ. Press, Oxford, 2010.

7 Alfréd Rényi and Rolf Sulanke. Über die konvexe Hülle von n zufällig gewählten Punkten
I. Z. Wahrsch. Verw. Gebiete, 2:75–84, 1963. doi:10.1007/BF00535300.

8 Alfréd Rényi and Rolf Sulanke. Über die konvexe Hülle von n zufällig gewählten Punkten
II. Z. Wahrsch. Verw. Gebiete, 3:138–147, 1964. doi:10.1007/BF00535973.

9 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51:385–463, 2004.
doi:10.1145/990308.990310.

SoCG’15

http://jocg.org/index.php/jocg/article/view/12
http://dx.doi.org/10.1145/2462356.2462362
http://hal.inria.fr/hal-00841374/
http://dx.doi.org/10.1007/BF00535300
http://dx.doi.org/10.1007/BF00535973
http://dx.doi.org/10.1145/990308.990310

Finding All Maximal Subsequences with
Hereditary Properties
Drago Bokal1, Sergio Cabello∗2, and David Eppstein†3

1 Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
2 Department of Mathematics, FMF, University of Ljubljana, Slovenia
3 Computer Science Department, University of California, Irvine, USA

Abstract
Consider a sequence s1, . . . , sn of points in the plane. We want to find all maximal subse-
quences with a given hereditary property P: find for all indices i the largest index j∗(i) such
that si, . . . , sj∗(i) has property P. We provide a general methodology that leads to the following
specific results:

In O(n log2 n) time we can find all maximal subsequences with diameter at most 1.
In O(n logn log logn) time we can find all maximal subsequences whose convex hull has area
at most 1.
In O(n) time we can find all maximal subsequences that define monotone paths in some
(subpath-dependent) direction.

The same methodology works for graph planarity, as follows. Consider a sequence of edges
e1, . . . , en over a vertex set V . In O(n logn) time we can find, for all indices i, the largest index
j∗(i) such that (V, {ei, . . . , ej∗(i)}) is planar.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases convex hull, diameter, monotone path, sequence of points, trajectory

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.240

1 Introduction

The increasing availability of massive amounts of data regarding the spatial movements of
smart phones, vehicles, tagged wild animals, ice sheets, etc., has led to an increasing interest
in geometric algorithms for trajectory analysis [1, 4–6, 9, 13, 16, 17]. Such problems are a
natural fit for the windowed geometry framework of Bannister et al. [2]: in this framework, a
trajectory can be described by a sequence S of points in the plane (the vertices of a polyline),
and we wish to develop data structures that can quickly answer queries about the shapes
formed by contiguous subsequences of S. These queries may in turn be used for exploratory
data analysis of a data set, or as subroutines for higher-level problems such as trajectory
segmentation, clustering, or simplification.

In this paper, we consider queries for which the answer is a Boolean value: given a
sequence S = s1, . . . , sn, and a query subsequence [i, j], does the queried subsequence of S
have property P or not? We only consider hereditary properties, i.e., whenever a sequence
has property P, so do all of its subsequences. For example, the property of having a convex
hull of area at most 1 is hereditary in this sense. For such problems, the issues of data

∗ Part of this research was done while visiting IST Austria. Supported by the Slovenian Research Agency,
program P1-0297, projects J1-4106 and L7-5459.
† Supported in part by NSF grant 1228639 and ONR grant N00014-08-1-1015.

© D. Bokal, S. Cabello, and D. Eppstein;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 240–254

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.240
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D. Bokal, S. Cabello, and D. Eppstein 241

structure representation and query time become trivial: we need only store, for each index i,
the largest index j∗(i) such that the subsequence si, . . . , sj∗(i) has property P. With this
information, the query reduces to a simple comparison of the endpoint j of the query interval
with the endpoint j∗(i) of the maximal interval starting at i with property P. However, the
preprocessing stage of this problem, in which we compute each of these values j∗(i), can be
highly nontrivial. That is the focus of our contribution: efficient algorithms for finding all of
the maximal contiguous subsequences of S with the prescribed property.

Analogous windowed query data structures can be considered as well for non-geometric
data, such as sequences of timestamped graph edges [3]. For such data, we may seek the
maximal subsequences that have some monotone graph property such as being disconnected,
being acyclic, being planar, etc.

1.1 New results
Let S = s1, . . . , sn be a sequence of points in the plane. We prove the following results:

In O(n logn log logn) time we can find, for all indices i, the largest index j∗(i) such that
the convex hull of si, . . . , sj∗(i) has at most unit area. In the trajectory problems, this
models subsequences in which the moving object is either not moving significantly or is
traveling close to a straight line.
In O(n log2 n) time we can find, for all indices i, the largest index j∗(i) such that
si, . . . , sj∗(i) has at most unit diameter. In the trajectory problem, this models subse-
quences in which the object is not moving significantly.
In O(n) time we can find, for all indices i, the largest index j∗(i) such that there exists
a direction for which the path defined by si, . . . , sj∗(i) is monotone. In the trajectory
problem, this models subsequences in which the object is moving in some particular
direction but may possibly be deviating from a straight line to avoid obstacles.

We develop a methodology, explained in Section 2, that should be useful for many other
problems. As another application of these techniques beyond geometry, we show the following
result about graph planarity. Let V be a vertex set and let e1, . . . en be a sequence of edges
with endpoints in V . We show how to compute in O(n logn) time, for all indices i, the
largest index j∗(i) such that the graph (V, {ei, . . . , ej∗(i)}) is planar.

For the geometric problems, we do not use any heavy machinery and the results are clearly
implementable. For graph planarity we use a deep result of Galil, Italiano, and Sarnak [15]
that makes our result purely of theoretical interest.

1.2 Comparison with dynamic data structures
For our problems of finding maximal subsequences with property P, there is a natural
alternative approach based on dynamic geometric data structures. Suppose we have a data
structure D that can maintain a dynamic set of points, subject to insertions and deletions,
and answer queries that ask whether the current set has property P . Then we may use D to
compute the sequence of values j∗(i), using a simple scan, as follows:

Augment S by a special flag value sn+1 that cannot be part of a set with property P.
Initialize D to an empty data structure, and set j = 0.
For i = 1, 2, 3, . . . do the following:

While the set in D has property P, increase j by one and insert sj into D.
Set j∗(i) = j − 1.
Delete si from D.

S o C G ’ 1 5

242 Finding All Maximal Subsequences with Hereditary Properties

This algorithm performs n insertions and deletions in D and computes all values j∗(i); its
time is bounded by O(n) times the time for a single insertion or deletion. However, for the
problems we consider, this would be slower than the time bounds we give.

For instance, consider the problem of finding maximal subsequences of points whose
convex hull has area at most 1. A natural approach is to use a dynamic data structure that
maintains the area of the convex hull under insertions and deletions of points. The data
structure by Overmars and van Leeuwen [20] can be easily extended to maintain the area of
the convex hull of n points in O(log2 n) time per update. We could use this data structure in
the scan algorithm above to compute all maximal subsequences in O(n log2 n); however, this
is slower by a logarithmic factor than our algorithms. Chan [7] has improved the Overmars
and van Leeuwen data structure but we are unsure whether this can be adapted to the convex
hull area property and it would still be somewhat slower than our algorithm.

Chan [8] shows how to maintain the diameter dynamically in O(log8 n) expected amortized
time, improving a previous algorithm of Eppstein [11]. This implies that all maximal
subsequences of diameter 1 can be computed in O(n log8 n) expected time. This is significantly
slower than the algorithm we give.

The monotonicity problem depends on the sequence in which the input points are given so
it is not possible to express it using data structures based on dynamic point sets. Nevertheless,
a similar scan algorithm could be used together with a data structure that detects whether a
dynamic set of vectors (the differences of consecutive points in the input sequence) has the
property of lying within a halfspace through the origin. This data structural problem can be
solved by using a binary search tree (ordered radially around the origin) in logarithmic time
per update. However, again, this would be slower than our algorithm.

For graph planarity we would need a dynamic data structure that that maintains a
planar graph under insertion and deletion of edges. Moreover, we also need to be able to
query whether the addition of an edge violates planarity. The best data structure for this
takes O(

√
|V |) = O(

√
n) amortized time per query or operation [12]. Thus, we can find all

maximal planar graphs in O(n3/2) time, significantly slower than our algorithm. (There are
better semi-dynamic data structures for planarity [10], but deletions are costly.)

There has also been research on faster dynamic data structures with restrictions on the
update order, such as offline updates in which the entire sequence of updates is known
in advance. Here, we do know the order of insertions and deletions, but we do not know
how they interlace. In fact, the main substance of the problem is about figuring out when
deletions should take place.

1.3 Additional related work
Ła̧cki and Sankowski [19] considered a related windowed query framework for graph problems
with an offline sequence of edge updates. As in our problems, queries specify a window within
this sequence; however, the goal of a query is to determine whether some, all, or none of
the versions of the graph within the window have a given property P. For the geometric
problems that we consider, an analogous type of problem would involve a data set consisting
of a sequence of point insertions and deletions, and a query asking whether all, some, or
none of the versions of the point set within a window into the query sequence have a given
property. However, the graph properties considered by Ła̧cki and Sankowski are different
from the geometric and graph properties considered here.

A one-dimensional variant of the windowed diameter problem may be solved in constant
time per query, using a range minimum data structure [14] to determine the minimum and
maximum value within a query window. Applying this separately to each coordinate would

D. Bokal, S. Cabello, and D. Eppstein 243

allow us to determine the L∞ diameter of a query window. However, this approach does not
generalize to Euclidean diameter, and although it can be made to work for the monotone
direction problem, it would result in a more complicated solution than the one we give.

2 General strategy

We first review the notation we (ab)use. For any natural numbers a and b, we let [a, b] denote
the integer range {a, a+ 1, . . . , b}. Henceforth, n will be used to denote the length of the
input sequence. We write [n] instead of [1, n] and use U = {(i, j) ∈ [n]2 | i ≤ j}.

Consider a sequence S = s1, . . . , sn of points in the plane. For every pair of indices
(i, j) ∈ U we define the subsequence S[i, j] = si, . . . , sj . All subsequences considered in
this paper are contiguous subsequences. When j < i, S[i, j] is the empty sequence. With a
slight abuse of notation, we will sometimes treat S[i, j] as a set instead of as a sequence; for
example, we will talk about the diameter or the convex hull of S[i, j].

A property P for subsequences is hereditary if it is closed under taking subsequences: if
S[i, j] has property P , then S[i′, j′] also has property P for all i ≤ i′ ≤ j′ ≤ j. All properties
considered in this paper are hereditary.

Consider a fixed hereditary property P . We consider a n×n matrix AP = (AP(i, j))(i,j)∈U,
defined (only for pairs of indices in U) by

AP(i, j) =
{

1, if S[i, j] ∈ P,
0, otherwise.

Values in the bottom triangle {(i, j) | j < i} are undefined. We want to find for each row i

the last index j∗(i) with AP(i, j∗(i)) = 1. When the property P is clear from the context,
we drop the subscript and simply write A instead of AP .

A rectangle (of indices) is a subset of indices

[a, a+ h]× [b, b+ w] = {(i, j) ∈ [n]2 | a ≤ i ≤ a+ h, b ≤ j ≤ b+ w}.

For a rectangle R = [a, a+ h]× [b, b+ w], its height is height(R) = h+ 1 and its width is
width(R) = w + 1. By solving a rectangle R = [a, a+ h]× [b, b+ w] we mean finding, for
each index i ∈ [a, a+ h], the last nonzero of row i of matrix A that lies inside rectangle R.
In general, our algorithms will consider rectangles [a, a + h] × [b, b + h] with a + h ≤ b,
that is, contained in U. A rectangle is anchored at the diagonal if it is of the type
[a− h, a]× [a, a+ w], that is, its bottom left corner lies on the diagonal {(i, i) | i ∈ [n]}.

We will assume that A(i, i) = 1, for all i ∈ [n]; that is, any single point of S always
satisfies property P . (Otherwise j∗(i) is not defined.) Our algorithms will consider rectangles
R = [a, a+ h]× [b, b+w] with the property that, for all i ∈ [a, a+ h], j∗(i) ∈ [b, b+w]. That
is, these rectangles contain the last nonzero of A in each of their rows. We call a rectangle
with this property a frontier rectangle. Thus, solving a frontier rectangle is equivalent to
finding the values j∗(i) for all i ∈ [a, a+ h].

2.1 Decomposing into anchored rectangles
We are going to use a greedy procedure to reduce the problem to a search within disjoint
frontier rectangles anchored at the diagonal that together have O(n) height and width.

Take a sequence of indices α = a1, a2, . . . , n such that a1 = 1 and ak = j∗(ak−1), that is,
ak is the largest index with A(ak−1, ak) = 1. (In the special case that ak = ak−1, we redefine
ak to ak−1 + 1.) This is a greedy decomposition of the sequence into subsequences with

S o C G ’ 1 5

244 Finding All Maximal Subsequences with Hereditary Properties

a1
a2

(a2, a3)
(a3, a4)

ak

ak

R1

R2

R3

ak+1

ak+2

Rk

Rk+1

Rk−1

ak+3

Rk+2

Figure 1 Schema showing the greedy procedure to decompose the problem into (red) frontier
rectangles anchored at the diagonal. The blue region denotes entries of matrix A with value 1.

property P . The subsequences are disjoint, except for the starting and ending points ak, and
maximal with respect to this almost-disjoint property. For each index ak in α, define the
rectangle Rk = [ak + 1, ak+1]× [ak+1, ak+2]. A schematic view is offered in Figure 1.

Each index i ∈ [n] appears at most once as a first coordinate and at most twice in the
second coordinate of rectangles R1, R2, Therefore∑

k

(
height(Rk) + width(Rk)

)
= O(n).

By construction, each Rk is a frontier rectangle anchored at the diagonal. Solving the
rectangles R1, R2 . . . we readily obtain all maximal subsequences with property P. We
summarize.

I Lemma 2.1. Assume that we have the following two subroutines for sequence S and
property P:
(a) Given an index a ∈ [n], find the largest index j∗(a) such that S[a, j∗(a)] ∈ P. This takes

Tgreedy(j∗(a)− a) time for a certain convex function Tgreedy(·).
(b) Given a frontier rectangle R of indices anchored at the diagonal, solve R. This takes

Trect(height(R) + width(R)) time for a certain convex function Trect(·).
Then we can find all maximal subsequences with property P in O(n) + Tgreedy(O(n)) +
Trect(O(n)) time. J

2.2 Solving an anchored rectangle
To solve a frontier rectangle anchored at the diagonal, we are going to use a recursive
divide-and-conquer method. The subproblems of this method will be defined by frontier
rectangles contained in U, but not necessarily anchored at the diagonal.

Consider a frontier rectangle [a, a+ h]× [b, b+w] contained in U. We use a methodology
similar to binary search. See Figure 2 for an schematic view. We select an index m halving
the interval [a, a+ h]. Then we find the largest index c such that A(m, c) = 1. With this, we
infer the following information:

In the rectangle [m, a+ h]× [b, c], all the values of A are 1.
In the rectangle [a,m]× [c+ 1, b+ w], all the values of A are 0.

We then recurse in the frontier rectangle [a,m− 1]× [b, c] and in the frontier rectangle
[m+ 1, a+ h]× [c, b+w]. Since in each step we halve the area where we continue the search,
we have a recursion of depth O(log(wh)).

However, the subproblems do not really get smaller: to solve the rectangle R = [a, a+h]×
[b, b+w], we have to consider the subsequence S[a, b+w], which has size w+ b− a. For late

D. Bokal, S. Cabello, and D. Eppstein 245

a
b b+ w

a+ h

m m

a
b b+ w

a+ h

c

m

a
b b+ w

a+ h

c

Recu
rsion

Re
cu
rsi
on

Figure 2 Schema showing the strategy to solve a frontier rectangle. The blue region denotes
entries known to have value 1. The red region denotes entries known to have value 0.

subproblems, this may be larger than w + h or wh. However, any of the subsequences S[i, j],
where (i, j) ∈ R, can be decomposed into S[i, a + h], S[a + h, b] and S[b, j]. The middle
sequence S[a+ h, b] may be arbitrarily large, but it is a “common factor” to all subsequences
S[i, j], (i, j) ∈ R. We replace the subsequence S[a+ h, b] by a sketch of size O(w + h). The
definition of sketch depends on the problem at hand, but the idea is that it should encode
the role of S[a+ h, b] in the subsequences S[i, j], for all (i, j) ∈ R. In fact, such sketches are
also important to find efficiently the index c that controls the division for recursive calls.

To analyze such algorithm, the following technical result will be useful.

I Lemma 2.2. The recursion

T (h,w) =
{
O(h+ w) + T (bh/2c, w′) + T (bh/2c, w − w′) if h ≥ 2,
O(w) if h = 0 or 1,

where 0 ≤ w′ ≤ w, implies that T (h,w) = O((h+ w) log h). J

3 Directional monotonicity

In this section, we will regard the subsequence S[i, j] as a polygonal path. Consider the unit
circle S1. For a direction ~u ∈ S1, the path S[i, j] is ~u-monotone, if it is always increasing in
the direction ~u, that is, the scalar product of −−−−→sksk+1 and ~u is positive for each k ∈ [i, j − 1].
The path S[i, j] is monotone if it is ~u-monotone for some direction ~u ∈ S1. Let Θ(i, j) ⊂ S1

be the set of directions ~u such that S[i, j] is ~u-monotone.

I Lemma 3.1. Given an index a ∈ [n], we can find the largest index j∗(a) ∈ [n] such that
the path S[a, j∗(a)] is monotone in O(j∗(a)− a) time.

Proof. Starting with j = a+ 1, we increment j until we get that j = n+ 1 or S[a, j] is not
monotone, and then return j − 1. At each step, we compute the interval Θ(a, j) in constant
time using that Θ(a, j) = Θ(a, j − 1) ∩

{
~u ∈ S1 | 〈−−−−→sj−1sj , ~u〉 > 0

}
. J

Lemma 3.1 provides the subroutine needed in Lemma 2.1(a). The next result provides
the subroutine needed in Lemma 2.1(b).

I Lemma 3.2. Consider a frontier rectangle R of indices anchored at the diagonal. We can
solve the rectangle R in O(height(R) + width(R)) time.

Proof. Let R be the rectangle [a−h, a]×[a, a+w]. We compute for each index j ∈ [a+1, a+w]
the set of directions Θ(a, j). This is done incrementally in O(w) time. We compute for each
index i ∈ [a− h, a− 1] the set of directions Θ(i, a). This is done by tracing the reverse of
the path S[a− h, a] and using the fact that a path is ~u-monotone if and only if its reversal is
(−~u)-monotone.

S o C G ’ 1 5

246 Finding All Maximal Subsequences with Hereditary Properties

a− h
a a+ w

a

a− h
a a+ w

a

Figure 3 Path followed by (i, j) in the algorithm of Lemma 3.2 to solve a frontier rectangle
anchored to the diagonal. The blue region describes query windows that form monotone paths.

Now we just walk along the boundary between monotone and not-monotone in the
rectangle R. See Figure 3. Set i = a−h and j = a+ 1. At each iteration, we compute Θ(i, j)
in constant time using the fact that Θ(i, j) = Θ(i, a)∩Θ(a, j). If Θ(i, j) 6= ∅, we increment j
and go to the next iteration. If Θ(i, j) = ∅, we deduce that j∗(i) = j − 1, increment i, and
go to the next iteration. We finish when the pair (i, j) is outside the rectangle R. In this
case, we deduce that j∗(i′) = a+ w for i′ = i, . . . , a.

The running time is O(h + w) because at each iteration we spend constant time and
increment either i or j. J

I Theorem 3.3. Let S = s1, . . . , sn be a polygonal path in the plane. In O(n) time we
can compute, for all indices i ∈ [n], the largest index j∗(i) such that the polygonal path
si, . . . , sj∗(i) is monotone.

Proof. Lemmas 3.1 and 3.2 give the subroutines required in the hypothesis of Lemma 2.1,
with running times Tgreedy(n) = O(n) and Trect(n) = O(n). Lemma 2.1 implies that we can
find all maximal subsequences in O(n) time. J

Note that in this problem, we did not need the recursive approach discussed in Section 2.2.
This is because Θ(i, j), which plays the role of a sketch, has a constant-size description.

4 Diameter of point sets

For a set of points P in the Euclidean plane, its diameter diam(P) is the maximum distance
between any two points: diam(P) = maxp,p′∈P ‖p− p′‖. The diameter of n points can be
computed in O(n logn) time; see for example [21, Chapter 4].

4.1 Sketches
Let P and S be sets of points in the Euclidean plane. A subset Q ⊂ P is a diam-sketch of
P with respect to S if
(i) for each T ⊂ S we have diam(P ∪ T) = diam(Q ∪ T), and

(ii) |Q| = O(|S|).
Diam-sketches can be constructed using standard tools and have a certain composition

property, as the following lemma explains. See Figure 4 for an example of the construction.

D. Bokal, S. Cabello, and D. Eppstein 247

CH(P)

Figure 4 Example of diam-sketch. Left: the dotted black points correspond to P , the squared
red points to S. A diametral pair of P and points furthest away from each point of S are shown with
dashed segments. Right: the resulting diam-sketch, as constructed in the proof of Lemma 4.1(a).

I Lemma 4.1. Diam-sketches have the following properties.
(a) Given sets P and S of cardinality at most n, we can compute a diam-sketch of P with

respect to S in O(n logn) time.
(b) Let Q be a diam-sketch of P with respect to S, X be a diam-sketch of Q∪S1 with respect

to S2, and S1 ∪ S2 ⊂ S. Then X is a diam-sketch of P ∪ S1 with respect to S2.

Proof Sketch. We show (a) giving an explicit construction. We set Q = ∅, add to Q a
diametral pair of P and, for each point s ∈ S, add a point of P that is furthest from s. Such
a set Q can be constructed in O((|P |+ |S|) log(|P |)) = O(n logn) time using standard tools:
we compute the diameter of P , build the furthest-point Voronoi diagram V D of P , and
locate each point of S in V D. The details are standard. See Figure 4 for an example of the
construction. A small case analysis shows that Q is indeed a diam-sketch.

To show (b), consider any T ⊂ S2. We have to show that diam(P ∪S1∪T) = diam(X∪T).
Since Q is a diam-sketch of P with respect to S ⊃ S1 ∪ T and X is a diam-sketch of Q ∪ S1
with respect to S2 ⊃ T , we have

diam(P ∪ S1 ∪ T) = diam(P ∪ (S1 ∪ T)) = diam(Q ∪ (S1 ∪ T))
= diam((Q ∪ S1) ∪ T) = diam(X ∪ T). J

4.2 Algorithms
I Lemma 4.2. Let P be a set of points and S = s1, . . . , sn a sequence of points. Assume
that we have a diam-sketch Q of P with respect to S. In O(n logn) time, we can find the
largest index j∗ such that diam(P ∪ S[1, j∗]) ≤ 1.

Proof. We proceed with a binary search. We initialize the search with ` = 0, r = n, and
X = Q. Through the binary search, we maintain the invariant that ` ≤ j∗ ≤ r and X is a
diam-sketch of P ∪ S[1, `] with respect to S[`+ 1, r]. In an iteration, we set m = d(`+ r)/2e
and check whether diam(X ∪S[`+ 1,m]) ≤ 1. If the diameter is at most 1, then we continue
the search with ` = m, and set X to be a diam-sketch of X ∪ S[`,m] with respect to
S[m+ 1, r]. If, on the other hand, the diameter is larger than 1, then we continue the search
with r = m − 1, and set X to be a diam-sketch of X with respect to S[` + 1,m − 1]. We
finish the search when ` = r by returning `.

S o C G ’ 1 5

248 Finding All Maximal Subsequences with Hereditary Properties

Validity of the invariant ` ≤ j∗ ≤ r follows from the standard argument used for binary
search. Validity of the property that X is a diam-sketch of P ∪ S[1, `] with respect to
S[` + 1, r] follows by induction and Lemma 4.1(b). When we continue on the right side
(setting ` = m), we apply Lemma 4.1(b) with S1 = S[`,m] and S2 = S[m + 1, r]. When
we continue on the left side (setting r = m− 1), we apply Lemma 4.1(b) with S1 = ∅ and
S2 = S[`+ 1,m− 1].

Correctness of the method follows from the invariant because at the end, when r = `, we
have diam(P ∪ S[1, `]) = diam(X) ≤ 1 and r = j∗ = `.

For the running time, note that at each step, we handle O(|X|+ r− `) points. Since X is
always a diam-sketch with respect to S[`+1, r], we have |X| = O(r−`). At each iteration, we
compute the diameter of O(r− `) points and the diam-sketch of O(r− `) points with respect
to a set of size O(r− `) using Lemma 4.1(a). This means that we spend O((r− `) log(r− `))
at each iteration. Since at each iteration the value r− ` decreases geometrically, we conclude
that the total running time is O(n logn). J

I Lemma 4.3. Consider a frontier rectangle R anchored at the diagonal with height h and
width w. We can solve R in O((h+ w) log2(h+ w)) time.

Proof. We give a recursive algorithm. A recursive subproblem is described by a frontier
rectangle [a, a+h]× [b, b+w] contained in U, and a diam-sketch Q of S[a+h, b] with respect
to S[a, a+ h− 1] ∪ S[b+ 1, b+ w]. The original problem is a problem of such type, where
a+ h = b and S[a+ h, b] = Q = {sb}.

If h = 1, we use Lemma 4.2 twice, once for each row, to find j∗(a) and j∗(a + 1). For
the row a+ 1 we use Q and the sequence S[b+ 1, b+ w]. For the row a we use Q and the
sequence sa, S[b+ 1, b+w]. In this case, we need O(w logw) time. The case h = 0 is similar.

Let us now consider the case when h ≥ 2 and thus the rectangle has at least three
rows. We use the divide-and-conquer approach discussed in Section 2.2. Set m = a+ bh/2c.
We find the last index c ∈ [b, b + w] such that diam(S[m, c]) ≤ 1. (Here we are using
the property of being a frontier rectangle to infer that c ≥ b and thus (m, c) ∈ R.) We
have obtained that j∗(m) = c. We then recurse on the rectangles R1 = [a,m − 1] × [b, c]
and R2 = [m + 1, a + h] × [c, b + w]. Note that R1 and R2 are frontier rectangles; see
Figure 2. To recurse in the rectangle R1, we use a diam-sketch Q1 of Q ∪ S[m, a+ h] with
respect to S[a,m − 1] ∪ S[b, c]. Note that Q1 is a diam-sketch of S[m, b] with respect to
S[a,m− 1] ∪ S[b, c] because of Lemma 4.1(b), and thus it is the appropriate diam-sketch for
the recursive call. Similarly, for the recursion on the rectangle R2, we use a diam-sketch Q2
of Q ∪ S[b, c− 1] with respect to S[m+ 1, a+ h] ∪ S[c, b+w]. Again, Q2 is a diam-sketch of
S[a+ h, c− 1] with respect to S[m+ 1, a+ h] ∪ S[c, b+ w] because of Lemma 4.1(b), and it
provides appropriate ground for recursion. This finishes the description of the algorithm.

To analyze the running time, note that Q has size O(h+ w) because it is a diam-sketch
with respect to h+ w points. If h ≤ 1, we spend O(w logw) time. Let us now look at the
case h > 1. The index c can be found in O((h+ w) log(h+ w)) time using Lemma 4.2 with
Q and the sequence S[m, a+ h− 1], S[b+ 1, b+w]. The sets Q1 and Q2 can be computed in
O((h+ w) log(h+ w)) time using Lemma 4.1(a) and noting that Q has size O(h+ w). Thus
we spend O((h + w) log(h + w)) time plus the time for recursive calls in R1 and R2. Let
w′ = c− b. The rectangle R1 has m− a ≤ bh/2c rows and c− b+ 1 = w′ + 1 columns, while
the rectangle R2 has a+ h−m ≤ bh/2c+ 1 rows and b+ w − c+ 1 = w − w′ + 1 columns.
Therefore, denoting by T (h,w) the running time for a rectangle with h+ 1 rows and w + 1

D. Bokal, S. Cabello, and D. Eppstein 249

columns, we have

T (h,w) =
{
O((h+ w) log(h+ w)) + T (bh/2c, w′) + T (bh/2c, w − w′) if h ≥ 2,
O(w log(h+ w)) if h ≤ 1.

Taking the factor O(log(h+ w)) out, Lemma 2.2 implies that T (h,w) = O((h+ w) log2(h+
w)). J

Buchin et al. [6] give the subroutine needed in Lemma 2.1(a) with Tgreedy(n) = O(n logn).
An exponential search and Lemma 4.2 can also be used to obtain the same result. Lemma 4.3
gives the subroutine needed in Lemma 2.1(b) with Trect(n) = O(n log2 n). Then Lemma 2.1
implies the following.

I Theorem 4.4. Let S = s1, . . . , sn be a sequence of points in the plane. In O(n log2 n) time,
we can compute, for all indices i ∈ [n], the largest index j∗(i) with diam(si, . . . , sj∗(i)) ≤ 1.

5 Area of the convex hull

In this section, we will for simplicity assume general position: no two points have the same
x-coordinate and no three points are collinear.

For a point set P , we denote by CH (P) its convex hull. For each point s outside CH (P),
let τ(s, P) be the two points on the boundary of CH (P) that support the tangents to CH (P)
through s.

5.1 Sketches
Let P be a set of points and let S = s1, . . . , sn be a sequence of points. Let pmax and pmin
be the points of P with largest and smallest x-coordinates, respectively. The CH-sketch
of P with respect to the sequence S is the point set

{pmax, pmin} ∪

 ⋃
i∈[n]

τ(si, P ∪ S[1, i− 1]) ∩ P

 .

An example is given in Figure 5. The intuition is that the CH-sketch should contain the
points of P that support some tangent during the iterative construction of CH (P ∪ S[1, i]),
for i = 1, . . . , n. We add pmax and pmin for convenience: we will later maintain the area of
the upper hulls of P and the CH-sketch, and it is slightly simpler if their starting and ending
points match.

Note that we define CH-sketches with respect to sequences, while sketches in the previous
section were with respect to sets. We do this to achieve better efficiency.

Let Q denote the CH-sketch of P with respect to S. We have the following straightforward
consequences of the definition:
(i) |Q| = O(|S|) because each point of S contributes at most two points to Q.

(ii) Each point of Q is a vertex of CH (P) because it is in P and supports a tangent to
CH (P ∪X) for some X.

(iii) For each i ∈ [n], we have τ(si, P ∪S[1, i−1]) = τ(si, Q∪S[1, i−1]), as a point supporting
a tangent to CH (P ∪ S[1, i− 1]) through si is either in Q by definition or in S[1, i− 1].

We next discuss some properties about composition of CH-sketches. In our algorithm, we
are going to keep two CH-sketches, each with respect to a different sequence. Because of
this, some statements become cumbersome.

S o C G ’ 1 5

250 Finding All Maximal Subsequences with Hereditary Properties

s1

s2

s3

s4

s5

s6

q

q′∆(qq′, P)

Figure 5 Left: A set P of points (black dots) with its convex hull and the sequence S = s1, . . . , s6

(red squares). Center: the sequence of convex hulls CH (P ∪ S[1, i]) for i = 1, . . . , 6. The points of
the CH-sketch Q of P with respect to S are marked in solid blue. Right: CH (Q) for the CH-sketch
of P and the clipped region ∆(qq′, P) for an edge qq′ of CH (Q).

I Lemma 5.1. Let Q1 be a CH-sketch of P with respect to a sequence S1[1, n1]. Let Q2 be a
CH-sketch of P with respect to a sequence S2[1, n2]. Consider indices c1 and c2 such that
1 ≤ c1 ≤ n1 and 1 ≤ c2 ≤ n2.
(a) If Q′ is a CH-sketch of Q1∪S1[1, c1] with respect to S1[c1 +1, n1], then Q′ is a CH-sketch

of P ∪ S1[1, c1] with respect to S1[c1 + 1, n1].
(b) If Q′ is a CH-sketch of Q2 ∪ S1[1, c1] with respect to S2[1, c2], then Q′ is a CH-sketch of

P ∪ S1[1, c1] with respect to S2[1, c2].

5.2 Clipped regions
Let P be a set of points and let Q be a subset of the vertices of CH (P). Each edge qq′
of CH (Q) separates a portion of CH (P) \ CH (Q) from CH (Q). We denote such a region
by ∆(qq′, P). See Figure 5, right. We use ∆(Q,P) for the family of clipped regions
{∆(qq′, P)}qq′ , where qq′ iterates over all edges of CH (Q).

Let Q be a CH-sketch of P with respect to S. Consequence (iii) of the definition of CH-
sketch is important to easily obtain the area of CH (P ∪S[1, i]) from the area of CH (Q∪S[1, i])
and the area of each of the clipped regions ∆(Q,P). Indeed, for every index i, a clipped
region of ∆(Q,P) is contained either in CH (Q ∪ S[1, i]) or in the closure of its complement.
Therefore

area(CH (P ∪ S[1, i])) = area(CH (Q ∪ S[1, i])) +
∑
qq′

area(∆(qq′, P)),

where the sum is taken over all edges qq′ of CH (Q) that are also edges of CH (Q ∪ S[1, i]).
See Figure 5 for an example. We use clipped regions to keep track of area difference between
CH (P) and CH (Q) though the addition of points of S.

5.3 Algorithms
We are going to keep point sets sorted by their x-coordinates. The sequence S is also
going to be kept sorted by x-coordinates. This does not mean that the x-coordinates of
s1, s2, . . . , sn are increasing when these points are given in sequence order. This means that,
besides the sequence S, we have another list where the elements appearing in S are sorted
by x-coordinates. For a set or sequence S, we will use Lx(S) to denote the list containing S
sorted by x-coordinate.

D. Bokal, S. Cabello, and D. Eppstein 251

γ(e)
e

Σ(e) Σ(e)

eγ− γ+

Figure 6 Data maintained during the incremental algorithm in the proof of Lemma 5.2.

I Lemma 5.2. Let P be a set and S a sequence of points, both of cardinality at most n.
Assume that we have the corresponding lists Lx(P) and Lx(S). We can compute a CH-sketch
of P with respect to S in O(n log logn) time. Moreover, the CH-sketch is obtained sorted by
x-coordinate.

Proof Sketch. We iteratively add the points s1, . . . , sn of S, maintain CH (P ∪ S[1, i]), and
mark the points τ(si, P ∪ S[1, i − 1]) ∩ P to be added to the CH-sketch. We maintain
separately the upper and the lower hull of P ∪ S[1, i]. We discuss only the upper hull.

Through the iterative procedure, we use a list UH that stores the edges of the upper hull
of P ∪ S[1, i]. For each segment e of UH, let Σ(e) be the vertical slab contained between
the two vertical lines through the endpoints of e. For each edge e in UH, we have a list
γ(e) of the points of S[i + 1, n] contained in Σ(e), sorted by x-coordinate. We have two
additional lists, γ− and γ+, that contain the points of S[i+ 1, n] to the left and to the right
of UH, respectively, also sorted by x-coordinate. See Figure 6. We also maintain a van Emde
Boas tree [22] for the vertices of UH. Its purpose is to find, at the time of inserting si, the
segment e of UH whose slab Σ(e) contains si. Using the order given by x-coordinates, this
is a predecessor query in UH. We can identify each point of P ∪ S with its rank in the order
given by x-coordinates, and use those ranks as keys for the van Emde Boas tree. Thus, we
have an universe of |P ∪ S| = O(n) elements and each operation takes O(log logn) time.

The data can be initialized in O(n) time computing CH (P) from Lx(P) and with a
simultaneous scanning of UH and Lx(S). The insertion of a point si of S starts locating the
edge e such that γ(e) contains si and the appearance of si in γ(e). We then have to update
the convex hull UH and update the lists making some local operations. The insertion of si

takes O(log logn+ |ki−1 − ki|) time, where ki denotes the number of vertices in the upper
hull of P ∪ S[1, i]. At the end of the insertion, we can obtain the points τ(si, P ∪ S[1, i− 1])
of the upper hull and mark them for addition to the CH-sketch. Since each point of P ∪ S
can be deleted at most once, the time over all insertions is O(n log logn).

When we have inserted all the points of S, we construct the CH-sketch going through
Lx(P) and selecting those marked for addition to the CH-sketch. We also insert the first
and last point of Lx(P), since they have smallest and largest x-coordinate. J

An approach similar to the one used in the proof of Lemma 5.2 can be used to incrementally
maintain the area of CH (Q ∪ S[1, i]), for i = 1, . . . , n. If Q is a CH-sketch of P with respect
to S, we can then use the area of the clipped regions ∆(Q,P) to compute the area of

S o C G ’ 1 5

252 Finding All Maximal Subsequences with Hereditary Properties

CH (P ∪ S[1, i]), for i = 1, . . . , n. We just have to notice that, for each i ∈ [n], a clipped
region of ∆(Q,P) is contained in CH (P ∪ S[1, i]) or in its complement. This leads to the
following.

I Lemma 5.3. Let P be a set of points and let S = s1, . . . , sn be a sequence of points.
Assume that we have a CH-sketch Q of P with respect to S and, for each edge qq′ of
CH (Q), the area of ∆(qq′, P). Furthermore, assume that we have the corresponding lists
Lx(Q) and Lx(S). In O(n log logn) time, we can find the largest index j∗ ∈ [n] such that
area(CH (P ∪ S[1, j∗])) ≤ 1. J

I Lemma 5.4. Consider a frontier rectangle R anchored at the diagonal with height h and
width w. We can solve R in O((h+ w) log(h+ w) log log(h+ w)) time.

Proof. (Sketch) We follow very closely the proof of Lemma 4.3. However, the description of
a recursive subproblem is given by:
(i) a frontier rectangle [a, a+ h]× [b, b+ w] contained in U;

(ii) a CH-sketch Qver of S[a+ h, b] with respect to the reversal of S[a, a+ h− 1];
(iii) a CH-sketch Qhor of S[a+ h, b] with respect to S[b+ 1, b+ w];
(iv) lists Lx(Qver), Lx(Qhor), Lx(S[a, a+ h− 1]), and Lx(S[b+ 1, b+ w]);
(v) the convex hull CH (Q), where Q = Qhor ∪Qver; and

(vi) the area of each of the clipped regions ∆(Q,S[a+ h, b]).
Note that the description of such a subproblem has size O(h+ w).

We construct the base problem, to start the recursion, in O((h+ w) log(h+ w)) time as
follows. The rectangle [a, a+ h]× [b, b+ w] is given as the input, with a+ h = b. We have
Qver = Qhor = {sb}. The lists Lx(Qver) and Lx(Qhor) have only one element. The lists
Lx(S[a, a+ h− 1]) and Lx(S[b+ 1, b+ w]) can be constructed in O(h log h) and O(w logw)
time, respectively, by just sorting the points from scratch. The remaining data is trivial.

Let us now discuss how we solve a subproblem appearing in the recursion. The case h ≤ 1
is easier, takes O(w log logw) time, and we omit it.

Consider now the case when h ≥ 2 and thus the rectangle has at least three rows. We use
the divide-and-conquer approach discussed in Section 2.2 and already used in Lemma 4.3.
Set m = a+ bh/2c, find the last index c ∈ [b, b+ w] such that area(CH (S[m, c])) ≤ 1, and
recurse on the rectangles R1 = [a,m− 1]× [b, c] and R2 = [m+ 1, a+ h]× [c, b+ w]. Recall
Figure 2.

The value c can be found in O((h+w) log log(h+w)) time using Lemma 5.3, as follows. We
compute the CH-sketch Qm of Qhor ∪S[m, a+h−1]) with respect to S[b+ 1, b+w]. Because
of Lemma 5.2 and since the input can be obtained sorted by x-coordinate from Lx(Qhor),
Lx(S[a, a+ h− 1]), and Lx(S[b+ 1, b+ w]), this can be done in O((h+ w) log log(h+ w))
time. Because of Lemma 5.1(b), where S1 is the reversal of S[a, a + h − 1] and S2 =
S[b + 1, b + w], Qm is a CH-sketch of S[a + h, b] ∪ S[m, a + h − 1]) = S[m, b] with respect
to S[b + 1, b + w]. We can show that the area of the clipped regions ∆(Qm, S[m, b]) can
be obtained in O((h + w) log log(h + w)) time. Thus Qm and S[b + 1, b + w] satisfy the
hypothesis of Lemma 5.3, as needed to find c.

In O((h+w) log log(h+w)) time, we can collect the data for the recursive calls. For this,
we use Lemma 5.2 to compute CH-sketches of CH-sketches with respect to subsequences.
Lemma 5.1 is then used to argue that we are indeed computing the CH-sketches required for
the recursive call. We omit the detailed arguments.

Thus, we can construct the recursive subproblems in O((h+ w) log log(h+ w)) time. It
follows that the time T (h,w) to solve a recursive subproblem with h+ 1 rows and w+ 1 rows

D. Bokal, S. Cabello, and D. Eppstein 253

is given by

T (h,w) =
{
O((h+ w) log log(h+ w)) + T (bh/2c, w′) + T (bh/2c, w − w′) if h ≥ 2,
O(w log logw) if h ≤ 1.

Lemma 2.2 implies that T (h,w) = O((h+ w) log(h+ w) log log(h+ w)). Thus, we can solve
all recursive subproblems in O((h+w) log(h+w) log log(h+w)), and the result follows. J

There are incremental algorithms to maintain the convex hull explicitly in amortized
time O(logn) per insertion; see for example [21, Chapter 3]. Such a procedure gives the
subroutine needed in Lemma 2.1(a) with Tgreedy(n) = O(n logn). An exponential search and
Lemma 5.3 can also be used to obtain the same result. Lemma 5.4 gives the subroutine
needed in Lemma 2.1(b) with Trect(n) = O(n logn). Then Lemma 2.1 implies the following.

I Theorem 5.5. Let S = s1, . . . , sn be a sequence of planar points. In O(n logn log logn)
time, we can compute, for all i ∈ [n], the largest index j∗(i) such that CH ({si, . . . , sj∗(i)}))
has area at most 1.

6 Planar graphs

In this section, we move away from geometry to discuss graph planarity. This problem
provides a neat use of the methodology we presented and an important improvement over
the use of dynamic data structures. We only provide a very high-level overview.

Let G be a planar graph and let X be a subset of its vertices. A graph H is a planar-
sketch of G with respect to X if it satisfies the following conditions:

X ⊆ V (H),
H has size O(|X|), and
for each edge set F with endpoints in X, G+ F is planar if and only if H + F is planar.

Galil, Italiano, and Sarnak [15] have shown that such planar-sketches exist and can be
computed in linear time. Note that they defined the sketch property for the addition of a
single edge (|F | = 1). However, Eppstein et al. [12] noted that the same construction works
for multiple edges and referred to the sketches as compressed certificates for planarity.

The fact that planar-sketches can be computed in linear time is parallel to Lemma 4.1(a)
in this context. One can prove a statement analogous to Lemma 4.1(b) for planar sketches,
as follows. If H is a planar-sketch of G with respect to X, F is a set of edges with endpoints
in X, H + F is planar, and H ′ is a planar-sketch of H + F with respect to Y ⊂ X, then H ′
is a planar sketch of G+ F with respect to Y .

Equipped with linear-time planarity testing [18] and the aforementioned linear-time
computation of planar-sketches, we can follow the same methodology as in Section 4.2,
shaving off a logarithmic factor. Thus, we obtain the subroutine needed in Lemma 2.1(a)
with running time Tgreedy(n) = O(n), and the subroutine needed in Lemma 2.1(b) with
Trect(n) = O(n logn). Then Lemma 2.1 implies the following.

I Theorem 6.1. Let E = e1, . . . , en be a sequence of edges. In O(n logn) time, we can
compute, for all indices i ∈ [n], the largest index j∗(i) such that the graph defined by
ei + · · ·+ ej∗(i) is planar. J

Acknowledgments. We are grateful to the reviewers for their careful comments.

S o C G ’ 1 5

254 Finding All Maximal Subsequences with Hereditary Properties

References
1 Boris Aronov, Anne Driemel, Marc J. van Kreveld, Maarten Löffler, and Frank Staals.

Segmentation of trajectories for non-monotone criteria. In SODA 2013, pages 1897–1911,
2013.

2 Michael J. Bannister, William E. Devanny, Michael T. Goodrich, and Joe Simons. Windows
into geometric events. In CCCG 2014, 2014.

3 Michael J. Bannister, Christopher DuBois, David Eppstein, and Padhraic Smyth. Windows
into relational events: Data structures for contiguous subsequences of edges. In SODA 2013,
pages 856–864, 2013.

4 Kevin Buchin, Maike Buchin, Marc van Kreveld, Maarten Löffler, Rodrigo I. Silveira, Car-
ola Wenk, and Lionov Wiratma. Median trajectories. Algorithmica, 66(3):595–614, 2013.

5 Kevin Buchin, Maike Buchin, Marc van Kreveld, and Jun Luo. Finding long and similar
parts of trajectories. Comput. Geom., 44(9):465–476, 2011.

6 Maike Buchin, Anne Driemel, Marc J. van Kreveld, and Vera Sacristan. Segmenting trajec-
tories: A framework and algorithms using spatiotemporal criteria. J. Spatial Information
Science, 3(1):33–63, 2011.

7 Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmic amortized
time. J. ACM, 48(1):1–12, 2001.

8 Timothy M. Chan. A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor
queries. J. ACM, 57(3), 2010.

9 Chen Chen, Hao Su, Qixing Huang, Lin Zhang, and Leonidas Guibas. Pathlet learning for
compressing and planning trajectories. In SIGSPATIAL’13, pages 392–395, 2013.

10 Giuseppe Di Battista and Roberto Tamassia. On-Line planarity testing. SIAM J. Comput.,
25(5):956–997, 1996.

11 David Eppstein. Dynamic Euclidean minimum spanning trees and extrema of binary func-
tions. Discrete Comput. Geom., 13:111–122, 1995.

12 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification. I. Planary testing and minimum spanning trees. J. Comput. Syst. Sci.,
52(1):3–27, 1996.

13 David Eppstein, Michael T. Goodrich, and Maarten Löffler. Tracking moving objects with
few handovers. In WADS 2011, volume 6844 of LNCS, pages 362–373. Springer, 2011.

14 Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range mini-
mum queries on static arrays. SIAM J. Comput., 40(2):465–492, 2011.

15 Zvi Galil, Giuseppe F. Italiano, and Neil Sarnak. Fully dynamic planarity testing with
applications. J. ACM, 46(1):28–91, 1999.

16 Joachim Gudmundsson, Jyrki Katajainen, Damian Merrick, Cahya Ong, and Thomas Wolle.
Compressing spatio-temporal trajectories. Comput. Geom., 42(9):825–841, 2009.

17 Joachim Gudmundsson, Marc van Kreveld, and Bettina Speckmann. Efficient detection of
patterns in 2D trajectories of moving points. GeoInformatica, 11(2):195–215, 2007.

18 John Hopcroft and Robert Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568,
1974.

19 Jakub Ła̧cki and Piotr Sankowski. Reachability in graph timelines. In ITCS 2013, pages
257–268, 2013.

20 Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. J.
Comput. Syst. Sci., 23(2):166–204, 1981.

21 Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.

22 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Inf. Process. Lett., 6(3):80–82, 1977.

Riemannian Simplices and Triangulations∗

Ramsay Dyer, Gert Vegter, and Mathijs Wintraecken

Johann Bernoulli Institute
Rijksuniversiteit Groningen, The Netherlands
{r.h.dyer,g.vegter,m.h.m.j.wintraecken}@rug.nl

Abstract
We study a natural intrinsic definition of geometric simplices in Riemannian manifolds of arbit-
rary finite dimension, and exploit these simplices to obtain criteria for triangulating compact
Riemannian manifolds. These geometric simplices are defined using Karcher means. Given a
finite set of vertices in a convex set on the manifold, the point that minimises the weighted sum
of squared distances to the vertices is the Karcher mean relative to the weights. Using barycentric
coordinates as the weights, we obtain a smooth map from the standard Euclidean simplex to the
manifold. A Riemannian simplex is defined as the image of the standard simplex under this bary-
centric coordinate map. In this work we articulate criteria that guarantee that the barycentric
coordinate map is a smooth embedding. If it is not, we say the Riemannian simplex is degenerate.
Quality measures for the “thickness” or “fatness” of Euclidean simplices can be adapted to apply
to these Riemannian simplices. For manifolds of dimension 2, the simplex is non-degenerate if it
has a positive quality measure, as in the Euclidean case. However, when the dimension is greater
than two, non-degeneracy can be guaranteed only when the quality exceeds a positive bound
that depends on the size of the simplex and local bounds on the absolute values of the sectional
curvatures of the manifold. An analysis of the geometry of non-degenerate Riemannian simplices
leads to conditions which guarantee that a simplicial complex is homeomorphic to the manifold.

1998 ACM Subject Classification G.1.1 [Numerical analysis] Interpolation, G.1.2 [Numerical
analysis] Approximation – linear approximation

Keywords and phrases Karcher means, barycentric coordinates, triangulation, Riemannian man-
ifold, Riemannian simplices

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.255

1 Introduction

The standard definition of a Euclidean simplex as the convex hull of its vertices is not useful
for defining simplices in general Riemannian manifolds. Besides the problem that convex
hulls are difficult to compute, the resulting objects could not be used as building blocks for
triangulations: a minimising geodesic between two points on a shared facet would have to lie
within the facet, which is not a realisable constraint in general. A more detailed discussion
and references can be found in the full version [9] of this work.

Given the vertices, a geometric Euclidean simplex can also be defined as the domain on
which the barycentric coordinate functions are non-negative. This definition does extend
to general Riemannian manifolds in a natural way. The construction is based on the fact
that the barycentric coordinate functions can be defined by a “centre of mass” construction.

∗ This research has been partially supported by the 7th Framework Programme for Research of the
European Commission, under FET-Open grant number 255827 (CGL Computational Geometry Learn-
ing). We thank Stefan von Deylen for pointing out the work of Sander [14], and for stimulating
discussions. We have also benefited from discussions with Arijit Ghosh.

© Ramsay Dyer, Gert Vegter, and Mathijs Wintraecken;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 255–269

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.255
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

256 Riemannian Simplices and Triangulations

Suppose {v0, . . . , vn} ⊂ Rn, and (λi)0≤i≤n is a set of non-negative weights that sum to 1. If
u is the unique point that minimises the function

y 7→
n∑
i=0

λidRn(y, vi)2, (1)

where dRn(x, y) = |x− y| is the Euclidean distance, then u =
∑
λivi, and if the vi are affinely

independent, then the λi are the barycentric coordinates of u in the simplex [v0, . . . , vn].
We can view a given set of barycentric coordinates λ = (λ0, . . . , λn) as a point in Rn+1.

The set ∆n of all points in Rn+1 with non-negative coefficients that sum to 1 is called the
standard Euclidean n-simplex . Thus the minimisation of the function (1) defines a map from
the standard Euclidean simplex to the Euclidean simplex [v0, . . . , vn] ⊂ Rn.

If instead the points {vi} lie in a sufficiently small neighbourhood W in a Riemannian
manifold M , then, by using the metric of the manifold instead of dRn in Equation (1), we
obtain a function Eλ : W → R that has a unique minimum xλ ∈W . In this way we obtain a
mapping λ 7→ xλ from ∆n to W . We call the image of this map an intrinsic simplex, or a
Riemannian simplex.

Karcher [10] studied such centre of mass constructions extensively in the Riemannian
setting, and this kind of averaging technique is often called “Karcher means”. More recently,
Rustamov [13] introduced barycentric coordinates on a surface via Karcher means. Sander [14]
used the method in arbitrary dimensions to define Riemannian simplices as described above.
We are not aware of any published work exploiting this notion of Riemannian simplices prior
to that of Rustamov [13] and Sander [14], although the idea was known much earlier [1,
§ 6.1.5].

Our work is motivated by a desire to develop general sampling density criteria for
triangulations of manifolds. To this end we need to establish a property that Sander did not
consider. We need to ensure that the map from the Euclidean simplex to the manifold is a
smooth embedding. This ensures that the barycentric coordinates mapped to the manifold
do in fact provide a local system of coordinates. If the map is not an embedding, we call
the Riemannian simplex degenerate. Independently, von Deylen [16] has also treated the
question of degeneracy of Riemannian simplices. His work includes a detailed analysis of the
geometry of the barycentric coordinate map, and several applications. He does not address
the problem of sampling density criteria for triangulation.

A Euclidean simplex is non-degenerate if and only if its vertices are affinely independent.
We show that a Riemannian simplex is non-degenerate if and only if, for every point in
the simplex, the vertices are affinely independent when they are lifted by the inverse of the
exponential map to the tangent space at that point.

In a two dimensional manifold this condition is satisfied for a triangle as long as the
vertices do not lie on a common geodesic. Similar to the Euclidean case, such a configuration
can be avoided by applying an arbitrarily small perturbation to the vertices. However, when
the dimension is greater than two, a non-trivial constraint on simplex quality is required;
one that cannot be attained by an arbitrarily small perturbation of the vertices.

In order to define a Riemannian simplex, we need the vertices to lie in a geodesically
convex set, and this imposes a bound on the edge lengths with respect to an upper bound
on the local sectional curvatures. For a surface, this is the only real constraint needed to
ensure a non-degenerate simplex. In higher dimensions, we require the simplex size to be
constrained also by a lower bound on the sectional curvatures.

R. Dyer, G. Vegter, and M. Wintraecken 257

Outline and main results

In Section 2 we present the framework for centre of mass constructions, and introduce the
barycentric coordinate map and Riemannian simplices. Riemannian simplices are defined
(Definition 2) as the image of the barycentric coordinate map, so they are “filled in” geometric
simplices. Each of the three subsequent sections is devoted to presenting one of our three
main results: conditions for non-degeneracy of Riemannian simplices, Theorem 6; conditions
for triangulation, Theorem 11; and the geometric fidelity of the resulting triangulation,
Theorem 14.

In Section 3 we establish criteria to ensure that a Riemannian simplex is non-degenerate.
In the tangent space at any point in a Riemannian simplex σM , there is a Euclidean simplex
σ(x) that is a natural approximation of σM . We give a characterisation of non-degeneracy
of σM in terms of these Euclidean simplices: σM is non-degenerate if and only if σ(x) is a
non-degenerate Euclidean simplex for every x ∈ σM (Proposition 4).

The thickness of a Euclidean simplex, defined in Section 3.1, is a measure of its quality,
i.e., how far it is from being degenerate. We choose a representative σ(p) for some p ∈ σM
and observe that all the σ(x) are geometrically small perturbations of σ(p). We then exploit
previous results on the stability of Euclidean simplex quality [2, Lemma 8] to establish a
simple inequality, relating the thickness of σ(p) to the edge lengths of σM and a bound on
the absolute value of the local sectional curvatures, which when satisfied guarantees that all
the σ(x) are non-degenerate. It then follows, from the above-mentioned Proposition 4, that
σM is non-degenerate, and this is Theorem 6.

In Section 4 we develop our criteria for triangulating manifolds. A triangulation of a
manifold M is a homeomorphism H : |A| →M , where A is an abstract simplicial complex,
and |A| is its carrier (topological realisation).1 We establish properties of maps whose
differentials are all small perturbations of a fixed linear isometry, and use these properties to
reveal conditions under which the star of a vertex in a manifold complex will be embedded
into M . This allows us to express, in Proposition 8, generic conditions that ensure that a
simplicial complex is homeomorphic to M . We then demonstrate that the differential of the
barycentric coordinate map can be bounded as required by Proposition 8, and thus arrive at
our triangulation criteria expressed in Theorem 11.

The triangulation H : |A| →M is defined by the barycentric coordinate map on each of
the simplices. The quantative aspect of the triangulation criteria is expressed in terms of a
scale parameter h which bounds the edge lengths of the Riemannian simplices defined by the
triangulation. This bound on h is of the same character as the non-degeneracy criteria: it
depends on a thickness bound t0 governing the quality of the simplices involved, and also on
a bound on the absolute value of the sectional curvatures.

The complex A in Theorem 11 naturally admits a piecewise linear metric by assigning
edge lengths to the simplices given by the geodesic distance in M between the endpoints.
In Section 5 we observe that in order to ensure that this does in fact define a piecewise-flat
metric, we need to employ slightly stronger constraints on the scale parameter h. In this
case, the complex A becomes a good geometric approximation of the original manifold, as
expressed in Theorem 14, which states that the metric distortion of H is proportional to h2.

1 In fact the triangulations of interest to us have the property that the restriction of H to each simplex
in |A| is a smooth embedding, and also the star of each simplex admits a piecewise linear embedding
into Rn. These additional properties ensure that A represents the unique piecewise linear structure
associated with M . See Thurston [15, Thm 3.10.2], or Munkres [12, Cor. 10.13] for details.

SoCG’15

258 Riemannian Simplices and Triangulations

2 Riemannian simplices

In this section we summarise the essential properties of Karcher means, and define Riemannian
simplices. We work with an n-dimensional Riemannian manifold M . The centre of mass
construction developed by Karcher [10] hinges on the notion of convexity in a Riemannian
manifold. A set B ⊆M is convex if any two points x, y ∈ B are connected by a minimising
geodesic γxy that is unique in M , and contained in B. For c ∈M , the geodesic ball of radius
r centred at c is the set BM (c; r) of points in M whose distance from c is less than r, and we
denote its closure by BM (c; r). If r is smaller than ρ0, defined below (4), then BM (c; r) will
be convex [5, §6.4].

Recall that the exponential map at p ∈M sends a vector v in the tangent space TpM to
the point expp(v) defined by the geodesic of length |v| emanating from p in the direction v.
The exponential map is a diffeomorphism when restricted to a ball whose radius is smaller
than the injectivity radius.

In our context, we are interested in finding a weighted centre of mass of a finite set
{p0, . . . pj} ⊂ B ⊂M , where the containing set B is open, and its closure B is convex. The
centre of mass construction is based on minimising the function Eλ : B → R defined by

Eλ(x) = 1
2
∑
i

λidM (x, pi)2, (2)

where the λi ≥ 0 are non-negative weights that sum to 1, and dM is the geodesic distance
function on M . Karcher’s first simple observation is that the minima of Eλ must lie in the
interior of B, i.e., in B itself. This follows from considering the gradient of Eλ:

grad Eλ(x) = −
∑
i

λi exp−1
x (pi). (3)

At any point x on the boundary of B, the gradient vector lies in a cone of outward pointing
vectors. It follows that the minima of Eλ lie in B. The more difficult result that the minimum
is unique, Karcher showed by demonstrating that Eλ is convex. If B ⊆M is a convex set, a
function f : B → R is convex if for any geodesic γ : I → B, the function f ◦ γ is convex. If f
has a minimum in B, it must be unique. By Equation (3), it is the point x where∑

i

λi exp−1
x (pi) = 0.

Our results will require a bound Λ on the absolute value of the sectional curvatures in
M . However, the definition of Riemannian simplices only requires an upper bound on the
sectional curvatures, which we denote by Λ+. We denote the injectivity radius of M by ι.
We have the following result [10, Thm 1.2]:

I Lemma 1 (Unique centre of mass). If {p0, . . . , pj} ⊂ Bρ ⊂M , and Bρ is an open ball of
radius ρ with

ρ < ρ0 = min
{
ι

2 ,
π

4
√

Λ+

}
(4)

(if Λ+ ≤ 0 we take 1/
√

Λ+ to be infinite), then on any geodesic γ : I → Bρ, we have

d2

dt2 Eλ(γ(t)) ≥ C(Λ+, ρ) > 0, (5)

where C(Λ+, ρ) is a positive constant depending only on Λ+ and ρ. In particular, Eλ is
convex and has a unique minimum in Bρ, characterised by the vanishing of the gradient (3).

R. Dyer, G. Vegter, and M. Wintraecken 259

I Definition 2 (Riemannian simplex). If a finite set σj = {p0, . . . , pj} ⊂M in an n-manifold
is contained in an open geodesic ball Bρ whose radius, ρ, satisfies Equation (4), then σj is
the set of vertices of a geometric Riemannian simplex, denoted σjM , and defined to be the
image of the map

Bσj :∆j →M

λ 7→ argmin
x∈Bρ

Eλ(x).

We say that σjM is non-degenerate if Bσj is a smooth embedding; otherwise it is degenerate.

I Remark. Lemma 1 demands that a Riemannian simplex be contained in a ball whose
radius is constrained by ρ0. Thus Riemannian simplices always have edge lengths less than
2ρ0. If the longest edge length, L(σM), of σM is less than ρ0, then σM must be contained
in the closed ball of radius L(σM) centred at a vertex. Indeed, any open ball centred at a
vertex whose radius is larger than L(σM), but smaller than ρ0, must contain the vertices
and have a convex closure. The simplex is thus contained in the intersection of these balls.
If L(σM) ≥ ρ0, then a ball of radius L(σM) need not be convex. In this case we claim only
that σM is contained in a ball of radius 2ρ0 centred at any vertex.

Define an i-face of σjM to be the image of an i-face of ∆j . Since an i-face of ∆j may be
identified with ∆i (e.g., by an order preserving map of the vertex indices), the i-faces of
σjM are themselves Riemannian i-simplices. In particular, if τ and µ are the vertices of
Riemannian simplices τM and µM , and σi = τ ∩ µ, then the Riemannian i-simplex σiM is a
face of both τM and µM . The edges of a Riemannian simplex are the Riemannian 1-faces.
We observe that these are geodesic segments. We will focus on full dimensional simplices.
Unless otherwise specified, σM will refer to a Riemannian simplex defined by a set σ of n+ 1
vertices in our n-dimensional manifold M .

The barycentric coordinate map Bσ is differentiable. This follows from the implicit
function theorem, as is shown by Buser and Karcher [5, §8.3.3], for example.

A Riemannian simplex is not convex in general, but by Karcher’s observation it is
contained in any open set that contains the vertices and has a convex closure. Thus the
simplex is contained in the intersection of such sets.

Equation (4) gives an upper bound on the size of a Riemannian simplex that depends only
on the injectivity radius and an upper bound on the sectional curvature. For example, in a
non-positively curved manifold, the size of a well defined Riemannian simplex is constrained
only by the injectivity radius. However, if the dimension n of the manifold is greater than 2,
we will require also a lower bound on the sectional curvatures in order to ensure that the
simplex is non-degenerate.

3 Non-degeneracy criteria

In this section we establish geometric criteria that ensure that a Riemannian simplex is
non-degenerate. We first review the properties of Euclidean simplices, including the thickness
quality measure, which parameterises how far a simplex is from being degenerate. We observe
that we can bound the change in the thickness of a simplex if the edge lengths are perturbed
a small amount.

Next we examine the differential of the barycentric coordinate map, and arrive at a
characterisation of non-degenerate Riemannian simplices in terms of affine independence
(Proposition 4). The Rauch comparison theorem is a central result in Riemannian geometry

SoCG’15

260 Riemannian Simplices and Triangulations

which allows us to bound the metric distortion of the exponential map. Combined with
the stability of the thickness of Euclidean simplices, this bound on the metric distortion
yields conditions which ensure that a Riemannian simplex meets the affine independence
characterisation of non-degeneracy, resulting in Theorem 6.

3.1 The stability of Euclidean simplex quality
A Euclidean simplex σ of dimension j is defined by a set of j + 1 points in Euclidean space
σ = {v0, . . . , vj} ⊂ Rn. In general we work with abstract simplices, even though we attribute
geometric properties to the simplex, inherited from the embedding of the vertices in the
ambient space. When we wish to make the dimension explicit, we write it as a superscript,
thus σj is a j-simplex. Traditional “filled in” geometric simplices are denoted by boldface
symbols; σE = conv(σ) is the convex hull of σ.

A Euclidean simplex σ = {v0, . . . , vj} ⊂ Rn has a number of geometric attributes. An
i-face of σ is a subset of i+ 1 vertices, and a (j − 1) face of a j-simplex is a facet. The facet
of σ that does not have vi as a vertex is denoted σvi . The altitude of vi ∈ σ is the distance
from vi to the affine hull of σvi , denoted avi(σ). The longest edge length is denoted L(σ).
When there is no risk of confusion, we will omit explicit reference to the simplex, and ignore
the distinction between the vertices and their labels. Thus we write L, and ai instead of
L(σ) and avi(σ).

The thickness of σj , defined as

t(σj) =
{

1 if j = 0
minv∈σj avjL otherwise.

If t(σj) = 0, then σj is degenerate. We say that σj is t0-thick, if t(σj) ≥ t0. If σj is t0-thick,
then so are all of its faces. We write t for the thickness if the simplex in question is clear.

The barycentric coordinate functions λi associated to σj are affine functions on the affine
hull of the simplex λi : aff(σj) → R that satisfy λi(vj) = δij and

∑j
i=0 λi = 1. It is often

convenient to choose one of the vertices, v0 say, of σ to be the origin. We let P be the matrix
whose ith column is vi− v0. Then the barycentric coordinate functions λi are linear functions
for i > 0, and they are dual to the basis defined by the columns of P . This means that if we
represent the function λi as a row vector, then the matrix Q whose ith row is λi satisfies
QP = Ij×j .

A full dimensional Euclidean simplex σ is non-degenerate, if and only if the corresponding
matrix P is non-degenerate. In particular, if σ is full dimensional (i.e., j = n), then Q = P−1.
Suppose σ ⊂ Rn is an n-simplex. If ξ ∈ Rn, let λ(ξ) = (λ1(ξ), . . . , λn(ξ))T. Then λ(ξ) is the
vector of coefficients of ξ − v0 in the basis defined by the columns of P . I.e., ξ − v0 = Pλ(ξ).

The quality of a simplex σ is closely related to the quality of P , which can be quantified
by means of its singular values. In fact, we are only interested in the smallest and largest
singular values. The smallest singular value, sk(P) = inf |x|=1 |Px|, vanishes if and only if the
matrix P does not have full rank. The largest singular value is the same as the operator norm
of P , i.e., s1(P) = ‖P‖ = sup|x|=1 |Px|. The thickness of σ provides a lower bound [3, Lem.
2.4] on the smallest singular value of P . Specifically, for a j-simplex, we have sj(P) ≥

√
jtL.

The crucial property of thickness for our purposes is its stability. If two Euclidean
simplices with corresponding vertices have edge lengths that are almost the same, then their
thicknesses will be almost the same. This allows us to quantify a bound on the smallest
singular value of the matrix associated with one of the simplices, given a bound on the other,
as shown in the following Lemma [2, Lem. 8]:

R. Dyer, G. Vegter, and M. Wintraecken 261

I Lemma 3 (Thickness under distortion). Suppose that σ = {v0, . . . , vk} and σ̃ = {ṽ0, . . . , ṽk}
are two k-simplices in Rn such that

| |vi − vj | − |ṽi − ṽj | | ≤ C0L(σ) with C0 = ηt(σ)2

4 and 0 ≤ η ≤ 1,

for all 0 ≤ i < j ≤ k. Let P be the matrix whose ith column is vi−v0, and define P̃ similarly.
Then

sk(P̃) ≥ (1− η)sk(P) and t(σ̃) ≥ 4
5
√
k

(1− η)t(σ).

3.2 The affine independence criterion for non-degeneracy
In this subsection we show that a Riemannian simplex σM is non-degenerate if and only if, for
any x ∈ σM , the lift of the vertices by the inverse exponential map yields a non-degenerate
Euclidean simplex. The expression for the differential of the barycentric coordinate map
obtained in Equation (7) below is the result of a particular case of an argument presented by
Buser and Karcher [5, §8.3] in a more general setting.

A Riemannian simplex σM is defined by its vertices σ = {p0, . . . , pn} ⊂ M , which are
constrained to lie in a convex ball Bρ ⊆M . For any x ∈ Bρ we define a Euclidean simplex
σ(x) ⊂ TxM by σ(x) = {v0(x), . . . , vn(x)}, where vi(x) = exp−1

x (pi). The vertices pi ∈ Bρ
are considered fixed, but x ∈ Bρ is a variable. We continue to use a boldface symbol when
we are referring to a simplex as a set of non-negative barycentric coordinates, and normal
type refers to the finite vertex set; the convex hull of σ(x) is σE(x).

We work in a domain U ⊆ Rn defined by a chart φ : W → U with Bρ ⊆ W ⊆ M . Let
σ̃ = φ(σ) be the image of the vertices of a Riemannian n-simplex σM ⊂ Bρ. Label the
vertices of σ̃ = {ṽ0, . . . , ṽn} such that ṽi = φ(pi), and assume ṽ0 is at the origin. The affine
functions λi : u 7→ λi(u) are the barycentric coordinate functions of σ̃. We consider grad Eλ,
introduced in Equation (3), now to be a vector field that depends on both u ∈ U and x ∈ Bρ.
Specifically, we consider the vector field ν : U ×Bρ → TM defined by

ν(u, x) = −
n∑
i=0

λi(u)vi(x). (6)

Let b : σ̃E → σM be defined by b = Bσ ◦ L, where L is the canonical linear isomorphism
that takes the vertices of σ̃ to those of ∆n, and Bσ is the barycentric coordinate map
introduced in Definition 2. This map is differentiable, by the arguments presented by Buser
and Karcher, and ν(u, b(u)) = 0 for all u ∈ σ̃E. Regarding ν as a vector field along b, its
derivative may be expanded as

∂uν + (∇ν) db = 0,

where ∂uν denotes the differential of ν(u, x) with x fixed, ∇ν is the covariant differential of
ν(u, x) with u fixed, and db is the differential of b, our barycentric coordinate map onto σM ,
i.e., dbu : TuRn → TxM .

Our objective is to exhibit conditions that ensure that db is non-degenerate. It follows from
the strict convexity condition (5) of Lemma 1 that the map ∇ν : w 7→ ∇wν is non-degenerate.
Indeed, if w ∈ TxM for some x ∈ Bρ, there is a geodesic γ : I → Bρ with γ′(0) = w, and
d2

dt2 Eλ(γ(t))
∣∣
t=0 = 〈∇wν, w〉γ(0) > 0. Therefore, we have that

db = − (∇ν)−1
∂uν, (7)

and thus db is full rank if and only if ∂uν is full rank.

SoCG’15

262 Riemannian Simplices and Triangulations

From (6) we observe that when x is fixed, ν is the unique affine map Rn ⊃ U → TxM , that
sends the vertices of σ̃ to the corresponding vertices of σ(x). In particular, (∂uν)v = (∂uν)w for
all v, w ∈ U . Thus ∂uν is the unique linear map that sends the basis {ṽi} to {

(
vi(x)−v0(x)

)
}.

We choose an arbitrary linear isometry to establish a coordinate system on TxM , and
let P be the matrix whose ith column is

(
vi(x)− v0(x)

)
. Then, if P̃ is the matrix whose ith

column is ṽi, we obtain [9] the matrix expression for ∂uν:

∂uν = −PP̃−1. (8)

From Equation (8) we conclude that ∂uν is full rank if and only if P is of full rank, and
this is the case if and only if σ(x) is a non-degenerate Euclidean simplex, i.e., its vertices
{vi(x)} are affinely independent.

We observe that if db is non-degenerate on σM , then b must be injective. Indeed, if
x = b(u), then {λi(u)}, the barycentric coordinates of u with respect to σ̃, are also the
barycentric coordinates of the origin in TxM , with respect to the simplex σ(x). Thus if
b(u) = x = b(ũ), then λi(u) = λi(ũ), and we must have ũ = u by the uniqueness of the
barycentric coordinates.

In summary, we have

I Proposition 4. A Riemannian simplex σM ⊂M is non-degenerate if and only if σ(x) ⊂
TxM is non-degenerate for every x ∈ σM .

3.3 Metric distortion of exponential transition
Now we choose the coordinate chart φ to be the inverse of the exponential map at some
fixed point p ∈ Bρ. Specifically, we set φ = u ◦ exp−1

p : W → Rm, where u : TpM → Rn
is an arbitrary linear isometry that defines the u-coordinate functions in U = φ(W). The
Euclidean simplex σ̃ in the coordinate domain can now be identified with σ(p).

Our goal now is to estimate the metric distortion incurred when we map a simplex from
one tangent space to another via the exponential maps. This will enable us to establish
conditions ensuring that σ(x) is non-degenerate, based on quality assumptions on σ(p).
Specifically, we want to bound the difference in the corresponding edge lengths of σ(p) and
σ(x), and since the exponential transition function

exp−1
x ◦ expp : TpM → TxM, (9)

maps σ(p) to σ(x), it suffices to bound the metric distortion of exp−1
x and expp. This is

accomplished by the bounds on the norm of the differential of the exponential map obtained
from the Rauch Comparison Theorem (c.f. Buser and Karcher [5, §6.4]). For our purposes
the theorem can be stated [9] as:

I Lemma 5 (Rauch Theorem). Suppose the sectional curvatures inM are bounded by |K| ≤ Λ.
If v ∈ TpM satisfies |v| = r < π

2
√

Λ
, then for any vector w ∈ Tv(TpM) ∼= TpM , we have(

1− Λr2

6

)
|w| ≤

∣∣(d expp)vw
∣∣ ≤ (1 + Λr2

2

)
|w| .

If x, p, y ∈ Bρ, with y = expp(v), then |v| < 2ρ, and
∣∣exp−1

x (y)
∣∣ < 2ρ, and Lemma 5 tells us

that∥∥∥d (exp−1
x ◦ expp

)
v

∥∥∥ ≤ ∥∥∥(d exp−1
x

)
y

∥∥∥∥∥∥(d expp
)
v

∥∥∥ ≤ 1 + 5Λρ2.

R. Dyer, G. Vegter, and M. Wintraecken 263

The image of the line between vi(p) and vj(p) in TpM , under the map exp−1
x ◦ expp, is a

curve between vi(x) and vj(x) in TxM , whose length is bounded by

|vi(x)− vj(x)| ≤ (1 + 5Λρ2) |vi(p)− vj(p)| .

We can do the same argument the other way, so

|vi(p)− vj(p)| ≤ (1 + 5Λρ2) |vi(x)− vj(x)| ,

and we find∣∣ |vi(x)− vj(x)| − |vi(p)− vj(p)|
∣∣ ≤ 5Λρ2(1 + 5Λρ2) |vi(p)− vj(p)|
≤ 21Λρ2 |vi(p)− vj(p)| when ρ < ρ0.

Letting P be the matrix associated with σ(p), and using C0 = 21Λρ2, in Lemma 3, we
find that the matrix P̃ associated with σ(x) in Proposition 4 is non-degenerate if σ(p) satisfies
a thickness bound of t0 > 10

√
Λρ, and we have

I Theorem 6 (Non-degeneracy criteria). Suppose M is a Riemannian manifold with sectional
curvatures bounded by |K| ≤ Λ, and σM is a Riemannian simplex, with σM ⊂ Bρ ⊂ M ,
where Bρ is an open geodesic ball of radius ρ with

ρ < ρ0 = min
{
ι

2 ,
π

4
√

Λ

}
.

Then σM is non-degenerate if there is a point p ∈ Bρ such that the lifted Euclidean simplex
σ(p) has thickness satisfying

t(σ(p)) > 10
√

Λρ.

The ball Bρ may be chosen so that this inequality is necessarily satisfied if

t(σ(p)) > 10
√

ΛL(σM), (10)

where L(σM) is the geodesic length of the longest edge in σM .

The last assertion follows from the remark following Definition 2: If L(σM) < ρ0, then σM
is contained in a closed ball of radius L(σM) centred at one of the vertices.

4 Triangulation criteria

Suppose we have a finite set of points S in a compact Riemannian manifold M , and an
(abstract) simplicial complex A whose vertex set is S, and such that every simplex in A
defines a non-degenerate Riemannian simplex. When can we be sure that A triangulates
M? Consider a convex ball Bρ centred at p ∈ S. We require that, when lifted to TpM , the
simplices near p triangulate a neighbourhood of the origin. If we require that the simplices
be small relative to ρ, and triangulate a region that extends to near the boundary of the
lifted ball, then Riemannian simplices outside of Bρ cannot have points in common with the
simplices near the centre of the ball, and it is relatively easy to establish a triangulation.

Instead, we aim for finer local control on the geometry. We establish conditions (Lemma 7)
that ensure that the complex consisting of simplices incident to p, (i.e., the star of p) is
embedded. In order to achieve this, we require finer control on the differential of the map
into the manifold than bounds on its singular values.

SoCG’15

264 Riemannian Simplices and Triangulations

We are interested in smooth maps from non-degenerate closed Euclidean simplices of
dimension n into an n-dimensional manifold M . We will work within coordinate charts, so
our primary focus will be on maps of the form F : σnE → Rn. Requiring that F be smooth
on the closed set σnE means that its partial derivatives are continuous on σnE. Equivalently,
F can be extended to a smooth map on an open neighbourhood of σnE. We demand that
dFu is always close to the same linear isometry T : Rn → Rn for all u ∈ σE:

‖dFu − T‖ ≤ η. (11)

This is a stronger constraint than can be obtained by a bound of the form (1 − η) |w| ≤
|dFuw| ≤ (1 + η) |w|, as in the Rauch theorem (Lemma 5). In this latter case we can only
say that ‖dFu − Tu‖ ≤ η, where Tu is a linear isometry that depends on u.

A simplicial complex C is embedded in Rn if the vertices lie in Rn and the convex hulls
of any two simplices in C either do not interesect, or their intersection is the convex hull of a
simplex in C. We identify |C|, the carrier of C, with the union of these geometric simplices;
the complex naturally inherits a piecewise flat metric from the embedding.

If p is a vertex in C, we define the star of p to be the subcomplex star(p) of C consisting
of all simplices that contain p, together with the faces of these simplices. We say that star(p)
is a full star if |star(p)| is a closed topological ball of dimension n with p in its interior, and
C contains no simplices of dimension greater than n.

The scale of C is an upper bound on the length of the longest edge in C, and is denoted by
h. We say that C is t0-thick if each simplex in C has thickness greater than t0. The dimension
of C is the largest dimension of the simplices in C. We call a complex of dimension n an
n-complex. If every simplex in C is the face of an n-simplex, then C is a pure n-complex.

A map F : |C| → Rn is smooth on C if for each σ ∈ C the restriction F
∣∣
σE

is smooth. This
means that d(F

∣∣
σE

) is well defined, and even though dF is not well defined, we will use this
symbol when the particular restriction employed is either evident or unimportant. When the
underlying complex on which F is smooth is unimportant, we simply say that F is piecewise
smooth.

The strong constraint on the differential allows us to ensure that thick stars are embedded:

I Lemma 7 (Embedding a star). Suppose C = star(p) is a t0-thick, pure n-complex embedded
in Rn such that all of the n-simplices are incident to a single vertex, p, and p ∈ int(|C|) (i.e.,
star(p) is a full star). If F : |C| → Rn is smooth on C, and satisfies

‖dF − Id‖ < nt0 (12)

on each n-simplex of C, then F is an embedding.

The proof [9, Lem. 14] hinges on the fact that thickness provides a lower bound on the
angle between a radial ray from p and a facet on the boundary of star(p). Together with the
bound on the differential of F , this enables us to demonstrate that the boundary of star(p)
is embedded by F . Then, since each simplex individually is embedded by F , topological
considerations imply that star(p) itself is embedded by F .

We use this observation to establish conditions that ensure that a map H : |A| →M is a
homeomorphism. If H is such that for every vertex in A, the restriction of H to |star(p)| is
an embedding, then H is a covering map. So if H is injective, it is a triangulation. Injectivity
is established by constraining the size of the simplices relative to the injectivity radius of
M , and by implicitly constraining the metric distortion associated with H. We obtain the
following proposition, which generically models the situation we will work with when we
describe a triangulation by Riemannian simplices:

R. Dyer, G. Vegter, and M. Wintraecken 265

I Proposition 8 (Triangulation). Let A be a manifold simplicial n-complex with finite vertex
set S, and M a compact Riemannian manifold with an atlas {(Wp, φp)}p∈S indexed by S.
Suppose H : |A| →M satisfies:
1. For each p ∈ S the secant map of φp ◦ H restricted to |star(p)| is a piecewise linear

embedding Lp : |star(p)| → Rn such that each simplex σ ∈ Cp = Lp(star(p)) is t0-thick,
and |Cp| ⊂ BRn(Lp(p);h), with Lp(p) ∈ int(|Cp|). The scale parameter h must satisfy
h < ι

4 , where ι is the injectivity radius of M .
2. For each p ∈ S, φp : Wp

∼=−→ Up ⊂ Rn is such that B = BRn(Lp(p); 3
2h) ⊆ Up, and∥∥(dφ−1

p)u
∥∥ ≤ 4

3 , for every u ∈ B.
3. The map

Fp = φp ◦H ◦ L−1
p : |Cp| → Rn

satisfies

‖(dFp)u − Id‖ ≤ nt0
2

on each n-simplex σ ∈ Cp, and every u ∈ σE.
Then H is a smooth triangulation of M .

Proof. By Lemma 7, Fp is a homeomorphism onto its image. It follows then that H
∣∣
|star(p)|

is an embedding for every p ∈ S. Therefore, since |A| is compact, H : |A| →M is a covering
map.

Given x ∈ |A|, with x ∈ σE, and p a vertex of σE, let x̃ = Lp(x) ∈ |Cp|. Then
the bound on dF implies that |Fp(x̃)− Lp(p)| ≤

(
1 + nt0

2
)
h ≤ 3

2h, so Fp(x̃) ∈ B. Since
φ−1
p ◦ Fp(x̃) = H(x), and

∣∣(dφ−1
p)F (u)(dFp)u

∣∣ ≤ 4
3

(
1 + nt0

2

)
≤ 2

for any u ∈ σE ⊂ |Cp|, we have that dM (H(p), H(x)) ≤ 2h.
Suppose y ∈ |A| with H(y) = H(x). Let τ ∈ A with y ∈ τE, and q ∈ τ a vertex. Then

dM (H(p), H(q)) ≤ 4h < ι. Thus there is a path γ from H(x) to H(p) to H(q) to H(y) = H(x)
that is contained in the topological ball BM (H(p); ι), and is therefore null-homotopic. Since
H is a covering map, this implies that x = y. Thus H is injective, and therefore defines a
smooth triangulation. J

In the context of the barycentric coordinate mapping defining Riemannian simplices, we
obtain the desired strong bound on the differential by means of a refinement of the Rauch
theorem due to Buser and Karcher [5, §6.4], which for our purposes may be stated as:

I Lemma 9 (Strong Rauch Theorem). Assume the sectional curvatures on M satisfy |K| ≤ Λ,
and suppose there is a unique minimising geodesic between x and p. If v = exp−1

p (x), and

|v| = dM (p, x) = r ≤ π

2
√

Λ
,

then∥∥(d expp)v − Txp
∥∥ ≤ Λr2

2 ,

where Txp denotes the parallel transport operator along the unique minimising geodesic from
p to x.

SoCG’15

266 Riemannian Simplices and Triangulations

Given three points x, y, p ∈ Bρ in a convex ball, we use further results of Buser and
Karcher [5, §6] to obtain a bound on ‖Txp − TxyTyp‖ with respect to ρ and a bound on the
absolute value of the sectional curvatures. This result together with Lemma 9 yields a bound
of the desired form (11) on the differential of exponential transition functions:

I Proposition 10 (Strong exponential transition bound). Suppose the sectional curvatures on
M satisfy |K| ≤ Λ. Let v ∈ TpM , with y = expp(v). If x, y ∈ BM (p; ρ), with

ρ <
1
2ρ0 = 1

2 min
{
ι

2 ,
π

4
√

Λ

}
,

then∥∥d(exp−1
x ◦ expp)v − Txp

∥∥ ≤ 6Λρ2.

Proposition 10 in turn allows us to obtain the desired form of bound on the differential (7)
of the barycentric coordinate map so that we can exploit Proposition 8 to obtain sampling
criteria for triangulating a Riemannian manifold, our main result:

I Theorem 11. Suppose M is a compact n-dimensional Riemannian manifold with sectional
curvatures K bounded by |K| ≤ Λ, and A is an abstract simplicial complex with finite vertex
set S ⊂M . Fix a thickness bound t0 > 0, and let

h = min
{
ι

4 ,
√
nt0

6
√

Λ

}
. (13)

If
1. for every p ∈ S, the vertices of star(p) are contained in BM (p;h), and the balls
{BM (p;h)}p∈S cover M ;

2. for every p ∈ S, the restriction of the inverse of the exponential map exp−1
p to the vertices

of star(p) ⊂ A defines a piecewise linear embedding of |star(p)| into TpM , realising star(p)
as a full star such that every simplex σ(p) has thickness t(σ(p)) ≥ t0,

then A triangulates M , and the triangulation is given by the barycentric coordinate map on
each simplex.

5 The piecewise flat metric

The complex A described in Theorem 11 naturally inherits a piecewise flat metric from
the construction. The length assigned to an edge {p, q} ∈ A is the geodesic distance in M
between its endpoints: `pq = dM (p, q). We first describe conditions which ensure that this
assignment of edge lengths does indeed make each σ ∈ A isometric to a Euclidean simplex.
With this piecewise flat metric on A, the barycentric coordinate map is a bi-Lipschitz map
between metric spaces H : |A| →M , and we estimate the metric distortion of this map.

If G is a symmetric positive definite n × n matrix, then it can be written as a Gram
matrix, G = PTP for some n× n matrix P . Then P describes a Euclidean simplex with one
vertex at the origin, and the other vertices defined by the column vectors. The matrix P is
not unique, but if G = QTQ, then Q = OP for some linear isometry O. Thus a symmetric
positive definite matrix defines a Euclidean simplex, up to isometry.

If σ = {p0, . . . , pn} ⊂ Bρ, is the vertex set of a Riemannian simplex σM , we define the
numbers `ij = dM (pi, pj). These are the edge lengths of a Euclidean simplex σE if and only
if the matrix G defined by

Gij = 1
2(`20i + `20j − `2ij) (14)

is positive definite.

R. Dyer, G. Vegter, and M. Wintraecken 267

The same kind of argument that bounds the thickness of a simplex subjected to small
distortions of its edge lengths, Lemma 3, allows us to ensure that the numbers `ij do define
a Euclidean simplex σE if they are close enough to the edge lengths of a Euclidean simplex,
σ(p) whose thickness is bounded below. Then, again exploiting the Rauch Theorem 5, we
find we need a slightly tighter bound on the scale parameter in order to ensure that A admits
a piecewise flat metric:

I Proposition 12. If the requirements of Theorem 11 are satisfied when the scale para-
meter (13) is replaced with

h = min
{
ι

4 ,
t0

6
√

Λ

}
,

then the geodesic distances between the endpoints of the edges in A define a piecewise flat
metric on A such that each simplex σ ∈ A satisfies

t(σ) > 3
4
√
n
t0.

In the context of Theorem 11 the barycentric coordinate map on each simplex defines a
piecewise smooth homeomorphism H : |A| →M . If the condition of Proposition 12 is also
met, then A is naturally endowed with a piecewise flat metric. We wish to compare this
metric with the Riemannian metric on M . It suffices to consider an n-simplex σ ∈ A, and
establish bounds on the singular values of the differential dH. If p ∈ σ, then we can write
H
∣∣
σE

= b ◦ Lp, where Lp : σE → σE(p) is the linear map that sends σ ∈ A to σ(p) ∈ TpM .
A bound on the metric distortion of a linear map that sends one Euclidean simplex to

another is a consequence of the following (reformulation of [2, Lemma 9]):

I Lemma 13 (Linear distortion bound). Suppose that P and P̃ are non-degenerate k × k
matrices such that

P̃TP̃ = PTP + E. (15)

Then there exists a linear isometry Φ : Rk → Rk such that∥∥P̃P−1 − Φ
∥∥ ≤ s1(E)

sk(P)2 .

Taking P and P̃ to represent σE(p) and σE, we can bound |Lp| and
∣∣L−1
p

∣∣, and combined
with the bounds on db that we have already estimated, we obtain the desired bounds on dH,
and we find:

I Theorem 14 (Metric distortion). If the requirements of Theorem 11, are satisfied with the
scale parameter (13) replaced by

h = min
{
ι

4 ,
t0

6
√

Λ

}
,

then A is naturally equipped with a piecewise flat metric dA defined by assigning to each edge
the geodesic distance in M between its endpoints.

If H : |A| → M is the triangulation defined by the barycentric coordinate map in this
case, then the metric distortion induced by H is quantified as

|dM (H(x), H(y))− dA(x, y)| ≤ 50Λh2

t20
dA(x, y),

for all x, y ∈ |A|.

SoCG’15

268 Riemannian Simplices and Triangulations

6 Discussion

Traditional demonstrations that smooth manifolds can be triangulated [6, 17, 18] involve
establishing a lower bound on simplex quality that is invariant under some kind of refinement
operation, and showing that a triangulation will be achieved when the scale parameter is
sufficiently small. Theorem 11 provides a means to explicitly quantify “sufficiently small” in
this context. Similarly, an analysis of more recent triangulation algorithms in computational
geometry [8, 4] could exploit Theorem 11 to quantify a sufficient sampling density.

We refer to the criteria of Theorem 11 as sampling criteria, even though they require
a simplicial complex for their definition. Although there is no explicit constraint on the
minimal distance between points of S, one is implicitly imposed by the quality constraint
on the Riemannian simplices. The required sampling density depends on the quality of the
Riemannian simplices, which leaves open the question of what kind of quality of simplices
can we hope to attain. A Delaunay complex conforming to the requirements of Theorem 11
can be constructed [2] with the thickness t0 bounded by 2−O(n3), and even in flat manifolds,
e.g., Euclidean space, the situation is not better in general [7], but in this case, at least in
dimension 3, dramatic improvements can be made if the placement of sample points can be
structured according to a lattice [11].

More work needs to be done to understand the limitations imposed by the thickness
bound t0 that appears in the density contraint (13), but there is another aspect to the bound
that merits more attention. The non-degeneracy criterion established in Theorem 6 demands
that the Riemannian simplices be “almost flat”. In other words, if the bound on the absolute
value of the sectional curvatures in the neighbourhood is very large, then the simplex must be
very small. However, we know that in spaces of constant curvature, where the Riemannian
simplex coincides with the usual definition of a simplex as the convex hull of its vertices,
the simplices are not constrained to be small. In hyperbolic space the edge lengths of a
non-degenerate simplex can be arbitrarily large. It seems that a more refined bound on
the scale should depend on the amount the sectional curvatures deviate from some fixed
constant, that need not be 0. Given upper and lower bounds Λ+ and Λ− on the sectional
curvatures, our preliminary unpublished calculations demonstrate a bound on simplex quality
for non-degeneracy involving Λ+ − Λ− when Λ− > 0. The same analysis in the hyperbolic
setting (Λ+ < 0) yields a more complicated expression.

References
1 M. Berger. A Panoramic View of Riemannian Geometry. Springer-Verlag, 2003.
2 J.-D. Boissonnat, R. Dyer, and A. Ghosh. Delaunay triangulation of manifolds. Research

Report RR-8389, INRIA, 2013. (also: arXiv:1311.0117).
3 J.-D. Boissonnat, R. Dyer, and A. Ghosh. The stability of Delaunay triangulations. IJCGA,

23(04n05):303–333, 2013. (Preprint: arXiv:1304.2947).
4 J.-D. Boissonnat and A. Ghosh. Manifold reconstruction using tangential Delaunay com-

plexes. Discrete and Computational Geometry, 51(1):221–267, 2014.
5 P. Buser and H. Karcher. Gromov’s almost flat manifolds, volume 81 of Astérique. Société

mathématique de France, 1981.
6 S. S. Cairns. On the triangulation of regular loci. Annals of Mathematics. Second Series,

35(3):579–587, 1934.
7 S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S. H Teng. Sliver exudation.

Journal of the ACM, 47(5):883–904, 2000.
8 S.-W. Cheng, T. K. Dey, and E. A. Ramos. Manifold reconstruction from point samples.

In SODA, pages 1018–1027, 2005.

R. Dyer, G. Vegter, and M. Wintraecken 269

9 R. Dyer, G. Vegter, and M. Wintraecken. Riemannian simplices and triangulations. Geo-
metriae Dedicata, 2015. To appear. (Preprint: arXiv:1406.3740).

10 H. Karcher. Riemannian center of mass and mollifier smoothing. Communications on Pure
and Applied Mathematics, 30:509–541, 1977.

11 F. Labelle and J. R. Shewchuk. Isosurface stuffing: Fast tetrahedral meshes with good
dihedral angles. ACM Trans. Graph., 26(3), 2007.

12 J. R. Munkres. Elementary differential topology. Princton University press, second edition,
1968.

13 R.M. Rustamov. Barycentric coordinates on surfaces. Eurographics Symposium of Geometry
Processing, 29(5), 2010.

14 O. Sander. Geodesic finite elements on simplicial grids. International Journal for Numerical
Methods in Engineering, 92(12):999–1025, 2012.

15 W. P. Thurston. Three-Dimensional Geometry and Topology. Princeton University Press,
1997.

16 S. W. von Deylen. Numerische Approximation in Riemannschen Mannigfaltigkeiten mithilfe
des Karcher’schen Schwerpunktes. PhD thesis, Freie Universität Berlin, 2014 (to appear).

17 J. H. C. Whitehead. On C1-complexes. Annals of Mathematics, 41(4), 1940.
18 H. Whitney. Geometric Integration Theory. Princeton University Press, 1957.

SoCG’15

An Edge-Based Framework for Enumerating
3-Manifold Triangulations∗

Benjamin A. Burton and William Pettersson

School of Mathematics and Physics, The University of Queensland
Brisbane QLD 4072, Australia
bab@maths.uq.edu.au, william@ewpettersson.se

Abstract
A typical census of 3-manifolds contains all manifolds (under various constraints) that can be tri-
angulated with at most n tetrahedra. Although censuses are useful resources for mathematicians,
constructing them is difficult: the best algorithms to date have not gone beyond n = 12. The
underlying algorithms essentially (i) enumerate all relevant 4-regular multigraphs on n nodes,
and then (ii) for each multigraph G they enumerate possible 3-manifold triangulations with G as
their dual 1-skeleton, of which there could be exponentially many. In practice, a small number
of multigraphs often dominate the running times of census algorithms: for example, in a typical
census on 10 tetrahedra, almost half of the running time is spent on just 0.3% of the graphs.

Here we present a new algorithm for stage (ii), which is the computational bottleneck in this
process. The key idea is to build triangulations by recursively constructing neighbourhoods of
edges, in contrast to traditional algorithms which recursively glue together pairs of tetrahedron
faces. We implement this algorithm, and find experimentally that whilst the overall performance
is mixed, the new algorithm runs significantly faster on those “pathological” multigraphs for
which existing methods are extremely slow. In this way the old and new algorithms complement
one another, and together can yield significant performance improvements over either method
alone.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory, G.4 Mathematical Software

Keywords and phrases triangulations, enumeration, graph theory

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.270

1 Introduction

In many fields of mathematics, one can often learn much by studying an exhaustive “census”
of certain objects, such as knot dictionaries. Our focus here is on censuses of closed 3-
manifolds – essentially topological spaces that locally look like R3. Combinatorially, any
closed 3-manifold can be represented by a triangulation, formed from tetrahedra with faces
identified together in pairs [14]. A typical census of 3-manifolds enumerates all 3-manifolds
under certain conditions that can be constructed from a fixed number of tetrahedra.

One of the earliest such results was a census of all cusped hyperbolic 3-manifolds which
could be built from at most five tetrahedra, by Hildebrand and Weeks [7]; this was later
extended to all such manifolds on at most nine tetrahedra [4, 6, 16]. For closed orientable
3-manifolds, Matveev gave the first census of closed orientable prime manifolds on up to six
tetrahedra [11]; this has since been extended to 12 tetrahedra [9, 12].

∗ Partially supported by the Australian Research Council (projects DP1094516, DP110101104). A detailed
version of this paper appears at http://arxiv.org/abs/1412.2169

© Benjamin A. Burton and William Pettersson;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 270–284

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.270
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B.A. Burton and W. Pettersson 271

Most (if not all) census algorithms in the literature enumerate 3-manifolds on n tetrahedra
in two main stages. The first stage is to generate a list of all 4-regular multigraphs on n
nodes. The second stage takes each such graph G, and sequentially identifies faces of
tetrahedra together to form a triangulation with G as its dual 1-skeleton (for a highly tuned
implementation of such an algorithm, see [5]).

There are |S3| = 6 possible maps to use for each such identification of faces. Thus for each
graph G, the algorithm searches through an exponential (in the number of tetrahedra) search
tree where each leaf in this tree represents a triangulation but not necessarily a 3-manifold
triangulation. Much research has focused on pruning this search tree by identifying and
removing subtrees which only contain non-3-manifold triangulations [2, 3, 10, 11].

In this paper we describe a different approach to generating a census of 3-manifolds. The
first stage remains the same, but in the second stage we build up the neighbourhood of each
edge in the triangulation recursively, instead of joining together faces one at a time. This is,
in a sense, a paradigm shift in census enumeration, and as a result it generates significantly
different search trees with very different opportunities for pruning. We implement the new
algorithm in a specific setting (potential minimal triangulations), and compare its performance
against existing algorithms. We find that this new search framework complements existing
algorithms very well, and we predict that a heuristic combination that combines the benefits
of this with existing algorithms can significantly speed up census enumeration.

The key idea behind this new search framework is to extend each possible dual 1-
skeleton graph to a “fattened face pairing graph”, and then to find particular cycle-based
decompositions of these new graphs. We also show how various improvements to typical
census algorithms (such as those in [1]) can be translated into this new setting.

2 Definitions and notation

In combinatorial topology versus graph theory, the terms “edge” and “vertex” have distinct
meanings. Therefore in this paper, the terms edge and vertex will be used to mean an edge
or vertex of a tetrahedron, triangulation or manifold; and the terms arc and node will be
used to mean an edge or vertex in a graph respectively.

A 3-manifold is a topological space that locally looks like either 3-dimensional Euclidean
space (i.e., R3) or closed 3-dimensional Euclidean half-space (i.e., R3

z≥0). In this paper when
we mention 3-manifolds we always mean compact and connected 3-manifolds. When we refer
to faces, we are explicitly talking about 2-faces (i.e., facets of a tetrahedron). We represent
3-manifolds combinatorially as triangulations [14]: a collection of tetrahedra (3-simplices)
with some 2-faces pairwise identified.

IDefinition 1. A general triangulation is a collection ∆1,∆2, . . . ,∆n of n abstract tetrahedra,
along with bijections π1, π2, . . . , πm where each πi is an affine map between two faces of
tetrahedra, and where each face of each tetrahedron is in at most one such bijection.

We call these affine bijections face identifications or simply identifications. Note that
unlike simplicial complexes, we do allow identifications between two distinct faces of the
same tetrahedron. If the quotient space of such a triangulation is a 3-manifold, we will say
that the triangulation represents said 3-manifold.

I Notation 2. Given a tetrahedron with vertices a, b, c and d, we will define face a to be
the face opposite vertex a. That is, face a is the face consisting of vertices b, c and d. We
will sometimes also refer to this as face bcd. We will write abc↔ efg to mean that face abc is

SoCG’15

272 An Edge-Based Framework for Enumerating 3-Manifold Triangulations

identified with face efg and that in this identification we have vertex a identified with vertex e,
vertex b identified with vertex f and vertex c identified with vertex g.

We will also use the notation ab to denote the edge joining vertices a and b on some
tetrahedron. Note that by this notation, the edge ab on a tetrahedron with vertices labelled a,
b, c and d will be the intersection of faces c and d.

As a result of the identification of various faces, some edges or vertices of various tetrahedra
are identified together. The degree of an edge of the triangulation, denoted deg(e), is defined
to be the number of edges of tetrahedra which are identified together to form the edge of the
triangulation.

We also need to define the link of a vertex before we can discuss triangulations of
3-manifolds.

I Definition 3. Given a vertex v in some triangulation, the link of v, denoted Link(v), is
the (2-dimensional) frontier of a small regular neighbourhood of v.

We now detail the properties a general triangulation must have to represent a 3-manifold.
Recall that we only discuss connected 3-manifolds.

I Lemma 4. A general triangulation represents a 3-manifold if the following additional
conditions hold:

the triangulation is connected;
the link of any vertex in the triangulation is homeomorphic to either a 2-sphere or a disc;
no edge in the triangulation is identified with itself in reverse.

We will call such a triangulation a 3-manifold triangulation. It is straight-forward to show
that these conditions are both necessary and sufficient for the underlying topological space to
be a 3-manifold (possibly with boundary). However in this paper we only consider 3-manifolds
without boundary. That is, every face of a tetrahedron will be identified with some other
face in a 3-manifold triangulation.

I Lemma 5. Given any connected closed triangulation T on n tetrahedra with k vertices
where no edge is identified with itself in reverse, the triangulation has n+ k edges if and only
if the link of each vertex in T is homeomorphic to a 2-sphere.

The above result is routine to show. We also need to define the face pairing graph of a
triangulation. The face pairing graph of a triangulation, also known as the dual 1-skeleton, is
a graphical representation of the face identifications of the triangulation. Each tetrahedron
is associated with a node in the face pairing graph, and one arc joins a pair of tetrahedra
for each identification of faces between the two tetrahedra. Note that face pairing graph is
not necessarily a simple graph. Indeed, it will often contain both loops (when there is an
identification of two distinct faces of the same tetrahedron) and parallel arcs (when there are
multiple face identifications between two tetrahedra).

Lastly, we need a few properties of manifolds and triangulations.

I Definition 6. A 3-manifoldM is irreducible if every embedded 2-sphere inM bounds a
3-ball inM.

I Definition 7. A 3-manifoldM is prime if it cannot be written as a connected sum of two
manifolds where neither is a 3-sphere.

I Definition 8. A 3-manifold is P2-irreducible if it is irreducible and also contains no
embedded two-sided projective plane.

B.A. Burton and W. Pettersson 273

(a) (b)

Figure 1 The face pairing graph (a) and fattened face pairing graph (b) of a triangulation. Note
that the blue arcs are internal arcs, while the black arcs are external arcs.

Prime manifolds are the most fundamental manifolds to work with. We note that prime
3-manifolds are either irreducible, or are one of the orientable direct product S2 × S1 or the
non-orientable twisted product S2 ∼×S1. As these are both well known and have triangulations
on two tetrahedra, for any census of minimal triangulations on three or more tetrahedra we
can interchange the conditions “prime” and “irreducible”. Any non-prime manifold can be
constructed from a connected sum of prime manifolds, so enumerating prime manifolds is
sufficient for most purposes. A similar (but more complicated) notion holds for P2-irreducible
manifolds in the non-orientable setting. As such, minimal prime P2-irreducible triangulations
form the basic building blocks in combinatorial topology.

I Definition 9. A 3-manifold triangulation of a manifold M is minimal if M cannot be
triangulated with fewer tetrahedra.

Minimal triangulations are well studied, both for their relevance to computation and for
their applications in zero-efficient triangulations [8]. Martelli and Petronio [10] also showed
that, with the exceptions S3, RP 3 and L3,1, the minimal number of tetrahedra required to
triangulate a closed, irreducible and P2-irreducible 3-manifoldM is equal to the Matveev
complexity [12] ofM.

3 Manifold decompositions

In this section we define a fattened face pairing graph, and show how we can represent any
general triangulation as a specific decomposition of its fattened face pairing graph. This
allows us to enumerate general triangulations by enumerating graph decompositions. We
then demonstrate how to restrict this process to only enumerate 3-manifold triangulations.

A fattened face pairing graph is an extension of a face pairing graph F which we use
in a dual representation of the corresponding triangulation. Instead of one node for each
tetrahedron, a fattened face pairing graph contains one node for each face of each tetrahedron.
Additionally, a face identification in the triangulation is represented by three arcs in the
fattened face pairing graph; these three arcs loosely correspond to the three pairs of edges
which are identified as a consequence of the face identification.

I Definition 10. Given a face pairing graph F , a fattened face pairing graph is constructed
by first tripling each arc (i.e., for each arc e in F , add two more arcs parallel to e), and then
replacing each node ν of F with a copy of K4 such that each node of the K4 is incident with
exactly one set of triple arcs that meet ν.

I Example 11. Figure 1 shows a face pairing graph and the resulting fattened face pairing
graph. The arcs shown in blue are what we call internal arcs. Each original node has been
replaced with a copy of K4 and in place of each original arc a set of three parallel arcs have
been added.

SoCG’15

274 An Edge-Based Framework for Enumerating 3-Manifold Triangulations

We will refer to the arcs of each K4 as internal arcs, and the remaining arcs (coming
from the triple edges) as external arcs. As a visual aid we will draw internal arcs in blue.
Each such K4 represents a tetrahedron in the associated triangulation, and as such we will
say that a fattened face pairing graph has n tetrahedra if it contains 4n nodes.

Triangulations are often labelled or indexed in some manner. Given any labelling of the
tetrahedra and their vertices, we label the corresponding fattened face pairing graph as follows.
For each tetrahedron i with faces a, b, c and d, we label the nodes of the corresponding K4
in the fattened face pairing graph vi,a, vi,b, vi,c and vi,d, such that if face a of tetrahedron i
is identified with face b of tetrahedron j then there are three parallel external arcs between
vi,a and vj,b.

In such a labelling, the node vi,a represents face a of tetrahedron i. Each internal arc
{vi,a, vi,b} represents the unique edge common to faces a and b of tetrahedron i. Each
external arc {vi,a, vj,b} represents one of the three pairs of edges of tetrahedra which become
identified as a result of identifying face a of tetrahedron i with face b of tetrahedron j. Note
that the arc only represents the pair of edges being identified, and does not indicate the
orientation of said identification.

We now define ordered decompositions of fattened face pairing graphs. Later, we show that
there is a natural correspondence between such a decomposition and a general triangulation,
and we show exactly how the 3-manifold constraints on general triangulations (see Lemma 4)
can be translated to constraints on these decompositions. There is also a natural relationship
between such decompositions and spines of 3-manifolds, as used by Matveev and others [12];
we touch on this relationship again later in this section.

I Definition 12. An ordered decomposition of a fattened face pairing graph F = (E, V) is a
set of closed walks {P1, P2, . . . , Pn} such that:
{P1, P2, . . . , Pn} partition the arc set E;
Pi is a closed walk of even length for each i; and
if arc ej+1 immediately follows arc ej in one of the walks then exactly one of ej or ej+1
is an internal arc.

An ordered decomposition of a fattened face pairing graph exactly describes a general
triangulation. We outline this idea here by showing how three parallel external arcs can
represent an identification of faces. Complete technical details are given in in the full version
of this paper.

Since the ordered decomposition consists of closed walks of alternating internal and
external arcs, the decomposition pairs up the six arcs exiting each node so that each external
arc is paired with exactly one internal arc. To help visualise this, we can draw such nodes
as larger ellipses, with three external arcs and three internal arcs entering the ellipse, as
in Figure 2. Each external arc meets exactly one internal arc inside this ellipse. This only
represents how such arcs are paired up in a given decomposition – the node is still incident
with all six arcs. We also see in Figure 2 that the fattened face pairing graph can always be
drawn such that any “crossings” of arcs only occur between external arcs. Such crossings are
simply artefacts of how the fattened face pairing graph is drawn in the plane, and in no way
represent any sort of underlying topological twist.

Figure 3 shows a partial drawing of an ordered decomposition of a fattened face pairing
graph. In this, we see a set of three parallel external arcs between nodes v1,d and v2,h. This
tells us that face d of tetrahedron 1 is identified with face h of tetrahedron 2. Additionally, we
see that one of the external arcs connects internal arc {v1,c, v1,d} with internal arc {v2,g, v2,h}.
This tells us that edge ab of tetrahedron 1 (represented by {v1,c, v1,d}) is identified with edge

B.A. Burton and W. Pettersson 275

(a) (b)

Figure 2 Two close up views of a node of a fattened face pairing graph with the same pairing of
arcs. The node itself is represented by the grey ellipse, and all six arcs are incident upon this node.
Note how both figures show the same pairing of edges, the only difference is where the “crossing”
occurs.

v1,c

v1,b

v1,a

v1,d v2,h

v2,e

v2,g

v2,f

Figure 3 A partial drawing of a fattened face pairing graph.

ef of tetrahedron 2 (represented by {v2,g, v2,h}). Since we know that face abc is identified with
face efg modulo a possible reflection and/or rotation, this tells us that vertex c is identified
with vertex g in this face identification. We can repeat this process for the other paired arcs
to see that vertex a is identified with vertex e and vertex b is identified with vertex f . The
resulting identification is therefore abc↔ efg.

Repeating this for each set of three parallel external arcs gives the required triangulation.
The process is easily reversed to obtain an ordered decomposition from a general triangulation.
Complete constructions for both processes are given in the full version of this paper.

Recall that deg(e) is the number of edges of tetrahedra identified together to form edge e
in the triangulation. The following corollary follows immediately from the constructions.

I Corollary 13. Given an ordered decomposition {P1, . . . , Pt}, each walk Pi corresponds to
exactly one edge e in the corresponding general triangulation. In addition, |Pi| = 2 deg(e).

Recall that in a 3-manifold triangulation, no edge may be identified with itself in reverse.
In a triangulation one may check this by considering a ring of tetrahedra around some edge.
By tracking face identifications through the tetrahedra in the ring, one can determine if
the central edge is identified with itself in reverse. The following definition combined with
Lemma 15 achieves the same result in our new framework.

I Definition 14. Given an ordered decomposition P = {P1, P2, . . . , Pt}, we can mark a walk
Px as follows.

Pick an external arc es from Px. Arbitrarily pick an external arc eS parallel to es, and
mark eS as being “above” es. Then let ea = es and eA = eS and continue as follows (see
Figure 4 for a diagram of the construction):

Let eb be the next external arc in Px after ea.
The internal arc preceding eb joins two nodes. Call these nodes i and j, such that eb is
incident on j.
Some external arc eA incident on i must be marked as “above” ea. Find the closed walk
which eA belongs to. In this closed walk there must exist some internal arc which either

SoCG’15

276 An Edge-Based Framework for Enumerating 3-Manifold Triangulations

ea eb

eA eB eC
eD

i j

k

l

Figure 4 The process used to mark edges as per Definition 14. The dot-dashed arcs are the ones
marked as “above”. Recall that the ellipses are whole nodes, the insides of which denote how internal
and external arcs are paired up in the decomposition.

immediately precedes or follows eA through node i. Call this internal arc eB . Note that
the walk containing these two arcs need not be, and often is not, Px. Arc eB must be
incident to i, and some other node which we shall call k.
Find the internal arc eC between nodes k and j, and find the walk Py that it belongs to.
In this walk, one of the arcs parallel to eb must either immediately precede or follow eC

and be incident upon node j. Call this arc eD.
If eb = es, and eD is already marked as being above eb, we terminate the marking process.
Otherwise, mark the arc eD as being above eb and repeat the above steps, now using eb

in place of ea, and using eD in place of eA.

Note that this process of marking specifically marks one arc as being “above” another. It
does not mark arcs as being “above” in general.

To visualise this definition in terms of the decomposition, see Figure 4. The arcs ea and
eb are part of a closed walk, and we are marking the edges “above” this walk. Arc eA was
arbitrarily chosen. Arc eB follows eA, and then we find eC as the arc sharing one node with
eB and one with eb. From eC we can find and mark eD.

In brief, the walks containing eA and eD represent edges of tetrahedra in the triangulation
that share triangles with the common edge represented by Px, and which both sit “above”
this common edge (assuming some up/down orientation). Both eB and eC are internal arcs
of the same tetrahedron and share a common node k, so we know that both these internal
arcs represent edges of the same tetrahedron which share a common face k. The external
arcs eA and eD represent identifications of eB and eC respectively with edges of (typically
different) adjacent tetrahedra.

I Lemma 15. Take an ordered decomposition containing a walk Px with arcs marked
according to Definition 14, and consider the corresponding triangulation. Then the edge of
the triangulation represented by Px is identified to itself in reverse if and only if there exists
some external arc e in Px that has two distinct external arcs both marked as “above” e.

Essentially, this condition indicates that the marking procedure cycles through the entire
walk twice (marking two parallel arcs as “above” each arc of the walk), as opposed to once
(marking only one arc as “above” each arc of the walk). The proof of this lemma is routine,
and is given in full in the complete version of this paper.

If a walk Px in an ordered decomposition can be marked according to Definition 14 such
that each external arc e in Px has exactly one other external arc marked as “above” e, we
say that this walk is non-reversing.

B.A. Burton and W. Pettersson 277

I Definition 16. A manifold decomposition is an ordered decomposition of a fattened face
pairing graph satisfying all of the following conditions.

The ordered decomposition contains n+ 1 closed walks.
The fattened face pairing graph contains 4n nodes.
Each walk is non-reversing.
The associated manifold triangulation contains exactly 1 vertex.

I Theorem 17. Up to relabelling, there is a one-to-one correspondence between manifold
decompositions of connected fattened face pairing graphs and 1-vertex 3-manifold triangula-
tions.

Proof. Earlier in this section we described the correspondence between general triangulations
and ordered decompositions. All that remains is to show that the extra properties of a
manifold decomposition force the corresponding triangulation to be a 3-manifold triangulation.
Since the decomposition contains n + 1 walks, Corollary 13 tells us the triangulation has
n+ 1 edges. Additionally, each tetrahedron corresponds to four nodes in the fattened face
pairing graph, so the triangulation has n tetrahedra and thus by Lemma 5 we see that the
link of each vertex is homeomorphic to a 2-sphere. Each walk is non-reversing so Lemma 15
says that no edge in the corresponding triangulation is identified with itself in reverse, and
we have the required result. J

We now define the notation used to express specific ordered decompositions. The notation
is defined such that it can also be interpreted as a spine code (as used by Matveev’s Manifold
Recognizer [13]), and that the spine generated from such a spine code is a dual representation
of the same combinatorial object represented by the manifold decomposition. For more detail
on spine codes, see [12].

I Notation 18. Take an ordered decomposition of a fattened face pairing graph with 4n
nodes, and label each set of three parallel external arcs with a distinct value taken from the
set {1, . . . , 2n} (so two external arcs receive the same label if and only if they are part of
the same triple of parallel arcs). Assign an arbitrary orientation to each set of three parallel
external arcs. For each walk in the ordered decomposition:
1. Create an empty ordered list.
2. Follow the external arcs in the walk.

a. If an external arc is traversed in a direction consistent with its orientation, add +i to
the end of the corresponding ordered list.

b. If instead the arc in the walk is traversed in the reverse direction, add −i to the end
of the list.

c. Continue until the first external arc in the walk is reached.

Note that this notation only records the external arcs, and does not record any internal
arcs in walks.

We can also reconstruct the face pairing graph (and therefore the fattened face pairing
graph) from this notation (in particular, we can reconstruct the internal arcs). The method
essentially uses the fact that each external arc represents some identification of two faces
(and three parallel external arcs will represent the same identification of two faces), and so we
can use the orientation of each arc to distinguish between the two faces in each identification
and thereby build up the face pairing graph.

An implementation note: it is trivial, given a fattened face pairing graph and a “partial”
ordered decomposition in which all the internal arcs are missing, to reconstruct the complete
ordered decomposition. For the theoretical discussions in this paper we work with the

SoCG’15

278 An Edge-Based Framework for Enumerating 3-Manifold Triangulations

full ordered decompositions, but in the implementation we only store the sequential list of
external arcs as in Notation 18.

4 Algorithm and improvements

In this section we give various improvements that may be used when enumerating manifold
decompositions (i.e., 3-manifold triangulations). These are based on known theoretical results
in 3-manifold topology, combined with suitable data structures.

Enumeration algorithms [1, 2, 5, 9, 11, 12] in 3-manifold topology often focus on closed,
minimal, irreducible and P2-irreducible 3-manifold triangulations. These properties were all
defined in Section 2. For brevity, we say that a triangulation (or manifold decomposition)
has such a property if and only if the underlying manifold has the property. In both this
section and Section 5, we will restrict our algorithm to this same setting. This highlights
the usefulness of our algorithm, and allows us to demonstrate how existing results can be
translated into our new framework.

Many existing algorithm implementations in the literature [5, 12] build triangulations by
identifying faces pairwise (or taking combinatorially equivalent steps, such as annotating edges
of special spines [12]). The algorithm we give here essentially constructs the neighbourhood
of each edge of the triangulation one at a time. Therefore the search tree traversed by our
new algorithm is significantly different than that traversed by other algorithms. This is
highlighted experimentally by the results given in Section 5.

4.1 Algorithm
The basis of our implementation is a simple backtracking approach to enumerate manifold
decompositions. Walks are built up one arc at a time, and recursion ensures that every
possible manifold decomposition is found. However, this approach is not tractable for any
interesting values of n, and so we introduce the following improvements.

4.2 Limiting the size of walks
The following results are taken from [1], though in the orientable case similar results were
known earlier by other authors [9, 12].

I Lemma 19. (2.1 in [1]) No closed minimal triangulation has an edge of degree three that
belongs to three distinct tetrahedra.

I Lemma 20. (2.3 and 2.4 in [1]) No closed minimal P2-irreducible triangulation with ≥ 3
tetrahedra contains an edge of degree ≤ 2.

Given that the degree of an edge e of a triangulation is the number of tetrahedron edges
which are identified to form e, these results translate to manifold decompositions as follows.

I Corollary 21. No closed minimal P2-irreducible manifold decomposition with ≥ 3 tetrahedra
contains a walk which itself contains less than three external arcs.

I Corollary 22. No closed minimal manifold decomposition contains a walk which itself
contains exactly three internal arcs representing edges on distinct tetrahedra (i.e., belonging
to three distinct K4 subgraphs).

The above results are direct corollaries, as it is simple to translate the terms involved and
the results are simple enough to implement in an algorithm. In the backtracking algorithm,

B.A. Burton and W. Pettersson 279

Figure 5 The only possible walk containing 3 internal arcs not all from distinct tetrahedra in a
fattened face pairing graph on more than 1 tetrahedron. Only the external arcs used in the walk are
shown, other external arcs are not shown.

Figure 6 A one-face cone formed by identifying the two marked edges.

this means we can implement a check on the number of arcs in a walk before adding the
walk to the decomposition. This is implementable as a constant time check if the length of
the current partial walk is stored.

Additionally, for a census of 1-vertex triangulations on n tetrahedra, a manifold decom-
position must contain exactly n + 1 walks. If the algorithm has completed k walks, then
there are n+ 1− k walks left to complete. We use this idea in the following improvement.

By Corollary 22 a closed walk in a manifold decomposition which contains three internal
arcs must contain two internal arcs belonging to the same K4, as in Figure 5. We modify our
algorithm to enumerate all such closed walks first. Each such walk is either present or absent
in any manifold decomposition. For each possible combination of such walks, we fix said
walks and then run the search on the remaining arcs. All other walks must now contain at
least four external arcs, so during the census on n tetrahedra if the algorithm has completed
k walks and there are less than 4(n+ 1− k) unused external arcs we know that the partial
decomposition cannot be completed to a 1-vertex manifold decomposition.

I Improvement 23. For each K4 in the given graph, determine if two of its internal arcs
can be used together in a walk containing exactly three internal arcs. If this is possible, add
said walk to the set S. Then, for each subset s ⊆ S, use s as a starting set of walks and
attempt to complete the ordered decomposition. If during the enumeration process k walks
have been completed and there are less than 4(n + 1 − k) unused external arcs, prune the
search tree at this point.

4.3 Avoiding cone faces
For some properties of minimal triangulations, it is not clear that the corresponding tests
can be implemented cheaply. Here, we identify further results from the literature that enable
fast implementations in our setting. The following was shown in [1].

I Lemma 24. (2.8 in [1]) Let T be a closed minimal P2-irreducible triangulation containing
≥ 3 tetrahedra. Then no single face of T has two of its edges identified to form a cone as
illustrated in Figure 6.

For manifold decompositions, our translation of this result also requires the underlying
manifold to be orientable in order to give a fast algorithmic test.

SoCG’15

280 An Edge-Based Framework for Enumerating 3-Manifold Triangulations

e1

e2

Figure 7 The depicted walk cannot occur in a closed minimal P2-irreducible orientable manifold
decomposition as external arcs e1 and e2 are used in opposite directions. The dotted lines indicates
the walk continues through undrawn parts of the fattened face pairing graph.

I Lemma 25. Let D be a closed minimal P2-irreducible manifold decomposition of an
orientable manifold containing ≥ 3 tetrahedra. Then no walk of D can use two parallel
external arcs in opposite directions (as seen in Figure 7).

A complete proof appears in the full version of this paper. The proof assigns orientations
to corresponding tetrahedra, and then tracks orientations of the edges of tetrahedra to show
that if a one-face cone is present then an edge must be identified with itself in reverse. This
result leads to the following.

I Improvement 26. When enumerating orientable manifold decompositions, if an external
arc e is to be added to some walk W , and e is parallel to another external arc e′ which itself
is in W , check whether e and e′ will be used in opposite directions. If so, do not use e at this
point; instead backtrack and prune the search tree.

4.4 One vertex tests
Definition 16 requires that the associated manifold only have one vertex. We test this by
tracking properties of the vertex links as the manifold decomposition (i.e., triangulation) is
built up. Specifically, while the manifold decomposition is still being constructed, no vertex
link may be a closed surface.

I Improvement 27. When building up a manifold decomposition, track how many “frontier
edges” remain around each vertex link. If any vertex links are closed off before the manifold
decomposition is completed, backtrack and prune the current subtree of the search space.

The number of frontier edges of each vertex link, as well as which vertex links are identified
together, are tracked via a union-find data structure. The data structure is slightly tweaked
to allow back tracking (see [2] for details), storing the number of frontier edges at each node.
For more details on the union-find algorithm in general, see [15].

4.5 Canonicity and Automorphisms
When running a search, many equivalent manifold decompositions will be found. These
decompositions may differ in the order of the walks found, or two walks might have different
starting arcs or directions. For example, the two walks (a, b, c) and (−b,−a,−c) are equivalent.
The second starts on a different arc, and traverses the walk backwards, but neither of these
change the manifold decomposition. Additionally, the underlying face pairing graph often
has non-trivial automorphism group.

B.A. Burton and W. Pettersson 281

To eliminate such duplication, we only search for canonical manifold decompositions. We
use the obvious definition for a canonical walk (lowest-index arc is written first and is used
in the positive direction).

There are two points in the algorithm where we might test for canonical decompositions.

I Improvement 28. Every time an external arc is added to a walk, check if the current
decomposition is canonical. If not, disregard this choice of arc and prune the search tree.

I Improvement 29. Every time a walk is completed, check if the current decomposition is
canonical. If not, disregard this choice of arc and prune the search tree.

Unfortunately, checking if a (possibly partial) decomposition is canonical is not computa-
tionally cheap. Experimental results showed that using Improvement 29 was significantly
faster than using Improvement 28 as fewer checks for canonicity were made.

5 Results and Timing

In this section we detail the results from testing the algorithm. We test the manifold decom-
position algorithm and its improvements from Section 4 against the existing implementation
in Regina. Our algorithm (and indeed all known enumeration algorithms) are exponential in
the number of nodes on a given graph. As a result, testing is limited to graphs of at most 10
nodes. Recall also that we are testing the enumeration of closed, minimal, irreducible and
P2-irreducible 3-manifold triangulations.

Regina is a suite of topological software and includes state of the art algorithms for census
enumerations in various settings, including non-orientable and hyperbolic manifolds [3, 4].
Regina and its source code are freely available, which facilitates comparable implementations
and fair testing. Regina also filters out invalid triangulations as a final stage, which allows
us to test the efficiency of our various improvements by enabling or disabling them independ-
ently. Like other census algorithms in the literature, Regina builds triangulations using the
traditional framework by identifying faces two at a time.

In testing, we measure time to begin when either algorithm is given some textual
representation of a face pairing graph, and ending when all triangulations are found. That
is, testing times include the calculation of automorphisms (for both Regina and our new
algorithms), as well as the construction of the fattened face pairing graph.

We find that while Regina outperforms our new algorithms overall, there are non-trivial
subcases for which our algorithm runs an order of magnitude faster. Importantly, in a typical
census on 10 tetrahedra, Regina spends almost half of its running time on precisely these
subcases. This shows that our new algorithm has an important role to play: it complements
the existing framework by providing a means to remove some of its most severe bottlenecks.
Section 5.2 discusses these cases in more detail.

These observations are, however, in retrospect: what we do not have is a clear indicator
in advance for which algorithm will perform best for any given subcase.

Recall that a full census enumeration involves generating all 4-regular multigraphs, and
then for each such graph G, enumerating triangulations with face pairing graph G. In earlier
sections we only dealt with individual graphs, but for the tests here we ran each algorithm
on all 4-regular multigraphs of a given order n.

In the following results, we use the term MD to denote our basic algorithm, using
improvements 23, 27 and 29. For enumerating orientable manifolds only, we also use
Improvement 26 and denote the corresponding algorithm as MD-o. Experimentation indicated
that Improvement 27 was computationally expensive, and so we also tested algorithm MD*

SoCG’15

282 An Edge-Based Framework for Enumerating 3-Manifold Triangulations

Table 1 Running time of Regina and the manifold decomposition (MD) algorithms when searching
for manifold decompositions on n tetrahedra.

(a) Running times (in seconds)
for the general setting.

n Regina MD

7 29 80
8 491 2453
9 11 288 79 685

10 323 530 3 406 211

(b) Running times (in
seconds) for the orientable
setting

n Regina MD-o

7 < 1 25
8 147 535
9 3 499 13 161

10 90 969 430 162

(using only Improvements 23 and 29) and algorithm MD*-o (using Improvements 23 26 and
29). Note that these last two algorithms may find ordered decompositions which are not
necessarily manifold decompositions, but we can easily filter these out once the enumeration
is complete.

The algorithms were tested on a cluster of Intel Xeon L5520s running at 2.27GHz. Times
given are total CPU time; that is, a measure of how long the test would take single-threaded
on one core. The algorithms themselves, when run on all 4-regular multigraphs on n nodes,
are trivially parallelisable which allows each census to complete much faster by taking
advantage of available hardware.

We note that, as expected, the census results are consistent across both algorithms.

5.1 Aggregate tests
In the general setting, where we allow orientable and non-orientable triangulations alike,
Table 1a highlights that Regina outperforms MD when summed over all face pairing graphs.
The difference seems to grow slightly as n increases, pointing to the possibility that more
optimisations in this setting are possible.

We suspect that tracking the orientability of vertex links is giving Regina an advantage
here (see [2], Section 5). Tracking orientability is more difficult with ordered decompositions,
as the walks are built up one at a time – each external arc represents an identification of
edges, but does not specify the orientation of this identification. Thus orientability cannot
be tested until at least two of any three parallel external arcs are used in walks.

We also compare MD-o to Regina, where we ask both algorithms to only search for
orientable triangulations. Both algorithms run significantly faster than in the general setting
(demonstrating that Improvement 26 is a significant improvement). Table 1b shows that
Regina outperforms MD-o roughly by a factor of four. This appears to be constant, and here
we expect MD to be comparable to Regina after more careful optimisation (such as Regina’s
own algorithm has enjoyed over the past 13 years [1, 2]).

To test Improvement 27 (the one-vertex test), we compare MD* and MD*-o against MD
and MD-o respectively. The timing data in Tables 2b and 2a shows that MD* and MD*-o
outperformed MD and MD-o, demonstrating that Improvement 27 actually slows down the
algorithm. We verified that Improvement 27 is indeed discarding unwanted triangulations –
the problem is that tracking the vertex links is too computationally expensive. Algorithms
MD* and MD*-o instead enumerate these unwanted triangulations and test for one vertex
after the fact, discarding multiple vertex triangulations after they have been explicitly
constructed. The cost of this is included in the timing results, which confirms that such an
“after the fact” verification process is indeed faster than the losses incurred by Improvement 27.

B.A. Burton and W. Pettersson 283

Table 2 Running times of MD, MD*, MD-o, MD*-o when searching for manifold decompositions
on n tetrahedra.

(a) Running times (in seconds)
for the general setting.

n MD MD*

7 80 71
8 2 453 1 875
9 79 685 58 743

10 3 406 211 1 624 025

(b) Running times (in
seconds) for the orientable
setting.

n MD-o MD*-o

7 25 16
8 535 446
9 13 161 10 753
10 430 162 291 544

Table 3 Running time in seconds of MD∗ and Regina on particular graphs on 10 nodes.

Graph ID Regina MD∗

48 308 2476 142
48 083 2487 192
48 288 2164 118
47 332 2141 229
47 333 2003 134
47 520 2083 221
46 914 2108 302

5.2 Individual graph tests

It is on individual (and often pathological) face pairing graphs that the new algorithm shines.
Recall that the census enumeration problem requires running an enumeration algorithm on
all connected 4-regular multigraphs of a given order. Table 3 shows the running time of both
Regina and MD* on a cherry-picked sample of such graphs on 10 tetrahedra.

From these we can see that on some particular graphs, MD* outperforms Regina by an
order of magnitude. While these graphs were cherry-picked, they do display the shortfalls
of Regina. There are 48432 4-regular multigraphs on 10 nodes, and it takes Regina 89.9
CPU-hours to complete this census. Of these 48432 graphs, 48242 are processed in under
300 seconds each. In contrast, it takes Regina 43.6 CPU-hours to process the remaining 190
graphs. This accounts for 48.5% of the running time of Regina’s census on 10 tetrahedra
triangulations.

Running these “pathological” graphs through MD takes 12.1 CPU-hours, for a saving of
31.5 CPU-hours. This would reduce the running time of the complete census from 89 hours
to 58 hours, a 35% improvement. With a priori knowledge of running times, passing each
graph to the faster of either Regina or MD* can give a 44% improvement in the running
time of the complete census.

6 Discussion

Although its performance is inconsistent, it is significant that our new framework performs
an order of magnitude faster than existing algorithms on those subcases where existing
algorithms struggle. If we had an effective heuristic that could determine which algorithm
(Regina or MD*) to use for any given a 4-valent graph, then this could speed up the census

SoCG’15

284 An Edge-Based Framework for Enumerating 3-Manifold Triangulations

enumeration process significantly. Identifying such a heuristic is the subject of ongoing work.
Beyond the enumeration problem, this framework may also help us find families of

“forbidden subgraphs”: subgraphs which, if present in some 4-valent graph G, indicate that
there is no minimal 3-manifold triangulation with G as its dual 1-skeleton [1]. Such graphs
G can be omitted entirely from the census enumeration, and so identifying (with proof)
forbidden subgraphs can lead to further significant improvements in census running times.

References
1 Benjamin A. Burton. Face pairing graphs and 3-manifold enumeration. J. Knot Theory

Ramifications, 13(8):1057–1101, 2004.
2 Benjamin A. Burton. Enumeration of non-orientable 3-manifolds using face-pairing graphs

and union-find. Discrete & Computational Geometry, 38(3):527–571, 2007.
3 Benjamin A. Burton. Detecting genus in vertex links for the fast enumeration of 3-manifold

triangulations. In ISSAC 2011: Proceedings of the 36th International Symposium on Sym-
bolic and Algebraic Computation, pages 59–66. ACM, 2011.

4 Benjamin A. Burton. The cusped hyperbolic census is complete. arXiv:1405.2695, 2014.
5 Benjamin A. Burton, Ryan Budney, and William Pettersson. Regina: Software for 3-

manifold topology and normal surface theory. Licensed under GPLv2, 1999-2013.
6 Patrick J. Callahan, Martin V. Hildebrand, and Jeffrey R. Weeks. A census of cusped

hyperbolic 3-manifolds. Math. Comp., 68(225):321–332, 1999. With microfiche supplement.
7 Martin Hildebrand and Jeffrey Weeks. A computer generated census of cusped hyperbolic

3-manifolds. In Computers and mathematics, pages 53–59. Springer, New York, 1989.
8 William Jaco and J. Hyam Rubinstein. 0-efficient triangulations of 3-manifolds. J. Differ-

ential Geom., 65(1):61–168, 2003.
9 Bruno. Martelli and Carlo. Petronio. Three-manifolds having complexity at most 9. Exper-

imental Mathematics, 10(2):207–236, 2001.
10 Bruno Martelli and Carlo Petronio. A new decomposition theorem for 3-manifolds. Illinois

J. Math., 46:755–780, 2002.
11 Sergei V. Matveev. Computer recognition of three-manifolds. Experiment. Math., 7(2):153–

161, 1998.
12 Sergei V. Matveev. Algorithmic topology and classification of 3-manifolds, volume 9 of

Algorithms and Computation in Mathematics. Springer, Berlin, second edition, 2007.
13 Sergei V. Matveev et al. Manifold recognizer, 2014. http://www.matlas.math.csu.ru/

?page=recognizer.
14 Edwin E. Moise. Affine structures in 3-manifolds. V. The triangulation theorem and

Hauptvermutung. Ann. of Math. (2), 56:96–114, 1952.
15 Robert Sedgewick. Algorithms in C++. Addison-Wesley, Reading, MA, 1992.
16 Morwen Thistlethwaite. Cusped hyperbolic manifolds with 8 tetrahedra. http://www.

math.utk.edu/˜morwen/8tet/, October 2010.

http://www.matlas.math.csu.ru/?page=recognizer
http://www.matlas.math.csu.ru/?page=recognizer

Order on Order Types∗

Alexander Pilz1 and Emo Welzl2

1 Institute for Software Technology, Graz University of Technology, Austria
apilz@ist.tugraz.at

2 Department of Computer Science, Institute of Theoretical Computer Science
ETH Zürich, Switzerland
emo@inf.ethz.ch

Abstract
Given P and P ′, equally sized planar point sets in general position, we call a bijection from
P to P ′ crossing-preserving if crossings of connecting segments in P are preserved in P ′ (extra
crossings may occur in P ′). If such a mapping exists, we say that P ′ crossing-dominates P , and
if such a mapping exists in both directions, P and P ′ are called crossing-equivalent. The relation
is transitive, and we have a partial order on the obtained equivalence classes (called crossing
types or x-types). Point sets of equal order type are clearly crossing-equivalent, but not vice versa.
Thus, x-types are a coarser classification than order types. (We will see, though, that a collapse
of different order types to one x-type occurs for sets with triangular convex hull only.)

We argue that either the maximal or the minimal x-types are sufficient for answering many
combinatorial (existential or extremal) questions on planar point sets. Motivated by this we
consider basic properties of the relation. We characterize order types crossing-dominated by
points in convex position. Further, we give a full characterization of minimal and maximal
abstract order types. Based on that, we provide a polynomial-time algorithm to check whether
a point set crossing-dominates another. Moreover, we generate all maximal and minimal x-types
for small numbers of points.

1998 ACM Subject Classification G.2.1 Combinatorics, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases point set, order type, planar graph, crossing-free geometric graph

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.285

Dedicated to Jacob E. Goodman and Richard Pollack
on the occasion of their eightieth birthdays.

1 Introduction

Let us start right away with an illustrating example, which did indeed motivate our study.
We came across the following nice open question, which was considered in [7] and investigated
further in [3]: Given a complete geometric graph (edges as straight segments) on 2m points in
general position in the plane, is it always possible to partition the edges into m crossing-free
spanning trees? For addressing such problems, the concept of order types1 is ubiquitously

∗ A.P. is supported by the ESF EUROCORES programme EuroGIGA – ComPoSe, Austrian Science Fund
(FWF): I 648-N18. E.W. acknowledges support from EuroCores/EuroGiga/ComPoSe Swiss National
Science Foundation (SNF) 20GG21 134318/1.

1 The reader not familiar with the notion of order types is referred to the end of this section.

© Alexander Pilz and Emo Welzl;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 285–299

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.285
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

286 Order on Order Types

Figure 1 The three maximal order types for 6 points with a partition of the complete geometric
graph into three crossing-free spanning-trees (see [3, Figure 8]).

v1

v2

v3

v4

v5

v′1

v′3

v′2

v′4

v′5

v′′1

v′′2
v′′3

v′′4

v′′5

Figure 2 Points sets P , P ′, and P ′′ on five points. The mappings p 7→ p′ and p′ 7→ p′′ are
x-preserving, therefore P ≤x P ′ ≤x P ′′. P <x P ′ <x P ′′ follows from the increasing number of
crossings.

used in Discrete and Computational Geometry, as it allows for classifying the infinite number
of point sets of a given size into a finite number of equivalence classes, capturing combinatorial
properties such as which pairs of spanned line segments cross and which points define the
set’s convex hull. Checking the question at hand for 4 points is easy, since there are only
two order types. For 6 points, there are already 16 order types to consider. By what we
study below, we claim, though, that the partitions for the three order types given in Figure 1
constitute already a complete proof of the fact for 6 points. This is because the three order
types are maximal w.r.t. crossing pairs of edges – a notion to be rendered more precisely
and not to be confused with the maximum number of crossings, as achieved by the convex
position order type only. In fact, in our example, convex position does allow a partition into
crossing-free spanning paths, while this is not true for some other order type of six points.
By using the techniques presented herein, we were able to experimentally confirm that such
a partition exists for any point set of up to ten points, using the reduced set of order types.

We proceed to basic definitions. Given two equally sized point sets P and Q in general
position in the plane, a bijection P → Q, p 7→ p′, is called crossing-preserving (or x-preserving)
if whenever the segment pq crosses the segment rs (for points p, q, r and s in P) then p′q′
crosses r′s′. If such a mapping exists, we say that Q crossing-dominates (x-dominates) P , in
symbols Q ≥x P or P ≤x Q. If such mappings exist in both directions, then P and Q are
called crossing-equivalent (x-equivalent), in symbols P ∼x Q. Finally, if Q ≥x P but Q and
P are not x-equivalent, then we say that Q strictly crossing-dominates (strictly x-dominates)
P , in symbols Q >x P or P <x Q. The relation is transitive and it induces a partial order on
the obtained equivalence classes (called crossing types or x-types). An order type or crossing
type is called crossing-maximal (x-maximal), if for a set P of that type there is no point set
that strictly x-dominates P ; accordingly for crossing-minimal.

Figure 2 shows three 5-point sets P , P ′, and P ′′ with x-preserving mappings (p 7→ p′

and p′ 7→ p′′, respectively) witnessing P ≤x P
′ ≤x P

′′. Obviously, P ≤x Q entails that the

A. Pilz and E. Welzl 287

Figure 3 The 16 order types for 6 points with the Hasse-diagram for the x-dominance relation.

complete geometric graph on Q has at least as many crossings as the complete graph for P .
We can therefore conclude, in fact, P <x P

′ <x P
′′.

Figure 3 displays 16 point sets representing the order types on six points, with the
Hasse-diagram for the x-dominance relation. There, we can make the following observations.

There are two order types (at the lower left of Figure 3) that merge to one x-type. We
will show that such a collapse happens only if the order types have three extreme points.
The number of maximal order types is 3, all these maximal order types are also x-
types. There are six minimal order-types and five minimal x-types. Exploiting the basic
properties we develop, we were able to determine (by a computer program) the values in
Table 1. Two of these necessary basic properties are listed next.
If Q strictly x-dominates P in Figure 3, then Q has strictly more extreme points than P .
We will show that this is true in general.
There are only four order types that are not x-dominated by sets in convex position.
We will develop a necessary and sufficient criterion for x-dominance by sets in convex
position. This makes this property easy to check without explicitly providing an x-
preserving mapping (the property is that there has to be a Hamiltonian cycle of so-called
unavoidable edges). For sets not dominated by sets in convex position, we give a detailed
characterization, and show how to efficiently obtain an x-preserving mapping between
two point sets, if one exists.

It often suffices to check x-minimal or x-maximal x-types. In Combinatorial Geometry,
one is often concerned with estimating the minimum or maximum number of certain (mainly
plane) geometric graphs a point set admits. Such combinatorial questions usually depend
only on the set’s order type. A complete enumeration of the order types of small point sets

SoCG’15

288 Order on Order Types

Table 1 The number of small crossing-minimal and crossing-maximal order types.

order types [1, 5] crossing-maximal crossing-minimal

4 2 1 50% 1 50%
5 3 1 33% 1 33%
6 16 3 19% 6 38%
7 135 17 13% 49 36%
8 3′315 489 15% 1′179 36%
9 158′817 28′103 18% 55′278 35%
10 14′309′547 2′866′895 20% 4′888′160 34%
11 2′334′512′907 [503′727′394, 504′463′503] 22% [787′697′700, 787′720′845] 34%

by Aichholzer, Aurenhammer, and Krasser [1] allows for investigating such problems for
small instances. Our concept of crossing types enables us to only consider a subset of all
order types for several combinatorial problems. We give an incomplete list of examples.

The number of crossing-free graphs of a certain type (e.g., spanning trees, polygonizations,
or perfect matchings) is minimized for a maximal x-type and it is maximized for a minimal
x-type.
Similarly, the smallest number ek(n) such that any graph with at least ek(n) edges
contains k + 1 pairwise disjoint edges (see, e.g., [16]) is determined by a maximal x-type.
The maximal number of points in convex position is minimized for a minimal x-type.
The size of the largest crossing family (see e.g., [6]) is minimized for a minimal x-type.
The minimal number of crossings in a straight line drawing of the complete graph is
realized on some minimal crossing type.

Indeed, point sets in convex position minimize the number of various classes of plane
graphs [4]. However, there are classes where the crossing-preserving mapping does not
maintain membership in the class, the most obvious example being triangulations. Hence,
the number of triangulations may not be minimized by a maximal x-type.

Order types, orientation-equivalence. Given a sequence pqr of three distinct non-collinear
points, we define its orientation ∇pqr as +1 if the sequence (p, q, r) traverses the triangle
bounding the convex hull of {p, q, r} (denoted by ∆pqr) in counterclockwise direction and
as −1 if this orientation is clockwise. Given two equally sized point sets P and Q in general
position, a bijection P → Q, p 7→ p′, is called order-preserving if there is an ε ∈ {−1,+1}
such that ∇p′q′r′ = ε∇pqr for all sequences pqr of three distinct points in P . If such a
mapping exists, we say that P and Q are order-equivalent. The resulting equivalence classes
are called order types [9] (and “being of the same order type” is mostly used for what we
called here “order-equivalent”). For every natural number n there is only a finite number of
order types; complete databases are available up to n = 11, see [1, 5].

Segment pq crosses segment rs iff both ∇pqr · ∇pqs = −1 (i.e., r and s lie on different
sides of the line through p and q) and ∇rsp · ∇rsq = −1. Hence, order-equivalent sets are
also x-equivalent (as we have indicated already, there are examples that show the reverse
implication not to be true).

Given a point set, the orientation of each point triple is clearly defined by the containment
of points in the half-planes given by the supporting lines of all point pairs. In a generalized
configuration of points, these supporting lines of point pairs are replaced by supporting pseudo-
lines (i.e., bi-infinite simple Jordan curves such that each pair of pseudo-lines intersects once –
in a crossing, not tangentially). The orientation of a point triple is defined by the half-planes

A. Pilz and E. Welzl 289

given by these supporting pseudo-lines. See, e.g., [10] for a formal definition (in the projective
plane). This concept generalizes order types to abstract order types. An abstract order type
of a point set (with straight supporting lines) is realizable.

We will see that there are point sets that are x-dominated by an abstract order type, but
not by a realizable one. For abstract order types, we will obtain a complete characterization of
the generalized configurations of points x-dominating and x-dominated by a given one. Since
it is ∃R-complete to decide whether an abstract order type is realizable [12] (see also [15]),
there is not much hope for obtaining the same result for (realizable) order types.

Rotation systems. Let P be a point set of n points in general position. For any point p ∈ P ,
consider a ray rp starting at p. When rotating rp counterclockwise around p, the points
P \ {p} are traversed by rp in a fixed circular order, called the rotation of p. The rotation
system of P is the set of the rotations of all points of P . Similar to order types, we consider
two rotation systems to be equivalent if one can be obtained from the other by relabeling
and mirroring. The following result (whose origin will be discussed later in this paragraph)
gives a tight relation between the rotation system and crossing-equivalence.

I Corollary 1 (Kynčl [11, Proposition 6]). Two point sets have the same rotation system iff
they are crossing-equivalent.

However, our main concern in this work is not crossing-equivalence, but rather the partial
order on the set of all order types defined by crossing dominance.

Clearly, the order type of P determines its rotation system. The reverse problem, i.e.,
reconstructing the order type of P when given only its rotation system, has been considered
in connection with applications in robotics (see, e.g., [17]). Wismath [18] gives a simple
example of a rotation system on four elements that can be obtained by two different point
sets with labels. (He then describes a method to reconstruct the point set if additional
information is available.) However, when disregarding the labels in Wismath’s example, the
two different point sets have the same order type. An example of two different order types
producing the same rotation system is given by the two point sets in the lower left corner of
Figure 3. Aichholzer et al. [2] show that, essentially, the order type can be reconstructed
from the rotation system if there are more than three extreme points, or if the extreme
points are given. Their reconstruction method is applicable even if an unknown number of
rotations have been reversed. Further, they give tight bounds on the number of (labeled)
order types with a common rotation system based on properties of the point set. (We will
revisit these properties in Section 5.)

Let KP be the complete geometric graph on the point set P . The rotation system of P
determines the order in which the edges emanate from each vertex of KP . Straight-edge
drawings of the complete graph are generalized by so-called good drawings. In a good drawing
of a graph, vertices are represented by distinct points, and edges are drawn as simple Jordan
arcs, where two edges intersect in at most one single point that may be their common
endpoint or a proper crossing. Kynčl [11] shows that, for good drawings of the complete
graph, a valid set of crossing edge pairs fully determines the rotation system of the good
drawing, and that the rotation system determines whether two edges cross. Corollary 1 is
therefore a special case of that result.2

2 In general, the rotation system does not determine the crossings for non-complete graphs. The problem
of determining the crossing number of a graph with a given rotation system is NP-complete [13].

SoCG’15

290 Order on Order Types

Further related work. A complementary topic to characterizing crossing-maximal sets is
the one for finding universal point sets. An n-universal point set admits a straight-line
embedding of any planar graph with n vertices. Cardinal, Hoffmann, and Kusters [8] showed
that for n ≤ 10 there exists an n-universal point set of size n, and that for n ≥ 15 no such set
can exist. There is a certain relation to crossing-minimal sets, but observe that our setting is
more constrained, as there is a bijection between the vertices/points.

Notation. The function conv(P) denotes the convex hull and extr(P) denotes the set of
extreme points in a set P of points. Let Convn denote the order type of all sets of n points
in convex position (i.e., sets P with |extr(P)| = |P | = n). Throughout the paper, let p 7→ p′

be an x-preserving mapping from a finite set P of points in the plane (in general position)
to another point set P ′ = {p′ | p ∈ P} in general position. For A ⊆ P , we write A′ for
{p′ | p ∈ A}.

2 Crossing-Dominance, Convex Position, and Inner Points

In a set of n points in convex position, every 4-tuple of points determines exactly one crossing
pair of segments. Hence there are

(
n
4
)
such crossing pairs, which is obviously the largest

possible number for n points. Therefore, no set can strictly x-dominate a set in Convn, and
Convn is an x-maximal order type. We characterize the sets that are x-dominated by sets in
convex position. For that purpose, given a set P in general position, we call a pair {p, q} of
two distinct points in P unavoidable if no segment determined by two points in P crosses
the segment pq. The term “unavoidable” stems from the fact that every triangulation of P
must use all unavoidable pairs as edges. Clearly, the edges of the convex hull give rise to
such unavoidable pairs, but other possibilities occur. In fact, the number of unavoidable
pairs in a set of n points can be as large as 2n− 2, see [14].

I Theorem 2. P ≤x Q ∈ Convn iff the unavoidable pairs in P contain a Hamiltonian cycle.

Proof. Suppose P ≤x Q ∈ Convn with Q = {q0, q1, . . . , qn−1} such that points of Q appear
in order (q0, q1, . . . , qn−1) along the boundary of conv(Q) in counterclockwise order, and let
P = {p0, p1, . . . , pn−1} such that pi 7→ qi is x-preserving. Then all pairs {pi, p(i+1) mod n},
i = 0, 1, . . . , n−1, have to be unavoidable, since only unavoidable pairs can map to unavoidable
pairs under an x-preserving mapping. Hence, a Hamiltonian cycle of unavoidable pairs exists
for P . For the other direction, suppose the unavoidable pairs in P allow a Hamiltonian
cycle. Let P = {p0, p1, . . . , pn−1} with pairs {pi, p(i+1) mod n}, i = 0, 1, . . . , n− 1, forming a
spanning cycle of unavoidable pairs. Note that the geometric realization of this cycle is a
simple polygon that is crossed by no segment connecting points in P . That is, every segment
connecting points in P is either completely inside or completely outside the polygon (or
part of the polygon). Suppose segment pipj crosses pkp`. Then they have to be (i) either
both inside the unavoidable polygon or both outside the unavoidable polygon and (ii) the
appearance of points {pi, pj} and {pk, p`} alternate along the unavoidable cycle. Since two
segments in a convex polygon cross iff their endpoints alternate along the convex polygon,
an x-preserving mapping from P to Q readily follows. J

For point sets not dominated by Convn, we can identify the following property, which
gives a rather strong condition for x-dominance.

I Theorem 3. Suppose P ≤x P
′ and there exists point p′ /∈ extr(P ′). Then the rotation of p

in P is equivalent to the rotation of p′ in P ′.

A. Pilz and E. Welzl 291

a

b

c
a′

b′

c′

x
p

p′
x′

x′

a

b

c

a′

b′

c′

p

p′

x2

x1

x′
1

x′
2

(a)

(c) (d)
(b)

Figure 4 For a point p′ in the interior of a triangle, the rotation is equivalent to the one of its
preimage. (a) The path from p via x to c has to cross an edge of the triangle ∆pab. This is only
possible in P ′ if x′ is at the same relative position in the rotation around p′. (b) If the images of x1

and x2 would change their relative position in the rotation, we would loose a crossing between the
paths (p, x1, a) and (p, x2, b).

Proof. The statement is obviously true for four points; suppose therefore that |P | ≥ 5. Since
p′ is an inner point of P ′, there exists at least one triangle ∆a′b′c′ that contains p′. The
complete graph on {a, b, c, p} is also crossing-free. (We do not know whether p is inside ∆abc,
but this is not needed for our argument. To prevent confusion by geometric artifacts, one
may even consider KP to be projected onto a sphere.) Suppose there is a point x that is,
w.l.o.g, separated from c by a and b in the rotation around p. Then the path (p, x, c) has to
leave the triangle ∆abp by crossing one of its edges (see Figure 4 (a)). This crossing also has
to be present in P ′ and this is only possible if x′ is also separated from c′ by a′ and b′ in
the rotation around p′, as shown in Figure 4 (b). Hence, the rotation around p is the same
w.r.t. (a, b, c) for every fifth point x. We are therefore left with the case where there are two
points x′1 and x′2, separated, w.l.o.g., from c′ by a′ and b′; the situation is the same for their
preimages in P ′ by the previous arguments. Let the subsequence in the rotation of p′ be
(a′, x′1, x′2, b′), and suppose it is (a, x2, x1, b) in P . Then the path (p, x1, a) intersects the path
(p, x2, b), as sketched in Figure 4 (c). But the images of such paths, shown in Figure 4 (d),
are always non-intersecting in P ′, a contradiction. J

3 Crossing-Dominance Needs More Extreme Points

The x-dominance relation exhibits the following monotonicity properties.

I Proposition 4. (1) If P ≤x Q, then the complete straight line drawing KQ of the complete
graph on Q has at least as many crossing pairs of edges as KP does. (2) If P ≤x Q, then
|extr(P)| ≤ |extr(Q)|.

Proof. (1) follows directly from the definition of an x-preserving mapping. For (2) remember
that a triangulation of a point set (in general position) with n points and h extreme points
has exactly 3n − 3 − h edges. Now consider an x-preserving bijection p 7→ p′ from P to
Q and some triangulation of Q, which has 3n− 3− |extr(Q)| edges. The preimage of this
triangulation is a crossing-free graph on P which is contained in some triangulation of P
with 3n− 3− |extr(P)| edges. Therefore, 3n− 3− |extr(Q)| ≤ 3n− 3− |extr(P)|. J

The main purpose of this section is to shed some extra light on property (2). In particular
we will show that (i) P <x Q implies |extr(P)| < |extr(Q)| (Theorem 13). Moreover, given an
x-preserving mapping from P to Q, (ii) the inverse is also x-preserving iff |extr(P)| = |extr(Q)|

SoCG’15

292 Order on Order Types

(Theorem 14) and (iii) the mapping is order-preserving iff extr(P)′ = extr(Q) (Theorem 10).
We will see that a triangular convex hull is a situation that needs special attention.

Switching to crossing. We discriminate the relative position of two distinct non-crossing
segments pq and rs on points in a set S in general position as follows: They are called
incident if they share an endpoint, they are called parallel if the lines supporting them
intersect in a point outside of both segments, and they are called stabbing if the line of one
of the two segments crosses the the other segment. “Crossing”, “parallel”, “stabbing”, and
“incident” exhaust all possibilities for two segments connecting points in general position.

Note that in an x-preserving mapping the image of non-crossing segments can of course
be crossing – not so for parallel segments, though.

I Lemma 5. (1) If pq and rs are parallel, then p′q′ and r′s′ are parallel. (2) If pq and rs
are non-crossing and p′q′ and r′s′ are crossing, then pq and rs are stabbing (i.e., {p, q, r, s}
is not in convex position).

Diagonals stay. A segment pq connecting two points p and q in a point set S is called a
diagonal of S if p and q are extreme points in S and pq is not an edge of the convex hull of S.

I Lemma 6. If pq is a diagonal of P , then p′q′ is a diagonal of P ′.

Proof. Note that pq is crossed by some segment rs (take any two points in P \ {p, q} on
opposite sides of the line through pq). Hence, p′q′ cannot be an edge of the convex hull.
Therefore, if p′q′ is not a diagonal of P ′, then the line containing p′q′ must intersect some
edge a′b′ (in its interior) of the convex hull of P ′. Note that p′q′ and a′b′ do not cross, so pq
and ab do not cross, and therefore a and b must lie on the same side of the line h containing
pq (because p and q are extreme). Now, since pq is a diagonal, there must be a point c on
the other side of this line h; we know that both ac and bc cross pq. But it is not possible
that both a′c′ and b′c′ cross p′q′, since a′ and b′ lie on opposite sides of the line through p′
and q′; a contradiction to p 7→ p′ being x-preserving. J

If there are at least four extreme points then every extreme point participates in a
diagonal. Therefore, an x-preserving mapping maps extreme points to extreme points.

I Corollary 7. If |extr(P)| ≥ 4 then (extr(P))′ ⊆ extr(P ′).

The aforementioned argument cannot be used if there are only three extreme points in P .
In fact, the implication in the corollary simply is not true in this case (see the x-equivalent
sets in Figure 3).

Jumping out of a triangle. As we have learned, if pq and rs do not cross, but p′q′ and r′s′
do, then pq and rs must be stabbing and therefore p, q, r, s is not in convex position. W.l.o.g.,
let p be in conv({q, r, s}). If, indeed, p′q′ and r′s′ cross, then clearly p′ 6∈ conv({q′, r′, s′}).
This “jumping out of a triangle” immediately has further implications for the location of p′,
as the following lemma states.

I Lemma 8. If p ∈ conv({q, r, s}) and p′ 6∈ conv({q′, r′, s′}) then p′ 6∈ conv(A′) with A being
the set of points in P not in the interior of conv({q, r, s}). In particular, p′ 6∈ conv(extr(P)′).

Proof. Consider some point t ∈ P not in the interior of conv({q, r, s}), i.e., this point lies
either outside conv({q, r, s}) or is one of the points q, r, or s. Now consider p′, which is
outside conv({q′, r′, s′}) and therefore a line h separating p′ from conv({q′, r′, s′}) exists.

A. Pilz and E. Welzl 293

Clearly, if t is among q, r, s, then h separates p′ from t′. If t is outside conv({q, r, s}), then
pt crosses one of the segments qr, rs, or sq, say it is qr. Now p′t′ must cross q′r′; therefore
p′ and t′ must be on opposite sides of h and this line h separates all of A from p. J

Observe now that if P ′ >x P , then the mapping must turn a non-crossing pair into a
crossing pair (otherwise P and P ′ are x-equivalent). Hence some point p has to leave some
triangle under the x-preserving mapping and therefore P ′ must have some new extreme
point u′ (not necessarily p′ itself), i.e., u′ ∈ extr(P ′) but u 6∈ extr(P). In combination with
Corollary 7 this yields the following.

I Corollary 9. If |extr(P)| ≥ 4 and P ′ >x P , then (extr(P))′ (extr(P ′).

Hence, the number of extreme points has to increase. The following theorem is an
important implication of the “jumping out of a triangle” observation.

I Theorem 10. The x-preserving mapping p 7→ p′ is order-preserving iff extr(P)′ = extr(P ′).

Corollary 7 and Theorem 10 imply that order types and crossing types coincide for point
sets with at least 4 extreme points. This can also be seen by combining Corollary 1 and the
fact that, given the rotation system and the extreme points of a point set, its order type is
determined (as shown in [2]).

I Corollary 11. If P ∼x P
′ and |extr(P)| ≥ 4, then P and P ′ are of the same order type.

In Figure 3 we have seen an example witnessing that the condition |extr(P)| ≥ 4 is essential
in Corollary 11. It is evident that |extr(P)| = 3 needs special attention.

Three extreme points. While we have examples where (extr(P))′ ⊆ extr(P ′) is not true (if
|extr(P)| = 3), we can still show that P ′ >x P always implies |extr(P ′)| > |extr(P)|.

I Lemma 12. If |extr(P)| = |extr(P ′)| = 3 for sets P and P ′ with P ≤x P
′, then P ∼x P

′.

We can finally conclude (from Corollary 9 and Lemma 12) that strict x-dominance goes
with a strictly larger set of extreme points.

I Theorem 13. If P <x P
′, then |extr(P)| < |extr(P ′)|. J

It remains to show x-equivalence for related sets with the same number of extreme points.

I Theorem 14. The inverse of the x-preserving mapping p 7→ p′ is x-preserving iff |extr(P)| =
|extr(P ′)|.

Proof. If the inverse of p 7→ p′ is x-preserving, then P ∼x P
′ and we know that |extr(P)| =

|extr(P ′)| holds by Proposition 4. If the inverse of p 7→ p′ is not x-preserving, then there has
to be a crossing in P ′ that is not present in the preimage P , i.e., there are strictly more
crossings in KP ′ than in KP . Therefore, P ′ strictly x-dominates P and, by Theorem 13, we
have |extr(P)| < |extr(P ′)|, contradicting the assumption that |extr(P)| = |extr(P ′)|. J

4 (Sufficient) Conditions for Crossing-Dominance

In Section 2 we gave a characterization of the point sets dominated by Convn. Together with
Theorem 13, this immediately gives us the following result.

I Corollary 15. If |extr(P)| = |P | − 1, then P is x-maximal iff it has no Hamiltonian cycle
of unavoidable edges.

SoCG’15

294 Order on Order Types

While for (realizable) point sets not dominated by Convn we cannot give such a complete
characterization, we can give properties that witness x-maximality of a point set, based
on unavoidable edges. Consider two point sets P ≤x P ′ with extr(P)′ (extr(P ′). Then
there is an edge ab of conv(P) such that a′ and b′ are not consecutive on the boundary
of conv(P ′). Let C ′ = (a′, . . . , b′) be the chain from a′ to b′ on the boundary of conv(P ′)
whose preimage C does not contain any points of extr(P) except from a and b. Clearly,
the edges of C have to be unavoidable in P . We call such a chain of unavoidable edges C
between a and b an unavoidable detour and call the points in C \ {a, b} its elements. Using
Corollary 9 we immediately get the following result.

I Theorem 16. If P with |extr(P)| ≥ 4 has no unavoidable detour, then it is x-maximal. J

This further implies

I Theorem 17. For any given number m, there exists a number n such that among all order
types of size n there are at least m crossing-maximal ones.

General properties of unavoidable detours. Since unavoidable detours are fundamental
for x-dominance, we identify some of their properties. For the following lemmas, let P be a
point set containing an unavoidable detour C between two distinct extreme points a and b
(recall that a and b are neighbored on the convex hull boundary of P and observe that there
cannot exist a chain of unavoidable edges between two non-neighbored extreme points that
does not use other extreme points of the set).

I Lemma 18. The region bounded by the cycle C ∪ ab does not contain any point of P \ C.

I Lemma 19. In the rotation of any point p ∈ P \ C, the elements of C occur in the order
defined by C and are consecutive among C ∪ extr(P).

I Lemma 20. All points of P \ C are on the same side of any two points p, q ∈ C.

I Lemma 21. No two points in P \C have a supporting line intersecting C more than once.

Unavoidable detours and x-dominating sets. We can construct examples where not only
the elements of C jump out of a triangle. However, the points that jump out of a triangle
are not arbitrary.

I Lemma 22. Suppose we have two point sets P ≤x P
′ with an unavoidable detour C =

(a, . . . , b) s.t. extr(P ′) = (extr(P)∪C)′. Let J be the set of points that jump out of a triangle
in that mapping. Then the line defined by a point j ∈ J and any other point p ∈ P \ C
intersects ab.

I Theorem 23. If a point set P has an unavoidable detour then it is x-dominated by an
abstract order type (that may not be realizable by a point set).

Proof. Let C be any unavoidable detour in P between two extreme points a and b. We
construct a generalized configuration P ′ of points that x-dominates P such that extr(P ′)
consists of extr(P)′ plus the images of the elements of C. We transform P \ C and its set of
supporting lines into a generalized configuration of points. Since C is an unavoidable detour,
all points of P \ C are on the same side of any two points of C by Lemma 20. We replace C
by a Jordan arc between a and b. This pseudo-segment intersects exactly those supporting
lines of P \ C as the initial edge ab, since any supporting line of P \ C intersected C at
most once by Lemma 21. Therefore, it can be extended to a pseudo-line intersecting each

A. Pilz and E. Welzl 295

supporting line exactly once along the initial supporting line of ab. The supporting lines
that intersected C now intersect the pseudo-segment a′b′ in the same order as along C. We
can therefore place the convex chain C ′ and the relevant parts of its supporting pseudo-lines
arbitrarily close to the pseudo-segment. Again, an extension of the supporting lines is done
appropriately along the initial supporting line of ab, making the resulting point set and its
pseudo-line arrangement a valid generalized configuration of points that x-dominates P . J

In contrast to that, we have the following result, which implies that realizability of
abstract order types is crucial in connection with x-maximal point sets.

I Theorem 24. There are point sets that have at least four extreme points and an unavoidable
detour, but are still x-maximal.

The construction in the proof of Theorem 23 gives, in general, one out of many abstract
order types that dominate P , depending on where in conv(C ′) we place the points of J ′ \C ′.
However, we have the following restriction.

I Proposition 25. Suppose we have two point sets P ≤x P ′ with |extr(P)| ≥ 4 and an
unavoidable detour C = (a, . . . , b) s.t. extr(P ′) = (extr(P) ∪ C)′. Then P \ C and P ′ \ C ′
have the same order type.

In the previous statements, we considered only single unavoidable detours. However,
the results can again be applied to the dominating set if it contains an unavoidable detour.
While this is fine when working with abstract order types, keep in mind that there may be
non-realizable dominating abstract order types that are again dominated by a realizable one.

5 Different Extreme Points in the Dominating Set

While in Section 4 we gave a characterization of crossing-domination for the case where all
images of the extreme points are again extreme points of the dominating set, we consider now,
for P ≤x P

′, the case extr(P)′ * extr(P ′). Corollary 9 tells us that we have |extr(P)| = 3.
We classify the different cases by the number of common extreme points (see Figure 5 for
examples). For two of the cases, we will exploit the properties of crossing-equivalent subsets.

Properties of crossing-equivalent sets. It became obvious that the case |extr(P ′)| = 3
needs special attention. For that we try to understand the scenario when P and P ′ have a
triangular convex hull, but some extreme points of P do not map to extreme points in P ′.

As already discussed, crossing-equivalence of two point sets implies that they have the
same rotation system. Point sets with the same rotation system have been discussed by
Aichholzer et al. [2]. They show that if two order types with the same rotation system have
no common extreme point (under the given bijection) these two order types are the only
ones in that equivalence class, as there are exactly two triangles of unavoidable edges that
can be transformed to the convex hull. (They give an upper bound of |P | − 1 on the number
of different (labeled) order types in that equivalence class when there are common extreme
points.) The following lemma states, in a different formulation, a result that is also given
in [2].

I Lemma 26. If extr(P ′) = {a′, b′, c′} 6= (extr(P))′, then |extr(S)| = 3 for all sets S with
{a, b, c} ⊆ S ⊆ P . More precisely, P can be partitioned into three sets Pa = {a0, . . . , ana

},
Pb = {b0, . . . , bnb

}, and Pc = {c0, . . . , cnc
}, such that a0 = a, b0 = b, and c0 = c and for

all nonnegative integers i, j, k with i ≤ na, j ≤ nb, and k ≤ nc, conv({ai, bj , ck}) ∩ P =
{a0, . . . , ai} ∪ {b0, . . . , bj} ∪ {c0, . . . , ck}.

SoCG’15

296 Order on Order Types

v1

v′1

v2

v3

v4

v5

v6
v7

v8 v9

v′2

v′3 v′4

v′5
v′6

v′6v′8

v′9

a b

c

a′ b′

c′
d′

e′

d

e

f g

f ′ g′

ca

b

b1

b2

a1
h1
h2

h3

a′

b′

c′a′
1h′

1

h′
2

h′
3

b′1
b′2

Figure 5 x-Preserving mappings where only zero (left), one (middle), and two (right) extreme
points stay the same. Unavoidable edges are drawn.

Observe that this constrains the position of the points to a high extent. Still, we can
actually take an instance of any order type, scale it appropriately, and use it as one of the
three subsets when constructing such a point set. The following theorem shows that this
characterization also provides a construction for all sets in the equivalence class, meaning
that if one of them is realizable then all of them are realizable.

I Theorem 27. If there exists a triangle ∆abc in a point set P such that P can be partitioned
into three sets as in Lemma 26, then we can construct a point set P ′ with P ∼x P ′ and
extr(P ′) = {a′, b′, c′}.

No common extreme point. For the case extr(P)′ ∩ extr(P ′) = ∅, we have

I Theorem 28. If, for P ≤x P
′, extr(P)′ ∩ extr(P ′) = ∅, then |extr(P ′)| = 3 and P ∼x P

′.

Therefore, the two point sets have a different order type but the same rotation system.
As already mentioned, there are only two order types in such an equivalence class [2].

One common extreme point. Let extr(P) = {a, b, c} with a′, b′ /∈ extr(P ′), i.e., c is the
only extreme point of P whose image is also an extreme point of P ′. We denote the cycle on
the boundary of conv(P ′) by H ′ = (h′0, . . . , h′k) and define h0 = c. Further, we consider the
triangle ∆abc and the cycle H to be oriented counterclockwise. Since the segment between c
and any other point of P must not cross the chain (h1, . . . , hk), the region where the other
points of P can be placed is partitioned into two disjoint parts. Let A ⊂ P be the points
to the right of h0h1 (in particular, a ∈ A), and let B ⊂ P be the points to the left of h0hk

(implying b ∈ B). Observe that the cycle H may not be in convex position, but the radial
order of its interior points around both a and b is h1, . . . , hk.

I Lemma 29. The interior of the convex hull of h′1, . . . , h′k is empty.

Since, by Lemma 29, we obtain a triangular convex hull when removing the vertices
h2, . . . , hk−1, Lemma 12 directly gives us the following result.

A. Pilz and E. Welzl 297

I Corollary 30. If the convex hulls of P and P ′ share exactly one point, then the rotations
around all vertices remain the same when removing the elements h2, . . . , hk−1 and their
images from P and P ′, respectively.

Corollary 30 is a powerful tool for inspecting the structure of P and P ′. It allows us to
apply Lemma 26 to see that there is a hierarchy among the points of P in A and B. For
example, in the rotation around a, all points of B \ {b} are between b and hk, and vice versa.

I Corollary 31. No point of P ′ \ {c′} is on the same side of a′b′ as c′.

Also, the triangle ∆abc behaves as in the case of crossing-equivalent sets and therefore
its image is unavoidable when removing the points {h2, . . . , hk−1}.

I Corollary 32. There is no point p′ ∈ P ′ \H ′ s.t. the edge c′p′ intersects the edge a′b′.

Let us partition A into subsets Ai s.t. Ai consists of the points in A that are in the
interior of the triangle ∆ahihi+1, and do the same for B. Note that there is a line ` that
separates A and B from H.

I Lemma 33. Let i be the highest index such that Ai 6= ∅. Analogously, let j be the lowest
index such that Bj 6= ∅. Then i ≤ j.

Corollary 30, in combination with Lemma 26, tells us that, after removing, say, a, the
resulting subset has again a triangular convex hull; therefore the previous lemma also holds
for the new extreme point a1. Hence, we get

I Corollary 34. Let i be the highest index such that the supporting line of two points ak, al ∈ A
intersects the edge hihi+1, and let j be the lowest index such that the supporting line of two
points bqbr ∈ B intersects the edge hjhj+1. Then i ≤ j.

It is easy to construct examples where there are multiple sets that strictly dominate P
and that have the image of H as extreme points by having different rotations around the
images of c. Still, Corollary 34 completes the characterization of the sets P and P ′ up to
stretchability by similar reasoning as in the proof of Theorem 23.

Two common extreme points. If the convex hull boundary of P ′ contains two images of
extreme points of P , then there has to be an unavoidable detour connecting such points a
and b. This unavoidable detour gives the description of an abstract order type that strictly
dominates P by Theorem 23, just like for sets with more extreme points. However, as the
three order types with five points show (e.g., by swapping the labels v′1 and v′2 in Figure 2),
we might not have extr(P)′ ⊂ extr(P ′). There may therefore be several abstract order types
that strictly dominate P , and these may not be constructed the same way as in the proof of
Theorem 23. However, we know the following.

I Theorem 35. Let extr(P) = {a, b, c} and P ≤x P
′. If a′, b′ ∈ extr(P ′) and c′ /∈ extr(P ′),

then a′b′ is an edge of conv(P ′).

6 Algorithms and the Order Type Data Base

So far, we did not address the algorithmic problem of deciding whether a point set crossing-
dominates another. We do so in this section. Further, we explain how we used the properties
of for x-dominance to extract all crossing-maximal and crossing-minimal order types for up
to 11 points. Theorem 3 is the key result for checking whether a point set not in convex
position x-dominates another. Since Theorem 2 also gives a description of sets dominated by
Convn, we can devise fast algorithms for checking x-dominance.

SoCG’15

298 Order on Order Types

I Lemma 36. The existence of a Hamiltonian cycle in the set of unavoidable edges of a
point set P can be decided in polynomial time.

I Theorem 37. Given two point sets P and P ′ of size n, it can be decided in polynomial
time whether P ≤x P

′.

As a practical result of our work, we generated files containing exactly the realizations of
the crossing-maximal and crossing-minimal order types for up to 10 points. For 11 points,
such files were also extracted, but are likely to contain a small fraction of false-positives, which
could not be filtered out by our methods due to the wast number of order types of size 11.
We sketch our approach that allowed us to eventually generate these data bases within few
CPU hours by extracting them from the Point Set Order Type Data Base (see [1, 5]).

Theorem 23 states that every point set P containing an unavoidable detour is dominated
by an abstract order type. We use this to quickly find a point set in the Order Type Data
Base that dominates a given one. First, we enumerate all cycles that consist of unavoidable
edges that contain all extreme points of P . For each such cycle, we consider the abstract
order type that has this cycle as convex hull boundary; all other point triples are oriented in
the same way as in P . By the proof of Theorem 23, this abstract order type x-dominates P .
(Note that this does not produce all possible abstract order types x-dominating P ; we do
not get those sets where points with non-extreme image jump out of a triangle.) We get the
lexicographically smallest λ-matrix as a fingerprint (see [9]) from each such abstract order
type and search for this matrix in the data base. Using this method, most of the non-maximal
sets could be identified quickly (we can perform a binary search for the matrix in the data
base). For some of the sets, no realizable order type could be found this way. Therefore,
for up to 10 points, we used a second iteration in which these sets where checked against
all other ones that were not identified to be non-maximal in the first iteration. Further, all
sets with triangular convex hull that contain a cycle of unavoidable edges of length at least
four not violating the conditions of Corollary 34 were checked in this phase. Similarly, the
following characterization allows us to identify crossing-minimal sets.

I Theorem 38. Let P, |extr(P)| ≥ 4, be a set of points such that, for every sequence
H = (hi, . . . , hj), |H| ≥ 3, of consecutive points on the convex hull boundary of P , conv(H)
contains a pair p, q ∈ P \H s.t. pq does not stab hihj. Then P is crossing-minimal.

For sets that have at least one chain C, |C| ≤ |extr(P)| − 1, on the boundary of the
convex hull that may be an unavoidable detour in a dominated set, we obtain a corresponding
abstract order type. In such an abstract order type, the chain C is made reflex (which is, in
general, not the only possibility), and for all points inside conv(C), the triple orientations
change accordingly. This way, many dominated order types can be found quickly.

Calculating the λ-matrix of an implicitly given abstract order type is a rather involved
and therefore error-prone task, and even obtaining a bijection between two point sets using
Theorem 3 is not completely fail-safe. However, when given the bijection between two
point sets, we can, in a brute-force way, compare all 4-tuples to check crossing-dominance,
a comparatively simple task. Once given the point set that witnesses non-maximality or
non-minimality of another one, these sets can be compared quickly. This separate check was
used to verify the resulting data.

Acknowledgements. We want to thank Oswin Aichholzer and Thomas Hackl for valuable
discussions, in particular on handling the Order Type Data Base and on partitioning edges
into spanning trees for 10 points, as well as for setting up computations on the Graz University

A. Pilz and E. Welzl 299

of Technology HPC system in early stages. The authors would like to acknowledge the use
of HPC resources provided by the ZID of Graz University of Technology. This work was
initiated during the 10th European Research Week on Geometric Graphs, held in St. Karl,
Switzerland, from September 9 to September 13, 2013.

References
1 Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. Enumerating order types for

small point sets with applications. Order, 19(3):265–281, 2002.
2 Oswin Aichholzer, Jean Cardinal, Vincent Kusters, Stefan Langerman, and Pavel Valtr.

Reconstructing point set order types from radial orderings. In ISAAC 2014, volume 8889
of LNCS, pages 15–26. Springer, 2014.

3 Oswin Aichholzer, Thomas Hackl, Matias Korman, Marc van Kreveld, Maarten Löffler,
Alexander Pilz, Bettina Speckmann, and Emo Welzl. Packing plane spanning trees and
paths in complete geometric graphs. In Proc. 26th Canadian Conference on Computational
Geometry (CCCG 2014), 2014.

4 Oswin Aichholzer, Thomas Hackl, Birgit Vogtenhuber, Clemens Huemer, Ferran Hurtado,
and Hannes Krasser. On the number of plane graphs. In Proc. 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2006), pages 504–513. ACM Press, 2006.

5 Oswin Aichholzer and Hannes Krasser. Abstract order type extension and new results on
the rectilinear crossing number. Comput. Geom., 36(1):2–15, 2007.

6 Boris Aronov, Paul Erdős, Wayne Goddard, Daniel J. Kleitman, Michael Klugerman, János
Pach, and Leonard J. Schulman. Crossing families. Combinatorica, 14(2):127–134, 1994.

7 Prosenjit Bose, Ferran Hurtado, Eduardo Rivera-Campo, and David R. Wood. Partitions
of complete geometric graphs into plane trees. Comput. Geom., 34(2):116–125, 2006.

8 Jean Cardinal, Michael Hoffmann, and Vincent Kusters. On universal point sets for pla-
nar graphs. In Computational Geometry and Graphs - Thailand-Japan Joint Conference
(TJJCCGG 2012), volume 8296 of LNCS, pages 30–41. Springer, 2012.

9 Jacob E. Goodman and Richard Pollack. Multidimensional sorting. SIAM J. Comput.,
12(3):484–507, 1983.

10 Jacob E. Goodman and Richard Pollack. Semispaces of configurations, cell complexes of
arrangements. J. Combin. Theory Ser. A, 37(3):257–293, 1984.

11 Jan Kynčl. Enumeration of simple complete topological graphs. Eur. J. Comb., 30(7):1676–
1685, 2009.

12 Nicolai E. Mnëv. The universality theorems on the classification problem of configura-
tion varieties and convex polytope varieties. In Topology and Geometry—Rohlin Seminar,
volume 1346 of Lecture Notes in Math., pages 527–544. Springer, 1988.

13 Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič. Crossing numbers of graphs
with rotation systems. Algorithmica, 60(3):679–702, 2011.

14 Gerhard Ringel. Extremal problems in the theory of graphs. In Theory of Graphs and its
Applications (Smolenice, 1963), pages 85–90. Publ. House Czechoslovak Acad. Sci., Prague,
1964.

15 Marcus Schaefer. Complexity of some geometric and topological problems. In Graph
Drawing, volume 5849 of LNCS, pages 334–344. Springer, 2009.

16 Géza Tóth and Pavel Valtr. Geometric graphs with few disjoint edges. In Symposium on
Computational Geometry, pages 184–191, 1998.

17 Benjamín Tovar, Luigi Freda, and Steven M. LaValle. Learning combinatorial map infor-
mation from permutations of landmarks. I. J. Robotic Res., 30(9):1143–1156, 2011.

18 Stephen K. Wismath. Point and line segment reconstruction from visibility information.
Int. J. Comput. Geometry Appl., 10(2):189–200, 2000.

SoCG’15

Limits of Order Types∗

Xavier Goaoc1, Alfredo Hubard2, Rémi de Joannis de Verclos3,
Jean-Sébastien Sereni4, and Jan Volec5

1 LIGM, Université Paris-Est Marne-la-Vallée, France
2 GEOMETRICA, Inria Sophia-Antipolis, France
3 G-SCOP, CNRS-INPG, Grenoble, France
4 LORIA, CNRS, France
5 Department of mathematics, ETH Zürich, Switzerland

Abstract
The notion of limits of dense graphs was invented, among other reasons, to attack problems in
extremal graph theory. It is straightforward to define limits of order types in analogy with limits
of graphs, and this paper examines how to adapt to this setting two approaches developed to
study limits of dense graphs.

We first consider flag algebras, which were used to open various questions on graphs to
mechanical solving via semidefinite programming. We define flag algebras of order types, and
use them to obtain, via the semidefinite method, new lower bounds on the density of 5- or 6-tuples
in convex position in arbitrary point sets, as well as some inequalities expressing the difficulty of
sampling order types uniformly.

We next consider graphons, a representation of limits of dense graphs that enable their study
by continuous probabilistic or analytic methods. We investigate how planar measures fare as
a candidate analogue of graphons for limits of order types. We show that the map sending a
measure to its associated limit is continuous and, if restricted to uniform measures on compact
convex sets, a homeomorphism. We prove, however, that this map is not surjective. Finally,
we examine a limit of order types similar to classical constructions in combinatorial geometry
(Erdős-Szekeres, Horton . . .) and show that it cannot be represented by any somewhere regular
measure; we analyze this example via an analogue of Sylvester’s problem on the probability that
k random points are in convex position.

1998 ACM Subject Classification G.2.m Discrete Mathematics, I.3.5 Computational Geometry
and Object Modeling

Keywords and phrases order types, Limits of discrete structures, Flag algebras, Erdos-Szekeres,
Sylvester’s problem

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.300

1 Introduction

The order type of a point set is a combinatorial encoding of the respective positions of its
elements that suffices to determine many of its properties. For instance, the order type
determines the halving lines or more generally the k-sets of the point set, which graphs admit
crossing-free straight line drawings with vertices supported on that point set, the structure of

∗ This work was partially supported by the ANR projects PRESAGE (ANR–11–BS02–003) and HERE-
DIA (ANR-10-JCJC-0204-01), by the Institut Universitaire de France, by the SNSF grant 200021-149111
and by the Advanced Grant of the European Research Council GUDHI (Geometric Understanding in
Higher Dimensions).

© Xavier Goaoc, Alfredo Hubard, Rémi de Joannis de Verclos, Jean-Sébastien Sereni, and Jan Volec;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 300–314

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.300
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

X. Goaoc, A. Hubard, R. de Joannis de Verclos, J.-S. Sereni, and J. Volec 301

its simplicial depth partition, etc. Order types have received continued attention in discrete
and computational geometry since the 1980’s and are known to be rather intricate objects,
for instance difficult to axiomatise [13].

In this paper, we report on an effort to apply to order types ideas from the theories
of dense graph limits developed by Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi
and flag algebras developed by Razborov. While order types can be defined for points in d
dimensions, in topological spaces, possibly with alignment, etc, all point sets considered in
this paper are finite subsets of the euclidean plane, with no aligned triple.

Order types. Formally, order types are defined as follows. Define the orientation of a
triangle pqr in the plane as clockwise (CW) if r lies to the right of the line pq oriented from

p

q

CCW CW

r
p to q and counter-clockwise (CCW) if r lies to the left of that
oriented line. (So the orientation of qpr is different from that of
pqr.) We say that two planar point sets P and Q have the same
order type if there exists a bijection f : P → Q that preserves
orientations: for any triple of pairwise distinct points p, q, r ∈ P
the triangles pqr and f(p)f(q)f(r) have the same orientation. The

relation of having the same order type is easily checked to be an equivalence relation; the
equivalence class, for this relation, of a finite point set P is called the order type of P . A
point set P with order type ω is called a realization of ω.

When convenient, we extend to order types any notion that can be defined on a set of
points and does not depend on a particular choice of realization. For instance we define
the size of an order type ω as the cardinality |ω| of any of its realization. We adopt the
convention that there is exactly one order type of each of the sizes 0, 1 and 2. We used the
comprehensive list of all the order types of size up to 11, which was made available by Oswin
Aichholzer 1 based on his work with Aurenhammer and Krasser [2] on the enumeration of
order types. Throughout this paper, all non-trivial facts we use with reference on order types
of small size can be traced back to that resource. We let O denote the set of order types
and On the set of order types of size n.

Convergent sequences and limits of order types. We define the density p(ω, ω′) of an
order type ω in another order type ω′ as the probability that |ω| random points chosen
uniformly from a point set realizing ω′ have order type ω. (Observe that this probability
depends solely on the order types and not on the choice of realization.) We say that a
sequence {ωn}n∈N of order types converges if the size |ωn| goes to infinity as n goes to infinity,
and if for any fixed order type ω the sequence of densities p(ω, ωn) converges. The limit of a
convergent sequence of order types {ωn}n∈N is the map{

O → [0, 1]
ω 7→ limn→∞ p(ω, ωn)

A standard compactness argument reveals that limits of order types abound. Indeed, for
each element ωn in a sequence of order types, the map ω ∈ O 7→ p(ω, ωn) can be seen as
a point in [0, 1]N, which is compact by Tychonoff’s theorem. Any sequence of order types
whose size go to infinity therefore contains a convergent subsequence, and many extremal
properties of point sets can be expressed in terms of limits of order types.

1 http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/

SoCG’15

http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/

302 Limits of Order Types

Problems and results. Let �k denote the order type of k points in convex position,
convk(n) the minimum number of convex k-gons in a set of n points in the plane, and
ck = limn→∞ convk(n)/

(
n
k

)
their minimum density. Determining convk(n) and ck are classi-

cal problems in discrete geometry; see eg [6, Section 8.4, Problem 1]. Our first results are
the following new lower bounds:

I Proposition 1. c5 ≥ 0.0608516 and c6 ≥ 0.0018311.

The best upper bounds we are aware of on these numbers are c5 ≤ 0.0625 and c6 ≤ 0.005822
and we are not aware of previously known lower bounds. We prove Proposition 1 by a
reformulation of limits of order types as positive homomorphisms from a so-called flag algebra
of order types into R (see Proposition 8); this point of view allows a semidefinite programming
formulation of the search for inequalities satisfied by limits of order types. Specifically, we
argue that for any limit of order type `

`(�5) ≥ 0.0608516 and `(�6) ≥ 0.0018311.

The number c4 corresponds to the celebrated rectilinear crossing number of the complete graph
and has been extensively investigated; the best lower bound we could obtain on c4 via flag
algebra is c4 ≥ 0.37843917, which is inferior to the best known bound c4 ≥ 277/729 ≈ 0.3799
(the best known upper bound being 83247328/218791125 ≈ 0.3804). We refer the interested
reader to the survey of Abrego, Fernandez-Merchant and Salazar [1].

Probabilistic constructions are sometimes effective ways of finding extremal combinatorial
structures, a textbook example being the lower bound on Ramsey numbers for graphs. It is
of course easy to generate a random order type, for instance by sampling i.i.d. some measure
over R2. It is not clear, however, how well such a method samples the space of order types,
and hence how effective it would be to test conjectures and search for extremal examples (see
eg [6, p 326]). Sampling order types of a given size uniformly looks difficult, as suggested
by the lack of closed formulas for counting them, but we know of no formal justification
of the hardness of this problem. As it turns out, limits of order types can also be defined
as families of probability distributions on order types with certain internal consistencies
(see Proposition 6) and our second result, also obtained by the semidefinite method of flag
algebras, shows that a broad class of random generation method must exhibit some bias:

I Proposition 2. For any limit of order types ` there exist two order types ω1, ω2 of size 6
such that `(ω1) > 1.8208 `(ω2) > 0.

This inevitability of bias applies in particular to the random generation of order types by
independent sampling of points from any measure over R2. Specifically, let µ be a finite
measure over R2 and for any order type ω let p(ω, µ) denote the probability that |ω| random
points chosen independently from 1

µ(R2)µ realize ω; if every line is negligible for µ then
`µ : ω 7→ p(ω, µ) is a limit of order types (Lemma 7) and Proposition 2 applies.

Some hard problems in extremal graph theory were solved by representing limits of graphs
by continuous functions, called graphons; a celebrated example is the application of large
deviations principles to random Erdős-Renyi graphs G(n, p) conditioned on the rare event of
having triangle density q3 for some q > p [10], or on having a fixed degree sequence. At the
heart of these results lies the fact that the relation between graphons and limits of graphs is
not only a bijection, but an actual homeomorphism when both spaces are equipped with
the adequate topologies. Since every finite measure µ over R2 (for which lines are negligible)

X. Goaoc, A. Hubard, R. de Joannis de Verclos, J.-S. Sereni, and J. Volec 303

defines a limit of order types `µ, it is natural to wonder if such measures can represent all
limits of order types, and whether this representation can be made an homeomorphism.

Let L denote the space of limits of order types, endowed with the topology of the metric

d(`1, `2) :=
∞∑
i=1

2−i|`1(ωi)− `2(ωi)|, (1)

where {ω1, ω2, . . .} is some arbitrary enumeration of the set of order types. We first show that
the map µ 7→ `µ, from the space of finite measures over R2 for which every line is negligible,
equipped with the topology of the weak convergence, into L, is continuous (Proposition 10).
We next consider the special case of restrictions of the Lebesgue measure (the area) to
compact convex sets with non empty interior (convex bodies). Let K denote the quotient of
the space of convex bodies by affine transforms: if K is a convex body, [K] ∈ K is the class
of convex bodies affinely equivalent to K. We equip K with the Banach-Mazur distance2
dBM , and remark that if K is a convex body and µK is the uniform measure on K then the
limit of order types `µK depends only on [K]. We prove:

I Theorem 3. Let K and K ′ be two planar convex bodies.
(i) If for any ω ∈ O we have p(ω, µK) = p(ω, µK′) then K and K ′ are affinely equivalent.
(ii) For any ω ∈ O we have |p(ω, µK)− p(ω, µK′)| ≤ 2|ω|dBM (K,K ′).
As a consequence, the map [K] ∈ K 7→ `µK ∈ L is a homeomorphism to its image.

The type of rigidity expressed by Theorem 3 extends to a broader class of measures (see the
journal version).

We next show that there exists a limit of order types that cannot be represented, in the
sense defined above, by a measure. The gist of the construction is to consider a sequence of
measures whose weak limit (in the measure sense) contains a Dirac mass. Specifically, for any
real t ∈ (0, 1), let �t be a probability distribution over R2 supported on two concentric circles,
with radii 1 and t, respectively. Each of the two circles has �t-measure 1/2, distributed
proportionally to the length on that circle. We denote by `�t the limit of order types
associated to �t (cf Lemma 7) and we let `� be the limit of a convergent sub-sequence of
{`�1/n}n∈N∗ . Here we prove:

I Proposition 4. If µ is a compactly supported measure over R2 then there exists ω ∈ O
such that p(ω, µ) 6= `�(ω).

The proof that the compactness assumption can be removed is postponed to the journal
version.

We finally examine a variation on constructions of Erdős and Szekeres [7] and Horton [8]
to construct a limit of order types that no measure that is somewhere regular can represent.
We first define inductively a sequence {Pn}n∈N of point sets. The set P0 consists of a single
point. Assuming Pn has been constructed, we let Pn+1 to be the union of two congruent
copies of Pn, P 0

n and P 1
n , so that the following is true: any point in P 1

n lies above every line
spanned by two points from P 0

n , any point from P 0
n lies below every line spanned by two

points from P 1
n , and the least x coordinate of a point in P 1

n is greater than the greatest x
coordinate of a point in P 0

n . We then let ωn denote the order type of Pn and let `H denote
the limit of some convergent subsequence of {ωn}.

2 Recall that dBM is dBM ([K], [K′]) := ln
(
inf{r : r ∈ R+,∃A ∈ GA(2,R) : K ⊂ AK′ ⊂ rK}

)
where rK

denotes a scaling of K by a factor r; we abuse the terminology here as it is a distance only for symmetric
convex sets.

SoCG’15

304 Limits of Order Types

I Proposition 5. If µ is a measure over R2 that is, on an open set of positive µ-measure,
absolutely continuous to either the Lebesgue measure or the length measure on a C2 curve
then there exists k ≥ 4 such that p(�k, µ) > `H(�k).

Our proof hinges on the fact that when k →∞, `H(�k) decays faster than p(�k, µ) for any of
the measures considered. For perspective, recall that it is known that the rectilinear crossing
number equals the infimum, over all open sets U ⊂ R2 with finite Lebesgue measure, of
p(�4, µU), where µU is the Lebesgue measure restricted to U [12].

2 Limits of order types

Order types can be understood as equivalence classes of chirotopes under the action of
permutations (see below). As such, they are an example of models in the language of
Razborov [11], and the theory of limits of order types is a special case of Razborov’s work.
In this section, we give a geometric presentation of the various faces of limits of order types.
We intend the presentation to be as self-contained as possible, and refer to general results of
Razborov when needed.

Limits as probability distributions on order types. The split probability p (ω′, ω′′;ω), where
ω′, ω′′, ω are order types, is the probability that a random partition of a point set realizing ω
into two classes of sizes |ω′| and |ω′′|, chosen uniformly among all such partitions, produces two
sets with respective order types ω′ and ω′′. (In particular p (ω′, ω′′;ω) = 0 if |ω| 6= |ω1|+ |ω2|.)

Fix two order types ω′, ω′′ ∈ O, consider a converging sequence {ωn}n∈N of order types,
and let n0 be such that |ωn| ≥ |ω′|+ |ω′′| for any n ≥ n0. For any n ≥ n0 let

αn = p(ω′, ωn)p(ω′′, ωn) and βn =
∑

ω∈O|ω′|+|ω′′|

p(ω′, ω′′;ω)p(ω, ωn).

Now, fix some point set P with order type ωn. On the one hand, αn equals the probability
that two independent events both happens: (i) that a set P ′ of |ω′| random points chosen
uniformly from P have order type ω′, and (ii) that another set P ′′ of |ω′′| random points
chosen uniformly from P have order type ω′′. On the other hand, observe that βn equals the
probability that (i) and (ii) happen and that P ′ and P ′′ are disjoint. The difference |αn−βn|
is therefore bounded from above by the probability that P ′ and P ′′ intersect. Bounding from
above the probability that P ′ and P ′′ have an intersection of one or more elements by the
expected size of P ′ ∩ P ′′, we have∣∣∣p(ω′, ωn)p(ω′′, ωn)−

∑
ω∈O|ω′|+|ω′′|

p(ω′, ω′′;ω)p(ω, ωn)
∣∣∣ ≤ E (|P ′ ∩ P ′′|) = |ω

′||ω′′|
|ωn|

. (2)

Taking n→∞ in (2) we see that every limit of order types ` satisfies

∀ω′, ω′′ ∈ O, `(ω′)`(ω′′) =
∑

ω∈O|ω′|+|ω′′|

p(ω′, ω′′;ω)`(ω). (3)

These internal consistency relations provide the following alternative characterization of
limits as families of distributions on order types:

I Proposition 6 (Lovasz and Szegedy [9, Theorem 2.2], Razborov [11, Theorem 3.3]). A
function ` : O → R is a limit of order types if and only if it satisfies Condition (3) and for
every n ∈ N the restriction `|On is a probability distribution on On.

X. Goaoc, A. Hubard, R. de Joannis de Verclos, J.-S. Sereni, and J. Volec 305

Limits from measures over R2. As spelled out in the paragraph following Proposition 2,
measures over R2 provide examples of limits of order types.

I Lemma 7. The map `µ : ω ∈ O 7→ p(ω, µ) is a limit of order types if and only if µ is a
measure for which every line is negligible.

Proof. Assume that `µ is a limit of order types and let {ωn}n∈N be a sequence converging
to µ. Let ∴ denote the order type of size 3. We have

p(∴, µ) = `µ(∴) = lim
n→∞

p(∴, ωn) = 1

so three random points chosen independently from 1
µ(R2)µ are aligned with probability 0,

and every line is negligible for µ.
Conversely, assume that µ is a measure for which every line is negligible. For every

n ≥ 3 the restriction of `µ to On is a probability distribution. Moreover, for any order types
ω′, ω′′ ∈ O we have

Prµ(ω′)Prµ(ω′′) =
∑

ω∈O|ω′|+|ω′′|

Prµ(ω)p(ω′, ω′′;ω)

since the union of two independent random sets of sizes |ω1| and |ω2| has size |ω1| + |ω2|
almost surely. Proposition 6 implies that `µ is a limit of order types. J

Limits as positive algebra homomorphisms. Let {ωn}n∈N be a sequence of order types
converging to a limit `. Let ω ∈ O, let k ≥ |ω| and let n0 be large enough so that |ωn| ≥ k
for n ≥ n0. A simple conditioning argument yields that for any n ≥ n0,

p(ω, ωn) =
∑
ω′∈Ok

p(ω, ω′)p(ω′, ωn).

Indeed, the probability that a random sample realizes ω is the same if we sample uniformly |ω|
points from a realization of ωn, and if we sample k points uniformly from that realization,
then select a subset of |ω| of these k points uniformly. It follows that any limit ` of order
types satisfies:

∀ω ∈ O,∀k ≥ |ω|, `(ω) =
∑
ω′∈Ok

p(ω, ω′)`(ω′). (4)

Now, let RO be the set of all finite formal linear combinations of elements of O with real
coefficients and consider the quotient vector space

A = RO/K where K = vect
{
ω −

∑
ω′∈O|ω|+1

p(ω, ω′)ω′ : ω ∈ O
}
.

We define a product on O by

∀ω1, ω2 ∈ O, ω1 × ω2 =
∑

ω∈O|ω1|+|ω2|

p(ω1, ω2;ω)ω (5)

and extend it linearly to RO. This extension is compatible with the quotient by K [11,
Lemma 2.4] and therefore turns A into an algebra.

We call an algebra homomorphism from A to R positive if it maps every element of O to
a non-negative real, and denote by Hom+(A,R) the set of positive algebra homomorphism
from A to R. (Note that any algebra homomorphism sends ·, the order-type of size one, to
the real 1 as it is the neutral element for the product on order types.)

SoCG’15

306 Limits of Order Types

I Proposition 8 ([11, Theorem 3.3b]). A map f : O → R is a limit of order types if
and only if its linear extension is compatible with the quotient by K and defines a positive
homomorphism from A to R.

We write that an element of A is non-negative when its image under any positive
homomorphisms is non-negative. The algebra A allows us to compute effectively with density
relations that hold for every limit `.

I Example 9. Let us denote by · the order type on one point, by and the two
order types of size four and by , , and by the three order types of size five,
seen as elements of A. From Identity (4) we get

= + 3
5 + 1

5 and + + = · (6)

Since for any limit of order types ` we have `(·) = 1, the above easily implies that `(�4) ≥ 1/5.
Using again Identity (4), and the non-negativity of we then obtain:

2
5 ≥ − 3

5 (+ +) = − 3
5 ·

and `(�5) ≥ 5
2`(�4)− 3

2 for any limit of order types `.

3 The semidefinite method for order types

Let us give an intuition of how the semidefinite method works on an example. A simple
(mechanical) examination of 6405 order types reveals that p(�4, ω) ≥ 19/70 for any ω ∈ O8.
With Identity (4) this implies ≥ 19/70 · or equivalently c4 ≥ 19/70 > 0.2714. Observe
that for any C ∈ A and any (linear extension of a) limit of order types ` we have `(C ×C) =
`(C)2 ≥ 0 by Proposition 8. We thus have at our command an infinite source of inequalities
to consider to try and improve the above bounds. For instance, a tedious but elementary
computation yields that(

6
25 − 11

125

)2
+ 298819

1093750
∑
ω∈O8

ω =
∑
ω∈O8

aωω,

where aω ≤ p(�4, ω) for every ω ∈ O8. This implies that `(�4) ≥ 298819/1093750 > 0.2732
for any limit of order types `. The search for interesting combinations of such inequalities
can be done by semidefinite programming.

3.1 Improving the semidefinite method via rooting and averaging
The effectiveness of the semidefinite method for limits of graphs was greatly enhanced by
considering partially labelled graphs. We unfold here a similar machinery, using some blend
of order types and chirotopes.

Partially labelled point sets, flags, σ-flags and Aσ. A point set partially labelled by a
finite set Z (the labels) is a finite point set P together with some injective map L : Z → P ;
we will write this (P,Z, L) when we need to make explicit the set of labels and the label map.
We say that two partially labelled point sets (P,Z, L) and (P ′,Z, L′) have the same flag if
there exists a bijection φ : P → P ′ that preserves both the orientation and the labelling, the
latter meaning that φ(L(i)) = L′(i) for any i ∈ Z. The relation of having the same flag is an

X. Goaoc, A. Hubard, R. de Joannis de Verclos, J.-S. Sereni, and J. Volec 307

equivalence relation, and a flag is an equivalence class for this relation. Again, we call any
partially labelled point set a realization of its equivalence class, and the size |τ | of a flag τ is
the cardinality of any of its realizations.

We call a flag where all the points are labelled, ie where |P | = |Z| in some realization
(P,Z, L), a Z-chirotope. (When Z = [k] = {1, 2, . . . , k} a Z-chirotope coincides with the
classical notion of chirotope.) Discarding the unlabelled part of a flag τ with label set Z
yields some Z-chirotope σ called the root of τ . We call a flag with root σ a σ-flag and we
denote by X σ the set of σ-flags. The unlabelling τ∅ of a flag τ with realization (P,Z, L) is
the order type of P .

Let Z be a set of labels and σ a Z-chirotope. We define densities and split probabilities
for σ-flags like for order types. Namely, let τ, τ ′ and τ ′′ be σ-flags realized, respectively, by
(P,Z, L) and (P ′,Z, L′) and (P ′′,Z, L′′). The density of τ in τ ′ is the probability that for a
random subset S of size |P | − |Z|, chosen uniformly in P ′ \ L′(Z), the partially labelled set
(S ∪ L′(Z),Z, L′) has flag τ . The split probability p(τ, τ ′; τ ′′) is the probability that for a
random subset S of size |P | − |Z|, chosen uniformly in P ′′ \ L′′(Z), the partially labelled set
(S ∪ L′′(Z),Z, L′′) and (P ′′ \ S,Z, L′′) have, respectively, flags τ and τ ′.

We can finally define an algebra of σ-flags as for order types. We equip the quotient
vector space

Aσ = RX σ/Kσ where Kσ = vect
{
ω −

∑
ω′∈Xσ|ω|+1

p(ω, ω′)ω′ : ω ∈ X σ
}

by the linear extension of the product defined on X σ by τ×τ ′ =
∑
τ ′′∈Xσ

|τ|+|τ′|−|σ|
p(τ, τ ′; τ ′′)τ ′′.

Rooted homomorphisms and averaging. The use of the Aσ’s to study A relies on three
tools which we now introduce. We first define an embedding of a Z-chirotope in an order type
ω as a σ-flag with root σ and unlabelling ω. We use random embeddings with the following
distribution in mind: fix some point set realizing ω, consider the set I of injections f : Z → P

such that (P,Z, f) is a σ-flag, choose some injection fr from I uniformly at random, and
consider the flag of (P,Z, fr). We call this the labelling distribution on embeddings of σ
in ω.

Next, we associate to any convergent sequence of order types {ωn}n∈N, and for any
Z-chirotope σ, a probability distribution on Hom+(Aσ,R). For any n ∈ N, the labelling
distribution on embeddings of σ in ωn defines a probability distribution Pσ

n on mappings
from Aσ to R; specifically, for each embedding θn of σ in ωn we consider the map

fθn :
{
Aσ → R
τ 7→ p(τ, θn)

and assign to it the same probability, under Pσ
n, as the probability of θn under the labelling

distribution. Since p(ω, ωn) converges as n → ∞ for every ω ∈ O, the sequence {Pσ
n}n∈N

weakly converges to a Borel probability measure on Hom+(Aσ,R) [11, Theorems 3.12 and
3.13] which we denote by Pσ

` . Moreover, if `(σ∅) > 0 then the homomorphism induced by `
determines the probability distribution Pσ

` [11, Theorem 3.5].
We finally define, for any Z-chirotope σ, an averaging (or downward) operator J·Kσ :

Aσ → A as the linear operator defined on the elements of τ ∈ X σ by JτKσ := pστ ·τ∅, where pστ
is the probability that a random embedding of σ to τ∅ (for the labelling distribution) equals τ .
Here are a few examples of σ-flags, where σ = 123 is the CCW chirotope of size 3:
s

2

3

1

{

123
= 1

2

s

2

3

1

{

123
= 1

6

s

2

3

1

{

123
= 1

8

SoCG’15

308 Limits of Order Types

For any given Z-chirotope σ and a limit of order types `, we have the following important
identity [11, Lemma 3.11]:

∀τ ∈ Aσ, ` (JτKσ) = ` (JσKσ)
∫
φσ∈Hom+(Aσ,R)

φσ(τ)dPσ
` . (7)

In particular, ` (JCσKσ) ≥ 0 for any Cσ ∈ Aσ such that φσ(Cσ) ≥ 0 almost surely for
φσ ∈ Hom+(Aσ,R), relatively to Pσ

` ; for any limit of order types ` and any Z-chirotope σ
we therefore have

∀Cσ ∈ Aσ, `
(r

(Cσ)2
z

σ

)
≥ 0. (8)

3.2 The semidefinite method for order types
The operator J·Kσ is linear, so for every φ ∈ Hom+(A,R), any Aσ1 , Aσ2 , . . . , AσI ∈ Aσ, and any
non-negative reals z1, z2, . . . , zI , we have

φ

u

v
∑
i∈[I]

zi · (Aσi)2

}

~

σ

 ≥ 0.

For any finite set of flags S ⊆ Oσ and for any real, symmetric, positive semidefinite matrix
M of size |S| × |S|, we have φ

(q
vTSMvS

y
σ

)
≥ 0, where vS is the vector in (Aσ)|S| whose ith

coordinate equals the ith element of S (for some given order). This recasts the search for a
good “positive” quadratic combination as a semidefinite programming problem.

Let N be an integer, f =
∑
ω∈ON fωω some target function, and σ1, . . . , σk a finite list of

chirotopes so that |σi| ≡ N mod 2. For each i ∈ [k], let vi be the |X σi(N+|σi|)/2|-dimensional
vector with ith coordinate equal to the ith element of X σi(N+|σi|)/2. We look for a real b
as large as possible subject to the constraint that there exists k real, symmetric, positive
semidefinite matrices M1,M2, . . . ,Mk, where Mi has size |vi| × |vi|, so that

∀ω ∈ ON , fω ≥ aω where
∑
ω∈ON

aωω =
∑
i∈[k]

q
vTi Mivi

y
σi

+ b
∑
ω∈ON

ω. (9)

The values of the aω’s are determined by b, the entries of the matrices M1,M2, . . . ,Mk,
the splitting probabilities p(τ ′, τ ′′; τ), where τ ′, τ ′′ ∈ X σi(N+|σi|)/2 and τ ∈ X σiN , and the
probabilities pσiτ , where τ ∈ OσiN . Moreover, finding the maximum value of b and the entries
of the matrices Mi can be formulated as a semidefinite program.

Effective semidefinite programming for flags of order types. In order to use a semidefinite
programming software for finding a solution of programs in the form of (9), it is enough to
generate the sets ON and X σiN , the split probabilities p(τ ′, τ ′′; τ), where τ ′, τ ′′ ∈ X σi(N+|σi|)/2
and τ ∈ X σiN , and the probabilities pσiτ , where τ ∈ OσiN .

We generated the sets and the values by brute force up to N = 8. The only non-trivial
algorithmic step is deciding whether two order types, represented by point sets, are equivalent.
This can be done by computing some canonical ordering of the points that turn two point
sets with the same order type into point sequences with the same chirotope. Aloupis et al. [4]
recently proposed an algorithm performing that in time O(n2); the method we implemented
takes time O(n2 logn) and seems to be folklore (we learned it from Pocchiola and Pilaud).
For solving the semidefinite program itself, we used a library called CSDP [5]. The input
data for CSDP was generated using a mathematical software SAGE [14].

X. Goaoc, A. Hubard, R. de Joannis de Verclos, J.-S. Sereni, and J. Volec 309

Setting up the semidefinite programs. In the rest of this section we work with N = 8 and
use chirotopes labelled σ1, σ2, . . . , σ24 where σ1 the empty chirotope, σ2 the only chirotope

2

34

1 2

4

1
3

of size two, σ3 and σ4 the two chirotopes of size 4 depicted on the
left, and σ5, . . . , σ24 a fixed set of 20 chirotopes of size 6 so that
O6 =

{
σ∅5 , . . . , σ

∅
24
}
; note that since |O6| = 20, what follows will

not depend on the choices made in labelling σ5, . . . , σ24. The
vectors v1, v2, . . . , v24 described in the previous paragraph for this choice of N and σi’s have
lengths 2, 44, 468, 393, 122, 112, 114, 101, 101, 103, 106, 103, 103, 120, 102, 108, 94, 90, 91,
91, 95, 95, 92, 104, respectively.

Computations proving Propositions 1 and 2. We solved two semidefinite programs with
the above choice of parameters for f =

∑
ω∈O8

p(�5, ω) and f =
∑
ω∈O8

p(�6, ω) and obtained
real symmetric positive semidefinite matrices M1, . . . ,M24 and M ′1, . . . ,M ′24 with rational
entries so that∑

ω∈O8

p(�5, ω)ω ≥
∑
i∈[24]

JvTi MiviKσi + 15715211616602583691
258254417031933722624

∑
ω∈O8

ω,

and∑
ω∈O8

p(�6, ω)ω ≥
∑
i∈[24]

JvTi M
′
iviKσi + 67557324685725989

36893488147419103232
∑
ω∈O8

ω.

The lower bounds on c5 and c6 then follow from Identity (4).
Assume (without loss of generality) that O6 = {ω6,1, ω6,2, . . . , ω6,20}. Solving two semidef-

inite programs, we obtained real symmetric positive semidefinite matrices M1, . . . ,M24 and
M ′1, . . . ,M

′
24 as well as non-negative rational values d1, . . . , d20 and d′1, . . . , d′20 so that

∑
j∈[20]

dj

(
ω6,j −

1
32

∑
ω∈O8

ω

)
+
∑
i∈[24]

JvTi MiviKσi < 0

and

∑
j∈[20]

d′j

(
−ω6,j + 1

18
∑
ω∈O8

ω

)
+
∑
i∈[24]

JvTi M
′
iviKσi < 0.

They imply that there is no ` ∈ Hom+(A,R) such that, respectively `(ω) ≥ 1/32 for every
ω ∈ O6, or such that `(ω) ≤ 1/18 for every ω ∈ O6. Together this proves Proposition 2 with
an imbalance bound of 32/18 > 1.77. The better bound of Proposition 2 is obtained by a
refinement of this approach where the order types with minimum and maximum probability
are prescribed; this requires solving over 700 semidefinite programs.

The numerical values of the entries of all the matrices M1, . . . ,M24 and coefficients
d1, . . . , d20 mentioned above can be downloaded from the web page http://honza.ucw.
cz/proj/ordertypes/. In fact, the matrices M1, . . . ,M24 are not stored directly, but
as an appropriate non-negative sum of squares, which makes the verification of positive
semidefiniteness trivial. To make an independent verification of our computations easier, we
created sage scripts called “verify_prop*.sage”, available from the same web page.

SoCG’15

http://honza.ucw.cz/proj/ordertypes/
http://honza.ucw.cz/proj/ordertypes/

310 Limits of Order Types

4 Representation of limits by measures

Let L denote the space of limits of order types endowed with the topology of the distance
given by Equation (1). LetM denote the space of finite measures over R2 for which every
line is negligible, equipped with the topology of the weak convergence3.

I Proposition 10. The map µ ∈M 7→ `µ ∈ L is continuous.

Proof. For k ≥ 1 and any measure µ over R2 we let µk denote the k-fold product measure
over R2k. For any order type ω we let Rω ⊂ R2|ω| denote the space of all realizations
of ω, that is Rω contains all 2|ω|-tuples (x1, y1, x2, y2, . . . , x|ω|, y|ω|) such that the points
(x1, y1), (x2, y2), . . . , (x|ω|, y|ω|) realize ω. Observe that p(ω, µ) = µk(Rω).

Let {µn}n∈N be a sequence of measures inM weakly converging to a measure µ ∈M. For
any k, the k-fold product measures µkn converge weakly to µk. Moreover, for every order type
ω the boundary ∂Rω consists solely of planar point sets with at least one aligned triple. The
measure µk(∂Rω) is therefore bounded from above by the probability that |ω| random points
sampled from µ contains at least three aligned points. Since every line is negligible for µ, this
ensures that µk(∂Rω) = 0 and therefore for any ω, `µn(ω) = µkn(Rω)→ µk(Rω) = `µ(ω). J

In the rest of this section we prove Theorem 3, which strengthens Proposition 10 for
uniform measures on convex bodies, and prove Proposition 4 and 5.

4.1 Proof of Theorem 3
The gist of our proof is to relate a convex set K to the limit of order types `K induced by the
measure µK through a family of positive algebra homomorphism φP,µK ,P ′(τ) ∈ Hom+(Aσ′ ,R)
defined for any point sequences P and P ′.

For two chirotopes σ, σ′ we write σ′ .σ and say that σ′ extends σ if there exists sequences
of points P = {p1, p2, . . . , pn} and P ′ = {p′1, p′2, . . . , p′n′} so that P has chirotope σ and
the sequence P ∪ P ′ := {q1, q2, . . . , qn+n′ : qi = pi for i ≤ n and qi = p′i−n for i > n} has
chirotope σ′. Let µ be a measure over R2 for which lines are negligible. For any σ′-flag
τ we let φP,µ,P ′(τ) denote the probability that |τ | − |σ′| random unlabeled points chosen
independently from µ define, together with P ∪ P ′, a partially labelled sequence realizing τ .
The map τ ∈ Aσ′ 7→ φP,µ,P ′(τ) is easily seen to be a positive algebra homomorphism from
Aσ′ to R. For a fixed P and varying P ′ such that n′ = |P ′|, we define a map

φP,µ,· :
{

(K)n′ →
⋃
σ′.σ;|σ′|=|σ|+n′ Hom+(Aσ′ ,R)

P ′ 7→ {τ 7→ φP,µ,P ′(τ)}

where we assume that τ is a σ′-flag and P ∪ P ′ have chirotope σ′. (For the sake of the
presentation, we write φP,µ,t in place of φP,µ,{t} when applying φP,µ,· to a singleton.) The
key fact about this map is that if we push forward µn′ through φP,µ,. it induces a probability
distribution on ∪|σ′|=|σ|+n′,σ′.σ Hom+(Aσ′ ,R) that turns out, due to a theorem of Razborov,
to be essentially determined by `µ. We will denote by Q a set of n′ random points chosen
independently from µ, and by φP,µ,Q the random homomorphism corresponding to the push
forward of µn′ .

3 A sequence {µn}n∈N of measures weakly converges to a measure µ if µn(A)→ µ(A) for every measurable
set A such that µ(∂A) = 0, where ∂ stands for the topological boundary.

X. Goaoc, A. Hubard, R. de Joannis de Verclos, J.-S. Sereni, and J. Volec 311

We first argue that the geometry of K, up to affine transformation, can be retrieved
from these homomorphisms since they encode ratios of triangle areas that determine certain
barycentric coordinates.

I Lemma 11. Let K be a convex body, {t1, t2, t3, t} ⊂ K. For any triangle T ′ supported in
{t1, t2, t3, t}, the ratio of the area of T ′ to the area of t1t2t3 is determined by the values of
φ{t1,t2,t3},µK ,t on σ-flags of size 5, where σ is the chirotope of {t1, t2, t3, t}.

Proof. The relative area of a triangle T ′ with respect to a triangle T is the quotient area(T ′)
area(T) .

Let us begin with the case in which t ∈ conv(T) with T = {t1, t2, t3}. The point t subdivides
T into 3 triangles. Without loss of generality, let τ be the σ-flag corresponding to appending a
point t′ inside the triangle {t, t2, t3}. By definition φT,µk,t(τ) = area(t,t2,t3)

area(t1,t2,t3) . When t belongs
to any of the six remaining regions defined by the lines spanned by {t1, t2, t3}, a triangle of the
form {t, t2, t3} is divided into two triangles by T , and as before we can determine the relative
area of each of these triangles and their sum provides the relative area of {t, t2, t3}. J

We next show that measures that induce the same limit give rise to equivalent families of
homomorphisms (due to lack of space we defer the proof to the journal version).

I Lemma 12. Let µ and µ′ be two measures in R2 for which lines are negligible. Let Q be a
set of m random points chosen independently from µ, and Q′ be a set of m random points
chosen independently from µ′. If `µ = `µ′ = ` then for every chirotope σ such that `(JσKσ) > 0,
there exist sequences of points P and P ′ with chirotope σ such that φP,µ,Q = φP ′,µ′,Q′ .

We now have all the ingredients to prove Theorem 3.

Proof of Theorem 3. We begin by proving the consequence of (i) and (ii). The space
(K, dBM) is a compact Hausdorff space, so (ii) implies that LK is compact and (i) implies
that the map is a bijection with its image. Any continuous bijection from a Hausdorff space
to a compact space is a homemorphism.

We now prove (ii). Let dTV (µ1, µ2) := supA |µ1(A) − µ2(A)|, where the supremum
is taken among all measurable sets A, denote the total variation distance between two
probability measures µ1 and µ2. It is classical that dTV (µk1 , µk2) ≤ kdTV (µ1, µ2) so in
particular |p(ω, µK) − p(ω, µK′)| ≤ |ω|dTV (µK , µ′K). Hence it is enough to show that
dTV (µK , µgK′) ≤ 2dBM (K,K ′) for some nondegenerate affine transformation g. Without
loss of generality we can assume that K ⊂ K ′ ⊂ rK where r = edBM (K,K′). Since K ⊂ K ′
the supremum supA |µK(A)− µK′(A)| is attained by A = K. Indeed, for every measurable
set A, the signed measure µK(A)− µK′(A) = area(A∩K)

areaK − area(A∩K′)
areaK′ does not decrease by

substituting A by A′ = A∩K, and among subsets of K this signed measure does not decrease
by substituting A by a superset. Hence dTV (µK , µK′) = 1 − area(K)

area(K′) ≤ 1 − area(K)
area(rK) =

1− 1
r2 ≤ 2 ln r. The last inequality is true provided r ≤ 1, which is the case.
Finally we prove item (i). Let K and K ′ be two convex bodies such that `K = `K′ . By

Lemma 12, there exists triangles T and T ′ such that φT,µK ,t = φT ′,µK′ ,t′ , where t and t′ are
points chosen uniformly at random from K and K ′ respectively. Define the signed area of an
ordered triangle as its area multiplied by its orientation (i.e. it is positive if the triangle is
CCW oriented and negative otherwise) and denote it by area*. Remark that the relative
signs of the triangles depend only on the chirotope σ′ of {t1, t2, t3, t}. By Lemma 11, for every
t ∈ K the homomorphism φT,µK ,t ∈ ∪|σ′|=4 Hom+(Aσ′ ,R) is enough to reconstruct the
relative area* with respect to T of each triangle in t1, t2, t3, t. Using barycentric coordinates
and T as an affine basis:

t = area*(t, t2, t3)
area*(t1, t2, t3)

t1 + area*(t1, t, t3)
area*(t1, t2, t3)

t2 + area*(t1, t2, t)
area*(t1, t2, t3)

t3,

SoCG’15

312 Limits of Order Types

we recover t from φT,µK ,t. Writing t in this way for every homomorphism in the support
of φT,µK ,t we reconstruct the convex body K. Analogously, writing t′ using T ′ as an affine
basis and φT ′,µK′ ,t′ to compute the relative areas for every homomorphism in the support of
φT ′,µK′ ,t′ , we reconstruct K ′. Since φT ′,µK′ ,t′ and φT,µK ,t are identical, K ′ is the image of
K under the affine map taking T to T ′. J

4.2 Proof of Proposition 4
It is perhaps tempting, when searching for a measure representing a given limit `, to take
a sequence of random order types rn from `, with limn→∞ |ωn| = ∞, take for each n a
realization Pn of ωn and expect that the empirical measure µPn := 1

|Pn|
∑
s∈Pn δs converges

to a measure representing `. The next lemma gives necessary and sufficient conditions for
this approach to work (due to space constraint we defer the proof to the journal version):

I Lemma 13. Let ` be a limit of order types. There exists a measure µ for which lines are
negligible and such that P (ω, µ) = `(ω) for all ω ∈ O if and only if there exists a sequence of
point sets {Pn}n∈N whose order types converge to ` and such that for any ε > 0 the following
two conditions hold:
(i) there exists R > 0 such that for n large enough, all but at most a fraction ε of Pn lies

within distance R from the origin.
(ii) for any line h ⊂ R2, there exists δ > 0 such that for n large enough, the fraction of

points from Pn within distance δ from h is at most ε,

The condition of Lemma 13 is both necessary and sufficient, and allows us to prove that
`� cannot be represented by a compactly supported measure.

Proof of Proposition 4. Let Rt
n be a point set of size N = n2 sampled according to �t.

Order the points of Rt
n on the boundary of ∂(conv(Rt

n)) following the counterclockwise
orientation. Denote this set by out(Rt

n) := {s1, s2, . . . , sm} and order its complement in
some arbitrary fashion and denote it by in(Rt

n) := {t1, t2, . . . , tN−m}.
For each point si ∈ out(Rt

n) consider the total order on Rt
n \ {si} induced by rotating a

semiline about si, starting with the semiline at si+1. This order is called the local sequence
of si. It is well known and not hard to show that it is a chirotope invariant. In this case, the
local sequence of si ∈ conv(rn), is (si+1, si+2, . . . , sj , tk1tk2 , . . . , tkin(rn)sj+1sj+2, . . . , si−1),
where the order of the points in in(rn) depends on i, but this will be irrelevant. Denote
by j : out(Rt

n) → out(Rt
n) a function that assigns to si the last element of out(Rt

n) in
its local sequence before it reaches the elements of in(Rt

n). Since the number of points in
in(Rt

n) is distributed like a binomial with N trials and probability 1
2 , for each i the triangle

conv(si, sj(i), sj(i)+1) contains the points of in(Rt
n) with probability at least 1− 1

2N+2 f(t),
where f(t) is a continuous function that approaches 1 as t approaches 0 . By the union bound
this happens for all i with probability at least 1− N

2N+2 f(t). Let |j(i)− i| be the number of
vertices on out(Rt

n) on a counterclockwise walk on ∂(conv(Rt
n)). For each i, the random

variable |j(i)− i| is distributed like a binomial with N trials and probability 1
4 . Hoeffding

inequality implies that there exists an absolute constant C > 0 such that,

Pr
[
||j(i)− i| − N

4 | ≥ C
√
N logN)

]
= O

(
1
N2

)
.

By the union bound,

Pr
[
∀i : ||j(i)− i| − N

4 | > C
√
N logN

]
= O

(
1
N

)
.

X. Goaoc, A. Hubard, R. de Joannis de Verclos, J.-S. Sereni, and J. Volec 313

We can conclude that with high probability the image of j contains more than Ω(
√

N
logN)

points and that each triangle of the form conv(si, sj(i), sj(i)+1) contains in(Rt
n).

Now assume for contradiction that µ is a compactly supported measure representing
`�. Let rn be a random order type of size N = n2 chosen according to `�. Let Rn be a
set of N points sampled uniformly and independently from µ. Since µ represents `� the
order type of Rn is distributed like rn. Let rt

n be the random order type of Rt
n. Define

out(Rn) := {s′1, s′2, . . . , s′m′} and in(Rn) := {t′1, t′2, . . . , t′N−m′}, analogously as we did for
of out(Rt

n) and in(Rt
n) for Rn. Since the distributions of order types rt

n and rn can be made
arbitrarily close in total variation distance by making t small enough, we can conclude that
with high probability, for each i, conv[s′i, s′j(i), s′j(i)+1] contains in(Rn).

On the other hand, if the support of µ has finite perimeter, then the sum of the lengths
of the edges of out(Rn) is also finite, hence the infimal length among such edges approaches
zero as n approaches infinity. Let i0 be such that the edge sj(i0), sj(i0)+1 realizes the infimal
length. Let h be the line spanned by si0 and sj(i0). Given ε < 1

8 , there exists δ(ε) > 0 such
that µ(h+B(δ)) < ε/2 and hence, by the law of large numbers µRn(h+B(δ)) < ε almost
surely. But we showed that conv[s′i0 , s

′
j(i0), sj(i0)′+1] contains in(Rn) with high probability,

which implies that µRn(h+B(δ)) > 1
2 − ε with high probability, which is a contradiction. J

4.3 Proof of Proposition 5
Recall that �k is the order type of k points in convex position. It is folklore that any set of n
points contains at least k3k/2

4k2

(
n
k

)
subsets of k points in convex position, so for any limit of

order types ` we must have `(�k) ≥ k3k/2

4k2 (due to space constraint we defer the proof to the
journal version). We first show that this bound is essentially attained by `H :

I Lemma 14. `H(�k) ≤ 2− k
2

2 +k log k.

Proof. Define a k-cup to be a sequence of points lying on the graph of a convex function, and
a k-cap to be a sequence of points lying on the graph of a concave function. Let q+(k, Pn)
be the fraction of k-tuples of Pn forming a k-cup, and q−(k, Pn) be the fraction of k-tuples
of Pn forming a k-cap. Since a k-tuple in convex position contains either a k

2 -cup or a k
2 -cap

the union bound gives p(�k, ωn) ≤ q+(k2 , Pn) + q−(k2 , Pn). By symmetry is enough to bound
q+(k, Pn). Denote by Q+(k, Pn) the number of k-cups in Pn. Since every k-cup containing
points from P 0

n and P 1
n contains at most one point from P 1

n ,

Q+(k, Pn+1) ≤ Q+(k − 1, P 0
n)|P 1

n |+Q+(k, P 0
n) +Q+(k, P 1

n).

Note that Q+(3, Pn) ≤
(2n

3
)
and Q+(k, P0) ≤ 1. By induction on n + k we get that

Q+(k, Pn) ≤ 2nk− k
2

2 . With Stirling’s formula, we thus have q+(k, Pn) ≤ 2− k
2

2 +k log k for n
large enough. J

We next bound from below p(�k, µ) under some regularity assumptions on µ. These
bounds are up to an undetermined constant; the fact that the rate of decay of p(�k, µ) is by
an order of magnitude slower than that of `H(�k) is enough, however, to ensure that for any
such µ there exists some n such that p(�k, µ) 6= `H(�k), thus proving Proposition 5.

I Lemma 15. Let µ be a measure over R2 for which lines are negligible.
(i) If there exists an open set of positive µ-measure on which µ is absolutely continuous to

the Lebesgue measure then p(�k, µ) ≥ 2−2k log k+O(k).
(ii) If there exists an open set of positive µ-measure on which µ is absolutely continuous to

the length measure on a C2 curve then p(�k, µ) ≥ 2−O(k).

SoCG’15

314 Limits of Order Types

The number of different order types in the plane is 24n logn, up to multiplicative factors of
order 2o(n logn) [3, Section 4]. Notice that the asymptotic bounds presented on p(�k, µ) both
for smooth curves and for the Lebesgue measure, imply that there exists a sequence of order
types ωk such that `µ(ωk)

`µ(�k) approaches zero as k approaches infinity. On the other hand, the
bounds for `H(�k) imply that there exists an order type such that `H(ωk)

`H(�k) approaches infinity.

References
1 B. Abrego, S. Fernandez-Merchant, and G. Salazar. The rectilinear crossing number of

kn: Closing in (or are we?). In Thirty Essays on Geometric Graph Theory, pages 5–18.
Springer, 2013.

2 O. Aichholzer, F. Aurenhammer, and H. Krasser. Enumerating Order Types for Small
Point Sets with Applications. In Proc. 17th Ann. ACM Symp. Computational Geometry,
pages 11–18, Medford, Massachusetts, USA, 2001.

3 N. Alon. The number of polytopes, configurations and real matroids. Mathematika, 33:62–
71, 1986.

4 G. Aloupis, J. Iacono, S. Langerman, Ö. Özkan, and S. Wuhrer. The complexity of order
type isomorphism. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA’14, pages 405–415, 2014.

5 B. Borchers. CSDP, A C library for semidefinite programming. Optimization Methods and
Software, 11(1–4):613–623, 1999.

6 P. Brass, W. Moser, and J. Pach. Research Problems in Discrete Geometry. Springer, 2005.
7 P. Erdős and G. Szekeres. On some extremum problems in elementary geometry. Eotvos

Sect. Math, 3–4:53–62, 1962.
8 J. D. Horton. Sets with no empty convex 7-gons. Canad. Math. Bull., 26:482–484, 1983.
9 L. Lovász and B. Szegedy. Limits of dense graph sequences. J. Combin. Theory Ser. B,

96(6):933–957, 2006.
10 E. Lubetzky and Y. Zhao. On replica symmetry of large deviations in random graphs.

Random Structures & Algorithms, 2014. doi: 10.1002/rsa.20536.
11 A. A. Razborov. Flag algebras. J. Symbolic Logic, 72(4):1239–1282, 2007.
12 E. Scheinerman and H. Wilf. The rectilinear crossing number of a complete graph and

sylvester’s “four point problem” of geometric probability. Amer. Math. Monthly, 101:939–
943, 1994.

13 P. W. Shor. Stretchability of pseudolines is NP-hard. In Applied Geometry and Discrete
Mathematics: The Victor Klee Festschrift, volume 4 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 531–554. Amer. Math. Soc., 1991.

14 W. A. Stein et al. Sage Mathematics Software (Version 6.1). The Sage Development Team,
2013. http://www.sagemath.org.

http://dx.doi.org/10.1002/rsa.20536
http://www.sagemath.org

Combinatorial Redundancy Detection∗

Komei Fukuda1, Bernd Gärtner2, and May Szedlák2

1 Department of Mathematics and Department of Computer Science
Institute of Theoretical Computer Science, ETH Zürich
CH-8092 Zürich, Switzerland
komei.fukuda@math.ethz.ch

2 Department of Computer Science
Institute of Theoretical Computer Science, ETH Zürich
CH-8092 Zürich, Switzerland
{gaertner,may.szedlak}@inf.ethz.ch

Abstract
The problem of detecting and removing redundant constraints is fundamental in optimization.
We focus on the case of linear programs (LPs) in dictionary form, given by n equality constraints
in n+ d variables, where the variables are constrained to be nonnegative. A variable xr is called
redundant, if after removing xr ≥ 0 the LP still has the same feasible region. The time needed
to solve such an LP is denoted by LP (n, d).

It is easy to see that solving n+d LPs of the above size is sufficient to detect all redundancies.
The currently fastest practical method is the one by Clarkson: it solves n + d linear programs,
but each of them has at most s variables, where s is the number of nonredundant constraints.

In the first part we show that knowing all of the finitely many dictionaries of the LP is
sufficient for the purpose of redundancy detection. A dictionary is a matrix that can be thought
of as an enriched encoding of a vertex in the LP. Moreover – and this is the combinatorial aspect
– it is enough to know only the signs of the entries, the actual values do not matter. Concretely
we show that for any variable xr one can find a dictionary, such that its sign pattern is either a
redundancy or nonredundancy certificate for xr.

In the second part we show that considering only the sign patterns of the dictionary, there
is an output sensitive algorithm of running time O(d · (n+ d) · sd−1 · LP (s, d) + d · sd · LP (n, d))
to detect all redundancies. In the case where all constraints are in general position, the running
time is O(s ·LP (n, d) + (n+ d) ·LP (s, d)), which is essentially the running time of the Clarkson
method. Our algorithm extends naturally to a more general setting of arrangements of oriented
topological hyperplane arrangements.

1998 ACM Subject Classification G.2.1 Combinatorics

Keywords and phrases system of linear inequalities, redundancy removal, linear programming,
output sensitive algorithm, Clarkson’s method

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.315

1 Introduction

The problem of detecting and removing redundant constraints is fundamental in optimization.
Being able to understand redundancies in a model is an important step towards improvements
of the model and faster solutions.

∗ Research supported by the Swiss National Science Foundation (SNF Project 200021_150055 / 1).

© Komei Fukuda, Bernd Gärtner, and May Szedlák;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and Jńos Pach; pp. 315–328

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.315
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

316 Combinatorial Redundancy Detection

In this paper, we focus on redundancies in systems of linear inequalities. We consider
systems of the form

xB = b−AxN
xB ≥ 0
xN ≥ 0

(1)

where B and N are disjoint finite sets of variable indices with |B| = n, |N | = d, b ∈ RB and
A ∈ RB×N are given input vector and matrix. We assume that the system (1) has a feasible
solution. Any consistent system of linear equalities and inequalities can be reduced to this
form.

A variable xr is called redundant in (1) if xB = b−AxN and xi ≥ 0 for i ∈ B ∪N \ {r}
implies xr ≥ 0, i.e., if after removing constraint xr ≥ 0 from (1) the resulting system still
has the same feasible region. Testing redundancy of xr can be done by solving the linear
program (LP)

minimize xr
subject to xB = b−AxN

xi ≥ 0, ∀i ∈ B ∪N \ {r}.
(2)

Namely, a variable xr is redundant if and only if the LP has an optimal solution and the
optimal value is nonnegative.

Let LP (n, d) denote the time needed to solve an LP of form (2). Throughout the paper,
we are working in the real RAM model of computation, where practical algorithms, but no
polynomial bounds on LP (n, d) are known. However, our results translate to the standard
Turing machine model, where they would involve bounds of the form LP (n, d, `), with `

being the bit size of the input. In this case, LP (n, d, `) can be polynomially bounded. The
notation LP (n, d) abstracts from the concrete representation of the LP, and also from the
algorithm being used; as a consequence, we can also apply it in the context of LPs given by
the signs of their dictionaries.

By solving n + d linear programs, O((n + d) · LP (n, d)) time is enough to detect all
redundant variables in the real RAM model, but it is natural to ask whether there is a faster
method. The currently fastest practical method is the one by Clarkson with running time
O((n+ d) · LP (s, d) + s · n · d) [4]. This method also solves n+ d linear programs, but each
of them has at most s variables, where s is the number of nonredundant variables. Hence, if
s� n, this output-sensitive algorithm is a major improvement.

A related (dual) problem is the one of finding the extreme points among a set P of n
points in Rd. A point p ∈ P is extreme in P , if p is not contained in the convex hull of
P \ {p}. It is not hard to see that this problem is a special case of redundancy detection in
linear systems.

Specialized (and output-sensitive) algorithms for the extreme points problem exist [14, 6],
but they are essentially following the ideas of Clarkson’s algorithm [4]. For fixed d, Chan
uses elaborate data structures from computational geometry to obtain a slight improvement
over Clarkson’s method [2].

In this paper, we study the combinatorial aspects of redundancy detection in linear
systems. The basic questions are: What kind of information about the linear system do we
need in order to detect all redundant variables? With this restricted set of information, how
fast can we detect all of them? Our motivation is to explore and understand the boundary
between geometry and combinatorics with respect to redundancy. For example, Clarkson’s
method [4] uses ray shooting, an intrinsically geometric procedure; similarly, the dual extreme

K. Fukuda, B. Gärtner, and M. Szedlák 317

points algorithms [14, 6] use scalar products. In a purely combinatorial setting, neither ray
shooting nor scalar products are well-defined notions, so it is natural to ask whether we can
do without them.

We will show that our results solely depend on the finite combinatorial information
given by the signed dictionaries, i.e., the size is bounded by a function of d and n only. A
dictionary can be thought of as an encoding of the associated arrangements of hyperplanes,
the corresponding signed dictionary only contains the signs of the encoding (see Section 2).
On the other hand Clarkson’s algorithm depends on the input data A and b.

Our approach is very similar to the combinatorial viewpoint of linear programming
pioneered by Matoušek, Sharir and Welzl [13] in form of the concept of LP-type problems.
The question they ask is: how quickly can we optimize, given only combinatorial information?
As we consider redundancy detection and removal as important towards efficient optimization,
it is very natural to extend the combinatorial viewpoint to also include the question of
redundancy. The results that we obtain are first steps and leave ample space for improvement.
An immediate theoretical benefit is that we can handle redundancy detection in structures
that are more general than systems of linear inequalities; most notably, our results naturally
extend to the realm of oriented matroids [1].

Statement of Results

The first point that we will make is that for the purpose of redundancy testing, it is sufficient
to know all the finitely many dictionaries associated with the system of inequalities (1).
Moreover, we show that it is sufficient to know only the signed dictionaries, i.e., the signs of
the dictionary entries. Their actual numerical values do not matter.

In Theorem 2, we give a characterization of such a redundancy certificate. More precisely,
we show that, for every redundant variable xr there exists at least one signed dictionary
such that its sign pattern is a redundancy certificate of xr. Similarly, as shown in Theorem
4, for every nonredundant variable there exists a nonredundancy certificate. Such a single
certificate can be detected in time LP (n, d) (see Section 4.3). The number of dictionaries
needed to detect all redundancies depends on the LP and can vary between constant and
linear in n+ d [10, Appendix].

In a second part, we present a Clarkson-type, output-sensitive algorithm that detects
all redundancies in running time O(d · (n+ d) · sd−1LP (s, d) + d · sd · LP (n, d)) (Theorem
5). Under some general position assumptions the running time can be improved to O((n+
d) · LP (s, d) + s · LP (n, d)), which is basically the running time of Clarkson’s algorithm.
In these bounds, LP (n, d) denotes the time to solve an LP to which we have access only
through signed dictionaries. As in the real RAM model, no polynomial bounds are known,
but algorithms that are fast in practice exist.

In general our algorithm’s running time is worse than Clarkson’s, but it only requires the
combinatorial information of the system and not its actual numerical values. If the feasible
region is not full dimensional (i.e. not of dimension d), then a redundant constraint may
become nonredundant after the removal of some other redundant constraints. To avoid these
dependencies of the redundant constraints we assume full dimensionality of the feasible region.
Because of our purely combinatorial characterizations of redundancy and nonredundancy,
our algorithm works in the combinatorial setting of oriented matroids [1], and can be applied
to remove redundancies from oriented topological hyperplane arrangements.

SoCG’15

318 Combinatorial Redundancy Detection

2 Basics

Before discussing redundancy removal and combinatorial aspects in linear programs, we
fix the basic notation on linear programming –such as dictionaries and pivots operations –
and review finite pivot algorithms. (For further details and proofs see e.g. [3, Part 1], [7,
Chapter 4].)

2.1 LP in Dictionary Form
Throughout, if not stated otherwise, we always consider linear programs (LPs) of the form

minimize cTxN
subject to xB = b−AxN

xE ≥ 0,
(3)

where E := B ∪ N and as introduced in (1), B and N are disjoint finite sets of variable
indices with |B| = n, |N | = d, b ∈ RB and A ∈ RB×N are given input vector and matrix.
An LP of this form is called LP in dictionary form and its size is n× d. The set B is called
a (initial) basis, N a (initial) nonbasis and cTxN the objective function.

The feasible region of the LP is defined as the set of x ∈ RE that satisfy all constraints,
i.e., the set {x ∈ RE |xB = b− AxN , xE ≥ 0}. A feasible solution x is called optimal if for
every feasible solution x, cTx ≤ cTx. The LP is called unbounded if for every k ∈ R, there
exists a feasible solution x, such that cTx ≤ k. If there exists no feasible solution, the LP is
called infeasible.

The dictionary D(B) ∈ RB∪{f}×N∪{g} of an LP (3) w.r.t. a basis B is defined as

D := D(B) =
[

0 cT

b −A

]
,

where f is the index of the first row and g is the index of the first column. For each i ∈ B∪{f}
and j ∈ N ∪ {g}, we denote by dij its (i, j) entry, by Di. the row indexed by i, and by D.j

the column indexed by j.
Hence by setting xf := cTxN , we can rewrite (3) as

minimize xf
subject to xB∪{f} = DxN∪{g}

xE ≥ 0,
xg = 1.

(4)

Whenever we do not care about the objective function, we may set c = 0, and with abuse of
notation, set D = [b,−A].

The basic solution w.r.t. B is the unique solution x to xB∪{f} = DxN∪{g} such that
xg = 1, xN = 0 and hence xB∪{f} = D.g.

The dual LP of LP (4) is defined as

minimize yg
subject to yN∪{g} = −DT yN∪{f}

yE ≥ 0,
yf = 1.

(5)

It is useful to define the following four different types of dictionaries (and bases) as
shown in the figure below, where "+" denotes positivity, "⊕" nonnegativity and similarly "−"
negativity and "	" nonpositivity.

K. Fukuda, B. Gärtner, and M. Szedlák 319

A dictionary D (or the associated basis B) is called feasible if dig ≥ 0 for all i ∈ B.
A dictionary D (or the associated basis B) is called optimal if dig ≥ 0, dfj ≥ 0 for all
i ∈ B, j ∈ N . A dictionary D (or the associated basis B) is called inconsistent if there exists
r ∈ B such that drg < 0 and drj ≤ 0 for all j ∈ N . A dictionary D (or the associated basis
B) is called dual inconsistent if there exists s ∈ N such that dfs < 0 and dis ≥ 0 for all
i ∈ B.

g

f

⊕
...
⊕

feasible

g

f

∃r − 	 · · · 	

inconsistent

g

f ⊕ · · · ⊕
⊕
...
⊕

optimal

g ∃s
f −

⊕
...
⊕

dual inconsistent

The following proposition follows from standard calculations.

I Proposition 1. For any LP in dictionary form the following statements hold.
1. If the dictionary is feasible then the associated basic solution is feasible.
2. If the dictionary is optimal, then the associated basic solution is optimal.
3. If the dictionary is inconsistent, then the LP is infeasible.
4. If the dictionary is dual inconsistent, then the dual LP is infeasible. If in addition the LP

is feasible, then the LP is unbounded.

2.2 Pivot Operations
We now show how to transform the dictionary of an LP into a modified dictionary using
elementary matrix operation, preserving the equivalence of the associated linear system. This
operation is called a pivot operation.

Let r ∈ B, s ∈ N and drs 6= 0. Then it is easy to see that one can transform xB∪{f} =
DxN∪{g} to an equivalent system (i.e., with the same solution set) :

xB′∪{f} = D′xN ′∪{g},

where B′ = B \ {r} ∪ {s} (N ′ = N \ {s} ∪ {r}, respectively) is a new (non)basis and

d′ij =

1
drs

if i = s and j = r

− drj

drs
if i = s and j 6= r

dis

drs
if i 6= s and j = r

dij − dis·drj

drs
if i 6= s and j 6= r

(i ∈ B′ ∪ {f} and j ∈ N ′ ∪ {g}). (6)

We call a dictionary terminal if it is optimal, inconsistent or dual inconsistent. There are
several finite pivot algorithms such as the simplex and the criss-cross method that transform
any dictionary into one of the terminal dictionaries [16, 17, 11],[5, Section 4]. This will be
discussed further in Section 4.3.

SoCG’15

320 Combinatorial Redundancy Detection

3 Combinatorial Redundancy

Consider an LP in dictionary form as given in (3). Then xr ≥ 0 is redundant, if the removal
of the constraint does not change the feasible solution set, i.e., if

minimize cTxN
subject to xB = b−AxN

xi ≥ 0, ∀i ∈ E \ {r},
(7)

has the same feasible solution set as (3). Then the variable xr and the index r are called
redundant.

If the constraint xr ≥ 0 is not redundant it is called nonredundant, in that case the
variable xr and the index r are called nonredundant.

It is not hard to see that solving n + d LPs of the same size as (7) suffices to find all
redundancies. Hence running time O((n + d) · LP (n, d)) suffices to find all redundancies,
where LP (n, d) is the time needed to solve an LP of size n × d. Clarkson showed that it
is possible to find all redundancies in time O((n+ d) · LP (s, d) + s · n · d), where s is the
number of nonredundant variables [4]. In case where s � n this is a major improvement.
To be able to execute Clarkson’s algorithm, one needs to assume full dimensionality and
an interior point of the feasible solution set. In the LP setting this can be done by some
preprocessing, including solving a few (O(d)) LPs [9, Section 8].

In the following we focus on the combinatorial aspect of redundancy removal. We give a
combinatorial way, the dictionary oracle, to encode LPs in dictionary form, where we are
basically only given the signs of the entries of the dictionaries. In Section 4 we will show how
the signs suffice to find all redundant and nonredundant constraints of an LP in dictionary
form.

Consider an LP of form (3). For any given basis B, the dictionary oracle returns a matrix

Dσ = Dσ(B) ∈ {+,−, 0}B×N∪{g}, with dσij = sign(dij),∀i ∈ B, j ∈ N ∪ {g}.

Namely, for basis B, the oracle simply returns the matrix containing the signs of D(B),
without the entries of the objective row f .

4 Certificates

We show that the dictionary oracle is enough to detect all redundancies and nonredundancies
of the variables in E. More precisely for every r ∈ E, there exists a basis B such that Dσ(B)
is either a redundancy or nonredundancy certificate for xr. We give a full characterization
of the certificates in Theorems 2 and 4. The number of dictionaries needed to have all
certificates depend on the LP. See [10, Appendix] for examples where constantly many suffice
and where linearly many are needed.

For convenience throughout we make the following assumptions, which can be satisfied
with simple preprocessing.

1. The feasible region of (3) is full dimensional (and hence nonempty).
2. There is no j ∈ N such that dij = 0 for all i ∈ B.

In Section 4.3 we will see that both the criss-cross and the simplex method can be used on
the dictionary oracle for certain objective functions. Testing whether the feasible solution set
is empty can hence be done by solving one linear program in the oracle setting. As mentioned
in the introduction the full-dimensionality assumption is made to avoid dependencies between

K. Fukuda, B. Gärtner, and M. Szedlák 321

the redundant constraints. This can be achieved by some preprocessing on the LP, including
solving a few (O(d)) LPs [9].

It is easy to see that if there exists a column j such that dij = 0 for all i ∈ B, then xj is
nonredundant and we can simply remove the column.

4.1 A Certificate for Redundancy in the Dictionary Oracle
We say a that basis B is r-redundant if r ∈ B and Dσ

r. ≥ 0 i.e. if Dσ(B) is as given in the
figure below.

g

r ⊕ ⊕ · · · ⊕

r-redundant

Since the r-th row of the dictionary represents xr = drg +
∑
j∈N drjxj , xr ≥ 0 is satisfied

as long as xj ≥ 0 for all j ∈ N . Hence xr ≥ 0 is redundant for (3).

I Theorem 2 (Redundancy Certificate). An inequality xr ≥ 0 is redundant for the system
(3) if and only if there exists an r-redundant basis.

Proof. We only have to show the “only if” part.
Suppose xr ≥ 0 is redundant for the system (3). We will show that there exists an

r-redundant basis.
Consider the LP minimizing the variable xr subject to the system (3) without the

constraint xr ≥ 0. Since xr ≥ 0 is redundant for the system (3), the LP is bounded. By
assumption 1 and the fact that every finite pivot algorithm terminates in a terminal dictionary
the LP has an optimal dictionary.

If the initial basis contains r, then we can consider the row associated with r as the
objective row. Apply any finite pivot algorithm to the LP. Otherwise, r is nonbasic. By
assumption 2, one can pivot on the r-th column to make r a basic index. This reduces the
case to the first case.

Let’s consider an optimal basis and optimal dictionary for the LP where xr is the objective
function. Since it is optimal, all entries drj for j ∈ N are nonnegative. Furthermore, drg is
nonnegative as otherwise we would have found a solution that satisfies all constraints except
xr ≥ 0, implying nonredundancy of xr. J

From the proof of Theorem 2 the following strengthening of Theorem 2 immediately
follows.

I Corollary 3. An inequality xr ≥ 0 is redundant for the system (3) if and only if there
exists a feasible r-redundant basis.

g

⊕
...

r ⊕ ⊕ · · · ⊕
...
⊕
feasible r-redundant

SoCG’15

322 Combinatorial Redundancy Detection

4.2 A Certificate for Nonredundancy in the Dictionary Oracle
Similarly as in the redundancy case, we introduce a certificate for nonredundancy using the
dictionary oracle. A basis B is called r-nonredundant if B is feasible, r ∈ N and dtg = 0
implies dtr ≤ 0 for all t ∈ B i.e. Dσ(B) is of the following form.

g r
+
...
+
0 	
...

...
0 	
r-nonredundant

I Theorem 4 (Nonredundancy Certificate). An inequality xr ≥ 0 is nonredundant for the
system (3) if and only if there exists an r-nonredundant basis.

Before proving the theorem, we observe the following.
1. Unlike in the redundancy certificate an r-nonredundant basis needs to be feasible. To

verify the correctness of a nonredundancy certificate we need to check between n and 2n
entries, which is typically much larger than the d+ 1 entries we need for the redundant
case.

2. If the g-column of a feasible basis does not contain any zeros, then all nonbasic variables
are nonredundant. In general when xr ≥ 0 is nonredundant, not necessarily every feasible
basis B with r ∈ N is r-nonredundant. Consider the system:

x3 = x1 + x2

x1, x2, x3 ≥ 0.

Then the basis {3} is not a certificate of nonredundancy of x1, as dσ31 = + in the associated
dictionary. On the other hand, the basis {2} is 1-nonredundant:

g 1 2
3 0 + +

g 1 3
2 0 − +

Proof of Theorem 4. Let (LP) be of form (3) and suppose that xr ≥ 0 is nonredundant.
Then it follows that for ε small enough xr ≥ −ε is nonredundant in

minimize xr
subject to xB = b−AxN

xi ≥ 0, ∀i ∈ B ∪N \ {r}
xr ≥ −ε.

(8)

Note that this LP can easily be transformed to an LP of form (3) by the straight forward
variable substitution x′r = xr + ε.

LP (8) attains its minimum at −ε and hence there exists an optimal dictionary where r
is nonbasic. Let B be such a feasible optimal basis of (LP ε) with r ∈ N . We show that if we
choose ε small enough, B is r-nonredundant in (LP).

Let B1, B2, . . . , Bm be the set of all bases (feasible and infeasible) of (LP), that have r
as a nonbasic variable. Choose ε > 0 such that

ε < min
{
dtg
dtr

∣∣∣∣ t ∈ Bi : dtg, dtr < 0; i = 1, 2, . . . ,m
}
.

K. Fukuda, B. Gärtner, and M. Szedlák 323

If the right hand side (RHS) is undefined, we choose any ε <∞.
Geometrically this means that if for t ∈ Bi xt ≥ 0 is violated in the basic solution w.r.t.

Bi in (LP), then it is still violated in the corresponding basic solution (LP ε). Let D and Dε

be the dictionaries w.r.t. B in (LP) and (LP ε) respectively.
D and Dε only differ in their entries of column g, where

dεtg = dtg − ε · dtr,∀t ∈ B. (9)

We need to show that B is r-nonredundant in (LP). To show that B is a feasible basis
we need that dtg ≥ 0 for all t ∈ B. If dtr ≥ 0, then this is clear. In the case where dtr < 0
it follows that ε ≥ dtg

dtr
and hence dtg ≥ 0 by choice of ε. Hence B is feasible and if dtg = 0,

then by equation (9) it follows that dtr ≤ 0. Therefore B is r-nonredundant.
For the other direction let B be r-nonredundant and D and Dε the corresponding

dictionaries in (LP) and (LP ε), respectively. Choose ε > 0 such that

ε ≤ min
{
dtg
dtr

∣∣∣∣ t ∈ B : dtg, dtr > 0
}
.

If the RHS is undefined, we choose any ε <∞.
We claim that for such an ε, B is still feasible for (LP ε) and hence xr ≥ 0 is nonredundant.

Again the two dictionaries only differ in row g, where

dεtg = dtg − ε · dtr,∀t ∈ B.

In the case where dtg = 0, it follows that dεtg ≥ 0 by r-nonredundancy. If dtg > 0, then

dεtg = dtg − ε · dtr ≥ dtg −min
{
dt′g
dt′r

∣∣∣∣ t′ ∈ B : dt′g, dt′r > 0
}
dt′g
dt′r
· dtr ≥ 0.

J

4.3 Finite Pivot Algorithms for Certificates
In this section we discuss how to design finite pivot algorithms for the dictionary oracle
model. Both the criss-cross method and the simplex method can be used for the dictionary
oracle to find redundancy and nonredundancy certificates. A finite pivot algorithm chooses
in every step a pivot according to some given rule and terminates in an optimal, inconsistent
or dual inconsistent basis in a finite number of steps. Note that both the criss-cross method
and the simplex method may not be polynomial in the worst case, but are known to be fast
in practice [12, 15]. Furthermore there exits no known polynomial algorithm to solve an LP
given by the dictionary oracle. Fukuda conjectured that the randomized criss-cross method
is an expected polynomial time algorithm [8].

By the proof of Theorem 2, in order to find a redundancy certificate in (3) it is enough to
solve (3) with objective function xr. Similarly by the proof of Theorem 4, for a nonredundancy
certificate it is enough to solve the ε-perturbed version (8).

For the criss-cross method, the pivot rule is solely dependent on the signs of the dictionary
entries and not its actual values [7, Chapter 4], [11]. Standard calculations show that the
signs in the ε-perturbed dictionary (for ε > 0 small enough) are completely determined by
the signs of the original dictionary. We recall that the dictionary oracle does not output
the objective row, but since we minimize in direction of xr the signs of the objective row
are completely determined. (If r is basic then the objective row has the same entries as
the r-th row and if r nonbasic then dfr = + and all other entries of the objective row are

SoCG’15

324 Combinatorial Redundancy Detection

zero.) Therefore the dictionary oracle is enough to decide on the pivot steps of the criss-cross
method.

For the simplex method with the smallest index rule, we are given a feasible basis and the
nonbasic variable of the pivot element is chosen by its sign only [3, Part 1 Section 3]. The
basic variable of the pivot is chosen as the smallest index such that feasibility is preserved
after a pivot step. Using the dictionary oracle one can test the at most n possibilities and
choose the appropriate pivot.

5 An Output Sensitive Redundancy Detection Algorithm

Throughout this section, we denote by S′ the set of nonredundant indices and by R′ the set
of redundant indices. Denote by LP (n, d) the time needed to solve an LP. By the discussion
in Section 4.3, for any xr, r ∈ E, we can find a certificate in time LP (n, d). Theorem 5
presents a Clarkson type, output sensitive algorithm with running time O(d · (n+ d) · sd−1 ·
LP (s, d) + d · sd ·LP (n, d)), that for a given LP outputs the set S′, where s = |S′|. Typically
s and d are much smaller than n.

5.1 General Redundancy Detection

Redundancy Detection Algorithm(D,g,f);
begin

R := ∅, S := ∅;
while R ∪ S 6= E do

Pick any r /∈ R ∪ S and test if r is redundant w.r.t. S;
if r redundant w.r.t. S then

R = R ∪ {r};
else /* r nonredundant w.r.t. S */

test if r is redundant w.r.t. E \R;
if r is nonredundant w.r.t. E \R then

S = S ∪ {r};
else /* r redundant w.r.t. E \R */

Find some sets SF ⊆ S′ and RF ⊆ R′ such that SF * S;
R = R ∪RF , S = S ∪ SF ;

endif;
endif;

endwhile;
S∗ := S;
output S∗;

end.

Since in every round at least one variable is added to S or R, the algorithm terminates. The
correctness of the output can easily be verified: If in the outer loop r is added to R, r is
redundant w.r.t. S and hence redundant w.r.t. S∗ ⊇ S. If in the inner loop r is added to S,
r is nonredundant w.r.t. E \R and hence nonredundant w.r.t. S∗ ⊆ E \R.

The main issue is how to find the sets SF and RF efficiently in the last step. This will
be discussed in (the proof of) Lemma 6.

A technical problem is that we cannot test for redundancy in the dictionary oracle when
S does not contain a nonbasis. Therefore as long as this is the case, we fix an arbitrary

K. Fukuda, B. Gärtner, and M. Szedlák 325

nonbasis N and execute the redundancy detection algorithm on S ∪N instead of S. Since
this does not change correctness or the order of the running time, we will omit this detail in
the further discussion.

I Theorem 5. The redundancy detection algorithm outputs S′, the set of nonredundant
constraints in time

R(n, d, s) = O
(
d−1∑
i=0

((n+ d) · si · LP (s, d− i) + si+1 · LP (n, d− i))
)

and consequently in time

R(n, d, s) = O
(
d · (n+ d) · sd−1 · LP (s, d) + d · sd · LP (n, d)

)
.

The following Lemma implies Theorem 5.

I Lemma 6. Let R(n, d, s) be the running time of the redundancy detection algorithm in n
basic variables, d nonbasic variables and s the number of nonredundant variables. Then in
the last step of the inner loop some sets SF ⊆ S′ and RF ⊆ R′, with SF * S, can be found
in time O(R(n, d− 1, s) + LP (n, d)).

Proof of Theorem 5. Termination and correctness of the algorithm are discussed above. The
iteration of the outer loop of the algorithm takes time O(LP (s, d)) and is executed at most
n+ d times. By Lemma 6, the running time of the inner loop is O(R(n, d− 1, s) +LP (n, d))
and since in each round at least one variable is added to S, it is executed at most s times.
Therefore the total running time is given recursively by

R(n, d, s) = O ((n+ d) · LP (s, d) + s · (R(n, d− 1, s) + LP (n, d))) .

The claim follows by solving the recursion and noting that R(n, 0, s) can be set to O(n). J

It remains to prove Lemma 6, for which we first prove some basic results below, using
the dictionary oracle setting.

I Lemma 7. Let D = D(B) be a feasible dictionary of an LP of form (3) and assume
F := {i ∈ B|bi = 0} 6= ∅. We consider the subproblem of the LP denoted LPF (with
dictionary DF ,) that only contains the rows of D indexed by F . Then r ∈ F ∪ N is
nonredundant in LP if and only if it is nonredundant in LPF .

Proof. We only need to show the "if" part. Let r ∈ F ∪N be nonredundant in LPF with
certificate DF . Then there exists a sequence of pivot steps from DF to DF . Using the
same ones on D and obtaining dictionary D, this is a nonredundancy certificate for r, since
dig = dig > 0 for all i ∈ B \ F by the definition of F . J

I Lemma 8. Let D = [b,−A] be the dictionary of an LP of form (3). Then a variable r ∈ E
is nonredundant in the LP given by D if and only if it is nonredundant in the LP given by
D0 = [0, b,−A].

Proof. If D(B) is a redundancy certificate for r for some basis B, then D0(B) is a redundancy
certificate for r as well.

For the converse, let D = D(B) be a nonredundancy certificate for r for some basis B.
For simplicity assume that B = {1, 2, . . . , n}. For now assume that bi > 0 for all i ∈ B and
let Di the dictionary obtained from D0 by pivoting on bi, i = 1, 2, . . . , n. We will show that
at least one of the Di, i ∈ {0, 1, . . . , n} is a nonredundancy certificate for r. Since after
any pivot the first column of Di stays zero, Di is a nonredundancy certificate if and only if
Di
.r ≤ 0. Let Ri = (ri1, ri2, . . . rin)T := Di

.r for i ≥ 1 and R = (r1, r2, . . . , rn)T := D0
.r.

SoCG’15

326 Combinatorial Redundancy Detection

Claim: Assume that rii < 0 for any fixed i and there are at least i−1 additional nonpositive
entries (w.l.o.g. we assume them to be ri1, ri2, . . . , rii−1). If Ri has a positive entry (which
w.l.o.g. we assume to be rii+1), then ri+1

i+1 < 0 and ri+1
1 , ri+1

2 , . . . , ri+1
i are nonpositive.

If D0 is not a certificate for r, then w.l.o.g. r1 > 0 and hence r1
1 = − r1

b1
< 0. Therefore

by induction the lemma follows from the claim.
Assume that ri1, ri2, . . . , rii−1 ≤ 0, rii < 0 and rii+1 > 0. Then we have ri > 0 and

rii+1 = ri+1 −
ribi+1

bi
> 0⇔ ribi+1 < ri+1bi ⇒ ri+1 > 0, (10)

∀j < i : rij = rj −
ribj
bi
≤ 0⇔ rjbi ≤ ribj . (11)

The following calculations show the claim.

ri+1
i+1 = −ri+1

bi+1
< 0⇔ ri+1 > 0 which holds by (10).

ri+1
i = ri −

ri+1bi
bi+1

≤ 0⇔ ribi+1 ≤ ri+1bi which holds by (10).

∀j < i : ri+1
j = rj −

ri+1bj
bj+1

≤ 0⇔ rjbi+1 ≤ ri+1bj ,

and by (10) and (11), rjbi+1 = (rjbi)(ribi+1) · 1
ribi
≤ ri+1bj .

Now suppose that bi = 0 for some i. Then by the nonredundancy certificate ri ≤ 0, and
it is easy to see that rji = ri ≤ 0 for all admissible pivots on bj . Hence we can use the above
construction on the nonzero entries of b. J

Proof of Lemma 6. Suppose that during the execution of the algorithm, r is nonredundant
w.r.t. the current set S, and redundant w.r.t. E \ R, with feasible redundancy certificate
D = [b,−A], which exists by Corollary 3. If b > 0, then all nonbasic indices in N are
nonredundant by Theorem 4. Choose SF = N , RF = ∅. It holds that SF * S, since
otherwise r would be redundant w.r.t. S. The running time of the inner loop in this case is
LP (n, d).

Now if there exists i ∈ B such that bi = 0, define F = {i ∈ B|bi = 0}, LPF and DF as
in Lemma 7. We now recursively find all redundant and nonredundant constraints in the
LPF using Lemma 8 as follows. From LPF we construct another LP, denoted LP− with
one less nonbasic variable, by deleting DF

.g (the column of all zeros), choosing any element
t ∈ N and setting t = g. Finding all redundancies and nonredundancies in LP− takes time
R(|F |, d− 1, s). By Lemma 8 redundancies and nonredundancies are preserved for LPF .

Therefore finding them in LPF takes time R(|F |, d− 1, s) + LP (n, d) ≤ R(n, d− 1, s) +
LP (n, d), where the LP (n, d) term is needed to check separately whether t is redundant.
Choose SF as the set of nonredundant indices of LPF and RF as the set of redundant ones.
By Lemma 7 SF ⊆ S′ and RF ⊆ R′. Since by Lemma 7 r is redundant in LPF , SF * S,
since otherwise r would be redundant w.r.t. S. J

5.2 Strong Redundancy Detection
In this section we show how under certain assumptions the running time of the redundancy
algorithm can be improved. If we allow the output to also contain some weakly redundant
constraints (see definition below), it is basically the same as the running time of Clarkson’s
method.

K. Fukuda, B. Gärtner, and M. Szedlák 327

A redundant variable r is called strongly redundant if for any basic feasible solution x,
xr > 0. In particular for any basic feasible solution, r ∈ B. If r is redundant but not strongly
redundant r is called weakly redundant.

As before let s be the number of nonredundant constraints and letRs, (with |Rs| = rs,) and
Rw, (with |Rw| = rw,) be the set of strongly and weakly redundant constraints respectively.

I Theorem 9. It is possible to find a set S∗ ⊇ S′, S∗ ∩Rs = ∅ in time O((n+ d) · LP (s+
rw, d) + (s+ rw) · LP (n, d)).

The following corollary follows immediately.

I Corollary 10. If there are no weakly redundant constraints, the set S′ of nonredundant
constraints can be found in time O((n+ d) · LP (s, d) + s · LP (n, d)).

The theorem is proven using the following two lemmas, which can be verified with straight
forward variable substitutions.

I Lemma 11. [3, Part 1 Section 3] Let (LP) of form (3), where (LP) is not necessarily full
dimensional. W.l.o.g. B = {1, 2, . . . , n}. For each i ∈ {1, 2, . . . , n} replace the nonnegativity
constraint xi ≥ 0 by xi ≥ −εi, for ε > 0 sufficiently small. Denote the resulting LP by (LP ε).
Let Dσ be the output of the dictionary oracle for an arbitrary dictionary D of (LP). Then
(LP ε) is full dimensional. Furthermore in Dσ,ε, the corresponding output for the ε-perturbed
version, all signs can be determined by Dσ, and Dσ,ε

.g has no zero entries.

I Lemma 12. [3, Part 1 Section 3] Let (LP) and (LP ε) be as in Lemma 11. Then any
nonredundant constraint in (LP) is nonredundant in (LP ε) and any strongly redundant
constraint in (LP) is strongly redundant in (LP ε).

Proof of Theorem 9. Replace the given LP by it’s ε-perturbed version as in Lemma 11 and
run the redundancy removal algorithm, which is possible by the same lemma. By Lemma 12,
S∗ ⊇ S′ and S∗ ∩Rs = ∅. Since by Lemma 11, the entries of the g-column of any dictionary
Dσ,ε are strictly positive the algorithm never runs the recursive step and the running time
follows. J

I Remark. The ε-perturbation makes every feasible LP full dimensional, therefore the full
dimensionality assumption can be dropped for Theorem 9.

5.3 Discussion
In this paper, we presented new combinatorial characterizations of redundancy and nonre-
dundancy in linear inequality systems. We also presented a combinatorial algorithm for
redundancy removal.

In contrast to the Clarkson algorithm our redundancy detection algorithm does not need
the whole LP but only the combinatorial information of the dictionaries. Although in general
the running time is worse, assuming that we have no weak redundancies, our redundancy
removal algorithm basically has the same running time as the Clarkson algorithm. Still, a
natural goal is to improve the runtime of our algorithm in the general case and get it closer to
that of Clarkson’s method. We do have a first output-sensitive algorithm for combinatorial
redundancy detection, but the exponential dependence on the dimension d is prohibitive
already for moderate d.

Our algorithm works in a more general setting of oriented matroids. This means one can
remove redundancies from oriented pseudo hyperplane arrangements efficiently. Furthermore,

SoCG’15

328 Combinatorial Redundancy Detection

the algorithm can be run in parallel. Yet, analyzing the performance may not be easy because
checking redundancy of two distinct variables simultaneously may lead to the discovery of
the same (non)redundant constraint. This is an interesting subject of future research.

References
1 A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler. Oriented Matroids.

Cambridge University Press, 1993.
2 T.M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems.

Discrete & Computational Geometry, 16(4):369–387, 1996.
3 V. Chvatal. Linear Programming. W.H. Freeman, 1983.
4 K.L. Clarkson. More output-sensitive geometric algorithms. In Proc. 35th Annu. IEEE

Sympos. Found. Comput. Sci., pages 695–702, 1994.
5 G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton,

NJ, 1963.
6 J.H. Dulá, R.V. Helgason, and N. Venugopal. An algorithm for identifying the frame of a

pointed finite conical hull. INFORMS J. Comput., 10(3):323–330, 1998.
7 K. Fukuda. Introduction to optimization. http://www.ifor.math.ethz.ch/teaching/

Courses/Fall_2011/intro_fall_11, 2011.
8 K. Fukuda. Walking on the arrangement, not on the feasible region. Efficiency of the

Simplex Method: Quo vadis Hirsch conjecture?, IPAM, UCLA, 2011. presentation slides
available as http://helper.ipam.ucla.edu/publications/sm2011/sm2011_9630.pdf.

9 K. Fukuda. Lecture: Polyhedral computation. http://www-oldurls.inf.ethz.ch/
personal/fukudak/lect/pclect/notes2015/, 2015.

10 K. Fukuda, B. Gärtner, and M. Szedlák. Combinatorial redundancy removal. Preprint:
arXiv:1412.1241, 2014.

11 K. Fukuda and T. Terlaky. Criss-cross methods: A fresh view on pivot algorithms. Math-
ematical Programming, 79:369–395, 1997.

12 V. Klee and G. J. Minty. How good is the simplex algorithm? In O. Shisha, editor,
Inequalities III, pages 159–175. Academic Press, 1972.

13 J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear programming.
Algorithmica, 16:498–516, 1996.

14 Th. Ottmann, S. Schuierer, and S. Soundaralakshmi. Enumerating extreme points in higher
dimensions. In E.W. Mayer and C. Puech, editors, STACS 95: 12th Annual Symposium on
Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 900, pages
562–570. Springer-Verlag, 1995.

15 C. Roos. An exponential example for Terlaky’s pivoting rule for the criss-cross simplex
method. Mathematical Programming, 46:79–84, 1990.

16 T. Terlaky. A finite criss-cross method for the oriented matroids. Journal of Combinatorial
Theory Series B, 42:319–327, 1987.

17 Z. Wang. A finite conformal-elimination free algorithm over oriented matroid programming.
Chinese Annals of Math., 8B:120–125, 1987.

http://www.ifor.math.ethz.ch/teaching/Courses/Fall_2011/intro_fall_11
http://www.ifor.math.ethz.ch/teaching/Courses/Fall_2011/intro_fall_11
http://helper.ipam.ucla.edu/publications/sm2011/sm2011_9630.pdf
http://www-oldurls.inf.ethz.ch/personal/fukudak/lect/pclect/notes2015/
http://www-oldurls.inf.ethz.ch/personal/fukudak/lect/pclect/notes2015/

Effectiveness of Local Search for Geometric
Optimization
Vincent Cohen-Addad and Claire Mathieu∗

Département d’Informatique, UMR CNRS 8548
École Normale Supérieure, Paris, France
{vcohen, cmathieu}@di.ens.fr

Abstract
What is the effectiveness of local search algorithms for geometric problems in the plane? We
prove that local search with neighborhoods of magnitude 1/εc is an approximation scheme for
the following problems in the Euclidean plane: TSP with random inputs, Steiner tree with
random inputs, uniform facility location (with worst case inputs), and bicriteria k-median (also
with worst case inputs). The randomness assumption is necessary for TSP.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling,
F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Local Search, PTAS, Facility Location, k-Median, TSP, Steiner Tree

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.329

1 Introduction

Local search. Local search techniques are popular heuristics for hard combinatorial opti-
mization problems. Given a feasible solution, the algorithm repeatedly performs operations
from the given class, each improving the cost of the current solution, until a solution is reached
for which no operation yields an improvement (a locally optimal solution). Alternatively,
we can view this as a neighborhood search process, where each solution has an associated
neighborhood of adjacent solutions, i.e., those that can be reached with a single operation,
and one moves to a better neighbor until none. Such techniques are easy to implement,
easy to parallelize, and fast and give good results. One advantageous feature of local search
algorithms is their flexibility; they can be applied to arbitrary cost functions, even in the
presence of additional constraints. However, there has long been a gap between worst-case
guarantees and real-world experience. Thus, it is interesting to analyze such algorithms
rigorously and, even in settings where alternative, theoretically optimal polynomial-time
algorithms are known.

Problems studied. We focus on Euclidean problems in the plane (the results extend to small
dimensions), and study clustering and network connectivity type problems: the traveling
salesman problem (TSP), Steiner tree, facility location, and k-median. The traveling salesman
problem is to connect n input points with a tour of minimum total length. The Steiner tree
problem, given n terminal points, is to choose additional Steiner points so as to minimize
the length of the minimum tree spanning terminal and Steiner points. The facility location
problem, given n client points and a facility opening cost f , chooses how many facilities to
open and where to open them to minimize the combination of the cost of opening facilities

∗ Partially supported by ANR RDAM.

© Vincent Cohen-Addad and Claire Mathieu;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 329–344

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.329
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

330 Effectiveness of Local Search for Geometric Optimization

and of the total distance from each client to the nearest open facility. The k-median problem,
given n points and an integer k, chooses where to open k facilities so as to minimize the
total distance from each client to the nearest open facility.

Algorithms. Our goal is to prove, under minimal assumptions, that local search finds
solutions whose cost is within a (1 + ε) factor of optimal. For that goal, local search must do
a little more: instead of modifying the current solution by swapping a single point, edge or
edge pair (depending on the problem) in and out of the solution, our version of local search
swaps up to 1/εc points, edges or edge pairs. This is a standard variation of local search
(particularly for the traveling salesman tour), whereby each iteration is slowed down due to
an increase in the size of the neighborhood, but the local optimum tends to be reached after
fewer iterations and is of higher quality. Moreover, most implementations of local search
do not continue iterating all the way to a local optimum, but stop once the gain obtained
by each additional iteration is essentially negligible. Our algorithm thus has a stopping
condition, when no local exchange could improve the cost by more than a factor of 1− 1/n.
Then, the runtime is polynomial, at most n1/εO(1) .

Results. Our results are as follows.
1. For TSP, we assume that the input points are random uniform in [0, 1]2. Here local

search swaps O(1/εc) edges in the tour. Then local search finds a solution with cost
(1 +O(ε))OPT . The proof is not difficult and serves as a warm-up to the later sections.
The random input assumption is necessary : in the worst-case setting, we give an example
where a locally optimal solution has cost more than (2− ε)OPT .

2. Similarly, for Steiner tree, assuming random uniform input, again local search finds a
solution with cost (1 + ε)OPT .

3. For facility location, we prove the following: consider the version of local search where
local moves consist of adding, deleting or swapping O(1/εc) facilities. Then, even for
worst case inputs, local search finds a solution with cost (1 + ε)OPT . This is the core
result of the paper. We transform the dissection technique from Kolliopoulos and Rao [14]
into a tool for analyzing local search.

4. For k-median, our result is similar, except that local search uses (1 + ε)k medians instead
of k, so that result is bicriteria. This is a technical, variant of the facility location result.

Related work

TSP and Steiner Tree. The TSP problem in the Euclidean plane has a long history, in-
cluding work with local search [9, 17, 18]. Most relevant is the work of Karp [13] giving a
simple construction of a near-optimal tour when points are drawn from a random distribu-
tion. That work has been subsumed by the approximation schemes of Arora [1] (and its
improvements [2, 23]) and of Mitchell [21], using a hierarchical dissection technique. Arora
noted the relation between that technique and local search, observing:

Local-exchange algorithms for the TSP work by identifying possible edge exchanges in
the current tour that lower the cost [. . .]. Our dynamic programming algorithm can be
restated as a slightly more inefficient backtracking [. . .]. Thus it resembles k-OPT for
k = O(c), except that cost-increasing exchanges have to be allowed in order to undo
bad guesses. Maybe it is closer in spirit to more ad-hoc heuristics such as genetic
algorithms, which do allow cost-increasing exchanges.

V. Cohen-Addad and C. Mathieu 331

In fact, even with neighborhoods of size f(ε), even in the Euclidean plane, local search for
TSP can get stuck in a local optimum whose value is far from the global optimum. However,
in the case of random inputs the intuition is correct. Local search algorithms have been
widely studied for TSP, but mostly for either a local neighborhood limited to size of 2 or 3
(the 2-OPT or 3-OPT algorithms), or for the general metric case. Those studies lead to proofs
of constant factor approximations, see [6, 11, 20, 18, 25]. In particular, in [6], it is proved
(by example) that for Euclidean TSP 2-OPT cannot be a constant-factor approximation in
the worst case. For the metric Steiner Tree problem, the best approximation algorithm up to
2010 was a constant factor approximation due to Robins and Zelikovsky and was by local
search [24].

Facility Location and k-Median. For clustering problems – facility location and k-median –
there has also been much prior work. A proof of NP-Hardness of k-median even in the
Euclidean setting is given in [19]. The first theoretical guarantees for local search algorithms
for clustering problems are due to Korupolu et al. [15]. They show that the local search
algorithm which allows swaps of size p is a constant factor approximation for the metric
case of the k-Median and Facility Location problems. However, for k-Median the algorithm
requires a constant-factor blowup in the parameter k. By further refining the analysis,
Charikar et al. [7] improved the approximation ratio. More recently, Arya et al. showed in
[3] that the local search algorithm which allows swaps of size p is a 3 + 2/p-approximation
without any blowup in the number of medians. Nevertheless, no better results were known
for the Euclidean case (See the survey paper [26]). Kolliopoulos and Rao define in [14] a
recursive “adaptive” dissection of a square enclosing the input points. At each dissection
step 1, they cut the longer side of each rectangle produced by the previous step in such a
way that each of the two parts has roughly the same surface area. Our analysis uses a new
version of their dissection algorithm to analyze the local search algoritm.

Other related work. The question of the efficiency of local search for Euclidean problems
was already posed by Mustafa and Ray and Chan and Har-Peled. They proved that local
search (with local neighborhood enabling moves of size Θ(1/ε)) gives approximation schemes
for hitting circular disks in two dimensions with the fewest points, for several other Euclidean
hitting set problems [22], and for independent sets of pseudo-disks [5]. This led to further
PTASs by local search for dominating set in disks graph [10] and for terrain guarding [16].
Those papers rely on the combinatorial properties of bipartite planar graphs. Our analysis
technique is different since we rely on dissections.

One problem related to facility location is k-means. For k-means, Kanungo, Mount,
Netanyahu and Piatko [12] proved that local search gives a constant factor approximation.
Much remains to be understood.

We also note that there exists proofs of constant factor approximation by local search for
the metric capacitated facility location [8].

Plan. The paper is organized as follows: in the next section, as a warm-up we prove the
results on TSP and Steiner tree for random inputs. We then analyze local search for facility
location, proposing a new recursive dissection. We suitably extend lemmas from [14]. The
meat of that section is the proof of Proposition 4.2, which is our main technical contribution.

1 There is also a “sub-rectangle” step not described here.

SoCG’15

332 Effectiveness of Local Search for Geometric Optimization

We end with the k-median result, that requires additional ideas to deal with the cardinality
constraint.

2 Polynomial-Time Local Search Algorithms

Throughout this paper, we denote by L4 L′ the symmetric difference of the sets L and
L′. We present the local search algorithm that is considered in this paper (see Algorithm 1
below).

Algorithm 1 Local Search (ε)
1: Input: A set C of points in the Euclidean plane
2: S ← Arbitrary feasible solution (of cost at most O(2nOPT)).
3: while ∃ S′ s.t. Condition(S′, ε) and cost(S′) ≤ (1− 1/n) cost(S)
4: do
5: S ← S′

6: end while
7: Output: S

Note that the type of S, Condition, f(ε) and Cost(S) are problem dependent. Namely,
for Facility Location, S is a set of points, Condition(S′, ε) is |S 4 S′| = O(1/ε3) and
Cost(S) = |S|+

∑
c∈C

min
s∈S

d(c, s);

for k-Median, S is a set of points, Condition(S′, ε) is |S4S′| = O(1/ε9) and |S′| ≤ (1+3ε)k
and Cost(S) =

∑
c∈C

min
s∈S

d(c, s);

for TSP S is a set of edges, Condition(S′, ε) is |S 4 S′| = O(1/ε2) and “S′ is a tour and
there is no two edges intersecting” (if the initial tour contains intersecting edges we start
by modifying the tour so that no two edges intersect) and Cost(S) =

∑
s∈S

length(s);

for Steiner Tree, S is a set of points, Condition(S′, ε) is |S 4 S′| = O(1/ε2) and |S′| ≤ n
(if the initial set of Steiner vertices is greater than n, we greedily remove Steiner vertices
until the set has size n) and Cost(S) = MST(S ∪ C), where MST(S ∪ C) is the length of
the minimum spanning tree of the points in S ∪ C.

We now focus on the guarantees on the execution time of the algorithms presented in
this paper. The proof of the following Lemma is deferred to the Appendix.

I Lemma 2.1. The number of iterations of Algorithm 1 is polynomial for the Facility
Location, k-Median, Traveling Salesman and Steiner Tree Problems.

I Remark. Up to discretizing the plane and replacing (1− 1/n) by (1−Θ(1/n)), finding S′
takes time O(nO(1/εc)ε−1), for some constant c which depends on the algorithm.

3 Euclidean Traveling Salesman Problem and Steiner Tree

I Theorem 3.1. Consider a set of points chosen independently and uniformly in [0, 1]2.
Algorithm 1 produces:

In the case of the Traveling Salesman problem, a tour whose length is at most (1 +
O(ε))TOPT, where TOPT is the length of the optimal solution.
In the case of the Steiner Tree problem, a tree whose length is at most (1 +O(ε))TOPT,
where TOPT is the length of the optimal solution.

V. Cohen-Addad and C. Mathieu 333

To prove Theorem 3.1, we first prove the following result.

I Theorem 3.2. Consider an arbitrary set of points in [0, 1]2. Algorithm 1 produces:
In the case of the Traveling Salesman problem, a tour whose length is at most (1 +
O(ε2))TOPT +O(ε

√
n), where TOPT is the length of the optimal solution.

In the case of the Steiner Tree problem, a tree whose length is at most (1 +O(ε2))TOPT +
O(ε
√
n), where TOPT is the length of the optimal solution.

We model a random distribution of points in a region P of the plane by a two-dimensional
Poisson distribution Πn(P). The distribution Πn(P) is determined by the following assump-
tions:
1. the numbers of points occurring in two or more disjoint sub-regions are distributed

independently of each other;
2. the expected number of points in a region A is nv(A) where v(A) is the area of A; and
3. as v(A) tends to zero, the probability of more than one point occurring in A tends to

zero faster than v(A).
From these assumptions it follows that Pr[A contains exactly m points] = e−λλm/m!, where
λ = nv(A). The following result is known.

I Theorem 3.3 ([4]). Let P be a set of n points distributed according to a two-dimensional
Poisson distribution Πn(P) in [0, 1]2 and let Tn(P) be the random variable that denotes
the length of the shortest tour through the points in P. There exists a positive constant β
(independent of P) such that Tn(P)/

√
n→ β with probability 1.

Assuming Theorems 3.2 and 3.3, we can prove Theorem 3.1.

Proof of Theorem 3.1. We focus on the Traveling Salesman case. Let L be the tour produced
by Algorithm 1 and TOPT be the optimal tour. By Theorem 3.3, we have that Cost(TOPT) =
O(
√
n) with probability 1. Hence, Theorem 3.2 implies

(1− ε2) · Cost(L) ≤ Cost(TOPT) +O(ε
√
n) = (1 +O(ε)) · Cost(TOPT).

We now consider the random variable STn(P) that denotes the length of the shortest
Steiner Tree through the points in P . Since the length of the optimal Steiner Tree is at least
half the length of the optimal Traveling Salesman Tour, Theorem 3.3 implies that there exists
a constant δ such that STn(P)/

√
n ≥ δ with probability 1. Then, the exact same reasoning

applies to prove the Steiner Tree case. J

The rest of the section is dedicated to the proof of Theorem 3.2. To this aim, we define a
recursive dissection of the unit square according to a set of points P. At each step we cut
the longer side of each rectangle produced by the previous step in such a way that each of
the two parts contains half the points of P that lie in the rectangle. The process stops when
each rectangle contains Θ(1/ε2) points of P. We now consider the final rectangles and we
refer to them as boxes. Let B be the set of boxes.

I Lemma 3.4 ([13]).
∑
b∈B
|∂b| = O(ε

√
|P|), where |∂b| is the perimeter of box b and |P| is

the number of points in P.

For any set of segments S and box b and for each segment s, let sb be the part of s
that lies inside b. We define In(S, b) := {sb | s ∈ S and s has at least one endpoint in b}
and Cross(S, b) := {sb | s ∈ S and s has no endpoint in b}. Moreover we define Out(S, b) :=
{sb′ | s ∈ S and b 6= b′}. Additionally, let S(b) =

∑
s∈S length(sb).

We can now prove the two following structural Lemmas. See Fig. 1 for an illustration of
the proof.

SoCG’15

334 Effectiveness of Local Search for Geometric Optimization

Box b

Tours LTSP and L'Tours TTSP and L'

Figure 1 The solid black segments form the tour LTSP outside b. The dotted line segments are
the tour TTSP inside b. The red segments are the one needed to connect the two tours.

I Lemma 3.5. Let LST be a locally optimal solution to the Steiner Tree problem and let
TST be any Steiner Tree. Let B be a set of boxes produced by a dissection of P ∪ LST ∪ TST.
Using the same notation for a set of segments and their total length, we then have for any
box b ∈ B

(1−O(ε2))LST(b) ≤ In(TST, b) + |∂b|+ LST/n,

where |∂b| is the perimeter of b.

Proof. For each box b, the segments of Cross(LST, b) can be distributed into 6 different
classes according to which side of b they intersect.

We divide further. Since the segments of a class are pairwise disjoint, there is a natural
ordering of the segments inside each class. For each class that contains more than 1/ε2

segments, we partition them into subsets that contain Θ(1/ε2) consecutive segments (in the
natural order of the class). We define a sub-box for each subset of each class as follows. Let
s and s′ be the two extreme segments of the set in the ordering of the class. The sides of the
sub-box associated to this subset consists of s and s′ and the two shortest paths p, p′ along
the sides of b that connects the endpoints of s and s′.

Remark that the sum of the lengths of the sides of all the sub-boxes is at most |∂b| +
O(ε2LST(b)). For each sub-box b0, let L′ be the set of vertices of LST that are outside b0,
plus the set of vertices of TST that are inside b0, plus the set of the intersection points of
the edges of LST and TST with the sides of b0. Thus, L′ ≤ Out(LST, b0) + In(TST, b0) + |∂b0|.
Moreover, we have |LST 4 L′| = O(1/ε2) and the local near-optimality argument applies.
Namely, we obtain that (1− 1/n)LST ≤ L′, and so

−1/n · LST + In(LST, b0) + Cross(LST, b0) ≤ In(TST, b0) + |∂b0|.

We now sum over all sub-boxes of box b and we obtain

LST(b) = In(LST, b0) + Cross(LST, b0) ≤ In(TST, b) + |∂b|+O(ε2LST(b)) + LST/n.

J

I Lemma 3.6. Let LTSP be a locally optimal solution to the Traveling Salesman problem
and let TTSP be any tour. Let B be a set of boxes produced by a dissection of P. Using the
same notation for a set of segments and their total length, we then have for any box b ∈ B

(1−O(ε2))LTSP(b) ≤ In(TTSP, b) + 3|∂b|/2 + LTSP/n,

where |∂b| is the perimeter of b.

V. Cohen-Addad and C. Mathieu 335

Proof. We again further divide the boxes into sub-boxes as we did for Lemma 3.5. For each
sub-box b0, we define a tour L′ obtained by a traversal of the following Eulerian graph. The
graph vertices are P , plus the corners of ∂b0, plus all points of intersection of LTSP and TTSP
with ∂b0. The edges are the segments of Out(LTSP, b0), plus the segments of In(TTSP, b0),
plus ∂b0 (so that the result is connected), plus a minimum length matching of the odd vertices
of ∂b0 (so that the result is Eulerian). Thus, L′ ≤ Out(LTSP, b0) + In(TTSP, b0) + 3|∂b0|/2.

Since the number of edges of L intersecting b0 is O(1/ε2) and the number of edges
in In(TTSP, b0) is O(1/ε2), we have |LTSP 4 L′| = O(1/ε2) and the local near-optimality
argument applies. Namely, we obtain (1− 1/n)LTSP ≤ L′, and so

−1/n · LTSP + In(LTSP, b0) + Cross(LTSP, b0) ≤ In(TTSP, b0) + 3|∂b0|/2.

We now sum over all sub-boxes of box b and we obtain

LTSP(b) = In(LTSP, b) + Cross(LTSP, b) ≤ In(TTSP, b) + 3|∂b|/2 +O(ε2LTSP(b)) + LTSP/n.

J

We can now prove Theorem 3.2.

Proof of Theorem 3.2. We first consider the Traveling Salesman case. Let LTSP be a tour
produced by Algorithm 1 and TTSP be any tour. Lemma 3.6 implies that for any box b, we
have

(1−O(ε2))LTSP(b) ≤ In(TTSP, b) + 3|∂b|/2 + LTSP/n.

Since there are O(ε2n) boxes in total, by summing over all boxes, we obtain

−O(ε2LTSP)+
∑
b∈B

LTSP(b) = (1−O(ε2))LTSP ≤
∑
b∈B

(In(TTSP, b)+3|∂b|/2) ≤ TTSP+3
2

∑
b∈B

|∂b|.

By Lemma 3.4,
∑
b∈B |∂b| = O(ε

√
n) and so,

(1−O(ε2)) · LTSP ≤ TTSP +O(ε
√
n).

To prove the Steiner Tree case, it is sufficient to notice that the total number of vertices
in P ∪ LST ∪ TST is at most 3n. It follows that the total number of boxes is O(ε2n) and by
Lemma 3.4,

∑
b∈B |∂b| = O(ε

√
n). We apply a reasoning similar to the one for the TSP case

to conclude the proof. J

Notice that we do not assume that the points are randomly distributed in the [0, 1]2 for
the proofs of Lemmas 3.5 and 3.6 and Theorem 3.2, thus they hold in the worst-case.
I Remark. One can ask whether it is possible to prove that the local search for TSP is a
PTAS without the random input assumption. However, there exists a set of points such that
there is a local optimum whose length is at least (2− o(ε))Cost(OPT).

4 Clustering Problems

We now tackle the analysis of the local search algorithm for some Clustering problems. Recall
that L and G denote the local and global optima respectively. In the following, for each
facility l of L (resp. G), we denote by VL(l) (resp. VG(l)) the Voronoi cell of l in the Voronoi
diagram induced by L (resp. G). We extend this notation to any subset F of L, namely,
VL(F) denotes the union of the Voronoi cells of the facilities of F induced by L. We define

SoCG’15

336 Effectiveness of Local Search for Geometric Optimization

a recursive randomized decomposition (Algorithm 2) based on L and G (and the Voronoi
cells induced by L). This decomposition produces a tree encoded by the function Children(),
where each node is associated to a region of the Euclidean plane. In the first step of the
dissection, B is the smallest square that contains all the facilities of L∪G. At every recursive
call of the procedure for (Br, Lr, Gr), the algorithm maintains the following invariants:

Br is a rectangle of bounded aspect ratio;
Lr consists of all the facilities of L that are contained in Br;
Gr consists of all the facilities of G that are contained in Br, plus some facilities of G
that belong to VL(Lr).

Algorithm 2 Recursive Adaptive Dissection Algorithm
1: procedure Adaptive_Dissection(B,L,G, VL)
2: if |L|+ |G| ≥ 1/2ε2 then
3: if |L| > 1/2ε then
4: Sub-Rectangle Process:
5: B′ ← minimal rectangle containing all facilities of L in B
6: b′ ← maximum side-length of B′
7: B′+ ← Rectangle centered on B′ and extended by b′/3 in all four directions.
8: B′′ ← B′+ ∩B
9: Cut-Rectangle Process:
10: s′′ ←maximum side-length of B′′
11: `←line segment that is orthogonal to the side of length s′′ and intersects it in

a random position in the middle s′′/3.
12: Cut B′′ into two rectangles B1 and B2 with `.
13:
14: Children(B) ← {B1, B2}
15: L1 ← L ∩B1
16: L2 ← L ∩B2
17: G1 ← G ∩ {g | g ∈ VL(L1) and g /∈ B2}
18: G2 ← G \G1
19: Dissection(B1, L1, G1, VL)
20: Dissection(B2, L2, G2, VL)
21: else
22: Partition Process:
23: Children(B) ← Arbitrary partition of the facilities of L ∪G in parts of size in

[1/2ε2, 1/ε2]
24: end if
25: end if
26: end procedure

Regions. We now introduce the crucial definition of regions of a dissection tree T of solutions
L and G. For any node N of the dissection produced by the Partition Process, we consider
that the associated rectangle is the bounding box of the facilities of LN ∪GN . We assign
labels to the nodes of the tree. The label of a leaf B is |LB | + |GB |. Then we proceed
bottom-up, for each node of the tree, the labels of a node is equal to the sum of the labels
of its two children. Once a node has a label greater than 1/2ε2, we say that this node is a
region node of the tree and set its label to 0. We define the regions according to the region

V. Cohen-Addad and C. Mathieu 337

Region R2

Region R4

Region R3

Region R1

Figure 2 Details of the regions and portals associated to a dissection. The star-shaped points
are the portals associated to Region R1. Regions R2, R3, R4 are the only regions sharing portals
with region R1. All the regions are disjoint.

nodes. For each region node R, the associated region is the rectangle defined by the node
minus the regions of its descendants, namely minus the rectangles of nodes of label 0 that are
descendants of R. See Fig. 2 for an illustration of the regions. In the following, we denote by
R the set of regions.

Portals. Let D be a dissection produced by Algorithm 2. For any region R of D not
produced by the Partition Process, we place p equally-spaced portals along each boundary of
R. We refer to the dissection D along with the associated portals as Dp. See Fig. 2 for more
details on the regions and portals.

Definitions and Notations. For any clustering problem, we denote by C the sets of the
input points. We refer to an input point as a client. A solution to a clustering problem is a
set of facilities S ⊂ R2.

For any solution S and any client c, we denote by cS the distance from client c to the
closest facility of S: cS = min

s∈S
d(c, s). The service cost of a solution S to a clustering problem

is
∑
c∈C

cS . Additionally, for any solution S and client c, we define c(S) as the facility of S

that serves c in solution S, namely c(S) := argmins∈Sd(c, s)
Let B be the smallest rectangle that contains all the clients. Let L and G be two sets

of facilities. We now give the definition of an assignment which is crucial for the main
proposition.

I Definition 4.1. We define an assignment as a function that maps the clients to the facility
of L ∪G.

Let E0 be the assignment that maps each client c to the facility of {c(L), c(G)} that is the
farther, namely, ∀c ∈ C, E0(c) = argmax(dist(c, c(G)), dist(c, c(L))).

We show the following proposition which is the technical center of the proof.

I Proposition 4.2. Let 1/ε2 > 0 be an integer, G and L be two sets of facilities. Let D1/ε2

be a dissection tree with portals. There exists an assignment E that satisfies the following
properties. Let R be a region not produced by the Partition Process. If a client c is such that
c(L) ∈ R and c(G) /∈ R then E(c) is either a portal of R or a facility of L \R.
Moreover,

E[
∑
c∈C
|dist(c, E(c))− dist(c, E0(c))|] =

∑
c∈C
O(ε2 log(1/ε2) · (cG + cL)).

SoCG’15

338 Effectiveness of Local Search for Geometric Optimization

We start by proving some properties of Algorithm 22. The proofs of the following Lemmas
are deferred to the Appendix.

I Definition 4.3 (Aspect Ratio). We define the aspect ratio of a rectangle R that has sides
of lengths r and r′ as max(rr′ ,

r′

r).

I Lemma 4.4. Let R be a rectangle produced by either the Sub-Rectangle or the Cut-Rectangle
process of Algorithm 2. The aspect ratio of R is at most 5.

I Lemma 4.5 ([14]). Let l ∈ L be a facility and v ∈ R2 be any point. Let d be the distance
between v and l. If a cutting line segment s produced by the Sub-Rectangle process during
Algorithm 2 separates v and l for the first time, then length(s) ≤ 5d.

I Lemma 4.6. Let L be a set of facilities. Let v ∈ R2, l ∈ L, d0 = dist(v, l). Suppose that,
in Algorithm 2, v and l are first separated by a line s that is vertical and that l is to the right
of s. Let d1 be the distance from v to the closest open facility located to its left. Then, the
length of s is either: (i) larger than d1/4 or (ii) smaller than 12d0.

I Lemma 4.7 ([14]). Let Event0(d, s) denote the event that an edge e of length d is separated
by a cutting line of side-length s that is produced by Cut-Rectangle.
Then, Pr[Event0(d, s)] ≤ 3d/s.

We now show the proof of the Structure Theorem.

Proof of Proposition 4.2. Let p := 1/ε2. By linearity of expectation, we only need to show
this on a per-client basis.

Let c be a client and R a region containing l := c(L) but not g := c(G). Let B be the
first box of the dissection, in top-down order, that contains l but not g, and let s be the
side of B that is crossed by [l, g]. We have: dist(g, l) ≤ dist(g, c) + dist(c, l) = cG + cL. Up
to a rotation of center g, l is to the north-west of g. Let u,w be the closest facilities of L
respectively to the south and to the east of g.

To construct E, we start with E := E0, and modify E one client at a time so that each
client satisfies the first property, and we bound the corresponding expected cost increase.
The initial cost of E is

∑
c∈C

max(cG, cL). We modify E(c) depending on whether s is vertical

or horizontal and according to the length of s. We first provide an upper bound on the
expected cost increase induced by E(c) for the case where s is vertical. It is easy to see that,
when s is horizontal, applying the same reasoning on w instead of u leads to an identical
cost increase and thus, the total cost increase is at most twice the cost increase computed
for the case where s is vertical.

By Lemma 4.6, the following cases cover all possibilities for the case where s is vertical.
s is vertical and s was produced by Sub-Rectangle. Then we define E(c) as the portal on
s that is closest to [g, l]. By Lemma 4.5, the cost increase is at most O((cG + cL)/p).
s is vertical and s was produced by Cut-Rectangle and its length is at most 12(cL + cG).
Then again we define E(c) as the portal on s that is closest to [g, l]. By assumption,
again the cost increase is at most O((cG + cL)/p).
s is vertical and s was produced by Cut-Rectangle and its length is greater that 12(cL+cG).
Lemma 4.6 implies that s has length greater than du/4. If the length of s is in [du/4, pdu].
Then again we define E(c) as the portal on s that is closest to [g, l]. Let E0 be the event

2 Lemma 4.5 is essentially Lemma 4 from [14] but a careful writing of the details of the calculation reveals
slightly different constants.

V. Cohen-Addad and C. Mathieu 339

that du/4 ≤ |s| ≤ p · du and s is vertical. The expected cost increase in this case is, by
Lemma 4.7, at most∑

du/4≤i≤p·du

s.t i/du is power of 2

pr[|s| = i and E0] · (i/p) ≤ O(log(p)/p · (cG + cL)).

We now turn to the last case. Namely, s was produced by Cut-Rectangle and its length
is greater than or equal to p · du. We define E(c) depending on whether u is in R or not.
This leads to two different sub-cases.

1. u /∈ R. Then we define E(c) := u. The cost is bounded by the cost to go to g

(max(cG, cL)) plus the cost to go from g to u, which is du. Let E1 be the event that
u /∈ R and p · du < |s| and s is vertical. The cost increase is, by Lemma 4.7, at most,∑

i>p·du

s.t i/du is power of 2

pr[|s| = i and E1] · (du) ≤ O((cG + cL)/p).

2. u ∈ R. Let d denotes the first line that separates u from g. Since u is to the right of g,
d is different from s and has size at least du. We have two sub-cases.
First, if d was produced before s in the dissection, then we also have |d| > |s|. Let E2
be the event |d| > |s| > p · du and s is vertical. We now fix d. We assign E(c) to be
the closest portal on R, the expected cost increase conditioned upon d is then at most:∑

p·du<i≤|d|
s.t i/du is power of 2

pr[|s| = i and E2] · (i/p) ≤ O(log(|d|
p · du

) · (cG + cL)/p).

We then remove the conditioning on d. If d was produced by the Sub-Rectangle
process, then p · du < |d| ≤ 5du by Lemma 4.5 and the expected cost increase is at
most O((cG + cL)/p). Otherwise, d was produced by the Cut-Rectangle process, and
then the expected cost increase is at most∑

i>p·du

s.t i/du is power of 2

pr[|d| = i and E2] · O(log(i

p · du
) · (cG + cL)/p) ≤ O((cG + cL)/p).

Second, if d was produced after s in the dissection, namely |s| > |d|. Let E3 denote
the event that |s| > |d| and |s| > p · du and s is vertical. We assign c to the closest
portal located on d, which is at distance at most du + |d|/p from g (and so at distance
at most cG + du + |d|/p from c). We start by fixing s. The expected cost conditioned
upon s is then (no matter how d was produced), at most∑

du<i<|s|
s.t i/du is power of 2

pr[|d| = i and E3] · (du + i/p)

We then remove the conditioning on s, which leads to an expected cost of at most∑
j>p·du

s.t i/du is power of 2

pr[|s| = j and E3]
∑

du<i<j

3(du/i) · (du + i/p) ≤ O((cG + cL)/p)

Thus, the total expected cost increase for E is at most O((log(p)/p) · (cG + cL)).

J

SoCG’15

340 Effectiveness of Local Search for Geometric Optimization

client a

facil. l

facil. s

client b
client c

Region R

client d

Figure 3 Details of the partitioning of the client. The star-shaped points are the facilities of G

and the square-shaped one are the facilities of L. The blue star-shaped and square-shaped belong
to respectively GR and LR. Since client a is closer to facility l than to facility s, it belongs to the
set CL. Moreover, it is served in L by a facility that does not belong to VL(LR), and so, it is not
included in set CR. Client b is closer to facility s than to facility l and so, it is included in set CR

albeit it is served by a facility located on another region in L. Client c is served by a facilities
that belongs to VL(LR) (in L and G) and so, it belongs to CR. Finally, client d does not belong to
VG(GR) and so, is no included in set CR.

Partitioning the Clients and the Facilities. Before going further, we need to define a
partition of the clients and the facilities according to the dissection produced by Algorithm 2.

We partition the clients into two sets CG and CL. CG contains the clients that are closer
to a facility of G than to a facility of L and CL contains the rest of the clients, namely
CG := {c | cL = max(cL, cG)} and CL := {c | cG 6= min(cL, cG)}. Let D be a dissection
produced by Algorithm 2 and the set of its associated regions R. For any region R, we
denote CG(R) the set of clients that are served by GR in G and that do not lay on a region
not in P . Furthermore, we define CL(R) as the set of clients that are served by LR in L
and let CR := VG(GR) \ (CL ∩ (VL(L \ LR)) 3. This set contains the clients served by GR
in G except those that belong to CL and that are served by L \ LR in L. See Fig. 3 for an
illustration. Additionally, we define ∆R := VL(LR) \ VG(GR).

4.1 Facility Location
We now prove the approximation ratio of Algorithm 1 for facility location.

I Theorem 4.8. For Facility Location, Algorithm 1 produces a solution L of cost at most
(1 +O(ε)) · Cost(OPT).

Proof. Let OPT be a globally optimum solution and L be a locally optimum solution. By
Proposition 4.2, for any p > 0 there exists an assignment E for each random dissection Dp
with portals of L ∪OPT, such that for any client c and region R, if c(L) ∈ R and c(G) /∈ R
then c is served by a portal of R or a facility of L \R in E and the expected cost of E is at
most E =

∑
c∈C

max(cL, cG) +O(log(p)/p · (
∑
c∈C

(cG + cL))). This implies that there exists a

dissection Dp for which E has value at most E.
Throughout the proof, we consider this dissection Dp and fix ε := log(p)/p. Let R be the

set of regions associated to Dp. We start by constructing a solution G based on OPT and we
compare the cost of L to the cost of G. The solution G contains all the facilities of OPT plus
some extra facilities. First, it has one facility at each portal of Dp. Moreover, for each region
R that is produced by the Partition Process, we open the facilities of LR. Recall that for

3 This can be rewritten as CR := VG(GR) ∩ (CG ∪ VL(LR)).

V. Cohen-Addad and C. Mathieu 341

each of these regions, |LR| ≤ 1/ε. We keep the same assignment for the clients. Since there
are O(ε2(|G|+ |L|)) regions and that for each region G uses at most 1/ε extra facilities, the
cost of G is at most Cost(OPT)+ O(ε(|OPT|+ |L|)f). We now prove that the cost of L is
at most (1 +O(ε))/(1−O(ε)) times the cost of G, namely

|L| · f +
∑
c∈C

cL ≤ (1 +O(ε)
1−O(ε))(|G| · f +

∑
c∈C

cG).

We focus on the cost of a region R. We show that, by local optimality, for each region R,
replacing solution L by solution G does not lead to a much better cost. We serve the clients of
CR optimally (namely by the facilities that serve them in G) and the clients of LR \GR by the
facilities located on the portals of R or by the facilities of L \LR, depending on whether they
belong to CL or CG and according to the assignment E. Since |LR\GR|+|GR\LR| = O(ε−3),
the locality argument applies. Namely, we have

(|GR| − |LR|)f +
∑

c/∈CR∪∆R

cL +
∑
c∈CR

cG +
∑
c∈∆R

cE ≥ (1− 1/n)(|L|f +
∑
c

cL).

The rest of the proof is mainly computational and can be found in the appendix. J

4.2 k-Median
Let L and OPT be respectively local and global optimal solutions to the k-Median problem.
We start with a technical Lemma which allows us to find “clusters” of regions of the plane
that have roughly the same number of facilities of L and G. See Fig. 4 for an illustration.
The proof of the Lemma is deferred to the Appendix.

I Lemma 4.9 (Balanced Clustering). Let R = {r1, ..., rp} be a collection of disjoint sets.
Each set contains elements of type either L or G and has size at least 1/2ε2 and at most
1/ε2. The total number of elements of type L is (1 + 3ε) times higher than the number of
elements of type G.

There exists a clustering of {r1, ..., rp} in clusters satisfying the following two properties.
For any cluster C,

C contains at most O(1/ε5) elements of R, namely |C| = O(1/ε5);
the difference between the number of elements of L in the sets contained in C and the
number of elements of G in the sets contained in C is at least |C|/ε:∑

ri∈C
|ri ∩ L| −

∑
ri∈C

|ri ∩G| ≥ |C|/ε,

for any 1/ε ∈ N.

I Theorem 4.10. For k-Median, Algorithm 1 for k-Median produces a solution L of cost at
most (1 +O(ε)Cost(OPT) using at most 1 +O(ε))k Medians.

Proof. Remark first that solution L uses (1 +O(ε))k facilities. We now show that the cost
of solution L is at most 1 +O(ε) times higher than the cost of the optimal solution.
Recall that by Proposition 4.2, for any p > 0 there exists an assignment E for each random
dissection Dp of L ∪OPT with portals, such that for any client c and region R, if c(L) ∈ R
and c(OPT) /∈ R then c is served by a portal of R or a facility of L\R in E and the expected
cost of E is at most E =

∑
c∈C

max(cL, cOPT) +O(log(p)/p · (
∑
c∈C

(cOPT + cL))).

SoCG’15

342 Effectiveness of Local Search for Geometric Optimization

Figure 4 The circle-shaped points are the elements of type L and the square-shaped ones the
elements of type G. The black circles mark the sets {r1, . . . , rp} and the red ones show a clustering
of those sets that satisfy the property of Lemma 4.9.

This implies that there exists a dissection Dp for which E has value at most E. Throughout
the proof, we consider such a dissection Dp and fix ε := log(p)/p. Let R be the set of regions
associated to Dp. We prove that the cost of L is at most (1 +O(ε))/(1−O(ε)) times the
cost of S, namely ∑

c∈C
cL ≤

1 +O(ε)
1−O(ε)

∑
c∈C

cOPT.

Let P be a clustering of the regions satisfying the properties of Lemma 4.9 (depending
on L and OPT). We start by constructing a solution G based on OPT and we compare the
cost of L to the cost of G. We construct G in a similar way to in the proof of Theorem 4.8.
Namely, the solution G contains all the facilities of OPT plus some extra facilities: one
facility at each portal of Dp and for each region R that is produced by the Partition Process,
we open the facilities of LR. Recall that for each of these regions, |LR| ≤ 1/ε. We keep
the same assignment for the clients. We now compare the costs of L and G. To do so, we
consider all the regions of each cluster of the clustering P at the same time. Namely for each
cluster R, L uses at least as many facilities as G. Therefore |SP \ L|+ |L \ SP | = O(1/ε9)
and the locality argument applies. The rest of the proof is similar to the proof of 4.8 and is
mainly computational and can be found in the Appendix. J

Higher Dimensions. Previous results generalize to any dimension d. It leads to algorithms
that have exponential dependency in d. More precisely, for any dimension d, more portals are
needed to maintain the expected cost increase for the assignment E provided by the Structure
Theorem. Each of the 2d faces of each region has to count pd−1 portals. Proposition 4.2
generalizes to any dimension d with O(dpd−1) portals instead of p. For Facility Location,
Condition(S′, ε) has to be adapted to |S \ S| + |S \ S| = O(d/εd+1). Thus, Theorem 4.8
still applies to show that the adapted Algorithm provides a (1 + O(ε)) approximation.
For the k-Median problem, Condition(S′, ε) has to be adapted to |S′| ≤ (1 + 3ε)k and
|S \ S′|+ |S′ \ S| = O(d/ε7+d). Theorem 4.10 still applies to prove the approximation ratio
of the adapted Algorithm.

References

1 S. Arora. Polynomial time approximation schemes for euclidean TSP and other geometric
problems. In Symp. on Foundations of Computer Science, FOCS’96, Burlington, Vermont,
USA, 14-16 October, 1996, pages 2–11, 1996.

2 S. Arora. Nearly linear time approximation schemes for euclidean TSP and other geometric
problems. In Symp. on Foundations of Computer Science, FOCS’97, Miami Beach, Florida,
USA, October 19-22, 1997, pages 554–563, 1997.

V. Cohen-Addad and C. Mathieu 343

3 V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search
heuristics for k-median and facility location problems. SIAM J. Comput., 33(3):544–562,
2004.

4 J. Beardwood, J. H. Halton, and J. M. Hammersley. The shortest path through many
points. Mathematical Proc. of the Cambridge Philosophical Society, 55:299–327, 1959.

5 T. M. Chan and S. Har-Peled. Approximation algorithms for maximum independent set of
pseudo-disks. In Proc. of the Symp. on Computational Geometry, SCG’09, pages 333–340.
ACM, 2009.

6 B. Chandra, H. J. Karloff, and C. A. Tovey. New results on the old k-opt algorithm for
the TSP. In Proc. of the ACM-SIAM Symp. on Discrete Algorithms. 23-25 January 1994,
Arlington, Virginia., pages 150–159, 1994.

7 M. Charikar and S. Guha. Improved combinatorial algorithms for facility location problems.
SIAM J. Comput., 34(4):803–824, 2005.

8 F. A. Chudak and D. P. Williamson. Improved approximation algorithms for capacitated
facility location problems. Math. Program., 102(2):207–222, March 2005.

9 G. A. Croes. A method for solving traveling salesman problems. Operations Research,
6(6):791–812, 1958.

10 M. Gibson and I. A. Pirwani. Algorithms for dominating set in disk graphs: Breaking the
logn barrier – (extended abstract). In Algorithms – ESA 2010, European Symp., Liverpool,
UK, September 6-8, 2010. Proc., Part I, pages 243–254, 2010.

11 D. S Johnson and L. A McGeoch. The traveling salesman problem : A case study in local
optimization. Local Search in Combinatorial Optimization, 1:215–310, 1997.

12 T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. A
local search approximation algorithm for k-means clustering. Comput. Geom., 28(2-3):89–
112, 2004.

13 R. M. Karp. Probabilistic analysis of partitioning algorithms for the traveling-salesman
problem in the plane. Mathematics of Operations Research, 2(3):209–224, 1977.

14 S. G. Kolliopoulos and S. Rao. A nearly linear-time approximation scheme for the euclidean
k-median problem. SIAM J. Comput., 37(3):757–782, 2007.

15 M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local search heuristic for
facility location problems. J. Algorithms, 37(1):146–188, 2000.

16 E. Krohn, M. Gibson, G. Kanade, and K. R. Varadarajan. Guarding terrains via local
search. JoCG, 5(1):168–178, 2014.

17 S. Lin. Computer solutions of the traveling salesman problem. Bell System Technical
Journal, The, 44(10):2245–2269, 1965.

18 S. Lin and B. W Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations research, 21(2):498–516, 1973.

19 N. Megiddo and K. J. Supowit. On the complexity of some common geometric location
problems. SIAM J. Comput., 13(1):182–196, 1984.

20 O. Mersmann, B. Bischl, J. Bossek, H. Trautmann, M. Wagner, and F. Neumann. Local
search and the traveling salesman problem: A feature-based characterization of problem
hardness. In Learning and Intelligent Optimization – 6th International Conference, LION
6, Paris, France, January 16-20, 2012, Revised Selected Papers, pages 115–129, 2012.

21 J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric tsp, k-mst, and related problems.
SIAM J. Comput., 28(4):1298–1309, 1999.

22 N. H. Mustafa and S. Ray. PTAS for geometric hitting set problems via local search. In
Proc. of the ACM Symp. on Computational Geometry, Aarhus, Denmark, pages 17–22,
2009.

SoCG’15

344 Effectiveness of Local Search for Geometric Optimization

23 S. Rao and W. D. Smith. Approximating geometrical graphs via “spanners” and “banyans”.
In Proc. of the ACM Symp. on the Theory of Computing, Dallas, Texas, USA, May 23-26,
1998, pages 540–550, 1998.

24 G. Robins and A. Zelikovsky. Improved steiner tree approximation in graphs. In Proc. of
the ACM-SIAM Symp. on Discrete Algorithms, SODA, pages 770–779. SIAM, 2000.

25 D. J. Rosenkrantz, R. Edwin Stearns, and P. M. Lewis II. An analysis of several heuristics
for the traveling salesman problem. SIAM J. Comput., 6(3):563–581, 1977.

26 J. Vygen. Approximation algorithms for facility location problems. Technical Report 05950,
Research Institute for Discrete Mathematics, University of Bonn, 2005.

On the Shadow Simplex Method for Curved
Polyhedra
Daniel Dadush1 and Nicolai Hähnle2

1 Centrum Wiskunde & Informatica, The Netherlands
dadush@cwi.nl

2 Universität Bonn, Germany
haehnle@or.uni-bonn.de

Abstract
We study the simplex method over polyhedra satisfying certain “discrete curvature” lower bounds,
which enforce that the boundary always meets vertices at sharp angles. Motivated by linear
programs with totally unimodular constraint matrices, recent results of Bonifas et al. (SOCG
2012), Brunsch and Röglin (ICALP 2013), and Eisenbrand and Vempala (2014) have improved
our understanding of such polyhedra.

We develop a new type of dual analysis of the shadow simplex method which provides a clean
and powerful tool for improving all previously mentioned results. Our methods are inspired by
the recent work of Bonifas and the first named author [8], who analyzed a remarkably similar
process as part of an algorithm for the Closest Vector Problem with Preprocessing.

For our first result, we obtain a constructive diameter bound of O(n
2

δ ln n
δ) for n-dimensional

polyhedra with curvature parameter δ ∈ (0, 1]. For the class of polyhedra arising from totally
unimodular constraint matrices, this implies a bound of O(n3 lnn). For linear optimization,
given an initial feasible vertex, we show that an optimal vertex can be found using an expected
O(n

3

δ ln n
δ) simplex pivots, each requiring O(mn) time to compute. An initial feasible solution

can be found using O(mn
3

δ ln n
δ) pivot steps.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases Optimization, Linear Programming, Simplex Method, Diameter of Poly-
hedra

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.345

1 Introduction

The simplex method is one of the most important methods for solving linear programs (LPs),
that is, optimization problems of the form max {〈c,x〉 : x ∈ P} where P is a polyhedron
defined by linear constraints. Starting from an initial vertex v, a simplex algorithm provides
a rule for moving from vertex to vertex along edges of the graph or 1-skeleton of P until an
optimal vertex w (or an unbounded ray) is found.

A long standing open question is whether there exists a polynomial-time simplex algorithm
for LPs. The first obstacle in proving the existence (or non-existence) of such a method is
the following fundamental question:

I Question 1. Given any two vertices v,w of a polyhedron P , what is the best possible bound
on the length of the shortest path between them, as a function of the dimension n and the
number of constraints m?

© Daniel Dadush and Nicolai Hähnle;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 345–359

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.345
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

346 On the Shadow Simplex Method for Curved Polyhedra

The polynomial Hirsch conjecture posits that the diameter of the graph of a polyhedron
is bounded by a polynomial in m and n. The best known general upper bounds are however
much larger. Barnette [3] and Larman [15] proved a bound of O(2nm), and Todd [20]
recently proved a bound of (m− n)logn, slightly improving an earlier bound of Kalai and
Kleitman [13, 14]. The original Hirsch conjecture, which posited a bound of m − n, was
recently disproved for polytopes (i.e. bounded polyhedra) by Santos [18, 16], who gave a
lower bound of (1 + ε)m (only slightly violating the conjectured bound).

Given the difficulty of the general question, much research has been aimed at bounding
the diameter of special classes of polyhedra. For example, polynomial bounds have been
given for 0/1 polytopes [17], transportation polytopes [2, 6, 10], and flag polytopes [1].

Another important class, which has recently received much attention and is directly
related to this work, are polyhedra whose constraint matrices are “well-conditioned”. Dyer
and Frieze [11] showed that the diameter of totally unimodular polyhedra – i.e. having integer
constraint matrices with all subdeterminants in {0,±1} – is bounded by O(n16m3(lognm)3).
Their work also contains a polynomial time randomized simplex algorithm that solves linear
programs over totally unimodular polyhedra.

The diameter bound of Dyer and Frieze was both generalized and improved in the work
of Bonifas et al. [4]. They showed that polyhedra with integer constraint matrices and all
subdeterminants bounded by ∆ have diameter O(∆2n4 log(n∆)) if they are unbounded and
O(∆2n3.5 log(n∆)) if they are bounded. Their proof used certain expansion properties of the
polyhedral graph and was non-constructive.

In an attempt to make the bound of [4] constructive, Brunsch and Röglin [7] showed
that given any two vertices v,w on such a polyhedron P , a path between them of length
O(m∆4n4) (note the dependence on m) can be constructed using the shadow simplex method.
In fact, they give a more general bound based on the so-called δ-distance property of the
constraint matrix, which measures how “well spread” the rows of the constraint matrix are1.
Using this parameter they give a bound of O(mn2/δ2) on the length of the constructed path,
and recover the previous bound by the relationship δ ≥ 1/(n∆2).

Most recently, Eisenbrand and Vempala [12] provided a different approach to making the
Bonifas et al. [4] result constructive, which more closely resembles the random walk approach
of Dyer and Frieze and also extends to optimization. When the constraint matrix satisfies the
δ-distance property, they show that given an initial vertex and objective, an optimal vertex
can be computed using poly(n, 1/δ) random walk steps (no dependence on m). Furthermore,
an initial feasible vertex can be computed using m calls to their optimization algorithm over
subsets of the original constraints.

2 Results

Building and improving upon the works of Bonifas et al. [4], Brunsch and Röglin [7], and
Vempala and Eisenbrand [12], we give an improved (constructive) diameter bound and
simplex algorithm for polyhedra satisfying the δ-distance and other related properties. We
also make improvements in the treatment of unbounded polyhedra and degeneracy. All our
results are based on a new variant and analysis of the shadow simplex method.

We now introduce the “discrete curvature measures” we use along with the corresponding
results. We list these measures in order of increasing strength. In the next section, we

1 We note that this measure is already implicit in [4] and that the diameter bound factors through it.

D. Dadush and N. Hähnle 347

shall explain our variant of the shadow simplex method and compare it with previous
implementations.

Let P = {x ∈ Rn : Ax ≤ b}, A ∈ Rm×n, b ∈ Rn be a pointed polyhedron (A has
full column rank ⇔ P has vertices). For a vertex v of P , the normal cone at v is
Nv =

{∑
i∈Iv

λiai : λi ≥ 0, i ∈ Iv
}
, where Iv = {i ∈ [m] : 〈ai,v〉 = bi} is the set of tight

constraints. Equivalently, Nv is the set of all linear objective functions whose maximum over
P is attained at v. Nv is simplicial (non-degenerate) if it is generated by a basis of A, that
is, if exactly n linearly independent constraints of P are tight at v. The normal fan of P
is the collection of all the vertex normal cones, and the support of the normal fan N(P) is
their union. A polyhedron is simple (or non-degenerate) if all its vertex normal cones are
simplicial.

I Definition 2 (τ -wide Polyhedra). We say that a cone C is τ -wide if it contains a Euclidean
ball of radius τ centered on the unit sphere. We define a polyhedron P to have a τ -wide
normal fan (or simply P to be τ -wide) if every vertex normal cone is τ -wide.

a1

a2

a3

Nv
τ

Roughly speaking, having a τ -wide normal fan enforces that facets always intersect at
“sharp angles” (i.e. angle bounded away from π). In particular, for any vertex v of P , the
angle between any two rays emanating from v and (non-trivially) passing through P is at
most π − 2τ . Hence one can interpret this condition as a discrete form of curvature for
polyhedra. We now state our diameter bound for τ -wide polyhedra.

I Theorem 3 (Diameter Bound, see Theorem 11). Let P ⊆ Rn be an n-dimensional pointed
polyhedron having a τ -wide normal fan. Then the graph of P has diameter bounded by
8n/τ(1 + ln(1/τ)). Furthermore, a path of this expected length can be constructed via the
shadow simplex method.

Restricting to n-dimensional polyhedra with subdeterminants bounded by ∆, using the
relation τ ≥ 1/(n∆)2 (for a proof, see the full version of the paper) we achieve a bound of
O(n3∆2 ln(n∆)), improving on the existential bounds of Bonifas et al. [4]. When A is totally
unimodular, the bound becomes O(n3 lnn). In contrast to [4], we note that our bound (and
proof) is the same for polytopes and unbounded polyhedra.

While our bound is constructive – we follow a shadow simplex path – it is in general
only efficiently implementable when the polyhedron is simple. In the presence of degeneracy,
we note that computing a single edge of the path is essentially as hard as solving linear
programming. Furthermore, standard techniques for removing degeneracy, such as the
perturbation or lexicographic method, may unfortunately introduce a large number of extra
simplex pivots.

Interestingly, our diameter bound can take advantage of degeneracy in situations where
it makes the normal cones wider. While degeneracy does not occur for “generic polyhedra”,
it is very common for combinatorial polytopes. Furthermore, it can occur in ways that are

SoCG’15

348 On the Shadow Simplex Method for Curved Polyhedra

useful to our diameter bound. For example, we remark that using degeneracy one can prove
that the normal fan of the perfect matching polytope is Ω(1/

√
|E|)-wide [9].

To solve linear optimization problems via the shadow simplex method, we will need more
than a wide normal fan. In fact, we will have different requirements for the two phases of
the simplex algorithm: Phase 1, which finds an initial feasible vertex, will require more than
Phase 2, which finds an optimal vertex with respect to the objective starting from a feasible
vertex.

I Definition 4 (δ-distance property). A set of linearly independent vectors v1, . . . ,vk ∈ Rn
satisfy the δ-distance property if for every i ∈ [k], the vector vi is at Euclidean distance at
least δ‖vi‖ from the span of {vj : j ∈ [k] \ {i}}.

For a polyhedron P = {x ∈ Rn : Ax ≤ b}, we define P to satisfy the local δ-distance
property if every feasible basis of A, i.e. the rows of A defining a vertex of P , satisfies the
δ-distance property.

We say that a set of vectors v1, . . . ,vm ∈ Rn satisfy the global δ-distance property if
every linearly independent subset satisfies the δ-distance property. We say that a matrix
A ∈ Rm×n satisfies the global δ-distance property if its row vectors do.

I Lemma 5. Let v1, . . . ,vn ∈ Sn−1 be a basis satisfying the δ-distance property. Then
cone(v1, . . . ,vn) is δ/n-wide.

Proof. See full paper. J

The definitions differ in strength mainly based on the sets of bases to which they apply.
The local δ-distance property is stronger than the τ -wide property for τ = δ/n, because it
implies that all triangulations of the normal fan are τ -wide.2 The global property is stronger
than the local property since it applies also to infeasible bases, which allows one to control
the geometry of polyhedra related to P , such as polyhedra obtained by removing a subset of
constraints, which will be needed for Phase 1.

We now state our main result for Phase 2 simplex.

I Theorem 6 (Optimization via Shadow Simplex, see Theorem 20). Let P = {x ∈ Rn : Ax ≤ b}
be an n-dimensional polytope with m constraints satisfying the local δ-distance property.
Then, given an objective c ∈ Rn and a vertex v of P , an optimal vertex can be computed
using an expected O((n3/δ) ln(n/δ)) shadow simplex pivots, where each pivot requires O(mn)
arithmetic operations.

Our Phase 2 algorithm above is faster than the algorithms in [7, 12] and relies on a
weaker assumption than [12]. The v,w path finding algorithm of Brunsch and Röglin [7] is
in fact a special case of the above, since we can choose c to be any objective maximized at
w. Comparing to the Phase 2 algorithm of Eisenbrand and Vempala [12], we require only
the local δ-distance property instead of the global one. Whether one could rely only on the
local property was left as open question in [12], which we resolve in the affirmative.

A small technical caveat is that as stated, the algorithm requires knowledge of δ. Since δ ≤
1, we can always guess a number δ′ ≤ δ ≤ 2δ′ by trying O(ln 1/δ) different values, incurring
an O(ln 1/δ) factor increase in running time (overestimating δ only affects correctness, not
runtime). For simplicity, we shall henceforth assume that δ is known.

2 However, the τ -wide property is weaker even when all normal cones are simplicial: a 2-dimensional cone
of inner angle close to π is almost 1-wide, but satisfies δ-distance only for δ close to 0.

D. Dadush and N. Hähnle 349

A more important caveat is that the above algorithm requires that P be a polytope
(i.e. bounded). This restriction is due to the fact that we can only generate the randomness
required for our bounds efficiently (that is, without solving a general LP) when the support
of the normal fan equals Rn.

The unbounded setting can be reduced to the bounded setting, in the standard way, by
adding one or more constraints to make P bounded while not cutting off any of its vertices.

I Definition 7. Let P = {x ∈ Rn : Ax ≤ b} be a pointed polyhedron. Then a polytope
P ′ = {x ∈ Rn : Ax ≤ b, A′x ≤ b′} is LP equivalent to P if every vertex v ∈ P satisfies
〈a′i,v〉 < b′i for all i; in particular, v is a vertex of P ′.

Given an optimal vertex v of P ′ as above, one can easily check whether v is a vertex of
P . If it is not, the original LP must be unbounded. In general, however, adding constraints
to P happens at the expense of a degraded δ. In particular, the standard reduction of adding
a large box constraint can degrade δ arbitrarily, hence the constraints must be added with
care. We state the guarantees we can achieve below.

I Lemma 8 (Removing Unboundedness, see full paper). Let P = {x ∈ Rn : Ax ≤ b} be an
n-dimensional pointed polyhedron with m constraints. Let a1, . . . ,am denote the rows of A
and bmax = maxi∈[m] |bi|/‖ai‖.
1. Assume that P satisfies the local δ-distance property and that I ⊆ [m], |I| = n, indexes

the rows of a feasible basis. Letting w = −1/n
∑
i∈I ai/‖ai‖, we have that

P ′ = {x ∈ Rn : Ax ≤ b, 〈w,x〉 ≤ nbmax/δ} ,

is a polytope that is LP equivalent to P and satisfies the local δ2/(2n)-distance property.
2. Assume that A satisfies the global δ-distance property. Then

P ′ = {x ∈ Rn : −n‖ai‖bmax/δ − 1 ≤ 〈ai,x〉 ≤ bi, ∀i ∈ [m]} ,

is a polytope that is LP equivalent to P and satisfies the global δ-distance property.

Finally, we use standard techniques for reducing feasibility to Phase 2 type optimization.
As this generally requires pivoting over infeasible bases, we will require global instead of
local properties here. Interestingly, for LPs with bounded subdeterminants, we get that the
number of simplex pivots is completely independent of the number of constraints.

I Theorem 9 (Feasibility via Shadow Simplex, see full paper). Let P = {x ∈ Rn : Ax ≤ b}
be an n-dimensional polyhedron whose constraint matrix has full column rank and satisfies
the global δ-distance property. Then a feasible solution to P can be computed using an
expected O((mn3/δ) ln(n/δ)) shadow simplex pivots. Furthermore, if A is integral and
has subdeterminants bounded by ∆, a feasible solution can be computed using an expected
O(n5∆2 ln(n∆))) shadow simplex pivots.

Shadow Simplex Method

Our main technical contribution is a new analysis and variant of the shadow simplex method,
which utilizes (rather unexpectedly) an approach developed in [8] for navigating over the
Voronoi graph of a Euclidean lattice (see related work section).

The shadow simplex has been at the heart of many theoretical attempts to explain the
surprising efficiency of the simplex method in practice. It has been shown to give polynomial
bounds for the simplex method over random and smoothed linear programs [5, 19, 21]. As

SoCG’15

350 On the Shadow Simplex Method for Curved Polyhedra

mentioned above, Brunsch and Röglin [7] already showed that it yields short paths for the
polyhedra we consider here.

At a high level, the shadow simplex over a polyhedron P works as follows. Given an
initial objective function c, a vertex v of P which maximizes this objective, and a target
objective function d, the shadow simplex interpolates between the objective functions c and
d and performs a pivot step whenever the optimal vertex changes (hence the alternative
name parametric simplex method referring to the parameterization c(λ) = (1− λ)c + λd of
the objective function, where λ grows from 0 to 1 over the course of the algorithm).

Traditionally, this method is understood and analyzed with a primal interpretation: The
polyhedron P is orthogonally projected onto the 2-dimensional plane spanned by c and d
(hence the term “shadow”), and the algorithm is understood in terms of the boundary of
the projection P ′. The optimal vertices for c and d project to the boundary of P ′, and as
long as c and d are in sufficiently general position, edges of P ′ lift to edges of P so that the
boundary can be followed efficiently by an algorithm that performs simplex pivots in the
original space. The number of pivot steps is then typically bounded in terms of the lengths
of edges or in terms of angles between edges of P ′.

Our analysis is substantially different and based on a dual perspective: The shadow
simplex method follows the line segment [c,d] through the normal fan of P , pivoting whenever
the segment crosses into a different n-dimensional normal cone. We express the number of
crossings, that is, the number of intersections between [c,d] and the facets of the normal fan
of P , in terms of certain surface area measures of translates of the normal fan. The bounds
we obtain on the number of intersections are stated below.

I Theorem 10 (Intersection bounds, see Lemmas 22 and 25). Let T = (C1, . . . , Ck) be a
partition of a cone Σ into polyhedral τ -wide cones. Let c,d ∈ Rn and let X ∈ Rn be
exponentially distributed on Σ (see Section 3.1).
1. The expected number of facets hit by the shifted line segment [c +X,d +X] satisfies

E[|∂T ∩ [c +X,d +X]|] ≤ ‖d− c‖
τ

.

2. Let α ∈ (0, 1). Then

E[|∂T ∩ [c + αX, c +X]|] ≤ 2n
τ

ln 1
α

.

To achieve the above bounds, the main idea is to relate the probability that the above
random line segments pass through a normal cone to the probability that the associated
perturbation vector lands in the cone (or some joint shift). Under the τ -wideness condition,
we can in fact uniformly upper bound these proportionality factors. Since the jointly shifted
normal cones are all disjoint, we can deduce the desired bounds from the fact that the sum
of their measures is ≤ 1.

We compose these bounds in a way that also departs from the classic template by using
three consecutive shadow simplex paths instead of just one. For given vertices v and w
we first pick objectives c and d that are “deep inside” the respective normal cones. From
here, we sample an exponentially distributed perturbation vector X and traverse three paths
through the normal fan in sequence:

c (a)−→ c +X
(b)−→ d +X

(c)−→ d

The perturbation X will be quite large and hence almost always large enough to push c and
d away from their normal cones. Indeed, the high level intuition behind our path is that in

D. Dadush and N. Hähnle 351

order to avoid unusually long paths from c to d, we first travel to a “random intermediate
location”.

We note that in phases (a) and (c), randomness is only used to perturb one of the
objectives. As far as we are aware, this paper provides the first successful analysis of the
shadow simplex path in this setting. Furthermore, this extension is crucial to achieving our
improved diameter bound. Previous algorithms were constrained to random perturbations
that kept c and d inside their respective normal cones, making the amount of randomness
they could take advantage of much smaller.

We now use the bounds from Theorem 10 to derive the diameter bound.

I Theorem 11. Let P ⊆ Rn be a pointed full dimensional polyhedron with τ -wide normal
cones. Then P has diameter bounded by 8n

τ (1 + ln 1/τ).

Proof. Let v1,v2 be vertices of P with normal cones Nv1 , Nv2 . Let c1, c2 ∈ Sn−1 satisfy
ci + τBn2 ⊆ Nvi

, i ∈ {1, 2}. Let Σ = N(P) denote the support of the normal fan of P , and
let X be exponentially distributed over Σ.

We will construct a path from v1 to v2 by following the sequence of vertices optimizing
the objectives in the segments [sc1, sc1 +X], [sc1 +X, sc2 +X], [sc2 +X, sc2], where s > 0 is
a scalar to be chosen later. We will condition on the event that ‖X‖ ≤ 2n. Since E[‖X‖] = n

(see Lemma 13), by Markov’s inequality this occurs with probablity at least 1/2. Under this
event, by τ -wideness, we will not pivot in the segments [sc1, sc1 + sτ

2nX] and [sc2 + sτ
2nX, sc2].

Using Theorem 10, the number of pivots along the segments [sc1 + sτ
2nX, sc1 +X], [sc1 +

X, sc2 +X], [sc2 +X, sc2 + sτ
2nX], is bounded by(

s‖c2−c1‖
τ + 4n

τ ln
(2n
sτ

))
Pr[‖X‖ ≤ 2n] ≤ 2

(
s‖c2 − c1‖

τ
+ 4n

τ
ln
(

2n
sτ

))
.

Setting s = 4n
‖c2−c1‖ , the above bound becomes

8n
τ

(
1 + ln

(
‖c2 − c1‖

2τ

))
≤ 8n

τ

(
1 + ln 1

τ

)
, as needed. J

Related Work

In a surprising connection, we borrow techniques developed in a recent work of Bonifas and
the first named author [8] for a totally different purpose, namely, for solving the Closest
Vector Problem with Preprocessing on Euclidean lattices. In [8], a 3-step “perturbed” line
path was analyzed to navigate over the Voronoi graph of the lattice, where lattice points are
connected if their associated Voronoi cells touch in a facet.

In the current work, we show a strikingly close analogy between analyzing the number of
intersections of a random straight line path with a Voronoi tiling of space and the intersections
of a shadow simplex path with the normal fan of a polyhedron. This unexpected connection
makes us hopeful that these ideas may have even broader applicability.

3 Notation and Definitions

For vectors x,y ∈ Rn, we let 〈x,y〉 =
∑n
i=1 xiyi denote their inner product. We let

‖x‖ =
√
〈x,x〉 denote the Euclidean norm, Bn2 = {x ∈ Rn : ‖x‖ ≤ 1} the unit ball, and

Sn−1 = ∂Bn2 the unit sphere. We denote the linear span of a set A ⊆ Rn by span(A).
We use the notation I[x ∈ A] for the indicator of A, that is I[x ∈ A] is 1 if x ∈ A and

SoCG’15

352 On the Shadow Simplex Method for Curved Polyhedra

0 otherwise. For a set of scalars S ⊆ R, we write SA = {sa : s ∈ S,a ∈ A}. For two
sets A,B ⊆ Rn, we define their Minkowski sum A + B = {a + b : a ∈ A,b ∈ B}. We let
d(A,B) = inf {‖x− y‖ : x ∈ A,y ∈ B}, denote the Euclidean distance between A and B.
For vectors a,b ∈ Rn we write [a,b] for the closed line segment and [a,b) for the half-open
line segment from a to b.

I Definition 12 (Cone). A cone Σ ⊆ Rn satisfies the following three properties:

0 ∈ Σ.
x + y ∈ Σ if x and y are in Σ.
λx ∈ Σ if x ∈ Σ and λ ≥ 0.

For vectors y1, . . . ,yk ∈ Rn, we define the closed cone they generate as

cone(y1, . . . ,yk) =
{

m∑
i=1

λiyi : λi ≥ 0, i ∈ [m]
}
.

A cone is polyhedral if it can be generated by a finite number of vectors, and is simplicial if
the generators are linearly independent. By convention, we let cone(∅) = 0. A simplicial
cone has the δ-distance property if its extreme rays satisfy the δ-distance property.3

The faces of a convex set K ⊆ Rn are its subsets of the form F = {x ∈ K : 〈a,x〉 = β}
where a ∈ Rn and β ∈ R satisfy 〈a,x〉 ≤ β for all x ∈ K. Faces of co-dimension 1 are called
facets. For a simplicial cone C, we note that its non-empty faces are exactly all the subcones
generated by any subset of the generators of C.

A set of cones T = {C1, . . . , Ck} is an n-dimensional cone partition if:

Each Ci ⊆ Rn, i ∈ [k], is a closed n-dimensional cone.
Any two cones Ci, Cj , i 6= j, meet in a shared face.
The support of T , sup(T) def= ∪i∈[k]Ci, is a closed cone.

We say that F is a face of T if it is a face of one of its contained cones. A cone partition
T is τ -wide if every Ci is τ -wide. It is simplicial if every Ci is simplicial. In this case, we
also call T a cone triangulation. A cone triangulation satisfies the local δ-distance property
if every Ci satisfies it. We define the boundary of T , ∂T = ∪ki=1∂Ci. We say that a cone
triangulation T triangulates a cone partition P if T and P have the same support and every
cone C ∈ T is generated by a subset of the extreme rays of some cone of P . This means that
T partitions (“refines”) every cone of P into simplicial cones.

3.1 Exponential distribution
We say that a random variable X ∈ Rn is exponentially distributed on a cone Σ if

Pr[X ∈ S] =
∫
S

ζΣ(x)dx

for every measurable S ⊆ Rn, where ζΣ(x) = cΣe
−‖x‖I[x ∈ Σ]. A standard computation,

which we include for completeness, yields the normalizing constant and the expected norm.

I Lemma 13. The normalizing constant is c−1
Σ = n!voln(Bn2 ∩ Σ). For X exponentially

distributed on Σ, we have that E[‖X‖] = n.

Proof. See full paper. J

3 The δ-distance property is invariant under scaling, so the choice of generators of the extreme rays is
irrelevant.

D. Dadush and N. Hähnle 353

4 Optimization

While bounding the number of intersections of line segments [c,d] with the facets of the
normal fan of P = {x ∈ Rn : Ax ≤ b} is sufficient to obtain existential bounds on the
diameter of P , we also need to be able to efficiently compute the corresponding pivots to
obtain efficient algorithms. The following summarizes the required results, the technical
details of which are found in the full version of the paper.

I Theorem 14 (Shadow Simplex). Let P = {x ∈ Rn : Ax ≤ b} be pointed, c,d ∈ Rn, and
B an optimal basis for c. If every intersection of [c,d) with a facet F of a cone spanned
by a feasible basis of P lies in the relative interior of F , the Shadow Simplex can be used to
compute an optimal basis for d in O(mn2 + Nmn) arithmetic operations, where N is the
number of intersections of [c,d] with some triangulation T of the normal fan of P , where T
contains the cone spanned by the initial basis B.

As explained in Section 2, we want to follow segments [c, c+X], [c+X,d+X], [d+X,d]
in the normal fan. Our intersection bounds from Theorem 10 are not quite sufficient to
bound the number of steps on the first and last segments entirely. This is easily dealt with
for the first segment, because we can control the initial objective function c so that it lies
deep in the initial normal cone.

For the final segment, we follow the approach of Eisenbrand and Vempala [12], who
showed that if A satisfies the global δ-distance property, then an optimal facet for d can be
derived from a basis that is optimal for some d̃ with ‖d− d̃‖ ≤ δ

n . Recursion can then be
used on a problem of reduced dimension to move from d̃ to d. We strengthen their result
(thereby answering a question left open by [12]) and show that the local δ-distance property
is sufficient to get the same result as long as ‖d− d̃‖ ≤ δ

n2 .4

I Lemma 15. Let x1, . . . ,xm ∈ Sn−1 be a set of vectors. Then the following are equival-
ent:
1. x1, . . . ,xm satisfy the δ-distance property.
2. ∀ I ⊆ [m] for which {xi : i ∈ I} are linearly independent and ∀ (ai ∈ R : i ∈ I)

‖
∑
i∈I

aixi‖ ≥ δmax
i∈I
|ai| .

Proof. See full paper. J

I Definition 16. Let F be a face of a cone triangulation T and let x be a vector in the
support of T . Let G = cone(x1, . . . ,xk), ‖xi‖ = 1, be the minimal face of T that contains x
and consider the unique conic combination x = λ1x1 + · · ·+ λkxk. We define

αF (x) :=
∑
i:xi 6∈F

λi.

In particular, αF (x) ≥ 1 if x is a unit vector and the minimal face containing it is disjoint
from F , and αF (x) = 0 if x ∈ F .

I Lemma 17. Let F be a cone of an n-dimensional cone triangulation T satisfying the local
δ-distance property. Let x be a point in the support of T . Then d(x, F) ≥ αF (x) · δn .

4 In the final bound, the loss of a factor n here disappears inside a logarithm.

SoCG’15

354 On the Shadow Simplex Method for Curved Polyhedra

Proof. Let y ∈ F be the (unique) point with d(x,y) = d(x, F). Note that by convexity, the
segment [x,y] is contained in the support of T . By considering the cones of T that contain
points on the segment [x,y], we obtain a sequence of points

x = x0,x1, . . . ,xr = y

on the segment [x,y] and (full-dimensional) cones G1, . . . , Gr such that

Gi ∩ [x,y] = [xi−1,xi].

Since αF (y) = 0, the result of the lemma follows immediately from the claim that

d(xi−1,xi) ≥ |αF (xi−1)− αF (xi)| ·
δ

n
,

which we will now prove.
Fix some Gi = cone(y1, . . . ,yn). By relabelling, we may assume that cone(y1, . . . ,yk) =

Gi∩F (since Gi and F are both faces of T), for some 0 ≤ k ≤ n (if k = 0 then Gi∩F = {0}).
For every z ∈ Gi, the minimal cone containing z is a face of Gi. Therefore, using the

unique conic combination z =
∑
i=1 λiyi, we have that αF (z) =

∑
k<i≤n λi.

Writing xi−1 =
∑n
i=1 aiyi and xi =

∑n
i=1 biyi, by Lemma 15 we have that

d(xi−1,xi) ≥ δ max
1≤i≤n

|ai − bi| ≥ δ max
k<i≤n

|ai − bi| ≥
δ

n

∑
k<i≤n

|ai − bi|

≥ δ

n
|αF (xi−1)− αF (xi)|,

which completes the proof of the claim. J

I Lemma 18. Let F be a cone of a triangulation T satisfying the local δ-distance property
and let x be a point in the support of T with d(x, F) ≤ δ

n2 . Let G = cone(x1, . . . ,xn),
‖xi‖ = 1, be a cone of T containing x and let

x = λ1x1 + · · ·+ λnxn

be the corresponding conic combination. Then for every i ∈ [n] with λi > 1
n one has xi ∈ F .

Proof. Suppose there is some i with λi > 1
n and xi 6∈ F . Then αF (x) > 1

n and by Lemma 17
we get d(x, F) > δ

n2 , which is a contradiction. J

For the recursion on a facet, we let πi(x) := x− 〈x,ai〉
〈ai,ai〉ai be the orthogonal projection

onto the subspace orthogonal to ai and we let Fi be the facet of P defined by 〈ai,x〉 = bi.

I Lemma 19. Let v1, . . . ,vk ∈ Rn be linearly independent vectors that satisfy the δ-distance
property and let π be the orthogonal projection onto the subspace orthogonal to vk. Then
π(v1), . . . , π(vk−1) satisfy the δ-distance property.

Proof. See full paper. J

This Lemma, which was already used by [12], implies that if P satisfies the local δ-distance
property then so does Fi, where the definition of local δ-distance is understood relative to
the affine hull of Fi,5 because the normal vectors of Fi arise from orthogonal projections of
the normal vectors of P .

5 Alternatively, one can apply a rotation and translation so that Fi lies in the subspace Rn−1 spanned by
the first n− 1 coordinates. The rotation does not affect the δ-distance property, and we can then treat
Fi as a polytope in Rn−1.

D. Dadush and N. Hähnle 355

Input: polytope P = {x ∈ Rn : Ax ≤ b}, δ > 0, feasible basis B, d ∈ Rn
Output: optimal basis B ⊂ [m] for d
c←

∑
i∈B

ai

‖ai‖ , d← 2 d
‖d‖

Sample X ∈ Rn from the exponential distribution conditioned on ‖X‖ ≤ 2n
Follow segments [c, c +X], [c +X,d +X], [d +X,d + δ

2n3X] using Shadow Simplex
Find λi such that d̃ := d + δ

2n3X =
∑
i∈B λi

ai

‖ai‖ where B is the current basis
Choose i? such that λi? > 1

n

B′ ← optimal basis of Fi? for πi?(d), obtained by recursion starting at B \ {i?}
return B′ ∪ {i?}

Algorithm 1: Optimization

I Theorem 20. If P satisfies the local δ-distance property, then Algorithm 1 correctly
computes an optimal basis for d using an expected O((n3/δ) ln(n/δ)) shadow simplex pivots.

Proof. For correctness, let T be some triangulation of the normal fan of P and let C be
a cone in T that contains d. We have ‖ δ

2n3X‖ ≤ δ
n2 and therefore d(d̃, C) ≤ d(d̃,d) ≤ δ

n2 .
Furthermore, ‖d̃‖ ≥ ‖d‖ − δ

n2 > 1 implies that
∑
i∈B λi > 1 so that there is some i with

λi >
1
n . Applying Lemma 18 yields that ai? is a generator of C, which means that i? is

contained in some optimal basis for d. This implies that recursion on Fi? yields the correct
result.

In order to bound the number of pivots, let C be the cone of the initial basis and observe
that c + δBn2 ⊆ C by the proof of Lemma 5. Hence the segment [c + δ

2nX) does not cross a
facet of the triangulation T1 of the normal fan that is implicitly used by the first leg of the
shadow simplex path.

If X were exponentially distributed (without the conditioning on ‖X‖ ≤ 2n), Theorem 10
together with Lemma 5 would bound the expected number of pivot steps along the three
segments by

E[N] ≤ 2n2

δ
ln 2n

δ
+ n‖d− c‖

δ
+ 2n2

δ
ln 2n3

δ
≤ O(n

2

δ
ln(n

δ
))

Since E[‖X‖] = n we have Pr[‖X‖ ≤ 2n] ≥ 1
2 by Markov’s inequality and therefore

E[N | ‖X‖ ≤ 2n] ≤ 2E[N] ≤ O(n
2

δ
ln(n

δ
)).

The bound on the total expected number of pivot steps follows from the depth n of recursion.
J

5 Intersection Bounds and Diameter Bounds

I Lemma 21. Let C be a polyhedral cone containing u + τBn2 , where ‖u‖ = 1. Let c,d ∈ Rn
and let X ∈ Rn be exponentially distributed on a full dimensional cone Σ 3 u. Then the
expected number of times the shifted line segment [c +X,d +X] hits the boundary of C is at
most

E[|∂C ∩ [c +X,d +X]|] ≤ ‖d− c‖
τ

∫ 1

0

∫
(C−((1−λ)c+λd))∩Σ

ζΣ(x)dxdλ

SoCG’15

356 On the Shadow Simplex Method for Curved Polyhedra

Proof. Let F be a facet of C. Note that with probability 1, the line segment [c +X,d +X]
passes through F at most once. By linearity, we see that

E[|∂C ∩ [c +X,d +X]|] =
∑

F facet of C
Pr[(F ∩ [c +X,d +X]) 6= ∅]. (1)

We now bound the crossing probability for any facet F .
We first calculate the hitting probability as

Pr[F ∩ [c +X,d +X] 6= ∅] = Pr[X ∈ −[c,d] + F]

=
∫
−[c,d]+F

ζΣ(x)dx

= | 〈n,d− c〉 |
∫ 1

0

∫
F−((1−λ)c+λd)

ζΣ(x)dvoln−1(x)dλ

≤ ‖d− c‖
∫ 1

0

∫
(F−((1−λ)c+λd))∩Σ

cΣe
−‖x‖dvoln−1(x)dλ (2)

where n ∈ Rn is a unit normal vector to F and we use dvoln−1(x) to indicate an integral
with respect to the usual (n− 1)-dimensional measure on the affine hyperplane spanned by
the integration domain. Bounding the hitting probability therefore boils down to bounding
the measure of a shift of the facet F . Letting h = | 〈n,u〉 | ≥ τ (which holds by assumption
on u), for any shift t ∈ Rn we have that

∫
(F+t+cone(u))∩Σ

e−‖x‖dx ≥
∫

((F+t)∩Σ)+cone(u)
e−‖x‖dx (since u ∈ Σ)

=
∫ ∞

0

∫
((F+t)∩Σ)+ r

h u
e−‖x‖dvoln−1(x)dr

=
∫ ∞

0

∫
(F+t)∩Σ

e−‖x+ r
h u‖dvoln−1(x)dr

≥
∫ ∞

0
e−r/hdr

∫
(F+t)∩Σ

e−‖x‖dvoln−1(x)

≥ τ
∫

(F+t)∩Σ
e−‖x‖dvoln−1(x) (3)

The lemma now follows by combining (1),(2),(3), using the fact that the F+cone(u) partition
the cone C up to sets of measure 0. J

I Lemma 22. Let T = (C1, . . . , Ck) be a partition of a cone Σ into polyhedral τ -wide cones.
Let c,d ∈ Rn and let X ∈ Rn be exponentially distributed on Σ. Then the expected number
of facets hit by the shifted line segment [c +X,d +X] satisfies

E[|∂T ∩ [c +X,d +X]|] ≤ ‖d− c‖
τ

.

D. Dadush and N. Hähnle 357

Proof. Using Lemma 21, we bound

E[|∂T ∩ [c +X,d +X]|] ≤
k∑
i=1

E[|∂Ci ∩ [c +X,d +X]|]

≤
k∑
i=1

‖d− c‖
τ

∫ 1

0

∫
(Ci−((1−λ)c+λd))∩Σ

ζΣ(x)dxdλ

≤ ‖d− c‖
τ

∫ 1

0

∫
Σ
ζΣ(x)dxdλ

≤ ‖d− c‖
τ

,

as needed.
For the furthermore, note that each intersection is overcounted twice in the summation

above, since each facet belongs to exactly two cones in the partition. J

We will need the following simple lemma about the exponential distribution.

I Lemma 23. Let Y be exponentially distributed on R+. Then for any c ∈ R, E[|Y − c|] ≥
|c|/2.

Proof. See full paper. J

While we could choose c and d such that c +X and d +X lie in the same cones as c
and d with high probability, and hence no facets are hit by the segments [c, c + X] and
[d,d +X], this would require us to choose ‖d− c‖ quite large. We will show a better way to
bound the number of facets that are hit by the segment [c, c +X].

I Lemma 24. Let C ⊆ Rn be a polyhedral cone containing u + τBn2 , where ‖u‖ = 1. Let
c ∈ Rn and let X ∈ Rn be exponentially distributed on a cone Σ 3 u. Then for every
α ∈ (0, 1) we have

E[|∂C ∩ [c + αX, c +X]|] ≤ 2
τ

∫ 1/α

1

1
s

∫
(C−sc)∩Σ

‖x‖ζΣ(x)dxds

Proof. As in the proof of Lemma 21, we will decompose the expectation over the facets of
C, where we have

E[|∂C ∩ [c + αX, c +X]|] =
∑

F facet of C
Pr[F ∩ [c + αX, c +X] 6= ∅] (4)

Take a facet F of C and let n denote a unit normal to F pointing in the direction of the
cone (i.e., 〈n, u〉 > 0).

Pr[F ∩ [c + αX, c +X] 6= ∅] = Pr[X ∈ [1, 1/α](F − c)]

=
∫ 1/α

1

∫
(F−sc)∩Σ

| 〈n, c〉 |ζΣ(x)dvoln−1(x)ds

=
∫ 1/α

1

1
s

∫
(F−sc)∩Σ

| 〈n, sc〉 |cΣe−‖x‖dvoln−1(x)ds. (5)

SoCG’15

358 On the Shadow Simplex Method for Curved Polyhedra

Again, we have to bound an integral over a shifted facet, similar to the proof of Lemma 21.
Letting h = | 〈n,u〉 | ≥ τ , we have that∫

(F+t+cone(u))∩Σ
‖x‖e−‖x‖dx ≥

∫
((F+t)∩Σ)+cone(u)

‖x‖e−‖x‖dx (since u ∈ Σ)

=
∫ ∞

0

∫
((F+t)∩Σ)+ r

h u
‖x‖e−‖x‖dvoln−1(x)dr

=
∫ ∞

0

∫
(F+t)∩Σ

‖x + r

h
u‖e−‖x+ r

h u‖dvoln−1(x)dr

≥
∫ ∞

0

∫
(F+t)∩Σ

|
〈

n,x + r

h
u
〉
|e−r/he−‖x‖dvoln−1(x)dr

= h2
∫ ∞

0
| 〈n, t〉 /h+ s|e−sds

∫
(F+t)∩Σ

e−‖x‖dvoln−1(x)

≥ h

2

∫
(F+t)∩Σ

| 〈n, t〉 |e−‖x‖dvoln−1(x) (by Lemma 23)

≥ τ

2

∫
(F+t)∩Σ

| 〈n, t〉 |e−‖x‖dvoln−1(x)

(6)

The Lemma now follows by combining (4),(5),(6). J

I Lemma 25. Let T = (C1, . . . , Ck) be partition of a cone Σ into polyhedral τ -wide cones.
Let c ∈ Rn and α ∈ (0, 1) be fixed and let X ∈ Rn be exponentially distributed over Σ. Then

E[|∂T ∩ [c + αX, c +X]|] ≤ 2n
τ

ln 1
α

.

Proof. By Lemmas 13 and 24, we have that

E[|∂T ∩ [c + αX, c +X]|] ≤
k∑
i=1

E[|∂Ci ∩ [c + αX, c +X]|]

≤ 2
τ

k∑
i=1

∫ 1/α

1

1
s

∫
(Ci−sc)∩Σ

‖x‖ζΣ(x)dxds

≤ 2
τ

∫ 1/α

1

1
s

∫
Σ
‖x‖ζΣ(x)dxds

≤ 2
τ

∫ 1/α

1

1
s
E[‖X‖]ds = 2n

τ
ln 1
α

J

Acknowledgements. We would like to thank Friedrich Eisenbrand and Santosh Vempala
for useful discussions and an anonymous referee for valuable remarks.

References
1 Karim Alexander Adiprasito and Bruno Benedetti. The Hirsch conjecture holds for normal

flag complexes. Arxiv Report 1303.3598, 2014.
2 M. L. Balinski. The Hirsch conjecture for dual transportation polyhedra. Math. Oper. Res.,

9(4):629–633, 1984.
3 David Barnette. An upper bound for the diameter of a polytope. Discrete Math., 10:9–13,

1974.

D. Dadush and N. Hähnle 359

4 Nicolas Bonifas, Marco Di Summa, Friedrich Eisenbrand, Nicolai Hähnle, and Martin
Niemeier. On sub-determinants and the diameter of polyhedra. Discrete Comput. Geom.,
52(1):102–115, 2014. Preliminary version in SOCG 12.

5 Karl-Heinz Borgwardt. The simplex method: A probabilistic analysis, volume 1 of Al-
gorithms and Combinatorics: Study and Research Texts. Springer-Verlag, Berlin, 1987.

6 Graham Brightwell, Jan van den Heuvel, and Leen Stougie. A linear bound on the diameter
of the transportation polytope. Combinatorica, 26(2):133–139, 2006.

7 Tobias Brunsch and Heiko Röglin. Finding short paths on polytopes by the shadow vertex
algorithm. In Automata, languages, and programming. Part I, volume 7965 of Lecture Notes
in Comput. Sci., pages 279–290. Springer, Heidelberg, 2013.

8 Daniel Dadush and Nicolas Bonifas. Short paths on the voronoi graph and closest vector
problem with preprocessing. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 295–314. SIAM, 2015.

9 Daniel Dadush and Nicolai Hähnle. On the shadow simplex method for curved polyhedra
(draft of full paper). Arxiv Report 1412.6705, 2014.

10 Jesús A. De Loera, Edward D. Kim, Shmuel Onn, and Francisco Santos. Graphs of trans-
portation polytopes. J. Combin. Theory Ser. A, 116(8):1306–1325, 2009.

11 Martin Dyer and Alan Frieze. Random walks, totally unimodular matrices, and a random-
ised dual simplex algorithm. Math. Programming, 64(1, Ser. A):1–16, 1994.

12 Friedrich Eisenbrand and Santosh Vempala. Geometric random edge. Arxiv Report
1404.1568, 2014.

13 Gil Kalai. The diameter of graphs of convex polytopes and f -vector theory. In Applied
geometry and discrete mathematics, volume 4 of DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., pages 387–411. Amer. Math. Soc., Providence, RI, 1991.

14 Gil Kalai and Daniel J. Kleitman. A quasi-polynomial bound for the diameter of graphs of
polyhedra. Bull. Amer. Math. Soc. (N.S.), 26(2):315–316, 1992.

15 D. G. Larman. Paths of polytopes. Proc. London Math. Soc. (3), 20:161–178, 1970.
16 Benjamin Matschke, Francisco Santos, and Christophe Weibel. The width of 5-dimensional

prismatoids. Arxiv Report 1202.4701, 2013.
17 Denis Naddef. The Hirsch conjecture is true for (0, 1)-polytopes. Math. Programming, 45(1,

Ser. B):109–110, 1989.
18 Francisco Santos. A counterexample to the Hirsch conjecture. Ann. of Math. (2),

176(1):383–412, 2012.
19 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why the

simplex algorithm usually takes polynomial time. J. ACM, 51(3):385–463 (electronic),
2004.

20 Michael J. Todd. An improved Kalai-Kleitman bound for the diameter of a polyhedron.
Arxiv Report 1402.3579, 2014.

21 Roman Vershynin. Beyond Hirsch conjecture: walks on random polytopes and smoothed
complexity of the simplex method. SIAM J. Comput., 39(2):646–678, 2009.

SoCG’15

Pattern Overlap Implies Runaway Growth in
Hierarchical Tile Systems
Ho-Lin Chen1, David Doty2, Ján Maňuch3,4, Arash Rafiey4,5, and
Ladislav Stacho4

1 National Taiwan University
Taipei, Taiwan
holinc@gmail.com

2 California Institute of Technology
Pasadena, CA, USA
ddoty@caltech.edu

3 University of British Columbia
Vancouver, BC, Canada
jmanuch@cs.ubc.ca

4 Simon Fraser University
Burnaby, BC, Canada
{jmanuch,arashr,lstacho}@sfu.ca

5 Indiana State University, IN, USA

Abstract
We show that in the hierarchical tile assembly model, if there is a producible assembly that
overlaps a nontrivial translation of itself consistently (i.e., the pattern of tile types in the overlap
region is identical in both translations), then arbitrarily large assemblies are producible. The
significance of this result is that tile systems intended to controllably produce finite structures
must avoid pattern repetition in their producible assemblies that would lead to such overlap.

This answers an open question of Chen and Doty (SODA 2012), who showed that so-called
“partial-order” systems producing a unique finite assembly and avoiding such overlaps must
require time linear in the assembly diameter. An application of our main result is that any
system producing a unique finite assembly is automatically guaranteed to avoid such overlaps,
simplifying the hypothesis of Chen and Doty’s main theorem.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases self-assembly, hierarchical, pumping

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.360

1 Introduction

Winfree’s abstract Tile Assembly Model (aTAM) [23] is a model of crystal growth through
cooperative binding of square-like monomers called tiles, implemented experimentally (for the
current time) by DNA [2, 25]. It models the potentially algorithmic capabilities of tiles that
are designed to bind if and only if the total strength of attachment (summed over all binding
sites, called glues on the tile) is at least a threshold τ , sometimes called the temperature.
When glue strengths are integers and τ = 2, two strength 1 glues must cooperate to bind the
tile to a growing assembly. Two assumptions are key: 1) growth starts from a single seed tile
type, and 2) only individual tiles bind to an assembly. We refer to this model as the seeded
aTAM.

© Ho-Lin Chen, David Doty, Ján Maňuch, Arash Rafiey, and Ladislav Stacho;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 360–373

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.360
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

H. L. Chen, D. Doty, J. Maňuch, A. Rafiey, and L. Stacho 361

While violations of these assumptions are often viewed as errors in implementation of the
seeded aTAM [20, 21], relaxing them results in a different model with its own programmable
abilities. In the hierarchical (a.k.a. multiple tile [1], polyomino [15, 24], two-handed [3, 6, 9])
aTAM, there is no seed tile, and an assembly is considered producible so long as two producible
assemblies are able to attach to each other with strength at least τ , with all individual
tiles being considered as “base case” producible assemblies. In either model, an assembly
is considered terminal if nothing can attach to it; viewing self-assembly as a computation,
terminal assembly(ies) are often interpreted to be the output. See [7, 17] for an introduction
to recent theoretical work using these models.

As with other models of computation, in general it is considerably more difficult to prove
negative results (limitations on what a tile system can do) than to prove positive results. A
common line of inquiry aimed at negative results in tile self-assembly concerns the notion of
“pumping”: showing that a single repetition of a certain group of tiles implies that the same
group can be repeated indefinitely to form an infinite periodic structure.

The temperature-1 problem in the seeded model of tile assembly concerns the abilities
of tile systems in which every positive-strength glue is sufficiently strong to bind two tiles.
It may seem “obvious” that if two tile types repeat in an assembly, then a segment of tiles
connecting them could be repeated indefinitely (“pumped”) to produce an infinite periodic
path (since, at temperature 1, each tile along the segment has sufficient strength for the
next tile in the segment to attach). However, this argument fails if the attempt to pump the
segment “crashes” into an existing part of the assembly. It is conjectured [10] that only finite
unions of periodic patterns (so-called semilinear sets) can be assembled at temperature 1 in
the seeded model, but despite considerable investigation [11, 16, 18, 19], the question remains
open. If true, temperature-1 hierarchical tile systems would suffer a similar limitation, due to
a formal connection between producible assemblies in the seeded and hierarchical models [3,
Lemma 4.1]. It has been established, using pumping arguments, that temperature-1 seeded
tile systems are unable to simulate the dynamics of certain temperature-2 systems [11].

Moving to temperature 2, both models gain power to assemble much more complex
structures; both are able to simulate Turing machines, for instance. In a certain sense,
the hierarchical model is at least as powerful as the seeded model, since every seeded tile
system can be simulated by a hierarchical tile system with a small “resolution loss”: each
tile in the seeded system is represented by a 5× 5 block of tiles in the hierarchical system [3,
Theorem 4.2].

From this perspective, the main theorem of this paper, a negative result on hierarchical
tile assembly that does not apply to seeded tile assembly, is somewhat surprising. We show
that hierarchical systems, of any temperature, are forced to admit a sort of infinite “pumping”
behavior if a special kind of “pattern repetition” occurs. More formally, suppose that a
hierarchical tile system T is able to produce an assembly α0 such that, for some nonzero
vector ~v, the assembly α1 = α0 + ~v (meaning α0 translated by ~v) intersects α0, but the two
translations agree on every tile type in the intersection (they are consistent). It is known
that this implies that the union α0 ∪ α1 is producible as well [8, Theorem 5.1]. Our main
theorem, Theorem 11, shows that this condition implies that T can produce arbitrarily large
assemblies, answering the main open question of [8].

The assembly is not necessarily infinitely many translations of all of α0, since although
α0 and α1 are consistent, which implies that α1 must be consistent with α2 = α0 + 2~v, it
may be that α0 is not consistent with α2. However, our proof shows that a subassembly β2
of α2 can be assembled that is sufficient to grow another translated copy of β2, so that the
infinite producible assembly consists of infinitely many translations of β2. See Figure 1 for
an example illustration.

SoCG’15

362 Pattern Overlap Implies Runaway Growth in Hierarchical Tile Systems

α
0

(a)

α
0 α

1 α
2

(c)

α
0α

1

(b) (d)

β
2

Figure 1 Example of the main theorem of this paper. (a) A producible assembly α0. Gray tiles
are all distinct types from each other, but red, green, and blue each represent one of three different
tile types, so the two blue tiles are the same type. (b) By Theorem 9, α0 ∪ α1 is producible, where
α1 = α0 + (2,−2), because they overlap in only one position, and they both have the blue tile type
there. (c) α0 and α2 both have a tile at the same position, but the types are different (green in
the case of α0 and red in the case of α2). (d) However, a subassembly βi of each new αi can grow,
enough to allow the translated equivalent subassembly βi+1 of αi+1 to grow from βi, so an infinite
structure is producible.

An immediate application of this theorem is to strengthen a theorem of Chen and Doty [4].
They asked whether every hierarchical tile system obeying a technical condition known as
the partial order property and producing a unique finite terminal assembly, also obeys
the condition that no producible assembly is consistent with a translation of itself. The
significance of the latter condition is that the main theorem of [4] shows that systems satisfying
the condition obey a time lower bound for assembly: they assemble their final structure in
time Ω(d), where d is the diameter of the final assembly. Our main theorem implies that
every system not satisfying the condition must produce arbitrarily large assemblies and
therefore cannot produce a unique finite terminal assembly. Hence all hierarchical partial
order systems are constrained by this time lower bound, the same lower bound that applies
to all seeded tile systems. Thus hierarchical partial order systems, despite the ability to
assemble many sub-assemblies of the final assembly in parallel, provably cannot exploit this
parallelism to obtain a speedup in assembly time compared to the seeded model.

It is worthwhile to note that our main theorem does not apply to the seeded model.
For instance, it is routine to design a seeded tile system that assembles a unique terminal
assembly shaped like a square, which uses the same tile type in the upper right and lower left
corners of the square. Translating this assembly to overlap those two positions means that
this tile system satisfies the hypothesis of our main theorem. Why does this not contradict
the fact that this system, like all seeded systems, can be simulated by a hierarchical tile
system at scale factor 5 [3, Theorem 4.2], which would apparently satisfy the same consistent
overlap condition? The answer is that the hierarchical simulating system of [3] uses different
5 × 5 blocks to represent the same tile type from the seeded system, depending on the
sides of the tile that are used to bind in the seeded system. Since the upper-right corner
tile and lower-left corner tile in the seeded system must clearly bind using different sides,
they are represented by different blocks in the simulating hierarchical system. Hence in the
hierarchical system, the terminal assembly does not consistently overlap with itself.

Our argument proceeds by reducing the problem (via a simple argument) to a simple-to-
state theorem in pure geometry. That theorem’s proof contains almost all of the technical
machinery required to prove our main theorem. Let S0 be a discrete shape: a finite, connected
subset of Z2, and let ~v ∈ Z2 be a nonzero vector. Let S1 = S0 + ~v (= { p + ~v | p ∈ S1 }),

H. L. Chen, D. Doty, J. Maňuch, A. Rafiey, and L. Stacho 363

and let S2 = S1 + ~v. The theorem states that S2 \ S1 (possibly a disconnected set) contains
a connected component that does not intersect S0. This is clear when ~v is large enough that
S0 ∩ S2 = ∅, but for the general case, we encourage the reader to attempt to prove it before
concluding that it is obvious. In Figure 1, S2 \ S1 (referring respectively to the shapes of
assemblies α2 and α1) contains two connected components, one on top and the other on
bottom. The top component intersects S0, but not the bottom.

This problem is in turn reduced to a more technical statement about simple curves
(continuous, one-to-one functions ϕ : [0, 1] → R2) whose intersection implies the shapes
theorem. Although we need the curve theorem to hold only for polygonal curves on the
integer grid Z2, the result holds for general curves and may be useful in other contexts.

2 Informal definition of the hierarchical tile assembly model

We give an informal sketch of the hierarchical variant of the abstract Tile Assembly Model
(aTAM). See Section A.1 for a formal definition.

Let R, Z, N and Z+ denote the set of all real numbers, integers, non-negative integers
and positive integers, respectively. Given a set S ⊆ R2 and a vector ~v ∈ R2, let S + ~v =
{p+ ~v : p ∈ S}.

A tile type is a unit square with four sides, each consisting of a glue label (often represented
as a finite string). Each glue type is assigned a nonnegative integer strength. We assume a
finite set T of tile types, but an infinite number of copies of each tile type, each copy referred
to as a tile. An assembly is a positioning of tiles on the integer lattice Z2; i.e., a partial
function α : Z2 99K T . Write α v β to denote that α is a subassembly of β, which means
that dom α ⊆ dom β and α(p) = β(p) for all points p ∈ dom α. Given an assembly β and a
set D ⊆ dom β, β�D is a subassembly of α with dom (β�D) = D.

We abuse notation and take a tile type t to be equivalent to the single-tile assembly
containing only t (at the origin if not otherwise specified). Two adjacent tiles in an assembly
interact if the glue labels on their abutting sides are equal and have positive strength. Each
assembly induces a binding graph, a grid graph whose vertices are tiles, with an edge between
two tiles if they interact. The assembly is τ -stable if every cut of its binding graph has
strength (the sum of the weights of the edges in the cut) at least τ , where the weight of an
edge is the strength of the glue it represents.

A hierarchical tile assembly system (hierarchical TAS) is a pair T = (T, τ), where T is a
finite set of tile types and τ ∈ N is the temperature. An assembly is producible if either it is a
single tile from T , or it is the τ -stable result of translating two producible assemblies without
overlap. The restriction on overlap is a model of a chemical phenomenon known as steric
hindrance [22, Section 5.11] or, particularly when employed as a design tool for intentional
prevention of unwanted binding in synthesized molecules, steric protection [13, 14, 12]. An
assembly α is terminal if for every producible assembly β, α and β cannot be τ -stably
attached. If α can grow into β by the attachment of zero or more assemblies, then we write
α → β. Our definitions imply only finite assemblies are producible. Figure 2 shows an
example of hierarchical attachment.

3 Main result

Section 3.1 proves a theorem about curves in R2 (Theorem 7) that contains most of the
technical detail required for our main theorem. Theorem 7 states that if a finite set of
simple curves ϕ1, . . . , ϕk do not intersect each other, and for some nonzero ~v ∈ R2, for each

SoCG’15

364 Pattern Overlap Implies Runaway Growth in Hierarchical Tile Systems

Figure 2 Typical example of hierarchical assembly, at temperature τ = 2. The segments between
tiles represent the bonds, the number of segments encodes the strength of the bond (here, 1 or 2).
In the seeded, single tile model with seed σ = t0, the assembly at step (b) would be terminal.

i, there is n ∈ Z+ so that ϕi(1) = ϕi+1(0) + n~v (where ϕk+1 = ϕ1, i.e., each curve ends a
positive integer multiple of ~v from the start of the next), then some curve ϕi intersects ϕi +~v.
Section 3.2 uses Theorem 7 to prove a geometrical theorem about shapes in Z2 (Theorem 8),
namely that for any shape S0, with S1 = S0 + ~v and S2 = S0 + 2~v, it holds that S2 \ S1 has
a connected component that does not intersect S0. Section 3.3 uses Theorem 8 to prove our
main theorem (Theorem 11), which is that if a tile system can produce an assembly that
overlaps itself consistently, the arbitrarily large assemblies are producible.

The high-level intuition of the proofs of these results is as follows (described in reverse
order). Theorem 11 intuitively holds by the following argument. If a producible assembly α0
is consistent with its translation α1 = α+ ~v by some nonzero vector ~v ∈ Z2, then Theorem 8
implies that some portion C of α2 = α0 + 2~v does not intersect α0, and C is furthermore
assemblable from α1 (by Theorem 9). Therefore, it is assemblable from α0 ∪ α1 (since α2
is consistent with α1, and this part C of α2 does not intersect α0, ruling out inconsistency
due to C clashing with α0). Thus α1 ∪ C is producible and overlaps consistently with its
translation by ~v. Since C is nonempty, α1 ∪ C is strictly larger than α0. Iterating this
argument shows that arbitrarily large producible assemblies exist.

Why does Theorem 8 hold? If it did not, then every connected component Ci of S2 \ S1
would intersect S0 at a point pi. Since pi ∈ S0, pi + 2~v ∈ S2. Since pi ∈ S2, there is a path qi

from pi to pi + 2~v lying entirely inside of S2. But Corollary 5 implies that qi must intersect
qi − ~v, which, being a path inside of S1, implies that pi + 2~v is in a different connected
component Ci+1 of S2 \ S1. But since Ci+1 also intersects S0, there is a point pi+1 in this
intersection, and there is a curve ϕi from pi + 2~v to pi+1. Since every connected component
of S2 \S1 intersects S0, we can repeat this argument until we return to the original connected
component Ci. But then the various curves ϕi defined within each component will satisfy
the conditions of Theorem 7, a contradiction.

3.1 A theorem about curves
I Definition 1. Given a nonzero vector ~v ∈ R2 and a point p ∈ R2 the ~v-axis through p,
denoted as L~v,p, is the line parallel to ~v through p.

I Definition 2. Let ϕ : [0, 1] → R2 be continuous one-to-one mapping. Then ϕ([0, 1]) is
called a simple (non-self-intersecting) curve from ϕ(0) to ϕ(1). If ϕ : [0, 1]→ R2 is continuous
with ϕ(0) = ϕ(1) and one-to-one on [0, 1), then ϕ([0, 1]) is called a simple closed curve.

Obviously, any curve ϕ([0, 1]) from ϕ(0) to ϕ(1) (being a subset of the plane) can
be considered also as a curve from ϕ(1) to ϕ(0). Therefore, for the sake of brevity, we
sometimes denote this curve simply by ϕ and say that ϕ connects points ϕ(0), ϕ(1). If
0 ≤ t1 ≤ t2 ≤ 1, then ϕ([t1, t2]) is a simple curve as well. If ϕ1 and ϕ2 are simple non-closed
curves such that ϕ1 ∩ ϕ2 = {ϕ1(1)} = {ϕ2(0)} then their concatenation ϕ1 ⊕ ϕ2, defined by

H. L. Chen, D. Doty, J. Maňuch, A. Rafiey, and L. Stacho 365

(ϕ1 ⊕ ϕ2)(t) = ϕ1(2t) if t ≤ 1
2 and (ϕ1 ⊕ ϕ2)(t) = ϕ2(2(t − 1

2)) otherwise, is also a simple
curve (closed if ϕ2(1) = ϕ1(0)).

I Definition 3. Given a subset of a plane A ⊆ R2 and a vector ~v ∈ R2, the shift (or
translation) of A by ~v, denoted by A+ ~v, is the set A+ ~v = {p+ ~v : p ∈ A}.

The following lemma, due to Demaine, Demaine, Fekete, Patitz, Schweller, Winslow, and
Woods [5, Lemma 6.3], states that if a curve does not intersect a translation of itself, then it
also does not intersect any integer multiples of the same translation. We state the lemma
in terms of curves instead of shapes as in ref.[5], and for the sake of self-containment, we
provide a proof stated in these terms.

I Lemma 4 ([5]). Consider points p1, p2 ∈ R2, nonzero vector ~v ∈ R2 and a simple curve
ϕ connecting p1 and p2 (ϕ may be closed if p1 = p2) such that ϕ ∩ (ϕ + ~v) = ∅. Let
ϕ→k = ϕ+ k~v, k ∈ Z. Then all ϕ→k’s are mutually disjoint.

Proof. To every point of ϕ we can assign “relative distance” d from the line L~v,p1—positive
for points left to the line and negative for points right to the line (with respect to ~v). Since
the function d ◦ ϕ : [0, 1]→ R is continuous, by the extreme value theorem it attains both its
minimum dmin and maximum dmax.

If dmin = dmax then ϕ is just a line segment on the line L~v,p1 with a length less than |~v|
and the statement of the lemma holds true.

If dmin < dmax, let Tmin = {t ∈ [0, 1] : d ◦ ϕ(t) = dmin} and Tmax = {t ∈ [0, 1] : d ◦ ϕ(t) =
dmax}. Since both Tmin and Tmax are closed and non-empty, we can take tmin ∈ Tmin and
tmax ∈ Tmax such that dmin < d◦ϕ(t) < dmax for every t ∈ (min{tmin, tmax},max{tmin, tmax}).
Denote pmin = ϕ(tmin) and pmax = ϕ(tmax). All curves ϕ→k, k ∈ Z, lie within the stripe
between lines L~v,pmin and L~v,pmax . Denote ψ = ϕ([min{tmin, tmax},max{tmin, tmax}]) (a
simple curve connecting pmin and pmax) and let ψ→k = ψ + k~v, k ∈ Z, be the corresponding
shifts of ψ.

Since ψ→k meets neither L~v,pmin nor L~v,pmax at any point except its end-points, it splits
the stripe into two disjoint regions—left and right (with respect to vector ~v)—let us denote
the left region by Lk and the right one by Rk.

Since ϕ∩ (ϕ+~v) = ∅, we have for every k ∈ Z, ψ→k ∩ϕ→k+1 ⊆ ϕ→k ∩ϕ→k+1 = ∅. Since
the point pmin + (k + 1)~v ∈ ϕ→k+1 lies in Rk and ϕ→k+1 ∩ ψ→k = ∅, the whole curve ϕk+1
lies in Rk. Hence ψ→k+1 ⊆ Rk and similarly ψ→k−1 ⊆ ϕ→k−1 ⊆ Lk. This yields Rk+1 ⊆ Rk

and Lk−1 ⊆ Lk and consequently R` ⊆ Rk and Lk ⊆ L` for any k ≤ `, k, ` ∈ Z.
Consider now any k < `, k, ` ∈ Z. If ` = k + 1 then ϕ→k ∩ ϕ→` = ∅ by the assumption of

the lemma. If ` > k + 1 then ϕ→k ⊆ Lk+1 and ϕ→` ⊆ R`−1 ⊆ Rk+1, i.e., ϕ→k and ϕ→` are
disjoint. J

The following corollary of Lemma 4 shows that if a curve is translated by a vector ~v, and
the vector between its start and end points is an integer multiple of ~v, then the curve must
intersect its translation by ~v.

I Corollary 5. Consider an integer n ≥ 1, a point p ∈ R2 and a nonzero vector ~v ∈ R2. Let
ϕ be a simple curve connecting p and p+ n~v. Then ϕ intersects its translation by ~v.

Proof. Assume for the sake of contradiction that ϕ and ϕ+~v do not intersect. By Lemma 4 all
curves ϕ+n~v, n ∈ N, are mutually disjoint but (p+n~v) ∈ ϕ∩ (ϕ+n~v)—a contradiction. J

The assumption that the vector from the start point to the end point of the curve ϕ
is an integer multiple of the vector ~v is essential in Corollary 5. The following example

SoCG’15

366 Pattern Overlap Implies Runaway Growth in Hierarchical Tile Systems

0 1 2 3 4 5

(y,nε)

(1,−ε)

Figure 3 An example of a curve ϕ from (0, 0) to (3.6, 0) (solid) that does not intersect its shift
ϕ+ (1, 0) (dashed).

provides a general construction of a curve ϕ ⊆ R2 connecting points p and p+ x~v such that
ϕ ∩ (ϕ + ~v) = ∅, where ~0 6= ~v ∈ R2 and x ∈ R \ Z, |x| > 1. Note that for |x| < 1 the line
segment from p to p+ x~v does not intersect its shift by ~v.

I Example 6. For simplicity assume that p = (0, 0) and ~v = (1, 0). Let n = bxc, y = x− n
and choose any ε > 0. Let µ denote the line segment (simple curve) from (0, 0) to (y, nε)
and ν denote the line segment from (y, nε) to (1,−ε). Denote µk = µ + k(1,−ε) and
νk = ν + k(1,−ε) for k ∈ Z. Then let ϕ = µ0 ⊕ ν0 ⊕ · · · ⊕ µn−1 ⊕ νn−1 ⊕ µn be the desired
curve. Figure 3 shows an example of this construction for x = 3.6. Note that ϕ starts and
ends on the x-axis and that ϕ+ ~v does not intersect ϕ since for each stripe between x = i

and x = i+ 1, i = 1, . . . , n, the part of ϕ+ ~v in this stripe lies above the part of ϕ in the
same stripe (shifted up by ε).

The following theorem is quite technical to state. Informally, it concerns a finite set of
non-intersecting curves ϕ1, . . . , ϕk and a vector ~v of the following form. Each curve connects
two points in the plane, subject to the condition that the end point of ϕi is the start point
of ϕi+1 translated by a positive integer multiple of ~v, with ϕk+1 = ϕ1. See Figure 4(a) for
an example. An alternative way to think of these curves is as a single “mostly continuous”
simple closed curve, with k discontinuities allowed, where each discontinuity is of the form
“jump backwards by some positive integer multiple of ~v.” The theorem states that this curve
must intersect its translation by ~v.

I Theorem 7. Let k ∈ Z+, let p1, . . . , pk ∈ R2 be points, let n1, . . . , nk ∈ Z+, and let ~v ∈ R2

be a nonzero vector. Then there do not exist curves ϕ1, . . . , ϕk : [0, 1] → R2 satisfying the
following conditions:
1. ϕi is a simple curve from pi to (pi+1 + ni+1~v), for every 1 ≤ i ≤ k, where pk+1 = p1 and

nk+1 = n1,
2. ϕi ∩ (ϕi + ~v) = ∅, for every 1 ≤ i ≤ k,
3. ϕi ∩ ϕj = ∅, for every 1 ≤ i < j ≤ k.

Proof. By induction on k. The base case k = 1 immediately follows by Corollary 5.
Intuitively, the inductive case will show that if we suppose, for the sake of contradiction,

that k curves exist satisfying the conditions, then we can find a common point of intersection
between two of their integer translations by ~v, and we can connect two subcurves of these
translations to create a set of k′ < k curves also satisfying the hypothesis of the theorem,
without introducing an intersection. Figure 4 shows an example of three curves being reduced
to two. The new curves will simply be k′ − 1 translations of some of the original k curves
(which already satisfy the conditions by hypothesis), together with one new curve ψ, so our
main task will be to show that ψ, in the presence of the other pre-existing curves, satisfies
the three conditions.

More formally, let k > 1 and suppose the theorem holds for all integers 0 < k′ < k. Assume
for the sake of contradiction that there are curves ϕ1, . . . , ϕk satisfying conditions 1, 2, and 3,

H. L. Chen, D. Doty, J. Maňuch, A. Rafiey, and L. Stacho 367

a) v⃗

p 3+2 v⃗p 3
p 2+2 v⃗p 2

p 1 p 1+3 v⃗

ϕ1
ϕ3

ϕ2

b)

ϕ1
ϕ3

ϕ2

ϕ3
→1

ϕ2
→1

ϕ1(t1)=ϕ2
→1

(t 2)

c)

ϕ1([0,t1])

ϕ2
→1

([t2 ,1])

ψ

ϕ3
→1

Figure 4 An example of the proof of Theorem 7 for k = 3 curves.
(a) Three curves, ϕ1, ϕ2, and ϕ3, with start and end points obeying condition 1 and also condition 3
(the curves violate condition 2, however, as Theorem 7 dictates they must if obeying the other two
conditions). In this case, n1 = 3, n2 = 2, and n3 = 2.
(b) Translations of curves ϕ2 and ϕ3 by ~v, showing that ϕ1 first intersects ϕ→1

2 , among all positive
integer translations of ϕ2 and ϕ3. So in this example, M = 2 and L = 1.
(c) ψ defined as the concatenation of ϕ1([0, t1]) with ϕ→1

2 ([t2, 1]). ψ and ϕ→1
3 and are the two curves

produced by the proof for the inductive argument.

and define ϕ→`
m = ϕm + `~v for all m ∈ {1, . . . , k} and ` ∈ N. We find the first intersection of

ϕ1 with any of curves ϕ→`
m for all m ∈ {2, . . . , k} and ` ∈ N. Let

t1 = min{t ∈ [0, 1] : (∃m ∈ {2, . . . , k})(∃` ∈ N)ϕ1(t) ∈ ϕ→`
m },

M = any m ∈ {2, . . . , k} such that (∃` ∈ N)ϕ1(t1) ∈ ϕ→`
m ,

L = the unique ` ∈ N such that ϕ1(t1) ∈ ϕ→`
M ,

t2 = the unique t ∈ [0, 1] such that ϕ1(t1) = ϕ→L
M (t).

Since ϕ1 intersects ϕ→n2
2 at p2 + n2~v by condition 1, t1, M , and L are well-defined. The

uniqueness of L follows by Lemma 4. The uniqueness of t2 follows from the fact that ϕ→L
M is

simple.
Now define the curve ψ as a concatenation

ψ = ϕ1([0, t1])⊕ ϕ→L
M ([t2, 1])

and consider its shift
ψ + ~v = ϕ→1

1 ([0, t1])⊕ ϕ→L+1
M ([t2, 1]).

SoCG’15

368 Pattern Overlap Implies Runaway Growth in Hierarchical Tile Systems

p1

p2+~vp2

p3+~vp3

p4+~vp4

p1+
3
5
~v

ϕ1

ϕ2

ϕ3

ϕ4

Figure 5 An example of four curves ϕ1, . . . , ϕ4 that satisfy the conditions of Theorem 7, except
that n1 = 3

5 is not an integer.

In what follows we will show that points p1, pM+1 + L~v, . . . , pk + L~v, integers n1 +
L, nM+1, . . . , nk and curves ψ,ϕ→L

M+1, . . . , ϕ
→L
k form another instance satisfying conditions 1, 2,

and 3.
Observe that ψ is a curve connecting the point p1 to the point pM+1 + (nM+1 + L)~v.

It consists of subcurves of two simple curves whose concatenation at the intersection point
ϕ1(t1) = ϕ→L

M (t2), by the definition of t1, is the first point of intersection between ϕ1 and
ϕ→L

M . The curve ϕ→L
M after that point (i.e., ϕ→L

M ((t2, 1])) therefore cannot intersect ϕ1([0, t1)),
so ψ is simple. It follows that ψ satisfies condition 1 of the new instance.

We establish that ψ does not intersect its shift by vector ~v by analyzing each of the two
parts of ψ, ϕ1([0, t1]) and ϕ→L

M ([t2, 1]), and their translations by ~v, separately:
ϕ1([0, t1)) ∩ ϕ→1

1 ([0, t1)) = ∅, since ϕ1 ∩ ϕ→1
1 = ∅ by condition 2.

ϕ→L
M ([t2, 1]) ∩ ϕ→L+1

M ([t2, 1]) = ∅, since it follows by condition 2 that ϕ→L
M ∩ ϕ→L+1

M = ∅.
ϕ1([0, t1)) ∩ ϕ→L+1

M ([t2, 1]) = ∅, since by the definition of t1 (in particular, the fact that
it is the minimum element of the set defining it), ϕ1([0, t1)) does not intersect any ϕ→`

m ,
for any m ≥ 2, ` ∈ N.
ϕ→L

M ([t2, 1])∩ϕ→1
1 ([0, t1)) = ∅, since otherwise ϕ1([0, t1)) would intersect ϕ→L−1

M , violating
the definition of t1 similarly to the previous point.

This implies that ψ satisfies condition 2.
We have ϕ→L

i ∩ ψ = ∅ for every i > M , since ϕ→L
i cannot intersect ϕ1([0, t1)) (by

definition of t1) and ϕ→L
i ∩ϕ→L

M = ∅ by condition 3. This implies that ψ satisfies condition 3
of the new instance.

Thus, the new instance with points p1, pM+1+L~v, . . . , pk+L~v, integers n1+L, nM+1, . . . , nk

and curves ψ,ϕ→L
M+1, . . . , ϕ

→L
k satisfy conditions 1, 2, and 3. In addition, it has a smaller

number of curves (k + 1−M = k′ < k), and hence, using the induction hypothesis we have
a contradiction. J

The example in Figure 5 shows that the theorem does not hold if we allow just one of
the numbers n1, . . . , nk to be a non-integer.

3.2 A theorem about shapes

Theorem 7 gives rise to the following geometrical theorem about discrete shapes, which is
the main technical tool to prove our main self-assembly result, Theorem 11. We define a
shape to be a finite, connected subset of Z2.

I Theorem 8. Let S0 ⊂ Z2 be a shape, and let ~v ∈ Z2 be a nonzero vector. Let S1 = S0 + ~v

and S2 = S1 + ~v. Then there is a connected component of S2 \ S1 that does not intersect S0.

H. L. Chen, D. Doty, J. Maňuch, A. Rafiey, and L. Stacho 369

S
2

S
1

S
0

v⃗

C
2

C
3

C
1

C
4

p1+2 v⃗

p1p2

p2+2 v⃗

p3

p3+2 v⃗

ϕ1ϕ2

ψ

ψ− v⃗

Figure 6 An example of a shape S0 and its two translations. Starting at p1 ∈ (S2 ∩ S0) \ S1,
we repeat the following procedure: from point pi in connected component Ci of S2 \ S1, jump to
point pi + 2~v, which is guaranteed to be in a different connected component Ci+1 of S2 \ S1 from pi

(see proof of Theorem 8 to see why this is implied by Corollary 5). If Ci+1 intersects S0 at point
pi+1, then there is a curve ϕi in S2 \ S1 from pi + 2~v to pi+1, and jumping to point pi+1 + 2~v takes
us to yet another connected component Ci+2 6= Ci+1. Repeating this must eventually result in a
connected component (in this example, C4) that does not intersect S0, or else the curves ϕi would
contradict Theorem 7.

Proof. We first sketch an informal intuition of the proof, shown by example in Figure 6.
The argument is constructive: it shows a way to iterate through some connected components
of S2 \ S1 to actually find one that does not intersect S0.

Start with component C1, and suppose it intersects S0 at point p1 ∈ C1 ∩ S0. Then
p1 + 2~v ∈ S2 since p1 ∈ S0.1 Let ψ be a path (simple curve) from p1 to p1 + 2~v lying entirely
within S2. Corollary 5 implies that ψ intersects ψ − ~v, which is a curve lying entirely within
S1. In other words, every path from p1 to p1 + 2~v lying inside S2 hits S1, i.e., p1 + 2~v and p1
are in different connected components of S2 \ S1. We call C2 6= C1 the connected component
of p1 + 2~v. Suppose C2 also intersects S0; then there is some curve ϕ1 lying entirely within
S2 \ S1 and going from p1 + 2~v to this new point p2 ∈ C2 ∩ S0. Repeating the previous
argument, p2 + 2~v must be in a different connected component C3 6= C2, and if C3 also
intersects S0, then there is another curve ϕ2 ⊂ C3 from p2 + 2~v to p3 ∈ C3 ∩ S0. In this
example, we iterate this one more time and find that connected component C4 ⊂ S2 \ S1
does not intersect S0.

For the sake of contradiction, suppose that we fail to find such a connected component, i.e.,
every one of the connected components C1, . . . , Ck of S2 \ S1 intersects S0. Then eventually
the above described procedure cycles back to a previously visited connected component, and

1 In this example p1 + 2~v 6∈ S1; in the full argument we consider p1 + n~v for n ∈ Z+ large enough to
ensure this.

SoCG’15

370 Pattern Overlap Implies Runaway Growth in Hierarchical Tile Systems

the curves ϕj contained in S2 \ S1 satisfy condition 1 of Theorem 7. Since each ϕi ∈ S2 \ S1,
we have ϕi +~v ∈ S3 \S2, hence ϕi ∩ (ϕi +~v) = ∅ for all 1 ≤ i ≤ k, so they satisfy condition 2.
Since each curve lies in a different connected component of S2 \ S1, they do not intersect
each other, satisfying condition 3, a contradiction.

More formally, consider connected components of S2 \ S1, say C1, . . . , Ck, for some k ≥ 1.
We say that Ci is non-conflicting if Ci ∩ S0 = ∅. We will show that there is a non-conflicting
Ci. Assume for the sake of contradiction that for every i = 1, . . . , k, Ci ∩ S0 6= ∅ and let
pi ∈ Ci ∩ S0. Note that pi + ~v ∈ S1. Let ni be the smallest positive integer such that
pi + ni~v /∈ S1 (since S1 is finite, such an ni must exist). Since pi + (ni − 1)~v ∈ S1, we have
pi + ni~v ∈ S2 \ S1. Hence, pi + ni~v belongs to some connected component of S2 \ S1. Both
pi and pi + ni~v are in S2, but by Corollary 5, any path within S2 connecting them must
intersect its translation by −~v, which is a path in S1, so pi + ni~v must be in a different
connected component than Ci. We call this connected component Ci+1.2

Consider a simple curve (a self-avoiding path in the lattice) ϕi from pi to pi+1 + ni+1~v in
Ci ⊆ S2 \ S1. Since these paths lie in different connected components they do not intersect.
Furthermore, since ϕi +~v ⊂ S3 \S2, it does not intersect ϕi ⊂ S2. But these curves contradict
Theorem 7. J

3.3 Implication for self-assembly
In this section we use Theorem 8 to prove our main theorem, Theorem 11. We require the
following theorem from [8]. We say that two overlapping assemblies α and β are consistent
if α(p) = β(p) for every p ∈ dom α ∩ dom β. If α and β are consistent, define their union
α∪ β to be the assembly with dom (α∪ β) = dom α∪ dom β defined by (α∪ β)(p) = α(p) if
p ∈ dom α and (α ∪ β)(p) = β(p) if p ∈ dom β. Let α ∪ β be undefined if α and β are not
consistent.

I Theorem 9 ([8]). If α and β are T -producible assemblies that are consistent and overlapping,
then α ∪ β is T -producible. Furthermore, it is possible to assemble first α and then assemble
the missing portions of β, i.e., β�C1 , . . . , β�Ck

, where C1, . . . , Ck are connected components
of dom β \ dom α.

I Definition 10. Let α+ ~v denote the translation of α by ~v, i.e., an assembly β such that
dom β = dom α + ~v and β(p) = α(p − ~v) for all p ∈ dom β. We say that assembly α is
repetitious if there exists a nonzero vector ~v ∈ Z2 such that dom α ∩ dom (α+ ~v) 6= ∅ and α
and α+ ~v are consistent.

Note that Theorem 9 implies that if a producible assembly α is repetitious with translation
vector ~v, then α∪ (α+~v) is also producible. The following is the main theorem of this paper.

I Theorem 11. Let T be a hierarchical tile assembly system. If T has a producible repetitious
assembly, then arbitrarily large assemblies are producible in T .

Proof. It suffices to show that the existence of a producible repetitious assembly α implies the
existence of a strictly larger producible repetitious assembly α′ A α. Let α be a producible

2 Assuming we do this for every point pi, at some point we must cycle back to a connected component
already visited. It may not be that this cycle contains all connected components of S2 \ S1, but in
this case we consider C1, . . . , Ck to be not every connected component of S2 \ S1, but merely those
encountered in the cycle, so that for the sake of notational convenience we can assume that C1, . . . , Ck

are all encountered, and indexed by the order in which they are encountered.

H. L. Chen, D. Doty, J. Maňuch, A. Rafiey, and L. Stacho 371

repetitious assembly, with ~v ∈ Z2 a nonzero vector such that α and α+ ~v overlap and are
consistent. For all i ∈ {0, 1, 2}, let αi = α+ i~v and Si = dom αi.

By Theorem 8, at least one connected component C2 ⊆ S2 \ S1 does not intersect S0.
Define C1 = C2 − ~v. Note that C1 ⊆ S1 \ S0, which implies, since C2 ⊆ S2 \ S1, that
C2 ∩ C1 = ∅. Let ᾱ = α1�C1 . Define α′ = α ∪ ᾱ. By Theorem 9, α′ is producible. Consider
dom α′ ∩ dom (α′+~v); it suffices to show that α′ and α′+~v are consistent on every tile type
in this intersection. We have

dom α′ ∩ dom (α′ + ~v) = (S0 ∪ C1) ∩ (S1 ∪ C2)
= (S0 ∩ S1) ∪ (S0 ∩ C2) ∪ (C1 ∩ S1) ∪ (C1 ∩ C2)
= (S0 ∩ S1) ∪ ∅ ∪ (C1 ∩ S1) ∪ ∅
= (S0 ∩ S1) ∪ C1 .

We handle the cases for S0 ∩ S1 and C1 separately:
S0 ∩ S1: Since C1∩S0∩S1 = ∅, the addition of ᾱ to α0 cannot introduce new tiles anywhere

in S0∩S1, so only tiles from α0 could appear here. By the hypothesis that α0 is consistent
with α1, α′ and α′ + ~v are consistent on S0 ∩ S1.

C1: Observe that α′�C1−~v @ α0 (this is the subassembly of α′ that will overlap C1 after
being translated by ~v) and (α′ + ~v)�C1 @ α1, so the fact that α0 is consistent with α1
implies that α′ and α′ + ~v are consistent on C1 as well.

Hence α′ is repetitious. Since C1 ⊆ S1 \ S0 and is nonempty, |dom α′| > |dom α|. J

Acknowledgements. The authors are extremely grateful to Jozef Haleš for the proof of
Theorem 7. Although Jozef requested not to be a coauthor, that theorem is the keystone of
the paper. The second author is also grateful to David Kirkpatrick, Pierre-Étienne Meunier,
Damien Woods, Shinnosuke Seki, and Andrew Winslow for several insightful discussions.
The third author would like to thank Sheung-Hung Poon for useful discussions.

References

1 Gagan Aggarwal, Qi Cheng, Michael H. Goldwasser, Ming-Yang Kao, Pablo Moisset de Es-
panés, and Robert T. Schweller. Complexities for generalized models of self-assembly. SIAM
Journal on Computing, 34:1493–1515, 2005. Preliminary version appeared in SODA 2004.

2 Robert D. Barish, Rebecca Schulman, Paul W. K. Rothemund, and Erik Winfree. An
information-bearing seed for nucleating algorithmic self-assembly. Proceedings of the Na-
tional Academy of Sciences, 106(15):6054–6059, March 2009.

3 Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz,
Robert T. Schweller, Scott M. Summers, and Andrew Winslow. Two hands are better than
one (up to constant factors). In STACS 2013: Proceedings of the Thirtieth International
Symposium on Theoretical Aspects of Computer Science, pages 172–184, 2013.

4 Ho-Lin Chen and David Doty. Parallelism and time in hierarchical self-assembly. In SODA
2012: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1163–1182, 2012.

5 Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Matthew J. Patitz, Robert T.
Schweller, Andrew Winslow, and Damien Woods. One tile to rule them all: Simulating
any Turing machine, tile assembly system, or tiling system with a single puzzle piece. In
ICALP 2014: Proceedings of the 41st International Colloquium on Automata, Languages,
and Programming, 2014.

SoCG’15

372 Pattern Overlap Implies Runaway Growth in Hierarchical Tile Systems

6 Erik D. Demaine, Matthew J. Patitz, Trent Rogers, Robert T. Schweller, Scott M. Summers,
and Damien Woods. The two-handed tile assembly model is not intrinsically universal. In
ICALP 2013: Proceedings of the 40th International Colloquium on Automata, Languages
and Programming, July 2013.

7 David Doty. Theory of algorithmic self-assembly. Communications of the ACM, 55(12):78–
88, December 2012.

8 David Doty. Producibility in hierarchical self-assembly. In UCNC 2014: Proceedings of
13th Unconventional Computation and Natural Computation, 2014.

9 David Doty, Matthew J. Patitz, Dustin Reishus, Robert T. Schweller, and Scott M. Sum-
mers. Strong fault-tolerance for self-assembly with fuzzy temperature. In FOCS 2010:
Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science,
pages 417–426. IEEE, 2010.

10 David Doty, Matthew J. Patitz, and Scott M. Summers. Limitations of self-assembly at tem-
perature 1. Theoretical Computer Science, 412(1–2):145–158, January 2011. Preliminary
version appeared in DNA 2009.

11 Pierre Étienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, An-
drew Winslow, and Damien Woods. Intrinsic universality in tile self-assembly requires
cooperation. In SODA 2014: Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 752–771, 2014.

12 Kei Goto, Yoko Hinob, Takayuki Kawashima, Masahiro Kaminagab, Emiko Yanob, Gaku
Yamamotob, Nozomi Takagic, and Shigeru Nagasec. Synthesis and crystal structure of
a stable S-nitrosothiol bearing a novel steric protection group and of the corresponding
S-nitrothiol. Tetrahedron Letters, 41(44):8479–8483, 2000.

13 Wilfried Heller and Thomas L. Pugh. “Steric protection” of hydrophobic colloidal particles
by adsorption of flexible macromolecules. Journal of Chemical Physics, 22(10):1778, 1954.

14 Wilfried Heller and Thomas L. Pugh. “Steric” stabilization of colloidal solutions by adsorp-
tion of flexible macromolecules. Journal of Polymer Science, 47(149):203–217, 1960.

15 Chris Luhrs. Polyomino-safe DNA self-assembly via block replacement. Natural Computing,
9(1):97–109, March 2010. Preliminary version appeared in DNA 2008.

16 Ján Maňuch, Ladislav Stacho, and Christine Stoll. Two lower bounds for self-assemblies at
temperature 1. Journal of Computational Biology, 17(6):841–852, 2010.

17 Matthew J. Patitz. An introduction to tile-based self-assembly. In UCNC 2012: Pro-
ceedings of the 11th international conference on Unconventional Computation and Natural
Computation, pages 34–62, Berlin, Heidelberg, 2012. Springer-Verlag.

18 John H. Reif and Tianqi Song. Complexity and computability of temperature-1 tilings.
Poster at DNA 2013: 19th International Meeting on DNA Computing and Molecular Pro-
gramming, 2013.

19 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares (extended abstract). In STOC 2000: Proceedings of the Thirty-Second Annual
ACM Symposium on Theory of Computing, pages 459–468, 2000.

20 Rebecca Schulman and Erik Winfree. Synthesis of crystals with a programmable kinetic
barrier to nucleation. Proceedings of the National Academy of Sciences, 104(39):15236–
15241, 2007.

21 Rebecca Schulman and Erik Winfree. Programmable control of nucleation for algorithmic
self-assembly. SIAM Journal on Computing, 39(4):1581–1616, 2009. Preliminary version
appeared in DNA 2004.

22 Leroy G. Wade. Organic Chemistry. Prentice Hall, 2nd edition, 1991.
23 Erik Winfree. Simulations of computing by self-assembly. Technical Report CaltechC-

STR:1998.22, California Institute of Technology, 1998.

H. L. Chen, D. Doty, J. Maňuch, A. Rafiey, and L. Stacho 373

24 Erik Winfree. Self-healing tile sets. In Junghuei Chen, Natasa Jonoska, and Grzegorz
Rozenberg, editors, Nanotechnology: Science and Computation, Natural Computing Series,
pages 55–78. Springer, 2006.

25 Erik Winfree, Furong Liu, Lisa A. Wenzler, and Nadrian C. Seeman. Design and self-
assembly of two-dimensional DNA crystals. Nature, 394(6693):539–44, 1998.

A Appendix

A.1 Formal definition of the hierarchical tile assembly model
We will consider the square lattice, i.e., the graph L� with the vertex set Z2 and the edge
set {(u, v) : |u, v| = 1}. The directions D = {N,E, S,W} are used to indicate the natural
directions in the lattice. Formally, they are functions from Z×Z to Z×Z: N(x, y) = (x, y+1),
E(x, y) = (x+ 1, y), S(x, y) = (x, y − 1), and W (x, y) = (x− 1, y). Note that −E = W and
−N = S.

Informally, a tile is a square with the north, east, south, and west edges labeled from some
finite alphabet Σ of glues. Formally, a tile t is a 4-tuple (gN , gE , gS , gW) ∈ Σ4, indicating the
glues on the north, east, south, and west side, respectively. Each pair of glues g and g′ is
associated with a nonnegative integer str(g, g′) called the interaction strength.

An assembly on a set of tiles T is a partial map α : Z2 99K T such that the subgraph
of L� induced by the domain of α, denoted by L�[dom α], is connected. The weighted
subgraph induced by α, denoted by L�[α], is L�[dom α] in which every edge pq has weight
equal to the interaction strength of the glues on the abutting sides of tiles at positions p and
q, respectively, i.e., str(α(p)d, α(q)−d) where d = q − p. Given a positive integer τ ∈ Z+,
called a temperature, a set of edges of L�[α] of an assembly α is τ -stable if the sum of the
weights of edges in this set is at least τ , and assembly α is τ -stable if every edge cut of L�[α]
is τ -stable.

A hierarchical tile assembly system (hierarchical TAS) is a triple T = (T, τ, str), where
T is a finite set of tile types, τ ∈ Z+ and str : Σ × Σ → N is the interaction strength
function. Let α, β : Z2 → T be two assemblies. We say that α and β are nonoverlapping
if dom α ∩ dom β = ∅. Two assemblies α and β are consistent if α(p) = β(p) for all
p ∈ dom α ∩ dom β. If α and β are consistent assemblies, define the assembly α ∪ β in a
natural way, i.e., dom (α ∪ β) = dom α ∪ dom β and (α ∪ β)(p) = α(p) for p ∈ dom α and
(α ∪ β)(p) = β(p) for p ∈ dom β. If α and β are nonoverlapping, the cut of the union α ∪ β
is the set of edges of L� with one end-point in dom α and the other end-point in dom β.
An assembly γ is singular if |dom γ| = 1. We say that an assembly γ is T -producible if
either γ is singular or there exist T -producible nonoverlapping assemblies α and β such that
γ = α ∪ β and the cut of α ∪ β is τ -stable. In the latter case, we write α+ β →T1 γ. Note
that every T -producible assembly is τ -stable. A T -producible assembly α is T -terminal if
there are no T -producible assemblies β and γ such that α+ β →T1 γ. We say two assemblies
α and β are equivalent up to translation, written α ' β, if there is a vector ~x ∈ Z2 such
that dom α = dom β + ~x and for all p ∈ dom β, α(p+ ~x) = β(p). We say that T uniquely
produces α if α is T -terminal and for every T -terminal assembly β, α ' β.

A restriction of an assembly α to a set D ⊆ dom α, denoted by α�D, is dom α�D = D

and for every p ∈ D, α�D(p) = α(p). If C is a subgraph of L� such that V (C) ⊆ dom α, we
define α�C = α�V (C).

When T is clear from context, we may omit T from the notation above and instead write
→1, →, produces, producible, and terminal.

SoCG’15

Space Exploration via Proximity Search∗

Sariel Har-Peled1, Nirman Kumar2, David M. Mount3, and
Benjamin Raichel1

1 Department of Computer Science, University of Illinois
201 N. Goodwin Avenue, Urbana, IL, 61801, USA
{sariel,raichel2}@illinois.edu

2 Department of Computer Science, University of California
2120B Harold Frank Hall, Santa Barbara, CA, 93106, USA
nirman@cs.ucsb.edu

3 Department of Computer Science, University of Maryland
College Park, MD, 20742, USA
mount@cs.umd.edu

Abstract
We investigate what computational tasks can be performed on a point set in Rd, if we are only
given black-box access to it via nearest-neighbor search. This is a reasonable assumption if the
underlying point set is either provided implicitly, or it is stored in a data structure that can
answer such queries. In particular, we show the following:
(A) One can compute an approximate bi-criteria k-center clustering of the point set, and more

generally compute a greedy permutation of the point set.
(B) One can decide if a query point is (approximately) inside the convex-hull of the point set.
We also investigate the problem of clustering the given point set, such that meaningful proximity
queries can be carried out on the centers of the clusters, instead of the whole point set.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, I.1.2 Algorithms,
I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Proximity search, implicit point set, probing

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.374

1 Introduction

Many problems in Computational Geometry involve sets of points in Rd. Traditionally, such
a point set is presented explicitly, say, as a list of coordinate vectors. There are, however,
numerous applications in science and engineering where point sets are presented implicitly.
This may arise for various reasons: (I) the point set (which might be infinite) is a physical
structure that is represented in terms of a finite set of sensed measurements such as a point
cloud, (II) the set is too large to be stored explicitly in memory, or (II) the set is procedurally
generated from a highly compressed form. (A number of concrete examples are described
below.)

Access to such an implicitly-represented point set P is performed through an oracle that is
capable of answering queries of a particular type. We can think of this oracle as a black-box

∗ Work on this paper by S.H. and B.R. was partially supported by NSF AF awards CCF-1421231, and
CCF-1217462. N. K. was partially supported by a NSF AF award CCF-1217462 while at UIUC, and by
NSF grant CCF-1161495 and a grant from DARPA while at UCSB. D. M. was partially supported by
NSF award CCF-1117259 and ONR award N00014-08-1-1015. The full paper is available online [12].

© Sariel Har-Peled, Nirman Kumar, David Mount, and Benjamin Raichel;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 374–389

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.374
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 375

data structure, which is provided to us in lieu of an explicit representation. Various types of
probes have been studied (such as finger probes, line probes, and X-ray probes [19]). Most
of these assume that P is connected (e.g., a convex polygon) and cannot be applied when
dealing with arbitrary point sets. In this paper, we consider proximity probes – a natural
choice for probing general point sets based on computing nearest neighbors.

More formally, we assume that the point set P is a (not necessarily finite) compact subset
of Rd. The point set P is accessible only through a nearest-neighbor data structure, which
given a query point q, returns the closest point of P to q. Some of our results assume
that the data structure returns an exact nearest neighbor (NN) and others assume that the
data structure returns a (1 + ε)-approximate nearest-neighbor (ANN). (See Section 2 for
definitions.) In any probing scenario, it is necessary to begin with a general notion of the
set’s spatial location. The point set P is contained within a given domain, which is a compact
subset D of Rd.

The oracle is given as a black-box, and no deletions or insertions are allowed from the
data structure. Furthermore, the number of data points in P is not necessarily known, nor
is there any assumption on continuity or smoothness. Indeed, most of our results apply to
infinite point sets, including volumes or surfaces.

Prior Work and Applications
Implicitly-represented point sets arise in various applications. One example is that of
analyzing a geometric shape through probing. An example of this is Atomic Force Microscopy
(AFM) [22]. This technology can reveal the undulations of a surface at the resolution of
fractions of a nanometer. It relies on the principle that when an appropriately designed tip
(the probe) is brought in the proximity of a surface to scan it, certain atomic forces minutely
deflect the tip in the direction of the surface. Since the deflection of the tip is generally to
the closest point on the surface, this mode of acquisition is an example of proximity probing.
A sufficient number of such samples can be used to reconstruct the surface [2].

The topic of shape analysis through probing has been well studied within the field
of computational geometry. The most commonly assumed probe is a finger probe, which
determines the first point of contact of a ray and the set. Cole and Yap [6] pioneered this
area by analyzing the minimum number of finger probes needed to reconstruct a convex
polygon. Since then, various alternative probing methods have been considered. For good
surveys of this area, see Skiena [19, 20].

More recently, Boissonnat et al. [4] presented an algorithm for learning a smooth unknown
surface S bounding an object O in R3 through the use of finger probes. Under some reasonable
assumptions, their algorithm computes a triangulated surface Ŝ that approximates S to a
given level of accuracy. In contrast to our work, which applies to general point sets, all of
these earlier results assume that the set in question is a connected shape or surface.

Implicitly-represented point sets also arise in geometric modeling. Complex geometric
sets are often generated from much smaller representations. One example are fractals sets,
which are often used to model natural phenomena such as plants, clouds, and terrains [21].
Fractals are often expressed as the limit of an iterative process [16]. Due to their regular,
recursive structure it is often possible to answer proximity queries about such a set without
generating the set itself.

Two other examples of infinite sets generated implicitly from finite models include
(I) subdivision surfaces [1], where a smooth surface is generated by applying a recursive
refinement process to a finite set of boundary points, and (II) metaballs [3], where a surface
is defined by a blending function applied to a collection of geometric balls. In both cases, it

SoCG’15

376 Space Exploration via Proximity Search

is possible to answer nearest neighbor queries for the underlying object to arbitrarily high
precision without the need to generate its boundary.

Proximity queries have been applied before. Panahi et al. [18] use proximity probes on a
convex polygon in the plane to reconstruct it exactly. Goel et al. [8], reduce the approximation
versions of several problems like diameter, farthest neighbors, discrete center, metric facility
location, bottleneck matching and minimum weight matching to nearest neighbor queries.
They sometimes require other primitives for their algorithms, for example computation
of the minimum enclosing ball or a dynamic version of the approximate nearest-neighbor
oracle. Similarly, the computation of the minimum spanning tree [11] can be done using
nearest-neighbor queries (but the data structure needs to support deletions). For more
details, see the survey by Indyk [14].

Our contributions

In this paper we consider a number of problems on implicitly-represented point sets.

k-center clustering and the greedy permutation. Given a point set P, a greedy permutation
(informally) is an ordering of the points of P: p1, . . . , pk, . . . , such that for any k, the set of
points {p1, . . . , pk} is a O(1)-approximation to the optimal k-center clustering. This sequence
arises in the k-center approximation of Gonzalez [9], and its properties were analyzed by
Har-Peled and Mendel [13]. Specifically, if P can be covered by k balls of radius rk, then the
maximum distance of any point of P to its nearest neighbor in {p1, . . . , pk} is O(rk).

In Section 3, we show that under reasonable assumptions, in constant dimension, one can
compute a permutation that is a bi-criteria approximation to the optimal k center clustering.
More formally, we can compute a sequence of points from P, p1, p2, . . ., such for any k, the
radius of clustering using the centers in {p1, . . . , pck} is an O(1)-approximation to the optimal
k center clustering radius, where c is a constant depending only on the dimension. This
result uses exact proximity queries, and only one query per sequence point generated. If
the oracle answers (1 + ε)-ANN queries only, then for any k, the permutation generated is
competitive with the optimal k-center clustering, considering the first O

(
k log1/ε Φ

)
points

in this permutation, where Φ is (roughly) the spread of the point set. The hidden constant
factors grow exponentially in the dimension.

Approximate convex-hull membership. Given a point set P in Rd, consider the problem
of deciding whether a given query point q ∈ Rd is inside its convex-hull C = CH(P). The
answer for such a query is ε-approximately correct if the answer is correct whenever the
query point’s distance from the boundary of C is at least ε · diam(C). In Section 4, we show
that, given an oracle for (1 + ε2/c)-ANN queries, for some sufficiently large constant c, it is
possible to answer approximate convex-hull membership queries using O(1/ε2) proximity
queries. Remarkably, the number of queries is independent of the dimension of the data.

Our algorithm operates iteratively, by employing a gradient descent-like approach. It
generates a sequence of points, all within the convex hull, that converges to the query point.
Similar techniques have been used before, and are sometimes referred to as the Frank-Wolfe
algorithm. Clarkson provides a survey and some new results of this type [5]. A recent
algorithm of this type is the work by Kalantari [15]. Our main new contribution for the
convex-hull membership problem is showing that the iterative algorithm can be applied to
implicit point sets using nearest-neighbor queries.

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 377

Balanced proximity clustering. We study a problem that involves summarizing a point set
in a way that preserves proximity information. Specifically, given a set P of n points in Rd,
and a parameter k, the objective is to select m centers from P, such that if we assign every
point of P to its nearest center, no center has been selected by more than k points. This
problem is related to topic of capacitated clustering from operations research [17].

In Section 5, we show that in the plane there exists such a clustering consisting of O(n/k)
such centers, and that in higher dimensions one can select O((n/k) log(n/k)) centers (where
the constant depends on the dimension). This result is not directly related to the other
results in the paper.

Paper organization. In Section 2 we review some relevant work on k-center clustering.
In Section 3 we provide our algorithm to compute an approximate k-center clustering. In
Section 4 we show how we can decide approximately if a query point is within the convex hull
of the given data points in a constant number of queries, where the constant depends on the
degree of accuracy desired. Finally, in Section 5 we investigate balanced Voronoi partitions,
which provides a density-based clustering of the data. Here we assume that all the data is
known and the goal is to come up with a useful clustering that can help in proximity search
queries.

2 Preliminaries

2.1 Background – k-center clustering and the greedy permutation
The following is taken from [10, Chap. 4], and is provided here for the sake of completeness.

In the k-center clustering problem, a set P ⊆ Rd of n points is provided together
with a parameter k. The objective is to find a set of k points, C ⊆ P, such that the
maximum distance of a point in P to its closest point in C is minimized. Formally, define
price(C,P) = maxp∈P minc∈C ‖p− c‖ . Let Copt denote the set of centers achieving this
minimum. The k-center problem can be interpreted as the problem of computing the
minimum radius, called the k-center clustering radius, such that it is possible to cover the
points of P using k balls of this radius, each centered at one of the data points. It is known
that k-center clustering is NP-hard. Even in the plane, it is NP-hard to approximate to
within a factor of

(
1 +
√

7
)
/2 ≈ 1.82 [7].

The greedy clustering algorithm. Gonzalez [9] provided a 2-approximation algorithm for
k-center clustering. This algorithm, denoted by GreedyKCenter, repeatedly picks the point
farthest away from the current set of centers and adds it to this set. Specifically, it starts
by picking an arbitrary point, c1, and setting C1 = {c1}. For i > 1, in the ith iteration, the
algorithm computes

ri−1 = price(Ci−1,P) = max
p∈P

d(p,Ci−1) (2.1)

and the point ci that realizes it, where d(p,Ci−1) = minc∈Ci−1 ‖p− c‖ . Next, the algorithm
adds ci to Ci−1 to form the new set Ci. This process is repeated until k points have been
collected.

If we run GreedyKCenter till it exhausts all the points of P (i.e., k = n), then this
algorithm generates a permutation of P; that is, 〈P〉 = 〈c1, . . . , cn〉. We will refer to 〈P〉
as the greedy permutation of P. There is also an associated sequence of radii 〈r1, . . . , rn〉,
and the key property of the greedy permutation is that for each i with 1 ≤ i ≤ n, all the

SoCG’15

378 Space Exploration via Proximity Search

points of P are within a distance at most ri from the points of Ci = 〈c1, . . . , ci〉. The greedy
permutation has applications to packings, which we describe next.

I Definition 1. A set S ⊆ P is an r-packing for P if the following two properties hold:
(i) Covering property: All the points of P are within a distance at most r from the points

of S.
(ii) Separation property: For any pair of points p, x ∈ S, ‖p− x‖ ≥ r.
(For most purposes, one can relax the separation property by requiring that the points of S
be at distance Ω(r) from each other.)

Intuitively, an r-packing of a point set P is a compact representation of P at resolution r.
Surprisingly, the greedy permutation of P provides us with such a representation for all
resolutions.

I Lemma 2 ([10]).
(A) Let P be a set of n points in Rd, and let its greedy permutation be 〈c1, . . . , cn〉 with the

associated sequence of radii 〈r1, . . . , rn〉. For any i, Ci = 〈c1, . . . , ci〉 is an ri-packing of
P. Furthermore, ri is a 2-approximation for the optimal i-center clustering radius of P.

(B) For any k, let rkopt be the radius of the optimal k-center clustering of P. Then, for any
constant c, rO(cdk)

opt ≤ rkopt/c.

(C) Computing the optimal k-center clustering of the first O(k/εd) points of the greedy
permutation, after appropriate rescaling, results in a (1 + ε)-approximation to the
optimal k-center clustering of P.

2.2 Setup
Our algorithms operate on a (not necessarily finite) point set P in Rd. We assume that
we are given a compact subset of Rd, called the domain and denoted D, such that P ⊆ D.
Throughout we assume that D is the unit hypercube [0, 1]d. The set P (not necessarily finite)
is contained in D.

Given a query point q ∈ [0, 1]d, let nn(q,P) = arg minp∈P ‖q− p‖ denote the nearest
neighbor (NN) of q. We say a point x is a (1 + ε)-approximate nearest-neighbor (ANN)
for q if ‖q− x‖ ≤ (1 + ε) ‖q− nn(q,P)‖. We assume that the sole access to P is through
“black-box” data structures Tnn and Tann, which given a query point q, return the NN and
ANN, respectively, to q in P.

3 Using proximity search to compute k-center clustering

The problem. Our purpose is to compute (or approximately compute) a k-center clustering
of P through the ANN black box we have, where k is a given parameter between 1 and n.

3.1 Greedy permutation via NN queries: GreedyPermutNN

Let q0 be an arbitrary point in D. Let ν0 be its nearest-neighbor in P computed using the
provided NN data structure Tnn. Let b0 = ball(q0, ‖q0 − ν0‖) be the open ball of radius
‖q0 − ν0‖ centered at q0. Finally, let G0 = {ν0}, and let D0 = D \ b0.

In the ith iteration, for i > 0, let qi be the point inDi−1 farthest away fromGi−1. Formally,
this is the point in Di−1 that maximizes d(qi, Gi−1), where d(q, X) = minc∈X ‖c− q‖. Let
νi = nn(qi,P) denote the nearest-neighbor νi to qi in P, computed using Tnn. Let

ri = d(qi, Gi−1), bi = ball(qi, ri), Gi = Gi−1 ∪ {νi} , and Di = Di−1 \ bi.

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 379

Left to its own devices, this algorithm computes a sequence of not necessarily distinct
points ν0, ν1, . . . of P. If P is not finite then this sequence may also have infinitely many
distinct points. Furthermore, D0 ⊇ D1 ⊇ . . . is a sequence of outer approximations to P.

The execution of this algorithm is illustrated in Figure 1.

3.2 Analysis
Let O = {o1, . . . , ok} be an optimal set of k centers of P. Formally, it is a set of k points in P
that minimizes the quantity rkopt = maxq∈P d(q,O). Specifically, rkopt is the smallest possible
radius such that k closed balls of that radius centered at points in P, cover P. Our claim is
that after O(k) iterations of the algorithm GreedyPermutNN, the sequence of points provides
a similar quality clustering of P.

For any given point p ∈ Rd we can cover the sphere of directions centered at p by narrow
cones of angular diameter at most π/12. We fix such a covering, denoting the set of cones
by Cp, and observe that the number of such cones is a constant cd that depends on the
dimension. Moreover, by simple translation we can transfer such a covering to be centered at
any point p′ ∈ Rd.

I Lemma 3. After µ = kcd iterations, for any optimal center oi ∈ O, we have d(oi, Gµ) ≤
3ropt, where ropt = rkopt.

Proof. If for any j ≤ µ, we have rj ≤ 3ropt then all the points of Dj−1 ⊇ P are in distance
at most 3ropt from Gj , and the claim trivially holds as O ⊆ P.

Let o be an optimal center and let Po be the set of points of P that are closest to o among
all the centers of O, i.e., Po is the cluster of o in the optimal clustering. Fix a cone φ from
Co (φ’s apex is at o). Consider the output sequence ν0, ν1, . . ., and the corresponding query
sequence q0, q1, . . . computed by the algorithm. In the following, we use the property of the
algorithm that r1 ≥ r2 ≥ · · · , where ri = d(qi, Gi−1). A point qj is admissible if (i) νj ∈ Po,
and (ii) qj ∈ φ (in particular, νj is not necessarily in φ).

We proceed to show that there are at most
O(1) admissible points for a fixed cone, which
by a packing argument will imply the claim
as every qj is admissible for exactly one cone.
Consider the induced subsequence of the output
sequence restricted to the admissible points of
φ: ν′1, ν′2, . . ., and let q′1, q′2, . . . be the corres-
ponding query points used by the algorithm.

φ

o

ropt

ν ′i

q′i

Formally, for a point ν′i in this sequence, let iter(i) be the iteration of the algorithm it was
created. Thus, for all i, we have q′i = qiter(i) and ν′i = νiter(i).

Observe that Po ⊆ P ∩ ball(o, ropt). This implies that
∥∥ν′j − o∥∥ ≤ ropt, for all j.

Let `′i = ‖q′i − ν′i‖ and r′i = d
(
q′i, Giter(i)−1

)
. Observe that for i > 1, we have `′i ≤ r′i ≤

`′i + 2ropt, as ν′i−1 ∈ Po. Hence, if `′i ≤ ropt, then r′i ≤ 3ropt, and we are done. This implies
that for any i, j, such that 1 < i < j, it must be that

∥∥q′i − q′j
∥∥ ≥ `′i > ropt, as the algorithm

carves out a ball of radius `′i around q′i, and q′j must be outside this ball.
By a standard packing argument, there can be only O(1) points in the sequence q′2, q′3, . . .

that are within distance at most 10ropt from o. If there are no points beyond this distance,
we are done. Otherwise, let i > 1 be the minimum index, such that q′i is at distance larger
than 10ropt from o. We now prove that the points of φ \ ball(q′i, `′i) are of two types – those
contained within ball(o, 3ropt) and those that lie at distance greater than (4/3)`′i from o.

SoCG’15

380 Space Exploration via Proximity Search

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

Figure 1 An example of the execution of the algorithm GreedyPermutNN of Section 3.1.

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 381

To see this, observe that since the angle of the cone was chosen to
be sufficiently small, ball(q′i, `′i) splits φ into two components, where
all the points in the component containing o are distance < 3ropt
from o. The minimum distance to o (from a point in the component
not containing o) is realized when q′i is on the boundary of φ and o

o φ
`iβ

is on the boundary of ball(q′i, `′i). Then the distance of any point of φ \ ball(q′i, `′i) from o

is at least 2`′i cos(β) ≥ 2`′i
√

3/4 ≥ 1.73`i, as the opening angle of the cone is at most π/12.
(See the figure on the right.) The general case is somewhat more complicated as o might be
in distance at most ropt from the boundary of ball(q′i, `′i), but as `i ≥ 10ropt, the claim still
holds – we omit the tedious but straightforward calculations.

In particular, this implies that any later point q′k in the sequence (i.e., k > i) is either
one of the O(1) close points, or it must be far away, but then it is easy to argue that r′k must
be larger than r′i, which is a contradiction as r2 ≥ r3 ≥ · · · (as r′i appears before r′k in this
sequence). J

The above lemma readily implies the following.

I Theorem 4. Let P ⊆ D be a given set of points in Rd (not necessarily finite), where D is
a bounded set in Rd. Furthermore, assume that P can be accessed only via a data structure
Tnn that answers exact nearest-neighbor (NN) queries on P. The algorithm GreedyPermutNN,
described in Section 3.1, computes a permutation 〈ν0, . . .〉 of P, such that, for any k > 0,
P ⊆

⋃ck
i=1 ball

(
νi, r

k
opt
)
, where c is a constant (independent of k), and rkopt is the minimum

radius of k balls (of the same radius) needed to cover P.
The algorithm can be implemented, such that running it for i iterations, takes polynomial

time in i and involves i calls to Tnn.

Proof. Using Lemma 2b in Lemma 3 implies the result. As for the running time, naively
one needs to maintain the arrangement of balls inside the domain, and this can be done in
polynomial time in the number of balls. J

I Observation 5. If P is finite of size n, the above theorem implies that after i ≥ cn

iterations, one can recover the entire point set P (as rnopt = 0). Therefore cn is an upper
bound on the number of queries for any problem. Note however that in general our goal is to
demonstrate when problems can be solved using a significantly smaller amount of NN queries.

The above also implies an algorithm for approximating the diameter.

I Lemma 6. Consider the setting of Theorem 4 using an exact nearest-neighbor oracle.
Suppose that the algorithm is run for m = cd + 1 iterations, and let ν1, . . . , νm be the
set of output centers and r1, . . . , rm be the corresponding distances. Then, diam(P)/3 ≤
max(diam(ν1, . . . , νm), rm) ≤ 3 · diam(P).

Proof. Since the discrete one-center clustering radius lies in the interval [diam(P)/2,diam(P)],
the proof of Lemma 3 implies that rm ≤ 3ropt ≤ 3 · diam(P). Moreover, each νi is in P, and
so diam(ν1, . . . , νm) ≤ diam(P). Thus the upper bound follows.

For the lower bound, observe that if diam(ν1, . . . , νm) < diam(P)/3, as well as rm <

diam(P)/3, then it must be true that P ⊆ Dm−1 ⊆
⋃l
j=1 ball(νj , rm) has diameter less than

diam(P), a contradiction. J

SoCG’15

382 Space Exploration via Proximity Search

3.3 Using approximate nearest-neighbor search

If we are using an ANN black box Tann to implement the algorithm, one can no longer scoop
away the ball bi = ball(qi, ‖qi − νi‖) at the ith iteration, as it might contain some of the points
of P. Instead, one has to be more conservative, and use the ball b′i = ball(qi, (1− ε) ‖qi − νi‖)
Now, we might need to perform several queries till the volume being scooped away is
equivalent to a single exact query.

Specifically, let P be a finite set, and consider its associated spread: Φ = diam(D0)
minp,x∈P‖p−x‖ .

We can no longer claim, as in Lemma 3, that each cone would be visited only one time (or
constant number of times). Instead, it is easy to verify that each query point in the cone,
shrinks the diameter of the domain restricted to the cone by a factor of roughly ε. As such,
at most O

(
log1/ε Φ

)
query points would be associated with each cone.

I Corollary 7. Consider the setting of Theorem 4, with the modification that we use a
(1 + ε)-ANN data structure Tann to access P. Then, for any k, P ⊆

⋃f(k)
i=1 ball

(
νi, r

k
opt
)
, where

f(k) = O
(
k log1/ε Φ

)
.

3.4 Discussion

Outer approximation. As implied by the algorithm description, one can think about the
algorithm providing an outer approximation to the set: D1 ⊇ D2 ⊇ · · · ⊇ P. As demonstrated
in Figure 1, the sequence of points computed by the algorithm seems to be a reasonable
greedy permutation of the underlying set. However, the generated outer approximation seems
to be inferior. If the purpose is to obtain a better outer approximation, a better strategy
may be to pick the ith query point qi as the point inside Di farthest away from ∂Di−1 ∪Gi−1

Implementation details. We have not spent any effort to describe in detail the algorithm of
Theorem 4, mainly because an implementation of the exact version seems quite challenging
in practice. A more practical approach would be to describe the uncovered domain Di
approximately, by approximating from the inside, every ball bi by an O

(
1/εd

)
grid of cubes,

and maintaining these cubes using a (compressed) quadtree. This provides an explicit
representation of the complement of the union of the approximate balls. Next, one would
need to maintain for every free leaf of this quadtree, a list of points of Gi that might serve
as its nearest neighbors – in the spirit of approximate Voronoi diagrams [10].

4 Convex-hull membership queries via proximity queries

Let P be a set of n points in Rd, let ∆ denote P’s diameter, and let ε > 0 be a prespecified
parameter. We assume that the value of ∆ is known, although a constant approximation
to this value is sufficient for our purposes. (See Lemma 6 on how to compute this under
reasonable assumptions.)

Let C = CH(P) denote P’s convex hull. Given a query point q ∈ Rd, the task at hand is
to determine whether q is in C. As before, we assume that our only access to P is via an
ANN data structure. There are two possible outputs:
(A) In: if q ∈ C, and
(B) Out: if q is at distance greater than ε∆ from C,
Either answer is acceptable if q lies within distance ε∆ of ∂C.

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 383

4.1 Convex hull membership queries using exact extremal queries
We first solve the problem using exact extremal queries and then later show these queries
can be answered approximately with ANN queries.

4.1.1 The algorithm
We construct a sequence of points p0, p1, . . . each guaranteed to
be in the convex hull C of P and use them to determine whether
q ∈ C. The algorithm is as follows. Let p0 be an arbitrary
point of P. For i > 0, in the ith iteration, the algorithm checks
whether ‖pi−1 − q‖ ≤ ε∆, and if so the algorithm outputs In
and stops.

Otherwise, consider the ray ψi emanating from pi−1 in the

pi−1

q

C ψi

z′ipi

zi

direction of q. The algorithm computes the point zi ∈ P that is extremal in the direction
of this ray. If the projection z′i of zi on the line supporting ψi is between pi−1 and q, then
q is outside the convex-hull C, and the algorithm stops and returns Out. Otherwise, the
algorithm sets pi to be the projection of q on the line segment pi−1zi, and continues to the
next iteration. (See the figure on the right and Figure 2.)

For a suitable constant c (see Lemma 9), if the algorithm does not terminate after c/ε2

iterations, it stops and returns Out.

4.1.2 Analysis

I Lemma 8. If the algorithm runs for more than i iterations, then di <
(

1− ε2

2

)
di−1, where

di = ‖q− pi‖.

Proof. By construction, pi, pi−1, and q form a right angle triangle. The proof now follows
by a direct trigonometric argument. Consider Figure 2. We have the following properties:

pi−1

q z′ipi

zi

β

Figure 2

(A) The triangles 4pi−1z′izi and 4pi−1piq are similar.
(B) Because the algorithm has not terminated in the ith iteration,

‖pi−1 − q‖ > ε∆.
(C) The point q must be between pi−1 and z′i, as otherwise the

algorithm would have Thus, ‖pi−1 − z′i‖ ≥ ‖pi−1 − q‖ > ε∆.
(D) We have ‖pi−1 − zi‖ ≤ ∆, since both points are in C.

We conclude that cosβ = ‖pi−1 − z′i‖
‖pi−1 − zi‖

>
ε∆
∆ = ε. Now, we have

‖q− pi‖ = ‖q− pi−1‖ sin β = ‖q− pi−1‖
√

1− cos2 β <
√

1− ε2 ‖q− pi−1‖

<

(
1− ε2

2

)
‖q− pi−1‖ ,

since (1− ε2/2)2 > 1− ε2. J

I Lemma 9. Either the algorithm stops within O
(
1/ε2) iterations with a correct answer, or

the query point lies at distance more than ε∆ from the convex hull C; in the latter case, since
the algorithm says Out its output is correct.

SoCG’15

384 Space Exploration via Proximity Search

q

pi z′i

pi−1

zi

∆
(ε/2)∆

Figure 3 Worse case if extremal queries are approximate.

Proof. If the algorithm stops before it completes the maximum number of iterations, it can
be verified that the output is correct as there is an easy certificate for this in each of the
possible cases.

Otherwise, suppose that the query point is within ε∆ of C. We argue that this leads to a
contradiction; thus the query point must be more than ε∆ far from C and the output of the
algorithm is correct. Observe that di is a monotone decreasing quantity that starts at values
≤ ∆ (i.e, d0 ≤ ∆), since otherwise the algorithm terminates after the first iteration, as z′1
would be between q and p0 on ψ1.

Consider the jth epoch to be block of iterations of the algorithm, where 2−j∆ < di ≤
2−j+1∆. Following the proof of Lemma 8, one observes that during the jth epoch one can
set εj = 1/2j in place of ε, and using the argument it is easy to show that the jth epoch
lasts O(1/ε2

j) iterations. By assumption, since the algorithm continued for the maximum
number of iterations we have di > ε∆, and so the maximum number of epochs is dlg(1/ε)e.
As such, the total number of iterations is

∑dlg(1/ε)e
j=1 O(1/ε2

j) = O(1/ε2). Since the algorithm
did not stop, this is a contradiction. J

4.1.3 Approximate extremal queries
For our purposes, approximate extremal queries on P are sufficient.

I Definition 10. A data structure provides ε-approximate extremal queries for P, if for any
query unit vector v, it returns a point p, such that

∀x ∈ P, 〈v, x〉 ≤ 〈v, p〉+ ε · diam(P),

where 〈v, x〉 denotes the dot-product of v with x.

One can now modify the algorithm of Section 4.1.1 to use, say, ε/4-approximate extremal
queries on P. Indeed, one modifies the algorithm so it stops only if zi is on the segment
pi−1q, and it is in distance more than ε∆/4 away from q. Otherwise the algorithm continues.
It is straightforward but tedious to prove that the same algorithm performs asymptotically
the same number of iterations (intuitively, all that happens is that the constants get slightly
worse). The worse case as far progress in a single iteration is depicted in Figure 3.

I Lemma 11. The algorithm of Section 4.1.1 can be modified to use ε/4-approximate extremal
queries and output a correct answer after performing O

(
1/ε2) iterations.

4.2 Convex-hull membership via ANN queries
4.2.1 Approximate extremal queries via ANN queries
The basic idea is to replace the extremal empty half-space query, by an ANN query. Specifically,
a (1 + δ)-ANN query performed at q returns us a point p, such that

∀x ∈ P, ‖q− p‖ ≤ (1 + δ) ‖q− x‖ .

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 385

pi−1
q

yi
`

(1 + δ)`

y′i
qi

h

zi

z′i

u

Figure 4 Illustration of the proof of Lemma 12.

Namely, ball
(

q, ‖q−p‖
1+δ

)
does not contain any points of P. Locally, a ball looks like a halfspace,

and so by taking the query point to be sufficiently far and the approximation parameter to
be sufficiently small, the resulting empty ball and its associated ANN can be used as the
answer to an extremal direction query.

4.2.2 The modified algorithm
Assume the algorithm is given a data structure Tann that can answer (1 + δ)-ANN queries on
P. Also assume that it is provided with an initial point p0 ∈ P, and a value ∆′ that is, say, a
2-approximation to ∆ = diam(P), that is ∆ ≤ ∆′ ≤ 2∆.

In the ith iteration, the algorithm considers (again) the ray ψi starting from pi, in the
direction of q. Let qi be the point within distance, say,

τ = c∆′/ε (4.1)

from pi−1 along ψi, where c is an appropriate constant to be determined shortly. Next, let zi
be the (1 + δ)-ANN returned by Tann for the query point qi, where the value of δ would be
specified shortly. The algorithm now continues as before, by setting pi to be the nearest point
on pi−1zi to q. Naturally, if ‖q− pi‖ falls below ε∆′/2, the algorithm stops, and returns
In, and otherwise the algorithm continues to the next iteration. As before, for a suitable
constant c, if the algorithm does not terminate after c/ε2 iterations, it stops and returns
Out.

4.2.3 Analysis
I Lemma 12. Let 0 < ε ≤ 1 be a prespecified parameter, and let δ = ε2/(32− ε)2 = O(ε2).
Then, a (1 + δ)-ANN query done using qi (as defined in Section 4.2.2), returns a point zi
which is a valid ε-approximate extremal query on P, in the direction of ψi.

Proof. Consider the extreme point yi ∈ P in the direction of ψi. Let y′i be the projection of
yi to the segment pi−1qi, and let ` = ‖qi − yi‖. See Figure 4.

The (1 + δ)-ANN to qi (i.e., the point zi), must be inside the ball b = ball(qi, (1 + δ)`),
and let z′i be its projection to the segment pi−1qi.

Now, if we interpret zi as the returned answer for the approximate extremal query, then
the error is the distance ‖z′i − y′i‖, which is maximized if z′i is as close to pi−1 as possible. In

SoCG’15

386 Space Exploration via Proximity Search

particular, let u be the point in distance (1 + δ)` from qi along the segment pi−1qi. We then
have that ‖z′i − y′i‖ ≤ h = ‖u− y′i‖ . Now, since ‖y′i − yi‖ ≤ ‖pi−1 − yi‖ ≤ ∆′, we have

h = ‖u− y′i‖ ≤ (1 + δ)`− ‖y′i − qi‖ = (1 + δ)`−
√
`2 − ‖y′i − yi‖2

≤ (1 + δ)`−
√
`2 − (∆′)2 = (1 + δ)2`2 − `2 + (∆′)2

(1 + δ)`+
√
`2 − (∆′)2

≤
(2δ + δ2)`2 +

(√
δ`
)2

`

≤ 4δ`2

`
= 4δ`,

since δ ≤ 1, and assuming that ∆′ ≤
√
δ`. For our purposes, we need that 4δ` ≤ ε∆. Both

of these constraints translate to the inequalities,
(

∆′

`

)2
≤ δ ≤ ε∆

4` . Observe that, by the

triangle inequality, it follows that

` = ‖qi − yi‖ ≤ ‖qi − pi−1‖+ ‖pi−1 − yi‖ ≤ τ + ∆.

A similar argument implies that ` ≥ τ−∆. In particular, it is enough to satisfy the constraint(
∆′
τ−∆

)2
≤ δ ≤ ε∆

4(τ+∆) , which is satisfied if
(

∆′
τ−∆′

)2
≤ δ ≤ ε∆′/2

4(τ+∆′) , as ∆ ≤ ∆′ ≤ 2∆.

Substituting the value of τ = c∆′/ε, see Eq. (4.1), this is equivalent to
(

1
c/ε−1

)2
≤ δ ≤

ε/2
4(c/ε+1) , which holds for c = 32, as can be easily verified, and setting δ = ε2/(32 − ε)2 =
O(ε2). J

I Theorem 13. Given a set P of n points in Rd, let ε ∈ (0, 1] be a parameter, and let ∆′ be
a constant approximation to the diameter of P. Assume that you are given a data structure
that can answer (1 + δ)-ANN queries on P, for δ = O(ε2). Then, given a query point q, one
can decide, by performing O(1/ε2) (1 + δ)-ANN queries whether q is inside the convex-hull
C = CH(P). Specifically, the algorithm returns

In: if q ∈ C, and
Out: if q is more than ε∆ away from C, where ∆ = diam(P).

The algorithm is allowed to return either answer if q /∈ C, but the distance of q from C is at
most ε∆.

5 Density clustering

5.1 Definition
Given a set P of n points in Rd, and a parameter µ, with 1 ≤ µ ≤ n, we are interested in
computing a set C ⊆ P of “centers”, such that each center is assigned at most µ points, and
the number of centers is (roughly) n/µ. In addition, we require that:
(A) A point of P is assigned to its nearest neighbor in C (i.e., C induces a Voronoi partition

of P).
(B) The centers come from the original point set.
Intuitively, this clustering tries to capture the local density – in areas where the density is
low, the clusters can be quite large (in the volume they occupy), but in regions with high
density the clusters have to be tight and relatively “small”.

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 387

Formally, given a set of centers C, and a center c ∈ C, its cluster is

Pc =
{

p ∈ P
∣∣∣ ‖c− p‖ < d

(
p,C \ {c}

)}
,

where d(p, X) = minx∈X ‖p− x‖ (and assuming for the sake of simplicity of exposition that
all distances are distinct). The resulting clustering is Π(P,C) = {Pc | c ∈ C}. A set of points
P, and a set of centers C ⊆ P is a µ-density clustering of P if for any c ∈ C, we have |Pc| ≤ µ.
As mentioned, we want to compute a balanced partitioning, i.e., one where the number
of centers is roughly n/µ. We show below that this is not always possible in high enough
dimensions.

5.1.1 A counterexample in high dimension

I Lemma 14 (For proof see [12]). For any integer n > 0, there exists a set P of n points in
Rn, such that for any µ < n, a µ-density clustering of P must use at least n− µ+ 1 centers.

5.2 Algorithms

5.2.1 Density clustering via nets

I Lemma 15. For any set of n points P in Rd, and a parameter µ < n, there exists a
µ-density clustering with O

(
n
µ log n

µ

)
centers (the O notation hides constants that depend

on d).

Proof. Consider the hypercube [−1, 1]d. Cover its outer faces (which are (d− 1)-dimensional
hypercubes) by a grid of side length 1/3

√
d. Consider a cell C in this grid – it has diameter

≤ 1/3, and it is easy to verify that the cone φ = {tp | p ∈ C, t ≥ 0} formed by the origin and
C has angular diameter < π/3. This results in a set C of N = O(dd) cones covering Rd.

Fix a cone φ ∈ C. For a point p ∈ Rd, let φp denote the translation of φ such that
p is its apex. Note that φ is formed by the intersection of 2(d − 1) halfspaces. As such,
the range space consisting of all ranges φp, such that p ∈ Rd, has VC dimension at most
d′ = O(d2 log d) [10, Theorem 5.22]. For a radius r and point p, let a φ-slice be the set
sφ(p, r) = φp ∩ ball(p, r), i.e. the set formed by intersecting φp with a ball centered at p
and of radius r. The range space of all φ-slices, Sφ =

{
sφ(p, r)

∣∣ p ∈ Rd, r ≥ 0
}
, has VC

dimension d′′ = O(d+ 2 + d′) = O(d2 log d), since the VC dimension of balls in Rd is d+ 2,
and one can combine range spaces as done above, see the book [10] for background on this.

Now, for ε = (µ/N)/n = µ/(nN), consider an ε-net R of the point set P for φ-slices. The
size of such a net is |R| = O

(
(d′′/ε) log ε−1) = O

(
nNd2 log d

µ log nN
µ

)
= O

(
dO(d) n

µ log n
µ

)
=

O
(
n
µ log n

µ

)
, by the ε-net theorem.

Consider a point p ∈ P that is in R. Let νφ be the nearest point to p in the set{
R \ {p}

}
∩φp. The key observation is that any point in P∩φp that is farther away from p than

νφ, is closer to νφ than to p; that is, only points closer to p than νφ might be assigned to p in the
Voronoi clustering. Since R is an ε-net for φ-slices, sφ(p, ‖p− νφ‖) = φp ∩ ball

(
p, ‖p− νφ‖

)
,

contains at most εn = µ/N points of P. It follows that at most µ/N points of P ∩ φp are
assigned to the cluster associated with p. By summing over all N cones, at most (µ/N)N = µ

points are assigned to p, as desired. J

SoCG’15

388 Space Exploration via Proximity Search

5.2.2 The planar case
I Lemma 16 (For proof see [12]). For any set of n points P in R2, and a parameter µ with
1 ≤ µ ≤ n, there exists a µ-density clustering with O(n/µ) centers.

Acknowledgments. N.K. would like to thank Anil Gannepalli for telling him about Atomic
Force Microscopy.

References
1 L.-E. Andersson and N. F. Stewart. Introduction to the Mathematics of Subdivision Surfaces.

SIAM, 2010.
2 G. Binnig, C. F. Quate, and Ch. Gerber. Atomic force microscope. Phys. Rev. Lett.,

56:930–933, Mar 1986.
3 J. F. Blinn. A generalization of algebraic surface drawing. ACM Trans. Graphics, 1:235–256,

1982.
4 J.-D. Boissonnat, L. J. Guibas, and S. Oudot. Learning smooth shapes by probing. Comput.

Geom. Theory Appl., 37(1):38–58, 2007.
5 K. L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm.

ACM Trans. Algo., 6(4), 2010.
6 R. Cole and C. K. Yap. Shape from probing. J. Algorithms, 8(1):19–38, 1987.
7 T. Feder and D. H. Greene. Optimal algorithms for approximate clustering. In Proc. 20th

Annu. ACM Sympos. Theory Comput. (STOC), pages 434–444, 1988.
8 A. Goel, P. Indyk, and K. R. Varadarajan. Reductions among high dimensional proximity

problems. In Proc. 12th ACM-SIAM Sympos. Discrete Algs. (SODA), pages 769–778, 2001.
9 T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoret. Comput.

Sci., 38:293–306, 1985.
10 S. Har-Peled. Geometric Approximation Algorithms, volume 173 of Mathematical Surveys

and Monographs. Amer. Math. Soc., 2011.
11 S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbors: Towards remov-

ing the curse of dimensionality. Theory Comput., 8:321–350, 2012. Special issue in honor
of Rajeev Motwani.

12 S. Har-Peled, N. Kumar, D. Mount, and B. Raichel. Space exploration via proximity search.
CoRR, abs/1412.1398, 2014.

13 S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional metrics, and
their applications. SIAM J. Comput., 35(5):1148–1184, 2006.

14 P. Indyk. Nearest neighbors in high-dimensional spaces. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 39, pages 877–892.
CRC Press LLC, 2nd edition, 2004.

15 B. Kalantari. A characterization theorem and an algorithm for A convex hull problem.
CoRR, abs/1204.1873, 2012.

16 B. B. Mandelbrot. The fractal geometry of nature. Macmillan, 1983.
17 J. M. Mulvey and M. P. Beck. Solving capacitated clustering problems. Euro. J. Oper.

Res., 18:339–348, 1984.
18 F. Panahi, A. Adler, A. F. van der Stappen, and K. Goldberg. An efficient proximity

probing algorithm for metrology. In Proc. IEEE Int. Conf. Autom. Sci. Engin. (CASE),
pages 342–349, 2013.

19 S. S. Skiena. Problems in geometric probing. Algorithmica, 4:599–605, 1989.
20 S. S. Skiena. Geometric reconstruction problems. In J. E. Goodman and J. O’Rourke,

editors, Handbook of Discrete and Computational Geometry, chapter 26, pages 481–490.
CRC Press LLC, Boca Raton, FL, 1997.

S. Har-Peled, N. Kumar, D.M. Mount, and B. Raichel 389

21 R. M. Smelik, K. J. De Kraker, S. A. Groenewegen, T. Tutenel, and R. Bidarra. A survey
of procedural methods for terrain modelling. In Proc. of the CASA Work. 3D Adv. Media
Gaming Simul., 2009.

22 Wikipedia. Atomic force microscopy – wikipedia, the free encyclopedia, 2014.

SoCG’15

Star Unfolding from a Geodesic Curve
Stephen Kiazyk and Anna Lubiw

Cheriton School of Computer Science
University of Waterloo, Waterloo, ON, Canada
{skiazk,alubiw}@uwaterloo.ca

Abstract
There are two known ways to unfold a convex polyhedron without overlap: the star unfolding
and the source unfolding, both of which use shortest paths from vertices to a source point on the
surface of the polyhedron. Non-overlap of the source unfolding is straightforward; non-overlap
of the star unfolding was proved by Aronov and O’Rourke in 1992. Our first contribution is a
much simpler proof of non-overlap of the star unfolding.

Both the source and star unfolding can be generalized to use a simple geodesic curve instead of
a source point. The star unfolding from a geodesic curve cuts the geodesic curve and a shortest
path from each vertex to the geodesic curve. Demaine and Lubiw conjectured that the star
unfolding from a geodesic curve does not overlap. We prove a special case of the conjecture. Our
special case includes the previously known case of unfolding from a geodesic loop. For the general
case we prove that the star unfolding from a geodesic curve can be separated into at most two
non-overlapping pieces.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases unfolding, convex polyhedra, geodesic curve

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.390

1 Introduction

An unfolding of a polyhedron P is obtained by cutting the surface of P in such a way that it
can be flattened into the plane, forming a single polygon. A main goal is to find unfoldings
that are simple, that is, do not self-overlap. If we have an unfolding that does not overlap,
we can make a model of the polyhedron from a sheet of paper by cutting the outline of the
polygon and gluing appropriate pairs of edges together.

Unfoldings have fascinated people since the time of Dürer’s beautiful examples [6]. A
long-standing open question is whether every convex polyhedron has a non-overlapping edge
unfolding, where only edges of the polyhedron are cut. However, if we allow cuts that cross
faces—which is the model used in this paper—then there are several known methods to
unfold convex polyhedra without overlap.

Unfoldings of polyhedra have applications in product manufacturing, for constructing
a 3-dimensional object from a sheet of metal or plastic, and also in graphics for applying
texture mapping, where 2-dimensional image coordinates must be assigned to points on a
3-dimensional model. Unfolding is also applied as a theoretical tool for the study of shortest
paths on the surface of a polyhedron.

There are two main methods known to unfold convex polyhedra without overlap, both
defined in terms of shortest paths on the polyhedron surface to a “source” point x. A
fundamental property of shortest paths on the surface of a convex polyhedron is that they
unfold to straight-line segments. More generally, any geodesic (or locally shortest) path on
the surface of a polyhedron unfolds to a straight-line segment.

© Stephen Kiazyk and Anna Lubiw;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 390–404

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.390
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Kiazyk and A. Lubiw 391

(a) (b)

Figure 1 An example star unfolding from a geodesic curve (in red) on a rectangular box. Faint
dashed lines inside the unfolding indicate some of the original edges.

The star unfolding is obtained by cutting a shortest path from every vertex of the
polyhedron to the point x. The cuts form a star at x, hence the name. The source unfolding
is obtained by cutting the ridge tree (also known as the cut locus), the locus of points that
have more than one shortest path to x. It is easy to see that the source unfolding does not
overlap, because all the shortest paths from x to points on the surface unfold into straight
lines radiating from x. The star and source unfoldings are dual in the sense that the pieces
of the surface delimited by the ridge tree and the vertex-to-source shortest path cuts are
joined at “opposite ends”: in the star unfolding the pieces are joined at the ridge tree; and
in the source unfolding the pieces are joined at the source point x.

Alexandrov thought the star unfolding might overlap (see [5]); the surprising result that
it does not was proved by Aronov and O’Rourke [2]. Their proof is by induction and involves
combining two vertices into one in a kind of “Alexandrov surgery.” The proof is long, and
Demaine and O’Rourke, in their book, “Geometric Folding Algorithms” [5] call the proof
“not straightforward” and omit it.

Our first main result is a new proof of non-overlap of the star unfolding that is more
straightforward. We do not modify the polyhedron or appeal to Alexandrov’s gluing theorem.

The star and source unfoldings can be generalized in a natural way by using a simple
geodesic curve λ instead of a source point x. For the source unfolding, we cut the ridge
tree (the locus of points that have more than one shortest path to the curve λ), and for
the star unfolding we cut the curve λ itself and a shortest path from every vertex of the
polyhedron to λ. See Figure 1. Such generalizations were first introduced by Itoh et al. [9]
who proved non-overlap results for the case of closed curves (see also [11, 8]). Demaine and
Lubiw [4, Lemma 1] proved non-overlap of the source unfolding for (open) geodesic curves,
and conjectured the same for the star unfolding.

Our second main result is a special case of this conjecture: we prove that the star
unfolding from a geodesic curve unfolds without overlap if the curve is “balanced” (as defined
in Section 3). The balance condition automatically holds for the point star unfolding.

We give two implications of our second result. The first is that the star unfolding does
not overlap if the curve is a geodesic loop, meaning the curve endpoints a and b are (almost)
coincident. In the limit when a = b the unfolding consists of two pieces joined at a point.
This gives an alternative to the result of Itoh et al. [9] that the star unfoldings of the inside
and the outside of a geodesic loop do not overlap, and that the two pieces may be joined
into one non-overlapping piece. Their proof that the outside unfolds without overlap had a
flaw; our result repairs it. We can extend this result (and our other results) from geodesics
to quasigeodesics, to be defined below.

The second consequence of our result is that every star unfolding from a geodesic curve

SoCG’15

392 Star Unfolding from a Geodesic Curve

v1

v3 v6

v8

v4

(a)

α(e)

e

v5

v1

v2

v3

v4

v6

v7

v8

v9

x1

x2

x3

x4x5

x6

x7

x8

x9

(b)

Figure 2 The star unfolding from a point. (a) The polyhedron, the source point, and the shortest
paths from vertices to the source point. (b) The corresponding star unfolding. The ridge tree is
shown in grey. The kites are shown with dashed lines. The kite on ridge tree edge e is shaded, and
its source angle α(e) is indicated. Note that the unfolding shows the inside surface of the polyhedron.

can be cut into two pieces such that each piece is non-overlapping. The extra cuts consist of
shortest paths from a point on the ridge tree to the curve.

To conclude this section we mention a few reasons to explore new unfoldings of convex
polyhedra. One is to find “nicer” unfoldings. As the number of vertices of a polyhedron
increases, the star unfolding from a point becomes very spiky with many sharp angles, for
example see [1, Figure 7]. By contrast, in the star unfolding from a geodesic curve many (or
in some cases, all) vertices may have shortest paths to interior points of the curve, resulting
in many 90◦ angles and fewer sharp angles. New unfolding methods for convex polyhedra
might also shed light on the case of non-convex polyhedra. Having a larger repertoire of
unfoldings also opens the door to optimization, e.g., minimize the area of a bounding box of
the unfolding, or minimize the total cut length, or maximize the minimum angle.

Geodesic star unfoldings may also have implications for the conjecture [3] that every
convex polyhedron has a general zipper unfolding, a non-overlapping unfolding formed by
cutting a single path on the polyhedron surface. If quasigeodesic star unfoldings do not
overlap, then it would suffice to find a quasigeodesic curve that goes through all the vertices.

1.1 Preliminaries and Definitions

I Definition 1. Let P be a convex polyhedron, and let x be a point on P . The star unfolding,
Sx, is a 2-dimensional polygon formed by cutting P along a shortest path from every vertex
of P to x, and flattening the result into the plane. See Figure 2. Note that there is a choice
of cuts if a vertex has more than one shortest path to x.

If P has n vertices, then the polygon Sx will have 2n vertices in general, and 2(n− 1)
vertices if x is located at a vertex of P. The vertices of Sx alternate around the boundary
between vertex images, denoted vi, that correspond to the vertices of P, and n ‘copies’ of x,
called source images and denoted by xi. See Figure 2.

S. Kiazyk and A. Lubiw 393

The edges of Sx correspond to the shortest path cuts made from each vertex to x.
Therefore, the two edges incident to any vertex image vi are always the same length.

The ridge tree (or “cut locus”), Tx, is the closure of the set of all points on the surface
of P that have more than one shortest path to x. It is known that the ridge tree is in fact
a tree [12], and that its edges are shortest paths [1] and thus correspond to straight-line
segments in Sx. See Figure 2(b). As a corollary to their proof of non-overlap [2, Theorem
10.2], Aronov and O’Rourke proved that the ridge tree is a subset of the Voronoi diagram of
the images of x.

Readers interested only in the point case may proceed directly to Section 2. In the
remainder of this section we give definitions for the star unfolding from a geodesic curve.

Given a polyhedron P, a geodesic curve λ on P is a curve on the surface of P, such that
at every interior point p of λ, the surface angle to either side of p is exactly π. If the surface
angle to either side of p is at most π then the curve is called a quasigeodesic. We will only
consider [quasi]geodesic curves that are simple, meaning there is no point of self-intersection
between any two interior (i.e., non-endpoint) points of the curve.

I Definition 2. Let P be a convex polyhedron, and let λ be a simple geodesic curve on the
surface of P. The geodesic star unfolding Sλ is a 2-dimensional polygon formed by cutting
λ, and cutting a shortest path along the surface of P from every vertex vi of P to λ, and
flattening the result into the plane. See Figure 5.

The endpoints of λ are labelled a and b and the two sides of λ are labelled s and t, with
the convention that the clockwise order around λ on the outside surface of P is a, s, b, t. We
distinguish shortest paths to λ that arrive at (or “report to”) a or b, and shortest paths that
arrive at interior points of λ on side s or t. Any shortest path that arrives at an interior
point of λ forms a right angle with λ, as shown by the following lemma, adapted from Ieiri
et al. [7, Corollary 1].

I Lemma 3. Let λ be a geodesic curve on a convex polyhedron P, with points x0 on λ and
x not on λ such that xx0 is a shortest path from x to λ. The angles formed between xx0 and
λ are at least π

2 to each side.

In the unfolding Sλ, a source image is either a copy of an endpoint (a or b), called a
point image, or a sub-segment of λ corresponding to side s or t, called a segment image.
(Note that a segment image might include one of the endpoints of λ.) Around a clockwise
traversal of the boundary of Sλ we encounter source images in order a, s, b, t—this is because
our convention is to draw the inside of the polyhedron’s surface facing up. Each consecutive
pair of source images is separated by two edges (of equal length) joined at a vertex image,
such that the edges correspond to the shortest path cut at the vertex.

The ridge tree of a geodesic λ, denoted Tλ, is the closure of the set of all points on the
surface of P that have more than one shortest path to λ. That the ridge tree is an actual
tree was established by Demaine and Lubiw [4, Lemma 4]. (In fact, their lemma applies to
the outside of any closed convex curve on the surface of P—in the present situation, the
closed convex curve is the set of points at some fixed distance ε from λ.) See Figure 5.

A key difference from the point case is that the edges of the geodesic ridge tree are not
necessarily straight-line segments. Every edge of the ridge tree is the locus of points that are
equidistant from two source images. Thus, when the two sources to either side of an edge
are a point image and a segment image respectively, a parabolic ridge tree edge will result.
The ridge tree edges between pairs of point images or pairs of segment images will still be
straight.

SoCG’15

394 Star Unfolding from a Geodesic Curve

2 New Proof for the Point Star Unfolding

In this section we give a new proof of non-overlap for the point star unfolding that is much
simpler than the original proof of Aronov and O’Rourke [2].

The most important idea of our proof is to partition the star unfolding into pairs of
congruent triangles. Each vertex of the ridge tree has three or more shortest paths to x on
the surface of P . Add all these shortest paths as line segments in the star unfolding. Notice
that each edge of the ridge tree will now have a triangle to each side. Because all shortest
paths from a ridge tree vertex to the nearest source image have the same length, the two
triangles to either side of a ridge tree edge have corresponding sides of equal length, and
therefore are congruent. We call each such pair of triangles a kite. The kite associated with
ridge tree edge e is denoted kite(e). The two images of x to each side of e are called the
apices of the kite. Observe that the kites form a partition of Sx. See Figure 2(b).

We define the source angle of e, α(e), to be the interior angle at either apex of kite(e).
See Figure 2(b). We extend this definition to paths: For a path σ of ridge tree edges, where
σ = e0, . . . , et, the source angle of σ is α(σ) =

∑t
i=0 α(ei). Observe that α(σ) ≤ π because

2α(σ) measures the total source angle at both apices of every kite on the path, so this is
bounded by the total surface angle at the source point x, which is bounded by 2π.

I Theorem 4 (Theorem 9.1 in [2]). The star unfolding Sx does not overlap.

Proof. We will show that no two kites overlap. Consider two kites, and the path in the
ridge tree between them. Let e1, . . . , et be the edges of the path in the ridge tree, and let
ki = kite(ei). We will show that k1 and kt have disjoint interiors. We will define a sequence
of regions W1, . . . ,Wt−1, called W-wedges, so that Wi includes k1, . . . , ki and excludes ki+1.
Then Wt−1 includes k1 and excludes kt, which will complete the proof.

The boundary of the W-wedge Wi is shaped like a ‘W’ and defined as follows. The center
point of Wi is the point pi, where ei and ei+1 intersect; the inner legs are the edges of ki that
are incident to pi; and the outer legs form an angle with the inner legs (on the side of ki) of
π
2 + αi, where αi =

∑i
j=1 α(ej). The outer legs extend either to their point of intersection,

or as infinite rays if they do not intersect. This boundary divides the plane into two regions
and we define Wi to be the region containing ki in a neighbourhood of pi. See Figure 3.
Note that αi is in the range [0, π] as observed above.

We will prove by induction that ki is outside Wi−1 and that Wi contains ki ∪Wi−1. At
each step, including the base case, we will need the following:

I Lemma 5. Let p be an endpoint of ridge tree edge e, and let W be a W-wedge centered at
p such that the inner legs of W are the edges of kite(e), and the outer legs are rotated out
(on the side of kite(e)) by an angle in the range [π2 + α(e), 3π

2]. Then kite(e) ⊆W .

Proof. Consider the two circular sectors centered at the endpoints p and q of e and bounded
by the two incident kite edges as radii (see for example the circular sector marked a centered
at q = p0 on kite k1 in Figure 3). At each apex of kite(e) the two angles between the outer
leg of W and the two sides of kite(e) are at least π

2 . Thus the circular sector at q is inside
W , and the circular sector at p is outside W . This implies that kite(e) ⊆W . J

We are now ready to prove by induction that ki is outside Wi−1 and that Wi contains
ki ∪Wi−1. For the base case i = 1, there is no W0, and W1 contains k1 by the lemma above.
Suppose by induction that Wi−1 contains ki−1 ∪Wi−2. We will show how to transform Wi−1
into Wi in a way that makes it clear that ki is outside Wi−1 and Wi contains ki ∪Wi−1.

S. Kiazyk and A. Lubiw 395

π

2
+ α1

π

2
+ α1

π

2
+ αi−1

π

2
+ αi−1

π

2
+ αi

π

2
+ αi

π

2
+ αt−1

π

2
+ αt−1

kt k1

ki−1ki

pi

Wi Wi−1

W1

Wt−1

et

e1

ei ei−1

et−1

pi+1

pi−1

W ′
i

ap0

Figure 3 Kite ki−1 (shaded) and the corresponding W-wedge Wi−1 (lightly shaded). W1 contains
kite k1 because it contains the circular sector a. To prove by induction that Wi contains all previous
kites, we expand Wi−1, first rotating the legs about pi−1 to the W-wedge W ′i (dashed line), and
then moving the center point to pi to obtain Wi. Note that although the figure shows kites ki−1

and ki sharing only a vertex, in non-degenerate situations ridge tree vertices have degree 3, and two
consecutive kites will share an edge as well.

Note that the unfolding does not overlap in the neighbourhood of point pi—this is true
whether pi is a point with 2π surface area, or a vertex, which will be incident to a single
cut. Thus the kites ki and ki−1, which are both incident to pi, do not overlap. Rotate the
two inner legs of Wi−1 about point pi−1, away from ki−1 to the edges of ki. Keep the angle
between inner and outer legs fixed throughout the rotation. Observe that all the kite edges
incident to pi−1 have the same length, so we really perform a rigid transformation on each
half of the W. Call the resulting W-wedge W ′i (shown as a dashed poly-line in Figure 3).
Notice that W ′i contains Wi−1, because the angle αi−1 + π

2 is in the range [π2 ,
3π
2] so the outer

legs remain outside the rotation sector of the inner legs. (Here it is crucial that we added the
extra π

2 to the initial angle.) That ki is outside W ′i follows from applying Lemma 5 to the
outside of W ′i , noting that αi−1 + α(ei) ≤ π so the angle αi−1 + π

2 is actually in the range
[π2 ,

3π
2 − α(ei)] and therefore the complementary angle is in the range [α(ei) + π

2 ,
3π
2].

The second step of the transformation is to move the center point of W ′i from pi−1 to pi,
while keeping the outer legs fixed. The W-wedge increases until it contains ki. The angle
between inner and outer legs increases by α(ei), to αi. Thus the result is precisely Wi, and
therefore Wi contains ki ∪Wi−1. J

Our proof, like Aronov and O’Rourke’s, shows a stronger result that certain regions
outside the star unfolding are empty. Aronov and O’Rourke [2] showed that at any vertex vi
adjacent to source images xi and xi+1 in the unfolding, no part of the unfolding enters the
circular sector centered at vi exterior to the unfolding near vi and bounded by the radii vixi
and vixi+1. See Figure 4. Our proof shows that larger regions are empty:

I Lemma 6. Let vi be a vertex adjacent to source images xi and xi+1 in a star unfolding Sx,
and let W be the region bounded by vixi, vixi+1, and the rays extending from xi and xi+1 at
right angles from these segments on the exterior side of vi. Then no part of the unfolding
intersects the interior of W .

SoCG’15

396 Star Unfolding from a Geodesic Curve

x1

x2

v3

x4x3

v1

v2

v4

x5x6

v5v6

Figure 4 Old sectors of emptiness (light grey) established by Aronov and O’Rourke and new
empty regions (light grey+dark grey) established by Lemma 6.

Proof outline. In non-degenerate situations, vi is a leaf of the ridge tree, incident to ridge
tree edge e, say. We apply the argument in the proof above to the ridge tree path from e to
any other edge. The initial W-wedge always contains W , so no other kite enters W . More
generally, vi may be an internal vertex of the ridge tree and we repeat the argument for
every path in the ridge tree starting at vi, taking the intersection of the initial wedges in the
path argument to show that W is empty. J

3 Geodesic Star Unfolding

In this section we will consider the star unfolding from a geodesic curve λ. By generalizing
the proof for the point case, we will establish some situations in which the geodesic star
unfolding does not overlap. See Figure 5.

As for the point-source case, we will partition the unfolding by adding, for every ridge
tree vertex p, the line segments that correspond to shortest paths from p to the curve. We
include as a vertex of the ridge tree any point of the ridge tree that has a shortest path
to an endpoint of λ appearing in a segment image. The added line segments partition the
unfolding into regions called wings. See Figure 5(b). The two wings on either side of a ridge
tree edge form a wing-pair. A wing with an endpoint source image is a point wing and a
wing with a segment source image is a segment wing. A wing-pair may involve two point
wings (these are the kites of the previous section), or two segments wings, or one of each,
in which case we call it a hybrid wing-pair. The ridge tree edge of a hybrid wing-pair is a
parabolic segment; all others are straight-line segments.

The source angle of a point wing is the angle at its source image point; the source angle
of a segment wing is 0. The source angle of a wing-pair is the sum of the source angles
of the two wings. If e is an edge of the ridge tree, and A designates one side of this edge,
then αA(e) denotes the source angle of the wing on that side. If σ is a path in the ridge
tree, with its two sides (arbitrarily) labelled A and B, then the source angle of σ on side
A is αA(σ) =

∑t
i=0 α

A(ei) (and similarly for B). The path σ is balanced if αA(σ) ≤ π and
αB(σ) ≤ π. We say that the ridge tree [or the geodesic curve] is balanced if every path in the
ridge tree is balanced. There are examples where the ridge tree is not balanced, and in fact
it is possible to have all 2π of source angle to one side of a ridge tree path, see [10].

Our main result in this section is that wing-pairs along a balanced path do not overlap.

I Lemma 7. Let P be a convex polyhedron with a geodesic curve λ on its surface. Suppose
that u and v are distinct edges of the ridge tree such that the path in the ridge tree from u to
v is balanced. Then the wing-pairs of u and v do not overlap.

S. Kiazyk and A. Lubiw 397

v1

v2

v3

v4

v5 a

t s

b

(a)

v1

v2

v3

v4
v5

t a

b

s

(b)

Figure 5 The star unfolding from a geodesic curve. (a) The polyhedron, the geodesic curve
with endpoints a and b and sides s and t, and shortest paths from vertices to the curve. (b) The
corresponding star unfolding with the source images, a, b, s or t, indicated. Images of a [b] are drawn
as squares [triangles]; segment images of s [t] are drawn as heavy dashed [dotted] lines. Shortest
path cuts are coloured according to their destination type. Wings are indicated by dashed lines.
Three wing-pairs are shaded; the darkly shaded one is a hybrid wing-pair with a parabolic ridge tree
edge. Note that the unfolding shows the inside surface of the polyhedron.

Before proceeding with the proof, we note the consequence that the star unfolding from a
balanced geodesic curve does not overlap:

I Corollary 8. If P is a convex polyhedron with a balanced geodesic curve λ then the geodesic
star unfolding from λ does not overlap.

Proof of Lemma. We follow the same plan as in the proof of Theorem 4, that is, we will
prove that no two wing-pairs in the unfolding overlap, by examining W-wedges along the
ridge tree path between the two wing-pairs. A quick summary is that there are only two
differences in the argument: (1) as we move from W-wedge Wi−1 to Wi we may increase
the angle between inner and outer legs differently on its two sides; (2) when the W-wedge
moves past a segment wing, the angle between inner and outer legs does not change, and the
inner+outer pair translates. See Figure 6. We now give the details.

Let σ be the path from u to v in the ridge tree, with edges u = e1, . . . , et = v. Let wi be
the wing-pair of edge ei. Label the two sides of σ by A and B. Let αAi =

∑i
j=1 α

A(ej) and
let αBi =

∑i
j=1 α

B(ej). Note that αAi and αBi are in the range [0, π] by assumption.
We will show that w1 and wt have disjoint interiors by defining W-wedges Wi so that

Wi includes w1, . . . , wi and excludes wi+1. Then Wt−1 includes w1 and excludes wt, which
will complete the proof. Define Wi, for i = 1, . . . , t, to be the W-wedge with center point
at pi where ei and ei+1 intersect, with inner legs along the two incident edges of wi, and
outer legs rotated out (on the side of wi) by αAi + π

2 on side A, and by αBi + π
2 on side B.

The outer legs extend either to their point of intersection, or as infinite rays if they do not
intersect. This boundary divides the plane into two regions and we define Wi to be the
region containing wi. See Figure 6.

SoCG’15

398 Star Unfolding from a Geodesic Curve

pi

Wi
Wi−1

W1

e1

ei ei−1
pi−1

W ′
i

ap0

w1

π

2
+ αB

1

π

2
+ αA

1

π

2
+ αA

i−1

π

2
+ αB

i−1

π

2
+ αB

i

π

2
+ αA

i

wi−1wi

Figure 6 Wing-pair wi (shaded) is a hybrid wing-pair. W1 contains w1 because it contains the
circular sector a. To prove by induction that Wi contains all previous wing-pairs, we expand Wi−1

to Wi, first rotating the legs about pi−1 to the W-wedge W ′i (dashed line), and then expanding to
include wi. Note that in this example αBi−1 = αBi since the wing to that side is a segment-wing.

We will prove by induction that wi is outside Wi−1 and that Wi contains wi ∪Wi−1. At
each step, including the base case, we will need the following:

I Lemma 9. Let p be an endpoint of ridge tree edge e, and let W be a W-wedge centered at
p such that the inner legs of W are the edges of the incident wings of e, and the outer leg on
the A side is rotated out by an angle in the range [π2 + αA(e), 3π

2] and the outer leg on the
B side is rotated out by an angle in the range [π2 + αB(e), 3π

2]. Then the wing-pair of e is
contained in W .

Proof. Consider the two circular sectors centered at the endpoints p and q of e and bounded
by the two incident wing edges as radii (see for example the circular sector marked a centered
at q = p0 on wing-pair w1 in Figure 6). On both the A side and the B side, the angles
between the outer leg of W and the sides of the wing of e are at least π

2 . Thus the circular
sector at q is inside W , and the circular sector at p is outside W . This implies that the
wing-pair of e is contained in W . J

We are now ready to prove by induction that wi is outside Wi−1 and that Wi contains
wi ∪Wi−1. For the base case i = 1, there is no W0, and W1 contains w1 by the lemma above.
Suppose by induction that Wi−1 contains wi−1 ∪Wi−2. We will show how to transform Wi−1
into Wi in a way that makes it clear that wi is outside Wi−1 and Wi contains wi ∪Wi−1.

Since there is at most 2π surface angle at any point on the surface, the unfolding does
not overlap in the neighbourhood of any point. Thus wi−1 and wi are disjoint. Rotate the
two inner legs of Wi−1 about point pi−1, away from wi−1 to the edges of wi. Keep the angle
between inner and outer legs fixed throughout the rotation. Observe that all the wing edges
incident to pi−1 have the same length, so we really perform a rigid transformation on each
half of the W. Call the resulting W-wedge W ′i (shown as a dashed poly-line in Figure 6).
Notice that W ′i contains Wi−1, because the angles αAi−1 + π

2 , and α
B
i−1 + π

2 are in the range
[π2 ,

3π
2] so the outer legs remain outside the rotation sector of the inner legs. We prove that

wi is outside W ′i by applying Lemma 9 to the outside of W ′i . To show that the angle on

S. Kiazyk and A. Lubiw 399

v

v9

v10

v11v13

v18

v2
v4

b

a

(a)

vl

vr
v2

v9

v10

v11v13

v18

(b)

Figure 7 The star unfolding from a quasi-geodesic curve. (a) The polyhedron and the quasi-
geodesic curve passing through vertex v. (b) The corresponding star unfolding with the two images
of v and their wing-pairs indicated.

the A side is in the required range, observe that αAi−1 + αA(ei) ≤ π so the angle αAi−1 + π
2 is

actually in the range [π2 ,
3π
2 − α

A(ei)] and therefore the complementary angle is in the range
[αA(ei) + π

2 ,
3π
2]. A similar argument applies on the B side.

The second step of the transformation is to moveW ′i past wi toWi. We do this separately
on the A side and the B side. To go past a point wing, we move the inner leg from pi−1 to pi,
while keeping the outer leg fixed. To go past a segment wing, we translate the inner+outer
legs so that their common point moves along the segment image; since the segment image
is perpendicular to the inner leg, each leg is parallel to its initial version. The resulting
W-wedge contains wi. On the A side, the angle between inner and outer legs increases by
αA(ei), to αAi , and similarly on the B side. Thus the result is precisely Wi, and therefore
Wi contains wi ∪Wi−1. J

3.1 Extension to Quasigeodesic Curves
We now show that our geodesic star unfolding result (Lemma 7) carries over to quasigeodesic
curves. Recall that a quasigeodesic curve on the surface of a polyhedron P is a curve such
that at each interior point along the curve the surface angle to each side is ≤ π. (The angle
can only be < π at a vertex of P.)

Consider a quasigeodesic curve λ on the surface of P. We define the quasigeodesic star
unfolding in the same way as the geodesic star unfolding, specifically, we cut the curve and a
shortest path from every vertex to the curve. See Figure 7.

To argue about the ridge tree of λ, we consider the closed curve consisting of the points
at some small fixed distance ε from λ. This curve is composed of circular arcs and geodesic
segments joined at angles ≤ π (on the side opposite λ). Thus by [4, Lemma 4], its ridge tree
is a tree. The ridge tree of λ itself (when ε = 0) has the peculiarity that it has a cycle if
λ has an interior point with surface angle < π on both sides of the curve (e.g., vertex v in
Figure 7). However, we split any such vertex into two copies, corresponding to the s and t
sides of the curve, which breaks the cycle in the unfolded ridge tree.

Suppose p is an interior point of the quasigeodesic curve λ where the surface angle to
one side, say the s side, is β, where β < π. Necessarily, p is a vertex of the polyhedron,
otherwise the surface angle on the other side of the curve would be greater than π. We do
not introduce a cut for this vertex in the unfolding, since it already lies on λ.

SoCG’15

400 Star Unfolding from a Geodesic Curve

Using Lemma 3, we claim that no shortest path cut from any vertex v will report to point
p on side s, since one of the two surface angles formed would be < π

2 . Thus the quasigeodesic
star unfolding from λ will have a vertex image with an angle β corresponding to the s side
of p. Let ps denote this vertex image in the unfolding.

Observe that ps is a leaf of the unfolded ridge tree and that the incident ridge tree edge e
is a straight segment forming angles β

2 with the segment images to either side of ps. We can
consider e to have two segment wings, albeit degenerate ones, with one side (between ps and
λ) of length 0. We call this a quasi-wing-pair (see the shaded examples in Figure 7).

With these observations in hand, we can extend the result of the previous section to
quasigeodesics. The main idea is to show that quasi-wing pairs can only occur as the first or
last wing-pair along a path of the unfolded ridge tree, and thus that the induction proof of
the previous section carries over.

I Lemma 10. Let P be a convex polyhedron with a quasigeodesic curve λ on its surface.
Suppose that u and v are distinct edges of the ridge tree such that the path in the unfolded
ridge tree from u to v is balanced. Then the (quasi-)wing-pairs of u and v do not overlap.

3.2 Quasigeodesic Loops
In this section, we prove non-overlap of the star unfolding from geodesic (and quasigeodesic)
loops. When the two endpoints a and b of a geodesic or quasigeodesic curve λ coincide at
point o, we call this a (quasi)geodesic loop with loop point o. A (quasi)geodesic loop cuts the
surface of the polyhedron into two pieces. One piece must have a surface angle at o that is
≤ π, and we call this the inside of the loop and identify it with the s side of the curve. The
other piece is called the outside and will be identified with the t side of the curve.

Itoh, O’Rourke, and Vîlcu [9] proved that for any quasigeodesic loop: (1) the inside
unfolds without overlap; (2) the outside unfolds without overlap; and (3) the two unfolded
pieces can be reattached (without overlap) along a common segment of the cut curve. Their
proof of (2) relies on a Lemma [9, Lemma 7] about the star unfolding from a point, which
they say will be proved in a companion paper, but unfortunately, they discovered1 that the
Lemma is false. The Lemma claims that for any star unfolding from a point x and for any
polyhedron vertex v, the exterior angle at v in the unfolding yields an empty wedge. More
precisely, if the exterior angle at v is (counterclockwise) xi, v, xi+1 then the claim is that the
counterclockwise wedge formed by the rays vxi and vxi+1 does not contain any part of the
unfolding. An example where this fails is shown in Figure 8.

In this section we examine the star unfolding from a quasigeodesic curve where the two
endpoints, a and b, of the curve are arbitrarily close together. In the limit when a = b

the unfolding consists of two pieces joined at the point a = b with the angular bisectors at
the point a = b aligned in the unfolding. We call this the conjoined star unfolding from a
quasigeodesic loop. See Figure 9. Our main result of this section is that the conjoined star
unfolding from a quasigeodesic loop does not overlap. This implies that the outside piece
unfolds without overlap, which repairs the missing step of Itoh, O’Rourke and Vîlcu’s result.

I Theorem 11. The conjoined star unfolding from a quasigeodesic loop does not overlap.

We prove Theorem 11 by showing that every path through the ridge tree for a geodesic
loop is balanced. Then by Lemma 7, the unfolding does not overlap. Furthermore, by
Lemma 10, the result extends to quasigeodesics.

1 Private communication from J. O’Rourke

S. Kiazyk and A. Lubiw 401

x

v1

v2
v3

(a)

v1
v2

v3

x1

x2

x3

(b)

Figure 8 A counterexample to [9, Lemma 7]. (a) A doubly covered triangle with source point x.
(b) The star unfolding from x showing a wedge formed by the exterior angle x3, v3, x1 that intersects
the unfolding. Dashed edges show the back face; grey edges show the ridge tree.

v1

v4

v7

v10

v12 v13

(a)

o v1v10

v4

v7

v12

v13

(b)

Figure 9 Conjoined star unfolding from a geodesic loop. (a) Geodesic loop on the surface of a
polyhedron (partially transparent to view the full loop). (b) Unfolding.

I Lemma 12. Every path through the unfolded ridge tree of the conjoined star unfolding
from a quasigeodesic loop is balanced.

Proof. Recall our assumption that the s-side of the curve is inside the loop. By Lemma 3,
no vertex inside the loop can report to the loop point o, since the surface angle to the interior
of the loop is < π (or if it is equal to π, we can assume the vertex reports to b instead).

Consider the segment of the ridge tree (call it u) that lies between a and b on the inside
of the loop and touches loop point o. Observe what happens in the limit as a and b approach
point o. Consider the kite-shaped region of the surface delimited by a, o, b, and p, where p is
the intersection between the rays perpendicular to the geodesic at a and b respectively (see
Figure 10). Call this region R. When a and b are close enough to o there are no vertices or
other ridge tree edges inside the region R, and therefore some sub-segment of u will extend
from p to o (i.e., perpendicularly bisect ab). Therefore the source angle of each wing of u is
at least π

2 , and the source angle of u’s wing-pair is at least π. Furthermore, this is the only
edge of the ridge tree on the inside of the loop that has point-wings reporting to a or b.

Consider any path σ through the unfolded ridge tree. Let A and B be the sides of σ. We
must show that αA(σ) ≤ π and αB(σ) ≤ π. There are three possible cases for the path:

1. The path σ does not include u, and remains entirely on the inside of the loop. Because
u is the only ridge tree edge inside the loop whose wings have non-zero source angle,
therefore αA(σ) = αB(σ) = 0.

SoCG’15

402 Star Unfolding from a Geodesic Curve

b
a

o

p

u

Figure 10 Zoomed-in view of the surface as a and b approach o. Assuming no vertices are inside
the region aobp, there is at least π

2 source angle to either side of ridge tree edge u.

a

a

b

b

A

B

o

Figure 11 An illustration of the third case in the proof of Lemma 12, where the A side of the
path σ (in heavy dashed red) has point wings reporting to a and to b.

2. The path σ does not include u, and remains entirely on the outside of the loop. As noted
above, the source angle of u’s wing-pair is at least π. Therefore, the remaining source
angle of all wings along every other possible path (i.e., not including u) must be ≤ π.
Thus αA(σ) ≤ π and αB(σ) ≤ π.

3. The path σ includes u. We must show that αA(σ) ≤ π and αB(σ) ≤ π. Any edge of σ
(apart from u) that lies inside the geodesic loop only has segment wings to either side and
these contribute 0 to the source angle of the path. Thus it suffices to look at the portion
of σ starting with u and then following ridge tree edges that lie outside the geodesic loop.
Call this subpath σ′. Ridge tree edge u has a point wing to either side, one reporting to a
and one reporting to b. Suppose that the A side of the path has the point wing reporting
to a. Suppose that αA(σ′) ≥ αB(σ′). If side A only has point wings that report to a, then
its source angle is at most π. So suppose that side A has a point wing that reports to b.
See Figure 11. As we walk around the path σ′, in counterclockwise order starting with u
on the A side, the wings report in order to a, then t, then b. Thus all the wings on the
B side must be point wings that report to b, which implies that the sum of their source
angles is at most π, i.e., αB(σ′) ≤ π. Since every wing on the B side is a point-wing
reporting to b, every point wing on the A side must be paired with a point wing on the
B side, and each such pair has equal source angles. Therefore αA(σ′) ≤ αB(σ′), and we
just showed this is ≤ π. J

S. Kiazyk and A. Lubiw 403

3.3 The Geodesic Star Unfolding as Two Non-overlapping Pieces

Although we have not proved that the geodesic star unfolding never overlaps, in this section
we show that it can always be cut into two pieces each of which is non-overlapping. The
extra cuts consist of two shortest paths from a point on the ridge tree to the geodesic curve.

I Lemma 13. Let P be a convex polyhedron and λ be a geodesic curve on P. Then there
is a point p of the ridge tree of λ such that cutting two shortest paths on P from p to the
geodesic curve λ separates the geodesic star unfolding Sλ into two pieces each of which is
non-overlapping.

Proof. We will split the ridge tree into two subtrees, either at an internal point of an edge
or at a ridge vertex v, in which case we split the ridge tree edges incident to v into two
subsets, each consecutive in the cyclic order of edges around v. Call such subtrees proper.
The geodesic star unfolding Sλ can then be cut into two pieces as follows: if the two subtrees
are joined at an internal point p of a ridge tree edge, then we cut the two shortest paths
from p to the geodesic curve λ; and if the two subtrees are joined at vertex v then we cut the
two shortest paths from v to λ that separate the incident ridge tree edges as specified. This
ensures that if two wing-pairs are in the same piece of the unfolding, then the ridge tree path
between them lies in the same subtree. So long as each subtree is balanced, Lemma 7 ensures
that no two wing-pairs from the same piece overlap, i.e., that each piece is non-overlapping.

In the remainder of the proof we show how to partition the ridge tree into two proper
balanced subtrees. Each edge e of the ridge tree has an associated source angle of its wing
pair, σ(e), and the sum of these weights over the whole ridge tree is 2π. We remark that a
weaker form of the lemma with three non-overlapping pieces can be obtained from the result
that any edge-weighted tree can be separated at a single vertex into three subtrees of weight
at most one half the total weight. To prove the lemma we will argue about the source angles
on each side of each ridge tree edge.

Among all proper subtrees of the ridge tree, let T be a maximal subtree that is balanced.
Let T̄ be the complement. We claim that T̄ is balanced.

If the source angle of T is at least π, then T̄ has source angle ≤ π so it must be balanced
as well. Otherwise the source angle of T is < π. Note that T cannot be rooted at an interior
point of an edge otherwise we could move the point further along the edge to increase the
source angle of T a small amount without exceeding π. Therefore T must be rooted at a
vertex v of the ridge tree. Among the edges incident to v in clockwise order, let e and f be
the first and last edges outside T . Note that e 6= f (i.e., there is more than one edge incident
to v in T̄) otherwise we could move the root of T along e to increase the source angle by a
small amount. Adding e and its subtree to T gives an unbalanced subtree, so there must
be an unbalanced path µe that contains e and a subpath in T . Similarly, there must be an
unbalanced path µf that contains f and a subpath in T .

Note that any two unbalanced path-sides must have a wing in common, otherwise we
would have two disjoint sets of wings each with source angle greater than π. Thus the
unbalanced sides of µe and µf must both lie on the clockwise side of e and f or both on the
counterclockwise side of e and f (relative to the cyclic ordering of edges at v). Suppose the
former, without loss of generality.

Suppose that T̄ has an unbalanced path µ. The unbalanced side must share wings with
the unbalanced side of µe and with the unbalanced side of µf , and therefore must include the
clockwise sides of both e and of f , which is impossible. Therefore T̄ is balanced, and we can
separate the geodesic star unfolding Sλ into two pieces each of which is non-overlapping. J

SoCG’15

404 Star Unfolding from a Geodesic Curve

4 Conclusions

We have given a simple proof that the star unfolding from a point does not overlap, and
extended it to some cases of the star unfolding from a geodesic curve. We leave open the
main conjecture that the geodesic star unfolding does not overlap. All we can say about the
general case is that the unfolding can be partitioned into two non-overlapping pieces.

The first author’s thesis [10] contains further results on geodesics that have been “fully
extended” until the endpoints a and b intersect the curve. When the endpoints reach opposite
sides of the curve (“S-shaped”) the unfolding does not overlap because it is balanced. When
the endpoints reach the same side of the curve (“C-shaped”) the unfolding need not be
balanced, though some special cases can still be proved to avoid overlap.

The figures in this paper were generated with a custom program written using CGAL,
OpenGL, and Cairo. For more information, see the first author’s thesis [10].

Acknowledgements. We thank Timothy Chan for suggesting Lemma 13. We thank Joseph
O’Rourke, Costin Vîlcu, and anonymous referees for helpful comments.

References
1 Pankaj K. Agarwal, Boris Aronov, and Catherine A. Schevon. Star unfolding of a polytope

with applications. SIAM Journal on Computing, 26:1689–1713, 1997.
2 Boris Aronov and Joseph O’Rourke. Nonoverlap of the star unfolding. Discrete & Compu-

tational Geometry, 8(3):219–250, 1992.
3 Erik D. Demaine, Martin L. Demaine, Anna Lubiw, Arlo Shallit, and Jonah Shallit. Zipper

unfoldings of polyhedral complexes. In Proceedings of the 22nd Annual Canadian Confer-
ence on Computational Geometry (CCCG), pages 219–222, August 2010.

4 Erik D. Demaine and Anna Lubiw. A generalization of the source unfolding of convex
polyhedra. In Revised Papers from the 14th Spanish Meeting on Computational Geometry
(EGC 2011), volume 7579 of Lecture Notes in Computer Science, pages 185–199, Alcalá de
Henares, Spain, June 27–30 2012.

5 Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, New York, NY, USA, 2007.

6 Albrecht Dürer. The Painter’s Manual: A Manual of Measurement of Lines, Areas, and
Solids by Means of Compass and Ruler Assembled by Albrecht Dürer for the Use of All
Lovers of Art with Appropriate Illustrations Arranged to be Printed in the Year MDXXV.
The literary remains of Albrecht Dürer. Abaris Books, 1977.

7 Kouki Ieiri, Jin-ichi Itoh, and Costin Vîlcu. Quasigeodesics and farthest points on convex
surfaces. Advances in Geometry, 11(4):571–584, 2011.

8 Jin-Ichi Itoh, Joseph O’Rourke, and Costin Vîlcu. Source unfoldings of convex polyhedra
with respect to certain closed polygonal curves. In Proceedings of the 25th European Work-
shop on Computational Geometry (EuroCG), pages 61–64, 2009.

9 Jin-ichi Itoh, Joseph O’Rourke, and Costin Vîlcu. Star unfolding convex polyhedra via
quasigeodesic loops. Discrete & Computational Geometry, 44(1):35–54, 2010.

10 Stephen Kiazyk. The star unfolding from a geodesic curve. Master’s thesis, Cheriton School
of Computer Science, University of Waterloo, 2014.

11 Joseph O’Rourke and Costin Vîlcu. Development of curves on polyhedra via conical exist-
ence. Computational Geometry, 47(2, Part A):149–163, 2014.

12 Micha Sharir and Amir Schorr. On shortest paths in polyhedral spaces. SIAM Journal on
Computing, 15(1):193–215, 1986.

The Dirac-Motzkin Problem on Ordinary Lines
and the Orchard Problem∗

Ben J. Green

Mathematical Institute, University of Oxford
Oxford, UK
ben.green@maths.ox.ac.uk

Abstract
Suppose you have n points in the plane, not all on a line. A famous theorem of Sylvester-Gallai
asserts that there is at least one ordinary line, that is to say a line passing through precisely two
of the n points. But how many ordinary lines must there be? It turns out that the answer is at
least n/2 (if n is even) and roughly 3n/4 (if n is odd), provided that n is sufficiently large. This
resolves a conjecture of Dirac and Motzkin from the 1950s. We will also discuss the classical
orchard problem, which asks how to arrange n trees so that there are as many triples of colinear
trees as possible, but no four in a line. This is joint work with Terence Tao and reports on the
results of [1].

1998 ACM Subject Classification G.2 Discrete Mathematics

Keywords and phrases combinatorial geometry, incidences

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.405

Category Invited Talk

References
1 B. J. Green and T. C. Tao, On sets with few ordinary lines, Discrete and Computational

Geometry 50 (2013), no. 2, 409–468.

∗ This work was partially supported by ERC Starting Grant number 279438, Approximate algebraic
structure and applications.

© Ben J. Green;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 405–405

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.405
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

On the Beer Index of Convexity and Its Variants∗

Martin Balko1, Vít Jelínek2, Pavel Valtr1, and Bartosz Walczak3,4

1 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic
balko@kam.mff.cuni.cz, valtr@kam.mff.cuni.cz

2 Institute for Theoretical Computer Science, Faculty of Mathematics and
Physics, Charles University, Prague, Czech Republic
jelinek@iuuk.mff.cuni.cz

3 Theoretical Computer Science Department, Faculty of Mathematics and
Computer Science, Jagiellonian University, Kraków, Poland
walczak@tcs.uj.edu.pl

4 School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA

Abstract
Let S be a subset of Rd with finite positive Lebesgue measure. The Beer index of convexity b(S)
of S is the probability that two points of S chosen uniformly independently at random see each
other in S. The convexity ratio c(S) of S is the Lebesgue measure of the largest convex subset
of S divided by the Lebesgue measure of S. We investigate the relationship between these two
natural measures of convexity of S.

We show that every set S ⊆ R2 with simply connected components satisfies b(S) 6 α c(S)
for an absolute constant α, provided b(S) is defined. This implies an affirmative answer to the
conjecture of Cabello et al. asserting that this estimate holds for simple polygons.

We also consider higher-order generalizations of b(S). For 1 6 k 6 d, the k-index of convexity
bk(S) of S ⊆ Rd is the probability that the convex hull of a (k+1)-tuple of points chosen uniformly
independently at random from S is contained in S. We show that for every d > 2 there is a
constant β(d) > 0 such that every set S ⊆ Rd satisfies bd(S) 6 β c(S), provided bd(S) exists.
We provide an almost matching lower bound by showing that there is a constant γ(d) > 0 such
that for every ε ∈ (0, 1] there is a set S ⊆ Rd of Lebesgue measure one satisfying c(S) 6 ε and
bd(S) > γ ε

log2 1/ε > γ c(S)
log2 1/ c(S) .

1998 ACM Subject Classification F.2.2 Geometrical problems and computations

Keywords and phrases Beer index of convexity, convexity ratio, convexity measure, visibility

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.406

1 Introduction

For positive integers k and d and a Lebesgue measurable set S ⊆ Rd, we use λk(S) to denote
the k-dimensional Lebesgue measure of S. We omit the subscript k when it is clear from the
context. We also write ‘measure’ instead of ‘Lebesgue measure’, as we do not use any other
measure in the paper.

For a set S ⊆ Rd, let smc(S) denote the supremum of the measures of convex subsets
of S. Since all convex subsets of Rd are measurable [12], the value of smc(S) is well defined.

∗ The first three authors were supported by the grant GAČR 14-14179S. The first author acknowledges the
support of the Grant Agency of the Charles University, GAUK 690214 and the project SVV-2014-260103
(Discrete Models and Algorithms). The last author was supported by the Ministry of Science and Higher
Education of Poland Mobility Plus grant 911/MOB/2012/0.

© Martin Balko, Vít Jelínek, Pavel Valtr, and Bartosz Walczak;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 406–420

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.406
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Balko, V. Jelínek, P. Valtr, and B. Walczak 407

Moreover, Goodman’s result [9] implies that the supremum is achieved on compact sets S,
hence it can be replaced by maximum in this case. When S has finite positive measure, let
c(S) be defined as smc(S)/λd(S). We call the parameter c(S) the convexity ratio of S.

For two points A,B ∈ Rd, let AB denote the closed line segment with endpoints A and B.
Let S be a subset of Rd. We say that points A,B ∈ S are visible one from the other or see
each other in S if the line segment AB is contained in S. For a point A ∈ S, we use Vis(A,S)
to denote the set of points that are visible from A in S. More generally, for a subset T of S,
we use Vis(T, S) to denote the set of points that are visible in S from T . That is, Vis(T, S)
is the set of points A ∈ S for which there is a point B ∈ T such that AB ⊆ S.

Let Seg(S) denote the set {(A,B) ∈ S×S : AB ⊆ S} ⊆ (Rd)2, which we call the segment
set of S. For a set S ⊆ Rd with finite positive measure and with measurable Seg(S), we
define the parameter b(S) ∈ [0, 1] by

b(S) := λ2d(Seg(S))
λd(S)2 .

If S is not measurable, or if its measure is not positive and finite, or if Seg(S) is not
measurable, we leave b(S) undefined. Note that if b(S) is defined for a set S, then c(S) is
defined as well.

We call b(S) the Beer index of convexity (or just Beer index) of S. It can be interpreted
as the probability that two points A and B of S chosen uniformly independently at random
see each other in S.

1.1 Previous results
The Beer index was introduced in the 1970s by Beer [2, 3, 4], who called it ‘the index of
convexity’. Beer was motivated by studying the continuity properties of λ(Vis(A,S)) as
a function of A. For polygonal regions, an equivalent parameter was later independently
defined by Stern [19], who called it ‘the degree of convexity’. Stern was motivated by the
problem of finding a computationally tractable way to quantify how close a given set is
to being convex. He showed that the Beer index of a polygon P can be approximated by
a Monte Carlo estimation. Later, Rote [17] showed that for a polygonal region P with n
edges the Beer index can be evaluated in polynomial time as a sum of O(n9) closed-form
expressions.

Cabello et al. [7] have studied the relationship between the Beer index and the convexity
ratio, and applied their results in the analysis of their near-linear-time approximation
algorithm for finding the largest convex subset of a polygon. We describe some of their
results in more detail in Subsection 1.3.

1.2 Terminology and notation
We assume familiarity with basic topological notions such as path-connectedness, simple
connectedness, Jordan curve, etc. The reader can find these definitions, for example, in
Prasolov’s book [16].

Let ∂S, S◦, and S denote the boundary, the interior, and the closure of a set S, respectively.
For a point A ∈ R2 and ε > 0, let Nε(A) denote the open disc centered at A with radius ε.
For a set X ⊆ R2 and ε > 0, let Nε(X) =

⋃
A∈X Nε(A). A neighborhood of a point A ∈ R2

or a set X ⊆ R2 is a set of the form Nε(A) or Nε(X), respectively, for some ε > 0.
A closed interval with endpoints a and b is denoted by [a, b]. Intervals [a, b] with a > b

are considered empty. For a point A ∈ R2, we use x(A) and y(A) to denote the x-coordinate
and the y-coordinate of A, respectively.

SoCG’15

408 On the Beer Index of Convexity and Its Variants

P

(0, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (2n− 2, 1) (2n− 1, 1)
. . .

Figure 1 A star-shaped polygon P with b(P) > 1
n

− ε and c(P) 6 1
n
. The polygon P with

4n − 1 vertices is a union of n triangles (0, 0)(2i, 1)(2i + 1, 1), i = 0, . . . , n − 1, and of a triangle
(0, 0)(0, δ)((2n− 1)δ, δ), where δ is very small.

A polygonal curve Γ in Rd is a curve specified by a sequence (A1, . . . , An) of points of Rd
such that Γ consists of the line segments connecting the points Ai and Ai+1 for i = 1, . . . , n−1.
If A1 = An, then the polygonal curve Γ is closed. A polygonal curve that is not closed is
called a polygonal line.

A set X ⊆ R2 is polygonally connected, or p-connected for short, if any two points of X
can be connected by a polygonal line in X, or equivalently, by a self-avoiding polygonal line
in X. For a set X, the relation “A and B can be connected by a polygonal line in X” is an
equivalence relation on X, and its equivalence classes are the p-components of X. A set S is
p-componentwise simply connected if every p-component of S is simply connected.

A line segment in Rd is a bounded convex subset of a line. A closed line segment includes
both endpoints, while an open line segment excludes both endpoints. For two points A and
B in Rd, we use AB to denote the open line segment with endpoints A and B. A closed line
segment with endpoints A and B is denoted by AB.

We say that a set S ⊆ Rd is star-shaped if there is a point C ∈ S such that Vis(C, S) = S.
That is, a star-shaped set S contains a point which sees the entire S. Similarly, we say that
a set S is weakly star-shaped if S contains a line segment ` such that Vis(`, S) = S.

1.3 Results
We start with a few simple observations. Let S be a subset of R2 such that Seg(S) is
measurable. For every ε > 0, S contains a convex subsetK of measure at least (c(S)−ε)λ2(S).
Two random points of S both belong to K with probability at least (c(S) − ε)2, hence
b(S) > (c(S)− ε)2. This yields b(S) > c(S)2. This simple lower bound on b(S) is tight, as
shown by a set S which is a disjoint union of a single large convex component and a large
number of small components of negligible size.

It is more challenging to find an upper bound on b(S) in terms of c(S), possibly under
additional assumptions on the set S. This is the general problem addressed in this paper.

As a motivating example, observe that a set S consisting of n disjoint convex components
of the same size satisfies b(S) = c(S) = 1

n . It is easy to modify this example to obtain, for
any ε > 0, a simple star-shaped polygon P with b(P) > 1

n − ε and c(P) 6 1
n , see Figure 1.

This shows that b(S) cannot be bounded from above by a sublinear function of c(S), even
for simple polygons S.

For weakly star-shaped polygons, Cabello et al. [7] showed that the above example is
essentially optimal, providing the following linear upper bound on b(S).

I Theorem 1 ([7, Theorem 5]). For every weakly star-shaped simple polygon P , we have
b(P) 6 18 c(P).

M. Balko, V. Jelínek, P. Valtr, and B. Walczak 409

For polygons that are not weakly star-shaped, Cabello et al. [7] gave a superlinear bound.

I Theorem 2 ([7, Theorem 6]). Every simple polygon P satisfies

b(P) 6 12 c(P)
(

1 + log2
1

c(P)

)
.

Moreover, Cabello et al. [7] conjectured that even for a general simple polygon P , b(P)
can be bounded from above by a linear function of c(P). The next theorem, which is the
first main result of this paper, confirms this conjecture. Recall that b(S) is defined for a set
S if and only if S has finite positive measure and Seg(S) is measurable. Recall also that a
set is p-componentwise simply connected if its polygonally-connected components are simply
connected. In particular, every simply connected set is p-componentwise simply connected.

I Theorem 3. Every p-componentwise simply connected set S ⊆ R2 whose b(S) is defined
satisfies b(S) 6 180 c(S).

It is clear that every simple polygon satisfies the assumptions of Theorem 3, hence we
directly obtain the following, which confirms the conjecture of Cabello et al. [7].

I Corollary 4. Every simple polygon P ⊆ R2 satisfies b(P) 6 180 c(P).

The main restriction in Theorem 3 is the assumption that S is p-componentwise simply
connected. This assumption cannot be omitted, as shown by the set S = [0, 1]2 rQ2, where
it is easy to verify that c(S) = 0 and b(S) = 1.

A related construction shows that Theorem 3 fails in higher dimensions. To see this,
consider again the set S = [0, 1]2 rQ2, and define a set S′ ⊆ R3 by

S′ := {(tx, ty, t) : t ∈ [0, 1] and (x, y) ∈ S}.

Again, it is easy to verify that c(S′) = 0 and b(S′) = 1, although S′ is simply connected,
even star-shaped.

Despite these examples, we will show that meaningful analogues of Theorem 3 for higher
dimensions and for sets that are not p-componentwise simply connected are possible. The
key is to use higher-order generalizations of the Beer index, which we introduce now.

For a set S ⊆ Rd, we define the set Simpk(S) ⊆ (Rd)k+1 by

Simpk(S) := {(A0, . . . , Ak) ∈ Sk+1 : Conv({A0, . . . , Ak}) ⊆ S},

where the operator Conv denotes the convex hull of a set of points. We call Simpk(S) the
k-simplex set of S. Note that Simp1(S) = Seg(S).

For an integer k ∈ {1, 2, . . . , d} and a set S ⊆ Rd with finite positive measure and with
measurable Simpk(S), we define bk(S) by

bk(S) :=
λ(k+1)d(Simpk(S))

λd(S)k+1 .

Note that b1(S) = b(S). We call bk(S) the k-index of convexity of S. We again leave bk(S)
undefined if S or Simpk(S) is non-measurable, or if the measure of S is not finite and positive.

We can view bk(S) as the probability that the convex hull of k + 1 points chosen
from S uniformly independently at random is contained in S. For any S ⊆ Rd, we have
b1(S) > b2(S) > · · · > bd(S), provided all the bk(S) are defined.

We remark that the set S = [0, 1]d r Qd satisfies c(S) = 0 and b1(S) = b2(S) = · · · =
bd−1(S) = 1. Thus, for a general set S ⊆ Rd, only the d-index of convexity can conceivably
admit a nontrivial upper bound in terms of c(S). Our next result shows that such an upper
bound on bd(S) exists and is linear in c(S).

SoCG’15

410 On the Beer Index of Convexity and Its Variants

I Theorem 5. For every d > 2, there is a constant β = β(d) > 0 such that every set S ⊆ Rd
with defined bd(S) satisfies bd(S) 6 β c(S).

We do not know if the linear upper bound in Theorem 5 is best possible. We can, however,
construct examples showing that the bound is optimal up to a logarithmic factor. This is
our last main result.

I Theorem 6. For every d > 2, there is a constant γ = γ(d) > 0 such that for every
ε ∈ (0, 1], there is a set S ⊆ Rd satisfying c(S) 6 ε and bd(S) > γ ε

log2 1/ε , and in particular,
we have bd(S) > γ c(S)

log2 1/ c(S) .

In this extended abstract, some proofs have been omitted due to space constraints. The
omitted proofs can be found in the full version of this paper [1].

2 Bounding the mutual visibility in the plane

The goal of this section is to prove Theorem 3. Since the proof is rather long and complicated,
let us first present a high-level overview of its main ideas.

We first show that it is sufficient to prove the estimate from Theorem 3 for bounded open
simply connected sets. This is formalized by the next lemma, whose proof is omitted.

I Lemma 7. Let α > 0 be a constant such that every open bounded simply connected set
T ⊆ R2 satisfies b(T) 6 α c(T). It follows that every p-componentwise simply connected set
S ⊆ R2 with defined b(S) satisfies b(S) 6 α c(S).

Suppose now that S is a bounded open simply connected set. We seek a bound of the form
b(S) = O(c(S)). This is equivalent to a bound of the form λ4(Seg(S)) = O(smc(S)λ2(S)).
We therefore need a suitable upper bound on λ4(Seg(S)).

We first choose in S a diagonal ` (i.e., an inclusion-maximal line segment in S), and show
that the set S r ` is a union of two open simply connected sets S1 and S2 (Lemma 10). It is
not hard to show that the segments in S that cross the diagonal ` contribute to λ4(Seg(S)) by
at most O(smc(S)λ2(S)) (Lemma 14). Our main task is to bound the measure of Seg(Si ∪ `)
for i = 1, 2. The two sets Si ∪ ` are what we call rooted sets. Informally, a rooted set is a
union of a simply connected open set S′ and an open segment r ⊆ ∂S′, called the root.

To bound λ4(Seg(R)) for a rooted set R with root r, we partition R into levels L1, L2, . . . ,
where Lk contains the points of R that can be connected to r by a polygonal line with k
segments, but not by a polygonal line with k − 1 segments. Each segment in R is contained
in a union Li ∪ Li+1 for some i > 1. Thus, a bound of the form λ4(Seg(Li ∪ Li+1)) =
O(smc(R)λ2(Li ∪ Li+1)) implies the required bound for λ4(Seg(R)).

We will show that each p-component of Li ∪Li+1 is a rooted set, with the extra property
that all its points are reachable from its root by a polygonal line with at most two segments
(Lemma 11). To handle such sets, we will generalize the techniques that Cabello et al. [7]
have used to handle weakly star-shaped sets in their proof of Theorem 1. We will assign to
every point A ∈ R a set T(A) of measure O(smc(R)), such that for every (A,B) ∈ Seg(R),
we have either B ∈ T(A) or A ∈ T(B) (Lemma 13). From this, Theorem 3 will follow easily.

To proceed with the proof of Theorem 3 for bounded open simply connected sets, we
need a few auxiliary lemmas.

I Lemma 8. For every positive integer d, if S is an open subset of Rd, then the set Seg(S)
is open and the set Vis(A,S) is open for every point A ∈ S.

M. Balko, V. Jelínek, P. Valtr, and B. Walczak 411

Proof. Choose a pair of points (A,B) ∈ Seg(S). Since S is open and AB is compact, there
is ε > 0 such that Nε(AB) ⊆ S. Consequently, for any A′ ∈ Nε(A) and B′ ∈ Nε(B), we
have A′B′ ⊆ S, that is, (A′, B′) ∈ Seg(S). This shows that the set Seg(S) is open. If we fix
A′ = A, then it follows that the set Vis(A,S) is open. J

I Lemma 9. Let S be a simply connected subset of R2 and let ` and `′ be line segments
in S. It follows that the set Vis(`′, S) ∩ ` is a (possibly empty) subsegment of `.

Proof. The statement is trivially true if ` and `′ intersect or have the same supporting
line, or if Vis(`′, S) ∩ ` is empty. Suppose that these situations do not occur. Let A,B ∈ `
and A′, B′ ∈ `′ be such that AA′, BB′ ⊆ S. The points A,A′, B′, B form a (possibly self-
intersecting) tetragon Q whose boundary is contained in S. Since S is simply connected, the
interior of Q is contained in S. If Q is not self-intersecting, then clearly AB ⊆ Vis(`′, S).
Otherwise, AA′ and BB′ have a point D in common, and every point C ∈ AB is visible in
R from the point C ′ ∈ A′B′ such that D ∈ CC ′. This shows that Vis(`′, S) ∩ ` is a convex
subset and hence a subsegment of `. J

Now, we define rooted sets and their tree-structured decomposition, and we explain how
they arise in the proof of Theorem 3.

A set S ⊆ R2 is half-open if every point A ∈ S has a neighborhood Nε(A) that satisfies
one of the following two conditions:
1. Nε(A) ⊆ S,
2. Nε(A) ∩ ∂S is a diameter of Nε(A) splitting it into two subsets, one of which (including

the diameter) is Nε(A) ∩ S and the other (excluding the diameter) is Nε(A) r S.
The condition 1 holds for points A ∈ S◦, while the condition 2 holds for points A ∈ ∂S. A
set R ⊆ R2 is a rooted set if the following conditions are satisfied:
1. R is bounded,
2. R is p-connected and simply connected,
3. R is half-open,
4. R ∩ ∂R is an open line segment.
The open line segment R ∩ ∂R is called the root of R. Every rooted set, as the union of a
non-empty open set and an open line segment, is measurable and has positive measure.

A diagonal of a set S ⊆ R2 is a line segment contained in S that is not a proper subset of
any other line segment contained in S. Clearly, if S is open, then every diagonal of S is an
open line segment. It is easy to see that the root of a rooted set is a diagonal. The following
lemma allows us to use a diagonal to split a bounded open simply connected subset of R2

into two rooted sets. It is intuitively clear, and its formal proof is omitted.

I Lemma 10. Let S be a bounded open simply connected subset of R2, and let ` be a diagonal
of S. It follows that the set S r ` has two p-components S1 and S2. Moreover, S1 ∪ ` and
S2 ∪ ` are rooted sets, and ` is their common root.

Let R be a rooted set. For a positive integer k, the kth level Lk of R is the set of points
of R that can be connected to the root of R by a polygonal line in R consisting of k segments
but cannot be connected to the root of R by a polygonal line in R consisting of fewer than k
segments. We consider a degenerate one-vertex polygonal line as consisting of one degenerate
segment, so the root of R is part of L1. Thus L1 = Vis(r,R), where r denotes the root of R.
A k-body of R is a p-component of Lk. A body of R is a k-body of R for some k. See Figure 2
for an example of a rooted set and its partitioning into levels and bodies.

SoCG’15

412 On the Beer Index of Convexity and Its Variants

r

RB′ = B
A′

A

d(A, r)

d(B) = d(B, r)

d(A)

Figure 2 Example of a rooted set R partitioned into six bodies. The three levels of R are
distinguished with three shades of gray. The segment A′B′ is the base segment of AB.

We say that a rooted set P is attached to a set Q ⊆ R2 r P if the root of P is subset
of the interior of P ∪Q. The following lemma explains the structure of levels and bodies.
Although it is intuitively clear, its formal proof requires quite a lot of work and is omitted.

I Lemma 11. Let R be a rooted set and (Lk)k>1 be its partition into levels. It follows that
1. R =

⋃
k>1 Lk; consequently, R is the union of all its bodies;

2. every body P of R is a rooted set such that P = Vis(r, P), where r denotes the root of P ;
3. L1 is the unique 1-body of R, and the root of L1 is the root of R;
4. every j-body P of R with j > 2 is attached to a unique (j − 1)-body of R.

Lemma 11 yields a tree structure on the bodies of R. The root of this tree is the unique
1-body L1 of R, called the root body of R. For a k-body P of R with k > 2, the parent of P
in the tree is the unique (k− 1)-body of R that P is attached to, called the parent body of P .

I Lemma 12. Let R be a rooted set, (Lk)k>1 be the partition of R into levels, ` be a closed
line segment in R, and k > 1 be minimum such that `∩Lk 6= ∅. It follows that ` ⊆ Lk∪Lk+1,
`∩Lk is a subsegment of ` contained in a single k-body P of R, and `∩Lk+1 consists of at
most two subsegments of ` each contained in a single (k + 1)-body whose parent body is P .

Proof. The definition of the levels directly yields ` ⊆ Lk ∪ Lk+1. The segment ` splits into
subsegments each contained in a single k-body or (k + 1)-body of R. By Lemma 11, the
bodies of any two consecutive of these subsegments are in the parent-child relation of the
body tree. This implies that ` ∩ Lk lies within a single k-body P . By Lemma 9, ` ∩ Lk is a
subsegment of `. Consequently, ` ∩ Lk+1 consists of at most two subsegments. J

In the setting of Lemma 12, we call the subsegment ` ∩ Lk of ` the base segment of `,
and we call the body P that contains ` ∩ Lk the base body of `. See Figure 2 for an example.

The following lemma is the crucial part of the proof of Theorem 3.

I Lemma 13. If R is a rooted set, then every point A ∈ R can be assigned a measurable set
T(A) ⊆ R2 so that the following is satisfied:
1. λ2(T(A)) < 87 smc(R);
2. for every line segment BC in R, we have either B ∈ T(C) or C ∈ T(B);
3. the set {(A,B) : A ∈ R and B ∈ T(A)} is measurable.

Proof. Let P be a body of R with the root r. First, we show that P is entirely contained in
one closed half-plane defined by the supporting line of r. Let h− and h+ be the two open
half-planes defined by the supporting line of r. According to the definition of a rooted set, the
sets {D ∈ r : ∃ε > 0: Nε(D) ∩ h− = Nε(D) ∩ (P r r)} and {D ∈ r : ∃ε > 0: Nε(D) ∩ h+ =
Nε(D)∩ (P r r)} are open and partition the entire r, hence one of them must be empty. This

M. Balko, V. Jelínek, P. Valtr, and B. Walczak 413

A = A′

HF

D

C

B′
B

r

T ′ E
T

Figure 3 Illustration for the proof of Claim 1 in the proof of Lemma 13.

implies that the segments connecting r to P rr lie all in h− or all in h+. Since P = Vis(r, P),
we conclude that P ⊆ h− or P ⊆ h+.

According to the above, we can rotate and translate the set R so that r lies on the x-axis
and P lies in the half-plane {B ∈ R2 : y(B) > 0}. For a point A ∈ R, we use d(A, r) to
denote the y-coordinate of A after such a rotation and translation of R. We use d(A) to
denote d(A, r) where r is the root of the body of A. It follows that d(A) > 0 for every A ∈ R.

Let γ ∈ (0, 1) be a fixed constant whose value will be specified at the end of the proof.
For a point A ∈ R, we define the sets

V1(A) := {B ∈ Vis(A,S) : |A′B′| > γ|AB|, A ∈ Vis(r′′, R), d(A′, r′′) > d(B′, r′′)},
V2(A) := {B ∈ Vis(A,S) : |A′B′| > γ|AB|, A /∈ Vis(r′′, R), d(A′, r′′) > d(B′, r′′)},
V3(A) := {B ∈ Vis(A,S) : |A′B′| < γ|AB|, |AA′| > |BB′|},

where r′′ denotes the root of the base body of AB and A′ and B′ denote the endpoints
of the base segment of AB such that |AA′| < |AB′|. These sets are pairwise disjoint, and
we have A ∈

⋃3
i=1 Vi(B) or B ∈

⋃3
i=1 Vi(A) for every line segment AB in R. If for some

B ∈
⋃3
i=1 Vi(A) the point A lies on r′′, then we have B ∈ V1(A) and V1(A) ⊆ r′′.

For the rest of the proof, we fix a point A ∈ R. We show that the union
⋃3
i=1 Vi(A) is

contained in a measurable set T(A) ⊆ R2 with λ2(T(A)) < 87 smc(R) that is the union of
three trapezoids. We let P be the body of A and r be the root of P . If P is a k-body with
k > 2, then we use r′ to denote the root of the parent body of P .
I Claim 1. V1(A) is contained in a trapezoid T1(A) with area 6γ−2 smc(R).

Let H be a point of r such that AH ⊆ R. Let T ′ be the r-parallel trapezoid of height d(A)
with bases of length 8 smc(R)

d(A) and 4 smc(R)
d(A) such that A is the center of the larger base and H

is the center of the smaller base. The homothety with center A and ratio γ−1 transforms T ′
into the trapezoid T := A+ γ−1(T ′ −A). Since the area of T ′ is 6 smc(R), the area of T is
6γ−2 smc(R). We show that V1(A) ⊆ T . See Figure 3 for an illustration.

Let B be a point in V1(A). Using similar techniques to the ones used by Cabello et
al. [7] in the proof of Theorem 1, we show that B ∈ T . Let A′B′ be the base segment of AB
such that |AA′| < |AB′|. Since B ∈ V1(A), we have |A′B′| > γ|AB|, A ∈ Vis(r′′, R), and
d(B, r′′) 6 d(A, r′′), where r′′ denotes the root of the base level of AB. Since A is visible
from r′′ in R, the base body of AB is the body of A and thus A = A′ and r = r′′. As we
have observed, every point C ∈ {A} ∪AB′ satisfies d(C, r) = d(C) > 0.

Let ε > 0. There is a point E ∈ AB′ such that |B′E| < ε. Since E lies on the base
segment of AB, there is F ∈ r such that EF ⊆ R. It is possible to choose F so that
AH and EF have a point C in common where C 6= F,H. Let D be a point of AH with
d(D) = d(E). The point D exists, as d(H) = 0 6 d(E) 6 d(A). The points A,E, F,H

SoCG’15

414 On the Beer Index of Convexity and Its Variants

form a self-intersecting tetragon Q whose boundary is contained in R. Since R is simply
connected, the interior of Q is contained in R and the triangles ACE and CFH have area
at most smc(R).

The triangle ACE is partitioned into triangles ADE and CDE with areas 1
2 (d(A) −

d(D))|DE| and 1
2 (d(D)−d(C))|DE|, respectively. Therefore, we have 1

2 (d(A)−d(C))|DE| =
λ2(ACE) 6 smc(R). This implies

|DE| 6 2 smc(R)
d(A)− d(C) .

For the triangle CFH, we have 1
2d(C)|FH| = λ2(CFH) 6 smc(R). By the similarity of the

triangles CFH and CDE, we have |FH| = |DE|d(C)/(d(E)− d(C)) and therefore

|DE| 6 2 smc(R)
d(C)2 (d(E)− d(C)).

Since the first upper bound on |DE| is increasing in d(C) and the second is decreasing in
d(C), the minimum of the two is maximized when they are equal, that is, when d(C) =
d(A)d(E)/(d(A) + d(E)). Then we obtain |DE| 6 2 smc(R)

d(A)2 (d(A) + d(E)). This and 0 6
d(E) 6 d(A) imply E ∈ T ′. Since ε can be made arbitrarily small and T ′ is compact, we
have B′ ∈ T ′. Since |AB′| > γ|AB|, we conclude that B ∈ T . This completes the proof of
Claim 1.
I Claim 2. V2(A) is contained in a trapezoid T2(A) with area 3(1− γ)−2γ−2 smc(R).

We assume the point A is not contained in the first level of R, as otherwise V2(A) is
empty. Let p be the r′-parallel line that contains the point A and let q be the supporting
line of r. Let p+ and q+ denote the closed half-planes defined by p and q, respectively, such
that r′ ⊆ p+ and A /∈ q+. Let O be the intersection point of p and q.

Let T ′ ⊆ p+ ∩ q+ be the trapezoid of height d(A, r′) with one base of length 4 smc(R)
(1−γ)2d(A,r′)

on p, the other base of length 2 smc(R)
(1−γ)2d(A,r′) on the supporting line of r′, and one lateral

side on q. The homothety with center O and ratio γ−1 transforms T ′ into the trapezoid
T := O + γ−1(T ′ − O). Since the area of T ′ is 3(1 − γ)−2 smc(R), the area of T is 3(1 −
γ)−2γ−2 smc(R). We show that V2(A) ⊆ T . See Figure 3 for an illustration.

Let B be a point of V2(A). We use A′B′ to denote the base segment of AB such that
|AA′| < |AB′|. By the definition of V2(A), we have |A′B′| > γ|AB|, A /∈ Vis(r′′, R), and
d(B, r′′) 6 d(A, r′′), where r′′ denotes the root of the base body of AB. By Lemma 12 and
the fact that A /∈ Vis(r′′, R), we have r′ = r′′. The bound d(A, r′) > d(B, r′) thus implies
A′ ∈ r ∩ p+ and B ∈ q+. We have d(C, r′) = d(C) > 0 for every C ∈ A′B′.

Observe that (1 − γ)d(A, r′) 6 d(A′, r′) 6 d(A, r′). The upper bound is trivial, as
d(B, r′) 6 d(A, r′) and A′ lies on AB. For the lower bound, we use the expression A′ =
tA+ (1− t)B′ for some t ∈ [0, 1]. This gives us d(A′, r′) = td(A, r′) + (1 − t)d(B′, r′). By
the estimate |A′B′| > γ|AB|, we have

|AA′|+ |BB′| 6 (1− γ)|AB| = (1− γ)(|AB′|+ |BB′|).

This can be rewritten as |AA′| 6 (1− γ)|AB′| − γ|BB′|. Consequently, |BB′| > 0 and γ > 0
imply |AA′| 6 (1− γ)|AB′|. This implies t > 1− γ. Applying the bound d(B′, r′) > 0, we
conclude that d(A′, r′) > (1− γ)d(A, r′).

Let (Gn)n∈N be a sequence of points from A′B′ that converges to A′. For every n ∈ N,
there is a point Hn ∈ r′ such that GnHn ⊆ R. Since r′ is compact, there is a subsequence of
(Hn)n∈N that converges to a point H0 ∈ r′. We claim that H0 ∈ q. Suppose otherwise, and

M. Balko, V. Jelínek, P. Valtr, and B. Walczak 415

F H

T ′

T

p+

r′

A′

A

D

C

G
B′E

B

r
p

q

H0

q+

D′

O

Figure 4 Illustration for the proof of Claim 2 in the proof of Lemma 13.

let q′ 6= q be the supporting line of A′H0. Let ε > 0 be small enough so that Nε(A′) ⊆ R. For
n large enough, GnHn is contained in an arbitrarily small neighborhood of q′. Consequently,
for n large enough, the supporting line of GnHn intersects q at a point Kn such that
GnKn ⊆ Nε(A′), which implies Kn ∈ r ∩Vis(r′, R), a contradiction.

Again, let ε > 0. There is a point E ∈ A′B′ such that |B′E| < ε. Let D′ be a point
of q with d(D′, r′) = d(E). Let δ > 0. There are points G ∈ A′B′ and H ∈ r′ such
that G ∈ Nδ(A′) and GH ⊆ R ∩ Nδ(q). If δ is small enough, then d(E) 6 d(A′, r′) −
δ 6 d(G) 6 d(A′, r′). Let D be the point of GH with d(D) = d(E). The point E
lies on A′B′ and thus it is visible from a point F ∈ r′. Again, we can choose F so
that the line segments EF and GH have a point C in common where C 6= F,H. The
points E,F,H,G form a self-intersecting tetragon Q whose boundary is in R. The interior
of Q is contained in R, as R is simply connected. Therefore, the area of the triangles
CEG and CFH is at most smc(R). The argument used in the proof of Claim 1 yields
|DE| 6 2 smc(R)

d(G)2 (d(G) +d(E)) 6 2 smc(R)
(d(A′,r′)−δ)2 (d(A′, r′) +d(E)). This and the fact that δ (and

consequently |D′D|) can be made arbitrarily small yield |D′E| 6 2 smc(R)
d(A′,r′)2 (d(A′, r′) + d(E)).

This together with d(A′, r′) > (1− γ)d(A, r′) yield |D′E| 6 2 smc(R)
(1−γ)2d(A,r′)2 (d(A, r′) + d(E)).

This and 0 6 d(E) 6 d(A, r′) imply E ∈ T ′. Since ε can be made arbitrarily small and T ′ is
compact, we have B′ ∈ T ′. Since |A′B′| > γ|AB| > γ|A′B|, we conclude that B ∈ T . This
completes the proof of Claim 2.

I Claim 3. V3(A) is contained in a trapezoid T3(A) with area (4(1− γ)−2 − 1) smc(R).

By Lemma 9, the points of r that are visible from A in R form a subsegment CD of r.
The homothety with center A and ratio 2(1− γ)−1 transforms the triagle T ′ := ACD into
the triangle T ′′ := A+ 2(1− γ)−1(T ′ −A). See Figure 5 for an illustration. We claim that
V3(A) is a subset of the trapezoid T := T ′′ r T ′.

Let B be an arbitrary point of V3(A). Consider the segment AB with the base segment
A′B′ such that |AA′| < |AB′|. Since B ∈ V3(A), we have |A′B′| < γ|AB| and |AA′| > |BB′|.
This implies |AA′| > 1−γ

2 |AB| > 0 and hence A 6= A′ and B /∈ P . From the definition of C
and D, we have A′ ∈ CD. Since |AA′| > 1−γ

2 |AB| and B /∈ P , we have B ∈ T .

SoCG’15

416 On the Beer Index of Convexity and Its Variants

A
A′

B B′

T ′

D

C

T r′

Figure 5 Illustration for the proof of Claim 3 in the proof of Lemma 13.

The area of T is (4(1− γ)−2− 1)λ2(T ′). The interior of T ′ is contained in R, as all points
of the open segment CD are visible from A in R. The area of T ′ is at most smc(R), as its
interior is a convex subset of R. Consequently, the area of T is at most (4(1−γ)−2−1) smc(R).
This completes the proof of Claim 3.

To put everything together, we set T(A) :=
⋃3
i=1 Ti(A). It follows that

⋃3
i=1 Vi(A) ⊆

T(A) for every A ∈ R. Clearly, the set T(A) is measurable. Summing the three estimates on
areas of the trapezoids, we obtain

λ2(T(A)) 6
(
6γ−2 + 3(1− γ)−2γ−2 + 4(1− γ)−2 − 1

)
smc(R)

for every point A ∈ R. We choose γ ∈ (0, 1) so that the value of the coefficient is minimized.
For x ∈ (0, 1), the function x 7→ 6x−2 + 3(1− x)−2x−2 + 4(1− x)−2 − 1 attains its minimum
86.7027 < 87 at x ≈ 0.5186. Altogether, we have λ2(T(A)) < 87 smc(R) for every A ∈ R.

It remains to show that the set {(A,B) : A ∈ R and B ∈ T(A)} is measurable. For every
body P of R and for i ∈ {1, 2, 3}, the definition of the trapezoid Ti(A) in Claim i implies that
the set {(A,B) : A ∈ P and B ∈ Ti(A)} is the intersection of P × R2 with a semialgebraic
(hence measurable) subset of (R2)2 and hence is measurable. There are countably many
bodies of R, as each of them has positive measure. Therefore, {(A,B) : A ∈ R and B ∈ T(A)}
is a countable union of measurable sets and hence is measurable. J

Let S be a bounded open subset of the plane, and let ` be a diagonal of S that lies on
the x-axis. For a point A ∈ S, we define the set

S(A, `) := {B ∈ Vis(A,S) : AB ∩ ` 6= ∅ and |y(A)| > |y(B)|}.

The following lemma is a slightly more general version of a result of Cabello et al. [7].

I Lemma 14. Let S be a bounded open simply connected subset of R2, and let ` be its
diagonal that lies on the x-axis. It follows that λ2(S(A, `)) 6 3 smc(S) for every A ∈ S.

Proof. Using an argument similar to the proof of Lemma 8, we can show that the set
{B ∈ Vis(A,S) : AB ∩ ` 6= ∅} is open. Therefore, S(A, `) is the intersection of an open set
and the closed half-plane {(x, y) ∈ R2 : y 6 −y(A)} or {(x, y) ∈ R2 : y > −y(A)}, whichever
contains A. Consequently, the set S(A, `) is measurable for every point A ∈ S.

We clearly have λ2(S(A, `)) = 0 for points A ∈ S r Vis(`, S). By Lemma 9, the set
Vis(A,S) ∩ ` is an open subsegment CD of `. The interior T ◦ of the triangle T := ACD is

M. Balko, V. Jelínek, P. Valtr, and B. Walczak 417

contained in S. Since T ◦ is a convex subset of S, we have λ2(T ◦) = 1
2 |CD| · |y(A)| 6 smc(S).

Therefore, every point B ∈ S(A, `) is contained in a trapezoid of height |y(A)| with bases of
length |CD| and 2|CD|. The area of this trapezoid is 3

2 |CD| · |y(A)| 6 3 smc(S). Hence we
have λ2(S(A, `)) 6 3 smc(S) for every point A ∈ S. J

Proof of Theorem 3. In view of Lemma 7, we can assume without loss of generality that
S is an open bounded simply connected set. Let ` be a diagonal of S. We can assume
without loss of generality that ` lies on the x-axis. According to Lemma 10, the set S r `

has exactly two p-components S1 and S2, the sets S1 ∪ ` and S2 ∪ ` are rooted sets, and ` is
their common root. By Lemma 13, for i ∈ {1, 2}, every point A ∈ Si ∪ ` can be assigned a
measurable set Ti(A) so that λ2(Ti(A)) < 87 smc(Si∪`) 6 87 smc(S), every line segment BC
in Si ∪ ` satisfies B ∈ Ti(C) or C ∈ Ti(B), and the set {(A,B) : A ∈ Si ∪ ` and B ∈ Ti(A)}
is measurable. We set S(A) := Ti(A) ∪S(A, `) for every point A ∈ Si with i ∈ {1, 2}. We
set S(A) := T1(A) ∪ T2(A) for every point A ∈ ` = S r (S1 ∪ S2). Let

S := {(A,B) : A ∈ S and B ∈ S(A)} ∪ {(B,A) : A ∈ S and B ∈ S(A)} ⊆ (R2)2.

It follows that the set S is measurable.
Let AB be a line segment in S, and suppose |y(A)| > |y(B)|. Then either A and B are in

distinct p-components of S r ` or they both lie in the same component Si with i ∈ {1, 2}. In
the first case, we have B ∈ S(A), since AB intersects ` and S(A, `) ⊆ S(A). In the second
case, we have B ∈ Ti(A) ⊆ S(A) or A ∈ Ti(B) ⊆ S(B). Therefore, we have Seg(S) ⊆ S.
Since both Seg(S) and S are measurable, we have

λ4(Seg(S)) 6 λ4(S) 6 2
∫
A∈S

λ2(S(A)),

where the second inequality is implied by Fubini’s Theorem. Using the bound λ2(S(A)) 6
90 smc(S), we obtain

λ4(Seg(S)) 6 2
∫
S

90 smc(S) = 180 smc(S)λ2(S).

Finally, this bound can be rewritten as b(S) = λ4(Seg(S))λ2(S)−2 6 180 c(S). J

3 General dimension

In this section, we sketch the proofs of Theorem 5 and Theorem 6. The detailed proofs can
be found in the full version of this paper [1]. In both proofs, we use the operator Aff to
denote the affine hull of a set of points.

Sketch of the proof of Theorem 5. Let T = (B0, B1, . . . , Bd) be a (d+ 1)-tuple of distinct
affinely independent points of S, ordered in such a way that the following two conditions
hold:
1. the segment B0B1 is the diameter of T , and
2. for i = 2, . . . , d − 1, the point Bi has the maximum distance to Aff({B0, . . . , Bi−1})

among the points Bi, Bi+1, . . . , Bd.
For i = 1, . . . , d− 1, we define Boxi(T) inductively as follows:
1. Box1(T) := B0B1,
2. for i = 2, . . . , d−1, Boxi(T) is the box containing all the points P ∈ Aff({B0, B1, . . . , Bi})

with the following two properties:

SoCG’15

418 On the Beer Index of Convexity and Its Variants

a. the orthogonal projection of P to Aff({B0, B1, . . . , Bi−1}) lies in Boxi−1(T), and
b. the distance of P to Aff({B0, B1, . . . , Bi−1}) does not exceed the distance of Bi to

Aff({B0, B1, . . . , Bi−1}),
3. Boxd(T) is the box containing all the points P ∈ Rd such that the orthogonal projection of

P to Aff({B0, B1, . . . , Bd−1}) lies in Boxd−1(T) and λd(Conv({B0, B1, . . . , Bd−1, P})) 6
λd(S) c(S).

It can be verified that if T ∈ Simpd(S), then Boxd(T) contains the point Bd. Also, it can be
shown that the λd-measure of Boxd(T) is equal to z := 2d−2d! smc(S), which is independent
of T . From this, we can deduce that the measure of Simpd(S) is at most (d + 1)λd(S)dz,
and hence bd(S) is at most (d+ 1)z/λd(S), which is of order c(S). J

Sketch of the proof of Theorem 6. To obtain a set S with arbitrarily small convexity ratio
c(S) and with the d-index of convexity bd(S) of order c(S)/ log2 (1/ c(S)), we let S be the
open d-dimensional box (0, 1)d with n points removed. We show that no matter which
n-tuple of points we remove from the box, the d-index of convexity bd(S) is still of order
Ω(1

n). Moreover, we show that for some constant α = α(d) > 0 it is possible to remove
n = α 1

ε log2
1
ε points from the box such that every convex subset of (0, 1)d with measure at

least ε contains a removed point. That is, we obtain c(S) 6 ε and bd(S) > γε/ log2 (1/ε) for
some constant γ = γ(d) > 0. Such an n-tuple of points to be removed is called an ε-net for
convex subsets of (0, 1)d. To find it, we first use John’s Lemma [11] to reduce the problem
to finding, for a suitably smaller ε′, an ε′-net for ellipsoids restricted to (0, 1)d. Then, we
apply a continuous version of the well-known Epsilon Net Theorem for families with bounded
Vapnik-Chervonenkis dimension due to Haussler and Welzl [10] (see also [14]). J

It is a natural question whether the bound for bd(S) in Theorem 6 can be improved
to bd(S) = Ω(c(S)). In the plane, this is related to the famous problem of Danzer and
Rogers (see [6, 15] and Problem E14 in [8]) which asks whether for given ε > 0 there is a set
N ′ ⊆ (0, 1)2 of size O(1

ε) with the property that every convex set of area ε within the unit
square contains at least one point from N ′.

If this problem was to be answered affirmatively, then we could use such a set N ′ to stab
(0, 1)2 in our proof of Theorem 6 which would yield the desired bound for b2(S). However it
is generally believed that the answer is likely to be nonlinear in 1

ε .

4 Other variants and open problems

We have seen in Theorem 3 that a p-componentwise simply connected set S ⊆ R2 whose
b(S) is defined satisfies b(S) 6 α c(S), for an absolute constant α 6 180. Equivalently, such
a set S satisfies smc(S) > b(S)λ2(S)/180.

By a result of Blaschke [5] (see also Sas [18]), every convex set K ⊆ R2 contains a triangle
of measure at least 3

√
3

4π λ2(K). In view of this, Theorem 3 yields the following consequence.

I Corollary 15. There is a constant α > 0 such that every p-componentwise simply connected
set S ⊆ R2 whose b(S) is defined contains a triangle T ⊆ S of measure at least α b(S)λ2(S).

A similar argument works in higher dimensions as well. For every d > 2, there is a
constant β = β(d) such that every convex set K ⊆ Rd contains a simplex of measure at
least βλd(K) (see e.g. Lassak [13]). Therefore, Theorem 5 can be rephrased in the following
equivalent form.

M. Balko, V. Jelínek, P. Valtr, and B. Walczak 419

I Corollary 16. For every d > 2, there is a constant α = α(d) > 0 such that every set
S ⊆ Rd whose bd(S) is defined contains a simplex T of measure at least α bd(S)λd(S).

What can we say about sets S ⊆ R2 that are not p-componentwise simply connected? First
of all, we can consider a weaker form of simple connectivity: we call a set S p-componentwise
simply 4-connected if for every triangle T such that ∂T ⊆ S we have T ⊆ S. We conjecture
that Theorem 3 can be extended to p-componentwise simply 4-connected sets.

I Conjecture 17. There is an absolute constant α > 0 such that every p-componentwise
simply 4-connected set S ⊆ R2 whose b(S) is defined satisfies b(S) 6 α c(S).

What does the value of b(S) say about a planar set S that does not satisfy even a weak
form of simple connectivity? Such a set may not contain any convex subset of positive
measure, even when b(S) is equal to 1. However, we conjecture that a large b(S) implies the
existence of a large convex set whose boundary belongs to S.

I Conjecture 18. For every ε > 0, there is a δ > 0 such that if S ⊆ R2 is a set with
b(S) > ε, then there is a bounded convex set C ⊆ R2 with λ(C) > δλ(S) and ∂C ⊆ S.

Theorem 3 shows that Conjecture 18 holds for p-componentwise simply connected sets,
with δ being a constant multiple of ε. It is possible that even in the general setting of
Conjecture 18, δ can be taken as a constant multiple of ε.

Motivated by Corollary 15, we propose a stronger version of Conjecture 18, where the
convex set C is required to be a triangle.

I Conjecture 19. For every ε > 0, there is a δ > 0 such that if S ⊆ R2 is a set with
b(S) > ε, then there is a triangle T ⊆ R2 with λ(T) > δλ(S) and ∂T ⊆ S.

Note that Conjecture 19 holds when restricted to p-componentwise simply connected sets,
as implied by Corollary 15.

We can generalise Conjecture 19 to higher dimensions and to higher-order indices of
convexity. To state the general conjecture, we introduce the following notation: for a set
X ⊆ Rd, let

(
X
k

)
be the set of k-element subsets of X, and let the set Skelk(X) be defined by

Skelk(X) :=
⋃

Y ∈(X
k+1)

Conv(Y).

If X is the vertex set of a d-dimensional simplex T = Conv(X), then Skelk(X) is often called
the k-dimensional skeleton of T . Our general conjecture states, roughly speaking, that sets
with large k-index of convexity should contain the k-dimensional skeleton of a large simplex.
Here is the precise statement.

I Conjecture 20. For every k, d ∈ N such that 1 6 k 6 d and every ε > 0, there is a δ > 0
such that if S ⊆ Rd is a set with bk(S) > ε, then there is a simplex T with vertex set X
such that λd(T) > δλd(S) and Skelk(X) ⊆ S.

Corollary 16 asserts that this conjecture holds in the special case of k = d > 2, since
Skeld(X) = Conv(X) = T . Corollary 15 shows that the conjecture holds for k = 1 and d = 2
if S is further assumed to be p-componentwise simply connected. In all these cases, δ can be
taken as a constant multiple of ε, with the constant depending on k and d.

Finally, we can ask whether there is a way to generalize Theorem 3 to higher dimensions,
by replacing simple connectivity with another topological property. Here is an example of
one such possible generalization.

SoCG’15

420 On the Beer Index of Convexity and Its Variants

I Conjecture 21. For every d > 2, there is a constant α = α(d) > 0 such that if S ⊆ Rd is
a set with defined bd−1(S) whose every p-component is contractible, then bd−1(S) 6 α c(S).

A modification of the proof of Theorem 5 implies that Conjecture 21 is true for star-shaped
sets S.

Acknowledgment. The authors would like to thank to Marek Eliáš for interesting discussions
about the problem and participation in our meetings during the early stages of the research.

References
1 M. Balko, V. Jelínek, P. Valtr, and B. Walczak. On the Beer index of convexity and its

variants. full version, arXiv:1412.1769.
2 G. Beer. Continuity properties of the visibility function. Michigan Math. J., 20:297–302,

1973.
3 G. Beer. The index of convexity and the visibility function. Pacific J. Math., 44(1):59–67,

1973.
4 G. Beer. The index of convexity and parallel bodies. Pacific J. Math., 53(2):337–345, 1974.
5 W. Blaschke. Über affine Geometrie III: Eine Minimumeigenschaft der Ellipse. Ber. Verh.

Kön. Sächs. Ges. Wiss. Leipzig Math.-Phys. Kl., 69:3–12, 1917.
6 P. G. Bradford and V. Capoyleas. Weak ε-nets for points on a hypersphere. Discrete

Comput. Geom., 18(1):83–91, 1997.
7 S. Cabello, J. Cibulka, J. Kynčl, M. Saumell, and P. Valtr. Peeling potatoes near-optimally

in near-linear time. In Proceedings of the 30th Annual Symposium on Computational Geo-
metry, pages 224–231, 2014.

8 H. T. Croft, K. J. Falconer, and R. K. Guy. Unsolved Problems in Geometry. Unsolved
Problems in Intuitive Mathematics. Springer New York, 2nd edition, 1991.

9 J. E. Goodman. On the largest convex polygon contained in a non-convex n-gon, or how
to peel a potato. Geom. Dedicata, 11(1):99–106, 1981.

10 D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete Comput. Geom.,
2(2):127–151, 1987.

11 F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and
Essays, presented to R. Courant on his 60th birthday, January 8, 1948, pages 187–204,
1948.

12 R. Lang. A note on the measurability of convex sets. Arch. Math. (Basel), 47:90–92, 1986.
13 M. Lassak. Approximation of convex bodies by inscribed simplices of maximum volume.

Beitr. Algebra Geom., 52(2):389–394, 2011.
14 J. Matoušek. Lectures on Discrete Geometry, volume 212 of Graduate Texts in Mathematics.

Springer New York, 2002.
15 J. Pach and G. Tardos. Piercing quasi-rectangles—on a problem of Danzer and Rogers. J.

Combin. Theory Ser. A, 119(7):1391–1397, 2012.
16 V. V. Prasolov. Elements of combinatorial and differential topology, volume 74 of Graduate

Studies in Mathematics. American Mathematical Society, 2006.
17 G. Rote. The degree of convexity. In Abstracts of the 29th European Workshop on Compu-

tational Geometry, pages 69–72, 2013.
18 E. Sas. Über eine Extremumeigenschaft der Ellipsen. Compositio Math., 6:468–470, 1939.
19 H. I. Stern. Polygonal entropy: a convexity measure for polygons. Pattern Recogn. Lett.,

10(4):229–235, 1989.

http://arxiv.org/abs/1412.1769

Tight Bounds for Conflict-Free Chromatic
Guarding of Orthogonal Art Galleries
Frank Hoffmann1, Klaus Kriegel1, Subhash Suri2, Kevin Verbeek3,
and Max Willert1

1 Freie Universität Berlin, Institut für Informatik, 14195 Berlin, Germany
{hoffmann,kriegel,willerma}@mi.fu-berlin.de

2 Dept. of Computer Science, University of California, Santa Barbara, USA
suri@cs.ucsb.edu

3 Dept. of Mathematics and Computer Science, TU Eindhoven, The Netherlands
k.a.b.verbeek@tue.nl

Abstract
The chromatic art gallery problem asks for the minimum number of “colors” t so that a collection
of point guards, each assigned one of the t colors, can see the entire polygon subject to some
conditions on the colors visible to each point. In this paper, we explore this problem for orthogonal
polygons using orthogonal visibility—two points p and q are mutually visible if the smallest axis-
aligned rectangle containing them lies within the polygon. Our main result establishes that for
a conflict-free guarding of an orthogonal n-gon, in which at least one of the colors seen by every
point is unique, the number of colors is Θ(log logn). By contrast, the best upper bound for
orthogonal polygons under standard (non-orthogonal) visibility is O(logn) colors. We also show
that the number of colors needed for strong guarding of simple orthogonal polygons, where all the
colors visible to a point are unique, is Θ(logn). Finally, our techniques also help us establish the
first non-trivial lower bound of Ω(log logn/ log log logn) for conflict-free guarding under standard
visibility. To this end we introduce and utilize a novel discrete combinatorial structure called
multicolor tableau.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms, G.2.2 Graph Theory

Keywords and phrases Orthogonal polygons, art gallery problem, hypergraph coloring

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.421

1 Introduction

The classic Art Gallery Problem (AGP) posed by Klee in 1973 asks for the minimum number
of guards sufficient to watch an art gallery modelled by an n-sided simple polygon P . A
guard sees a point in P if the connecting line segment is contained in P . Therefore, a guard
watches a star polygon contained in P and the question is to cover P by a collection of
stars with smallest possible cardinality. The answer is bn3 c as shown by Chvátal [3]. This
result was the starting point for a rich body of research about algorithms, complexity and
combinatorial aspects for many variants of the original question. Surveys can be found in
the seminal monograph by O’Rourke [10], in Shermer [12], and Urrutia [15].

Graph coloring arguments have been frequently used for proving worst case combinatorial
bounds for art gallery type questions starting with Fisk’s proof [5]. Somehow surprisingly,
chromatic versions of the AGP have been proposed and studied only recently. There are two
chromatic variants: strong chromatic guarding and conflict-free guarding of a polygon P . In
both versions we look for a guard set G and give each guard one of t colors. The chromatic

© Frank Hoffmann, Klaus Kriegel, Subhash Suri, Kevin Verbeek, and Max Willert;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 421–435

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.421
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

422 Tight Bounds for Conflict-Free Chromatic Guarding of Orthogonal Art Galleries

2
2

2
1

1

1

1

1
1

2
2

3

Figure 1 Example of conflict-free (left) and strong chromatic (right) r-guarding.

guarding is said to be strong if for each point p ∈ P all guards G(p) that see p have pairwise
different colors [4]. It is conflict-free if in each G(p) there is at least one guard with a unique
color, see [1]. The goal is to determine guard sets such that the number of colors sufficient
for these purposes is minimal. Observe, in both versions minimizing the number of guards is
not part of the objective function. Figure 1 shows a simple orthogonal polygon with both
conflict-free and strong chromatic guardings in the orthogonal visibility model.

To grasp the nature of the problem, observe that it has two conflicting aspects. We have
to guard the polygon but at the same time we want the guards to hide from each other,
since then we can give them the same color. For example, in the strong version we want a
guard set that can be partitioned into a minimal number of subsets and in each subset the
pairwise orthogonal link distance is at least 3. Moreover, we will see a strong dependence of
the results on the underlying visibility model, standard vs. orthogonal. We refer to standard
and orthogonal visibility as l-visibility (line visibility) and r-visibility, respectively. We use
superscripts l and r in the bounds to indicate the model.

Let χlst(n) and χlcf (n) denote the minimal number of colors sufficient for any simple
polygon on n vertices in the strong chromatic and in the conflict-free version if based on line
visibility.

Here is a short summary of known bounds. For simple orthogonal polygons on n vertices
χlcf (n) ∈ O(logn), as shown in [1]. The same bound applies to simple general polygons, see
[2]. Both proofs are based on subdividing the polygon into weak visibility subpolygons that
are in a certain sense independent with respect to conflict-free chromatic guarding. For the
strong chromatic version we have χlst(n) ∈ Θ(n) for simple polygons and χlst(n) ∈ Ω(

√
n)

even for the monotone orthogonal case, see [4]. NP-hardness is discussed in [6]. In [4], simple
O(1) upper bounds are shown for special polygon classes like spiral polygons and orthogonal
staircase polygons combined with line visibility.

Next we state our main contributions for simple orthogonal polygons:
1. For the strong chromatic version we show χrst(n) ∈ Θ(logn).
2. For the conflict-free chromatic version we show χrcf (n) ∈ Θ(log logn).
3. For line visibility guards we have: χlcf (n) ∈ Ω(log logn/ log log logn).

This is the first super-constant lower bound also for general simple polygons.

The chromatic AGP versions can be easily interpreted as coloring questions for concrete
geometric hypergraphs. Smorodinsky ([14]) gives a nice survey of both practical and theoret-
ical aspects of hypergraph coloring. A special role play hypergraphs that arise in geometry.
For example, given a set of points P in the plane and a set of regions R (e.g. rectangles,
disks), we can define the hypergraph HR(P) = (P, {P ∩ S|S ∈ R}). The discrete interval
hypergraph HI is a concrete example of such a hypergraph: We take n points on a line and
all possible intervals as regions. It is not difficult to see that χcf (HI) ∈ Θ(logn). As to our
AGP versions, we can associate with a given polygon and a guard set a geometric hypergraph.
Its vertices are the guards and a hyperedge is defined by a set of guards for which there
exists a point that can see exactly these guards. Then one wants to color this hypergraph in

F. Hoffmann, K. Kriegel, S. Suri, K. Verbeek, and M. Willert 423

a conflict-free or in a strong manner. Another example is the following rectangle hypergraph.
The vertex set is a set of n axis-aligned rectangles and each maximal subset of rectangles
with a common intersection forms a hyperedge. Here the order for the conflict-free chromatic
number is Ω(logn) and O(log2 n) as shown in [11, 14].

Looking at our results, it is not a big surprise that the combination of orthogonal polygons
with r-visibility yields the strongest bounds. This is simply due to additional structural
properties and this phenomenon has already been observed for the original AGP. For example,
the bn4 c tight worst case bound for covering simple orthogonal polygons with general stars
can also be proven for r-stars (see [10]) and it holds even for orthogonal polygons with holes,
see [7]. Further, while minimizing the number of guards is NP-hard both for simple general
and orthogonal polygons if based on line visibility, it becomes polynomially solvable for
r-visibility in the simple orthogonal case, see [9, 17]. The latter result is based on the solution
of the strong perfect graph conjecture.

The paper is organized as follows. We give necessary basic definitions in the next section.
Then we prove upper bounds in Section 3 using techniques developed in [1, 2]. That means
we also subdivide a simple orthogonal polygon into histograms which are independent with
respect to chromatic guarding. To deal with a single histogram we introduce the notion of
its spine tree. The spine tree provides an elegant and efficient way to describe r-visibility
properties of the histogram. Our main contributions are the lower bound proofs in Section 4.
Especially, we introduce a novel combinatorial structure called multicolor tableau. This
structure enables us to show a first super-constant lower bound for chromatic conflict-free
guarding based on the line visibility model.

2 Preliminaries

We study simple orthogonal polygons, i.e., polygons consisting of alternating vertical and
horizontal edges only. By |P | we denote the number of vertices, by ∂P the boundary and
by intP = P \ ∂P the interior of the polygon. Vertices can be reflex or convex. A reflex
vertex has an interior angle 3π/2 while convex vertices have an interior angle of π/2. We
do not make any general position assumption for the simple orthogonal polygons P . Points
p, q ∈ P are r-visible to each other if the closed axis-parallel rectangle r[p, q] with diagonal
pq is contained in P . In the following, unless stated otherwise, visible always means r-
visible. The visibility polygon of p, the set of all points visible from p, is formally defined as
V (p) = {q ∈ P |r[p, q] ⊆ P}. A polygon that is fully visible from one of its points is called a
star. For P ′ ⊂ P we define its visibility polygon by V (P ′) = ∪p∈P ′V (p). The windows of a
subpolygon P ′ in P are those parts of ∂P ′ that do not belong to ∂P .

For an orthogonal polygon P we construct its induced r-visibility arrangement Ar(P):
For each reflex vertex of P we extend both incident boundary edges into intP until they meet
the boundary again, therefore defining a subdivision of the polygon. The 2-dimensional faces
of this arrangement are rectangles. Clearly, points from the interior of the same rectangle
(subsequently called cell) have the same visibility polygon.

Finally, we define special classes of orthogonal polygons. A weak visibility polygon, also
known as histogram, has a boundary base edge e connecting two convex vertices such that
V (e) = P . A histogram that is a star is called a pyramid.

Conflict-free and strong chromatic guarding

A set G of points is a guard set for an orthogonal polygon P if their visibility polygons jointly
cover the whole polygon. If in addition each guard g ∈ G is assigned one color γ(g) from a

SoCG’15

424 Tight Bounds for Conflict-Free Chromatic Guarding of Orthogonal Art Galleries

fixed finite set of colors [t] = {1, 2, . . . , t} we have a chromatic guarding (G, γ). Next we give
the central definitions. Since these definitions are independent of the visibility model, we
drop the superscripts l and r in the following.
A chromatic guard set (G, γ) for P is strong if each point in P sees only differently colored
guards. (G, γ) is a conflict-free guarding if for any point p ∈ P there is at least one guard in
the guard set G(p) = V (p) ∩G whose color is unique among all guards visible from p.
Figure 1 illustrates both concepts. We denote by χcf (P) the minimal t such that there is
a conflict-free chromatic guarding set for P using t colors. Maximizing this value over all
polygons with n vertices from a specified polygon class is denoted by χcf (n).
Consequently, we denote by χst(P) the minimal t such that there is strong chromatic guarding
set using t colors. Maximizing this value for all polygons with n vertices from a specified
polygon class defines the value χst(n). Observe that minimizing the guard number is not
part of the objective function. However, in our upper bound proofs we use at most a linear
number of guards, which is asymptotically optimal in worst case.

3 Upper Bounds

We show two upper bounds for simple orthogonal polygons of size n in the r-visibility model:
χrst(n) ∈ O(logn) and χrcf (n) ∈ O(log logn). These bounds are even realized by guards
placed in the interior of visibility cells. This restriction simplifies the arguments and does not
affect the asymptotic bounds. Furthermore we use the simple fact that a polygon is guarded
iff its interior is guarded. The upper bound proof is inspired by ideas developed in [1, 2] for
conflict-free guarding of simple polygons based on line visibility.

3.1 Reduction to histograms
We reuse the central concept of independence introduced in [1, 2] for line visibility. Inde-
pendence means that one can use the same color sets for coloring guards in independent
subpolygons. The following definition suffices for our purposes and covers both the strong
and the conflict-free variant:

Let P be a simple orthogonal polygon and P1 and P2 subpolygons of P . We call P1 and
P2 independent if no point in P can simultaneously see points from intP1 and intP2.

Next, we hierarchically subdivide an orthogonal polygon P into a linear number of
histograms by a standard window partitioning process, see [1]. For the sake of simplicity we
make the (weak) assumption that the obtained histograms have no degenerate edges.
The subdivision is represented by a partition tree H = HP (e) with histograms as node set.
Let e be a highest horizontal boundary edge. The visibility polygon of e is a histogram Q.
This is the root vertex of H. Now Q splits P into parts and defines a finite set (possibly
empty if Q = P) of vertical windows w1, . . . , wk. Then we recurse, see Figure 2, with the
windows being the new base edges. Each window corresponds to a last left or right turn
of a shortest orthogonal path from e to the histogram defined by the window. So we can
accordingly label the histograms to be left or right histograms. We define the root Q to be a
left histogram.

Let Hd, d = 0, 1, 2, be the family of all histograms corresponding to nodes in H with
depth congruent d mod 3. We further partition Hd into HL

d and HR
d depending on whether

the histograms are left or right histograms, respectively. In Figure 2 the six families of
histograms are color-coded for illustration. For example, the dark gray histograms are right
children with depth congruent 1 mod 3.

F. Hoffmann, K. Kriegel, S. Suri, K. Verbeek, and M. Willert 425

Q

e

0
1
2

4
5
6

3

depth

Figure 2 The partition into histograms and the corresponding partition tree.

Figure 3 Spine tree and the bijection between open cells and monotone paths.

I Lemma 1. Let P be a polygon and HL
d , d = 0, 1, 2 the family of histograms corresponding

to left nodes in H with depth congruent d mod 3. Then the interior of histograms in each
HL
d have pairwise orthogonal link distance at least three, analogously for HR

d , so they are
independent.

3.2 Guarding a histogram
Consider a histogram H ⊆ P with a top horizontal base edge. We associate with H a tree T
as follows. Consider the set of cells in the r-visibility arrangement Ar. If several cells have
the same visibility polygon we choose the leftmost cell as representative of this equivalence
class. Let R be the set of all representatives and B ⊆ R the subset of cells incident to bottom
horizontal histogram edges. We define a partial order for B: We say b′ ≤ b iff the horizontal
polygon edge of b′ is not above that of b and there is an r ∈ R that sees both b and b′. The
Hasse diagram of this poset is a tree T which we call the spine tree of H. A monotone path π
in T is a directed subpath of a root-to-leaf path. It corresponds to a pair (b, b′) with b′ ≤ b.

I Lemma 2. There is a bijective mapping Φ between cells of R and monotone paths in T
such that two cells are visible from each other iff the corresponding monotone paths in T

share a node.

Proof. Let r be a cell in R. Then V (r) ∩ T is some monotone path π in T and we set
Φ(r) = π. For the inverse function let π be a monotone path in T from vertex b down to b′.
We associate with π the unique cell Φ−1(π) = r ∈ R that is vertically aligned with b′ and
horizontally with b.
We observe that Φ is well-defined by the choice of the leftmost representative for visibility
equivalent cells and it is clearly a bijection. Especially, for π = (b, b) we have Φ−1(π) = b.

For the second assertion consider two cells r, r′ visible from each other and the smallest
rectangle that includes both. By extending this rectangle downwards it hits a horizontal
boundary edge. The vertex of T corresponding to that edge is in both Φ(r) and Φ(r′). For
the other direction consider a cell r′′ corresponding to a vertex in Φ(r) ∩ Φ(r′). It has a
bottom horizontal edge. We form a rectangle in H above this edge of maximal width and
maximal height. All cells visible from r′′ are in this rectangle, therefore r sees r′. Figure 3
illustrates the bijection. J

SoCG’15

426 Tight Bounds for Conflict-Free Chromatic Guarding of Orthogonal Art Galleries

Figure 4 Example histogram with spine tree.

Figure 5 Monotone paths covering the spine tree and the corresponding compressed spine tree.

Now we translate the geometric concepts of strong and conflict-free guardings of H into
equivalent combinatorial questions for the spine tree T . First of all, a colored guard set for
H defines a set of colored cells in R and this defines, using Φ, a covering of T with colored
monotone guarding paths and vice versa. The condition for strong guarding now reads: No
monotone path in T can intersect two guarding paths of the same color.
For conflict-free guardings we have:

I Lemma 3. Colored guards g1, . . . , gr define a conflict-free guarding for H iff for each
monotone path π in T there exists a color and exactly one guarding path Φ(gi) with that color
such that π ∩ Φ(gi) 6= ∅.

Proof. Consider the cell Φ−1(π). It is seen by a guard g with a unique color c. Therefore
Φ(g) ∩ π 6= ∅. Assume, some other c-colored guarding path Φ(g′) intersects π. Then g′ sees
Φ−1(π), a contradiction. The other direction is analogous. J

Path compression: We use a bottom-up path compression to define a covering (in fact, it
is a partition) of T by monotone paths. To this end we form, in parallel, for all leaves l the
maximal length monotone paths π(l) that end in l and do not use nodes of outdegree bigger
than one. We cut off all π(l) from T . Iterating this procedure yields a unique tree T ∗. Its
nodes represent monotone paths in T . T ∗ has depth O(log |H|) since in each iteration the
number of leaves is reduced by at least half. Figure 4 shows an example histogram with its
spine tree T . The derived compressed spine tree is depicted in Figure 5.

The above path compression technique is similar but not equivalent to that of heavy path
decompositions [13]. In fact, the same bounds can be achieved using the (heavy) path tree
of heavy path decompositions as T ∗.

I Proposition 4. Let H be a histogram with n vertices. In the r-visibility model there is a
strong chromatic guarding with O(logn) colors and a conflict-free chromatic guarding with
O(log logn) colors.

Proof. We construct the spine tree T and the compressed tree T ∗ with depth O(logn). To
get a strong guarding we color the nodes of T ∗, i.e. the guarding paths in T , by their depth
in T ∗.

F. Hoffmann, K. Kriegel, S. Suri, K. Verbeek, and M. Willert 427

1

2

2 2

2

2
3(1)

3(1)

3(1) 3(1)
3(1) 3(1) 3(1) 3(1)

Figure 6 Chromatic guarding positions for the example histogram: with colors {1,2,3} strong,
with colors {1,2} conflict-free (in brackets) guarding.

For a conflict-free guarding, consider the color set [t] = {1, 2, . . . , t} and the following
recursively defined set of words: s1 = 1 and si = si−1 ◦ i ◦ si−1. Clearly, a prefix of st with
length k has no more than dlog(k+ 1)e different colors and each connected subword contains
a unique color [14]. Now we color the nodes of T ∗ from the root to the leaves with the
sequence st of length at most the height of the tree, that is O(logn). A color alphabet of
size O(log logn) suffices. J

We illustrate the construction in Figure 6. Observe that we use the same guard positions
for both strong and conflict-free guarding. The compressed spine tree has depth 2. For the
strong guarding we use colors 1, 2 and 3 while for the conflict-free version we use the color
sequence 1-2-1. The guard positions are in the open cells corresponding to the monotone
paths via bijection Φ. Moreover, each guard covers a pyramid as indicated in the figure.

I Theorem 5. Let P be an orthogonal polygon with |P | = n. We have χrst(n) ∈ O(logn)
and χrcf (n) ∈ O(log logn).

Proof. We decompose P into 6 families HL
d , H

R
d , d = 0, 1, 2. Each of the families consists of

pairwise independent histograms each of size at most n. Then we apply Proposition 4. J

4 Lower Bounds

This section contains three lower bound proofs, two tight lower bounds for strong and for
conflict-free r-visibility guards, and a first non-trivial lower bound for conflict-free l-visibility
guards in simple polygons. All use the same underlying orthogonal histogram but they
completely differ with respect to proof techniques. Both r-visibility cases rely on the spine
tree concept from Section 3.2. For line visibility guards we introduce a new combinatorial
method which we call multicolor tableau.

4.1 Lower bounds for r-visibility
All lower bounds established in this paper are based on a simple, recursively defined family
of so called spike polygons Sm, where S1 is a simple square and Sm+1 is formed by two copies
of Sm separated by a vertical spike, but joined by an additional horizontal layer. Figure 7
illustrates this construction together with the subdivision of S2 into visibility cells. Obviously,
the spine tree T of Sm is a balanced binary tree of height m− 1 with vertices corresponding
one-to-one to bottom cells in the r-visibility arrangement. Recall, a colored r-visibility guard
set for Sm corresponds to a covering of T with colored monotone guarding paths and vice
versa.

I Theorem 6. For simple orthogonal polygons χrst(n) ∈ Ω(logn).

SoCG’15

428 Tight Bounds for Conflict-Free Chromatic Guarding of Orthogonal Art Galleries

Proof. We show that any strong guarding of Sm requires m different colors. Consider in the
spine tree T a guarding path π covering the root with unique color c. Then c does not occur
in the left or in the right subtree of the root. By induction we need m− 1 more colors for
the subtree missed by π. Since Sm has n = 2m+1 vertices, the claim follows. J

Next we consider a lower bound for the conflict-free version of the problem. To that end, we
analyze the special case that a root-to-leaf path π in T is covered by short guarding paths
only. Later we show the existence of such a path.

I Lemma 7. Let P = {π1, . . . , πr} be conflict-free guarding paths for a path π with m nodes
such that |πi| = O(mε) for 1 ≤ i ≤ r and some 0 < ε < 1. Then this guarding uses at least
Ω(logm) colors.

Proof. Let K = max{|πi|, 1 ≤ i ≤ r}. We subdivide π into k = m
K ∈ Ω(m1−ε) buckets of

size K each. This way every πi can overlap with at most two buckets. Since P is induced by
a conflict-free guarding, there is a color c1 such that exactly one πi (responsible for π) is
colored with c1. Hence there is a subpath of π consisting of at least k−2

2 buckets that does
not intersect any c1-colored path. Applying this argument recursively we obtain the following
recursive relation for the number of colors needed for k buckets: T (k) ≥ T (k−2

2) + 1. This
recursive relation easily solves to T (k) ∈ Ω(log k) ⊆ Ω(logm1−ε) = Ω(logm). J

I Theorem 8. For simple orthogonal polygons χrcf (n) ∈ Ω(log logn).

Proof. We start with a conflict-free guarding of Sm, n = 2m+1 that uses a minimum number
of t colors. By Theorem 5 we have t ∈ O(log logn) = O(logm). Consider the corresponding
family F of guarding paths in T . We denote by U(v0) the set of all guarding paths from F
covering the root v0 of T with a unique color. Since |U(v0)| ≤ t there must be a vertex v1 at
depth blog tc+1 that is not part of any path from U(v0). Now we iterate starting from v1. We
take all guarding paths covering v1 with a unique color and we determine a node v2 at depth
2blog tc+ 2 missed by these paths, and so on. We call the vi’s checkpoints. The checkpoints
define a root-to-leaf path π with length m = logn− 1. Consider Fπ = {π∩πi|πi ∈ F} . Now
form a new family Uπ that consists of all maximal subpaths σ of members πi ∩ π ∈ Fπ such
that σ does not intersect any other member of the same color in Fπ. Let π′ ⊂ π and assume
πi ∈ F gives a unique color to π′. Then π′ ∩ πi is part of some path in Uπ. Thus Uπ is a
conflict-free guarding path family for π. By construction, paths in Uπ have length at most
2blog tc+ 1. Now we can apply Lemma 7. Since 2 log t+ 1 ∈ O(log logm) ⊆ O(m0.5) we get
t ∈ Ω(logm) = Ω(log logn). J

4.2 Blocks, stretched spike polygons, and multicolor tableaux

We now turn our attention to conflict-free chromatic guarding in the line visibility model.
The concepts needed in our lower bound proof are explained in this section.

Columns of Sm are numbered left to right by indices k ∈ [2m − 1], and cells in column
k top down by an additional index i ∈ [dm(k)] where dm(k) is the depth of column k in
Sm. Formally, we have dm(k) = m− π2(k), where π2(k) is the multiplicity of factor 2 in the
prime decomposition of k. Obviously, a column has maximal depth m iff its index is odd.
We introduce the notions of the left and right wing of column k in order to distinguish guard
positions: The left wing WL(k) is the set of all points strictly on the left side of the midline of
column k and the right wing is the complement WR(k) = Sm \WL(k) including the midline.

F. Hoffmann, K. Kriegel, S. Suri, K. Verbeek, and M. Willert 429

1

1

1

1

2 3

2

1 2 3 4 5 6 7

1

2

3

WL(k) WR(k)

k

B(k)

BL(k) BR(k)

BLL(k) BLR(k) BRL(k) BRR(k)

kl(k) r(k)

Figure 7 Spike polygons S1 and S2 (left), left wing and right wing of column k = 6 in S3 (middle),
blocks and subblocks (right).

We define the block B(k) of column k as the interval of all neighboring columns of depth at
least dm(k), see Figure 7:

B(k) =
[
k −

(
2π2(k) − 1

)
, k +

(
2π2(k) − 1

)]
Geometrically, a block is nothing but a smaller spike polygon. Deleting its central column a
block splits into a left and a right subblock:

BL(k) =
[
k −

(
2π2(k) − 1

)
, k − 1

]
, BR(k) =

[
k + 1, k +

(
2π2(k) − 1

)]
For odd k we have B(k) = {k} and BL(k) = BR(k) = ∅. Later it will be necessary to
subdivide a left or right subblock again into its left and right subblocks. These quarter-
subblocks can be described making use of the definition above together with the central
column l(k) = k − 2π2(k)−1 in block BL(k) and column r(k) = k + 2π2(k)−1 in block BR(k):

BLL(k) = BL(l(k)) , BLR(k) = BR(l(k)) , BRL(k) = BL(r(k)) , BRR(k) = BR(r(k)).

Next we introduce a vertically stretched, but combinatorially equivalent version S↓m of Sm
with the following properties:
1. The width of each column is 1 and hence the total width of S↓m is again 2m − 1.
2. We will distinguish between combinatorial and geometric depth of a column: While

dm(k) = m− π2(k) is still the combinatorial depth, we want the geometric depth to be
d↓m(k) = 2(dm(k)−1)m. That means that the height of the first row is h1 = 1 and the
height of the i-th row hi = 2im − 2(i−1)m.

Consider the r-visibility(!) arrangement of S↓m with the rectangular r-visibility cells ri,k .
Next we discretize the conflict-free l-guarding problem. Let pi,k be the bottom side midpoint
of cell ri,k, that is the cell in row i and column k. If γ : G → [t] for a guard set G is a
conflict-free l-guarding of S↓m, then let Mi,k be the multiset of all colors of guards that see
point pi,k. By mi,k(c) we denote the multiplicity of color c in this multiset.
We callM(γ) = {Mi,k | k ∈ [2m − 1], i ∈ [dm(k)]} the corresponding multicolor tableau. The
set of unique guard colors for point pi,k is defined by Ui,k := {c ∈ [t] |mi,k(c) = 1} and the
standard inclusion relation Mi,k ⊆Mj,l for multisets by: ∀c ∈ [t] mi,k(c) ≤ mj,l(c).
The next two lemmata state simple l-visibility properties in stretched spike polygons.

I Lemma 9. Let g be an l-guard in S↓m and k a column of this polygon with combinatorial
depth d = dm(k) and geometric depth d↓m(k) = 2(d−1)m. If g ∈ WR(k) (g ∈ WL(k)) then g
cannot see any point p at depth d↓(p) ≥ 2dm in the left (right) block of k. In particular, g
cannot see any point pi,j with j ∈ BL(k) (j ∈ BR(k)) and i > d.

Proof. By symmetry it is sufficient to study the first case with g ∈WR(k), d↓(p) ≥ 2dm and
p a point in the subpolygon BL(k). Let qL be the left vertex of the horizontal polygon edge

SoCG’15

430 Tight Bounds for Conflict-Free Chromatic Guarding of Orthogonal Art Galleries

k

g

pi,k
pi,j′

k

g
pi,k

pi,j′

k

g

pi,k pi,j′

r(k)

Figure 8 Possible guard positions with respect to the point pi,k. Note that it is impossible to
display the exponential growth of the row heights in the drawing.

in column k and consider the slopes s1 and s2 of the lines pqL and qLg. Since the width of
BL(k) is 2m−d − 1 and d↓(p)− d↓(qL) ≥ 2dm − 2(d−1)m = (2m − 1) · 2(d−1)m we get

s1 ≥
(2m − 1) · 2(d−1)m

2m−d − 1 = (2m − 1) · 2(d−1)m

2−d(2m − 2d) >
2(d−1)m

2−d = 2(d−1)m+d

Since g is in the right wing of k it is at least one half unit right of qL and it is at most
d↓m(k) = 2(d−1)m units higher than qL. We get

s2 ≤
2(d−1)m

1/2 = 2(d−1)m+1 ≤ 2(d−1)m+d

Thus s1 > s2, which shows that vertex ql blocks the l-visibility between pi,j and g. J

I Lemma 10. Let g be an l-guard watching a point pi,k ∈ S↓m. Then, for all i′ ≤ i and for
all j ∈ BL(k) or for all j ∈ BR(k), g sees also pi′,j.

Proof. Let d↓(g) be the geometric depth of g in S↓m.
Case 1: (Fig. 8, left) If g is even an r-guard for pi,k then the rectangle spanned by g and

pi,k can be horizontally extended over the whole block B(k) as well as upwards to the
top of S↓m. Thus the claim holds for all j ∈ B(k).
Otherwise there are two more cases, namely that d↓(g) is strictly smaller or strictly larger
than 2(i−1)m.

Case 2: (Fig. 8, middle) d↓(g) < 2(i−1)m, i.e., g sees pi,k from above. If g ∈WR(k) then g
can see all pi,j with j ∈ BL(k) because the line segments pi,jpi,k and pi,kg are contained
in S↓m and they form a chain that is convex from above. If g ∈WL(k) then g can see all
pi,j with j ∈ BR(k) beause the line segments gpi,k and pi,kpij are contained in S↓m and
they form a chain that is convex from above. Moreover it is clear that in S↓m any guard
that sees a point pi,j will see also all points directly above, especially the points pi′,j with
i′ < i.

Case 3: (Fig. 8, right) d↓(g) > 2(i−1)m, i.e., g sees pi,k from below. We can additionally
assume d↓(g) > d↓m(k) = 2(dm(k)−1)m since otherwise we are in Case 1 again. By
Lemma 9 (with the roles of guard and guarded point exchanged) we know that g is in row
i′′ = dm(k) + 1 in some cell ri′′,j with j ∈ BL(k) or j ∈ BR(k). It follows that, depending
on whether g lies in BL(k) or BR(k), g sees all pi′′,j′ with j′ ∈ BL(k) or j′ ∈ BR(k) and
all points above. J

A multicolor tableauM(γ) has standard size if it consists of m rows and N = 2m − 1
columns. But by various constructions, for example restricting it to a single block, one
creates a new tableau having m rows and N ′ = 2m′ − 1 columns for some m′ < m.
The following central definition of t-conformity specifies some necessary, but not sufficient
conditions a multicolor tableau has if it stems from a conflict-free t-chromatic l-guarding of a
stretched spike polygon. Later we will show that t-conformity is preserved when acting on
the tableau with various combinatorial operations defined below.

F. Hoffmann, K. Kriegel, S. Suri, K. Verbeek, and M. Willert 431

I Definition 11. Let m′ ≤ m be natural numbers and N ′ = 2m′ − 1. A combinatorial
scheme of multisets over the ground set [t] of the formM = (Mi,k | k ∈ [N ′], i ∈ [dm(k)]) is
called a t-conform m×N ′ multicolor tableaux if the following properties hold:
1. cf-Property: ∀k∈[N ′] ∀i∈[dm(k)] Ui,k 6= ∅.
2. Monotonicity: ∀k∈[N ′] ∀1≤i<i′≤dm(k) Mi′,k ⊆Mi,k.
3. LR-quarter-block property: If c is a unique color for some point pi,k in column k then

there exists a quarter-subblock BXY (k) with XY ∈ {LL,LR,RL,RR} such that for all
columns j ∈ BXY (k) the following predicate Q(j) holds. Q(j) is the conjunction of three
conditions:
a. c ∈Mi,j

b. c ∈ Ui,j → c 6∈Mdm(k)+2,j
c. c 6∈ Ui,j → ∃Z∈{L,R} ∀j′∈BZ (j) c 6∈ Ui,j′ .

I Proposition 12. The multicolor tableauM(γ) for a conflict-free l-guarding γ of the polygon
S↓m with t colors is t-conform.

Proof. There is nothing to prove for the cf-property and the monotonicity. Now let us
assume c ∈ Ui,k with a corresponding guard g. By symmetry we may suppose g ∈WR(k).
Again, there are three cases to distinguish (see Figure 8):
1. pi,k is r-visible from g.
2. pi,k is not r-visible from g and pi,k is deeper than g.
3. pi,k is not r-visible from g and g is deeper than pi,k.

In Case 1 and Case 2 we choose XY = LL (but XY = LR would also work – the gray
points). In Case 3 the choice depends on the position of g relative to the central column r(k)
of the block BR(k):

XY =
{
RL if g ∈WR(r(k))
RR if g ∈WL(r(k)).

It remains to establish the three conditions of Q(j) for all j ∈ BXY (k). Condition (a) is
obvious in Case 1 and Case 2. In Case 3 it follows from the fact that g cannot be deeper
than d↓m(r(k)), see the proof of Lemma 9.

For condition (b) suppose that c ∈ Ui,j . This implies that g is the only guard with color c
that sees pi,j . However, in all three cases g is in the wing opposite to block BXY (k) and then
g cannot see any point of combinatorial depth dm(k) + 2 in BXY (k) by Lemma 9. It is worth
observing that depth dm(k) + 1 = dm(r(k)) does not suffice in Case 3. Any other c-colored
guard watching pdm(k)+2,j would also watch pi,j and therefore contradicts the uniqueness of
g. Thus c 6∈Mdm(k)+2,j .

Finally, let us suppose c 6∈ Ui,j , then there is a second c-colored guard g′ for pi,j . Now
we can conclude from Lemma 10 that g′ watches all points pi,j′ for j′ ∈ BL(j) or for all
j′ ∈ BR(j). This proves condition (c). J

4.3 The lower bound proof for l-visibility
We start with describing operations on t-conform multicolor tableaux that maintain this
property. In Figure 9 the three operations are geometrically illustrated, however, the
operations themselves are defined for the combinatorial tableaux.

I Proposition 13. IfM = (Mi,k |k ∈ [N ′], i ∈ [dm(k)]) is a t-conform m×N ′ tableau with
N ′ = 2m′ − 1 for some m′ ≤ m, then the following three constructions yield new t-conform
tableauxM1,M2,M3:

SoCG’15

432 Tight Bounds for Conflict-Free Chromatic Guarding of Orthogonal Art Galleries

1 2 3 4 5 6 7 9 10 11 12 13 14 158

1

2

3

4

5

6

1

2

3

4

5

6

1 2 3 4 128

1

2

3

4

5

6

1

2

3

4

1

2

3

4

5

1 2 3 4 5 6 7

Figure 9 Illustrating horizonal (red), vertical (lower left), and selective (blue-green) truncation
of a 6 × 15 multicolor tableau.

1. Horizontal truncation: M1 results from restrictingM to a block B(k);
2. Vertical truncation: M2 results from deleting the top m−m′ rows ofM;
3. Selective truncation: M3 results from selecting 2m∗ − 1 columns for some m∗ < m′ with

respect to the following rules:
For all even k ∈ [2m∗ − 1] choose column k · 2m′−m∗ ofM as column k ofM3.
For all odd k ∈ [2m∗ − 1] choose any column j of M with (k − 1) · 2m′−m∗ < j <

(k + 1) · 2m′−m∗ , delete from that column all entries of depth d > m∗ +m−m′ and
use this truncated column as column k ofM3.

Proof. Recall, the width of B(k) is N ′′ = 2m′′ − 1 where m′′ = 2π2(k). So the only
thing that one has to do forM1 is shifting the column indexing from the interval B(k) =
[k − 2π2(k) + 1, k + 2π2(k) − 1] to [N ′′]. ThenM1 is t-conform.

For the second construction it is sufficient to shift down by m −m′ the index of each
row that is not deleted. Then M2 is an m′ × N ′ tableau. Note that an old row index
dm(k) = m − π2(k) becomes dm′(k). Having that in mind, it is also trivial that M2 is
t-conform.

The construction ofM3 already contains the renumbering of indices. Again, it is not
hard to conclude the t-conformity because the construction preserves the relation of being a
column in the left (or right) subblock of another column. J

I Theorem 14. χlcf (n) ∈ Ω
(

log logn
log log logn

)
.

Proof. We define a recursive function m(t) by m(1) = 3 and m(t) = 1 + t · (m(t− 1) + 1) for
t ≥ 2.
The inequality m(t) ≤ (t+ 1)! holds for all t ≥ 5 by induction. In fact, m(5) = 651 < 720 =
(5 + 1)! and the induction step works for any t ≥ 6 as follows:

m(t) = t · (m(t− 1) + 1) + 1 ≤ t(t! + 1) + 1 = t · t! + (t+ 1) ≤ t · t! + t! = (t+ 1)!

Claim: An m(t)× (2m(t) − 1) tableau cannot be t-conform.
Before proving this claim we first show how it implies the Theorem. By Proposition 12

and the Claim we have χlcf (n) > t for all t ≥ 5 and some n ≤ 2(t+1)!+1, since 2(t+1)!+1 is
an upper bound on the number of vertices in S↓m(t). This implies log logn ∈ O(t log t) and

finally t ∈ Ω
(

log logn
log log logn

)
.

The proof of the Claim is by induction on t. The induction base is for t = 1. We show it
by contradiction. Any 1-conform 3× 7 tableau requires to set Ui,k = {1} for all k ∈ [7] and

F. Hoffmann, K. Kriegel, S. Suri, K. Verbeek, and M. Willert 433

all i ∈ [d3(k)]. However, looking at the LR-quarter-block property for the situation 1 ∈ U1,4
yields a contradiction with condition (b).

The induction step is also proved by contradiction. Assume that there are no (t − 1)-
conform m′ ×N ′ tableaux with m′ = m(t− 1) and N ′ = 2m′ − 1, but there is a t-conform
m×N tableauM for m = m(t) and N = 2m − 1.

The following reasoning is a bit involved, so we first give an overview.

Outline: The proof by contradiction consists of s stages, for some 1 ≤ s ≤ t. The
precondition of stage s is the existence of a t-conform m × Ns−1 tableau where Ns−1 =
2m−(s−1)(m′+1) − 1 such that the following additional property holds. There is a color set
Cs−1 ⊆ [t] consisting of s − 1 colors, such that for all these c ∈ Cs−1 and for all columns
k ∈ [Ns] holds c 6∈ U1,k. The precondition for the first stage is given by the tableauM with
N0 = N and C0 = ∅. The tableauM will change after every stage. The postcondition of
the s-th stage is either a contradiction obtained by constructing a (t− 1)-conform m′ ×N ′
tableau (this is Case 1: the stop condition) or the validation of the precondition for the next
stage (this is Case 2). This will work in such a way that if the stop condition does not occur
even after the t-th stage, then the derived condition also yields a contradiction. We would
then have Ct = [t] and Nt = 21 − 1 = 1, i.e., it results in a t-conform m× 1 tableau (i.e., a
single column) such that no color can be unique in M1,1.

Proof details: Suppose that an m × Ns−1 tableau M with a color set Cs−1 fulfills the
precondition for stage s with 1 ≤ s ≤ t. Let k = Ns−1+1

2 be the central column ofM and
cs ∈ U1,k. Note that the precondition implies cs 6∈ Cs−1. By the LR-quarter-block property
of t-conform tableaux there is some XY ∈ {LL,LR,RL,RR} such that predicate Q(j) is
true for all j ∈ BXY (k). We subdivide the block BXY (k) into K = 2m′−1 subblocks of
equal width. These subblocks are defined by their central columns jl, where l ∈ [K]. Note
that their width just fits to the precondition of the next stage because BXY (k) has width
Ns−1+1

4 − 1 and, consequently, all B(jl) have width:

Ns−1 + 1
4 · 2m′−1 − 1 = 2m−(s−1)(m′+1)

4 · 2m′−1 − 1 = 2m−(s−1)(m′+1)

2m′+1 − 1 = 2m−s(m′+1) − 1

Due to the conditions encoded in predicate Q(j) for a given color c = cs and column k we
make the following case distinction:
Case 1: ∀l∈[K] ∃j′∈B(jl) cs ∈ U1,j′

Case 2: ∃l∈[K] ∀j′∈B(jl) cs 6∈ U1,j′

In Case 1 we can immediately derive a contradiction using the constructions of Proposition 13:
First we horizontally truncate the current tableauM to the block BXY (k), then we use a
selective truncation with m∗ = m′, where the even columns (indexed by 2l for l ∈ [K]) of
the new tableau are the ones that separate in M the subblocks Bjl

and Bjl+1 from each
other and the odd columns (indexed 2l − 1) are chosen from Bjl

with respect to fulfilling
the property cs ∈ U1,j′ . We show that cs is also unique in the top set of an even column.
Supposing that c = cs is not unique in that set contradicts condition (c) of predicate Q(j).
Thus cs is unique everywhere in the first row of the new tableau. With respect to condition
(b) it does not occur at all in the third row or deeper. Each column of this new tableau
M′ has depth d ≥ 3 because all columns ofM′ have been selected from a quarter subblock
BXY (k). Next we apply a vertical truncation (deletion of top rows) to M′ to obtain an
m′ ×N ′ tableauM∗. This way at least the two top rows ofM′ are deleted and thus color
cs does not occur anymore inM∗. As a resultM∗ is a (t− 1)-conform m′ ×N ′ tableau.

SoCG’15

434 Tight Bounds for Conflict-Free Chromatic Guarding of Orthogonal Art Galleries

Case 2 is the easier one because horizontally truncatingM to a block B(jl) such that
∀j′∈B(jl) cs 6∈ U1,j′ yields the precondition for the next stage with Cs = Cs−1 ∪ {cs}. J

5 Conclusion

We have shown tight bounds for the chromatic AGP for orthogonal simple polygons if based
on r-visibility. While the upper bound proofs use known techniques, we consider our lower
bound techniques to be the main technical contribution of the paper. The multicolor tableau
technique used for l-visibility can also directly be applied to the r-visibility version of the
problem, but does not result in a tight bound, see [8]. Our lower bound technique for
r-visibility, however, does not easily generalize to the l-visibility version of the problem, as
it relies on the bijection with monotone paths in the spine tree, which does not exist in
that case. It would therefore be of interest to combine both techniques to obtain a stronger
Ω(log logn) lower bound for χlcf (n) as well. We conjecture that this is indeed the lower
bound for stretched spike polygons. But one cannot hope for more, since O(log logn) is also
an upper bound for the conflict-free guarding of stretched spike polygons using line visibility.
To improve this lower bound one has to look for other polygons.

References

1 A. Bärtschi and S. Suri. Conflict-free Chromatic Art Gallery Coverage. Algorithmica 68(1):
265–283, 2014.

2 A. Bärtschi, S.K. Ghosh, M. Mihalak, T. Tschager, and P. Widmayer. Improved bounds
for the conflict-free chromatic art gallery problem. In Proc. of 30th Symposium on Compu-
tational Geometry, pages 144–153, 2014.

3 V. Chvátal. A combinatorial theorem in plane geometry. Journal of Combinatorial Theory,
Series B, 18(1):39–41, 1975.

4 L. H. Erickson und S. M. LaValle. An Art Gallery Approach to Ensuring that Landmarks
are Distinguishable, in Proc. Robotics: Science and Systems VII, Los Angeles, pages 81–88,
2011.

5 S. Fisk. A short proof of Chvátal’s Watchman Theorem. Journal of Combinatorial Theory,
Series B, 24(3):374–374, 1978.

6 S. P. Fekete, S. Friedrichs, and M. Hemmer. Complexity of the General Chromatic Art
Gallery Problem. arXiv 1403.2972 [cs.CG], 2014.

7 F. Hoffmann, On the Rectilinear Art Gallery Problem, Proc. 17th ICALP, Springer LNCS
443, 717–728, 1990.

8 F. Hoffmann, K. Kriegel, and M. Willert. Almost Tight Bounds for Conflict-Free Guarding
of Orthogonal Art Galleries. arXiv:1412.3984 [cs.CG], 2014.

9 R. Motwani, A. Raghunathan, and H. Saran. Covering orthogonal polygons with star poly-
gons: The perfect graph approach. Comput. Syst. Sci. 40 (1990) 19–48.

10 J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, New York,
NY, 1987.

11 J. Pach and G. Tardos. Coloring axis-parallel rectangles. J. Comb. Theory Ser. A,
117(6):776–782, Aug 2010

12 T. Shermer. Recent results in art galleries (geometry). Proceedings of the IEEE, 80(9):
1383–1399, September 1992

13 D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of Computer
and System Sciences, 26(3):362–391, 1983.

F. Hoffmann, K. Kriegel, S. Suri, K. Verbeek, and M. Willert 435

14 S. Smorodinski. Conflict-Free Coloring and its Applications. In Geometry - Intuitive, Dis-
crete, and Convex, volume 24 of Bolyai Society Mathematical Studies, Springer Verlag,
Berlin 2014

15 J. Urrutia. Art gallery and illumination problems, in J.-R. Sack and J. Urrutia, editors,
Handbook on Computational Geometry, pages 973–1026, Elsevier Sc. Publishers, 2000

16 M. Willert. Schranken für eine orthogonale Variante des chromatischen Art Gallery Prob-
lems, Bachelor Thesis, FU Berlin, November 2014.

17 C. Worman and M. Keil. Polygon Decomposition and the Orthogonal Art Gallery Problem,
Int. J. Comput. Geometry Appl. 17(2), 105–138, 2007

SoCG’15

Low-Quality Dimension Reduction and
High-Dimensional Approximate Nearest Neighbor∗

Evangelos Anagnostopoulos1, Ioannis Z. Emiris2, and
Ioannis Psarros1

1 Department of Mathematics, University of Athens, Athens, Greece
aneva@math.uoa.gr, i.psarros@di.uoa.gr

2 Department of Informatics & Telecommunications, University of Athens,
Athens, Greece
emiris@di.uoa.gr

Abstract
The approximate nearest neighbor problem (ε-ANN) in Euclidean settings is a fundamental
question, which has been addressed by two main approaches: Data-dependent space partitioning
techniques perform well when the dimension is relatively low, but are affected by the curse of
dimensionality. On the other hand, locality sensitive hashing has polynomial dependence in
the dimension, sublinear query time with an exponent inversely proportional to (1 + ε)2, and
subquadratic space requirement.

We generalize the Johnson-Lindenstrauss Lemma to define “low-quality” mappings to a Eu-
clidean space of significantly lower dimension, such that they satisfy a requirement weaker than
approximately preserving all distances or even preserving the nearest neighbor. This mapping
guarantees, with high probability, that an approximate nearest neighbor lies among the k approx-
imate nearest neighbors in the projected space. These can be efficiently retrieved while using only
linear storage by a data structure, such as BBD-trees. Our overall algorithm, given n points in
dimension d, achieves space usage in O(dn), preprocessing time in O(dn logn), and query time in
O(dnρ logn), where ρ is proportional to 1− 1/log logn, for fixed ε ∈ (0, 1). The dimension reduc-
tion is larger if one assumes that pointsets possess some structure, namely bounded expansion
rate. We implement our method and present experimental results in up to 500 dimensions and
106 points, which show that the practical performance is better than predicted by the theoretical
analysis. In addition, we compare our approach with E2LSH.

1998 ACM Subject Classification F.2.2 [Analysis of algorithms and problem complexity] Geo-
metrical problems and computations

Keywords and phrases Approximate nearest neighbor, Randomized embeddings, Curse of di-
mensionality, Johnson-Lindenstrauss Lemma, Bounded expansion rate, Experimental study

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.436

1 Introduction

Nearest neighbor searching is a fundamental computational problem. Let X be a set of n
points in Rd and let d(p, p′) be the (Euclidean) distance between any two points p and p′. The

∗ This research has been co-financed by the European Union (European Social Fund – ESF) and Greek
national funds through the Operational Program “Education and Lifelong Learning” of the National
Strategic Reference Framework (NSRF) – Research Funding Program: THALIS-UOA (MIS 375891).
This work was done in part while Ioannis Z. Emiris was visiting the Simons Institute for the Theory of
Computing, at UC Berkeley.

© Evangelos Anagnostopoulos, Ioannis Z. Emiris, and Ioannis Psarros;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 436–450

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.436
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

E. Anagnostopoulos, I. Z. Emiris, and I. Psarros 437

problem consists in reporting, given a query point q, a point p ∈ X such that d(p, q) ≤ d(p′, q),
for all p′ ∈ X and p is said to be a “nearest neighbor” of q. For this purpose, we preprocess
X into a structure called NN-structure. However, an exact solution to high-dimensional
nearest neighbor search, in sublinear time, requires prohibitively heavy resources. Thus,
many techniques focus on the less demanding task of computing the approximate nearest
neighbor (ε-ANN). Given a parameter ε ∈ (0, 1), a (1 + ε)-approximate nearest neighbor
to a query q is a point p in X such that d(q, p) ≤ (1 + ε) · d(q, p′), ∀p′ ∈ X. Hence, under
approximation, the answer can be any point whose distance from q is at most (1 + ε) times
larger than the distance between q and its nearest neighbor.

Our contribution

Tree-based space partitioning techniques perform well when the dimension is relatively low,
but are affected by the curse of dimensionality. To address this issue, randomized methods
such as Locality Sensitive Hashing are more efficient when the dimension is high. One
may also apply the Johnson-Lindenstrauss Lemma followed by standard space partitioning
techniques, but the properties guaranteed are stronger than what is required for efficient
approximate nearest neighbor search (cf. 2).

We introduce a "low-quality" mapping to a Euclidean space of dimension O(log n
k /ε

2),
such that an approximate nearest neighbor lies among the k approximate nearest neighbors
in the projected space. This leads to our main Theorem 10, which offers a new randomized
algorithm for approximate nearest neighbor search with the following complexity: Given
n points in Rd, the data structure, which is based on Balanced Box-Decomposition (BBD)
trees, requires O(dn) space, and reports an (1 + ε)2-approximate nearest neighbor in time
O(dnρ logn), where function ρ < 1 is proportional to 1 − 1/ ln lnn for fixed ε ∈ (0, 1) and
shall be specified in Section 4. The total preprocessing time is O(dn logn). For each query
q ∈ Rd, the preprocessing phase succeeds with probability > 1− δ for any constant δ ∈ (0, 1).
The low-quality embedding is extended to pointsets with bounded expansion rate c (see
Section 5 for definitions). The pointset is now mapped to a Euclidean space of dimension
roughly O(log c/ε2), for large enough k.

We also present experiments, based on synthetic datasets that validate our approach and
our analysis. One set of inputs, along with the queries, follow the “planted nearest neighbor
model” which will be specified in Section 6. In another scenario, we assume that the near
neighbors of each query point follow the Gaussian distribution. Apart from showing that the
embedding has the desired properties in practice, we also implement our overall approach
for computing ε-ANN using the ANN library and we compare with a LSH implementation,
namely E2LSH.

The notation of key quantities is the same throughout the paper.
The paper extends and improves ideas from [25].

Paper organization

The next section offers a survey of existing techniques. Section 3 introduces our embeddings
to dimension lower than predicted by the Johnson-Linderstrauss Lemma. Section 4 states
our main results about ε-ANN search. Section 5 generalizes our discussion so as to exploit
bounded expansion rate, and Section 6 presents experiments to validate our approach. We
conclude with open questions.

SoCG’15

438 Low-Quality Dimension Reduction and High-Dimensional ANN

2 Existing work

As it was mentioned above, an exact solution to high-dimensional nearest neighbor search,
in sublinear time, requires heavy resources. One notable solution to the problem [21] shows
that nearest neighbor queries can be answered in O(d5 logn) time, using O(nd+δ) space, for
arbitrary δ > 0.

One class of methods for ε-ANN may be called data-dependent, since the decisions taken
for partitioning the space are affected by the given data points. In [8], they introduced the
Balanced Box-Decomposition (BBD) trees. The BBD-trees data structure achieves query
time O(c logn) with c ≤ d/2d1 + 6d/εed, using space in O(dn), and preprocessing time in
O(dn logn). BBD-trees can be used to retrieve the k ≥ 1 approximate nearest-neighbors at
an extra cost of O(d logn) per neighbor. BBD-trees have proved to be very practical, as well,
and have been implemented in software library ANN.

Another data structure is the Approximate Voronoi Diagrams (AVD). They are shown to
establish a tradeoff between the space complexity of the data structure and the query time it
supports [7]. With a tradeoff parameter 2 ≤ γ ≤ 1

ε , the query time is O(log(nγ) + 1/(εγ) d−1
2)

and the space is O(nγd−1 log 1
ε). They are implemented on a hierarchical quadtree-based

subdivision of space into cells, each storing a number of representative points, such that for
any query point lying in the cell, at least one of the representatives is an approximate nearest
neighbor. Further improvements to the space-time trade offs for ANN, are obtained in [6].

One might directly apply the celebrated Johnson-Lindenstrauss Lemma and map the
points to O(logn

ε2) dimensions with distortion equal to 1 + ε in order to improve space
requirements. In particular, AVD combined with the Johnson-Lindenstrauss Lemma require
nO(log 1

ε /ε
2) space which is prohibitive if ε� 1 and query time polynomial in logn, d and 1/ε.

Notice that we relate the approximation error with the distortion for simplicity. Our approach
(Theorem 10) requires O(dn) space and has query time sublinear in n and polynomial in d.

In high dimensional spaces, data dependent data structures are affected by the curse of
dimensionality. This means that, when the dimension increases, either the query time or the
required space increases exponentially. An important method conceived for high dimensional
data is locality sensitive hashing (LSH). LSH induces a data independent space partition and
is dynamic, since it supports insertions and deletions. It relies on the existence of locality
sensitive hash functions, which are more likely to map similar objects to the same bucket.
The existence of such functions depends on the metric space. In general, LSH requires
roughly O(dn1+ρ) space and O(dnρ) query time for some parameter ρ ∈ (0, 1). In [4] they
show that in the Euclidean case, one can have ρ = 1

(1+ε)2 which matches the lower bound
of hashing algorithms proved in [23]. Lately, it was shown that it is possible to overcome
this limitation with an appropriate change in the scheme which achieves ρ = 1

2(1+ε)2−1 + o(1)
[5]. For comparison, in Theorem 10 we show that it is possible to use O(dn) space, with
query time roughly O(dnρ) where ρ < 1 is now higher than the one appearing in LSH. One
different approach [24] achieves near linear space but query time proportional to O(dn

2
1+ε).

Exploiting the structure of the input is an important way to improve the complexity of
nearest neighbor search. In particular, significant amount of work has been done for pointsets
with low doubling dimension. In [14], they provide an algorithm for ANN with expected
preprocessing time O(2dim(X)n logn), space O(2dim(X)n) and query time O(2dim(X) logn+
ε−O(dim(X))) for any finite metric space X of doubling dimension dim(X). In [16] they
provide randomized embeddings that preserve nearest neighbor with constant probability,
for points lying on low doubling dimension manifolds in Euclidean settings. Naturally, such
an approach can be easily combined with any known data structure for ε-ANN.

E. Anagnostopoulos, I. Z. Emiris, and I. Psarros 439

In [10] they present random projection trees which adapt to pointsets of low doubling
dimension. Like kd-trees, every split partitions the pointset into subsets of roughly equal
cardinality; in fact, instead of splitting at the median, they add a small amount of “jitter”.
Unlike kd-trees, the space is split with respect to a random direction, not necessarily parallel
to the coordinate axes. Classic kd-trees also adapt to the doubling dimension of randomly
rotated data [26]. However, for both techniques, no related theoretical arguments about the
efficiency of ε-ANN search were given.

In [19], they introduce a different notion of intrinsic dimension for an arbitrary metric
space, namely its expansion rate c; it is formally defined in Section 5. The doubling dimension
is a more general notion of intrinsic dimension in the sense that, when a finite metric space
has bounded expansion rate, then it also has bounded doubling dimension, but the converse
does not hold [13]. Several efficient solutions are known for metrics with bounded expansion
rate, including for the problem of exact nearest neighbor. In [20], they present a data
structure which requires cO(1)n space and answers queries in cO(1) lnn. Cover Trees [9]
require O(n) space and each query costs O(c12 logn) time for exact nearest neighbors. In
Theorem 13, we provide a data structure for the ε-ANN problem with linear space and
O((C1/ε3 + logn)dlogn/ε2) query time, where C depends on c. The result concerns pointsets
in the d-dimensional Euclidean space.

3 Low Quality Randomized Embeddings

This section examines standard dimensionality reduction techniques and extends them to
approximate embeddings optimized to our setting. In the following, we denote by ‖ · ‖ the
Euclidean norm and by | · | the cardinality of a set.

Let us start with the classic Johnson-Lindenstrauss Lemma:

I Proposition 1. [18] For any set X ⊂ Rd, ε ∈ (0, 1) there exists a distribution over linear
mappings f : Rd −→ Rd′ , where d′ = O(log |X|/ε2), such that for any p, q ∈ X,

(1− ε)‖p− q‖2 ≤ ‖f(p)− f(q)‖2 ≤ (1 + ε)‖p− q‖2.

In the initial proof [18], they show that this can be achieved by orthogonally projecting
the pointset on a random linear subspace of dimension d′. In [11], they provide a proof
based on elementary probabilistic techniques. In [15], they prove that it suffices to apply a
gaussian matrix G on the pointset. G is a d× d′ matrix with each of its entries independent
random variables given by the standard normal distribution N(0, 1). Instead of a gaussian
matrix, we can apply a matrix whose entries are independent random variables with uniformly
distributed values in {−1, 1} [2].

However, it has been realized that this notion of randomized embedding is somewhat
stronger than what is required for approximate nearest neighbor searching. The following
definition has been introduced in [16] and focuses only on the distortion of the nearest
neighbor.

I Definition 2. Let (Y, dY), (Z, dZ) be metric spaces and X ⊆ Y . A distribution over
mappings f : Y → Z is a nearest-neighbor preserving embedding with distortion D ≥ 1 and
probability of correctness P ∈ [0, 1] if, ∀ε ≥ 0 and ∀q ∈ Y , with probability at least P , when
x ∈ X is such that f(x) is a ε-ANN of f(q) in f(X), then x is a (D · (1 + ε))-approximate
nearest neighbor of q in X.

While in the ANN problem we search one point which is approximately nearest, in the
k approximate nearest neighbors problem (ε-kANNs) we seek an approximation of the k

SoCG’15

440 Low-Quality Dimension Reduction and High-Dimensional ANN

nearest points, in the following sense. Let X be a set of n points in Rd, let q ∈ Rd and
1 ≤ k ≤ n. The problem consists in reporting a sequence S = {p1, . . . , pk} of k distinct
points such that the i-th point is an (1 + ε)-approximation to the i-th nearest neighbor of q.
Furthermore, the following assumption is satisfied by the search routine of tree-based data
structures such as BBD-trees.

I Assumption 3. Let S′ ⊆ X be the set of points visited by the ε-kANNs search such
that S = {p1, . . . , pk} ⊆ S′ is the (ordered w.r.t. distance from q) set of points which are
the k nearest to the query point q among the points in S′. We assume that ∀x ∈ X \ S′,
d(x, q) > d(pk, q)/(1 + ε).

Assuming the existence of a data structure which solves ε-kANNs, we can weaken Definition 2
as follows.

I Definition 4. Let (Y, dY), (Z, dZ) be metric spaces and X ⊆ Y . A distribution over
mappings f : Y → Z is a locality preserving embedding with distortion D ≥ 1, probability of
correctness P ∈ [0, 1] and locality parameter k, if ∀ε ≥ 0 and ∀q ∈ Y , with probability at
least P , when S = {f(p1), . . . , f(pk)} is a solution to ε-kANNs for q, under Assumption 3
then there exists f(x) ∈ S such that x is a (D · (1 + ε))-approximate nearest neighbor of q in
X.

According to this definition we can reduce the problem of ε-ANN in dimension d to the
problem of computing k approximate nearest neighbors in dimension d′ < d.

We use the Johnson-Lindenstrauss dimensionality reduction technique and more specific-
ally the proof obtained in [11]. As it was previously discussed, there also exist alternative
proofs which correspond to alternative randomized mappings.

I Lemma 5. [11] There exists a distribution over linear maps A : Rd → Rd′ s.t., for any
p ∈ Rd with ‖p‖ = 1:

if β2 < 1 then Pr[‖Ap‖2 ≤ β2 · d
′

d] ≤ exp(d
′

2 (1− β2 + 2 ln β),
if β2 > 1 then Pr[‖Ap‖2 ≥ β2 · d

′

d] ≤ exp(d
′

2 (1− β2 + 2 ln β).

We prove the following lemma which will be useful.

I Lemma 6. For all i ∈ N, ε ∈ (0, 1), the following holds:

(1 + ε/2)2

(2i(1 + ε))2 − 2 ln (1 + ε/2)
2i(1 + ε) − 1 > 0.05(i+ 1)ε2.

Proof. For i = 0, it can be checked that if ε ∈ (0, 1) then, (1+ε/2)2

(1+ε)2 − 2 ln 1+ε/2
1+ε − 1 > 0.05ε2.

This is our induction basis. Let j ≥ 0 be such that the induction hypothesis holds. Then, to
prove the induction step

1
4

(1 + ε/2)2

(2j(1 + ε))2 − 2 ln (1 + ε/2)
2j(1 + ε) + 2 ln 2− 1 > 0.05(j + 1)ε2 − 3

4
(1 + ε/2)2

(2j(1 + ε))2 + 2 ln 2 >

> 0.05(j + 1)ε2 − 3
4 + 2 ln 2 > 0.05(j + 2)ε2,

since ε ∈ (0, 1). J

A simple calculation shows the following.

E. Anagnostopoulos, I. Z. Emiris, and I. Psarros 441

I Lemma 7. For all x > 0, it holds:

(1 + x)2

(1 + 2x)2 − 2 ln(1 + x

1 + 2x)− 1 < (1 + x)2 − 2 ln(1 + x)− 1. (1)

I Theorem 8. Under the notation of Definition 4, there exists a randomized mapping
f : Rd → Rd′ which satisfies Definition 4 for d′ = O(log n

δk/ε
2), ε > 0, distortion D = 1 + ε

and probability of success 1− δ, for any constant δ ∈ (0, 1).

Proof. Let X be a set of n points in Rd and consider map

f : Rd → Rd
′

: v 7→
√
d/d′ ·A v,

where A is a matrix chosen from a distribution as in Lemma 5. Wlog the query point q lies
at the origin and its nearest neighbor u lies at distance 1 from q. We denote by c ≥ 1 the
approximation ratio guaranteed by the assumed data structure. That is, the assumed data
structure solves the (c− 1)-kANNs problem. For each point x, Lx = ‖Ax‖2/‖x‖2. Let N be
the random variable whose value indicates the number of “bad” candidates, that is

N = | {x ∈ X : ‖x− q‖ > γ ∧ Lx ≤
β2

γ2 ·
d′

d
} |,

where we define β = c(1 + ε/2), γ = c(1 + ε). Hence, by Lemma 5,

E[N] ≤ n · exp(d
′

2 (1− β2

γ2 + 2 ln β
γ

)).

By Markov’s inequality,

Pr[N ≥ k] ≤ E[N]
k

=⇒ Pr[N ≥ k] ≤ n · exp(d
′

2 (1− β2

γ2 + 2 ln β
γ

))/k.

The event of failure is defined as the disjunction of two events:

[N ≥ k] ∨ [Lu ≥ (β/c)2 d
′

d
], (2)

and its probability is at most equal to

Pr[N ≥ k] + exp(d
′

2 (1− (β/c)2 + 2 ln(β/c))),

by applying again Lemma 5. Now, we bound these two terms. For the first one, we choose d′
such that

d′ ≥ 2
ln 2n

δk
β2

γ2 − 1− 2 ln β
γ

. (3)

Therefore,

exp(d
′

2 (1− β2

γ2 + 2 ln β
γ))

k
≤ δ

2n =⇒ Pr[N ≥ k] ≤ δ

2 . (4)

Notice that k ≤ n and due to expression (1), we obtain (β/γ)2 − 2 ln(β/γ) − 1 <

(β/c)2 − 2 ln(β/c)− 1. Hence, inequality (3) implies the following inequality:

d′ ≥ 2
ln 2

δ

(β/c)2 − 1− 2 ln(β/c) .

SoCG’15

442 Low-Quality Dimension Reduction and High-Dimensional ANN

Therefore, the second term in expression (2) is bounded as follows:

exp(d
′

2 (1− (β
c

)2 + 2 ln β
c

)) ≤ δ

2 . (5)

Inequalities (4), (5) imply that the total probability of failure in expression (2) is at most δ.
Using Lemma 6 for i = 0, we obtain, that there exists d′ such that

d′ = O(log n

δk
/ε2)

and with probability at least 1− δ, these two events occur:
‖f(q)− f(u)‖ ≤ (1 + ε

2)‖u− q‖.
|{p ∈ X|‖p− q‖ > c(1 + ε)‖u− q‖ =⇒ ‖f(q)− f(p)‖ ≤ c(1 + ε/2)‖u− q‖}| < k.

Now consider the case when the random experiment succeeds and let S = {f(p1), ..., f(pk)}
a solution of the (c−1)-kANNs problem in the projected space, given by a data-structure which
satisfies Assumption 3. We have that ∀f(x) ∈ f(X) \ S′, ‖f(x)− f(q)‖ > ‖f(pk)− f(q)‖/c
where S′ is the set of all points visited by the search routine.

Now, if f(u) ∈ S then S contains the projection of the nearest neighbor. If f(u) /∈ S then
if f(u) /∈ S′ we have the following:

‖f(u)− f(q)‖ > ‖f(pk)− f(q)‖/c =⇒ ‖f(pk)− f(q)‖ < c(1 + ε/2)‖u− q‖,

which means that there exists at least one point f(p∗) ∈ S s.t. ‖q − p∗‖ ≤ c(1 + ε)‖u− q‖.
Finally, if f(u) /∈ S but f(u) ∈ S′ then

‖f(pk)− f(q)‖ ≤ ‖f(u)− f(q)‖ =⇒ ‖f(pk)− f(q)‖ ≤ (1 + ε/2)‖u− q‖,

which means that there exists at least one point f(p∗) ∈ S s.t. ‖q − p∗‖ ≤ c(1 + ε)‖u− q‖.
Hence, f satisfies Definition 4 for D = 1 + ε. J

4 Approximate Nearest Neighbor Search

This section combines tree-based data structures which solve ε-kANNs with the results above,
in order to obtain an efficient randomized data structure which solves ε-ANN.

BBD-trees [8] require O(dn) space, and allow computing k points, which are (1 + ε)-
approximate nearest neighbors, within time O((d1 + 6dε e

d + k)d logn). The preprocessing
time is O(dn logn). Notice, that BBD-trees satisfy the Assumption 3. The algorithm for
the ε-kANNs search, visits cells in increasing order with respect to their distance from the
query point q. If the current cell lies at distance more than rk/c where rk is the current
distance to the kth nearest neighbor, the search terminates. We apply the random projection
for distortion D = 1 + ε, thus relating approximation error to the allowed distortion; this is
not required but simplifies the analysis.

Moreover, k = nρ; the formula for ρ < 1 is determined below. Our analysis then focuses
on the asymptotic behaviour of the term O(d1 + 6d

′

ε e
d′ + k).

I Lemma 9. With the above notation, there exists k > 0 s.t., for fixed ε ∈ (0, 1), it holds
that d1 + 6d

′

ε e
d′ + k = O(nρ), where ρ ≤ 1 − ε2/ĉ(ε2 + log(max{ 1

ε , logn})) < 1 for some
appropriate constant ĉ > 1.

Proof. Recall that d′ ≤ c̃
ε2 ln n

k for some appropriate constant c̃ > 0. The constant δ is
hidden in c̃. Since (d

′

ε)d′ is a decreasing function of k, we need to choose k s.t. (d
′

ε)d′ = Θ(k).

E. Anagnostopoulos, I. Z. Emiris, and I. Psarros 443

Let k = nρ. Obviously d1 + 6d
′

ε e
d′ ≤ (c′ d

′

ε)d′ , for some appropriate constant c′ ∈ (1, 7). Then,
by substituting d′, k we have:

(c′ d
′

ε
)d
′

= n
c̃(1−ρ)
ε2 ln(c̃c

′(1−ρ) lnn
ε3). (6)

We assume ε ∈ (0, 1) is a fixed constant. Hence, it is reasonable to assume that 1
ε < n.

We consider two cases when comparing lnn to ε:
1
ε ≤ lnn. Substituting ρ = 1 − ε2

2c̃(ε2+ln(c′ lnn)) into equation (6), the exponent of n is
bounded as follows:

c̃(1− ρ)
ε2

ln(c̃c
′(1− ρ) lnn

ε3
) =

= c̃

2c̃(ε2 + ln(c′ lnn)) · [ln(c′ lnn) + ln 1
ε
− ln (2ε2 + 2 ln(c′ lnn))] < ρ.

1
ε > lnn. Substituting ρ = 1− ε2

2c̃(ε2+ln c′
ε)

into equation (6), the exponent of n is bounded
as follows:

c̃(1− ρ)
ε2

ln(c̃c
′(1− ρ) lnn

ε3
) =

= c̃

2c̃(ε2 + ln c′

ε)
· [ln lnn+ ln c

′

ε
− ln (2ε2 + 2 ln c

′

ε
)] < ρ.

J

Notice that for both cases d′ = O(logn
ε2+log logn).

Combining Theorem 8 with Lemma 9 yields the following main theorem.

I Theorem 10 (Main). Given n points in Rd, there exists a randomized data structure which
requires O(dn) space and reports an (1 + ε)2-approximate nearest neighbor in time

O(dnρ logn), where ρ ≤ 1− ε2/ĉ(ε2 + log(max{1
ε
, logn}))

for some appropriate constant ĉ > 1. The preprocessing time is O(dn logn). For each query
q ∈ Rd, the preprocessing phase succeeds with any constant probability.

Proof. The space required to store the dataset is O(dn). The space used by BBD-trees is
O(d′n) where d′ is defined in Lemma 9. We also need O(dd′) space for the matrix A as
specified in Theorem 8. Hence, since d′ < d and d′ < n, the total space usage is bounded
above by O(dn).

The preprocessing consists of building the BBD-tree which costs O(d′n logn) time and
sampling A. Notice that we can sample a d′-dimensional random subspace in time O(dd′2) as
follows. First, we sample in time O(dd′), a d× d′ matrix where its elements are independent
random variables with the standard normal distribution N(0, 1). Then, we orthonormalize
using Gram-Schmidt in time O(dd′2). Since d′ = O(logn), the total preprocessing time is
bounded by O(dn logn).

For each query we use A to project the point in time O(dd′). Next, we compute its nρ
approximate nearest neighbors in time O(d′nρ logn) and we check its neighbors with their
real coordinates in time O(dnρ). Hence, each query costs O(d logn + d′nρ logn + dnρ) =
O(dnρ logn) because d′ = O(logn), d′ = O(d). Thus, the query time is dominated by
the time required for ε-kANNs search and the time to check the returned sequence of k
approximate nearest neighbors. J

To be more precise, the probability of success, which is the probability that the random
projection succeeds according to Theorem. 8, is greater than 1−δ, for any constant δ ∈ (0, 1).
Notice that the preprocessing time for BBD-trees has no dependence on ε.

SoCG’15

444 Low-Quality Dimension Reduction and High-Dimensional ANN

5 Bounded Expansion Rate

This section models the structure that the data points may have so as to obtain more precise
bounds.

The bound on the dimension obtained in Theorem 8 is quite pessimistic. We expect that,
in practice, the space dimension needed in order to have a sufficiently good projection is less
than what Theorem 8 guarantees. Intuitively, we do not expect to have instances where all
points in X, which are not approximate nearest neighbors of q, lie at distance almost equal
to (1 + ε)d(q,X). To this end, we consider the case of pointsets with bounded expansion rate.

I Definition 11. Let M a metric space and X ⊆ M a finite pointset and let Bp(r) ⊆ X

denote the points of X lying in the closed ball centered at p with radius r. We say that X
has (ρ, c)-expansion rate if and only if, ∀p ∈M and r > 0,

|Bp(r)| ≥ ρ =⇒ |Bp(2r)| ≤ c · |Bp(r)|.

I Theorem 12. Under the notation introduced in the previous definitions, there exists
a randomized mapping f : Rd → Rd′ which satisfies Definition 4 for dimension d′ =
O(log(c+ ρ

δk)
ε2), distortion D = 1 + ε and probability of success 1− δ, for any constant δ ∈ (0, 1),

for pointsets with (ρ, c)-expansion rate.

Proof. We proceed in the same spirit as in the proof of Theorem 8, and using the notation
from that proof. Let r0 be the distance to the ρ−th nearest neighbor, excluding neighbors at
distance ≤ 1 + ε. For i > 0, let ri = 2 · ri−1 and set r−1 = 1 + ε. Clearly,

E[N] ≤
∞∑
i=0
|Bp(ri)| · exp(

d′

2 (1− (1 + ε/2)2

r2
i−1

+ 2 ln 1 + ε/2
ri−1

))

≤
∞∑
i=0

ciρ · exp(d
′

2 (1− (1 + ε/2)2

22i(1 + ε)2 + 2 ln 1 + ε/2
2i(1 + ε))).

Now, using Lemma 6,

E[N] ≤
∞∑
i=0

ciρ · exp(−d
′

2 0.05(i+ 1)ε2),

and for d′ ≥ 40 · ln(c+ 2ρ
kδ)/ε2,

E[N] ≤ ρ ·
∞∑
i=0

ci · (1
c+ 2ρ

kδ

)i+1 = ρ ·
∞∑
i=0

ci · (1
c

)i+1 · (1
1 + 2ρ

kcδ

)i+1 = ρ

c
·
∞∑
i=0

(1
1 + 2ρ

kcδ

)i+1 = kδ

2 .

Finally,

Pr[N ≥ k] ≤ E[N]
k
≤ δ

2 .

J

Employing Theorem 12 we obtain a result analogous to Theorem 10 which is weaker than
those in [20, 9] but underlines the fact that our scheme shall be sensitive to structure in the
input data, for real world assumptions.

E. Anagnostopoulos, I. Z. Emiris, and I. Psarros 445

0 2 4 6 8 10

x 10
4

0

20

40

60

80

100

120

140

160

180

Number of Points

k

epsilon = 0.1

Dimension = 200

Dimension = 500

x
0.410000

0.5*x
0.5

0 2 4 6 8 10

x 10
4

0

20

40

60

80

100

120

140

160

180

Number of Points

k

epsilon = 0.2

Dimension = 200

Dimension = 500

x
0.390000

0.5*x
0.5

0 2 4 6 8 10

x 10
4

0

20

40

60

80

100

120

140

160

180

Number of Points

k

epsilon = 0.5

Dimension = 200

Dimension = 500

x
0.350000

0.5 x
0.5

Figure 1 Plot of k as n increases for the “planted nearest neighbor model” datasets. The highest
line corresponds to

√
n

2 and the dotted line to a function of the form nρ, where ρ = 0.41, 0.39, 0.35
that best fits the data.

I Theorem 13. Given n points in Rd with (logn, c)-expansion rate, there exists a randomized
data structure which requires O(dn) space and reports an (1+ε)2-approximate nearest neighbor
in time O((C1/ε3 + logn)dlogn/ε2), for some constant C depending on c. The preprocessing
time is O(dn logn). For each query q ∈ Rd, the preprocessing phase succeeds with any
constant probability.

Proof. Set k = logn. Then d′ = O(log c
ε2) and (d

′

ε)d′ = O(c
1
ε2 log[log c

ε3]). Now the query time is

O((c
1
ε2 log[log c

ε3] + logn)d log c
ε2

logn) = O((C1/ε3
+ logn)d logn

ε2
),

for some constant C such that clog(log c/ε3)/ε2 = O(C1/ε3). J

6 Experiments

In the following two sections we present and discuss the two experiments we performed. In
the first one we computed the average value of k in a worst-case dataset and we validated
that it is indeed sublinear. In the second one we made an ANN query time and memory
usage comparison against a LSH implementation using both artificial and real life datasets.

6.1 Validation of k
In this section we present an experimental verification of our approach. We show that the
number k of the nearest neighbors in the random projection space that we need to examine
in order to find an approximate nearest neighbor in the original space depends sublinearly
on n. Recall that we denote by ‖ · ‖ the Euclidean norm.

Dataset

We generated our own synthetic datasets and query points to verify our results. We decided
to follow two different procedures for data generation in order to be as complete as possible.
First of all, as in [12], we followed the “planted nearest neighbor model” for our datasets.
This model guarantees for each query point q the existence of a few approximate nearest

SoCG’15

446 Low-Quality Dimension Reduction and High-Dimensional ANN

0 2 4 6 8 10

x 10
4

0

2

4

6

8

10

12

14

Number of Points

k

ε = 0.1

Dimension = 200

Dimension = 500

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Points

k

ε = 0.2

Dimension = 200

Dimension = 500

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Points

k

ε = 0.5

Dimension = 200

Dimension = 500

Figure 2 Plot of k as n increases for the gaussian datasets. We see how increasing the number of
approximate nearest neighbors in this case decreases the value of k.

neighbors while keeping all others points sufficiently far from q. The benefit of this approach
is that it represents a typical ANN search scenario, where for each point there exist only a
handful approximate nearest neighbors. In contrast, in a uniformly generated dataset, all the
points will tend to be equidistant to each other in high dimensions, which is quite unrealistic.

In order to generate such a dataset, first we create a set Q of query points chosen uniformly
at random in Rd. Then, for each point q ∈ Q, we generate a single point p at distance R
from q, which will be its single (approximate) nearest neighbor. Then, we create more points
at distance ≥ (1 + ε)R from q, while making sure that they shall not be closer than (1 + ε)R
to any other query point q′. This dataset now has the property that every query point has
exactly one approximate nearest neighbor, while all other points are at distance ≥ (1 + ε)R.

We fix R = 2, let ε ∈ {0.1, 0.2, 0.5}, d = {200, 500} and the total number of points
n ∈ {104, 2× 104, . . . , 5× 104, 5.5× 104, 6× 104, 6.5× 104, . . . , 105}. For each combination
of the above we created a dataset X from a set Q of 100 query points where each query
coordinate was chosen uniformly at random in the range [−20, 20].

The second type of datasets consisted again of sets of 100 query points in Rd where each
coordinate was chosen uniformly at random in the range [−20, 20]. Each query point was
paired with a random variable σ2

q uniformly distributed in [15, 25] and together they specified
a gaussian distribution in Rd of mean value µ = q and variance σ2

q per coordinate. For each
distribution we drew n points in the same set as was previously specified.

Scenario

We performed the following experiment for the “planted nearest neighbor model”. In each
dataset X, we consider, for every query point q, its unique (approximate) nearest neighbor
p ∈ X. Then we use a random mapping f from Rd to a Euclidean space of lower dimension
d′ = logn

log logn using a gaussian matrix G, where each entry Gij ∼ N(0, 1). This matrix
guarantees a low distortion embedding [15]. Then, we perform a range query centered at f(q)
with radius ‖f(q)−f(p)‖ in f(X): we denote by rankq(p) the number of points found. Then,
exactly rankq(p) points are needed to be selected in the worst case as k-nearest neighbors of
f(q) in order for the approximate nearest neighbor f(p) to be among them, so k = rankq(p).

For the datasets with the gaussian distributions we compute again the maximum number
of points k needed to visit in the lower-dimensional space in order to find an ε-approximate
nearest neighbor of each query point q in the original space. In this case the experiment

E. Anagnostopoulos, I. Z. Emiris, and I. Psarros 447

works as follows: we find all the ε-approximate nearest neighbors of a query point q. Let Sq
be the set containing for each query q its ε-kANNs. Next, let pq = arg minp∈S ‖f(p)− f(q)‖.
Now as before we perform a range query centered at f(q) with radius ‖f(q)− f(pq)‖. We
consider as k the number of points returned by this query.

Results

The “planted nearest neighbor model” datasets constitute a worst-case input for our approach
since every query point has only one approximate nearest neighbor and has many points
lying near the boundary of (1 + ε). We expect that the number of k approximate nearest
neighbors needed to consider in this case will be higher than in the case of the gaussian
distributions, but still expect the number to be considerably sublinear.

In Figure 1 we present the average value of k as we increase the number of points n for
the planted nearest neighbor model. We can see that k is indeed significantly smaller than n.
The line corresponding to the averages may not be smooth, which is unavoidable due to the
random nature of the embedding, but it does have an intrinsic concavity, which shows that
the dependency of k on n is sublinear. For comparison we also display the function

√
n/2,

as well as a function of the form nρ, ρ < 1 which was computed by SAGE that best fits the
data per plot. The fitting was performed on the points in the range [50000, 100000] as to
better capture the asymptotic behaviour. In Figure 2 we show again the average value of k
as we increase the number of points n for the gaussian distribution datasets. As expected we
see that the expected value of k is much smaller than n and also smaller than the expected
value of k in the worst-case scenario, which is the planted nearest neighbor model.

6.2 ANN experiments

In this section we present a naive comparison between our algorithm and the E2LSH [3]
implementation of the LSH framework for approximate nearest neighbor queries.

Experiment Description

We projected all the “planted nearest neighbor” datasets, down to logn
log logn dimensions. We

remind the reader that these datasets were created to have a single approximate nearest
neighbor for each query at distance R and all other points at distance > (1 + ε)R. We then
built a BBD-tree data structure on the projected space using the ANN library [22] with the
default settings. Next, we measured the average time needed for each query q to find its
ε-kANNs, for k =

√
n, using the BBD-Tree data structure and then to select the first point

at distance ≤ R out of the k in the original space. We compare these times to the average
times reported by E2LSH range queries for R = 2, when used from its default script for
probability of success 0.95. The script first performs an estimation of the best parameters
for the dataset and then builds its data structure using these parameters. We required from
the two approaches to have accuracy > 0.90, which in our case means that in at least 90 out
of the 100 queries they would manage to find the approximate nearest neighbor. We also
measured the maximum resident set size of each approach which translates to the maximum
portion of the main memory (RAM) occupied by a process during its lifetime. This roughly
corresponds to the size of the dataset plus the size of the data structure for the E2LSH
implementation and to hte size of the dataset plus the size of the embedded dataset plus the
size of the data structure for our approach.

SoCG’15

448 Low-Quality Dimension Reduction and High-Dimensional ANN

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

−3 ε = 0.1

Number of Points

S
e

c
o

n
d

s

LSH d=200

LSH d=500

Emb d=200

Emb d=500

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Number of Points
S

e
c
o

n
d

s

ε = 0.2

LSH d=200

LSH d=500

Emb d=200

Emb d=500

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Number of Points

S
e

c
o

n
d

s

ε = 0.5

LSH d=200

LSH d=500

Emb d=200

Emb d=500

Figure 3 Comparison of average query time of our embedding approach against the E2LSH
implementation.

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5

6
x 10

5

K
b
’s

ε = 0.1

LSH d = 200

LSH d = 500

Emb d = 200

Emb d = 500

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5

6
x 10

5

Number of Points

ε = 0.2

LSH d = 200

LSH d = 500

Emb d = 200

Emb d = 500

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5

6
x 10

5 ε = 0.5

LSH d = 200

LSH d = 500

Emb d = 200

Emb d = 500

Figure 4 Comparison of memory usage of our embedding approach against the E2LSH imple-
mentation.

ANN Results

It is clear from Figure 3 that E2LSH is faster than our approach by a factor of 3. However
in Figure 4, where we present the memory usage comparison between the two approaches,
it is obvious that E2LSH also requires more space. Figure 4 also validates the linear space
dependency of our embedding method. A few points can be raised here. First of all, we
supplied the appropriate range to the LSH implementation, which gave it an advantage,
because typically that would have to be computed empirically. To counter that, we allowed
our algorithm to stop its search in the original space when it encountered a point that was at
distance ≤ R from the query point. Our approach was simpler and the bottleneck was in the
computation of the closest point out of the k returned from the BBD-Tree. We conjecture that
we can choose better values for our parameters d′ and k. Lastly, the theoretical guarantees
for the query time of LSH are better than ours, but we did perform better in terms of space
usage as expected.

E. Anagnostopoulos, I. Z. Emiris, and I. Psarros 449

Real life dataset

We also compared the two approaches using the ANN_SIFT1M [17] dataset which contains
a collection of 1000000 vectors in 128 dimensions. This dataset also provides a query file
containing 10000 vectors and a groundtruth file, which contains for each query the IDs of its
100 nearest neighbors. These files allowed us to estimate the accuracy for each approach, as
the fraction #hits

10000 where #hits denotes, for some query, the number of times one of its 100
nearest neighbors were returned. The parameters of the two implementations were chosen
empirically in order to achieve an accuracy of about 85%. For our approach we set the
projection dimension d′ = 25 and for the BBD-trees we specified 100 points per leaf and
ε = 0.5 for the ε-kANNs queries. We also used k =

√
n. For the E2LSH implementation we

specified the radius R = 240, k = 18 and L = 250. As before we measured the average query
time and the maximum resident set size. Our approach required an average of 0.171588s per
query, whilst E2LSH required 0.051957s. However our memory footprint was 1255948 kbytes
and E2LSH used 4781400 kbytes.

7 Open questions

In terms of practical efficiency it is obvious that checking the real distance to the neighbors
while performing an ε-kANNs search in the reduced space, is more efficient in practice than
naively scanning the returned sequence of k-approximate nearest neighbors and looking for
the best in the initial space. Moreover, we do not exploit the fact that BBD-trees return a
sequence and not simply a set of neighbors.

Our embedding possibly has further applications. One possible application is the problem
of computing the k-th approximate nearest neighbor. The problem may reduce to computing
all neighbors between the i-th and the j-th nearest neighbors in a space of significantly
smaller dimension for some appropriate i < k < j. Other possible applications include
computing the approximate minimum spanning tree or the closest pair of points.

Our embedding approach could be possibly applied in other metrics or exploit other
properties of the pointset. We also intend to seek connections between our work and the
notion of local embeddings introduced in [1].

References
1 I. Abraham, Y. Bartal, and O. Neiman. Local embeddings of metric spaces. In Proc. 39th

ACM Symposium on Theory of Computing, pages 631–640. ACM Press, 2007.
2 D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary

coins. J. Comput. Syst. Sci., 66(4):671–687, 2003.
3 A. Andoni and P. Indyk. E2LSH 0.1 User Manual, Implementation of LSH: E2LSH, http:

//www.mit.edu/~andoni/LSH, 2005.
4 A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor

in high dimensions. Commun. ACM, 51(1):117–122, 2008.
5 A. Andoni and I. Razenshteyn. Optimal data-dependent hashing for approximate near

neighbors. In arXiv:1501.01062, to appear in the Proc. 47th ACM Symp. Theory of Com-
puting, STOC’15, 2015.

6 S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries.
In Proc. 43rd Annual ACM Symp. Theory of Computing, STOC’11, pages 579–586, 2011.

7 S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate nearest
neighbor searching. J. ACM, 57(1):1:1–1:54, 2009.

SoCG’15

http://www.mit.edu/~andoni/LSH
http://www.mit.edu/~andoni/LSH

450 Low-Quality Dimension Reduction and High-Dimensional ANN

8 S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm
for approximate nearest neighbor searching fixed dimensions. J. ACM, 45(6):891–923, 1998.

9 A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In Proc.
23rd Intern. Conf. Machine Learning, ICML’06, pages 97–104, 2006.

10 S. Dasgupta and Y. Freund. Random projection trees and low dimensional manifolds. In
Proc. 40th Annual ACM Symp. Theory of Computing, STOC’08, pages 537–546, 2008.

11 S. Dasgupta and A. Gupta. An elementary proof of a theorem of Johnson and Lindenstrauss.
Random Struct. Algorithms, 22(1):60–65, 2003.

12 M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. In Proc. 20th Annual Symp. Computational Geometry,
SCG’04, pages 253–262, 2004.

13 A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-
distortion embeddings. In Proc. 44th Annual IEEE Symp. Foundations of Computer Sci-
ence, FOCS’03, pages 534–, 2003.

14 S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional metrics, and
their applications. In Proc. 21st Annual Symp. Computational Geometry, SCG’05, pages
150–158, 2005.

15 P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proc. 30th Annual ACM Symp. Theory of Computing, STOC’98, pages
604–613, 1998.

16 P. Indyk and A. Naor. Nearest-neighbor-preserving embeddings. ACM Trans. Algorithms,
3(3), 2007.

17 H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 33(1):117–128, 2011.

18 W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.
Contemporary Mathematics, 26:189–206, 1984.

19 D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted metrics. In Proc.
34th Annual ACM Symp. Theory of Computing, STOC’02, pages 741–750, 2002.

20 R. Krauthgamer and J. R. Lee. Navigating nets: Simple algorithms for proximity search.
In Proc. 15th Annual ACM-SIAM Symp. Discrete Algorithms, SODA’04, pages 798–807,
2004.

21 S. Meiser. Point location in arrangements of hyperplanes. Inf. Comput., 106(2):286–303,
1993.

22 D. M. Mount. ANN programming manual: http://www.cs.umd.edu/~mount/ANN/, 2010.
23 R. O’Donnell, Yi Wu, and Y. Zhou. Optimal lower bounds for locality-sensitive hashing

(except when q is tiny). ACM Trans. Comput. Theory, 6(1):5:1–5:13, 2014.
24 R. Panigrahy. Entropy based nearest neighbor search in high dimensions. In Proc. 17th

Annual ACM-SIAM Symp. Discrete Algorithms, SODA’06, pages 1186–1195, 2006.
25 I. Psarros. Low quality embeddings and approximate nearest neighbors, MSc Thesis, Dept.

of Informatics & Telecommunications, University of Athens, 2014.
26 S. Vempala. Randomly-oriented k-d trees adapt to intrinsic dimension. In Proc. Founda-

tions of Software Technology & Theor. Computer Science, pages 48–57, 2012.

http://www.cs.umd.edu/~mount/ANN/

Restricted Isometry Property for General
p-Norms∗

Zeyuan Allen-Zhu, Rati Gelashvili, and Ilya Razenshteyn

MIT CSAIL, Cambridge, MA, USA
{zeyuan,gelash,ilyaraz}@csail.mit.edu

Abstract
The Restricted Isometry Property (RIP) is a fundamental property of a matrix which enables
sparse recovery. Informally, an m×n matrix satisfies RIP of order k for the `p norm, if ‖Ax‖p ≈
‖x‖p for every vector x with at most k non-zero coordinates.

For every 1 ≤ p < ∞ we obtain almost tight bounds on the minimum number of rows m
necessary for the RIP property to hold. Prior to this work, only the cases p = 1, 1 + 1/ log k,
and 2 were studied. Interestingly, our results show that the case p = 2 is a “singularity” point:
the optimal number of rows m is Θ̃(kp) for all p ∈ [1,∞) \ {2}, as opposed to Θ̃(k) for k = 2.

We also obtain almost tight bounds for the column sparsity of RIP matrices and discuss
implications of our results for the Stable Sparse Recovery problem.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity,
G.3 Probability and Statistics

Keywords and phrases compressive sensing, dimension reduction, linear algebra, high-dimensional
geometry

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.451

1 Introduction

The main object of our interest is a matrix with Restricted Isometry Property for the `p
norm (RIP-p). Informally speaking, we are interested in a linear map from Rn to Rm with
m� n that approximately preserves `p norms for all vectors that have only few non-zero
coordinates.

More precisely, an m × n matrix A ∈ Rm×n is said to have (k,D)-RIP-p property for
sparsity k ∈ [n] def= {1, . . . , n}, distortion D > 1, and the `p norm for p ∈ [1,∞), if for every
vector x ∈ Rn with at most k non-zero coordinates one has

‖x‖p ≤ ‖Ax‖p ≤ D · ‖x‖p .

In this work we investigate the following question: given p ∈ [1,∞), n ∈ N, k ∈ [n], and
D > 1,

What is the smallest m ∈ N so that there exists a (k,D)-RIP-p matrix A ∈ Rm×n?

Besides that, the following question arises naturally from the complexity of computing Ax:

What is the smallest column sparsity d for such a (k,D)-RIP-p matrix A ∈ Rm×n?

(Above, we denote by column sparsity the maximum number of non-zero entries in a column
of A.)

∗ The full version of this paper can be found at http://arxiv.org/abs/1407.2178 [2].

© Zeyuan Allen-Zhu, Rati Gelashvili, and Ilya Razenshteyn;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 451–460

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.451
http://arxiv.org/abs/1407.2178
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

452 Restricted Isometry Property for General p-Norms

1.1 Motivation
Why are RIP matrices important? RIP-2 matrices were introduced by Candès and Tao [7]
for decoding a vector f from corrupted linear measurements Bf + e under the assumption
that the vector of errors e is sufficiently sparse (has only few non-zero entries). Later Candès,
Romberg and Tao [6] used RIP-2 matrices to solve the (Noisy) Stable Sparse Recovery
problem, which has since found numerous applications in areas such as compressive sensing
of signals [6, 11], genetic data analysis [16], and data stream algorithms [19, 12].

The (noisy) stable sparse recovery problem is defined as follows. The input signal x ∈ Rn
is assumed to be close to k-sparse, that is, to have most of the “mass” concentrated on k
coordinates. The goal is to design a set of m linear measurements that can be represented as
a single m× n matrix A such that, given a noisy sketch y = Ax+ e ∈ Rm, where e ∈ Rn is a
noise vector, one can “approximately” recover x. Formally, the recovered vector x̂ ∈ Rn is
required to satisfy

‖x− x̂‖p ≤ C1 min
k-sparse x∗

‖x− x∗‖1 + C2 · ‖e‖p (1.1)

for some C1, C2 > 0, p ∈ [1,∞), and k ∈ [n].
(In order for (1.1) to be meaningful, we also require ‖A‖p ≤ 1 – or equivalently, ‖Ax‖p ≤

‖x‖p for all x – since otherwise, by scaling A up, the noise vector e will become negligible.)
We refer to (1.1) as the `p/`1 guarantee. The parameters of interest include: the number

of measurements m, the column sparsity of the measurement matrix A, the approximation
factors C1, C2 and the complexity of the recovery procedure.

Candès, Romberg and Tao [6] proved that if A is (O(k), 1 + ε)-RIP-2 for a sufficiently
small ε > 0, then one can achieve the `2/`1 guarantee with C1 = O(k−1/2) and C2 = O(1)
in polynomial time.

The p = 1 case was first studied by Berinde et al. [4]. They prove that if A is (O(k), 1+ε)-
RIP-1 for a sufficiently small ε > 0 and has a certain additional property, then one can
achieve the `1/`1 guarantee with C1 = O(1), C2 = O(1).

We note that any matrix A that allows the (noisy) stable sparse recovery with the `p/`1
guarantee must have the (k,C2)-RIP-p property. For the proof see the full version.

Known constructions and limitations. Candès and Tao [7] proved that for every ε > 0, a
matrix with m = O(k log(n/k)/ε2) rows and n columns whose entries are sampled from i.i.d.
Gaussians is (k, 1 + ε)-RIP-2 with high probability. Later, a simpler proof of the same result
was discovered by Baraniuk et al. [3]1. Berinde et al. [4] showed that a (scaled) random sparse
binary matrix with m = O(k log(n/k)/ε2) rows is (k, 1 + ε)-RIP-1 with high probability2.

Since the number of measurements is very important in practice, it is natural to ask, how
optimal is the dimension bound m = O(k log(n/k)) that the above constructions achieve?
The results of Do Ba et al. [10] and Candés [8] imply the lower bound m = Ω(k log(n/k)) for
(k, 1 + ε)-RIP-p matrices for p ∈ {1, 2}, provided that ε > 0 is sufficiently small.

Another important parameter of a measurement matrix A is its column sparsity: the
maximum number of non-zero entries in a single column of A. If A has column sparsity d,
then we can perform multiplication x 7→ Ax in time O(nd) as opposed to the naive O(nm)
bound. Moreover, for sparse matrices A, one can maintain the sketch y = Ax very efficiently

1 This proof has an advantage that it works for any subgaussian random variables, such as random ±1’s.
2 In the same paper [4] it is observed that the same construction works for p = 1 + 1/ log k.

Z. Allen-Zhu, R. Gelashvili, and I. Razenshteyn 453

Table 1 Prior and new bounds on RIP-p matrices.

p rows m column sparsity d references
1 Θ(k log(n/k)) Θ(log(n/k)) [4, 10, 20, 14]

1 + 1
log k

O(k log(n/k)) O(log(n/k)) [4]
(1, 2) Θ̃(kp) Θ̃(kp−1) this work

2 Θ(k log(n/k)) Θ(k log(n/k)) [7, 6, 8, 3, 10, 9, 23]
(2,∞) Θ̃(kp) Θ̃(kp−1) this work

if we update x. Namely, if we set x← x+ α · ei, where α ∈ R and ei ∈ Rn is a basis vector,
then we can update y in time O(d) instead of the naive bound O(m).

The aforementioned constructions of RIP matrices exhibit very different behavior with
respect to column sparsity. RIP-2 matrices obtained from random Gaussian matrices are
obviously dense, whereas the construction of RIP-1 matrices of Berinde et al. [4] gives very
small column sparsity d = O(log(n/k)/ε). It is known that in both cases the bounds on
column sparsity are essentially tight.

Indeed, Nelson and Nguy˜̂en showed [23] that any non-trivial column sparsity is impossible
for RIP-2 matrices unless m is much larger than O(k log(n/k)). Nachin showed [20] that any
RIP-1 matrix with O(k log(n/k)) rows must have column sparsity Ω(log(n/k)). Besides that,
Indyk and Razenshteyn showed [14] that every RIP-1 matrix ‘must be sparse’: any RIP-1
matrix with O(k log(n/k)) rows can be perturbed slightly and made O(log(n/k))-sparse.

Another notable difference between RIP-1 and RIP-2 matrices is the following. The
construction of Berinde et al. [4] provides RIP-1 matrices with non-negative entries, whereas
Chandar proved [9] that any RIP-2 matrix with non-negative entries must have m = Ω(k2)
(and this was later improved to m = Ω(k2 log(n/k)) [23, 1]). In other words, negative signs
are crucial in the construction of RIP-2 matrices but not for the RIP-1 case.

1.2 Our results
Motivated by these discrepancies between the optimal constructions for RIP-p matrices with
p ∈

{
1, 1 + 1

log k , 2
}
, we initiate the study of RIP-p matrices for the general p ∈ [1,∞).

Having in mind that the upper bound m = O(k log(n/k)) holds for RIP-p matrices with
p ∈

{
1, 1 + 1

log k , 2
}
, it would be natural to conjecture that the same bound holds at least for

every p ∈ (1, 2). As we will see, surprisingly, this conjecture is very far from being true.
Also, knowing that the column sparsity d = O(k log(n/k)) can be obtained for p = 2

while d = O(log(n/k)) can be obtained for p = 1, it is interesting to “interpolate” these two
bounds.

Besides the mathematical interest, a more “applied” reason to study RIP-p matrices for
the general p is to get new guarantees for the stable sparse recovery. Indeed, we obtain new
results in this direction.

Our upper bounds. On the positive side, for all ε > 0 and all p ∈ (1,∞), we construct
(k, 1 + ε)-RIP-p matrices with m = Õ(kp) rows. Here, we use the Õ(·)-notation to hide
factors that depend on ε, p, and are polynomial in logn. More precisely, we show that a
(scaled) random sparse 0/1 matrix with Õ(kp) rows and column sparsity Õ(kp−1) has the
desired RIP property with high probability.

This construction essentially matches that of Berinde et al. [4] when p approaches 1. At
the same time, when p = 2, our result matches known constructions of non-negative RIP-2

SoCG’15

454 Restricted Isometry Property for General p-Norms

matrices based on the incoherence argument.3

Our lower bounds. Surprisingly, we show that, despite our upper bounds being suboptimal
for p = 2, the are essentially tight for every constant p ∈ (1,∞) except 2. Namely, they are
optimal both in terms of the dimension m and the column sparsity d.

More formally, on the dimension side, for every p ∈ (1,∞) \ {2}, distortion D > 1, and
(k,D)-RIP-p matrix A ∈ Rm×n, we show that m = Ω(kp), where Ω(·) hides factors that
depend on p and D. Note that, it is not hard to extend an argument of Chandar [9] and
obtain a lower bound m = Ω(kp−1).4 This additional factor k is exactly what makes our
lower bound non-trivial and tight for p ∈ (1,∞) \ {2}, and thus enables us to conclude that
p = 2 is a “singularity”.5

As for the column sparsity, we present a simple extension of the argument of Chandar [9]
and prove that for every p ∈ [1,∞) any (k,D)-RIP-p matrix must have column sparsity
Ω(kp−1).

RIP matrices and sparse recovery. We extend the result of Candès, Romberg and Tao [6]
to show that, for every p > 1, RIP-p matrices allow the stable sparse recovery with the `p/`1
guarantee and approximation factors C1 = O

(
k−1+1/p), C2 = O(1) in polynomial time. This

extension is quite straightforward and seems to be folklore, but, to the best of our knowledge,
it is not recorded anywhere.

On the other hand, for every p ≥ 1, it is almost immediate that any matrix A that allows
the stable sparse recovery with the `p/`1 guarantee – even if it works only for k-sparse signals –
must have the (k,C2)-RIP-p property. For the sake of completeness, we have included both
the above proofs in the full version.

Implications to sparse recovery. Using the above equivalent relationship between the stable
sparse recovery problem and the RIP-p matrices, we conclude that the stable sparse recovery
with the `p/`1 guarantee requires m = Θ̃(kp) measurements for every p ∈ [1;∞) \ {2},
and requires d = Θ̃(kp−1) column sparsity for every p ∈ [1,∞). Our results together draw
tradeoffs between the following three parameters in stable sparse recovery:

p, the `p/`1 guarantee for the stable sparse recovery,6
m, the number of measurements needed for sketching, and
d, the running time (per input coordinate) needed for sketching.

It was pointed out by an anonymous referee that for the noiseless case – that is, when the
noise vector e is always zero – better upper bounds are possible. Using the result of Gilbert
et al. [13], one can obtain, for every p ≥ 2, the noiseless stable sparse recovery procedure

3 That is, a (scaled) random m × n binary matrix with m = O(ε−2k2 log(n/k)) rows and sparsity
d = O(ε−1k log(n/k)) satisfies the (k, 1 + ε)-RIP-2 property. This can be proved using for instance
the incoherence argument from [24]: any incoherent matrix satisfies the RIP-2 property with certain
parameters.

4 Also, the same argument gives the lower bound Ω(kp) for binary RIP-p matrices for every p ∈ [1,∞).
5 A similar singularity is known to exist for linear dimension reduction for arbitrary point sets with
respect to `p norms [18]; alas, tight bounds for that problem are not known.

6 We note that the `p/`1 and the `q/`1 guarantees are incomparable. However, it is often more desirable
to have larger p in this `p/`1 guarantee to ensure a better recovery quality. This is because, if the noise
vector e = 0, the `q/`1 guarantee (with C1 = O(k−1+1/q)) can be shown to be stronger than the `p/`1

one (with C1 = O(k−1+1/p)) whenever q > p. However, when there is a noise term, the guarantee
‖x− x̂‖p ≤ O(1) · ‖e‖p is incomparable to ‖x− x̂‖q ≤ O(1) · ‖e‖q for p 6= q.

Z. Allen-Zhu, R. Gelashvili, and I. Razenshteyn 455

with the `p/`1 guarantee using only m = Õ(k2−2/p) measurements. Therefore, our results
also imply a very large gap, both in terms of m and d, between the noiseless and the noisy
stable sparse recovery problems.

2 Overview of the Proofs

2.1 Upper bounds
We construct RIP-p matrices as follows. Beginning with a zero matrix A with m = Õ(kp)
rows and n columns, independently for each column of A, we choose d = Õ(kp−1) out of
m entries uniformly at random (without replacement), and assign the value d−1/p to those
selected entries. For this construction, we have two very different analyses of its correctness:
one works only for p ≥ 2, and the other works only for 1 < p < 2.

For p ≥ 2, the most challenging part is to show that ‖Ax‖p ≤ (1 + ε)‖x‖p holds with high
probability, for all k-sparse vectors x. We reduce this problem to a probabilistic question
similar in spirit to the following “balls and bins” question. Consider n bins in which we
throw n balls uniformly and independently. As a result, we get n numbers X1, X2, . . . , Xn,
where Xi is the number of balls falling into the i-th bin. We would like to upper bound the
tail Pr [S ≥ 1000 · E [S]] for the random variable S =

∑n
i=1X

p−1
i . (Here, the constant 1000

can be replaced with any large enough one since we do not care about constant factors in
this paper.) The first challenge is that Xi’s are not independent. To deal with this issue we
employ the notion of negative association of random variables introduced by Joag-Dev and
Proschan [15]. The second problem is that the random variables Xp−1

i are heavy tailed: they
have tails of the form Pr

[
Xp−1
i ≥ t

]
≈ exp(−t

1
p−1), so the standard technique of bounding

the moment-generating function does not work. Instead, we bound the high moments of S
directly, which introduces certain technical challenges. Let us remark that sums of i.i.d.
heavy-tailed variables were thoroughly studied by Nagaev [21, 22], but it seems that for the
results in these papers the independence of summands is crucial.

One major reason the above approach fails to work for 1 < p < 2 is that, in this range, even
the best possible tail inequality for S is too weak for our purposes. Another challenge in this
regime is that, to bound the “lower tail” of ‖Ax‖pp (that is, to prove that ‖Ax‖p ≥ (1−ε)‖x‖p
holds for all k-sparse x), the simple argument used for p ≥ 2 no longer works. Our solution
to both problems above is to instead build our RIP matrices based on the following general
notion of bipartite expanders.

I Definition 2.1. Let G = (U, V,E) with |U | = n, |V | = m and E ⊆ U × V be a bipartite
graph such that all vertices from U have the same degree d. We say that G is an (`, d, δ)-
expander, if for every S ⊆ U with |S| ≤ ` we have∣∣ {v ∈ V | ∃u ∈ S (u, v) ∈ E}

∣∣ ≥ (1− δ)d|S| .

It is known that random d-regular graphs are good expanders, and we can take the (scaled)
adjacency matrix of such an expander and prove that it satisfies the desired RIP-p property
for 1 < p < 2. Our argument can be seen as a subtle interpolation between the argument
from [4], which proves that (scaled) adjacency matrices of (k, d,Θ(ε))-expanders (with Õ(k)
rows) are (k, 1 + ε)-RIP-1 and the one using incoherence argument,7 which shows that
(2, d,Θ(ε/k))-expanders give (k, 1 + ε)-RIP-2 matrices (with Õ(k2) rows).

7 It is known [24] that an incoherent matrix satisfies the RIP-2 property with certain parameters. At the
same time, the notion of incoherence can be interpreted as expansion for ` = 2.

SoCG’15

456 Restricted Isometry Property for General p-Norms

2.2 Lower bounds
In the full version of our paper [2], we derive our dimension lower boundm = Ω(kp) essentially
from norm inequalities. The high-level idea can be described in four simple steps. Consider
any (k,D)-RIP-p matrix A ∈ Rn×m, and assume that D is very close to 1 in this high-level
description.

In the first three steps, we deduce from the RIP property that (a) the sum of the p-th
powers of all entries in A is approximately n, (b) the largest entry in A (i.e., the vector
`∞-norm of A) is essentially at most k1/p−1, and (c) the sum of squares of all entries in A
is at least n

(
k
m

)2/p−1 if p ∈ (1, 2), or at most n
(
k
m

)2/p−1 if p > 2. In the fourth step, we
combine (a) (b) and (c) together by arguing about the relationships between the `p, `∞ and
`2 norms of entries of A, and prove the desired lower bound on m.

The sparsity lower bound d = Ω(kp−1) can be obtained via a simple extension of the
argument of Chandar [9]. It is possible to extend the techniques of Nelson and Nguy˜̂en [23]
to obtain a slightly better sparsity lower bound. However, since we were unable to obtain a
tight bound this way, we decided not to include it.

3 RIP Construction for p ≥ 2

In this section, we construct (k, 1 + ε)-RIP-p matrices for p ≥ 2 by proving the following
theorem.

I Definition 3.1. We say that an m× n matrix A is a random binary matrix with sparsity
d ∈ [m], if A is generated by assigning d−1/p to d random entries per column (selected
uniformly at random without replacement), and assigning 0 to the remaining entries.

I Theorem 3.2. For all n ∈ Z+, k ∈ [n], ε ∈ (0, 1
2) and p ∈ [2,∞), there exist m, d ∈ Z+

with
m = pO(p) · k

p

ε2 · logp−1 n and d = pO(p) · k
p−1

ε
· logp−1 n ≤ m

such that, letting A be a random binary m× n matrix of sparsity d, with probability at least
98%, A satisfies (1− ε)‖x‖pp ≤ ‖Ax‖pp ≤ (1 + ε)‖x‖pp for all k-sparse vectors x ∈ Rn.

Our proof is divided into two steps: (1) the “lower-tail step”, that is, with probability
at least 0.99 we have ‖Ax‖pp ≥ (1− ε)‖x‖pp for all k-sparse x, and (2) the “upper-tail step”,
that is, with probability at least 0.99, we have ‖Ax‖pp ≤ (1 + ε)‖x‖pp.

For every j ∈ [n], let us denote by Sj ⊆ [m] the set of non-zero rows of the j-th column
of A.

3.1 The Lower-Tail Step
To lower-tail step is very simple. It suffices to show that, with high probability, |Si ∩ Sj | is
small for every pair of different i, j ∈ [n], which will then imply that if only k columns of
A are considered, every Si has to be almost disjoint from the union of the Sj of the k − 1
remaining columns. This can be summarized by the following claim, whose proof is deferred
to the full version of this paper.

I Claim 3.3. If d ≥ Cε−1k logn and m ≥ 2dk/ε, where C is some large enough constant,
then

Pr
[
∀1 ≤ i < j ≤ n |Si ∩ Sj | ≤

εd

k

]
≥ 0.99 .

Z. Allen-Zhu, R. Gelashvili, and I. Razenshteyn 457

Now, to prove the lower tail, without loss of generality, let us assume that x is supported
on [k], the first k coordinates. For every j ∈ [k], we denote by S′j = Sj \

⋃
j′∈[k]\{j} Sj′ , the

set of non-zero rows in column j that are not shared with the supports of other columns
in [k] \ {j}. If the event in Claim 3.3 holds, then for every j ∈ [k], we have |S′j | ≥ (1− ε)d.
Thus, we can lower bound ‖Ax‖p as

‖Ax‖pp = 1
d
·
m∑
i=1

∣∣∣∣ ∑
j∈[k]:i∈Sj

xj

∣∣∣∣p ≥ 1
d
·
m∑
i=1

∣∣∣∣ ∑
j∈[k]:i∈S′

j

xj

∣∣∣∣p = 1
d
·
∑
j∈[k]

|S′j | · |xj |p ≥ (1−ε)‖x‖pp .

(3.1)

I Remark. The above claim only works when m = Ω(k2 logn/ε2), and therefore we cannot
use it in for the case of 1 < p < 2.

3.2 The Upper-Tail Step
Below we describe the framework of our proof for the upper-tail step, deferring all technical
details to the full version of this paper.

Suppose again that x is supported on [k]. Then, we upper bound ‖Ax‖pp as

‖Ax‖pp = 1
d
·
m∑
i=1

∣∣∣∣ ∑
j∈[k]:i∈Sj

xj

∣∣∣∣p ≤ 1
d
·
m∑
i=1

∣∣ {j′ ∈ [k] | i ∈ Sj′}
∣∣p−1 ·

∑
j∈[k]:i∈Sj

|xj |p

= 1
d
·
∑k
j=1|xj |p ·

∑
i∈Sj

∣∣ {j′ ∈ [k] | i ∈ Sj′}
∣∣p−1

, (3.2)

where the first inequality follows from the fact that (a1 + · · ·+aN)p ≤ Np−1(ap1 + · · ·+apN) for
any sequence ofN non-negative reals a1, . . . , aN . Note that the quantity

∣∣ {j′ ∈ [k] | i ∈ Sj′}
∣∣ ∈

[k] captures the number of non-zeros of A in the i-th row and the first k columns. From now
on, in order to prove the desired upper tail, it suffices to show that, with high probability

∀j ∈ [k],
∑
i∈Sj

∣∣ {j′ ∈ [k] | i ∈ Sj′}
∣∣p−1 ≤ (1 + ε)d . (3.3)

To prove this, let us fix some j∗ ∈ [k] and upper bound the probability that (3.3) holds
for j = j∗, and then take a union bound over the choices of j∗. Without loss of generality,
assume that Sj∗ = {1, 2, . . . , d}, consisting of the first d rows. For every i ∈ Sj∗ , define a
random variable Xi

def=
∣∣ {j′ ∈ [k] | i ∈ Sj′}

∣∣− 1. It is easy to see that Xi is distributed as
Bin(k−1, d/m), the binomial distribution that is the sum of k−1 i.i.d. random 0/1 variables,
each being 1 with probability d/m. For notational simplicity, let us define δ def= dk/m. We
will later choose δ < ε to be very small. Our goal in (3.3) can now be reformulated as follows:
upper bound the probability

Pr
[∑d

i=1((Xi + 1)p−1 − 1) > εd
]
.

We begin with a lemma showing an upper bound on the moments of each Yi
def= (Xi +

1)p−1 − 1.

I Lemma 3.4. There exists a constant C ≥ 1 such that, if X is drawn from the binomial
distribution Bin(k − 1, δ/k) for some δ < 1/(2e2), and p ≥ 2, then for any real ` ≥ 1,

E[((X + 1)p−1 − 1)`] ≤ C · δ(`(p− 1) + 1)`(p−1)+1 .

SoCG’15

458 Restricted Isometry Property for General p-Norms

Next, we note that although the random variables Xi’s are dependent, they can be verified
to be negatively associated, a notion introduced by Joag-Dev and Proschan [15]. This theory
allows us to conclude the following bound on the moments.

I Lemma 3.5. Let X̃1, . . . , X̃d be d random variables, each drawn independently from
Bin(k − 1, δ/k). Then, for every integer t ≥ 1 we have

E
[(∑d

i=1((Xi + 1)p−1 − 1)
)t]
≤ E

[(∑d
i=1((X̃i + 1)p−1 − 1)

)t]
.

Now, using the moments of random variables Yi = (Xi + 1)p−1 − 1 from Lemma 3.4, as
well as Lemma 3.5, we can compute the tail bound of the sum

∑d
i=1 Yi. Our proof of the

following Lemma uses the result of Latała [17].

I Lemma 3.6. There exists constants C ≥ 1 such that, whenever δ ≤ ε/pCp and d ≥ pCp/ε,
we have

Pr
[∑d

i=1((Xi + 1)p−1 − 1) > εd
]
≤ e−Ω((εd)1/(p−1)

p) .

Finally, we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. We can choose d = Θ(p)p−1 · k
p−1

ε ·logp−1 n so that e−Ω((εd)1/(p−1)
p) <

1
100

1
k(n

k) . Since our choice of m = dkpΘ(p)

ε ensures that δ = dk/m ≤ ε/pCp, and our choice of

d ensures d ≥ pCp/ε, we can apply Lemma 3.6 and conclude that with probability at least
1− 1

100
1

k(n
k) one has

∑
i∈Sj∗

∣∣ {j′ ∈ [k] | i ∈ Sj′}
∣∣p−1 =

∑d
i=1(Xi + 1)p−1 ≤ (1 + ε)d .

Therefore, by applying the union bound over all j∗ ∈ [k], we conclude that with probability
at least 1− 1

100
1

(n
k) , the desired inequality (3.3) is satisfied for all j ∈ [k].

Recall that, owing to (3.2), the inequality (3.3) implies that ‖Ax‖pp ≤ (1 + ε)‖x‖pp for
every x ∈ Rn that is supported on the first k coordinates. By another union bound over the
choices of all possible

(
n
k

)
subsets of [n], we conclude that with probability at least 0.99, we

have ‖Ax‖pp ≤ (1 + ε)‖x‖pp for all k-sparse vectors x.
On the other hand, since our choice of d and m satisfies the assumptions d ≥ Ω(k logn/ε)

and m ≥ 2dk/ε in Claim 3.3, the lower tail ‖Ax‖pp ≥ (1− ε)‖x‖pp also holds with probability
at least 0.99. Overall we conclude that with probability at least 0.98, we have ‖Ax‖pp ∈
(1± ε)‖x‖pp for every k-sparse vector x ∈ Rn. J

4 RIP Construction for 1 < p < 2

In this section, we construct (k, 1 + ε)-RIP-p matrices for 1 < p < 2 by proving the following
theorem.

We assume that 1 + τ ≤ p ≤ 2 − τ for some τ > 0, and whenever we write Oτ (·), we
assume that some factor that depends on τ is hidden. (For instance, factors of p/(1− p) may
be hidden.)

I Theorem 4.1. For every n ∈ Z+, k ∈ [n], 0 < ε < 1/2 and 1 + τ ≤ p ≤ 2− τ , there exist
m, d ∈ Z+ with

m = Oτ

(
kp

logn
ε2 + k4−2/p−p logn

ε2/(p−1)

)
and d = Oτ

(
kp−1 · logn

ε
+ k(p−1)/p · logn

ε1/(p−1)

)

Z. Allen-Zhu, R. Gelashvili, and I. Razenshteyn 459

such that, letting A be a random binary m× n matrix of sparsity d, with probability at least
98%, A satisfies (1− ε)‖x‖pp ≤ ‖Ax‖pp ≤ (1 + ε)‖x‖pp for all k-sparse vectors x ∈ Rn.

Note that, when k ≥ ε−
p(2−p)
(p−1)3 , the above bounds on m and k can be simplified as

m = Oτ

(kp · logn
ε2

)
and d = Oτ

(kp−1 · logn
ε

)
.

Our proof of the above theorem is based on the existence of (`, d, δ) bipartite expanders
(recall the definition of such expanders from Definition 2.1):

I Lemma 4.2 ([5, Lemma 3.10]). For every δ ∈ (0, 1
2), and ` ∈ [n], there exist (`, d, δ)-

expanders with d = O
(logn

δ

)
and m = O(dl/δ) = O

(
` logn
δ2

)
.

In fact, the proof of Lemma 4.2 implies a simple probabilistic construction of such expanders:
with probability at least 98%, a random binary matrix A of sparsity d is the adjacency matrix
of a (2`, d, δ)-expander scaled by d−1/p, for δ = Θ(logn

d) and ` = Θ(δmd).
In the full version of this paper [2] we argue that, when A is the (scaled) adjacency matrix of

a (2`, d, δ)-expander, for parameters choices ` = Θτ (k2−p) and δ = Θτ

(
min

{
ε

kp−1 ,
ε1/(p−1)

k(p−1)/p

})
,

it satisfies that ‖Ax‖pp = 1± ε. This proof is very technical, but we have included a high-level
description of its idea in the full version of this paper.

It is perhaps interesting to be noted that, our construction confirms our description in the
introduction: it interpolates between the expander construction of RIP-1 matrices from [4]
that uses ` = k, and the construction of RIP-2 matrices using incoherence argument that
essentially corresponds to ` = 2.

Acknowledgments. We thank Piotr Indyk for encouraging us to work on this project and
for many valuable conversations. We are grateful to Piotr Indyk and Ronitt Rubinfeld for
teaching “Sublinear Algorithms”, where parts of this work appeared as a final project. We
thank Artūrs Bačkurs, Chinmay Hegde, Gautam Kamath, Sepideh Mahabadi, Jelani Nelson,
Huy Nguy˜̂en, Eric Price and Ludwig Schmidt for useful conversations and feedback. Thanks
to Leonid Boytsov for pointing us to [21, 22]. We are grateful to anonymous referees for
pointing out some relevant literature. The first author is partly supported by a Simons
Graduate Student Award under grant no. 284059.

References
1 Zeyuan Allen-Zhu, Rati Gelashvili, Silvio Micali, and Nir Shavit. Johnson-Lindenstrauss

Compression with Neuroscience-Based Constraints. ArXiv e-prints, abs/1411.5383, Novem-
ber 2014. Also appeared in the Proceedings of the National Academy of Sciences of the
USA, vol 111, no 47.

2 Zeyuan Allen-Zhu, Rati Gelashvili, and Ilya Razenshteyn. Restricted Isometry Property
for General p-Norms. ArXiv e-prints, abs/1407.2178v3, February 2015.

3 Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. A simple proof
of the restricted isometry property for random matrices. Constructive Approximation,
28(3):253–263, 2008.

4 Radu Berinde, Anna C. Gilbert, Piotr Indyk, Howard Karloff, and Martin J. Strauss. Com-
bining geometry and combinatorics: A unified approach to sparse signal recovery. In Pro-
ceedings of the 46th Annual Allerton Conference on Communication, Control, and Com-
puting (Allerton 2008), pages 798–805, 2008.

5 Harry Buhrman, Peter Bro Miltersen, Jaikumar Radhakrishnan, and Srinivasan Venkatesh.
Are bitvectors optimal? SIAM Journal on Computing, 31(6):1723–1744, 2002.

SoCG’15

460 Restricted Isometry Property for General p-Norms

6 Emmanuel Candès, Justin Romberg, and Terence Tao. Stable signal recovery from incom-
plete and inaccurate measurements. Communications on Pure and Applied Mathematics,
59(8):1207–1223, 2006.

7 Emmanuel Candès and Terence Tao. Decoding by linear programming. IEEE Transactions
on Information Theory, 51(12):4203–4215, 2005.

8 Emmanuel J. Candès. The restricted isometry property and its implications for compressed
sensing. Comptes Rendus Mathematique, 346(9–10):589–592, 2008.

9 Venkat B. Chandar. Sparse Graph Codes for Compression, Sensing, and Secrecy. PhD
thesis, Massachusetts Institute of Technology, 2010.

10 Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. Lower bounds for sparse
recovery. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’10), pages 1190–1197, 2010.

11 David L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006.

12 Anna C. Gilbert and Piotr Indyk. Sparse recovery using sparse matrices. Proceedings of
IEEE, 98(6):937–947, 2010.

13 Anna C. Gilbert, Martin J. Strauss, Joel A. Tropp, and Roman Vershynin. One sketch
for all: fast algorithms for compressed sensing. In Proceedings of the 39th Annual ACM
Symposium on Theory of Computing (STOC 2007), pages 237–246, 2007.

14 Piotr Indyk and Ilya Razenshteyn. On model-based RIP-1 matrices. In Proceedings of the
40th International Colloquium on Automata, Languages, and Programming (ICALP’13),
pages 564–575, 2013.

15 Kumar Joag-Dev and Frank Proschan. Negative association of random variables with
applications. Annals of Statistics, 11(1):286–295, 1983.

16 Raghunandan M. Kainkaryam, Angela Bruex, Anna C. Gilbert, John Schiefelbein, and
Peter J. Woolf. poolMC: Smart pooling of mRNA samples in microarray experiments.
BMC Bioinformatics, 11(299), 2010.

17 Rafał Latała. Estimation of moments of sums of independent real random variables. Annals
of Probability, 25(3):1502–1513, 1997.

18 James R. Lee, Manor Mendel, and Assaf Naor. Metric structures in L1: dimension,
snowflakes, and average distortion. European Journal of Combinatorics, 26(8):1180–1190,
2005.

19 S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends
in Theoretical Computer Science, 1(2):117–236, 2005.

20 Mergen Nachin. Lower bounds on the column sparsity of sparse recovery matrices. under-
graduate thesis, MIT, 2010.

21 A.V. Nagaev. Integral limit theorems taking large deviations into account when Cramér’s
condition does not hold. I. Theory of Probability and Its Applications, 14(1):51–64, 1969.

22 A.V. Nagaev. Integral limit theorems taking large deviations into account when Cramér’s
condition does not hold. II. Theory of Probability and Its Applications, 14(2):193–208, 1969.

23 Jelani Nelson and Huy L. Nguy˜̂en. Sparsity lower bounds for dimensionality reducing maps.
In Proceedings of the 45th ACM Symposium on the Theory of Computing (STOC’13), pages
101–110, 2013.

24 Holger Rauhut. Compressive sensing and structured random matrices. Theoretical founda-
tions and numerical methods for sparse recovery, 9:1–92, 2010.

Strong Equivalence of the Interleaving and
Functional Distortion Metrics for Reeb Graphs
Ulrich Bauer1, Elizabeth Munch2, and Yusu Wang3

1 Department of Mathematics, Technische Universität München (TUM),
Germany
mail@ulrich-bauer.org

2 Department of Mathematics & Statistics, University at Albany – SUNY, USA
emunch@albany.edu

3 Department of Computer Science and Engineering, The Ohio State University,
USA
yusu@cse.ohio-state.edu

Abstract
The Reeb graph is a construction that studies a topological space through the lens of a real valued
function. It has been commonly used in applications, however its use on real data means that it
is desirable and increasingly necessary to have methods for comparison of Reeb graphs. Recently,
several metrics on the set of Reeb graphs have been proposed. In this paper, we focus on two: the
functional distortion distance and the interleaving distance. The former is based on the Gromov–
Hausdorff distance, while the latter utilizes the equivalence between Reeb graphs and a particular
class of cosheaves. However, both are defined by constructing a near-isomorphism between the
two graphs of study. In this paper, we show that the two metrics are strongly equivalent on the
space of Reeb graphs. Our result also implies the bottleneck stability for persistence diagrams
in terms of the Reeb graph interleaving distance.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems: Geometrical
problems and computations

Keywords and phrases Reeb graph, interleaving distance, functional distortion distance

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.461

1 Introduction

The Reeb graph is a construction that can be used to study a topological space with a real
valued function by tracking the relationships between connected components of level sets. It
was originally developed in the context of Morse theory [21], and was later introduced for
shape analysis by Shinagawa et al. [23]. Since then, it has attracted much attention due to its
wide use for various data analysis applications, such as shape comparison [15, 11], denoising
[25], and shape understanding [7, 14]; see [2] for a survey. Recently, the applications of
Reeb graphs have been further broadened to summarizing high-dimensional and/or complex
data, in particular, reconstructing non-linear 1-dimensional structure in data [18, 12, 4]
and summarizing collections of trajectory data [3]. Its practical applications have also been
facilitated by the availability of efficient algorithms for computing the Reeb graph from a
piecewise-linear function defined on a simplicial complex [20, 13, 9].

In addition to the standard construction, a generalization of the Reeb graph construction,
known as Mapper, [24], has proven extremely useful in the field of topological data analysis
[26, 19]. A variant of Mapper for real-valued functions, called the α-Reeb graph, was used in
[4] to study data sets with 1-dimensional structure.

© Ulrich Bauer, Elizabeth Munch, and Yusu Wang;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 461–475

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.461
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

462 Strong Equivalence of Reeb Graph Metrics

Figure 1 A simple example of the Reeb graph (right) of a space (left). Here and in all other
drawn examples in this paper, the real valued function is indicated by vertical height.

Given the popularity of the Reeb graph and related constructions for practical data
analysis applications, it is desirable and increasingly necessary to understand how robust
(stable) these structures are in the presence of noise. Consequently, several metrics for
comparing Reeb graphs have been proposed recently. These include the functional distortion
distance [1], the interleaving distance [6], and the combinatorial edit distance [8]. We note
that the latter is limited to Reeb graphs resulting from Morse functions defined on surfaces.
In addition, Morozov et. al proposed an interleaving distance for a simpler variant of the
Reeb graph, the merge tree [17].

In this paper, we study the relation between two recently proposed distances for general
Reeb graphs: the functional distortion distance of [1] and the interleaving distance of [6]. The
former is based on concepts from metric geometry, and is defined by treating both graphs
as metric spaces and inspecting continuous maps between them. The latter, on the other
hand, is defined using ideas of category theory, utilizing the equivalence between Reeb graphs
and a particular class of cosheaves. However, in essence, both construct a near-isomorphism
between the two input graphs of study. In Sections 3 and 4, we explore this connection
between the two distances, and show that indeed, the functional distortion distance and the
interleaving distances are strongly equivalent on the space of Reeb graphs, meaning that
they are within a constant factor of each other. This immediately leads to the bottleneck
stability result for the Reeb graph interleaving distance.

2 Definitions

Given a topological space W with a real valued function f : W → R, we define the Reeb
graph of (W, f) as follows. We say that two points in W are equivalent if they are in the
same path component of a level set f−1(a) for a ∈ R. This is denoted as x ∼f y, or x ∼ y if
the function is obvious. Then the Reeb graph is the quotient space W/ ∼f . Note that the
Reeb graph inherits a real valued function from its parent space. See Fig. 1 for an example.

2.1 Category of Reeb Graphs
For nice enough functions f : W→ R, such as Morse functions on compact manifolds or PL
functions on finite simplicial complexes, the Reeb graph is, in fact, a finite graph [6]. We will
tacitly make this assumption on the Reeb graph throughout the paper. Thus, we will define
the category of Reeb graphs, following [6], intuitively to be finite graphs with real valued
functions that are strictly monotonic on the edges. Morphisms will be given by function
preserving maps between the underlying spaces as given in the following definition.

U. Bauer, E. Munch, and Y. Wang 463

Figure 2 An example of a smoothed Reeb graph. Shown on the left is the original graph X, with the
function f given by height. The middle space is Xε = X× [−ε, ε] with the function fε(x, t) = f(x) + t

still given by height. On the right is the Reeb graph of (Xε, fε), which is the smoothed Reeb graph
Uε(X).

I Definition 1. An object of the category Reeb is a finite graph, seen as a topological
space X (specifically, as a regular CW complex of dimension 1), together with a real valued
function that is strictly monotonic on edges. This will equivalently be written as either
f : X → R or (X, f). A morphism between (X, f) and (Y, g) is a function preserving map
ϕ : X→ Y, i.e., the following diagram commutes:

X Y

R

ϕ

f
g

Note that since we assume that the function is strictly monotonic when restricted to the
edges, it is defined up to isomorphism by the values on the vertices. As an aside, notice that
the quotient map sending a space with a function to its Reeb graph is an isomorphism when
the space is in Reeb.

2.2 Interleaving Distance
Given a Reeb graph (X, f), let Xε denote the space X× [−ε, ε], and define the ε-smoothing
of (X, f) as the Reeb graph of the function

fε : Xε → R,
(x, t) 7→ f(x) + t.

That is, the ε-smoothing is the quotient space Xε/ ∼fε
. Denote this space by Uε(X, f) and

note that Uε(Uε(X, f)) ∼= U2ε(X, f) [6]. Sometimes when we are focusing on the underlying
topological space and the function is obvious, we will denote this as Uε(X). See Fig. 2 for an
example.

An ε-interleaving of (X, f) and (Y, g) is a pair of function preserving maps (as in Defin-
ition 1) ϕ : (X, f) → Uε(Y, g) and ψ : (Y, g) → Uε(X, f) with the following requirements.
Consider the maps

ι : (X, f)→ Uε(X, f), x 7→ [x, 0],
ιε : Uε(Y, g)→ U2ε(Y, g), [x, t] 7→ [x, t],
ϕε : Uε(X, f)→ U2ε(Y, g), [x, t] 7→ [ϕ(x), t],

where [x, t] = q(x, t) is the equivalence class of (x, t) under the quotient map q : Xε → Uε(X, f).

SoCG’15

464 Strong Equivalence of Reeb Graph Metrics

Note that the diagram

(X, f) Uε(X, f)

Uε(Y, g) U2ε(Y, g)

ι

ϕ ϕε

ιε

commutes. Analogously defining maps ι : (Y, g)→ Uε(Y, g), ιε : Uε(X, f)→ U2ε(X, f), and
ψε : Uε(Y, g)→ U2ε(X, f), we have the following definition of an ε-interleaving.

I Definition 2 (ε-Interleaving). The maps ϕ : (X, f) → Uε(Y, g) and ψ : (Y, g) → Uε(X, f)
are an ε-interleaving if both of them are function preserving, and the following diagram

(X, f) Uε(X, f) U2ε(X, f)

(Y, g) Uε(Y, g) U2ε(Y, g)

ι

ϕ

ιε

ϕε

ι

ψ

ιε

ψε

commutes.

We can use this definition of interleavings to define a distance on Reeb graphs.

I Definition 3 (Interleaving Distance, [6]). The interleaving distance between two Reeb
graphs (X, f) and (Y, g) is defined to be

dI((X, f), (Y, g)) = inf {ε | there exists an ε-interleaving between (X, f), (Y, g)} .

The definition of the interleaving distance was motivated by the cosheaf structure of Reeb
graphs. It was shown in [6] that the category of Reeb graphs is equivalent to a particular class
of cosheaves, which can be thought of as functors F : Int→ Set giving a set for each open
interval. Specifically, given a real-valued function f : X→ R, we can construct the associated
functor F = π0 ◦ f−1, where π0 sends a topological space to its set of path components.
This equivalence allows us to work with either the topological construction or the category
theoretic one, whichever is easier or more appropriate. An excellent introduction to cellular
cosheaves can be found in [5].

2.3 Functional Distortion Distance
For a given path π from u to v in (X, f) ∈ Reeb, we define the height of the path to be

height(π) = max
x∈π

f(x)−min
x∈π

f(x).

Then we define the distance

df (u, v) = min
π:u v

height(π)

where π ranges over all paths from u to v in X. Note that this can be equivalently defined
by the minimum length of any closed interval I such that u and v are in the same path
component of f−1(I).

The functional distortion distance between (X, f) and (Y, g) is now defined as follows:

U. Bauer, E. Munch, and Y. Wang 465

I Definition 4 (Functional Distortion Distance, [1]). Given (X, f), (Y, g) ∈ Reeb and maps
Φ : X→ Y and Ψ : Y→ X, let

C(Φ,Ψ) = {(x, y) ∈ X× Y | Φ(x) = y or x = Ψ(y)}

and

D(Φ,Ψ) = sup
(x,y),(x′,y′)
∈C(Φ,Ψ)

1
2 |df (x, x′)− dg(y, y′)| .

Then the functional distortion distance is defined to be

dFD(f, g) = inf
Φ,Ψ

max{D(Φ,Ψ), ‖f − g ◦ Φ‖∞, ‖g − f ◦Ψ‖∞}.

Note that since the maps Φ,Ψ are not required to preserve the function values, they are not
necessarily Reeb graph morphisms in the sense of Definition 1.

2.4 Multivalued Maps and Continuous Selections
In order to prove our main result, we will make heavy use of the theory of multivalued maps
and the notion of a selection of such a map. We briefly introduce the required definitions
and a central result asserting the existence of a continuous selection.

A multivalued map (or multimap) F : X → Y is a relation F ⊆ X × Y that sends a
point x ∈ X to a nonempty set F (x) = {y ∈ Y | ∃x ∈ X : (x, y) ∈ F} ⊂ Y . A selection of
a multimap is a map f : X → Y such that f(x) ∈ F (x) for every x ∈ X. See [22] for an
introduction to multimaps.

Note that using the axiom of choice, a selection always exists; the difficulty is in finding
a continuous selection. The Michael selection theorem gives a criterion for a multimap to
have a continuous selection. However, in order to state it, we will need several definitions.

I Definition 5. A family S of subsets of a topological space Y is equi-locally n-connected if
for every S ∈ S, every y ∈ S, and every neighborhood W of y, there is a neighborhood V
of y such that V ⊂W and for every S′ ∈ S such that V ∩ S′ 6= ∅, every continuous mapping
of the m-sphere Sm into S′ ∩ V is null-homotopic in S′ ∩W for m ≤ n. This is denoted
by S ∈ ELCn.

In particular, we will be requiring the case where S ∈ ELC0. A sufficient condition for
this to hold is that in the above definition, V can be chosen such that for any S′ ∈ S, the
intersection S′ ∩ V is either empty or path connected.

I Definition 6. A multivalued map F : X → Y is lower semicontinuous (LSC) if for every
open set U ⊂ Y the set F−1(U) = {x ∈ X | F (x) ∩ U 6= ∅} is open in X.

Finally we can state the Michael selection theorem. Since we are working with a space
of covering dimension 1, we paraphrase the more general theorem here to relate it to our
context.

I Theorem 7 (Michael 1956[16]). A multivalued mapping F : X → Y admits a continuous
single-valued selection provided that the following conditions are satisfied:
1. X is a paracompact space with covering dimension dim(X) ≤ 1;
2. Y is a completely metrizable space;
3. F is an LSC mapping;
4. for every x ∈ X, F (x) is a path connected subspace of Y ; and
5. the family of values {F (x)}x∈X is ELC0.

SoCG’15

466 Strong Equivalence of Reeb Graph Metrics

3 ε-Interleaving and Functional Distortion

In order to prove the main result, Theorem 16, we will prove each inequality separately as
Lemmas 8 and 15 .

3.1 The Easy Direction
I Lemma 8. Let (X, f), (Y, g) ∈ Reeb. Then

dI(f, g) ≤ dFD(f, g).

Proof. Let ε > dFD(f, g). By definition of the functional distortion metric, there are maps

X Y
Φ

Ψ

that satisfy the requirements of Definition 4. In particular, x and Ψ ◦ Φ(x) are connected by
a path γ of height 2ε. This path is thus contained in the preimage f−1[f(x)− 2ε, f(x) + 2ε].
As a consequence, the points (x, 0) and (Ψ ◦ Φ(x), f(x)− f(Ψ ◦ Φ(x))) are in the same path
component of the level set f−1

2ε (f(x)).
Define

ϕ : (X, f)→ Uε(Y, g), x 7→ [Φ(x), f(x)− g(Φ(x))],
ψ : (Y, g)→ Uε(X, f), y 7→ [Ψ(y), g(y)− f(Ψ(y))],

with the latter inducing the map

ψε : Uε(Y, g)→ U2ε(X, f), [y, t] 7→ [Ψ(y), g(y)− f(Ψ(y)) + t]

appearing in the definition of an interleaving. A visual representation of the map ϕ is given
in Figure 3. We then have

ψε ◦ ϕ(x) = ψε[Φ(x), f(x)− g(Φ(x))]
= [Ψ ◦ Φ(x), g ◦ Φ(x)− f(Ψ ◦ Φ(x)) + f(x)− g(Φ(x))]
= [Ψ ◦ Φ(x), f(x)− f(Ψ ◦ Φ(x))]
= [x, 0] = ιε ◦ ι(x).

By an analogous argument, we also have ϕε ◦ ψ(y) = [y, 0] = ιε ◦ ι(y), and hence ϕ and
ψ are an ε-interleaving. Since the above holds for any ε > dFD(f, g), the claim is now
immediate. J

3.2 The Hard Direction
In order to show dFD((X, f), (Y, g)) ≤ 3dI((X, f), (Y, g)), we need to start with an ε-
interleaving, ϕ : (X, f) → Uε(Y, g) and ψ : (Y, g) → Uε(X, f), and construct a pair of
maps satisfying the requirements of the functional distortion distance. To do this, note that
the map ϕ induces a multimap ϕ : X→ Yε, which sends a point x to the entire equivalence
class of ϕ(x), thought of as a subset of Yε. Concretely, letting q : Yε → Uε(Y) denote the
Reeb graph quotient map, we have ϕ = q−1 ◦ ϕ.

This multimap, however, does not always have a continuous selection (see Figure 4 for
a counterexample), so we will introduce a parameter δ to slightly enlarge the images of

U. Bauer, E. Munch, and Y. Wang 467

Figure 3 The definition of the map ϕ : (X, f)→ Uε(Y, g) as given in the proof of Lemma 8.

Figure 4 The map ϕ is not enough for us to have a continuous selection as seen in this
counterexample. The image under ϕ : X→ Uε(Y) is the red line in the rightmost graph. However,
this implies the image under ϕ is the red region in the middle space. Since with ϕ, a selection may
only choose one point from every level, we run into a problem in the center line since no choice of
point will allow for a continuous selection.

ϕ. First, note that we have metrics df and dg for X and Y respectively. For an arbitrarily
small δ > 0, we can construct the multimap, ϕδ : X → Yε sending x to ϕ(Bδ(x)), where
Bδ(x) = {x′ | df (x, x′) < δ}. Explicitly, we have

ϕδ(x) = {(y′, t′) ∈ Yε | x′ ∈ X, df (x, x′) < δ, (y′, t′) ∈ ϕ(x′)}.

See Fig. 5 for an example. For technical reasons, we will assume that δ < L/4, where L is
the minimum height of any edge in Uε(Y).

In order to assert the existence of a continuous selection, we now show that the multimap
ϕδ : X→ Yε satisfies the assumptions of Theorem 7:
1. Since X is a finite CW complex, it is compact and thus trivially paracompact. In addition,

because it is a graph, it has covering dimension 1.
2. Since Y is a finite CW complex, it is completely metrizable. Therefore, Yε is also

completely metrizable, being the product of two completely metrizable spaces.
3. To show that ϕδ is LSC, let U ⊂ Yε be open. We will show that any x ∈ ϕ−1

δ (U)
has an open neighborhood in ϕ−1

δ (U), implying that ϕ−1
δ (U) is open. Expanding the

definition of x ∈ ϕ−1
δ (U), there is an x′ with df (x, x′) < δ such that ϕ(x′) ∩ U 6= ∅. Let

r = δ − df (x, x′). We now want to show that Br(x) ⊆ ϕ−1
δ (U). Let x′′ ∈ Br(x). We

know that x′ ∈ Bδ(x′′) since

df (x′, x′′) ≤ df (x′, x) + df (x, x′′) < (δ − r) + r = δ.

Since ϕ(x′) ∩ U 6= ∅ and x′ ∈ Bδ(x′′), we must have ϕδ(x′′) ∩ U = ϕ(Bδ(x′′)) ∩ U 6= ∅
and hence x′′ ∈ ϕ−1

δ (U).
4. Let q : Yε → Uε(Y) be the quotient map. Then q◦ϕδ(x) = ϕ(Bδ(x)) is the image of a path

component under a continuous map and is therefore path connected. Since ϕ(x) ⊂ Uε(Y)

SoCG’15

468 Strong Equivalence of Reeb Graph Metrics

Figure 5 An example for determining the map ϕδ. Given the red point x ∈ X, the red solid
region in X is Bδ(x). Then we can look at ϕ(Bδ(x)), the red region in Uε(Y). The set ϕδ(x) in Yε
consists of the points which map into ϕ(Bδ(x)) in Uε(Y) under the quotient map q.

is by definition the image of a path component of X, it is also path connected. So ϕδ(x)
can be thought of as a fibration with base space ϕ(Bδ(x)) and fibers ϕ(x′), for x′ ∈ Bδ(x).
Since the fibers are path connected by definition of q, and the base is path connected,
the total space is path connected.

5. As checking this property is by far the most complicated, we prove it in Lemma 9.

I Lemma 9. The family of values {ϕδ(x)}x∈X is ELC0.

Proof. Fix x ∈ X. Given an arbitrary (y, t) ∈ ϕδ(x) ⊂ Yε and a neighborhood W of (y, t),
let 0 < r ≤ δ be such that V = Br(y, t) is contained in W . Here Br(y, t) denotes the open
ball of radius r around (y, t) in Yε using the metric

dYε
((y, t), (y′, t′)) = dg(y, y′) + |t− t′|.

It suffices to show that for any x̃ such that ϕδ(x̃)∩V 6= ∅, the set ϕδ(x̃)∩V is path connected.
For brevity, let U = ϕδ(x̃). Let (y1, t1) and (y2, t2) be in the intersection U ∩ V and, seeking
a contradiction, assume that they are in different path components of U ∩V . Since U is path
connected, there is a path γ1 from (y1, t1) to (y2, t2) with Im γ1 ⊂ U = ϕδ(x̃). Thus for every
s ∈ [0, 1] there is an xs ∈ Bδ(x̃) such that γ1(s) ∈ ϕ(xs). The map ϕ is function preserving,
so gε(γ1(s)) = f(xs). Moreover, as xs ∈ Bδ(x̃), we have |f(x̃) − gε(γ1(s))| < δ and thus
height(γ1) < 2δ. On the other hand, V is path connected and so there is a path γ2 from
(y2, t2) to (y1, t1) that stays completely inside of V = Br(y, t), and thus height(γ2) < 2r.

We can now consider the paths q ◦ γ1 and q ◦ γ2 in Uε(Y). As the endpoints of γ2 are in
different path components of U ∩ V and at the same time Im γ2 ⊂ V , there must be a point
v ∈ Im γ2 that is not in U .

We want to show that q(v) 6∈ q(Im γ1) ⊂ q(U). By definition, ϕ is the map such that
q ◦ ϕ(z) = ϕ(z) for any z ∈ X. Thus

q(U) = q ◦ ϕδ(x̃) = q ◦ ϕ(Bδ(x̃)) = ϕ(Bδ(x̃)).

Again seeking a contradiction, assume q(v) ∈ q(U) = ϕ(Bδ(x̃)). Then there is an xv ∈ Bδ(x̃)
such that ϕ(xv) = q(v). But this implies that v ∈ ϕ(xv) and thus v ∈ ϕδ(x̃) = U ,

U. Bauer, E. Munch, and Y. Wang 469

contradicting our assumption that v 6∈ U . We conclude that q(v) 6∈ q(U); in particular,
q(v) 6∈ q(Im γ1).

This implies that the loop q(γ1 • γ2) is not nullhomotopic in Uε(Y), where γ1 • γ2 denotes
the concatenation of the two paths. However, since we assumed that r ≤ δ < L/4, where L
is the minimum height of any edge in Uε(Y), we have

height(q(γ1 • γ2)) = height(γ1 • γ2)
≤ height(γ1) + height(γ2)
< 2δ + 2r ≤ 4δ < L,

and therefore must be nullhomotopic in Uε(Y). Thus, the original assumption that ϕδ(x̃)∩ V
is not path connected must be false. J

Thus, since ϕ satisfies the requirements for Theorem 7, there exists a continuous selection
of ϕδ, that is, a map ϕ̃δ : X→ Yε satisfying ϕ̃δ(x) ∈ ϕ(Bδ(x)) for all x ∈ X. Likewise, there
exists a continuous selection ψ̃δ : Y→ Xε for ψδ. Note however that the functional distortion
distance requires a pair of maps X→ Y and Y→ X. To get there, let p1 be either the map
Xε → X or Yε → Y, defined by projection onto the first factor. We define our maps for the
functional distortion distance to be Φ = p1 ◦ ϕ̃δ : X→ Y and Ψ = p1 ◦ ψ̃δ : Y→ X. Note that
Φ and Ψ depend on the choice of δ. The remainder of this section is devoted to showing that
this pair of maps induces a functional distortion of at most 3(ε+ δ), establishing the upper
bound on the functional distortion distance.

Bounding the functional distortion

In order to prove the main result of this section, we need to establish some notation and
technical lemmas. Recall that ι : X → Uε(X, f) is the map that sends x to [x, 0] = q(x, 0).
Moreover, let κ = p1 ◦ q−1. Note that both ι−1 and κ are multimaps, and ι−1 ⊆ κ as
relations of X× Uε(X, f). Similarly, define ιε : Uε(X, f)→ U2ε(X, f) and κε = p1q

−1
ε , where

qε : Uε(X, f)× [−ε, ε]→ U2ε(X, f) is the quotient map. We have analogous maps for (Y, g)
in place of (X, f), for which we use the same identifiers while ensuring that their domains
will always be clear from the context. These maps are summarized in the following diagram.
Note that not all parts of the diagram commute.

Xε Uε(X)× [−ε, ε]

X Uε(X) U2ε(X)

Y Uε(Y) U2ε(Y)

Yε Uε(Y)× [−ε, ε]

p1 q p1 qε

ι
ϕ

ιε

ϕε

κ κε

ι
ψ

ιε

ψε

κ κε

p1 q p1
qε

For t ∈ R and s ≥ 0, let

Is(t) := {r ∈ R | |r − t| ≤ s}

SoCG’15

470 Strong Equivalence of Reeb Graph Metrics

denote the thickening of t by s. Given any point x ∈ X, we define

Rr(x) := {x′ ∈ X | ∃ path π : x x′ such that f(Im π) ⊆ Ir(f(x))}.

That is, Rr(x) is the path component of x in f−1(Ir(f(x))). For a subset U ⊆ X, we define
Rr(U) := ∪x∈URr(x). We can define Rr similarly for Y, Uε(X), or Uε(Y). The following
simple observations will be useful later; we omit the easy proof.

I Lemma 10. (i) Br(x) ⊆ Rr(x) ⊆ B2r(x). (ii) Rr(Rs(x)) ⊆ Rr+s(x).

We will now present several technical lemmas that establish how far the above diagram
is from commuting.

I Lemma 11. κ ◦Rr ◦ ι ⊆ Rr+ε.

Proof. iven x ∈ X, let [x̃, t̃] ∈ Rr(ι(x)). We want to show that there exists a path π : x x̃

such that f(Im π) ⊆ Ir+ε(f(x)). An analogous argument also holds for y ∈ Y.
Since fε(ι(x)) = f(x) and [x̃, t̃] ∈ Rr(ι(x)), there is a path γ from ι(x) = [x, 0] to [x̃, t̃] in

Uε(X) satisfying fε(Im γ) ⊆ Ir(f(x)). Because the image of γ is path connected and q induces
an isomorphism on path components, the subspace q−1(Im γ) ⊂ Xε is path connected as
well. In particular, (x, 0) and (x̃, t̃) are in this set, so there is a path ζ between them.
As Im ζ ⊆ q−1(Im γ), we have that fε(Im ζ) ⊆ fε(q−1(Im γ)) = fε(Im γ) ⊆ Ir(f(x)).

Finally, consider the path π = p1 ◦ ζ in X from x to x̃. Since the projection p1 changes the
function value by at most ε, we have that f(Im π) ⊆ Ir+ε(f(x)), and thus x̃ ∈ Rr+ε(x). J

Note that the previous lemma can also be stated using ιε, so we have κε ◦Rr ◦ ιε ⊆ Rr+ε.
Since this lemma holds for r = 0 as well, this also implies that κ ◦ ι ⊆ Rε.

I Lemma 12. ψ ◦ κ ⊆ κε ◦ ψε.

Proof. Let yε = [y, s] ∈ Uε(Y). Note that y ∈ κ[y, s] and thus ψ(y) ∈ ψ ◦ κ[y, s]. Since every
element of ψ ◦κ(yε) can be represented in this form, it suffices to show that ψ(y) ∈ κε ◦ψε(yε)
as well. To see this, note that by definition of ψε we have ψε[y, s] = [ψ(y), s]. Moreover, we
have ψ(y) ∈ κε[ψ(y), s], so the claim follows. J

I Lemma 13. Ψ ◦ Φ ∈ R2ε+2δ.

Proof. By definition of Φ and Ψ, for any x ∈ X we have

Φ(x) = p1 ◦ ϕ̃δ(x)
∈ p1 ◦ ϕ(Bδ(x))
= p1 ◦ q−1 ◦ ϕ(Bδ(x))
= κ ◦ ϕ ◦Bδ(x),

and similarly for any y ∈ Y we have

Ψ(y) ∈ κ ◦ ψ ◦Bδ(y).

The composition yields

Ψ ◦ Φ(x) ∈ κ ◦ ψ ◦Bδ ◦ κ ◦ ϕ ◦Bδ(x).

U. Bauer, E. Munch, and Y. Wang 471

Since ψ preserves function values, a path γ in Y is sent to a path ψ ◦ γ of the same height in
Uε(X). Thus, for any r ≥ 0, we have ψ ◦Br ⊆ Br ◦ ψ, and so we obtain:

Ψ ◦ Φ(x) ∈ κ ◦ ψ ◦Bδ ◦ κ ◦ ϕ ◦Bδ(x)
⊆ κ ◦ (Bδ ◦ ψ) ◦ κ ◦ ϕ ◦Bδ(x) since ψ ◦Br ⊆ Br ◦ ψ,
⊆ κ ◦Bδ ◦ (κε ◦ ψε) ◦ ϕ ◦Bδ(x) since ψ ◦ κ ⊆ κε ◦ ψε by Lemma 12,
⊆ κ ◦Bδ ◦ κε ◦ (ιε ◦ ι) ◦Bδ(x) by the definition of an interleaving,
⊆ κ ◦Bδ ◦ (Rε) ◦ ι ◦Bδ(x) since κε ◦ ιε ⊆ Rε by Lemma 11,
⊆ κ ◦ (Rδ+ε) ◦ ι ◦Bδ(x) since Bδ ◦Rε ⊆ Rδ+ε by Lemma 10,
⊆ (Rδ+2ε) ◦Bδ(x) since κ ◦Rδ+ε ◦ ι ⊆ Rδ+2ε by Lemma 11,
⊆ R2δ+2ε(x) since R2ε ◦Bδ ⊆ Rδ+2ε by Lemma 10. J

I Lemma 14. (i) ‖f − g ◦ Φ‖∞ ≤ ε+ δ. (ii) ‖g − f ◦Ψ‖∞ ≤ ε+ δ.

Proof. For any x ∈ X, the image Φ(x) is a point in Y such that there is a x̃ ∈ X with
df (x, x̃) < δ and a t ∈ [−ε, ε] with (Φ(x), t) ∈ ϕ(x̃). So |f(x) − f(x̃)| < δ and f(x̃) =
g(Φ(x)) + t. Thus

|f(x)− g(Φ(x))| = |f(x)− (f(x̃)− t)| = |f(x)− f(x̃) + t| ≤ δ + ε

and hence ‖f − g ◦ Φ‖∞ ≤ ε+ δ. Likewise, ‖g − f ◦Ψ‖∞ ≤ ε+ δ. J

Finally, we can prove the main result of this section.

I Lemma 15. Let f : X→ R and g : Y→ R. Then

dFD(f, g) ≤ 3dI(f, g).

Proof. Let ϕ : (X, f) → Uε(Y, g) and ψ : (Y, g) → Uε(X, f) be an ε-interleaving, and thus
dI(f, g) ≤ ε. As shown above, there exist continuous maps Φ : X → Y and Ψ : Y → X,
constructed from selections for the multimaps ϕδ and ψδ. Let (x, y), (x′, y′) ∈ C(Φ,Ψ).
There are two cases to consider; either the pairs are of the same type (e.g., (x,Φ(x)) and
(x′,Φ(x′))), or they are different.

First assume that they are of the same type, (x,Φ(x)) and (x′,Φ(x′)). Let γ be a
minimum height path in X from x to x′. Then Φ(γ) is a path in Y from Φ(x) to Φ(x′). Since
‖f − g ◦ Φ‖∞ ≤ ε+ δ, the height of Φ(γ) exceeds the height of γ by at most 2(ε+ δ). So

dg(Φ(x),Φ(x′)) ≤ height(Φ(γ))
≤ height(γ) + 2(ε+ δ)
= df (x, x′) + 2(ε+ δ).

(1)

Conversely, to get an upper bound for df (x, x′) in terms of dg(Φ(x),Φ(x′)), let ζ be a
minimum height path in Y between Φ(x) and Φ(x′), i.e., height(ζ) = dg(Φ(x),Φ(x′)). Note
that Ψ ◦ ζ is a path in X from Ψ ◦ Φ(x) to Ψ ◦ Φ(x′). Since ‖g − f ◦Ψ‖∞ ≤ ε+ δ (Lemma
14), we have that

f(Ψ(ζ)) ⊆ Iε+δ(g(Im ζ)), (2)

where Is(A) := {r ∈ R | ∃r′ ∈ A : |r − r′| ≤ s} denotes the thickening of an interval A ⊆ R
by a real number s ≥ 0. Since g(Φ(x)), g(Φ(x′)) ∈ g(Im ζ), we conclude from Lemma 14 that
both f(x) and f(x′) are contained in Iε+δ(g(Im ζ)). Now consider the path γ̂ = γ1 •γ2 •γ3 in

SoCG’15

472 Strong Equivalence of Reeb Graph Metrics

X connecting x to x′, where γ1 is a mininum height path in X from x to Ψ ◦Φ(x), γ2 = Ψ ◦ ζ
connects Ψ ◦ Φ(x) to Ψ ◦ Φ(x′) as described above, and γ3 is a minimum height path in X
connecting Ψ ◦ Φ(x′) to x′. Combining Lemma 13 and (2), we obtain:

f(Im γ̂) ⊆ f(Im γ1) ∪ f(Im γ2) ∪ f(Im γ3)
⊆ I2ε+2δ(f(x)) ∪ Iε+δ(g(Im ζ)) ∪ I2ε+2δ(f(x′))
⊆ I3ε+3δ(g(Im ζ)) ∪ Iε+δ(g(Im ζ)) ∪ I3ε+3δ(g(Im ζ))
= I3ε+3δ(g(Im ζ)).

We thus conclude

df (x, x′) ≤ height(γ̂) ≤ dg(Φ(x),Φ(x′)) + 6ε+ 6δ. (3)

Combining the two bounds (1) and (3), we obtain

|df (x, x′)− dg(Φ(x),Φ(x′))| ≤ 6(ε+ δ).

Analogously, if we are given two pairs (Ψ(y), y), (Ψ(y′), y′) ∈ C(Φ,Ψ), we can show that

|df (Ψ(y),Ψ(y′))− dg(y, y′)| ≤ 6(ε+ δ).

What remains to consider is the case of two pairs (x,Φ(x)), (Ψ(y), y) ∈ C(Φ,Ψ). Let ξ
be a minimum height path in Y between Φ(x) and y. By Lemma 14, π1 = Ψ ◦ ξ is a path
Ψ(y) to Ψ ◦ Φ(x) in X such that

f(π1) ⊆ Iε+δ(g(Im ξ)).

Since g(Φ(x)) ∈ g(Im ξ), we also have f(x) ∈ Iε+δ(g(Im ξ)). Now let π2 be a minimum
height path in X connecting x to Ψ ◦ Φ(x); by Lemma 13 we have f(π2) ⊆ I2ε+2δ(f(x)).
Concatenating the two, we obtain a path π = π1 • π2 from x to Ψ(y) such that

f(Im π) ⊆ f(Im π1) ∪ f(Im π2)
⊆ Iε+δ(g(Im ξ)) ∪ I2ε+2δ(f(x))
⊆ Iε+δ(g(Im ξ)) ∪ I3ε+3δ(g(Im ξ))
= I3ε+3δ(g(Im ξ)).

We conclude that
df (x,Ψ(y)) ≤ dg(Φ(x), y) + 6ε+ 6δ.

Likewise, by a symmetric argument, we can show that

dg(Φ(x), y) ≤ df (x,Ψ(y)) + 6ε+ 6δ.

Hence |df (x,Ψ(y))− dg(Φ(x), y)| ≤ 6(ε+ δ).
Combining all of these bounds gives

D(Φ,Ψ) = sup
(x,y),(x′,y′)
∈C(Φ,Ψ)

1
2 |df (x, x′)− dg(y, y′)| ≤ 3(ε+ δ).

and therefore, together with Lemma 14,

dFD(f, g) = inf
Φ,Ψ

max{D(Φ,Ψ), ‖f − g ◦ Φ‖∞, ‖g − f ◦Ψ‖∞} ≤ 3(ε+ δ).

Since the above holds for any ε > dI(f, g) and for any δ > 0, this completes the proof. J

U. Bauer, E. Munch, and Y. Wang 473

Putting together Lemmas 8 and 15, our main result is immediate.

I Theorem 16. The functional distortion metric and the interleaving metric are strongly
equivalent. That is, given any Reeb graphs (X, f) and (Y, g),

dI(f, g) ≤ dFD(f, g) ≤ 3dI(f, g).

4 Relationship Between the Interleaving and Bottleneck Distances

Having strongly equivalent metrics means that we can quickly pass back and forth many of
the properties associated to the metrics. For example, the bottleneck stability bound for
persistence diagrams in terms of the functional distortion distance [1] says the following (for
the definitions of the persistence diagrams Dg0(f),ExDg1(f) associated to a function f and
of the bottleneck distance dB we refer the reader to [10]):

I Theorem 17 (Bauer, Ge, Wang [1]). Given two Reeb graphs (X, f) and (Y, g),

dB(Dg0(f),Dg0(g)) ≤ dFD(f, g)

and

dB(ExDg1(f),ExDg1(g)) ≤ 3dFD(f, g).

Combining this result with Theorem 16 gives an immediate stability result relating the
interleaving distance with the bottleneck distance.

I Corollary 18. Given two Reeb graphs (X, f) and (Y, g),

dB(Dg0(f),Dg0(g)) ≤ 3dI(f, g)

and

dB(ExDg1(f),ExDg1(g)) ≤ 9dI(f, g).

5 Discussion

In this paper, we study the relationship between two existing distances for Reeb graphs, and
show that they are strongly equivalent on the set of Reeb graphs. This relationship will be a
powerful tool for understanding convergence properties of the different metrics. For example,
if we have a Cauchy sequence in one metric, we have a Cauchy sequence in the other and
can therefore pass completeness results back and forth. This relationship also means that
algorithms for approximation of the metrics can be written using whichever method is most
helpful and applicable to the context.

These two distances may in general not be the same. However, we have yet to find an
example for which it can be shown that the two distances are actually different. It is easy to
construct examples where the bound dI(f, g) ≤ dFD(f, g) of Lemma 8 is tight; the status of
the bound dFD(f, g) ≤ 3dI(f, g) of Lemma 15 is unclear. While that bound is obtained using
an arbitrary selection, a better bound may be achievable using a particular optimal selection.
In addition, this may shed light on whether the bounds given between the bottleneck distance
of the extended persistence diagrams and the two Reeb graph distances are tight. Finally, we
plan to explore the use of these distances for studying the stability of Reeb-like structures,
such as Mapper and α-Reeb graphs [24, 4].

SoCG’15

474 Strong Equivalence of Reeb Graph Metrics

References
1 Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. Measuring distance between Reeb graphs. In

Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG’14,
New York, NY, USA, 2014. ACM.

2 Silvia Biasotti, Daniela Giorgi, Michela Spagnuolo, and Bianca Falcidieno. Reeb graphs for
shape analysis and applications. Theoretical Computer Science, 392(1-3):5–22, February
2008.

3 Kevin Buchin, Maike Buchin, Marc van Kreveld, Bettina Speckmann, and Frank Staals.
Trajectory grouping structure. In Frank Dehne, Roberto Solis-Oba, and Jörg-Rüdiger Sack,
editors, Algorithms and Data Structures, volume 8037 of Lecture Notes in Computer Science,
pages 219–230. Springer Berlin Heidelberg, 2013.

4 Frédéric Chazal and Jian Sun. Gromov-Hausdorff approximation of filament structure using
Reeb-type graph. In Proceedings of the Thirtieth Annual Symposium on Computational
Geometry, SOCG’14, pages 491:491–491:500, New York, NY, USA, 2014. ACM.

5 Justin Curry. Sheaves, Cosheaves and Applications. PhD thesis, University of Pennsylvania,
December 2014.

6 Vin de Silva, Elizabeth Munch, and Amit Patel. Categorified Reeb graphs, January 2015.
7 Tamal K. Dey, Fengtao Fan, and Yusu Wang. An efficient computation of handle and

tunnel loops via Reeb graphs. ACM Trans. Graph., 32(4):32:1–32:10, July 2013.
8 Barbara Di Fabio and Claudia Landi. The edit distance for Reeb graphs of surfaces, Novem-

ber 2014. http://arxiv.org/abs/1411.1544.
9 Harish Doraiswamy and Vijay Natarajan. Output-Sensitive construction of Reeb graphs.

Visualization and Computer Graphics, IEEE Transactions on, 18(1):146–159, January 2012.
10 Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. Amer.

Math. Soc., Providence, Rhode Island, 2010.
11 Francisco Escolano, Edwin R. Hancock, and Silvia Biasotti. Complexity fusion for indexing

Reeb digraphs. In Richard Wilson, Edwin Hancock, Adrian Bors, and William Smith, edit-
ors, Computer Analysis of Images and Patterns, volume 8047 of Lecture Notes in Computer
Science, pages 120–127. Springer Berlin Heidelberg, 2013.

12 Xiaoyin Ge, Issam I. Safa, Mikhail Belkin, and Yusu Wang. Data skeletonization via Reeb
graphs. Advances in Neural Information Processing Systems, 24:837–845, 2011.

13 William Harvey, Yusu Wang, and Rephael Wenger. A randomized O(m logm) time al-
gorithm for computing Reeb graphs of arbitrary simplicial complexes. In Proceedings of the
Twenty Sixth Annual Symposium on Computational Geometry, SoCG’10, pages 267–276,
New York, NY, USA, 2010. ACM.

14 Franck Hétroy and Dominique Attali. Topological quadrangulations of closed triangulated
surfaces using the Reeb graph. Graphical Models, 65(1-3):131–148, May 2003.

15 Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L. Kunii. Topology
matching for fully automatic similarity estimation of 3D shapes. In Proceedings of the 28th
annual conference on Computer graphics and interactive techniques, SIGGRAPH’01, pages
203–212, New York, NY, USA, 2001. ACM.

16 Ernest Michael. Continuous selections II. Annals of Mathematics, 64(3):pp. 562–580, 1956.
17 Dmitriy Morozov, Kenes Beketayev, and Gunther Weber. Interleaving distance between

merge trees. Manuscript, 2013.
18 Mattia Natali, Silvia Biasotti, Giuseppe Patanè, and Bianca Falcidieno. Graph-based rep-

resentations of point clouds. Graphical Models, 73(5):151–164, September 2011.
19 Monica Nicolau, Arnold J. Levine, and Gunnar Carlsson. Topology based data analysis

identifies a subgroup of breast cancers with a unique mutational profile and excellent sur-
vival. Proceedings of the National Academy of Sciences, 108(17):7265–7270, 2011.

http://arxiv.org/abs/1411.1544

U. Bauer, E. Munch, and Y. Wang 475

20 Salman Parsa. A deterministic O(m logm) time algorithm for the Reeb graph. Discrete &
Computational Geometry, 49(4):864–878, 2013.

21 Georges Reeb. Sur les points singuliers d’une forme de Pfaff complèment intégrable ou d’une
fonction numérique. Comptes Rendus de L’Académie ses Séances, 222:847–849, 1946.

22 Dus̆an Repovs̆ and Pavel V. Semenov. Continuous Selections of Multivalued Mappings.
Kluwer Academic Publishers, 1998.

23 Yoshihisa Shinagawa, Tosiyasu L. Kunii, and Yannick L. Kergosien. Surface coding based
on Morse theory. IEEE Comput. Graph. Appl., 11(5):66–78, September 1991.

24 Gurjeet Singh, Facundo Mémoli, and Gunnar Carlsson. Topological methods for the ana-
lysis of high dimensional data sets and 3D object recognition. In Eurographics Symposium
on Point-Based Graphics, 2007.

25 Zoë Wood, Hugues Hoppe, Mathieu Desbrun, and Peter Schröder. Removing excess topo-
logy from isosurfaces. ACM Transactions on Graphics, 23(2):190–208, April 2004.

26 Yuan Yao, Jian Sun, Xuhui Huang, Gregory R. Bowman, Gurjeet Singh, Michael Lesnick,
Leonidas J. Guibas, Vijay S. Pande, and Gunnar Carlsson. Topological methods for explor-
ing low-density states in biomolecular folding pathways. The Journal of Chemical Physics,
130:144115, 2009.

SoCG’15

On Generalized Heawood Inequalities for
Manifolds: A Van Kampen–Flores-type
Nonembeddability Result∗

Xavier Goaoc1, Isaac Mabillard2, Pavel Paták3, Zuzana Patáková4,
Martin Tancer4,2, and Uli Wagner2

1 LIGM, Université Paris-Est Marne-la-Vallée, France
2 IST Austria, Klosterneuburg, Austria
3 Department of Algebra, Charles University, Czech Republic
4 Department of Applied Mathematics, Charles University, Czech Republic

Abstract
The fact that the complete graph K5 does not embed in the plane has been generalized in two
independent directions. On the one hand, the solution of the classical Heawood problem for
graphs on surfaces established that the complete graph Kn embeds in a closed surface M if and
only if (n − 3)(n − 4) ≤ 6b1(M), where b1(M) is the first Z2-Betti number of M . On the other
hand, Van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the
higher-dimensional analogue of Kn+1) embeds in R2k if and only if n ≤ 2k + 2.

Two decades ago, Kühnel conjectured that the k-skeleton of the n-simplex embeds in a com-
pact, (k−1)-connected 2k-manifold with kth Z2-Betti number bk only if the following generalized
Heawood inequality holds:

(
n−k−1
k+1

)
≤
(2k+1
k+1
)
bk. This is a common generalization of the case of

graphs on surfaces as well as the Van Kampen–Flores theorem.
In the spirit of Kühnel’s conjecture, we prove that if the k-skeleton of the n-simplex embeds

in a 2k-manifold with kth Z2-Betti number bk, then n ≤ 2bk
(2k+2

k

)
+ 2k + 5. This bound is

weaker than the generalized Heawood inequality, but does not require the assumption that M
is (k − 1)-connected. Our proof uses a result of Volovikov about maps that satisfy a certain
homological triviality condition.

1998 ACM Subject Classification G. Mathematics of Computing, I.3.5 Computational Geo-
metry and Object Modeling

Keywords and phrases Heawood Inequality, Embeddings, Van Kampen–Flores, Manifolds

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.476

1 Introduction

Given a closed surface M , it is a natural question to determine the maximum integer n
such that the complete graph Kn can be embedded (drawn without crossings) into M (e.g.,
n = 4 if M = S2 is the 2-sphere, and n = 7 if M is a torus). This classical problem was
raised in the late 19th century by Heawood [9] and Heffter [10] and completely settled in the

∗ The work by Z.P. was partially supported by the Charles University Grant SVV-2014-260103. The
work by Z.P. and M.T. was partially supported by the project CE-ITI (GACR P202/12/G061) of
the Czech Science Foundation and by the ERC Advanced Grant No. 267165. Part of the research
work of M.T. was conducted at IST Austria, supported by an IST Fellowship. The work by U.W.
was partially supported by the Swiss National Science Foundation (grants SNSF-200020-138230 and
SNSF-PP00P2-138948).

© Xavier Goaoc, Isaac Mabillard, Pavel Paták, Zuzana Patáková, Martin Tancer, and Uli Wagner;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 476–490

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.476
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

X. Goaoc, I. Mabillard, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 477

1950–60’s through a sequence of works by Gustin, Guy, Mayer, Ringel, Terry, Welch, and
Youngs (see [22, Ch. 1] for a discussion of the history of the problem and detailed references).
Heawood already observed that if Kn embeds into M then

(n− 3)(n− 4) ≤ 6b1(M) = 12− 6χ(M), (1)

where χ(M) is the Euler characteristic of M and b1(M) = 2 − χ(M) is the first Z2-Betti
number ofM , i.e., the dimension of the first homology group H1(M ;Z2) (here and throughout
the paper, we work with homology with Z2-coefficients).1 Conversely, for surfaces M other
than the Klein bottle, the inequality is tight, i.e., Kn embeds into M if and only if (1) holds;
this is a hard result, the bulk of the monograph [22] is devoted to its proof. (The exceptional
case, the Klein bottle, has b1 = 2, but does not admit an embedding of K7, only of K6.)

The question naturally generalizes to higher dimension: Let ∆(k)
n denote the k-skeleton

of the n-simplex, the natural higher-dimensional generalization of Kn+1 = ∆(1)
n (by defini-

tion ∆(k)
n has n+ 1 vertices and every subset of at most k + 1 vertices form a face). Given

a 2k-dimensional manifold M , what is the largest n such that ∆(k)
n embeds (topologically)

into M? This line of enquiry started in the 1930’s when Van Kampen [23] and Flores [5]
showed that ∆(k)

2k+2 does not embed into R2k (the case k = 1 corresponding to the non-
planarity of K5). Somewhat surprisingly, little else seems to known, and the following
conjecture of Kühnel [12, Conjecture B] regarding a generalized Heawood inequality remains
unresolved:

I Conjecture 1 (Kühnel). Let n, k ≥ 1 be integers. If ∆(k)
n embeds in a compact, (k − 1)-

connected 2k-manifold M with kth Z2-Betti number bk(M) then(
n− k − 1
k + 1

)
≤
(

2k + 1
k + 1

)
bk(M) (2)

The classical Heawood inequality (1) and the Van Kampen–Flores Theorem correspond
the special cases k = 1 and bk = 0, respectively. Kühnel states Conjecture 1 in slightly
different form in terms of Euler characteristic of M rather than bk(M). Our formulation is
an equivalent form. The Z2-coefficients are not important in the statement of the conjecture
but they are convenient for our further progress.

New result. Here, we prove an estimate in the spirit of the generalized Heawood inequal-
ity (2), with a quantitatively weaker bound. Note that our bound holds (at no extra cost)
under weaker hypotheses.

A somewhat technical but useful relaxation is that instead of embeddings, we consider
the following slightly more general notion (which also helps with setting up our proof
method). Let K be a finite simplicial complex and let |K| be its underlying space (geometric

1 The inequality (1), which by a direct calculation is equivalent to n ≤ c(M) := b(7 +
√

1 + β1(M))/2c,
is closely related to the Map Coloring Problem for surfaces (which is the context in which Heawood
originally considered the question). Indeed, it turns out that for surfaces M other than the Klein bottle,
c(M) is the maximum chromatic number of any graph embeddable into M . For M = S2 the 2-sphere
(i.e., b1(M) = 0), this is the Four-Color Theorem [1, 2]; for other surfaces (i.e., b1(M) > 0) this was
originally stated (with an incomplete proof) by Heawood and is now known as the Map Color Theorem
or Ringel–Youngs Theorem [22]. Interestingly, for surfaces M 6= S2, there is a fairly short proof, based
on edge counting and Euler characteristic, that the chromatic number of any graph embeddable into
M is at most c(M) (see [22, Thms. 4.2 and 4.8]). The hard part of the proof of the Ringel–Youngs
Theorem is to show that for every M (except for the Klein bottle) Kc(M) embeds into M .

SoCG’15

478 On Generalized Heawood Inequalities for Manifolds

realization). We define an almost-embedding of K into a (Hausdorff) topological space X
to be a continuous map f : |K| → X such that any two disjoint simplices σ, τ ∈ K have
disjoint images, f(σ)∩ f(τ) = ∅. We stress that the condition for being an almost-embedding
depends on the actual simplicial complex (the triangulation), not just the underlying space.
That is, if K and L are two different complexes with |K| = |L| then a map f : |K| = |L| → X

may be an almost-embedding of K into X but not an almost-embedding of L into X. Note
also that every embedding is an almost-embedding as well. Our main result is as follows:

I Theorem 2. Let n, k ≥ 1 be integers. If ∆(k)
n almost-embeds into a 2k-manifold M with

kth Z2-Betti number bk(M), then

n ≤ 2
(

2k + 2
k

)
bk(M) + 2k + 5. (3)

As remarked above, this bound is weaker than the conjectured generalized Heawood
inequality (2) and is clearly not optimal (as we already see in the special cases k = 1 or
bk = 0). On the other hand, apart from applying more generally to almost-embeddings, the
hypotheses of Theorem 2 are weaker than those of Conjecture 1 in that we do not assume
the manifold M to be (k − 1)-connected. We conjecture that this connectedness assumption
is not necessary for Conjecture 1, i.e., that (2) holds whenever ∆(k)

n almost-embeds into a
2k-manifold M . The intuition is that ∆(k)

n is (k − 1)-connected and therefore the image of
an almost-embedding cannot “use” any parts of M on which nontrivial homotopy classes of
dimension less than k are supported.

Previous work. The following special case of Conjecture 1 was proved by Kühnel [12,
Thm. 2] (and served as a motivation for the general conjecture): Suppose that P is an n-
dimensional simplicial convex polytope, and that there is a subcomplex of the boundary ∂P
of P that is k-Hamiltonian (i.e., that contains the k-skeleton of P) and that is a triangulation
of M , a 2k-dimensional manifold. Then inequality (2) holds. To see that this is indeed a
special case of Conjecture 1, note that ∂P is a piecewise linear (PL) sphere of dimension
n− 1, i.e., ∂P is combinatorially isomorphic to some subdivision of ∂∆n (and, in particular,
(n− 2)-connected). Therefore, the k-skeleton of P , and hence M , contains a subdivision of
∆(k)
n and is (k − 1)-connected.
In this special case and for n ≥ 2k + 2, equality in (2) is attained if and only if P is a

simplex. More generally, equality is attained whenever M is a triangulated 2k-manifold on
n+ 1 vertices that is k+ 1-neighborly (i.e., any subset of at most k+ 1 vertices form a face, in
which case ∆(k)

n is a subcomplex of M). Some examples of (k + 1)-neighborly 2k-manifolds
are known, e.g., for k = 1 (the so-called regular cases of equality for the Heawood inequality
[22]), for k = 2 [15, 14] (e.g., a 3-neighborly triangulation of the complex projective plane)
and for k = 4 [3], but in general, a characterization of the higher-dimensional cases of equality
for (2) (or even of those values of the parameters for which equality is attained) seems rather
hard (which is maybe not surprising, given how difficult the construction of examples of
equality is already for k = 1).

Proof technique. Our proof of Theorem 2 strongly relies on a different generalization of the
Van Kampen–Flores Theorem, due to Volovikov [24], regarding maps into general manifolds
but under an additional homological triviality condition:

I Theorem 3 (Volovikov). Let M be a 2k-dimensional manifold and let f : |∆(k)
2k+2| →M be

a continuous map such that the induced homomorphism f∗ : Hk(∆(k)
2k+2;Z2)→ Hk(M ;Z2) is

trivial. Then f is not an almost-embedding, i.e., there exist two disjoint simplices σ, τ ∈ ∆(k)
2k+2

such that f(σ) ∩ f(τ) 6= ∅.

X. Goaoc, I. Mabillard, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 479

Note that the homological triviality condition is automatically satisfied if Hk(M ;Z2) = 0,
e.g., ifM = R2k orM = S2k. On the other hand, without the homological triviality condition,
the assertion is in general not true for other manifolds (e.g., K5 embeds into every closed
surface different from the sphere, or ∆(2)

8 embeds into the complex projective plane).
Theorem 3 is only a special of the main result in [24]; it is obtained by setting j = q = 2,

m = 2k, s = k + 1 and N = 2k + 2 in item 3 of Volovikov’s main result (beware that k from
Volovikov’s condition “there exists a natural number k” is different from our k).

In addition, Volovikov [24] formulates the triviality condition in terms of cohomology,
i.e., he requires that f∗ : Hk(M ;Z2) → Hk(∆(k)

2k+2;Z2) is trivial. However, since we are
working with field coefficients and the (co)homology groups in question are finitely generated,
the homological triviality condition (which is more convenient for us to work with) and the
cohomological one are equivalent.2

The key idea of our approach is to show that if n is large enough and f is a mapping from
∆(k)
n to M , then there is an almost-embedding g from ∆(k)

s to |∆(k)
n | for some prescribed

value of s such that the composed map f ◦ g : ∆s →M satisfies Volovikov’s condition. More
specifically, the following is our main technical lemma:

I Lemma 4. Let k, s ≥ 1 and b ≥ 0 be integers. There exists a value n0 := n0(k, b, s) with
the following property. Let n ≥ n0 and let f be a mapping of |∆(k)

n | into a manifold M with
kth Z2-Betti number at most b. Then there exists a subdivision D of ∆(k)

s and a simplicial
map gsimp : D → ∆(k)

n with the following properties.
1. The induced map on the geometric realizations g : |D| → |∆(k)

n | is an almost-embedding
from ∆(k)

s to |∆(k)
n | (note that |D| = |∆(k)

s |).
2. The homomorphism (f ◦ g)∗ : Hk(∆(k)

s)→ Hk(M) is trivial (see Section 2 below for the
precise interpretation of (f ◦ g)∗).

The value n0 can be taken as
(
s
k

)
b(s− 2k) + 2s− 2k + 1.

Therefore, if s ≥ 2k + 2, then f ◦ g cannot be an almost-embedding by Volovikov’s
theorem. We deduce that f is not an almost-embedding either, and Theorem 2 immediately
follows. This deduction requires the following lemma as in general, a composition of two
almost-embeddings needs not be an almost-embedding.

I Lemma 5. Let K and L be simplicial complexes and X a topological space. Suppose g is
an almost-embedding of K into |L| and f is an almost-embedding of L into X. Then f ◦ g
is an almost-embedding of K into X, provided that g is the realization of a simplicial map
gsimp from some subdivision K ′ of K to L.

We prove Lemma 4 in Section 4 thus completing the proof of Theorem 2. Before that,
in Section 3 we first present a simpler version of that proof that introduces the main ideas
in a simpler setting, and yields a weaker bound for n0 (see Equation(4)). Further related
questions and problems will be discussed in Section 5.

2 More specifically, by the Universal Coefficient Theorem [21, 53.5], Hk(· ;Z2) and Hk(· ;Z2) are dual
vector spaces, and f∗ is the adjoint of f∗, hence triviality of f∗ implies that of f∗. Moreover, if the
homology group Hk(X;Z2) of a space X is finitely generated (as is the case for both ∆(k)

n and M , by
assumption) then it is (non-canonically) isomorphic to its dual vector space Hk(X;Z2). Therefore, f∗
is trivial if and only if f∗ is.

SoCG’15

480 On Generalized Heawood Inequalities for Manifolds

2 Preliminaries

We begin by fixing some terminology and notation. We will use card(U) to denote the
cardinality of a set U .

ϑ

aϑ

aϑ ∗ ∂ϑ

We also recall that the stellar subdivision of a maximal face
ϑ in a simplicial complex K is obtained by removing ϑ from
K and adding a cone aϑ ∗ (∂ϑ), where aϑ is a newly added
vertex, the apex of the cone (see the figure on the left).

Throughout this paper we only work with homology groups and Betti numbers over Z2,
and for simplicity, we will for the most part drop the coefficient group Z2 from the notation.
Moreover, we will need to switch back and forth between singular and simplicial homology.
More precisely, if K is a simplicial complex then H∗(K) will mean the simplicial homology of
K, whereas H∗(X) will mean the singular homology of a topological space X. In particular,
H∗(|K|) denotes the singular homology of the underlying space |K| of a complex K. We use
analogous conventions for C∗(K), C∗(X) and C∗(|K|) on the level of chains, and likewise for
the subgroups of cycles and boundaries, respectively.3 Given a cycle c, we denote by [c] the
homology class it represents.

A mapping h : |K| → X induces a chain map hsing
] : C∗(|K|) → C∗(X) on the level of

singular chains; see [8, Chapter 2.1]. There is also a canonical chain map ιK : C∗(K) →
C∗(|K|) inducing the isomorphism of H∗(K) and H∗(|K|), see again [8, Chapter 2.1]. We
define h] : C∗(K)→ C∗(X) as h] := hsing

] ◦ ιK . The three chain maps mentioned above also
induce maps hsing

∗ , (ιK)∗, and h∗ on the level of homology satisfying h∗ = hsing
∗ ◦ (ιK)∗.

We also need a technical lemma saying that our maps compose, in a right way, on the
level of homology.

I Lemma 6. Let K and L be simplicial complexes and X a topological space. Let jsimp be a
simplicial map for K to L, j : |K| → |L| be the continuous map induced by jsimp and h : |L| →
X be another continuous map. Then h∗ ◦ (jsimp)∗ = (h ◦ j)∗ where (jsimp)∗ : H∗(K)→ H∗(L)
is the map induced by jsimp on the level of simplicial homology and h∗ and (h ◦ j)∗, as
explained above.

3 Proof of Lemma 4 with a weaker bound on n0

Let k, b, s be fixed integers. We consider a 2k-manifold M with kth Betti number b, a map
f : |∆(k)

n | →M . The strategy of our proof of Lemma 4 is to start by designing an auxiliary
chain map

ϕ : C∗
(

∆(k)
s

)
→ C∗

(
∆(k)
n

)
.

that behaves as an almost-embedding, in the sense that whenever σ and σ′ are disjoint
k-faces of ∆s, ϕ(σ) and ϕ(τ) have disjoint supports, and such that for every (k + 1)-face τ
of ∆s the homology class [(f] ◦ ϕ)(∂τ)] is trivial. We then use ϕ to design a subdivision D
of ∆(k)

s and a simplicial map gsimp : D → ∆(k)
n that induces a map g : |D| → |∆(k)

n | with the

3 We remark that throughout this paper, we will only work with spaces that are either (underlying
spaces of) simplicial complexes or topological manifolds. Such spaces are homotopy equivalent to CW
complexes [20, Corollary 1], and so on the matter of homology, it does not really matter which (ordinary,
i.e., satisfying the dimension axiom) homology theory we use as they are all naturally equivalent for
CW complexes [8, Thm. 4.59]. However the distinction between the simplicial and the singular setting
will be relevant on the level of chains.

X. Goaoc, I. Mabillard, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 481

desired properties: g is an almost-embedding and (f ◦ g)∗([∂τ]) is trivial for all (k + 1)-faces
τ of ∆s. Since the cycles ∂τ , for (k + 1)-faces τ of ∆s, generate all k-cycles of ∆(k)

s , this
implies that (f ◦ g)∗ is trivial.

The purpose of this section is to give a first implementation of the above strategy that
proves Lemma 4 with a bound of

n0 ≥
((

s+ 1
k + 1

)
− 1
)

2b(
s+1
k+1) + s+ 1. (4)

In Section 4 we then improve this bound to
(
s
k

)
b(s− 2k) + 2s− 2k + 1 at the cost of some

technical complications.

Throughout the rest of this paper we use the following notations. We let {v1, v2, . . . , vn+1}
denote the set of vertices of ∆n and we assume that ∆s is the induced subcomplex of ∆n

on {v1, v2, . . . , vs+1}. We let U = {vs+2, vs+3, . . . , vn+1} denote the set of vertices of ∆n

unused by ∆s. We let m =
(
s+1
k+1
)
and denote by σ1, σ2, . . . , σm the k-faces of ∆s.

3.1 Construction of ϕ

For every face ϑ of ∆s of dimension at most k− 1 we set ϕ(ϑ) = ϑ. We then “route” each σi

u ∈ U

σi

z(σi, u)

v1v2 v1v2

u

ϕ(σi)

by mapping it to its stellar subdivision with an apex
u ∈ U , i.e. by setting ϕ(σi) to σi + z(σi, u) where
z(σi, u) denotes the cycle ∂(σi ∪ {u}). The picture
on the left shows the case k = 1, the support of
z(σi, u) is dashed on the left, and the support of the
resulting ϕ(σi) is on the right.

We ensure that ϕ behave as an almost-embedding by using a different apex u ∈ U for
each σi. The difficulty is to choose these m apices in a way that [f](ϕ(∂τ))] is trivial for
every (k + 1)-face τ of ∆s. To that end we associate to each u ∈ U the sequence

v(u) := ([f](z(σ1, u))], [f](z(σ2, u))], . . . , [f](z(σm, u)]) ∈ Hk(M)m,

and we denote by vi(u) the ith element of v(u). We work with Z2-homology, so Hk(M)m is
finite; more precisely, its cardinality equals 2bm. From n ≥ n0 = (m− 1)2bm + s+ 1 we get
that card(U) ≥ (m− 1) card(Hk(M)m) + 1. The pigeonhole principle then guarantees that
there exist m distinct vertices u1, u2, . . . , um of U such that v(u1) = v(u2) = · · · = v(um).
We use ui to “route” σi and put

ϕ(σi) := σi + z(σi, ui). (5)

We finally extend ϕ linearly to C∗
(

∆(k)
s

)
.

I Lemma 7. ϕ is a chain map and
[
f]
(
ϕ(∂τ)

)]
= 0 for every (k + 1)-face τ ∈ ∆s.

Before proving the lemma, we establish a simple claim that will be also useful later on.

I Claim 8. Let τ be a (k + 1)-face of ∆s and let u ∈ U . Let σi1 , . . . , σik+2 be all the k-faces
of τ . Then

∂τ + z(σi1 , u) + z(σi2 , u) + · · ·+ z(σik+2 , u) = 0. (6)

Proof. This follows from expanding the equation 0 = ∂2(τ ∪ {u}). J

SoCG’15

482 On Generalized Heawood Inequalities for Manifolds

Proof of Lemma 7. The map ϕ is the identity on `-chains with ` ≤ k − 1 and Equation (5)
immediately implies that ∂ϕ(σ) = ∂σ for every k-simplex σ. It follows that ϕ is a chain map.

Now let τ be a (k + 1)-simplex of ∆s and let σi1 , . . . , σik+2 be its k-faces. We have

f] ◦ ϕ(∂τ) = f]

k+2∑
j=1

σij + z(σij , uij)

 = f](∂τ) +
k+2∑
j=1

f]
(
z(σij , uij)

)
.

The ui’s are chosen in such a way that the homology class
[
f]
(
z(σij , u`)

)]
= vij (u`) is

independent of the value `. When passing to the homology classes in the above identity, we
can therefore replace each uij with u1, and obtain,

[f] ◦ ϕ(∂τ)] = [f](∂τ)] +
k+2∑
j=1

[
f]
(
z(σij , u1)

)]
=
[
f]

(
∂τ +

k+2∑
j=1

z(σij , u1)
)]
.

This class is trivial by Claim 8.
Here is the idea behind the proof with k = 1 and ui1 = u1 (same colors represent same

homology classes; the class on the right is trivial, because each edge appears twice):

z(σi1 , ui1)

σi1

σi3σi2

z(σi3 , ui3)z(σi2 , ui2)
ui3

ui1

ui2

z(σi1 , u1)

z(σi3 , u1)z(σi2 , u1)

∂τ

∂τ

J

3.2 Construction of D and g

The definition of ϕ, an in particular Equation (5), suggests to construct our subdivision D
of ∆(k)

s by simply replacing every k-face of ∆(k)
s by its stellar subdivision. Let ai denote the

new vertex introduced when subdividing σi.
We define a simplicial map gsimp : D → ∆(k)

n by putting gsimp(v) = v for every original
vertex v of ∆(k)

s , and gsimp(ai) = ui for i ∈ [m]. This gsimp induces a map g : |∆(k)
s | → |∆(k)

n |
on the geometric realizations. Since the ui’s are pairwise distinct, g is an embedding4, so
Condition 1 of Lemma 4 holds.

On principle, we would like to derive Condition 2 of Lemma 4 by observing that g
‘induces’ a chain map from C∗(∆(k)

s) to C∗(∆(k)
n) that coincides with ϕ. Making this a

formal statement is thorny because g, as a continuous map, naturally induces a chain map
g] on singular rather than simplicial chains. We can’t use directly gsimp either, since we are
interested in a map from C∗(∆(k)

s) and not from C∗(D).
We handle this technicality as follows. Let ρ : C∗(∆(k)

s) → C∗(D) be the chain map
that sends each simplex ϑ of ∆(k)

s to the sum of simplices of D of the same dimension that
subdivide it. This map induces an isomorphism ρ∗ in homology, and ϕ = (gsimp)] ◦ ρ where
(gsimp)] : C∗(D)→ C∗(∆(k)

n) denotes the (simplicial) chain map induced by gsimp. We thus
have in homology

f∗ ◦ ϕ∗ = f∗ ◦ (gsimp)∗ ◦ ρ∗

4 We use the full strength of almost-embeddings when proving Lemma 4 with the better bound on n0.

X. Goaoc, I. Mabillard, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 483

and since ρ∗ is an isomorphism and f∗ ◦ϕ∗ is trivial, Lemma 7 yields that f∗ ◦ (gsimp)∗ is also
trivial. Since f∗ ◦ (gsimp)∗ = (f ◦ g)∗ by Lemma 6, (f ◦ g)∗ is trivial as well. This concludes
the proof of Lemma 4 with the weaker bound.

4 Proof of Lemma 4

We now prove Lemma 4 with the bound claimed in the statement, namely

n0 =
(
s

k

)
b(s− 2k) + 2s− 2k + 1.

Let k, b, s be fixed integers. We consider a 2k-manifold M with kth Betti number b, a map
f : |∆(k)

n | →M , and we assume that n ≥ n0.
The proof follows the same strategy as in Section 3 : we construct a chain map

ϕ : C∗(∆(k)
s)→ C∗(∆(k)

n) such that the homology class [(f] ◦ ϕ)(∂τ)] is trivial for all (k + 1)-
faces τ of ∆s, then upgrade ϕ to a continuous map g : |∆(k)

s | → |∆(k)
n | with the desired

properties.
When constructing ϕ, we refine the arguments of Section 3 to “route” each k-face using

not only one, but several vertices from U ; this makes finding “collisions” easier, as we can
use linear algebra arguments instead of the pigeonhole principle. This comes at the cost that
when upgrading g, we must content ourselves with proving that it is an almost-embedding.
This is sufficient for our purpose and has an additional benefit: the same group of vertices
from U may serve to route several k-faces provided they pairwise intersect in ∆(s)

k .

4.1 Construction of ϕ

We use the same notation regarding v1, . . . , vn+1, ∆n, ∆s, U , m =
(
s+1
k+1
)
and σ1, σ2, . . . , σm

as in Section 3.

Definition of multipoints and the map v. As we said we plan to route k-faces of ∆s

through collections of vertices from U , we will call these collections multipoints. It turns out
that this is useful for our needs only if these multipoints have an odd cardinality. In order to
easily proceed with later computations, we define multipoints as vectors rather than subsets
of U as below.

Let C0(U) denote the Z2-vector space of formal linear combinations of vertices from
U . A multipoint is an element of C0(U) with an odd number of non-zero coefficients. The
multipoints form an affine subspace of C0(U) which we denote byM. The support, sup(µ),
of a multipoint µ ∈ M is the set of vertices v ∈ U with non-zero coefficient in µ. We say
that two multipoints are disjoint if their supports are disjoint.

For any k-face σi and any multipoint µ we define:

z(σi, µ) :=
∑

u∈sup(µ)

z(σi, u) =
∑

u∈sup(µ)

∂(σi ∪ {u}).

Now, we proceed as in Section 3 but replace the unused points by the multipoints ofM and
the cycles z(σi, u) with the cycles z(σi, µ). Since Z2 is a field, Hk(M)m is a vector space and
we can replace the sequences v(u) of Section 3 by the linear map

v :
{
C0(U) → Hk(M)m

µ 7→ ([f](z(σ1, µ))], [f](z(σ2, µ))], . . . , [f](z(σm, µ))])

SoCG’15

484 On Generalized Heawood Inequalities for Manifolds

Finding collisions. The following lemma takes advantage of the vector space structure of
Hk(M)m to find disjoint multipoints µ1, µ2, . . . to route the σi’s more effectively than by
simple pigeonhole.

I Lemma 9. For any r ≥ 1, any Z2-vector space V , and any linear map ψ : C0(U)→ V , if
card(U) ≥ (dim(ψ(M)) + 1)(r− 1) + 1 thenM contains r disjoint multipoints µ1, µ2, . . . , µr
such that ψ(µ1) = ψ(µ2) = · · · = ψ(µr).

Proof. Let us write U = {vs+2, vs+3, . . . , vn+1} and d = dim(ψ(M)). We first prove by
induction on r the following statement:

If card(U) ≥ (d+ 1)(r− 1) + 1 there exist r pairwise disjoint subsets I1, I2, . . . , Ir ⊆ U
whose image under ψ have affine hulls with non-empty intersection.

(This is, in a sense, a simple affine version of Tverberg’s theorem.) The statement is obvious
for r = 1, so assume that r ≥ 2 and that the statement holds for r − 1. Let A denote the
affine hull of {ψ(vs+2), ψ(vs+3), . . . , ψ(vn+1)} and let Ir denote a minimal cardinality subset
of U such that the affine hull of {ψ(v) : v ∈ Ir} equals A. Since dimA ≤ d the set Ir has
cardinality at most d+ 1. The cardinality of U \ Ir is at least (d+ 1)(r − 2) + 1 so we can
apply the induction hypothesis for r − 1 to U \ Ir. We thus obtain r − 1 disjoint subsets
I1, I2, . . . , Ir−1 whose images under ψ have affine hulls with non-empty intersection. Since
the affine hull of ψ(U \ Ir) is contained in the affine hull of ψ(Ir), the claim follows.

Now, let a ∈ V be a point common to the affine hulls of ψ(I1), ψ(I2), . . . , ψ(Ir). Writing
a as an affine combination in each of these spaces, we get

a =
∑
u∈J1

ψ(u) =
∑
u∈J2

ψ(u) = · · · =
∑
u∈Jr

ψ(u)

where Jj ⊆ Ij and |Jj | is odd for any j ∈ [r]. Setting µj =
∑
u∈Jj

u finishes the proof. J

Computing the dimension of v(M). Having in mind to apply Lemma 9 with V = Hk(M)m
and ψ = v, we now need to bound from above the dimension of v(M). An obvious upper
bound is dimHk(M)m, which equals bm = b

(
s+1
k+1
)
. A better bound can be obtained by an

argument analogous to the proof of Lemma 7. We first extend Claim 8 to multipoints.

I Claim 10. Let τ be a (k + 1)-face of ∆s and let µ ∈ M. Let σi1 , . . . , σik+2 be all the
k-faces of τ . Then

∂τ + z(σi1 , µ) + z(σi2 , µ) + · · ·+ z(σik+2 , µ) = 0. (7)

Proof. By Claim 8 we know that (7) is true for points. For a multipoint µ, we get (7) as a
linear combination of equations for the points in sup(µ) (using that card(sup(µ)) is odd). J

I Lemma 11. dim(v(M)) ≤ b
(
s
k

)
.

Proof. Let τ be a (k + 1)-face of ∆s and let σi1 , . . . , σik+2 denote its k-faces.
For any multipoint µ, Claim 10 implies

[f](∂τ)] =
k+2∑
j=1

[f](z(σi, µ))] =
k+2∑
j=1

vij (µ) so vik+2(µ) = [f](∂τ)] +
k+1∑
j=1

vij (µ).

(Remember that homology is computed over Z2.) Each vector v(µ) is thus determined by
the values of the vj(µ)’s where σj contains the vertex v1. Indeed, the vectors [f](∂τ)] are

X. Goaoc, I. Mabillard, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 485

independent of µ, and for any σi not containing v1 we can eliminate vi(µ) by considering
τ := σi ∪ {v1} (and setting σik+2 = σi). For each of the

(
s
k

)
faces σj that contain v1,

the vector vj(µ) takes values in Hk(M) which has dimension at most b. It follows that
dim v(M) ≤ b

(
s
k

)
. J

Coloring hypergraphs to reduce the number of multipoints used. We could now apply
Lemma 9 with r = m to obtain one multipoints per k-face, all pairwise disjoint, to proceed with
our “routing”. As mentioned above, however, we only need that ϕ is an almost-embedding,
so we can use the same multipoint for several k-faces provided they pairwise intersect.
Optimizing the number of multipoints used reformulates as the following hypergraph coloring
problem:

Assign to each k-face σi of ∆s some color c(i) ∈ N such that card{c(i) : 1 ≤ i ≤ m} is
minimal and disjoint faces use distinct colors.

This question is classically known as Kneser’s hypergraph coloring problem and an optimal
solution uses s − 2k + 1 colors [17, 18]. Let us spell out one such coloring (proving its
optimality is considerably more difficult, but we do not need to know that it is optimal). For
every k-face σi we let min σi denote the smallest index of a vertex in σi. When min σi ≤ s−2k
we set c(i) = min σi, otherwise we set c(i) = s− 2k + 1. Observe that any k-face with color
c ≤ s− 2k contains vertex vc. Moreover, the k-faces with color s− 2k + 1 consist of k + 1
vertices each, all from a set of 2k + 1 vertices. It follows that any two k-faces with the same
color have some vertex in common.

Defining ϕ. We are finally ready to define the chain map ϕ : C∗(∆(k)
s)→ C∗(∆(k)

n). Recall
that we assume that n ≥ n0 = (

(
s
k

)
b+1)(r−1)+s+1. Using the bound of Lemma 11 we can

apply Lemma 9 with r = s−2k+1, obtaining s−2k+1 multipoints µ1, µ2, . . . , µs−2k+1 ∈M.
We set ϕ(ϑ) = ϑ for any face ϑ of ∆s of dimension less than k. We then “route” each k-face
σi through the multipoint µc(i) by putting

ϕ(σi) := σi + z(σi, µc(i)), (8)

where c(i) is the color of σi in the coloring of the Kneser hypergraph proposed above. We
finally extend ϕ linearly to C∗(∆s).

We need the following analogue of Lemma 7.

I Lemma 12. ϕ is a chain map and
[
f]
(
ϕ(∂τ)

)]
= 0 for every (k + 1)-face τ ∈ ∆s.

The proof of Lemma 12 is very similar to the proof of Lemma 7; it just replaces points
with multipoints and Claim 8 with Claim 10.

We next argue that ϕ behaves like an almost embedding.

I Lemma 13. For any two disjoint faces ϑ, η of ∆(k)
s , the supports of ϕ(ϑ) and ϕ(η) use

disjoint sets of vertices.

Proof. Since ϕ is the identity on chains of dimension at most (k−1), the statement follows if
neither face has dimension k. For any k-chain σi, the support of ϕ(σi) uses only vertices from
σi and from the support of µc(i). Since each µc(i) has support in U , which contains no vertex
of ∆s, the statement also holds when exactly one of ϑ or η has dimension k. When both ϑ
and η are k-faces, their disjointness implies that they use distinct µj ’s, and the statement
follows from the fact that distinct µj ’s have disjoint supports. J

SoCG’15

486 On Generalized Heawood Inequalities for Manifolds

w1 x1 w2 x2 w1 x3 w2
w1 w2

w1 w2 w1 w2

w2

w3

x1 x2 x3 x4 x5

ϑ

S′
S

S

Figure 1 Examples of subdivisions for k = 1 and ` = 3 (left) and for k = 2 and ` = 5 (right).

4.2 Construction of D and g

We define D and g similarly as in Section 3, but the switch from points to multipoints
requires to replace stellar subdivisions by a slightly more complicated decomposition.

The subdivision D. We define D so that it coincides with ∆s on the faces of dimension at
most (k−1) and decomposes each face of dimension k independently. The precise subdivision
of a k-face σi depends on the cardinality of the support of the multipoint µc(i) used to “route”
σi under ϕ, but the method is generic and spelled out in the next lemma; refer to Figure 1.

I Lemma 14. Let k ≥ 1 and σ = {w1, w2, . . . , wk+1} be a k-simplex. For any odd integer
` ≥ 1 there exists a subdivision S of σ in which no face of dimension k−1 or less is subdivided,
and a labelling of the vertices of S by {w1, w2, . . . , wk+1, x1, x2, . . . , x`} (some labels may
appear several times) such that:
1. Every vertex in S corresponding to an original vertex wi of σ is labelled by wi,
2. no k-face of S has its vertices labelled w1, w2, . . . , wk+1,
3. for every (i, j) ∈ [k + 1] × [`] there exists a unique k-face of S that is labelled by

w1, w2, . . . , wi−1, wi+1, . . . , wk+1, xj,
4. no edge of S has its two vertices labelled in {x1, x2, . . . , x`},

Proof. This proof is done in the language of geometric simplicial complexes (rather than
abstract ones).

The case ` = 1 can be done by a stellar subdivision and labelling the added apex x1. The
case k = 1 is easy, as illustrated in Figure 1 (left). We therefore assume that k ≥ 2 and build
our subdivision and labelling in four steps:

We start with the boundary of our simplex σ where each vertex wi is labelled by itself.
Let ϑ be the (k − 1)-face of ∂σ opposite vertex w2, ie labelled by w1, w3, w4, · · ·wk+1.
We create a vertex in the interior of σ, label it w2, and construct a new simplex σ′ as the
join of ϑ and this new vertex; this is the dark simplex in Figure 1 (right).
We then subdivide σ′ by considering ` − 1 distinct hyperplanes passing through the
vertices of σ′ labelled w3, w4, . . . , wk+1 and through an interior points of the edge of σ′
labelled w1, w2. These hyperplanes subdivide σ′ into ` smaller simplices. We label the
new interior vertices on the edge of σ′ labelled w1, w2 by alternatively, w1 and w2; since
` is odd we can do so in a way that every sub-edge is bounded by two vertices labelled
w1, w2.
We operate a stellar subdivision of each of the ` smaller simplices subdividing σ′, and
label the added apices x1, x2, . . . , x`. This way we obtain a subdivision S′ of σ′.

X. Goaoc, I. Mabillard, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 487

We finally consider each face η of S′ subdividing ∂σ′ and other than ϑ and add the
simplex formed by η and the (original) vertex w2 of σ. These simplices, together with S′,
form the desired subdivision S of σ.

It follows from the construction that no face of ∂σ was subdivided.
Property 1 is enforced in the first step and preserved throughout. We can ensure that

Property 2 holds in the following way. First, we have that any k-simplex of S′ contains a
vertex xj for some j ∈ [`]. Next, if we consider a k-simplex of S which is not in S′ it is a join
of a certain (k− 1)-simplex η of S′, with η ⊂ ∂σ′, and the vertex w2 of σ. However, the only
such (k − 1)-simplex labelled by w1, w3, w4, . . . , wk+1 is ϑ, but the join of ϑ and w2 does not
belong to S.

Properties 3 and 4 are enforced by the stellar subdivisions of the third step, and no other
step creates, destroys or modifies any simplex involving a vertex labelled xi. J

The subdivision D of ∆(k)
s is now defined as follows. First, we leave the (k − 1)-skeleton

untouched. Next, for each k-simplex σi we let `i denote the number of points in the support
of µc(i); since we work with Z2 coefficients, `i is odd. We then compute some subdivision
S(i) of σi using Lemma 14 with ` := `i.

We let ρ : C∗(∆(k)
s) → C∗(D) denote the map that is the identity on ∆(k−1)

s and that
maps each σi to the sum of the k-dimensional simplices of S(i). This maps induces an
isomorphism ρ∗ in homology.

The simplicial map gsimp. We now define a simplicial map gsimp : D → ∆(k)
n . We first set

gsimp(v) = v for every vertex v of ∆s. Consider next some k-face σi = {w1(i), w2(i), . . . , wk+1(i)}.
We denote by v1(i), v2(i) . . . , vk+1(i) the vertices on the boundary of S(i), being understood
that each vj(i) is labelled by wj , and let u1(i), u2(i), . . . , u`(i)(i) denote the vertices of the
support of µc(i). We map each interior vertex of S(i) to either some wj(i) if its label, as
given by Lemma 14, is wj(i), or some uj(i) if that label is xj .

I Lemma 15. (gsimp)] ◦ ρ = ϕ.

Proof. All three maps are the identity on ∆(k−1)
s so let us focus on the k-faces. Since ρmaps σi

to the formal sum of the k-faces of S(i). Each k-face of S(i) is mapped, under gsimp, to a k-face
with labels v1(i), v2(i), . . . , vj−1(i), vj+1(i), . . . , vk+1(i), uj′(i) for some (j, j′) ∈ [k+1]× [`(i)].
Although tedious, it is elementary to check that the chain (gsimp)]◦ρ(σi) has the same support
as ϕ(σi). Since we are working with Z2 coefficients, the chains are therefore equal. J

The continuous map g. Since D is a subdivision of ∆(k)
s , we have |∆(k)

s | = |D| and the
simplicial map gsimp : D → ∆(k)

n induces a continuous map g : |∆(k)
s | → |∆(k)

n |. All that
remains to do is check that g satisfies the two conditions of Lemma 4. Condition 1 follows
from a direct translation of Lemma 13. Condition 2 can be verified by a computation in the
same way as in Section 3. Specifically, in homology we have

f∗ ◦ ϕ∗ = f∗ ◦ (gsimp)∗ ◦ ρ∗

and we know that f∗ ◦ ϕ∗ is trivial on ∆(k)
s by Lemma 12. As ρ∗ is an isomorphism, this

implies that f∗ ◦ (gsimp)∗ is trivial. Lemma 6 then implies that (f ◦ g)∗ is trivial. This
concludes the proof of Lemma 4.

SoCG’15

488 On Generalized Heawood Inequalities for Manifolds

5 Related Questions and Outlook

While we consider Conjecture 1 natural and interesting in its own right, there are a number of
connections to other problems that are worth mentioning and provide additional motivation.

5.1 Topological Helly-Type Theorems for subsets of Manifolds
In [6, Thm. 1], we use the Van Kampen–Flores Theorem to prove the following topological
Helly-type theorem for finite families F of subsets of Rd, under the assumption that for every
proper subfamily G (F , the Z2-Betti numbers bi(

⋃
G), 0 ≤ i ≤ dd/2e − 1, are bounded.

More precisely, our proof heavily relies the fact that the Van Kampen–Flores Theorem
also applies to the following generalization of almost-embeddings: We define a homological
almost-embedding of a finite simplicial complex K into a topological space X as a chain map
ϕ from the simplicial chain complex C∗(K;Z2) to the singular chain complex C∗(X;Z2) with
the properties that (i) for every vertex of K, ϕ(v) consists of an odd number of points in X
and (ii) for any pair σ, τ of disjoint simplices of K, the image chains ϕ(σ) and ϕ(τ) have
disjoint underlying point sets.

One can show that Volovikov’s theorem, and consequently Theorem 2 extend to homo-
logical almost-embeddings; we plan to discuss this in more detail in the full version of the
present paper. Thus, (3) holds whenever ∆(k)

n homologically almost-embeds into M .
As a consequence, the Helly-type result in [6, Thm. 1] generalizes (with an appropriate

change in the constants) to families of subsets of an arbitrary d-dimensional manifold.

5.2 Extremal Problems for Embeddings
Closely related to the classical Heawood inequality is the well-known fact that for a (simple)
graph embedded into a surface M , the number of edges of G is at most linear in the number
of vertices of G (see, e.g., [22, Thm. 4.2]). More specifically, if G embeds into a surface M
with first Z2-Betti number b1(M), and if f1(G) and f0(G) denote the number of vertices and
of edges of G, respectively, then

f1(G) ≤ 3f0(G)− 6 + 3b1(M).

Note that this immediately implies (1) when applied to G = Kn.
This question also naturally generalizes to higher dimensions:

I Conjecture 16. Let M be a 2k-dimensional manifold with kth Z2-Betti number bk(M). If
K is a finite k-dimensional simplicial complex that embeds into M then

fk(K) ≤ C · fk−1(K),

where fi denotes the number of i-dimensional faces of K, −1 ≤ i ≤ k, and C is a constant
that depends only on k and on bk(M).5

The special case M = R2k of the problem was first raised by Grünbaum [7] more than
forty years ago, and has since then been rediscovered and posed independently by a number
of authors (see, e.g., Dey [4], where the problem is motivated by the question of counting

5 In the spirit of the bound for graphs on surfaces, it is also natural to wonder if there might be a bound
of the form fk(K) ≤ C · fk−1(K) + B, with C depending only on the dimension k and the additive
term B depending on k and bk(M).

X. Goaoc, I. Mabillard, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 489

triangulations of higher-dimensional point sets), and the problem remains wide open even
in that case. Moreover, there is a beautiful conjecture, due to Kalai and Sarkaria [11,
Conjecture 27] that gives a necessary condition for embeddability into R2k in terms of
algebraic shifting and would, in particular, imply that the constant C in Conjecture 16 can
be taken to be k + 2 if M = R2k.

The aforementioned extension of Theorem 2 to homological almost-embeddings together
with [25, Thm. 7] imply the following result for random complexes:

I Corollary 17. Let Xk(n, p) denote the Linial–Meshulam model [16, 19] of k-dimensional
random complexes on n vertices.6 Given integers k ≥ 1 and b ≥ 0, there exists a constant
C = C(k, b) with the following property: If M is a 2k-dimensional manifold with Z2-Betti
number bk(M) ≤ b and if p ≥ C/n then asymptotically almost surely, Xk(n, p) does not
embed into M .

This generalizes [25, Thm. 2] and can be viewed as evidence for Conjecture 16 (in a sense, it
shows that the conjecture holds for “almost all complexes”).

The arguments in [25, Thm. 7] are based on the following notion closely related to
homological almost-embeddings: If K and L are simplicial complexes, we say that K is
a homological minor of K if there is a chain map ϕ from the simplicial chain complex
C∗(K;Z2) into the simplicial chain complex of C∗(K;Z2) that satisfies conditions (i) and
(ii) in the definition of a homological almost-embedding (one might call ϕ a simplicial
homological almost-embedding). In [25, Conj. 6], we propose a conjectural generalization
of Mader’s theorem to the extent that a finite k-dimensional simplicial complex K contains
∆(k)
t as a homological minor provided that fk(K) ≥ C · fk−1(K) for some suitable constant

C = C(k, t). If true, this conjecture, together with the extension of Theorem 2 to homological
almost-embeddings, would imply Conjecture 16.

We remark that Conjecture 1 is also closely related to the combinatorial theory of face
numbers of triangulated spheres and manifolds, in particular the Generalized Lower Bound
Theorem for polytopes (which is the main ingredient in Kühnel’s proof of his special case)
and conjectured generalizations thereof to triangulated spheres and manifolds. A detailed
discussion of these questions goes beyond the scope of this extended abstract, and we refer
the reader to [12] and [13, Ch. 4].

Acknowledgement. U.W. learned about Conjecture 1 from Wolfgang Kühnel when attend-
ing the Mini Symposia on Discrete Geometry and Discrete Topology at the Jahrestagung
der Deutschen Mathematiker-Vereinigung in München in 2010. He would like to thank
the organizers Frank Lutz and Achill Schürmann for the invitation, and Prof. Kühnel for
stimulating discussions.

References
1 K. Appel and W. Haken. Every planar map is four colorable. I. Discharging. Illinois J.

Math., 21(3):429–490, 1977.
2 K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. II. Reducibility.

Illinois J. Math., 21(3):491–567, 1977.

6 By definition, Xk(n, p) has n vertices, a complete (k − 1)-skeleton, and every subset of k + 1 vertices is
chosen independently with probability p as a k-simplex.

SoCG’15

490 On Generalized Heawood Inequalities for Manifolds

3 U. Brehm and W. Kühnel. 15-vertex triangulations of an 8-manifold. Math. Ann.,
294(1):167–193, 1992.

4 T. K. Dey. On counting triangulations in d dimensions. Comput. Geom., 3(6):315–325,
1993.

5 A. I. Flores. Über die Existenz n-dimensionaler Komplexe, die nicht in den R2n topologisch
einbettbar sind. Ergeb. Math. Kolloqu., 5:17–24, 1933.

6 X. Goaoc, P. Paták, Z. Patáková, M. Tancer, and U. Wagner. Bounding Helly numbers via
Betti numbers. Preprint, arXiv:1310.4613, 2013.

7 B. Grünbaum. Imbeddings of simplicial complexes. Comment. Math. Helv., 44:502–513,
1969.

8 A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, UK, 2002.
9 P. J. Heawood. Map-colour theorem. Quart. J., 24:332–338, 1890.
10 L. Heffter. Ueber das Problem der Nachbargebiete. Math. Ann., 38:477–508, 1891.
11 G. Kalai. Algebraic shifting. In Computational commutative algebra and combinatorics

(Osaka, 1999), volume 33 of Adv. Stud. Pure Math., pages 121–163. Math. Soc. Japan,
Tokyo, 2002.

12 W. Kühnel. Manifolds in the skeletons of convex polytopes, tightness, and generalized
Heawood inequalities. In Polytopes: abstract, convex and computational (Scarborough, ON,
1993), volume 440 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 241–247. Kluwer
Acad. Publ., Dordrecht, 1994.

13 W. Kühnel. Tight polyhedral submanifolds and tight triangulations, volume 1612 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1995.

14 W. Kühnel and T. F. Banchoff. The 9-vertex complex projective plane. Math. Intelligencer,
5(3):11–22, 1983.

15 W. Kühnel and G. Lassmann. The unique 3-neighborly 4-manifold with few vertices.
J. Combin. Theory Ser. A, 35(2):173–184, 1983.

16 N. Linial and R. Meshulam. Homological connectivity of random 2-complexes. Combinat-
orica, 26(4):475–487, 2006.

17 L. Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser.
A, 25(3):319–324, 1978.

18 J. Matoušek. Using the Borsuk-Ulam Theorem. Springer-Verlag, Berlin, 2003.
19 R. Meshulam and N. Wallach. Homological connectivity of random k-dimensional com-

plexes. Random Structures Algorithms, 34(3):408–417, 2009.
20 J. Milnor. On spaces having the homotopy type of a CW-complex. Trans. Amer. Math.

Soc., 90:272–280, 1959.
21 J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Menlo Park, CA, 1984.
22 G. Ringel. Map Color Theorem. Springer-Verlag, New York-Heidelberg, 1974. Die

Grundlehren der mathematischen Wissenschaften, Band 209.
23 E. R. van Kampen. Komplexe in euklidischen Räumen. Abh. Math. Sem. Univ. Hamburg,

9:72–78, 1932.
24 A. Yu. Volovikov. On the van Kampen-Flores theorem. Mat. Zametki, 59(5):663–670, 797,

1996.
25 U. Wagner. Minors in random and expanding hypergraphs. In Proceedings of the 27th

Annual Symposium on Computational Geometry (SoCG), pages 351—360, 2011.

Comparing Graphs via Persistence Distortion∗

Tamal K. Dey, Dayu Shi, and Yusu Wang

Computer Science and Engineering Department, The Ohio State University, USA
tamaldey,shiday,yusu@cse.ohio-state.edu

Abstract
Metric graphs are ubiquitous in science and engineering. For example, many data are drawn
from hidden spaces that are graph-like, such as the cosmic web. A metric graph offers one of the
simplest yet still meaningful ways to represent the non-linear structure hidden behind the data.
In this paper, we propose a new distance between two finite metric graphs, called the persistence-
distortion distance, which draws upon a topological idea. This topological perspective along with
the metric space viewpoint provide a new angle to the graph matching problem. Our persistence-
distortion distance has two properties not shared by previous methods: First, it is stable against
the perturbations of the input graph metrics. Second, it is a continuous distance measure, in
the sense that it is defined on an alignment of the underlying spaces of input graphs, instead of
merely their nodes. This makes our persistence-distortion distance robust against, for example,
different discretizations of the same underlying graph.

Despite considering the input graphs as continuous spaces, that is, taking all points into
account, we show that we can compute the persistence-distortion distance in polynomial time.
The time complexity for the discrete case where only graph nodes are considered is much faster.

1998 ACM Subject Classification F.2.2 Geometric problems and computations, G.2.2 Graph
algorithms

Keywords and phrases Graph matching, metric graphs, persistence distortion, topological method

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.491

1 Introduction

Many data in science and engineering are drawn from a hidden space which are graph-like,
such as the cosmic web [28] and road networks [1, 5]. Furthermore, as modern data becomes
increasingly complex, understanding them with a simple yet still meaningful structure
becomes important. Metric graphs equipped with a metric derived from the data can provide
such a simple structure [18, 27]. They are graphs where each edge is associated with a
length inducing the metric of shortest path distance. The comparison of the representative
metric graphs can benefit classification of data, a fundamental task in processing them. This
motivates the study of metric graphs in the context of matching or comparison.

To compare two objects, one needs a notion of distance in the space where the objects
are coming from. Various distance measures for graphs and their metric versions have
been proposed in the literature with associated matching algorithms. We approach this
problem with two new perspectives: (i) We aim to develop a distance measure which is
both meaningful and stable against metric perturbations, and at the same time amenable
to polynomial time computations. (ii) Unlike most previous distance measures which are
discrete in the sense that only graph nodes alignments are considered, we aim for a distance

∗ This work is partially supported by NSF under grants CCF-0747082, CCF-1064416, CCF-1319406,
CCF1318595. See [11] for the full version of this paper.

© Tamal K. Dey, Dayu Shi, and Yusu Wang;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 491–506

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.491
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

492 Comparing Graphs via Persistence Distortion

measure that is continuous, that is, alignment for all points in the underlying space of the
metric graphs are considered.

Related work. To date, the large number of proposed graph matching algorithms fall into
two broad categories: exact graph matching methods and inexact graph matching (distances
between graphs) methods.

The exact graph matching, also called the graph isomorphism problem, checks whether
there is a bijection between the node sets of two input graphs that also induces a bijection
in their edge sets. While polynomial time algorithms exist for many special cases, e.g.,
[2, 21, 25], for general graphs, it is not known whether the graph isomorphism problem is NP
complete or not [17]. Nevertheless, given the importance of this problem, there are various
exact graph matching algorithms developed in practice. Usually, these methods employ some
pruning techniques aiming to reduce the search space for identifying graph isomorphisms.
See [15] for comparisons of various graph isomorphism testing methods.

In real world applications, input graphs often suffer from noise and deformation, and
it is highly desirable to obtain a distance between two input graphs beyond the binary
decision of whether they are the same (isomorphic) or not. This is referred to as inexact
graph matching in the field of pattern recognition, and various distance measures have been
proposed. One line of work is based on graph edit distance which is NP-hard to compute [32].
Many heuristic methods, using for example A∗ algorithms, have been proposed to address
the issue of high computational complexity, see the survey [16] and references within. One of
the main challenges in comparing two graphs is to determine how “good” a given alignment
of graph nodes is in terms of the quality of the pairwise relations between those nodes. Hence
matching two graphs naturally leads to an integer quadratic programming problem (IQP),
which is a NP-hard problem. Several heuristic methods have been proposed to approach this
optimization problem, such as the annealing approach of [19], iterative methods of [24, 30]
and probabilistic approach in [31]. Finally, there have been several methods that formulate
the optimization problem based on spectral properties of graphs. For example, in [29], the
author uses the eigendecomposition of adjacency matrices of the input graphs to derive
an expression of an orthogonal matrix which optimizes the objective function. In [9, 23],
the principal eigenvector of a “compatibility” matrix of the input graphs is used to obtain
correspondences between input graph nodes. Recently in [22], Hu et. al proposed the general
and descriptive Laplacian family signatures to build the compatibility matrix and model the
graph matching problem as an integer quadratic program.

New work. Different from previous approaches, we view input graphs as continuous metric
spaces. Intuitively, we assume that our input is a finite graph G = (V,E) where each edge
is assigned a positive length value. We now consider G as a metric space (|G|, dG) on the
underlying space |G| of G, with metric dG being the shortest path metric in |G|. Given two
metric graphs G1 and G2, a natural way to measure their distance is to use the so-called
Gromov-Hausdorff distance [20, 26] to measure the metric distortion between these two
metric spaces. Unfortunately, it is NP-hard to even approximate the Gromov-Hausdorff
distance for graphs within a constant factor1. Instead, we propose a new metric, called
the persistence-distortion distance dPD(G1, G2), which draws upon a topological idea and is

1 This result is very recently obtained by two groups of researchers independently: Agarwal, Fox and
Nath from Duke U., and Sidiropoulos and Wang from Ohio State U.

T.K. Dey, D. Shi, and Y. Wang 493

computable in polynomial time with techniques from computational geometry. This provides
a new angle to the graph comparison problem, and our distance has several nice properties:

1. The persistence-distortion distance takes all points in the input graphs
into account, while previous graph matching algorithms align only graph
nodes. Thus our persistence-distortion distance is insensitive to different
discretization of the same graph: For example, the two geometric graphs on
the right are equivalent as metric graphs, and thus the persistence-distortion
between them is zero.

2.

G1 G2

In Section 3, we show that our persistence-distortion
distance dPD(G1, G2) is stable w.r.t. changes to
input metric graphs as measured by the Gromov-
Hausdorff distance. For example, the two geometric
graphs on the right have small persistence-distortion
distance. (Imagine that they are the reconstructed
road networks from noisy data sampled from the same road systems.)

3. Despite that our persistence-distortion distance is a continuous measure which considers
all points in the input graphs, we show in Section 5 that it can be computed in polynomial
time (O(m12 logm) where m is the total complexity of input graphs). We note that
the discrete version of our persistence-distortion distance, where only graph nodes are
considered (much like in previous graph matching algorithms), can be computed much
more efficiently in O(n2m1.5 logm) time, where n is the number of graph nodes in input
graphs.

All technical details omitted from this extended abstract due to lack of space can be found
in the full version of the paper at [11]. Some preliminary experimental results to demonstrate
the use of the persistence-distortion distance are also included in the full version.

2 Notations and Proposed Distance Measure for Graphs

Metric graphs. A metric graph is a metric space (M,d) where M is the underlying space
of a finite 1-dimensional simplicial complex. Given a graph G = (V,E) and a weight function
Len : E → R+ on its edge set E (assigning length to edges in E), we can associate a metric
graph (|G|, dG) to it as follows. The space |G| is a geometric realization of G. Let |e| denote
the image of an edge e ∈ E in |G|. To define the metric dG, we consider the arclength
parameterization e : [0,Len(e)]→ |e| for every edge e ∈ E and define the distance between
any two points x, y ∈ |e| as dG(x, y) = |e−1(y)− e−1(x)|. This in turn provides the length of
a path π(z, w) between two points z, w ∈ |G| that are not necessarily on the same edge in
|G|, by simply summing up the lengths of the restrictions of this path to edges in G. Finally,
given any two points z, w ∈ |G|, the distance dG(z, w) is given by the minimum length of
any path connecting z to w in |G|.

In what follows, we do not distinguish between | · | and its argument and write (G, dG) to
denote the metric graph (|G|, dG) for simplicity. Furthermore, for simplicity in presentation,
we abuse the notations slightly and refer to the metric graph as G = (V,E), with the
understanding that (V,E) refers to the topological graph behind the metric space (G, dG).
Finally, we refer to any point x ∈ G as a point, while a point x ∈ V as a graph node.

Background on persistent homology. The definition of our proposed distance measure for
two metric graphs relies on the so-called persistence diagram induced by a scalar function. We

SoCG’15

494 Comparing Graphs via Persistence Distortion

6 3

2

2

2
4

3

v0 S

v6

v1

v2

v4v3

v5

0

1

2

3

5

6

8

9

S

v0

v1

v2

v3
v4

v5

v6

u

f

L

Birth time

Death time

0

0
(2,0)

(6,5)

(8,3)

10

L

Birth time

Death time

(a) (b) (c) (d)

Figure 1 (a) A graph with basepoint s: edge length is marked for each edge. (b) The function
f = dG(s, ·). We also indicate critical-pairs. (c) Persistence diagram Dg0f : E.g, the persistence-point
(6, 5) is generated by critical-pair (u, v3). (d) shows a partial matching between the red points and
blue points (representing two persistence diagrams). Some points are matched to the diagonal L.

refer the readers to resources such as [12, 13] for formal discussions on persistent homology
and related developments. Below we only provide an intuitive and informal description of
the persistent homology induced by a function under our simple setting.

Let f : X → R be a continuous real-valued function defined on a topological space X.
We want to understand the structure of X from the perspective of the scalar function f :
Specifically, let Xα := {x ∈ X | f(x) ≥ α} denote the super-level set2 of X w.r.t. α ∈ R.
Now as we sweep X top-down by decreasing the α value, the sequence of super-level sets
connected by natural inclusion maps gives rise to a filtration of X induced by f :

Xα1 ⊆ Xα2 ⊆ · · · ⊆ Xαm = X, for α1 > α2 > · · · > αm. (1)

We track how the topological features captured by the so-called homology classes of the
super-level sets change. In particular, as α decreases, sometimes new topological features
are “born” at time α, that is, new families of homology classes are created in Hk(Xα),
the k-th homology group of Xα. Sometimes, existing topological features disappear, i.e,
some homology classes become trivial in Hk(Xβ) for some β < α. The persistent homology
captures such birth and death events, and summarizes them in the so-called persistence
diagram Dgk(f). Specifically, Dgk(f) consists of a set of points {(α, β) ∈ R2} in the plane,
where each (α, β) indicates a homological feature created at time α and killed at time β.

In our setting, the domain X will be the underlying space of a metric graph G. The
specific function that we use later is the geodesic distance to a fixed basepoint s ∈ G, that is,
we consider f : G→ R where f(x) = dG(s, x) for any x ∈ G. We are only interested in the
0th-dimensional persistent homology (k = 0 in the above description), which simply tracks
the connected components in the super-level set as we vary α.

Figure 1 gives an example of the 0-th persistence diagram Dg0(f) with the basepoint
s in edge (v0, v1). As we sweep the graph top-down in terms of the geodesic function f , a
new connected component is created as we pass through a local maximum ub of the function
f = dG(s, ·). A local maximum of f , such as u in Figure 1 (b), is not necessarily a graph
node from V . Two connected components in the super-level set can only merge at an up-fork
saddle ud of the function f : The up-fork saddle ud is a point such that within a sufficiently
small neighborhood of ud, there are at least two branches incident on ud with function values
larger than ud. Each point (b, d) in the persistence diagram is called a persistence point,
corresponding to the creation and death of some connected component: At time b, a new

2 In the standard formulation of persistent homology of a scalar field, the sub-level set Xα = {x ∈ X |
f(x) ≤ α} is often used. We use super-level sets which suit the specific functions that we use.

T.K. Dey, D. Shi, and Y. Wang 495

component is created in Xb at a local maximum ub ∈ G with f(ub) = b. At time d and at
an up-fork saddle ud ∈ G with f(ud) = d, this component merges with another component
created earlier. We refer to the pair of points (ub, ud) from the graph G as the critical-pair
corresponding to persistent point (b, d). We call b and d the birth-time and death-time,
respectively. The plane containing the persistence diagram is called the birth-death plane.

Finally, given two finite persistence diagrams Dg = {p1, . . . , p` ∈ R2} and Dg′ =
{q1, . . . , qk ∈ R2}, a common distance measure for them, the bottleneck distance dB(Dg,Dg′)
[6], is defined as follows: Consider Dg and Dg′ as two finite sets of points in the plane (where
points may overlap). Call L = {(x, x) ∈ R2} the diagonal of the birth-death plane.

I Definition 1. A partial matching C of Dg and Dg′ is a relation C : (Dg ∪ L)× (Dg′ ∪ L)
such that each point in Dg is either matched to a unique point in Dg′, or mapped to its closest
point (under L∞-norm) in the diagonal L; and the same holds for points in Dg′. See Figure
1 (d). The bottleneck distance is defined as dB(Dg,Dg′) = minC max(p,q)∈C ‖p− q‖∞, where
C ranges over all possible partial matchings of Dg and Dg′. We call the partial matching
that achieves the bottleneck distance dB(Dg,Dg′) as the bottleneck matching.

Proposed persistence-distortion distance for metric graphs. Suppose we are given two
metric graphs (G1, dG1) and (G2, dG2).

Choose any point s ∈ G1 as the base point, and consider the shortest path distance
function dG1,s : G1 → R defined as dG1,s(x) = dG1(s, x) for any point x ∈ G1. Let Ps denote
the 0-th dimensional persistence diagram Dg0(dG1,s) induced by the function dG1,s. Define
dG2,t and Qt similarly for any base point t ∈ G2 for the graph G2. We map the graph G1
to the set of (infinite number of) points in the space of persistence diagrams D, denoted by
C := {Ps | s ∈ G1}. Similarly, map the graph G2 to F := {Qt | t ∈ G2}.

IDefinition 2. The persistence-distortion distance between G1 and G2, denoted by dPD(G1,G2),
is the Hausdorff distance dH(C,F) between the two sets C and F where the distance between
two persistence diagrams is measured by the bottleneck distance. In other words,

dPD(G1,G2) = dH(C,F) = max{ max
P∈C

min
Q∈F

dB(P,Q), max
Q∈F

min
P∈C

dB(P,Q) }.

I Remark. (1) We note that if two graphs are isomorphic, then dPD(G1,G2) = 0. The
inverse unfortunately is not true (an example is shown in the full version [11]). Hence dPD is
a pseudo-metric (it inherits the triangle-inequality property from the Hausdorff distance).
(2) While the above definition uses only the 0-th persistence diagram for the geodesic distance
functions, all our results hold with the same time complexity when we also include the
1st-extended persistence diagram [7] or equivalently 1st-interval persistence diagram [10] for
each geodesic distance function dG1,s (resp. dG2,t).

3 Stability of persistence-distortion distance

Gromov-Hausdorff distance. There is a natural way to measure metric distortion between
metric spaces (thus for metric graphs), called the Gromov-Hausdorff distance [20, 4]. Given
two metric spaces X = (X, dX) and Y = (Y, dY), a correspondence between X and Y is a
relation M : X × Y such that (i) for any x ∈ X, there exists (x, y) ∈ M and (ii) for any
y′ ∈ Y , there exists (x′, y′) ∈M. The Gromov-Hausdorff distance between X and Y is

dGH(X ,Y) = 1
2 inf
M

max
(x1,y1),(x2,y2)∈M

|dX(x1, x2)− dY (y1, y2)|, (2)

SoCG’15

496 Comparing Graphs via Persistence Distortion

whereM ranges over all correspondences of X × Y . The Gromov-Hausdorff distance is a
natural measurement for distance between two metric spaces; see [26] for more discussions.
Unfortunately, so far, there is no efficient (polynomial-time) algorithm to compute nor
approximate this distance, even for special metric spaces – In fact, it has been recently shown
that even the discrete Gromov-Hausdorff distance for metric trees (where only tree nodes are
considered) is NP-hard to compute, as well as to approximate within a constant factor (see
footnote 1). In contrast, as we show in Section 4 and 5, the persistence-distortion distance
can be computed in polynomial time.

On the other hand, we have the following stability result, which intuitively suggests that
the persistence-distortion distance is a weaker relaxation of the Gromov-Hausdorff distance.
The proof of this theorem leverages a recent result on measuring distances between the Reeb
graphs [3] and can be found in the full version.

I Theorem 3 (Stability). dPD(G1,G2) ≤ 6dGH(G1,G2).
By triangle inequality, this also implies that given two metric graphs G1 and G2 and their

perturbations G′1 and G′2, respectively, we have that:

dPD(G′1,G′2) ≤ dPD(G1,G2) + 6dGH(G1,G′1) + 6dGH(G2,G′2).

4 Discrete PD-Distance

Suppose we are given two metric graphs (G1 = (V1, E1), dG1) and (G2 = (V2, E2), dG2),
where the shortest distance metrics dG1 and dG2 are induced by lengths associated with the
edges in E1 ∪ E2. As a simple warm-up, we first compute the following discrete version of
persistence-distortion distance where only graph nodes in V1 and V2 are considered:

I Definition 4. Let Ĉ := {Pv | v ∈ V (G1)} and F̂ := {Qu | u ∈ V (G2)} be two discrete sets
of persistence diagrams. The discrete persistence-distortion distance between G1 and G2,
denoted by d̂PD(G1,G2), is given by the Hausdorff distance dH(Ĉ, F̂).

We note that while we only consider graph nodes as base points, the local maxima of the
resulting geodesic function may still occur in the middle of an edge. Nevertheless, for a
fixed base point, each edge could have at most one local maximum, and its location can be
decided in O(1) time once the shortest-path distance from the base point to the endpoints of
this edge are known. The observation below follows from the fact that geodesic distance is
1-Lipschitz (as the basepoint moves) and the stability of persistence diagrams.

I Observation 5. dPD(G1,G2) ≤ d̂PD(G1,G2) ≤ dPD(G1,G2) + `
2 , where ` is the largest

length of any edge in E1 ∪ E2.

I Lemma 6. Given metric graphs G1 = (V1, E1) and G2 = (V2, E2), d̂PD(G1,G2) can be
computed in O(n2m1.5 logm) time, where n = max{|V1|, |V2|} and m = max{|E1|, |E2|}.

Proof. For a given base point s ∈ V1 (or t ∈ V2), computing the shortest path distance from
s to all other graph nodes, as well as the persistence diagram Ps (or Qt) takes O(m logn)
time. Hence it takes O(mn logn) total time to compute the two collections of persistence
diagrams Ĉ = {Ps | s ∈ V (G1)} and F̂ = {Qt | t ∈ V (G2)}.

Each persistence diagram Ps has O(m) number of points in the plane – it is easy to show
that there are O(m) number of local maxima of the geodesic function dG1,s (some of which
may occur in the interior of graph edges). Since the birth time b of every persistence point

T.K. Dey, D. Shi, and Y. Wang 497

(b, d) corresponds to a unique local maximum ub with f(ub) = b, there can be only O(m)
points (some of which may overlap each other) in the persistence diagram Ps.

Next, given two persistence diagrams Ps and Qt, we need to compute the bottleneck
distance between them. In [14], Efrat et al. gives an O(k1.5 log k) time algorithm to compute
the optimal bijection between two input sets of k points P and Q in R2 such that the
maximum distance between any mapped pair of points (p, q) ∈ P ×Q is minimized. This
distance is also called the bottleneck distance, and let us denote it by d̂B. The bottleneck
distance between two persistence diagrams Ps and Qt is similar to the bottleneck distance
d̂B, with the extra addition of diagonals. However, let P ′ and Q′ denote the vertical
projection of points in Ps and Qt, respectively, onto the diagonal L. It is easy to show that
dB(P,Q) = d̂B(Ps ∪Q′,Qt ∪ P ′). Hence dB(Ps,Qt) can be computed by the algorithm of
[14] in O(m1.5 logm) time. Finally, to compute the Hausdorff distance between the two sets
of persistence diagrams Ĉ and F̂ , one can check for all pairs of persistence diagrams from
these two sets, which takes O(n2m1.5 logm) time since the |Ĉ| ≤ n and |F̂ | ≤ n. The lemma
then follows. J

By Observation 5, d̂PD(G1,G2) only provides an approximation of dPD(G1,G2) with an
additive error as decided by the longest edge in the input graphs. For unweighted graphs
(where all edges have length 1), this gives an additive error of 1. This in turns provides a
factor-2 approximation of the continuous persistence-distortion distance, since dPD(G1,G2)
is necessarily an integer in this setting.

I Corollary 7. The discrete persistence-distortion distance provides a factor-2 approximation
of the continuous persistence-distortion distance for two graphs G1 and G2 with unit edge
length; that is, dPD(G1,G2) ≤ d̂PD(G1,G2) ≤ 2dPD(G1,G2).

One may add additional (steiner) nodes to edges of input graphs to reduce the longest
edge length, so that the discrete persistence-distortion distance approximates the continuous
one within a smaller additive error. But it is not clear how to bound the number of steiner
nodes necessary for approximating the continuous distance within a multiplicative error, even
for the case when all edges weights are approximately 1. Below we show how to directly
compute the continuous persistence-distortion distance exactly in polynomial time.

5 Computation of Continuous Persistence-distortion Distance

We now present a polynomial-time algorithm to compute the (continuous) persistence-
distortion distance between two metric graphs (G1 = (V1, E1), dG1) and (G2 = (V2, E2), dG2).
As before, set n = max{|V1|, |V2|} and m = max{|E1|, |E2|}. Below we first analyze how
points in the persistence diagram change as we move the basepoint in G1 and G2 continuously.

5.1 Changes of persistence diagrams
We first consider the scenario where the basepoint s moves within a fixed edge σ ∈ E1 of
G1, and analyze how the corresponding persistence diagram Ps changes. Using notations
from Section 2, let (ub, ud) be the critical-pair in G1 that gives rise to the persistence point
(b, d) ∈ Ps. Then ub is a maximum for the distance function dG1,s, while ud is an up-fork
saddle for dG1,s. We call ub and ud from G1 the birth point and death point w.r.t. the
persistence-point (b, d) in the persistence diagram.

As the basepoint s moves to s′ ∈ σ within ε distance along the edge σ for any ε ≥ 0,
the distance function is perturbed by at most ε; that is, ‖dG1,s − dG1,s′‖∞ ≤ ε. By the

SoCG’15

498 Comparing Graphs via Persistence Distortion

u′b(s
−)

ub(s
−)

ud(s
−)

u′b(s0) ub(s0)

ud(s0)

u′b(s
+) ub(s

+)

ud(s
+)

ub(s
−)

ud(s
−) u′d(s

−)

ub(s0)
ub(s

+)

ud(s0) ud(s
+)u′d(s0) u′d(s

+)

(a) (b)

Figure 2 For better illustration of ideas, we use height function defined on a line to show: (a) a
max-max critical event at s0; and (b) a saddle-saddle critical event at s0.

Stability Theorem of the persistence diagrams [6], we have that dB(Ps,Ps′) ≤ ε. Hence
as the basepoint s moves continuously along σ, points in the persistence diagram Ps move
continuously3. We now analyze how a specific point (b, d) may change its trajectory as s
moves from one endpoint v1 of σ = (v1, v2) ∈ E1 to the other endpoint v2.

Specifically, we use the arc-length parameterization of σ for s, that is, s : [0,Len(σ)]→ σ.
For any object X ∈ {b, d, ub, ud}, we use X(s) to denote the object X w.r.t. basepoint s(s).
For example, (b(s), d(s)) is the persistence-point w.r.t. basepoint s(s), while ub(s) and ud(s)
are the corresponding pair of local maximum and up-fork saddle that give rise to (b(s), d(s)).
We specifically refer to b : [0,Len(σ)]→ R and d : [0,Len(σ)]→ R as the birth-time function
and the death-time function, respectively. By the discussion from the previous paragraph,
these two functions are continuous.

Critical events. To describe the birth-time and death-time functions, we need to understand
how the corresponding birth-point and death-point ub(s) and ud(s) in G1 change as the
basepoint s varies. Recall that as s moves, the birth-time and death-time change continuously.
However, the critical points ub(s) and ud(s) in G1 may (i) stay the same or move continuously,
or (ii) have discontinuous jumps. Informally, if it is case (i), then we show below that we
can describe b(s) and d(s) using a piecewise linear function with O(1) complexity. Case (ii)
happens when there is a critical event where two critical-pairs (ub, ud) and (u′b, u′d) swap their
pairing partners to (ub, u′d) and (u′b, ud). Specifically, at a critical event, since the birth-time
and death-time functions are still continuous, it is necessary that either dG1,s(ub) = dG1,s(u′b)
or dG1,s(ud) = dG1,s(u′d); we call the former a max-max critical event and the latter a
saddle-saddle critical event. See Figure 2 for an illustration. It turns out that the birth-time
function b : [0,Len(σ)] → R (resp. death-time function d) is a piecewise linear function
whose complexity depends on the number of critical events, which we analyze below.

5.1.1 The death-time function d : [0,Len(σ)]→ R
The analysis of death-time function is simpler than that of the birth-time function; so we
describe it first. Given that dG1,s is the geodesic distance to the base point s, a merging of
two components at an up-fork saddle cannot happen in the interior of an edge, unless at the
basepoint s itself.

I Observation 8. An up-fork saddle u ∈ G1 is necessarily a graph node from V1 with degree
at least 3 unless u = s.

3 There could be new persistence points appearing or current points disappearing in the persistence
diagram as s moves. Both creation and deletion necessarily happen on the diagonal of the diagram as
dB(Ps,Ps′) necessarily tends to 0 as s′ approaches s. Nevertheless, for simplicity of presentation, below
we track the movement of persistence points ignoring their creation and deletion for the time being.

T.K. Dey, D. Shi, and Y. Wang 499

ud(s)

σs

ub(s)

ud(s)

σs0

ub(s)

s

u′d(s)

o

gx

Len(σ)

(case-1) (case-2) (c)

Figure 3 (c) Graph of function gx : [0,Len(σ)]→ R.

To simplify the exposition, we omit the case of u = s (which is an easier case) in our
discussions below. Since the up-fork saddles now can only be graph nodes, as the basepoint
s(s) moves, the death-point ud(s) either (case-1) stays at the same graph node, or (case-2)
switches to a different up-fork saddle u′d (i.e, a saddle-saddle critical event); see Figure 3.

Now for any point x ∈ G1, we introduce the function gx : [0,Len(σ)] → R which
is the distance function from x to the moving basepoint s(s) for s ∈ [0, Lσ]; that is,
gx(s) := dG1,s(s)(x). Intuitively, as the basepoint s(s) moves along σ, the distance from s(s)
to a fixed point x either increases or decreases at unit speed, until it reaches a point where
the shortest path from s(s) to x changes discontinuously. We have the following observation.

I Claim 9. For any point x ∈ G1, as the basepoint s moves in an edge σ ∈ E, the distance
function gx : [0,Len(σ)] → R defined as gx(s) := dG1,s(s)(x) is a piecewise linear function
with at most 2 pieces, where each piece has slope either ‘1’ or ‘-1’. See Figure 3 (c).

As s(s) moves, if the death-point ud(s) stays at the same up-fork saddle u, then by the
above claim, the death-time function d (which locally equals gu) is a piecewise linear function
with at most 2 pieces.

Now we consider (case-2) when a saddle-saddle critical event happens: Assume that as s
passes value s0, ud(s) switches from a graph node u to another one u′. At the time s0 when
this swapping happens, we have that dG1,s(s0)(u) = dG1,s(s0)(u′). In other words, the graph
for function gu and the graph for function gu′ intersect at s0. Before s0, d follows the graph
for the distance function gu, while after time s0, ud changes its identity to u′ and thus the
movement of d will then follow the distance function gu′ for s > s0. Since the function gx is
PL with at most 2 pieces as shown in Figure 3 (c) for any point x ∈ G1, the switching for a
fixed pair of nodes u and u′ can happen at most once (as the graph of gu and that of gu′

intersect at most once). Overall, since there are |V1| ≤ n graph nodes, we conclude that:

I Lemma 10. As s moves along σ, there are O(n2) number of saddle-saddle critical events
in the persistence diagram Ps.

For our later arguments, we need a stronger version of the above result. Specifically,
imagine that we track the trajectory of the death-time d for a persistence pair (b, d).

I Proposition 11. For a fixed persistent point (b(0), d(0)) ∈ Ps(0), the corresponding death-
time function d : [0,Len(σ)] → R is piecewise linear with at most O(n) pieces, and each
linear piece has slope either ‘1’ or ‘-1’. This also implies that the function d is 1-Lipschitz.

Proof. By Observation 8, ud(s) is always a graph node from V1. For any node u, recall
gu(s) = dG1,s(s)(u). As described above, d(s) will follow certain gu with u = ud(s) till the
identify of ud(s) changes at a saddle-saddle critical event between u with another up-fork

SoCG’15

500 Comparing Graphs via Persistence Distortion

saddle u′. Afterwards, d(s) will follow gu′ till the next critical event. Since each piece of gv
has slope either ‘1’ or ‘-1’, the graph of d consists of linear pieces of slope ‘1’ or ‘-1’. Note
that this implies that the function d is a 1-Lipschitz function.

On the other hand, for a specific graph node u ∈ V , each linear piece in gu has slope ‘1’
or ‘-1’. This means that one linear piece in gu can intersect the graph of d at most once for
s ∈ [0,Len(σ)] as d is 1-Lipschitz. Hence the graph of gu can intersect the graph of d at most
twice; implying that the node u can appear as ud(s) for at most two intervals of s values.
Thus the total descriptive complexity of d is O(|V1|) = O(n), which completes the proof. J

5.1.2 The birth-time function b : [0,Len(σ)]→ R.
To track the trajectory of the birth-time b of a persistence pair (b(0), d(0)) ∈ Ps(0), we
need to study the movements of its corresponding birth-point (which is a maximum) ub :
[0,Len(σ)] → G1 in the graph. However, unlike up-fork saddles (which must be graph
nodes), maxima of the distance function dG1,s can also appear in the interior of a graph edge.
Roughly speaking, in addition to degree-1 graph nodes, which must be local maxima of the
distance function dG1,s, imagine the shortest path tree with s being the root (source), then
any non-tree edge will generate a local maximum of the distance function dG1,s. (Recall the
maximum u in Figure 1 (b), which lies in the interior of edge (v3, v4).) Nevertheless, the
following result states there can be at most one local maximum associated with each edge.

I Lemma 12. Given an arbitrary basepoint s, a maximum for the distance function dG1,s :
G1 → R is either a degree-1 graph node, or a point v with at least two shortest paths to the
basepoint s which are disjoint in a small neighborhood around v.

Furthermore, there can be at most one maximum of dG1,s in each edge in E1.

This lemma suggests that we can now associate each local maximum with an edge in E1,
and analyze the changes of such an edge eb containing the birth-point ub (instead of the
birth-point itself). Specifically, using approaches similar to the tracking of death-point as in
Section 5.1.1, we study, for a fixed edge e ∈ E1 the function ge : [0,Len(σ)]→ R where, for
any s ∈ [0,Len(σ)], ge(s) is the distance from the basepoint s(s) to the unique maximum (if
it exists) in e; ge(s) = +∞ if the distance function dG1,s(s) does not have a local maximum
in e. We refer to the portion of ge with finite value as well-defined. Intuitively, the function
ge serves as the same role as the distance function gx in Section 5.1.1, and similar to Claim
9, we have the following characterization for this distance function.

I Proposition 13. For any edge e ∈ E1, the well-defined portion of the function ge is a
piecewise-linear function with O(1) pieces, where each piece is of slope ‘1’, ‘-1’ or ‘0’.

Using argument similar to, but more involved than that of Section 5.1.1, we obtain the
following result about the birth-time function, analogous to Proposition 11.

I Proposition 14. For a fixed (b(0), d(0)) ∈ Ps(0), the birth-time function b : [0,Len(σ)]→ R
is piecewise linear with at most O(m) pieces, and each linear piece has slope either ‘1’, ‘-1’,
or ‘0’. Note that this also implies that the function b is 1-Lipschitz.

5.1.3 Tracking the persistence pair (b, d) : [0,Len(σ)]→ R2.
Now consider the space Πσ := [0,Len(σ)] × R2, where R2 denotes the birth-death plane:
We can think of Πσ as the stacking of all the planes containing persistence diagrams Ps(s)
for all s ∈ [0,Len(σ)]. Hence we refer to Πσ as the stacked persistence-space. For a fixed

T.K. Dey, D. Shi, and Y. Wang 501

o

s

Len(σ)

L
R2

persistence pair (b, d) ∈ Ps(s), as we vary s ∈ [0,Len(σ)], it traces
out a trajectory π = {(s, b(s), d(s)) | s ∈ [0, [Len(σ)]} ∈ Πσ, which is
the same as the “vines” introduced by Cohen-Steiner et al. [8]. By
Propositions 11 and 14, the trajectory π is a polygonal curve with
O(n+m) = O(m) linear pieces. See the right figure for an illustration,
where there are three trajectories in the stacked persistence diagrams.

In general, a trajectory (a vine) could appear or terminate within
the range (0,Len(σ)). Specifically, as we track a specific point in
the persistence diagram, it is possible that the pair of critical points giving rise to this
persistent-point may coincide and cease to exist afterwards. In this case, the corresponding
trajectory (vine) hits the diagonal of the persistence diagram (since as the two critical points
coincide with ub = ud, we have that b = d) and terminates. The inverse of this procedure
indicates the creation of a new trajectory. Nevertheless, we can show that there can be
O(n+m) = O(m) total number of trajectories in the stacked persistence diagrams (whether
they span the entire range of s ∈ [0,Len(σ)] or not). We conclude with the following result.

I Theorem 15. Let σ ∈ E1 be an arbitrary edge from the metric graph (G1, dG1). As the
basepoint s moves from one endpoint to another endpoint of σ by s : [0,Len(σ)] → σ, the
persistence-points in the persistence diagram Ps(s) of the distance function dG1,s(s) form O(m)
number of trajectories in the stacked persistence-space Πσ. Each trajectory is a polygonal
curve of O(m) number of linear segments.

A symmetric statement holds for metric graph (G2, dG2).

5.2 Computing dPD(G1,G2)
Given a pair of edges σs ∈ G1 and σt ∈ G2, as before, we parameterize the basepoints s and t
by the arc-length parameterization of σs and σt; that is: s : [0, Ls]→ σs and t : [0, Lt]→ σt
where Ls = Len(σs) and Lt = Len(σt). We now introduce the following function to help
compute dPD(G1,G2):

I Definition 16. The bottleneck distance function Fσs,σt : Ω→ R is defined as Fσs,σt(s, t) 7→
dB(Ps(s),Qs(t)). For simplicity, we sometimes omit σs, σt from the subscript when their
choices are clear from the context.

Recall that C = {Ps | s ∈ G1}, F = {Qt | t ∈ G2}, and by Definition 2:

dPD(G1,G2) = max{max
P∈C

min
Q∈F

dB(P,Q), max
P∈F

min
P∈C

dB(P,Q) }.

Below we focus on computing ~dH(C,F) := maxP∈C minQ∈F dB(P,Q), and the treatment of
~dH(F , C) := maxP∈F minP∈C dB(P,Q) is symmetric. It is easy to see:

~dH(C,F) = max
P∈C

min
Q∈F

dB(P,Q) = max
σs∈G1

max
s∈[1,Ls]

min
σt∈G2

min
t∈[1,Lt]

Fσs,σt(s, t). (3)

In what follows, we present the descriptive complexity of Fσs,σt for a fixed pair of edges
σs ∈ G1 and σt ∈ G2 in Section 5.2.1, and show how to use it to compute the persistence-
distortion distance between G1 and G2 in Section 5.2.2.

5.2.1 One pair of edges σs ∈ G1 and σt ∈ G2.
Recall that we call the plane containing the persistence diagrams as the birth-death plane,
and for persistence-points in this plane, we follow the literature and measure their distance

SoCG’15

502 Comparing Graphs via Persistence Distortion

under the L∞-norm (recall Definition 1). From now on, we refer to persistence-points in
Ps(s) as red points, while persistence-points in Qt(t) as blue points. As s and t vary, the red
and blue points move in the birth-death plane. By Theorem 15, the movement of each red
(or blue) point traces out a polygonal curve with O(m) segments (which are the projections
of the trajectories from the stacked persistence diagrams onto the birth-death plane).

Set Ω := [0, Ls]× [0, Lt] and we refer to it as the s-t domain. For a point (s, t) ∈ Ω, the
function value F (s, t)(= Fσs,σt(s, t)) = dB(Ps(s),Qt(t)) is the bottleneck distance between
the set of red and the set of blue points (with the addition of diagonals) in the birth-death
plane. To simplify the exposition, in what follows we ignore the diagonals from the two
persistence diagrams and only consider the bottleneck matching between red and blue points.

Let r∗(s) ∈ Ps(s) and b∗(t) ∈ Qt(t) be the pair of red-blue points from the bottleneck
matching between Ps(s) and Qt(t) such that d∞(r∗(s), b∗(t)) = dB(Ps(s),Qt(t)). We call
(r∗(s), b∗(t)) the bottleneck pair (of red-blue points) w.r.t. (s, t). As s and t vary continuously,
red and blue points move continuously in the birth-death plane. The distance between any
pair of red-blue points change continuously. The bottleneck pair between Ps(s) and Qt(t)
typically remains the same till certain critical values of the parameters (s, t).

Characterizing critical (s, t) values. Given (s, t), consider the optimal bottleneck matching
C∗(s, t) : Ps × Qt. For any corresponding pair (r(s), b(t)) ∈ C∗(s, t), d∞(r(s), b(t)) ≤
d∞(r∗(s), b∗(t)). Suppose r∗(s) = r1(s) and b∗(t) = b1(t). As (s, t) varies in Ω, the
bottleneck pair (r∗(s), b∗(t)) may change only when:

(case-1): (r1(s), b1(t)) ceases to be a matched pair in the optimal matching C∗(s, t); or
(case-2): (r1(s), b1(t)) is still in C∗, but another matched pair (r2(s), b2(t)) becomes the
bottleneck pair.

b1(s0)

b1(s)

r1(s0)

r1(s) b2(s)

b2(s0)

b1(s)

b1(s0)

b2(s)

b2(s0)

r1(s)

r1(s0)

r2(s0)

r2(s)

(case-1) (case-2)

At the time (s0, t0) that either cases above
happens, it is necessary that there are two red-
blue pairs, one of which being (r1, b1), and
denoting the other one by (r2, b2), such that
d∞(r1(s0), b1(t0)) = d∞(r2(s0), b2(t0)). (For
case-1, we have that either r2 = r1 or b2 = b1.)
Hence all critical (s, t) values are included in
those (s, t) values for which two red-blue pairs of
persistence-points acquire equal distance in the
birth-death plane. Let

X(r1,b1),(r2,b2) := {(s, t) | d∞(r1(s), b1(t)) = d∞(r2(s), b2(t))}

denote the set of potential critical (s,t)-values generated by (r1, b1) and (r2, b2). To describe
X(r1,b1),(r2,b2), we first consider, for a fixed pair of red-blue points (r, b), the distance function
Dr,b : [0, Ls]× [0, Lt]→ R defined as the distance between this pair of red and blue points in
the birth-death plane, that is, Dr,b(s, t) := d∞(r(s), b(t)) for any (s, t) ∈ Ω.

In particular, recall that by Theorem 15, r : [0, Ls] → R2 (resp. b : [0, Lt] → R2) is
continuous and piecewise-linear with O(m) segments. In other words, the range [0, Ls] (resp.
[0, Lt]) can be decomposed to O(m) intervals such that within each interval, r moves (resp. b
moves) along a line in the birth-death plane with fixed speed. Hence combining Propositions
11 and 14, we have the following:

I Proposition 17. The s-t domain Ω can be decomposed into an O(m) × O(m) grid such
that, within each of the O(m2) grid cell, Dr,b is piecewise-linear with O(1) linear pieces, and
the partial derivative of each piece w.r.t. s or w.r.t. t is either ‘1’, ‘-1’, or ‘0’.

T.K. Dey, D. Shi, and Y. Wang 503

Given two pairs of red-blue pairs (r1, b1) and (r2, b2), the set X(r1,b1),(r2,b2) of potential
critical (s,t) values generated by them corresponds to the intersection of the graph of Dr1,b1

and that of Dr2,b2 . By overlaying the two O(m)×O(m) grids corresponding to Dr1,b1 and
Dr2,b2 as specified by Proposition 17, we obtain another grid of size O(m)×O(m) and within
each cell, the intersection of the graphs of Dr1,b1 and Dr2,b2 has O(1) complexity. Hence,

I Corollary 18. The set X(r1,b1),(r2,b2) ⊆ Ω consists of a set of polygonal curves in the s-t
domain Ω with O(m2) total complexity.

Consider the arrangement Arr(Ω) of the set of curves in X = {X(r1,b1),(r2,b2) | r1, r2 ∈
Ps, b1, b2 ∈ Qt}. Since there are altogether O(m4) × O(m2) = O(m6) segments in X , we
have that the arrangement Arr(Ω) has O(m12) complexity; that is, there are O(m12) number
of vertices, edges and polygonal cells. However, this arrangement Arr(Ω) is more refined
than necessary. Specifically, within a single cell c ∈ Arr(Ω), the entire bottleneck matching
C∗ does not change. By a much more sophisticated argument, we can prove the following
(see the full version [11] for details):

I Proposition 19. There is a planar decomposition Λ(Ω) of the s-t domain Ω with O(m8)
number of vertices, edges and polygonal cells such that as (s,t) varies within in each cell
c ∈ Λ(Ω), the pair of red-blue persistence points that generates the bottleneck pair (r∗, b∗)
remains the same.

Furthermore, the decomposition Λ(Ω), as well as the bottleneck pair (r∗, b∗) associated to
each cell, can be computed in O(m9.5 logm) time.

Our goal is to compute the bottleneck distance function F : Ω → R introduced at
the beginning of this subsection where F (s, t) 7→ dB(Ps(s),Qt(t)) = d∞(r∗(s), b∗(t)), so as
to further compute persistence-distortion distance using Eqn (3). To do this, we need to
further refine the decomposition Λ(Ω) from Proposition 19 to another decomposition Λ̂(Ω)
as described below so that within each cell, the bottleneck distance function Fσs,σt can be
described by a single linear function. The proof can be found in the full version [11].

I Theorem 20. For a fixed pair of edges σs ∈ G1 and σt ∈ G2, there is a planar polygonal
decomposition Λ̂(Ω) of the s-t domain Ω of O(m10) complexity such that within each cell, the
bottleneck distance function Fσs,σt is linear. Furthermore, one can compute this decomposition
Λ̂(Ω) as well as the function Fσs,σt in O(m10 logm) time.

5.2.2 Final algorithm and analysis.
We now aim to compute ~dH(C,F) using Eqn (3). First, for a fixed edge σs ∈ G1, consider
the following lower-envelop function

L : [0, Ls]→ R where L(s) 7→ min
σt∈G2

min
t∈[1,Lt]

F (s, t), (4)

where recall Ls and Lt denote the length of edge σs and σt respectively. The reason behind
the name “lower-envelop function" will become clear shortly.

Now for each σt ∈ G2, consider the polygonal decomposition Λ̂(Ω) as described in
Theorem 20. Since within each cell the bottleneck distance function F is a linear piece, we
know that for any s, the extreme of F (s, t) for all possible t ∈ [0, Lt] must come from some
edge in Λ̂(Ω). In other words, to compute the function mint∈[0,Lt] F (s, t) at any s ∈ [1, Ls],
we only need to inspect the function F restricted to edges in the refined decomposition
Λ̂(Ωσs,σt) for the s-t domain Ωσs,σt = [0, Ls]× [0, Lt]. Take any edge e of Λ̂(Ωσs,σt), define

SoCG’15

504 Comparing Graphs via Persistence Distortion

σ
(2)
t

σ
(1)
t

0 s Ls

e5
e4

e3
e2

e1

s0 s1 o s LLs

F

s0 s1

Fe1
Fe5
Fe2Fe4

Fe3

(a) (b)

Figure 4 (a) s-t domains for σs ∈ E1 and edges σ(j)
t ∈ E2. (b) L(s) is the lowest value along

any Fe` .

πe : [0, Ls] → [0, Lt] such that (s, πe(s)) ∈ e. Now denote by the function Fe : [0, Ls] → R
as the projection of F onto the first parameter [0, Ls]; that is, Fe(s) := F (s, πe(s)). Let
Eσs := {e ∈ Λ̂(Ωσs,σt) | σt ∈ G2} be the union of edges from the refined decompositions of
the s-t domain formed by σs and any edge σt from G2. It is easy to see that (see Figure 4):

L(s) = min
e∈Eσs

Fe(s); that is, L is the lower-envelop of linear functions Fe for all e ∈ Eσs .

There are O(m) edges in G2, thus by Theorem 20 we have |Eσs | = O(m11). The lower envelop
L of |Eσe | number of linear functions (linear segments), is a piecewise-linear function with
O(|Eσs | = O(m11) complexity and can be computed in O(|Eσs | log |Eσs |) = O(m11 logm)
time. Finally, from Eqn (3), ~dH(C,F) = maxσs∈G1 maxs∈[1,Ls] L(s). Since there are O(m)
choices for σs, we conclude with the following main result.

I Theorem 21. Given two metric graphs (G1, dG1) and (G2, dG2) with n total vertices and
m total edges, we can compute the persistence-distortion distance dPD(G1,G2) between them
in O(m12 logn) time.

We remark that if both input graphs are metric trees, then we can compute their
persistence-distortion distance more efficiently in O(n8 logn) time.

6 Future directions

The time complexity for computing the (continuous) persistence-distortion distance is high.
A worthwhile endeavor will be to bring it down with more accurate analysis. In particular,
the geodesic distance function (to a basepoint) in the graph has many special properties,
some of which we already leverage. It will be interesting to see whether we can further
leverage these properties to reduce the bound on the decomposition Λ̂(Ω) as used in Theorem
20. Developing efficient approximation algorithms for computing the persistence-distortion
distance is also an interesting question. Also, the special case of metric trees is worthwhile
to investigate. Notice that even discrete tree matching is still a hard problem for unlabeled
trees, i.e, when no correspondences between tree nodes are given.

Acknowledgment. We thank anonymous reviewers for very helpful comments, including
the suggestion that dB(Ps,Qt) can be computed directly using the algorithm of [14], which
simplifies our original approach based on modifying the algorithm of [14].

T.K. Dey, D. Shi, and Y. Wang 505

References
1 M. Aanjaneya, F. Chazal, D. Chen, M. Glisse, L. Guibas, and D. Morozov. Metric graph

reconstruction from noisy data. Int. J. Comput. Geom. Appl., pages 305–325, 2012.
2 A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison Wesley, 1974.
3 Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. Measuring distance bewteen Reeb graphs. In

Proc. 30th SoCG, pages 464–473, 2014.
4 D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry. volume 33 of AMS

Graduate Studies in Math. American Mathematics Society, 2001.
5 Frédéric Chazal and Jian Sun. Gromov-Hausdorff Approximation of Filament Structure

Using Reeb-type Graph. In Proc. 30th SoCG, pages 491–500, 2014.
6 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence dia-

grams. Discrete & Computational Geometry, 37(1):103–120, 2007.
7 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using

Poincaré and Lefschetz duality. Foundations of Computational Mathematics, 9(1):79–103,
2009.

8 David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and vineyards
by updating persistence in linear time. In Proc. 22nd SoCG, pages 119–126, 2006.

9 T. Cour, P. Srinivasan, and J. Shi. Balanced Graph Matching. In Advances in Neural
Information Processing Systems 19, pages 313–320. MIT Press, 2007.

10 T. K. Dey and R. Wenger. Stability of critical points with interval persistence. Discrete
Comput. Geom., 38:479–512, 2007.

11 Tamal K. Dey, Dayu Shi, and Yusu Wang. Comparing graphs via persistence distortion,
2015. arXiv:1503.07414.

12 H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. Amer. Math.
Soc., Providence, Rhode Island, 2009.

13 H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplifica-
tion. Discrete Comput. Geom., 28:511–533, 2002.

14 A. Efrat, M. Katz, and A. Itai. Geometry helps in bottleneck matching and related problems.
Algorithmica, 1:1–28, 2001.

15 P. Foggia, C. Sansone, and M. Vento. A Performance Comparison of Five Algorithms for
Graph Isomorphism. In Proc. of the 10th ICIAP, Italy, 2001.

16 Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit distance.
Pattern Anal. Appl., 13(1):113–129, January 2010.

17 M. R. Garey and D. S. Johnson. Computers and Intractability: a guide to the theory of
NP-completeness. W. H. Freeman & Co, New York, NY, USA, 1990.

18 X. Ge, I. Safa, M. Belkin, and Y. Wang. Data skeletonization via Reeb graphs. In Proc.
25th NIPS, pages 837–845, 2011.

19 S. Gold and A. Rangarajan. A Graduated Assignment Algorithm for Graph Matching. In
IEEE Trans. on PAMI, volume 18, pages 377–388, 1996.

20 M. Gromov. Metric structures for Riemannian and non-Riemannian spaces. volume 152
of Progress in Mathematics. Birkhäuser Boston Inc., 1999.

21 J. E. Hopcroft and J. K. Wong. Linear Time Algorithm for Isomorphism of Planar Graphs
(Preliminary Report). In Proc. of the ACM STOC, STOC’74, pages 172–184, New York,
NY, USA, 1974. ACM.

22 N. Hu, R.M. Rustamov, and L. Guibas. Graph Matching with Anchor Nodes: A Learning
Approach. In IEEE Conference on CVPR, pages 2906–2913, 2013.

23 M. Leordeanu and M. Hebert. A spectral technique for correspondence problems using
pairwise constraints. In IEEE International Conference on ICCV, pages 1482–1489, 2005.

SoCG’15

506 Comparing Graphs via Persistence Distortion

24 M. Leordeanu, M. Hebert, and R. Sukthankar. An Integer Projected Fixed Point Method
for Graph Matching and MAP Inference. In Proc. NIPS. Springer, December 2009.

25 E. M. Luks. Isomorphism of Graphs of Bounded Valence Can be Tested in Polynomial
Time. Journal of Computer and System Sciences, 25(1):42–65, 1982.

26 Facundo Mémoli. On the use of Gromov-Hausdorff Distances for Shape Comparison. In
Symposium on Point Based Graphics, pages 81–90, 2007.

27 U. Ozertem and D. Erdogmus. Locally defined principal curves and surfaces. Journal of
Machine Learning Research, 12:1249–1286, 2011.

28 T. Sousbie, C. Pichon, and H. Kawahara. The persistent cosmic web and its filamentary
structure – II. Illustrations. Mon. Not. R. Astron. Soc., 414:384–403, 2011.

29 S. Umeyama. An eigendecomposition approach to weighted graph matching problems. In
IEEE Trans. on PAMI, volume 10, pages 695–703, 1998.

30 B. J. van Wyk and M. A. van Wyk. A pocs-based graph matching algorithm. In IEEE
Trans. on PAMI, volume 26, pages 1526–1530, 2004.

31 R. Zass and A. Shashua. Probabilistic graph and hypergraph matching. In IEEE Conference
on CVPR, pages 1–8, June 2008.

32 Zhiping Zeng, Anthony K. H. Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou. Com-
paring stars: On approximating graph edit distance. Proc. VLDB Endow., 2(1):25–36,
August 2009.

Bounding Helly Numbers via Betti Numbers∗

Xavier Goaoc1, Pavel Paták2, Zuzana Patáková3, Martin Tancer3,
and Uli Wagner4

1 UPEM, Université Paris-Est Marne-la-Vallée, France
2 Department of Algebra, Charles University in Prague, Czech Republic
3 Department of Applied Mathematics, Charles University in Prague, Czech

Republic
4 IST Austria, Klosterneuburg, Austria

Abstract
We show that very weak topological assumptions are enough to ensure the existence of a Helly-
type theorem. More precisely, we show that for any non-negative integers b and d there exists
an integer h(b, d) such that the following holds. If F is a finite family of subsets of Rd such
that β̃i (

⋂
G) ≤ b for any G (F and every 0 ≤ i ≤ dd/2e − 1 then F has Helly number at

most h(b, d). Here β̃i denotes the reduced Z2-Betti numbers (with singular homology). These
topological conditions are sharp: not controlling any of these dd/2e first Betti numbers allow for
families with unbounded Helly number.

Our proofs combine homological non-embeddability results with a Ramsey-based approach to
build, given an arbitrary simplicial complex K, some well-behaved chain map C∗(K)→ C∗(Rd).
Both techniques are of independent interest.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, G.2 Dis-
crete Mathematics

Keywords and phrases Helly-type theorem, Ramsey’s theorem, Embedding of simplicial com-
plexes, Homological almost-embedding, Betti numbers

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.507

Dedicated to the memory of Jiří Matoušek,
wonderful teacher, mentor, collaborator, and friend.

1 Introduction

Helly’s classical theorem [13], a cornerstone of convex geometry, asserts that if a finite family
of convex subsets of Rd has the property that any d+ 1 of the sets have a point in common
then the whole family must have a point in common. Stated in the contrapositive, if F is a
finite family of convex subsets of Rd with empty intersection then F contains a sub-family
G of size at most d+ 1 that already has empty intersection. This inspired the definition of
the Helly number of a family F of arbitrary sets. If F has empty intersection then its Helly

∗ PP, ZP and MT were partially supported by the Charles University Grant GAUK 421511. ZP was
partially supported by the Charles University Grant SVV-2014-260103. ZP and MT were partially
supported by the ERC Advanced Grant No. 267165 and by the project CE-ITI (GACR P202/12/G061)
of the Czech Science Foundation. UW was partially supported by the Swiss National Science Foundation
(grants SNSF-200020-138230 and SNSF-PP00P2-138948). Part of this work was done when XG was
affiliated with INRIA Nancy Grand-Est and when MT was affiliated with Institutionen för matematik,
Kungliga Tekniska Högskolan, then IST Austria.

© Xavier Goaoc, Pavel Paták, Zuzana Patáková, Martin Tancer, and Uli Wagner;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 507–521

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.507
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

508 Bounding Helly Numbers via Betti Numbers

number is defined as the size of the largest sub-family G ⊆ F with the following properties:
G has empty intersection and any proper sub-family of G has nonempty intersection; if F
has nonempty intersection then its Helly number is, by convention, 1. With this terminology,
Helly’s theorem simply states that any finite family of convex sets in Rd has Helly number
at most d+ 1.

In the spirit of Helly’s theorem, bounds on Helly numbers, typically independent of the
cardinality of the family, were given for a variety of situations in discrete geometry (such
bounds are often referred to as Helly-type theorems); we refer to the surveys [9, 30, 27]
for an overview of the abundant literature on this topic. Part of the interest for Helly
numbers in discrete and computational geometry also stems from their interpretation in
optimization problems. In short, a crucial step in applying the framework of generalized
linear programming [1] to a geometric problem is to bound the size of so-called feasible basis;
such bounds are Helly numbers in disguise. We come back to this question when we discuss
some consequences of our main result.

Problem statement and results. The classical questions on Helly numbers are of two types,
existential and quantitative: identify conditions under which Helly numbers can be bounded
uniformly, and obtain sharp bounds. In this paper, we focus on the existential question and
give the following new homological sufficient condition for bounding Helly numbers. Note
that we consider homology with coefficients over Z2, denote by β̃i(X) the ith reduced Betti
number (over Z2) of a space X, and use the notation

⋂
F :=

⋂
U∈F U as a shorthand for

the intersection of a family of sets.

I Theorem 1. For any non-negative integers b and d there exists an integer h(b, d) such
that the following holds. If F is a finite family of subsets of Rd such that β̃i (

⋂
G) ≤ b for

any G (F and every 0 ≤ i ≤ dd/2e − 1 then F has Helly number at most h(b, d).

Our proof hinges on a general principle, which we learned from Matoušek [19] but already
underlies the classical proof of Helly’s theorem from Radon’s lemma, to derive Helly-type
theorems from results of non-embeddability of certain simplicial complexes. The novelty of
our approach is to examine these non-embeddability arguments from a homological point
of view. This turns out to be a surprisingly effective idea, as homological analogues of
embeddings appear to be much richer and easier to build than their homotopic counterparts.
More precisely, our proof of Theorem 1 builds on two contributions of independent interest:

We reformulate some non-embeddability results in homological terms. We obtain a
homological analogue of the Van Kampen-Flores Theorem (Corollary 7) and, as a side-
product, a homological version of Radon’s lemma (Lemma 8). This is part of a systematic
effort to translate various homotopy technique to a more tractable homology setting. It
builds on, and extends, previous work on homological minors [29].
By working with homology rather than homotopy, we can generalize a technique of
Matoušek [19] that uses Ramsey’s theorem to find embedded structures.

Theorem 1 is “qualitatively sharp”, in the sense that all (reduced) Betti numbers β̃i with
0 ≤ i ≤ dd/2e − 1 need to be bounded to obtain a bounded Helly number. To see this, fix
some k with 0 ≤ k ≤ dd/2e−1. For n arbitrarily large, consider a geometric realization in Rd
of the k-skeleton of the (n− 1)-dimensional simplex (see [18, Section 1.6]); more specifically,
let V = {v1, . . . , vn} be a set of points in general position in Rd (for instance, n points on
the moment curve) and consider all geometric simplices σA := conv(A) spanned by subsets
A ⊆ V of cardinality |A| ≤ k+ 1. By general position, σA ∩σB = σA∩B , so this yields indeed
a geometric realization.

X. Goaoc, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 509

For 1 ≤ j ≤ n, let Uj be the union of all the simplices not containing the vertex vj .
We set F = {U1, . . . , Un}. Then,

⋂
F = ∅, and for any proper sub-family G (F , the

intersection
⋂
G is either Rd (if G = ∅) or (homeomorphic to) the k-dimensional skeleton

of a (n− 1− |G|)-dimensional simplex. Thus, the Helly number of F equals n. Moreover,
the k-skeleton ∆(k)

m−1 of an (m− 1)-dimensional simplex has reduced Betti numbers β̃i = 0
for i 6= k and β̃k =

(
m−1
k+1

)
. Thus, we can indeed obtain arbitrarily large Helly number as

soon as at least one β̃k is unbounded. In particular, setting k = 0 yields the lower bound
h(b, d) ≥ b+ 1.

Relation to previous work. The study of topological conditions (as opposed to more geo-
metric ones like convexity) ensuring bounded Helly numbers started with Helly’s topological
theorem [14] (see also [8] for a modern version of the proof), which states that a finite family
of open subsets of Rd has Helly number at most d+ 1 if the intersection of any sub-family
of at most d members of the family is either empty or a homology cell.1 This includes the
case of finite open good cover2 in Rd, where the same bound follows easily from the classical
Nerve theorem [6, 5].

The “good cover” condition was subsequently relaxed by Matoušek [19] who showed that
it is sufficient to control the low-dimensional homotopy of intersections: for any non-negative
integers b and d there exists a constant c(b, d) such that any finite family of subsets of Rd
in which every sub-family intersects in at most b connected components, each (dd/2e − 1)-
connected,3 has Helly number at most c(b, d).

By Hurewicz’ Theorem and the Universal Coefficient Theorem [12, Theorem 4.37 and
Corollary 3A.6], a k-connected space X satisfies β̃i(X) = 0 for all i ≤ k. Thus, our condition
indeed relaxes Matoušek’s, in two ways: by using Z2-homology instead of the homotopy-
theoretic assumptions of k-connectedness4, and by allowing an arbitrary fixed bound b instead
of b = 0.

Quantitatively, the bound on h(b, d) that we obtain is very large as it follows from
successive applications of Ramsey’s theorems. However, as far as only the existence of
uniform bounds is concerned, Theorem 1 not only generalizes Matoušek’s result (which also
uses Ramsey’s theorem), but also subsumes a series of Helly-type theorems due to Amenta [2],
Kalai and Meshulam [16], Colin de Verdière et al. [7], and Montejano [21]. Note that for
results that hold in rather general ambient spaces, e.g. [16, 7, 21], Theorem 1 only subsumes
the case of Rd.

Our method also proves a bound of d + 1 on the Helly number of any family F such
that β̃i (

⋂
G) = 0 for all i ≤ d and all G (F (see Corollary 10), which generalizes Helly’s

1 By definition, a homology cell is a topological space X all of whose (reduced, singular, integer coefficient)
homology groups are trivial, as is the case if X = Rd or X is a single point. Here and in what follows,
we refer the reader to standard textbooks like [12, 22] for further topological background and various
topological notions that we leave undefined.

2 An open good cover is a finite family of open subsets of Rd such that the intersection of any sub-family
of at most d members is either empty or is contractible (and hence, in particular, a homology cell).

3 We recall that a topological space X is k-connected, for some integer k ≥ 0, if every continuous map
Si → X from the i-dimensional sphere to X, 0 ≤ i ≤ k, can be extended to a map Di+1 → X from the
(i+ 1)-dimensional disk to X.

4 We also remark that our condition can be verified algorithmically since Betti numbers are easily
computable, at least for sufficiently nice spaces that can be represented by finite simplicial complexes,
say. By contrast, it is algorithmically undecidable whether a given 2-dimensional simplicial complex is
1-connected, see, e.g., the survey [26].

SoCG’15

510 Bounding Helly Numbers via Betti Numbers

topological theorem as the sets of F are, for instance, not assumed to be open.5 Under the
weaker assumption that β̃i (

⋂
G) = 0 for all subfamilies G (F but only for i ≤ dd/2e − 1,

our method still yields a bound of d+ 2 on the Helly number (see Corollary 9). In both cases
the bounds are tight.

Note that Theorem 1 is similar, in spirit, to some of the general relations between
the growth of Betti numbers and fractional Helly theorems conjectured by Kalai and
Meshulam [15, Conjectures 6 and 7]. Kalai and Meshulam, in their conjectures, allow a
polynomial growth of the Betti numbers in |

⋂
G|. We remark that Theorem 1 is also sharp

in the sense that even a linear growth of Betti number, already in R1, may yield unbounded
Helly numbers.

Indeed, consider a positive integer n and open intervals Ii := (i− 1.1; i+ 0.1) for i ∈ [n].
Let Xi := [0, n] \Xi. The intersection of all Xi is empty but the intersection of any proper
subfamily is nonempty. In addition, the intersection of k such Xi can be obtained from [0, n]
by removing at most k open intervals, thus the reduced Betti numbers of such intersection
are bounded by k.

In particular, the conjectures of Kalai and Meshulam cannot be strengthened to include
Theorem 1.

Further consequences. The main strength of our result is to show that very weak assump-
tions on families of sets are enough to guarantee a bounded Helly number. A first natural
application is as a tool to identify concrete situations in which Helly numbers are bounded.
Let us give an example which, to the best of our knowledge, is not covered by any other
Helly-type theorem appearing in the literature.

By an affine k-sphere in Rd for 0 ≤ k ≤ d − 1 we simply mean a geometric sphere of
arbitrary center and radius inside some affine (k + 1)-space of Rd. An affine sphere is an
affine k-sphere for some k ∈ {0, . . . , d− 1}. Theorem 1 implies that the Helly number of an
arbitrary family of affine spheres in Rd is bounded since an arbitrary intersection of affine
spheres is an empty set, singleton, or an affine sphere, all of them having bounded Betti
numbers. A careful analysis can of course lead to a much better bound on the Helly number
than the one given by Theorem 1; see for instance [17] for sharp bounds for the case of
(d− 1)-dimensional spheres in Rd. However, note that Theorem 1 immediately reveals that
the Helly number is bounded.

Theorem 1 also has consequences in the direction of optimization problems. Various
optimization problems can be formulated as the minimization of some function f : Rd → R
over some intersection

⋂n
i=1 Ci of subsets C1, C2, . . . , Cn of Rd. If, for t ∈ R, we let Lt =

f−1 ((−∞, t]) and Ft = {C1, C2, . . . , Cn, Lt} then

min
x∈
⋂n

i=1
Ci

f(x) = min
{
t ∈ R :

⋂
Ft 6= ∅

}
.

If the Helly number of the families Ft can be bounded uniformly in t by some constant h
then there exists a subset of h− 1 constraints Ci1 , Ci2 , . . . , Cih−1 that suffice to define the
minimum of f :

min
x∈
⋂n

i=1
Ci

f(x) = min
x∈
⋂h−1

j=1
Cij

f(x).

5 In the original proof, this assumption is crucial and used to ensure that the union of the sets must have
trivial homology in dimensions larger than d; this may fail if the sets are not open.

X. Goaoc, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 511

A consequence of this observation, noted by Amenta [1], is that the minimum of f over
C1 ∩ C2 ∩ . . . ∩ Cn can6 be computed in randomized O(n) time by generalized linear pro-
gramming [25]. Together with Theorem 1, this implies that an optimization problem of
the above form can be solved in randomized linear time if it has the property that every
intersection of some subset of the constraints with a level set of the function has bounded
“topological complexity” (measured in terms of the sum of the first dd/2e Betti numbers).
Let us emphasize that this linear-time bound holds in a real-RAM model of computation,
where any constant-size subproblems can be solved in O(1)-time; it therefore concerns the
combinatorial difficulty of the problem and says nothing about its numerical difficulty.

Organization, notation, etc. We prove Theorem 1 in three steps. We first set up our
homological machinery in Section 2 (homological almost-embeddings, homological Van
Kampen-Flores Theorem, and homological Radon lemma). We then present, in Section 3,
variations of the technique that derives Helly-type theorems from non-embeddability. We
finally introduce our refinement of this technique and the proof of Theorem 1 in Section 4.
Due to space constraint, various proofs are only sketched and we refer to [11] for the full
details.

We assume that the reader is familiar with basic topological notions and facts concerning
simplicial complexes and singular and simplicial homology, as described in textbooks like
[12, 22]. As remarked above, throughout this paper we will work with homology with
Z2-coefficients unless explicitly stated otherwise. Moreover, while we will consider singular
homology groups for topological spaces in general, for simplicial complexes we will work with
simplicial homology groups. In particular, if X is a topological space then C∗(X) will denote
the singular chain complex of X, while if K is a simplicial complex, then C∗(K) will denote
the simplicial chain complex of K (both with Z2-coefficients).

We use the following notation. Let K be a (finite, abstract) simplicial complex. The
underlying topological space of K is denoted by |K|. Moreover, we denote by K(i) the i-
dimensional skeleton of K, i.e., the set of simplices of K of dimension at most i; in particular
K(0) is the set of vertices of K. For an integer n ≥ 0, let ∆n denote the n-dimensional
simplex.

Given a set X we let 2X and
(
X
k

)
denote, respectively, the set of all subsets of X (including

the empty set) and the set of all k-element subsets of X. If f : X → Y is an arbitrary map
between sets then we abuse the notation by writing f(S) for {f(s) | s ∈ S} for any S ⊆ X;
that is, we implicitly extend f to a map from 2X to 2Y whenever convenient.

2 Homological Almost-Embeddings

In this section, we define homological almost-embedding, an analogue of topological embeddings
on the level of chain maps, and show that certain simplicial complexes do not admit
homological almost-embeddings in Rd, in analogy to classical non-embeddability results due
to Van Kampen and Flores.

Recall that an embedding of a finite simplicial complex K into Rd is simply an injective
continuous map |K| → Rd. The fact that the complete graph on five vertices cannot be
embedded in the plane has the following generalization.

6 This requires f and C1, C2, . . . , Cn to be generic in the sense that the number of minima of f over
∩i∈ICi is bounded uniformly for I ⊆ {1, 2, . . . , n}.

SoCG’15

512 Bounding Helly Numbers via Betti Numbers

I Proposition 2 (Van Kampen [28], Flores [10]). For k ≥ 0, the complex ∆(k)
2k+2, the k-

dimensional skeleton of the (2k + 2)-dimensional simplex, does not embed in R2k.

A basic tool for proving the non-embeddability of a simplicial complex is the so-called Van
Kampen obstruction. Given a simplicial complex K, one can define, for each d ≥ 0, a certain
cohomology class od(K) that resides in the cohomology group Hd(K) of a certain auxiliary
complex K (the quotient of the combinatorial deleted product by the natural Z2-action, see
below); this cohomology class od(K) is called the Van Kampen obstruction to embeddability
into Rd because of the following fact:

I Proposition 3 ([24, 31]). A finite simplicial complex K with od(K) 6= 0 does not embed
into Rd.

A slightly stronger conclusion actually holds: there is no almost-embedding f : |K| →
Rd, i.e., no continuous map such that the images of disjoint simplices of K are disjoint.
Proposition 2, and in fact the slightly stronger statement that ∆(k)

2k+2 does not admit an
almost-embedding into R2k, then follows from the next result (for a short proof see, for
instance, [20, Example 3.5]).

I Proposition 4 ([28, 10]). For every k ≥ 0, o2k
(

∆(k)
2k+2

)
6= 0.

A close examination of the standard proof of Proposition 3 reveals that it is based on
(co)homological arguments so that maps can be replaced by suitable chain maps at every
step.7 The appropriate analogue of an almost-embedding is the following:

I Definition 5. Let K be a simplicial complex, and consider a chain map8 γ : C∗(K) →
C∗(Rd) from the simplicial chains in K to singular chains in Rd.
(i) The chain map γ is called nontrivial9 if the image of every vertex of K is a finite set of

points in Rd (a 0-chain) of odd cardinality.
(ii) The chain map γ is called a homological almost-embedding of a simplicial complex K

in Rd if it is nontrivial and if, additionally, the following holds: whenever σ and τ are
disjoint simplices of K, their image chains γ(σ) and γ(τ) have disjoint supports, where
the support of a chain is the union of (the images of) the singular simplices with nonzero
coefficient in that chain.

Definition 5 generalizes classical homotopic notions. Indeed, if f : |K| → Rd is a continuous
map then the induced chain map10 f] : C∗(K)→ C∗(Rd) is nontrivial. Moreover, if f is an
almost-embedding then the induced chain map is a homological almost-embedding. We can
generalize Proposition 3 as follows:

I Proposition 6. A finite simplicial complex K with od(K) 6= 0 has no homological almost-
embedding in Rd.

7 This observation was already used in [29] to study the (non-)embeddability of certain simplicial complexes.
What we call a homological almost-embedding in the present paper corresponds to the notion of a
homological minor used in [29].

8 We recall that a chain map γ : C∗ → D∗ between chain complexes is simply a sequence of homomorphisms
γn : Cn → Dn that commute with the respective boundary operators, γn−1 ◦ ∂C = ∂D ◦ γn.

9 If we consider augmented chain complexes with chain groups also in dimension −1, then being nontrivial
is equivalent to requiring that the generator of C−1(K) ∼= Z2 (this generator corresponds to the empty
simplex in K) is mapped to the generator of C−1(Rd) ∼= Z2.

10The induced chain map is defined as follows: We assume that we have fixed a total ordering of
the vertices of K. For a p-simplex σ of K, the ordering of the vertices induces a homeomorphism
hσ : |∆p| → |σ| ⊆ |K|. The image f](σ) is defined as the singular p-simplex f ◦ hσ.

X. Goaoc, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 513

Sketch of proof: Like in the standard proof of Proposition 3, we construct given a homolo-
gical almost-embedding of a complex K into Rd a non-trivial equivariant chain map from
the (combinatorial) deleted product of that complex into Sd−1, then into S∞ through the
inclusion Sd−1 → S∞. We can then interpret od(K) in terms of the d-dimensional cohomology
of RP∞, the Z2 quotient of S∞, and show that it should vanish. In one of the steps we
need to replace (classical) equivariant homotopy with equivariant chain homotopy, which is
somewhat technical. We refer to [11, Proposition 7] for a complete proof. J

As a consequence we obtain a homological analogue of the Van Kampen-Flores theorem:

I Corollary 7. For d ≥ 0, ∆(dd/2e)
d+2 has no homological almost-embedding in Rd.

Proof. Propositions 4 and 6 together imply that for any k ≥ 0, the k-skeleton ∆(k)
2k+2 of the

(2k + 2)-dimensional simplex has no homological almost-embedding in R2k. This proves the
statement when d is even.

Assume that d is odd and write d = 2k + 1. If K is a finite simplicial complex with
od(K) 6= 0 and if CK is the cone over K then od+1(CK) 6= 0 (for a proof, see, for instance,
[4, Lemma 8]). Since we know that o2k(∆(k)

2k+2) 6= 0 it follows that o2k+1(C∆(k)
2k+2) 6= 0.

Consequently, o2k+1(∆(k+1)
2k+3) 6= 0 since C∆(k)

2k+2 is a subcomplex of ∆(k+1)
2k+3 (and since there is

an equivariant map from the deleted product of the subcomplex to the deleted product of the
complex). Proposition 6 then implies that ∆(k+1)

2k+3 admits no homological almost-embedding
in R2k+1. This proves the statement when d is odd. J

We also deduce a homological Radon lemma (note that ∂∆d+1 = ∆(d)
d+1); see [11,

Lemma 10] for a proof.

I Corollary 8. For d ≥ 0, ∂∆d+1 has no homological almost-embedding in Rd.

3 Helly-type theorems from non-embeddability

In this section, we review various applications, and formalize the ingredients, of a technique
to prove Helly-type theorems from obstructions to embeddability. This technique was already
present in the classical proof of Helly’s convex theorem from Radon’s lemma and was made
more transparent by Matoušek [19].

3.1 Homotopic assumptions
Let F = {U1, U2, . . . , Un} denote a family of subsets of Rd. We assume that F has empty
intersection and that any proper subfamily of F has nonempty intersection. Our goal is
to show how various conditions on the topology of the intersections of the subfamilies of
F imply bounds on the cardinality of F . For any (possibly empty) proper subset I of
[n] = {1, 2, . . . , n} we write UI for

⋂
i∈[n]\I Ui. We also put U[n] = Rd.

Path-connected intersections in the plane. Consider the case where d = 2 and the
intersections

⋂
G are path-connected for all subfamilies G (F . Since every intersection of

n− 1 members of F is nonempty, we can pick, for every i ∈ [n], a point pi in U{i}. Moreover,
as every intersection of n− 2 members of F is connected, we can connect any pair of points
pi and pj by an arc si,j inside U{i,j}. We thus obtain a drawing of the complete graph on
[n] in the plane in a way that the edge between i and j is contained in U{i,j} (see Figure 1).
If n ≥ 5 then the stronger form of non-planarity of K5 implies that there exist two edges

SoCG’15

514 Bounding Helly Numbers via Betti Numbers

p1

p2

p3

p4

p5

s2,5

s1,4

Figure 1 Two edges (arcs) with no common vertices intersect (in this case s1,4 and s2,5). The
point in the intersection then belongs to all sets in F .

{i, j} and {k, `} with no vertex in common and whose images intersect (see Proposition 3
and Lemma 4). Since U{i,j} ∩ U{k,`} =

⋂
F = ∅, this cannot happen and F has cardinality

at most 4.

dd/2e-connected intersections in Rd. The previous argument generalizes to higher dimen-
sion as follows. Assume that the intersections

⋂
G are dd/2e-connected11 for all subfamilies

G (F . Then we can build by induction a function f from the dd/2e-skeleton of ∆n−1 to Rd
in a way that for any simplex σ, the image f(σ) is contained in Uσ. The previous case shows
how to build such a function from the 1-skeleton of ∆n−1. Assume that a function f from
the `-skeleton of ∆n−1 is built. For every (`+ 1)-simplex σ of ∆n−1, for every facet τ of σ,
we have f(τ) ⊂ Uτ ⊆ Uσ. Thus, the set⋃

τ facet of σ
f(τ)

is the image of an `-dimensional sphere contained in Uσ, which has vanishing homotopy of
dimension `. We can extend f from this sphere to an (`+ 1)-dimensional ball so that the
image is still contained in Uσ. This way we extend f to the (`+ 1)-skeleton of ∆n−1.

The Van Kampen-Flores theorem asserts that for any continuous function from ∆(k)
2k+2 to

R2k there exist two disjoint faces of ∆(k)
2k+2 whose images intersect (see Proposition 3 and

Lemma 4). So, if n ≥ 2dd/2e+ 3, then there exist two disjoint simplices σ and τ of ∆(dd/2e)
2dd/2e+2

such that f(σ) ∩ f(τ) is nonempty. Since f(σ) ∩ f(τ) is contained in Uσ ∩ Uτ =
⋂
F = ∅,

this is a contradiction and F has cardinality at most 2dd/2e+ 2.
By a more careful inspection of odd dimensions, the bound 2dd/2e+ 2 can be improved

to d+ 2. We skip this in the homotopic setting, but we will do so in the homological setting
(which is stronger anyway); see Corollary 9 below.

Contractible intersections. Of course, the previous argument works with other non-
embeddability results. For instance, if the intersections

⋂
G are contractible for all subfamilies

then the induction yields a map f from the d-skeleton of ∆n−1 to Rd with the property that
for any simplex σ, the image f(σ) is contained in Uσ. The topological Radon theorem [3]
(see also [18, Theorem 5.1.2]) states that for any continuous function from ∆d+1 to Rd there
exist two disjoint faces of ∆d+1 whose images intersect. So, if n ≥ d + 2 we again obtain

11Recall that a set is k-connected if it is connected and has vanishing homotopy in dimension 1 to k.

X. Goaoc, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 515

a contradiction (the existence of two disjoint simplices σ and τ such that f(σ) ∩ f(τ) 6= ∅
whereas Uσ ∩ Uτ =

⋂
F = ∅), and the cardinality of F must be at most d+ 1.

3.2 From homotopy to homology
The previous reasoning can be transposed to homology as follows. Assume that for i =
0, 1, . . . , k − 1 and all subfamilies G (F we have β̃i(

⋂
G) = 0. We construct a nontrivial12

chain map f from the simplicial chains of ∆(k)
n−1 to the singular chains of Rd by increasing

dimension:
For every {i} ⊂ [n] we let pi ∈ U{i}. This is possible since every intersection of n − 1
members of F is nonempty. We then put f({i}) = pi and extend it by linearity into
a chain map from ∆(0)

n−1 to Rd. Notice that f is nontrivial and that for any 0-simplex
σ ⊆ [n], the support of f(σ) is contained in Uσ.
Now, assume, as an induction hypothesis, that there exists a nontrivial chain map f

from the simplicial chains of ∆(`)
n−1 to the singular chains of Rd with the property that

for any (≤ `)-simplex σ ⊆ [n], ` < k, the support of f(σ) is contained in Uσ. Let σ be
a (`+ 1)-simplex in ∆(`+1)

n−1 . For every `-dimensional face τ of σ, the support of f(τ) is
contained in Uτ ⊆ Uσ. It follows that the support of f(∂σ) is contained in Uσ, which
has trivial homology in dimension `+ 1. As a consequence, f(∂σ) is a boundary in Uσ.
We can therefore extend f to every simplex of dimension ` + 1 and then, by linearity,
to a chain map from the simplicial chains of ∆(`+1)

n−1 to the singular chains of Rd. This
chain map remains nontrivial and, by construction, for any (≤ ` + 1)-simplex σ ⊆ [n],
the support of f(σ) is contained in Uσ.

If σ and τ are disjoint simplices of ∆(k)
n−1 then the intersection of the supports of f(σ) and

f(τ) is contained in Uσ ∩ Uτ =
⋂
F = ∅ and these supports are disjoint. It follows that f

is not only a nontrivial chain map, but also a homological almost-embedding in Rd. We
can then use obstructions to the existence of homological almost-embeddings to bound the
cardinality of F . Specifically, since we assumed that F has empty intersection and any
proper subfamily of F has nonempty intersection, Corollary 7 implies:

I Corollary 9. Let F be a family of subsets of Rd such that β̃i(
⋂
G) = 0 for every G (F

and i = 0, 1, . . . , dd/2e − 1. Then the Helly number of F is at most d+ 2.

The homological Radon lemma (Lemma 8) yields:

I Corollary 10. Let F be a family of subsets of Rd such that β̃i(
⋂
G) = 0 for every G (F

and i = 0, 1, . . . , d− 1. Then the Helly number of F is at most d+ 1.

The examples showing, in the introduction, that Theorem 1 is qualitatively sharp can be
modified to show that the previous Corollaries are also sharp in various ways.

First assume that for some values k, n there exists an embedding f of ∆(k)
n−1 into Rd.

Let Ki be the simplicial complex obtained by deleting the ith vertex of ∆(k)
n−1 (as well as

all simplices using that vertex) and put Ui := f(Ki). The family F = {U1, . . . , Un} has
Helly number exactly n, since it has empty intersection and all its proper subfamilies have
nonempty intersection. Moreover, for every G ⊆ F ,

⋂
G is the image through f of the

k-skeleton of a simplex on |F \ G| vertices, and therefore β̃i(
⋂
G) = 0 for every G ⊆ F and

i = 0, . . . , k − 1.

12 See Definition 5.

SoCG’15

516 Bounding Helly Numbers via Betti Numbers

1 2

3

4

137

1256

23

248
1235679

a b

c d

imγ(d)

imγ(a)

U8 U3

K R2

Figure 2 An example of a constrained map γ : K → R2. A label at a face σ of K denotes Φ(σ).
Note, for example, that the support of γ({a, b, c}) needn’t be a triangle since we work with chain
maps. Constrains by Φ mean that a set Ui must contain cover images of all faces without label i. It
is demonstrated by U3 and U8 for example.

Such an embedding exists when k = d and n = d+ 1, as the d-dimensional simplex easily
embeds into Rd. Consequently, the bound of d+ 1 is best possible under the assumptions
of Corollary 10. Such an embedding also exists for k = d − 1 and n = d + 2, as we can
first embed the (d− 1)-skeleton of the d-simplex linearly, then add an extra vertex at the
barycentre of the vertices of that simplex and embed the remaining faces linearly. This
implies that if we relax the condition of Corollary 10 by only controlling the first d− 2 Betti
numbers then the bound of d+ 1 becomes false. It also implies that the bound of d+ 2 is
best possible under (a strengthening of) the assumptions of Corollary 9.

Constrained chain map. Let us formalize the technique illustrated by the previous example.
We focus on the homological setting, as this is what we use to prove Theorem 1, but this can
be easily transposed to homotopy.

As above, we have a family F = {U1, U2, . . . , Un} of subsets of Rd and we keep the
notation for UI introduced in the beginning of this section.

Let K be a simplicial complex and let γ : C∗(K) → C∗(Rd) be a chain map from the
simplicial chains of K to the singular chains of Rd. We say that γ is constrained by (F ,Φ)
if:
(i) Φ is a map from K to 2[n] such that Φ(σ ∩ τ) = Φ(σ) ∩ Φ(τ) for all σ, τ ∈ K and

Φ(∅) = ∅.
(ii) For any simplex σ ∈ K, the support of γ(σ) is contained in UΦ(σ).

See Figure 2. We also say that a chain map γ from K is constrained by F if there exists
a map Φ such that γ is constrained by (F ,Φ). In the above constructions, we simply set
Φ to be the identity. As we already saw, constrained chain maps relate Helly numbers to
homological almost-embeddings (see Definition 5) via the following observation:

I Lemma 11. Let γ : C∗(K) → C∗(Rd) be a nontrivial chain map constrained by F . If⋂
F = ∅ then γ is a homological almost-embedding of K.

Proof. Let Φ : K → 2[n] be such that γ is constrained by (F ,Φ). Since γ is nontrivial, it
remains to check that disjoint simplices are mapped to chains with disjoint support. Let

X. Goaoc, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 517

σ and τ be two disjoint simplices of K. The supports of γ(σ) and γ(τ) are contained,
respectively, in UΦ(σ) and UΦ(τ), and

UΦ(σ) ∩ UΦ(τ) = UΦ(σ)∩Φ(τ) = UΦ(σ∩τ) = UΦ(∅) = U∅ =
⋂
F .

Therefore, if
⋂
F = ∅ then γ is a homological almost-embedding of K. J

3.3 Relaxing the connectivity assumption
In all the examples listed so far, the intersections

⋂
G must be connected. Matoušek [19]

relaxed this condition into “having a bounded number of connected components”, the
assumptions then being on the topology of the components, by using Ramsey’s theorem.
The gist of our proof is to extend his idea to allow a bounded number of homology classes
not only in the first dimension but in any dimension. Let us illustrate how Matoušek’s idea
works in dimension two:

I Theorem 12 ([19, Theorem 2 with d = 2]). For every positive integer b there is an
integer h(b) with the following property. If F is a finite family of subsets of R2 such that
the intersection of any subfamily has at most b path-connected components, then the Helly
number of F is at most h(b).

Let us fix b from above and assume that for any subfamily G (F the intersection
⋂
G

consists of at most b path-connected components and that
⋂
F = ∅. We start, as before,

by picking for every i ∈ [n], a point pi in U{i}. This is possible as every intersection of
n − 1 members of F is nonempty. Now, if we consider some pair of indices i, j ∈ [n], the
points pi and pj are still in U{i,j} but may lie in different connected components. It may
thus not be possible to connect pi to pj inside U{i,j}. If we, however, consider b+ 1 indices
i1, i2, . . . , ib+1 then all the points pi1 , pi2 , . . . , pib+1 are in U{i1,i2,...,ib+1}

which has at most b
connected components, so at least one pair among of these points can be connected by a
path inside U{i1,i2,...,ib+1}

. Thus, while we may not get a drawing of the complete graph on
n vertices we can still draw many edges.

To find many vertices among which every pair can be connected we will use the hypergraph
version of the classical theorem of Ramsey:

I Theorem 13 (Ramsey [23]). For any x, y and z there is an integer Rx(y, z) such that any
x-uniform hypergraph on at least Rx(y, z) vertices colored with at most y colors contains a
subset of z vertices inducing a monochromatic sub-hypergraph.

From the discussion above, for any b + 1 indices i1 < i2 < . . . < ib+1 there exists a pair
{k, `} ∈

([b+1]
2
)
such that pik and pi` can be connected inside U{i1,i2,...,ib+1}

. Let us consider
the (b + 1)-uniform hypergraph on [n] and color every set of indices i1 < i2 < . . . < ib+1
by one of the pairs in

([b+1]
2
)
that can be connected inside U{i1,i2,...,ib+1}

(if more than one
pair can be connected, we pick one arbitrarily). Let t be some integer to be fixed later. By
Ramsey’s theorem, if n ≥ Rb+1

((
b+1

2
)
, t
)
then there exist a pair {k, `} ∈

([b+1]
2
)
and a subset

T ⊆ [n] of size t with the following property: for any (b + 1)-element subset S ⊂ T , the
points whose indices are the kth and `th indices of S can be connected inside US .

Now, let us set t = 5 +
(5

2
)
(b− 1) = 10b− 5. We claim that we can find five indices in T ,

denoted i1, i2, . . . , i5, and, for each pair {iu, iv} among these five indices, some (b+1)-element
subset Qu,v ⊂ T with the following properties:
(i) iu and iv are precisely in the kth and `th position in Qu,v, and
(ii) for any 1 ≤ u, v, u′, v′ ≤ 5, Qu,v ∩Qu′,v′ = {iu, iv} ∩ {iu′ , iv′}.

SoCG’15

518 Bounding Helly Numbers via Betti Numbers

We first conclude the argument, assuming that we can obtain such indices and sets. Observe
that from the construction of T , the iu’s and the Qu,v’s we have the following property: for
any u, v ∈ [5], we can connect piu and piv inside UQu,v

. This gives a drawing of K5 in the
plane. Since K5 is not planar, there exist two edges with no vertex in common, say {u, v}
and {u′, v′}, that cross. This intersection point must lie in

UQu,v
∩ UQu′,v′

= UQu,v∩Qu′,v′
= U{iu,iv}∩{iu′ ,iv′}

= U∅ =
⋂
F = ∅,

a contradiction. Hence the assumption that n ≥ Rb+1

((
b+1

2
)
, t
)
is false and F has cardinality

at most Rb+1

((
b+1

2
)
, 10b− 5

)
− 1, which is our h(b).

The selection trick. It remains to derive the existence of the iu’s and the Qu,v’s. It is
perhaps better to demonstrate the method by a simple example to develop some intuition
before we formalize it.
Example. Let us fix b = 4 and {k, `} = {2, 3} ∈

([4+1]
2
)
. We first make a ‘blueprint’ for the

construction inside the rational numbers. For any two indices u, v ∈ [5] we form a totally
ordered setQ′u,v ⊆ Q of size b+1 = 5 by adding three rational numbers (different from 1, . . . , 5)
to the set {u, v} in such a way that u appears at the second and v at the third position of Q′u,v.
For example, we can set Q′1,4 to be {0.5; 1; 4; 4.7; 5.13}. Apart from this we require that we
add a different set of rational numbers for each {u, v}. Thus Q′u,v ∩Q′u′,v′ = {u, v} ∩ {u′, v′}.
Our blueprint now appears inside the set T ′ :=

⋃
1≤u<v≤5Q

′
u,v; note that both this set

T ′ and the set T in which we search for the sets Qu,v have 35 elements. To obtain the
required indices iu and sets Qu,v it remains to consider the unique strictly increasing bijection
π0 : T ′ → T and set iu := π0(u) and Qu,v := π0(Q′u,v).
The general case. Let us now formalize the generalization of this trick that we will use to
prove Theorem 1. Let Q be a subset of [w]. If e1 < e2 < . . . < ew are the elements of a
totally ordered set W then we call {ei : i ∈ Q} the subset selected by Q in W .

I Lemma 14. Let 1 ≤ q ≤ w be integers and let Q be a subset of [w] of size q. Let
Y and Z be two finite totally ordered sets and let A1, A2, . . . , Ar be q-element subsets of
Y . If |Z| ≥ |Y | + r(w − q), then there exist an injection π : Y → Z and r subsets
W1,W2, . . . ,Wr ∈

(
Z
w

)
such that for every i ∈ [r], Q selects π(Ai) in Wi. We can further

require that Wi ∩Wj = π(Ai ∩Aj) for any two i, j ∈ [r], i 6= j.

We refer to [11, Lemma 24] for a proof.

4 Constrained chain maps and Helly number

We now generalize the technique presented in Section 3 to obtain Helly-type theorems from
non-embeddability results. We will construct constrained chain maps for arbitrary complexes.
As above, F = {U1, U2, . . . , Un} denotes a family of subsets of Rd and for I ⊆ [n] we keep
the notation UI as used in the previous section. Note that although so far we only used
the reduced Betti numbers β̃, in this section it will be convenient to work with standard
(non-reduced) Betti numbers β, starting with the following proposition.

I Proposition 15. For any finite simplicial complex K and non-negative integer b there
exists a constant hK(b) such that the following holds. For any finite family F of at least hK(b)
subsets of Rd such that

⋂
G 6= ∅ and βi (∩G) ≤ b for any G (F and any 0 ≤ i < dimK,

there exists a nontrivial chain map γ : C∗(K)→ C∗(Rd) that is constrained by F .

X. Goaoc, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 519

Sketch of proof. We proceed by induction on the dimension k of K. The case k = 0 is
straightforward. The case k = 1 is still slightly easier than the general case. It is a translation
of Matoušek’s [19] approach, as summarized in Section 3.3 for the 2-dimensional case, in the
language of constrained chain maps.
In the general case, we start with the (k − 1)-

skeleton of a (possibly large) simplicial complex and
need to find enough (k−1)-cycles that are boundaries
to build the k-skeleton of K. The difficulty of finding
those boundaries is illustrated by the following obser-
vation: for arbitrarily large n, there exist maps from
the complete graph on n vertices into an annulus such
that no triangle is a boundary (see the figure on the
right for an example with n = 5). We may thus have
to examine complicated cycles when searching for
boundaries, and the general case therefore requires
new ingredients.

1

2 3 4 5

Let s denote some large enough integer, depending on the (k − 1)-skeleton K(k−1).
Assuming hk(b) is large enough, there exists, by the induction assumption, a nontrivial chain
map γ′ : C∗(∆(k−1)

s)→ C∗(Rd) constrained by F . One may hope to use Ramsey’s theorem
to find a copy of K(k−1) inside ∆(k−1)

s on which γ′ can be extended to a constrained chain
map on all of K. This turns out to be impossible: while Ramsey’s theorem may guarantee
that the boundaries of the k-dimensional simplices all have the same homology class, we
cannot prevent that common homology class to be non-zero!

We overcome this issue by considering the barycentric subdivision sdK of K and finding
a suitable injection β of (sdK)(k−1) into ∆(k−1)

s . We then consider the chain maps

C∗

(
K(k−1)

)
α−−−→ C∗

(
(sdK)(k−1)

) β]−−−−−→ C∗

(
∆(k−1)
s

) γ′−−−→ C∗(Rd)

where α is a natural chain map corresponding to the subdivision and β] is the chain map
induced by β. We set γ = γ′ ◦ β] ◦ α. We use Ramsey’s theorem to set β in such a way
that the boundaries of the k-dimensional simplices all have the same homology class under
γ. Again, Ramsey’s theorem can only ensure that through γ′ ◦ β] the boundaries of the
k-simplices of sdK have the same, possibly non-trivial, homology class. But since every
k-simplex of K is the sum of an even number of simplices of sdK, and we compute homology
over Z2, this is good enough, and γ can be extended to K.

This outline brushes under the rug some technical difficulties raised by the use of
barycentric subdivision; we refer the interested reader to [11, Proposition 25] for full details.

J

The case K = ∆(k)
2k+2, with k = dd/2e, of Proposition 15 finally implies Theorem 1.

Proof of Theorem 1. Let b and d be fixed integers, let k = dd/2e and let K = ∆(k)
2k+2. Let

hK(b + 1) denote the constant from Proposition 15 (we plug in b + 1 because we need to
switch between reduced and non-reduced Betti numbers). Let F be a finite family of subsets
of Rd such that β̃i (

⋂
G) ≤ b for any G (F and every 0 ≤ i ≤ dimK = dd/2e − 1, in

particular βi (
⋂
G) ≤ b + 1 for such G. Let F∗ denote an inclusion-minimal sub-family of

F with empty intersection:
⋂
F∗ = ∅ and

⋂
(F∗ \ {U}) 6= ∅ for any U ∈ F∗. If F∗ has

size at least hK(b + 1), it satisfies the assumptions of Proposition 15 and there exists a

SoCG’15

520 Bounding Helly Numbers via Betti Numbers

nontrivial chain map from K that is constrained by F∗. Since F∗ has empty intersection, this
chain map is a homological almost-embedding by Lemma 11. However, no such homological
almost-embedding exists by Corollary 7, so F∗ must have size at most hK(b+ 1)− 1. As a
consequence, the Helly number of F is bounded and the statement of Theorem 1 holds with
h(b, d) = hK(b+ 1)− 1. J

Acknowledgments. We would like to express our immense gratitude to Jiří Matoušek, not
only for raising the problem addressed in the present paper and valuable discussions about
it, but, much more generally, for the privilege of having known him, as our teacher, mentor,
collaborator, and friend. Through his tremendous depth and insight, and the generosity with
which he shared them, he greatly influenced all of us.

We further thank Jürgen Eckhoff for helpful comments on a preliminary version of the
paper, and Andreas Holmsen and Gil Kalai for providing us with useful references.

References
1 N. Amenta. Helly-type theorems and generalized linear programming. Discrete & Compu-

tational Geometry, 12:241–261, 1994.
2 N. Amenta. A short proof of an interesting Helly-type theorem. Discrete & Computational

Geometry, 15:423–427, 1996.
3 E. G. Bajmóczy and I. Bárány. On a common generalization of Borsuk’s and Radon’s

theorem. Acta Math. Acad. Sci. Hungar., 34(3-4):347–350, 1979.
4 M. Bestvina, M. Kapovich, and B. Kleiner. Van Kampen’s embedding obstruction for

discrete groups. Invent. Math., 150(2):219–235, 2002.
5 A. Björner. Nerves, fibers and homotopy groups. Journal of Combinatorial Theory, Series

A, 102(1):88–93, 2003.
6 K. Borsuk. On the imbedding of systems of compacta in simplicial complexes. Fundamenta

Mathematicae, 35:217–234, 1948.
7 É. Colin de Verdière, G. Ginot, and X. Goaoc. Multinerves and Helly numbers of acyclic

families. In Proceedings of the 2012 symposium on Computational Geometry, SoCG’12,
pages 209–218, 2012. http://arxiv.org/abs/1101.6006.

8 H. Debrunner. Helly type theorems derived from basic singular homology. American
Mathematical Monthly, 77:375–380, 1970.

9 J. Eckhoff. Helly, Radon and Carathéodory type theorems. In P.M. Gruber and J.M. Wills,
editors, Handbook of Convex Geometry, pages 389–448. North Holland, 1993.

10 A. I. Flores. Über die Existenz n-dimensionaler Komplexe, die nicht in den R2n topologisch
einbettbar sind. Ergeb. Math. Kolloqu., 5:17–24, 1933.

11 X. Goaoc, P. Paták, Z. Patáková, M. Tancer, and U. Wagner. Bounding Helly numbers via
Betti numbers. http://arxiv.org/abs/1310.4613.

12 A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, UK, 2002.
13 E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresbericht

Deutsch. Math. Verein., 32:175–176, 1923.
14 E. Helly. Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten.

Monaths. Math. und Physik, 37:281–302, 1930.
15 G. Kalai. Combinatorial expectations from commutative algebra. In I. Peeva and V. Welker,

editors, Combinatorial Commutative Algebra, volume 1(3), pages 1729–1734. Oberwolfach
Reports, 2004.

16 G. Kalai and R. Meshulam. Leray numbers of projections and a topological Helly-type
theorem. Journal of Topology, 1:551–556, 2008.

http://arxiv.org/abs/1101.6006
http://arxiv.org/abs/1310.4613

X. Goaoc, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 521

17 H. Maehara. Helly-type theorems for spheres. Discrete & Computational Geometry,
4(1):279–285, 1989.

18 J. Matoušek. Using the Borsuk-Ulam Theorem. Springer-Verlag, Berlin, 2003.
19 J. Matoušek. A Helly-type theorem for unions of convex sets. Discrete & Computational

Geometry, 18:1–12, 1997.
20 S. A. Melikhov. The van Kampen obstruction and its relatives. Proc. Steklov Inst. Math.,

266(1):142–176, 2009.
21 L. Montejano. A new topological Helly theorem and some transversal results. Discrete &

Computational Geometry, 52(2):390–398, 2014.
22 J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Menlo Park, CA, 1984.
23 F. P. Ramsey. On a problem in formal logic. Proc. London Math. Soc., 30:264—-286, 1929.
24 A. Shapiro. Obstructions to the imbedding of a complex in a euclidean space. I. The first

obstruction. Ann. of Math. (2), 66:256–269, 1957.
25 M. Sharir and E. Welzl. A combinatorial bound for linear programming and related prob-

lems. In Proc. 9th Sympos. on Theo. Aspects of Comp. Science, pages 569–579, 1992.
26 R. I. Soare. Computability theory and differential geometry. Bull. Symbolic Logic,

10(4):457–486, 2004.
27 M. Tancer. Intersection patterns of convex sets via simplicial complexes: A survey. In

J. Pach, editor, Thirty Essays on Geometric Graph Theory, pages 521–540. Springer New
York, 2013.

28 E. R. van Kampen. Komplexe in euklidischen Räumen. Abh. Math. Sem. Univ. Hamburg,
9:72–78, 1932.

29 U. Wagner. Minors in random and expanding hypergraphs. In Proceedings of the 27th
Annual Symposium on Computational Geometry (SoCG), pages 351—360, 2011.

30 R. Wenger. Helly-type theorems and geometric transversals. In Jacob E. Goodman and
Joseph O’Rourke, editors, Handbook of Discrete & Computational Geometry, chapter 4,
pages 73–96. CRC Press LLC, Boca Raton, FL, 2nd edition, 2004.

31 W.-T. Wu. On the realization of complexes in euclidean spaces. I, II, III. Acta Math. Sinica
(English transl. of I and III in Sci. Sinica), 5:505–552, 1955.

SoCG’15

Polynomials Vanishing on Cartesian Products:
The Elekes-Szabó Theorem Revisited∗

Orit E. Raz1, Micha Sharir1, and Frank de Zeeuw2

1 School of Computer Science, Tel Aviv University
Tel Aviv 69978, Israel
{oritraz,michas}@post.tau.ac.il

2 École Polytechnique Fédérale de Lausanne
Lausanne, Switzerland
fdezeeuw@gmail.com

Abstract
Let F ∈ C[x, y, z] be a constant-degree polynomial, and let A,B,C ⊂ C with |A| = |B| = |C| = n.
We show that F vanishes on at most O(n11/6) points of the Cartesian product A×B×C (where
the constant of proportionality depends polynomially on the degree of F), unless F has a special
group-related form. This improves a theorem of Elekes and Szabó [2], and generalizes a result of
Raz, Sharir, and Solymosi [9]. The same statement holds over R. When A,B,C have different
sizes, a similar statement holds, with a more involved bound replacing O(n11/6).

This result provides a unified tool for improving bounds in various Erdős-type problems in
combinatorial geometry, and we discuss several applications of this kind.

1998 ACM Subject Classification G.2 Discrete Mathematics

Keywords and phrases Combinatorial geometry, incidences, polynomials

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.522

1 Introduction

In 2000, Elekes and Rónyai [1] proved the following result. Given a constant-degree real
polynomial f(x, y), and finite sets A,B,C ⊂ R each of size n, we have∣∣ {(x, y, z) ∈ R3 | z − f(x, y) = 0

}
∩ (A×B × C)

∣∣ = o(n2),

unless f has one of the forms f(x, y) = g(h(x) + k(y)) or f(x, y) = g(h(x)k(y)), with
univariate real polynomials g, h, k. Recently, Raz, Sharir, and Solymosi [9] extended an
argument introduced in [11] to improve the upper bound (when f does not have one of the
special forms) to O(n11/6) (where the constant of proportionality depends polynomially on
the degree of f).

Elekes and Szabó [2] generalized the result of [1] to any complex algebraic surface

Z(F) :=
{

(x, y, z) ∈ C3 | F (x, y, z) = 0
}
,

∗ Work on this paper by Orit E. Raz and Micha Sharir was supported by Grant 892/13 from the Israel
Science Foundation and by the Israeli Centers of Research Excellence (I-CORE) program (Center
No. 4/11). Work by Micha Sharir was also supported by Grant 2012/229 from the U.S.–Israel Binational
Science Foundation and by the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv
University. Work on this paper by Frank de Zeeuw was partially supported by Swiss National Science
Foundation Grants 200020-144531 and 200021-137574.

© Orit E. Raz, Micha Sharir, and Frank de Zeeuw;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 522–536

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.522
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

O. E. Raz, M. Sharir, and F. de Zeeuw 523

where F is an irreducible polynomial in C[x, y, z]. They showed that if A,B,C ⊂ C are finite
sets, each of size n, then |Z(F) ∩ (A×B × C)| is subquadratic in n, unless F has a certain
exceptional form. The exceptional form of F in this statement is harder to describe (see (ii)
in Theorem 1.1 below), but is related to an underlying group structure that describes the
dependencies of F on each of the variables (similar to the addition or multiplication that
appear in the exceptional forms of F (x, y, z) = z − f(x, y) in [1, 9]). The upper bound that
Elekes and Szabó obtained, when F is not exceptional, was |Z(F)∩ (A×B×C)| = O(n2−η),
for a constant η > 0 that depends on the degree of F , and which they did not make explicit.

Our results. In this paper, we show that the theorem of Elekes and Szabó holds for η = 1/6,
thereby extending the strengthened result of [9] to the generalized setup in [2]. More precisely,
our main result is the following theorem.

I Theorem 1.1 (Balanced case). Let F ∈ C[x, y, z] be an irreducible polynomial of degree
d, and assume that none of the derivatives ∂F/∂x, ∂F/∂y, ∂F/∂z is identically zero. Then
one of the following two statements holds.
(i) For all A,B,C ⊂ C with |A| = |B| = |C| = n we have

|Z(F) ∩ (A×B × C)| = O(d13/2n11/6).

(ii) There exists a one-dimensional subvariety Z0 ⊂ Z(F), such that for every v ∈ Z(F)\Z0,
there exist open sets D1, D2, D3 ⊂ C and analytic functions ϕi : Di → C for i = 1, 2, 3,
such that v ∈ D1 ×D2 ×D3, and, for every (x, y, z) ∈ D1 ×D2 ×D3,

(x, y, z) ∈ Z(F) if and only if ϕ1(x) + ϕ2(y) + ϕ3(z) = 0.

When property (ii) holds, property (i) fails. Indeed, consider any v = (x0, y0, z0) and
ϕi, Di as in property (ii). If we set t1 = ϕ1(x0), t2 = ϕ2(y0), and t3 = ϕ3(z0), then we
have t1 + t2 + t3 = 0. Now choose A ⊂ D1, B ⊂ D2, and C ⊂ D3 so that ϕ1(A) =
{t1 +a, t1 + 2a, . . . , t1 +na}, ϕ2(B) = {t2 +a, t2 + 2a, . . . , t2 +na}, and ϕ3(C) = {t3−a, t3−
2a, . . . , t3 − na}; this is clearly possible for a ∈ C with a sufficiently small absolute value.
Then |Z(F) ∩ (A×B × C)| ≥ n2/4.

Our proof also works when the sets A,B,C do not have the same size. Such an “unbal-
anced” form was not considered in [1] or [2], but similar unbalanced bounds were obtained
in [9], and they are useful in applications where the roles of A,B,C are not symmetric. We
obtain the following result, which subsumes Theorem 1.1; we have stated both for clarity.

I Theorem 1.2 (Unbalanced case). In Theorem 1.1, property (i) can be replaced by:
(i*) For all triples A,B,C ⊂ C of finite sets, we have

|Z(F) ∩ (A×B × C)| = O
(

min
{
d

13
2 |A|

1
2 |B|

2
3 |C|

2
3 +d

17
2 |A|

1
2
(
|A|

1
2 + |B|+ |C|

)
,

d
13
2 |B|

1
2 |A|

2
3 |C|

2
3 +d

17
2 |B|

1
2
(
|B|

1
2 + |A|+ |C|

)
,

d
13
2 |C|

1
2 |A|

2
3 |B|

2
3 +d

17
2 |C|

1
2
(
|C|

1
2 + |A|+ |B|

)})
.

We also have the following specialization of Theorem 1.2 when F is a real polynomial.
Note that, when F is real, it does not immediately follow from Theorems 1.1 and 1.2 that,
in property (ii) there, the functions ϕi can be chosen so that they map R to R. We write
ZR(F) for the real zero set of a real polynomial defined over R.

SoCG’15

524 Polynomials Vanishing on Cartesian Products: The Elekes-Szabó Theorem Revisited

I Theorem 1.3 (Real case). Let F ∈ R[x, y, z] be a polynomial of degree d that is irreducible
over R. Assume that ZR(F) has dimension two. Then property (ii) in both Theorems 1.1
and 1.2 can be replaced by:
(ii)R There exists a one-dimensional subvariety Z0 ⊂ ZR(F) (whose degree is polynomial

in d), such that for every v ∈ ZR(F)\Z0, there exist open intervals I1, I2, I3 ⊂ R, and
real-analytic functions ϕi : Ii → R for i = 1, 2, 3, such that v ∈ I1 × I2 × I3, and, for
every (x, y, z) ∈ I1 × I2 × I3,

(x, y, z) ∈ Z(F) if and only if ϕ1(x) + ϕ2(y) + ϕ3(z) = 0.

The proof of Theorem 1.3 is omitted in this version.

Discussion. Although the results in this paper generalize those of Raz et al. [9], the analysis
here is quite different and considerably more involved. The overlap between the two studies
is only in the initial reduction of the problem to an incidence problem between points and
curves (see below). The remaining and major part of the paper applies totally different
machinery. Instead of the purely algebraic study of properties of polynomials that was used
in [9], the approach here requires more advanced tools from algebraic geometry, and applies
them in a considerably more involved style, inspired in part by a technique used by Tao [14]
for a problem in finite fields.

That the current problem is considerably more difficult than the Elekes–Rónyai problem
(in spite of their similarities) can also be seen by comparing the original respective studies in
[1] and in [2]. We regard the considerable simplification (on top of the improvement in the
bound) of the analysis of Elekes and Szabó in [2] as a major outcome of this paper.

We note that the polynomial dependence of our bound on the degree of F is also a
significant feature, because it allows us to obtain non-trivial bounds for polynomials of
non-constant degree. This arises for example in the application of obtaining lower bounds
for the number of distinct distances between points on an algebraic curve (as discussed
below), where the bound is still non-trivial when the degree of the curve is non-constant. An
improved dependence on d would allow us to treat more general sets of points, and get closer
(and perhaps even reconstruct) the general lower bound of Guth and Katz [6].

Consequences. Besides being an interesting problem in itself, the Elekes-Szabó setup arises
in many problems in combinatorial geometry. To demonstrate this, consider the problem
of obtaining a lower bound for the number of distinct distances determined between three
non-collinear points p1, p2, p3 and a set P of n other points in the plane, studied in [2, 12].
To cast this problem into the Elekes–Szabó mold, let D denote the set of the squared
distances between the points pi and those of P . Write pi = (ai, bi), for i = 1, 2, 3. A point
q = (t, s) ∈ R2 determines three squared distances to p1, p2, p3, given by

X = (t− a1)2 + (s− b1)2, Y = (t− a2)2 + (s− b2)2, Z = (t− a3)2 + (s− b3)2.

Eliminating t and s from these equations yields a quadratic equation F (X,Y, Z) = 0. By
construction, for each point q ∈ P , each of the corresponding squared distances X, Y , Z
belongs to D. Moreover, the resulting triples (X,Y, Z) are all distinct, and so F vanishes at
n triples of D ×D ×D. Moreover, since p1, p2, p3 are non-collinear, one can show that F
does not have the special form in property (ii)R of Theorem 1.3. So one gets n = O(|D|11/6),
or |D| = Ω(n6/11), which is the same lower bound obtained in [12], using a direct ad-hoc
analysis. Note that for p1, p2, and p3 collinear, F becomes a linear polynomial, in which

O. E. Raz, M. Sharir, and F. de Zeeuw 525

case it certainly satisfies property (ii)R, and the above bound on |D| does not hold – it can
be Θ(n1/2) in this case.

Geometric questions which involve Euclidean distances, slopes, or collinearity often lead
to polynomial relations of the form F (x, y, z) = 0, and can be reduced to studying the
number of zeros of such polynomials attained on a Cartesian product. The following is a
sample of problems that fit into this framework: (i) Bounding from below the number of
distinct distances [8, 11] determined by a set of n points lying on a planar algebraic curve.
(ii) Bounding from above the number of triple intersection points for three families of n unit
circles, each consisting of circles that pass through a fixed point [4, 10]. (iii) Bounding from
below the number of collinear triples among n points on an algebraic curve in R2 [3].

Due to lack of space, many details are omitted in this abstract and are given in the full
version of the paper.

2 Proof of Theorem 1.2

In this section we prove Theorem 1.2, up to the crucial Proposition 2.3 that we prove in
Section 3. Let F ∈ C[x, y, z] be an irreducible polynomial of degree d. Let A,B,C ⊂ C be
finite, and putM := |Z(F)∩(A×B×C)|; this is the quantity we wish to bound. The strategy
of the proof is to transform the problem of bounding M into an incidence problem for points
and curves in C2. The latter problem can then be tackled using a Szemerédi-Trotter-like
incidence bound, provided that the resulting curves have well-behaved intersections, in the
following sense.

I Definition 2.1. We say that a system (Π,Γ), where Π is a finite set of distinct points in
C2, and Γ is a finite multiset of curves in C2, has (λ, µ)-bounded multiplicity if
(a) for any curve γ ∈ Γ, there are at most λ curves γ′ ∈ Γ (counted with multiplicity) such

that there are more than µ points contained in both γ and γ′; and
(b) for any point p ∈ Π, there are at most λ points p′ ∈ Π such that there are more than µ

curves (counted with multiplicity) that contain both p and p′.

A major component of the proof is to show that if the points and curves that we are
about to define fail to satisfy the conditions of (λ, µ)-bounded multiplicity, then Z(F) must
have the special form described in property (ii) of Theorem 1.2.

Quadruples. Define Q :=
{

(b, b′, c, c′) ∈ B2 × C2 | ∃a ∈ A s.t. F (a, b, c) = F (a, b′, c′) = 0
}
.

The following inequality bounds M in terms of |Q|.

I Lemma 2.2. We have M = O
(
d1/2|A|1/2|Q|1/2 + d2|A|

)
.

Proof. For each a ∈ A, we write (B × C)a := {(b, c) ∈ B × C | F (a, b, c) = 0}. Using the
Cauchy-Schwarz inequality, we have

M =
∑
a∈A
| (B × C)a | ≤ |A|

1/2
(∑
a∈A
| (B × C)a |

2
)1/2

.

Define R := {(a, b, b′, c, c′) ∈ A×B2 × C2 | F (a, b, c) = F (a, b′, c′) = 0}, and consider the
standard projection τ : C × C4 → C4 (in which the first coordinate is discarded). We
have Q = τ(R) and M ≤ |A|1/2|R|1/2.

We claim that |R| ≤ d|Q|+ d4|A|. To prove this, let

S :=
{

(b, b′, c, c′) ∈ B2 × C2 | F (a, b, c) ≡ 0 and F (a, b′, c′) ≡ 0 (as polynomials in a)
}
.

SoCG’15

526 Polynomials Vanishing on Cartesian Products: The Elekes-Szabó Theorem Revisited

We prove in the full version that |S| = O(d4). Observe that for (b, b′, c, c′) ∈ Q\S we have
|τ−1(b, b′, c, c′) ∩R| ≤ d, while for (b, b′, c, c′) ∈ S we have |τ−1(b, b′, c, c′) ∩R| = |A|. Thus

|R| = |τ−1(Q)| = |τ−1(Q\S)|+ |τ−1(S)| ≤ d|Q|+ d4|A|,

which proves the claim and the lemma. J

In what follows, we derive an upper bound on |Q|. It will turn out that, when we fail to
obtain the bound we are after, F must have the special form in property (ii).

Curves and dual curves. For every point (y, y′) ∈ C2, we define

γy,y′ := Cl
({

(z, z′) ∈ C2 | ∃x ∈ C such that F (x, y, z) = F (x, y′, z′) = 0
})
,

where Cl(X) stands for the Zariski closure of X. We show in the full version that there exists
an exceptional set S ⊂ C2 of size O(d4), such that for every (y, y′) ∈ C2\S the set γy,y′ is an
algebraic curve of degree at most d2, or an empty set (a possibility we can safely ignore).

We define, in an analogous manner, a dual system of curves by switching the roles of the
y- and z-coordinates, as follows. For every point (z, z′) ∈ C2, we define

γ∗z,z′ := Cl
({

(y, y′) ∈ C2 | ∃x ∈ C such that F (x, y, z) = F (x, y′, z′) = 0
})
.

As above, here too our (omitted) analysis yields an exceptional set T of size O(d4), such that
for every (z, z′) ∈ C2\T the set γ∗z,z′ is an algebraic curve of degree at most d2 (or empty).

By a standard argument (omitted here), the closure in the definitions of γy,y′ and γ∗z,z′
adds only finitely many points. It follows that, for all but finitely many points (z, z′) ∈ γy,y′ ,
we have (y, y′) ∈ γ∗z,z′ . Symmetrically, for all but finitely many (y, y′) ∈ γ∗z,z′ we have
(z, z′) ∈ γy,y′ .

We set m := d4 throughout this proof. We say that an irreducible algebraic curve γ ⊂ C2

is a popular curve if there exist at least m + 1 distinct points (y, y′) ∈ C2\S such that
γ ⊂ γy,y′ . We denote by C the set of all popular curves. Similarly, we say that an irreducible
algebraic curve γ∗ ⊂ C2 is a popular dual curve, if there exist at least m+ 1 distinct points
(z, z′) ∈ C2\T such that γ∗ ⊂ γ∗z,z′ . We denote by D the set of all popular dual curves.

The main step in our proof is the following proposition, whose proof takes up Section 3.
Note that its statement is only about F and does not involve the specific sets A,B,C.

I Proposition 2.3. Either F satisfies property (ii) of Theorem 1.2, or the following holds.
(a) There exists an algebraic curve X ⊂ C2 of degree O(d11) containing S, such that for

every (y, y′) ∈ C2\X , no irreducible component of γy,y′ is a popular curve.
(b) There exists an algebraic curve Y ⊂ C2 of degree O(d11) containing T , such that for

every (z, z′) ∈ C2\Y, no irreducible component of γ∗z,z′ is a popular dual curve.

Incidences. We continue with the analysis, assuming the truth of Proposition 2.3. We
introduce the following set of points and multiset of curves:

Π := (C × C)\Y and Γ := {γb,b′ | (b, b′) ∈ (B ×B)\X}.

By definition, for every (b, b′, c, c′) ∈ Q, we have (c, c′) ∈ γb,b′ and (b, b′) ∈ γ∗c,c′ (albeit
not necessarily vice versa, because the definition of the curves involves a closure, and does
not require x to be in A). This lets us relate |Q| to I(Π,Γ), the number of incidences
between these points and curves; since Γ is a multiset, these incidences are counted with the
multiplicity of the relevant curves. Specifically, we show in the full version:

I Lemma 2.4. We have |Q| ≤ I(Π,Γ) +O
(
d13|B||C|+ d4|B|2 + d4|C|2

)
.

O. E. Raz, M. Sharir, and F. de Zeeuw 527

Bounded multiplicity. We claim that the system (Π,Γ) has (d6, d4)-bounded multiplicity.
Indeed, by Proposition 2.3(a) and the fact that we have avoided X when defining Γ, any
component of a curve γ ∈ Γ is not in C, and is thus shared with at most m = d4 other curves.
The curve γ has at most d2 irreducible components, so there are at most md2 = d6 curves
γ′ ∈ Γ such that γ and γ′ have a common component. Curves γ′ that do not have a common
component with γ intersect it in at most d4 points by Bézout’s inequality; thus condition (a)
in the definition of (d6, d4)-bounded multiplicity is satisfied. The argument for condition (b)
is fully symmetric.

Incidence bound. In the full version of this paper we derive an incidence bound, based on
that of Solymosi and De Zeeuw [13], resembling the classical Szemerédi-Trotter point-line
incidence bound. It applies to a set Π of points and a multiset Γ of algebraic curves, each of
degree at most δ, in C2, such that Π is a Cartesian product and (Π,Γ) have (λ, µ)-bounded
multiplicity as in Definition 2.1. The analysis culminates in the incidence bound

I(Π,Γ) = O
(
δ4/3λ4/3µ1/3|Π|2/3|Γ|2/3 + λ2µ|Π|+ δ4λ|Γ|

)
.

Specializing this, with δ = d2, λ = d6, and µ = d4, we get

I(Π,Γ) = O
(

(d2)4/3(d6)4/3(d4)1/3|B|4/3|C|4/3 + (d6)2d4|B|2 + (d2)4d6|C|2
)

= O
(
d12|B|4/3|C|4/3 + d16|B|2 + d14|C|2

)
,

which, together with Lemma 2.4, gives

|Q| = I(Π,Γ) +O
(
d13|B||C|+ d4|B|2 + d4|C|2

)
= O(d12|B|4/3|C|4/3 + d16|B|2 + d14|C|2).

Then, from Lemma 2.2, we get

M ≤ d1/2|A|1/2|Q|1/2 + d2|A|

= O
(
d13/2|A|1/2|B|2/3|C|2/3 + d17/2|A|1/2|B|+ d15/2|A|1/2|C|+ d2|A|

)
,

which gives the first of the three bounds in Theorem 1.2(i). The other two follow symmetrically.

3 Proof of Proposition 2.3

3.1 Overview of the proof
We adapt an idea used by Tao [14] to study the expansion of a polynomial P (x, y) over finite
fields. As part of his analysis he considered the map Ψ : C4 → C4 defined by

Ψ : (a, b, c, d) 7→ (P (a, c), P (a, d), P (b, c), P (b, d)).

Tao showed that if the image Ψ(C4) is four-dimensional, then lower bounds on the expansion
of P can be derived. On the other hand, if the image has dimension at most three, then
P must have one of the special forms G(H(x) + K(y)) or G(H(x)K(y)), for polynomials
G,H,K (as in [1, 9]; see also the introduction). Tao proved this by observing that in this
case the determinant of the Jacobian matrix of Ψ must vanish identically, leading to an
identity for the partial derivatives of P , from which the special forms of P can be deduced.

SoCG’15

528 Polynomials Vanishing on Cartesian Products: The Elekes-Szabó Theorem Revisited

Following Tao’s general scheme, albeit in a different context, we define a variety

V :=
{

(x, x′, y, y′, z1,z2, z3, z4) ∈ C8 | (1)
F (x, y, z1) = F (x, y′, z2) = F (x′, y, z3) = F (x′, y′, z4) = 0

}
.

Note that if we fix y, y′ in V and eliminate x, x′, the range of the last four coordinates of V
is γy,y′ × γy,y′ (up to the closure operation). Near most points v ∈ V , we use the implicit
function theorem to represent V as the graph of a locally defined analytic function (which
serves as a local analogue of the map Ψ above)

Φv : (x, x′, y, y′) 7→
(
g1(x, y), g2(x, y′), g3(x′, y), g4(x′, y′)

)
.

If the determinant of the Jacobian of Φv vanishes at v, for all v in some relatively open
subset of V , it leads to the special form of F . This derivation is similar to that of Tao, but
our special form requires a somewhat different treatment.

The other side of our argument, when the determinant of the Jacobian is not identically
zero, as above, is very different from that of Tao. Here we want to show that there are only
finitely many popular curves. (The actual property that we show is somewhat different,
but this is the spirit of our analysis.) We show that if γ is a popular curve (i.e., there are
more than d4 curves γy,y′ ∈ Γ that contain γ), then it is infinitely popular, in the sense that
there is a one-dimensional curve γ∗ of pairs (y, y′) ∈ C2 for which γy,y′ contains γ. For V ,
this implies that if we restrict (y, y′) to γ∗ and project to the last four coordinates, then
the image is contained in γ × γ. In other words, the local map Φv sends an open subset
of the three-dimensional variety C2 × γ∗ to an open subset of the two-dimensional variety
γ × γ. The inverse mapping theorem now tells us that the determinant of the Jacobian
of Φv vanishes on the three-dimensional variety C2 × γ∗. Given that this determinant is
not identically zero, its zero set is three-dimensional, so C2 × γ∗ must be one of its Od(1)
irreducible components. It follows that there are only Od(1) popular curves, which essentially
establishes Proposition 2.3.

3.2 The varieties V , V0 and W
Consider the variety V ⊂ C8 as defined in (1). V is not empty since, for any point
(x, y, z) ∈ Z(F), it contains (x, x, y, y, z, z, z, z) . It follows that V has dimension at least
four; it can in fact be shown that V is four-dimensional. However, our analysis requires that
the projection of V to the first four coordinates is four-dimensional, which does not follow
directly. We show this in the following lemma. Throughout Section 3 we write π1 : C8 → C4

and π2 : C8 → C4 for the standard projections onto the first and the last four coordinates,
respectively.

I Lemma 3.1. We have Cl(π1(V)) = C4.

Proof. Let (x0, x
′
0, y0, y

′
0) ∈ C4. There exist z1, z2, z3, z4 ∈ C such that

F (x0, y0, z1) = F (x0, y
′
0, z2) = F (x′0, y0, z3) = F (x′0, y′0, z4) = 0,

unless we have F (x0, y0, z) ≡ c for some nonzero c ∈ C, or a similar identity holds for one of
the pairs (x0, y

′
0), (x′0, y0), (x′0, y′0). In other words, we have (x0, x

′
0, y0, y

′
0) ∈ π1(V) unless

one of these exceptions holds.
Let σ := Cl

(
{(x0, y0) ∈ C2 | ∃c such that F (x0, y0, z) ≡ c}

)
(note that here we include

the case c = 0). We show (in the full version) that dim(σ) ≤ 1, so the set

σ′ := {(x, x′, y, y′) | one of (x, y), (x, y′), (x′, y), (x′, y′) is in σ}

O. E. Raz, M. Sharir, and F. de Zeeuw 529

has dimension at most 3. By standard properties of the closure operation, we have
Cl(C4\σ′) = C4. As observed above, we have C4\σ′ ⊂ π1(V), so we get C4 = Cl(C4\σ′) ⊂
Cl(π1(V)) ⊂ C4 and hence Cl(π1(V)) = C4. J

We use the implicit function theorem to locally express each of the variables z1, z2, z3, z4
in terms of the corresponding pair of the first four variables x, x′, y, y′. To facilitate this we
first exclude the subvariety of V defined by V0 := V1 ∪ V2 ∪ V3, where

Vi := {(x, x′, y, y′, z1, z2, z3, z4) ∈ V | Fi(x, y, z1)Fi(x, y′, z2)Fi(x′, y, z3)Fi(x′, y′, z4) = 0} ,

and Fi stands for the derivative of F with respect to its ith variable, for i = 1, 2, 3.
The following lemma, whose proof we omit, asserts that Cl(π1(V0)) is a subvariety of V

of dimension ≤ 3. This property allows us to exclude Cl(π1(V0)) in most of our proof.

I Lemma 3.2. Cl(π1(V0)) has dimension at most three.

As explained in Section 3.1, we want to view V , around most of its points, as the graph
of a locally defined mapping. We now define this mapping.

I Lemma 3.3. For each point v ∈ V \V0, there is an open neighborhood Nv ⊂ C8 of
v such that V0 ∩ Nv = ∅, and an analytic mapping Φv : π1(Nv) → π2(Nv), such that
V ∩Nv = {(u,Φv(u)) | u ∈ π1(Nv)}.

Proof. Let v = (a, a′, b, b′, c1, c2, c3, c4) ∈ V \V0 be an arbitrary point. We apply the implicit
function theorem (see [5]) to the equation F (x, y, z1) = 0 at the point (a, b, c1). Since v 6∈ V0,
we have F3(a, b, c1) 6= 0. We thus obtain neighborhoods U of (a, b) in C2 and V of c1 in C,
and an analytic mapping g1 : U → V such that

{(x, y, z1) ∈ U × V | F (x, y, z1) = 0} = {(x, y, g1(x, y)) | (x, y) ∈ U}.

We can do the same at each of the points (a, b′, c2), (a′, b, c3), (a′, b′, c4), leading to
analogous mappings g2, g3, g4. It follows that we can find neighborhoods N1 of a, N2 of a′,
N3 of b, and N4 of b′, such that the mapping

Φv : (x, x′, y, y′) 7→
(
g1(x, y), g2(x, y′), g3(x′, y), g4(x′, y′)

)
is defined and analytic over N1 ×N2 ×N3 ×N4. Then

Nv := (N1 ×N2 ×N3 ×N4)× Φv(N1 ×N2 ×N3 ×N4)

is a neighborhood of v in C8 satisfying the conclusion of the lemma. If needed, we can shrink
it to be disjoint from V0. J

Let G be the polynomial in C[x, x′, y, y′, z1, z2, z3, z4] given by

G = F2(x, y, z1)F1(x, y′, z2)F1(x′, y, z3)F2(x′, y′, z4)
− F1(x, y, z1)F2(x, y′, z2)F2(x′, y, z3)F1(x′, y′, z4).

Consider the subvariety W := V ∩ Z(G) of V . The significance of W (and of G) lies in the
following lemma.

I Lemma 3.4. For v ∈ V \V0 we have v ∈W if and only if det(JΦv (π1(v))) = 0.

SoCG’15

530 Polynomials Vanishing on Cartesian Products: The Elekes-Szabó Theorem Revisited

Proof. We write gij for the derivative of the function gi (from the proof of Lemma 3.3), within
its domain of definition, with respect to its jth variable, for i = 1, 2, 3, 4, and j = 1, 2. The
Jacobian matrix of Φv, evaluated at u = (x, x′, y, y′) ∈ π1(Nv), where Nv is the neighborhood
of v given in Lemma 3.3, equals

JΦv
(u) =

g11(x, y) g21(x, y′) 0 0

0 0 g31(x′, y) g41(x′, y′)
g12(x, y) 0 g32(x′, y) 0

0 g22(x, y′) 0 g42(x′, y′)

 , (2)

or, by implicit differentiation,

JΦv
(u) =

−F1(x,y,z1)
F3(x,y,z1) −F1(x,y′,z2)

F3(x,y′,z2) 0 0
0 0 −F1(x′,y,z3)

F3(x′,y,z3) −F1(x′,y′,z4)
F3(x′,y′,z4)

−F2(x,y,z1)
F3(x,y,z1) 0 −F2(x′,y,z3)

F3(x′,y,z3) 0
0 −F2(x,y′,z2)

F3(x,y′,z2) 0 −F2(x′,y′,z4)
F3(x′,y′,z4)

 ,

for z1 = g1(x, y), z2 = g2(x, y′), z3 = g3(x′, y), and z4 = g4(x′, y′). Since Nv ∩ V0 = ∅,
all the denominators are non-zero (and, for that matter, also all the numerators). Write
v = (a, a′, b, b′, c1, c2, c3, c4). Computing this determinant explicitly at the point u = π1(v) =
(a, a′, b, b′), noticing that by construction c1 = g1(a, b), c2 = g2(a, b′), c3 = g3(a′, b), and
c4 = g4(a′, b′), and clearing denominators, gives exactly G(v), where G is the polynomial
defining W . Thus, det JΦv

(π1(v)) = 0 if and only if G(v) = 0. J

3.3 The varieties Vγ
We now make precise what it means for a popular curve to be infinitely popular.

I Definition 3.5. Let γ ⊂ C2 be an irreducible curve. An irreducible curve γ∗ ⊂ C2 is an
associated curve of γ if for all but finitely many (y, y′) ∈ γ∗ we have γ ⊂ γy,y′ .

Throughout this section, we will let γ denote a popular curve and γ∗ an associated curve of
γ. In Section 3.4, we will show that every γ has at least one associated curve. With each
γ ∈ C, we associate the variety

Vγ := Cl
(
V ∩ (C2 × γ∗r × γr × γr)

)
⊂ C8,

where γ∗ is any curve associated to γ, and γ∗r , γr denote the subsets of regular points of
γ∗, γ, respectively. It easily follows from the definition of V that, for most regular points
(z1, z2), (z3, z4) ∈ γr and for most regular points (y, y′) ∈ γ∗, there exist x, x′ ∈ C such that
(x, x′, y, y′, z1, z2, z3, z4) ∈ Vγ . We have the following key property.

I Lemma 3.6. For all γ ∈ C we have Vγ ⊂W ∪ V0.

Proof. It is sufficient to show that

V ′γ := V ∩ (C2 × γ∗r × γr × γr) ⊂W ∪ V0.

For this, let v ∈ V ′γ\V0. Then Lemma 3.3 gives an open neighborhood Nv of v, disjoint from
V0, so that V ∩Nv is the graph of an analytic map Φv : B1 → B2, where B1 := π1(Nv) and
B2 := π2(Nv).

O. E. Raz, M. Sharir, and F. de Zeeuw 531

Assume, for contradiction, that v 6∈W . Then Lemma 3.4 gives det(JΦv (π1(v))) 6= 0. By
the inverse mapping theorem (see [5]), Φv is bianalytic on a sufficiently small neighborhood
of π1(v), which, by shrinking Nv if needed, we may assume to be B1.

Consider the mapping Φv := Φv ◦ π1 restricted to V ∩Nv. Note that Φv is bianalytic.
Indeed, π1 restricted to V ∩Nv is clearly bianalytic (its inverse is u 7→ (u,Φv(u))), so Φv is
the composition of two bianalytic functions, hence itself bianalytic. By definition of Vγ we
have Φv(Vγ ∩Nv) ⊂ γ × γ.

Write v = (a, a′, b, b′, c1, c2, c3, c4), and note that, by the definition of V ′γ , (c1, c2), (c3, c4)
are regular points of γ and (b, b′) is a regular point of γ∗. We claim that there exists an open
N ⊂ Nv such that Vγ ∩ N is locally three-dimensional. Indeed, we may assume, without
loss of generality, that none of the tangents to γ at (c1, c2), (c3, c4), and to γ∗ at (b, b′) are
vertical in the respective planes (otherwise, we simply switch the roles of the first and the
second coordinate in the relevant copy of C2). Applying the implicit function theorem (see
[5]) to γ and γ∗ at these regular points, we may therefore write z2 = ρ1(z1), z4 = ρ2(z3), and
y′ = ρ3(y) in sufficiently small neighborhoods of (b, b′), (c1, c2), (c3, c4), along the respective
curves, for analytic functions ρ1, ρ2, ρ3. Similarly, applying the implicit function theorem
to Z(F) in sufficiently small neighborhoods of (a, b, c1), (a′, b, c3) (which we may, since we
are away from V0), we may write x = σ1(y, z1), x′ = σ2(y, z3), for analytic functions σ1, σ2.
Combining the functions above, we obtain an open neighborhood N of v such that the map

(y, z1, z3) 7→ (σ1(y, z1), σ2(y, z3), y, ρ3(y), z1, ρ1(z1), z3, ρ2(z3))

is bianalytic from an open neighborhood of (b, c1, c3) to Vγ ∩N . This implies that Vγ ∩N is
locally three-dimensional. Since γ × γ has local dimension 2 at every pair of regular points,
and Φv preserves local dimension, since it is bianalytic, this yields a contradiction, which
completes the proof of the lemma. J

I Lemma 3.7. If γ ∈ C is not an axis-parallel line, then Cl(π1(Vγ)) = C2 × γ∗.

Proof. We clearly have π1(Vγ) ⊂ π1(C2 × γ∗ × γ × γ) = C2 × γ∗, so, since C2 × γ∗ is a
variety, we get Cl(π1(Vγ)) ⊂ C2 × γ∗.

By definition, there is a finite subset S ⊂ γ∗ such that, for all (b, b′) ∈ γ∗\S, γ ⊂ γb,b′ ; fix
such a point (b, b′) which is also a regular point of γ∗. Then, by definition of V , it is easily
checked that

π1(Vγ) ∩ Z(y − b, y′ − b′) ⊃ βb,b′ × βb,b′ × {(b, b′)},

where βb,b′ := {x ∈ C | ∃(c1, c2) ∈ γr such that F (x, b, c1) = F (x, b′, c2) = 0}. Since γ is not
a line parallel to any of the axes,1 one can show (details in the full version) that Cl(βb,b′) = C.
Hence

Cl(π1(Vγ)) ⊃ Cl
(⋃

(b,b′)∈γ∗r \S

βb,b′ × βb,b′ × {(b, b′)}
)
⊃

⋃
(b,b′)∈γ∗r \S

Cl
(
βb,b′ × βb,b′ × {(b, b′)}

)
= C2 × Cl

(⋃
(b,b′)∈γ∗r \S

{(b, b′)}
)

= C2 × Cl
(
γ∗r\S

)
= C2 × γ∗,

using that the closure of an infinite union contains the union of the closures, and that the
closure of a product is the product of the closures. This completes the proof of the lemma. J

1 If γ were such a line, one of the equations, say F (x, b, c1) = 0 would have a fixed value of c1, and only
Od(1) values of x.

SoCG’15

532 Polynomials Vanishing on Cartesian Products: The Elekes-Szabó Theorem Revisited

3.4 The associated curves
In this section we show that if a curve γ is popular, then it has at least one associated curve,
of the sort defined in Definition 3.5. First we need the following sharpened form of Bézout’s
inequality for many curves. A proof can be found in Tao [15].

I Lemma 3.8 (Bézout for many curves). If F is a (possibly infinite) family of algebraic curves
in C2, each of degree at most δ, then deg

(⋂
C∈F C

)
≤ δ2. In other words, either

⋂
C∈F C is

0-dimensional and has cardinality at most δ2, or it has dimension 1 and degree at most δ2.

Recall that C is the set of popular curves, i.e., irreducible curves γ that are contained in
γy,y′ for more than d4 points (y, y′) ∈ C2\S (where S is the set constructed in Section 2).
Lemma 3.9 strengthens this property, by showing that if γ is popular, then there is a
1-dimensional set of curves γy,y′ that contain γ.

I Lemma 3.9. Every γ ∈ C has at least one associated curve. More precisely, for every
γ ∈ C there exists an algebraic curve γ∗ ⊂ C2 of degree at most d2 such that for all but
finitely many (y, y′) ∈ γ∗ we have γ ⊂ γy,y′ .

Proof. By definition of C, if γ ∈ C, then there exists a set I ⊂ C2\S of size |I| = d4 + 1 such
that γ ⊂ γy,y′ for all (y, y′) ∈ I. This means that for all (y, y′) ∈ I and for all but finitely
many (z, z′) ∈ γ, there is an x ∈ C such that F (x, y, z) = F (x, y′, z′) = 0, which implies that
(y, y′) ∈ γ∗z,z′ . Thus we have I ⊂ γ∗z,z′ for all but finitely many (z, z′) ∈ γ.

Let F be the infinite family of curves γ∗z,z′ over all (z, z′) ∈ γ satisfying I ⊂ γ∗z,z′ , and
define SI :=

⋂
γ∗

z,z′
∈F γ

∗
z,z′ . Then we have I ⊂ SI . Since all the curves in F have degree at

most d2, Lemma 3.8 implies that SI has degree at most d4. Since |I| > d4, SI must have
dimension 1. Let γ∗ be any irreducible component of SI .

If (y, y′) ∈ γ∗, then for all but finitely many (z, z′) ∈ γ we have (y, y′) ∈ γ∗z,z′ . It follows
that for all but finitely many (y, y′) ∈ γ∗, and for all but finitely many (z, z′) ∈ γ (where the
excluded points (z, z′) depend on the choice of (y, y′)), we have (z, z′) ∈ γy,y′ . Since both
γ and γy,y′ are algebraic curves, and γ is irreducible, we have γ ⊂ γy,y′ for all but finitely
many (y, y′) ∈ γ∗. This means γ∗ is an associated curve of γ. J

3.5 Case 1: dim Cl(π1(W)) ≤ 3 implies few popular curves
Throughout this subsection we assume that dim Cl(π1(W)) ≤ 3, and establish the existence
of the set X in Proposition 2.3(a).

As the statement of Lemma 3.7 suggests, popular curves that are axis-parallel lines require
a different treatment, provided by the following simple lemma, whose proof we omit.

I Lemma 3.10. There is a 1-dimensional variety X1 ⊂ C2 with deg(X1) = O(d2) containing
S, such that, for every (y1, y2) ∈ C2\X1, the curve γy1,y2 contains no axis-parallel line.

We also need the following observation.

I Lemma 3.11. An irreducible curve γ∗ is associated to at most d2 curves γ ∈ C.

Proof. Suppose there is a set C′ of d2 + 1 distinct curves γ ∈ C that γ∗ is associated to.
For each γ ∈ C′, we have that, for all but finitely many (y, y′) ∈ γ∗, γ is contained in γy,y′ .
It follows that there is a point (y, y′) ∈ γ∗ such that γ ⊂ γy,y′ for all γ ∈ C′. This is a
contradiction, because γy,y′ has at most d2 irreducible components. J

We are now ready to prove the key fact that the number of popular curves is bounded.

O. E. Raz, M. Sharir, and F. de Zeeuw 533

I Lemma 3.12. There are O(d7) distinct popular curves γ ∈ C that are not axis-parallel lines,
and there are O(d5) distinct associated curves of popular curves that are not axis-parallel
lines.

Proof. Let γ ∈ C, assume that it is not an axis-parallel line, and let γ∗ be an associated
curve of γ. Since γ∗ is irreducible, C2 × γ∗ is an irreducible variety. Using Lemma 3.7 and
Lemma 3.6, we have

C2 × γ∗ = Cl(π1(Vγ)) ⊂ Cl(π1(W ∪ V0)) = X ∪ Y,

for X := Cl(π1(W)) and Y := Cl(π1(V0)). We have dim(X) ≤ 3 by the assumption
in this subsection, and dim(Y) ≤ 3 by Lemma 3.2. We also have deg(X) = O(d5) and
deg(Y) = O(d5), since both are unions of closures of projections of varieties defined by five
polynomials, each of degree at most O(d). Since X ∪ Y is at most 3-dimensional, and each
C2 × γ∗ is an irreducible 3-dimensional subvariety of X ∪ Y , it follows that C2 × γ∗ is one of
the finitely many irreducible components of X ∪ Y .

Let T be the set of all associated curves of all curves γ ∈ C (excluding γ that are
axis-parallel lines). The preceding argument shows that T is a finite set. Moreover, we have∑

γ∗∈T
deg(γ∗) =

∑
γ∗∈T

deg(C2 × γ∗) ≤ deg(X ∪ Y) = O(d5).

This implies that the total number of distinct associated curves is O(d5). Since by Lemma
3.9 each popular curve has at least one associated curve, and by Lemma 3.11 each associated
curve is associated to at most d2 popular curves, it follows that the number of popular curves
is bounded by O(d7). J

Finally, we show that the union of all the associated curves (which are not axis-parallel
lines) has bounded degree.

I Lemma 3.13. Let X2 := Cl({(y, y′) ∈ C2 | ∃γ ∈ C, not axis-parallel line, s.t. γ ⊂ γy,y′}).
Then X2 is 1-dimensional; its purely 1-dimensional component has degree O(d7), and the
number of 0-dimensional components is O(d11).

Proof. Any 1-dimensional irreducible component of X2 is an associated curve. By Lemma
3.12, there are O(d5) associated curves γ∗, and by Lemma 3.9 each is of degree at most
O(d2). This implies that union of the purely 1-dimensional components of X2 has degree
O(d7).

We next bound the number of 0-dimensional components of X2. By Lemmas 3.11 and
3.12, the number of popular curves γ ∈ C is at most O(d7). We show that, for each of them,
the number of isolated points outside the associated curves is at most d4. Let γ ∈ C and let
I ⊂ C2\S denote the set consisting of isolated points, such that γ ⊂ γy,y′ for all (y, y′) ∈ I.
Exactly as in the proof of Lemma 3.9, there is a set SI , which is the intersection of an infinite
family of curves γ∗z,z′ containing I. Thus we have I ⊂ SI . By Lemma 3.8, SI has degree at
most d4, and therefore contains at most d4 isolated points. J

We put X := X1 ∪ X2. Combining Lemma 3.10 and Lemma 3.13, we get dim(X) = 1 and
deg(X) = O(d11). From the definitions of X1 and X2 it is clear that for (y, y′) 6∈ X , the curve
γy,y′ does not contain any popular curve. This completes the proof of Proposition 2.3(a) in
Case 1. Proposition 2.3(b) is proved in a fully symmetric manner.

SoCG’15

534 Polynomials Vanishing on Cartesian Products: The Elekes-Szabó Theorem Revisited

3.6 Case 2: dim Cl(π1(W)) = 4 implies a special form of F
Throughout this subsection we assume that dim Cl(π1(W)) = 4. By definition, W ⊂ V , and
we already know that dimV = 4, so W must be four-dimensional too, which implies that
there exists an irreducible component V ′ ⊂W such that dimV ′ = 4 and Cl(π1(V ′)) = C4.
We will work only with V ′ in the rest of this subsection. We first show that most points of
Z(F), excluding only a lower-dimensional subset, can be extended to points of V ′, in the
following sense.

I Lemma 3.14. There exists a one-dimensional subvariety Z0 ⊂ Z(F) such that, for every
(a, b, c1) ∈ Z(F)\Z0, there exist a′, b′, c2, c3, c4 such that (a, a′, b, b′, c1, c2, c3, c4) is a regular
point of V ′ which is not in V0.

Proof. Let ρ : C8 → C6 be the (permuted) projection map ρ : (x, x′, y, y′, z1, z2, z3, z4) 7→
(x, y, z1, x

′, y′, z4). We claim that Cl(ρ(V ′)) = Z(F) × Z(F). Since Z(F) × Z(F) is four-
dimensional and irreducible, and since, by definition of V , ρ(V ′) ⊂ Z(F)× Z(F), it suffices
to prove that Cl(ρ(V ′)) is four-dimensional. We observe that σ(ρ(V ′)) = π1(V ′), where
σ : (x, y, z1, x

′, y′, z4) 7→ (x, x′, y, y′). Because projections cannot increase dimension, we have
dim Cl(ρ(V ′)) ≥ dim Cl(π1(V ′)) = 4, proving our claim.

By the standard properties of the closure operation, U1 := Cl
(
(Z(F)× Z(F))\ρ(V ′)

)
=

Cl
(
Cl(ρ(V ′))\ρ(V ′)

)
is at most three-dimensional, and U2 := Cl(ρ(V0 ∩ V ′)) is clearly also

at most three-dimensional. Since V ′ is irreducible, the subvariety V ′s of singular points of V ′
is at most three-dimensional, so U3 := Cl(ρ(V ′s)) is also at most three-dimensional. Hence,
U := U1 ∪ U2 ∪ U3 is a variety in C6 of dimension at most 3. We set

Z ′0 : = {p ∈ Z(F) | dim (({p} × Z(F)) ∩ U) ≥ 2} .

In other words (using the fact that {p} × Z(F) is irreducible), p ∈ Z ′0 if and only if
{p} × Z(F) ⊂ U , so Z ′0 × Z(F) ⊂ U . Since U is a variety, we have Cl(Z ′0) × Z(F) =
Cl(Z ′0 × Z(F)) ⊂ U . Since U is at most three-dimensional and Z(F) is two-dimensional, we
must have that, for Z0 := Cl(Z ′0), dimZ0 ≤ 1.

Finally, let (a, b, c1) ∈ Z(F)\Z0. By definition of Z0, we have

dim (({(a, b, c1)} × Z(F)) ∩ U) ≤ 1.

Thus there exists a point (a, b, c1, a′, b′, c4) ∈ (Z(F) × Z(F))\U . By definition of U , this
implies that (a, b, c1, a′, b′, c4) ∈ ρ(V ′)\U , which in turn means that there exist c2, c3 ∈ C
such that (a, a′, b, b′, c1, c2, c3, c4) ∈ V ′\V0 is a regular point of V ′, as asserted. J

Let Z0 be the variety given by Lemma 3.14.

I Lemma 3.15. Let u = (a, b, c1) ∈ Z(F)\Z0. Then there exist open sets Di ⊂ C and
analytic functions ϕi : Di → C, for i = 1, 2, 3, such that (a, b, c1) ∈ D1 ×D2 ×D3 and

(x, y, z) ∈ Z(F) if and only if ϕ1(x) + ϕ2(y) + ϕ3(z) = 0,

for every (x, y, z) ∈ D1 ×D2 ×D3.

Proof. By applying Lemma 3.14 to u = (a, b, c1), we obtain a′, b′, c2, c3, c4 ∈ C, such that
v := (a, a′, b, b′, c1, c2, c3, c4) ∈ V ′\V0 is a regular point of V ′. By Lemma 3.3, there exist
neighborhoods D1 of a, D2 of a′, E1 of b, and E2 of b′, and a mapping

Φv : (x, x′, y, y′) 7→
(
g1(x, y), g2(x, y′), g3(x′, y), g4(x′, y′)

)
,

O. E. Raz, M. Sharir, and F. de Zeeuw 535

analytic over D1×D2×E1×E2, such that its graph is the intersection V ∩Nv, for some open
neighborhood Nv of v in C8 (whose π1-projection is D1 ×D2 ×E1 ×E2). Note that, since
v is a regular point of V ′, V ′ ∩Nv is necessarily four-dimensional, and so it must coincide
with V ∩Nv. Thus, restricting the analysis to the neighborhood Nv, we may use V and V ′
interchangeably in what follows.

Since V ′ ⊂W , we have, recalling the definition of the variety W , that

G(x, x′, y, y′, z1, z2, z3, z4) = 0,

for every (x, x′, y, y′, z1, z2, z3, z4) ∈ V ′ ∩Nv. By the implicit function theorem, the functions
g1, . . . , g4 satisfy, in a suitable neighborhood of v, g1i(x, y) = − Fi(x,y,g1(x,y))

F3(x,y,g1(x,y)) , and similarly
for g2, g3, g4. By the definition of G, this is easily seen to imply that

g11(x, y)g22(x, y′)g32(x′, y)g41(x′, y′) = g12(x, y)g21(x, y′)g31(x′, y)g42(x′, y′),

for every (x, x′, y, y′) ∈ D1 ×D2 × E1 × E2. In particular, fixing x′ = a′ and y′ = b′, there
exists an open neighborhood D1 ×D2 of (a, b) ∈ C2, such that, for every (x, y) ∈ D1 ×D2,

g11(x, y)g22(x, b′)g32(a′, y)g41(a′, b′) = g12(x, y)g21(x, b′)g31(a′, y)g42(a′, b′). (3)

Because v 6∈ V0, we have g11(a, b) = −F1(a,b,c1)
F3(a,b,c1) 6= 0. Similarly, g22(a, b′), g32(a′, b),

g41(a′, b′), g12(a, b), g21(a, b′), g31(a′, b), and g42(a′, b′) are all nonzero. The continuity of all
the relevant functions implies that, by shrinking D1 ×D2 if needed, we may assume that
neither side of (3) is zero for any (x, y) ∈ D1 ×D2. Thus we can rewrite (3) as

g11(x, y)
p(x) = g12(x, y)

q(y) , (4)

where p(x) = g21(x, b′)g42(a′, b′)/g22(x, b′) is analytic and nonzero on D1 and q(y) =
g32(a′, y)g41(a′, b′)/g31(a′, y) is analytic and nonzero on D2. By Lang [7, Theorem III.6.1],
there exist analytic primitives ϕ1, ϕ2 so that ϕ′1(x) = p(x) on D1 and ϕ′2(y) = q(y) on D2.

We express the function g1(x, y) in terms of new coordinates (ξ, η), given by

ξ = ϕ1(x) + ϕ2(y), η = ϕ1(x)− ϕ2(y). (5)

Since p, q are continuous and nonzero at a, b, respectively, it follows that ϕ1, ϕ2 are injections
in suitable respective neighborhoods of a, b, so by shrinking D1 and D2 still further, if needed,
we may assume that the system (5) is invertible in D1 ×D2.

Returning to the standard notation, denoting partial derivatives by variable subscripts,
we have ξx = ϕ′1(x), ξy = ϕ′2(y), ηx = ϕ′1(x), and ηy = −ϕ′2(y). Using the chain rule, we
obtain

g11 = g1ξξx + g1ηηx = ϕ′1(x)(g1ξ + g1η) = p(x)(g1ξ + g1η)

g12 = g1ξξy + g1ηηy = ϕ′2(y)(g1ξ − g1η) = q(y)(g1ξ − g1η),

which gives g11(x, y)
p(x) − g12(x, y)

q(y) ≡ 2g1η(x, y), on D1 × D2. Combining this with (4), we

get g1η(x, y) ≡ 0. This means that g1 depends only on the variable ξ, so it has the form
g1(x, y) = ψ(ϕ1(x)+ϕ2(y)), for a suitable analytic function ψ. The analyticity of ψ is an easy
consequence of the analyticity of ϕ1, ϕ2, and g1, and the fact that ϕ′1(x) and ϕ′2(y) are nonzero,
combined with repeated applications of the chain rule. Let E := {ϕ1(x) + ϕ2(y) | (x, y) ∈
D1×D2} and D3 := {ψ(z) | z ∈ E}. We observe that g11(x, y) = ψ′(ϕ1(x)+ϕ2(y)) ·p(x). As

SoCG’15

536 Polynomials Vanishing on Cartesian Products: The Elekes-Szabó Theorem Revisited

argued above, we have g11(x, y) 6= 0 for all (x, y) ∈ D1×D2, implying that ψ′(ϕ1(x) +ϕ2(y))
is nonzero for (x, y) ∈ D1 ×D2. Therefore, ψ : E → D3 is invertible by the inverse mapping
theorem (see [5]).

Letting ϕ3(z) := −ψ−1(z), we get for (x, y, z) ∈ D1×D2×D3 that ϕ1(x)+ϕ2(y)+ϕ3(z) =
0 if and only if (x, y, z) ∈ Z(F)∩ (D1×D2×D3). This completes the proof of the lemma. J

Finally, Lemma 3.15 has established that F satisfies property (ii) of the theorem, which
completes the proof of Proposition 2.3 for this case. J

Acknowledgements. Part of this research was performed while the authors were visiting
the Institute for Pure and Applied Mathematics (IPAM), which is supported by the National
Science Foundation. The authors deeply appreciate the stimulating environment and facilities
provided by IPAM, which have facilitated the intensive and productive collaboration that
have lead to this paper. The authors would also like to thank Hong Wang, Kaloyan Slavov
and József Solymosi for several helpful discussions. Some of the insights in our analysis were
inspired by talks given by Terry Tao at IPAM about his work [14].

References
1 G. Elekes and L. Rónyai, A combinatorial problem on polynomials and rational functions,

J. Combinat. Theory Ser. A 89 (2000), 1–20.
2 G. Elekes and E. Szabó, How to find groups? (And how to use them in Erdős geometry?),

Combinatorica 32 (2012), 537–571.
3 G. Elekes and E. Szabó, On triple lines and cubic curves: The Orchard Problem revisited,

in arXiv:1302.5777 (2013).
4 G. Elekes, M. Simonovits, and E. Szabó, A combinatorial distinction between unit circles

and straight lines: How many coincidences can they have?, Combinat. Probab. Comput. 18
(2009), 691–705.

5 K. Fritzsche and H. Grauert, From Holomorphic Functions to Complex Manifolds, Springer-
Verlag, New York, 2002.

6 L. Guth and N. H. Katz, On the Erdős distinct distances problem in the plane, Annals
Math. 18 (2015), 155–190.

7 S. Lang, Complex Analysis, Springer-Verlag, New York, 1999.
8 J. Pach and F. de Zeeuw, Distinct distances on algebraic curves in the plane, in

arXiv:1308.0177 (2013).
9 O. E. Raz, M. Sharir, and J. Solymosi, Polynomials vanishing on grids: The Elekes-Rónyai

problem revisited, Amer. J. Math., to appear. Also in Proc. 30th Annu. Sympos. Comput.
Geom., 2014, 251–260. Also in arXiv:1401.7419 (2014).

10 O. E. Raz, M. Sharir, and J. Solymosi, On triple intersections of three families of unit cir-
cles, Proc. 30th Annu. Sympos. Comput. Geom., 2014, 198–205. Also in arXiv:1407.6625
(2014).

11 M. Sharir, A. Sheffer, and J. Solymosi, Distinct distances on two lines, J. Combinat. Theory
Ser. A 120 (2013), 1732–1736.

12 M. Sharir and J. Solymosi, Distinct distances from three points, Combinat. Probab. Com-
put., to appear. Also in arXiv:1308.0814 (2013).

13 J. Solymosi and F. de Zeeuw, Incidence bounds for complex algebraic curves on Cartesian
products, in arXiv:1502.05304 (2015).

14 T. Tao, Expanding polynomials over finite fields of large characteristic, and a regularity
lemma for definable sets, in arXiv:1211.2894 (2012).

15 T. Tao, Bézout’s inequality,
http://terrytao.wordpress.com/2011/03/23/bezouts-inequality.

http://terrytao.wordpress.com/2011/03/23/bezouts-inequality

Bisector Energy and Few Distinct Distances∗

Ben Lund1, Adam Sheffer2, and Frank de Zeeuw3

1 Rutgers University, USA, lund.ben@gmail.com
2 California Institute of Technology, USA, adamsh@gmail.com
3 École Polytechnique Fédérale de Lausanne, Switzerland, fdezeeuw@gmail.com

Abstract
We define the bisector energy E(P) of a set P in R2 to be the number of quadruples (a, b, c, d) ∈ P4

such that a, b determine the same perpendicular bisector as c, d. Equivalently, E(P) is the number
of isosceles trapezoids determined by P. We prove that if no line or circle contains M(n) points
of an n-point set P, then for any ε > 0 we have

E(P) = O
(
M(n) 2

5n
12
5 +ε +M(n)n2

)
.

We derive the lower bound E(P) = Ω(M(n)n2), matching our upper bound when M(n) is large.
We use our upper bound on E(P) to obtain two rather different results:

(i) If P determines O(n/
√

logn) distinct distances, then for any 0 < α ≤ 1/4, there exists a
line or circle that contains at least nα points of P, or there exist Ω(n8/5−12α/5−ε) distinct
lines that contain Ω(

√
logn) points of P. This result provides new information towards a

conjecture of Erdős [7] regarding the structure of point sets with few distinct distances.
(ii) If no line or circle containsM(n) points of P, the number of distinct perpendicular bisectors

determined by P is Ω
(
min

{
M(n)−2/5n8/5−ε,M(n)−1n2}).

1998 ACM Subject Classification G.2 Discrete Mathematics

Keywords and phrases Combinatorial geometry, distinct distances, incidence geometry

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.537

1 Introduction

Guth and Katz [11] proved that every set of n points in R2 determines Ω(n/ logn) distinct
distances. This almost completely settled a conjecture of Erdős [5], who observed that the√
n×
√
n integer lattice determines Θ(n/

√
logn) distances, and conjectured that every set

of n points determines at least this number of distances. Beyond the remaining
√

logn gap,
this leaves open the question of which point sets determine few distances. Erdős [7] asked
whether every set that determines O(n/

√
logn) distances “has lattice structure”. He then

wrote: “The first step would be to decide if there always is a line which contains cn1/2 of the
points (and in fact nε would already be interesting).”

Embarrassingly, almost three decades later the bound nε seems as distant as it ever was.
The following bound is a consequence of an argument of Szemerédi, presented by Erdős [6].

∗ Part of this research was performed while the authors were visiting the Institute for Pure and Applied
Mathematics (IPAM) in Los Angeles, which is supported by the National Science Foundation. Work on
this paper by Frank de Zeeuw was partially supported by Swiss National Science Foundation Grants
200020-144531 and 200021-137574. Work on this paper by Ben Lund was supported by NSF grant
CCF-1350572.

© Ben Lund, Adam Sheffer, and Frank de Zeeuw;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 537–552

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.537
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

538 Bisector Energy and Few Distinct Distances

I Theorem 1.1 (Szemerédi). If a set P of n points in R2 determines O(n/
√

logn) distances,
then there exists a line containing Ω(

√
logn) points of P.

Recently, it was noticed that this bound can be slightly improved to Ω(logn) points on a
line (see [19]). Assuming that no line contains an asymptotically larger number of points,
one can deduce the existence of Ω(n/ logn) distinct lines that contain Ω(logn) points of
P. By inspecting Szemerédi’s proof, it is also apparent that these lines are perpendicular
bisectors of pairs of points of P.

This problem was recently approached from the other direction in [15, 16, 20]. Combining
the results of these three papers implies the following. If an n-point set P ⊂ R2 determines
o(n) distances, then no line contains Ω(n43/52+ε) points of P, no circle contains Ω(n5/6)
points, and no other constant-degree irreducible algebraic curve contains Ω(n3/4) points.

In the current paper we study a different aspect of sets with few distinct distances. Our
main tool is a bound on the bisector energy of the point set (see below for a formal definition).
Using this tool, we prove that if a point set P determines O(n/

√
logn) distinct distances,

then there exists a line or a circle with many points of P, or the number of lines containing
Ω(
√

logn) points must be significantly larger than implied by Theorem 1.1. As another
application of bisector energy, we prove that if no line or circle contains many points of a
point set P, then P determines a large number of distinct perpendicular bisectors. We will
provide more background to both results after we have properly stated them.

2 Results

Bisector energy. Given two distinct points a, b ∈ R2, we denote by B(a, b) their perpendic-
ular bisector (i.e., the line consisting of all points that are equidistant from a and b); for
brevity, we usually refer to it as the bisector of a and b. We define the bisector energy of P as

E(P) = p
∣∣{(a, b, c, d) ∈ P4 : a 6= b, c 6= d, and B(a, b) = B(c, d)

}∣∣ .
Equivalently, E(P) is the number of isosceles trapezoids determined by P (not counting
isosceles triangles).1 In Section 3, we prove the following upper bound on this quantity.

I Theorem 2.1. Let M(n) be an arbitrary function with positive values. For any n-point
set P ⊂ R2, such that no line or circle contains M(n) points of P, we have2

E(P) = O
(
M(n) 2

5n
12
5 +ε +M(n)n2

)
.

The bound of Theorem 2.1 is dominated by its first term when M(n) = O(n2/3+ε′). We note
that one important ingredient of our proof is the result of Guth and Katz [11]; without it, we
would obtain a weaker (although nontrivial) bound on the bisector energy (see the remark at
the end of Section 3.3).

In Section 3.4, we derive a lower bound for the maximum bisector energy. It shows that
Theorem 2.1 is tight when its second term dominates, i.e., when M(n) = Ω(n2/3+ε′).

I Theorem 2.2. For any n and M(n), there exists a set P of n points in R2 such that no
line or circle contains M(n) points of P, and E(P) = Ω

(
M(n)n2).

1 Note that if each distinct pair of points of P determines a distinct bisector, then E(P) = 2n(n− 1), since
quadruples of the form (a, b, a, b), (a, b, b, a), (b, a, a, b), and (b, a, b, a), are counted for every (a, b) ∈ P2.

2 Throughout this paper, when we state a bound involving an ε, we mean that this bound holds for every
ε > 0, with the multiplicative constant of the O()-notation depending on ε.

B. Lund, A. Sheffer, and F. de Zeeuw 539

We conjecture that E(P) = O(M(n)n2) is true for all M(n). In parallel to our work, Hanson,
Iosevich, Lund, and Roche-Newton [12] proved a variant of Theorem 2.1 in F2

q.

Few distinct distances. Pach and Tardos [14] proved that an n-point set P ⊂ R2 determines
O(n2.137) isosceles triangles. They also observed that this bound implies that P contains a
point from which there are Ω(n0.863) distinct distances (a result obtained earlier in [24] and
improved slightly in [13]). Similarly, our upper bound on the number of isosceles trapezoids
determined by a point set P has implications concerning the distinct distances that are
determined by P.

We deduce the following theorem from Theorem 2.1. More precisely, it follows from the
slightly more general Theorem 4.1 that we prove in Section 4.

I Theorem 2.3. Let P ⊂ R2 be a set of n points that spans O(n/
√

logn) distinct distances.
For any 0 < α ≤ 1/4, at least one of the following holds (with constants independent
of α).
(i) There exists a line or a circle containing Ω(nα) points of P.
(ii) There are Ω(n 8

5−
12α

5 −ε) lines that contain Ω(
√

logn) points of P.

If our conjecture that E(P) = O(M(n)n2) is true, alternative (ii) in the conclusion of
Theorem 2.3 improves to Ω(n2−3α logn) lines that contain Ω(

√
logn) points of P.

We believe that Theorem 2.3 is a step towards Erdős’s lattice conjecture. We mention
several recent results and conjectures that together paint an interesting picture.

Green and Tao [10] proved that, given an n-point set in R2 such that more than n2/6−O(n)
lines contain at least three of the points, most of the points must lie on a cubic curve (an
algebraic curve of degree at most three). Elekes and Szabó [4] stated the stronger conjecture
that if an n-point set determines Ω(n2) collinear triples, then many of the points lie on
a cubic curve; unfortunately, at this point it is not even known whether there must be a
cubic that contains ten points of the set. Erdős and Purdy [8] conjectured that if n points
determine Ω(n2) collinear quadruples, then there must be five points on a line. If the point
set is already known to lie on a low-degree algebraic curve, then both conjectures hold [4, 18].
On the other hand, Solymosi and Stojaković [21] proved that for any constant k, there are
point sets with Ω(n2−ε) lines with exactly k points, but no line with k + 1 points.

The philosophy of these statements is that if there are many lines containing many points,
then most points must lie on some low-degree algebraic curve. Our result shows that for an
n-point set with few distinct distances, there is a line or circle with very many points, or
else there are many lines with many points. In particular, in the second case there would
be many collinear triples (although not quite as many as Ω(n2)), and many lines with very
many (more than a constant) points. This suggests that few distinct distances should imply
some algebraic structure. Let us pose a specific question: Is there a 0 < β < 1 such that if n
points determine Ω(n1+β) lines with Ω(

√
logn) points, then many of the points must lie on

a low-degree algebraic curve?

Distinct bisectors. Let B(P) be the set of those lines that are (distinct) perpendicular
bisectors of P . Since any point of P determines n− 1 distinct bisectors with the other points
of P , we have a trivial lower bound |B(P)| ≥ n− 1. If P is a set of equally spaced points on
a circle, then |B(P)| = n. Similarly, if P is a set of n equally spaced points on a line, then
|B(P)| = 2n− 3. As we now show, forbidding many points on a line or circle forces |B(P)|
to be significantly larger.

SoCG’15

540 Bisector Energy and Few Distinct Distances

I Theorem 2.4. If an n-point set P ⊂ R2 has no M(n) points on a line or circle, then

|B(P)| = Ω
(

min
{
M(n)− 2

5n
8
5−ε,M(n)−1n2

})
.

Proof. For any line ` ⊂ R2, set E` = {(a, b) ∈ P2 : a 6= b, B(a, b) = `}. By the Cauchy-
Schwarz inequality, we have

E(P) =
∑

`∈B(P)

|E`|2 ≥
1

|B(P)|

 ∑
`∈B(P)

|E`|

2

= Ω
(

n4

|B(P)|

)

Combining this with the bound of Theorem 2.1 immediately implies the theorem. J

We are not aware of any previous bound on the minimum number of distinct bisectors.
Theorem 2.4 is related to a series of results initiated by Elekes and Rónyai [2], studying

the expansion properties of polynomials and rational functions. For instance, in [17] it is
proved that a polynomial function F : R×R→ R takes Ω(n4/3) values on the n2 pairs from
a finite set in R of size n, unless F has a special form. Elekes and Szabó [3] derived, among
other things, the following two-dimensional generalization (rephrased for our convenience,
and omitting some details). If F : R2×R2 → R2 is a rational function that is not of a special
form, and P ⊂ R2 is an n-point set such that no low-degree curve contains many points of
P, then F takes Ω(n1+ε) values on P × P.

Theorem 2.4 proves a better bound for the function B, with a less restrictive condition
on P. If we view a line y = sx+ t as a point (s, t) ∈ R2, then (see the proof of Lemma 3.1)

B(ax, ay, bx, by) =
(
−ax − bx
ay − by

,
(a2
x + a2

y)− (b2x + b2y)
2(ay − by)

)

is a rational function R2 ×R2 → R2. Theorem 2.4 says that B takes many distinct values on
P × P if P has few points on a line or circle. So we have replaced the broad condition of [3]
that not too many points lie on a low-degree curve, with the very specific condition that not
too many points lie on a line or circle.

An incidence bound. To prove Theorem 2.1, we use the incidence bound below. It is a
refined version of a theorem from Fox et al. [9], with explicit dependence on the parameter t,
which we allow to depend on m and n. We reproduce the proof in Section 5 to determine
this dependence. Given a set P ⊂ Rd of points and a set S ⊂ Rd of varieties, the incidence
graph is a bipartite graph with vertex sets P and S, such that (p, S) ∈ P × S is an edge
in the graph if p ∈ S. We write I(P,S) for the number of edges of this graph, or in other
words, for the number of incidences between P and S. We denote the complete bipartite
graph on s and t vertices by Ks,t (in the incidence graph, such a subgraph corresponds to s
points that are contained in t varieties). For the definitions of the algebraic terms in this
statement we refer to [9].

I Theorem 2.5. Let S be a set of n constant-degree varieties and P a set of m points,
both in Rd, such that the incidence graph of P × S contains no copy of Ks,t (where s is
a constant, but t may depend on m,n). Moreover, assume that P ⊂ V , where V is an
irreducible constant-degree variety of dimension e. Then

I(P,S) = O
(
m

s(e−1)
es−1 +εn

e(s−1)
es−1 t

e−1
es−1 + tm+ n

)
.

B. Lund, A. Sheffer, and F. de Zeeuw 541

3 Proof of Theorem 2.1

In this section we prove Theorem 2.1 by relating the bisector energy to an incidence problem
between points and algebraic surfaces in R4. In Section 3.1 we define the surfaces, in Section
3.2 we analyze their intersection properties, and in Section 3.3 we apply the incidence bound
of Theorem 2.5 to prove Theorem 2.1. Finally, in Section 3.4 we derive Theorem 2.2, which
provides a lower bound for Theorem 2.1.

Throughout this section we assume that we have rotated P so that no two points have the
same x- or y-coordinate; in particular, we assume that no perpendicular bisector is horizontal
or vertical.

3.1 Bisector surfaces
Recall that in Theorem 2.1 we consider an n-point set P ⊂ R2. We define

P2∗ = {(a, c) ∈ P2 : a 6= c},

and similarly

P4∗ = {(a, b, c, d) ∈ P4 : a 6= b, c 6= d; a 6= c, b 6= d}.

Also recall that for distinct a, b ∈ P, we denote by B(a, b) the perpendicular bisector of a
and b. We define the bisector surface of a pair (a, c) ∈ P2∗ as

Sac = {(b, d) ∈ R2 × R2 : (a, b, c, d) ∈ P4∗, B(a, b) = B(c, d)},

and we set S = {Sac : (a, c) ∈ P2∗}. The surface Sac is not an algebraic variety (so we are
using the word “surface” loosely), but the lemma below shows that Sac is “close to” a variety
Sac. That Sac is contained in a constant-degree variety of the same dimension is no surprise
(one can take the Zariski closure), but we need to analyze this variety in detail to establish
the exact relationship.

We will work mostly with the surface Sac in the rest of this proof, rather than with the
variety Sac, because its definition is easier to handle. Then, when we apply our incidence
bound, which holds only for varieties, we will switch to Sac. Fortunately, the lemma shows
that this makes no difference in terms of the incidence graph.

I Lemma 3.1. For distinct a, c ∈ P, there exists a two-dimensional constant-degree algebraic
variety Sac such that Sac ⊂ Sac. Moreover, if (b, d) ∈ (Sac\Sac)∩P2∗, then (a, b, c, d) 6∈ P4∗.

Proof. Consider a point (b, d) ∈ Sac. Write the equation defining the perpendicular bisector
B(a, b) = B(c, d) as y = sx+ t. The slope s satisfies

s = −ax − bx
ay − by

= −cx − dx
cy − dy

. (1)

By definition B(a, b) passes through the midpoint ((ax + bx)/2, (ay + by)/2) of a and b, as
well as through the midpoint ((cx + dx)/2, (cy + dy)/2) of c and d. We thus have

ay + by
2 − sax + bx

2 = t = cy + dy
2 − scx + dx

2 . (2)

By combining (1) and (2) we obtain

(ay − by)(c2x + c2y − d2
x − d2

y) = (cy − dy)(a2
x + a2

y − b2x − b2y). (3)

SoCG’15

542 Bisector Energy and Few Distinct Distances

From (1) and (3) we see that (b, d) = (x1, x2, x3, x4) satisfies

fac(x1, x2, x3, x4) = (ax − x1)(cy − x4)− (ay − x2)(cx − x3) = 0,

gac(x1, x2, x3, x4) = (ay − x2)(c2x + c2y − x2
3 − x2

4)− (cy − x4)(a2
x + a2

y − x2
1 − x2

2) = 0.

Since any point (b, d) ∈ Sac satisfies these two equations, we have

Sac ⊂ Z(fac, gac) = Sac.

By reexamining the above analysis, we see that if a point (b, d) ∈ Sac ∩ P2∗ is not in Sac,
we must have ay = by or cy = dy, since then (1) is not well defined. By the assumption that no
two points of P have the same y-coordinate, this implies a = b or c = d, so (a, b, c, d) 6∈ P4∗.

It remains to prove that Sac is a constant-degree two-dimensional variety. The constant
degree is immediate from fac and gac being polynomials of degree at most three. As just
observed, a point (b, d) ∈ Sac\Sac satisfies ay = by or cy = dy. If ay = by, then for
fac(b, d) = gac(b, d) = 0 to hold, we must have ax = bx or cy = dy. Similarly, If cy = dy, then
cx = dx or ay = by. We see that in each case we get two independent linear equations, which
define a plane, so Sac\Sac is the union of three two-dimensional planes. Thus, it suffices to
prove that Sac is two-dimensional. For this, we simply show that for any valid value of b
there is at most one valid value of d. Let Cac ⊂ R2 denote the circle that is centered at c
and incident to a (here we use a 6= c). It is impossible for b to lie on Cac, since this would
imply that the bisector B(a, b) contains c, and thus that B(a, b) 6= B(c, d). For any choice
of b /∈ Cac, the bisector B(a, b) is well-defined and is not incident to c, so there is a unique
d ∈ R2 with B(a, b) = B(c, d) (i.e., so that (b, d) ∈ Sac). J

3.2 Intersections of bisector surfaces
We denote by Rab the reflection of R2 across the line B(a, b). Observe that if B(a, b) = B(c, d),
then Rab = Rcd, and this reflection maps a to b and c to d; this in turn implies that |ac| = |bd|.
That is, (b, d) ∈ Sac implies |ac| = |bd|. It follows that if |ac| = δ, then the surface Sac is
contained in the hypersurface

Hδ = {(b, d) ∈ R2 × R2 : |bd| = δ}.

We can thus partition S into classes corresponding to the distances δ that are determined by
pairs of points of P. Each class consists of the surfaces Sac with |ac| = δ, all of which are
fully contained in Hδ.

We now study the intersection of the surfaces contained in a common hypersurface Hδ.

I Lemma 3.2. Let (a, c) 6= (a′, c′) and |ac| = |a′c′| = δ 6= 0. Then there exist curves
C1, C2 ⊂ R2, which are either two concentric circles or two parallel lines, such that a, a′ ∈ C1,
c, c′ ∈ C2, and Sac ∩ Sa′c′ is contained in the set

Hδ ∩ (C1 × C2) = {(b, d) ∈ R2 × R2 : b ∈ C1, d ∈ C2, |bd| = δ}.

Proof. We split the analysis into three cases: (i) |B(a, a′)∩B(c, c′)| = 1, (ii) B(a, a′) = B(c, c′),
and (iii) B(a, a′) ∩ B(c, c′) = ∅. The three cases are depicted in Figure 1.

Case (i). Let o = B(a, a′) ∩ B(c, c′). Then there exist two (not necessarily distinct) circles
C1, C2 around o such that a, a′ ∈ C1 and c, c′ ∈ C2 . If (b, d) ∈ Sac ∩ Sa′c′ , then the
reflection Rab maps a to b and c to d, and similarly, Ra′b maps b to a′ and d to c′. We set

B. Lund, A. Sheffer, and F. de Zeeuw 543

a
a′

c′

c

o

Case (i) Case (ii) Case (iii)

c

a

c′

a′
`

c′c

a′a
o

Figure 1 The three cases in the analysis of Lemma 3.2.

T = Ra′b ◦Rab, and notice that this is a rotation whose center o∗ is the intersection point of
B(a, b) = B(c, d) and B(a′, b) = B(c′, d). Note that T(a) = a′ and T(c) = c′, so o∗ lies on
both B(a, a′) and B(c, c′). Since o = B(a, a′) ∩ B(c, c′), we obtain that o = o∗. Since B(a, b)
passes through o, we have that b is incident to C1. Similarly, since B(c, d) passes through o,
we have that d is incident to C2. This implies that (b, d) lies in Hδ ∩ (C1 × C2).

Case (ii). Let ` be the line B(a, a′) = B(c, c′). The line segment ac is a reflection across `
of the line segment a′c′. Thus, the intersection point o of the lines that contains these two
segments is incident to `. Let C1 be the circle centered at o that contains a and a′, and let
C2 be the circle centered at o that contains c and c′. With this definition of o, C1, and C2,
we can repeat the analysis of case (i), obtaining the same conclusion.

Case (iii). In this case B(a, a′) and B(c, c′) are parallel. The analysis of this case is similar
to that in case (i), but with lines instead of circles.

Let C1 be the line that is incident to a and a′, and let C2 be the line that is incident to c
and c′. If (b, d) ∈ Sac ∩ Sa′c′ , then, as before, Rab maps a to b and c to d, and Ra′b maps
b to a′ and d to c′. Since B(a′, b) and B(a, b) are parallel, we have that T = Ra′b ◦Rab is
a translation in the direction orthogonal to these two lines. This implies that b ∈ C1 and
d ∈ C2, which completes the analysis of this case. J

In Section 3.3, we will apply the incidence bound of Theorem 2.5 to the point set
P2∗ = {(b, d) ∈ P2 : b 6= d} and the set of surfaces S. For this we need to show that the
incidence graph contains no complete bipartite graph K2,M ; that is, that for any two points
of P2∗ (where P2∗ is considered as a point set in R4) there is a bounded number of surfaces
of S that contain both points. In the following lemma we prove the more general statement
that the incidence graph contains no copy of K2,M and no copy of KM,2. Note that this is
the only point in the proof of Theorem 2.1 where we use the condition that no M points are
on a line or circle.

I Corollary 3.3. If no line or circle contains M points of P, then the incidence graph of
P2∗ and S contains neither a copy of K2,M nor a copy of KM,2.

Proof. Consider two distinct surfaces Sac, Sa′c′ ∈ S with |ac| = |a′c′| = δ. Lemma 3.2
implies that there exist two lines or circles C1, C2 such that (b, d) ∈ Sac ∩ Sa′c′ only if b ∈ C1
and d ∈ C2. Since no line or circle contains M points of P, we have |C1 ∩ P| < M . Given
b ∈ (C1 ∩ P)\{a}, there is at most one d ∈ P such that B(a, b) = B(c, d), and thus at most
one point (b, d) ∈ Sac. (Notice that no points of the form (a, d) ∈ P2∗ are in Sac.) Thus

|(Sac ∩ Sa′c′) ∩ P2∗| < M.

SoCG’15

544 Bisector Energy and Few Distinct Distances

That is, the incidence graph contains no copy of KM,2.
We now define “dual” surfaces

S∗bd = {(a, c) ∈ R2 × R2 : a 6= b, c 6= d,B(a, b) = B(c, d)},

and set S∗ = {S∗bd : (b, d) ∈ P2∗}. By a symmetric argument, we get

|(S∗bd ∩ S∗b′d′) ∩ P2∗| < M

for all (b, d) 6= (b′, d′). Observe that (a, c) ∈ S∗bd if and only if (b, d) ∈ Sac. Hence, having
fewer than M points (a, c) ∈ (S∗bd∩S∗b′d′)∩P2∗ is equivalent to having fewer than M surfaces
Sac that contain both (b, d) and (b′, d′); i.e., the incidence graph contains no K2,M . J

3.3 Applying the incidence bound
We set

Q = {(a, b, c, d) ∈ P4∗ : B(a, b) = B(c, d)},

and note that |Q|+
(
n
2
)

= E(P), where the term
(
n
2
)
accounts for the quadruples of the form

(a, b, a, b). As we saw in Section 3.2, every quadruple (a, b, c, d) ∈ Q satisfies |ac| = |bd|.
Let δ1, . . . , δD denote the distinct distances that are determined by pairs of distinct points

in P. We partition P2∗ into the disjoint subsets Π1, . . . ,ΠD, where

Πi = {(u, v) ∈ P2∗ : |uv| = δi}.

We also partition S into disjoint subsets S1, . . . ,SD, defined by

Si = {Sac ∈ S : |ac| = δi}.

Let mi be the number of (a, c) ∈ P2∗ such that |ac| = δi. Note that |Πi| = |Si| = mi and∑
mi = n(n− 1).

A quadruple (a, b, c, d) ∈ P4∗ is in Q if and only if the point (b, d) is incident to Sac.
Moreover, there exists a unique 1 ≤ i ≤ D such that (b, d) ∈ Πi and Sac ∈ Si. Therefore, it
suffices to study each Πi and Si separately. That is, we have

|Q| =
D∑
i=1

I(Πi,Si).

We apply our incidence bound to Si, or rather, to the corresponding set of varieties
Si = {Sac : Sac ∈ Si}. By Lemma 3.1, the incidence graph of Πi with Si is the same as with
Si, hence also does not contain a copy of K2,M by Corollary 3.3. Observe that Πi ⊂ Hδi .
The hypersurface Hδi is irreducible, three-dimensional, and of a constant degree, since it
is defined by the irreducible polynomial (x1 − x3)2 + (x2 − x4)2 − δi. Thus we can apply
Theorem 2.5 to each I(Πi,Si), with m = n = mi, V = Hδi , d = 4, e = 3, s = 2, and t = M .
This implies that

I(Πi,Si) = I(Πi,Si) = O
(
M

2
5m

7
5 +ε
i +Mmi

)
. (4)

Let J be the set of indices 1 ≤ j ≤ D for which the bound in (4) is dominated by the
term M

2
5m

7
5 +ε
j . By recalling that

∑D
j=1mj = n(n− 1), we get∑

j 6∈J

I(Πj ,Sj) = O
(
Mn2) .

B. Lund, A. Sheffer, and F. de Zeeuw 545

Next we consider
∑
j∈J I(Πj ,Sj) = O(

∑
j∈JM

2/5m
7/5+ε
j). By [11, Proposition 2.2], we have∑

m2
j = O(n3 logn).

This implies that the number of mj for which mj ≥ x is O(n3 logn/x2). By using a dyadic
decomposition, we obtain

M−2/5n−ε
∑
j∈J

I(Πj ,Sj) = O

 ∑
mj≤∆

m
7/5
j +

∑
k≥1

∑
2k−1∆<mj≤2k∆

m
7/5
j

= O

∆7/5 · n
2

∆ +
∑
k≥1

(2k∆) 7
5 · n

3 logn
(2k∆)2

= O

(
∆2/5n2 + n3 logn

∆3/5

)
.

By setting ∆ = n logn, we have∑
j∈J

I(Πj ,Sj) = O
(
M

2
5n

12
5 +ε log

2
5 n
)

= O
(
M

2
5n

12
5 +ε′

)
.

In conclusion,

E(P) ≤ |Q|+ n2 =
∑
j∈J

I(Πj ,Sj) +
∑
j 6∈J

I(Πj ,Sj) + n2 = O
(
M

2
5n

12
5 +ε′ +Mn2

)
,

which completes the proof of Theorem 2.1.
I Remark (Remark about the incidence bound). Instead of partitioning the problem into D
separate incidence problems, one can apply an incidence bound directly to the point set
P2∗ and the surface set S. Roughly speaking, the best known bounds for incidences with
two-dimensional surfaces in R4, whose incidence graph contains no K2,M , are of the form
|P2∗|2/3|S|2/3. Relying on such an incidence bound (and not using [11]) would yield a bound
|Q| = O(M1/3n8/3 +Mn2) = O(M1/3n8/3), which is nontrivial but weaker than our bound.

3.4 A lower bound for E(P)
In this section we prove Theorem 2.2. In particular, for any n and M(n) ≥ 32, we show that
there exists a set P of n points in R2 such that any line or circle contains at most M(n)
points of P , and E(P) = Ω

(
M(n)n2). Note that we can suppose M(n) ≥ 32 without loss of

generality since, if M(n) < 32, an arbitrary point set has E(P) = Ω(n2) = Ω(M(n)n2).
For simplicity, we assume that M(n) is a multiple of 8, and that n is divisible by M(n).

It is straightforward to extend the construction to values that do not satisfy these conditions.
Let C be an ellipse that is centered at the origin, has a major axis of length 2 that is

parallel to the y-axis, and a minor axis of length 1 that is parallel to the x-axis. Let P+ be
an arbitrary set of 4n/M(n) points on C, each having a strictly positive x-coordinate. Let
P− be the reflection of P+ over the y-axis, and set P ′ = P+ ∪ P−. We denote by P ′j the
translate of P ′ by (4j, 0). Finally, we take P = P ′0 ∪ P ′1 ∪ · · · ∪ P ′M(n)/8−1. An example is
depicted in Figure 2.

Note that P lies on the union of M(n)/8 ellipses. Since a line can intersect an ellipse in
at most two points, and a circle can intersect an ellipse in at most four points, we indeed
have that a line or circle contains at most M(n) points of P.

SoCG’15

546 Bisector Energy and Few Distinct Distances

Figure 2 The lower bound construction.

It remains to prove that E(P) = Ω(M(n)n2). For every integer M(n)/32 ≤ j ≤M(n)/16,
we denote by `j the vertical line x = 4j. For every such j, there are Θ(n) points of P that
are to the left `j , and such that the reflection of every such point across `j is another point
of P. That is, for every M(n)/32 ≤ j ≤M(n)/16, the line `j is the perpendicular bisector
of Θ(n) pairs of points of P. The assertion of the theorem follows, since there are Θ(M(n))
such lines, each contributing Θ(n2) to E(P).

4 Proof of Theorem 2.3

In this section we prove that Theorem 2.3 follows from Theorem 2.1. In fact, we prove the
following more general version of Theorem 2.3.

I Theorem 4.1. Let K(n) and M(n) be two functions satisfying K(n) = O(logn) and
M(n) = O(n1/4). If an n-point set P ⊂ R2 spans D = O(n/K(n)) distinct distances, then
at least one of the following holds.
(i) There exists a line or a circle containing M(n) points of P.
(ii) There are Ω(M(n)− 12

5 n
8
5−ε) lines that contain Ω(K(n)) points of P.

Since Guth and Katz [11] proved that any n-point set spans Ω(n/ logn) distinct distances,
the assumption that K = O(logn) is not a real restriction. The original formulation of
Theorem 2.3 is immediately obtained by setting K(n) =

√
logn and M(n) = nα.

Proof. For simplicity, we use the notation K = K(n) and M = M(n) throughout this proof.
We assume that (i) does not hold, and prove that (ii) holds in this case.

Given a point set P ⊂ R2, we denote by B∗(P) the multiset of bisectors that are spanned
by ordered pairs of P2∗. Recall that B(P) is the set of distinct lines of B∗(P). For every line
` ∈ B(P), we denote by µ(`) its multiplicity in B∗(P) (i.e., the number of times it occurs in
the multiset), and set ρ(`) = |` ∩ P|. We define

I(P,B∗(P)) =
∑

`∈B(P)

µ(`)ρ(`);

that is, I(P,B∗(P)) is the number incidences with respect to their multiplicities.
We derive a lower bound on I(P,B∗(P)) by using an argument that is similar to the one

in Szemerédi’s proof of Theorem 1.1. Let T ⊂ P3 be the set of triples (p, q, r) of distinct
points of P such that |pq| = |pr|. Note that a triple (p, q, r) is in T if and only if p is incident
to B(q, r). That is,

I(P,B∗(P)) = |T |.

Denote the distances that are determined by pairs of P2∗ as δ1, . . . , δD. For every point
p ∈ P and 1 ≤ i ≤ D, let ∆i,p denote the number of points of P that have distance δi from

B. Lund, A. Sheffer, and F. de Zeeuw 547

p. Let Tp ⊂ T denote the set of triples of T in which the first element is p. Applying the
Cauchy-Schwarz inequality yields

|Tp| = Ω
(

D∑
i=1

∆2
i,p

)
= Ω

 1
D

(
D∑
i=1

∆i,p

)2 = Ω
(
n2

D

)
.

This in turn implies

I(P,B∗(P)) = |T | =
∑
p∈P
|Tp| = Ω

(
n3

D

)
= Ω(Kn2). (5)

We remark that by the Szemerédi-Trotter theorem [23], the number of incidences between
n points and n2 distinct lines is O

(
n2). This does not contradict (5) since the lines in

the multiset B∗(P) need not be distinct. A priori, it might be that B∗(P) consists of Θ(n)
distinct lines, each with multiplicity Θ(n) and incident to Θ(K) points. However, our bound
on the bisector energy excludes such cases.

Let ct be the constant implicit in the lower bound on |T |; we have

|T | ≥ ctKn2.

Let L+ be the subset of lines in B(P) that are each incident to at least ctK/2 points. Then

ctKn
2 ≤

∑
`∈B(P)

µ(`)ρ(`)

=
∑
`∈L+

µ(`)ρ(`) +
∑

`∈B(P)\L+

µ(`)ρ(`)

≤
∑
`∈L+

µ(`)ρ(`) + ctKn
2/2,

where we use the fact that each ordered pair of points has a unique bisector, and hence
contributes to

∑
`∈B(P) µ(`) exactly once. Applying Cauchy-Schwarz, we get

c2tK
2n4/4 ≤

∑
`∈L+

µ(`)2
∑
`∈L+

ρ(`)2.

Note that
∑
`∈B(P) µ(`)2 = Θ(E(P)). Since M = O(n1/4) = O(n2/3−ε), Theorem 2.1

implies
∑
`∈B(P) µ(`)2 = O(M2/5n12/5+ε). We can bound

∑
ρ(`)2 using the assumption that

no line contains more than M points, so

K2n4 = O(M2/5n12/5+ε ·M2|L+|),

and hence

|L+| = Ω(K2n8/5−εM−12/5).

Since K = O(logn), it can be absorbed into the factor nε in the final bound. J

I Remark. Notice that the proof of Theorem 4.1 also applies whenM(n) = Ω(n1/4). However,
this would lead to a bound for the number of lines in (ii) that is weaker than the bound that
is implied by Theorem 1.1.

SoCG’15

548 Bisector Energy and Few Distinct Distances

5 Proof of Theorem 2.5

We now present the proof of the incidence bound that we use. As mentioned in the
introduction, this proof is essentially from [9]; we reproduce it here to determine the
dependence on the parameter t. We refer to [9] for the definitions used here. We prove a
more general version than we need, since it seems to come at no extra cost, and may be
useful elsewhere.

The proof uses the Kővári-Sós-Turán theorem (e.g., see Bollobás [1, Theorem IV.9]).

I Lemma 5.1 (Kővári-Sós-Turán). Let G be a bipartite graph with vertex set A ∪ B. Let
s ≤ t. Suppose that G contains no Ks,t, i.e., for any s vertices in A, there are at most t
vertices in B connected to both. Then

|E(G)| = O(t1/s|A||B|(s−1)/s + |B|).

We amplify the weak bound of Lemma 5.1 by using polynomial partitioning. Given a
polynomial f ∈ R[x1, . . . , xd], we write Z(f) = {p ∈ Rd : f(p) = 0}. We say that f ∈
R[x1, . . . , xd] is an r-partitioning polynomial for a finite set P ⊂ Rd if no connected component
of Rd\Z(f) contains more than |P|/r points of P (notice that there is no restriction on the
number of points of P that are in Z(f)). Guth and Katz [11] introduced this notion and
proved that for every P ⊂ Rd and 1 ≤ r ≤ |P|, there exists an r-partitioning polynomial of
degree O(r1/d). In [9], the following generalization was proved.

I Theorem 5.2 (Partitioning on a variety). Let V be an irreducible variety in Rd of dimension
e and degree D. Then for every finite P ⊂ V there exists an r-partitioning polynomial f of
degree O(r1/e) such that V 6⊂ Z(f). The implicit constant depends only on d and D.

We are now ready to prove our incidence bound. For the convenience of the reader, we
first repeat the statement of the theorem.

Theorem 2.5. Let S be a set of n constant-degree varieties and let P be a set of m points,
both in Rd, such that the incidence graph of P × S contains no copy of Ks,t (where s is
a constant, but t may depend on m,n). Moreover, assume that P ⊂ V , where V is an
irreducible constant-degree variety of dimension e. Then

I(P,S) = O
(
m

s(e−1)
es−1 +εn

e(s−1)
es−1 t

e−1
es−1 + tm+ n

)
.

Proof. We use induction on e and m, with the induction claim

I(P,S) ≤ α1,em
s(e−1)
es−1 +εn

e(s−1)
es−1 t

e−1
es−1 + α2,e(tm+ n), (6)

for constants α1,e, α2,e depending only on e. The base cases for the induction are simple. If
m is sufficiently small, then (6) follows immediately by choosing sufficiently large values for
α1,e and α2,e. Similarly, when e = 0, we again obtain (6) when α1,e and α2,e are sufficiently
large (as a function of d and the degree of V).

The constants d, e,D, s, 1/ε are given and thus fixed. The other constants are to be
chosen, and the dependencies between them are

Cweak, Cpart, Cinter � Ccells � CHöld � r � Ccomps � α2,e � α1,e,

where C � C ′ means that C ′ is to be chosen sufficiently large compared to C; in particular,
C should be chosen before C ′. Furthermore, the constants α1,e, α2,e depend on α1,e−1, α2,e−1,
which by the induction claim depend only on e.

B. Lund, A. Sheffer, and F. de Zeeuw 549

By Lemma 5.1, there exists a constant Cweak depending on d, s such that

I(P,S) ≤ Cweak

(
mn1−1/st1/s + n

)
.

When m ≤ (n/t)1/s, and α2,e is sufficiently large, we have I(P,S) ≤ α2,en. Therefore, in
the remainder of the proof we can assume that n < mst, which implies

n = n
d−1
ds−1n

d(s−1)
ds−1 ≤ m

s(d−1)
ds−1 n

d(s−1)
ds−1 t

(d−1)
ds−1 . (7)

Partitioning. By Theorem 5.2, there exists an r-partitioning polynomial f with respect
to V of degree at most Cpart · r1/e, for a constant Cpart. Denote the cells of V \Z(f) as
Ω1, . . . ,ΩN . Since we are working over the reals, there exists a constant-degree polynomial
g such that Z(g) = V . Then, by [22, Theorem A.2], the number of cells is bounded by
Ccells · deg(f)dimV = Ccells · r, for some constant Ccells depending on Cpart.

We partition I(P,S) into the following three subsets:
I1 consists of the incidences (p, S) ∈ P × S such that p ∈ V ∩Z(f), and some irreducible
component of V ∩ Z(f) contains p and is fully contained in S.
I2 consists of the incidences (p, S) ∈ P × S such that p ∈ V ∩ Z(f), and no irreducible
component of V ∩ Z(f) that contains p is contained in S.
I3 = I(P,S)\(I1 ∪ I2), the set of incidences (p, S) ∈ P × S such that p is not contained
in V ∩ Z(f).

Note that we indeed have I(P,S) = I1 + I2 + I3.

Bounding I1. The points of P ⊂ Rd that participate in incidences of I1 are all contained in
the variety V0 = V ∩Z(f). Set P0 = P ∩ V0 and m0 = |P0|. Since V is an irreducible variety
and V 6⊂ Z(f), V0 is a variety of dimension at most e− 1 and of degree that depends on r.
By [22, Lemma 4.3], the intersection V0 is a union of Ccomps irreducible components, where
Ccomps is a constant depending on r and d.3 The degrees of these components also depend
only on these values (for a proper definition of degrees and further discussion, e.g., see [9]).

Consider an irreducible component W of V0. If W contains at most s − 1 points of
P0, it yields at most (s− 1)n incidences. Otherwise, since the incidence graph contains no
Ks,t, there are at most t− 1 varieties of S that fully contain W , yielding at most (t− 1)m0
incidences. By summing up, choosing sufficiently large α1,e, α2,e, and applying (7), we have

I1 ≤ Ccomps (sn+ tm0) < α2,e

2 (n+ tm0) < α1,e

4 m
s(e−1)
es−1 n

e(s−1)
es−1 t

(e−1)
es−1 + α2,e

2 tm0. (8)

Bounding I2. The points that participate in I2 lie in V0 = V ∩ Z(f), and the varieties
that participate do not contain any component of V0. Because V0 has dimension at most
e − 1, and the participating varieties do not contain any component of V0, we can apply
the induction claim on each irreducible component of V0. Since V0 has Ccomps irreducible
components, we get

I2 ≤ Ccompsα1,e−1m
s(e−2)

(e−1)s−1 +ε
0 n

(e−1)(s−1)
(e−1)s−1 t

e−2
(e−1)s−1 + α2,e−1(tm0 + n),

3 This lemma only applies to complex varieties. However, we can take the complexification of the real
variety and apply the lemma to it (for the definition of a complexification, e.g., see [25, Section 10]). The
number of irreducible components of the complexification cannot be smaller than number of irreducible
components of the real variety (e.g., see [25, Lemma 7]).

SoCG’15

550 Bisector Energy and Few Distinct Distances

with α1,e−1 and α2,e−1 depending on the degree of the irreducible component of V0, which
in turn depends on r. The analysis that leads to (7) also yields the following bound.

m
s(e−2)

(e−1)s−1 +εn
(e−1)(s−1)
(e−1)s−1 t

e−2
(e−1)s−1 ≤ m

s(e−1)
es−1 +εn

e(s−1)
es−1 t

e−1
es−1 .

By applying (7) to remove the term α2,e−1n, and by choosing α1,e and α2,e sufficiently large
as a function of Ccomps, α1,e−1, α2,e−1, we obtain

I2 ≤
α1,e

4 m
s(e−1)
es−1 +εn

e(s−1)
es−1 t

e−1
es−1 + α2,e

2 tm0. (9)

Bounding I3. For every 1 ≤ i ≤ N , we set Pi = P ∩Ωi and denote by Si the set of varieties
of S that intersect the cell Ωi but do not contain it. We also set mi = |Pi| and ni = |Si|.
Since f is an r-partitioning polynomial, we have mi ≤ m/r.

We have
∑N
i=1mi = m−m0. By [22, Theorem A.2], there exists a constant Cinter such

that the following holds for every S ∈ S. The subvariety S ∩ V of V , which must have
dimension at most e − 1, intersects at most Cinter · deg(f)dim(S∩V) = Cinter · r(e−1)/e cells.
This implies that

N∑
i=1

ni ≤ Cinter · r(e−1)/e · n.

By Hölder’s inequality we have

N∑
i=1

n
e(s−1)
es−1
i ≤

(
N∑
i=1

ni

) e(s−1)
es−1

(
N∑
i=1

1
) e−1
es−1

≤
(
Cinterr

(e−1)/en
) e(s−1)

es−1 (Ccellsr)
e−1
es−1

≤ CHöldr
(e−1)s
es−1 n

e(s−1)
es−1 ,

where CHöld depends on Cinter, Ccells. Using the induction hypothesis, we obtain

N∑
i=1

I(Pi,Si) ≤
N∑
i=1

(
α1,em

(e−1)s
es−1 +ε
i n

e(s−1)
es−1
i t

(e−1)
es−1 + α2,e(tmi + ni)

)

≤ α1,e
m

(e−1)s
es−1 +εt

(e−1)
es−1

r
(e−1)s
es−1 +ε

N∑
i=1

n
e(s−1)
es−1
i +

N∑
i=1

α2,e(tmi + ni)

≤ α1,eCHöld
m

(e−1)s
es−1 +εn

e(s−1)
es−1 t

(e−1)
es−1

rε
+ α2,e

(
t(m−m0) + Cinterr

e−1
e n
)
.

By choosing α1,e sufficiently large with respect to Cinter, r, α2,e, and using (7), we get

N∑
i=1

I(Pi,Si) ≤ 2α1,eCHöld
m

(e−1)s
es−1 +εn

e(s−1)
es−1 s

(e−1)
es−1

rε
+ α2,et(m−m0).

Finally, choosing r sufficiently large with respect to CHöld gives

I3 =
N∑
i=1

I(Pi,Si) ≤
α1,e

2 m
(e−1)s
es−1 +εn

e(s−1)
es−1 t

(e−1)
es−1 + α2,et(m−m0). (10)

B. Lund, A. Sheffer, and F. de Zeeuw 551

Summing up. By combining I(P,S) = I1 + I2 + I3 with (8), (9), and (10), we obtain

I(P,S) ≤ α1,em
s(e−1)
es−1 +εn

e(s−1)
es−1 t

(e−1)
es−1 + α2,e(tm+ n),

which completes the induction step and the proof of the theorem. J

References
1 B. Bollobás, Graph Theory: An Introductory Course, Springer-Verlag, 1979.
2 G. Elekes and L. Rónyai, A combinatorial problem on polynomials and rational functions,

J. Combin. Theory Ser. A 89 (2000), 1–20.
3 G. Elekes and E. Szabó, How to find groups? (And how to use them in Erdős geometry?),

Combinatorica 32 (2012), 537–571.
4 G. Elekes and E. Szabó, On triple lines and cubic curves: The Orchard Problem revisited,

in arXiv:1302.5777 (2013).
5 P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.
6 P. Erdős, On some problems of elementary and combinatorial geometry, Ann. Mat. Pura

Appl. 103 (1975), 99–108.
7 P. Erdős, On some metric and combinatorial geometric problems, Discrete Math. 60 (1986),

147–153.
8 P. Erdős and G. Purdy, Some extremal problems in geometry IV, Proc. 7th Southeastern

Conference on Combinatorics, Graph Theory, and Computing (1976), 307–322.
9 J. Fox, J. Pach, A. Sheffer, A. Suk, and J. Zahl, A semi-algebraic version of Zarankiewicz’s

problem, in arXiv:1407.5705 (2014).
10 B. Green and T. Tao, On sets defining few ordinary lines, Disc. Comput. Geom. 50 (2013),

409–468.
11 L. Guth and N.H. Katz, On the Erdős distinct distances problem in the plane, Annals

Math. 181 (2015), 155–190.
12 B. Hanson, A. Iosevich, B. Lund, and O. Roche-Newton, On distinct perpendicular bisectors

and pinned distances in finite fields, in arXiv:1412.1611 (2014).
13 N.H. Katz and G. Tardos, A new entropy inequality for the Erdős distance problem,

Towards a Theory of Geometric Graphs (J. Pach, ed.), Contemporary Mathematics 342
(2004), 119–126.

14 J. Pach and G. Tardos, Isosceles Triangles Determined by a Planar Point Set, Graphs and
Combinatorics 18 (2002), 769–779.

15 J. Pach and F. de Zeeuw, Distinct distances on algebraic curves in the plane, Proc. 30th
Ann. Symp. on Comp. Geometry (2014), 549–557.

16 O.E. Raz, O. Roche-Newton, and M. Sharir, Sets with few distinct distances do not have
heavy lines, in arXiv:1410.1654 (2014).

17 O.E. Raz, M. Sharir, and J. Solymosi, Polynomials vanishing on grids: The Elekes-Rónyai
problem revisited, Proc. 30th Ann. Symp. on Comp. Geometry (2014), 251–260.

18 O.E. Raz, M. Sharir, and F. de Zeeuw, Polynomials vanishing on Cartesian products: The
Elekes-Szabó theorem revisited, Proc. 31st Ann. Symp. on Comp. Geometry (2015).

19 A. Sheffer, Few Distinct Distances Implies Many Points on a Line, blog post, 2014.
20 A. Sheffer, J. Zahl, and F. de Zeeuw, Few distinct distances implies no heavy lines or circles,

Combinatorica, to appear.
21 J. Solymosi and M. Stojaković, Many collinear k-tuples with no k + 1 collinear points,

Discrete Comput. Geom. 50 (2013), 811–820.
22 J. Solymosi and T. Tao, An incidence theorem in higher dimensions, Discrete Comput.

Geom. 48 (2012), 255–280.

SoCG’15

552 Bisector Energy and Few Distinct Distances

23 E. Szemerédi and W. Trotter, Extremal problems in discrete geometry, Combinatorica 3
(1983), 381–392.

24 G. Tardos, On distinct sums and distinct distances, Adv. Math. 180 (2003), 275–289.
25 H. Whitney, Elementary structure of real algebraic varieties, Annals Math. 66 (1957), 545–

556.

Incidences between Points and Lines in Three
Dimensions∗

Micha Sharir and Noam Solomon

School of Computer Science, Tel Aviv University, Tel Aviv, Israel
michas@post.tau.ac.il, noam.solom@gmail.com

Abstract
We give a fairly elementary and simple proof that shows that the number of incidences between
m points and n lines in R3, so that no plane contains more than s lines, is

O
(
m1/2n3/4 +m2/3n1/3s1/3 +m+ n

)
(in the precise statement, the constant of proportionality of the first and third terms depends, in
a rather weak manner, on the relation between m and n).

This bound, originally obtained by Guth and Katz [8] as a major step in their solution of
Erdős’s distinct distances problem, is also a major new result in incidence geometry, an area that
has picked up considerable momentum in the past six years. Its original proof uses fairly involved
machinery from algebraic and differential geometry, so it is highly desirable to simplify the proof,
in the interest of better understanding the geometric structure of the problem, and providing
new tools for tackling similar problems. This has recently been undertaken by Guth [6]. The
present paper presents a different and simpler derivation, with better bounds than those in [6],
and without the restrictive assumptions made there. Our result has a potential for applications
to other incidence problems in higher dimensions.

1998 ACM Subject Classification G.2.1 Combinatorics

Keywords and phrases Combinatorial Geometry, Algebraic Geometry, Incidences, The Polyno-
mial Method

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.553

1 Introduction

Let P be a set of m distinct points in R3 and let L be a set of n distinct lines in R3. Let
I(P,L) denote the number of incidences between the points of P and the lines of L; that is,
the number of pairs (p, `) with p ∈ P , ` ∈ L, and p ∈ `. If all the points of P and all the
lines of L lie in a common plane, then the classical Szemerédi–Trotter theorem [24] yields
the worst-case tight bound

I(P,L) = O
(
m2/3n2/3 +m+ n

)
. (1)

This bound clearly also holds in three dimensions, by projecting the given lines and points
onto some generic plane. Moreover, the bound will continue to be worst-case tight by placing

∗ Work on this paper by Noam Solomon and Micha Sharir was supported by Grant 892/13 from the Israel
Science Foundation. Work by Micha Sharir was also supported by Grant 2012/229 from the U.S.–Israel
Binational Science Foundation, by the Israeli Centers of Research Excellence (I-CORE) program (Center
No. 4/11), and by the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv University.

© Micha Sharir and Noam Solomon;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 553–568

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.553
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

554 Incidences between Points and Lines in Three Dimensions

all the points and lines in a common plane, in a configuration that yields the planar lower
bound.

In the 2010 groundbreaking paper of Guth and Katz [8], an improved bound has been
derived for I(P,L), for a set P of m points and a set L of n lines in R3, provided that not
too many lines of L lie in a common plane. Specifically, they showed:1

I Theorem 1 (Guth and Katz [8]). Let P be a set of m distinct points and L a set of n
distinct lines in R3, and let s ≤ n be a parameter, such that no plane contains more than s
lines of L. Then

I(P,L) = O
(
m1/2n3/4 +m2/3n1/3s1/3 +m+ n

)
.

This bound was a major step in the derivation of the main result of [8], which was to prove
an almost-linear lower bound on the number of distinct distances determined by any finite set
of points in the plane, a classical problem posed by Erdős in 1946 [5]. Their proof uses several
nontrivial tools from algebraic and differential geometry, most notably the Cayley–Salmon
theorem on osculating lines to algebraic surfaces in R3, and additional properties of ruled
surfaces. All this machinery comes on top of the main innovation of Guth and Katz, the
introduction of the polynomial partitioning technique; see below.

In this paper, we provide a simple derivation of this bound, which bypasses most of the
techniques from algebraic geometry that are used in the original proof. A recent related
study by Guth [6] provides another simpler derivation of a similar bound, but (a) the bound
obtained in [6] is slightly worse, involving extra factors of the form mε, for any ε > 0, and
(b) the assumptions there are stronger, namely that no algebraic surface of degree at most
cε, a (potentially large) constant that depends on ε, contains more than s lines of L (in fact,
Guth considers in [6] only the case s =

√
n). It should be noted, though, that Guth also

manages to derive a (slightly weaker but still) near-linear lower bound on the number of
distinct distances.

As in the classical work of Guth and Katz [8], and in the follow-up study of Guth [6],
here too we use the polynomial partitioning method, as pioneered in [8]. The main difference
between our approach and those of [6, 8] is the choice of the degree of the partitioning
polynomial. Whereas Guth and Katz [8] choose a large degree, and Guth [6] chooses a
constant degree, we choose an intermediate degree. This reaps many benefits from both
the high-degree and the constant-degree approaches, and pays a small price in the bound
(albeit much better than in [6]). Specifically, our main result is a simple and fairly elementary
derivation of the following result.

I Theorem 2. Let P be a set of m distinct points and L a set of n distinct lines in R3, and
let s ≤ n be a parameter, such that no plane contains more than s lines of L. Then

I(P,L) ≤ Am,n
(
m1/2n3/4 +m

)
+B

(
m2/3n1/3s1/3 + n

)
, (2)

where B is an absolute constant, and, for another suitable absolute constant b > 1,

Am,n = O

(
b

log(m2n)
log(n3/m2)

)
, for m ≤ n3/2, and O

(
b

log(m3/n4)
log(m2/n3)

)
, for m ≥ n3/2. (3)

1 We skip over certain subtleties in their bound: They also assume that no regulus contains more than s
input lines, but then they are able also to bound the number of intersection points of the lines. Moreover,
if one also assumes that each point is incident to at least three lines then the term m in the bound can
be dropped.

M. Sharir and N. Solomon 555

I Remarks. 1. Only the range
√
n ≤ m ≤ n2 is of interest; outside this range, regardless of

the dimension of the ambient space, we have the well known and trivial upper bound
O(m+ n).

2. The term m2/3n1/3s1/3 comes from the planar Szemerédi–Trotter bound (1), and is
unavoidable, as it can be attained if we densely “pack” points and lines into planes, in
patterns that realize the bound in (1).

3. Ignoring this term and the term n (needed only to cater to the case m� n1/2), the two
terms m1/2n3/4 and m “compete” for dominance; the former dominates when m ≤ n3/2

and the latter when m ≥ n3/2. Thus the bound in (2) is qualitatively different within
these two ranges.

4. The threshold m = n3/2 also arises in the related problem of joints (points incident to at
least three non-coplanar lines) in a set of n lines in 3-space; see [7].

A concise rephrasing of the bound in (2) and (3) is as follows. We partition each of the
ranges m ≤ n3/2, m > n3/2 into a sequence of subranges nαj−1 < m ≤ nαj , j = 0, 1, . . . (for
m ≤ n3/2), or nαj−1 > m ≥ nαj , j = 0, 1, . . . (for m ≥ n3/2), so that within each range the
bound asserted in the theorem holds for some fixed constant of proportionality (denoted as
Am,n in the bound), where these constants grow, exponentially in j, as prescribed in (3), as
m approaches n3/2 (from either side). Informally, if we keep m “sufficiently away” from n3/2,
the bound in (2) holds with a fixed constant of proportionality. Handling the “border range”
m ≈ n3/2 is also fairly straightforward, although, to bypass the exponential growth of the
constant of proportionality, it results in a slightly different bound; see below for details.

Our proof is elementary to the extent that, among other things, it avoids any explicit
handling of singular and flat points on the zero set of the partitioning polynomial. While
these notions are relatively easy to handle in three dimensions (see, e.g., [4, 7]), they become
more complex notions in higher dimensions (as witnessed, for example, in our companion
work on the four-dimensional setting [19]), making proofs based on them harder to extend.

Additional merits and features of our analysis are discussed in detail in the concluding
section. In a nutshell, the main merits are:
(i) We use two separate partitioning polynomials. The first one is of “high” degree, and

is used to prune away some points and lines, and to establish useful properties of the
surviving points and lines. The second partitioning step, using a polynomial of “low”
degree, is then applied, from scratch, to the surviving input, exploiting the properties
established in the first step. This idea seems to have a potential for further applications
(as in [19]).

(ii) Because of the way we use the polynomial partitioning technique, we need induction
to handle incidences within the cells of the second partition. One of the nontrivial
achievements of our technique is the ability to retain the “planar” term O(m2/3n1/3s1/3)
in the bound in (2) through the inductive process. Without such care, this term does
not “pass well” through the induction, which has been a sore issue in several recent
works on related problems (see [16, 17, 18]). This is one of the main reasons for using
two separate partitioning steps.

Background
Incidence problems have been a major topic in combinatorial and computational geometry
for the past thirty years, starting with the aforementioned Szemerédi-Trotter bound [24] back
in 1983. Several techniques, interesting in their own right, have been developed, or adapted,
for the analysis of incidences, including the crossing-lemma technique of Székely [23], and

SoCG’15

556 Incidences between Points and Lines in Three Dimensions

the use of cuttings as a divide-and-conquer mechanism (e.g., see [2]). Connections with
range searching and related algorithmic problems in computational geometry have also been
noted, and studies of the Kakeya problem (see, e.g., [25]) indicate the connection between
this problem and incidence problems. See Pach and Sharir [13] for a comprehensive (albeit a
bit outdated) survey of the topic.

The landscape of incidence geometry has dramatically changed in the past six years, due
to the infusion, in two groundbreaking papers by Guth and Katz [7, 8], of new tools and
techniques drawn from algebraic geometry. Although their two direct goals have been to
obtain a tight upper bound on the number of joints in a set of lines in three dimensions [7],
and a near-linear lower bound for the classical distinct distances problem of Erdős [8], the new
tools have quickly been recognized as useful for incidence bounds. See [4, 9, 10, 17, 22, 28, 29]
for a sample of recent works on incidence problems that use the new algebraic machinery.

The simplest instances of incidence problems involve points and lines, tackled by Szemerédi
and Trotter in the plane [24], and by Guth and Katz in three dimensions [8]. Other recent
studies on incidence problems include incidences between points and lines in four dimensions
(Sharir and Solomon [18, 19]), and incidences between points and circles in three dimensions
(Sharir, Sheffer and Zahl [17]), not to mention incidences with higher-dimensional surfaces,
such as in [1, 9, 22, 28, 29]. In a companion paper (with Sheffer) [16], we study the general
case of incidences between points and curves in any dimension, and derive reasonably sharp
bounds (albeit weaker in several respects than the one derived here).

The fact that tools from algebraic geometry form the major key for successful solution of
difficult problems in combinatorial geometry, has lead to intensive research of the new tools,
aiming to extend them and to find new applications. A major purpose of this study, as well
as of Guth [6], is to show that one can still tackle successfully the problems using less heavy
algebraic machinery. This offers a new, simplified, and more elementary approach, which we
expect to prove potent for other applications too, such as those just mentioned. Looking for
simpler, yet effective techniques that would be easier to extend to more involved contexts
(such as incidences in higher dimensions) has been our main motivation for this study. See
the concluding section for further discussion.

2 Proof of Theorem 2

The proof proceeds by induction onm. As already mentioned, the bound in (2) is qualitatively
different in the two ranges m ≤ n3/2 and m ≥ n3/2. The analysis bifurcates accordingly.
While the general flow is fairly similar in both cases, there are many differences too.

The case m < n3/2

We partition this range into a sequence of ranges m ≤ nα0 , nα0 < m ≤ nα1 , . . ., where
α0 = 1/2 and the sequence {αj}j≥0 is increasing and converges to 3/2. More precisely, as
our analysis will show, we can take αj = 3

2 −
2
j+2 , for j ≥ 0. The induction is actually on

the index j of the range nαj−1 < m ≤ nαj , and establishes (2) for m in this range, with a
coefficient Aj (written in (2, 3) as Am,n) that increases with j. This paradigm has already
been used in Sharir et al. [17] and in Zahl [29], for related incidence problems, albeit in a
somewhat less effective manner; see the discussion at the end of the paper.

The base range of the induction is m ≤
√
n, where the trivial general upper bound on

point-line incidences, in any dimension, yields I = O(m2 + n) = O(n), so (2) holds for a
sufficiently large choice of the initial constant A0.

M. Sharir and N. Solomon 557

Assume then that (2) holds for all m ≤ nαj−1 for some j ≥ 1, and consider an instance of
the problem with nαj−1 < m ≤ n3/2 (the analysis will force us to constrain this upper bound
in order to complete the induction step, thereby obtaining the next exponent αj).

Fix a parameter r, whose precise value will be chosen later (in fact, and this is a major
novelty of our approach, there will be two different choices for r—see below), and apply
the polynomial partitioning theorem of Guth and Katz (see [8] and [10, Theorem 2.6]), to
obtain an r-partitioning trivariate (real) polynomial f of degree D = O(r1/3). That is, every
connected component of R3 \ Z(f) contains at most m/r points of P , where Z(f) denotes
the zero set of f . By Warren’s theorem [27] (see also [10]), the number of components of
R3 \ Z(f) is O(D3) = O(r).

Set P1 := P ∩ Z(f) and P ′1 := P \ P1. A major recurring theme in this approach is that,
although the points of P ′1 are more or less evenly partitioned among the cells of the partition,
no nontrivial bound can be provided for the size of P1; in the worst case, all the points of P
could lie in Z(f). Each line ` ∈ L is either fully contained in Z(f) or intersects it in at most
D points (since the restriction of f to ` is a univariate polynomial of degree at most D). Let
L1 denote the subset of lines of L that are fully contained in Z(f) and put L′1 = L \ L1. We
then have

I(P,L) = I(P1, L1) + I(P1, L
′
1) + I(P ′1, L′1).

We first bound I(P1, L
′
1) and I(P ′1, L′1). As already observed, we have

I(P1, L
′
1) ≤ |L′1| ·D ≤ nD.

We estimate I(P ′1, L′1) as follows. For each (open) cell τ of R3 \ Z(f), put Pτ = P ∩ τ (that
is, P ′1 ∩ τ), and let Lτ denote the set of the lines of L′1 that cross τ ; put mτ = |Pτ | ≤ m/r,
and nτ = |Lτ |. Since every line ` ∈ L′1 crosses at most 1 +D components of R3 \ Z(f), we
have ∑

τ

nτ ≤ n(1 +D), and I(P ′1, L′1) =
∑
τ

I(Pτ , Lτ).

For each τ we use the trivial bound I(Pτ , Lτ) = O(m2
τ +nτ). Summing over the cells, we get

I(P ′1, L′1) =
∑
τ

I(Pτ , Lτ) = O

(
r · (m/r)2 +

∑
τ

nτ

)
= O

(
m2/r + nD

)
= O(m2/D3+nD).

For the initial value of D, we take D = m1/2/n1/4 (which we get from a suitable value of
r = Θ(D3)), note that 1 ≤ D ≤ m1/3, and get the bound

I(P ′1, L′1) + I(P1, L
′
1) = O(m1/2n3/4).

This choice of D is the one made in [8]. It is sufficiently large to control the situation in
the cells, by the bound just obtained, but requires heavy-duty machinery from algebraic
geometry to handle the situation on Z(f).

We now turn to Z(f), where we need to estimate I(P1, L1). Since all the incidences
involving any point in P ′1 and/or any line in L′1 have already been accounted for, we discard
these sets, and remain with P1 and L1 only. We “forget” the preceding polynomial partitioning
step, and start afresh, applying a new polynomial partitioning to P1 with a polynomial g of
degree E, which will typically be much smaller than D, but still non-constant.

Before doing this, we note that the set of lines L1 has a special structure, because all its
lines lie on the algebraic surface Z(f), which has degree D. We exploit this to derive the
following lemmas. We emphasize, since this will be important later on in the analysis, that
Lemmas 3–7 hold for any choice of (r and) D.

SoCG’15

558 Incidences between Points and Lines in Three Dimensions

We note that in general the partitioning polynomial f may be reducible, and apply some
of the following arguments to each irreducible factor separately. Clearly, there are at most D
such factors.

I Lemma 3. Let π be a plane which is not a component of Z(f). Then π contains at most
D lines of L1.

Proof. Suppose to the contrary that π contains at least D + 1 lines of L. Every generic line
λ in π intersects these lines in at least D + 1 distinct points, all belonging to Z(f). Hence f
must vanish identically on λ, and it follows that f ≡ 0 on π, so π is a component of Z(f),
contrary to assumption. J

I Lemma 4. The number of incidences between the points of P1 that lie in the planar
components of Z(f) and the lines of L1, is O(m2/3n1/3s1/3 + nD).

Proof. Clearly, f can have at most D linear factors, and thus Z(f) can contain at most D
planar components. Enumerate them as π1, . . . , πk, where k ≤ D. Let P̃1 denote the subset
of the points of P1 that lie in these planar components. Assign each point of P̃1 to the first
plane πi, in this order, that contains it, and assign each line of L1 to the first plane that
fully contains it; some lines might not be assigned at all in this manner. For i = 1, . . . , k, let
P̃i denote the set of points assigned to πi, and let L̃i denote the set of lines assigned to πi.
Put mi = |P̃i| and ni = |L̃i|. Then

∑
imi ≤ m and

∑
i ni ≤ n; by assumption, we also have

ni ≤ s for each i. Then

I(P̃i, L̃i) = O(m2/3
i n

2/3
i +mi + ni) = O(m2/3

i n
1/3
i s1/3 +mi + ni).

Summing over the k planes, we get, using Hölder’s inequality,∑
i

I(P̃i, L̃i) =
∑
i

O(m2/3
i n

1/3
i s1/3 +mi + ni) = O

(
m2/3n1/3s1/3 +m+ n

)
.

We also need to include incidences between points p ∈ P̃1 and lines ` ∈ L1 not assigned to
the same plane as p (or not assigned to any plane at all). Any such incidence (p, `) can
be charged (uniquely) to the intersection point of ` with the plane πi to which p has been
assigned. The number of such intersections is O(nD), and the lemma follows. J

I Lemma 5. Each point p ∈ Z(f) is incident to at most D2 lines of L1, unless Z(f) has an
irreducible component that is either a plane containing p or a cone with apex p.

Proof. Fix any line ` that passes through p, and write its parametric equation as {p+ tv |
t ∈ R}, where v is the direction of `. Consider the Taylor expansion of f at p along `, namely

f(p+ tv) =
D∑
i=1

1
i!Fi(p; v)ti, where Fi(p; v) is the i-th order derivative of f at p in direction v;

it is a homogeneous polynomial in v (p is considered fixed) of degree i, for i = 1, . . . , D. For
each line ` ∈ L1 that passes through p, f vanishes identically on `, so we have Fi(p; v) = 0
for each i. Assuming that p is incident to more than D2 lines of L1, we conclude that the
homogeneous system

F1(p; v) = F2(p; v) = · · · = FD(p; v) = 0 (4)

has more than D2 (projectively distinct) roots. The classical Bézout’s theorem, applied in
the projective plane where the directions v are represented (e.g., see [3]), asserts that, since

M. Sharir and N. Solomon 559

all these polynomials are of degree at most D, each pair of polynomials Fi(p; v), Fj(p; v)
must have a common factor. The following slightly more involved inductive argument shows
that in fact all these polynomials must have a common factor.2

I Lemma 6. Let f1, . . . , fn ∈ C[x, y, z] be n homogeneous polynomials of degree at most D.
If |Z(f1, . . . , fn)| > D2, then all the fi’s have a nontrivial common factor.

Proof. The proof is via induction on n, and is omitted in this version. J

Continuing with the proof of Lemma 5, there is an infinity of directions v that satisfy
(4), so there is an infinity of lines passing through v and contained in Z(f). The union of
these lines can be shown to be a two-dimensional algebraic variety,3 contained in Z(f), so
Z(f) has an irreducible component that is either a plane through p or a cone with apex p,
as claimed. J

I Lemma 7. The number of incidences between the points of P1 that lie in the (non-planar)
conic components of Z(f), and the lines of L1, is O(m+ nD).

Proof. Let σ be such an (irreducible) conic component of Z(f) and let p be its apex. We
observe that σ cannot contain any line that is not incident to p, because such a line would
span with p a plane contained in σ, contradicting the assumption that σ is irreducible and
non-planar. It follows that the number of incidences between Pσ := P1∩σ and Lσ, consisting
of the lines of L1 contained in σ, is thus O(|Pσ| + |Lσ|) (p contributes |Lσ| incidences,
and every other point at most one incidence). Applying a similar “first-come-first-serve”
assignment of points and lines to the conic components of Z(f), as we did for the planar
components in the proof of lemma 4, and adding the bound O(nD) on the number of
incidences between points and lines not assigned to the same component, we obtain the
bound asserted in the lemma. J

I Remark. Note that in both Lemma 4 and Lemma 7, we bound the number of incidences
between points on planar or conic components of Z(f) and all the lines of L1.

Pruning. To continue, we remove all the points of P1 that lie in some planar or conic
component of Z(f), and all the lines of L1 that are fully contained in such components.
With the choice of D = m1/2/n1/4, we lose in the process

O(m2/3n1/3s1/3 +m+ nD) = O(m1/2n3/4 +m2/3n1/3s1/3)

incidences (recall that the termm is subsumed by the termm1/2n3/4 form < n3/2). Continue,
for simplicity of notation, to denote the sets of remaining points and lines as P1 and L1,
respectively, and their sizes as m and n. Now each point is incident to at most D2 lines (a
fact that we will not use for this value of D), and no plane contains more than D lines of L1,
a crucial property for the next steps of the analysis. That is, this allows us to replace the
input parameter s, bounding the maximum number of coplanar lines, by D; this is a key
step that makes the induction work.

2 See also [14] for a similar observation.
3 It is simply the variety given by the equations (4), rewritten as F1(p; x − p) = F2(p; x − p) = · · · =

FD(p; x − p) = 0. It is two-dimensional because it is contained in Z(f), hence at most two-dimensional,
and it cannot be one-dimensional since it would then consist of only finitely many lines (see, e.g., [19,
Lemma 2.3]).

SoCG’15

560 Incidences between Points and Lines in Three Dimensions

A new polynomial partitioning

We now return to the promised step of constructing a new polynomial partitioning. We
adapt the preceding notation, with a few modifications. We choose a degree E, typically
much smaller than D, and construct a partitioning polynomial g of degree E for P1. With
an appropriate value of r = Θ(E3), we obtain O(r) open cells, each containing at most m/r
points of P1, and each line of L1 either crosses at most E + 1 cells, or is fully contained in
Z(g).

Set P2 := P1 ∩Z(g) and P ′2 := P1 \P2. Similarly, denote by L2 the set of lines of L1 that
are fully contained in Z(g), and put L′2 := L1 \ L2. We first dispose of incidences involving
the lines of L2. (That is, now we first focus on incidences within Z(g), and only then turn to
look at the cells.) By Lemma 4 and Lemma 7, the number of incidences involving points P2
that lie in some planar or conic component of Z(g), and all the lines of L2, is

O(m2/3n1/3s1/3 +m+ nE) = O(m1/2n3/4 +m2/3n1/3s1/3 + n).

(For E � D, this might be a gross overestimation, but we do not care.) We remove these
points from P2, and remove all the lines of L2 that are contained in such components; continue
to denote the sets of remaining points and lines as P2 and L2. Now each point is incident to
at most E2 lines of L2 (Lemma 5), so the number of remaining incidences involving points
of P2 is O(mE2); for E suitably small, this bound will be subsumed by O(m1/2n3/4).

Unlike the case of a “large” D, namely, D = m1/2/n1/4, here the difficult part is to treat
incidences within the cells of the partition. Since E � D, we cannot use the naive bound
O(n2 +m) within each cell, because that would make the overall bound too large. Therefore,
to control the incidence bound within the cells, we proceed in the following inductive manner.

For each cell τ of R3 \ Z(g), put Pτ := P ′2 ∩ τ , and let Lτ denote the set of the lines of
L′2 that cross τ ; put mτ = |Pτ | ≤ m/r, and nτ = |Lτ |. Since every line ` ∈ L1 (that is, of
L′2) crosses at most 1 + E components of R3 \ Z(g), we have

∑
τ nτ ≤ n(1 + E).

It is important to note that at this point of the analysis the sizes of P1 and of L1 might
be smaller than the original respective values m and n. In particular, we may no longer
assume that |P1| > |L1|αj−1 , as we did assume for m and n. Nevertheless, in what follows m
and n will denote the original values, which serve as upper bounds for the respective actual
sizes of P1 and L1, and the induction will work correctly with these values; see below for
details.

In order to apply the induction hypothesis within the cells of the partition, we want to
assume that mτ ≤ nταj−1 for each τ . To ensure that, we require that the number of lines of
L′2 that cross a cell be at most n/E2. Cells τ that are crossed by κn/E2 lines, for κ > 1, are
treated as if they occur dκe times, where each incarnation involves all the points of Pτ , and
at most n/E2 lines of Lτ . The number of subproblems remains O(E3). Arguing similarly, we
may also assume that mτ ≤ m/E3 for each cell τ (by “duplicating” each cell into a constant
number of subproblems, if needed).

We therefore require that m

E3 ≤
(n

E2

)αj−1
. (Note that, as already commented above,

these are only upper bounds on the actual sizes of these subsets, but this will have no real
effect on the induction process.) That is, we require

E ≥
(m

nαj−1

)1/(3−2αj−1)
. (5)

With these preparations, we apply the induction hypothesis within each cell τ , recalling

M. Sharir and N. Solomon 561

that no plane contains more than D lines4 of L′2 ⊆ L1, and get

I(Pτ , Lτ) ≤ Aj−1

(
m1/2
τ n3/4

τ +mτ

)
+B

(
m2/3
τ n1/3

τ D1/3 + nτ

)
≤ Aj−1

(
(m/E3)1/2(n/E2)3/4 +m/E3

)
+B

(
+(m/E3)2/3(n/E2)1/3D1/3 + n/E2

)
.

Summing these bounds over the cells τ , that is, multiplying them by O(E3), we get, for a
suitable absolute constant b,

I(P ′2, L′2) =
∑
τ

I(Pτ , Lτ) ≤ bAj−1

(
m1/2n3/4 +m

)
+B

(
m2/3n1/3E1/3D1/3 + nE

)
.

We now require that E = O(D). Then the last term satisfies nE = O(nD) = O(m1/2n3/4),
and, as already remarked, the preceding term m is also subsumed by the first term. The
second term, after substituting D = O(m1/2/n1/4), becomes O(m5/6n1/4E1/3). Hence, with
a slightly larger b, we have

I(P ′2, L′2) ≤ bAj−1m
1/2n3/4 + bBm5/6n1/4E1/3.

Adding up all the bounds, including those for the portions of P and L that were discarded
during the first partitioning step, we obtain, for a suitable constant c,

I(P,L) ≤ c
(
m1/2n3/4 +m2/3n1/3s1/3 + n+mE2

)
+ bAj−1m

1/2n3/4 + bBm5/6n1/4E1/3.

We choose E to ensure that the two E-dependent terms are dominated by the term
m1/2n3/4. That is,

m5/6n1/4E1/3 ≤ m1/2n3/4, or E ≤ n3/2/m,

and mE2 ≤ m1/2n3/4, or E ≤ n3/8/m1/4.

Since n3/2/m =
(
n3/8/m1/4)4, and both sides are ≥ 1, the latter condition is stricter, and

we ignore the former. As already noted, we also require that E = O(D); specifically, we
require that E ≤ m1/2/n1/4.

In conclusion, recalling (5), the two constraints on the choice of E are(m

nαj−1

)1/(3−2αj−1)
≤ E ≤ min

{
n3/8

m1/4 ,
m1/2

n1/4

}
, (6)

and, for these constraints to be compatible, we require that
(m

nαj−1

)1/(3−2αj−1)
≤ n3/8

m1/4 , or

m ≤ n
9+2αj−1

2(7−2αj−1) , and that
(m

nαj−1

)1/(3−2αj−1)
≤ m1/2

n1/4 , which fortunately always holds, as
is easily checked, since m ≤ n3/2 and αj−1 ≥ 1/2. Note that we have not explicitly stated
any concrete choice of E; any value satisfying (6) will do. We put

αj := 9 + 2αj−1

2(7− 2αj−1) ,

and conclude that if m ≤ nαj then the bound asserted in the theorem holds, with Aj =
bAj−1 + c and B = c. This completes the induction step. Note that the recurrence
Aj = bAj−1 + c solves to Aj = O(bj).

4 This was the main reason for carrying out the first partitioning step, as already noted.

SoCG’15

562 Incidences between Points and Lines in Three Dimensions

It remains to argue that the induction covers the entire range m = O(n3/2). Using the
above recurrence for the αj ’s, with α0 = 1/2, it easily follows that αj = 3

2 −
2

j + 2 , for each

j ≥ 0, showing that αj converges to 3/2, implying that the entire range m = O(n3/2) is
covered by the induction.

To calibrate the dependence of the constant of proportionality on m and n, we note that,
for nαj−1 ≤ m < nαj , the constant is O(bj). We have

3
2 −

2
j + 1 = αj−1 ≤

logm
logn , or j ≤

1
2 + logm

logn
3
2 −

logm
logn

= log(m2n)
log(n3/m2) .

This establishes the expression for Am,n given in the statement of the theorem.

Handling the middle ground m ≈ n3/2. Some care is needed when m approaches n3/2,
because of the potentially unbounded growth of the constant Aj . We show, in the full version,
that

I(P,L) = O
(

2c
√

logn
(
m1/2n3/4 +m2/3n1/3s1/3 +m+ n

))
, (7)

for a suitable absolute constant c. In other words, the bound in (2) and (3) holds for any
m ≤ n3/2, but, for m ≥ nαj0 one should use instead the bound in (7), which controls the
exponential growth of the constants of proportionality within this range.

The case m > n3/2

The analysis of this case is, in a sense, a mirror image of the preceding analysis, except for
a new key lemma (Lemma 8). Due to lack of space, most details are omitted, and can be
found in the full version [20].

We partition this range into a sequence of ranges m ≥ nα0 , nα1 ≤ m < nα0 , . . ., where
α0 = 2 and the sequence {αj}j≥0 is decreasing and converges to 3/2. The induction is on
the index j of the range nαj ≤ m < nαj−1 , and establishes (2) for m in this range, with a
coefficient Aj (written in (2,3) as Am,n) that increases with j.

The base range of the induction is m ≥ n2, where we have the general bound I =
O(n2 + m) = O(m), so (2) holds for a sufficiently large choice of the initial constant A0.
Assume then that (2) holds for all m ≥ nαj−1 for some j ≥ 1, and consider an instance of
the problem with n3/2 ≤ m < nαj−1 .

For a parameter r, to be specified later, apply the polynomial partition theorem to
obtain an r-partitioning trivariate (real) polynomial f of degree D = O(r1/3). That is, every
connected component of R3 \ Z(f) contains at most m/r points of P , and the number of
components of R3 \ Z(f) is O(D3) = O(r).

Set P1 := P ∩Z(f) and P ′1 := P \P1. Each line ` ∈ L is either fully contained in Z(f) or
intersects it in at most D points. Let L1 denote the subset of lines of L that are fully contained
in Z(f) and put L′1 = L \L1. As before, we have I(P,L) = I(P1, L1) + I(P1, L

′
1) + I(P ′1, L′1),

and I(P1, L
′
1) ≤ |L′1| ·D ≤ nD. We estimate I(P ′1, L′1) as in the preceding case, where, for

the initial value of D, we take D = n2/m, noting that 1 ≤ D3 ≤ m because n3/2 ≤ m ≤ n2,
and get the bound

I(P ′1, L′1) + I(P1, L
′
1) = O(n2/D +m+ nD) = O(m+ n3/m) = O(m),

where the latter bound follows since m ≥ n3/2.

M. Sharir and N. Solomon 563

To estimate I(P1, L1), we discard all other lines and points, forget the preceding poly-
nomial partitioning step, and start afresh, applying a new polynomial partitioning to P1
with a polynomial g of degree E, which will typically be much smaller than D, but still
non-constant.

For this case we need the following lemma, which can be regarded, in some sense, as a
dual (albeit somewhat more involved) version of Lemma 5. Unlike the rest of the analysis,
the best way to prove this lemma is by switching to the complex projective setting. This is
needed for one key step in the proof, where we need the property that the projection of a
complex projective variety is a variety. Once this is done, we can switch back to the real
affine case, and complete the proof.

We say that a point p ∈ P1 is 1-poor (resp., 2-rich) if it is incident to at most one line
(resp., to at least two lines) of L1. We also recall that a regulus is a doubly-ruled surface in
R3 or in C3. It is the union of all lines that pass through three fixed pairwise skew lines; it is
a quadric, which is either a hyperbolic paraboloid or a one-sheeted hyperboloid.

I Lemma 8. Let f be an irreducible polynomial in C[x, y, z], such that Z(f) is not a complex
plane nor a complex regulus, and let L1 be a finite set of lines fully contained in Z(f). Then,
with the possible exception of at most two lines, each line ` ∈ L1 is incident to at most O(D3)
2-rich points.

Proof. The strategy of the proof is to charge each incidence of ` with some 2-rich point p
to an intersection of ` with another line of L1 that passes through p, and to argue that, in
general, there can be only O(D3) such other lines. This in turn will be shown by arguing
that the union of all the lines that are fully contained in Z(f) and pass through ` is a
one-dimensional variety, of degree O(D3), from which the claim will follow. As we will show,
this will indeed be the case except when ` is one of at most two “exceptional” lines on Z(f).

Fix a line ` as in the lemma, assume for simplicity that it passes through the origin, and
write it as {tv0 | t ∈ C}; since ` is a real line, v0 can be assumed to be real. Consider the
union V (`) of all the lines that are fully contained in Z(f) and are incident to `; that is, V (`)
is the union of ` with the set of all points p ∈ Z(f) \ ` for which there exists t ∈ C such that
the line connecting p to tv0 ∈ ` is fully contained in Z(f). In other words, for such a t and
for each s ∈ C, we have f((1− s)p+ stv0) = 0. Regarding the left-hand side as a polynomial

in s, we can write it as
D∑
i=0

Gi(p; t)si ≡ 0, for suitable (complex) polynomials Gi(p; t) in p

and t, each of total degree at most D. In other words, p and t have to satisfy the system

G0(p; t) = G1(p; t) = · · · = GD(p; t) = 0, (8)

which defines an algebraic variety σ(`) in P4(C). Note that, substituting s = 0, we have
G0(p; t) ≡ f(p), and that the limit points (tv0, t) (corresponding to points on `) also satisfy
this system, since in this case f((1− s)tv0 + stv0) = f(tv0) = 0 for all s.

In other words, V (`) is the projection of σ(`) into P3(C), given by (p, t) 7→ p. For each
p ∈ Z(f)\ ` this system has only finitely many solutions in t, for otherwise the plane spanned
by p and `0 would be fully contained in Z(f), contrary to our assumption.

By the projective extension theorem (see, e.g., [3, Theorem 8.6]), the projection of σ(`)
into P3(C), in which t is discarded, is an algebraic variety τ(`). We observe that τ(`) is
contained in Z(f), and is therefore of dimension at most two.

Assume first that τ(`) is two-dimensional. As f is irreducible over C, we must have
τ(`) = Z(f). This implies that each point p ∈ Z(f) \ ` is incident to a (complex) line that is
fully contained in Z(f) and is incident to `. In particular, Z(f) is ruled by complex lines.

SoCG’15

564 Incidences between Points and Lines in Three Dimensions

By assumption, Z(f) is neither a complex plane nor a complex regulus. We may also
assume that Z(f) is not a complex cone, for then each line in L1 is incident to at most one
2-rich point (namely, the apex of Z(f)), making the assertion of the lemma trivial. It then
follows that Z(f) is an irreducible singly ruled (complex) surface. As argued in Guth and
Katz [8] (see also our companion paper [21] for an independent analysis of this situation,
which caters more explicitly to the complex setting too), Z(f) can contain at most two lines
` with this property.

Excluding these (at most) two exceptional lines `, we may thus assume that τ(`) is (at
most) a one-dimensional curve.

Clearly, by definition, each point (p, t) ∈ σ(`), except for p ∈ `, defines a line λ, in the
original 3-space, that connects p to tv0, and each point q ∈ λ satisfies (q, t) ∈ σ(`). Hence,
the line {(q, t) | q ∈ λ} is fully contained in σ(`), and therefore the line λ is fully contained in
τ(`). Since τ(`) is one-dimensional, this in turn implies (see, e.g., [19, Lemma 2.3]) that τ(`)
is a finite union of (complex) lines, whose number is at most deg(τ(`)). This also implies that
σ(`) is the union of the same number of lines, and in particular σ(`) is also one-dimensional,
and the number of lines that it contains is at most deg(σ(`)).

We claim that this latter degree is at most O(D3). This follows from a well-known result in
algebra (see, e.g., Schmid [15, Lemma 2.2]), that asserts that, since σ(`) is a one-dimensional
curve in P4(C), and is the common zero set of polynomials, each of degree O(D), its degree
is O(D3).

This completes the proof of the lemma. (The passage from the complex projective setting
back to the real affine one is trivial for this property.) J

I Corollary 9. Let f be a real or complex trivariate polynomial of degree D, such that (the
complexification of) Z(f) does not contain any complex plane nor any complex regulus. Let
L1 be a set of n lines fully contained in Z(f), and let P1 be a set of m points contained in
Z(f). Then I(P1, L1) = O(m+ nD3).

Proof. Write f =
∏s
i=1 fi for its decomposition into irreducible factors, for s ≤ D. We apply

Lemma 8 to each complex factor fi of the f . By the observation preceding Lemma 8,some
of these factors might be complex (non-real) polynomials, even when f is real. That is,
regardless of whether the original f is real or not, we carry out the analysis in the complex
projective space P3(C), and regard Z(fi) as a variety in that space.

Note also that, by focussing on the single irreducible component Z(fi) of Z(f), we
consider only points and lines that are fully contained in Z(fi). We thus shrink P1 and
L1 accordingly, and note that the notions of being 2-rich or 1-poor are now redefined with
respect to the reduced sets. All of this will be rectified at the end of the proof.

Assign each line ` ∈ L1 to the first component Z(fi), in the above order, that fully
contains `, and assign each point p ∈ P1 to the first component that contains it. If a point p
and a line ` are incident, then either they are both assigned to the same component Z(fi),
or p is assigned to some component Z(fi) and `, which is assigned to a later component,
is not contained in Z(fi). Each incidence of the latter kind can be charged to a crossing
between ` and Z(fi), and the total number of these crossings is O(nD). It therefore suffices
to consider incidences between points and lines assigned to the same component. Moreover,
if a point p is 2-rich with respect to the entire collection L1 but is 1-poor with respect to the
lines assigned to its component, then all of its incidences except one are accounted by the
preceding term O(nD), which thus takes care also of the single incidence within Z(fi).

By Lemma 8, for each fi, excluding at most two exceptional lines, the number of incidences
between a line assigned to (and contained in) Z(fi) and the points assigned to Z(fi) that

M. Sharir and N. Solomon 565

are still 2-rich within Z(fi), is O(deg(fi)3) = O(D3). Summing over all relevant lines, we get
the bound O(nD3).

Finally, each irreducible component Z(fi) can contain at most two exceptional lines, for
a total of at most 2D such lines. The number of 2-rich points on each such line ` is at most
n, since each such point is incident to another line, so the total number of corresponding
incidences is at most O(nD), which is subsumed by the preceding bound O(nD3). The
number of incidences with 1-poor points is, trivially, at most m. This completes the proof of
the corollary. 2

We next bound the number of incidences between points and lines on planar and reguli
components of Z(f), discard the relevant points and lines, and note that no plane contains
more than O(D) of the surviving lines, as argued in Lemma 3.

We then construct a new partitioning polynomial g, of degree E much smaller than D,
and rerun the analysis for g and E, as in the case of small m, where we use induction to
bound the number of incidences within the partition cells. The reasoning is similar, but the
calculations are different due to the different range of m. Omitting further details (for which
see [20]), we show that the induction step carries out if we choose

αj = 3
2 + 1

4j − 2 ,

for j ≥ 3 (the treatment of the first two values of αj is different for certain technical
reasons). This sequence does indeed converge to 3/2 as j → ∞, implying that the entire
range m = Ω(n3/2) is covered by the induction. J

3 Discussion

In this paper we derived an asymptotically tight bound for the number of incidences between
a set P of points and a set L of lines in R3. This bound has already been established by
Guth and Katz [8], where the main tool was the use of partitioning polynomials. As already
mentioned, the main novelty here is to use two separate partitioning polynomials of different
degrees; the one with the higher degree is used as a pruning mechanism, after which the
maximum number of coplanar lines of L can be better controlled (by the degree D of the
polynomial), which is a key ingredient in making the inductive argument work.

The second main tool of Guth and Katz was the Cayley–Salmon theorem. This theorem
says that a surface in R3 of degree D cannot contain more than 11D2 − 24D lines, unless it
is ruled by lines. This is an “ancient” theorem, from the 19th century, combining algebraic
and differential geometry, and its re-emergenece in recent years has kindled the interest of
the combinatorial geometry community in classical (and modern) algebraic geometry. New
proofs of the theorem were obtained (see, e.g., Terry Tao’s blog [26]), and generalizations
to higher dimensions have also been developed (see Landsberg [12]). However, the theorem
only holds over the complex field, and using it over the reals requires some care.

There is also an alternative way to bound the number of point-line incidences using flat
and singular points. However, as already remarked, these two, as well as the Cayley–Salmon
machinery, are non-trivial constructs, especially in higher dimensions, and their generalization
to other problems in combinatorial geometry (even incidence problems with curves other than
lines or incidences with lines in higher dimensions) seem quite difficult (and are mostly open).
It is therefore of considerable interest to develop alternative, more elementary interfaces
between algebraic and combinatorial geometry, which is a primary goal of the present paper
(as well as of Guth’s recent work [6]).

SoCG’15

566 Incidences between Points and Lines in Three Dimensions

In this regard, one could perhaps view Lemma 5 and Corollary 9 as certain weaker analogs
of the Cayley–Salmon theorem, which are nevertheless easier to derive, without having to
use differential geometry. Some of the tools in Guth’s paper [6] might also be interpreted as
such weaker variants of the Cayley–Salmon theory. It would be interesting to see suitable
extensions of these tools to higher dimensions.

Besides the intrinsic interest in simplifying the Guth–Katz analysis, the present work
has been motivated by our study of incidences between points and lines in four dimensions.
This has begun in a year-old companion paper [18], where we have used the the polynomial
partitioning method, with a polynomial of constant degree. This, similarly to Guth’s work
in three dimensions [6], has resulted in a slightly weaker bound and considerably stricter
assumptions concerning the input set of lines. In a more involved follow-up study [19],
we have managed to improve the bound, and to get rid of the restrictive assumptions,
using two partitioning steps, with polynomials of non-constant degrees, as in the present
paper. However, the analysis in [19] is not as simple as in the present paper, because, even
though there are generalizations of the Cayley–Salmon theorem to higher dimensions (due to
Landsberg, as mentioned above), it turns out that a thorough investigation of the variety of
lines fully contained in a given hypersurface of non-constant degree, is a fairly intricate and
challenging problem, raising many deep questions in algebraic geometry, some of which are
still unresolved.

One potential application of the techniques used in this paper, mainly the interplay
between partitioning polynomials of different degrees, is to the problem, recently studied
by Sharir, Sheffer and Zahl [17], of bounding the number of incidences between points and
circles in R3. That paper uses a partitioning polynomial of constant degree, and, as a
result, the term that caters to incidences within lower-dimensional spaces (such as our term
m2/3n1/3s1/3) does not go well through the induction mechanism, and consequently the
bound derived in [17] was weaker. We believe that our technique can improve the bound of
[17] in terms of this “lower-dimensional” term.

A substantial part of the present paper (half of the proof of the theorem) was devoted
to the treatment of the case m > n3/2. However, under the appropriate assumptions, the
number of points incident to at least two lines was shown by Guth and Katz [8] to be
bounded by O(n3/2). A recent note by Kollár [11] gives a simplified proof, including an
explicit multiplicative constant. In his work, Kollár does not use partitioning polynomials,
but employs more advanced algebraic geometric tools, like the arithmetic genus of a curve,
which serves as an upper bound for the number of singular points. If we accept (pedagogically)
the upper bound O(n3/2) for the number of 2-rich points as a “black box”, the regime in
which m > n3/2 becomes irrelevant, and can be discarded from the analysis, thus greatly
simplifying the paper.

A challenging problem is thus to find an elementary proof that the number of points
incident to at least two lines is O(n3/2) (e.g., without the use of the Cayley–Salmon theorem
or the tools used by Kollár). Another challenging (and probably harder) problem is to
improve the bound of Guth and Katz when the bound s on the maximum number of mutually
coplanar lines is � n1/2: In their original derivation, Guth and Katz [8] consider mainly
the case s = n1/2, and the lower bound constrcution in [8] also has s = n1/2. Another
natural further research direction is to find further applications of partitioning polynomials
of intermediate degrees.

M. Sharir and N. Solomon 567

References
1 S. Basu and M. Sombra, Polynomial partitioning on varieties and point-hypersurface incid-

ences in four dimensions, in arXiv:1406.2144.
2 K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir and E. Welzl, Combinatorial complexity

bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990), 99–160.
3 D. Cox, J. Little and D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to

Computational Algebraic Geometry and Commutative Algebra, Springer Verlag, Heidelberg,
2007.

4 G. Elekes, H. Kaplan and M. Sharir, On lines, joints, and incidences in three dimensions,
J. Combinat. Theory, Ser. A 118 (2011), 962–977. Also in arXiv:0905.1583.

5 P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.
6 L. Guth, Distinct distance estimates and low-degree polynomial partitioning, in

arXiv:1404.2321.
7 L. Guth and N. H. Katz, Algebraic methods in discrete analogs of the Kakeya problem,

Advances Math. 225 (2010), 2828–2839. Also in arXiv:0812.1043v1.
8 L. Guth and N. H. Katz, On the Erdős distinct distances problem in the plane, Annals

Math. 181 (2015), 155–190. Also in arXiv:1011.4105.
9 H. Kaplan, J. Matoušek, Z. Safernová and M. Sharir, Unit distances in three dimensions,

Combinat. Probab. Comput. 21 (2012), 597–610. Also in arXiv:1107.1077.
10 H. Kaplan, J. Matoušek and M. Sharir, Simple proofs of classical theorems in discrete

geometry via the Guth–Katz polynomial partitioning technique, Discrete Comput. Geom.
48 (2012), 499–517. Also in arXiv:1102.5391.

11 J. Kollár, Szemerédi–Trotter-type theorems in dimension 3, in arXiv:1405.2243.
12 J. M. Landsberg, is a linear space contained in a submanifold? On the number of derivatives

needed to tell, J. Reine Angew. Math. 508 (1999), 53–60.
13 J. Pach and M. Sharir, Geometric incidences, in Towards a Theory of Geometric Graphs (J.

Pach, ed.), Contemporary Mathematics, Vol. 342, Amer. Math. Soc., Providence, RI, 2004,
pp. 185–223.

14 O. Raz, M. Sharir, and F. De Zeeuw, Polynomials vanishing on Cartesian products: The
Elekes–Szabó Theorem revisited, These proceedings.

15 J. Schmid, On the affine Bézout inequality, Manuscripta Mathematica 88(1) (1995), 225–
232.

16 M. Sharir, A. Sheffer, and N. Solomon, Incidences with curves in Rd, manuscript, 2014.
17 M. Sharir, A. Sheffer, and J. Zahl, Improved bounds for incidences between points and

circles, Combinat. Probab. Comput., in press. Also in Proc. 29th ACM Symp. on Computa-
tional Geometry (2013), 97–106, and in arXiv:1208.0053.

18 M. Sharir and N. Solomon, Incidences between points and lines in R4, Proc. 30th Annu.
ACM Sympos. Comput. Geom., 2014, 189–197.

19 M. Sharir and N. Solomon, Incidences between points and lines in four dimensions, in
arXiv:1411.0777.

20 M. Sharir and N. Solomon, Incidences between points and lines in three dimensions, in
arXiv:1501.02544.

21 M. Sharir and N. Solomon, Incidences between points and lines on a two-dimensional variety,
manuscript, 2014. in arXiv:1501.01670.

22 J. Solymosi and T. Tao, An incidence theorem in higher dimensions, Discrete Comput.
Geom. 48 (2012), 255–280.

23 L. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combinat.
Probab. Comput. 6 (1997), 353–358.

24 E. Szemerédi and W. T. Trotter, Extremal problems in discrete geometry, Combinatorica
3 (1983), 381–392.

SoCG’15

568 Incidences between Points and Lines in Three Dimensions

25 T. Tao, From rotating needles to stability of waves: Emerging connections between com-
binatorics, analysis, and PDE, Notices AMS 48(3) (2001), 294–303.

26 T. Tao, The Cayley–Salmon theorem via classical differential geometry,
http://terrytao.wordpress.com, March 2014.

27 H. E. Warren, Lower bound for approximation by nonlinear manifolds, Trans. Amer. Math.
Soc. 133 (1968), 167–178.

28 J. Zahl, An improved bound on the number of point-surface incidences in three dimensions,
Contrib. Discrete Math. 8(1) (2013). Also in arXiv:1104.4987.

29 J. Zahl, A Szemerédi-Trotter type theorem in R4, in arXiv:1203.4600.

The Number of Unit-Area Triangles in the Plane:
Theme and Variations∗

Orit E. Raz and Micha Sharir

School of Computer Science, Tel Aviv University
Tel Aviv 69978, Israel
{oritraz,michas}@post.tau.ac.il

Abstract
We show that the number of unit-area triangles determined by a set S of n points in the plane
is O(n20/9), improving the earlier bound O(n9/4) of Apfelbaum and Sharir [2]. We also consider
two special cases of this problem: (i) We show, using a somewhat subtle construction, that if S
consists of points on three lines, the number of unit-area triangles that S spans can be Ω(n2),
for any triple of lines (it is always O(n2) in this case). (ii) We show that if S is a convex grid
of the form A×B, where A, B are convex sets of n1/2 real numbers each (i.e., the sequences of
differences of consecutive elements of A and of B are both strictly increasing), then S determines
O(n31/14) unit-area triangles.

1998 ACM Subject Classification G.2 Discrete Mathematics

Keywords and phrases Combinatorial geometry, incidences, repeated configurations

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.569

1 Introduction

In 1967, Oppenheim (see [9]) asked the following question: Given n points in the plane
and A > 0, how many triangles spanned by the points can have area A? By applying a
scaling transformation, one may assume A = 1 and count the triangles of unit area. Erdős
and Purdy [8] showed that a

√
logn× (n/

√
logn) section of the integer lattice determines

Ω(n2 log logn) triangles of the same area. They also showed that the maximum number of
such triangles is at most O(n5/2). In 1992, Pach and Sharir [10] improved the bound to
O(n7/3), using the Szemerédi-Trotter theorem [16] (see below) on the number of point-line
incidences. More recently, Dumitrescu et al. [4] have further improved the upper bound to
O(n44/19) = O(n2.3158), by estimating the number of incidences between the given points
and a 4-parameter family of quadratic curves. In a subsequent improvement, Apfelbaum and
Sharir [2] have obtained the upper bound O(n9/4+ε), for any ε > 0, which has been slightly
improved to O(n9/4) in Apfelbaum [1]. This has been the best known upper bound so far.

In this paper we further improve the bound to O(n20/9). Our proof uses a different
reduction of the problem to an incidence problem, this time to incidences between points
and two-dimensional algebraic surfaces in R4. A very recent result of Solymosi and De
Zeeuw [15] provides a sharp upper bound for the number of such incidences, similar to the

∗ Work on this paper by Orit E. Raz and Micha Sharir was supported by Grant 892/13 from the Israel
Science Foundation and by the Israeli Centers of Research Excellence (I-CORE) program (Center
No. 4/11). Work by Micha Sharir was also supported by Grant 2012/229 from the U.S.–Israel Binational
Science Foundation and by the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv
University. Part of this research was performed while the authors were visiting the Institute for Pure
and Applied Mathematics (IPAM), which is supported by the National Science Foundation.

© Orit E. Raz and Micha Sharir;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 569–583

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.569
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

570 The Number of Unit-Area Triangles in the Plane: Theme and Variations

Szemerédi–Trotter bound, provided that the points, surfaces, and incidences satisfy certain
fairly restrictive assumptions. The main novel features of our analysis are thus (a) the
reduction of the problem to this specific type of incidence counting, and (b) showing that
the assumptions of [15] are satisfied in our context.

After establishing this main result, we consider two variations, in which better bounds
can be obtained.

We first consider the case where the input points lie on three arbitrary lines. It is easily
checked that in this case there are at most O(n2) unit-area triangles. We show, in Section 3,
that this bound is tight, and can be attained for any triple of lines. Rather than just
presenting the construction, we spend some time showing its connection to a more general
problem studied by Elekes and Rónyai [6] (see also the recent developments in [7, 11, 12]),
involving the zero set of a trivariate polynomial within a triple Cartesian product. Skipping
over the details, which are spelled out in Section 3, it turns out that the case of unit-area
triangles determined by points lying on three lines is an exceptional case in the theory of
Elekes and Rónyai [6], which then leads to a construction with Θ(n2) unit-area triangles.

Another variation that we consider concerns unit-area triangles spanned by points in a
convex grid. That is, the input set is of the form A × B, where A and B are convex sets
of n1/2 real numbers each; a set of real numbers is called convex if the differences between
consecutive elements form a strictly increasing sequence. We show that in this case A×B
determine O(n31/14) unit-area triangles. The main technical tool used in our analysis is a
result of Schoen and Shkredov [13] on difference sets involving convex sets.1

2 Unit-area triangles in the plane

I Theorem 2.1. The number of unit-area triangles spanned by n points in the plane is
O(n20/9).

We first recall the Szemerédi–Trotter theorem [16] on point-line incidences in the plane.

I Theorem 2.2 (Szemerédi and Trotter [16]).
(i) The number of incidences between M distinct points and N distinct lines in the plane is

O(M2/3N2/3 +M +N).
(ii) Given M distinct points in the plane and a parameter k ≤ M , the number of lines

incident to at least k of the points is O(M2/k3 +M/k). Both bounds are tight in the
worst case.

Proof of Theorem 2.1. Let S be a set of n points in the plane, and let U denote the set of
unit-area triangles spanned by S. For any pair of distinct points, p 6= q ∈ S, let `pq denote
the line through p and q. The points r for which the triangle pqr has unit area lie on two lines
`−pq, `

+
pq parallel to `pq and at distance 2/|pq| from `pq on either side. We let `′pq ∈ {`−pq, `+

pq}
be the line that lies to the left of the vector ~pq. We then have2

|U | = 1
3

∑
(p,q)∈S×S

|`′pq ∩ S|.

It suffices to consider only triangles pqr of U , that have the property that at least one of
the three lines `pq, `pr, `qr is incident to at most n1/2 points of S, because the number of

1 Very recently, in work in progress, jointly with I. Shkredov, the bound is further improved in this case.
2 In this sum, as well in similar sums in the sequel, we only consider pairs of distinct points in S × S.

O. E. Raz and M. Sharir 571

triangles in U that do not have this property is O(n3/2). Indeed, by Theorem 2.2(ii), there
exist at most O(n1/2) lines in R2, such that each contains at least n1/2 points of S. Since
every triple of those lines supports (the edges of) at most one triangle (some of the lines
might be mutually parallel, and some triples might intersect at points that do not belong to
S), these lines support in total at most O(n3/2) triangles, and, in particular, at most O(n3/2)
triangles of U . Since this number is subsumed in the asserted bound on |U |, we can therefore
ignore such triangles in our analysis. In what follows, U denotes the set of the remaining
unit-area triangles.

We charge each of the surviving unit-area triangles pqr to one of its sides, say pq, such
that `pq contains at most n1/2 points of S. That is, we have |U | ≤

∑
(p,q)∈(S×S)∗

|`′pq ∩ S|,

where (S × S)∗ denotes the subset of pairs (p, q) ∈ S × S, such that p 6= q, and the line `pq
is incident to at most n1/2 points of S.

A major problem in estimating |U | is that the lines `′pq, for p, q ∈ S, are not necessarily
distinct, and the analysis has to take into account the (possibly large) multiplicity of these
lines. (If the lines were distinct then |U | would be bounded by the number of incidences
between n(n− 1) lines and n points, which is O(n2) — see Theorem 2.2(i).) Let L denote
the collection of lines {`′pq | (p, q) ∈ (S × S)∗} (without multiplicity). For ` ∈ L, we define
(S × S)` to be the set of all pairs (p, q) ∈ (S × S)∗, for which `′pq = `. We then have

|U | ≤
∑
`∈L

|` ∩ S||(S × S)`|.

Fix some integer parameter k ≤ n1/2, to be set later, and partition L into the sets

L− = {` ∈ L | |`∩S| < k}, L+ = {` ∈ L | k ≤ |`∩S| ≤ n/k}, L++ = {` ∈ L | |`∩S| > n/k}.

We have

|U | ≤
∑
`∈L−

|` ∩ S||(S × S)`|+
∑
`∈L+

|` ∩ S||(S × S)`|+
∑
`∈L++

|` ∩ S||(S × S)`|.

The first sum is at most k
∑
`∈L− |(S × S)`| ≤ kn2, because

∑
`∈L− |(S × S)`| is at most

|(S × S)∗| ≤ |S × S| = n2. The same (asymptotic) bound also holds for the the third sum.
Indeed, since n/k ≥ n1/2, the number of lines in L++ is at most O(k), as follows from
Theorem 2.2(ii), and, for each ` ∈ L++, we have |` ∩ S| ≤ n and |(S × S)`| ≤ n (for any
p ∈ S, ` ∈ L, there exists at most one point q ∈ S, such that `′pq = `). This yields a total of
at most O(n2k) unit-area triangles. It therefore remains to bound the second sum, over L+.

Applying the Cauchy-Schwarz inequality to the second sum, it follows that

|U | ≤ O(n2k) +
(∑
`∈L+

|` ∩ S|2
)1/2(∑

`∈L+

|(S × S)`|2
)1/2

.

Let Nj (resp., N≥j), for k ≤ j ≤ n/k, denote the number of lines ` ∈ L+ for which
|` ∩ S| = j (resp., |` ∩ S| ≥ j). By Theorem 2.2(ii), N≥j = O

(
n2/j3 + n/j

)
. Hence

∑
`∈L+

|` ∩ S|2 =
n/k∑
j=k

j2Nj ≤ k2N≥k +
n/k∑

j=k+1
(2j − 1)N≥j

= O

n2

k
+ nk +

n/k∑
j=k+1

(
n2

j2 + n

) = O

(
n2

k

)

SoCG’15

572 The Number of Unit-Area Triangles in the Plane: Theme and Variations

q v

p u

`′pu = `′qv

(a)

u

v

p1 p2 q1 q2
(b)

Figure 1 (a) A quadruple (p, u, q, v) in Q. (b) If p1, q1, p2, q2 are collinear and |p1p2| = |q1q2|
then `p2u, `q2v are not parallel to one another, for every (u, v) ∈ σp1q1 \ `p1q1 . Thus, in particular,
(u, v) 6∈ σp2q2 .

(where we used the fact that k ≤ n1/2). It follows that

|U | = O

(
n2k + n

k1/2

(∑
`∈L+

|(S × S)`|2
)1/2

)
.

To estimate the remaining sum, put

Q :=
{

(p, u, q, v) ∈ S4 | (p, u), (q, v) ∈ (S × S)`, for some ` ∈ L+} .
That is, Q consists of all quadruples (p, u, q, v) such that `′pu = `′qv ∈ L+, and each of `pu, `qv
contains at most n1/2 points of S. See Figure 1(a) for an illustration.

The above bound on |U | can then be written as

|U | = O

(
n2k + n|Q|1/2

k1/2

)
. (1)

The main step of the analysis is to establish the following upper bound on |Q|.

I Proposition 2.3. Let Q be as above. Then |Q| = O
(
n8/3) .

The proposition, combined with (1), implies that |U | = O
(
n2k + n7/3/k1/2), which, if we

choose k = n2/9, becomes |U | = O(n20/9). Since the number of triangles that we have
discarded is only O(n3/2), Theorem 2.1 follows. J

Proof of Proposition 2.3. Consider first quadruples (p, u, q, v) ∈ Q, with all four points
p, u, q, v collinear. As is easily checked, in this case (p, u, q, v) must also satisfy |pu| = |qv|.
It follows that a line ` in the plane, which is incident to at most j points of S, can support
at most j3 such quadruples. By definition, (S × S)` ⊂ (S × S)∗ for each ` ∈ L+, so the
line `pu = `qv is incident to at most n1/2 points of S, and it suffices to consider only lines `
with this property. Using the preceding notations Nj , N≥j , the number of quadruples under
consideration is

O

 ∑
j≤n1/2

j3Nj

 = O

 ∑
j≤n1/2

j2N≥j

 = O

 ∑
j≤n1/2

j2 · n
2

j3

 = O
(
n2 logn

)
.

This is subsumed by the asserted bound on |Q|, so, in what follows we only consider quadruples
(p, u, q, v) ∈ Q, such that p, u, q, v are not collinear.

For convenience, we assume that no pair of points of S share the same x- or y-coordinate;
this can always be enforced by a suitable rotation of the coordinate frame. The property
that two pairs of S × S are associated with a common line of L can then be expressed in the
following algebraic manner.

O. E. Raz and M. Sharir 573

I Lemma 2.4. Let (p, u, q, v) ∈ S4, and represent p = (a, b), u = (x, y), q = (c, d), and
v = (z, w), by their coordinates in R2. Then `′pu = `′qv if and only if

y − b
x− a

= w − d
z − c

and bx− ay + 2
x− a

= dz − cw + 2
z − c

. (2)

Proof. Let α, β ∈ R be such that `′(a,b)(x,y) = {(t, αt+ β) | t ∈ R}. Then, by the definition
of `′(a,b)(x,y), we have

1
2

∣∣∣∣∣∣
a x t

b y αt+ β

1 1 1

∣∣∣∣∣∣ = 1, or (b− y − α(a− x))t− β(a− x) + ay − bx = 2,

for all t ∈ R. Thus, α = α(a, b, x, y) = y−b
x−a , β = β(a, b, x, y) = bx−ay+2

x−a . Then the constraint
`′(a,b)(x,y) ≡ `

′
(c,d)(z,w) can be written as α(a, b, x, y) = α(c, d, z, w), β(a, b, x, y) = β(c, d, z, w),

which is (2). J

We next transform the problem of estimating |Q| into an incidence problem. With each
pair (p = (a, b), q = (c, d)) ∈ S×S, we associate the two-dimensional surface σpq ⊂ R4 which
is the locus of all points (x, y, z, w) ∈ R4 that satisfy the system (2). The degree of σpq is at
most 4, being the intersection of two quadratic hypersurfaces. We let Σ denote the set of
surfaces

Σ := {σpq | (p, q) ∈ S × S, p 6= q}.

For (p1, q1) 6= (p2, q2), the corresponding surfaces σp1q1 , σp2q2 are distinct; the proof of this
fact is omitted here. We also consider the set Π := S × S, regarded as a point set in R4

(identifying R2×R2 ' R4). We have |Π| = |Σ| = O(n2). The set I(Π,Σ), the set of incidences
between Π and Σ, is naturally defined as

I(Π,Σ) := {(π, σ) ∈ Π× Σ | π ∈ σ}.

By Lemma 2.4, we have (x, y, z, w) ∈ σpq if and only if `′pu = `′qv, where u := (x, y) and
v := (z, w). This implies that |Q| ≤ |I(Π,Σ)|.

Consider the subcollection I of incidences ((x, y, z, w), σpq) ∈ I(Π,Σ), such that p, q, u :=
(x, y), v := (z, w) are non-collinear (as points in R2). As already argued, the number of
collinear quadruples in Q is O(n2 logn), and hence |Q| ≤ |I|+O(n2 logn). So to bound |Q|
it suffices to obtain an upper bound on |I|.

For this we use the following recent result of Solymosi and De Zeeuw [15] (see also the
related results in [14, 17]). To state it we need the following definition.

I Definition 2.5. A two-dimensional constant-degree surface σ in R4 is said to be slanted
(the original term used in [15] is good), if, for every p ∈ R2, ρ−1

i (p) ∩ σ is finite, for i = 1, 2,
where ρ1 and ρ2 are the projections of R4 onto its first and last two coordinates, respectively.

I Theorem 2.6 (Solymosi and De Zeeuw [15]). Let S be a subset of R2, and let Γ be a finite
set of two-dimensional constant-degree slanted surfaces. Set Π := S × S, and let I ⊂ I(Π,Γ).
Assume that for every pair of distinct points π1, π2 ∈ Π there are at most O(1) surfaces σ ∈ Σ
such that both pairs (π1, σ), (π2, σ) are in I. Then

|I| = O
(
|Π|2/3|Σ|2/3 + |Π|+ |Σ|

)
.

To apply Theorem 2.6, we need the following key technical proposition, whose proof is
given in the next subsection.

SoCG’15

574 The Number of Unit-Area Triangles in the Plane: Theme and Variations

I Proposition 2.7. Let Π, Σ, and I be the sets that arise in our setting, as specified above.
Then, (a) the surfaces of Σ are all slanted, and (b) for every pair of distinct points π1, π2 ∈ Π,
there are at most three surfaces σ ∈ Σ such that both pairs (π1, σ), (π2, σ) are in I.

We have |Π|, |Σ| = O(n2). Therefore, Theorem 2.6 implies that |I| = O(n8/3), which
completes the proof of Proposition 2.3 (and, consequently, of Theorem 2.1). J

2.1 Proof of Proposition 2.7
We start by eliminating z and w from (2). An easy calculation shows that

z = 2(x− a)
(b− d)(x− a) + (c− a)(y − b) + 2 + c, (3)

w = 2(y − b)
(b− d)(x− a) + (c− a)(y − b) + 2 + d.

This expresses σpq as the graph of a linear rational function from R2 to R2 (which is undefined
on the line at which the denominator vanishes). Passing to homogeneous coordinates,
replacing (x, y) by (x0, x1, x2) and (z, w) by (z0, z1, z2), we can re-interpret σpq as the graph
of a projective transformation Tpq : RP2 → RP2, given by z0

z1
z2

 =

 ad− bc+ 2 b− d c− a
c(ad− bc) + 2(c− a) c(b− d) + 2 c(c− a)
d(ad− bc) + 2(d− b) d(b− d) d(c− a) + 2

 x0
x1
x2

 .

The representation (3) implies that every (x, y) defines at most one pair (z, w) such that
(x, y, z, w) ∈ σpq. By the symmetry of the definition of σpq, every pair (z, w) also determines
at most one pair (x, y) such that (x, y, z, w) ∈ σpq. This shows that, for any p 6= q ∈ R2, the
surface σpq is slanted, which proves Proposition 2.7(a).

For Proposition 2.7(b), it is equivalent, by the symmetry of the setup, to prove the
following dual statement: For any p1 6= q1, p2 6= q2 ∈ S, such that (p1, q1) 6= (p2, q2), we have
|σp1q1 ∩ σp2q2 ∩ I| ≤ 3.

Let p1, q1, p2, q2 ∈ S be as above, and assume that |σp1q1 ∩ σp2q2 ∩ I| ≥ 4. Note that this
means that the two projective transformations Tp1q1 , Tp2q2 agree in at least four distinct
points of the projective plane. We claim that in this case σp1q1 and σp2q2 , regarded as graphs
of functions on the affine xy-plane, must coincide on some line in that plane.

This is certainly the case if σp1q1 and σp2q2 coincide,3 so we may assume that these surfaces
are distinct, which implies that Tp1q1 and Tp2q2 are distinct projective transformations.

As is well known, two distinct projective transformations of the plane cannot agree at
four distinct points so that no three of them are collinear. Hence, out of the four points at
which Tp1q1 and Tp2q2 agree, three must be collinear. Denote this triple of points (in the
projective xy-plane) as u1, u2, u3, and their respective images (in the projective zw-planes)
as vi = Tp1q1(ui) = Tp2q2(ui), for i = 1, 2, 3. Then the line λ that contains u1, u2, u3 is
mapped by both Tp1q1 and Tp2q2 to a line λ∗, and, as a matter of fact, both transformations
coincide on λ.

Passing back to the affine setting, let then λ, λ∗ be a pair of lines in the xy-plane and
the zw-plane, respectively, such that, for every (x, y) ∈ λ (other than the point at which the

3 One can show that this cannot happen, but it has no effect on our analysis.

O. E. Raz and M. Sharir 575

p1

q1

p2

q2

λ

ξ

η

(a)

p1

q1

p2

q2

λ

ξ

η

(b)

Figure 2 (a) The properties |p1ξ| = |q1η|, `p1p2 ‖ `q1q2 , and (ξ, η) ∈ σp2q2 imply that the triangles
p1ξp2, q1ηq2 are congruent, and therefore `p1q1 , `p2q2 must be parallel to one another. (b) p1q1q2p2

is a parallelogram and λ is parallel to `p1q1 and `p2q2 .

denominator in (3) vanishes) there exists (z, w) ∈ λ∗, satisfying (x, y, z, w) ∈ σp1q1 ∩ σp2q2 .
We show that in this case p1, q1, p2, q2 are all collinear and |p1p2| = |q1q2|.

We first observe that `p1p2 ‖ `q1q2 . Indeed, if each of λ ∩ `p1p2 and λ ∩ `q1q2 is either
empty or infinite, then we must have `p1p2 ‖ `q1q2 (since both are parallel to λ). Otherwise,
assume without loss of generality that |`p1p2 ∩ λ| = 1, and let ξ denote the unique point in
this intersection. Let η be the point such that (ξ, η) satisfies (3) with respect to both surfaces
σp1q1 , σp2q2 (the same point arises for both surfaces because ξ ∈ λ). That is, `′p1ξ

= `′q1η, and
`′p2ξ

= `′q2η. In particular, `p1ξ ‖ `q1η, and `p2ξ ‖ `q2η. Since, by construction, ξ ∈ `p1p2 , we
have `p1ξ ≡ `p2ξ, which yields that also `q1η ‖ `q2η. Thus necessarily q1, q2, η are collinear,
and `q1q2 ‖ `p1p2 , as claimed.

Assume that at least one of `p1q1 , `p2q2 intersects λ in exactly one point; say, without
loss of generality, it is `p1q1 , and let ξ denote the unique point in this intersection. Similar to
the argument just made, let η be the point such that (ξ, η) satisfies (3) with respect to both
surfaces σp1q1 , σp2q2 . Note that since ξ ∈ `p1q1 , we must have η ∈ `p1q1 too, and |p1ξ| = |q1η|.
In particular, since p1 6= q2, by assumption, we also have ξ 6= η. Using the properties
`p1p2 ‖ `q1q2 and (ξ, η) ∈ σp2q2 , it follows that the triangles p1ξp2, q1ηq2 are congruent; see
Figure 2(a). Thus, in particular, |p2ξ| = |q2η|. Since, by construction, also `′p2ξ

≡ `′q2η,
it follows that p2, q2 ∈ `ξη. We conclude that in this case p1, q1, p2, q2 are collinear and
|p1p2| = |q1q2|.

We are therefore left only with the case where each of λ ∩ `p1q1 and λ ∩ `p2q2 is either
empty or infinite. That is, we have `p1q1 ‖ `p2q2 (since both are parallel to λ). As has already
been argued, we also have `p1p2 ‖ `q1q2 , and thus p1q1q2p2 is a parallelogram; see Figure 2(b).
In particular, |p1p2| = |q1q2|. Let ξ be the intersection point of `p1p2 with λ, and let η be the
point such that (ξ, η) satisfies (3) with respect to both surfaces σp1q1 , σp2q2 . By construction
`p1ξ ‖ `q1η and `p2ξ(= `p1ξ) ‖ `q2η. Hence η must lie on `q1q2 . It is now easily checked that
the only way in which (ξ, η) can lie on both surfaces σp1q1 and σp2q2 is when p1, q1, p2, q2 are
all collinear; see Figure 2(b).

To recap, so far we have shown that for p1, q1, p2, and q2 as above, either |σp1q1∩σp2q2 | ≤ 3,
or p1, q1, p2, and q2 are collinear with |p1p2| = |q1q2|. It can then be shown that, in the
latter case, any point (u, v) ∈ σp1q1 ∩ σp2q2 must satisfy u, v ∈ `p1q1 ; see Figure 1(b). Thus,
for a point π ∈ R4 incident to each of σp1q1 , σp2q2 , neither of (π, σp1q1), (π, σp2q2) is in I. In
other words, σp1q1 ∩ σp2q2 ∩ I = ∅ in this case. This contradiction completes the proof of
Proposition 2.7. J

SoCG’15

576 The Number of Unit-Area Triangles in the Plane: Theme and Variations

3 Unit-area triangles spanned by points on three lines

In this section we consider the special case where S is contained in the union of three distinct
lines l1, l2, l3. More precisely, we write S = S1 ∪ S2 ∪ S3, with Si ⊂ li, for i = 1, 2, 3, and
we are only interested in the number of unit-area triangles spanned by triples of points in
S1 × S2 × S3. It is easy to see that in this case the number of unit-area triangles of this kind
is O(n2). Indeed, for any pair of points p, q ∈ S1 × S2, the line `′pq intersects l3 in at most
one point, unless `′pq coincides with l3. Ignoring situation of the latter kind, we get a total
of O(n2) unit-area triangles. If no two lines among l1, l2, l3 are parallel to one another, it
can be checked that the number of pairs (p, q) such that `′pq = l3 is at most a constant, thus
contributing a total of at most O(n) unit-area triangles. For the case where two (or more)
lines among l1, l2, l3 are parallel, the number of unit-area triangles is easily seen to be O(n2).

In this section we present a rather subtle construction that shows that this bound is tight
in the worst case, for any triple of distinct lines. Instead of just presenting the construction,
we spend some time showing its connection to a more general setup considered by Elekes
and Rónyai [6] (and also, in more generality, by Elekes and Szabó [7]).

Specifically, the main result of this section is the following.

I Theorem 3.1. For any triple of distinct lines l1, l2, l3 in R2, and for any integer n, there
exist subsets S1 ⊂ l1, S2 ⊂ l2, S3 ⊂ l3, each of cardinality Θ(n), such that S1×S2×S3 spans
Θ(n2) unit-area triangles.

Proof. The upper bound has already been established (for any choice of S1, S2, S3), so we
focus on the lower bound. We recall that by the area formula for triangles in the plane, if

1
2

∣∣∣∣∣∣
px qx rx
py qy ry
1 1 1

∣∣∣∣∣∣ = 1, (4)

then the points p = (px, py), q = (qx, qy) and r = (rx, ry) form the vertices of a positively
oriented unit-area triangle in R2. (Conversely, if ∆pqr has area 1 then the left-hand side of
(4) has value ±1, depending on the orientation of (p, q, r)..)

To establish the lower bound, we distinguish between three cases, depending on the
number of pairs of parallel lines among l1, l2, l3.

The three lines l1, l2, l3 are mutually parallel. In this case we may assume without loss
of generality that they are of the form

l1 = {(t, 0) | t ∈ R}, l2 = {(t, 1) | t ∈ R}, l3 = {(t, α) | t ∈ R},

for some 1 < α ∈ R. (We translate and rotate the coordinate frame so as to place `1 at the
x-axis and then apply an area-preserving linear transformation that scales the x- and y-axes
by reciprocal values.) Then, as easily verified, the sets

S1 := {(xi := i
1−α , 0) | i = 1, . . . , n} ⊂ l1,

S2 := {(yj := j
α , 1) | j = 1, . . . , n} ⊂ l2,

S3 := {(zij := i+ j − 2, α) | i, j = 1, . . . , n} ⊂ l3

are such that S1 × S2 × S3 spans Ω(n2) unit-area triangles.

O. E. Raz and M. Sharir 577

There is exactly one pair of parallel lines among l1, l2, l3. Using an area-preserving affine
transformation of R2 (and possibly re-indexing the lines), we may assume that

l1 = {(t, 0) | t ∈ R}, l2 = {(t, 1) | t ∈ R}, l3 = {(0, t) | t ∈ R}.

Using (4), it is easily checked that the sets

S1 := {(xi := 2i + 2, 0) | i = 1, . . . , n} ⊂ l1,
S2 := {(yj := 2j + 2, 1) | j = 1, . . . , n} ⊂ l2,
S3 := {(0, zij := 1

1−2j−i) | i, j = 1, . . . , n, i 6= j} ⊂ l3,

span Ω(n2) unit-area triangles.

No pair of lines among l1, l2, l3 are parallel. This is the most involved case. Using an
area-preserving affine transformation of R2 (that is, a linear map with determinant ±1 and a
translation), we may assume that the lines are given by

l1 = {(t, 0) | t ∈ R}, l2 = {(0, t) | t ∈ R}, l3 = {(t,−t+ α) | t ∈ R},

for some α ∈ R. By (4) , the points (x, 0) ∈ l1, (0, y) ∈ l2, and (z,−z + α) ∈ l3 span a
unit-area triangle if

1
2

∣∣∣∣∣∣
x 0 z

0 y −z + α

1 1 1

∣∣∣∣∣∣ = 1, or z = f(x, y) := xy − αx− 2
y − x

.

Thus it suffices to find sets X,Y, Z ⊂ R, each of cardinality Θ(n), such that∣∣{(x, y, z) ∈ X × Y × Z | z = f(x, y)}
∣∣ = Ω(n2);

then the sets

S1 := {(x, 0) | x ∈ X} ⊂ l1, S2 := {(0, y) | y ∈ Y } ⊂ l2, S3 := {(z,−z+α) | z ∈ Z} ⊂ l3,

are such that S1 × S2 × S3 spans Ω(n2) unit-area triangles.

The construction of S1, S2, S3: General context. As mentioned at the beginning of this
section, rather than stating what S1, S2, S3 are, we present the machinery that we have used
for their construction, thereby demonstrating that this problem is a special case of the theory
of Elekes and Rónyai [6]; we also refer the reader to the more recent related studies [7, 11, 12].

One of the main results of Elekes and Rónyai is the following. (Note that the bound in
(i) has recently been improved to O(n11/6) in [11, 12].)

I Theorem 3.2 (Elekes and Rónyai [6]). Let f(x, y) be a bivariate real rational function.
Then one of the following holds.
(i) For any triple of sets A,B,C ⊂ R, each of size n,∣∣{(x, y, z) ∈ A×B × C | z = f(x, y)

}∣∣ = o(n2).

(ii) There exist univariate real rational functions h, ϕ, ψ, such that f has one of the forms

f(x, y) = h(ϕ(x) + ψ(y)), f(x, y) = h(ϕ(x)ψ(y)), f(x, y) = h
(
ϕ(x)+ψ(y)

1−ϕ(x)ψ(y)

)
.

SoCG’15

578 The Number of Unit-Area Triangles in the Plane: Theme and Variations

Our problem is thus a special instance of the context in Theorem 3.2. Specifically, we
claim that f(x, y) = xy − αx− 2

y − x
satisfies condition (ii) of the theorem, which in turn will

lead to the (natural) construction of the desired sets S1, S2, S3 (see below for details).
So we set the task of describing a necessary and sufficient condition that a real bivariate

(twice differentiable) function F (x, y) is locally4 of the form F (x, y) = h(ϕ(x) + ψ(y)), for
suitable univariate twice differentiable functions h, ϕ, ψ (not necessarily rational functions).
This condition is presented in [6] where its (rather straightforward) necessity is argued. It is
mentioned in [6] that the sufficiency of this test was observed by A. Jarai Jr. (apparently
in an unpublished communication). Since no proof is provided in [6], we present in the full
version a proof, for the sake of completeness.

I Lemma 3.3. Let F (x, y) be a bivariate twice-differentiable real function, and assume that
neither of Fx, Fy is identically zero. Let D(F) ⊂ R2 denote the domain of definition of F ,
and let U be a connected component of the relatively open set D(F) \

(
{Fy = 0} ∪ {Fx =

0}
)
⊂ R2. We let q(x, y) := Fx/Fy, which is defined, with a constant sign, over U . Then

∂2(log |q(x, y)|)
∂x∂y

≡ 0 over U if and only if F , restricted to U , is of the form F (x, y) =

h(ϕ(x) + ψ(y)), for some (twice-differentiable) univariate real functions ϕ, ψ, and h.

Proof. The proof shows that if ∂
2(log |q(x, y)|)

∂x∂y
≡ 0 then

Fx/Fy = ϕ′(x)/ψ′(y), (5)

for suitable twice differentiable strictly monotone functions ϕ and ψ, and then shows that
this implies that F is of the form F (x, y) = h(ϕ(x) + ψ(y)), as claimed. J

The construction of S1, S2, S3: Specifics. We next apply Lemma 3.3 to our specific
function f(x, y) = xy−αx−2

y−x . In what follows we fix a connected open set U ⊂ D(f) \
(
{fx =

0} ∪ {fy = 0}
)
, and restrict the analysis only to points (x, y) ∈ U . We have

fx = y2 − αy − 2
(y − x)2 , and fy = −x

2 + αx+ 2
(y − x)2 .

By assumption, the numerators are nonzero and of constant signs, and the denominator is

nonzero, over U . In particular, we have fx
fy

= (−x2 + αx+ 2)−1

(y2 − αy − 2)−1 . That is, without explicitly

testing that the condition in Lemma 3.3 holds, we see that fx/fy has the form in (5). Hence
Lemma 3.3 implies that f(x, y) can be written as f(x, y) = h(ϕ(x) + ψ(y)), for suitable
twice-differentiable univariate functions ϕ, ψ, and h, where ϕ and ψ are given (up to additive
constants) by ϕ′(x) = − 1

x2 − αx− 2 , ψ′(y) = 1
y2 − αy − 2 . As explained above, this

already implies that f satisfies property (ii) of Theorem 3.2.

4 Note that such a local representation of F allows one to construct sets A,B,C showing that property
(i) of Theorem 3.2 does not hold for F , i.e., sets such that there are Θ(n2) solutions of z = F (x, y) in
A×B × C. This, using Theorem 3.2, implies the validity of property (ii) (globally, and with rational
functions).

O. E. Raz and M. Sharir 579

Straightforward integration of these expressions yields that, up to a common multiplicative

factor, which can be dropped, we have5 ϕ(x) = ln
∣∣∣∣x− s2

x− s1

∣∣∣∣, ψ(y) = ln
∣∣∣∣y − s1

y − s2

∣∣∣∣, where s1, s2

are the two real roots of s2 − αs− 2 = 0.
We conclude that f(x, y) = xy − αx− 2

y − x
is a function of

ϕ(x) + ψ(y) = ln
∣∣∣∣x− s2

x− s1

∣∣∣∣+ ln
∣∣∣∣y − s1

y − s2

∣∣∣∣ = ln
∣∣∣∣x− s2

x− s1

∣∣∣∣ · ∣∣∣∣y − s1

y − s2

∣∣∣∣,
or, rather, a function of u = x− s2

x− s1
· y − s1

y − s2
. A tedious calculation, which we omit, shows

that f(x, y) = s2 − s1u

1− u , confirming that f does indeed have one of the special forms in
Theorem 3.2 above. That is, f(x, y) = h(ϕ(x)ψ(y)), where h, ϕ, ψ are the rational functions
h(u) = s2 − s1u

1− u , ϕ(x) = x− s2

x− s1
, ψ(y) = y − s1

y − s2
(these are not the ϕ,ψ in the derivation

above).
We then choose points x1, . . . , xn, y1, . . . , yn ∈ R such that

xi − s2

xi − s1
= yi − s2

yi − s1
= 2i, or xi = yi = 2is1 − s2

2i − 1 ,

for i = 1, . . . , n, and let X := {x1, . . . , xn} and Y := {y1, . . . , yn}. For x = xi, y = yj , the
corresponding value of u is 2i−j . Hence, setting

Z :=
{
f(xi, yj) | 1 ≤ i, j ≤ n

}
=
{
s2 − s1 · 2i−j

1− 2i−j | 1 ≤ i, j ≤ n
}
,

which is clearly also of size Θ(n), completes the proof. J

4 Unit-area triangles in convex grids

A set X = {x1, . . . , xn}, with x1 < x2 < · · · < xn, of real numbers is said to be convex if
xi+1 − xi > xi − xi−1, for every i = 2, . . . , n− 1. See [5, 13] for more details and properties
of convex sets.

In this section we establish the following improvement of Theorem 2.1 for convex grids.

I Theorem 4.1. Let S = A×B, where A,B ⊂ R are convex sets of size n1/2 each. Then
the number of unit-area triangles spanned by the points of S is O(n31/14).

Proof. With each point p = (a, b, c) ∈ A3 we associate a plane h(p) in R3, given by

1
2

∣∣∣∣∣∣
a b c

x y z

1 1 1

∣∣∣∣∣∣ = 1, or equivalently by (c− b)x+ (a− c)y + (b− a)z = 2. (6)

We put H := {h(p) | p ∈ A3}.
A triangle with vertices (a1, x1), (a2, x2), (a3, x3) has unit area if and only if the left-hand

side of (6) has absolute value 1, so for half of the permutations (i1, i2, i3) of (1, 2, 3), we have

5 Note also that f is defined over y 6= x, whereas in our derivation we also had to exclude {fx = 0}∪{fy =
0}, i.e. {x = s1} ∪ {x = s2} ∪ {y = s1} ∪ {y = s2}. Nevertheless, the final expression coincides with f
also over these excluded lines.

SoCG’15

580 The Number of Unit-Area Triangles in the Plane: Theme and Variations

(xi1 , xi2 , xi3) ∈ h(ai1 , ai2 , ai3). In other words, the number of unit-area triangles is at most
one third of the number of incidences between the points of B3 and the planes of H. In
addition to the usual problematic issue that arise in point-plane incidence problems, where
many planes can pass through a line that contains many points (see, e.g., [3]), we need to
face here the issue that the planes of H are in general not distinct, and may arise with large
multiplicity. Denote by w(h) the multiplicity of a plane h ∈ H, that is, w(h) is the number
of points p ∈ A3 for which h(p) = h. Observe that, for p, p′ ∈ A3,

h(p) ≡ h(p′) if and only if p′ ∈ p+ (1, 1, 1)R. (7)

We can transport this notion to points of A3, by defining the multiplicity w(p) of a point
p ∈ A3 by

w(p) :=
∣∣(p+ (1, 1, 1)R) ∩A3∣∣ .

Then we clearly have w(h(p)) = w(p) for each p ∈ A3. Similarly, for q ∈ B3, we put, by a
slight abuse of notation,

w(q) :=
∣∣(q + (1, 1, 1)R) ∩B3∣∣ ,

and refer to it as the multiplicity of q. (Clearly, the points of B3 are all distinct, but the
notion of their “multiplicity" will become handy in one of the steps of the analysis — see
below.)

Fix a parameter k ∈ N, whose specific value will be chosen later. We say that h ∈ H
(resp., p ∈ A3, q ∈ B3) is k-rich, if its multiplicity is at least k; otherwise we say that it is
k-poor. For a unit-area triangle T , with vertices (a, x), (b, y), (c, z), we say that T is rich-rich
(resp., rich-poor, poor-rich, poor-poor) if (a, b, c) ∈ A3 is k-rich (resp., rich, poor, poor), and
(x, y, z) ∈ B3 is k-rich (resp., poor, rich, poor). (These notions depend on the parameter k,
which is fixed throughout this section.)

Next, we show that our assumption that A and B are convex allows us to have some
control on the multiplicity of the points and the planes, which we need for the proof.

For two given subsets X,Y ⊂ R, and for any s ∈ R, denote by δX,Y (s) the number of
representations of s in the form x − y, with x ∈ X, y ∈ Y . The following lemma is taken
from Schoen and Shkredov.

I Lemma 4.2 (Schoen and Shkredov [13]). Let X,Y ⊂ R, with X convex. Then, for any
τ ≥ 1, we have

∣∣∣{s ∈ X − Y | δX,Y (s) ≥ τ}
∣∣∣ = O

(
|X||Y |2
τ3

)
.

Lemma 4.2 implies that the number of points (a, b) ∈ A2, for which the line (a, b)+(1, 1)R
contains at least k points of A2, is O(n3/2/k2). Indeed, the number of differences s ∈ A−A
with δA,A(s) ≥ τ is O(n3/2/τ3). Each difference s determines, in a 1-1 manner, a line in
R2 with orientation (1, 1) that contains the δA,A(s) pairs (a, b) ∈ A2 with b − a = s. Let
Mτ (resp., M≥τ) denote the number of differences s ∈ A − A with δA,A(s) = τ (resp.,
δA,A(s) ≥ τ). Then the desired number of points is∑

τ≥k

τMτ = kM≥k +
∑
τ>k

M≥τ = O(n3/2/k2) +
∑
τ>k

O(n3/2/τ3) = O(n3/2/k2).

I Lemma 4.3. The number of k-rich points in A3 and in B3 is O(n2/k2).

Proof. Let (a, b, c) ∈ A3 be k-rich. Then, by definition, the line l := (a, b, c) + (1, 1, 1)R
contains at least k points of A3. We consider the line l′ := (a, b) + (1, 1)R, which is the
(orthogonal) projection of l onto the xy-plane, which we identify with R2. Note that the
projection of the points of l ∩ A3 onto R2 is injective and its image is equal to l′ ∩ A2. In

O. E. Raz and M. Sharir 581

particular, l′ contains at least k points of A2. As just argued, the total number of such points
in A2 (lying on some line of the form l′, that contains at least k points of A2) is O(n3/2/k2).
Each such point is the projection of at most n1/2 k-rich points of A3 (this is the maximum
number of lines of the form (a, b, c) + (1, 1, 1)R that project onto the same line l′). Thus, the
number of k-rich points in A3 is O(n

3/2

k2 · n1/2) = O(n2/k2). The same bound applies to the
number of k-rich points in B3, by a symmetric argument. J

I Remark. The proof of Lemma 4.3 shows, in particular, that the images of the sets of
k-rich points of A3 and of B3, under the projection map onto the xy-plane, are of cardinality
O(n3/2/k2).]

In what follows, we bound separately the number of unit-area triangles that are rich-rich,
poor-rich (and, symmetrically, rich-poor), and poor-poor.

Rich-rich triangles. Note that for ((a, b, c), (ξ, η)) ∈ A3 × B2, with a 6= b, there exists at
most one point ζ ∈ B such that T ((a, ξ), (b, η), (c, ζ)) has unit area. Indeed, the point (c, ζ)
must lie on a certain line l((a, ξ), (b, η)) parallel to (a, ξ)− (b, η). This line intersects x = c

in exactly one point (because a 6= b), which determines the potential value of ζ. Thus, since
we are now concerned with the number of rich-rich triangles (and focusing at the moment on
the case where a 6= b), it suffices to bound the number of such pairs ((a, b, c), (ξ, η)), with
(a, b, c) ∈ A3 being rich, and (ξ, η) ∈ B2 being the projection of a rich point of B3, which is
O((n2/k2) · (n3/2/k2)) = O(n7/2/k4), using Lemma 4.3 and the Remark following it.

It is easy to check that the number of unit-area triangles T (p, q, r), where p, q, r ∈ P
and p, q share the same abscissa (i.e., A-component), is O(n2). Indeed, there are Θ(n3/2)
such pairs (p, q), and for each of them there exist at most n1/2 points r ∈ P , such that
T (p, q, r) has unit area (because the third vertex r must lie on a certain line l(p, q), which
passes through at most this number of points of P); here we do not use the fact that we are
interested only in rich-rich triangles. We thus obtain the following lemma.

I Lemma 4.4. The number of rich-rich triangles spanned by P is O
(
n7/2

k4 + n2
)
.

Poor-rich and rich-poor triangles. Without loss of generality, it suffices to consider only
poor-rich triangles. Put

Hi := {h ∈ H | 2i−1 ≤ w(h) < 2i}, for i = 1, . . . , log k, and

S≥k := {q ∈ B3 | w(q) ≥ k}.

That is, by definition,
⋃
iHi is the collection of k-poor planes of H, and S≥k is the set of

k-rich points of B3. Since each element of Hi has multiplicity at least 2i−1, we have the
trivial bound |Hi| ≤ n3/2/2i−1.

Consider the family of horizontal planes F := {ξz}z∈B, where ξz0 := {z = z0}. Our
strategy is to restrict S≥k and Hi, for i = 1, . . . , log k, to the planes ξ ∈ F , and apply the
Szemerédi–Trotter incidence bound (see Theorem 2.2) to the resulting collections of points
and intersection lines, on each such ξ. Note that two distinct planes h1, h2 ∈ H restricted
to ξ, become two distinct lines in ξ. Indeed, each plane of H contains a line parallel to
(1, 1, 1), and two such planes, that additionally share a horizontal line within ξ, must be
identical. Using the Remark following Lemma 4.3, we have that the number of rich points
(x, y, z0) ∈ S≥k, with z0 fixed, is O

(
n3/2/k2); that is, |S≥k ∩ ξz0 | = O

(
n3/2/k2) for every

fixed z0.

SoCG’15

582 The Number of Unit-Area Triangles in the Plane: Theme and Variations

The number of incidences between the points of S≥k and the poor planes of H, counted

with multiplicity (of the planes) is at most
∑
z∈B

log k∑
i=1

2i · I(S≥k ∩ ξz, Hiz), whereHiz := {h∩ξz |

h ∈ Hi}. By Theorem 2.2, this is at most

∑
z∈B

log k∑
i=1

2i ·O
((

n3/2

k2

)2/3(
n3/2

2i−1

)2/3

+ n3/2

k2 + n3/2

2i−1

)

=
∑
z∈B

O

(
n2

k4/3

log k∑
i=1

2i/3 + n3/2

k2

log k∑
i=1

2i + n3/2 log k
)

=
∑
z∈B

O

(
n2

k
+ n3/2

k
+ n3/2 log k

)
= O

(
n5/2

k
+ n2 log k

)
.

This bounds the number of poor-rich triangles spanned by P . Clearly, using a symmetric
argument, this bound also applies to the number of rich-poor triangles spanned by P . We
thus obtain the following lemma.

I Lemma 4.5. The number of poor-rich triangles and of rich-poor triangles spanned by P is

O

(
n5/2

k
+ n2 log k

)
.

Poor-poor triangles. Again we are going to use Theorem 2.2. For i = 1, . . . , log k, put

Si := {q ∈ B3 | 2i−1 ≤ w(q) < 2i},

and let S′i, H ′i be the respective (orthogonal) projections of Si, Hi to the plane η :=
{x+ y + z = 1}. Note that H ′i is a collection of lines in η. Moreover, arguing as above, two
distinct planes of Hi project to two distinct lines of H ′i, and thus the multiplicity of the
lines is the same as the multiplicity of the original planes of Hi. Similarly, a point q ∈ Si
with multiplicity t projects to a point q′ ∈ S′i with multiplicity t (by construction, there are
exactly t points of Si that project to q′). These observations allow us to use here too the
trivial bounds |S′i| ≤ n3/2/2i−1, |H ′i| ≤ n3/2/2i−1, for i = 1, . . . , log k.

Applying Theorem 2.2 to the collections S′i, H ′j in η, for i, j = 1, . . . , log k, taking under
account the multiplicity of the points and of the lines in these collections, we obtain that
the number of incidences between the poor points and the poor planes, counted with the
appropriate multiplicity, is at most

log k∑
i,j=1

2i+j ·I(S′i, H ′j) =
log k∑
i,j=1

2i+j ·O
((

n3/2

2i−1

)2/3(
n3/2

2j−1

)2/3

+ n3/2

2i−1 + n3/2

2j−1

)

= O

n2
log k∑
i,j=1

2(i+j)/3 + n3/2
k∑

i,j=1

(
2i + 2j

) = O
(
n2k2/3 + n3/2k log k

)
.

Thus, we obtain the following lemma.

I Lemma 4.6. The number of poor-poor triangles spanned by P is O
(
n2k2/3 + n3/2k log k

)
.

In summary, the number of unit-area triangles spanned by P is

O

(
n7/2

k4 + n5/2

k
+ n2k2/3 + n3/2k log k

)
. (8)

Setting k = n9/28 makes this bound O(n31/14), and Theorem 4.1 follows. J

O. E. Raz and M. Sharir 583

Acknowledgment. We are grateful to Frank de Zeeuw for several very helpful comments
that simplified some parts of the analysis.

References
1 R. Apfelbaum, Geometric Incidences and Repeated Configurations, Ph.D. Dissertation,

School of Computer Science, Tel Aviv University, 2013.
2 R. Apfelbaum and M. Sharir, An improved bound on the number of unit-area triangles,

Discrete Comput. Geom. 44 (2010), 753–761.
3 R. Apfelbaum and M. Sharir, Large bipartite graphs in incidence graphs of points and

hyperplanes, SIAM J. Discrete Math. 21 (2007), 707–725.
4 A. Dumitrescu, M. Sharir and Cs. D. Tóth, Extremal problems on triangle areas in two

and three dimensions, J. Combinat. Theory, Ser. A 116 (2009), 1177–1198.
5 G. Elekes, M. Nathanson, and I. Ruzsa, Convexity and sumsets, J. Number Theory 83(2)

(2000), 194–201.
6 G. Elekes and L. Rónyai, A combinatorial problem on polynomials and rational functions,

J. Combinat. Theory Ser. A 89 (2000), 1–20.
7 G. Elekes and E. Szabó, How to find groups? (And how to use them in Erdős geometry?),

Combinatorica 32 (2012), 537–571.
8 P. Erdős and G. Purdy, Some extremal problems in geometry, J. Combinat. Theory 10

(1971), 246–252.
9 P. Erdős and G. Purdy, Extremal problems in combinatorial geometry. in Handbook of

Combinatorics (R. Graham, M. Grötschel and L. Lovász, editors), Vol. 1, 809–874, Elsevier,
Amsterdam, 1995.

10 J. Pach and M. Sharir, Repeated angles in the plane and related problems, J. Combinat.
Theory Ser. A 59 (1992), 12–22.

11 O.E. Raz, M. Sharir, and J. Solymosi, Polynomials vanishing on grids: The Elekes-Rónyai
problem revisited, Amer. J. Math., to appear. Also in Proc. 30th Annu. ACM Sympos.
Comput. Geom., 2014,251–260.

12 O.E. Raz, M. Sharir, and F. de Zeeuw, Polynomials vanishing on Cartesian products: The
Elekes-Szabó Theorem revisited. This proceedings.

13 T. Schoen and I. D. Shkredov, On sumsets of convex sets, Combinat. Probab. Comput. 20
(2011), 793–798.

14 J. Solymosi and T. Tao, An incidence theorem in higher dimensions, Discrete Comput.
Geom. 48 (2012), 255–280.

15 J. Solymosi and F. de Zeeuw, Incidence bounds on Cartesian products, manuscript, 2014.
16 E. Szemerédi and W.T. Trotter, Extremal problems in discrete geometry, Combinatorica

3 (1983), 381–392.
17 J. Zahl, A Szemerédi-Trotter type theorem in R4, in arXiv:1203.4600.

SoCG’15

On the Number of Rich Lines in Truly High
Dimensional Sets

Zeev Dvir1 and Sivakanth Gopi2

1 Department of Computer Science and Department of Mathematics, Princeton
University
35 Olden Street, Princeton, NJ 08540-5233, USA
zeev.dvir@gmail.com

2 Department of Computer Science, Princeton University
35 Olden Street, Princeton, NJ 08540-5233, USA
sgopi@cs.princeton.edu

Abstract
We prove a new upper bound on the number of r-rich lines (lines with at least r points) in a
‘truly’ d-dimensional configuration of points v1, . . . , vn ∈ Cd. More formally, we show that, if the
number of r-rich lines is significantly larger than n2/rd then there must exist a large subset of the
points contained in a hyperplane. We conjecture that the factor rd can be replaced with a tight
rd+1. If true, this would generalize the classic Szemerédi-Trotter theorem which gives a bound of
n2/r3 on the number of r-rich lines in a planar configuration. This conjecture was shown to hold
in R3 in the seminal work of Guth and Katz [7] and was also recently proved over R4 (under some
additional restrictions) [14]. For the special case of arithmetic progressions (r collinear points
that are evenly distanced) we give a bound that is tight up to lower order terms, showing that a
d-dimensional grid achieves the largest number of r-term progressions.

The main ingredient in the proof is a new method to find a low degree polynomial that
vanishes on many of the rich lines. Unlike previous applications of the polynomial method, we
do not find this polynomial by interpolation. The starting observation is that the degree r − 2
Veronese embedding takes r-collinear points to r linearly dependent images. Hence, each collinear
r-tuple of points, gives us a dependent r-tuple of images. We then use the design-matrix method
of [1] to convert these ‘local’ linear dependencies into a global one, showing that all the images
lie in a hyperplane. This then translates into a low degree polynomial vanishing on the original
set.

1998 ACM Subject Classification G.2.1 Combinatorics: Counting Problems

Keywords and phrases Incidences, Combinatorial Geometry, Designs, Polynomial Method,
Additive Combinatorics

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.584

1 Introduction

The Szemerédi-Trotter theorem gives a tight upper bound on the number of incidences
between a collection of points and lines in the real plane. We write A . B to denote
A ≤ C ·B for some absolute constant C and A ≈ B if we have both A . B and B . A. We
use A� B to mean A ≥ C ·B for some sufficiently large constant C and we sometimes use
a subscript d to mean that the constant C in the inequalities can depend on d.

© Zeev Dvir and Sivakanth Gopi;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 584–598

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.584
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Z.Dvir and S. Gopi 585

I Theorem 1 ([17]). Given a set of points V and a set of lines L in R2, let I(V,L) be the
set of incidences between V and L. Then,

I(V,L) . |V |2/3|L|2/3 + |V |+ |L|.

This fundamental theorem has found many applications in various areas (see [4] for some
examples) and is known to also hold in the complex plane C2 [18, 19]. In recent years there
has been a growing interest in high dimensional variants of line-point incidence bounds
[13, 9, 11, 14, 16, 3]. This is largely due to the breakthrough results of Guth and Katz [7]
who proved the Erdős distinct distances conjecture. One of the main ingredients in their
proof was an incidence theorem for configurations of lines in R3 satisfying some ‘truly 3
dimensional’ condition (e.g, not too many lines in a plane). The intuition is that, in high
dimensions, it is ‘harder’ to create many incidences between points and lines. This intuition
is of course false if our configuration happens to lie in some low-dimensional space. In this
work we prove stronger line-point incidence bounds for sets of points that do not contain a
large low-dimensional subset.

To state our main theorem we first restate the Szemerédi-Trotter theorem as a bound
on the number of r-rich lines (lines containing at least r points) in a given set of points.
Since our results will hold over the complex numbers we will switch now from R to C. The
complex version of Szemerédi-Trotter was first proved by Tóth [18] and then proved using
different methods by Zahl [19]. For a finite set of points V , we denote by Lr(V) the set of
r-rich lines in V . The following is equivalent to Theorem-1 (but stated over C).

I Theorem 2 ([18, 19]). Given a set V of n points in C2, for r ≥ 2,

|Lr(V)| . n2

r3 + n

r
.

Theorem 2 is tight since a two dimensional square grid of n points contains & n2/r3

lines that are r-rich. We might then ask whether a d-dimensional grid Gd = {1, 2, . . . , h}d,
with h ≈ n1/d, has asymptotically the maximal number of r-rich lines among all n-point
configurations that do not have a large low-dimensional subset. In [15], it was shown that
for r �d n

1/d,

|Lr(Gd)| ≈d
n2

rd+1 .

Clearly, we can obtain a larger number of rich lines in Cd if V is a union of several low-
dimensional grids. For example, for some α �d 1 and d > ` > 1, we can take a disjoint
union of rd−`/α `-dimensional grids G` of size αn/rd−` each. Each of these grids will have
&d α2n2/r2d−`+1 r-rich lines and so, together we will get &d αn2/rd+1 rich lines. We can
also take a union of n/r lines containing r points each, to get more r-rich lines than in the
d-dimensional grid Gd when r �d n

1/d. We thus arrive at the following conjecture which, if
true, would mean that the best one can do is to paste together a number of grids as above.

I Conjecture 3. For r ≥ 2, suppose V ⊂ Cd is a set of n points with

|Lr(V)| �d
n2

rd+1 + n

r
.

Then there exists 1 < ` < d and a subset V ′ ⊂ V of size &d n/rd−` which is contained in an
`-flat (i.e. an `-dimensional affine subspace).

SoCG’15

586 On the Number of Rich Lines in Truly High Dimensional Sets

This conjecture holds in R3 [7] and, in a slightly weaker form, in R4 [14]. We compare
these two results with ours later in the introduction. Our main result makes a step in
the direction of this conjecture. First of all, our bound is off by a factor of r from the
optimal bound (i.e. with n2/rd instead of n2/rd+1). Secondly, we are only able to detect a
(d− 1)-dimensional subset (instead of finding the correct ` which may be smaller).

I Theorem 4. For all d ≥ 1 there exists constants Cd, C ′d such that the following holds. Let
V ⊂ Cd be a set of n points and let r ≥ 2 be an integer. Suppose that for some α ≥ 1,

|Lr(V)| ≥ Cd · α ·
n2

rd
.

Then, there exists a subset Ṽ ⊂ V of size at least C ′d ·α · n
rd−2 contained in a (d− 1)-flat. We

can take the constants Cd, C ′d to be dcd, dc′d for absolute constants c, c′ > 0.

Notice that the theorem is only meaningful when r � dc for some constant c (otherwise
the factor rd in the assumption will be swallowed by the constant Cd). On the other hand, if
r � n1/(d−1) then the conclusion always holds. Hence, the theorem is meaningful when r is
in a ‘middle’ range. Notice also that for d = 2, 3 and r sufficiently small, the condition of
the theorem also cannot hold, by the Szemerédi-Trotter theorem. However, when d becomes
larger, our theorem gives nontrivial results (and becomes closer to optimal for large d). The
proof of Theorem 4 actually shows (Lemma 19) that, under the same hypothesis, most of
the rich lines must be contained in a hypersurface of degree smaller than r. This in itself can
be very useful, as we will see in the proof of Theorem 9 which uses this fact to prove certain
sum-product estimates. The existence of such a low-degree hypersurface containing most of
the curves can also be obtained when there are many r-rich curves of bounded degree with
‘two degrees of freedom’, i.e. through every pair of points there are at most O(1) curves (see
Remark 22).

Counting arithmetic progressions

An r-term arithmetic progression in Cd is simply a set of r points of the form {y, y + x, y +
2x, . . . , y + (r − 1)x} with x, y ∈ Cd. This is a special case of r collinear points and, for this
case, we can derive a tighter bound than for the general case. In a nutshell, we can show
that a d-dimensional grid contains the largest number of r-term progressions, among all sets
that do not contain a large d− 1 dimensional subset. The main extra property of arithmetic
progressions we use in the proof is that they behave well under products. That is, if we take
a Cartesian product of V with itself, the number of progressions of length r squares.

For a finite set V ⊂ Cd, let us denote the number of r-term arithmetic progressions
contained in V by APr(V). We first observe that, for all sufficiently small r, the grid Gd
(defined above) contains at least &d n2/rd r-term progressions. To see where the extra factor
of r comes from, notice that the 2r-rich lines in Gd will contain r arithmetic progressions
of length r each. Our main theorem shows that this is optimal, as long as there is no large
low-dimensional set.

I Theorem 5. Let 0 < ε < 1 and V ⊂ Cd be a set of size n and suppose that for some r ≥ 4
we have

APr(V)�d,ε
n2

rd−ε
.

Then, there exists a subset Ṽ ⊂ V of size &d,ε n
r2d/ε−1 contained in a hyperplane.

Z.Dvir and S. Gopi 587

1.1 Related Work

To make the comparison with prior work easier, Theorem 4 can be stated equivalently as
follows:

I Theorem 6 (Equiv. to Theorem 4). Given a set V of n points in Cd, let sd−1 denote the
maximum number of points of V contained in a hyperplane. Then for r ≥ 2,

|Lr(V)| .d
n2

rd
+ nsd−1

r2 .

Using the incidence bound between points and lines in R3 proved by Guth and Katz [7],
one can prove the following theorem from which Conjecture 3 in R3 trivially follows.

I Theorem 7 (Guth and Katz [7]). Given a set V of n points in R3, let s2 denote the
maximum number of points of V contained in a 2-flat. Then for r ≥ 2,

|Lr(V)| . n2

r4 + ns2

r3 + n

r
.

Similarly, using the results of Sharir and Solomon [14], we can prove the following theorem
from which a slightly weaker version of Conjecture 3 in R4 trivially follows.

I Theorem 8 (Sharir and Solomon [14]). Given a set V of n points in R4, let s2 denote the
maximum number of points of V contained in a 2-flat and s′3 denote the maximum number
of points of V contained in a quadric hypersurface or a hyperplane. Then there is an absolute
constant c > 0 such that for r ≥ 2,

|Lr(V)| . 2c
√

logn ·
(
n2

r5 + ns′3
r4 + ns2

r3 + n

r

)
.

We are not aware of any examples where points arranged on a quadric hypersurface in
R4 result in significantly more rich lines than in a four dimensional grid. It is, however,
possible that one needs to weaken Conjecture 3 so that for some 1 < ` < d, an `-dimensional
hypersurface of constant degree (possibly depending on `) contains &d n/rd−` points.

In [15], it was shown that |Lr(V)| .d n2

rd+1 when V ⊂ Rd is a homogeneous set. This
roughly means that the point set is a perturbation of the grid Gd. In [10], the result was
extended for pseudolines and homogeneous sets in Rd where pseudolines are a generalization
of lines which include constant degree irreducible algebraic curves. Adding the homogeneous
condition on a set is a much stronger condition (for sufficiently small r) than requiring that
no large subset belongs to a hyperplane (however, we cannot derive these results from ours
since our dependence on d is suboptimal).

1.1.1 Subsequent Work

Subsequent to our work, Hablicsek and Scherr [8] improved Theorem 4 in the case of V ⊂ Rd.
It was shown that if Lr(V)�d

n2

rd+1 , then &d n
rd−1 points are contained in a (d− 1)-flat. In

a further improvement, Zahl [20] extended this result to V ⊂ Cd though with an ε loss in the
exponent of n, i.e. if Lr(V)�d,ε

n2+ε

rd+1 then &d,ε n
1+ε

rd−1 points are contained in a (d− 1)-flat.
This brings us closer to Conjecture 3, although the conclusion about a large low-dimensional
subset is still very weak.

SoCG’15

588 On the Number of Rich Lines in Truly High Dimensional Sets

1.2 Overview of the proof

The main tool used in the proof of Theorem 4 is a rank bound for design matrices. A design
matrix is a matrix with entries in C and whose support (set of non-zero entries) forms a
specific pattern. Namely, the supports of different columns have small intersections, the
columns have large support and rows are sparse (see Definition 11). Design matrices were
introduced in [1, 5] to study quantitative variants of the Sylvester-Gallai theorem. These
works prove certain lower bounds on the rank of such matrices, depending only on the
combinatorial properties of their support (see Section 2.1). Such rank bounds can be used to
give upper bounds on the dimension of point configurations in which there are many ‘local’
linear dependencies. This is done by using the local dependencies to construct rows of a
design matrix M , showing that its rank is high and then arguing that the dimension of the
original set is small since it must lie in the kernel of M .

Suppose we have a configuration of points with many r-rich lines. Clearly, r ≥ 3 collinear
points are also linearly dependent. However, this conclusion does not use the fact that r may
be larger than 3. To use this information, we observe that a certain map, called the Veronese
embedding, takes r-collinear points to r linearly dependent points in a larger dimensional
space (see Section 2.2). Thus we can create a design matrix using these linear dependencies
similarly to the constructions of [2, 5] to get an upper bound on the dimension of the image
of the original set, under the Veronese embedding. We use this upper bound to conclude that
there is a polynomial of degree r−2 which contains all the points in our original configuration.
We then proceed in a way similar to the proof of the Joints conjecture by Guth and Katz [6]
to conclude that there is a hyperplane which contains many points of the configuration (by
finding a ‘flat’ point of the surface).

1.3 Application: Sum-product estimates

Here, we show a simple application of our techniques to prove sum product estimates over
C. Though we can get slightly better estimates (i.e. without the log factor) using the
Szemerédi-Trotter theorem in the complex plane, we include them only as an example of
how to use a higher-dimensional theorem in this setting. We hope that future progress on
proving Conjecture 3 will result in progress on sum product problems.

We begin with some notation. For two sets A,B ⊂ C we denote by A+B = {a+ b | a, b ∈
A} the sum set of A and B. For a set A ⊂ C and a complex number t ∈ C we denote by
tA = {ta | a ∈ A} the dilate of A by t. Hence we have that A+ tA = {a+ ta′ | a, a′ ∈ A}.

I Theorem 9. Let A ⊂ C be a set of N complex numbers and let 1� C �
√
N . Define the

set

TC =
{
t ∈ C

∣∣∣∣ |A+ tA| ≤ N1.5

C
√

logN

}
.

Then, |TC | . N
C2 .

By taking C to be a large constant, an immediate corollary is:

I Corollary 10. Let A ⊂ C be a finite set. Then

|A+A ·A| = |{a+ bc | a, b, c ∈ A}| & |A|1.5√
log |A|

.

Z.Dvir and S. Gopi 589

1.4 Organization
In Section 2 we give some preliminaries, including on design matrices and the Veronese
embedding. In Section 3 we prove Theorem 4. In Section 4 we prove Theorem 5. In Section 5
we prove Theorem 9.

2 Preliminaries

We begin with some notation. For a vector v ∈ Cn and a set I ⊂ [n] we denote by
vI ⊂ CI the restriction of v to indices in I. We denote the support of a vector v ∈ Cd by
supp(v) = {i ∈ [d] | vi 6= 0} (this notation is extended to matrices as well). For a set of n
points V ⊂ Cd and an integer `, we denote by V ` ⊂ Cd` its `-fold Cartesian product i.e.
V ` = V × V × · · · × V (` times) where we naturally identify Cd × Cd × · · · × Cd (` times)
with Cd`.

2.1 Design matrices
Design matrices, defined in [1], are matrices that satisfy a certain condition on their support.

IDefinition 11 (Design matrix). LetA be anm×nmatrix over a field F. LetR1, . . . , Rm ∈ Fn
be the rows of A and let C1, . . . , Cn ∈ Fm be the columns of A. We say that A is a (q, k, t)-
design matrix if
1. For all i ∈ [m], |supp(Ri)| ≤ q.
2. For all j ∈ [n], |supp(Cj)| ≥ k.
3. For all j1 6= j2 ∈ [n], |supp(Cj1) ∩ supp(Cj2)| ≤ t.

Surprisingly, one can derive a general bound on the rank of complex design matrices,
despite having no information on the values present at the non-zero positions of the matrix.
The first bound of this form was given in [1] which was improved in [5].

I Theorem 12 ([5]). Let A be an m× n matrix with entries in C. If A is a (q, k, t)-design
matrix then the following bounds hold:

rank(A) ≥ n− ntq2

k
, (1)

rank(A) ≥ n− mtq2

k2 . (2)

2.2 The Veronese embedding
We denote by

m(d, r) =
(
d+ r

d

)
the number of monomials of degree at most r in d variables. We will often use the lower
bound m(d, r) ≥ (r/d)d. The Veronese embedding φd,r : Cd 7→ Cm(d,r) sends a point
a = (a1, . . . , ad) ∈ Cd to the vector of evaluations of all monomials of degree at most r at
the point a. For example, the map φ2,2 sends (a1, a2) to (1, a1, a2, a

2
1, a1a2, a

2
2). We can

identify each point w ∈ Cm(d,r) with a polynomial fw ∈ C[x1, . . . , xd] of degree at most r in
an obvious manner so that the value fw(a) at a point a ∈ Cd is given by the standard inner
product 〈w, φd,r(a)〉. We will use the following two easy claims.

SoCG’15

590 On the Number of Rich Lines in Truly High Dimensional Sets

I Claim 13. Let V ⊂ Cd and let U = φd,r(V) ⊂ Cm(d,r). Then U is contained in a
hyperplane iff there is a non-zero polynomial f ∈ C[x1, . . . , xd] of degree at most r that
vanishes on all points of V .

Proof. Each hyperplane in Cm(d,r) is given as the set of points having inner product zero
with some w ∈ Cm(d,r). If we take the corresponding polynomial fw ∈ C[x1, . . . , xd] we get
that it vanishes on V iff φd,r(V) is contained in the hyperplane defined by w. J

I Claim 14. Suppose the r+2 points v1, . . . , vr+2 ∈ Cd are collinear and let φ = φd,r : Cd 7→
Cm(d,r). Then, the points φ(v1), . . . , φ(vr+2) are linearly dependent. Moreover, every r + 1
of the points φ(v1), . . . , φ(vr+2) are linearly independent.

Proof. Denote ui = φ(vi) for i = 1, . . . , r+2. To show that the ui’s are linearly dependent it is
enough to show that, for any w ∈ Cm(d,r), if all the r+1 inner products 〈w, u1〉, . . . , 〈w, ur+1〉
are zero, then the inner product 〈w, ur+2〉 must also be zero. Suppose this is the case, and
let fw ∈ C[x1, . . . , xd] be the polynomial of degree at most r associated with the point w
so that 〈w, ui〉 = fw(vi) for all 1 ≤ i ≤ r + 1. Since the points v1, . . . , vr+2 are on a single
line L ⊂ Cd, and since the polynomial fw vanishes on r + 1 of them, we have that fw must
vanish identically on the line L and so fw(vr+2) = 〈w, ur+2〉 = 0 as well.

To show the ‘moreover’ part, suppose in contradiction that ur+1 is in the span of u1, . . . , ur.
We can find, by interpolation, a non-zero polynomial f ∈ C[x1, . . . , xd] of degree at most
r such that f(v1) = . . . = f(vr) = 0 and f(vr+1) = 1. More formally, we can transform
the line containing the r + 1 points to the x1-axis by a linear transformation, and then
interpolate a degree r polynomial in x1 with the required properties using the invertibility of
the Vandermonde matrix. Now, let w ∈ Cm(d,r) be the point such that f = fw. We know
that 〈w, ui〉 = 0 for i = 1 . . . r and thus, since ur+1 is in the span of u1, . . . , ur, we get that
f(vr+1) = 〈w, ur+1〉 = 0 in contradiction. This completes the proof. J

2.3 Polynomials vanishing on grids
We recall the Schwartz-Zippel lemma.

I Lemma 15 ([12, 21]). Let S ⊂ F be a finite subset of an arbitrary field F and let
f ∈ F[x1, . . . , xd] be a non-zero polynomial of degree at most r. Then

|{(a1, . . . , ad) ∈ Sd ⊂ Fd | f(a1, . . . , ad) = 0}| ≤ r · |S|d−1.

An easy corollary is the following claim about homogeneous polynomials.

I Lemma 16. Let S ⊂ F be a finite subset of an arbitrary field F and let f ∈ F[x1, . . . , xd]
be a non-zero homogeneous polynomial of degree at most r. Then

|{(1, a2, . . . , ad) ∈ {1} × Sd−1 | f(1, a2, . . . , ad) = 0}| ≤ r · |S|d−2.

Proof. Let g(x2, . . . , xd) = f(1, x2, . . . , xd) be the polynomial one obtains from fixing x1 = 1
in f . Then g is a polynomial of degree at most r in d − 1 variables. If g was the zero
polynomial then f would have been divisible by 1−x1 which is impossible for a homogeneous
polynomial. Hence, we can use Lemma 15 to bound the number of zeros of g in the set Sd−1

by r · |S|d−2. This completes the proof. J

Another useful claim says that if a degree one polynomial (i.e. the equation of a
hyperplane) vanishes on a large subset of the product set V `, then there is another degree
one polynomial that vanishes on a large subset of V .

Z.Dvir and S. Gopi 591

I Lemma 17. Let V ⊂ Cd be a set of n points and let V ` ⊂ Cd` be its `-fold Cartesian
product. Let H ⊂ Cd` be an affine hyperplane such that |H ∩ V `| ≥ δ · n`. Then, there exists
an affine hyperplane H ′ ⊂ Cd such that |H ′ ∩ V | ≥ δ · n.

Proof. Let h ∈ Cd` be the vector perpendicular to H so that x ∈ H iff 〈x, h〉 = b for
some b ∈ C. Observing the product structure of Cd` = (Cd)` we can write h = (h1, . . . , h`)
with each hi ∈ Cd. W.l.o.g suppose that h1 6= 0. For each a = (a2, . . . , a`) ∈ V `−1 let
V `a = V × {a2} × . . . {a`}. Since there are n`−1 different choices for a ∈ V `−1, and since

|V ` ∩H| =
∑

a∈V `−1

|V `a ∩H|,

there must be some a with |V `a ∩H| ≥ δ · n. Let H ′ ⊂ Cd be the hyperplane defined by the
equation

x ∈ H ′ iff 〈x, h1〉+ 〈a2, h2〉+ . . .+ 〈a`, h`〉 = b.

Then, H ′ ∩ V is in one-to-one correspondence with the set V `a ∩ H and so has the same
size. J

2.4 A graph refinement lemma
We will need the following simple lemma, showing that any bipartite graph can be refined so
that both vertex sets have high minimum degree (relative the to the original edge density).

I Lemma 18. Let G = (A tB,E) be a bipartite graph with E ⊂ A×B and edge set E 6= φ.
Then there exists non-empty sets A′ ⊂ A and B′ ⊂ B such that if we consider the induced
subgraph G′ = (A′ tB′, E′) then
1. The minimum degree in A′ is at least |E|4|A|

2. The minimum degree in B′ is at least |E|4|B|
3. |E′| ≥ |E|/2.

Proof. We will construct A′ and B′ using an iterative procedure. Initially let A′ = A and
B′ = B. Let G′ = (A′ tB′, E′) be the induced subgraph of G. If there is a vertex in A′ with
degree (in the induced subgraph G′) less than |E|

4|A| , remove it from A′. If there is a vertex in
B′ with degree (in the induced subgraph G′) less than |E|

4|B| , remove it from B′. At the end
of this procedure, we are left with sets A′, B′ with the required min-degrees. We can count
the number of edges lost as we remove vertices in the procedure. Whenever a vertex in A′ is
removed we lose at most |E|4|A| edges and whenever a vertex from B′ is removed we lose at
most |E|4|B| edges. So

|E′| ≥ |E| − |A| |E|4|A| − |B|
|E|
4|B| ≥ |E|/2.

J

3 Proof of Theorem 4

The main technical tool will be the following lemma, which shows that one can find a
vanishing polynomial of low degree, assuming each point is in many rich lines.

I Lemma 19. For each d ≥ 1 there is a constant Kd ≤ 32(2d)d such that the following holds.
Let V ⊂ Cd be a set of n points and let r ≥ 4 be an integer. Suppose that, through each point
v ∈ V , there are at least k r-rich lines where

k ≥ Kd ·
n

rd−2 .

SoCG’15

592 On the Number of Rich Lines in Truly High Dimensional Sets

Then, there exists a non-zero polynomial f ∈ C[x1, . . . , xd] of degree at most r − 2 such that
f(v) = 0 for all v ∈ V .

If we have the stronger condition that the number of r-rich lines through each point of V
is between k and 8k then we can get the same conclusion (vanishing f of degree r − 2) under
the weaker inequality

k ≥ Kd ·
n

rd−1 .

Proof. Let V = {v1, . . . , vn} and let φ = φd,r−2 : Cd 7→ Cm(d,r−2) be the Veronese embedding
with degree bound r − 2. Let us denote U = {u1, . . . , un} ⊂ Cm(d,r−2) with ui = φ(vi) for
all i ∈ [n].

We will prove the lemma by showing that U is contained in a hyperplane and then using
Claim 13 to deduce the existence of the vanishing polynomial. Let M be an n×m(d, r − 2)
matrix whose i’th row is ui = φ(vi). To show that U is contained in a hyperplane, it is
enough to show that rank(M) < m(d, r − 2). This will imply that the columns of M are
linearly dependent, which means that all the rows lie in some hyperplane.

We will now construct a design matrix A such that A·M = 0. Since rank(A)+rank(M) ≤ n,
we will be able to translate a lower bound on the rank of A (which will be given by Theorem 12)
to the required upper bound on the rank of M . Each row in A will correspond to some
collinear r-tuple in V . We will construct A in several stages. First, for each r-rich line
L ∈ Lr(V) we will construct a set of r-tuples RL ⊂

(
V
r

)
such that

1. Each r-tuple in RL is contained in L ∩ V .
2. Each point v ∈ L ∩ V is in at least one and at most two r-tuples from RL.

If |L ∩ V | is a multiple of r, we can construct such a set RL easily by taking a disjoint
cover of r-tuples. If |L ∩ V | is not a multiple of r (but is still of size at least r) we can take
a maximal set of disjoint r-tuples inside it and then add to it one more r-tuple that will
cover the remaining elements and will otherwise intersect only one other r-tuple. This will
guarantee that each point in L ∩ V is in at most two r-tuples from RL. We define R ⊂

(
V
r

)
to be the union of all sets RL over all r-rich lines L. We can now prove:

I Claim 20. The set R ⊂
(
V
r

)
defined above has the following three properties.

1. Each point v ∈ V is contained in at least k r-tuples from R.
2. Every pair of distinct points u, v ∈ V is contained together in at most two r-tuples from

R.
3. Let (vi1 , . . . , vir) ∈ R. Then there exists r non-zero coefficients α1, . . . , αr ∈ C so that

α1 · ui1 + . . .+ αr · uir = 0.
If, in addition, we know that each point belongs to at most 8k rich lines (as in the second
part of the lemma) then we also have that |R| ≤ 16nk/r.

Proof. The first property follows from the fact that each v is in at least k r-rich lines and
that each RL with v ∈ L has at least one r-tuple containing v. The second property follows
from the fact that each pair u, v can belong to at most one r-rich line L and that each RL
can contain at most two r-tuples with both u and v. The fact that the r-tuple of point
ui1 , . . . , uir is linearly dependent follows from Claim 14. The fact that all the coefficients
αj are non-zero holds since no proper subset of that r-tuple is linearly dependent (by the
‘moreover’ part of Claim 14). If each point is in at most 8k lines then each point is in at most
16k r-tuples (at most two on each line). This means that there could be at most 16nk/r
tuples in R since otherwise, some point would be in too many tuples. J

Z.Dvir and S. Gopi 593

We now construct the matrix A of size m × n where m = |R|. For each r-tuple
(vi1 , . . . , vir) ∈ R we add a row to A (the order of the rows does not matter) that has
zeros in all positions except i1, . . . , ir and has values α1, . . . , αr given by Claim 20 in those
positions. Since the rows ofM are the points u1, . . . , un, the third item of Claim 20 guarantees
that A ·M = 0 as we wanted. The next claim asserts that A is a design matrix.

I Claim 21. The matrix A constructed above is a (r, k, 2)-design matrix.

Proof. Clearly, each row of A contains at most r non-zero coordinates. Since each point
v ∈ V is in at least k r-tuples from R we have that each column of A contains at least k
non-zero coordinates. The size of the intersection of the supports of two distinct columns in
A is at most two by item (2) of Claim 20. J

We now use Eq. (1) from Theorem 12 to get

rank(A) ≥ n− 2nr2

k
.

This implies (using r ≥ 4) that

rank(M) ≤ 2nr2

k
≤
(
r − 2
d

)d
< m(d, r − 2),

if
k ≥ 2(2d)d · n

rd−2 .

If we have the additional assumption that each point is in at most 8k lines then, using
the bound m = |R| ≤ 16nk/r in Eq. (2) of Theorem 12. We get

rank(A) ≥ n− 2mr2

k2 ≥ n− 32nr
k

which gives

rank(M) ≤ 32nr
k

< m(d, r − 2)

for
k ≥ 32(2d)d n

rd−1 .

Hence, the rows of M lie in a hyperplane. This completes the proof of the lemma. J

I Remark 22. Lemma 19 can be extended to the case where we have r-rich curves of bounded
degree D = O(1) with ‘two degrees of freedom’, i.e. through every pair of points there can
be at most C = O(1) distinct curves (e.g. unit circles). Under the Veronese embedding
φd,b r−2

D c, the images of r points on a degree D curve are linearly dependent. So we can still
construct a design matrix as in the above proof where the design parameters depend on D,C.
Once we get a hypersurface of degree

⌊
r−2
D

⌋
vanishing on all the points, the hypersurface

should also contain all the degree D r-rich curves.

We will now use Lemma 19 to prove Theorem 4. The reduction uses Lemma 18 to reduce
to the case where each point has many rich lines through it. Once we find a vanishing low
degree polynomial we analyze its singularities to find a point such that all lines though it are
in some hyperplane.

SoCG’15

594 On the Number of Rich Lines in Truly High Dimensional Sets

Proof of Theorem 4. Since Lr(V) ≤ n2 for all r ≥ 2, by choosing Cd > Rdd we can assume
that r ≥ Rd for any large constant Rd depending only on d.

Let L = Lr(V) be the set of r-rich lines in V and let I = I(L, V) be the set of incidences
between L and V . By the conditions of the theorem we have

|I| ≥ r|L| ≥ Cd ·
αn2

rd−1 . (3)

Applying Lemma 18 to the incidence graph between V and L, we obtain non-empty
subsets V ′ ⊂ V and L′ ⊂ L such that each v ∈ V ′ is in at least k = |I|

4n lines from L′ and
such that each line in L′ is r/4-rich w.r.t to the set V ′ and

|I ′| = |I(L′, V ′)| ≥ |I|/2.

We would like to apply Lemma 19 with the stronger condition that each point is incident on
approximately the same number of lines (which gives better dependence on r). To achieve
this, we will further refine our set of points using dyadic pigeonholing.

Let V ′ = V ′1 t V ′2 t · · · be a partition of V ′ into disjoint subsets where V ′j is the set of
points incident to at least kj = 2j−1k and less than 2jk lines from L′. Let I ′j = I(L′, V ′j), so
that ∑

j≥1
|I ′j | = |I ′| ≥ |I|/2.

Since
∑
j≥1

1
2j2 < 1, there exists j such that |I ′j | ≥

|I|
4j2 . Let us fix j to this value for the rest

of the proof.
We will first upper bound j. Since |I ′j | > 0, V ′j is non-empty and let p ∈ V ′j . There are at

least kj (r/4)-rich lines through p and by choosing Rd ≥ 8, there are at least r/4− 1 ≥ r/8
points other than p on each of these lines and they are all distinct. So,

n = |V | ≥ 2j−1k · r8 = 2j−6r|I|
n

≥ Cd
2j−6αn

rd−2 ≥ 2j−6n

rd−2 .

This implies j . d log r where we assumed above that Cd ≥ 1.
Since the lines in L′ need not be r/4-rich w.r.t V ′j , we need further refinement. Apply

Lemma 18 again on the incidence graph I ′j = I(L′, V ′j) to get non-empty V ′′ ⊂ V ′j and
L′′ ⊂ L′ and

|I ′′| = |I(L′′, V ′′)| ≥
|I ′j |
2 ≥ |I|8j2 ≥

r|L|
8j2 .

Each line in L′′ is incident to at least

|I ′j |
4|L′| ≥

r

16j2 = r0

points from V ′′ and so L′′ is r0-rich w.r.t V ′′. And each point in V ′′ is incident to at least

|I ′j |
4|V ′j |

≥ kj
4 = 2j−3k = k0

and at most 2jk = 8k0 lines from L′′. Since j . d log r, we can assume r0 = r
16j2 ≥ 4 by

choosing Rd � d3.
The following claim shows that we can apply Lemma 19 to V ′′ and L′′.

I Claim 23. k0 ≥ Kd · |V
′′|

rd−1
0

where Kd is the constant in Lemma 19.

Z.Dvir and S. Gopi 595

Proof. We have
|V ′′| ≤ |V ′j | ≤

|I|
2j−1k

= n

2j−3 .

So it is enough to show that
k0 ≥ Kd ·

n

2j−3rd−1
0

.

Substituting the bounds we have for k0 and r0, this will follow from

|I| ≥ 16Kd · 24d ·
(
j2(d−1)

22j

)
n2

rd−1

which follows from Eq. (3) by choosing Cd > 16Kd · 24d ·maxj
(
j2(d−1)

22j

)
. J

Hence, by Lemma 19, there exists a non-zero polynomial f ∈ C[x1, . . . , xd] of degree at most
r0 − 2, vanishing at all points of V ′′. W.l.o.g suppose f has minimal total degree among all
polynomials vanishing on V ′′. Since f has degree at most r0 − 2 it must vanish identically
on all lines in L′′.

We say that a point v ∈ V ′′ is ‘flat’ if the set of lines from L′′ passing through v are
contained in some affine hyperplane through v. Otherwise, we call the point v a ‘joint’. We
will show that there is at least one flat point in V ′′. Suppose towards a contradiction that
all points in V ′′ are joints. Let v ∈ V ′′ be some point and let ∇f(v) be the gradient of f at
v. Since f vanishes identically on all lines in L′′ we get that ∇f(v) = 0 (v is a singular point
of the hypersurface defined by f). We now get a contradiction since one of the coordinates
of ∇f is a non-zero polynomial of degree smaller than the degree of f that vanishes on the
entire set V ′′.

Hence, there exists a point v ∈ V ′′ and an affine hyperplane H passing through v such
that all r0-rich lines in L′′ passing through v are contained in H. Since there are at least
k0 such lines, and each line contain at least r0 − 1 points in addition to v, we get that H
contains at least

(r0 − 1)k0 ≥
r

32j2 · 2
j−3 |I|

4n ≥ Cd
(

2j−10

j2

)
αn

rd−2 ≥ C
′
d

αn

rd−2

points from V where C ′d = Cd ·minj
(

2j−10

j2

)
. We can take the constants to be Cd = dΘ(d)

and C ′d = Cd
211 . J

I Remark 24. Observe that, we can take L to be any subset of Lr(V) of size ≥ Cd αn
2

rd
and

obtain the same conclusion. Moreover, the hyperplane H that we obtain at the end contains
k0 & αn

rd
lines of L.

4 Proof of Theorem 5

We will reduce the problem of bounding r-term arithmetic progressions to that of bounding
r-rich lines using the following claim:

I Claim 25. Let V ⊂ Cd then APr(V) ≤ |Lr([r]× V)| where [r] = {0, 1, · · · , r − 1}

Proof. For u,w ∈ Cd, w 6= 0, let (u, u + w, · · · , u + (r − 1)w) be an r-term arithmetic
progression in V . Then the line {(0, u)+z(1, w)}z∈C is r-rich w.r.t the point set [r]×V ⊂ C1+d;
moreover this mapping is injective. J

SoCG’15

596 On the Number of Rich Lines in Truly High Dimensional Sets

We need the following claim regarding arithmetic progressions in product sets.

I Claim 26. Let V ⊂ Cd be a set of n points and let ` ≥ 1 be an integer. Then, for all r ≥ 1,
the product set V ` ⊂ Cd` satisfies

APr(V `) ≥ APr(V)`.

Proof. Let P (V) be the set of r-term arithmetic progressions in V and let P (V `) be the set
of r-term progressions in V `. We will describe an injective mapping from P (V)` into P (V `).
For u,w ∈ Cd let Lu,w = {u, u + w, . . . , u + (r − 1)w} be the r-term progression starting
at u with difference w. Let u1, . . . , u`, w1, . . . , w` ∈ Cd such that Lui,wi ∈ P (V) for each
i ∈ [`]. We map them into the arithmetic progression Lu,w ∈ P (V `) with u = (u1, . . . , u`)
and w = (w1, . . . , w`). Clearly, this map is injective (care should be taken to assign each
progression a unique difference since these are determined up to a sign). J

Proof of Theorem 5. Let us assume APr(V) �d,ε
n2

rd−ε
. Let ` = d 1

ε e. By Claim 26,
APr(V `) ≥ APr(V)`. Let L be the collection of r-rich lines w.r.t [r] × V ` ⊂ C1+d`

corresponding to nontrivial r-term arithmetic progressions in V `, as given by Claim 25. So

|Lr([r]× V `)| ≥ |L| = APr(V `) ≥ APr(V)` �d,ε
n2`

rd`−ε`
≥ n2`

rd`−1 = (n`r)2

rd`+1 .

By Theorem 4 (choosing the constants appropriately), there is a hyperplane H in C1+d`

which contains &d,ε n`r
rd`−1 points of [r]×V `. Moreover, by Remark 24, H contains some of the

lines of L. So H cannot be one of the hyperplanes {z1 = i}i∈[r] because they do not contain
any lines of L. So the intersection of H with one of the r hyperplanes {z1 = i}i∈[r] (say j)
gives a (d`− 1)-flat which contains &d,ε n`

rd`−1 points of V ` × {j}. This gives a hyperplane
H ′ in Cd` which contains &d,ε n`

rd`−1 points of V `. Now by Lemma 17, we can conclude that
there is a hyperplane in Cd which contains &d,ε n

rd`−1 ≥ n
r2d/ε−1 points of V . J

5 Proof of Theorem 9

Suppose in contradiction that |TC | > λN/C2 for some large absolute constant λ which we
will choose later. Let Q ⊂ TC be a set of size |Q| =

⌈
λN/C2⌉ containing the zero element

0 ∈ Q (we have 0 ∈ TC since the sum-set |A+ 0A| = |A| is small). Let

r = |Q|, m = N1.5

C
√

logN
, d = d100 logNe.

We will use our assumption on the size of Q to construct a configuration of points V ⊂ Cd
with many r-rich lines. Then we will use Lemma 19 to derive a contradiction. The set V
will be a union of the sets

Vt = {t} × (A+ tA)d−1 = {(t, a2 + tb2, . . . , ad + tbd) | ai, bj ∈ A}

over all t ∈ Q, i.e. V =
⋃
t∈Q Vt. Notice the special structure of the set V0 = {0} × Ad−1.

We denote by

n = |V | ≤ r ·md−1 (4)

Notice that, by construction, for every a = (0, a2, . . . , ad) and every b = (1, b2, . . . , bd)
(with all the ai, bj in A), the line through the point a ∈ V0 in direction b is r-rich w.r.t V .

Z.Dvir and S. Gopi 597

Let us denote by L ⊂ Lr(V) the set of all lines of this form. We thus have |L| = N2d−2. Let
I = I(V,L), then |I| ≥ r|L|. We now use Lemma 18 to find subsets V ′ ⊂ V and L′ ⊂ L such
that each point in V ′ is in at least

k = rN2d−2

4n
lines from L′, each line in L′ is r0 = r/4-rich w.r.t to the set V ′ and

|I(V ′, L′)| ≥ |I|/2.

Observe that, since each line in L′ contains at most r points from V ′, we have

|L′| ≥ |I(V ′,L′)|/r ≥ |L|/2.

The following claim shows that we can apply Lemma 19 on the set V ′.

I Claim 27.
k ≥ Kd

n

rd−2
0

.

where Kd = 32(2d)d is the constant in Lemma 19.

Proof. Plugging in the value of k, r0 and using bound Eq. 4 to bound n, we need to show
that

rd−3 ≥ 32(8d)dNd−1

(C2)d−1(logN)d−1 .

We now raise both sides to the power 1/(d− 3) and use the fact that, for ` > logX, we have
1 ≤ X1/` ≤ 2. Thus it is enough to show

r ≥ K ′dN

C2 logN = K ′N d100 logNe
C2

for some absolute constant K ′ which holds by choosing λ = 100K ′. J

Since C �
√
N , r0 ≥ 4. Applying Lemma 19, we get a non-zero polynomial f ∈

C[x1, . . . , xd] of degree at most r0 − 2 that vanishes on all points in V ′. This means that f
must also vanish identically on all lines in L′ (since these are all r0-rich w.r.t V ′). Since each
line in L′ intersects V0 exactly once, and since |V0| = Nd−1, we get that there must be at
least one point v ∈ V0 that is contained in at least |L′|/Nd−1 ≥ 1

2N
d−1 lines (in different

directions) from L′. Let f̃ denote the homogeneous part of f of highest degree. If f vanishes
identically on a line in direction b ∈ Cd, this implies that f̃(b) = 0 (to see this notice that the
leading coefficient of g(t) = f(a+ tb) is f̃(b)). Hence, since all the directions of lines in L′
are from the set {1} ×Ad−1, we get that f̃ has at least 1

2N
d−1 zeros in the set {1} ×Ad−1.

This contradicts Lemma 16 since the degree of f̃ is at most r0 − 2 = r/4− 2 < N/2 (since
r = dλN/C2e and C � 1). This completes the proof of Theorem 9. J

Acknowledgements. We thank Ben Green and Noam Solomon for helpful comments. Re-
search supported by NSF grant CCF-1217416 and by the Sloan fellowship. Some of the
work on the paper was carried out during the special semester on ‘Algebraic Techniques for
Combinatorial and Computational Geometry’, held at the Institute for Pure and Applied
Mathematics (IPAM) during Spring 2014.

SoCG’15

598 On the Number of Rich Lines in Truly High Dimensional Sets

References
1 B. Barak, Z. Dvir, A. Wigderson, and A. Yehudayoff. Fractional Sylvester-Gallai theorems.

Proceedings of the National Academy of Sciences, 2012.
2 B. Barak, Z. Dvir, A. Yehudayoff, and A. Wigderson. Rank bounds for design matrices

with applications to combinatorial geometry and locally correctable codes. In Proceedings
of the 43rd annual ACM symposium on Theory of computing, STOC ’11, pages 519–528,
New York, NY, USA, 2011. ACM.

3 Saugata Basu and Martin Sombra. Polynomial partitioning on varieties and point-
hypersurface incidences in four dimensions. arXiv preprint arXiv:1406.2144, 2014.

4 Z. Dvir. Incidence Theorems and Their Applications. Foundations and Trends in Theoret-
ical Computer Science, 6(4):257–393, 2012.

5 Z. Dvir, S. Saraf, and A. Wigderson. Improved rank bounds for design matrices and a new
proof of Kelly’s theorem. Forum of Mathematics, Sigma, 2, 10 2014.

6 L. Guth and N. Katz. Algebraic methods in discrete analogs of the Kakeya problem.
Advances in Mathematics, 225(5):2828 – 2839, 2010.

7 Larry Guth and Nets Hawk Katz. On the Erdős distinct distances problem in the plane.
Annals of Mathematics, 181(1):155–190, 2015.

8 Marton Hablicsek and Zachary Scherr. On the number of rich lines in high dimensional
real vector spaces. arXiv preprint arXiv:1412.7025, 2014.

9 J. Kollar. Szemerédi–Trotter-type theorems in dimension 3. arXiv:1405.2243, 2014.
10 Izabella Laba and József Solymosi. Incidence theorems for pseudoflats. Discrete & Com-

putational Geometry, 37(2):163–174, 2007.
11 M. Rudnev. On the number of incidences between planes and points in three dimensions.

arXiv:1407.0426v2, 2014.
12 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.

ACM, 27(4):701–717, 1980.
13 Micha Sharir, Adam Sheffer, and Joshua Zahl. Improved bounds for incidences between

points and circles. In Proceedings of the Twenty-ninth Annual Symposium on Computational
Geometry, SoCG ’13, pages 97–106, New York, NY, USA, 2013. ACM.

14 Micha Sharir and Noam Solomon. Incidences between points and lines in R4. arXiv preprint
arXiv:1411.0777, 2014.

15 József Solymosi and VH Vu. Distinct distances in high dimensional homogeneous sets.
Contemporary Mathematics, 342:259–268, 2004.

16 József Solymosi and Terence Tao. An incidence theorem in higher dimensions. Discrete
and Computational Geometry, 48(2):255–280, 2012.

17 E. Szemerédi and W. T. Trotter. Extremal problems in discrete geometry. Combinatorica,
3(3):381–392, 1983.

18 C. Toth. The Szemerédi-Trotter theorem in the complex plane. arXiv:math/0305283v4,
2003.

19 Joshua Zahl. A Szemerédi-Trotter type theorem in R4. CoRR, abs/1203.4600, 2012.
20 Joshua Zahl. A note on rich lines in truly high dimensional sets. arXiv preprint

arXiv:1503.01729, 2015.
21 R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the Inter-

national Symposiumon on Symbolic and Algebraic Computation, pages 216–226. Springer-
Verlag, 1979.

Realization Spaces of Arrangements of Convex
Bodies∗

Michael Gene Dobbins1, Andreas Holmsen2, and Alfredo Hubard3

1 GAIA, POSTECH
South Korea
dobbins@postech.ac.kr

2 Department of Mathematical Sciences, KAIST
South Korea
andreash@kaist.edu

3 GEOMETRICA, INRIA Sophia-Antipolis
France
alfredo.hubard@inria.fr

Abstract
We introduce combinatorial types of arrangements of convex bodies, extending order types of
point sets to arrangements of convex bodies, and study their realization spaces. Our main
results witness a trade-off between the combinatorial complexity of the bodies and the topological
complexity of their realization space. On one hand, we show that every combinatorial type can
be realized by an arrangement of convex bodies and (under mild assumptions) its realization
space is contractible. On the other hand, we prove a universality theorem that says that the
restriction of the realization space to arrangements of convex polygons with a bounded number
of vertices can have the homotopy type of any primary semialgebraic set.

1998 ACM Subject Classification G.2.1 Combinatorics , F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases Oriented matroids, Convex sets, Realization spaces, Mnev’s universality
theorem

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.599

1 Introduction

We introduce a generalization of order types that provides a framework to study arrangements
of convex sets and their convex dependencies. The notion we introduce is closely related to
wiring diagrams [7] or primitive sorting networks [18]. It is also related to double pseudoline
arrangements introduced by Pocchiola and Habert [14] and double allowable sequences
introduced by Goodman and Pollack [11]. These related notions have applications in the
study of visibility, transversal, and separation properties of convex sets [2, 23, 22, 16].
The generalization of order type studied here was fundamental to the authors’ work on

∗ M.G. Dobbins was supported by NRF grant 2011-0030044 (SRC-GAIA) funded by the government of
South Korea. A. Holmsen was supported by Basic Science Research Program through the National
Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-
2010-0021048). A. Hubard was supported by Fondation Sciences Mathématiques de Paris and by
the Advanced Grant of the European Research Council GUDHI (Geometric Understanding in Higher
Dimensions).

© Michael Gene Dobbins, Andreas Holmsen, and Alfredo Hubard;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 599–614

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.599
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

600 Realization Spaces of Arrangements of Convex Bodies

generalizations of the Erdős-Szekeres theorem to arrangements of convex sets in the plane
[4, 3]. In this paper, we address the relevant realizability questions.1

Two indexed point sets P = {p1, p2 . . . pn} and Q = {q1, q2 . . . qn} in the plane are said to
have the same order type when for every triple (i, j, k) the orientation of the triples pi, pj , pk
and qi, qj , qk coincides. Equivalently by projective duality, a point set P corresponds to a
dual family P ∗ of oriented great circles in the sphere, and point sets P and Q have the same
order type when the families P ∗ and Q∗ subdivide the sphere in the same way. That is, when
there is a self-homeomorphism of the sphere that sends each cell of P ∗ to a corresponding
cell of Q∗ and preserves orientations. A number of geometric properties of point sets which
are important in combinatorial convexity, incidence geometry and algorithms depend solely
on the order type of the point sets and not on actual coordinates of the points.

More generally, we say that a sign function χ : L3 → {+, 0,−} is an order type when it
satisfies the axioms of rank 3 acyclic chirotopes [1, page 126] [18, Chapter 10]. Specifically, χ
is alternating, satisfies the Grassman-Plücker Relations, is acyclic (a restatement of Radon’s
partition theorem in terms of orientations), and is not identically zero. Order types that
satisfy χ(i, j, k) 6= 0 for any i, j, k distinct are called simple, and are equivalent to Donald
Knuth’s CC-systems [18].

Like simple order types, combinatorial types are finite combinatorial objects that can be
associated to families of geometric objects, namely arrangements of convex bodies, which
are assumed to satisfy certain genericity conditions. These will be defined precisely in
Section 2, but for now we describe the equivalence relation that combinatorial types induce
on arrangements of convex bodies. To do so, we define a duality for convex bodies that
is analogous to projective duality for points in the plane. The dual support curve A∗

of a convex body A in the plane, is the graph of its support function hA : S1 → R1,
hA(θ) := maxp∈A〈θ, p〉 on the cylinder S1 × R1, where S1 is the unit circle and 〈·, ·〉 is the
standard inner product. In this way, every arrangement A = {A1, . . . , An} corresponds to
the dual support system A∗ = {A∗1, . . . , A∗n} of curves on the cylinder S1 × R1 given by
the graphs of the functions {hA1 , hA2 , . . . hAn

}. In the other direction, not all functions
h : S1 → R1 are support functions, but we have the following sufficient conditions.

I Remark. Blashke showed that if h : S1 → R1 is C2-smooth and h + h′′ > 0, then h is
the support function of a planar curve with curvature bounded by 1

h+h′′ [12, Lemma 2.2.3].
Hence, by adding a sufficiently large constant to a family of smooth functions, we can ensure
the family is the dual support system of an arrangement of convex bodies.

The combinatorial type of an arrangement of bodies ct(A) is, essentially, a combinatorial
encoding of the subdivision of the cylinder S1 × R1 by the dual support curves A∗. For now,
we take the following theorem as an alternative topological definition.

I Theorem 1. Two arrangements of convex bodies A and B have the same combinatorial
type if and only if their dual systems A∗ and B∗ are related by a self-homeomorphism of the
cylinder that preserves orientation and +∞.

Here, we say that a self-homeomorphism φ : S1 × R1 → S1 × R1 preserves +∞ when
for y sufficiently large the second coordinate of φ(θ, y) is positive for all θ. Equivalently, φ
preserves the counter-clockwise orientations of the support curves.

In the case of points, the duality that we defined through support functions is the usual
projective duality renormalized to be on the cylinder. Consequently, two generic point sets

1 The full details of the proofs of our results will appear in the journal version.

M.G.Dobbins, A.Holmsen, and A.Hubard 601

θ1

θ2θ3θ4

θ5

θ6

3 1

2

0 θ1 θ2 θ3 θ4 θ5 θ6 2π

3

1
2

Figure 1 Top: An arrangement A and its common supporting tangents. Bottom: Its dual
support system A∗.

have the same order type if and only if they have the same combinatorial type. Specifically,
a point in the plane can be represented in homogeneous coordinates by a line in R3, and
its dual support curve is the intersection of the orthogonal complement of this line with
the cylinder embedded in R3. The same relationship holds between a body in the plane
represented by a cone in R3 and the body’s dual support curve represented by its polar cone.

Although combinatorial types of arrangements are more general objects than simple order
types, we associate an order type to the following class of arrangements. We say a triple
of bodies is orientable when it has the combinatorial type of three generic points, and we
say an arrangement is orientable when it consists of at least three bodies and every triple
is orientable. In this case, every triple {Ai, Aj , Ak} ⊂ A contributes a single connected arc
to the boundary of conv(Ai, Aj , Ak), and we define the orientation of an ordered triple
(Ai, Aj , Ak) to be positive when the bodies appear counter-clockwise in the given order on
the boundary, and to be negative otherwise. Grünbaum implicitly observes that the cyclic
orderings of the triples of an orientable arrangement form an order type in his discussion on
planar arrangements of simple closed curves [13, Section 3.3].

1.1 Realizing order types

Not every order type can be realized by a point set. In fact, most order types are not
realizable, and it is NP-hard to decide if a given order type is realizable [28]. Having a notion
of combinatorial type allows us to approach questions regarding realizability by bodies rather
than points [15]. The smallest non-realizable order type is the Non-Pappus Configuration, a
configuration of 9 elements that violates Pappus’s Theorem [19, 27]. Pach and Tóth showed
that the Non-Pappus Configuration can be realized by an arrangement of segments in the
plane [24]. Figure 2 shows a non-realizable order type that can be realized by triangles,
Goodman-Pollack’s “Bad Pentagon” [8], and the authors conjecture that this order type
cannot be realized by segments. In contrast to point sets, we show that any order type, and
in fact any combinatorial type, can be realized by an arrangement of bodies.

SoCG’15

602 Realization Spaces of Arrangements of Convex Bodies

Figure 2 Two realizations of the Bad Pentagon. Left: a realization in a topological plane [8].
Right: a realization by convex sets in the Euclidean plane.

I Theorem 2. The orientations of the triples of any orientable arrangement is a simple
order type. Two orientable arrangements have the same order type if and only if they have
the same combinatorial type. And, every simple order type can be realized by an orientable
arrangement.

We informally describe how to construct an arrangement of a given simple order type.

Proof Idea. The Folkman-Lawrence representation theorem says that any rank 3 chirotope
can be realized by a (symmetric) pseudocircle arrangement; that is, by a family of simple
closed curves on the sphere such that each curve is preserved by the antipodal map (x 7→ −x)
and each pair of distinct curves intersect at exactly 2 points [6]. In the case of order types,
there is some pair of points respectively to the left of each curve (labeled +∞) and to the
right of each curve (labeled −∞). Pseudocircle arrangements can be swept, meaning a
path from the point −∞ to the point +∞ can be continuously deformed while keeping its
end-points fixed such that it passes through all other points on the sphere exactly once
returning to its original position and it always intersects each pseudocircle at exactly one
point [9, Theorem 2.9]. This defines a homeomorphism from the sphere with points +∞
and −∞ removed to the cylinder such that the image of each pseudocircle is the graph of
a function hi : S1 → R1. Furthermore, this homeomorphism can be chosen so that each
function hi is the support function of a convex body. These convex bodies then form an
orientable arrangement of the given order type.

Alternatively, such an arrangement can be constructed in the primal. A simple order type
can be encoded by a sequence of permutations given by the order that a path intersects each
pseudocircle as it sweeps the sphere. Consider a family of closed curves in the plane that
each wind once around the origin and cross according to this sequence of permutations. By
drawing these curves sufficiently close to the unit circle so that each curve is the boundary
of a convex body, we obtain an orientable arrangement of the given order type. J

If we bound the complexity of the bodies, then some simple order types can no longer be
realized. Indeed, we show that simple order types can always be realized by k-gons, but may
require k to be arbitrarily large.

M.G.Dobbins, A.Holmsen, and A.Hubard 603

I Theorem 3. Let kn be the smallest integer for which every simple order type on n elements
can be realized by an arrangement of kn-gons. There are constants c1, c2 > 0 such that

c1
n

logn ≤ kn ≤ c2n
2.

Proof Idea. The primal construction of Theorem 2 that realizes a simple order type by
convex bodies can be done so the resulting bodies are polygons, and this gives the upper
bound on kn. We get the lower bound on kn by the following counting argument. Fix an
integer k. The combinatorial type of an arrangement of n k-gons is determined by the order
type of all kn vertices of the arrangement. Therefore, the number of combinatorial types
that can be realized by n k-gons is at most the number of order types that can be realized
by kn points 2O(kn(log(n)+log(k)), which grows more slowly than the number of simple order
types on n elements 2Θ(n2) [10, 5]. Thus, for n sufficiently large, some simple order type
cannot be realized by k-gons, so k ≤ kn. J

1.2 Realization spaces
An old conjecture of Ringel claimed that given two point sets with the same order type, one
point set can be continuously deformed to the other while maintaining the order type [27].
This naturally leads to the study of realization spaces of order types, the set of all families of
points with a fixed order type modulo projectivities. The conjecture can then be restated as,
any non-empty realization space is connected. Ringel’s conjecture was disproved in the early
eighties, and the strongest result in this direction is Mnev’s Universality Theorem [20, 21],
which states that for any primary semialgebraic set Z, there exists an order type whose
realization space is homotopy equivalent to Z. Recall that a primary semialgebraic set is the
set of common solutions to some finite list of polynomial equations and strict inequalities in
several real variables. This has lead to a growing body of work [1, 17, 25, 26, 29, 30].

The main objective of this paper is to extend the study of realization spaces to arrange-
ments of bodies of a fixed combinatorial type and exhibit a trade-off between the combinatorial
complexity of the bodies and the topological complexity of their realization space. The first
indication of this trade-off may be observed from Theorems 2 and 3, which imply that for
general convex bodies the realization space of any simple order type is non-empty, but this
fails for k-gons. We prove two contrasting results. First, we show in Theorem 4 that Ringel’s
intuition is correct in this generalized context: the realization space of any combinatorial
type satisfying some mild assumptions is contractible; that is, it is non-empty and has no
holes of any dimension. In particular, the set of arrangements (modulo planar rotations) of
convex bodies realizing any fixed simple order type is contractible, and therefore connected.
Second, we show in Theorem 5 that if the bodies are restricted to polygons with at most k
vertices, then Mnev’s Theorem generalizes.2 Specifically, we show that for every k and every
primary semialgebraic set Z there is a combinatorial type whose k-gon realization space is
homotopy equivalent to Z. The main ideas of the proof of Theorem 4 are given in Section 3
and the construction for Theorem 5 is given in Section 4.

1.3 Relationship to double pseudoline arrangements
Pocchiola and Habert introduced an extension of chirotopes to arrangements of convex sets
based on a similar notion of duality to what is presented here, called double pseudoline

2 Note that Mnev’s Theorem is more specific as it deals with stable equivalence.

SoCG’15

604 Realization Spaces of Arrangements of Convex Bodies

arrangements [14]. The essential difference is that the dual double pseudoline of a convex
set is defined as the quotient of the dual support curve by the Z2 action on the cylinder
(θ, y) ∼ (θ,−y). Instead of a curve that wraps monotonically once around the cylinder, the
dual double pseudoline is a curve that wraps monotonically twice around the Möbius strip.
This leads to an extended notation of chirotopes that provides information about arrangements
of convex sets which combinatorial types do not distinguish, such as disjointness and visibility.
On the other hand, combinatorial types distinguish convex position of subarrangements and
are simpler in certain respects that are crucial to the analysis in [4, 3] and the results of this
paper.

2 Preliminaries and main theorems

In this section we state the main theorems and introduce definitions to be used throughout
the paper. An arrangement we always mean a finite indexed non-empty collection of
compact convex sets, which we call bodies.

2.1 Genericity assumptions
A common supporting tangent of a pair of bodies is a directed line tangent to each body
such that both bodies are on its left side. In the dual, this corresponds to an intersection
between two support curves. We say that a pair of bodies intersect transversally when
no point of intersection is contained in a common supporting tangent. In the dual this
corresponds to a pair of curves in the cylinder that cross at each point of intersection; that is,
for a pair of curves that are respectively the graphs of functions f1, f2, the function f1 − f2
has only isolated zeros and changes sign at each zero. An arrangement is called generic
when it satisfies the following conditions:

Each pair of bodies intersect transversally.
No three bodies share a common supporting tangent.
There are finitely many common supporting tangents.

A system is called generic when it satisfies the following conditions:
Each pair of curves cross at each point of intersection.
No three curves share a common point of intersection.
There are finitely many crossings.

Every time we refer to an arrangement or a system, it is assumed to be generic. We will
use non-generic point sets and their non-simple order types, but we do not refer to them as
arrangements.

2.2 Combinatorial type
Let Sm be the symmetric group on m elements and [m] = {1, . . . ,m}. Given i ∈ [m − 1],
the adjacent transposition τi ∈ Sm is the permutation interchanging the i’th and i+1’st
entries,

τi(x1, . . . , xm) = (x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xm).

Let H(τi) = i denote the height of an adjacent transposition. A swap sequence
σ : [N]→ Sm is any sequence of adjacent transpositions such that σN ◦ · · · ◦σ1 is the identity
permutation.

M.G.Dobbins, A.Holmsen, and A.Hubard 605

d

c

b

a

0 2π

ρ = (a, b, c, d)
H(σ) = (1, 2, 2, 3, 1, 3)
ρσ = ((b, a), (c, a), (a, c), (d, c), (a, b), (c, d))

Figure 3 A system with its swap data (ρ, σ) and its incidence sequence ρσ. Note that systems
are drawn as viewed from outside the cylinder, so counter-clockwise is to the right.

Fix an index set L of size n. A swap pair (ρ, σ) on L is a bijection ρ : [n]→ L together
with a swap sequence σ : [N]→ Sn. We define an equivalence relation (swap∼) on swap pairs
as follows. Let (ρ′, σ′) swap∼ (ρ, σ) when (ρ′, σ′) can be obtained from (ρ, σ) by performing any
sequence of the following two elementary operations

a cyclic shift

ρ′ = τσ1(ρ), σ′i = σ(i+1 mod N)

an elementary transposition

ρ′ = ρ, σ′ = τi(σ) provided |H(σi)−H(σi+1)| > 1.

A combinatorial type Ω on L is the equivalence class Ω = {(ρ′, σ′) : (ρ′, σ′) swap∼ (ρ, σ)} of
a swap pair (ρ, σ).

To define the combinatorial type of a system S, we order the crossings of S lexicographically
in S1 × R1 where S1 is ordered according to the standard parametrization by the half-open
interval (0, 2π]. Let ρ be the order of the indices of each curve from bottom to top before
the first crossing of the system. Let σ be the swap sequence corresponding to each crossing.
That is, let H(σi) be 1 plus the number of curves below the i’th crossing of S. Observe that
the sequence σi ◦ . . . σ1(ρ) for i = 0, 1, . . . , N records the order of the curves in a sweep of
the cylinder. The combinatorial type ct(S) of a system S is the equivalence class of its
swap pair (ρ, σ). The combinatorial type of an arrangement A is that of its dual system, and
by slight abuse of notation, we write ct(A) = ct(A∗).

The incidence sequence ρσ : [N]→ L2 of a swap pair (ρ, σ) records the ordered pair
of indices transposed by the action of each swap,

ρσi = (xH(σi)+1, xH(σi)) where x = σi−1 ◦ · · · ◦ σ1(ρ).

Note that the incidence sequence of equivalent swap pairs have the same multi-set of entries.
The layers of a system are the connected components of the union of curves of the

system. Analogously, the layers of a combinatorial type are the connected components of
the graph on L defined by its incidence sequence. The depth of a combinatorial type is the
number of layers excluding isolated vertices, and the depth 1 case is called non-layered.

2.3 Realization spaces
The full realization space R(Ω) of a combinatorial type Ω is defined by

R(Ω) := {A ∈ UL : ct(A) = Ω}

where UL is the set of all arrangements of bodies indexed by L. The Hausdorff metric dH on
compact subsets of R2 induces a metric on R(Ω) by taking the maximum distance between

SoCG’15

606 Realization Spaces of Arrangements of Convex Bodies

bodies having the same index. That is, for A = {Ai}i∈L and B = {Bi}i∈L,

d(A,B) = max
i∈L

dH(Ai, Bi)

I Remark. The map that takes a convex body to its support function is an isometry from
the space of convex bodies with the Hausdorff metric to the space of support functions on S1

with the supremum metric.
Depending on context, it may be convenient to regard realizations of a fixed combinatorial

type as “the same” when they are related by a projective transformation. Let A proj∼ B when
they are related by an admissible projectivity; that is, an invertible projective transformation
π such that π(Ai) = Bi for all i ∈ L and π is bounded and preserves orientation on the
convex hull of

⋃
A. The (projective) realization space, which we may simply call the

“realization space”, is the quotient space

R̃(Ω) := R(Ω)/ proj∼ .

By a k-gon we mean a convex polygon with at most k vertices. The full k-gon realiza-
tion space is given by

Rk(Ω) := {A ∈ R(Ω) : ∀i ∈ L. Ai is a k-gon}

Similarly, we have the (projective) k-gon realization space R̃k(Ω) := Rk(Ω)/ proj∼. Let
Td = S1 × · · · × S1 denote the d-torus, the d-fold product of S1.

I Theorem 4. The realization space R̃(Ω) of any non-layered combinatorial type Ω is
contractible. Moreover, if Ω has depth d > 1, then R̃(Ω) is homotopic to a (d−1)-torus.

I Remark. Orientable combinatorial types are always non-layered.

I Theorem 5. For every primary semialgebraic set Z and every positive integer k, there
exists a combinatorial type Ω such that R̃k(Ω) is homotopic to Z.

3 Contractibility

To show contractibility, we construct a standard arrangement of convex bodies for each
combinatorial type by defining its dual support system. We then show that the full realization
space R(Ω) is equivariantly homotopic to a circle S1 by defining a deformation retraction to
the subspace of rotated copies of the standard arrangement. By equivariantly homotopic
we mean that the corresponding homotopy maps commute with SO(2). We then pass to
the (projective) realization space R̃(Ω) by identifying arrangements related by admissible
projectivities. Since rotations are admissible projectivities, this defines a deformation
retraction from R̃(Ω) to a point.

The deformation retraction from R(Ω) to a circle will proceed in two steps. First in
Lemma 6, we deform the support system of a given arrangement to a system of the same
combinatorial type that depends only on the (angular) position of each crossing; see Figure 4
Left. We can then consider just the positions of the crossings and ignore the rest of the
geometry of the system. Second in Lemma 7, we move the crossings to a set of standard
positions that depend only on: the given combinatorial type and the position of a certain
crossing that we fix; see Figure 4 Right. The set of possible standard systems we get in the
end is parametrized by the position of this fixed crossing, which defines an embedding of the
circle in R(Ω). The first deformation retraction depends on the following remark.

M.G.Dobbins, A.Holmsen, and A.Hubard 607

0 2πθ 0 2πθ

Figure 4 Left: The system α∗(V) depending on the angular positions of the crossings as given
by the support configuration V ∈ V(Ω). Right: The system W (θ, δ) with the marked crossing fixed
at angle θ obtained by rotating all other crossings of α∗(V) clockwise.

I Remark. For any pair of convex bodies A and B, (A+ B)∗ = A∗ + B∗ with Minkowski
addition on the left and addition of the support functions defining the curves on the right.
And, for t ≥ 0, (tA)∗ = t(A∗). Hence, the set of all support functions is a convex cone. That
is, if g and h are support functions, then so is sg + th for s, t ≥ 0. Note however, that the
set of dual support systems of a fixed combinatorial type is not a convex set.

3.1 Support configurations
The support configuration of an arrangement A indexed by L is a labeled vector con-
figuration sc(A) ⊂ L2 × S1 which contains a triple (i, j, θ) if bodies Ai, Aj have a common
supporting tangent line ` that first meets Ai and then meets Aj and has outward normal
vector θ. We say labels (i, j), (i′, j′) are disjoint when {i, j} ∩ {i′, j′} = ∅. Note that a
unit vector θ may appear in multiple elements of sc(A) with disjoint labels. Dually, sc(A)
corresponds to the crossings of A∗. Specifically, (i, j, θ) ∈ sc(A) when curves A∗i and A∗j cross
at θ with A∗i crossing downward and A∗j crossing upward. That is, the respective support
functions fi, fj of Ai, Aj are equal at θ and fj − fi is increasing at θ.

Observe that the support configuration of an arrangement determines the combinatorial
type of that arrangement. For a given combinatorial type Ω, we will define its support
configuration space V(Ω), which will turn out to be the set of support configurations
of all arrangements realizing Ω. We first define the set of labeled configurations V(ρ, σ)
corresponding to a given swap pair (ρ, σ). Recall that ρσ records the ordered pairs of indices
transposed by σ acting sequentially on ρ. Observe that if (ρ, σ) is the swap pair of a system,
then ρσi for i ∈ [N] is the labeling of the i-th crossing of the system. Recall also that we
order S1 by the parametrization by (0, 2π]. Let

V(ρ, σ) :=
{
{(ρσi, θi) : i ∈ [N]} :

θi ∈ S1, θi ≤ θi+1,

θi = θi+1 ⇒ |H(σi)−H(σi+1)| > 1

}
,

V(Ω) :=
⋃

(ρ,σ)∈Ω

V(ρ, σ).

Note that a vector θ ∈ S1 might appear multiple times in V(Ω) with different labels provided
the pairs of indices in the labels are disjoint.

We define a metric on V(Ω) as follows. For a given support configuration X and a given
ordered pair of indices (i, j) ∈

(
L
2
)
, let X(i,j) := {θ ∈ S1 : (i, j, θ) ∈ X}. For two support

configurations, X,Y ⊂ L2 × S1,

d(X,Y) = max
(i,j)∈(L

2)
dH(X(i,j), Y(i,j))

where the distance between two direction vectors is given by their angle and dH is the
corresponding Hausdorff metric on sets.

SoCG’15

608 Realization Spaces of Arrangements of Convex Bodies

I Lemma 6. For any combinatorial type Ω, the full realization space R(Ω) is non-empty
and equivariantly homotopic to the support configuration space V(Ω).

Proof Idea. For A ∈ R(Ω) with swap pair (ρ, σ), we have sc(A) ∈ V(ρ, σ) ⊂ V(Ω), so
assigning each arrangement to its support configuration defines a map sc : R(Ω) → V(Ω),
which will be one direction of the homotopy equivalence.

For the other direction, we define an embedding α : V(Ω)→ R(Ω). For each labeled
configuration V ∈ V(Ω), we construct a system of curves α∗(V) = {A∗i : i ∈ L} where
A∗i = fi(S1), fi : S1 → R1, and show that α∗(V) is the dual support system of an arrangement
α(V) that has support configuration V . The system α∗(V) that we construct may be regarded
as a smooth analog of Goodman’s wiring diagram [7].

Fix V ∈ V(Ω), let Vi ⊂ S1 denote the vectors of V with labels involving i, and let δ
be the minimum angular distance between any two vectors of V with non-disjoint labels.
For v = (i, j, θ) ∈ V define the open arc Θ(v) := (θ − δ/2, θ + δ/2) ⊂ S1. Now define fi to
be constant on the complement of the arcs Θ(Vi), and to smoothly increase or decrease by
±1 symmetrically about θ in each arc Θ(v) according to the label on v ∈ Vi; that is, fi
increases on Θ(v) if (j, i, θ) ∈ V and decreases if (i, j, θ) ∈ V for some j.3 We can additionally
require each pair fi, fj to coincide on Vi ∩ Vj , and this determines each subfamily of α∗(V)
corresponding to a layer of Ω up to a common additive constant. A proof of this is given in
the journal version. To fix this additive constant in the case of one layer, let

min
(i,θ)∈L×S1

(fi(θ) + f i
′′(θ)) = 1,

and in the case of multiple layers, let the minimum of each successively higher layer be
greater than the maximum of the layer immediately below by 1. Now the system α∗(V)
defined by the functions fi is the dual support system of an arrangement α(V) ∈ R(Ω) that
is uniquely and continuously determined by V ∈ V(Ω), and sc(α(V)) = V . This gives us a
subspace α(Ω) := {α(V) : V ∈ V(Ω)} ⊂ R(Ω) that is homeomorphic to V(Ω) = sc(R(Ω)).
For A ∈ R(Ω) define At := tα(sc(A)) + (1 − t)A for 0 ≤ t ≤ 1 by Minkowski addition on
each body of the arrangement. Since sc(A) = sc(α(sc(A))) and, as we linearly interpolate
between two systems with the same crossings, the crossings remain fixed, sc(At) is constant
for all t ∈ [0, 1]. Thus, α(Ω) is an equivariant deformation retract of R(Ω). J

3.2 Local sequences and standard configurations

We define a deformation retraction from the support configuration space V(Ω) to a subspace
of standard configurations W(Ω) ⊂ V(Ω), which is is homeomorphic to a torus. The standard
configuration we choose is similar to the “compressed form” given in [18, page 31]. For this,
we introduce an encoding of combinatorial type extending the local sequences of a point
set. The local sequence λi = (λi,1, . . . , λi,ni

) of i ∈ L for a system S lists the indices of the
curves that Si crosses in order according to the parametrization by (0, 2π]. Similarly, the
local sequence λi for a swap pair (ρ, σ) is the sequence of indices λi,j appearing together with
i as part of a pair (λi,j , i) or (i, λi,j) in the incidence sequence ρσ. Let Λ denote the tableau
that has λρ(i) as its i’th row. We say Λ is a tableau representation of the combinatorial
type Ω 3 (ρ, σ). We say Ω is periodic when for some p > 1, some tableau representation Λ

3 The definition of fi on Θ(v) is irrelevant as long as fi is C2-smooth, monotonic, symmetric about θ,
and varies continuously with respect to V . A cubic spline would suffice for this.

M.G.Dobbins, A.Holmsen, and A.Hubard 609

is the row-wise concatenation of p copies of some other tableau Λ′. We say a pair j, k ∈ L

are adjacent in a tableau Λ with rows λi when

λj = (k, λj,2, . . . , λj,nj
) and λk = (j, λk,2, . . . , λk,nk

).

I Lemma 7. For any non-layered combinatorial type Ω, the support configuration space V(Ω)
is equivariantly homotopic to the circle S1.

Proof Idea. Assume Ω is non-periodic. The periodic case is similar, and is dealt with in
the journal version. We first construct a labeled vector configuration W (θ, δ) for θ ∈ S1

and δ > 0 sufficiently small as follows. Let Λmin be the lexicographically minimal tableau
representation of Ω for which there exists exactly one adjacent pair. Note that it is always
possible to find a tableau representation of a non-layered combinatorial type with exactly
one adjacent pair. We will define a sequence of configurations Wt recursively starting from
t = 0. To start, set Λ0 = Λmin, θ0 = θ, W0 = ∅. Let {(it,1, jt,1), . . . , (it,mt

, jt,mt
)} be the set

of all adjacent pairs in Λt where (it,m, jt,m) is ordered according to the row order of Λt. Let

Wt+1 = Wt ∪ {(it,1, jt,1, θt), . . . , (it,mt , jt,mt , θt)},

θt+1 = θt+δ, and let Λt+1 be the tableau obtained from Λt by interchanging the corresponding
pairs of rows and deleting the first entry from each of these rows. Eventually, ΛT = ∅ for
some minimal T , and we obtain a support configuration W (θ, δ) of combinatorial type Ω
where the minimum angular distance between vectors with non-disjoint labels is δ. Finally,
let W(Ω) = {W (θ, δ0) : θ ∈ S1} where δ0 = 2π/N .

The unique adjacent pair of Λmin corresponds to a specific labeled vector ṽ = (i, j, θ) in
each configuration V ∈ V(Ω). To define a deformation retraction sending V to a configuration
W ∈ W(Ω), first fix ṽ and rotate each of the other vectors clockwise as much as possible
without decreasing the minimum distance δ between vectors with non-disjoint labels. That
is, rotated each vector x 6= ṽ clockwise untill the there is a vector y at angular distance
δ in the clockwise direction from x such that y has already stopped rotating and x and y
have non-disjoint labels. Once all vectors have stopped rotating, we will have arrived at the
configuration W (θ, δ). Then, continuously rescale δ to 2π/N keeping ṽ fixed. This give a
deformation retraction from V(Ω) to W(Ω) ' S1. J

3.3 Proof of contractibility
Proof of Theorem 4. In the depth 1 case, the full realization space R(Ω) is homotopic to
the support configuration space V(Ω) by Lemma 6, which is homotopic to S1 by Lemma
7. Since these homotopies are equivariant and rotations are included among admissible
projective transformations, the realization space R̃(Ω) is contractible.

In the depth d > 1 case, partition Ω into layers Ω = Ω1 ∪ · · · ∪ Ωd. If we restrict a
support configuration of Ω to those vectors with labels in a layer Ωi, then we obtain a support
configuration of Ωi. Hence, V(Ω) ⊂ V(Ω1)×· · ·×V(Ωd). In the other direction, if we are given
support configurations Vi ∈ V(Ωi), then

⋃
i∈[d] Vi ∈ V(Ω). Hence V(Ω) = V(Ω1)×· · ·×V(Ωd),

and therefore by Lemmas 6 and 7, R(Ω) is homotopic to Td, so the realization space R̃(Ω) is
homotopic to a (d−1)-torus Td−1. J

4 Universality

We prove the following slightly more specific result.

SoCG’15

610 Realization Spaces of Arrangements of Convex Bodies

I Lemma 8. For any k order types χ1, . . . , χk on [n], where at least two are distinct, there
is a combinatorial type Ω on [n] such that its k-gon realization space R̃k(Ω) is homotopy
equivalent to R̃1(χ1)× · · · × R̃1(χk).

Proof of Theorem 5. Fix a primary semialgebraic set Z and k > 1. Let χ1 be the order
type of the Mnev point set with point realization space homotopic to Z. Let χ2, . . . , χk all
be the order type of n points in convex position. Note that the point realization space of n
points in convex position is contractible. With this, the k-gon realization space of Ω from
Lemma 8 is also homotopic to Z. J

To show Lemma 8, we construct a combinatorial type Ω such that for every realization A

of Ω by k-gons, the vertices of each k-gon can be labeled. That is, each vertex can be uniquely
identified using only information encoded in the combinatorial type. Note that this is not
possible in general, as combinatorial type does not provide information about individual
vertices directly. Furthermore, we construct Ω so that the order type of the vertices of A is
the same in every realization and each χi appears as a subset of the vertices.

We define Ω in two ways: in the primal we construct an arrangement of k-gons, then in
the dual we construct a system of curves. First index the order types χi so that the cyclic
ordering χ1, χ2, . . . , χk, χ1, . . . is not periodic with period smaller than k. This is possible
by the assumption that there are at least two distinct order types.

4.1 The primal construction

The primal construction A = {A1, . . . , An} depends on certain arbitrary choices that will not
affect the combinatorial type. Assume for the primal construction that each χi is realizable;
the non-realizable case is defined by the dual construction only.

Let A0 be an arrangement of 2k points in convex position denoted by a1
1, a

n
1 , a

1
2, a

n
2 , . . . ,

a1
k, a

n
k in counter-clockwise order, such that the lines `i spanning ani and a1

i+1 bound a convex
k-gon B.4 Observe that B \ conv(A0) consists of k triangular regions. We construct A by
placing a point set realizing one of the χi in each of these traingular regions, then we define
the k-gons As to have vertices consisting of one point from each region; see Figure 5 for an
example with n = 6, k = 4.

Let χi be defined on the index set {(1
i), . . . , (ni)}, and let Pi = {p1

i , . . . , p
n
i } be a realization

of χi. Furthermore, let χi indexed so that p1
i and p2

i appear on the boundary of the convex
hull of Pi and the local sequence of p1

i is p2
i , p

3
i , . . . , p

n
i . That is, the angles θsi at p1

i from
the semiline through p2

i to the semiline through psi are increasing in the counter-clockwise
direction, 0 = θ2

i < θ3
i < · · · < θni < π. Note that this implies pni is also on the boundary of

the convex hull of Pi, which we will call the convex boundary for short. Now augment Pi by
two points as follows. Let Qi = Pi ∪ {q1

i , q
n
i } such that pni , q1

i , q
n
i , p

1
i appear consecutively in

counter-clockwise order on the convex boundary of Qi and no line through any two points of
Pi separates the points q1

i , q
n
i , p

1
i . Note that this uniquely determines the order type of Qi; see

Figure 5 (left). Now define projective transformations φi such that φi(qni) = ani−1, φi(p1
i) = a1

i ,
φi(pni) = ani , φi(q1

i) = a1
i+1, and let P = {a1

1, a
2
1, . . . , a

1
2, . . . , a

n
n} where asi = φi(psi). Finally,

let A = {A1, . . . , An} where As = conv({as1, as2, . . . , ask}), and let Ω denote the combinatorial
type of A.

4 Here subscripts are indices over Zk, so in particular `k is the line spanning an
k and a1

1.

M.G.Dobbins, A.Holmsen, and A.Hubard 611

χ1

χ2

χ3

χ4

a6
1

a6
2

a6
3

a6
4

a1
1

a1
2

a1
3

a1
4

p1
1

p2
1

p3
1

p4
1

p5
1

p6
1

q6
1q1

1

Figure 5 The point set P1 on the left is mapped to points on the right by the projective
transformation determined by p1

1 7→ a1
1, q

1
1 7→ a1

2, p
6
1 7→ a6

1, q
6
1 7→ a6

4

4.2 Path systems
We call the graph of some indexed family of functions defined over an interval a path system.
We say two path systems are equivalent when the are related by an orientation preserving
self-homeomorphism of the plane that also preserves indices and the orientations of the
paths. We will always assume that the end-points of a path system are all distinct, and
that the paths satisfy the same genericity conditions given in Subsection 2.1 for systems of
curves. For path systems L1,L2 over intervals I1, I2 ⊂ R with the same number of paths,
the concatenation L1 ·L2 is the path system obtained by identifying the right edge of I1 ×R
with the left edge of I2 × R by a homeomorphism sending the right end-points of L1 to the
left end-points of L2. Here indices must be dealt with appropriately. If the left end-points of
L1 appear in the same order as the right end-points, then we may form a system of curves
	L1 by identifying the left and right edges of I1 × R by a homeomorphism that identifies
the left and right end-points of each path in L1. Let lL1 denote the path system obtained
by flipping L1 vertically by the map (x, y) 7→ (x,−y). Given an order type χ, we say a path
system L is a pseudoline representation of χ when S = 	(L · lL) is an orientable system
with order type χ as in Theorem 2. We say an element i is on the convex boundary of χ
when the corresponding curve Si appears on the upper envelope of a corresponding system S.
I Remark. For each element i on the convex boundary of an order type χ, there is a unique
class of equivalent pseudoline representations L where Li starts as the top most path and
crosses all other paths, thereby going to the bottom, before any other crossings occur.

4.3 The dual construction
Let χi be an order type on elements {(1

i), . . . , (ni)} indexed as in the primal construction,
and let Li be a pseudoline representation of χi with paths L1

i , . . . , L
n
i such that L1

i starts
at the top and crosses all other paths first as in the above remark. Let C = {C1, . . . , Ck}
be the dual system of k points in convex position indexed in counter-clockwise order, and
observe that each curve Ci appears exactly once on the upper envelope and once on the

SoCG’15

612 Realization Spaces of Arrangements of Convex Bodies

L1L1

lL1 lL2lL3 lL4

L1 L2 L3 L4

L1 L2 L3 L4

Figure 6 Top left: The pseudoline representation L1 of χ1. Top right: The system C.
Center: The system S. Bottom: The system T of combinatorial type Ω.

lower envelope of C. Let S be a system of curves where each curve Ci ∈ C is replaced by
n curves {S1

i , . . . , S
n
i } in a small tubular neighborhood about Ci crossing to form a copy

of Li above all other curves of S and a copy of lLi below all other curves of S. Let T s be
the upper envelope of the curves Ss1 , . . . , Ssk, and let T = {T 1, . . . , Tn}. Equivalently, let U
be the path system of size n where each path from bottom to top crosses all paths below
itself (beginning with the bottom path crossing no other paths and ending with the top path
crossing all other paths), and let T = 	(L1 · U · L2 · U · · ·Lk · U). Finally, define Ω to be the
combinatorial type of T. See Figure 6 for an example with n = 6, k = 4.

Proof Idea of Lemma 8. Each body At for t ∈ {2, . . . , n} appears k times on the convex
boundary of {A1, At}, so A1 and At must each have exactly k vertices. In this way, the
vertices of A can be partitioned into k parts consisting of one vertex from each As for s ∈ [n],
and these parts realize each χi in the given cyclic order. Since the sequence of χi is not
periodic with period smaller than k, each part is associated to each χi in a unique way. This
defines a map ϕ : R̃k(Ω)→ R̃1(χi) such that ϕ1 × · · · × ϕk : R̃k(Ω)→ R̃1(χ1)× · · · × R̃1(χk)
is a fiber bundle with contractible fiber, so R̃k(Ω) is homotopic to R̃1(χ1)× · · ·× R̃1(χk). J

References

1 Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler.
Oriented matroids, volume 46 of Encyclopedia of Mathematics and its Applications. Cam-
bridge University Press, 1999.

2 Raghavan Dhandapani, Jacob E. Goodman, Andreas Holmsen, and Richard Pollack. Inter-
val sequences and the combinatorial encoding of planar families of pairwise disjoint convex
sets. Rev. Roum. Math. Pures Appl, 50(5-6):537–553, 2005.

3 Michael Gene Dobbins, Andreas Holmsen, and Alfredo Hubard. Regular systems of paths
and families of convex sets in convex position. To appear in Transactions of the AMS.

M.G.Dobbins, A.Holmsen, and A.Hubard 613

4 Michael Gene Dobbins, Andreas Holmsen, and Alfredo Hubard. The Erdős-Szekeres prob-
lem for non-crossing convex sets. Mathematika, 60(2):463–484, 2014.

5 Stefan Felsner and Pavel Valtr. Coding and counting arrangements of pseudolines. Discrete
& Computational Geometry, 46(3):405–416, 2011.

6 Jon Folkman and Jim Lawrence. Oriented matroids. Journal of Combinatorial Theory,
Series B, 25(2):199–236, 1978.

7 Jacob E. Goodman. Proof of a conjecture of Burr, Grünbaum, and Sloane. Discrete
Mathematics, 32(1):27–35, 1980.

8 Jacob E. Goodman and Richard Pollack. On the combinatorial classification of nondegener-
ate configurations in the plane. Journal of Combinatorial Theory, Series A, 29(2):220–235,
1980.

9 Jacob E. Goodman and Richard Pollack. Semispaces of configurations, cell complexes of
arrangements. Journal of Combinatorial Theory, Series A, 37(3):257–293, 1984.

10 Jacob E. Goodman and Richard Pollack. Upper bounds for configurations and polytopes
in Rd. Discrete & Computational Geometry, 1(1):219–227, 1986.

11 Jacob E. Goodman and Richard Pollack. The combinatorial encoding of disjoint convex
sets in the plane. Combinatorica, 28(1):69–81, 2008.

12 Helmut Groemer. Geometric applications of Fourier series and spherical harmonics, vol-
ume 61 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
1996.

13 Branko Grünbaum. Arrangements and spreads. American Mathematical Society, 1972.
14 Luc Habert and Michel Pocchiola. Arrangements of double pseudolines. In Proceedings of

the 25th Annual Symposium on Computational Geometry, pages 314–323. ACM, 2009.
15 Alfredo Hubard. Erdős-Szekeres para convexos. Bachelor’s thesis, UNAM, 2005.
16 Alfredo Hubard, Luis Montejano, Emiliano Mora, and Andrew Suk. Order types of convex

bodies. Order, 28(1):121–130, 2011.
17 Michael Kapovich and John J. Millson. Universality theorems for configuration spaces of

planar linkages. Topology, 41(6):1051–1107, 2002.
18 Donald E. Knuth. Axioms and hulls, volume 606 of Lecture Notes in Computer Science.

Springer-Verlag, 1992.
19 Friedrich Levi. Die teilung der projektiven ebene durch gerade oder pseudogerade. Ber.

Math.-Phys. Kl. Sächs. Akad. Wiss, 78:256–267, 1926.
20 Nicolai E. Mnev. Varieties of combinatorial types of projective configurations and convex

polytopes. Doklady Akademii Nauk SSSR, 283(6):1312–1314, 1985.
21 Nicolai E. Mnev. The universality theorems on the classification problem of configuration

varieties and convex polytopes varieties. In Topology and Geometry: Rohlin seminar, pages
527–543. Springer, 1988.

22 Mordechai Novick. Allowable interval sequences and line transversals in the plane. Discrete
& Computational Geometry, 48(4):1058–1073, 2012.

23 Mordechai Novick. Allowable interval sequences and separating convex sets in the plane.
Discrete & Computational Geometry, 47(2):378–392, 2012.

24 János Pach and Géza Tóth. Families of convex sets not representable by points. In Algo-
rithms, architectures and information systems security, volume 3, page 43. World Scientific,
2008.

25 Arnau Padrol and Louis Theran. Delaunay triangulations with disconnected realization
spaces. In Proceedings of the 30th Annual Symposium on Computational Geometry, pages
163–170. ACM, 2014.

26 Jürgen Richter-Gebert. Realization spaces of polytopes, volume 1643 of Lecture Notes in
Mathematics. Springer Verlag, 1996.

SoCG’15

614 Realization Spaces of Arrangements of Convex Bodies

27 Gerhard Ringel. Teilungen der ebene durch geraden oder topologische geraden. Mathema-
tische Zeitschrift, 64(1):79–102, 1956.

28 Peter W. Shor. Stretchability of pseudolines is NP-hard. In Applied Geometry and Discrete
Mathematics: The Victor Klee Festschrift, volume 4, pages 531–554. American Mathemat-
ical Society, 1991.

29 Yasuyuki Tsukamoto. New examples of oriented matroids with disconnected realization
spaces. Discrete & Computational Geometry, 49(2):287–295, 2013.

30 Ravi Vakil. Murphy’s law in algebraic geometry: badly-behaved deformation spaces. In-
ventiones Mathematicae, 164(3):569–590, 2006.

Computing Teichmüller Maps between Polygons
Mayank Goswami1, Xianfeng Gu2, Vamsi P. Pingali3, and
Gaurish Telang4

1 Algorithms and Complexity, Max-Planck Institute for Informatics
Saarbrücken 66123, Germany
gmayank@mpi-inf.mpg.de

2 Department of Computer Science, Stony Brook University
Stony Brook, NY 11794-4400, USA
gu@cs.stonybrook.edu

3 Department of Mathematics, Johns Hopkins University
Baltimore, MD - 21218, USA
vpingali@math.jhu.edu

4 Department of Applied Mathematics and Statistics, Stony Brook University
Stony Brook, NY 11794-3600, USA
gaurish.telang@stonybrook.edu

Abstract
By the Riemann mapping theorem, one can bijectively map the interior of an n-gon P to that of
another n-gon Q conformally (i.e., in an angle preserving manner). However, when this map is
extended to the boundary it need not necessarily map the vertices of P to those of Q. For many
applications it is important to find the “best” vertex-preserving mapping between two polygons,
i.e., one that minimizes the maximum angle distortion (the so-called dilatation). Such maps exist,
are unique, and are known as extremal quasiconformal maps or Teichmüller maps.

There are many efficient ways to approximate conformal maps, and the recent breakthrough
result by Bishop computes a (1 + ε)-approximation of the Riemann map in linear time. However,
only heuristics have been studied in the case of Teichmüller maps.

We present two results in this paper. One studies the problem in the continuous setting and
another in the discrete setting.

In the continuous setting, we solve the problem of finding a finite time procedure for ap-
proximating Teichmüller maps. Our construction is via an iterative procedure that is proven
to converge in O(poly(1/ε)) iterations to a (1 + ε)-approximation of the Teichmüller map. Our
method uses a reduction of the polygon mapping problem to the marked sphere problem, thus
solving a more general problem.

In the discrete setting, we reduce the problem of finding an approximation algorithm for com-
puting Teichmüller maps to two basic subroutines, namely, computing discrete 1) compositions
and 2) inverses of discretely represented quasiconformal maps. Assuming finite-time solvers for
these subroutines we provide a (1 + ε)-approximation algorithm.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Teichmüller maps, Surface registration, Extremal Quasiconformal maps,
Computer vision

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.615

1 Introduction

A foundational result in complex analysis, the Riemann mapping theorem, implies that the
interiors of two n-gons P and Q can be mapped bijectively and conformally (i.e., in an angle

© Mayank Goswami, Vamsi P. Pingali, Xianfeng Gu, and Gaurish Telang;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 615–629

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.615
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

616 Computing Teichmüller Maps between Polygons

preserving way1) to one another. By a result of Caratheodory [4], such a map f : P → Q

extends continuously to the boundary of P (the edges). Generally the vertices of P do not
map to the vertices of Q under this extended mapping.

Consider the collection of functions f that map P to Q, and take the vertices of P to
the vertices of Q. In general such an f is bound to stretch angles, and a classical way to
measure this angle stretch by f at a point p ∈ P is by means of a complex-valued function
µf (p) called the Beltrami coefficient2 of f . The Beltrami coefficient satisfies ||µf ||∞ < 1. If
µf is identically zero, then f is conformal. The problem we consider is computing the “best”
such map f∗ in the above class, i.e., an f∗ such that the norm of its Beltrami coefficient
||µ∗||∞ is the smallest amongst all (uncountably many) maps satisfying the above conditions.
Bijective maps that stretch angles but by a bounded amount are called quasiconformal
homeomorphisms (q.c.h.), and the best q.c.h. f∗ is called the extremal q.c. map, or the
Teichmüller map.

As an example consider two rectangles Ri = [0, ai]× [0, bi](i = 1, 2) in the plane. Consider
the space of all q.c.h. f : R1 → R2 such that f takes the vertices to the vertices. It was
shown by Grötzsch [12] that the affine map f∗(x, y) = (a2x/a1, b2y/b1) with µ∗(x, y) =
(1 − r)/(1 + r), r = b2a1/a2b1 is the unique extremal q.c. map; any other map f would
stretch angles at some point p ∈ R1 more than g (i.e., ∃p ∈ R1 : |µf (p)| > |µ∗(p)|). For the
general n-gon case mentioned above, such a nice formula does not exist for the extremal
map. However, the extremal map exists and is unique. These are the famous theorems of
Teichmuller [22, 23], proven rigorously later by Ahlfors [1].

Algorithms for computing the Riemann map from a polygon to the disc [8, 7, 2] have
gathered a lot of attention and found many applications. However, no such algorithm that
approximates the extremal map is known. In contrast to the Riemann mapping theorem,
where a constructive proof is known, the proof by Teichmüller/Ahlfors is an existence result
only. In fact, to the authors’ knowledge there does not exist a method that, given a starting
f between P and Q, computes a g with ||µg||∞ < ||µf ||∞ if one exists. We are motivated by
the following question.

Question: Does there exist a finite-time approximation algorithm for computing the Teich-
müller map between two n-gons?

We give the first results for theoretically constructing and algorithmically computing
Teichmüller maps for the polygon problem above. Our procedure is iterative; we start with a
q.c.h. that sends the vertices of P to those of Q in the prescribed order, improve on it, and
then recurse on the improved map.

The need for an algorithm. Conformal geometry has found many applications in the fields
of computer graphics [14], computer vision [24] and medical imaging [25, 13]. Computing
Teichmüller maps generalizes almost all of these applications as q.c. maps allow boundary
values to be prescribed. In [26], it was concluded that extremal q.c. maps have almost all the
properties desired from an ideal surface registration algorithm, one of the biggest problems
in computer vision.

1 A homeomorphism f is angle preserving if it preserves oriented angles between curves: For any two
curves γ1 and γ2 through a point p and oriented angle θ between them, f(γ1) and f(γ2) intersect at
f(p) at angle θ.

2 For a function f between open sets in the complex plane C, µf = fz̄

fz
= fx+ify

fx−ify
, where fx and fy denote

partials w.r.t x and y, respectively.

M. Goswami, V. P. Pingali, X. Gu, and G. Telang 617

An algorithm for computing Teichmüller maps would be a step forward in examining
various questions in pure mathematics too. In [3] the author proposes how an algorithm
for our problem would help us attack one of the most famous conjectures in geometric
function theory – Brennan’s conjecture. Teichmüller theory is an active area of research
in mathematics, and it has connections to topology3, dynamics, algebraic geometry, and
number theory [15]. An algorithm for our problem helps one compute and visualize geodesics
in the so-called Teichmüller space (w.r.t. Teichmüller’s metric), which may be of independent
interest.

Related work. Almost all algorithms in computational q.c. geometry have appeared mainly
in graphics or vision venues. In many works (e.g. [19]) a q.c.h. is represented by its Beltrami
coefficient, and softwares implementing basic subroutines (e.g. solving the Beltrami equation)
in computational q.c. geometry have existed for some time.

The first paper addressing the problem of computing extremal q.c. maps was [26]. The
authors propose an interesting heuristic based on Teichmüller’s characterization; they for-
mulate an energy function and minimize it using an alternate-descent method. Simulations
showed that if the initial map is chosen correctly, the algorithm converges in many instances.
Unfortunately, the energy obtained is “highly nonlinear” and non-convex. Even in the absence
of numerical errors due to discretization, it is not known whether the minimization procedure
converges to an approximation of the extremal map.

In [17] another heuristic was proposed using the connection to the theory of harmonic
maps. This was simulated on a variety of examples and in many instances ended up with a
good answer. However, no convergence proofs (continuous or discrete settings) were provided.
Recently, in [18] it is argued that a procedure similar to that in [17] converges in the limit
if certain parameters are chosen carefully manually. However, there are no bounds on the
progress made in a step, and therefore it is not known if the procedure (even in the continuous
setting) ends with an approximation in finite time.

Results. In comparison to all the previous work, we take a theoretical approach to con-
structing an algorithm for Teichmüller maps. In the continuous setting we have a procedure
(Theorem 8) that converges in the limit to the exact extremal map and we also give bounds
on the progress made in each step. Using this we can show that our procedure always, no
matter what the starting map, gives an arbitrarily good approximation of the desired map
in a finite number of iterations. A salient feature of our analysis is that we do not use an
energy-based approach and work directly with the dilatation (the maximum angle stretch).

In the discrete setting, we state precisely all the subroutines needed for our algorithm and
provide approximation guarantees. We present a novel subroutine INF-EXT that produces a
type of Beltrami coefficient fundamental in the study of extremal maps, and prove (Theorem 9)
that it produces an arbitrarily good approximation. We give error bounds on the discrete
algorithm we propose, and show that (Theorem 10) modulo two basic subroutines4, our
algorithm produces a (1 + ε)-approximation of the extremal map.

3 It had been used by Lipman Bers to give a simpler proof of Thurston’s classification theorem for surface
homeomorphisms.

4 It is indeed surprising that tasks as basic as composing two q.c.h. (specified by their piecewise constant
Beltrami coefficient), or finding the inverse of one, cannot be accomplished correctly yet. These two
subroutines have been implemented in the past various times without error bounds, and as of now no
approximation algorithms exist for them.

SoCG’15

618 Computing Teichmüller Maps between Polygons

Because of space constraints in this extended abstract, all of our complete proofs can be
found in the full version [11].

2 Informal discussion of results and techniques

As mentioned in the introduction, the aim is to compute the extremal q.c.h between two
polygons. Intuitively, if µf is the Beltrami coefficient of f , f maps an infinitesimally
small circle around p to something that roughly looks like a small ellipse at f(p), with
(1 + |µf (p)|)/(1− |µf (p)|) as the ratio between its major and minor axes.

Our strategy to tackle the polygon mapping problem is to first reduce it to the marked
sphere problem. The marked sphere problem is: Given a q.c.h. f0 from the sphere to itself
taking a collection of given points (zk) to another collection (wk), compute the unique
extremal q.c.h. f∗ that not only takes zk to wk (for all k) but is also isotopic to f0 (i.e. it
can be “continuously deformed” to f0 after pinning the values at zk). We first prove that
a solution to the marked sphere problem gives a solution to the polygon mapping problem
(Theorem 7). For future reference we also note that the complex plane can be thought of as
the sphere minus the north pole (the point at infinity).

Representation and complexity. In theory, a normalized q.c.h. f can be specified by
specifying µf . For computational purposes, unless a closed form expression for f∗ or µ∗ is
available, the best one can do is to evaluate f∗ or µ∗ on a dense mesh of points inside the
domain. Our goal can be stated as follows.

Goal: Given a δ > 0, compute the values of f∗ on a given set of points inside the base
polygon P , where the Beltrami coefficient µf of f satisfies ||µf ||∞ < ||µ∗||∞ + δ.

Even if the polygons P and Q have rational coordinates, there is no known way to
represent the extremal map with finite precision (for all we know, all representations may
consist of transcendental numbers). In fact, we have found examples where this is true even
for the Schwarz-Christoffel mapping 5. Thus, it is not known whether the problem is in NP
or not. We therefore straightaway aim towards an approximation algorithm. The model we
consider is a real RAM model, where we are allowed to do exact basic arithmetic operations
and take logarithms of complex numbers in constant time.

2.1 Continuous construction
One of our main results is constructing a sequence of q.c.h. fi (which can all be continuously
deformed to the starting map f0) that converge to the desired extremal q.c.h. quickly (to get
within ε of the extremal one we need O(1/ε4) iterations). The map fi+1 is obtained from the
previous one fi by a composition fi+1 = fi ◦ hi+1 where hi+1 fixes all the zk and is obtained
from fi by convex optimization and solving (partial and ordinary) differential equations.

The main innovation in our approach is to “search” for the “best” map indirectly in a sense.
One important result [1] in Teichmüller theory is the following : Given a complex-valued
function µf (p) such that ‖µf‖∞ < 1 there is an essentially unique q.c.h. f such that µf (p) is
its “angle-stretch”. In other words, the q.c.h. are “indexed” by their Beltrami coefficients.

5 The Schwarz-Christoffel mapping is the “explicit” formula for the conformal map from the upper half
plane H to a polygon, and, by composition, a formula for the conformal map between two polygons

M. Goswami, V. P. Pingali, X. Gu, and G. Telang 619

0 1

∞

0
1gtαzi zi

z
′
i

α = µi − υi

zi

z
′
i

zi
z
′
i

p = 0

p = 1

0 < p < 1

V (z) = p(z)|zi − z
′
i| ∂∂x

r
2

Bump function p

Figure 1 Construction of the self map hi. Left: The map gtα moves zi to a point z
′
i within O(t2).

Right: The disk of radius r = O(t2) enlarged, showing the bump function p and the direction of the
flow of the vector field.

One recovers f from µf by solving a partial differential equation called the Beltrami equation,
fz̄/fz = µ.

Given the Beltrami coefficient µi of fi, we search for the best (least L∞ norm) Beltrami
coefficient υi satisfying a certain technical condition called “infinitesimal equivalence” (Defin-
ition 3). This essentially boils down to a convex optimization problem. For a small t > 0,
the q.c.h. gi corresponding to the Beltrami coefficient t(µi − υi) almost fixes the (zk). It
moves them only slightly (Figure 1 left). Then we correct for this motion by flowing the
images z′k = gi(zk) back to (zk) by solving a system of ordinary differential equations using
a vector field, shown in the right side of Figure 1. We then compose these two maps.

This way, we get a map hi+1 which fixes the points (zk). Moreover, we can prove that
fi+1 = fi ◦ hi+1 has a smaller maximum angle-stretch (i.e., smaller dilatation) than fi. We
iterate this process to converge to an arbitrarily good approximation of the desired extremal
q.c.h. relatively quickly.

2.2 Approximation algorithm

We discretize the continuous construction given above in order to come up with an approx-
imation algorithm EXTREMAL modulo two basic subroutines. Along the way we come up
with a subroutine (which we call INF-EXT) that finds the best piecewise constant Beltrami
coefficient υ that is infinitesimally equivalent to a given one µ. We believe that this is an
interesting technical result in its own right.

Our input is a mesh of sample points on the sphere, a triangulation of the sphere, a
piecewise constant Beltrami coefficient (corresponding to the starting map f0), and an error
tolerance δ. The desired output is the collection of images of these sample points under the
extremal q.c.h. within the error tolerance.

We follow the same steps as in the continuous construction. There is a small technicality
in that we need a special kind of triangulation, and might need to make this triangulation
smaller each time we use any of our subroutines to control the errors. To this end, we use a
subroutine TRIANG which is constructed using the Delaunay refinement algorithm. We take
the piecewise constant Beltrami coefficient µi, feed it into INF-EXT and obtain a piecewise
constant Beltrami υi. Just as in the continuous construction, we choose an appropriate t > 0
and find the q.c.h. gi corresponding to the Beltrami coefficient t(µi − υi). To obtain gi we
solve the Beltrami equation using a subroutine BELTRAMI.

SoCG’15

620 Computing Teichmüller Maps between Polygons

The q.c.h. gi moves the points (zk) a bit. We remedy this by using the vector field
method through a subroutine VECT-FIELD. The subroutines BELTRAMI and VECT-FIELD are
standard. Then we compose the maps akin to the continuous construction. Here is where
we need to assume the existence of two technical, basic subroutines PIECEWISE-COMP and
PIECEWISE-INV. Once this composition is performed, we obtain a map fi+1 which has a
smaller dilatation than fi. We set fi+1 as the starting map and iterate; the algorithm
terminates by producing an approximation of the desired extremal map f∗.

The issue with the two subroutines PIECEWISE-COMP and PIECEWISE-INV is as follows:
Given piecewise constant Beltrami coefficients α and β (whose corresponding q.c.h. are F
and G respectively) we want to compute a good piecewise constant approximation of the
Beltrami coefficient corresponding to F−1 and to F ◦G. Any algorithm in computational
q.c. geometry may require these subroutines. There are good candidates for such subroutines
but the problem is to prove their correctness. We did not perform any complexity analysis of
our algorithm simply because we do not know the complexity of the conjectural subroutines
PIECEWISE-COMP and PIECEWISE-INV. But we expect our algorithm EXTREMAL (including
the assumed subroutines) to run in polynomial time.

3 Preliminaries

In this section we present the main players from q.c. theory involved in our construction.
Various eminent mathematicians (Teichmüller, Ahlfors, Bers, Reich, Strebel, Krushkal,
Hamilton, etc.) have contributed to Teichmüller theory. We refer the reader to [10] and [15]
for some excellent introductions to Teichmüller theory.

Quasiconformal maps and Beltrami coefficients/differentials. For a function f between
two open sets in the complex plane, define partials fz = fx − ify and fz̄ = fx + ify,
where fx and fy are the partials with respect to (Euclidean coordinates) x and y. Let Ĉ
denote the Riemann sphere (C union the point at infinity). A homeomorphism f : Ĉ→ Ĉ
is quasiconformal provided that it satisfies the Beltrami equation fz̄ = µ(z)fz for some
complex-valued function µ satisfying ||µ||∞ < 1. µ is called the Beltrami coefficient, and
is a measure of the non-conformality of f . In particular, the map f is conformal if µ is
identically 0. The following theorem makes the notion of the Beltrami coefficients indexing
the corresponding q.c.h. precise.

I Theorem 1. The Beltrami equation gives a one to one correspondence between the set of
quasiconformal homeomorphisms of Ĉ that fix the points 0, 1 and ∞ and the set of measurable
complex-valued functions µ on Ĉ for which ||µ||∞ < 1. Furthermore, the normalized solution
fµ of the Beltrami equation of µ depends holomorphically on µ and for any r > 0 there exists
δ > 0 and C(r) > 0 such that

|f tµ(z)− z − tV (z)| ≤ C(r)t2 for |z| < r and |t| < δ, (1)

where V (z) = − z(z−1)
π

∫ ∫
C

µ(ζ)dξdη
ζ(ζ−1)(ζ−z) , and ζ = ξ + iη.

We need some more definitions and concepts. They are summarized here:

Composition formula. Let µ, σ and τ be the Beltrami coefficients of quasiconformal maps
fµ, fσ and fτ with fτ = fσ ◦ (fµ)−1. Then

τ =
(
σ − µ
1− µ̄σ

1
θ

)
◦ (fµ)−1, where p = ∂

∂z
fµ(z) and θ = p̄

p
. (2)

M. Goswami, V. P. Pingali, X. Gu, and G. Telang 621

Quadratic differentials. For R = Ĉ{0,1,∞,z1,...zn−3} (the Riemann sphere with n marked
points, three of which are normalized to be 0, 1 and ∞), the complex vector space formed by
the linear span of the n− 3 functions

φk(z) = 1
z(z − 1)(z − zk) , 1 ≤ k ≤ n− 3, (3)

is called the space of holomorphic quadratic differentials on R, denoted by A(R).

Equivalence relations on Beltrami coefficients. Let B(R) denote the set of all complex-
valued measurable functions on R. Let B1(R) = {µ ∈ B(R) : ||µ||∞ < 1}. Given two
coefficients µ and υ in B1(R), denote the solution to their respective normalized6 Beltrami
equations as fµ and fυ. Let R0 and R1 denote two marked spheres. The following definition
concerns maps from R0 to R1.

I Definition 2 (Global equivalence). µ and υ are called globally equivalent (µ ∼g υ) if:
1. fµ(zi) = fυ(zi) ∀i.
2. The identity map from R1 to R1 is homotopic to fυ ◦ (fµ)−1 via a homotopy consisting

of quasiconformal homeomorphisms.
A Beltrami coefficient υ is called trivial if it is globally equivalent to 0. A Beltrami coefficient
with the least L∞ norm in its global class is called globally extremal. In other words, the
marked sphere problem specifies as input a Beltrami coefficient µ, and asks to output the
extremal Beltrami coefficient µ∗ that is globally equivalent to µ.

I Definition 3 (Infinitesimal equivalence). µ and υ are infinitesimally equivalent (written
µ ∼i υ) if

∫
R
µφ =

∫
R
υφ for all φ ∈ A(R), with ||φ|| = 1. A Beltrami coefficient υ is called

infinitesimally trivial if it is infinitesimally equivalent to 0.

I Definition 4 (Infinitesimally extremal). A Beltrami coefficient υ is called infinitesimally
extremal if ||υ||∞ ≤ ||µ||∞ for all µ ∼i υ.

Optimality condition. The importance of the infinitesimally extremal Beltrami coefficients
is conveyed by the celebrated Hamilton-Krushkal, Reich-Strebel, necessary and sufficient
condition for optimality. Informally, this theorem states that a Beltrami coefficient µ∗ is
globally extremal if and only if it is infinitesimally extremal and the corresponding q.c.h. takes
the domain to the desired target. See [10] for a precise statement.

Another important fact is that for all the cases we are interested in, any globally extremal
Beltrami coefficient is of Teichmüller form – it can be written as µ∗ = k∗φ̄/|φ|, for a unique
constant k∗ < 1 and a unique quadratic differential φ ∈ A(R).

An important remark on the optimality condition. Note that given a starting µ, the ν
that is extremal in the infinitesimal class of µ will be of Teichmüller form. However, it will
generally not be globally equivalent to µ. This is why we have an iterative procedure – if ν
was also globally equivalent to µ we would be done in one step. We use ν and µ to obtain µ1,
and inductively ν1 to obtain µ2 and so on, to get to the globally extremal µ∗ which is in the
same global class as µ and is infinitesimally extremal in its class, and hence is of Teichmüller
form.

6 Fixing the points 0,1 and ∞. Hence the freedom of Möbius transformation is accounted for.

SoCG’15

622 Computing Teichmüller Maps between Polygons

−4 −2 0 2 4
−4

−2

0

2

4
Base Polygon

−2 −1 0
−1.2

−0.7

−0.2

0.3

Target Polygon

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Base Disk

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Target Disk

Figure 2 An example of a Teichmüller map between pentagons. If φ1 and φ2 are a basis of the
space of quadratic differentials, the above map corresponds to the solution to the Beltrami equation
of µ = φ̄

8φ , where φ = 1
3φ1 + 2

3φ2. On the right is the same map when pulled to the unit disks via
the Riemann mapping.

4 Problem statement and main theorems

In this section we first describe the polygon mapping and the marked sphere problems, and
prove that the marked sphere problem is more general. We will then proceed to state our
main results.

4.1 Problem statements and reduction
Let P and Q be two n-gons7 in the plane. Let {vi}ni=1 and {v′i}ni=1 be an ordering of the
vertices of P and Q, respectively. The fact that the polygons are conformally equivalent
to the upper half plane H, and that composition by conformal maps does not change the
dilatation imply that an n-gon is essentially the same as H with n marked points on the
boundary ∂H = R.

I Problem 5 (Polygon mapping problem). Given {z1, ...zn, w1, ...wn} ∈ ∂H, find f̃∗ : H→ H
(with Beltrami coefficient µ∗̃) satisfying:
1. f̃∗ is a quasiconformal homeomorphism of H to itself.
2. f̃∗(zi) = wi, i ∈ {1, ...n}
3. ||µ̃∗||∞ ≤ ||µf ||∞ for all f satisfying (1) and (2) above.

Note that by Teichmüller’s theorems the above f̃∗ exists and is unique. We state the marked
sphere problem next, and show that it is in fact a generalization of the polygon mapping
problem.

I Problem 6 (Marked sphere problem). Given {z1, ...zn−3, zn−2 = 0, zn−1 = 1, zn = ∞},
{w1, ...wn−3, wn−2 = 0, wn−1 = 1, wn = ∞}, and f0 : Ĉ → Ĉ such that f0(zi) = wi, find
f∗ : Ĉ→ Ĉ satisfying:
1. f∗ is a quasiconformal homeomorphism of Ĉ to itself.
2. f∗ is isotopic to f0 relative to the points {0, 1,∞, z1, ..zn−3}, i.e. f∗(zi) = wi.
3. ||µ∗||∞ ≤ ||µf ||∞ for all f satisfying (1) and (2) above.

We call the base zi-marked sphere R and the target wi-marked sphere S from now on.
The reason why the marked sphere problem requires a starting map f0 as input is that by
Teichmüller’s theorem, the extremal map exists and is unique within each isotopy class. The
following theorem shows that Problem 6 is indeed general.

7 We allow for ∞ to be a vertex of the polygon.

M. Goswami, V. P. Pingali, X. Gu, and G. Telang 623

I Theorem 7 (Reduction). An algorithm for Problem 6 can be used to give a solution to
Problem 5.

Proof sketch. Consider an instance of the polygon mapping problem, and map the polygons
conformally in linear time using [2] to the upper-half plane such that the vertices go to points
on the real line. Then, using a piecewise affine function f0 map the corresponding upper
half-planes to one another taking the vertices to the vertices. Since f0 is real on R, we extend
it by symmetry to the entire Riemann sphere. Call this extended map f . This then provides
us a special instance of the marked sphere problem, where all the marked points are on the
real line. We then prove that the extremal map f∗ homotopic to f is symmetric, and that
the restriction of f∗ to the upper half plane solves the original polygon mapping problem.
Full proof in [11]. J

4.2 Results
Denote the Beltrami coefficient of f0 by µ0. We want to obtain µ∗ that is globally equivalent
(Definition 2) to µ0 and has the smallest L∞ norm in this global class. We will obtain a
sequence of q.c.h. fi (and their Beltrami coefficients µi) that in the limit converge to the
unique extremal map f∗ (and the dilatations of µi will converge to the dilatation of µ∗). All
the µi lie in the same global class – that of µ0. The main difficulty we overcome is that
since the global class of µ0 does not have a “nice” structure (e.g. it is not convex in the
generic case; in fact the only way to know whether two Beltrami coefficients µ1 and µ2 are
in the same global class is to solve their Beltrami equations). To overcome this, we break
up this minimization over the global class of µ0 into a sequence of minimizations over the
infinitesimal classes (Definition 3) of µi (that are convex domains) and solutions of differential
equations.

We will first present our main theorem in the continuous setting. By the “continuous
setting” we mean that we assume the existence of black boxes that solve all the sub-problems
involved exactly; e.g. given a Beltrami coefficient µ, we can get fµ(z) for any z exactly.

I Theorem 8 (Limiting procedure for Marked Sphere Problem). There exists a sequence of
q.c.h. fi s.t.:
1. Isotopic: fi is isotopic to f0, and fi(zj) = wj, for all i and j.
2. “Explicit” construction: Let υi be the extremal coefficient in the infinitesimal class of µi.

Then µi+1 is an “explicit function" of µi and υi in that it can be obtained by solving two
differential equations depending only on µi and υi.

3. Uniform Convergence: fi → f∗ uniformly and ‖µi‖∞ → ‖µ∗‖∞ as i→∞.
4. Fast convergence: There exist constants C > 0 and δ0 > 0 such that for all δ < δ0 and

for all i ≥ C/(δ4(1− ||µ0||∞)2) we have ||µi||∞ − k∗ < δ.

Basically, getting υi from µi is the convex optimization part, and getting µi+1 from µi
and υi requires solving differential equations.

Now we proceed to the discrete implementation of our procedure. We represent all
Beltrami coefficients as piecewise constant coefficients8 on a fine mesh. Every step of the
continuous procedure mentioned above is shown to have a discrete analogue. The mesh we

8 In fact, the existence of the solution to the Beltrami equation of an arbitrary µ ∈ L∞ with ||µ||∞ < 1
was shown by 1) first showing the existence of the solution to a piecewise constant µ

′
, 2) sewing the

individual piecewise q.c. maps along the boundary, and 3) taking a limit of such piecewise constant
coefficients µ

′

n → µ and showing that the maps converge.

SoCG’15

624 Computing Teichmüller Maps between Polygons

will be working on depends on the error tolerance δ required. The first theorem tells us how
to discretise the convex optimization part.

I Theorem 9 (Discrete infinitesimally extremal). Given an error tolerance 0 < δ < 1, a
collection of n marked points z1, z2, . . . zn, a triangulation ∆ε and a piecewise constant
Beltrami coefficient µ (where |µ| < 1 on every triangle), there exists an algorithm INF-EXT
that computes a piecewise constant Beltrami coefficient υ̂ such that |υ̂|−||υ||∞ < δ everywhere.

Now we proceed towards the other steps. Computational quasiconformal theory is a field
still in its infancy, and very few error estimates on these widely-used discretizations are
known. We introduce two subroutines PIECEWISE-COMP and PIECEWISE-INV (their precise
definitions are in section 6) that concern the discretization of compositions and inverses
of quasiconformal maps. Assuming the existence of the subroutines PIECEWISE-COMP and
PIECEWISE-INV we construct an approximation algorithm for the Teichmüller map.

I Theorem 10 (Teichmüller Map Algorithm). Assume the existence of the aforementioned
subroutines. Given a triangulation T0 that includes n marked points z1, . . . zn, a mesh of
sample points S, an error tolerance δ, and a piecewise constant Beltrami coefficient µ0
whose corresponding q.c.h. f0 satisfies f0(zj) = wj, there exists an algorithm EXTREMAL that
computes ∆ε, and the images of S up to an error of δ under a q.c.h. F having a piece-wise
constant (in the computed triangulation) Beltrami coefficient µF such that
1. ‖µF ‖∞ − ‖µ∗‖∞ < δ where µ∗ is the Beltrami coefficient of the extremal quasiconformal

map on the marked sphere in the isotopy class of f0.
2. |F (zi)− wi| = O(δ).

Thus our main result in the discrete case is a reduction of this approximation problem to
two basic subroutines. We do not address the complexity of our approximation algorithm and
expect that (along with the two conjectural subroutines) our algorithm runs in polynomial
time.

5 The continuous construction

We first summarize our construction of the sequence {fi} of q.c.h. that converge to the
extremal map. At step i, given the q.c.h. fi with Beltrami coefficient µi, let υi denote the
infinitesimally extremal Beltrami coefficient in the infinitesimal class of µi. Let ki = ||µi||∞
and k0

i = ||υi||∞. Observe that µi − υi is infinitesimally trivial (Definition 3).

1. Choose t such that

t = min
(

3
4 , C1,

ε

4 ,
√

ε

2C2
,

(ki − k0
i)2(1− k2

i)
1− k2

i + C2

)
, (4)

where ε ≤ min(1/2, (ki − k0
i)/8), and C1 and C2 are two explicit constants derived in the

full version[11].
2. Use Subsection 5.1 to construct a quasiconformal self-homeomorphism hi of the base

zk-marked sphere such that
µh is globally trivial (hence hi(zk) = zk for all k).
||µh − t(µi − υi)||∞ < C2t

2, where C2 is the same constant as in (4).
3. Form fi+1 = fi ◦ (hi)−1. It turns out that fi+1 has smaller dilatation than fi (by

Lemma 11).
4. Reiterate with fi+1 as the starting map.

M. Goswami, V. P. Pingali, X. Gu, and G. Telang 625

The second to last step i.e., calculating the composition fi+1 = fi ◦ (hi)−1 is the main
point of the construction. To our knowledge, this is the first “constructive” way to produce
a map having a smaller dilatation than a given one. The heart of this step is the following
crucial lemma (proof in [11]):

I Lemma 11 (Decreasing dilatation). Let υf be the infinitesimally extremal Beltrami coeffi-
cient in the infinitesimal class of µf . Let µh(t) be a curve of Beltrami coefficients with the
following properties:
1. µh(t) is globally trivial.
2. µh(t) = t(µf − υf) +O(t2).
Denote the solution to the Beltrami equation of µh(t) by ht. Then ∃δ > 0 such that ∀t < δ,
the map ft = f ◦ (ht)−1 has smaller dilatation than f .

Proof sketch of Theorem 8. Assume for now that the map hi produced in each step satisfies
the conditions of Lemma 11. Let ki = ||µi||∞ be the L∞ norm of the Beltrami coefficient
of fi(the starting map at step i), and k0

i = ||υi||∞ where υi is infinitesimally extremal. We
lower bound the decrease d = ki − ki+1 in the dilatation in step 3 in terms of ki − k0

i . This
is bounded below further by an expression which is in terms of ki − k∗ (the distance from
the extremal map). This is accomplished using Teichmüller’s contraction principle, which
gives a quantitative version of the following fact: If a Beltrami coefficient µ is close to the
infinitesimally extremal coefficient υ, then it is also close to the globally extremal coefficient
µ∗. Once we have d in terms of ki− k∗, a standard geometric series argument coupled with a
theorem on uniform convergence of sequences of q.c.h. on the sphere completes the proof. J

5.1 Constructing the self homeomorphisms
Starting at the ith step with a q.c.h. fi, we now show how to construct the self homeomorphism
hi required by Lemma 11. We simplify notation by suppressing the index i, keeping in mind
that this is the ith step of the procedure. Thus µ and µh will denote the Beltrami coefficients
of fi and hi, respectively. Also, υ is the infinitesimally extremal Beltrami coefficient in the
infinitesimal class of µ.

Let α = µ − υ, t be as in Equation (4), and let gtα be the normalized solution to the
Beltrami equation for tα. Denote gtα(zk) by z′k. As a consequence of the mapping theorem
Theorem 1 that z′k is not very far from zk (the “error" is O(t2)).

We will first construct another homeomorphism Kv from Ĉ to itself which satisfies
Kv(z′k) = zk. We then define the required self homeomorphism h = Kv ◦ gtα. The
construction of Kv will be via a vector field method. A summary of this vector field method
is as follows.

Let {D1, · · · , Dn−3} denote disjoint open disks centered at zk. Choosing the radius of
each disk to be r = d/4, where d = max

1≤k,l≤n−3
|zk − zl| ensures disjointness. We will fix these

disks once and for all.
We first construct a self homeomorphism Kk

v of Ĉ which is the identity map outside Dk,
and maps z′k to zk. By means of a rotation we can assume that z′k is real and greater than
zk. Consider the vector field

X(z) = p(z)(z
′

k − zk) ∂
∂x
,

where p(z) is a C∞ function identically zero outside Dk, and identically 1 inside the disk of
radius r/2 around zk, denoted as D′k. Let γ be the one parameter family of diffeomorphisms
associated with this vector field (i.e. the flow of this field). We denote the time parameter

SoCG’15

626 Computing Teichmüller Maps between Polygons

by s and note that the diffeomorphism γ1 sends z′k to zk. We denote this diffeomorphism
γ at s = 1 by Kk

v . Now define Kv = Kn−3
v ◦Kn−2

v · · · ◦K1
v, and h = Kv ◦ gtα. This is the

desired “correction" that ensures that the q.c.h. h is indeed a self map.
Using PDE theory of the Beltrami equation, we then prove that the Beltrami coefficient

of hi so obtained does satisfy the hypothesis of Lemma 11. This completes all the details of
our continuous construction.

6 The approximation algorithm

Here we present details of our approximation algorithm. Near the marked points the mesh is
made up of (triangulated) regular polygons, whose number of vertices and radii depend on
δ. The mesh is a triangulation with edge lengths bounded above by an appropriate ε that
depends on δ. We call this triangulation a canonical triangulation ∆ε of size ε. Its precise
definition can be found in the full version [11]. We describe the convex optimization part of
our algorithm next.

6.1 INF-EXT

We want to discretize the operator P(µ) which returns υ with the least L∞ norm satisfying∫
R
υφi =

∫
R
µφi for all φi in Equation (3). Note that the starting µ is piecewise constant at

the start of every iteration.

I Observation 12. The integral of φi over any triangle tj can be computed analytically. We
note that this formula involves taking the logarithm of a complex number.

We approximate υ by piecewise constant Beltrami coefficients. The constraints for infin-
itesimal equivalence become linear constraints of the form Ax = b, where A(i, j)th equals∫
tj
φi, x is the vector of unknown values of the piecewise constant υ on a triangle, and b is

the vector of
∫
tj
µjφi, where µj is the value of µ on triangle tj . If A, x and b are real, an

L∞ minimization can be formulated as a linear program. In our case, we break the vectors
and matrices into their real and complex parts, and then we can formulate the program as a
quadratically constrained quadratic program. Although in general they are NP-hard to solve,
in the the full version [11] we show that our program involves positive semi-definite matrices,
and it is known that such instances can be solved in polynomial time using interior-point
methods [20].

I Lemma 13 (INF-EXT). There exists an algorithm INF-EXT that, given a piecewise constant
µ on ∆ε returns a piecewise constant υ̂ such that maxtj υ̂(tj) ≤ maxtj β(tj), where β is any
piecewise constant (on ∆ε) Beltrami coefficient that is infinitesimally equivalent to µ.

With this, we are now in a position to prove Theorem 9, which says that this piecewise
approximation υ̂ is not very far from the true infinitesimally extremal υ. The full proof is
relegated to the journal version [11].

6.2 Description of EXTREMAL

Apart from the subroutine INF-EXT we require a few more subroutines to discretize our
procedure.

TRIANG. The input is a set of points S, a size M , and a triangulation ∆ε. The output
of TRIANG is a triangulation ∆ε′ of the given size M containing S such that ∆ε′ is a
refinement of ∆ε.

M. Goswami, V. P. Pingali, X. Gu, and G. Telang 627

BELTRAMI. The input is a triangulation ∆ε of the plane, a piecewise constant Beltrami
coefficient µ, and error tolerance δ. The output of BELTRAMI is a triangulation ∆′ε
that is a refinement of ∆ε, and the images f̂(vi) of the vertices vi ∈ ∆′ε such that
|fµ(vi)− f̂(vi)| < δ.
VECT-FIELD. The input is a Ck (k sufficiently large, e.g. k > 10) vector field X (written
as a formula in terms of elementary functions), a triangulation ∆ε, and an error tolerance
δ. The output is a triangulation ∆′ε that is a refinement of ∆ε, the images of vi ∈ ∆ε

up to error δ under a Ck diffeomorphism γx corresponding to the flow along X, and a
piecewise smooth Beltrami coefficient that approximates µγx

up to error δ.
PIECEWISE-COMP. The input is a triangulation ∆ε, two piece-wise constant Beltrami
coefficients µ1 and µ2 (corresponding to q.c.h. f1 and f2 respectively), and error tolerances
δ1 and δ2. The output is a triangulation ∆ε′ that is a refinement of ∆ε, a piecewise
constant Beltrami coefficient µcomp that approximates the Beltrami coefficient of the
composition f3 = f1 ◦ f2 within error δ1 in the L∞ topology, and the images f3(va) of
the vertices va of ∆ε′ up to an error of δ2.
PIECEWISE-INV. The input is a triangulation ∆ε, a piecewise constant Beltrami coefficient
µ (corresponding to q.c.h. f), and error tolerances δ1 and δ2. The output is a triangulation
∆ε′ that is a refinement of ∆ε, a piecewise constant Beltrami coefficient µinv that
approximates the Beltrami coefficient of f−1 within error δ1 in the L∞ topology, and the
images f−1(va) of the vertices of ∆ε′ up to an error of δ2.

EXTREMAL The algorithm summarized below is based on Section 5.
Use TRIANG to produce a triangulation of size required by INF-EXT to run within an error
of δ10.
Loop i = 1 to N where N is the number of iterations in Theorem 8 to produce the result
within an error of δ/2.
1. Use INF-EXT to produce υi from µi within an error of δ10. If υi = µi then stop.
2. Find ti by Equation (4), using k0 as ‖υi‖∞.
3. Invoke BELTRAMI for the coefficient ti(µi − υi) to find the images of the marked points

within an accuracy of t3i .
4. Define the vector field X as in the continuous construction using a piecewise polynomial

version of the bump function (that is C10 for instance). Then call VECT-FIELD to find
a piecewise constant Beltrami coefficient up to an error of t3i .

5. Use PIECEWISE-COMP to compose the Beltrami coefficients of step 3 and step 4 within
an error (‖µi‖ − ‖υi‖)5 for the Beltrami coefficient and δ/i2 for the q.c.h.

6. Use PIECEWISE-INV to find the Beltrami coefficient of the inverse of the q.c.h. of step
5, up to the same error as that in step 5.

7. Call PIECEWISE-COMP to compose µi and the Beltrami coefficient of step 6 to form
µi+1 (up to the same error as that in step 5).

Implementing TRIANG, BELTRAMI and VECT-FIELD

1. TRIANG. Given a set of n points, we can obtain the Delaunay triangulation in O(n logn)
time. While implementing TRIANG we first compute the Delaunay triangulation of all the
points falling inside a triangle of the given triangulation. The we connect the vertices on
the convex hull of such a set of points to one of the three vertices of the triangle they lie
in. If this complete triangulation is not yet size M , we make the mesh denser by adding
points as in [21] (points are added to either the circumcenters of triangles or mid-points
of edges), until we reach the desired size.

SoCG’15

628 Computing Teichmüller Maps between Polygons

2. BELTRAMI. The solution to the Beltrami equation for µ can be expressed as a series of singu-
lar operators applied to µ. There are many efficient algorithms and implementations[6],[9]
existing for BELTRAMI. Most of them can bound the Lp norm of the error, but the methods
in [6] can be used to bound the L∞ error too[5].

3. VECT-FIELD. The idea of deforming a surface by a vector field has been applied extensively
in computer graphics. We refer the reader to [16] for an implementation of VECT-FIELD.

I Remarks. Using the composition formula for Beltrami coefficients (Equation (2)), we see
that in principle one may attempt to compute a piecewise constant approximation of the
Beltrami coefficient of the composition f ◦ g of two q.c.h. f and g, and of g−1 (by setting
σ = 0). However, this requires the derivative of g to be well-approximated in a piecewise
constant manner. Therein lies the difficulty. Basically, one needs a good way of “discretising”
the definition of the Beltrami coefficient of a q.c.h. The algorithm terminates by producing
µN . The proof of Theorem 10 is similar to that of Theorem 8 and is omitted.

7 Discussions and future work

Our algorithm for the marked sphere problem also solves as a special case what is known as
the “landmark constrained” Teichmüller map problem, where the points zi and wi are in the
interior of the polygons, and a starting map is provided that sends zi to wi. A reduction
similar to Theorem 7 works.

Open problems abound. In addition to studying the two conjectural subroutines the
extremal map problem can be further explored in many directions.
1. Most of the ideas presented here (notably Lemma 11) may be used to envision an

algorithm for computing Teichmüller maps between other Riemann surfaces. The problem
is challenging for multiple reasons – for instance, an explicit basis of holomorphic quadratic
differentials may not be available.

2. The authors feel that building a discrete version of Teichmüller theory would be an
important achievement. Given a triangulated Riemann surface, defining a discrete analog
of dilatation that gives nice results (e.g. existence and uniqueness) about the extremal
map would be the next step in this direction.

References
1 L.V. Ahlfors. Lectures on quasiconformal mappings, volume 38 of University Lecture Series.

American Mathematical Society, Providence, RI, second edition, 2006. With supplemental
chapters by C. J. Earle, I. Kra, M. Shishikura and J.H. Hubbard.

2 C. Bishop. Conformal mapping in linear time. Discrete and Comput. Geometry, 44(2):330–
428, 2010.

3 Christopher Bishop. Analysis of conformal and quasiconformal maps. Results from prior
NSF support, 2012. http://www.math.sunysb.edu/~bishop/vita/nsf12.pdf.

4 C. Carathéodory. Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung
des Inneren einer Jordanschen Kurve auf einen Kreis. Mathematische Annalen, 73(2):305–
320, 1913.

5 P. Daripa and M. Goswami, 2014. Private communication.
6 Prabir Daripa. A fast algorithm to solve the beltrami equation with applications to quasicon-

formal mappings. Journal of Computational Physics, 106(2):355–365, 1993.
7 T.A. Driscoll and L.N. Trefethen. Schwarz-Christoffel Mapping. Cambridge Monographs

on Applied and Computational Mathematics. Cambridge University Press, 2002.

http://www.math.sunysb.edu/~bishop/vita/nsf12.pdf

M. Goswami, V. P. Pingali, X. Gu, and G. Telang 629

8 T.A. Driscoll and S.A. Vavasis. Numerical conformal mapping using cross-ratios and
delaunay triangulation. SIAM J. Sci. Comput, 19:1783–1803, 1998.

9 D. Gaidashev and D. Khmelev. On numerical algorithms for the solution of a beltrami
equation. SIAM Journal on Numerical Analysis, 46(5):2238–2253, 2008.

10 F.P. Gardiner and N. Lakic. Quasiconformal Teichmüler theory. American Mathematical
Society, 1999.

11 M. Goswami, X. Gu, V. Pingali, and G. Telang. Computing Teichmüller maps between
polygons. arXiv:1401.6395 – http://arxiv.org/abs/1401.6395, 2014.

12 H. Grötzsch. Über die Verzerrung bei nichtkonformen schlichten Abbildungen mehrfach
zusammenhngender Bereiche. Leipz. Ber., 82:69–80, 1930.

13 X. Gu, Y. Wang, T. F. Chan, P.M. Thompson, and S.T. Yau. Genus zero surface conformal
mapping and its application to brain surface mapping. IEEE Transactions on Medical
Imaging, 23(7):949–958, 2004.

14 X. Gu and S.T. Yau. Global surface conformal parameterization. In Symposium on Geo-
metry Processing (SGP’03), volume 43, pages 127–137, 2003.

15 J.H. Hubbard. Teichmüller theory and applications to geometry, topology, and dynamics.
Matrix Editions, 2006.

16 Ldmm – the large deformation diffeomorphic metric mapping tool. http://cis.jhu.edu/
software/lddmm-volume/tutorial.php.

17 L. Lui, K. Lam, S. Yau, and X. Gu. Teichmüller Mapping (T-Map) and Its Applications
to Landmark Matching Registration. SIAM Journal on Imaging Sciences, 7(1):391–426,
2014.

18 L.M. Lui, Xianfeng Gu, and Shing Tung Yau. Convergence of an iterative // algorithm for
Teichmüller maps via generalized harmonic maps. arXiv:1307.2679 – http://arxiv.org/
abs/1307.2679, 2014.

19 Lok Ming Lui, Tsz Wai Wong, Wei Zeng, Xianfeng Gu, Paul M. Thompson, Tony F. Chan,
and Shing-Tung Yau. Optimization of surface registrations using beltrami holomorphic
flow. Journal of Scientific Computing, 50(3):557–585, 2012.

20 P.M. Pardalos and M.G.C. Resende. Handbook of applied optimization, volume 1. Oxford
University Press New York, 2002.

21 J. Ruppert. A delaunay refinement algorithm for quality 2-dimensional mesh generation.
J. Algorithms, 18(3):548–585, 1995.

22 O. Teichmüller. Extremale quasikonforme Abbildungen und quadratische Differentiale.
Preuss. Akad. Math.-Nat., 1, 1940.

23 O. Teichmüller. Bestimmung der extremalen quasikonformen Abbildungen bei
geschlossenen orientierten Riemannschen Flächen. Preuss. Akad. Math.-Nat., 4, 1943.

24 Y. Wang, M. Gupta, S. Zhang, S. Wang, X. Gu, D. Samaras, and P. Huang. High Resol-
ution Tracking of Non-Rigid Motion of Densely Sampled 3D Data Using Harmonic Maps.
International Journal of Computer Vision, 76(3):283–300, 2008.

25 Y. Wang, J. Shi, X. Yin, X. Gu, T. F. Chan, S. T. Yau, A.W. Toga, and P.M. Thompson.
Brain surface conformal parameterization with the ricci flow. IEEE Transactions on Medical
Imaging, 31(2):251–264, 2012.

26 O. Weber, A. Myles, and D. Zorin. Computing extremal quasiconformal maps. Comp.
Graph. Forum, 31(5):1679–1689, 2012.

SoCG’15

http://arxiv.org/abs/1401.6395
http://cis.jhu.edu/software/lddmm-volume/tutorial.php
http://cis.jhu.edu/software/lddmm-volume/tutorial.php
http://arxiv.org/abs/1307.2679
http://arxiv.org/abs/1307.2679

On-line Coloring between Two Lines∗

Stefan Felsner1, Piotr Micek2, and Torsten Ueckerdt3

1 Technische Universität Berlin, Berlin, Germany
felsner@math.tu-berlin.de

2 Theoretical Computer Science Department, Faculty of Mathematics and
Computer Science, Jagiellonian University, Poland
piotr.micek@tcs.uj.edu.pl

3 Department of Mathematics, Karlsruhe Institute of Technology, Germany
torsten.ueckerdt@kit.edu

Abstract
We study on-line colorings of certain graphs given as intersection graphs of objects “between
two lines”, i.e., there is a pair of horizontal lines such that each object of the representation is
a connected set contained in the strip between the lines and touches both. Some of the graph
classes admitting such a representation are permutation graphs (segments), interval graphs (axis-
aligned rectangles), trapezoid graphs (trapezoids) and cocomparability graphs (simple curves).
We present an on-line algorithm coloring graphs given by convex sets between two lines that uses
O(ω3) colors on graphs with maximum clique size ω.

In contrast intersection graphs of segments attached to a single line may force any on-line
coloring algorithm to use an arbitrary number of colors even when ω = 2.

The left-of relation makes the complement of intersection graphs of objects between two lines
into a poset. As an aside we discuss the relation of the class C of posets obtained from convex
sets between two lines with some other classes of posets: all 2-dimensional posets and all posets
of height 2 are in C but there is a 3-dimensional poset of height 3 that does not belong to C.

We also show that the on-line coloring problem for curves between two lines is as hard as the
on-line chain partition problem for arbitrary posets.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases intersection graphs, cocomparability graphs, on-line coloring

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.630

1 Introduction

In this paper we deal with on-line proper vertex coloring of graphs. In this setting a
graph is created vertex by vertex where each new vertex is created with all adjacencies
to previously created vertices. An on-line coloring algorithm colors each vertex when it is
created, immediately and irrevocably, such that adjacent vertices receive distinct colors. In
particular, when coloring a vertex an algorithm has no information about future vertices.
This means that the color of a vertex depends only on the graph induced by vertices created
before. It is convenient to imagine that vertices are created by some adaptive adversary so
that the coloring process becomes a game between that adversary and an on-line algorithm.

We are interested in on-line algorithms using a number of colors that is bounded by a
function of the chromatic number of the input graph. For general graphs this is too much to

∗ P. Micek is supported by the Polish National Science Center within a grant UMO-2011/03/D/ST6/01370.

© Stefan Felsner, Piotr Micek, and Torsten Ueckerdt;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 630–641

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.630
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Felsner, P. Micek, and T. Ueckerdt 631

ask for. Indeed, it is a popular exercise to devise a strategy for adversary forcing any on-line
algorithm to use arbitrarily many colors on a forest. However, some restricted graph classes
admit competitive on-line coloring algorithms. Examples are P5-free graphs [13], interval
graphs [15] and cocomparability graphs [12]. All of these classes are covered by the main
result of Penrice, Kierstead and Trotter in [12] that says that for any tree T with radius 2,
the class of graphs that do not contain an induced copy of T can be colored on-line with the
number of colors depending only on T and the clique number of the input graph.

We are interested in situations where the on-line graph is presented with a geometric
intersection representation. A graph G is an intersection graph of a family F of sets if the
vertices of G and the elements of F are in bijection such that two vertices are adjacent in G
if and only if the corresponding sets intersect. For convenience, we identify the intersection
graph of the family F with F itself. The most important geometric intersection graphs arise
from considering compact, arc-connected sets in the Euclidean plane R2. In the corresponding
on-line coloring problem such objects are created one at a time and an on-line coloring
algorithm colors each set when it is created in such a way that intersecting sets receive
distinct colors. For many geometric objects the on-line coloring problem is still hopeless, e.g.,
disks and axis-aligned squares (Erlebach and Fiala [8]). Since any intersection graph G of
translates of a fixed compact convex set in the plane has a maximum degree bounded by
6ω(G)− 7 (Kim, Kostochka and Nakprasit [16]), any on-line algorithm that uses a new color
only when it is forced to, colors G with at most 6ω(G)− 6 colors.

In this paper we consider the on-line coloring problem of geometric objects spanned
between two horizontal lines, that is, arc-connected sets that are completely contained in the
strip S between the two lines and have non-empty intersection with each of the lines. Clearly,
such a family imposes a partial order on its elements where x < y if x and y are disjoint and
x is contained in the left component of Sr y. Hence, two sets intersect if and only if they are
incomparable in the partial order, i.e., the intersection graph is a cocomparability graph. In
particular, χ(G) = ω(G) for all such graphs G. Conversely every cocomparability graph has
a representation as intersection graph of y-monotone curves between two lines. The usual
way to state this result is by saying that cocomparability graphs are function graphs, see [10]
or [17]. If the representation is given the cocomparability graph comes with a transitive
orientation of the complement. In this setting there is an on-line algorithm that uses ωO(logω)

colors when ω is the clique number of the graph (Bosek and Krawczyk [3], see also [2]). This
subexponential function in ω is way smaller than the superexponential function arising from
the on-line algorithm for cocomparability graphs from [12]. The best known lower bound for
on-line coloring of cocomparability graphs is of order Ω(ω2), see [1]. We present an on-line
algorithm that uses only O(ω3) colors on convex objects spanned between two lines.

Intersection graphs of convex sets spanned between two lines generalize several well-known
graph classes.

Permutation graphs are intersection graphs of segments spanned between two lines and
posets admitting such cocomparability graphs are the 2-dimensional posets.
Interval graphs are intersection graphs of axis-aligned rectangles spanned between two
horizontal lines.
Bounded tolerance graphs are intersection graphs of parallelograms with two horizontal
edges spanned between two horizontal lines. (Bounded tolerance graphs were introduced
in [9])
Triangle graphs (a.k.a. PI-graphs) are intersection graphs of triangles with a horizontal
side spanned between two horizontal lines. (Triangle graphs were introduced in [5])

SoCG’15

632 On-line Coloring between Two Lines

trapezoid

interval

dim 3

dim 2

convex

all posets

O(ω)

O(ω4)

O(ω2)

O(ω3)

ωO(logω)

bounded
tolerance

triangle

[1]

[13]

[15]

[3]

Figure 1 The containment order of some classes of graphs given by objects between two lines
together with the performance guarantee for the best known on-line coloring algorithm (given the
intersection representation as input).

Trapezoid graphs are intersection graphs of trapezoids with two horizontal edges spanned
between two horizontal lines. Posets admitting such cocomparability graphs are the
posets of interval-dimension at most 2. (Trapezoid graphs were independently introduced
in [5, 6]).

Effective on-line coloring algorithms have been known for some of these classes:
Permutation graphs can be colored on-line with

(
ω+1

2
)
colors (Schmerl 1979 unpublished,

see [1]). Kierstead, McNulty and Trotter [11] generalized Schmerl’s idea and gave an on-
line algorithm chain partitioning d-dimensional posets, presented with d linear extensions
witnessing the dimension, and using

(
ω+1

2
)d−1 chains, here ω is the width of the poset.

Interval graphs can be colored on-line with 3ω − 2 colors (Kierstead and Trotter [15]).

An easy strategy for on-line coloring is given by First-Fit, which is the strategy that colors
each incoming vertex with the least admissible natural number. While First-Fit uses O(ω)
colors on interval graphs (see [19]) it is easy to trick this strategy and force arbitrary number
of colors on permutation graphs of clique-size 2 (see survey [1]). The behavior of the First-Fit
algorithm on p-tolerance graphs (0 < p < 1), a subclass of bounded tolerance graphs, was
studied in [14]. First-Fit uses there O(ω

1−p) colors.

I Theorem 1. There is an on-line algorithm coloring convex sets spanned between two lines
with O(ω3) colors when ω is the clique number of the intersection graph.

Note that our on-line coloring algorithm is best known for bounded tolerance graphs,
trapezoid and triangle graphs. The best known lower bound

(
ω+1

2
)
(see [1]) holds already for

permutation graphs (segments). Proofs are deferred to later sections.
A poset is called convex if its cocomparability graph is an intersection graph of convex sets
spanned between two lines. We give a short proof that all height 2 posets are convex. All
2-dimensional posets are convex but not all 3-dimensional.

I Proposition 2.
1. Every height 2 poset is convex;
2. There is a 3-dimensional height 3 poset that is not convex.

S. Felsner, P. Micek, and T. Ueckerdt 633

Rok and Walczak [20] have looked at intersection graphs of connected objects that are
attached to a horizontal line and contained in the upper halfplane defined by this line.
They show that there is a function f such that χ(G) 6 f(ω(G)) for all G admitting such a
representation. However, there is no effective on-line coloring algorithm for graphs in this
class, even if we restrict the objects to be segments.

I Proposition 3. Any on-line algorithm can be forced to use arbitrarily many colors on a
family of segments attached to a line, even if the family contains no three pairwise intersecting
segments (ω = 2).

Recall that it may make a difference for an on-line coloring algorithm whether the input is
an abstract cocomparability graph, or the corresponding poset, or a geometric representation.
Kierstead, Penrice and Trotter [12] gave an on-line coloring algorithm for cocomparability
graphs using a number of colors that is superexponential in ω. Bosek and Krawczyk [3]
introduced an on-line coloring algorithm for posets using ωO(logω) colors where ω is the
width of the poset. We show that having a poset represented by y-monotone curves between
two lines does not help on-line algorithms. Indeed, such a representation can be constructed
on-line if the poset is given.

I Theorem 4. There is an on-line algorithm that for any poset draws y-monotone curves
spanned between two lines such that x < y in the poset if and only if the curves x and y are
disjoint and x lies left of y. That means, for every element of the poset when it is created
a curve is drawn in such a way that throughout the set of already drawn curves forms a
representation of the current poset.

Theorem 1 and Proposition 2 are proven in Section 2. Actually we define the class of
quasi-convex posets and show the O(ω3) bound for this class. Since every convex poset is
quasi-convex this implies Theorem 1. The section is concluded with a proposition showing
that the class of quasi-convex posets is a proper superclass of convex posets. In Section 3
we discuss general connected sets between two lines. In this context we prove Theorem 4.
We conclude the paper with a proof of Proposition 3 in Section 3 and a list of four open
problems related to these topics that we would very much like to see answered.

2 Quasi-Convex Sets Between Two Lines

A connected set v spanned between two parallel lines is quasi-convex if it contains a segment
sv that has its endpoints on the two lines. When working with a family of quasi-convex sets
it is convenient to fix such a segment sv for each v and call it the base segment of the set v.
Clearly, every convex set spanned between two lines is also quasi-convex.

Below we show that there is an on-line algorithm coloring a family of quasi-convex sets
between two parallel lines with O(ω3) colors, when ω is the clique number of the family. This
implies Theorem 1

Proof of Theorem 1. We describe an on-line coloring algorithm using at most
(
ω+1

2
)
· 24ω

colors on quasi-convex sets spanned between two parallel lines with clique number at most ω.
The algorithm colors incoming sets with triples (α, β, γ) of positive integers with α+β 6 ω+1
and γ 6 24ω in such a way that intersecting sets receive different triples.

Let `1, `2 be the two horizontal lines such that the quasi-convex sets of the input are
spanned between `1 and `2. With a quasi-convex set v we consider a fixed base segment sv
and the points (x-coordinates) vi = sv ∩ `i for i = 1, 2.

SoCG’15

634 On-line Coloring between Two Lines

A sequence (v1, . . . , vk) of already presented quasi-convex sets is i-increasing for i = 1, 2
if we have vi1 6 vi2 6 . . . 6 vik. The reverse of an i-increasing sequence is called i-decreasing
for i = 1, 2. Let αv be the size of a maximum sequence Sα(v) of already presented sets that
is 1-increasing and 2-decreasing and starts with v. Let βv be the size of a maximum sequence
Sβ(v) of already presented sets that is 1-decreasing and 2-increasing and starts with v.

The algorithm is going to color v with a triple (αv, βv, γv) where αv and βv are defined as
above. The definition of αv and βv is as in Schmerl’s on-line algorithm for chain partitions
of 2-dimensional orders or equivalently on-line coloring of permutation graphs. Indeed, if the
input consists of a set of segments, then any two segments with the same α- and β-values
are disjoint.

For a fixed pair (α, β) consider the set X = X(α, β) of all quasi-convex sets u presented
so far that have been colored colored with (α, β, ∗), where ∗ an arbitrary value of the third
coordinate. Since Sα(v)∪Sβ(v) is a collection of sets with pairwise intersecting base segments
we can conclude that αv + βv = |Sα(v)|+ |Sβ(v)| = 1 + |Sα(v) ∪ Sβ(v)| 6 1 + ω.

To determine γv the algorithm uses First-Fit on the set X(α, β). Bosek et al. [4] have
shown that First-Fit is efficient on cocomparability graphs with no induced Kt,t. The best
bound is due to Dujmović, Joret and Wood [7]: First-Fit uses at most 8(2t− 3)ω colors on
cocomparability graphs with no induced Kt,t.

To make the result applicable we show that the intersection graph of each class X(α, β)
is a cocomparability graph with no induced K3,3. As the number of these sets is at most(
ω+1

2
)
, this will conclude the proof.

I Claim. The bases of sets in X(α, β) are pairwise disjoint.

Proof of Claim. Consider any two sets u1, u2 ∈ X with the endpoints uij ∈ uj∩`i for i = 1, 2
and j = 1, 2 of their bases. It suffices to show that we have ui1 < ui2 for i = 1, 2 or ui1 > ui2
for i = 1, 2.

Assume that u1
1 6 u1

2 and u2
1 > u2

2 and that u1 was presented before u2. Since u1 ∈
X(α, β) it is part of a 1-decreasing and 2-increasing sequence (u1, v2, . . . , vβ). The sequence
(u2, u1, v2 . . . , vβ) is a longer 1-decreasing and 2-increasing sequence starting with u2. This
contradicts the fact that u2 ∈ X(α, β).

A similar argument applies when u2 was presented before u1. In this case we compare
the 1-increasing and 2-decreasing sequences (u2, v2, . . . , vα) and (u1, u2, v2, . . . , vα) to arrive
at a contradiction. J

I Claim. The intersection graph of X(α, β) contains no induced K3,3.

Proof of Claim. Let U and V be any two disjoint triples of sets in X. We shall show that if
U and V are independent, then there is a set in U which is disjoint from a set in V , i.e., that
the intersection graph of these six sets is not an induced K3,3 with bipartition classes U, V .

By the previous claim the bases of these six sets in U ∪ V are disjoint and hence are
naturally ordered from left to right within the strip. Without loss of generality amongst
the leftmost three bases at least two belong to sets in U and thus amongst the rightmost
three bases at least two belong to sets in V . In particular, there are four sets u1, u2 ∈ U ,
v1, v2 ∈ V whose left to right order of bases is u1, u2, v1, v2.

By assumption u1, u2 and v1, v2 are non-intersecting. Since the base of each set is
contained in the corresponding set (quasi-convexity) we know that u1 lies completely to the
left of the base of u2 and v2 lies completely to the right of the base of v1. Together with the
order of the bases of u2 and v1 this makes u1 and v2 disjoint. J

J

S. Felsner, P. Micek, and T. Ueckerdt 635

p

q
`2

`1

1 2 3 4 5 r2

r1

r4

r5

r3

1 2 3 4 5

Figure 2 A poset of height 2 and its representation with convex sets spanned between two lines.

a b c

A B C

f

e
h

g
i

B

b

c

A
a

d

C

h

g
d

i
e

C

c

a

B
b

f

A

d

i
f

e
g

A

a

b

C
c

h

B

x

y

z

s

segment s is of type {x}
there is no segment of type {y, z}

d

e

f

g

h

i

Figure 3 A height 3 and 3-dimensional poset that is not quasi-convex. Provided with its 3 linear
extensions witnessing the dimension.

It is possible to decrease the number of colors used by the algorithm from
(
ω+1

2
)
· 24ω to(

ω+1
2

)
· 16ω by showing that the pathwidth of the intersection graph of X(α, β) is at most

2ω− 1 and applying another result from [7]: First-Fit on cocomparability graph of pathwidth
at most t uses at most 8(t+ 1) colors.

Proof of Proposition 2. Let P be any poset of height 2, and let X and Y be the sets of
minimal and maximal elements in P , respectively. We represent the elements in Y as pairwise
intersecting segments so that every segment appears on the left envelope, that is, on every
segment y ∈ Y there is a point ry such that the horizontal ray emanating from ry to the left
has no further intersection with segments from Y . Choose p ∈ `1 and q ∈ `2 to the left of all
segments for Y and define for each x ∈ X the convex set Cx as the convex hull of p, q and
the set of all ry for which y and x are incomparable in P . It is easy to check that in the
resulting representation two sets intersect if and only if the corresponding elements in P are
incomparable. See Figure 2 for an illustration.

We claim that the poset Q depicted in Figure 3 is not quasi-convex. Suppose that there
is a quasi-convex realization of Q. Fix three points within the strip x ∈ a ∩ A, y ∈ b ∩ B,
and z ∈ c ∩ C. The type of a segment s spanned in the strip and avoiding x, y and z is the
subset of {x, y, z} consisting of the points that are to the left of s. How many different types
of segments can exist for given x, y and z? We claim that among 8 possible subsets only 7
are realizable. Indeed, consider the point p ∈ {x, y, z} with the middle value with respect
to the vertical axis. Then either {p} or {x, y, z} r {p} is not realizable (see Figure 3). A
collection of quasi-convex sets representing the elements d, e, f, g, h, i of Q must have base
segments of pairwise distinct types. Moreover the types ∅ and {x, y, z} do not occur. This
leaves 5 possible types for 6 elements, contradiction. J

SoCG’15

636 On-line Coloring between Two Lines

a b e

c d f

Q

w1

w2

(a)

a2 b2 c2 d2 e2 f2

e1 b1f1 d1 a1 c1

w

y

z

x

(b)

Figure 4 (a) The 6-element poset Q and the elements w1, w2 of P for the downset D = {a, b, d, e, f}
in Q. (b) The segment representation R of Q with the cells w, x, y and z corresponding to the
downsets {a, b, d, e, f}, {b, e, f}, {a, e} and {a, b, c} in Q, respectively.

I Proposition 5. There is a quasi-convex poset that is not convex.

Proof. Consider the poset Q on the set E = {a, b, c, d, e, f} as shown in Figure 4a. Moreover,
consider the representation R of Q with segments spanned between two lines given in
Figure 4b. Each cell w in R naturally corresponds to the downset Dw in Q (downwards
closed subset of E) formed by those segments in R that lie to the left of w.

We shall construct a quasi-convex poset Q̄ that has Q as an induced subposet. Later we
extend Q̄ by one point to a quasi-convex poset P and we prove that P is not convex.

Define Q̄ ⊃ Q as follows. For each cell w in R corresponding to a downset Dw ⊆ E of Q
there are two incomparable elements w1, w2 in Q̄, where w2 is above all elements in Dw and
w1 is below all elements in E rDw. There are no further comparabilities between w1, w2
and elements of Q̄, except for those implied by transitivity. We refer again to Figure 4 for an
illustration.

We extend Q̄ by adding an element g below d and y2, but incomparable to x2 and z2,
where y, x and z are the cells in R corresponding to downsets {a, e}, {b, e, f}, {a, b, c} in Q,
respectively (Figure 4b). Let P be the poset after adding g.

To see that P is quasi-convex take the representation R of Q, select a point pw in each
cell w, let s and t be two segments such that s is on the left and t is on the right of all
segments in R. For each cell w of R define T-shaped sets for w1 and w2 consisting of s and
t, respectively, together with a horizontal segment ending at pw. Finally let g be the union
of s and two horizontal segments, one ending at px and one at pz.

Fix any quasi-convex representation R̄ of Q̄. By definition each quasi-convex set in
E comes with a base segment spanned between the two lines. With R′ we denote the
configuration of the base segments corresponding to elements of Q.

I Claim. The segment representations R and R′ are equivalent in the sense that the segments
together with `1 and `2 induce (up to reflection) the same plane graph where vertices are
attachment points and crossings of segments and edges are pieces of segments/lines between
consecutive vertices).

Proof of Claim. Consider any cell w in R and the corresponding downset Dw ⊆ E of Q. By
the definition of w1, w2 in Q̄ (in particular, the fact that the corresponding sets intersect in
R̄), there is a cell w̄ in R′ that lies to the right of all sets in Dw and to the left of all sets in
E rDw. Since there can be only one such cell in R′, we have an injection ϕ from the cells
of R into the cells of R′.

S. Felsner, P. Micek, and T. Ueckerdt 637

Next note that if s, t are two intersecting segments in R, then there is a cell in R with
s to the left and t to the right, as well as another cell with s to the right and t to the left.
With ϕ we have such cells also in R′ and hence the segments for s and t in R′ intersect
as well. Disjoint segments in R represent a comparability in Q, hence, the corresponding
segments in R′ have to be disjoint as well. It follows that the number of intersections and,
hence, also the number of cells, is the same in R and R′, proving that ϕ is a bijection.

To show that R and R′ are equivalent we now consider the dual graphs. That is we take
the cells between the lines as vertices and make them adjacent if and only if the corresponding
downsets differ in exactly one element. These dual graphs come with a plane embedding.
All the inner faces of these embeddings correspond to crossings and are therefore of degree 4.
Moreover, every 4-cycle of these graphs has to be an inner face. This uniquely determines (up
to reflection) the embeddings of these dual graphs and hence also of the primal graphs. For
the last conclusion we have used that the union of all segments in R and R′ is connected. J

I Claim. P is not convex.

Proof of Claim. By the previous claim every quasi-convex representation of P induces a
segment representation R′ of Q equivalent to R. We denote the segments in R′ for elements
a, b, c, d, e, f by a∗, b∗, c∗, d∗, e∗, f∗, respectively, and the cells in R′ corresponding to x, y, z
in R by x∗, y∗, z∗, respectively. We claim that x∗ lies strictly below y∗, which lies strictly
below z∗. Indeed, we can construct a y-monotone curve as follows (Figure 4b): Start with
the highest point of x∗, i.e., the crossing of f∗ and d∗, follow d∗ to its crossing with a∗, follow
a∗ to its crossing with b∗, i.e., the lowest point of the cell y∗. And symmetrically, we go from
the lowest point of y∗ (the crossing of b∗ and e∗) along e∗ to its crossing with d∗ and along
d∗ to its crossing with c∗, i.e., the highest point of z∗.

Now, as g is below d, but incomparable to x2, the set for g contains a point p right of
f∗ and left of d∗, i.e., p ∈ x. Similarly, the set for g contains a point q ∈ z. Moreover the
segment between p and q lies between the segments b∗ and d∗ as it starts and ends there.
However, the base segment for y2 lies to the right of d∗ as y2 is to the right of e and a. Hence,
if g were a convex set, then the sets g and y2 would intersect, contradicting that g is below
y2 in P . J

J

3 On-line Curve Representation

In this section we prove Theorem 4, i.e., we show that there is an on-line algorithm that
produces a curve representation of any poset that is given on-line. The curves used for the
representation are y-monotone.

Recall that a linear extension L of a poset P is a total ordering of its elements such that
if x < y in P this implies x < y in L. Our construction maintains the invariant that at all
times the curve representation C of the current poset P satisfies the following property (∗):

there is a set L of horizontal lines such that for every linear extension L of P there
is a horizontal line ` ∈ L such that the curves in C intersect ` from left to right in
distinct points in the order given by L.

(∗)

For the first element of the poset use any vertical segment in the strip and property (∗)
is satisfied. Assume that for the current poset P we have a curve representation C with
y-monotone curves respecting (∗).

SoCG’15

638 On-line Coloring between Two Lines

q`

p`
`ε

S

`′ε′

q`′

p`′

x

`1

Figure 5 Constructing the curve for a new element x by using segments within ε-tubes for each
` ∈ L. Dashed horizontal lines correspond to the lines in LP∪{x}.

Let x be a new element extending P . The elements of P are partitioned into the upset
U(x) = {y : x < y}, the downset D(x) = {y : y < x}, and the set I(x) = {y : x||y} of
incomparable elements. Let S be the union of all points in the strip between `1 and `2 that
lie strictly to the left of all curves in U(x) and strictly to the right of all curves in D(x).
Note that S is y-monotone (its intersection with any horizontal line is connected), S ∩ `i 6= ∅
for i = 1, 2, and that S is connected since each curve in U(x) lies completely to the right of
each curve in D(x). This implies that for any two points p, q ∈ S with distinct y-coordinates
there is a y-monotone curve connecting p and q inside of S.

We use the set L to draw the curve for x as follows:
Choose ε > 0 small enough so that within the ε-tube `ε of any line ` ∈ L no two curves
get closer than ε.
For each line ` ∈ L choose two points q`, p` ∈ `ε ∩ S such that q` is above ` and has
distance at most ε to the left boundary of S while p` is below ` and has distance at most
ε to the right boundary of S. Draw a segment from p` to q`.
If ` and `′ are consecutive in L with ` below `′, then we connect q` and p`′ by a y-monotone
curve in S. We also connect the lowest p and the highest q by y-monotone curves in S to
`1 and `2 respectively.
The curve of x is the union of the segments p`q` and the connecting curves.

Figure 5 illustrates the construction.
We claim that the curve representation of P together with the curve of x has property (∗).

Let L = (. . . , a, x, b, . . .) be an arbitrary linear extension of P ∪{x} and let Lx = (. . . , a, b, . . .)
be the linear extension of P obtained from L by omitting x. Let `x ∈ L be the horizontal
line corresponding to Lx. Within the ε-tube of `x the segment p`xq`x contains a subsegment
ρaρb where ρa is a point ε to the right of the curve of a and ρb is a point ε to the left of
the curve of b. The horizontal line ` containing the point ρa+ρb

2 is a line representing L in
P ∪ {x}. This proves property (∗) for the extended collection of curves.

The comparabilities in the intersection of all linear extensions of P ∪ {x} are exactly the
comparabilities of P ∪{x}. Therefore, property (∗) implies that the curve of x is intersecting
the curves of all elements of I(x). Since the curve of x is in the region S it is to the right of
all curves in D(x) and to the left of all curves in U(x). Hence, the extended family of curves
represents P ∪ {x}.

S. Felsner, P. Micek, and T. Ueckerdt 639

Sk−1

R

Sk−1

d

v1 v2

V1

V2

h

Figure 6 Strategy Sk consists of two calls of strategy Sk−1 and an addition of an extra segment
d. Algorithm A unavoidably uses k colors on the segments intersecting v1 or on the segments
intersecting v2.

4 Connected Sets Attached to a Line

In this section we give the proof of Proposition 3. Actually, we prove a stronger statement
by induction:

I Claim. The adversary has a strategy Sk to create a family of segments attached to a
horizontal line h with clique number at most 2 against any on-line coloring algorithm A such
that there is a vertical line v with the properties:
1. any two segments pierced by v are disjoint,
2. every segment pierced by v is attached to h to the right of v,
3. A uses at least k distinct colors on segments pierced by v.

Proof of Claim. The strategy S1 only requires a single segment with negative slope. Now
consider k > 2. Fix any on-line algorithm A. The strategy Sk goes as follows. First the
adversary uses Sk−1 to create a family of segments F1 and a vertical line v1 piercing a set
V1 ⊆ F1 of pairwise disjoint segments on which A uses at least k−1 colors. Define a rectangle
R with bottom-side on h, the left-side in v1 and small enough such that the vertical line
supported by the right-side is piercing the same subset V1 of F1, moreover R is disjoint
from all the segments in F1. The adversary uses strategy Sk−1 again, this time with the
restriction that all the segments are contained in R. This creates a family F2 and a vertical
line v2 piercing a set V2 ⊆ F2 of pairwise disjoint segments on which A uses at least k − 1
colors. By construction segments from F1 and F2 are pairwise disjoint. From the definition
of R it follows that line v2 intersects all the segments in V1 and no other segments from
F1. Strategy Sk is completed with the creation of one additional segment d such that d is
attached between v1 and v2, d is intersecting all the segments in V2 and the vertical line v1
but it intersects none of the segments in V1 (see Figure 6).

If A uses at least k distinct colors on V1 ∪ V2 then v2 is the vertical line witnessing the
invariant. Otherwise A uses exactly the same set of k − 1 colors on V1 and V2 and since
segment d intersects all segments in V1 it must be colored with a different color. Thus, the
vertical line v1 intersecting V1 ∪ {d} intersects segments of at least k distinct colors. J

5 Open problems

In this concluding section we collect some open problems related to the results of this paper.

SoCG’15

640 On-line Coloring between Two Lines

In Figure 1 there are some classes of posets that contain interval orders and 2-dimensional
orders and are contained in the class of convex orders. For on-line coloring of the cocom-
parability graphs of these classes (given with a representation) we have the algorithm from
Theorem 1 that uses O(ω3) colors.
(1) Find an on-line algorithm that only needs O(ωτ) (τ < 3) colors for coloring graphs in a

class G between 2-dimensional and convex. Interesting choices for G would be trapezoid
graphs, bounded tolerance graphs, triangle graphs (or simple triangle graphs; for the
definition cf. [18]).

By restricting the curves or the intersection pattern of curves spanned between two lines we
obtain further classes of orders which are nested between 2-dimensional orders and the class
of all orders. We define k-bend orders by restricting the number of bends of the polygonal
curves representing the elements to k. Clearly, every k + 2 dimensional order is a k-bend
order. We define k-simple orders by restricting the number of intersections of pairs of curves
representing elements of the order to k.
(2) Find on-line algorithms that only need polynomially many colors for coloring cocompa-

rability graphs of 2-simple or 1-bend orders when a representation is given.
Another direction would be the study of recognition complexity. Meanwhile the recognition
complexity for all classes shown in Figure 1, except convex orders, has been determined
(see [18]).
(3) Determine the recognition complexity for convex orders.
We think that the determination of the recognition complexity of 2-simple orders and 1-bend
orders are also interesting problems.

References
1 Bartłomiej Bosek, Stefan Felsner, Kamil Kloch, Tomasz Krawczyk, Grzegorz Matecki, and

Piotr Micek. On-line chain partitions of orders: a survey. Order, 29(1):49–73, 2012.
2 Bartłomiej Bosek, Henry A. Kierstead, Tomasz Krawczyk, Grzegorz Matecki, and

Matthew E Smith. An improved subexponential bound for on-line chain partitioning. arXiv
preprint arXiv:1410.3247, 2014.

3 Bartłomiej Bosek and Tomasz Krawczyk. The sub-exponential upper bound for on-line
chain partitioning. In 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science FOCS 2010, pages 347–354. IEEE Computer Soc., Los Alamitos, CA, 2010.

4 Bartlomiej Bosek, Tomasz Krawczyk, and Edward Szczypka. First-Fit algorithm for the
on-line chain partitioning problem. SIAM J. Discrete Math., 23(4):1992–1999, 2010.

5 Derek G. Corneil and P. A. Kamula. Extensions of permutation and interval graphs. Congr.
Numer., 58:267–275, 1987. Eighteenth Southeastern International Conference on Combina-
torics, Graph Theory, and Computing (Boca Raton, Fla., 1987).

6 Ido Dagan, Martin Charles Golumbic, and Ron Yair Pinter. Trapezoid graphs and their
coloring. Discrete Appl. Math., 21(1):35–46, 1988.

7 Vida Dujmović, Gwenaël Joret, and David R. Wood. An improved bound for First-Fit on
posets without two long incomparable chains. SIAM J. Discrete Math., 26(3):1068–1075,
2012.

8 Thomas Erlebach and Jiri Fiala. On-line coloring of geometric intersection graphs. Comput.
Geom., 23(2):243–255, 2002.

9 Martin Charles Golumbic and Clyde L. Monma. A generalization of interval graphs with
tolerances. In Proceedings of the thirteenth Southeastern conference on combinatorics, graph
theory and computing (Boca Raton, Fla., 1982), volume 35, pages 321–331, 1982.

S. Felsner, P. Micek, and T. Ueckerdt 641

10 Martin Charles Golumbic, Doron Rotem, and Jorge Urrutia. Comparability graphs and
intersection graphs. Discrete Math., 43(1):37–46, 1983.

11 Henry A. Kierstead, George F. McNulty, and William T. Trotter, Jr. A theory of recursive
dimension for ordered sets. Order, 1(1):67–82, 1984.

12 Henry A. Kierstead, Stephen G. Penrice, and William T. Trotter, Jr. On-line coloring and
recursive graph theory. SIAM J. Discrete Math., 7(1):72–89, 1994.

13 Henry A. Kierstead, Stephen G. Penrice, and William T. Trotter, Jr. On-line and First-Fit
coloring of graphs that do not induce P5. SIAM J. Discrete Math., 8(4):485–498, 1995.

14 Henry A. Kierstead and Karin R. Saoub. First-Fit coloring of bounded tolerance graphs.
Discrete Appl. Math., 159(7):605–611, 2011.

15 Henry A. Kierstead and William T. Trotter, Jr. An extremal problem in recursive combi-
natorics. In Proceedings of the Twelfth Southeastern Conference on Combinatorics, Graph
Theory and Computing, Vol. II (Baton Rouge, La., 1981), volume 33, pages 143–153, 1981.

16 Seog-Jin Kim, Alexandr Kostochka, and Kittikorn Nakprasit. On the chromatic number
of intersection graphs of convex sets in the plane. Electron. J. Combin., 11(1):R52, 2004.

17 Lásló Lovász. Perfect graphs. In Selected topics in graph theory, 2, pages 55–87. Academic
Press, London, 1983.

18 George Mertzios. The recognition of simple-triangle graphs and of linear-interval orders is
polynomial. In Proceedings of the 21st European Symposium on Algorithms (ESA), Sophia
Antipolis, France, September 2013, pp. 719-730.

19 Sriram V. Pemmaraju, Rajiv Raman, and Kasturi Varadarajan. Buffer minimization using
max-coloring. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 562–571. ACM, New York, 2004.

20 Alexandre Rok and Bartosz Walczak. Outerstring graphs are χ-bounded. In Siu-Wing
Cheng and Olivier Devillers, editors, 30th Annual Symposium on Computational Geometry
(SoCG 2014), pages 136–143. ACM, New York, 2014.

SoCG’15

Building Efficient and Compact Data Structures
for Simplicial Complexes
Jean-Daniel Boissonnat∗1, Karthik C. S.†2, and Sébastien Tavenas‡3

1 Geometrica, INRIA Sophia Antipolis – Méditerranée, France
Jean-Daniel.Boissonnat@inria.fr

2 Department of Computer Science and Applied Mathematics, Weizmann
Institute of Science, Israel
karthik.srikanta@weizmann.ac.il

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany
stavenas@mpi-inf.mpg.de

Abstract
The Simplex Tree (ST) is a recently introduced data structure that can represent abstract sim-
plicial complexes of any dimension and allows efficient implementation of a large range of basic
operations on simplicial complexes. In this paper, we show how to optimally compress the Sim-
plex Tree while retaining its functionalities. In addition, we propose two new data structures
called Maximal Simplex Tree (MxST) and Simplex Array List (SAL). We analyze the compressed
Simplex Tree, the Maximal Simplex Tree, and the Simplex Array List under various settings.

1998 ACM Subject Classification E.1 Data structures, F.2.2 Nonnumerical Algorithms and
Problems – Computations on discrete structures, Geometrical problems and computations

Keywords and phrases Simplicial complex, Compact data structures, Automaton, NP-hard

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.642

1 Introduction

Simplicial complexes are widely used in combinatorial and computational topology, and have
found many applications in topological data analysis and geometric inference. The most
common representation uses the Hasse diagram of the complex that has one node per simplex
and an edge between any pair of incident simplices whose dimensions differ by one. A few
attempts to obtain more compact representations have been reported recently.

Attali et al. [4] proposed the skeleton-blockers data structure which represents a simplicial
complex by its 1-skeleton together with its set of blockers. Blockers are the simplices which
are not contained in the complex but whose proper subfaces are. Flag complexes have no
blockers and the skeleton-blocker representation is especially efficient for complexes that are
“close” to flag complexes. An interesting property of the skeleton-blocker representation is
that it enables efficient edge contraction.

Boissonnat and Maria [8] have proposed a tree representation called the Simplex Tree
that can represent general simplicial complexes and scales well with dimension. The nodes

∗ This work was partially supported by the Advanced Grant of the European Research Council GUDHI.
† This work was partially supported by Labex UCN@Sophia scholarship, LIP fellowship and Irit Dinur’s
ERC-StG grant number 239985.
‡ A part of this work was done at LIP, ENS Lyon (UMR 5668 ENS Lyon – CNRS – UCBL – INRIA,
Université de Lyon).

© Jean-Daniel Boissonnat, Karthik C. S., and Sébastien Tavenas;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 642–657

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.642
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J.-D. Boissonnat, Karthik C. S., and S. Tavenas 643

of the tree are in bijection with the simplices (of all dimensions) of the simplicial complex.
In this way, the Simplex Tree explicitly stores all the simplices of the complex but it doesn’t
represent explicitly all the incidences between simplices that are stored in the Hasse diagram.
Storing all the simplices is useful (for example, one can then attach information to each
simplex or store a filtration succinctly). Moreover, the tree structure of the Simplex Tree leads
to efficient implementation of basic operations on simplicial complexes (such as retrieving
incidence relations, and in particular retrieving the faces or the cofaces of a simplex).

In this paper, we propose a way to compress the Simplex Tree so as to store as few nodes
and edges as possible without compromising the functionality of the data structure. The
new compressed data structure is in fact a finite automaton (referred to in this paper as the
Minimal Simplex Automaton) and we describe an optimal algorithm for its construction.

Previous works have looked at trie compression and have tried to establish a good
trade-off between speed and size, but in most of the works, the emphasis is on one of the
two. Two examples of work where the speed is of main concern are [2] where the query
time is improved by reducing the number of levels in a binary trie (which corresponds to
truncating the Simplex Tree at a certain height) and [1] where trie data structures are
optimized for computer memory architectures. When the size of the structure is of primary
concern, the work is usually focused on automata compression. For instance, in the context
of natural language data processing, significant savings in memory space can be obtained
if the dictionary is stored in a directed acyclic word graph (DAWG), a form of a minimal
deterministic automaton, where common suffixes are shared [3]. However, theoretical analysis
of compression is seldom done (if at all), in any of these works.

In this paper, we analyze the size of the Minimal Simplex Automaton and also demonstrate
(through experiments) that compression works especially well for Simplex Tree due to the
structure of simplicial complexes: namely, that all subfaces of a simplex in the complex also
belong to the complex. Additionally, we consider the influence of the labeling of the vertices
on compression, which can be significant. Further, we show that it is hard to find an optimal
labeling for the compressed Simplex Tree and for the Minimal Simplex Automaton.

Further, we introduce two new data structures for simplicial complexes called the Maximal
Simplex Tree (MxST) and the Simplex Array List (SAL). MxST is a subtree of the Simplex
Tree whose leaves are in bijection with the maximal simplices (i.e. simplices with no cofaces)
of the complex. We show that MxST is compact and allows efficient operations. MxST is
then augmented to obtain SAL where every node uniquely represents an edge. A nice feature
of SAL is its invariance over labeling of vertices. We show that SAL supports efficient basic
operations and that it is compact when the dimension of the complex is fixed, a case of great
interest in Manifold Learning and Topological Data Analysis. Complete proofs and more
detailed discussions are presented in the full version of the paper [7].

2 Simplicial Complex: Definitions and a Lower Bound

In this paper, the class of d dimensional simplicial complexes on n vertices with m simplices,
of which k are maximal, is denoted by K(n, k, d,m), and K denotes a simplicial complex
in K(n, k, d,m) . At times, we say Kθ ∈ Kθ(n, k, d,m) (where θ : V → {1, 2, ..., |V |} is
a labeling of the vertex set V of K) when we want to emphasize that some of the data
structures seen in this paper are influenced by the labeling of the vertices.

A maximal simplex of a simplicial complex is a simplex which is not contained in a larger
simplex of the complex. A simplicial complex is pure, if all its maximal simplices are of the
same dimension. Also, a free pair is defined as a pair of simplices (τ, σ) in K where τ is the

SoCG’15

644 Building Efficient and Compact Data Structures for Simplicial Complexes

4 3

1

2

6

5

Figure 1 Simplicial complex with the tetrahedra 1–3–4–5 and 2–3–4–5, and the triangle 1–3–6.

only coface of σ. In Figure 1, we have a simplicial complex on vertex set {1, 2, 3, 4, 5, 6} which
has three maximal simplices: the two tetrahedra 1–3–4–5 and 2–3–4–5, and the triangle
1–3–6. We use this complex as an example through out the paper.

We would like to note here that the case when k = O(n), is of particular interest. It can
be observed in flag complexes, constructed from planar graphs and expanders [13], and in
general, from nowhere dense graphs [15], and also from chordal graphs[14]. Generalizing,
for all flag complexes constructed from graphs with degeneracy O(logn) (degeneracy is the
smallest integer r such that every subgraph has a vertex of degree at most r), we have that
k = nO(1) [13]. This encompasses a large class of complexes encountered in practice.

Now, we obtain a lower bound on the space needed to represent simplicial complexes by
presenting a counting argument on the number of distinct simplicial complexes.

I Theorem 1. Consider the set of all simplicial complexes K(n, k, d,m) where d ≥ 2 and
k ≥ n+ 1, and consider any data structure that can represent the simplicial complexes of this
class. Such a data structure requires log

((n/2
d+1)
k−n

)
bits to be stored. For any constant ε ∈ (0, 1)

and for 2
εn ≤ k ≤ n

(1−ε)d and d ≤ nε/3, the bound becomes Ω(kd logn).

Proof Sketch. Define h = k− n ≥ 1 and suppose there exists a data structure that is stored
only using s < logα def= log

((n/2d+1)
h

)
bits. We will construct α simplicial complexes, all with

the same set P of n vertices, the same dimension d, and with exactly k maximal simplices.
Then, we will have two different complexes, say K and K ′, encoded by the same word. But,
by the construction of these complexes, there is a simplex which is in K and not in K ′. J

Theorem 1 applies particularly to the case of pseudomanifolds of fixed dimension where
we have k ≤ n d2 (i.e. ε = 1

2 suffices) [6]. The case where d is small is important in Manifold
Learning where it is usually assumed that the data live close to a manifold of small intrinsic
dimension. The dimension of the simplicial complex should reflect this fact and ideally be
equal to the dimension of the manifold.

3 Compression of the Simplex Tree

Let K ∈ K(n, k, d,m) be a simplicial complex whose vertices are labeled from 1 to n and
ordered accordingly. We can thus associate to each simplex of K a word on the alphabet set
{1, . . . , n}. Specifically, a j-simplex of K is uniquely represented as the word of length j + 1
consisting of the ordered set of the labels of its j+ 1 vertices. Formally, let σ = {v`0 , . . . , v`j}
be a simplex, where v`i are vertices of K and `i ∈ {1, . . . , n} and `0 < · · · < `j . σ is
represented by the word [σ] = [`0, · · · , `j]. The simplicial complex K can be defined as a
collection of words on an alphabet of size n. To compactly represent the set of simplices of
K, the corresponding words are stored in a tree and this data structure is called the Simplex

J.-D. Boissonnat, Karthik C. S., and S. Tavenas 645

X

1 2 3 4 5 6

3 4 5 6 3 4 5 4 5 6 5

4 5 6 5 4 5 5 5

5 5

Figure 2 Simplex Tree of the simplicial complex in Figure 1.

X

1 2

3 3

4 6

5

Figure 3 Compressed Sim-
plex Tree of the Simplex Tree
given in Figure 2.

Tree of K and denoted by ST(K) or simply ST when there is no ambiguity. It may be seen
as a trie on the words representing the simplices of the complex. The depth of the root is 0
and the depth of a node is equal to the dimension of the simplex it represents plus one.

We give a constructive definition of ST. Starting from an empty tree, insert the words
representing the simplices of the complex in the following manner. When inserting the word
[σ] = [`0, · · ·, `j] start from the root, and follow the path containing successively all labels
`0, · · ·, `i, where [`0, · · ·, `i] denotes the longest prefix of [σ] already stored in the ST. Next,
append to the node representing [`0, · · ·, `i] a path consisting of the nodes storing labels
`i+1, · · ·, `j . In Figure 2, we give ST for the simplicial complex shown in Figure 1.

If K consists of m simplices (including the empty face) then, the associated ST contains
exactly m nodes. Thus, we need Θ(m logn) space/bits to represent ST (since each node
stores a vertex which needs Θ(logn) bits to be represented). We can compare this to the
lower bound of Theorem 1. In particular, if k = O(1) then, ST requires at least Ω(2d logn)
bits where as Theorem 1 proves the necessity of only Ω(d logn) bits. Therefore, while ST
is an efficient data structure for some basic operations such as determining membership of
a simplex and computing the r-skeleton of the complex, it requires storing every simplex
explicitly through a node, leading to combinatorial redundancy. To overcome this, we
compress ST as described below.

3.1 Compressed Simplex Tree

Consider the ST in Figure 2 and note that the parts marked in red appear twice. The goal of
the compression is to identify these common parts and store them only once. More concretely,
if the same subtree is rooted at two different nodes in ST, then the subtree is stored only once
and the two root nodes now point to the unique copy of the subtree. As a consequence, the
nodes are no longer in bijection with the nodes of the complex (as it was in the case of ST),
but we still have the property that the paths from the root are in bijection with the simplices.
We see in Figure 3, the compressed ST of the simplicial complex described in Figure 1. In
the rest of the paper, we denote by C, this action of compression. Also, unless otherwise
stated, |ST| and |C(ST)| refer to the number of edges in ST and C(ST) respectively.

Answering simplex membership queries and other queries that only require traversing
the ST from root to leaves can be implemented in C(ST) exactly as in ST [8]. Allowing
upward traversal in ST is also possible (with additional pointers from children to parents)
and this has been shown to improve the efficiency of some operations, such as face or coface
retrieval. In C(ST), parents are not unique. To account for this, we mark the parents that

SoCG’15

646 Building Efficient and Compact Data Structures for Simplicial Complexes

1
2 3 4 5

6

3 4 5
6 3 4 5 4 5 6 5

4
5

6 5 4 5 5 5

5 5

Figure 4 Simplex Automaton of the complex in
Figure 1.

1 2

3

4
5,6

3

4

5,6

3

4

5

4 4

5,6 5

Figure 5 Minimal Simplex Automa-
ton of the complex in Figure 1.

were accessed, and use this to go back in the upward direction. This implies an additional
storage of O(d logn) while traversing, but a node (simplex) having many parents can assist
to locate cofaces much faster.

Next, we will introduce an automaton perspective of the above compression and show
how to deduce the optimal compression algorithm for the ST. We will also describe insertion
and removal operations on C(ST) through the automaton perspective.

3.2 Minimal Simplex Automaton

A Deterministic Finite state Automaton (DFA) recognizing a language is defined by a set
of states and labeled transitions between these states to detect if a given word is in a
predefined language or not. ST can be seen as a DFA: let us define the set of m states by
V = {nodes of ST}. A transition from state u to state v is labeled by a if and only if there is
in ST an edge from u to v, and v contains the vertex a. We define the Simplex Automaton
of K (denoted by SA(K)) as the automaton described above (cf. Figure 4).

SA is basically the same data structure as ST except that the labels are not put on
the nodes but on the edges entering these nodes and thus, basic operations in SA can be
implemented as in ST. Also, by construction of SA, it is obvious that the number of states
and transitions of SA are equal to the number of nodes and edges in ST respectively.

It is known [19] that if a language L is regular (accepted by a DFA) then, L has a unique
minimal automaton. DFA minimization is the task of transforming a given DFA into an
equivalent DFA that has a minimum number of states. We represent the action of performing
DFA minimization byM. The compression of ST can be seen as DFA minimization since
merging identical subtrees corresponds to merging indistinguishable states in the automaton.
DFA minimization has been well studied. For instance, Hopcroft’s algorithm [17] minimizes
an automaton with m transitions over an alphabet of size n in O(m logm logn) steps and
needs at most O(m logn) space. This run-time is shown in [17] to be optimal over the set of
regular languages. Additionally, Revuz showed that acyclic automaton (which SA indeed is)
can be minimized in linear time [20]. For any K ∈ Kθ(n, k, d,m), let us define the minimal
simplex automaton (M(SA)) as the minimal deterministic automaton which recognizes the
language LKθ . In Figure 5, we give the minimal automaton for the complex of Figure 1.
Finally, it is possible to get C(ST) from M(SA) by duplicating states such that for each
node, the labels of all its incoming edges are the same and by moving the labels from the
edges to the next node. Now let us look at how to perform operations onM(SA).

J.-D. Boissonnat, Karthik C. S., and S. Tavenas 647

Operations on the Minimal Simplex Automaton

The set of all paths originating from the root are the same in both ST and M(SA). All
operations which involve only traversal along ST are performed with equal (if not better)
efficiency inM(SA) as, for every such operation on ST, we start by traversing from the root.
As an example, consider the operation of determining if a simplex σ is in the complex. Let
us adapt the algorithm described in [8] toM(SA). Note that there is a unique path from
the initial state which identifies σ inM(SA). If σ = v`0 − · · · − v`dσ , then from the initial
state we go through dσ + 1 states by following the transitions `0, . . . , `dσ in that order. If at
some point the requisite transition is not found then, declare that the simplex is not in the
complex. Hence, performing any static operation i.e. an operation where we don’t change
M(SA) in any way, can be carried out in very much the same way in both M(SA) and
ST, although it might be more efficient forM(SA) as discussed in subsection 3.1 for C(ST).
Addition and deletion of simplices can be trickier in M(SA) than in ST. We can always
expandM(SA) to SA, (locally) perform the operation and recompress. If the nature of the
operation is itself expensive (i.e. worst-case Ω(m)), then the worst-case cost does not change,
which is indeed the case for operations such as removal of a face and edge contraction.

We denote by |SA| and |M(SA)|, the number of states in SA andM(SA) respectively.
Analysis of |M(SA)| will be done in section 5, after introducing a new data structure in the
next section. This is done to put the impact of compression in better perspective.

4 Maximal Simplex Tree

We define the Maximal Simplex Tree MxST(K) as an induced subgraph of ST(K). All leaves
in the ST corresponding to maximal simplices and the nodes encountered on the path from
the root to these leaves are kept in the MxST and the remaining nodes are removed. Figure 6
shows the MxST of the simplicial complex given in Figure 1. In MxST(K), the leaves are in
bijection with the maximal simplices of K. Any path starting from the root provides the
vertices of a simplex of K. However, in general, not all simplices in K can be associated to a
path from the root in MxST(K).

X

1 2

3 3

4 6 4

5 5

Figure 6 Simplicial Complex of Fig-
ure 1 represented using Maximal Simplex
Tree.

Table 1 Cost of performing basic operations
on MxST.

Operation Cost
Identifying maximal co-
faces of simplex σ / Deter-
mining membership of σ

O(kd logn)

Insertion of a maximal sim-
plex σ

O(kdσ logn)

Removal of a face O(kd logn)
Elementary Collapse O(kd logn)
Edge Contraction Θ(kd logn)

We note that in MxST we add at most d+1 nodes per maximal simplex. Hence, MxST(K)
has at most k(d+ 1) + 1 nodes and at most k(d+ 1) edges (therefore requiring O(kd logn)
space). We denote by |MxST| the number of edges in MxST. Since MxST is a factor of
ST, the size of MxST is usually much smaller than the size of ST. Further, it always meets
the lower bound of Theorem 1, making it a compact data structure. We discuss below the
efficiency of MxST in answering queries.

SoCG’15

648 Building Efficient and Compact Data Structures for Simplicial Complexes

Operations on the Maximal Simplex Tree

In [8] some important basic operations (with appropriate motivation) have been discussed
for ST. We will bound now the cost of these operations using MxST. Note that any node
in MxST(K) has O(n) children and we can search for a particular child of a node in time
O(logn) (using red–black trees). We summarize in Table 1, the asymptotic cost of some
basic operations and note that it is already better than ST for some operations. Moreover,
we can augment the structure of MxST without paying a lot of extra storage space, so that
the above operations can be performed more efficiently. This is explained in section 6.

5 Results on Minimization of the Simplex Automaton

In this section we will see some results, both theoretical and experimental on the minimization
of SA, i.e. on the extent of compression of the Simplex Tree.

5.1 Bounds on the Number of States of the Minimal Simplex
Automaton

We observe below that the number of leaves in ST is large and grows linearly w.r.t. the
number of nodes in ST. The proof follows by a simple induction argument on n.

I Lemma 2. If K ∈ K(n, k, d,m) then, at least half the nodes of ST(K) are leaves.

Differently from ST,M(SA) has only one leaf. The following lemma shows thatM(SA)
has at most half the number of nodes of ST plus one (follows directly from Lemma 2).

I Lemma 3. For any K ∈ K(n, k, d,m),M(SA(K)) has at most m
2 + 1 states.

Similar toM(SA), we may defineM(MxSA(K)) as the minimal DFA which recognizes
only maximal simplices as words. Then the following inequality follows:

I Lemma 4. For any pure complex K ∈ K(n, k, d,m), |M(SA(K))| ≥ |M(MxSA(K))|.

Proof Sketch. Notice that every maximal simplex corresponds to a path of exactly d+ 1
transitions and vice versa. Therefore, if all transitions which do not take part in even a single
such path are removed, we would obtain the minimized maximal simplex automaton. J

In fact, one can prove that for a large class of simplices the equality does not hold. For
instance, consider K′ ⊂ K(n, k, d,m) such that for any K ∈ K′ we have that there exists two
maximal simplices which have different first letters (i.e. when the simplices are treated as
words) but have the same letter at position i, for some i that is not the last position. For
this subclass the equality does not hold. Observe also that Lemma 4 holds only for pure
simplicial complexes because, if all complexes were allowed, then we will have complexes like
in Example 5 where |M(SA(K))| < |M(MxSA(K))|.

I Example 5. Consider the simplicial complex on 7 vertices given by the following maximal
simplices: a 4-cell 1–2–3–6–7, two triangles 2–3–5 and 4–6–7 and an edge 4–5.

5.2 Conditions for Compression
We will first see a result guaranteeing compression regardless of the labeling of the vertices:

I Lemma 6. For any pure simplicial complex K ∈ K(n, k, d,m), we have that |M(SA)| is
always less than |SA| when k < d and d ≥ 2.

J.-D. Boissonnat, Karthik C. S., and S. Tavenas 649

Proof Sketch. Since d > k there should exist a free pair (τ, σ) such that τ is a maximal
simplex and such that the last two vertices of τ are in σ as well. If sτ and sσ are the states
recognizing the simplex τ and σ respectively in SA then, they are merged inM(SA). J

In fact, the above result is close to tight: in Example 11 we have a pure simplicial
complex with k = d and |ST| = |C(ST)|. Note that we analyze compression of ST rather than
minimization of SA, and we shall continue to do so through out this section because analyzing
ST provides better insight into the combinatorial structures which hinder compression.

Intuitively, it seems natural that if the given simplicial complex has a large number of
maximal simplices then, regardless of the labeling we should be able to compress some pairs
of nodes in MxST. However, Example 7 says otherwise.

I Example 7. Consider the simplicial complex on 2n vertices of dimension n/2 defined by
the set of maximal simplices given by:{

g(i) ∪ {gr(i) + n}
∣∣∣∣i ∈ {1, 2, . . . ,

(
n

n/2

)}
, r ∈ {1, 2, . . . , n/2}

}
where g is a bijective map from {1, 2, . . . ,

(
n
n/2
)
} to the set of all simplices on n vertices of

dimension n/2− 1 and gr corresponds to picking the rth vertex (in lexicographic order).

Here k = n
2
(
n
n/2
)
≈ 2n− 1

2
√
n/π and there is no compression in MxST. Also note that

|C(MxST)| < |MxST| does not imply |C(ST)| < |ST| as can be seen in Example 8.

I Example 8. Consider the simplicial complex on seven vertices given by the maximal
simplices: tetrahedron 1-2-4-6 and three triangles 2-4-5, 3-4-5 and 1-4-7.

In Example 11, we saw a simplicial complex of large dimension which cannot be compressed,
but this is due to the way the vertices were labeled. Now, we state a lemma which says that
there is always a labeling which ensures compression.

I Lemma 9. If Kθ ∈ K(n, k, d,m) with d > 1, then we can find a permutation π on
{1, 2, . . . , n} such that |M(SA(Kπ◦θ))| < |SA(Kπ◦θ)|.

We would have liked to obtain better bounds for the size ofM(SA) through conditions
just based on n, k, d and m, but sadly this is a hard combinatorial problem. Also, while
there is always a good labeling, we show in section 7 that it is NP-Hard to find it.

5.3 Experiments
We define two parameters here, ρST and ρMxST . The first is given by the ratio of |ST| and
|C(ST)| and the second by the ratio of |MxST| and |C(MxST)|.

Data Set 1: The set of points were obtained through sampling of a Klein bottle in R5 and
construct the Rips Complex (see [8] for definition) with parameter α using libraries provided
by the GUDHI project [16] on input of various values for α. We record in Table 2, |C(ST)|
and |C(MxST)| for the various complexes constructed.

First, observe that for this set of data, log k
logn is small (which is expected for Rips complexes)

and thus |MxST| would be considerably smaller than |ST|. Also, note that MxST hardly
compresses but as α increases, ρST increases quite fast. This indicates that compression
strongly exploits the combinatorial redundancy of ST (i.e. storing each simplex explicitly
through a node) in order to compress efficiently.

SoCG’15

650 Building Efficient and Compact Data Structures for Simplicial Complexes

Table 2 Analysis of experiments on Data Set 1.

No n α d k |ST| = m− 1 |MxST| |C(ST)| ρST |C(MxST)| ρMxST

1 10,000 0.15 10 24,970 604,572 96,104 218,452 2.77 90,716 1.06
2 10,000 0.16 13 25,410 1,387,022 110,976 292,974 4.73 104,810 1.06
3 10,000 0.17 15 27,086 3,543,582 131,777 400,426 8.85 123,154 1.07
4 10,000 0.18 17 27,286 10,508,485 149,310 524,730 20.03 137,962 1.08

Table 3 Analysis of experiments on Data Set 2.

No n p d k |ST| = m− 1 |MxST| |C(ST)| ρST |C(MxST)| ρMxST

1 25 0.8 17 77 315,369 587 467 537.3 121 4.85
2 30 0.75 18 83 4,438,558 869 627 7,079.0 134 6.49
3 35 0.7 17 181 3,841,590 1,592 779 4,931.4 245 6.50
4 40 0.6 19 204 9,471,219 1,940 896 10,570.6 276 7.03
5 50 0.5 20 306 25,784,503 2,628 1,163 22,170.7 397 6.62

Data Set 2: All experiments conducted above are for Rips complexes with d
n small. We

now check the extent of compression for simplicial complexes with large d
n . To the aim, we

look at flag complexes generated using a random graph Gn,p on n vertices where a pair of
vertices share an edge with probability p, and record in Table 3, |C(ST)| and |C(MxST)| for
the various complexes constructed.

Here we observe staggering values for ρST which only seems to grow as larger simplicial
complexes were constructed. This is primarily because random simplicial complexes don’t
behave like pathological simplicial complexes which hinder compression; it is rare that there
exists both large cliques and a large fraction of low dimensional maximal simplices.

6 Simplex Array List

In this section, we build a new data structure which is a hybrid of ST and MxST. The Simplex
Array List SAL(K) is a (rooted) directed acyclic graph on at most k

(
d(d+1)

2 + 1
)
nodes

with maximum out-degree d, which is obtained by modifying MxST or constructed from the
maximal simplices of K. Intuitively, SAL is representing K by storing all the edges of K
explicitly as nodes in SAL(K) and the edges in SAL(K) are used to capture the incidence
relations between simplices. More precisely, a path of length j in SAL(K) corresponds to a
unique j-simplex in K. We describe the construction of SAL below.

6.1 Construction
We will first see how to obtain SAL from MxST by performing three operations which we
define below.
1. Unprefixing (U): Excluding the root and the leaves, for every node v in MxST with

outdegree dv, duplicate it into dv nodes with outdegree 1, (one copy of v for each of its
children) by starting from the parents of the leaves and recursively moving up in the tree.

2. Transitive Closure (T): For every pair of nodes (u, v) in U(MxST) (u not being the
root), if there is a path from u to v, then add an edge from u to v in T (U(MxST)) (if it
doesn’t already exist).

3. Expanding Representation (R): For every node v in T (U(MxST)) with outdegree dv,
duplicate it into dv nodes with outdegree 1, i.e. one copy of v for each of its children, by

J.-D. Boissonnat, Karthik C. S., and S. Tavenas 651

X

1 1 1 1 1 2 2 2

3 3 3 3 3

4 6 4

5 5

Figure 7 Simplicial Complex
of Figure 1 represented using
R(T (U(MxST))).

0 1 2 3 4 5 6

(1,3,1)

(1,4,1)

(1,5,1)

(1,3,3)

(1,6,3)

(2,3,2)

(2,4,2)

(2,5,2)

(3,4,1)

(3,5,1)

(3,4,2)

(3,5,2)

(3,6,3)

(4,5,1)

(4,5,2)

(5,ϕ,1)

(5,ϕ,2) (6,ϕ,3)

A1

A2 A3

A4 A5 A6

Figure 8 Simplex Array List for complex in Figure 1
embedded on the number line.

starting from the children of the root and recursively moving down to children of smallest
label. Therefore, if we append i empty labels at the end of each maximal simplex, R
applied i times will give a graph where every node uniquely represents a i-simplex.

SAL can be seen as R(T (U(MxST))) and each node uniquely represents an edge in the
complex. Figure 7 shows R(T (U(MxST))) of the simplicial complex given in Figure 1.

We will now see an equivalent construction of SAL from its maximal simplices and
it is this construction we will use to perform operations. For a given maximal simplex
σ = v`0 · · ·v`j , associate a unique key between 1 and k generated using a hash function H and
then introduce j(j+1)

2 + 1 new nodes in SAL. We build a set of j(j+1)
2 + 1 labels and assign

uniquely a label to each node. The set of labels is defined as the union of the following two
sets: S1 = {(`i, `i′ ,H(σ)) | i ∈ {0, 1, . . . , j − 1}, i′ ∈ {i+ 1, . . . , j}} and S2 = {(`j , ϕ,H(σ))},
where ϕ denotes an empty label (cf. Figure 8 for an example). We introduce an edge
from node with label (`p, `p′ ,H(σ)) to node with label (`q, `q′ ,H(σ)) if and only if p′ = q.
Additionally, we introduce an edge from every node with label (`p, `j ,H(σ)) in S1 to the
node with label (`j , ϕ,H(σ)) in S2. Thus, in SAL we represent a maximal j-simplex using a
connected component containing |S1|+ |S2| = j(j+1)

2 + 1 nodes and j(j2+5)
6 directed edges.

To perform basic operations efficiently, we embed SAL on the number line such that for every
i ∈ {1, 2, . . . , n} on the number line we have an array Ai of nodes which has labels of the
form (i, i′, z) for some z ∈ {1, . . . , k} and i′ ∈ {i+ 1, . . . , n, ϕ}. Sort each Ai based on i′ and
in case of ties, sort them based on z.

If the root is removed in R(T (U(MxST))), the graph we get is the same as the
one described in the previous paragraph. Labels (as described above) for the nodes in
R(T (U(MxST))) can be easily given by just looking at the vertex represented by the node,
and its children. Further, the number of nodes and number of edges in SAL are both invariant
over the labeling of the vertices because SAL is constructed from U(MxST).

6.2 Some Observations about the Simplex Array List

SAL(K) has at most k
(
d(d+1)

2 + 1
)
nodes. Also, for each maximal simplex of dimension dσ,

the outdegree of any node in the connected component corresponding to the maximal simplex,
is at most dσ. Therefore, the total number of edges in SAL(K) is at most k

(
d2(d+1)

2 + d
)
.

SoCG’15

652 Building Efficient and Compact Data Structures for Simplicial Complexes

Hence, the space required to store SAL(K) is O(kd3 logn). Also, unless otherwise stated
|SAL| refers to number of edges in SAL.

We now see that, differently from MxST, the simplices of K are all associated with paths
in SAL(K). We say a path p is associated to a simplex σ if the sequence of numbers obtained
by looking at the corresponding nodes which are embedded on the number line along p are
exactly the labels of the vertices of σ in lexicographic order.

I Lemma 10. Any path in SAL(K) is associated to a simplex of K and any simplex of K
is associated to at least one such path.

Observe that several paths can provide the same simplex since a simplex may appear in
several maximal simplices. Hence, the vertices of a given simplex cannot be accessed in a
deterministic way. The previous lemma together with this observation implies that SAL is a
non-deterministic finite automaton (NFA). NFA are a natural generalization of DFA. The
size of a NFA is smaller than that of a DFA detecting the same language, but the operations
on NFA take in general more time. We demonstrate the above fact using Example 11.

I Example 11. Let K ∈ K(2k + 1, k, k,m) be defined on the vertices {1, . . . , 2k + 1} and
the set of maximal simplices be given by {({1, . . . , k + 1} \ {i}) ∪ {k + 1 + i} | 1 ≤ i ≤ k}.

Thus SAL(K) has k2(k+1)
2 + k nodes whileM(SA(K)) has at least 2k states (all states

reached after reading the words s ⊆ {1, . . . , k} are pairwise distinct). Moreover, this motivates
the need for considering SAL overM(SA), as the gap in their sizes can be exponential.

Building SAL(K) can be seen as partially compressing the ST(σ) associated to each
maximal simplex σ (where σ and its subfaces are seen as a subcomplex). Compressing
ST(σ) will lead to a subtree which is exactly the same as the transitive closure of MxST(σ).
Therefore, collecting all C(ST)(σ) for all maximal simplices σ and merging the roots is the
same as T (U(MxST(K))). Now applying R on T (U(MxST(K))) can be seen as an act of
uncompression. We apply R once to ensure that for every node, all its children represent
the same vertex and thus belong to the same Ai. If R is applied multiple times then, it is
equivalent to duplicating nodes (seen as an act of uncompression) to get all children of a
node closer together inside Ai. Next, we discuss below how to perform operations in SAL at
least as efficiently as in ST.

6.3 Operations on the Simplex Array List
Let us now analyze the cost of performing basic operations on SAL (the motivation behind
these operations are well described in [8]). Denote by Γj(σ, τ) the number of maximal
simplices that contain a j-simplex τ which is in σ. Define Γj(σ) = max

τ
Γj(σ, τ) and

Γj = max
σ∈K

Γj(σ). It is easy to see that k ≥ Γ0 ≥ Γ1 ≥ · · · ≥ Γd = 1. In the case of SAL,
we are interested in the value of Γ1 which we use to estimate the worst-case cost of basic
operations in SAL.

Membership of Simplex. To determine membership of σ = v`0 · · ·v`dσ in K, first determine
the contiguous subarray of A`0 , . . . , A`dσ , say B`0 , . . . , B`dσ such that every B`i contains all
nodes with labels of the form (`i, `i+1, z), for some z (B`i ’s indeed form a contiguous subarray
because of the way elements in A`i were sorted). We emphasize here that we determine each
B`i only by its starting and ending location in A`i and do not explicitly read the contents of
each element in B`i . Thus, if P is a projection function such that P ((`i, `i+1, z)) = z then, we
see each P (B`i) as a subset of {1, . . . , k} because the only part of the label that distinguishes

J.-D. Boissonnat, Karthik C. S., and S. Tavenas 653

two elements in B`i is the hash value of the maximal simplex. Now we have σ ∈ K if and
only if ∩

0≤i≤dσ
P (B`i) 6= ∅. This is because if σ ∈ K then, from Lemma 10 there should exist

a path corresponding to this simplex which would imply ∩
i
P (B`i) 6= ∅, and if m ∈ ∩

i
P (B`i),

then σ is a face of m. Computing the intersection can be done in O(γdσ log ζ) time, where
γ = min

i
|B`i | and ζ = max

i
|A`i |. Computing the subarrays can be done in O(dσ log ζ) time.

Thus total running time is O(dσ(γ log ζ + log ζ)) = O(dσΓ1 log(kd)).

For example, consider the SAL of figure 8 and the task of checking membership of σ =
2− 3− 5 in the complex of figure 1. Then, we have B2 = {(2, 3, 2)}, B3 = {(3, 5, 1), (3, 5, 2)},
and B5 = {(5, ϕ, 1), (5, ϕ, 2)}. We see each P (Bi) as a subset of {1, 2, 3} as follows: P (B2) =
{2}, P (B3) = {1, 2}, and P (B5) = {1, 2}. Clearly ∩

i
P (Bi) = {2} and σ is indeed a face of

the second maximal simplex 2− 3− 4− 5.

Insertion. Suppose we want to insert a maximal simplex σ then, building a connected
component takes time O(d3

σ). Updating the arrays Ai takes time O(d2
σ log ζ). Next, we have

to check if there exist maximal simplices in K which are now faces of σ, and remove them.
We consider every edge σ∆ in σ and compute Z∆ the set of all maximal simplices which
contain σ∆ (which can be done in time O(d3

σΓ1 log(kd))). Then, we compute ∪
σ∆∈σ

Z∆ whose

size is at most d2
σΓ1 and check if any of these maximal simplices are faces in σ (can be done

in O(d3
σΓ1) time). To remove all such faces of σ which were previously maximal takes at the

most O(d4
σΓ1) time. Therefore, total time for insertion is O(d3

σΓ1(dσ + log(kd))).

Removal. To remove a face σ, obtain the maximal simplices which contain it (can be done
in O(dσΓ1 log(kd)) time) and for each of them make dσ copies of the connected component,
and in the ith copy delete all nodes with label (σi, x, y) for some x, y, and where σi denotes
the label of the ith vertex of σ. Thus, the total running time is O(dσd3Γ1 log(kd)).

Elementary Collapse. Given a pair of simplices (σ, τ), first check if it is a free pair. This is
done by obtaining a list of all maximal simplices which contain σ, through a membership
query (costs O(dσΓ1 log(kd)) time) and then checking if τ is the only member in that list.
If yes, remove σ (and add its facets). This takes time O(d4

σ). Thus, total running time is
O(dσ(d3

σ + Γ1 log(kd))).

Edge Contraction. Here we cannot do better than rebuilding the entire SAL (as in MxST)
and therefore the cost of the operation is O(kd3). However, it’s not really bad as size of SAL
is already smaller than the size of ST which takes time proportional to O(md+ k2d logn) to
perform edge contraction.

We summarize in Table 4 the asymptotic cost of the basic operations discussed above
and compare it with ST and MxST, through which the efficiency of SAL is established.

Filtration. We know from Lemma 10 that to every simplex in the complex, we can associate
a set of paths in SAL. This can be used to store filtration in some cases. However, if a data
structure needs to support all possible filtrations then, it can be provably shown that there

∗ We would like to recapitulate here the lower bound from Theorem 1 of Ω(kd logn).
† The space needed to represent ST is Θ(m logn) which is written as O(k2d logn) to help in comparison.

SoCG’15

654 Building Efficient and Compact Data Structures for Simplicial Complexes

Table 4 Cost of performing basic operations on SAL in comparison with ST and MxST.

ST MxST SAL
Storage∗ O(k2d logn)† O(kd logn) O(kd3(logn+ log k))
Membership of a simplex σ O(dσ logn) O(kd logn) O(dσΓ1 log(kd))
Insertion of a maximal simplex σ O(2dσdσ logn) O(kdσ logn) O(d3

σΓ1(dσ + log(kd)))
Removal of a face O(m logn) O(kd logn) O(dσd3Γ1 log(kd))
Elementary Collapse O(2dσ logn) O(kd logn) O(dσ(d3

σ+Γ1 log(kd2)))
Edge Contraction O(k2d logn) O(kd logn) O(kd3)

Table 5 Values of Γ0, Γ1, Γ2, and Γ3 for the simplicial complexes generated from Data Set 1.

No n α d k m Γ0 Γ1 Γ2 Γ3 |SAL|
1 10,000 0.15 10 24,970 604,573 62 53 47 37 424,440
2 10,000 0.16 13 25,410 1,387,023 71 61 55 48 623,238
3 10,000 0.17 15 27,086 3,543,583 90 67 61 51 968,766
4 10,000 0.18 17 27,286 10,508,486 115 91 68 54 1,412,310

is no better way to do so, than by storing the filtration value explicitly for each simplex in
the complex. Therefore one cannot hope to find a more compact representation than ST in
order to support all possible filtrations.

Performance of SAL. Plainly, if the number of maximal simplices is small (i.e. can be
treated as a constant), SAL and MxST are very efficient data structures and this is indeed
the case for a large class of complexes encountered in practice as discussed in section 2.

Remarkably, even if k is not small but d is small then, SAL is a compact data structure
as given by the lower bound in Theorem 1. This is because O(kd3(logn+ log k)) bits are
sufficient to represent SAL and the lower bound is met when d is fixed (as it translates to
needing O(k logn) bits to represent SAL). Also, it is worth noting here that Γ0 is usually a
small fraction of k and since Γ1 is at most Γ0, the above operations are performed considerably
faster than in MxST where almost always the only way to perform operations is to traverse
the entire tree. Indeed SAL was intended to be efficient in this regard as even if k is not
small the construction of SAL replaces the dependence on k by a dependence on a more local
parameter Γ1 that reflects some “local complexity” of the simplicial complex. As a simple
demonstration, we estimated Γ0,Γ1,Γ2, and Γ3 for the simplicial complexes of Data Set 1
(see section 5.3). These values are recorded in Table 5.

It is interesting to note that |SAL| is larger than |C(ST)| but much smaller than |ST|.
This is expected, as SAL promises to perform basic operations more efficiently than ST while
compromising slightly on size. Further our intuition as described previously was that Γ0
should be much smaller than k, and this is supported by the above results. Also, we note
that for larger simplicial complexes such as complexes No 3 and 4, there is a significant gap
between Γ0 and Γ1. Since complexity of basic operations using SAL is parametrized by Γ1
(and not Γ0), the above results support our claim that SAL is an efficient data structure.

Local Sensitivity of Simplex Array List. We note here that while the cost of basic operations
are bounded using Γ1, we could use local parameters such as γ and Z∆ (see previous
paragraphs on Membership of Simplex and Insertion for definition) to get a better estimate

J.-D. Boissonnat, Karthik C. S., and S. Tavenas 655

on the cost of these operations. γ captures local information about a simplex σ sharing an
edge with other maximal simplices of the complex. More precisely, it is the minimum, over
all edges of σ, of the largest number of maximal simplices that contain the edge. If σ has
an edge which is contained in a few maximal simplices then, γ is very small. Z∆ captures
another local property of a simplex σ – the set of all maximal simplices that contain the
edge σ∆. Therefore, SAL is indeed sensitive to the local structure of the complex.

7 Labeling Dependency

In this section, we discuss how the labeling of the vertices affects the size of the data structures
discussed in this paper. In particular, both MxST andM(SA) are not label invariant like
ST and SAL. To see this, consider a simplicial complex which contains a maximal triangle
and a maximal tetrahedron, sharing an edge. We could label the triangle and tetrahedron as
1–2–3 and 1–2–4–5, or as 1–3–4 and 2–3–4–5 respectively. Note that the two labelings give
twoM(SA) (and MxST) of different sizes. We skip all the proofs in this section and instead
direct the reader to the full version of the paper [7].

First, we formalize the label ordering problem on MxST (and C(MxST), C(ST), and
M(SA)) as follows: Given an integer α and a simplicial complex Kθ ∈ Kθ(n, k, d,m), does
there exist a permutation π of 1, 2, . . . , n such that |MxST(Kπ◦θ)| ≤ α (similarly we ask
|C(MxST(Kπ◦θ))| ≤ α, |C(ST(Kπ◦θ))| ≤ α, and |M(SA(Kπ◦θ))| ≤ α)? Let us refer to this
problem as MxSTMINIMIZATION(Kθ, α) (similarly we have CMxSTMINIMIZATION(Kθ, α),
CSTMINIMIZATION(Kθ, α), and MSAMINIMIZATION(Kθ, α)). We have the following results:

I Theorem 12 ([9]). MxSTMINIMIZATION is NP-Complete.

I Theorem 13. CMxSTMINIMIZATION, CSTMINIMIZATION, and MSAMINIMIZATION are
all NP-Complete.

8 Discussion and Conclusion

In this paper, we introduced a compression technique for the Simplex Tree without com-
promising on functionality. Additionally, we have proposed two new data structures for
simplicial complexes – the Maximal Simplex Tree and the Simplex Array List. We observed
that the Minimal Simplex Automaton is generally smaller than the Simplex Automaton.
Further, we showed that the Maximal Simplex Tree is compact and that the Simplex Array
List is efficient (and compact when d is fixed). This is summarized in Table 4.

The transitive closure of MxST may have a node, with as many as kd outgoing edges
to neighbors containing the same label. SAL reduces the number of outgoing edges to
such neighbors with the same label from kd to d, making it much more powerful. In short,
it reduces the non-determinism of their equivalent automaton representation. Also, most
complexes observed in practice have k to be a low degree polynomial in n. Example 11
and Lemma 6 both deal with complexes where k is small. Further, all hardness results in
section 7 are for complexes of dimension at most 2. Thus, complexes where either k or d is
small are interesting to study and for these cases, SAL is very efficient.

Trie Compression, like that ofM(SA), are efficient techniques when the trie is assumed to
be static. However, over the last decade, this has been extended using Dynamic Minimization
– the process of maintaining an automaton minimal when insertions or deletions are performed.
This has been well studied in [21], and extended to acyclic automata in [12] which would be
of particular interest to us.

SoCG’15

656 Building Efficient and Compact Data Structures for Simplicial Complexes

Another direction, is to look at approximate data structures for simplicial complexes, i.e.
we store almost all the simplices (introducing an error) and gain efficiency in compression (i.e.
little storage). This is a well explored topic in automata theory called hyperminimization
[18] and since our language is finite, k−minimization [5] and cover automata [10] might give
efficient approximate data structures by hyperminimizing SA.

Theorem 13 provides a new dimension to the hardness results obtained by Comer and
Sethi in [11]. It would be worth exploring this direction further. Also, it would be interesting
to find approximation algorithms for MSAMINIMIZATION. Finally proving better bounds
on extent of compression remains an open problem and may be geometric constraints will
eliminate pathological examples which hinder in proving good bounds on compression.

Acknowledgement. We would like to thank Eylon Yogev for helping with carrying out
some experiments.

References
1 A. Acharya, H. Zhu, and K. Shen: Adaptive Algorithms for Cache-efficient Trie Search, In

Workshop on Algorithm Engineering and Experimentation ALENEX 99, Baltimore, 1999.
2 A. Andersson and S. Nilsson: Improved Behaviour of Tries by Adaptive Branching, In

Information Processing Letters, Vol 46, pages 295–300, 1993.
3 A.W. Appel and G. J. Jacobson: The world’s fastest scrabble program, In Communications

of the ACM, Vol 31, 1988.
4 D. Attali, A. Lieutier, and D. Salinas: Efficient data structure for representing and simpli-

fying simplicial complexes in high dimensions. In International Journal of Computational
Geometry and Applications, 22(4), pages 279–303, 2012.

5 A. Badr, V. Geffert, and I. Shipman: Hyper-minimizing minimized deterministic finite
state automata. In RAIRO Theoretical Informatics and Applications, pages 69–94, 2009.

6 L. J. Billera and A. Björner: Face numbers of polytopes on complexes. In Handbook of
Discrete and Computational Geometry, CRC Press, pages 291–310, 1997.

7 J.-D. Boissonnat, Karthik C. S., and S. Tavenas: Building efficient and compact data struc-
tures for simplicial complexes. http://arxiv.org/abs/1503.07444.

8 J.-D. Boissonnat and C. Maria: The Simplex Tree: An Efficient Data Structure for General
Simplicial Complexes. In Algorithmica 70(3), pages 406–427, 2014.

9 J.-D. Boissonnat and D. Mazauric: On the complexity of the representation of simplicial
complexes by trees. http://hal.inria.fr/hal-01089846

10 C. Câmpeanu, N. Sântean, and S. Yu: Minimal cover-automata for finite languages. In
Theoretical Computer Science 267(1–2), pages 3–16, 2001.

11 D. Comer and R. Sethi: Complexity of Trie Index Construction, In Proceedings of Founda-
tions of Computer Science, pages 197-207, 1976.

12 J. Daciuk, S. Mihov, B. Watson, and R. Watson: Incremental construction of minimal
acyclic finite-state automata. In Comput. Linguist., Volume 26, pages 3–16, 2000.

13 D. Eppstein, M. Löffler, and D. Strash: Listing All Maximal Cliques in Sparse Graphs in
Near-Optimal Time, In ISAAC (1), pages 403–414, 2010.

14 M. Golumbic: Algorithmic Graph Theory and Perfect Graphs. In Academic Press, 2004.
15 M. Grohe, S. Kreutzer, and S. Siebertz: Characterisations of Nowhere Dense Graphs, In

FSTTCS 13, pages 21–40, 2013.
16 GUDHI – Geometric Understanding in Higher Dimenions. https://project.inria.fr/

gudhi/
17 J. Hopcroft: An n log n algorithm for minimizing states in a finite automaton. In Theory

of machines and computations, pages 189–196, 1971.

http://arxiv.org/abs/1503.07444
http://hal.inria.fr/hal-01089846
https://project.inria.fr/gudhi/
https://project.inria.fr/gudhi/

J.-D. Boissonnat, Karthik C. S., and S. Tavenas 657

18 A. Maletti: Notes on hyper-minimization. In Proceedings 13th International Conference
Automata and Formal Languages, pages 34–49, 2011.

19 A. Nerode: Linear Automaton Transformations, In Proceedings of the American Mathe-
matical Society, Volume 9, pages 541–544, 1958.

20 D. Revuz: Minimisation of acyclic deterministic automata in linear time, In Theoretical
Computer Science, Volume 92, Issue 1, pages 181–189, 1992.

21 K. Sgarbas, N. Fakotakis, and G. Kokkinakis: Optimal insertion in deterministic DAWGs.
In Theoretical Computer Science, pages 103–117, 2003.

SoCG’15

Shortest Path to a Segment and Quickest
Visibility Queries
Esther M. Arkin1, Alon Efrat2, Christian Knauer3,
Joseph S. B. Mitchell1, Valentin Polishchuk4, Günter Rote5,
Lena Schlipf 5, and Topi Talvitie6

1 Department of Applied Math and Statistics, Stony Brook University, USA
2 Department of Computer Science, the University of Arizona, USA
3 Institute of Computer Science, Universität Bayreuth, Germany
4 Communications and Transport Systems, ITN, Linköping University, Sweden
5 Institute of Computer Science, Freie Universität Berlin, Germany
6 Department of Computer Science, University of Helsinki, Finland

Abstract
We show how to preprocess a polygonal domain with a fixed starting point s in order to answer
efficiently the following queries: Given a point q, how should one move from s in order to see q
as soon as possible? This query resembles the well-known shortest-path-to-a-point query, except
that the latter asks for the fastest way to reach q, instead of seeing it. Our solution methods
include a data structure for a different generalization of shortest-path-to-a-point queries, which
may be of independent interest: to report efficiently a shortest path from s to a query segment
in the domain.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases path planning, visibility, query structures and complexity, persistent
data structures, continuous Dijkstra

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.658

1 Introduction

Finding shortest paths is a classical problem in computational geometry, and efficient
algorithms are known for computing the paths both in simple polygons and polygonal
domains with holes; see [33, 34] for surveys. In the query version of the problem one is given
a fixed source point s in the domain, and the goal is to preprocess the domain so that the
length of a shortest path from s to a query point q can be reported efficiently. The problem
is solved by building the shortest path map (SPM) from s – the decomposition of the free
space into cells such that for all points q within a cell the shortest s-q path is combinatorially
the same, i.e., traverses the same sequence of vertices of the domain.

The query in the shortest path problem can be stated as

Shortest path query: Given a query point q lying in the free space, how should one
move, starting from s, in order to reach q as soon as possible?

Queries like this arise in surveillance and security, search and rescue, aid and delivery, and
various other applications of the shortest path problem. In this paper we introduce and
study a related problem that has a very similar query:

Quickest visibility query (QVQ): Given a query point q lying in the free space, how
should one move, starting from s, in order to see q as soon as possible?

© Esther M. Arkin, Alon Efrat, Christian Knauer, Joseph S. B. Mitchell, Valentin Polishchuk,
Günter Rote, Lena Schlipf, Topi Talvitie;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Eds.: Lars Arge and János Pach; pp. 658–673

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.658
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

E.M. Arkin et al. 659

Such a query may be natural in applications in which it is important to see (or become
seen by) the query point – for inspection purposes, for coming within a shooting range,
for establishing communication, etc. In contrast with shortest path queries, such quickest
visibility queries have not been studied before, with the single exception of [28] where the
problem was considered in simple polygons (in Section 5 we give improved results for this
important special case).

The other variant of the shortest path query problem, which we consider in this paper,
deals with segments instead of points as query objects:

Shortest path to a segment query (SPSQ): Given a query segment ab lying in the
free space, how should one move, starting from s, in order to reach ab as soon as
possible?

To our knowledge such queries have not been studied before. We show that in nearly-quadratic
time a nearly-quadratic-size data structure can be built to answer SPSQ in polylogarithmic
time (logarithmic-time query can be achieved with nearly-cubic preprocessing time and
space). We apply SPSQ as a subroutine in an algorithm for QVQ: given the query point q in
an instance of QVQ, build the visibility polygon of q and use SPSQ for each “window” (edge
running through the free space) of the polygon to choose the best window through which q
can be seen.

1.1 Notation
Let D denote the given polygonal domain; let n, h be the number of vertices and holes of
D, respectively. Assume that no two vertices of D have the same x- or y-coordinate. Two
points p, q ∈ D see each other if the segment pq fully belongs to the domain (we consider
D as a closed set, so that pq may go through a vertex of D or otherwise overlap with the
boundary of the domain). Let E be the size of the visibility graph of D – the graph on
vertices of D with edges between pairs of mutually visible vertices (i.e., pairs of vertices that
can be connected with a single link). We also introduce an additional definition related to
“3-link visibility” between vertices of D: let Πbe the number of pairs of vertices that can be
connected by a right-turning 3-link path that makes 90o turns at both of its bends (refer to
Fig. 3).

Let P, S, Q denote the preprocessing time, size of the built data structure and query
time, respectively, for an algorithm for answering quickest visibility queries (QVQ) in D.
The query point will be generally denoted by q. Let V (q) denote the visibility polygon of
q (the set of points seen by q); let K denote the complexity (the number of sides) of V (q).
We use Pv, Sv, Qv to denote the preprocessing time, size of the structure and query time
for an algorithm for the problem of building V (q). Finally, we denote by Ps, Ss, Qs the
corresponding parameters of an algorithm for SPSQ – the problem of reporting length of the
shortest path to a query segment lying in D.

Slightly abusing the terminology, we will not differentiate between the two variants of path
queries: reporting the length of the optimal path and outputting the path itself; similarly to
other path query problems, the latter can usually be done straightforwardly (by following
back pointers) in additional time proportional to the combinatorial complexity of the path.

1.2 Related work
A shortest path between two points in a simple polygon (h = 0) can be found in linear time
[7, 30]. The query version (i.e., building the SPM) can be solved within the same time [19];

SoCG’15

660 Shortest Path to a Segment and Quickest Visibility Queries

using the SPM, the length of the (unique) shortest path to a query point can be reported in
time O(logn).

For polygons with holes the continuous Dijkstra paradigm [32] leads to an O(n logn)
time algorithm [25] for building the SPM, by propagating a wave (which we call the p-wave)
from s through the free space at unit speed, so that the points reached by the wavefront at
any time τ are exactly the points at geodesic distance τ from s (see, e.g., Fig. 4 where gray
shows the area covered by the p-wave, and Fig. 6 (left), where the p-wave is blue). At any
time during the propagation, the wavefront consists of a sequence of wavelets – circular arcs
centered on vertices of D, called generators of the wavelets; the radius of each arc grows at
unit speed. Boundaries between adjacent wavelets trace edges of the SPM (the edges are
called bisectors, and are further classified in [13] as “walls” and “windows”1 depending on
whether there exist two homotopically distinct shortest paths to points on the bisector); this
way the algorithm also builds the SPM which allows one to answer the shortest path queries
in O(logn) time per query. Vertices of the SPM are vertices of D and triple points, at which
three edges of the map meet (w.l.o.g. four edges of SPM never meet at the same point); the
overall complexity of the SPM is linear [25]. Using the continuous Dijkstra method, the
quickest way to see a point and the shortest path to a segment (i.e., solutions to single-shot,
non-query versions of QVQ and SPSQ) can be found in O(n logn) time by simply declaring
V (q) and the segment as obstacles and waiting until the p-wave hits them.

Computing visibility from a point was first studied in simple polygons, for which an
O(n)-time solution was given already in 1987 [27]. For polygons with holes an optimal,
O(n+h log h)-time algorithm was presented by Heffernan and Mitchell [23]. The query version
of the problem has been well studied too: For simple polygons Guibas, Motwani and Raghavan
[20] and Bose, Lubiw and Munro [3] gave algorithms with Pv = O(n3 logn), Sv = O(n3) and
Qv = O(logn+K); Aronov, Guibas, Teichman and Zhang [2] achieve Pv = O(n2 logn), Sv =
O(n2) and Qv = O(log2 n+K). For polygons with holes Zarei and Ghodsi [42] achieve Pv =
O(n3 logn), Sv = O(n3),Qv = O(K + min(h,K) logn); Inkulu and Kapoor [26] combine and
extend the approaches from [42] and [2] presenting algorithms with several tradeoffs between
Pv, Sv and Qv, in particular, with Pv = O(n2 logn),Sv = O(n2),Qv = O(K log2 n) (see also
[9], as well as [31] giving Pv = O(n2 logn), Sv = O(n2),Qv = O(K + log2 n+ h log(n/h))). A
recent paper by Bunqui et al. [4] reports on practical implementation of visibility computation
in an upcoming CGAL [6] package.

More generally, both visibility and shortest paths computations are textbook subjects
in computational geometry – see, e.g., the respective chapters in the handbook [17] and
the books [38, 15]. Visibility meets path planning in a variety of geometric computing
tasks. Historically, the first approach to finding shortest paths was based on searching the
visibility graph of the domain. Visibility is vital also in computing minimum-link paths, i.e.,
paths with fewest edges [37, 41, 36]. Last but not least, “visibility-driven” route planning
is the subject in watchman route problems [5, 12, 35, 39, 11] where the goal is to find the
shortest path (or a closed loop) from which every point of the domain is seen. Apart from
the above-mentioned theoretical considerations, visibility and motion planning are closely
coupled in practice: computer vision and robot navigation go hand-in-hand in many courses
and real-world applications.

Reporting optimal paths to non-point query objects has not received much attention; we

1 We admit that the term “window” is overused, since it also denotes edges of the visibility polygon V (q).
Still, our two different usages of the term are well separated in the text, and are always apparent from
the context.

E.M. Arkin et al. 661

are aware of work only for simple polygons. For efficient (logarithmic-time) queries between
two convex polygons within a simple polygon, preprocessing can be done in linear time for
Euclidean distances [10] and cubic time (and space) for link distance [1, 10].

On the specific problem of quickest visibility queries addressed in this paper, Khosravi
and Ghodsi [28] considered QVQs in simple polygons. They gave an algorithm for quickest
visibility with logarithmic-time queries after quadratic-time preprocessing for building a
quadratic-size structure: P = O(n2), S = O(n2),Q = O(logn). We improve the preprocessing
and storage to linear, achieving P = O(n),S = O(n),Q = O(logn) for simple polygons
(Section 5).

1.3 Overview of the results

We start by giving a conditional lower bound connecting P and Q: Section 2 shows
that 3SUM on n numbers can be solved in time O(P + nQ). For instance subquadratic
preprocessing time (P = o(n2)) and sublinear query time (Q = o(n)) would lead to a
subquadratic-time algorithm for 3SUM (see [18] for a recent major breakthrough on the
3SUM problem). The lower bound provides us with some justification for not obtaining
sub-quadratic preprocessing time P for the QVQ. (Also more broadly, solutions to visibility
and/or closely related link-distance query problems often use cubic-time preprocessing
[42, 1, 10].)
Section 3 employs the following natural approach to quickest visibility query.
(1) Build the visibility polygon V (q) of the query point q; V (q) is a star-shaped polygon

any side of which is either a piece of a boundary edge of D, or is a window – extension
of the segment qv for some vertex v of D.

(2) For each window find the shortest path from s to the window, and choose the best
window to go to.

The approach leads to an algorithm for QVQ with P = Pv +Ps, S = Sv +Ss,Q = Qv +KQs
(refer to Section 1.1 for the notation). Problem (1) – building V (q) – has been well studied
(refer to Section 1.2 for the known bounds on Pv, Sv and Qv). On the contrary, problem (2)
– building a shortest path map for segments – has not been studied before. In Section 3.2
we give the first results for shortest path to a segment query (which we abbreviated
SPSQ above) achieving Ps = O(n3 logn),Ss = O(n3 logn),Qs = O(logn). Our solution
is based on first designing a data structure for horizontal segments (Section 3.1) with
Ps = O(n logn),Ss = O(n logn),Qs = O(logn) – a result which may be interesting
in its own right. The data structure for SPSQ for arbitrary segments is then built
straightforwardly since there are O(n2) combinatorially different orientations: the data
structure for arbitrarily oriented segments is thus just an O(n2)-fold replication of
the structure for horizontal ones (we also give bounds in terms of sizes, E and Π, of
visibility structures in D). Alternatively, in Section 3.3 we give an algorithm with
Ps = O(n2 logn),Ss = O(n2 logn),Qs = O(log2 n) based on storing “snapshots” of the
p-wave propagation in the continuous Dijkstra.
In Section 4 we introduce the full Quickest Visibility Map (QVM) – the decomposition of
D into cells such that within each cell the quickest visibility query has combinatorially
the same answer: the shortest path to see any point within a cell goes through the same
sequence of vertices of D. Our algorithm for building the map has P = O(n8 logn),S =
O(n7),Q = O(logn). We also observe that the QVM has Ω(n4) complexity.
In Section 5 we consider the case when D is a simple polygon. We give linear-size
data structures that can be constructed in linear time, for answering QVQs and SPSQs

SoCG’15

662 Shortest Path to a Segment and Quickest Visibility Queries

l1 l2 l3

L1

s

L2 L3

a qp2p1

b

Figure 1 D is long: a � b. The ray qp2 (dotted) can reach all the way to the left, provided there
exists a gap (p1) on l1 collinear with q and p2.

in logarithmic time: P = O(n), S = O(n), Q = O(logn), Ps = O(n), Ss = O(n),
Qs = O(logn).2

We invite the reader to play with our applet demonstrating QVM at http://www.cs.
helsinki.fi/group/compgeom/qvm/.

2 A lower bound

In the 3SUM problem the input is a set of numbers and the goal is to determine whether
there are three numbers whose sum is 0. We connect P and Q (see Section 1.1 for the
notation) with the 3SUM problem.

I Theorem 1. A 3SUM instance of size n can be solved in O(P + nQ) time.

Proof. We use a construction similar to the one in the proof of 3SUM-hardness of finding
minimum-link paths [36]. Start from an instance of the GeomBase problem: Given a set
S = L1 ∪ L2 ∪ L3 of n points lying on 3 vertical lines l1, l2, l3 respectively, do there exist
collinear points p1 ∈ L1, p2 ∈ L2, p3 ∈ L3? It was shown in [14] that solving GeomBase is
as hard as solving 3SUM with n numbers. Construct the domain D for quickest visibility
queries as follows (Fig. 1): The lines l1, l2, l3 are obstacles; turn each point from L1 ∪ L2
into a gap punched in the obstacle. Squish vertically the whole construction, i.e., make the
distances between the lines much larger than the vertical extent of S; this way all the rays
p2p1 with p2 ∈ L2, p1 ∈ L1 are confined to a narrow beam. Put the whole construction in a
long box so that the beam shines onto its left side. Put s in the lower left corner of the box.

Now do quickest visibility queries to points in L3. If some point q ∈ L3 is collinear with
some points p1 ∈ L1, p2 ∈ L2, then q can be seen by traveling at most b from s; otherwise,
one needs to travel at least a to L1. Thus by making at most n queries we can solve the
GeomBase. J

The above proof can be extended in several ways. E.g., since a can be arbitrarily large in
comparison with b, even approximate answers to queries would solve the 3SUM problem.

3 Querying shortest paths to windows

The quickest way to see the query point q from s is the quickest way to reach (the boundary
of) V (q), or equivalently, to reach a window of V (q). Assuming the visibility polygon of q had
been built by existing methods (see Section 1.2), answering QVQ boils down to determining
the window closest to s. We do not have a better way of accomplishing this than to do
shortest path queries to each window in succession, which leads to the problem of building

2 Some results from this section were reported in EuroCG [29].

http://www.cs.helsinki.fi/group/compgeom/qvm/
http://www.cs.helsinki.fi/group/compgeom/qvm/

E.M. Arkin et al. 663

a data structure to answer efficiently shortest-path-to-a-segment query (abbreviated SPSQ
above) – the subject of this section.3

3.1 Horizontal segments

In this subsection we present a data structure for SPSQ for fixed-orientation (w.l.o.g.
horizontal) segments; in the next subsection we extend the structure to handle arbitrary
segments (and in Section 3.3 we present a structure for arbitrary segments, based on different
techniques). The shortest path to a segment ab touches it at a, at b, or in the interior; we
will focus on shortest paths to the interior, since shortest paths to a or b are answered with
the SPM. Such a path follows the shortest path to some vertex v of D and then uses the
perpendicular from v onto ab; i.e., the last link of the path is vertical. We describe our data
structure only for the case of paths arriving at ab from above, for which this last link is going
down; an analogous structure is built for the paths arriving to the query from below.

The data structure is the horizontal trapezoidation of D augmented with some extra
information for each trapezoid T ; specifically – the set of vertices that see the trapezoid from
above (i.e., vertices from which downward rays intersect T). Of course, the information is
not stored explicitly with each trapezoid (for this may require Ω(n) information in each of
Ω(n) trapezoids); instead, the information is stored in persistent balanced binary trees. The
vertices in the trees are sorted by x-coordinate. To enable O(logn)-time range minimum
queries, each internal node stores the minimum of d(v) + vy values over all vertices v in the
subtree of the node, where d(v) is the geodesic distance from s to v (which can be read from
the SPM) and vy is the y-coordinate of v. Knowing the minimum of these values over the
range of a segment is our ultimate goal, because the length of the shortest path that arrives
to the segment at ordinate y with last link dropped from v is d(v) + vy − y.

We build the trees as follows. Let ≺ be the “aboveness” relation on the trapezoids (i.e.,
T ≺ T ′ iff T ′ is incident to T from above). We traverse the trapezoids using a topological
order of the DAG for ≺ (e.g., in the order of the y-coordinates of trapezoid top sides) and
compute the trees for the trapezoids as follows (Fig. 2): If a trapezoid T does not have a
successor in ≺, then T is a triangle (due to the non-degeneracy assumption on D), and the
tree τ(T) for T simply stores the top vertex of T if the downward ray from the vertex goes
inside T ; if the ray does not enter T (i.e., T has an obtuse angle at the base), then τ(T)
is empty. If T has successors, then for each trapezoid T ′ that succeeds T in ≺, we take a
persistent copy of the tree τ(T ′) and remove from it all vertices that do not see the boundary
T ∩ T ′ between the trapezoids (the removal is a split operation on the copy). After the
removal has been done for all successors of T , we merge the copies of the trees into the tree
τ(T). Additionally, if T has a vertex of D on its top edge, then the vertex is added to τ(T).

To answer SPSQ, find the trapezoid T containing the query segment ab (recall our
assumption that ab lies in the free space, and hence – in a single trapezoid) and choose
the right history snapshot. Then perform the range minimum query [a, b] to obtain the
vertex v ∈ τ(T) of D with the smallest d(v) + vy (since v ∈ τ(T), the vertex sees ab when
looking down and a ≤ vx ≤ b, vy ≥ y); this will be the vertex from which the interior of
the segment is reached in the quickest way. The shortest path via v is compared with the

3 We do not know how to take advantage of the fact that windows are quite special – maximal free-space
segments anchored at vertices of D. On one hand this makes our solution more general, as it applies
to arbitrary segments; on the other hand, it leaves open the possibility of designing a more efficient
algorithm tailored to the special case of windows.

SoCG’15

664 Shortest Path to a Segment and Quickest Visibility Queries

T

v T ′′T ′

Figure 2 Trees for the trapezoids. Red vertices are re-
moved from persistent copies of τ(T ′) and τ(T ′′); the other
vertices (blue) remain in the copies. Then the copies are
merged to form τ(T). Finally, v is added to τ(T).

a b
u

v

Figure 3 u and v can be
connected by a 3-link path
making only right turns. ab

is seen by u and v, and d(u) +
uy = d(v) + vy.

shortest paths to a and b, altogether in O(logn) query time. Thus our data structure provides
Ps = O(n logn),Ss = O(n logn),Qs = O(logn) for horizontal segments.

3.2 Arbitrary segments

To support all directions of query segments, we build our structure from previous subsection
for all rotations of D at which the data structure changes. The data structure changes at
three types of events: (1) when two visible vertices get the same x-coordinates, (2) when
two visible vertices get the same y-coordinates, and (3) when some query segment can be
reached equally fast from two vertices, i.e., when the two vertices get the same d(v) + vy

values (Fig. 3). The number of the first two events is bounded by the size E of the visibility
graph of D, and the number of the third-type events is bounded by the number Πof pairs of
vertices that can be connected by a right-turning 3-link path that turns by 90 degrees at its
both bends. Thus we need to replicate our data structure only O(E + Π) times (which may
be much smaller then the naive upper bound of O(n2)).

To find the rotation angles for the first two types of events, we precompute the visibility
graph of D (takes O(E + n logn) time [16]). We can discover the third-type events “on-the-
fly”, while actually rotating the domain. For that we make our trees “kinetic” by assigning
to each internal node u of the trees the “expiration time” (rotation angle) when the vertex
with lowest value of d(v) + vy in the subtree of u changes; the time for u can be computed
when u is constructed, using the lowest d(v) + vy values in the subtrees of children of u.
Computing the expiration time is done once per node instance of the trees.

Overall we obtain Ps = O((E + Π)n logn),Ss = O((E + Π)n logn),Qs = O(logn).

I Remark. We could reuse the information between the rotations and get a persistent data
structure with Ps = O(n2 log3 n),Ss = O(n2 log3 n),Qs = O(log2 n), but this is inferior to
the performance of our data structure in the next section. Potentially one could also get
a persistent data structure with Ps = Qs = O((E + Π)polylog n),Qs = O(polylog n); we,
however, were not able to do this.

E.M. Arkin et al. 665

3.3 Continuous Dijkstra-based algorithm
We now give another data structure for SPSQ, based on storing “snapshots” of p-wave
propagation (recall that p-wave is the wave propagated during the continuous Dijkstra
algorithm for building the SPM). Recall (Section 1.2) that vertices of the SPM are vertices
of D and triple points (at which three edges of the map meet). We say that time ti is critical
if the distance from s to a vertex of SPM is equal to ti; since SPM has linear complexity,
there are O(n) critical times. For each critical time ti we store the geodesic disk Di of
radius ti, i.e., the set of points in D whose geodesic distance to s is at most ti; the disk is
an O(n)-complexity region bounded by circular arcs (wavelets) and straight-line segments
(obstacle edges). We construct data structures for two types of queries: "Given a segment
ab, lying in the free space, does it intersect Di?" and "Given a segment ab lying outside Di,
where will the segment hit the disk if dragged perpendicularly to itself?".

3.3.1 Determining i

Assume that Di has been preprocessed for point location, to test in O(logn) time whether a
or b is inside Di (in which case, obviously ab intersects Di). To answer the intersection query
when neither a nor b lies inside Di, we look at the complement, Ci, of Di in D; obviously, a
segment intersects the nonobstacle boundary of Di iff it intersects the (nonobstacle) boundary
of Ci. The set Ci may have several connected components (Fig. 4), at most one of which
surrounds Di. Each connected component C of Ci is preprocessed separately as follows:
Let H be the set of holes lying inside C. Let Ĉ = C ∪H∈H H be C together with the
holes H; the set Ĉ either has no holes (i.e., is simply connected) or has one hole (Di, if C
is the component that surrounds Di). In any case Ĉ can be preprocessed in O(|C| logn)
time to answer ray shooting queries in O(logn) time [8], where |C| is the complexity of C
(the geodesic triangulations framework of [8] extends to regions with circular arcs on the
boundary). To answer the intersection query we first determine the connected component
Ca of Ci that contains a (assume that all connected components have been preprocessed for
point location) and use the ray shooting data structure on Ĉa to determine where the ray r
from a through b exits Ĉa; ab intersects Di iff r exits into Di and does so before b. Note that
here we crucially use the assumption that the query segment lies in the free space: we do not
care if r intersects holes on the way to Di (extending our algorithm to handle segments that
may intersect holes is an open problem).

With the above data structures built for all disks Di, we can do binary search on the
critical times to determine the index i such that the query segment ab intersects Di+1 but
does not intersect Di, which means that ab is reached by the wavefront at some time between
ti and ti+1. We spend O(logn) for ray shooting per choice of i, yielding O(log2 n) time
overall to determine i. Now the goal is to determine which wavelet of Di hit ab first.

3.3.2 Determining the wavelet
Using the point location data structure on Ci we find the component C of Ci that contains
ab (the segment must fully lie inside a single connected component, for otherwise it intersects
Di). Next, using the ray shooting data structure on C, we shoot rays within C, with sources
at a and at b, firing orthogonal to ab, in both directions. This yields one region on each side
of ab, and we consider the two regions separately; let R be the region on one of the sides
(Fig. 5).

The boundary of R consists of ab, a ray shot from a to the boundary of C, a portion of the
(outer) boundary of C (which may include circular-arc wavelets alternating with sequences

SoCG’15

666 Shortest Path to a Segment and Quickest Visibility Queries

Figure 4 s is green, Di is gray, and Ci (the
part of free space not reached by the wave) is
white; it has four connected components, one
of which has two holes inside it. Red curves
are the walls (bisectors with more than one
homotopy type of the shortest path) of the
SPM.

a

b

R
s

v

Figure 5 Di is bounded by circular-arc
wavelets (solid curves) and edges of obstacles
(gray); the rays orthogonal to ab are dashed.
The shortest path to ab ends with the per-
pendicular from v onto ab (dotted).

of straight-line segments on the boundary of obstacles), then a ray shot from b. Within R,
we translate ab parallel to itself to discover the first wavelet on the boundary of R that is
hit – the generator v of the wavelet is the last vertex on the shortest path to ab, with the
last link of the path being the perpendicular dropped from v onto ab. This can be done by
computing and storing convex hulls of pairs of consecutive wavelets on the boundary of C,
pairs of pairs, pairs of pairs of pairs, etc., up to the convex hull of the whole component C.
The next paragraph gives the details.4

Assume that the wavelets on the boundary of C are numbered in the order as they
appear on the boundary. Compute convex hulls of wavelets 1 and 2, of wavelets 3 and 4,
wavelets 5 and 6, etc.; then compute convex hulls of wavelets 1 through 4, wavelets 5 through
8, etc.; . . . ; finally, compute convex hull of all the wavelets. We thus obtain a hierarchy
of convex hulls. Each convex hull of this hierarchy can be built by drawing bitangents
to wavelets on the corresponding convex hulls of the preceding level, in O(logn) time per
bitangent; since the complexity of each level is O(|C|) and there are O(logn) levels, the
whole hierarchy, for all connected components of Ci, can be stored in O(n logn) space and
computed in O(n log2 n) time. We preprocess each convex hull to answer extreme-wavelet
queries – “Which wavelet is first hit by a query line moving in from infinity parallel to itself
towards the convex hull?” – in O(logn) time (such preprocessing involves simply storing
the bitangents to the consecutive wavelets along the convex hull in a search tree, sorted
by the slope). Now, the rays shot from a and b (the ones that define the region R) hit the
boundary of Di at two wavelets, whose numbers are, say, w1 and w2. The interval [w1, w2]
can be covered by O(logn) canonical intervals, for which we precomputed and stored the
convex hulls; by doing the extreme-wavelet query in each of the intervals we determine the
first wavelet between w1 and w2 hit by the sliding ab in overall O(log2 n) time.

4 Note that while R may have some obstacles within it or on the boundary (e.g., in Fig. 5 the ray from b
ends at an obstacle), if we sweep ab parallel to itself, it will first strike the boundary of R at a point on
a circular-arc wavelet (for otherwise there would have been another critical time before the wavefront
hit ab); thus, we may ignore obstacle edges on the boundary of R, and focus on storing the convex hulls
only of the wavelets.

E.M. Arkin et al. 667

3.3.3 Putting everything together
Our data structure achieves Ps = O(n2 logn),Ss = O(n2 logn),Qs = O(log2 n): the ray
shooting data structures and the convex hulls hierarchy require O(n logn) time preprocessing
and storage per each of the O(n) critical times, and a query involves finding the relevant Di

(O(log2 n) time, Section 3.3.1) and then finding the first wavelet hit by the sliding ab (also
O(log2 n), Section 3.3.2).

3.4 Quickest visibility queries
Applying a data structure for SPSQ to QVQ, we obtain a solution for the latter with
P = Pv + Ps,S = Sv + Ss,Q = Qv + KQs. For instance, using [26] (which provides Pv =
O(n2 logn),Sv = O(n2),Qv = O(K log2 n)) and the structure from Section 3.3, we obtain
P = O(n2 logn),S = O(n2 logn),Q = O(K log2 n). See Section 1.2 for other bounds on
Pv,Sv,Qv.

4 Quickest visibility map

Assuming the SPM has been built, the quickest way to see a query point q becomes evident
as soon as the following information is specified: the window W of V (q) through which to
see q and the vertex g of D that is the last vertex on the shortest path to W . Let r be
the vertex of D that defines W (i.e., W is part of the ray from q through r); we say that
r is the root and g is the generator for q. We define the quickest visibility map (QVM) as
the decomposition of D into cells such that all points within a cell have the same root and
generator. That is, within a cell of QVM the answer to QVQ is combinatorially the same:
draw the ray from q through the root r and drop the shortest segment from the generator g
onto the window (this segment may be perpendicular to the window, or the segment to a
window endpoint). In this section we describe an algorithm to build QVM. After the map is
preprocessed for point location, QVQs can be answered in O(logn) time just by identifying
the cell containing the query.

Reusing the idea of continuous Dijkstra algorithm for constructing the SPM we propagate
“visibility wave” (v-wave) from s (Fig. 6, left). Similarly to the geodesic disk (the set of
points that can be reached from s, by a certain time, starting from s and moving with unit
speed), we define the visibility disk of radius t as the set of points that can be seen before
time t by an observer starting from s and moving with unit speed. The ball is bounded
by extensions of tangents from vertices of D to circles centered at vertices of the domain;
intersections between tangents trace bisectors of QVM – a point q on a bisector can be seen
equally fast by going to more than one side of V (q) (Fig. 6, right).

To bound the complexity of QVM, we first introduce some notation. Let r, g be the
root-generator pair for some cell of QVM. Let T be the line through r tangent to the wavelet
centered at g at some time during the p- and v-waves propagation; let l be the point of
contact of T with the wavelet. The part of the ray lr after r running through the free space
(if such part exists) is called a sweeper – as the wavelet radius grows, T rotates around r and
(parts of) the sweeper claim the cell(s) of QVM that have (r, g) as the root-generator pair.
We call the segment rl the leg of the sweeper, and the segment gl (the radius of the wavelet)
its foot (refer to Fig. 6, right).

Our argument below benefits from the assumption that all angles of the obstacles in
D are larger than 90o; to satisfy the assumption we can (symbolically) file the domain by
replacing each acute vertex with a short edge (see the corner arc algorithm [21, Ch. 4] for

SoCG’15

668 Shortest Path to a Segment and Quickest Visibility Queries

g2g1

r2

r1
l2

Figure 6 Left: The v-wave is gray, the p-wave is blue (s is in the center of the rectangle). Red
curves are bisectors in the QVM. Solid green shows the shortest path to see a query point; the path
ends with a perpendicular dropped from D’s vertex (the generator) onto the ray (dashed green)
from the query point through another vertex of D (the root). Right: Gray is an obstacle. As p-wave
propagates, the geodesic disk grows by expanding the wavelets (blue arcs) at unit speed (wavelets are
centered at generators g1, g2 and their radii grow at unit speed). Wavelets growth rotates tangents
(dashed green) to the wavelets dropped from vertices r1, r2 – roots of the QVM cells. The tangents
define “shadows” – the boundaries of the visibility disk; the tangents intersection traces the bisector
(red) in the QVM. The QVM cell to the left of the bisector has (r1, g1) as the root-generator pair,
while the cell on the right has (r2, g2) as the pair; points on the bisector have both (r1, g1) and
(r2, g2), and can be seen equally fast using paths via g1 and via g2. g2l2 is the foot of the sweeper
hinged at r2; l2r2 is its leg.

similar ideas). The reason to make the assumption is that the speed of rotation of a sweeper
depends on the (inverse of) the length of its leg; in particular, if the length is 0, the sweeper
rotates at infinite speed, leading to a discontinuity in v-wave propagation5. The filing ensures
that the v-wave propagation is continuous, which implies that QVM features (vertices and
edges) are due only to intersections of sweepers, or (dis)appearance of sweepers, or possible
sweeper extension/contraction as it passes over a vertex of D.

Consider now the subdivision S of D into maximal regions such that for any point inside
a region, the set of sweepers that pass over the point is the same (i.e., if ℵ(p) denotes the set
of sweepers that ever pass over p, then S is the subdivision into the regions where ℵ stays
the same). The vertices of QVM in the interiors of the regions are the triple points where
three sweepers (and three bisectors) meet; since a sweeper is defined by two vertices of D
(the root and the generator), there are O(n6) triple points.

What remains is to bound the number of vertices of QVM that lie on the edges of S; to
do that we define a superset S̄ of the edges. Specifically, disappearance of a sweeper may be
due to one of the three events (Fig. 7): sweeper becoming aligned with an edge of D incident
to the sweeper’s root, the leg’s rotation becoming blocked, or the foot’s rotation becoming
blocked; appearance of a sweeper is due to the reverse of the events. To account for the
first-type events we add the supporting lines of edges of D to S̄. The second-type events
happen on supporting lines of edges of the visibility graph of D; we add the lines to S̄. Third-
type events happen on lines through vertices of D perpendicular to supporting lines of the
visibility graph edges; we add these perpendicular lines to S̄. Finally, extension/contraction
of a sweeper happens along the extension of the visibility graph edge. Overall S̄ consists of
O(nE) lines, and all O(n2E2) of their intersections could potentially be vertices of QVM.
The only remaining vertices of QVM are intersections of bisectors with the lines in S̄ (all

5 See http://www.cs.helsinki.fi/group/compgeom/qvm/infinitespeed.gif for an animation

http://www.cs.helsinki.fi/group/compgeom/qvm/infinitespeed.gif

E.M. Arkin et al. 669

g
r

g
r

g
r v g

rvv

v

Figure 7 From left to right: Sweeper aligns with rv; leg gets blocked by v; foot gets blocked by
v; sweeper extends at v.

the other vertices are in the interior of the cells of S); since any bisector is defined by 4
vertices of D (2 root-generator pairs for the sweepers defining the bisectors) there are O(n4)
bisectors. Thus, the total number of vertices of QVM on edges of S̄ (and hence on the edges
of S) is O(n2E2 + n4En).

The overall complexity of QVM (the number of vertices inside the regions of S plus on
the edges of S) is thus O(n6 + n2E2 + n5E) = O(n7). The above description leads to an
algorithm to compute the potential O(n7) QVM vertices by brute force; for each of them we
can check in O(n logn) time whether it is indeed a vertex of QVM (see Section 1.2). We
then sweep the plane to restore the QVM edges: from each vertex, extend the bisector until
it hits another vertex. Putting point location data structure on top of QVM, we obtain
P = O(n8 logn),S = O(n7),Q = O(logn).

We note that any algorithm for QVM must have P = Ω(n4),S = Ω(n4) because it may
need to store explicitly the region weakly visible from a segment, which may have Θ(n4)
complexity [40].

5 Simple polygons

We now present an optimal (Ps = O(n),Ss = O(n),Qs = O(logn)) algorithm for SPSQs for
the case when D is a simple polygon (h = 0); together with the shortest path map of D
and a data structure for ray shooting queries (both can be built in O(n) time to support
O(logn)-time queries), it leads to an optimal algorithm (P = O(n), S = O(n),Q = O(logn))
for QVQs as well. We start by introducing additional notation for this section.

Assume that the vertices of D are stored in an array ~D sorted in clockwise order along
the boundary of D. For points x, y ∈ D, let π(x, y) denote the shortest path between x

and y; the shortest path from s to a point y is denoted simply by π(y). Let the predecessor
pred(y) of y be the last vertex of D on π(y) before y (or s if y sees s); the predecessor of any
point can be read off the shortest path map (SPM) of D in O(logn) time. Let SPT be the
shortest path tree from s in D; the tree is the union of paths π(v) for all vertices v of D.
Assume that the SPT is preprocessed to support lowest common ancestor (LCA) queries in
constant time [22].

Let ab be the query segment. Let r be the last common vertex of the shortest paths
π(a), π(b) from s to the endpoints of the segment; r can be determined from SPM and SPT
in O(logn) time: either pred(a) = pred(b) = r, or r = LCA(a, b) (Fig. 8, left). The paths
π(r, a) and π(r, b) together with the segment ab form the funnel F of ab; the vertex r is the
apex of F .

Let a = v0, v1, . . . , r = vm, . . . , vk, vk+1 = b be the vertices of the funnel from a to b. Note
that the paths π(r, a) and π(r, b) are outward convex; in particular, F can be decomposed
into triangles by extending the edges of F until they intersect ab (Fig. 8, right). Let xi denote
the intersection point of the extension of the edge vivi+1 with ab (in particular, x0 = a and
xk = b). The shortest path from s to points on the segment xixi+1 passes through vi+1 as
the last vertex of D: ∀p ∈ xixi+1,pred(p) = vi+1.

Let θ0, θ1, . . . , θk denote the angles between the extension edges and ab: θi = ∠bxivi for

SoCG’15

670 Shortest Path to a Segment and Quickest Visibility Queries

s

a

c

b

r

r = v3

a = v0 b = v6

v1

v2

v4

v5

x1 x2 x3

c

x4

θ2 θ5

Figure 8 Left: r = LCA(a, b); π(c) is the answer to the query. Right: c is the foot of the
perpendicular dropped from v2 to ab.

0 ≤ i < k and θk = π − ∠abvk. The outward convexity of the paths π(r, a), π(r, b) implies
that the sequence θ0, θ1, . . . , θk is increasing. As a consequence the point c ∈ ab closest to s
can be characterized as follows [28]: c is the foot of the perpendicular from vi+1 to ab for i
such that θi < π/2 and θi + 1 ≥ π/2. Thus c can be found by a binary search on the angles
θi: if θi > π/2 then c lies left of xi, whereas if θi < π/2 then c lies right of xi. We now
describe how to implement the search in O(logn) time.

First, if θ0 > π/2 then c = a, and if θk < π/2 then c = b; in both cases we are done.
Next, look at the extensions of the edges emanating from the apex r = vm of the funnel. If
θm−1 ≤ π/2 < θm, c is the foot of the perpendicular from vm to ab and we are done.

It remains to show what to do if θm−1 > π/2 (the case θm−1 < π/2 is symmetric). In
this case θi > π/2 for m ≤ i ≤ k since the angle sequence is increasing; in particular c is the
foot of the perpendicular from some vertex vi to ab, where vi is on the left side π(r, a) of the
funnel F , i.e., 1 ≤ i < m. To determine vi we would like to perform a binary search on the
sequence v0, . . . , vk; however this sequence is not directly accessible (we do not compute it
during the query since it can have Ω(n) size). We therefore use the array ~D, and perform a
binary search on the interval [r, a] in ~D (if r = s and s is not a vertex of D, we take the first
vertex v after s on the path π(a) and search in the interval [v, a] instead).

For a vertex u in this interval we find the vertex LCA(u, a), which is one of the vertices
v0, . . . , vm on the left edge of the funnel, say vj . By computing the angle θj we can decide if
the binary search has to continue to the left or to the right of u. After O(logn) iterations
the binary search is narrowed down to an interval between two successive vertices in ~D.
This implies that the point vi from which the perpendicular to c has to be dropped is also
determined. (Note that for several successive vertices ul in [r, a] we can get the same vertex
vj as a result of computing LCA(ul, a); still, since the total number of vertices in [r, a] is
O(n), after O(logn) iterations the binary search is narrowed down to an interval between
two successive vertices in ~D.)

Quickest visibility queries

In a simple polygon, s is separated from q by a unique window of V (q) (unless s and q see
each other, which can be tested in O(logn) time by ray shooting). Since the last edge of the
shortest path π(q) is a straight-line segment, one of the window endpoints is a = pred(q);
the endpoint can be read off the SPM of D in O(logn) time. To find the other endpoint
b of the window, shoot the ray qa until it intersects the boundary of D; this also takes

E.M. Arkin et al. 671

O(logn) time using the data structure for ray shooting [24]. Once we have the window
ab, our data structure described above finds the (unique) shortest path to the window in
additional O(logn) time.

Acknowledgments. We thank the anonymous reviewers for their helpful comments. VP is
supported by grant 2014-03476 from the Sweden’s innovation agency VINNOVA. TT was
supported by the University of Helsinki Research Funds.

References
1 Esther M. Arkin, Joseph S.B. Mitchell, and Subhash Suri. Optimal link path queries in

a simple polygon. In Proc. 3rd Ann. ACM-SIAM Symp. Discrete Algorithms (SODA’92),
pages 269–279, 1992.

2 Boris Aronov, Leonidas J. Guibas, Marek Teichmann, and Li Zhang. Visibility queries
and maintenance in simple polygons. Discrete & Computational Geometry, 27(4):461–483,
2002.

3 Prosenjit Bose, Anna Lubiw, and J. Ian Munro. Efficient visibility queries in simple poly-
gons. Comput. Geom. Theory Appl., 23(3):313–335, November 2002.

4 Francisc Bungiu, Michael Hemmer, John Hershberger, Kan Huang, and Alexander Kröller.
Efficient computation of visibility polygons. In 30th Europ. Workshop on Comput. Geom.
(EuroCG’14), 2014.

5 Svante Carlsson, Håkan Jonsson, and Bengt J. Nilsson. Finding the shortest watchman
route in a simple polygon. Discrete & Computational Geometry, 22(3):377–402, 1999.

6 CGAL. Computational Geometry Algorithms Library. http://www.cgal.org.
7 Bernard Chazelle. A theorem on polygon cutting with applications. In Proc. 23rd Annu.

Sympos. Found. Comput. Sci. (FOCS’82), pages 339–349. IEEE, 1982.
8 Bernard Chazelle, Herbert Edelsbrunner, Michelangelo Grigni, Leonidas Guibas, John Her-

shberger, Micha Sharir, and Jack Snoeyink. Ray shooting in polygons using geodesic
triangulations. In Javier Leach Albert, Burkhard Monien, and Mario Rodríguez Artalejo,
editors, Automata, Languages and Programming (ICALP), volume 510 of Lecture Notes in
Computer Science, pages 661–673. Springer, 1994.

9 Danny Z. Chen and Haitao Wang. Visibility and ray shooting queries in polygonal domains.
In Proc. 13th Int. Conf. Algorithms Data Struct. (WADS’13), LNCS, pages 244–255, 2013.

10 Yi-Jen Chiang and Roberto Tamassia. Optimal shortest path and minimum-link path
queries between two convex polygons inside a simple polygonal obstacle. Int. J. Comput.
Geometry Appl., 7(1/2):85–121, 1997.

11 Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph S.B. Mitchell. Touring a sequence of
polygons. In Proc. 35th Symposium on Theory of Computing (STOC’03), pages 473–482,
2003.

12 Adrian Dumitrescu and Csaba D. Tóth. Watchman tours for polygons with holes. Comput.
Geom. Theory Appl., 45(7):326–333, 2012.

13 S. Eriksson-Bique, J. Hershberger, V. Polishchuk, B. Speckmann, S. Suri, T. Talvitie,
K. Verbeek, and H. Yıldız. Geometric k shortest paths. In Sanjeev Khanna, editor, Proc.
26th Ann. ACM-SIAM Symp. Discrete Algorithms, (SODA’15), pages 1616–1625. SIAM,
2015.

14 Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational
geometry. Computational Geometry: Theory and Applications, 5:165–185, 1995.

15 Subir Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, 2007.
16 Subir Kumar Ghosh and David M. Mount. An output-sensitive algorithm for computing

visibility graphs. SIAM J. Comput., 20(5):888–910, 1991.

SoCG’15

http://www.cgal.org

672 Shortest Path to a Segment and Quickest Visibility Queries

17 J.E. Goodman and J. O’Rourke, editors. Handbook of Discrete and Computational Geom-
etry. Taylor & Francis, 2nd edition, 2010.

18 Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. In Proc.
55th Ann. Sympos. Found. Comput. Sci. (FOCS’14), pages 621–630. IEEE, 2014.

19 Leonidas J. Guibas, J. Hershberger, D. Leven, Micha Sharir, and R. E. Tarjan. Linear-time
algorithms for visibility and shortest path problems inside triangulated simple polygons.
Algorithmica, 2:209–233, 1987.

20 Leonidas J. Guibas, Rajeev Motwani, and Prabhakar Raghavan. The robot localization
problem. SIAM J. Comput., 26(4):1120–1138, August 1997.

21 Olaf Andrew Hall-Holt. Kinetic Visibility. PhD thesis, Stanford University, 2002.
22 D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM

J. Comput., 13(2):338–355, 1984.
23 P. J. Heffernan and Joseph S.B. Mitchell. An optimal algorithm for computing visibility in

the plane. SIAM J. Comput., 24(1):184–201, 1995.
24 John Hershberger and Subhash Suri. A pedestrian approach to ray shooting: Shoot a ray,

take a walk. Journal of Algorithms, 18(3):403–431, 1995.
25 John Hershberger and Subhash Suri. An optimal algorithm for Euclidean shortest paths

in the plane. SIAM J. Comput., 28(6):2215–2256, 1999.
26 Rajasekhar Inkulu and Sanjiv Kapoor. Visibility queries in a polygonal region. Comput.

Geom. Theory Appl., 42(9):852–864, 2009.
27 B. Joe and R. B. Simpson. Correction to Lee’s visibility polygon algorithm. BIT, 27:458–

473, 1987.
28 Ramtin Khosravi and Mohammad Ghodsi. The fastest way to view a query point in simple

polygons. In 21st European Workshop on Computational Geometry (EuroCG’05), pages
187–190. Eindhoven, 2005.

29 Christian Knauer, Günter Rote, and Lena Schlipf. Shortest inspection-path queries in
simple polygons. In 24th European Workshop on Computational Geometry (EuroCG’08),
pages 153–156, 2008.

30 D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear
barriers. Networks, 14:393–410, 1984.

31 Lin Lu, Chenglei Yang, and Jiaye Wang. Point visibility computing in polygons with holes.
Journal of Information & Computational Science, 8(16):4165–4173, 2011.

32 Joseph S.B. Mitchell. Shortest paths among obstacles in the plane. Internat. J. Comput.
Geom. Appl., 6:309–332, 1996.

33 Joseph S.B. Mitchell. Geometric shortest paths and network optimization. In Jörg-Rüdiger
Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, pages 633–701.
Elsevier, 2000.

34 Joseph S.B. Mitchell. Shortest paths and networks. In Jacob E. Goodman and Joseph
O’Rourke, editors, Handbook of Discrete and Computational Geometry, pages 445–466. El-
sevier, 2004.

35 Joseph S.B. Mitchell. Approximating watchman routes. In Sanjeev Khanna, editor, Proc.
24th Annual ACM-SIAM Symp. on Discrete Algorithms, SODA’13, pages 844–855. SIAM,
2013.

36 Joseph S.B. Mitchell, Valentin Polishchuk, and Mikko Sysikaski. Minimum-link paths
revisited. Comput. Geom. Theory Appl., 47(6):651–667, 2014.

37 Joseph S.B. Mitchell, Günter Rote, and Gerhard J. Woeginger. Minimum-link paths among
obstacles in the plane. Algorithmica, 8(1):431–459, 1992.

38 Joseph O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.

E.M. Arkin et al. 673

39 Eli Packer. Computing multiple watchman routes. In Catherine C. McGeoch, editor,
Experimental Algorithms, 7th International Workshop, WEA, Provincetown, MA, USA,
volume 5038 of Lecture Notes in Computer Science, pages 114–128. Springer, 2008.

40 S Suri and J O’Rourke. Worst-case optimal algorithms for constructing visibility polygons
with holes. In Proc. 2nd Ann. Symp. Computational Geometry, pages 14–23. ACM, 1986.

41 Subhash Suri. A linear time algorithm with minimum link paths inside a simple polygon.
Computer Vision, Graphics and Image Processing, 35(1):99–110, 1986.

42 Alireza Zarei and Mohammad Ghodsi. Query point visibility computation in polygons with
holes. Comput. Geom. Theory Appl., 39(2):78–90, 2008.

SoCG’15

Trajectory Grouping Structure under Geodesic
Distance
Irina Kostitsyna1, Marc van Kreveld2, Maarten Löffler2,
Bettina Speckmann1, and Frank Staals2

1 Department of Mathematics and Computer Science, TU Eindhoven,
The Netherlands
{i.kostitsyna|b.speckmann}@tue.nl

2 Department of Information and Computing Sciences, Utrecht University,
The Netherlands
{m.j.vankreveld|m.loffler|f.staals}@uu.nl

Abstract
In recent years trajectory data has become one of the main types of geographic data, and hence
algorithmic tools to handle large quantities of trajectories are essential. A single trajectory
is typically represented as a sequence of time-stamped points in the plane. In a collection of
trajectories one wants to detect maximal groups of moving entities and their behaviour (merges
and splits) over time. This information can be summarized in the trajectory grouping structure.

Significantly extending the work of Buchin et al. [WADS 2013] into a realistic setting, we show
that the trajectory grouping structure can be computed efficiently also if obstacles are present
and the distance between the entities is measured by geodesic distance. We bound the number
of critical events: times at which the distance between two subsets of moving entities is exactly
ε, where ε is the threshold distance that determines whether two entities are close enough to be
in one group. In case the n entities move in a simple polygon along trajectories with τ vertices
each we give an O(τn2) upper bound, which is tight in the worst case. In case of well-spaced
obstacles we give an O(τ(n2 + mλ4(n))) upper bound, where m is the total complexity of the
obstacles, and λs(n) denotes the maximum length of a Davenport-Schinzel sequence of n symbols
of order s. In case of general obstacles we give an O(τ min{n2 +m3λ4(n), n2m2}) upper bound.
Furthermore, for all cases we provide efficient algorithms to compute the critical events, which
in turn leads to efficient algorithms to compute the trajectory grouping structure.

1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases moving entities, trajectories, grouping, computational geometry

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.674

1 Introduction

Tracking moving entities like humans, vehicles and animals is becoming more and more
commonplace, with applications in security (what human movement is suspicious behavior?),
the social sciences (which people move together? what regions do they avoid?), biology (what
are migration routes and what are the stopping places?), and traffic analysis. Technology
like GPS, RFID, and video has led to large data sets with trajectories, representing the
movement of entities. At a similar pace, more and more algorithmic tools to analyze such
data are being developed within the areas of Geographic Information Science, data mining,
and computational geometry.

In most cases, each trajectory is represented by a sequence of time-stamped points in
the plane or in space. As such, trajectories can be seen as a form of time-series data with a

© Irina Kostitsyna, Marc van Kreveld, Maarten Löffler, Bettina Speckmann, and Frank Staals;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 674–688

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.674
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals 675

geometric component. Collections of trajectories can be processed for retrieving patterns like
clusters, flocks, leadership, encounter, and many more [1, 7, 10, 11, 12]. Trajectory data can
also be linked to the environment, available in other spatial data sets, to determine more
types of patterns [3, 4].

Recent research has gone beyond identifying flocks or moving clusters separately by mod-
elling all joint movements into the trajectory grouping structure [2]. This structure captures
the joining and splitting of groups of entities by employing methods from computational
topology, in particular, the Reeb graph [6]. Distances between moving entities are among the
main criteria to decide if entities belong to the same group (see below for a precise definition).
In this paper we significantly extend the trajectory grouping structure by incorporating
obstacles and measuring distances as geodesic distances. The geodesic distance between two
entities is the distance that needs to be traversed for one entity to reach the other entity.
This approach gives a more natural notion of groups because it separates entities moving
on opposite sides of obstacles like fences or water bodies. A threshold distance denoted
by ε determines whether two entities are close enough to be in the same group. Hence we
examine the number of times that a threshold distance occurs among n moving entities.
Only threshold distances between the closest two entities of different groups matters, so we
analyze the number of events of this type for various obstacle settings.

The combination of moving points and specific structures defined by these points has
been a topic of major interest in computational geometry; for example, one of the main
open problems in the area is the question “How many times can the Delaunay triangulation
change its combinatorial structure in the worst case, when n points move along straight lines
in the plane?” Other related research on movement in geometric algorithms concerns kinetic
data structures. To our knowledge, our paper is the first to combine continuously moving
points with geodesic distances in the plane. We expect that our analysis will be of interest
to other distance problems on moving points than the trajectory grouping structure. For
example, in a similarity measure for two trajectories that incorporates obstacles.

Terminology and notation. We are given a set X of n entities, each moving along a
piecewise linear trajectory with τ vertices, and a set of pairwise disjoint polygonal obstacles
O = {O1, ..,Oh}. Let m denote the total complexity of O.

We denote the position of entity a at time t by a(t). Let ‖pq‖ denote the Euclidean
distance between points p and q, and let ξab(t) = ‖a(t)b(t)‖ denote the (Euclidean) distance
between entities a and b at time t. A path P = p1, .., pk from p1 to pk is a polygonal line
with vertices p1, .., pk, and has length ς (P) =

∑k−1
i=1 ‖pipi+1‖. A path is obstacle-avoiding if

it is disjoint from the interior of all obstacles in O. A path between p and q is a geodesic,
denoted g(p, q), if it has minimum length among all obstacle-avoiding paths. We refer to the
length of g(p, q) as the geodesic distance between p and q. We denote the geodesic distance
between a and b at time t by ςab(t) = ς (g(a(t), b(t))).

To determine if a set of entities may form a group, we have to decide if they are close
together. Analogous to Buchin et al. [2] we model this by a spatial parameter ε. More
specifically, two entities a and b are directly connected at time t if they are within (geodesic)
distance ε from each other, that is, ςab(t) ≤ ε. A set of entities X ′ is ε-connected at time
t if for any pair a, b ∈ X ′ there is a sequence a = a0, a1, .., ak = b such that ai and ai+1
are directly connected. We refer to a time at which a and b become directly connected or
disconnected as an ε-event. At such a time the distance between a and b is exactly ε. If an
ε-event also connects or disconnects the maximal ε-connected set(s) containing a and b, it is
a critical event. A (maximal) ε-connected set of entities X ′ is a group if it is ε-connected at
any time t in a time interval of length at least δ, and it has at least a certain size.

SoCG’15

676 Trajectory Grouping Structure under Geodesic Distance

Table 1 The number of critical events (i.e. the size of R), and the time required to construct R.
Note that the input size is Θ(τn+m).

Lower bound Upper bound Algorithm

Simple
polygon Ω(τn2) O(τn2) O(τn2(log2 m+ logn) +m)

Well-spaced
obstacles Ω(τ(n2 + nm)) O(τ(n2 +mλ4(n))) O(τn2m logn)

General
obstacles

Ω(τ(n2 +
nmmin{n,m}))

O(τ min{n2 + m3λ4(n),
n2m2}) O(τn2m2 logn+m2 logm)

Trajectory grouping structure. Since the objective of our methods is to compute the
trajectory grouping structure as defined by Buchin et al. [2], we review their structure here.
It captures not just the groups, but also how and when they arise, merge, split, or stop to be
a group. Only maximal groups are considered, where groups can be maximal in size and in
duration.

The evolution of the maximal ε-connected sets as the entities move is directly represented
by a directed acyclic graph (DAG) R. Edges of the graph correspond to the maximal
ε-connected sets and the nodes correspond to structural changes, that is, critical events. For
example, a node may represent a critical event where two maximal ε-connected sets get close
enough to become one ε-connected set: the node will have in-degree 2 and out-degree 1 and
represents a join. This DAG R is a Reeb graph [6]. Each entity is associated with a directed
path in R in the natural way.

Groups are defined as above. We are interested only in maximal groups: a subset S for a
time interval I is a maximal group if (i) S is in an ε-connected subset during I, (ii) I has
length at least δ, (iii) S has at least the required size, (iv) no proper superset of S or proper
superinterval of I exists with the same properties. Maximal groups are associated with a
directed (sub)path in R in a natural way.

Buchin et al. [2] show that when there are no obstacles the maximum complexity of R is
Θ(τn2) in the worst case, and it can be computed in O(τn2 logn) time. Furthermore, there
are Θ(τn3) maximal groups in the worst case, and they can be reported in O(τn3 logn+N)
time, where N is the output size (which is O(τn4)).

Results and organization. We extend the results of Buchin et al. [2] to the case where the
entities move amidst obstacles, and we thus measure the distance between two entities a and
b by their geodesic distance ςab. Instead of having O(τn2) events that correspond to the
nodes in R, we can have more events, depending on the obstacles and their complexity.

We study three settings for the obstacles. In the simplest case, all entities move inside
a simple polygon with m vertices. In the most general case, obstacles can have any shape,
location, and complexity, but they are disjoint and have total complexity m. As an interme-
diate case we assume that the distance between any two non-adjacent obstacle edges is at
least ε. We say that the obstacles are well-spaced.

Our results on the number of critical events, and thus the size of the Reeb-graph, for
the three cases, are listed in Table 1. For the simple polygon case, which we treat in
Section 3, our bounds are tight. The upper bounds for the well-spaced obstacles case, and
the general obstacles case include a λ4(n) term, where λs(n) denotes the maximum length
of a Davenport-Schinzel sequence of order s with n symbols. Since λ4(n) is only slightly
superlinear, our bound for the well-spaced obstacles case is almost tight. We present these

I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals 677

results in Sections 4 and 5, respectively. For all cases we also bound the total number of
ε-events, and we show how to compute R efficiently. Omitted proofs can be found in the full
version.

Once we have the Reeb graph R describing connectivity events of the entities in X , we
can use the existing analysis by Buchin et al. [2] to bound the number of maximal groups as
well as their algorithm(s) to compute these groups. So the interesting part is in analyzing
the complexity of R and determining how to compute it.

2 Distance Functions

Let a and b be two entities, each moving along a straight line during interval I, and let p
be a fixed point in R2. During I the Euclidean distance ξap(t) between a and p is a convex
hyperbolic function in t that has the form

√
Q(t), for some quadratic function Q. The

Euclidean distance between a and b during I is a convex hyperbolic function of the same
form. Since ξap is convex, there are at most two times in I such that ξap(t) = ε. The same
applies for ξab.

The geodesic distance ςap(t) between a and p is a piecewise function. At times where
the geodesic g(a(t), p) consists of a single line segment, the geodesic distance is simply the
Euclidean distance. When the geodesic consists of more than one line segment we can
decompose it into two parts: a line segment g(a(t), u) = a(t)u, and a path g(u, p), where u is
the first obstacle vertex on g(a(t), p). Similarly, if the geodesic g(a(t), b(t)) between a and b
consists of more than one segment we can decompose it into three parts a(t)u, g(u, v), and vb(t)
(we may have u = v). It follows that each piece of ςap is convex and hyperbolic. The pieces of
ςab are convex as well, since they are of the form ξau(t) +C+ ξvb(t) =

√
Q1(t) +C+

√
Q2(t),

for some quadratic functions Q1 and Q2 and a constant C. Therefore, we again have that on
each piece there are at most two times where ςap(t) is exactly ε. The same applies for ςab(t).

We obtain the same results when a and b move on piecewise linear trajectories, rather
than lines. The functions then simply consist of more pieces.

I Lemma 1. Let F = f1, .., fn be a set of n piecewise (partial) functions, each function fi
consisting of τ pieces f1

i , .., f
τ
i , such that any two pieces fki and f `j intersect each other at

most s times. The lower envelope L of F has complexity O(τλs+2(n)).

Analogous to Lemma 1 we can show that the upper envelope of F has complexity
O(τλs+2(n)).

3 Simple Polygon

We first focus our attention on entities moving in a simply-connected polygonal domain.

3.1 Lower Bound
Buchin et al. [2] show that the number of critical events for n entities moving in R2 without
obstacles can be Ω(τn2). Clearly, this lower bound also holds for entities moving inside a
simple polygon.

3.2 Upper Bound
Let a and b be two entities, each moving along a line during interval I, and let ς(t) = ςab(t)
be the function describing the geodesic distance between a and b during interval I.

SoCG’15

678 Trajectory Grouping Structure under Geodesic Distance

u

gi

gi+1
ab

Figure 1 Geodesics gi (purple) and gi+1 differ by at most one vertex; the first vertex u on gi+1.

I Lemma 2. The function ς is convex.

Proof Sketch. Let [ti−1, ti] and [ti, ti+1] be two consecutive time intervals, corresponding to
pieces ς i and ς i+1 of ς . We now show that ς is convex on [ti−1, ti+1].

Let gi and gi+1 denote the geodesic shortest paths corresponding to ς i and ς i+1, respec-
tively. Geodesics gi and gi+1 differ by at most one vertex u (assuming general position of the
obstacle vertices), and this vertex occurs either at the beginning or the end of the geodesic.
Consider the case that u is the first vertex of gi+1, and u does not occur on gi. See Figure 1.
All other cases are symmetric. Let v be the second vertex of gi+1 (and thus the first vertex of
gi). We have ς i(t) = ‖a(t)v‖+ ς(v, b(t)) and ς i+1(t) = ‖a(t)u‖+ ‖uv‖+ ς(v, b(t)). It follows
that the individual pieces ς i and ς i+1 are (convex) hyperbolic functions, that ς i(ti) = ς i+1(ti),
and that for any time t ∈ [ti−1, ti+1], ς i+1(t) ≥ ς i(t). We use these properties to show that
for any three times s,m, t ∈ [ti−1, ti+1], with s ≤ m ≤ t, the point ς(m) lies below the line
segment (function) ς(s)ς(t), that is ς(m) ≤ ς(s)ς(t)(m). Since ς i and ς i+1 are convex, the
only interesting case is when s lies on ς i and t lies on ς i+1. We prove this by case distinction
on m. It follows that ς is convex on [ti−1, ti+1]. J

I Theorem 3. Let X be a set of n entities, each moving in a simple polygon along a piecewise
linear trajectory with τ vertices. The number of ε-events is at most O(τn2).

Proof. Fix a pair of entities a and b. Both a and b move along trajectories with τ vertices.
So there are 2τ − 1 intervals during which both a and b move along a line. During each such
interval ςab is convex (Lemma 2). So there are at most two times in each interval at which
ςab(t) = ε. The lemma follows. J

3.3 Algorithm
Next, we describe how to compute all ε-events. The high level overview of our algorithm is
as follows. For each pair of entities a and b, we first find a time tmin such that the geodesic
distance ς(t) = ςab(t) between a and b is minimal. Clearly, if ς(tmin) > ε there is no time
at which a and b are at distance ε. Otherwise, we use the fact that ς is convex (Lemma 2).
This means that on I− = (−∞, tmin] it is monotonically decreasing, and on I+ = [tmin,∞) it
is monotonically increasing. Hence, there are at most two times t− and t+ such that ς(t) = ε,
and we have that t− ∈ I− and t+ ∈ I+. We now find t− and t+ using parametric search [13]:
t− (t+) is the smallest (largest) time in I− (I+) such that ς(t) ≤ ε. To actually find tmin,
we basically use the same approach. At tmin the derivative ς ′ of ς is zero. Since ς is convex,
its derivative is monotonically increasing. Therefore, we can find tmin using a parametric
search: tmin is the smallest time such that ς ′(t) ≥ 0.

I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals 679

Finding the times tmin, t−, and t+. We use parametric search [13] to find tmin, t−, and
t+. The global idea is as follows. For a more detailed description of parametric search and
its application to our problem we refer to the full version of this paper.

To find tmin we use P(t) = ς ′(t) ≥ 0 as predicate. To find t− and t+ we use P(t) ≤ ε,
and P(t) ≥ ε, respectively. In all these cases we need an algorithm A that can test P(t)
for a given time t. This means that we need an efficient algorithm to compute ς(t) and a
functional description of ς . To this end, we preprocess the input polygon for shortest path
queries. We triangulate the polygon in O(m) time [5], and build the data structure D of
Guibas and Hershberger [8]. This also takes O(m) time, and allows us to find the length
of the shortest path between two fixed points p and q in O(logm) time. In particular, this
means that for a given time t, we can compute ς(t) and ς ′(t) in O(logm) time.

A query, and thus our algorithm A, takes O(logm) time. It now immediately follows that
we can compute tmin, t−, and t+ in O(log2 m) time each. We obtain the following result.

I Lemma 4. Let X be a set of n entities, each moving in a simple polygon along a piecewise
linear trajectory with τ vertices. We can compute all ε-events in O(τn2 log2 m+m) time,
where m is the number of vertices in the polygon.

To compute R we can now use the algorithm as described by Buchin et al. [2]. This
algorithm maintains the connected components in a dynamic graph G; at each ε-event we
insert or delete an edge in G. This takes O(logn) time per ε-event, and thus O(τn2 logn)
time in total [2, 14]. We conclude:

I Theorem 5. Let X be a set of n entities, each moving in a simple polygon along a piecewise
linear trajectory with τ vertices. The Reeb graph R representing the movement of the entities
in X has size O(τn2) and can be computed in O(τn2(log2 m+ logn) +m) time, where m is
the number of vertices in the polygon.

4 Well-spaced Obstacles

Next, we consider the situation where the entities move in a domain with multiple polygonal
obstacles. We first assume that the obstacles are well-spaced, that is, the distance between
any pair of non-adjacent obstacle edges is at least ε.

4.1 Lower Bound
I Lemma 6. The total number of critical events for a set of n entities, each moving
amidst a set of well-spaced obstacles O along a piecewise linear trajectory with τ vertices, is
Ω(τ(n2 + nm)), where m is the total complexity of O.

Proof. We describe a construction in which the entities move along lines that yields Ω(nm)
critical events. We repeat this construction in Ω(τ) steps. Since we already have a Ω(τn2)
lower bound for entities moving in R2 without obstacles, the lemma then follows.

The construction that we use is sketched in Fig. 2. We have two horizontal lines `A
and `B that are within vertical distance ε of each other. Our obstacles essentially form a
wall separating the two lines that has Θ(m) openings. Each obstacle is triangular, and thus
well-spaced. Furthermore, the obstacles are at distance at least ε from each other, so O is
well-spaced. Our set of entities consists of two equal-sized subsets A and B. The entities
move in pairs; one entity a from A and one entity b from B. Throughout the movement they
maintain ax = bx, and stay far away from any other entities. It is easy to see that this yields
Ω(nm) critical events as desired. J

SoCG’15

680 Trajectory Grouping Structure under Geodesic Distance

ε
`A
`B

� ε

Figure 2 The lower bound construction for well spaced obstacles. The entities of a pair a, b are
within distance ε from each other when both move in a green interval.

4.2 Upper Bound
In this case our obstacles are well spaced, so if two entities are at geodesic distance ε the
geodesic consists of at most two line segments. We now start with some bounds on the total
number of ε-events.

I Observation 7. There are at most O(τn2) ε-events where the geodesic between the two
entities involved is a single line segment.

I Lemma 8. Let X be a set of n entities, each moving amidst a set of well-spaced obstacles
O along a piecewise linear trajectory with τ vertices. The number of ε-events is at most
O(τn2m), where m is the total complexity of O.

Proof. By Observation 7 there are only O(τn2) ε-events in which the geodesic is a single line
segment. We now bound the number of ε-events for which the geodesic contains an obstacle
vertex v by O(τn2). The lemma then follows. Fix two entities a and b. Each trajectory edge
intersects the ε-disk centered at v at most once. Hence, there are O(τ) time intervals during
which both a and b move along a line, and are within distance ε from v. Clearly, all ε-events
occur within one of these intervals. Since the obstacles are well spaced, the ε-disk contains
at most three edges: the two edges connected to v and at most one edge adjacent to both
these edges. It follows that the function ςab consists of at most O(1) pieces during such an
interval. Hence, there can be at most a constant number of ε-events per interval. J

v

ε
p

D

Figure 3 The ε-disk D (red)
centered at v subdivided into six
wedges. The distance between
any pair of points p and q in the
same wedge is at most ε.

Next, we show that the number of critical events can
only be O(τ(n2 +mλ4(n))). Clearly, the number of critical
events at which the geodesic is a single line segment is also at
most O(τn2) (Observation 7). We now bound the number of
critical events where two sets of entities become ε-connected
or ε-disconnected, and the geodesic between them consists of
two line segments, connected via an obstacle vertex v.

Let D be the disk of radius ε centered at v, and consider
a subdivision of D into six equal size sectors or wedges. See
Fig. 3. We make sure that the obstacle containing v intersects
at least two wedges. Let W be such a wedge. For any pair of
points p and q in W , the Euclidean distance between p and
q is at most ε. Let XW (t) ⊆ X denote the set of entities that
that lie in W at time t.

I Observation 9. At any time t, there is at most one maximal set of ε-connected entities G
that has entities in wedge W , that is, for which G ∩ XW (t) 6= ∅.

I Corollary 10. At any time t, there is at most one maximal set of ε-connected entities G
such that XW (t) ⊆ G.

When two maximal sets of ε-connected entities XR and XB become ε-connected or ε-
disconnected at time t via vertex v, then the entities r ∈ XR and b ∈ XB that form their

I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals 681

v

D

Figure 4 A set of entities on the left, and the corresponding sets of partial functions R (red) and
B (blue). Critical events correspond to intersections between the lower envelope of R and the upper
envelope of B.

closest pair must both lie in D at time t. More specifically, since the geodesic between r
and b uses vertex v, r and b must lie in different wedges. Let R and B denote the wedges
that contain r and b, respectively. We now show that the total number of critical events
involving entities in wedges R and B is O(τλ4(n)). By Corollary 10 it then follows that each
such event corresponds to exactly one pair of ε-connected sets. Since there are only 15 pairs
of wedges, there are also at most O(τλ4(n)) times when two maximal sets of ε-connected
entities are at distance exactly ε and are connected via vertex v.

I Lemma 11. The total number of critical events involving entities in wedges R and B is
O(τλ4(n)).

Proof. Given an entity a ∈ X we define two partial functions %a and βa as follows:

%a(t) =
{
ξav(t)− ε/2 if a ∈ XR(t)
⊥ otherwise,

βa(t) =
{
−ξav(t) + ε/2 if a ∈ XB(t)
⊥ otherwise,

where ⊥ denotes undefined. Furthermore, let R = {%r | r ∈ X} and B = {βb | b ∈ X}. See
Fig. 4. It now follows that for any two entities r ∈ XR(t) and b ∈ XB(t) the length of the
path from r via v to b is ε if and only if %r(t) = βb(t). Thus, the number of times entities in
R become ε-connected or ε-disconnected via vertex v is at most the number of intersection
points between the lower envelope of R and the upper envelope of B. Next, we show that
this number of intersection points is at most O(τλ4(n)).

Each trajectory consists of τ − 1 edges, each of which intersects wedge R in a single line
segment. Hence, for each entity a, the function %a is defined on at most τ − 1 maximal
contiguous intervals I1

a , .., I
τ−1
a . Thus, by Lemma 1 the lower envelope L of R has complexity

at most O(τλ4(n)). Similarly, the upper envelope U of B has complexity O(τλ4(n)). It
follows that there are also O(τλ4(n)) time intervals such that both L and U are represented
by a simple hyperbolic function. In each such interval L and U intersect each other at most
twice. Hence, the total number of intersection points is O(τλ4(n)). J

It now follows that the total number of critical events at which the geodesic contains an
obstacle vertex is O(mτλ4(n)). We conclude:

I Theorem 12. Let X be a set of n entities, each moving amidst a set of well-spaced obstacles
O along a piecewise linear trajectory with τ vertices. The number of critical events is at most
O(τ(n2 +mλ4(n))), where m is the total complexity of O.

SoCG’15

682 Trajectory Grouping Structure under Geodesic Distance

4.3 Algorithm
We now show how to compute the Reeb graph R in case the entities move among well-spaced
obstacles. At first glance, it seems that we can compute all critical events using the same
approach as used in the upper bound proof. Indeed, this allows us to find all times at
which critical events occur. However, to construct the Reeb graph we also need to know
the sets of entities involved at each critical event, e.g. we want to know that a set X ′ splits
into subsets R and B. Unfortunately, there does not seem to be an efficient, i.e. sub-linear,
way to obtain this information, nor can we easily maintain the ε-connected sets of entities
without considering all ε-events. It is easy to compute all ε-events in O(τn2m) time, using
the approach described in Lemma 8. Once we have computed all ε-events, we can construct
the Reeb graph using the same method described by Buchin et al. [2]. This takes O(logn)
time per ε-event. Thus, we conclude:

I Theorem 13. Let X be a set of n entities, each moving amidst a set of well-spaced
obstacles O along a piecewise linear trajectory with τ vertices. The Reeb graph R representing
the movement of the entities in X has size O(τ(n2 + mλ4(n))) and can be computed in
O(τn2m logn) time, where m is the total complexity of O.

5 General Obstacles

Finally, we study the most general case in which the entities move amidst multiple obstacles,
and there are no restrictions on the locations, shape, or size of the obstacles.

5.1 Lower Bound
I Lemma 14. The total number of critical events for a set of n entities, each moving
amidst a set of obstacles O along a piecewise linear trajectory with τ vertices, is Ω(τ(n2 +
nmmin{n,m})), where m is the total complexity of O.

Proof. We describe a construction in which the entities move along lines that yields Ω(nmk)
critical events, with k = min{n,m}. We again repeat this construction Ω(τ) times.

The basic idea is to create Ω(k) stationary entities, Ω(n) moving entities, and Ω(m)
“entrances” from which a moving entity can become connected with a stationary entity. Each
stationary entity is surrounded by an obstacle. The distance from such a stationary entity s
to an entrance leading to s, will be approximately ε. So an entity gets ε-connected with s
only if it is directly in front of the entrance. We make sure that each stationary entity is
reachable from all entrances. Hence, each time that one of the Ω(n) moving entities passes
an entrance it will generate Ω(k) critical events. Since all Ω(n) moving entities encounter all
Ω(m) entrances we get at least Ω(nmk) critical events as desired.

Let c be a point in the plane, let δ > 0 be a small value, and let P be a set of Ω(k) points
on the lower half of the circle with center c and radius ε/2 + δ. We place a large rectangular
obstacle O containing c and all points in P such that the (shortest) distance from c to the
top side h of O is smaller than ε/2− δ. See Fig. 5(a).

We now carve Ω(k +m) passages through O. The first k′ = Ω(k) connect c to each point
in P . The remaining m′ = Ω(m) connect c to the top side h of the obstacle O. The first k′
passages all have length exactly ε/2 + δ, and we make sure that the remaining m′ passages
all have length exactly ε/2− δ. We can do this with at most one bend in each passage. See
Fig. 5(a). The distance from any point in P to the top side of O, via any of the m′ passages,
is now ε, and the distance between any two points in P is strictly larger than ε.

I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals 683

"
2 + � "

2 � �

h

O

c

P

(a)

O

`

P

(b)

Figure 5 The lower bound construction for general obstacles. (a) Constructing the passages
through obstacle O. (b) The final construction.

We place a stationary entity on each point in P , and we let Ω(n) entities move from left to
right on a horizontal line ` containing h (we can move ` upwards a bit later to make sure the
entities do not intersect the obstacle). We make sure that at any time the distance between
two of these moving entities is larger than ε, so they are never in the same ε-connected set.
When an entity e arrives at an entrance, that is, an opening of one of the top passages, it
is at distance ε to the points in P . Hence, we have a critical event where e connects with
all entities at points in P . We can make sure that e generates an event with (the entity on)
each point in P by moving each point in P by a small unique amount towards c. Fig. 5(b)
shows the resulting construction. J

5.2 Upper Bound

We again start by bounding the total number of ε-events.

I Lemma 15. Let X be a set of n entities, each moving amidst a set of obstacles O along
a piecewise linear trajectory with τ vertices. The number of ε-events is at most O(τn2m2),
where m is the total complexity of O.

As in the case of well-spaced obstacles, ε-events are not necessarily critical events. We
now fix an obstacle vertex v, and show that there are at most O(τm2λ4(n)) critical events
involving v. To this end, we again decompose the (geodesic) ε-disk centered at v into regions
such that each region corresponds to at most one maximal set of ε-connected entities. Each
critical event involving v also involves two maximal ε-connected sets, and thus two regions
in this decomposition. We show that we have to consider only O(m) pairs of such regions,
and that for each pair there can be at most O(τmλ4(n)) critical events. Since we have
O(m) obstacle vertices this gives us a total bound of O(τm3λ4(n)). When m is at most
O(n2/λ4(n)), this is an improvement over the bound in Lemma 15. It follows that the total
number of critical events is thus at most O(τ min{n2 +m3λ4(n), n2m2}).

Let Dε denote the geodesic ε-disk centered at v, and let Dε/2 denote the geodesic (ε/2)-
disk centered at v. Clearly, the geodesic distance between any two points in Dε/2 is at most
ε, thus we observe:

I Observation 16. At any time t there is at most one maximal ε-connected set of entities
G such that GDε/2(t) 6= ∅, and thus XDε/2(t) ⊆ G.

SoCG’15

684 Trajectory Grouping Structure under Geodesic Distance

v

Dε/2

Dε

Figure 6 Subdivision Φ. The color of the edge indicates its type: the red edges originate from
shortest paths, the purple and blue edges from the shortest path map, the cyan edges from the
subdivision in “triangular sectors”, the light green edges guarantee that the maximum angle at the
routing point is at most π/12, and the pink edges guarantee monotonicity.

Let A = Dε \ Dε/2. We decompose A into O(m) regions such that for each region R we
have that (i) the geodesic distance between two points p, q ∈ R is at most ε, (ii) any two
points p, q ∈ R have the same (combinatorial) geodesic to v, and (iii) the boundary of R has
constant complexity.

Let Φ denote this decomposition of A. It follows that at any time, each region R in Φ
contains entities from at most one maximal ε-connected set G. That is, XR(t) ⊆ G. It is now
easy to see that any critical event involving v involves the maximal set of ε-connected entities
Gε/2 corresponding to Dε/2, and a maximal set of ε-connected entities GR corresponding to
a region R of Φ. Hence, there are only O(m) pairs of regions that can be associated with a
critical event involving v. We now show how to construct Φ, and how to bound the number
of events corresponding to a single pair of regions.

Obtaining subdivision Φ. Let Φ′ be the overlay of the shortest path map with root v
(restricted to Dε), and all shortest paths from v to obstacle vertices in Dε.

I Observation 17. Φ′ has complexity O(m).

The edges of Φ′ are either line segments or hyperbolic arcs [9]. Since Φ′ is a refinement of
the shortest path map, all points in a region R in Φ′ have the same geodesic g to v (except

I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals 685

for the starting edge). Hence, each region R is star-shaped, and has a vertex c that lies
inside the kernel. This vertex c is the second vertex on each geodesic g. We refer to c as the
routing point of R.

Next, we further subdivide each region R in Φ′. We add edges cu between the routing
point c and all boundary vertices u of R. Each region is now bounded by two line segments
cu and cw and a segment c̃w. The segment c̃w is either a line segment, or a hyperbolic
arc. We further add edges cz between c and points z on c̃w such that the angle at c is at
most θ = π/12. In case c̃w is a hyperbolic arc we make sure that the hyperbolic function
describing this arc is monotonic. To this end, we add at most one additional edge cz to the
point z on c̃w with maximum curvature. All these new edges are contained in R and do not
intersect each other. It follows that the total complexity, summed over all regions in the
subdivision, is still O(m). Let Φ denote the resulting subdivision, restricted to A. See Fig. 6.

I Lemma 18. Let R be a region in Φ. For any two points p, q ∈ R the Euclidean distance
‖pq‖ between p and q is at most ε

√
29/4− 4

√
3.

I Lemma 19. Let R be a region in Φ. For any two points p, q ∈ R the geodesic distance
ς (p, q) = ς (g(p, q)) between p and q is at most ε.

I Lemma 20. Subdivision Φ has complexity O(m) and each region R ∈ Φ has the following
properties:
(i) the geodesic distance between two points p, q ∈ R is at most ε,
(ii) any two points p, q ∈ R have the same geodesic to v (excluding the starting edge), and
(iii) the boundary of R has constant complexity.

Proof. Property (i) follows directly from Lemma 19, and Property (ii) follows from the fact
that Φ is a refinement of the shortest path map. Each region is bounded by three or four
segments, depending if the routing point c lies in A or not. If c ∈ A, region R is bounded by
three segments. Otherwise, R is bounded by three segments and a part of Dε/2. However, as
all shortest paths from points in R to v use point c, it follows that this part of Dε/2 is also a
single hyperbolic segment. This proves Property (iii). J

Bounding the number of critical events for a pair of regions. Next, we fix a region R

in Φ, and show that the number of critical events involving v, R, and Dε/2, is at most
O(τλ4(n)).

I Lemma 21. Let R be any region of Φ, and let GR be the maximal set of ε-connected
entities corresponding to R. The (geodesic) distance between GR and v is given by a piecewise
hyperbolic function with O(τλ4(n)) pieces.

Proof. The boundary of R has constant complexity, so each entity in GR intersects region
R in O(τ) time-intervals. Furthermore, all points in R have the same combinatorial geodesic,
so during any such an interval, the distance to v is given by a simple hyperbolic function.
Thus, the distance function between GR and v corresponds to the lower envelope of a set of
hyperbolic functions. Lemma 1 now completes the proof. J

Fix a region R, let

βa(t) =
{
−ς(a(t), v) + ε if a(t) ∈ R
⊥ otherwise,

SoCG’15

686 Trajectory Grouping Structure under Geodesic Distance

and let U be the upper envelope of {βa(t) | a ∈ X}. It follows from Lemma 21 that U has
complexity O(τλ4(n)).

Now consider the entities in the inner region Dε/2. The function ςav expressing the
geodesic distance between a and v is piecewise hyperbolic and consists of O(mτ) pieces. Let
L denote the lower envelope of all functions %a, a ∈ X , where %a(t) = ςav(t) if ςav(t) ≤ ε/2
and ⊥ otherwise. It follows from Lemma 1 that L has complexity O(mτλ4(n)).

As with the well-spaced obstacles, all critical events in which the entities involved lie in
Dε/2 and R at the time of the event correspond to intersections of L and U . To bound the
number of intersections, and thus the number of critical events, we now (again) partition the
domain of L and U (i.e., time) into sets D1, .., Dk such that in each Di the lower envelope L
and the upper envelope U intersect at most twice. It is easy to partition the domain into
k = O(|L|+ |U|) = O(τλ4(n) +mτλ4(n)) = O(mτλ4(n)) intervals with this property. Hence,
we get O(mτλ4(n)) critical events involving vertex v and the pair of regions (R,Dε/2). This
gives a total of O(m3τλ4(n)) critical events. Together with the bound on the number of
ε-events (Lemma 15) this gives us the following result:

I Theorem 22. Let X be a set of n entities, each moving amidst a set of obstacles O

along a piecewise linear trajectory with τ vertices. The number of critical events is at most
O(τ min{n2 +m3λ4(n), n2m2}), where m is the total complexity of O.

5.3 Algorithm
We again explicitly compute all ε-events in order to construct the Reeb graph R. We follow
the approach from Lemma 15. That is, we compute the shortest path map Ψ with root v, and
for each pair of entities a and b we trace their trajectories through Ψ. For each of the O(τm)
pairs of regions visited, we construct ςab and find the ε-events. Computing the shortest
path map with root v takes O(m logm) time [9]. Tracing the trajectories and computing the
distance functions takes time proportional to the number of regions visited. Hence, we spend
O(τm) time for each pair. It follows that the total time required to compute all ε-events is
O(m(m logm+ n2τm)) = O(τn2m2 +m2 logm). Computing R again takes O(logn) time
per ε-event. We obtain the following result.

I Theorem 23. Let X be a set of n entities, each moving amidst a set of obstacles O

along a piecewise linear trajectory with τ vertices. The Reeb graph R representing the
movement of the entities in X has size O(τ min{n2 +m3λ4(n), n2m2}) and can be computed
in O(τn2m2 logn+m2 logm) time, where m is the total complexity of O.

6 Concluding Remarks

We study the trajectory grouping structure for entities moving amidst obstacles. To this end,
we analyze the number of times when two sets of entities are at distance ε from each other.
Our results for various types of obstacles can be found in Table 1. These bounds on the
number of critical events also give a bound on the size of the Reeb graph R. This in turn
gives bounds on the number of maximal groups: if the Reeb graph has size O(|R|) there are
O(|R|n) maximal groups [2]. Furthermore, we present efficient algorithms to compute R,
which leads to efficient algorithms to compute the grouping structure.

One intruiging open question is whether the Reeb graph can be constructed using only
the critical events, that is, in an output-sensitive manner. The difficulty with the approach as
described in [2] appears to be that one would need a dynamic data structure for maintaining
a subdivision of a set (the groups), that supports efficient split and merge operations. Thus,

I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speckmann, and F. Staals 687

there may be fundamental graph-theoretical obstacles to this approach. However, it is not
clear that this is the only possible approach to compute R.

An other direction of future work is to extend the grouping structure for entities moving
in more realistic environments, for instance modeled by weighted regions. This starts with
interesting modeling questions since distances are related to the speed of the entities. For
example: should the distance for two entities, say sheep, to be directly connected be larger on
a muddy field than it is on a concrete courtyard, or do the sheep need to be closer together
in the field to be considered a group?

Although we developed the technical machinery in this paper with the goal of extending
the trajectory grouping structure, we foresee wider applications for our techniques. We
believe our work will serve as a starting point for more general research related to moving
entities and geodesic distances. For example, we can consider trajectory similarity measures
in the presence of obstacles.

Acknowledgments. M.L., F. S., I. K., and B. S. are supported by the Netherlands Organi-
sation for Scientific Research (NWO) under grants 639.021.123, 612.001.022, 612.001.106,
and 639.023.208 respectively.

References
1 Marc Benkert, Joachim Gudmundsson, Florian Hübner, and Thomas Wolle. Reporting

flock patterns. Computational Geometry, 41(3):111–125, 2008.
2 Kevin Buchin, Maike Buchin, Marc van Kreveld, Bettina Speckmann, and Frank Staals.

Trajectory grouping structure. In Proc. 2013 WADS Algorithms and Data Structures Sym-
posium, LNCS, pages 219–230. Springer, 2013.

3 Maike Buchin, Somayeh Dodge, and Bettina Speckmann. Context-aware similarity of tra-
jectories. In Geographic Information Science, volume 7478 of LNCS, pages 43–56. Springer,
2012.

4 Maike Buchin, Anne Driemel, and Bettina Speckmann. Computing the Fréchet distance
with shortcuts is NP-hard. In Symposium on Computational Geometry, page 367. ACM,
2014.

5 Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom.,
6(5):485–524, 1991.

6 Herbert Edelsbrunner and John L. Harer. Computational Topology – an introduction. Amer-
ican Mathematical Society, 2010.

7 Joachim Gudmundsson and Marc van Kreveld. Computing longest duration flocks in tra-
jectory data. In Proc. 14th ACM International Symposium on Advances in Geographic
Information Systems, GIS’06, pages 35–42. ACM, 2006.

8 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple
polygon. Journal of Computer and System Sciences, 39(2):126–152, 1989.

9 John Hershberger and Subhash Suri. An Optimal Algorithm for Euclidean Shortest Paths
in the Plane. SIAM Journal on Computing, 28(6):2215–2256, 1999.

10 Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, Christian S. Jensen, and Heng Tao Shen.
Discovery of convoys in trajectory databases. PVLDB, 1:1068–1080, 2008.

11 Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. On discovering moving clusters in
spatio-temporal data. In Advances in Spatial and Temporal Databases, volume 3633 of
LNCS, pages 364–381. Springer, 2005.

12 Patrick Laube, Marc van Kreveld, and Stephan Imfeld. Finding REMO – detecting relative
motion patterns in geospatial lifelines. In Developments in Spatial Data Handling, pages
201–215. Springer, 2005.

SoCG’15

688 Trajectory Grouping Structure under Geodesic Distance

13 Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algo-
rithms. J. ACM, 30(4):852–865, 1983.

14 Salman Parsa. A deterministic O(m logm) time algorithm for the Reeb graph. In Proc.
28th ACM Symposium on Computational Geometry, pages 269–276, 2012.

From Proximity to Utility: A Voronoi Partition of
Pareto Optima∗

Hsien-Chih Chang, Sariel Har-Peled, and Benjamin Raichel

Department of Computer Science, University of Illinois
201 N. Goodwin Avenue, Urbana, IL, 61801, USA
{hchang17,sariel,raichel2}@illinois.edu

Abstract
We present an extension of Voronoi diagrams where not only the distance to the site is taken
into account when considering which site the client is going to use, but additional attributes
(i.e., prices or weights) are also considered. A cell in this diagram is then the loci of all clients
that consider the same set of sites to be relevant. In particular, the precise site a client might
use from this candidate set depends on parameters that might change between usages, and the
candidate set lists all of the relevant sites. The resulting diagram is significantly more expressive
than Voronoi diagrams, but naturally has the drawback that its complexity, even in the plane,
might be quite high. Nevertheless, we show that if the attributes of the sites are drawn from
the same distribution (note that the locations are fixed), then the expected complexity of the
candidate diagram is near linear. To this end, we derive several new technical results, which are
of independent interest.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, I.1.2 Algorithms,
I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Voronoi diagrams, expected complexity, backward analysis, Pareto
optima, candidate diagram, Clarkson-Shor technique

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.689

1 Introduction

Informal description of the candidate diagram. Suppose you open your refrigerator one
day to discover it is time to go grocery shopping.1 Which store you go to will be determined
by a number of different factors. For example, what items you are buying, and do you want
the cheapest price or highest quality, and how much time you have for this chore. Naturally
the distance to the store will also be a factor. On different days which store is the best
to go to will differ based on that day’s preferences. However, there are certain stores you
will never shop at. These are stores which are worse in every way than some other store
(i.e., further, more expensive, lower quality, etc.). Therefore, the stores that are relevant
and therefore in the candidate set are those that are not strictly worse in every way than
some other store. Thus, every point in the plane is mapped to a set of stores that a client at
that location might use. The candidate diagram is the partition of the plane into regions,
where each candidate set is the same for all points in the same region. Naturally, if your only
consideration is distance, then this is the (classical) Voronoi diagram of the sites. However,

∗ Work on this paper was partially supported by NSF AF award CCF-1421231, and CCF-1217462. The
paper is also available on the arXiv [11].

1 Unless you are feeling adventurous enough that day to eat the frozen mystery food stuck to the back of
the freezer, which we strongly discourage you from doing.

© Hsien-Chih Chang, Sariel Har-Peled, and Benjamin Raichel;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 689–703

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.689
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

690 From Proximity to Utility: A Voronoi Partition of Pareto Optima

here deciding which shop to use is an instance of multi-objective optimization – there are
multiple, potentially competing, objectives to be optimized, and the decision might change
as the weighting and influence of these objectives mutate over time (in particular, you might
decide to do your shopping in different stores for different products). The concept of relevant
stores discussed above is often referred as the Pareto optima.

Pareto optima in welfare economics. Pareto efficiency, named after Vilfredo Pareto, is a
core concept in economic theory and more specifically in welfare economics. Here each point
in Rd represents the corresponding utilities of d players for a particular allocation of finite
resources. A point is said to be Pareto optimal if there is no other allocation which increases
the utility of any individual without decreasing the utility of another. The First Fundamental
Theorem of Welfare Economics states that any competitive equilibrium (i.e., supply equals
demand) is Pareto optimal. The origins of this theorem date back to 1776 with Adam Smith’s
famous (and controversial) work, “The Wealth of Nations,” but was not formally proven
until the 20th century by Lerner, Lange, and Arrow (see [15]). Naturally such proofs rely on
simplifying (i.e., potentially unrealistic) assumptions such as perfect knowledge, or absence
of externalities. The Second Fundamental Theorem of Welfare Economics states that any
Pareto optimum is achievable through lump-sum transfers (i.e. taxation and redistribution).
In other words each Pareto optima is a “best solution” under some set of societal preferences,
and is achievable through redistribution in one form or another (see [15] for a more in depth
discussion).

Pareto optima in computer science. In computational geometry such Pareto optima points
relate to the orthogonal convex hull [22], which in turn relates to the well known convex
hull (the input points that lie on the orthogonal convex hull is a super set of those which
lie on the convex hull). Pareto optima are also of importance to the database community
[10, 20], in which context such points are called maximal or skyline points. Such points are
of interest as they can be seen as the relevant subset of the (potentially much larger) result
of a relational database query. The standard example is querying a database of hotels for
the cheapest and closest hotel, where naturally hotels which are farther and more expensive
than an alternative hotel are not relevant results. There is a significant amount of work on
computing these points, see Kung et al. [21]. More recently, Godfrey et al. [16] compared
various approaches for the computation of these points (from a databases perspective), and
also introduced their own new external algorithm.2

Modeling uncertainty. Recently, there is a growing interest in modeling uncertainty in
data. As real data is acquired via physical measurements, noise and errors are introduced.
This can be addressed by treating the data as coming from a distribution (e.g., a point
location might be interpreted as a center of a Gaussian), and computing desired classical
quantities adapted for such settings. Thus, a nearest-neighbor query becomes a probabilistic
question – what is the expected distance to the nearest-neighbor? What is the most likely
point to be the nearest-neighbor? (See [1] and references therein for more information.)

This in turn gives rise to the question of what is the expected complexity of geometric
structures defined over such data. The case where the data is a set of points, and the

2 There is of course a lot of other work on Pareto optimal points, from connections to Nash equilibrium to
scheduling. We resisted the temptation of including many such references which are not directly related
to our paper.

H.-C. Chang, S. Har-Peled, and B. Raichel 691

locations of the points are chosen randomly was thoroughly investigated (see [23, 27, 18] and
references therein). The problem, when the locations are fixed but the weights associated
with the points are chosen randomly, is relatively new. Agarwal et al. [2] showed that for a
set of disjoint segments in the plane, if they are being expanded randomly, then the expected
complexity of the union is near linear. This result is somewhat surprising as in the worst
case the complexity of such a union is quadratic.

Here we are interested in bounding the expected complexity of weighted generalizations of
Voronoi diagrams (described below), where the weights (not the site locations) are randomly
sampled. Note that the result of Agarwal et al. [2] can be interpreted as bounding the expected
complexity of level sets of the multiplicatively weighted Voronoi diagram (of segments). On
the other hand, here we want to bound the entire lower envelope (which implies the same
bound on any level set). For the special case of multiplicative weighted Voronoi diagrams,
a near linear expected complexity bound was provided by Har-Peled and Raichel [18]. In
this work we consider a much more general class of weighted diagrams which allow multiple
weights and non-linear distance functions.

1.1 Our contributions
Conceptual contribution. We define formally the candidate diagram in Section 2.1 – a new
geometric structure that combines proximity information with utility. For every point x in
the plane, the diagram associates a candidate set L(x) of sites that are relevant to x; that
is, all the sites that are Pareto optima for x. Putting it differently, a site is not in L(x)
if it is further away from and worse in all parameters than some other site. Significantly,
unlike the traditional Voronoi diagram, the candidate diagram allows the user to change
their distance function, as long as the function respects the domination relationship. This
diagram is a significant extension of the Voronoi diagram, and includes other extensions of
Voronoi diagrams as special subcases, like multiplicative weighted Voronoi diagrams. Not
surprisingly, the worst case complexity of this diagram can be quite high.

Technical contribution. We consider the case where each site chooses its jth attribute
from some distribution Dj independently for each j. We show that the candidate diagram in
expectation has near linear complexity, and that, with high probability, the candidate set
has poly-logarithmic size for any point in the plane. In the process we derive several results
which are interesting in their own right.
(A) Low complexity of the minima for random points in the hypercube. We prove that

if n points are sampled from a fixed distribution (see Section 2.2 for assumptions on the
distribution) over the d-dimensional hypercube then, with probability 1− 1/nΩ(1), the
number of Pareto optima points is O(logd−1 n), which is within a constant factor of the
expectation. Previously, this result was only known in a weaker form that is insufficient
to imply our other results. Specifically, Bai et al. [6] proved that after normalization the
cumulative distribution function of the number of Pareto optima points is normal, up to
an additive error O(1/polylogn). (See [7, 8] as well.) In particular, their results (which
are quite nice and mathematically involved) only imply the statement with probability
1−1/polylogn. To the best of our knowledge this result is new – we emphasize, however,
that for our purposes a weaker bound of O(logd n) is sufficient, and such a weaker result
follows readily from the ε-net theorem [19] (naturally, this would add a log factor to
later results in the paper).

(B) Backward analysis with high probability. To get this result, we prove a lemma providing
high probability bounds when applying backwards analysis [24]. Such tail estimates

SoCG’15

692 From Proximity to Utility: A Voronoi Partition of Pareto Optima

are known in the context of randomized incremental algorithms [13, 9], but our proof
is arguably more direct and cleaner, and should be applicable to more cases. See
Section 2.3 and the full version of the paper [11].

(C) Overlay of the kth order Voronoi cells in randomized incremental construction. We
prove that the overlay of cells during a randomized incremental construction of the kth
order Voronoi diagram is of complexity O

(
k4n logn

)
(see Lemma 15).

(D) Complexity of the candidate diagram. Combining the above results carefully yields a
near-linear upper bound on the complexity of the candidate diagram (see Theorem 17).

Outline. In Section 2 we formally define our problem and introduce some tools that will
be used later on. Specifically, after some required preliminaries, we formally introduce
the candidate diagram in Section 2.1. The sampling model used is described in detail in
Section 2.2. In Section 2.3, we discuss backward analysis with high-probability bounds.

To bound the complexity of the candidate diagram (i.e., both the size of the planar
partition and the total size of the associated candidate sets), in Section 3, we use the notion
of proxy set. Defined formally in Section 3.1, it is (informally) an enlarged candidate set.
Section 3.2 bounds the size of the proxy set using backward analysis, both in expectation
and with high probability. Section 3.3 shows that mucking around with the proxy set is
useful, by proving that the proxy set contains the candidate set, for any point in the plane.

In Section 4, we show that the diagram induced by the proxy sets can be interpreted as the
arrangement formed by the overlay of cells during the randomized incremental construction
of the kth order Voronoi diagram. To this end, Section 4.1 defines the kth order Voronoi
diagram, the k environment of a site, and states some basic properties of these entities.
For our purposes, we need to bound the size of the conflict lists encountered during the
randomized incremental construction, and this is done in Section 4.2 using the Clarkson-Shor
moment technique. Next, in Section 4.3, we bound the expected complexity of the proxy
diagram.

In Section 5, we bound the expected size of the candidate set for any point in the plane.
First, we analyze the number of staircase points of random point sets in hypercubes, and we
use this bound to bound the size of the candidate set.

In Section 6, we put everything together, and prove our main result, showing the desired
bound on the complexity of the candidate diagram.

In the full version of the paper [11], we fill in the missing details for the results of
Section 2.3, proving a high-probability bound for backward analysis.

2 Problem definition and preliminaries

Throughout, we assume the reader is familiar with standard computational geometry terms,
such as arrangements [26], vertical-decomposition [9], etc. In the same vein, we assume that
the variable d, the dimension, is a small constant and the O notation hides constants that
are potentially exponential (or worse) in d.

A quantity is bounded by O(f) with high probability with respect to n, if for any large
enough constant γ > 0, there is another constant c depending on γ such that the quantity
is at most c · f with probability at least 1− n−γ . In other words, the bound holds for any
sufficiently small polynomial error with the expense of a multiplicative constant factor on
the size of the bound. When there’s no danger of confusion, we sometimes write Owhp(f) for
short.

H.-C. Chang, S. Har-Peled, and B. Raichel 693

I Definition 1. Consider two points p = (p1, . . . , pd) and q = (q1, . . . , qd) in Rd. The point
p dominates q (denoted by p � q) if pi ≤ qi, for all i.

Given a point set P ⊆ Rd, there are several terms for the subset of P that is not dominated,
as discussed above, such as Pareto optima or minima. Here, we use the following term.

I Definition 2. For a point set P ⊆ Rd, a point p ∈ P is a staircase point of P if no other
point of P dominates it. The set of all such points, denoted by (P), is the staircase of P.

Observe that for a finite point set P, the staircase (P) is never empty.

2.1 Formal definition of the candidate diagram
Let S = {s1, . . . , sn} be a set of n distinct sites in the plane. For each site s in S, there is an
associated list α = 〈a1, . . . , ad〉 of d real-valued attributes, each in the interval [0, 1]. When
viewed as a point in the unit hypercube [0, 1]d, this list of attributes is the parametric point
of the site si. Specifically, a site is a point in the plane encoding a facility location, while the
term point is used to refer to the (parametric) point encoding its attributes in Rd.

Preferences. Fix a client location x in the plane. For each site, there are d+ 1 associated
variables for the client to consider. Specifically, the client distance to the site, and d additional
attributes (e.g., prices of d different products) associated with the site. Conceptually, the
goal of the client is to “pay” as little as possible by choosing the best site (e.g., minimize the
overall cost of buying these d products together from a site, where the price of traveling the
distance to the site is also taken into account).

I Definition 3. A client x has a dominating preference if for any two sites s, s′ in the plane,
with parametric points α, α′ ∈ Rd respectively, the client would prefer the site s over s′ if
‖x − s‖ ≤ ‖x − s′‖ and α � α′ (that is, α dominates α′).

Note that a client having a dominating preference does not identify a specific optimum
site for the client, but rather a set of potential optimum sites. Specifically, given a client
location x in the plane, let its distance to the ith site be `i = ‖x − si‖. The set of sites the
client might possibly use (assuming the client uses a dominating preference) are the staircase
points of the set P(x) = {(α1, `1), . . . , (αn, `n)} (i.e., we are adding the distance to each site
as an additional attribute of the site – this attribute depends on the location of x). The set
of sites realizing the staircase of P(x) (i.e., all the sites relevant to x) is the candidate set
L(x) of x:

L(x) =
{

si ∈ S
∣∣ (αi, `i) is a staircase point of P(x) in Rd+1} . (1)

The candidate cell of x is the set of all the points in the plane that have the same candidate
set associated with them; that is,

{
p ∈ R2 | L(p) = L(x)

}
. The decomposition of the plane

into these cells is the candidate diagram.
Now, the client x has the candidate set L(x), and it chooses some site (or potentially

several sites) from L(x) that it might want to use. Note that the client might decide to use
different sites for different acquisitions. As an example, consider the case when each site
si is attached with weights αi = (ai,1, ai,2). If the client x has the preference of choosing
the site with smallest value ai,1 · `i among all the sites, then this preference is a dominating
preference, and therefore the client will choose one of the sites from the candidate list L(x).
(Observe that the preference function corresponds to the weighted Voronoi diagram with
respect to the first coordinate of the weights.) Similarly, if the preference function is to

SoCG’15

694 From Proximity to Utility: A Voronoi Partition of Pareto Optima

choose the smallest value ai,1 · `2i + ai,2 among all the sites (which again is a dominating
preference), then this corresponds to a power diagram of the sites.

Complexity of the diagram. The complexity of a planar arrangement is the total number of
edges, faces, and vertices. A candidate diagram can be interpreted as a planar arrangement,
and its complexity is defined analogously. The space complexity of the candidate diagram
is the total amount of memory needed to store the diagram explicitly, and is bounded by
the complexity of the candidate diagram together with the sum of the sizes of candidate
sets over all the faces in the arrangement of the diagram (which is potentially larger by a
factor of n, the number of sites). Note, that the space complexity is a somewhat naïve upper
bound, as using persistent data-structures might significantly reduce the space needed to
store the candidate lists.

I Lemma 4 (For proof see [11]). Given n sites in the plane, the complexity of the candidate
diagram of the sites is O

(
n4). The space complexity of the candidate diagram of the sites is

Ω
(
n2) and O(n5).
We leave the question of closing the gap in the bounds of Lemma 4 as an open problem

for further research.

2.2 Sampling model
Fortunately, the situation changes when randomization is involved. Let S be a set of n sites in
the plane. For each site s ∈ S, a parametric point α = (α1, . . . , αd) is sampled independently
from [0, 1]d, with the following constraint: each coordinate αi is sampled from a (continuous)
distribution Di, independently for each coordinate. In particular, the sorted order of the
n parametric points by a specific coordinate yields a uniform random permutation (for the
sake of simplicity of exposition we assume that all the values sampled are distinct).

Our main result shows that, under the above assumptions, both the complexity and the
space complexity of the candidate diagram is near-linear in expectation – see Theorem 17 for
the exact statement.

2.3 A short detour into backward analysis
Randomized incremental construction is a powerful technique used by geometric algorithms.
Here, one is given a set of elements S (e.g., segments in the plane), and one is interested
in computing some structure induced by these elements (e.g., the vertical decomposition
formed by the segments). To this end, one computes a random permutation Π = 〈s1, . . . , sn〉
of the elements of S, and in the ith iteration one computes the structure Vi induced by the
ith prefix Πi = 〈s1, . . . , si〉 of Π, by inserting the ith element si into Vi−1 and updating it
so it becomes Vi (e.g., split all the vertical trapezoids of Vi−1 that intersect si, and merge
together adjacent trapezoids with the same floor and ceiling).

In backward analysis one is interested in computing the probability that a specific object
that exists in Vi was actually created in the ith iteration (e.g., a specific vertical trapezoid in
the vertical decomposition Vi). If the object of interest is defined by at most b elements of
Πi, for some constant b, then the desired quantity is the probability that si is one of these
defining elements, which is at most b/i. In some cases, the sum of these probabilities, over
the n iterations, count the number of times certain events happen during the incremental
construction. However, this yields only a bound in expectation. For a high probability bound,
one can not apply this argument directly, as there is a subtle dependency leakage between

H.-C. Chang, S. Har-Peled, and B. Raichel 695

the corresponding indicator variables involved between different iterations. (Without going
into a detailed example, this is because the defining sets of the objects of interest can have
different sizes, and these sizes depend on which elements were used in the permutation in
earlier iterations.)

Let P be a set of n elements. A property P of P is a function that maps any subset X of
P to a subset P(X) of X.

Intuitively the elements in P(X) have some desired property with respect to X (for
example, let X be a set of points in the plane, then P(X) may be those points in X who lie
on the convex hull of X). The following corollary (see full version of the paper for details
[11]) provides a high probability bound for backward analysis, and while the proof is an easy
application of the Chernoff inequality, it nevertheless significantly simplifies some classical
results on randomized incremental construction algorithms. See the full version of the paper
[11] for a more detailed discussion and a proof.

I Corollary 5. Let P be a set of n elements, c > 1 and k ≥ 1 prespecified numbers, and
let P(X) be a property defined over any subset X ⊆ P. Now, consider a uniform random
permutation 〈p1, . . . , pn〉 of P, and let Pi = {p1, . . . , pi}. Furthermore, assume that, for all i,
we have, with probability at least 1− n−c, that |P(Pi)| ≤ k. Let Xi be the indicator variable
of the event pi ∈ P(Pi). Then, for any constant γ ≥ 2e, we have

Pr
[

n∑
i=1

Xi > γ · (2k lnn)
]
≤ n−γk + n−c.

(If for all X ⊆ P we have that |P(X)| ≤ k, then the additional error term n−c is not necessary.)

3 The proxy set

Providing a reasonable bound on the complexity of the candidate diagram directly seems
challenging. Therefore, we instead define for each point x in the plane a slightly different
set, called the proxy set. First we prove that the proxy set for each point in the plane has
small size (see Lemma 7 below); then we prove that, with high probability, the proxy set of x
contains the candidate set of x for all points x in the plane simultaneously (see Lemma 9
below).

3.1 Definitions
As before, the input is a set of sites S. For each site s ∈ S, we randomly pick a parametric
point α ∈ [0, 1]d according to the sampling method described in Section 2.2.

Volume ordering. Given a point p = (p1, . . . , pd) in [0, 1]d, the point volume pv(p) of point
p is defined to be p1p2 · · · pd; that is, the volume of the hyperrectangle with p and the origin
as a pair of opposite corners. When p is specifically the associated parametric point of an
input site s, we refer to the point volume of p as the parametric volume of s. Observe that if
point p dominates another point q then p must have smaller point volume (i.e., p lies in the
hyperrectangle defined by q).

The volume ordering of sites in S is a permutation 〈s1, . . . , sn〉 ordered by increasing
parametric volume of the sites; that is, pv(α1) ≤ pv(α2) ≤ . . . ≤ pv(αn), where αi is the
parametric point of si. If αi dominates αj then si precedes sj in the volume ordering. So if
we add the sites in volume ordering, then when we add the ith site si we can ignore all later

SoCG’15

696 From Proximity to Utility: A Voronoi Partition of Pareto Optima

sites when determining its region of influence – that is, the region of points whose candidate
set si belongs to – as no later sites can have their parametric point dominate the one of si.

k nearest neighbors. For a set of sites S and a point x in the plane, let dk(x,S) denote
the kth nearest neighbor distance to x in S; that is, the kth smallest value in the multiset{
‖x − s‖

∣∣ s ∈ S
}
. The k nearest neighbors to x in S is the set Nk(x,S) = {s ∈ S | ‖x − s‖ ≤

dk(x,S)} .

I Definition 6. Let S be a set of sites in the plane, and let V(S) = 〈s1, . . . , sn〉 be the
volume ordering of S. Let Si denote the underlying set of the ith prefix 〈s1, . . . , si〉 of V(S).
For a parameter k and a point x in the plane, the kth proxy set of x is the set of sites
Ck(x, S) =

⋃n
i=1 Nk(x,Si), In words, site s is in Ck(x, S) if it is one of the k nearest neighbors

to point x in some prefix of the volume ordering V(S).

3.2 Bounding the size of the proxy set
The desired bound now follows by using backward analysis and Corollary 5.

I Lemma 7. Let S be a set of n sites in the plane, and let k ≥ 1 be a fixed parameter. Then
we have |Ck(x,S)| = Owhp(k logn) simultaneously for all points x in the plane.

Proof. Fix a point x in the plane. A site s gets added to the proxy set Ck(x,S) if site s is
one of the k nearest neighbors of x among the underlying set Si of some prefix of the volume
ordering of S. Therefore a direct application of Corollary 5 implies (by setting P(Si) to be
Nk(x,Si)), with high probability, that

∣∣Ck(x,S)
∣∣ = O(k logn).

Furthermore, this holds for all points in the plane simultaneously. Indeed, consider the
arrangement determined by the

(
n
2
)
bisectors formed by all the pairs of sites in S. This

arrangement is a simple planar map with O
(
n4) vertices and O

(
n4) faces. Observe that

within each face the proxy set cannot change since all points in this face have the same
ordering of their distances to the sites in S. Therefore, picking a representative point from
each of these O

(
n4) faces, applying the high probability bound to each one of them, and

then applying the union bound implies the claim. J

3.3 The proxy set contains the candidate set
The following corollary is implied by a careful (but straightforward) integration argument
(see full version [11]).

I Corollary 8. Let Fd(∆) be the total measure of the points p ∈ [0, 1]d, such that the point
volume pv(p) is at most ∆. Then for ∆ ≥ (logn)/n we have Fd(∆) = Θ(∆ logd−1 n); in
particular, Fd(logn/n) = Θ((logd n)/n).

I Lemma 9. Let S be a set of n sites in the plane, and let k = Θ(logd n) be a fixed parameter.
For all points x in the plane, we have that L(x) ⊆ Ck(x, S), and this holds with high probability.

Proof. Fix a point x in the plane, and let si be any site not in Ck(x,S), and let αi be the
associated parametric point. We claim that, with high probability, the site si is dominated
by some other site which is closer to x, and hence by the definition of dominating preference
(Definition 3), si cannot be a site used by x (and thus si /∈ L(x)). Taking the union bound
over all sites not in Ck(x,S) then implies this claim.

By Corollary 8, the total measure of the points in [0, 1]d with point volume at most
∆ = logn/n is Θ((logd n)/n). As such, by Chernoff’s inequality, with high probability, there

H.-C. Chang, S. Har-Peled, and B. Raichel 697

are K = O(logd n) sites in S such that their parametric points have point volume smaller
than ∆. In particular, by choosing k to be sufficiently large (i.e., k > K), the underlying set
Sk of the kth prefix of the volume ordering of S will contain all these small point volume
sites, and since Sk ⊆ Ck(x, S), so will Ck(x, S). Therefore, from this point on, we will assume
that si /∈ Ck(x,S) and ∆i = pv(αi) = Ω(logn/n).

Now any site s with smaller parametric volume than si is in the (unordered) prefix Si. In
particular, the k nearest neighbors Nk(x,Si) of x in Si all have smaller parametric volume
than si. Hence Ck(x, S) contains k points all of which have smaller parametric volume than
si, and which are closer to x. Therefore, the claim will be implied if one of these k points
dominates si.

The probability of a site s (that is closer to x than si) with
parametric point α to dominate si is the probability that α �
αi given that α ∈ F , where F =

{
α ∈ [0, 1]d

∣∣pv(α) ≤ ∆i

}
.

By Corollary 8, we have vol(F) = Fd(∆i) = Θ(∆i logd−1 n).
The probability that a random parametric point in [0, 1]d
dominates αi is exactly ∆i = pv(αi), and as such the desired
probability Pr

[
α � αi |α ∈ F

]
is equal to ∆i/Fd(∆i), which

is O(1/ logd−1 n). This is depicted in the figure on the right –
the probability of a random point picked uniformly from the

si

s1

s2

R

F

region F under the curve y = ∆i/x, induced by si, to fall in the rectangle R.
As the parametric point of each one of the k points in Nk(x,Si) has equal probability to

be anywhere in F , this implies the expected number of points in Nk(x,Si) which dominate si
is Pr

[
α � αi |α ∈ F

]
· k = Θ(logn). Therefore by making k sufficiently large, Chernoff’s

inequality implies the desired result.
It follows that this holds, for all points in the plane simultaneously, by following the

argument used in the proof of Lemma 7. J

4 Bounding the complexity of the kth order proxy diagram

The kth proxy cell of x is the set of all the points in the plane that have the same kth proxy
set associated with them; that is,

{
p ∈ R2

∣∣Ck(p,S) = Ck(x,S)
}
. The decomposition of the

plane into these faces is the kth order proxy diagram. In this section, our goal is to prove
that the expected total diagram complexity of the kth order proxy diagram is O

(
k4n logn

)
.

To this end, we bound the complexity by relating it to the overlay of star-polygons that rise
out of the kth order Voronoi diagram.

4.1 Preliminaries
4.1.1 The kth order Voronoi diagram
Let S be a set of n sites in the plane. The kth order Voronoi diagram of S is a partition of
the plane into faces such that each cell is the locus of points which have the same set of
k nearest sites of S (the internal ordering of these k sites, by distance to the query point,
may vary within the cell). It is well known that the worst case complexity of this diagram is
Θ(k(n− k)) (see [4, Section 6.5]).

Environments and overlays. For a site s in S and a constant k, the k environment of s,
denoted by envk(s,S), is the set of all the points in the plane such that s is one of their k
nearest neighbors in S; that is, envk(s,S) =

{
x ∈ R2 | s ∈ Nk(x,S)

}
.

SoCG’15

698 From Proximity to Utility: A Voronoi Partition of Pareto Optima

Figure 1

See Figure 1 for an example how this environment looks like
for different values of k. One can view the k environment of s
as the union of the kth order Voronoi cells which have s as one
of the k nearest sites. Observe that the overlay of the polygons
envk(s1,S), . . . , envk(sn,S) produces the kth order Voronoi dia-
gram of S. Indeed, for any point x in the plane, if s is one of
x’s k nearest sites, then by definition x is covered by envk(s,S);
and conversely if x is covered by envk(s,S) then s is one of x’s k
nearest neighbors. It is also known that each k environment of
a site is a star-shaped polygon; this was previously observed by
Aurenhammer and Schwarzkopf [5].

Going back to our original problem, let k be a fixed constant, and let V(S) = 〈s1, . . . , sn〉
be the volume ordering of S. As usual, we use Si to denote the unordered ith prefix of V(S).
Let envi := envk(si,Si), that is, the union of all the cells in the kth order Voronoi diagram
of Si where si is one of the k nearest neighbors.

I Observation 10. The arrangement determined by the overlay of the polygons env1, . . . , envn
is the kth order proxy diagram of S.

4.1.2 Arrangements of planes and lines

One can interpret the kth order Voronoi diagram in terms of an arrangement of planes in R3.
Specifically, “lift” each site to the paraboloid

(
x, y,−(x2 + y2)

)
. Consider the arrangement

of planes H tangent to the paraboloid at the lifted locations of the sites. A point on the union
of these planes is of level k if there are exactly k planes strictly below it. The k-level is the
closure of the set of points of level k.3 (For any set of n hyperplanes in Rd, one can define
k-levels of arrangement of hyperplanes analogously.) Consider a point x in the xy-plane.
The decreasing z-ordering of the planes vertically below x is the same as the ordering, by
decreasing distance from x, to the corresponding sites. Hence, let Ek(H) denote the set of
edges in the arrangement H on the k-level, where an edge is a maximal portion of the k-level
that lies on the intersection of two planes (induced by two sites). Then the projection of the
edges in Ek−1(H) onto the xy-plane results in the edges of the kth order Voronoi diagram.
When there is no risk of confusion, we also use Ek(S) to denote the set of edges in Ek(H),
where H is obtained by lifting the sites in S to the paraboloid and taking the tangential
planes, as described above.

We need the notion of k-levels of arrangement of lines as well. For a set of lines L in the
plane, let Ek(L) denote the set of edges in the arrangement of L on the k-level.

I Lemma 11 (For proof see [11]). Let L be a set of n lines in general position in the plane.
Fix any arbitrary insertion ordering of the lines in L, and let m be the total number of
distinct vertices on the k-level of the arrangement of L seen over all iterations of this insertion
process. We have m = O(nk).

3 The lifting of the sites to the paraboloid z = −(x2 + y2) is done so that the definition of the k-level
coincide with the standard definition.

H.-C. Chang, S. Har-Peled, and B. Raichel 699

4.2 Bounding the size of the below conflict-lists

4.2.1 The below conflict lists
Let H be a set of n planes in general position in R3. (For example, in the setting of the kth
order Voronoi diagram, H is the set of planes that are tangent to the paraboloid at the lifted
locations of the sites.) For any subset R ⊆ H, let Vk(R) denote the vertices on the k-level of
the arrangement of R. Similarly, let V≤k(R) =

⋃k
i=0 Vk(R) be the set of vertices of level at

most k in the arrangement of R, and let E≤k(R) be the set of edges of level at most k in the
arrangement of R. For a vertex v in the arrangement of R, the below conflict list B(v) of v is
the set of those planes in H that lie strictly below v; denote bv to be |B(v)|. For an edge e
in the arrangement of R, the below conflict list B(e) of e is the set of planes of H which lie
below e (i.e., there is at least one point on e that lies above such a plane); denote be to be
|B(e)|. Our purpose here is to bound the quantities E

[∑
v∈V≤k(R) bv

]
and E

[∑
e∈E≤k(R) be

]
.

4.2.2 The Clarkson-Shor technique
In the following, we use the Clarkson-Shor technique [14], stated here without proof (see
[17] for details). Specifically, let S be a set of elements such that any subset R ⊆ S defines a
corresponding set of objects T (R) (e.g., S is a set of planes and any subset R ⊆ S induces a
set of vertices in the arrangement of planes R). Each potential object, τ , has a defining set
and a stopping set. The defining set, D(τ), is a subset of S that must appear in R in order
for the object to be present in T (R). We require that the defining set has at most a constant
size for every object. The stopping set, κ(τ), is a subset of S such that if any of its member
appear in R then τ is not present in T (R). We also naturally require that κ(τ) ∩D(τ) = ∅
for all object τ . Surprisingly, this already implies the following.

I Theorem 12 (Bounded Moments [14]). Using the above notation, let S be a set of n elements,
and let R be a random sample of size r from S. Let f(·) be a polynomially bounded function 4.
We have that E

[∑
τ∈T (R) f

(
|κ(τ)|

)]
= O

(
E
[
|T (R)|

]
f(n/r)

)
, where the expectation is taken

over random sample R.

4.2.3 Bounding the below conflict-lists
The technical challenge. The proof of the next lemma is technically interesting as it does
not follow in a straightforward fashion from the Clarkson-Shor technique. Indeed, the below
conflict list is not the standard conflict list. Specifically, the decision whether a vertex v in
the arrangement of R is of level at most k is a “global” decision of R, and as such the defining
set of this vertex is neither of constant size, nor unique, as required to use the Clarkson-Shor
technique. If this was the only issue, the extension by Agarwal et al. [3] could handle this
situation. However it is even worse: a plane h ∈ H \ R that is below a vertex v ∈ V≤k(R) is
not necessarily conflicting with v (i.e., in the stopping set of v) – as its addition to R will not
necessarily remove v from V≤k(R ∪ {h}).

The solution. Since the standard technique fails in this case, we need to perform our
argument somehow indirectly. Specifically, we use a second random sample and then deploy
the Clarkson-Shor technique on this smaller sample – this is reminiscent of the proof bounding

4 A function f is polynomially bounded, if (i) f is monotonically increasing, and (ii) f(n) = nO(1).

SoCG’15

700 From Proximity to Utility: A Voronoi Partition of Pareto Optima

the size of V≤k(H) by Clarkson-Shor [14], and the proof of the exponential decay lemma of
Chazelle and Friedman [12].

I Lemma 13. Let k be a fixed constant, and let R be a random sample (without replacement)
of size r from a set of H of n planes in R3, we have E

[∑
v∈V≤k (R) bv

]
= O

(
nk3).

Proof. From the sake of simplicity of exposition, let us assume that the sampling here is
done by picking every element into the random sample R with probability r/n. Doing the
computations below using sampling without replacement (so we get the exact size) requires
modifying the calculations so that the probabilities are stated using binomial coefficients
– this makes the calculation messier, but the results remain the same. See [25] for further
discussion of this minor issue.

So, fix a sample R and sample each plane in R, with probability 1/k, to be in R′. Let us
consider the probability that a vertex v ∈ V≤k(R) ends up on the lower envelope of R′. A
lower bound can be achieved by the standard argument of Clarkson-Shor. Specifically, if a
vertex v is on the lower envelope then its three defining planes must be in R′ and moreover as
v ∈ V≤k(R) by definition there are at most k planes below it that must not be in R′. So let
Xv be an indicator variable for whether v appears on the lower envelope of R′, we then have

ER′
[
Xv

∣∣ R
]
≥ 1
k3 (1− 1/k)k ≥ 1

e2k3 .

Observe that

ER′
[∑

v∈V0 (R′) bv
]

= ER

[
ER′
[∑

v∈V0 (R′) bv
∣∣∣ R
]]

= ER

[
ER′
[∑

v∈V≤k (R)Xvbv
∣∣∣ R
]]
.

(2)

Fixing the value of R, the lower bound above implies

ER′
[∑

v∈V≤k (R)Xvbv
∣∣∣ R
]

=
∑

v∈V≤k (R)

ER′
[
Xvbv

∣∣∣ R
]

=
∑

v∈V≤k (R)

bvER′
[
Xv

∣∣∣ R
]

≥
∑

v∈V≤k (R)

bv
e2k3 ,

by linearity of expectations and as bv is a constant for v. Plugging this into Eq. (2), we have

µ = ER′

[∑
v∈V0 (R′)

bv

]
≥ ER

[∑
v∈V≤k (R)

bv
e2k3

]
= 1
e2k3 ER

[∑
v∈V≤k (R)

bv

]
. (3)

Observe that R′ is a random sample of R which by itself is a random sample of H. As
such, one can interpret R′ as a direct random sample of H. The lower envelope of a set of
planes has linear complexity, and for a vertex v on the lower envelope of R′ the set B(v) is
the standard conflict list of v. As such, Theorem 12 implies

µ = ER′
[∑

v∈V0 (R′) bv
]

= O

(
|R′| · n

|R′|

)
= O(n).

Plugging this into Eq. 3) implies the claim. J

I Corollary 14. Let R be a random sample (without replacement) of size r from a set H of n
planes in R3. We have that ER

[∑
e∈E≤k (R) be

]
= O

(
nk3).

H.-C. Chang, S. Har-Peled, and B. Raichel 701

4.3 Putting it all together

The proof of the following lemma is similar in spirit to the argument of Har-Peled and
Raichel [18].

I Lemma 15. Let S be a set of n sites in the plane, 〈s1, . . . , sn〉 be a random permutation
of S, and let k be a fixed number. The expected complexity of arrangement determined by
the overlay of the polygons env1, . . . , envn (and therefore, the expected complexity of the kth
order proxy diagram) is O

(
k4n logn

)
, where envi = envk(si,Si) and Si = {s1, . . . , si} is the

underlying set of the ith prefix of 〈s1, . . . , sn〉, for each i.

Proof. As the arrangement of the overlay of the polygons env1, . . . , envn is a planar map it
suffices to bound the number of edges in the arrangement. For each i, let E(envi) be the edges
in E≤k(Si) that appear on the boundary of envi (for simplicity we do not distinguish between
edges in E≤k(Si) in R3 and their projection in the plane). Created in the ith iteration, an
edge e in E(envi) is going to be broken into several pieces in the final arrangement of the
overlay. Let ne be the number of such pieces that arise from e.

Fix an integer i. As Si is fixed, B(e) is also fixed, for all e ∈ E≤k(Si). Moreover, we claim
that ne ≤ c · kbe for some constant c. Indeed, ne counts the number of future intersections
of e with the edges of E(envj), for any j > i. As the edge e is on the k-level at the time
of creation, and the edges in E(envj) are on the k-level when they are being created (in
the future), these edges must lie below e. Namely, any future intersect on e are caused by
intersections of (pairs of) planes in B(e). So consider the intersection of all planes in B(e)
on the vertical plane containing e. On this vertical plane, B(e) is a set of be lines, whose
insertion ordering is defined by the suffix of the permutation 〈si+1, . . . , sn〉. Now any edge
of E(envj), for some j > i, that intersects e must appear as a vertex on the k-level at some
point during the insertion of these lines. However, by Lemma 11, applied to the lines of B(e)
on the vertical plane of e, under any insertion ordering there are at most O(kbe) vertices
that ever appear on the k-level.

For an edge e ∈ E≤k(Si), let Xe be the indicator variable of the event that e was
created in the ith iteration, and furthermore, lies on the boundary of envi. Observe that
E[Xe | Si] ≤ 4/i, as an edge appears for the first time in round i only if one of its (at most)
four defining sites was the ith site inserted.

Let Yi =
∑
e∈E(envi) ne =

∑
e∈E≤k(Si) neXe be the total (forward) complexity contribution

to the final arrangement of edges added in round i. We thus have

E
[
Yi

∣∣∣ Si
]

= E

[∑
e∈E≤k (Si)

neXe

∣∣∣∣Si
]
≤ E

[∑
e∈E≤k (Si)

ckbeXe

∣∣∣∣∣ Si

]

=
∑

e∈E≤k (Si)

ckbe E
[
Xe

∣∣∣ Si
]
≤ 4ck

i

∑
e∈E≤k (Si)

be.

The total complexity of the overlay arrangement of the polygons env1, . . . , envn is asymptot-
ically bounded by

∑
i Yi, and so by Corollary 14 we have

E
[∑

i Yi

]
=
∑
i

E
[
E
[
Yi

∣∣∣ Si
]]
≤
∑
i

E

[
4ck
i

∑
e∈E≤k(Si)

be

]
= O

(∑
i

nk4

i

)
= O

(
k4n logn

)
. J

SoCG’15

702 From Proximity to Utility: A Voronoi Partition of Pareto Optima

5 On the expected size of the staircase

Due to space limits, the details of the following result are omitted, and can be found in the
full version of the paper [11].

I Lemma 16. Let S be a set of n sites in the plane, where for each site s in S, a parametric
point from a distribution over [0, 1]d is sampled (as described in Section 2.2). Then, the
candidate set has size Owhp(logd n) simultaneously for all points in the plane.

6 The main result

We now use the bound on the complexity of the proxy diagram, as well as our knowledge of
the relationship between the candidate set and the proxy set to bound the complexity of the
candidate diagram.

I Theorem 17. Let S be a set of n sites in the plane, where for each site in S we sample
an associated parametric point in [0, 1]d, as described in Section 2.2. Then, the expected
complexity of the candidate diagram is O

(
n log8d+5 n

)
. The expected space complexity of this

candidate diagram is O
(
n log9d+5 n

)
.

Proof. Fix k to be sufficiently large such that k = Θ(logd n). By Lemma 15 the expected
complexity of the proxy diagram is O(k4n logn). Triangulating each polygonal cell in the
diagram does not increase its asymptotic complexity. Lemma 7 implies that, (simultaneously)
for all the points in the plane, the proxy set has size O(k logn), with high probability. Now,
Lemma 9 implies that, with high probability, the proxy set contains the candidate set for
any point in the plane.

The resulting triangulation has O(k4n logn) faces, and inside each face all the sites that
might appear in the candidate set are all present in the proxy set of this face. By Lemma 4,
the complexity of an m-site candidate diagram is O(m4). Therefore the complexity of the
candidate diagram per face is O

(
(k logn)4), with high probability (clipping the candidate

diagram of these sites to the containing triangle does not increase the asymptotic complexity).
Multiplying the number of faces, O(k4n logn), by the complexity of the arrangement within
each face, O

(
(k logn)4), yields the desired result.

The bound on the space complexity follows readily from the bound on the size of the
candidate set from Lemma 16. J

Acknowledgments. The authors would like to thank Pankaj Agarwal, Ken Clarkson, Nir-
man Kumar, and Raimund Seidel for useful discussions related to this work. We are also
grateful to the anonymous SoCG reviewers for their helpful comments.

References
1 P. K. Agarwal, B. Aronov, S. Har-Peled, J. M. Phillips, K. Yi, and W. Zhang. Nearest

neighbor searching under uncertainty II. In Proc. 32nd ACM Sympos. Principles Database
Syst. (PODS), pages 115–126, 2013.

2 P. K. Agarwal, S. Har-Peled, H. Kaplan, and M. Sharir. Union of random minkowski sums
and network vulnerability analysis. Discrete Comput. Geom., 52(3):551–582, 2014.

3 P. K. Agarwal, J. Matoušek, and O. Schwarzkopf. Computing many faces in arrangements
of lines and segments. SIAM J. Comput., 27(2):491–505, 1998.

4 F. Aurenhammer, R. Klein, and D.-T. Lee. Voronoi Diagrams and Delaunay Triangulations.
World Scientific, 2013.

H.-C. Chang, S. Har-Peled, and B. Raichel 703

5 F. Aurenhammer and O. Schwarzkopf. A simple on-line randomized incremental algorithm
for computing higher order Voronoi diagrams. Internat. J. Comput. Geom. Appl., pages
363–381, 1992.

6 Z.-D. Bai, L. Devroye, H.-K. Hwang, and T.-H. Tsai. Maxima in hypercubes. Random
Struct. Alg., 27(3):290–309, 2005.

7 I. Bárány and M. Reitzner. On the variance of random polytopes. Adv. Math., 225(4):1986–
2001, 2010.

8 I. Bárány and M. Reitzner. Poisson polytopes. Annals. Prob., 38(4):1507–1531, 2010.
9 M. de Berg, O. Cheong, M. van Kreveld, and M. H. Overmars. Computational Geometry:

Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.
10 S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In Proc. 17th IEEE Int.

Conf. Data Eng., pages 421–430, 2001.
11 H.-C. Chang, S. Har-Peled, and B. Raichel. From proximity to utility: A Voronoi partition

of Pareto optima. CoRR, abs/1404.3403, 2014.
12 B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in

geometry. Combinatorica, 10(3):229–249, 1990.
13 K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental

constructions. Comput. Geom. Theory Appl., 3(4):185–212, 1993.
14 K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geo-

metry, II. Discrete Comput. Geom., 4:387–421, 1989.
15 A. Feldman. Welfare economics. In S. Durlauf and L. Blume, editors, The New Palgrave

Dictionary of Economics. Palgrave Macmillan, 2008.
16 P. Godfrey, R. Shipley, and J. Gryz. Algorithms and analyses for maximal vector compu-

tation. VLDB J., 16(1):5–28, 2007.
17 S. Har-Peled. Geometric Approximation Algorithms, volume 173 of Mathematical Surveys

and Monographs. Amer. Math. Soc., 2011.
18 S. Har-Peled and B. Raichel. On the expected complexity of randomly weighted Voronoi

diagrams. In Proc. 30th Annu. Sympos. Comput. Geom. (SoCG), pages 232–241, 2014.
19 D. Haussler and E. Welzl. ε-nets and simplex range queries. Discrete Comput. Geom.,

2:127–151, 1987.
20 H.-K. Hwang, T.-H. Tsai, and W.-M. Chen. Threshold phenomena in k-dominant skylines

of random samples. SIAM J. Comput., 42(2):405–441, 2013.
21 H. Kung, F. Luccio, and F. Preparata. On finding the maxima of a set of vectors. J. Assoc.

Comput. Mach., 22(4):469–476, 1975.
22 T. Ottmann, E. Soisalon-Soininen, and D. Wood. On the definition and computation of

rectlinear convex hulls. Inf. Sci., 33(3):157–171, 1984.
23 R. Schneider and J. A. Wieacker. Integral geometry. In P. M. Gruber and J. M. Wills,

editors, Handbook of Convex Geometry, volume B, chapter 5.1, pages 1349–1390. North-
Holland, 1993.

24 R. Seidel. Backwards analysis of randomized geometric algorithms. In J. Pach, editor, New
Trends in Discrete and Computational Geometry, volume 10 of Algorithms and Combinat-
orics, pages 37–68. Springer-Verlag, 1993.

25 M. Sharir. The Clarkson-Shor technique revisited and extended. Comb., Prob. & Comput.,
12(2):191–201, 2003.

26 M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applic-
ations. Cambridge University Press, New York, 1995.

27 W. Weil and J. A. Wieacker. Stochastic geometry. In P. M. Gruber and J. M. Wills, editors,
Handbook of Convex Geometry, volume B, chapter 5.2, pages 1393–1438. North-Holland,
1993.

SoCG’15

Faster Deterministic Volume Estimation in the
Oracle Model via Thin Lattice Coverings
Daniel Dadush

Centrum Wiskunde & Informatica, The Netherlands
dadush@cwi.nl

Abstract
We give a 2O(n)(1+1/ε)n time and poly(n)-space deterministic algorithm for computing a (1+ε)n

approximation to the volume of a general convex body K, which comes close to matching the
(1+c/ε)n/2 lower bound for volume estimation in the oracle model by Bárány and Füredi (STOC
1986, Proc. Amer. Math. Soc. 1988). This improves on the previous results of Dadush and
Vempala (Proc. Nat’l Acad. Sci. 2013), which gave the above result only for symmetric bodies
and achieved a dependence of 2O(n)(1 + log5/2(1/ε)/ε3)n.

For our methods, we reduce the problem of volume estimation in K to counting lattice points
in K ⊆ Rn (via enumeration) for a specially constructed lattice L: a so-called thin covering of
space with respect to K (more precisely, for which L + K = Rn and voln(K)/det(L) = 2O(n)).
The trade off between time and approximation ratio is achieved by scaling down the lattice.

As our main technical contribution, we give the first deterministic 2O(n)-time and poly(n)-
space construction of thin covering lattices for general convex bodies. This improves on a recent
construction of Alon et al. (STOC 2013) which requires exponential space and only works for
symmetric bodies. For our construction, we combine the use of the M-ellipsoid from convex
geometry (Milman, C.R. Math. Acad. Sci. Paris 1986) together with lattice sparsification and
densification techniques (Dadush and Kun, SODA 2013; Rogers, J. London Math. Soc. 1950).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Deterministic Volume Estimation, Convex Geometry, Lattice Coverings
of Space, Lattice Point Enumeration

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.704

1 Introduction

The problem of estimating the volume of a convex body is one of the most fundamental
and well studied problems in high dimensional geometry. It is also one of the most striking
examples of the power of randomization. In [11, 12], Bárány and Füredi showed that any
deterministic volume algorithm for n-dimensional convex bodies having access only to a
membership oracle (which returns whether a point is in the convex body or not), requires at
least (1+c/ε)n/2 membership queries to estimate volume to within a (1+ε)n factor, for c > 0
an absolute constant any ε small enough. In particular, an O(1)-approximation requires
nΩ(n) queries. In a breakthrough result however, Dyer, Frieze and Kannan [9] showed that if
the algorithm is allowed to err with small probability, then even a (1 + ε) approximation can
be obtained in poly(n, 1/ε)-time. Their algorithm relied on novel Monte Carlo Markov Chain
techniques that spurred much further research. These works left a major open question: can
the volume algorithm be made deterministic when the description of the convex body is
given explicitly (e.g. a polytope given by its inequalities)?

A related (and more modest) question, which has only recently received attention,
is whether one can come close to matching the lower bounds of Bárány and Füredi for

© Daniel Dadush;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 704–718

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.704
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D. Dadush 705

deterministic volume computation in the oracle model. We note it was open to achieve
such bounds deterministically even for explicitly presented polytopes. This was recently
answered in the affirmative by Vempala and the author in [8], which gave a deterministic
2O(n)(1 + log5/2(1/ε)/ε3)n-time and polynomial space algorithm for estimating the volume
of a symmetric convex body K (K is symmetric if K = −K) to within (1 + ε)n. The main
tool developed there was an algorithmic version of (variants of) Milman’s construction for
the M-ellipsoid in convex geometry [18]. An M -ellipsoid of an n-dimensional convex body
K is an ellipsoid E (an ellipsoid is a linear transformation of the Euclidean ball) satisfying
that 2O(n) translates of E suffice to cover K and vice versa. Note that the volume of an
M-ellipsoid of K immediately provides a 2O(n) factor approximation to the volume of K.

From the above, two natural avenues of improvement were to reduce the dependence on
ε and to generalize the result to asymmetric convex bodies.

2 Main Contribution

We make improvements on both of the last two fronts. Our main result is stated below.

I Theorem 1 (Volume Estimation). For a convex body K ⊆ Rn given by a membership
oracle, and any ε > 0, one can compute V ≥ 0 satisfying voln(K) ≤ V ≤ (1 + ε)nvoln(K) in
deterministic 2O(n)(1 + 1/ε)n-time and poly(n)-space.

Both the algorithm and that of [8] share the same high level approach, namely, reducing
volume estimation to counting lattice points within a carefully chosen convex body and
lattice.

We note that if we are satisfied with a cn approximation of volume for some large enough
c > 0, then the volume of an M-ellipsoid is already a good enough volume approximation
for K and hence lattice point counting is not needed. This extends to asymmetric convex
bodies as well, by replacing K with the symmetric body K −K (an oracle for which can be
efficiently computed, see [13]) and using the standard inequalities

2nvoln(K) ≤ voln(K −K) ≤
(

2n
n

)
voln(K) (see [23]).

Hence the above result is truly interesting for the case of small constant ε.
Our runtime improvement over the algorithm of [8] comes from a much more efficient

reduction from volume estimation to lattice point counting. In particular, the crucial
ingredient in our improved reduction is the use of so-called thin lattice coverings of space with
respect to K (and related convex bodies). The heart of our volume algorithm, and our main
technical contribution, is a deterministic construction of thin-covering lattices for general
convex bodies with good enumeration properties, that is, where lattice point enumeration can
be performed efficiently using only polynomial space. This improves on a recent thin-lattice
construction of [1] which requires exponential space and only works for symmetric bodies.

Organization. The remainder of this paper is organized as follows. First, we shall explain
the reduction between volume estimation and lattice point counting, which will motivate
the need for thin covering lattices and other related concepts. Second, we will present the
polynomial space lattice point enumeration technique we use – Schorr-Euchner enumeration –
and briefly discuss its implementation and associated challenges. Third, we give the formal
statements of our main thin lattice construction and related algorithms, and their relations
to prior work. Finally, in the remainder, we shall detail the main ideas behind the thin
covering lattice construction.

SoCG’15

706 Volume Estimation via Thin Lattice Coverings

3 Preliminaries

Basic concepts. For two sets A,B ⊆ Rn, we define their Minkowski sum A + B =
{a + b : a ∈ A,b ∈ B}. For vectors x,y ∈ Rn, we write 〈x,y〉 =

∑n
i=1 xiyi to denote

the standard inner product and ‖x‖2 =
√
〈x,x〉 for the Euclidean norm. We let Bn

2 =
{x ∈ Rn : ‖x‖2 ≤ 1} denote the unit Euclidean ball in Rn. For a set A ⊆ Rn, we denote its
interior by A◦. A convex body K ⊆ Rn is a compact convex set with non-empty interior. A
function f : Rn → R is L-Lipshitz if ∀x,y ∈ Rn, |f(x)− f(y)| ≤ L‖x− y‖2.

Lattices. We give some basic definitions of lattice concepts.

I Definition 2 (Lattices and Bases). A full rank lattice L ⊆ Rn is defined as all integer
combinations of some basis B = (b1, . . . ,bn) ∈ Rn×n. In particular, L = BZn. The
determinant of L is defined as det(L) = | det(B)|, which is invariant to the choice of lattice
basis. We define b∗1, . . . ,b∗n, the associated dual basis, to be the unique vectors satisfying〈
bi,b∗j

〉
= 1 if i = j and 0 otherwise (corresponding to the columns of B−T).

I Definition 3 (Gram Schmid Projections). For a basis b1, . . . ,bn ∈ Rn, we define the ith
Gram-Schmidt projection πi, i ∈ [n+ 1], to be the orthogonal projection onto the orthogonal
complement of the linear span of b1, . . . ,bi−1. Note that π1 is the identity on Rn and πn+1
is the identically 0 map.

I Definition 4 (Basis Parallelipiped). For a full rank lattice L ⊆ Rn with basis B, we
define P(B) = B[−1/2, 1/2)n to be the half-open symmetric parallelepiped. Note that
voln(P(B)) = det(L).

I Definition 5 (Sublattice Index). For a full rank lattice L ⊆ Rn and full rank sublattice L′ ⊆
L, we define the index of L′ in L, denoted [L : L′], as | {y + L′ : y ∈ L} | <∞ (i.e. number
of shifts of L′ in L). Here, we have the fundamental identity [L : L′] = det(L′)/ det(L).

I Definition 6 (Lattice Tiling). A measurable set A ⊆ Rn tiles with respect to a full rank
lattice L ⊆ Rn (and vice versa) if for every x ∈ Rn there is a unique y ∈ L such that
x ∈ y +A. Here, A is said to be a fundamental domain of L.

A basic fact is that every fundamental domain of L has the same volume. In particular,
since P(B) is a fundamental domain, every fundamental domain of L has volume det(L).

Computational model. For a convex body K ⊆ Rn, a membership oracle OK for K takes
as input x ∈ Rn and returns 1 if x ∈ K and 0 otherwise. K is (a0, r, R)-centered, for
r,R > 0 and a0 ∈ Rn, if rBn

2 ⊆ K − a0 ⊆ RBn
2 . When we refer to K being centered, we

shall mean that the centering guarantees (a0, r, R) exist and are implicitly passed to any
algorithm operating on K and that the complexity of this algorithm may depend on these
guarantees. For ε > 0, we defineKε = K+εBn

2 andK−ε = {x ∈ K : x + εBn
2 ⊆ K}. A weak

membership oracle OK for K, takes an additional parameter ε > 0, and only guarantees that
OK(x, ε) = 1 if x ∈ K−ε and 0 if x /∈ Kε. All our algorithms will operate on centered convex
bodies equipped with (weak) membership oracles, and the complexity of our algorithms will
be measured by the number of arithmetic operations and oracle calls they perform.

One of the main algorithmic tools we will use is the following classical result in convex
optimization:

I Theorem 7 (Convex Optimization [25, 13]). Let K ⊆ Rn be a centered convex body given
by a weak membership oracle OK . Let f : Rn → R denote an L-Lipshitz convex function.

D. Dadush 707

Then, for ε > 0, a vector y ∈ K satisfying

f(y)− ε ≤ min
x∈K

f(x) ≤ f(y)

can be computed using a polynomial number of arithmetic operations, oracle calls and
evaluations of f .

4 From Volume Estimation to Counting Lattice Points

In this section, we will show how to reduce the volume estimation problem to counting
lattice points inside a well-chosen convex body. We will primarily concern ourselves with the
task of minimizing the number of lattice points we need to enumerate to achieve a desired
approximation factor. The important details regarding how to efficiently enumerate these
lattice points is left to later sections.

To build intuition, we shall first try to estimate the volume of a convex body K ⊆ Rn by
counting the number of points it contains in the standard integer lattice Zn. Through this
attempt, we will expose some of the main ingredients needed to make volume approximation
efficient.

For the integer lattice, the canonical relation between lattice point counting and volume
is simply derived by associating every point in y ∈ Zn with the half open cube around it,
i.e. C = [−1/2, 1/2)n + y. Since these shifted cubes have volume 1 and are all disjoint, the
count |K ∩ Zn| is the same as the volume of the set S = (K ∩ Zn) + C. Now as is, the set
S may both miss parts of and “stick out” of K, so it is difficult to deduce any relationship
between their volumes. To fix one of these problems, note that the cubes around each integer
point form a tiling of space, that is every point in Rn is in exactly one such cube. Hence
if we enlarge S to contain all the cubes centered around Zn that touch K – formally, we
redefine S = ((K − C) ∩ Zn) + C – then we are guaranteed that S covers K. In particular,

|(K − C) ∩ Zn| = voln(S) ≥ voln(K).

Note then that the volume of S can be computed if we can enumerate the integer points
in K − C (we defer for now the discussion of how to do this efficiently). So now, from the
perspective of approximation, we are left with the problem that S may stick out very far
from K, and hence may have very large volume compared to K. Indeed, this may easily
happen (say if K is a ball of tiny radius), since we have made no assumptions on K.

Regardless, if we scale down Zn and C = [−1/2, 1/2)n by ε, then as we let ε → 0, the
volume of S (defined on the scaled down lattice and cube) will clearly converge to the volume
of K since S will converge to K. Given this, we are lead to two basic questions. Firstly,
how small do we need to make ε to get a (1 + ε)n approximation of volume? Secondly, how
many lattice points do we need to enumerate to compute this approximation? Crucially, the
answer to this last question will essentially determine the complexity of the algorithm.

To get a quantitative estimate, let us normalize the geometry by assuming that ±C ⊆ K/2.
(while requiring the condition for both C and −C is essentially redundant here, it will be
very important when we generalize the forthcoming analysis.) Note that this can always be
achieved by an appropriate shift and scaling of K. Letting Sε = ((K − εC) ∩ εZn) + εC, for
ε > 0, by the same reasoning as before we have that

voln(K) ≤ voln(Sε) = voln(εC)|(K − εC) ∩ Zn| = εn|(K − εC) ∩ Zn|. (1)

SoCG’15

708 Volume Estimation via Thin Lattice Coverings

Furthermore, since ±C ⊆ K/2, we have that

voln(Sε) = voln(((K − εC) ∩ εZn) + εC) ≤ voln(K + ε(C − C))
≤ voln(K + ε(K/2 +K/2)) = voln((1 + ε)K) = (1 + ε)nvoln(K), (2)

where the last two equalities hold by convexity of K and the homogeneity of volume
respectively. Hence, from the above computing a (1 + ε)n approximation to voln(K) reduces
to enumerating the points in (K − εC) ∩ εZn. Combining (1),(2) and rearranging, we see
that the number of points we must enumerate is bounded by

|(K − εC) ∩ Zn| ≤ (1 + 1/ε)nvoln(K) = 2n(1 + 1/ε)n (voln(K/2)/voln(C)) .

Now, if we believe that the correct measure of complexity is simply the number of lattice
points we must enumerate (ignoring the actual complexity of enumeration for now), then we
would achieve the complexity estimate in Theorem 1 if voln(K/2)/voln(C) = 2O(n). However,
it is clear that not every convex body K can be scaled and shifted such that ±C ⊆ K/2 and
voln(K/2)/voln(C) = 2O(n).

On the other hand, it is easy to see that the above analysis can be substantially generalized.
More precisely, instead of relying on the integer lattice, we may use an arbitrary lattice
L = BZn, for some basis B. Instead of cubes (or parallelepipeds), we may use any measurable
set F ⊆ Rn which tiles with respect to L. From here, if there exists c ∈ K, such that
±F ⊆ (K − c)/2 (note that F need no longer be symmetric), then by the same analysis as
above we have that

voln(K) ≤ εn · voln(F) · |(K − εF) ∩ εL| ≤ (1 + ε)nvoln(K). (3)

When trying to use the above formula to approximate volume, one may rightly worry that
the set F above maybe quite complicated, and hence of limited algorithmic use. Fortunately,
it turns out that we won’t actually need to know F at all – we will only need to rely on its
existence – and, in fact, only knowledge of the point c will be required. To justify this, we
first remark that F is a fundamental domain, and hence voln(F) = det(L), which is easily
computable given B.

Let K[c] = (K − c) ∩ (c−K) denote the symmetrization of K about c (note that K[c]
is indeed symmetric). By construction, we see that

±F ⊆ ±K[c]/2 = K[c]/2 ⊆ (K − c)/2.

From here, it is not hard to check that replacing K − εF by K + εK[c]/2 in (3) yields

voln(K) ≤ εn · det(L) · |(K + εK[c]/2) ∩ εL| ≤ (1 + ε)nvoln(K). (4)

The above formula will indeed form the basis of our algorithmic approach, where we note
that a membership oracle for K + εK[c]/2 (under mild assumptions on c) can be efficiently
constructed from a membership oracle for K (see [13]). Rearranging as before, we get that
the number of lattice points we need to enumerate to compute the desired approximation is
bounded by

|(K + εK[c]/2) ∩ εL| ≤ 2n(1 + 1/ε)n voln(K)
voln(K[c])︸ ︷︷ ︸

(a)

voln(K[c]/2)
det(L)︸ ︷︷ ︸

(b)

(5)

Hence, to achieve the desired complexity bound, we will need both the expressions (a)
and (b) to be bounded by 2O(n). More precisely, we will need to compute a point c ∈ K and
a lattice L ⊆ Rn such that

D. Dadush 709

1. voln(K) ≤ 2O(n)voln(K[c]).
2. ∃ F ⊆ K[c] a fundamental domain for L, and voln(K[c]) ≤ 2O(n) det(L).

We note that condition (1) becomes trivial if K is already symmetric, since we can simply
choose c = 0. In condition (2), note that we have, for convenience of notation, multiplied
the required conditions for L in (5) by 2.

We now relate some initial details of how to find c and L satisfying these conditions,
deferring the full discussion of our methods to later sections. The plan here is to treat each
condition separately. In particular, we will first choose c to satisfy (1) and then pick L
satisfying (2).

Choosing the lattice L. Once we have chosen c, we wish to choose a lattice satisfying
condition (2). For this purpose, we will only use the fact that K[c] is a symmetric convex
body (which is why we can treat both conditions separately). As a first remark, we note
that the existence of fundamental domain F ⊆ K[c] is equivalent to asking that K[c] cover
space with respect to L.

I Definition 8 (Lattice Covering). A measurable A ⊆ Rn is covering with respect to a full
rank lattice L ⊆ Rn (and vice versa) if L+ A = Rn. The covering induced by A and L is
said to be α-thin, α ≥ 1, if voln(A)/ det(L) ≤ α.

Indeed, assuming that L+ K[c] = Rn, we can recover a suitable fundamental domain
F by picking (in a measurable way) a unique representative of in (L+ x) ∩K[c], for each
distinct coset L+ x, x ∈ Rn. We note that this simply corresponds to throwing away the
“overrepresented” parts of K[c]. From this discussion, we see that every covering of space
must have thinness at least 1. Note that at a high level, the covering induced by K[c] and L
being α-thin means that on average points in Rn are covered by at most α lattice shifts of
K[c] (and clearly at least 1).

We can now restate our goal as that of constructing a lattice L forming a 2O(n)-thin
covering with respect to K[c]. We give a detailed accounting of how to build such lattices in
section 8.1.

Choosing the center c. To compute c, we will require the following measure of symmetry:

I Definition 9 (Kovner-Besicovitch Symmetry Measure). For a convex body K ⊆ Rn, we
define its Kovner-Besicovitch measure of symmetry (see [15]) as

Symkb(K) = max
c∈K

voln(K[c])/voln(K), where K[c] = (K − c) ∩ (c−K). (6)

Note that K is symmetric (about some center) iff Symkb(K) = 1. For c ∈ K, we define
its KB value to be voln(K[c])/voln(K). Clearly, to satisfy condition (1), the best center we
can choose is simply that of maximum KB value. For such a maximizer to be useful, we must
at least convince ourselves that best center has KB value at least 2−O(n). For this purpose,
let X denote a uniform random variable over K. By a classical computation, we have that

EX

[
voln(K[X])

voln(K)

]
=
∫

K

voln(K[x])
voln(K)2 dx =

∫
K

∫
K

1[2x− y ∈ K]
voln(K)2 dydx

=
∫

K

voln((K + y)/2)
voln(K)2 dy = 2−n.

SoCG’15

710 Volume Estimation via Thin Lattice Coverings

By the probabilistic method, we therefore have that Symkb(K) ≥ 2−n, which is more than
good enough for us. Furthermore, it was actually shown in [19] that the centroid µ = E[X]
of K has KB value at least 2−n. Hence, with the aid of random sampling techniques over
convex bodies [9], computing a point with good KB value is rather straightforward.

Since our goal is to get a deterministic algorithm however, we cannot rely on random
sampling methods. Perhaps surprisingly, our approach for computing a high KB value
point will be to approximately solve the optimization problem in (6). Indeed, by the
Brunn-Minkowski inequality (which states that vol(A)1/n + vol(B)1/n ≤ vol(A+B)1/n for
A,B,A+B measurable), the function f(c) = voln(K[c])1/n is in fact concave over K. Hence,
maximizing f is a concave optimization problem.

We define a point c ∈ K to be an α-approximate KB point for K, 0 < α ≤ 1, if its
KB value voln(K[c])/voln(K) is at least an α-factor of Symkb(K). For our purposes, it will
suffice to be able to compute a 2−O(n) approximate KB point, which we note corresponds
to computing a constant factor approximation to maxc∈K f(c). We will actually be able to
compute (1 + ε)−n-approximation KB points for any desired ε > 0 (see Theorem 22). Our
approximation algorithm will be somewhat non-trivial, requiring many calls to our volume
algorithm over symmetric bodies (noting that each K[c] is symmetric). We defer the full
discussion to section 8.2.

5 Schnorr-Euchner Enumeration

The currently most powerful polynomial space lattice point enumeration strategy is Schnorr-
Euchner enumeration. It is the primary enumeration method for all polynomial space solvers
for the Closest Vector Problem (CVP) under the Euclidean norm (given a target t and lattice
L, find the closest vector in L to t), and will form the core of our enumeration algorithm.
We now explain how to adapt it to enumerate lattice points in general convex bodies (it was
originally specified only for Euclidean balls, see for example [16]), and present some of its
important properties.

High level algorithm. Given a basis B = (b1, . . . ,bn) of L and a convex body K, Schnorr-
Euchner builds all feasible solutions to {z ∈ Zn :

∑n
i=1 zibi ∈ K}, corresponding to L ∩K,

using a search tree over the coefficients. The nodes at level i of the tree, i ∈ {0, . . . , n},
correspond to integral assignments of the last i coefficients that are “feasible” for K. Precisely,
a partial assignment zn−i+1, . . . , zn ∈ Z is feasible for K if ∃ r1, . . . , rn−i ∈ R such that

n−i∑
j=1

rjbj +
n∑

j=n−i+1
zjbj ∈ K. (7)

By convention, we consider the root (level 0) to have an empty assignment, which is feasible
iff K 6= ∅. From a level i node, with partial assignment zn−i+1, . . . , zn ∈ Z, we recurse on
all feasible extensions zn−i, . . . , zn with zn−i ∈ Z. By convexity of K, the set of integer
assignments for zn−i inducing a feasible extension form a consecutive interval, which will
allow us to enumerate them efficiently.

Implementation. Since the nature of computations in the oracle model are always approx-
imate, we will have to relax the notion of feasible partial assignment when implementing the
above algorithm. In particular, we will only be able to determine where a partial assignment
is either not feasible for K or feasible for Kε, for any desired error tolerance ε > 0. The

D. Dadush 711

exact guarantees for our enumeration algorithm, which will be sufficient for all intended
applications, are stated below.

I Lemma 10 (Enumeration Complexity). Let K ⊆ Rn be a (a0, r, R)-centered convex body
given a weak membership oracle, and let L ⊆ Rn a full rank lattice with basis B = (b1, . . . ,bn).
Then for 0 < ε < 1, a set S satisfying K ∩ L ⊆ S ⊆ Kε ∩ L can be enumerated, where every
point is outputted exactly once, using polynomial space and time polynomial times

n∑
i=0
|πn−i+1(Kε) ∩ πn−i+1(L)|,

where π1,. . . ,πn are the Gram-Schmidt projections of B.

Proof. Given the high level description above, to fully describe the algorithm, it remains
to describe how we compute all feasible extensions of a giving partial assignment. In the
algorithm, we will guarantee that we enumerate over all partial assignments feasible for K,
while enumerating at most over all partial assignments feasible for Kε.

Extending a partial assignment. Let b∗1, . . . ,b∗n be the associated dual basis for B. Assume
that we are at a level i recursion node, 0 ≤ i ≤ n, with an associated partial assignment
zn−i+1, . . . , zn ∈ Z. To begin processing this node, we first check that the partial assignment
is feasible. Letting t =

∑n
j=n−i+1 zjbj , and

d = min
x∈K
‖πn−i+1(x− t)‖2,

we use Theorem 7 to compute d′ ∈ R satisfying d′ ≤ d ≤ d′ + ε. If d′ > 0, we conclude that
the partial assignment is infeasible for K and terminate the node, and if d′ ≤ 0, we conclude
that it is feasible for Kε and continue.

If i = n, we output the lattice point
∑n

i=1 zibi ∈ Kε∩L and terminate the node. If i < n,
we now compute the possible feasible extensions with zn−i ∈ Z, where we shall guarantee
that all integral extensions feasible for K are found and that all examined extensions are
feasible for Kε. Let b̄∗n−i = πn−i+1(b∗n−i) and b̂∗n−i = b∗n−i − b̄∗n−i. Set M = 4‖b̂∗n−i‖R/ε,
and let

u = max
x∈K

〈
b̄∗n−i, t

〉
+
〈

b̂∗n−i,x
〉
−M‖πn−i+1(x− t)‖2

l = min
x∈K

〈
b̄∗n−i, t

〉
+
〈

b̂∗n−i,x
〉

+M‖πn−i+1(x− t)‖2 .

Using Theorem 7, we compute u′ ∈ R satisfying u ≤ u′ ≤ u + ε‖b̂∗n−i‖2/2 and l′ ∈ R
satisfying l ≥ l′ ≥ l − ε‖b̂∗n−i‖2/2. We now recurse on the integral extensions zn−i ∈
{z ∈ Z : l′ ≤ z ≤ u′}.

Correctness. We must guarantee that the above algorithm correctly returns a set of points
between K ∩L and Kε ∩L. Due to lack of space, we defer this analysis to the full version of
the paper.

Complexity analysis. To bound the runtime of the above algorithm, we remark that the
work done at each node in the recursion tree is polynomial (noting that the work enumerating
{z ∈ Z : l′ ≤ z ≤ u′} can be charged to a node’s children), hence it suffices to bound the
number of nodes in the tree. Given the above analysis, for each i, 0 ≤ i ≤ n, the nodes

SoCG’15

712 Volume Estimation via Thin Lattice Coverings

are level i are each associated with a distinct point in πn−i+1(Kε) ∩ πn−i+1(L). Hence, the
complexity of the algorithm is indeed polynomial times

∑n
i=0 |πn−i+1(Kε) ∩ πn−i+1(L)|, as

needed. J

Motivated by the above lemma, we define the following measure of enumeration complexity.

I Definition 11 (Schnorr-Euchner Enumerable). A convex bodyK ⊆ Rn is α-Schnorr-Euchner
enumerable, or α-SE, with respect to a basis B = (b1, . . . ,bn) for L (or vice versa) if for every
shift t, t ∈ Rn, and level i, i ∈ {1, . . . , n}, we have that |πn−i+1(K + t) ∩ πn−i+1(L)| ≤ α,
i.e. the number of distinct feasible partial assignments for K + t with respect to B at level i
is bounded by α.

As explained previously, the total number of feasible partial assignment controls the
essential complexity of Schnorr-Euchner enumeration. The usefulness of the α-SE property
for K is that it will enable us to bound the complexity of Schnorr-Euchner enumeration for
general convex sets via their covering numbers with respect to K.

I Definition 12 (Covering Numbers). For two sets C,D ⊆ Rn, we denote the covering number
of C with respect to D

N(C,D) = min {|T | : T ⊆ Rn, C ⊆ T +D} .

C,D have covering numbers bounded by (c1, c2) if N(C,D) ≤ c1 and N(D,C) ≤ c2.

The following corollary, which will be crucial to making our volume algorithm efficient, is
immediate:

I Corollary 13. Let K ⊆ Rn be a convex body and L ⊆ Rn be a full rank lattice with basis B.
Assume that K is α-SE with respect to B. Then for any convex body C ⊆ Rn, C is αN(C,K)-
SE with respect to B. In particular, if C is centered and equipped with a weak membership
oracle, then for any ε′ > 0 and t ∈ Rn, a set S satisfying (C + t) ∩ L ⊆ S ⊆ (Cε′ + t) ∩ L
can be enumerated using polynomial space in time polynomial times α ·N(C,K).

To help make the above bounds effective, we will use the fact that covering numbers
for convex bodies are tightly controlled by volumes. We note that we will generally be use
these estimates with respect to different scalings of the same convex body (or one of its
symmetrizations).

I Theorem 14 (Covering Bounds [24]). For convex bodies C,D ⊆ Rn, we have that

voln(C −D)
voln(D −D) ≤ N(C,D) ≤ n(logn+ log logn+ 5)voln(C −D)

voln(D) .

The next lemma two lemmas will enable us to get the main estimates we will use to
bound SE-complexity.

I Lemma 15. Let K ⊆ Rn be a convex body, and let L ⊆ Rn be a full rank lattice with basis
B = (b1, . . . ,bn). Then K is N(K,P(B))-SE with respect to B.

Proof. Let T ⊆ Rn satisfy K ⊆ T + P(B) and |T | = N(K,P(B)). Letting π1, . . . , πn

denote the Gram-Schmidt projections of B, it is easy to check that πi(P(B)), i ∈ [n], is the
parallelepiped of the basis πi(bi), . . . , πi(bn) for πi(Λ), and hence is a fundamental domain
of πi(Λ). Given this, for each x ∈ T , |πi(x + P(B)) ∩ πi(Λ)| = 1. Since πi(T + P(B)) covers
πi(K) ∩ πi(Λ), we deduce that |πi(K) ∩ πi(Λ)| ≤ |T |. Hence, K is |T |-SE as needed. J

D. Dadush 713

I Lemma 16 (Robustness of SE-complexity). Let K ⊆ Rn be a convex body, L ⊆ Rn be a full
rank lattice with basis B. If K is α-SE with respect to B, then given a basis B̃ of
1. L′ ⊆ L, a full rank sublattice, a basis B′ of L′ for which K is α-SE
2. L ⊆ L′, a full rank superlattice, a basis B′ of L′ for which K is α · [L′ : L]-SE
can be computed in polynomial time.

6 Lattice Packing and Covering

We now present some additional relevant lattice concepts. We refer the reader to book [14]
for a comprehensive reference.

For a symmetric convex body K, we define ‖x‖K = inf {s ≥ 0 : x ∈ sK} as the norm
induced by K, which satisfies all norm properties.

I Definition 17 (Lattice Packing). A measurable set A ⊆ Rn packs with respect to a full
rank lattice L ⊆ Rn (and vice versa) if the translates y +A, y ∈ L, are mutually disjoint.

The packing induced by A and L is α-dense if voln(A)/ det(L) ≥ α. We note that packing
density is always less than 1.

I Definition 18 (Minimum Distance). For a symmetric convex body K ⊆ Rn and full rank
lattice L ⊆ Rn, we denote λ1(K,L) = miny∈L\{0} ‖y‖K , the minimum distance of L under
‖ · ‖K (length of shortest non-zero vector).

I Definition 19 (Packing and Covering Radius). Let K ⊆ Rn be a convex body and L ⊆ Rn

be a full rank lattice.
Let %(K,L) = λ1(K −K,L) denote the packing radius of K with respect to L. K◦ packs

with respect to L iff %(K,L) ≥ 1. If K is symmetric %(K,L) = λ1(K,L)/2.
Let µ(K,L) = inf {s ≥ 0 : L+ sK = Rn} denote the covering radius of K with respect

to L. K covers with respect to L iff µ(K,L) ≤ 1.

I Lemma 20. Let K ⊆ Rn be a convex body and let L ⊆ Rn be a full rank lattice. Then, if
K covers with respect L and %(K,L) ≥ 1/β, β > 0, then the covering induced by K and L is
βn-thin.

Proof. By assumption %(K,L) ≥ 1/β, and hence (K/β)◦ packs with respect to L. In
particular, voln(K/β) ≤ det(L). Therefore, the thinness is covering induced by K and L is
bounded by voln(K)/ det(L) ≤ voln(K)/voln(K/β) = βn, as needed. J

7 Thin Covering Lattices

Our main technical contribution is a deterministic construction for thin covering lattices
with good Schnorr-Euchner enumeration properties. We state its guarantees below.

I Theorem 21 (Thin Lattice). Let K ⊆ Rn be (a0, r, R)-centered convex body given by a weak
membership oracle. Then, there is a deterministic 2O(n)-time and poly(n)-space algorithm
that constructs a basis B for a full rank lattice L ⊆ Rn and a point c ∈ K, satisfying
1. c is a (6/7)n-approximate KB point for K and K[c] is (c, r/(30n), 2R)-centered.
2. K[c] covers with respect to L and has packing radius %(K[c],L) ≥ 1/3.
3. K[c] is 2O(n)-SE with respect to B.

I Remarks. If K is symmetric, we can specialize the above theorem by setting c = 0, in
which case K[c] = K. By Lemma 20, in the above theorem, we have that L forms a 3n-thin

SoCG’15

714 Volume Estimation via Thin Lattice Coverings

covering with respect to K[c]. Next, since K[c] ⊆ K − c, L also covers with respect to K.
In particular, the thinness of the covering induced by K and L is bounded by

voln(K)/ det(L) = voln(K)/vol(K[c]) · voln(K[c])/ det(L) ≤ 2n(7/6)n3n = 7n.

Hence L is 2O(n)-thin covering lattice for both K[c] and K.

Volume estimation. We now use the above construction to prove our main volume estima-
tion result.

Proof of Theorem 1 (Volume Estimation). We wish to compute V such that voln(K) ≤
V ≤ (1 + ε)nvoln(K) for 0 < ε < 1, where K ⊆ Rn is a (a0, r, R)-centered convex body given
by a weak membership oracle.

To begin, we construct the lattice L with basis B, and point c ∈ K as guaranteed
by Theorem 21. From here, we construct a weak membership oracle OC for C = K +
(ε/3)K[c] from the weak membership oracle for K (see [13] for details). Note that K[c] is
(c, r/(30n), 2R)-centered and C is (a0, r, 2R)-centered. From here, letting ε′ = εr/(180n), we
use Corollary 13 on inputs C, (ε/3)L, (ε/3)B and ε′ to enumerate S, satisfying

(K + (ε/3)K[c]) ∩ (ε/3)L ⊆ Cε′
∩ (ε/3)L ⊆ (K + (ε/2)K[c]) ∩ (ε/3)L

in time

2O(n)N(K + (ε/2)K[c], (ε/3)K[c]) = 2O(n)(1 + 1/ε)n,

where the last inequality follows by Theorem 14. From here, we return V = |S| det(L)(ε/3)n

(note that we need only count each element of S as it is outputted, which requires only
polynomial space). The fact that V satisfies the required bounds follows directly from the
discussions in section 4 (see Equation (4)). J

Comparison with prior constructions. Much work has been dedicated to proving the
existence of extremely thin-lattice coverings [21, 20, 22, 4, 10] – much of instigated by C.A.
Rogers – where the best construction [22] provides nlog n+O(1)-thin coverings for any convex
body K.

All of these constructions rely on sampling from a probabilistic ensembles of lattices,
occasionally with some additional post processing, and are intrinsically difficult to deran-
domize. More problematically however, these ensembles produce lattices that are as “hard
as possible” (see for example, section 2 in [3]) to enumerate from with known polynomial
space methods, severely complicating their use in our context (and in many others in fact).

Given the above discussion, the construction in Theorem 21 gives the first existential
construction of “easy to enumerate” thin-covering lattices for general convex bodies. As an
added bonus of our construction, when the convex body K is symmetric, the covering lattice
we construct has packing radius at least 1/3 and has the property that CVP under the norm
‖ · ‖K can be solved in 2O(n) time and poly(n) space (since this reduces to enumeration
inside shifts of K). While building thin covering lattices for `p norms is trivial – 2n−1/pZn

is a 2O(n)-thin covering lattice for the `p norm – building ones with packing radius Ω(1). In
fact, even for the `2 norm, there is no known explicit construction of such a lattice. While
the packing radius property is not necessary in our main application, we believe it might be
useful elsewhere, such as in lattice based schemes for Locality Sensitive Hashing (see [2] for
an application using the 24-dimensional Leech lattice).

D. Dadush 715

The only previous algorithmic construction is due Alon et al [1], whose gave a deterministic
2O(n)-time and 2n-space thin-lattice construction for symmetric bodies based on a greedy
construction of Rogers [21] – which our construction is also based on – along with a 2n

space enumeration method. For their enumeration technique, they rely on the M-ellipsoid
covering and Voronoi cell based enumeration algorithms of [17, 7, 5]. With these techniques,
starting with a thin covering lattice L for a symmetric convex body K, they can enumerate
L∩C, for any convex body C, in time 2O(n)N(C,K) using 2n space. Hence, the enumeration
guarantees are similar to ours, though at the cost of exponential space.

Rogers’ greedy construction. We now describe Roger’s method and our related improve-
ments. This construction starts with essentially any lattice L and symmetric convex body
K such that %(K,L) ≥ 1. The constructions proceeds by iteratively making L denser, by
adding points in L/3 to L, while guaranteeing that the packing radius with respect to K
stays at least 1. This will have the net effect of increasing the packing density by 3. Since
the packing density cannot increase indefinitely (it can never go above 1), the densification
process eventually stops, at which point one can conclude that the final lattice L, after a
factor 3 scaling, covers with respect to K and has packing radius at least 1/3.

A first main problem is that even if we initialize Rogers’ construction with an “easy to
enumerate” lattice L, the final generated lattice maybe so far away from the initial lattice
that it loses the easy enumeration property. To avoid this problem, we show that if we start
the procedure with an easy to enumerate dense packing lattice for K, then the procedure
converges fast enough for the final generated lattice to retain the easy enumeration property.
To build the initial dense packing lattice, we begin with a lattice L with basis B derived from
the axes of an M-ellipsoid of K, which satisfies that B is 2O(n)-SE with respect to K, that
we then subsequently sparsify it, using techniques of [6], to make it induce a 2−O(n)-dense
packing with respect to K.

A second problem with Roger’s greedy construction is that it only directly works for
symmetric bodies. In particular, if we start with an asymmetric convex body K, the final
generated lattice will only be guaranteed to cover with respect to K−K and not K (here, the
only known relation is that µ(K,L) ≤ nµ(K −K,L), which is far too weak). To circumvent
this problem, we symmetrize K about an approximate KB point using an efficient algorithm
to construct such points. Our algorithm to construct approximate KB points will in fact rely
on many iterated calls of our volume algorithm and thin-lattice construction for symmetric
convex bodies.

8 Techniques

We now detail the main ideas behind our thin lattice construction. We begin by describing
our thin lattice construction for symmetric convex bodies, and continue with our algorithm
computing approximation Kovner-Besicovitch points. We recover our full thin lattice con-
struction (Theorem 21) by combining these two algorithms. Due to lack of space, we defer
most proofs to the full version of the paper.

8.1 Thin Lattice Construction
We now describe our construction of thin covering lattices for symmetric convex bodies,
corresponding to parts 2 and 3 of Theorem 21.

The construction will proceed in three stages. In the first stage, we build a base lattice Λ
with a basis B derived from the axes of an M -ellipsoid E of K, for which K is 2O(n)-SE. In

SoCG’15

716 Volume Estimation via Thin Lattice Coverings

the second stage, we sparsify the base lattice Λ so that it becomes a 2−O(n)-dense packing
lattice N for K using techniques from [6]. In the last stage, we densify N using Rogers’
procedure to derive the final 2O(n)-thin covering lattice L.

Through these stages, our goal will be to guarantee that the “distance” of the base Λ
to the final lattice L, quantified by the product of indexes [Λ : N] · [L : N], is bounded by
2O(n). Having achieved this, the robustness of SE-complexity (see Lemma 16) will allow us
to construct a basis for L with respect to which K is 2O(n)-SE. We now detail the main
arguments underlying each stage.

M-Lattice. For the first stage, we define the basis B of Λ, so that P(B) ⊆ E is a maximum
volume inscribed parallelepiped, where E an M-ellipsoid for K. Here it is not hard to check
that voln(E)/P(B) = voln(Bn

2)/voln([−1/
√
n, 1/

√
n)n) = 2O(n). Given this, P(B) inherits

the covering properties of E with respect to K, in particular, N(K,P(B)), N(P(B),K) =
2O(n). In particular, det(Λ) = voln(P(B)) = 2Θ(n)voln(K), and, by Lemma 15, K is 2O(n)-SE
with respect to B.

Packing lattice. For the second stage, to make Λ a packing lattice, it suffices to “remove”
all the lattice points in Λ ∩ 2K \ {0} (by symmetry of K). By the covering properties,
|Λ∩2K| ≤ N(2K,K) ·N(K,P(B)) = 2O(n), and hence, we may expect to find a sublattice N
such that [Λ : N] = 2O(n) and N ∩ 2K = {0}. Indeed, a simple expectation argument shows
that a “random” sublattice N of index 2O(n) avoids all the non-zero points in Λ ∩ 2K with
good probability (see [6]). Furthermore, one can find the sublattice N deterministically using
the method of conditional expectations. Since N is a sublattice, note that by Lemma 16, a
basis of N can be computed for which the SE-complexity of K does not increase compared
to B. To see that N induces a 2−O(n)-dense packing for K, note that

det(N) = [Λ : N] det(Λ) = 2O(n) det(Λ)

= 2O(n)voln(P(B)) = 2O(n)voln(K), as needed.

Rogers’ procedure. For the last stage, we initially set L ← N and then iteratively densify
L to get a 2O(n)-thin covering lattice. By assumption, L starts as a packing lattice for K,
or equivalently, L has minimum distance λ1(K,L) ≥ 2. To make L denser, we look for a
point x ∈ L/3 at distance greater than 2 from L under ‖ · ‖K . If such a point x is found,
we set L ← L+ {0,±x}. By the distance assumption and symmetry of K, we maintain the
invariant λ1(K,L) ≥ 2, while decreasing the determinant by a factor 3.

Note that each successful iteration increases the packing density by 3. Since the packing
density starts at 2−O(n), this process must terminate in at most O(n) steps. In particular,
after termination, we have that [L : N] = 3O(n), and hence by Lemma 16 and our assumptions
on N , we can compute a B basis of L for which K is 2O(n)-SE (indeed, this can be done at
every iteration). Next, at termination, we must have that every point in L/3 is at distance
less than 2 from L. From here, it is not hard to show that every point in Rn is at distance
at most (3/2) · 2 = 3, i.e. µ(K,L) ≤ 3. We can therefore return L/3 as our covering lattice,
which will have packing radius at least 1/3 as desired.

The last detail is to show that at each stage, we can find a “far away” point in L/3 or
decide that none exists in 2O(n)-time. By the above discussion, we can assume that at the
current stage, we have a basis B for L for which K is 2O(n)-SE. From here, it is easy to
see that there is a point in L/3 at distance greater than 2 iff there exists x ∈ B {0,±1/3}n

(yielding representatives for each coset in (L/3)/L) at distance greater than 2. Since a point

D. Dadush 717

x ∈ Rn is at distance greater than 2 from L iff (x + 2K) ∩ L = ∅, one can test this property
for any x in 2O(n)-time using Schnorr-Euchner enumeration. Repeating this test 3n times for
each point in B {0,±1/3}n yields the result.

This completes our description thin covering lattice constructions for symmetric bodies.

8.2 Computing Approximate Kovner-Besicovitch Points
We state the guarantees for our algorithm computing approximate KB points below.

I Theorem 22. Let K ⊆ Rn be a (a0, r, R)-centered convex body given by a weak membership
oracle. Then, for ε > 0, one can compute a (1 + ε)−n approximate Kovner-Besicovitch point
c ∈ K, such that K[c] is (c, εr/(5n), 2R)-centered, in deterministic 2O(n)(1 + 1/ε)2n+1 time
and poly(n) space.

I Remark. Part 1 of Theorem 21 follows by applying the Theorem 22 to K with ε = 1/6.

High level algorithm. First, by applying a suitable linear affine transformation to K

(i.e. standard ellipsoidal rounding), we may assume that Bn
2 ⊆ K ⊆ (n + 1)n1/2Bn

2 . We
now define the sequence of bodies Ki = 2iBn

2 ∩K, for i ∈ {0, . . . , T}, T = O(logn), where
K0 = Bn

2 and KT = K. For each Ki, i ∈ [T − 1], we will compute a 3−n approximate KB
point ci for Ki from a 3−n-approximate KB point ci−1 for Ki−1. Finally, in the last step,
from KT−1 to KT , we amplify this to (1 + ε)−n approximation. We note that we may start
with c0 = 0, since this is the center of symmetry for K0 = Bn

2 . Furthermore, at each step,
since the volume voln(Ki) ≤ 2nvoln(Ki−1), the KB value of ci−1 with respect to Ki, i ∈ [T],
is at least 2−n · 3−n · 2−n = 12−n.

To compute ci starting from ci−1, we perform the following improvement steps: from our
current solution for ci (initialized at ci−1 during the first iteration), we begin by building a
thin-covering lattice L with basis B for Ki[ci] (note Ki[ci] is symmetric). We then construct
a covering of (1/2)(Ki + ci) by (ε/2)Ki[ci], whose centers are computed by enumerating
S = (1/2)((Ki + εKi[ci] + ci) ∩ εL) via Schnorr-Euchner enumeration using B. We then
replace ci by the element in S (noting that S ⊆ Ki) of largest approximate KB value, where
for each x ∈ S we approximate voln(Ki[x]) to within (1 + ε/10)n using the volume algorithm
for symmetric convex bodies. The concavity of the function voln(K[x])1/n will allow us to
show that at each step, we improve the objective value by essentially a (1 + cε)n factor.
Hence O(1/ε) iterations suffice to construct a near optimal solution.

Acknowledgments. The author would like to thank Santosh Vempala and Oded Regev for
useful conversations related to this paper, as well as the anonymous referees who greatly
helped improve the quality of the presentation.

References
1 N. Alon, A. Schraibman, T. Lee, and S. Vempala. The approximate rank of a matrix and

its algorithmic applications. In STOC, 2013.
2 A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor

in high dimensions. In FOCS, pages 459–468, 2006.
3 A. Becker, N. Gama, and A. Joux. Solving shortest and closest vector problems: The

decomposition approach. Cryptology Eprint. Report 2013/685, 2013.

SoCG’15

718 Volume Estimation via Thin Lattice Coverings

4 G. J. Butler. Simultaneous packing and covering in euclidean space. Proceedings of the
London Mathematical Society, 25(3):721–735, 1972.

5 D. Dadush. Integer Programming, Lattice Algorithms, and Deterministic Volume Estima-
tion. PhD thesis, Georgia Institute of Technology, 2012.

6 D. Dadush and G. Kun. Lattice sparsification and the approximate closest vector problem.
In SODA, 2013.

7 D. Dadush, C. Peikert, and S. Vempala. Enumerative lattice algorithms in any norm via
M-ellipsoid coverings. In FOCS, 2011.

8 D. Dadush and S. Vempala. Near-optimal deterministic algorithms for volume computation
via m-ellipsoids. Proceedings of the National Academy of Sciences, 2013.

9 M.E. Dyer, A.M. Frieze, and R. Kannan. A random polynomial-time algorithm for ap-
proximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991. Preliminary version
in STOC 1989.

10 U. Erez, S. Litsyn, and R. Zamir. Lattices which are good for (almost) everything. IEEE
Transactions on Information Theory, 51(10):3401–3416, 2005.

11 Z. Füredi and I. Bárány. Computing the volume is difficult. In STOC, pages 442–447, New
York, NY, USA, 1986. ACM.

12 Z. Füredi and I. Bárány. Approximation of the sphere by polytopes having few vertices.
Proceedings of the AMS, 102(3), 1988.

13 M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Op-
timization. Springer-Verlag, 1988.

14 P.M. Gruber. Convex and discrete geometry, volume 336. Springer Science & Business
Media, 2007.

15 B. Grünbaum. Measures of symmetry for convex sets. In Proceedings of the 7th Symposium
in Pure Mathematics of the American Mathematical Society, Symposium on Convexity,
pages 233–270, 1961.

16 G. Hanrot and D. Stehlé. Improved analysis of Kannan’s shortest lattice vector algorithm.
In CRYPTO, pages 170–186, Berlin, Heidelberg, 2007. Springer-Verlag.

17 D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for
most lattice problems based on voronoi cell computations. SIAM Journal on Computing,
42(3):1364–1391, 2013. Preliminary version in STOC 2010.

18 V.D. Milman. Inégalités de Brunn-Minkowski inverse et applications at la theorie locales
des espaces normes. C. R. Math. Acad. Sci. Paris, 302(1):25–28, 1986.

19 V.D. Milman and A. Pajor. Entropy and asymptotic geometry of non-symmetric convex
bodies. Advances in Mathematics, 152(2):314–335, 2000.

20 C. A. Rogers. Lattice coverings of space: The Minkowski-Hlawka theorem. Proceedings of
the London Mathematical Society, s3-8(3):447–465, 1958.

21 C.A. Rogers. A note on coverings and packings. Journal of the London Mathematical
Society, s1-25(4):327–331, 1950.

22 C.A. Rogers. Lattice coverings of space. Mathematika, 6:33–39, 6 1959.
23 C.A. Rogers and G.C. Shephard. The difference body of a convex body. Archiv der

Mathematik, 8:220–233, 1957.
24 C.A. Rogers and C. Zong. Covering convex bodies by translates of convex bodies. Math-

ematika, 44:215–218, 6 1997.
25 D.B. Yudin and A. S. Nemirovski. Evaluation of the information complexity of mathemat-

ical programming problems (in russian). Ekonomika i Matematicheskie Metody, 13(2):3–45,
1976.

Optimal Deterministic Algorithms for 2-d and 3-d
Shallow Cuttings
Timothy M. Chan∗1 and Konstantinos Tsakalidis2

1 Cheriton School of Computer Science, University of Waterloo, Canada
tmchan@uwaterloo.ca

2 Department of Computer Science and Engineering, Hong Kong University of
Science and Technology, China
tsakalid@cse.ust.hk

Abstract
We present optimal deterministic algorithms for constructing shallow cuttings in an arrangement
of lines in two dimensions or planes in three dimensions. Our results improve the deterministic
polynomial-time algorithm of Matoušek (1992) and the optimal but randomized algorithm of
Ramos (1999). This leads to efficient derandomization of previous algorithms for numerous well-
studied problems in computational geometry, including halfspace range reporting in 2-d and 3-d,
k nearest neighbors search in 2-d, (≤ k)-levels in 3-d, order-k Voronoi diagrams in 2-d, linear
programming with k violations in 2-d, dynamic convex hulls in 3-d, dynamic nearest neighbor
search in 2-d, convex layers (onion peeling) in 3-d, ε-nets for halfspace ranges in 3-d, and more.
As a side product we also describe an optimal deterministic algorithm for constructing standard
(non-shallow) cuttings in two dimensions, which is arguably simpler than the known optimal
algorithms by Matoušek (1991) and Chazelle (1993).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases shallow cuttings, derandomization, halfspace range reporting, geometric
data structures

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.719

1 Introduction

Shallow cuttings were introduced by Matoušek [25] as a tool for range searching, specifically,
halfspace range reporting. They have since found applications to numerous other central
problems in computational geometry, including (≤ k)-levels in arrangements of hyperplanes,
order-k Voronoi diagrams, linear programming with k violations, dynamic convex hulls,
and dynamic nearest neighbor search (see Section 1.4 for more information). At SoCG’99,
Ramos [29] presented an optimal randomized algorithm for constructing shallow cuttings in
two and three dimensions. A nagging question that has remained open is whether there is an
equally efficient deterministic algorithm. The main result of this paper is a positive resolution
to this question. Although the question is mainly about theoretical understanding, and
derandomization isn’t the most “fashionable” topic in computational geometry, we believe
that in this case the fundamental nature of the problem and its wide-ranging consequences
make the problem important to study.

∗ Part of this work was done during the author’s visit to the Hong Kong University of Science and
Technology.

© Timothy M. Chan and Konstantinos Tsakalidis;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 719–732

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.719
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

720 Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings

1.1 Standard Cuttings
I Definition 1. Let H be a set of n hyperplanes in Rd. Given a parameter r ∈ [1, n] and a
region L ⊆ Rd, a 1

r -cutting for H covering L is a set of interior-disjoint simplices (cells) such
that
(i) the interior of every cell intersects at most n

r hyperplanes of H, and
(ii) the union of the cells covers L.
The conflict list H∆ of a cell ∆ is the set of (at most n

r) hyperplanes of H that intersect ∆.
The size of the cutting is the number of its cells.

Cuttings are a fundamental tool in geometric divide-and-conquer. In the default “standard”
setting, a cutting covers all of Rd, i.e., L = Rd.

Random sampling techniques by Clarkson [16] and Haussler and Welzl [21] imply the
existence of (standard) 1

r -cuttings of size O((r log r)d). Chazelle and Friedman [15] refined
the bound to O(rd), which is optimal. (In the 2-d case, there is a simple alternative proof
based on levels by Matoušek [23].)

Considerable effort was spent in finding efficient deterministic algorithms to construct
such an optimal-size cutting. Even the 2-d case turned out to be a challenge. At SoCG’89,
Matoušek [23] presented an O(nr2 log r)-time algorithm for d = 2. At the same conference,
Agarwal [4] (see also his PhD thesis [5]) presented an O(nr logn log3.33 r)-time algorithm for
d = 2. In a subsequent paper, Matoušek [24] improved the deterministic time bound to O(nr)
for d = 2, which is optimal if the algorithm is required to output the conflict lists of all the
cells (since the worst-case total size of the conflict lists is Θ(r2 · nr) = Θ(nr)). Matoušek’s later
paper also described a deterministic O(nrd−1)-time algorithm for any constant dimension d,
which is again optimal if we need to output all conflict lists, but this result holds under the
restriction that r is not too big, i.e., r < n1−δ for some constant δ > 0. Finally, Chazelle [14]
obtained a deterministic O(nrd−1)-time algorithm without any restriction on r for all constant
dimensions d. All of these deterministic algorithms are complicated and/or make use of
advanced derandomization techniques such as ε-approximations [21].

1.2 Shallow Cuttings
Given a point p, the level of p in H is the number of hyperplanes of H that are below p. We
define L≤k(H) to be the (≤ k)-level, i.e., the region of all points with level in H at most k.
A shallow cutting is a variant of the standard cutting that is required to cover only points
that are “shallow”, i.e., have small levels.

I Definition 2. Given parameters k, r ∈ [1, n], a k-shallow 1
r -cutting is a 1

r -cutting for
L≤k(H).

We concentrate on the most important case of k = Θ(nr), which is sufficient for all of the
applications encountered; in fact, shallow cuttings for any value of k can be reduced to this
case—see the remarks in Section 5. Matoušek [25] proved the existence of a Θ(nr)-shallow
1
r -cutting of size O(rbd/2c), which is smaller than the O(rd) bound for standard 1

r -cuttings
and is optimal in the worst case. In particular, for d ∈ {2, 3}, the size is O(r).

In the same paper, Matoušek presented a deterministic algorithm that can construct
such a shallow cutting in polynomial time; the running time improves to O(n log r) but only
when r is small, i.e., r < nδ for a sufficiently small constant δ. Later, Ramos [29] presented
a complicated randomized algorithm for d = 3 (and hence d = 2 as well) with O(n logn)
expected running time to construct not just a single shallow cutting, but a hierarchy of
O(logn) such shallow cuttings for all r’s forming a geometric sequence from 1 to n. (Such a

T.M. Chan and K. Tsakalidis 721

hierarchy is useful in certain applications.) Recently, at SODA’14, Afshani and Tsakalidis [3]
managed to achieve the same bound deterministically, albeit only for an orthogonal variant of
the problem where the input objects are orthants in R3 (which nonetheless has applications
to dominance range reporting); subsequently, Afshani et al. [2] improved the time bound for a
single shallow cutting to O(n log logn) in the word RAM model. The case of orthants is indeed
a special case, as orthants can be mapped to halfspaces via a certain transformation [12].

1.3 Our Contributions

We present deterministic algorithms to construct a Θ(nr)-shallow 1
r -cutting of size O(r) for

d ∈ {2, 3} in O(n log r) time, which is optimal in a comparison-based model (the default
model in this paper). Like Ramos’ randomized algorithm [29], our algorithms can in fact
construct a hierarchy of such shallow cuttings for all r’s in a geometric sequence, along with
the conflict lists of all cells, in O(n logn) total time. (Note that for our 3-d algorithm, we do
not insist the cutting in one layer of the hierarchy be nested inside the cutting in the next
layer.)

Considering how involved known deterministic algorithms for standard cuttings are, we
are happy to report that the new results are not complicated to derive. All the needed
background is provided in Section 2; no advanced derandomization techniques are used. The
main algorithms are describable in a few lines, as seen in Sections 3 and 4, although their
analyses are not trivial.

Like in Chazelle’s cutting algorithm [14], we will construct the hierarchy layer by layer,
refining the shallow cutting in the previous layer to obtain the shallow cutting in the next
layer. A naive implementation would cause an amplification of the constant factor in the
cutting size bound, which may “blow up” after logarithmically many iterations. Chazelle
used ε-approximations and sparse ε-nets to refine the cutting in each cell, and controlled the
blow-up by charging cost to some easily summable quantity (namely, the number of vertices
inside the cell). We replace ε-approximations and sparse ε-nets with the more elementary
techniques by Megiddo and Dyer [28, 17]. We use a brute-force search to find the best way
to refine the cutting in each cell, and control the blow-up by bounding cost in terms of the
cost of an optimal cutting—this strategy is reminiscent of the analysis of approximation
algorithms or PTASes (although we do not explicitly design an approximation algorithm to
find the minimum-size cutting).

The strategy works beautifully in 2-d, but the constant-factor blow-up becomes tougher
to deal with in 3-d, because cost of substructures along the cell boundaries becomes non-
negligible. To tackle this issue, we borrow an idea from a different paper by Ramos [30],
of using planar graph separators to group cells into regions, which we call “supercells”, so
that the total size of the boundaries of the supercells is reduced. (Ramos originally applied
this idea to obtain an optimal deterministic algorithm for the 3-d diameter problem and for
computing lower envelopes of certain bivariate surfaces in 3-d, but did not consider shallow
cuttings in that paper. Also, the details of his algorithms appear more complicated, using
ε-nets and supercells of size nδ, whereas we use only supercells of constant size.)

In the appendix, we show that our ideas can also lead to a new presentation of a
deterministic O(nr)-time algorithm for constructing standard 1

r -cuttings in 2-d. This may
be of independent pedagogical interest, considering the long line of previous complicated
algorithms.

SoCG’15

722 Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings

1.4 Applications
As mentioned, shallow cuttings are important because of their numerous applications. Below
we list some of the specific implications of our new 2-d and 3-d deterministic algorithms.

1. The first optimal deterministic O(n logn)-time algorithm to preprocess a set of n points
in R3 into an O(n)-space data structure, so that we can answer a halfspace range reporting
query (i.e., report all k points that lie within any given halfspace) in O(logn+ k) time.
This result follows from the work of Afshani and Chan [1], which was almost deterministic
except for the invocation of Ramos’ algorithm to construct a shallow cutting during
preprocessing.
By a standard lifting transformation, the same result holds for circular range reporting in
R2 (reporting all k points that lie inside any given circle) and k nearest neighbors search
in R2 (reporting all k nearest neighbors to a given point, in arbitrary order, under the
Euclidean metric).

2. The first optimal deterministic O(n logn+ nk2)-time algorithm to construct the (≤ k)-
level of an arrangement of n planes in R3. This result follows from the work of Chan [9],
which previously required randomization.

3. The currently fastest deterministic O(n logn+nk·t(k))-time algorithm for constructing the
k-th order Voronoi diagram of n points in R2. Here, t(·) denotes the (amortized) update
and query time complexity for the 2-d dynamic convex hull problem (under gift-wrapping
queries). We have t(k) = O(log k log log k) [7], or better still, t(k) = O(log k) [8] if one has
confidence in the over-100-page proof in the latter paper. This result again follows from the
work of Chan [9]. Compare the result with Ramos’ randomized O(n logn+ nk2O(log∗ k))-
time algorithm [29].

4. A deterministic O((n+ k2) log k)-time algorithm for 2-d linear programming with at most
k violations (i.e., given a set of n halfspaces, find the point that lies inside all but k of
the halfspaces and is extreme along a given direction). This result follows from another
work of Chan [10], which was almost deterministic except for the construction of a 2-d
shallow cutting in one step.

5. The first deterministic data structure for dynamic 3-d convex hull with polylogarithmic
amortized update and query time, namely, O(log3 n) amortized insertion time, O(log6 n)
amortized deletion time, and O(log2 n) time for a gift-wrapping query. This result
follows from another work of Chan [11], which was almost deterministic except for the
construction of a hierarchy of 3-d shallow cuttings during certain update operations.
This result itself spawns countless additional consequences, for example, to dynamic 2-d
smallest enclosing circle, dynamic 2-d bichromatic closest pair, dynamic 2-d diameter,
dynamic 2-d Euclidean minimum spanning tree, 3-d convex layers (onion peeling), output-
sensitive construction of 3-d k-levels, and so on.

6. A deterministic data structure for dynamic 2-d halfspace range reporting with O(log6+ε n)
amortized update time and O(logn+ k) query time for any fixed ε > 0. In 3-d, the query
time increases to O(log2 n/ log logn+ k). This result follows from yet another work of
Chan [11], which was almost deterministic except for the construction of a hierarchy of
shallow cuttings during certain update operations.

7. A deterministic O(n log r)-time algorithm to construct a 1
r -net of size O(r) for n points

in R3 with respect to halfspace ranges. This application actually appeared in Matoušek’s
original paper on shallow cuttings [25]. There, he was interested in proving existence
of O(r)-size nets, but with our shallow cutting algorithm, the deterministic time bound
follows. (Roughly speaking, in the dual, we construct a n

r -shallow O(1
r)-cutting, construct

T.M. Chan and K. Tsakalidis 723

an ε-cutting within each cell for a sufficiently small constant ε, and output an arbitrary
plane passing below each subcell.) Of course, ε-nets are well known and central to
combinatorial and computational geometry. Previously, there were deterministic nrO(1)-
time algorithms (e.g., see a recent note [20]), and an O(n log r)-time algorithm but only
when r is small, i.e., r < nδ for some constant δ [25].
By a standard lifting transformation, the same result holds for ε-nets for points in R2

with respect to circular disk ranges.

2 Preliminaries

It will be more convenient to work with the parameter K := n
r instead of r. For brevity, a

k-shallow K
n -cutting will be referred to as a (k,K)-shallow cutting. It satisfies the properties

that (i) each cell intersects at most K hyperplanes, and (ii) the cells cover L≤k(H). Our
goal is to compute a (k,Θ(k))-shallow cutting of size O(nk).

For a set V of points in Rd, we denote by UH(V) the region underneath the upper hull
of V . We define the vertical decomposition VD(V) to be the set of interior-disjoint cells
covering UH(V), such that each cell is bounded from above by a different face of UH(V), is
bounded from the sides by vertical walls, and is unbounded from below. For example, in
2-d, the boundary of UH(V) is a concave chain; a cell in VD(V) is bounded by an edge of
UH(V) and two walls (downward vertical rays). In 3-d, the boundary of UH(V) is a concave
polygonal surface with triangular faces; a cell in VD(V) is bounded by a triangle and three
walls (trapezoids that are unbounded from below).

In the studied dimensions d ∈ {2, 3}, we find it simpler to work with the following
equivalent form of shallow cuttings:

I Definition 3. Given parameters k,K ∈ [1, n], a (k,K)-shallow cutting for H in vertex
form is a set V of points such that
(i) every point in V has level at most K, and
(ii) UH(V) covers L≤k(H).
The conflict list of a point v ∈ V is the set of (at most K) hyperplanes in H that are below v.

A (k,K)-shallow cutting under the original definition can be transformed into a (k, k+K)-
shallow cutting in vertex form simply by letting V be the set of vertices of the cells (after
pruning cells that do not intersect L≤k(H)). In the reverse direction, a (k,K)-shallow cutting
V in vertex form can be transformed to a (k, dK)-shallow cutting under the original definition
simply by taking VD(V), since the conflict list H∆ of a cell ∆ is contained in the union of
the conflict lists of the d vertices of ∆, and thus |H∆| ≤ dK. In 2-d and 3-d, the size of
VD(V) is O(|V |), and computing VD(V) takes O(|V | log |V |) time by an optimal convex hull
algorithm.

From now on, all shallow cuttings will be in vertex form by default.
Our algorithms do not require any advanced derandomization techniques at all. Only

three facts are needed (the third is used only for the 3-d case):

I Fact 4 (Constant-Size Cuttings). Given a set of n lines in R2 or planes in R3 and any
constant ε > 0, a (standard) ε-cutting of constant size can be computed in O(n) worst-case
time.

I Fact 5 (Existence of O(nk)-Size Shallow Cuttings). Given a set of n lines in R2 or planes
in R3 and a parameter k ∈ [1, n], there exists a (k, c0k)-shallow cutting (in vertex form) of
maximum size c′0 nk , for some universal constants c0, c′0.

SoCG’15

724 Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings

I Fact 6 (Planar Graph Separators). Given a triangulated planar graph with n vertices and a
parameter t ∈ [1, n], we can group the triangles into at most a0

n
t connected regions where

each region contains at most t triangles, and the total number of edges along the boundaries
of the regions is at most a′0 n√

t
for some universal constants a0, a

′
0. Such regions can be

computed in O(n logn) time.

Fact 4 was known in the 1980s even before the term “cutting” was coined. In deriving
their linear-time algorithm for 3-d linear programming, Megiddo [27] and Dyer [17] implicitly
gave a linear-time construction of a 7

8 -cutting of size 4 in 2-d. Megiddo [28] subsequently
generalized the construction to d dimensions, yielding a (1− 1/22d−1)-cutting of size 22d−1

in linear time. (The cells may not be simplices, but we can triangulate them and the size
remains bounded by a constant.) Although these constructions give ε-cuttings for one specific
constant ε > 0, iterating a constant number of times automatically yields ε-cuttings for any
given constant ε > 0 in linear time. The size of such a cutting may be suboptimal, but for
our purposes, any constant size bound will be sufficient. More powerful techniques based on
ε-approximations and ε-nets [21, 15] can yield better bounds, but a virtue of Megiddo and
Dyer’s constructions is that they are completely elementary, relying on linear-time median
finding as the only subroutine.

Fact 5 was proved by Matoušek [25] by using Chazelle and Friedman’s random sampling
techniques [15]. (In the 2-d case, there is a simpler alternative proof using levels, similar
to [23] and implicit in one of the proofs in [6].) For our purposes, we do not actually need
to know how Fact 5 is proved and do not care about the construction time—we just need
the existence of O(nk)-size shallow cuttings, not for our algorithms themselves but for their
analyses.

Fact 6 is a multiple-regions version [18] of the well-known planar graph separator theo-
rem [22], as applied to the dual of the given graph. The multiple-regions version follows from
the standard version by recursion. The running time O(n logn) can actually be reduced to
O(n) [19], although we do not need this improvement. A version by Frederickson [18] can
further guarantee that each region has O(

√
r) boundary edges (Fact 6 guarantees the same

bound but on average only); again, we do not need such an improvement.

3 A 2-d Shallow Cutting Algorithm

We begin in 2-d and prove the following theorem, from which our main result will follow as a
corollary:

I Theorem 7. For a set H of n lines in R2, a parameter k ∈ [1, n], and some suitable
constants B,C,C ′, given a (Bk,CBk)-shallow cutting Vin (in vertex form) for H of size
at most C ′ nBk along with its conflict lists, we can compute a (k,Ck)-shallow cutting Vout
(in vertex form) for H of size at most C ′ nk along with its conflict lists in O(n + n

k log n
k)

deterministic time.

Proof.

Algorithm. Let ε be a constant to be set later. Our algorithm is conceptually simple:

1. For each cell ∆ ∈ VD(Vin):
1.1. Compute by Fact 4 an ε-cutting Γ∆ for H∆ of O(1) size, where the cells are

clipped (and re-triangulated) to lie within ∆. Let Λ∆ be the set of vertices that
define the cells of Γ∆.

T.M. Chan and K. Tsakalidis 725

1.2. Compute by brute force the smallest subset V∆ ⊆ Λ∆ such that
(i) every vertex in V∆ has level in H∆ at most Ck, and
(ii) UH(V∆) covers all vertices in Λ∆ that are in L≤2k(H∆).

3. Return Vout :=
⋃

∆∈VD(Vin)
V∆ and all its conflict lists.

Complexity. In Line 1, computing VD(Vin) takes O(nk log n
k) time by an optimal convex

hull algorithm, since |Vin| ≤ C ′ nBk = O(nk). Line 1.1 takes time linear in |H∆| by Fact 4,
for a total of

∑
∆∈VD(Vin)O(|H∆|) = O(C ′ nBk · 2CBk) = O(n) time. For Line 1.2, first we

determine the level in H∆ of every vertex in Λ∆ by a linear scan over H∆, and then we probe
all possible subsets of Λ∆. Since Γ∆ and Λ∆ have O(1) size, there are “only” O(1) subsets
to test (although the constant is exponentially bigger) and each subset can be tested for the
two stated conditions in O(1) time. Thus, the whole step takes time linear in |H∆|, which
again totals to O(n). In Line 3, computing Vout takes time linear in the output size. The
conflict list of every output vertex in V∆ can be computed by a linear scan over H∆, again
in O(n) total time.

Correctness. To show that Vout is a correct (k,Ck)-shallow cutting for H, we just check
that UH(Vout) covers L≤k(H). This follows since for any point inside a cell of Γ∆ with level at
most k, the three vertices of the cell in Γ∆ have levels at most k+ε|H∆| ≤ k+ε(2CBk) = 2k
by setting the constant ε := 1

2CB , and are thus covered by UH(V∆).
To bound the size of Vout, we compare it against a (2k, 2c0k)-shallow cutting V ∗ of size

c′0
n
2k provided by Fact 5. Note that V ∗ is covered by VD(Vin) by picking a constant B ≥ 2c0,

since every vertex in V ∗ has level at most 2c0k, and VD(Vin) covers L≤Bk(H).
We render V ∗ comparable to Vout by modifying V ∗ in two steps (we emphasize that

these steps are not part of the algorithm but are for the correctness proof only):

First, we chop UH(V ∗) at the walls of the cells of VD(Vin). A new vertex is formed at
each wall; we create two copies of each such vertex (one assigned to each of the two
incident cells of VD(Vin)) and add them to V ∗. (See Figure 1.) For each cell ∆ ∈ VD(Vin),
let V ∗∆ := V ∗ ∩∆. Then (i) every vertex in V ∗∆ (including the extra vertices added) has
level at most 4c0k, and (ii) UH(V ∗∆) is exactly UH(V ∗)∩∆ and thus covers L≤2k(H)∩∆.
The number of extra vertices added is at most 2C ′ nBk , so the size of V ∗ is now at most
(c
′
0
2 + 2C

′

B)nk .
Next, for every cell ∆ ∈ VD(Vin), we snap the vertices in V ∗∆ to the vertices of Γ∆, i.e.,
we replace every vertex v ∈ V ∗∆ with the three vertices of the cell in Γ∆ containing v.
(See Figure 1.) This makes V ∗∆ ⊆ Λ∆. Then (i) every vertex in V ∗∆ now has level at most
4c0k + ε|H∆| ≤ 4c0k + ε(2CBk) = (4c0 + 1)k, and (ii) UH(V ∗∆) can only increase in its
coverage. The size of V ∗ triples to at most (3

2c
′
0 + 6C

′

B)nk .

Then Line 1.2 guarantees that |V∆| ≤ |V ∗∆| by setting the constant C := 4c0 + 1, since
the subset V ∗∆ ⊆ Λ∆ satisfies the two stated conditions and V∆ is the smallest such subset.
Therefore, totalling over all cells in VD(Vin), we have |Vout| ≤ |V ∗| ≤ (3

2c
′
0 + 6C

′

B)nk ≤ C
′ n
k

as desired, by setting the constant C ′ :=
3
2 c
′
0

1− 6
B

and picking a constant B > 6. J

I Corollary 8. For a set H of n lines in R2, a parameter k ∈ [1, n], and some suitable
constants B,C,C ′, we can compute a (Bik,CBik)-shallow cutting of size at most C ′ nBik ,
along with its conflict lists, for all i = 0, 1, . . . , logB n

k in O(n log n
k) total deterministic time.

In particular, we can compute a (k,Ck)-shallow cutting of size O(nk) in the stated time.

SoCG’15

726 Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings

V D(VIN)

UH(V ∗)

∆

Figure 1 Modifying V ∗ by chopping (adding points marked by black squares) and snapping
(replacing a point with three points indicated by white arrows). The cutting Γ∆ is shown in dashed
lines, and its vertices Λ∆ are marked by crosses.

Proof. By Theorem 7, the running time T (n, k) satisfies the recurrence

T (n, k) = T (n,Bk) +O
(
n+ n

k
log n

k

)
,

with the trivial base case T (n, n) = O(n). The recurrence solves to T (n, k) = O(n logB n
k) +

O
(
n
k log n

k

)∑logB
n
k

i=0
1
Bi = O(n log n

k). J

4 A 3-d Shallow Cutting Algorithm

We now extend the approach from the previous section to 3-d. We need to incorporate planar
separators in the algorithm and further new ideas in the analysis.

I Theorem 9. For a set H of n planes in R3, a parameter k ∈ [1, n] and some suitable
constants B,C,C ′, given a (Bk,CBk)-shallow cutting Vin for H of size at most C ′ nBk along
with its conflict lists, we can compute a (k,Ck)-shallow cutting Vout for H of size at most
C ′ nk along with its conflict lists in O(n+ n

k log n
k) deterministic time.

Proof.

Algorithm. Let ε and t be constants to be set later.

0. Group the faces of UH(Vin) into regions by applying Fact 6 with parameter t. The union
of the cells of VD(Vin) defined by the triangles in a region will be called a supercell of
VD(Vin).

1. For each supercell ∆ of VD(Vin):

1.1. Do as in Line 1.1 of the algorithm in Section 3.
1.2. Do as in Line 1.2 of the algorithm in Section 3.

2. Do as in Line 3 of the algorithm in Section 3.

Complexity. Line 0 takes O(nk log n
k) time by Fact 6, since |Vin| ≤ C ′ nBk = O(nk). Lines 1.1,

1.2, and 2 take O(n+ n
k log n

k) time by an analysis similar to Section 3, since each supercell
still has O(1) complexity for t constant.

T.M. Chan and K. Tsakalidis 727

w

σw

V D(VIN)

UH(S ′
w)

UH(Sw)

Figure 2 Replacing the concave chain UH(Sw) with a sparse concave chain UH(S′w) at a wall w

of a supercell of VD(Vin). The set S′w is a planar shallow cutting.

Correctness. By the same argument as in Section 3, we see that Vout is a correct (k,Ck)-
shallow cutting for H, this time by setting the constant ε := 1

3tCB , since |H∆| ≤ 3tCBk for
each supercell ∆ of VD(Vin).

As in Section 3, we bound the size of Vout by comparing it against a (2k, 2c0k)-shallow
cutting V ∗ of size c′0 n

2k provided by Fact 5. As before, V ∗ is covered by VD(Vin), this time
by picking a constant B ≥ 6c0.

We render V ∗ comparable to Vout by modifying V ∗ in three steps, the second of which is
new (again these steps are not part of the algorithm but are for the correctness proof only):

First, we chop UH(V ∗) at the walls of the supercells of VD(Vin). A new planar concave
chain of vertices is formed at each wall; we create two copies of the chain (one assigned to
each of the two incident cells of VD(Vin)) and add their vertices to V ∗. For each supercell
∆ of VD(Vin), let V ∗∆ := V ∗ ∩∆. Then (i) every vertex in V ∗∆ has level at most 6c0k, and
(ii) UH(V ∗∆) ∩∆ is exactly UH(V ∗) ∩∆ and thus covers L≤2k(H) ∩∆. Unfortunately we
do not have good enough bounds on the number of extra vertices added to V ∗.
To reduce the size of V ∗, we replace the chain Sw of vertices at every wall w of a supercell
with a sparser set S′w of vertices defined as follows. (See Figure 2.) Let Hw be the set of
planes in H intersecting w, and let S′w be a planar (6c0k, 6c20k)-shallow cutting provided
by Fact 5 for the intersection of Hw with the vertical plane through w (a set of lines).
Let σw be the slab delimited by the two vertical lines through the two subwalls of w. We
clip UH(S′w) to σw, add the two new vertices to S′w, and remove any vertices outside σw.
Observe that S′w is covered by w (and thus by VD(Vin)) by picking a constant B ≥ 12c20,
because every vertex in S′w (including the two extra vertices added) has level in Hw at
most 12c20k, and w covers L≤Bk(H) ∩ σw = L≤Bk(Hw) ∩ σw.
Then (i) every vertex in V ∗∆ now has level (in H) at most 12c20k, and (ii) UH(V ∗∆) can
only increase in its coverage, because each old set Sw is contained in L≤6c0k(H)∩ σw and
the new concave chain UH(S′w) covers L≤6c0k(H) ∩ σw.
For each wall w, the size of S′w is at most c′0

|Hw|
6c0k

≤ c′0 2CBk
6c0k

= c′0CB
3c0

. The number of walls
of the supercells is at most a′0

|Vin|√
t
≤ a′0C

′

B
√
t
n
k . Thus, the total number of extra vertices

added to V ∗ (two copies included) is at most 2a′0c
′
0CC

′

3c0
√
t

n
k , and the size of V ∗ is now at

most (c
′
0
2 + 2a′0c

′
0CC

′

3c0
√
t

)nk .
For every supercell ∆ of VD(Vin), we snap the vertices in V ∗∆ to vertices of Γ∆ i.e., we
replace every vertex v ∈ V ∗∆ with the four vertices of the cell in Γ∆ containing v. This
makes V ∗∆ ⊆ Λ∆. Then (i) every vertex in V ∗∆ now has level at most 12c20k + ε|H∆| ≤
12c20k + ε(3tCBk) = (12c20 + 1)k, and (ii) UH(V ∗∆) can only increase in its coverage. The
size of V ∗ quadruples to at most (2c′0 + 8a′0c

′
0CC

′

3c0
√
t

)nk .

SoCG’15

728 Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings

Then Line 1.2 guarantees that |V∆| ≤ |V ∗∆| by setting the constant C := 12c20+1. Therefore,
totalling over all cells in VD(Vin), we have |Vout| ≤ |V ∗| ≤ (2c′0 + 8a′0c

′
0CC

′

3c0
√
t

)nk ≤ C ′ nk as

desired, by setting the constant C ′ := 2c′0
1−

8a′0c′0C

3c0
√

t

and picking any constant t > (8a′0c
′
0C

3c0
)2. J

As in Section 3, it follows that:

I Corollary 10. For a set H of n planes in R3, a parameter k ∈ [1, n], and some suitable
constants B,C,C ′, we can compute a (Bik,CBik)-shallow cutting of size at most C ′ nBik ,
along with its conflict lists, for all i = 0, 1, . . . , logB n

k in O(n log n
k) total deterministic time.

In particular, we can compute a (k,Ck)-shallow cutting of size O(nk) in the stated time.

5 Final Remarks

We remark that concentrating on the k = Θ(nr) case is indeed without loss of generality—
our algorithms can be easily applied to construct k-shallow 1

r -cuttings for any k and r.
Matoušek [25] proved the existence of such cuttings of size O(rbd/2c(krn + 1)dd/2e). We
can construct cuttings of this size with the following time bounds for d ∈ {2, 3}, which
are optimal if we are required to output all conflict lists (since the worst-case total size is
Θ(rbd/2c(krn + 1)dd/2e nr)):

I Corollary 11. For a set H of n lines in R2 and parameters k, r ∈ [1, n], we can compute a
k-shallow 1

r -shallow cutting of size O(r(krn + 1)), along with its conflict lists, in O(n log r +
r(krn + 1)nr) deterministic time.

For a set H of n planes in R3 and parameters k, r ∈ [1, n], we can compute a k-shallow
1
r -shallow cutting of size O(r(krn +1)2), along with its conflict lists, in O(n log r+r(krn +1)2 n

r)
deterministic time.

Proof. If k ≤ n
cr for a suitable constant c, then we can just apply our algorithm to compute

a n
cr -shallow

1
r -cutting of size O(r) in O(n log r) deterministic time.

So assume k > n
cr . We first apply our algorithm to compute a k-shallow ck

n -cutting of
size O(nk) in O(n log n

k) = O(n log r) deterministic time. Inside each cell ∆ of this cutting,
the conflict list H∆ has size at most ck and we compute a standard n/r

ck -cutting of H∆
of size O((k

n/r)d) in deterministic time O(k(k
n/r)d−1) by known results (e.g., Chazelle’s

algorithm [14], or in the d = 2 case, our algorithm from the appendix). This yields a
k-shallow 1

r -cutting of H of total size O(nk · (
k
n/r)d) in total time O(n log r + n

k · k(k
n/r)d−1).

The size and time bounds are exactly as stated. J

We should mention that despite their conceptual simplicity, our algorithms are not likely
to be practical in their present form, because of the huge hidden constant factors.

Our approach of incorporating brute-force search and comparing the cost of our solution
to that of an optimal solution was inspired by approximation algorithms. An interesting
problem is to actually find PTASes to compute the minimum-size (shallow or standard)
cutting, or compute cuttings with constant factors approaching the worst-case optimum [26],
with comparable running time.

The optimality of the O(n log r) time bound assumes a comparison-based model, but it
remains to be seen if there are faster algorithms to compute a single shallow cutting in the
word RAM model for integer input [13].

Generalization of our shallow cutting algorithms to higher dimensions is also open; odd
dimensions appear particularly challenging.

T.M. Chan and K. Tsakalidis 729

References
1 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three di-

mensions. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’09, pages 180–186. SIAM, 2009.

2 Peyman Afshani, Timothy M. Chan, and Konstantinos Tsakalidis. Deterministic rectangle
enclosure and offline dominance reporting on the RAM. In Proceedings of the Forty-First
International Colloquium on Automata, Languages, and Programming, Part I, ICALP ’14,
pages 77–88, 2014.

3 Peyman Afshani and Konstantinos Tsakalidis. Optimal deterministic shallow cuttings for
3d dominance ranges. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’14, pages 1389–1398. SIAM, 2014.

4 Pankaj K. Agarwal. Partitioning arrangements of lines I: An efficient deterministic algo-
rithm. Discrete & Computational Geometry, 5(1):449–483, 1990.

5 Pankaj K. Agarwal. Intersection and Decomposition Algorithms for Planar Arrangements.
Cambridge University Press, New York, NY, USA, 1991.

6 Pankaj K. Agarwal, Boris Aronov, Timothy M. Chan, and Micha Sharir. On levels in
arrangements of lines, segments, planes, and triangles. Discrete & Computational Geometry,
19(3):315–331, 1998.

7 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull with optimal query
time. In Proceedings of the Seventh Scandinavian Workshop on Algorithm Theory, SWAT
’00, pages 57–70, 2000.

8 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In
Proceedings of the Forty-Third Symposium on Foundations of Computer Science,
FOCS ’02, pages 617–626. IEEE, 2002. Current draft of full paper at
https://pwgrp1.inf.ethz.ch/Current/DPCH/Journal/topdown.pdf.

9 Timothy M. Chan. Random sampling, halfspace range reporting, and construction of (≤ k)-
levels in three dimensions. SIAM Journal on Computing, 30(2):561–575, 2000.

10 Timothy M. Chan. Low-dimensional linear programming with violations. SIAM Journal
on Computing, 34(4):879–893, April 2005.

11 Timothy M. Chan. Three problems about dynamic convex hulls. International Journal of
Computational Geometry & Applications, 22(04):341–364, 2012.

12 Timothy M. Chan, Kasper Green Larsen, and Mihai Pǎtraşcu. Orthogonal range searching
on the RAM, revisited. In Proceedings of the Twenty-Seventh Symposium on Computational
Geometry, SOCG ’11, pages 1–10. ACM, 2011.

13 Timothy M. Chan and Mihai Pǎtraşcu. Transdichotomous results in computational geom-
etry, I: point location in sublogarithmic time. SIAM J. Comput., 39(2):703–729, 2009.

14 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete & Computational
Geometry, 9(1):145–158, 1993.

15 Bernard Chazelle and Joel Friedman. A deterministic view of random sampling and its use
in geometry. Combinatorica, 10(3):229–249, 1990.

16 Kenneth L. Clarkson. New applications of random sampling in computational geometry.
Discrete & Computational Geometry, 2:195–222, 1987.

17 Martin E. Dyer. Linear time algorithms for two- and three-variable linear programs. SIAM
Journal on Computing, 13(1):31–45, 1984.

18 Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM Journal on Computing, 16(6):1004–1022, 1987.

19 Michael T. Goodrich. Planar separators and parallel polygon triangulation. Journal of
Computer and System Sciences, 51(3):374–389, 1995.

20 Sariel Har-Peled, Haim Kaplan, Micha Sharir, and Shakhar Smorodinsky. Epsilon-nets for
halfspaces revisited. CoRR, abs/1410.3154, 2014.

SoCG’15

730 Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings

21 David Haussler and EmoWelzl. ε-nets and simplex range queries. Discrete & Computational
Geometry, 2(1):127–151, 1987.

22 Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

23 Jiří Matoušek. Construction of ε-nets. Discrete & Computational Geometry, 5(1):427–448,
1990.

24 Jiří Matoušek. Cutting hyperplane arrangements. Discrete & Computational Geometry,
6(1):385–406, 1991.

25 Jiří Matoušek. Reporting points in halfspaces. Computational Geometry, 2(3):169–186,
1992.

26 Jiří Matoušek. On constants for cuttings in the plane. Discrete & Computational Geometry,
20(4):427–448, 1998.

27 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related prob-
lems. SIAM Journal on Computing, 12(4):759–776, 1983.

28 Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. Journal
of the ACM, 31(1):114–127, 1984.

29 Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In Proceedings
of the Fifteenth Annual Symposium on Computational Geometry, SoCG ’99, pages 390–399.
ACM, 1999.

30 Edgar A. Ramos. Deterministic algorithms for 3-d diameter and some 2-d lower envelopes.
In Proceedings of the Sixteenth Annual Symposium on Computational Geometry, SoCG ’00,
pages 290–299. ACM, 2000.

A Appendix: A 2-d Standard Cutting Algorithm

In this appendix, we describe how our ideas can be used to rederive known results by
Matoušek [24] and Chazelle [14] for standard cuttings in 2-d.

As before, it will be more convenient to work with the parameter K := n
r instead of r. The

target O(nr) time bound becomes O(n
2

K). Our cuttings will be the vertical decompositions
of noncrossing line segments. Given a set S of noncrossing line segments inside a cell ∆, we
define the vertical decomposition VD(S) to be the subdivision into trapezoids, obtained by
drawing a vertical upward/downward ray at each vertex till the ray hits another segment.
We define VD∆(S) to be VD(S) clipped inside a given cell ∆.

I Theorem 12. For a set H of n lines in R2, a parameter K ∈ [1, n] and suitable constants
B,C, given a BK

n -cutting Tin for H of size at most C(n
BK)2 along with its conflict lists, we

can compute a K
n -cutting Tout for H of size at most C(nK)2 along with its conflict lists in

O(n
2

K) deterministic time.

Proof.

Algorithm. Let ε be a constant to be set later.

1. For each cell ∆ ∈ Tin:

1.1. Compute by Fact 4 an ε-cutting Γ∆ for H∆ of O(1) size, where the cells are
clipped (and re-triangulated) to lie within ∆. Further refine the cells of Γ∆ by
drawing a vertical line at every vertex of Γ∆. Let Λ∆ be the set of vertices that
define the cells of (the refined) Γ∆.

T.M. Chan and K. Tsakalidis 731

Figure 3 Simplifying a level.

1.2. Compute by brute force the smallest set of noncrossing line segments S∆, whose
endpoints are from Λ∆, such that each trapezoid in VD∆(S∆) intersects at most
K lines of H∆.

2. Return Tout :=
⋃

∆∈Tin
VD∆(S∆) and all its conflict lists.

Complexity. Line 1.1 takes time linear in |H∆| by Fact 4, for a total of
∑

∆∈Tin
O(|H∆|) =

O(C(n
BK)2 ·BK) = O(n

2

K) time. For Line 1.2, we probe all possible sets S∆ of line segments
with endpoints from Λ∆. Since Γ∆ and Λ∆ have O(1) size, there are “only” O(1) sets to test
and each set can be tested in O(|H∆|) time. Thus, the whole step takes time linear in |H∆|,
which again totals to O(n

2

K).

Correctness. Clearly Tout is a K
n -cutting for H. To bound the size of Tout, we compare it

against some optimal Kn -cutting for H of size O((nK)2), specifically, the cutting produced by
Matoušek’s construction [23] using levels. (We would have preferred a cleaner proof that
compares Tout against an arbitrary optimal-size cutting, like in our earlier proofs, but were
unable to make the details work.) We adapt his construction to incorporate our earlier ideas
of chopping and snapping.

We first pick a random index j0 ∈ [1, 0.5K]. For each j ≡ j0 (mod 0.5K), consider the
j-level (the set of points on the arrangement with level j), which is an x-monotone chain.
Since the arrangement has O(n2) vertices in total, the expected total number of vertices
in these chains is O(n

2

K).
We chop these chains into subchains at the boundaries of the cells of Tin. Since the total
number of vertices along cell boundaries is O(C(n

BK)2 · BK) = O(CB)n
2

K , the expected
total number of subchains created is at most O(CB) n

2

K2 .
We simplify each subchain by selecting every 0.1k-th vertex from the subchain and
forming a shorter x-monotone chain through these vertices, while keeping the start and
end vertex. (See Figure 3.) Note that the levels of points on a simplified subchain can
deviate from the original level by at most ±0.1K. Let S∗ be the set of the edges of the
simplified subchains. Since the size of a simplified subchain is at most one plus 1

0.1K -th
the original size of the subchain, the expected size of S∗ is at most O(1 + C

B)(nK)2. We
pick a j0 so that the size of S∗ is at most its expectation.
For each boundary edge of the cells of Tin, we subdivide it by selecting every 0.1K-th
vertex of the arrangement lying on the edge. We add two copies of the resulting edges
to S∗ (one assigned to each of the two incident cells). Since the number of extra edges
added is O(C(n

BK)2 · BK0.1K) = O(CB (nK)2), the size of S∗ remains at most O(1 + C
B)(nK)2.

SoCG’15

732 Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings

Let S∗∆ := S∗∩∆. We claim that each trapezoid in VD∆(S∗∆) intersects at most 0.9K lines.
This follows because the left side of the trapezoid intersects at most 0.5K + 0.1K + 0.1K
lines, and the top or bottom side intersects at most 0.1K lines.
For every cell ∆ ∈ Tin, we snap the endpoints of the segments in S∗∆ to the vertices
of Γ∆, i.e., we replace each such endpoint v with the rightmost vertex of the cell in Γ∆
containing v. For each endpoint v that lie on a boundary edge of ∆, we snap it to a
vertex of Γ∆ on that edge.
Note that the x-order of the vertices in S∗∆ is preserved after snapping, because we have
refined Γ∆ with extra vertical lines. Thus, the simplified subchains inside ∆ of a common
chain remain x-monotone and noncrossing. Furthermore, two simplified subchains of two
different chains remain noncrossing for a sufficiently small ε, since the two chains have
levels at least 0.5K apart, simplification changes levels by at most 0.1K, and snapping
changes levels by at most O(εBK). Thus, S∗∆ remains noncrossing.
By modifying the previous argument, we see that each trapezoid in VD∆(S∗∆) intersects
at most 0.9K+O(εBK) lines; the number can be made at most K for a sufficiently small
constant ε.

Then Line 1.2 guarantees that |S∆| ≤ |S∗∆|. Therefore, |Tout| ≤ O(|S∗|) ≤ O(1 + C
B)(nK)2,

which can be made at most C(nK)2 as desired, by choosing a sufficiently large constant B.
(Note that in the entire correctness proof, constants hidden in the O notation are universal
constants.) J

I Corollary 13. For a set H of n lines in R2, a parameter K ∈ [1, n], and some suit-
able constants B,C, we can compute a BiK

n -cutting of size at most C(n
BiK)2 for all i =

0, 1, . . . , logB n
K , along with its conflict lists, in O(n

2

K) total deterministic time. In particular,
we can compute a 1

r -cutting of size O(r2) in O(nr) deterministic time.

Proof. The recurrence T (n,K) = T (n,BK) +O((nK)2), with the trivial base case T (n, n) =
O(n), solves to T (n,K) = O(

∑logB
n
K

i=0 (n
BiK)2) = O((nK)2). J

Our above algorithm can be viewed as a reinterpretation of Chazelle’s algorithm [14],
where ε-approximations and sparse ε-nets are replaced by a brute-force component that is
more self-contained to describe. Our analysis only works in 2-d, however; Chazelle’s approach
is still more powerful.

A Simpler Linear-Time Algorithm for Intersecting
Two Convex Polyhedra in Three Dimensions
Timothy M. Chan∗

Cheriton School of Computer Science, University of Waterloo, Canada
tmchan@uwaterloo.ca

Abstract
Chazelle [FOCS’89] gave a linear-time algorithm to compute the intersection of two convex poly-
hedra in three dimensions. We present a simpler algorithm to do the same.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases convex polyhedra, intersection, Dobkin–Kirkpatrick hierarchy

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.733

1 Introduction

This note concerns the following problem: given two convex polyhedra of size O(n) in 3-d,
compute their intersection. Equivalently, the dual problem is to compute the convex hull of
the two convex polyhedra, i.e., merge two convex hulls.

This is one of the most basic computational problems about convex polyhedra. Algorithms
for the problem have been used as subroutines to solve many other problems in computational
geometry (see [2] for just one example).

In the 70s, Preparata and Hong [13] observed that two linearly separated convex hulls
in 3-d can be merged in linear time. (Earlier Shamos and Hoey [14] observed the same
for the special case of two linearly separated Delaunay triangulations in 2-d, and later
Kirkpatrick [9] showed how to merge two arbitrary Delaunay triangulations in 2-d in linear
time.) The general problem was eventually settled a decade later when Chazelle [4] announced
a linear-time algorithm for intersecting/merging two arbitrary convex polyhedra in 3-d.

Chazelle’s algorithm, like many of his other works, is a tour de force. It started with
a standard construction of the Dobkin–Kirkpatrick (DK) hierarchies [6, 7] of the input
polyhedra in both primal and dual space, but incorporated pages of intricate ideas and
details. To give a flavor of the overall plan, we only mention that the running time satisfies a
recurrence of the form T (n) = 4T (δn) + O(n), which indeed solves to T (n) = O(n) for a
sufficiently small constant δ > 0.

A thesis by Martin [11] described a simplification of Chazelle’s algorithm that avoided
switching back and forth with duality, but needed to navigate simultaneously in the DK
hierarchies of the insides and outsides of the polyhedra. The details were still lengthy, and
the recurrence was “improved” to T (n) = 2T (δn) +O(n).

Chazelle’s work dated back to a time when the unifying techniques of randomized
geometric divide-and-conquer [5, 12] were just starting to flourish. This prompts the question
of whether more modern concepts like sampling, conflict lists, etc. might give a simpler
explanation for why the problem can be solved in linear time. After all, at a gut level, this

∗ Part of this work was done during the author’s visit to the Hong Kong University of Science and
Technology.

© Timothy M. Chan;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 733–738

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.733
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

734 A Simpler Linear-Time Algorithm for Intersecting Convex Polyhedra

textbook problem shouldn’t be that hard to solve (although one could say the same for the
problem of triangulating a simple polygon [3, 1]!).

In this note, we show that there is indeed a simpler linear-time algorithm for intersecting
two convex polyhedra. Our solution ends up not requiring random sampling, but falls back
to the DK hierarchy. We only need to navigate in the hierarchies of the outsides, and we
don’t need to switch between primal and dual space. Furthermore, we get a more usual
recurrence T (n) = T (δn) + O(n) – in other words, a more conventional way of using DK
hierarchies turns out to work after all! There are concrete advantages to having the better
recurrence when considering other computational models; for example, the algorithm is more
efficiently parallelizable. However, we believe the simplicity of the solution is what is the
most valuable aspect of the work.

2 Preliminaries

We begin by computing a point o in the intersection of the two convex polyhedra; this can
be done in linear time by 3-d linear programming [8] (known randomized algorithms are
particularly simple), or in polylogarithmic time using DK hierarchies [6, 7]. By translation,
we may make o the origin. It suffices to compute the part of the intersection in {z > 0}. By
a projective transformation (x, y, z) 7→ (x/z, y/z,−1/z), we can move o to (0, 0,−∞) and
thus assume that both input polyhedra are unbounded from below, i.e., they are (the regions
underneath) lower envelopes of planes. We assume that the planes are in general position,
by standard perturbation techniques.

Given a set H of planes, let P(H) denote the region underneath its lower envelope. We
say that H is nonredundant if all planes of H participate in the boundary of P(H). Given
P = P(H), let T (P) denote a triangulation of P . More precisely, we triangulate each face of
P , and for each triangle v1v2v3 we take the region underneath v1v2v3 (a prism unbounded
from below) as a cell of T (P). For any region ∆, the conflict list H|∆ is the subset of all
planes of H intersecting ∆.

A standard approach to computing the lower envelope of H is to pick a random sample H ′
of H, construct the lower envelope of the conflict list H|∆ inside ∆ for each cell ∆ ∈ T (P(H ′)),
and then glue the results together. Although we will not use randomization, we will adapt
similar ideas.

Given P(H1) and P(H2) for two nonredundant sets H1 and H2 of planes, our problem is
to compute P = P(H1) ∩ P(H2) (i.e., P = P(H1 ∪H2)). In order to allow for a recursive
algorithm, we need to strengthen the output requirement and require further information
to be reported for each vertex v of P . Our key idea is this. Since v is in the intersection,
we know that v is on or below P(Hj) for each j ∈ {1, 2}. Thus, there exist three vertices
w1, w2, w3 of P(Hj) that “witness” this fact, i.e., that have v below1 4w1w2w3. We will
require the algorithm to output one such triple for each v and j. It is important that we do
not insist w1w2w3 be a face of (a triangulated) P(Hj). Otherwise, one can show that finding
such witnesses may require Ω(n logn) comparisons in the worst case! Witnesses will make
the generation of conflict lists easy; on the other hand, extra work will be required to find
witnesses.

To summarize, we will solve the following stronger problem:
Problem: Given P(H1) and P(H2) for two nonredundant sets H1 and H2 of n planes,

compute P = P(H1)∩P(H2), and for each vertex v of P and each j ∈ {1, 2}, report some
vertices w1, w2, w3 of P(Hj), called the j-witnesses of v, such that v is below 4w1w2w3.

1 Throughout the paper, “below” means “below or is incident to” unless preceded by “strictly”.

T.M. Chan 735

3 The Algorithm

We are now ready to give the algorithm outline to solve the problem:

Intersect(P(H1),P(H2)):
0. if H1 and H2 have size below a constant then return answer directly
1. for j ∈ {1, 2}:
2. choose an independent set of faces of P(Hj)
3. let Ij be the planes defining these faces, and let H ′j = Hj \ Ij

4. obtain P(H ′j) from P(Hj)
5. P ′ = Intersect(P(H ′1),P(H ′2))
// now compute the intersection P of P(H1) and P(H2)
6. for each ∆ ∈ T (P ′):
7. for j ∈ {1, 2}:
8. find the conflict list Hj |∆ by searching in the candidate list

Cj,∆ := { h ∈ Hj : h lies below a j-witness of a vertex of ∆ }
9. compute the intersection of P(H1 |∆) and P(H2 |∆) inside ∆
10. glue all the polyhedra from line 9 to get P
// now compute new witnesses for P
11. for each ∆ ∈ T (P ′):
12. for j ∈ {1, 2}:
13. for each vertex v of P inside ∆:
14. find j-witnesses of v by searching in the candidate witness list

Wj,∆ := { vertices w of P(Hj): w is a j-witness of a vertex of ∆ or
w is on a plane in Ij ∩ Cj,∆ }

15. return P with all its witnesses

We explain the algorithm in more detail. In line 2, independence means that the chosen
faces do not share any edges. By applying a standard linear-time greedy algorithm to a
planar graph in the dual, we can always choose an independent set of at least αn faces each
with at most c vertices, for some constants α and c; for example, see Kirkpatrick’s well
known paper [10], which has α = 1/24 and c = 11.

Line 4 takes linear time, since the difference of two polyhedra P(Hj) and P(H ′j) consists
of disjoint constant-size pockets, as we are removing an independent set of constant-size faces;
each pocket can be constructed from the lower envelope of O(1) planes. (The hierarchy of
polyhedra produced from the recursion is commonly referred to as the Dobkin–Kirkpatrick
hierarchy [6, 7].)

Line 5 contains the main recursive call, where the number of planes in either input set
drops to at most (1− α)n.

In line 8, we use witnesses for P ′ to help generate conflict lists. Any plane h in the
conflict list Hj |∆ must lie below one u of the three vertices of ∆. Since u (a vertex of P ′)
lies below 4w′1w′2w′3 for its j-witnesses w′1, w′2, w′3, it follows that h lies below some w′i and
must indeed be in the candidate list Cj,∆.

There are at most nine j-witnesses for the three vertices of ∆. Each j-witness w′i (a
vertex of P(H ′j)) has at most O(1) planes of Hj below it: namely, its three defining planes,
and at most one plane from Ij strictly below it (which we can easily identify after initializing
some pointers). Thus, the candidate list Cj,∆ has constant size, and so each conflict list
Hj |∆ can be generated in constant time.

SoCG’15

736 A Simpler Linear-Time Algorithm for Intersecting Convex Polyhedra

Line 9 takes constant time even by a brute-force algorithm. Line 10 then takes linear
total time.

We show, with a slightly subtle proof, that in line 14, we can indeed always find j-witnesses
from the candidate witness list Wj,∆:

I Lemma 1. For a vertex v of P inside ∆, there exist w1, w2, w3 ∈ Wj,∆ such that v lies
below 4w1w2w3.

Proof. Let W ′ be the at most nine j-witnesses of the three vertices of ∆. Then v lies below
the upper hull of W ′ and is thus below the upper hull of some three points w′1, w′2, w′3 ∈W ′
(which are vertices of P(H ′j)). Let Γ be the region underneath 4w′1w′2w′3.

Since v is in P(Hj) ∩ Γ, there exist three vertices u1, u2, u3 of P(Hj) ∩ Γ such that v is
below 4u1u2u3. (Note that each ui may not necessarily be a vertex of P(Hj) as it could
lie on the boundary of Γ.) For each i ∈ {1, 2, 3}, we claim that ui is below the upper hull
of Wj,∆:

Case 1: ui is a vertex of Γ, i.e., ui ∈ {w′1, w′2, w′3}. Then ui is a vertex of P(H ′j). Since ui

is in P(Hj), it follows that ui is a vertex of P(Hj). Thus, ui is in Wj,∆ by definition of
Wj,∆, and the claim is trivially true.

Case 2: ui is not a vertex of Γ. Then ui must be defined by at least one plane h ∈ Hj that
intersects the interior of Γ. This plane h is strictly below at least one of w′1, w′2, w′3 and
so must be a member of Ij and also a member of Cj,∆. Now, ui lies in the face of P(Hj)
defined by h; all the vertices of this face are in Wj,∆ by definition of Wj,∆, and the claim
is again true.

Since v is below 4u1u2u3, it follows that v is below the upper hull of Wj,∆ and is thus
below 4w1w2w3 for some three vertices w1, w2, w3 ∈Wj,∆. J

The candidate witness list Wj,∆ has constant size, since there are at most nine j-witnesses
for the three vertices of ∆, each plane in Ij contains at most c vertices, and there are O(1)
planes in Cj,∆. So, line 13 can be done in constant time by brute force. The entire loop in
lines 11–14 then takes linear total time.

The overall running time of the algorithm satisfies the recurrence T (n) = T ((1− α)n) +
O(n), which solves to T (n) = O(n).

4 Remarks

An alternative, slightly slower algorithm. There is a more “standard” algorithm based on
sampling, without using witnesses, that gives almost linear n2O(log∗ n) expected time. For
the readers who are familiar with randomization techniques [5, 12] and enjoy comparisons of
different approaches, we briefly sketch the alternative:

First consider a multiset version of Hj where the multiplicity wj(h) (the weight) of each
plane h ∈ Hj is the size of the face of P(Hj) defined by h. The multiset still has O(n) size.
We draw a random sample H ′j of the multiset of size r = O(n/ logn). We construct P(H ′1),
P(H ′2), and their intersection P ′ by an O(r log r)-time algorithm, which takes O(n) time.

For each vertex v of P(H ′j), we can construct its conflict list Hj |v (the list of all planes
of Hj below v) as follows: first find an initial plane of Hj below v by a point location query
in the xy-projection of P(Hj); then find all planes of Hj below v by a graph search over the
faces of P(Hj). This works because the planes below v correspond to the faces visible to v,
which are connected in the boundary of P(Hj) (assuming that Hj is nonredundant). We can
preprocess in linear time for point location in O(logn) time [10], so the O(r) point location

T.M. Chan 737

queries cost O(n) total time. The graph search takes time proportional to the weight of
Hj |v. The total time over all v is O(r · n/r) = O(n) in expectation, by Clarkson and Shor’s
analysis [5].

Next, for each vertex v of P ′, we can compute its conflict list Hj |v as follows: first find a
cell ∆ ∈ T (P(H ′j)) containing v by a point location query in the xy-projection of T (P(H ′j));
then search in the conflict lists of the three vertices of ∆ (which are vertices of P(H ′j)) found
in the preceding paragraph. The O(r) point location queries again cost O(n) total time. So,
this step again takes O(n) expected total time.

For each cell ∆ ∈ T (P ′), we can now generate the conflict list Hj |∆ from the conflict
lists of the three vertices of ∆ (which are vertices of P ′) found in the preceding paragraph.
We then recursively compute the intersection of P(H1 |∆) and P(H2 |∆) inside ∆, and glue
the polyhedra together.

By Clarkson and Shor’s analysis [5], the total expected running time satisfies the recurrence
T (n) =

∑
i T (ni) +O(n) where maxi ni = O((n/r) logn) = O(log2 n) with high probability

and
∑

i ni has expected value O(r · n/r) = O(n). With O(log∗ n) iterations, this yields an
expected time bound of n2O(log∗ n).

An open problem. An interesting question is whether we can similarly merge lower envelopes
of pseudo-planes in 3-d in linear time, under an appropriate definition of pseudo-planes where
three pseudo-planes may intersect in at most one point. This would have applications to
merging two additively weighted Voronoi diagrams in 2-d, for instance. Our concept of
j-witnesses unfortunately doesn’t seem immediately generalizable, although the alternative
n2O(log∗ n)-time randomized algorithm can be adapted at least for the case of 2-d additively
weighted Voronoi diagrams.

Acknowledgement. The author thanks Stefan Langerman for discussion on these problems.

References
1 Nancy M. Amato, Michael T. Goodrich, and Edgar A. Ramos. A randomized algorithm

for triangulating a simple polygon in linear time. Discrete and Computational Geometry,
26(2):245–265, 2001.

2 Timothy M. Chan. Deterministic algorithms for 2-d convex programming and 3-d online
linear programming. Journal of Algorithms, 27(1):147–166, 1998.

3 Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete and Computa-
tional Geometry, 6:485–524, 1991.

4 Bernard Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhe-
dra. SIAM Journal on Computing, 21(4):671–696, 1992.

5 Kenneth L. Clarkson and Peter W. Shor. Application of random sampling in computational
geometry, II. Discrete and Computational Geometry, 4:387–421, 1989.

6 David P. Dobkin and David G. Kirkpatrick. A linear algorithm for determining the sepa-
ration of convex polyhedra. Journal of Algorithms, 6(3):381–392, 1985.

7 David P. Dobkin and David G. Kirkpatrick. Determining the separation of preprocessed
polyhedra—A unified approach. In Proceedings of the 17th International Colloquium on
Automata, Languages and Programming, pages 400–413, 1990.

8 Martin E. Dyer, Nimrod Megiddo, and Emo Welzl. Linear programming. In Jacob E.
Goodman and Joseph O’Rourke, editors, Handbook of Discrete and Computational Geom-
etry, chapter 45. CRC Press, second edition, 2004.

9 David G. Kirkpatrick. Efficient computation of continuous skeletons. In Proceedings of the
20th Annual Symposium on Foundations of Computer Science, pages 18–27, 1979.

SoCG’15

738 A Simpler Linear-Time Algorithm for Intersecting Convex Polyhedra

10 David G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,
12(1):28–35, 1983.

11 Andrew K. Martin. A simple primal algorithm for intersecting 3-polyhedra in linear time.
Master’s thesis, Department of Computer Science, University of British Columbia, 1991.
https://circle.ubc.ca/handle/2429/30114 or http://www.cs.ubc.ca/cgi-bin/tr/1991/TR-91-
16.

12 Ketan Mulmuley. Computational Geometry: An Introduction Through Randomized Algo-
rithms. Prentice Hall, Englewood Cliffs, NJ, 1993.

13 Franco P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three
dimensions. Communications of the ACM, 20(2):87–93, 1977.

14 Michael Ian Shamos and Dan Hoey. Closest-point problems. In Proceedings of the 16th
Annual Symposium on Foundations of Computer Science, pages 151–162, 1975.

Approximability of the Discrete Fréchet Distance
Karl Bringmann∗1 and Wolfgang Mulzer†2

1 Institute of Theoretical Computer Science, ETH Zurich, Switzerland
karlb@inf.ethz.ch

2 Institut für Informatik, Freie Universität Berlin, Germany
mulzer@inf.fu-berlin.de

Abstract
The Fréchet distance is a popular and widespread distance measure for point sequences and for
curves. About two years ago, Agarwal et al [SIAM J. Comput. 2014] presented a new (mildly)
subquadratic algorithm for the discrete version of the problem. This spawned a flurry of activity
that has led to several new algorithms and lower bounds.

In this paper, we study the approximability of the discrete Fréchet distance. Building on
a recent result by Bringmann [FOCS 2014], we present a new conditional lower bound that
strongly subquadratic algorithms for the discrete Fréchet distance are unlikely to exist, even in
the one-dimensional case and even if the solution may be approximated up to a factor of 1.399.

This raises the question of how well we can approximate the Fréchet distance (of two given
d-dimensional point sequences of length n) in strongly subquadratic time. Previously, no general
results were known. We present the first such algorithm by analysing the approximation ratio
of a simple, linear-time greedy algorithm to be 2Θ(n). Moreover, we design an α-approximation
algorithm that runs in time O(n logn + n2/α), for any α ∈ [1, n]. Hence, an nε-approximation
of the Fréchet distance can be computed in strongly subquadratic time, for any ε > 0.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems – Geometrical
problems and computations

Keywords and phrases Fréchet distance, approximation, lower bounds, Strong Exponential Time
Hypothesis

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.739

1 Introduction

Let P and Q be two polygonal curves with n vertices each. The Fréchet distance provides a
meaningful way to define a distance between P andQ that overcomes some of the shortcomings
of the classic Hausdorff distance [6]. Since its introduction to the computational geometry
community by Alt and Godau [6], the concept of Fréchet distance has proven extremely
useful and has found numerous applications (see [4, 6, 7, 8, 9, 10] and the references therein).

The Fréchet distance has two classic variants: continuous and discrete [6, 12]. In this
paper, we focus on the discrete variant. In this case, the Fréchet distance between two
sequences P,Q of n points in d dimensions is defined as follows: imagine two frogs traversing
the sequences P and Q, respectively. In each time step, a frog can jump to the next vertex
along its sequence, or it can stay where it is. The discrete Fréchet distance is the minimal
length of a leash required to connect the two frogs while they traverse the two sequences
from start to finish.

∗ Supported by an ETH Zurich Postdoctoral Fellowship.
† Supported in part by DFG Grants MU 3501/1 and MU 3501/2.

© Karl Bringmann and Wolfgang Mulzer;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 739–753

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.739
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

740 Approximability of the Discrete Fréchet Distance

The original algorithm for the continuous Fréchet distance by Alt and Godau has running
time O(n2 logn) [6]; while the algorithm for the discrete Fréchet distance by Eiter and
Mannila needs time O(n2) [12]. These algorithms have remained the state of the art until
very recently: in 2013, Agarwal et al [4] presented a slightly subquadratic algorithm for the
discrete Fréchet distance. Building on their work, Buchin et al [9] managed to find a slightly
improved algorithm for the continuous Fréchet distance a year later. At the time, Buchin et
al thought that their result provides evidence that computing the Fréchet distance may not
be 3SUM-hard [13], as had previously been conjectured by Alt [5]. Even though a recent
result by Grønlund and Pettie [15], showing that 3SUM has subquadratic decision trees,
casts new doubt on the connection between 3SUM and the Fréchet distance, the conclusions
of Buchin et al motivated Bringmann [7] to look for other explanations for the apparent
difficulty of the Fréchet distance.

He found a possible explanation in the Strong Exponential Time Hypothesis (SETH) [16,
17], which roughly speaking asserts that satisfiability cannot be decided in time1 O∗((2− ε)n)
for any ε > 0 (see Section 2 for details). Since exhaustive search takes time O∗(2n) and
since the fastest known algorithms are only slightly faster than that, SETH is a reasonable
assumption that formalizes an algorithmic barrier. It has been shown that SETH can be
used to prove conditional lower bounds even for polynomial time problems [1, 2, 18, 20].
In this line of research, Bringmann [7] showed, among other things, that there are no
strongly subquadratic algorithms for the Fréchet distance unless SETH fails. Here, strongly
subquadratic means any running time of the form O(n2−ε), for constant ε > 0. Bringmann’s
lower bound works for two-dimensional curves and both classic variants of the Fréchet
distance. Thus, it is unlikely that the algorithms by Agarwal et al and Buchin et al can be
improved significantly, unless a major algorithmic breakthrough occurs.

1.1 Our Contributions
In this extended abstract we focus on the discrete Fréchet distance. In Section 6, we will
discuss how far our results carry over to the continuous version. Our main results are as
follows.

Conditional Lower Bound. We strengthen the result of Bringmann [7] by showing that even
in the one-dimensional case computing the Fréchet distance remains hard. More precisely,
we show that any 1.399-approximation algorithm in strongly subquadratic time for the
one-dimensional discrete Fréchet distance violates the Strong Exponential Time Hypothesis.
Previously, Bringmann [7] had shown that no strongly subquadratic algorithm approximates
the two-dimensional Fréchet distance by a factor of 1.001, unless SETH fails.

One can embed any one-dimensional sequence into the two-dimensional plane by fixing
some ε > 0 and by setting the y-coordinate of the i-th point of the sequence to i · ε. For
sufficiently small ε, this embedding roughly preserves the Fréchet distance. Thus, unless
SETH fails, there is also no strongly subquadratic 1.399-approximation for the discrete Fréchet
distance on (1) two-dimensional curves without self-intersections, and (2) two-dimensional
x-monotone curves (also called time-series). These interesting special cases had been open.

Approximation: Greedy Algorithm. A simple greedy algorithm for the discrete Fréchet
distance goes as follows: in every step, make the move that minimizes the current distance,

1 The notation O∗(·) hides polynomial factors in the number of variables n and the number of clauses m.

K. Bringmann and W. Mulzer 741

where a “move” is a step in either one sequence or in both of them. This algorithm has
a straightforward linear time implementation. We analyze the approximation ratio of the
greedy algorithm, and we show that, given two sequences of n points in d dimensions, the
maximal distance attained by the greedy algorithm is a 2Θ(n)-approximation for their discrete
Fréchet distance. We emphasize that this approximation ratio is bounded, depending only
on n, but not the coordinates of the vertices. This is surprising, since so far no bounded
approximation algorithm that runs in strongly subquadratic time was known at all. Moreover,
although an approximation ratio of 2Θ(n) is huge, the greedy algorithm is the best linear
time approximation algorithm that we could come up with.

Approximation: Improved Algorithm. For the case that slightly more than linear time is
acceptable, we provide a much better approximation algorithm: given two sequences P and Q
of n points in d dimensions, we show how to find an α-approximation of the discrete Fréchet
distance between P and Q in time O(n logn+ n2/α), for any 1 ≤ α ≤ n. In particular, this
yields an n/ logn-approximation in time O(n logn), and an nε-approximation in strongly
subquadratic time for any ε > 0. We leave it open whether these approximation ratios can
be improved.

2 Preliminaries and Definitions

We call an algorithm an α-approximation for the Fréchet distance if, given curves P,Q, it
returns a number that is at least the Fréchet distance of P,Q and at most α times the Fréchet
distance of P,Q.

2.1 Discrete Fréchet Distance
Since we focus on the discrete Fréchet distance throughout, we will sometimes omit the
term “discrete”. Let P = 〈p1, . . . , pn〉 and Q = 〈q1, . . . , qn〉 be two sequences of n points in d
dimensions. A traversal β of P and Q is a sequence of pairs in (p, q) ∈ P ×Q such that (i)
the traversal β begins with the pair (p1, q1) and ends with the pair (pn, qn); and (ii) the pair
(pi, qj) ∈ β can be followed only by one of (pi+1, qj), (pi, qj+1), or (pi+1, qj+1). We call β
simultaneous, if it only makes steps of the third kind, i.e., if in each step β advances in both
P and Q. We define the distance of the traversal β as δ(β) := max(p,q)∈β d(p, q), where d(., .)
denotes the Euclidean distance. The discrete Fréchet distance of P and Q is now defined as
δdF(P,Q) := minβ δ(β), where β ranges over all traversals of P and Q.

We review a simple O(n2 logn) time algorithm to compute δdF(P,Q) that is the starting
point of our second approximation algorithm. First, we describe a decision procedure that,
given a value γ, decides whether δdF(P,Q) ≤ γ. For this, we define the free-space matrix F .
This is a Boolean n×n matrix such that for i, j = 1, . . . , n, we set Fij = 1 if d(pi, qj) ≤ γ, and
Fij = 0, otherwise. Then δdF(P,Q) ≤ γ if and only if F allows a monotone traversal from
(1, 1) to (n, n), i.e., if we can go from entry F11 to Fnn while only going down, to the right, or
diagonally, and while only using 1-entries. This is captured by the reach matrix R, which is
again an n× n Boolean matrix. We set R11 = F11, and for i, j = 1, . . . , n, (i, j) 6= (1, 1), we
set Rij = 1 if Fij = 1 and either one of R(i−1)j , Ri(j−1), or R(i−1)(j−1) equals 1 (we define
any entry of the form R(−1)j or Ri(−1) to be 0). Otherwise, we set Rij = 0. From these
definitions, it is straightforward to compute F and R in total time O(n2). Furthermore, by
construction we have δdF(P,Q) ≤ γ if and only if Rnn = 1.

With this decision procedure at hand, we can use binary search to compute δdF(P,Q) in
total time O(n2 logn) by observing that the optimum must be achieved for one of the n2

SoCG’15

742 Approximability of the Discrete Fréchet Distance

distances d(pi, qj), for i, j = 1, . . . , n. Through a more direct use of dynamic programming,
the running time can be reduced to O(n2) [12].

2.2 Hardness Assumptions
Strong Exponential Time Hypothesis (SETH). As is well-known, the k-SAT problem is
as follows: given a CNF-formula Φ over boolean variables x1, . . . , xn with clause width k,
decide whether there is an assignment of x1, . . . , xn that satisfies Φ. Of course, k-SAT is
NP-hard, and it is conjectured that no subexponential algorithm for the problem exists [14].
The Strong Exponential Time Hypothesis (SETH) goes a step further and basically states
that the exhaustive search running time of O∗(2n) cannot be improved to O∗(1.99n) [16, 17].

I Conjecture 2.1 (SETH). For no ε > 0, k-SAT has an O(2(1−ε)n) algorithm for all k ≥ 3.

The fastest known algorithms for k-SAT take time O(2(1−c/k)n) for some constant
c > 0 [19]. Thus, SETH is reasonable and, due to lack of progress in the last decades, can be
considered unlikely to fail. It is by now a standard assumption for conditional lower bounds.

Orthogonal Vectors (OV) is the following problem: Given u1, . . . , uN , v1, . . . , vN ∈ {0, 1}D,
decide whether there are i, j ∈ [N] with (ui)k · (vj)k = 0 for all 1 ≤ k ≤ D. Here we denote
by ui the i-th vector and by (ui)k its k-th entry. We write ui ⊥ vj if (ui)k · (vj)k = 0 for all
1 ≤ k ≤ D. This problem has a trivial O(DN2) algorithm. The fastest known algorithm
runs in time N2−1/O(log(D/ logN)) [3], which is only slightly subquadratic for D � logN . It
is known that OV has no strongly subquadratic time algorithms unless SETH fails [21]; we
present a proof for completeness.

I Lemma 2.2. For no ε > 0, OV has an DO(1) ·N2−ε algorithm, unless SETH fails.

Proof. Given a k-SAT formula Φ on variables x1, . . . , xn and clauses C1, . . . , Cm, we build
an equivalent OV-instance with N = 2n/2 and D = m. Denote all possible assignments of
true and false to the variables x1, . . . , xn/2 (the first half of the variables) by φ1, . . . , φN ,
N = 2n/2. For every such assignment φi we construct a vector ui where (ui)k is 0 if φi
causes Ck to evaluate to true, and 1 otherwise. Similarly, we enumerate the assigments
ψ1, . . . , ψN of the variables xn/2+1, . . . , xn (the second half of the variables), and for every ψj
we construct a vector vj where (vj)k is 0 if ψj causes Ck to evaluate to true, and 1 otherwise.
Then, (ui)k · (vj)k = 0 if and only if one of φi and ψj satisfies clause Ck. Thus, we have
(ui)k · (vj)k = 0 for all 1 ≤ k ≤ D if and only if (φi, ψj) forms a satisfying assignment of
the formula Φ. Hence, we constructed an equivalent OV-instance of the required size. The
constructed OV instance can be computed in time O(DN).

It follows that any algorithm for OV with running time DO(1) ·N2−ε gives an algorithm for
k-SAT with running time mO(1)2(1−ε/2)n. Since m ≤ nk ≤ 2o(n), this contradicts SETH. J

A problem P is OV-hard if there is a reduction that transforms an instance I of OV with
parameters N,D, to an equivalent instance I ′ of P of size n ≤ DO(1)N , in time DO(1)N2−ε

for some ε > 0. A strongly subquadratic algorithm (i.e., O(n2−ε′) for some ε′ > 0) for an OV-
hard problem P would yield an algorithm for OV with running time DO(1)N2−min{ε,ε′}. Thus,
by Lemma 2.2 an OV-hard problem does not have strongly subquadratic time algorithms
unless SETH fails. Most known SETH-based lower bounds for polynomial time problems are
actually OV-hardness results; our lower bound in the next section is no exception. Note that
OV-hardness is potentially stronger than a SETH-based lower bound, since it is conceivable
that SETH fails, but OV still has no strongly subquadratic algorithms.

K. Bringmann and W. Mulzer 743

−2 −1 0 1 2

x1 x2ao1ao0 ae1 ae0sbo0bo1 be1be0w1 w2

Figure 1 The point set P constructed in the conditional lower bound.

3 Hardness of Approximation in One Dimension

We prove OV-hardness of the discrete Fréchet distance on one-dimensional curves. By
Lemma 2.2, this also yields a SETH-based lower bound.

Let u1, . . . , uN , v1, . . . , vN ∈ {0, 1}D be an instance of the Orthogonal Vectors problem.
Without loss of generality, we assume that D is even (if not, we duplicate a dimension). We
show how to construct two sequences P and Q of O(DN) points in R in time O(DN) such
that there are i, j ∈ {1, . . . , N} with ui ⊥ vj if and only if δdF(P,Q) ≤ 1. Our sequences P
and Q consist of elements from the following set P of 13 points; see Figure 1.

ao0 = −0.8, ao1 = −0.4, ae1 = 0.4, ae0 = 0.8.
bo1 = −1.8, bo0 = −1.4, be0 = 1.4, be1 = 1.8.
s = 0, x1 = −1.2, x2 = 1.2
w1 = −0.2, w2 = 0.2.

We first construct vector gadgets. For each ui, i ∈ {1, . . . , N}, we define a sequence Ai of
D points from P as follows: For 1 ≤ k ≤ D let p ∈ {o, e} be the parity of k (odd or even).
Then the kth point of Ai is ap(ui)k

. Similarly, for each vj , we define a sequence Bj of D points
from P. For Bj , we use the points bp∗ instead of ap∗. The next claim shows how the vector
gadgets encode orthogonality.

I Claim 3.1. Fix i, j ∈ {1, . . . , N} and let β be a traversal of (Ai, Bj). (i) If β is not a
simultaneous traversal, then δ(β) ≥ 1.8; (ii) if β is a simultaneous traversal and ui ⊥ vj,
then δ(β) ≤ 1; and (iii) if β is a simultaneous traversal and ui 6⊥ vj, then δ(β) = 1.4.

Proof. First, suppose that β is not a simultaneous traversal. Consider the first time when β
makes a move on one sequence but not the other. Then, the current points on Ai and Bj lie
on different sides of s, which forces δ(β) ≥ min{d(ao1, be0), d(ae1, bo0)} = 1.8.

Next, suppose that ui ⊥ vj . Then, the simultaneous traversal β of Ai and Bj has δ(β) ≤ 1.
Indeed, for each dimension 1 ≤ k ≤ D at least one of (ui)k and (vj)k is 0. Thus, if we
consider the kth point of Ai and the kth point of Bj , both of them lie on the same side of s,
and at least one of them is in {ao0, ae0, bo0, be0}. It follows that the distance between the kth
points in β is at most 1, for all k.

Finally, suppose that (ui)k = (vj)k = 1 for some k. Let β be the simultaneous traversal
of Ai and Bj , and consider the time when β reaches the kth points of Ai and Bj . These are
either {ao1, bo1} or {ae1, be1}, so δ(β) = min{d(ao1, bo1), d(ae1, bo1)} = 1.4. J

Let W be the sequence of D(N − 1) points that alternates between ao0 and ae0, starting
with ao0. We set

P = W · x1 · s ·A1 · s ·A2 · · · · · s ·AN · s · x2 ·W

and

Q = w1 ·B1 · w2 · w1 ·B2 · w2 · · · · · w1 ·BN · w2,

where · denotes the concatenation of sequences. The idea is to implement an or-gadget. If
there is a pair of orthogonal vectors, then P and Q should be able to reach the corresponding

SoCG’15

744 Approximability of the Discrete Fréchet Distance

vector gadgets and traverse them simultaneously. If there is no such pair, it should not be
possible to “cheat”. The purpose of the sequences W and the points w1 and w2 is to provide
a buffer so that one sequence can wait while the other sequence catches up. The purpose of
the points x1, x2, and s is to synchronize the traversal so that no cheating can occur. The
next two claims make this precise. First, we show completeness.

I Claim 3.2. If there are i, j ∈ {1, . . . , N} with ui ⊥ vj, then δdF(P,Q) ≤ 1.

Proof. Let ui, vj be orthogonal. We traverse P and Q as follows:
1. P goes through D(N − j) points of W ; Q stays at w1.
2. For k = 1, . . . , j − 1: we perform a simultaneous traversal of Bk and the next portion of

W starting with ao0 and the first point on Bk. When the traversal reaches ae0 and the
last point of Bk, P stays at ae0 while Q goes to w2 and w1. If k < j − 1, the traversal
continues with ao0 on P and the first point of Bk+1 on Q. If k = j − 1, we go to Step 3.

3. P proceeds to x1 and walks until the point s before Ai, Q stays at w1 before Bj .
4. P and Q go simultaneously through Ai and Bj , until the pair (s, w2) after Ai and Bj .
5. P continues to x2 while Q stays at w2.
6. For k = j + 1, . . . , N : P goes to the next ao0 on W while Q goes to w1. We then perform

a simultaneous traversal of Bk and the next portion of W . When the traversal reaches ae0
and the last point of Bk, P stays at ae0 while Q continues to w2. If k < N , the traversal
continues with the next iteration, otherwise we go to Step 7.

7. P finishes the traversal of W while Q stays at w2.
We use the notation max-d(S, T) := maxs∈S,t∈T d(s, t), and max-d(s, T) := max-d({s}, T),
max-d(S, t) := max-d(S, {t}). The traversal maintains a maximum distance of 1: for Step 1,
this is implied by max-d({ao0, ae0}, w1) = 1. For Step 2, it follows from D being even and from

max-d(ao0, {bo1, bo0}) = max-d(ae0, {be1, be0, w1, w2}) = 1.

For Step 3, it is because max-d({x1, a
o
0, a

o
1, s, a

e
1, a

e
0}, w1) = 1. For Step 4, we use Claim 3.1

and d(s, w2) = 0.2. In Step 5, it follows from max-d({ao0, ao1, s, ae1, ae0, x2}, w2) = 1. In Step 6,
we again use that D is even and that

max-d(ao0, {bo1, bo0, w1}) = max-d(ae0, {be1, be0, w2}) = 1.

Step 7 uses max-d({ao0, ae0}, w2) = 1. J

The second claim establishes the soundness of the construction.

I Claim 3.3. If there are no i, j ∈ {1, . . . , N} with ui ⊥ vj, then δdF(P,Q) ≥ 1.4.

Proof. Let β be a traversal of (P,Q). Consider the time when β reaches x1 on P . If Q is
not at either w1 or at a point from Bo = {bo0, bo1}, then δ(β) ≥ 1.4 and we are done. Next,
suppose that the current position is in {x1} ×Bo. In the next step, β must advance P to s
or Q to {be0, be1} (or both).2 In each case, we get δ(β) ≥ 1.4. From now on, suppose we reach
x1 in position (x1, w1). After that, P must advance to s, because advancing Q to Bo would
take us to a position in {x1} ×Bo, implying δ(β) ≥ 1.4 as we saw above.

Now consider the next step when Q leaves w1. Then Q must go to a point from Bo. At
this time, P must be at a point from Ao = {ao0, ao1} or we would get δ(β) ≥ 1.4 (note that P
has already passed the point x1). This point on P belongs to a vector gadget Ai or to the

2 Recall that we assumed D to be even.

K. Bringmann and W. Mulzer 745

final gadget W (again because P is already past x1). In the latter case, we have δ(β) ≥ 1.4,
because in order to reach the final W , P must have gone through x2 and d(x2, w1) = 1.4.
Thus, P is at a point in Ao in a vector gadget Ai, and Q is at the starting point (from Bo)
of a vector gadget Bj .

Now β must alternate simultaneously in P and Q among both sides of s, or again
δ(β) ≥ 1.4, see Claim 3.1. Furthermore, if P does not start in the first point of Ai, then
eventually P has to go to s while Q has to go to a point in Bo or stay in {be0, be1}, giving
δ(β) ≥ 1.4. Thus, we may assume that β simultaneously reached the starting points of Ai
and Bj and traverses Ai and Bj simultaneously. By assumption, the vectors ui, vj are not
orthogonal, so Claim 3.1 gives δ(β) ≥ 1.4. J

I Theorem 3.4. Fix α ∈ [1, 1.4). Computing an α-approximation of the discrete Fréchet
distance in one dimension is OV-hard. In particular, the discrete Fréchet distance in one
dimension has no strongly subquadratic α-approximation unless SETH fails.

Proof. We use Claims 3.2 and 3.3 and the fact that P and Q can be computed in time
O(DN) from u1, . . . , uN , v1, . . . , vN : any O(n2−ε) time α-approximation for the discrete
Fréchet distance would yield an OV algorithm in time DO(1)N2−ε, which by Lemma 2.2
contradicts SETH. J

I Remark. The proofs of Claims 3.2 and 3.3 yield a system of linear inequalities that constrain
the points in P. Using this system, one can see that the inapproximability factor 1.4 in
Theorem 3.4 is best possible for our current proof.

4 Approximation Quality of the Greedy Algorithm

In this section we study the following greedy algorithm. Let P = 〈p1, . . . , pn〉 and Q =
〈q1, . . . , qn〉 be two sequences of n points in Rd. We construct a traversal βgreedy =
βgreedy(P,Q). We begin at (p1, q1). If the current position is (pi, qj), there are at most
three possible successor configurations: (pi+1, qj), (pi, qj+1), and (pi+1, qj+1) (or fewer, if we
have already reached the last point from P or Q). Among these, we pick the pair (pi′ , qj′)
that minimizes the distance d(pi′ , qj′). We stop when we reach (pn, qn). We denote the
largest distance taken by the greedy traversal by δgreedy(P,Q) := δ(βgreedy(P,Q)).

I Theorem 4.1. Let P and Q be two sequences of n points in Rd. Then, δdF(P,Q) ≤
δgreedy(P,Q) ≤ 2O(n)δdF(P,Q). Both inequalities are tight, i.e., there are polygonal curves
P,Q with δgreedy(P,Q) = δdF(P,Q) > 0 and δgreedy(P,Q) = 2Ω(n)δdF(P,Q) > 0, respectively.

The inequality δdF(P,Q) ≤ δgreedy(P,Q) follows directly from the definition, since the
traversal βgreedy(P,Q) is a candidate for an optimal traversal. Furthermore, one can check
that if P and Q are increasing one-dimensional sequences, then the greedy traversal is
optimal (this is similar to the merge step in mergesort). Thus, there are examples where
δgreedy(P,Q) = δdF(P,Q). It remains to show the upper bound δgreedy(P,Q) ≤ 2O(n)δdF(P,Q)
and to provide an example where this inequality is tight.

4.1 Upper Bound
We call a pair pipi+1 of consecutive points on P an edge of P , for i = 1, . . . , n − 1, and
similarly for Q. Let m be the total number of edges of P and Q, and let `1 ≤ `2 ≤ · · · ≤ `m

SoCG’15

746 Approximability of the Discrete Fréchet Distance

be the sorted sequence of the edge lengths. We pick k∗ ∈ {0, . . . ,m} minimum such that

4 δdF(P,Q) + 2
k∗∑
i=1

`i < `k∗+1,

where we set `m+1 =∞. We define δ∗ as the left hand side, δ∗ := 4 δdF(P,Q) + 2
∑k∗

i=1 `i.

I Lemma 4.2. We have (i) δ∗ ≥ 4δdF(P,Q); (ii)
∑k∗

i=1 `i ≤ δ∗/2− 2 δdF(P,Q); (iii) there
is no edge with length in (δ∗/2− 2δdF(P,Q), δ∗); and (iv) δ∗ ≤ 3k∗4δdF(P,Q).

Proof. Properties (i) and (ii) follow by definition. Property (iii) holds since for i = 1, . . . , k∗,
we have `i ≤ δ∗/2 − 2δdF(P,Q), by (ii), and for i = k∗ + 1, . . . ,m, we have `i ≥ δ∗, by
definition. It remains to prove (iv): for k = 0, . . . , k∗, we set δk = 4 δdF(P,Q) + 2

∑k
i=1 `i,

and we prove by induction that δk ≤ 3k 4δdF(P,Q). For k = 0, this is immediate. Now
suppose we know that δk−1 ≤ 3k−1 4δdF(P,Q), for some k ∈ {1, . . . , k∗}. Then, k ≤ k∗

implies `k ≤ δk−1, so δk = δk−1 + 2`k ≤ 3δk−1 ≤ 3k4δdF(P,Q), as desired. Now (iv) follows
from δ∗ = δk∗ . J

We call an edge long if it has length at least δ∗, and short otherwise. In other words, the
short edges have lengths `1, . . . , `k∗ , and the long edges have lengths `k∗+1, . . . , `m. Let β be
an optimal traversal of P and Q, i.e., δ(β) = δdF(P,Q).

I Lemma 4.3. The sequences P and Q have the same number of long edges. Furthermore,
if pi1pi1+1, . . . , pikpik+1 and qj1qj1+1, . . . , qjk

qjk+1 are the long edges of P and of Q, for
1 ≤ i1 < · · · < ik < n and 1 ≤ j1 < · · · < jk < n, then both β and βgreedy contain the steps
(pi1 , qj1)→ (pi1+1, qj1+1), . . . , (pik , qjk

)→ (pik+1, qjk+1).

Proof. First, we show that for every long edge pipi+1 of P , the optimal traversal β contains
the step (pi, qj) → (pi+1, qj+1), where qj , qj+1 is a long edge of Q. Consider the step of β
from pi to pi+1. This step has to be of the form (pi, qj) → (pi+1, qj+1) for some qj ∈ Q:
since max{d(pi, qj), d(pi+1, qj)} ≥ d(pi, pi+1)/2 ≥ δ∗/2 ≥ 2δdF(P,Q), by Lemma 4.2(i),
staying in qj would result in δ(β) ≥ 2δdF(P,Q). Now, since max{d(pi, qj), d(pi+1, qj+1)} ≤
δ(β) = δdF(P,Q), the triangle inequality gives d(qj , qj+1) ≥ d(pi, pi+1) − 2 δdF(P,Q) ≥
δ∗ − 2 δdF(P,Q). Lemma 4.2(iii) now implies d(qj , qj+1) ≥ δ∗, so the edge qjqj+1 is long.

Thus, β traverses every long edge of P simultaneously with a long edge of Q. A symmetric
argument shows that β traverses every long edge of Q simultaneously with a long edge of P .
Since β is monotone, it follows that P and Q have the same number of long edges, and that
β traverses them simultaneously in their order of appearance along P and Q.

It remains to show that the greedy traversal βgreedy traverses the long edges of P
and Q simultaneously. Set i0 = j0 = 0. We will prove for a ∈ {0, . . . , k − 1} that if
βgreedy contains the position (pia+1, qja+1), then it also contains the step (pia+1 , qja+1) →
(pia+1+1, qja+1+1) and hence the position (pia+1+1, qja+1+1). The claim on βgreedy then follows
by induction on a, since βgreedy contains the position (p1, q1) by definition. Thus, fix
a ∈ {0, . . . , k − 1} and suppose that βgreedy contains (pia+1, qja+1). We need to show that
βgreedy also contains the step (pia+1 , qja+1)→ (pia+1+1, qja+1+1). For better readability, we
write i for ia, j for ja, i′ for ia+1, and j′ for ja+1. Consider the first position of βgreedy
when βgreedy reaches either pi′ or qj′ . Without loss of generality, this position is of the
from (pi′ , ql), for some l ∈ {j + 1, . . . , j′}. Then, d(pi′ , ql) ≤ δ∗/2 − δdF(P,Q), since we
saw that d(pi′ , qj′) ≤ δ(β) = δdF(P,Q) and since the remaining edges between ql and qj′

are short and thus have total length at most δ∗/2 − 2 δdF(P,Q), by Lemma 4.2(ii). The
triangle inequality now gives d(pi′+1, ql) ≥ d(pi′ , pi′+1) − d(pi′ , ql) ≥ δ∗/2 + δdF(P,Q). If

K. Bringmann and W. Mulzer 747

l < j′, the same argument applied to ql+1 shows that d(pi′ , ql+1) ≤ δ∗/2 − δdF(P,Q) and
thus d(pi′+1, ql+1) ≥ δ∗/2 + δdF(P,Q). Thus, βgreedy moves to (pi′ , ql+1). If l = j′, then
βgreedy takes the step (pi′ , qj′) → (pi′+1, qj′+1), as d(pi′+1, qj′+1) ≤ δ(β) = δdF(P,Q), but
d(pi′ , qj′+1), d(pi′+1, qj′) ≥ δ∗ − δdF(P,Q) ≥ 3 δdF(P,Q), by Lemma 4.2(i). J

Finally, we can show the desired upper bound on the quality of the greedy algorithm.

I Lemma 4.4. We have δgreedy(P,Q) ≤ δ∗/2.

Proof. By Lemma 4.3, P and Q have the same number of long edges. Let pi1pi1+1, . . . ,
pikpik+1 and qj1qj1+1, . . . , qjk

, qjk+1 be the long edges of P and of Q, where 1 ≤ i1 <

· · · < ik < n and 1 ≤ j1 < · · · < jk < n. By Lemma 4.3, βgreedy contains the positions
(pia , qja

) and (pia+1, qja+1) for a = 1, . . . , k, and d(pia , qja
), d(pia+1, qia+1) ≤ δdF(P,Q)

for a = 1, . . . , k. Thus, setting i0 = j0 = 0 and ik+1 = jk+1 = n, we can focus on
the subtraversals βa = (pia+1, qia+1), . . . , (pia+1 , qia+1) of βgreedy, for a = 0, . . . , k. Now,
since all edges traversed in βa are short, and since d(pia+1, qia+1) ≤ δdF(P,Q), we have
δ(βa) ≤ δdF(P,Q) + δ∗/2− 2 δdF(P,Q) ≤ δ∗/2 by Lemma 4.2(iii) and the triangle inequality.
Thus, δ(βgreedy) ≤ max{δdF(P,Q), δ(β1), . . . , δ(βk)} ≤ δ∗/2, as desired. J

Lemmas 4.2(iv) and 4.4 prove the desired inequality δgreedy(P,Q) ≤ 2O(n)δdF(P,Q), since
k∗ ≤ m = 2n− 2.

4.2 Tight Example for the Upper Bound
Fix 1 < α < 2. Consider the sequence P = 〈p1, . . . , pn〉 with pi := (−α)i and the sequence
Q = 〈q1, . . . , qn−2〉 with qi := (−α)i+2. We show the following:
1. The greedy traversal βgreedy(P,Q) makes n− 2 simultaneous steps in P and Q followed

by 2 single steps in P . This results in a maximal distance of δgreedy(P,Q) = αn + αn−1.
2. The traversal which makes 2 single steps in P followed by n− 2 simultaneous steps in

both P and Q has distance α3 + α2.
Together, this shows that δgreedy(P,Q)/δdF(P,Q) = Ω(αn) = 2Ω(n), proving that the inequal-
ity δgreedy(P,Q) ≤ 2O(n)δdF(P,Q) is tight.

To see (1), assume that we are at position (pi, qi). Moving to (pi, qi+1) would result
in a distance of d(pi, qi+1) = αi+3 + αi. Similarly, the other possible moves to (pi+1, qi)
and to (pi+1, qi+1) would result in distances αi+2 + αi+1, and αi+3 − αi+1, respectively.
It can be checked that for all α > 1 we have αi+3 + αi > αi+2 + αi+1. Moreover, for all
α < 2 we have αi+2 + αi+1 > αi+3 − αi+1. Thus, the greedy algorithm makes the move
to (pi+1, qi+1). Using induction, this shows that the greedy traversal starts with n − 2
simultaneous moves in P and Q. In the end, the greedy algorithm has to take two single
moves in P . Thus, the greedy traversal contains the pair (pn−1, qn−2), which is in distance
d(pn−1, qn−2) = αn + αn−1 = 2Ω(n).

To see (2), note that the traversal which makes 2 single steps in P followed by n − 2
simultaneous moves in P and Q starts with (p1, q1) and (p2, q1) followed by (pi, qi−2) for
i = 2, . . . , n. Note that d(p1, q1) = α3 − α, d(p2, q1) = α3 + α2, and pi = qi−2, so that the
remaining distances are 0. Thus, we have δdF(P,Q) ≤ α3 + α2 = O(1).

5 Improved Approximation Algorithm

Let P = 〈p1, . . . , pn〉 and Q = 〈q1, . . . , qn〉 be two sequences of n points in Rd, where d is
constant. Let 1 ≤ α ≤ n. We show how to find a value δ∗ with δdF(P,Q) ≤ δ∗ ≤ αδdF(P,Q)

SoCG’15

748 Approximability of the Discrete Fréchet Distance

in time O(n logn + n2/α). For simplicity, we will assume that all points on P and Q are
pairwise distinct. This can be achieved by an infinitesimal perturbation of the point set.

5.1 Decision Algorithm
We begin by describing an approximate decision procedure. For this, we prove the following
theorem.

I Theorem 5.1. Let P and Q be two sequences of n points in Rd, and let 1 ≤ α ≤ n. Suppose
that the points of P and Q have been sorted along each coordinate axis. There exists a decision
algorithm with running time O(n2/α) and the following properties: if δdF(P,Q) ≤ 1, the
algorithm returns YES; if δdF(P,Q) ≥ α, the algorithm returns NO; if δdF(P,Q) ∈ (1, α),
the algorithm may return either YES or NO. The running time depends exponentially on d.

Consider the regular d-dimensional grid with diameter 1 (all cells are axis-parallel cubes
with side length 1/

√
d). The distance between two grid cells C and D, d(C,D), is defined

as the smallest distance between a point in C and a point in D. The distance between a
point x and a grid cells C, d(x,C), is the distance between x and the closest point in C. For
a point x ∈ Rd, we write Bx for the closed unit ball with center x and Cx for the grid cell
that contains x (since we are interested in approximation algorithms, we may assume that
all points of P ∪Q lie strictly inside the cells). We compute for each point r ∈ P ∪Q the
grid cell Cr that contains it. We also record for each nonempty grid cell C the number of
points from Q contained in C. This can be done in total linear time as follows: we scan the
points from P ∪Q in x1-order, and we group the points according to the grid intervals that
contain them. Then we split the lists that represent the x2-,. . . , xd-order correspondingly,
and we recurse on each group to determine the grouping for the remaining coordinate axes.
Each iteration takes linear time, and there are d iterations, resulting in a total time of O(n).
In the following, we will also need to know for each non-empty cell the neighborhood of all
cells that have a certain constant distance from it. These neighborhoods can be found in
linear time by modifying the above procedure as follows: before performing the grouping, we
make O(1) copies of each point r ∈ P ∪Q that we translate suitably to hit all neighboring
cells for r. By using appropriate cross-pointers, we can then identify the neighbors of each
non-empty cell in total linear time. Afterwards, we perform a clean-up step, so that only the
original points remain.

A grid cell C is full if |C ∩ Q| ≥ 5n/α. Let F be the set of full grid cells. Clearly,
|F| ≤ α/5. We say that two full cells C,D ∈ F are adjacent if d(C,D) ≤ 4. This defines a
graph H on F of constant degree. Using the neighborhood finding procedure from above, we
can determine H and its connected components L1, . . . , Lk in time O(n+ α). For C ∈ F ,
the label LC of C is the connected component of H containing C.

For each q ∈ Q, we search for a full cell C ∈ F with d(q, C) ≤ 2. If such a cell exists,
we label q with Lq = LC ; otherwise, we set Lq =⊥. Similarly, for each p ∈ P , we search
a full cell C ∈ F with d(p, C) ≤ 1. In case of success, we set Lp = LC ; otherwise, we set
Lp =⊥. Using the neighborhood finding procedure from above, this takes linear time. Let
P ′ = {p ∈ P | Lp 6=⊥} and Q′ = {q ∈ Q | Lq 6=⊥}. The labeling has the following properties.

I Lemma 5.2. We have
1. for every r ∈ P ∪Q, the label Lr is uniquely determined;
2. for every x, y ∈ P ′ ∪Q′ with Lx = Ly, we have d(x, y) ≤ α;
3. if p ∈ P ′ and q ∈ Bp ∩Q, then Lp = Lq; and
4. if p ∈ P \P ′, there are O(n/α) points q ∈ Q with d(p, Cq) ≤ 1. Hence, |Bp∩Q| = O(n/α).

K. Bringmann and W. Mulzer 749

Proof. Let r ∈ P ∪ Q and suppose there are C,D ∈ F with d(r, C) ≤ 2 and d(r,D) ≤ 2.
Then d(C,D) ≤ d(C, r) + d(r,D) ≤ 4, so C and D are adjacent in H. It follows that
LC = LD and that Lr is determined uniquely.

Fix x, y ∈ P ′ ∪Q′ with Lx = Ly. By construction, there are C,D ∈ F with d(x,C) ≤ 2,
d(y,D) ≤ 2 and LC = LD. This means that C and D are in the same component of H.
Therefore, C and D are connected by a sequence of adjacent cells in F . We have |F| ≤ α/5,
any two adjacent cells have distance at most 4, and each cell has diameter 1. Thus, the
triangle inequality gives d(x, y) ≤ 2 + 4(|F| − 1) + |F|+ 2 ≤ α.

Let p ∈ P ′ and q ∈ Bp ∩ Q. Take C ∈ F with d(p, C) ≤ 1. By the triangle inequality,
d(q, C) ≤ d(q, p) + d(p, C) ≤ 2, so Lq = Lp = LC .

Take p ∈ P and suppose there is a grid cell C with |C ∩ Q| > 5n/α and d(p, C) ≤ 1.
Then C ∈ F , so Lp 6=⊥, which means that p ∈ P ′. The contrapositive gives (4). J

Lemma 5.2 enables us to design an efficient approximation algorithm. For this, we define
the approximate free-space matrix F . This is an n× n matrix with entries from {0, 1}. For
i, j ∈ {1, . . . , n}, we set Fij = 1 if either (i) pi ∈ P ′ and Lpi

= Lqj
; or (ii) pi ∈ P \ P ′ and

d(pi, qj) ≤ 1. Otherwise, we set Fij = 0. The matrix F is approximate in the following sense:

I Lemma 5.3. If δdF(P,Q) ≤ 1, then F allows a monotone traversal from (1, 1) to (n, n).
Conversely, if F has a monotone traversal from (1, 1) to (n, n), then δdF(P,Q) ≤ α.

Proof. Suppose that δdF(P,Q) ≤ 1. Then there is a monotone traversal β of (P,Q) with
δ(β) ≤ 1. By Lemma 5.2(3), β is also a traversal of F .

Now let β be a monotone traversal of F . By Lemma 5.2(2), we have δ(β) ≤ α, as
desired. J

Additionally, we define the approximate reach matrix R, which is an n× n matrix with
entries from {0, 1}. We set Rij = 1 if F allows a monotone traversal from (1, 1) to (i, j),
and Rij = 0, otherwise. By Lemma 5.3, Rnn is an α-approximate indicator for δdF ≤ 1. We
describe how to compute the rows of R successively in total time O(n2/α).

First, we perform the following preprocessing steps: we break Q into intervals, where
an interval is a maximal consecutive subsequence of points q ∈ Q with the same label
Lq 6=⊥. For each point in an interval, we store pointers to the first and the last point of the
interval. This takes linear time. Furthermore, for each pi ∈ P \ P ′, we compute a sparse
representation Ti of the corresponding row of F , i.e., a sorted list of all the column indices j
for which Fij = 1. Using hashing and bucketing, this can be done in total time O(n2/α), by
Lemma 5.2(4).

Now we successively compute a sparse representation for each row i of R, i.e., a sorted
list Ii of disjoint intervals [a, b] ∈ Ii such that for j = 1, . . . , n, we have Rij = 1 if and only if
there is an interval [a, b] ∈ Ii with j ∈ [a, b]. We initialize I1 as follows: if F11 = 0, we set
I1 = ∅ and abort. Otherwise, if p1 ∈ P ′, then I1 is initialized with the interval of q1 (since
F11 = 1, we have Lp1 = Lq1 by Lemma 5.2(3)). If p1 ∈ P \ P ′, we determine the maximum b

such that F1j = 1 for all j = 1, . . . , b, and we initialize I1 with the singleton intervals [j, j] for
j = 1, . . . , b. This can be done in time O(n/α), irrespective of whether pi lies in P ′ or not.

Now suppose we already have the interval list Ii for some row i, and we want to compute
the interval list Ii+1 for the next row. We consider two cases.

Case 1: pi+1 ∈ P ′. If Lpi+1 = Lpi
, we simply set Ii+1 = Ii. Otherwise, we go through the

intervals [a, b] ∈ Ii in order. For each interval [a, b], we check whether the label of qb or the
label of qb+1 equals the label of pi+1. If so, we add the maximal interval [b′, c] to Ii+1 with

SoCG’15

750 Approximability of the Discrete Fréchet Distance

b′ = b or b′ = b + 1 and Lpi+1 = Lqj for all j = b′, . . . , c. With the information from the
preprocessing phase, this takes O(1) time per interval. The resulting set of intervals may not
be disjoint (if pi ∈ P \ P ′), but any two overlapping intervals have the same endpoint. Also,
intervals with the same endpoint appear consecutively in Ii+1. We next perform a clean-up
pass through Ii+1: we partition the intervals into conscutive groups with the same endpoint,
and in each group, we only keep the largest interval. All this takes time O(|Ii|+ |Ii+1|).

Case 2: pi+1 ∈ P \P ′. In this case, we have a sparse representation Ti+1 of the corresponding
row in F at our disposal. We simultaneously traverse Ii and Ti+1 to compute Ii+1 as
follows: for each j ∈ {1, . . . , n} with F(i+1)j = 1, if Ii has an interval containing j − 1
or j or if [j − 1, j − 1] ∈ Ii+1, we add the singleton [j, j] to Ii+1. This takes total time
O(|Ii|+ |Ii+1|+ n/α).

The next lemma shows that the interval representation remains sparse throughout the
execution of the algorithm, and that the intervals Ii indeed represent the approximate reach
matrix R.

I Lemma 5.4. We have |Ii| = O(n/α) for i = 1, . . . , n. Furthermore, the intervals in Ii
correspond exactly to the 1-entries in the approximate reach matrix R.

Proof. First, we prove that |Ii| = O(n/α) for i = 1, . . . , n. This is done by induction on i.
We begin with i = 1. If p1 ∈ P ′, then |I1| = 1. If p1 ∈ P \ P ′, then Lemma 5.2(4) shows
that the first row of F contains at most O(n/α) 1-entries, so |I1| = O(n/α). Next, suppose
that we know by induction that |Ii| = O(n/α). We must argue that |Ii+1| = O(n/α). If
pi+1 ∈ P \ P ′, then the (i + 1)-th row of F contains O(n/α) 1-entries by Lemma 5.2(4),
and |Ii+1| = O(n/α) follows directly by construction. If pi+1 ∈ P ′ and Lpi+1 = Lpi

, then
Ii+1 = Ii, and the claim follows by induction. Finally, if pi+1 ∈ P ′ and Lpi+1 6= Lpi , then by
construction, every interval in Ii gives rise to at most one new interval in Ii+1. Thus, by
induction, |Ii+1| ≤ |Ii| = O(n/α).

Second, we prove that Ii represents the i-th row of R, for i = 1, . . . , n. Again, the proof is
by induction. For i = 1, the claim holds by construction, because the first row of R consists
of the initial segment of 1s in F . Next, suppose we know that Ii represents the i-th row of
R. We must argue that Ii+1 represents the (i+ 1)th row of R. If pi+1 ∈ P \ P ′, this follows
directly by construction, because the algorithm explicitly checks the conditions for each
possible 1-entry of R (R(i+1)j can only be 1 if F(i+1)j = 1). If pi+1 ∈ P ′ and Lpi+1 = Lpi

,
then the (i + 1)-th row of F is identical to the i-th row of F , and the same holds for R:
there can be no new monotone paths, and all old monotone paths can be extended by one
step along Q. Finally, consider the case pi+1 ∈ P ′ and Lpi+1 6= Lpi

. If pi ∈ P \ P ′, then
every interval in Ii is a singleton [b, b], from which a monotone path could potentially reach
(i + 1, b) and (i + 1, b + 1), and from there walk to the right. We explicitly check both of
these possibilities. If pi ∈ P ′, then for every interval [a, b] ∈ Ii and for all j ∈ [a, b] we have
Lqj

= Lpi
6= Lpi+1 . Thus, the only possible move is to (i+ 1, b+ 1), and from there walk to

the right, which is what we check. J

The first part of Lemma 5.4 implies that the total running time is O(n2/α), since each row
is processed in time O(n/α). By Lemma 5.3 and the second part of Lemma 5.4, if In has
an interval containing n then δdF(P,Q) ≤ α, and if δdF(P,Q) ≤ 1 then n appears in In.
Since the intervals in In are sorted, this condition can be checked in O(1) time. Theorem 5.1
follows.

K. Bringmann and W. Mulzer 751

5.2 Optimization Procedure
We now leverage Theorem 5.1 to an optimization procedure.

I Theorem 5.5. Let P and Q be two sequences of n points in Rd, and let 1 ≤ α ≤ n.
There is an algorithm with running time O(n2 logn/α) that computes a number δ∗ with
δdF(P,Q) ≤ δ∗ ≤ αδdF(P,Q). The running time depends exponentially on d.

Proof. If α ≤ 5, we compute δdF(P,Q) directly in O(n2) time. Otherwise, we set α′ = α/5.
We sort the points of P ∪Q according to the coordinate axes, and we compute a (1/3)-well-
separated pair decomposition P = {(S1, T1), . . . , (Sk, Tk)} for P ∪Q in time O(n logn) [11].
Recall the properties of a well-separated pair decomposition: (i) for all pairs (S, T) ∈ P,
we have S, T ⊆ P ∪Q, S ∩ T = ∅, and max{diam(S), diam(T)} ≤ d(S, T)/3 (here, diam(S)
denotes the maximum distance between any two points in S); (ii) the number of pairs is
k = O(n); and (iii) for every distinct q, r ∈ P ∪Q, there is exactly one pair (S, T) ∈ P with
q ∈ S and r ∈ T , or vice versa.

For each pair (Si, Ti) ∈ P, we pick arbitrary s ∈ Si and t ∈ Ti, and set δi = 3d(s, t).
After sorting, we can assume that δ1 ≤ . . . ≤ δk. We call δi a YES-entry if the algorithm
from Theorem 5.1 on input α′ and the point sets P an Q scaled by a factor of δi returns
YES; otherwise, we call δi a NO-entry. First, we test whether δ1 is a YES-entry. If so, we
return δ∗ = α′δ1. If δ1 is a NO-entry, we perform a binary search on δ1, . . . , δk: we set l = 1
and r = k. Below, we will prove that δk must be a YES-entry. We set m = d(l+ r)/2e. If δm
is a NO-entry, we set l = m, otherwise, we set r = m. We repeat this until r = l + 1. In the
end, we return δ∗ = α′δr. The total running time is O(n logn+ n2 logn/α). Our procedure
works exactly like binary search, but we presented it in detail in order to emphasize that
δ1, . . . , δk is not necessarily monotone: NO-entries and YES-entries may alternate.

We now argue correctness. The algorithm finds a YES-entry δr such that either r = 1 or
δr−1 is a NO-entry. By Theorem 5.1, any δi is a NO-entry if δi ≤ δdF(P,Q)/α′. Thus, we
certainly have δ∗ = α′δr > δdF(P,Q). Now take a traversal β with δ(β) = δdF(P,Q), and let
(p, q) ∈ P ×Q be a position in β that has d(p, q) = δ(β). There is a pair (Sr∗ , Tr∗) ∈ P with
p ∈ Sr∗ and q ∈ Tr∗ , or vice versa. Let s ∈ Sr∗ and t ∈ Tr∗ be the points we used to define
δr∗ . Then

d(s, t) ≥ d(p, q)− diam(Sr∗)− diam(Tr∗) ≥ d(p, q)− 2d(Sr∗ , Tr∗)/3 ≥ d(p, q)/3,

and

d(s, t) ≤ d(p, q) + diam(Sr∗) + diam(Tr∗) ≤ d(p, q) + 2d(Sr∗ , Tr∗)/3 ≤ 5d(p, q)/3,

so δr∗ = 3d(s, t) ∈ [δ(β), 5δ(β)]. Since by Theorem 5.1 any δi is a YES-entry if δi ≥ δdF(P,Q),
all δi with i ≥ r∗ are YES-entries (in particular, δk is a YES-entry). Thus, δ∗ ≤ α′δr∗ ≤
5α′δdF(P,Q) ≤ αδdF(P,Q). J

The running time of Theorem 5.5 can be improved as follows.

I Theorem 5.6. Let P and Q be two sequences of n points in Rd, and let 1 ≤ α ≤ n.
There is an algorithm with running time O(n logn+ n2/α) that computes a number δ∗ with
δdF(P,Q) ≤ δ∗ ≤ αδdF(P,Q). The running time depends exponentially on d.

Proof. If α ≤ 4, we can compute δdF(P,Q) exactly. Otherwise, we use Theorem 5.5 to
compute a number δ′ with δdF(P,Q) ≤ δ′ ≤ n · δdF(P,Q), or, equivalently, δdF(P,Q) ∈
[δ′/n, δ′]. This takes time O(n logn). Set i∗ = dlog(n/α)e + 1 and for i = 1, . . . , i∗ let
αi = n/2i+1. Also, set a1 = δ′/n and b1 = δ′.

SoCG’15

752 Approximability of the Discrete Fréchet Distance

We iteratively obtain better estimates for δdF(P,Q) by repeating the following for i =
1, . . . , i∗−1. As an invariant, at the beginning of iteration i, we have δdF(P,Q) ∈ [ai, bi] with
bi/ai = 4αi. We use the algorithm from Theorem 5.1 with inputs αi and P and Q scaled by
a factor 2ai (since αi ≥ αi∗−1 = n/2dlog(n/α)e+1 ≥ α/4, the algorithm can be applied). If the
answer is YES, it follows that δdF(P,Q) ≤ αi2ai = bi/2, so we set ai+1 = ai and bi+1 = bi/2.
If the answer is NO, then δdF(P,Q) ≥ 2ai, so we set ai+1 = 2ai and bi+1 = bi. This needs
time O(n2/αi) and maintains the invariant.

In the end, we return ai∗ . The invariant guarantees δdF(P,Q) ∈ [ai∗ , bi∗] and bi∗/ai∗ =
4αi∗ ≤ α, as desired. The total running time is proportional to

n logn+
i∗−1∑
i=1

n2/αi = n logn+
i∗−1∑
i=1

n2i+1 ≤ n logn+ n2i
∗+1 = O(n logn+ n2/α). J

6 Conclusions

We have obtained several new results on the approximability of the discrete Fréchet distance.
As our main results,
1. we showed a conditional lower bound for the one-dimensional case that there is no

1.399-approximation in strongly subquadratic time unless the Strong Exponential Time
Hypothesis fails. This sheds further light on what makes the Fréchet distance a difficult
problem.

2. we determined the approximation ratio of the greedy algorithm as 2Θ(n) in any dimension
d ≥ 1. This gives the first general linear time approximation algorithm for the problem;
and

3. we designed an α-approximation algorithm running in time O(n logn + n2/α) for any
1 ≤ α ≤ n in any constant dimension d ≥ 1. This significantly improves the greedy
algorithm, at the expense of a (slightly) worse running time.

Our lower bounds exclude only (too good) constant factor approximations with strongly
subquadratic running time, while our best strongly subquadratic approximation algorithm
has an approximation ratio of nε. It remains a challenging open problem to close this gap.

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In Proc. 55th Annu. IEEE Sympos. Found. Comput. Sci.
(FOCS), pages 434–443, 2014.

2 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In Proc. 41st Internat. Colloq. Automata Lang. Program. (ICALP),
volume 8572 of LNCS, pages 39–51, 2014.

3 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proc. 26th Annu. ACM-SIAM Sympos. Discrete Algorithms
(SODA), pages 218–230, 2015.

4 Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the
discrete Fréchet distance in subquadratic time. SIAM J. Comput., 43(2):429–449, 2014.

5 Helmut Alt. Personal communication. 2012.
6 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal

curves. Internat. J. Comput. Geom. Appl., 5(1–2):78–99, 1995.
7 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly

subquadratic algorithms unless SETH fails. In Proc. 55th Annu. IEEE Sympos. Found.
Comput. Sci. (FOCS), pages 661–670, 2014.

K. Bringmann and W. Mulzer 753

8 Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet distance
on c-packed curves matching conditional lower bounds. arXiv:1408.1340, 2014.

9 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four soviets walk
the dog – with an application to Alt’s conjecture. In Proc. 25th Annu. ACM-SIAM Sympos.
Discrete Algorithms (SODA), pages 1399–1413, 2014.

10 Kevin Buchin, Maike Buchin, Rolf van Leusden, Wouter Meulemans, and Wolfgang Mulzer.
Computing the Fréchet distance with a retractable leash. In Proc. 21st Annu. European
Sympos. Algorithms (ESA), pages 241–252, 2013.

11 Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):67–90,
1995.

12 Thomas Eiter and Heikki Mannila. Computing Discrete Fréchet Distance. Technical Report
CD-TR 94/64, Christian Doppler Laboratory, 1994.

13 Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational
geometry. Comput. Geom. Theory Appl., 5(3):165–185, 1995.

14 Michael R. Garey and David S. Johnson. Computers and intractability. A guide to the
theory of NP-completeness. W. H. Freeman, 1979.

15 Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. In Proc.
55th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 621–630, 2014.

16 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
System Sci., 62(2):367–375, 2001.

17 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity. J. Comput. System Sci., 63(4):512–530, 2001.

18 Mihai Pătraşcu and Ryan Williams. On the possibility of faster SAT algorithms. In Proc.
21st Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 1065–1075, 2010.

19 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-sat. J. ACM, 52(3):337–364, 2005.

20 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Proc. 45th Annu. ACM Sympos. Theory Comput.
(STOC), pages 515–524, 2013.

21 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoret. Comput. Sci., 348(2):357–365, 2005.

SoCG’15

The Hardness of Approximation of Euclidean
k-Means
Pranjal Awasthi1, Moses Charikar2, Ravishankar Krishnaswamy3,
and Ali Kemal Sinop4

1 Computer Science Department, Princeton University, USA
pawasthi@cs.cmu.edu

2 Computer Science Department, Princeton University, USA
moses@cs.princeton.edu

3 Microsoft Research, India
ravishan@cs.cmu.edu

4 Simons Institute for the Theory of Computing, USA
University of California, Berkeley
asinop@cs.cmu.edu

Abstract
The Euclidean k-means problem is a classical problem that has been extensively studied in the
theoretical computer science, machine learning and the computational geometry communities.
In this problem, we are given a set of n points in Euclidean space Rd, and the goal is to choose
k center points in Rd so that the sum of squared distances of each point to its nearest center
is minimized. The best approximation algorithms for this problem include a polynomial time
constant factor approximation for general k and a (1 + ε)-approximation which runs in time
poly(n) exp(k/ε). At the other extreme, the only known computational complexity result for
this problem is NP-hardness [1]. The main difficulty in obtaining hardness results stems from
the Euclidean nature of the problem, and the fact that any point in Rd can be a potential center.
This gap in understanding left open the intriguing possibility that the problem might admit a
PTAS for all k, d.

In this paper we provide the first hardness of approximation for the Euclidean k-means
problem. Concretely, we show that there exists a constant ε > 0 such that it is NP-hard to
approximate the k-means objective to within a factor of (1 + ε). We show this via an efficient
reduction from the vertex cover problem on triangle-free graphs: given a triangle-free graph, the
goal is to choose the fewest number of vertices which are incident on all the edges. Additionally, we
give a proof that the current best hardness results for vertex cover can be carried over to triangle-
free graphs. To show this we transform G, a known hard vertex cover instance, by taking a graph
product with a suitably chosen graph H, and showing that the size of the (normalized) maximum
independent set is almost exactly preserved in the product graph using a spectral analysis, which
might be of independent interest.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Euclidean k-means, Hardness of Approximation, Vertex Cover

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.754

1 Introduction

Clustering is the task of partitioning a set of items such as web pages, protein sequences etc.
into groups of related items. This is a fundamental task in machine learning, information
retrieval, computational geometry, computer vision, data visualization and many other

© Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 754–767

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

pawasthi@cs.cmu.edu
moses@cs.princeton.edu
ravishan@cs.cmu.edu
asinop@cs.cmu.edu
http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.754
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Awasthi, M. Charikar, R. Krishnaswamy, and A.K. Sinop 755

domains. In many applications, clustering is often used as a first step toward other fine
grained tasks such as classification. Needless to say, the problem of clustering has received
significant attention over the years and there is a large body of work on both the applied
and the theoretical aspects of the problem [6, 4, 10, 13, 19, 21, 26, 33, 8, 28, 34]. A common
way to approach the task of clustering is to map the set of items into a metric space where
distances correspond to how different two items are from each other. Using this distance
information, one then tries to optimize an objective function to get the desired clustering.
Among the most commonly used objective function used in the clustering literature is the
k-means objective function. In the k-means problem, the input is a set S of n data points
in Euclidean space Rd, and the goal is to choose k center points C∗ = {c1, c2, . . . , ck} from
Rd so as to minimize Φ =

∑
x∈S mini ‖x− c(x)‖2, where c(x) ∈ C∗ is the center closest to

x. Aside from being a natural clustering objective, an important motivation for studying
this objective function stems from the fact that a very popular and widely used heuristic
(appropriately called the k-means heuristic [28]) attempts to minimize this k-means objective
function.

While the k-means heuristic is very much tied to the k-means objective function, there are
many examples where it converges to a solution which is far away from the optimal k-means
solution. This raises the important question of whether there exist provable algorithms for
the k-means problem in general Euclidean space, which is the focus problem of our paper.
Unfortunately though, the approximability of the problem is not very well understood. From
the algorithmic side, there has been much focus on getting (1 + ε)-approximations that run as
efficiently as possible. Indeed, for fixed k, Euclidean k-means admits a PTAS [26, 16]. These
algorithms have exponential dependence in k, but only linear dependence in the number of
points and the dimensionality of the space. As mentioned above, there is also empirical and
theoretical evidence for the effectiveness of very simple heuristics for this problem [33, 28, 25].
For arbitrary k and d, the best known approximation algorithm for k-means achieves a factor
of 9 + ε [21]. In contrast to the above body of work on getting algorithms for k-means, lower
bounds for k-means have remained elusive. In fact, until recently, even NP-hardness was not
known for the k-means objective [11, 1]. This is perhaps due to the fact that as opposed to
many discrete optimization problems, the k-means problem allows one to choose any point
in the Euclidean space as a center. The above observations lead to the following intriguing
possibility:

“Is there a PTAS for Euclidean k-means for arbitrary k and dimension d?”

In this paper we answer this question in the negative and provide the first hardness of
approximation for the Euclidean k-means problem.

I Theorem 1.1. There exists a constant ε > 0 such that it is NP-hard to approximate the
Euclidean k-means to a factor better than (1 + ε).

The starting point for our reduction is the Vertex-Cover problem on triangle-free graphs:
here, given a triangle-free graph, the goal is to choose the fewest number of vertices which
are incident on all the edges in the graph. This naturally leads us to our other main result
in this paper, that of showing hardness of approximation of vertex cover on triangle-free
graphs. Kortsarz et al [24] show that if the vertex cover problem is hard to approximate to a
factor of α ≥ 3/2, then it is hard to approximate vertex cover on triangle-free graphs to the
same factor of α. While such a hardness (in fact, a factor of 2− ε [22]) is known assuming
the stronger unique games conjecture, the best known NP-hardness results do not satisfy
α ≥ 3/2. We settle this question by showing NP-hardness results for approximating vertex
cover on triangle-free graphs, which match the best known hardness on general graphs.

SoCG’15

756 The Hardness of Approximation of Euclidean k-Means

I Theorem 1.2. It is NP-hard to approximate Vertex Cover on triangle-free graphs to within
any factor smaller than 1.36.

2 Main Technical Contribution

In Section 4, we show a reduction from Vertex-Cover on triangle-free graphs to Euclidean
k-means where the vertex cover instances have small cover size if and only if the corresponding
k-means instances have a low cost. A crucial ingredient is to relate the cost of the clusters to
the structural properties of the original graph, which lets us transition from the Euclidean
problem to a completely combinatorial problem. Then in Section 5, we prove that the
known hardness of approximation results for Vertex-Cover carry over to triangle-free graphs.
This improves over existing hardness results for vertex cover on triangle-free graphs [24].
Furthermore, we believe that our proof techniques are of independent interest. Specifically,
our reduction transforms known hard instances G of vertex cover, by taking a graph product
with an appropriately chosen graph H. We then show that the size of the vertex cover in the
new graph (in proportion to the size of the graph) can be related to spectral properties of H.
In fact, by choosing H to have a bounded spectral radius, we show that the vertex covers in
G and the product graph are roughly preserved, while also ensuring that the product graph
is triangle-free. Combining this with our reduction to k-means completes the proof.

3 Related Work

Arthur and Vassilvitskii [5] proposed k-means++, a random sampling based approximation
algorithm for Euclidean k-means which achieves a factor of O(log k). This was improved by
Kanungo et al. [21] who proposed a local search based algorithm which achieves a factor of
(9 + ε). This is currently the best known approximation algorithm for k-means. For fixed k
and d, Matousek [31] gave a PTAS for k-means which runs in time O(nε−2k2d logk n)). Here n
is the number of points and d is the dimensionality of the space. This was improved by Badoiu
et al. [7] who gave a PTAS for fixed k and any d with run time O(2(k/ε)O(1)

poly(d)n logk n).
Kumar et al. [26] gave an improved PTAS with exponential dependence in k and only linear
dependence in n and d. Feldman et al. [16] combined this with efficient coreset constructions
to give a PTAS for fixed k with improved dependence on k. The work of Dasgupta [11]
and Aloise et al. [1] showed that Euclidean k-means is NP-hard even for k = 2. Mahajan et
al. [30] also show that the k-means problem is NP-hard for points in the plane.

There are also many other clustering objectives related to k-means which are commonly
studied. The most relevant to our discussion are the k-median and the k-center objectives.
In the first problem, the objective is to pick k centers to minimize the sum of distances of
each point to the nearest center (note that the distances are not squared). The problem
deviates from k-means in two crucial aspects, both owing to the different contexts in which
the two problems are studied: (i) the k-median problem is typically studied in the setting
where the centers are one of the data points (or come from a set of possible centers specified
in the input), and (ii) the problem is also very widely studied on general metrics, without
the Euclidean restriction. The k-median problem has been a testbed of developing new
techniques in approximation algorithms, and has constantly seen improvements even until
very recently [20, 19, 27]. Currently, the best known approximation for k-median is a factor
of 2.611 + ε due to Bykra et al. [9]. On the other hand, it is also known that the k-median
objective (on general metrics) is NP-hard to approximate to a factor better than (1+1/e) [19].
When restricted to Euclidean metrics, Kolliopoulos et al. [23] show a PTAS for k-median

P. Awasthi, M. Charikar, R. Krishnaswamy, and A.K. Sinop 757

on constant dimensional spaces. On the negative side for k-median on Euclidean metrics,
it is known that the discrete problem (where centers come from a specified input) cannot
have a PTAS under standard complexity assumptions [17]. As mentioned earlier, all these
results are for the version when the possible candidate centers is specified in the input. For
the problem where any point can be a center, Arora et al. [4] show a PTAS when the points
are on a 2-dimensional plane.

In the k-center problem the objective is to pick k center points such that the maximum
distance of any data point to the closest center point is minimized. In general metrics, this
problem admits a 2-factor approximation which is also optimal assuming P 6= NP [18]. For
Euclidean metric when the center could be any point in the space, the upper bound is still 2
and the best hardness of approximation is a factor 1.82 [15].

4 Our Hardness Reduction: From Vertex Cover to Euclidean k-means

In this section, we show a reduction from the Vertex-Cover problem (on triangle-free graphs)
to the k-means problem. Formally, the vertex cover problem can be stated as follows: Given
an undirected graph G = (V,E), choose a subset S of vertices (with minimum |S|) such that
S is incident on every edge of the graph. More specifically, our reduction establishes the
following theorem.

I Theorem 4.1. There is an efficient reduction from instances of Vertex Cover (on triangle-
free graphs with m edges) to those of Euclidean k-means that satisfies the following proper-
ties:
(i) if the Vertex Cover instance has value k, then the k-means instance has cost ≤ m− k.
(ii) if the Vertex Cover instance has value at least k(1 + ε), then the optimal k-means cost is
≥ m− (1− Ω(ε))k. Here, ε is some fixed constant > 0.

In Section 5, we show that there exist triangle-free graph instances of vertex cover on
m = Θ(n) edges, and k = Ω(n) such that it is NP-hard to distinguish if the instance has
a vertex cover of size at most k, or all vertex covers have size at least (1 + ε)k, for some
constant ε > 0.

Now, let k = m/∆ where ∆ = Ω(1) from the hard vertex cover instances. Then, from
Theorem 4.1, we get that if the vertex cover has value k, then the k-means cost is at most
m(1 − 1

∆), and if the vertex cover is at least k(1 + ε), then the optimal k-means cost is
at least m(1 − 1−Ω(ε)

∆). Therefore, the vertex cover hardness says that it is also NP-hard
to distinguish if the resulting k-means instance has cost at most m(1 − 1

∆) or cost more
than m(1− 1−Ω(ε)

∆). Since ∆ is a constant, this implies that it is NP-hard to approximate
the k-means problem within some factor (1 + Ω(ε)), thereby establishing our main result
Theorem 1.1. In what follows, we prove Theorem 4.1.

4.1 Proof of Theorem 4.1

Let G = (V,E) denote the graph in the Vertex Cover instance I, with parameter k denoting
the number of vertices we can select. We associate the vertices with natural numbers [n].
Therefore, we refer to vertices by natural numbers i, and edges by pairs of natural numbers
(i, j).

SoCG’15

758 The Hardness of Approximation of Euclidean k-Means

Construction of k-means Instance Ikm

For each vertex i ∈ [n], we have a unit vector xi = (0, 0, . . . , 1, . . . , 0) which has a 1 in the
ith coordinate and 0 elsewhere. Now, for each edge e ≡ (i, j), we have a vector xe

def= xi + xj .
Our data points on which we solve the k-means problem is precisely {xe : e ∈ E}. This
completes the definition of Ikm.
I Remark. As stated, the dimensionality of the points we have constructed is n, and we get
a hardness factor of (1 + ε). However, by using the dimensionality reduction ideas of Johnson
and Lindenstrauss (see, e.g. [12]), without loss of generality, we can assume that the points
lie in O(logn/ε2) dimensions and our hardness results still hold true. This is because, after
the transformation, all pairwise distances (and in particular, the k-means objective function)
are preserved upto a factor of (1 + ε/10) of the original values, and so our hardness factor is
also (almost) preserved, i.e., we would get hardness of approximation of (1 + Ω(ε)).

However, for simplicity, we stick with the n dimensional vectors as it makes the presenta-
tion much cleaner.

4.2 Completeness
Suppose I is such that there exists a vertex cover S∗ = {v1, v2, . . . , vk} of k vertices which
can cover all the edges. We will now show that we can recover a good clustering of low
k-means cost. To this end, let Ev` denote the set of edges which are covered by v` for
1 ≤ ` ≤ k. If an edge is covered by two vertices, we assume that only one of them covers it.
As a result, note that the Ev` ’s are pairwise disjoint (and their union is E), and each Ev` is
of the form {(v`, w`,1), (v`, w`,2), . . . , (v`, w`,p`)}.

Now, to get our clustering, we do the following: for each v ∈ S∗, form a cluster out of
the data points Fv := {xe : e ∈ Ev}. We now analyze the average connection cost of this
solution. To this end, we begin with some easy observations about the k-means clustering.
Indeed, since any cluster is of a set of data points (corresponding to a subset of edges in the
graph G), we shall abuse notation and associate any cluster F also with the corresponding
subgraph on V , i.e., F ⊆ E. Moreover, we use dF(i) to denote the degree of node i in F and
mF to denote the number of edges in F, mF = |F|. Finally, we refer by dG(i) the degree of
vertex i in G.

I Claim 4.2. For any clustering {F}: (a)
∑

F dF(i) = dG(i); (b)
∑
i

∑
F dF(i) = 2m = 2|E|.

Proof. Immediate, because every edge e ∈ E belongs to exactly one cluster in {F}. J

Our next claim relates the connection cost of any cluster F to the structure of the
associated subgraph, which forms the crucial part of the analysis.

I Claim 4.3. The total connection cost of any cluster F is
∑
i dF(i)(1− 1

mF
dF(i)).

Proof. Firstly, note that
∑
i dF(i) = 2mF. Now consider the center µF of cluster F. By

definition, we have that at coordinate i ∈ V :

µF(i) = 1
mF

∑
S∈F:i∈S

1 = dF(i)
mF

.

So ‖µF‖2 = 1
mF

2

∑
i dF(i)2. Hence the total cost of this clustering, cF, is:∑

e∈F

(‖xe−µF‖2) =
∑
e∈F

(‖xe‖2−‖µF‖2) = 2mF−
1
mF

∑
i∈V

dF(i)2 =
∑
i

dF(i)− 1
mF

dF(i)2.

Here we used mFµF =
∑
e∈F xe in the first equality and ‖xe‖2 = 2 in the second one. J

P. Awasthi, M. Charikar, R. Krishnaswamy, and A.K. Sinop 759

I Claim 4.4. There exists a clustering of our k-means instance Ikm with cost at most m−k,
where m is the number of edges in the graph G = (V,E) associated with the vertex cover
instance I, and k is the size of the optimal vertex cover.

Proof. Consider a cluster Fv, which consists of data points associated with edges covered by
a single vertex v. Then, by Claim 4.3, the connection cost of this cluster is precisely mFv − 1,
since the sub-graph associated with a cluster is simply a star rooted at v. Here, mFv is the
number of edges which v covers in the vertex cover (if an edge is covered by different vertices
in the cover, it is included in only one vertex). Then, summing over all clusters, we get the
claim. J

4.3 Soundness
In this section, we show that if there is a clustering of low k-means cost, then there is a very
good vertex cover for the corresponding graph. We begin with some useful notation.

I Notation 4.5. Given a set E′ ⊆
(
V
2
)
of mE′ = |E′| edges with corresponding node degrees

(d1, . . . , dn), we define Cost(E′) as the following:

Cost(E′) def=
∑
u∈V

du

(
1− du

mE′

)
.

Note that, by Claim 4.3, the connection cost of a clustering Γ = {F1,F2, . . . ,Fk} of the n
points is equal to

∑
i Cost(Fi). Recall that we abuse notation slightly and view each cluster

Fi of the data points also as a subset of E. Moreover, because Γ clusters all points, the
subgraphs F1,F2, . . . ,Fk form a partition of E. Using this analogy, we study the properties of
each subgraph and show that if the k-means cost of Γ is small, then most of these subgraphs
in fact are stars. This will in turn help us recover a small vertex cover for G. We begin with
a simple property of Cost(E′).

I Proposition 4.6. For any set of mE′ edges E′, mE′ − 1 ≤ Cost(E′) ≤ 2mE′ − 1.

Proof. We have Cost(E′) =
∑
u∈V du

(
1− du

mE′

)
= 2mE′ −

∑
u∈V

d2
u

mE′
. The proof follows from

noting that
∑

u∈V
d2
u

mE′
≥
∑

u∈V
du

mE′
= 2 and

∑
u∈V

d2
u

mE′
≤ mE′ + 1. The last inequality is due to

the fact that
∑
u∈V d

2
u is maximized by the degree sequence (mE′ , 1, 1, . . . , 1). J

I Theorem 4.7. If the k-means instance Ikm has a clustering Γ = {F1, . . . ,Fk} with∑
F∈Γ Cost(F) ≤ m − (1 − δ)k, then there exists a (1 + O(δ))k-vertex cover of G in the

instance I.

Note that this, along with Claim 4.4 will imply the proof of Theorem 4.1.

Proof. For each i ∈ [k], let mi
def= |Fi| and νi

def=
∑
u du(Fi)2. Note that Cost(Fi) = 2mi− νi

mi
.

By Proposition 4.6, each i ∈ [k] satisfies mi − 1 ≤ Cost(Fi) ≤ 2mi − 1. Hence if we define δi
as δi

def= Cost(Fi)− (mi − 1), then 0 ≤ δi ≤ mi. Moreover νi
mi

= mi + 1− δi. Thus:

m− (1− δ)k ≥
∑
i

Cost(Fi) =
∑
i

(δi +mi − 1) =
∑
i

δi +m− k =⇒ δk ≥
∑
i

δi.

This means, except ≤ 2δk clusters, the remaining clusters all have δi ≤ 1
2 . Moreover,

Theorem 4.8 implies all these (1− 2δ)k clusters are either stars or triangles and have δi = 0.

SoCG’15

760 The Hardness of Approximation of Euclidean k-Means

Since the graph is triangle free, they are all stars, and hence the corresponding center vertices
cover all the edges in the respective clusters. It now remains to cover the edges in the
remaining 2δk clusters which have larger δi values. Indeed, even for these clusters, we can
appeal to Theorem 4.8, and choose two vertices per cluster to cover all but δi edges in each
cluster. So the size of our candidate vertex cover is at most k(1 + 2δ), and we have covered
all but

∑
i δi edges. But now, we notice that

∑
i δi ≤ δk, and so we can simply include one

vertex per uncovered edge and would obtain a vertex cover of size at most k(1 + 3δ), thus
completing the proof. J

I Lemma 4.8. Given a graph GF = (V,F) with m = |F| edges and degrees (d1, . . . , dn); let
δ be such that 1

m

∑
u du

2 = m + 1 − δ. Then there always exists an edge {u, v} ∈ F with
du + dv ≥ m+ 1 + δ. Furthermore, if δ < 1

2 , then δ = 0 and GF is either a star or triangle.

Proof. Since
∑
u du

2 =
∑
u∼v(du + dv), we can think of 1

m

∑
u du

2 as the the expectation of
du + dv over a random edge chosen uniformly, {u, v} ∈ E:

1
m

∑
u

du
2 = Eu∼v

[
du + dv

]
.

From this, we can immediately conclude the existence of an edge {u, v} with du+dv ≥ m+1−δ.
Now to complete the second part of the Lemma statement, suppose du ≥ dv. The number of
edges incident to {u, v} is:

du + dv − 1 ≥ m− δ δ<1=⇒ du + dv − 1 = m.

So all edges are incident to u or v, and dw ≤ 2 if w /∈ {u, v}. If dv ≤ 1, then we are done.
In the other case, we have dv ≥ 2 ≥ dw for all w /∈ {u, v}. Let α def= du and β def= dv. The
degree sequence (d1, . . . , dn) is strongly majorized by the following sequence, d′:

d′
def=
(
α, β, 2, . . . , 2,︸ ︷︷ ︸

β − 1 many

α− β many︷ ︸︸ ︷
1, . . . , 1

)
.

Since
∑
u d

2
u is Schur-convex, its value increases under majorization:

(α+ β − 1)(α+ β − δ) =m(m+ 1− δ) =
∑
u

d2
u ≤

∑
u

d′u
2

=α2 + β2 + 4(β − 1) + (α− β).
=⇒ 0 ≤(α+ β − 1)δ + 2α+ 4β − 4− 2αβ

=(α+ β − 1)δ + 2α(1− β) + 4(β − 1).

So we obtain 2α(β− 1) ≤ (α+β− 1)δ+ 4(β− 1). Since β ≥ 2, we divide both sides by β− 1:

2α ≤ α

β − 1δ + 4 + δ ≤ δα+ 4 + δ.

In particular, (2− δ)α ≤ 4 + δ =⇒ α ≤ 4+δ
2−δ < 3 as δ < 1/2. Hence α ≤ 2. Consequently,

du = dv = 2 and m = du + dv − 1 = 3. There are two possible cases: The graph is either a
3-cycle or 4-path. In the latter case, the corresponding δ is:

δ = m+ 1− 1
m

∑
u

du
2 = 4− 1

3(22 + 22 + 1 + 1) = 4− 10
3 = 2

3 >
1
2 ;

which is a contradiction and the graph is a triangle. J

P. Awasthi, M. Charikar, R. Krishnaswamy, and A.K. Sinop 761

Putting the pieces together, we get the proof of Theorem 4.1.
I Remark (Unique Games Hardness). Khot and Regev [22] show that approximating Vertex-
Cover to factor (2−ε) is hard assuming the Unique Games conjecture. Furthermore, Kortsarz
et al. [24] show that any approximation algorithm with ratio α ≥ 1.5 for Vertex-Cover
on 3-cycle-free graphs implies an α approximation algorithm for Vertex-Cover (on general
graphs). This result combined with the reduction in this section immediately implies APX
hardness for k-means under the unique games conjecture. In the next section we generalize
the result of Kortsarz et al. [24] by giving an approximation preserving reduction from
Vertex-Cover on general graphs to Vertex-Cover on triangle-free graphs. This would enable
us to get APX hardness for the k-means problem.

5 Hardness of Vertex Cover on Triangle-Free Graphs

In this section, we show that the Vertex Cover problem is as hard on triangle-free graphs as
it is on general graphs. To this end, for any graph G = (V,E), we define IS(G) as the size of
maximum independent set in G. For convenience, we define rel-IS(G) as the ratio of IS(G)
to the number of nodes in G:

rel-IS(G) def= IS(G)
|V |

.

Similarly, let VC(G) be the size of minimum vertex cover in G and rel-VC(G) be the ratio
VC(G)
|V | . The following is well known, which says independent sets and vertex covers are duals

of each other.

I Proposition 5.1. Given G = (V,E), I ⊆ V is an independent set if and only if C = V \ I
is a vertex cover. In particular, IS(G) + VC(G) = |V |.

We will prove the following theorem.

I Theorem 5.2. For any constant ε > 0, there is a (1+ε)-approximation-preserving reduction
for independent set from any graph G = (V,E) with maximum degree ∆ to triangle-free
graphs with poly(∆, ε−1)|V | nodes and degree poly(∆, ε−1) in deterministic polynomial time.

Combining Theorem 5.2 with the best known unconditional hardness result for Vertex Cover,
due to Dinur and Safra [14], we obtain the following corollary.

I Corollary 5.3. Given any unweighted triangle-free graph G with bounded degrees, it is
NP-hard to approximate Vertex Cover within any factor smaller than 1.36.

Given two simple graphs G = (V1, E1) and H = (V2, H2), we define the Kronecker product
of G and H, G⊗H, as the graph with nodes V (G⊗H) = V1 × V2 and edges:

E(G⊗H) =
{
{(u, i), (v, j)}

∣∣{u, v} ∈ E(G), {i, j} ∈ E(H)
}
.

Observe that, if AG and AH denote the adjacency matrix of G and H, then AG⊗H = AG⊗AH .
Given any symmetric matrix M , we will use σi(M) to denote the ith largest eigenvalue of

M . For any graph G on n-nodes, we define the spectral radius of G, ρ(G), as the following:

ρ(G) def= max
p⊥e

∣∣pTAGp∣∣
‖p‖2

= max(σ2(AG), |σn(AG)|).

Here e is the all 1’s vector of length n.

SoCG’15

762 The Hardness of Approximation of Euclidean k-Means

I Proposition 5.4. If H is triangle-free, then so is G⊗H.
Proof. Suppose G⊗H has a 3-cycle of the form ((a, i), (b, j), (c, k), (a, i)). Then (i, j, k, i)
is a closed walk in H. H is triangle-free, therefore i = j wlog; a contradiction as H has no
loops. J

The following Lemma says that as long as H has good spectral properties, the relative size
of maximum independent sets in G will be preserved by G⊗H.
I Lemma 5.5. Suppose H is a d-regular graph with spectral radius ≤ ρ. For any graph G
with maximum degree ∆, rel-IS(G⊗H) ≥ rel-IS(G) ≥

(
1− ρ∆

2d

)
rel-IS(G⊗H).

Proof. Suppose V (G) = [n] and V (H) = [N]. Let A def= AG be the adjacency matrix of G
and B be the normalized adjacency matrix of H, B def= 1

dAH .

For the lower bound, consider an independent set I in G. It is easy to check that I × [N]
is an independent set in G⊗H, thus IS(G⊗H) ≥ N · IS(G) so rel-IS(G⊗H) ≥ rel-IS(G).

For the upper bound, consider the indicator vector f ∈ {0, 1}[n]×[N] of an independent
set in G⊗H. The corresponding set contains no edges from G⊗H, so fT (A⊗ B)f = 0.
Define p : V → [0, 1] as pu

def= 1
N

∑
j∈N fu,j . For each u ∈ [n], pick u with probability pu. Let

I0 ⊆ [n] be the set of picked nodes. Next, start with I ← I0. As long as there is an edge of
G contained in I, arbitrarily remove one of its endpoints from I. At the end of this process,
the remaining set I is an independent set in G, and its size is at least the size of I0 minus
the number of edges contained in I0. Hence |I| ≥ |I0| − |EG(I0, I0)|. Observe that

E
[
|I0|
]

=
∑
u

pu = 1
N
‖f‖2 since f is a {0, 1} vector.

The probability of any pair i 6= j being contained in I0 is given by Prob
[
{i, j} ⊆ I0

]
= pupv.

Therefore, the expected number of edges contained in I0 is:

E
[
|EG(I0, I0)|

]
=
∑
u<v

Auvpupv = 1
2p

TAp
(Theorem 5.6)= 1

2N fT (A⊗ J̃N)f

(Theorem 5.7)
≤ 1

2N

∣∣∣fTA⊗ (J̃N −B)f
∣∣∣ (Theorem 5.8)

≤ ρ∆
2Nd‖f‖

2.

Putting it all together:

E
[
|I|
]
≥ E

[
|I0|
]
− E

[
|EG(I0, I0)|

]
= 1
N
‖f‖2 − 1

2p
TAp ≥ ‖f‖

2

N

(
1− ρ∆

2d

)
.

Therefore, IS(G) ≥ 1− ρ∆2d
N IS(G⊗H) =⇒ rel-IS(G) ≥

(
1− ρ∆

2d

)
rel-IS(G⊗H). J

In the remaining part, we prove the supporting claims.
I Claim 5.6. pTAp = 1

N f
T (A⊗ J̃N)f where J̃N is the N -by-N matrix of all 1/N ’s.

Proof. Let eu,v ∈ RV×V be the matrix whose entry at uth row and vth column is 1, and all
others 0. Notice A =

∑
u,v Au,veu,v. Let JN be the N -by-N matrix of all 1’s. For any pair

(u, v) ∈ V 2,

pupv = 1
N2

∑
i,j

fu,ifv,j = 1
N2 f

T
(

eu,v ⊗ JN
)
f = 1

N
fT
(

eu,v ⊗ J̃N
)
f.

pTAp = 1
N

∑
u,v

Au,vf
T
(

eu,v ⊗ J̃N
)
f = 1

N
fT
[(∑

u,v

Au,veu,v
)
⊗ J̃N

]
f

= 1
N
fT (A⊗ J̃N)f.

The second-to-last identity follows from the bi-linearity of Kronecker product. J

P. Awasthi, M. Charikar, R. Krishnaswamy, and A.K. Sinop 763

I Claim 5.7. fT (A⊗ J̃N)f ≤ |fTA⊗ (B − J̃N)f |.

Proof. We have fT (A ⊗ J̃N)f = fT
[
A ⊗

(
J̃N − B)

]
f + fT (A ⊗ B)f . As noted above, f

being an independent set implies fT (A⊗B)f = 0:

fT (A⊗ J̃N)f = fT
[
A⊗

(
J̃N −B)

]
f ≤ |fTA⊗ (J̃N −B)f |. J

I Claim 5.8. |fTA⊗ (B − J̃N)f | ≤ ∆ρ
d ‖f‖

2.

Proof. Define C def= B − J̃N . For any symmetric matrix M , let ρ(M) be its spectral radius,
ρ(M) def= maxp |p

TMp|
‖p‖2 . Observe that ρ(M) = max(|σi(M)|). We have:

|fTA⊗ (B − J̃N)f | = |fTA⊗ Cf | ≤ ρ(A⊗B)‖f‖22.

We know that the spectrum of the Kronecker product of two symmetric matrices correspond
to the pairwise product of the spectrum of corresponding matrices, i.e., all eigenvalues of
A⊗ C are of the form σi(A) · σj(C) for each i and j. Therefore,

ρ(A⊗ C) = max(|σi(A)σj(C)|) = max(|σi(A)|) max(|σj(C)|) = ρ(A) · ρ(C).

Observe that ρ(A) ≤ ∆, since A is the adjacency matrix of a graph with degree ≤ ∆. Now
we will upper bound ρ(C). Since H is a regular graph and B is its normalized adjacency
matrix, the largest eigenvector of B is all 1’s and the corresponding eigenvalue is 1. Therefore
C has the same eigenspace with B. Moreover Ce = 0, thus:

ρ(C) = max(|σi(C)| : 1 ≤ i ≤ n) = max(|σi(B)| : 2 ≤ i ≤ n)

= max(σ2(B), |σn(B)|) = 1
d
ρ(G). J

We now prove the main theorem needed for our reduction.

I Theorem 5.9. Given a graph G = (V,E) with maximum degree ∆, for any ε > 0, we can
construct in polynomial time, a triangle-free graph Ĝ = (V̂ , Ê) with:

rel-IS(G) ≤ rel-IS(Ĝ) ≤ (1 + ε) rel-IS(G).

Moreover Ĝ has (a) poly(∆, ε−1)|V | nodes, (b) degree O
(
∆3ε−2).

Proof. For any d and N , it is known how to construct [29, 32] in deterministic polynomial
time, a O(d)-regular Ramanujan graph H with girth Ω(logdN) and spectral radius at most
ρ ≤ O(

√
d). Thus for some choice of d = O(∆2ε−2) and N = dO(1) = poly(∆, ε−1), we can

find a d-regular graph H with girth at least Ω(1) and spectral radius ρ ≤ dε/∆. For such
H, let Ĝ ← G⊗H. We have

(
1− ρ∆

2d

)−1
≤
(
1− ε/2

)−1 ≤ 1 + ε. Proposition 5.4 implies
G⊗H is triangle free. By Theorem 5.5:

rel-IS(G) ≤ rel-IS(G⊗H) ≤
(

1− ρ∆
2d

)−1
rel-IS(G) ≤

(
1 + ε

)
rel-IS(G).

Now we prove the remaining properties:
(a) |V (G⊗H)| = |V (G)| · |V (H)| ≤ |V | · poly(∆, ε−1).
(b) dmax(G⊗H) ≤ dmax(G)× dmax(H) ≤ O(∆d) = O(∆3ε−2). J

SoCG’15

764 The Hardness of Approximation of Euclidean k-Means

I Note. Noga Alon has provided an alternate construction where one can obtain a triangle
free graph Ĝ such that rel-IS(Ĝ) = rel-IS(G). This however, does not lead to improved
constant in our analysis. For the sake of completeness, we include the alternate theorem in
the Appendix (see Theorem A.1).

Before we end the section with the proof of Theorem 5.3, we need the following hardness
result from [14], which follows from Corollary 2.3 and Appendix 8 (weighted to unweighted
reduction) of [14]. As noted in [14], the construction produces bounded degree graphs.

I Theorem 5.10 (Dinur, Safra [14]). For any constant ε > 0, given any unweighted graph G
with bounded degrees, it is NP-hard to distinguish between:

(Yes) rel-IS(G) > c− ε,
(No) rel-IS(G) < s+ ε;

where c and s are constants such that 1−s
1−c ≈ 1.36.

Proof of Theorem 5.3. Given a bounded degree graph G, consider the graph Ĝ given by
Theorem 5.9 for some small constant ε0 < ε. Since G is bounded degree and ε0 is constant,
Ĝ is also bounded degree. Furthermore, Ĝ satisfies rel-IS(G) ≤ rel-IS(Ĝ) ≤ (1 + ε0) rel-IS(G).
Completeness follows immediately: rel-IS(Ĝ) > c−ε. For the soundness, suppose rel-IS(Ĝ) >
s+ ε. Then rel-IS(G) ≥ s+ε

1+ε0 ≥ s+ ε for suitable ε0. The hardness of Vertex Cover follows
from Proposition 5.1. J

6 Conclusions

In this paper we provide the first hardness of approximation for the fundamental Euclidean k-
means problem. Although our work clears a major hurdle of going beyond NP-hardness for this
problem, there is still a big gap in our understanding with the best upper bound being a factor
(9 + ε). We believe that our result and techniques will pave way for further work in closing
this gap. Our reduction from vertex cover produces high dimensional instances (d = Ω(n))
of k-means. However, by using the Johnson-Lindenstrauss transform [12], we can project the
instance onto O(logn/ε2) dimensions and still preserve pairwise distances by a factor (1 + ε)
and the k-means cost by a factor of (1 + ε)2. We leave it as an open question to investigate
inapproximability results for k-means in constant dimensions. It would also be interesting
to study whether our techniques give hardness of approximation results for the Euclidean
k-median problem. Finally, our hardness reduction in Section 5 provides a novel analysis
by using the spectral properties of the underlying graph to argue about independent sets in
graph products – this connection could have applications beyond the present paper.

Acknowledgments. We would like to thank Noga Alon and Oded Regev for valuable feed-
back on the results in Section 5, in particular for suggesting alternate proofs of Proposition 5.4
and Theorem 5.5. We would also like to thank Noga for pointing out that the graph product
construction in Section 5 does not eliminate even cycles. Finally we thank the anonymous
reviewers for their comments.

References
1 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Eu-

clidean sum-of-squares clustering. Machine Learning, 75(2):245–248, 2009.
2 Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construction of

asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE
Transactions on Information Theory, 38(2):509–516, 1992.

P. Awasthi, M. Charikar, R. Krishnaswamy, and A.K. Sinop 765

3 Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992.
4 Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for Eu-

clidean k-medians and related problems. In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages
106–113, 1998.

5 David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding.
In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 1027–1035, 2007.

6 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
J. Comput., 33(3):544–562, 2004.

7 Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002,
Montréal, Québec, Canada, pages 250–257, 2002.

8 Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Approximate clustering without
the approximation. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2009, New York, NY, USA, January 4–6, 2009, pages 1068–
1077, 2009.

9 Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median, and positive correlation in budgeted optimization.
CoRR, abs/1406.2951, 2014.

10 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. J. Comput. Syst. Sci., 65(1):129–149,
2002.

11 Sanjoy Dasgupta. The hardness of k-means clustering. Technical report, University of
California, San Diego, 2008.

12 Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson and
Lindenstrauss. Random Struct. Algorithms, 22(1):60–65, 2003.

13 Wenceslas Fernandez de la Vega, Marek Karpinski, Claire Kenyon, and Yuval Rabani.
Approximation schemes for clustering problems. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, June 9–11, 2003, San Diego, CA, USA, pages 50–58,
2003.

14 Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162(1):439–485, 2005.

15 Tomás Feder and Daniel H. Greene. Optimal algorithms for approximate clustering. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2–4, 1988,
Chicago, Illinois, USA, pages 434–444, 1988.

16 Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means clustering
based on weak coresets. In Proceedings of the 23rd ACM Symposium on Computational
Geometry, Gyeongju, South Korea, June 6–8, 2007, pages 11–18, 2007.

17 Venkatesan Guruswami and Piotr Indyk. Embeddings and non-approximability of geomet-
ric problems. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 12–14, 2003, Baltimore, Maryland, USA., pages 537–538, 2003.

18 Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. J. ACM, 33(3):533–550, 1986.

19 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility lo-
cation problems. In Proceedings on 34th Annual ACM Symposium on Theory of Computing,
May 19–21, 2002, Montréal, Québec, Canada, pages 731–740, 2002.

SoCG’15

766 The Hardness of Approximation of Euclidean k-Means

20 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM,
48(2):274–296, 2001.

21 Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silver-
man, and Angela Y. Wu. A local search approximation algorithm for k-means clustering.
Comput. Geom., 28(2-3):89–112, 2004.

22 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2−ε.
Journal of Computer and System Sciences, 74(3):335–349, 2008.

23 Stavros G. Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for
the Euclidean k-median problem. SIAM J. Comput., 37(3):757–782, 2007.

24 Guy Kortsarz, Michael Langberg, and Zeev Nutov. Approximating maximum subgraphs
without short cycles. SIAM J. Discrete Math., 24(1):255–269, 2010.

25 Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-means
algorithm. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23–26, 2010, Las Vegas, Nevada, USA, pages 299–308, 2010.

26 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. A simple linear time (1+έ)-
approximation algorithm for k-means clustering in any dimensions. In 45th Symposium
on Foundations of Computer Science (FOCS 2004), 17–19 October 2004, Rome, Italy, Pro-
ceedings, pages 454–462, 2004.

27 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Sympo-
sium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013,
pages 901–910, 2013.

28 Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–136, 1982.

29 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

30 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi R. Varadarajan. The planar k-means
problem is NP-hard. Theor. Comput. Sci., 442:13–21, 2012.

31 Jiri Matoušek. On approximate geometric k-clustering. Discrete and Computational Ge-
ometry, 24(1), 2000.

32 Moshe Morgenstern. Existence and explicit constructions of q + 1 regular ramanujan
graphs for every prime power q. J. Comb. Theory, Ser. B, 62(1):44–62, 1994.

33 Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. The effec-
tiveness of lloyd-type methods for the k-means problem. J. ACM, 59(6):28, 2012.

34 Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda,
Geoffrey J. McLachlan, Angus F. M. Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael
Steinbach, David J. Hand, and Dan Steinberg. Top 10 algorithms in data mining. Knowl.
Inf. Syst., 14(1):1–37, 2008.

A An Alternative Proof of Theorem 5.2

The following were suggested by Noga Alon as an alternative to Theorem 5.2.

I Theorem A.1. Let G = (V,E) be an arbitrary graph with maximum degree ∆. It is possible
to construct in polynomial time a triangle free graph Ĝ such that rel-IS(Ĝ) = rel-IS(G).

Before proving the theorem, we need the following standard facts about (n, d, λ) graphs.

I Lemma A.2. Let H = (U,F) be an (n, d, λ) graph, assume λ < d/4 and let B be a set of
vertices of H. Let N(B) denote the set of all neighbors of B in H. Then:
1. If |B| > λ

dn, then |N(B)| > n− λ
dn.

2. If |B| ≤ λ
dn, then |N(B)| ≥ λ

2dn.

P. Awasthi, M. Charikar, R. Krishnaswamy, and A.K. Sinop 767

Proof. (1) is proved in Corollary 1 in [2]. We will prove (2). When 2λ2

d2 n ≤ |B| ≤ λ
dn, it

follows from the same corollary again, which implies that in this range |N(B)| ≥ n
2 . For

|B| ≤ 2λ2

d2 n, the result follows from the expander mixing lemma (see [3], corollary 9.2.5), as
there are d|B| edges between B and N(B). J

Proof of Theorem A.1. Let H = (U,F) be a (n, d, λ)-expander with λ ≤ 2
√
d− 11 Let

Ĝ = G⊗H. Further, let d
2λ ≥ ∆. It is well known that such graphs exist. It is easy to see

that any rel-IS(G⊗H) ≥ rel-IS(G), since any independent set S in G leads to an independent
set S ⊗ U in G⊗H.

For the other direction, let S ⊂ V × U be an independent set in G⊗H. Define T as:

T
def= {v ∈ V : |{u ∈ U : (v, u) ∈ S}| ≥ λ

d
n}.

By Lemma A.2 (1), T is an independent set in G. Let T ′ be a maximal (with respect to
containment) independent set in G that contains T . By maximality, every vertex in V \T ′ has
at least one neighbor in T ′. Thus T ′ is a dominating set in G and there is a collection of stars
{Sv : v ∈ T ′}, covering all the vertices of G. As T ′ is an independent set, |T ′| ≤ rel-IS(G)|V |.
To complete the proof it suffices to show that for each of the stars Sv in our collection, whose
set of vertices in G is Vv, we have:

|{(v′, u) : (v′, u) ∈ S, v′ ∈ Vv}| ≤ |U | = n (1)

The number of leaves of the star Sv is at most ∆. For each such leaf v′, the set of vertices of
H given by Bv′

def= {u ∈ U : (v′, u) ∈ S} is of cardinality smaller than λ
dn. Moreover, all its

neighbors in H cannot belong to the set Bv = {u ∈ U : (v, u) ∈ S} where v is the center of
the star Sv. By Lemma A.2 (2), the number of these neighbors is at least d

2λ ≥ ∆ times the
cardinality of Bv′ . This implies that the total size of all sets Bv′ where the sum ranges over
all leaves v′ of Sv is at most the number of vertices in U −Bv, implying (1) and completing
the proof. J

1 This means that all non-trivial eigenvalues of H are bounded by λ.

SoCG’15

A Fire Fighter’s Problem
Rolf Klein1, Elmar Langetepe1, and Christos Levcopoulos2

1 Institute of Computer Science I, University of Bonn, Germany
2 Department of Computer Science, Lund University, Sweden

Abstract
Suppose that a circular fire spreads in the plane at unit speed. A fire fighter can build a barrier
at speed v > 1. How large must v be to ensure that the fire can be contained, and how should
the fire fighter proceed? We provide two results. First, we analyze the natural strategy where
the fighter keeps building a barrier along the frontier of the expanding fire. We prove that this
approach contains the fire if v > vc = 2.6144 . . . holds. Second, we show that any “spiralling”
strategy must have speed v > 1.618, the golden ratio, in order to succeed.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, Geo-
metrical problems and computations, G. Mathematics of Computing, G.1.6 Optimization

Keywords and phrases Motion Planning, Dynamic Environments, Spiralling strategies, Lower
and upper bounds

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.768

1 Introduction

Fighting wildfires and epidemics has become a serious issue in the last decades. Professional
fire fighters need models and simulation tools on which strategic decisions can be based; for
example see [5]. Thus, a good understanding of the theoretical foundations seems necessary.

Substantial work has been done on the fire fighting problem in graphs; see, e.g., the
survey article [3]. Here, initially one vertex is on fire. Then an immobile firefighter can be
placed at one of the other vertices. Next, the fire spreads to each adjacent vertex that is not
defended by a fighter, and so on. The game continues until the fire cannot spread anymore.
The objective, to save a maximum number of vertices from the fire, is NP-hard to achieve,
even for trees.

A more geometric setting has recently been studied in [6]. Suppose that inside a simple
polygon P a candidate set of disjoint diagonal barriers has been defined. If a fire starts at
some point inside P one wants to build a subset of these barriers in order to save a maximum
area from the fire. But each point on a barrier must be built before the fire arrives there.
This maximization problem is also NP-hard, even if the candidate barriers are the diagonals
of a convex polygon, but there exists an 11.65 approximation algorithm.

In this paper we study a purely geometric version of the fire fighter problem. Suppose
there is a circular fire of initial radius A in the plane, centered at the origin. The fire spreads
at unit speed. Initially, the plane is empty, except for a single fire fighter who is placed on
the boundary of the fire. The fighter can move at speed v, and build a barrier along his path.
The fire cannot cross this barrier, and the fighter cannot move into the fire. Will the fighter
be able to contain the fire, and how should she proceed to achieve this?

Clearly, the answer depends on speed v. For v = 1 the fighter can barely save herself by
moving along a straight line away from the fire.

© Rolf Klein, Elmar Langetepe, and Christos Levcopoulos;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 768–780

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.768
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

R. Klein, E. Langetepe, and Ch. Levcopoulos 769

Figure 1 The race between the fire and the fighter for speed v = 3.738. The firebreak was
constructed from p0 to p2 whereas the fire expands along the outer side of the barrier up to point q.
Can the fire figther finally catch the fire?

At speed v > 2π + 1, the fire fighter can move a distance x away from the fire and build
a complete circular barrier before the fire can reach it. This requires (x+ 2π(x+A))/v ≤ x
or (2π + 1) + 2πA/x ≤ v.

What happens in between 1 and 2π+ 1? In this paper we show that a speed v > 2.6144 is
sufficient to contain a fire, and that a speed v > 1.618 is necessary, at least for a reasonably
large class of strategies.

The first bound is established in the following way. We consider a conscientious fire
fighter who tries to contain the fire by building a barrier along its ever expanding frontier, at
her maximum speed v. Let us denote this strategy by FF (short for Follow Fire). A spiralling
barrier curve results. While the fighter keeps building the barrier, the fire is coming after her
along the outside of the barrier, as shown in Figure 1. Intuitively, the fighter can only win
this race, and contain the fire, if the last coil of the barrier hits the previous one.

In the hand-drawn example shown in Figure 2 this happens in the second round if
v = 4.1932; but for smaller values of v, more rounds may be necessary.

We have the following result.

I Theorem 1.
(i) Strategy FF contains the fire if v > vc ≈ 2.6144 holds.
(ii) As v decreases to vc, the number of rounds to containment tends to infinity.

Although strategy FF is rather simple, the proof of Theorem 1 is not. First, we establish
a recursive system of linear differential equations associated with each round. They can be
solved easily by standard methods, but the resulting recursions are complicated. Therefore,
we apply techniques from analytic combinatorics. We look at the generating function F (Z)
that arises from these recursions, and find a presentation of F (Z) as a ratio of analytic
functions. The denominator equals

ewZ − sZ = 0, (1)

where w = 2π+α
sinα and s = e(2π+α) cotα are functions of a real variable α which equals

cos−1(1/v) in our setting. Our targets are the coefficients of F (Z); they are linked to the
zeroes of equation 1.

SoCG’15

770 A Fire Fighter’s Problem

Figure 2 At speed v = 4.1932 the fire will be fully contained by the fire figther’s barrier in the
second round.

Let αc ≈ 1.1783 be the smallest positive solution of s = ew, corresponding to vc ≈ 2.6144.
For this value of α, equation 1 has a real zero Z = 1/w, as direct substitution shows. For
α > αc, corresponding to v > vc, this real zero splits into a complex zero z0 = ρ(cosφ+sinφ i)
and its conjugate, where φ ∈ (0, π), and no real zeroes of equation 1 remain.

At this point, part (i) of Theorem 1 follows from a Theorem of Pringsheim’s in complex
function theory; see Section 6. To find out how many rounds it takes to contain the fire, we
apply Cauchy’s residue theorem and find that their number is ≈ π/φ. Since φ, the angle of
the complex root z0, tends to zero as z0 becomes real for α → αc, part (ii) of Theorem 1
also follows. How j, the number of rounds, depends on v is shown in Figure 3. For speeds
v ≥ 3 strategy FF needs at most 4 rounds to contain the fire.

In addition to the above upper bound we prove the following lower bound. To this end we
restrict ourselves to the class of “spiralling” strategies that visit the four coordinate half-axes
in cyclic order, and at increasing distances from the origin. Note that strategy FF is spiralling
even though the fighter’s distance to the origin may be decreasing: the barrier’s intersection
points with any ray from 0 are in increasing order since the curve does not self-intersect.
Here we have the following.

I Theorem 2. In order to enclose the fire, a spiralling strategy must be of speed

v >
1 +
√

5
2 ≈ 1.618,

the golden ratio.

The proof of Theorem 2 is given in Section 7. An (almost) complete proof of Theorem 1 (i)
is given in the main text; only for some details we refer to the technical report of this paper;
see [7]. Proving part (ii) of Theorem 1 requires considerably more work; we sketch only
the essential ideas in the main text. A complete proof of (i) and (ii), which can be read
independently of the main text, is given in the Appendix of the technical report [7].

R. Klein, E. Langetepe, and Ch. Levcopoulos 771

Figure 3 The approximate number of rounds needed by strategy FF, as a function of speed v.

2 The barrier curve generated by strategy FF

We would like to show how the barrier curve shown in Figure 2 has been developed. A more
detailed view of the starting situation of Figure 2 from p0 to p2 is depicted in Figure 4.

Consider some point p in the first round between p0 and p1 as shown in Figure 4. If α
denotes the angle between the fighter’s velocity vector at p and the ray from 0 through p,
the fighter advances at speed v cosα away fromat 0. This implies v cosα = 1 because the
fire expands at unit speed and the fighter stays on its frontier, by definition of strategy FF.
Consequently, the barrier curve between p0 and p1 is part of a logarithmic spiral centered
at 0, whose tangents forms the angle α = cos−1(1/v) with the extensions of the rays from 0
through p.

In polar coordinates a logarithmic spiral (with excentricity α) is defined by (ϕ,A · eϕ cotα)
and the barrier curve from p0 to p1 is represented by the interval ϕ ∈ [0, 2π]. The curve
length of the logarithmic spiral of excentricity α around origin O between two points C
and D appearing on the spiral in this order is given by 1

cosα (|DO| − |CO|), where |CO| and
|DO| denote the distances from D and C to the origin 0, respectively. Thus, for example the
curve length from p0 to p1 is given by l1 = A

cos(α) · (e
2π cot(α) − 1).

From point p1 on, the geodesic shortest paths π(p) from 0 to p, along which the fire
spreads, start with segment 0p0, followed by segment p0p, until the fighter reaches the point
p2 on the barrier’s tangent to p0; see Figure 4. Thus, by the previous argument, between
p1 and p2 the barrier curve constructed by FF is part of a logarithmic spiral of excentricity
α now centered at p0. This spiral starts at p1 with distance A′ = A(e2π cot(α) − 1) from
its origin p0, and the curve length from p1 to p2 is given by l′2 = A′

cos(α) (eα cot(α) − 1) =
A

cos(α) (e2π cot(α) − 1)(eα cot(α) − 1). This means that the overall curve length from p0 to p2 is
given by l1 + l′2 = l2 = A

cos(α) (e2π cot(α) − 1)eα cot(α).
How does the curve constructed by FF develop from p2 on? We turn over to Figure 2.

From p2 on, the geodesic shortest path π(p) from 0 to fighter’s current position p starts
wrapping around the existing spiral part of the curve, beginning at p0. The last edge of π(p)
ending at p will be called the free string in the sequel. The fire will be contained if and only
if the free string ever attains length 0.

Thus, after the first round the curve is drawn by endpoint p of the free string. But unlike
an involute, the string is not normal to the outer layer. Rather, its extension beyond p forms
the angle α with the barrier’s tangent at p. This causes the string to grow in length by cosα

SoCG’15

772 A Fire Fighter’s Problem

Figure 4 The first part of the barrier curve constructed by FF consists of two different logarithmic
spirals of excentricity α where α = cos−1(1/v) holds. Namely, a logarithmic spiral around the origin
0 from p0 to p1 and a logarithmic spiral around p0 from p1 to p2. At p2 the fire figther’s curve starts
wrapping around the constructed barrier as show in Figure 2.

for each unit drawn. At the same time, part of the string gets wrapped around the inner
layer. It is this interplay between growing and shrinking that we will investigate below. Note
that the curve starting at p2 is no longer a logarithmic spiral.

As the fighter is building the barrier at speed 1/ cosα, the fire is coming after her at unit
speed along the outside of the barrier, as indicated in Figure 1. Thus, each barrier point p is
caught by fire twice, once from the inside, when the fighter passes through p, and a second
time from the outside, if the fire is not stopped before.

3 Linkages

That the innermost part of the curve consists of two different spiral segments, around 0 and
around p0, carries over to subsequent layers. The structure of the curve can be described as
follows. Let

l1 = A

cos(α) · (e
2π cot(α) − 1)

l2 = A

cos(α) · (e
2π cot(α) − 1)eα cot(α)

denote the curve lengths from p0 to p1 and p2, respectively, as derived before in Section 2.
For l ∈ [0, l1] let F0(l) denote the segment connecting 0 to the point of curve length l; see
the sketch given in Figure 5.

At the endpoint of F0(l) we construct the tangent and extend it until it hits the next layer
of the curve, creating a segment F1(l), and so on. This construction gives rise to a “linkage”
connecting adjacent layers of the curve. Each edge of the linkage is turned counterclockwise
by α with respect to its predecessor. The outermost edge of a linkage is the free string

R. Klein, E. Langetepe, and Ch. Levcopoulos 773

0 p0 p1

p2F0(l)

F1(l)

F2(l)

φ1

φ0

φ2

l1

l2

A

l

α

F2(l1)

F1(l1) =φ1(l1)

= φ2(l1)

p

F3(0) = φ2(l2)

Figure 5 A sketch of the general situation. Two types of linkages defining subsegments of the
curve.

mentioned above. As parameter l increases from 0 to l1, edge F0(l), and the whole linkage,
rotate counterclockwise. While F0(0) equals the line segment from the center to p0, edge
F0(l1) equals segment 0p1.

Analogously, let l ∈ [l1, l2], and let φ0(l) denote the segment from p0 to the point at curve
length l from p1. This segment can be extended into a linkage in the same way. We observe
that

Fj+1(l1) = φj+1(l1) (2)
Fj+1(0) = φj(l2) (3)

hold. But initially, we have F0(l) = A+ cos(α) l and φ0(l) = cos(α) l, so that F0(l1) 6= φ0(l1).
Clearly, each point on the curve can be reached by a linkage, as tangents can be constructed
backwards. We refer to the two types of linkages by F -type and φ-type.

4 Analysis

A detailed proof of the following general facts is given in the Appendix of the technical report
[7] in Lemma 7 and 8. We present the intuitive ideas here.

As the endpoint of a taut string of length F , tangent to a smooth curve C at some point
p, is moved in direction α, as shown in Figure 6 (i), the length l of the wrapped string grows
at rate r sinα/F , where r denotes the curve’s radius of curvature at p. (Intuitively, the more
perpendicular motion w acts on the string and the larger the osculating circle, the more
of the string gets wrapped; but the larger F , the smaller is the effect of the perpendicular
motion.)

The center of the osculating circle at p is known to be the limit of the intersections of the
normals of all points near p with the normal at p. If, instead of the normals, we consider the
lines turned by the angle π/2− α, their limit intersection point has distance r sinα from p;
an example is shown in Figure 6 (ii) for the case where curve C itself is a circle.

SoCG’15

774 A Fire Fighter’s Problem

α

FC

r

l

α

r r sinα

(i) (ii)

p

p

π/2− α

w

Figure 6 In (i), the wrapped string grows at a rate of r sinα/F . In (ii), the turned normals meet
at a point r sinα away from p.

For the barrier curve, the limit intersection point of the turned normals near p is just the
tangent point from p to the previous layer of the curve. If we denote by Li the length of
the barrier curve from p0 to the outer endpoint of the ith edge of an F -linkage, the above
observations imply the following for Lj−1, Fj and Fj−1 as functions of Lj .

L′j−1

L′j
=

L′j−1

1 = r sinα
Fj

= Fj−1

Fj
.

Now we change the former variable Lj to Lj(l) for l ∈ [0, l1] introduced in Section 3.
Observing that the derivatives of the inner functions cancel out we obtain

I Lemma 3.

L′j−1(l)
L′j(l)

= Fj−1(l)
Fj(l)

.

By multiplication, Lemma 3 generalizes to non-consecutive edges. Thus,

Fj(l)
F0(l) =

L′j(l)
l′

= L′j(l) (4)

holds.
On the other hand, a point p on the jth layer of the barrier curve has geodesic distance

Lj−1(l) + Fj(l) from the initial fire of radius A, and the fire arrives at p (from the inside)
simultaneously with the fighter, who has then completed a barrier of length Lj(l) at speed
1/ cosα. This yields, Fj(l) + Lj−1(l) = cosαLj(l) and after taking derivatives,

F ′j(l) + L′j−1(l) = cosαL′j(l). (5)

From 5 and 4 we obtain a linear differential equation for Fj(l),

F ′j(l) −
cos(α)
F0(l) Fj(l) = − Fj−1(l)

F0(l) .

R. Klein, E. Langetepe, and Ch. Levcopoulos 775

The textbook solution for y′(x) + f(x)y(x) = g(x) is

y(x) = exp(−a(x))
(∫

g(t) exp(a(t)) dt+ κ

)
,

where a =
∫
f and κ denotes a constant that can be chosen arbitrarily. In our case,

a(l) =
∫
− cos(α)
A+ cos(α) l = − ln(F0(l))

because of F0(l) = A+ cos(α) l, and we obtain

Fj(l) = F0(l)
(
κj −

∫
Fj−1(t)
F 2

0 (t) dt
)
. (6)

Next, we consider a linkage of φ-type, for parameters l ∈ [l1, l2], and obtain analogously

φj(l) = φ0(l)
(
λj −

∫
φj−1(t)
φ2

0(t) dt
)
. (7)

Now we determine the constants κj , λj such that the solutions 6 and 7 describe a contiguous
curve. To this end, we must satisfy conditions 2 and 3.

We define κ0 := 1 and

κj+1 := φj(l2)
F0(0) +

∫
Fj(t)
F 2

0 (t)dt|l=0

so that 6 becomes

Fj+1(l) = F0(l)
(φj(l2)
F0(0) −

∫ l

0

Fj(t)
F 2

0 (t) dt
)
,

which, for l = 0, yields Fj+1(0) = φj(l2) (condition 3).
Similarly, we set λ0 := 1 and

λj+1 := Fj+1(l1)
φ0(l1) +

∫
φj(t)
φ2

0(t)dt|l=l1

so that 7 becomes

φj+1(l) = φ0(l)
(Fj+1(l1)
φ0(l1) −

∫ l

l1

φj(t)
φ2

0(t) dt
)
,

and for l = l1 we get Fj+1(l1) = φj+1(l1) (condition 2).
For simplicity, let us write

Gj(l) := Fj(l)
F0(l) and χj(l) := φj(l)

φ0(l) , (8)

which leads to

Gj+1(l) = φ0(l2)
F0(0) χj(l2) −

∫ l

0

Gj(t)
F0(t) dt (9)

χj+1(l) = F0(l1)
φ0(l1) Gj+1(l1) −

∫ l

l1

χj(t)
φ0(t) dt. (10)

In order to find out if the fire fighter is successful we only need to check the values of Fj(l)
at the end of each round, as the following lemma shows.

SoCG’15

776 A Fire Fighter’s Problem

I Lemma 4. The curve encloses the fire if and only if there exists an index j such that
Fj(l1) ≤ 0 holds.

Proof. The free string shrinks to zero if and only if there exist an index j and argument l
such that Fj(l) ≤ 0 or φj(l) ≤ 0. Clearly, Gj and Fj have identical signs, as well as χj and
φj do. Suppose that Gj > 0 and Gj+1(l) = 0, for some j and some l ∈ [0, l1]. By 9, function
Gj+1 is decreasing, therefore Gj+1(l1) ≤ 0. Now assume that Gi > 0 holds for all i, and
that we have χj−1 > 0 and χj(l) = 0 for some j and some l ∈ [l1, l2]. By 10 this implies
χj(l2) ≤ 0, and from 9 we conclude Gj+1 ≤ 0, in particular Gj+1(l1) ≤ 0. J

5 Recursions

The integrals in 9 and 10 disappear by iterated substitution. This process is not entirely
trivial, and the calculations can be found in Section C in the Appendix of the technical
report [7]. After plugging in values, one obtains cross-wise recursions

Fj(l1) = F0(l1)
F0(0)

j∑
ν=0

(−1)ν

ν!

(2π
sinα

)ν
φj−1−ν(l2) (11)

φj(l2) = φ0(l2)
φ0(l1)

j∑
ν=0

(−1)ν

ν!

(α

sinα

)ν
F̂j−ν(l1) (12)

where φ−1(l2) := F0(0), F̂0(l1) := φ0(l1), and F̂i+1(l1) := Fi+1(l1).
In order to solve the cross-wise recursions 11 and 12 for the numbers Fj(l1) we define the

formal power series

F (X) :=
∞∑
j=0

Fj X
j and φ(X) :=

∞∑
j=0

φj X
j

where Fj := Fj(l1) and φj := φj(l2), for short. From 11 we obtain

F (X) = F0

F0(0) e
− 2π

sinαX
(
X φ(X) + F0(0)

)
, (13)

and from 12,

φ(X) = φ0

φ0(l1) e
− α

sinαX
(
X F (X)− F0 + φ0(l1)

)
; (14)

both equalities can be easily verified by computing the products and comparing coefficients.
Now we substitute 14 into 13, solve for F (X), divide both sides by F0 and expand by e 2π+α

sinα

to obtain
F (X)
F0

= evX − r X

ewX − sX
, (15)

where v, r, w, s are the following functions of α:

v = α

sinα and r = eα cotα

w = 2π + α

sinα and s = e(2π+α) cotα. (16)

Note that here the parameter v does no longer represent the speed parameter, the speed is
given by 1

cosα .
It is possible to expand the inverse of the denominator in 15 into a power series. This

leads to interesting expressions for the Fj ; but how to derive their signs seems not obvious.

R. Klein, E. Langetepe, and Ch. Levcopoulos 777

6 Singularities and Residues

Now we consider the right hand side of (15) as a function

f(z) := evz − r z

ewz − s z
, (17)

of a complex variable, z. Both numerator and denominator of f are analytic on the complex
plane. Thus, singularities of f can only arise from zeroes of the denominator ewZ − sZ. This
equation has received some attention in the area of delay differential equations [2]. As in the
Introduction, let αc ≈ 1.1783 be the unique solution of s = ew in (0, π/2], corresponding to
speed vc = 1/ cosαc ≈ 2.6144.

I Lemma 5. For α = αc, equation ewZ − sZ has a real root 1/w ≈ 0.1238. For α > αc
(corresponding to speed v > vc), this root splits into a complex conjugate pair z0 and z0, whose
absolute values are < 0.31. All other zeroes of numerator and denominator in 15 are strictly
complex, and of absolute values ≥ 1. Function f(z) in 17 has only poles as singularities.

For a proof of Lemma 5 see Lemmata 10 to 13 in the Appendix of the technical report [7].
From now on we assume that α > αc holds. Now we would like to make use of a general

Theorem concerning the sign of coefficients of power series within their convergence radius,
in order to prove the first part of Theorem 1.

I Theorem 6 (Pringsheim’s Theorem (see for example [4, p. 240]). Let h(z) =
∑∞
n=0 anz

n

be a power series with finite convergence radius R. If h(z) has non-negative coefficients, aj,
then point z = R is a singularity of h(z).

Proof of Theorem 1 (i). Let α > αc. Because of the singularities z0 and z0, the power
series expansion of f(z) in 17 has a finite radius, R, of convergence. If all coefficients Fi
were ≥ 0 then, by Pringsheim’s Theorem function f(z) would have a singularity at R. But,
by Lemma 5, there can be only complex singularities. Thus, there must be coefficients Fj < 0,
proving that the fire fighter succeeds. J

Now we sketch the proof of Theorem 1(ii). A complete version can be found in the
Appendix Sections E and F of the technical report [7]. This will also lead to another, and
constructive, proof of part (i) of Theorem 1.

We are using a technique described in [4, p. 258 ff.]. Let Γ denote the circle of radius 0.9
around the origin. By Cauchy’s Residue Theorem,

1
2π i

∫
Γ

f(u)
uj+1 du =

∑
z inside Γ

res(z)

holds, where the sum is over all residues of the poles of f(z)
zj+1 encircled by Γ. By Lemma 5,

these poles are z0, z0, and 0, which has residue Fj/F0. Computing the residues of z0, z0
yields

Fj
F0

= sin(jφ+ p) |z0|−j

|z0 − x0|
Θ(1) + 1

2π i

∫
Γ

f(u)
uj+1 du, (18)

where z0 = ρ(cosφ+ sinφ i), with 0 < φ < π, and x0 = (1/w, 0) is the limit of z0 as αc tends
to α. The rightmost term’s absolute value is upper bounded by the maximum of |f(z)| on Γ,
times 0.9−j ; its influence turns out to be negligible.

SoCG’15

778 A Fire Fighter’s Problem

p0

p1

x
x

y

pi−1

pi

pi+1

A(i) (ii)

AA

Figure 7 Proof of Lemma 7.

The oscillation sin(tφ+ p) has wavelength 2π/φ. For j near its negative minimum, the
value of 18 becomes negative. This proves that the fire fighter will succeed in containing the
fire in round j, for some j ≤ c · 2π/φ (in fact, one can choose c = 1). As α decreases towards
αc, both φ and phase p tend to zero, but

lim
α→αc

p

φ
≈ 1.315

holds. This value denotes how much the graph of sin(tφ+p) is shifted to the left, as compared
to sin t. We see that j must increase through almost the whole positive halfwave of sin(tφ+p)
before negative values can occur. Since wavelength 2π/φ goes to infinity, so does the number
of rounds the fire fighter needs. This completes the proof of Theorem 1. All details are given
in the Appendix of the technical report [7].

7 Lower bound

Let us recall that a barrier building strategy S is spiralling if it starts on the boundary of a
fire of radius A, and visits the four coordinate half-axes in counterclockwise order and at
increasing distances from the origin.

Now let S be a spiralling strategy of maximum speed v ≤ (1 +
√

5)/2 ≈ 1.618, the golden
ratio. We can assume that S proceeds at constant speed v. Let p0, p1, p2, . . . denote the
points on the coordinate axes visited, in this order, by S. The following lemma shows that S
cannot succeed because there is still fire burning outside the barrier on the axis previously
visited.

I Lemma 7. Let A be the initial fire radius. When S visits point pi+1, the interval [pi, pi +
sign(pi)A] on the axis visited before is on fire.

Proof. The proof is by induction on i. Suppose strategy S builds a barrier of length x

between p0 and p1, as shown in Figure 7 (i). During this time the fire advances x/v along
the positive X-axis, so that A+ x/v ≤ p1 ≤ x must hold, or

x

v
≥ 1

v − 1A > A;

the last inequality follows from v < 2. Thus, the fire has enough time to move a distance
of A from p0 downwards along the negative Y -axis.

R. Klein, E. Langetepe, and Ch. Levcopoulos 779

Figure 8 A completion time optimal single closed loop solution for v ≈ 6.25 starts with a line
segment outside the fire and ends with a logarithmic spiral along the boundary of the fire. A single
loop solution exists only for v ≥ 3.7788 . . .

Now let us assume that strategy S builds a barrier of length y between pi and pi+1, as
shown in Figure 7 (ii). By induction, the interval of length A below pi−1 is on fire. Also,
when the fighter moves on from pi, there must be a burning interval of length at least A+x/v

on the positive Y -axis which is not bounded by a barrier from above. This is clear if pi+1 is
the first point visited on the positive Y -axis, and it follows by induction, otherwise. Thus,
we must have A+ x/v + y/v ≤ pi+1 ≤ y, hence

y

v
≥ 1

v − 1A + 1
v(v − 1)x > A+ x,

since the assumption on v implies v2 ≤ v + 1. This shows that the fire can crawl along
the barrier from pi−1 to pi, and a distance A to the right, as the fighter moves to pi+1,
completing the proof of Theorem 2. J

8 Conclusions

A number of interesting questions arise. Are there strategies that can contain the fire at a
speed v < vc? How about starting points away from the fire? Given a speed v ≥ vc, there
can be many barrier curves that contain a fire. Which one should the figther choose, to
minimize the time to completion, or the area burned? Is it possible to generalize to fires of
more realistic shapes, as they result under the influence of wind as for example suggested
in [5]? These problems define a new and nice area in the field of path planning in dynamic
environments, where obstacle shapes depend on the agent’s actions.

For practical purposes, one would wish for a strategy that contains the fire in a single
closed round. Also, starting points away from the fire could be allowed. If the fighter is free
to pick her starting point she can contain the fire in a single closed round if, and only if,
her speed is at least v ≥ 3.7788 . . . In this case the shortest possible (i.e., completion time
optimal) solution consists of a line segment q0q1 followed by a segment of a logarithmic spiral

SoCG’15

780 A Fire Fighter’s Problem

of excentricity α, where v = 1
cos(α) . See Figure 8 for an example of the time optimal single

closed loop for α = 1.41 and v ≈ 6.25.
A single closed loop solution only exists for

α > arctan
(

3
2π

W
(3

2π
)) ≈ 74.66◦

in which W denotes Lambert’s W function [1] defined by the functional equationW (x) eW (x) =
x. This gives α ≥ 1.3029 . . . or v ≥ 3.7788 . . .

Acknowledgements. We would like to thank the anonymous referees for their valuable
comments and suggestions.

References
1 R.M. Corless and G.H. Gonnet and D.E.G. Hare and D. J. Jeffrey. Lambert’s W function

in Maple. The Maple Technical Newsletter, Issue 9, pp. 12–22, 1993.
2 C.E. Falbo. Analytic and Numerical Solutions to the Delay Differential Equation y′(t) =

α y(t − δ). Joint Meeting of the Northern and Southern California Sections of the MAA,
San Luis Obispo, CA, 1995. Revised version at http://www.mathfile.net

3 S. Finbow and G. MacGillivray. The Firefighter Problem: A survey of results, directions
and questions. Australasian J. Comb, 43, pp. 57-78, 2009.

4 P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge, 2009.
5 Food and Agriculture Organization of the United Nations (FAO). International Handbook

on Forest Fire Protection.
http://www.fao.org/forestry/27221-06293a5348df37bc8b14e24472df64810.pdf

6 R. Klein, Ch. Levcopoulos, and A. Lingas. Approximation algorithms for the geometric
firefighter and budget fence problems. in A. Pardo and A. Viola (eds.) LATIN 2014, Mon-
tevideo, LNCS 8392, pp. 261–272.

7 R. Klein, E. Langetepe, and Ch. Levcopoulos. A Fire Fighter’s Problem.
Technical Report, http://arxiv.org/abs/1412.6065, 2014

http://www.mathfile.net
http://www.fao.org/forestry/27221-06293a5348df37bc8b14e24472df64810.pdf
http://arxiv.org/abs/1412.6065

Approximate Geometric MST Range Queries
Sunil Arya∗1, David M. Mount†2, and Eunhui Park2

1 Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong, China
arya@cse.ust.hk

2 Department of Computer Science
University of Maryland
College Park, Maryland 20742, USA
{mount,ehpark}@cs.umd.edu

Abstract
Range searching is a widely-used method in computational geometry for efficiently accessing local
regions of a large data set. Typically, range searching involves either counting or reporting the
points lying within a given query region, but it is often desirable to compute statistics that better
describe the structure of the point set lying within the region, not just the count.

In this paper we consider the geometric minimum spanning tree (MST) problem in the context
of range searching where approximation is allowed. We are given a set P of n points in Rd. The
objective is to preprocess P so that given an admissible query region Q, it is possible to efficiently
approximate the weight of the minimum spanning tree of P ∩Q. There are two natural sources
of approximation error, first by treating Q as a fuzzy object and second by approximating the
MST weight itself. To model this, we assume that we are given two positive real approximation
parameters εq and εw. Following the typical practice in approximate range searching, the range
is expressed as two shapes Q− and Q+, where Q− ⊆ Q ⊆ Q+, and their boundaries are separated
by a distance of at least εq · diam(Q). Points within Q− must be included and points external to
Q+ cannot be included. A weightW is a valid answer to the query if there exist point sets P ′ and
P ′′ such that P ∩Q− ⊆ P ′ ⊆ P ′′ ⊆ P ∩Q+ and wt(MST(P ′)) ≤W ≤ (1 + εw) · wt(MST(P ′′)).

In this paper, we present an efficient data structure for answering such queries. Our approach
uses simple data structures based on quadtrees, and it can be applied whenever Q− and Q+ are
compact sets of constant combinatorial complexity. It uses space O(n), and it answers queries in
time O

(
logn + 1/(εqεw)d+O(1)). The O(1) term is a small constant independent of dimension,

and the hidden constant factor in the overall running time depends on d, but not on εq or εw.
Preprocessing requires knowledge of εw, but not εq.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Geometric data structures, Minimum spanning trees, Range searching,
Approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.781

1 Introduction

Range searching is a fundamental tool in computational geometry. Given a set P of n points
in Rd, the objective is to preprocess the points into a data structure so that, given any

∗ Research supported by the Research Grants Council of Hong Kong, China under project number
16200014.
† Research supported by NSF grant CCF-1117259 and ONR grant N00014-08-1-1015.

© Sunil Arya, David M. Mount, and Eunhui Park;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 781–795

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.781
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

782 Approximate Geometric MST Range Queries

(a) (b) (c)

Q
Q+

Q−

εq · diam(Q)

Figure 1 (a) Euclidean MST, (b) MST query, and (c) approximate MST query.

range Q from some class of admissible ranges (e.g., axis-aligned rectangles, balls, halfspaces,
simplices), it is possible to efficiently count or report the points of P that lie within Q. Range
searching is a powerful method for exploring local regions of a large geometric data set, and
it finds many applications in science and engineering.

In many of these applications it is desirable to obtain more detailed information than
simple counts. In this paper we explore the question of whether it possible to compute more
interesting properties of the subset of points lying within a range, properties that depend
on the geometric structure of the points. There are numerous statistics that describe the
structure of a point set. Often, such properties are based on graph structures that are
implicitly defined by the points set. Perhaps the most fundamental example of such a graph
is the Euclidean minimum spanning tree (see Fig. 1(a)). Given a point set P in a Euclidean
space, let MST(P) denote P ’s minimum weight spanning tree, and let wt(MST(P)) denote
its total edge weight. Given a query range Q, an MST query returns wt(MST(P ∩Q)) (see
Fig. 1(b)). The MST weight (and more generally the distribution of its edge weights) can
provide useful information about the density properties of a point set.

Because of the high computational complexities of exact range searching and computing
exact geometric spanning trees in multi-dimensional spaces, it is natural to consider the
problem in an approximate context. We assume that we are given two positive real parameters
εq and εw, which represent the allowable errors in approximating the query shape and the
MST weight, respectively. A range is modeled as a “fuzzy” region of space, so that points
near the range’s boundary may be included or excluded at the algorithm’s discretion. To
make this more formal, an εq-approximate range Q is presented as a pair of compact bodies
Q− and Q+ (called the inner range and outer range, respectively), where Q− ⊆ Q ⊆ Q+

and the boundaries of Q− and Q+ are separated by a distance of at least εq · diam(Q). In
standard approximate range searching, the objective is to compute the size (or generally
weight) of any set P ′, such that P ∩Q− ⊆ P ′ ⊆ P ∩Q+. Thus, a natural formulation1 would
be to return any weight W such that

wt(MST(P ′)) ≤ W ≤ (1 + εw) · wt(MST(P ′)), where P ∩Q− ⊆ P ′ ⊆ P ∩Q+.

Because we amortize the cost of our result against the weight of the MST in a slightly larger

1 Note that the “obvious” formulation of returning a weight W such that wt(MST(P ∩ Q−)) ≤ W ≤
(1+εw) ·wt(MST(P ∩Q+)) is not well defined because (in dimensions three and higher) there exist point
sets such that, even for spherical ranges, wt(MST(P ∩Q−)) > wt(MST(P ∩Q+)). The phenomenon is
related to the effect of decreasing the MST weight through the addition of Steiner points.

S. Arya, D.M. Mount, and E. Park 783

region, we introduce two sets in our formulation. In particular, we return a weight W such
that

wt(MST(P ′)) ≤ W ≤ (1 + εw) · wt(MST(P ′′)), where P ∩Q− ⊆ P ′ ⊆ P ′′ ⊆ P ∩Q+.

We refer to this as an (εq, εw)-approximate MST query.
Our main result is given in the following theorem. For our purposes, a range Q ⊆ Rd is

admissible if it is compact and has the property that in O(1) time it is possible to determine
for any hypercube b: (1) whether b is contained within Q+ and (2) whether b is disjoint
from Q−. Thus, the inner and out ranges need not be convex, but should be of constant
combinatorial complexity. To simplify the complexity bounds (which are stated in full detail
at the end of Section 3.3), we use the notation O∗ to ignore factors of the form 1/εO(1),
where the O(1) term does not depend on d (and is roughly 2 in our case).

I Theorem 1. Given a set P of n points in Rd and a weight-approximation parameter
εw > 0, P can be preprocessed into a data structure of space O(n) such that given any
admissible εq-approximate query Q, it is possible to answer (εq, εw)-approximate MST queries
in time O∗(logn+ 1/(εqεw)d).

Preprocessing time will be discussed in the full version of the paper, where we show
that (ignoring logarithmic factors) the data structure can be built in time Õ(n/εd/2). While
preprocessing assumes knowledge of εw, it is interesting to note that the space bounds do not
depend on εw. In [5] it is shown that answering εq-approximate range counting queries even
for hypercube ranges by searching a partition tree requires Ω(logn+ 1/εd−1

q) time. Thus,
ignoring the εw term, the query time is not far from optimal assuming an approach based on
partition trees (as is the approach presented here).

The notion of extracting more complex information than simple counts (or more generally
evaluating sums over a commutative semigroup) in range searching has been studied before.
One broad class of results involve extensions of aggregate range searching [19, 1]. Papadias
et al. [16] and Shan et al. [18] both present data structures that answer various types of
nearest neighbor queries over ranges. Nekrich and Smid [15] present a generic data structure
that returns an ε-coreset for orthogonal query ranges in Rd. Brass et al. [9] present data
structures for answering orthogonal range queries in R2 involving extent measures of the
points lying within a query range, including width, area and perimeter of the convex hull,
and the smallest enclosing disk. MST queries are particularly challenging because, due to
the requirement that the MST must be connected, it is not possible to merely aggregate
information in order to answer the query.

Extracting structural information has also been explored in a temporal setting in the
work of Bannister et al. [8, 7]. In [8] a collection of pairwise relational events are given with
time stamps, and it is shown how to extract graph properties efficiently for the events lying
within a given query time interval. In [7], this is extended to geometric structures for points
with time stamps. Because we are interested in constructing information about the MST
in sublinear time, our methods bear similarity to sublinear time algorithms for computing
geometric spanning trees, as exemplified in the work of Czumaj, Sohler, and others [12, 13]
and Frahling et al. [14]. We note, however, that in contrast to these algorithms that are
randomized and return only an approximation to the weight (not the edges), our query
algorithm is deterministic and implicitly provides a certificate in the form of a connected
graph (possibly containing cycles) that spans the point set P ′ and satisfies the stated weight
requirements. Given this certificate, it is possible to enumerate or randomly sample from the
edges of this graph.

SoCG’15

784 Approximate Geometric MST Range Queries

Our approach borrows some standard techniques for computing approximate geometric
spanning trees, such as quadtrees, well-separated pair decompositions (WSPDs), bottom-up
construction, and randomized shifting (see, e.g., [11, 4, 2]). Due to the special nature of our
problem, we have developed a number of new twists on these ideas. For example, in order to
avoid problems with bad quadtree alignments, we develop a local variant of the well-known
technique of randomly shifting the coordinate system [3]. We also develop a more efficient
method for computing the closest pair of points in the pairs of a WSPD, which exploits the
fact that (in our context) the approximation error can be amortized against the weight of
the MST within the dumbbell heads of the WSPD.

2 Preliminaries

In this section we provide basic definitions of a number of concepts that will be used
throughout the paper.

2.1 Minimum Spanning Trees

Consider a finite point set P ∈ Rd. Given two points p, q ∈ Rd, we denote their Euclidean
distance by ‖pq‖. Formally, the minimum spanning tree of P , denoted MST(P), is any
minimum spanning tree of the complete graph on P whose edge weights are the interpoint
distances. (Our results can be extended easily to any Minkowski distance, with a slight
adjustment in the constant factors.) The edges of MST(P) are line segments, and we will
often treat the relevant portions of the MST as a finite set of line segments. Define the
weight of any such set S of segments, denoted wt(S), to be the sum of the segment lengths.

Throughout, we will need to refer to various restrictions of the edges/weight of the MST
to a region of space. We use the term global MST to refer to MST(P). Given subsets
P ′, P ′′ ⊆ P , define the induced MST on (P ′, P ′′), denoted MST(P)� (P ′, P ′′), to be the
subset of global MST edges that have one endpoint in P ′ and one in P ′′. Let MST(P)�P ′
denote MST(P)�(P ′, P ′).

Given a closed region of space b (which for us will be a hypercube or the difference of two
nested hypercubes), there are two natural ways of restricting MST(P) to b, depending on
whether we include edges entirely or partially. Define MST(P)�(P ∩ b) to be the subset of the
edges of MST(P) both of whose endpoints lie within b (see Fig. 2(b)), and define MST(P)�b
to be intersection of MST(P) (as a set of segments) with b (see Fig. 2(c)). Observe that
MST(P)�(P ∩ b) is a subgraph of MST(P ∩ b). When P is understood from context, define
the local connectors of b, denoted ∆(b), to be the segments of MST(P ∩ b) that are not in
MST(P)�(P ∩ b) (highlighted in Fig. 2(d)).

Our algorithm will classify edges of the MST as being “short” or “long,” and process
each group differently. Given any γ > 0, define the γ-restricted MST, denoted MSTγ(P), to
be the subgraph of MST(P) consisting of edges of weight at most γ, and define MST>γ(P)
similarly but for edges of weight greater than γ.

We will organize the edges of the MST using a quadtree decomposition. In general, a
uniform grid of hypercubes overlaid on P naturally induces a graph whose vertices are the
grid cells and two cells (b, b′) are connected by an edge if MST(P)�(P ∩ b, P ∩ b′) is nonempty.
(Note that this graph may contain cycles and self-loop edges.) It is well known that the MST
of any finite point set P in Rd has constant degree (depending on the dimension), and it is
easy to show that this is true for this induced graph as well. We omit the proof.

S. Arya, D.M. Mount, and E. Park 785

(b)(a)

b

MST(P) MST(P) � (P ∩ b) MST(P) � b

(c)

b

MST(P ∩ b)

(d)

b

Figure 2 Geometric minimum spanning tree definitions.

I Lemma 2. Given a finite point set P in Rd and a uniform grid of hypercubes, there exists
a constant c (depending only on the dimension d) such that the MST induced on the grid is
of degree at most c.

2.2 BBD-trees and Blocks
Our solution will be based on a balanced variant of a quadtree, called a BBD-tree. We
refer the reader to [6] for details, but informally, a BBD-tree is based on a quadtree-like
subdivision of space, which introduces a decomposition operator, called shrinking, that allows
the data structure to zoom into regions of dense concentration. The relevant properties of
the BBD-tree are given in the following lemma, which was proved by Arya et al. [6].

I Lemma 3 (BBD-tree Construction and Packing Lemma). Given an n-element point set
P in Rd, in O(n logn) time it is possible to construct a BBD-tree of size O(n) and height
O(logn). Furthermore, the number of cells of this tree with pairwise disjoint interiors, each
of side length at least s, that intersect a ball of radius r is at most O((1 + r/s)d).

For the purposes of processing queries, it will be convenient to conceptualize the subset
of points contributing to the query as union of the points lying within a subset of sufficiently
small disjoint quadtree boxes all of equal side length. To make this more formal, we introduce
the notions of mini-blocks and micro-blocks.

For a sufficiently small constant c (specified later), define ε = c · εq · diam(Q). We will
assume that c is chosen so that ε is power of two and c ≤ 1/2d. Define a mini-block to be
a nonempty quadtree box of side length ε. Let Bε(Q) denote the set of mini-blocks that
overlap Q− (the shaded squares of Fig. 3(a)). (This set depends on P and εq as well, but
since P and εq will be fixed throughout, we omit reference to them.) Also, define B+

ε (Q)
to be the set of quadtree boxes of side length ε such that at least one of its 3d neighboring
blocks is in Bε(Q) (all the squares of Fig. 3(a)). A box of side length ε has diameter at most
dε ≤ (εq/2) · diam(Q), and therefore, all the boxes of Bε(Q) and B+

ε (Q) lie within Q+.
An important part of our construction will involve expanding and shifting mini-blocks.

Each mini-block b of Bε(Q) will be associated with a hypercube that contains b and whose
side length is twice as large as b’s (see Fig. 3(b)). We call this the shifted block and denote it
by ⇀

b . Observe that each shifted block lies within the union of the 3d neighboring blocks of b,
and therefore each shifted block lies within B+

ε (Q). For a sufficiently small positive constant
c′ (specified later), define δ = c′εwε. Again, we will assume that c′ is chosen so that δ is a
power of two. Define a micro-block (associated with Q) to be a nonempty quadtree box of
side length δ. Our preprocessing algorithm will construct ⇀b so that it is aligned with the

SoCG’15

786 Approximate Geometric MST Range Queries

(c)(b)

b ⇀
b

ε
δ

⇀
b

(a)

ε

Q−Q+

Q−
Q+

Q−
Q+

Figure 3 (a) Mini-blocks (all blocks are in B+
ε (Q) and shaded blocks are in Bε(Q)), (b) a

mini-block b and its shifted block ⇀
b , and (c) the micro-blocks associated with b.

quadtree grid of side length δ. Define Bδ(b) to be the set of micro-blocks lying within ⇀
b (see

Fig. 3(c)), and define Bδ(Q) to be the union of these micro-blocks over all b ∈ Bε(Q).
Assuming the existence of these quantities for now, define P (Q) to be the subset of P

that is covered by all the shifted miniblocks, and similarly define P+(Q) to be the subset of
P lying within the blocks of B+

ε (Q). The following results are straightforward consequences
of our definitions. (Due to space limitations, proofs have been omitted from this version.)

I Lemma 4. There exist constants c and c′ (for the above definitions) such that, given a
point set P in Rd and an εq-approximate range Q:
(i) Bε(Q) and B+

ε (Q) are both of size O(1/εdq).
(ii) Bδ(Q) is of size O(1/(εqεw)d).
(iii) P ∩Q− ⊆ P (Q) ⊆ P+(Q) ⊆ P ∩Q+.

This lemma suggests a means by which to construct a solution to an (εq, εw)-approximate
MST query. Namely, find the weight of the edges of MST(P) � P (Q), and then include
additional edges of low weight to join the connected components of this forest. Our approach
will be of this general form, and the additional edges will be classified as being of one of two
types, short edges and long edges. At a first reading it is reasonable to think of the sets
P (Q) and P+(Q) as playing the roles of P ′ and P ′′ in the definition of an approximate MST
query. (But a twist will enter at the end.)

Our next lemma shows that these block sets can be computed efficiently. It is a straight-
forward adaptation of standard algorithms on BBD-trees.

I Lemma 5. Given a BBD-tree storing P and an εq-approximate range Q, it is possible to
compute Bε(Q) and B+

ε (Q) in O(logn+ 1/εdq) time and Bδ(Q) in O(logn+ 1/(εqεw)d) time.

We would like to identify the mini- and micro-blocks with subsets of nodes of the BBD-tree.
This is complicated by the fact that a given block need not exist as the cell of any node within
the tree because the decomposition ended at a leaf node before reaching this level. In order
to focus on the key issues, it will greatly simplify matters to ignore the BBD-tree structure
for now and assume that we have instantaneous access to the data stored in any quadtree
box. In the full version we will discuss the technical details underlying this assumption.

3 Computing the MST Weight

In this section, we will present our data structure and discuss query processing. Let us
begin with a high-level overview of our approach. First, recall that Bε(Q) denotes the set of
mini-blocks of side length roughly εq · diam(Q) that overlap the inner query range. These

S. Arya, D.M. Mount, and E. Park 787

mini-blocks all lie within the outer query range, and so if we could compute (approximately)
the MST of the point set lying within them we would be done. We know that the global
MST induced on this set of points is a subset of the final MST. Thus, a natural strategy
would be to store the weights of edges of the global MST locally in the nodes of the quadtree,
and then at query time combine the MST edge weights for the nodes representing Bε(Q) and
explicitly compute the additional connecting edges needed to join the connected components
of this forest into a single tree.

The difficulty in carrying out this strategy is that there may be many (Ω(n)) connected
components of the global MST, and like the tangled branches of a vine, these components
can be quite long and intricate and may be separated by arbitrarily small distances. To
overcome this problem, within each mini-block we would like to compute (as a part of the
preprocessing) a set of edges that will connect the components within this block. Because
this will be done independently for each block, without consideration of global connectivity,
the problem is determining how to do this without significantly increasing the total edge
weight within the query region.

To overcome this problem, we will modify a common strategy used in the computation
of geometric MSTs. First, let us focus on “short edges.” Recall that δ is roughly εw ε, and
the δ-restricted MST is the subgraph of the MST(P) consisting of edges of length at most
δ. Rather than connecting all the components, we will focus instead on connecting just the
components of the δ-restricted MST lying within each mini-block b in order to form the
δ-restricted MST of P ∩ b. (For technical reasons, we will do this for a slightly larger value,
δ̂ = 2dδ, but we will ignore this small variation for now.) Unfortunately, such a local strategy
may introduce unnecessarily long edges if the quadtree structure is badly aligned with respect
to the point set. In traditional MST approximation algorithms this difficulty is handled by
introducing a modified distance function that penalizes very short edges (of length at most δ)
that cross the mini-block boundary. This relies on the fact that if a random shift is applied
to the coordinate system, then in expectation this added penalty increases the global MST
weight by only a small amount. This approach cannot be applied in our setting however,
because we need to show that the weight increase is bounded within every possible query
region.

Rather than shifting the coordinate system, we instead expand each mini-block b by a
factor of two and take an appropriately translated copy of this shifted block, denoted ⇀

b ,
that contains b. (For technical reasons, this will be applied to a slight enlargement of the
shifted box, called ⇀

b+.) Because this is computed at preprocessing time, query processing is
deterministic. The key property possessed by ⇀

b is that the total weight needed to connect
the δ-restricted global MST within ⇀

b is within a factor of roughly εw of the total weight of
the global MST induced in the neighborhood of b, more formally, within the region covered
by the 3d blocks that surround b. We call these additional edges local connectors. Recall
that P (Q) denotes the union of the points of P lying within these shifted blocks.

Given the weight of the δ-restricted global MST induced on the shifted blocks and the
weight of the local connectors, we can now resume our original strategy. We decompose the
shifted blocks into micro-blocks of side length δ, accumulate the weights of the δ-restricted
global MST and local connectors on these blocks. The number of such blocks is O(1/(εqεw)d),
and this accumulation can be performed within this time bound by a traversal of the BBD-
tree. These edges induce a graph on the δ-blocks, called the global connection graph. We
compute the connected components of this graph. This provides us with an approximation
to the δ-restricted MST of P (Q), with the caveat that the approximation error is expressed
with respect to the larger point set that lies in B+

ε (Q), the neighboring blocks of Bε(Q). We
refer to all of this as the short-edge processing.

SoCG’15

788 Approximate Geometric MST Range Queries

To finish the job, we need to add the “long edges” (of length greater than δ) in order
to connect the components of the global connection graph. To do this, we employ a
strategy based on the well-separated pair decomposition of the micro-blocks. Callahan and
Kosaraju [11] observed that, even with a constant factor separation, the MST could be well
approximated by computing an approximation to the closest pair within each well-separated
pair, and then computing the MST of these pairs. We will apply the same idea with two
modifications. Because we are only interested in well-separated pairs at distance greater
than Θ(δ), the number of pairs is proportional to the number of micro-blocks. Second, we
ignore any pairs that join two points whose micro-blocks are within the same component of
the global-connection graph.

The problem with applying the Callahan and Kosaraju approach directly is that in
order to compute an εw-approximation to the closest pair, we would need to decompose
each micro-block further into O

(
1/εΩ(d)

w

)
subblocks, which would increase the running time

considerably. In order to avoid this additional blow-up, we employ a novel idea. The pairs
that are difficult to process are those having many subblocks within the dumbbell head of
the well-separated pairs. In such cases, however, the weight of the MST within the dumbbell
head is relatively large. Rather than charging the approximation error to the length of the
pair returned, we instead charge the error to the weight of the MST within the dumbbell
heads. We show that by doing this, the running time is O((1/ε2

w) log2(1/εqεw)), which avoids
ε dependencies that grow exponentially in the dimension.

The final answer to the query is the sum of the weights from the short-edge and long-edge
processing. As mentioned above, our algorithm is deterministic and implicitly provides a
certificate to the answer in the form of a connected graph on P (Q).

3.1 Short-Edge Processing
Let us discuss now the short-edge processing in greater detail. Recall ε, δ, δ̂, Bε(Q), Bδ(Q),
P (Q), and P+(Q) introduced earlier. Also recall that each mini-block b is associated with a
shifted block ⇀

b (to be specified below), which contains b and is contained within b’s neighbors.
The objective of this phase is to compute a locally connected augmentation of the δ̂-restricted
global MST within each of the shifted mini-blocks. This will involve three things: (1) the
weight of the edges of the δ̂-restricted global MST induced on each shifted block, (2) the
weight of a set of local connectors that join components of this graph to form the δ̂-restricted
MST within each shifted block, and (3) a global-connection graph on the micro-blocks of
Bδ(Q) that connects these components throughout the query range. In this section, we will
show that these structures satisfy two properties:

Low weight: The total weight of the local connectors over all the mini-blocks of Bε(Q) is at
most (εw/2) · wt(MST

δ̂
(P+(Q)). (This will be established in Lemma 8 below.)

Local connectivity: Given two points p, p′ ∈ P (Q) such that ‖pp′‖ ≤ δ̂, the micro-blocks
of Bδ(Q) that contain these points are in the same connected component of the global-
connection graph.

The challenge in achieving these two properties arises from the possible poor placement of
partitioning cuts in the quadtree. For example, suppose we have a pair b and b′ of neighboring
mini-blocks, and we have a large number of point pairs where one element of each pair lies
in b and the other in b′, and further the segment joining each pair is extremely short (see
Fig. 4(a)). If we build the MSTs independently within each mini-block, the local weight will
be nearly twice the optimum (see Figs. 4(b) and (c)). Since this instance is the result of an

S. Arya, D.M. Mount, and E. Park 789

b b′

Optimal Independent

b b′ b b′

(a) (b) (c)

Figure 4 (a) Two points sets lying close to a quadtree splitting edge, (b) the optimal MST, and
(c) two MSTs computed independently within each box.

unlucky choice of quadtree cuts, this is usually remedied by applying a random translation
to the coordinate system before building the quadtree. While it can be shown that this fixes
the problem (in expectation) for the global MST, it does not necessarily fix the problems at
the local level, which is what we need for range searching.

As mentioned above, our solution will involve expanding each mini-block by a factor of
two, and applying a shift to this expanded block. Before presenting our shifting algorithm, we
present a useful lemma. To motivate this lemma, for any γ > 0 consider the γ-restricted MST
of a point set P and a sufficiently large hypercube b. As observed earlier, the γ-restricted
global MST induced on P ∩ b (formally, MSTγ(P)�(P ∩ b)) is a subgraph of the γ-restricted
MST on P ∩ b (formally, MSTγ(P ∩ b)). Define ∆γ(b) to be the edges in the set-theoretic
difference of these two graphs. We will show that wt(∆γ(b)) is proportional to the weight of
the global spanning tree within distance γ of b’s boundary. Intuitively, this holds because
the components of MSTγ(P)�(P ∩ b) that are connected in MSTγ(P ∩ b) must be connected
by paths consisting of edges of the MST of length at most γ that lie outside of b.

Before stating the lemma we introduce some terminology. Given a hypercube b of side
length at least 2γ, define the γ-shell of b, denoted shellγ(b), to be the set-theoretic difference
of two hypercubes b+ and b−, where b− ⊂ b ⊂ b+, and the boundaries of these hypercubes
are separated from b’s boundary by a distance of γ.

I Lemma 6. Consider a point set P in Rd, γ > 0, and a hypercube b of side length at least
2γ. Then, wt(∆γ(b)) ≤ 3 · wt(MSTγ(P)�shellγ(b)).

b

3b

v
2b + v

2b+ + v δ̂

Figure 5 An expanded
and shifted block.

Resuming the discussion of the short-edge processing, consider
a mini-block b. Recall that its side length is ε. For the sake of
our construction, let us assume that the origin is centered at b’s
center. Let 2b and 3b denote centrally scaled copies of b by factors
of 2 and 3, respectively (see Fig. 5). Because we are interested
in edges of length up to δ̂ that might have one endpoint within
2b and one endpoint outside, let 2b+ denote the hypercube that
results by translating each of the bounding hyperplanes of 2b
outwards by distance δ̂. Given a vector v let 2b+ + v denote a
translation of 2b+ by v.

Recalling the definitions of Section 2.2, our objective is to compute the shifted block ⇀
b to

be associated with b. To do so, we will consider a set of O((ε/δ)d) possible shifts of 2b+, each
of which will contain b and lie within 3b. Our next lemma shows that for at least one of these
shifts (in fact, for a constant fraction of them) the local connection weight wt(∆

δ̂
(2b+ + v))

is O(εw) times the weight of the δ̂-restricted MST induced on P ∩ 3b.

I Lemma 7. Consider a point set P in Rd, an approximate query Q, and a mini-block
b ∈ Bε(Q). For any constant c′′ > 0, there exists a translate of 2b+, denoted b̂, that is nested
between b and 3b, is aligned with the quadtree grid of side length δ, and

wt
(
∆
δ̂

(
b̂
))
≤ c′′ · εw · wt(MST

δ̂
(P)�(P ∩ 3b)).

SoCG’15

790 Approximate Geometric MST Range Queries

(c)(b)(a)

⇀
b

⇀
b

+

δ̂

MST
δ̂
(P) �

(
P ∩⇀

b
+)

⇀
b

⇀
b

+

∆
δ̂

(⇀
b

+)

⇀
b

⇀
b

+

MST
δ̂

(
P ∩⇀

b
+)

Figure 6 A shifted mini-block ⇀
b and its expansion ⇀

b +. The micro-blocks µ(⇀
b) are shown as

shaded boxes and µ(⇀
b +) includes the white boxes as well. (a) The restricted MST of P ∩⇀

b +, (b)
the induced global spanning tree on P ∩⇀

b +, and (c) the local connectors.

Given a mini-block b, define ⇀b+ to be the translated box b̂ from the above lemma, and
define its shifted block, ⇀b , to be the corresponding translate of 2b. This information is
computed for each node of the quadtree as part of the preprocessing.

To complete the short-edge processing, we need to compute the local connectors (that is,
the edges of the δ̂-restricted MST on P ∩⇀b that are not in the δ̂-restricted MST induced on
these points). An obvious approach would be to compute MST

δ̂
(P ∩⇀b), and then remove

from this the edges from the global MST. While this would work fine for an individual
shifted block, this is not sufficient to guarantee connectivity across the entire query region
(particularly for blocks near the query’s boundary). Since the edges involved are all of length
at most δ̂, for the purposes of computing connectivity, we will consider micro-blocks that
lie slightly (distance at most δ̂) outside the shifted blocks. Once the connected components
have been computed, we will discard these extra blocks.

To make this more precise, given a mini-block b, define µ(⇀b) to be the micro-blocks that
lie within ⇀

b (the shaded small boxes in Fig. 6), and define µ(⇀b+) similarly for ⇀b+ (all the
small boxes in Fig. 6). To compute the local connectors, at preprocessing time for each such
mini-block b, we compute ⇀b+ (by the previous lemma) and MST

δ̂
(P ∩⇀b+) (see Fig. 6(a)).

We assume that the global MST has already been computed. The local connectors consist of
the edges that are not already in the global spanning tree induced on these points, that is,

∆
δ̂
(⇀b+) = MST

δ̂
(P ∩⇀b+) \ MST

δ̂
(P)�(P ∩⇀b+)

(see Figs. 6(b) and (c)).
We cannot deal with structures like ∆

δ̂
(⇀b+) at query time, since they involve individual

points. Instead, we will deal with graphs that they induce on the micro-blocks. At prepro-
cessing time, we compute an induced (weighted) graph on the micro-blocks of µ(⇀b+) from
the local connectors as follows. For each edge (p, p′) in ∆

δ̂
(⇀b+), create an edge between the

respective micro-blocks b and b′ that contain them. Set the weight of this edge to be the total
length of all such edges. Because each edge of ∆

δ̂
(⇀b+) is of length at most δ̂, the neighbors

of each micro-block (whose side length is δ) lie within distance at most δ̂. The number of
such neighbors is O((δ̂/δ)d) = O(dd) = O(1). Therefore, this graph has constant degree.
Also, as a part of preprocessing, we compute the weight of the edges of the δ̂-restricted global
MST induced on each pair of micro-blocks. (This is done implicitly. See the full version for
details.)

S. Arya, D.M. Mount, and E. Park 791

When processing a query Q, we combine the aforementioned graphs at the mini-block level
to derive two additional global structures on the micro-block level. The first is a structure
that encapsulates all the local-connector weight at the micro-block level. Define ∆

δ̂
(Q) to

be the union of the graphs ∆
δ̂
(⇀b+) over all mini-blocks b ∈ Bε(Q). This is a structure on

points, but we can compute its micro-block induced structure by taking the union of the
corresponding micro-block structures mentioned above. If there is an edge (b, b′) between
the same pair of micro-blocks appearing in multiple shifted blocks (which can happen if their
shifted blocks overlap), then assign the edge weight to be the sum over all the contributing
edges. (We do this because each edge reflects potentially different pairs of locally connected
points, and we need to account for the entire weight of these connections. Note that because
these involve expanded shifted blocks (⇀b+), this will implicitly count the weight of edges
whose endpoints lie within P+(Q) but not P (Q).) The total edge weight of this induced
graph is the same as ∆

δ̂
(Q).

Our next lemma bounds the weight of this graph in terms of the weight of the δ̂-restricted
MST of a subset of points lying within the outer query range.

I Lemma 8. The weight of ∆
δ̂
(Q) is at most (εw/2) · wt(MST

δ̂
(P+(Q)).

The second structure built at query time is the global-connection graph. It consists of the
union of the edges of ∆

δ̂
(Q) together with the edges of the δ̂-restricted global MST induced

on the points lying within the union of the expansions of the shifted blocks (that is, the
union of MST

δ̂
(P)�(P ∩⇀b+) over all miniblocks b). As with these other graphs, it is defined

on points, but it will be represented as an induced graph on micro-blocks. Since this graph
is used only for computing connected components, we do not need to assign weights to its
edges.

Summarizing the short-edge processing, the data structure consists of the BBD-tree
storing the point set P . Each mini-block b is associated with its shifted block ⇀

b (and
implicitly its expansion ⇀

b+) and the graph of local connectors (from ∆
δ̂

(⇀
b+)) induced

on the micro-blocks of µ(⇀b+). We also store the edges of the global MST so that we can
efficiently extract the weight of the δ̂-restricted MST induced on the micro-blocks (details in
the full version). The total space is dominated by the size of the BBD-tree, the storage of
the edges of the MST, and the storage of the edges of the local connectors, which is O(n).

Details regarding how these structures are used in the query processing are deferred to
the full version. The following lemma summarizes the short-edge phase.

I Lemma 9 (Short-edge summary). Given an n-element point set P in Rd and an ap-
proximation parameter εw, there exists a data structure of space O(n) such that given any
εq-approximate query Q, in time O(logn+ 1/(εqεw)d) it is possible to compute (implicitly)
point sets P (Q) and P+(Q), a graph Gs = (P (Q), Es) (which may contain cycles), and a
labeling of the connected components of Gs, such that
(i) Q− ⊆ P (Q) ⊆ P+(Q) ⊆ Q+,
(ii) any two points of P (Q) that are within distance δ̂ of each other lie in the same connected

component of Gs, and
(iii) the weight of the edges in Es is at most wt(MST

δ̂
(P (Q))) + (εw/2) ·wt(MST

δ̂
(P+(Q))).

These point sets are represented implicitly by O(1/(εqεw)d) micro-blocks. The graph Gs is of
constant degree, and so is of the same asymptotic size.

SoCG’15

792 Approximate Geometric MST Range Queries

3.2 Long-Edge Processing
Given the information from the short-edge processing, as summarized in Lemma 9, let us
now consider the long-edge case. Let Ψ denote a well-separated pair decomposition (WSPD)
for the point set P (Q) for some suitable constant separation factor (for definitions see [10]).
In particular, we require that if (A,A′) is a pair of the WSPD, then for all p, q ∈ A and all
p′, q′ ∈ A′, ‖pp′‖ > max(‖qp‖, ‖q′p′‖). Drawing on a standard visual analogy, we think of the
WSPD as consisting of a collection of dumbbells, where each of the sets being separated lies
within one of the two heads of a dumbbell. Observe that each well-separated pair contributes
at most one edge to MST(P (Q)) (because all the points within a dumbbell head will be
connected by Kruskal’s algorithm before considering any edge between the heads).

Let Ψ′ ⊆ Ψ denote the set of dumbbells such that for any pair of points p, p′ ∈ P (Q),
where ‖pp′‖ > δ̂, there is a dumbbell in Ψ′ that separates p and p′. By standard techniques,
we can compute Ψ′ in time proportional to the number of δ-blocks that cover the points
of P (Q), which is O(1/δd) = O(1/(εqεw)d) (see, e.g., [17]). We assume that every internal
node of the BBD-tree contains an arbitrary representative point drawn from the points lying
within the node’s outer box.

Our objective is to compute a suitable approximation to the closest pair of points separated
by each dumbbell. Recall from the high-level overview of Section 3 that the classical approach
for doing this would involve decomposing each of the dumbbell heads into sufficiently small
blocks so that the error committed can be charged against the resulting edge of the MST.
Unfortunately, this will result in an unacceptably high running time. In contrast, our
approach is sensitive to the weight of the MST in the vicinity of the dumbbell heads. We
decompose the blocks in a breadth-first manner until the number of nonempty subblocks in
either of the dumbbell heads is roughly 1/εw. We will exploit the fact that the existence of
this many nonempty subblocks implies that the weight of the MST within this dumbbell
heads will be sufficient to pay for the approximation error.

More formally, we introduce a parameter α (whose exact value will be specified later
but can be thought of as being roughly εw). We will process each dumbbell ψ ∈ Ψ′ and
compute an edge eψ joining a representative point in each head of ψ. We do this as follows.
We decompose the two heads of ψ in parallel, always maintaining boxes of equal side length
until reaching a total of Θ(1/α) nonempty quadtree boxes or encountering all the points
within the head (whichever occurs first). We then examine the representative points from
each pair of boxes and keep the closest pair. This takes time O(1/α2) by brute-force. We
choose an arbitrary point from each box in this pair. The edge joining these two points is
selected as the representative edge eψ. Let Es denote the edges of the short-edge graph Gs,
and let E` denote the edges computed above. Let G denote the graph (P (Q), Es ∪ E`).

Just as we did for Gs, we can associate each edge of E` with the pair of micro-blocks
that contain the edge’s respective endpoints. This defines a graph on the micro-blocks. To
complete the long-edge phase, we first prune this graph. If any edge of this graph joins
two micro-blocks in the same short-edge connected component, we ignore this edge. We
then collapse all the micro-blocks belonging to the same short-edge component into a single
vertex, forming a component graph. For any two components, we keep only the shortest
edge between them. Since the number of well-separated pairs is O(1/(εqεw)d), the number
of vertices and edges in this graph is similarly bounded. We then compute the MST of this
component graph, using any standard MST algorithm in time O(1/(εqεw)d log 1/(εqεw)).
The output of the long-edge phase is the weight of the edges of E` that remain in the final
MST.

S. Arya, D.M. Mount, and E. Park 793

Rather than analyzing G directly, it will be easier to analyze a related graph. Let G′
denote the subgraph of G with the same vertex set and the following edges. We keep all the
edges of Es, but only a subset E′` of the edges of E` selected as follows. For each edge e of
MST

>δ̂
(P (Q)), we select the representative edge eψ associated with the dumbbell ψ ∈ Ψ′

that separates the endpoints of e.
In the rest of this section, we will show that G′ is connected and satisfies the desired

weight bound. Due to space limitations, we will only present the main lemmas upon which
the result is based. Details can be found in the full version. Our analysis will employ the
following lemma, which bounds the weight of the MST in terms of the number of quadtree
boxes (see, e.g., [12]).

I Lemma 10. Given a finite point set P ∈ Rd and a hypercube grid of side length s, let
m(P) denote the number of cells of the grid that contain a point of P . Then wt(MST(P)) ≥
(s/2) · ((m(P)/2d)− 1).

For any dumbbell ψ ∈ Ψ′, define zψ to be the distance between the closest pair of points
that are separated by ψ. The following lemma bounds the total error incurred in selecting
the long edges.

I Lemma 11. There exists a constant c (depending on dimension) such that∑
ψ∈Ψ′

(wt(eψ)− zψ) ≤ c · α · log(1/(εqεw)) · wt(MST(P (Q))).

Setting α = εw/(4c · lg(1/(εqεw))), by the above lemma, the long edges satisfy the
following property:∑

ψ∈Ψ′

(wt(eψ)− zψ) ≤ εw
4 · wt(MST(P (Q)))). (1)

The connectedness of G′ follows from the WSPD separation properties.
By combining Eq. (1) above with our earlier observation that each dumbbell contributes

at most one edge to MST(P (Q)), it follows that the weight of the long edges of G′, namely
wt(E′`), is at most wt(MST

>δ̂
(P (Q))) + (εw/4) · wt(MST(P (Q))). Because G′ connects the

components of Es, its weight cannot be smaller than the MST weight of the component
graph, which is the output of this phase. Therefore, we have the following.

I Lemma 12 (Long-edge summary). Given the output from the short-edge processing, in time
O((1/(εdqεd+2

w)) log2(1/εqεw)), we can output a set of edges that connects all the short-edge
components and whose total weight is at most wt(MST

>δ̂
(P (Q))) + (εw/4) ·wt(MST(P (Q))).

3.3 Combining the Short and Long Edges
Let us now combine the results of the short-edge and long-edge phases. By Lemma 9(iii),
the total weight of the short edges Es is at most

wt(MST
δ̂
(P (Q))) + εw

2 · wt(MST(P+(Q)))).

By Lemma 12, the total weight of the long-edge phase is at most

wt(MST
>δ̂

(P (Q))) + εw
4 · wt(MST(P (Q))).

SoCG’15

794 Approximate Geometric MST Range Queries

Combining the weights of both phases, we find that the total weight W (Q) output is at most

W (Q) = wt(MST(P (Q))) + εw
2 · wt(MST(P+(Q))) + εw

4 · wt(MST(P (Q))).

Since P (Q) ⊆ P+(Q), we have wt(MST(P (Q))) ≤ 2 · wt(MST(P+(Q))). (This follows from
the facts that Steiner tree weight increases monotonically as points are added and that the
weight of the MST is at most twice the weight of the Steiner tree.) Therefore, we have

W (Q) ≤ wt(MST(P (Q))) + εw · wt(MST(P+(Q))).

If wt(MST(P (Q))) ≤ wt(MST(P+(Q)), then W (Q) can be bounded by (1 + εw) ·
wt(MST(P+(Q)))). On the other hand, if wt(MST(P (Q))) > wt(MST(P+(Q)), this can be
bounded by (1 + εw) · wt(MST(P (Q)))). By defining P ′ = P (Q) and P ′′ to be whichever set
yields the larger MST weight, we obtain the following bound

wt(MST(P ′)) ≤ W (Q) ≤ (1 + εw) · wt(MST(P ′′)),

where P ∩ Q− ⊆ P ′ ⊆ P ′′ ⊆ P ∩ Q+. Therefore, this is a valid answer to the (εq, εw)-
approximate MST query.

By Lemma 9, the running time of the short-edge phase is O(logn+ 1/(εqεw)d), and by
Lemma 12, the running time of the long-edge phase is O((1/(εdqεd+2

w)) log2(1/εqεw)). Thus,
the overall query time is O(logn + (1/(εdqεd+2

w)) log2(1/εqεw)). In summary, we have the
following result, which is stated more concisely in Theorem 1.

I Theorem 13. Given a set P of n points in Rd and a weight-approximation parameter
εw > 0, it is possible to preprocess P into a data structure of space O(n) such that given any
εq-approximate query Q, it is possible to answer (εq, εw)-approximate MST queries in time
O(logn+ (1/(εdqεd+2

w)) log2(1/εqεw)).

4 Conclusions

We have demonstrated an efficient data structure for answering approximate MST range
queries. Although our query processing focused only on returning the approximate weight,
our data structure implicitly provides much more information. In particular, the weight
returned is a accumulation of three disjoint edge sets, the global MST edges induced on
the approximate query range, a set of local connecting edges, and the long edges. All of
these edges (not just their weights) are stored within the data structure. Thus, unlike
sublinear time algorithms for the MST, which provide just an approximation to the weight,
our data structure implicitly provides a certificate for its answer. This certificate could be
output, which would result in a data structure for approximate MST range reporting queries.
Alternatively, the edges of the certificate could be randomly sampled, which would allow a
user to compute statistics about this graph, such as the distribution of its edge weights.

There are two obvious shortcomings with our approach. First, our answer is the weight of
a graph on a set of points within the approximate query region, which spans these points but
may contain cycles. An obvious open problem is whether it is possible to efficiently compute
the exact weight of a graph that is a spanning tree on some subset of points that constitutes
a valid answer to the approximate range query. Second, our approximation bounds involve
two sets P ′ and P ′′, one for the lower bound and one for the upper bound. It would be nice
to relate the result to the weight of the MST on a single point set.

S. Arya, D.M. Mount, and E. Park 795

References
1 P. K. Agarwal, L. Arge, S. Govindarajan, J. Yanga, and K. Yi. Efficient external memory

structures for range-aggregate queries. Comput. Geom. Theory Appl., 46:358–370, 2013.
2 A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev. Parallel algorithms for geometric

graph problems. In Proc. 46th Annu. ACM Sympos. Theory Comput., pages 574–583, 2014.
3 S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and

other geometric problems. J. Assoc. Comput. Mach., 45:753–782, 1998.
4 S. Arya and T. M. Chan. Better ε-dependencies for offline approximate nearest neighbor

search, euclidean minimum spanning trees, and ε-kernels. In Proc. 30th Annu. Sympos.
Comput. Geom., pages 416–425, 2014.

5 S. Arya and D. M. Mount. Approximate range searching. Comput. Geom. Theory Appl.,
17:135–163, 2000.

6 S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm
for approximate nearest neighbor searching. J. Assoc. Comput. Mach., 45:891–923, 1998.

7 M. J. Bannister, W. E. Devanny, M. T. Goodrich, J. A. Simons, and L. Trott. Windows
into geometric events: Data structures for time-windowed querying of temporal point sets.
In Proc. 26th Canad. Conf. Comput. Geom., 2014.

8 M. J. Bannister, C. DuBois, D. Eppstein, and P. Smyth. Windows into relational events:
data structures for contiguous subsequences of edges. In Proc. 24th Annu. ACM-SIAM
Sympos. Discrete Algorithms, pages 856–864, 2013. (arXiv:1209.5791).

9 P. Brass, C. Knauer, C.-S. Shin, M. Smid, and I. Vigan. Range-aggregate queries for
geometric extent problems. In Proc. 19th Computing: The Australasian Theory Symposium
(CATS), pages 3–10, 2013.

10 P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach.,
42:67–90, 1995.

11 P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph problems in
higher dimensions. In Proc. Eighth Annu. ACM-SIAM Sympos. Discrete Algorithms, pages
291–300, 1997.

12 A. Czumaj, F. Ergün, L. Fortnow, A. Magen, I. Newman, R. Rubinfeld, and C. Sohler.
Approximating the weight of the Euclidean minimum spanning tree in sublinear time. SIAM
J. Comput., 35:91–109, 2005.

13 A. Czumaj and C. Sohler. Estimating the weight of metric minimum spanning trees in
sublinear time. SIAM J. Comput., 39:904–922, 2009.

14 G. Frahling, P. Indyk, and C. Sohler. Sampling in dynamic data streams and applications.
Internat. J. Comput. Geom. Appl., 18:3–28, 2008.

15 Y. Nekrich and M. Smid. Approximating range-aggregate queries using coresets. In Proc.
22nd Canad. Conf. Comput. Geom., pages 253–256, 2010.

16 D. Papadias, Y. Tao, K. Mouratidis, and K. Hui. Aggregate nearest neighbor queries in
spatial databases. ACM Transactions on Database Systems (TODS), 30:529–576, 2005.

17 E. Park and D. M. Mount. Output-sensitive well-separated pair decompositions for dynamic
point sets. In Proc. 21st Internat. Conf. on Advances in Geographic Information Systems,
pages 364–373, 2013. (doi: 10.1145/2525314.2525364).

18 J. Shan, D. Zhang, and B. Salzberg. On spatial-range closest-pair query. In T. Hadzilacos,
Y. Manolopoulos, J. Roddick, and Y. Theodoridis, editors, Advances in Spatial and Tempo-
ral Databases, volume 2750 of Lecture Notes in Computer Science, pages 252–269. Springer,
Berlin, 2003.

19 Y. Tao and D. Papadias. Range aggregate processing in spatial databases. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE), 16:1555–1570, 2004.

SoCG’15

Maintaining Contour Trees of Dynamic Terrains∗

Pankaj K. Agarwal1, Thomas Mølhave2, Morten Revsbæk3,
Issam Safa4, Yusu Wang5, and Jungwoo Yang3

1 Department of Computer Science, Duke University, USA
2 Scalable Algorithmics – SCALGO, USA
3 MADALGO – Center for Massive Data Algorithmics, Aarhus University,

Denmark
4 Computational Lithography Group, Intel Corporation, USA
5 Department of Computer Science and Engineering, The Ohio State University,

USA

Abstract
We study the problem of maintaining the contour tree T of a terrain Σ, represented as a tri-
angulated xy-monotone surface, as the heights of its vertices vary continuously with time. We
characterize the combinatorial changes in T and how they relate to topological changes in Σ. We
present a kinetic data structure (KDS) for maintaining T efficiently. It maintains certificates
that fail, i.e., an event occurs, only when the heights of two adjacent vertices become equal or
two saddle vertices appear on the same contour. Assuming that the heights of two vertices of
Σ become equal only O(1) times and these instances can be computed in O(1) time, the KDS
processes O(κ+ n) events, where n is the number of vertices in Σ and κ is the number of events
at which the combinatorial structure of T changes, and processes each event in O(logn) time.
The KDS can be extended to maintain an augmented contour tree and a join/split tree.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
problems and computations

Keywords and phrases Contour tree, dynamic terrain, kinetic data structure

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.796

1 Introduction

Let M be a triangulation of R2, also known as a triangulated irregular network (TIN), and
let h : M→ R be a continuous function, often called a height function, that is linear within
each triangle of M. The graph of h, denoted by Σ, is a triangulated xy-monotone surface
in R3 and is called a terrain. There has been extensive work in computational geometry,
GIS, and spatial databases on the design and analysis of terrain-analysis algorithms such as
flood-risk analysis, visibility analysis, and navigation.

Given a height value `, the level set of the height function h is the set of all points in M
whose height values are `. As ` varies, the level set continuously deforms and its topology
changes at certain heights. Level sets and their topology are often used for the analysis and
visualization of height functions. The contour tree of a height function encodes the evolution

∗ P.A. and T.M. supported by the ARO contract W911NF-13-P-0018; P.A. also supported by NSF
under grants CCF-09-40671, CCF-10-12254, and CCF-11-61359, and by Grant 2012/229 from the
U.S.–Israel Binational Science Foundation; M.R. and J.Y. supported by Center for Massive Data
Algorithmics, a Center of the Danish National Research Foundation; Y.W. supported by NSF under
grants CCF-0747082 and CCF-1319406.

© Pankaj K. Agarwal, Thomas Mølhave, Morten Revsbæk, Issam Safa, Yusu Wang,
and Jungwoo Yang;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Eds.: Lars Arge and János Pach; pp. 796–811

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.796
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 797

of the level sets and succinctly represents the topology of all level sets, and it has found
applications in a wide array of data analysis and visualization problems [4, 6, 10, 11, 15].

A variety of applications involve height functions that vary with time. In some cases, the
height function may vary continuously with time (e.g., temperature, air pressure, etc.), or it
may be updated dynamically at discrete time values (e.g., the height function models the
elevation of points on the Earth, and the elevation is updated because of new measurements
reflecting the changes due to natural processes or human activity, or a user interacting with
a GIS may wish to change the elevation at some places to see its impact on the hydrology,
mobility, visibility of the surface). Motivated by theses applications we study how the contour
tree changes as the height function varies with time. Even if the height function is updated
in discrete steps, the only efficient way we know to update the contour tree is to treat such
an update as a continuous change from the old value to the new value. We therefore focus
on the case when the height function varies continuously with time.

Related work. Van Kreveld et al. [20] gave an O(n logn)-time algorithm for constructing
the contour tree of a piecewise-linear height function on R2, where n is the number of linear
pieces in the height function. Their algorithm was extended to R3 by Tarasov and Vyalyi [19],
and to arbitrary dimensions by Carr et al. [9]. Agarwal et al. [3] gave an I/O-efficient
algorithm for constructing the contour tree of a terrain representation that does not fit in
main memory.

There has been some work on contour trees of time-varying height functions. Sohn and
Bajaj [17] and Szymczak [18] compute a mapping between the contour trees of the height
function at successive time steps, but they ignore (possibly many) combinatorial changes
in the contour tree between the time steps. Furthermore they compute the contour tree
at each time step using a static algorithm. Edelsbrunner et al. [12] study how the Reeb
graph (generalization of contour tree for height functions over manifolds with non-zero genus)
of a smooth function on three-dimensional space evolves over time. They characterize the
combinatorial changes in the Reeb graph, and they describe an algorithm for updating the
Reeb graph whenever a combinatorial change occurs. Their algorithm, however, works in
an off-line setting, i.e., they assume that the height function over all time values is given in
advance, and the algorithm takes O(n) time to update the graph at each event.

There is extensive work in computational geometry on maintaining geometric/topological
structures over a set of continuously moving or varying objects mostly under the kinetic data
structure (KDS) framework introduced by Basch et al. [5]. See [13] for a survey of this line
of work.

Our results. We describe the first KDS for maintaining the contour tree of a time-varying
piecewise-linear height function over a simple triangulated (zero-genus) 2-manifold. The
KDS can be extended to maintain the augmented contour tree and the join/split tree.

Our first result is a detailed characterization of the combinatorial changes in the contour
tree, more refined than what is described in [12], and how they relate to topological changes
in the height function (Section 3). This refined characterization, together with the use of
two auxiliary trees, enables us to develop an efficient algorithm for updating the contour
tree at each combinatorial change. The second result (Section 4) is a linear-size KDS for
maintaining the contour tree. Assuming that the height of each vertex, as a function of time,
is specified by a polynomial of constant degree and that the roots of these polynomials can
be computed in O(1) time, the KDS can update the contour tree in O(logn) time at each
event. The KDS processes a total of O(κ+n) events, where κ is the number of combinatorial

SoCG’15

798 Maintaining Contour Trees of Dynamic Terrains

changes in the contour tree and n is the number of vertices in the triangulation. Finally we
adapt our KDS to maintain the augmented contour tree and the join/split tree (Section 5).

2 Preliminaries

Terrains. Let M = (V,E, F) be a triangulation of R2, with vertex, edge, and face (triangle)
sets V , E, and F , respectively, and let n = |V |. For simplicity we focus on M being a
triangulation of R2, but our algorithm works for any genus-zero 2-manifolds. We assume that
V contains a vertex v∞ at infinity, and that each edge {u, v∞} is a ray emanating from u;
the triangles in M incident to v∞ are unbounded. Let h : M→ R be a height function. We
assume that the restriction of h to each triangle of M is a linear map, that h approaches −∞
at v∞, and that the heights of all vertices are distinct. Given M and h, the graph of h, called
a terrain and denoted by Σ, is an xy-monotone triangulated surface whose triangulation is
induced by M. The vertices, edges, and faces of Σ are in one-to-one correspondence with
those of M and with a slight abuse of terminology we refer to V , E, and F , as vertices, edges,
and triangles of both Σ and M.

Critical points. For a vertex v of M, the star of v, denoted by St(v), consists of all triangles
incident on v. The link of v, denoted by Lk(v), is the boundary of St(v), i.e., the cycle
formed by the edges of M that are not incident on v but belong to the triangles of St(v).
The lower (resp. upper) link of v, Lk−(v) (resp. Lk+(v)), is the subgraph of Lk(v) induced
by vertices u with h(u) < h(v) (resp. h(u) > h(v)).

A minimum (resp. maximum) of M is a vertex v for which Lk−(v) (resp. Lk+(v)) is
empty. A maximum or a minimum vertex is called an extremal vertex. A non-extremal vertex
v is regular if Lk−(v) (and also Lk+(v)) is connected, and saddle otherwise. A vertex that is
not regular is called a critical vertex. For simplicity, we assume that each saddle vertex v is
simple, meaning that Lk−(v) (and also Lk+(v)) consists of two connected components. If M
contains a non-simple saddle, then we can split it into multiple simple saddles.

Level sets and contours. For ` ∈ R, the `-level set, `-sublevel set, and `-superlevel set of
M, denoted by M`, M<`, M>`, respectively, consist of points x ∈M, with h(x) = `, h(x) < `,
and h(x) > `, respectively. We refer to a level set M` where ` = h(v) for some critical vertex v
as a critical level. A contour of M is a connected component of a level set of M. Each vertex
v ∈ V is contained in exactly one contour in Mh(v), which we call the contour of v. A contour
not passing through a critical vertex is a simple polygonal cycle with non-empty interior.
A contour passing through an extremal vertex is a single point, and by our assumption, a
contour passing through a saddle consists of two simple cycles with the saddle vertex being
their only intersection point. A contour C not passing through a vertex can be represented
by the cyclic sequence of edges of M denoted by E(C), that it passes through. Two contours
are called combinatorially identical if their cyclic sequences are the same.

Let ε = ε(Σ) denote a sufficiently small positive value, in particular, smaller than the
height difference between any two vertices of M. An up-contour of a saddle vertex α is any
contour of Mh(α)+ε that intersects an edge incident on α. Similarly, a down-contour of α
is any contour of Mh(α)−ε that intersects an edge incident on α. If α has two up-contours
and one down-contour it is called a positive saddle vertex. If it has two down-contours and
one up-contour it is called a negative saddle vertex. A simple saddle v is either negative or
positive.

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 799

α2
α1

α3

α4
α5

y1
y2

x1

x2
x3

x4

α2

α1

α4

α5

y1
y2

x1 x2

x3

x4α3

(a) (b) (c)

Figure 1 (a) (b) An example terrain depicted with contours through saddle vertices and showing
the critical vertices of the terrain: α1 (α5) is a blue (red) −ve saddle, and α3 (α4) is a lue (red) +ve
saddle. (c) The contour tree of the terrain in (a).

Following the notation in [1], a contour C of M` is called blue if points locally in the
interior of C belong to M<` and red otherwise. A positive (resp. negative) saddle vertex is
colored by the color of its unique down-contour (resp. up-contour). Refer to Figure 1 to see
the possible saddle colors.

Contour trees. Consider raising ` from −∞ to ∞. The contours continuously deform, but
no changes happen to the topology of the level set as long as ` varies between two consecutive
critical levels. A new contour appears as a single point at a minimum vertex, and an existing
contour contracts into a single point and disappears at a maximum vertex. An existing
contour (the down-contour of v) splits into two new contours (the up-contours of v) at a
positive saddle vertex v, and two contours (the down-contours of v) merge into one contour
(the up-contour of v) at a negative saddle vertex v. The contour tree T of h is a tree on the
critical vertices of M that encodes these topological changes of the level set. An edge (v, w)
of T represents the contour that appears at v and disappears at w.

More formally, two contours C1 and C2 at levels `1 and `2, respectively, are called
equivalent if C1 and C2 belong to the same connected component of Γ = {x ∈ R2 | `1 ≤
h(x) ≤ `2} and that component of Γ does not contain any critical vertex. An equivalence
class of contours starts and ends at critical vertices. If a class starts at a critical vertex v and
ends at w, then (v, w) is an edge in T. We refer to v as a down neighbor of w and to w as an
up neighbor of v. Equivalently T is the quotient space in which each contour is represented
by a point and connectivity is defined in terms of the quotient topology. Let ρ : M→ T be
the associated quotient map, which maps all points of a contour to a single point on an edge
of T. Fix a point p in M. If p is not a critical vertex, ρ(p) lies in the relative interior of an
edge in T; if p is an extremal vertex, ρ(p) is a leaf node of T; and if p is a saddle vertex then
ρ(p) is a non-leaf node of T. See Figure 1.

We assume that each vertex of T is labeled with the corresponding critical vertex of
M. The combinatorial description of T is the set of its vertices along with their labels, and
the set of its edges. We also consider augmenting the contour tree with regular vertices to
produce the augmented contour tree TA. For each regular vertex v in M, we insert a degree
two vertex into T at ρ(v).

Ascent and descent trees. We construct descent trees as follows: For each vertex u ∈M,
if u is not a minimum then we choose a vertex w ∈ Lk−(u) and create the edge (u,w). This
process results in a forest of trees, each rooted at a minimum vertices of M. We denote the
descent tree rooted at x as Π↓(x). Similarly, we construct a forest of ascent trees, obtained

SoCG’15

800 Maintaining Contour Trees of Dynamic Terrains

by creating the edge (v, w) from every vertex v to a single vertex w in Lk+(v) unless v is a
maximum. Each ascent tree is rooted at a maximum vertex y and is denoted by Π↑(y). Note
that the descent tree forest partitions the vertices of M and the same is true for ascent trees.
Lemma 1 below describes how the ascent and descent trees relate to the contour tree.

I Lemma 1. Let v be a regular vertex in M, and let x (resp. y) be the minimum (resp.
maximum) of M such that Π↓(x) (resp. Π↑(y)) contains v. Then the path P in T between x
and y contains ρ(v) and the heights of the vertices on P are monotone.

3 Time Varying Contour Tree

Suppose the height function varies with time. That is, we have a one parameter family of
height functions over M, h : M× R→ R, where the extra dimension in the domain is time.
In this section, we characterize how and when the contour tree of (M, h) changes with time.
In particular, we describe all the combinatorial changes in the contour tree. For simplicity,
we assume h to be generic in the sense: (i) at any given time t, at most two vertices have the
same height; (ii) the heights of any two vertices become equal at a finite set of time values;
and (iii) if h(u, t0) = h(v, t0) then the function h(u, t)− h(v, t) changes sign at t = t0.

Edelsbrunner et al. [12] showed that if h is a smooth function, then the topology of T
changes at time t if (i) a critical point u becomes degenerate (i.e., the Hessian at u becomes
singular), or (ii) two saddle points u and v lie on the same contour. In either case, an
edge (u, v) of T is degenerate in the sense that the interval [h(u, t), h(v, t)] is a single point.
In our setting, where h(·, t) is a piecewise-linear function, the two corresponding events are:
(i) two adjacent vertices u and v with h(u, t) = h(v, t), and one of them is a saddle and the
other is an extremal vertex just before or after the event; (ii) two saddle vertices lie on the
same contour. The former event is called a birth or a death event, and the latter is called an
interchange event.

Besides these two events, there is another event in the piecewise-linear case, namely, a
critical point shifts from one vertex to its neighbor — no new critical points are created, none
is destroyed, and the topology of T does not change. Only the label of a node in T changes.
We refer to this event as a shift event. We will refer to events occurring when the heights of
two neighboring vertices become equal as local events. We note that an interchange event
can also occur when the height of two adjacent vertices becomes equal, so a local event may
correspond to an interchange event as well.

If an event occurs at time t, then we refer to t− (resp. t+) as the time t− ε (resp. t+ ε)
for some arbitrarily small ε > 0.

Local events. Suppose a local event occurs at time t0 at which h(v, t0) = h(u, t0), where u
is a neighbor of v. For simplicity, we assume that h(v, t−0) < h(u, t−0) and h(v, t+0) > h(u, t+0).
The case when h(v, t−0) > h(u, t−0) is symmetric. In the following sections we describe in
detail the changes that occur in T during the three kinds of local events. We assume the
interval [t−0 , t

+
0] to be sufficiently small so that there is no other vertex whose height lies

between those of u and v during this interval.

Shift event. A shift event occurs at t0 if one of u and v, say v, was a critical vertex and
the other vertex, u, was a regular vertex at t−0 , and the critical vertex shifts from v to u at
t+0 . This event does not cause any change in the topology of T but the node of T that was
labeled v changes its label to u.

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 801

Shift event Birth / death event

(a) v u v u

shift
v u v u

birth

death

(b) v u v u

shift
birth

death
v u v u

(c) v u v u

shift
v u v u

birth

death

Figure 3 Illustration of local events: (a) v is a minimum vertex; (b) v is a regular vertex; (c) v is
a saddle vertex. Hollow vertices are higher than u and v, and filled vertices are lower than u and v.
In all examples v is raised, i.e., h(v, t−0) < h(u, t−0) and h(v, t+0) > h(u, t+0).

α

β

α

β

u

v

ρ(v)

ρ(u) α

β
v

u

birth

death

Figure 2 Illustration
of the change in the topol-
ogy of the contour tree in
birth/death events.

Birth/death event. A birth event occurs at time t0 if both u and
v were regular vertices at t−0 , and they become critical vertices at
t+0 . A death event occurs when both u and v were critical vertices at
t−0 and become regular vertices at t+0 . See Figure 2 for the change
in the topology of T. We now describe in detail how T changes at a
birth event; a death event is similar. There are two possibilities: (i)
v becomes a negative saddle and u a minimum, or (ii) v becomes
a maximum and u a positive saddle. Suppose ρ(u), ρ(v) lie on the
edge (α, β) of T. Then we split (α, β) into two edges by adding
a node corresponding to the new saddle and creating a new edge
incident on this node whose other endpoint is a leaf. In case (i), v
is the node added on the edge (α, β) and u is the new leaf, and in
(ii) u is the node on (α, β) and v is the new leaf.

A local event that corresponds to an interchange event is described in the next subsection.
Using an exhaustive case analysis (omitted from this version), it can be shown that the above
description includes all possible changes in the contour tree that may be caused by a local
event. See Figure 3.

3.1 Interchange events

An interchange event occurs at time t0 if two saddle vertices α, β lie on the same contour,
i.e., ρ(α) = ρ(β), at time t0. Suppose h(α, t−0) < h(β, t−0). There are four cases, depending
on whether α and β are positive or negative saddles. Let us assume that α is a negative
saddle. (As we will see below the case when α is positive can be reduced to this case by
reversing the z-axis and/or time axis.) Then there are two cases: (i) α is negative and β is
positive , and (ii) both α and β are negative saddles. We refer to them as mixed and negative
interchange events, respectively. We need a few notations to describe the interchange events.

At time t−0 all contours in the equivalence class (α, β) are combinatorially identical
because ρ(w), for any vertex w of M, does not lie on the interior of the edge (α, β) of T.

SoCG’15

802 Maintaining Contour Trees of Dynamic Terrains

T Contours T
t−0 t−0 t0 t+0 t+0

(a) βα βα βα
α

β

ξ η

ω ζ

(b) α
β

ξ η

ω ζ

α β α β α β

α

β
η

ξ
ω

ζ

(c) α β α β α β
α

βξ
η

ω

ζ

Figure 4 Illustration of topological changes in M` and contour tree transitions during a mixed
interchange event. Dashed contour lines are contours of α and solid contour lines are contours of β
at time t−0 and t+0 ; each of them consists of two simple cycles. The two contours merge into one
contour at time t0 (middle column). (a) a sign change event, (b) a blue event, (c) a red event.

With a slight abuse of notation, we will therefore simply refer to all contours in the class (α,
β) as the contour C− without specifying a height. Similarly, at time t+0 , all contours in the
class (β, α) are combinatorially identical, and we refer to them as C+. We label the vertices
of C− and of C+ that lie on edges incident to α (resp. β) with α (resp. β).

Mixed interchange event. In this case, α is negative and β is positive. We assume that
the edge (α, β) is blue at t−0 , so both α and β are blue at t−0 (see Section 2). The case when
(α, β) is red reduces to this case by reversing the direction of the z-axis. Let ξ and η be the
two down neighbors of α, and let ζ, ω be the up neighbors of β at time t−0 . Since α is blue,
both (ξ, α) and (η, α) are blue edges. Since β is blue, one of (β, ζ) and (β, ω) is red and the
other is blue (See Figure 1). Assume that the edge (β, ζ) is blue and (β, ω) is red, i.e., the
up-contour C−ω of β is red and the up-contour C−ζ of β is blue. Refer to Figure 4.

Since α is a negative saddle, β is a positive saddle, and C− intersects both components
of Lk+(α) and of Lk−(β), the vertices of C− labeled with α form two disconnected intervals
in C−, and the same is true for vertices labeled with β.1 Since β is the only vertex between
C− and the up-contours C−ζ and C−ω of β, every vertex of C− either lies on an edge of
E(C−ζ) ∪ E(C−ω) or is labeled with β. We mark the vertices of C− that lie on the edges of
E(C−ω) as red and the vertices that lie on the edges of E(C−ζ) as blue, in accordance with the
colors of the contours C−ω and C−ζ , respectively. Refer to Figure 5. Similarly, let C−ξ and C−η
be the down-contours of α, then every vertex of C− either lies on an edge of E(C−ξ) ∪ E(C−η)
or is labeled with α. There are three types of mixed interchange events depending on the
relative positions of the vertices of C− that are marked α or β. See Figure 5.

1 If α and β are adjacent in M, there is a vertex of C− (the intersection point of C− with the edge αβ of
M) that is marked both α and β. In this case, we simply consider vertices marked only α (resp. β). It
can be shown that β is an endpoint of a connected component of Lk+(α) and that component contains
more than one vertex. Therefore the vertices of C− marked only α form two disconnected intervals in
C−, and a similar argument applies to β.

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 803

α
β

C−

α

β

C−

α β
C−

(a) (b) (c)

Figure 5 Illustration of the possible colorings of C− for mixed interchange events. α is a negative
saddle and β is positive. Green (resp. purple) contour vertices represent the vertices marked with α
(resp. β). Hollow vertices of M have height higher than both α and β, and filled vertices have lower
height. Blue dashed lines indicate C−ζ , and red dash lines C−ω . (a) Vertices marked α in C− lie on
the edges of both E(C−ζ) and E(C−ω), (b) vertices marked α lie on the edges of E(C−ζ), (c) vertices
marked α lie on the edges of E(C−ω).

(i) Vertices marked α and β in C− are interleaved, i.e., vertices marked α are both red
and blue; we refer to this as a sign-interchange event.

(ii) All vertices marked α are blue; we refer to this as a blue event.
(iii) All vertices marked α are red; we refer to this as a red event.

In case (ii) and (iii), all vertices marked β lie in one of E(C−ξ) and E(C−η). Without
loss of generality, assume that they lie on the edges of E(C−η). The following lemma then
characterizes the change of T at a mixed interchange event.

I Lemma 2. Suppose a mixed interchange event occurs at time t0 involving an edge (α, β) of
T. If the edge (α, β) is blue at t−0 and h(α, t−0) < h(β, t−0), then the following change occurs
in T at t0:
(i) Sign-interchange event: The topology of T does not change. The only change in T is

that the label α and β of T get swapped, i.e., the edge (α, β) becomes (β, α), and α (resp.
β) becomes a positive (resp. negative) saddle at t+0 ; Figure 4 (a).

(ii) Blue event: The edge (α, β) becomes (β, α) but the color of (β, α) and of the saddles
α, β remain blue. At time t+0 , η is the down neighbor of β, α and ω are the up neighbors
of β, ξ and β are the down neighbors of α, and ζ is the up neighbor of α; Figure 4 (b).

(iii) Red event: The edge (α, β) becomes (β, α), and its color becomes red and so does the
saddle α. At time t+0 , η is the down neighbor of β, α and ζ are the up neighbors of β, ξ
and β are the down neighbors of α, and ω is the up neighbor of α; Figure 4 (c).

Proof. Consider the sign-interchange event. Let C−ξ , C−η and C−ζ , C−ω be the down-contours of
α and the up-contours of β at time t−0 , respectively. Let `↓ = h(α, t−0)−ε and `↑ = h(β, t−0)+ε
be the levels of the down-contours of α and of the up-contours of β, respectively. We can
choose the values of t+0 and ε carefully so that `↑ > h(α, t+0).

First we fix the time t−0 and monitor the contour C− as we decrease the level toward
h(α, t−0). The vertices of C− marked α converge to the vertex α at height h(α, t−0), and we
obtain the contour C−α of α. Since the vertices marked α and β in C− are interleaved, each
of the two simple cycles of C−α contains the vertices marked β (i.e., each of them intersects
the edges incident on β), and therefore so do C−ξ and C−η . Similarly, each of C−ζ and C−ω
contains vertices marked α. Refer to Figure 6 (a).

Next we fix the heights `↓ and `↑ and move forward in time from t−0 to t+0 . As time moves
toward t+0 , C

−
ξ , C−η , C

−
ζ and C−ω continuously deform but no topological changes occur to

any of them. Let us consider the deformation of C−ξ . The deformation can be represented
by a continuous function F : S× [t−0 , t

+
0]→ R2, where F (·, t−0) = C−ξ and F (·, t) denote the

SoCG’15

804 Maintaining Contour Trees of Dynamic Terrains

Height Contours

`↑ =
h(β, t−0)+ε α β

C−
ω

C−
ζ

h(β, t−0) C−
βα β

< h(β, t−0)
> h(α, t−0) α βC−

h(α, t−0) α βC−
α

`↓ =
h(α, t−0)−ε

α βC−
ξ

C−
η

Height Contours

`↑
α β

C+
ω

C+
ζ

h(α, t+0)
C+
α

α β

< h(α, t+0)
> h(β, t+0) β

α C+

h(β, t+0)
β

C+
βα

`↓ α β
C+
η

C+
ξ

(a) t = t−0 (b) t = t+0

Figure 6 Illustration of a sign-change event. The vertices marked α are illustrated as green
vertices and the vertices marked β as purple vertices.

deformation of C−ξ at time t ∈ [t−0 , t
+
0]. By construction, E(F (·, t)) remains the same for all

t ∈ [t−0 , t
+
0]. Let C+

ξ = F (·, t+0). Similarly define C+
η , C+

ζ , and C+
ω . See Figure 6 (b).

Now we fix the time to t+0 and increase the height from `↓ to `↑ and monitor how the
contours C+

ξ and C+
η deform. Recall that h(β, t+0) < h(α, t+0), so as we increase the height,

we first encounter β and the vertices of C+
ξ and C+

η marked β converge to the vertex β of
M. Hence, β is now a negative saddle. Since both C+

ξ and C+
η are blue, so is the saddle β

at t+0 . C+, the up-contour C+ of β at time t+0 , is therefore a blue contour. E(C+) contains
all edges of E(C+

ξ) ∪ E(C+
η) that are not incident on β plus the edges whose lower endpoint

is β (at time t+0). Furthermore the vertices marked α and β in C+ are interleaved (as in
C−). If we continue to increase the height, the vertices of C+ marked α converge to α as we
reach h(α, t+0), and C+ splits into two contours at α. Since C+ is a blue contour, α is a blue
positive saddle at t+0 . The up-contours of α at time t+0 will be C+

ζ and C+
ω , so ζ and ω will be

up-neighbors of α. See Figure 6 (b). This completes the proof for the sign-interchange case.
Next, suppose the red or blue event occurs at time t0. The proof proceeds along the same

lines as for the previous case. Let `↓, `↑, C+
ξ , C+

η , C+
ζ , and C+

ω be the same as above. If
the vertices marked α and β are not interleaved in C−, then by our assumption the vertices
marked β lie on the edges of E(C+

η), these vertices converge to β at height h(β, t+0) and C+
η

splits into two contours at β. Note that as we increase the height C+
ξ also deforms but does

not meet β, as it has no vertices marked β. Hence β is a blue positive saddle, with η as the
down neighbor of β. Let C+

β be the contour of β at time t+0 .
C+
β consists of two simple cycles, one with vertices lying on edges of E(C+

ω) and the other
with vertices lying on edges of E(C+

ζ). As we increase the height to h(α, t+0), the vertices

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 805

T Contours T
t−0 t−0 t0 t+0 t+0

(a) α

β

ξ η

ζ α β α β α β
α

βξ

η ζ

(b) α

β

ξ η

ζ α β α β α β

α

βξ
η ζ

(c) α

β

ξ η

ζ α
β

α
β

α β

α
βξ

η ζ

Figure 7 Illustration of topological changes in M` and contour tree transitions during negative
interchange events. Dashed lines are contours of α and solid lines are contours of β. (a) is when β is
blue. (b) and (c) are when β is red.

marked α in C+ and C+
ξ converge to α, and the two contours merge into a single contour

C+
α at α. If the blue (resp. red) event occurs at t0, i.e., vertices marked α lie on the edges of

E(Cζ) (resp. E(Cω)), then α is a blue (resp. red) negative saddle at time t+0 , the up-contour
of α is C+

ζ (resp. C+
ω), and the contour C+

ω (resp. C+
ζ) remains an up-contour of β. See

Figure 4 (b) and (c). J

The above lemma characterizes the changes in the contour tree at a mixed interchange
event under the assumption that α was a blue negative saddle at t−0 . As mentioned above,
the other cases can be reduced to the above case. In particular, if α is a red negative saddle
at time t−0 , reverse the direction of the z-axis. Now β becomes a blue negative saddle, α a
blue positive saddle, and β lies below α, which is precisely the case described in Lemma 2.
If α is a blue positive saddle, reverse the direction of time and swap β and α (see Figure 4
(b,c)). Finally, if α is red positive saddle, then by reversing the direction of time as well as
that of the z-axis, we reduce this case to that described in Lemma 2.

Negative interchange event. Let ξ, η be the two down neighbors of α at t−0 , and let ζ be
the other down neighbor of β (α is a down neighbor of β at t−0). See Figure 7. The change in
topology of T at a negative interchange event is similar to performing a rotation at node β.
That is, the edge (α, β) becomes the edge (β, α) at time t+0 , and one of the down subtrees of
α (rooted in ξ and η) becomes a down subtree of β. Next we describe the change of T in
more detail.

Let C−ξ and C−η be the down-contours of α at time t−0 . Since both α and β are negative
saddles and C− is the up-contour of α and one of the down contour of β (at time t−0), the
vertices of C− labeled α form two disconnected intervals and those labeled β form a single
connected interval. Since α is the only vertex between C− and the down-contours of α,
vertices of C− either lie in the interior of an edge in E(C−ξ) ∪ E(C−η), or is labeled with α.
Furthermore the vertices of C− marked β form a connected interval, the edges incident on β
that intersect C− belong to one of E(C−ξ) and E(C−η) but not both. Using these observations,

SoCG’15

806 Maintaining Contour Trees of Dynamic Terrains

Figure 7 illustrates different possible cases at a negative interchange event. Lemma 3 below
describes how the topology of T changes. Its proof is similar to that of Lemma 2 and is
omitted from this version.

I Lemma 3. If the vertices of C− labeled β lie on the edges of E(C−η), then at time t+0 , η
becomes a down neighbor of β, ζ the other down neighbor of β, and ξ and β become the down
neighbors of α.

Figure 7 also illustrates how the colors of α and β change at t+0 . Indeed, if β is blue at t−0
then α is also blue at t−0 , and both of them remain blue at t+0 (Figure 7 (a)). If β is red, then
α is blue or red. Suppose α is red. If η is red at t−0 (recall we assume that the edges incident
to β that intersect C− belong to E(C−η)), then both α and β remain red at t+0 (Figure 7 (b)).
But if η is blue at t−0 then α remains red but β becomes blue at t+0 (Figure 7 (c)). Finally, if
β is red and α is blue at t−0 , then this corresponds to third case if we reverse the direction of
the time axis (see Figure 7 (c), with the roles of α and β being swapped).

4 KDS for T

In this section, we describe an algorithm for maintaining the contour tree as the height
function varies over time, using the KDS framework by Basch et al. [5]. The KDS framework
maintains a set of certificates that ensure the correctness of the configuration. As the objects
move, the certificates fail at certain time instances, called events. For each certificate, the
closest time that the certificate fails is computed and maintained in an event queue. When
the current time reaches the time of the next event in the event queue, a repair mechanism
is invoked to update the configuration, the set of certificates, and the event queue.

We represent the time-varying height function by specifying the height of each vertex
v ∈ V as a function fv : R→ R of time. We assume that each fv is a polynomial and that
the maximum degree of these polynomials is bounded by a constant. We also assume that the
set {fv | v ∈ V } is generic in the sense described in the beginning of Section 3. We describe
the algorithm in the real-RAM model [8], in which various operations on constant-degree
polynomials (e.g., finding the roots) can be performed in O(1) time.

Data structure. To maintain T efficiently, we also maintain: (i) a descent tree Π↓(x) for
every minimum x; (ii) an ascent tree Π↑(y) for every maximum y; (iii) for every non-extremal
vertex v, a link pointer to the first vertex of each connected component of Lk−(v) and
Lk+(v), in clockwise order. We store M using a standard triangulation data structure such
as DCEL [7]. We maintain an event queue as a priority queue so that the next event can be
computed efficiently. We represent the contour tree, the ascent trees, and the descent trees
as link-cut trees [16], which support each of the following operations in O(logn) time.

Link(v, w): Given two vertices v, w, connect the trees containing v and w by inserting
the edge (v, w).
Cut(v, w): Given v, w, split the tree containing v and w by removing the edge (v, w).
Root(v): Return the root of the tree containing v.
Expose(v, w): Return a pointer to a balanced binary search tree storing vertices on the
path P from v to w in the order as they appear on P .

These operations enable the following operations on T: (a) NextTo(v, w): Given two
critical vertices v and w, return the vertex adjacent to v in T on the path from v to w. (b)
FindEdge(v): For a regular vertex v, return the edge (α, β) of T that contains ρ(v).

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 807

NextTo is straightforward and takes O(logn) time. FindEdge(v) is implemented as
follows. Using Root(v) on the ascent trees and the descent trees, we find the minimum x

and the maximum y such that v ∈ Π↓(x) and v ∈ Π↑(y). By Lemma 1, (α, β) is on the path
P between x and y in T, and the heights of the vertices on P are monotone. We obtain P
using Expose(x, y) and then find (α, β) on P . This procedure takes O(logn) time.

Certificates. Each edge in an ascent/descent tree is an edge of M and the link pointers also
correspond to the edges of M, so these auxiliary structures change only when the heights
of two endpoints of an edge become equal. The time instance at which an ascent/descent
tree or a link pointer needs to be updated is referred to as auxiliary event. As described
in Section 3, T changes only when the heights of the endpoints of an edge of M or of T
become equal. Hence, our KDS maintains the following two sets of certificates to certify the
correctness of the structures at any given time: (i) a certificate for each edge (u, v) of M,
that fails when h(v, t) = h(u, t), corresponding to a local event; and (ii) a certificate for each
edge (α, β) of T that fails when h(α, t) = h(β, t), corresponding to an interchange event.

Initialization. We initialize by constructing T at time zero, using the static algorithm [9],
in O(n logn) time. The ascent/descent trees and the link pointers can be initialized in
O(n logn) time. Finally, we initialize the event queue with the certificates associated with
edges of M and T.

Repair mechanism. We now describe how we update the KDS at each event. Besides
T, we also have to update the auxiliary structures and the event queue. First consider a
local event at time t0 at which h(v, t0) = h(u, t0), where (u, v) is an edge of M. Assume
that h(v, t−0) < h(u, t−0) and h(v, t+0) > h(u, t+0). This event may be an auxiliary, shift,
birth/death, or an interchange event (or multiple of them). Processing a shift event is
straightforward as it only involves updating the label of a node of T (see Section 3) and the
certificates, along with their failure times, for the edges of T adjacent to that node of T. We
will describe the processing of an interchange event later, so we briefly sketch the processing
of auxiliary and birth/death events.

Birth/death event. Suppose u, v were regular vertices at t−0 and become critical vertices at
t+0 . We find the edge (α, β) of T that contains u, v using the FindEdge(u) operation.
Once we know (α, β), T can be updated in O(logn) time, using Link and Cut operations.
Finally, we update the certificates and their failure times corresponding to the new edges
in T. Processing a death event is similar but simpler since u, v are vertices of T at t−0 .

Auxiliary event.] Updating the link pointers of u and v is straightforward. Next suppose
(v, u) is an edge of an ascent tree at t0. We remove the edge (v, u). If v becomes a
maximum at t+0 , then v becomes the root of an ascent tree; otherwise we choose another
vertex w from Lk+(v) and add the edge (v, w). If u was a maximum at t−0 , i.e., u was
the root of an ascent tree, we add the edge (u, v). These changes in the ascent tree can
be performed in O(logn) time using Link, Cut, and Root operations. A descent tree
is updated in an analogous manner.

Interchange event. We describe how to process a mixed interchange event; other interchange
events can be processed similarly. Following the set up in Section 3, suppose a mixed
interchange event occurs at t0 at which h(α, t0) = h(β, t0) with h(α, t−0) < h(β, t−0), α
being a blue negative saddle at t−0 , and β being a blue positive saddle at t−0 . Once we
know whether this event is sign-interchange, blue, or red event, we can update T in
O(logn) time in accordance with the characterization of events in Lemma 2.

SoCG’15

808 Maintaining Contour Trees of Dynamic Terrains

Borrowing the notation from Section 3, let ζ, ω be the two up neighbors of β at t−0 with
(β, ζ) being blue and (β, ω) being red. Similarly let C− be a contour of the edge (α, β),
C−ζ (resp. C−ω) the up-contour of β corresponding to the edge (β, ζ) (resp. (β, ω)). The
vertices of the contour C− labeled α consist of two disconnected intervals, say, I1 and I2,
each corresponding to one connected component of Lk+(α) at t−0 . We also note that all
edges of E(C−) that contain the one connected interval of vertices of C− marked α belong
to E(C−ζ) or E(C−ω) but not both. For each of I1 and I2, we determine which of the two
sets, E(C−ζ) or E(C−ω), these edges belong to. Consider I1 and choose an arbitrary vertex
from this interval. Suppose this vertex lies on the edge (α, u1) ∈M; u1 can be identified
using the link pointers of α. Using the Root(u1) procedure, we determine the maximum
y such that u1 ∈ Π↑(y). Consider the path Pβy from β to y in T. Let γ1 ∈ {ζ, ω} be the
vertex next to β in Pβy; γ1 can be determined by calling NextTo(β, y). Then the edge
(α, u1) ∈ E(C−γ1

). Similarly we choose a vertex u2 from the other component of Lk+(α)
and find the vertex γ2 ∈ {ζ, ω} such that (α, u2) ∈ E(C−γ2

). If γ1 6= γ2, then the event at
hand is a sign-interchange event, if γ1 = γ2 = ζ then it is a blue event, and if γ1 = γ2 = ω

then it is a red event. The total time spent in computing γ1 and γ2 is O(logn).
Hence, a mixed interchange event can be processed in O(logn) time. Similarly other
interchange events can be processed in O(logn) time.

KDS analysis. The shift, birth/death, and interchange events are external events as they
change T, and the auxiliary events are internal events as they only change auxiliary data
structures and do not affect T. Since auxiliary events are local events, the number of internal
events is O(n). Hence, the KDS processes O(κ+n) events, where κ is the number of external
events. Each certificate of the KDS is associated with an edge of M or T, so it maintains
O(n) certificates at any time. Each event will cause the update of O(1) number of certificates.
The maximum number of certificates in which any one vertex can ever appear is bounded
by the degree of the vertex in M. Although the degree of a vertex in M can be Ω(n) in the
worst-case, it is often a small constant in practice.

I Theorem 4. Let M be a triangulation of R2 with n vertices, and h : M × R → R a
time-varying height function such that the height of each vertex of M, as a function of time,
is specified by a polynomial whose maximum degree is bounded by a constant. The contour
tree of h can be maintained by a linear-size KDS that processes O(κ+ n) events, where κ
is the number of external events. The KDS processes each event in O(logn) time in the
real-RAM model.

I Remark. (i) It is easy to construct a height function so that the number of combinatorial
changes in T is Ω(n2). As the worst-case number of internal events is much smaller than
the worst-case number of external events, our KDS is weakly efficient in the terminology
of KDS [14]. (ii) If the maximum degree of a vertex is large, our KDS can be modified so
that a vertex appears in O(logn) certificates, but the number of internal events increases
to O(λs(n) logn), where s is a constant and λs(·) is the maximum length of an order s
Davenport-Schinzel sequence and is almost linear [2]. Each event now takes O(log2 n) time
to process.

5 Extensions

In this section, we describe kinetic data structures for maintaining the augmented contour
tree and join/split tree.

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 809

Augmented contour tree. Recall that the augmented contour tree TA is obtained by adding
to the edges of T the images of regular vertices of M under the quotient map ρ. We refer to
these newly added degree two vertices in TA as regular vertices as well, while the original
vertices of T are called critical vertices. We can easily modify the KDS framework described
in Section 4 to maintain this augmented contour tree TA. We provide a brief description
below.

Specifically, the only new events that we need to handle are (regular-regular event): when
two regular vertices u, v lie on the same contour, and (regular-critical event): when a regular
vertex u and a critical vertex v lie on the same contour. Note that (u, v) is an edge of TA in
both cases. When a regular-regular event happens, there are two possibilities: (i) either u
and v swap their order along the edge (u, v); or (ii) it causes a birth event, in which case
(u, v) is also necessarily an edge in M.

At a regular-critical event at time t0, there are two cases: (i) u is a regular vertex and v
is an extremal vertex. In this case, it is easy to verify that (u, v) has to also be an edge in
M, and it corresponds to a shift event. (ii) u is a regular vertex and v is a saddle vertex. If
it does not correspond to a shift event, we need to identify which edge incident on v in TA
contains u after the event. Assume h(u, t−0) < h(v, t−0), and let w be a vertex in Lk+(u). It
is easy to see that w and u are in the same connected component in M>(h(v,t+0)) at time
t+0 . Thus, u is moved onto the incident edge of v whose endpoint is the one obtained by
NextTo(v, y), where Π↑(y) contains w. If h(u, t−0) > h(v, t−0), we consider w as a vertex in
Lk−(u) and use the descent trees.

The additional events can be clearly handled in O(logn) time. Note that when a local
event associated with an edge (u, v) of M occurs, there is an edge (u, v) in TA and thus
certificates associated with edges of M are unnecessary. Each certificate failure makes a
combinatorial change in TA. Therefore, this data structure is strongly efficient.

I Theorem 5. Let M be a triangulation of R2 with n vertices, and h : M × R → R a
time-varying height function such that the height of each vertex of M, as a function of time,
is specified by a polynomial whose maximum degree is bounded by a constant. The augmented
contour tree of h can be maintained by a linear-size KDS that processes O(κ) events, where
κ is the number of external events. The KDS processes each event in O(logn) time in the
real-RAM model.

Join and split trees. As described, the contour tree T encodes the topological changes in
M` as we increase ` from −∞ to ∞. The join tree encodes the topological changes in M<`.
As we increase ` from −∞ to ∞, connected components in M<` appear at minimum vertices
and merge at negative saddle vertices, but they never split or disappear as components never
shrink. In the join tree, only minimum vertices and negative saddle vertices appear as nodes.
Similarly, the split tree encodes the topological changes in M>`, in which only maxima and
positive saddles appear as nodes. As the join and split trees contain a subset of nodes in
the contour tree, the events that occur on these trees of time-varying height functions are
a subset of the events that occur on the contour tree. For example, the events that occur
on the join tree are the events that involve the minima and negative saddle vertices, i.e.,
the negative interchange events, sign-interchange change events and a subset of the local
events. The algorithm described above can therefore also be used to maintain the join and
split trees, the only difference being the reduced set of events. Note that to be able to detect
the sign-interchange events efficiently, we need to maintain T simultaneously with the join
tree J or augment the positive saddle vertices to the edges of J.

SoCG’15

810 Maintaining Contour Trees of Dynamic Terrains

I Theorem 6. Let M be a triangulation of R2 with n vertices, and h : M × R → R a
time-varying height function such that the height of each vertex of M, as a function of time,
is specified by a polynomial whose maximum degree is bounded by a constant. The join tree
and the split tree of h can be maintained by a linear-size KDS that processes O(κ+ n) events,
where κ is the number of events at which the contour tree of h changes. The KDS processes
each event in O(logn) time in the real-RAM model.

6 Conclusion

In this paper, we characterized the combinatorial changes in the evolution of the contour
tree of a time-varying piecewise linear height function over R2, and described the first KDS
for maintaining the contour tree that efficiently handled such changes. Adapting this KDS,
we also presented how to maintain the augmented contour tree and join/split tree.

Our analysis of events and our KDS are limited to a height function on simple 2-manifolds.
A natural question of course is to extend this analysis and the KDS to a height function
on higher dimensional space, say, a simple 3-manifold. A more challenging question is to
develop an efficient KDS for maintaining the Reeb graph of a function over a 2-manifold
with non-zero genus. Finally, another interesting question is to design a KDS for maintaining
the contour tree when not only the height function changes with time but M itself changes
over time.

References
1 P. K. Agarwal, L. Arge, T. M. Murali, Kasturi R. Varadarajan, and J. S. Vitter. I/O-

efficient algorithms for contour-line extraction and planar graph blocking. In Proc. 9th
ACM-SIAM Sympos. Discrete Algorithms, pages 117–126, 1998.

2 P. K. Agarwal and M. Sharir. Davenport-Schinzel sequences and their geometric appli-
cations. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational
Geometry, pages 1–47. Elsevier Science Publishers, 2000.

3 Pankaj K. Agarwal, Lars Arge, and Ke Yi. I/O-efficient batched union-find and its appli-
cations to terrain analysis. In Proc. 22nd Annu. Sympos. Comput. Geom., pages 167–176,
2006.

4 Lars Arge, Morten Revsbæk, and Norbert Zeh. I/O-efficient computation of water flow
across a terrain. In Proc. 26th Annu. Sympos. Comput. Geom., pages 403–412, 2010.

5 J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data. J. Algorithms,
31(1):1–28, 1999.

6 K.G. Bemis, D. Silver, P.A. Rona, and C. Feng. Case study: a methodology for plume
visualization with application to real-time acquisition and navigation. In Proc. IEEE Conf.
Visualization, pages 481–494, 2000.

7 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

8 Vasco Brattka and Peter Hertling. Feasible real random access machines. J. Complexity,
14(4):490–526, December 1998.

9 Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour trees in all dimensions.
Comput. Geom., 24(2):75–94, 2003.

10 Hamish Carr, Jack Snoeyink, and Michiel van de Panne. Flexible isosurfaces: Simplifying
and displaying scalar topology using the contour tree. Comput. Geom., 43(1):42–58, 2010.

11 A. Danner, T. Mølhave, K. Yi, P. K. Agarwal, L. Arge, and H. Mitásová. Terrastream: From
elevation data to watershed hierarchies. In Proc. ACM Sympos. Advances in Geographic
Information Systems, page 28, 2007.

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 811

12 Herbert Edelsbrunner, John Harer, Ajith Mascarenhas, Valerio Pascucci, and Jack
Snoeyink. Time-varying Reeb graphs for continuous space-time data. Comput. Geom.,
41(3):149–166, 2008.

13 L. Guibas. Modeling motion. In J. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, pages 1117–1134. Chapman and Hall/CRC, 2nd
edition, 2004.

14 Leonidas J. Guibas. Kinetic data structures – a state of the art report. In Proc. Workshop
Algorithmic Found. Robot., pages 191–209, 1998.

15 N. Max, R. Crawfis, and D. Williams. Visualization for climate modeling. IEEE Comput.
Graphics and Appl., 13:34–40, 1993.

16 Daniel D. Sleator and Robert E. Tarjan. A data structure for dynamic trees. J. Comput.
Sys. Sci., 26(3):362–391, 1983.

17 B. S. Sohn and Bajaj C. L. Time-varying contour topology. IEEE Transactions on Visual-
ization and Computer Graphics, 12(1):14–25, 2006.

18 A. Szymczak. Subdomain aware contour trees and contour evolution in time-dependent
scalar fields. In Proc. Conf. Shape Model. and Appl., pages 136–144, 2005.

19 S. P. Tarasov and M. N. Vyalyi. Construction of contour trees in 3D in O(n logn) steps.
In Proc. 14th Annu. Sympos. Comput. Geom., pages 68–75, 1998.

20 M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees
and small seed sets for isosurface traversal. In Proc. 13th Annu. Sympos. Comput. Geom.,
pages 212–220, 1997.

SoCG’15

Hyperorthogonal Well-Folded Hilbert Curves
Arie Bos and Herman J. Haverkort

Deptartment of Mathematics and Computer Science
Eindhoven University of Technology, The Netherlands
arie_bos@online.nl, cs.herman@haverkort.net

Abstract
R-trees can be used to store and query sets of point data in two or more dimensions. An easy
way to construct and maintain R-trees for two-dimensional points, due to Kamel and Faloutsos,
is to keep the points in the order in which they appear along the Hilbert curve. The R-tree will
then store bounding boxes of points along contiguous sections of the curve, and the efficiency of
the R-tree depends on the size of the bounding boxes—smaller is better. Since there are many
different ways to generalize the Hilbert curve to higher dimensions, this raises the question which
generalization results in the smallest bounding boxes. Familiar methods, such as the one by Butz,
can result in curve sections whose bounding boxes are a factor Ω(2d/2) larger than the volume
traversed by that section of the curve. Most of the volume bounded by such bounding boxes
would not contain any data points. In this paper we present a new way of generalizing Hilbert’s
curve to higher dimensions, which results in much tighter bounding boxes: they have at most
4 times the volume of the part of the curve covered, independent of the number of dimensions.
Moreover, we prove that a factor 4 is asymptotically optimal.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Geometrical problems and com-
putations, H.3.1. Indexing methods, H.3.2 File organization

Keywords and phrases space-filling curve, Hilbert curve, multi-dimensional, range query, R-tree

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.812

1 Introduction

1.1 Space-filling curves and spatial index structures
A d-dimensional space-filling curve is a continuous, surjective mapping from R to Rd. In
the late 19th century Peano [14] described such mappings for d = 2 and d = 3. Since
then, various other space-filling curves have been found, and they have been applied in
diverse areas such as spatial databases, load balancing in parallel computing, improving cache
utilization in computations on large matrices, finite element methods, image compression,
and combinatorial optimization [3, 7, 15]. In this paper we present new space-filling curves
for d > 2 that have favourable properties for use in spatial data structures.

In particular, we consider data structures for d-dimensional points such as R-trees [12].
In such data structures, data points are organised in blocks, often stored in external memory.
Each block contains at most B points, for some parameter B, and each point is stored
in exactly one block. For each block we maintain a bounding box, which is the smallest
axis-aligned d-dimensional box that contains all points stored in the block. The bounding
boxes of the blocks are stored in an index structure, which may often be kept in main memory.
To find all points intersecting a given query window Q, we can now query the index structure
for all bounding boxes that intersect Q; then we retrieve the corresponding blocks, and check
the points in those blocks for answers to our query. We may also use the index structure
to find the nearest neighbour to a query point q: if we search blocks in order of increasing

© Arie Bos and Herman J. Haverkort;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 812–826

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.812
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Bos and H. J. Haverkort 813

(a) (b)

space-filling curve

block bounding box

input point
(c)

p

q

Figure 1 (a) Sketch of Hilbert’s space-filling curve. (b) Blocks of an R-tree or similar data
structure with B = 3. (c) Box-to-curve ratio of the section between p and q = area of the bounding
box of the curve section S between p and q, divided by the area covered by S: 12 · 12/87 ≈ 1.66.

distance from q, we will retrieve exactly the blocks whose bounding boxes intersect the
largest empty sphere around q. The grouping of points into blocks determines what block
bounding boxes are stored in the index structure, and in practice, retrieving these blocks is
what determines the query response time [7].

If we store n points in d dimensions with B points in a block, Θ((n/B)1−1/d) blocks may
need to be visited in the worst case if the query window is a rectangular box with no points
inside [11], and Θ(n/B) blocks may need to be visited if the query window is an empty
sphere. The Priority-R-tree achieves these bounds [2], whereas a heuristic solution by Kamel
and Faloutsos [10], which is explained below, may result in visiting Θ(n/B) blocks even if
the query window is a rectangular box with no points inside [2]. However, experimental
results for (near-)point data and query ranges with few points inside [8] indicate that the
approach by Kamel and Faloutsos seems to be more effective in practice for such settings.
Moreover, regardless of the type of data and query ranges, a structure based on the ideas of
Kamel and Faloutsos is much easier to build and maintain than a Priority-R-tree [2].

Kamel and Faloutsos proposed to determine the grouping of points into blocks as follows:
we order the input points along a space-filling curve and then put each next group of B
points together in a block (see Figure 1(b)). Note that the number of blocks retrieved to
answer a query is simply the number of bounding boxes intersected. Therefore it is important
that the ordering induced by the space-filling curve makes us fill each block with points that
lie close to each other and thus have a small bounding box.

Kamel and Faloutsos proposed to use the Hilbert curve [9] for this purpose. One way to
describe the two-dimensional Hilbert curve is as a recursive construction that maps the unit
interval [0, 1] to the unit square [0, 1]2. We subdivide the square into a grid of 2× 2 square
cells, and simultaneously subdivide the unit interval into four subintervals. Each subinterval
is then matched to a cell; thus Hilbert’s curve traverses the cells one by one in a particular
order. The mapping from unit interval to unit square is refined by applying the procedure
recursively to each subinterval-cell pair, so that within each cell, the curve makes a similar
traversal. The traversals within these cells are rotated and/or reflected so that the traversal
remains continuous from one cell to another (see Figure 1(a)). The result is a fully-specified
mapping f : [0, 1]→ [0, 1]2 from the unit interval to the unit square. The mapping is easily
reversed, and thanks to the fact that the curve is based on recursive subdivision of a square
in quadrants, the reversed mapping can be implemented very efficiently with coordinates
represented as binary numbers. This gives us a way to decide which of any two points in the
unit square is the first along the curve.

We can sketch the shape of the curve by drawing, for the n-th level of recursion, a
polygonal curve, an approximating curve An, that connects the centres of the 4n squares
in the order in which they are visited. In fact, the mapping f can also be described as

SoCG’15

814 Hyperorthogonal Well-Folded Hilbert Curves

the limit of the approximating curves An as n goes to infinity. Explicit descriptions of
the approximating curves help us to reason about the shapes of curve sections, and thus,
about the extents of their bounding boxes. For ease of notation, in this paper we scale the
approximating curve for any level n by a factor 2n and translate it so that its vertices are
exactly the points {0, . . . , 2n − 1}2.

A d-dimensional version of Hilbert’s curve could now be described by a series of curves
An for increasing n, each visiting the points {0, . . . , 2n−1}d. For d ≥ 3, there are many ways
to define such a series of curves [1, 5, 6], but their distinctive properties and their differences
in suitability for our purposes are largely unexplored.

1.2 Our results
In this paper we present a family of space-filling curves, for any number of dimensions
d ≥ 3, with two properties which we call well-foldedness and hyperorthogonality—Hilbert’s
two-dimensional curve also has these properties. We show that these properties imply that
the curves have good bounding-box quality as defined by Haverkort and Van Walderveen [7].

More precisely, for any 0 ≤ a ≤ b ≤ 1, let f([a, b]) denote the section of the space-filling
curve f from f(a) to f(b), that is,

⋃
a≤t≤b f(t). The box-to-curve ratio (BCR) of a section

f([a, b]) is the volume of the minimum axis-aligned bounding box of f([a, b]) divided by the
volume (d-dimensional Lebesgue measure) of f([a, b]), see Figure 1(c). The worst-case bcr
of a space-filling curve f is the maximum bcr over all sections of f . We show that the
worst-case bcr of a well-folded, hyperorthogonal space-filling curve is at most 4, independent
of the number of dimensions. Moreover, we show that this is asymptotically optimal: we
prove that any d-dimensional space-filling curve that is described by a series of curves An as
defined above, has a section with bcr at least 4−O(1/2d). In contrast, the d-dimensional
“Hilbert” curves of Butz [4], as implemented by Moore [13], have sections with bcr in Ω(2d/2).

In Section 1.3 we introduce basic nomenclature and notation. Section 2 defines the concept
of well-foldedness, and presents sufficient and necessary conditions for approximating curves
of well-folded space-filling curves. Section 3 introduces the concept of hyperorthogonality.
We present sufficient and necessary conditions for approximating curves of well-folded space-
filling curves to be hyperorthogonal. The necessity of these conditions is then used to prove
that any section of a hyperorthogonal well-folded space-filling curve has good box-to-curve
ratio. Our next task is to show that hyperorthogonal well-folded curves actually exist, and
this is the topic of Section 4. We combine the conditions from the previous sections to
learn more about the shape of hyperorthogonal well-folded curves, and in particular about
self-similar curves (Section 5). It turns out that in two, three, and four dimensions, there
are actually very few self-similar, well-folded, hyperorthogonal curves; in five and more
dimensions, more such curves exist. In Section 6, we make a few remarks about how to
implement a comparison operator based on self-similar, well-folded, hyperorthogonal curves in
any number of dimensions greater than two. Finally, in Section 7, we compare the bounding
box quality of hyperorthogonal well-folded curves to lower bounds and to the bounding
box quality of Butz’s generalization of Hilbert curves, and we discuss directions for further
research.

In this extended abstract we omit the proofs of most theorems, lemmas, and observations,
as well as many details of the comparison operator discussed in Section 6. We intend to publish
the proofs and further details (including pseudocode) of a non-recursive implementation
of the comparison operator in a more comprehensive version of this paper. Until that is
published, the interested reader is welcome to contact the authors for a version of this
abstract that includes an appendix with the proofs and the pseudocode.

A. Bos and H. J. Haverkort 815

1.3 Nomenclature and notation
General notation. By D we denote 2d. By sign(i) we denote the sign of i, that is, sign(i) =
−1 if i < 0; sign(i) = 0 if i = 0, and sign(i) = 1 if i > 0. By isneg(i) we denote the function
defined by isneg(i) = 1 if i < 0, and isneg(i) = 0 if i ≥ 0.

Vertices, edges, directions and axes. The universe in this article is the integer grid in d
dimensions Zd. A vertex is a point v = (v[1], v[2], . . . , v[d]) ∈ Zd. An edge e is an ordered
pair of vertices (v, w) with distance ||w − v|| = 1. The direction of an edge e = (v, w) is the
number i ∈ {−d, . . . , d} \ {0} such that w[|i|]− v[|i|] = sign(i) and w[j] = v[j] if j 6= |i|. The
axis of an edge is the absolute value of its direction. Note that the edges (v, w) and (w, v)
have opposite directions, but the same axis. By 〈e1, e2, . . .〉 we denote a sequence of edges
with directions e1, e2,

Curves, length, volume, entry and exit. For the purposes of this paper, a curve on the
grid is an ordered set of unique vertices where each subsequent pair of vertices forms an
edge as defined above. Note that a curve on the grid never visits the same vertex more than
once. Henceforth, a space-filling curve is always a mapping f : [0, 1] → [0, 1]d, while any
other curve discussed in this paper will be assumed to be a curve on the grid. Since a vertex
and a direction determine an edge, a curve can alternatively be described by specifying the
starting point and listing the directions of its edges in order. A free curve is a curve with a
specified shape and orientation but with unspecified location: it is described by the directions
of its edges. Note that curves are directed. The reverse ←−C of a free curve C is obtained
by reversing the order of the edge directions and reversing the directions themselves, which
means negating them. The length of a curve is the number of edges, the volume of a subset
of the grid is the number of vertices. So the volume vol(C) of a curve C is its length + 1.
The first vertex of a curve is called the entry; the last vertex is called the exit.

k-Curves and k-cubes. A k-curve is a Hamiltonian path on the integer grid in a d-
dimensional cube with 2d·k points, so with a side of length 2k − 1. Such a cube is called a
k-cube. Since each of the (integer) points of the cube is visited by the curve exactly once,
the length of a k-curve is 2d·k − 1 and its volume is 2d·k.

Approximating curves. The space-filling curves under study in this paper will be approx-
imated by curves on the grid as just defined. By A0, A1, . . . we will denote a sequence of
curves that approximates a d-dimensional space-filling curve, where A0 is a single vertex
and Ak is a k-curve. By vk,1, vk,2, . . . , vk,K , where K = 2d·k, we denote the vertices of Ak in
order, and by ek,i we denote the direction of the edge (vk,i, vk,i+1). Recall that each vertex
vk,i of Ak represents a d-dimensional hypercube Hk,i of width 1/2k that is visited by the
space-filling curve approximated by Ak, and the vertices vk+1,D·i−D+1, . . . , vk+1,D·i model
the order in which the space-filling curve traverses the d-dimensional hypercubes of width
1/2k+1 whose union is Hk,i. Therefore it must be possible to construct Ak+1 from Ak, which
we call the parent curve, by inflation: we replace each vertex vk,i of the parent curve with a
1-curve Ck,i (a child curve), whose vertices are those of the unit cube, translated by 2 · vk,i.
Each edge (vk,i, vk,i+1) of the parent curve is replaced by an edge (vk+1,D·i, vk+1,D·i+1) of
the same direction, connecting the exit of Ck,i to the entry of Ck,i+1, see Figure 2 (left).
Note that not just any choice of child curves results in a valid (k + 1)-curve. The 1-curves
that replace the vertices have to be chosen carefully such that for each edge (vk,i, vk,i+1) of
the parent curve, there is indeed an edge in the grid from the exit of Ck,i to the entry of

SoCG’15

816 Hyperorthogonal Well-Folded Hilbert Curves

A1

C1,1

C1,2 C1,3

C1,4

A2

1

2

–1

3 1

–2

–1

3

–2

axis LED

1
2
3

0
1
0

axis LED

1
2
3

0
0
1

axis LED

1
2
3

0
0
1axis LED

1
2
3

0
1
0

axis LED

1
2
3

0
1
0

axis LED

1
2
3

0
0
1

axis LED

1
2
3

0
0
2axis LED

1
2
3

0
0
3

Figure 2 Left: A parent curve A1 is inflated to create A2, which is composed of the child curves
C1,1, C1,2, C1,3 and C1,4, and edges of A1 which are translated such that they connect the child
curves to each other at their end points. Right: G(3) (in black) with the directions of its edges; in
grey: G(3) extended with an entry edge 〈d〉 and an exit edge 〈−(d − 1)〉, with the edge distance
table according to Definition 11 for each vertex.

Ck,i+1. In Section 2 we will discuss how the 1-curves should be constructed so that they
match up.

Observe that our definition of curves on the grid restricts the generalizations of Hilbert
curves under study to face-continuous curves, that is, each pair of consecutive d-dimensional
hypercubes along the curve must share a (d − 1)-dimensional face. In Section 7, we will
discuss why, in the context of this paper, this restriction is justified.

2 Well-folded curves

In the process of inflating, we will restrict ourselves in this paper to replacing vertices with
isometric images (translations, rotations and reflections) of one particular 1-curve, namely
the free curve G(d) that follows the so-called binary reflected Gray code:

I Definition 1. The free curve G(d) is defined recursively as follows: G(0) is empty; G(d) is
the concatenation of G(d− 1), 〈d〉, and ←−G(d− 1).

For example, G(2) is the free curve 〈1, 2,−1〉, G(3) is shown in Figure 2 (right), and G(4)
is the free curve 〈1, 2,−1, 3, 1,−2, −1, 4, 1, 2,−1,−3, 1,−2,−1〉. The length of G(d) is, by
induction, 2d − 1, which is the maximum length of a Hamiltonian path on the unit cube in
Zd. Notice that in G(d), each edge 〈a〉 is preceded by an edge 〈1〉 and followed by an edge
〈−1〉 if |a| = 2, and it is preceded by an edge 〈−1〉 and followed by an edge 〈1〉 if |a| > 2.

I Definition 2. A curve is well-folded if it is a single vertex, or if it is obtained by inflating a
well-folded curve by replacing its vertices by isometric images of G(d). A space-filling curve
is well-folded if its approximating curves are well-folded.

Note that in two dimensions, all possible 1-curves are in fact isometric images of G(2),
so any face-continuous space-filling curve based on recursive subdivision of a square into
four squares must be well-folded (for example, Hilbert’s curve or the βΩ-curve [17]). In
higher dimensions, the most common generalizations of the Hilbert curve are well-folded
as well, but there are also face-continuous curves based on recursive subdivision of a cube
into eight cubes that are not well-folded (using generators of types B and C from Alber and

A. Bos and H. J. Haverkort 817

Niedermeier [1, 5]). In Section 7, we will briefly get back to non-well-folded curves; until
then, we will focus on well-folded curves.

The following lemma will prove useful later:

I Lemma 3. The axes of the first (and last) n edges of G(d) constitute the set {1, . . . ,m},
where m = 1 + blog2(n)c = dlog2(n+ 1)e.

The isometric transformations of 1-curves which we need in this paper are those of the
hyperoctahedral group of symmetries of the hypercube. This group is the product of the
symmetric group Sd (the group of all permutations of the d coordinate axes) and the group
of 2d reflections formed by all combinations of reflections in hyperplanes orthogonal to the
coordinate axes. Thus there are d! · 2d such transformations.

To distinguish these transformations, we will use signed permutations. A signed per-
mutation π working on {−d, . . . , d} \ {0} is denoted by [π[1], π[2], . . . , π[d]], where π is the
bijection from {−d, . . . , d} \ {0} to itself defined by π(k) = π[k] and π(−k) = −π[k] for
k ∈ {1, . . . , d}. Given a k-cube H, a signed permutation π specifies the isometry that maps
H onto itself and maps the direction k to the direction π(k). If π = [π[1], π[2], . . . , π[d]] is a
signed permutation, then π(X) denotes the application of π to all elements of the vector, set,
or sequence X ; |π| denotes the permutation [|π1|, |π2|, . . . , |πd|]; and π−1 denotes the inverse
of π, that is, π−1(x) = y if and only if π(y) = x.

The orientation of a 1-curve C, denoted by or(C), is the direction of the vector from
entry to exit. Note that or(G(d)) = d, the direction of the middle edge of G(d). Hence,
or(π(G(d))) = π(d).

Consider a sequence of well-folded approximating curves A0, A1, Given a particular
level k, let K be 2d·k, and let σk,i, for i ∈ {1, . . . ,K}, be the transformation (modulo
translation) that is applied to G(d) to obtain the 1-curve Ck,i that replaces vk,i in the
inflation of Ak to Ak+1. For example, for the curves in Figure 2 (left) we have σ0,1 = [1, 2];
σ1,1 = [−1, 2]; σ1,2 = [−2, 1]; σ1,3 = σ1,4 = [2,−1]. As observed before, the 1-curves that
replace the vertices have to be chosen carefully such that there is an edge with direction ek,i

from the exit of Ck,i to the entry of Ck,i+1. This leads to the following conditions:

I Theorem 4. The permutations σ result in a sequence of well-folded approximating curves
if and only if, for each k and for each 1 ≤ i < 2d·k, we have:

for j ∈ {1, . . . , d}, we have sign(σ−1
k,i (j)) = sign(σ−1

k,i+1(j)) if and only if j equals neither
or both of |σk,i(d)| and |ek,i|;
sign(σ−1

k,i+1(ek,i)) = 1.

Given the edges and the signs of the inverse permutations, Theorem 4 allows us to
determine the last elements of each permutation. Conversely, given the edges and the last
elements of each permutation, Theorem 4 allows us to determine the signs of each permutation.
Note that this leaves d− 1 elements of each |σk,i| unspecified and without consequence: any
permutation of those elements will do.

I Observation 5. Let f be a well-folded space-filling curve approximated by A0, A1, . . .,
and let x = f(0) be the starting point of f . Then x[j] =

∑∞
k=0 isneg(σ−1

k,1(j))/2k+1. In
other words, the digits of the binary representation of x[j] behind the fractional point are
isneg(σ−1

0,1(j)), isneg(σ−1
1,1(j)), isneg(σ−1

2,1(j)),

3 Hyperorthogonal well-folded curves

So far, we have been defining and discussing properties of curves that are in fact common to
the best-known previous generalizations of Hilbert’s curve to higher dimensions. We will

SoCG’15

818 Hyperorthogonal Well-Folded Hilbert Curves

now introduce a new property that is not satisfied by these curves, and will prove useful in
designing novel curves with good box-to-curve ratios.

3.1 Definition and characterization

I Definition 6. We call a curve hyperorthogonal if and only if, for any n ∈ {0, . . . , d− 2},
each sequence of 2n consecutive edges have exactly n+ 1 different axes. A space-filling curve
is hyperorthogonal if its approximating curves are hyperorthogonal.

Notice that an n-dimensional 1-cube can hold at most 2n− 1 consecutive edges of a curve,
so any curve constructed by inflation must contain sets of 2n edges that have at least n+ 1
different axes, for each n ≤ d− 1. Hyperorthogonality requires that this holds for every set
of 2n edges, provided1 n ≤ d − 2. For d = 2, hyperorthogonality requires only that each
single edge spans a one-dimensional space, which is obvious. So all two-dimensional curves
are hyperorthogonal. For d = 3 each two consecutive edges must span a two-dimensional
space, so each pair of consecutive edges must be orthogonal. (For that reason the property is
called ‘hyperorthogonal’ for higher dimensions as well.) Note that G(d) is hyperorthogonal.
As can be seen by inspecting familiar generalizations of Hilbert curves to three dimensions, if
we construct a sequence of curves A0, . . . , Ak in three or more dimensions by inflation, using
isometric images of G(d) to inflate vertices, then Ak is not necessarily hyperorthogonal, even
though G(d) is (see, for example, the Butz-Moore curve in Section 5, Figure 3, right, where
there are two collinear edges along the top right edge of the cube). The following theorem
states what conditions the isometries should fulfill in order to obtain hyperorthogonal curves:

I Definition 7. The depth of a direction a in a signed permutation π, denoted depth(π, a),
is defined as follows: if |a| ∈ {|πd|, |πd−1|}, then depth(π, a) = 0, otherwise depth(π, a) is the
number j such that |πd−1−j | = |a|.

I Theorem 8. Let K be 2d·k, and let A0, . . . , Ak+1 be a sequence of well-folded curves
constructed by inflation (with all the associated notation introduced in the previous sections).
Suppose A0, . . . , Ak are hyperorthogonal. Then Ak+1 is hyperorthogonal as well if and only
if the following conditions are satisfied:
1. for each i ∈ {1, . . . ,K − 1}: depth(σk,i, ek,i) = depth(σk,i+1, ek,i) = 0;
2. for each i ∈ {1, . . . ,K − 1} and each a ∈ {−d, . . . , d} \ {0}, we have | depth(σk,i, a) −

depth(σk,i+1, a)| ≤ 1.

3.2 Box-to-curve ratio ≤ 4

To bound the box-to-curve ratio (bcr) of sections of hyperorthogonal well-folded space-filling
curves, we will make use of the following lemma:

I Lemma 9. For any n ∈ {0, . . . , d−2}, each sequence of 2n consecutive edges of a well-folded,
hyperorthogonal curve lies inside an (n+ 1)-dimensional unit cube.

I Theorem 10. The box-to-curve ratio of any section of a hyperorthogonal well-folded
space-filling curve is at most 4.

1 The definition leaves little room for being made more strict: raising the bound to n ≤ d − 1 would
render hyperorthogonal curves non-existent, at least when d = 2.

A. Bos and H. J. Haverkort 819

Table 1 Cases distinguished in the proof of Theorem 10.

Case MaxBoxVol MinCrvVol

A: 2d−1 + 2 ≤ vol(Ek) ≤ 2d+1 2d+1 2d−1

B: 2d−2 + 2 ≤ vol(Ek) ≤ 2d−1 + 1; vol(Y) ≤ vol(X) ≤ 2d−2 2d 2d−2

C: 2d−2 + 2 ≤ vol(Ek) ≤ 2d−1 + 1; 2d−3 < vol(Y) ≤ 2d−2 < vol(X) 3
2 · 2d 3

2 · 2
d−2

D: 2d−2 + 2 ≤ vol(Ek) ≤ 2d−1 + 1; 1 ≤ vol(Y) ≤ 2d−3 2d 2d−2

E: 2d−2 + 2 ≤ vol(Ek) ≤ 2d−1 + 1; vol(Y) = 0 2d 2d−2

F: 3 ≤ vol(Ek) ≤ 2d−2 + 1 4(vol(Ek)− 2) vol(Ek)− 2

G: vol(Ek) ≤ 2 2 1

Proof. Consider a section s of a hyperorthogonal well-folded space-filling curve f , approxim-
ated by a series of curves A0, A1, Let Ek be the subcurve of Ak that contains all vertices
vk,i that represent hypercubes Hk,i of width 1/2k that are intersected by s. More specifically,
let k be the smallest k such that Ak contains at least one vertex vk,i such that Hk,i is fully
covered by s. The bounding box of a subcurve vk,h, . . . , vk,j of Ak is the smallest axis-aligned
box that fully contains all hypercubes Hk,h, . . . ,Hk,j .

By our choice of k, Ek contains vertices from at most two (consecutive) child curves
Ck−1,x and Ck−1,y of Ak−1, because otherwise one child curve of Ak−1 would be completely
covered by s, contradicting our choice of k. Note that this implies that the bounding box
of Ek has at most the volume of two 1-cubes, that is, 2d+1. Without loss of generality, let
Ck−1,x be the child curve of Ak−1 that contains the largest part of Ek and call this part
X, let Y be the remaining part of Ek (if any), and let c = |ek,min(x,y)| be the axis of the
connecting edge of X and Y . By definition, vol(Y) = vol(Ek)− vol(X) ≤ vol(X).

A number of cases with smartly chosen boundaries for vol(Ek), vol(X) and vol(Y) can now
be distinguished, as shown in Table 1. In each case, we derive an upper bound MaxBoxVol
on the bounding box volume, and a lower bound MinCrvVol on the number of vertices of
Ek that represent hypercubes completely covered by s (this is usually all of Ek except for
the first and last vertex). From this we can derive that the box-to-curve ratio is less than
MaxBoxVol/MinCrvVol ≤ 4. Note that cases B, C, D, and E are subcases for the same
bounds on vol(Ek), where case B is the case of having small X, and cases C, D, E are the
cases of large X with various bounds on the size of Y . For cases A, E, and G the bounds on
the bounding box volume are trivial; cases B, C, D, and F require a more careful analysis.

Case B: By Theorem 8, for the axis c of the connecting edge between X and Y we have
depth(σk−1,x, c) = 0. Since vol(X) ≤ 2d−2, Lemma 3 now tells us that the edges of X
have axes from |σk−1,x|({1, . . . , d− 2}), hence not including c. Therefore X is included
in the half of Ck−1,x that lies closest to Ck−1,y. Likewise, Y is included in the half of
Ck−1,y that lies closest to Ck−1,x. These two halves together constitute a unit cube of
volume 2d.

Case C: As in case B, Y is included in the half of Ck−1,y that lies closest to Ck−1,x. This
half, together with Ck−1,x, has a bounding box of volume 3

2 · 2
d. The minimum curve

volume MinCrvVol is at least vol(Ek)−2 = vol(X) + vol(Y)−2 ≥ 2d−2 + 2d−3 = 3
2 ·2

d−2.
Case D: Given the bounds on vol(X) and vol(Y), Lemma 3 tells us that the edges ofX have
axes from |σk−1,x|({1, . . . , d− 1}), and the edges of Y have axes from |σk−1,y|({1, . . . , d−
3}). Now let a be |σk−1,x(d)|. By Theorem 8, depth(σk−1,y, a) ≤ depth(σk−1,x, a) + 1 = 1
and therefore a is not included in |σk−1,y|({1, . . . , d − 3}). If a = c, it follows that X

SoCG’15

820 Hyperorthogonal Well-Folded Hilbert Curves

and Y lie in half-cubes that together constitute a unit cube of volume 2d, as in case B.
Otherwise, if a 6= c, it follows that Ek may contain multiple edges of direction c but does
not include any edge with direction a. Therefore Ek lies completely in a box that spans
two 1-cubes in dimension c, half a 1-cube in dimension a, and one 1-cube in the remaining
dimensions. The volume of this box is 2d.

Case F: By Lemma 9, each set of vol(Ek) − 1 edges of Ak is contained in a unit cube of
dlog(vol(Ek)−1)e+1 = blog(vol(Ek)−2)c+2 dimensions, of volume at most 4(vol(Ek)−2).

J

4 General construction method

In Section 2, Theorem 4, we learned about sufficient and necessary conditions for well-folded
curves in general, and in Section 3, Theorem 8, we learned about specific conditions for
hyperorthogonal well-folded curves. It remains to show that curves satisfying both the general
and the specific conditions actually exist. In this section we will combine the conditions of
Theorems 4 and 8 to derive conditions on the entry and exit points and isometries used in the
construction of hyperorthogonal well-folded curves. We will show how to construct curves
that satisfy all conditions, for any d ≥ 3 (recall that for d = 2, we have Hilbert’s curve).

I Definition 11. The edge distance of the axis a to the vertex v within the curve C, denoted
dist(C, v, a), is the distance along C between v and the closest edge with axis a; more
precisely, dist(C, v, a) is one less than the length of the smallest subcurve of C that includes
v and an edge with axis a. (For a small example, see Figure 2, right.)

Theorem 8 has a remarkable consequence:

I Lemma 12. In well-folded hyperorthogonal curves, depth(σk,i, a) ≤ dist(Ak, vk,i, a).

Lemma 12 gives us the following idea for an algorithm to specify the permutations |σk,i|,
except for the order of the last two elements: simply sort all axes a by order of decreasing
edge distance dist(Ak, vk,i, a). In fact, as we will show now, a version of this algorithm that
only considers edge distances within small subcurves suffices. We choose an entry direction
and an exit direction and denote these by ek,0 = e0,0 and ek,K = e0,1, respectively, for any k
and K = 2d·k.

I Definition 13. Define the extended child curve C ′k−1,j as the concatenation of an edge
〈ek−1,j−1〉, the curve Ck−1,j , and an edge 〈ek−1,j〉. We define the local edge distance ldistk,i(a)
as dist(C ′k−1,j , vk,i, a), where j = di/De and Ck−1,j is the child curve that contains vk,i.

I Lemma 14. Suppose that, for k ∈ {1, 2, . . .}, we construct the permutations σk,i of a
well-folded space-filling curve such that the elements of |σk,i| are sorted by order of decreasing
local edge distance ldistk,i. Then each curve Ak satisfies the conditions of Theorem 8.

The above lemma still leaves the order of the last two elements of each |σk,i| undetermined,
since these are always the two axes with edge distance zero. To prove that hyperorthogonal
well-folded curves exist, it now suffices to show that we can order the last two elements and
choose the signs of each σk,i such that the conditions of Theorem 4 are satisfied. We obtain:

I Theorem 15. For each choice of e0,0 and e0,1 and for each choice for the signs of σ−1
k,1(j)

for all k and j, satisfying sign(σ−1
k,1(ek,0)) = 1 for all k, there is a unique hyperorthogonal,

well-folded space-filling curve f approximated by A0, A1, . . . in which the elements of each
permutation |σk,i| are sorted by order of decreasing local edge distance ldistk,i.

A. Bos and H. J. Haverkort 821

Proof. For each level k, we generate Ak as follows. We loop over all i ∈ {1, . . . ,K−1}, where
K = 2d·k, and proceed as follows. The conditions of Theorem 4 require sign(σ−1

k,i+1(ek,i)) = 1.
We now choose |σk,i(d)| such that |σk,i(d)| = |ek,i| if and only if sign(σ−1

k,i (ek,i)) = 1: this
is always possible since |ek,i| is among the last two elements of |σk,i| whose order was
undetermined. Thus we satisfy the first condition of Theorem 4 for j = |ek,i|. With |σk,i|
completely determined, we can now fill in the remaining signs of σk,i+1 such that they fulfill
the first condition of Theorem 4. Finally, we determine |σk,K(d)| as dictated by the exit
direction ek,K in the same way as we determined |σk,i(d)| for i < K. J

5 Self-similar curves

By Observation 5, a choice of signs of σ−1
k,1(j) for all k and j specifies the starting point f(0)

of the space-filling curve f in Theorem 15. Thus, the proof of Theorem 15 is a constructive
proof that a hyperorthogonal, well-folded space-filling curve exists for any choice of starting
point on the boundary of the unit hypercube.

In a practical setting, such as described in Section 1.1, one may want to sort points in the
order in which they appear along the curve. To this end we need a comparison operator that
decides which of any two given points p and q comes first along the curve. We can do so by
determining the largest k such that there is a hypercube Hk,i, corresponding to a vertex vk,i,
which contains both points. Then we can use σk,i to determine in which order the 2d subcubes
of this hypercube are traversed, and in particular, in which order this traversal visits the two
subcubes containing p and q. The efficiency of the comparison operator now depends on how
efficiently we can determine σk,i for any k and i. Unfortunately, straightforward application
of Theorem 15 would require us to traverse all of Ak from vk,1 to vk,i to determine σk,i.

To enable us to determine σk,i more efficiently, we will, in this section, restrict the curves
to be self-similar, that is, Ak+1 is the concatenation of 2d isometric and/or reversed copies
of Ak. We will analyse how the choice of the entry of C1,1 propagates to the other child curves
of A1, and derive conditions that starting points of self-similar, hyperorthogonal, well-folded
space-filling curves should fulfill. It turns out that for any d ≥ 3, only two different starting
points (modulo rotation and reflection) exist for such curves.

For the purposes of this section, the following notation will be helpful.

I Definition 16. The relative coordinate vector of a vertex v is the vector r such that
r[j] = 0 if x[j] mod 4 ∈ {0, 3}, and r[j] = 1 if x[j] mod 4 ∈ {1, 2}.

Note that the relative coordinates of a vertex vk+1,i tell us, for each dimension, whether
the vertex is on the outside (0) or on the inside (1) with respect to the 2-cube of Ak+1
corresponding to the vertex vk−1,j of Ak−1, where j = bi/D2c.

Let entk,i, extk,i : {1, . . . , d} → {0, . . . , 2k+1 − 1} be functions that give the coordin-
ates of the entry and exit point of Ck,i, that is, the entry point of Ck,i has coordin-
ates (entk,i(1), . . . , entk,i(d)) and the exit point has coordinates (extk,i(1), . . . , extk,i(d)).
Note that entk,i(j) = isneg(σ−1

k,i (j)) (mod 2), and extk,i(j) = entk,i(j) (mod 2) if and
only if |σ−1

k,i (j)| 6= d. Similarly, let rlentk,i, rlextk,i : {1, . . . , d} → {0, 1} be functions that
give us the relative coordinates of the entry and exit point of Ck,i. Note that we have
rlentk,i(j) = (entk,i(j) + vk,i[j]) mod 2, and rlextk,i(j) = (extk,i(j) + vk,i) mod 2. Observe
that if rlentk,i and vk,i are given, this determines entk,i and hence, the signs of σ−1

k,i .

I Lemma 17. If A0, A1, . . . approximate a self-similar, well-folded, hyperorthogonal space-
filling curve f , then each extended child curve C ′k,i, according to Definition 13, is an isometry
of either:

SoCG’15

822 Hyperorthogonal Well-Folded Hilbert Curves

the concatenation of 〈d〉, G(d), and 〈−(d− 1)〉 (henceforth called type 0);
the concatenation of 〈d− 1〉, G(d), and 〈d〉 (henceforth called type 1).

We will denote the type of the child curve Ck,i by Tk,i. A direct consequence of Lemma 17
is that we may assume, without loss of generality (modulo reflection, rotation and reversal),
that C0,1 = A1 = G(d) with entry direction d and exit direction −(d − 1), with T0,1 = 0.
Moreover, we should have v2,1[d] = 0 and v2,K [d− 1] = 0, where K = D2 = (2d)2, so that
the child curves C1,1 and C1,D can be extended with, respectively, the same entry edge 〈d〉
and the same exit edge 〈−(d− 1)〉 as C0,1. By tracing the relative coordinates of the entry
and exit points through the child curves of A1, using the conditions of Theorems 4 and 8, we
now find the following:

I Lemma 18. rlext1,D = rlent1,1 ◦ω, where ω = [d− 1, 2, . . . , d− 2, d, 1].

When we inflate A2 to obtain A3, so that a 2-curve replaces each vertex of A1, the relative
coordinates of each 2-curve’s exit point should equal the relative coordinates of the next
2-curve’s entry point. Because of self-similarity, the 2-curve replacing v1,i must itself be an
isometry of either A2 (if T1,i = 0) or ←−A 2 (if T1,i = 1). As a result of the transformation
σ1,i−1, the relative coordinates of the exit point of the 2-curve replacing v1,i−1 are given by
the function rlent1,1 ◦ω ◦ |σ−1

1,i−1| if T1,i−1 = 0, and by rlent1,1 ◦ |σ−1
1,i−1| if T1,i−1 = 1. The

relative coordinates of the entry point of the 2-curve replacing v1,i are given by the function
rlent1,1 ◦ |σ−1

1,i | if T1,i = 0, and by rlent1,1 ◦ω ◦ |σ−1
1,i | if T1,i = 1. Thus we get:

I Lemma 19.
If T1,i−1 = 0 and T1,i = 0, we have rlent1,1 ◦ω ◦ |σ−1

1,i−1| = rlent1,1 ◦ |σ−1
1,i |.

If T1,i−1 = 0 and T1,i = 1, we have rlent1,1 ◦ω ◦ |σ−1
1,i−1| = rlent1,1 ◦ω ◦ |σ−1

1,i |.
If T1,i−1 = 1 and T1,i = 0, we have rlent1,1 ◦ |σ−1

1,i−1| = rlent1,1 ◦ |σ−1
1,i |.

If T1,i−1 = 1 and T1,i = 1, we have rlent1,1 ◦ |σ−1
1,i−1| = rlent1,1 ◦ω ◦ |σ−1

1,i |.

We can now analyse the possible successions of types T1,i and permutations σ1,i for
i ∈ {1, . . . , 2d} and prove that Lemma 19 can only be true if:

I Lemma 20. rlent1,1(j) = rlent1,1(j − 1) for all j ∈ {2, . . . , d− 1}.

By exploiting self-similarity recursively, we now find:

I Lemma 21. rlentk,1 = rlent1,1 for all k ≥ 1.

This leads almost directly to:

I Theorem 22. If f is a hyperorthogonal well-folded space-filling curve mapping [0, 1]
to [0, 1]d, then, modulo reflection, reversal and rotation, f(0) is either (0, . . . , 0, 0) or
(1

3 , . . . ,
1
3 , 0).

In fact, such curves exist for any d ≥ 3:

I Theorem 23. For any d ≥ 3, there are self-similar, hyperorthogonal, well-folded d-
dimensional space-filling curves starting at (0, . . . , 0, 0) and (1

3 , . . . ,
1
3 , 0).

It turns out that there are actually very few such curves for d = 3 and d = 4:

I Observation 24. If d = 3 or d = 4, Lemma 12 leaves no choice with respect to the last
two elements, the third-last element, and the first element of the permutations |σk,i| in a
self-similar curve.

A. Bos and H. J. Haverkort 823

←−α
←−α

←−α
←−α

α

α

α

α

α ←−
β

←−
β

←−
β

←−
β

β

β

β

β
1/3

1/3

1/3 1/3

β

Figure 3 The three-dimensional, self-similar, hyperorthogonal, well-folded space-filling curve with
starting points (0, 0, 0) (left) and (1

3 ,
1
3 , 0) (centre), and the three-dimensional curve by Butz and

Moore (right). The bold grey curve shows A1. The solid black curves depict the child curves of A1,
the dashed lines between them indicate how they are connected. The symbols next to the child
curves indicate whether they are type 0 (without arrow), or its reverse, type 1 (with arrow). For the
Butz-Moore curve, no such indications are given, because the curve is symmetric and there is no
need to distinguish between reflections and reversals. The white and black dots on the outer cube
indicate the location of f(0) and f(1).

I Corollary 25. If d = 3 or d = 4, there are exactly two self-similar, hyperorthogonal,
well-folded d-dimensional space-filling curves.

Proof. For self-similar curves, we may assume the entry and exit direction to be fixed at 〈d〉
and 〈−(d− 1)〉, respectively. For the starting point, that is, the signs of σ−1

k,1(j) for all k and
j, only two combinations are possible (Theorem 22). Theorem 15 states that this leads to
two unique hyperorthogonal, well-folded space-filling curves in which the elements of each
|σk,i| are sorted by order of decreasing local edge distance ldistk,i. By Observation 24, for
d = 3 and d = 4, there is no other way to order the elements of each |σk,i|. J

The two three-dimensional self-similar, hyperorthogonal, well-folded space-filling curves
are illustrated in Figure 3, left and centre.

6 Implementation in software

It is relatively easy to implement an efficient comparison operator that decides which of any
two given points comes first along a d-dimensional self-similar hyperorthogonal well-folded
space-filling curve. For a fixed choice of space-filling curve f , a recursive implementation
would take as input two points p, q ∈ [0, 1)d that need to be compared, along with a signed
permutation σ that specifies how the given curve is placed in the unit cube, and the direction
of the curve (forward or reversed). Let S(p) and S(q) be the subcubes of width 1/2 that
contain p and q, respectively.

If p = q, one point does not precede the other. Otherwise, if S(p) 6= S(q), one can decide
immediately which point comes first, based on the relative order of the vertices that represent
S(p) and S(q) along the approximating 1-curve σ(G(d)). Finally, if S(p) = S(q), that is, p
and q lie in the same subcube of width 1/2, then their relative order can be decided by a
recursive call with:

the points p and q, scaled and translated according to the transformation that maps S(p)
to the unit cube;
the signed permutation and direction that specifies how the space-filling curve tra-
verses S(p).

SoCG’15

824 Hyperorthogonal Well-Folded Hilbert Curves

In fact, thanks to the structure of the approximating curve σ(G(d)), one can examine the
coordinates of p and q one by one, from the coordinate in dimension |σ|(d) to the coordinate
in dimension |σ|(1): as soon as a coordinate is found in which the binary representations of
the fractional parts of p and q differ in the first bit, one can decide which of the two points
precedes the other. Only if p and q are equal in the first bits of all coordinates, the algorithm
needs to go in recursion.

To be able to make the recursive call, the algorithm needs to determine the permutation
to use in recursion, that is, the transformation that maps the complete space-filling curve f
to the section within S(p), modulo scaling and translation. For the curves described by the
constructions of Lemma 14 and Theorem 23 this is relatively straightforward. To determine
the unsigned permutation to be used in recursion, we sort the d coordinate axes by decreasing
local edge distance from S(p). This sorted list of axes can be constructed on the fly in Θ(d)
time while examining the d coordinates of p and q to decide in which subcube they lie. By
Lemma 14, the sorted list of axes gives us the (unsigned) permutation to use in recursion.
The signs of the permutation to use in recursion now follow from applying the observations
on relative entry points and permutation signs calculated in the previous section.

If the binary representations of the coordinates of p and q consist of k bits per coordinate,
then the complete comparison operator runs in O(d · k) time.

7 Evaluation

7.1 Comparing to the Butz-Moore curves
The generalization of Hilbert’s curve to d dimensions by Butz [4], as implemented by
Moore [13], is a self-similar well-folded curve with starting point in the origin, in which
the orientations (and therefore, the signs of the inverse permutations) of the child curves
of A1 are the same as in our hyperorthogonal well-folded curve. Concretely, |σ1,i[d]| = 1
for i ∈ {1, 2d}, and |σ1,i[d]| = max(|e1,i−1|, |e1,i|) for 1 < i < 2d. However, otherwise the
permutations are different: all permutations in the Butz-Moore curves are rotations (in
the permutation sense of the word), so |σ1,i[j]| = |σ1,i[d]| + j (mod d). For a graphical
description of the 3-dimensional curve, see Figure 3 (right).

Assuming d ≥ 3, the curve G(d) contains a sequence 〈1, 2,−1, (2+bd/2c), 1〉 or 〈1,−2,−1,
(2 + bd/2c), 1〉, so there is an i such that |σ1,i(d)| = 2, |e1,i| = 1, and |σ1,i+1(d)| = 2 + bd/2c.
We can now calculate that the curve through the last 2bd/2c−1 + 1 vertices of C1,i and the
first 2bd/2c−1 + 1 vertices of C1,i+1 has box-to-curve ratio at least 2d−1/(2d/2 + 2), and thus:

I Theorem 26. The Butz-Moore curve contains sections with box-to-curve ratio Ω(2d/2).

The worst-case box-to-curve ratio of the Butz-Moore curves is thus in sharp contrast
with the worst-case box-to-curve ratio of our hyperorthogonal, well-folded curves, which
have bcr at most 4 for any d. For verification we also calculated the actual worst-case
bcr values for d ∈ {2, 3, 4, 5, 6} with the software from Sasburg [16] (Table 2). Further
investigations may be done into average bcr values over curve sections of a given size, both
for the hyperorthogonal and the Butz curves.

It should be noted, however, that bcr may not be the only relevant measure of bounding-
box quality. Haverkort and Van Walderveen [7] argued that, at least for d = 2, the size
of the boundary of a bounding box may be as important as its volume—although volume
and boundary size are usually correlated. Using Sasburg’s software with a generalization of
the worst-case bounding box perimeter ratio from Haverkort and Van Walderveen to higher

A. Bos and H. J. Haverkort 825

Table 2 Worst-case box-to-curve ratios for various curves in up to 6 dimensions.

curve d = 2 = 3 = 4 = 5 = 6 ≥ 7
lower bound face-continuous 2.00 2.54 3.15 3.54 3.76 4–16/(2d+3)
best claimed non-self-sim. 2.22a 2.89b

self-sim. hyperorth. well-fdd. f(0) = (0, . . . , 0, 0) 2.40c 3.11 3.53 3.76 3.88 ≤ 4
self-sim. hyperorth. well-fdd. f(0) = (1

3 , . . . ,
1
3 , 0) 3.14 3.67 3.83 3.92 ≤ 4

lower bound non-face-continuous 3.00 3.50 3.75 3.87 3.93 4–4/2d

Butz-Moore 2.40c 3.11 4.74 7.08 10.65 Ω(2d/2)
a βΩ-curve [17] analysed by H&vW [7]; b Iupiter [5]; c Hilbert’s curve [9]

dimensions, we found that already for d = 3, the self-similar hyperorthogonal well-folded
curve with starting point (1

3 ,
1
3 , 0) outperforms the Butz curve.

7.2 What about other curves?
In this work we study space-filling curves that can be described by a series of approximating
curves A0, A1, . . . , An, where Ak is a curve on the k-cube. Within this context, we restricted
our search for curves with good worst-case bcr first to face-continuous curves; then, more
specifically, to well-folded curves; then to hyperorthogonal well-folded curves; and finally to
self-similar, hyperorthogonal, well-folded curves. We found that if d = 3 or d = 4, there are
only two self-similar hyperorthogonal well-folded space-filling curves. For d = 5 and up, there
are many more, as Lemma 12 then starts to leave room for swaps among the first elements
of the permutations σk,i. We will now address the question of how much room for further
improvement there is within these restrictions or if some of these restrictions are dropped.

For d = 2, Haverkort and Van Walderveen [7] report that the bcr of any section of
the well-folded, non-self-similar βΩ-curve [17] is 2.22 in the worst case, and for d = 3,
Haverkort [5] claims a fairly complicated, non-self-similar, face-continuous curve with a worst-
case bcr of 2.89. These constructions, which do not easily generalize to higher dimensions,
constitute improvements of less than 10% with respect to the self-similar hyperorthogonal
well-folded curves. For larger values of d, no face-continuous curve can be much better than
any hyperorthogonal well-folded curve, since the first is subject to a lower bound that quickly
approaches the upper bound of the latter as d grows:

I Theorem 27. If f is a space-filling curve approximated by a series of curves A0, . . . , Ak

within the framework of Section 1.3, then f has a section with BCR at least 4− 16/(2d + 3).

The proof is based on the fact that any such curve must contain a sequence of at most
2d−2 + 1 edges that have all axes {1, . . . , d}. For the specific case of d = 2, Haverkort and
Van Walderveen [7] prove a stronger lower bound of 2.

Now suppose we drop the restriction to face-continuous curves. More precisely, suppose
we have a space-filling curve approximated by a sequence of curves on the grid A0, A1, . . .,
where we allow our curves on the grid to have diagonal edges, that is, we allow any edge
(v, w) such that w 6= v and |w[j] − v[j]| ≤ 1 for all j ∈ {1, . . . , d}. In that case, the lower
bound becomes even worse:

I Theorem 28. If there is a k and i such that vk,i and vk,i+1 differ in at least two coordinates
(in other words: if there is a diagonal edge), then f has a section with BCR at least 4− 4/2d.

Note that, as Table 2 shows, at least for d up to 6 the lower bound of Theorem 28 for
curves with “diagonal edges” is greater than the worst-case bcr of the best hyperorthogonal,

SoCG’15

826 Hyperorthogonal Well-Folded Hilbert Curves

well-folded curves, and for higher dimensions the difference between the lower bound and the
upper bound is less than 1%. Therefore, in terms of worst-case bcr, little is to be expected
from non-face-continuous curves based on inflation of k-cubes for increasing k.

The question remains whether there are hyperorthogonal curves that are not well-folded,
and if so, whether such curves would also have good bounds on the box-to-curve ratio. In
other words: is well-foldedness really required in Theorem 10? However, Theorem 27 shows
that in any case, there is not much room for finding curves with a better worst-case bcr.

References
1 J. Alber and R. Niedermeier. On multidimensional curves with Hilbert property. Theory

of Computing Systems, 33(4):295–312, 2000.
2 L. Arge, M. de Berg, H. Haverkort, and K. Yi. The Priority R-tree: a practically efficient

and worst-case optimal R-tree. ACM Tr. Algorithms, 4(1):9, 2008.
3 M. Bader. Space-filling curves: an introduction with applications in scientific computing.

Springer, 2013.
4 A. R. Butz. Alternative algorithm for Hilbert’s space-filling curve. IEEE Trans. Comp.,

20(4):424–426, 1971.
5 H. Haverkort. An inventory of three-dimensional Hilbert space-filling curves. CoRR,

abs/1109.2323, 2011.
6 H. Haverkort. Harmonious Hilbert curves and other extradimensional space-filling curves.

CoRR, abs/1211.0175, 2012.
7 H. Haverkort and F. vanWalderveen. Locality and bounding-box quality of two-dimensional

space-filling curves. Computational Geometry, 43(2):131–147, 2010.
8 H. Haverkort and F. van Walderveen. Four-dimensional Hilbert curves for R-trees. ACM

J. Experimental Algorithmics, 16:3.4, 2011.
9 D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück. Math. Ann.,

38(3):459–460, 1891.
10 I. Kamel and C. Faloutsos. On packing R-trees. In Conf. on Information and Knowledge

Management, pages 490–499, 1993.
11 K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-replicating

index structures. In Int. Conf. Database Theory, LNCS 154, pages 257–276, 1999.
12 Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis. R-trees: The-

ory and Applications. Springer, 2005.
13 D. Moore. Fast Hilbert curve generation, sorting, and range queries. http://web.archive.

org/web/www.caam.rice.edu/~dougm/twiddle/Hilbert/, 2000, retrieved 23 March 2015.
14 G. Peano. Sur une courbe, qui remplit toute une aire plane. Math. Ann., 36(1):157–160,

1890.
15 H. Sagan. Space-Filling Curves. Universitext. Springer, 1994.
16 S. Sasburg. Approximating average and worst-case quality measure values for d-dimensional

space-filling curves. Master’s thesis, Eindhoven University of Technology, 2011.
17 J.-M. Wierum. Definition of a new circular space-filling curve: βΩ-indexing. Technical

Report TR-001-02, Paderborn Center for Parallel Computing PC2, 2002.

http://web.archive.org/web/www.caam.rice.edu/~dougm/twiddle/Hilbert/
http://web.archive.org/web/www.caam.rice.edu/~dougm/twiddle/Hilbert/

Topological Analysis of Scalar Fields with Outliers∗

Mickaël Buchet1, Frédéric Chazal1, Tamal K. Dey2, Fengtao Fan2,
Steve Y. Oudot1, and Yusu Wang2

1 Inria Saclay Île-de-France, Palaiseau, France
mickael.buchet@m4x.org, frederic.chazal@inria.fr, steve.oudot@inria.fr

2 Department of Computer Science and Engineering, The Ohio State University,
Columbus, OH 43210, USA
tamaldey@cse.ohio-state.edu, fan.171@osu.edu, yusu@cse.ohio-state.edu

Abstract
Given a real-valued function f defined over a manifold M embedded in Rd, we are interested in
recovering structural information about f from the sole information of its values on a finite sample
P . Existing methods provide approximation to the persistence diagram of f when geometric noise
and functional noise are bounded. However, they fail in the presence of aberrant values, also
called outliers, both in theory and practice.

We propose a new algorithm that deals with outliers. We handle aberrant functional values
with a method inspired from the k-nearest neighbors regression and the local median filtering,
while the geometric outliers are handled using the distance to a measure. Combined with topo-
logical results on nested filtrations, our algorithm performs robust topological analysis of scalar
fields in a wider range of noise models than handled by current methods. We provide theoretical
guarantees and experimental results on the quality of our approximation of the sampled scalar
field.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Persistent Homology, Topological Data Analysis, Scalar Field Analysis,
Nested Rips Filtration, Distance to a Measure

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.827

1 Introduction

Consider a network of sensors measuring a quantity such as the temperature, the humidity,
or the elevation. These sensors also compute their positions and communicate these data
to others. However, they are not perfect and can make mistakes such as providing some
aberrant values. Can we still recover topological structure from the measured quantity?

This is an instance of a scalar field analysis problem. Given a manifold M embedded
in Rd and a scalar field f : M → R, we want to extract topological information about f ,
knowing only its values on a finite set of points P . The critical points of a function, that is,
peaks (local maxima), pits (local minima), and passes (saddle points) constitute important
topological features of the function. In addition, the prominence of these features also
contains valuable information, which the geographers use to distinguish between a summit
and a local maximum in its shadow. Such information can be captured by the so-called
topological persistence, which studies the sub-level sets f−1((−∞, α]) of a function f and the
way their topology evolves as parameter α increases. In the case of geography, we can use

∗ See [1] for the full version of this paper.

© Mickaël Buchet, Frédéric Chazal, Tamal K. Dey, Fengtao Fan, Steve Y. Oudot, and Yusu Wang;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 827–841

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.827
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

828 Topological Analysis of Scalar Fields with Outliers

the negated elevation as a function to study the topography. Peaks will appear depending on
their altitude and will merge into other topological features at saddle points. This provides a
persistence diagram describing the lifespan of features where the peaks with more prominence
have longer lifespans.

When the domain M of the function f is triangulated, one classical way of computing
this diagram is to linearly interpolate the function f on each simplex and then apply the
standard persistence algorithm to this piecewise-linear function [16]. For cases where we only
have pairwise distances between input points, one can build a family of simplicial complexes
and infer the persistent homology of the input function f from them [6] (this construction
will be detailed in Section 2).

Both of these approaches can provably approximate persistent homology when the input
points admit a bounded noise, i.e., when the Hausdorff distance between P and M is bounded
and the L∞-error on the observed value of f is also bounded. What happens if the noise is
unbounded? A faulty sensor can provide completely wrong information or a bad position.
Previous methods no longer work in this setting. Moreover, a sensor with a good functional
value but a bad position can become an outlier in function value at its measured position
(see Section 3.1 for an example). In this paper, we study the problem of analyzing scalar
fields in the presence of unbounded noise both in the geometry and in the functional values.
To the best of our knowledge, there is no other method to handle such combined unbounded
geometric and functional noise with theoretical guarantees.

Contributions

We consider a general sampling condition. Intuitively, a sample (P, f̃) of a function f : M→ R
respects our condition if: (i) the domain M is sampled densely and there is no cluster of
noisy samples outside M (roughly speaking, no area outside M has a higher sampling density
than on M), and (ii) for any point of P , at least half of its k nearest neighbors have a
functional value with an error less than a threshold s. This condition allows functional
outliers that may have a value arbitrarily far away from the true one. It encompasses the
previous bounded sampling conditions as well as other sampling conditions such as bounded
Wasserstein distance for geometry, or generative models like an additive Gaussian noise.
Connection to some of these classical sampling conditions can be found in the full version of
the paper [1].

We show how to approximate the persistence diagram of f knowing only its observed
value f̃ on the set P . We achieve this goal through three main steps:
1. Using the observations f̃ , we provide a new estimator f̂ to approximate f . This estimator

is inspired by the k-nearest neighbours regression technique but differs from it in an
essential way.

2. We filter geometric outliers using a distance to a measure function.
3. We combine both techniques in a unified framework to estimate the persistence diagram

of f .
The two sources of noise, geometric and functional, are not independent. The interdependency
is first identified by assuming appropriate sampling conditions, and then untangled by separate
steps in our algorithm.

Related work

A framework for scalar field topology inference with theoretical guarantees has been previously
proposed in [6]. However, it is limited to a bounded noise assumption, which we aim to relax.

M. Buchet, F. Chazal, T. K. Dey, F. Fan, S. Y. Oudot, and Y. Wang 829

For handling the functional noise only, the traditional non-parametric regression mostly
uses kernel-based or k-NN estimators. The k-NN methods are more versatile [13]. Neverthe-
less, the kernel-based estimators are preferred when there is structure in the data. However,
the functional outliers destroy the structure on which kernel-based estimators rely. These
functional outliers can arise as a result of geometric outliers (see Section 3.1). Thus, in a
way, it is essential to be able to handle functional outliers when the input has geometric
noise. Functional outliers can also introduce a bias that hampers the robustness of a k-NN
regression. For example, if all outliers’ values are greater than the actual value, a k-NN
regression will shift towards a larger value. Our approach leverages the k-NN regression idea
while trying to avoid the sensitivity to this bias.

Various methods for geometric denoising have also been proposed in the literature. If
the generative model for noise is known a priori, one can use de-convolution to remove
noise. Some methods have been specifically adapted to use topological information for such
denoising [14]. In our case where the generative model is unknown, we use a filtering by the
value of the distance to a measure, which has been successfully applied to infer the topology
of a domain under unbounded noise [4].

2 Preliminaries for Scalar Field Analysis

In [6], Chazal et al. presented an algorithm to analyze the scalar field topology using persistent
homology which can handle bounded Hausdorff noise both in geometry and in observed
function values. Our approach follows the same high level framework. Hence in this section,
we introduce necessary preliminaries along with some of the results from [6].

Riemannian manifold and its sampling.

Consider a compact Riemannian manifold M. Let dM denote the geodesic metric on M.
Consider the open Riemannian ball BM(x, r) := {y ∈ M | dM(x, y) < r} centered at x ∈ M.
BM(x, r) is strongly convex if for any pair (y, y′) in the closure of BM(x, r), there exists a
unique minimizing geodesic between y and y′ whose interior is contained in BM(x, r). Given
any x ∈ M, let %(x) denote the supremum of the value of r such that BM(x, r) is strongly
convex. As M is compact, the infimum of all %(x) is positive and we denote it by %(M), which
is called the strong convexity radius of M.

A point set P ⊆ M is a geodesic ε-sample of M if for every point x of M, the distance
from x to P is less than ε in the metric dM. Given a c-Lipschitz scalar function f : M→ R,
we aim to study the persistent homology of f . However, the scalar field f : M→ R is only
approximated by a discrete set of sample points P and a function f̃ : P → R. The goal of
this paper is to retrieve the topological structure of f from f̃ when some forms of noise are
present both in the positions of P and in the function values of f̃ .

Persistent homology.

As in [6], we infer the persistent homology of f using well-chosen persistence modules. A
filtration {Fα}α∈R is a family of sets Fα totally ordered by inclusions Fα ⊆ Fβ . Following [3],
a persistence module is a family of vector spaces {Φα}α∈R with a family of homomorphisms
φβα : Φα → Φβ such that for all α ≤ β ≤ γ, φγα = φγβ ◦ φβα. Given a filtration F = {Fα}α∈R
and α ≤ β, the canonical inclusion Fα ↪→ Fβ induces a homomorphism at the homology
level H∗(Fα)→ H∗(Fβ). These homomorphisms and the homology groups of Fα form the
so-called persistence module of F .

SoCG’15

830 Topological Analysis of Scalar Fields with Outliers

The persistence module of the filtration F = {Fα}α∈R is said to be q-tame when all the
homomorphisms H∗(Fα)→ H∗(Fβ) have finite rank [5]. Its algebraic structure can then be
described by the persistence diagram Dgm(F), which is a multiset of points in R2 describing
the lifespan of the homological features in the filtration F . For technical reasons, Dgm(F)
also contains every point of the diagonal y = x with countably infinite multiplicity. See [10]
for a more formal discussion of the persistence diagrams.

Persistence diagrams can be compared using the bottleneck distance dB [8]. Given two
multisets with the same cardinality, possibly infinite, D and E in R2, we consider the set B
of all bijections between D and E. The bottleneck distance (under L∞-norm) is then defined
as:

dB(D,E) = inf
b∈B

sup
x∈D
||x− b(x)||∞. (1)

Two filtrations {Uα} and {Vα} are said to be ε-interleaved if, for any α, we have Uα ⊂
Vα+ε ⊂ Uα+2ε. Recent work in [3, 5] shows that two interleaved filtrations induce close
persistence diagrams in the bottleneck distance.

I Theorem 2.1. Let U and V be two q-tame and ε-interleaved filtrations. Then the persistence
diagrams of these filtrations verify dB(Dgm(U),Dgm(V)) ≤ ε.

Nested filtrations

The scalar field topology of f : M→ R is studied via the topological structure of the sub-level
sets filtration of f . More precisely, the sub-level sets of f are defined as Fα = f−1((−∞, α])
for any α ∈ R. The collection of sub-level sets forms a filtration F = {Fα}α∈R connected
by natural inclusions Fα ⊆ Fβ for any α ≤ β. Our goal is to approximate the persistence
diagram Dgm(F) from the observed scalar field f̃ : P → R. We now describe the results of
[6] for approximating Dgm(F) when P is a geodesic ε-sample of M. These results will later
be useful for our approach.

To simulate the sub-level sets filtration {Fα} of f , we introduce Pα = f̃−1((−∞, α]) ⊆ P
for any α ∈ R. The points in Pα intuitively sample the sub-level set Fα. To estimate the
topology of Fα from these discrete samples Pα, we consider the δ-offset P δ of the point set P ,
i.e., we grow geodesic balls of radius δ around the points of P . This gives us a union of balls
that serves as a proxy for f−1((−∞, α]). The nerve of this collection of balls, also known
as the Čech complex, Cδ(P), has many interesting properties but is difficult to compute in
high dimensions. We consider an alternate complex called the Vietoris-Rips complex Rδ(P)
that is easier to compute. It is defined as the maximal simplicial complex with the same
1-skeleton as the Čech complex. The Čech and Rips complexes are related in any metric
space: ∀δ > 0, Cδ(P) ⊂ Rδ(P) ⊂ C2δ(P).

Even though a single Vietoris-Rips complex may not capture the homology of the manifold
M, a pair of nested complexes can recover it using the inclusions Rδ(Pα) ↪→ R2δ(Pα) [7].
Specifically, for a fixed δ > 0, consider the following commutative diagram induced by
inclusions, for α ≤ β:

H∗(Rδ(Pβ))H∗(Rδ(Pα))

H∗(R2δ(Pα)) H∗(R2δ(Pβ))
φβα

iα iβ

As the diagram commutes for all α ≤ β, {Im(iα), φβα|Im(iα)} defines a persistence module.
We call it the persistent homology module of the filtration of nested pairs {Rδ(Pα) ↪→

M. Buchet, F. Chazal, T. K. Dey, F. Fan, S. Y. Oudot, and Y. Wang 831

R2δ(Pα)}α∈R. This construction can also be done for any filtration of nested pairs. Using
this construction, one of the main results of [6] is:

I Theorem 2.2 (Theorems 2 and 6 of [6]). Let M be a compact Riemannian manifold and let
f : M→ R be a c-Lipschitz function. Let P be a geodesic ε-sample of M. If ε < 1

4%(M), then
for any δ ∈

[
2ε, 1

2%(M)
)
, the persistent homology modules of f and of the filtration of nested

pairs {Rδ(Pα) ↪→ R2δ(Pα)} are 2cδ-interleaved. Therefore, the bottleneck distance between
their persistence diagrams is at most 2cδ.

Furthermore, the k-dimensional persistence diagram for the filtrations of nested pairs
{Rδ(Pα) ↪→ R2δ(Pα)} can be computed in O(|P |kN +N logN +N3) time, where N is the
number of simplices of {R2δ(P∞)}, and |P | denotes the cardinality of the sample set P .

It has been observed that, in practice, the persistence algorithm often has a running time
linear in the number of simplices, which reduces the above complexity to O(|P |+N logN)
in a practical setting.

We say that f̃ has a precision of ξ over P if |f̃(p)− f(p)| ≤ ξ for any p ∈ P . We then
have the following result for the case when we only have this functional noise:

I Theorem 2.3 (Theorem 3 of [6]). Let M be a compact Riemannian manifold and let
f : M→ R be a c-Lipschitz function. Let P be a geodesic ε-sample of M such that the values
of f on P are known with precision ξ. If ε < 1

4%(M), then for any δ ∈
[
2ε, 1

2%(M)
)
, the

persistent homology modules of f and of the filtration of nested pairs {Rδ(Pα) ↪→ R2δ(Pα)}
are (2cδ+ξ)-interleaved. Therefore, the bottleneck distance between their persistence diagrams
is at most 2cδ + ξ.

Geometric noise was considered in the form of bounded noise in the estimate of the
geodesic distances between points in P . It translated into a relation between the measured
pairwise distances and the real ones. With only geometric noise, one has the following
stability result. It was stated in this form in the conference version of the paper.

I Theorem 2.4 (Theorem 4 of [6]). Let M, f be defined as previously and P be an ε-sample
of M in its Riemannian metric. Assume that, for a parameter δ > 0, the Rips complexes
Rδ(·) are defined with respect to a metric d̃(·, ·) which satisfies ∀x, y ∈ P, dM(x,y)

λ ≤ d̃(x, y) ≤
ν + µdM(x,y)

λ , where λ ≥ 1 is a scaling factor, µ ≥ 1 is a relative error and ν ≥ 0 an additive
error. Then, for any δ ≥ ν + 2µ ελ and any δ′ ∈ [ν + 2µδ, 1

λ%(M)], the persistent homology
modules of f and of the filtration of nested pairs {Rδ(Pα) ↪→ Rδ′(Pα)} are cλδ′-interleaved.
Therefore, the bottleneck distance between their persistence diagrams is at most cλδ′.

3 Functional Noise

In this section, we focus on the case where we have only functional noise in the observed
function f̃ . Suppose we have a scalar function f defined on a Riemannian manifold M
embedded in Rd. Note that the results of section 3 hold if Rd is replaced by a metric space
X. We are given a geodesic ε-sample P ⊂ M, and a noisy observed function f̃ : P → R.
Our goal is to approximate the persistence diagram Dgm(F) of the sub-level set filtration
F = {Fα = f−1((−∞, α])}α from f̃ . We assume that f is c-Lipschitz with respect to the
intrinsic metric of the Riemannian manifold M. Note that this does not imply a Lipschitz
condition on f̃ .

SoCG’15

832 Topological Analysis of Scalar Fields with Outliers

Bone without noise Bone with gaussian noise Bone after magical filter

Figure 1 Bone example after applying Gaussian perturbation and magical filter

3.1 Functional sampling condition
Previous work on functional noise focused on bounded noise (e.g, [6]) or noise with zero-mean
(e.g, [15]). However, there are many practical scenarios where the observed function f̃ may
contain these previously considered types of noise combined with aberrant function values in
f̃ . Hence, we propose below a more general sampling condition that allows such combinations.

Motivating examples

First, we provide some motivating examples for the need of handling aberrant function values
in f̃ , where f̃(p) at some sample point p can be totally unrelated to the true value f(p).
Consider a sensor network, where each node returns some measures. Such measurements can
be imprecise, and in addition to that, a sensor may experience failure and return a completely
wrong measure that has no relation with the true value of f . Similarly, an image could be
corrupted with impulse noise where there are random pixels with aberrant function values,
such as random white or black dots.

More interestingly, outliers in function values can naturally appear as a result of (extrinsic)
geometric noise present in the discrete samples. For example, imagine that we have a process
that can measure the function value f : M → R with no error. However, the geometric
location p̃ of a point p ∈ M can be wrong. In particular, p̃ can be close to other parts of the
manifold, thereby although p̃ has the correct function value f(p), it becomes a functional
outlier among its neighbors (due to the wrong location of p̃). See Figure 1 for an illustration.
The function defined on this bone-like curve is the geodesic distance to a base point. The two
sides of the narrow neck have very different function values. Now, suppose that the points
are sampled uniformly on M and their position is then perturbed by an additive Gaussian
noise. Then, points from one side of this neck can be sent closer to the other side, causing
aberrant values in the observed function.

In fact, even if we assume that we have a “magic filter” that can project each sample back
to the closest point on the underlying manifold M, the result is a new set of samples where all
points are on the manifold and thus can be seen as having no geometric noise; however, this
point set now contains functional noise which is actually caused by the original geometric
noise. Note that such a magic filter is the goal of many geometric denoising methods. A
perfect algorithm in this sense cannot remove or may even cause more aberrant functional
noise. This motivates the need for handling functional outliers (in addition to traditional
functional noise) as well as processing noise that combines geometric and functional noise
together and that does not necessarily have zero-mean.

Another case where our approach is useful concerns with missing data. Assuming that
some of the functional values are missing, we can replace them by anything and act as if
they were outliers. Without modifying the algorithm, we obtain a way to handle the local
loss of information.

M. Buchet, F. Chazal, T. K. Dey, F. Fan, S. Y. Oudot, and Y. Wang 833

Functional sampling condition

To allow both aberrant and more traditional functional noise, we introduce the following
sampling condition. Let P ⊂ M be a geodesic ε-sample of the underlying manifold M.
Intuitively, our sampling condition requires that for every point p ∈ P , locally there is a
sufficient number of sample points with reasonably good function values. Specifically, we fix
two parameters k and k′ with the condition that k ≥ k′ > 1

2k. Let NNk
P (p) denote the set of

the k-nearest neighbors of p in P in the extrinsic metric. We say that a discrete scalar field
f̃ : P → R is a (k, k′,∆)-functional-sample of f : M→ R if the following holds:

∀p ∈ P,
∣∣∣{q ∈ NNk

P (p)
∣∣ |f̃(q)− f(p)| ≤ ∆

}∣∣∣ ≥ k′ (2)

Intuitively, this sampling condition allows up to k−k′ samples around a point p to be outliers
(whose function values deviates from f(p) by at least ∆). In the full version [1], we consider
two standard functional sampling conditions used in the statistical learning community and
look at what they correspond to in our setting.

3.2 Functional Denoising

Given a scalar field f̃ : P → R which is a (k, k′,∆)-functional-sample of f : M → R, we
now aim to compute a denoised function f̂ : P → R from the observed function f̃ , and we
will later use f̂ to infer the topology of f : M→ R. Below we describe two ways to denoise
the noisy observation f̃ : one of which is well-known, and the other one is new. As we will
see later, these two treatments lead to similar theoretical guarantees in terms of topology
inference. However, they have different characteristics in practice, which are discussed in the
full version [1].

k-median denoising

In the k-median treatment, we simply perform the following: given any point p ∈ P , we set
f̂(p) to be the median value of the set of f̃ values for the k-nearest neighbors NNk

P (p) ⊆ P
of p. We call f̂ the k-median denoising of f̃ . The following observation is straightforward:

I Observation 1. If f̃ : P → R is a (k, k′,∆)-functional-sample of f : M→ R with k′ ≥ k/2,
then we have |f̂(p)− f(p)| ≤ ∆ for any p ∈ P , where f̂ is the k-median denoising of f̃ .

Disparity-based denoising

In the k-median treatment, we choose a single value from the k-nearest neighbors of a sample
point p and set it to be the denoised value f̂(p). This value, while within ∆ distance to the
true value f(p) for k′ ≥ k/2, tends to have greater variability among neighboring sample
points. Intuitively, taking the average (such as k-means) makes the function f̂(p) smoother,
but it is sensitive to outliers. We combine these ideas together, and use the following concept
of disparity to help us identify a subset of points from the k-nearest neighbors of a sample
point p to estimate f̂(p).

Given a set Y = {x1, . . . , xl} of l sample points from P , we define its disparity w.r.t. f̃
as:

φ(Y) = 1
l

l∑
i=1

(f̃(xi)− µ(Y))2, where µ(Y) = 1
l

l∑
i=1

f̃(xi).

SoCG’15

834 Topological Analysis of Scalar Fields with Outliers

µ(Y) and φ(Y) are respectively the average and the variance of the observed function values
for points from Y . Intuitively, φ(Y) measures how tight the function values (f̃(xi)) are
clustered. Now, given a point p ∈ P , we define

Ŷp = argmin
Y⊆NNk

P
(p),|Y |=k′

φ(Y), and ẑp = µ(Ŷp).

That is, Ŷp is the subset of k′ points from the k-nearest neighbors of p that has the smallest
disparity and ẑp is its mass center. It turns out that Ŷp and ẑp can be computed by the
following sliding-window procedure: (i) Sort NNk

P (p) = {x1, . . . , xk} according to f̃(xi). (ii)
For every k′ consecutive points Yi = {xi, . . . , xi+k′−1} with i ∈ [1, k − k′ + 1], compute
its disparity φ(Yi). (iii) Set Ŷp = argminYi,i∈[1,k−k′] φ(Yi), and return µ(Ŷp) as ẑp. In the
disparity-based denoising approach, we simply set f̂(p) := ẑp as computed above. The
approximation guarantee of f̂ for the function f is given by the following Lemma.

I Lemma 3.1. If f̃ : P → R is a (k, k′,∆)-functional-sample of f : M→ R with k′ ≥ k
2 , then

we have |f̂(p) − f(p)| ≤
(

1 + 2
√

k−k′

2k′−k

)
∆ for every p ∈ P , where f̂ is the disparity-based

denoising of f̃ . In particular, if k′ ≥ 2
3k, then |f̂(p)− f(p)| ≤ 3∆ for every p ∈ P .

Proof. Let Y∆ = {x ∈ NNk
P (p) : |f̃(x) − f(p)| ≤ ∆} be the set of points in NNk

P (p)
whose observed function values are within distance ∆ from f(p). Since f̃ is a (k, k′,∆)-
functional-sample of f , it is clear that |Y∆| ≥ k′. Let Y ′∆ ⊂ Y∆ be a subset with k′

elements, Y ′∆ = {x′i}k
′

i=1. By the definitions of Y∆ and Y ′∆, one can immediately check that
|f̃(x′i) − µ(Y ′∆)| ≤ 2∆ where µ(Y ′∆) = 1

k′

∑k′

i=1 f̃(x′i). This inequality then gives an upper
bound of the disparity φ(Y ′∆),

φ(Y ′∆) = 1
k′

∑k′

i=1(f̃(x′i)− µ(Y ′∆))2

≤ 1
k′

∑k′

i=1(2∆)2

= 4∆2
.

Recall from the sliding window procedure that Ŷp = argminYi,i∈[1,k−k′] φ(Yi) and ẑp =
µ(Ŷp). Denote A1 = Ŷp ∩ Y∆ and A2 = Ŷp \A1. Since f̃ is a (k, k′,∆)-functional-sample of
f , the size of A2 is at most k − k′ and |A1| ≥ 2k′ − k. If |ẑp − f(p)| ≤ ∆, nothing needs
to be proved. Without loss of generality, one can assume that f(p) + ∆ ≤ ẑp. Denote
δ = ẑp − (f(p) + ∆). The disparity of φ(Ŷp) can then be estimated.

φ(Ŷp) = 1
k′

(∑
x∈A1

(f̃(x)− ẑp)2 +
∑
x∈A2

(f̃(x)− ẑp)2)
≥ 1

k′

(
|A1|δ2 +

∑
x∈A2

(f̃(x)− ẑp)2)
≥ 1

k′

(
|A1|δ2 + 1

|A2| (
∑
x∈A2

f̃(x)− |A2|ẑp)2
)

= 1
k′

(
|A1|δ2 + 1

|A2| (
∑
x∈A1

f̃(x)− |A1|ẑp)2
)

≥ 1
k′

(
|A1|δ2 + 1

|A2| (|A1|δ)2
)

= 1
k′ δ

2
(
|A1|
|A2| (|A1|+ |A2|)

)
≥ 1

k′ δ
2
(
k′|A1|
|A2|

)
≥ 2k′−k

k−k′ δ
2

where the third line uses the inequality
∑n
i=1 a

2
i ≥ 1

n (
∑n
i=1 ai)2, and the fourth line uses the

fact that (|A1| + |A2|)ẑp =
∑
x∈Ŷp

f̃(x). Since Ŷp = argminYi,i∈[1,k−k′] φ(Yi), it holds that

M. Buchet, F. Chazal, T. K. Dey, F. Fan, S. Y. Oudot, and Y. Wang 835

φ(Ŷp) ≤ φ(Y ′∆). Therefore,

2k′ − k
k − k′

δ2 ≤ 4∆2.

It then follows that δ ≤ 2
√

k−k′

2k′−k∆ and |f̂(p)− f(p)| ≤
(

1 + 2
√

k−k′

2k′−k

)
∆ since ẑp = f̂(p).

If k′ ≥ 2
3k, then 1 + 2

√
k−k′

2k′−k ≤ 1 + 2 = 3, meaning that |f̂(p)− f(p)| ≤ 3∆ in this case. J

I Corollary 3.2. Given a (k, k′,∆)-functional-sample of f : M→ R with k′ ≥ k/2, we can
compute a new function f̂ : P → R such that |f̂(p)− f(p)| ≤ ξ∆ for any p ∈ P , where ξ = 1
under k-median denoising, and ξ =

(
1 + 2

√
k−k′

2k′−k

)
under the disparity-based denoising.

Hence after the k-median denoising or the disparity-based denoising, we obtain a new
function f̂ whose value at each sample point is within ξ∆ precision to the true function value.
We can now apply the scalar field topology inference framework from [6] (as introduced in
Section 2) using f̂ as input. In particular, set Lα = {p ∈ P | f̂(p) ≤ α}, and let Rδ(X)
denote the Rips complex over points in X with parameter δ. We approximate the persistence
diagram induced by the sub-level sets filtration of f : M→ R from the filtrations of nested
pairs {Rδ(Lα) ↪→ R2δ(Lα)}α. It follows from Theorem 2.3 that:

I Theorem 3.3. Let M be a compact Riemannian manifold and let f : M→ R be a c-Lipschitz
function. Let P be a geodesic ε-sample of M, and f̃ : P → R a (k, k′,∆)-functional-sample
of f . Set ξ = 1 if Pα is obtained via k-median denoising, and ξ =

(
1 + 2

√
k−k′

2k′−k

)
if Pα

is obtained via disparity-based denoising. If ε < 1
4%(M), then for any δ ∈

[
2ε, 1

2%(M)
)
, the

persistent homology modules of f and the filtration of nested pairs {Rδ(Pα) ↪→ R2δ(Pα)} are
(2cδ + ξ∆)-interleaved. Therefore, the bottleneck distance between their persistence diagrams
is at most 2cδ + ξ∆.

The above theoretical results are similar for k-median and disparity-based methods with a
slight advantage for the k-median. However, interesting experimental results can be obtained
when the Lipschitz condition on the function is removed, for example with images, where
the disparity based method appears to be more resilient to large amounts of noise than the
k-median denoising method. Illustrating examples can be found in the full version [1].

4 Geometric noise

In the previous section, we assumed that we have no geometric noise in the input. In
this section, we deal with the case where there is only geometric noise in the input, but
no functional noise of any kind. Specifically, for any point p ∈ P , we assume that the
observed value f̃(p) is equal to the true function value f(π(p)) where π(p) is the nearest
point projection of p to the manifold. If p is on the medial axis of M, the projection π is
arbitrary to one of the nearest points. As we have alluded before, general geometric noise
implicitly introduces functional noise because the point p may have become a functional
aberration of its orthogonal projection π(p) ∈ M. This error will be ultimately dealt with in
Section 5 when we combine the results on purely functional noise from the previous section
with the results on purely geometric noise in this section.

SoCG’15

836 Topological Analysis of Scalar Fields with Outliers

4.1 Sampling condition
Distance to a measure

The distance to a measure is a tool introduced to deal with geometrically noisy datasets,
which are modelled as probability measures [4]. Given a probability measure µ on a metric
space X, we define the pseudo-distance δm(x) for any point x ∈ Rd and a mass parameter
m ∈ (0, 1] as δm(x) = inf{r ∈ R|µ(B(x, r)) ≥ m}. The distance to a measure is then defined
by averaging this quantity:

dµ,m(x) =

√
1
m

∫ m

0
δl(x)2 dl.

The Wasserstein distance is a standard tool to compare two measures. Given two
probability measures µ and ν on a metric space X, a transport plan π is a probability measure
over X× X such that for any A×B ⊂ X× X, π(A× X) = µ(A) and π(X×B) = ν(B). Let
Γ(µ, ν) be the set of all transport plans between between measures µ and ν. The Wassserstein
distance is then defined as the minimum transport cost over Γ(µ, ν):

W2(µ, ν) =

√
min

π∈Γ(µ,ν)

∫
X×X

dX(x, y)2 dπ(x, y),

where dX(x, y) is the distance between x and y in the metric space X. The distance to a
measure is stable with respect to the Wasserstein distance as shown in [4]:

I Theorem 4.1 (Theorem 3.5 of [4], Theorem 3.2 of [2]). Let µ and ν be two probability
measures on X and m ∈ (0, 1]. Then, ||dµ,m − dν,m||∞ ≤ 1√

m
W2(µ, ν).

We will mainly use the distance to empirical measures in this paper. (See [2, 4, 12] for
more details on distance to a measure and its approximation.) Given a finite point set P , its
associated empirical measure µP is defined as the sum of Dirac masses: µP = 1

|P |
∑
p∈P δp.

The distance to this empirical measure for a point x can then be expressed as an average
of its distances to the k = m|P | nearest neighbors where m is the mass parameter. For the
sake of simplicity, k will be assumed to be an integer. The results also hold for other values
of k. However, a non integer k introduces unnecessary technical difficulties. Denoting by
pi(x) the i-th nearest neighbors of x in P , one can write:

dµP ,m(x) =

√√√√1
k

k∑
i=1

d(pi(x), x)2.

Geometric sampling condition

Our sampling condition treats the input point data as a measure and relates it to the
manifold (where input points are sampled from) via distance-to-measures with the help of
two parameters.

I Definition 4.2. Let P ⊂ Rn be a discrete sample and M ⊂ Rn a smooth manifold. Let
µP denote the empirical measure of P . For a fixed mass parameter m > 0, we say that P is
an (ε, r)-sample of M if the following holds:

∀x ∈ M, dµP ,m(x) ≤ ε; and (3)

∀x ∈ Rn, dµP ,m(x) ≤ r =⇒ d(x,M) ≤ dµP ,m(x) + ε. (4)

M. Buchet, F. Chazal, T. K. Dey, F. Fan, S. Y. Oudot, and Y. Wang 837

The parameter ε captures the distance to the empirical measure for points in M and intuitively
tells us how dense P is in relation to the manifold M. The parameter r intuitively indicates
how far away we can deviate from the manifold, while keeping the noise sparse enough so as
not to be mistaken for signal. We remark that if a point set is an (ε, r)-sample of M then
it is an (ε′, r′)-sample of M for any ε′ ≥ ε and r′ ≤ r. In general, the smaller ε is and the
bigger r is, the better an (ε, r)-sample is.

For convenience, denote the distance function to the manifold M by dπ : Rn → R,
x 7→ d(x,M). We have the following interleaving relation:

∀α < r − ε, d−1
π (]−∞, α]) ⊂ d−1

µP ,m(]−∞, α+ ε]) ⊂ d−1
π (]−∞, α+ 2ε]) (5)

To see why this interleaving relation holds, let x be a point such that d(x,M) ≤ α. Thus
d(π(x), x) ≤ α. Using the hypothesis (3), we get that dµP ,m(π(x)) ≤ ε. Given that the
distance to a measure is a 1-Lipschitz function we then obtain that dµP ,m(x) ≤ ε+ α.

Now let x be a point such that dµP ,m(x) ≤ α+ ε ≤ r. Using the condition on r in (4) we
get that d(x,M) ≤ dµP ,m(x) + ε ≤ α+ 2ε which concludes the proof of Eqn (5).

Eqn (5) gives an interleaving between the sub-level sets of the distance to the measure µ
and the offsets of the manifold M. By Theorem 2.1, this implies the proximity between the
persistence modules of their respective sub-level sets filtrations . Observe that this relation is
in some sense analogous to the one obtained when two compact sets A and B have Hasudorff
distance of at most ε:

∀α, d−1
A (]−∞, α]) ⊂ d−1

B (]−∞, α+ ε]) ⊂ d−1
A (]−∞, α+ 2ε]). (6)

Relation to other sampling conditions

Our sampling condition encompasses several other existing sampling conditions. While the
parameter ε is natural, the parameter r may appear to be artificial. It bounds the distances
at which we can observe the manifold through the scope of the distance to a measure. In
most classical sampling conditions, r is equal to ∞ and thus we obtain a similar relation as
for the classical Hausdorff sampling condition in Eqn (6).

One notable noise model where r 6=∞ is when there is an uniform background noise in
the ambient space Rd, sometimes called clutter noise. In this case, r depends on the difference
between the density of the relevant data and the density of the noise. For other sampling
conditions like Wassertein, Gaussian, Hausdorff sampling conditions, r = ∞. Detailed
relations and proofs for the Wasserstein and Gaussian sampling conditions can be found in
the full version [1].

4.2 Scalar field analysis under geometric noise
In the rest of the paper, we assume that M is a manifold with positive reach ρM (minimum
distance between M and its medial axis) and whose curvature is bounded by cM. Assume
that the input P is an (ε, r)-sample of M for a given m ∈ (0, 1], where

ε ≤ ρM
6 , and r > 2ε. (7)

As discussed at the beginning of this section, we assume that there is no intrinsic functional
noise, that is, for every p ∈ P , the observed function value f̃(p) = f(π(p)) is the same as the
true value for the projection π(p) ∈ M of this point. Our goal now is to show how to recover
the persistence diagram induced by f : M→ R from its observations f̃ : P → R on P .

SoCG’15

838 Topological Analysis of Scalar Fields with Outliers

Taking advantage of the interleaving (5), we can use the distance to the empirical measure
to filter the points of P to remove geometric noise. In particular, we consider the set

L = P ∩ d−1
µP ,m(]−∞, η]) where η ≥ 2ε. (8)

We will then use a similar approach as the one from [6] for this set L. The optimal choice for
the parameter η is 2ε. However, any value with η ≤ r and η + ε < ρM works as long as there
exist δ and δ′ satisfying the conditions stated in Theorem 2.4.

Let L̄ = {π(x)|x ∈ L} denote the orthogonal projection of L onto M. To simulate sub-level
sets f−1(]−∞, α] of f : M→ R, consider the restricted sets Lα := L ∩ (f ◦ π)−1(]−∞, α])
and let L̄α = π(Lα). By our assumption on the observed function f̃ : P → R, we have:
Lα = {x ∈ L|f̃(x) ≤ α}.

Let us first recall a result about the relation between Riemannian and Euclidian metrics
(e.g. [9]). For any two points x, y ∈ M with d(x, y) ≤ ρM

2 one has:

d(x, y) ≤ dM(x, y) ≤
(

1 + 4d(x, y)2

3ρ2
M

)
d(x, y) ≤ 4

3d(x, y). (9)

As a direct consequence of our sampling condition, for each point x ∈ M, there exists a
point p ∈ L at distance less than 2ε: Indeed, for each x ∈ M, since dµP ,m(x) ≤ ε, there must
exist a point p ∈ P such that d(x, p) ≤ ε. On the other hand, since the distance to measure
is 1-Lipschitz, we have dµP ,m(p) ≤ dµP ,m(x) + d(x, p) ≤ 2ε. Hence p ∈ L as long as η ≥ 2ε.
We will use the extrinsic Vietoris-Rips complex built on top of points from L to infer the
scalar field topology. Using the previous relation Eqn (9), we obtain the following result
which states that the Euclidean distance for nearby points in L approximates the geodesic
distance on M.

I Proposition 4.3. Let λ = 4
3

ρM
ρM−(η+ε) , and assume that 2ε ≤ η ≤ r and ε + η < ρM. Let

x, y ∈ L be two points from L such that d(x, y) ≤ ρM
2 −

η+ε
2 . Then,

dM(π(y), π(x))
λ

≤ d(x, y) ≤ 2(η + ε) + dM(π(x), π(y)).

Proof. Let x and y be two points of L such that d(x, y) ≤ ρM
2 −

η+ε
2 . As dµP ,m(x) ≤ η ≤ r,

Eqn (4) implies d(π(x), x) ≤ η + ε. Therefore, d(π(x), π(y)) ≤ ρM
ρM−(η+ε)d(x, y) [11, Theorem

4.8,(8)]. This implies d(π(x), π(y)) ≤ ρM
2 and following (9), dM(π(x), π(y)) ≤ 4

3d(π(x), π(y)).
This proves the left inequality in the Proposition. The right inequality follows from

d(x, y) ≤ d(π(x), x) + d(π(y), y) + dM(π(x), π(y)) ≤ 2(η + ε) + dM(π(x), π(y)).

J

I Theorem 4.4. Let M be a compact Riemannian manifold and let f : M → R be a
c-Lipschitz function. Let P be an (ε, r)-sample of M , and L be as introduced in Eqn
(8). Assume ε ≤ ρM

6 , r > 2ε, and 2ε ≤ η ≤ r. Then, for any δ ≥ 2η + 6ε and
any δ′ ∈

[
2η + 2ε+ 8

3
ρM

ρM−(η+ε)δ,
3
4
ρM−(η+ε)

ρM
%(M)

]
, H∗(f) and H∗(Rδ(Lα) ↪→ Rδ′(Lα)) are

4
3

cρMδ
′

ρM−(η+ε) -interleaved.

Proof. First, note that L̄ is a 2ε-sample of M in its geodesic metric. It follows from the
definition of dµP ,m that, for any point x ∈ M, the nearest point p ∈ L to x satisfies

M. Buchet, F. Chazal, T. K. Dey, F. Fan, S. Y. Oudot, and Y. Wang 839

d(x, p) ≤ dµP ,m(x) ≤ ε. Hence d(x, π(p)) ≤ d(x, p) + d(p, π(p)) ≤ 2d(x, p) ≤ 2ε. Now we
apply Theorem 2.4 to L̄ by using d̃(π(x), π(y)) := d(x, y); and setting λ = µ = 4

3
ρM

ρM−(η+ε) ,
ν = 2(η + ε): the requirement on the distance function d̃ in Theorem 2.4 is satisfied due to
Proposition 4.3. The claim then follows. J

Since M is compact, f is bounded due to the Lipschitz condition. We can look at
the limit when α → ∞. There exists a value T such that for any α ≥ T , Lα = L and
f−1((−∞, α]) = M. The above interleaving means that H∗(M) and H∗(Rδ(L)) ↪→ Rδ′(L))
are interleaved. However, both objects do not depend on α and this gives the following
inference result:

I Corollary 4.5. H∗(M) and H∗(Rδ(L)) ↪→ Rδ′(L)) are isomorphic under conditions specified
in Theorem 4.4.

5 Scalar Field Topology Inference under Geometric and Functional
Noise

Our constructions can be combined to analyze scalar fields in a more realistic setting. Our
combined sampling condition follows conditions (3) and (4) for the geometry. We adapt
condition (2) to take into account the geometry and introduce the following conditions: we
assume that there exist η ≥ 2ε and s such that:

∀p ∈ d−1
µ,m((−∞, η,]), |{q ∈ NNk(p)| |f̃(q)− f(π(p))| ≤ s}| ≥ k′ (10)

Note that in (10), we are using f(π(p)) as the “true" function value at a sample p which
may be off the manifold M. The condition on the functional noise is only for points close to
the manifold (under the distance to a measure). Combining the methods from the previous
two sections, we obtain the combined noise algorithm where η is a parameter greater than 2ε.

We propose the following 3-steps algortihm. It starts by handling outliers in the geometry
then it makes a regression on the function values to obtain a smoothed function f̂ before
running the existing algorithm for scalar field analysis [6] on the filtration L̂α = {p ∈ L|f̂(p) ≤
α}.

Combined noise algorithm

1. Compute L = P ∩ d−1
µ,m((−∞, η]).

2. Replace functional values f̃ by f̂ for points in L using either k-median or disparity based
method.

3. Run the scalar field analysis algorithm from [6] on (L, f̂).

I Theorem 5.1. Let M be a compact smooth manifold embedded in Rd and f a c-Lipschitz
function on M. Let P ⊂ Rd be a point set and f̃ : P → R be observed function values such
that hypotheses (3), (4), (7) and (10) are satisfied. For η ≥ 2ε, the combined noise algorithm
has the following guarantees:

For any δ ∈
[
2η + 6ε, %(M)

2

]
and any δ′ ∈

[
2η + 2ε+ 8

3
ρM

ρM−(η+ε)δ,
3
4
ρM−(η+ε)

ρM
%(M)

]
, H∗(f)

and H∗(Rδ(L̂α) ↪→ Rδ′(L̂α)) are
(

4
3

cρMδ
′

ρM−(η+ε) + ξs
)
-interleaved where ξ = 1 if we use the

k-median and ξ =
(

1 + 2
√

k−k′

2k′−k

)
if we use the disparity method for Step 2.

SoCG’15

840 Topological Analysis of Scalar Fields with Outliers

Proof. First, consider the filtration induced by Lα = {x ∈ L|f(π(x)) ≤ α}; that is, we first
imagine that all points in L have correct function values (equals to the true value of their
projection on M). By Theorem 4.4, for

δ ∈
[
2η + 6ε, %(M)

2

]
and δ′ ∈

[
2η + 2ε+ 8

3
ρM

ρM − (η + ε)δ,
3
4
ρM − (η + ε)

ρM
%(M)

]
,

H∗(f) and H∗(Rδ(Lα) ↪→ Rδ′(Lα)) are 4
3

cρMδ
′

ρM−(η+ε) -interleaved.
Next, consider L̂α = {p ∈ L|f̂(p) ≤ α}, which leads to a filtration based on the smoothed

function values f̂ (not observed values). Recall that our algorithm returns H∗(Rδ(L̂α) ↪→
Rδ′(L̂α)). We aim to relate this persistence module withH∗(Rδ(Lα) ↪→ Rδ′(Lα)). Specifically,
fix α and let (x, y) be an an edge of Rδ(Lα). This means that d(x, y) ≤ 2δ, f(π(x)) ≤ α,
f(π(y)) ≤ α. Corollary 3.2 can be applied to the function f ◦ π due to hypothesis (10).
Hence |f̂(x)− f(π(x))| ≤ ξs and |f̂(y)− f(π(y))| ≤ ξs. Thus (x, y) ∈ Rδ(L̂α+ξs). One can
reverse the role of f̂ and f and get an ξs-interleaving of {Rδ(Lα)} and {Rδ(L̂α)}. This gives
rise to the following commutative diagram since all arrows are induced by inclusions.

H∗(Rδ(Lα)) H∗(Rδ(Lα+2ξs)) H∗(Rδ(Lα+4ξs))

H∗(Rδ(L̂α+ξs)) H∗(Rδ(L̂α+3ξs)) H∗(Rδ(L̂α+5ξs))

H∗(Rδ′(Lα)) H∗(Rδ′(Lα+2ξs)) H∗(Rδ′(Lα+4ξs))

H∗(Rδ′(L̂α+ξs)) H∗(Rδ′(L̂α+3ξs)) H∗(Rδ′(L̂α+5ξs))

Thus the two persistence modules induced by filtrations of nested pairs {Rδ(Lα) ↪→ Rδ′(Lα)}
and {Rδ(L̂α) ↪→ Rδ′(L̂α)} are ξs-interleaved. Combining this with the interleaving between
H∗(Rδ(Lα) ↪→ Rδ′(Lα)) and H∗(f), we obtain the stated results. J

We note that, while this theorem assumes a setting where we can ensure theoretical
guarantees, the algorithm can be applied in a more general setting still producing good
results.

Acknowledgments. This work was supported by the ANR project TopData 13-BS01-008,
the ERC project Gudhi 339025 and the NSF grants CCF-1064416, CCF-1116258, CCF-
1319406 and CCF-1318595.

References
1 M. Buchet, F. Chazal, T. K. Dey, F. Fan, S. Y. Oudot, and Y. Wang. Topological analysis

of scalar fields with outliers. arXiv preprint arXiv:1412.1680, 2014.
2 M. Buchet, F. Chazal, S. Oudot, and D. R. Sheehy. Efficient and robust persistent homology

for measures. In Proceedings of the 26th ACM-SIAM symposium on Discrete algorithms.
SIAM, 2015.

M. Buchet, F. Chazal, T. K. Dey, F. Fan, S. Y. Oudot, and Y. Wang 841

3 F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Oudot. Proximity of persist-
ence modules and their diagrams. In Proc. 25th ACM Sympos. on Comput. Geom., pages
237–246, 2009.

4 F. Chazal, D. Cohen-Steiner, and Q. Mérigot. Geometric inference for probability measures.
Foundations of Computational Mathematics, 11(6):733–751, 2011.

5 F. Chazal, V. de Silva, M. Glisse, and S. Oudot. The structure and stability of persistence
modules, 2013. arXiv:1207.3674.

6 F. Chazal, L. J. Guibas, S. Y. Oudot, and P. Skraba. Scalar field analysis over point cloud
data. Discrete & Computational Geometry, 46(4):743–775, 2011.

7 F. Chazal and S. Y. Oudot. Towards persistence-based reconstruction in euclidean spaces.
In Proceedings of the twenty-fourth annual symposium on Computational geometry, pages
232–241. ACM, 2008.

8 D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Dis-
crete & Computational Geometry, 37(1):103–120, 2007.

9 T. K. Dey, J. Sun, and Y. Wang. Approximating cycles in a shortest basis of the first
homology group from point data. Inverse Problems, 27(12):124004, 2011.

10 H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. Amer. Math.
Soc., Providence, Rhode Island, 2009.

11 H. Federer. Curvature measures. Transactions of the American Mathematical Society, pages
418–491, 1959.

12 L. Guibas, D. Morozov, and Q. Mérigot. Witnessed k-distance. Discrete & Computational
Geometry, 49(1):22–45, 2013.

13 L. Györfi. A distribution-free theory of nonparametric regression. Springer, 2002.
14 J. Kloke and G. Carlsson. Topological de-noising: Strengthening the topological signal.

arXiv preprint arXiv:0910.5947, 2009.
15 S. Kpotufe. k-nn regression adapts to local intrinsic dimension. arXiv preprint

arXiv:1110.4300, 2011.
16 A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete & Computa-

tional Geometry, 33(2):249–274, 2005.

SoCG’15

On Computability and Triviality of Well Groups∗

Peter Franek1 and Marek Krčál2

1 Institute of Computer Science, Academy of Sciences, Prague, Czech Republic
franek@cs.cas.cz

2 IST Austria, Am Campus 1 3400 Klosterneuburg, Austria
marek.krcal@ist.ac.at

Abstract
The concept of well group in a special but important case captures homological properties of the
zero set of a continuous map f : K → Rn on a compact space K that are invariant with respect
to perturbations of f . The perturbations are arbitrary continuous maps within L∞ distance r
from f for a given r > 0. The main drawback of the approach is that the computability of well
groups was shown only when dimK = n or n = 1.

Our contribution to the theory of well groups is twofold: on the one hand we improve on the
computability issue, but on the other hand we present a range of examples where the well groups
are incomplete invariants, that is, fail to capture certain important robust properties of the zero
set.

For the first part, we identify a computable subgroup of the well group that is obtained
by cap product with the pullback of the orientation of Rn by f . In other words, well groups
can be algorithmically approximated from below. When f is smooth and dimK < 2n − 2, our
approximation of the (dim K − n)th well group is exact.

For the second part, we find examples of maps f, f ′ : K → Rn with all well groups isomorphic
but whose perturbations have different zero sets. We discuss on a possible replacement of the well
groups of vector valued maps by an invariant of a better descriptive power and computability
status.

1998 ACM Subject Classification G.1.5 Roots of Nonlinear Equations, F.2.2 Nonnumerical
Algorithms and Problems

Keywords and phrases nonlinear equations, robustness, well groups, computation, homotopy
theory

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.842

1 Introduction

In many engineering and scientific solutions, a highly desired property is the resistance
against noise or perturbations. We can only name a fraction of the instances: stability in
data analysis [4], robust optimization [2], image processing [14], or stability of numerical
methods [16]. Some very important tools for robust design come from topology, which can
capture stable properties of spaces and maps.

In this paper, we take the robustness perspective on the study of the solution set of
systems of nonlinear equations, a fundamental problem in mathematics and computer sci-
ence. Equations arising in mathematical modeling of real problems are usually inferred

∗ This research was supported by institutional support RVO:67985807 and by the People Programme
(Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under
REA grant agreement n◦ [291734].

© Peter Franek and Marek Krčál;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 842–856

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.842
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Franek and M. Krčál 843

from observations, measurements or previous computations. We want to extract maximal
information about the solution set, if an estimate of the error in the input data is given.

More formally, for a continuous map f : K → Rn on a compact Hausdorff space K and
r > 0 we want to study properties of the family of zero sets

Zr(f) := {g−1(0) : ‖f − g‖ ≤ r},

where ‖ · ‖ is the max-norm with respect to some fixed norm | · | in Rn. The functions g
with ‖f − g‖ ≤ r (or ‖f − g‖ < r) will be referred to as r-perturbations of f (or strict
r-perturbations of f , respectively). Quite notably, we are not restricted to parameterized
perturbations but allow arbitrary continuous functions at most (or less than) r far from f

in the max-norm.

Well groups. Recently, the concept of well groups was developed to measure “robustness
of intersection” of a map f : K → Y with a subspace Y ′ ⊆ Y [8].

In the special but very important case when Y = Rn and Y ′ = {0} it is a property of Zr(f)
that, informally speaking, captures “homological properties” that are common to all zero
sets in Zr(f). We enhance the theory to include a relative case1 that is especially convenient
in the case when K is a manifold with boundary. Let B ⊆ K be a pair of compact Hausdorff
spaces and f : K → Rn continuous. Let X := |f |−1[0, r] where |f | denotes the function
x 7→ |f(x)|; this is the smallest space containing zero sets of all r-perturbations g of f . In
the rest of the paper, for any space Y ⊆ K we will abbreviate the pair (Y, Y ∩B) by (Y,B)
and, similarly for homology, H∗(Y, Y ∩ B)) by H∗(Y,B). Everywhere in the paper we use
homology and cohomology groups with coefficients in Z unless explicitly stated otherwise.
For brevity we omit the coefficients from the notation.

The jth well group Uj(f, r) of f at radius r is the subgroup of Hj(X,B) defined by

Uj(f, r) :=
⋂

Z∈Zr(f)

Im
(
Hj(Z,B) i∗−→ Hj(X,B)

)
,

where i∗ is induced by the inclusion i : g−1(0) ↪→ X and H refers to a convenient homology
theory of compact metrizable spaces that we describe below.2 For a simple example of a
map f with U1(f, r) nontrivial see Figure 1.

Significance of well groups. We only mention a few of many interesting things mostly
related to our setting. The well group in dimension zero characterizes robustness of solutions
of a system of equations f(x) = 0. Namely, ∅ ∈ Zr(f) if and only if U0(f, r) ∼= 0. Higher well
groups capture additional robust topological properties of the zero set such as in Figure 1.
Perhaps the most important is their ability to form well diagrams [8] – a kind of measure for
robustness of the zero set (or more generally, robustness of the intersection of f with other
subspace Y ′ ⊆ Y). The well diagrams are stable with respect to taking perturbations of f .3

1 Authors of [3] develop a different notion of relativity that is based on considering a pair of spaces
(Y ′, Y ′0) instead of the single space Y ′. This direction is rather orthogonal to the matters of this paper.

2 In [8, 3], well groups were defined by means of singular homology. But then, once we allow arbitrary
continuous perturbations, to the best of our knowledge, no f : K → Rn with nontrivial Uj(f, r) for
j > 0 would be known. In particular, the main result of [3] would not hold. The correction via means
of Steenrod homology was independently identified by the authors of [3].

3 Namely, so called bottleneck distance between a well diagrams of f and f ′ is bounded by ‖f − f ′‖. The
stability does not say how well the well diagrams describe the zero set. This question is also addressed
in this paper.

SoCG’15

844 On Computability and Triviality of Well Groups

f = 0

f = r

f = −r

g = 0X

K
f
// R

0

B = ∂K
A

X ∩B

Figure 1 For the projection f(x, y) = y to the vertical axis defined on a box K, the zero set
of every r-perturbation is contained in X = |f |−1[0, r] and ∂X consists of A (upper and lower
side) where |f | = r, and X ∩ B ⊆ ∂K. The zero set always separates the two components of A.
On the homological level, the zero set “connects” the two components of X ∩ B and the image of
H1(g−1(0), B) in H1(X,B) is always surjective and thus U1(f, r) ∼= H1(X,B). Note that the well
group would be trivial with B = ∅.

Homology theory. For the foundation of well groups we need a homology theory on com-
pact Hausdorff spaces that satisfies some additional properties that we specify later in Sec-
tion 2. Roughly speaking, we want that the homology theory behaves well with respect to
infinite intersections. Without these properties we would have to consider only “well be-
haved” perturbations of a given f in order to be able to obtain some nontrivial well groups
in dimension greater than zero. We explain this in more detail also in Section 2. For the
moment it is enough to say that the Čech homology can be used and that for any compu-
tational purposes it behaves like simplicial homology. In Section 2 we explain why using
singular homology would make the notion of well groups trivial.

A basic ingredient of our methods is the notion of cap product

_: Hn(X,A)⊗Hk(X,A ∪B)→ Hk−n(X,B)

between cohomology and homology. We refer the reader to [21, Section 2.2] and [15, p.
239] for its properties and to [11, Appendix E] for its construction in Čech (co)homology.
Again, it behaves like the simplicial cap product when applied to simplicial complexes. For
an algorithmic implementation, one can use its simplicial definition from [21].

1.1 Computability results
Computer representation. To speak about computability, we need to fix some computer
representation of the input. Here we assume the simple but general setting of [10], namely,
K is a finite simplicial complex, B ⊆ K a subcomplex, f is simplexwise linear with rational
values on vertices4 and the norm | · | in Rn can be (but is not restricted to) `1, `2 or `∞
norm.

Previous results. The algorithm for the computation of well groups was developed only
in the particular cases of n = 1 [3] or dimK = n [5]. In [10] we settled the computational
complexity of the well group U0(f, r). The complexity is essentially identical to deciding

4 We emphasize that the considered r-perturbations of f need not be neither simplexwise linear nor have
rational values on the vertices.

P. Franek and M. Krčál 845

whether the restriction f |A : A → Sn−1 can be extended to X → Sn−1 for A = |f |−1(r),
or equivalently, A = f−1(Sn−1). The extendability problem can be decided as long as
dimK ≤ 2n− 3 or n = 1, 2 or n is even. On the contrary, the extendability of maps into a
sphere – as well as triviality of U0(f, r) – cannot be decided for dimK ≥ 2n− 2 and n odd,
see [10].5 In this paper we shift our attention to higher well groups.

Higher well groups – extendability revisited. The main idea of our study of well groups
is based on the following. We try to find r-perturbations of f with as small zero set as
possible, that is, avoiding zero on X ′ for X ′ ⊆ X as large as possible. It is shown in [11,
Lemma D.1] that for each strict r-perturbation g of f we can find an extension e : X → Rn
of f |A with g−1(0) = e−1(0) and vice versa. Thus equivalently, we try to extend f |A to a
map X ′ → Sn−1 for X ′ as large as possible. The higher skeleton6 of X we cover, the more
well groups we kill.

I Observation 1.1. Let f : K → Rn be a map on a compact space. Assume that the pair
of spaces A ⊆ X defined as |f |−1(r) ⊆ |f |−1[0, r], respectively, can be triangulated and
dimX = m. If the map f |A can be extended to a map A ∪X(i−1) → Sn−1 then Uj(f, r) is
trivial for j > m− i.

Assume, in addition, that there is no extension A∪X(i) → Sn−1. By the connectivity of
the sphere Sn−1, we have i ≥ n. Does the lack of extendability to X(i) relate to higher well
groups, especially Um−i(f, r)? The answer is yes when i = n as we show in our computability
results below. On the other hand, when i > n, the lack of extendability is not necessarily
reflected by Um−i(f, r). This leads to the incompleteness results we show in the second part
of the paper.

The first obstruction. The lack of extendability of f |A to the n-skeleton is measured by
the so called first obstruction that is defined in terms of cohomology theory as follows.
We can view f as a map of pairs (X,A) → (Bn, Sn−1) where Bn is the ball bounded by
the sphere Sn−1 := {x : |x| = r}. Then the first obstruction φf is equal to the pullback
f∗(ξ) ∈ Hn(X,A) of the fundamental cohomology class ξn ∈ Hn(Bn, Sn−1).7

I Theorem 1.2. Let B ⊆ K be compact spaces and let f : K → Rn be continuous. Let
|f |−1[0, r] and |f |−1(r) be denoted by X and A, respectively, and φf be the first obstruction.
Then φf _ Hk(X,A ∪B) is a subgroup of Uk−n(f, r) for each k ≥ n.

Our assumptions on computer representation allow for simplicial approximation of X,A
and f . The pullback of ξn ∈ Hn(Bn, Sn−1) and the cap product can be computed by the
standard formulas. This together with more details worked out in the proof in Section 2
gives the following.

5 We cannot even approximate the “robustness of roots”: it is undecidable, given a simplicial complex K
and a simplexwise linear map f : K → Rn, whether there exists ε > 0 such that U0(f, ε) is nontrivial or
whether U0(f, 1) is trivial. The extendability can always be decided for n even, however, the problem
is less likely tractable for dimK > 2n− 2.

6 The i-skeleton X(i) of a simplicial (cell) complex X is the subspace of X containing all simplices (cells)
of dimension at most i.

7 This is the global description of the first obstruction as presented in [25]. It can be shown that φf
depends on the homotopy class of f |A only. Another way of defining the first obstruction is the
following. It is represented by the so-called obstruction cocycle zf ∈ Zn(X,A) that assigns to each
n-simplex σ ∈ X the element [f |∂σ] ∈ πn−1(Sn−1) ∼= Z [21, Chap. 3]. Through this definition it is
not difficult to derive that the map f |A can be extended to X(n) → Sn−1 if and only if φf = 0, see
also [21, Chap. 3].

SoCG’15

846 On Computability and Triviality of Well Groups

I Theorem 1.3. Under the assumption on computer representation of K,B and f as above,
the subgroup φf _ Hk(X,A ∪B) of Uk−n(f, r) (as in Theorem 1.2) can be computed.

The gap between Uk−n and φf _ Hk(X,A ∪ B). There are maps f with φf trivial
but nontrivial U0(f, r).8 But this can be detected by the above mentioned extendability
criterion. We do not present an example where Uk−n(f, r) 6= φf _ Hk(X,A ∪ B) for
k − n > 0, although the inequality is possible in general. In the rest of the paper we work
in the other direction to show that there is no gap in various cases and various dimensions.

An important instance of Theorem 1.2 is the case when X can be equipped with the
structure of a smooth orientable manifold.

I Theorem 1.4. Let f : K → Rn and X,A be as above. Assume that X can be equipped
with a smooth orientable manifold structure, A = ∂X, B = ∅ and n + 1 ≤ m ≤ 2n − 3 for
m = dimX. Then

Um−n(f, r) = φf _ Hm(X, ∂X).

When m = n, the well group U0(f, r) can be strictly larger than φf _ Hn(X, ∂X) but it
can be computed.

We believe that the same claim holds when X is an orientable PL manifold. It remains
open whether the last equation holds also for m > 2n − 3. Throughout the proof of Theo-
rem 1.4, we will show that if g : K → Rn is a smooth r-perturbation of f transverse to 0,
then the fundamental class of g−1(0) is mapped to the Poincaré dual of the first obstruction.
This also holds if B 6= ∅ and in all dimensions.

1.2 Well groups U∗(f, r) are incomplete as an invariant of Zr(f)

A simple example illustrating Theorem 1.4 is the map f : S2×B3 → R3 defined by f(x, y) :=
y with B3 considered as the unit ball in R3. It is easy to show that

for every 1-perturbation g of f and every x ∈ S2 there is a root of g in {x} ×B3. (1)

This robust property is nicely captured by (and can be also derived from) the fact U2(f, 1) ∼=
Z.

The main question of Section 3 is what happens, when the first obstruction φf is trivial
– and thus f |A can be extended to X(n) – but the map f |A cannot be extended to whole
of X. The zero set of f can still have various robust properties such as (1). It is the case
of f : S2 × B4 → R3 defined by f(x, y) := |y|η(y/|y|) where η : S3 → S2 is a homotopically
nontrivial map such as the Hopf map. The zero set of each r-perturbation g of f intersects
each section {x} × B4, but unlike in the example before, well groups do not capture this
property. All well groups Uj(f, r) are trivial for j > 0 and,9 consequently, they cannot
distinguish f from another f ′ having only a single robust root in X. We will describe the
construction of such f ′ for a wider range examples.

In the following, Biq will denote the i-dimensional ball of radius q, that is, Biq = {y ∈
Ri : |y| ≤ q}. We also emphasize that this and the following theorem hold for arbitrary
coefficient group of the homology theory H∗.

8 This is the case for f : R4 → R3 given by f(x) := |x|η(x/|x|) where η : S3 → S2 is the Hopf map.
9 Namely U2(f, r) ∼= 0 as is shown by the r-perturbation g(x, y) = f(x, y) − rx with the zero set

homeomorphic to the 3-sphere.

P. Franek and M. Krčál 847

I Theorem 1.5. Let i,m, n ∈ N be such that m − i < n < i < (m + n + 1)/2 and both
πi−1(Sn−1) and πm−1(Sn−1) are nontrivial. Then on K = Sm−i × Bi1 we can define two
maps f, f ′ : K → Rn such that for all r ∈ (0, 1]

f , f ′ induce the same X = Sm−i × Bir and A = ∂X and have the same well groups for
any coefficient group of the homology theory H∗ defining the well groups,
but Zr(f) 6= Zr(f ′).

In particular, the property

for each Z ∈ Zr(.) and x ∈ Sm−i there exists y ∈ Bir such that (x, y) ∈ Z

is satisfied for f but not for f ′. Namely, Zε(f ′) contains a singleton for each ε > 0.

The lack of extendability not reflected by Um−i(f, r). The key property of the example
of Theorem 1.5 is that the maps f |A and f ′|A can be extended to the (i−1)-skeleton X(i−1)

of X, for i > n. The difference between the maps lies in the extendability to X(i). Unlike
in the case when i = n, the lack of extendability is not reflected by the well groups. The
crucial part is the triviality of the well groups in dimension m− i and10 this triviality holds
in greater generality:

I Theorem 1.6. Let f : K → Rn, B ⊆ K, X := |f |−1[0, r] and A := |f |−1{r}. Assume that
the pair (X,A) can be finitely triangulated.11 Further assume that f |A can be extended to a
map h : A∪X(i−1) → Sn−1 for some i such that m− i < n < i < (m+n)/2 for m := dimX.
Then Um−i(f, r) = 0 for any coefficient group of the homology theory H∗.

The whole proof is in [11, Appendix C] but its core idea is already contained in the proof
of Theorem 1.5. There we also comment on the possibility of finding pairs of maps f and
f ′ with the same well groups but different robust properties of their zero sets in this more
general situation.

Our subjective judgment on well groups of Rn-valued maps. We find the problem of
the computability of well groups interesting and challenging with connections to homotopy
theory (see also Proposition 1.7 below). Moreover, we acknowledge that well groups may be
accessible for non-topologists: they are based on the language of homology theory that is
relatively intuitive and easy to understand. On the other hand, well groups may not have
sufficient descriptive power for various situations (Theorems 1.5 and 1.6). Furthermore,
despite all the effort, the computability of well groups seems far from being solved. In the
following paragraphs, we propose an alternative based on homotopy and obstruction theory
that addresses these drawbacks.

1.3 Related work
A replacement of well groups of Rn-valued maps. In a companion paper [20], we find
a complete invariant for an enriched version of Zr(f). The starting point is the surprising
claim that Zr(f) – an object of a geometric nature – is determined by terms of homotopy
theory.

10 This dimension is somewhat important as all higher well groups are trivial by [11, Lemma C.2] and
all lower homology groups of X may be trivial as is the case in Theorem 1.5. On the other hand,
Hm−i

(
X,πi−1(Sn−1)

)
has to be nontrivial in the case when X is a manifold for the reasons following

from obstruction theory and Poincaré duality.
11 That is, there exist finite simplicial complexes A∆ ⊆ X∆ and a homeomorphism (X∆, A∆)→ (X,A).

SoCG’15

848 On Computability and Triviality of Well Groups

I Proposition 1.7 ([20]). Let f : K → Rn be a continuous map on a compact Hausdorff
domain, r > 0, and let us denote the space |f |−1[r,∞] by Ar. Then the set Zr(f) :=
{g−1(0) : ‖g − f‖ ≤ r} is determined by the pair (K,Ar) and the homotopy class of f |Ar

in
[Ar, {x ∈ Rn : ‖x‖ ≥ r}] ∼= [Ar, Sn−1].12

The complete proof can be found in [11, Appendix D] and will also appear in [20].
Note that since the well groups is a property of Zr(f), they are determined by the pair

(K,Ar) and the homotopy class [f |Ar]. Thus the homotopy class has a greater descriptive
power and the examples from the previous section show that this inequality is strict. IfK is a
simplicial complex, f is simplexwise linear and dim Ar ≤ 2n−4 then [Ar, Sn−1] has a natural
structure of an Abelian group denoted by πn−1(Ar). The restriction dimAr ≤ 2n− 4 does
not apply when n = 1, 2 and13 otherwise we could replace [Ar, Sn−1] with [A(2n−4)

r , Sn−1]
which contains less information but is computable. The isomorphism type of πn−1(Ar)
together with the distinguished element [f |Ar

] can be computed essentially by [23, Thm 1.1].
Moreover, the inclusions As ⊆ Ar for s ≥ r induce computable homomorphisms between the
corresponding pointed Abelian groups. Thus for a given f we obtain a sequence of pointed
Abelian groups πn−1(Ar), r > 0 and it can be easily shown that the interleaving distance of
the sequences πn−1(A∗(f)

)
and πn−1(A∗(g)) is bounded by ‖g − f‖. Thus after tensoring

the groups by an arbitrary field, we get persistence diagrams (with a distinguished bar) that
will be stable with respect to the bottleneck distance and the L∞ norm. The construction
will be detailed in [20].

The computation of the cohomotopy group πn−1(A) is naturally segmented into a hierar-
chy of approximations of growing computational complexity. Therefore our proposal allows
for compromise between the running time and the descriptive power of the outcome. The
first level of this hierarchy is the primary obstruction φf . One could form similar modules
of cohomology groups with a distinguished element as we did with the cohomotopy groups
above. However, in this paper we passed to homology via cap product in order to relate it
to the established well groups. In the “generic” case when X is a manifold no information
is lost as from the Poincaré dual φf _ [X] we can reconstruct the primary obstruction φf
back.

The cap-image groups. The groups φf _ Hk(X,A) (with B = ∅) has been studied by
Amit K. Patel under the name cap-image groups. In fact, his setting is slightly more complex
with Rn replaced by arbitrary manifold Y . Instead of the zero sets, he considers preimages
of all points of Y simultaneously in some sense. Although his ideas have not been published
yet, they influenced our research; the application of the cap product in the context of well
groups should be attributed to Patel.14

Verification of zeros. An important topic in the interval computation community is the
verification of the (non)existence of zeros of a given function [19]. While the nonexistence
can be often verified by interval arithmetic alone, a proof of existence requires additional

12 Here [Ar, Sn−1] denotes the set of all homotopy classes of maps from Ar to Sn−1, that is, the coho-
motopy group πn−1(Ar) when dimAr ≤ 2n− 4.

13 Note that for n = 1 the structure of the set [A,Sn−1] is very simple and for n = 2 we have [A,Sn−1] ∼=
H1(A;Z) no matter what the dimension of Ar is.

14 We originally proved that when K is a triangulated orientable manifold, the Poincaré dual of φf
is contained in Um−n(f, r). Expanding the proof was not difficult, but the preceding inspiration of
replacing the Poincaré duality by cap product came from Patel. The cap product provides a nice
generalization to an arbitrary simplicial complex K.

P. Franek and M. Krčál 849

methods which often include topological considerations. In the case of continuous maps
f : Bn → Rn, Miranda’s or Borsuk’s theorem can be used for zero verification [13, 1], or the
computation of the topological degree [17, 6, 12]. Fulfilled assumptions of these tests not
only yield a zero in Bn but also a “robust” zero and a nontrivial 0th well group U0(f, r) for
some r > 0. Recently, topological degree has been used for simplification of vector fields [22].

The first obstruction φf is the analog of the degree for underdetermined systems, that
is, when dimK > n in our setting. To the best of our knowledge, this tool has not been
algorithmically utilized.

2 Computing lower bounds on well groups

Homology theory behind the well groups. For computing the approximation
φf _ Hk(X,A ∪B) of well group Uk−n(f) we only have to work with simplicial complexes
and simplicial maps for which all homology theories satisfying the Eilenberg–Steenrod ax-
ioms are naturally equivalent. Hence, regardless of the homology theory H∗ used, we can do
the computations in simplicial homology. Therefore the standard algorithms of computa-
tional topology [7] and the formula for the cap product of a simplicial cycle and cocycle [21,
Section 2.2] will do the job.

The need for a carefully chosen homology theory stems from the courageous claim that
the zero set Z of arbitrary continuous perturbation supports φf _ β for any β ∈ H∗(X,A∪
B), i.e. some element of H∗(Z,B) is mapped by the inclusion-induced map to φf _ β.
Without more restrictions on the perturbations, the zero sets can be “wild” non-triangulable
topological spaces that can fool singular homology and render this claim false and – to
the best of our knowledge – make well groups trivial. See an example after the proof of
Theorem 1.2.

For the purpose of the work with the general zero sets, we will require that our homol-
ogy theory satisfies the Eilenberg-sequenc-Steenrod axioms with a possible exception of the
exactness axiom, and these additional properties:
1. Weak continuity property: for an inverse sequence of compact pairs (X0, B0) ⊃ (X1, B1)
⊃ . . . the homomorphism H∗ lim←−(Xi, Bi) → lim←−H∗(Xi, Bi) induced by the family of
inclusion lim←−(Xi, Bi) =

⋂
(Xi, Bi) ↪→ (Xj , Bj) is surjective.

2. Strong excision: Let f : (X,X ′)→ (Y, Y ′) be a map of compact pairs that maps X \X ′
homeomorphically onto Y \ Y ′. Then f∗ : H∗(X,X ′)→ H∗(Y, Y ′) is an isomorphism.

Čech homology theory satisfies these properties as well as the Eilenberg–Steenrod ax-
ioms with the exception of the exactness axiom, and coincides with simplicial homology for
triangulable spaces [24, Chapter 6].

In addition, we need a cohomology theory H∗ that satisfies the Eilenberg–Steenrod
axioms and is paired with H∗ via a cap product Hn(X,A)⊗Hk(X,A∪B) _−→ Hk−n(X,B)
that is natural15 and coincides with the simplicial cap product when applied to simplicial
complexes. We have not found any reference for the definition of cap product in Čech
(co)homology, so we present our own construction in [11, Appendix E].

Proof of Theorem 1.2. We need to show that for any map g with ‖g − f‖ ≤ r, the image
of the inclusion-induced map

H∗(g−1(0), B)→ H∗(X,B)

15 Naturality of the cap product means that if f : (X,A ∪ B,A) → (X;A′ ∪ B′, A′) is continuous, then
f∗(f∗(α̃) _ β) = α̃ _ f∗(β) for any β ∈ H∗(X,A ∪B) and α̃ ∈ H∗(X ′, A′).

SoCG’15

850 On Computability and Triviality of Well Groups

contains the cap product of the first obstruction φf := f∗(ξ) with all relative homology
classes of (X,A ∪ B). Let us first restrict to the less technical case of g being a strict
r-perturbation, that is, ‖g − f‖ < r.

Let us denote X0 := X = |f |−1[0, r] and A0 := A = |f |−1(r). Next we choose a
decreasing positive sequence ε1 > ε2 > . . . with limi→∞ εi = 0 and with ε1 < r − ‖f − g‖.
Thus X1 := |g|−1[0, ε1] ⊆ X0 and A′0 := |g|−1[ε2,∞] ∩X0 ⊇ |g|−1[ε2, ε1]. Then we for each
i > 0 we define

Xi := |g|−1[0, εi],
and its subspaces Ai := |g|−1[εi+1, εi], A′i := |g|−1[εi+2, εi] and Bi := B ∩Xi.

Note that
⋂
iXi = g−1(0), and consequently,

⋂
iBi = g−1(0) ∩ B. For any given β ∈

Hk(X,A ∪ B), our strategy is to find homology classes αi ∈ Hk−n(Xi, Bi), with α0 =
φf _ β, that fit into the sequence of maps Hk−n(X0, B0) ← Hk−n(X1, B1) ← . . . induced
by inclusions. This gives an element in lim←−Hk−n(Xi, Bi), and consequently by the weak
continuity property (requirement 1 above), we get the desired element α ∈ Hk−n(g−1(0), B).

The elements αi will be constructed as cap products. To that end, we need to obtain
“analogs” of β and for that we will need a more complicated sequence of maps. It is the
zig-zag sequence

X0
id→ X0

incl←↩ X1
id→ X1

incl←↩ X2
id→ · · · (2)

that restricts to the zig-zags

A0
incl
↪→ A′0

incl←↩ A1
incl
↪→ A′1

incl←↩ A2
incl
↪→ · · · (3)

and

A0 ∪B0
incl
↪→ A′0 ∪B0

incl←↩ A1 ∪B1
incl
↪→ A′1 ∪B1

incl←↩ A2 ∪B2
incl
↪→ · · · (4)

The pair (Xi+1, Ai+1 ∪Bi+1) is obtained from (Xi, A
′
i ∪Bi) by excision of |g|−1(εi+1, εi],

that is, Xi+1 = Xi \ |g|−1(εi+1, εi] and Ai+1 ∪ Bi+1 = (A′i ∪ Bi) \ |g|−1(εi+1, εi]. Hence
by excision,16 each inclusion of the pairs (Xi, A

′
i ∪ Bi) ↪→ (Xi+1, Ai+1 ∪ Bi+1) induces

isomorphism on relative homology groups. Therefore the zig-zag sequences (2) and (4)
induce a sequence

Hk(X0, A0 ∪B0) → Hk(X0, A
′
0 ∪B0) ∼= Hk(X1, A1 ∪B1) → Hk(X1, A

′
1 ∪B1) ∼= · · ·

∈ ∈ ∈ ∈

β0 := β β′0 β1 β′1 · · ·

that can be made pointed by choosing the distinguished homology classes βi ∈ Hk(Xi, Ai ∪
Bi) and β′i ∈ Hk(Xi, A

′
i∪Bi) that are the images of β0 := β ∈ Hk(X,A∪B) in this sequence.

Similarly, we want to construct a pointed zig-zag sequence in cohomology induced by (2)
and (3). The distinguished elements φi ∈ Hn(Xi, Ai) and φ′i ∈ Hn(Xi, A

′
i) are defined as

the pullbacks of the fundamental cohomology class ξ ∈ Hn(Rn,Rn \ {0}) by the restrictions
of g. Because of the functoriality of cohomology, φi and φ′i fit into the sequence induced by
(2) and (3):

Hn(X0, A0) ← Hn(X0, A
′
0) → Hn(X1, A1) ← Hn(X1, A

′
1) → · · ·

∈ ∈ ∈ ∈

φ0 φ′0 φ1 φ′1 · · ·

16 Because of our careful choice of the spaces Ai and A′i we do not need the strong excision here. However,
we do not know how to avoid it in the case when ‖g − f‖ = r.

P. Franek and M. Krčál 851

Since g is an r-perturbation of f and thus g|(X,A) is homotopic to f |(X,A) via the straight
line homotopy, we have that φ0 = φf ∈ Hn(X,A).

From the naturality of the cap product we get that the elements φi _ βi and φ′i _ β′i
fit into the sequence

Hk−n(X0, B0)
id∼= Hk−n(X0, B0) ← Hk−n(X1, B1)

id∼= Hk−n(X1, B1) ← · · ·
∈ ∈ ∈ ∈

φ0 _ β0 φ′o _ β′0 φ1 _ β1 φ′1 _ β′1 · · ·

=

φf _ β

that is induced by (2), that is, each Hk−n(Xi, Bi)
id∼= Hk−n(Xi, Bi) is induced by the identity

Xi

∼=→ Xi and each map Hk−n(Xi, Bi) ← Hk−n(Xi+1, Bi+1) is induced by the inclusion
Xi ←↩ Xi+1. Hence αi := φi _ βi are the desired elements and thus there is an element
α̃ := (α0, α1, . . .) in lim←−Hk−n(Xi, Bi).

We recall that the weak continuity property of the homology theory H∗ assures the
surjectivity of the the map

(ιi)i≥0 : Hk−n

(⋂
Xi, B

)
→ lim←−Hk−n(Xi, B) (5)

where each component ιi is induced by the inclusion
⋂
iXi ↪→ Xi. Let α ∈ Hk−n(g−1(0), B)

be arbitrary preimage of α̃ under the surjection (5). By construction, α is mapped to
α0 = φf _ β by the map ι0.

It remains to prove the theorem in the case when ‖g− f‖ = r. The proof goes along the
same lines with only the following differences:

For arbitrary decreasing sequence 1 = ε0 > ε1 > ε2 > . . . with lim εi = 0 we define
hi := εif + (1− εi)g for i ≥ 0. We will furthermore need that 2εi+1 > εi for every i ≥ 0.
Let

Xi := |hi|−1[0, εir],

⊆

A′i := {x ∈ X : |hi(x)| ≤ εir and |hi+1(x)| ≥ εi+1r} and

⊆

Ai := |hi|−1(εir).

We have Ai ⊆ A′i because by definition ‖hi − hi+1‖ ≤ (εi − εi+1)r and thus |hi(x)| = εir

implies |hi+1(x)| ≥ εi+1r. Similarly Ai+1 ⊆ A′i and Xi+1 ⊆ Xi. Therefore as before, the
zig-zag sequence (2) restricts to (3) and (4).
The homology classes βi and β′i are defined as above. We only need to use the strong
excision for the inclusion (Xi, A

′
i ∪Bi)←↩ (Xi+1, Ai+1 ∪Bi+1).

We define the cohomology classes φi := h∗i (ξ) and φ′i := h∗i+1(ξ). We only need to check
that hi is homotopic to hi+1 as a map of pairs (Xi, A

′
i)→ (Rn,Rn \ {0}). Indeed, they

are homotopic via the straight-line homotopy since |hi+1(x)| ≥ εi+1r implies |hi(x)| ≥
εi+1r − (εi − εi+1)r = (2εi+1 − εi)r > 0. We used the inequality 2εi+1 > εi which
was our requirement on the sequence (εi)i>0. We also have φ0 = φf as h0 = f and
(X0, A0) = (X,A).
We continue by defining cap products αi, their limit α̃ and its preimage α under the
surjection Hk−n(

⋂
iXi, B) → lim←−iHk−n(Xi, B). To finish the proof we claim that⋂

iXi = g−1(0). Indeed, g(x) = 0 implies hi(x) ≤ ‖hi − g‖ = εir for each i and
g(x) > 0 implies hi(x) > 0 for i such that 2εir < |g(x)|.

J

SoCG’15

852 On Computability and Triviality of Well Groups

The surjectivity of (5) and the strong excision is not only a crucial step for Theorem 1.2
but implicitly also for the results stated in [3, p. 16]. If we defined well groups by means
of singular homology, then even in a basic example f(x, y) = x2 + y2 − 2 and r = 1, the
first well group U1(f, r) would be trivial. The zero set of any 1-perturbation g is contained
in the annulus X := {(x, y) : 1 ≤ x2 + y2 ≤ 3} and the two components of ∂X are not
in the same connected components of {x ∈ X : g(x) 6= 0}. However, we could construct
a “wild” 1-perturbation g of f such that g−1(0) is a Warsaw circle [18] which is, roughly
speaking, a circle with infinite length, trivial first singular homology, but nontrivial Čech
homology. Thus Čech homology serves as a better theoretical basis for the well groups.
Another solution to avoid problems with wild zero sets would be to restrict ourselves to
“nice” perturbations, for example piecewise linear or smooth and transverse to 0. Such
approach would lead, to the best of our knowledge, to identical results.

Proof of Theorem 1.3. Under the assumption on computer representation of K and f , the
pair (X,A) is homeomorphic to a computable simplicial pair (X ′, A′) such that X ′ is a
subcomplex of a subdivision K ′ of K [10, Lemma 3.4]. Therefore, the induced triangulation
B′ of B∩X ′ is a subcomplex of X ′. Furthermore, a simplicial approximation f ′ : A′ → S′ of
f |A : A→ Sn−1 can be computed. The computation is implicit in the proof of Theorem 1.2
in [10] where the sphere Sn−1 is approximated by the boundary S′ of the n-dimensional cross
polytope B′. The simplicial approximation (X ′, A′) → (B′, S′) of f |X can be constructed
consequently by sending each vertex of X \A to an arbitrary point in the interior of the cross
polytope, say 0 ∈ Rn. The pullback of a cohomology class can be computed by standard
algorithms. Therefore φf and H∗(X,B) can be computed and the explicit formula for the
cap product in [21, Section 2.1] yields the computation of φf _ H∗(X,B). All this can be
done without any restriction on the dimensions of the considered simplicial complexes. J

Well diagram associated with φ _ H∗(X,A ∪ B). Let r1 > r2 > 0 and let X1,
X2, A1, A2 be |f |−1[0, r1], |f |−1[0, r2], |f |−1{r1}, |f |−1{r2} respectively, φ1, φ2 be the
respective obstructions. Further, let A′1 := |f |−1[r2, r1] and φ′1 = f∗(ξ) ∈ Hn(X1, A

′
1) be

the pullback of the fundamental class ξ ∈ Hn(Rn,Rn \ {0}). The inclusions (X1, A1) ⊆
(X1, A

′
1) ⊇ (X2, A2) induce cohomology maps that take φ′1 to φ1 resp. φ2. Let us denote,

for simplicity, by V1 the group φ1 _ H∗(X1, A1 ∪ B), V2 := φ2 _ H∗(X2, A2 ∪ B) and
V ′1 := φ′1 _ H∗(X1, A

′
1 ∪ B). Further, let U1 resp. U2 be the well groups U(f, r1) resp.

U(f, r2).
In this section, we analyze the relation between V1 and V2. First let i1 be a map

from V1 to V ′1 that maps φ1 _ β1 to φ′1 _ i∗(β1). By the naturality of cap product,
φ1 _ β1 = φ′1 _ i∗(β1), so i1 is an inclusion.

V2 �
ι12

V1

U2

?

∩

a- U2/(U2 ∩ ker i21) �b U1

?

∩

H∗(X2, B)
?

∩

i21 - H∗(X1, B) � ⊃ i21(U2)
?

∩
�

'

.

By excision, there is an inclusion-
induced isomorphisms i′1 : H∗(X2, A2 ∪
B) ∼→ H∗(X1, A

′
1 ∪ B) and its inverse in-

duces an isomorphism i2 : V ′1
∼→ V2 by

mapping φ′1 _ β′1 to φ2 _ (i′1)−1(β′1).
The composition i2 ◦ i1 =: ι12 is a ho-
momorphism from V1 to V2. Being the
composition of an inclusion and an isomor-
phism, ι12 is an injection and one easily
verifies that the inclusion-induced map i21 :
H∗(X2, B)→H∗(X1, B) satisfies i21 ◦ ι12 =
id|V1 . It follows that {V (ri), ιi,i+1}ri>ri+1 is

P. Franek and M. Krčál 853

a persistence module consisting of shrinking abelian groups and injections Vi → Vi+1 for
ri > ri+1. The relation between ι and well diagrams described in [9] is reflected by the
commutative diagram above.

The idea behind the proof of Theorem 1.4. In the special case when X is a smooth
m-manifold with A = ∂X, the zero set of any smooth r-perturbation g transverse to 0 is
an (m − n)-dimensional smooth submanifold of X. It is not so difficult to show that its
fundamental class [g−1(0)] is mapped by the inclusion-induced map to φf _ [X], where
[X] ∈ Hm(X, ∂X) is the fundamental class of X. If g−1(0) is connected, then Hm−n(g−1(0))
is generated by its fundamental class and we immediately obtain the reverse inclusion φf _
Hm(X,A) ⊇ Um−n(f, r). The nontrivial part in the proof of Theorem 1.4 is to show that
in the indicated dimension range, we can find a perturbation g so that g−1(0) is connected.
The full proof is in [11, Appendix B].

3 Incompleteness of well groups

In this section, we study the case when the first obstruction φf is trivial and thus the map f |A
can be extended to a map f (n) : X(n) → Sn−1 on the n-skeleton X(n) of X. Observation 1.1
(proved in [11, Appendix C]) implies that the only possibly nontrivial well groups are Uj(f, r)
for j ≤ m− n− 1.

The following lemma summarizes the necessary tools for the constructions of this section.
They directly follow from Lemma D.1 in [11, Appendix D] and from [10, Lemma 3.3].

I Lemma 3.1. Let f : K → Rn be a map on a compact Hausdorff space, r > 0, and let us
denote the pair of spaces |f |−1[0, r] and |f |−1{r} by X and A, respectively. Then
1. for each extension e : X → Rn of f |A we can find a strict r-perturbation g of f with

g−1(0) = e−1(0);
2. for each r-perturbation g of f without a root there is an extension e : X → Rn \ {0} of

f |A (without a root).

In the following we want to show that well groups can fail to distinguish between maps
with intrinsically different families of zero sets. Namely, in the following examples we present
maps f and f ′ with U0(f, r) = U0(f ′, r) = Z for each r ≤ 1 and Ui(f, r) = Ui(f, r) = 0 for
each r ≤ 1 and i > 0. However, Zr(f) will be significantly different from Zr(f ′).

Proof of Theorem 1.5. We have that B = ∅ and K = Sj ×Bi, where Bi is represented by
the unit ball in Ri and j = m− i. Let the maps f, f ′ : K → Rn be defined by

f(x, y) := |y|ϕ(x, y/|y|) and f ′(x, y) := |y|ϕ′(x, y/|y|)

where ϕ,ϕ′ : Sj × Si−1 → Sn−1 ⊆ Rn are defined by
ϕ(x, y) := µ(y) where µ : Si−1 → Sn−1 is an arbitrary nontrivial map.
ϕ′ is defined as the composition Sj × Si−1 → Sm−1 ν→ Sn−1 where the first map is the
quotient map Sj × Si−1 → Sj ∧ Si−1 ∼= Sm−1 and ν is an arbitrary nontrivial map. In
other words, we require that the composition ϕ′Φ – where Φ denotes the characteristic
map of the (m − 1)-cell of Sj × Si−1 – is equal to the composition νq, where q is the
quotient map Bm−1 → Bm−1/(∂Bm−1) ∼= Sm−1.

SoCG’15

854 On Computability and Triviality of Well Groups

Well groups computation. Next we prove that the well groups of U∗(f, r) and U∗(f ′, r)
are the same for r ∈ (0, 1], namely, nonzero only in dimension 0, where they are isomorphic
to Z. We obviously have X = Sj ×{y ∈ Ri : |y| ≤ r} ' Sj ×Bi and A = ∂X for both maps.
The restriction f |A and f ′|A are equal to ϕ and ϕ′ (after normalization). We first prove
that U0(f, 1) ∼= U0(f ′, 1) ∼= Z. This fact follows from H0(X) ∼= Z, from non-extendability of
ϕ and ϕ′ and from Lemma 3.1 part 2 (or [10, Lemma 3.3]).

I Lemma 3.2. The map ϕ′ cannot be extended to a map X → Sn−1.

The proof can be found in [11, Appendix A]. Since the map µ : Si−1 → Sn−1 cannot be
extended to Bi ⊃ Si−1, also ϕ cannot be extended to X.

Since then only the jth homology group of X is nontrivial, the remaining task is to show
that Uj(f, 1) ∼= Uj(f ′, 1) ∼= 0. We do so by presenting two r-perturbations g and g′ of f and
f ′, respectively:

g(x, y) := f(x, y)− rx = |y|µ(y/|y|)− rx where we consider Sj ⊆ Rj+1 as a subset of Rn
naturally embedded in the first j + 1 coordinates (here we need that j = m− i < n).
We first construct an extension e′ : X → Rn of ϕ′ = f ′|A and then the r-perturbation
g′ is obtained by Lemma 3.1 part 1. The extension e′ is defined as constant on the
single i-cell of X, that is, e′(x0, y) is put equal to the basepoint of Sn−1 ⊆ Rn. On the
remaining m-cell Bm ∼= {z ∈ Rm : |z| ≤ 1} of X we define e′(z) := |z|e′(z/|z|), where
each point z is identified with a point of X via the characteristic map Ψ1 : Bm → X of
the m-cell Bm.17

By definition the only root of g′ is the single point Ψ1(0) of the interior of X. Therefore
Uj(f, 1) ∼= 0. Note that the role of Ψ1(0) could be played by an arbitrary point in the
interior of X.18

The zero set g−1(0) = {(x, y) : |y| = r and µ(y/|y|) = x} is by definition homeomorphic
to the pullback (i.e., a limit) of the diagram

Si−1

µ

��

Sj
ι // Sn−1

(6)

where ι is the equatorial embedding, i.e., sends each element x to (x, 0, 0, . . .). In plain
words, the zero set is the µ-preimage of the equatorial j-subsphere of Sn−1. We will prove
that under our assumptions on dimensions, this is the (m − n)-sphere Sm−n. Then from
m− n > m− i = j it will follow that Hj(g−1(0)) ∼= 0 which proves Theorem 1.5.

The topology of the pullback is particularly easy to see in the case when j = n−1 and ι is
the identity. There it is simply the domain of µ, that is, Si−1 where i−1 = m−j−1 = m−n.

In the general case, the only additional tool we use to identify the pullback is the Freuden-
thal suspension theorem. The pullback is homeomorphic to the µ-preimage of the equatorial
subsphere Sm−i ⊆ Sn−1. By Freudenthal suspension theorem µ is homotopic to an iterated
suspension Σaη for some η : Si−1−a → Sn−1−a assuming i − 1 − a ≤ 2(n − 1 − a) − 1.
We want to choose a so that n − 1 − a = m − i and thus images Im(η) = Sn−1−a and
Im(ι) = Sj ⊆ Sn−1 coincide (since j = m − i by definition). The last inequality with the
choice a = n−1−m+ i is equivalent to the bound i ≤ (m+n−1)/2 from the hypotheses of

17 Thus the formal definition is e′(Ψ1(z)) := |z|e′
(
Ψ1(z/|z|)

)
.

18 With more effort we could show that for any point z of X there is an r-perturbation of f ′ with z being
its only zero point.

P. Franek and M. Krčál 855

the theorem. In our example, we may have chosen f in such a way that µ = Σaη. But even
for the choices of µ only homotopic to Σaη we could have changed f on a neighborhood of
∂K by a suitable homotopy. To finish the proof we use the fact that, by the definition of
suspension, the µ-preimage of Sm−i ⊆ Sn−1 is identical to the η-preimage of Sm−i, that is
Si−1−j = Sm−n.

Difference between Zr(f) and Zr(f ′). Because the map µ is homotopically nontrivial,
the zero set of each extension e : X → Rn of f |A intersects each “section” {x} × Bi of X.
By Lemma 3.1 part 2 (or [10, Lemma 3.3]) applied to each restriction f |{x}×Bi , the same
holds for r-perturbations g of f as well. In other words, the formula “for each x ∈ Sj there
is y ∈ Bi such that f(x, y) = 0” is satisfied robustly, that is

∀Z ∈ Zr(f) : ∀x ∈ Sj : ∃y ∈ Bi : (x, y) ∈ Z

is satisfied. The above formula is obviously not true for f ′ as can be seen on the r-
perturbations g′. In particular, for every r ∈ (0, 1] the family Zr(f ′) contains a singleton. J

As an example of another relevant property of Zr(f) not captured by the well groups,
we mention the following. For any given u : K → R, we may want to know what is the r-
robust maximum of u over the zero set of f , i.e., infZ∈Zr(f) maxz∈Z u(z). Let, for instance,
u(x, y) = u(x) depend on the first coordinate only. Then the r-robust maximum for f is
equal to maxx∈Sj u(x) as follows from the discussion in the previous paragraph. On the
other hand, the r-robust maximum for f ′ is equal to minx u(x) and is attained in g′ when
we set the value Ψ1(0) := (arg minx∈Sju(x), 0) from the proof above. This holds for r
arbitrarily small. The robust optima constitutes another and, in our opinion, practically
relevant quantity whose approximation cannot be derived from well groups.

Acknowledgements. We are grateful to Ryan Budnay, Martin Čadek, Marek Filakovský,
Tom Goodwillie, Amit Patel, Martin Tancer, Lukáš Vokřínek and Uli Wagner for useful
discussions.

References
1 G. E. Alefeld, F. A. Potra, and Z. Shen. On the existence theorems of kantorovich, moore

and miranda. Technical Report 01/04, Institut für Wissenschaftliches Rechnen und Math-
ematische Modellbildung, 2001.

2 A. Ben-Tal, L.E. Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series in
Applied Mathematics. Princeton University Press, 2009.

3 P. Bendich, H. Edelsbrunner, D. Morozov, and A. Patel. Homology and robustness of level
and interlevel sets. Homology, Homotopy and Applications, 15(1):51–72, 2013.

4 G. Carlsson. Topology and data. Bull. Amer. Math. Soc. (N.S.), 46(2):255–308, 2009.
5 F. Chazal, A. Patel, and P. Škraba. Computing the robustness of roots. Applied Mathe-

matics Letters, 25(11):1725 — 1728, November 2012.
6 P. Collins. Computability and representations of the zero set. Electron. Notes Theor.

Comput. Sci., 221:37–43, December 2008.
7 H. Edelsbrunner and J. L. Harer. Computational topology. American Mathematical Society,

Providence, RI, 2010.
8 H. Edelsbrunner, D. Morozov, and A. Patel. Quantifying transversality by measuring the

robustness of intersections. Foundations of Computational Mathematics, 11(3):345–361,
2011.

SoCG’15

856 On Computability and Triviality of Well Groups

9 Herbert Edelsbrunner, Dmitriy Morozov, and Amit Patel. Quantifying transversality by
measuring the robustness of intersections. Foundations of Computational Mathematics,
11(3):345–361, 2011.

10 P. Franek and M. Krčál. Robust satisfiability of systems of equations. In Proc. Ann. ACM-
SIAM Symp. on Discrete Algorithms (SODA), 2014. Extended version accepted to Journal
of ACM. Preprint in arXiv:1402.0858.

11 P. Franek and M. Krčál. On computability and triviality of well groups, 2015. Preprint
arXiv:1501.03641v2.

12 P. Franek, S. Ratschan, and P. Zgliczynski. Quasi-decidability of a fragment of the analytic
first-order theory of real numbers, 2012. Preprint in arXiv:1309.6280.

13 A. Frommer and B. Lang. Existence tests for solutions of nonlinear equations using Borsuk’s
theorem. SIAM Journal on Numerical Analysis, 43(3):1348–1361, 2005.

14 F. Goudail and P. Réfrégier. Statistical Image Processing Techniques for Noisy Images: An
Application-Oriented Approach. Kluwer Academic / Plenum Publishers, 2004.

15 A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2001.
16 N.J. Higham. Accuracy and Stability of Numerical Algorithms: Second Edition. Society for

Industrial and Applied Mathematics, 2002.
17 R. B. Kearfott. On existence and uniqueness verification for non-smooth functions. Reliable

Computing, 8(4):267–282, 2002.
18 S. Mardešić. Thirty years of shape theory. Mathematical Communications, 2(1):1–12, 1997.
19 A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univ. Press, Cam-

bridge, 1990.
20 P. Franek, M. Krčál. Cohomotopy groups capture robust properties of zero sets. Manuscript

in preparation, 2014.
21 V. V. Prasolov. Elements of Homology Theory. Graduate Studies in Mathematics. American

Mathematical Society, 2007.
22 P. Škraba, B. Wang, Ch. Guoning, and P. Rosen. 2D vector field simplification based on

robustness, 2014. to appear in IEEE Pacific Visualization (PacificVis).
23 M. Čadek, M. Krčál, J. Matoušek, F. Sergeraert, L. Vokřínek, and U. Wagner. Computing

all maps into a sphere. J. ACM, 61(3):17:1–17:44, June 2014.
24 A.H. Wallace. Algebraic Topology: Homology and Cohomology. Dover Books on Mathe-

matics Series. Dover Publications, 2007.
25 J.H.C. Whitehead. On the theory of obstructions. Annals of Mathematics, pages 68–84,

1951.

Geometric Inference on Kernel Density Estimates∗

Jeff M. Phillips1, Bei Wang2, and Yan Zheng1

1 School of Computing, University of Utah, USA
2 Scientific Computing and Imaging Institute, University of Utah, USA

Abstract
We show that geometric inference of a point cloud can be calculated by examining its kernel
density estimate with a Gaussian kernel. This allows one to consider kernel density estimates,
which are robust to spatial noise, subsampling, and approximate computation in comparison to
raw point sets. This is achieved by examining the sublevel sets of the kernel distance, which
isomorphically map to superlevel sets of the kernel density estimate. We prove new properties
about the kernel distance, demonstrating stability results and allowing it to inherit reconstruction
results from recent advances in distance-based topological reconstruction. Moreover, we provide
an algorithm to estimate its topology using weighted Vietoris-Rips complexes.

1998 ACM Subject Classification F.2.2: Nonnumerical Algorithms and Problems

Keywords and phrases topological data analysis, kernel density estimate, kernel distance

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.857

1 Introduction

Geometry and topology have become essential tools in modern data analysis: geometry
to handle spatial noise and topology to identify the core structure. Topological data
analysis (TDA) has found applications spanning protein structure analysis [24, 40] to heart
modeling [32] to leaf science [49], and is the central tool of identifying quantities like
connectedness, cyclic structure, and intersections at various scales. Yet it can suffer from
spatial noise in data, particularly outliers.

When analyzing point cloud data, classically these approaches consider α-shapes [23],
where each point is replaced with a ball of radius α, and the union of these balls is analyzed.
More recently a distance function interpretation [8] has become more prevalent where the
union of α-radius balls can be replaced by the sublevel set (at value α) of the Hausdorff
distance to the point set. Moreover, the theory can be extended to other distance functions
to the point sets, including the distance-to-a-measure [12] which is more robust to noise.

This has more recently led to statistical analysis of TDA. These results show not only
robustness in the function reconstruction, but also in the topology it implies about the
underlying dataset. This work often operates on persistence diagrams which summarize
the persistence (difference in function values between appearance and disappearance) of all
homological features in single diagram. A variety of work has developed metrics on these
diagrams and probability distributions over them [43, 55], and robustness and confidence
intervals on their landscapes [6, 30, 15, 16]). It is now more clear than ever, that these
works are most appropriate when the underlying function is robust to noise, e.g., the
distance-to-a-measure [12].

∗ Thanks to supported to JMP by NSF CCF-1350888, IIS-1251019, and ACI-1443046, and for BW by
INL 00115847 via DE-AC07ID14517, DOE NETL DEEE0004449, DOE DEFC0206ER25781, DOE
DE-SC0007446, and NSF 0904631.

© Jeff M. Phillips, Bei Wang, and Yan Zheng;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 857–871

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.857
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

858 Geometric Inference on Kernel Density Estimates

KDE Diagram

0 1 2 3

0
1

2
3

Death

B
irt
h

Distance Function Diagram

0.00 0.01 0.02 0.03

0.
00

0.
01

0.
02

0.
03

Birth

D
ea
th

KDE Diagram

0 1 2 3 4

0
1

2
3

4

Death

B
irt
h

Kernel Distance Diagram

0.96 0.97 0.98 0.99 1.00 1.01

0.
96

0.
97

0.
98

0.
99

1.
00

1.
01

Birth

D
ea
th

Figure 1 Example with 10,000 points in [0, 1]2 generated on a circle or line with N(0, 0.005)
noise; 25% of points are uniform background noise. The generating function is reconstructed with
kde with σ = 0.05 (upper left), and its persistence diagram based on the superlevel set filtration is
shown (upper middle). A coreset [58] of the same dataset with only 1,384 points (lower left) and
persistence diagram (lower middle) are shown, again using kde. This associated confidence interval
contains the dimension 1 homology features (red triangles) suggesting they are noise; this is because
it models data as iid – but the coreset data is not iid, it subsamples more intelligently. We also show
persistence diagrams of the original data based on the sublevel set filtration of the standard distance
function (upper right, with no useful features due to noise) and the kernel distance (lower right).

A very recent addition to this progression is the new TDA package for R [29]; it includes
built in functions to analyze point sets using Hausdorff distance, distance-to-a-measure,
k-nearest neighbor density estimators, kernel density estimates, and kernel distance. The
example in Figure 1 used this package to generate persistence diagrams. While, the stability
of the Hausdorff distance is classic [8, 23], and the distance-to-a-measure [12] and k-nearest
neighbor distances have been shown robust to various degrees [4], this paper is the first to
analyze the stability of kernel density estimates and the kernel distance in the context of
geometric inference. Some recent manuscripts show related results. Bobrowski et al. [5]
consider kernels with finite support, and describe approximate confidence intervals on the
superlevel sets, which recover approximate persistence diagrams. Chazal et al. [14] explore
the robustness of the kernel distance in bootstrapping-based analysis.

In particular, we show that the kernel distance and kernel density estimates, using
the Gaussian kernel, inherit some reconstruction properties of distance-to-a-measure, that
these functions can also be approximately reconstructed using weighted (Vietoris-)Rips
complexes [7], and that under certain regimes can infer homotopy of compact sets. Moreover,
we show further robustness advantages of the kernel distance and kernel density estimates,
including that they possess small coresets [45, 58] for persistence diagrams and inference.

1.1 Kernels, Kernel Density Estimates, and Kernel Distance
A kernel is a non-negative similarity measure K : Rd × Rd → R+; more similar points have
higher value. For any fixed p ∈ Rd, a kernel K(p, ·) can be normalized to be a probability

J.M. Phillips, B. Wang, and Y. Zheng 859

distribution; that is
∫
x∈Rd K(p, x)dx = 1. For the purposes of this article we focus on the

Gaussian kernel defined as K(p, x) = σ2 exp(−‖p− x‖2/2σ2).1
A kernel density estimate [53, 50, 21, 22] is a way to estimate a continuous distribution

function over Rd for a finite point set P ⊂ Rd; they have been studied and applied in
a variety of contexts, for instance, under subsampling [45, 58, 2], motion planning [48],
multimodality [52, 25], and surveillance [28], road reconstruction [3]. Specifically,

kdeP (x) = 1
|P |

∑
p∈P

K(p, x).

The kernel distance [37, 33, 38, 46] (also called current distance or maximum mean
discrepancy) is a metric [44, 54] between two point sets P , Q (as long as the kernel used
is characteristic [54], a slight restriction of being positive definite [1, 57], this includes the
Gaussian and Laplace kernels). Define a similarity between the two point sets as

κ(P,Q) = 1
|P |

1
|Q|

∑
p∈P

∑
q∈Q

K(p, q).

Then the kernel distance between two point sets is defined as

DK(P,Q) =
√
κ(P, P) + κ(Q,Q)− 2κ(P,Q).

When we let point set Q be a single point x, then κ(P, x) = kdeP (x).
Kernel density estimates applies to any measure µ (on Rd) as kdeµ(x) =

∫
p∈Rd K(p, x)dµ(p).

The similarity between two measures is κ(µ, ν) =
∫

(p,q)∈Rd×Rd K(p, q)dmµ,ν(p, q), where mµ,ν

is the product measure of µ and ν (mµ,ν := µ⊗ ν), and then the kernel distance between
two measures µ and ν is still a metric, defined as DK(µ, ν) =

√
κ(µ, µ) + κ(ν, ν)− 2κ(µ, ν).

When the measure ν is a Dirac measure at x (ν(q) = 0 for x 6= q, but integrates to
1), then κ(µ, x) = kdeµ(x). Given a finite point set P ⊂ Rd, we can work with the
empirical measure µP defined as µP = 1

|P |
∑
p∈P δp, where δp is the Dirac measure on p, and

DK(µP , µQ) = DK(P,Q).
If K is positive definite, it is said to have the reproducing property [1, 57]. This implies

that K(p, x) is an inner product in some reproducing kernel Hilbert space (RKHS) HK .
Specifically, there is a lifting map φ : Rd → HK so that K(p, x) = 〈φ(p), φ(x)〉HK

, and
moreover the entire set P can be represented as Φ(P) =

∑
p∈P φ(p), which is a single element

of HK and has a norm ‖Φ(P)‖HK
=
√
κ(P, P). A single point x ∈ Rd also has a norm

‖φ(x)‖HK
=
√
K(x, x) in this space.

1.2 Geometric Inference and Distance to a Measure: A Review
Given an unknown compact set S ⊂ Rd and a finite point cloud P ⊂ Rd that comes from S

under some process, geometric inference aims to recover topological and geometric properties
of S from P . The offset-based (and more generally, the distance function-based) approach for
geometric inference reconstructs a geometric and topological approximation of S by offsets
from P (e.g. [10, 11, 12, 17, 18]).

Given a compact set S ⊂ Rd, we can define a distance function fS to S; a common
example is fS(x) = infy∈S ‖x − y‖. The offsets of S are the sublevel sets of fS , denoted
(S)r = f−1

S ([0, r]). Now an approximation of S by another compact set P ⊂ Rd (e.g. a

1 The choice of coefficient σ2 is not the standard normalization, but it is perfectly valid as it scales
everything by a constant. It has the property that σ2 −K(p, x) ≈ ‖p− x‖2/2 for ‖p− x‖ small.

SoCG’15

860 Geometric Inference on Kernel Density Estimates

finite point cloud) can be quantified by the Hausdorff distance dH(S, P) := ‖fS − fP ‖∞ =
infx∈Rd |fS(x) − fP (x)| of their distance functions. The intuition behind the inference of
topology is that if dH(S, P) is small, thus fS and fP are close, and subsequently, S, (S)r

and (P)r carry the same topology for an appropriate scale r. In other words, to compare
the topology of offsets (S)r and (P)r, we require Hausdorff stability with respect to their
distance functions fS and fP . An example of an offset-based topological inference result is
formally stated as follows (as a particular version of the reconstruction Theorem 4.6 in [11]),
where the reach of a compact set S, reach(S), is defined as the minimum distance between S
and its medial axis [42].

I Theorem 1 (Reconstruction from fP [11]). Let S, P ⊂ Rd be compact sets such that
reach(S) > R and ε := dH(S, P) < R/17. Then (S)η and (P)r are homotopy equivalent for
sufficiently small η (e.g., 0 < η < R) if 4ε ≤ r < R− 3ε.

Here η < R ensures that the topological properties of (S)η and (S)r are the same, and
the ε parameter ensures (S)r and (P)r are close. Typically ε is tied to the density with
which a point cloud P is sampled from S.

For function φ : Rd → R+ to be distance-like it should satisfy the following properties:
(D1) φ is 1-Lipschitz: For all x, y ∈ Rd, |φ(x)− φ(y)| ≤ ‖x− y‖.
(D2) φ2 is 1-semiconcave: The map x ∈ Rd 7→ (φ(x))2 − ‖x‖2 is concave.
(D3) φ is proper: φ(x) tends to the infimum of its domain (e.g., ∞) as x tends to infinity.

In addition to the Hausdorff stability property stated above, as explained in [12], fS is
distance-like. These three properties are paramount for geometric inference (e.g. [11, 41]).

(D1) ensures that fS is differentiable almost everywhere and the medial axis of S has
zero d-volume [12]; and (D2) is a crucial technical tool, e.g., in proving the existence of the
flow of the gradient of the distance function for topological inference [11].

Distance to a measure. Given a probability measure µ on Rd and a parameter m0 > 0
smaller than the total mass of µ, the distance to a measure dccm

µ,m0
: Rn → R+ [12] is defined

for any point x ∈ Rd as

dccm
µ,m0

(x) =
(

1
m0

∫ m0

m=0
(δµ,m(x))2dm

)1/2
, where δµ,m(x) = inf

{
r > 0 : µ(B̄r(x)) ≥ m

}
,

and where Br(x) is a ball of radius r centered at x and B̄r(x) is its closure. It has been
shown in [12] that dccm

µ,m0
is a distance-like function (satisfying (D1), (D2), and (D3)), and:

(M4) [Stability] For probability measures µ and ν on Rd and m0 > 0, then ‖dccm
µ,m0

−
dccm
ν,m0
‖∞ ≤ 1√

m0
W2(µ, ν), where W2 is the Wasserstein distance [56].

Given a point set P , the sublevel sets of dccm
µP ,m0

can be described as the union of balls
[35], and then one can algorithmically estimate the topology (e.g., persistence diagram) with
weighted alpha-shapes [35] and weighted Rips complexes [7].

1.3 Our Results
We show how to estimate the topology (e.g., approximate persistence diagrams, infer homotopy
of compact sets) using superlevel sets of the kernel density estimate of a point set P . We
accomplish this by showing that a similar set of properties hold for the kernel distance with
respect to a measure µ, (in place of distance to a measure dccm

µ,m0
), defined as

dKµ (x) = DK(µ, x) =
√
κ(µ, µ) + κ(x, x)− 2κ(µ, x).

J.M. Phillips, B. Wang, and Y. Zheng 861

This treats x as a probability measure represented by a Dirac mass at x. Specifically, we
show dKµ is distance-like (it satisfies (D1), (D2), and (D3)), so it inherits reconstruction
properties of dccm

µ,m0
. Moreover, it is stable with respect to the kernel distance:

(K4) [Stability] If µ and ν are two measures on Rd, then ‖dKµ − dKν ‖∞ ≤ DK(µ, ν).

In addition, we show how to construct these topological estimates for dKµ using weighted
Rips complexes, following power distance machinery introduced in [7].

We also describe further advantages of the kernel distance. (i) Its sublevel sets conveniently
map to the superlevel sets of a kernel density estimate. (ii) It is Lipschitz with respect
to the smoothing parameter σ when the input x is fixed. (iii) As σ tends to ∞ for any
two probability measures µ, ν, the kernel distance is bounded by the Wasserstein distance:
limσ→∞DK(µ, ν) ≤ W2(µ, ν). (iv) It has a small coreset representation, which allows
for sparse representation and efficient, scalable computation. In particular, an ε-kernel
sample [38, 45, 58] Q of µ is a finite point set whose size only depends on ε > 0 and such that
maxx∈Rd |kdeµ(x)− kdeµQ

(x)| = maxx∈Rd |κ(µ, x)− κ(µQ, x)| ≤ ε. These coresets preserve
inference results and persistence diagrams.

2 Kernel Distance is Distance-Like

We prove dKµ satisfies (D1), (D2), and (D3); hence it is distance-like. Recall we use the
σ2-normalized Gaussian kernel Kσ(p, x) = σ2 exp(−‖p− x‖2/2σ2). For ease of exposition,
unless otherwise noted, we will assume σ is fixed and write K instead of Kσ.

2.1 Semiconcave Property for dKµ
I Lemma 2 (D2). (dKµ)2 is 1-semiconcave: the map x 7→ (dKµ (x))2 − ‖x‖2 is concave.

Proof. Let T (x) = (dKµ (x))2 − ‖x‖2. The proof will show that the second derivative of T
along any direction is nonpositive. We can rewrite

T (x) = κ(µ, µ) + κ(x, x)− 2κ(µ, x)− ‖x‖2

= κ(µ, µ) + κ(x, x)−
∫
p∈Rd

(2K(p, x) + ‖x‖2)dµ(p).

Note that both κ(µ, µ) and κ(x, x) are absolute constants, so we can ignore them in the
second derivative. Furthermore, by setting t(p, x) = −2K(p, x)− ‖x‖2, the second derivative
of T (x) is nonpositive if the second derivative of t(p, x) is nonpositive for all p, x ∈ Rd. First
note that the second derivative of −‖x‖2 is a constant −2 in every direction. The second
derivative of K(p, x) is symmetric about p, so we can consider the second derivative along
any vector u = x− p,

d2

du2 t(p, x) = 2
(
‖u‖2

σ2 − 1
)

exp
(
−‖u‖

2

2σ2

)
− 2.

This reaches its maximum value at ‖u‖ = ‖x− p‖ =
√

3σ where it is 4 exp(−3/2)− 2 ≈ −1.1;
this follows by setting the derivative of s(y) = 2(y − 1) exp(−y/2) − 2 to 0, (d

dy s(y) =
(1/2)(3− y) exp(−y/2)), substituting y = ‖u‖2/σ2. J

2.2 Lipschitz Property for dKµ
We generalize a (folklore, see [12]) relation between semiconcave and Lipschitz functions. A
function f is `-semiconcave if the function T (x) = (f(x))2 − `‖x‖2 is concave.

SoCG’15

862 Geometric Inference on Kernel Density Estimates

I Lemma 3. Consider a twice-differentiable function g and a parameter ` ≥ 1. If (g(x))2 is
`-semiconcave, then g(x) is `-Lipschitz.

We can now state the following lemma as a corollary of Lemma 2 and Lemma 3.

I Lemma 4 (D1). dKµ is 1-Lipschitz on its input.

2.3 Properness of dKµ
Finally, for dKµ to be distance-like, we need to show it is proper when its range is restricted
to be less than cµ :=

√
κ(µ, µ) + κ(x, x). This is required for a distance-like version ([12],

Proposition 4.2) of the Isotopy Lemma ([34], Proposition 1.8). Here, the value of cµ depends
on µ not on x since κ(x, x) = K(x, x) = σ2.

I Lemma 5 (D3). dKµ is proper.

We delay the proof to the full version [47]. The main technical difficulty comes in
mapping standard definitions and approaches for distance functions to our function dKµ with
a restricted range. We use two more general, but equivalent definitions of a proper map and
the notion of escape to infinity. Specifically, a sequence {pi} in X escapes to infinity if for
every compact set G ⊂ X, there are at most finitely many values of i for which pi ∈ G ([39],
page 46).

By the definition of properness, Lemma 5 implies that it is a closed map and its levelset
at any value a ∈ [0, cµ) is compact. This also means that the sublevel set of dKµ (for ranges
[0, a) ⊂ [0, cµ)) is compact. Since the levelset (sublevel set) of dKµ corresponds to the levelset
(superlevel set) of kdeµ, we have the following corollary.

I Corollary 6. The superlevel sets of kdeµ for all ranges with threshold a > 0, are compact.

The result in [25] shows that given a measure µP defined by a point set P of size n, the
kdeµP

has polynomial in n modes; hence the superlevel sets of kdeµP
are compact in this

setting. The above corollary is a more general statement as it holds for any measure.

3 Power Distance using Kernel Distance

A power distance using dKµ is defined with a point set P ⊂ Rd and a metric d(·, ·) on Rd,

fP (µ, x) =
√

min
p∈P

(
d(p, x)2 + dKµ (p)2

)
.

A point x ∈ Rd takes the distance under d(p, x) to the closest p ∈ P , plus a weight from
dKµ (p); thus a sublevel set of fP (µ, ·) is defined by a union of balls. We consider a particular
choice of the distance d(p, x) := DK(p, x) which leads to a kernel version of power distance

fk
P (µ, x) =

√
min
p∈P

(
DK(p, x)2 + dKµ (p)2

)
.

In Section 4.2 we use fk
P (µ, x) to adapt the construction introduced in [7] to approximate

the persistence diagram of the sublevel sets of dKµ , using a weighted Rips filtration of fk
P (µ, x).

Given a measure µ, let p+ = arg maxq∈Rd κ(µ, q), and let P+ ⊂ Rd be a point set that
contains p+. We show below, in Theorem 11 and Theorem 8, that 1√

2d
K
µ (x) ≤ fk

P+
(µ, x) ≤

√
14dKµ (x). However, constructing p+ exactly seems quite difficult.

J.M. Phillips, B. Wang, and Y. Zheng 863

Now consider an empirical measure µP defined by a point set P . We show (in the full
version [47]) how to construct a point p̂+ (that approximates p+) such that DK(P, p̂+) ≤
(1 + δ)DK(P, p+) for any δ > 0. For a point set P , the median concentration ΛP is a radius
such that no point p ∈ P has more than half of the points of P within ΛP , and the spread βP
is the ratio between the longest and shortest pairwise distances. The runtime is polynomial
in n and 1/δ assuming βP is bounded, and that σ/ΛP and d are constants.

Then we consider P̂+ = P ∪ {p̂+}, where p̂+ is found with δ = 1/2 in the above
construction. Then we can provide the following multiplicative bound, proven in Theorem
12. The lower bound holds independent of the choice of P as shown in Theorem 8.

I Theorem 7. For any point set P ⊂ Rd and point x ∈ Rd, with empirical measure µP
defined by P , then 1√

2
dKµP

(x) ≤ fk
P̂+

(µP , x) ≤
√

71dKµP
(x).

3.1 Kernel Power Distance for a Measure µ
First consider the case for a kernel power distance fk

P (µ, x) where µ is an arbitrary measure.

I Theorem 8. For measure µ, point set P ⊂ Rd, and x ∈ Rd, DK(µ, x) ≤
√

2fk
P (µ, x).

Proof. Let p = arg minq∈P
(
DK(q, x)2 +DK(µ, q)2). Then we can use the triangle inequality

and (DK(µ, p)−DK(p, x))2 ≥ 0 to show

DK(µ, x)2 ≤ (DK(µ, p) +DK(p, x))2 ≤ 2(DK(µ, p)2 +DK(p, x)2) = 2fk
P (µ, x)2. J

I Lemma 9. For measure µ, point set P ⊂ Rd, point p ∈ P , and point x ∈ Rd then
fk
P (µ, x)2 ≤ 2DK(µ, x)2 + 3DK(p, x)2.

Proof. Again, we can reach this result with the triangle inequality.

fk
P (µ, x)2 ≤ DK(µ, p)2 +DK(p, x)2

≤ (DK(µ, x) +DK(p, x))2 +DK(p, x)2

≤ 2DK(µ, x)2 + 3DK(p, x)2. J

Recall the definition of a point p+ = arg maxq∈Rd κ(µ, q).

I Lemma 10. For any measure µ and point x, p+ ∈ Rd we have DK(p+, x) ≤ 2DK(µ, x).

Proof. Since x is a point in Rd, κ(µ, x) ≤ κ(µ, p+) and thus DK(µ, x) ≥ DK(µ, p+). Then by
triangle inequality of DK to see that DK(p+, x) ≤ DK(µ, x) +DK(µ, p+) ≤ 2DK(µ, x). J

I Theorem 11. For any measure µ in Rd and any point x ∈ Rd, using the point p+ =
arg maxq∈Rd κ(µ, q) then fk

{p+}(µ, x) ≤
√

14DK(µ, x).

Proof. Combine Lemma 9 and Lemma 10 as

fk
{p+}(µ, x)2 ≤ 2DK(µ, x)2 +3DK(p+, x)2 ≤ 2DK(µ, x)2 +3(4DK(µ, x)2) = 14DK(µ, x)2.J

We now need two properties of the point set P to reach our bound, namely, the spread
βP and the median concentration ΛP . Typically log(βP) is not too large, and it makes sense
to choose σ so σ/ΛP ≤ 1, or at least σ/ΛP = O(1).

I Theorem 12. Consider any point set P ⊂ Rd of size n, with measure µP , spread βP , and
median concentration ΛP . We can construct a point set P̂+ = P ∪ p̂+ in O(n2((σ/ΛP δ)d +
log(β)) time such that for any point x, fk

P̂+
(µP , x) ≤

√
71DK(µP , x).

SoCG’15

864 Geometric Inference on Kernel Density Estimates

Proof. We use a result from the full version [47] to find a point p̂+ such that DK(P, p̂+) ≤
(3/2)DK(P, p+) in the stated runtime. Thus for any x ∈ Rd, using the triangle inequality

DK(p̂+, x) ≤ DK(p̂+, p+) +DK(p+, x) ≤ DK(µP , p̂+) +DK(µP , p+) +DK(p+, x)
≤ (5/2)DK(µP , p+) +DK(p+, x).

Now combine this with Lemma 9 and Lemma 10 as

fk
P̂+

(µP , x)2 ≤ 2DK(µP , x)2 + 3DK(p̂+, x)2

≤ 2DK(µP , x)2 + 3((5/2)DK(µP , x) +DK(p+, x))2

≤ 2DK(µP , x)2 + 3((25/4) + (5/2))DK(µP , x)2 + (1 + 5/2)DK(p+, x)2)
= (113/4)DK(µP , x)2 + (21/2)DK(p+, x)2

≤ (113/4)DK(µP , x)2 + (21/2)(4DK(µP , x)2) < 71DK(µP , x)2. J

4 Reconstruction and Topological Estimation using Kernel Distance

Now applying distance-like properties from Section 2 and the power distance properties of
Section 3 we can apply known reconstruction results to the kernel distance.

4.1 Homotopy Equivalent Reconstruction using dKµ
We have shown that the kernel distance function dKµ is a distance-like function. Therefore
the reconstruction theory for a distance-like function [12] holds in the setting of dKµ . We
state the following two corollaries for completeness, whose proofs follow from the proofs
of Proposition 4.2 and Theorem 4.6 in [12]. Before their formal statement, we need some
notation adapted from [12] to make these statements precise. Let φ : Rd → R+ be a distance-
like function. A point x ∈ Rd is an α-critical point if φ2(x+ h) ≤ φ2(x) + 2α‖h‖φ(x) + ‖h‖2
with α ∈ [0, 1], ∀h ∈ Rd. Let (φ)r = {x ∈ Rd | φ(x) ≤ r} denote the sublevel set of φ, and
let (φ)[r1,r2] = {x ∈ Rd | r1 ≤ φ(x) ≤ r2} denote all points at levels in the range [r1, r2]. For
α ∈ [0, 1], the α-reach of φ is the maximum r such that (φ)r has no α-critical point, denoted
as reachα(φ). When α = 1, reach1 coincides with reach introduced in [31].

I Theorem 13 (Isotopy lemma on dKµ). Let r1 < r2 be two positive numbers such that dKµ has
no critical points in (dKµ)[r1,r2]. Then all the sublevel sets (dKµ)r are isotopic for r ∈ [r1, r2].

I Theorem 14 (Reconstruction on dKµ). Let dKµ and dKν be two kernel distance functions
such that ‖dKµ − dKν ‖∞ ≤ ε. Suppose reachα(dKµ) ≥ R for some α > 0. Then ∀r ∈
[4ε/α2, R− 3ε], and ∀η ∈ (0, R), the sublevel sets (dKµ)η and (dKν)r are homotopy equivalent
for ε ≤ R/(5 + 4/α2).

4.2 Constructing Topological Estimates using dKµ
In order to actually construct a topological estimate using the kernel distance dKµ , one needs
to be able to compute quantities related to its sublevel sets, in particular, to compute the
persistence diagram of the sub-level sets filtration of dKµ . Now we describe such tools needed
for the kernel distance based on machinery recently developed by Buchet et al. [7], which
shows how to approximate the persistent homology of distance-to-a-measure for any metric
space via a power distance construction. Then using similar constructions, we can use the
weighted Rips filtration to approximate the persistence diagram of the kernel distance.

J.M. Phillips, B. Wang, and Y. Zheng 865

To state our results, first we require some technical notions and assume basic knowledge
on persistent homology (see [26, 27] for a readable background). Given a metric space X with
the distance dX(·, ·), a set P ⊆ X and a function w : P → R, the (general) power distance f
associated with (P,w) is defined as f(x) =

√
minp∈P (dX(p, x)2 + w(p)2). Now given the set

(P,w) and its corresponding power distance f , one could use the weighted Rips filtration
to approximate the persistence diagram of w. Consider the sublevel set of f , f−1((−∞, α]).
It is the union of balls centered at points p ∈ P with radius rp(α) =

√
α2 − w(p)2 for each

p. The weighted Čech complex Cα(P,w) for parameter α is the union of simplices s such
that

⋂
p∈sB(p, rp(α)) 6= 0. The weighted Rips complex Rα(P,w) for parameter α is the

maximal complex whose 1-skeleton is the same as Cα(P,w). The corresponding weighted
Rips filtration is denoted as {Rα(P,w)}.

Setting w := dKµP
and given point set P̂+ described in Section 3, consider the weighted Rips

filtration {Rα(P̂+, d
K
µ)} based on the kernel power distance, fk

P̂+
. We view the persistence

diagrams on a logarithmic scale, that is, we change coordinates of points following the
mapping (x, y) 7→ (ln x, ln y). dln

B denotes the corresponding bottleneck distance between
persistence diagrams. We show in the full version [47] that persistence diagrams Dgm(dKµP

)
and Dgm({Rα(P̂+, d

K
µP

)})) follow technical tameness conditions and are well-defined. We
now state a corollary of Theorem 7.

I Corollary 15. The weighted Rips filtration {Rα(P̂+, d
K
µP

)} can be used to approximate the
persistence diagram of dKµP

such that dln
B(Dgm(dKµP

),Dgm({Rα(P̂+, d
K
µP

)})) ≤ ln(2
√

71).

Proof. To prove that two persistence diagrams are close, one could prove that their filtration
are interleaved [9], that is, two filtrations {Uα} and {Vα} are ε-interleaved if for any α,
Uα ⊆ Vα+ε ⊆ Uα+2ε. The results of Theorem 7 implies an

√
71 multiplicative interleaving.

Therefore for any α ∈ R,

(dKµP
)−1((−∞, α]) ⊂ (fk

P̂+
)−1((−∞,

√
2α) ⊂ (dKµP

)−1((−∞,
√

71
√

2α]).

On a logarithmic scale (by taking the natural log of both sides), such interleaving becomes
addictive,

ln dKµP
−
√

2 ≤ ln fk
P̂+
≤ ln dKµP

+
√

71.

Theorem 4 of [13] implies

dln
B(Dgm(dKµP

),Dgm(fk
P̂+

)) ≤
√

71.

In addition, by the Persistent Nerve Lemma ([19], Theorem 6 of [51], an extension of the
Nerve Theorem [36]), the sublevel sets filtration of dKµ , which correspond to unions of balls
of increasing radius, has the same persistent homology as the nerve filtration of these balls
(which, by definition, is the Čech filtration). Finally, there exists a multiplicative interleaving
between weighted Rips and Čech complexes (Proposition 31 of [13]), Cα ⊆ Rα ⊆ C2α. We
then obtain the following bounds on persistence diagrams,

dln
B(Dgm(fk

P+
),Dgm({Rα(P+, d

K
µP

)})) ≤ ln(2).

We use triangle inequality to obtain the final result:

dln
B(Dgm(dKµP

),Dgm({Rα(P+, d
K
µP

)})) ≤ ln(2
√

71). J

Based on Corollary 15, we have an algorithm that approximates the persistent homology
of the sublevel set filtration of dKµ by constructing the weighted Rips filtration corresponding
to the kernel-based power distance and computing its persistent homology.

SoCG’15

866 Geometric Inference on Kernel Density Estimates

4.3 Distance to the Support of a Measure vs. Kernel Distance
Suppose µ is a uniform measure on a compact set S in Rd. We now compare the kernel distance
dKµ with the distance function fS to the support S of µ. We show how dKµ approximates fS ,
and thus allows one to infer geometric properties of S from samples from µ.

A generalized gradient and its corresponding flow associated with a distance function are
described in [11] and later adapted for distance-like functions in [12]. Let fS : Rd → R be
a distance function associated with a compact set S of Rd. It is not differentiable on the
medial axis of S. A generalized gradient function ∇S : Rd → Rd coincides with the usual
gradient of fS where fS is differentiable, and is defined everywhere and can be integrated
into a continuous flow Φt : Rd → Rd that points away from S. Let γ be an integral (flow)
line. The following technical lemma is proved in the full version [47].

I Lemma 16. Given any flow line γ associated with the generalized gradient function ∇S,
dKµ (x) is strictly monotonically increasing along γ for x sufficiently far away from the medial
axis of S, for σ ≤ R

6∆G
and fS(x) ∈ (0.014R, 2σ). Here B(σ/2) denotes a ball of radius σ/2,

G := Vol(B(σ/2))
Vol(S) , ∆G :=

√
12 + 3 ln(4/G) and suppose R := min(reach(S), reach(Rd\S)) > 0.

The strict monotonicity of dKµ along the flow line under the conditions in Lemma 16
makes it possible to define a deformation retract of the sublevel sets of dKµ onto sublevel sets
of fS . Such a deformation retract defines a special case of homotopy equivalence between
the sublevel sets of dKµ and sublevel sets of fS . Consider a sufficiently large point set P ∈ Rd
sampled from µ, and its induced measure µP . We can then also invoke Theorem 14 and a
sampling bound (see Section 6) to show homotopy equivalence between the sublevel sets of
fS and dKµP

.

5 Stability Properties for the Kernel Distance to a Measure

I Lemma 17 (K4). For two measures µ and ν on Rd we have ‖dKµ − dKν ‖∞ ≤ DK(µ, ν).

Proof. Since DK(·, ·) is a metric, then by triangle inequality, for any x ∈ Rd we have
DK(µ, x) ≤ DK(µ, ν) +DK(ν, x) and DK(ν, x) ≤ DK(ν, µ) +DK(µ, x). Therefore for any
x ∈ Rd we have |DK(µ, x)−DK(ν, x)| ≤ DK(µ, ν), proving the claim. J

Both the Wasserstein and kernel distance are integral probability metrics [54], so (M4)
and (K4) are both interesting, but not easily comparable. We now attempt to reconcile this.

5.1 Comparing DK to W2

I Lemma 18. There is no Lipschitz constant γ such that for any two probability measures µ
and ν we have W2(µ, ν) ≤ γDK(µ, ν).

Proof. Consider two measures µ and ν which are almost identical: the only difference is some
mass of measure τ is moved from its location in µ a distance n in ν. The Wasserstein distance
requires a transportation plan that moves this τ mass in ν back to where it was in µ with
cost τ · Ω(n) in W2(µ, ν). On the other hand, DK(µ, ν) =

√
κ(µ, µ) + κ(ν, ν)− 2κ(µ, ν) ≤√

σ2 + σ2 − 2 · 0 =
√

2σ is bounded. J

We conjecture for any two probability measures µ and ν that DK(µ, ν) ≤W2(µ, ν). This
would show that dKµ is at least as stable as dccm

µ,m0
since a bound on W2(µ, ν) would also

J.M. Phillips, B. Wang, and Y. Zheng 867

bound DK(µ, ν), but not vice versa. We leave much of the technical details from this section
to the full version [47]. We start with a special case.

I Lemma 19. Consider two probability measures µ and ν on Rd where ν is represented by a
Dirac mass at a point x ∈ Rd. Then dKµ (x) = DK(µ, ν) ≤W2(µ, ν) for any σ > 0, where the
equality only holds when µ is also a Dirac mass at x.

Next we show that if ν is not a unit Dirac, then this inequality holds in the limit as σ
goes to infinity. The technical work is making precise how σ2 −K(p, x) ≤ ‖x− p‖2/2 and
how this compares to bounds on DK(µ, ν) and W2(µ, ν).

I Lemma 20. For any p, q ∈ Rd we have K(p, q) = σ2 − ‖p− q‖
2

2 +
∞∑
i=2

(−‖p− q‖2)i

2i+1σ2i−2i! .

Proof. We use the Taylor expansion of ex =
∑∞
i=0 x

i/i! = 1 + x +
∑∞
i=2 x

i/i!. Then it is
easy to see

K(p, q) = σ2 exp
(
−‖p− q‖

2

2σ2

)
= σ2 − ‖p− q‖

2

2 +
∞∑
i=2

(−‖p− q‖2)i

2iσ2i−2i! . J

This lemma illustrates why the choice of coefficient of σ2 is convenient. Since then
σ2 −K(p, q) acts like 1

2‖p− q‖
2, and becomes closer as σ increases. Define µ̄ =

∫
p
p · dµ(p)

to represent the mean point of measure µ.

I Theorem 21. For any two probability measures µ and ν defined on Rd lim
σ→∞

DK(µ, ν) =
‖µ̄− ν̄‖ and ‖µ̄− ν̄‖ ≤W2(µ, ν). Thus limσ→∞DK(µ, ν) ≤W2(µ, ν).

5.2 Kernel Distance Stability with Respect to σ
We now explore the Lipschitz properties of dKµ with respect to the noise parameter σ. We
argue any distance function that is robust to noise needs some parameter to address how
many outliers to ignore or how far away a point is to be considered as an outlier. Such a
parameter in dccm

µ,m0
is m0 which controls the amount of measure µ to be used in the distance.

Here we show that dKµ has a particularly nice property, that it is Lipschitz with respect
to the choice of σ for any fixed x. Many details are deferred to the full version [47].

I Lemma 22. Let h(σ, z) = exp(−z2/2σ2). We can bound h(σ, z) ≤ 1, d
dσh(σ, z) ≤ (2/e)/σ

and d2

dσ2h(σ, z) ≤ (18/e3)/σ2 over any choice of z > 0.

I Theorem 23. For any measure µ defined on Rd and x ∈ Rd, dKµ (x) is `-Lipschitz with
respect to σ, for ` = 18/e3 + 8/e+ 2 < 6.

Proof. (Sketch) Recall that mµ,ν is the product measure of any µ and ν. Define Mµ,ν as
Mµ,ν(p, q) = mµ,µ(p, q) + mν,ν(p, q)− 2mµ,ν(p, q). It is useful to define a function fx(σ) as

fx(σ) =
∫

(p,q)
exp

(
−‖p− q‖2

2σ2

)
dMµ,δx

(p, q)

F (σ) = (dKµ (x))2 − `‖σ‖2 = σ2fx(σ)− `σ2.

Now dKµ (x) = σ
√
fx(σ). Now to prove dKµ (x) is `-Lipschitz, we can show that (dKµ)2 is

`-semiconcave with respect to σ, and apply Lemma 3. This boils down to showing the second
derivative of F (σ) is always non-positive.

d2

dσ2F (σ) = σ2 d2

dσ2 fx(σ) + 4σ d
dσfx(σ) + 2fx(σ)− 2`.

SoCG’15

868 Geometric Inference on Kernel Density Estimates

First we note that for any distribution µ and Dirac delta that
∫

(p,q) c · dMµ,δx(p, q) ≤ 2c.

Thus since exp
(
−‖p−q‖2

2σ2

)
is in [0, 1] for all choices of p, q, and σ > 0, then 0 ≤ fx(σ) ≤ 2

and 2fx(σ) ≤ 4. This bounds the third term in d2

dσ2F (σ), we now need to use a similar
approach to bound the first and second terms. Using Lemma 22 to obtain

d2

dσ2F (σ) ≤ 36/e3 + 16/e+ 4− 2(18/e3 + 8/e+ 2) = 0. J

Lipschitz in m0 for dccmµ,m0
. There is no Lipschitz property for dccm

µ,m0
, with respect to m0,

independent of µ. Consider a measure µP for point set P ⊂ R consisting of two points at
a = 0 and at b = ∆. When m0 = 1/2 + α for α > 0, then dccm

µP ,m0
(a) = α∆/(1/2 + α) and

d
dm0

dccm
µP ,m0

(a) = d
dαd

ccm
µP ,

1
2 +α(a) = (1/2+2α)∆

(1/2+α)2 , which is maximized as α approaches 0 with an
infimum of 2∆. Hence the Lipschitz constant for dccm

µP ,m0
with respect to m0 is 2∆P where

∆P = maxp,p′∈P ‖p− p′‖.

6 Algorithmic and Approximation Observations

Kernel coresets. The kernel distance is robust under random samples [38]. Specifically, if Q
is a point set randomly chosen from µ of size O((1/ε2)(d+log(1/δ)) then ‖kdeµ−kdeQ‖∞ ≤ ε
with probability at least 1 − δ. We call such a subset Q and ε-kernel sample of (µ,K).
Furthermore, it is also possible to construct ε-kernel samples Q with even smaller size
of |Q| = O(((1/ε)

√
log(1/εδ))2d/(d+2)) [45]; in particular in R2 the required size is |Q| =

O((1/ε)
√

log(1/εδ)). Exploiting the above constructions, recent work [58] builds a data
structure to allow for efficient approximate evaluations of kdeP where |P | = 100,000,000.

These constructions of Q also immediately imply that ‖(dKµ)2 − (dKQ)2‖∞ ≤ 4ε since
(dKµ (x))2 = κ(µ, µ) + κ(x, x)− 2kdeµ(x), and both the first and third term incur at most 2ε
error in converting to κ(Q,Q) and 2kdeQ(x), respectively. Thus, an (ε2/4)-kernel sample Q
of (µ,K) implies that ‖dKµ − dKQ‖∞ ≤ ε.

This implies algorithms for geometric inference on enormous noisy data sets, or when
input Q is assumed to be drawn iid from an unknown distribution µ.

I Corollary 24. Consider a measure µ defined on Rd, a kernel K, and a parameter ε ≤
R(5 + 4/α2). We can create a coreset Q of size |Q| = O(((1/ε2)

√
log(1/εδ))2d/(d+2)) or

randomly sample |Q| = O((1/ε4)(d+ log(1/δ))) points so, with probability at least 1− δ, any
sublevel set (dKµ)η is homotopy equivalent to (dKQ)r for r ∈ [4ε/α2, R− 3ε] and η ∈ (0, R).

Stability of persistence diagrams. Furthermore, the stability results on persistence dia-
grams [20] hold for kernel density estimates and kernel distance of µ and Q (where Q is a core-
set of µ with the same size bounds as above). If ‖f−g‖∞ ≤ ε, then dB(Dgm(f),Dgm(g)) ≤ ε,
where dB is the bottleneck distance between persistence diagrams.

I Corollary 25. Consider a measure µ defined on Rd and a kernel K. We can create a core
set Q of size |Q| = O(((1/ε)

√
log(1/εδ))2d/(d+2)) or randomly sample |Q| = O((1/ε2)(d +

log(1/δ))) points which will have the following properties with probability at least 1− δ.
dB(Dgm(kdeµ),Dgm(kdeQ)) ≤ ε.
dB(Dgm((dKµ)2),Dgm((dKQ)2)) ≤ ε.

I Corollary 26. Consider a measure µ defined on Rd and a kernel K. We can create a core
set Q of size |Q| = O(((1/ε2)

√
log(1/εδ))2d/(d+2)) or randomly sample |Q| = O((1/ε4)(d+

log(1/δ))) points which will have the following property with probability at least 1− δ.
dB(Dgm(dKµ),Dgm(dKQ)) ≤ ε.

J.M. Phillips, B. Wang, and Y. Zheng 869

Another bound was independently derived to show an upper bound on the size of a
random sample Q such that dB(Dgm(kdeµP

),Dgm(kdeQ)) ≤ ε in [2]; this can, as above, also
be translated into bounds for Dgm((dKQ)2) and Dgm(dKQ). This result assumes P ⊂ [−C,C]d
and is parametrized by a bandwidth parameter h that retains that

∫
x∈Rd Kh(x, p)dx = 1 for

all p using that K1(‖x− p‖) = K(x, p) and Kh(‖x− p‖) = 1
hdK1(‖x− p‖2/h). This ensures

that K(·, p) is (1/hd)-Lipschitz and that K(x, x) = Θ(1/hd) for any x. Then their bound
requires |Q| = O(d

ε2hd log(Cdεδh)) random samples.
To compare directly against the random sampling result we derive from Joshi et al. [38],

for kernel Kh(x, p) then ‖kdeµP
−kdeQ‖∞ ≤ εKh(x, x) = ε/hd. Hence, our analysis requires

|Q| = O((1/ε2h2d)(d+ log(1/δ))), and is an improvement when h = Ω(1) or C is not known
or bounded, as well as in some other cases as a function of ε, h, δ, and d.

Acknowledgements. The authors thank Don Sheehy, Frédéric Chazal and the rest of the
Geometrica group at INRIA-Saclay for enlightening discussions on geometric and topological
reconstruction. We also thank Don Sheehy for personal communications regarding the power
distance constructions, and Yusu Wang for ideas towards Lemma 16. Finally, we are also
indebted to the anonymous reviewers for many detailed suggestions leading to improvements
in results and presentation.

References
1 N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical

Society, 68:337–404, 1950.
2 Sivaraman Balakrishnan, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Aarti

Singh, and Larry Wasserman. Statistical inference for persistent homology. Technical
report, ArXiv:1303.7117, March 2013.

3 James Biagioni and Jakob Eriksson. Map inference in the face of noise and disparity. In
ACM SIGSPATIAL GIS, 2012.

4 Gérard Biau, Frédéric Chazal, David Cohen-Steiner, Luc Devroye, and Carlos Rodriguez.
A weighted k-nearest neighbor density estimate for geometric inference. Electronic Journal
of Statistics, 5:204–237, 2011.

5 Omer Bobrowski, Sayan Mukherjee, and Jonathan E. Taylor. Topological consistency via
kernel estimation. Technical report, arXiv:1407.5272, 2014.

6 Peter Bubenik. Statistical topological data analysis using persistence landscapes. Jounral
of Machine Learning Research, 2014.

7 Mickael Buchet, Frederic Chazal, Steve Y. Oudot, and Donald R. Sheehy. Efficient and
robust persistent homology for measures. In SODA, 2015.

8 Frédéric Chazal and David Cohen-Steiner. Geometric inference. Tessellations in the Sci-
ences, 2012.

9 Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and Steve Y.
Oudot. Proximity of persistence modules and their diagrams. In SOCG, 2009.

10 Frédéric Chazal, David Cohen-Steiner, and André Lieutier. Normal cone approximation
and offset shape isotopy. CGTA, 42:566–581, 2009.

11 Frédéric Chazal, David Cohen-Steiner, and André Lieutier. A sampling theory for compact
sets in Euclidean space. DCG, 41(3):461–479, 2009.

12 Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for prob-
ability measures. FOCM, 11(6):733–751, 2011.

13 Frederic Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and stability
of persistence modules. arXiv:1207.3674, 2013.

SoCG’15

870 Geometric Inference on Kernel Density Estimates

14 Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo,
and Larry Wasserman. Robust topolical inference: Distance-to-a-measure and kernel dis-
tance. Technical report, arXiv:1412.7197, 2014.

15 Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Aarti Singh, and
Larry Wasserman. On the bootstrap for persistence diagrams and landscapes. Modeling
and Analysis of Information Systems, 20:96–105, 2013.

16 Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry
Wasserman. Stochastic convergence of persistence landscapes. In SOCG, 2014.

17 Frédéric Chazal and André Lieutier. Weak feature size and persistent homology: computing
homology of solids in Rn from noisy data samples. In SOCG, pages 255–262, 2005.

18 Frédéric Chazal and André Lieutier. Topology guaranteeing manifold reconstruction using
distance function to noisy data. In SOCG, 2006.

19 Frédéric Chazal and Steve Oudot. Towards persistence-based reconstruction in euclidean
spaces. In SOCG, 2008.

20 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence dia-
grams. DCG, 37:103–120, 2007.

21 Luc Devroye and László Györfi. Nonparametric Density Estimation: The L1 View. Wiley,
1984.

22 Luc Devroye and Gábor Lugosi. Combinatorial Methods in Density Estimation. Springer-
Verlag, 2001.

23 Herbert Edelsbrunner. The union of balls and its dual shape. In SOCG, 1993.
24 Herbert Edelsbrunner, Michael Facello, Ping Fu, and Jie Liang. Measuring proteins and

voids in proteins. In Proceedings 28th Annual Hawaii International Conference on Systems
Science, 1995.

25 Herbert Edelsbrunner, Brittany Terese Fasy, and Günter Rote. Add isotropic Gaussian
kernels at own risk: More and more resiliant modes in higher dimensions. In SOCG, 2012.

26 Herbert Edelsbrunner and John Harer. Persistent homology. Contemporary Mathematics,
453:257–282, 2008.

27 Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. Ameri-
can Mathematical Society, Providence, RI, USA, 2010.

28 Ahmed Elgammal, Ramani Duraiswami, David Harwood, and Larry S. Davis. Background
and foreground modeling using nonparametric kernel density estimation for visual surveil-
lance. Proc. IEEE, 90:1151–1163, 2002.

29 Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, and Clément Maria. Introduction to the R
package TDA. Technical report, arXiV:1411.1830, 2014.

30 Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman
Balakrishnan, and Aarti Singh. Statistical inference for persistent homology: Confidence
sets for persistence diagrams. In The Annals of Statistics, volume 42, pages 2301–2339,
2014.

31 H. Federer. Curvature measures. Transactions of the American Mathematical Society,
93:418–491, 1959.

32 Mingchen Gao, Chao Chen, Shaoting Zhang, Zhen Qian, Dimitris Metaxas, and Leon
Axel. Segmenting the papillary muscles and the trabeculae from high resolution cardiac
CT through restoration of topological handles. In Proceedings International Conference on
Information Processing in Medical Imaging, 2013.

33 Joan Glaunès. Transport par difféomorphismes de points, de mesures et de courants pour
la comparaison de formes et l’anatomie numérique. PhD thesis, Université Paris 13, 2005.

34 Karsten Grove. Critical point theory for distance functions. Proceedings of Symposia in
Pure Mathematics, 54:357–385, 1993.

J.M. Phillips, B. Wang, and Y. Zheng 871

35 Leonidas Guibas, Quentin Mérigot, and Dmitriy Morozov. Witnessed k-distance. In SOCG,
2011.

36 Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
37 Matrial Hein and Olivier Bousquet. Hilbertian metrics and positive definite kernels on

probability measures. In Proceedings 10th International Workshop on Artificial Intelligence
and Statistics, 2005.

38 Sarang Joshi, Raj Varma Kommaraju, Jeff M. Phillips, and Suresh Venkatasubramanian.
Comparing distributions and shapes using the kernel distance. In SOCG, 2011.

39 John M. Lee. Introduction to smooth manifolds. Springer, 2003.
40 Jie Liang, Herbert Edelsbrunner, Ping Fu, Pamidighantam V. Sudharkar, and Shankar

Subramanian. Analytic shape computation of macromolecues: I. molecular area and volume
through alpha shape. Proteins: Structure, Function, and Genetics, 33:1–17, 1998.

41 André Lieutier. Any open bounded subset of Rn has the same homotopy type as its medial
axis. Computer-Aided Design, 36:1029–1046, 2004.

42 Quentin Mérigot. Geometric structure detection in point clouds. PhD thesis, Université de
Nice Sophia-Antipolis, 2010.

43 Yuriy Mileyko, Sayan Mukherjee, and John Harer. Probability measures on the space of
persistence diagrams. Inverse Problems, 27(12), 2011.

44 A. Müller. Integral probability metrics and their generating classes of functions. Advances
in Applied Probability, 29(2):429–443, 1997.

45 Jeff M. Phillips. ε-samples for kernels. SODA, 2013.
46 Jeff M. Phillips and Suresh Venkatasubramanian. A gentle introduction to the kernel

distance. arXiv:1103.1625, March 2011.
47 Jeff M. Phillips, Bei Wang, and Yan Zheng. Geometric inference on kernel density estimates.

In arXiv:1307.7760, 2015.
48 Florian T. Pokorny, Carl Henrik, Hedvig Kjellström, and Danica Kragic. Persistent ho-

mology for learning densities with bounded support. In Neural Informations Processing
Systems, 2012.

49 Charles A. Price, Olga Symonova, Yuriy Mileyko, Troy Hilley, and Joshua W. Weitz. Leaf
gui: Segmenting and analyzing the structure of leaf veins and areoles. Plant Physiology,
155:236–245, 2011.

50 David W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization.
Wiley, 1992.

51 Donald R. Sheehy. A multicover nerve for geometric inference. CCCG, 2012.
52 Bernard W. Silverman. Using kernel density esimates to inversitigate multimodality. J. R.

Sratistical Society B, 43:97–99, 1981.
53 Bernard W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman &

Hall/CRC, 1986.
54 Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and

Gert R.G. Lanckriet. Hilbert space embeddings and metrics on probability measures.
JMLR, 11:1517–1561, 2010.

55 Kathryn Turner, Yuriy Mileyko, Sayan Mukherjee, and John Harer. Fréchet means for
distributions of persistence diagrams. DCG, 2014.

56 Cédric Villani. Topics in Optimal Transportation. American Mathematical Society, 2003.
57 Grace Wahba. Support vector machines, reproducing kernel Hilbert spaces, and random-

ization. In Advances in Kernel Methods – Support Vector Learning, pages 69–88. The MIT
Press, 1999.

58 Yan Zheng, Jeffrey Jestes, Jeff M. Phillips, and Feifei Li. Quality and efficiency in kernel
density estimates for large data. In SIGMOD, 2012.

SoCG’15

Modeling Real-World Data Sets
Susanne Albers

Department of Computer Science, Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany
albers@in.tum.de

Abstract
Traditionally, the performance of algorithms is evaluated using worst-case analysis. For a number
of problems, this type of analysis gives overly pessimistic results: Worst-case inputs are rather
artificial and do not occur in practical applications. In this lecture we review some alternative
analysis approaches leading to more realistic and robust performance evaluations.

Specifically, we focus on the approach of modeling real-world data sets. We report on two
studies performed by the author for the problems of self-organizing search and paging. In these
settings real data sets exhibit locality of reference. We devise mathematical models capturing
locality. Furthermore, we present combined theoretical and experimental analyses in which the
theoretically proven and experimentally observed performance guarantees match up to very small
relative errors.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity,
F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Worst-case analysis, real data sets, locality of reference, paging, self-
organizing lists

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.872

Category Invited Talk

© Susanne Albers;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Editors: Lars Arge and János Pach; pp. 872–872

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.872
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

	p000-00-frontmatter
	Foreword
	Conference Organization
	Additional Reviewers
	Sponsors

	p001-01-matousek
	Introduction
	Properties of the 2 norm
	Known properties of 2
	Putting matrices side-by-side
	Dual formulation
	Kronecker product

	The 2 norm for intervals
	Lower bound on 2(Tn)

	Deviation of the 2 norm from the hereditary discrepancy
	The 2 norm is at most logm times the determinant lower bound
	The hereditary discrepancy can be logm times larger than 2

	On Tusnády's problem
	Discrepancy of boxes in high dimension

	Applications in Computer Science

	p016-02-becker
	Introduction: Global Motion Control
	The Problems
	The Video

	p019-03-barequet
	Introduction
	Method
	The Video

	p023-04-cavanna
	The Shape of Data
	Production

	p026-05-talvitie
	Introduction
	Quickest visibility paths
	Quickest visibility maps
	Implementation

	p029-06-dvir
	Introduction
	Reduction to (alpha,delta)-systems
	A generalization of Barthe's Theorem
	The function and basic properties
	Finding a point with small derivatives
	Proof of Theorem 1.4
	A convenient form of Theorem 1.4

	Proof of the main Theorem
	Proof of Theorem 4.1 – a special case
	Proof of Theorem 4.1 – general case

	p044-07-mulzer
	Introduction
	Our Results

	Approximating the Colorful Carathéodory Theorem
	Simple Approximations
	Approximation by Rebalancing
	Varying the Number of Color Classes

	The Nearest Colorful Polytope Problem
	Conclusion

	p059-08-suk
	Introduction
	Arrangement of surfaces in Rd
	Multiple binary relations
	Proof of Theorem 4
	Application: One-sided hyperplanes
	Monochromatic triangles
	Lower bound construction and Schur numbers

	p074-09-rochenewton
	Introduction
	Energy bound
	Remarks

	Proof of Theorem 1
	Remark

	The complex setting

	p081-10-karavelas
	Introduction
	Preliminaries
	The Cayley embedding, the Cayley polytope and the Cayley trick

	The construction of the auxiliary simplicial polytope Qr
	The Dehn-Sommerville equations
	The recurrence relation for h(FR)
	Upper bounds
	Tight bound construction

	p096-11-dutta
	Introduction
	First Proof: Refining Haussler's Approach
	Preliminaries
	Overview of the approach.
	The First Iteration
	The Subsequent Iterations: Applying the Inductive Step

	Second Proof: Refining Chazelle's Approach
	Concluding Remarks and Further Research

	p111-12-harpeled
	Introduction
	Violator spaces and constant space algorithms
	Formal definition of violator space
	Examples

	The algorithm for computing the basis of a violator space
	Description of the algorithm
	The analysis

	Solving violator space problem with constant space and linear time
	Generating a random permutation using pseudo-random generators
	The result

	Corridor decomposition
	Construction
	Properties of the resulting decomposition

	Computing a specific corridor

	Shortest path in a polygon in sublinear space
	Updating the shortest path through a corridor
	Limiting the search space
	Walking through a corridor

	The algorithm

	Conclusions

	p126-13-angelini
	Introduction
	Definitions and Preliminaries
	Decompositions of Convex Graphs
	Convex Drawings of Hierarchical Convex Graphs
	A Morphing Algorithm

	p141-14-biedl
	Preliminaries
	Definitions and Basic Results
	2-Sided, 3-Sided and Reverse 3-Sided Layouts
	Private Regions

	Constructions for W-Triangulations
	C has degree 2
	G has a chord incident to C
	G has no chords incident with C and deg(C) 3

	From 4-Connected Triangulations to All Planar Graphs
	Conclusions and Outlook

	p156-15-kaplan
	Introduction
	Spanners and BFS Trees
	Efficient Spanner Construction
	From Bounded Spread to Bounded Radius Ratio
	Spanners for Unbounded Spread and Radius Ratio
	From Spanners to BFS Trees

	Reachability Oracles for 1-dimensional Graphs
	Reachability Oracles for 2-dimensional Graphs
	Lg is less than Lg
	Lg is constant
	Lg is polynomially bounded

	p171-16-cardinal
	Introduction
	Our results
	Related work and Connections
	Outline of the paper
	Notations

	Point visibility graphs preserving collinearities
	Preliminary observations
	Fans and generalized fans

	Drawing point visibility graphs on grids
	R-completeness reductions
	Arithmetics with order types
	The reduction for order types

	R-completeness of PVG recognition

	p186-17-abam
	Introduction
	Spanners for the metric space (P,)
	Spanners for points inside a simple polygon
	Spanners for points inside a polygonal domain with h holes

	Spanners for the visibility graph

	p198-18-abrahamsen
	Introduction
	Notation and some basic definitions

	Computing separating common tangents
	Computing outer common tangents
	Concluding Remarks

	p209-19-barba
	Introduction
	Previous Work
	Outline

	Decomposing the boundary
	Hourglasses
	Building hourglasses

	Funnels
	Funnels of marked vertices

	Covering the polygon with apexed triangles
	Inside the transition hourglass
	Inside the funnels of marked vertices

	Prune and search
	Finding the center within a triangle
	Optimization problem in a convex domain

	p224-20-devillers
	Introduction
	The Witness-Collector technique
	Static witness-collector pairs
	Adaptive witness-collector pairs
	Example: application to Gaussian polygons

	A smoothed complexity bound for l2 perturbations
	Perturbing a convex polyhedron by a uniform l2 noise
	Gaussian perturbation of a polygon

	p240-21-bokal
	Introduction
	New results
	Comparison with dynamic data structures
	Additional related work

	General strategy
	Decomposing into anchored rectangles
	Solving an anchored rectangle

	Directional monotonicity
	Diameter of point sets
	Sketches
	Algorithms

	Area of the convex hull
	Sketches
	Clipped regions
	Algorithms

	Planar graphs

	p255-22-dyer
	Introduction
	Riemannian simplices
	Non-degeneracy criteria
	The stability of Euclidean simplex quality
	The affine independence criterion for non-degeneracy
	Metric distortion of exponential transition

	Triangulation criteria
	The piecewise flat metric
	Discussion

	p270-23-burton
	Introduction
	Definitions and notation
	Manifold decompositions
	Algorithm and improvements
	Algorithm
	Limiting the size of walks
	Avoiding cone faces
	One vertex tests
	Canonicity and Automorphisms

	Results and Timing
	Aggregate tests
	Individual graph tests

	Discussion

	p285-24-pilz
	Introduction
	Crossing-Dominance, Convex Position, and Inner Points
	Crossing-Dominance Needs More Extreme Points
	(Sufficient) Conditions for Crossing-Dominance
	Different Extreme Points in the Dominating Set
	Algorithms and the Order Type Data Base

	p300-25-goaoc
	Introduction
	Limits of order types
	The semidefinite method for order types
	Improving the semidefinite method via rooting and averaging
	The semidefinite method for order types

	Representation of limits by measures
	Proof of Theorem 3
	Proof of Proposition 4
	Proof of Proposition 5

	p315-26-fukuda
	Introduction
	Basics
	LP in Dictionary Form
	Pivot Operations

	Combinatorial Redundancy
	Certificates
	A Certificate for Redundancy in the Dictionary Oracle
	A Certificate for Nonredundancy in the Dictionary Oracle
	Finite Pivot Algorithms for Certificates

	An Output Sensitive Redundancy Detection Algorithm
	General Redundancy Detection
	Strong Redundancy Detection
	Discussion

	p329-27-cohenaddad
	Introduction
	Polynomial-Time Local Search Algorithms
	Euclidean Traveling Salesman Problem and Steiner Tree
	Clustering Problems
	Facility Location
	k-Median

	p345-28-dadush
	Introduction
	Results
	Notation and Definitions
	Exponential distribution

	Optimization
	Intersection Bounds and Diameter Bounds

	p360-29-chen
	Introduction
	Informal definition of the hierarchical tile assembly model
	Main result
	A theorem about curves
	A theorem about shapes
	Implication for self-assembly

	Appendix
	Formal definition of the hierarchical tile assembly model

	p374-30-harpeled
	Introduction
	Preliminaries
	Background – k-center clustering and the greedy permutation
	Setup

	Using proximity search to compute k-center clustering
	Greedy permutation via NN queries: GreedyPermutNN
	Analysis
	Using approximate nearest-neighbor search
	Discussion

	Convex-hull membership queries via proximity queries
	Convex hull membership queries using exact extremal queries
	The algorithm
	Analysis
	Approximate extremal queries

	Convex-hull membership via ANN queries
	Approximate extremal queries via ANN queries
	The modified algorithm
	Analysis

	Density clustering
	Definition
	A counterexample in high dimension

	Algorithms
	Density clustering via nets
	The planar case

	p390-31-kiazyk
	Introduction
	Preliminaries and Definitions

	New Proof for the Point Star Unfolding
	Geodesic Star Unfolding
	Extension to Quasigeodesic Curves
	Quasigeodesic Loops
	The Geodesic Star Unfolding as Two Non-overlapping Pieces

	Conclusions

	p405-32-green
	p406-33-balko
	Introduction
	Previous results
	Terminology and notation
	Results

	Bounding the mutual visibility in the plane
	General dimension
	Other variants and open problems

	p421-34-hoffmann
	Introduction
	Preliminaries
	Upper Bounds
	Reduction to histograms
	Guarding a histogram

	Lower Bounds
	Lower bounds for r-visibility
	Blocks, stretched spike polygons, and multicolor tableaux
	The lower bound proof for l-visibility

	Conclusion

	p436-35-anagnostopoulos
	Introduction
	Existing work
	Low Quality Randomized Embeddings
	Approximate Nearest Neighbor Search
	Bounded Expansion Rate
	Experiments
	Validation of k
	ANN experiments

	Open questions

	p451-36-allenzhu
	Introduction
	Motivation
	Our results

	Overview of the Proofs
	Upper bounds
	Lower bounds

	RIP Construction for p 2
	The Lower-Tail Step
	The Upper-Tail Step

	RIP Construction for 1<p<2

	p461-37-bauer
	Introduction
	Definitions
	Category of Reeb Graphs
	Interleaving Distance
	Functional Distortion Distance
	Multivalued Maps and Continuous Selections

	-Interleaving and Functional Distortion
	The Easy Direction
	The Hard Direction

	Relationship Between the Interleaving and Bottleneck Distances
	Discussion

	p476-38-goaoc
	Introduction
	Preliminaries
	Proof of Lemma 4 with a weaker bound on n0
	Construction of
	Construction of D and g

	Proof of Lemma 4
	Construction of
	Construction of D and g

	Related Questions and Outlook
	Topological Helly-Type Theorems for subsets of Manifolds
	Extremal Problems for Embeddings

	p491-39-dey
	Introduction
	Notations and Proposed Distance Measure for Graphs
	Stability of persistence-distortion distance
	Discrete PD-Distance
	Computation of Continuous Persistence-distortion Distance
	Changes of persistence diagrams
	The death-time function d: [0, Len()] R
	The birth-time function b: [0, Len()] R.
	Tracking the persistence pair (b, d): [0, Len()] R2.

	Computing dPD(G1,G2)
	One pair of edges sG1 and tG2.
	Final algorithm and analysis.

	Future directions

	p507-40-goaoc
	Introduction
	Homological Almost-Embeddings
	Helly-type theorems from non-embeddability
	Homotopic assumptions
	From homotopy to homology
	Relaxing the connectivity assumption

	Constrained chain maps and Helly number

	p522-41-raz
	Introduction
	Proof of Theorem 1.2
	Proof of Proposition 2.3
	Overview of the proof
	The varieties V, V0 and W
	The varieties Vgamma
	The associated curves
	Case 1: dimW>=3 implies few popular curves
	Case 2: dim W = 4 implies a special form of F

	p537-42-lund
	Introduction
	Results
	Proof of Theorem 2.1
	Bisector surfaces
	Intersections of bisector surfaces
	Applying the incidence bound
	A lower bound for the energy

	Proof of Theorem 2.3
	Proof of Theorem 2.5

	p553-43-sharir
	Introduction
	Proof of Theorem 2
	Discussion

	p569-44-raz
	Introduction
	Unit-area triangles in the plane
	Proof of Proposition 2.7

	Unit-area triangles spanned by points on three lines
	Unit-area triangles in convex grids

	p584-45-dvir
	Introduction
	Related Work
	Subsequent Work

	Overview of the proof
	Application: Sum-product estimates
	Organization

	Preliminaries
	Design matrices
	The Veronese embedding
	Polynomials vanishing on grids
	A graph refinement lemma

	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 9

	p599-46-dobbins
	Introduction
	Realizing order types
	Realization spaces
	Relationship to double pseudoline arrangements

	Preliminaries and main theorems
	Genericity assumptions
	Combinatorial type
	Realization spaces

	Contractibility
	Support configurations
	Local sequences and standard configurations
	Proof of contractibility

	Universality
	The primal construction
	Path systems
	The dual construction

	p615-47-goswami
	Introduction
	Informal discussion of results and techniques
	Continuous construction
	Approximation algorithm

	Preliminaries
	Problem statement and main theorems
	Problem statements and reduction
	Results

	The continuous construction
	Constructing the self homeomorphisms

	The approximation algorithm
	INF-EXT
	Description of EXTREMAL

	Discussions and future work

	p630-48-felsner
	Introduction
	Quasi-Convex Sets Between Two Lines
	On-line Curve Representation
	Connected Sets Attached to a Line
	Open problems

	p642-49-boissonnat
	Introduction
	Simplicial Complex: Definitions and a Lower Bound
	Compression of the Simplex Tree
	Compressed Simplex Tree
	Minimal Simplex Automaton

	Maximal Simplex Tree
	Results on Minimization of the Simplex Automaton
	Bounds on the Number of States of the Minimal Simplex Automaton
	Conditions for Compression
	Experiments

	Simplex Array List
	Construction
	Some Observations about the Simplex Array List
	Operations on the Simplex Array List

	Labeling Dependency
	Discussion and Conclusion

	p658-50-arkin
	Introduction
	Notation
	Related work
	Overview of the results

	A lower bound
	Querying shortest paths to windows
	Horizontal segments
	Arbitrary segments
	Continuous Dijkstra-based algorithm
	Determining i
	Determining the wavelet
	Putting everything together

	Quickest visibility queries

	Quickest visibility map
	Simple polygons

	p674-51-kostitsyna
	Introduction
	Distance Functions
	Simple Polygon
	Lower Bound
	Upper Bound
	Algorithm

	Well-spaced Obstacles
	Lower Bound
	Upper Bound
	Algorithm

	General Obstacles
	Lower Bound
	Upper Bound
	Algorithm

	Concluding Remarks

	p689-52-chang
	Introduction
	Our contributions

	Problem definition and preliminaries
	Formal definition of the candidate diagram
	Sampling model
	A short detour into backward analysis

	The proxy set
	Definitions
	Bounding the size of the proxy set
	The proxy set contains the candidate set

	Bounding the complexity of the kth order proxy diagram
	Preliminaries
	The kth order Voronoi diagram
	Arrangements of planes and lines

	Bounding the size of the below conflict-lists
	The below conflict lists
	The Clarkson-Shor technique
	Bounding the below conflict-lists

	Putting it all together

	On the expected size of the staircase
	The main result

	p704-53-dadush
	Introduction
	Main Contribution
	Preliminaries
	From Volume Estimation to Counting Lattice Points
	Schnorr-Euchner Enumeration
	Lattice Packing and Covering
	Thin Covering Lattices
	Techniques
	Thin Lattice Construction
	Computing Approximate Kovner-Besicovitch Points

	p719-54-chan
	Introduction
	Standard Cuttings
	Shallow Cuttings
	Our Contributions
	Applications

	Preliminaries
	A 2-d Shallow Cutting Algorithm
	A 3-d Shallow Cutting Algorithm
	Final Remarks
	Appendix: A 2-d Standard Cutting Algorithm

	p733-55-chan
	Introduction
	Preliminaries
	The Algorithm
	Remarks

	p739-56-bringmann
	Introduction
	Our Contributions

	Preliminaries and Definitions
	Discrete Fréchet Distance
	Hardness Assumptions

	Hardness of Approximation in One Dimension
	Approximation Quality of the Greedy Algorithm
	Upper Bound
	Tight Example for the Upper Bound

	Improved Approximation Algorithm
	Decision Algorithm
	Optimization Procedure

	Conclusions

	p754-57-awasthi
	Introduction
	Main Technical Contribution
	Related Work
	Our Hardness Reduction: From Vertex Cover to Euclidean k-means
	Proof of Theorem Theorem 4.1
	Completeness
	Soundness

	Hardness of Vertex Cover on Triangle-Free Graphs
	Conclusions
	An Alternative Proof of Theorem Theorem 5.2

	p768-58-klein
	Introduction
	The barrier curve generated by strategy FF
	Linkages
	Analysis
	Recursions
	Singularities and Residues
	Lower bound
	Conclusions

	p781-59-arya
	Introduction
	Preliminaries
	Minimum Spanning Trees
	BBD-trees and Blocks

	Computing the MST Weight
	Short-Edge Processing
	Long-Edge Processing
	Combining the Short and Long Edges

	Conclusions

	p796-60-agarwal
	Introduction
	Preliminaries
	Time Varying Contour Tree
	Interchange events

	KDS for T
	Extensions
	Conclusion

	p812-61-bos
	Introduction
	Space-filling curves and spatial index structures
	Our results
	Nomenclature and notation

	Well-folded curves
	Hyperorthogonal well-folded curves
	Definition and characterization
	Box-to-curve ratio 4

	General construction method
	Self-similar curves
	Implementation in software
	Evaluation
	Comparing to the Butz-Moore curves
	What about other curves?

	p827-62-buchet
	Introduction
	Preliminaries for Scalar Field Analysis
	Functional Noise
	Functional sampling condition
	Functional Denoising

	Geometric noise
	Sampling condition
	Scalar field analysis under geometric noise

	Scalar Field Topology Inference under Geometric and Functional Noise

	p842-63-franek
	Introduction
	Computability results
	Well groups U*(f,r) are incomplete as an invariant of Zr(f)
	Related work

	Computing lower bounds on well groups
	Incompleteness of well groups

	p857-64-phillips
	Introduction
	Kernels, Kernel Density Estimates, and Kernel Distance
	Geometric Inference and Distance to a Measure: A Review
	Our Results

	Kernel Distance is Distance-Like
	Semiconcave Property for dK
	Lipschitz Property for dK
	Properness of dK

	Power Distance using Kernel Distance
	Kernel Power Distance for a Measure

	Reconstruction and Topological Estimation using Kernel Distance
	Homotopy Equivalent Reconstruction using dK
	Constructing Topological Estimates using dK
	Distance to the Support of a Measure vs. Kernel Distance

	Stability Properties for the Kernel Distance to a Measure
	Comparing DK to W2
	Kernel Distance Stability with Respect to

	Algorithmic and Approximation Observations

	p872-65-albers

