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—— Abstract

Precise estimation of the Worst-Case Execution Time (WCET) of embedded software is a neces-
sary precondition in safety critical systems. Static methods for WCET analysis rely on precise
models of the target processor’s micro-architecture. Measurement-based methods, in contrast,
rely on exhaustive measurements performed on the real hardware. The rise of the multicore pro-
cessors often renders static WCET analysis infeasible, either due to the computational complexity
or due the lack of necessary documentation. Current approaches for (hybrid) measurement-based
WCET estimation process the trace data offline and thus need to store large amounts of data.
In this contribution, we present a novel approach that performs continuous online aggregation
of timing measurements. This enables long observation periods and increases the possibility to
catch rare circumstances. Moreover, we incorporate the execution contexts of basic blocks. We
can therefore account for typical cache behaviour, without being overly pessimistic.
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1 Introduction

Today, embedded systems are a central part of almost all technical systems. In safety critical
systems, proper function does not only rely on correct internal sequence of operations, but
also on the timing of the operations. Particularly in real-time systems, upper bounds for the
computation of system responses must be given.

Traditionally, the term “Worst-Case Execution Time (WCET)” is used to describe the
timing properties of the code under scrutiny. In general, however, the WCET cannot be
computed precisely but must be estimated. Such an estimate is only safe if the estimation
process is guaranteed to never underestimates the execution time.

One method to compute safe upper bounds of the execution time is the abstract inter-
pretation of the code in question. Each and every instruction is simulated on the basis of a
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precise processor model. This type of estimation gives very good results, if the features of
the processor are known and predictable.

Unfortunately, modern processors often contain features with unpredictable behaviour,
and sometimes the documentation of the architecture is not precise enough. This can yield
overly pessimistic estimations. One source of such uncertainties are bus arbitration policies.
These are particularly difficult for multicore processors, where several cores share the same
memory. Prominent examples of such processors include the P4080 from Freescale (eight
cores, 1.3 GHz each) and systems based on the ARM Cortex A9. Recent research (e.g. [11])
investigates approaches to mitigate these problems, but no general solution exists so far to
perform static WCET analysis for multicore processors.

Other methods to estimate the execution time use measurements. Their safety depends
on the premise that the worst-case is actually observed. Current measurement-based ap-
proaches either rely on instrumentation or on the offline analysis of execution traces. Code
instrumentation is usually not considered [12], as it causes the probe effect. Offline analysis
of the trace data requires a sufficiently long recording of the traces to hit all relevant cases
and system situations. Hence such systems are limited. Even if the recording depth is large,
the offline processing time is high.

In this contribution, we show that continuous aggregation of execution time data per
basic block can be achieved, relieving us of the tedious task of offline analysis. The statistics
created by our approach can even account for cache effects by telling apart initial and
subsequent executions of loop bodies. Together with an ILP-based path analysis, we achieve
precise execution time estimates for complex multicore processors where existing approaches
failed so far.

2 Related Work

For the sake of brevity, we focus on measurement-based and hybrid methods. We refer to
[16] for a more complete overview of existing methods and tools.

The most basic version of measurement-based execution time analysis, namely end-to-end
measurements, is still in frequent industrial use [12]. However, the problems with this
approach are manifold. Not only it is unable to produce safe estimates, as in general not all
possible scenarios can be measured, but the results are hard to interpret, too, as they are
not related to particular parts of the code but only to the whole program.

To overcome this, more structured approaches have been proposed, e.g. by Betts et
al. in [4], which combine the measured execution times of small code snippets to form an
overall execution time estimate. Their use of software instrumentation leads to the probe
effect, i.e. the timing behaviour of the program under observation changes due to the used
observation technique. Moreover, their method does not account for typical cache behaviour
and may be overly conservative.

In a more recent publication [5], they use the non-intrusive tracing mechanisms of state-
of-the-art debugging hardware. The main obstacle of their method is the limited size of trace
buffers and/or the huge amount of trace data. According to their estimates, around half a
terabyte of data would be generated in an hour of testing.

Stattelmann et al. [13] propose the use of context information in order to account for
cache effects. Their work shows that the inclusion of context information leads to more
precise execution time results. However, their approach is limited to processors with very
sophisticated tracing mechanisms. Moreover, their approach faces the same challenge as the
ones above due to its offline analysis of trace data.
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Figure 1 The workflow of our proposed method.

Other works have been done in order to overcome the obstacle of exhaustive measurements,
e.g. [10, 17, 6]. They either generate input data [10, 17] to stimulate high path coverage or
try to reduce the timing variability of a program [6].

There are many more publications on measurement-based execution time analysis which
we do not list here. Overall, they either address the problem of generating suitable input
data (which is out of scope of this paper) or they have one or several major disadvantages:
= The measurements are not fine-grained enough and hard to interpret.

The use of software instrumentation leads to the probe effect.
Huge amounts of trace data is generated for offline analysis.

Disregarding the execution context leads to overly conservative results because cache
effects cannot be exploited.

The use of sophisticated tracing mechanisms limits the applicability to few selected

Processors.

Our method, in contrast, circumvents these drawbacks:

= We measure the timing of basic blocks. This allows to see where time is spent.

= We use non-intrusive hardware tracing mechanisms of state-of-the-art processors to
produce timestamps. The probe effect is avoided.

= We process the trace events online. There is no need to store huge amounts of trace data.

= We process the trace events continuously. The aggregation can literally run for weeks.
The possibilities to catch rare circumstances are increased.

= We incorporate the execution context of a basic block and account for typical cache
behaviour. The results are thus much more precise.

= Due to the use of an FPGA, we can adapt the hardware part of our method to lots of

different processors as long as they have some rudimentary tracing support.

3 Proposed Method

This section presents a novel approach for hybrid measurement-based timing analysis. The
basic idea is to use an FPGA to perform online aggregation of trace data. Our method
works on the object code level and is split into three main parts: a pre-processing phase,
the continuous online aggregation phase and a post-processing phase. The workflow of our
method is shown in figure 1. Parts are re-used from the aiT tool chain [1], in particular
the control flow reconstruction and the ILP-based path analysis. Other parts, like the
FPGA-based continuous online aggregation of measurements, are — to our knowledge — novel.
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First, in the pre-processing phase, we reconstruct the interprocedural control flow graph
(CFG) of the program under analysis. Then, we extract crucial information like loop nesting
levels, call relations and basic block boundaries from the CFG. This information is used to
compile a configuration for the trace extraction module which is then loaded into memory
that is connected to the FPGA.

During the program’s execution, the trace extraction module emits events according to its
configuration. A possible event is, for example, the entering of a basic block. All events have
an associated timestamp. The measurement module interprets these events and calculates
the execution time of each basic block. It uses the precalculated information to keep track of
the execution contexts of the basic blocks. Various statistics (minimum runtime, maximum
runtime, sum of the individual runtimes, count of executions) are updated each time after a
basic block timing measurement has been completed.

After the program has finished (or the test engineer has collected enough data), the
post-processing phase is started by downloading the basic block statistics from the statistics
module. Subsequently, the CFG together with the basic block timing statistics are used
to construct an integer linear program (ILP). Solving this ILP gives then a path with the
longest execution time (and consequently, an estimate of the worst-case execution time).

We assume that a set of tasks is distributed over the cores of a multicore processor such
that each task runs on exactly one core. Each task uses its own continuous aggregation
module. Hence it suffices to describe the method for a single core.

3.1 Control Flow Reconstruction and Pre-Processing

The starting point of our analysis is a fully linked binary executable. A parser reads the
output of a compiler and disassembles the individual instructions. Architecture specific
patterns decide whether an instruction is a call, branch, return or just an ordinary instruction.
With this knowledge, the binary reader forms the basic blocks of the CFG. A basic block
(BB) is a sequence of instructions, where each instruction except the first and the last has
exactly one predecessor and one successor.

Then, the control flow between the basic blocks is reconstructed. In most cases, this is done
completely automatically. However, if a target of a call or branch cannot be statically resolved,
then the user needs to write some annotations to guide the control flow reconstruction.

The final result is an interprocedural control flow graph, as shown in figure 2. It consists
of the basic blocks, some meta blocks to emphasise call/return relations and the edges that
describe the control flow. [15] contains a detailed description of the control flow reconstruction
process.

In a second step, we extract the information from the CFG that is needed for the
configuration of the trace extraction module. To do so, we construct the set of trace points T.

Besides the information needed to keep track of the execution contexts of the basic
blocks, we also need to create unique identifiers for each basic block that are used to address
the statistics in memory. Using the address of a block is not suitable, because we need to
compact the address range of the statistics storage because memory is scarce. A collision-free
hash function T-ID : T — {1,...,n} with n € N is used for this purpose. It should be fast
computable in hardware.

Each trace point (first, tag, level, distinctor, call, entry, exit, return) € T represents a
basic block in the CFG and consists of the following data fields:

first, the address of the BB’s first instruction;

tag, a custom field that can be used by function T-ID to calculate the ID of that trace

point;
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level, the loop nesting level of the loop to which the BB belongs (level = 0 iff the BB
does not belong to a loop);

distinctor, a value used to distinguish two loops with the same nesting level that occur
directly after another, without any code in between that does not belong to one of the
two loops;

call, a flag that indicates whether the BB is the predecessor of a call block;

entry, a flag that indicates whether the BB is the successor of a routine’s entry block;
exit, a flag that indicates whether the BB is the predecessor of a routine’s exit block;
return, a flag that indicates whether the BB is the successor of a return block.

Moreover, due to the restricted bandwidth of the event stream, the fields of a trace point
need to fulfill the following size limitations:

Vp = (first, tag, level, distinctor,...) € T : 0 < first < (23% — 1)
A0 < tag < (26 —1)
AO < level < (2° —1)
A0 < distinctor < (23 -1

Those data fields that have not been explicitly mentioned are boolean flags and use therefore
exactly one bit.

3.2 Trace Extraction

Trace data messages are generated in so-called “embedded trace” units. These special
hardware units observe the internal states of the SoC and emit compressed runtime information
via a dedicated trace port. Amongst the information that an “embedded trace” unit outputs
is the information whether a branch has been taken or not. Optionally, this information can
be supplemented by the amount of clock cycles (cycle accurate trace) or timestamps.

There are several “embedded trace” implementations available. The most important are
Nexus 5001™ [9] based implementations (for instance within the Freescale™ Qorriva/QorIQ
[7] devices) and the ARM Coresight™ architecture [3]. The latter consists of different variants
of program execution observers. We will explain the solution presented in this paper on the
base of the Program Flow Trace (PFT) architecture [2] which is implemented in most ARM
Cortex A series processors.

The PFT unit outputs various message types. Most relevant for detailed execution time
measurement purposes are the cycle-accurate atom packets (Atom), the branch address
packets (Branch) and the instruction synchronization packets (I-Sync). An Atom message
indicates whether a branch instruction passed or failed its condition code check and outputs
an explicit cycle count indicating the number of cycles since the last cycle count output. A
Branch message indicates a change in the program flow when an exception or a processor
security state change occurs or when the CPU executes an indirect branch instruction that
passes its condition code check. I-Sync messages output periodically the current instruction
address and a cycle count.

Traditional trace processing devices record the trace data stream and forward the data
to a workstation for decompression and processing. Unfortunately, there is a discrepancy
between trace data output bandwidth and trace data processing bandwidth, which is usually
several orders of magnitude slower. This results in very short observation periods and long
trace data processing times. Consequently, the statistical relevance of the execution time
measurements is deteriorated due to the limited observation period.
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Our solution does not store the whole received trace data stream for later offline pro-
cessing. Instead, the trace data is processed online by FPGA logic. This new approach
enables an arbitrary observation time while still enabling precise and detailed execution time
measurements from “embedded trace” implementations.

The FPGA-based online processing of the trace data stream consists of three processing
steps: First, we extract the source specific information (data from the CPU to be observed)
from the trace data stream. In a second step we process the message boundaries and detect
the periodic I-Sync messages. Finally, we distribute the trace data stream segments (between
two consecutive I-Sync messages) into a multiplicity of parallel operating processing units
which reconstruct the program execution. We are starting from the address transmitted by the
I-Sync message and reconstruct the program execution by processing the subsequent Branch
and Atom messages. For this purpose, we use pre-processed lookup tables which contain the
distances (address offsets) between the individual jumps. This instruction reconstruction
unit outputs trace point events containing the pre-processed trace point data together with
the corresponding cycle counts i.e. timestamps. These events are being processed by the
measurements module introduced in 3.3.

Both the online processing of the trace data and the reconstruction of the executed
instructions are very resource-consuming, highly parallelized and partly speculative processes
which require specialized hardware modules with high-end FPGAs (Xilinx Virtex®-7 /
Ultrascale™ series) and large amounts of high performance external memory providing
the lookup table content. But the effort is well spent — the system produces a continuous
stream of trace point events, the corresponding amount of clock cycles and the associated
pre-processed data as a base for basic block WCET analysis within the next processing stage.

3.3 Continuous Context-Sensitive Aggregation

The next processing stage computes the aggregated timing statistics for each basic block.

To achieve precise results, it is important that the aggregation module accounts for cache
effects. Typically, the first iteration of a loop needs more time than the subsequent iterations
because the instruction cache is not yet filled. Simply aggregating all loop iterations in the
same statistics record would thus most probably overestimate the time spend in all iterations
but the first. For well-formed loops, we thus compute two statistics records for each basic
block in a loop body, one that aggregates the execution times in the first iteration and
another that aggregates the execution times in all subsequent iterations, i.e. we take the
execution context into account. This resembles some kind of virtual loop unrolling.

If a basic block is part of nested loops, we only discriminate the iterations of the innermost
loop. This is done due to limited storage for the statistics records.

The continuous aggregation stage is split into three parts: the measurement module, the
loop module and the statistics module.

We start the description of these modules by introducing some notation. We denote the
stream of trace point events F by the sequence eg,eq,...,e,, n € N of individual events.
Each event e; = (p;,t;) consists of a trace point p; € T (see section 3.1) and a timestamp
t; € {0,...,2%% — 1}. Moreover, we compute an unique identifier id; = T-ID(p;) for each
trace point.

Measurement Module. The measurement module computes the execution time 7 of a basic
block by taking the timestamp of the corresponding trace point event and subtracting the
timestamp of the predecessor event. If no predecessor event has been emitted yet, then 7 = 0.
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Loop Module. The loop module decides whether the first or the second statistics record
should be updated. It uses its internal state machine to interpret the stream of trace point
events emitted by the trace extraction stage.

A state S = (p,70,7r1,...,7) is a stack-like data structure that consists of k rows and a
pointer p to the topmost row in use. The value of k is implementation defined.

A row r is a record that consists of the data fields valid, id and index. The valid bit
denotes whether the row is already in use. The id field identifies a loop or routine. The
index field is used to decide which statistics record will be updated.

We call the row to which p points the active row. The special row (0,0, 0) is denoted by
T'sero- The initial state (0,7.cr0, Fzeroy - - - Tzero) 18 denoted by Sp.

We define two basic state-manipulation operations called “up” and “down”. Let S be
some state with

S = (pa T0,T15 -« s Tp+m—1,Tp+m> 'p+m+1, - - )

then the operation “up” which inserts a record 7,,¢,, m rows above the active row is defined
as:

S[Tvmvrne’w} = (p + m,ro,T1y..., rp—i—m—la’rne'wa Tp-i—m—i—lv . )

Let S be some state with

S = (p7 T0sT15 s Tp—m—1Tp—ms Tp—m~+15--+sTp—1,Tp; Tp4+1,- - )

then the operation “down” which conditionally inserts a record 7, m rows below the active
row is defined as:

SH/» m, rnew] = (p —m,To,T1y.-+yT'p—m—1, f(/rpfnm Tnew)a Tzeros -+ +yTzeros Tzeros Tp+1y - - - )
with the function

rord-valid = 1

Told
f(Toldzrnew) = { ¢

Tnew Otherwise

that only returns the new record 7, if the old record is not valid.

We can now define the state transition relation of the loop module’s state machine. Let
S be some state and e;, e;41 two subsequent trace point events. For the sake of readability,
we use three additional propositions:

a = call; A entry; ., denotes that a routine call occurred.

B = exit; A return; 1 denotes that a routine’s return to its caller happened.

~v = distinctor; 11 # distinctor; denotes that the loop body changed.
The state transition operation is then defined as:

S[T, level; 1 — level;, (1,id;11,0)] —a A= A (level;1q > level;)

S, level; — level;1q, (1,id;41,0)] —a A =8 A (leveli41 < level;)

S[1,0,(1,4d;11,0)] e A B Ay A (levelipq = level;)
S[b,eiyeip1] == 1 S[1,0,(1,id;11,1)] A B A (idig1 = rp.id)

S[t, leveliv1 + 1, (1,id;41,0)] o

S[4, level; + 1, (1, ids11,0)] 3

S otherwise
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Statistics Module. The statistics module updates the execution time statistics. The
statistics of each basic block b; are kept in memory organized as records m; = (min—1, maz_y,
total_1, count—_1, min=1, maxs1,totalsy, counts) that contains the minimum, maximum
and total measured execution time as well as the number of executions separately for the
first (=1) or additional (1) iterations of the loop that directly surrounds it. The record used
for first iterations is also used if a block does not belong to a loop. (The record used for
additional iterations is ignored in this case.)

During the initialisation of the statistics module, the memory is initialised such that each
record contains the neutral element, i.e. (+00,0,0,0,400,0,0,0). During the runtime of the
program, when the execution time 7 of a basic block has been measured, the corresponding
memory record m; is updated by min < min(min, 7), max < max(max, 7), total + total+t
and count < count + 1. Depending on the index of the active row, either the _;-part or the
~1-part is updated.

Example. Consider figure 2. It shows a C program snippet together with the reconstructed
CFG of its binary. Moreover, it shows a possible sequence of trace point events and the state
of the loop module after a particular event has been processed. We have used the function
T-ID(p) = p.tag to index the basic block statistics. The WCET estimate of our method is
191 cycles. If we apply context-insensitive maximisation, the estimate would be 258 cycles.
Our method is thus very precise due to the distinction of loop contexts.

3.4 Post-Processing and Path Analysis

After the testing cycle has been completed, an execution time statistics is stored in memory
for each basic block that has been covered by tests. These statistics are downloaded in the
first post-processing step and annotated to the CFG’s basic blocks. A basic block is marked
infeasible if no statistics have been created for it. This information can be used to detect
dead code.

Then, an implicit path enumeration technique is used to find a path with the maximal
execution time in the CFG. Our implementation constructs an instance of a maximisation
problem expressed via an integer linear program. We refer to [14] for a detailed description
of the construction. Afterwards, an ILP solver is used to solve the maximisation instance.
Its result is the WCET estimate together with a path in the CFG that induces the estimate.

This path is then used to visualise the WCET contribution of the individual parts of the
program. That way, the test engineer can see where in the program the hot spots are. This
is particularly useful if the program is the target of performance optimisations.

4 Conclusion and Future Work

In this contribution, we have shown a new hybrid approach to estimate the WCET for
modern multicore processors. Our approach uses an FPGA to continuously aggregate the
execution time measurements of basic blocks. Moreover, it discriminates between first and
further iterations of a loop. This notion of context-sensitivity reflects the typical cache
behaviour better than methods that maximise over all executions of a basic block. In our
example, the WCOET bound is reduced by more than 25%.

Our approach is especially appropriate for those architectures for which a good analytical
model cannot be derived, for example due to missing or incomplete documentation. The
implementation of the approach is highly scalable and thus applicable to even the fastest
Processors.
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Figure 2 Exemplary application of our method. The figure shows a C program snippet (left
upper corner), the reconstructed CFG (right upper corner), a sequence of trace point events (bottom
left corner), the states of the loop module (bottom middle) and the continuous aggregation of the
maximum execution time (bottom right corner). Basic blocks are shown with the address of their
first and last instruction. Colors have been used to show which event belongs to which basic block.
The active row is highlighted in grey.

We are currently building a prototype hardware implementation as part of the research
project CONIRAS. As soon as the prototype is completed, our approach will be validated
with some typical embedded real-time applications, e.g. the set of WCET benchmarks [8].

The statistics computed by our method are rather simple. The question whether more
advanced ones could be performed online as well needs further investigation.
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