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Preface

This volume contains the papers of the 13th International Conference on Typed Lambda
Calculi and Applications (TLCA 2015), which was held during 1-3 July 2015, in Warsaw,
Poland. TLCA 2015 was part of the 8th International Conference on Rewriting, Deduc-
tion, and Programming (RDP 2015), together with the 26th International Conference on
Rewriting Techniques and Applications (RTA 2015), the Workshop on Higher-Dimensional
Rewriting and Applications (HDRA), the Workshop on Homotopy Type Theory / Univalent
Foundations (HoTT/UF), the 29th International Workshop on Unification (UNIF 2015), the
second International Workshop on Rewriting Techniques for Program Transformations and
Evaluation (WPTE 2015), and the annual meeting of the IFIP Working Group 1.6 on Term
Rewriting.

The TLCA series of conferences serves as a forum for presenting original research results
that are broadly relevant to the theory and applications of lambda calculus. Previous TLCA
conferences were held in Utrecht (1993), Edinburgh (1995), Nancy (1997), L’Aquila (1999),
Krakéw (2001), Valencia (2003), Nara (2005), Paris (2007), Brasilia (2009), Novi Sad (2011),
Eindhoven (2013) and Vienna (2014, merged with RTA).

A total of 23 papers were accepted out of 46 submissions for presentation at TLCA
2015 and for inclusion in the proceedings. I would like to thank everyone who submitted
a paper and to express my regret that many interesting papers could not be included. Each
submitted paper was reviewed by at least three members of the Programme Committee, who
were assisted in their work by 71 external reviewers. I thank the members of the Programme
Committee and the external reviewers for their review work, as well as Andrei Voronkov for
providing the EasyChair system which proved invaluable throughout the review process and
the preparation of this volume.

In addition to the contributed papers, the TLCA 2015 programme contained invited talks
by Helene Kirchner (joint with RTA 2015), Herman Geuvers and Martin Hofmann.

Many people helped to make TLCA 2015 a success. I would like to thank RDP 2015
Chair Aleksy Schubert and the Organising Committee, the local organising team, TLCA
Publicity Chair Luca Paolini, and the TLCA Steering Committee, especially Pawet Urzyczyn.

June 2015
Thorsten Altenkirch

13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015).
Editor: Thorsten Altenkirch
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Herbrand Disjunctions, Cut Elimination and
Context-Free Tree Grammars

Bahareh Afshari, Stefan Hetzl, and Graham E. Leigh

Institute of Discrete Mathematics and Geometry

Vienna University of Technology

Wiedner Hauptstrafle 8-10, 1040 Vienna, Austria
{bahareh.afshari, stefan.hetzl, graham.leigh}@tuwien.ac.at

—— Abstract

Recently a new connection between proof theory and formal language theory was introduced. It
was shown that the operation of cut elimination for proofs in first-order predicate logic involving
II;-cuts corresponds to computing the language of a particular class of regular tree grammars.
The present paper expands this connection to the level of Ils-cuts. Given a proof 7 of a ¥4
formula with cuts only on Ily formulese, we show there is associated to 7 a natural context-free
tree grammar whose language is finite and yields a Herbrand disjunction for 7.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.4.2 Grammars and Other Re-
writing Systems, F.4.3 Formal Languages

Keywords and phrases Classical logic, Context-free grammars, Cut elimination, First-order
logic, Herbrand’s theorem, Proof theory

Digital Object Identifier 10.4230/LIPIcs. TLCA.2015.1

1 Introduction

The computational content of proofs is a central topic of proof theory. In intuitionistic
first-order logic the existential witness property states that the provability of dxF entails
the existence of some ground term t such that F(z/t) is provable. The analogue of this
property in classical logic is Herbrand’s theorem [12] (see also [5]). In its simplest version
Herbrand’s theorem states that if 3xF is valid and F' quantifier-free there exist closed terms
t1,...,tx such that \/f:1 F(x/t;) is a tautology. Such formulee, quantifier-free disjunctions
of instances, are hence also called Herbrand disjunctions. Herbrand’s theorem applies not
only to existential but arbitrary first-order formulse, providing a tautology by replacing each
non-prenex quantifier with a suitable finite disjunction or conjunction of instances. Provided
one is willing to speak about provability instead of validity Herbrand’s theorem even extends
to classical higher-order logic, see for example [25].

A Herbrand disjunction can be read off directly from a cut-free proof though proofs with
cut may be non-elementarily smaller than the shortest Herbrand disjunction [30, 26, 27].
Therefore, in general, cut elimination (or an equivalent normalisation process) is necessary
in order to obtain a Herbrand disjunction. However, if one is only interested in the witness
terms of a Herbrand disjunction and not in the complete cut-free proof then it would be
desirable to circumvent the cumbersome process of cut elimination.

For instance, in [13, 14] it was shown that a proof 7 F 3z F in which all cut formulee have
at most one quantifier induces a (totally rigid acyclic) tree grammar G, of size no greater
than the size of the proof, with a finite language that, when interpreted as a collection of
witness terms, forms a Herbrand disjunction for 3z F (see Figure 2).

© Bahareh Afshari, Stefan Hetzl, and Graham E. Leigh;
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A(a) rF3F 2% gk BF
VA it te
deﬁnitionl lHerbrand extraction
Tved A3z Gr (of size < |v) —— L(Gx) 2 H()
cut
A

L(Gr): language of G, H(n'): Herbrand set of 7’

Figure 1 II; cut. Figure 2 Proof grammars.

Grammars for proofs with only cuts of the form JxA or VxA with A quantifier free are
remarkably simple. Let 7 be such a proof with end sequent 3z F where F' is quantifier free.
Suppose uq,us, ..., U, are the witnesses to the existential quantifier as they appear in 7.
The induced grammar G, consists of the production rules i) o — F(uy) | F(ug) | ... | F(um)
where o is the starting symbol of the grammar, and ii) o« — 1 | to | - - - | ty for every II; cut
in 7 of the form given in Figure 1, where « is the eigenvariable of the cut and t¢1,to,...,tx
are witness terms of existential quantifier in the right subproof.

1.1 Contributions

In this paper we show how the correspondence between proofs and grammars can be extended
to the level of Il; cuts. This class of cuts is particularly important for computational
applications: a II; formula can be read as a specification of a program and its proof as
providing an (non-deterministic) algorithm in line with the Curry—Howard correspondence.

We consider IIs-proofs in which all cut formulse have at most one quantifier of each
sort i.e. of the form Vx3IyA or VxA with A quantifier free. It turns out that these proofs
correspond to (rigid) context-free tree grammars:

» Theorem 1. Let 7 be a Ily-proof of a 31 formula F. There is an associated rigid context-
free tree grammar G, (whose number of production rules is bounded by the size of w) with a
finite language yielding a Herbrand disjunction for F.

In fact, if we consider proofs in which every universal introduction rule is immediately
followed by a cut or an existential introduction (henceforth called simple proofs) we have

» Theorem 2. Let g, w1, ..., 7 be a sequence of simple lls-proofs such that ;11 is obtained
from m; by an application of a cut reduction rule (as in Figure 4) to a subproof of m;. For
every i < k, L(Gr,) 2 L(Gr,). In particular, if the proof my contains only quantifier-free
cuts L(Gr,) 2 H(mk).

Rigid tree languages were first introduced in [21, 22] with applications to verification in mind.
Later in [14] rigid regular grammars were defined by restricting the admissible derivations
in the grammar with an equality constraint. In this paper we extend the notion of rigidity
to context-free grammars. It plays an important role in obtaining a concise grammar for our
proofs. For a Ils-proof 7, we prove the language of the induced rigid context-free grammar
G has a bound double exponential in the size of 7 (see Theorem 10). This bound is optimal
as it matches the blow up from cut elimination.

Structure of the article. In Section 2 we fix the calculus and cut reduction steps, and define
the class of proofs under consideration. Section 3 develops the theory of rigid context-free
tree grammars. In Section 4 we present the proof grammars induced by Ily-proofs: an
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Axioms: A A for A an atomic formula
Inference rules:
rAB r,A A, B
T,AVB T,A,AAB
I, Alz/a] T, Alz/s] A A A .
T,VzA T, 324 LA <
r T, A, A
w T ¢
T,A T. A

Figure 3 Axioms and rules of sequent calculus.

elementary grammar is given in Section 4.1 to motivate the definition laid out in Section
4.2. Section 5 establishes the preservation of the language of our proof grammars under
transitive closure of cut reduction steps. In Section 6 we conclude by describing future work
and potential applications of our results and techniques.

1.2 Related work

In [9] Gerhardy and Kohlenbach adapt Shoenfield’s variant of Gédel’s Dialectica interpreta-
tion to a system of pure predicate logic by explicitly adding decision-by-case constants to the
target language. The resulting A-term is first normalised and then used to directly read off
a Herbrand disjunction. Heijltjes [10] and McKinley [24] study graphical formalisms of local
reductions in classical first-order logic to derive a normal form corresponding to a cut-free
proof from which a Herbrand disjunction is obtained. An approach similar to [10, 24] in the
formalism of expansion trees [25] can be found in [19]. Historically, Hilbert’s e-calculus [20]
is the first formalism which allows a step-wise computation of a Herbrand disjunction in a
way that abstracts from the propositional layer of predicate logic.

Like the aforementioned formalisms, the results presented in this paper allow the com-
putation of a Herbrand disjunction in a way that bypasses literal cut elimination. The
novelty of our approach lies in the fact that this is achieved via formal grammars. On the
one hand this has the consequence that standard problems from formal language theory
assume a proof-theoretic meaning and hence standard algorithms can be used to solve the
corresponding proof-theoretic problems. For example, an algorithm for solving the mem-
bership problem for an adequate class of grammars also solves the following proof-theoretic
problem (for the corresponding class of proofs): given a proof 7 and a term ¢, is ¢ a witness
obtainable by cut-elimination from 7?7 Usually, these ‘induced’ algorithms have a smaller
asymptotic complexity (polynomial to at most exponential time; see e.g. [23, 22]) than the
naive proof-theoretic algorithms which rely on explicitly computing the cut-free proof(s)
(and need iterated-exponential time). On the other hand, the strong grip on the struc-
ture of a Herbrand disjunction afforded by a formal grammar opens the door to interesting
theoretical and applied investigations (see Section 6).

2 Proof calculus

We work with a Tait-style (one-sided) sequent calculus for first-order logic with explicit
weakening and contraction rules. A proof is a finite tree obtained from the axioms and rules
laid out in Figure 3. We use capital Greek letters I', A, etc. for multisets of formulze, A to
denote the dual of the formula A obtained by de Morgan laws, and A[z/s] for the formula

TLCA’'15
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Axiom: F,: A A A ~ Y
T4 '
Boolean: A, B ~ II, A, B
r "T,AAANB A/\B oAV B T, A A ILA
TA T cut T.A T cut
Quantifier: I', Alz/a] A, Alz/s) 5 — .
Tvid © AdeA Ale/s] A Alx/s]
cut A
‘Weakening: r w :;ﬁ > Fli,
AL Fav
T.A cu ,
: RN : 4 I',I',A,T*, A* AA W
Contraction: F’,F,/A,F A c ’ ~ ' T,T%, A%, A cut A* A*
rTr,A AA 7 cut
7 cut I, r,r A A"
' T, A —— ¢
I',T,A
Unary inf.: I, A : ; ~ I A A A
T = —— v cut
) ¢ T",A
T.A cu LA
Binary inf.: FH : ; ~ ", A A A
O S
T A T,A "

Figure 4 One-step cut reduction and permutation rules.

obtained from A by replacing x with the term s assuming this will not create any variable
capture. I'; A and T', A denote respectively the disjoint union of I', A and T', { A}.

In the (V) rule, « is called the eigenvariable and must not appear free in I',Vz A; in (3)
rule the term s is assumed to be free for z; and in the contraction rule (c), the set A*
denotes a renaming of A. Those formulse which are explicitly mentioned in the premise
of an inference rule are said to be principal in the rule applied, for example A and B are
principal in (A) rule, every formula from A* is principal in (c), and there are no principal
formulee in the weakening rule (w).

We assume all proofs are regular namely, all quantifiers’ eigenvariables are distinct and
different from any free variables. We use the following naming convention for proofs through-
out the paper: lower-case Greek letters a, 3, v, etc. represent eigenvariables; x, y for bound
variable symbols; and 7, 7/, etc. for proofs. m[a/s] is the result of replacing throughout the
proof 7 each occurrence of the variable symbol « by the term s. We write 7 - I to express
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m is a proof of T' and EV(7) to denote the set of eigenvariables in w. For a position p in
(the tree) m, |p denotes the subproof of 7 at position p with the convention that 7|() = ,
and 7|p0 and 7|pl are respectively the left (or only) subproof and right subproof of m|p. We
write ¢ < p if ¢ is a proper prefix of p.

It is useful to isolate a particular class of Ils-proofs:

» Definition 3 (Simple IIs-proof). A simple Ils-proof is a proof in which i) each sequent is a
finite set of prenex Il formulee, ii) the conclusion is a set of closed II; and ¥; formulee, iii)
cut formulee feature at most one quantifier of each sort, and iv) every universally quantified
formula appearing above a cut is principal in the inference directly after its introduction
(either a cut or existential introduction).

Condition (ii) above is stipulated primarily for expository purposes. Note that every se-
quent can be transformed into a sequent containing only ¥; formulae by Skolemization and
prenexification. In contrast, it is impossible to Skolemize cut formule in a proof since the
two (dual) occurrences of the cut formula would yield dual Skolemizations. Also note that
condition (iv) does not restrict provability, as any proof satisfying (i)—(iii) can be modified
using simple rule permutations to also satisfy (iv). This transformation will not increase the
size (number of inference rules) of the proof.

Cut reduction and Herbrand sets

The standard cut reduction rules are given in Figure 4. For proofs m, 7’ we write m ~ 7’
if 7 is the result of applying one of the rules to 7 (and not to a subproof). Notice that in
contraction reduction a subproof is duplicated and care is taken to rename the eigenvariables
(expressed by annotating the proof/sequent/formula in question by an asterisk) to maintain
regularity.

Let m be a cut-free proof of I' and suppose A € I' has the form Jxy---3JxiB with B
quantifier free. If \/(81,..‘,81¢,)€X Blx1/s1,...,2/sk] is the Herbrand disjunction for A read
off from m, we call X the Herbrand set of A in m and define H(w, A) = X. In addition,
H(m) = {{A} x H(m,A) | Ae T NE}.

Running example

We consider a formal proof of the pigeonhole principle for two boxes via the infinite pi-
geonhole principle. The question of the computational content of this proof is attributed
to G. Stolzenberg in [6]. A variety of analytic methods have since been applied to this
proof [11, 33, 3, 2] and its generalisations [29, 28]. Despite its relatively short and symmet-
ric nature it allows us to adequately demonstrate grammars for proofs with Il cuts.

Let f: N — {0, 1} be a total Boolean function, let I; express that there are infinitely many
m € N for which f(m) = i and T express that there exists m < n such that f(m) = f(n).
A consequence of the law of excluded middle is Iy V I;. Moreover I; implies T' for each i:
assuming I;, there exists m > 0 and n > m + 1 for which f(m) = f(n) = i. Combining
these observations we conclude that 7" holds.

The following formalises the above argument. The formal language, 3, consist of two
unary function symbols f, s, one binary function symbol M, a constant symbol 0 and a
binary relation <. We make the following definitions and abbreviations:

T =3zy(z < y ANz = fy),

I; =Va3y(z <y Afy=1i) for i € {0,1} where 0 =0 and 1 = s0,

= {VaVy(z < Mzy Ay < May),Ve(fz =0V fz =s0)},

TLCA’'15
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a,Mada 7&,Mad
Dl 4 3 [0.8 s
NG y ATy Iy, Iy -
.15, 1 AT, I .
LATI cut ATy, 1% 7
I AT, I AT, I
cut,c
AT

Figure 5 Simple II>-proof 7o of pigeonhole principle. The inference rules labelled 3* represent
finitely many existential introduction rules (the order of which is unimportant).

A={VaVyVz(x =yANz=y =z =2z),VaVy(sz <y = x < y))},

I and I denote, respectively, Jy(s < y Afy =1i) and (s <t A ft = i),

T+ denotes (s < t Afs = ft).

The intended interpretation of the symbols is: f represents the (arbitrary) function f, s the
successor function on N, < the standard ordering and M the binary max function.

A formal proof of the pigeonhole principle is given by the simple Ils-proof in Figure 5
which we name 7,. For brevity only eigenvariables and witnesses of the quantifiers and in-
stances of the existential formula T are displayed in 7,. The proof uses about 50 application
of the axioms and rules of the calculus but the only cuts in 7., are the two Ils cuts shown
in the figure. Two normal forms of the proof (of size ~200) have been computed in a case
study [33] from which one can read off the Herbrand set {(0,1), (1,2), (2, 3), (0,2),(1,3)} (up
to interpretation of the logical symbols) relative to the formula 7. Once we have introduced
our grammars we shall see how this Herbrand set can be directly computed from 7.

3 Context-free tree grammars

In [14] and elsewhere a refinement of regular tree grammars was studied that mimics the
construction of terms appearing in cut-elimination for first-order logic with IT; cuts. These
grammars were called rigid tree grammars and are equivalent to the notion of rigid automata
introduced and explored in [21, 22]. In this section we provide a generalisation to the class
of context-free tree grammars corresponding to Ily-proofs.

Given a ranked alphabet X, we let Terms(X) denote the set of terms in the simply-typed
A-calculus built from ¥. For a T' € Terms(X) we write Pos(7T') for the set of positions in
term (tree) T. For p € Pos(T'), T'|p is the subterm of T at position p.

A context-free tree grammar (CFG) is a tuple G = (N, X, 0, Pr) where N is a set of typed
non-terminals of order at most 1, o € N is a designated start symbol (of base-type ¢), ¥ is
a ranked alphabet, called terminals, disjoint from N, and Pr consists of pairs (a,T') (called
production rules and written a — T') where ¢ € N and T' € Terms(X U N) that has the same
type as a. Given a CFG G we assume G = (Ng, Xg,0g,Prg). If the set Ng of non-terminals
contains only symbols of order 0, G is a reqular tree grammar.

Let d be a sequence (p;, p;)i<k of pairs of production rules of a CFG G and positions,
and S and T terms. We call d a derivation from S to T, written d: S — T, if there exist
terms (NV;);<j such that Ng = S, N, =T, and for each 0 < i < k,

1. p; is a production rule of G and p; € Pos(N;),
2. For p; = (a — 5), we have N;|p; = a and N;11 = N;[p;/S], namely the result of replacing
the sub-term of N; at position p; by S (renaming bound variables if necessary).



B. Afshari, S. Hetzl, and G. E. Leigh

The sequence of terms (N;)i<y is uniquely determined by d and S, whence we may write
d(i) for N;. The length of d, Ih(d), is k. We say T is derivable from S if there exists a
derivation d: S — T. G is acyclic if for every non-terminal a € Ng and every derivation
d: a — T with Ih(d) > 0, a does not appear in T.

The language of a CFG G is defined as £(G) = {T € Terms(Xg) | 3d: og — T}. When
comparing languages of CFGs it is convenient to work modulo S-convertibility. Thus for
grammars G, H, we write £(G) C L(H) to express that for every S € L£(G) there exists a
B-equivalent T' € L(H).

3.1 Rigidity

Let G be a CFG, suppose < is a transitive binary relation on Ng, and R is a designated
set of non-terminals. A derivation d = ((a; — Si),Pi)i<in@): S — T induces a natural
equivalence relation on the positions in 7" corresponding to connectedness in parse trees: for
Jo,j1 < 1h(d), let jo ~q j1 iff there exist ig < jo, j1 such that
1. piy < pjos s>
2. aj, = a5, € R,
3. for every k € {0,1} and ip < i < ji < 1h(d), if p; < pj, then aj, A a;.
In other words, two occurrences of a non-terminal a € R in (the natural tree representation
of) the derivation d are considered connected if there is no non-terminal of higher priority
between them and their closest common ancestor.

Of particular interest to us is the class of derivations that respect their own ~ relation.

» Definition 4. Let G be a CFG and suppose < is a transitive ordering on Ng and R C Ng.
A derivation d = (p;, pi)i<k: S — T in G is rigid with respect to (<, R) if for every 4,j < k,
i ~q j implies T'|p; = T|p;.

A rigid context-free tree grammar is a structure G = (Ng, Rg, <g, Xg,0g,Prg) such that
(Ng,¥g,0g,Prg) is a CFG, Rg C Ng and <g is a transitive order on Ng. Rg is the set of
rigid non-terminals of G and <g is the priority ordering of G. If Rg = Ng then G is called
totally rigid.

Given a rigid CFG G and a derivation d in its underlying CFG, we call d rigid if it is
rigid with respect to (<g, Rg). The language of a rigid CFG G, £(G), is the collection of
terms derivable from rigid derivations starting from og:

L(G) ={T € Terms(Xg) | Id: og — T and d is (<g, Rg)-rigid}.
Note the language of a rigid CFG is a set of closed (well-typed) base-type A-terms.

» Example 5. Let G be the rigid CFG with start symbol ¢, non-terminals o, a and -,
rigid non-terminals R, ordering <, terminal symbols of appropriate arity, and production
rules 0 = f(o,7v,7), v = g9(7) | a, and @ — ~. If v ¢ R we have, unsurprisingly, £(G) =
{f(g™(a),g"(a),g°(a)) | m,n,o > 0}. Otherwise,
L ify <y <o, £(G) = {f(9"(a), g"(a),g"(a)) | m,n > O};
2. ify<ay Ao, L(G) ={f(g"(a),g™(a),g™(a)) | m > O};
3. fydyda, LIG) ={f(a,a,a)}.

In contrast to the grammar presented in Example 5, acyclic tree grammars must have a

finite language. If the grammar is also totally rigid its language has size essentially double
exponential in the size of the grammar.

» Lemma 6. If G is an acyclic totally rigid CFG then |L(G)| < |Prg\2‘Ng‘71.
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Proof. Suppose G satisfies the above requirements; let m = |Prg| and n = |[Ng| — 1. Since G
is acyclic we may further assume that <g is irreflexive. We argue, by induction on n, that
the set {T € Terms(Xg) | 3d: og — T and d is rigid} has size bounded by m?".

The base case is n = 0. By the main assumption of the lemma every derivation d: og —
T € Terms(Xg) has length 1, of which there are no more than m. For the induction step,
suppose n = ng + 1. Let N = Ng \ {a} where a # o¢ is chosen such that a #g b for all
be Ng\{og}. Suppose d: og — T € Terms(Xg) is a rigid derivation in G. Since G is acyclic
d can be re-ordered to have the form dod; where do: 0g — S and d1: S — T = S[a/5’] for
appropriate terms S and S’, such that the non-terminal a is not rewritten in dy and not
introduced by a production rule in d;. The induction hypothesis implies there is no more

2™ 2

than m2"° possibilities for each of S and S’, whence there are < m2" possibilities for 7. <«

4  Proof grammars

In this section we present rigid context-free grammars that arise from simple IIs-proofs. We
first define elementary proof grammars which are a natural extension of the rigid regular
grammars arising from IIj-proofs introduced in [14]. As we shall see, elementary proof
grammars can have an infinite language and are not immediately suitable for producing
Herbrand disjunctions. A proper form of proof grammars is then defined in Section 4.2 by
adding further structure.

4.1 Elementary proof grammars

Let m T be a simple IIs-proof and I' a set of closed X1 and II; formule. The elementary
grammar for w is a rigid CFG, denoted &, of the form (N, R;, <z, Y, 0, Pr;) where
N, consists of the eigenvariables appearing in 7 (of base-type) as well as a starting symbol
o and a symbol P (of function type ¢ — ¢) for each position p in 7 at which the rule cut
is applied;
R, =EV(r);
3 is the term language of first-order logic expanded by
a symbol 7; r of base-type for each formula Vzq -z, F € I' N II; and each i <&,
a symbol F of function type with k& arguments for each Jz¢--- Jaxp F' € T'N Xq;

<, is the transitive ordering on non-terminals and Pr, the set of production rules spe-
cified below.

Each cut occurring in 7, as well as each quantified formula in the conclusion T, yields
production rules in &;. In addition, the relative order of the quantifier introduction rules
and each cut on a genuine Ils formula influence the rigidity ordering <i,. We begin by
specifying the rules induced by T.

For each formula dxq---3JxpF' € T’ with F' quantifier-free, and each sequence of terms
(si)i<k that appear in 7 (together) as the witnesses of the sequence of existential quantifiers
(3zi)i<k, Ex features a production rule ¢ — Fsq---s;. For each formula Vzg--- Vo F € T
with F' quantifier-free and each i < k, £, contains the production rule a; — 7; p where oy
is the (unique) eigenvariable for the quantifier Vx; appearing in 7. See Figure 6.

The remaining non-terminals attain their production rules based on the structure of
the cut in which they are used. Let p be a position in 7, A a quantifier-free formula, «, ¢
eigenvariables and s, ¢ terms. Suppose 7|p has the form of either cuts given in Figure 7. In
the proof on the left the two distinguished appearances of the formula JyA[z/a] as well as
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H/,F[mo/so,...,xk/sk} . H'7in+1~--kaF[xo/ao7~--7wi/04i] v
F}—F H/,Hka[xo/So,,..,:Bk_l/sk_ﬂ H,,Vx¢~~~V$kF[l’0/ao,...,$i71/057;71]
F:H,Hl’o-”kaF F:H,V$0~"V$kF
o o— Fsg-- sk o — Ti F
g7r O'—>F88"'5Z a; — Ti F

Figure 6 Start and terminal production rules in &, and G.

", Alz/a,y/s] A’,A[mﬁ/t,y/ﬁ] A’ A1)
11", 3y Alz/a] =AYy Al /t] (1) DEY
: 4 A ’
Subproof 7|p : A ,EI'xVyA I, Az /] :
I, JyAlz/q] : —) .
s S I’ VoA A,3zA
7 - ) )
', Vady A A, JxVyA cut A cut
I, A
Rules in & a—t B — kPt kP — das a—t
a — Az Az, £
Rules in G B = AT1 - AT, Hp$1"'l’katﬁ o= AZ1 - Axg, T
P — Az AT, 41 8°

Figure 7 Internal production rules in £, and G.

the two distinguished occurrences of JzVyA are assumed to be on the same trace, as are, in
the right proof, the two occurrences of 3xA. The grammar includes the production rules

a—t 8 — kPt kP — das

and we set a <p @ <p kK < b for each a € EV(n|q,) and b € EV(x|gg) where ¢, and g3
are, respectively, the positions in 7 at which the variables a and § were eliminated (that
is p0 and the position marked by (T) in Figure 7). In the scenario pictured on the right in
which the cut is performed on a II; formula, only a single production rule for « is needed.

» Example 7 (Elementary proof grammar for 7). Let Ex. = (Noo, Roos <oos Yoo, Ty PTog).
The non-terminals of £,  comprise: starting symbol o; rigid non-terminals: «, &, 8, 3, BA
and B’ : non-rigid non-terminals: x° for the topmost cut on I; and & (:H<>) for the lower
cut on Iy. In ¥, we have the term symbols and also terminal symbols for each formula in
the conclusion (note there are no universals in the conclusion of 7). The induced priority
ordering is & <o K0 <loo {3, B} <oo @ <Aoo £ <oo {B', B}

In this example we will focus only on the highlighted formula 7" and the corresponding
symbol T of type © — ¢ — ¢ in ¥,. Pry has the following rules. The production rules on
the left (right) hand side are read from the cut on Iy (I7).

o— TBG o— TBp
a—0]|sp B — k0 a—0]|sB B = k%0
Kk — Aa. Mad B — k(sB) kY = A& Mad B — kO(sB)

In general, the production rules of the elementary proof grammar £, may be cyclic and
therefore permit infinite derivations. In the case of &;_, for example, this is demonstrated
by the sequence of non-terminals 3, x, &, 3, &%, , B.

TLCA’'15
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To avoid enumerating unnecessary terms into the language of the grammar certain de-
rivations should be disallowed. While it is possible to provide a characterisation of the
derivations that yield Herbrand sets, the work is beyond the scope of this paper and will
not be presented here. Instead, in the following section, we define acyclic proof grammars
for which standard (rigid) derivations suffice. This is achieved by raising the types of non-
terminals to make the necessary dependencies between non-terminals explicit.

4.2 Typed proof grammars

As before, let w F I" be a simple IIx-proof and I" a set of closed prenex Y1 and Iy formulae.

The (proof) grammar for w is a rigid CFG denoted by G.. Gr = (Ny, Rx, <y, %y, 0, Prs)

has the same definition as the elementary grammar but with two essential differences:

1. Eigenvariables are no longer necessarily base-type symbols and their type depends on
their relationship to other eigenvariables;

2. Production rules are modified accordingly by type-raising operations.

Types of non-terminals in G,

The type of a given non-terminal will be determined by the relation of its position in 7 to
other eigenvariables in 7. This relation will be defined as a well-founded ordering <, on the
elements of N, and formalises the (potential) dependency of one non-terminal on another.
As well as fixing the type of a non-terminal, the ordering can be seen as the basis of the
priority ordering <1, used in recognising rigid derivations.

For each position p in , if 7|p has the form

I, Alz/a] y
T, vz A A,3zA
cut
wp FIL A

we set o <, kP and a <, a for every a € EV(rn|p0) U {x? | p0 < ¢}. Notice that for
a,b € EV(m), a <. b implies b <, a, and if we write <, for the set {b € N | b <, a},
<4 I8 a set of eigenvariables linearly ordered by <,. Moreover, for a appearing as above
<= <o U{a}.

The type of a non-terminal is chosen to be its order-type in <. Let k, = |<4|. The type
of a € N, is that of a function over the base-type taking k, arguments. So in particular o
is of base-type, as is any eigenvariable relating to a universal quantifier in the conclusion.

» Example 8 (Types of non-terminals in 7). In G, we have the same set of non-terminals
symbols as in £, but they are now assigned the following types. The ordering <, on
Noo gives <o = {(a, &), (&, %), (o, KY), (oz,B)7 (a,B’), (o, k)} s0 a, B, B and o all have
base-type, &, 37 B’ and k% have type ¢ — ¢ and k° has type ¢ — ¢ — ¢. Note, the ordering
<o specifying rigidity is unchanged from &, .

Production rules in G

As mentioned earlier, the production rules of G, have the form as in £;. We now explain
how the change in the type of non-terminals is to be taken into account. This is achieved
by means of a type-lifting operation that either lifts an occurrence of a non-terminal to its
appropriate type or replaces it with a variable symbol in case it should be abstracted.

For each v € EV(m), let 71 <z --- <z Yr,41 = 7 be the sequence of eigenvariables
enumerating the elements of {€ | £ <, v}. Also let {z;} be a fresh set of variable symbols.
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Given o € EV(7) U {0}, we define an operation S +— S* on terms in ¥, U N, that lifts the
occurrence of non-terminals to their required type: we set (ST)* = ST, (Ay.S)* = A\y.S<,
¢ =cfor c € ¥y, and for v € EV(m) U {k? | ¢ a position in 7},

A = Lis ify=o0; Zr 0«
YR Vi otherwise.

The operation S +— S% replaces each non-terminal «; <, a by the variable z; and to v A, «
makes explicit the dependence of v on <.,. For example, we have

/-y')’k»y — ryxlx2 e ka

v = (r2m) (71 (r2m)) - (e, v (r271) - (k=171 (k=271 ))

Let p be a position in 7, suppose 7|p has the form of either cuts in Figure 7. Then the
grammar G, includes the production rules

a— Ay - Agg, t* B = Ary - AT, mpx1-~-xkatﬁ KP = Axy - Azg 41 8°

Observe that ko < kg, so a; = f; for each 0 < ¢ < k, and the term in the central production
rule is indeed closed. Also for « and kP above notice kyr = ko + 1, hence the production
rule for x? is well-typed. In the scenario pictured on the right side of Figure 7 in which the
cut is performed on a II; formula, naturally only the production rule for « is required.

Concerning the start symbol and formule in the conclusion I we add, in analogy to &,
production rules o — Fs§ - - - s7 and o; — 73 r for appropriate formulee F', terms (si)i<k and
eigenvariable «;. This completes the definition of G .

» Example 9 (Proof grammar for 7o, ). It is now possible to complete the definition of G, __.
As in Example 7 we will focus on parts of the grammar that are relevant to the formula T and
the computation of its language, which we denote £(Goo,T). The non-terminals and their
types were described in the previous example. Notice for instance £7 = ¢ for £ € {a, 8, 8},
£7 =€a and €% = £xy for € € {/{,d,ﬁ,ﬁ’}, and (Ma&)® = Mxzx,. The production rules of
the grammar (relating to the formula T') are therefore

o— TBG o — T(Ba)(f )
a—0]sg 8 — k0 & — Az. 0| Az s(fz) B — Az, K20
k— Ax. Mz(az) B — k(sB)  K° = Azdy. May B — e Kz (s(Bx))

The computation of the language of £(Go,T') is not complicated. Nevertheless, for space
considerations it is necessary to make a few simplifications. In particular, in accordance with
the informal proof presented in Section 2, various terms will be evaluated according to the
intended semantics, so sS will be written as S + 1 and MST will be replaced by max{S,T}.
Also, TST will be presented as T(S,T). In addition, implicit 8-conversion of terms will be
performed as this has no effect on rigidity of the considered derivations.

We begin by calculating the terms derivable from B and B’ (with implicit S-conversion):

Bm — k%20 - M2z0 =z B'w —* MCU(S(B»"C)) =" Mz(s(Mz0)) =z + 1

Regarding &, modulo S-conversion it is easy to see we have &x —* 0 |  + 1. Thus we can
also compute the derivations starting from 3, 8’ and a:

B =" M0(a0) - 0] 1 a—="0|1]2
BT =" M(sB)(a(sB)) = B+ 1B +2

11

TLCA’'15



12

Herbrand Disjunctions, Cut Elimination and Context-Free Tree Grammars

Thus T(8,841) and T(8, 8+2) are the two terms derivable from T (8, 5’) without rewriting
5. Combining these with the terms obtained from 3 above yields a total of eight derivations
in the underlying non-rigid grammar. However, as x, 3’, & are the sole non-terminals used

A

in deriving 3 and 8 4 k, 3, &, only four of the derivations are rigid, leaving
o—T(B,5) —=*T(0,1)| T(1,2) ] T(0,2) | T(1,3)

Concerning the terms derivable from o via T(BAoz7 B’ «), rigid derivations yield
o — T(Ba, fla) =" T(0,1) | T(1,2) | T(2,3)

Thus we conclude £(Goo,T) = {T(0,1),T(1,2),T(2,3),T(0,2),T(1,3)}. The reader may
check that TUA U{T} 0 | T(m,n) € L(Goo,T)} is derivable.

» Theorem 10 (Language bound). Let m be a simple ly-proof. The number of production
rules in G, is bounded by the number of quantifier inferences in © and |L(G,)| < 22",

Proof. Let G'=(Ny, N, <r, X, 0,Pr;) be the modification of G, in which all non-terminals

are marked as rigid. We observe £(G’) = L(G,). Moreover, a study of paths in 7 reveals that

G’ is acyclic, whereby |£(Gr)| < |P1r7r|2|N7rI by Lemma 6. Let k = LL;"lJ Then N, +k < ||
w4tk x

and so |£(Gr)| < 22N < 921" 45 required. <

5 Language containment

» Lemma 11 (Local reduction). If m ~ 7’ is a local one-step cut reduction between regular
simple My-proofs then L(Gr) C L(G,).

Proof. We present the argument for two of the interesting cases, the case of Contraction
Reduction and Quantifier Reduction; the remaining cases follow by a simple argument mir-
roring that of the former case.

Suppose, to begin, that the reduction © ~» 7’ is an instance of Contraction Reduction
and that the cut formula is principal in the contraction. Thus 7 and 7’ can be assumed to
take the form given below, where A = Va B is I and 7 is a renaming of 7y so that 7' is

regular.
z ) N 4 aadan
AlLA A A A* cut

——— I A* LA A A A*

A AlVAA cut
cut I, A A A*
TED,ALA R

=T, A A

Note that we may assume the contraction occurs in the ‘right’ sub-proof as 7 is simple and
A is a universal formula.

We argue that every rigid derivation in G.- starting from o can be transformed into a
rigid derivation in G, beginning at o. Consider the function f: N, — N, defined by

flo) =0 () = F(x2) = 50
f(v)=f(y") =~ foryeEV(m) F(KOP) = f(£010P) = 0P
f(o)=24 for § € EV(m) f(H011p) — l0p
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We observe that for all a,b € N we have a <, b iff f(a) <, f(b), thus [ is type-preserving
and uniquely extends to a function mapping terms in the language of X, U N/ to (well-
typed) terms in X, U N.. Moreover, if a — S is a production rule in G, f(a) = f(S) is a
production rule in G,. So f transforms derivations in the former grammar to derivations in
the latter grammar; all that remains is to check the operation preserves rigidity.

Rigidity is not immediate as f is not injective. Indeed, let d = ((a; — Si), pi)i<in@@y: & —
S be a rigid derivation in G, let d¥: ¢ — f(S) be the derivation in G, induced by f and
suppose jo,j1 < lh(d) are such that jo g j1 but jo ~ar j1, so f(aj,) = f(aj,) € Rg,.
Since f preserves the priority ordering, it follows that a;, # a;, and so we may assume
aj, € EV(my) and a;, € EV(n§). But then d must utilise a production rule for a rigid
non-terminal § € EV(m;) at a position ¢ such that i) ¢ < pj, iff ¢ £ p;, and ii) either a;, < ¢
or a;, <4, contradicting jo ~gsr J1.

Before proceeding with the second case, we remark that in all the other local reduction
steps, the natural choice of the ‘renaming’ function f is injective and preservation of rigidity
is immediate.

Suppose now 7 ~» 7’ is an instance of Quantifier Reduction. We may assume 7 and 7’
have the form below.

L, DAL/

TVzA = A3zA Alefsl A Ale/s]
cut
T T.A =T, A

As in the previous case we define a function mapping rigid derivations in G, to rigid
derivations in G,. Although every rigid non-terminal of G, is a non-terminal in G,/, the
non-terminals arising from EV(mg) have a higher type than their counterpart in 7’ as we
have o < & for every & € EV(m). Notice, however, k, = 0 and k. =1 in G.

Let d: 0 — S € L(G,) be a rigid derivation in G,.. As the formula A[z/s] is ¥ it
follows that d has one of following two forms.

In the first case, d is (up to simple renaming of non-terminals) a derivation in mg[a/s]
and S € L(Gryla/s)- d induces a rigid derivation in G, which when augmented by the
production rule o — s (present in G, ) provides a derivation of S in G,.

In the second case, (a permutation of) d has the form dod;dy where dy: 0 — S’ is a
derivation in G,; dy: S’ — S’[B3/t°] is a derivation using the single production rule 5 — t?
(note kg = 0 in both G, and G.) where § € EV(m) is the unique eigenvariable for the
universal quantifier in A[z/s] (if there is one) in G,/; and dy: S'[3/tP] — S is a derivation
in Gryla/s)- We observe that the production rule g — t? becomes, in G, the derivation
B — ks — (Azju®)s where ua/s] = t. Using these derivations in place of d; and making
the appropriate modifications to the derivation ds yields a derivation e: ¢ — S” in G, such
that S B-reduces to S. In both cases rigidity is also easily checked. |

Using the previous lemma it is not difficult to establish that the language of proof grammars
respect also non-local cut reductions, provided simplicity is maintained.

» Theorem 12 (Global Reduction). Suppose m and 7’ are regular simple Iy-proofs such that
7 differs from 7' only in its subproof at position p. If ©'|p ~ w|p then L(Gr) C L(Gx).

We now re-state and prove our main results from the introduction. The first of these is a
restatement of Theorem 2 and follows from Theorem 12; the second is a generalisation of
Theorem 1.

13
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» Theorem 13. Let (7);<) be a sequence of simple Ila-proofs such that for each i < k, mit1
is obtained by application of one of the reduction rules of Figure 4 to a sub-proof of w;. Then
for every term T € L(Gr,) there exists a term S € L(Gr,) that B-reduces to T.

» Theorem 14. Let m = T') A be a ls-proof where I' C Iy and A C 31 are sets of prenex
formule and suppose |rt| denotes the number of inference rules occurring in w. There exists
a totally rigid acyclic context-free tree grammar G such that i) |Prg| < ||, i) |L(G)| < 92"
and iii) there is a quantifier-free form of T, T”, such that the formula

TV \{Flai/s1,.. . e /se] | Gz FapF) € ANFsy -5 € L(G)} (1)
is a tautology.

Proof. By applying quantifiers inversion if necessary, m can be turned into a simple Il,-
proof 7’ without an increase in size. Let G = (N, Ny, <pry Xpr, 0, Prs) be the totally
rigid grammar derived from G.s. Items (i) and (ii) follow from Theorem 10. Regarding
(iii), let (m;)i<r be a reduction sequence of simple IIz-proofs (for example any obtained from
the standard cut elimination algorithms of [31, 32]) starting from 7y = " and leading to a
cut-free proof m; of I', A. By the previous theorem, £(Gr,) C L£(Gx).

Suppose I and A have the forms Vx; - - - Vo, Go, . .., V21 - - - Vag,, Gp, and 3z - - - 1, Fo,
...y dxq -+ - Jay, F, respectively where Go,...,Gm, Fo. .., F, are quantifier-free. The Her-
brand disjunction read from 7, is the formula

o ) 1 k; ,
X = \/ Gj(aj,...,a;" )V \/ \/(51,“.,s;j)€7-£(7rk,Fj) Fi(s1,...,81;)

j<m Jj<n

for appropriate choice of variables «%. Since the formula in (1) is the result of replacing

i,
. 7
every aj by 7, ¢, in X we are done. |

6 Conclusion

This work provides an abstraction of proofs which focuses only on the aspects relevant to
the extraction of Herbrand disjunctions. Compared to other approaches in the literature,
including Herbrand nets [24], proof forests [10], expansion trees with cut [19] and functional
interpretation [9], proof grammars offer a representation of Herbrand’s theorem suitable for
the following exploitation.

As carried out in [18], the result for IT;-proofs can be strengthened to the following: let 7/
be any cut-free proof obtained from a II;-proof 7 via standard cut elimination, then H(7') C
L(Gr). Moreover, if ©’ is obtained from 7 by non-erasing reduction (which corresponds
to the Al-calculus, see [4, Section 9]) then we even have H(n') = L(G,). Therefore all
(possibly infinitely many) normal forms of the non-erasing reduction have the same Herbrand
disjunction. This property of classical logic has been called Herbrand-confluence in [18] and
provides a general way of defining the computational content of a classical proof in the sense
that no witness is ruled out by a choice of reduction strategy. A deeper analysis of II5-proofs
carried out in [1] has also yielded a Herbrand-confluence result analogous to [18].

A notable application of proof grammars is in cut introduction, which is motivated by the
aim to structure and compress automatically generated analytic proofs. As shown in [17, 16],
the arrows of Figure 2 can be inverted in the sense that a grammar can be computed from
a Herbrand disjunction and that from such a grammar one can compute cut formulze which
realise the compression of the grammar. This method has been implemented and empirically
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evaluated with good results in [15]. An extension of these techniques to the case of proofs
with IT;-induction has led to a new technique for inductive theorem proving [8]. A natural
continuation of the present work is to find an analogous characterisation for proofs with
IIs-induction as well as the development of techniques for the systematic introduction of Il
cuts.

An application of proof grammars to proof complexity consists in proving a lower bound
on the length of proofs with cuts (which is notoriously difficult to control) by transferring
a lower bound on the size of the corresponding grammar. This has been carried out for Il
cuts in [7] based on [14], and can potentially be extended to IIz cuts based on the results of
this paper.
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—— Abstract

We prove a conjecture about the constructibility of coinductive types — in the principled form
of indexed M-types — in Homotopy Type Theory. The conjecture says that in the presence of
inductive types, coinductive types are derivable. Indeed, in this work, we construct coinductive
types in a subsystem of Homotopy Type Theory; this subsystem is given by Intensional Martin-
Lof type theory with natural numbers and Voevodsky’s Univalence Axiom. Our results are
mechanized in the computer proof assistant AGDA.
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1 Introduction

Coinductive data types are used in functional programming to represent infinite data
structures. Examples include the ubiquitous data type of streams over a given base type,
but also more sophisticated types; as an example we present an alternative definition of
equivalence of types (Example 22).

From a categorical perspective, coinductive types are characterized by a universal property,
which specifies the object with that property uniquely in a suitable sense. More precisely,
a coinductive type is specified as the terminal coalgebra of a suitable endofunctor. In this
category-theoretic viewpoint, coinductive types are dual to inductive types, which are defined
as initial algebras.

Inductive, resp. coinductive, types are usually considered in the principled form of the
family of W-types, resp. M-types, parametrized by a type A and a dependent type family B
over A, that is, a family of types (B(a))a.4. Intuitively, the elements of the coinductive type
M(A, B) are trees with nodes labeled by elements of A such that a node labeled by a : A has
B(a)-many subtrees, given by a map B(a) — M(A, B); see Figure 1 for an example. The
inductive type W(A, B) contains only trees where any path within that tree eventually leads
to a leaf, that is, to a node a : A such that B(a) is empty.
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a,b,c: A . ‘ .
B(a)=0 \ % ' %/
B(b) =2 a b c
B(c)=3 \2 /

c

Figure 1 Example of a tree (adapted from [14]).

In this work, we study coinductive types in Homotopy Type Theory (HoTT), an extension
of intensional Martin-Lof type theory [11]; we give a brief overview in Section 2.

The universal properties defining inductive and coinductive types, respectively, can be
expressed internally to intensional Martin-Lof type theory (and thus internally to HoTT).
Awodey, Gambino, and Sojakova [6] use this facility when proving, within a subtheory H of
HoTT, a logical equivalence between

1. the existence of W-types (a.k.a. the existence of a universal object) and

2. the addition of a set of type-theoretic rules to their “base theory” H.

We might call the W-types defined internally “internal W-types”, and those specified via
type-theoretic rules “external” ones. In that sense, Awodey, Gambino, and Sojakova [6] prove
a logical equivalence between the existence of internal and external W-types.

The universal property defining (internal) coinductive types in HoTT is dual to the one
defining (internal) inductive types. One might hence assume that their existence is equivalent
to a set of type-theoretic rules dual (in a suitable sense) to those given for external W-types
as in Item 2 above. However, the rules for external W-types cannot be dualized in a naive
way, due to some asymmetry of HoTT related to dependent types as maps into a “type of
types” (a universe), see the discussion in [10].

In this work, we show instead that coinductive types in the form of M-types can be
derived from certain inductive types. (More precisely, only one specific W-type is needed:
the type of natural numbers, which is readily specified as a W-type [6].)

The result presented in this work is not surprising; indeed, the constructibility of coin-
ductive types from inductive types has been shown in extensional type theory (see Section
1.1) and was conjectured to work in HoTT during a discussion on the HoTT mailing list [10].
In this work, we give a formal proof of the constructibility of a class of coinductive types
from inductive types, with a proof of correctness of the construction.

The theorem we prove here is actually more general than described above: instead of
plain M-types as described above, we construct inderzed M-types, which can be considered
as a form of “(simply-)typed” trees, typed over a type of indices I. Plain M-types then
correspond to the mono-typed indexed M-types, that is, to those for which I = 1. Since all
the ideas are already contained in the case of plain M-types, we describe the construction of
those extensively, and only briefly state the definitions and the main result for the indexed
case. The formalisation in AGDA, however, is done for the more general, indexed, case. An
example illustrates the need for these more general indezed M-types.
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1.1 Related work

Inductive types in the form of W-types in HoTT have been studied by Awodey, Gambino,
and Sojakova [6]. The content of that work is described above.

Van den Berg and De Marchi [14] study the existence of plain M-types in models of
extensional type theory, that is, of type theory with a reflection rule identifying propositional
and judgmental equality. They prove the derivability of M-types from W-types in such
models, see Corollary 2.5 of the arXiv version of that article. A construction in extensional
type theory of M-types from W-types is given by Abbott, Altenkirch, and Ghani [1].

Martin-Lof type theory without identity reflection, but with the principle of Uniqueness
of Identity Proofs (Axiom K) can be identified with the O-truncated fragment of HoTT
(modulo the assumption of univalence and HITs). For such a type theory, a construction
of (indexed) M-types from W-types is described by Altenkirch et al. [4], internalizing a
standard result in 1-category theory [7]. The present work thus generalizes the construction
described in [4] by extending it from the 0-truncated fragment to the whole of HoTT. More
specifically, the main work in this generalization is to develop higher-categorical variants of
the 1-categorical constructions used in [4] that are compatible with the higher-categorical
structure (the coherence data) of types.

1.2 Synopsis

The paper is organized as follows: In Section 2 we present the type theory we are working in
— a “subsystem” of HoTT as presented in [13]. In Section 3 we define signatures for plain
M-types and, via a universal property, the M-type associated to a given signature. In Section
4 we construct the M-type of a given signature. In Section 5 we state the main result for the
case of indexed M-types. Finally, in Section 6 we give an overview of the formalisation of our
result in the proof assistant AGDA.

2 The type theory under consideration

The present work takes place within a type theory that is a subsystem of the type theory
presented in the HoTT book [13]. The latter is often referred to as Homotopy Type Theory
(HoTT); it is an extension of intensional Martin-Lof type theory (IMLTT) [11]. The extension
is given by two data: firstly, the Univalence Axiom, introduced by Vladimir Voevodsky
and proven consistent with IMLTT in the simplicial set model [9]. The second extension
is given by Higher Inductive Types (HITS), the precise theory of which is still subject to
active research. Preliminary results on HITs have been worked out by Sojakova [12] and
Lumsdaine and Shulman — see [13, Chap. 6] for an introduction. In the present work, we use
the Univalence Axiom, but do not make use of HITs.

The syntax of HoTT is extensively described in a book [13]; we only give a brief summary
of the type constructors used in the present work, thus fixing notation. The fundamental
objects are types, which have elements (“inhabitants”), written a : A. Types can be dependent
on terms, which we write as z : AF B(z) : 4. In the preceding judgment, we use a special
type U, the “universe” or “type of types”. In this work we assume any type being an element
of U in the sense of “typical ambiguity” [13, Chap. 1.3], without worrying about universe
levels. The formalisation in AGDA ensures that everything works fine in that respect: as we
will see later, the universe U is closed under the construction of M-types.

We use the following type constructors: dependent products H(x: A) B(x), with non-
dependent variant written A — B, dependent sums Z(I; 2B (z) with non-dependent variant
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written A x B, the identity type x =4 y and the coproduct type A + B. In particular, we
assume the empty type 0 and the singleton type 1. Furthermore, we assume the existence of
a type of natural numbers, given as an inductive type according to the rules given in [13,
Chap. 1.9]. Finally, we assume the univalence axiom for the universe U as presented in [13,
Chap. 2.10].

Concerning terms, function application is denoted by parentheses as in f(z) or, occasion-
ally, simply by juxtaposition. We write dependent pairs as (a,b) for b: B(a). Projections are
indicated by a subscript, that is, for z : Z(G:A) B(a) we have zg : A and z; : B(z). Indices
are also used occasionally to specify earlier arguments of a function of several arguments;
e.g., we write B;(a) instead of B(i)(a).

We conclude this brief introduction by recalling two important internally definable
properties of types: we call the type X contractible, if X is inhabited by a unique element,
that is, if the following type is inhabited:

isContr(X) := Z H ¥=x.

(:X) (z":X)

We call the type Y a proposition if for all y,1y’ : Y, we have y = /. Note that a type X
is contractible iff X is a proposition and there is an element z : X (see also [13, Lemma
3.11.3]).

3 Definition of M-types via universal property

Coinductive types represent potentially infinite data structures, such as streams or infinite
lists. As such, they have to be contrasted to inductive datatypes, which represent structures
that are necessarily finite, such as unary natural numbers or finite lists.

3.1 Signatures, a.k.a. containers

In order to analyze inductive and coinductive types systematically, one usually fixes a notion
of “signature”: a signature specifies, in an abstract way, the rules according to which the
instances of a data structure are built. In the following, we consider signatures to be given
by “containers” [4]:

» Definition 1. A container (or signature) is a pair (A, B) of a type A and a dependent
type z : A+ B(z) : U over A.

The container (A, B) then determines a type of “trees” built as follows: such a tree consists
of a root node, labeled by an element a : A, and a family of trees — “subtrees” of the original
tree — indexed by the type B(a). A tree is well-founded if it does not have an infinite chain
of subtrees.

To the container (A, B) one associates two types of trees built according to those rules:
the type W(A, B) of well-founded trees, and the type M(A, B) of all trees, i.e., not necessarily
well-founded.

The description of the inhabitants of W(A, B) and M(A, B) in terms of trees gives a
suitable intuition; formally, those types are defined in terms of a universal property. Indeed,
M(A, B) will be defined as (the carrier of) a terminal object in a suitable sense.

3.2 Coalgebras for a signature

Any container (A, B) specifies an endomorphism on types as follows:
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» Definition 2. Given a container (A, B), define the polynomial functor P : & — U
associated to (4, B) as

P(X):=Pap(X):=>» (Bla) »X) .
a:A

Given a map f: X — Y, define Pf : PX — PY as the map

Pf(a,g9) == (a,fog) .

Note that Definition 2 does not really define a functor, and, more fundamentally, the
universe U is not a (pre-)category in the sense of [3]. Instead, the appropriate notion for P
would be an oco-(endo)functor on the (oo, 1)-category U [8]. However, we do not attempt to
make any of these notions precise, and do not make use of any “functorial” properties of the
defined maps. Our use of the word “functor” merely indicates an analogy to the 1-categorical
case.

To any signature S = (A, B) we associate a type of coalgebras Coalgg, and a family of
types of morphisms between them:

» Definition 3. Given a signature S = (A, B) as in Definition 2, an S-coalgebra is defined to
be a pair (C, v) consisting of a type C' : U and a map v : C — PsC. A map of coalgebras from
(C,~) to (D, ) is defined to be a pair (f,p) of amap f: C — D andapathp:dof = Pgfor.
Put differently, we set

Coalgg := Y  C — PC
Cc:u

and

Coa|g5<(C,'y)7(D,5)) = Y Gof=Pfor.

f:C—D
There is an obvious composition of coalgebra morphisms, and the identity map C' — C is the
carrier of a coalgebra endomorphism on (C, ). We also write (C,~y) = (D, d) for the type of
coalgebra morphisms from (C, ) to (D, J).
3.3 What is an M-type?

In this section we define (internal) M-types in HoTT via a universal property.

» Definition 4. Given a container (4, B), the (internal) M-type M4 p associated to
(A, B) is defined to be the pair (M,out : M — P4 pM) with the following universal
property: for any coalgebra (C,~) : Coalg 4, py of (A, B), the type of coalgebra morphisms
(Cyv) = (M, out) from (C,~) to (M,out) is contractible.

The use of the definite article in Definition 4 is justified by the following lemma:

» Lemma 5. The type

Finalg := Z H isContr ((C,7) = (X, p))

((X,p):Coalgs) ((C,v):Coalgy)

18 a proposition.
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Proof. The proof that any two final coalgebras (L, out) and (L', out’) have equivalent carriers
is standard. The Univalence Axiom then implies that the carriers are (propositionally) equal,
L = L'. Tt then remains to show that the coalgebra structure out, when transported along
this identity, is equal to out’. We refer to the formalized proof for details. |

That is, any inhabitant of Finalg is necessarily unique up to propositional equality. We
refer to this inhabitant as the “final coalgebra”. In Section 4 we construct the final coalgebra.

In the introduction, we use the adjectives “internal” and “external” to distinguish between
types specified via universal properties and type-theoretic rules, respectively. Since we do
not consider rules for M-types (that is, external M-types) in this work, we drop the adjective
“internal” in what follows.

In the following example, we anticipate the result of the next section, namely the existence
of a final coalgebra for any signature (A, B):

» Example 6. The coinductive type Stream(Ay) of streams over a base type Ag is given by
M(A, B) with A = Ag and B(a) := 1 for any a : Ag. The corresponding polynomial functor
P satisfies P(X) = Ag x X.

Using finality of M(A, B) we can define maps into streams and prove that they have the
expected computational behaviour. For example, the zip function

zip : Stream(A) x Stream(B) — Stream(A x B)
can be obtained from the universal property applied to the coalgebra

0 : Stream(A) x Stream(B) — (A x B) x (Stream(A) x Stream(DB))
O(xs,ys) := ((head(xs), head(ys)), (tail(xs), tail(ys))

where head : Stream(X) — X and tail : Stream(X) — Stream(X) are the two components of
the final coalgebra out. The computational behaviour of zip is expressed by the fact that zip
is a coalgebra morphism

zip(xs, ys) = cons((head(zs), head(ys)), (zip(tail(zs), tail(ys)))),

where cons = out™ 1.

4 Derivability of M-types

In Section 3 we defined the type Finalg of final coalgebras of a signature S, and showed that
this type is a proposition (Lemma 5). In this section, we construct an element of Finalg,
which, combined with Lemma 5, proves the following theorem per the remark at the end of
Section 2:

» Theorem 7. The type

Finalg = Z H isContr((C,7) = (X, p))
(X,p)) ((C))

1s contractible.

The construction of the final coalgebra is done in several steps, inspired by a construction
of M-types from W-types in a type theory satisfying Axiom K by Altenkirch et al. [4]. Tts
carrier is defined as the limit of a chain:
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Figure 2 Universal property of L.

» Definition 8. A chain is a pair (X, ) of a family of types X : N — f and a family of
functions 7, : X,,11 — X,,. Here and below we write X,, := X (n) for the nth component of
the family X.

The (homotopy) limit of such a chain is given by the type of “compatible tuples”:
» Definition 9. The limit of the chain (X, ) is given by the type

L= TpTptl = Tp -
> I

(a::H(n:N) X,,) (n:N)

The limit is equipped with projections p,, : L — X, and S, : 7, © pp11 = pn. Sometimes,
we simply write

L =1lim X,
when the maps 7 are clear.

Note that this limit (we drop the adjective “homotopy”) is an instance of the general
construction of homotopy limits by Avigad, Kapulkin, and Lumsdaine [5].

» Lemma 10. The type L satisfies the following universal property: for all types A, we have
an equivalence of types between maps into L and “cones” over X :

A—=L ~ Z H T © faa1 = fn =: Cone(4) .
(f:H(mN) A—X,) (mN)

The equivalence, from left to right, maps a function f: A — L to its projections p, o f, as
shown in Figure 2.

The next lemma is about tuples in cochains, that is, tuples in chains with inverted arrows.
Those tuples are determined by their first element:

» Lemma 11. Let X : N — U be a family of types, and [ : H(n:N) Xn = Xpq1 a family of
functions. Let

Z = Z H Tpg1 = ln(zy) .

@] gy Xo) (251)

Then the projection Z — X is an equivalence.
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Proof. Let G be the functor defined by GY =1+ Y. Fix an element z : Z. Then z and [
together define a G-algebra structure on X, regarded as a fibration over N. Since N is the
homotopy initial algebra of G, the type Sz of algebra sections of X is contractible. But Z is
equivalent to

Z Z (zo = 2) X (H Tntl = ln(xn)> )

(2:X0) (z:H(n:N) Xn)

which is exactly 3_, )5z = Xo. <

» Lemma 12. Let (X,7) be a chain, and let (X', 7") be the shifted chain, defined by
X! = X,11 and ©w), := mq1. Then the two chains have equivalent limits.

Proof. Let L and L’ be the limits of (X, ) and (X', n’), respectively. We have

L (é) Z H Tn+1Yn+1 = Yn

(y:H(n:N) Xnt1) (n:N)

(2) Z Z (7T0y0 = xo) X (H Tn4+1Yn+1 = yn)

(0:X0) (y:H(mN) Xnt1) n:N

E (7T0£L’0 = 1'0) X <H Tn41Tn4+2 = mn+1>

w:H(n:N) Xn el

Z H TnTn4+l = Tn

(x:H(n:N) X,,) (n:N)

12

=

12

D
Lot

1

where (1) and (5) are by definition. Equivalence (2) is given by multiplying with the con-
tractible type Z(IO: Xo) T0Y0 = To [13, Lem. 3.11.8] and subsequent swapping of components
in a direct product. Equivalence (3) is given by joining the first two components, and
similarly in (4) the last two components are joined. <

The next lemma says that polynomial functors (see Definition 2) commute with limits of
chains. Let (A4, B) be a container with associated polynomial functor P = P4 p. Let (X, )
be a chain with limit (L, p). Define the chain (PX, Pr) with PX,, := P(X,,) and likewise
for Pr, and let LY be its limit. The family of maps Pp,, : PL — PX,, determines a function
a:PL— L”.

» Lemma 13. The function « is an isomorphism.
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Proof. By “equational” reasoning we have

L? (g) Z H (P7tp)Wnt1 = Wy

(w:H(n:N) Z(a:A) B(a)—X,) (n:N)

(;) Z Z H (g1, Tn 0 Ung1) = (An, Un)

(a:H(mN) A) (u:H(n:N) B(an)—X,) (n:N)

(g) Z Z Z H (pn)*(ﬂ'n o un+1) = Un

(a:H(n:N) A) (p:H(n:N) App1=0n) (u:H(n:N) B(an)—Xy) (n:N)

(g) Z Z H T O Up41 = Un

(a:4) (U:H(n:N) B(a)—X,) (:N)

(10)

~ Y " Bla) > L
a:A

11
(:) PL

where (6) and (11) are by definition, (7) is by swapping IT and %, (8) by expanding equality
of pairs, (9) by applying Lemma 11 and (10) by universal property of L. Verifying that the
composition of these isomorphisms is « is straightforward. |

Proof of Theorem 7. We now construct a terminal coalgebra for a container (A, B). Let
P = P, p the polynomial functor associated to the container. By recursion on N we define
the chain

1 ! P1 P! P21 P2 p3 P31

which for brevity we call (W, ), that is, W,, := P™1 and 7, := P™\.
Let (L, p) be the limit of (W, ). If L’ is the limit of the shifted chain, we have a sequence
of equivalences

pr 2 B

L
where (12) is given by Lemma 13 and (13) by Lemma 12. We denote this equivalence by
in: PL — L, and its inverse by out : L — PL.

It is worth noting that the construction of L “does not raise the universe level”, i.e., if A
and B are contained in some universe U, then L is contained in I/ as well. In other words,
we only need one universe to carry out our construction of the final coalgebra.

We will now show that (L, out) is a final (A, B)-coalgebra. For this, let (C,~) be any
coalgebra, i.e., v : C — PC. The type of coalgebra morphisms (C,v) = (L, out) is given by

U := Z outo f=Pfory .

f:C—L

We need to show that U is contractible. We compute as follows (see below the math display
for intermediate definitions):

25

TLCA’'15



26 Non-Wellfounded Trees in Homotopy Type Theory

(14)

U~ Y outof=Pfoy

f:C—L

23T outo f = step(s)
f:C—L

(1;) Z inoouto f =inostep(f)
f:C—L

S r=wy
f:C—L

Y ele) = Wlele))
c:Cone

Y o) = e(@(0))
c:Cone

Y=o
c:Cone

2y Y n@=aw

((u,q):Cone) (p:u=2o(u))

2T Y Y pg=aw

(u:Conep) (pru=®Pou) q:Coneju

(23)

t:1
~1

where we use the following definitions: The function stepy- : (C' = Y) — (C — PY) is defined
as stepy (f) ;== Pfoyand ¥ : (C — L) = (C — L) is defined as U(f) := in o step,(f).
The map ® : Cone — Cone is the counterpart of ¥ on the side of cones. We define
D (u, g) = (Pou, P1u(g)) : Cone — Cone with

(<I>0u)0: x»—)tt:C—>1:WO
(Pot)ni1 := stepyy, (un) : C — Wy = PW,

and analogously for ®; on paths. By e we denote the equivalence of Lemma 10 from right
to left, and Cone =3, one,) Coner(u) is short for Cone(C). The equivalence (16) follows
from in being an equivalence, and (17) follows from in and out being inverse to each other.
We pass from maps into L to cones in (18), using the equivalence of Lemma 10, while (19)
uses the commutativity of the following square:

Cone —— (C — L)
@J l\p
Cone —— (C' — L).

In (21), identity in a sigma type is reduced to identity of the components, and in (22) the
components are rearranged. Finally, step (23) consists of two applications of Lemma 11.
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Altogether, this shows that for any coalgebra (C,~), the type of coalgebra morphisms
(C,~) = (L,out) is contractible. This concludes the construction of a final coalgebra for the
(polynomial functor of the) signature (A, B) and thus, combined with Lemma 5, the proof of
Theorem 7. <

From the construction of L we get the following corollary about the homotopy level of
M-types:

» Lemma 14. The homotopy level of the (carrier of the) M-type associated to the signature
(A, B) is bounded by that of the type of nodes A, that is,

isofhlevel,, (A) — isofhlevel,,(M(A, B)) .

» Example 15. We continue the example of streams of Example 6, with A = Ag the
type of nodes. In that case, the chain considered in the proof of Theorem 7 is given by
W, = P*(1) = A", and the map m, : A"*! — A" chops of the (n + 1)th element of any
(n 4 1)-tuple. The limit L is hence given by AY = (N — A). The type of streams over A has
the same homotopy level as the type A of nodes.

We conclude this section with a proof of the principle of coinduction:

» Definition 16 (Bisimulation). Let (C, ) be a coalgebra for some signature S with associated
polynomial functor P and let R : C'— C — U be a binary relation. Define

Ri=>_ Y Ra)b)
(

a:C) (b:C)

along with two projections ﬂlﬁ(a, b,p) := a and W?(a, b,p) :=b.
_An S-bisimulation is a relation R together with a map ax : R — P(R) such that both
7 and 7F are P-coalgebra morphisms:

7TR T
c - R 2 C
| | |
Y aR 0
| | |
P(0O) —— P(R) — P(0O)
P(rT) P(rX)

We say that a bisimulation is an equivalence bisimulation when the underlying relation is an
equivalence relation.

» Lemma 17. The identity relation - = - over an S-coalgebra C' is an equivalence bisimulation.
We write A¢ for —=-.

» Theorem 18 (Coinduction proof principle). Let (L,out) be the final coalgebra for S. For
any bisimulation R over L, we have R C Ay. That is, for any m,m’ : L,

R(m)(m') = m=m'.

Proof. Since (L,out) is the final coalgebra, for any coalgebra (C,+) there exists a unique
coalgebra morphism unfoldc : C' — L. It follows that 7% = unfoldz = 7. Finally, given

! <

r: R(m)(m’), we obtain m = wlﬁ(m,m’, r) = W?(m,ml7’]") —m.
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5 Indexed M-types

In this section, we briefly state the main definitions for indered M-types. The difference to
plain M-types is that the type of nodes of an indexed M-type is actually given by a family of
types, indexed by a type of sorts I.

» Definition 19. An indexed container is given by a quadruple (I, A, B, r) such that I : Y
is a type, ¢ : [+ A(7) : U is a family of types dependent on I, B is a family i : I,a: A(i) b
Bi(a) : U and r specifies the “sort” of the subtrees, i.e., 7 : [T;. 1y [1(4.a0:)) Bila) = 1.

» Definition 20. The polynomial functor P associated to an indexed container (I, A, B, )
is an endofunction on the type I — U:

(Px)(@):= > [ X@ia®) .
(a:A(4)) (b:Bi(a))

The functorial action on morphisms is, analogously to Definition 2, given by postcomposition.

Coalgebras for indexed containers, and their morphisms, are defined completely analo-
gously to Definition 3. Again, we prove that terminal coalgebras for indexed containers exist
uniquely:

» Theorem 21. Let (I, A, B,r) be an indexed container. Then the associated indexed M-type
is uniquely specified and can be constructed in the type theory described in Section 2.

An example of a coinductive type that needs indices to be expressed as an M-type is a
coinductive formulation of equivalence of types, to our knowledge due to T. Altenkirch:

» Example 22. Let I := U XU, and let A : I — U be defined by A(X,Y) = (X - YV)x(Y —
X). Define B as B(X,Y)(f,g) := X xY and (X, Y)(f, 9)(z,y) := (f(z) = y) x (z = g(y))-
Then the associated M-type is a family M : I — U and M (A, B) is equivalent to A ~ B.

6 Formalization

The proofs contained in this paper have been formalised in the proof assistant AGDA in a
self-contained development. The proof has been type-checked by version 2.4.2.2 of AGDA.
The source code as well as HTML documentation can be found on https://github.com/
HoTT/m-types/. The source code is also archived with the arXiv version of this article [2].

The formalised proofs deal with the indexed case (Section 5) directly, but apart from
that, they correspond closely to the informal proofs presented here. In particular, they make
heavy use of the “equational reasoning” technique to prove equivalences between types.

In fact, it is often the case that proving an equivalence between types A and B “directly”,
i.e. by defining functions A — B and B — A, and then proving that they compose to
identities in both directions, is unfeasibly hard, due to the complexity of the terms involved.

However, in most cases, we can construct an equivalence between A and B by composition
of several simple equivalences. Those simple building blocks range from certain ad-hoc
equivalences that make specific use of the features of the two types involved, to very general
and widely applicable “rewriting rules”, like the fact that we can swap a >-type with a
II-type (sometimes called the constructive aziom of choice [13]).

By assembling elementary equivalences, then, we automatically get both a function
A — B and a proof that it is an equivalence. However, sometimes care is needed to ensure
that the resulting function has the desired computational properties.


https://github.com/HoTT/m-types/
https://github.com/HoTT/m-types/
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An important consideration during the formalisation of the proof of Theorem 7 was
keeping the size of the terms reasonably short. For example, in one early attempt, the
innocent-looking term in was being normalised into a term spanning more than 12000 lines.

The explosion in term size was clearly causing performance issues during type-checking,
which resulted in AGDA running out of memory while checking apparently trivial proofs.

We solved this problem by moving certain definitions (like that of in itself) into an abstract
block, thereby preventing AGDA from expanding it at all. Of course, this means that we
lost all the computational properties of certain functions, so we had to abstract out their
computational behaviour in the form of propositional equalities, and manually use them in
the proof of Theorem 7. This work-around is the source of most of the complications in the
formal proof.

7 Conclusion and future work

We have shown how to construct a class of coinductive types from the basic type constructors
and natural numbers in Homotopy Type Theory. Our construction follows a well-known
pattern, that is known to work in type theory with identity reflection rule.

We work in a univalent universe, but we make minimal use of univalence itself: Lemma
5 is the only result that uses it directly, and elsewhere univalence only appears indirectly
through the use of functional extensionality. We intend to make these dependencies more
explicit in future developments of the formalisation.

Finally, the coinductive types we construct do not satisfy the expected computation
rules judgmentally, but only propositionally. This fact would justify adding coinduction as a
primitive rather than a derived notion — provided that judgmental computation rules are
validated by the intended semantics. Those semantic questions are left for future work.
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types, online as well as offline: Thorsten Altenkirch, Steve Awodey, Martin Escardé, Nicolai
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Conservativity of Embeddings
in the AII Calculus Modulo Rewriting
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—— Abstract

The AT calculus can be extended with rewrite rules to embed any functional pure type system.
In this paper, we show that the embedding is conservative by proving a relative form of normal-
ization, thus justifying the use of the AII calculus modulo rewriting as a logical framework for
logics based on pure type systems. This result was previously only proved under the condition
that the target system is normalizing. Our approach does not depend on this condition and
therefore also works when the source system is not normalizing.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases I calculus modulo rewriting, pure type systems, logical framework,
normalization, conservativity
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1 Introduction

The AMI calculus modulo rewriting is a logical framework that extends the AII calculus [10]
with rewrite rules. Through the Curry-de Bruijn-Howard correspondence, it can express
properties and proofs of various logics. Cousineau and Dowek [6] introduced a general
embedding of functional pure type systems (FPTS), a large class of typed A-calculi, in the
AlI calculus modulo rewriting: for any FPTS AS, they constructed the system AII/S using
appropriate rewrite rules, and defined two translation functions | M| and ||A]| that translate
respectively the terms and the types of AS to AIL/S. This embedding is complete, in the
sense preserves typing: if I' Fxg M : A then ||| Fanys [M]| : [|Al|. From the logical
point of view, it preserves provability. The converse property, called conservativity, was
only shown partially: assuming AII/S is strongly normalizing, if there is a term N such that
I Farys N : ||A]| then there is a term M such that I' Fyg M : A.

1.1 Normalization and conservativity

Not much is known about normalization in AII/S. Cousineau and Dowek [6] showed that
the embedding preserves reduction: if M — M’ then |M| —T |M’|. As a consequence, if
AII/S is strongly normalizing (i.e. every well-typed term normalizes) then so is AS, but the
converse might not be true a priori. This was not enough to show the conservativity of the
embedding, so the proof relied on the unproven assumption that AII/S is normalizing. This
result is insufficient if one wants to consider the AII calculus modulo rewriting as a general
logical framework for defining logics and expressing proofs in those logics, as proposed in
[4, 5]. Indeed, if the embedding turns out to be inconsistent then checking proofs in the
logical framework has very little benefit.
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Consider the PTS AHOL that corresponds to higher order logic [1]:

S = Prop, Type, Kind
A = (Prop: Type), (Type : Kind)
R = (Prop, Prop, Prop), (Type, Prop, Prop), (Type, Type, Type)

This PTS is strongly normalizing, and therefore consistent. A polymorphic variant of A\HOL
is specified by U~ = HOL + (Kind, Type, Type). It turns out that AU~ is inconsistent: there
is a term w such that Fyy- w : Ila: Prop. @ and which is not normalizing [1]. We motivate
the need for a proof of conservativity with the following example.

» Example 1. The polymorphic identity function I = Aa:: Type. Az : . x is not well-typed
in AHOL, but it is well-typed in AU~ and so is its type:

Fav- I :Ha:Type.a = «
Fau- Ha:Type.a — a : Type

However, the translation |I| = Aav: urype. Az :1ype . @ is well-typed in AII/ HOL:
Faryaor || o utype. EType @ — EType @

Fanymor o utype. EType 0 — EType @ & Type
It seems that NII/HOL, just like AU ™, allows more functions than AHOL, even though the
type of |I| is not the translation of a AHOL type. Does that make AII/HOL inconsistent?

1.2 Absolute normalization vs relative normalization

One way to answer the question is to prove strong normalization of AII/S by constructing
a model, for example in the algebra of reducibility candidates [9]. Dowek [7] recently con-
structed such a model for the embedding of higher-order logic (AHOL) and of the calculus
of constructions (AC'). However, this technique is still very limited. Indeed, proving such a
result is, by definition, at least as hard as proving the consistency of the original system. It
requires specific knowledge of AS and the construction of such a model can be very involved,
such as for the calculus of constructions with an infinite universe hierarchy (AC*°).

In this paper, we take a different approach and show that AIL/S is conservative in all
cases, even when AS is not normalizing. Instead of showing that AIL/S is strongly normaliz-
ing, we show that it is weakly normalizing relative to AS, meaning that proofs in the target
language can be reduced to proofs in the source language. That way we prove only what
is needed to show conservativity, without having to prove the consistency of AS all over
again. After identifying the main difficulties, we characterize a PTS completion [17, 16] S*
containing S, and define an inverse translation from AII/S to AS*. We then prove that AS*
is a conservative extension of A\S using the reducibility method [18].

1.3 Outline

In Section 2, we recall the theory of pure type systems. In Section 3, we present the
framework of the AII calculus modulo rewriting. In Section 4, we introduce Cousineau and
Dowek’s embedding of functional pure type systems in the AII calculus modulo rewriting.
In Section 5, we prove the conservativity of the embedding using the techniques mentioned
above. In Section 6, we summarize the results and discuss future work. Some long proofs
have been omitted and can be found in the long version of this paper!.

L Available online at arXiv:1504.05038.
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E DECLARATION VARIABLE
MEPTY FhbysA:s x¢l WFys([)  (z:A) el
WFA5(~) WFxs(F,x:A) Fl—,\sl‘:A
SORT Propuct
WFys(T) (s1:82) €A IFkys A: sy T,2: Abyg B : 59 (s1,82,83) ER

Fl—)\s S1 82

ABSTRACTION
I'z:Abyxs M : B I'kysIlz:A. B :s

I'bag Av:A. M :1lx:A. B

r l_)\S IIz:A. B : S3

APPLICATION
F}—,\SM:HJ):A.B Fl—)\sN:A

r FAS MN : B[SC\N]

CONVERSION
I'Fag M: A I'kys B:s

Fl—)\sMZB

AE[}B

Figure 1 Typing rules of AS.

2  Pure type systems

Pure type systems [1] are a general class of typed A-calculi parametrized by a specification.

» Definition 2. A PTS specification is a triple S = (S, A, R) where

S is a set of of symbols called sorts

A C S xS is aset of azioms of the form (s : s2)

R CS xS xS isaset of rules of the form (s, s2, $3)
We write (s1,s2) as a short-hand for the rule (si,s2,s2). The specification S is functional
if the relations A and R are functional, that is (s1,s2) € A and (s1, s5) € A imply s5 = s,
and (s1,82,s3) € R and (s1,82,5%4) € R imply s3 = s4. The specification is full if for all
s1,82 € S, there is a sort s3 such that (s1, s2,53) € R.

» Definition 3. Given a PTS specification S = (S,.4,R) and a countably infinite set of
variables V), the abstract syntax of AS is defined by the following grammar:

(terms) T

(contexts) C ==

S|V|TT|\V:T. T | IV:T.T
|GV T

We use lower case letters x,y, a, 5, ... to denote variables, uppercase letters such as M, N,
A, B, ... to denote terms, and uppercase Greek letters such as I', A, 3, ... to denote contexts.
The set of free variables of a term M is denoted by FV (M). We write A — B for Ilz: A. B
when z ¢ FV (B).

The typing rules of AS are presented in Figure 1. We write ' F M : A instead of
I'Fas M : A when the context is unambiguous. We say that M is a I'-term when WF(T")
and I' = M : A for some A. We say that A is a I'-type when WF(T') and either 'F A : s or
A =sfor some s € S. We write ' - M : A : s as a shorthand for ' M : AANTH A:s.

» Example 4. The following well-known systems can all be expressed as functional pure
type systems using the same set of sorts S = Type, Kind and the same set of axioms A =
(Type : Kind):
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Simply-typed A calculus (A—):

R = (Type, Type)

System F (A2):

R = (Type, Type), (Kind, Type)

AT calculus (AP):

R = (Type, Type), (Type, Kind)

Calculus of constructions (AC):

R = (Type, Type), (Kind, Type), (Type, Kind), (Kind, Kind)

» Example 5. Let I = Aa: Type. Az : a. x be the polymorphic identity function. The term
I is not well-typed in the simply typed A calculus but it is well-typed in the calculus of
constructions A\C":

Fac I :Tla:Type.a — «

The following properties hold for all pure type systems [1].

» Theorem 6 (Correctness of types). IfT'Fyg M : A then WF g(T') and either T'Fys A : s
or A=s for some s €S, i.e. Aisa-type.

The reason why we don’t always have I' Fys A : s is that some sorts do not have an
associated axiom, such as Kind in Example 4, which leads to the following definition.

» Definition 7 (Top-sorts). A sort s € S is called a top-sort when there is no sort s’ € S
such that (s: ') € A.

The following property is useful for proving properties about systems with top-sorts.

» Theorem 8 (Top-sort types). If ' Fys A : s and s is a top-sort then either A = s’ for
some sort ' € S or A=Tlz:B.C for some terms B,C.

» Theorem 9 (Confluence). If M; —5 Mz and My — 7 Ms then there is a term My such
that Mo —>’[§ My and Ms —>Zs My.

» Theorem 10 (Product compatibility). If Iz : A. B = Ilx : A". B’ then A =5 A’ and
B Eg B/.

» Theorem 11 (Subject reduction). IfT'Fyg M : A and M —5 M’ thenT'Fyg M’ : A.
Finally, we state the following property for functional pure type systems.

» Theorem 12 (Uniqueness of types). Let S be a functional specification. IfT'Fyg M : A
and I' -yg M : B then A =g B.

In the rest of the paper, all the pure type systems we will consider will be functional.

3 The AII calculus modulo rewriting

The AT calculus, also known as LF and as AP, is one of the simplest forms of A calculus with
dependent types, and corresponds through the Curry-de Bruijn-Howard correspondence to
a minimal first-order logic of higher-order terms. As mentioned in Example 4, it can be
defined as the functional pure type system AP with the following specification:

S = Type,Kind

A = Type:Kind
R = (Type, Type), (Type, Kind)
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E DECLARATION VARIABLE
MPTY Thayy A:s  o¢xT WF\p/(I)  (z:A)€x,T
WFm(+) WEF (T, 2 : A) gz A
SORT ProbucT
WEF i/ (I) (s1:82)€ A Iy A:sy Iyz:Ab\n/ B: sy (s1,82,83) €ER
Fl_AH/ S1 1 82 F")\H/ HLUZA.3283
ABSTRACTION APPLICATION
Fx:Abypy M : B I'bypy Hx:A.B:s Fbyny M :1lz:A.B Fbxny N: A
[hFamy Av:A.M :Tlx:A. B I'Fany M N : Blx\N]
CONVERSION
F")\H/MZA F")\H/BZS AEﬁRB
Fl_)\n/ M : B

Figure 2 Typing rules of AIl/(3, R).

The AT calculus modulo rewriting extends the AII calculus with rewrite rules. By equat-
ing terms modulo a set of rewrite rules R in addition to « and § equivalence, it can type more
terms using the conversion rule, and therefore express theories that are more complex. The
calculus can be seen as a variant of Martin-Lof’s logical framework [13, 11] where equalities
are expressed as rewrite rules.

We recall that a rewrite rule is a triple [A] M ~~ N where A is a context and M, N are
terms such that FV (N) C FV (M). A set of rewrite rules R induces a reduction relation on
terms, written — g, defined as the smallest contextual closure such that if [A] M ~ N € R
then o(M) — g o(N) for any substitution o of the variables in A. We define the relation
—gRr a8 —3 U — R, the relation =g as the smallest congruence containing — g, and
the relation =gg as the smallest congruence containing —gg.

» Definition 13. A rewrite rule [A] M ~» N is well-typed in a context 3 when there is a
term A such that X, A g M : Aand X, A b g N : A.

» Definition 14. Let ¥ be a well-formed AIl context and R a set of rewrite rules that
are well-typed in X. The M calculus modulo (3, R), written AII/(X, R), is defined with the
same syntax as the AII calculus, but with the typing rules of Figure 2. We write AIl/ instead
of MI/(X, R) when the context is unambiguous.

» Example 15. Let X be the context
a:Type,c:a, f:a— Type

and R be the following rewrite rule
[]fe~Iy:a. fy— fy

Then the term

d=MXr:fcxcx

35

TLCA’'15



36

Conservativity of Embeddings in the AIT Calculus Modulo Rewriting

is well-typed in AII/(3, R):

l_)\H/(E,R) d: fC-} fC

Note that the term d would not be well-typed without the rewrite rule, even if we replace
all the occurrences of fcin § by Ily:a. fy — fy.

The system AII is a pure type system and therefore enjoys all the properties mentioned in
Section 2. The behavior of AII/ (X, R) however depends on the choice of (X, R). In particular,
some properties analogous to those of pure type systems depend on the confluence of the
relation — gg.

» Theorem 16 (Correctness of types). IfI' by M : A then WF i/ (T') and either T’ yp
A : s for some s € {Type, Kind} or A = Kind.

» Theorem 17 (Top-sort types). If 'y A : Kind then either A = Type or A =1lx:B.C
Jor some terms B,C such that T',z : By C : Kind.

Assuming — g is confluent, the following properties hold [3].

» Theorem 18 (Product compatibility). If Iz : A. B =g Iz : A'. B’ then A =gr A’ and
B =8R B’

» Theorem 19 (Subject reduction). IfI'Fyy M : A and M —%p M’ then Ty, M’ : A.

» Theorem 20 (Uniqueness of types). If 'y M : A and T' -y M : B then A =gr B.

4 Embedding FPTS’s in the AII calculus modulo

In this section, we present the embedding of functional pure type systems in the AII calculus
modulo rewriting as introduced by Cousineau and Dowek [6]. In this embedding, sorts are
represented as universes d la Tarski, as introduced by Martin-Lof [12] and later developed
by Luo [11] and Palmgren [14]. The embedding is done in two steps. First, given a pure
type system AS, we construct AIl/S by giving an appropriate signature and rewrite system.
Second, we define a translation from the terms and types of AS to the terms and types of
AMI/S. The proofs of the theorems in this section can be found in the original paper [6].

» Definition 21 (The system AII/S). Consider a functional pure type system specified by
S =(S,A,R). Define Xg to be the well-formed context containing the declarations:

ug : Type VseS
€s:ug — Type Vs €S
S1: Us, Vsy:s0€ A

Trsysgss  Lits, . (85, 0 = Usy) = sy,  V(81,82,83) €ER
Let Rg be the well-typed rewrite system containing the rules
[] €5y 51 ~ s,
for all s1 : s5 € A, and
[As s055] Ess (Tsys0s5 AB) ~ (g5, A). €5, (Bx)

for all (s1,$2,83) € R, where Ag g5, = (A1 ug,, B : (€5, @ = us,)). The system AI/S is
defined as the AII calculus modulo (Xg, Rg), that is, AII/(Zs, Rs).
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» Theorem 22 (Confluence). The relation —gg is confluent.

The translation is composed of two functions, one from the terms of AS to the terms of
AII/S, the other from the types of AS to the types of AIT/S.

» Definition 23. The translation | M| of I'-terms and the translation || Al of I-types are
mutually defined as follows.

slp. = 8
lzlp = @
IM Nl = |M|p [N
|A]JAM|F = )\-r”A”F |M|F,1:A
Mz:A. Blp = g8 [Alp Az:||A]lp- |B|F,I:A)

where I' = A : 51
and I'x : A+ B : s
and (s1,52,83) € R

Isllp = s
|Tz: A. B| Iz || Allp - [|Bllp pa
|Alp = &5 |Alp whereT'H- A:s

Note that this definition is redundant but it is well-defined up to =gp. In particular, because
some ['-types are also I'-terms, there are two ways to translate them, but they are equivalent:

€55 51 =BR lUs
esy [Hz: A Blp =pr Ha:||Allp. [|Bllp 4.4

This definition is naturally extended to well-formed contexts as follows.

=
T,z - Al 1Tl = [[Allp

» Example 24. The polymorphic identity function of the Calculus of constructions AC is
translated as

[I] = Aa: utype. AT EType . T
and its type A = Ila:: Type. @ — « is translated as:
|A[ = TKind, Type, Type Type (Aa:urype. [Aal)
where A, = o — « and
[Aa] = 7 Type, Type, Type @ (AT EType O EType @)
The identity function applied to itself is translated as:
[LAI| = 1] |A] |1]

The embedding is complete, in the sense that all the typing relations of AS are preserved
by the translation.

» Theorem 25 (Completeness). For any context T' and terms M and A, if T Fhg M : A
then |T[| Fanys [M]p : [|Allp-
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5 Conservativity

In this section, we prove the converse of the completeness property. One could attempt to
prove that if [|T'|| Fam/s |[M]p : ||All then I =xg M : A. However, that would be too weak
because the translation |M | is only defined for well-typed terms. A second attempt would
be to define inverse translations ¢(M) and 1 (A) and prove that if ' Fyg/g M : A then
P(T) Fas @(M) : p(A), but that would not work either because not all terms and types of
AII/S correspond to valid terms and types of AS, as was shown in Example 1. Therefore
the property that we want to prove is: if there is a term N such that ||I'[| Farm/s N : [|A]lp
then there is a term M such that T' - g M : A.

The main difficulty is that some of these external terms can be involved in witnessing
valid AS types, as illustrated by the following example.

» Example 26. Consider the context nat : Type. Even though the polymorphic identity
function I and its type are not well-typed in AHOL, they can be used in AMII/HOL to
construct a witness for nat — nat.

nat : utype Fariyror (1| nat) @ (etype nat — eype nat)

We can normalize the term |I| nat to Az : eype nat. x which is a term that corresponds to
a valid AHOL term: it is the translation of the term Az : nat.z. However, as discussed
previously, we cannot restrict ourselves to normal terms because we do not know if AII/S is
normalizing.

To prove conservativity, we will therefore need to address the following issues:

1. The system AII/S can type more terms than AS.

2. These terms can be used to construct proofs for the translation of AS types.

3. The AII/S terms that inhabit the translation of AS types can be reduced to the transla-
tion of AS' terms.

We will proceed as follows. First, we will eliminate S-redexes at the level of Kind by reducing

AMI/S to a subset \XII7/S. Then, we will extend AS to a minimal completion AS* that

can type more terms than AS, and show that AII~/S corresponds to AS* using inverse

translations (M) and ¥ (A). Finally, we will show that AS* terms inhabiting \S types can

be reduced to AS terms. The procedure is summarized in the following diagram.

AI/S —>(Lem;a 2T/
A

(Theorem 25) |M] : ||A]| (M) |(A) (Lemma 39)

(Lemma 47)
As < Lemma Ay g

5.1 Eliminating (3-redexes at the level of Kind

In MII/S, we can have S-redexes at the level of Kind such as (Ax:A.us) M. These redexes
are artificial and are never generated by the forward translation of any PTS. We show here
that they can always be safely eliminated.

» Definition 27. A T-term M of type C is at the level of Kind (resp. Type) if ' - C : Kind
(resp. T'F C : Type). We define AIT~ /S terms as the subset of well-typed AII/S terms that
do not contain any Kind-level g-redexes.
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» Lemma 28. For any MI/S context I' and I'-term M, there is a A\II~ /S term M~ such
that M —75 M~.

Proof. Reducing a Kind-level S-redex (Az : A. B) N does not create other Kind-level (-
redexes because N is at the level of Type. Indeed, in the AII calculus modulo rewriting the
only Kind rule is (Type, Kind, Kind). Therefore N : A : Type. If N reduces to a A-abstraction
then the only redexes it can create are at the level of Type. Therefore, the number of Kind-
level B-redexes strictly decreases, so any Kind-level S-reduction strategy will terminate. <

» Example 29. The term
I = Mo umype. AT eType (AB:uType. B) @). &
is in A" /HOL. The term

I = Ao utype. AT (AB: UType. EType B) ). &

is not in AII~ /HOL but
Iy —3 A UType. AT ETypet. T

which is in AII- /HOL.

5.2 Minimal completion

To simplify our reducibility proof in the next section, we will translate AII/S back to a pure
type system, but since it cannot be A\S we will define a slightly larger PTS called AS* that
contains A\S and that will be easier to manipulate than AI/S.

The reason we need a larger PTS is that we have types that do not have a type, such
as top-sorts because there is no associated axiom. Similarly, we can sometimes prove I', z :
A Fys M : B but cannot abstract over x because there is no associated product rule.
Completions of pure type systems were originally introduced by Severi [17, 16] to address
these issues by injecting AS into a larger pure type system.

» Definition 30 (Completion [16]). A specification S’ = (§’, A, R’) is a completion of S if
1. SCS ACA, RCR/, and

2. for all sorts s; € S, there is a sort so € S’ such that (s; : s9) € A’, and

3. for all sorts s1,s2 € &, there is a sort s3 € S’ such that (s1, s2,83) € R'.

Notice that all the top-sorts of AS are typable in AS’ and that AS’ is full, meaning that all
products are typable. These two properties reflect exactly the discrepancy between AS and
A~ /S. Not all completions are conservative though, so we define the following completion.

» Definition 31 (Minimal completion). We define the minimal completion of S, written S*,
to be the following specification:

S = Su{r}

A* = AU{(s1:7) |51 €8,Ps2,(s1:52) € A}

R* = RU{(s1,82,7) | 51,82 € S*, Ps3, (s1,52,83) € R}
where 7 ¢ S.
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We add a new top-sort 7 and axioms s : 7 for all previous top-sorts s, and complete the rules
to obtain a PTS full. The new system is a completion by Definition 30 and it is minimal in
the sense that we generically added the smallest number of sorts, axioms, and rules so that
the result is guaranteed to be conservative. Any well-typed term of AS is also well-typed in
AS*, but just like A\II~ /S, this system allows more functions than \S.

» Example 32. The polymorphic identity function is well-typed in AHOL*.

Fagor I : lla:Type.a — «

Fagor- Ha:Type.ao — @ 7

Next, we define inverse translations that translate the terms and types of AIl”/S to the
terms and types of AS™*.

» Definition 33 (Inverse translations). The inverse translation of terms ¢ (M) and the inverse
translation of types ¥(A) are mutually defined as follows.

e(s) = s
O(Tsy8585) = Aa:s1. AB:i(a— s9).llz:a. Sz
o) = =
e(MN) = @(M)p(N)
oAz A M) = dz:p(A). o(M)
Ylus) = s
Y(es M) = o(M)
Y([z:A.B) = Ilz:¢(A).¢(B)

Note that this is only a partial definition, but it is total for AII~ /S terms. In particular, it
is an inverse of the forward translation in the following sense.

» Lemma 34. For any I'-term M and T-type A,
1. 90(|M|1") E/B M7
2. P(||Allp) =5 A

Proof. By induction on M or A. We show the product case where M = Ilx: A. B. By
induction hypothesis, ¢(|A|) =3 A and ¢(|B|) = B. Therefore

e(IM]) = (A AB Iz a. Bz) o(|A]) (Az. (| B]))
—5  1lz:p(|A]). o(|B])
=3 IIz:A.B

Next we show that the inverse translations preserve typing.

» Lemma 35.
L. o(M[z\N]) = o(M)[z\¢(N)]
2. ¢Y(A[z\N]) = »(A)[z\p(N)]

Proof. By induction on M or A. We show the product case A = Ily: B.C. Without loss of
generality, y # x and y ¢ N and y & ¢(N). Then IIy: B. C[z\N] = Iy : B[z\N]. C[z\N].
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By induction hypothesis, ¥ (B[z\N]) = ¥(B)[z\¢(N)] and ¥ (C[z\N]) = ¥(C)[z\p(N)].
Therefore

Y(A[z\N]) = Ily:¢(B)[z\o(N)]. (O)[z\p(N)]
= Iz:9(B). Y(C)[z\p(N)]
= Y(Ilz:B.O)[x\p(N)]
|
» Lemma 36.

1. If M — g N then (M) —7% @(N)
2. If A —ppr B then ¢(A) —} ¥(B)

Proof. By induction on M or A. We show the base cases.
Case M = (Ax:A;. My) N1, N = Mi[z\N1]. Then (M) = (Ax:¢(A1). o(M1)) p(N1).
Therefore (M) — 5 p(M7)[z\@(N1)] which is equal to ¢(M;[z\N1]) by Lemma 35.
Case A =€, 5, B=wus. Then ¢(A) = s =(B).
Case A = e, (Trs 5055 A1 B1), B=1lz:e,, Ay.e5, (Brx). Then

v(4) = (Aa.ABIlz:a. B ) o(Ar) o(Br)
—5 Haip(dr).o(Br)x
= Y(Mx:Ay. By )

|
» Lemma 37.
1. If M =gg N then o(M) =3 @(N)
2. IfA =B8R B then 1/}(14) =8 1/)(B)
Proof. Follows from Lemma 36. |

Because the forward translation of contexts does not introduce any type variable, we define
the following restriction on contexts.

» Definition 38 (Object context). We say that I' is an object context if I' Fy/g A : Type
forallz : AeT. IfI' = (z1 : A1,...,2, : Ay,) is an object context, we define ¢(I") as

(.’L'l : w(Al), N IS ¢(An))

» Lemma 39. For any NI~ /S object context T' and terms M, A:

1. IfWF)\H/S(F) then WF,\S* (’L/)(F))

2. IfF l_)\H/S M:A: Type then w(l“) l_)\Sx (p(M) : w(A)

3. If ' Fanys A : Type then ¢(T') Fas- (A) : s for some sort s € S*.

Proof. By induction on the derivation. The details of the proof can be found in the long
version of this paper. |

5.3 Reduction to \S

In order to show that AS* is a conservative extension of AS, we prove that S-reduction at the
level of 7 terminates. A straightforward proof by induction would fail because contracting
a 1-level -redex can create other such redexes. To solve this, we adapt Tait’s reducibility
method [18]. The idea is to strengthen the induction hypothesis of the proof by defining a
predicate by induction on the type of the term.
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» Definition 40. The predicate T g M : A is defined as WF g(T') and T'Fyg- M : A : s
for some sort s and:
if s#7or A= forsome s’ € SthenI'Eg M 1 Aiff M — % M’ and A — 3 A’ for
some M', A’ such that I' Fyg M’ : A’,
if s =7and A =1z:B.C for some B,C then I' g M : A iff for all N such that
IF'EsN:B,T'Eg MN:C[z\N].
Note that recursive definition covers all cases thanks to Theorem 8. To show that it is
well-founded, we define the following measure of A.

» Definition 41. If WFg(T') and I Fyg~ A : s then H.(A) is defined as:

H-(A) = 0 ifs#7
H-(s) = 0 ifs=r
H,(Mz:B.C) = 1+ max(H(B)+H-(C)) ifs=r

» Lemma 42. IfT,x: BbFyg- C: 7 and ' g« N : B then H,(C[z\N]) = H.(C).
Proof. By induction on C. <
» Corollary 43. Definition 40 is well-founded.

Proof. The measure H,(A) strictly decreases in the definition. <

The predicate we defined is compatible with S-equivalence.
> Lemma 44, IfT=s M : Aand T Fyg- M’ : A and M =3 M’ thenT =g M’ : A.

Proof. By induction on the height of A.
If s# 7 or A= ¢ for some s’ € S then M —% M" and A —7% A’ for some M", A’
such that I' -yg M" : A". By confluence and subject reduction, M’ —7% M" such that
T l—,\g M A
If s =7 and A = Iz : B.C for some B,C then for all N such that T' g N : B,
I' =s MN : C[z\N]. By induction hypothesis, I' =g M’'N : C[z\N]. Therefore
F'Esg M :1lz:B.C. <

> Lemma 45. IfT s M : A andThyg- At s and A=p A" thenT =g M : A'.

Proof. By induction on the height of A.

If s # 7 or A=sfor some s’ € S then M —% M’ and A — A" for some M’, A"
such that T' Fyg M’ : A”. By conversion, I' Fyg- M : A’, so by subject reduction
T kg« M’ : A’". By confluence, subject reduction, and conversion, A’ —% A" such
that T' l—)\s M’ A",

If s =7 and A = Iz : B.C for some B,C then for all N such that I' g N : B,
I' Es M N : C[z\N]. By product compatibility, A" = Iz : B’.C" such that B =3 B’
and C' =4 C’. By induction hypothesis, I' =g M N : C'[z\N]. Therefore I’ =g M : Ix:
B'.C". |

We extend the definition of the inductive predicate to contexts and substitutions before
proving the main general lemma.

» Definition 46. If WF,s-(T'), WF,5(I"), and o is a substitution for the variables of T,
then IV =g 0 : I when IV =g o(x) : 0(A) for all (x: A) €T
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» Lemma 47. IfT F g+ M : A : s then for any context T and substitution o such that
WF\s(I") and TV g o : T, TV Eg o(M) : o(A).

Proof. By induction on the derivation of I" Fyg« M : A. The details of the proof can be
found in the long version of this paper. |

» Corollary 48. Suppose WFg(I') and either I' Fasg A : s or A = s for some s € S. If
['Fage M : A then M —7 M’ such that T'Fyxg M’ : A.

Proof. Taking o as the identity substitution, there are terms M’ and A’ such that M —5
M’ and A —% A'and T Fyg M’ : A'. If A= s € S then A’ = s and we are done. Otherwise
by conversion we get I' Fyg M’ : A. <

We now have all the tools to prove the main theorem.

» Theorem 49 (Conservativity). For any T'-type A of \S, if there is a term N such that
ITI| Fanys N - ||Allp then there is a term M such that T'Fxs M : A.

Proof. By Lemma 28, there is a AIl" /S term N~ such that N —5 N7. By subject
reduction, ||| Fxiys N7 ¢ ||A]|p. By Lemmas 39 and 34, ' Fyg- (N ™) : A. By Corollary
48, there is a term M such that (N 7) —>;§ M and T'yg M : A. |

6 Conclusion

We have shown that AIT/S is conservative even when AS is not normalizing. Even though
AMI/S can construct more functions than AS, it preserves the semantics of AS. This effect
is similar to various conservative extensions of pure type systems such as pure type systems
with definitions [17], pure type systems without the II-condition [16], or predicative (ML)
polymorphism [15]. Inconsistency in pure type systems usually does not come from the
ability to type more functions, but from the possible impredicativity caused by assigning a
sort to the type of these functions. It is clear that no such effect arises in AII/S because
there is no constant 7, 5,5, associated to the type of illegal abstractions.

One could ask whether the techniques we used are adequate. While the construction
of AS* is not absolutely necessary, we feel that it simplifies the proof and that it helps
us better understand the behavior of AII/S by reflecting it back into a pure type system.
The relative normalization steps of Section 5.3 correspond to the normalization of a simply
typed A calculus. Therefore, it is not surprising that we had to use Tait’s reducibility
method. However, our proof can be simplified in some cases. A PTS is complete when it is
a completion of itself. In that case, the construction of S* is unnecessary. The translations
©(M) and (A) translate directly into AS, and Section 5.3 can be omitted. This is the case
for example for the calculus of constructions with infinite type hierarchy (AC'°) [17], which
is the basis for proof assistants such as Coq and Matita.

The results of this paper can be extended in several directions. They could be adapted
to show the conservativity of other embeddings, such as that of the calculus of inductive
constructions (CIC) [4]. They also indirectly imply that AII/S is weakly normalizing when
AS is weakly normalizing because the image of a AS term is normalizing [6]. The strong
normalization of AII/S when AS is strongly normalizing is still an open problem. The
Barendregt-Geuvers-Klop conjecture states that any weakly normalizing PTS is also strongly
normalizing [8]. There is evidence that this conjecture is true [2], in which case we hope that
its proof could be adapted to prove the strong normalization of AII/S. Weak normalization
could also be used as an intermediary step for constructing models by induction on types in
order to prove strong normalization.
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—— Abstract
We provide a categorical framework for models of a type theory that has special types for physical
quantities. The types are indexed by the physical dimensions that they involve. Fibrations are
used to organize this index structure in the models of the type theory. We develop some informat-
ive models of this type theory: firstly, a model based on group actions, which captures invariance
under scaling, and secondly, a way of constructing new models using relational parametricity.
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1 Introduction

This paper is about semantic models of programs that manipulate physical quantities.
Physical quantities are organized into dimensions, such as Length or Time. A fundamental
principle is that it is not meaningful to add or compare quantities of different dimensions,
but they can be multiplied. To measure a physical quantity we use units, such as metres for
length and seconds for time. We understand these units as chosen constant quantities of
given dimensions.

Here is a simple polymorphic program that is defined for all dimensions; it takes a
quantity = of a given dimension X, and returns its double, which has the same dimension.

f = (AX. Az : Quantity(X).x + z) : VX. Quantity(X) — Quantity(X) (1)
To illustrate, we can use the polymorphic function f to double a length of 5 metres.
frLengtn (M) = 10m : Quantity(Length) (2)

There are a few key points that are worth emphasising about examples (1) and (2) above:
There are two kinds of variable, X and z. The first variable X stands for a dimension
whereas x stands for an inhabitant of a type. To emphasise this distinction, we use
different abstraction symbols (A and A) for the two kinds of variable.

The type Quantity(X) depends on a dimension X, and it is inhabited by quantities of
that dimension. For example, the standard unit of measurement for length, the metre, is
a quantity of that dimension, i.e. a constant m : Quantity(Length).

Several authors have developed programming languages with type systems that support
physical quantities [8, 12, 17, 10, 6]. The type systems are often motivated as static analyses
that help to prevent disasters by accommodating dimensions. For example, the Mars Climate
Orbiter was lost as a result of a unit mismatch in the software [13].
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Our starting point in this paper is the work of Kennedy [10] who developed techniques
for reasoning about these kinds of programs. However, we take a different approach by
developing a general categorical notion of model for a programming language of this form,
and by developing ways of building models. The main contributions of this paper are:

1. We provide a general notion of a model for a programming language with physical
dimension types by introducing the concept of a AD-model (Section 3). The basic idea
is that for each context of dimension variables, there is a model of the simply typed
A-calculus extended with types of quantities of the dimensions definable in the context
(Quantity(D) etc.). Moreover these models of the simply typed A-calculus are related
by substituting for dimension variables, and this also defines a universal property for
polymorphic quantification over dimension variables.

2. An important example of a AD-model is built from group actions (Example 9). A
difficulty with set-theoretic models of dimension polymorphism is as follows: how does
one understand Quantity(X) as a set, if the dimension X is not specified and we have
no fixed units of measure for X? We resolve this by interpreting Quantity(X) as the set
of magnitudes, i.e. positive real numbers, thought of as quantities of some unspecified
unit of measure, but then by equipping Quantity(X) with an action of the scaling group,
to explain how to change the units of measure. We can then ask that any function
Quantity(X) — Quantity(X) is invariant under changing that unspecified unit of measure,
more precisely, invariant under scaling.

3. We show how the AD-model built from group actions supports a diverse range of
parametricity-like theorems, without the need to define a separate relational semantics
(Section 4). This results in simple proofs of theorems that would otherwise require more
heavy machinery.

4. We explore the relationship between the parametricity-like theorems of the AD-model
built from group actions, and a natural notion of a relational model (Section 5). Formally,
we show that when interpreting the syntax these two notions coincide.

2 Types with Physical Dimensions

We begin by recalling a simple type theory, which we call AD, indexed by dimensions based
on Kennedy’s work [10]. Within this type theory we can express programs such as (1) and
(2). Since there are two kinds of variable, we have two kinds of context.

Dimensions and Dimension Contexts. A dimension context A is a finite list of distinct
dimension variables. A dimension-expression-in-context A F D dim is a monomial D in the
variables A. More precisely, if A = X1,..., X, and k; € Z then A F Xfl . XFEn dim. We
can make the set {D | A+ D dim} an Abelian group under addition of exponents, and indeed
this is the free Abelian group on A. This universal property gives a notion of substitution
on dimension expressions. For example, X, Z I (XZY?’)[(XZQ)/y} = X576 dim.

Types. Well-formed types are given by judgements of the form A F T type where A is a
dimension context. The judgements are generated by the following rules.

AF Ddim A, X FT type AFTtype AFU type
A F Quantity(D) type AFVX.T type AFT — U type
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AFTtype AF U type AFTtype AF U type
A F 1 type AFT xU type A F 0 type AT+ U type

Notice that we do not have System-F-style polymorphism, but instead dimension poly-
morphism: types can be parameterised by dimensions, but they cannot be parameterised
by types, since we do no have type variables. From the Curry-Howard perspective this is a
first-order-logic where the domain of discourse is the theory of Abelian groups and where
there is a single atomic predicate, Quantity.

Terms and Typing Contexts. Well-formed typing contexts are given by judgements A +
I" ctx where A is a dimension context, I' is of the form zq:T%,...,z, : T, and there is
a well-formed typing judgement A F T; type for every i. Well-formed terms are given by
judgements A;I' + ¢ : T where there is a well-formed typing context A F I' ctx and a
well-formed type A F T type. The rules for the type formers 1, _ x _,0, _+ _and _ — _
are the usual ones from simply typed A-calculus.

AFT,TVctx AFTtype AFTctx (op:T) € Ops

AT o : T\ TVkx: T A;TFop: T
AT e THE:U ATHE:T—-U AThHu:T
ATHE Xzt : T —>U AT Htu:U
AFT ctx A:THt Ty AT Eity Ty AT HE: Ty x Ty
AT ()1 AT (ty,te) 2 Ty x Ty AT Eopri(t) : T
A;THE:0 AFRT type AT HE: T,
A;TF casetof {} : T AT Rinjt Ty + T

A,FFtT1+T2 (A,F,xlTZFUZU)lE{12}

A;T F casetof {inj; 21 — wuy;injy o — ug} : U

In addition, we have the introduction and elimination rules for quantification over a dimension
variable.
AXTHE:T AFDdim AT HE:VX.T
A THAXE:VXT A;THtp: T[D/X]

We use Bool as an abbreviation for 1 + 1. Our calculus is parameterised by a collection
Ops of primitive operation typings (op : Top) where for each primitive operation op : Top,
its type Top is closed (i.e., F Top type). An example set of primitive operations includes
dimension-polymorphic arithmetic and test operations on quantities:

Ops = (+ : VX.Quantity(X) x Quantity(X) — Quantity(X),
x : VX1.VX5.Quantity(X7) x Quantity(X2) — Quantity(X; - X2), 1: Quantity(1),
inv : VX .Quantity(X) — Quantity(X 1),
< : VX .Quantity(X) x Quantity(X) — Bool).

One could also define a type of signed/zero quantities Real(X) := Quantity(X) + 1 +
Quantity(X), and then extend the language with further arithmetic term constants such as
signed addition + : VX .Real(X) x Real(X) — Real(X).

To write terms that make use of common sets of dimensions and units, we judge terms
in a context (Agim,lunits). For example, Ay = (Length, Time) and Typis = (m :
Quantity(Length), ft : Quantity(Length), s : Quantity( Time)).
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3 Categorical Semantics of Dimension Types

Next up we give a general categorical semantics for the AD type theory. Central to this is
the notion of a A\V-fibration.

» Definition 1. A \V-fibration is a bicartesian closed fibration with simple products.

It is well-known that AV-fibrations give a categorical model of the fragment of first-order
logic without existential quantifiers. Nevertheless, we briefly introduce the basic notions now,
since they are central to our development. We refer to Jacobs [9] for the full details.

A fibration p : £ — B is a functor between categories satisfying certain conditions. These
conditions (along with the structure in Definition 2) allow us to model the AD type theory.
The basic idea is that dimension contexts will be interpreted as objects in a category B. For
each B € B, we consider the fibre £, i.e. the subcategory of £ with objects E € £ for which
p(E) = B. The objects of £ will be used to interpret types in dimension context B, and the
morphisms in £g will be used to interpret terms. We can substitute dimension expressions
for dimension variables, and this substitution will be interpreted using morphisms in B.
Since p is a fibration, one can form a reindexing functor f* : g — Ep for each morphism
f: B — B’ in B, which describes substitution for dimension variables in types and terms.

A fibration is said to be bicartesian closed if £p is a Cartesian closed category with
coproducts for all B, and each reindexing functor f* : £ — Ep preserves products,
exponentials and coproducts. This bicartesian closed structure is needed to interpret the
product, function and coproduct types.

Concatenation of dimension contexts will be interpreted using products in the category B.
The reindexing functors 7* : £ — Epxpr for the product projections 7 : B x B — B
correspond to context-weakening. A fibration p : £ — B is said to have simple products if
B has products and the reindexing functors for the product projections have right adjoints
V: Epxp — Ep that are compatible with reindexing (‘Beck-Chevalley’). A fibration is said
to have products if this condition holds for all morphisms in the base, not just projections.
These right adjoints are needed to interpret universal quantification of dimension variables
in types.

» Definition 2. A AD-model (p, G, Q) is a AV-fibration p : £ — B, an Abelian group object
G in B, and an object @ in the fibre &g.

Recall that an Abelian group object in a category B with products is given by an object
G together with mapse: 1 —- G, m: G x G — G and i : G — G satisfying the laws of
Abelian groups. This group structure is needed to interpret dimension expressions: for each
vector of n integers we have a morphism G" — G.

An equivalent way to define Abelian group objects if B has chosen products is as follows.
Recall that the Lawvere theory for Abelian groups is the category La, whose objects are
natural numbers, and where a morphism m — n is an m X n matrix of integers. Composition
of morphisms is given by matrix multiplication, and categorical products are given by
arithmetic addition of natural numbers. An Abelian group object in B is an object G of B
together with a strictly-product-preserving functor F : Lap — B such that F(1) = G.

We remark that the object () in a AD-model is analogous to the generic object in a model
of System F.

In order to ascertain the value of Definition 2, we now do three things: i) we show that a
AD-model in fact does provide categorical models of dimension types, ii) we give examples of
AD-models, and iii) we prove theorems that show the viability of reasoning at this level of
abstraction.
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3.1 Modelling Dimension Types

To show that AD-models provide a categorical semantics for dimension types, we must
show how to interpret the syntax given in Section 2 in any given AD-model. We will use
the A\V-fibration to separate the indexing information (the dimensions) from the indexed
information (the types and terms). This means that the base category of the fibration will be
used to interpret dimension contexts, and types and terms will be interpreted as objects and
morphisms in the fibres above the dimension contexts in which they are defined. Bicartesian
closure of the fibres will allow us to inductively interpret types built from 1, x, 0, + and
—, and we will take the standard approach in categorical logic to interpret quantification
of dimensions by using right adjoints. Finally, since dimension expressions for a dimension
context are defined as elements of the free Abelian group on that dimension context, we will
use the Abelian group object structure to interpret such expressions. Formally, we interpret
the syntax as follows.

Dimension contexts A = Xy,..., X, are interpreted as the product of the Abelian group
object [A] = G™ in B.

Dimension expressions A F D dim are interpreted as morphisms G — G in the base B,
by using the structure of the Abelian group object G. For example, [X,Y F X - Y 1] =
GxGU Gx G ™G

Well-formed types A - T type are interpreted as objects [T in the fibre above [A], defined
by induction on the structure of 7. We interpret 1, x, + and — using the bicartesian
closed structure of the fibres, and quantification of a dimension variable [A F VX.T7] is

defined by right adjoint to reindexing along the projection 7 : [A + T, X]| — [A F T7.

Quantities Quantity(D) are interpreted by reindexing the object () along the interpretation
of D, i.e. [A F Quantity(D)] = [A F D dim]*(Q).

Well-formed typing contexts A - I" ctx are interpreted as products in the fibre above [A],
ie. [Abzy:Th,...,zn T =[AFTY] x ... x [AFT,].

Well-formed terms A;T' ¢ : T are interpreted as morphisms [¢] : [I'] — [T] in the fibre
above [A]. We assume that there is an interpretation Jop] : 1 — [T7] for each primitive
operation (op : T') € Ops.

In this paper we have only considered universal quantification of units but existential
quantification can be given just as easily. Existential quantification is interpreted as the
left adjoint to reindexing along a projection. Properties of existential quantification can be
proven by dualising the relevant proofs of properties about universal quantification.

Care is needed to ensure that the denotational semantics properly respects substitution.

This can be done either by requiring that the fibrations are split, or by adding explicit
coercions to the language [5]. All the examples of fibrations in this paper are split.

3.2 First Examples of AD-Models

We now give some examples of AD-models. We begin by noting that in Kennedy’s paper [10],
a simpler approach is taken to the semantics of dimensions: the dimensions are simply thrown
away in a dimension-erasure semantics. From the categorical perspective, this means that
the calculus is stripped of its fibred structure leaving only a simply typed A-calculus which
Kennedy models, as is to be expected, within a Cartesian closed category. In particular, he

chooses the Cartesian closed category of complete partial orders which he needs for recursion.

Nevertheless, Kennedy’s model can be viewed as a AD-model.
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» Example 3 (Dimension-Erasure Models). Let C be a bicartesian closed category. Then the
functor C — 1 is a AV-fibration. The unique object of 1 is a trivial Abelian group object.
By taking C to be the category of complete partial orders and continuous functions, and by
choosing the flat pointed cpo Q to interpret Quantity we obtain a model corresponding to
Kennedy’s dimension-erasure model. This model supports a plethora of primitive operations,
including all the standard arithmetical ones. However, the model also contains many functions
which are not dimensionally invariant, i.e. they do not scale appropriately under change of
units — Kennedy uses relational parametricity [15] to remove these unwanted elements; we
will come back to his relational model in Section 5.

» Example 4 (Syntactical Models). We can construct a AV-fibration C£(AD) from the syntax
in a standard way. The base category B is the Lawvere theory of Abelian groups Lap. The
fibre C4(A\D),, over n is the category whose objects are types with n dimension variables,
and whose morphisms are terms in context, modulo a standard notion of conversion. The
object 1 in Lap, is an Abelian group object, and (C4(AD) — Lap, 1, (X F Quantity(X) type))
is a AD-model.

» Example 5 (The Dimension-Indexed Families Model). Let Fam(Set) be the category whose
objects are pairs (I, {X;}icr) of a set I and an I-indexed family of sets {X;}ic;. A morphism
(I, {X:}ier) = (J,{Y;};cs) is a pair (f,{¢:}icr) where f is a function f : I — J and ¢;
is a function ¢; : X; — Yy(;) for all ¢ € I. It is well known that the forgetful functor
(I,{Xi}ier) = I : Fam(Set) — Set, taking a family to its index set, is a AV-fibration (see
e.g. Jacobs [9, Lemma 1.9.5]). For any given set B of fundamental dimensions (e.g. Length,
Time, Mass etc.), let G be the free Abelian group on B. Suppose that we also have a set Qg
of quantities for each dimension d € G (for instance, we can choose Q; = Rt x {d} where d
is a unit of measure for the dimension d, e.g. Length = m, Time =s, d-d = d - d’ etc). We
then have a AD-model with Quantity interpreted as (G, {Q4}dca)-

In this model, a dimension expression X1i,...,X,, = D dim is interpreted as a function
G"™ — G using the free Abelian group structure on G: for each valuation of the dimension
variables as physical dimensions, we have an interpretation of the expression as a physical
dimension. A type with a free dimension variable X F T type is interpreted as a family of
sets, indexed by the dimensions in G. Similarly a term with a free dimension variable is
interpreted as a family of functions, one for each dimension in G. This model does support
many primitive operations, but it does not support dimension invariant polymorphism. For
instance, the model supports adding a term eq : VX;.V.X5.Bool which tests whether two
dimensions are the same, which is clearly not invariant under change of representation.

Related examples include the relations fibration Rel — Set and the subobject fibration
Sub(Set) — Set. This example can also be generalised to the fibration Fam(C) — Set, which
is a AV-fibration if C is bicartesian closed.

A Source of Fibrations with Simple Products

We next look at a particular class of AD models, where the fibres in the AV-fibration are
functors. We prove a general theorem for such fibrations, and instantiate it to construct
several examples. We first introduce some notation. Let S be a category (typically S = Set),
and consider the category Cat//S. The objects are pairs (C, P : C — S), where C is a small
category and P : C — S a functor. Morphisms (F, ¢) : (C, P) — (D, Q) are pairs of a functor
F : C — D and a natural transformation ¢ : P — @ o F'. The obvious projection functor
(C,P) — C:Cat//S — Cat is a fibration. The fibre over a small category C is the category
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S¢ of functors [C — S] and natural transformations between them. Reindexing is given by
precomposition of functors.

» Theorem 6. If S has all small limits then the fibration Cat//S — Cat has simple products.

This result appears to be fairly well-known folklore (see e.g. Lawvere [11, end of §3],
Melliés and Zeilberger [14]), but since it is important in what follows we sketch a proof.

Proof Sketch. For any functor F : C — D, the reindexing functor F* : S? — S¢ has a
right adjoint F, : S¢ — SP, known as the ‘right Kan extension along F’, which always
exists when S has limits. For simple products, we are only interested in a right adjoint to
weakening, i.e. in the functor Ve : S¢*P — S¢ which is the right Kan extension along along
the projection functor ¢ : C X D — C. Expanding the definitions, we see that Ve (P) : C — S
is a point-wise limit:
P = lim P .

(Ve P)(c) = lim P(c, d) (3)
The Beck-Chevalley condition requires that the canonical map F*Ver — Ve (F X idp)* is a
natural isomorphism for all functors F : C — C’. Indeed, for any P:C xD — S, c € C:

(F*(Yer P))(e) = (Ve P)(F(c)) = lim(F(c), d) = lim(((F x idp)™(P))(c, d))

deD
= (Ve ((F x idp)*(P))(c) . |

A Source of Models by Change of Base

In general, a useful way of building fibrations is by changing the base. If p : £ — B is
a fibration, and F' : A — B is a functor, then the pullback of p along F' in Cat, denoted
F*p: F*E€ — A, is again a fibration. The same is true of AD-models.

» Theorem 7. Let p: & — B be a fibration, and let F : A — B be a functor.
(i) If p has simple products and F preserves products, then F*p : F*E — A has simple
products.
(ii) If p is bicartesian closed then F*p: F*E — A is bicartesian closed.
(iii) If G is an Abelian group object in A and (p,F(G),Q) is a AD-model, then also
(F*p,G,(G,Q)) is a AD-model.

Proof. For item (i): for any A € A, reindexing along a projection m, : A x A’ — Ain A is
by construction reindexing along F'(7,) in B, which (as F' preserves finite products) is the
same as reindexing along a projection 7., : FA x FA" — F A, which has a right adjoint and
satisfies the Beck-Chevalley condition, since p has simple products.

For item (ii): F™*p is a bicartesian closed fibration since each fibre (F*&) , is by construction
of the form £r4 and hence bicartesian closed, and reindexing by f in A is by construction
defined to be reindexing by F'f in B, which preserves the structure.

Item (iii) is an immediate corollary. <

For a simple illustration of the change of base result, notice that the dimension-erasure
fibration C — 1 arises from pulling back the families fibration Fam(C) — Set along the unique
product-preserving functor 1 — Set.

» Example 8 (Models over the Lawvere theory Lap). Let (p: € — B, G, Q) be a AD-model.

Recall that the Abelian group object G in B gives rise to a unique product-preserving functor
F : Lap — B such that F(1) = G. By Theorem 7, we have a AD-model (F*p, 1, (1,Q)).
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» Example 9 (A Model Built from Group Actions). Let G be a group. Recall that a G-set
consists of a set A together with a group action, i.e. a function -4 : G x A — A such that
e-aa=aand (gh)-aa=g-4(h-aa). The category Grp//Set has as objects pairs (G, A) where
G is a group and A is a G-set. A morphism (G, A) — (H, B) in Grp//Set is given by a group
homomorphism ¢ : G — H and a function f : A — B such that for any g € G and a € A we
have f(g-a a) = (¢g) -B (fa). Let Grp be the category of groups and homomorphisms. We
call the forgetful functor p : Grp//Set — Grp the Grp//Set fibration.

» Proposition 10. Let G be an Abelian group, and let Q be a G-set. Then (p : Grp//Set —
Grp, G, Q) is a AD-model.

Proof. For any group H, the fibre above H is the category of H-sets and equivariant functions.
This is isomorphic to the the functor category Set”, where we consider the group H as
a category with one object * and a morphism for each element of H. Indeed, there is a
product-preserving, full and faithful functor Grp — Cat, taking a group to the corresponding
one-object category. The fibration Grp//Set — Grp is thus the pullback of the fibration
Cat//Set — Cat along this embedding Grp — Cat. Thus, by Theorem 6 and Theorem 7(i),
Grp//Set — Grp has simple products.

Each fibre is bicartesian closed. Products and coproducts are inherited from Set. For the
function space, let A and B be G-sets; then the set of functions (A — B) is also a G-set,
with action given by (g-a—p) f)(z) =g'B (f(g=t-a2)). It follows that reindexing preserves
the bicartesian closed structure. (This is not the case more generally for Cat//Set — Cat, so
Theorem 7(ii) does not apply.) Finally, an Abelian group object in Grp is the same thing as
an Abelian group. Hence (p, G, Q) is a AD-model. <

In the Grp//Set fibration, the Abelian group G can be thought of as a group of scaling
factors, and the G-set @ is a set of quantities together with a scaling action. For instance,
let Q =G = (RT, x, 1), the positive reals. We model a type with a free dimension variable
X F T type as a G-set. A term with a free dimension variable is interpreted as a function
that is invariant under G. We explore this model in more detail in Section 4.

The Grp//Set model supports several primitive operations, which we discuss after The-
orem 13.

More generally, instead of having sets and group actions, we also have AD-models built
from actions of groupoids.

» Example 11 (A Model Built from Groupoid Actions). Recall that a groupoid is a small
category C where every morphism is an isomorphism, and that a functor C — Set is called
a groupoid action (or presheaf). The category Gpd//Set has as objects pairs (A, ¢) where
A is a groupoid and ¢ : A — Set is a functor. A morphism (A, ¢) — (B,1) in Gpd//Set is
given by a functor F': A — B and a natural transformation 7 : ¢ — 1 o F' between functors
A — Set. Let Gpd be the category of groupoids and functors. Then the forgetful functor
Gpd//Set — Gpd, which we call the Gpd//Set fibration, is a AV-fibration, and the proof of
this is very similar to the proof in Example 9.

On theme with this subsection, the Gpd//Set fibration is related to the other fibrations
by change of base:

The families fibration Fam(Set) — Set from Example 5 arises from pulling back the

groupoid action fibration Gpd//Set — Gpd along the discrete-groupoid-functor Set — Gpd.

The group action fibration Grp//Set — Grp from Example 9 arises from pulling back the

groupoid action fibration Gpd//Set — Gpd along the functor Grp — Gpd that regards

each group as a groupoid with one object.
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We now discuss AD-models in Gpd//Set. Let f : G — H be a homomorphism of Abelian
groups. This induces a groupoid whose objects are the elements of H, and where the hom-sets
are mor(h,h') ={g € G | f(g) -m h = h'}. The group operation in G provides composition
of morphisms. This groupoid can be given the structure of an Abelian group object in Gpd,
and, moreover, every Abelian group in Gpd arises in this way [3].

We have already seen that the Gpd//Set fibration subsumes the families and group actions
fibrations. It also subsumes them as AD-models. To recover group actions (Example 9), let
G be an Abelian group of scale factors. The Abelian group object induced by the unique
homomorphism G — 1 is a one-object groupoid, and hence we build the AD-models of group
actions. To recover the families example (Example 5), fix a set of dimension constants and
let H be the free Abelian group on that set. The unique homomorphism 1 — H induces the

discrete groupoid whose objects are H, and hence we build the AD-models of families of sets.

4 Group Actions and Dimension Types

In this section we will look in greater detail at the AD-model given by the Grp//Set fibration.

It turns out that many interesting theorems can be proven in this model, and so to aid us in
this task we first concretely spell out the reindexing and simple product structure.

Given a group G, we write G (with a different font) for the corresponding one-element
category, which has morphisms given by elements of G and composition given by group
multiplication. Suppose that ¢ : G — Set is a G-set (considered as a functor). We write
|¢| == ¢(x) for the underlying carrier set of ¢. Reindexing along 7 : G X H — G yields the
G x H-set given by ¢ o 7. In other words, 7*¢ is a G x H-set with the same underlying
carrier |7*@| = |¢| as the G-set ¢, and action given by (g,h)- ., v =g, .

Now suppose that ¢ : G x H — Set is a G X H-set. According to Theorem 6 (equation (3)),
the underlying set of V1 is given by |V 9| = limyey ¥(*,y). By the universal property of
limits,

lim (%, ) = Set (1, lim ¥(x,y)) = [#, Set] (K1, 9(x, _)) ,
hence |V 9| ={y € |¢| | Yh € H . (ea,h) -y y = y}, and the action is given by g v 4 =
(g,em) -y . Notice that to give the group action of V1, we had to make a particular choice
of an element in H, namely the identity element er. However, any element of H would have
given the same result, since for all y € |V,

(gah’) Y = ((gaeH)(eGah)) WY = (g7eH) ‘Y ((eGah) K y) = (97€H> W Y-

Many of the properties of dimension types that Kennedy proves using parametricity can
be shown to hold in the Grp//Set-fibration, without having to define a separate relational
semantics and this is the content of Theorems 13-18. Before we formally state and prove
these we introduce a substitution lemma, which holds in any model.

» Lemma 12 (Substitution Lemma). Suppose that A, X T type and that A + D dim denotes
a dimension expression. Then [T[D/X]] = (idjay, [D])*[T]-

Proof. By induction on the structure of T |

Explicitly, Lemma 12 says that the semantics of substituting a dimension expression for
a dimension variable is given by reindexing along the identity paired with the dimension
expression. Since reindexing is given by precomposition we have that

(idgap, [PD*IT] = [T](dgay, [DD)
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i.e., substitution of the n” dimension variable is given by precomposition at the n** com-
ponent.

For the rest of this section, we will use semantic brackets [ _] to refer only to the Grp//Set
interpretation.

» Theorem 13. Suppose that X1,...,X,, X = S, T type. Then

[[VX.S — T]| £ (G, Set]([S] (%, - -, %, _), [T]Gxy -y %, _))

n times n times

Proof. By the Kan extension formula and Yoneda. <

This theorem says that in the Grp//Set model a universally quantified variable over an
arrow type can be considered as a natural transformation between the domain and codomain
of the arrow type, with the first n components fixed. In other words, it is interpreted as the
set of functions that are equivariant in the last argument.

In particular, if X;...X, F S,T type then the type (VX.S — T) is interpreted as the
set of all homomorphisms [G", Set]([S], [T]). We use this fact to conclude that the group
actions model supports several primitive operations. For any ¢ € (), we can accommodate a
term constant ¢ : Quantity(1), which is interpreted by [¢] = ¢. When Q = G, we can also
accommodate a term constant for multiplication

x : VX.VY. Quantity(X) x Quantity(Y) — Quantity(X - Y)

which is interpreted as the group operation. When Q = G = (R, x, 1), the positive reals, we
also have addition, + : VX. Quantity(X) x Quantity(X) — Quantity(X), which is equivariant
since q(r + s) = qr + gs.

» Theorem 14. Suppose that A, X + T type. Then |[VX.Quantity(X) — T]| = |[T[1/X]].
Proof. By Theorem 13, Lemma 12 and Yoneda. |

We now prove some theorems about the Grp//Set fibration that are parametricity results in
Kennedy’s original paper. The proofs here involve applications of Lemma 12, Theorem 13 and
Theorem 14. First, we take a look at the interplay between scaling factors and polymorphic
functions.

» Theorem 15 (Scaling Factors). Suppose Agim; Dunits F t : VX.Quantity(X) —
Quantity(X™), where n € N. Then for all g € G and x € |[Quantity(X)]|, we have [t](g-z) =
g" - [t]x.

Proof. We know from Theorem 13 that [¢] € [G, Set]([Quantity(X)], [Quantity(X™)]). In
other words, [t](g-x) = g™ - [t]z for all z € |[Quantity(X)]|, as required. <

This theorem tells us that polymorphic functions are invariant under scaling. Intuitively we
see that scaling factors must be changed in an appropriately polymorphic way. If we apply
Theorem 14 to the type VX.Quantity(X) — Quantity(X™), we see that

[[VX.Quantity(X) — Quantity(X")]| = |[Quantity(1™)]] = |[Quantity(1)]| = Q,

Putting @ = G, we conclude that all the terms of type VX.Quantity(X) — Quantity(X™) are
of the form AX. \g: Quantity(X). r x ¢" for r € G.

» Theorem 16. There is no ground term -t : VX.Quantity(X?) — Quantity(X)., i.e., we
cannot write a polymorphic square root function.
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Proof. To see this we exhibit a model where the existence of such a term is impossible. Con-
sider the AD-model (p : Grp//Set — Grp, Zs, Z>) where the Abelian group Zs = ({—1,1},-,1)
is used to interpret both dimensions and units. Theorem 13 says that the interpretation of
the type VX.Quantity(X?) — Quantity(X) is given by

|[VX.Quantity(X?) — Quantity(X)]| = [Za, Set]([Quantity(X?)], [Quantity(X)])

i.e. any element f of |[VX.Quantity(X?) — Quantity(X)]|, satisfies for all g,z € Zo

flg® 2) =g (fz) (%)

If f exists, then either f(—1) = —1 or f(—1) = 1, but both lead to contradictions. To this
end suppose that f(—1) = —1, then by () we have f((—=1)%-—1) = (=1) - f(—1), which is a
contradiction since the left-hand side is equal to —1 and the right-hand side is equal to 1.
A similar argument shows that f(—1) = 1 is also not possible, and hence there exists no
such f. <

This result can be extended to also include terms ¢ using primitive operations Ops, as
long as these operations can be interpreted in the model in question. For example, the result
holds in the presence of multiplication

x : VX.VY. Quantity(X) x Quantity(Y) — Quantity(X - Y).

However, this model does not support a polymorphic zero constant 0 : VX. Quantity(X), as
such a primitive would of course gives rise to a trivial counterexample to the theorem.

Next, we can prove a theorem that relates a dimensionally invariant function to a
dimensionless one. This is a simplified version of the Buckingham Pi Theorem of dimensional
analysis [4] (for a more modern introduction, see Sonin [16]).

» Theorem 17. We have a bijection
[[VX.Quantity(X) x Quantity(X) — Quantity(1)]| = |[Quantity(1) — Quantity(1)]|
Proof. This is a consequence of Theorem 14, after currying. |

We finish this section with another uninhabitedness result, this time about a higher order
type.

» Theorem 18. There is no term
Ft:VX1.VX2.(Quantity(X;) — Quantity(X2)) — Quantity(X; - X3) .

Proof. Choose G and @ to be Z,. Interpreting the type of ¢, we have

[VX1.VXs5.(Quantity(X;) — Quantity(X2)) — Quantity(X; - X2)]
= {t S (ZQ-)ZQ)—)ZQ ‘
V91,92 € Lo, [ La—Za. (9192) - (H(f)) = t(A\q € Za. g2 - (f(91 ' - @)}
Hence for any ¢ € [VX;1.VX5.(Quantity(X;) — Quantity(Xs)) — Quantity(X; - X2)], instanti-
ating f =idg we get that (g1g2) - (t(idg)) =t(A\g € Z3. g2 - (g7* - q)) for all g; and go, but
this is not possible. If g1 =1 and go = —1, then the equation reduces to —1-t(idg) = t(idg),
which is a contradiction since t(idg) € Zo = {—1,1}. <

Again, the result can be extended to terms that use a set of primitive operations Ops, as
long as all primitive operations in Ops can be interpreted in the model used in the proof.
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5 Relational Models

In Section 4 we pointed out that many of the results that we proved in the Grp//Set AD-model
are results that Kennedy [10] proves using parametricity. It is curious how the parametricity-
style proofs in the Grp//Set AD-model are simple and slick and do not require a separate
relational semantics. One cannot help but wonder, is the Grp//Set AD-model really as good
as having full-blown parametricity at one’s finger tips?

To answer this question we look at a general method of attaching a (fibrational) logic
to a AD-model to give a notion of a relational AD-model. This allows us to reconstruct
Kennedy’s relational parametricity in our setting (Example 21), as well as to talk about a
relational version of the Grp//Set AD-model (Example 22).

To begin this section, we first recall a theorem about the composition of fibred structure.

» Theorem 19. Suppose thatp : A — B and q : B — C are fibrations

and let v : A — C denote the composite q o p (hence u is also a A p B
fibration). Suppose further that q has simple products. For any

projection map () : q(B) X Y — q(B) in C, denote the Cartesian g
morphism in B above it by 71'2 g i ™°B — B. Then u has simple 3

products that are preserved by p if and only if for any projection map
m:q(B) xY — q(B) in C, the functor (WE(B))* Ap — A ., has ¢
right adjoints for all B € B, satisfying the Beck-Chevalley condition.

Proof. This theorem is proven by using the factorisation and lifting properties of the 2-
category Fib as outlined by Hermida [7]. Though the proof is not too difficult, it does require
2-categorical technology, which we do not introduce here. Hence, we leave the proof as an
exercise for the 2-category-savvy reader. <

We now put this theorem to use. Given a AD-model ¢ : A — £ and F* (5)_|

a logic p : £ — B, there is a natural way to glue them together to
provide a relational semantics. F*p p

» Theorem 20. Let (¢: A— L, G, Qo) be a \D-model, F : A — Ba A
product preserving functor and p : £ — B a bicartesian closed fibration
with products. Consider the pullback of p along F', and let Qg denote
an object in the fibre Ep(q,). Then (qo F*p: F*E = L,G,(Qo, QRr))
is a AD-model.

Proof. Clearly G is an Abelian group object in £, and (Qo, Q) is in the fibre (F*E),. To
check that q o F*p is a bicartesian closed fibration is a simple exercise. Finally, since p has
all products, so does F*p. Hence, g o F*p has simple products by Theorem 19. <

Next, we look at an example that uses Theorem 20 to generate Kennedy’s original
relationally parametric model of dimension types [10] from essentially the dimension-erasure
model back in Example 3.

» Example 21. Let G be an Abelian group. Then using the notation from Theorem 20, let
L be the Lawvere theory of Abelian groups Lap, A be the category Lap, X Set, ¢ : Lap X Set —
Lap be the fibration given by the first projection, and p : Sub(Set) — Set be the subset
fibration. Define F' : La, x Set — Set to be the product preserving functor defined on objects
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(n,X) € Lap X Set by F(n,X) = G™ x X x X, and on morphisms (f,g) : (n, X) = (m,Y)

by F(f,9) = (G’,g,g). Finally, let Qo = G, and Qr = {(9,91,92) | 991 = g2} € G x G x G.

In this model, each type A F T is interpreted as a triple (JA|, [T]o, [T]+) € Lab X Set x
Sub(Set), where [T], C G™ x [T], % [T]o. Spelling this out explicitly, we have the following
interpretations, which are equivalent to Kennedy’s original relationally parametric model for
dimension types:

[A F Quantity(D)] = (|A], G, {(g,91,92) | ([Plg)g1 = g2})

[AFT xU] = (AL [T]o x [Ulo,
{(gv (tlvul)v (t27u2)) | (gvtlth) € [[Tﬂrv (gvulvUQ) € [[UHT})
[A-T+U] = (AL [T]o + [UTo,

{(g,inj t,inj; ) | (9,,1') € [T]:}
U {(ga in.j2 u, inj2 u/) | (g7u7u/) € [[U]]T})

[AFT - U] = (AL [T]o = [Ulos
{(g, f1, fo) | Vt1,t2. (g, t1,t2) € [T = (g, fity, fata) € [U],})
[AFVX.T] = (1AL [T]o, {(g: t1,t2) | V9" € G. ((9,9'), t1,t2) € [T]})

Note that in the interpretation of VX. T', the “carrier” (i.e., the second component) is exactly
the carrier of the interpretation of T'.

We can also apply Theorem 20 to obtain a natural relational model for the Grp//Set
AD-model (Example 9).

» Example 22. As before, let G be an Abelian group and £ be the Lawvere theory of
Abelian groups Lap. Let g : A — Lap be the pullback of the fibration Grp//Set — Grp along
the unique product-preserving functor M : La, — Grp with M (1) = G, as in Example 8, so
that the objects of A are triples (n, X, ¢) with (X, ¢) a G™-set. Let p : Sub(Set) — Set be
the subset fibration. Define F': A — Set to be the product preserving functor defined on
objects by F(n,X,¢) = G™ x X x X and on morphisms (f,«) : (n, X,¢) — (m,Y,9) by
F(f,a) = (a, f, f). Finally, we let Qo = (G, ¢), where ¢ denotes group multiplication, and
Qr=1{(9,91.92) | 991 = 92} C G x G xG.

Then each type A T is again interpreted as a triple (|A|, [T]o, [T]+) € Lab X Sub(Set),
with [T], € G™ x [T], % [T]o. The only difference between the interpretation of types in
this example and Example 21 is the second component of the interpretation of dimension
quantification:

[AFVX. T]. = (AL {t € |[[T]-] | Vg € G. ((eqia1, 9),t,t) € [T].},
{(g;t1,t2) | V9" € G. ((9,9), t1,t2) € [T]+})

This interpretation, in contrast to the interpretation in Example 21, has “cut-down” the
carrier of the interpretation of V-types to only include the “parametric” elements. As a
consequence, this interpretation satisfies an analogue of the Identity Extension lemma from
relationally parametric models of System F [15].

» Proposition 23. For all type interpretations (|A|, [T]o, [T]-), we have:
Vay,x9 € [T]o. (e,21,22) € [T], & x1 = a2

Compare this to the identity extension property for System F models, which states that if we
instantiate the relational interpretation of a type with the equality relation for all of its free
variables, then the resulting relation is the equality relation. In the current setting, equality
relations for the free variables are replaced by the unit element of the groups G2l. Indeed,
this model is equivalent to the restriction to one-dimensional scalings of the reflexive graph
model for System Fw with geometric symmetries presented by Atkey [1].
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We end this discussion of relational models by showing the relationships between the
models in Examples 21 and 22 and the Grp//Set model we considered in detail in Section 4.
By construction, the carriers of the interpretations of each type in the model in Example 22
and the Grp//Set model are identical. Moreover, the relational interpretation in Example 22
and the group action in the Grp//Set model are related as follows.

» Theorem 24. For all types A = T type, if the interpretation of T in the model of Example
22 is (|A], A, P C G!2l x A x A) and the Grp//Set model interpretation is (G™, A, %)), then
(9,a1,a2) € P gy a1 = az.

Proof. By induction on the derivation of A + T type. <

Using Theorem 24, we can see that we could have used the relationally parametric model
to derive the results in Section 4. There is literally no difference between the two models for
the purposes of interpreting the types of our calculus.

We can also relate the relationally parametric model from Example 22 to the dimension-
erasure semantics in Example 3. By constructing a logical relation between the two models,
we can show:

» Theorem 25. For any closed term = t : Bool, the interpretation of t in the dimension-
erasure model of Example 8 is equal to the interpretation of t in the relationally parametric
model of Example 22.

By the compositionality of both interpretations, this theorem means that if we can show
that two open terms s and ¢ are equal in the model of Example 22 (and equivalently, the
Grp//Set model), then they will be contextually equivalent for the dimension erasure model.

It remains to discuss the relationship between Kennedy’s original relational model (Ex-
ample 21), and the relational model in Example 22 that satisfies the identity extension
property. As noted above, the difference between these interpretations lies in the semantics
of the V-type. Kennedy’s model does not restrict the carrier of the interpretation to just
the “parametric” elements, i.e., the elements that preserve all relations. Therefore, the
interpretations of types that contain nested Vs are not directly comparable. We might expect
that we could observe a difference between the two models when proving statements about
terms whose types contain negatively nested V-types. However, Kennedy’s original work
does not present any results involving terms with such types, and we have not found any
natural examples. This is in contrast with the situation with relationally parametric models
of System F, where the proof that final coalgebras can be represented crucially relies on the
restriction of the interpretation of quantified types to the parametric elements [2].

Therefore, our Grp//Set model and the equivalent relational model in Example 22 prac-
tically coincides with Kennedy’s original model, but offer the advantage of not requiring a
separate relational semantics to prove important theorems. This in many cases makes proofs
of these theorems clearer. Additionally, the Grp//Set model offers an interpretation that
directly links the semantics to symmetry.

6 Concluding Remarks

To conclude, we have studied a typed A-calculus with polymorphism over physical dimensions,
which we called AD (Section 2) and we have developed a model theory for the calculus. Under
the Curry-Howard correspondence, the AD-calculus is a fragment of first-order logic where the
domain of discourse is an unspecified Abelian group, and so our notion of model (Definition 2)
is based on the standard fibrational techniques in categorical logic.
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One particular model turned out to be particularly straightforward and yet informative
— the model based on group actions (Example 9). Of course, automorphisms and group
actions play a key role in the classical model theory of first order logic, but in this paper
we have shown that these techniques are also useful on the other side of the Curry-Howard
correspondence. Many arguments about the AD-calculus, including type isomorphisms and
definability arguments, can be made in this model (Section 4).

Parametricity is most often studied using relational techniques, and in this paper we have
developed a method for building relational AD-models (Theorem 20). Using this method we
were able to reconstruct two particular relational models: a relational model due to Kennedy
(Example 21, [10]) and a restriction of a relational model due to Atkey (Example 22, [1]).
Although the group-actions model is different in style, we showed (formally) that it is actually
closely related to the two relational models (Theorems 24 and 25).
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MALL Proof Equivalence is Logspace-Complete,
via Binary Decision Diagrams
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—— Abstract

Proof equivalence in a logic is the problem of deciding whether two proofs are equivalent modulo
a set of permutation of rules that reflects the commutative conversions of its cut-elimination
procedure. As such, it is related to the question of proofnets: finding canonical representatives
of equivalence classes of proofs that have good computational properties. It can also be seen as
the word problem for the notion of free category corresponding to the logic.

It has been recently shown that proof equivalence in MLL (the multiplicative with units
fragment of linear logic) is Pspace-complete, which rules out any low-complexity notion of proofnet
for this particular logic.

Since it is another fragment of linear logic for which attempts to define a fully satisfactory
low-complexity notion of proofnet have not been successful so far, we study proof equivalence in
MALL (multiplicative-additive without units fragment of linear logic) and discover a situation
that is totally different from the MLL case. Indeed, we show that proof equivalence in MALL
corresponds (under ACy reductions) to equivalence of binary decision diagrams, a data structure
widely used to represent and analyze Boolean functions efficiently.

We show these two equivalent problems to be Logspace-complete. If this technically leaves
open the possibility for a complete solution to the question of proofnets for MALL, the established
relation with binary decision diagrams actually suggests a negative solution to this problem.
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1 Introduction

Proofnets: from commutative conversions to canonicity

From the perspective of the Curry-Howard (or propositions—as—types) correspondence [5}, a
proof of A = B in a logic enjoying a cut-elimination procedure can be seen as a program
that inputs (through the cut rule) a proof of A and outputs a cut-free proof of B.

Coming from this dynamic point of view, linear logic [6] makes apparent the distinction
between data that can or cannot be copied /erased via its exponential modalities and retains
the symmetry of classical logic: the linear negation (-)* is an involutive operation. The study
of cut-elimination is easier in this setting thanks to the linearity constraint. However, in its
sequent calculus presentation, the cut-elimination procedure of linear logic still suffers from
the common flaw of these type of calculi: commutative conversions.
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(m) (m) )y ()
A*,B*,C,D,T A*,B*,C,D,T A B
T o {w) (V) i I —y)
A*% B*,C,D,T A B —  A*®B*,C,D,T A®B
A 9B .CeDT .  A@B " C,D,T cu

cut o ——

C%D,T C%D,T

In the above reduction, one of the two formulas related by the cut rule is introduced
deeper in the proof, making it impossible to perform an actual elimination step right away:
one needs first to permute the rules in order to be able to go on.

This type of step is called a commutative conversion and their presence complexify a lot
the study of the cut-elimination procedure, as one needs to work modulo an equivalence
relation on proofs that is not orientable into a rewriting procedure in an obvious way: there
are for instance situations of the form

(m1) (m2) (m1) (m3)
A*, B*, T Acut (m3) A*, B*, T B (m3)
FB*,T B F AT A
FT FT

where it is not possible to favor one side of the equivalence without further non-local knowledge

of the proof. The point here is that, as a language for describing proofs, sequent calculus is
somewhat too explicit. For instance, the fact that the two proofs

(m) (m)

A.B,C.D.T A.B.C.D.T
AspoDpr° ™ B eeDr”
A9B.CoD.T AgB.CoD.T "

are different objects from the point of view of sequent calculus generates the first commutative
conversion we saw above.

A possible solution to this issue is to look for more intrinsic description of proofs, to find
a language that is more synthetic; if possible to the point where we have no commutative
conversions to perform anymore.

Introduced at the same time as linear logic, the theory of proofnets [6, 7] partially
addresses this issue. The basic idea is to describe proofs as graphs rather than trees, where
application of logical rules become local graph construction, thus erasing some inessential
sequential informations. Indeed, the two proofs above would translate into the same proofnet:

A B C D

AeB Cw»D T

(where R, is the proofnet translation of the rest of the proof) and the corresponding
commutative conversion disappears.

For the multiplicative without units fragment of linear logic (MLL), proofnets yield an
entirely satisfactory solution to the problem, and constitute a low-complexity canonical
representation of proofs based on local operations on graphs.

By canonical, we mean here that two proofs are equivalent modulo the permutations of
rules induced by the commutative conversions if and only if they have the same proofnet
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translation. From a categorical perspective, this means that proofnets constitute a syntactical
presentation of the free semi-*-autonomous category and a solution to the associated word
problem [10].

Contrastingly, the linear logic community has struggled to extend the notion of proofnets
to wider fragment: even the question of MLL (that is, MLL plus the multiplicative units)
could not find a satisfactory answer. A recent result [9] helps to understand this situation:
proof equivalence of MLL is actually a Pspace-complete problem. Hence, there is no hope for
a satisfactory notion of low-complexity proofnet for this fragment?.

In this article, we consider the same question, but in the case of MALL: the multiplicative-
additive without units fragment of linear logic. Indeed, this fragment has so far also resisted
the attempts to build a notion of proofnet that at the same time characterizes proof
equivalence and has basic operations of tractable complexity: we have either canonical nets of
exponential size [13] or tractable nets that are not canonical [7]. Therefore, it would have not
been too surprising to have a similar result of completeness for some untractable complexity
class. An obvious candidate in that respect would be coNP: as we will see, one of these two
approaches to proofnets for MALL is related to Boolean formulas, which equivalence problem
is coNP-complete.

It turns out in the end that this is not the case: our investigation concludes that the
equivalence problem in MALL is Logspace-complete under AC, reductions. But maybe more
importantly, we uncover in the course of the proof an unexpected connexion of this theoretical
problem with a very practical issue: indeed we show that MALL proofs are closely related to
binary decision diagrams.

Binary decision diagrams

The problem of the representation of Boolean functions is of central importance in circuit
design and has a large range of practical applications. Over the years, binary decision
diagrams (BDD) [2] became the most widely used data structure to treat this question.

Roughly speaking, a BDD is a binary tree with nodes labeled by Boolean variables and
leaves labeled by values 0 and 1. Such a tree represents a Boolean function in the sense that
once an assignment of the variable is chosen, then following the left or right path at each
node according to the value 0 or 1 chosen for its variable eventually leads to a leave, which is
the output of the function.

This representation has many advantages which justify its popularity [15]: most basic
operations (negation and other logical connectives) on BDD can be implemented efficiently,
in many practical cases the size of the BDD representing a Boolean function remains compact
(thanks to the possibility to have shared subtrees) and once a variable ordering is chosen
they enjoy a notion of normal form.

In this article, we consider both BDD and ordered BDD with no sharing of subtrees and
write them as special kinds of Boolean functions by introducing an IfThenElse constructor.
However, when manipulating them from a complexity point of view we will keep the binary
tree presentation in mind.

L Of course, this applies only to the standard formulation of units: the equivalence problem for any
notion of multiplicative units enjoying less permutations of rules could potentially still be tractable
via proofnets: see for instance the work of S. Guerrini and A. Masini [8] and D. Hughes [11].
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AC, reductions

To show that a problem is complete for some complexity class C, one needs to specify the
notion of reduction functions considered, and of course this needs to be a class of functions

supposed to be smaller than C itself (indeed any problem in C is complete under C reductions).

A standard notion of reduction for the class Logspace is (uniform) ACy reduction [3],
formally defined in terms of uniform circuits of fixed depth and unbounded fan-in. We will
not be getting in the details about this complexity class and, as we will consider only graph
transformations, we will rely on the following intuitive principle: if a graph transformation
locally replaces each vertex by a bounded number of vertices and the replacement depends
only on the vertex considered and eventually its direct neighbors, then the transformation
is in ACy. Typical examples of such a transformation are certain simple cases of so-called
“gadget” reductions used in complexity theory to prove hardness results.

Outline of the paper

Section 2 covers some background material on MALL and notions of proofnet for this
fragment: monomial proofnets and the associated vocabulary for Boolean formulas and BDD
in Section 2.1 and the notion of slicing in Section 2.2. Then, we introduce in Section 2.3 an
intermediary notion of proof representation that will help us to relate proofs in MALL and
BDD. In Section 3, we prove that proof equivalence in MALL and equivalence of BDD relate
to each other through ACy reductions and that they are both Logspace-complete.

2  Proof equivalence in MALL

» Notation 1. The formulas of MALL are built inductively from atoms which we write
a, B,7,... their duals o*,8*,v*,... and the binary connectives '8 ,®, &, D (we consider
that the & connectives carry a label x to simplify some reasonings, but we will omit it when
it is not relevant). We write formulas as uppercase letters A, B,C, ... unless we want to
specify they are atoms. Sequents are sequences of formulas, written as greek uppercase letters
T,A A, ... such that all occurrences of the connective & in a sequent carry a different label.
The concatenation of two sequents I' and A is simply written T, A.

Let us recall the rules of MALL-2. We do not include the cut rule in our study, since in a
static situation (we are not looking at the cut-elimination procedure of MALL) it can always
be encoded w.l.o.g. using the ® rule.

T,A B I A A,B T, A T,B A T.B
’a 7)? ® @l @I‘ - .
T,A%B I A,A® B I[LA® B I[A® B I, A&,B

x

(by convention, we leave the axiom rule implicit to lighten notations. Also, we will use the

notation <;> for “the proof m of conclusion T'”. )

» Remark 2. Any time we will look at a MALL proof from a complexity perspective, we
will consider they are represented as trees with nodes corresponding to rules, labeled by the
connective introduced and the sequent that is the conclusion of the rule.

2 'We consider a n-expanded version of MALL, which simplifies proofs and definitions, but the extension
of our results to a version with non-atomic axioms would be straightforward. Also, we work modulo the
exchange rule.
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Two MALL proofs m and v are said to be equivalent (notation 7 ~ v) if one can pass from
one to the other via permutations of rules [14]. We have an associated decision problem.

» Definition 3 (MALLequ). MALLequ is the decision problem:
“Given two MALL proofs m and v with the same conclusion, do we have T ~ v?”

We will not go through all the details about this syntactic way to define proof equivalence
in MALL. The reason for this is that we already have an available equivalent characterization
in terms of slicing [14] which we review in Section 2.2. Instead, let us focus only on the most
significant case.

(m) () (m) {v) () (v)

IAC T,BC I A,C AD T,B,C AD
& ~ ® ®

T, A&B,C AD IAAC®D T.ABC®D

I A A&B,C®D A AB,C®D &

In the above equivalence, the ® rule gets lifted above the & rule. But doing so, notice
that we created two copies of v instead of one, therefore the size of the prooftree has grown.
Iterating on this observation, it is not hard to build pairs of proofs that are equivalent, but
one of which is exponentially bigger than the other. This is indeed where the difficulty of
proof equivalence in MALL lies. As a matter of fact, this permutation of rules alone would
be enough to build the encoding of the equivalence problem of binary decision diagrams
presented in Section 3.1.

A way to attack proof equivalence in a logic, as we exposed in Section 1, is to try to setup
a notion of proofnet for this logic. In the following, we will review the main two approaches
to this idea in the case of MALL: monomial proofnets by J.-Y. Girard [7, 16] and slicing
proofnets by D. Hughes and R. van Glabbeek [13, 14]. We will then design an intermediate
notion of BDD slicing that will be more suited to our needs.

2.1 Monomial proofnets

The first attempt in the direction of a notion of proofnet for MALL is due to J.-Y.Girard [7],
followed by a version with a full cut-elimination procedure by O. Laurent and R. Maielli [16].

While proofnets for multiplicative linear logic without units were introduced along linear
logic itself [6], extending the notion to the multiplicative-additive without units fragment
proved to be a true challenge, mainly because of the superposition at work in the & rule.

Girard’s idea was to represent the superposed “versions” of the proofnet by attributing
a Boolean formula (called a weight) to each link, with one Boolean variable for each &
connective in the conclusion I'. To retrieve the version of the proofnet corresponding to some
selection of the left /right branches of each &, one then just needs to evaluate the Boolean
formulas with the corresponding valuation of their variables.

This is the occasion to introduce the vocabulary to speak about Boolean formulas.

» Definition 4 (Boolean formula). Given a finite set of variables V' = {z1, ... ,2,}, a Boolean
formula over V is inductively defined from the elements of V; the constants 0 (“false”) and
1(“true”); the unary symbol = ( “negation”); the binary symbols 4+ and . (“sum/or/disjuction’
and “product/and/conjunction” respectively).

4

We consider a syntactic notion of equality of Boolean formulas: for instance 0.z # 0. The
real important notion, that we therefore state separately, is equivalence: the fact that if we
replace the variables with actual values, we gets the same output.
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» Definition 5 (equivalence). A wvaluation v of V is a choice of 0 or 1 for any element of V.
A valuation induces a an evaluation function v(-) from Boolean formulas over V to {0,1}
in the obvious way. Two Boolean formulas ¢ and % over V are equivalent (notation ¢ ~ 1)
when for any valuation v of V', we have v(¢) = v(¥).

» Definition 6 (monomial). We write V = {Z1, ... ,T,}. A monomial over V is a Boolean
formula of the form w;. ... .y; with {y1, ... ,yx} SV UV.
Two monomials m and m' are in conflict if m.m’' ~ 0.

» Remark 7. Two monomials are in conflict if and only if there is a variable x such that x
appears in one of them and T appears in the other.

While monomials are a specific type of Boolean formula, the binary decision diagrams we
are about to introduce are not defined directly as Boolean formulas. Of course, they relate
to each other in an obvious way, but having a specific syntax for binary decision diagrams
will prove more convenient to solve the problems we will be facing.

» Definition 8 (BDD). A binary decision diagram (BDD) is defined inductively as:

The constants 0 and 1 are BDD

If ¢, 1 are BDD and X is either a variable, 0 or 1, If X Then ¢ Else ) is a BDD

If ¢ is a BDD and X is either a variable, 0 or 1, DontCare X Then ¢ is a BDD
Moreover, suppose we have an ordered set of variables V = {1, ... ,z,} with the convention
that variables are listed in the reverse order: x,, is first, then x,,_1, etc. We define a subclass
of BDD which we call ordered binary decision diagrams over V (°BDD/V) by restricting to
the following inductive cases (we let V' = {1, ... ,2p_1})

The constants 0 and 1 are °BDD/2

If ¢ and ¢ are °BDD/V’, If x,, Then ¢ Else v is a °BDD/V

If ¢ is a °BDD/V’, DontCare x,, Then ¢ is a °BDD/V
The notions of valuation and equivalence are extended to BDD and °BDD the obvious way
so that DontCare X Then ¢ ~ ¢ and If X Then ¢ Else) ~ X.¢ + X.4.

» Remark 9. Any time we will look at BDD and °BDD from a complexity perspective, we
will consider they are represented as labeled trees. The cases of If 0, DontCare 1,... will be
useful to obtain ACy reductions in Section 2.3 and Section 3.2, since erasing a whole subpart
of a graph of which we do not know the address in advance is not something that is doable
in this complexity class. The absence of sharing implied by the tree representation is also
crucial to get low-complexity reductions.

» Example 10. The Boolean formula x.y.Z is a monomial, while z.y 4+ z and x.1 are not.

The BDD If xoThen (Ifz;Then0Elsel)Elsel (which is not a °BDD/{wz1,z2} by the way)
is equivalent to the Boolean formula x5.77 + T3: both evaluate to 1 only for the valuations
{z1 — 1,29 — 0}, {21 — 0,22 — 0} and {21 — 0,29 — 1}. There exist an equivalent
°BDD/{w1,x2}: If x5 Then (If x1 Then 0 Else 1) Else (DontCare 7 Then 1).

» Definition 11. BDDequ is the following decision problem:
“given two BDD ¢ and v, do we have ¢ ~ 1 ?”
°BDDequ is the following decision problem:

“given two °BDD/V ¢ and v, do we have ¢ ~ 1p?”
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Girard’s proofnets are called monomial because the only Boolean formulas that are
allowed are monomials. This is, as of the state of the art, the only known way to have a
notion of proofnet that enjoys a satisfying correctness criterion.

For our purposes, we do not need to get into the technical details of monomial proofnets.
Still, let us end this section with an example of proofnet from the article by Laurent and
Maielli, where the monomial weight of a link is pictured just above it:

2.2 Slicings and proof equivalence

The idea of slicing dates back to J.-Y. Girard’s original article on proofnets for MALL [7],
and was even present in the original article on linear logic [6]. It amounts to the natural point
of view already evoked in Section 2.1, seeing the & rule as introducing superposed variants
of the proof, which are eventually to be selected from in the course of cut-elimination. If
we have two alternative slices for each & connective of a sequent I' and all combinations of
slices can be selected independently, we readily see that the global number of slices will be
exponential in the number of & connectives in I'.

This is indeed the major drawback of the representation of proofs as set of slices: the size
of objects representing proofs may grow exponentially in the size of the original proofs. This
of course impairs any fine-grained analysis in terms of complexity.

» Definition 12 (slicing). Given a MALL sequent T, a linking of T is a subset

{[alvaﬂa 7[O‘naam}

of the set of (unordered) pairs of occurrences of dual atoms in T
Then, a slicing of I is a finite set of linkings of I.
To any MALL proof 7, we associate a slicing S; by induction:

If m = a,a* then S, is the set containing only the linking {[a, a*]}
(1)
Ifr= I'AB then S; = S,,, where we see atoms of A9 B
T, A% B)8 as the corresponding atoms of A and B
() W)
Ifr=1A4 AB thenS,={AUN]|XeS,, NeS,}
A, A® B
(1)
Ifr= TI,A4 o then Sy = S, and likewise for @©;
Ao B '
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)
Ifr= FvA PuB then SW:SILUSU

&
I'A,A&B
» Remark 13. In the ® rule, it is clearly seen that the number of slices are multiplied. This
is just what is needed in order to have a combinatorial explosion: for any n, a proof m, of

AR R, a&a, ..., &«

n times n times

obtained by combining with the ® rule n copies of the proof

*

a’,a  af,a

ar,a&a
will be of linear size in n, but with a slicing S,, containing 2™ linkings.
Slicings (associated to a proof) correspond exactly to the notion of proofnets elaborated
by D. Hughes and R. van Glabbeek [13]. While their study was mainly focused on the
problems of finding a correctness criterion and designing a cut-elimination procedure for

these, it also covers the proof equivalence problem. The proof that their notion of proofnet
characterizes MALL proof equivalence can be found in an independent note [14].

» Theorem 14 (slicing equivalence [14, Theorem 1]). Let m and v be two MALL proofs. We
have that ™ ~ v if and only if S, = S,.

Let us also end this section with a graphical representation of an example of proofnet
from the article of Hughes and van Glabbeek, encoding the proof on the left with three
linkings /\17 )\2, )\33

PP Q.Q e
P o Q*A, P91 P Q*~ QEDr (P'L®QJ')®R'L, P&(Q&R)
* * * 1 * * ' * @1 * . 1
(Pr®Q*)® R, P (P @Q)@R,P& R*,R . A2 (PLoQL)®RL, P&(QYR)
P e QY) @R, P& P @ Q%)@ R+, P
( Q) : Q ( Q") N Ny LT
(ProQ") @R, (P&Q)&R (ProQ1)®RY, P&(Q&R)

2.3 BDD slicings

We finally introduce an intermediate notion of representation of proofs which will be a central
tool in the next section. In a sense, it is a synthesis of monomial proofnets and slicings:
acknowledging the fact that slicing makes the size of the representation explode, we rely on
BDD to keep things more compact.

Of course, the canonicity property is lost. But this is exactly the point! Indeed, deciding
whether two “BDD slicings” are equivalent is the reformulation of proof equivalence in MALL
we rely on in the reductions between MALLequ (Definition 3) and BDDequ (Definition 11).

» Definition 15 (BDD slicing). Given a MALL sequent I', a BDD slicing of I is a function B
that associates a BDD to every element [vy,~*] of the set of (unordered) pairs of occurrences
of dual atoms in T

We say that two BDD slicings M, N of the same T" are equivalent (notation M ~ N) if
for any pair [y,7*], we have M[y,v*] ~ N[v,~*] in the sense of Definition 5.

To any MALL proof 7, we associate a BDD slicing B, by induction:

If 7 = o, " then Byla,a*] = 1.
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()
Ifr= I'A, B  then B:[v,7*] = Bu[y,7*] where we see atoms of A® B as the

I'A® B~ corresponding atoms of A and B

(1) (v) B.lv,y*] if y,7* are atoms of ', A
Ifr= M® then Br[v,v*] = < B,[v,7*] if v,7* are atoms of A, B
[AA® B 0 otherwise®

(1)
Ifr= TI,4 then Br[y,7*] =

——®
ILAaB |

(w )
Ifr=1,4A I,B then

— Y &=
I''A,A&,B

Bulv,v*] if v,7* are atoms of I', A

0 otherwise
and likewise for @y.

If 2 Then B,[y,7*| Else 0 if v or v* is an atom of A
Br[v,7*] = { If x Then 0 Else B,[v,v*] if v or v* is an atom of B
If x Then B,[y,7*] Else B,[y,v*] otherwise

» Remark 16. The BDD we obtain this way are actually of a specific type: they are usually
called read-once BDD: from the root to any leave, one never crosses two IfThenElse nodes
asking for the value of the same variable.

» Example 17. The weight of the pairs [«, @*] and [d, 6*] in the BDD slicing of the proof

a,a* B, 8*
D Dr
a® B adp, s
m = Ka
a® f,a* &5 5,6*

a® B, (a* &%) ® 6,6
are By[a,a*] = If  Then 1 Else 0 and B[4, *] = 1.

It is not hard to see that proof equivalence matches the equivalence of BDD slicings by
relating them to slicings from the previous section.

» Theorem 18 (BDD slicing equivalence). Let m and v be two MALL proofs. We have that
w ~ v if and only if B, ~ B,.

Proof. We show in fact that S; = S, if and only if B, ~ B,,, with Theorem 14 in mind.

To a BDD slicing B, we can associate a linking v(B) for each valuation v of the variables
occurring in B by setting v(B) = { [a, a*] | v(Blo,*]) = 1} and then a slicing f(B) =
{v(B) | v valuation }. By definition, it is clear that if B and B’ involve the same variables
and B ~ B’ then f(B) = f(B').

Conversely, suppose B, # B, so that there is a v such that v(B,) # v(B,). To conclude
that f(Br) # f(B,), we must show that there is no other v’ such that v'(B,) = v(By).

To do this, we can extend the notion of valuation to proofs: if v is a valuation of the labels
x of the &, in m, v(r) is defined by keeping only the left or right branch of &, according to
the value of . Now we can consider the set v**(7) of axiom rules in v(7) and we can show by

3 Remember we consider occurrences of atoms, and as the ® rule splits the context into two independent
parts that and no axiom rule can cross this splitting.
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induction that v**(7) must contain at least one pair with one atom which is a subformula of
the side of each &, that has been kept. Therefore for any 7 and v with the same conclusion,
if v # 0" we have v¥*(v) # v"**(7) no matter what. Then we can remark that v®* () is just
another name for v(B;) so that in the end, there cannot be v # v such that v'(B,) = v(B;).

Finally, an easy induction shows that f(B.) = S and therefore we are done. <

Also, a BDD equivalent to the BDD associated to a pair can be computed in AC.

» Lemma 19 (computing BDD slicings). For any MALL proof m and any pair [y,~*], we can
compute in ACy a BDD ¢ such that ¢ ~ Br[v,v*].

Proof. As we see proofs as labeled trees (Remark 2), we will only locally replace the rules of
the proof the following way to obtain the corresponding BDD ¢:
Replace axiom rules v,7* by 1 and other axiom rules by 0
Replace all 2 and & rules by DontCare 1 Then - nodes
In the ® case, test which side the atoms v, v* are attributed to (this can be done locally by
looking at the conclusions of the premise of the rule) and replace it by a If 0 Then - Else-
or a If 1 Then - Else - node accordingly
Replace &, rules by a If x Then - Else - nodes
We can see by induction that the resulting BDD is equivalent to B[y, v*]. All these operations
can be performed by looking only at the rule under treatment (and its immediate neighbors
in the case of ®) and always replaces one rule by exactly one node. Therefore it is in ACy. <

» Corollary 20 (reduction). MALLequ reduces to BDDequ in ACy.

In the next section we focus on the equivalence of BDD and °BDD, proving first that
the case of °BDD can be reduced to proof equivalence in MALL. Then, we will show the
problem of equivalence of BDD to be in Logspace, and that of °BDD to be Logspace-hard, thus
characterizing the intrinsic complexity of proof equivalence in MALL as Logspace-complete.

Note that this contrasts with the classical result that equivalence of general Boolean
formulas is coNP-complete. It turns out indeed that the classes of BDD we consider enjoy a
number of properties that allow to solve equivalence more easily.

3 Equivalence of BDD

3.1 Equivalence of °BDD reduces to proof equivalence in MALL

We now show that the converse of Lemma 19 holds for °BDD.

To do this, we rely on a formula B which will serve as the placeholder of a °BDD/V ¢ we
want to encode; and a context I' which contains one &, connective for each variable z in V,
organized in a way that allows for an inductive specification of °BDD.

Given an °BDD ¢, we wish to obtain a proof w4 of B,I" such that dual pairs with one
element in B will receive either the value ¢ or a value equivalent to ¢ in the BDD slicing of Tps
and on the other hand, the other dual pairs of I" will receive equivalent values whatever the
°BDD we encode is. This will lead to the fact that two such encoding proofs are equivalent if
and only if the °BDD they encode are equivalent.

» Notation 21. We fix atomic formulas a1, ... ,ay... and 8 and write B = 3® (. In what
follows, we will use B* and (5* to refer respectively to the left and right copies of 8 in B; and
likewise o and of for copies of a; in a; & ;.

We write respectively my and w1 the proofs
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B8 3, B*
B, BB

T

and for any n, we write g the proof
O[:u O‘n O[:u an
ak, o & oy,
» Definition 22 (encoding a °BDD). Let ¢ be an °BDD over the variables V = {z1, ... ,2,}.
We define the sequent
" — ((5* Ral)Rad)®-- ) R @y, a1 Ry 1y Q2 gy @2y ooy Up—1 &g,y _q el

with T? = 8* and set A" =T, a, &, vy, With also A = 3*.
We define the proof 74 of conclusion B, A" by induction on n

The base cases are 0 and 1, encoded respectively as my and 7.
Otherwise, if ¢ = If x,, Then v Else (, with both ¢ and ¢ being °BDD/{z1, ... ,zn_1}, We
have 7y and 7¢ defined by induction, and then

() (m¢)
B,A™" Y ar ap B,A"1 ar a,
Ty = ®
B.I". a, B,I",
B, A" "

The last case is ¢ = DontCare z,, Then ¢, with ¥ being a °BDD/{z1, ... ,zn—1} so that we
have 7y defined by induction, and then

(my) (mg.)
Ty = B, A1 OK:L, Qp Enlin
B, A"

We still need to state in what sense 74 is an encoding of ¢: we turn the statement about
the value of atoms of B we made in the beginning of this section into a precise property.

» Lemma 23 (associated BDD slicing). Writing B the BDD slicing of my, we have
B[g, 5] = ¢ B3, B ~ ¢ Blaj, i) ~ x; Blajf,ai] ~7;

Proof. By a routine inspection of induction cases. Let us only review ¢ = If x,, ThenyElse(.
Let us write By, By, and B¢ the BDD slicings respectively associated to the proofs my, my
and m¢.

By induction we have that By[8*, 8*] = ¢ and B[, 5*] = ¢, therefore by definition of
the BDD slicing associated to a & rule, we have that B4[3*, *] = If z,, Then ) Else { = ¢.
The case of 8% is similar, but for its use of Lemma 27 from the next section.

As for the other pairs of occurences of dual atoms in the conclusion, let us have a look at
the case of [af, a}]: if by induction By |af, ] ~ z; and B¢la}, af] ~ z;, then by definition
Bylaf, af] ~ If x, Then z; Else x; ~ x;. The case of of is similar. <

» Corollary 24 (equivalence). If ¢ and ¢ are two °BDD/{z1, ... ,zn}, then my ~ my if and
only if ¢ ~ .

» Lemma 25 (computing the encoding). Given a °BDD/{z1, ... ,zn} ¢, Ty can be computed
m ACO

Proof. As in the proof of Lemma 19, we show that the inductive definition can in fact be
seen as a local graph transformation introducing nodes of bounded size:
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{mo) (my)
Replace each 0 node by B, 3" and 1 node by B, 8*.

(me)
ag, o &, 0
Replace each DontCare x; Then - by -
B, A"
o, oy : o, oy
Replace each If z; Then - Else - by 2,1 i B, 1", o
B, Al '

)

For any of these replacements, we see that the choice of the case to apply and the label of
the resulting block (of bounded size) of rules replacing a node depends only on the label of
the node we are replacing, therefore the transformation is in ACy. <

» Corollary 26 (reduction). °BDDequ reduces to MALLequ in AC.

To sum up, we have so far the following chain of ACy reductions:

°BDDequ — MALLequ — BDDequ

3.2 Logspace-completeness

We prove in this section that all these equivalence problems are Logspace-complete. We
begin by listing a few useful properties of BDD that will allow to design a Logspace decision
procedure for their equivalence. Then, we prove the Logspace-hardness by reducing to
°BDDequ a Logspace-complete problem on line graph orderings.

The starting point is the good behavior of BDD with respect to negation. In the following
lemma, we consider the negation of a BDD which is not strictly speaking a BDD itself: we
think of it as the equivalent Boolean formula, the point being precisely to show that this
Boolean formula can be easily expressed as a BDD.

» Lemma 27 (negation). If ¢ and ¢ are BDD and X is either 0, 1 or a variable, we have

If X Then ¢ Else ¢ ~ If X Then ¢ Else ¢

DontCare X Then ¢ ~ DontCare X Then ¢

Proof. First we can transform our expression by

If X Then pElse ) ~ X0+ X0 ~ (X +0).(X+0) ~ X+ X.0+10.¢
then we can apply the so-called “consensus rule” of Boolean formulas
XY+X.p+1¢.¢ ~ X.¢+ X)) ~ If X Then ¢ Else tp
The case of DontCare is obvious. <

» Corollary 28. If ¢ is a BDD, then there is a BDD & such that ¢ ~ ¢.

Moreover ¢ can be computed in logarithmic space.
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Proof. An induction on the previous lemma shows that we can obtain the negation of a
BDD simply by flipping the 0 nodes to 1 nodes and conversely. Hence the transformation is
even in AC,. <

Then, we show that a BDD can be seen as a sum of monomials through a Logspace
transformation.

» Lemma 29 (BDD as sums of monomials). If ¢ is a BDD, then there is a formula ¢n which
is a sum of monomials and is such that ¢ ~ ¢y.
Moreover ¢ can be computed in logarithmic space.

Proof. For each 1 node in ¢, go down to the root of ¢ and output one by one the variables
of any If x Then - Else - encountered: this produces the monomial associated to this 1 node.
Then ¢y is the sum of all the monomials obtained this way and is clearly equivalent to ¢. The
procedure is in Logspace because we only need to remember which 1-leave we are treating
and where we are in the tree (when going down) at any point. |

Putting all this together, we finally obtain a space-efficient decision procedure. Note
however that it is totally sub-optimal in terms of time: to keep with the logarithmic space
bound, we have to recompute a lot of things rather than store them.

» Corollary 30 (BDDequ is in Logspace). There is a logarithmic space algorithm that, given
two BDD ¢ and v, decides wether they are equivalent.

Proof. The BDD ¢ and 1 are equivalent if and only if ¢ < ¢ = (¢ + 1).(¥ + ¢) ~ 1 that
is to say (by passing to the negation) (1.¢) + (¢.1)) ~ 0, which holds if and only if both
Y.~ 0and ¢.¢p ~ 0.

But then, considering the first one (the other being similar) we can rewrite it in logarithmic
space using the two above lemmas as (zZ)m.gzﬁm ~ 0. This holds if and only if for all pairs
(m,m’) of one monomial in (12)1ll and one monomial in ¢, m and m’ are in conflict; which
can be checked in logarithmic space using Remark 7. |

Let us now introduce an extremely simple, yet Logspace-complete problem [4], which will
ease the Logspace-hardness part of our proof.

» Definition 31 (order between vertices). Order between vertices (ORD) is the following
decision problem:

“Given a directed graph G = (V, E) that is a line * and two vertices f,s € V
do we have f < s in the total order induced by G?”

» Lemma 32. ORD reduces to °BDDequ in ACy.

Proof. Again we are going to build a local graph transformation that is in ACq.

First, we assume w.l.o.g. that the begin b and the exit e vertices of G are different from
f and s. We write f™ and s™ the vertices immediately after f and s in G.

Then, we perform a first transformation by replacing the graph with three copies of itself
(this can be done by locally scanning the graph and create labeled copies of the vertices

4 We use the standard definition of graph as a pair (V, E) of sets of vertices and edges (oriented couples of
vertices x — y). A graph is a line if it is connected and all the vertices have in-degree and out-degree 1,
except the begin vertex which has in-degree 0 and out-degree 1 and the ezit vertex which has in-degree
1 and out-degree 0. A line induces a total order on vertices through its transitive closure.
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and edges). We write x; to refer to the copy of the vertex x in the graph i. The second
transformation is a rewiring of the graph as follows: erase the edges going out of the f; and
s; and replace them as pictured in the two first subgraphs:

fi f2 fs s1  S2 83

X<

ol
x
\y
N
b1 52/ b3

Let us call G, the rewired graph and G,, the non-rewired graph. To each of them we add two
binary nodes = and y connected to the begin vertices b; as pictured in the third graph above.
Then we can produce two corresponding °BDD ¢,. and ¢,, by replacing the exit vertices e1, es,
es by 1, 0, 0 respectively, z and y by a If x Then (DontCare y Then-)Else (If y Then - Else-)
block of nodes; and any other v; vertex by a DontCare v Then -. It is then easy to see that if
f < s in the order induced by G if and only if ¢, and ¢, are equivalent.

Let us illustrate graphically what happens in the case where f < s: we draw the resulting
°BDD as a labeled graph with the convention that a node labeled with z with out-degree 1 is
a DontCare z Then - and a node labeled with z with out-degree 2 is a If z Then - Else - node
with the upper edge corresponding to the Then branch and the lower edge corresponding to
the Else branch.

/,b—>--~—>f L sT—s 1
y ><
e \‘b—>~~-—>f fr— - —s st—s .- —0
~

\b—>---—>f ff— —s———sT— .. —0 <
» Remark 33. The above construction relies on the fact that there are non-commuting
permutations on the set of three elements: in a sense we are just attributing two non-
commuting o and 7 to f and s and make sure that the order in which they intervene affects

the equivalence class of the resulting °BDD. An approach quite similar in spirit with the idea
of permutation branching program [1].

We can now extend our chain of reductions with the two new elements from this section
ORD (Logspace-hard) — °BDDequ — MALLequ — BDDequ (& Logspace)
so in the end we get our main result:

» Theorem 34 (Logspace-completeness). The decision problems °BDDequ, MALLequ and
BDDequ are Logspace-complete under ACqy reductions.

4 Conclusion

In this work, we characterized precisely the complexity of proof equivalence in MALL as
Logspace-complete, contrasting greatly with the situation for the MLL fragment which has a
Pspace-complete equivalence problem. We did so by establishing a correspondence between
MALL proofs and specific classes of BDD.

This path we took for proving our result is interesting in itself since the established
correspondence allows a transfer of ideas in both directions. In particular, any progress in the
theoretical problem of finding a correct notion of proofnet for MALL would yield potential
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applications to BDD, a notion of widespread practical use. An idea to explore might be the
notion of conflict net defined by D. Hughes in an unpublished note [12]. Roughly speaking,
the principle is to consider a presentation of proofnets with the information of the links that
cannot be present at the same time, rather than giving an explicit formula to compute their
presence, as it is the case with monomial proofnets or the BDD slicings we introduced.

On the other hand, since many optimization problems regarding BDD are known to be
NP-complete, a finer view at the encoding of Section 3.1 in addition to basic constraints
about what we expect from a notion of proofnet should lead to an impossibility result, even
though the equivalence problem for MALL is only Logspace-complete.

Acknowledgements to people from cstheory.stackexchange. com for pointing the author
to the notion of BDD; to Dominic Hughes for the live feedback during the redaction of the
article; to Clément Aubert, for his help in understanding ACy reductions.

—— References

1 David A. Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in NC1. Journal of Computer and System Sciences, 38(1):150 — 164, 1989.

2 Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput., 35(8):677-691, August 1986.

3  Ashok K. Chandra, Larry J. Stockmeyer, and Uzi Vishkin. Constant depth reducibility.
SIAM J. Comput., 13(2):423-439, 1984.

4 Kousha Etessami. Counting quantifiers, successor relations, and logarithmic space. Journal
of Computer and System Sciences, 54(3):400 — 411, 1997.

5 Jean Gallier. On the correspondence between proofs and lambda-terms. In Philippe
de Groote, editor, The Curry-Howard isomorphism, Cahiers du Centre de Logique, pages
55-138. Academia, 1995.

6 Jean-Yves Girard. Linear logic. Theoret. Comput. Sci., 50(1):1-101, 1987.

7 Jean-Yves Girard. Proof-nets: The parallel syntax for proof-theory. Logic and Algebra,
180:97-124, May 1996.

8 Stefano Guerrini and Andrea Masini. Parsing MELL Proof Nets. Theoretical Computer
Science, 254(1-2):317-335, 2001.

9 Willem Heijltjes and Robin Houston. No Proof Nets for MLL with Units: Proof Equiva-
lence in MLL is PSPACE-complete. In Proceedings of the Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth An-
nual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, pages
50:1-50:10, New York, NY, USA, 2014. ACM.

10 Willem Heijltjes and Lutz Strafiburger. Proof nets and semi-star-autonomous categories.
Mathematical Structures in Computer Science, FirstView:1-40, 11 2014.

11  Dominic J. D. Hughes. Simple multiplicative proof nets with units. Technical report, 2005.

12  Dominic J. D. Hughes. Abstract p-time proof nets for MALL: Conflict nets. arXiv:
math.LO/0801.2421v1, 2008.

13  Dominic J. D. Hughes and Rob J. van Glabbeek. Proof nets for unit-free multiplicative-
additive linear logic. ACM Trans. Comput. Log., 6(4):784-842, 2005.

14 Dominic J. D. Hughes and Rob J. van Glabbeek. MALL proof nets identify proofs modulo
rule commutation. http://boole.stanford.edu/~dominic/MALL-equiv.pdf, to appear,
2015.

15 Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks
& Techniques; Binary Decision Diagrams. Addison-Wesley Professional, 12th edition, 2009.


http://cstheory.stackexchange.com/questions/29243/what-is-the-complexity-of-the-equivalence-problem-for-read-once-decision-trees/29248#29248
http://boole.stanford.edu/~dominic
http://aubert.perso.math.cnrs.fr/
 http://boole.stanford.edu/~dominic/MALL-equiv.pdf

M. Bagnol 75

16  Olivier Laurent and Roberto Maieli. Cut elimination for monomial MALL proof nets. In
Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science,
LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 486-497, 2008.

TLCA’'15



Mixin Composition Synthesis Based on
Intersection Types*

Jan Bessai!, Andrej Dudenhefner!, Boris Diidder!, Tzu-Chun
Chen?, Ugo de’Liguoro?, and Jakob Rehof?

1  Technical University of Dortmund, Dortmund, Germany
{jan.bessai, boris.duedder, andrej.dudenhefner,
jakob.rehof}@cs.tu-dortmund.de

2  Technical University of Darmstadt, Darmstadt, Germany
tcchen@rbg.informatik.tu-darmstadt.de

3  University of Torino, Torino, Italy
ugo.deliguoro@unito.it

—— Abstract

We present a method for synthesizing compositions of mixins using type inhabitation in inter-
section types. First, recursively defined classes and mixins, which are functions over classes, are
expressed as terms in a lambda calculus with records. Intersection types with records and record-
merge are used to assign meaningful types to these terms without resorting to recursive types.
Second, typed terms are translated to a repository of typed combinators. We show a relation

between record types with record-merge and intersection types with constructors. This relation
is used to prove soundness and partial completeness of the translation with respect to mixin
composition synthesis. Furthermore, we demonstrate how a translated repository and goal type
can be used as input to an existing framework for composition synthesis in bounded combinatory
logic via type inhabitation. The computed result corresponds to a mixin composition typed by
the goal type.
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1 Introduction

Starting with Cardelli’s pioneering work [13], various typed A-calculi extended with records
have been thoroughly studied to model sophisticated features of object-oriented program-
ming languages, like recursive objects and classes, object extension, method overriding and
inheritance (see e.g. [1, 11, 23]).

Here, we focus on the synthesis of mixin compositions. In the object-oriented paradigm,
mixins [9, 10] have been introduced as an alternative construct for code reuse that improves
over the limitations of multiple inheritance, e.g. connecting incompatible base classes and
semantic ambiguities caused by the diamond problem. Together with abstract classes and
traits, mixins (functions over classes) can be considered as an advanced construct to obtain
flexible implementations of module libraries and to enhance code reusability; many popular
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programming languages miss native support for mixins, but they are an object of intensive
study and research (e.g. [8, 24]). In this setting we aim at synthesizing classes from a
library of mixins that can be used in programming languages like Java, which do not natively
support mixins. Our particular modeling approach is inspired by modern language features
(e.g. ECMAScript “bind”) to preserve contexts in order to prevent programming errors [21].

We formalize synthesis of classes from a library of mixins as an instance of the relativized
type inhabitation problem in bounded combinatory logic with intersection types [20]. Rel-
ativized type inhabitation is the decision problem: given a combinatory type context A
and a type 7 does there exist an applicative term e such that e has type 7 under the type
assumptions in A? We denote type inhabitation by A +ger, 7 : 7 and implicitly include the
problem of constructing a term inhabiting 7.

Relativized type inhabitation, which is undecidable in general [20], is decidable in k-
bounded combinatory logic BCLy(—,n), that is, combinatory logic typed with arrow and
intersection types of depth at most k, and hence an algorithm for semi-deciding type
inhabitation for BCL(—,n) = Uy BCLx(—,Nn) can be obtained by iterative deepening over k
and solving the corresponding decision problem in BCL;(—,n) [20]. In the present paper, we
enable combinatory synthesis of classes via intersection typed mixin combinators. Intersection
types [4] play an important role in combinatory synthesis, because they allow for semantic
specification of components and synthesis goals [20, 5].

Now, looking at {C; : 01,...,Cp: 0p, My i 71,..., My : 74} € A as the abstract specification
of a library including classes C; and mixins M; with interfaces o; and 7; respectively, and
given a type T specifying an unknown class, we may identify the class synthesis problem with
the type inhabitation problem A +pcp, 7 : 7. To make this feasible, we have to bridge the
gap between the expressivity of highly sophisticated type systems used for typing classes and
mixins, for instance F-bounded polymorphism used in [12, 15], and the system of intersection
types from [4]. In doing so, we move from the system originally presented in [16], consisting
of a type assignment system of intersection and record types to a A-calculus which we enrich
here with record merge operation (called “with” in [15]), to allow for expressive mixin
combinators. The type system is modified by reconstructing record types (l; : 0; |i € I) as
intersection of unary record types (l; : 0;), and considering a subtype relation extending
the one in [4]. This is however not enough for typing record merge, for which we consider
a type-merge operator +. The problem of typing extensible records and merge, faced for
the first time in [27, 26], is notoriously hard; to circumvent difficulties the theory of record
subtyping in [15] (where a similar type-merge operator is considered) allows just for “exact”
record typing, which involves subtyping in depth, but not in width. Such a restriction, that
has limited effects w.r.t. a rich and expressive type system like F-bounded polymorphism,
would be too severe in our setting. Therefore, we undertake a study of the type algebra of
record types with intersection and type-merge, leading to a type assignment system where
exact record typing is required only for the right-hand side operand of the term merge
operator, which is enough to ensure soundness of typing.

The next challenge is to show that we can type in a meaningful way in our system
classes and mixins, where the former are essentially recursive records and the latter are made
of a combination of fixed point combinators and record merge. Such combinators, which
usually require recursive types, can be typed in our system by means of an iterative method
exploiting the ability of intersection types to represent approximations of the potentially
infinite unfolding of recursive definitions.

The final problem we face is the encoding of intersection types with record types and type-
merge into the language of BCL(—,n). For this purpose we consider a conservative extension
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of bounded combinatory logic, called BCL(T¢), where we allow unary type constructors that
are monotonic and distribute over intersection. We show that the (semi) algorithm solving
inhabitation for BCL(—,n) can be adapted to BCL(T¢), by proving that the key properties
necessary to solve the inhabitation problem in BCL(—,n) are preserved in BCL(T¢) and
showing how the type-merge operator can be simulated in BCL(T¢). In fact, type-merge is
not monotonic in its second argument, due to the lack of negative information caused by the
combination of + and Nn. Our work culminates in two theorems that ensure soundness and
completeness of the so obtained method w.r.t. synthesis of classes by mixins composition.

Related works. This work evolves from the contributions [5, 17, 6] to the workshop ITRS'14.
The papers that have inspired our work, mainly by Cook and others, have been cited above.
The theme of using intersection types and bounded-polymorphism for typing object-oriented
languages and inheritance has been treated in [14, 25]. Type inhabitation has been recently
used for synthesis of object oriented code [22, 18], but to our best knowledge the present
paper provides, for the first time, a theory of type-safe mixin composition synthesis based on
the component-oriented approach of combinatory logic synthesis.

2 Intersection Types for Mixins and Classes

2.1 Intersection and record types

We consider a type-free A-calculus of extensible records, equipped with a merge operator.
The term syntax is defined by the following grammar:

Ar>3M,N,M; == z|(MzM)|(MN)|(MI)|R|(M®R) terms
R == (l;=M;|iel) records

where = € Var and [ € Label range over denumerably many term wvariables and labels
respectively, and the sets of indexes I are finite. Free and bound variables are defined as
usual for ordinary A-calculus, and we name A% the set of all closed terms in Ag; terms
are identified up to renaming of bound variables and M{N/z} denotes capture avoiding
substitution of N for  in M. We adopt notational conventions from [3]; in particular
application associates to the left and external parentheses are omitted when unnecessary;
also the dot notation for record selection takes precedence over A, so that Ax. M.l reads
as Az.(M.l). If not stated otherwise @ also associates to the left, and we avoid external
parentheses when unnecessary.

Terms R = (l; = M; | i € I} (writing = for syntactic identity) represent records, with fields
l; and M; as the respective values; we set bl({l; = M; |ie€I)) ={l;|ieI}. The term M.l
is field selection and M @ R is record merge. In particular if Ry and Ry are records then
R1 ® R5 is the record with as fields the union of the fields of R; and Ry and as values those
of the original records but in case of ambiguity, where the values in Ry prevail. The syntactic
constraint that R is a record in M @ R is justified after Definition 8.

The actual meaning of these operations is formalized by the following reduction relation:

» Definition 1 (Ap reduction). Reduction — ¢ A% is the least compatible relation such
that:
(B) (A.M)N — M{N/z}
(sel) <ll:Ml|Z€I>lJ —_—> Mj lfJGI
(@) (lZ:Ml|ZEI>€B(l]:NJ|]EJ) — <li:Mi, lj:Nj|i€I\J,j€J)
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We claim that —* is Church-Rosser, and that (M @ R1) @ Rs is equivalent to M & (R; &
R3) under any reasonable observational semantics (e.g. by extending to Ag applicative
bisimulation from the lazy A-calculus).

Record merge subsumes field update: M.l:= N = M & (I = N), but merge is not uniformly
definable in terms of update as long as labels are not expressions in the calculus.

In the spirit of Curry’s assignment of polymorphic types and of intersection types in
particular, types are introduced as a syntactical tool to capture semantic properties of terms,
rather than as constraints to term formation.

» Definition 2 (Intersection types for Ag).
Ts0,0; == a|lw|oy—>o023|o1noy|p types
Ty 3p,pi u= ()[{l:0)|p1+p2|[p1np2 record types
where a ranges over type constants, | € Label.

We use o, 7, possibly with sub and superscripts, for types in T and p, p;, possibly with
superscripts, for record types in T(, only. Note that — associates to the right, and n binds
stronger than —. As with intersection type systems for the A-calculus, the intended meaning
of types are sets, provided a set theoretic interpretation of constants a.

Following [4], type semantics is given axiomatically by means of the subtyping relation <,
that can be interpreted as subset inclusion. It is the least pre-order over T such that:

» Definition 3 (Type inclusion: arrow and intersection types).

oLw, wiw—>w,
onTt<o, onT<T, o< & o< =>0<T N,
(c->m)n(c>m)<o>1N7 09<01 & TI<To=>01=>T1 <02 > T

We write o0 =7 for c <7 and 7 < 0.

» Definition 4 (Type inclusion: record types).
(

(
(U':1y=(l:o)n(l':7T) (T,
W mhnp) = imhn(iohrp) (20,

While Definition 3 is standard after [4], comments on Definition 4 are in order. Type ()
is the type of all records. Type (I : o) is a unary record type, whose meaning is the set of
records having at least a field labeled by [, with value of type o; therefore (I:c)n(l:7) is
the type of records having label [ with values both of type o and 7, that is of type o n7. In
fact the equation (I:o)n{l:7)=(l:0n7) is derivable. On the other hand (I: o) n{l": T),
with [ #1’, is the type of records having fields labeled by I and I’, with values of type o and
7 respectively. It follows that intersection of record types can be used to express properties
of records with arbitrary (though finitely) many fields, which justifies the abbreviation
(li ;o;|iel #@)=Mier{li : 03) and (l; : 0 | i € @) = (), where we assume that the [; are
pairwise distinct. Finally, as it will be apparent from Definition 8 below, p; + p2 is the type
of all records obtained by merging a record of type p; with a record of type ps, which is
intended to type @ that is at the same time a record extension and field updating operation.
Since this is the distinctive feature of the system introduced here, we comment on this by
means of a few lemmas, illustrating its properties.
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» Lemma 5.

1. (Vjedcl. oj<tj)=(li:o;|iel)y<(lj:7;|jeld),

2. (Lo | diel)+ (T |jedy=(li:on,mj:Tj|liel~NJ jelJ),
3. VpeTy. 3(lizoi|iel). p=(li:o;|iel).

Part (1) of Lemma 5 states that subtyping among intersection of unary record types
subsumes subtyping in width and depth of ordinary record types from the literature. Part (2)
shows that the + type constructor reflects at the level of types the operational behavior of
the merge operator @. Part (3) says that any record type is equivalent to an intersection of
unary record types; this implies that types of the form p; + ps are eliminable in principle.
However they play a key role in typing mixins, motivating the issue of control of negative
information in the synthesis process: see sections 2.2 and 4. More properties of subtyping
record types w.r.t. + and n are listed in the next lemma. Let us preliminary define the map
Ibl: T(y - p(Label) (where p(Label) is the powerset of Label) by:

WI((L: o)) = {1}, (1 0 p2) = Bilpy + p2) = Bl(p1) U Bl p2)-

Then we immediately have:

» Lemma 6.

1. p1=pa = 1bl(p1) = bl(p2),
2. bl(p1) N bl(p2) =@ = p1 + p2 = p1 N pa.

In (1) above p; = pa is p1 < pa < p1. About (2) note that condition bl(p1) N bi(p2) = @ is
essential, since p; + p2 # p2 + p1 in general, as it immediately follows by Lemma 5.2.

» Lemma 7.

1. (p1+p2) +p3=p1+(p2+p3),

2. (p1np2)+p3=(p1+p3)n(p2+p3),
3. p1<p2=p1+p3<p2tps,

4. pr+p2=p1Np2 = p1+p2<pr.

» Remark. In general p; + (p2 N p3) # (p1 + p3) N (p2 + p3): take p1 = (I : 01,13 : 03), p2 =
(I :01) and p3 = (l2: 04), with o1 # 0] and o3 # 0. Then we have: p; + (p2nps3) = p1 +
(lh s ol la:08) = (I3 : 01,12 : 04), while (p1+p3)n(p2+p3) =(l1 :01,la:05)n(ly : 07,12 02) =
(l1 o1 nol,la s 02 noy). The last example suggests that (p1 + p3) N (p2 + p3) < p1 + (p2 N ps).
On the other hand ps < p3 = p1 + p2 < p1 + p3. Indeed:

(lo: 01,11 : 07,10 : 09)
(loldo,l1301,12102> ifJi,{O’l
(lol(fl,ll 30’2>+ (lg 104)

(lo:o1,l1 1 09) +{l1: 03,12 : 04)

I A 1l

even if (I :01,la:02) < (l2:02). From this and (3) of Lemma 7, we conclude that + is
monotonic in its first argument, but not in its second one.

We come now to the type assignment system. A basis (also called a context in the
literature) is a finite set T' = {x1 : op,...,Zn : 0n}, Where the variables x; are pairwise
distinct; we set dom(T') = {x | 30. x : 0 € T'} and we write I,z : ¢ for Tu {x : 0} where
x ¢ dom(T"). Then we consider the following extension of the system in [4], also called BCD
in the literature.
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» Definition 8 (Type Assignment). The rules of the assignment system are:

z:o0el Ixio-M:1
(Az) IR L
I'rz:0 'eXeM:0->71
I'-M:0->71 I'N:o I'-M:0 T'+-M:1
(= E) (n)
I'-MN:Tt ''-M:onT
I'-M:o o<T
@ ()
-M:w '-M:1
I'-Mip:0 kel
} () (rec)
Pe(li=M;[iel):() Dr(li=M |iel): (ly:0)
P-M:(l:0) T'vM:p; T'rR:ps (%)
—— (sel) (+)
'eMl:o I'eMeo®R:p1+p2

where (*) in rule (+) is the side condition: IbI(R) = Ibl(p2).
Using Lemma 5.1, the following rule is easily shown to be admissible:
' M;: o0, Vjedcl
Fe(li=M;|iel):(lj:0,]jeJ)

(rec’)

Contrary to this, the side condition (*) of rule (+) is equivalent to “exact” record typing in
[10], disallowing record subtyping in width. Such a condition is necessary for soundness of
typing. Indeed suppose that I' - My : 0 and I' = M{ : o but ' # M : 0¢; then without (*)
we could derive:
T+ (lop = My) : (lg : o) [+ (lo=Mj,ly:01):(ly:01)
I'+ (lo = Mo) 52} (lo = Mé,l it O'1> : (lo 100,11 101)

from which we obtain that ' + ({lo = Mo) @ (lo = M{,1:1:01)).lp : op breaking subject
reduction, since ({lp = Moy) & (lo = M{,1:1:01)).lo —* M]. The essential point is that
proving that T' = N : (I : o) doesn’t imply that I’ ¢ (bl(R’) for any I’ # [, which follows only by
the uncomputable (not even r.e.) statement that T'# N : (I’ : w), a negative information.

This explains the restriction to record terms as the second argument of @: in fact allowing
M & N to be well formed for an arbitrary N we might have N = z in Az. (M & z). But
extending bl to all terms in Ay is not possible without severely limiting the expressiveness
of the assignment system. In fact to say that IbI(N) = ibl(R) if N —* R would make the bl
function non computable; on the other hand putting 1bl(x) = @, which is the only reasonable
and conservative choice as we do not know of possible substitutions for z in Az. (M & z),
implies that the latter term has type w - w = w at best.

As a final remark, let us observe that we do not adopt exact typing of records in general,
but only for typing the right-hand side of @-terms, a feature that will be essential when
typing mixins.

» Lemma 9. Let 0 + w:

l'rz:0 < Ir.z:7el & 7<0,

I'eXeM:0 < 31,04,75. I'o:o;-M:7; & Njeg0; = 7 < 0,

I'rMN:o <= 3. T'+M:7>0 & T'-N:T,

Pr{l;=M;|iel):0 < Viel 30;.T+M;:0; & (l;:0;|i€l)<0,

P'-Ml:ioc <= T+M:(l:0),

PrM@®R:0 < 3p1,p2. T+-M:py & T+ R:ps & IWI(R) =1bl(p2) & p1+p2<0.

DS WN =
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» Theorem 10 (Subject reduction). T M:0 & M — N=T+ N:o0.

Proof Sketch. The proof is by cases of reduction rules, using Lemma 9. The only relevant
case is when M = Ry @ Ry, with Ry = (l; =M;|iel) and Ry =(l; =N, | jeJ), and N =
(li=M;, l;=Nj|ielI~J, jeJ). By Lemma 9.6 we may suppose w.L.o.g. that o = p; + pa,
and that py = (l; : 0; | i € I') for some I' € I, and py = (l; : 7; | j € J') for some J’ € J; but also
we know that J' = J, because of condition (*).

Now by Lemma 5.2, p1 +p2 = (l; : 05,1 : 7; | i € I' \ J, j € J); on the other hand by Lemma
9.4, we know that I' = M, : o; for all i e I', T+ Nj : 75 for all j € J, and therefore we conclude
that '~ N : (l;: 04,0 : 75 | i € I' N J, j € J) by multiple applications of rules (rec) and (n). <

2.2 Class and Mixin combinators

The following definition of classes and mixins is inspired by [15] and [10] respectively, though
with some departures to be discussed below. To make the description more concrete, in the
examples we add constants to Ag.

Recall that a combinator is a term in A%, namely a closed term. Let Y be Curry’s fixed
point combinator: Af.(Az.f(zz))(Az.f(xzx)) (the actual definition of Y is immaterial, since
all fixed point combinators have the same types in BCD).

» Definition 11. Let myClass, state and argClass be (term) variables and Y be a fixed point
combinator; then we define the following sets of combinators:

Class: C == Y(AmyClass Astate.(l; = N; |i€))
Mixin: M AargClass. Y (A myClass Astate. (argClass state) & (I; = N; | i€ I))

We define C and M as the sets of classes and mixins respectively.

To illustrate this definition let us use the abbreviation let = N in M = M{N/x}.
Then a class combinator C' € C can be written in a more perspicuous way as follows:

C =Y (AmyClass Astate. 1let self = (myClass state) in (l; = N; |i e I)). (1)

A class is the fixed point of a function, the class definition, mapping a recursive definition
of the class itself and a state S, that is the value or a record of values in general, for
the instance variables of the class, into a record (l; = N; | i € I) of methods. A class C is
instantiated to an object O = C'S by applying the class C' to a state S. Hence we have:

0=CS—"1let self =(CS) in (l; = N;|iel),

where the variable self is used in the method bodies N; to call other methods from the same
object. Note that the recursive parameter myClass might occur in the IN; in subterms other
than (myClass state), and in particular N,;{C/myClass} might contain a subterm C'S’, where
S’ is a state possibly different than S; even C itself might be returned as the value of a
method. Classes are the same as in [15] §4, but for the explicit identification of self with
(myClass state).

We come now to typing of classes. Let R = (l; = N;|ieI), and suppose that C' =
Y (AmyClass Astate. R) € C. To type C we must find a type o (a type of its state) and a
sequence of types p1,...,p, € T(y such that for all i <n:

myClass: o — p;,state: o - R: p;41-
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Note that this is always possible for any n: in the worst case, we can take p; = (l; :w | i € I)
for all 0 <i <n. In general one has more expressive types, depending on the typings of the
N; in R (see example 12 below). It follows that:

+ AmyClass Astate. R: (w = p1)n [ (0= p;) = (0 = pis1),

1<i<n

and therefore, by using the fact that - Y : (w - 71)n---n(7,-1 = 7»,) = 75, for arbitrary types
T1,...,Tn, we conclude that the typing of classes has the following shape (where p = p,,):

FC =Y (AmyClass Astate.(l; = N;|iel)):0—p (2)

In conclusion the type of a class C is the arrow from the type of the state o to a type p of
its instances.

» Example 12. The class Point has an integer state and contains the method get to retrieve
the state, set to update the current state and shift to add a value to the current state.

Point = Y (AmyClass. Astate.1let self = myClass state in
(get = state, set = \state’.state’, shift = \d.self.set(self.get + d)))

Note that in a setting without references, we rely on purely functional state updates.
Therefore, every function returns a new state that can be used to construct the new object.

An example for this is set, which just returns the new state.
To type Point we have + Point : Int — ppoint where ppoint = p2 and
p1 = {get: Int, set: Int - Int, shift: w)
p2 = (get: Int, set: Int — Int, shift : Int — Int)
using Y : (w - Int - p1) n ((Int = p1) = Int - p3) — Int — py

A mizin M € M is a combinator such that, if C' € C then M C reduces to a new class
C' € C, inheriting from C. Writing M in a more explicit way we obtain:

M = XargClass. Y (A myClass Astate. let super = (argClass state) in
let self = (myClass state) in
super @ {l; = N; |ieI))

In words, a mixin merges an instance C'S of the input class C' with a new state S together

with a difference record R = (l; = N; | i € I}, that would be written A(C S) in terms of [10].

Note that our mixins are not the same as class modificators (also called wrappers e.g. in [9])
because the latter do not take the instantiation of a class as the value of super, but the class
definition, namely the function defining the class before taking its fixed point.

Let M = MargClass. Y (A myClass Astate. (argClass state) @ R) € M; to type M we have to
find types o!,02, p! and a sequence p?,...,p2 € Ty of record types such that for all 1<i<n
it is true that IbI(R) = Ibl(p?) and such that, setting I'g = {argClass : o' - p', myClass :
w,state: o' no?} and T; = {argClass : 0! — p',myClass: (¢} no?) - p' + p? state: o' no?}
for all 1 <i < n, we may deduce for all 0 <i < n:

I'; + state: otno?
— ()

(= E)

I'; +state: o

TirRipl,  BUR) = bi(p2,)
T; - (argClass state) @ R: p* + p7,,

I'; - argClass state : p'

(+)
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Hence for all 0 <i <n we can derive the typing judgment:

argClass: o' — p' - AmyClass ) state. (argClass state) ® R:
(0" na®) = (o' +p})) > (01 n0®) > (0" + pisn)

and therefore, by reasoning as for classes, we get (setting p? = p2):

+ M = AargClass. Y (A myClass Astate. (argClass state) & R):
(08 = p') = (0'no®) = (p' +p*) (3)

Spelling out this type, we can say that o' is a type of the state of the argument-class of
M; o' no? is the type of the state of the resulting class, that refines o!. p! expresses the
requirements of M about the methods of the argument-class, i.e. what is assumed to hold for
the usages of super and argClass in R to be properly typed; p! + p? is a type of the record of
methods of the refined class, resulting from the merge of the methods of the argument-class
with those of the difference R; since in general there will be overridden methods, whose types
might be incompatible, the + type constructor cannot be replaced by intersection.

» Example 13. The mixin Movable, provided an argument class that contains a set and a
shift method, creates a new class with (potentially overwritten) methods set and move along
with delegated methods. The method set is fixed to set the underlying state to 1 and the
method mowe shifts the state by 1.

Movable = AargClass. Y (AmyClass. Astate.let super = argClass state in
let self = myClass state in

super @ (set = super.set(1), move = self.shift(1)))

Note that to update self and super one can use myClass and argClass. Generalizing for all
p € Ty following the argumentation above we can choose:

p' = pn(set:Int - Int, shift: Int - Int) p* = (set: Int, move : Int)
o' =Int o’ =w
P2 = (set: Int, move : w) pa = (set : Int, move : Int)

Using these choices we can type Y by
FY: (w (Int > p' +p7)) 0 ((Int > p* + p7) > (Int > p* + p3)) - (Int > p* + p3)

and obtain the typings of Movable for all p:

+ Movable : (Int — p N (set: Int — Int, shift: Int — Int)) - (Int — p' + p3)

()

+ Movable : (Int — pn (set: Int — Int, shift : Int — Int)) - (Int — p + (set : Int, move : Int))

3 Encoding of Record Types in Bounded Combinatory Logic

Our main goal is to combine type information given by intersection types for Ar and the
capabilities of the logical programming language given by BCL inhabitation to synthesize
meaningful mixin compositions as terms of a combinatory logic. Such combinatory terms are
formed by application of combinators from a repository (combinatory logic context) A.
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» Definition 14 (Combinatory Term). E, E' =:=C'| (E E’), C € dom(A)

We create repositories of typed combinators that can be considered logic programs for the
existing BCL synthesis framework (CL)S [7] to reason about semantics of such compositions.
The underlying type system of (CL)S is an extension of the intersection type system BCD
[4] by covariant constructors. The extended type system T¢, while suited for synthesis, is
flexible enough to encode record types and features of +. While (CL)S implements covariant
constructors of arbitrary arity, we only use unary constructors, which are sufficient for our
encoding.

» Definition 15 (Intersection Types with Constructors T¢). The set T¢ is given by:
Tco0,7,71,72 s=a|a|w|m > 7m|nnT|c(r)
where a ranges over constants, o over type variables and ¢ over unary constructors C.
T¢ adds the following two subtyping axioms to the BCD system
1< = () <ce(m2) c(r)ne(r) <e(m nm)
The additional axioms ensure constructor distributivity, i.e., ¢(m1) nc(m2) = c(m1 N 72).

» Definition 16 (Type Assignment in T¢).

C:teA S Substitution ArpecL E:o—>T1 AvrpcL E' o
(Var) B
Atrper, C:5(7) Atvper EE i 7
AvrpgcLE:0 AvrpcL E:7 ArpeL F:o o<T
(n) (<)
AI—BCLEZUQT AI—BCLE:T

We extend the necessary property of beta-soundness and a notion of paths and organized
types from [20] to constructors in the following way.

» Lemma 17 (Extended Beta-Soundness). If N (o; = 7)n N ¢;(75)n N axn N aw <c(T),
iel jeJ keK k'eK'
then {jeJ|cj=ct+@ and N{1j|jeJcj=c} <T.

» Definition 18 (Path). A path 7 is a type of the form: wz=a|a |7 = 7| ¢(w) | e(7), where
« is a variable, 7 is a type, c is a constructor and a is a constant.

» Definition 19 (Organized Type). A type 7 is called organized, if it is an intersection of
paths 7 = N;er 75, where 7; for ¢ € I are paths.

Similarly, we obtain the following property of subtyping w.r.t. organized types.

» Lemma 20. Given two organized types T = Nier Ti and o = Njey 04, we have T < o iff for
all j € J there exists an i € I with 7; < 0.

Note that for all intersection types there exists an equivalent organized intersection type
coinciding with the notion of strict intersection types [2].

For a set of typed combinators A and a type 7 € T¢ we say 7 is inhabitable in A, if there
exists a combinatory term E such that A Fgcor, E: 7. In the following we fix a finite set of
labels £ ¢ Label that are used in the particular domain of interest for mixin composition
synthesis.
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Records as Unary Covariant Distributing Constructors

We define constructors () and I(-) for [ € £ to represent record types using the following
partial translation function

T ifr=wort=a

[n]—=[r] fr=mn->m

[]nfr] fr=nnmn

(1(r)) ifr=(l:7)

{w) if =)

undefined  else

[[]]T hd Tc, [[TH =

Since atomic records are covariant and distribute over n, the presented translation
preserves subtyping. We have [(l;: 7; [ i € I)] = [Ner (li : 75)] = NMier (L ([])) if T + @.

Note that the translation function [-] is not defined for types containing + in T. Addi-
tionally, + has non-monotonic properties and therefore cannot be immediately represented
by a covariant type constructor. Simply applying Lemma 5(3) is impossible, if the left-hand
side of + is all-quantified. There are two possibilities to deal with this situation. The
first option is extending the type-system used for inhabitation. Here, the main difficulty
is that existing versions of the inhabitation algorithm crucially rely on the separation of
intersections into paths [20]. As demonstrated in the remark accompanying Lemma 7, it
becomes unclear how to perform such a separation in the presence of the non-monotonic +
operation. The second option, pursued in the rest of this section, is to use the expressiveness
of the logical programming language given by BCL(T¢) inhabitation. Specifically, encoding
T types containing + as Tc types accompanied by following repositories Az and Ay .y suited
for BCL(T¢) inhabitation. We introduce |£| distinct variables a; indexed by I’ € £ and 2/¢!
distinct constructors wy,(-) indexed by L ¢ L.

Ap={Waywpp( () (U'(r))) [T L}

U'eL~{l}
Ap([,) :{WL : w{ll}(a) — w{lz}(a) - ... w{lk}(a) - ’LUL(Oé) | k>2, {ll,...,lk} =Lc ﬁ}

These repositories are purely logical in a sense that they do not represent terms in Ag
but encode necessary side conditions in the logic program. In particular, we formalize the
conditions for the absence of a label in a record type by the following Lemma 21. This
encoding of negative information is crucial to encode non-monotonic properties of +.

» Lemma 21. Let I € L be a label and let 7 € T be a type such that [7] is defined. wyy ([7])
is inhabitable in Ap U Ay iff 7€ Ty u{w} with [ ¢ Ibi(T).

Proof Sketch. Let [ € £ be a label.
(=) Let wlog. [7] = ﬂ 7; be an organized intersection type such that wg;y ([7]) is inhabitable

in Az u Qg The only combinator with a matching target to inhabit wg ([7]) is

Wiy. Due to distributivity of type constructors there exists a substitution S such that

S(wgy( N (V'(cwr)))) <wgy([7]). By Lemma 20 followed by Lemma 17 we obtain
VeL{l}

for each i € T that there exists an I’ € £\ {l} such that 7; = {I'([o;])) for some type o; € T.
By definition of [-] and distributivity we obtain 7€ T(y u {w} with [ ¢ Ibi(7).
(<) Let 7= N (I': 1) (resp. ()) for some L € £\ {l} and types 7 € T for I’ € L. We have
l'eL
[w] iflel

Way : S(win (- N ('(arr)))) < wgy([7]) for a substitution S(ay) = {
VeL~{1} w else

<
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» Lemma 22. Let L L be a non-empty set of labels and let T € T be a type such that [7] is
defined. wr([r]) is inhabitable in Ap v Agry iff 7€ Ty u{w} with L Ibl(T) =

Proof Sketch. Using W, and Lemma 21 for each argument of Wr,. <

Our intermediate goal is to use inhabitation in Az U Ay () to translate types of the
shape p + ﬂ (l:7) into pn ﬂ (l: 7)), which in general is incorrect. The following Lemma 23

describes sufﬁ(nent mrcumstances where this translation holds.
» Lemma 23 (A, u A,y Translation Soundness). Let L ¢ L be a non-empty set of labels,

let p € Ty be a type such that [p] is defined and let 7, € T for 1 € L be types. If wr([p]) is
inhabitable in Az U Agey then p+ N (l:7)=pn N (l:7).
leL leL

Proof Sketch. Since wr,([p]) is inhabitable in Az uAg .y we have bl(p) N L = @. The result
follows from Lemma 6 (2). <

Next, we show by the following Lemma 24 that inhabitation in A, is not too restrictive.

» Lemma 24 (A, u A,y Translation Completeness). Let L ¢ L be a non-empty set of labels,

let 7y € T for 1 e L be types, let p e Ty be a type such that [p] is defined. There exists a type

p' € Ty such that wr([p']) is inhabitable in Ap v Dy(ey and p' 0 N (L) <p+ N (7).
leL leL

Proof Sketch. Given p= N (I': 7)) choose p'= N (I':7)) (resp. p' =() if L'\ L = @).
veLs

Vel/\L
By Lemma 22 wr,([p']) is inhabitable in Az UAg ey and p'n N (i) <p+ N(l:7). <«
leL leL

Note that in Lemma 24 the type p’ can be chosen greater than p only due to the
non-monotonic properties of +.

4 Mixin Composition Synthesis by Type Inhabitation

In this section we denote type assignment in Ag by +() and fix the following ingredients:
A finite set of classes C.
For each C €C types oc € T, pc € Ty such that [oc — pc] is defined and @+ C:0c —
pc-
A finite set of mixins M.
For each M € M types o € T and p}, p3; € Tyy such that [oa], [p},], [p3,] are defined
and for all types p € Ty we have @+ M : (o = pipys) = (om = p+ piy).-
For each M € M the non-empty set of labels Lys = Ibl(p3,) < L.

We translate given classes and mixins to the following a repository A%M of combinators

AE’M ={C:oc = pc]|CeC}
UAM 5wy, (@) > ([oar] = an [Ph]) = (Toar] ~ an [930) | M e M}
UALU{WL,, € Agey | M e M, |Lag| > 1}

To simplify notation, we introduce the infix metaoperator > such that x > f = f x. It is
right associative and has the lowest precedence. Accordingly, > f > g=g¢ (f z).

Although types in A%M do not contain record-merge, we show by following Theorem 25
that types of mixin compositions in BCL(—,n) are sound.
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» Theorem 25 (Soundness). Let My,..., M, € M be mizins, let Ly,...,L, € L be sets of
labels, let C € C be a class and let o € T,p € Ty be types such that [o — p] is defined.

If A%M Fpor C > (My Wi,) >» (My Wr,) > ... (M, W) :[o - p],

then @+ C > My > My > ...>» My, :0 - p.

Proof Sketch. Induction on n proving L; = Ly, followed by Lemma 23 and (- E). <

Complementary, we show by the following Theorem 26 that typing of mixin compositions
in BCL(—,n) is complete with respect to previously described typing in T.

» Theorem 26 (Partial Completeness). Let I' ¢ {z¢ : 0¢ = pc | C € Cyu{zh, : (on —
pnpy) = (o = p+pip) | M e M,p e Ty, [p] is defined} be a finite context and let
ogeT,peTy be types such that [o — p] is defined.

IfT gy wo > afy > ahy > ...» o) 10— p,

then A%M FBCL C > (Ml WLJVII) > (MQ WLM2) > 00> (Mn WLMn) : [[0' - p]].
Proof Sketch. Induction on n choosing for each zf, where p= N (l: 7)) (resp. p=()) the
leL

substitution S;(a) = N {I(7)) to type M « A%M and using (- F) and Lemma 24. <«

leL\L s
Coming back to our running example, we obtain

gjtlri};gx;":gzi} = { Point : Int — {get(Int) N set(Int - Int) N shift(Int — Int)),
Movable : W{set,move} (Oé)
- (Int > an {set(Int - Int) N shift(Int — Int)}))

- (Int > an {set(Int) N move(Int)}),

Wigesy wgen ({(set(ar) N shift(az) nmove(as))),
Wisety wiseny ((get(ar) N shift(az) N move(as))),
Wshifey * wsniey ({get(on) N set(az) 0 move(as))),
Wimove) Wimove} ({get(ar) N set(az) N shift(as))),

W{set,move} : w{set}(a) - w{move}(a) - w{sat,move}(a)}

We may ask inhabitation questions such as

A{Point},{Movable}

Coctset shift.move) FBCLY ¢ [Int — (shift: Int — Int, move : Int)]

and obtain the combinatory term “Movable Wiy movey Point” as a synthesized result. From
Theorem 25 we know

@ +(y Movable Point : Int — (shift : Int — Int, move : Int)

On the other hand, if we want to inhabit [Int — (set: Int — Int, move: Int)] we ob-
tain no results. From Lemma 26 we know that, restricted to the previously described
typing in T, there is no mixin composition applied to a class with the resulting type
Int — (set: Int — Int, move : Int).

The presented encoding has several benefits with respect to scalability. First, the size of
the presented repositories is polynomial in |£] * |C| * [M|. Second, expanding the label set
L requires only to update combinators in A, leaving existing types of classes and mixins
untouched. Third, adding a class/mixin to an existing repository is as simple as adding
one typed combinator for the class/mixin and at most one logical combinator. Again, it is
important that the existing combinators in the repository remain untouched. As an example,

we add the following mixin MovableBy to Ag;igix}?:fjii}
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MovableBy = AargClass.Y (AmyClass. Astate.
let super = argClass state in

let self = myClass state in super @ (move = super.shift))
In Ag for all types p € Ty we have
@ ~(y MovableBy: (Int — pn (shift: Int - Int)) - (Int - p + (mowve: Int — Int))

We obtain the following extended repository

{Point},{Movable,MovableBy} _ A {Point},{Movable}
{get,set,shift,move} ~ = {get,set,shift,move}

= (Int = an {shift(Int - Int))) - (Int — an {move(Int - Int)))}

U {MovableBy : w{pove} ()

Asking the inhabitation question

{Point},{Movable,MovableBy}

{oct,set shiftmove) Fpor? @ [Int — (set: Int, move : Int — Int)]

synthesizes “Point > (Movable Wges movey) > (MovableBy Wi,,5,01)" Note that even in
such a simplistic scenario the order in which mixins are applied can be crucial mainly because
@ is not commutative. Moreover, the early binding of self and the associated preservation of
overwritten methods may make multiple applications of a single mixin meaningful.

5 Conclusion and Future Work

We presented a theory for automatic compositional construction of object oriented classes by
combinatory synthesis. This theory is based on the A-calculus with records and @ typed
by intersection types with records and +. It is capable of modeling classes as states to
records (i.e. objects), and mixins as functions from classes to classes. Mixins can be assigned
meaningful types using + expressing their compositional character. However, non-monotonic

properties of + are incompatible with the existing well-studied theory of BCL(—,n) synthesis.

Therefore, we designed a translation to repositories of combinators typed in BCL(T¢). We

have proven this translation to be sound (Theorem 25) and partially complete (Theorem 26).

A notable feature is the encoding of negative information (the absence of labels). It exploits
the logic programming capabilities of inhabitation, by adding sets of combinators serving
as witnesses for the non-presence of labels. In section 4 we also showed that this encoding
scales wrt. extension of repositories.

Future work includes further studies on the possibilities to encode predicates exploiting
patterns similar to the negative information encoding. The partial completeness result
indicates a more expressive power of type constructors compared to records. Another
direction of future work is to extend types of mixins and classes by semantic as well as modal
types [19], a development initiated in [5]. In particular, the expressiveness of semantic types
can be used to assign meaning to multiple applications of a single mixin and allow to reason

about object oriented code on a higher abstraction level as well as higher semantic accuracy.

Acknowledgments. The authors would like to thank the anonymous reviewers for their
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——— Abstract

We give an analysis of the non-constructivity of the following basic result: if X and Y are
simplicial sets and Y has the Kan extension property, then YX also has the Kan extension
property. By means of Kripke countermodels we show that even simple consequences of this
basic result, such as edge reversal and edge composition, are not constructively provable. We
also show that our unprovability argument will have to be refined if one strengthens the usual

formulation of the Kan extension property to one with explicit horn-filler operations.
1998 ACM Subject Classification F.4.1 Mathematical Logic
Keywords and phrases Constructive logic, simplicial sets, semantics of simple types
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1 Introduction

Brouwer’s Programme is the constructive reformulation of (as much as possible of) classical
mathematics. In [2] it has been shown that the following theorem, though classically true (cf.
[10, Corollary 7.11]), cannot be proved constructively.

» Theorem 1 (classical). The fibers of 0 and 1 of a Kan fibration p : E — A' are homotopy
equivalent.

In this paper we show that the following basic theorems cannot be proved constructively.

» Theorem 2 (classical). If X and Y are Kan simplicial sets, then any edge in Y can be
reversed.

» Theorem 3 (classical). If X and Y are Kan simplicial sets, then compatible edges in Y~
can be composed.

The above two theorems follow immediately and constructively from the following.
» Theorem 4 (classical). If X and Y are Kan simplicial sets, then also Y is so.

Hence we obtain that also Theorem 4, though classically true even without requiring that
X is Kan (cf. [10, Theorem 6.9]), cannot be proved constructively.

The importance of these results is twofold. First, it is of evident importance for Brouwer’s
Programme to understand which results of classical mathematics already are constructive and
which results are not. Second, Theorem 4 plays a crucial role in the construction of models
of type theory with the Univalence Axiom, see [7]. The use of classical logic in proving this
crucial property implies in particular that the model construction cannot be used to give a
computational interpretation of univalence. Actually, Theorem 4 is a necessary step in the
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semantics of the simply typed A-calculus based on Kan simplicial sets. In what follows we
expand on these points; for more motivation we refer to [2].

We would like to use the occasion to say a few not-too-technical words on the role of the
Kan extension property of simplicial sets in relation to univalence. Let MLTT be Martin-Lof
type theory with universe U and inductive equality =y on U. Assume we have two distinct
copies of the natural numbers, inductively defined by constructors 0 : N (0’ : N’) and
S:N—= N (S:N — N'). MLTT proves N =y N and N’ =y N’, but not N =y N’
The Univalence Axiom (UA) implies that (homotopy) equivalent types are equal, and in
particular N =y N’. By the Leibniz property of inductive equality, this implies that N
and N’ have the same properties and that all structure on N can be transported to N’
and vice versa. This holds even uniformly, for example, IIP : U — U. (PN — PN') is
inhabited under UA. On the other hand, without UA, TP : U — U. (PN — PN’) is not
inhabited in MLTT. (One reason is that MLTT has models in which N # N’, so one can
take P =AX :U. (N =y X) and get PN but not PN').

The above observation concerns not only the rather artificial type N’ but also any other
type that is equivalent to IV, such as the type of lists over a unit type with one object. In
fact the observation concerns all equivalent types. A less artificial example is perhaps the
equivalence of the unit type to Xz : A. (a =4 z) for given a : A : U. The upshot is that
validating UA requires an interpretation of =y that carries much more information than
in MLTT without UA, since the elimination rule for =y (roughly, the Leibniz property, or
substitutivity of equals for equals) has to be much stronger. In our simple example, the
interpretation of =y must be leveraged to give an inhabitant of IIP : U — U. (PN — PN’).

Simplicial sets can be used to build a presheaf-style [6] model of MLTT. In this model
the interpretation of =y does not validate UA. It turns out that if one builds a model of
MLTT based on Kan simplicial sets, then it is possible to validate UA. The crucial notion
here is that of a Kan fibration. A Kan fibration p: E — B is a map of simplicial sets with a
specific lifting property. This lifting property lifts a path from by to b; in B to a transport
function from the fiber p~!(by) to the fiber p~1(by). In the model based on Kan simplicial
sets, an inhabitant of N =y N’ is interpreted as a path from N to N’ in U. (Here and below
we omit the correct but tedious phrase the interpretation of N,N',U,...). Any P:U —» U
is interpreted as a Kan fibration with fibers PT for any T : U. (NB the fibration, being a
projection on the base type, has a direction opposite to the arrow in P : U — U). Then the
transport function obtained from the lifting property is the desired function PN — PN’. In
short, one can say that the transport functions interpret substitutivity of equals by equals.

Finally, to come back to the topic of this paper: if all types are to have Kan structure,
one has to prove this inductively following the rules of type formation. One of the induction
steps is Theorem 4. The unprovablility of Theorem 4 shows that, from the constructive point
of view, there is a problem with using the exponent Y¥ in the category of Kan simplicial
sets to interpret function types X — Y.

The type theoretic (synthetic) formulation of homotopy equivalence and the Univalence
Axiom, as well as the model of MLTT plus UA using Kan simplicial sets are all due to
Voevodsky [14, 7]. This model confirms the homotopical interpretation proposed by Awodey
and Warren [1].

Theorem 4 (without requiring that X is Kan) has an interesting history. The first
appearance seems to be [12, Appendix A, p. 1A-8, Theorem 3]. Moore credits A. Heller
for the definition of the function space YX on page 1A-4. Moore’s proof is combinatorial,
using the excluded middle in distinguishing the cases a non/degenerate on page 1A-9, 1. 17ff.
(Typo: on page 1A-7, 1. 12 and 15, the map F' is missing on the rhs; evidently F{, ,) was
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intended to depend on F.) The proof in [10, Theorem 6.9] is much the same as the one
by Moore (with the F’s in place). Several variations of this argument can be found in the
literature.

An essentially more abstract proof using anodyne extensions is given by Gabriel and
Zisman in [4, Chapter Four, 3.1.2] (take B = A°). Here the classical reasoning shows up
when in 2.1.2 amalgamated sums over sets of non-degenerate simplices are taken.

The results of Moore and Heller imply that Kan simplicial sets form a cartesian closed
category, which can be seen as a germ of the fact that they model dependent type theory.

The rest of the paper is structured as follows. In Section 2 we give an introduction to
simplicial sets, and in Section 3 we provide several examples of simplicial sets which will
be in use in the rest of the article. In Section 4 we take a closer look at Theorem 2, and
provide a Kripke model showing that a constructive consequence, Lemma 14 cannot be
proven constructively. Section 5 deals with edge compostion, much in the same way as
Section 4 deals with edge reversal. A summary and evaluation of the results obtained so far
is given in Section 6. In Section 7 we strengthen the Kan condition and prove constructively
a weak version of Lemma 14. This shows that our unprovability argument will have to be
refined for the stronger Kan condition. We sum up our findings and discuss further research
in Section 8.

2 Preliminaries

» Definition 5 (Simplicial set). A simplicial set A is a collection of sets A[i] for ¢ € N such
that for every 0 < n and j < n we have a function (face map) d7} : A[n] — A[n — 1], and for
every 0 < n and j < n we have a function (degeneracy map) s : A[n] — Aln + 1], satisfying
the following simplicial identities for all suitable superscripts, which we happily omit:

did; = d;_yd; ifi<j (1)
dis; = sj_1d; ifi<j (2)
d;sj =id fori=j,7+1 (3)
dis; = sjdi—1 ifi>j+1 (4)
$iSj = S;Si—1 ifi>j (5)

An element of A[i] is called an i-simplex, or just simplex when we don’t wish to stipulate the
dimension. A degenerate element is any element a € A[i + 1] in the image of a degeneracy
map.

Note that a simplicial identity like, e.g., d?d}”l = al;-‘_ld?+1 actually means

Vo € Aln+1]. dj(dj ' (2)) = dj_, (df T (2)).

With a countably infinite signature, the above definition can be expressed completely in
many-sorted first-order logic. That means that we can see first-order models which satisfy
the above requirement as simplicial sets, and instead of simplicial sets we could talk about
first-order models satisfying the above requirements.

Simplicial sets form a category. For two simplicial sets A and B, Homg(A, B) is the
set of all natural transformations from A to B. A natural transformation is a collection
of maps g[n] : A[n] — B[n] commuting with the face and degeneracy maps of A and B:
gln]s; = sigln — 1] for all 0 < i < n and g[n + 1]d; = d;g[n] for all 0 < i < n+ 1. We
freely omit the dimension [n] when it can be inferred from the other arguments. For more
information on simplicial sets we refer to, for example, [10, 5, 3].
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» Definition 6 (Kan simplicial set). A simplicial set Y satisfies the Kan condition if for any
collection of simplices Yo, ..., Yk—1,Yk+1,- -, Yn 0 Y [n — 1] such that diy; = d;j_1y; for any
1 < j with i # k and j # k, there is an n-simplex y in Y such that d;y = y; for all i # k.
The Kan condition is also called the Kan extension property, and a simplicial set is called a
Kan simplicial set if it satisfies the Kan condition.

» Definition 7 (Kan graph). A reflexive multigraph consists of C1, Cy, do, dy, s where Cj is
a set of points, C a set of edges, d; : C1 — Cy, dy the source and dy the target function,
and s : Cy — C the function mapping each ¢ € Cy to a selfloop of c. We write e : a — b
if e is in C such that dj(e) = a and dg(e) = b (note the direction!). In particular we have
d;(s(c)) = cfor all ¢ € Cy. A Kan graph is a reflexive multigraph having the property that
for all a,b,cin Cy, if e:a — band f: a — ¢, then there exists an edge g : b — ¢ in Cj.

Kan graphs can be viewed as truncated Kan simplicial sets, modelling a truncated proof-
relevant equality relation. Note that we don’t require the Kan graph to have explicit functions
giving the required edges like in [2], we merely require that the edges exists. We discuss this
distinction further in Section 7. The special requirement of the edges for the Kan graph
is in the literature often called Euclidean. Euclidean combined with reflexivity gives both
transitivity and symmetry.

3 Examples of simplicial sets

We give some examples of simplicial sets that are used in the sequel.

3.1 Standard simplicial k-simplex AF

AF¥ is the simplicial set with A¥[j] consisting of all non-decreasing sequences of numbers
0,...,k of length j + 1. Equivalently, A*[j] is the set of order-preserving functions [j] — [k],
where [i] denotes 0, ..., with the natural ordering. Examples are A'[0] = {0,1}, Al[1] =
{00,01, 11}, A2[1] = {00,01,02,11,12,22} and

A?[2] = {000,001,002,011,012,022, 111,112, 122, 222}.

The degeneracy map si : A'[j] — A'[j + 1] duplicates the k-th element in its input. So,
§3,(T0 - Tk - Tjy1) = Lo ... TRy .. Tj41. The face map dj, : A'[j] — A’[j — 1] deletes the
k-th element. So, dj (zo...%;) = Zo ... Th—1Tkt1---Tj.

3.2 The k-horns A;?

A% is the j’th horn of the standard k-simplex A*, and defined by A¥[n] = {f € A¥[n] |
[k] — {4} € Im(f)}. Alternatively, it is A¥[n] except every element must avoid some element
not equal to j. For example, A3[1] = {00,01,02,11, 17,22} = A2[1] — {12} (excluding 12,
since 12 does not avoid any element not equal to 0). We also have:

AZ[2] = {000,001,002, 011, 047,022, 111, 147, 127, 222}.

The Kan extension condition for a simplicial set Y can also be formulated as: every map
F: A¥ Y can be extended to a map F’: A¥ — Y. This is equivalent to Definition 6.
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3.3 Cartesian products

For two simplicial sets A and B, A x B is the simplicial set given by (A x B)[i] = Ali] x BJ[i],
and the structural maps d and s use d* and d® component-wise (and likewise for s4 and
sP). So if a € A[i] and b € B[i] then (a,b) € (A x B)[i], and d;((a,b)) = (d*(a),d?(b)).
In particular, the degenerate simplices of A x B are pairs (s7'(a),s? (b)) € (A x B)[i +1].
(Caveat: this is stronger than both components being degenerate.)

3.4 Function spaces

We give the standard definition [12, p. 1A-4]: Y is the simplicial set given by YX[i] =
Homg(A? x X,Y), where Homg denotes morphisms (natural transformations) of simplicial
sets, and structural maps as follows. The face maps di[i] : YX[i] — YX[i — 1] need to map
elements of Homg(A? x X,Y) to Homg(A*~! x X,Y) and the degeneracy maps vice versa.
For their definition it is convenient to view a k-simplex in A’ as an order-preserving function
a : [k] — [i]. Let dj, be the strictly increasing function on natural numbers such that dj(n) = n
if n < k and d}(n) = n + 1 otherwise (d} ‘jumps’ over k). Given F' € Homg(A" x X,Y),
define (diF)[i](a,z) = F[i](dja,x). For the degeneracy maps, let s; be the weakly increasing
function on natural numbers such that s} (n) =n if n < k and s} (n) = n — 1 otherwise (s}
‘duplicates’ k). Then define (s F)[i](a, ) = F[i|(s}a, ).

3.5 The simplicial set defined by a reflexive multigraph

The following definition from [2] gives the general construction of a simplicial set from a
reflexive multigraph. It is important to note that, even if the reflexive multigraph is transitive,
its simplicial set is not the same as the nerve [5, Example 1.4] of the category defined by the
multigraph. The difference is subtle: if we have edges f: 2 — ¥y, g:y — 2, h,h/ 1z = 2,
where the composition gf = h, then the nerve does not contain the 2-simplex with f, g, h’,
in contrast to below.

» Definition 8. Given a reflexive multigraph C we define the simplicial set S(C) as follows.
S(C)[0] = Cy, S(C)[1] = C; and S(C)[n], for n > 2, consisting of all tuples of the form
(o, -+, Un;-..,€4,...) such that

e u; — u; in Cp forall 0 <7 < j <n.

The maps dj in S(C') are defined by removing from (ug,...,un;...,€;;,...) the point ug
and all edges e;, and eg;. The maps s, in S(C) are defined by duplicating the point
ug in (ug, ..., Un;. .., €4,...), adding an edge eyx41) = s(ux), and duplicating edges and

incrementing indices of edges as appropriate. This completes the construction of the simplicial
set S(C).

We now see why Kan graphs are named as they are: the S construction above turns them
into Kan simplicial sets.

» Lemma 9. S(Y) is a Kan simplicial set whenever Y is a Kan graph.

Proof. Consider A} for some n > 1 and 0 < k < n and let f : A} — S(Y). We have to
define a lifting h : A™ — S(Y'). A™ consists of elements in every dimension, but we only need
to specify h for every element in A™[n]. This since both the higher and lower dimensional
objects are the (possibly repeated) s; or d; images of objects in A™[n], and h must commute
with both s; and d;, which determines h.
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If n = 1, note that that A} only consists of one point, and degenerations of that point in
the higher dimensions. E.g., if k = 0 then A}[0] = {0}, A}[1] = {00} etc. In that case we
extend f to h: A — S(Y) by mapping h(1) = h(0) = f(0), which determines h in higher
dimensions.

If n = 2 we use the fact that Y is a Kan graph, so for any two edges f : a — b and
g : a — c there is an edge from b to c. The 2-horn gives two edges in the graph with at least
one common point, and the fact that the graph is both reflexive, symmetric and transitive

(because of the Kan property) enables us to find a third edge with compatible endpoints.

The procedure depends on the value of k. We will here give the procedure for k =2; k=0, 1
are just simple adaptations.

Given f: A3 — S(Y) we have edges f(02) : £(0) — f(2) and edges f(12) : f(1) = f(2),
and we need to find a value for h(01) : f(0) — f(1) such that d1h(01) = d; f(02) and
doh(01) = dy f(12). In other words, we need to find that the dotted edge in the diagram
actually exists (self-loops are not displayed).

Recall that S(Y)[1] = Y[1], so both f(01) and f(12) are actual edges in Y. By applying
the Kan property on s(f(0)) and f(02) we get an edge e; : f(2) — f(0). Similarly we get
an edge ez : f(2) — f(1). Now, by using the Kan property on e; and es we get an edge
es : f(0) — f(1), and we put h(01) = e3.

Finally, if n > 3 we observe that the horn A} contains all points and edges of A", and we
define the lifting by

hq) = (fioy((0)), -+, fror(g(m)); - -, fray(eig), - - )
Here ¢ : [m] — [n] is order-preserving and e;; is the edge from ¢(i) to ¢(j) in A™[1] =

A1) <

4 Edge reversal

In this section we give the classical proof of Theorem 2 and show that there is no constructive
proof.

4.1 Edge reversal, definition and classical proof

» Definition 10 (Edge reversal). A simplicial set Y is said to have edge reversal when for
every edge e € Y[1] there exists an edge f € Y[1] with dy1(f) = do(e) and do(f) = di(e).

» Lemma 11. Kan simplicial sets have edge reversal.

Proof. Given an arbitrary Kan simplicial set Y and an edge e € Y[1] we can make a map
G : A3 — Y by letting G(0) = G(2) = di(e), G(1) = dy(e), G(01) = e and G(02) = s(dy(e)).
Since Y is Kan we can extend G to G : A? — Y, giving us a value for G(12) € Y[1], which
must be an edge between G(1) and G(2) = G(0), giving the reverse edge. <
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We introduce some convenient ad-hoc terminology for later use.

» Definition 12 (Y¥-good). Let X and Y are reflexive multigraphs and Fp; : X[1] — Y1].
Define Fy = diFois : X[0] — Y[0] and Fy = doFp1s : X[0] — Y[0]. We say that Fy; is
Y X_-good when the following two requirements hold for i = 0, 1:

For all e, e’ € X[1], if d;(e) = d;(€’) then d;Fp1(e) = d; Fo1(€);

For all e € X[1], Fido(e) = Fidi(e).
The first requirement expresses that Fyi, Fy, F respect endpoints, that is, if e : @ — b in
X[1], then Fpi(e) : Fo(a) — Fy(b) in Y[1]. The second requirement ensures that Fy and Fy
are constant on each weakly connected component of X. (Notice that Fpis(y) for y € Y0]
does not need to map to a degenerate edge, so Fy and F} are not necessarily identical.)

» Lemma 13. If X and Y are reflexive multigraphs and Fo; : X[1] — Y[1] is Y -good, then
we can extend Fo1 to a 1-simplex in S(Y)3(X),

Proof. To be a map in S(Y)3X) we need to extend Fy; : X[1] — Y[1] to a family of maps
Ffy[n] : (A x S(X))[n] = S(Y)[n] which commute with d; and s;. Recall the definitions
Fy = d1Fo1s and Fy = doFy1s. We define Fjj;[n] depending on n. If n = 0 then the input
will have the form (4,2) where 0 <14 <1 and z € X|[0], and we put F};[0](¢,z) = F;(x). If
n =1 the input will have the form (ij,e) where 0 <i < j <1 and e € X[1]. If i = j we put
F}1(ij,e) = sFi(do(e)). Note that since Fy; is YX-good, we know that F;(do(e)) = F;(d1(e)),
justifying our choice of the degenerate edge as the output. If i < j we let F{};(01,e) = Fp1(e).
If n > 1 any input to F{;[n] will have the form (0%1°, (xo,...,Zn;...¢€j,...)) such that
a+b=n+1. We let Fj;[n] map this element to the tuple

(Fo(l’o)7 e ,Fo(xa_l),Fl(llfa) .. -7F1(=Ta+b—1); . eéj, e )7

where e;; = s(Fo(z,)) if i < j < a, e}; = Foi(ey;) if i < a < j, and ej; = s(Fi(z,)) if
a <4 < j. That is, the Fj;[n] images are sequences of a number of F images followed by b
number of F; images, with all edges being degenerate, except the bridges between the two
nodes. Since each of the derived F; functions are constant on each connected component,
and the input consists exactly of sequences of nodes in the same connected component,
all of the elements Fy(xg),..., Fo(xs—1) are the same element in Y[0], and likewise for
Fi(zq) ..., Fi(Zatp-1). This justifies our choice of e}, as the degenerate edges.

It should be clear that this map does indeed commute with d; and s;, completing the
proof. |

» Lemma 14 (classical). For all Kan graphs Y and X, if Fo1 : X[1] = Y[1] is Y -good,
then there is an F10 : X[l] — Y[l] such that d0F01 = lelo and d1F01 = doFlo.

Proof. Let X and Y be Kan graphs. The S(Y) and S(X) are Kan simplicial sets by Lemma 9.
By applying the classical Theorem 2 we get that S(Y)*(X) has edge reversal. Since Fy; is
Y¥X-good we extend Fp; to an edge F; € S(Y)3X)[1] as defined in the proof of Lemma 13.
By edge reversal in S(Y)%X) we get an Fj, € S(Y)SX)[1] satisfying d; (F},) = do(F};) and
do(Fyy) = d1(F§p). We put Fig(z) = F{(01,z). By expanding the definition of dj, from Sec-
tion 3.4, we get the following properties: Fy,(00,e) = Fj;(11,e) and Fy,(11,e) = F};(00,¢e),
giving F{,(0,d;(e)) = F};(1,d;(e)) and Fyy(1,d;(e)) = Fj;1(0,d;(e)). We calculate dyFoi(e) =
doF}1(01,e) = Fjy(1,dg(e)) = Fidg(e). Since Fy; is Y¥-good (2nd requirement) we have
Fidy(e) = Fidi(e). We continue the calculation: Fidi(e) = Fjy(1,d1(e)) = Fiy(0,d1(e))
where the last step is justified above. We continue: FY,(0,d;(e)) = d1 F{,(01,¢e) = dy Fip(e).
In total we have proved doFp;(e) = dyFig(e) for all e € X[1]. Hence doFo1 = diFio. The
other equation is proved symmetrically. <
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Table 1 Kripke (counter)model for edge reversal.

Day 1
Xo {z,2'}
X, {s(z),s(=")}
Yo {yo,y1,90, Y1 }
Yi | {s(yo),5(y1),5(30), 5(¥1), Yoy1 : Yo—y1, YY1 : Yo—Y1, @ : Y1—=Yo, b y1—=y0}

Input | Output

Day 2 Iy T Yo
Xo {z=2"} Fy x’ Yo
X {s(z)=s(2’)} 3! z Y
Yo {yo = v0,v1 = y1} 13! ' Y1
Vi | {s(yo) = s(y0),s(y1) = s(¥1), yoy1 = yoyi,a,b} || Fou | s(x) Yoy

Foi | s(x') Yoy

Kripke [8] showed that constructive logic is sound for Kripke models, so the existence of
a Kripke countermodel of a statement gives the non-existence of a constructive proof of that
statement. We will now, by the means of a Kripke model, see that Lemma 14 does not hold
constructively.

4.2 Edge reversal, the Kripke countermodel

We describe a Kripke model containing a Y *-good Fp; such that there cannot be a function
F10 : X[l] — Y[l] with d0F01 = d1F10 and d1F01 = dOF107 even though X and Y are Kan
graphs.

For clarity, the functions Fy = dy Fy1s and Fy = dyFp1s as defined in Definition 12 are
also made explicit in this model. Face maps are part of the model, but not made explicit.

The model consists of two days, with an X and a Y part each. On day 1 both X and Y
consist of two separate components, which get merged on day 2. We give the model both in
Table 1 and, graphically, in Figure 1 and 2.

It is easy to see that both X and Y are Kan graphs by simply observing that each of their

two components are strongly connected. It is also clear that we cannot define a consistent Fig.

In day 1 we would have to set Fio(s(z)) = a and Fig(s(z’)) = b to satisfy the requirement
that doFy1 = d1F19 and dy Fy1 = dgF19. The problem occurs in day 2, where we have that
s(z) = s(z'), but a # b, making it impossible for Fjo to respect equality. Note that all other
functions, Fy, I, Fo1, s, dg, and d; remain consistent after collapsing, that is, they still map
equal elements to equal elements.

5 Edge composition

In this section we give the classical proof of Theorem 3 and show that there is no constructive
proof.

» Definition 15 (Edge composition). A simplicial set Y is said to have edge composition
when for every edge eq, ez € Y[1], if do(e1) = di(e2) then there exists an edge f € Y[1] with
di(f) = di(e1) and do(f) = do(e2).

» Lemma 16. Kan simplicial sets have edge composition.
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Figure 1 Kripke (counter)model for edge reversal, day 1.

s(z) = s(a) s(y0) = s(vp) s(y1) = s(y1)

Figure 2 Kripke (counter)model for edge reversal, day 2.

Proof. Given an arbitrary Kan simplicial set Y and edges e1, es € Y[1] with dg(e1) = dy(ea),
we can make a map G : A? — Y by putting G(0) = dy(e1), G(1) = do(e1), G(2) = do(e2)
G(01) = e; and G(12) = es. Since Y is Kan we can extend G to G : A2 — Y, giving us a
simplex G(02) : G(0) — G(2) in Y[1], the composition of e; and es. <

By a proof essentially identical to the proof of Lemma 14 we get the following lemma.

» Lemma 17 (classical). For all Kan graphs Y and X, if Fo1 : X[1] = Y[1] and F12 : X[1] —
Y[1] are Y™ -good maps satisfying doFo1 = d1Fi2, then there is an Fop : X[1] — Y[1] such
that d0F01 = doFog and d1F12 = leog.

In Figure 3 and 4 we see that Lemma 17 is not constructively provable. We have two
YX_-good functions Fy; and Fjs, satisfying the requirement, and both X and Y are Kan
graphs. If S(Y)S(X) had edge composition we would get a function Fys that dyFyy = dy Foo
and doFis = doFoe. However, such a function is not definable in the Kripke model. The
reason is analogous to the case of edge-reversal: from day 1 to day 2 we have equated objects
in the domain of Fyo while keeping the images distinct. Specifically, on day 1 we are forced
to set Foa(s(x)) = a and Fpa(s(z’)) = b, but on day 2 we have s(x) = s(a’), but a # b.
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s()

Figure 4 Kripke (counter)model for edge composition, day 2.

6 Evaluation of the results

The results up to now are summarized in Figure 5.

Having concrete, finite Kripke countermodels against Lemma 14 and 17 allows for a
further simplification: everything remains valid under the condition that X has at most two
points. Likewise, explicit bounds read off from the Kripke models can be imposed on the
number of points of Y and on the number of edges in X and in Y. The simplified results are
denoted by postfixing the number of the result by a ‘b’ for bounded, so Lemma 14b is the
bounded version of Lemma 14.
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Theorem 2 —> Lemma 14, not valid in Kripke model Fig. 1-2
Theorem 4 <

Theorem 3 — Lemma 17, not valid in Kripke model Fig. 3-4

Figure 5 Summary of results, all implications constructive.

With explicit bounds on the size of the domain, functions are completely determined
by a finite number of function values. For example, if we have Vz € X. (z =2V z = 2')
for x,2’ € X, then the binary predicate fun(y,y’) = (x = 2’ — y = 3’) on Y completely
describes all functions X — Y, in evidence z — y, 2’ — y’. With this in mind it is not
difficult to express Lemma 14b as a first-order classical tautology ® that is not true in all
Kripke models.

Now fix a constructive framework that is sufficiently expressive for the results in Figure 5.
For example, IZF (Zermelo-Fraenkel set theory in IPL, intuitionistic predicate logic) will
do. Let [|®]] be the Tarski interpretation of ® expressed in IZF. The following fundamental
property of IZF could be called the semantic conservativity of IZF over IPL:

If [|®]] is provable in IZF, then ® is true in all Kripke models.

Lubarsky [9] and McCarty [11] independently provided constructive proofs of the above
conservativity property of IZF. We gratefully acknowledge their prompt answers to our
question.!

Empowered by the proofs of Lubarsky and McCarty we can now conclude that Lemma 14b
cannot be proved in IZF. The same is true for Lemma 17b, and for all other results in Figure 5,

as well as for their bounded versions.

7 Kan graphs with explicit filler functions

Let us first give an intuitive explanation of our countermodels. They actually exploit the
undecidability of equality: on day 1 we don’t know what will be equal on day 2. (This is
different from the decidability of degeneracy, but the two are related: for example, an edge e
is degenerate iff e = sg(dy(e)).) In Figure 1 and 2, the point is that yo # y{, on day 1, so one
cannot put Fio(s(z)) = Fio(s(z’)) = a since this conflicts with doFip = dq Fp1. One is thus
forced to a choice that turns out to be wrong on day 2.

One attempt to deal with this lack of information is to give Kan simplicial sets more
structure. One could for example change Definition 6 of a Kan simplicial set into one where
we not only know that the required n-simplex exists, but actually have functions producing
them. In the formulation using horns as in Section 3.2 this would amount to a dependent
function fill(k, j, F') such that fill(k,j, F) : A¥ — Y extends F : A? — Y, for any k,j, F.
This form of Kan simplicial set has been introduced by Nikolaus in [13] under the name
of algebraic Kan complex. The definition with explicit fill-functions has certain advantages,
both classically and constructively, as we will see below. However, one should be careful in
defining YX: morphisms in the category of algebraic Kan complexes are required to map
chosen fillers in X to chosen fillers in Y. As a consequence, there are less maps from X to Y

L Strengthening the semantic conservativity to syntactic conservativity, that is, concluding that & is
provable in intuitionistic predicate logic, by using the completeness of the Kripke semantics implicates
some classical logic. Although not needed for this paper, we think there is some general interest in a
constructive proof that IPL - ¥ whenever IZF + [|¥|], for any first-order sentence W.
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as algebraic Kan complexes than as just simplicial sets. What we propose could be called
a functional Kan simplicial set, with explicit fill-functions but with maps as for ordinary
simplicial sets. As a consequence the exponential YX of simplicial sets can be used.

To be able to prove an analogue of Lemma 9 we have to strengthen the notion of Kan
graph to also include such filler functions, cf. [2].

» Definition 18 (Kan fill-graph). A Kan fill-graph is a reflexive multigraph with a partial
function fill : Y[1] x Y'[1] — Y'[1] such that for all e;,ex € Y[1],if e; : a - band ez : a — ¢,
then fill(eq, e3) : b — c.

As noted earlier, the Kan property together with reflexivity implies symmetry and
transitivity. We can now define the corresponding functions.

» Definition 19 (Edge reversal). For all e € Y[1] where Y is a Kan fill-graph let
et =fill(e, sdy(e)).
If e:a — b, then sdi(e) : a — a, and fill(e, sdy(e)) : b — a.
Note that we in general don’t have (e~!)~! = ¢, but we do have that d;((e=!)~!) = d;(e).

» Definition 20 (Edge composition). Using the inverse for edges in Y we define the composi-
tion of two edges e; : a — b and ey : b — c as

trans(er, eg) = fill(e] ', ez).
Again we are in no way guaranteed that trans(ej, s(b)) = ey or trans(s(z), s(x)) = s(z).

We immediately see that the addition of explicit functions adds power, as we can now
prove constructively and trivially an analogue of Lemma 14.

» Lemma 21. For all Kan fill-graphs Y, X and for every F : X[1] — Y[1], the function
F=1: X[1] — Y[1] defined by F~1(e) = F(e)~! satisfies doF = d1F~! and diF = doF~*.

Note how using explicit functions rules out the Kripke counter-example we gave of
Lemma 14. If s(2) = s(z’) on day 2, then we immediately get a = Fy,*(s(z)) = Fy,*(s(z')) =
b since equality has to be preserved.

We can even use the above fact to show that:

» Lemma 22. For any reflexive multigraph X and Kan fill-graph Y, S(Y)5X) has edge
reversal.

Proof. Assume an edge F € S(Y)5(X)[1], we proceed to define F~' such that do(F) =
di(F~') and dy(F) = do(F~1). As F € S(Y)*X)[1] we have F[n] : A'[n] x X[n] — Y|n].
We start with n = 0, defining F~1[0] : (A x X)[0] — Y[0] by letting F~1[0](0, z) = F[0](1, x)
and F~10](1,z) = F[0](0,x). Likewise for n = 1 we define F~1(00,e) = F(11,¢) and
F~1(11,e) = F(00, e), these are directly enforced by do(F) = d1(F~') and d1(F) = do(F~1).
For the case of F~1(01,¢) we need to find an edge F~1(01,¢) : F~1(0,dre) — F~1(1,dge),
which from the way we defined F~1[0] is the same as an edge

F~Y01,e) : F(1,dye) — F(0,dge).

The diagram in Figure 6 shows e € S(X)[1] with its endpoints on the left, and the nodes
and edges we have directly reachable in S(Y) using only F' on the right.
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a - @

Figure 6 Reversing F'.

Reading off the figure we can define F~1(01,¢) as follows:
~1(01, e) = trans(F (11, ¢e)), fill(F(01, ), F(00,¢)))

Note that F~! is well-defined since the functions involved in the definition are. Moreover,
F~! commutes with sg,dy, d; by construction.

Having defined F~! for dimension 0 and 1, F~! is also determined in higher dimensions,
because of the truncation in S(X), S(Y). In the case of n > 1 any input to F'~![n] will have
the form

F_l(Oalb7 (oy - Znj e €ijy.0))

where a + b =n + 1. We let F~![n] map this element to the tuple

(F7H0,20), ..., F7H0, 1), F (Lwa) .., F (1L, @agp—1)i - €, o),
where e}, = F~1(00,e;) if i <j <a, ej; = F7'(01,e;) if i <a < j, and ej; = F~'(11, e;5)
if a <4 < j. This commutes with face and degeneracy maps. |

Using the same techniques we can constructively prove the following variant of Lemma 17.

» Lemma 23. For any Kan graph X and Kan fill-graph Y, if Fp1 : X[1] — Y[1] and
Fip @ X[1] — Y[1] satisfy doFo1 = diFia, then there is a Foa : X[1] — Y[1] such that
d1F01 = d1F02 and doFlg = doFOQ.

» Lemma 24. For any reflexive multigraph X and Kan fill-graph Y, S(Y)S(X) has edge
composition.

Proof. Assume edges Fp; € S(Y)5X) | Fip € S(Y)¥X) such that do(Fp1) = dy(Fi2), and we
proceed to define Fyy € S(Y)5(X) such that dy(Foe) = di(Fo1) and do(Fo2) = do(Fi2).

As was the case in the proof of Lemma 22, we are forced on Fp2(0,2) = Fp1(0,2),
Fog(l,x) = Flg(l, l‘), }’—‘02(007 e) = F01(00, 6), and Fog(ll, e) = Flz(ll, 6).

For the case of Fy2(01,e) we need to find an edge Fya(01,¢€) : Fy2(0,dre) — Fopa(1, dpe),
which from the way we defined Fy2[0] is the same as an edge

FOQ(OI,B) : F01(O,d16) — Flg(l,doe).

We note that do(Fo1) = di(Fi2) enforces Fyi(11l,e) = F12(00,€e), which again enforces
Fo1(1,d;(e)) = F12(0,d;(e)). This gives the diagram in Figure 7, enabling us to read off:

Fyo (01, e) = fill(trans(Fpy (11, €), Fo1(01,e)71), F12(01,€)). <
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do(e)

dl (6)

Figure 7 Filling the horn AZ.

8 Conclusions and Future Research

We have given a thorough analysis of the non-constructivity of the basic result that the Kan
extension property is preserved under the usual operation of exponentiation of simplicial
sets. An important step in this analysis, also employed in [2], is the truncation of simplicial
sets to dimension 1. This allows us to study the basic result in the simplified situation of
Kan graphs. Once one has shown the constructive unprovability of the basic result in the
situation of Kan graphs, one obtains a fortiori its unprovability for Kan simplicial sets.

The much simpler notion of Kan graph (as compared to Kan simplicial set) invites to
further thought experiments. One of those is the study of simple, constructive consequences
of the Kan extension property, such as edge reversal and edge composition. It turns out that
already these consequences cannot be proven constructively.

Another experiment is to strengthen the Kan extension property from existence of an
n-simplex as in Definition 6 to having a function, called a filler, yielding these n-simplices.
This makes quite a difference. None of the Kripke models we have introduced is able to deal
with such fillers, since equating objects in X and Y implies that filler-values such as a and b
in Figure 1 also have to be equal. The question arises whether this is necessary so, or just
coincidental in the particular Kripke model. This question is answered in Section 7, where
we prove constructively that, if X is a graph and Y a Kan-fill graph, then S(Y)* (X) has edge
reversal and edge composition. This result may be of independent interest. It suggests that
showing the (expected) constructive unprovability of Theorem 4 for algebraic Kan complexes
as in [13] will require more complicated structures than graphs. The above expectation is
based on an analysis of filling a 2-horn in YX, which requires defining F(001,¢). As F has
to commute with sg, one must know whether the 2-simplex ¢ is an sg-image or not. This can
in general only be decided by an appeal to classical logic. We have to leave this to future
research.
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—— Abstract

A coercion semantics of a programming language with subtyping is typically defined on typing
derivations rather than on typing judgments. To avoid semantic ambiguity, such a semantics is

expected to be coherent, i.e., independent of the typing derivation for a given typing judgment. In
this article we present heterogeneous, biorthogonal, step-indexed logical relations for establishing
the coherence of coercion semantics of programming languages with subtyping. To illustrate the
effectiveness of the proof method, we develop a proof of coherence of a type-directed, selective
CPS translation from a typed call-by-value lambda calculus with delimited continuations and
control-effect subtyping. The article is accompanied by a Coq formalization that relies on a
novel shallow embedding of a logic for reasoning about step-indexing.
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1 Introduction

Programming languages that allow for subtyping, i.e., a mechanism facilitating coercions of
expressions of one type to another, are usually given either a subset semantics, where one
type is considered a subset of another type, or — a coercion semantics, where expressions
are explicitly converted from one type to another. In the presence of subtyping, typing
derivations depend on the occurrences of the subtyping judgments and, therefore, typing
judgments do not have unique typing derivations. Consequently, a coercion semantics that
interprets subtyping judgment by introducing explicit type coercions is defined on typing
derivations rather than on typing judgments. But then a natural question arises as to whether
such a semantics is coherent, i.e., whether it does not depend on the typing derivation.

The problem of coherence has been considered in a variety of typed lambda calculi.
Reynolds proved the coherence of the denotational semantics for intersection types [22].
Breazu-Tannen et al. proved the coherence of a coercion translation from the lambda
calculus with polymorphic, recursive and sum types to system F [8], by showing that any
two derivations of the same judgment are normalizable to a unique normal derivation where
the correctness of the normalization steps is justified by an equational theory in the target
calculus. Curien and Ghelli introduced a translation from system F< to a calculus with
explicit coercions and showed that any two derivations of the same judgment are translated
to terms that are normalizable to a unique normal form [9]. Finally, Schwinghammer followed
Breazu-Tannen et al’s approach to prove the coherence of coercion translation from Moggi’s
computational lambda calculus with subtyping [24].
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The normalization-based proofs consist in finding a normal form for a representation of
the derivation and they hinge on showing that such normal forms are unique for a given
typing judgment. When the source calculus under consideration is presented in the spirit
of the lambda calculus a la Church, i.e., the lambda abstractions are type annotated, as is
the case in all the aforementioned articles that follow the normalization-based approach, the
term and the typing context indeed determine the shape of the normal derivation (modulo
a top level coercion that depends on the type of the term) [18]. However, in calculi a la
Curry this is no longer the case and the method cannot be directly applied. Still, if the
calculus is at least weakly normalizing, one can hope to recover the uniqueness property for
normal typing derivations for source terms in normal form, assuming that term normalization
preserves the coercion semantics. For instance, in the simply typed A-calculus the typing
context uniquely determines the type of the term in the function position in applications
building a S-normal form, and, hence, derivations in normal form for such terms are unique.
This line of reasoning cannot be used when the calculus includes recursion.

In this article, we consider the coherence problem in simply-typed lambda calculi with
general recursion, control effects and with no type annotations. The coercion semantics we
study translate typing derivations in the source calculus to a corresponding target calculus
with explicit type coercions (that in most cases can be further replaced with equivalent
lambda-term representations) and our criterion for coherence of the translation is contextual
equivalence [19] in the target calculus.

The main result of this work is a construction of logical relations for establishing so
construed coherence of coercion semantics, applicable in a variety of calculi. In particular,
we address the problem of coherence of a type-directed CPS translation from the call-by-
value A-calculus with delimited-control operators and control-effect subtyping introduced
by Materzok and the first author [16], extended with recursion. While the translation for
the calculus with explicit type annotations has been shown to be coherent in terms of an
equational theory in a target calculus [15], no CPS coercion translation for the original
version, let alone extended with recursion, has been proven coherent.

The reasons why coherence in this calculus is important are twofold. First of all, it is very
expressive and therefore interesting from the theoretical point of view. In particular, the
calculus has been shown to generalize the canonical type-and-effect system for Danvy and
Filinski’s shift and reset control operators [10, 11], and, furthermore, that it is strictly more
expressive than the CPS hierarchy of Danvy and Filinski [17]. These results heavily rely on
the effect subtyping relation that, e.g., allows to coerce pure expressions to effectful ones.
From a more practical point of view, the selective CPS translation, that leaves pure (i.e.,
control-effect free) expressions in direct style and introduces explicit coercions to interpret
effect subtyping in the source calculus, is a good candidate for embedding the control
operators in an existing programming language, such as Scala [23].

In order to deal with the complexity of the source calculus and of the translation itself,
we introduce binary logical relations on terms of the target calculus that are: heterogeneous,
biorthogonal [14, 20, 13], and step-indexed [3, 2, 1]. Heterogeneity allows us to relate terms
of different types, and in particular those in continuation-passing style with those in direct
style. This is a crucial property, since the same term can have a pure type, resulting in a
direct-style term through the translation and another, impure type, resulting in a term in
continuation-passing style. Relating such terms requires quantification over types and to
assure well-foundedness of the construction, we need to use step-indexing, which also supports
reasoning about recursion, even if not in a critical way. We follow Dreyer et al. [12] in using
logical step-indexed logical relations in our presentation of step-indexing. Biorthogonality, by
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imposing a particular order of evaluation on expressions, simplifies the construction of the
logical relations. It also facilitates reasoning about continuations represented as evaluation
contexts.

Apart from the calculus with effect subtyping, we have used the ideas presented in this
article to show coherence of subtyping in several other calculi, including the simply typed
lambda calculus with subtyping [18] extended with recursion, the calculus of intersection
types [22], and the lambda calculus with subtyping and the control operator call/cc.

The article is accompanied by a Coq development that presently consists of a library
that provides a new shallow embedding of the logic for reasoning about step-indexed logical
relations, and complete formalization of the proofs presented in the rest of the article. The
code is available at http://www.ii.uni.wroc.pl/~ppolesiuk/lrcoherence.

The rest of this article is structured as follows. In Section 2, we briefly present Dreyer et
al’s logic for reasoning about step indexing [12] on which we base our presentation. We also
describe the main ideas behind our Coq formalization of the logic. In Section 3, we introduce
the construction of the logical relations in a simple yet sufficiently interesting scenario — the
simply typed lambda calculus a la Curry with natural numbers, type Top, general recursion
and standard subtyping. The goal of this section is to introduce the basic ingredients of the
proof method before embarking on a considerably more challenging journey in the subsequent
section. In Section 4, we present the main result of the article — the logical relations for
establishing the coherence of the CPS translation from the calculus of delimited control with
effect subtyping. In Section 5, we summarize the article.

2 Reasoning about step-indexed logical relations

Step-indexed logical relations [3, 2, 1] are a powerful tool for reasoning about programming
languages. Instead of describing a general behavior of program execution, they focus on the

first n computation steps, where the step index n is an additional parameter of the relation.

This additional parameter makes it possible to define logical relations inductively not only
on the structure of types, but also on the number of computation steps that are allowed for
a program to make and, therefore, they provide an elegant way to reason about features that
introduce non-termination to the programming language, including recursive types [2] and
references [1].

However, reasoning directly about step-indexed logical relations is tedious because proofs
become obscured by step-index arithmetic. Dreyer et al. [12] proposed logical step-indexed
logical relations (LSLR) to avoid this problem. The LSLR logic is an intuitionistic logic for
reasoning about one particular Kripke model: where possible worlds are natural numbers
(step-indices) and where future worlds have smaller indices than the present one. All
formulas are interpreted as monotone (non-increasing) sequences of truth values, whereas the
connectives are interpreted as usual. In particular, in the case of implication we quantify over
all future worlds to ensure monotonicity, so the formula ¢ = 1 is valid at index n (written
n =) iff k E ¢ implies k |= ¢ for every k < n. In contrast to Dreyer et al. we do not
assume that all formulas are valid in world 0, because it is not necessary.

The LSLR logic is also equipped with a modal operator > (later), to provide access to
strictly future worlds. The formula > means ¢ holds in any future world, or formally >¢
is always valid at world 0, and n + 1 | >y iff ¢ is valid at n (and other future worlds by
monotonicity). The later operator comes with two inference rules:

'Yk | RO )

>-intro ——— Léb

| BN ) 'k
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7 = Nat|Top|7—>7 (types)
= x| Aze|ee|fixz(x)e|n (expressions)
To < T 71 < T
—— S-REFL 2 =13 1L=172 S-TRANS ————— S-Tor
T<rT <73 T < Top
75 <7 7 < Ty (x:7) el Iz:mke : m
n n S-ARR ——  T-VAR T-ABS
(11 = 11) < (15— 1) 'Fax . 7 I'tXze : 71 =1
I'Fe : m—7 I'kFey @ m If:mm—o>max:mibFe : &
T-App - T-Fix
T'kejey 1 711 THfix f(x)e : 71 =7
o consr I'te : 71 T§T’TS
I'n : Nat Tke : ¢ -oUB

Figure 1 The source language — A-calculus with subtyping.

The first rule allows one to shift reasoning to a future world, making the assumptions about
the future world available. The Lob rule expresses an induction principle for indices. Note
that the premise of the rule also captures the base case, because the assumption >¢ is trivial
in the world 0. The later operator comes with no general elimination rule.

Predicates in LSLR logic as well as step-indexed logical relations can be defined induc-
tively on indices. More generally, we can define a recursive predicate ur.p(r), provided all
occurrences of r in ¢ are guarded by the later operator, to guarantee well-foundedness of
the definition. For the sake of readability, in this paper we define recursive predicates and
relations by giving a set of clauses instead of using the u operator.

Since the logic is developed for reasoning about one particular model, we can freely add
new inference rules for the logic if we prove they are valid in the model. We can also add new
relations or predicates to the logic if we provide their monotone interpretation. In particular,
constant functions are monotone, so we can safely use predicates defined outside of the logic,
such as typing or reduction relations.

Our Coq formalization accompanying this article is built on our IxFree library that
contains a shallow embedding of the LSLR logic similar to Appel et al’s formalization of
the “very modal model” [4]. Logical connectives including the later operator are functions
on a special type IProp of “indexed propositions” defined as a type of monotone functions
from nat to Prop. The library provides tactics representing the most important inference
rules. One of the main differences between our library and Appel et al’s formalization is a
way of keeping track of the assumptions. Instead of interpreting a sequent ¢1,..., @, F 9
directly, we treat it as k |= ¢ with the standard Coq assumptions k = ¢1, ..., k E ¢n. This
approach is very convenient since it allows for reusing a number of existing Coq tactics.

3 Introducing the logical relations

In this section we prove the coherence of subtyping in the simply-typed call-by-value lambda
calculus extended with recursion, where the coercion semantics is given by a standard
translation to the simply-typed lambda calculus with explicit coercions [9]. Our goal here is
to introduce the proof method in a simple scenario, so that in Section 4 we can focus on issues
specific to control effects. The logical relations we present in this section are biorthogonal
and step-indexed, which is not strictly necessary but it makes the development more elegant.
Furthermore, biorthogonality and step-indexing become crucial in handling more complicated
calculi such as the one of Section 4 and, therefore, are essential for the method to scale.
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T = Nat|Unit|7—r7 (types)
¢ u= id|coc|top|lc—c (coercions)
e = x|Axel|ee]|ce]|fixz(z)e|n| () (expressions)
v = x| Azxe|fixz(x)e|(c—=c)v|n]| ) (values)
E O|Ee|vE|cE (evaluation contexts)
C] TP T3 Co :iT1 D To
———— S-RE - S ———— — S-T
id:7ToT EFL €10C2 1T >T3 STRANS top :: 7> Unit o
e Th> T Co T DT x:1)€el
! 2 1/ 2 } 2 S-ARR . -, I-Consr # T-VAR
1= co (1] = 1) (T = T2) I'Fn : Nat 'tz : 7
Fz:mmbe : m cuT>T T'kte : 71
—_——  T-UnIT A T-CA
I'E () : Unit FkMXve : 11 =7 A 'tce : 7 Pp
ke : m—m Fkey : 1 Dfim—=mx:imbe : m
T-Aprp - T-Fix
F'Fejes : 7 THfix f(x)e : 71 =7
E[(Az.e)v] —p Ele{v/z}] Elidv] —, E[v]
E[(fix f(z).e)v] —p Ele{fix f(z).e/f,v/z}] El(ci0c2)v] =, Eler (e2v)]
Eftopv] —. E[{)]
El(c1 — c2) v1v2] =, Elca (v1 (c1 v2))]

Figure 2 The target language — A-calculus with explicit coercions.

3.1 The simply-typed lambda calculus with subtyping

The syntax and typing rules for the source language are given in Figure 1. The language is
the simply-typed lambda calculus with recursive functions (fix f(x).e) and natural numbers
(n). For brevity we do not consider any primitive operations on natural numbers or other
basic types, but they could seamlessly be added to the language. We include the type Top, to
make the subtyping relation interesting. The typing and subtyping rules are standard [18].

3.2 Coercion semantics

The semantics of the source language is given by a translation of the typing derivations
to a target language that extends the source language with explicit type coercions (and
replaces Top with Unit). The coercions express conversion of a term from one type to another,
according to the subtyping relation. Figure 2 contains syntax, typing rules and reduction
rules of the target language. The type coercions ¢ and their typing rules correspond exactly
to the subtyping rules of the source language. The grammar of terms contains explicit
coercion application of the form ce and it is worth noting that terms of the form (¢ — ¢) v
are considered values, since they represent a coercion expecting another value as argument
(witness the last reduction rule).

The operational semantics of the target language distinguishes between [-rules that
perform actual computations and ¢-rules that rearrange coercions. Both of them are used
during program evaluation. We say that program e terminates (written el) when it can be
reduced to a value using both sorts of reduction rules, according to the evaluation strategy
determined by the evaluation contexts.

General contexts are closed terms with one hole (possibly under some binders), and are
denoted by the metavariable C. We write - C' : (T';7y) ~ 7 if forany e withT'kHe : 7
we have I' - Cle] : 7o. Contextual approximation, written I' - e; Zetr €2 @ 7, means that

~
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[ =] = [n]— =] [Nat] = Nat [Top] = Unit
SHT < THS—REFL = id
S[Top < 7]s.ror = top
S < m3]strans(Dy,0,) = Sl < 1]p, 0 S[m1 < w2,
S — 71 <7 = Rlsareor,0s) = Sl < 7ilp, = S[n < 7],
Tlx]rvar = =« Tlfix f(z).e]rrxpy = fix f(z).Te]p
TII)\:C'e]]T—ABS(D) = AJI.T[[@HD T[[e]]T_sUB(Dl,DQ) = S[[T < TIHD2 T[[e]]D1

T[[elﬂD1 T[[e2]]D2 T[[”:”T»CONST

Figure 3 Coercion semantics for the A-calculus with subtyping.

n

Tlex 62]]T—APP(D1,D2)

for any context C' and type 7/, such that - C' : (I';7) ~» 7' if C[e;] terminates, then so
does Cles]. fT'Fe; Zetr €2 @ Tand 'k ex S €1 @ 7, then we say that e; and ey are
contextually equivalent.

The coercion semantics of the source language is given in Figure 3. The function S[.].
translates subtyping proofs into coercions, and function T|.]. translates typing derivations

into terms of the target language.

» Lemma 1. Coercion semantics preserves types.
1. If D 1y <7 then S| < »]p :: [11] > [=].
2. IfD=Tte : 7then [I]F Tlelp : [7]-

3.3 Logical relations

In order to reason about contextual equivalence in the target language, we define logical
relations (Figure 4). Relations are expressed in the LSLR logic described in Section 2, so
they are implicitly step-indexed.

We call these relations heterogeneous because they are parameterized by two types, one
for each of the arguments. This property is important for our coherence proof, since it makes
it possible to relate the results of the translation of two typing derivations which assign
different types to the same term. When both types 7 and 7o are Nat or both are arrow
types, the value relation V[r; 2] is standard. Two values are related for type Nat if they
are the same constant, and two functions are related when they map related arguments to
related results. The most interesting are the cases when type parameters of the relation are
different. When one of these types is Unit, then any values are in the relation, because we do
not expect them to carry any information — Unit is the result of translating the Top type.
Functions are never related with natural numbers.

The relation E[11; 2] for closed terms is defined by biorthogonality. Two terms are related
if they behave the same in related contexts, and contexts are related (relation K[r1;72])
if they yield the same observations when plugged with related values. Yielding the same
observations (relation 3) is defined for each step-index separately: e; = es is valid at k iff
termination of e; using at most k -steps (and any number of t-steps) implies termination of
e2 in any number of steps. This interpretation is monotone, so the relation = can be added
to the LSLR logic. The relation £[r; 7] is extended to open terms as usual: two open
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(1)1,’()2) € V[[Nat; Nat]]
(v1,v2) € V[r] = 11575 — T2
(v1,v2) € V[r1;72]

)

dn,vi =vy=n

V(a1,as) € V[ri;15]-(v1 a1, v2 az) € E]m;72]
T if 71 = Unit or 75 = Unit

L otherwise

V(El, Eg) S K[[Tl; TQH.E]_ [61] j EQ[@Q]
V(’Ul,’Ug) S V[[Tl; Tg]].El [Ul] j EQ['UQ]

eldf = ezl

Va, (11(z),72(2)) € V[I'1(2); T2(2)]
V(71,72) € G[T1; 2] (€171, e272) € E[m1;72]

(v1,v2) € V[11;72]

(e1,e2) € E[11;72]
(El,Eg) S K:[[Tl;Tg]]

k ': €1 j €9

(71,72) € G[I'1; 4]
IFiToker Ziogea @ Ti3T2

(eegergey

Figure 4 Logical relations for the A-calculus with explicit coercions.

terms are related (written I''; T2 - e1 Siog €2 @ 715 72) when every pair of related closing
substitutions makes them related.

Notice that we do not assume that related terms have valid types. Our relations may
include some “garbage”; e.g., (1, A\z.z) € V[Unit;Nat], but it is non-problematic. One
can mechanically prune these relations to well-typed terms, but this change complicates
formalization and we did not find it useful.

In this presentation we consider languages with only one base type. Adding more base
types and some subtyping between them will not change the general shape of the proof, but
defining logical relations for such a case is a little trickier. We would stipulate that two
values v; and vs are related for base types by and by iff for every common supertype b of by
and bs, coercing v; and vs to b yields the same constant.

The relation = is preserved by reductions in the following sense, where the third assertion
expresses an elimination rule of the later modality that is crucial in the subsequent proofs.

» Lemma 2. The following assertions hold:
1. If ey —, €} and e} 3 ea then eg 3 ea.

2. Ifes —, €, and eq 3 €l then e 3 es.

3. Ife1 —p e} and e} S es then eq 3 ea.
4. Ifeg =5 € and e1 S b then ep X ea.

The proof of soundness of the logical relations follows closely the standard technique
for biorthogonal logical relations [20, 13]. First, we need to show compatibility lemmas,
which state that the relation is preserved by every language construct. Most of them are
standard and we omit them due to lack of space. The only compatibility lemma specific to
our relations is the following lemma for coercion application.

» Lemma 3 (Coercion compatibility). The logical relation is preserved by coercion applica-
tion.

1. Ifcumpomand ;Do er Ziogea @ 7570 then ;T b cer Ziog €2 1+ T3 70.

2. Ifcumipm and ;T b er Siog ez @ o571 then ;Lo b er Ziog ce2 0 To5 .

Proof. We prove both cases by induction on the typing derivation of the coercion c. <
» Theorem 4 (Fundamental property). IfI'Fe : 7 then ;T Fe Zjpge @ T57.

Proof. By induction on the derivation I' - e : 7. In each case we apply the corresponding
compatibility lemma. |
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» Lemma 5 (Precongruence). If - C : (I;7) ~» 19 and T;T F eq Siog €2 @ 757 then
(Clea], Cle2]) € E[ro;70]-

Proof. By induction on the derivation of context typing, using the appropriate compatibility
lemma in each case. For contexts containing subterms we also need the fundamental property.
For the empty context we use the empty substitution, since the empty substitutions are in
relation G[@; &]. <

» Lemma 6 (Adequacy). If (e1,e2) € E[7; 7] then e1 3 ea.

Proof. Let us show O[e;] 3 Olez]. Using the assertion (e1,e2) € E]r; 7], it suffices to show
(0,0) € K[r; 7], which is trivial, since values always terminate. <

» Theorem 7 (Soundness). If k |= I'T' F e1 Ziog €2 @ 757 holds for every k, then
F}—el -<ctm ey I T.

~

Proof. Suppose - C' : (T';7) ~» 79 and Cle1]], we need to show Cles]|. By Lemma 5 and
Lemma 6 we know k = Cle1] 3 Cles] for every k. Taking k to be the number of steps in
which Cleq] terminates, we have that Cf[es] also terminates, by the definition of 3. <

3.4 Coherence of the coercion semantics

Having established soundness of the logical relations, we are in a position to prove the main
coherence lemma, phrased in terms of the logical relations, and the coherence theorem.

» Lemma 8. If D; =T, ke : 7 fori=1,2 are two typing judgments for the same term e
of the source language, then [I'1]; [T2] = Tlelp, Siog Tlelp, : [ml; 2]

Proof. The proof follows by induction on the structure of both derivations D; and Dy. At
least one of these derivations is decreased in every case. When one of derivations starts with
subsumption rule (T-SUB), we apply Lemma 3. The coercion that we get after translation
is well-typed by Lemma 1. In other cases we just apply the appropriate compatibility
lemma. <

» Theorem 9 (Coherence). If Dy and Dy are derivations of the same typing judgment
ke : 7, then [T+ Tlelp, ZSetz Tlelp, : [7]-

Proof. Immediately from Lemma 8 and Theorem 7. <

Coercion semantics described here translates the source language into the language with
explicit coercions. We chose coercions to be a separate syntactic category, because we found
it very convenient, especially for proving Lemma 3. However, one can define a coercion
semantics which translates subtyping proofs directly to A-expressions. Our result can be
easily extended for such a translation. Let |e| be a term e with all the coercions replaced
by the corresponding expressions. To prove that for any contextually equivalent terms eq
and es in the language with coercions, terms |e;| and |es| are contextually equivalent in the
language without coercions, we need three simple facts that can be easily verified:

1. every well-typed term in the language without coercions is well typed in the language
with coercions,

2. term e terminates iff |e| terminates,

3. if context C' does not contain coercions then C/[le|] = |Cle]|.

In the next section we show that the results presented in this section can be adapted to
a considerably more complex calculus — a calculus of delimited control with control-effect
subtyping.
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T = Nat|7—>T (pure types)
T = 7| 7[T|T (types)
e u= z|Azeleelfixz(z)e|Sozx.e]| (e)|n (expressions)
T <Tj I < Ty T ST TIh<Ty Ui <Us
——— S-R -TRA S-Cons
T<T EFL T < T S-TRANS o [T1]U1 < [T2]U2 ONS
L <Ty T2 < T Ty <Tp ke : T T<U
——————— S-Lirr S-ARR T-SuB
T < T[Tl}TQ (Tl — Tl) < (T2 — TQ) I'Fe : U
(x:7)el Lx:7ke : T . F'key : 7T FI—eQ:TTPA
Trz:r " TFxte:r—T 0 TFeies i T A
FFEl : (TQ*)Tl[UdUg)[UQ]Ul FF€2 : TQ[Ug]UQ
T-ApPP ———— T-CONST
F}—el €g ! 7'1[U4]U1 I'n : Nat
Ifir—>Txz:tke : T Fe:tr—=Tke : U I'ke : 7[r|T
; T-Fix T-SFT ~——————"— T-RsT
IFfix f(x)e : 7T 'k Soze : 7[T|IU ke : T

Figure 5 The source language — A-calculus with delimited control and effect subtyping.

4 Coherence of a CPS translation of control-effect subtyping

The calculus of delimited control studied in this section is the A-calculus extended with
recursion and the control operators shifty (Sp) and resety ((-)) [11] that can explore and
reorganize an arbitrary portion of the stack of delimited continuations. It was built around a
central idea that types for such a calculus should contain information about the stack and
that the amount of that information should be governed by a subtyping mechanism [16]. We
will define the semantics of the calculus by a CPS translation to a target calculus endowed
with a reduction semantics, but if we were to directly give a reduction rule for shiftg, it would
be:

FIE[Soz.e])] —  Fle{Ay(Ely])/x}]

where E' is a pure evaluation context representing the current delimited continuation (delim-
ited by () and captured by Sp) and F' is a metacontext, i.e., a list of such pure evaluation
contexts separated by control delimiters, representing the current metacontinuation [6]. In
terms of abstract-machine semantics E together with F represent the entire control stack. We
can see from the reduction rule that nothing prevents the expression e from capturing another
delimited continuation from F' and, therefore, the types of the calculus express requirements
on the shape of the control stack, so that expressions can safely perform control operations
exploring the stack. However, under some conditions, an expression that imposes certain
requirements on the stack can be used with a stack of which more is known or assumed. Such
coercions are possible thanks to the subtyping relation that lies at the heart of the calculus.

4.1 The lambda calculus with delimited control and effect subtyping

The syntax and typing rules of the calculus of delimited control are shown in Figure 5. Types
are either pure (7) or effect annotated (7[T1]T2). An expression of type 7[T1]T% can be used
with the top-most delimited continuation that when given a value of type 7 behaves as
specified by its answer type 77, and with the rest of the stack whose type is T5.

The calculus comprises the simply typed lambda calculus with the standard subtyping
rules, extended with typing and subtyping rules for effectful computations. The most
interesting from the point of view of effect subtyping are the rules S-Cons and S-LirT. The
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T u= Nat|7—>T (pure types)
T = 7|(r—-T)=T (types)
¢ == id|coc|le—c| Te| e (coercions)
e = x|Xrel|eel|ce]|fixz(z)e|n (expressions)
v = z|Aze|fixz(x)e|(c—=c)v| Tev | (ce)v|n (values)
E O|Fe|vE|cE (evaluation contexts)
. cp T Ty co T Ty ]
doToT o i ocy - TioTs SmaNs
Cl TP Ty Co ZIT11>T2
S-ARR
= co (=T (e = T2)
c:TipTy CTI DT cp =TTy co Ui > Us
S-LIFT S-Cons
teuxto((t—T1) = Ts) cleres = (1 = Th) = U e (12 = Ta) = Us)
(x:7)el z:7ke : T A I'ktey : 7= T Fl—eQ:TTA
— T- - 3 -APP
Fl—x:TTVAR I'tXMe : 7—=T o I'keey : T
Nz:r—=TkFe : U 'te: (r—=T)=U 'kFov : 7T
T-KABS T-KApp
'FXze : (T—=T)=U F'tev : U
c:TvoU The : T Ifir—>Tx:7ke : T
_CA P —————————— T-
I'kce : U oA kfix f(x)e : 7T T I'tkn : Nat rconst
E[(Az.e)v] —p Ele{v/z}] Elidv] —, E[v]
E[(fix f(z).e)v] —p Ele{fix f(z).e/f,v/x}] El(cioc2)v] = Eler (c20)]
E[tcviva] —p Elc (v2 v1)] El(c1 = c2) viv2] = Efca (v1 (e1 v2))]
El(clei]e2) viv2] =0 Efez (v1 ((¢ = c1) v2))]

Figure 6 The target language — A-calculus with explicit coercions of control effects.

rule S-CONS is a direct consequence of the interpretation of effect-annotated types given
above that actually follows from the CPS interpretation of delimited continuations — a type
T[T1]T% is interpreted in CPS as (7 — T1) = T3, where = means an effectful function space
(see Section 4.2). The rule S-LIFT is more interesting and it says that a pure computation can
be considered impure, provided the answer type of the top-most delimited continuation can
be coerced into the type of the rest of the stack. We have, for an example, Nat < Nat[Nat|Nat.
It is worth noting that the calculus provides two rules for function application. They are
necessary for expressivity reasons, but at the same time they are an additional source of
difficulty when it comes to establishing the coherence of the subtyping. For more detailed
presentation of the calculus we refer the reader to [16]. (The presentation of the type system
in [16] differs from the one shown in Figure 5 in some inessential details, but the two type
systems are equally expressive.)

4.2 Coercion semantics: a type-directed selective CPS translation

The syntax and typing rules of the target language are presented in Figure 6. There are
two kinds of arrow type: the usual one 7 — T for regular functions and the effectful one
(r = T) = U for expressions in CPS. We make this distinction to express the fact that the
CPS translation (see Figure 7) yields expressions with strong restrictions on the occurrence
of terms in CPS: they are never passed as arguments (typing environment consists of only
pure types) and they can be applied only to values (witness the rule T-KAPP) representing
continuations.
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[Nat], = Nat [l = [l
[t =Ty [l = [T [=[T]U] (Irlp = 7)) = [U]

S[[T < T]] SRer. = id
S[T1 < T3] s-Trans(D1,Ds) S[T; < T3] p, o S[T1 < T2]p,
S — T1 < 10 = To]s.Arr(Dy,D2) S[re < 11]p, = S[T1 < Tx]p,

S[r < 7[TU]sLerpy = TS[T <Ulp
S[r[T1Uy < 1o[To)Us]s-cons(p,p1,0,) = Sl < 1]p[S[T2 < Th]p,]S[UL < Us]p,
Tlz]rvar = = TSoz-e]rser(py = Az.T[elp
T[[)\:c.e]]T_ABS(D) = Az.T[e]p T[[(e)]]T_RST(D) = Tlelp (A\z.x)
Tlfix f(x).e]rrxpy = fix f(x).T[elp TIn]r-const = n

S[T < Ulp, Tlelp,
Tﬂel]]Dl TﬂeQHD2
= MeTlerlo, M Tlealo, O f 2 )

Figure 7 Type-directed selective CPS translation.

T[[eHT—SL‘B(Dl,DQ)
Tler e2]r-pare(Dy,D2)
T[[el eQ]]T-APP(Dl,Dg)

Again, the operational semantics distinguishes between S-rules and ¢-rules. We classified
the last S-rule as “actual computation” because it does not only rearrange coercions. It
translates back a lifted value v; and applies to it a given continuation vy. This rule and the
last ¢-rule reduce a coerced value applied to a continuation, so terms of the form (cwv) and
(c[c]ev) are considered values. Notice that these values have effectful types. We extend the
notion of t-reduction to evaluation contexts: F1 —, Es holds iff Ey[v] —, Ex[v] for every
value v.

As in Section 3, the metavariable C' denotes general closed contexts. We also define
typing of general contexts - C : (I';T) ~» Ty as before. The definition of contextual
approximation I' - e; . es @ T is slightly weaker, because we allow only contexts with
pure answer type. Indeed, an expression that requires a continuation to trigger computation
can hardly be considered a complete program.

The coercion semantics of the source language is given by the type-directed selective CPS
translation presented in Figure 7. The translation is selective because it leaves terms of pure
type in direct style — witness, e.g, the equations for variable or pure application. Effectful
applications are translated according to Plotkin’s call-by-value CPS translation [21], whereas
the translation of shifty and resety is surprisingly straightforward — shifty is turned into a
lambda-abstraction expecting a delimited continuation, and resetq is interpreted by providing

its subexpression with the reset delimited continuation, represented by the identity function.

» Example 10. Consider the program (fix f(x).f ) 1 in the source language. We derive the
type Nat[T]T for it in two ways: let D; be the derivation

f:Nat — Nat[T|T,z : Nat+ fz : Nat[T|T
- T-Fix —————— T-Const
Ffix f(z).f z : Nat — Nat[T|T F1 : Nat

F (fix f(z).fx) 1 : Nat[T|T T-PApp

and Do be the derivation
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(v1,v2) € V[Nat;Nat] <= In,vy=v2=n
(1}1,’1}2) EV[[Tl —)TuTg—)Tzﬂ <~ V(al,ag) EV[[Tl;TQ]].(’l}l al,’ljg,ag) Eg[[Tl;TQ]]
(v1,v2) € V]3] <= L otherwise
(61, 62) S g[[Tl; T2H <~ V(El,EQ) S K:[[Tl;Tg]].El [61] ;5 EQ[@Q]
(El,EQ) S K[Tl;TQH <~ V(Ul,vg) S V[Tl;TQH.El[Ul] :5 EQ[UQ]
(El,EQ)EK:[[Tl;(TQ%TQ)jUQH <~ HT,(E,]C)E’CV[[TlWT;TQ—)TQ]],
(B}, BY) € KIT; U],
By =t B{{E[|| A B -t BA[]H
(El,EQ) E’C[[(Tl —>T1)2>U1;T2ﬂ < HT, (]{i,E) EDV}C[[Tl —>T1;7—2’V")TH7
(E1, Ey) € KU TY.
By - B[ k] A By -7 BY{E(]
(El,EQ) S ]C[[(Tl — T1> = Ul;
(T2—>T2)=>U2ﬂ s H(kl,kg) GV[[Tl —>T1;7'2—>T2]],
(E1, E3) € K[Uy; Us].
Ey =7 Eq[[] k] A By =7 Eo[[] ko
(E,v) € KV ~ Ti;m0 = T < V(a1,a2) € V[r1;72].(Ela1],v a2) € E[T1; T3]
(v, E) e VK[ = Ti;10 ~ 1] < V(a1,a2) € V[r1;72].(v a1, Elas]) € E[T1; T3]
(1:72) €G] = Va.(n(2),72(2)) € V[I'i(2); Ta(2)]
I'isTokler Ziog ez @ TisTa <= Y(y1,72) € G[I1;T2].(e171, e272) € E[Th; T3]

Figure 8 Logical relations for the A-calculus with explicit coercions of control effects.

Ffix f(z).f x : Nat — Nat[T|T E1 . Nap lowsto
" T-Sus T-Sus
Ffix f(z).f x : (Nat — Nat[T|T)[T|T F1 : Nat[T|T

[
F (fix f(z).fz)1 : Nat[T|T

T-App

Then

TIfix f(x).fz)1]p, = (fix f(x).fz)1
Tlix f2).f 2) 1o, = A.(1id (fx f(2)-f ) (hg.(1id 1) (g y &)

By the results of the next sections, these terms are contextually equivalent.

» Lemma 11. Coercion semantics preserves types.
1. IfD o T1 < T2 then S[[Tl < T2HD o [[Tl]] > [[TQH
2. IfD:Tte : Tthen [T]FTlelp : [T].

4.3 Logical relations

The logical relations are defined in Figure 8. The relation V[r; 73] for pure values and
the relation E[T7;T»] for expressions are similar to the relations defined in Section 3.3. All
information about control effects is captured in the relation K[T7y; T3] for contexts. If 71 and
T, are computation arrow types, then two contexts are related iff they can be decomposed
as applications to related continuations in related contexts. In general, this application to a
continuation does not have to be the top-most element of the context and some rearrangement
of coercions is needed, so such a decomposition is defined by ¢-reduction of contexts.

The most interesting are the cases that relate pure and impure contexts. As previously,
the impure context should be decomposed to a continuation k£ and the rest of the context.
Then the pure context should be decomposed in such a way that the continuation k is
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related with some portion E of the pure context. The answer type of E cannot be retrieved
from the type of the initial pure context, so we quantify over all possible types. In order
to make the construction well-founded, the relations are defined by nested induction on
step indices and on the structure of the second type. Notice that step indices play a role
only in one case — when we quantify over the second type and the later operator guards
the non-structural use of the relations VK[r; — T1; 72 ~ T] and K[Uy; T]. The auxiliary
relations KV[r ~ Ty; 10 — To] and VK[r1 — T1; 12 ~ Ts] relate a portion of an evaluation
context with a value of an arrow type and they are defined analogously to the value relation
for functions.

The relations of this section possess properties analogous to the ones of Section 3.3, in
particular the relation =X is preserved by reduction (Lemma 2) and the compatibility lemmas
(including Lemma 3) hold. However, the proof of the compatibility lemmas requires the
following results that establish the preservation of relations with respect to t-reductions of
evaluation contexts.

Lemma 12. The following assertions hold:

If E —* E' and E'[e1] X ea then Ele1] 3 ea.

If E —* E' and ey X E'[es] then e; 3 Elea].

IfE1 —)f Ei and (Ei,EQ) c ’C[[Tl;TQH then (El,Ez) (S ’C[[Tl;TQH.
IfEQ —)r Eé and (El,Eé) S ’C[[Tl;Tgﬂ then (El,EQ) S ’C[[Tl;Tgﬂ.

PoONEY

The rest of the soundness proof follows the same lines as in Section 3.3. Interestingly, the
adequacy lemma can be proved only for pure types, which is in harmony with the notion of
contextual equivalence in the target calculus.

» Theorem 13 (Fundamental property). IfI'e : T then;TFe Sipge @ T 7.

» Lemma 14 (Precongruence). If-C : (IT) ~» T and I;T e Ziog €2 @ 15T, then
(Clea], Clea]) € €[5 7]

» Lemma 15 (Adequacy). If (e1,e2) € E[7; 7] then e; 3 es.

» Theorem 16 (Soundness). If k |= I';T' F e1 Siog €2 @ T3T holds for every k, then
I'Fep S €2 @ T.

~

4.4 Coherence of the CPS translation

Although standard compatibility lemmas and coercion compatibility suffice to prove soundness
of logical relations, we need another kind of compatibility to prove coherence, since there is
another source of ambiguity. Two typing derivations in the source language can be different
not only because of the subsumption rule, but also because of two rules for application.

» Lemma 17 (Mixed application compatibility). The following assertions hold:
1. IfFl,FQFfl ,jlog f2 : ((T{*)(Tl4)U4):>U3)*>U2):>U1;T£*>T2
and T'1;To b e1 Sieg ez (1 = Us) = U1y
then T'1;To F Mk . fi (Af.er (Ax.f 2 k)) Ziog foea = (11 = Us) = Uy T.
2. IfT; Do b fi1 Diog fo @ 1 = Th; (1 = (12 = Us) = Us) = Us) = Us
and IT'1;To - eq Ziog €2 1 715 (15 — Us) = Us
then T'1; T & f1e1 Diog Ak.fo (Afea Az.fxk)) © T; (15 — Us) = Us.

Proof. Both cases are similar, so we show only the first one. We have to show that both
terms closed by substitutions have the same observations in related contexts (Fi, Es) €
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K[(r{ — Uy) = Uy;T]. Since context E; is in relation for effectful type, by the definition of
logical relations and Lemma 12, it can be decomposed as a continuation k and the rest of the
context. Now we have the missing continuation k that can trigger computation in the first
term, so the rest of the proof consists in simple context manipulations, applying definitions
and performing reductions. <

» Lemma 18. If D; =T, Fe : T; fori=1,2 are two typing judgments for the same term e
of the source language, then [I'1]; [T2] = Tlelp, Sieg Tlelp, = [T1]; [T2]-

» Theorem 19 (Coherence). If D1 and Do are derivations of the same typing judgment
ke : T, then [I'| - Tlelp, Zete Tlelp, : [T

In contrast to the calculus considered in Section 3.4, such coherence theorem does not
imply coherence of translation directly to the simply typed A-calculus (where coercions are
expressed as A-terms). As a counterexample, the derivations from Example 10 give us terms
that can be distinguished by the context C' = (Az.1) []. This is because types in the target
language carry more information than simple types, and in particular, an expression of a
type (1 — T') = U is not a usual function, but a computation waiting for a continuation, as
explained in Section 4.2.

But still we can prove some interesting properties of a direct translation to the simply
typed A-calculus in two cases: when control effects do not leak to the context or when we
relate only whole programs. Let |e| be a term e with all coercions replaced by corresponding
expressions.

» Corollary 20. If D1,Dy:: Tt e : 7 and 7 does not contain any type of the form 7'[T|U,
then |Tlelp,| and |T[elp,| are contextually equivalent.

» Corollary 21. If D1, Dy :: T ke : 7 then |T[e]p,| terminates iff | T[e]p,| terminates.
Moreover, if T = Nat and one of the expressions terminates to a constant, then the other
term evaluates to the same constant.

5 Conclusion

We have shown that the technique of logical relations can be used for establishing the
coherence of subtyping, when it is phrased in terms of contextual equivalence in the target
of the coercion translation. In particular, we have demonstrated that a combination of
heterogeneity, biorthogonality and step-indexing provides a sufficiently powerful tool for
establishing coherence of effect subtyping in a calculus of delimited control with the coercion
semantics given by a type-directed selective CPS translation. However, we have successfully
applied the presented approach also to other calculi with subtyping, e.g., as demonstrated in
this article for the simply-typed A-calculus with recursion. The Coq development accompa-
nying this paper is based on a new embedding of Dreyer et al’s logic for reasoning about
step-indexing that, we believe, considerably improves the presentation and formalization of
the logical relations.

Regarding logical relations for type-and-effect systems, there has been a work on proving
correctness of a partial evaluator for shift and reset by Asai [5], and on termination of
evaluation of the A-calculi with delimited-control operators by Biernacka et al. [6, 7] and by
Materzok and the first author [16]. Unsurprisingly, all these results, like ours, are built on
the notion of biorthogonality, even if not mentioned explicitly. The distinctive feature of our
construction is a combination of heterogeneity and step-indexing that supports reasoning
about the observational equivalence of terms of different types whose structure is very distant
from each other, e.g., about direct-style and continuation-passing-style terms.
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—— Abstract

Inspired by the notion of solvability in the A-calculus, we define a notion of observability for a
calculus with pattern matching. We give an intersection type system for such a calculus which
is based on non-idempotent types. The typing system is shown to characterize the set of terms
having canonical form, which properly contains the set of observable terms, so that typability

alone is not sufficient to characterize observability. However, the inhabitation problem associated
with our typing system turns out to be decidable, a result which — together with typability — allows
to obtain a full characterization of observability.

1998 ACM Subject Classification F.4.1 Lambda calculus and related systems, F.3.2 Operational
Semantics, F.4.1 Proof theory

Keywords and phrases Solvability, pattern calculi, intersection types, inhabitation
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1 Introduction

In these last years there has been a growing interest in pattern A-calculi [16, 11, 6, 12, 10, 15]
which are used to model the pattern-matching primitives of functional programming languages
(e.g. OCAML, ML, Haskell) and proof assistants (e.g. Coq, Isabelle). These calculi are
extensions of A-calculus, where abstractions are written as Ap.t, where p is a pattern specifying
the expected structure of the argument. In this paper we restrict our attention to pair patterns,
which are expressive enough to illustrate the challenging notion of solvability /observability
in the framework of pattern A-calculi.

In order to implement different evaluation strategies, the use of explicit pattern-matching
becomes appropriate, giving rise to different languages with explicit pattern-matching [6, 7, 1].
In all of them, an application (Ap.t)u reduces to t[p/u], where [p/u] is an explicit matching,
defined by means of suitable reduction rules, which are used to decide if the argument u
matches the pattern p. If the matching is possible, the evaluation proceeds by computing a
substitution which is applied to the body t. Otherwise, two cases arise: either a successful
matching is not possible at all, and then the term t[p/u] reduces to a failure, denoted by the
constant fail, or it could become possible after the application of some pertinent substitution
to the argument u, in which case the reduction is simply blocked. An example of failure is
caused by the term (\(z1,22).21)(Ay.y), while a blocked reduction is caused by the term
(Mz1,22).21)y.

Inspired by the notion of solvability in the A-calculus, we define a notion of observability
for a pair pattern calculus with explicit matching. A term t is said to be observable if there
is a head-context C such that C[t] reduces to a pair, which is the only data structure of
the language. This notion is conservative with respect to the notion of solvability in the
A-calculus, i.e. t is solvable in the A-calculus if and only if t is observable in our calculus.
? Antonio Bucciarell.i, Delia Kesner,.and Simona Ronchi Della Rocca;
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Solvability in the A-calculus is of course undecidable, but it has been characterized at least
in three different ways: syntactically by the notion of head-normal form [2], operationally by
the notion of head-reduction [2], and logically by an intersection type assignment system [3, 13].
The problem becomes harder when changing from the call-by-name to the call-by-value
setting. Indeed, in the call-by-value A-calculus, there are normal forms that are unsolvable,
like the term (Az.A)(xI)A, where A = Ax.xx. The problem for the pair pattern calculus
is similar to that for the call-by-value, but even harder. As in the call-by-value setting,
an argument needs to be partially evaluated before being consumed. Indeed, in order to
evaluate an application (Ap.t)u, it is necessary to verify if u matches the pattern p, and thus
the subterm u can be forced to be partially evaluated. However, while only discrimination
between values and non-values are needed in the call-by-value setting, the possible shapes of
patterns are infinite here.

The difficulty of the problem depends on two facts. First, there is no simple syntactical
characterization of observability: indeed, we supply a notion of canonical form such that
reducing to some canonical form is a necessary condition for being observable. But this is
not sufficient: canonical forms may contain blocking explicit matchings, so that we need to
know whether or not there exists a substitution being able to unblock simultaneously all
these blocked forms.

This theoretical complexity is reflected in the logical characterization we supply for
observability: a term t turns out to be observable if and only if it is typable, say with a
type of the shape A; — Ay — ... = A, — « (where « is a product type), and all the types
A; (1 <i < n) are inhabited. The inhabitation problem for idempotent intersection types
is known to be undecidable [17], but it has recently been proved that it is decidable in the
non-idempotent case [5]. More precisely, there is a sound and complete algorithm solving the
inhabitation problem of non-idempotent intersection types for the A-calculus. In this paper,
we supply a type assignment system, based on non-idempotent intersection, which assigns
types to terms of our pair pattern calculus. We then extend the inhabitation algorithm given
in [5] to this framework, that is substantially more complicated, due to the explicit pattern
matching and the use of structural information of patterns in the typing rules. However,
the paper does not only show decidability of inhabitation for the pair pattern calculus, but
it uses the decidability result to derive a full characterization of observability, which is the
main result of the paper. We thus combine typability with inhabitation in order to obtain
an interesting characterization of the set of meaningful terms of the pair pattern calculus.

The paper is organized as follows. Sec. 2 introduces the pattern calculus. Sec. 3 presents
the type system and proves a characterization of terms having canonical forms by means
of typability. Sec. 4 discusses the relationship between observability and inhabitation and
Sec. 5 presents a sound and complete algorithm for the inhabitation problem associated to
our typing system. Sec. 6 shows a complete characterization of observability, and Sec. 7
concludes by discussing some future work.

2 The Pair Pattern Calculus

We now introduce the Ap-calculus, a generalization of the A-calculus where abstraction is
extended to patterns and terms to pairs. Pattern matching is specified by means of an explicit
operation. Reduction is performed only if the argument matches the abstracted pattern.

Terms and contexts of the Aj-calculus are defined as follows:
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(Patterns) p,q == x|[(p,p)
(Terms) t,u,v o= x| Ap.t|(t,t)]|tt]t[p/t] | fail
(Contexts) C O] Ap.C|{C,t) | (t,C)|Ct]|tC

where x,y,z range over a countable set of variables, and every pattern p is linear, i.e. every
variable appears at most once in p. We denote by Id the identity function Ax.x. As
usual we use the abbreviation Apy ...pp.t1 ...ty for Ap1(. .. (Apn-((t1t2)...twm))...), n >0,
m > 1. Remark that every A-term is a Aj-term.

The operator [p/t] is called an explicit matching. The constant fail denotes the failure
of the matching operation. Free and bound variables of terms are defined as expected,
in particular £fv(Ap.t) := fv(t) \ £v(p) and fv(t[p/u]) := (fv(t) \ £v(p)) U fv(u). We write

p#q iff £v(p) and fv(q) are disjoint. As usual, terms are considered modulo a-conversion.

Given a context C and a term t, C[t] denotes the term obtained by replacing the unique
occurrence of [J in C by t, allowing the capture of free variables of t. A head-context is a
context of the shape (Ap1...pn.0)t1...tm (n,m > 0).

The reduction relation of the Aj-calculus, denoted by —, is the contextual closure of
the following reduction rules:

(r1)  (Ap-t)u —  t[p/u] (r¢) tl{p1,p2)/Ayu] +— fail
(ro) t[x/u] —  t{x/u} (r7)  t[{p1,p2)/fail] +— fail
(r3) t[{p1,p2)/(u1,u2)] +—  tlpi/willp2/ua]  (rs) failt —  fail
(ra) t[p/v]u —  (tu)[p/v] (ro) faillp/t] — fail
(rs) t[{p1,p2)/ula/v]] +— t[(p1,p2)/ulla/v] (ri0) Ap.fail —  fail

(7"11) <t,11>V —  fail

where t{x/u} denotes the substitution of all the free occurrences of x in t by u. By a-
conversion, and without loss of generality, no reduction rule captures free variables. Thus
for example in rule r4 the bound and free variables of the term t[p/v]u are supposed to be
disjoint, so that the variables of p (which are bound in the whole term) cannot be free in u.
The reflexive and transitive closure of — is written —*.

The rule (r1) triggers the pattern operation while rule (r2) performs substitution, rules
(r3), (re¢) and (r7) implement (successful or unsuccessful) pattern matching. Rules (rs), (rg)
and (r19) deal with propagation of failure. Rules (r4) and (r5) may seem unnecessary, and
the calculus would be also confluent without them, but they are particularly useful for the
design of the inhabitation algorithm (see Sec. 5). Indeed, rule (r4) pushes head explicit
matchings out, and rule (r5) eliminates nested explicit matchings, i.e. matchings of the form
t[{p1,p2)/u[a/v]]. Notice that confluence would be lost if we allow (r5) on the more general
form: t[p/ulq/v]] — t[p/u]la/v]. Indeed, the following critical pair could not be closed:

yl(z1,22)/2] 1 - y[x/ul(z1, 20) /2] =0, v

» Lemma 1.
1. The reduction relation — is confluent.
2. Every infinite — -reduction sequence contains an infinite number of —,,-reduction steps.

The proof of the first item relies on the decreasing diagram technique [18]; that of the
second one is by induction on a suitable syntactic measure.
Canonical forms are terms defined by the following grammar:

T 5= xp.T | (£.8) | K | TI(p. /K] K:=x| Kt
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A term t is in canonical form (or it is canonical), written cf, if it is generated by J, and it
has a canonical form if it reduces to a term in cf. Note that the cf of a term is not unique,
e.g. both (Id,Id Id) and (Id,Id) are cfs of (Axy.(x,y)) Id (Id Id). It is worth noticing that
cfs and normal forms do not coincide. For example, the terms A(x,y).(x(AA))[(z1, 2z2)/yId]
and (Id,Id Id) are in cf, but not in normal form, while fail is in normal form but not in
cf. Every head normal-form in the A-calculus is a cf in the Ap-calculus.

On the pathway towards the definition of an adequate notion of solvability for the Ap-
calculus, we first recall the notion of solvability for the A-calculus. A term t is solvable
iff there is a head-context C such that C[t] reduces to Id. It is clear that pairs have to be
taken into account in order to extend the notion of solvability to the pair pattern calculus.
When should a pair be considered as meaningful? At least two choices are possible: the
lazy semantics considers a pair as meaningful in itself, the strict one requires both of its
components to be meaningful. The first choice is adopted in this paper, since being a pair
is already an observable property, particularly sufficient to unblock an explicit matching,
independently from the observability of its components.

Thus, a term t is said to be observable iff there is a head-context C such that C[t]
reduces to a pair, 4.e. C[t] =" (t1,t2), for some terms ti,ts € Ap. Thus for example, the
term (AA, AA), consisting of a pair of unsolvable terms AA, is observable. This notion of
observability turns out to be conservative with respect to that of solvability for the A-calculus
(see Theorem 23).

3 The Type System P

In this section we present a type system for the Ay-calculus, and we show that it characterizes
terms having canonical form.
The set T of types is generated by the following grammar:

! m= o] x1(7) | x2(7) (product types)

o,T,M,p = «a|A—o (strict types)

B = oilier (I #£0) (non-empty multiset types)
A x= []|B (multiset types)

where [ is a finite set of indices. The arrow constructor is right associative. We consider a
unique type constant o, which can be assigned to any pair.

We write supp(A) to denote the support set of the multiset A, Ll for multiset union and €
to denote multiset membership. The product operation X on multisets is defined as follows:

- x [ == [0]
[oilier X [pjljes = [x1(oi)lier U[x2(pj)ljes HIT#Dor J#0D

Remark that U;erA;X User A, T Uier (A;XA%), the multiset inclusion being strict for example
in the following case: ([JU[DX([JU]) = [o] C [o,0] = ([IX[]) U ([]X]])-
The structure of a pattern describes its shape, it is defined as follows:

Sx) = []
S({p1,p2)) = S(p1)XS(p2)

E.g.5((x,¥)) = [o], S((x, (y.2))) = [¥2(0)] and S({(x, 0}, (y.2)}) = [x1(0), X2(0)]. Notice
that S(p) is nothing but a description of p seen as a binary tree whose leaves are distinct
variables, and whose nodes are labeled by the pair constructor. Indeed, each element of S(p)
specifies a maximal branch of such a tree, i.e. a branch whose last node is a pair constructor,
and whose children are both leaves (i.e. variables). S(p) should be understood as the multiset
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I'lFp:Ay AlFq:A
———— (varpat) ——— (weakpat) PrA a:h: pia (pairpat)
x:BlFx:B IFx:[] T+ Al {p,q): A XA,
I'Ft:m FlP ||_p2[0'7;}2‘61 (Uj es(p))jeJ INJ=0 .
——— (var) (—1)
x:[mlkbx:mw F\T|p = Ap.t: [ok]kerus = 7
Phkt:oicr > 7 (AjFu:oy)ier
(—e)
IF+icr A Ftu:m
(empt ir) I'Ht:o (pair1) F'Fu:7 (pair2)
— (em air air air
F o o R ) <o) TF (6,u): xa(r) &
I'Ft:o F|p H—p : [Ui]ieI (O’j S S(p))jeJ (Ak Fu: O'k)ke[uj InJ= @ (Sub)
(T\Tlp) +rerus Ax Ft[p/u] 1 o

Figure 1 The type assignment system P.

of non depletable resources associated with p; the persistent character of these resources is
highlighted in the forthcoming typing system.

Typing environments, written I', A are functions from variables to multiset types,
assigning the empty multiset to almost all the variables. The domain of T', written dom(T"), is
the set of variables whose image is different from []. We write T#A iff dom(I") N dom(A) = 0.

» Notation 2. Given the environments {T'; };cr, we write +,¢T'; for the environment which
maps x to U;erL;(x). If I = (), the resulting environment is the one having an empty domain.
Note that I' + A and T" 4+;¢; A; are just particular cases of the previous general definition.
When T'#A we write I'; A instead of ' + A. We write I' \ x for the environment assigning []
to x, and acting as I' otherwise; x1:A1;...;x,:4A, is the environment assigning A; to x;, for
1 <i < n, and [] to any other variable; ', denotes the environment such that T'|;(x) = I'(x),
if x € £v(p), [] otherwise.

The type assignment system P (see Fig. 1) is a set of typing rules assigning strict
types of T to terms of A,. We write II>T' -t : ¢ (resp. II>T |- p : A) to denote a typing
derivation ending in the sequent I' - t : o (resp. I' IF p : 4), in which case t (resp. p) is
called the subject of II; by abuse of notation, I' -t : o (resp. I' IF p : A) also denotes the
existence of some typing derivation ending in this sequent, in which case t (resp. p) is said
to be typable. The measure of a typing derivation II, written meas(II), is the number of
typing rules in II.

Rules (var) and (— e) are those used for A-calculus in [5, 8]. Linearity of patterns is
guaranteed by the clause p#q in rule (pairpat). Rule (weakpat) is essential to type erasing
functions such as for example Ax.Id. The rule (emptypair) types for example (AA, AA),
and thus (A(x,y).Id)(AA, AA). Rules (pairl) and (pair2) type pairs having just one typed
component, whereas standard typed calculi with pairs (e.g. [6]) requires both components to
be typed. This is necessary to type terms like (A(x,y).x)(Id, AA). Moreover, the standard
policy can be easily recovered from ours by typing a pair whose components are both typed
using (pairl) and (pair2) successively.
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The rules (— i) and (sub) are the most subtle ones '. Here is where the structural types
come into play: they can be used ad libitum (whence the notation (o; € S(p));jes), thanks
to non depletable nature of the information provided by the structure of patterns (whereas
the type information of variables should be understood as depletable). Concerning more
specifically the rule (sub): in order to type t[p/u], on one hand we need to type t and on
the other one we need to check that p and u can be assigned the same types. Since the
system is relevant, we need to collect the environments used in all the premises typing p and
u. Remark however that there is a lack of symmetry between patterns and terms: while the
only information we can use about terms is the one concerning their types, a pattern p has
not only a type (description of its depletable resources), but also an intrinsic shape that is
completely described by the structural (non depletable) types in the set S(p).

Actually the structural information on patterns is necessary, in particular, to guaran-
tee subject reduction for rule (r5). Indeed, given t = Aw.(z2')[(z,2")/(yx)[(x,x) /w]] =,
M. (z2")[(z,2)/(yx)][{(x,x'Y/w] =t and T =y : [[] = X1(7),[r] = X2(0)], we have that
'k t:lo,x1(n)] = o, but ' - t': [o,X1(7)] — o holds only by using the fact that
0 € §({x,x')). This counterexample shows that a clear tension appears between the rewriting
rule (75) and the use of the structural set S(p) in the typing rules (— i) and (sub). Elimin-
ating (r5) from the reduction system would certainly simplify the typing system, but would
significantly complicate the inhabitation algorithm that will be presented in Sec. 5.

» Example 3. The following (partially described) derivation is valid:

(a)x:[a]Fx:« (0) x: [a] IF{x,y) : [x1(a)]
() (0eS({x,y))) (d)z:[oJFz:0 (e) z: [x1(a)] F z: x1(a)
z: o, X1 ()] F x[{x,7)/2] : @

(sub)

Using only the hypothesis (a), (b) and (e) we get another valid typing derivation ending
in z: [x1(a)] F x[(x,y)/z] : @ which does not use structural information about the pattern

(x,y)

The system is relevant, in the sense that only the used premises are registered in the
typing environments. This property, formally stated in the following lemma, will be an
important technical tool used to develop the inhabitation algorithm.

» Lemma 4 (Relevance).
IfT I p: A, then dom(T") C fv(p).
IfT'Ft: o0, then dom(") C fv(t).

Proof. By induction on the typing derivations. <

Some useful properties will be needed in the sequel. In particular, the next technical
lemma says that, given different types A; for a given pattern p, it is always possible to split
U;crA; into a bunch of resource types A and another one of structural types A’.

» Lemma 5. Let I # 0. If (T; IFp: Ay)icr, then there exist A, A such that
1. AUN = UjerA;,
2. Fierl IF p:A

I Notice that “T'?, “I'|,” and “I'\ I'|,,” in rules (— i) and (sub) could be replaced by “I';;T'2”, “I's” and
“I"1”, respectively, only if dom(I'1) N £v(p) = 0. Otherwise, for instance, Ax.x would be typable with type
[]—o.
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3. A=]] implies A" =[],
4. supp(4') C S(p),
5. meas(+;crli IFp:A) < X;cmeas(T; IFp:4y).

Proof. By induction on p. <

The following lemma can be shown by induction on typing derivations; it is used in the
forthcoming subject reduction property.

» Lemma 6 (Substitution Lemma). IfII>T;x: [pilicr Ft: 7, and (©; > A; Fu: p;)ier then
' >T +ier Ai - t{x/u} : 7 where meas(Il') < meas(Il) + ), ., meas(O;).

Notice that, in the process of assigning a type to a term t, some subterms of t may be
left untyped. Typically, this happens when t contains occurrences of non typable terms,
like in A\x.x(AA). We are then going to define the notion of typed occurrence of a typing
derivation, which plays an essential role in the rest of this paper: indeed, thanks to the use of
non-idempotent intersection types, a combinatorial argument based on a measure on typing
derivations (cf. Lem. 9.1), allows to prove the termination of reduction of redexes occurring
in typed occurrences of their respective typing derivations.

Let us then define an occurrence of a subterm u in a term t as a context C such that
C[u] = t. Then, given a typing derivation II>T'F t : o, an occurrence of a subterm of t is a
typed occurrence of II if and only if it is the subject of a subderivation of II. More precisely:

» Definition 7. Given a type derivation II, the set of typed occurrences of II, written
toc(II), by induction on the last rule of II.

If IT ends with (var), then toc(Il) := {{J}.

If IT ends with (pair1l) with subject (u,v) and premise II’, then

toc(Il) := {d} U {(C,v) | C € toc(Il')}.

If IT ends with (pair2) with subject (u,v) and premise II’ then

toc(Il) := {0} U {(u,C) | C € toc(Il')}.

If IT ends with (— i) with subject Ap.u and premise I then

toc(Il) := {d} U {Ap.C| C € toc(Il')} .

If I ends with (— e) with subject tu and premises IT; and Iy (k € K) with subjects t

and u respectively, then toc(Il) := {J}U{tC | C € toc(Il}),k € K} U{Cu | C € toc(Il;)}.

If IT ends with (sub) with subject t[p/u] and premises IT; and II;, (k € K) with subjects
t and u respectively, then toc(Il) := {00} U {C[p/u] | C € toc(Il1)} U {t[p/C] | C €
toc(Ily), k € K}.

» Example 8. Given the following derivations II and IT', the occurrences [0 and Oy belong
to both toc(II) and toc(Il') while x(J belongs to toc(II) but not to toc(Il’).

HDX:[[T]—M’]I—X:[T}—)T yilrlky:T o'
x:[[r]=7ly:[r]Fxy: T x:[[]=>7lFxy: T

x:[[]=7kFx:[]—>T

Given II>T F t : 7, t is said to be in II-normal form, also written II-nf, if for every
typed occurrence C € toc(II) such that t = C[u], the subterm u is not a redex.

The system P enjoys both subject reduction and subject expansion. In particular, thanks
to the use of multisets, subject reduction decreases the measure of the derivation, in case a
substitution is performed by rule (ry) and the redex is typed. This property allows for a
simple proof of the “only if” part of the characterization theorem.
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» Lemma 9.

1. (Weighted Subject Reduction) IfTI>T Ft: 7 andt — v, then W >T F v : 7 and
meas(Il') < meas(II). Moreover, if the reduced redex is (r2) and it occurs in a typed
occurrence of I, then meas(Il') < meas(II).

2. (Subject Expansion) IfTFv:0 andt — v, then T Ft: 0.

Proof. 1. By induction on t — v using Lemmas 5, 6 and 4.
2. By induction on t — v.
<

We are now ready to provide the logical characterization of terms having canonical form.
» Theorem 10 (Characterization). A term t is typable iff t has a canonical form.

Proof. (if) We reason by induction on the grammar defining the canonical forms. We
first prove that for all type o and for all K-canonical form t, t can be typed by o. In
fact every K-canonical form is of the shape xt;...t,, for n > 0. It is easy to check that
x:[]—=..=>[] > ok xti..ty, : 0. Let t be a J-canonical form. If t = (u,v) then by

—_———

rule (empricypair) F (u,v) : 0. If t = Ap.u, then by induction u can be typed and the
result follows from rule (— I). Let t = t'[(p,q)/v], where t’ (resp. v) is a J (resp. K)
canonical form. By the i.h. there are I', 0 such that I' - t' : . Moreover, it is easy to
see that T'|(p q) IF (p,q) : [0i]icr, for some [o];cr. Since v is a K-canonical form, then
A;Fv:o; forall i € I, as shown above. Thus I +;¢;7 A; F t'[(p,q)/v] : 0 by rule (sub)
with J = 0.

(only if) Let t be a typable term, i.e. II>T F t : 0. Consider a reduction strategy ST
that always chooses a typed redex occurrence. By Lem. 9.1 and Lem. 1.2 the strategy ST
always terminates. Let t’ be a normal-form of t for the strategy ST, i.e. t reduces to t’
using ST, and ST applied to t’ is undefined. We know that II'>T'F t’ : ¢ by Lem. 9.1.
Then, by definition of ST, t' has no typed redex occurrence. A simple induction on t’
allows to conclude that it is a canonical form. <

4 From canonicity to observability

We proved in the previous section that system P gives a complete characterization of terms
having canonical forms. The next theorem proves that system P is complete with respect to
observability.

» Theorem 11. Observability implies typability.

Proof. If t is observable, then there is a head context C such that C[t] reduces to (u,v), for
some u and v. Since all pairs are typable, the term C[t] is typable by Lem. 9.2. Remember
that C[t] = (Ap1...pn.t)t1...t,, so that t is typable too, by easy inspection of the typing
system. |

Unfortunately, soundness does not hold, i.e. the set of observable terms is strictly included
in the set of terms having canonical form, as shown below.

» Example 12. The term t; = Ax.Id[(y,z)/x][(y/,2)/xId] is canonical, hence typable
(by Thm. 10), but not observable. In fact, it is easy to see that there is no term u
such that both u and uId reduce to pairs. A less trivial example is the term to =
Ax.Id[(y, z)/x(Id, Id)][(y’, 2’} /xIdId], which is canonical, hence typable, but not observ-
able, as proved in the next lemma.
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» Lemma 13. There is no closed term u s.t. both u(1d,Id) and uldIld reduce to pairs.

Proof. By contradiction. Indeed, assume that there exist a closed term u such that both
u(Id, Id) and uIdId reduce to pairs. Since pairs are always typable, then u(Id, Id) and
uIdId are typable by Lem. 9.2. In any of the typing derivations of such terms, u occurs in a
typed position, so that u turns out to be also typable.

Now, since u is typable and closed, then it reduces to a (typable and closed) canonical form
v € J by Thm. 10. But v cannot be in IC, which only contains open terms. Moreover,
v cannot be a pair, otherwise u(Id, Id) —* v(Id, Id) —* (vi,vg)(Id, Id) —* fail which
contradicts (by Lem. 1) the fact that u(Id, Id) reduces to a pair. We then have two possible
forms for v.

If v = s[(p1,p2)/k|, where s € J and k € K. Then k is an open term which implies v is an
open term. Contradiction.

If v = A\p.s, where s € J, then p is necessarily a variable, say z, since otherwise vId reduces
to fail, and hence uIdId —* vIdId —* fail, which contradicts (by Lem. 1) the fact that
uldId reduces to a pair. We analyze the possible forms of s.

If s is a pair, then uIdId —* (Az.s)IdId —* fail, which contradicts (by Lem. 1) the
fact that uIdId reduces to a pair.

If s is an abstraction, then u(Id, Id) —* (Az.s)(Id, Id) which reduces to an abstraction,
contradicting (by Lem. 1) the fact that u(Id, Id) reduces to a pair.

If sis in K, then s = xty...t, with n > 0. Remark that z # x is not possible since
v = Az.s is closed. Then z = x. If s = z, then uIdId reduces to Id which contradicts (by
Lem. 1) the fact that uIdId reduces to a pair. Otherwise, s =zt ...t, with n > 1, and
thus u(Id, Id) reduces to (Id,Id)t;...t, —* fail, which contradicts again (by Lem. 1)
the fact that u(Id, Id) reduces to a pair.

If s is s'[(p1,p2)/k], with k € I, then k = zt; ...t, with n > 0, since any other head
variable for k would contradict v closed. Now, in the first case we have uIdId reduces to
fail which contradicts (by Lem. 1) the fact that uIdId reduces to a pair. Otherwise,
k =2zty...t, with n > 1 implies u(Id, Id) reduces to fail which contradicts (by Lem. 1)
the fact that u(Id, Id) reduces to a pair. <

The first non-observable term t; in Ex. 12 could be ruled out by introducing a notion of
compatibility between types and requiring multiset types to be composed only by compatible
strict types. Unfortunately, we claim that a compatibility relation defined syntactically, let
us call it comp, cannot lead to a sound and complete characterization of observability. By
“defined syntactically” we mean that the value of comp(c — o', p — p’) should only depend
on the values of comp(o, p) and comp(o”’, p’). Another basic requirement of comp would be
that every product type is incompatible with any functional type. The second non-observable
term to in Ex. 12 is appropriate to illustrate our claim, by keeping in mind that any pair of
types assignable to x in any typing derivation for ts need to be incompatible.

Indeed, the shortest typing for to above is obtained by assigning to x the two types [| — o
and [] — [] — o, and in order to state the incompatibility between them it would be necessary
to define that comp(c, p) and —comp(o”, p’) imply —comp([o] — ¢, [p] — p’). Another typing
for to is obtained by assigning to x the two types [0o] — o and [7] — [7] — o respectively, where

T = [0] = o, so that —comp(c, p) and —comp(c’, p’) should imply —comp([o] — o', [p] = p').

We conclude that —comp(c”, p’) alone should imply —comp([c] — o', [p] — p'). However,
arrow types [o0] — ¢’ and [p] — p’ having incompatible right-hand sides may very well be
compatible. For instance, letting o = ¢’ = 0 and p = p’ = [0] — 0, one gets two types for Id
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which need of course to be compatible. Hence, a syntactic characterization of such a notion
of compatibility seems out of reach.

Fortunately, there exists a sound and complete semantical notion of compatibility between
types, obtained a posteriori as follows: given two strict types m; and mo, build the corres-
ponding sets of inhabitants T(@, ;) and T(@, 72), using the inhabitation algorithm presented
in Sec. 5. Then m and 7y are semantically compatible if and only if T(@,71) N T(), m2) is
non-empty.

While the inhabitation problem for (idempotent) intersection types is undecidable [17], it
becomes decidable for non-idempotent intersection types [5], which is just a subsystem of
our typing system P introduced in Sec. 3. We will prove in the following that inhabitation is
also decidable for the non-trivial extension P. We will then use this result for characterizing
observability in the pattern calculus without referring to a complete syntactic characterization,
which is not possible in this framework, as illustrated by Example 12.

5 Inhabitation for System P

We now show a sound and complete algorithm to solve the inhabitation problem for System
P. Given a strict type o, the inhabitation problem consists in finding a closed term t such
that F t : o is derivable. We extend the problem to multiset types by defining A to be
inhabited if and only if there is a closed term t such that - t : o; for every o; € A. These
notions will naturally be generalized later to non-closed terms.

We already noticed that the system P allows to type terms containing untyped subterms
through the rule (— e) with 7 = @) and the rule (sub) with 7 = .J = . In order to identify
inhabitants in such cases we introduce a term constant €2 to denote a generic untyped subterm.
Our inhabitation algorithm produces approximate normal forms (a,b,c), also written
anf, defined as follows:

a,b,c = QN N = XpN|{(a,b) | L]|N[(p,q)/L]
L == x|La

Note that anfs do not contain redexes, differently from canonical forms. In particular,
thanks to the reduction rule (r4) (resp. (r5)), they do not contain head (resp. nested) explicit
matchings. This makes the inhabitation algorithm much more intuitive and simpler.

» Example 14. the term A(x,y).(x(IdId))[(z;,z2)/yId] is canonical but not an anf, while
Mz, y).(xQ)[(z1,22) /yId] is an anf.

Anfs are ordered by the smallest contextual order < such that Q < a, for any a. We also
write a < t when the term t is obtained from a by replacing each occurrence of €2 by a term
of Ap: For example xQQ < x(IdA)(AA) is obtained by replacing the first (resp. second)
occurrence of 2 by IdA (resp. AA).

Let A(t) = {a| Jut —* u and a < u} be the set of approximants of the term t, and let
\/ denote the least upper bound with respect to <. We write 1;¢c; a; to denote the fact that
V{ai}ier does exist. It is easy to check that, for every t and ai,...a, € A(t), Ticf1,....n} -
An anf a is a head subterm of b if either b = a or b = cc’ and a is a head subterm of
c. System P can also be trivially extended to give types to anfs, simply assuming that no
type can be assigned to the constant €. It is easy to check that, if T'Fa: o and a < b (resp.
a<t)thenT'Fb:o (resp. I'Ft:0).

Given II>T F t : 7, where t is in IT-nf (¢f. Sec. 3), A(II) is the minimal approximant b of
t such that [>T F b : 7. Formally, given II>T" F t : o, where t is in II-nf, the minimal
approximant of II, written A(II), is defined by induction on meas(II) as follows:
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AT kEFx:p)=x AT F (t,u):0) = (0, Q).

IfIIsT F Ap.t : A — p follows from II'> T F t : p, then A(II) = Ap. A(Il'), t being in
IT'-nf.

IFIeTF (t,u): x1(7) follows from II'>T F t : 7, then A(II) = (A(IT'),Q), t being in
IT'-nf. Similarly for a pair of type Xo(7).

Il =T 4,c1 A F tu: p follows from II'sTY F t : [05)icr — pand (LA, Fu: 0y)ier,
then A(II) = A(II') (V¢ A(IT}))

HHOeT =T 4,75 A; F tlp/u] : 7 follows from [>T F t : 7 and (¥, > A; Fu: piier,
then A(IT) = A(II')[p/ V;c A(V5)]

Remark that, in the application case of the definition above, the anf corresponding to
I =10is A(I')Q. Moreover, in the last case, p cannot be a variable, t being in II-nf. A
simple inspection of the typing rules for I shows that in this case I # ().

» Example 15. Consider the following derivation II:

y:[]=oky:[]—o0 F (z1,22) 1 0 x:[[] =20okFx:[]—o0
y:[[]= o Fy(AA):0 bR x:[[]=oFxId:o
x:[[] = oy [l] = ol F y(AA)[(z1,22)/x1d] : 0

FAxy.y(AA)[(z1,2z2)/x1d] : [[] = o] = [[] = o] = 0

The minimal approximant of IT is Axy.yQ[(z1,z2)/x9).
A simple induction on meas(II) allows to show the following:

» Lemma 16. IfII>T Ft: o and t is in U-nf, then 1T F AT) : 0.

5.1 The inhabitation algorithm

The inhabitation algorithm is presented in Fig. 2. As usual, in order to solve the problem for
closed terms, it is necessary to extend the algorithm to open ones, so, given an environment I"
and a strict type o, the algorithm builds the set T(I', o) containing all the anfs a such that
there exists a derivation [>T a: o, with a = A(II), then stops?. Thus, our algorithm is
not an extension of the classical inhabitation algorithm for simple types [4, 9]. In particular,
when restricted to simple types, it constructs all the anfs inhabiting a given type, while
the original algorithm reconstructs just the long n-normal forms. The algorithm uses four
auxiliary predicates, namely

P,,(A), where V is a finite set of variables, contains the pairs (I', p) such that (i) I" IFp : A,

and (ii) p does not contain any variable in V.

TI(T, [0:)icr), contains all the anfs a =\/

all i € I, and ticr a;.

HS (T, 0) > 7 contains all the anfs a such that b is a head subterm of a, and such that if

b e T(A,0) thenae T(T'+ A, 7).

HIS(T, [04)ier) > [pi)ier contains all the anf a = \/

+i€]Fi, a; € HbA(F7Uz) > p; and TiEI a;.

ser @i such that T' = +,¢/Ty, a; € T(I'y, 0;) for

ser@i such that A = +,c/A;, T =

2 It is worth noticing that, given I and o, the set of anfs a such that there exists a derivation IIbI' Fa : o
is possibly infinite. However, the subset of those verifying a = A(II) is finite; they are the minimal ones,
those generated by the inhabitation algorithm (this is proved in Lem. 19).
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Note that the algorithm has different kinds of non-deterministic behaviours, i.e. different
choices of rules can produce different results. Indeed, given an input (T', o), the algorithm
may apply a rule like (Abs) in order to decrease the type o, or a rule like (Head) in order to
decrease the environment I'. Moreover, every rule (R) which is based on some decomposition
of the environment and/or the type, like (Subs), admits different applications. In what
follows we illustrate the non-deterministic behaviour of the algorithm. For that, we represent
a run of the algorithm as a tree whose nodes are labeled with the name of the rule applied.

» Example 17. We consider different inputs of the form (@, o), for different strict types o.
For every such input, we give an output and the corresponding run.
1. o=la] = a] = [a] — a.
a. output: Axy.xy, run: Abs(Abs(Head(Prefix(TUn(Head(Final)),Final)),Varp), Varp).
b. output: Ax.x, run: Abs(Head(Final), Varp).
2. 0 =[] = a] = a. output: Ax.xQ, run: Abs(Head(Prefix(TUn,Final)), Varp).
3. 0=[o] = 0,0] = o.
a. output: Ax.xx, run: Abs(Head(Prefix(TUn(Head(Final)),Final)), Varp).
b. Explicit substitutions may be used to consume some, or all, the resources in [[o] — 0, 0]
output: Ax.x[(y,z)/x(Q, Q)], run:
Abs(Subs (HUn(Prefix(TUn(Pair), Final)), Pairp(Weakp, Weakp), Head(Final)), Varp).
c. There are four additional runs, producing the following outputs:
Xex(, Q) [(y, 2/,
(9.0 .2,
Ax(Q, Q) [(y, z)/x][(w, 5) /x(2, 2)],
(2, D) [{y,z)/x(Q, Q)] [(w, 5) /x].

Along the recursive calls of the inhabitation algorithm, the parameters (type and/or
environment) decrease strictly, for a suitable notion of measure, so that every run is finite:

» Lemma 18. The inhabitation algorithm terminates.

5.2 Soundness and completeness

We now prove soundness and completeness of our inhabitation algorithm.
» Lemma 19. a € T(I',0) & JI>T + a: o such that a = A(II).

Proof. The “only if” part is proved by induction on the rules in Fig. 2, and the “if” part
is proved by induction on the definition of A(IT). In both parts, additional statements
concerning the predicates of the inhabitation algorithm other than T are required, in order
to strenghten the inductive hypothesis. <

» Theorem 20 (Soundness and Completeness).
1. Ifae T([,0) then, for all t such thata<t, Tk t:o.
2. IfTIpT F t : o then there exists I'>T =t/ 1 o such that t' is in II'-nf, and A(I") € T(T', o).

Proof. Soundness follows from Lem. 19 (=) and the fact that I' - a: 0 and a < t imply
I' -t : 0. For completeness we first apply Lem. 9.1 that guarantees the existence of
II'>T Ft': o such that t’ is in II'-nf, and then Lem. 16 and Lem. 19 («<). <
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_x¢V x¢V -
0 copo(@) ") B copy(®) P

(I'sp) € Py(h1) (A;q) €; Py (A2) p#4q
(5 A5 (p,q)) €1 Py, (A1 XAy)

(Pairp)

a€T(I5A,7) A=A UAy  (A;p) € Pyoyry(A1)  supp(Az) € S(p)
Ap.a € T([A — 7)

(Abs)

(a; € T(Ty,09))ier Tier a (ai € H'(Ty,00) b pi)ier  Tier &

TUn
\/ ai € TI(+iciTs, [oilier) o \aie HI, % (4T, [oilier) » pilier
iel iel
e— (Pair) a € 1T, f) (Prodi) a e T, 7) (Prod2)
(2,9) e 10, 0) (a,Q2) € T(T', x4 (7)) (Q,2) € T(T', x2(7))

(HUn)

aeullr o)pr o=T
(Head) — >
ace T+ (x:]o]),7) aceH(0,0)>T

(Final)

F:F0—|—F1 bETI(FQ,A) aEHCAb+FO(F1,U)DT

acHMD,A—0)>T

(Prefix)

=Tg+I;  c€HIF®(o,B)>F(B)  F(B)=A; UAy(*)

(A,P) €1 Paon(rotr, +(xm)) (A1) supp(A2) ©S(p)  beT(I';A,7) (Subs)
blp/c] € T(I' + (x: B), 7)
(*) where the operator F() is defined as follows:
Fl@) == a FA—=7) = F(r)  F(]) = []  Floilicr) = [F(oi)liers

Figure 2 The inhabitation algorithm.

6 Characterizing Observability

We are now able to state the main result of this paper, 7.e. the characterization of observability
for the pattern calculus. The following lemma assures that types reflect correctly the structure

of the data types.

» Lemma 21. Let t be a closed and typable term, then
If t has functional type, then t reduces to an abstraction.
If £ has product type, then t reduces to a pair.

Proof. Let t be a closed and typable term. By Thm. 10 we know that t reduces to a (closed)
canonical form in J. The proof is by induction on the maximal length of such reduction

sequences.
If t is already a canonical form, we analyze all the cases.
If t is a variable, then this gives a contradiction with t closed.
If t is a function, then the property trivially holds.
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If t is a pair, then the property trivially holds.

If t is an application, then t has the form xt; ...t,. Therefore at least x belongs to the
set of free variables of t, which leads to a contradiction with t closed.

If t is a closure, i.e. t = u[(p1,p2)/v], where v € K has the form xt; ...t,, then at least
x belongs to the set of free variables of t, which leads to a contradiction with t closed.

Otherwise, t — t' —* u, where u is in J. The term t’ is also closed and typable
(Lem. 9.1), then the i.h. gives the desired result for t/, so the property holds also for t. <«

» Theorem 22 (Characterizing Observability). A term t is observable iff ITI>xy : Ay;...;%y
A, Ft:B — ... > By — «a, wheren > 0,bm > 0, « is a product type and all
Aq,...A,,Bq,...B,, are inhabited.

Proof. The left-to-right implication: if t is observable, then there exists a head-context C
such that C[t] =* (u,v). Since - {u,v) : 0, we get II'> F C[t] : 0 by Lem. 9.2. By definition
C[t] = (Ap1.--Apn-t)uy...um, so II has a subderivation II'> - Apy..Ap,.t : By = ... = By, = 0
(by rule (— e)), where B; is inhabited by u; (1 <4 < m). Since n < m, II' has a subderivation
II">T'Ft:Bpy1 — ... = By, — o (by rule (— 1)), where I'|,, IF p; : B; (1 <@ <n). The
result follows since %1 : A1,...,.x;: A; IF p: B and B is inhabited implies that all the A;
are inhabited. The right-to-left implication: if Ay,...A,,Bq,...B,, are all inhabited, then
there exist uy,...u,,v1,... Vv, such that - u; : O‘g for every type Uf of 4; (1 <i<n)and
Fov; o pf for every type pg of B; (1 <i<m). Let C = (Ax1...%x,.0)u;...upvy...v, be
a head-context. We have - C[t] : «, which in turn implies that C[t] reduces to a pair, by
Lem. 21. Then the term t is observable by definition. <

The notion of observability is conservative with respect to that of solvability in A-calculus.

» Theorem 23 (Conservativity). A A-term t is solvable in the A-calculus if and only if t is
observable in A.

Proof. (if) Take an unsolvable A-term t so that t does not have head normal-form. Then
t (seen as a term of our calculus) has no canonical form, and thus t is not typable by
Thm. 10. It turns out that t is not observable in A, by Thm. 22.

(only if) Take a solvable A-term t so that there exist a head-context C such that C[t]
reduces to Id, then it is easy to construct a head context C’ such that C'[t] reduces to a
pair (just take C' = C (ty, t2) for some terms tq,t2). <

7 Conclusion and Further Work

We propose a notion of observability for pair pattern calculi which is conservative with
respect to the notion of solvability for A-calculus.

We provide a logical characterization of observable terms by means of typability and
inhabitation.

Further work will be developed in different directions. As we already discussed in Sec. 2,
different definitions of observability would be possible. We explored the one based on a
lazy semantics, but it would be also interesting to obtain a full characterization based on
a strict semantics. Another point to be developed is the definition of a suitable notion of
head reduction, which, despite its relative simplicity, turn out to be quite cumbersome. On
the semantical side, it is well known that non-idempotent intersection types can be used to
supply a logical description of the relational semantics of A-calculus [8, 14]. We would like
to start from our type assignment system for building a denotational model of the pattern
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calculus. Last but not least, a challenging question is related to the characterization of
observability in a more general framework of pattern A-calculi allowing the patterns to be

dynamic [10].
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—— Abstract
We show that a version of Martin-Lof type theory with extensional identity, a unit type Ny, 3,11,

and a base type is a free category with families (supporting these type formers) both in a 1-
and a 2-categorical sense. It follows that the underlying category of contexts is a free locally
cartesian closed category in a 2-categorical sense because of a previously proved biequivalence.
We then show that equality in this category is undecidable by reducing it to the undecidability
of convertibility in combinatory logic.
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1 Introduction

In previous work [5, 6] we showed the biequivalence of locally cartesian closed categories
(Icces) and the I, 3, TI-fragment of extensional Martin-Lof type theory. More precisely, we
showed the biequivalence of the following two 2-categories.

The first has as objects leces, as arrows functors which preserve the lcce-structure (up to

isomorphism), and as 2-cells natural transformations.

The second has as objects categories with families (cwfs) [8] which support extensional

identity types (I-types), X-types, II-types, and are democratic, as arrows pseudo cwi-

morphisms (preserving structure up to isomorphism), and as 2-cells pseudo cwi-trans-
formations. A cwf is democratic iff there is an equivalence between its category of
contexts and its category of closed types.
This result is a corrected version of a result by Seely [13] concerning the equivalence of
the category of lcccs and the category of Martin-Lof type theories. Seely’s paper did not
address the coherence problem caused by the interpretation of substitution as pullbacks [7].
As Hofmann showed [9], this coherence problem can be solved by extending a construction
of Bénabou [2]. Our biequivalence is based on this construction.

Cwfs are models of the most basic rules of dependent type theory; those dealing with
substitution, assumption, and context formation, the rules which come before any rules for
specific type formers. The distinguishing feature of cwfs, compared to other categorical
notions of model of dependent types, is that they are formulated in a way which makes the
connection with the ordinary syntactic formulation of dependent type theory transparent.
They can be defined purely equationally [8] as a generalised algebraic theory (gat) [3], where
each sort symbol corresponds to a judgment form, and each operator symbol corresponds to
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an inference rule in a variable free formulation of Martin-Lof’s explicit substitution calculus
for dependent type theory [11, 15].

Cwfs are not only models of dependent type theory, but also suggest an answer to the
question what dependent type theory is as a mathematical object. Perhaps surprisingly,
this is a non-trivial question, and Voevodsky has remarked that “a type system is not a
mathematical notion”. There are numerous variations of Martin-Lof type theory in the
literature, even of the formulation of the most basic rules for dependent types. There are
systems with explicit and implicit substitutions, variations in assumption, context formation,
and substitution rules. There are formulations with de Bruijn indices and with ordinary
named variables, etc. In fact, there are so many rules that most papers do not try to
provide a complete list; and if you do try to list all of them how can you be sure that
you haven’t forgotten any? Nevertheless, there is a tacit assumption that most variations
are equivalent and that a complete list of rules could be given if needed. However, from a
mathematical point of view this is neither clear nor elegant.

To remedy this situation we suggest to define Martin-Lof type theory (and other depend-
ent type theories) abstractly as the initial cwf (with extra structure). The category of cwfs
and morphisms which preserve cwi-structure on the nose was defined by Dybjer [8]. We
suggest that the correctness of a definition or an implementation of dependent type theory
means that it gives rise to an initial object in this category of cwfs (with extra structure).
Here we shall construct the initial object in this category explicitly in the simplest possible
way following closely the definition of the generalised algebraic theory of cwfs. Note however
that the notion of a generalised algebraic theory is itself based on dependent type theory,
that is, on cwif-structure. So just defining the initial cwf as the generalised algebraic theory
of cwfs would be circular. Instead we construct the initial cwf explicitly by giving gram-
mar and inference rules which follow closely the operators of the gat of cwfs. However, we
must also make equality reasoning explicit. To decrease the number of rules, we present a
"per-style" system rather than an ordinary one. We will mutually define four partial equi-
valence relations (pers): for the judgments of context equality I' = I/, substitution equality
A ~vy=+":T, type equality ' - A = A’ and term equality ' - a = @’ : A. The ordinary
judgments will be defined as the reflexive instances, for example, I' - a : A will be defined
as'Fa=a:A.

Our only optimisation is the elimination of some redundant arguments of operators. For
example, the composition operator in the gat of cwfs has five arguments: three objects and
two arrows. However, the three object arguments can be recovered from the arrows, and
can hence be omitted. This method is also used in D-systems, the essentially algebraic
formulation of cwfs by Voevodsky.

The goal of the present paper is to prove the undecidability of equality in the free lccc.
To this end we extend our formal system for cwfs with rules for extensional I-types, Ny, 3,11,
and a base type. Now we want to show that this yields a free lccc on one object, by appealing
to our biequivalence theorem. (Since the empty context corresponds to the unit type Ny
and context extension to X, it follows that our free cwf is democratic.) However, it does
not suffice to show that we get a free cwf in the 1-category of cwfs and strict cwf-morphism,
but we must show that it is also free (“bifree”) in the 2-category of cwfs and pseudo cwf-
morphisms. Although informally straightforward, this proof is technically more involved
because of the complexity of the notion of pseudo cwf-morphism.

Once we have constructed the free lcce (as a cwi-formulation of Martin-Lof type theory
with extensional I-types, Ny, 3, I, and one base type) we will be able to prove undecidability.
It is a well-known folklore result that extensional Martin-Lof type theory with one universe

139

TLCA’'15



140

Undecidability of Equality in the Free Locally Cartesian Closed Category

has undecidable equality, and we only need to show that a similar construction can be
made without a universe, provided we have a base type. We do this by encoding untyped
combinatory logic as a context, and use the undecidability of equality in this theory.

Related work. Palmgren and Vickers [12] show how to construct free models of essentially
algebraic theories in general. We could use this result to build a free cwf, but this only
shows freeness in the 1-categorical sense. We also think that the explicit construction of the
free (and bifree) cwf is interesting in its own right.

Plan. In Section 2 we prove a few undecidability theorems, including the undecidability
of equality in Martin-Lof type theory with extensional I-types, 1I, and one base type. In
Section 3 we construct a free cwf on one base type. We show that it is free both in a 1-
categorical sense (where arrows preserve cwi-structure on the nose) and in a 2-categorical
sense (where arrows preserve cwi-structure up to isomorphism). In Section 4 we construct
a free cwf with extensional identity types, N1, X, II, and one base type. We then use the
biequivalence result to conclude that this yields a free lccc in a 2-categorical sense.

2  Undecidability in Martin-Lof type theory

Like any other single-sorted first order equational theory, combinatory logic can be encoded
as a context in Martin-Lof type theory with I-types, II-types, and a base type o. The context
I'cr for combinatory logic is the following:

k : o, ary : Hxy:o.1(o, k-z-y, x),
s o ars : Hxyz:o0.I(o, sz -y-z,x-2-(y-2))
0—0—o0,
Here we have used the left-associative binary infix symbol “-” for application. Note that

k,s,-,axy,axs are all variables.

» Theorem 1. Type-inhabitation in Martin-Lof type theory with (intensional or extensional)
identity-types, Il-types and a base type is undecidable.

This follows from the undecidability of convertibility in combinatory logic, because the type
FCL F I(Oa M7 MI)

is inhabited iff the closed combinatory terms M and M’ are convertible. Clearly, if the
combinatory terms are convertible, it can be formalized in this fragment of type theory. For
the other direction we build a model of the context I'cy, where o is interpreted as the set of
combinatory terms modulo convertibility.

» Theorem 2. Judgmental equality in Martin-Lof type theory with extensional identity-types,
II-types and a base type is undecidable.

With extensional identity types [10] the above identity type is inhabited iff the corresponding
equality judgment is valid:
FCL FM= M/ : 0

This theorem also holds if we add N; and X-types to the theory. The remainder of the
paper will show that the category of contexts for the resulting fragment of Martin-Lof type
theory is bifree in the 2-category of lcces (Theorem 20). Our main result follows:
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» Theorem 3. FEquality of arrows in the bifree lccc on one object is undecidable.
We would like to remark that the following folklore theorem can be proved in the same way.

» Theorem 4. Judgmental equality in Martin-Ldf type theory with extensional identity-types,
II-types and a universe U is undecidable.

If we have a universe we can instead work in the context

X U - X=X =X,
ko X, ary : Hey: X I(X, k-z-y, z),
s X, ars : Hoeyz: X I(X,s -z -y-z,z-2-(y-2))

and prove undecidability for this theory (without a base type) in the same way as above.

Note that we don’t need any closure properties at all for U — only the ability to quantify
over small types. Hence we prove a slightly stronger theorem than the folklore theorem
which assumes that U is closed under function types, and then uses the context

X U,
z : I(U,X, X — X)

so that X is a model of the untyped lambda calculus.

3 A free category with families

In this section we define a free cwf syntactically, as a term model consisting of derivable
contexts, substitutions, types and terms modulo derivable equality. To this end we give
syntax and inference rules for a cwf-calculus, that is, a variable free explicit substitution
calculus for dependent type theory.

We first prove that this calculus yields a free cwf in the category where morphisms
preserve cwi-structure on the nose. The free cwf on one object is a rather degenerate
structure, since there are no non-trivial dependent types. However, we have nevertheless
chosen to present this part of the construction separately. Cwfs model the common core
of dependent type theory, including all generalised algebraic theories, pure type systems
[1], and fragments of Martin-Lof type theory. The construction of a free pure cwf is thus
the common basis for constructing free and initial cwfs with appropriate extra structure for
modelling specific dependent type theories.

In Section 3.4 we prove that our free cwf is also bifree. We then extend this result to
cwfs supporting Ny, 3, and II-types. By our biequivalence result [5, 6] it also yields a bifree
lecc.

3.1 The 2-category of categories with families

The 2-category of cwfs and pseudo-morphisms which preserve cwi-structure up to isomorph-
ism was defined in [5, 6]. Here we only give an outline.

» Definition 5 (Category with families). A cwf C is a pair (C,T) of a category C and a
functor T : C°? — Fam where Fam is the category of families of sets. We write Ctx¢ = |C|
and Subc(A,T') = Home(A,T'). For I' € Ctxe we write TT' = (Tme (I, A)) aety,r- The
functorial action of T on a type A is written A[_]: if v : Sub¢e(I', A) and A € Tyq(A),
Aly] € Tye(T). Similarly if a € Tme (A, A), we write a[y] € Tme(T', A[y]) for the functorial
action of T on a.
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We assume that C has a terminal object 1¢. Moreover we assume that for each I' € Ctx¢
and A € Ty () there exists I'A € Ctx¢ with a map p, : Sube(I'.A4,T) and a term q4 €
Tme(T.A, A[pal), such that for every pair v : Sube(A,T') and a € Tme (A, A[y]) there exists
a unique map (v, a) : Sube(A,T.A) such that p4 o (y,a) =~ and q4[({7,a)] = a.

Note that with the notation Ty, and Tm¢ there is no need to explicitly mention the
functor T' when working with categories with families, and we will often omit it. Given a
substitution v : T' — A, and A € Ty.(A), we write v 1 A or v© (when A can be inferred
from the context) for the lifting of v to A: (yop,q): T.A[y] = A.A.

The indexed category. In [5, 6] it is shown that any cwf C induces a functor T : C°? — Cat
assigning to each context I" the category whose objects are types in Ty, (I') and morphisms
from A to B are substitutions v : A — I".B such that poy = p. (They are in bijection with
terms of type I'- A F B[p].) Any morphism ~ in TT from a type A to B induces a function on
terms of that type written {7} : Tme (T, A) — Tme (T, B) defined by {v}(a) = q[yo(id, a)].
We will write § : A = B for an isomorphism in TT.

The functorial action is given by T(v)(¢) = (p,q[p o~y 1 A]) : T.A[y] — I".B[y|, from
which we deduce the action on terms {T(v)(¢)}(a) = qp o (v, a)].

» Definition 6 (Pseudo cwf-morphisms). A pseudo-cwf morphism from a cwf (C,T) to a cwf
(C',T") is a pair (F,o) where F' : C — C' is a functor and for each I € C, op is a Fam-
morphism from TT to T'FT preserving the structure up to isomorphism. For example, there
are isomorphisms

pr.a: F(I.A) = FT.FA

0ay: FT.FA[F~] = FT.F(A[y]) for T'F~ : A.
satisfying some coherence diagrams, see [6] for the complete definition.

As or is a Fam-morphism from (Tme(T, A)) acty.(r) to (Tmp(FT, B))pery, (Fr), We
write F'A for the image of A by Ty.(I') = Typ(FT) induced by or and Fa for the image
of T'Fa: A through Tme (T, A) — Tmp(FT, FA) induced by or.

A pseudo cwf-morphism is strict whenever 64 ~ and pr 4 are both identities and F'1 = 1.
Cwfs and strict cwf-morphisms form a category CwF.

» Definition 7 (Pseudo cwf-transformation). A pseudo cwf-transformation between functors
(F,0) and (G, ) is a pair (p, ) where ¢ : F' = G is a natural transformation, and for each
I'eCand A € Tyo(T) 9r,4 is a type isomorphism F A =pr GA[pr] satisfying:

+
Yr, A

ora = F(T.A) 25 FT.FA Y™ FT.GAlpr] 25 GT.GA 29 G(T.A)

We will write CwF for the resulting 2-category.

3.2 Syntax and inference rules for the free category with families
3.2.1 Raw terms

In this section we define the syntax and inference rules for a minimal dependent type theory
with one base type o. This theory is closely related to the generalised algebraic theory of
cwfs [8], but here we define it as a usual logical system with a grammar and a collection
of inference rules. The grammar has four syntactic categories: contexts Ctx, substitutions
Sub, types Ty and terms Tm:

r == 1|T.A A == o] AP
v w= yoylidr|{rlpal(y.a)a a == ap]laqa
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These terms have as few annotations as possible, only what is needed to recover the domain
and codomain of a substitution, the context of a type, and the type of a term:

dom(y 0 7') = dom(y') cod(yoy') = cod(y)
dom(idr) =T cod(idr) =T
dom({)r) =T cod({)r) =1
dom(pa) = ctx-of (A).A cod(pa) = ctx-of (A)
dom({v,a)4) = dom(~) cod({(y,a)a) = cod(v).A
ctxof(o) = 1 type-of(aly)) = (type-of(a))l]
ctx-of (A[y]) = dom(v) type-of(qa) = Alpa]

These functions will be used in the freeness proof.

3.2.2 Inference rules

We simultaneously inductively define four families of partial equivalence relations (pers) for
the four forms of equality judgment:

=1+ A=A AbF~y=+":T l'Fa=d:A

In the inference rules which generate these pers we will use the following abbreviations for
the basic judgment forms: I" - abbreviates ' =T+, ' - A abbreviates'F A=A AF~:T
abbreviates AFy=~:T,and ' - a: A abbreviates ' Fa =a: A.

Per-rules for the four forms of judgments:

Fr=I"F I/=T"}F r=T1'F AFy=+":T AFy' =4":T AFy=+":T

r=1r"+ I'=THk AbF~y=4":T AFvy' =~:T
I'FA=A" TFA =A" '-A=A I'Fa=ad":A TFa' =a": A
'-A=A" r—A =4 I'Fa=dad": A
I'Fa=d:A
I'Fa'=a:A

Preservation rules for judgments:

r=r'+ A=A"F Trky=9:A T'=0I"F TH+FHA=A
IM'Ey=y: A I'tA=A4A

I'=01"F THA=A Tla=d:A
INFa=a: A4
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Congruence rules for operators:

FEé=0:A Ab~ry=+:0 =1~ rA=A Akr~y=4":T
F'kyo0d=+"0d:0 ' b idr =idp : T A'F A[y] = A'[Y]
lFa=d:A AFy=9":T r=1'+F F=I"F TFA=A
Ataly])=d ] AR 1=1F 'k (r={(r:1 rA=r".4+r
A=A rFA=4
F.Al—pAsz/:F F.Al—qAZqA/:A[pA]

FrFA=A Ar~y=+":T Ata=d:A[}]
AF(y,a)a ={y,a)a :T.A

Conversion rules:

AF0:0 TH§:A ZEF~:T ' -~:A ' -~:A
(fod)oy=00(d07) Pky=1idaovy: A I'Fy=nvo0idr: A
'FA AkF~:T OF6:A THA 'rFa:A AF~:T OFJ/:A
©F Alyod] = (AR])[] I'FAfidr]=A  ©Falyod] = (aly)[d] : (AY])[0]
'a:A Fk~v:1 'FA AbF~:T Ala: A}
Pt alidr]=a: A F'Fy={(r:1 Abtpao(y,a)a=v:T
F'FA Ab~:T Ata: A} AkF~:T.A
At qal(y,a)a] =a: A Abqy=(pacv,qal)a:T.A

Rule for the base type:

lFo=o0

3.2.3 The syntactic cwf 7

We can now define a term model as the syntactic cwf obtained by the well-formed contexts,
etc, modulo judgmental equality. We use brackets for equivalence classes in this definition.
(Note that brackets are also used for substitution in types and terms, but this should not
cause confusion since we will soon drop the equivalence class brackets.)

» Definition 8. The term model 7T is given by:
Ctxyr ={T' |k }/=° where T =¢T" if I =T I is derivable.
Subr([I,[A]) = {7 | T F v: A}/=K where v =L 4" iff T v =4 : A is derivable. Note
that this makes sense since it only depends on the equivalence class of I' (morphisms and
morphism equality are preserved by object equality).

Tyr(I))={A| T+ A}/ =" where A=" Bif' - A= B.

Tmr([[],[A]) ={a | T Fa: A}/ =5 wherea =4 ¢/ if T Fa=d:A.
The cwf-operations on 7 can now be defined in a straightforward way. For example, if
AFO:0,THFd:A, wedefine [0] oy [§] = [0 o ], which is well-defined since composition
preserves equality.
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3.3 Freeness of 7

We shall now show that 7 is the free cwf on one base type, in the sense that given a cwf C
and a type A € Ty.(1), there exists a unique strict cwf morphism 7 — C which maps [o] to
A. Such a morphism can be defined by first defining a partial function for each sort of raw
terms (where Ctx denotes the set of raw contexts, Sub the set of raw substitutions, and so
on defined by the grammar of Section 3.2.1), cf Streicher [14].
[-] : Ctx — Ctxc
[—Ir,a : Sub — Subc([I], [A])
[<Ir = Ty = Tyc([TD)
[-lra = Tm — Tme([T], [A]r)

These functions are defined by mutual induction on the structure of raw terms:

[1]= 1c [.A] = [I.c[A]
[V ovlre = [v]aeoc [7Ir.a [idrlrr = idepm
[(v.a)alr,aa = ([VIr.a, lalr,ap) [Or]ra= Or
[AWr = [A]allv]r,al [a[Vlr,ap) = [ala,allv]r,al
[palr.ar= pa laalr.a,ap = aa
[o]i= A

Note that A = dom(+’) = cod(y) in the equation for o, etc.
We then prove by induction on the inference rules that:

» Lemma 9. IfT =T"+, then [I'] = [I'] and both are defined.
IfTE~ry=+": A, then [¥]r.a = [7]r.a and both are defined.
IfTF A=A, then [A]r = [A]r and both are defined.
IfTFa=4d: A, then [a]r,a = [a']r,a and both are defined.

Hence the partial interpretation lifts to the quotient of syntax by judgmental equality:
-] : Ctxy — Ctxc

[l a) = Subr([T],[A]) — Sube([[T]], [[A]])
[liey = Tyr(I0) — Ty ([T

Flyga  Tor( [A)) — Tane (L TATr)
This defines a strict cwf morphism 7 — C which maps [0] to A. It is easy to check that it
is the unique such strict cwf-morphism. Hence we have proved:

» Theorem 10. T is the free cwf on one object, that is, for every other cwfC and A € Ty, (1)
there is a unique strict cwf morphism T — C which maps [o] to A.

From now on we will uniformly drop the equivalence class brackets and for example write
T for [I']. There should be no risk of confusion, but we remark that proofs by induction on
syntax and inference rules are on representatives rather than equivalence classes.

3.4 Bifreeness of T

We recall that an object I is bi-initial in a 2-category iff for any object A there exists an
arrow I — A and for any two arrows f,g : I — A there exists a unique 2-cell 6 : f = g. It
follows that 6 is invertible. It also follows that bi-initial objects are equivalent.
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» Definition 11. A cwf C is bifree on one base type iff it is bi-initial in the 2-category CwF°:
Objects: Pairs (C,o¢) of a CwF and a chosen o¢ € Ty(1),
1-cells from (C,oc) to (D,op): pseudo cwf-morphisms F': C — D such that there exists
or : F(o¢) & op in Typ(1),
2-cells from F to G with type (C,oc) — (D, op): pseudo cwi-transformations (¢, 1) from
F to G satistying ¢, = ag' o ap : F(oc) = G(oc).

» Theorem 12. T is a bifree cwf on one base type.

We have showed that for every cwf C, A € Ty.(1), the interpretation [—] is a strict cwf-
morphism mapping o to A. Hence it is a morphism in CwF°. It remains to show that for any
other morphism F : 7 — C in CwF?, there is a unique 2-cell (pseudo cwf-transformation)

(p,¥) : [-] — F, which happens to be an isomorphism. This asymmetric version of bi-
initiality is equivalent to that given above because the 2-cell we build is an isomorphism.

Existence of (¢, v)

We construct (¢,%) by induction on the inference rules and simultaneously prove their
naturality properties:

If I = I I, then there exist op = op : [[] = FT.

If ' A= A’, then there exist ¢4 = 14 : [T.A] §m [T].FA[er].

IfIF~y=+":A, then Fyopr =pao[]
IfTFa=a:A, then {¢4}([a]) = Faler]

Lo pf o1pa we conclude that (p,7) is a pseudo

cwi-transformation. For space reasons we only present the proofs of the first two items and
refer the reader to the long version of the paper [4] for the other two.

Since it also follows that ¢p a4 = p~

Empty context. F preserves terminal objects, thus we let ¢ : [1] = 1¢ & F1.
Context extension. By induction, we have 14 : m >~ FAlpr|. We define pr 4 as the
following composition of isomorphisms:

—1
Pr.a

or.a = [TA] 24 0] FAlpr] 2% Fr.pa o4 pr.a)

Type substitution. Let I'- v : A and A+ A. By induction we get pa o[y] = Fyo¢r and
Ya : [A] Za FAlpa]. Since T is a functor, T is a functor from TA to TT thus,

T(IYD(¥a) : [ARI] =r FAlpa 04] = FA[FY][pr]

by induction hypothesis on 7. So we define

Yap) = T(er)(0ay) o T(IVD (W) : [AN] Zgg (F(ADD)) [er]

Using the previous case we can get a simpler equation for ¢r ap:

er.ap = (propalpopanacy T A]) : [[LAR] — F(I'A[])

Base type. By definition, F' is equipped with ap : [o] = F(0). We define 1), = a}l : o] =
F(o) in Ty.(1).
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Uniqueness of (¢, 1))

Let (¢',¢") : [] — F be another pseudo cwf-transformation in CwF?. We prove the
following by induction:

If T'F, then ¢or = ¢

IfT'F A, then ¢4 = ¢y

Empty context. There is a unique morphism between the terminal objects m and F'1, so
P1 =1

Context extension. Assume by induction ¢r = ¢ and ¥4 = ¢/;. By the coherence law
of pseudo cwi-transformations, we have ¢} , = p~! 0 @it 09, from which the equality
©F 4 = ¢r.a follows.

Type substitution. Assume we have A - A and I' = v : A, and consider 94, and wﬁ“hl'
By definition of pseudo cwi-transformations, one has T(go/r)(ﬂg}v) o)y = T(FY) ().
Since we know pr = ¢ we know ¢f. is an isomorphism and thus WA[’Y] depends only on
¢ and ¥y from which it follows that WA['V] = 1/)14[7].

Base type. The definition of 2-cells in CwF® entails ¢/, = az' : o] — F([o]).

4 A free lccc

4.1 From cwfs to lcccs

We now extend our cwf-calculus with extensional I-types, N1,3, and II and prove that it
yields a free cwf supporting these type formers. To show that this yields a free lccc we apply
the biequivalence [6] between lcces and democratic cwfs supporting these type formers.

» Definition 13 (Democratic cwfs). A cwf C is democratic when for each context I' there
is a type I' € Ty(1) such that T' = 1.I. A pseudo cwf morphism F : C — D between
democratic cwf preserves democracy when there is an isomorphism F(T) & FT[()r] satisfying
a coherence diagram stated in [6] (Definition 8).

The free cwf with N1, 3, and II-types is democratic since the empty context can be repres-
ented by the unit type N; and context extension by a X-type.

4.2 Cwfs with support for type constructors

A cwf supports a certain type former when it has extra structure and equations correspond-
ing to the to formation, introduction, elimination, and equality rules for the type former
in question. We only spell out what it means for a cwf to support and preserve exten-
sional identity types and refer the reader to [6] for the definitions wrt X- and II-types. The
definition of what it means to support and preserve N; is analogous.

» Definition 14 (Cwf with identity types). A cwf C is said to support extensional identity
types when for each a,a’ € Tme(T', A) there is a type 1(A,a,a’) € Ty, (T") satisfying the
following condition:

I(A,a,a" )] =1(A[], a[y], a’[7]) for any v: A =T

147

For a € Tme(T', A), there exists r(a) € Tme(I',I(4, a,a)). Moreover, if ¢ € Tme (T, I(A, a,a’))

then a = o’ and ¢ = r(a).
A pseudo cwf morphism F' preserves identity types when

I(FA,Fa,Fd') =~ F(I(A,a,d)).
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We write CWFZ’Z’H for the 2-category of democratic cwfs supporting I,X, and II with

morphisms preserving them, and CWFSZ’dH’I for the strict version. Note that by democracy,

any democratic cwf has a unit type representing the empty context.
3 and II are functorial and preserve isomorphisms:

» Lemma 15 (Functoriality of X). Let fa : A=r A" and fg : B =r g B'[fa] withT. A+ B
and T.A" b B’. Then X(A, B) & X(A', B’) functorially: if ga : A’ =2 A" and gp : B’ =
B"[ga], then (gao fa,gs o f4 o fB) = X(ga,98) o X(fa. fB) : ©(A, B) = X(A”, B").

» Lemma 16 (Functoriality of TI). Let fa : A= A" and fp : B = 4 B’[fa]. Then there is
a type isomorphism U(fa, f5) : (A, B) =r (A, B') functorially.

4.3 The syntactic cwf with extensional I, Ny, ¥, and II

We extend the grammar and the set of inference rules with rules for I, N1, Y, and II-types:

A u= - |La,a) | Ny | S(A4, A) | TI(A, A)
o = e [1(a) | 01 | fst(4, )] snd(A, A,a)| pair(4, A,a,a)| ap(A, 4,a,0)| \(4,a)

For each type we define its context:

ctx-of (I(a, a’)) = ctx-of (type-of (a)) ctx-of (X(A4, B)) = ctx-of (A)
ctx-of (TI(A, B)) = ctx-of (4)

For each term we define its type:

type-of (fst(A4,¢c)) = A
type-of (snd(A, B, c) = B (idctx-of(a), 5t(4, ¢)) type-of(r(a)) = I(a, a)
type-of (pair(A, B,a,b)) = (A, B) type-of (A(A, ¢)) = II(A, type-of (c))
type-of (pair(A, B,a,b)) = (A, B) type-of (ap(4, B, ¢,a)) = B (idcix-of(4), @)

4.3.1 Inference rules

Rules for I-types:

Pta=d:A Trb=V:A Tra=d:A I'Fc:1(a,a)
I+ 1(a,b) = I(d, ) I'tr(a) =r(a) : I(a,a’) I'ta=4d :type-of(a)
I'kec:1(a,d) 'ta:A 'kad: A AF~:T
I'kFe=r(a):(a,d) I'F1(a,d)[y] = Naly],d'[v])

Rules for Ny:

I—a:N1
FNl F015N1 FCL:OlSNl
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Rules for X-types:
TEA—=A" T A-B=B FrFA=A" Ttce=(:%(A,B)
'+X(A,B)=X%(A", B THfst(4,c) =1fst(A',): A

PFA=A T.AFB=B Trc=¢:%(A,B)
I'Fsnd(A, B,c) =snd(4', B, ) : B{(idr,fst(4,c))

TFA=A T.AFB=B Tra=d:A TrFb=b:B(idr, fst(A4,c)
I+ pair(A, B, a,b) = pair(4’, B',d’,b") : (A, B)

'A T'AFB Thka:A TFb:B{idp,fst(4,c))
I : fst(A, pair(4, B,a,b)) =a: A

'A T'.AFB Tra:A TFb:B(idr,st(A,c))
I':snd(A, B,pair(4, B,a,b)) = b: B{idr, fst(4, ¢))

'HA T.AFB Thka:A TFb:B[{(idr,fst(4,c))]
'+ ¢ = pair(A4, B, fst(4, ¢),snd(A4, B, ¢)) : ¥(A, B)

'-A T'AFB AkF~:T 'A Tre:%(A,B) Ab~y:T
I'E%(A, B)ly] = Z(AD], Bv*)) I'F fst(A, ¢)[y] = fst(Af], e[r]) - A

I'tA TLAFB The:S(A,B) Aby:T
't snd(4, B, ¢)[y] = snd(A[y], B[y*], c[7]) + B(v,fst(4, c)[7])]

'A T'.ArB Tra:A Tkb:B[{idr,fst(4,¢))] Ak~:T
T'F pair(4, B, &, )] = pain(AD], Bh ', a7}, b)) : 24, B[]

Rules for Il-types:

A=A T.AFrB=0 P-A=A T.AFb=V:B
T+ I(A,B) = (A, B') T - A(A,b) = N(A', ) : 1I(A, B)

A=A TAFB=B Tre=¢:1(AB) TFa=d:A
I'Fapp(A, B,c,a) = app(A’, B',c,d’) : B[(id, a}]

'ke:T(A,B) Tha: A I'ke:TI(A, B)
I'Fapp(A4, B,A(A,b),a) = b[{id, a)] : B[{(id, a)] I'F Xapp(c[pl,q)) = ¢ : TI(A4, B)
'-A T'AFB AkF~:T I'ke:1I(A,B) AF~y:T
A FII(A, B)[y] = T(A[+], A[v*]) A FADB) ] = AMb[yT]) : (A, B)[Y]

I'ke:I(A,B) ThFa:A Aby:T
A = app(c, a)[y] = app(c[y], aly]) : Bl(v,a[7])]

4.3.2 The syntactic cwf supporting I, N;, 3, and II

It is straightforward to extend the definition of the term model 7 with I, Ny, ¥ | and II-types,

TLNLE I

to form a cwf supporting these type constructors. As we already explained it is

democratic.
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We want to show that 70Nt is free, not only in the 2-category of cwfs support-
ing I, X, IT but in the subcategory of the democratic ones. (Democracy entails that Ny is
also supported.) It is straightforward to extend the interpretation functor and prove its
uniqueness. It is also easy to check that it preserves democracy.

» Theorem 17. TINUEI js the free democratic cwf supporting 1,11 on one object.

4.4 Bifreeness of 7LN1,Z1I

We now prove the key result:

» Theorem 18. T'NUEI s the bifree democratic cwf supporting 1, 3,11 on one object.

TLNLETI

This means that is bi-initial in the 2-category CWF;’E’H’O where objects are demo-

cratic cwfs which support I, 3, II, and a base type o, and where morphisms preserve these
type formers up to isomorphism.

4.4.1 Existence

We resume our inductive proof from Section 3.4 with the cases for I, N1, Y, and II.

Unit type. Since F' preserves democracy and terminal object it follows that 1.F(N;) =
LF1) =2 F121.

Identity type. Assume I' - a,a’ : A. By induction, we have 14 : [A] =0 FAlpr]. We
know I-types preserve isomorphisms in the indexed category (Lemma 10, page 35 of [6])
yielding (over [T]):

Ui(a,ary © [, a’)] = Ie(FA[pr], {va}([a]), {¢a}([a]))
= Ic(FAlpr], F(a)ler], Fa')[er]) .

3-types. Assume we have I' H A and I''A - B. By induction we have the isomorphisms

wA : m gp FA[QOF] and ’ll}B : m gF.A FB[SOFB] We let

S(pa,y _ 1+
Y = D54, B) 242 b sy(FAlpr], FBlp~" o op' 7))

T i S_1
TenCar), p ps(A, B))or]

¥y (a,B) can be related to ¢r. a.p:

Usa,) = T(or)(sy'p) o E(va, ¥p)
1+ _ _
=op' osy'goprtox T oy ovpoxan
IR
=o' osylpoxapoprtt oyt oypoxan

1 1

1+ _ 1+

=¢r' opoF(xap)op top t oprTT o ovpoxan
_1+ — _

=o' T opoF(xa'p)op 0wl sovpoxan
1+ _

= 901“1 opo F(XA,lB) OYr.A.B°XA,B

From that calculation, we deduce ¢r x4,5) = F(XZ,lB) O Wr.A.BOXA,B-
IT-types. Define ¢r(4,p) as follows

[TTI(A, B)] 422, [F]I(F Algr), FBp o priral)

= [FT.I(FA, FB[p))[¢r]

Tler)Eals), [TI.FI(A, B))[er]
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4.4.2 Uniqueness
We resume the uniqueness proof from 3.4.

The unit type. It follows from the preservation of democracy of F.

Identity types. We need to show w{(a’a,) = Y1(a,a) * T'l(a,a’) — T F(I(a,ad))[er]. Let
A = type-of(a). By post-composing with the coherence isomorphism F(I(a,a’)) Zpr
I(FA, Fa, Fa'), we get a morphism between identity types. In an extensional type theory,
identity types are either empty or singletons, thus there is at most one morphism between
two identity types (which is an isomorphism). This implies that 91(q,q) = w{(a’a,).

3-types. By induction, we assume that ¢r a5 = ¢F 4 p- By naturality of ¢, we have

(pIE(A,B) = F(X;LIB) © QL A.B O XAB = Prx(4,p)- Hence ¥sa p) = w/Z(A,B)'
II-types. As in the previous section, by induction we assume ¢r 4. p = ¢ 4 5. Let ev be
the obvious map I A.II(A, B)[p] — I'.A.B. Proposition 11 of [6] entails:

» Lemma 19. Assume I'' A+ B. The only automorphism w of II(A, B) (in TT') such that
Tp(w) : T.AII(A, B)[p] 2 T".AII(A, B)[p] satisfies evoTp(w) = ev is the identity.

It remains to show that 1/)5(1 AB)° 1/1{.[( AB) satisfies the condition. But we have:

(ev)opto Or1(a,B),p ©Pr.A° TP(WH(AB))
F(ev)op " opr.aoT(pr.a)(f)o Tp(V1i(a,m))
= F(ev)optoprao Y11(A,B)p]

F(ev) o ¢r an(a.B)p]

/

= Yr.apcev
By only using naturality conditions on ¢’ and ¢'. Write 7 : I A.F(II(A, B))[¢r][p] —
F(I'.A.B) for the map F(ev)op™t o0 p)po¢r.a. Since ¢ and ¢ are natural, we can
do the same reasoning, and have 7 o T'p(¢11(a,5)) = ¢r.4.B © ev. Thus, we get:
$rapOT=evo Tp(wﬁ(lA,B))

Using our induction hypothesis on B (¢r.a.p = ¢} 4 ) we have

evo Tp(wﬁ(lA,B)) © Tp(w{'[(A,B)) = Sﬁf.lA.B oTo TPWﬁ(A,BQ =ev

as desired. Hence 94 ) = 1/’{'[(,4 B)-

4.5 The free lccc

Let LCC be the 2-category of lcces. The biequivalence of [6] yields pseudofunctors:
U:CwF;™ - LCC H:LCC — CwF'™!

such that UH =1 and HU = 1. In particular there are adjunctions H HU and U 4 H.

» Theorem 20. UT Nu211 s the bifree lccc on one object, that is, it is bi-initial in LCC°.

Proof. Let C be an lccc with a chosen object oc € C. By democracy oc can be viewed as a
type over the empty context in the cwf HC, thus (HC,0) is in Cng’H’I"O. Thus we have
a pseudo cwf functor [-] : 7> NI — HC satisfying [o] = oc. Hence F : UT>INGI €
in LCC because of the adjunction.

Assume we have another G : UT>IUNuI 5 €. Because of the adjunction we get G* :
THWNGE o [C. Thus by bifreeness of 7>1N1:! we have ¢ : ﬂ > G*, thus F = G.
Moreover, any other morphism F' — G yields a morphism ﬂ — G* and is equal to . <«
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The Inconsistency of a Brouwerian Continuity
Principle with the Curry—Howard Interpretation
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—— Abstract

If all functions (N — N) — N are continuous then 0 = 1. We establish this in intensional (and
hence also in extensional) intuitionistic dependent-type theories, with existence in the formu-
lation of continuity expressed as a X type via the Curry—Howard interpretation. But with an
intuitionistic notion of anonymous existence, defined as the propositional truncation of 3, it is
consistent that all such functions are continuous. A model is Johnstone’s topological topos. On
the other hand, any of these two intuitionistic conceptions of existence give the same, consistent,
notion of uniform continuity for functions (N — 2) — N, again valid in the topological topos.
It is open whether the consistency of (uniform) continuity extends to homotopy type theory.
The theorems of type theory informally proved here are also formally proved in Agda, but the
development presented here is self-contained and doesn’t show Agda code.
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1 Introduction

We show that a continuity principle that holds in Brouwerian intuitionistic mathematics
becomes false when we move to its Curry—Howard interpretation. We formulate and prove this
in an intensional version of intuitionistic type theory (Section 2). Another Brouwerian (uni-
form) continuity principle, however, is logically equivalent to its Curry—Howard interpretation
(Section 4).

In order to be able to formulate and prove this logical equivalence, we need a type theory
in which both a formula and its Curry—Howard interpretation can be expressed (Section 3).
For example, toposes admit both V, 3 (via the subobject classifier) and II, ¥ (via their local
cartesian closedness) and hence qualify. We adopt the HoTT-book [17] approach of working
with propositional truncation || — || to express 3(z : X).A(z) as the propositional truncation
of ¥(x : X).A(x). This is related to NuPrl’s squash types [14], Maietti’s mono-types [13],
and Awodey—Bauer bracket types in extensional type theory [1]. Here by a proposition we
mean a type whose elements are all equal in the sense of the identity type, as in the HoTT
book. In a topos with identity types understood as equalizers, the propositions are the truth
values (subterminal objects), and the propositional truncation of an object X is its support,
namely the image of the unique map X — 1 to the terminal object. This gives the truth
value of the inhabitedness of X, without necessarily revealing an inhabitant of X, and we
have that

(F(z: X).A(z)) = ||1Z(z : X).A(z)]| .
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The Curry—Howard Interpretation of Continuity

In HoTT, this is taken as the definition of 3, with truncation taken as a primitive notion.
But we don’t (need to) work with the homotopical understanding of type theory or the
univalence axiom here.

1.1 The continuity of all functions NV — N

In Brouwerian intuitionistic mathematics, all functions f : N¥ — N on the Baire space
NN = (N — N) are continuous [2, 19]. This means that, for any sequence o : NN of natural
numbers, the value fo of the function depends only on a finite prefix of the argument o : NV,
If we write a =,, § to mean that the sequences o and [ agree at their first n positions, a
precise formulation of this continuity principle is

Y(f:NY 5 N). VY(a:NY). 3(n:N).V(B:NY. a=, 8= fa=fB

It is well known that this statement cannot be proved in higher-type Heyting arithmetic
(HA®), but that is consistent and validated by the model of Kleene—Kreisel continuous
functionals, and also realizable with Kleene’s second combinatory algebra Ks [2].

We show that, in intensional Martin-Lof type theory, the Curry—Howard interpretation of
the above continuity principle is false: It is a theorem of intensional MLTT, even without
universes, that

(I(f : NN = N).II(a : NY).E(n : N).II(B: NY).a =, B = fa= fB) - 0=1.

We prove this by adapting Kreisel’s well-known argument that, e.g. in HA®, extensionality,
choice and continuity are together impossible [12][18][2, page 267]. The difference here is
that

1. We work in intensional type theory.

2. Choice for the ¥ interpretation of existence is a theorem of type theory.

So what is left to understand is that extensionality is not needed in Kreisel’s argument when
it is rendered in type theory (Section 2).

The above two versions of the notion of continuity can be usefully compared by considering
the interpretations of HA” and MLTT in Johnstone’s topological topos [9]. The point of
this topos is that it fully embeds a large cartesian closed category of continuous maps of
topological spaces, the sequential topological spaces, and the larger locally cartesian closed
category of Kuratowski limit spaces [15]. As discussed above, any topos has 3,V, ¥, II and
therefore models both intuitionistic predicate logic and dependent type theory. We have that
1. The formula

V(f:NY 5 N).V(a:NY). 3(n:N).V(B:NY). a=, 8= fa=f3

is true in the topological topos.
The informal reading of this is “all functions N¥ — N are continuous”.

2. There is a function
(T(f: NN = N).I(a: NN S(n: N).I(B: N .a=, 38— fa=fB) = 0=1

in the topological topos, or indeed in any topos whatsoever, by our version of Kreisel’s
argument.
The informal reading of this is “not all functions N¥ — N are continuous”.
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But there is no contradiction in the formal versions of the above statements: they simul-
taneously hold in the same world, the topological topos. From a hypothetical inhabitant
of

T(f: NY — N).I(a : NY).2(n : N).I(8: NV).a =,  — fa = f3
we get a modulus-of-continuity functional
M:(NY = N) xNY - N,

by projection (rather than by choice in the topos-logic sense), which gives a modulus of
continuity n = M(f, a) of the function f : NN — N at the point « : NY. Kreisel’s argument
derives a contradiction from the existence of M. What this shows, then, is that although
every function ¢s continuous, there is no continuous way of finding a modulus of continuity
of a given function f at a given point a. There is no continuous M. Perhaps the difference
between the seemingly contradictory statements becomes clearer if we formulate them type
theoretically with and without propositional truncation. In the topological topos, the object

I(f:NY = N). O(a: NY). |[S(n:N). I(B:NY). a=, 8= fa= fg|
is inhabited, but
I(f:NY = N). O(a: NY). B(n:N). II(3: NY). a =, 8 — fa=fp

is not.

1.2 The uniform continuity of all functions 2 — N

The above situation changes radically when we move from the Baire space to the Cantor
space, and from continuous functions to uniformly continuous functions. Another Brouwerian
continuity principle is that all functions from the Cantor space 2 = (N — 2) to the natural
numbers are uniformly continuous:

Y(f:2Y 5 N). 3(n: N). Y(o, B: 2Y). o =, B = fa = fB.

Again this is not provable in HA® but consistent and validated by the model of continuous
functionals, by realizability over K5, and by the topological topos. We have also constructively
developed a model analogous to the topological topos in [20].

By the above discussion, the above principle is equivalent to

T(f: 2% — N). |[Z(n: N). (o, B: 2Y). a =, B — fa = 8]
We show that this, in turn, is logically equivalent to its untruncated version
(f: 2% — N). S(n: N). I(q, 8: 2Y). a =, 8 = fa = fB.

In particular, it follows that this object is inhabited (by a global point) in the topological topos.
Each inhabitant gives, by projection, a “fan functional” (2 — N) — N that continuously
assigns a modulus of uniform continuity to its argument. There is a canonical one, which
assigns the least modulus of uniform continuity.

In order to establish the above logical equivalence, we prove the following general principle
for “exiting truncations”: If A is a family of types indexed by natural numbers such that
1. A(n) is a proposition for every n: N, and
2. A(n) implies that A(m) is decidable for every m < n,
then

|IX(n:N).A(n)|| — X(n:N).A(n).

From anonymous existence one gets explicit existence in this case.
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1.3 A question regarding Church’s Thesis

Troelstra [18] also shows that extensionality, choice and Church’s Thesis (CT) are together
impossible, and Beeson [2, page 268] adapts this argument to conclude that extensional
Martin-Lof type theory refutes CT, with existence expressed by Y. But CT with existence
expressed as the truncation of ¥ is consistent with MLTT, and validated by Hyland’s effective
topos [8]. What seems to be open is whether CT formulated with ¥ is already refuted by
intensional MLTT (including the &-rule). This question has been popularized by Maria
Emilia Maietti.

2  Continuity of functions NV — N

We reason informally, but rigorously, in type theory, where, as above, we use the equality sign
to denote identity types, unless otherwise indicated. A formal proof, written in Agda [3, 4, 16],
is available at [6], but the development here is self-contained and doesn’t show Agda code.

The following says that the Curry-Howard interpretation of “all functions NN — N are
continuous” is false.

» Theorem 1. [If
I(f: NNV = N).I(a: NY).2(n: N).II(3: NY). a =, 8 = fa=f8
then 0 = 1.

We take the conclusion to be 0 = 1 rather than the empty type because we are not assuming
a universe for the sake of generality. The argument below gives 0 = 1, and, as is well known,
to get to the empty type from 0 = 1 a universe is needed.

Proof. Let 0“ denote the infinite sequence of zeros, that is, Ai.0, and let 0"k“ denote the
sequence of n many zeros followed by infinitely many k’s. Then

(0"k¥) =, 0 and (0"k¥)(n)=k.

Assume TI(f: NN — N).II(a: NY).2(n: N).I(3: NY).a =, 3 — fa = fB. By projection,
with a = 0%, this gives a modulus-of-continuity function

M: (NN - N) =N
such that
I(f: NY = N).I(B: NY).0% =5 B — f(0¥) = fB. (1)

We use M to define a function f: N¥ — N such that M (f) cannot be a modulus of continuity
of f and hence get a contradiction. Let

m = M(A\a.0),
and define f: NN — N by
B = M(Aa.B(am)).

The crucial observation is that, by simply expanding the definitions, we have the judgemental
equalities

f(0¥) = M(Aa.0%(am)) = M(Aa.0) = m,
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because 0%(am) = 0. By the defining property (1) of M, and the crucial observation,
(3: NY).04 =prp B —m = f5. (2)

For any B: NV, by the continuity of Aa.3(am), by the definition of f, and by the defining
property (1) of M, we have that

M(a: NY).0Y =45 a — 80 = B(am).

If we choose 3 = 0M/+11% we have 0% =ps;41 B, and so 0 =, 3, and hence f(B) = m
by (2). This gives

M(a: NY).04 =, a — B0 = Blam).
Considering a = 0™ (M f + 1)“, we have 0¥ =, «, and therefore
0=080=p(am)=8(Mf+1)=1. <
» Remark (Thomas Streicher, personal communication). The conversion
F(0¥) = M(Aa.0%(am)) = M(Aa.0) =m

in the above proof relies on the &-rule (reduction under \), which is not available in a system
based on the combinators S and K rather than the A-calculus. Usually HA® is taken in
combinatory form, in which case one needs some form of extensionality to conclude that
f(0¥) = m, and this explains how we avoid the extensionality hypothesis in Kreisel’s original
argument. But notice that the &-rule holds in categorical models.

Therefore the argument of the above proof shows that:

» Theorem 2. In HAY, the {-rule, the aziom of choice, and the continuity of all functions
NN — N are together impossible.

Another observation, offered independently by Thorsten Altenkirch, Thierry Coquand
and Per Martin-Lof (personal communication), is that the continuity of a function NN — N
implies that it is extensional in the sense that it maps pointwise equal arguments to equal
values, and so the continuity axiom has some amount of extensionality built into it.

The above formulation and proof of Theorem 1 assumes natural numbers, identity types,
IT and 3 types, and no universes. But it uses only the identity type of the natural numbers.
If we assume a universe U, this identity type doesn’t need to be assumed, because it can
be defined by induction. We first define a U-valued equality relation, where O is the empty
type and 1 is the unit type with element x,

0=0=1, (m+1=0=0=n+1)=0, (m+1l=n+1)=(m=n).
Then we define refl : II(n : N).n = n by induction as
refl(0) = *, refl(n + 1) = refl(n),

and J : (A : II(m,n).m =n — U).(IIn.Ann (refi(n))) — Im,n,p. Amnp by

J A r 0 0 * r0,

J A r (m+1) 0 p = O-rec(A(m+1)0)p,

J A r 0 (n+1) p = O-rec(A0 (n+1))p,

J A r (m+1) (n+1) p J (Amn.A(m+1)(n + 1)) (An.r(n+ 1)) mnp.
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where O-rec : II(X : U).O — X is the recursion combinator of the empty type. The usual
computation rule, or judgemental equality, for J when it is given as primitive doesn’t hold
here, but the above J is enough to define transport (substitution) and hence symmetry,
transitivity and application (congruence), which are enough to carry out the above proof
formally (and we have checked this in Agda [6]). Hence the theorem and its proof can be
expressed in a type theory without a primitive equality type. All is needed to formulate and
prove Theorem 1 is a type theory with O, 1, N, I, X, U.

3 Propositional truncation and existential quantification

We recall the notion of propositional truncation from the HoTT book and use it to define the
quantifiers 3,V, in a slightly different way from that in the HoTT book, so that they satisfy
the Lawvere’s adjointness conditions that correspond to their intuitionistic introduction and
elimination rules. Another difference is that, instead of adding propositional truncations for
all types to our type theory, we define what a propositional truncation for a given type is.
For some types, their propositional truncation already exist, including the types needed in
our discussion of uniform continuity in Section 4.

3.1 Propositional truncation

We adopt the terminology of the HoTT book, which clashes with the terminology of the
Curry—Howard interpretation of (syntactical) propositions as types. For us, a proposition is
a subsingleton, or a type whose elements are all equal, in the sense of the identity type, here
written “=" again as in the HoTT book:

isProp X =1I(z,y: X).z =y.

Perhaps a better terminology, compatible with that of topos theory, would be truth value, in
order to avoid the clash. But we will stick to the terminology proposition, and occasionally
use truth value synonymously, for emphasis.

A propositional truncation of a type X, if it exists, is a proposition || X|| together with a
map |—| : X — || X|| such that for any proposition P and f : X — P we can find f : || X| — P.
Because P is a proposition, this map f is automatically unique up to pointwise equality, and
we have f|z| = f(x), and hence a propositional truncation is a reflection in the categorical
sense, giving a universal map of X into a proposition. This can also be understood as a
recursion principle, or elimination rule,

isPropP — (X — P) — | X|| — P,

for any types P and X. The induction principle, in this case, can be derived from the
recursion principle, but in practice it is seldom needed.

In HoTT, propositional truncations for all types are given as higher-inductive types,
with the judgemental equality f |z] = f(x). From the existence of the truncation of the
two-point type 2 with this judgemental equality, one can prove function extensionality (any
two pointwise equal functions are equal) [11]. The assumption that ||X| — X for every
type X gives a constructive taboo (and also contradicts univalence) [10].

However, for some types X, not only can a propositional truncation || X|| be constructed
in MLTT, but also there is a map || X|| — X:

1. If P= 0O or P =1, or more generally if P is any proposition, we can take ||P| = P, of

course. In particular, if X — O, we can take || X|| = X; but also we can take || X| = O,

even though we can’t say X = O without univalence.
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2. If we have an inhabitant of X then we can take || X|| = 1. The map || X|| — X simply
picks the given inhabitant.

3. More generally, if X is logically equivalent to a proposition P, then we can take || X|| = P,
and we make profitable use of this simple fact.

4. If X is any type and g : X — X is a constant map in the sense that any two of its
values are equal, we can take || X|| to be the type X(z : X).g(x) = x of fixed points of g,
together with the function X — || X|| that maps x to (g(x),p), where p is an inhabitant
of the type g(g(z)) = g(z) coming from the constancy witness [10]. In this case the first
projection gives a map || X|| — X. Given a map f: X — P into a proposition, we let
f |1 X|| = P be the first projection followed by f : X — P (and we don’t use the fact
that P is a proposition).

5. For any f : N — N, the type X(n : N).f(n) = 0, which may well be empty, has a
constant endomap that sends (n,p) to (n',p’), where we take the least n’ < n with
p': f(n') =0, using the decidability of equality of N and bounded search. Hence not only
I2(n : N).f(n) = 0] exists, but also ||X(n: N).f(n) =0| = X(n: N).f(n) =0.

3.2 Quantification
For a universe U, let Prop be the type of propositions in U:
Prop = (X : U).isProp X.

If we assume that all types in U come with designated propositional truncations, then we
have a reflection

r: U — Prop

that sends X : U to the pair (|| X||,p) with p : isProp || X|| coming from the assumption. In
the other direction, we have an embedding

s : Prop — U,
given by the projection. For X : U we have
s(r(X)) = [ X]].

(We also have that s is a section of r if propositional univalence holds.) For a fixed type
X : U, the type constructors ¥ and II can be regarded as having type

YII:(X—>U)—>U.
We define

3,V : (X — Prop) — Prop,
by, for any A : X — Prop,

I(A) =r(X(so A)), V(A =r(soA)),
which we also write more verbosely as

Bz : X).A(z)) = rE(z: X).s(A(2))),
VM(z: X).A(z)) = r[(z: X).s(A(x))).
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This is essentially the same as the definition in the HoTT book, except that we give different
types to 3,V. With the type given in the book, V gets confused with II, because, with
function extensionality, a product of propositions is a proposition, and so there is no need to
distinguish V from II in the book.

The point of choosing the above types is that now it is easy to justify that these quantifiers
do satisfy the intuitionistic rules for quantification. It is enough to show that they satisfy
Lawvere’s adjointness conditions. For P, Q : Prop, define

(P <Q)=(s(P) = s(Q))

This is a pre-order (and a partial order if propositional univalence holds). Now endow
the function type (X — Prop) with the pointwise order (using II to define it). Then the
quantifiers 3,V : (X — Prop) — Prop are the left and right adjoints to the exponential
transpose Prop — (X — Prop) of the projection

Prop xX — Prop,

using the universal property of truncation. The exponential transpose maps P to Az.P.
Hence the adjointness condition for the existential quantifier amounts to

I(A) <P <<= A<)\.P
Expanding the definitions, this amounts to
12(x : X).s(A(z))|| = s(P) <= I(z:X).s(A(z)) — s(P),
= (B(z:X).s(Ax))) = s(P).
So we need to check that
I2(x : X).s(A(z))|| = s(P) <= (E(z:X).s(A(x))) = s(P)

holds, but this is the case by the defining property of propositional truncation. For the sake
of completeness, we also check the adjointness condition

P<VY(4) < JlxP<A

For this we need function extensionality (which follows from the assumption of truncations
supporting the judgemental equality discussed above). By definition, this amounts to

s(P) = |H(z: X).s(A(z))|| <= M(z:X).s(P)— s(A(x)).
But

I(z: X).s(P) = s(A(z)) <= s(P)—(x: X).s(A(z)),
and so the above is equivalent to

s(P) = |H(z: X).s(A(z))|| <= s(P)—I(z:X).s(A(x)).

But this again holds by the defining property of truncation, because, by function extensionality,
a product of propositions is a proposition, and each s(A(z)) is a proposition. This explains
why V is identified with II in the HoTT book.

Having established that the quantifiers 3,V : (X — Prop) — Prop defined from ¥ and
IT with truncation (via the reflection r : U — Prop) do satisfy the adjointness conditions
corresponding to the introduction and elimination rules of intuitionistic logic, in practice we
prefer to use the notation of the HoTT book, with 3(z : X).A(z) defined as [|X(z : X).A(z)||
for propositionally-valued A : X — U, or even avoid 3 altogether, and just use truncation
explicitly, as in the next section.



M. Hotzel Escardé and C. Xu 161

4  Uniform continuity of functions 2% — N
We now compare the untruncated formulation of the uniform continuity principle
I(f: 2N = N). S(n: N). O(a, : 2Y). a =, B — fa = fp
with its truncated version
I(f: 28 = N). |2(n: N). I(a, B: 2Y). a =, 8 — fa = f3|.

A formal counter-part in Agda of this section is available at [6].

We work in a type theory with O, 1,2 N,II,3,Id. This time, identity types for types
other than N are needed, but universes are not. But we need more:

1. In principle, we would have to assume the presence of truncations, for example as defined in
the HoT'T book and explained in the previous section, from which function extensionality
follows [11].

2. However, in turns out that function extensionality alone suffices, because it implies
the existence of the propositional truncation mentioned above, and hence we can omit
propositional truncations from our type theory. (But it doesn’t seem to be possible to
remove the assumption of function extensionality in the theorem proved here.)

Hence we don’t assume propositional truncations in our type theory.

» Theorem 3. Assuming function extensionality, for every f : 2N — N the type
Y(n: N). (a, B: 2Y). a =, B — fa = ff
has a propositional truncation, and the proposition
I(f: 2 = N). |2(n: N). I(a, 8: 2Y). a =, B — fa = fB]
is logically equivalent to the type
I(f: 2N = N). Z(n: N). (e, B: 2Y). a =, B = fa = fB.
» Lemma 4. Function extensionality implies that, for any f : 2N — N, the type family
A(n) =T(a, B: 2Y). =, B = fa = fB

satisfies the following conditions:
1. A(n) is a proposition for every n: N, and
2. A(n) implies that A(m) is decidable for every m < n,

Proof. By Hedberg’s Theorem [7], equality of natural numbers is a proposition. Hence
so is A(n), because, by function extensionality, a product of a family of propositions is a
proposition. To conclude that for all n, if A(n) holds then A(m) is decidable for all m < n,
it is enough to show that for all n, (1) =A(n + 1) implies =A(n), and (2) if A(n + 1) holds
then A(n) is decidable. (1) This follows from A(n) — A(n + 1), which says that any number
bigger than a modulus of uniform continuity is also a modulus, which is immediate. (2): For
every n, the type

B(n) = I(s: 2"). f(s0°) = f(s1°),

is decidable, because N has decidable equality and finite products of decidable types are
also decidable. Now let n : N and assume A(n 4 1). To show that A(n) is decidable, it is
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enough to show that A(n) is logically equivalent to B(n), because then B(n) — A(n) and
—B(n) — —A(n) and hence we can decide A(n) by reduction to deciding B(n).

The implication A(n) — B(n) holds without considering the assumption A(n + 1). To
see this, assume A(n) and let s : 2". Taking o = s0¥ and 8 = s1%, we conclude from A(n)
that f(s0¥) = f(s1¢), which is the conclusion of B(n).

Now assume A(n + 1) and B(n). To establish A(n), let o, 3 : 2 with a =,, 3. We need
to conclude that f(a) = f(8). By the decidability of equality of 2, either a(n) = (n) or
not. If a(n) = B(n), then a =41 B, and hence f(a) = f(B) by the assumption A(n + 1).
If a(n) # B(n) , we can assume w.l.o.g. that a(n) = 0 and S(n) = 1. Now take the finite
sequence s = «a(0),a(1),...,a(n — 1)(= 5(0),8(1),...,8(n —1)). Then a =, 11 s0 and
s1% =,4+1 B, which together with A(n + 1) imply f(a) = f(s0¢) and f(s1¥) = f(8). But
f(s0¥) = f(s1¥) by B(n), and hence f(a) = f(8) by transitivity. <

» Lemma 5. If a type X is logically equivalent to a proposition Q, then
1. X has the propositional truncation | X|| = @, and
2. | X|| — X.

Proof. We have X — || X|| because this is the assumption X — Q. If X — P for some
proposition P, then also || X|| — P, because this means @ — P, which follows from the
assumption @ — X and transitivity of implication. This shows that our definition of || X || has
the required property for truncations. And || X|| — X is the assumption that Q@ — X. <«

» Lemma 6. Function extensionality implies that for any family A of types indexed by
natural numbers such that

1. A(n) is a proposition for every n: N, and

2. A(n) implies that A(m) is decidable for every m < n,

the type X(n : N).A(n) is logically equivalent to the proposition

P =%(k:N).B(k)
where
B(k) = A(k) x II(i : N).A(z) — k <.

Proof. By function extensionality, the product of a family of propositions is a proposition,
and hence the type II(n : N).A(n) — k < n is a proposition, because the type k < n is
a proposition. Because the product of two propositions is a proposition, the type B(k)
is a proposition. But now if B(k) and B(k’) then, by construction, k = k’. Hence any
two inhabitants of P are equal, using the fact that B(k) is a proposition, which means
that P is indeed a proposition. By projection, P — X(n : N).A(n). Conversely, if we
have (n,a) : ¥(n : N).A(n), then we can find, by the decidability of A(m) for m < n, the
minimal k such that there is b : A(k), by search bounded by n, and this gives an element
(k,b,p) : P where p : II(¢ : N).A(i) — k < ¢ is the minimality witness. This shows that
Y(n:N).A(n) — P and concludes the proof. <

» Remark. Function extensionality in the above lemma can be avoided using the fact that the
type of fixed points of a constant endomap is a proposition [10], where a map is constant if
any two of its values are equal. Given (n,a): ¥(n:N).A(n), we know that A(m) is decidable
for all m < n and thus can find the minimal m such that A(m), by search bounded by n,
which gives an endomap of 3(n:N).A(n). This map is constant, because any two minimal
witnesses are equal, and because A(n) is a proposition. Then we instead take P to be the
type of fixed points of this constant map.
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By Lemmas 4, 5, and 6, for any f : 2N — N, the truncation of the type
UC(f) =2(n: N). (o, B: 2M). a =, B = fa = fB

exists and implies UC(f), which establishes Theorem 3. <

Unfolding the above construction of the truncation, the truncated version of uniform
continuity says that there is, using ¥ to express existence, a minimal modulus of uniform
continuity, making this use of ¥ into a proposition, and, by function extensionality, the
statement of uniform continuity into a proposition too. Then the theorem says that this
proposition is logically equivalent to the existence, using ¥ again, of some modulus of uniform
continuity. This statement is not a proposition, because any number bigger than a modulus
of uniform continuity is itself a modulus of uniform continuity.

The situation here is analogous to that of quasi-inverses and equivalences in the sense of
the HoTT book. The type expressing that a function has a quasi-inverse is not a proposition
in general, but it is equivalent to the type expressing that the function is an equivalence,
which is always a proposition. Hence being an equivalence is the propositional truncation of
having a quasi-inverse.
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—— Abstract

This paper tries to remove what seems to be the remaining stumbling blocks in the way to a
full understanding of the Curry-Howard isomorphism for sequent calculus, namely the questions:
What do variables in proof terms stand for? What is co-control and a co-continuation? How to
define the dual of Parigot’s mu-operator so that it is a co-control operator? Answering these ques-
tions leads to the interpretation that sequent calculus is a formal vector notation with first-class
co-control. But this is just the "internal" interpretation, which has to be developed simultaneously
with, and is justified by, an equivalent, "external" interpretation, offered by natural deduction:
the sequent calculus corresponds to a bi-directional, agnostic (w.r.t. the call strategy), compu-
tational lambda-calculus. Next, the formal duality between control and co-control is studied, in
the context of classical logic. The duality cannot be observed in the sequent calculus, but rather
in a system unifying sequent calculus and natural deduction.
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1 Introduction

Despite the anathema “From an algorithmic viewpoint, the sequent calculus has no Curry-
Howard isomorphism, because of the multitude of ways of writing the same proof” [9], more
than two decades of research have been dedicated to extend the Curry-Howard isomorphism
to the sequent calculus. In its purest form, this is the question: if systems of combinators
correspond to Hilbert systems, and the ordinary A-calculus corresponds to natural deduction,
what variant of the A-calculus does correspond to the sequent calculus? Many computational
aspects have been shown to be relevant: pattern matching [2, 19], explicit substitutions[1, 18],
abstract machines [4]. But we miss a clear-cut answer to the question in its pure form. The
textbook [18] says that the sequent calculus corresponds to explicit substitutions, but it
immediately admits “this is just the beginning of the story”, as we will see yet again.

We might dismiss the question as closed: maybe the sequent calculus is too complex
to admit such a clear-cut computational explanation. But we will not give up, because
of the following reason: there are very basic questions, at the bottom of any attempt
to understand the sequent calculus computationally, which remain barely uttered and
scandalously unanswered; these question we may now give an answer; and this answer
opens the way to the desired clear-cut interpretation of the sequent calculus. The questions
are:

(i) What does a variable stand for in a sequent calculus proof-term?
(ii) What is the related substitution operation?
(iii) What is co-control?

What do we mean? Something very simple. Suppose the proof terms Lo and L3 represent
derivations of ' H A and T,y : B  C respectively; and suppose we now infer I’z : A D B+ C
? José Espirito Santc?; .
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by left-introduction, building a derivation represented by some term L(x, Lo, y.Ls). What
does this z stand for? What can it be substituted for? Certainly not for a proof-term, as
L(L1, La,y.L3) corresponds to no derivation.

Of course we can survive by avoiding (not answering) the questions. We may say
L(x, La,y.L3) is a particular form (xzLs/y)Ls of “explicit substitution”, the general form
of which corresponds to cut, we can write cut-elimination rules with this syntax, many
of them consisting of permutations of substitutions, all this even without breaking strong
normalization [18]. Left introduction is reified with a cut that will to be eliminated, interpreted
as a substitution that will not be executed. After all this, we still don’t know what that x
stands for; and we are busy doing explicitly “substitution”, but we do not really know what
substitution we mean.

Variables in proof-terms correspond to formulas in the Lh.s. of sequents; and the explicit
handling of formulas in the Lh.s. of sequents is typical of the sequent calculus. Now, we have
a model of what the handling of formulas in the r.h.s. of sequents means computationally:
it is the Ap-calculus, which proves that the r.h.s. handling is related to control operation.
So, by mere formal duality, “co-control” operation has to be involved in the computational
interpretation of the sequent calculus. But what is co-control? This is question III.

Toward the system. Of course, our starting point for a co-control operator is the fi-operator
of the Apji-calculus. But in Auji: variables are (and stand for) proof-terms — which allows
one to represent left-introductions L(z, Lo, y.L3) as certain cuts that cannot be eliminated;
and the operational meaning of fi is given by a reduction rule that triggers an ordinary
term-substitution.

We propose to integrate the fi-operator in a system keeping the cut=redex paradigm,
where the treatment of variables is very much like in the A-calculus [10]: variables are not
terms, but rather show in a construction that Herbelin writes xl and sees as corresponding to
the structural inference of contraction. We prefer to interpret this construction logically as
an inference that makes a formula passive on the lL.h.s. of the sequent, and computationally
as the dual to the “naming” construction aM of the Au-calculus. Additionally, in our system
the operational meaning of fi is given by a rule that captures some sort of context, triggering
some sort of “structural substitution”, as in Ap. Variables will stand for that sort of context
(in the same way as names in Au stand for evaluation contexts or continuations), and the
new “structural substitution” is the related kind of substitution. But what sort of context
and structural substitution? The co-control question sends us back to the questions I and II.

The answers come from recent work about the isomorphism between Auji and natural
deduction [17], where a context-like concept named co-context was introduced in the sequent
calculus side. Here we adapt the concept to our intuitionistic setting and rename it co-
continuation. This is the last ingredient of the sequent calculus we propose, named Aji. The
system is an extension of A with first-class co-control.

Computational interpretation. Having obtained the system, what is its computational
interpretation? First-class co-control is a part of the interpretation, but not the whole story —
it is only the story that goes beyond X. Fortunately, all that is needed for the rest of the
story is already in place. Surprisingly, we can harvest not one but actually two clear-cut
interpretations. Amazingly, the alternative can be seen through the little construction xl.
The first interpretation, the external one, is through natural deduction. At the basis of
it is the idea, going back to [10], that [ represents an evaluation context or continuation (a
concept derived from the A-calculus or natural deduction syntax), and that zl represents a
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fill instruction: fill z in the hole of the continuation represented by [. This interpretation, if
developed along the lines of [7, 17], is the core of the isomorphism © between the system Aji
and the natural deduction system (named Alet) that is designed hand-in-hand with it.

Notice the isomorphism holds at the levels of syntax and rewriting. For this reason, ©
is the ultimate term assignment, that completely side-steps the anathema cited above, and
the ultimate realization of the idea, going back to Prawitz [15], of sequent calculus as a
meta-system for natural deduction. But, more important, © is a computational interpretation,
because the target system Alet — we will see — has a clear computational meaning itself: it is
a computational A-calculus [12, 16] agnostic w.r.t. the CBN vs CBV alternative.

The second interpretation, the internal one, is through the “structural substitution”
operation of A\i: zl is a fill instruction, but [ is the stuff to be filled in the hole of the
co-continuation that will land at . Here [ is taken literally, as primitive syntax, not as
a continuation. So, we need a good word to describe | computationally. It could be “list”
[10] or “spine” [3], but the best is “vector”, to suggest the (informal) “vector notation” of
the A-calculus [11]. This choice is part of a most needed re-interpretation of a 15-years-old
technical result: there is a fragment of A, here renamed X), that is isomorphic to the A-calculus
[6, 3, 5], the isomorphism being essentially the map P from natural deduction to sequent
calculus introduced by Prawitz [15]. But someone has to say loudly that Y is a formal vector
notation. This is the re-interpretation.

Summarizing, we propose two computational interpretations of Afi: formal vector notation
with first-class co-control, developed in Section 3; and agnostic computational A-calculus,
developed in Section 4. Section 5 looks closely at the duality between control and co-control
and extracts unforeseen consequences for logical duality and structural proof theory. Please
bear in mind that the words of this introduction just give an approximation of what we want
to say. Let the technical development that follows speak for itself.

2 Background

Outside Section 5, we just consider intuitionistic implicational logic. Formulas(=types) are
given by: A, B,C ::= X | A D B. In typing systems, contexts I" are sets of declarations z : A
with at most one declaration per variable. In term languages, meta-substitution is denoted
with square brackets, as in [N/z]|M.

2.1 Control operation

Parigot’s Au-calculus [13] is our model for the management of formulas and (co-)variables in
the r.h.s. of sequents, when the possibility of a distingushed/active/selected formula exists —
a model we wish to “dualize” to the L.h.s. of sequents.

Still we diverge from the original. Let Q := [b]((pa.M)Ny--- Ny,). In the original
formulation of Ay, the reduction of @) proceeds by m applications of “structural reduction”,
by which p-abstraction consumes the arguments, one after the other, capturing contexts [-]V;
and triggering a “structural substitution”. After m such reduction steps, the resulting term
[blpa.M’ is reduced by a renaming rule, producing [b/a]M’. The same effect is obtained with a
single, long-step, reduction rule for the p-operator. Consider the context C = [b]([[] N1 - - - Np),
hence @ = C[pa.M]. Now apply the reduction rule Clpa.M] — [C/a]M, where [C/a]M is
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(Terms) t,u == z|Az.t|pa.c B) Aztluze) —  (u|lpz.(tle))
(Co-terms) e == aluzel|lpzc () (tlaxz.c) — [t/z]c
(Commands) c = (tle) (1) (na.cley — [e/alc
Figure 1 The \pji-calculus.
context substitution, in whose definition the critical case reads:!
[C/a](aP) = C[P'] where P’ = [C/a]P . (1)

In this formulation, the single reduction rule still says that the p-operator captures C, while
the definition of context substitution says that aP is a fill instruction: fill the hole of the C
that lands here with P.

This style with a single reduction rule is — see [17] — the exact reflection in natural
deduction of the reduction rule for the p-operator in the Auji-calculus. We are calling the
latter reduction rule pu — see Fig. 1 — and so it is natural to call i the corresponding natural
deduction rule 2. Beware that, sometimes, in Ay, ¢ names solely the “structural reduction”
— which we may see as the control operation proper. In the style with a single rule, u
comprehends the whole control operation, and we will seek a single rule ji to comprehend the
whole co-control operation — and find something different from the rule ji of A\uji, despite the
compelling symmetry of the latter.

2.2 Vector notation

The vector notation for the A-calculus is the following definition of the A-terms [11]:
M,N,P,Q := \z.M |zN |(Ae.M)NN

According to this definition, A-terms have three forms, which we call first, second and third
forms. The advantage of this notation is that the head variable/redex is visible, and the
S-normal forms are obtained by omitting the third form of terms in the above grammar.

This notation is informal, since many details are left unspecified. For instance: Are
vectors a separate syntactic class, or do the second and third forms correspond to families of
rules? How is substitution defined? Notice that, in the second form, it does not make sense
to replace x by another term.

Let us introduce the relaxed vector notation:

M,N,P,Q ::= \&.M|zN|MN

Some redundancy is now allowed, as the same ordinary A-term can be represented in many
ways. By analyzing the third form, we find four cases. One corresponds to the third form of
the original vector notation, the other three may be simplified as follows:

(¢) B Mﬂ = M
(m) QNN = =(GNN)
(m)  (PQINN = P(QNN)

Here [] represents the empty vector. The simplifications were given names that will link them
with the reduction rules of sequent calculus.

L Structural substitution is the particular case [a([-]N)/a]_ of context substitution.
2 In [17] both rules are called 0.
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'+t:A T|AFE: B , A|A

A rarra 9T TF%:B Pass T AT
'u:A T|BHE:C Nx:AFt:B lz:BFv:B
Lo FasBrusk.c B2 TFxet:A58 A Tarjwo: B

Figure 2 Typing rules of the Aji-calculus.

The third form of the original vector notation is a S-redex and hence it means something
like “call the head function with the first argument of the vector”. The simplifications that
have arisen by relaxing the vector notation can be read as rules for vector bookkeeping:
garbage collect an empty vector ( ), or append chained vector (7;). Much more difficult is to
recognize in the second form zN an instruction for action on the vector N: this is visible in
a more general system with co-control, like the sequent calculus we are about to introduce,
where the base case for vectors is not just [].

3 Sequent calculus

3.1 The Afi-calculus

The proof-expressions of \ji ® are given by the following grammar:

(Terms) t,u,v == Ax.t|x'k|tk
(Generalized vectors) k= [|prov|uck

The typing rules are in Fig. 2. They handle two kinds of sequents: T'+¢: A and T|A+ k : B.
The distinguished formula A in the latter is not exactly a “stoup” or a focused formula, because
the operator fix.t may select an arbitrary formula from the context I'. The construction
2k comes from the A-calculus, but here it forms a pair with fiz.t: logically, these are a
activation/passification pair, in the style of the Au-calculus, but acting on the Lh.s. of
sequents.

The notation fiz.t comes from Aufi [4]; but here, contrary to what happens in Auji,
the reduction rule that defines the behavior of i does not trigger a term-substitution, but
rather a context-substitution, in the style of the above presentation of the u-operator. The
construction =k is easily recognized as the accompanying fill-instruction, and what remains
is to pin down the right notion of context that i will capture. The notion is this:

H o= [ [Hw s L]

These expressions are called co-continuations. Later we will argue they are logically dual to
continuations.

The reduction rules of \jii are in Fig. 3. Let 7 := m; U my. The co-control rule ji triggers
the context substitution [H/z]_, in whose definition the only non-routine case is:

[H/z](xk) = H[K'] with k' = [H /z]k

This equation gives the meaning of z"k: fill k£ in the hole of the A that will substitute x. The
m;-rules employ concatenation of generalized vectors kQE’, defined by the obvious equations
QK =k’ and (u :: k)Qk = u :: (kQK'), together with (fz.t)Qk' = fix.tk'.

3 We would have adopted the name Aji (to suggest A + i), had it not been already in use [4].
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(8) (Ax.t)(u :: k)
(i) Hlpw.]

Wk () Moot
[H/x]t (1) (k) — 2" (kQk)
(72) (tk)k — t(kQk’)

H
H
Figure 3 Reduction rules of \ji.

Rule [ eliminates all occurrences of the ji-operator. The remaining rules eliminate all
occurrences of cuts tk. So the Sfier-normal forms correspond to a well-known representation
of f-normal A-terms. There is a critical pair generated by rules i and w. This is the
call-by-name vs call-by-value dilemma [4].

Two particular cases of the reduction rule i are:

(n)  y(azt) = [y[]/ ]t (@) ulpzt) — [u([])/x]t

We let 7 := i\(p U o). The particular case p may be called the renaming rule (as sometime
does the “dual” rule in the Ap-calculus). Indeed, the particular case [y*[-]/x]t of context
substitution is almost indistinguishable from a substitution operation that renames variables,
since the critical case of its definition reads*

[y°[)/=](a"k) = y'k with & = [y°[-]/2]k .

If we wanted a set of small step fi-rules, in the style of the original Au-calculus, we would
have taken p and o, together with w :: (gx.t) — fx.[2"(uw :: [-])/z]t. The particular case
[ (u = [1])/z]t of context substitution gives a form of “structural substitution” dual to that
found in Ap.

3.2 The proof theory of vector notation

We consider notorious fragments of A\ji. First we do a kind of reconstruction of X\. Next we
identify two subsystems of our version of A that say something about vector notation.
The pr-normal-forms of \ji are given by:

tyu,v n= Axd |zl |tk ko= 1| pxt o= ul

These are the \-expressions, if we recognize t(jiz.v) as the “mid-cut”, and if we ignore
the other forms of explicit substitution or concatenation that are primitive in the original
formulation of A. In terms of logical derivations, pr-normalization ends in the focused
fragment LJT [10] of the sequent calculus (the fragment corresponding to A). In this sense
pr-reduction is a focalization process. See the focalization theorem below, saying that
pr-normal forms exist and are unique.

The fi-rule is now restricted to the o-rule, but the critical pair with 7 remains. This
is solved by a syntactical trick, that chooses the call-by-name option: erase the case fiz.t
from k’s (so that there is no more a distinction between k’s and I’s, there is a single class of
vectors ranger over by ), but break the cut tk into the two cases ¢l (“head-cut”) and t(fz.v).
A m-redex (2")lI’ or (¢)l’ is no longer a o-redex, and a mid-cut (y'l)az.v or (ul)fz.v can
never be reduced by 7 (as it could in Afi). This concludes the reconstruction of \.

This version of A is equipped with /3, o, € and 7. We now consider the R-normal forms,
with R=0cor R=0cUeUm.

1 We say “almost” because, don’t forget, variables are not expressions per se.
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In the first case, terms have the forms Ax.t, z°l or tl, equipped with a rule 8 that
corresponds to X’s -rule followed by o-normalization. The rules € and 7 remain. Let us
call this system (X

In the second case, terms have the forms \x.t, " or (Az.t)(u :: 1), equipped solely with
a rule 8 _t)hat corresponds to A’s f-rule followed by oer-normalization. Let us call this
system A .

Around 15 year ago [6, 3, 5], the system Y was identified and proved isomorphic to the
ordinary A-calculus, with the isomorphism comprising a bijection between the sets of terms
and an isomorphism of S-reduction relations. In the author’s opinion, this little technical
fact has a tremendous importance for the Curry-Howard isomorphism that has never been
recognized. First, A has a clear and revealing computational interpretation: it is a formal
vector notation. It is a concrete definition of the notation (it says what vectors are, how
substitution is defined, etc.) in perfect correspondence with a logical calculus. Second, we
can reconstruct from this interpretation the interpretation of full sequent calculus \ii by

walking back the path that led from A\ to X} Clearly, T is a formalization of the relaxed

AN
vector notation we introduced in Section 2; and, since ) is the fragment of normal forms of
M w.r.t. the co-control rule fi, Afi can be interpreted as a formal, relazed vector notation
with first-class co-control.

4  Natural deduction

The interpretation developed before is an internal and literal one: vectors are vectors; and
co-control is understood in a formal way, as dual to control. We now develop a natural
deduction system Alet that is isomorphic to Afi. The isomorphism gives a new, external
interpretation, which recovers the view that (some) vectors are “evaluation contexts”[10]; it
justifies the design of Aji, namely its notion of # and reduction rule ji; finally, it allows the
transfer of properties among the two systems.

4.1 The Mlet-calculus
The proof-expressions of the calculus are given by:

(Terms) M,N,P := Xz.M|app(H)|letz:= HinP
(Heads) H z|hd(M)|HN

Notice that variables x and applications HN are not terms. A head hd(M) is called a head
term.

The typing rules are in Fig. 4. They handle two kinds of sequents: I' - M : A and
I'> H : A. Four rules are standard, with the appropriate kind of sequent determined by the
kind of expression being typed. The remaining two rules switch the kind of sequent, and
are called coercions. However, despite the superficial impression, the two coercions are quite
different, one being called weak and the other strong. Normalization will tell them apart
radically.

A normal derivation is one without occurrences of Let and SCoercion.

» Theorem 1 (Subformula property). Every formula (resp. every formula, including A)
occurring in a normal derivation of T'H M : A (resp. T> H : A) is subformula of A or of
some formula in T (resp. is a subformula of some formula in T').
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I I'>H:A F,x:AFP:BL I'>H:A we .
Te Az A P THlete =HinP:B % Trapp(H):4 ~ coereon
Tz:A-M:B Int ''>H:ADB FFN:AEZ, T'EFM:A SCoercion
TFxeM:AD>B ™ I'>HN:B " T hd(M): A

Figure 4 Typing rules of Mlet.

(beta) hd(Az.M)N — hd(letz := hd(N)in M)
(let) letz:=HinP — [H/x]P
(triv) app(hd(M)) — M
(head;) hd(app(H)) — H
(heads) Klhd(letz := HinP)] — letx:= HinK[hd(P)]

Figure 5 Reduction rules of Alet.

So, the weak coercion loses information regarding the subformula property, while the strong
coercion potentially violates that property.

The reduction rules of Alet are in Fig. 5. Rule let triggers ordinary substitution [H/x]P,
while rule head, employs certain contexts that we call continuations:

K = app([])|leta == [ in P | K[[]N]

We single out two particular cases of let: ren, when H = z; and sub, when H = hd(M). We
put t := let\(ren Usub). Let head := head; U head;. Notice that rules beta and head; are
relations on heads. The normal forms w.r.t. all reduction rules are given by:

M == Xz.M|app(H) H := z|HN

That is, these normal forms are characterized by the absence of occurrences of lets and hd().
Lets are eliminated by let whereas all the other rules concur to eliminate the coercion hd(). So,
beta, triv, let, head-reduction is normalization, that is, the reduction to a form corresponding
to normal derivations.

4.2 Isomorphism

See Fig. 6 for the map © : A\ji — Mlet. There is actually a function © : \i—Terms — Aet—
Terms, together with an auxiliary function © : Met— Heads x \ji—Vectors — Alet—Terms.
Let ©(t) = M, O(u;) = N; and ©(v) = P. The idea is to map, say, t(uy :: ug :: iz.v) to
let x := hd(M)N1 Nz in P, and x"(u; :: ug :: []) to app(xN1Na): left-introductions are replaced
by applications, inverting the associativity of non-abstractions.

» Theorem 2 (Isomorphism). Map © is a sound bijection between the set of Mi-terms and
the set of Aet-terms (whose inverse ¥ is shown in Fig. 7). Moreover, let R be rule 8 (resp.
fi, €, ) of Mi, and let R’ be rule beta (resp. let, triv, head) of Alet. Then, t —r t' in \ji iff
Ot —R ot in Alet.

The real action of the isomorphism happens in the translation of non-abstractions. Every
non-abstraction Alet-term has the form ©(H, k), and YO(H,k) = V(H, k). Every non-
abstraction Aji-term has the form U(H, k), and OV (H, k) = ©(H, k). So non-abstractions
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O(\z.t) = lx.6t O(H,[]) = app(H)
O(z'k) = O(x,k) O(H,jx.t) = letz:=HinOt
O(tk) = O(hd(Ot),k) O(H,u:k) = O(HOu,k)

Figure 6 Map © : \ji —> Alet.

(A M) = I ¥M U(zr, k) = z'k
U(app(H)) = V(H,[) U(hd(M), k) = (TM)k
U(letx:= HinP) = Y(H,jz.VP) U(HN,k) = Y(H,(UN):k)

Figure 7 Map W : Met — \ji

have the form ©(H, k) (natural deduction) or W(H, k) (sequent calculus), and the isomorphism
action between them is just to interchange © and V¥ in these expressions.

U can be extended to continuations, establishing a bijection with vectors: ¥(app([-])) = [],
U(letx :=[]in P) = fiz. ¥ P and ¥(K[[]N]) = ¥(N) :: U(K). As we knew, continuations are
typed “on the left”: the sequent calculus rules for typing vectors are derived typing rules in
natural deduction for typing continuations.

Similarly, © can be extended to co-continuations, establishing a bijection with heads:
O(z"[[]) = =, O([]) = hd(Ot) and O(H[u :: []]) = O(H)Ou. This tells us how to type
co-continuations [17]: the natural deduction rules for typing heads are derived typing rules
in sequent calculus for typing co-continuations, and so co-continuations are typed “on the
right”.

Let us call © the inverse of the bijection between continuations and vectors. Then it is easy
to prove that ©(H, k) = ©(k)[H]. This tells us that non-abstractions in Aji are fill instructions,
and that © executes these instructions. For instance, O(tk) = ©(hd(0t), k) = ©(k)[hd(O1)];
so tk means “fill hd(M) in the hole of continuation K”, with M = ©t and K = O(k); and
©(tk) is the result of such filling. Similarly, 2"k means “fill z in the hole of K”. So © realizes
again the idea, going back to Prawitz [15], that sequent calculus derivations are instructions
for building natural deduction proofs.

4.3 Forgetfulness

The forgetful map | - | translates Alet-expressions to A-terms by erasing occurrences of the
coercion hd(-), forgetting the distinction between terms and heads, de-sugaring let-expressions
(i.e. translating them as S-redexes), and mapping |app(H)| = I|H|, where I = Azx.z. The
following results about Aji are proved through the analysis of this simple translation of the
isomorphic calculus Alet.

» Theorem 3 (Strong normalization). Every typable term of \i (resp. of Met) is Bejim-SN
(resp. betatrivlet head-SN).

» Theorem 4 (Focalization). Every term of Ajii has a unique pT-normal form, which is a
A-term (representing a LJT-proof).

4.4 Computational interpretation

We argue that Alet is a bidirectional, agnostic, computational \-calculus. The word “bi-
directional” comes from [14], where the organization of a typing system for A-terms with two
kinds of sequents (for synthesis, like I'F M : A, and for checking, like I' > H : A) is already
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found. The word “agnostic” comes from [19] and means coexistence or superimposition of
call-by-name (CBN) and call-by-value (CBV).

Let us go back to Fig. 5. Rule 3 generates a let-expression, which can be executed by the
separate rule let. Let-expressions enjoy “associativity”: the particular case of heads where
K =lety :=[]inQ reads lety := hd(letx := HinP)inQ — letx := Hinlety := hd(P)in Q.
In addition, there is a pair of reduction rules to cancel a sequence of two coercions. So
we might view Mlet as a sort of computational A-calculus [12, 16] where rule let does not
require the computation of a value prior to substitution triggering, and where a pair of
trivial reduction rules (triv and head;) eliminates odd accumulations of coercions caused by
a clumsy syntax.

However, this is not the right view. head; works together with heads to reduce every
non-abstraction term to one of the forms K[z] or K[hd(Az.M)]. This is a hint of what we see
next: all reduction rules of Alet have quite clear roles in CBV and CBN computation, and
through these roles we will understand how different rules triv and head; are.

Let us make a technical point. Rule head; is a relation on heads. As with all other
reduction rules, head; generates by compatible closure a relation —head, on heads and another
on terms. The relation —>head, on terms would have been the same, had we taken the rule
head; as the relation on terms K[hd(app(H))] — K[H]. A similar remark applies to beta. In
the discussion of CBN and CBYV that follows, we take head; and beta in their alternative
formulation, so that it makes sense to speak about head;- or beta-reduction at root position
of a term.

CBN and CBYV are defined through priorities among reduction rules [4]:

CBYV strategy: reduction at root position of a closed, non-abstraction term with priority

given to head.

CBN strategy: reduction at root position of a closed, let-free, non-abstraction term with

priority given to triv.

We will give an alternative characterization of these strategies. For CBN we need the
rule K[hd(Az.M)N] — K[hd([hd(N)/z]M)], which we call CBN — beta, and is obtained by
beta followed by let.

» Theorem 5 (Agnosticism). The following is an equivalent description of the CBN and
CBYV strategies. In this description, “reduction” means root-position reduction of a closed,
non-abstraction term. We assume additionally that the initial term is let-free.
CBV. Do head-reduction as long as possible, until the term becomes either a beta, let, or
triv redex. In the two first cases, reduce and restart; in the last case, reduce to return the
computed abstraction.
CBN. Do head-reduction as long as possible, until the term becomes either a beta or triv
redex. In the first case, reduce (with CBN — beta) and restart; in the last case, reduce to
return the computed abstraction.

This description is not in terms of priorities, but rather reveals the shared organization
of the computation and the roles of the different reduction rules, which are the same in both
strategies — see Fig. 8. The shared organization, in turn, shows how “superimposed” CBV
and CBN are in the system, in other words, how agnostic the system is.

4.5 Epilogue

An easy consequence of the isomorphism O is that the space of calculi in the sequent calculus
format has a mirror image in natural deduction. See Fig. 9 for a roadmap. The A-calculus is
displayed in the “imperfect world” — the terminology is inspired in Remark 2.1. of [4].
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CBV CBN
iteration pre-processing head; + heads head;

of the computation cycle | real computation beta + let beta; let
return triv triv

Figure 8 Agnosticism: the shared organization of CBN and CBYV strategies.

>

A ; : > Alet
7o _ /=) 1.

A — — A

o s
= G : A
A — - &

wel lhead,triv
- C) :
A \ / &

Imperfect

World ’ Natural Deduction
or

Sequent Calculus ‘

Figure 9 The sequent calculus/natural deduction mirror.

The two computational interpretations of sequent calculus are collected in Fig. 10. The
external interpretation works like this: in Fig. 10 the shown interpretation is that of Alet;
A is a language of instructions for \Mlet (recall Section 4.2); the behavior of t € \ji is the
isomorphic behavior of Ot € Alet written in the language of instructions.

Why is co-control almost invisible in natural deduction? Why does it boil down to the
low-profile rule let, which is just a substitution triggering rule? The explanation is in the
good old associativity of “applicative terms” [10]. In natural deduction, the control operator
shows up in the hidden part of an applicative terms, like (ua.M)Ny - -+ N,,,. Since we want
to get to this M, we collect the outer stuff in the context-like structure K = [-]N7 - - - N,,, and
trigger a context-substitution [[C/a]M. But, in natural deduction, the co-control operator
is disguised in let-expressions letx := HNy -+ Ny, in P = ©(HN; - -+ N,,, ix.P), and so is
already at the surface. So we may proceed by ordinary substitution [HNj - - - N, /x| P.

5  Duality

Let us check that co-control, as formulated in Af, is dual to control. We will expand M to a
self-dual system where control and co-control are each other’s dual. This is achieved with
three steps.

First step: to unify A\ji and Met. Some hints are at the end of Section 4.2, the idea comes
from [7]. Every non-abstraction term of Afi has the form W(H, k). So we unify 2"k and tk as
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sequent calculus ‘ MNi ‘ internal interpretation external interpretation
. A-term in formal vector notation bi-directional, agnostic,
with first-class co-control computational A-term
right intro. Ax.t A-abstraction A-abstraction
contraction ok 2nd f(.)rm of vector 'notat.ion Kla]
fill k£ in the co-continuation x
cut tk 3rd form of vector notation K[hd(M)]
k generalized vector continuation I
axiom I empty vector app([-])
left selection fax.t co-control operator letz :=[]in P
left intro. u ik vector constructor K[[-]N]
cut elim. +
+ focalization red. rules
key-step 8 function call function call

left-sel. elim. i co-control operation subst. triggering (let)
focalization T co-control operation proper subst. triggering (t)
focalization p subst. triggering (renaming) subst. triggering (ren)
right-perm. o subst. triggering subst. triggering (sub)
right-perm. € erasure of empty vector return (triv)

left-perm. T append of iterated vectors re-associate (head)

Figure 10 Curry-Howard for sequent calculus.

W(H, k) and allow in M\ a new syntactic class H ::= x|hd(t). Every non-abstraction term
of Alet has the form ©(H, k). Se we unify app(H) and letx := Hin P as O(H, k) and allow in
Aet a new syntactic class k ::= []| fiz.P. Next let us unify W(H, K) and O(H, k) as x(H|k).
After this we realize that \ji and Alet are partial views of the same system (the former
lacks HN, the latter lacks w :: k). So let ¢t and M range over the same set of proof terms.
Continuations are internalized and coincide with vectors, co-continuations are internalized
and coincide with heads, context-substitution is internalized as ordinary substitution. We
work modulo x(HN|k) = x(H|N :: k), which abstracts the single difference between Aji and

Alet.
Second step: to add control. We introduce the class of “commands” ¢ ::= x(H|k), and
a non-abstraction term is now pa.c. Continuations are now given by k = a|fz.c|u :: k.

Sequents have full r.h.s’s: for instance, T'|k : A+ A. Logically, we moved to classical logic.

Third step: to complete the duality. We add the dual implication A — B, and the class
of co-terms r ::= Aa.r | fix.c. The place left vacant in the grammar of continuations by the
move of fix.c is occupied by the new construction hNd(r). The full suite of sequents is:

FEt: AA Tlr: AFA ' H:AA Tk:A> A c: (THA)

We now easily write the constructors for the inference rules relative to A— B, just by dualizing
those of implication: the already seen Aa.r (left introduction), the co-continuation H &
(right introduction), and the continuation r"k (elimination, on the left!). The full system is
given in Fig. 11. The typing rules are omitted due to space limitations, but writing them
down is now just routine.

The classical, de Morgan/Gentzen duality is the duality between hypotheses and con-
clusions, Lh.s. and r.h.s. of sequents, conjunction and disjunction (if these were present),
A D B and B — A. Gentzen praised LK for its exhibiting of this duality [8]. Let us denote
it by (), justement. At the level of types A D B = B — A and vice-versa. Co-terms are dual
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(Terms) t,u, M,N == Azx.t|pa.c
(Co-terms) rs n= Aar|fr.c
(Co-continuations) H := z|hd(M)|HN|H:r
(Continuations) E o= alhd(r)|rk|u:k
(Commands) c == x(H|k)
(B)  x(hd(Az.t)lu:: k) —  x(hd(u)|hd(fiz.x(hd(t)|k)))
(B) x(Hz=slhd(Aa.r)) = x(hd(pa.x(H|hd(r)))[hd(s))
(1) x(hd(pa.c)lk) —  [k/a]c
) X(H|hd(fiz.c)) — [H/x]c
(=) x(HNIk) = x(HIN k)
(=) x(Hzrlk) = x(H|rk)

Figure 11 The unified calculus.

of terms, and vice-versa. The same for co-continuations and continuations. The notation of
constructions and the naming of reduction rules self-explains how (N) operates. Commands
are self-dual: x(H|k) = x(k|H). The unified system is self-dual, at the level of typing and
reduction. For instance, T' ¢ : A|A iff Alf: AT, etc.

Notice that the duality between SC and ND links HN with r"k (and H & r with u :: k),
whereas the isomorphism between the two systems (internalized as equations in the unified
system) links HN with N :: k (and H & r with k).

Let us take the unified system and forbid four constructions: \.a.r, HN, H = r, and k.

The result is a sequent calculus, a kind of classical Aji. This system, of course, is not a
self-dual system; but even if we enlarge it to a self-dual sequent calculus, SC' say, by putting
back the constructions Aa.r and H % for A — B, the formal duality between control and
co-control is not achieved yet. The formal treatment of continuations requires the presence
of u :: k as much as the formal treatment of co-continuations requires the presence of HN;
and, once HN is in, the last forbidden construction r’k is put back by de Morgan/Gentzen
duality.

So classical Afi is not self-dual, but A\ufi seemingly is [4]. Actually, a critique similar to
that of classical A\ii applies to Aufi. Look again at Fig. 1. Despite its compelling symmetry,
Mufi does not enjoy a duality between control and co-control. Why? Commands in Aufi, we
may say, have the form (H|e) with H ::= hd(¢). Hence, the constructors for e’s have no
dual in the class of H’s: the class of e’s is fully there, the class of H’s is residually there. We
seem to see a duality between terms t and “co-terms” e, but here the word “co-terms” is a
misnomer. “Co-terms” e’s are continuations, rightly captured by the p-operator; then, either
we see terms as the “dual” of continuations, and let them be captured by the fi-operator,
but then the latter, although “dual” to the p-operator, is not a co-control operator; or the
[-operator, if it is to be a co-control operator, should capture, not terms, but co-continuations,
a missing kind of expression, which is also typed “on the right”; and the true co-terms are
another missing kind of expressions typed “on the left”. Notice that the distortion in A
has nothing to do with the fact that the dual of implication is not included in Fig. 1; if it
were, one would add one constructor to the grammar of terms and its “dual” to the grammar
of “co-terms”, preserving the original “duality” [4], but still failing to achieve true duality,
for the same reasons.

What did we learn? There is nothing wrong with classical Afi, SC or Auji. What happens
is that the classical sequent calculus, despite its symmetry, is unable to capture the formal
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duality between control and co-control, because the latter requires the full extent of the de
Morgan/Gentzen duality, which also involves natural deduction, and is captured only in the
unified system.

6 Conclusions

Contributions. On a higher-level, this paper has two main contributions. The first is the
intended one, about the Curry-Howard isomorphism for sequent calculus. If systems of
combinators correspond to Hilbert systems, and the ordinary A-calculus corresponds to
natural deduction, what variant of the A-calculus does correspond to the sequent calculus?
We propose a clear-cut answer, which turns out to be a coin with two faces: sequent calculus
corresponds to a formal vector notation with first-class co-control; and to a bi-directional,
agnostic, computational A-calculus.

The second contribution concerns structural proof theory. We knew from our past
experience [7, 17] that sequent calculus has to be developed hand-in-hand with natural
deduction. And this was confirmed here in many ways. For instance, co-continuations
correspond to a primitive syntactic class in natural deduction, from where one can import, say,
the typing rules. Also, things look very different in the other side of the sequent-calculus-vs-
natural-deduction mirror, different to the point of un-recognizability. For instance, co-control
is almost invisible in natural deduction. The surprise came when we moved to classical logic
in order to prove the duality between control and co-control. There we learned that the de
Morgan/Gentzen duality comprehends the duality between control and co-control, as long as
we unify sequent calculus and natural deduction.

On the technical level, the main contribution is the formulation of co-control. The
formulation is entirely based on the identification of the concept of co-continuation. This
is the entity variables in sequent calculus proof terms stand for, and with which one may
formulate the fi-operator as a co-control operator, dualizing the behavior of the u-operator.
We showed the meaning of co-control in natural deduction, and how co-control subsumes
a form of focalization. Finally, it is also noteworthy: (i) The analysis contained in the
agnosticism theorem of the superimposition of CBN and CBV present in Met (and \ji); (ii)
The treatment of the logical operation A — B contained in the unified system.

Related and future work. The author apologizes for the title of this paper, if the reader
finds it exaggerated. True, the author believes something simultaneously new and very
basic was said here about the computational interpretation of the sequent calculus. On
the other hand, this contribution corresponds a small step from the wisdom accumulated
before. Specifically, our proposal starts from the following ingredients: the A-calculus [10],
the fi-operator [4], the vector notation [11], the technical result about formal vector notation
[6, 3, 5], together with the previous work by the author [7, 17].

It is clear why co-control has been unnoticed in the theory and practice of programming:
in a syntax with the natural deduction format, co-control control corresponds to a low-profile
substitution triggering rule. Co-control, as such, is only visible in a syntax with the sequent
calculus format. Now, such kind of syntax is usually regarded as a machine representation.
Therefore, it is natural to ask whether co-control is relevant in the theory and practice of
functional languages implementation. This question deserves further investigation.

Acknowledgements. The author was supported by Fundagao para a Ciéncia e Tecnologia
through project PEst-OE/MAT /UI0013/2014.
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—— Abstract

Nominal terms are an extended first-order language for specifying and verifying properties of
syntax with binding. Founded upon the semantics of nominal sets, the success of nominal terms
with regard to systems of equational reasoning is already well established. This work first extends
the untyped language of nominal terms with a notion of non-capturing atom substitution for
object-level names and then proposes a dependent type system for this extended language. Both
these contributions are intended to serve as a prelude to a future nominal logical framework based
upon nominal equational reasoning and thus an extended example is given to demonstrate that
this system is capable of encoding various other formal systems of interest.
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1 Introduction

There exist many formal systems described by a syntax that makes use of name binding
constructs. Nominal terms [35, 15, 14], are, by now, a well-established approach to the
specification and verification of properties of such languages and systems. Based upon
the name abstraction semantics of nominal sets [23], nominal terms use the properties of
permutations of object-level names or ‘atoms’ to provide an explicit formalisation for both
the use of side conditions on names and for the axiomatisation of alpha-equivalence between
object-level terms. Following the development of efficient algorithms for matching [4] and
unification [5, 25], nominal terms have been applied in rewriting [15, 16, 12] and unoriented
equational reasoning [22, 10].

In these works, the capture-avoiding substitution used in many systems of interest has,
thus far, needed to be encoded by explicit rewrite rules or axioms for the syntax in question.
The first contribution of the present work addresses this issue by extending the language
of nominal terms with a notion of capture-avoiding atom substitution at the object-level.
Definitions of freshness, alpha-equivalence and matching together with informal proofs of
decidability are provided for the new syntax.

The second contribution of this paper is the definition of a proposed dependent type
system for the extended language. The language of the type system presented in this paper
is user-defined; users define an interdependent signature of type- and term-constructors of
interest and give their type declarations. It is the responsibility of the user to maintain the
adequacy of their encoding and thus to declare types in accordance with the system to be
1@.) Elliot Fairweather,. Maribel Fernéu.ldez, Nora Szasz, and Alvaro Tasistro;
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formalised. In keeping with earlier work on nominal equational reasoning and in contrast with
previous work on nominal type theories [8, 9, 32], the system given here remains ‘lambda-free’

Both these contributions are presented as foundations for the future development of
a logical framework based upon nominal equational reasoning. A logical framework is a
formal system that provides the facility to define a number of other formal systems, such as
programming languages, mathematical structures and logics, by abstraction of their common
features [24, 2, 27, 30, 29]. Many logical frameworks are developed as a type system; the
minimum expressive power desirable of such a type system is that types be allowed to depend
upon terms.

The type system presented here is one of such expressive power and to demonstrate this
an extended example is given in the form of a specification for first-order logic for which
adequacy is proven. Equality axioms are not yet considered in this prototype ‘framework’ but
in the future it is expected that the system be expanded to include a user-defined nominal

equational theory, specified as a set of equality axioms or rewriting rules in the style of
[20, 15, 16].

2 Syntax

Consider countably infinite, pairwise disjoint sets of atoms, a,b,c,... € A, variables,
XY, Z, ... X, term-formers, f,g,... € F, and type-formers, C,C’,... € C. The syntax
of permutations, 7, atom substitutions, J, pseudo-terms, s,t, and pseudo-types,
o, T, is defined by mutual induction and generated by the grammar in Definition 1.

» Definition 1 (Syntax).

7 u= id|7*(ab) s, t u= allaolt|ft](tr, ..., tn)| 7 X
Y o= id|la—t]*x0 o, 7 = Ja:o]T|Ct| (1 X ... XTy)

A permutation is a bijection on the set of atoms, A, represented as a list of swappings,
such that 7(a) # a for finitely many atoms, a € A. 7(a) is easily computed using swappings
(we omit the inductive definition). An atom substitution is a mapping from atoms to
pseudo-terms, equal to the identity mapping but for finitely many arguments. This mapping
is represented as a list of pairs, ¥, of the form, [a; + ¢;] such that the atoms, a;, are
pairwise distinct. This list is interpreted as a set of simultaneous bindings and not as a
sequence, and thus the value of an atom substitution is determined directly from the syntactic
representation. The final id and ‘list cons’ operators in the syntax for both permutations and
atom substitutions are commonly omitted. Atom substitutions act upon pseudo-terms and
pseudo-types by instantiating atoms and are ‘capture-avoiding’. Atom substitutions suspend
upon variables and are applied after a suspended permutation.

The constructions for pseudo-terms are called respectively atom terms, abstractions,
function applications, tuples (where n > 0) and moderated variables and those

for pseudo-types, abstraction types, constructed types and product types (n > 0).

Abbreviate f () as f, and C() as C. Let M, N, ... range over elements of the union of the set
of pseudo-terms and set of pseudo-types. There is only one kind of well-formed types: type.
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» Definition 2 (Permutation Action).

7-id2id 7 ([ars t]*9) & [n(a) = 7t % (7 9)
7-a=m(a) W X)Er-Y|(rQ@7')- X
7-la:o)t2[n(a): 7 0] (7 t) m-la:olTE[m - a: 7o) (n-T)
w-ftEf(m-t) m-Ct2C(m-t)
Tty ooy tn) = (Tety, oo, Toty) T (MU X XT) 2 (T T X oo X T Ty)

Call a # M a freshness constraint. Let A, V, range over sets of freshness constraints
of the form a # X; call such sets freshness contexts. Write A - a # M when a derivation
exists using the rules given in Definition 3 below; in rule (atm)# we assume a # b.

» Definition 3 (Freshness Relation).

o
# img” (A, a, ¥|7-X) a € dom(V)
A'_a#b(atm) (var : aa)?”
Ata#d|r X
img” (A, a, '19|7T'X) agdom(®¥) 7l(a)# X €A
(var : ab)#
Aba#d|r-X
Ara+#T AFa#s Ara#rT
* (abs : aa)# 7 # (abs : ab)?
AFa#[a:7]s AFa#[b:7]s
Aba#s ... Aba# s, Aba#s
(tpl)*  ———— (app)*
Ata# (s1, ..., Sn) Ata#fs
Ara#o Ara#1 Aba#o
R (abt : aa)® 7 # (abt : ab)#
AbFa#[a:o]T AbFa#[b:o]T
AFa#7mn ... AFa# 71, AFa#t
! (prd)* —#cns)#
AFa# (1 X...XT,) AFa#Ct

The main differences with respect to the freshness relation for nominal terms are the
introduction of new rules for types, (abt : aa)*, (abt : ab)*, (prd)* and (cns)*, and the rules
for moderated variables, (var : aa)® and (var : ab)#, which take into account suspended
atom substitutions as well as suspended permutations. The notation, img# (A, a, 19’7r - X)),
in these rules, defines the conditions necessary for freshness with regard to the suspended
atom substitution and is an abbreviation of the following finite set of hypotheses.

{(Ata#9(xb)V(b# X €A)|be A, n(b) € dom(¥)}

This ensures that the substitution will not introduce the atom a when it is applied to an
instance of X. However this disjunction of conditions results in the possibility of multiple
derivations A; b a # t for a given freshness constraint a # t. If one considers the suspended
atom substitution, ¢, to be id, the conditions upon ¥ are satisfied vacuously and the two
rules clearly reduce to that for nominal terms.

Call M =, N an alpha-equality constraint and write A - M ~, N when a derivation
exists using the rules given in Definition 4 below. Note that because alpha-equivalence is
defined using freshness, again multiple possible derivations may exist for a given constraint.
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» Definition 4 (Alpha-equivalence Relation).

Ya € dS('l91|7T1, 192|7T2). a # XeA

—— (atm)® var)®
A}_a%aa A|—191’7T1'XAN46¥192’7T2-X )

AFsi~aty ... A s, =, 1, Abo=,T A s, t

(tpl)™ (abs : aa)®

AF (51, ooy Sp) Rg (t1, -y tn) AFfa:o]s =y [a: 7]t

Al sm,t Abomx,aT Aba#t AFs=,(ab)-t
—— (app)® (abs : ab)*
AFfsr,ft At a:o]smg [b: 7]t

AbFor~a1 ... Ao, ~o Th AbFoy~a11 AFog=r, T

! ! (prd)« ! ! ? 2 (abt : aa)®

Al (o1 X ...xX0p) Rg (11 X ... X Tp) At a: 1] o9 =g [a: T1] T2
AbFs=yt Aboi~am AFa# 19 Aoy, (ab) T
—— (cng)” ! ! 2 2 (@) 2(abt:ab)"‘
AFCs=,Ct AF [a: o1] 02 =q [b: T1] T2

This presentation of alpha-equivalence is defined by induction on the size of the pair,

(M, N), and is both syntax-directed and decidable when considered as a recursive predicate.

It is a generalisation of the notion of alpha-equivalence on nominal terms.

The only case that is not straightforward is again that of a moderated variable, (var)®.

Here it is important to remember that both permutations and atom substitutions are finite
mappings and that the image of a suspended atom substitution is given as a sub-term of
the syntax of the moderated variable. Thus, the disagreement set of two suspensions, v ’m
and 192‘772, written dS('l91’7T1, 192‘7?2), is also finite and may be defined as {a | ¥1(m1(a)) %
Ya(ma(a)), a € A}, which although recursive, is of decreasing size. The reflexivity, symmetry
and transitivity of the alpha-equivalence relation have been proved by adapting the proofs
given in [15], themselves simplified from those in [35].

The action of an atom substitution, 1), upon a pseudo-term or pseudo-type, M, written,
M 4, is defined by induction in the presence of a freshness context, A, in Definition 5. For the
sake of clarity of presentation this freshness context is not explicitly written throughout the
definition. Let ©~* denote the atom substitution ¥ restricted to the domain, dom(¥) \ {a}.
The composition of two atom substitutions, written 1, 015, is defined as the atom substitution
equivalent to applying 9, followed by ¥5. The syntactic construction of such a composition
built from two substitutions represented as sets of bindings can be defined by adapting the
algorithm described in [3, 2.1]. Note that this operation itself uses the action of an atom
substitution upon pseudo-term and so must be defined simultaneously with Definition 5 and
is also parameterised by the freshness context, A.

» Definition 5 (Action of Atom Substitution).

(|7 X)9 & (W oV)|r-X a2 9(a); a € dom(V) a?v = a; a ¢ dom(V)
([a: o]s)9 = [c: od] ((ac)-8)9 ¢ Ak c#s, c#img(d)
(fs)9=f(s9)  (t1, ..., tp)9 = (19, ..., t,0)

([a: o] 7))V & [c: 09 ((ac) 7)™ AFc# 7, c# img(d)
(Cs)¥ 2 C(s0) (1 X ... X TR) 02 (119 X ... X T, )

The capture-avoidance of unabstracted atoms is ensured by the fact that when an
atom substitution acts upon an abstraction or abstraction type, a suitable alpha-equivalent
representative is first chosen with respect to the freshness context, A. In practice, this
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presentation will result in the creation of freshness constraints for atoms, newly-generated
with respect to the system as a whole, and is similar to the approach taken in [16]. A
suitable ‘even fresher’ atom always exists, and it is one’s right to add constraints for that
atom to the freshness context, a fact which is taken advantage of below in Definition 9.
Any implementation of this definition as a recursive function must accommodate a suitable
mechanism for the generation of such names; this is most easily achieved by the threading of
global state throughout the function or by the use of a global choice function that returns
the next available name. Atom substitutions work uniformly on alpha-equivalence classes of
pseudo-terms and pseudo-types.

» Definition 6 (Variable Substitutions). A variable substitution is a mapping from variables
to pseudo-terms, equal to the identity mapping but for finitely many arguments, and written
as a set of bindings [X; — s1]...[X, — sn], such that the variables, X1, ..., X,, are
pairwise distinct.

The action of variable substitutions upon atom substitutions, pseudo-terms and pseudo-
types is given in Definition 7. A variable substitution, #, acts upon an atom substitution, ¥,
by instantiating the variables occurring in the pseudo-terms of the image of 1, and is written
¥ 6. Note that the instantiation of a variable requires the application of an atom substitution
to a pseudo-term and thus the action of variable substitutions is also parameterised by a
freshness context, which again is left implicit in the definition below.

» Definition 7 (Variable Substitution Action).

idd = id ([arst]%9)0 = [arst0] x (90)

[I>

ab =a
(W7 X)0 £ (7-0(X)) (06); X €dom(d)  (I|m-X)0 £ (W0)|m-X; X & dom(0)
([a: o]t)0 = [a: 0] (t0)  (F)O=F(t0)  (t1, ..., tn)0= (10, ..., t,0)

([a: o] 7)0 & [a: 0 60] (16) (Ct)o £ c(th) (X ... XxT) 02 (10 x...xT1,0)

The type system introduced in Section 3 requires a formalisation of matching to check
that term-formers and type-formers are used in a way that is consistent with their respective
type declarations. The concepts of constraint problems and matching are now therefore
extended to nominal terms with atom substitutions.

Let C range over freshness and alpha-equality constraints; a constraint problem, C,
is an arbitrary set of such constraints. Extend the above notations for the derivability of
constraints element-wise to constraint problems; thus, write A+ {Cy, ..., C,} for A+ Cy,

, A F C,. Substitution action extends naturally to constraints and constraint problems.

» Definition 8 (Matching Problem). Given a constraint problem, C, {...,a; # Qj,...,M; ~q
Nj, ...}, a corresponding matching problem is defined if (|, vars(M;))N (U, vars(N;)) = @
and is written { oy # Q... M; "~o N, }

A solution to such a problem, if one exists, is a pair, (A, 6), of a freshness context, A,
and a variable substitution, 8, such that dom(8) C |Jvars(M;) and A+ C6.

Informally, this says that a matching problem is a constraint problem in which one adds
the restriction that the variables in the left-hand sides of alpha-equality constraints are
disjoint from the variables in the right-hand sides and that only variables in the left-hand
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sides of equality constraints may be instantiated. There may be several A; such that A; - C8.

As in the case of nominal terms, one can define an ordering between solutions (4;, ) and
define a most general solution as a least element in the ordering. However, unlike nominal
matching, here there is no unique most general solution.

The situation is similar for logical frameworks based on the lambda calculus. The solution
there is to restrict the form of matching problems. Inspired by LF, [30], the type system in
Section 3 is designed so that one only needs to match against a pattern term, ¢, such that for
any variable, X € vars(t), then idfﬁ - X is a sub-term of ¢. Thus, the value of X is uniquely
determined. Note that a solution may only instantiate variables in the pattern and so if an

atom substitution occurs in the matched term then it can be treated as a constant sub-term.

Using this assumption, if a matching problem has a solution, there is a unique most general
one. The algorithm to compute it is similar to that used to check alpha-equivalence, except
that when a variable sub-term, 9|7 - X, of the pattern is being matched against, if 1 is not id
then that constraint is postponed until after the constraint for the occurrence of the id{7r - X
sub-term in the pattern has been solved and a unique variable substitution generated.

In addition, it is also important to note that due to the action of atom substitutions
suspended upon variables, the freshness context of a solution may contain constraints for
atoms, a ¢ atms(C).

» Definition 9 (Pattern Matching Problem). A pattern matching problem, consists of
two pseudo-terms-in-context or two pseudo-types-in-context, V. - M and A + N, to be
matched, where vars(V = M) Nvars(A - N) = @ and is written (V = M) "=, (A N).

A solution to such a problem, if one exists, is a variable substitution, 6, such that (V’, )
is a solution to the matching problem V U {M “~, N} and there exists a freshness context
A% (of which each constraint, a # X, is such that a € atms(M) U atms(N) U atms(V)), such
that A UA# V.

A newly-freshened variant of a term, ¢, is a term, written ¢", in which all the atoms
and variables have been replaced by newly generated atoms and variables with respect to
those occurring in ¢ (and maybe other elements of syntax, always specified.)

Closed terms were introduced in [15] and shown there to be decidable by an algorithm
using newly-freshened variants and nominal matching. Intuitively, a closed term has no
unabstracted atoms and all occurrences of a variable must appear under the same abstracted
atoms. Here, closedness can be checked in a similar way using the matching algorithm
mentioned above.

3 Type System

This section starts by introducing the syntax of environments, declarations and judgements
used in this type system. The validity of environments (Definition 11), validity of sets of
declarations (Definition 10), and derivability of typing judgements (Definition 13), are then
defined by mutual induction.

A type association is a pair of a variable, X, and a type, o, written (X: o) or an
atom and a type, written (a: o). A pseudo-environment, I, is an ordered list of type
associations. A pseudo-environment may contain at most one type association for each
variable and atom. Here, let T' x (a: 7), denote the result of appending (a: 7) to the end of
the list that represents the pseudo-environment, I" (similarly for a variable association) and
let this notation be extended element-wise to lists of associations. The association available
for a given atom, a, in I' is denoted by I',. If there is no type association for a in I" then T, is
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undefined, written L (similarly for a variable.) The domain of T'; denoted dom(T"), and image
of ', denoted img(T"), are defined as usual: dom(I') ={a € A | Ty # L} U{X e X |Tx # 1}
and img(l') = {7 | 3a,T, = 7} U{r | 3X,T'x = 7}. It is important to note that type
associations for variables are never appended by the typing rules, however the rules for
abstractions and abstraction types do append type associations for atoms.

A pseudo-declaration, I' IF A F ft: (0 < 7) or ' IF A F Ct: (0 < type), states
the type associations and freshness constraints that a term must satisfy in order that an
application or constructed type built from that term be well-formed. Thus, informally, this
says that if under the type associations in I', and the freshness constraints in A, ¢ has type o
then ft has type 7, or similarly that Ct¢ is of the kind type. In practice, users need not give
complete declarations; it is sufficient to write ' F A Ff¢: 7 or I' IF A F Ct: type and the
system will infer the complete declaration by computing the type of ¢.

Pseudo-declarations are given for a term-former or type-former together with an argument
term in order to allow the use of atoms of that argument in the type of the application or
constructed type; for example, see the declarations for all; and alle in Section 5.

A pseudo-judgement, I' I, A+ ¢: 7or I'lF, AF 7: type, specifies that under a given
environment, set of declarations and freshness context, either a term has a particular type or
a type is well-formed.

A valid set of declarations, 3, written validD(X), is defined inductively as follows.

» Definition 10 (Valid Set of Declarations).

The empty set of declarations, @, is valid; validD(@).
If validD(X), T IF A+ ft: (o < 7) is a valid declaration under the following conditions.
'k, AFt: o, where vars(o) C vars(t) U vars(7)
'k, At 7: type, where 7 is not an abstraction type
A+ A{t, o, 7} is closed
for any variable, X € vars(t) U vars(7), then the sub-term, id’ﬂ' - X, occurs in either ¢
or T.
Then, provided that there is no declaration in 3 for the term-former, f, it holds that
validD(XU{T'IF A ft: (o0 = 7)}).
If validD(X), then ' IF A F C¢: (o < type) is a valid declaration under the following
conditions.
'k, AFt: o, where vars(o) C vars(t)
A+ {t, o} is closed
for any variable, X € vars(t) then the sub-term, id|7 - X, occurs in ¢
Then, provided that there is no declaration in 3 for the type-former, C, validD(X U {T" I+
AFCt: (o0 = type)}).

Assuming a freshness context, A, and a valid set of declarations, ¥, a valid environment,
written validE(T", ¥, A), is defined as follows.

» Definition 11 (Valid Environments).
The empty list of type associations, —, is a valid environment; validE(—, 3, A).
If validE(T", 3, A), then validE(T' x (a: 7), X, AUA’), for any A’ that does not mention
atoms in dom(T"), provided that a ¢ dom(T"), T'IF, A 7: type.
If validE(T, X, A), then validE(T’ x (X: 7), ¥, AUA’), for any A’ that does not mention
atoms in dom(T"), provided that X & dom(T"), for any atom, a, such that A+ a # X then
AbFa#7,a#imgT),and ' Ik, AF 7: type.
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Informally, the final condition upon variable associations says that in a valid environment,
if an atom cannot occur unabstracted in an instance of a variable, X, then it cannot occur
unabstracted in the typing of that variable either.

Typing judgements are derived inductively using the rules given in Definition 13. The
declarations provided by the user are required in the rules for term-formers, (app)”, and
type-formers, (cns)”. Declarations are matched to pseudo-terms and pseudo-types using
pattern matching and therefore each time an application or constructed type is typed a
newly-freshened variant of the declaration for that term-former or type-former is generated;
we write O IF VI fs: (0 <= p) € 3" (similarly for a constructed type) to emphasise the fact
that such a newly-freshened variant of a declaration is being used. In the rule for a variable,
(var)™, a predicate, typV is used.

» Definition 12. Let I'|x, for X € dom(T"), be the list of associations in I'" up to but not
including the pair (X: 7). Write typV(T', X, A, 19|7r, X) if the following conditions hold.
for any atom a € dom(I'|x), either AFa# X or T'IF, AF9Y(n(a)): (m-Ty)0
for any variable Y € dom(I'|x), T Ik, AFd|m-Y: (7 -Ty)d
LIk, AF (7 -T'x)¥: type

This definition indicates that for any atom, a, that can occur unabstracted in an instance

of the variable, X, then ¥(m(a)) must be typeable with a type compatible with the type of a.

Similarly, variables that may be used in the typing of X (i.e., that occur in I" before X) also
have a type compatible with 19’71
In the rule (abs)”, the atom b is not in the set of atoms occurring in the judgement, T I

A& [a: o]t: [a: 0] 7 and the freshness context, A% is such that A# b #t, b# o, b# 7.

Similarly in (abt)”, b is not in the set of atoms occurring in I' IF, A+ [a: o] 7: type and A%,
is such that A#¥ Fb# o, b# 7.

In the rule (app)™, sol(#) means that the variable substitution, 6, is a most general solution
to the pattern matching problem (V I (Cs x p)) ‘a2 (AUA# I (Ct x 7)), where A% is
a freshness context such that atms(s) U atms(p) # vars(¢) Uvars(7) and C, is an arbitrary
type-constructor used so that the argument term and application type may both be included
within the same pattern matching problem. Similarly in (cns)”, 8 is a most general solution
to (VF s) "~ (AUA# Ft) where A% is atms(s) # vars(t).

» Definition 13 (Typing rules).

validE(T, %, A) (r-Tx)d =7 typV([, &, A, J|r, X)

(var)™
Dk, AFdm-X:7
validE(T, =, A) T, =71 L' (b:o) b, AUAT - (ab)-t: (ab)-T
(atm)” (abs)™
Pk, AFa: 7 Tk, AF[a:o]t: [a: o] T
validE(T, ¥, A) Dby Abtiir ... Dl ARty
— (tpl : 0)7 (tpl : n)7™
T, AF(: 0 Db, AF (t1, ooy tn): (11 X oo X T)
Pk, Att:of FIFEAFT:type( OV fs: ( Jex ©)
app)” s: (o —=p) € so
Tl A-ft:T rp P
T'x (b:0)lFy, AUAFF (ab)-7: type
(abt)™
Lk, Ak [a: o] 7: type
validE(T, X, A) Nk, AbF7type ... Il A7, type
(prd : 0)7 (prd :n)"
Tlk, AF(): type DI, AF (11 X ... X T): type
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Nk, AkFt:of
I, AFCt: type

(ens)™ (O 1F VI Cs: (o < type) € 2, sol())

Tk, AFt:T AFom,T
Nk, AFtio

T

(07

Note that in the rules, (atm)”, (var)”, (tpl : 0)7 and (prd : 0)7, the validity of the
environment is needed as a premise because the environment, I', is not assumed to be valid
and also, that in the rule, (var)7, the suspension, 19|7r, must be applied to the type, I'x.

4 Meta-theory

The type system presented works uniformly on a-equivalence classes of terms and types (see
Theorem 18 below.) In order to prove this property, some standard properties (weakening,
strengthening and validity of typing environments) are first stated. The section is concluded
with the substitution theorems.

» Theorem 14 (Type Strengthening). 1. IfT Ik, AUA’ F¢: 7 (resp. T'IF, AUA’ - 7: type)
and A" mentions atoms that are not in dom(I") then T' Ik, A& t: 7 (resp. T Ik, A F
T: type).

2. IfT'x (a1:01)...(an: op) by AFt: 7 (resp. T ) (a1: 01) ... (an: o) Ik A 71 type)
and Aba; #t, 7 (1<i<n)thenTIlF, AFt:7 (resp. T'lF, AF 7: type).

Proof. Both parts are proved by induction on the type derivation. |

» Theorem 15 (Type Weakening).

1. IfT Ik AFt:7 (resp. T Iy AF 7:type), then TV Ik A" -t 7 (resp. TV Ik, A’ +
7: type), for any T, A" such that T/ =T x 'y, A’ O A and validE(TY, X, A').

2. IfT' x (a1: 01) ™ (ag: 09) X IV Ik, AFt:7 (resp. T % (a1: 01) X (az: 02) x IV Ik
AF 7:type), then T ™ (ag: 02) ™ (a1: 01) ) IV Ik, A F t:7 (resp. T' ™ (ag: 02) X
(a1: 01) X TV Ik, A& 7: type provided A+ ay # o3.

Proof. By simultaneous induction on the type derivation. |

» Theorem 16 (Validity of Typing Environments). For any given validD(X):
IfT Ik, AFt: 7 then validE(T', £, A) and T'IF, A F 7: type.
IfT' Ik, AF 7: type then validE(T, X, A).

Proof. Both parts are proved by induction on the type derivation, using weakening (in the
case where the last rule used was (atm)™) and strengthening in the cases where the last rule
used is an abstraction rule (for types or terms). <

» Lemma 17. ]fA = dS(’L91|7T1, ?92|7T2) # X then A+ dS(’l91|7T1, 192|7T2) # Fx.
For any M (pseudo-term or pseudo-type), if A + ds(191|ﬂ'1, 192|7T2) # M, then A +
(7T1 M)’l91 N (71'2 . M)’L92

Proof. The first part is a consequence of the definition of valid environment. The second
part is proved by induction on the definition of ~,. <

» Theorem 18 (Unicity of Types). IfT' Ik, At t: 7 and T lkg A t': 7o, where A bt =, t,
then A+ 1 =4 T2.

Proof. 1. If I'lF, Ak ¢t:mpand I'lF; AF¢: 7o, then A F 1y =, To.
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2. T, Ak t:r, Abta,t/, AT =, IV then IV IF, A+ ¢': 7, where AFT =, I
indicates that for each mapping (a: o) (resp. (X: o)) in ', I contains a mapping (a: ¢’)
(resp. (X: ¢’)) such that A + o =, ¢’. Similarly for types: if T Ik, A F 7: type,
Ab 7,7, AFT =, TV then TV IF, A 7/: type.

The first part is proved by induction on the type derivation for I IF, A+ ¢: 7. The
only case that is not straightforward is the case in which the derivation concludes using
the rule (app)”. In this case, the unicity of the type is a consequence of the fact that
declarations do not overlap (that is, there is a unique declaration that matches the term
considered) and matching problems have unique most general solutions under the assumptions
for declarations.

The second part is proved by induction on the type derivation. In the case of a variable,
Lemma 17 is needed to derive typV (T, X, A, 19’]77’, X). <

» Theorem 19 (Preservation of Types by Atom Substitution). If T' Ik, A F t: 7 (resp.
DIk, AF7:type) and m, ¥, TV, A’ are such that:

VX € dom(T'), IV I, A’ d|m- X: (m-T'x) ¥

Va € dom(T"), either A a#t or TV Ik, A'F d(w(a)): (m-Ty) 9
then TV Ik, A'F (m-8)0: (m-7)0 (resp. TV Ik, A" F (7w 7)9: type)
Proof. By induction on the type derivation. In the case where the last rule applied is (app)™
or (cns)T, one relies on the fact that declarations are closed (that is, there are no unabstracted

atoms.) The cases of abstraction rules (for terms or types) follow by induction, since atom
substitutions are capture-avoiding. |

» Theorem 20 (Preservation of Types by Variable Substitution). If ' |-, A F ¢: 7 (resp.
DIk, AF7:type) and 0 is a variable substitution such that:

VX €dom(T), TVIF, A’FO(X): Tx 6 and A’ - A6

Va € dom(T"), either AFa#t orTVIF, A'Fa: T, 0
then TV Ik, A" Ht0: 760 (resp. TV Ik, A" F 76: type)

Proof. By induction on the type derivation. In the case where the term is of the form 9|7T - X
and the last rule applied is (var)” Theorem 19 for atom substitutions is used. |

5 Extended Example

First-order logic is a proto-typical system with binding. We consider the language of Arith-
metic, and start the specification by defining type-formers for natural numbers, propositions

and proofs, and term-formers to build numbers, 0 (zero) and s (successor) and propositions,
bot (L), imp (=) and all (V).

—IF 2 N: type
— |F @ Prop: type
P: Prop |l @t Proof P: type

—FoFO0:N

X:NIFgFsX:N

— |- @+ bot: Prop

Py : Prop, Py: Propl- @ F imp (P, P»): Prop
P: Propl- gt all[z: N] P: Prop
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Now, define declarations for the predicates used to build proofs; the introduction and
elimination of imp and all, imp;, impe, all; and all, and the elimination of bot, bote.

P, : Prop, P»: Prop, QQ: Proof P,
IFx # Py, x # Py b imp; [z: Proof P;|Q: Proofimp (P, P,)

Py : Prop, P5: Prop, Q: Proofimp (P, P»), Q1: Proof P
IF @ F impe (Q, Q1): Proof P,

P: Prop, Q: Proof bot
IF & F bote (P, Q): Proof P

P: Prop, Q: [z: N]Proof P
IF @+ all;Q: Proof all [z: N] P

P: Prop, Q: Proofall[z: N]P, N: N
Fa# N alle (Q, N): Proof [z —s N] - P

Note that in the declaration for bot. one must use variables, P and (), as arguments because
of the restriction that all variables in the type of bote should occur in its arguments or in its
types. Notice also that in the declaration for all; above, the variable, @, of type [x: N] Proof P,
is used, in other words, n is not unabstracted, as expected. The full declaration, which can be
inferred is P: Prop, @Q: [z: N]Proof P IF @ F all; @: {[z: N] Proof P < Proof all ([x: N] P)).
When this declaration is used to type terms built with all;, pattern matching is used to obtain
the values of P and Q.

An induction principle over the natural numbers could be defined as follows.

P: Prop, QQp: Proof [z — 0] - P, Q1: [n: N] [p: Proof [x + n] - P]Proof [z — sn|- P
IFn# PFind(Qo, Q1): Proofall[z: N] P

An encoding of a system in a logical framework is adequate if it faithfully reflects the
properties of the encoded system. For instance, in the case of an encoding of first-order logic,
one needs to show that the terms used in the dependent type system represent first-order
terms, that formulae and proofs correspond to their standardly acknowledged notions, and
that only provable propositions have a proof in the system. The goal is to prove that there
is a bijection between proofs in first-order logic and the corresponding terms in this system.
A formal specification of first-order logic terms, formulae and proofs is given and then it is
shown that these are encoded by terms of the correct type and that encoded terms represent
only well-formed terms, formulae and proofs. The theorems and proofs presented here follow
closely those given in [24] to prove the adequacy of LF but are much simpler due to the fact
that here lambda calculus S-reduction is not involved and therefore all terms are of canonical
form.

The following grammars define the syntax of the sets of terms (Trm) and formulae (Frm)
of first-order logic.

» Definition 21 (First-order Logic Terms and Formulae).
T, Ta=0]s(T) |z F, Fu=1|F—>F |Va.F

Let fvars(T) and fvars(F) denote respectively the set of free variables in the term, T, and
the formula, F. Extend this notation element-wise to sets of formulae.
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A translation function [T] is defined by induction on T, from Trm to terms in the system
using the term-formers, 0 and s, for which, see Section 5. Note that the free variables of T
are encoded as unabstracted atoms in [T]. A corresponding translation function is defined
over the elements of Frm.

[0] =0 [L] = bot
[s(T] =s[T] [F1— F2] =imp([F1], [F2])
[«] =z [Vz. F] = all[z: N] [F]

Using the declarations given above, it can now be proved both that translated terms
and formulae are typeable terms of the system and that typeable encoded terms correspond
exactly to well-formed first-order logic terms and formulae.

» Theorem 22. For any term, T € Trm, such that fvars(T) = z1, ..., x, and freshness
context, A, if x1: N, ..., x,: NIk, AF[T]: N.

Similarly for any F € Frm, such that fvars(F) = z1, ..., x,, and freshness context, A,
x1:N, ..., xy: NIk, AF[F]: Prop,

Proof. By structural induction on the syntax of elements of Trm and Frm. <

» Theorem 23. IfI'I-, At t: N is a derivable typing judgement and the environment, I,
contains only type associations for unabstracted atoms of the form (a: N), then t = [T] for
some term T € Trm.

Similarly, if I' -, At t: Prop is a derivable typing judgement and the environment, T,
contains only type associations for unabstracted atoms of the form (a: N), then t = [F] for
some formula F € Frm.

Proof. By induction on typing judgement derivations. The only applicable cases are when
the first step of the derivation is by one of the rules, (atm), (app) or (). <

In order to show the adequacy of the encoding of proofs of first-order formulae, first, a
natural deduction presentation is given for first-order logic, inspired by the one used in [24]
to prove the adequacy of the encoding in LF.

Let judgements have the form £ Fy, P: F, indicating that there is a proof P of the formula
F, using the list of hypotheses, £, and the set of free variables, V', where (fvars(£) C V). The
introduction rules for implication and universal quantification are shown below.

g, ("UFlt Fl) Fy P: Fy g'_VU{’I'} P:F
Ery—i (P\vg,): F1 = Fy &by Vi(x.P): Va.F

Here, vg, is the variable name of a proof of Fy, the notation (P \ vg,) denotes the proof
P where vg, is discharged, and in the rule for V;, the condition fvars(£) C V on judgements
implies that x is not used in £.

A natural deduction judgement, J, of the form £ Fy P: F is translated to a typing
judgement of the system, [J], as follows.

[€ Fy P2 F] = [V] ¢ [€] Iy, PRy + [P1: Proot [F]

Here, if Vis {x1, ..., 2} then [V] = 21: N, ..., x,: N and [£] contains v, : Proof [[F;]
for each (vr,: F;) in T'. The translation function from proofs to terms, [P], is defined
inductively; two cases are given.

[Vi(z.P)] = alli[z: N] [P] [—: (P\ vg,)] = imp;[vg, : Proof [F1]] [P]
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A second translation function from a proof, P, to a freshness context, parameterised by a
set of variables, X', and written [[P]]ff is also required; again two cases are given.

[Vi(z. P)Ix = [Pl% [ (P\ve)ly = {vr, # X | X € X}U [P

One can now prove the following property relating natural deduction proofs in first-order
logic and their encoding in the system presented here.

» Theorem 24. If £ +y P: F is a derivable judgement, J, of natural deduction then
V] x [€] Ik [[P]]\ixrs([J]]) F [P]: Proof [F] is a derivable typing judgement.

Proof. By induction on the syntax of the proof, P. In the case where P is of the form
—; (P"\ vg,) of these, the use of the rule («) follows from the fact that [[Pﬂ\?ars([[J]]) Fop, #

[F1], v, # [F2]. <

Finally, in order to complete the adequacy proof, it is shown that only provable first-order
formulae are encoded by terms of type Proof ¢.

» Theorem 25. IfI' IF, A F s: Prooft where the environment, I, contains only type
associations for atoms either of the form (a: N) or (vg,: Prooft;) where t; = [F;] is an
encoding of some formula F;, then s = [P] where P is a proof by natural deduction of some
formula F such that t = [[F].

Proof. By induction on typing judgement derivations. In the derivation for imp;, A F vg, #
t1, vF, # t2, vF, # imp; [vg, : Proof ¢1] s’ and so vg, cannot be a free variable of P or F. <

6 Related Work

Nominal sets have been used to give semantics to systems based on nominal abstract
syntax (see, for instance, [31, 18, 7, 11]) and proof theories for nominal logic have also been
considered [19, 6]). Atom substitutions and their properties have been defined as systems
of equational rules in [17, 21, 15]. Nominal equational theories have been investigated
in [22, 10, 15] amongst others, and type systems for nominal terms and equational theories,
using rank-1 polymorphic types, are defined in [14, 13, 12]. However, although proofs play an
important role in all of these works, none of these systems deal explicitly with proof terms,
and do not yield directly a nominal type theory. Nominal type theory has been investigated
by Schépp and Stark [34], using categorical models of nominal logic. The nominal dependent
type theories developed following this approach are very expressive, but it is not clear whether
their computational properties make them suitable for use in a logical framework. Nominal
type theory as a basis for logical frameworks has been investigated by Cheney [8, 9], as
extensions of a typed A-calculus with names, name-abstraction and concretion operators,
and name-abstraction types. A system combining A-calculus and nominal features is also
investigated by Pitts [32] to define a nominal version of Godel’s System T. A key difficulty
encountered when following the approach of combining A-calculus and nominal syntax is
the interaction between name abstraction and functional abstraction (see [8] for a detailed
discussion.) Westbrook [36] extends the Calculus of Inductive Constructions with a name-
abstraction construct in the style of [8].

One of the best known examples of logical frameworks is LF [24], based on a typed
A-calculus with dependent types. The system presented here has similar expressive power,
however there is no primitive notion of functional abstraction, instead there are term- and
type- constructors in the user-defined signature. Other differences with LF include the
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distinction between atoms (which can be abstracted or unabstracted), variables (which
cannot be abstracted but can be instantiated, with non-capture-avoiding substitutions), and
the use of name swappings (or more generally, permutations), to axiomatise a-equivalence.

Compared with previous approaches to the definition of A-free logical frameworks [26,
1, 33], abstraction is a first-class ingredient in the syntax presented here and can be used
in arguments for term- or type-constructors (as in [26, 1, 33]), or on its own (unlike [26, 1])
although user-defined constructors of abstraction type are not allowed. Also, as in [26, 1, 33],
instantiation is a primitive notion in the system; it is used instead of the application operation
used in A-calculus based logical frameworks. However the approach here does not rely on
explicit lists of arities and n-long normal forms as in [26, 1]. The triggering of suspended atom
substitutions by instantiating variables is similar to the hereditary substitution mechanism
of DMBEL ([33].

There may exist similarities between the work here and that of ‘contextual modal type
theory’ [28], and the dependent type system of this paper may benefit from a study of the
handling of type environments and substitutions therein.

7 Conclusions and Future Work

This paper has presented a dependent type system for nominal terms with atom substitutions.
A definition of matching over this syntax have been given together with an algorithm for
solving such problems. This algorithm has been implemented but the complexity of problems
has not been analysed; this is left for future work. A set of axioms and rules was then
defined for determining the typeability of pseudo-terms and pseudo-types in this system in
the presence of user-defined declarations for term-formers and type-formers. An extended
example for first-order logic was presented and its adequacy proven. The type system itself
has not been implemented. In its present form, the inclusion of the rule («)” means that
the inference of derivations is not completely syntax-directed. This property, that derivable
typing judgements hold for alpha-equivalent classes of types, may be derivable and if so
should help in the development of a type inference algorithm for the system. Further benefits
may also be gained from the inclusion of some of the more sophisticated ideas used for other
type systems considered in [12]. Although we have not included computation rules in our
language, dynamic features, such as reduction in the A-calculus, or proof normalisation for a
logic, may be represented using relations between terms. However, a more direct definition
using equality axioms, such as in [26], would be easier to use. An extension of the logical
framework to include a user-defined nominal equational theory, specified as a set of equality
axioms or rewriting rules, also remains as future work.

—— References

1 Robin Adams. Lambda-free logical frameworks. CoRR, abs/0804.1879, 2008.
Stuart F. Allen, Robert L. Constable, Richard Eaton, Christoph Kreitz, and Lori Lorigo.
The Nuprl open logical environment. In Automated Deduction — CADE-17, 2000.

3 Franz Baader and Wayne Snyder. Unification theory. In Handbook of Automated Reasoning.
Elsevier, 2001.

4  Christophe Calves and Maribel Fernandez. Matching and alpha-equivalence check for nom-
inal terms. Journal of Computer System Sciences, 76, 2010.

5  Christophe Calves and Maribel Fernandez. The first-order nominal link. In Logic-Based
Program Synthesis and Transformation — 20th International Symposium, LOPSTR 2010,

193

TLCA’15



194

Dependent Types for Nominal Terms with Atom Substitutions

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Hagenberg, Austria, July 23-25, 2010, Revised Selected Papers, volume 6564 of Lecture
Notes in Computer Science, pages 234-248. Springer, 2011.

James Cheney. A simpler proof theory for nominal logic. In FoSSaCS, 2005.

James Cheney. Completeness and Herbrand theorems for nominal logic. Journal of Symbolic
Logic, 71, 2006.

James Cheney. A simple nominal type theory. FElectronic Notes in Theoretical Computer
Science, 228, 2009.

James Cheney. A dependent nominal type theory. Logical Methods in Computer Science,
8, 2012.

Ranald A. Clouston. Equational Logic for Names and Binding. PhD thesis, University of
Cambridge, 2010.

Roy L. Crole and Frank Nebel. Nominal lambda calculus: An internal language for fm-
cartesian closed categories. Electr. Notes Theor. Comput. Sci., 298:93-117, 2013.

Elliot Fairweather. Type Systems for Nominal Terms. PhD thesis, King’s College London,
2014.

Elliot Fairweather, Maribel Ferndndez, and Murdoch J. Gabbay. Principal types for nom-
inal theories. In Proceedings of the 18th International Symposium on Fundamentals of
Computation Theory (FCT 2011), 2011.

Maribel Fernandez and Murdoch J. Gabbay. Curry-style types for nominal terms. In Types
for Proofs and Programs (TYPES’06). Springer, 2007.

Maribel Ferndndez and Murdoch J. Gabbay. Nominal rewriting. Information and Compu-
tation, 205, 2007.

Maribel Fernandez and Murdoch J. Gabbay. Closed nominal rewriting and efficiently com-
putable nominal algebra equality. In Proceedings of the 5th International Workshop on
Logical Frameworks and Meta-Languages (LFMTP 2010), 2010.

Murdoch J. Gabbay. A study of substitution, using nominal techniques and Fraenkel-
Mostowski sets. Theoretical Computer Science, 410, 2009.

Murdoch J. Gabbay. Two-level nominal sets and semantic nominal terms: an extension
of nominal set theory for handling meta-variables. Mathematical Structures in Computer
Science, 21, 2011.

Murdoch J. Gabbay and James Cheney. A sequent calculus for nominal logic. In Proceedings
of the 19th IEEE Symposium on Logic in Computer Science (LICS 2004), 2004.

Murdoch J. Gabbay and Aad Mathijssen. Nominal algebra. In 18th Nordic Workshop on
Programming Theory, 2006.

Murdoch J. Gabbay and Aad Mathijssen. Capture-avoiding substitution as a nominal
algebra. Formal Aspects of Computing, 20, 2008.

Murdoch J. Gabbay and Aad Mathijssen. Nominal universal algebra: Equational logic with
names and binding. Journal of Logic and Computation, 19, 2009.

Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax involving
binders. In Proceedings of the 14th Annual Symposium on Logic in Computer Science (LICS
1999), pages 214-224. IEEE Computer Society Press, July 1999.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. In
Proceedings of the 2nd IEEE Symposium on Logic in Computer Science (LICS 1987). IEEE
Computer Society Press, 1987.

Jordi Levy and Mateu Villaret. An efficient nominal unification algorithm. In Proceedings
of the 21st International Conference on Rewriting Techniques and Applications (RTA 2010),
2010.

Zhaohui Luo. PALT: a lambda-free logical framework. Journal of Functional Programming,
13, 2003.



E. Fairweather, M. Fernandez, N. Szasz, and A. Tasistro

27

28

29

30

31

32

33

34

35

36

Lena Magnusson and Bengt Nordstrom. The ALF proof editor and its proof engine. In
Types for Proofs and Programs, (TYPES’93), 1994.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
ACM Transactions on Computational Logic, 9, 2008.

Bengt Nordstrom, Kent Petersson, and Jan Smith. Programming in Martin-Lof’s Type
Theory. Oxford University Press, 1990.

Frank Pfenning and Carsten Schiirmann. System description: Twelf — a meta-logical frame-
work for deductive systems. In Automated Deduction — CADE-16, 1999.

Andrew M. Pitts. Nominal logic: A first order theory of names and binding. In Proceedings
of the 4th International Symposium on Theoretical Aspects of Computer Software (STACS
2001), 2001.

Andrew M. Pitts. Nominal system T. In Proceedings of the 87th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL 2010), 2010.

Gordon Plotkin. An algebraic framework for logics and type theories, 2006. Talk given at
LFMTP’06.

Ulrich Schopp and Ian Stark. A Dependent Type Theory with Names and Binding. In
CSL, 2004.

Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal unification. Theor-
etical Computer Science, 323, 2004.

Edwin Westbrook. Higher-order Encodings with Constructors. PhD thesis, Washington
University in St. Louis, 2008.

195

TLCA’'15



Realizability Toposes from Specifications*

Jonas Frey

Department of Computer Science
University of Copenhagen, Denmark
jofr@di.ku.dk

——— Abstract

We investigate a framework of Krivine realizability with I/O effects, and present a method of
associating realizability models to specifications on the 1/O behavior of processes, by using ad-
equate interpretations of the central concepts of pole and proof-like term. This method does in
particular allow to associate realizability models to computable functions.

Following recent work of Streicher and others we show how these models give rise to triposes
and toposes.
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1 Introduction

Krivine realizability with side effects has been introduced by Miquel in [14]. In this article
we demonstrate how an instance of Miquel’s framework including I/O instructions allows
to associate realizability toposes to specifications, i.e. sets of requirements imposed on the
I/0 behavior of programs. Since the requirement to compute a specific function f can be
viewed as a specification, we do in particular obtain a way to associate toposes to computable
functions.

These toposes are different from traditional ‘Kleene’ realizability toposes such as the
effective topos [6] in that we associate toposes to individual computable functions, whereas
the effective topos incorporates all recursive functions on equal footing. Another difference to
the toposes based on Kleene realizability is that the internal logic of the latter is constructive,
whereas the present approach is based on Krivine’s realizability interpretation [10], which
validates classical logic.

To represent specifications we make use of the fact that Krivine’s realizability interpreta-
tion is parametric over a set of processes called the pole. The central observation (Lemma 27
and Theorem 28) is that non-trivial specifications on program behavior give rise to poles
leading to consistent (i.e. non-degenerate) interpretations.

To give a categorical account of Krivine realizability we follow recent work of Streicher [18]
and others [17, 20, 2], which demonstrates how Krivine realizability models give rise to ¢riposes.
Toposes are then obtained via the tripos-to-topos construction [7].

Our basic formalism is an extension of the Krivine machine (2) that gives an operational
semantics to I/O instructions for single bits. We give two formulations of the operational
semantics — one (3) in terms of a transition relation on processes including a state (which
is adequate for reasoning about function computation), and one (4) in terms of a labeled

* This work is supported by the Danish Council for Independent Research Sapere Aude grant “Complexity
through Logic and Algebra” (COLA).

© Jonas Frey;
Bv licensed under Creative Commons License CC-BY

13th International Conference on Typed Lambda Calculi and Applications (TLCA’15).
Editor: Thorsten Altenkirch; pp. 196-210

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.196
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Frey

transition system admitting to reason about program equivalence in terms of bisimulation.
The two operational semantics are related by Corollary 7, which we use to prove a Turing
completeness result in Theorem 12.

1.1 Related work

The idea of adding instructions with new evaluation rules to the machine plays a central role
in Krivine’s writings, as a means to realize non-logical axioms. Citing from [11]:

“Indeed, when we realize usual azioms of mathematics, we need to introduce, one
after the other, the very standard tools in system programming: for the law of Peirce,
these are continuations (particularly useful for exceptions); for the aziom of dependent
choice, these are the clock and the process numbering; for the ultrafilter axiom and the
well ordering of R, these are no less than I/0 instructions on a global memory, in
other words assignment.”

Although features like exceptions and memory are often called effects, it is arguable whether
they should be called side effects, since they do not interact with the outside world.

The idea to add instructions for side effects which are influenced by — and influence — the
outside world,p has already been investigated by Miquel [14, Section 2.2], and our execution
relation (3) can be viewed as an instance of his framework.

What sets the present approach apart is that Miquel views the state of the world
(represented by a forcing condition) as being part of a process and requires poles to be
saturated w.r.t. all (including effectful) reductions, whereas for us poles are sets of ‘bare
processes without state, which are saturated only w.r.t. reduction free of side-effects.

This difference is crucial in that it enables the construction of poles from specifications.

)

2 Syntax and machine

In this section we recall Krivine’s abstract machine with continuations as described in [10].
We then go on to describe an extension of the syntax by I/O instructions, and describe an
operational semantics as a transition relation on triples (p, ¢, 0) of process, input, and output.

2.1 Krivine's machine

We recall the underlying syntax and machine of Krivine’s classical realizability from [10].
The syntax consists of three syntactic classes called terms, stacks, and processes.

Terms: t =z | Avt|tt| | ke
Stacks: T = |t t closed, mo € Mo (1)
Processes: p ii=txmw t closed

Thus, the terms are the terms of the A-calculus, augmented by a constant a for call/cc, and
continuation terms k, for any stack 7. A stack, in turn, is a list of closed terms terminated
by an element my of a designated set g of stack constants. A process is a pair t x 7w of a
closed term and a stack. The set of closed terms is denoted by A, the set of stacks is 1, and
the set of processes is Ax[1.

Krivine’s machine is now defined by a transition relation > on processes called evaluation.

(push) tu x - tx um
(pop) Az . tlz]) xum > tlul*xw (2)
(save) cxtw > t* ke

(restore) kr xt:p > txm
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The first two rules implement weak head reduction of A-terms, and the third and fourth rule
capture and restore continuations.

2.2 The machine with 1/0

To incorporate I/O we modify the syntax as follows:

Terms: t s=x|Azt|tt|a|ke|r|wl|w|end
Stacks: Tu=¢|tm t closed
Processes: p u=t*x7|T t closed

The grammar for terms is extended by constants r,w0,wl,end for reading, writing and
termination, and in exchange the stack constants are omitted — ¢ is the empty stack. Finally
there is a process constant T also representing termination — the presence of both end and T
will be important in Section 3.

We write A, and I, for the sets of terms and stacks of the syntax with I/O, and P for
the set of processes. Furthermore, we denote by A, the set of pure terms, i.e. terms not
containing any of r, w0, wl, end.

The operational semantics of the extended syntax is given in terms of execution contexts,
which are triples (p, ¢, 0) of a process p, and a pair ¢,0 € {0, 1}* of binary strings representing
input and output. On these execution contexts, we define the execution relation ~~ as follows:

(1) ( tx T, L,0) ~ (uxp,t 0 whenever t xm = u* p

(r0) ( rxtwovm0,0) ~ (t*xm 1, 0)

(r1) ( r*xtwvm li,0) ~ (uxm, ¢, 0)

(re) ( rxtwovm g0) ~ (v*me, 0) (3)
(w0) (Wox  tm t,0) ~ (t*m, ¢, 00)

(wl) (wl*x  tm, t,0) ~ (txm, ¢, lo)

(e) (end % 7w, t,0) ~ (T 1 o)

Thus, if there is neither of r,w0,wl, end in head position, the process is reduced as in (2)
without changing ¢ and o. If r is in head position, the computation selects one of the first
three arguments depending on whether the input starts with a 0, a 1, or is empty. w0 and
wl write out 0 and 1, and end discards the stack and yields T, which represents successful
termination.

We observe that the execution relation is deterministic, i.e. for every execution context
there is at most one transition possible, which is determined by the term in head position,
and in case of r also by the input.

2.3 Representing functions

We view the above formalism as a model of computation that explicitly includes reading of
input, and writing of output.

Consequently, when thinking about expressivity we are not so much interested in the
ability of the machine to transform abstract representations of data like ‘Church numerals’,
but rather in the functions on binary strings that processes can compute by reading their
argument from the input, and writing the result to the output.

» Definition 1. Forn € N, bin(n) € {0,1}* is the base 2 representation of n. 0 is represented
by the empty string, thus we have e.g. bin(0) = ¢, bin(1) = 1, bin(2) = 10, bin(3) =11, ...

A process p is said to implement a partial function f : N — N, if (p,bin(n),e) ~*
(T,e,bin(f(n))) for all n € dom(f).
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» Remark. There is a stronger version of the previous definition which requires (p, bin(n), €)
to diverge or block for n ¢ dom(f), and a completeness result like Thm. 12 can be shown for
the strengthened definition as well.

We use the weaker version, since we expect the poles 1Ly defined in Section 5.2.1 to be
better behaved this way.

2.4 B-reduction

To talk about contraction of single S-redexes which are not necessarily in head position in a
process p, we define conterts — which are terms/stacks/processes with a single designated
hole [] in term position — by the following grammar:

Term contexts: tl] = [ Awtl] | e[t | tt[] | kep
Stack contexts: wl] uw= tw[] | t[]7m t,t[-] closed
Process contexts:  p[| = t[]*x7|t*7[]

Contexts are used to talk about substitution that allows capturing of variables — as described
in [1, 2.1.18], given a context t[-]/x[-]/p[-] and a term w, t[u]/m[u]/p[u] is the the result of

replacing the hole [-] in t[-] /7] -] by u, allowing potential free variables in u to be captured.
p g pl| by u, gp p

We say that u is admissible for t[-]/n[-]/p[-], if t[u]/m[u]/p[u] is a valid term/stack/process
conforming to the closedness condition for terms making up stacks.

Now we can express S-reduction as the action of contracting a single redex: given a redex
(Az . u)v which is admissible for a context t[-]/7[-]/p[], we have

Az u)v] =g tlufv/a]]  w[(Az.u)o] =g wlulv/a]]  pl(Az.uw)o] = plulv/z]],

and any single S-reduction can uniquely be written this way. [-equivalence ~3 is the
equivalence relation generated by B-reduction.

3 Bisimulation and T-equivalence

To reason efficiently about execution of processes with side effects — in particular to show
Turing completeness in Section 4 — we want to show that although the computation model
imposes a deterministic reduction strategy, we can perform (-reduction anywhere in a process
without changing its I/O behavior.

The natural choice of concept to capture ‘equivalence of 1/O behavior’ is weak bisimilarity
(see [13, Section 4.2]), and in order to make this applicable to processes we have to reformulate
the operational semantics as a labeled transition system (LTS).

We use the set £ = {r0,rl,re,w0,wl, e} of labels, where r0, rl represent reading of a 0 or
1, respectively, and w0, wl represent writing of bits. re represents the unsuccessful attempt
of reading on empty input, and e represents successful termination. The set Act = LU {7}
of actions contains the labels as well as the symbol 7 representing a ‘silent’ transition, that
is used to represent effect-free evaluation.

The transition system on processes is now given as follows.

Az .tz])*tm 5 tlu] 7 Fetwom 5 thr WOXET 2% ta
tuxm - tkuw rk b s ukT wlxt-m 2L twer
T re e (4)
acxtm —  txkgw rxt-u-v-m— vk endxmt — T

kpxtp = txm
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Observe that the 7-transitions are in correspondence with the transitions of the evaluation
relation (2), and the labeled transitions correspond to the remaining transitions of the
execution relation (3).

We now recall the definition of weak bisimulation relation from [13, Section 4.2].

» Definition 2.
For processes p,q we write p = ¢ for p 5* ¢, and for o # T we write p 2 ¢ for
W.qd . p=p Sd >q
A weak bisimulation on P is a binary relation R C P? such that for all & € Act and
(p,q) € R we have

pSyp = 3 .q=2¢ AN (@P.¢)ER and )
¢g5qd = P .p=3pA0.d)ER
Two processes p,q are called weakly bisimilar (written p = ¢), if there exists a weak
bisimulation relation R with (p,q) € R.
We recall the following important properties of the weak bisimilarity relation ~.

» Lemma 3. Weak bisimilarity is itself a weak bisimulation, and furthermore it is an
equivalence relation.

Proof. [13, Proposition 4.2.7] <

To show that [-equivalent processes are bisimilar, we have to find a bisimulation relation
containing S-equivalence. The following relation does the job.

» Definition 4 (y-equivalence). y-equivalence (written p ~., ¢) is the equivalence relation on
processes that is generated by S-reduction and 7-transitions.

» Lemma 5. v-equivalence of processes is a weak bisimulation.

Proof. It is sufficient to verify conditions (5) on the generators of y-equivalence, i.e. one-step
B-reductions and 7-transitions. Therefore we show the following;:

1. if p 5 g and p = p’ then there exists ¢’ with ¢ = ¢’ and p’ ~, ¢

2. if p 5 g and ¢ = ¢ then there exists p’ with p = p’ and p’ ~, ¢’

3. if p—p g and p = p' then there exists ¢’ with ¢ = ¢’ and p’ ~, ¢’

4. if p—4 q and ¢ = ¢’ then there exists p’ with p = p’ and p’ ~,, ¢’

In the first case, the fact that the LTS can only branch if r is in head position, and this
does not involve T-transitions, implies that o = 7 and p’ = ¢, and we can choose ¢’ = ¢ as
well. In the second case we have p = ¢’ and thus can choose p’ = ¢'.

For cases 3 and 4, which we treat simultaneously, we have to analyze the structure of p
and ¢, which are of the form r[(Az. s)t] and r[s[t/z]] for some context r[-] (see Section 2.4).
The proof proceeds by cases on the structure of r[-].

If 7[-] is of either of the forms (st 7)[-]*, w0 x7[-], Wl x7[-], @*7[-], (kx % p)[-], or end*7[],
then it is immediately evident that p and ¢ can perform the same unique transition (if any),
and the results will again be S-equivalent (possibly trivially, since the redex can get deleted
in the transition).

If r[-] is of the form ((Ay.u)x m)[-] then this is true as well, regardless of whether the
hole is in w or in 7 (here the redex can be duplicated, if the hole is in the first term in 7).

1 The notation is meant to convey that we don’t care if the hole is in s, ¢, or 7.
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If r[] is of the form rx 7[-] then several transitions may be possible, but any transition
taken by either of p or ¢ can also be taken by the other, and the results will again be
[B-equivalent.

It remains to consider r[-] of the form [-]*7. In this case, p = (Az . s)t*m and g = s[t/x]*~.
Here p can perform the transition p — (Ax . ) x t-m which can be matched by ¢ = ¢ where
we have (Az.s)xt-m ~ p ~, ¢. In the other direction we have p = ¢ for every ¢ = ¢ since
p = q. <«

The following definition and corollary makes the link between the execution relation (3) and
the LTS (4).

» Definition 6. Two execution contexts (p,¢,0), (q,¢',0') are called T-equivalent (written
(p,t,0) ~7 (q,0,0")), if for all ", 0" € {0,1}* we have

(p,t,0) ~* (T,0",0") iff (q,0/,0") ~* (T,.",0").

» Corollary 7.

1. p = q implies (p,t,0) ~1 (g,t,0) for all t,0 € {0,1}*.
2. (p,t,0) ~* (g, V', 0") implies (p,t,0) ~1 (g,',0").

3. (p,t,0) ~1 (T,/,0") implies (p,1,0) ~* (T,/,0).

Proof. For the first claim we show that
prq, (p,t,0)~*(T,/,0) implies (q,t,0)~" (T, 0)

by induction on the length of (p,¢,0) ~* (T,¢/,0’). The base case is clear. For the induction
step assume that (p,t,0) ~ (p*,t*,0*) ~* (T,¢/,0"). If the initial transition is a (7) in the
execution relation (3), then have p* & ¢, t* = and 0* = o0, and we can apply the induction
hypothesis. If the initial transition corresponds to another clause in (3), then there is a
corresponding transition p = ¢ with o € £ in the LTS (4), and by bisimilarity there exists a
¢* with ¢ = ¢* and p* ~ ¢*. Now the induction hypothesis implies (g*,¢*,0*) ~* (T,/,0'),
and from ¢ = ¢* we can deduce (g, ,0) ~* (¢*,1*,0") by cases on a.

The second claim follows since ~ is deterministic.

The third claim follows since (T,¢/,0") can not perform any more transitions. <

4  Expressivity

In this section we show that the machine with I/O is Turing complete, i.e. that every
computable f: N — N can be implemented in the sense of Def. 1 by a process p.

Roughly speaking, given f, we define a process p that reads the input, transforms it into
a Church numeral, applies a term ¢ that computes f on the level of Church numerals, and
then writes the result out.

To decompose the task we define terms R and W for reading and writing, with the
properties that (R * m,bin(n),0) ~T1 (7 % m,¢e,0) (7 is the n-th Church numeral), and
(Wasm,t,e) ~1 (T,t,bin(n)) for all n € N.

Now the naive first attempt to combine R and W with the term ¢ computing the function
would be something like W (¢tR), but this would only work if the operational semantics was
call by value. The solution is to use Krivine’s storage operators [9] which where devised
precisely to simulate call by value in call by name, and we use a variation of them.

The following definition introduces the terms R and W, after giving some auxiliary
definitions.
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» Definition 8.
E, Z B,C,H,Y, S are A-terms satisfying

Bm ~g 2n E(2n)st ~5 s Yit~gt(Yi)
Cn ~p2n+1 E@2n+1)st~pgt
Hm ~g floor(n/2) Z(0)st ~g s
ST ~gn+1 Z(n+1)st ~pt

for all terms s,t and n € N, where 7 is the Church numeral A\ fz . f"z.2

The terms F, R, W are defined as follows:

F = \hy.h(Sy)?
R =YQO0 where Q= Azn.r(z(Bn))(z(Cn))n
W =YV where V =Xzn.Znend(En(wW z(Hn))(wlx(Hn)))

The next three lemmas explain the roles of the terms R, F', and W.
» Lemma 9. Foralln € N, 7w € I and o € {0,1}* we have (Rxm,bin(n),0) ~1 (Wx7,¢,0).
Proof. For all n € N we have YQ7 ~5 Q(Y Q) ~5 r(YQ(2n))(YQ(2n + 1))n, and thus

YQnuxme,0) ~1 (M*7,e,0)
(YQnuxm,0t,0) ~1 (YQ(2n) x,¢,0)
YQnu*m,1t,0) ~1 (YQ(2n+ 1) xm,¢,0)

The claim follows by induction on the length of bin(n), since bin(2n) = bin(n)0 for n > 0,
and bin(2n + 1) = bin(n)1. <

» Lemma 10. For n € N and t any closed term, we have n F't0 ~ t 7.

Proof. This is because m F't0 ~g F"t0 ~3 t (S™0) ~4 t7, where the second step can be
shown by induction on n. |

» Lemma 11. For alln € N, w € N and ¢ € {0,1}* we have
Proof. We have Wn ~3 VW T ~g ZTend(EnR(W W (H7)

Wnm,i,e) ~1 (T, bin(n)).
wl W(Hm))), and therefore

(W (2n) * 1, 0) ~1t (WOW(H (2n)) *,¢,0) ~T W(?) *m,1,00) for (n>0)

)
(WO *m,t,0) ~T (end *m,¢,0 ~T1 (T,t,0)
(
(W(2n+1)xm,t,0) ~1 WLW(H (2n+1)) *m,¢,0) ~1 (W(R) *,¢, o).

The claim follows again by induction on the length of bin(n). <

» Theorem 12. FEvery computable function f: N — N can be implemented by a process p.

Proof. From [5, Thm. 4.23] we know that there exists a term ¢ with t@ ~g f(n) for
n € dom(f). The process p is given by R % F-t-0-F-W-0. Indeed, for n € dom(f) we have

(R * F-t-0-F-W-0, bin(n), )NT (mx Ft-0-F-W-0,e,e) ~1 (MFt0Ox F-W-0,¢,¢)

T (tm*x F-W-0,¢,¢€) ~t (f(n)« F-W-0,¢,¢)
~1 (W f(n) xee¢) ~7 (T,&,bin(f(n)))
(n

and we deduce (R % F-t-0-F-W-0,bin(n),e) ~* (T,e,bin(f(n))) by Corollary 7-3. <

2 Such terms exist by elementary M-calculus, see e.g. [5, Chapters 3,4]. In particular, Y is known as fized
point operator.
3 This is (part of) a storage operator for Church numerals [9].
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5 Realizability and Triposes

The aim of this section is to describe how the presence of I/O instructions allows to define
new realizability models, which we do in the categorical language of triposes and toposes[21].

In Subsection 5.1 we give a categorical reading of Krivine’s realizability interpretation as
described in [10] and show how it gives rise to triposes. In Subsection 5.2 we show how the
definitions can be adapted to the syntax and machine with I/O, and how this allows us to
define new realizability models from specifications.

The interpretation of Krivine realizability in terms of triposes is due to Streicher [18],
and has further been explored in [2]. However, the presentation here is more straightforward
since the constructions and proofs do not rely on ordered combinatory algebras, but directly
rephrase Krivine’s constructions categorically.

5.1 Krivine’s classical realizability

Throughout this subsection we work with the syntaz (1) without I/0 instructions but with
stack constants.

Krivine’s realizability interpretation is always given relative to a set of processes called a
‘pole’ — the choice of pole determines the interpretation.

» Definition 13. A pole is a set 1L C Ax[1 of processes which is saturated, in the sense that
p € A and p’ = p implies p’ € L.

As Miquel [15] demonstrated, the pole can be seen as playing the role of the parameter R in
Friedman’s negative translation [3]. In the following we assume that a pole L is fixed.

A truth value is by definition a set S C I of stacks. Given a truth value S and a term ¢,
we write ¢ I S — and say ‘¢ realizes S” — if Vr € S.txm € 1. We write S ={t e A| tI- S}
for the set of realizers of 1. So unlike in Kleene realizability the elements of a truth value
are not its realizers — they should rather be seen as ‘refutations’, and indeed larger subsets
of M represent ‘falser’ truth values?; in particular falsity is defined as

L = T
Given truth values S, T C I, we define the implication S = T as follows.
S=T = StT={sn|slFS,rmeT}

With these definitions we can formulate the following lemma, which relates refutations of a
truth value S with realizers of its negation.

» Lemma 14. Given m € S C T, we have k; IS = L.

Proof. We have to show that k. xt-p € 1 for all ¢ IF § and p € I. This is because
kp*xt-p>=txm, where m € S and t I+ S. <

A (semantic) predicate on a set I is a function ¢ : I — P(IN) from I to truth values. On
semantic predicates we define the basic logical operations of falsity, implication, universal

4 For this reason, Miquel [15, 16] calls the elements of P(IN) falsity values.
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quantification, and reindexing by

1(#) = N (falsity)
(0 =1)(@) = (i) = (i) = p(i)"(i) (implication) ()
V¢ (0)(4) Ups)=i 00) (universal quantification)
ffo = pof (reindexing)

for o, : I — P(N), 0 :J — P(N) and f: J — I. Thus, for any function f : J — I, the
function Vy (called ‘universal quantification along f’) maps predicates on J to predicates on
I°, and the function f* (called ‘reindexing along f’) maps predicates on I to predicate on .J.
We write V; for universal quantification along the terminal projection I — 1.

Next, we come to the concept of ‘truth/validity’ of the interpretation. We can not simply
call a truth value ‘true’ if it has a realizer — this would lead to inconsistency as soon as the
pole 1L is nonempty, since k.t I L for any process ¢t x w € IL. The solution is to single out a
set PL of ‘well-behaved’ realizers called ‘proof-like terms’. We recall the definition from [10].

» Definition 15. The set PL C A of proof-like terms is the set of terms ¢ that do not contain
any continuations k.

As Krivine [10, pg. 2] points out, ¢ is a proof-like term if and only if it does not contain any
stack constant mg € My (since continuation terms k, necessarily contain a stack constant at
the end of 7, and conversely stacks can only occur as continuations in a term).

Proof-like terms give us a concept of logical validity — a truth value S is called wvalid, if
there exists a proof-like term ¢ with ¢ IF S.

With this notion, we are ready to define the centerpiece of the realizability model, which
is the entailment relation on predicates.

» Definition 16. For any set I and integer n, the (n + 1)-ary entailment relation (F;) on
predicates on [ is defined by

©1...onbr ifand only if F e PL.tIFVi(p1 = ... = on = ).
If the right hand side proposition holds, we call ¢ a realizer of @1 ...¢, F1 .

Thus, ¢1...9, Fr ¥ means that the truth value Vi(p1 = ... = ¢, = ) is valid. More
explicitly this can be written out as

3tePLYie Lu € o1(0)h, ... un € (i), m € ah(i) txuy-.. . -upm € L.

With the aim to show that the semantic predicates form a tripos in Theorem 22, we now
prove that the entailment ordering models the logical rules in Table (1). The first eight rules
form a standard natural deduction system for (the L, = fragment of) classical propositional
logic, but for universal quantification we give categorically inspired rules that bring us quicker
to where we want, and in particular avoid having to deal with variables.

» Lemma 17. The rules displayed in Table 1 are admissible for the entailment relation, in
the sense that if the hypotheses hold then so does the conclusion.

5 The usual Vz : A from predicate logic corresponds to taking f to be a projection map 71 : ' x A — T,
see e.g. [8, Chapter 4].
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Table 1 Admissible rules for the entailment relation.

I'kHr L
—— (LE
oFrg A% T g P
Lobry I Abryp =0
T osg OV T,AF 0 (=F)
ko
S PeL
e P A TR (s Doswoy O
| V) AA T Fr
ATk (W) ATl ©
Frhy € T F Ve
——— (VI —— (VE
I'FrVeg (D) f TE;€ (VE)
©, 1, 6 are predicates on I, i.e. functions I — P(M),and I'= 1 ..., and A =1 ... U,
are lists of such predicates. £ is a predicate on J, and f : J — [ is a function. o is
a permutation of {1,...,n}. f*T" is an abbreviation for f*p; ... f*¢,, and (') is an
abbreviation for ¢, (1) ... ¥o(n)-

Proof. (Ax) rule: The conclusion is realized by Az . x.

(LE) rule: every realizer of the hypothesis is also a realizer of the conclusion, since
JC Ll(@i)=MNforalliel.

(=1) rule: the hypothesis and the conclusion have precisely the same realizers.

(=E) rule: if ¢ realizes A F; ¥ = 0 and u realizes I I-; ¢ then T, A |, 6 is realized by
AL TpYt e Ym tYL - Y (UT . X))

(PeL) rule (‘Peirce’s law’): the conclusion is realized by «. To see this, let i € I,
tlF (¥(i) = L) = ¢(i), and m € ¥ (7). Then we have @ * t-m = t x k-, which is in I since
kr-m € (¢(i) = L) = 9(i) by Lemma 14 and the definition (6) of implication.

(W) rule: if ¢ realizes I' by ¢, then Az .t realizes A, T k1.

(C) rule: if ¢ realizes A, A,T by v, then A\x . txx realizes A, T by 1.

(S) rule: if ¢ realizes I' -7 ¢, then Az, (1) ... Ton) - tx1 ... 2y, realizes o(T) Fr .

(VI) and (VE) rules: I' F; V£ and f*T' 7 £ have exactly the same realizers. Indeed, a
realizer of f*I' - £ is a term ¢ satisfying

¥(i

Vje Ju € <,01(f(j))iL7 e Uy € apn(f(j))lmr €&() . txuy ... upm € 1,
and a realizer of I' -5 V(& is a term ¢ satisfying
Vie Lui € i), . un € o) m € Uppymi €07) -t ure o oupem € L,
and both statements can be rephrased as a quantification over pairs (¢, j) with f(j) =i. <=

We only defined the propositional connectives 1,=-, since T,A,V,— can be encoded as
follows:

-
oA

1l=1 -
(p=@W=1)=1L oV

=1

(p=1)=7 @)

With these encodings it is routine to show the following.
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» Lemma 18. With the connectives T,A,V, - encoded as in (7), the rules of propositional
classical natural deduction (e.g. system Nc in [19, Section 2.1.8]) are derivable from the rules
in Table 1.

With this we can show that for any set I, the binary part of the entailment relation
makes P(M)! into a Boolean prealgebra.

» Definition 19. A Boolean prealgebra is a preorder (B, <) which

1. has binary joins and meets — denoted by z V y and x Ay for x,y € D,

2. has a least element 1 and a greatest element T,

3. is distributive in the sense that A (yV z) 2 (x Ay) V (x A 2) for all z,y,z € B, and
4

is complemented, i.e. for every x € D there exists a —x with x A=z = L andzV -2z = T.
» Lemma 20. Writing o < for ¢ 11, (P(M)!, <) is a Boolean prealgebra.

Proof. The (Ax) rule implies that < is reflexive, and transitivity follows from the derivation

Y0
ok Fry=0.
pkro

Thus, < is a preorder on P(M)7.

The joins, meets, complements, and least and greatest element are given by the corre-
sponding logical operations as defined in (6) and (7).

The required properties all follow from derivability of corresponding entailments and
rules in classical natural deduction — for example, ¢ A 9 is a binary meet of ¢ and v since

QFIQO GFIQZJ
OFr oA

(*) the entailments ¢ A ;¢ and ¢ A by ¢ and the rule

are derivable.
Distributivity follows from derivability of the entailments ¢ A (¢ V 0) Fr (@A) V (@ A D)
and (0 AY)V (e AO)Fr oA (W VE). <

We now come to triposes, which are a kind categorical model for higher order logic. We use
a ‘strictified’ version of the original definition [7, Def. 1.2] since this bypasses some subtleties
and is sufficient for our purposes. Furthermore, we are only interested modeling classical
logic here, and thus can restrict attention to triposes whose fibers are Boolean (instead of
Heyting) prealgebras.

» Definition 21. A strict Boolean tripos is a contravariant functor P : Set®® — Ord from
the category of sets to the category of preorders such that

for every set I, the preorder P(I) is a Boolean prealgebra, and for any function f: J — I,
the induced monotone map P(f) : P(I) — P(J) preserves all Boolean prealgebra structure.

5 <Strict’ refers to the facts that (i) P is a functor, not merely a pseudofunctor (ii) the Boolean prealgebra
structure is preserved ‘on the nose’ by the monotone maps P(f) (iii) the Beck-Chevalley condition is
required up to equality, not merely isomorphism, (iv) we require equality and uniqueness in the last
condition. Every strict tripos is a tripos in the usual sense, and conversely it can be shown that any
tripos is equivalent to a strict one.
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for any f:J — I, P(f) has left and right adjoints” 3y 4 P(f) 4V such that

L —— K
for any pullback square® pl J/g (8)

J— T

we have P(g) oVy =V, o P(p) (this is the Beck-Chevalley condition), and
there exists a generic predicate, i.e. a set Prop and an element tr € P(Prop) such that for
every set I and ¢ € P(I) there exists a unique function f : I — Prop with P(f)(tr) = ¢.

The assignment I ~ (P(M)!, <) extends to a functor Py : Set®® — Ord by letting
Py (f) = f*, i.e. mapping every function f : J — I to the reindexing function along f, which
is monotone since every realizer of ¢ Fr % is also a realizer of p o f ;¢ o f.

» Theorem 22. P is a strict Boolean tripos.

Proof. We have shown in Lemma 20 that the preorders (P(M)!, <) are Boolean prealgebras.

It is immediate from (6) that the reindexing functions f* preserve L and =, and the other
Boolean operations are preserved since they are given by encodings.

The identity function id : P(M) — P(I) is a generic predicate for P .

The (VI) and (VE) rules together imply that the operation V; : P(M)! — P(M)” is right
adjoint to f* for any f : J — I. Existential quantification along f : J — I is given by
df = — oV o, which is left adjoint to f* since

Vimobry Mt Ve i ffp by i ffY by e it oy MY

forall p: J — P(M) and ¥ : I — P(M).
It remains to verify the Beck-Chevalley condition. Given a square as in (8) we have

gVi(e(k) = Ue() | fG) =g(k)} and Vo(p*(k)) = U{e() | 3l.pl =j Aql =k},
and the two terms are equal since the square is a pullback. <

Thus we obtain a tripos P for each pole \L. As Hyland, Johnstone, and Pitts showed in [7],
every tripos P gives rise to a topos Set[P] via the tripos-to-topos construction. Since the
fibers of the triposes P are Boolean prealgebras, the toposes Set[P | are Boolean as well,
which means that their internal logic is classical.

5.1.1 Consistency

Triposes of the form P can be degenerate in two ways: if I is empty then P (I) ~ (P(I), C)
for every set I, and the topos Set[P ] is equivalent to the category Set.

If, in the other extreme, the pole is so big that there exists a proof-like ¢ realizing L,
i.e. falsity is valid in the model, then we have P (I) ~ 1 for all I (since ¢ realizes every
entailment ¢ b7 1), and the topos Set[P ] is equivalent to the terminal category.

By consistency we mean that falsity is not valid, or equivalently that

ViePL3IneNM.txm ¢ 1. (9)
7 ‘Adjoint’ in the sense of ‘adjoint functor’, where monotone maps are viewed as functors between

degenerate categories.
8 The square being a pullback means that fop = goqand Vik. f(j) = g(k) = N .p() = j A q(l) = k.
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The ‘canonical’ (according to Krivine [12]) non-trivial consistent pole is the thread model,
which is given by postulating a stack constant m; for each proof-like term ¢, and defining
L ={pe Ax| -3t € PL.txm ~* p}. Then the processes t x m; are not in L for any
proof-like ¢, which ensures the validity of condition (9).

In the next section we show how the presence of side effects allows to define a variety of
new, ‘meaningful’ consistent poles.

5.2 Krivine realizability with 1/0

The developments of the previous section generalize pretty much directly to the syntax with
I/0. Concretely, we carry over the definitions of pole, truth value, realizer, predicate, and of
the basic logical operations L, =-,V, by replacing A with A., I with ., and A% with P.

We point out that in presence of effects, Definition 13 only means that 1L is saturated
w.r.t. effect-free evaluation, in contrast to Miquel’s approach [14] where a pole is a set of
(what we call) execution contexts, closed under the entire execution relation.

The concept of proof-like term deserves some reexamination. It turns out that the
appropriate concept of proof-like term is ‘term not containing any side effects’. This is
consistent with Definition 15 if we read ‘free of side effects’ as ‘free of non-logical constructs’,
which are the stack constants in Krivine’s case. Continuation terms, on the other hand, can
be considered proof-like. We redefine therefore:

» Definition 23. The set PL C A, of proof-like terms is the set of terms not containing any
of the constants r, w0, wl, end.

With this rephrased definition of proof-like term, we can define the entailment relation on
the extended predicates in the same way:

» Definition 24. For any set I and integer n, the (n + 1)-ary entailment relation (F;) on
the set P(IMN.)! of extended predicates on I is defined by

©1...onbr ifand only if Ft e PL.tIFVYi(p1 = ... = on = ).
As a special case, the ordering on extended predicates is defined by
p < ifandonlyif FtePL.tIFVi(p= ).
With these definitions, we can state analogues of Lemma 20 and Theorem 22:

» Theorem 25.
For each set I, the order (P(N.)!, <) of extended predicates is a Boolean prealgebra.
The assignment I — (P(N.)!, <) gives rise to a strict Boolean tripos P : Set®® — Ord.

Proof. This follows from the arguments in Section 5.1, since the proofs of Lemmas 14,17,
18,20, and of Theorem 22 are not obstructed in any way by the new constants, nor do they
rely on stack constants. The redefinition of ‘proof-like term’ does not cause any problems
either, since we never relied on proof-like terms not containing continuation terms. |

The above rephrasing of the definition of proof-like term admits an intuitive reformulation
of the consistency criterion (9):

» Lemma 26. A pole 1L is consistent if and only if every p € IL\ {T} contains a non-logical
constant, i.e. one of r,w0,wl, end.

Proof. If every element of p € AL \ {T} contains a non-logical constant, then ¢ x ¢ is not in
AL for any proof-like ¢, which implies (9).

On the other hand, if £ * 7 € AL does not contain any non-logical constant then kt is a
proof-like term which realizes L, since for any p € I, we have kytxp > kyxt-p = txm € L. <«
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5.2.1 Poles from specifications

The connection between poles and specifications is established by the following lemma.
» Lemma 27. Every set 1L of processes that is closed under weak bisimilarity is a pole.
Proof. This is because p =~ ¢ whenever p > ¢, which follows from Lemma 5. <

Since we can assume that for any reasonable specification the processes implementing it are
closed under weak bisimilarity, we can thus conclude that for any specification, the set of
processes implementing it is a pole. For example:
AL, is the set of processes that read the input, copy every bit immediately to the output,
and terminate when the input is empty. We have ¥ x (Az.r(w0z)(wl z)end) € L.
Al ;v contains the processes that first read the entire input, and then write out the same
string and terminate. We have R x F-W-0 € I, with the notations of Section 4.
For any partial function f : N — N, the pole L ¢ consists of those processes that implement
f in the sense of Definition 1.
Since poles are closed under unions, we can define the pole Il p = Ufe g ALy for any set
F C (N — N) of partial functions.

5.2.2 Toposes from computable functions

We are particularly interested in the poles AL ¢ associated to computable functions f, and we
want to use the associated triposes Py = P ., and toposes Set[P;] to study these functions.

The following theorem provides a first ‘sanity check’, in showing that the associated
models are non-degenerate.

» Theorem 28. Let f: N — N.
AL ¢ is consistent if and only if f is not totally undefined.
AL ¢ is non-empty if and only if f is computable.

Proof. The first claim follows from Lemma 26. If n € dom(f) and ¢ % 7 implements f, then
(t % 7,bin(n), ) must terminate and thus ¢ x 7 must contain an end instruction. The totally
undefined function, on the other hand, is by definition implemented by every process.

For the second claim, we have shown in Theorem 12 that every computable f is imple-
mented by some process. Conversely, every implementable function is computable since the
Krivine machine with I/O is an effective model of computation. |

5.3 Discussion and future work

The structure and properties of the toposes Set[P| remain mysterious for the moment, and
in future work we want to explore which kind of properties of f are reflected in Set[P]. In
the spirit of Grothendieck [4] we want to view the toposes Set[P¢] as geometric rather than
logical objects, the guiding intuition being that Set[P¢] can be seen as representation of ‘the
space of solutions to the algorithmic problem of computing f’, encoding e.g. information on
how algorithms computing f can be decomposed into simpler parts.

Evident problems to investigate are to understand the lattice of truth values in Set[P/],
and to determine for which pairs f, g of functions the associated toposes are equivalent, and
which functions can be separated.

A more audacious goal is to explore whether Set[P;] can teach us something about the
complexity of a computable function f. The Krivine machine with I/O seems to be a model
of computation that is fine grained enough to recognize and differentiate time complexity
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of different implementations of f, but it remains to be seen in how far this information is
reflected in the ‘geometry’ of Set[Py].

Acknowledgements. Thanks to Jakob Grue Simonsen and Thomas Streicher for many

discussions.
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—— Abstract

We study an extension of Plotkin’s call-by-value lambda-calculus by means of two commutation
rules (sigma-reductions). Recently, it has been proved that this extended calculus provides
elegant characterizations of many semantic properties, as for example solvability. We prove
a standardization theorem for this calculus by generalizing Takahashi’s approach of parallel
reductions. The standardization property allows us to prove that our calculus is conservative
with respect to the Plotkin’s one. In particular, we show that the notion of solvability for this

calculus coincides with that for Plotkin’s call-by-value lambda-calculus.
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1 Introduction

The A,-calculus (A, for short) has been introduced by Plotkin in [15], in order to give a formal
account of the call-by-value evaluation, which is the most commonly used parameter passing
policy for programming languages. A, shares the syntax with the classical, call-by-name,
A-calculus (A for short), but its reduction rule, S, is a restriction of 3, firing only in case the
argument is a value (i.e., a variable or an abstraction). While 3, is enough for evaluation, it
turned out to be too weak to study operational properties of terms. For example, in A, the
B-reduction is sufficient to characterize solvability and (using extensionality) separability,
but, in order to characterize similar properties for \,, it has been necessary to introduce

different notions of reduction unsuitable for a correct call-by-value evaluation (see [13, 14]):

o
v

of A, proposed in [3]. It keeps the A, (and \) syntax and it adds to the §,-reduction two

this is disappointing and requires complex reasoning. In this paper we study A7, the extension
commutation rules, called ¢; and o3, which unblock (,-redexes that are hidden by the
“hyper-sequential structure” of terms. It is well-known (see [14, 1]) that in A, there are
normal forms that are unsolvable, e.g. (A\yx.zz)(zz)(Ax.zz). The more evident benefit of AZ
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is that the commutation rules make all normal forms solvable (indeed (Ayx.zx)(zz)(Az.zx)
is not a AZ normal form). More generally, the so obtained language, allows us to characterize
operational properties, like solvability and potential valuability, in an internal and elegant
way (see [3]). In this paper we prove a standardization property in AZ

7, and some of its
consequences, namely its soundness with respect to the semantics of \,,.

Let us recall the notion of standardization, which has been first studied in the ordinary
A-calculus (see, for example [5, 8, 2]). A reduction sequence is standard if its redexes are
ordered in a given way, and the corresponding standardization theorem establishes that every
reduction sequence can constructively be transformed into a standard one. Standardization
is a key tool to grasp the way in which reductions work, that sheds some light on redexes
relationships and their dependencies. It is useful for characterization of semantic properties
through reduction strategies (the proof of operational semantics adequacy is a typical use).

In the )\, setting standardization theorems have been proved by Plotkin [15], Paolini and
Ronchi Della Rocca [14, 12] and Crary [4]. The definition of standard sequence of reductions
considered by Plotkin and Crary coincides, and it imposes a partial order on redexes, while
Paolini and Ronchi Della Rocca define a total order on them. All these proofs are developed
by using the notion of parallel reduction introduced by Tait and Martin-Lo6f (see Takahashi
[17] for details and interesting technical improvements). We emphasize that this method
does not involve the notion of residual of a redex, on which many classical proofs for the
A-calculus are based (see for example [8, 2]). As in [15, 17, 14, 4], we use a suitable notion
of parallel reduction for developing our standardization theorem for AJ. In particular we
consider two groups of redexes, head §,-redexes and head o-redexes (putting together o1 and
03), and we induce a total order on head redexes of the two groups, without imposing any
order on head o-redexes themselves. More precisely, when o-redexes are missing, this notion
of standardization coincides with that presented in [14]. Moreover, we show that it is not
possible to strengthen our standardization by (locally) ordering o-reduction to os-reduction
(or viceversa).

As usual, our standardization proof is based on a sequentialization result: inner reductions
can always be postponed after the head ones, for a non-standard definition of head reduction.
Sequentialization has interesting consequences: it allows us to prove that fundamental opera-
tional properties in AJ, like observational equivalence, potential valuability and solvability, are
conservative with respect to the corresponding notions of A,. This fully justifies the project
in [3] where A7 has been introduced as a tool for studying the operational behaviour of \,,.

Other variants of A, have been introduced in the literature for modeling the call-by-value
computation. We would like to cite here at least the contributions of Moggi [10], Felleisen
and Sabry [16], Maraist et al. [9], Herbelin and Zimmerman [7], Accattoli and Paolini [1]. All
these proposals are based on the introduction of new constructs to the syntax of A, so the
comparison between them is not easy with respect to syntactical properties (some detailed
comparison is given in [1]). We point out that the calculi introduced in [10, 16, 9, 7] present
some variants of our o7 and/or o3 rules, often in a setting with explicit substitutions.

Outline. In Section 2 we introduce the language AJ and its operational behaviour; in
Section 3 the sequentialization property is proved; Section 4 contains the main result, i.e.,
standardization ; in Section 5 some conservativity results with respect to Plotkin’s A,-calculus
are proved. Section 6 concludes the paper, with some hints for future work.
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2 The call-by-value lambda calculus with sigma-rules

In this section we present A7, a call-by-value A-calculus introduced in [3] that adds two o-reduc-
tion rules to pure (i.e. without constants) call-by-value A-calculus defined by Plotkin in [15].

The syntax of terms of A9 [3] is the same as the one of ordinary A-calculus and Plotkin’s
call-by-value A-calculus A, [15] (without constants). Given a countable set V of variables
(denoted by x,y, z, ... ), the sets A of terms and A, of values are defined by mutual induction:

(Ay) V.U ==z | \e. M values
(A) M,N,L:=V | MN terms

Clearly, A, € A. All terms are considered up to a-conversion. The set of free variables of a
term M is denoted by fv(M). Given Vi,...,V, € A, and pairwise distinct variables a1, ..., Z,,
M{Vi/x1,...,Vyu/xn} denotes the term obtained by the capture-avoiding simultaneous sub-
stitution of V; for each free occurrence of x; in the term M (for all 1 < ¢ < n). Note that, for
all V. Vq,...,V, € A, and pairwise distinct variables x1,..., %, V{Vi/z1,..., Vi /xn} € Ay.

Contexts (with exactly one hole (-)), denoted by C, are defined as usual via the grammar:

Cu= () | Az.C | CM | MC.

We use C(M) for the term obtained by the capture-allowing substitution of the term M for
the hole () in the context C.

» Notation. From now on, we set [ = Az.x and A = A\z.zz.

The reduction rules of A consist of Plotkin’s 3,-reduction rule, introduced in [15], and
two simple commutation rules called o7 and o3, studied in [3].

» Definition 1 (Reduction rules). We define the following binary relations on A (for any
M,N,L € Aandany V € A,):

(M. M)V =g, M{V/z}
AM.M)NL w4, (Ax.ML)N  with z ¢ fv(L)
V(Ax.L)N) =4, (Az.VL)N  with x ¢ fv(V).

For any r € {8,,01,03}, if M —, M’ then M is a r-redex and M’ is its r-contractum. In
this sense, a term of the shape (Ax.M)N (for any M, N € A) is a B-redex.
We set =g = =4, U =g, and =, = =g, U=,

The side conditions on —,, and —, in Definition 1 can be always fulfilled by a-renaming.

Obviously, any f,-redex is a S-redex but the converse does not hold: (Ax.z)(yI) is a
B-redex but not a (,-redex. Redexes of different kind may overlap: for example, the term
ATA is a o1-redex and it contains the 3,-redex AT; the term A(IA)(«I) is a oq-redex and it
contains the o3-redex A(IA), which contains in turn the §,-redex ITA.

According to the Girard’s call-by-value “boring” translation (-)¥ of terms into Intuitionistic
Multiplicative Exponential Linear Logic proof-nets, defined by (A = B)" =1AY — !B (see
[6]), the images under (-)” of a o;-redex (resp. oz-redex) and its contractum are equal modulo
some “bureaucratic” steps of cut-elimination.

» Notation. Let R be a binary relation on A. We denote by R* (resp. R*; RT) the
reflexive-transitive (resp. transitive; reflexive) closure of R.
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» Definition 2 (Reductions). Let r € {8,,01,03,0,v}.

The r-reduction —, is the contextual closure of s, i.e. M —, M’ iff there is a context C
and N, N’ € A such that M = C(N), M’ = C(N’) and N —, N'.

The r-equivalence =, is the reflexive-transitive and symmetric closure of —,.

Let M be a term: M is r-normal if there is no term N such that M —, N; M is
r-normalizable if there is a r-normal term N such that M — N; M is strongly r-normalizing
if there is no sequence (N;);en such that M = Ny and N; —, N;41 for any ¢ € N. Finally,
—, is strongly normalizing if every N € A is strongly r-normalizing.

Patently, =, C —, and —3, C —.

=

» Remark 3. For any r € {3,,01,03,0,v} (resp. r € {01, 03,0}), values are closed under r-
reduction (resp. r-expansion): forany V € A,, if V.—, M (resp. M —, V) then M € A,; more
precisely, V = Az.N and M = Az.N’ for some N, N’ € A with N —, N’ (resp. N’ —, N).

» Proposition 4 (See [3]). The o-reduction is confluent and strongly normalizing. The
v-reduction is confluent.

The AJ-calculus, XS for short, is the set A of terms endowed with the v-reduction —,.
The set A endowed with the f,-reduction —g, is the A,-calculus (A, for short), i.e. the
Plotkin’s call-by-value A-calculus [15] (without constants), which is thus a sub-calculus of AJ.

» Example 5. M = (\y.A)(z])A —5, Ay AA)(z]) =5, (A\y.AA)(z]) —p, ... and N =
A((Ay.A)(z])) =5y Ay AA)(2]) =5, (A\y.AA)(zI) =g, ... are the only possible v-reduction
paths from M and N respectively: M and N are not v-normalizable, and M =, N. Meanwhile,
M and N are §,-normal and different, hence M #3, N (by confluence of —4,, see [15]).

Informally, o-rules unblock 3,-redexes which are hidden by the “hyper-sequential structure”
of terms. This approach is alternative to the one in [1] where hidden S,-redexes are reduced
using rules acting at a distance (through explicit substitutions). It can be shown that the
call-by-value A-calculus with explicit substitution introduced in [1] can be embedded in AJ.

3 Sequentialization

In this section we aim to prove a sequentialization theorem (Theorem 22) for the AZ-calculus
by adapting Takahashi’s method [17, 4] based on parallel reductions.

» Notation. From now on, we always assume that V.V’ € A,,.

Note that the generic form of a term is VM ... M,, for some m € N (in particular, values are
obtained when m = 0). The sequentialization result is based on a partitioning of v-reduction
between head and internal reduction.

» Definition 6 (Head 3,-reduction). We define inductively the head (3, -reduction imv by
the following rules (m € N in both rules):

By N 55, N’

Mo MYV My ... My 255 M{V/2YMi ... Mm right
AV e MUV VNMy ... My 255, VN'My ... My,

The head f3,-reduction 4, reduces exactly the same redexes (see also [13]) as the “left
reduction” defined in [15, p. 136] for A, and called “evaluation” in [16, 4]. If N 3 N’ then
N’ is obtained from N by reducing the leftmost-outermost 3,-redex, not in the scope of a A:
thus, the head S,-reduction is deterministic (i.e., it is a partial function from A to A) and
does not reduce values.
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» Definition 7 (Head o-reduction). We define inductively the head o-reduction =, by the
following rules (m € N in all the rules, z ¢ fv(L) in the rule oy, ¢ fv(V) in the rule o3):

o1 Nin, N’
VNMi...Mp e VN'Mi ... My,

(Az.M)NLM ... My, 250 (Ae.ML)NM; ... My, right

o3

V((Az.L)N)M; ... My, 25, Az VL)NM, ... M,,
The head (v-)reduction is L= i>@v U-,. The internal (v-)reduction is =N

Notice that —g, C imv C —p, and —, C L6 C =4 and —, € 5, C —,. Values are nor-
mal forms for the head reduction, but the converse does not hold: zI ¢ A, is head-normal.

Informally, if N 2, N’ then N’ is obtained from N by reducing “one of the left-
most” o1- or oz-redexes, not in the scope of a A: in general, a term may contain sev-
eral head o1- and os-redexes. Indeed, differently from iﬁ%y the head o-reduction —,
is not deterministic, for example the leftmost-outermost o1- and o3-redexes may overlap:
if M = (Ay.y/)(A(2zD)I then M 5, (\y.y'I)(A(zI)) = N; by applying the rule o; and
M L, (Az.(\y.y')(22))(xI)I =N, by applying the rule 3. Note that N; contains only a
head o3-redex and Ny =, (Az.(A\y.y/I)(22))(2I) = N which is normal for —,; meanwhile Ny
contains only a head o-redex and Ny <, (Az.(Ay.y’)(22)I)(zI) = N’ which is normal for
A0 N # N’, hence the head reduction 2, is not confluent and a term may have several
head-normal forms (this example does not contradict the confluence of o-reduction because
N’ —, N but by performing an internal reduction step). Later, in Corollary 26.2 we show that
if a term M has a head normal form N € A, then N is the unique head normal form of M.

» Definition 8 (Parallel reduction). We define inductively the parallel reduction = by the
following rules (x ¢ fv(L) in the rule oy, = ¢ fv(V) in the rule o3):

V=V M,=M (meN, 0<i<m) 5 N=N L=L M= M (meN, 0<i<m)
(Az.Mo)VM ... My = My{VIx}M] ... ML " (Ax.Mo)NLM; ... My, = (Ax.M{L'YN'M] ... M,
V=V' N=N L=L M=M (meN,1<i<m)
V((Az.L)N)M; ... M,, = (Az.V'L')N'M; ... M},

M, = M, (meN, 0<i<m) R M;= M] (meN, 1<i<m)
(Az.Mo)M, ... My, = (A& MM ... M), oM ... M, =z M.. M,

o1

o3

var

In Definition 8 the rule var has no premises when m = 0: this is the base case of the
inductive definition of =-. The rules o; and o3 have exactly three premises when m = 0.

Intuitively, M = M’ means that M’ is obtained from M by reducing a number of 3,-,
o1- and o3-redexes (existing in M) simultaneously.

» Definition 9 (Internal and strong parallel reduction). We define inductively the internal
parallel reduction = by the following rules:

int

N = N’ var V=V N=N M1:>MZI (meN,lSiSm)
A int right

Ae.NZE N ETE VNM; ... My S V/N'M, ... M,

The strong parallel reduction = is defined by: M = N iff M = N and there exist
M',M" € A such that M ’—>2 M5 M N,

Notice that the rule right for = has exactly two premises when m = 0.
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» Remark 10. The relations =, = and = are reflexive. The reflexivity of = follows
immediately from the reflexivity of = and =. The proofs of reflexivity of = and = are
both by structural induction on a term: in the case of =, recall that every term is of the
form (A\x.N)M; ... M, or x My ... M,, for some m € N and then apply the rule A or var
respectively, together with the inductive hypothesis; in the case of =, recall that every
term is of the form A\z.M or x or VNM; ... M,, for some m € N and then apply the rule A
(together with the reflexivity of =) or var or right (together with the reflexivity of = and

the inductive hypothesis) respectively.

One has = C = C = (first, prove that = C = by induction on the derivation of M = M’,
the other inclusions follow from the definition of =) and, since = is reflexive (Remark 10),
L5, C= and 5, C=. Observe that AA R AA for any R € {r+5,, 55, =, =, =}, even
if for different reasons: for example, AA = AA by reflexivity of = (Remark 10), whereas
AA 55 AA by reducing the (leftmost-outermost) 3,-redex.

Next two further remarks collect many minor properties that can be easily proved.

» Remark 11. 1. The head §,-reduction imv does not reduce a value (in particular, does
not reduce under \’s), i.e., for any M € A and any V € A, one has V 7'L>/3v M.

2. The head o-reduction —, does neither reduce a value nor reduce to a value, i.e., for any
M e Aandany V €A, one has V 5, M and M /5, V.

3. Variables and abstractions are preserved under < (g-expansion), fe.,if M 2z (resp.
M Z \z.N') then M =z (resp. M = Az.N for some N € A such that N = N').

4. If M = M’ then A\z.M R Az.M’ for any R € {=,=,=}. Indeed, for R € {=, =} apply
the rule X to conclude, then A\z.M = Az.M’ according to the definition of =.

5. Forany V,V' € A,, V= V' iff V = V’. The left-to-right direction holds because = C=;
conversely, assume V = V’: if V is a variable then necessarily V = V' and hence V = V'
by applying the rule var for =; otherwise V = Az.N for some N € A, and then necessarily
V' = Xx.N' with N = N, so V = V' by applying the rule X for =.

» Remark 12. 1. If M = M’ and N = N’ then MN = M’N’. For the proof, it is sufficient
to consider the last rule of the derivation of M = M’.

2. IfRe {55, 5, and M R M’, then MN R M’'N for any N € A . For the proof, it is
sufficient to consider the last rule of the derivation of M R M’, for any R € {55,, 55}

3. f M =2 M’ and N = N’ where M’ ¢ A, then MN = M’N’: indeed, the last rule in
the derivation of M £ M’ can be neither A nor var because M’ ¢ A,. The hypothesis
M’ ¢ A, is crucial: for example, z = z and TA = A but TA & A and thus z(IA) & zA.

4. —,C=C—* Asa consequence, =* =—} and (by Proposition 4) = is confluent.

5. B, Cc=C —w>j,<, so &= l'>v Thus, by Remark 11.3, variables and abstractions are
preserved under . -expansion, i.e., if M 25"  (resp. M 5. Az.N’) then M = z (resp.
M = X\x.N with N =% N').

6. ForanyR € {i>BD7i>a}7 if M R M’ then M{V/x} R M'{V/z} for any V € A,. The proof
is by straightforward induction on the derivation of M R M’ for any R € {%5, , 55}

As expected, a basic property of parallel reduction = is the following:
» Lemma 13 (Substitution lemma for =). If M =M’ and V =V"' then M{V/x}=M'{V'/x}.
Proof. By straightforward induction on the derivation of M = M’. <

The following lemma will play a crucial role in the proof of Lemmas 18-19 and shows
that the head o-reduction —, can be postponed after the head 3,-reduction i)/(gu.
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» Lemma 14 (Commutation of head reductions).
1. If M 5, L 54, N then there exists L' € A such that M 55, L' =
2. IfM &) L i)Z N then there exists L' € A such that M Q; s

3. If M 5. M’ then there exists N € A such that M ggu N i>2 M.

o
*
o

Proof. 1. By induction on the derivation of M <, L. Let us consider its last rule r.
If r = oy then M = (\x.My)NoLoMj ... M, and L = (Ax.MyLo)NoM; ... M,, where
m € N and z ¢ fv(Lo). Since L 5, N, there are only two cases:
either Ny i>/3u Njand N = (Ax.MoLo)N[M; ... M, (according to the rule right for
55,), then M 55 (Az.Mo)NyLoM, ... M, 25, N;
or Ng€A, and N =My{Ny/x}LoM,... M,, (by therule B, as x ¢ fv(Lg)),so M 5, N.
If r = 03 then M = V((Ax.Lo)No)M; ... M,, and L = (Az.VLy)NoM; ... M,, with
m €N and z ¢ fv(V). Since L 45, N, there are only two cases:
either Ny 55, N and N = (Ax.V Lo)N,Mj ... M, (according to the rule right for
L5,), then M 55 V((Az.Lo)NG)M, ... My, 5, N;
or No€A, and N=VLo{Ny/x}M; ... M,, (by the rule §,, as x¢fv(V)), so Mlmu N.
Finally, if r = right then M = VNoM; ... M,, and L = VN[M; ... M,, with m € N and
No 54 N{. By Remark 11.2, N} ¢ A, and thus, since L i>5,v N, the only possibility is
that Nj %5, Nj and N = VN/M, ... M,, (according to the rule right for 5 ). By
induction hypothesis, there exists N’ € A such that Ny 55, N§’ 5 N{/. Therefore,
M 55 VNU'M, ... M, %, N.
2. Immediate consequence of Lemma 14.1, using standard techniques of rewriting theory.
3. Immediate consequence of Lemma 14.2, using standard techniques of rewriting theory.
<

We are now able to travel over again Takahashi’s method [17, 4] in our setting with ,-
and o-reduction. The next four lemmas govern the strong parallel reduction and will be used
to prove Lemma 19.

» Lemma 15. If M = M’ and N = N’ and M’ ¢ A, , then MN = M’'N’.

Proof. One has MN = M'N’ by Remark 12.1 and since M = M’. By hypothesis, there
exist m,n € N and My, ..., M,,, Ny,..., N, such that M = My, M,, = Ny, N, = M,
M; i)g,u M for any 0 < i < m and N; Ly Njtq for any 0 < j < n; by Remark 12.2,
M;N i>/3v M; 1N for any 0 < i < m and N;N LN NjiiN forany 0 < j <n. As M’ ¢ A, ,
one has N,N = M’'N’ by Remark 12.3. Therefore, MN = M'N’. <

» Lemma 16. If M = M’ and N = N’ then MN = M'N’.

Proof. If M’ ¢ A, then MN = M'N’ by Lemma 15 and since N = N'.
Assume M’ €A, : MN = M'N' by Remark 12.1, as M = M’ and N = N’. By hypothesis,
there are m,m,n,n’ € N and My, ..., M,,, M},..., M/ ,,No,..., Ny, Ng,..., N/, such that:
M = My, My, = M}, M}, = M', M; “5, M4y for any 0 <i < m, and M}, “5; M,
for any 0 <4’ < m/,
N = No, N, = N, N, % N', N; 3, Njiq for any 0 < j < n and N/, %, N/, for
any 0 < j' <n'.
By Remark 11.3, M/, € A, since M’ € A,, therefore m’ = 0 by Remark 11.2, and thus
M, = M| = M’ (and M,, = M’ since = C =) and M,, € A,. Using the rules right for
h

imu and ~,, one has M, N; imv M,,N; 41 for any 0 < j < n, and MmNJ’-, o MmN]’-/H
for any 0 < j/ < n’. By Remark 12.2, M;Ny 5, M; 41Ny for any 0 < i < m. By applying
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the rule right for =, one has M, N/, 2 M'N'". Therefore, MN = MyN, sz M,,, Ng QZH
M,,N,, = M, N} i>: M,,N', 2 M'N’" and hence MN = M'N". <

» Lemma 17. If M = M’ and V = V', then M{V/z} = M'{V'/z}.

Proof. By Lemma 13, one has M{V/x} = M'{V’/z} since M = M’ and V = V'. We
proceed by induction on M € A. Let us consider the last rule r of the derivation of M = M’.

If r = var then there are two cases: either M = x and then M{V/z}=V=>V'=M'{V'/z};
or M =y # x and then M{V/x} =y = M'{V'/x}, so M{V/x} = M'{V’'/z} by Remark 10.

If r = X then M = A\y.N and M’ = A\y.N’ with N = N’; we can suppose without loss
of generality that y ¢ fv(V) U {z}. One has N{V/z} = N’{V’//z} according to Lemma 13.
By applying the rule X for =, one has M{V/z} = Ay.N{V/z} = \y.N'{V'/z} = M'{V"/z}
and thus M{V/x} = M'{V'/x}.

Finally, if r = right then M = UNM; ... M,, and M' = U'N'Mj ... M/ for some
m € N with U,U" € A,, U = U’, N 2 N’ and M; = M/ for any 1 < i < m. By induction
hypothesis, U{V/z} = U'{V’/x} (indeed U = U’ according to Remark 11.5) and N{V/x} =
N'{V'/z}. By Lemma 13, M;{V/x} = M/{V’'/z} for any 1 < i < m. By Lemma 16,
U{V/x}N{V/z} = U'{V'/2}N'{V/x} and hence, by applying Lemma 15 m times since
UA{V'/2}N'{V/x} ¢ A,, one has M{V/x} = U{V/x}N{V/x} M {V/z}...Mp{V/2} =
ULV Je}yN'{V" Jx}M{{V' [z} .. . M| {V'/x} = M'{V'/x}. <

In the proof of the two next lemmas, as well as in the proof of Corollary 21 and Theorem 22,
our Lemma 14 plays a crucial role: indeed, since the head o-reduction well interact with the
head f,-reduction, Takahashi’s method [17, 4] is still working when adding the reduction
rules o and o3 to Plotkin’s f3,-reduction.

» Lemma 18 (Substitution lemma for =). If M= M’ and V=V’ then M{V/x} = M'{V'/z}.

Proof. By Lemma 13, one has M{V/x} = M'{V’/z} since M = M’ and V = V’. By
hypothesis, there exist m,n € N and My, ..., M,,, Ny, ..., N, such that M = My, M,,, = Ny,
N, & M', M, L)g M4y for any 0 < ¢ < m and Nj Ly Njq1 for any 0 < j < n; by
Remark 12.6, M;{V/x} 55, M;y1{V/x} for any 0 < i < m, and N;{V/z} 5, N;j1{V/z}
for any 0 < j < n. By Lemma 17, one has N, {V/z} = M’'{V’'/z}, thus there exist
L,N € A such that M{V/x} 55 No{V/z} 5, N {V/x} 55 N5 L2 M'{V//z}. By
Lemma 14.2, there exists N’ € A such that M{V/x} Q; No{V/x} i)Z N5 NS L2
M'{V'/x}, therefore M{V/x} = M'{V'/x}. <

Now we are ready to prove a key lemma, which states that parallel reduction = coincides
with strong parallel reduction = (the inclusion = C = is trivial).

» Lemma 19 (Key Lemma). If M = M’ then M = M'.

Proof. By induction on the derivation of M = M’. Let us consider its last rule r.

If r =wvar then M =ax My ... My, and M' = x M7 ... M}, where m € N and M; = M|
for any 1 < i < m. By reflexivity of = (Remark 10), + = z. By induction hypothesis,
M; = M] for any 1 <i < m. Therefore, M = M’ by applying Lemma 16 m times.

If r = A then M = (Az.Mo)My ... M, and M’ = (Ax.M{§)Mj ... M), where m € N and
M; = M/ for any 0 < ¢ < m. By induction hypothesis, M; = M/ for any 1 < i < m.
According to Remark 11.4, Ax.My = A\x.M{. So M = M’ by applying Lemma 16 m times.

If r = 3, then M = (Az.Mo)V My ... M, and M' = My{V'/x}M] ... M), where m € N,
V =V’ and M; = M/ for any 0 < i < m. By induction hypothesis, V = V' and M; = M/
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for any 0 < i < m. By applying the rule 3, for %4, , one has M %5, Mo{V/x} M, ... M,,;
moreover Mo{V/x} M ... M,, = M’ by Lemma 18 and by applying Lemma 16 m times, thus
there are L, N € A such that M %5, Mo{V/a}M,... My, S5 L2, N 2 M. So M = M.

If r = 0y then M = (A\x.Mo)NoLoM; ... M, and M’ = (A\x. M{Ly)NM7 ... M/, where
m €N, Ly = L, No = Njj and M; = M/ for any 0 < ¢ < m. By induction hypothesis,
No = N} and M; = M/ for any 1 < i < m. By applying the rule oy for =, one has M %,
(Al‘.MoLo)NoMl cee Mm By Remark 121, M(]LO = M6L6 and thus /\l'.MoLo = )\Q?M6L6
according to Remark 11.4. So (Ax.MyLo)NoMj ... M,, = M’ by applying Lemma 16 m + 1
times, hence there are L, N € A such that M 2, (Ax.MoLo)NoMjy ... M, L{;W L i>ZN = M.

h

By Lemma 14.2, there is L' € A such that M 420 'S L5, N2 M and thus M = M.

Finally, if r = o5 then M = V((Ax.Lo)No)M; ... My, and M’ = (Az.V'L{)N{M; ... M),
with m e N, V = V', Ly = L{, No = N} and M; = M/ for any 1 < i < m. By induction
hypothesis, Ny = N} and M; = M/ for any 1 < i < m. By the rule o3 for 2, one has
M %, (\e.VLo)NoM; ... M,,. By Remark 12.1, VLo = V'L{ and thus A\z.V Lo = \z.V'L},
according to Remark 11.4. So (Az.V Ly)NoMj ... M,, = M’ by applying Lemma 16 m + 1
times, hence there are L, N € A such that M 2, (M. VLo)NoM, ... M, @;v L i>: N Z M.

By Lemma 14.2, there is L' € A such that M 5, L' %) L%, N2 M’ so M = M. <

Next Lemma 20 and Corollary 21 show that internal parallel reduction can be shifted
after head reductions.

» Lemma 20 (Postponement). If M 2 L and L 5, N (resp. L %5, N) then there exists
L' € A such that M 25, L' (resp. M 25, L') and L' = N.

Proof. By induction on the derivation of M = L. Let us consider its last rule r.
If r = var, then M =z = L which contradicts L 35, N and L =, N by Remarks 11.1-2.
If r = X\ then L = \z.L’ for some L' € A, which contradicts L >3, N and L %5, N by
Remarks 11.1-2.
Finally, if r = right then M = VMqM; ... M,, and L = V'LyL; ... L,, where m € N,
V = V' (soVZE V' by Remark 11.5), My & Lo (thus My = Lg since = C =) and M; = L;
forany 1 <7 <m.
If L @51’ N then there are two cases, depending on the last rule r’ of the derivation of
L%, N.
If v/ = B, then V' = Ax.N{), Ly € A, and N = Nj{Lo/x}L; ... Ly, thus My € A, and
V = Xz.Np with Ny = N/ by Remark 11.3. By Lemma 13, one has No{My/z} =
N(l){Lo/l‘} Let L' = NQ{Mo/ZZ?}Ml . Mm so M = ()\ZZZNQ)MoMl . Mm i)ﬁv L
(apply the rule g, for %5,) and L' = N by applying Remark 12.1 m times.
If ¥ = right then N = V'NoL; ... L,, with Ly i)gv Ny. By induction hypothesis, there
exists L) € A such that My 5, L) = No. Let L' = VLyM; ... M,,: so M 5 L’
(apply the rule right for Qg) and L' = N by applying Remark 12.1 m + 1 times.
If L %, N then there are three cases, depending on the last rule r’ of the derivation of
LA, N.
If ¥ =01 thenm >0, V! = Az.Njj and N = (Ax.N{L1)LoLs ... Ly, thus V = Ax.Ny
with Ng = N{ by Remark 11.3. Using Remarks 12.1 and 11.4, one has Az.NoM; =
)\JZNéLl Let L' = (AZ.NoMl)MoMg . Mm so M = ()\JZN())M()Ml [SPN Mm L>g L
(apply the rule oy for %,) and L' = N by applying Remark 12.1 m times.
If v = g3 then LO = (A.’I,‘.LOl)LOQ and N = ()\JZ.V’LOl)Long . -Lm~ Since Mo g
(/\JU.L(H)LOQ, necessarﬂy MO = ()\JZ.M(H)MQQ with M01 = L01 and M02 g L02 (SO
Moys = Lg2). Using Remarks 12.1 and 11.4, one has Az.V My, = Ax.V'Ly;. Let
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L = ()\JZ.VMOl)MOQMl .. Mm therefore M = V((Al‘.Mgl)Mog)Ml ce Mm i),; L
(apply the rule o3 for ,) and L’ = N by applying Remark 12.1 m + 1 times.
If ¥’ = right then N = V'NoL ... L,, with Ly =, Ny. By induction hypothesis, there
exists L} € A such that My =, L = No. Let L' = VL{M; ... My,: so M 5, L/
(apply the rule right for %,) and L' = N by applying Remark 12.1 m + 1 times.

A |

» Corollary 21. If M = L and L 55, N (resp. L %5, N), then there exist L', L" € A such

h

et M50, 1 LN (e M 5 1)

Proof. Immediate by Lemma 20 and Lemma 19, applying Lemma 14.2 if L Xy N. |

Now we obtain our first main result (Theorem 22): any v-reduction sequence can be sequen-
tialized into a head f,-reduction sequence followed by a head o-reduction sequence, followed
by an internal reduction sequence. In ordinary A-calculus, the well-known result correspond-
ing to our Theorem 22 says that a S-reduction sequence can be factorized in a head reduction
sequence followed by an internal reduction sequence (see for example [17, Corollary 2.6]).

» Theorem 22 (Sequentialization). If M —¥ M’ then there exist L,N € A such that

h h * int % /
M =g L—,N —, M.

Proof. By Remark 12.4, M =* M’ and thus there are m € N and My, ..., M,, € A such that
M = My, M,, = M" and M; = M, for any 0 < i < m. We prove by induction on m € N
that there are L, N € A such that M Lfgv L L)Z NZ" M so N ﬂ)j M’ by Remark 12.5.

If m = 0 then M = My = M’ and hence we conclude by taking L = M’ = N.

Finally, suppose m > 0. By induction hypothesis applied to M7 =* M’, there exist
L', N" € A such that M; i)ZU r i)Z N 5. By applying Lemma 19 to M, there
exist Lg, Ny € A such that M ’—>Zﬂ Ly }—>Z Ny = M. By applying Corollary 21 repeatedly,
there exists N € A such that Ny -, N 2 N’ and hence M 25, N 2* M’. According to
Lemma 14.3, there exists L € A such that M if;v L5, N2 <

It is worth noticing that in Definition 7 there is no distinction between head o1- and head
os-reduction steps, and, according to it, the sequentialization of Theorem 22 imposes no order
between head o-reductions. We denote by —5,, and —%,, respectively the reduction relations
—oy N i>[, and =5, N i>(,. So, a natural question arises: is it possible to sequentialize them?
The answer is negative, as proved by the next two counterexamples.

Let M = z((\y.2")(2I))A and N = (\y.z2’A)(zI): M 5., (\y.z2')(zI)A 54, N, but

there exists no L such that M i>j;1 L i>;3 N. In fact M contains only a head o3-redex

and (Ay.xzz')(2I)A contains only a head o-redex

Let M = 2((M\y.2")(2)A) and N = (\y.z(2’A)(zI): M 5, o((M\y.2’A)(2])) 54, N

but there is no L such that M 4; L i>:1 N. In fact M contains only a head o;-redex

and z((Ay.z’A)(zI)) contains only a head o3-redex.
So, the impossibility of sequentializing a head o-reduction sequence is due to the fact that a
head o;-reduction step can create a head osz-redex, and viceversa. This is not a problem,
since head o-reduction is strongly normalizing (by Proposition 4 and since l>gg—>0). Our
approach does not force a strict order of head o-reductions.
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4 Standardization

Now we are able to prove the main result of this paper, i.e., a standardization theorem for AJ
(Theorem 25). In particular we provide a notion of standard reduction sequence that avoids
any auxiliary notion of residual redexes, by closely following the definition given in [15].

» Notation. For any k,m € N with & < m, we denote by [Mo,---, My, --- My, ] a
sequence of terms such that M; i>ﬁu M;yq when 0 < i < k, and M; in, M; 11 when
k<i<m.

It is easy to check that [M]"¢*? for any M € A. The notion of standard sequence of
terms is defined by using the previous notion of head-sequence. Our notion of standard
reduction sequence is mutually defined together with the notion of inner-sequence of terms
(Definition 23). This definition allows us to avoid non-deterministic cases remarked in [7]
(we provide more details at the end of this section). We denote by [Mo, - , M,,]**¢ (resp.
[Mo,- -+, M,,]™) a standard (resp. inner) sequence of terms.

» Definition 23 (Standard and inner sequences). Standard and inner sequences of terms are

defined by mutual induction as follows:

1. if [My,---, My, 1" and [M,, -+, My ]™ then [Mo, -+, My i %, where m,n € N;

2. [M]™, for any M € A;

3. if [Mo, -+, M,,]°% then [Az. My, - -+ , \z.M,,]™, where m € N;

4. if [Vo,---, V4 1% and [Ny, - -, N,,]™ then [VoNg, - -, VoNy, - - -, Vi N, 1™, where h,n € N;

5. if [No, -+, N, 1™, [Mo, -+, M;, 1% and Ny € A, then [NoMo, - -+, Ny Mo, - - -, Ny M, 1™,
where m,n € N.

For instance, let M = (\y.Ix)(2(AI))(II): M —, (A\y.Iz)(z2(AI)I —, (A\y.z)(z(AI)I
and M —, Ay Jx(I1))(2(AI)) = (A\y.Jz(II))(2(II)) are not standard sequences; M —,
My Ix)(z(AI)I and M —, (/\y.Ia:)( (ID)IT) =y Ay Jz)(zI)(IT) =y Ay Jz(I1))(2]) —
ANy.x(ID)(2I) =y (Ay.xI)(2I) are standard sequences.

» Remark 24. For any n € N, if [Ny, - - -, N,,]™ (resp. [No, - - -, N,,]*??) then [Ny, - - -, N, ] **¢.
Indeed, [Ng]"¢¢ (vesp. [N,,]™ by Definition 23.2), so [Np, -+, N,,]%/¢ by Definition 23.1.

In particular, [N]** for any N € A: apply Definition 23.2 and Remark 24 for n = 0.

» Theorem 25 (Standardization).
1. If M —: M’ then there is a sequence [M,--- , M']*t.
2. If M 257 M’ then there is a sequence [M,--- , M']™.

Proof. Both statements are proved simultaneously by induction on M’ € A.
1. If M’ = z then, by Theorem 22, M i)Z; L i>j; N Lf)j z for some L, N € A. By

Remarks 12.5 and 11.2, L = N = z; therefore M 4; z and hence there is a sequence
[M,--- z]ted Thus, [M,--- 2] by Remark 24

If M’ )\z N’ then, by Theorem 22, M—>,3 LY, L' ™" X2.N' for some L, L' € A. By
Remarks 12.5 and 11.2, L = L' = Az.N with N =} N'. So M—>;;U Az.N and hence there
is a sequence [M, - - -, \z.N']"*?, By induction on (1), there is a sequence [N, - - -, N']*¢,
thus [Az.N,---, Az.N']™ by Definition 23.3. Therefore [M,---, A\z.N,---, \z.N']**¢ by
Definition 23.1.

int *

If M’ = N'L’ then, by Theorem 22, M—> M”—> Mo =, N'L’ for some M", My € A.

By Remark 3, My = NL for some N, L € A7 since 5. C —* and M’ ¢ A,. Thus there
is a sequence [M,--- ,M",---  NL]"ad By Remark 12.5, NL 2" N'L’; clearly, cach
step of & is an instance of the rule right of Definition 9. There are two sub-cases.
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If N € A, then N=*N’ and L Z" LI/, so N—=* N’ and L . L’ by Remarks 12.4-5.
By induction respectively on (1) and (2), there are sequences [N,---, N']**
and [L,---, L'1™ thus [NL,---,NL',---,N'L']"™ by Definition 23.4. Therefore
[M,--- M"--- NL,---,NL',---, N'L']**¢ by Definition 23.1.
If N¢ A, (ie., N=VM ... M, with m>0) then N2 N’ and L=*L/, so N 5" N’
and L—} L' by Remarks 12.4-5. By induction respectively on (2) and (1), there are
sequences [N,---  N']™ and [L,---,L']**e. Hence [NL,--- ,N'L,--- ,N'L']" by
Definition 23.5 . Thus [M,---, M",--- NL,--- N'L,---, N'L']** by Definition 23.1.
2. If M’ = z then M = z by Remark 12.5, hence [2]™ by Definition 23.2.
If M" = Az.L’ then M = Az.L and L —* L' by Remark 12.5. Hence there is a sequence
[L,---, L' by induction on (1). By Definition 23.3, [Az.L,--- , Az.L']®".
If M = N'L’ then M = NL for some N,L € A by Remark 3, since %: C —¥ and
M’ ¢ A,. By Remark 12.5, NL 2" N'L’; clearly, each step of = is an instance of the
rule right of Definition 9. There are two sub-cases.
If N € A, then N =* N and L 2° I/, so N —»* N’ and L =%, L by Remarks 12.4-5.
Thus there are sequences [N, --- , N']**® and [L,--- , L']™ by induction respectively
on (1) and (2). Therefore, by Definition 23.4, [NL,--- ,NL,---  N'L']"".
If N ¢ A, (ie. N = VM ... M, with m > 0) then N 2" N’ and L =* L, thus
N 2" N’ and L —¥ L' by Remarks 12.4-5. By induction respectively on (2) and (1),
there are sequences [N, ---, N']™ and [L,---,L']**%. So [NL,---,N'L,--- N'L']™
by Definition 23.5. <

Due to non-sequentialization of head o1- and head os-reductions, several standard
sequences may have the same starting term and ending term: for instance, if M = I(AI)I
and N = (Az.(Az.xl)(22))] then M —, (Az.zl)(AI) -, N and M —, (Az.I(z2))II —,
(Az.I(z2)I)I —, N are both standard sequences from M to N.

Finally, we can compare our notion of standardization with that given in [15]. To
make the comparison possible we avoid o-reductions and we recall that imv is exactly
the Plotkin’s left-reduction [15, p. 136]. As remarked in [7, §1.5 p. 149], both sequences
A2 ID)(IT) =y (M2 D)(II) =y (Az.)T and (Az.11)(IT) —, (Az.11)I —, (Az.I)I are standard
according to [15]. On the other hand, only the second sequence is standard in our sense.
It is easy to check that collapsing the two notions of inner and standard sequence given in
Definition 23, we get a notion of standard sequence that accept both the above sequences.

5 Some conservativity results

The sequentialization result (Theorem 22) has some interesting semantic consequences. It
allows us to prove that (Corollary 29) the A9-calculus is sound with respect to the call-by-
value observational equivalence introduced by Plotkin in [15] for \,. Moreover we can prove
that some notions, like that of potential valuability and solvability, introduced in [13] for A,,
coincide with the respective notions for A9 (Theorem 31). This justifies the idea that AJ is a
useful tool for studying the properties of A,. Our starting point is the following corollary.

» Corollary 26.

1. If M =%V € A, then there exists V' € A, such that M i)Z VY.

2. For everyV e Ay, M 4;@ V if and only if M i)j V.

Proof. The first point is proved by observing that, by Theorem 22, there are N, L € A such

int ¥

that M 4;@ L i>: N =, V. By Remark 12.5 | N € A, and thus L = N according to
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Remark 11.2. Concerning the second point, the right-to-left direction is a consequence of
Lemma 14.3 and Remark 11.2; the left-to-right direction follows from i)gv - —h>\,. <

Let us recall the notion of observational equivalence defined by Plotkin [15] for A,.

» Definition 27 (Halting, observational equivalence). Let M € A. We say that (the evaluation
of) M halts if there exists V' € A, such that M ’—>; V.

The (call-by-value) observational equivalence is an equivalence relation = on A defined
by: M =2 N if, for every context C, one has that C(M) halts iff C(NV) halts.!

Clearly, similar notions can be defined for A7 using —+, instead of < 5,. Head o-reduction
plays no role neither in deciding the halting problem for evaluation (Corollary 26.1), nor in
reaching a particular value (Corollary 26.2). So, we can conclude that the notions of halting
and observational equivalence in AJ coincide with the ones in A, respectively.

Now we compare the equational theory of A\ with Plotkin’s observational equivalence.

» Theorem 28 (Adequacy of v-reduction). If M —¥ M’ then: M halts iff M’ halts.

h Ok

Proof. If M" =5 V € A, then M —; M' = V since %5, € —. By Corollary 26.1, there
exists V' € A, such that M L)Z V’. Thus M halts.

Conversely, if M QZU V € A, then M —} V since QBU C —,. By confluence of —,
(Proposition 4, since M —* M’) and Remark 3 (since V € A,), there is V' € A, such that V —2
V" and M’ —%V'. By Corollary 26.1, there is V" € A,, such that M’ if;y V"”. So M’ halts. =

» Corollary 29 (Soundness). If M =, N then M = N.

Proof. Let C be a context. By confluence of —, (Proposition 4), M =, N implies that there
exists L € A such that M —} L and N —} L, hence C(M) —3 C(L) and C(N) —} C(L). By
Theorem 28, C(M) halts iff C(L]) halts iff C(N) halts. Therefore, M = N. <

Plotkin [15, Theorem 5] has already proved that M =g, N implies M = N, but our
Corollary 29 is not obvious since our AJ-calculus equates more than Plotkin’s A,-calculus
(=8, €=y since =g, € —,, and Example 5 shows that this inclusion is strict).

The converse of Corollary 29 does not hold since Az.z(Ay.zy) = A but Az.z(A\y.zy) and A

are different v-normal forms and hence A\z.x(Ay.zy) #, A by confluence of —, (Proposition 4).

A further remarkable consequence of Corollary 26.1 is that the notions of potential
valuability and solvability for AZ-calculus (studied in [3]) can be shown to coincide with the

ones for Plotkin’s \,-calculus (studied in [13, 14]), respectively. Let us recall their definition.

» Definition 30 (Potential valuability, solvability). Let M be a term:
M is v-potentially valuable (resp. f3,-potentially valuable) if there are m € N, pairwise
distinct variables x1, ..., Ty and V, Vi, ..., V,, € A, such that M{V1/z1,..., Vi /Tm} —%
V (resp. M{Vi/x1,....Vin/zm} =5 V)i
M is v-solvable (resp. B,-solvable) if there are n,m €N, variables x1,..., 2, and Ny, ..., N,
€ A such that (Azy...2p M)Ny -+ Ny =7 I (vesp. (Az1... 20 M)Ny -+ Ny =% 1).

» Theorem 31. Let M be a term:
1. M is v-potentially valuable if and only if M is 3,-potentially valuable;
2. M is v-solvable if and only if M is (3,-solvable.

' Original Plotkin’s definition of call-by-value observational equivalence (see [15]) also requires that C(M)
and C(N) are closed terms, according to the tradition identifying programs with closed terms.
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Proof. In both points, the implication from right to left is trivial since =, C —,. Let us

prove the other direction.

1. Since M is v-potentially valuable, there are variables x1,...,z, and V,Vy,...,V,, € A,
(with m > 0) such that M{Vi/z1,...,Vy/zm} =35 V; then, there exists V' € A, such
that M{Vi/x1,...,Vin/zm} =3, V' by Corollary 26.1 and because L5, € —p,, therefore
M is (B,-potentially valuable.

2. Since M is v-solvable, there exist variables z1,...,z,, and terms Ni,..., N,, (for some
n,m > 0) such that (Azy...x,,.M)Ny--- N, —F I; then, there exists V € A, such
that (Az1...2p M)Ny - Ny =5V 4% I by Corollary 26.1 and because L5, C—p, -
According to Remark 12.5 , V = Ax.N for some N € A such that N —* z. By

int,

Corollary 26.1, there is V' € A, such that N i>; V/ " & hence V! = x by Remark 12.5

again. Since %5, C —p,, N —5, rand thus V' = Az.N —7% I, therefore M is j,-solvable.
<«

So, due to Theorem 31, the semantic (via a relational model) and operational (via two
sub-reductions of —,) characterization of v-potential valuability and v-solvability given
in [3, Theorems 24-25] is also a semantic and operational characterization of /3,-potential
valuability and (,-solvability. The difference is that in A7 these notions can be studied
operationally inside the calculus, while it has been proved in [13, 14] that the S3,-reduction is
too weak to characterize them: an operational characterization of 3,-potential valuability and
By-solvability cannot be given inside A,. Hence, AJ is a useful, conservative and “complete”
tool for studying semantic properties of A, .

6 Conclusions

In this paper we have proved a standardization theorem for the AJ-calculus introduced in [3].
The used technique is a notion of parallel reduction. Let us recall that parallel reduction
in A-calculus has been defined by Tait and Martin-Lof in order to prove confluence of the
B-reduction, without referring to the difficult notion of residuals. Takahashi in [17] has
simplified this technique and showed that it can be successfully applied to standardization.
We would like to remark that our parallel reduction cannot be used to prove confluence of —,.
Indeed, take M = ()\sc.L)(()\y.N)(()\z.N’)N”))L’, M, = ()\:c.LL’)((/\y.N)(()\z.N’)N”)) and
My = ((Ay.(Az.L)N)((Az.N')N"))L': then M = M, and M = M, but there is no term M’
such that M; = M’ and My = M’. To sum up, = does not enjoy the Diamond Property.

The standardization result allows us to formally verify the correctness of A\J with respect
to the semantics of A,, so we can use A as a tool for studying properties of A,. This is a
remarkable result: in fact some properties, like potential valuability and solvability, cannot
be characterized in A, by means of §,-reduction (as proved in [13, 14]), but they have a
natural operational characterization in AZ (via two sub-reductions of —).

We plan to continue to explore the call-by-value computation, using AJ. As a first step,
we would like to revisit and improve the Separability Theorem given in [11] for \,. Still
the issue is more complex than in the call-by-name, indeed in ordinary A-calculus different
Bn-normal forms can be separated (by the Bohm Theorem), while in A, there are different
normal forms that cannot be separated, but which are only semi-separable (e.g. I and
Az.(Au.z)(zz)). We hope to completely characterize separable and semi-separable normal
forms in AJ. This should be a first step aimed to define a semantically meaningful notion of
approximants. Then, we should be able to provide a new insight on the denotational analysis
of the call-by-value, maybe overcoming limitations as that of the absence of fully abstract
filter models [14, Theorem 12.1.25]. Last but not least, an unexplored but challenging
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research direction is the use of commutation rules to improve the call-by-value evaluation.
We do not have concrete evidence supporting such possibility, but since A\ is strongly related
to the calculi presented in [7, 1], which are endowed with explicit substitutions, we are
confident that a sharp use of commutations can have a relevant impact in the evaluation.
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—— Abstract

In classical homotopy theory, the homotopy hypothesis asserts that the fundamental w-groupoid
construction induces an equivalence between topological spaces and weak w-groupoids. In the
light of Voevodsky’s univalent foundations program, which puts forward an interpretation of

types as topological spaces, we consider the question of transposing the homotopy hypothesis
to type theory. Indeed such a transposition could stand as a new approach to specifying higher
inductive types. Since the formalisation of general weak w-groupoids in type theory is a difficult
task, we only take a first step towards this goal, which consists in exploring a shortcut through
strict w-categories.

The first outcome is a satisfactory type-theoretic notion of strict w-category, which has hsets
of cells in all dimensions. For this notion, defining the ‘fundamental strict w-category’ of a type
seems out of reach. The second outcome is an ‘incoherently strict’ notion of type-theoretic w-
category, which admits arbitrary types of cells in all dimensions. These are the ‘wild’ w-categories
of the title. They allow the definition of a ‘fundamental wild w-category’ map, which leads to
our (partial) homotopy hypothesis for type theory (stating an adjunction, not an equivalence).

All of our results have been formalised in the Coq proof assistant. Our formalisation makes
systematic use of the machinery of coinductive types.

1998 ACM Subject Classification F.4.1 Mathematical logic

Keywords and phrases Homotopy Type theory, Omega-categories, Coinduction, Homotopy
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Digital Object Identifier 10.4230/LIPIcs. TLCA.2015.226

1 Introduction

Martin-Lof type theory offers an alternative to the classical set-theoretic approach to math-
ematics. The univalent foundations program [23] advocates understanding sets as a very
special kind of types (so-called 0-types, or hsets). Conversely, types should be understood
in set-theoretic terms as some kind of topological spaces, hsets corresponding to those
whose connected components are contractible. And, indeed, types have been interpreted as
w-groupoids of various flavours, most notably simplicial [13] and globular [3, 16, 24]. Now, on
the set-theoretic side, the homotopy hypothesis states that topological spaces and w-groupoids
are equivalent [22]. This work addresses the question of coining a type-theoretic counterpart
of this homotopy hypothesis.

We here propose a preliminary and partial version which barely expresses that the
‘fundamental w-groupoid’ functor has a kind of left adjoint (instead of being an equivalence).
For our proposal, it is sufficient to choose an appropriate target category T of ‘w-groupoids’,
together with an appropriate ‘fundamental w-groupoid’ functor 7: Type — T. Indeed, we
may then express our partial homotopy hypothesis as follows:
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» Hypothesis 1. There exist L: T — Type and n: VC, T(C, n(L(C))) such that for each C: T
and T: Type, the map

n(C)": T(m(L(C)), (T)) = T(C, 7 (T))
given by precomposition with n(C) is an equivalence.

The idea of a ‘fundamental w-category’ map goes back to van den Berg/Garner and
Lumsdaine [3, 16]. There, the ‘fundamental’ w-categories extracted from types are definitely
weak, because expressions like f o (g o h) and (f o g) o h (for suitable cells f,g,h and
higher categorical composition o) may differ definitionally. However, they are always equal
propositionally, so when reasoning inside type theory as we do, the distinction becomes
invisible. Based on this observation, we here explore the shortcut of a ‘fundamental strict
w-category’ map.

Thus, our first task is to transpose to type theory the classical notion of strict w-category.
This is the subject of Section 3 (after a brief recap on set-theoretic strict w-categories in
Section 2). There we face a crucial choice concerning the type of cells in all dimensions. If we
take these types to be hsets, we get an honest notion of strict w-category. While if we allow
these types to be arbitrary, we get an ‘incoherently strict’ notion, which we call wild. In wild
w-categories, some coherence diagrams usually showing up in definitions of weak w-categories
make sense, but are not required to commute — even weakly, hence the name ‘wild’.

Now the crucial point is that we are able to define a ‘fundamental wild w-category’ map,
while a strict one seems out of reach — a difficulty previously observed by Altenkirch et al. [2]
in a similar context.

Let us mention another crucial choice faced when defining both notions. Indeed, we
have to express equations as commuting diagrams of morphisms between globular types.
Because such morphisms form a coinductive type, there are two standard choices [8] for
their equality (identity types and bisimilarity). However, we weren’t able to define our
‘fundamental w-category’ map using either of them, so we work with a third, coarser one
(Definition 8). (Of course, using identity types or bisimilarity yields other, perfectly sensible
definitions.)

Altogether this yields in Section 5 a first version of our hypothesis with T the type for
wild w-categories. Our hypothesis essentially asserts that new types may be constructed
from the homotopical information carried by any wild w-category. This is clearly akin to the
assumption of existence for higher inductive types [23], as well as to the Rezk completion for
precategories in [1] and we briefly discuss the relationship.

In Section 6, we get back to w-groupoids, as opposed to w-categories. We briefly discuss
problems and solutions concerning the definition of wild w-groupoids and a perhaps more
primitive formulation of our homotopy hypothesis involving them. We finally conclude and
sketch further directions in Section 7.

A note on the formalisation

This paper presents informally a mathematical development based not on set theory but
on Martin-Lof type theory enriched with coinduction. All our definitions and statements

have been formalised in the Coq proof assistant [21]. The formalisation is available as [9].

The code is composed of 2750 lines of definitions/theorems and less than 800 lines of proofs
(as given by coqwc). Definitions and theorems constitute 75% of the formalisation, which is
a lot. This is because coqwc only counts as proof what is coded using the tactic language,
whereas most of our proofs are coded directly in Gallina. The reason for this is that the
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computational content of many of our proofs turned out to be crucial for their usability
at later stages. This phenomenon has also been observed, e.g., of the Coq/HoTT library
(https://github.com/HoTT/HoTT).

2 Set-theoretic strict w-categories

Before presenting our definition of wild and strict w-categories in type theory, we briefly
sketch the traditional set-theoretic definition of strict w-categories. We refer the reader to
Lafont et al. [15] for further detail.

The base for strict w-categories is the notion of globular sets, which are generally defined
as presheaves over the so-called globular category Glob:

0] == 1] — = [2] ] = [n+1]

where for all n, s,41 08, =tp41 08, and Sp41 0ty =tpp1 0ty

» Notation 1. We denote by st the composite sp_10...05,, which returns the n-dimensional
source of a p-cell. Similarly, we use t&.

The idea is just that a globular set X has objects, the elements of X[0], I-cells between
them, and so on, each (n + 1)-cell having parallel n-cells as source and target. E.g., a typical
2-cell looks like this:

Oé-tl

where we use the standard shorthand notation, e.g., a - s; for X (s1)(c). In the picture,
r=«a-t;-So=a-s1-Ssgoandy=a-t; -tg =« - sy - tg.

We first concentrate on the data for composition and the so-called interchange law. A
strict w-category is a globular set X equipped (among other data), for all n < p, with a
partial, binary composition operation on p-cells, defined on a pair (5, «) when the iterated
source f3 - sP of  matches the iterated target o -t2 (recall Notation 1). The result is denoted
by (8 o, a. Each such composition operation is required to be associative on the nose.

The source and target of such a composition are given by obvious globular intuition,
generally not even spelled out. When p = n + 1, composition is like categorical composition,
i.e., we have (8o, ) s, = a- s, and similarly (8o, «)-t, = 5-t,. Whenp > n+ 1,
composition is more like horizontal composition of 2-cells in a 2-category, as in

«-81 ,@'81
T T~
xT Uoz Y B Z,
\_/
-ty Bty

so we have
(Bona)-sp—1=(8"sp-1)on (@ sp-1)
and similarly for ¢,_;.
The crux of the definition of strict w-category is the interchange law, which generalises
the perhaps more well-known 2-categorical interchange law. It says that whenever n < p < ¢
and «,d/, 8,8’ are adequately composable g-cells, we have

(8" 0p B) on (o' 0p ) = (8 0 ') 0p (B 0, ).

Graphically, for n =0, p =1, ¢ = 2, both ways of composing the diagram below coincide:
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Finally, we require identities id,: x — x for all n-cells z € X[n]. Let id? denote the
iteration id;q_, , p times (with id° = x). Identities should satisfy

idP o, a0 = & Bopidl =0 idgo, o = idg oy idy, (1)

for all z € X[n], p > 1, a, and B such that a - t"*t? = x and § - s"1P = x.

While this presentation is perfectly sensible when working in set theory, it is less convenient
in type theory because many properties of the structure are imposed by equations rather
than obtained by construction. For instance, compatibility between source and target maps
in globular sets relies on equations. Using equations introduces a lot of non-definitional
equalities that are very hard to deal with. On the contrary, we will see in the next section
that our use of coinductive definitions allows us to define structures more computationally,
thus avoiding the common pitfall of using equations.

3 Wild and strict w-categories

In this section, we present our definition of wild and strict w-categories. Our heavy use
of coinduction is inspired by Cheng and Leinster’s account [7] of Trimble’s w-categories,
as well as by Lafont et al’s presentation [15] of, e.g., weak equivalences. We start with
globular types, a type-theoretic counterpart of globular sets. Essentially, a wild w-category
is a globular type equipped with identities and compositions in all dimensions, satisfying
unitality and associativity axioms, and such that, at each dimension, composition preserves
higher-dimensional identities and compositions. A strict w-category is a wild w-category
whose underlying globular type is a globular hset, i.e., consists of hsets in all dimensions.
The main goal of the present section is to give a precise meaning to the previous sketch of
definition. Indeed, this is not completely straightforward, and we will explicitly discuss our
design choices.

3.1 Globular types

The coinductive presentation of globular sets, which we’ll here call globular types, is well-
known and extremely simple:

» Definition 1. A globular type X consists of a type | X|, plus for all z,y € |X|, a globular
type X[z, y].

Many of our definitions will, like the previous one, be coinductive or corecursive, and we will
systematically omit to mention this feature. For instance, a morphism X - Y of globular
types consists of

a function |f|: |X| — |Y| between object types, and

for all z, 2" € | X|, a morphism f; . : X[z, 2] = Y[|f|(z),|f]|(z)] of globular types.
Of course, morphisms of globular types compose.

We also need a definition of the cartesian product of globular types:

» Definition 2. The product X x Y of two globular types X and Y is defined by
| X xY|=|X|x|Y] and
for all z, 2" € [X| and y,y" € |Y], (X x Y)[(z,y), (2',¢)] = X[z, 2] x Y]y, y].
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3.2 Data for composition and identities

Let us now start our definition of wild w-categories.
In the following definition of composition for globular types, we choose to tie together
infinitely many elementary compositions into a morphism of globular types:

» Definition 3. To equip a globular type X with w-categorical composition is to give:
for all z,y,z € | X|, a morphism compy (z,y, 2): X|[z,y] x X[y, z] = X|z, 2] of globular
types,
and, for all z,y € | X|, w-categorical composition on X |z, y].
In the terminology of Section 2, the function |compy| between object types represents
composition for p = n + 1, whereas compositions for p > n + 1 are packed in higher-
dimensional components (compx)(f.¢),(f',¢’)- Similarly:

» Definition 4. To equip a globular type X with w-categorical identities is to give:
for all € |X|, an element idX € | X[z, ]|, and
for all z,y € | X|, w-categorical identities on X[z, y].

» Definition 5. An w-precategory is a globular type equipped with w-categorical composition
and identities.

» Remark. Our use of ‘precategory’ conflicts with [1], where it is used for ‘not-necessarily-
univalent’ categories. However, it coincides with Cheng’s [6].

Most notions defined so far on globular types lift to w-precategories, namely the object
type | X|, the hom-w-precategory X|[z,y], and cartesian product X x Y. We lift notations
accordingly. However, lifting the notion of morphism of globular types requires some work,
which we now do, yielding the notion of w-functor.

3.3 Omega-functors

It is not straightforward to define what it means for a morphism F': X - Y of globular types
between w-precategories to preserve composition.

Let us treat the object level first, and consider any z,z’, 2" € |X|. The idea is that F
preserves composition at z,z’, 2" iff the diagram
X[z, 2] x X[z',z"] compx (22" X[z, x"]

F ! XFI'J”% };F Lz (2)

@ x

Y{|Flz, |Fla'] x Y[|F|a', | F|2"] Y{|F|z, |Fl2"],

compy-(|Fla, | Fla’ | Flz")

commutes.

To give a meaning to this commutation, we need to choose a notion of equality of globular
morphisms. Because globular morphisms form a coinductive type, identity types are expected
to be too fine as a notion of equality between them [8]. The standard choice for this is
bisimilarity:

» Definition 6. Two globular morphisms F,G: X = Y are bisimilar iff
for all z € |X|, | fl(x) = |g|(z), and
for all z,2" € |X|, fz.» and (pz)«((Par)«(gz.2)) are bisimilar,
where p,(—) denotes transport [23] along p and p, is the given equality |f|(z) = |g|(x).
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Transport is necessary here in order to compare f, . : X[z, 2] = Y[ f|(z),|f|(z')] and
grar: X[z, 2] = Ylg|(2), |g](2")].

Bisimilarity would be a very reasonable notion of equality between globular morphisms.
However, we were not able to construct the ‘fundamental wild w-category’ of a type for the
resulting notion of wild w-category. So we here decide to use the following extensional and
inductive definition (based on globular cells).

» Definition 7. We define the type of globular n-cells of an w-precategory A, noted cell,, A,
by induction on the natural number n as

cellp A :=|A|, and

cellny1 A =32, . a celln(Ala, a’]).
Given a globular morphism F': A - B and c: cell,, A, the globular cell Fc of B obtained by
applying F' to ¢ can by defined inductively by

|F|c when n = 0, and

(IFa,|Fla’, Fy,q¢’) when ¢ = (a,d’, ).

» Definition 8. Two globular morphisms F,G: A < B are extensionally equal iff
for all n € N and ¢ € cell,, A, Fc = Ge.
We may now settle the following (obviously proof-relevant) definition:

» Definition 9. A morphism F': X = Y of globular types between w-precategories preserves
composition iff

for all z,2', 2" € | X|, the square (2) commutes extensionally, and

for all z, 2" € | X|, Fy,o preserves composition.
Preservation of composition will be used below in Definition 12 to express the interchange law.
E.g., consider any w-precategory X, and x,y, z € |X|. Viewing compy (z,y, z) as a morphism
of globular types between w-precategories, saying that it preserves composition amounts to
stating the interchange law of Section 2, specialised to n = 0. For instance, on objects, it means
that, taking X in (2) to be X[z,y] x Xy, 2], for all f, f', f" € X|x,y], 9,9, 9" € X[y, 2],
a € X[z yl[f. f'], o € X[z yllf', f"], b € X[y, 2]lg.¢'], and V" € X[y, 2][g’,g"], we have
(V/ eb)o(a'ea) = (b od’) e (boa) (using some hopefully clear notation).

We may treat preservation of identities in a similar way:

» Definition 10. A morphism F': X - Y of globular types between w-precategories preserves
identities iff
X .Y
for all @ € | X|, |Fy2[(idy ) = id|p)(,), and
for all z,y € |X|, Fy,, preserves identities.

This will again be used in Definition 12 to enforce the third law of (1). Indeed, for any
w-precategory X, and z,y,z € | X/|, saying that compy (x,y, z) preserves identities entails,
e.g., that the identity on any pair (f,g) € | Xz, y] x X[y, z]| should be mapped by

X[z, y)lf, f] x X[y, 2llg, g) —mex@vD s | x10 Aigo g0 f]

to the identity on g o f (abbreviating |compy (z,y, 2)|(f,g) to go f).

» Definition 11. A morphism of globular types between w-precategories is an w-functor iff
it preserves composition and identities.
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3.4 Wild w-categories

It is now routine to extend the previous techniques to define associativity as extensional
commutation in all dimensions of all diagrams

compx (2,,2) x X [2,1]

Xz, y] x Xy, 2] x X[z,1] Xz, 2] x X[z,1]
X[x,y]xcompx(y,z,t)% chompx(w,z,t)
Xz, y] x X[y, 1] Xlz,1]

compx (,y,t)
and wunitality as extensional commutation in all dimensions of all diagrams
Xfo,y) M X o, 2] x X(a,y)
(Xlowl"id, b feomp (z..9)
X x X — = X
[, 9] x Xy, y] —ermmss X0,

where !: A <= 1 denotes the unique morphism to the terminal globular type with 1 at all
stages (for all A), and "id,": 1 = X[z, 2] maps the unique element of |1] to id,, the unique
endo 1-cell over it to id;q,, and so on.

We may at last define the type w-wCat of wild w-categories:

» Definition 12. A wild w-category is an w-precategory, satisfying associativity and unitality,
whose compositions are w-functors in all dimensions. Morphisms w-wCat(C, D) between wild
w-categories C' and D are simply w-functors between the underlying w-precategories.

The complete formal definition of wild w-categories is given in the file omega_categories.v [9].

3.5 Strict w-categories

The definition of wild w-categories is not satisfactory as a type-theoretic account of strict
w-categories. As a matter of fact, wild w-categories are not even weak w-categories. Indeed,
they appear to lack some coherence conditions. For instance, for any wild w-category X,
f € |Xz,y]| and g € | X[y, 2], there are two proofs of go (idy o f) = go f (the less trivial one
goes to (g o idy) o f and then simplifies). These proofs induce by transport two 2-cells, say [
and r. In weak higher categories, one imposes that [ and r are related by a ‘coherence’ 3-cell.
This is not the case in our wild w-categories, which may thus be viewed as ‘incoherently’
weak w-categories.

One perhaps reassuring perspective is that wild w-categories can be restricted to w-
categories where all higher coherences are trivially satisfied. This is the case when the
involved types are all hsets, which leads to:

» Definition 13. A sirict w-category is a wild w-category X such that |X| is an hset and for
all z,y € | X|, X[x,y] is a strict w-category. We call w-sCat the type of strict w-categories.

Strict w-categories are intuitively close to set-theoretic strict w-categories, and, as sugges-
ted by a referee, we expect their interpretation in standard models such as the simplicial
model [13] to coincide with set-theoretic w-categories. However, as we have seen, our defini-
tion relies on extensional equality (Definition 8), where identity types or bisimilarity could
have been used. We thus in fact have three notions of strict w-categories, and it is not entirely
clear that all three are interpreted in the simplicial model as set-theoretic strict w-categories.
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As previously observed in a similar context [2], it seems impossible to define any satis-
factory ‘fundamental strict w-category’ That is why we devote the rest of the paper to the
definition of the ‘fundamental wild w-category’ and use it to propose (partial) homotopy
hypotheses.

4 Fundamental wild w-category

We have defined wild w-categories, and now turn to the definition of the ‘fundamental wild
w-category’ map m: Type — w-wCat. This is essentially an internal variant of van den Berg
and Garner’s [3] and Lumsdaine’s [16] constructions, with wild w-categories instead of weak
w-categories. For any type T, we first easily define the globular type underlying = (7). We
then explain the definition of composition, which is a good example of how we had to
generalise some of our statements in order to be able to tie the coinduction loop. We refer
the reader to the formalisation for complete definitions and proofs. The part on composition
is technical and may safely be skipped: the sequel only makes use of Theorem 16.
We start by defining the globular type underlying the fundamental wild w-category.

» Definition 14. For any type T, the underlying globular type of 7(T) (still denoted by
m(T) by abuse of notation) has T itself as its type of objects, and (7 (T))[z,y] = 7(z = y)
for all z,y € T.

We now turn to defining composition on m(7). The definition of composition seems to
introduce a lot of choices. Indeed, let us start by fixing z,y,z € T and look at what
m(x =y) X (y = z) = 7(x = z) is on objects (i.e., on 1-cells in w(T")). The obvious choice is
concatenation of equality proofs, which we denote by (a: z = y),(b: y = z) — (a-b) [23].
But actually, here we need to choose between two different definitions of concatenation,
depending on whether a or b is eliminated first. Fortunately, it is well known that both
definitions are equal, so the choice does not really matter.

Actually, this situation occurs at every dimension: the definition of composition is
not unique, but all potential candidates are equal. This claim is justified by the work of
Lumsdaine [16], where he constructs the operad Py, of all definable composition laws over
a (generic) type and shows that this operad is contractible. Contractibility means that all
possible choices of composition are equal. The difficulty is to show that our particular choice
of composition gives rise to a wild w-category. For lack of space, we will only sketch the
definition of our compositions, referring to the formalisation [9] for details.

Let us start with the definition of 7(x = y) X w(y = z) = 7(xz = 2) in low dimensions, for
x,y,z € T. On objects, we have seen that the obvious choice is concatenation. On 1-cells,
consider a,a’: x =y, b,b': y = z, together with e: a = a’ and f: b = b'. How to compose ¢
and f into a proof of a-b = a’-b’? We consider, for all types A, B,C and map ¢: A — B — C,
the obvious function ap24 g ¢, of type

Va,a' € A,b,b' € Bie€ (a=d),fedb=0b),pab=¢pad V.

Applying this with A = (z = y), B = (y = 2), C = (x = 2), and ¢ = «, we indeed get
ap2aa bb e fof typea-b=a +b (omitting the subscript of ap2 for readability). To now
deal with 2-cells, considering ¢': a =d’, f': b=V, u: e=¢, and v: f = f’, we again apply
ap2, with A=(e=¢),B=(f=f),C=(def=¢ e f),withp' ef=ap2aad bb ef
for all e, f. In the next dimension, we’ll need a different ¢” with one more layer of ap2.

It would be obvious how to formalise this process coinductively if it weren’t for the first
level, where « is used. The trick is thus to abstract over this. Here, things become slightly

233

TLCA’'15



234

Wild w-Categories for the Homotopy Hypothesis in Type Theory

more verbose, and we apologise to the reader: for all types A, B, C, functions p: A - B — C,
and elements a,a’ € A and b,V € B, we coinductively define a morphism of globular types

Comp2A,B,C,zp(a‘a Cl/,b, bl): 7T(CL = a’/) X 7T(b = b/) — 77(90 ab= ¥ al b/)

(the ‘2’ refers to ap2) by
mapping e: a=a' and f: b=V toap2pe f:pab=pa ¥V,
and then defining (comp2A7B7C7w(a, a',0,b")) (., (er, ) tO be

CompzA[a,a/],B[b,b’],C’[cp a b,y a’ b'],ap2 @(67 ela fv f,) (3)

This is well-defined, since (comp24 5 ¢ ,(a,a’,b,0"))(c,) (e, f7) Should have type

(r(a=a') x 7o =¥)[(e. ). (¢, f)] = 7l ab=p a ¥)ap2 ¢ e frap2 o ¢ f],

ie.,

m(a=d)le, ] xn(b=V)[f,f]=m(lpab=ypa V)ap2pe fap2pe f],

or equivalently
mle=é)xn(f=f)=n(@ap2pef=ap2¢c f),

which is indeed the type of (3). It is now routine to define, for all types A and elements
a,a’,a” € A,
hcomp,(a,a’,a”): n(a=ad') x w(a’ = a") = 7(a = a")

by

mapping e: a =a’ and f: a’ =d” to e- f, with

hcompA (a’7 a/7 a//)(67f)’(e/7f/) = Comp2(a:a’)7(a’:a”),(a:a”),()\e./\f.e- ) (67 617 f7 f/)
This is again well-defined, because the latter has type

rle=e)xm(f=f)=nle-f=¢e-f),

ie.,
m(a = d)le,e) x n(@’ = a")[f, f'] = nla=a")e~ f,e' - f'],

as expected.

» Definition 15. This yields composition structure on 7(T), for any T

for all z,y,z € T, we let comp,(1(2,y, 2) = hcompy(z,y, 2);

for all z,y € T, we get composition structure on 7(z = y) by coinduction hypothesis.
One may similarly define identity structure and show:

» Theorem 16. This w-precategory structure makes w(T) into a wild w-category.

Proof. Let us say a few words about the proof. It resorts to a high level of generalisation to
tie the coinduction loop for each law of w-categories. In particular, a more explicit coinductive
definition of the interchange law is developed and proved equivalent to the compact version
that composition preserves composition. This explicit interchange law, plus a proof that
composition in all dimensions sends pairs of proofs by reflexivity to some proof by reflexivity,
enables us to prove the interchange law by coinduction, using elimination of identity types,
a.k.a. path induction. The other laws are dealt with similarly. The complete proof is given
in the file type_to_omega_cat.v [9]. <
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5 Partial Homotopy Hypothesis

The classical homotopy hypothesis states an equivalence between spaces and w-groupoids. It
can be formulated either at the level of so-called homotopy categories [12], or at the level
of model categories [11] or even at the level of (0o, 1)-categories [22]. On the type-theoretic
side, we propose our first partial homotopy hypothesis:

» Hypothesis 1. There exist L: w-wCat — Type and n: VC,w-wCat(C, 7 (L(C))) such that
for each wild w-category C' and type T, the map

n(C)*: w-wCat(w(L(C)),n(T)) = w-wCat(C, w(T))
given by precomposition with n(C) is an equivalence.

We conjecture that Hypothesis 1 is consistent, and more precisely that it holds in
the groupoid model [10]. Indeed, in this model, small types are small discrete groupoids
and (small) wild w-categories are the set-theoretic, strict w-categories of Section 2. The
fundamental wild w-category 7(T') of any small discrete groupoid T is a discrete globular
set, equipped with the only possible additionnal structure. Thus, morphisms from any strict
w-category C' into m(T') are just maps from C[0] to T compatible with (the equivalence
relation induced by) C[1]. Hence we can define L(C) to be the quotient C[0]/C]1], n(C)
being induced by the quotient map.

This indicates in particular that Hypothesis 1 is consistent with the Univalence Axiom.
But it also shows that the asserted adjunction may be far from an equivalence. An easy way
of strengthening our hypothesis is to require n(C) to be a weak equivalence, in the sense
of [15]:

» Definition 17. An w-functor F': C = D is a weak equivalence iff

for all d € |D|, there exists ¢ € |C] such that |D[|F|(c),d]| is inhabited, and

for all ¢, ¢’ € |C|, Fe, is a weak equivalence.

Another possibility is to state a proper adjunction between L and 7 and ask both its unit
and counit to be weak equivalences in the appropriate sense. We haven’t yet investigated
such strengthened hypotheses.

For now, let us modestly check how our hypothesis implies the existence of a type
corresponding to the standard type-theoretic circle. For this purpose we introduce the wild
w-category St as follows: it has a single object x, and S1[x,#] is the discrete wild w-category
on N-many objects with composition given by addition. Of course, we could have worked
with Z instead. Assuming our hypothesis, we prove the expected, non-dependent induction
principle for L(S'), together with (propositional versions of) computational rules.

» Theorem 18. There exists a term inhabiting the non-dependent recursion principle of the
circle

L(SY)ec: VT € Type,b € T\l € (b=1b), L(S*) = T,

satisfying (propositionally) the expected computational laws:

L(Sl)&*Z VT,b,l,L(Sl)rec Tbl(nx)=h,
L") 5,13 YT, 0,0, pe((@p (LS )ree T b1) (10 1)) =1,

where p.(—) denotes transport [25] along p = L(SY)g. T b L.
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Proof. Any w-functor from S! is determined by the images of x and 1 € S'[x,%]. Using
the inverse of the equivalence given by Hypothesis 1, this induces an essentially unique
w-functor 7(L(S')) = «(T), from which we extract the underlying map L(S') — T. Using
the retraction part of the equivalence given by Hypothesis 1, we deduce the computational
laws. The complete proof! is given in the file homotopy_hypothesis.v [9]. <

This suggests that Hypothesis 1 may imply existence of certain higher inductive types [23].
The basic idea of higher inductive types is to generate not only the elements of an inductive
type, but also equality proofs between them, and so on. Lumsdaine and Shulman [17] propose
a semantics for them (in particular) in (oo, 1)-toposes, using so-called strictly Reedy-functorial
path objects. Closer to implementation, Sojakova [19] proposes an operational definition of
higher inductive types as so-called homotopy-initial algebras. Both accounts fix a particular
syntax for higher inductive types.

If, along the lines of Theorem 18, we could show that the partial homotopy hypothesis
entails adequate induction principles, it could be understood as specifying higher inductive
types, in a syntax-independent way. Of course, this would only be a definition from the
internal point of view, i.e., the corresponding computational behaviour would not be accounted
for.

So, given any candidate syntax for (or combinatorial description of) higher inductive
types, this opens the option of describing ‘the corresponding’ wild w-category, from which
Hypothesis 1 would yield the desired type and reasoning principles.

» Remark. It is well-known that set-theoretic strict w-categories cannot represent all homotopy
types. E.g., they do not model the homotopy type of the 2-sphere [18]. Depending on the
ambient type theory, wild w-categories may be much more expressive than strict w-categories.
Nevertheless, we suspect that even in such cases, they may not adequately represent all

types.

Let us consider a few example syntaxes.

To start with, Ahrens et al’s categories [1] straightforwardly embed into wild w-categories,
and are enough to specify (a groupoidal version of) S! as above (but not S2). Their categories
may express ‘non-freeness’ properties of composition. E.g., we may consider the category
obtained by quotienting S' under 1 + 1 = 1, i.e., replace N by booleans and addition with
sup. Or similarly quotient under 1+ 1 =0, i.e., work with Z/27Z. Also, it seems plausible to
extend their Yoneda-based Rezk completion procedure—which (in their terms) constructs
a (univalent) category from a precategory—to a proof of our hypothesis for categories.
Please note, however, that they work in homotopy type theory, and their construction uses
univalence (because the category of sets needs to be univalent) and higher inductive types
(through propositional truncation).

A different ‘syntax’ is offered by globular types themselves, and we may hope for a
type-theoretic analogue of the standard adjunction computing the free strict w-category
associated to any globular set. In contrast this syntax does not allow to express non-freeness
properties. E.g., we may express S!, but none of the quotients of S' evoked above. Also, we
cannot express the higher inductive type for S? with one base point b and an equality proof
on refl,, because we cannot talk about identities. However, we can perfectly consider the
globular set with two base points 0 and 1, two 1-cells s,¢: 0 — 1, and two 2-cells s — ¢.

L The proof that the constructed w-functor from S* actually preserves composition remains incomplete at
the time of writing.



A. Hirschowitz, T. Hirschowitz, and N. Tabareau

Finally, the most expressive such syntax would probably be offered by computads [20],
a.k.a. polygraphs [5, 15]. A computad is essentially a graph, together with a set of 2-cells
between parallel paths, together with a set of 3-cells between parallel paths of 2-cells, and
so on. In particular, one may talk about identities and composition in all dimensions. And
indeed, any strict w-category is weakly equivalent to some strict w-category which is free on
a computad [15].

6 Towards w-groupoids

In the fundamental wild w-category 7(T') associated to any type T, all cells are invertible.

We will see below that defining general w-groupoids is not straightforward. Nevertheless,
following Ahrens et al. [1], we have an economical, yet a bit restrictive definition:

» Definition 19. A wild w-category X is a univalent w-groupoid when for all x,y € |X|,
the map (x = y) — | X[z, y]| (induced by transporting id.,) is an equivalence (of types) [23],
and X[z,y] is a univalent w-groupoid.

This univalence automatically entails existence of inverses in a very strong sense. In particular,

for any wild w-category X and z,y, z € | X|, the diagram

(z=y)x (y=2) —— (v =2)

| X[z, y]| x [ Xy, 2]

| X, 2]|

(extensionally) commutes in Type, so that, if X is univalent, inverses in the w-groupoidal
sense have to be inverses in the identity type sense. The above definition has to be about
w-groupoids, as it implies that all cells are invertible. We prove:

» Proposition 1. The w-category w(T') is a univalent w-groupoid, for all types T

» Proposition 2. For all univalent w-groupoids G, there is a type T and an extensional
equivalence m(T) ~ G.

By extensional equivalence we here mean an equivalence e: |7 (T')| =~ |G| of types, such that
for all z,y € T the map 7(z = y) — |G[e z, e y]| induced by e is an extensional equivalence.

Proof. Take T = |G]|. <

We conclude this section by considering perhaps more primitive versions of our hypothesis
using some notion of w-groupoid rather than w-categories. Of course, univalent w-groupoids
are not interesting for this purpose, so we seek a definition of what it means for some
(possibly higher) cell in a wild w-category to be invertible. We first review possible notions
of w-groupoids and transpose a result of Cheng [6] showing that two of them are equivalent.
We then get back to w-groupoidal statements of our hypothesis.

Brown et al. [4] use strict inverses, i.e., for them an w-groupoid is an w-category in
which for every n-cell f: x — y there is an n-cell g: y — x such that go,_1 f = id, and
fon_1g=1d, (for n > 0). Others [20, 12, 18] consider weak inverses, in several apparently
different ways. A recent preprint [14] shows that two such definitions coincide, namely those
of Street [20], and Kapranov and Voevodsky [12]. The latter had previously been shown
by Simpson [18] to be equivalent to an apparently stronger definition. Finally, Cheng [6]
shows that these definitions are further equivalent to a seemingly weaker definition when
required of the whole w-category. A bit more precisely, Cheng defines the notion of a dual
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to an n-cell in an w-category, which is in general weaker than that of a weak inverse in the

sense of [20, 12, 14]. But she shows that for a given w-category, having all duals is equivalent

to having all weak inverses. We now show how to recover this equivalence in our setting.
It is easy to define what it means for a wild w-category to have all duals.

» Definition 20. In a wild w-category X, for all z,y € | X| and f € | X[z, y]|, a dual for f is
a 1-cell g € | Xy, x]| such that there exist 2-cells inhabiting

| Xy, yllf o g,id,]| and | X[, z][g o f,id.]].

We then say that X has all duals iff for all z,y € |X| and f € | X[z, y]|, f has a dual, and
for all z,y € | X|, X[z, y] has all duals.

The notion of weak inverse is a bit harder. We follow the coinductive presentation of [15]
(a definition considered ‘unsound’ by Cheng, but which Coq readily accepts!).

» Definition 21. We pose the following mutually coinductive definitions:
two objects x and y of a wild w-category X are equivalent, notation x ~ y, iff there exists
a reversible 1-cell f € | X[z, y]l;
a l-cell f € |X[z,y]| is reversible when it has a weak inverse;
a weak inverse for a 1-cell f € |X[xz,y]| is a 1-cell g € | X[y, «]| such that g o f ~ id, and
fogn~id,.

» Definition 22. A wild w-category has all weak inverses when for all z,y € |X]|, any
f €| X[z, y]| is reversible, and X[z, y] has all weak inverses.

» Proposition 3. Any wild w-category has all duals iff it has all weak inverses.
This allows us to comfortably state a first definition of w-groupoid:
» Definition 23. A wild w-groupoid is a wild w-category with all duals.

One possible problem with this definition is that, ideally, being an w-groupoid should be a
mere property of w-categories, i.e., for all X, the type ‘X has all weak inverses’ should be a
mere proposition [23]. The very definition of univalence [23] suggests that having all duals
might not suffice and that one may have to resort to some sensible notion of w-adjunction
in this context, but there does not seem to be any commonly accepted such notion in the
literature, and we leave the question open.

There is one possible solution if we wish to delve into HoTT — except for this paragraph,
our whole development remains within Martin-Lof type theory with coinduction. Namely,
we could truncate the naive definition above. Indeed, according to the naive definition above,
a wild w-groupoid is a wild w-category, equipped with a choice of duals for all cells in all
dimensions. So we may define brutal w-groupoids to denote wild w-categories for which there
exists, in the mere propositional sense, duals for all cells in all dimensions. It would however
be preferable to have a mere property without resorting to truncation, as is done in the
standard treatment of the univalence axiom.

We conclude this section by stating a groupoidal variant of our hypothesis. Since we have
several candidate definitions for general w-groupoids, we state our hypothesis taking this as
a parameter. So let w-Gpd denote some type of w-groupoids.

» Hypothesis 2. There exist L: w-Gpd — Type and n : VG € w-Gpd, w-wCat(G,7(L(G)))
such that for each w-groupoid G and type T, the following map is an equivalence:

n(G)*: w-wCat(w(L(G)),n(T)) = w-wCat(G, n(T)).
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» Remark. We here use w-functors as morphisms of w-groupoids. An alternative would be to
require morphisms of w-groupoids to preserve weak inverses. If we could refine the type of
inverses to a given morphism into a mere proposition, then both possibilities would coincide.

7 Conclusion and Future Work

We have defined wild and strict w-categories, as well as wild and univalent w-groupoids. We
have constructed a ‘fundamental w-groupoid’ map from types into all of these notions but
strict w-categories. We have stated a few variants of our partial homotopy hypothesis which
postulates some correspondence between types and the given w-dimensional structure. We
have loosely related such hypotheses to the existence of higher inductive types and to the
Rezk completion for one-dimensional categories.

The main remaining issue in our development is that we have used a rather coarse notion
of equality between globular morphisms (Definition 8) in order to be able to define our
‘fundamental wild w-category’ map. We wonder whether this could be done using a more
standard notion like bisimilarity.

As explained in the introduction, this paper grew out of an attempt to use strict, as
opposed to weak, w-groupoids in the statement of a type-theoretic homotopy hypothesis.
Beyond the issues raised by the definition of type-theoretic w-groupoids (Section 6), it now
seems likely that the lack of coherence of wild w-categories disqualifies them for the full
homotopy hypothesis.

Our main future challenge is thus clearly to propose a type-theoretic notion of weak
w-category allowing the definition of a ‘fundamental weak w-category’ map. Assuming that
we succeed in defining weak w-categories, stating a full version of the homotopy hypothesis
would first require us to define weak w-groupoids properly. Thus, we expect the discussion of
Section 6 about weak inverses to also be relevant in the weak case. Namely, we will need to
investigate whether ‘having all duals’ is a mere property of weak w-categories, and, if not,
how to refine it into one. Finally, a full version of the homotopy hypothesis would essentially
assert the existence of an infinite-dimensional generalisation of the Rezk completion. We
wonder whether the construction of [1] could be adapted to this setting.

Acknowledgements. We thank the anonymous referees for insightful comments and sugges-
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—— Abstract

We study amortised resource analysis in the context of term rewrite systems. We introduce
a novel amortised analysis based on the potential method. The method is represented in an
inference system akin to a type system and gives rise to polynomial bounds on the innermost
runtime complexity of the analysed rewrite system. The crucial feature of the inference system is
the admittance of multivariate bounds in the context of arbitrary data structures in a completely
uniform way. This extends our earlier univariate resource analysis of typed term rewrite systems
and continues our program of applying automated amortised resource analysis to rewriting.
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1 Introduction

Amortised resource analysis was pioneered by Sleator and Tarjan who used it to analyse the
performance of new data structures that sometimes need to perform costly operations that
pay off later on, e.g. rebalancing operations on a search tree.

Briefly, one assigns to the participating datastructures a nonnegative real-value, the
potential in an a priori arbitrary fashion. One then defines the amortised cost of an operation
as its actual cost, e.g. runtime plus the difference in potential of all datastructures before
and after the operations. In this way, the amortised cost of a costly operation may be small
if it results in a big decrease of potential. On the other hand some cheap operations that
increase the potential will be overcharged. In this way, one can “save money” now to pay for
costly operations later. By a simple telescoping argument the sum of all amortised costs in a
sequence of operations plus the potential of the initial input data structure is also an upper
bound on the actual cost of that sequence. In this way, amortised analysis yields rigorous
bounds on actual resource usage and not just approximate or average bounds. If the potential
functions are chosen well then the amortised costs of operations are either constant or exhibit
merely a very simple dependency on the maximum size of all intermediate results which
considerably facilitates a compositional analysis: the costs of running composite expressions
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can be calculated as the sum of the individual costs. If costs are highly input-dependent, on
the other hand, one must get bounds on the sizes or shapes of intermediate results which
can be very difficult. This compositional aspect of amortised analysis makes it attractive for
syntax-directed automation.

Of course, the crux of the matter is the choice of the correct potential functions. A simple
concrete example is the implementation of a queue by two stacks, an in-tray and an out-tray.
Incoming elements are added to the in-tray, outgoing elements are taken from the top of the
out-tray. Only if the out-tray becomes empty the entire in-tray is reverse-copied into the
out-tray. In this case, the length of the in-tray is clearly a suitable potential function. The
costly operation of copying can entirely be paid from the big decrease in potential it causes.

In a nutshell automated amortised analysis works as follows. One selects a collection
of basic potential functions, called basic resource functions, and assumes that all potential
functions are linear combinations of these basic resource functions. One then performs a
symbolic amortised cost analysis where the coefficients of these linear combinations as well as
the amortised costs of operations (assumed constant) are unknowns. This yields a system of
linear constraints for these unknowns whose solution provides the desired amortised analysis
from which actual cost bounds in the form of functions of the size of the initial input can be
easily read off.

Most automated amortised analyses are univariate in the sense that the joint potential of
several arguments to an operation (a “context”) is calculated as the sum of the individual
potentials. This, however, proved unsatisfactory in the analysis of nested data structures
such as lists of lists or trees and led to the development of multivariate analysis where also
products and sums of products of the individual potentials may be used [9].

While automated amortised analysis has hitherto mostly been applied to functional
and to a lesser extent to imperative programs; we are here interested in its application
to term rewriting understood as a generalisation of functional programming to arbitrary
constructor-defined datatypes. After a first step in this direction [12] which was based on
univariate analysis, we now generalise to multivariate analysis and indeed subsume and
further extend the entire system from [9].

On the one hand this gives a more general treatment of algebraic datatypes which are
now untyped and merely defined by their constructor symbols. On the other hand, this
necessitates a more general approach to basic resource functions which also streamlines the
existing format in [9] or for that matter [11]. In [9] a basic resource function for a list type
L(A) is given by a finite list [py, ..., px| of basic resource functions for the underlying type
of entries A. The interpretation of such a list as a nonegative R-valued potential function
was then given by the formula

[P1>«~~»Pk]([vlw~~,vn]) = Z pl(vil) """ pk(vik) .

1< < <ipg<n

By treating tree types as a list of entries in depth-first order this same format could then be
applied to trees as well. While these formats provided a smooth interaction with the typing
rules and allow a very precise analysis of many examples they still look somewhat arbitrary
and unjustified.

In the present paper, these formats are subsumed under a very general pattern that is on
the one hand simpler and on the other hand permits an even smoother interaction with the
typing rules for constructors and matching.

Namely, for us, a basic resource function is defined simply by a bottom-up tree automaton
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A which acts on values by
pa(v) := number of accepting runs of A4 on v .

If ¢ is a binary constructor, we have

palcvr,v2) = D pas)(v1) - pras,)(ve) -
C(Bl,ﬁg)%OLeA

where « is the final state of A and ¢(51, f2) — « represents a transition in A and (A, j3;)
denotes A with the final state set to 8;. Using this formula, the above formats for potentials
on lists and trees are readily derived and obviously much more general potential functions
can be defined which for example perform a rudimentary kind of type checking by simply
ignoring certain constructors or, more interestingly, insisting on certain local patterns.

We note that the expression p4(v) is known as the ambiguity of A [13] and has been
extensively studied. In particular, the above recursive expansion of p4(v) is known and
attributed to Kuich, cf. [13]. However, these previous studies focused mainly on bounding
max, p4(v) as a function of the number of states (in the case where this quantity is at all
finite) and has to our knowledge never been applied to complexity analysis of tree-like data
structures.

Let us now look at a concrete example. Consider the following TRS Rgyade, encoding
vector multiplication. The example forms a direct translation of the dyade.raml program
discussed in [9].

0+y—y s(z) +y > s(z+y)
O0xy—0 s(z)y xy—=y+ (zxy)
mult(n, []) — [] mult(n,z :: xs) = (n X x) :: mult(n, xs)
dyade([],1s) = |] dyade(z :: xs,1s) — mult(x,s) :: dyade(zs,ls) .

Consider a call to dyade(ls1,ls2), where ls; and lss are lists. It is easy to see that the
runtime complexity of Rayade crucially depends on the sum of the entries of Is; times the
sum of the entries of sy, that is an optimal (automated) analysis should provide us with
the certificate O(|is1] - |ls2|). However, state-of-the-art complexity tools, like AProVE [7],
or TcT [2] overestimate the actual resource usage. For example T¢cT will provide a polynomial
interpretation of degree 2, which is quadratic in |ls1|, even if the monotonicity conditions are
weakened suitably, cf. [8]. Also our earlier amortised resource analysis of typed TRS [12] can
only provide the non-optimal bound O(|ls1|? + |ls2|?). On the other hand the automated
analysis of the RaML prototype is more to the point; the analysis with respect to dyade.raml,

just overestimates the optimal bound by a linear factor and provides unnecessary big constants.

The multivariate amortised analysis provided in this paper allows to lift this analysis to the
above example and provides essentially optimal bounds (see the example on page 254).

This paper is structured as follows. In the next section we cover basics. In Section 3
we introduce resource functions as generalisations of resource polynomials to arbitrary
constructor-defined datatypes. In Section 4 we present our type system and establish its
soundness. Finally, we conclude in Section 5, where we also present related work.

2 Term Rewrite Systems and Tree Automata

We assume familiarity with term rewriting [4, 16] and tree automata [6] but briefly review
basic concepts and notations.
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TO = ceC mo=v1 -+ Tpo =1y

apx:wu opc(xl,...,xn):>c(v1,...,vn)

flli,...,ln) = re€R It Vi: zijo =it Jtﬂr}ﬂrév

1
U}Lf(:cl,..,,xn):wu

all z; are fresh

awp}ﬂf(xh...,mn):v J}ﬂt1:>1}1 a}ﬂtnivn m:ZLOmi
J}ﬂf(tl,...,tn):v

Here p:={z1 — v1,...,2p > vUp}.

Figure 1 Operational Big-Step Semantics.

Let V denote a countably infinite set of variables and F a signature, such that F contains
at least one constant. The set of terms over F and V is denoted by T (F, V). We write Var(¢)
to denote the set of variables occurring in term ¢. The size |t| of a term is defined as the
number of symbols in t. We suppose F = C W D, where C denotes a finite, non-empty set
of constructor symbols, D is a finite set of defined function symbols, and W denotes disjoint
union. The set of ground constructor terms is denoted as 7 (C), ground constructor terms are
also called values. A substitution o is a mapping from variables to terms. Substitutions are
conceived as sets of assignments: o = {z1 — t1,..., 2, — t,}. We write dom(c) (rg(o)) to
denote the domain (range) of 0. Let o, 7 be substitutions such that dom(c) Ndom(7) = @.
Then we denote the (disjoint) union of o and 7 as 0 W 7. We call a substitution o normalised
if all terms in the range of o are values.

A rewrite rule is a pair [ — r of terms, such that (i) the root symbol of [ is defined, and
(ii) Var(l) 2 Var(r). A rule I — r is called left-linear, if | is linear. A term rewrite system
(TRS for short) over F is a finite set of rewrite rules. In the sequel, R always denotes a TRS.
The rewrite relation is denoted as —x and we use the standard notations for its transitive
and reflexive closure. We simply write — for —5 if R is clear from context. Let s and ¢ be
terms. If exactly n steps are performed to rewrite s to t, we write s =™ ¢t. In the sequel we
are concerned with innermost rewriting, that is, an eager evaluation strategy. The innermost
rewrite relation - of a TRS R is defined on terms as follows: s -5 t if there exists a
rewrite rule | — r € R, a context C, and a substitution o such that s = Cllo], t = Clro],
and all proper subterms of [o are normal forms of R.

A TRS is left-linear if all rules are left-linear, it is non-overlapping if there a no critical
pairs, that is, no ambiguity exists in applying rules. A TRS is orthogonal if it is left-linear
and non-overlapping. A TRS is completely defined if all ground normal-forms are values.
Note that an orthogonal TRS is confluent. Let s and ¢ be terms, such that ¢ is in normal-form.
Then a derivation D: s =} t with respect to a TRS R is a finite sequence of rewrite steps.
The derivation height of a term s with respect to a well-founded, finitely branching relation
— is defined as: dh(s, —) = max{n | 3t s =" t}. A term ¢t = f(t1,...,tx) is called basic if f
is defined, and all ¢; € T(C). We define the (innermost) runtime complexity (with respect to
R): rer(n) := max{dh(t, ) | t is basic and |t| < n}.

We study constructor TRSs R, that is, for each rule f(ly,...,l,) — r we have that the
arguments [; are constructor terms. Furthermore, we restrict to completely defined and
orthogonal systems. These restrictions are natural in the context of functional programming
as orthogonal TRSs correspond to first-order function programs with pattern matching. Let
F denote the signature underlying R.
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As R is completely defined, any derivation ends in a value. In connection with innermost
rewriting this yields a call-by-value strategy. Furthermore, as R is non-overlapping any
innermost derivation is determined modulo the order in which parallel redexes are contracted.
This allows us to recast innermost rewriting into an operational big-step semantics instru-
mented with resource counters, cf. Figure 1. The semantics resembles similar definitions
given in the literature on amortised resource analysis.

» Proposition 1. Let f be a defined function symbol of arity n and o a normalised substitution.
Then o Iﬂ fz1,...,2n) = v holds iff dh(f(x10,...,2,0), >Rr) =m.

We suit the standard definition of bottom-up tree automata to our context. A tree
automaton is a quadruple A = (F, Q,«, A), cousisting of a finite signature F, a finite
non-empty set of states @ (disjoint from F), a unique final state «, and a set of non-empty
transitions A. Every rule in A has the following form f(aq,...,a,) — 8 with f € F,
A1, .. 00,0 € Q.

Note that we only consider tree automata that consist of at least one state and feature
a non-empty transition relation. As we will only be concerned with tree automata, we
drop the qualifier “tree” and simply speak of an automaton. Observe that an automaton
A= (F,Q,a,A) is conceivable as a finite ground TRS A over the signature 7 U Q, where
the shape of the rewrite rules is restricted. The induced rewrite relation on 7 (F U Q) is
denoted as — 4. A ground term t is accepted by A if t =% o; we set L(A) := {t |t =% a}.
Two automata A and B are equivalent, if L(A) = L(B). We use the notation (A, 5) to refer
to the automaton (F, Q, 8, A) where § € Q. Note that (A, a) = A and we sometimes use
the succinct notation instead of the expanded one.

In the sequel, A will always denote an automaton. Henceforth, R and F, as well as
the defined symbols D and constructors C are kept fixed. Furthermore, all considered
substitutions are normalised.

3 Resource Functions

We define a set BF of basic functions, that map terms to natural numbers. Basic functions
are indexed by a pair consisting of an automaton A and a state a. Resource functions will
then be defined as nonnegative rational linear combinations of basic functions.

» Definition 2. Let A= (C,Q,a,A). For v € T(C) we define the basic function p_4, whose
value p4(v) is the number of accepting runs of A on v. The set of basic functions is denoted
as BF.

For any set of constructors C, there exists an automaton .4 with p4(v) = 1 for all values v.
Moreover A is unique upto renaming of the single state a. We call A the canonical automaton,
denoted by @, whose unique state is denoted by &. As mentioned in the introduction p4(v)
is called ambiguity in the literature (see for example [13, 14]). In particular it is known that
the finiteness of the degree of ambiguity sup, p4(v) is polytime decidable [13]. The following
is direct from the definition.

» Proposition 3. Let v € T(C) be a value such that v = c(v1,...,v,) and let « € Q. We
then have:

Pa)(c(vr,.. . vp)) = > P(Aan) (V1) P(aan) (Un) -

clag,...,an)—a€A

Note that pa,q)(c) = > . aea 1, as the empty product equals 1.
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We could alternatively have used the latter as a recursive definition of p(4 q)(v). The
advantage of the definition based on runs is that we can immediately read off an exponential
upper bound:

» Proposition 4. Let q be the number of states of A and n the size of v € T(C). Then
pa(v) <q".

It is also easy to see that this bound is actually taken on so that unlike the basic functions
in [9] ours are not in general polynomials. If desired, it is however easy to impose syntactic
restrictions that ensure polynomial growth. For example, we can use a ranking function
on states and require that for each transition ¢(aq,...,a,) — « the ranks of the «; are
not bigger than that of o and that they strictly decrease for all but one transition with
symbol ¢ and result state c. All the concrete basic functions we use in examples satisfy this
restriction and thus exhibit polynomial growth. We believe, however, that in some cases also
exponential bounding functions may prove useful.

Let C = {0,s,[],::} and consider the following automaton A with final state Sj.

0— ap s(ag) = aq s(ap—1) = ay
s(ag) = ap s(ap—1) = ap_1 s(ag) — ap
[J = Bo iy i fo = P @i, i Br—1 — B
ao :: Bo = Po Qg it Br—1 = Br—1 ao 2 B — B -

First, by a simple inductive argument we see that p(a.a,)(s"(0)) = (}) for n > 0 and
1=20,...,¢. Based on this, we conclude by induction on m:

P (0, - ) = Z ("gﬁ) (njk) ’

7 7
11 < <jr<m S k

where we denote the numeral s™(0) by n, [n1,...,n,,| abbreviates the corresponding cons-list,
and 1 <, </lforallj=1,...,k.

Consider the set, denoted as 2, of all non-equivalent (and non-empty) automata over C.
In the following we will frequently appeal to an enumeration of 2, referring to a suitable
chosen, but inessential encoding of automata. Note that in effect we will only work with a
small, in particular finite subset of 2.

» Definition 5. A resource function r: T(C) — Q% is a non-negative rational linear com-
bination of basic functions, that is,

r(t) =Y qa-palt),

Aed
where p4 € BF. The set of resource functions is denoted as R.F.

The example above hints at the fact that the expressivity of our basic functions exceeds
the expressivity of the base polynomials considered by Hoffmann et al. [10, 9]. The next
proposition makes this fact precise.

» Lemma 6. All the resource polynomials from [9] are also resource functions in the present
automata-based setting.

Proof. This is proved by induction on the definition of resource polynomials [9]. We do not
need to recall their definition here; the inductive cases we establish reveal enough detail.
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If p, g are basic resource polynomials for types A, B respectively then Aab(p(a) - (b)) is a
base resource polynomial for the product type A x B. In rewriting, we can simulate product
types by introducing a binary constructor pair(z,y). Now, if, inductively p = p(4,o) and
q = p(s,p), and w.L.o.g. the two automata have disjoint state sets, then we can build an
automaton C whose states are the union of the states of A and B together with a new state
~ and a transition pair(a, ) — « in addition to the transitions from A and B. We then have
P(c,y)(a,b) = paa)(a) - ps,p)(b) = pla) - q(b) as required. If py,...,p, are base polynomials
for type A then the base polynomial [py, ..., px] given by

[plv"'vpk’]([alﬂ"'aam}):: Z pl(ail)""'pk(aik)a
1< << <t <m

is the generic base polynomial for lists over type A. Assuming that lists are constructed with
the symbols [] and :: and that, inductively, p; = p(4,,q,), We can build an automaton B as
the disjoint union of the A; together with k + 1 states Bg, 81, ..., Bk, and transitions:

[ 51 — 51 Qi it ﬂH—l — Bl [] — I s
where i = 0,...,k — 1. (Recall that @ denotes the final state of the canonical automaton &,
whose inclusion we here tacitly assume.) We obtain [py,. .., pxl([a1,...,an]) = ps,s,) (a1 =

as -+ ayn :: []). Finally, the generic resource polynomial for A-labelled trees takes the form

[plv"‘vpk](t) = [pla"'apk](lt) P

where I; is the list of entries of ¢ (in the leaves) in depth-first order. Note that we have

Zfzo([pl, oo pil(tr) - ifls = [p1,...,pk), kK > 1, and ¢ = node(ty,t2)
[pit1, - pil(t2))
Is(t) := < p(a) if Is = [p] and t = leaf(a)
1 if Is =[] and t = leaf(a)
0 otherwise .
Thus, assuming the automata A; (i = 1,..., k) as above, we can construct a new automaton B

for [p1,...,px) as the disjoint union of the A; together with new states §; ; for 1 <i < j <k
and the following transitions:

Ieaf(ai) — ﬂi,i—i—l Ieaf(@) — ﬂi,i node(ﬁu,ﬁt,j) — ,8,'71' ,

where ¢ = i,...,j. As above, we obtain [pi,...,px](t) = p,s ,)(lt). Thus the lemma
follows. <

» Lemma 7. Ifr and r’ are resource functions, then r +r',r-r' € RF.

Proof. First, resource functions are obviously closed under addition. With respect to
multiplication we employ the linearity of resource functions to see that it suffices to prove
the claim for basic functions. Here we argue similar to the proof of Lemma 6 by using a
product automata construction. |

» Definition 8. We define the set of multivariate basic functions, denoted as BF(n):
BF(n):={v1,...,0n = pa,(v1) - pa, (vy) | for all i: v; € T(C) and pa, € BF} .

We enumerate the set BF(n) by sequences of automata, such that pia,.... 4,)(V1,...,vn) =
pay (V1) -+ pa, (vn)-
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In the following sequences of automata (like (Ay,...,.4,)) are sometimes abbreviated as
A, in particular we set & = (&, ..., @). Note that BF(1) = BF; in the following we use BF
as unique denotation.

» Lemma 9. For all p € BF(2), there exists p' € BF, such that p(v,v) = p'(v) for all
values v.

Proof. By definition there exists automata A, B such that p(v,v) = pa(v) - pg(v). By the
previous lemma there exists an automaton C such that pe(v) = pa(v) - pg(v). Thus we set
p’ := pc to conclude the lemma. |

Let C denote a set of constructor symbols. A resource annotation over C, or simply
annotation, is a family Q = (qa)aea with g4 € QT with all but finitely many of the
coefficients g4 equal to 0. It represents a (finite) linear combination of basic resource
functions. We generalise annotation for sequences of terms. An annotation for a sequence of
length n is a family @ = (g4, ,...,4,))A;e2 again vanishing almost everywhere. We denote
annotations with upper-case letters from the end of the alphabet and use the convention
that the corresponding lower-case letter denotes the elements of the family.

» Definition 10. The potential of a value v with respect to an annotation @ (of length 1),
that is, @ = (q4).acu, is defined as:

2(v:Q) == qa-palv),

Aed

where py € BF. We generalise this to the potential of a term sequence with respect
to an annotation Q = (q(A17___7A"))Aiegl: D(vy,...,05:Q) = ZAl,..A,Anem A Ay, An)
P(Ay,..., A, (V15 vn), where pa, . a,) € BF(n).

We are ready to generalise the notion of additive shift studied in [10, 9, 12].

» Definition 11. Suppose Q = (q(4,.... 4,.,8)) A;,Bex denotes a resource annotation of length
m + 1. Let ¢ € C be a constructor symbol of arity n. The additive shift for ¢ of @ is
an annotation <.(Q) = (qEAh..A,Am,Bl,...,Bn))AMBJ'EQ[ for a sequence of length n + m, where
qEA17~~-7A7n7817-~7Bn) is defined as follows:

/ ¢ —
YA, Ai By Br) Z U Ay Am,B) > .
B=(C,Q,8,A)e
with ¢(B1,...,6n) = BEA

Here B; = (C, Qg,, Bi, Ag,) for each i =1,...,n.
The correctness of the additive shift operation follows from the next lemma.

» Lemma 12. Let v = c(vy,...,v,) be a value and let Q = (q(a,,....A,,,8)) Ar,..., A, Bet be an
annotation of length m + 1. Then ®(w1,..., Wy, v:Q) = D(w1,..., Wy, v1,...,0,:<(Q)).
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Proof. In proof, we restrict to the case m = 0. Consider the value v = ¢(v1,...,v,):
P(v:Q) = Z g5 - pp(c(v1, ..., v,))

Bed

= g5 Yo pway (1) ps.p.) ()
Beu (B, Bn)—BEA

= Y s (5 (0 pa, (00)
Bi,....Bpe

= Z qéBl,...,Bn) 'p(B1,-.<,Bn)(U17'~-avn) :@(vl,...,vnzdc(Q)) .
Bi,....Bpe

_____ 5, 18 as in (1). Thus the last equation (and
the lemma) follows. <

Let Q = (q(a,,...,a,,))4;e denote a resource annotation of length n. Let B=
(Bi,...,By); we define the projection of Q with respect to B to an annotation of length
¢ < n. The projection is denoted as wf(Q). We set

B )"'7677l . —_—
T (@) = (QEAl,...,Az)Mie% )
where qEAh...,Ae) = q(A,,...,A¢,Br,....B,) a0d n = £+ m. Suppose I',v1,v2:Q denotes an
annotated sequence of length m + 2. Suppose v; = v2 and we want to share the values. Then
we make use of the operator Y(Q) that adapts the potential suitably. The operator is also
called sharing operator.

» Lemma 13. Let T',v1,v2: Q denote an annotated sequence of length m + 2. Then there
exists a resource annotation Y(Q) such that ®(T',v1,v2:Q) = ®(I',v: Y(Q)), if v1 = v2 = v.

Proof. This follows from Lemma 9. |

Let @ be an annotation over the set of constructor symbols C and let K € Q. Then
we define Q' := Q + K as follows: Q' = (¢'y) a2, where ¢ := ¢z + K and for all A # @,
¢’y := qa. We define the comparison < of two annotations @, Q’ over C pointwise: Q < Q" if
for all A € A: ga < ¢y

4 Amortised Cost Analysis

The rest of the paper is essentially an adaptation of the type systems given in [10, 9, 12].

There are no essential surprises but care must be taken with the rule for the evaluation of
non-constructor terms which is essentially a combination of the let rule and the function
application rule from [9].

Let T denote a sequence of variables x1,...,x,; I' is called a variable context or simply
a contert. The length n of T is denoted as |I'|. A resource annotation for T or simply
annotation is an annotation of length |I'|. Now let @ be a resource annotation for T', let Q'
be a resource annotation, let ¢ be a term and let v denote its normalform. Then the typing
judgement I': Q F ¢: Q' expresses that for bounded TRS (see Definition 15) the potential of T’
with respect to @ is sufficient to pay for the total cost m of the evaluation o Iﬂ t=v(ca
substitution), plus the potential of the value v with respect to Q’.

We comment on the inference rules in Figure 2. For the majority of the typing rules
their definition is straightforward. Consider exemplary the typing rule for constructors
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¢ € C. Due to Lemma 6 the potential of a value ¢(z10,...,2,0) equals the potential of the
variable context modulo an additive shift with respect to c¢. This is precisely expressed in the
corresponding type rule. On the other hand the composition rule is more involved. Consider
the judgement I'y,...,T,:Q F f(t1,...,t,): Q. Observe that on the basis of the sharing
rule we can assume that t = f(t1,...,t,) is linear and thus the variable context splits into its
parts I'; (i =1,...,n). The intuition of the composition is that the potential of T'y,..., T,
(represented through the annotation @) should be distributed over the evaluations of all
arguments t; and the evaluation of the function f, in a way such that the interdependency of
the bounds is preserved. This is achieved by type checking each of the arguments and the
context individually and verifying that all issuing annotations are consistent with each other.
In order to see how this works, we detail some of the constraints. First, consider
71'1”;11 Q) =P (;1) Here j; denotes an index for I's, ..., I,. The projection asserts that the
resources annotated in @) are projected to I'1, so that the typing I'y : Py (;1) FEO ¢ Ry (;1) is
realisable for every index j;. The constraint sz’j = 'rfc’ji, where 1 < i < n, £ an index
for I'; and k € I, guarantees that the annotations for the remaining contexts I';, i > 1 are
consistent with each other. Finally, constraint wi’; (S) = Ry(jn) links the potential after
the evaluation of the last argument ¢,, consistently with the annotation S for the variable
context x1,...,Tn.
The type system given requires the use of cost-free judgements. Here the rules of the
given TRS are considered as weak rules that are not taken into account in the complexity
evaluation (see Definition 15).

» Definition 14. An annotated signature F is a mapping from D to sets of pairs of resource
annotations:

— if the arity of f is n, @ is an annotation of length
Fn={e-a ol “h.

n and Q’ a resource annotation

Usually, we confuse the signature and the annotated signature and denote the latter simply
as F.

The set of indices of an annotation for a context I' is defined as follows:

I(T) == {(Ay, ..., A,) |if A€ 2 and || = n} .

We also set I := 2. Let @ be a resource annotation of length n, let I' = z1,...,24 be a
variable context, and let 7 = By, ..., By, be an index of length m. We define the projection
with respect to I': W%(Q) = Wﬁr‘(Q).

Recall that any rewrite rule [ — r € R can be written as f(l;,...,l,) — r with

l; € T(C,V) and that no variable occurs twice in I. Similar to the notion of well-typed TRSs
in [12], we introduce bounded TRSs.

» Definition 15. Let f(ly,...,l,) — r be a rewrite rule in R and let Var(f(l1,...,l,)) =
{z1,...,2¢}. Suppose f is defined and let Q — Q' € F(f). Suppose further, for any such
annotation @ — @’ we can derive

T1,...,z0: PFr:Q, (2)

where P +1 = R and R is obtained by iteratively applying shift operations with respect
to the constructors occurring in |J;_, /; to Q. Then we say f is bounded wrt. F. On the
other hand f is weakly bounded if the rewrite step is not counted, that is, the judgement
Z1,...,20: REr: Q" is asserted instead of (2). A TRS R over F is bounded (weakly bounded)
if any defined f is bounded (weakly bounded).
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F:W?(Q) i Q'

m Nz:QrFt:Q
feD Q—Q €F(f) fisn-ary c€C cisn-ary
iy T QF fz1,. .. 20): Q' iy Tn i <e(Q) F (1, Tn): Q

Vit ygn i € IV X I(Diga) X -+ x I(T,)
Pz(.;l) = (p[’;i)zel(ri) Rz(;z) = (Tk’fi)kel
P i g @e@band iy =a @k @b
Q) = Pu(i) 7 (S) = Ra(fu) @1ve.sxn:SE f@n,. . an): Q'

T Pi() FD 4 Ri(G1) o T Pa(Gn) F to: Ru(Gn)
Ty, Tt QF ftr, .oy tn): Q'
Iz,y:QF t[r,y]: Q" =z, y are fresh Nz:PHt:P P<Q P >qQ
T, z:Y(Q) & t[z,2]: Q' Nz:QrFt:Q

In the composition rule a and b denote suitable chosen indices, where @ denotes
concatenation of indices. Further, the judgement T';: P;(j;) D ¢ R, (j;) abbreviates that
Ti: Pi(@) F ti: Ri(3) and T';: Py(j;) FF t;: Ry(5;) for all j; # G and i = 1,...,n.

Figure 2 Multivariate Analysis of Term Rewrite Systems.

x: Py(i) = Ra(i) +:5 55
y:PL() FD 9y Ri(G) z,y2: Po(i) FCO 2 x yo: Ry(3) w,v:SFu+v:S
y1,,92: T Hyp + (& X yo): M’

r,y: Mo by + (v x y): M’

Here i € I, and j € I(z,y2).

Figure 3 Derivation of z,y: M2 Fy + (z x y): M'.

Let o denote a substitution, I' = z1, ..., x, a context and @ a resource annotation. Then we
define the potential of T': Q with respect to o:

O(0,: Q) := P(x10,...,2,0:Q) .

Note that the above definition employs the shift operator in a similar way as in [9], where
this is part of the type system in the case for pattern matching.

Before we state our main result, we exemplify the use of the type system on a simple (but
clarifying) example. Consider the following TRS R, restricting our motivating example
(see page 243).

O+y—y s(z) +y — s(z +v)
Oxy—0 s(z) xy—y+ (x xy).

We consider the canonical automaton @ for the constructor symbols {0,s} together with the
automaton A defined as follows:

A: 0—-o s(@) = « s(@) » o s(a) = «
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We show that Ry is bounded with respect to the following annotated signatures:
+: {(p(2,2):Pa,2) = (D) | P2,0) = Lpas) = Lpwe) —1 205}

. M(z,2) MA) ’ ’ Mg.0) 2 L, mu,e) =2,
. {( 0 m(A,A)> = e A Ly 2 Ly — 12l

Each of the four rules induced one of the following demands, cf. (2). (Recall that we denote
annotations with upper-case letters and the elements of the families with the corresponding
lower-case letters.)

y:P1y: P P1+1=<(P) (3)
x,y:Pabs(z+y): P Py +1=<(P) (4)
y: My F0: M M +1=<(M) (5)
z,y: Moty + (z xy): M My +1=<(M) (6)

It is not difficult to see that (3) and (4) induce the constraints p(z, &y = 1, pa,e) > 1, and
P(z,2) — 1 = Py, and to ease the presentation we set p/y; = 0. Furthermore, the typing
judgement (5) yields the constraint m (g gy — 1 = myg,.

Of more interest is the precise derivation of (6). In this derivation we make use of
the weakly boundedness of R with respect to the cost-free signature +: (p(z,2)) = Py
and x: (m(g,z)) — My, where it suffices to demand that p(g &) = py and m(g,g) = M.
We obtain the following derivation in Figure 3. This derivation induces the constraint
Y(T) = Mo, as first (reading bottom-up) we employ a sharing rule. The composition rule
yields the constraints ) (T') = Pi(j) (j € I(z,y2)), 7 (S) = Ra(i) (i € I), and rid = p?’i,
where R1(j) = (r')ier and Py(i) = (p*)jcr(s,y,)- Finally, the axioms yield the constraints
Pi(j) = Ri(y) for j € I(z,y2) as well as the indicated conditions on the signature. It
is tedious, but straightforward to check that these constraints can be met for the given
annotations. Thus, x can be typed with the annotation mg &) = 1, m4,g) = 2, and
m(4,4) = 1 which yields the bound dh(m x n, =% ) <m-n+2m+ 1.

It is instructive to depict the annotation M5 in matrix format, which allows a simple
expression of the <s-operator.

7 Mg,g MAz Mg g +Mmag—1 Mmags
MQZ( _ ):( ) =<(M) .
Mmg,.A MAA ma,.A ma.A

Then it becomes apparent that the annotation My is the result of adding the auxiliary
annotation

ma,os — 1 0
( m 0) ’ (™)
A, A
to the annotation for multiplication. Intuitively the type system asserts that we can split the

annotation My into an annotation M that pays for the recursive call and the annotation (7)
that pays for the call to addition.

» Theorem 16. Let R be bounded. Suppose T:Q Ft:Q’ and o lﬁt = v. Then ®(0,1": Q) —
S(v:Q') = m.

Proof. Let II be the proof deriving o lﬂt = v and let Z be the proof of I': Q - t: Q’. The
proof of the theorem proceeds by main-induction on the length of IT and by side-induction
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on the length of Z. We consider the case for composition. Suppose the last rule in IT has the
form

awplﬂf(xl,...,a:n)év Ulﬂtiévi i=1,...,n m=Y . ,m
Ulﬂt:>1}

We can assume that ¢t = f(x1,...,x,) is linear, due the presence of the share operator. In
proof we restrict to the case where n = 2. Hence the last rule in the type inference = is of
the following form.

L1 P(j) HD 4 P(j) T R(E) HD to:R() a,y:SF fla,y): Q'
I, To:QF f(ti,t2):Q’

The following conditions hold, where we use the notations P(j) = (pg)iej(r‘l), P(j) =
(B])ierry), R(i) = (%) jerry), and R(i) = () jer(ry)

VjeI(Ts) =1 (Q) = P(j) Viel mi(S)=R() Vi,jpl=ri. (8

By induction hypothesis, we have (i) ®(oc W p,z,y: R) — ®(v: Q') = my, (i) for all j € I(T3):

®(0,T1: P(5)) — ®(vy: P(5)) = my, and (iii) for all i € I: ®(o,Ta: R(7)) — ®(va: R(7)) > ma.

Let Z := x1,...,2,, where Var(t;) = {z1,...,z,} and let ¥ := y1,...,y, with Var(tz) =
{y1,.-.,Yn}. The theorem follows by a straightforward calculation:

O(0,1,T2:Q) = Z (i.j) - pi(Zo) - pj(yo)
iel(I'1),jel(T2)

I
3
b
=
q
F
F
H
q

Pi(vl)> +my

g -pi(yo) | +m

|
3
—
<
fiiry
~
<
(SN

i€l JEI(T2)
>ZP1(U1)' 75 pi(ve) | +m1+mo
i€l jeI
2 2
>D_dhpi()+ ) mi=(:Q) + ) m,
iel =0 i=0

Here we tacitly employ the conditions (8) together with the induction hypothesis which is
employed in line 3, 5, and 6. <

The following corollary to the theorem is immediate.

» Corollary 17. Assume the conditions of the theorem. If additionally for all values v and
annotations Q, ®(v: Q) € O(n*), where n = |v|, then rcg(n) € O(nk).

» Remark. Recall that we restrict to completely defined, orthogonal constructor TRSs. It is
not difficult to see that Theorem 16 (and its corollary) generalise to the case where completely
definedness is dropped. While completely definedness is essential for the correctness of the
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big-step semantics presented in Figure 1, the proof of Theorem 16 extends with relative ease.
The induction on the length of I: & Iﬂ t = v is replaced by an induction on the length of
an innermost derivation D: to —>£ .

Finally, we consider the motivating TRS Rayade. Based on the above example (page 251)
it remains to consider the remaining four rules of Rgyade:

mult(n, []) — [] mult(n,z :: xs) = (n x x) :: mult(n, xs)
dyade([],1s) — |] dyade(z :: zs,ls) — mult(z,ls) :: dyade(xs, ls) .

We consider the following automata &, A, B and C, where @ denotes the canonical automata
for {0,s,[],::} and A is defined as on page 251. The definition of B and C is given below.

B: 0—>0o s(@) » o [|—@ g —p guf—=p
C: 0—-o s(@) - o s(9) -« s(a) = « [|— @
o=y Gy —.

Note that pg(v) =1, pa(n) =n, pa(l) = |I|, and pc(l) = >0, ni, where [ = [ny,...,n,,).

We make use of a similar denotation of the annotations as in the example on page 251
and set mult: M — (my o), where M = (ma, 4,)A,e{0,4},4,e{z,8,c} and similarly for
dyade: dyade: D — (dj »), where D = (da, 4,)A,e{2,8,},Ae{2,8,c} Thus we can assert
the signature of mult and dyade as follows:

1 0 1 20
mult: |2 1] — (0) dyade: [0 2 1| —(0).
0 1 0 0 1

Considering dyade(z :: xs,ls) — mult(z,ls) :: dyade(zs,ls), we study the effects of the
additive shift on D. Let D := <,(D) — 1 such that D = (da,,4;,45) 4, € {2, A}, 42, As€{2.,5,C}-
For A; = A, then da, 4, 4, vanishes almost everywhere, but du g = dcg = 1 and
d Ao.c = dcc = 1. To ease the presentation, we ignore these positive annotations and
only consider the restricted annotation (8g,A2)A3)A2’A3€{g137(j}. This annotation is again
representable as a matrix and typability of the rule follows, as we can decompose the matrix
suitably:

2 20 1 2 0 1 00
2 3 11=10 2 1}1+(2 1 0
01 1 0 0 1 01 0

In order to estimate ® (o, xs,ys: D) for arbitrary o we analyse the base functions of the
considered automata. Thus the analysis yields the essentially optimal bound of the execution
of dyade(ls1,ls2) as a multiplicative bound in the sum of the values of the first and second
list Is; ( = zso) and sy ( = yso), respectively, together with a linear factor.

5 Conclusion

We have presented a novel amortised resource analysis in the context of term rewrite systems.
The method is represented in an inference system akin to a type system and can give rise
to polynomial bounds on the innermost runtime complexity of the analysed rewrite system.
The crucial feature of the inference system is the admittance of multivariate bounds in the
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context of arbitrary data structures in a completely uniform way. This extends our earlier
univariate resource analysis of typed term rewrite systems and continues our program of
applying automated amortised resource analysis to rewriting.

We already briefly commented on the differences of the here presented study to our earlier
work [12] in the introduction. As far as we can tell this and the present result are currently
the only attempts to lift amortised cost analysis to rewriting or provide such a study in
the context of arbitrary constructor-defined datastructures. Hoffmann and Shao provide
in [11] a multivariate amortised analysis of integers and arrays that extend upon [10]. These
language extensions are also provided in RaML. However, the treatment still appears to be
ad-hoc and does not provide a similar uniform framework than ours. Further we mention
some general work on automated resource analysis. Albert et al. [1] underlies COSTA, an
automated tool for the resource analysis of Java programs. Sinn et al. provide in [15] related
approaches for the runtime complexity analysis of C programs, incorporated into LOOPUS.
Very recently Brockschmidt et al. [5] have provided a runtime complexity analysis of integer
programs, taking also size considerations into account. Basic steps for a modular complexity
framework for rewrite systems have been established in [3]. Finally, the RaML prototype [10]
provides an automated potential-based resource analysis for various resource bounds of
functional programs. For term rewriting AProVE [7] and TcT [2] are the most powerful
tools for complexity analysis of rewrite systems as witnessed during last year’s termination
competition.!

In future work we will clarify the automatability of the method. We expect that by
restricting the number of states and the format of those tree automata A, whose annotation
do not vanish, we can reduce inference of annotations to linear constraint solving in much
the same way as in [10]. More challenging would be a combination of linear programming
and combinatorial constraint solving to infer the best possible structure of automata.
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—— Abstract

Our interest is in automated termination proofs of higher-order rewrite rules in presence of
dependent types modulo a theory T on base types. We first describe an original transformation
to a type discipline without type dependencies which preserves non-termination. Since the user
must reason on expressions of the transformed language, we then introduce an extension of the
computability path ordering CPO for comparing dependently typed expressions named DCPO.
Using the previous result, we show that DCPO is a well-founded order, behaving well in practice.
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1 Introduction

This paper addresses the problem of (semi-)automating termination proofs for typed higher-
order calculi defined by rewrite rules. Since many automated techniques exist for showing
termination of simply typed higher-order rewrite rules, our first approach is to reduce the
former to the latter.

To this end, we introduce a non-termination preserving transformation from dependently
typed algebraic A\-terms to simply typed algebraic A-terms. Unlike the transformation used
for showing strong normalization of LF [13], the present one uses algebraic symbols and
type constructors in an essential way. Dependently typed rewrite rules can then be shown
terminating via the transformation. The user can therefore benefit from all existing tools
allowing to check termination of higher-order rewrite rules. The drawback is that these tools
will operate on the transformed rules.

Among all termination proof techniques, we favour the one reducing termination proofs
to ordering comparisons between lefthand and righthand sides of rules. These comparisons
require well-founded orders on typed algebraic A-terms which are stable by context application
and substitution instance. CPO is such an order on simply typed algebraic A-terms, defined
recursively on the structure of the compared terms [9]. CPO is indeed well-founded on weakly
polymorphic A-terms, the familiar ML-discipline for which quantifiers on types can only occur
in prefix position. A recent extension of core CPO to appear in LMCS handles inductive
types, constructors possibly taking functional arguments, and function symbols smaller than
application and abstraction.

We formulate here a new extension DCPO of CPO for dependently typed algebraic
A-terms. DCPO is then viewed as an infinite set of dependently typed rewrite rules which
are shown terminating by checking the transformed rules with CPO. It follows that DCPO
is a well-founded order of the set of dependently typed A-terms, whose syntax-directed
comparisons require little input from the user, in the form of a precedence on the algebraic
symbols used in the rules. DCPO is our answer for practice.

? Jean-Pierre Jouanr.laud and Jianqi. Li;

5v icensed under Creative Commons License CC-BY
13th International Conference on Typed Lambda Calculi and Applications (TLCA’15).
Editor: Thorsten Altenkirch; pp. 257-272

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.257
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

258 Termination of Dependently Typed Rewrite Rules

. Application: Functions:
Variables: Abstraction: T by sio—r i oeF
r:.oel’ I'x:0 s t:T -
I' b tio I' s t:o
I' by 20 I' by (Aziot):io— 7 -
I by Q(s,t):7 T ks f(t):0o

Figure 1 Type system for monomorphic higher-order algebras.

Dependent programming has become a major trend in recent years [23, 16]. In practice,
many types depend on natural numbers. Typing dependent definitions requires then a
convertibility relation T including arithmetic laws [20], see Example 3.4. Our results allow
for dependent types modulo T.

Sections 4 and 5 describe the non-termination preserving transformation and DCPO.

2 Higher-Order Algebras A,

We assume a signature ¥ = S F of sort symbols in S and function symbols in F. The set
Ts* of simple types (in short, types) is generated by the grammar 0,7 :=a € S | ¢ — 7. The
(arrow) type constructor — associates to the right. The output sort of a type o is itself if
o € § and the output sort of 7 if 0 = v — 7. We use o, 7, u, v for simple types.

Function symbols are meant to be algebraic operators upper-indexed by their fixed arity n.
Function declarations are written f™ : 0y — ... — o, — o (in short, f : @ — o), where 7 and
o are the input and output types of f™*. We use f", g™ for function symbols, possibly omitting
m,n. \x: 0.5, Q(s,t) and f™(t1,...,t,) (or f(f)) are an abstraction, an application, and a
pre-algebraic raw term. f°() is identified with f. We use z, vy, z for variables, s,t,u, v, w,[,r
for raw terms, FV(s) for the set of free variables of s and [s| for the size of s.

Raw terms are seen as finite labeled trees by considering Az : o.s, for each z : 0, as a
unary abstraction operator taking s as argument to construct the raw term A : o.s. We
abbreviate abstraction operators by \. Positions are strings of strictly positive integers. We
use 1, j for positive integers, p, q for arbitrary positions. The empty string A is the root or
head position and - is string concatenation. Pos(t) is the set of positions of ¢.

Given a raw term s, s(p) and s|, denote respectively the symbol and subterm of s at
position p. For example, (Az : o.u)|; = u. The result of replacing the subterm s|, by the
term ¢ is written s[t],. A context term s[z],, in short s[], or even s[], is a term s in which z
is a fresh variable, called hole, occurring at position p. All these notions extend as expected
to a set P of disjoint positions, writing s[t]p for replacement of all terms in s|p by a single
term t, and s[Z]p for a context with many holes.

An environment T is a finite set of pairs {z; : 01,...,2, : 0,} where z; is a variable,
o; is a type, and z; # x; for i # j. FV(I') = {1,...,2,} is the set of variables of I'. Our
typing judgements are written as I' Fx s: 0. A raw term s has type o in the environment I'
if the judgement I' ks s : ¢ is provable in the inference system given in Figure 1. Typable
raw terms are called algebraic A-terms (in short, terms or objects), and their set is denoted
by Ar (or OF). Objects have a unique type in a given, possibly omitted, environment.

Substitutions are type-preserving homomorphisms avoiding captures, see for example [2],
written here in postfix form, using the notation {z; — s;};. The congruence on terms
generated by renaming the free variable x in s by the fresh variable z € FV(\x.s) to yield
the term Az.s{x — z} is called a-conversion, denoted by =,. We use =, 8 for substitutions.

A higher-order rewrite rule is a quadruple A ks | — r : 0 made of lefthand and righthand
side terms [, r, and possibly omitted environment A and type o. Rules 5 and 7 are particular
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rewrite rule schemas. Reductions are defined as usual, and are a particular case of reductions
in presence of dependent types, see Definition 3.3. A higher-order reduction ordering = is a
quasi-order on terms satisfying: (i) its strict part > is well-founded ; (ii) its equivalence is a
congruence ; (iii) monotonicity: s>t implies u[s], = u[t], (assuming typability); (iv) stability:
s >t implies sy = ty for all substitutions ~; and (v) functionality: —gU—, &>

Given a set E the notation s shall be used for a list, multiset, or set of elements of E.
Given a binary relation = on E, we use 5 o, t and 5 >, t for its lexicographic and
multiset extensions respectively. We use s = ¢ for (Vi €t)s > ¢, and 5> ¢ for (Is €3) s = ¢.

A rewrite relation generated by a set of rules RU {f3,n} can be proved terminating by
checking whether [ > r for all rules in R with some higher-order reduction ordering > [14].
CPO is such a higher-order reduction ordering based on three ingredients [9]:

an order > on simple types, whose strict part >~ satisfies

(i) well-foundedness: >~ U{(c — 7,0) | 0,7 € Tg"} is well-founded ;
(ii) right arrow subterm: o — 7 >7 T;
(iii) preservation: o —>T="v iff v=0'—>7", c="0', 7="7" and
(iv) decreasingness: o — 7> v implies 7> vorv =0 — pand 7 > pu.

a quasi-order >z on F U {@, A\} U X called precedence s.t.: (i) its strict part >z restricts
to FU{@Q, A}, is well-founded, and satisfies (Vf € F) f >z @ >z A; (ii) its equivalence
=z contains pairs in F x F and all pairs {(z,z) |z € X}.

(Vf € FUu{Q,\}), a status operator _ € {lex, mul} in postfix index position such that
_ @ = mul. Equivalent symbols have the same status.

The following auxiliary relations are used to define CPO [9] :

s>Xtiff s =, t or s >Xt, for a set of variables X disjoint from FV(s), is the main order;
s>%t and 5>% t defined respectively as (Vv € t) s >X v and (Ju € 5) u>Xt;
s:0>%t:1 (resp., s:0 >Xt:7) for s>Xt (resp., s>Xt) and 0 > 7;

we are interested in the typed order s: o >%t: 7, written s: 0>t : 7.

» Definition 2.1. GivenT'Fr s: o and T'Fx ¢ : 7, s >X ¢ iff either

te Xands¢g X VAR
s=Ar:puand u{r—z} v >Xt:T SUBTA
s=f(3), t=Ar:pv and s>ty lp s 2} FA
s=Q(u,w), t = A\z:p.v, * € FV(v) and s >%v QA
s=Ar:pau, t=\y:pv and u{r — 2z} >Xo{y — 2} AA
s = Q(\z:pu, w) and u{z — w}>X ¢ BETA
s = \v:p.Qu,z), v € FV(u) and u > ¢ ETA

otherwise s = f(3),t = g(t) with f,g€ FU{Q, A} UX, and either
SUBT 5:7 > t:7PREC [>rgand s>YTSTAT f=rg, s> tand5:7 >, 1:7

This definition of CPO is organized differently from [9] to be more compact. The last three
cases originating in Dershowitz’ recursive path ordering [12] describe the normal behaviour of
head symbols, whether or not in F. Note here that > is the status extension (lexicographic
or multiset) of the order >. The first 7 cases describe other behaviours, either specific (var,
beta, eta), or using explicit a-conversion for the others. In its recursive call, case F A increases
the set X of upper variables, while other recursive calls either keep it unchanged or reset it
to (). Relaxations of these recursive calls are indeed ill-founded.

» Theorem 2.2 ([9]). >" s a higher-order reduction ordering.
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II
3 Dependent algebras Ay,

We move to a calculus with dependent types inspired by Edinburgh’s LF [13], an extension
of the simply typed A-calculus which can be seen as a formal basis for dependently typed
programming languages and their formal study as done with EIf [18].

In higher-order algebras, types are typable by a single, usually omitted constant TYPE.
In dependent algebras, as in other type theories, types (called type families) are typed by
kinds, TYPE being one of them, which describe their functional structure. Let S, F and
V be pairwise disjoint sets of respectively type symbols, algebraic function symbols, and
variables. Algebraic function symbols in F may carry an arity upper-indexing their name.
Type symbols in S are curried constants which kind may be functional. We use respectively f
and a for a typical function or type symbol. Raw terms are given by the following grammar:

Kinds K = TYPE |lz: A.K ‘ Types A,B = a|llz: AB|Xx:AB|AN
Objects MyN :=x | Ax : AM | M N | f™(M,..., M,)

A and IT are LF’s binders. Notation =, stands for similarity. Here, A and II are binary
operators, whose arguments are a type ((Az : A.u)|; = A), and the body of the abstraction
or product ((Az : A.u)|z = u). Both may originate computations. We write f for f0().

3.1 Typing judgements

All LF expressions are typed, objects by types, types by kinds, kinds by a special untyped
constant KIND (the universe) asserting their well-formedness, we also call them wvalid. Five
kinds of judgement are recursively defined by the LF type system of Figure 2.

Foig 2 Y is a valid signature

YkeT I' is a valid context assuming F,;4 2

;' K : KIND K is a valid kind assuming > ¢ T’

>;T'HrA: K type A has kind K assuming X; ' K : KIND
XiThFoM - A object M has type A assuming ¥; '+ A : K

X;I'kryoC @ D and X T'kgyc C @ D are self explanatory

Environments pair up a signature and a context. Signatures assign kinds to type symbols
and product types to function symbols. Contexts assign product types to variables.

Env © = %;T where nil is the empty set,
Sig ¥ = nil|¥,a: K|35, " :O{x; : Aij}n.A {z; : A;}n.Als
Con T' := nil|I'z: A Mzq : Ay (... (zy, : Al A) L)

In dependent calculi, the order of constants or variables in the environment is determined
by their types. This impacts the expression of the so-called substitution lemma:

» Lemma 3.1. Let X;THoM : A and ;T2 : A, T"Frvos @ 0. Then, X; T, T"{z —
Mytrvo s{zr— M} : o{x— M}.

Applying the substitution lemma several times introduces an order on the application
of elementary substitutions. We use the notation M o™{xz; — N;}; to denote the sequential
application to M of the elementary substitutions {z1 — N1}, ..., {, — N, } in this order.
We use the word dependent substitution to stress this sequential behaviour of substitutions.

Given a valid signature 3 and a context I' valid in X, the set Ay of valid expressions,
called terms is the (disjoint) union of the sets KU of valid kinds, Ta! of valid types and OY of
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Signatures

Y;nilkx K @ KIND
[EMPTY] —— [TCoNST] a ¢ dom(X)
|_sig nil '_sig E, a: K

Foig 2 Yoy dx s AT A k=0.n) : TYPE
[ConsT] —2 l n}’“ 7 A ") ¢ dom(%)
Fsig E, f . H{Z‘, . Az}nAn—i-l

Contexts

Feig 2 Ytel ;-7 A TYPE
[EMPTY| ———— [VAR] z ¢ dom(T")
Y Fenil Yhel, 2z A

Kinds

Ykl X5, z: Ak K : KIND
[UN1v] [PROD]
;' TYPE : KIND ¥; 'k lzx: ALK : KIND

Types

YkeT oI, z: A+ B - K
X| ———————a:KeX [ABs]
Y;T'kra: K Y:I'brdx: AB : Ilz: AK

[A

;T A : Iz : B.K >;T+oM : B >; I, z: A+ B : TYPE

[ApPP] [PROD]
>;TkrAM : K{z— M} S:TH71lz: A.B : TYPE

XsTHrA K E;FI—;CK/:KINDK
;' A: K’

_K/

[CoNV]

Objects

Yt r:Ael E, I'oM; :Ai{xl — My, ...,z P—)Mifl}
[AX] [Fun]
Y:Thpz: A S ThofM"(My, ..., My) : Ao™ {z; — M;};

where f" : I{x; : A;}n.AED

(Ans oI, x: AFkoM : B A ]Z;FI—OM:HQ::A.B Y:ThFoN : A
BS PP
¥ Troiz: AM :1lz: A.B ¥;TFoM N : B{z — N}

Xy Ukrvos i o Y Dhryc o’ TYPE/KIND
Y I'krvos : o 7

=0

[Conv]

Figure 2 LF Typing rules.
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valid objects (possibly abbreviated as IC, 7, Q). Our presentation of LF performs classically
the necessary sanitary checks when forming the signatures and contexts and only those.

= denoting the convertibility relation, a congruence discussed next in more details, that
is generated by fn-conversion on similar terms on the one hand and on the other hand by
an additional arbitrary congruence between object terms stable by substitution (possibly
identifying them all [4]). By its definition as a congruence, convertibility respects our syntactic
categories, objects, types and kinds.

Our dependently typed calculus is referred to as Al to stress the signature ¥, or simply LF.

Lexicography: we use K for kinds, A,B,C,D for types, M,N for objects, s,t,u,v,w,l,r for
(objects or types), o, 7, u, v for (type or kinds), and ~, 8 for substitutions.

3.2 Dependent rewriting and convertibility

In LF, the usual rules of the A-calculus apply at the object and type levels, making four
different rules generating a congruence called gn-convertibility:

beta: (Az:A.B) M —p, B{z— M} (Me:AM)N —p, M{z— N}
eta: Mx:A.(Bz) —,, B I axgFV(B)| \e:A(Mz) —,, M I1FzgFV(M)

Convertibility plays a key role for typing via CoNv. In LF, convertibility is defined as the
congruence generated by fn-reductions. In reality, convertibility must be strengthened on
object level terms in order to type most examples. This problem has been considered in the
framework of the calculus of constructions with the Calculus on Inductive Constructions [17],
the Calculus of Algebraic Constructions [7] and the Calculus of Constructions Modulo
Theory [20, 3], for which convertibility includes respectively: primitive recursion at higher
type generated by the user’s inductive types; the user’s higher-order rules; and a decidable
object-level first-order theory like Presburger arithmetic. These frameworks can be restricted
to the LF type system seen as a particular case of the calculus of constructions. In the
context of LF it relates to the liquid types discipline [19], which shares similar objectives.
We now introduce dependent rewrite rules and rewriting.

» Definition 3.2. Given a valid signature X, a plain dependent rewriting system is a set
{A;F1;: 05 = 7o 7} of quintuples made, for every index i, of a context A;, lefthand and
righthand side terms I;,7;, and terms oy, 7, s.t. FV(r;) CFV(l;), ¥; Ajbrvol; + 0; and
X Ajkrvor; T with 0y = 7. Ay, 0; and 7, may be omitted.

» Definition 3.3 (Dependent rewriting). Given a rewriting system R, one step rewriting is a
relation over terms, written X ; ' s —P ¢ (in short, s — 5 t) defined as:

s and t are both types or objects which are typable under 3; T,

AFl—r:Ae R, where FV(A)NFV(T) = 0.

s = s[lo~], and t = s[r o v],, where 7 is a dependent substitution wrt to A.

A major semantic property expected from rewrite rules is that rewriting preserves types.
In presence of dependencies, types are usually preserved up to some congruence defined
by the rules themselves, as in the Calculus of Inductive Constructions or the Calculus of
Algebraic Constructions [7]. Here, preservation of typing by rewriting, up to type erasures,
follows from Lemma 4.7.

» Example 3.4. Here is a simple example with dependent lists of elements of a given type A.
We allow ourselves with some OBJ-like mixfix syntax, using “_” for arguments’ positions:
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nat, A: TYPE; List:IIm:nat. TYPE;
0:nat; _ + L:In:nat.nat; 4+ _:II{m,n:nat}.nat
cons : I{n :nat, a: A, l: List n}.List (n + 1)
app : II{m,n : nat, k : Listm, [ : Listn }. List (m + n)
O+n—n app(0,n,nil, 1) — 1
(m+1)+n—(m-+n)+1 app(m+1,n,cons(m,a,k),l)— cons(m—+n,a,app(m,n, k,l))

Using LF’s typing rules given in Figure 2, we get:
{m,n:nat} F n,0+n,(m+1)+n,(m+n)+1 : nat
{n:nat,l: Listn} F app(0,n,nil,1) : List (04 n)

(
{m,n:nat,k:Listm,l:Listn} + app(m+1,n,cons(m,a,k),l) : List((m+1)+n)
{m,n:nat, k: Listm,l:Listn} + cons(m+n,a,app(m,n, k1)) : List((m+n)+1)

Typing these rules requires a conversion relation extending /Sn-conversion on objects with

Presburger arithmetic to identify List (0+n), Listn and List ((m +1)+n), List ((m+n)+1).

4 Encoding LF in higher-order algebras

We define here a transformation from the source language to a target language which preserves
non-termination of arbitrary reductions, not just g-reductions as in LF. Our target language
is the simply-typed A-calculus enriched with function symbols and type constants of Section 2,
a choice which has three important advantages: the target vocabulary can be as close as
possible from the source vocabulary; the transformation preserves termination as well as
non-termination; the transformed rules can be checked for termination by CPO.

The higher-order algebra encoding A will be /\;ﬂa,, where Y% = Sy W Spaa is a
higher-order (non-dependent) signature whose two pieces are described next. The set of
types in /\;ﬂm is denoted by 775;;. Terms in /\;ﬂm whose set is denoted by As, are meant

to encode LF objects and types in a way which mimics dependently typed computations.

We do not encode LF kinds, since computations in kinds are indeed computations on types
or objects. Indeed, dependent types will be encoded in /\;ﬁa,,, both as types and as terms.

4.1 Type erasures

Types. Typesin )\;Ha,, are arrow types built from the set of sorts S = {*}U{a | a: K € £}.

The new sort * will serve to encode LF product types as terms of sort * in )\;ﬂai. LF
objects will be encoded as terms whose types are erasures of LF types, as defined next.

Type erasures. The classical erasing transformation from families and kinds in /\; to types
in /\;ﬁa,, eliminates dependencies from objects by replacing product types by arrow types:

» Definition 4.1. The erasing map |.|: TUK — Tg' is defined as:
(D]al =a (2)[Iz : A.B| = |A| — |B] ( )|)\x:A.B|=|B|
4)|TYPE| ==+ (5)|Ilz: A.K| = |A| = |K| (6)]JAN|=|A|

Sorts being constants, an induction shows that variables in types are eliminated in rule (6):
» Lemma 4.2. Let Ae TUK. Then FV(|A]) = 0.
» Corollary 4.3. Forany E € KUT,y €V, and s € Ogh,., |E{y — s}| = |E{y — |s|} = | E|.

» Lemma 4.4 (Conversion equality). Let D, E € T such that D = E. Then, |D| = |E|.
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Proof. Conversion is a congruence generated by fn-rewriting and an equivalence =¢ on
object terms. We show that the property is true of both relations by induction on D.

1. Case D=a: K. Then £ = D.
2. Case D=1z : A.B: TYPE. Then F =1lz : A.B’" : TYPE with A= A’ and B=DB’.
By induction hypothesis (and definition of the erasing map).
3. Case D =Xz : A.B:Ilx : A.K. There are two cases:
(a) E=Xz: A.B' :lx: A K, with A= A’ and B = B’. By induction hypothesis.
(b) D= Xz:A.(F z) =, E where ¢ FV(E). Then |D| = |A\z:A.(Ex)| = |Ez| = |E|.
3. Case D =A M : K, where M is an object. Again two cases:
(a) E=A"M', A=A" and M=M’'. Then, |D|=]|A| and |E|=]|A’|. By induction.
(b) D=(Az:F.G)M —3G{z — M}=E. By Corol. 4.3, |D|=|G|=|G{z— M}|=|E|.
<

Erasing is extended to environments ;T by: |I'| = {z : |A] |2 : A € T} and
X|={a:|K| |a: KeX}U{f":]|A1] — ...|An| = |A| where f™: II{z; : A;},.A € X},

Note here that a constructor like cons : IIn : Nat,x : Nat,l : List(n).List(n + 1) € &
becomes cons : Nat — Nat — List — List € |3|. Eliminating the first (type) argument
from cons would easily allow writing rules for which termination is not preserved by the
transformation. This does not mean, however, that writing such rules is actually impossible.

4.2 Term flattening

Besides types and function symbols in |X|, the signature ¥q,¢ will contain algebraic symbols,
called flattening constructors, used to mimic LF’s abstraction and product.

Yaar = S|U{l0Z % w0 =0, f2ix—o—0, pifi:ix—(0—x%) =% | o€ St

We may omit subscripts o, 7 in constructor’s names, and use lof? for (lo2/If?). The first
argument of the flattening constructors, of type *, is the flattening of some dependent type
A. The second argument of 10(27 is the interpretation of some object M : A, hence o = |A|,
while that of lf?, is the interpretation of a type A : K, hence o = |K|. Since signatures are
monomorphic and o is arbitrary, the flattening constructors must be indexed by these types.
We now define a flattening transformation for expressions of LF which are typed in some
environment left unspecified to expressions of )\;ﬁa,:

» Definition 4.5. The flattening function ||_ from Ay to Agse (the context in which the
input term is valid is omitted) is defined as

lz: A = z:]|A| |IIlz : A.B: TYPE
|IMN:A Q(||M, |N) | |Me: A.M :Tlz : A.B Az |A\.l023|(HA, | M)
|AN:K Q(||4, IN) | ||Az: AB:llz: AK Az | AL (1A, | B)

la: K = a lf*(My,....My): A = f*(| M, ..., || M)

Since flattening is not surjective, we denote by || Az C Agpa its target.

Note that type symbols in S become both sorts in Sp,; and function symbols in ¥ g,
with the same (overloaded) name. This definition obeys the following principles: (i) flattening
is a homomorphism, hence commutes with substitutions; (ii) because types may depend
on objects, the type information associated with bound variables must be recorded by
the encoding to preserve non-termination; (iii) the types of the flattening constructors are
compatible with the erasing transformation, which allows to trace the syntactic categories
in the transformed world; (iv) the encoding of abstractions and products preserves their
variable’s binding, but two different encodings are used. The encoding of abstractions is an

pifta (14, Az AL B)



J.-P. Jouannaud and J. Li

abstraction, in order to preserve beta-redexes via the transformation. Nothing like that is
needed for product types which cannot be applied, and can therefore be transformed into
terms of sort |TYPE| = . In that case, the abstraction is encapsulated in the flattening
constructor. This allows to single out easily products’ encodings in the flattened world. Now,

an LF object M : A is translated as a term ||M of type |A],

an LF type A : K is translated as both a type |A| and a term ||A of type | K],

an LF kind K : KIND is translated as a type |K|.

» Lemma 4.6. The following properties hold:

1. soundness: let ¥; -7 A : K. Then Yqq; [T|F||A : |K|;

2. soundness: let ¥; TFoM : A. Then Xpa; |TIF || M : Al

3. preservation: let ¥; T'Fryo s : 0. Then FV(s) = FV(||s);

4. stability: let ¥; T7vo s, t 2 0,7 and x: 7 € T. Then ||s{z — t} = ||s{z — [t}

Proof. The first three are proved by induction on the typing derivations of A, M and s
respectively, using Lemma 4.4 for the third (translation of products) and for the conversion
rule. Stability follows by induction on the typing derivation of s. <

4.3 Preservation of reductions by flattening

Our goal now is to show that the reductions on objects and types in )\; are mimicked in )\gﬂm.
Since rewriting a term cannot not increase its set of free variables, rewriting commutes with
the n-rule. A consequence is that, given a dependent rewrite system R, — gnr terminates
iff — sr terminates: encoding tile n-rule will not be necessary. To ease the reading, we use
— for our rewriting symbol in Ayp,, and decorate subterms in flattened rules by their type.

[Bo] @Az :0.lo?(A:+,M:7),N:0)— M{z~— N}
Br] Q@\z:o.lf2(A:%,B:7),N:0) — B{z— N}

In these rules, A and o are the term flattening and type erasure of the same dependent
type D, a relationship that cannot be expressed in )\;ﬂat, hence is not kept in the transformed
rules. For example, assuming A, s,t € |[Ay and |||[A~!| # o, then u = Q(\z : a.lof*(A, s),t)
is a redex which has no counter-part in Ay;. There are indeed new rewrites in the flattened
world, making preservation of non-termination a weaker property.

We use [R], [5], [BR] and B[BR] for {[|l = [|r |l —r € R}, {[67],[Bol}, [A]U[R], and
{B}IUIBR].

As with A, M, N, o, 7 used in [f], variables of R that denote expressions in A} keep their
name in [R], denoting now expressions of )\;ﬁm belonging to the same syntactic categories
as in the dependent world. Then, an instance of a [3]-rule may not be the encoding of an
instance of the S-rule in the dependent world if M/B match flattened terms which are no
encoding of dependent expressions. Despite these approximations, reductions are preserved:

» Lemma 4.7. Let 3T Fryo s:0, s wgrt and ;T Fryo t: 7. Then, |o] = |7] and
s —sm lIt-

Proof. The proof is by induction on the typing derivation of s. All cases are by induction

except those where the SR redex is at the top. We carry out four typical cases:
A ;' A: Ik:B K YX;T+oM: B

1. [Arv] >;Thkrs=AM : K{z— M} and M —gr M’ , hence AM —gr AM' =
t. By induction hypothesis, ¥; I'rvo M’ : B', |[B'| = |B| and ||[M —g) ||[M'. By
definition of flattening, ||[A M = Q(||A, ||M) : |K{x — M}| = |K| by Corollary 4.3. By
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definition of erasing, |Ilz : B.K| = |B| — |K|. By Lemma 4.6 (soundness) |A : |B| — |K|
and ||[M' : |B’|. Finally, ||t = Q(||A, ||M’) : | K|, we are done.

YT krvos:o STy o: TYPE/KIND
[Conv] oc=o'.
2. Y Thos: o By induction hypothesis,

Y Thrvo t:7, |7|=|0’| and ||s—gpg [|t. By Lemma 4.6, ||¢:|7|. Lemma 4.4 concludes.
A ]E;Fl—@/\x:A.u:Hx:A.B :ThFoM : A
PP
3. Yi;Thtos=Xz: AuM : B{x — M} and t = u{z — M}. By inversion,
Y;Tkou: B, thus t: B{x — M} by Lemma 3.1. ||)\x:A.uM:@()\x:A.lo|23|(\|A, lw), | M)
—5 llu{z = |[M} by definition of [Sp]. Lemma 4.6 and Corollary 4.3 conclude.

4. ¥;Tkyryos : 0,s=1lovyandt =ro~ for somel — r € R such that [, r have convertible

types u, v in their environment. By Lemma 3.1 applied repeatedly, s, t have types o = po~y
and 7 = v o+, and since = is a congruence, o = 7. By Lemma 4.6(stability), ||iv = ||I||vy
and ||y = [|r[|y hence ||s —(g) ||t by definition of —(x. <

This Lemma contains the analog of the type-preservation property of non-dependent
rewriting, equivalence by conversion being here equivalence modulo type erasures: subject
reduction holds for dependent rewriting modulo type erasures.

Thus )\; is terminating for an empty set R, implying strong normalisation of S7-reductions
at both object and type level, for any convertibility relation = containing Sn-convertibility.
In particular, = can contain Presburger arithmetic, an important known extension of LF.

» Example 4.8. Here are the transformed signature and rules for our example on Lists:

nat,A . x 0 : nat _ +1 : nat — nat
List : nat — x || nil : List + : nat — nat — nat
cons : nat — A — List — List app : nat — nat — List — List — List
0+n—n (m+1)4+n—(m+n)+1

app(0,n,nil,1) = 1 || app(m=+1,n,cons(m,a,k),l) = cons(m+n,a,app(m,n, k,1))

These dependently typed rewrite rules being algebraic, their encoding is the identity. CPO
proves their termination with app >z cons>znil >+ > __+ 1>x0, and List > {nat, A}.

» Theorem 4.9. Given a signature X, a dependent term rewriting system BnR is terminating
in AL if its flattening B||BR is terminating in )\;ﬂal.

Proof. By using Lemma 4.7 and a commutation argument for 7. |

4.4 Inverse encoding

Lemma 4.7 justifies our method for checking strong normalization by a transformation to a
higher-order algebra where we can use standard techniques including CPO. But the flattened
world is richer than the dependent world, there are more terms and rewrites. Nonetheless,
we can also show that termination is partly preserved by defining an inverse transformation
such that composing both is the identity. First, we define the inverse transformation on the
subset ||As C Asyee, hence allowing us to show that flattening is injective.

» Definition 4.10. The inverse |_~!: |[[Ag — Ay is defined as:

==t = @ || Ja' = a ||fn<sl,...,sn>j = (lsi Y s
(s, )™ = s~ [t Ipif*(s,\a: 0.t) " = Tha: s~ [t

Nziolf?(s,t) T = Ax:fs~Lftt || e oloi(s,t) T = Aac st
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» Lemma 4.11 (Reversibility). Assume ;T F s:0 in Al Then ;T F ||(||s) ™ =s:0.

Proof. By induction on s. Variables, type constants, applications and pre-algebraic terms
are clear. We carry out one remaining case, the others being similar. ||(|lz:A.B)™" =

pif2a (1A, Az AL|B) " =TLz:||(|4) ™. (|B) ™. We conclude by induction. <

» Corollary 4.12. Let 03T Fryo s: 0 and ||s|, € [[As for some p. Then ||s|, = ||s|q for
some q.

Flattening being an injection from Ay to A, hence a bijection between Ay and its
target ||[\y, provides strong evidence that )\g is faithfully encoded by flattening. It follows
that, if ||s=||t for s,t€ Ay, then s=¢ since s=|||s~" =]/t "' =¢. We apply to Lemma 4.6:

» Corollary 4.13 (inverse stability). Assume u{z — v} € |[Ag. Then, |[u{z — v} " =
lu=Ha = o1}

Therefore, rewrites in ||Ax can be mapped back to Ay, showing both that ||[Ay is closed
under rewriting by [SR], and that termination in Ay, implies termination in ||As:

» Lemma 4.14. Let X; '7vo s : 0 and ||s —ggr) u. Then u=||t for somet st s —ppt.

Proof. By assumption [|s|,, = ||l —[gr) ul, for some p € Pos(||s), where | — r € {3}UR, v a
substitution in ||As; and u|, = ||7y. By Corollary 4.12, ||s|,, = ||s|4 for some ¢. By Lemma 4.11,
slg = iy =" = |lIlL ]y " (by Corollary 4.13) = 16 with [|§ = v by Lemma 4.11. Hence
s —r g s[r]l; = t. Now, since flattening is a homomorphism, ||t = ||s[[|r6], (by definition of
q) = ||s[||rv]p (by definition of 0) = w. <

. TSN : B, TSN
This does not prove, however, that termination in Ay implies termination in Ayp,.

The problem is that flattening is non-surjective, since many terms, like those headed by
lof?, are no flattening of a dependent term. Further, some seemingly good-looking terms,
like pif? (s, A\z:0.t) may not be either, even assuming that s,t are themselves flattening
of dependent terms. This is the case because the flattened signature checks that term s
has type #, hence is the encoding of some dependent type A, but cannot check whether
|A| = o as it should. The same happens with applications and pre-algebraic terms: (s,t)

may not be typable in )\; when s,t are typable in /\; and Q(||s, ||t) is typable in )\;ﬁat.

Indeed, termination in )\; does not imply termination in )\;ﬂm as shown by this example:
let o: TYPE; List : Ilz : 0. TYPE; a,b: 0; la : Lista; Ib: Listb; f2:IIm : 0,1 : Listm . o;
and {f(a,la) = f(b,lb); b — a,lb — la}, whose dependent derivations are all finite since b
cannot rewrite to a in f(b,1b), a non-typable term. In the flattened signature, o and List are

sorts, and a,b : o; la,lb : List; f?: 0 — List — o; and {f(a,la) — f(b,1b); b — a; Ib — la}.
We now have the following infinite derivation: f(a,la) — f(b,1b) — f(a,lb) — f(a,la)....

Restricting rewrites on parameters could be a solution.

5 The Dependent Computability Path Ordering

DCPO is an extension of CPO obtained by adding new cases for products. All notations
for DCPO are simply and systematically obtained by replacing the CPO ordering notation
> by . For example, the precedence will be denoted by . Type families are compared
alternatively as types with =1 and as terms with =. The basic ingredients of DCPO are:

a precedence = on FUSU{@, A\, 11} s.t. >x is well-founded, and (Vf €F) f > Qs {\,II}.

a status y € {Mul, Lez} for every symbol f € F U {Q} with @ € Mul.
a quasi-order ' on K U T, whose strict part >T and equivalence = satisfy:
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(i) compatibility: =C =1;
(ii) well-foundedness: = U{(Ilx : A.o,A) | A€ T, o €T UK} is well-founded ;
(iii) product body subterm: (Vo € TUK)Ilz : Ao =1 o;
(iv) product preservation: |Uz:A.o|=|7| implies 7 = Ilx: B.u for some B, p, such that
LAI=BI, o] =l
(v) decreasingness: Mz:AcHlr implies o7 or else T=Ilz:B.v, A=ZIB and 71w,

Building quasi-orders T on types and kinds with a non-trivial equivalence =T is not
hard [14].

We now define a first version of DCPO which can be justified by using CPO [9]. We will
then discuss briefly an enhanced version justified by a more elaborated version of CPO [10].

In the following definition, z denotes a fresh variable of type A/B.

» Definition 5.1 (DCPO). GivenT' Fy s:cand ' ks t:7, then s>=Xt iff either:

1. teXands¢g X (var
2. s=(wN)andu>Xtor N:B>Xt:1 (subt@
3. s=XNMz:Avand u{z — 2} :u=*t:7 (subtAIL
4. s=f(3), fex, t=(\/Hy:B.v):My:B.K, and s =~ B and s =Xz} v{y 2} (ZprecAll
5. s=M:Au:llx: A.C, t = \y: Bw:1ly: B.D, |A| = |B|, A=* B and u{z — z}:

— — — ~—

C=Xv{yw~— 2}:D (statA)
6. s=1Ilz:Awu, t =1Ily:Buw, |Al = |B|, A=X B and u{z — 2} =X v{y — 2} (statI)
7. s=((M:Au): (Ilz: AC) w: A), and u{z — w} >t (beta)
8. otherwise s = f(3),t = g(t) with f,g€ FUSU{@} U X, and either of (rpo)
5:0 = t:7 (subt) f>rgand s=X* (prec) f=xg, s=*tands:7 (=); :7 (stat)

All terms built by DCPO are well-typed under the assumption that both starting terms
s,t are well-typed. Note (i) the importance of all our assumptions on =!I, see for example
Case statAIT; (ii) the order may recursively compare objects with types, even when the input
comparison operates on expressions in 72 U O?; (iii) compared products cannot be kinds.

5.1 Example

We now consider our list example, skipping the rules on natural numbers which do not have
dependencies. We shall use the (user defined) precedence app v {+, cons,nil}, multiset
status for app, and a quasi-order on types in which, for all n : nat, then Listn =1 A
and Listm="Listn for all m,n of type nat. Such a type order is easy to get by using a
restricted RPO on type erasures, which equivalence therefore contains Presburger arithmetic.
See [14]. The goal app(0,n,nil,l) : List0+ n>1: Listn is easy, although already requiring
identification of 0 + n in List 0+ n with n in Listn. We proceed with the second goal:
app(m+1,n,cons(m,a,k),l) : List (m+1)+n > cons(m+n, a, app(m,n, k,1)): List (m+n)+1
The type comparison List (m + 1) +n = List (m + n) + 1 succeeds by using our type
ordering which indeed equates both types, and we are left with the term comparison:
app(m + 1,n,cons(m,a, k),l) = cons(m + n,a,app(m,n, k,1)) Using (prec), we get three
subgoals, which are processed in turn, using indentation to identify the dependencies between
recursive calls, the used Case being indicated between parentheses:
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app(m + 1,n,cons(m,a, k),l) = m+mn (prec)
app(m + 1,n, cons(m,a, k),l) = m (subt)
m ~+ 1 : nat = m : nat which yields
nat = nat which succeeds and m + 1 = m which succeeds by (subt)
app(m + 1,n, cons(m,a, k),l) = n which succeeds by (subt)
app(m + 1,n,cons(m,a, k),l) > a (subt)
cons(m,a, k) : List (m + 1) > a: A which yields
List (m + 1) = A which succeeds and cons(m, a, k) = a which succeeds by (subt)
app(m + 1,n, cons(m, a, k), 1) = app(m,n, k,1) (stat)
{m+1:nat,n : nat,cons(m,a, k) : List m+ 1,1 : List n}
=mul {m : nat,n : nat, k : List m,1 : List n} which yields
m+1:nat = m: nat and cons(m,a, k) : List m+1 = k : List m, for the reader.

5.2 Properties of DCPO

» Lemma 5.2 (Monotonicity, stability). Let s,t € Ay, st s: o>t :0, C(x:0) a context, and
v a substitution. Then C{z — sy} > C{x — tv}.

Proof. By induction on the definition of s > ¢ and stability of the type order for monotonicity.
By induction on the context, and use of the status rules for stability. <

As anticipated, we now reduce the well-foundedness of DCPO to the well-foundedness of
CPO by using Theorem 4.9, termination in the target higher-order algebra being checked by
CPO. To this end, we need to show that, whenever s: o> ¢ : 7, then ||s: o] > ||t : |7].

We start showing that an order on types and kinds of LF satisfying the requirements for
DCPO becomes naturally an order on types of )\;ﬂat satisfying the requirements for CPO.

» Definition 5.3. Given U,TGTS;’M, let 0>, 7 iff Ip,veTUK, |u|=0,|v|=7, and p = v.

Transitivity is clear. Of course, different choices of i, v may sometimes lead to contradict-
ory orderings for o, 7, hence the equality =, may be strictly larger than the corresponding
equality =, This has indeed no negative impact since the strict part = is never used in

comparisons. Further, the properties of =1 transfer naturally to >Shat- Soundness follows:

» Lemma 5.4. Assume X1 is a DCPO type order. Then >Shae 08 a CPO type order.

The set 2/ of function symbols of ¥/ is the union of S, F and the flattening construct-
ors. The precedence >wa is obtained by letting the flattening constructors be equivalent
minimal symbols. The strict part of >y is clearly well-founded, while its equivalence is
increased by the equality of the flattening constructors. We take status Mul for 10, If?, pif?.

» Lemma 5.5. Let s:o,t:7 and X CX such that s =X t by any DCPO rule. Then ||s > ||t.

Proof Sketch. The proof is by induction on the definition of DCPO, assuming by induction
hypothesis that the property holds at every recursive call. Note that if s : o, t : 7, 0 =1 7
and ||s >% ||t, then ||s : |o| > ||t : |7| by Definition 5.3. <

We then obtain the second main result of the paper as a corollary:
» Theorem 5.6 (Well-foundedness of DCPO). =!I is well-founded.

Proof. By theorem 4.9. Note that we use the full strength of that result, including the
need for type-level rules instances of the various DCPO rules instances which compare
types. This is possible since we only need preservation of non-termination by the flattening
transformation, that is, the if direction of Theorem 4.9. <
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It follows that = U7 is well-founded. One may wonder why we did not include n-rules
in the definition of DCPO, since it is in the definition of CPO. The reason is the comparison
of lefthand and righthand sides of [n], Az :|A|.lof*(||A, @(||B, x))> ||B which does not go
through: the type comparison of the subgoal lof*(||A, Q(||B, x)):0 > ||B:|A| — o fails.

5.3 A realistic example

We consider here a more complex, non-algebraic, higher-order example. Given a list [ of
natural numbers 1, ..., T,,, and a natural number y, a higher-order variable g which is meant
to be instantiated by +, we define a higher-order function foldr such that (foldr(m,l,y) g)
calculates g(z1, g(z1,...9(xm,y))), while (map(m, 1) f) calculates the list f(x1),..., f(@m)-

nat: TYPE | O:nat | +1:Ix:nat.nat

List:Im:nat. TYPE | nil:List 0 | cons:II{m:nat, x:nat, I:List m}.List m + 1
map : TI{m : nat, 1 : List m}.(ILf : (Hx : nat.nat).List m)

foldr : Tl{m : nat, 1 :list m, y : nat}.Ilg : (Il{z; : nat, x5 : nat}.nat).nat

map(0, 1) = \f:(Hz:nat.nat).nil | foldr(0, I, y) — A\g:Il{zx1:nat, xo:nat}.nat.y
map(m + 1, cons(m, x, 1)) = \f : Il{z : nat}.nat.cons((f ), map(m, 1))

foldr(m + 1, cons(m, z, 1), y) — Ag : {x1 : nat, x2 : nat}.nat.(g z (foldr(m, 1, y) g))

To carry out the example, we let List > nat, foldr > map > cons > nil > If*> > lo*

> List > nat and (Yo >7 7) If2 > If2 and lo> > lo>. We consider the last rule only.

CPO comparison. It generates the following goals (omitting the type comparisons):
|l > \g : nat — nat — nat.lo? ,

(If? .. (nat, Azy : nat.lf? ,(nat, A\xy : nat.nat)), Q(Q(g, 2), @(foldr(m, 1, y) g))) FA
0 >19% 102, (If? .. (nat, Az :nat.lf? . (nat, Az :nat.nat)), @(Q(g, 2), Q(foldr(m, 1, y), g)))

|1 >19} 1f2 (nat, Az : nat.lf?,,(nat, Azo : nat.nat)) PREC

1 >19} nat succeeds by PREC

0 >%9} Ay 2 nat.lf? . (nat, Ao : nat.nat) FA

|0 >{9=1} 1f2 (nat, Azq : nat.nat) PREC

|1 > {951} pat succeeds by PREC

|1 >{9:71} Xy : nat.nat FA

|l >{ge122t gt succeeds by PREC

|1 >{9r @(@(g, 2), Q(foldr(m, 1, y) g)) PREC

1 >{9}a(g, 2) PREC

1 >19tg succeeds by VAR

|l = foldr(m + 1, cons(m, z, 1), y)>19} 2 SUBT

cons(m, z,1) : List(m 4 1) >19} 2 : nat which succeeds by SUBT

|l >t9t Q(foldr(m, 1, y),9) PREC

|l = foldr(m + 1, cons(m, z, 1), y)>9} foldr(m, 1, ) STAT

{m+1, cons(m, z, 1), y}(>19)nu{m, 1, y} which succeeds by repeated SUBT

Il >la g which succeeds by VAR, therefore ending the computation successfully.

DCPO comparison. We now carry out the same computation with DCPO directly:
foldr(m + 1, cons(m, z,1),y) = Ag:II{z1 :nat, ze :nat}.nat.(g z (foldr(m,l,y) g)) (EprecAll)
I>=T1I{z; : nat, x5 : nat}.nat (XprecAll)
l>nat which succeeds by (prec)
| =113 Ty : nat.nat (XprecAll)
=12} nat which succeeds by (prec)
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[ =1zve2hpat which succeeds by (prec)
119} (g 2 (foldr(m, 1, y) g)) -we keep the @ operator implicit this time- (prec)
1-19} g (var)
-1} 2 (subt)
cons(m, z,1) : List(m + 1) =19} 2 : nat succeeds by (subt)
=19} (foldr(m, 1, y) g)} (prec)
1 =19} foldr(m, 1, y) (stat)
{m+1, cons(m, z, 1), y}=19{m, 1y} which succeed by repeated (subt)
119} g succeeds by (var), therefore ending the computation successfully.

6 Conclusion

The amount of research work targeting automatic termination is vast. Among the most
popular techniques are dependency pairs, introduced by Aart and Giesl and the size-changing
principle, pioneered by Neil Jones, which have been generalized to dependently-typed rules [5].
Dependent types can also be used to store annotations useful for proving termination [22].
Despite these proposals that recent prototypes try to combine, techniques used in Coq and
Agda are still poor, as acknowledged by the authors on their websites. Using our techniques
would improve this situation.

Our first contribution is a new transformation for eliminating type dependencies using a
framework richer than the simply-typed A-calculus, which provides with a natural encoding,
and allows us to consider arbitrary rewrite rules, not only 8- and 7n-reductions. Furthermore,
these results hold for a practical dependent type system made richer than LF’s via a
convertibility relation possibly stronger than 8n-convertibility, hence allowing us to type many
more terms. This easily implementable transformation allow us using existing implementations
targeting termination of rules in presence of simple types. The transformation also allows
us to show well-foundedness of DCPO, a version of CPO applying to dependently typed
terms directly. This is done by considering pairs ordered by DCPO as dependently typed
rewrite rules to which the transformation applies. Note that DCPO will naturally benefit
from improvements of CPO, without changing the proof technique. In particular, we could
easily accommodate size interpretations by using them as a precedence as in [11], or type
level rules such as s=(A u), t=1IIy: B.v, with s =X B and s =X"{2} y{y— 2} flattened as
ls=Q(||A, [|u), and ||t =pikyp|(||B, Ay : |Bl-[v), with [|s >* || B and ||s >* 1=} [jo{y = 2},
whose justification requires the extension of CPO with small function symbols, here pik g,
which behave as if they were smaller than application and abstraction [10]. We can then
break the main goal into the above solvable subgoals.

Our main interest is indeed to prove termination directly at the dependent type level.
Using DCPO allows the programmer, in case of failure, to get an error message in her/his
own dependently typed syntax, rather than in the transformed syntax as would be the case
when using CPO on the transformed rules. To our knowledge, this is the very first general
— Coq and Agda’s techniques are very limited —, purely syntactic method that allows one to
show termination of a set of dependently typed rewrite rules via computations taking place
on the user’s dependently typed rules.
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—— Abstract

We present a core programming language that supports writing well-founded structurally recurs-
ive functions using simultaneous pattern matching on contextual LF objects and contexts. The
main technical tool is a coverage checking algorithm that also generates valid recursive calls.
To establish consistency, we define a call-by-value small-step semantics and prove that every
well-typed program terminates using a reducibility semantics. Based on the presented methodo-
logy we have implemented a totality checker as part of the programming and proof environment
Beluga where it can be used to establish that a total Beluga program corresponds to a proof.

1998 ACM Subject Classification D.3.1[Programming Languages] Formal Definitions and Lan-
guages. F.3.1[Logics and Meaning of Programs| Specifying and Verifying and Reasoning about
Programs

Keywords and phrases Type systems, Dependent Types, Logical Frameworks

Digital Object Identifier 10.4230/LIPIcs. TLCA.2015.273

1 Introduction

Mechanizing formal systems and their proofs play an important role in establishing trust
in formal developments. A key question in this endeavor is how to represent variables and
assumptions to which the logical framework LF [8], a dependently typed lambda-calculus,
provides an elegant and simple answer: both can be represented uniformly using LF’s function
space, modelling binders in the object language using binders in LF. This kind of encoding is
typically referred to as higher-order abstract syntax (HOAS) and provides a general uniform
treatment of syntax, rules and proofs.

While the elegance of higher-order abstract syntax encodings is widely acknowledged, it
has been challenging to reason inductively about LF specifications and formulate well-founded
recursion principles. HOAS specifications are not inductive in the standard sense. As we
recursively traverse higher-order abstract syntax trees, we extend our context of assumptions,
and our LF object does not remain closed. To tackle this problem, Pientka and collaborators
[11, 4] propose to pair LF objects together with the context in which they are meaningful.
This notion is then internalized as a contextual type [¥.A] which is inhabited by terms M
of type A in the context ¥ [9]. Contextual objects are then embedded into a computation
language which supports general recursion and pattern matching on contexts and contextual
objects. Beluga, a programming environment based on these ideas [13], facilitates the use
of HOAS for non-trivial applications such as normalization-by-evaluation [4] and a type-
preserving compiler including closure conversion and hoisting [3]. However, nothing in this
work enforces or guarantees that a given program is total.
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In this paper, we develop a core functional language for reasoning inductively about
context and contextual objects. One can think of this core language as the target of a Beluga
program: elaboration may use type reconstruction to infer implicit indices [6] and generate
valid well-founded recursive calls that can be made in the body of the function. Type checking
will guarantee that we are manipulating well-typed objects and, in addition, that a given set
of cases is covering and the given recursive calls are well-founded. To establish consistency,
we define a call-by-value small-step semantics for our core language and prove that every
well-typed program terminates, using Tait’s method of logical relations. Thus, we justify the
interpretation of well-founded recursive programs in our core language as inductive proofs.
Based on our theoretical work, we have implemented a totality checker for Beluga.

Our approach is however more general: our core language can be viewed as a language for
first-order logic proofs by structural induction over a given domain. The domain must only
provide answers to three domain-specific questions: (1) how to unify objects in the domain,
(2) how to split on a domain object and (3) how to justify that a domain object is smaller
according to some measure. The answer to the first and second question allows us to justify
that the given program is covering, while the third allows us to guarantee termination. For
the domain of contextual LF presented in this paper, we rely on higher-order unification [2]
for (1), and our splitting algorithm (2) and subterm ordering (3) builds on previous work
[5, 10]. As a consequence, our work highlights that reasoning about HOAS representations
via contextual types can be easily accommodated in a first-order theory. In fact, it is a
rather straightforward extension of how we reason inductively about simple domains such as
natural numbers or lists.

The remainder of the paper is organized as follows. We first present the general idea
of writing and verifying programs to be total in Sec. 2 and then describe in more detail
the foundation of our core programming language which includes well-founded recursion
principles and simultaneous pattern matching in Sec. 3. The operational semantics together
with basic properties such as type safety is given in Sec. 4. In Sec. 5, we review contextual
LF [4], define a well-founded measure on contextual objects and contexts, and define the
splitting algorithm. Subsequently we describe the generation of valid well-founded recursive
calls generically, and prove normalization (Sec. 7). We conclude with a discussion of related
work, current status and future research directions. Due to space constraints, proofs have
been omitted.

2 General Idea

2.1 Example 1: Equality on Natural Numbers

To explain the basic idea of how we write inductive proofs as recursive programs, we consider
first a very simple example: reasoning about structural equality on natural numbers (see
Listing 1). We encode natural numbers and equality on them in the logical framework LF.

Listing 1 Encoding of an Inductive Proof as a Recursive Function.

nat : type. eq : nat — nat — type.
Z . nat. eq_z : eq z z.
s : nat — nat. eg.s : eqMN — eq (s M) (s N).

ref : IIM:nat. [eq M M] = AM = rec-case M of
| ref z = [eq_z]
| M’:nat ; ref M’:[eq M’ M’]. ref (s M’) = let D = ref M’ in [eq_s M’ M’ D];
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The free variables M and N in the definition of eq_s are implicitly quantified at the outside.
Program ref proves reflexivity of eq: for all M:nat we can derive eq M M. Following type-
theoretic notation, we write II for universal quantification; we embed LF objects which denote
base predicates via [ 1. Abstraction over LF object M is written A M = in our language.
Using rec-case, we prove inductively that for all M there is a derivation for [eq M M]. There
are two cases to consider: ref z describes the base case where M is zero and the goal refines to
[eq z z]. In this case, the proof is simply [eq_z]. In the step case, written as ref (s M’), we
also list explicitly the other assumptions: the type of M’ and the induction hypothesis written
as ref M’:[eq M’ M’]. To establish that [eq (s M’) (s M’)], we first obtain a derivation D
of eq M’ M’ by induction hypothesis and then extend it to a derivation [eq_s M’ M’ D] of
[eq (s M) (s M’)]. We highlight in green redundant information which can be inferred
automatically. In the pattern, it is the typing (here: M’ :nat) of the pattern variables [12, 6]
and the listing of the induction hypotheses. The dot “.” separates these assumptions from
the main pattern. For clarity, we choose to write the pattern as a simultaneous pattern match
and make the name of the function explicit; in practice, we only write the main pattern
which is left in black, and all other arguments are inferred.

2.2 Example 2: Intrinsically Typed Terms

Next, we encode intrinsically typed A-terms. This example does exploit the power of LF.

tp . type. tm : tp — type.
bool : tp. lam : (tm A — tm B) — tm (arr A B).
arr : tp — tp — tp. app : tm (arr A B) — tm A — tm B.

We define base types such as bool and function types, written as arr T S, and represent
simply-typed lambda-terms using the constructors lam and app. In particular, we model the
binding in the lambda-calculus (our object language) via HOAS, using the LF function space.
For example, the identity function is represented as lam Ax.x and function composition as
lam \g. lam Af. lam Ax. app (f (app g x)). As we traverse A-abstractions we record the
variables we are encountering in a context ¢ : cxt. Its shape is given by a schema declaration
schema ctx = tm A stating that it contains only variable bindings of type tm A for some A.
To reason about typing derivations, we package the term (or type) together with its context,
forming a contextual object (or contextual type, resp.). For example, we write ¢ - tm A for
an object of type tm A in the context ¢. Such contextual types are embedded into logical
statements as [¢ F tm A]. When the context ¢ is empty, we may drop the turnstile and
simply write [tm A].

Counting constructors: Induction on (contextual) LF object

As an example, we consider counting constructors in a term. This corresponds to defining
the overall size of a typing derivation. We recursively analyze terms M of type tm A in the
context ¢. In the variable case, written as count ¢ B (¢ + p..), we simply return zero. The
pattern variable p stands for a variable from the context ¢. We explicitly associate it with the
identity substitution, written as ..., to use p which has declared type ¢ F tm B in the context
¢. Not writing the identity substitution would enforce that the pattern variable does not
depend on ¢ and forces the type of p to be [ tm B]l. While it is certainly legitimate to use p
in the context ¢, since the empty substitution maps variables from the empty context to ¢,
the type of p is empty; since the context is empty, there are no variables of the type [F tm B].
Hence writing (¢ + p) would describe an empty pattern. In contrast, types described by
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Listing 2 Counting constructors.

count: Il ¢:ctx. ITA:tp. IIM:(¢ - tm A) . [ nat] =
Ap= AA = AM = rec-case M of

| B:tp, p:(¢ -tm B); . count ¢ B (¢ Fp..) = [ z 1] % Variable Case
| B:tp,C:tp,M: (¢,x:tm B I tm C) ; % Abstraction Case
count (¢,x:tm B) C (¢,x:tm B M .. x) : [nat]. % IH

count ¢ (arr B C) (¢ Flam B C Ax. M.. x) =
let X = count (¢,x:tm B) C (¢p,x:tm B FM.. x) in [ s X ]

| B:tp,C:tp,M: (¢ - tm (arr B C)), N:(¢ F tm B) ; % Application Case
count ¢ (arr B C) (¢ FM..):[nat], % IH1
count ¢ B (¢ FN..):[nat]. % IH2

count ¢ C (¢ Fapp BC (M..) (N..)) =
let X = count ¢ (arr B C) (¢ FM..) in
let Y = count ¢ B (¢ FN..) in add (s X) Y

Listing 3 Computing length of a context.

length = Il ¢:ctx. [nat] =

A ¢ = rec-case ¢ of

| . count 0 = [z
= let

]
| :ctx, A:tp ; count ¢ : [nat] . count (3, x:tm A) let X = count ¥in [ s X ]

meta-variables A or B, for example, are always closed and can be instantiated with any closed
object of type tp and we do not associate them with an identity substitution.

In the case for lambda-abstractions, count ¢ (arr B C) (¢ F lam Ax.M..x), we not only
list the type of each of the variables occurring in the pattern, but also the induction hypothesis,
count (¢,x:tm B) C (¢,x:tm B F M ..x):[nat]. Although the context grows, the term itself
is smaller. In the body of the case, we use the induction hypothesis to determine the size X
of M...x in the context ¢, x:tm B and then increment it.

The case for application, count ¢ C (¢ F app B C (M..)(N..)), is similar. We again list
all the types of variables occurring in the pattern as well as the two induction hypotheses. In
the body, we determine the size X of (¢ FM..) and the size Y of (¢ FN..) and then add them.

Computing the length of a context: Induction on the context

As we have the power to abstract and manipulate contexts as first-class objects, we also can
reason inductively about them. Contexts are similar to lists and we distinguish between the
empty context, written here as (), and a context consisting of at least one element, written as
¥, x:tm A. In the latter case, we can appeal to the induction hypothesis on 1 (see Listing 3).

3 Core language with well-founded recursion

In this section, we present the core of Beluga’s computational language which allows the
manipulation of contextual LF objects by means of higher-order functions and primitive
recursion. In our presentation of the computation language we keep however our domain
abstract simply referring to U, the type of a domain object, and C', the object of a given
domain. In fact, our computational language is parametric in the actual domain. To
guarantee totality of a program, the domain needs to provide answers for two main questions:
1) how to split on a domain type U and 2) how to determine whether a domain object C' is
smaller according to some domain-specific measure. We also need to know how to unify two
terms and determine when two terms in our domain are equal. In terms of proof-theoretical
strength, the language is comparable to Godel’s T or Heyting Arithmetic where the objects
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of study are natural numbers. However in our case, U will stand for a (contextual) LF type
and C describes a (contextual) LF object.

Types Z,r o=[U] |1 = o | IX:UT

Expressions e u=y|[C]|fnyT=elerea | AX:U=e€|eC
| let X =epin ey | rec—case?Cof b

Branches b w=AT .r=e

Assumptions r = f 8 C

Contexts I o=-|Tyr|T,r:7

Meta Context A == -|A,X:U

We distinguish between computation variables, simply referred to as variables and written
using lower-case letter y; variables that are bound by II-types and A-abstraction are referred
to as meta-variables and written using upper-case letter X. Meta-variables occur inside a
domain object. For example we saw earlier the object (¢) - app B ¢ (M..)(N..)). Here, 1, B,
C, M, and N are referred to as meta-variables.

There are three forms of computation-level types 7. The base type [U] is introduced
by wrapping a contextual object C inside a box; an object of type [U] is eliminated by
a let-expression effectively unboxing a domain object. The non-dependent function space
T — To is introduced by function abstraction fny:7; = e and eliminated by application e es;
finally, the dependent function type ILX:U.7 which corresponds to universal quantification in
predicate logic is introduced by abstraction AX:U = e over meta-variables X and eliminated
by application to a meta objects C written as e C'. The type annotations on both abstractions
ensure that every expression has a unique type. Note that we can index computation-level
types 7 only by meta objects (but this includes LF contexts!), not by arbitrary computation-
level objects. Thus, the resulting logic is just first-order, although the proofs we can write
correspond to higher-order functional programs manipulating HOAS objects.

Our language supports pattern matching on a meta-object C using rec—case-expressions.
Note that one cannot match on a computational object e directly; instead one can bind an
expression of type [U] to a meta variable X using let and then match on X. We annotate
the recursor rec—case with the type of the inductive invariant IIAy.7y which the recursion
satisfies. Since we are working in a dependently-typed setting, it is not sufficient to simply
state the type U of the scrutinee. Instead, we generalize over the index variables occurring
in the scrutinee, since they may be refined during pattern matching. Hence, Ag is Ay, Xo:Uy
where A; exactly describes the free meta-variables occurring in Uy. The intention is that
we induct on objects of type Uy which may depend on A;. Ay must therefore contain at
least one declaration. We also give the return type 7y of the recursor, since it might also
depend on Ay and might be refined during pattern matching. This is analogous to Coq’s
match as in return with end construct.

One might ask whether this form of inductive invariant is too restrictive, since it seems
not to capture, e.g., lIAq.(7 — IIX:Up.7"). While allowing more general invariants does
not pose any fundamental issues, we simply note here that the above type is isomorphic to
II(Ag, X:Up). 7 — 7’ which is treated by our calculus. Forcing all quantifiers at the outside
simplifies our theoretical development; however, our implementation is more flexible.

A branch b; is expressed as A;; 77 . Tio = e;. As shown in the examples, we explicitly list
all pattern variables (i.e. meta-variables) occurring in the pattern in A;. In practice, they
often can be inferred (see for example [12]). We also list all valid well-founded recursive calls
Ff, ie. Ti,...,Tq, for pattern r;9. In practice, they can be also derived dynamically while
we check that a given pattern ;¢ is covering and we give an algorithm in Section 6.
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/

I'y)=r1 L(ry=17 r=r
: Computation e has typer "~ _

AThRy:T AT R 7
AFC:U AiTFer:mm—7 AjTkers:me ATTkFe:lIX:Ur AFC:U
A;THIC): U] A;Therer: T A;TReC:[C/X]T
ATy Fe:m AX:UTke:T A;The: [Ul AX:U;Tkea: T
A;THEfnymn =e:mn 51 ATHAXU = e: 1IX:UT A;THlet X =epines: 7

I =1A IIXo:Up.7o AFC:[0]Us AF6:A; b;:T (for all 7) ?covers T
A;T F rec—case” C' of T 16,C/X] o

: Branch b satisfies the invariant 7

forall0<j<k.Abzr;:7y A reTE,..., T E e To
(Asrgg ...ri.mo=>¢€): T

AbFzr:7 |and |AF C.1 > 7' |: Assumption r/pattern spine T has type 7’ given Z

AFC:T>s AFC:U AFC:[C/X]r>1 ALC.U
AszﬁzT’ AFC?ZHX:U.T>T’ AFC:IIY:UT > [C/Y]r

Figure 1 Type system for dependently-typed functional computation language.

The identifier f in assumptions r denotes the local function that is essentially introduced
by rec—case; this notation is inspired by primitive recursion in Tutch [1]. Currently, it just
improves the readability of call patterns; however, it is vital for extensions to nested recursion.

3.1 Computation-level Type System

In the typing judgement (Fig. 1), we distinguish between the context A for meta-variables
from our index domain and the context I" which includes declarations of computation-level
variables. We will tacitly rename bound variables, and maintain that contexts declare no
variable more than once. Moreover, we require the usual conditions on bound variables. For
example in the rule for A-abstraction the meta-variable X must be new and cannot already
occur in the context A. This can always be achieved via a-renaming. Similarly, in the rule
for function abstraction, the variable y must be new and cannot already occur in I'. We have
two variable rules to look up a computation-level variable 4y and an induction hypothesis r.
To verify that the induction hypothesis 7’ has type 7 and its use is valid, we simply check
whether there exists r : 7 in I where r = r’. For now it suffices to think of = as syntactically
equivalent.

The most interesting rule is the one for recursion: given the invariant Z = I1A.I1X:Uy.719
the expression rec—case’ C' of b is well-typed under three conditions: First, the meta-object
C we are recursing over has some type U and moreover, U is an instance of the type specified
in the invariant, i.e. Ag = Ay, Xo:Up and U = [0]U, for some meta-substitution  with
domain Aj. Secondly, all branches b; are well-typed with respect to the given invariant
ITAg.79. Finally, b must cover the meta-context Ay, i.e., it must be a complete, non-redundant
set of patterns covering Ay, and all recursive calls are well-founded. Since the coverage check
is domain specific, we leave it abstract for now and return to it when we consider (contextual)
LF as one possible domain (see Sec. 5).

Note that we drop the meta-context A and the computation context I' when we proceed
to check that all branches satisfy the specified invariant. Dropping A is fine, since we require
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(fnz:r = e)v— [v/zle (AX:U=¢)C—[C/X]e letX=[C]ine— [C/X]e

- —
Junique (A.rg, ..., 7m1.79 = €) € b where r; = f C; Cjo such that = C = Cy/0

rec—caseZ C' of b —» [0][ (rec—caseZ Cig of b)/rs, . .., (rec—caseZ Cyo of b)/r1 e

Figure 2 Small-step semantics e — ¢’.

the invariant I1A(.79 to be closed. One might object to dropping I'; indeed this could be
generalized to keeping those assumptions from I' which do not depend on A and generalizing
the allowed type of inductive invariant (see our earlier remark).

For a branch b = A;7.rg = e to be well-typed with respect to a given invariant Z, we
check the call pattern 9 and each recursive call r; against the invariant and synthesize target
types 7; (j > 0). We then continue checking the body e against 79, i.e., the target type of
the call pattern ry, populating the computation context with the recursive calls 7" at their
types 7. A pattern / recursive call r; = f C; intuitively corresponds to the given inductive
invariant Z = IIA.I1X:Uy.79, if the spine 8 matches the specified types in Ay, Xo:Uy and
it has intuitively the type [Cj,./Xn, ..., Cjo/Xo]7o which we denote with 7.

More generally, we write A F 0 : Ay for a well-typed simultaneous substitution where
Ay is the domain and A is the range of the substitution. It can be inductively defined (see
below) and the standard substitution lemmas hold (see for example [4]).

AF6: A AFC:[0]U
AF-:- AFO,C/X Ny, XU

4 Operational Semantics

Fig. 2 specifies the call-by-value (cbv) one-step reduction relation e — €’; we have omitted
the usual congruence rules for cbv. Reduction is deterministic and does not get stuck on closed
terms, due to completeness of pattern matching in rec—case. To reduce (rec—case’ C' of 5)
we find the branch (A.rg,...,r1.179 =€) € b such that the principal argument Cyg of its
clause head rg = f C—'S Cop matches C' under meta substitution 6. The reduct is the body
e under § where we additionally replace each place holder r; of a recursive call by the
actual recursive invocation (rec—case” [0]Cjo of b). The object Cjo in fact just denotes the
meta-variable on which we are recursing. We also apply 6 to the body e. In the rule, we

have lifted out 6. Values v in our language are boxed meta objects [C], functions fnz:7 = e,
and AX:U.e.

» Theorem 1 (Subject reduction). If ;-Fe: 7 ande — €', then ;- F e’ : 1.
Proof. By induction on e —» ¢'. <

» Theorem 2 (Progress). If ;- F e : 7 then either e is a value or e — ¢’.

Proof. By induction on ;- Fe: 7. <

5 Contextual LF: Background, Measure, Splitting

If we choose as our domain natural numbers or lists, it may be obvious how to define splitting
together with a measure that describes when an object is smaller. Our interest however is to
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use the contextual logical framework LF [9] as a general domain language. Contextual LF
extends the logical framework LF [8] by packaging an LF objects M of type A together with
the context ¥ in which it is meaningful. This allows us to represent rich syntactic structures
such as open terms and derivation trees that depend on hypotheses. The core language
introduced in Sec. 3 then allows us to implement well-founded recursive programs over these
rich abstract syntax trees that correspond to proofs by structural induction.

5.1 Contextual LF

We briefly review contextual LF here. As usual we consider only objects in 7-long S-normal
form, since these are the only meaningful objects in LF. Further, we concentrate on charac-
terizing well-typed terms; spelling out kinds and kinding rules for types is straightforward.

LF Base Types PQ :==c-S

LF Types A,B =P |lz:A.B

Heads H n=c| x| plo]

Neutral Terms R n=H -S| uo]

Spines S w=nil | M S

Normal Terms M,N ==R|Xz.M
Substitutions o n=-|idy |o,M | oy H
Variable Substitutions ™ n=-lidy | oy

LF Contexts UV, o =9 |V A

Normal terms are either lambda-abstractions or neutral terms which are defined using a
spine representation to give us direct access to the head of a neutral term. Normal objects
may contain ordinary bound variables x which are used to represent object-level binders and
are bound by A-abstraction or in a context ¥. Contextual LF extends LF by allowing two
kinds of contextual variables: the meta-variable u has type (¥.P) and stands for a general
LF object that has type P and may use the variables declared in ¥; the parameter variable
p has type #(¥.A) and stands for an LF variable object of type A in the context ¥.

Contextual variables are associated with a postponed substitution ¢ which is applied as
soon as we instantiate it. More precisely, a meta-variable u stands for a contextual object
U.R where ¥ describes the ordinary bound variables which may occur in R. This allows us
to rename the free variables occurring in R when necessary. The parameter variable p stands
for a contextual object U.H where H must be either an ordinary bound variable from ¥ or
another parameter variable.

In the simultaneous substitutions o, we do not make the domain explicit. Rather we
think of a substitution together with its domain ¥ and the i-th element in o corresponds to
the i-th declaration in ¥. We have two different ways of building a substitution entry: either
by using a normal term M or a variable z. Note that a variable z is only a normal term M
if it is of base type. However, as we push a substitution o through a A-abstraction Azx.M, we
need to extend o with x. The resulting substitution ¢,z may not be well-formed, since x
may not be of base type and in fact we do not know its type. Hence, we allow substitutions
not only to be extended with normal terms M but also with variables x; in the latter case we
write o; x. Expression idy denotes the identity substitution with domain ) while - describes
the empty substitution.

Application of a substitution ¢ to an LF normal form B, written as [¢]B, is hereditary
[20] and produces in turn a normal form by removing generated redexes on the fly, possibly
triggering further hereditary substitutions.
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A; U+ H = A| Synthesize type A for head H

U(zr)=A Ye)=A Ap)=#PA A ¥Fo<=d
AUV EFzr=A4 A;¥Fc=A AU Fplo] = [0]A

’A;\If FS:A> P‘Check spine S against A with target P
A VFM<«A AOES:[M/z)B>P
A;Wknil: P>P AWEMS:Tz:A.B> P

’A;\II FM< A‘ Check normal object M against type A
AU AFM < B Alu)=d.P A UFo<=® Q=][o]P
AW Az M < A— B AU Faulo] < Q

AWFH=A AJZUFS:A>P
AUREH-S< P

A; U+ o < ® | Check substitution o against domain ®

AU k<= Ay, U0 Fidy < o

ATFEo<=d AJZVEM<=[0]A A;Ubo<«d AJZVFH=B B=|d]A
AU E (o, M) < (D,2:A) AU E (0 H) < (9,2:A)

Figure 3 Bi-directional typing for contextual LF.

An LF context W is either a list of bound variable declarations m or a context variable
1 followed by such a list. We write WY for contexts that do not start with a context variable.
We write U, ®° or sometimes ¥, ® for the extension of context ¥ by the variable declarations
of ®° or ®, resp. The operation id(¥) that generates an identity substitution for a given
context ¥ is defined inductively as follows: id(-) = -, id(¢)) = idy, and id(V,z:A) = id(¥); z.

We summarize the bi-directional type system for contextual LF in Fig. 3. LF objects may
depend on variables declared in the context ¥ and a fixed meta-context A which contains
contextual variables such as meta-variables u, parameter variables p, and context variables
1. All typing judgments have access to both contexts and a fixed well-typed signature 3
where we store constants ¢ together with their types and kinds.

5.2 Meta-level Terms and Typing Rules

We lift contextual LF objects to meta-objects to have a uniform definition of all meta-objects.
We also define context schemas G that classify contexts.

Context Schemas G == 39°.B |G +39°.B
Meta Types UV :=U.P|G|#V.A Meta Objects C,D :=W.R| ¥

A consequence of the uniform treatment of meta-terms is that the design of the computation
language is modular and parametrized over meta-terms and meta-types. This has two main
advantages: First, we can in principle easily extend meta-terms and meta-types without
affecting the computation language; second, it will be key to a modular, clean design.

The above definition gives rise to a compact treatment of meta-context A. A meta-
variable X can denote a meta-variable u, a parameter variable p, or a context variable 1.
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Meta substitution C'/X can represent W.R/u, or W /v, or W.x/p, or W.p/[x]/p (where 7 is
a variable substitution so that p[n] always produces a variable). A meta declaration X:U
can stand for u : W.P, or p: #V.A, or ¥ : G. Intuitively, as soon as we replace u with U.R
in u[o], we apply the substitution o to R hereditarily. The simultaneous meta-substitution,
written as [0], is a straightforward extension of the single substitution. For a full definition
of meta-substitutions, see [9, 4]. We summarize the typing rules for meta-objects below.

A+ C : U | Check meta-object C' against meta-type U AVFEREP

AFU.R:U.P

Al) =G AFV:G F°.BeG A UFo«d" [0]B=D
AF-:G ALy G ARV x:B' : G

We write U for a list of variables obtained by erasing the types from the context ¥. We
have omitted the rules for parameter types #V.A because they are not important for the
further development. Intuitively an object R has type #W.A if R is either a concrete variable
x of type A in the context ¥ or a parameter variable p of type A in the context ¥. This can
be generalized to account for re-ordering of variables allowing the parameter variable p to
have some type A’ in the context ¥’ s.t. there exists a permutation substitution 7 on the
variables such that U F 7 : ¥’ and A = [7]A’.

5.3 Well-founded Structural Subterm Order

There are two key ingredients to guarantee that a given function is total: we need to ensure
that all the recursive calls are on smaller arguments according to a well-founded order and
the function covers all possible cases. We define here a well-founded structural subterm order
on contexts and contextual objects similar to the subterm relations for LF objects[10]. For
simplicity, we only consider here non-mutual recursive type families; those can be incorporated
using the notion of subordination [19].

We first define an ordering on contexts: , read as “context ¥ is a subcontext of
®” shall hold if all declarations of ¥ are also present in the context @, i.e., ¥ C ®. The
strict relation , read as “context VU is strictly smaller than context ®” holds if ¥ <X @
but W is strictly shorter than ®.

Further, we define three relations on contextual objects . M: a strict subterm relation
=, an equivalence relation =, and an auxiliary relation <.

U CdordC ¥ nisa variable subst. s.t. M = [7|N
U.M=d.N

UM=<dN; forsomel<i<n U.M<dN b M=dbN U.M=<daN
UM <d h-N; ... N, nil UM<dN U.M<dN U.M=<d)z.N

.M is a strict subterm of .V if M is a proper subterm of N modulo a-renaming and
weakening. Two terms U.M and ®.N are structurally equivalent, if they describe the same
term modulo a-renaming and possible weakening. To allow mutual recursive definitions and
richer subterm relationships, we can incorporate subordination information and generalize
the variable substitution 7 (see for example [10] for such a generalization). Using the defined
subterm order, we can easily verify that the recursive calls in the examples are structurally
smaller.

The given subterm relation is well-founded. We define the measure ||¥|| of a ground
context W0 or its erasure W0 as its length |¥|. The measure ||¥.M|| of a contextual object
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W.M, is the measure || M|| of M. The latter is defined inductively by:

- M. My il = 1+ max(|[Mi],...,||M]])
|[Az. M| || M]]

» Theorem 3 (Order on contextual objects is well-founded ). Let § be a grounding meta-
substitution.

1. If C < C’ then ||[0]C]] < ||IO]C"|]-

2. If C = then ||[0]C]] = |IT6]C"]I.

3. 1fC 2 C" then ||[6]CI] < 6]l

5.4 Case Splitting

Our language allows pattern matching and recursion over contextual objects. For well-formed
recursors (rec—case” C' of E) with invariant Z = ITA ILX:U.7, branches b need to cover all
different cases for the argument C of type U. We only take the shape of U into account
and generate the unique complete set Uar-yy of non-overlapping shallow patterns by splitting
meta-variable X of type U.

If U = W.P is a base type, then intuitively the set Uary contains all neutral terms
R = H - S where H is a constructor ¢, a concrete variable = from ¥ or a parameter variable
plidy] denoting a variable from the context variable ¢, and S is a most general spine s.t. the
type of R is an instance of P in the context W. We note that when considering only closed
terms it suffices to consider only terms with H = c¢. However, when considering terms with
respect to a context ¥, we must generate additional cases covering the scenario where H is a
variable — either a concrete variable z if z:A is in ¥ or a parameter variable if the context is
described abstractly using a context variable .

If U denotes a context schema G, we generate all shallow context patterns of type G.
This includes the empty context and a context extended with a declaration formed by ¥, x: A.

From Uarp we generate the complete minimal set C = {A;; 7k, ..., 1.7 | 1 <@ < n} of
possible, non-overlapping cases where the i-th branch shall have the well-founded recursive
calls 7k, ..., ry1 for the case r;9. For the given branches b to be covering, each element in C
must correspond to one branch b;.

Splitting on a Contextual Type

Following [5, 17], the patterns R of type ¥.P are computed by brute force: We first synthesize
a set Ha,w of all possible heads together with their type: constants ¢ € X, variables z € ¥,
and parameter variables if U starts with a context variable .

Haw = {(A;¥ Fc: A) | (c:A) € B}
U{(A;0 Fax:A) | (2:A) € U}
—
U {(A,X:U,p:#(w.B’); Ut plidy] : B") | ¥ =1, Y and ¢:G € A and J2:A.BEG
—
and genMV (. 4;) = (X;:U;, M;) for all 4, and B’ = [M/x]B }
See Fig. 4. Using a head H of type A from the set Ha,w, we then generate, if possible,
the most general pattern H - S whose target type is unifiable with P in the context W. We

describe unification using the judgment ’ ATRQ=P/ (A, 0) ‘ If unification succeeds
then [0]Q = [0]P and A" F 6 : A.
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’genMV (T.A) = (X:U,M) ‘ Generation of a lowered meta variable

genMV (\I'Hx.zzlP) = (u: (\Il,:z:.1>4 P), AZ.ulid(T, 33.121)]) for a fresh meta variable u

’ A;UFR: A< P/(A,0,Ry) ‘ Extending R:A to most general normal term Ry : [0] P.

AU EQ=P/ (Ao, 0)
AUFR:Q<=P/ (Ao, 6, [0]R)

genMV (U.A) = (X:U, M) A, X:U;WFRM:[M/2]B<P /(Ao 0, R)
AU ER:IIx:AB<= P/ (A, 6, R)

Figure 4 Generation of most general normal objects and call patterns.

’ A UEFR: A<= P/ (A,0,Ry) ‘ describes the generation of a normal pattern where all

the elements on the left side of / are inputs and the right side is the output, which satisfies
A'F6:Aand A 0]V F R = [0]A and A/; [0]¥ + Ry < []P. To generate a normal term
Ry of the expected base type, we start with head H : A. As we recursively analyze A, we

generate all the arguments H is applied to until we reach an atomic type Q. If @ unifies with
the expected type P, then generating a most general neutral term with head H succeeds.

Unrop = { (A" FOR:0.Q) | (A; U+ H: A) € Haw and
A UFH:A<=P/ (A", 6, R) and ® =[]V and Q = [0]P}

Splitting on a Context Schema

Spitting a context variable of schema G generates the empty context and the non-empty
contexts (¢, z:B’) for each possible form of context entry 3®°.B € G.

Usre ={ (AF-:G) }
U A (A,qS:G,X:ﬁ F (¢, 2:[M/z]B) : G) | ¢ a fresh context variable and
for any Jx: A.B e G .genMV (¢.4;) = (X;:U;, M;) for all i}

» Theorem 4 (Splitting on meta-types). The set Unr-u of meta-objects generated is non-
redundant and complete.

Proof. Uar¢ is obviously non-redundant. Uarg.p is non-redundant since all generated
neutral terms have distinct heads. Completeness is proven by cases. |

6 Generation of Call Patterns and Coverage

Next, we explain the generation of call patterns, i.e. well-founded recursive calls as well as
the actual call pattern being considered.

» Definition 5 (Generation of call patterns). Given the invariant Z = II(A;, Xo:Up).79 where
Ay = XUy, ..., X1:Uy, the set C of call patterns (A; ; rig:Tik, ..., 71:Ti1 - Tio) is generated
as follows:
For each meta-object A; - Cjo : V; in Ua v, , We generate using unification, if possible,
a call pattern r;0 = f Cm .. .Cﬂ OiO s.t. Tio = [[C”L/Xn, .. .,Cﬂ/Xl,Cio/Xo]]To and
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A; F 10 : Ti0- This may fail if V; is not an instance of the scrutinee type Up; then, the
case Cj is impossible.

Further, for all 1 < j <k, A; = Yy: Vi, ..., Y1:V1, we generate a recursive call

Ti; = f Cjn RPN le Y} s.t. Tij = HO_]W,/XTM ‘e ,le/Xl,}/j/Xo]]To and Ai F Tij * Tij, if
Y; < Cjo. This may also fail, if V; is not an instance with Up; in this case V; does not
give rise to recursive call.

» Theorem 6 (Pattern generation). The set C of call patterns generated is non-redundant
and complete and the recursive calls are well-founded.

Proof. Using Theorem 4 and the properties of unification. |

» Definition 7 (Coverage). We say iff for every A; ; 7T .ri0 € C where C is

the set of call patterns given Z, we have one corresponding A; ; r;:7; .70 = €; € b and vice
versa.

7 Termination

We now prove that every well-typed closed program e terminates (halts) by a standard
reducibility argument; closely related is [21]. The set R, of reducible closed programs
s+ e : 7 is defined by induction on the size of 7.

Contextual Type Ry = {e]|;-Fe:[U] and e halts}
Function Type Rr—sr = {e|l3-Fe:7 = 7andehaltsand Ve’ € Rv.ee’ € R;}
Dependent Type Rnx.v.. = {e]| -+ e:UX:U.T and

e halts and VCs.t.- = C : U.e C € Rjo/x)r }
{n|-Fn:Tandn(z) € R, for all (z:7) €'}

Context Rr

For the size of 7 all meta types U shall be disregarded, thus, the size is invariant under
meta substitution C'/X. We also note that since reduction e — ¢’ is deterministic, e halts
if and only if ¢/ halts.

» Lemma 8 (Expansion closure).
1. If;-Fe:Tande — € and e’ € R, thene € R,.
2. If ;-Fe:Tande —* € ande' € R,, thene € R,.

Proof. The first statement, by induction on the size of type 7. The second statement,
inductively on —*. <

» Lemma 9 (Fundamental Lemma).
If A;T' = e: 7 and grounding substitution 0 s.t. - =6 : A and n € Rygyr then [n][0]e € Rigpr-

Proof. By induction on A;T'F e : 7. In the interesting case of recursion rec—case, we make
essential use of coverage and structural descent in the recursive calls. |

» Theorem 10 (Termination). If -;- e : 7 then e halts.

Proof. Taking the empty meta-context A and empty computation-level context I', we obtain
e € R; by the fundamental lemma, which implies that e halts by definition of 7. <
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8 Related Work

Our work is most closely related to [16] where the authors propose a modal lambda-calculus
with iteration to reason about closed HOAS objects. In their work the modal type O describes
closed LF objects. Our work extends this line to allow open LF objects and define functions
by pattern matching and well-founded recursion.

Similar to our approach, Schiirmann [15] presents a meta-logic M? for reasoning about
LF specifications and describes the generation of splits and well-formed recursive calls.
However, M? does not support higher-order computations. Moreover, the foundation lacks
first-class contexts, but all assumptions live in an ambient context. This makes it less direct
to justify reasoning with assumptions, but maybe more importantly complicates establishing
meta-theoretic results such as proving normalization.

Establishing well-founded induction principles to support reasoning about higher-order
abstract syntax specifications has been challenging and a number of alternative approaches
have been proposed. These approaches have led to new reasoning logics — either based on
nominal set theory [14] or on nominal proof theory [7]. Proving consistency of these theories
in the presence of induction is often significantly more complicated [18]. Our work shows that
reasoning about HOAS representations can be supported using first-order logic by modelling
HOAS objects as contextual objects. As a consequence, we can directly take advantage
of established proof and mechanization techniques. This also opens up the possibility of
supporting contextual reasoning as a domain in other systems.

9 Conclusion

We have developed a core language with structural recursion for implementing total functions
about LF specification. We describe a sound coverage algorithm which, in addition to
verifying that there exists a branch for all possible contexts and contextual objects, also
generates and verifies valid primitive recursive calls. To establish consistency of our core
language we prove termination using reducibility semantics.

Our framework can be extended to handle mutual recursive functions: By annotating a
given rec—case-expression with a list of invariants using the subordination relation, we can
generate well-founded recursive calls matching each of the invariants. Based on these ideas,
we have implemented a totality checker in Beluga. We also added reasoning principles for
inductive types [4] that follow well-trodden paths; we must ensure that our inductive type
satisfies the positivity restriction and define generation of patterns for them.

Our language not only serves as a core programming language but can be interpreted by
the Curry-Howard isomorphism as a proof language for interactively developing proofs about
LF specifications. In the future, we plan to implement and design such a proof engine and to
generalize our work to allow lexicographic orderings and general well-founded recursion.

Acknowledgements. We thank Sherry Shanshan Ruan for her work during her Summer
Undergraduate Research Internship in 2013 at the beginning of this project.
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—— Abstract

In this paper we investigate Implicit Computational Complexity via the parametric lambda
calculus of Ronchi Della Rocca and Paolini [13]. We show that a particular instantiation of the

set of input values leads to a characterization of polynomial time computations in a similar way to
Lafont’s Soft Linear Logic [9]. This characterization is manifestly type-free and does not require
any ad hoc extensions to the pure lambda calculus. Moreover, there is a natural extension to
nondeterminism with the addition of explicit products.
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1 Introduction

There is an inherent problem in studying computational complexity within the lambda
calculus in that a single beta reduction step can effectively square the size of a term, thus
leading to an exponential size term after only a linear number of steps. It therefore seems
unreasonable to simply count the number of beta reduction steps as a measure of the
computational complexity of reduction. Indeed, there have been studies, most recently in
[1], which give more reasonable measures of the complexity of a given A-term using explicit
substitutions and notions of sharing. These delicate issues are entirely avoided here as all
beta reduction steps, except for a constant number (which does not depend on the size of
the input), do not increase the size of the lambda term. Therefore, we feel justified in taking
a very simplistic approach to measuring the complexity of reduction of a given lambda term.
We define a simple “by-value” operational semantics and define the complexity of reduction
as the size of its corresponding evaluation tree, which we show is polynomial in the size of
the input binary word. We claim that any such reduction can be simulated on a Turing
machine with polynomial overhead.

Most studies of complexity within the (pure) lambda calculus rely on typing restrictions
to ensure that terms are strongly normalizing. For example, it is well known that terms in
the simply typed lambda calculus are strongly normalizing and, moreover, that the class of
representable numerical functions is precisely the class of extended polynomials [15]. Adding
an (impredicative) operation of abstraction on types, as in Girard’s system F [6], greatly
increases the class of representable functions to the class of functions provably total in second
order Peano arithmetic [7]. Nevertheless, the system remains strongly normalizing. A system
somewhere in the middle of these two extremes is obtained by stratifying type abstraction
into a finite number of levels. Indeed, in this case, the class of representable functions
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is precisely the class of super-elementary functions, i.e. the class of &; in Grzegorczyk’s
subrecursive hierarchy [10]. Finally, there are also well known studies on the complexity of
beta equivalence in the simply typed lambda calculus [16], as well as related results when
restricting to low functional orders [14].

Another fruitful approach to investigating complexity in the lambda calculus is through
linear logic and related type systems. In these studies, it is not typically type abstraction
that is limited, but instead duplication is controlled via the modified exponentials ! and § (see
[5] and [2], for example). These type systems were derived from their corresponding systems
of (light) linear logic and proof nets, and illustrate the computational power of duplication
in the lambda calculus. Unfortunately, type checking and type inference are undecidable in
the presence of unrestricted polymorphism [4].

In this paper we take an entirely different approach to studying complexity within the
lambda calculus via the parametric lambda calculus [13]. With a frugal choice of so-called
input values, we show that strong normalization is guaranteed, yet the system remains
expressive enough to capture polynomial time computations. Moreover, there is a natural
extension to nondeterminism with the addition of explicit products. In contrast to the above
studies, however, this approach does not rely on typing restrictions as we work in an entirely
type-free setting. Nevertheless, we believe a system of intersection types can be introduced
post hoc if desired.

This work is closely related to the author’s work on Bounded Combinatory Logic [12].
In that work, the usual Curry combinators B, C, K, W are introduced, but the duplication
combinator W has one of its arguments restricted to a proper subset of combinators, namely
the BC K-combinators. This ensures that only affine linear terms are duplicated, and leads
to a simple characterization of polynomial time computations. The “moral” analogue in the
lambda calculus corresponds to a particular instantiation of the parametric lambda calculus,
which is the focus of the current paper. However, the systems are not equivalent and in fact
use completely different reduction strategies and encodings. For this reason, we chose to
present this work independently and investigate the relationship between the two system in
future work.

2 An Instance of the Parametric Lambda Calculus

One of the aims of the parametric lambda calculus is to study in a uniform way various
systems of the pure lambda calculus, in particular its call-by-name and call-by-value versions
[13]. This is done by restricting beta reduction to subsets of lambda terms, called input
values, that satisfy certain closure conditions. These closure conditions guarantee important
properties like confluence are satisfied. In this paper we study various instantiations of the
parametric lambda calculus in the context of Implicit Computational Complexity (ICC). We
refer the reader to [13] for much of the notation used as well as some of the basic definitions
in the lambda calculus. However, all nonstandard notation, terminology, and definitions will
be explicitly stated.

The set of lambda terms, A, is defined in the usual manner. We assume a countably
infinite set of variables, Var, and define the set of lambda terms A as follows:

M,N ==z | (MN) | (\z.M)

where x € Var. For notational convenience we tacitly assume the standard conventions
regarding parentheses and for contracting multiple lambda abstractions. We use the symbol
= to denote the syntactical identity of terms up to a-congruence, and M[N/x] denotes the
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capture-free substitution of N for x in M. Finally, we need the notion of a context C[.] as
defined in [13], Def. 1.1.11.

Let M be a generic lambda term. For each subterm of M of the form Az.P, let #(A\z.P)
denote the number of times x occurs free in P. The size' of a lambda term M, denoted
s(M), is defined by induction on M as follows: s(z) =1 if x is a variable, s(Ax.P) = 1+ s(P)
and s(PQ) = s(P) + s(Q). Recall from [13] that a subset A of A is called a set of input
values if it satisfies the following three conditions:

1. VarC A

2. If P and Q are in A, then so is P[Q/x], for each x € Var

3. M eAand M —a N, then N € A

In condition 3, the symbol —a denotes a one-step A-reduction [13].

In this paper we introduce a set of input values, denoted ®, consisting of “pseudo-affine”
terms. This is made precise in the following definition: Let ® denote the smallest subset of
A satisfying the following closure properties:

x € Var implies x € P,

If M,N € ®, then (MN) € ®,

If M € ® and = € Var and z occurs free at most once in M, then (A\xz.M) € ®.

We shall often refer to ® as the set of player terms and to A\® as the set of opponent terms.
For example, the closed terms I = Az.z, B = \axyz.x(yz), C = Azyz.zzy, and K = \zy.x are
all player terms, but D = Ax.xz is an opponent term. Note that free variables may appear
more than once in a player term. This follows terminology introduced in [12].

The one-step ®-reduction —¢ is defined as the contextual closure of the following rule:

(M. M)N —¢ M[N/z] ifand onlyif N €@

Let —% denote the reflexive and transitive closure of —¢. A redex R = (Az.P)Q with (\z.P)
an opponent term and @ € ® is called an opponent redex. A redex R= (\z.P)Q € P is
called a player redex. This terminology extends to their respective reductions as well.

Define the degree of a term M, denoted d(M), as follows: d(M) = 0 if M € & and
d(MN)=d(M)+d(N) if MN € A\® and d(Az.P) = 14 d(P) if Ax.P € A\®. For example,
the degree of the term Az.(A\y.yy)x is 2.

» Theorem 1 (confluence). The subset @ as defined above is a set of input values. Therefore,
the reduction relation —% is confluent by Theorem 1.2.5 in [13].2

Proof. Condition 1 is obvious. For condition 2, we use induction on the structure of P:
If P =y, then P[Q/x] is either Q e D if y=a,0ry € @ if y Z x.
If P= PP, € &, then P, € ® and P, € &. By the induction hypothesis, we have
Pi[Q/z], P2[Q/x] € ®. Thus, P[Q/z] = P,[Q/x]|P:[Q/x] € ®.
If P=X2.M € &, then M € & and z occurs free at most once in M. If z = z, then
P[Q/z] = P € ®. Otherwise, by a-congruence, we may assume that z € FV(Q), so z
occurs free at most once in M[Q/z]|. By the induction hypothesis we have M[Q/z] € ®.
Thus, P[Q/z] = A\z.M[Q/z] € P.

Finally, for condition 3, we proceed by induction on the structure of M:
If M is a variable, then the result is vacuously true.

! This is called length in [8].

2 The set Var U ®°, where ®° denotes the set of closed terms in ®, also forms a set of input values.
However, as we shall see in Section 3.1, pseudo-affine terms provide more flexibility when defining
programs.
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If M = PP, € ® and the ®-redex/reduction is entirely in P; (i € {1,2}), then P; —¢ P/.

By the induction hypothesis P} € @, so either N = P{P, € ® or N = P, P} € ®. On the

other hand, if M = (Az.P)Q and (Az.P)Q —¢ P[Q/x] = N, then N € ® by condition 2.

If M = Mx.P € ®, then z occurs free in P € ® at most once, and P —¢ P’. By the
induction hypothesis, P’ € ®. Moreover, since the redex contracted in P € ® must be a

player redex, the number of times x occurs free in P’ is no more than 1. Thus, A\z.P’ € ®.

Therefore, ® is a valid set of input values. |

Note that any term in the A®-calculus has the form: Azy - - x,.(My -+ - M, (n,m > 0) where
¢ is either a variable or a ®-redex or a head block. (A head block is a term (Az.P)Q, where
Q ¢ ®.) We say that a term is in ®-normal form if it has the form Axy -« 2,.CMy -+ My,
where M; is in ®-normal form (1 < ¢ < m) and ( is either a variable or a head block (Az.P)@,
where both P and @ are in ®-normal form. Note that a lambda term is in ®-normal form iff
it contains no ®-redexes.

» Lemma 2. If P is any term and Q s a player term, then d(P) = d(P[Q/x]).

Proof. First note that if P is a player term, then so is P[Q/z] and both have degree 0. So
assume P is an opponent term and argue by induction on P. If P = P, P,, then by the
induction hypothesis, d(P1[Q/z]) = d(Py) and d(P[Q/z]) = d(P). Thus, d(P[Q/z]) =
A(PLQ/2]P2[Q/x]) = d(P[Q/x)) + d(P2[Q/a]) = d(P) + d(Ps) = d(P). Tf P = Az.P,
then d(P) = 14+ d(Py). If z = z, then P[Q/x] = P and the result follows. If z # z,
then P[Q/xz] = \z.P1[Q/x] where we may assume by a-congruence that z ¢ FV(Q). Then
by the induction hypothesis, we have d(P;) = d(P1[Q/x]). Thus, d(P) = 1+ d(P) =
1+ d(P[Q/x])) = d(PIQ/a]). «

» Theorem 3 (strong normalization). The A®-calculus is strongly normalizing.

Proof. Let M be an arbitrary term. Let R = (Az.P)Q be a redex in M and let M change
to M’ by contracting R. If R is an opponent redex, then by induction on M we show that
d(M'") < d(M):
If M = N1Ns, and R is contained in N;, then let NV; change to N/ by contracting R.
By the induction hypothesis, d(N/) < d(N;). Thus, d(M') < d(M). If M = R, then
M’ = P[Q/x]. Then d(M') = d(P) < 14 d(P) = d(M), where the first equality follows
from Lemma 2.
If M = \z.N, then R must be contained in N. Let N change to N’ by contracting
R, so M’ = Xz.N'. By the induction hypothesis, we have d(N’) < d(N). Thus,
d(M')<1+d(N') <1+d(N)=d(M).
On the other hand, if R is a player redex, then s(M’) < s(M) and d(M') < d(M). Therefore,
in between each of the at most d(M) opponent reductions, there can be at most a finite
number of player reductions, and reduction always terminates. |

It is useful to have a rough estimate on the complexity of reduction. Note that since each
opponent term can at most square the size of the term, the size of any reduct is bounded by
s(M)2", where d = d(M). Therefore, in between each of the at most d = d(M) opponent
reductions, there can be at most s(M )2d player reductions. This leads to normalization in
double exponential time, s(M)QO(d).

There is some flexibility in what to take as the set of output values, © (see [13]). At
the very least, the set of ®-normal forms, denoted ®-NF, should be contained in ©. For the
purposes of this paper, it suffices to assume that © = ®-NF. In the next section we shall
represent polynomial time algorithms by programs in the A®-calculus.
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3 The Parametric Lambda Calculus and Polynomial Time

To begin we must represent some basic data structures like booleans and boolean strings in
the A®-calculus, but we shall not require them to be encoded as player terms, so they are
not necessarily input values?. Other data structures will be introduced as needed.

Booleans

Booleans are represented by the set {True, False} and the conditional Cond, where:
True = \zy.z, False = \zy.y, Cond=1

Note that CondTrueMN —3 M and CondFalseM N —3 N for any M, N € ®, and that
the terms T'rue, False, Cond belong to ® N O.

Boolean Strings

Boolean strings w = bibs - - - b, € {0,1}*, are represented using a Church-style encoding as
follows:

W = Ao far(Fas( - fan(fan) - ). 0= {zero = \zyzy, b;=0

one = \xyz.z, b;=1
For example, the boolean string 1011 € {0,1}* is encoded by the opponent term:

Afx.fone(fzero( fone(fonex)))

Note that d(W) < 1 for all string encodings W; this fact will be important in the proof of
Theorem 5. Note that boolean strings are in ®-normal form, but they are not necessarily
input values. Thus, boolean strings are not in general duplicable in our setting. For this
reason a slightly more general notion of representability is required:

» Definition 4. A predicate A C {0,1}* is representable in the A®-calculus if there exists a
context C[.] such that, for all w € {0,1}*, C[W] —% Bool, where W is the encoding of w
(as defined above) and Bool = True if w € A and Bool = False if w ¢ A. In this case, the
context C[.] is said to represent the predicate in the A®-calculus.

We now prove one of the main results of this paper:

» Theorem 5 (soundness). Let C[.] represent a predicate in the A®-calculus. Then, for all
w € {0,1}*, the term C[W], where W is the encoding of w, reduces to True or False in
time polynomial in the size/length, denoted |w|, of w.

Proof. We define a simple call-by-value operational semantics that proves judgements of the

3 An alternative system in which all of the required basic data structures are input values will be sketched
in the conclusion.
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form M v N, where M is any lambda term and N is a term in ®-normal form:

(M; Iv Ni)icp, (
“M, - M, v zN.---N,,

M v N

var)

N M Iy N (29)
QIvQ Qed P[Q/xIM-- M, v N (head)
(Az.P)QM; --- My, v N
Q' dd Plv P (M v N
Qv Q¢ v (M; Uv Ni)icpn (block)

Az.P)QM; --- My, §v (Az.P)Q'Ny--- Np,

An easy induction on the evaluation tree shows that if M |y N, then M —3 N, where N is
in ®-normal form, and the length of this reduction sequence is bounded by the size of the
evaluation tree.

Our runtime bound is therefore obtained by bounding the size of the (rooted) evaluation
tree — i.e. the total number of rules in the evaluation tree for the judgement M |y N. Let n
denote the total number of (head)-rules contained in such a tree. We show by induction on
the height of the tree that the size of the tree is bounded by (n + 1)h, where h denotes the
maximum size of any reduct of M. To this end, we define a partial order on the vertices
(proof rules) of the evaluation tree such that v < v iff the unique path from the root to v
passes through u. Consider the subtree obtained by removing the right branch of each of
the p > 0 occurences of minimal (with respect to the above partial order) (head)-rules. This
subtree has size bounded by s(M) < h as each rule in the subtree decreases the size of the
term. By the induction hypothesis, each of the removed branches, which end with judgements
of the form P[Q'/x|M; --- M, Jv N, has size bounded by (n; + 1)h, where n; (1 <14 < p)
denotes the number of (head)-rules in branch i. Therefore, the total size of the evaluation
tree is bounded by h + 2, (ni + 1)h = (1 + 3, n; + p)h = (1 + n)h, as claimed.

Therefore, it follows by the discussion immediately following the proof of Theorem 3 that
the size of the evaluation tree is bounded by s(C[W])QO(d), where d is the degree of C[W], as
both n are h are so bounded. And since s(C[W]) = O(Jw|) and d remains fixed, the bound
is in fact polynomial in |w| (albeit with possibly large degree). Therefore, our reduction
machine, as defined by the operational semantics above, runs in polynomial time. |

3.1 Polynomial Time Completeness

In this section we shall use the notation M"N = N, if n = 0, and M"*'N = M(M"N), if
n > 0.

We begin by defining a context Iterp as[.] which is used to iterate a player term M € ® a
polynomial P(n) number of times. More precisely, we claim:

Tterp ar[W] =% Ay.MP ™My c (1)

where n = |w|. Recall that any polynomial with natural number coefficients can be represented
in Horner normal form. For example, the polynomial 2n + 4n? + 3n + 5 is represented in
Horner normal form as (((2)n 4+ 4)n 4+ 3)n + 5. Given a polynomial P(n), which is either a
constant ag or has the form P(n) = P;(n)n + ag, where P;(n) is in Horner normal form, the
context Iterp p[.] is defined inductively on the structure of P as follows:

Iteray m[] = Ay.M™y
Iterpp]] = My.Mo([J(KIterp, m]])y) (K = \zy.x)
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We argue by induction on the structure of the polynomial that this context satisfies reduction
(1). Indeed, the base case is clear. Otherwise we suppose P(n) = (P1(n))n + ag. By the
induction hypothesis we have that Iterp, y[W] =% Ay.MP1("y € &, where n = |w|. Then:

Iterp (W] = de.M*(W(KIterp, m[W])x)
—5 Ar.M® (W (K \y. MP1<”>y) )
=5 Az MO ((\y. MWy ng)
=5 Az M (M P gy

= Az MPrm)ntao,
= MMz ecd

This finishes the induction. Therefore, for any player term N, we have:
Tterp i [WIN =% MPWN € @

Note, in particular, that Af.Iterp ([W] =% M. fPM g which is the Church representation
of P(n). We shall use this iteration combinator to iterate the transition function of a
space-bounded Turing machine a polynomial number of times. But first we need the following
preliminaries.

Affine Tensor Products

Given player terms Ny,..., N, € ¢, we write N1 ® - - - ® N, for the term Ax.x N7y --- N,;, and
Prj; for the term \f.f(Axzy ... 2m.2;) for each 1 <14 < m. Note that Ny ®---® N,,, Prj; € ®
and satisfy: PrjNi ® --- ® N, =% N; for each 1 < ¢ < m. Occasionally we shall
also use the notation \x1 ® -+ ® z,,.M for the term Af.f(Ax;1...x,,.M). This satisfies
A1® - ®@xp M)(N1®- - -®Ny,) =% M[N1/z1] - - [Ny /] for any terms M, Ny,..., N, €
®. For example, Prj; could be written instead as A\z1 ® -+ ® x,.x; for each 1 < i < m.

Lists

Lists are encoded using player terms for the constructors nil and cons as follows:
nil = \zy.y H:T=XtxHT =HQT

Note that nil € ® and H :: T € @ iff H,T € ®. We shall assume that “::” associates to the
right.

Space-Bounded Turing Machines

Suppose we are given a Turing machine with k states, tape alphabet {U,0, 1}, and input
alphabet {0,1}, where U is a special symbol for “blank”. These three symbols are encoded,
respectively, by the terms blank = Azxyz.x, zero = Axyz.y and one = Azyz.z. For conveni-
ence, we shall assume that the set of states always contains (distinct) special accepting and
rejecting states, and that the machine cannot change states once it reaches one of these two
terminating states. Moreover, we assume that the tape is sufficiently large so that either the
accepting or rejecting state is always reached before the machine encounters either end of
the tape.

A configuration of the Turing machine is encoded as an affine triple tensor product,
S® L® R, where S encodes the current state, L encodes the left part of the tape (in reverse
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order), and R encodes the right part of the tape. The head of the Turing machine is always
assumed to be positioned on the head of R. The left and right parts of the tape are encoded
as lists of the tape alphabet. The k states .S; are encoded as follows. Suppose, for example,
in state 4, the machine’s instructions, upon reading the symbol on the head, are:

U = (sj1,0, move_right)

0 —  (sj2,1, move_left)

1 —  (sj3,U, move_left)

Then state S; is encoded as follows:

SZ‘ = )\xl...l‘k,hl®t1,h2®t2.h2(F1)(F2)(F3)£ZJ1"'xkhltltg
F1 = )\:cl . l'khltth.(Kjl ® (267"0 o h1 o tl) R 2

Fy = Azry...xphitite.zjo @t @ (hy = one :: ta)

F3 = )\xl . xkhltltg..’tj:j Rt (hl :: blank tg)

The transition function is then defined as T'= Az ® [ ® r.257 - - - Silr and satisfies T'(S; ®
L®R) —5 S;®L ® R, where S; is the new current state and L’ and R’ are encodings
of the updated left and right parts of the tape after one iteration of the machine. The
special accepting and rejecting states simply remain in the same state and write one or zero,
respectively, on the head of the tape. Finally, observe that there is a term out (encoded via
appropriate projections) that returns the head of the right tape from a given configuration
of the machine. Note that all the terms in this encoding belong to ®.

» Theorem 6 (completeness). If a predicate is computable by a Turing machine in polynomial
time P(n) and polynomial space Q(n)*, then it is representable in the A®-calculus by a context

Cll.

Proof. Observe that there is a player term, denoted pad, which satisfies pad(S® L®R) —%
S® (blank :: L)@ (blank :: R). Then Iterg pqq[W](S1®nil®nil) pads out the tape sufficiently
for the full computation of the machine and puts it in the initial state S;. Next, apply a
player context write such that writeW](S® L@®R) —%5 SQL® (W (Axy.(z :: y))R), which
writes the binary string w onto the right part of the tape. Now apply Iterpr[W], where T'
is the encoding of the transition function of the machine (as described above), to iterate the

transition function P(Jw|) times, which suffices for the machine to reach a terminating state.

Finally, use the player term out (mentioned above) to return the head of the right tape R
and apply it to the arguments I, False, True to get a boolean value which indicates whether
the machine is in an accepting or a rejecting state. <

4 Various Extensions

In this section we investigate a few natural extensions of the A®-calculus. The first extends
the set of input values to include the so-called ®-valuable terms (defined below). This larger
set of input values allows for further flexibility in defining programs, but at the expense of
strong normalization. The second extension adds explicit products to the language for the
purpose of characterizing nondeterministic polynomial computations.

4 Of course, the explicit space bound Q(n) is not necessary here since one may simply take Q(n) = P(n).
The explicit accounting of both time and space resources in the encoding of TMs is similar to that given
in [9].
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4.1 ®-valuability

In order to reduce a redex (Az.P)Q in the A®-calculus, it is first necessary to reduce Q to
an input value. However, suppose we relax this condition as follows. Recall that a term M
is called ®-valuable if there is an NV € ® such that M —} N. Let ®, denote the set of
®-valuable terms.

» Theorem 7. &, forms a set of input values such that ® C ®,,. Therefore, the reduction
relation —y s confluent by Theorem 1.2.5 in [13].

Proof. Condition 1 is immediate. For condition 2, let P,QQ € ®,, so there are terms
P'.Q" € ® such that P =% P’ and Q —% Q. Then P[Q/z] —% P'[Q'/x] (by Lemmas
1.2.21 and 1.2.22 in [13]). But then P’[Q’/z] is in ® by the substitution closure of ®. Hence
P[Q/x] € ®,. For condition 3, let M = C[(Az.P)Q] and N = C[P[Q/z]]. Then Q € ®,
in order for this reduction to happen. So there is a term Q' € ® such that Q —% Q'
Then M —% C[(A\x.P)Q'] —¢ C[P[Q’/x]]. But since M € ®,, there is a term M’ € @
such that M —% M’. So by the confluence of —} there is a term M"” € ® such that
C[P|Q’'/x]] =% M". But then N —} C[P[Q'/z]] =% M", which shows that N € ®,. <

The A®,-calculus is not strongly normalizing. For example, consider the term D =
Ay.KI(yy)I, which is ®-valuable since it reduces to Ayz.xz € ®. However, DD —g,
KI(DD)I —¢, KI(KI(DD)I)I =g, ---, which leads to an infinite reduction sequence.
Nevertheless, every term in the A®,-calculus has a (unique) normal form:

» Theorem 8 (weak normalization). Every term in the A®,-calculus has a unigue normal
form.

Proof. Let M be a term. If there are no ®,-redexes, then M is a ®,-nf and we are done.
Otherwise, let (Az.P)Q be a ®,-redex in M. Then Q € ®,, and thus @ —% Q’, where
Q' € ®. Consider the ®-reduction of M: M = C[(A\zx.P)Q] —% C[(A\z.P)Q'] =& C[P[Q’/x]].
If C[P[Q'/z]] is a ®,-nf, then we are done. Otherwise, repeat this procedure and extend
the ®-reduction of M. This process must terminate since there are no infinite ®-reductions.
Therefore, M is weakly normalizable. Uniqueness comes from the confluence property
(Theorem 7). <

Of course, by including the ®-valuable terms in the set of input values, we have not obtained
any new complexity results. However, Theorem 7 is an interesting general result about the
parametric lambda calculus that is true of any set of input values and may have future
applications. Theorem 8 is less applicable as it requires the additional fact that the A®-
calculus is strongly normalizing.

4.2 Explicit Products and Nondeterminism

In this section we study nondeterminism in the parametric lambda calculus with the use of
explicit products. Of course, one could simply add a new term constructor M + N (sum)
together with nondeterministic projections, but the resulting system would not be confluent
(by construction). Here we present an alternative approach based on the idea of a polynomial
verifier.

Let Ay denote the set of lambda calculus with explicit products:

M,N =z | MN | Xe.M | (M,N) | mM | moeM
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where z € Var. The notions of substitution and a-equivalence are extended in the obvious
manner. Here, the term (M, N) is called an explicit product and m; M are called projec-
tions. For a given set of input values A C Ay, we extend — A as the contextual closure of
the following rules:

(Az.M)N —x M[N/z] if NeA
771<M,N> —A M
m(M,N) —aA N

As before, we let —7, denote the reflexive and transitive closure of — . The following is a
straightforward generalization of Theorem 1.2.5 in [13].

» Theorem 9. The AA-calculus with explicit products and =7 as defined above is confluent.

Proof. The definitions of deterministic parallel reduction <A and nondeterminsitic parallel
reduction =, Definition 1.2.19 in [13], are extended with the following clauses:

5. M <A M', N <=a N imply (M, N) —a (M', N');

6. M —a M and M # (My, M) imply m; M —a m;M', for i € {1,2};

7. M —Aa M{, My <A MQ/ imply 7TZ‘<M1,M2> A ]\4{7 for i e {1,2}

5. M =A M’', N =A N imply (M, N) =a (M',N'};

6. M = M’ implies m;M = m;M', for i € {1,2};

7. My =a M|, My = M imply m; (M, Ma) = M/, for i € {1,2}.

Then Lemmas 1.2.21, 1.2.22, Property 1.2.23 and Lemma 1.2.24 in [13] all have straightforward
generalizations by checking the extra cases. The details are left to the reader. Finally, the
proof of Lemma 1.2.25 and the rest of the proof of Theorem 1.2.5 are unchanged. <

We expand the set of input/player values to include affine linear terms with explicit products:
Let & be defined the smallest subset of Ay satisfying the following closure properties:

x € Var implies x € @,

If M,N € &y, then (MN) € ®,,

If M € &y, then ;M € O for i € {1,2},

If M,N € Oy, then (M,N) € D,

If M € &, and = € Var and = occurs free at most once in M, then (Az.M) € ®.
Note that if M € ®, and is closed, then M is affine linear even with (additive) explicit
products. One could define a more general notion of input values based on the notion of
slice (as defined in [11], for example) which includes terms like Az.(z,z) and is strongly
normalizing. However, such a system would require a lazy reduction strategy for explicit
products as well as pointers to avoid an exponential explosion in the size of a term (cf. [12]).
We don’t believe this added complication is necessary here.®

The following two theorems are straightforward generalizations of Theorems 1 and 3, so
the proofs have been omitted.

» Theorem 10. ¢, forms a set of input values such that & C ®. Therefore, the reduction
relation —3 is confluent by Theorem 9.

» Theorem 11. The A® -calculus is strongly normalizing.

5 However, we do believe this more general set of input values is the starting point for a characterization
of PSPACE (see [12]).
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We extend the simple call-by-value operational semantics introduced in the proof of Theorem
5 with the following rules:

Pildv Pl Plv P (MiUvNi)igm
(P, Po)My -+ My, v (P, P5)Ny -+ Ny,

QlIvQ Q=(Q,Q) QM- MylvN .
m QM- My, v N (proj:)

Qv Q Q #(Q1,Qy) (M v Ni)ic,,
WiQMl"'MmUVWiQ/Nl”'Nm

(pair)

(block;)

Once again, an easy induction on the evaluation tree shows that if M |v N, then M —3 N,
where N is in ®,-normal form, and the length of this reduction sequence is bounded by the
size of the evaluation tree. On the other hand, by Theorem 10, if M —3 N, where N is
in ®,-normal form, then M evaluates to N according to the operational semantics defined
above.

Additive Booleans

Explicit products allow for an alternative definition of booleans and conditional:
Projy = Af.mif Projo = Af.maf if bthen M else N = Ab.b{M, N)

A term M is called eventually true if there exists a sequence of additive booleans
Proji, ..., Proj;, such that M Proj;, --- Proj;, —g True.

» Definition 12. A predicate A C {0,1}* is representable in the A®-calculus if there is a
context C[.] such that, for all w € {0,1}*, w € A iff C[W] is eventually true.

We have the following result:

» Theorem 13. A predicate A C {0,1}* is representable in the A®y -calculus by a context
C[.] iff it is computable in nondeterministic polynomial time (NP).

Proof. (=) Suppose a predicate A is representable by a context C[.] in the A® y-calculus.
If w € A, then a straightforward generalization of Theorem 5 shows that, for any choice
of projections Proj;,, Proji,, ..., Proj;,, the term C[W|Proj;, Proj,, - - - Proj;, reduces in
time bounded by a polynomial in s(C[W]Proj;, Proj, - - - Proj;, ) to True.® Moreover, note
that k& must be bounded by a polynomial in |w|. Indeed, each projection input requires a
head lambda abstraction. This head lambda abstraction cannot itself be a projection term
because otherwise the normal form would have a (projection) block. And there can only be
a polynomial in |w| such head reductions. Therefore, the entire reduction is polynomial time
in |w| only.

(<) Conversely, let A be a predicate computable on a nondeterministic Turing machine
in polynomial time P(n) and polynomial space Q(n) (i.e. the maximum time and space
used by any computational branch). The encoding of nondeterministic Turing machines is
based on the encoding of deterministic Turing machines found in Section 3.1. However, for a
nondeterministic machine, we assume a pair of transition functions 7; and 7} instead of just

5 As noted above, we may assume, by Theorem 10, that this reduction sequence is determined by the
operational semantics.
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one. The following player term can be iterated P(n) times using the iteration combinator
from Section 3.1:

Branch = Afzb.b{(\xy.x(T1y), \ey.x(T,y)) fz

Let w be any binary word and let n = |w|. Let Initial[W] —3 Config initialize the machine
by padding the tape out to size Q(n), writing w on the initial segment of the tape, and
putting it in the start state. Finally, let out be a term that reduces to True if a given
configuration is accepting and reduces to False otherwise.
Let Z;, denote the normal form of Branch®out, which has the form:
Zy = Azb.bQaxy.x(Tiy), \ey.a(Try)) Zr-12, k>0
Zy = out
If w € A, then there exists a sequence of 1, . .., i, with i; € {1,2} and k = P(n), specifying
a path down the nondeterministic evaluation tree to an accepting leaf. This path is encoded
by the series of projections Proj, ,..., Proj; and verified as follows:
Iter p, Branch[W]out Config Proj;, - - - Proj;,
=%, Branch® out ConfigProj, --- Proj,,
%, (Ab.b(Azy.2(Thy), \ey.x(Try)) Zi—1 Config) Proj,, - - - Proj,,
=%, Proj;, Azy.x(Tiy), \ey.x(Try)) Ze—1 ConfigProj;, - - - Proj;,
=, Zk—1Config, Proj,, - - - Proj;,

—%X ZlConﬁgkflejik
—3, outConfigy

*
—p, True

Moreover, this reduction proceeds according to the operational semantics defined above.

Thus, (Iterp Branch|W]out Config) Proj; --- Proj; v True. On the other hand, if w ¢ A,
then all such reductions reduce to False. |

5 Conclusion

In this paper we have demonstrated that a characterization of polynomial time computations
can be obtained in the lambda calculus without requiring any typing information and/or ad
hoc extensions to the language. Indeed, the characterization is obtained simply by restricting
the set of input values to the so-called pseudo-affine terms. Moreover, a characterization of
nondeterministic polynomial time is obtained with the addition of explicit products.

It would be interesting to investigate other (decidable) instantiations of the parametric
lambda calculus in the context of Implicit Computational Complexity. For example, the
choice to allow weakening in the language was made simply because it made the encoding
of polynomial time TMs much more natural. However, if we change the final clause in the
definition of ® to specify that x occurs ezactly once in P, we conjecture that this smaller set
of input values also characterizes polynomial time. In this case, the encoding of polynomial
bounded TMs might follow that in [11].

Finally, one unfortunate aspect of our characterization is that binary words (and Church
numerals) are not in general input values. For this reason our definitions of representability
use contexts instead, which is not standard. We consider two possibilites for dealing with
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this situation. First, one could use a player encoding of binary strings instead (in the style of
the Barendregt numerals [3, 13]), together with a more natural definition of representability.
However, it is not difficult to show that this leads to a system for linear time computations
only. A second possibility is to use a system of abstract binary numerals (see [8]) instead
of pure terms to represent binary strings. In this case, four new atomic constants, denoted
€,01,02 and Z, are added to the system such that €,07 and oy belong to the set of input
values, but Z does not. Then any binary string w € {0,1}* can be represented by an input
value W in the obvious way. Furthermore, we add the contextual closure of the following
reduction rule:

Z0 —e W

where W is the Church-style representation of w described in Section 3.7 This arithmetical
extension [8] of the A®-calculus leads to an applied system for polynomial time computations,
similar to the pure system presented in this paper. It is an alternative if a standard notion
of representability is desired.
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—— Abstract

We propose a notion of morphisms between tree automata based on game semantics. Morphisms
are winning strategies on a synchronous restriction of the linear implication between acceptance
games. This leads to split indexed categories, with substitution based on a suitable notion
of synchronous tree function. By restricting to tree functions issued from maps on alphabets,
this gives a fibration of tree automata. We then discuss the (fibrewise) monoidal structure issued
from the synchronous product of automata. We also discuss how a variant of the usual projection
operation on automata leads to an existential quantification in the fibered sense. Our notion of

morphism is correct (it respects language inclusion), and in a weaker sense also complete.
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1 Introduction

This paper proposes a notion of morphism between tree automata based on game semantics.
We follow the Curry-Howard-like slogan: Automata as objects, Executions as morphisms.

We consider general alternating automata on infinite ranked trees. These automata
encompass Monadic Second-Order Logic (MSO) and thus most of the logics used in veri-
fication [6]. Tree automata are traditionally viewed as positive objects: one is primarily
interested in satisfaction or satisfiability, and the primitive notion of quantification is ex-
istential. In contrast, Curry-Howard approaches tend to favor proof-theoretic oriented and
negative approaches, 7.e. approaches in which the predominant logical connective is the
implication, and where the predominant form of quantification is universal.

We consider full infinite ranked trees, built from a non-empty finite set of directions D
and labeled in non-empty finite alphabets . The base category Tree has alphabets as
objects and morphisms from X to I' are (¥ — I')-labeled D-ary trees.

The fibre categories are based on a generalization of the usual acceptance games, where
for an automaton A on alphabet T' (denoted I' - A), input characters can be precomposed
with a tree morphism M € Tree[X,T'], leading to substituted acceptance games of type
Y F G(A, M). Usual acceptance games, which correspond to the evaluation of ¥ + A on
a Y-labeled input tree, are substituted acceptance games 1+ G(A,t) with ¢t € Tree[1, X].
Games of the form ¥ + G(A, M) are the objects of the fibre category over X.

For morphisms, we introduce a notion of “synchronous” simple game between acceptance
games. We rely on Hyland & Schalk’s functor (denoted HS) from simple games to Rel [9].
A synchronous strategy ¥ F o : G(A, M) —® G(B,N) is a strategy in the simple game
G(A, M) — G(B,N) required to satisfy (in Set) a diagram of the form of (1) below,
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expressing that 4 and B are evaluated along the same path of the tree and read the same
input characters:

HS(c) —— G(B,N) (1)

\ \
G(A, M) — (D + %)*

This gives a split fibration game of tree automata and acceptance games. When restricting
the base to alphabet morphisms (i.e. functions ¥ — I'), substitution can be internalized in
automata. By change-of-base of fibrations, this leads to a split fibration aut. In the fibers of
aut, the substituted acceptance games have finite-state winning strategies, whose existence
can be checked by trivial adaptation of usual algorithms.

Each of these fibrations is monoidal in the sense of [16], by using a natural synchronous
product of tree automata. We also investigate a linear negation, as well as existential
quantifications, obtained by adapting the usual projection operation on non-deterministic
automata to make it a left-adjoint to weakening, the adjunction satisfying the usual Beck-
Chevalley condition.

Our linear implication of acceptance games seems to provide a natural notion of prenex
universal quantification on automata not investigated before. As expected, if there is a
synchronous winning strategy o IF A —® B, then £(A) C L(B) (i.e. each input tree accepted
by A is also accepted by B). Under some assumptions on A and B the converse holds:
L(A) C £(B) implies o I+ A —® B for some o.

At the categorical level, thanks to (1), the constructions mimic relations in slices categories
Set/(D + X)* of the co-domain fibration: substitution is given by a (well chosen) pullback,
and the monoidal product of automata is issued from the Cartesian product of plays in
Set/(D + X)* (i.e. also by a well chosen pullback).

The paper is organized as follows. Section 2 presents notations for trees and tree automata.
Our notions of substituted acceptance games and synchronous arrow games are then discussed
in Sect. 3. Substitution functors and the corresponding fibrations are presented in Sect. 4,
and Section 5 overviews the monoidal structure. We then state our main correctness results in
Sect. 6. Section 7 presents existential quantifications and quickly discusses non-deterministic
automata.

2 Preliminaries

Fix a singleton set 1 = {e} and a finite non-empty set D of (tree) directions.

Alphabets and Trees. We write X, I, ... for alphabets, i.e. finite non-empty sets. We let
Alph be the category whose objects are alphabets and whose morphisms § € Alph[X, T
are functions g : X — T.

We let Tree[X] be the set of X-labeled full D-ary trees, i.e. the set of maps T': D* — .
Let Tree be the category with alphabets as objects and with morphisms Tree[3,T] :=
Tree[(X — T')], i.e. (X — T')-labeled trees. Maps M € Tree[X,T'] and L € Tree[l', A] are
composed as LoM :p € D* +— (a € ¥+ L(p)(M(p)(a))) and the identity Idy, € Tree[X, X
is defined as Ids(p)(a) := a. Note that Tree[1, 3] is in bijection with Tree[X].

There is a faithful functor from Alph to Tree, mapping 8 € Alph[%, T'] to the constant
tree morphism (__ +— f3) € Tree[X, I'] that we simply write /5.
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Tree Automata. Alternating tree automata [14] are finite state automata running on full
infinite 3-labeled D-ary trees. Their distinctive feature is that transitions are given by
positive Boolean formulas with atoms pairs (g, d) of a state ¢ and a tree direction d € D
((g,d) means that one copy of the automaton should start in state ¢ from the d-th son of the
current tree position).

Acceptance for alternating tree automata can be defined either via run trees or via the
existence of winning strategies in acceptance games [14]. In both cases, we can w.l.o.g. restrict
to transitions given by formulas in (irredundant) disjunctive normal form [15]. In our setting,
it is quite convenient to follow the presentation of [18], in which disjunctive normal forms
with atoms in ) X D are represented as elements of P(P(Q x D)).

An alternating tree automaton A on alphabet 3 has the form (Q, ¢*, 6, 2) where Q is
the finite set of states, ¢* € Q is the initial state, the acceptance condition is 2 C Q“ and
following [18], the transition function ¢ has the form

§ : Q@xX — PPQxD))

We write ¥ + A if A is a tree automaton on Y. Usual acceptance games are described in
Sec. 3.1. It is customary to put restrictions on the acceptance condition Q C @, typically
by assuming it is generated from a Muller family F € P(P(Q)) as the set of 7 € Q“ such
that Inf(7) € F. We call such automata regulart. They have decidable emptiness checking
and the same expressive power as MSO on D-ary trees (see e.g. the survey [17]).

3 Categories of Acceptance Games and Automata

We present in this Section the categories SAG(ZW) of substituted acceptance games. Their
objects will be substituted acceptance games (to be presented in Sect. 3.1) and their morphisms
will be strategies in corresponding synchronous arrow games (to be presented in Sect. 3.2).
Substituted acceptance games and synchronous arrow games are the two main notions we

introduce in this paper. Our categories of Aut(zw) of automata will be full subcategories of

SAG(ZW), while SAG(ZW) and Aut(EW) will be the total categories of our fibrations
game™) . SAGW) 5 Tree aut™ o Aut™ Alph

to be presented in Sect. 4.

3.1 Substituted Acceptance Games

Consider a tree automaton A = (Q,q",6,2) on I and a morphism M € Tree[X,T]. The
substituted acceptance game 3+ G(A, M) is the positive game

g(Av‘]\_j) = (D* X(AP+AO)7E3*5/\7£7W)

whose positions are given by Ap := @ and Ag := X x P(Q x D), whose polarized root is
x := (e, q") with £(x) = P, whose polarized moves (F, \) are given by

(p,a,v) iff v € (g, M(p)(a))
(pd,q) iff (¢.d) €

from (D* x Ap) to (D* x Ao) : (,q)

£
from (D* x Ag) to (D* x Ap) :  (p,a,?) N

! By adding states to A if necessary, one can describe Q by an equivalent parity condition.
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and whose winning condition is given by

(5aQO) : (5,(10,’}/0) : (p17Q1) et (Pm%) : (pn7an77n) Tees ew iff (qi)ieN €

The input alphabet of T'F A is T', and we use the tree morphism M € Tree[X,T] in a
contravariant way to obtain a game with “input alphabet” ¥, that we emphasize by writing
Y HFG(A, M ). Input characters a € ¥ are chosen by P, directions d € D are chosen by O.

Write £ F o I+ G(A, M) if o is a winning P-strategy on X F G(A, M), and X IF G(A, M)
if ¥+ olkG(A, M) for some o.

Correspondence with usual Acceptance Games. Usual acceptance games model the eval-
uation of automata ¥ F A on input trees ¢t € Tree[X]. They correspond to games of the
form 1 - G(A,t), where { € Tree|[1,Y] is the tree morphism corresponding to ¢ € Tree[X].

Note that in these cases, Ao is of the form 1 x P(Q x D) ~ P(Q x D), so that the games
1+ G(A, ) are isomorphic to the acceptance games of [18].

» Definition 3.1. Let ¥ - A.
(i) A accepts the tree t € Tree[Y] if there is a strategy o such that 1+ o I G(A, 7).
(ii) Let £(A) C Tree[X], the language of A, be the set of trees accepted by A.

3.2 Synchronous Arrow Games

Consider games ¥ F G(A, M) and ¥ F G(B,N) with A = (Q4,¢%,04,24) and B =
(@B, 44,08, 2p). Similarly as in Sect. 3.1 above, write

Ap = Qu Ao = X P(Qax D) Bp = Qp Bo := X xP(Qp x D)

We define the synchronous arrow game

S+ G(A M) -® G(B, N)
as the negative game (V, E, *, A, £, W) whose positions are given by

V = (D*xAp)x(D*xBp) + (D*x Ap) X (D* x Bp) + (D* x Ap) X (D* x Bo)
whose polarized root is * := ((e,q%), (€, qp)) with £(*) := O, whole polarized edges (E, \)
are given in Table 1, and whose winning condition is given by

((e.q%) » (eag) - oo - ((6,dh) s (£,q8) - .. €W

iff  ((¢4)ien €24 = (qB)ien € Q)
Note that P-plays end in positions of the form

((p,qa) » (p,aB)) € (D*xAp) x (D* x Bp)
and  ((p,a,v4) , (p,a,8)) € (D*x Apg) x (D* x Bo)

Each of these position is of homogeneous type, and moreover in each case the D* and %
components coincide. On the other hand, O-plays end in positions of the form

((p7a77¢4) 3 (P»QA)) € (D* X AO) X (D* X Bp)
and ((p7a7’y./4) ) (pda qB)) € (D* X AO) X (D* X Bp)

Fach of these intermediate position is of heterogeneous type, and in the second one, the D*
components do not coincide.
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XN G(A M) —® G(B,N)
((p,qa) ; (p,qB))

o {

(pya,va) (p,as)) | if v € 6.4(qa, M(p)(a))
P {

((pvaa’y.A) ) (Paa»’YB)) if B € 63((]37]\7(27)(0’))
0 {

((pya,va) ,  (pd,qp) | if (g5,d) €5
P {

((pd,qdy) .,  (pd.qp)) |if (d4,d) € ya

Figure 1 Moves of G(A, M) —® G(B, N).

We write ¥ o : G(A, M) —® G(B, N) if o is a P-strategy on G(A, M) —-® G(B, N), and
YtolkG(A M) —® G(B,N) if o is moreover winning. Finally, we write

- G(A, M) —® G(B, N)

if there is a winning P-strategy o on G(A, M) —® G(B, N).

» Remark. Recall that if 4 and Q3 are Borel sets, then W is a Borel set and by Martin’s
Theorem [12], either P or O has a winning strategy. Moreover, if the automata .4 and B are
regular (in the sense of Sect. 2), then W is an w-regular language. If in addition the trees
M and N are regular (in the usual sense), then the game is equivalent to a finite regular
game. By Biichi-Landweber Theorem, the existence of a winning strategy for a given player
is decidable, and the winning player has finite state winning strategies (see e.g. [17]).

3.3 Characterization of the Synchronous Arrow Games

We now give a characterization of synchronous arrow games in traditional games semantics.
Our characterization involve relations in slices categories Set/J, that will give rise to a strong
analogy between our fibrations game™) and aut™V) and substitution (a.k.a change-of-base)
in the codomain fibration cod : Set™ — Set.

Simple Games. Recall the usual notion of simple games (see e.g. [1, 7]). Simple games are
usually negative, but given positive games A and B, their negative linear arrow A — B can
still be defined. Moreover, simple games, with linear arrows A — B between games A and
B of the same polarity, form a category that we write SGG. When equipped with winning
conditions, winning strategies compose, giving rise to a category that we write SGG"W.

A P-strategy X+ o : G(A, M) —® G(B, N) is a morphism of SGG from the substituted
acceptance game G(A, M) to the substituted acceptance game G(B, N). If o is moreover
winning, then it is a morphism of sGGW.

The Hyland & Schalk Functor. Hyland & Schalk have presented in [9] a faithful functor,
that we denote HS, from simple games to the category Rel of sets and relations. This functor
can easily be extended to a functor HS : SGG™) — Rel.

Given a play s € p(A — B) we let s|A € p(A) be its projection on A and similarly for
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B,? so that HS(s) := (s[A, s|B). Given a P-strategy o : A — B we have o C p" (4 — B)
and thus

HS(o) = {HS(s)[se€o} C  p(4)xp(B)

We write px (A, M) for the plays of the substituted acceptance game 3 - G(A, M). Given
Yto:G(AM)—® G(B,N), we thus have

HS(U) c pZ(A7 M) X @2(87 N)

Synchronous Relations. We will now see that P-strategies on a synchronous arrow game

can be seen as relations in slice categories Set/.J. We call such relations synchronous.
Given a set J, define the category Rel(Set/.J) as follows:

Objects are indexed sets A % J, written simply A when ¢ is understood from the context.

Morphisms from A % J to B M T are given by relations R : A = B such that the
following commutes:

o R

4= =p

Traces. For the synchronous arrow games, synchronization is performed using the following
notion of trace. Given I' = A and M € Tree[l', X], define

tr (A M) — (D+YD)"
inductively as follows

tr(e) == ¢ tr(s = (p,a,7)) = tr(s)-a tr(s = (p-d,q)) := tr(s)-d

The image of tr is the set Try = (- D)*+ (Z-D)*-X.
Characterization of the Synchronous Arrow. We can now characterize the synchronous
arrow gares.

» Proposition 3.2. Strategies on the synchronous arrow game G(A, M) —® G(B,N) are
exactly the strategies o : G(A, M) — G(B, N) such that

HS(0) — ps(B. N) (2)
i/ B \Ltr
pE(A? M) T‘I‘E

tr

» Proposition 3.3. Let X+ G(A, M) and X+ G(B,N). The following is a pullback in Set:

—)1G(B,
PE(G(A M) —© G(B,N)) CIOEN oo (B, N)
(—)TQ(AM)l ltr
@E(Av M) TI‘E

tr

We write tr™® for any of two equal maps tr o (=)[G(A, M), tro (=)[G(B, N).

2 We write p(A) for the set of plays on A, and " (A) for the set of P-plays.
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3.4 Categories of Substituted Acceptance Games and Automata

We now define our categories SAG(EW) of substituted acceptance games and their full
subcategories Aut(zw) of tree automata. That they indeed form categories follows from
the characterization Prop. 3.2, together with the fact that Rel(Set/.J) and SGG™) are

categories, and the fact that the identity strategies id : G(A, M) — G(B, N) are synchronous.

Objects of SAGy, and SAGYY are games ¥ - G(A, M),
Morphisms of SAGy are synchronous strategies X - o : G(A, M) —® G(B, N),
Morphisms of SAG;v are synchronous winning strategies ¥ F o IF G(A, M) —® G(B, N).

Objects of Auts and Autgv are automata X - A,
Morphisms of Auts; are synchronous strategies ¥ + o : G(A,Ids) —® G(B,1dy),
Morphisms of Auty, are synchronous winning strategies ¥ I- o I- G(A,Ids) —® G(3,1ds).

A Lifting Property. Among the useful consequences of Prop. 3.3, we state the following
lifting property.
» Proposition 3.4. Consider ¥ F G(A, M) and ¥ F G(B, N). Assume that, in Rel(Set/Try)
we have an isomorphism R : (px(A, M) SN Trs) == /1y, (p=(B, N) BN Try).

There is a (unique, total) isomorphism o : G(A, M) —saay, G(B,N) s.t. HS(o) = R.

In general we can not ask ¢ to be winning, and in particular to be a morphism of SAG%’.

4 Fibrations of Acceptance Games and Automata

A tree morphism L € Tree[X,T'] defines a map L* from the objects of SAGr to the objects
of SAGy: we let L*(I'FG(A,M)) ==X FG(A, MolL).

In this Section, we show that L* extends to functors L* : SAG(FW) — SAG(ZW)
and that the operation (—)* is itself functorial and thus leads to split indexed categories
(=)* : Tree®® — Cat. By applying Groethendieck completion, we obtain our split fibrations
of acceptance games game(W) : SAG™W) — Tree.

On the other hand, by restricting substitution to tree morphisms generated by alphabet
morphisms 5 € Alph[3, T, we obtain functors 5* : Autlgw) — Aut(zw) giving rise to split
fibrations of tree automata aut™™) : Aut™") — Alph.

Our substitution functors L* are build in strong analogy with change-of-base functors
Set/Trr — Set/Try, of the codomain fibration cod : Set™ — Set. We refer to [10] for basic
material about fibrations.

4.1 Substitution Functors

Change-of-Base in Set”. A morphism L € Tree[%, I'] induces a map Tr(L) : Trs; — Trp
inductively defined as follows (where (—)p is the obvious projection Try, — D*):

Tr(L)(e) = ¢ Tr(L)(w-a) := Tr(L)(w)- L(wp)(a) Tr(L)(w-d) := Tr(L)(w)-d

The map Tr(L) gives rise to the usual change-of-base functor L® : Set/Trr — Set/Try,
defined using chosen pullbacks in Set:

L*(pr(A, M)) — pr(A, M)

_|
L*® (tr) i itr
Tr(L)

Trs, Trp
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Substitution on Plays. The action of the substitution L* on plays can be described, similarly
as the action of L*® on objects of Set/Trr, by a pullback property.

Consider T' + G(A, M), so that ¥ F G(A, M o L). A position (p,a,vy.4) of the game
Y FG(A, M o L) can be mapped to the position (p, L(p)(a),v4) of the game T' - G(A, M).
Moreover, since d4(qa, (M o L)(p)(a)) = da(qa, M(p)(L(p)(a))), we have

(,qa) = (p,a,7a)  ifandonlyif  (p,qa) — (p, L(p)(a),74)

This gives a map

(L) : ps(AMoL) — pr(A M)

If we are also given T' - G(B, N), then we similarly obtain

p(L)w = ps(@AMoL)-®G(B,NoL)) — pr((G(AM)-®G(B,N))

These two maps are related via HS as expected: HS o p(L)_g = (p(L) x p(L)) o HS.
Moreover,

» Proposition 4.1. We have, in Set:

on(A Mo L) OB O (AM) 9R(G(A Mo L) ~® G(B,N o L))
trl \Ltr tr—@l p(L) s
Te(L)
Trs; = Trp Try, pP(G(A, M) —® G(B,N))
Te(L) ltr@
TI‘F

Substitution on Strategies. The action of L* on strategies is defined using Prop. 4.1: Given
I'ko:G(A M) —® G(B,N), so that o C pR(G(A, M) —® G(B, N)), we define

L*(0) = p(L)g(0) < @E(G(AMoL) —®G(B,NoL))
» Proposition 4.2. L*(0) is a strategy. If moreover o is winning, then L*(o) is also winning.
Functoriality of Substitution. Proposition 4.1 can be formulated by saying that the maps
(tr, (L)) and {tr™® (L) _g) are bijections, respectively:

ps(A, MoL) = Trg Xy, pr(A, M)
OR(GA Mo L) -®G(B,NoL)) — Try Xmy, pp(G(A, M) —® G(B, N))

These bijections are crucial to prove that

» Proposition 4.3. L* is a functor from SAG%W) to SAG(EW).

4.2 Fibrations of Acceptance Games

Consider now L € Tree[X,I'] and K € Tree[l', A]. Since Tr(K o L) = Tr(K) o Tr(L) and
P(K o L)) = p(K) () o p(L)(—) we immediately get

» Proposition 4.4. The operations (—)* : Tree®® — Cat, mapping ¥ to SAG(EW), and
mapping L € Tree[X,T] to L* : SAG%W) — SAG(EW) are functors.

By using Groethendieck completion (see e.g. [10, §1.10]), this gives us split fibrations of

acceptance games game(W) : SAG™) — Tree that we do not detail here by lack of space.
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4.3 Fibrations of Automata

In order to obtain fibrations of automata, we restrict substitution to tree morphisms gen-
erated by alphabet morphisms 8 € Alph[X,T']. The crucial point is that these restricted
substitutions can be internalized in automata.

Given I' H A with A = (Q, ¢%,6,Q), and 8 € Alph[X, T, define the automaton X - A[3]
as A[f] .= (Q, ¢", 03,) where d3(q,a) := (g, B(a)).
» Proposition 4.5. X+ G(A[8],1ds) = X F G(A,P).

*

It is easy to see that (—)* restricts to a functor from Alph°? to Cat, so that we get

fibrations

aut™) o Aut™  —  Alph with, in Cat: Aut<Vﬁ—>SAG<W>
aut(W) \L \Lgame(w)
Alph Tree

5 Symmetric Monoidal Structure

We now consider a synchronous product of automata. When working on complete automata
(to be defined in Sect. 5.1 below), it gives rise to split symmetric monoidal fibrations, in the
sense of [16].

According to [16, Thm. 12.7], split symmetric monoidal fibrations can equivalently be
obtained from split symmetric monoidal indexed categories. In our context, this means that
the functors (—)* extend to

(=) : Tree®® — SymMonCat (=) : Alph®”®* — SymMonCat

where SymMonCat is the category of symmetric monoidal categories and strong monoidal

functors. Hence, we equip our categories of (complete) acceptance games and automata with

a symmetric monoidal structure. Substitution turns out to be strict symmetric monoidal.
We refer to [13] for background on symmetric monoidal categories.

5.1 Complete Tree Automata

An automaton A is complete if for every (g,a) € Q x X, the set §(g, a) is not empty and
moreover for every v € §(q,a) and every d € D, we have (¢’,d) € ~ for some ¢’ € Q.

Given an automaton A = (Q, ¢*, 9, Q) its completion is the automaton A = (@7 q, g, (AZ)
with states @ := @ + {true, false}, with acceptance condition Q=0+ Q" - true - @“, and
with transition function d defined as

~ ~

d(true,q) := {{(true,d) | d € D}} O(false,q) := {{(false,d) | d € D}}

5(q,a) = {{(false,d) | d € D}} if g € Q and 6(g,a) =0

3(q,a
§(g,a) == {F]|v€d(ga)} otherwise

(

where, given v € §(q,a), we let ¥ := ~ U {(true,d) | there is no ¢ € @ s.t. (¢,d) € v}.

» Proposition 5.1. £(A) = L(A).
_ . . . a=W) — (W)
Restricting to complete automata gives rise to full subcategories SAGy,  and Auty,
of resp. SAG(ZW) and Aut(zw)7 and thus induces fibrations

— =W - — (W
game SAG() — Tree aut Aut() — Alph
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5.2 The Synchronous Product

Assume given complete automata ¥ - A and X F B. Define X - A® B as

A®B = (QaxQp,(d%q5), 0408, QaeB)

where (¢4, qg)nen € Qaes M ((¢4)nen € Q4 and (¢3)nen € Q5), and where we let
dae8((q4,q8),a) be the set of all the y4 ® y5 for v4 € 0.4(qa,a) and v5 € d5(gn,a), with
Ya®v5 = {((¢4,q5),d) | d € D and (¢'y,d) € v and (g, d) € V5}-

Note that since A and B are complete, each vaes € d4e8((q4, ¢8), a) uniquely decom-
poses as YAaB = YA ® V8.

Action on Plays. The unique decomposition property of v g5 allows to define projections

w; (A1 ® A2, M) —  pxn(A;, M)
;¥ 1 ps(G(A @B, M) -®G(A @By, N))  — o5 (G(Ai, M) —® G(B;,N))

We write SP := (w1, ws) and SP_g := (ww; ¥, @, ®).

» Proposition 5.2. We have, in Set:

pn(A® B,_]M) s on(B, M) R(G(A® B, M) —@Zg(c ® D, N))
WIi itr W{x;
=i £(G(B,M D,N
ox (A, M) —= Trs; 1 5% (G(B, M) —® G(D, N))

e

pR(G(A, M) ~® G(C,N)) —— Trs

(W
Action on Synchronous Games. The action of ® on the objects of SAG(E ) is given by
(EFGAM))® (EFGB,N)) = XkGAlre B[], (M N))

where 7 and 7’ are suitable projections. For morphisms, let & F o : G( Ao, My) —® G(Ay1, My)
and X F 7 g(Bo,NQ) —® Q(Bl,Nl). Then since X F Q(Ai[m], <Mi,NZ‘>) = X+ Q(A“Ml)
and ¥ F G(B;[n]],(M;,N;)) = X F G(B;,N;), thanks to Prop. 5.2 we can simply let
o® 7 =SP4 (0,7).

. . =W = (W) =W
» Proposition 5.3. The product _ ® __ gives functors SAGy,  x SAGy = — SAGy .

5.3 Symmetric Monoidal Structure

W)
Thanks to Prop. 5.2 and Prop. 3.4 the symmetric monoidal structure of ® in SAGy, ~ can
be directly obtained from the symmetric monoidal structure of the tensorial product of

Rel(Set/Try).

Symmetric Monoidal Structure in Rel(Set/.J). We define a product ® in Rel(Set/J):
On Objects: for (A, g) and (B, h) objects in Rel(Set/J) the product A® B is A x ; B with
the corresponding map, that is

gomyi=homy
—

A®B = {(a,b)e AxB|gla)=h(b)} J
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On Morphisms: given R € Rel(Set/J)[A, C] and P € Rel(Set/J)[B, D], we define RQ P €
Rel(Set/J)[A® B,C ® D] as

ReP := {((ab),(c,d) € (A®B)x (C®D)]| (a,c) € Rand (b,d) € P}

For the unit, we choose some I = (g:1 = J). Note that 7 is required to be a bijection.
The natural isomorphisms are given by:

dapo = {(ab)c), (a (b)) | gala) = gp(b) = go(c)}
A= {llea) 5 a) | g(e) = gala)}
pa = {(a;e), a) [ gala) =3(e)}
Yas = {((@,b), (b)) | gala) =gp(b)}

» Proposition 5.4. The category Rel(Set/J), equipped with the above data, is symmetric
monoidal.

Unit Automata. The requirement that the monoidal unit j: I — J of Rel(Set/.J) should
be a bijection leads us to the following unit automata. We let Z := (Qz, gz, 67, {2z) where
Q7 :=1, gz := e, Q7 = Q% and dz(qz,a) := {{(gz,d) | d € D}}.

Note that since 7 is constant, we have ¥ F G(Z, M) = ¥ + G(Z,1d). Moreover,

» Proposition 5.5. Given M € Tree[X, T, we have, in Set, a bijection

tr : px(Z,M) — Try

Symmetric Monoidal Structure. Using Prop. 3.4, the structure isos of Rel(Set/Try) can

be lifted to Q\G(EW) (winning is trivial). Moreover, the required equations (naturality and
coherence) follows from Prop. 3.3, Prop 5.2, and the fact that ((SP x SP)oHS)(c ® 7) =
HS(o) ® HS(7) (where composition on the left is in Set, and the expression denotes the
actions of the resulting function on the set of plays (¢ ® 7)).

(W) W
» Proposition 5.6. The categories SAGs, ~ and Aut(z ) equipped with the above data, are
symmetric monoidal.

5.4 Symmetric Monoidal Fibrations

In order to obtain symmetric monoidal fibrations, by [16, Thm. 12.7], it remains to check
that substitution is strong monoidal. It is actually strict monoidal: it directly commutes
with ® and preserves the unit, as well as all the structure maps.

» Proposition 5.7.

(W) (W
(i) Given L € Tree[X,T], the functors L* : SAG(F : SAG(Z : are strict monoidal.

— (W
(ii) Given B € Alph[X,T], the functors 5* : Aut; ) — Aut(z ) are strict monoidal.

6 Correctness w.r.t. Language Operations

This Section gathers several properties stating the correctness of our constructions w.r.t.
operations on recognized languages. We begin in Sect. 6.1 by properties on the symmetric
monoidal structure, the most important one being that the synchronous arrow is correct, in the
sense that X+ .4 —® B implies £(A) C £(B). Then, in Sect. 6.2, we discuss complementation
of automata, and its relation with the synchronous arrow.
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6.1 Correctness of the Symmetric Monoidal Structure

We begin by a formal correspondence between acceptance games and synchronous games
of a specific form. This allows to show that the synchronous arrow is correct, in the sense
that ¥ -+ A —® B implies L(A) C L(B). We then briefly discuss the correctness of the
synchronous product w.r.t. language intersection.

» Proposition 6.1. Given ¥+ A and t € Tree[X], there is a bijection:
(0|1FolFGAD)} =~  {0]|1F0IFGT, 1) - G(A, i)}

» Remark. The above correspondence is only possible for acceptance games over 1:
In X+ ol G(A M), ois a positive P-strategy, hence chooses the input characters in X.
In X+ 01k G(Zs,1ds) —® G(A, M), the strategy 0 is a negative. It plays positively in
Y FG(A, M), but must follow the input characters chosen by O in ¥ F G(Zg, Idy).

We now check that the arrow G(A, M) —® G(B, N) is correct w.r.t. language inclusion:

» Proposition 6.2 (Correctness of the Arrow). Assume given ¥+ o IF G(A, M) —® G(B, N).

(i) For allt € Tree[X], we have t* (o) IF G(A, M ot) —® G(B, N o).
(i) If 1I- G(A, M o) then 1IF G(B, N ot).
(iii) For all tree t € Tree[X], if M(t) € L(A) then N(t) € L(B).

The converse property will be discussed in Sect. 7. We finally check that the synchronous
product is correct.

» Proposition 6.3. L(A® B) = L(A) N L(B).

6.2 Complementation and Falsity

Complementation. Given an automaton A = (Q, ¢*, §, ), following [18], we let its comple-
ment be ~A := (Q,¢",0a, o), where Q4 := Q% \ 2 and

onalg,a) = {1~ €P(Qx D) |Vy€d(ga), v~Ny#0}

The idea is that P on ~A simulates O on A, so that the correctness of ~A relies on
determinacy of acceptance games. In particular, thanks to Borel determinacy [12], we have:

» Proposition 6.4 ([18]). Given A with Q4 a Borel set, we have L(~A) = Tree[X] \ L(A).

Note that if A is complete, then ~.A is not necessarily complete, but d. 4 is always not
empty and so are the ~’s in its image.

The Falsity Automaton L. Welet L := (Q1,q1,0.,Q.) where QL :=1,qL :=¢, Q=10
and 0.(qu,a) :={{(qr,d)} | d € D}. Note that Z = ~L. In particular, it is actually P who
guides the evaluation of L, by choosing the tree directions.

» Proposition 6.5. Let A and B be complete. Then ¥ - A® B —® L - A—® ~B.

» Corollary 6.6. Let A be a complete automaton on ¥.. Then 1 IF ~A f1lFA-—® <.
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7 Projection and Fibred Simple Coproducts

We now check that automata can be equipped with existential quantifications in the fibered

sense. Namely, given a projection m € Alph[X x I',¥], the induced weakening functor
— (W — (W
T Aut(E ) — Aut(EX)F has a left-adjoint Iy, r, and moreover this structure is preserved by

substitution, in the sense of the Beck-Chevalley condition (see e.g. [10]). This will lead to a
(weak) completeness property of the synchronous arrow on non-deterministic automata, to
be discussed below.

Recall from [11, Thm. IV.1.2.(ii)] than an adjunction Iy, r 4 7%, with 7* a functor, is
completely determined by the following data: To each object ¥ xI' - A, an object ¥ I 115, 0 A,
andamapna: X xI'F A — ¥ x 'k (IIg rA)[7] satisfying the following universal lifting

property:

For every
o YxTIk YxI'HB
g p o ExliAL T ExDEBE g M (e A)r] (3)
ere is a unique
T : Xk HE,F.A — XFB > \Lﬂ-*(‘r)
B[]

In our context, the Beck-Chevalley condition amounts to the equalities

At g rA)p] = Ak Tar(A[S x 1dr]) Napgxiar] = (B x1dr)*(na) (4)

It turns out that the usual projection operation on automata (see e.g. [18]) is not functorial.
Surprisingly, this is independent from whether automata are non-deterministic or not?. We
devise a lifted projection operation, which indeed leads to a fibered existential quantification,
and which is correct, on non-deterministic automata, w.r.t. the recognized languages.

The Lifted Projection. Consider ¥ x I' A with A = (Q, ¢*,0,). Define ¥ - Il 1 A as
HE’F.A = (Q xI'+ {q1}7 q", 014, QHA) where

6H.A(qla a) = Uber‘{’y+b | Y € 5(qza (aa b))}
5]_[./4(((1’_)’ a) = UbeF{7+b | 7 € 5(qa (a, b))}
and, given v € P(Q x D) and b € T', we let yv+° := {((¢7°,d) | (¢,d) € v} with ¢*° := (¢, b).
For the acceptance condition, we let ¢* - (qo,b0) - .- (qn,bn) - ... 0 Qua iff ¢* - qo - ... -
qn ... € Q.

Action on Plays of The Lifted Projection. The action on plays of Iy, i is characterized
by the map p(II) : puxr(A) — px(lls rA) inductively defined as p(IT)(¢g, ¢*) := (g, ¢") and

p(I)((e,q") =* (p,q) = (p, (a,0),7)) = p()((e,¢") =* (p,q)) = (p,a,71?)
p(I)((e,q") =* (p, (a,b),7) = (p.d,q)) = p()((e,q") =* (p,(a,b),7)) = (p.d,q*?)

» Proposition 7.1. If A is a complete automaton, then p(Il) is a bijection.

3 It is well-known that the projection operation is correct w.r.t. the recognized languages only on
non-deterministic automata.
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The Unit Maps 7_). Consider the injection vz : px(UgrA) — psxr((srA)[r])
inductively defined as tsr((¢,4%)) := (e,¢4) and ts (s — (p,¢*°)) == ts,r(s) = (p,q*?)
and ts,r(s = (p,a,7)) := tnr(s) = (p, (a,),77).

If ¥ x I' - A is complete, we let the unit 14 be the unique strategy of @ngr such
that HS(n4) = {(¢,tx,r o p(L0)(t)) | ¢t € puxr(A)}. We do not detail the B.-C. condition (4).

The Unique Lifting Property (3). Consider some ¥ xI' o : A —® B[n] with A complete.
We let 7 be the unique strategy such that HS(7) = {(p(I1)(s), p(7)(¢t)) | (s,t) € HS(0)}. Tt
is easy to see that 7 is winning whenever ¢ is winning. Moreover

» Lemma 7.2. 0 = 7*(7) on4.
For the unicity part of the lifting property of 74, it is sufficient to check:

» Lemma 7.3. If 7*(0) ona =7*(0') ona then 6 =6'.

Non-Deterministic Tree Automata. An automaton A is non-deterministic if for every ~
in the image of § and every direction d € D, there is at most one state ¢ such that (g,d) € ~.

» Remark. If A and B are non-deterministic, then so are A ® B and II(A).

» Proposition 7.4 ([4, 15, 18]). For each regular automaton ¥ - A there is a complete
non-deterministic automaton 3 = ND(A) such that L(A) = LIND(A)).

» Proposition 7.5. If ¥ x I' - A is non-deterministic and complete, then L(Ilg1rA) =
w1 (L(A)) where mx r € Alph[¥ x I', 3] is the first projection.

» Proposition 7.6. Consider complete reqular automata ¥ - A and ¥ + B.
If L(A) C L(B) then X IF ND(A) —® ~C with C :== ND(~B).

8 Conclusion

We presented monoidal fibrations of tree automata and acceptance games, in which the fibre
categories are based on a synchronous restriction of linear simple games.

For technical simplicity, we did not yet consider monoidal closure, but strongly expect
that it holds. One of the main question is whether suitable restrictions of these categories
are Cartesian closed, so as to interpret proofs from intuitionistic variants of MSO. Among
other questions are the status of non-determinization (i.e. whether it can be made functorial,
or even co-monadic), as well as relation with the Dialectica interpretation (in the vein of
e.g. [8]). Our result of weak completeness (Prop. 7.6) suggests strong connections with the
notion of guidable non-deterministic automata of [2]. On a similar vein, connections with
game automata [3, 5] might be relevant to investigate.

Acknowledgments. This work benefited from numerous discussions with Pierre Clairam-
bault and Thomas Colcombet.
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—— Abstract
We propose a logical justification for the rewriting-based equivalence procedure for simply-typed
lambda-terms with sums of Lindley [8]. It relies on maximally multi-focused proofs, a notion
of canonical derivations introduced for linear logic. Lindley’s rewriting closely corresponds to
preemptive rewriting [5], a technical device used in the meta-theory of maximal multi-focus.
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1 Introduction

Deciding observational equality of pure typed lambda-terms in presence of sum types is a
difficult problem. After several solutions based on complex syntactic [6] or semantic [1, 2]
techniques, Sam Lindley presented a surprisingly simple rewriting solution [8]. While the
underlying intuition (extrude contexts to move pattern-matchings as high as possible in
the term) makes sense, the algorithm is still mysterious in many aspects: even though they
were synthesized from the previous highly-principled approach, the rewriting rules may feel
strangely ad-hoc.

In this paper, we will propose a logical justification of this algorithm. It is based on recent
developments in proof search, maximally multi-focused proofs [5]. The notion of preemptive
rewriting was introduced in the meta-theory of multi-focusing as a purely technical device;
we claim that it is in fact strongly related to Lindley’s rewriting, and formally establish the
correspondence.

The reference work on multi-focused systems [5] has been carried in a sequent calculus for
linear logic. We will first establish the meta-theory of maximal multi-focusing for intuitionistic
logic (Section 2). We start from a sequent calculus presentation, which is closest to the
original system. Our first contribution is to propose an equivalent multi-focusing system in
natural deduction 2.2. We then define preemptive rewriting in this natural deduction 2.4
and establish canonicity of maximally multi-focused proofs 2.6.

In Section 3, we transpose the preemptive rewrite rules into a relation on proof terms.
We can then formally study the correspondence between rewriting a multi-focused proof
into a canonical maximally multi-focused one, and Lindley’s y-reduction on lambda-terms.
We demonstrate that they compute the same normal forms, modulo a form of redundancy
elimination that is missing in the multi-focused system.

We finally introduce redundancy-elimination rewriting and equivalence for the proof
terms of the multi-focused natural deduction (Section 4). The resulting notion of canonical
proofs, simplified mazimal proofs, precisely corresponds to normal forms of Lindley’s rewriting
relation. The natural notion of local equivalence between simplified maximal proofs therefore
captures extensional equality.
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2  Intuitionistic multi-focusing

The space of proofs in sequent calculus or natural deduction exhibits a lot of redundancy:
many proofs that are syntactically distinct really encode the same semantics. In particular,
it is often possible to permute two inference rules in a way that preserves the validity of
proofs, but also the reduction semantics of the corresponding proof terms. If a permutation
transforms a proof with rule A applied above rule B into a proof with rule B applied above
rule A, we say that it is an A/B permutation (A is above the slash, as in the source proof).

Focusing is a general discipline that can be imposed upon proof system, based on the
separation of inference rules into two classes. Invertible rules (called as such because their
inverse is admissible) always preserve provability, and can thus be applied as early as possible.
Non-invertible rules may result in dead ends if they are applied too early (consider proving
A+ B A+ B by first introducing the sum on the right-hand side)). In focusing calculi,
derivations are structured in “sequences” or “phases”, that either only apply invertible rules
or only non-invertible rules. Focusing imposes that phases be as long as possible. During
invertible phases, one must apply any valid invertible rule. During non-invertible phases, one
focuses on a set of formulas, and applies non-invertible operations on those formulas as long
as possible — if the phase is started too early, this may result in a dead end.

Invertibility determines a notion of polarity of logical connectives: we call positive those
whose right-hand-side rule is non-invertible (they are “only interesting in positive position”),
and negative those whose left-hand-side rule is non-invertible. In single-succedent intuitionistic
logic, (—) is negative, (+) is positive, and the product (x) may actually be assigned either
polarity.

In single-sided calculi, non-invertible rules are those that introduce positive connectives,
and are called “positive”. For continuity of vocabulary, we will also call non-invertible
rules positive, and invertible rules negative. In particular, a permutation that moves a
non-invertible rule below an invertible rule is a “pos/neg permutation”.

2.1 Multi-focused sequent calculus

Multi-focusing ([9, 5]) is an extension of focusing calculi where, instead of focusing on a single
formula of the sequent (either on the left or on the right), we allow to simultaneously focus
on several formulas at once. The multiple foci do not interact during the focusing phase,
and this allows to express the fact that several focusing sequences are in fact independent
and can be performed in parallel, condensing several distinct focused proofs into a single
multi-focused derivation.

We start with a multi-focused variant of the intuitionistic sequent calculus, presented
in Fig. 1. We denote focus using brackets: the rules with no brackets are invertible. This
notation will change in natural deduction calculi.

In particular, we write A, or A, for formula or contexts that must be all negative or
positive, and X, Y or Z for atoms. We write B,, and I',, when either a positive (resp.
negative) or an atom is allowed. For readability reasons, we only add polarity annotations
when necessary; if we consider only derivations whose end conclusion is unfocused, then the
invariant holds that the unfocused left-hand-side context is always all-negative, while the
unfocused right-hand-side formula is always positive.

Our intuitionistic calculi are, as is most frequent, single-succedent. The notation A | B
on the right does not denote a real disjunction but a single formula, one of the two variables
being empty. The focusing rule seq-rocus with conclusion I'; A - A | B can be instantiated
in two ways, one when A is empty, and the premise is I', [A] - [B] (the succedent is part of
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SEQ-ATOM SEQ-INV-SUM-L SEQ-INV-PROD-R SEQ-INV-ARR-R
X atomic T,ArC T,BFC TFrA TFB I A+ B
T, XFX I, A+BFC I'-AxB I'-A—B
SEQ-FOCUS SEQ-RELEASE SEQ-FOC-ARR-L
Tas [An] F Apa | [Bpal T, Apat A| Bpa T[4 T,[A B]FC|[D]
T, A b Ayg | B T, [Apa] A [Bra] I,[AA— BJFC|[D)
SEQ-FOC-PROD-L SEQ-FOC-SUM-L
I, [A, 4] F B|[C] I, [A] - [4]
T,[A, A1 x As] - B |[C] T,[A] - [A] + A

Figure 1 Multifocused sequent calculus for intuitionistic logic.

the multi-focus), and one when B is empty, and the premise is ', [A] - A (the succedent is
not part of the multi-focus). Note that A is a set and may be empty, in which case the focus
only happens on the right.

As a minor presentation difference to the reference work on multi-focusing [5], our
contexts are unordered multi-sets, and all the formulas under focus are released at once — by
SEQ-RELEASE, which releases positives (resp. negatives) or atoms.

This multi-focused calculus proves exactly the same formulas as the singly-focused sequent
calculus. The latter is trivially included in the former, and conversely one can turn a multi-
focus into an arbitrarily ordered sequence of single foci. As a corollary, relying on non-trivial
proofs from the literature (e.g., [11]), it is equivalent in provability to the (non-focused)
sequent calculus for intuitionistic logic.

2.2 Multi-focused natural deduction

While the multi-focusing sequent calculus closely corresponds to existing focused presentations,
its natural deduction presentation in Fig. 2 is new. We took inspiration from the presentation
of focused linear logic in natural deduction of [3], in particular the { and | notations coming
from intercalation calculi.

There are three main judgments. I' - A is the unfocused judgment with the invertible
rules. T; A || B is the “elimination-focused” judgment, and A f} B is the “introduction-
focused” judgment (focused on A). T'; A | B means that the assertion B can be produced
from the hypothesis A by non-invertible elimination rules; the context I' is used in any
non-focused subgoal. A ff B means that proving the goal A can be reduced, by applying
non-invertible introduction rules, to proving the goal B. Those two judgments do not come
separately, they are introduced by the focusing rule NaT-FOCUS.

In Fig. 2, we used auxiliary rules (NAT-START-INTRO, NAT-START-NO-INTRO, NAT-START-ELIM)
to present the focusing compactly (this is important when rewriting proofs); those rules can
only happen immediately above NaT-FocUs, and can thus be considered definitional syntactic
sugar — we used a double bar to reflect this. If we inlined these auxiliary rules, the focusing
rule would read (equivalently):

(A;)iel Clha (Tnas A; I Aga)iEI (Bp f B’:La | B= B/) P (Aga)iEI - B’
Iya b By

This rule can only be used when all invertible rules have been performed: the context
must be negative or atomic, and the goal positive or atomic. It selects set of foci on the
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NAT-ATOM NAT-INV-SUM-L NAT-INV-PROD-R NAT-INV-ARR-R
X atomic ILA-C TI,BrC r-A TF+B I'A+ B
Cha, X X LA+ BFC 'AxB 'A— B
NAT-FOCUS NAT-END-ELIM NAT-END-INTRO
T 4T A’ A T, IV F A
Fna }_ Apa F7 Ana ‘U’ Ana Ana ﬂ Ana
NAT-ELIM-ARR NAT-ELIM-PROD NAT-INTRO-SUM
r;AlB—~C BB TFB ;A By x By A; 1+ B
NAT-START-INTRO NAT—START—ELI]VI ) o
NAT-START-NO-INTRO Ap TT Bna (Azl)zel g F (F;A; u A;za)zeI
AT A Ap 1’ Bpa Iy (Ay,)

Figure 2 Multifocused natural deduction for intuitionistic logic.

left, the family of strictly negative assumptions (A% )*€! (we consistently use the superscript
notation for family indices), and optionally a focus on the right; if the goal is focused it must

be strictly positive. All foci must be as long as possible: elimination foci go from a variable
142

down to a positive or atomic A},

negative or atomic Bj,,.

In comparison to the sequent calculus, the positive or atomic formulas (Aga)iel appearing
at the start of the elimination-focus correspond to the formulas released at the end of a
multi-focus in a sequent proof; natural deduction, when compared to the sequent calculus,
has elimination rules “upside down”. Also characteristic of natural deduction is the horizontal
parallelism between eliminations and introductions; for example, the following two partial

derivations correspond to the same natural deduction:

and the introduction focus goes up until it encounters a

Apa X B, Apa - Crg Apa X B, Apa F Crq
Apa X B, [Apa] F [Cnal Apa X B, [Apa] F [Cral
Apq X B, [Apa] F [Cra + D] Apa X B,[Apa X B]F [Chal
Apq X B, [Apqe X Bl F [Cha + D] Apq X B, [Apy X Bl F [Chq + D]
Ape x BECho+D Ape X BFCpo+D
Apa X B;Apy x Bl Apy x B Cha 1 Cha
Apa X B; Apa X B Apy Cra+ D1 Cpa Apa X B, Apa F Chryg

Apa X BF Cpa + D

On the other hand, we kept the less important invertible rules in sequent style: the sum
elimination is a left introduction. Invertible rules being morally “automatically” applied,
the sequent-style left introduction, which is directed by the type of its conclusion, is more
natural in this context. Ironically, this brings us rather close to the sequent calculus of
Krishnaswami [7] which, for presentation purposes, preserved a function-elimination rule in
natural deduction style.

» Lemma 1. The multi-focused natural deduction system proves exactly the same non-focused
judgments as the multi-focused sequent calculus.
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PREEMPT-FOCUS PREEMPT-ELIM
ana ‘U’ A;ja Bp ﬂ? B’:’L(l anaa A;)a }_ A’I’Lpll | B;la an(l ‘U’ A;ja ana7 A;)gﬂ A ‘U’ A/
ana F Anpa | Bp ana; A U’ A

Figure 3 Preemptive rules for intuitionistic multifocused natural deduction.

2.3 A preemptive variant of multi-focused natural deduction

Multi-focusing was introduced to express the idea of parallelism between non-invertible rules
on several independent foci. A proof has more parallelism than another if two sequential
foci of the latter are merged (through rule permutations) in a single multi-focus in the
former. A natural question is whether there exists “maximally parallel proofs”. To answer
it (affirmatively), the original article on multi-focusing ([5]) introduced a rewriting relation
that permutes non-invertible phases down in proof derivations, until they cannot go any
further without losing provability — neighboring phases can then be merged into a maximally
focused proof.

In the process of moving down, a non-invertible phase will traverse invertible phases
below. The intermediary states of this reduction sequence may break the invariant that
invertible rules must be applied as early as possible; we say that the non-invertible phase
preempts (a part of) the invertible phase. As this intermediary state is not a valid proof in
off-the-shelf multi-focusing systems, the original article introduced a relaxed variant called a
preemptive system, in which the phase-sinking transformation, called preemptive rewriting,
can be defined following [5].

We present in Fig. 3 a preemptive variant of multi-focused natural deduction, except for
the invertible and focused-introduction rules that are strictly unchanged from the previous
multi-focusing rules in Fig. 2. There are two important differences:

Preemption of invertible phases. To allow the start of a focusing phase when some
invertible rules could still be applied, we lifted the polarity constraints for starting
focusing. In the rule PREEMPT-FOCUS, the goal I'ypq = Appe may be of any polarity. We
use a tautological I',,,, annotation to emphasize this change.

Preemption of non-invertible phases. This is expressed by the rule PREEMPT-ELIM, where
an ongoing focus on A is preempted by a complete focus on A},. Note that stored
contexts are not available during the current elimination phase (they are unused in
NAT-END-ELIM); they are only available to non-focused phases that appear as subgoals (in
the arrow elimination rule). This preserves the central idea that the simultaneous foci of
a single focusing rule are independent.

2.4 Preemptive rewriting

We can then define in Fig. 4 the rewriting relation on the preemptive calculus, that lets
any non-invertible phase move as far as possible down the derivation tree. Maximally
multi-focused proofs, which can be characterized on permutation-equivalence classes of
multi-focused proofs, correspond to normal forms of this rewriting relation.

A focused phase cannot move below an inference rule if some of the foci depend on this
inference rule. Instead of expressing the non-dependency requirement by implicit absence of

the foci, we have explicitly canceled out the foci that must be absent to improve readability.

In the first rule for example, I',4 | A means that the A hypothesis must be weakened (not
used) in the derivation of " || A, orelse it cannot move below the introduction of A.
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IAVA BB, T A AFB
I A+B
I'rA— B

A 24l T,AFA
I'-A I'+-B
I'AxB

YA C1'D T,AA+D
[LAFC
<nB¢A cq'D R&AFD)

I,BFC
LA+ BFC

ryr I,I';Al B x By
F;AU,Bl X Bs
IT'; Al B;

ryr r,r';AyB—cC

I A,AFB
VA T,AFA—>B
T'-A—B

ILAFA TFB
F'VUA T,AFAxB
I'-AxB

IAA+D T,B,A+D
F4A CH'D A+ B,A+D
ILA+B+C,D

F,F/;Al}Bl X Bsg
ryr I,T';Al B;

I'T;AlB—~C B{B TFrB

Ay B—C B4+B TFB ryr’ I,I'yB—C
AL C Ay C
ryr n,r'vmB,, rAyB—C B{B,, I.I'+B,
INAyB—C BB, '+ B, ryr’ I,I':AlC
AL C Ay C
FTUA T,A; A, A
ryr A,er A, | A
ryr, A B{'B TI,T',A+B
I't+B
Fyr A,erl I')A;A, A
LAYT, A B4'B T.T',A+B
ryA I'A+B
—

I'tB

ryA B'Cc T,AANEC
TUA AQ'B IA+B TUA AN Af'C T,AAFC
s
I'HA I'-A

Figure 4 Preemptive rewriting for multifocused natural deduction for intuitionistic logic.
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In this situation, it may be the case that other parts of the multi-focus do not depend
on the rule below, and those should not be blocked. To allow rewriting to continue, the
last rewrite of our system is bidirectional. It allows to separate the foci of a multi-focus, in
particular separate the foci that depend on the rule below from those that do not — and can
thus permute again. This corresponds to the first rule of the original preemptive rewriting
system [5], which splits a multi-focus in two. We only need to apply this rule when the result
can make one more unidirectional rewrite step — this strategy ensures termination.

In the left-to-right direction, this rule relies on the possibility of merging together two
elimination-focused derivations, or two optional introduction-focused derivations, with the
implicit requirement that at least one of them is empty.

2.5 Reinversion

After the preemptive rewriting rules have been applied, the result is not, in general, a valid
derivation in the non-preemptive system. Consider for example the following rewriting
process:

V3 V3
V2 V3
T3 V2 V2 U3 V2 V3
: T2; V3 :
v2 _)* T3, V2 _}* ™2 ™3 _>* v _)* T2, V3
1
™2 T2 Vi 141
35 V1
141 4% T . 1 T3
1
T T

We are here representing derivations from a high-level point of view, by naming complete
sequences of rules of the same polarity. Sequences of positive (non-invertible) are named
7n, and sequences of negative (invertible) rules v,,. We use horizontal position to denote
parallelism, or dependencies between phases: each dipole (7, vx) is vertically aligned as the
invertibles of v}, have been produced by the foci of 7, but we furthermore assume that the
second dipole depends on formulas released by the first, while the third dipole is independent.

The third dipole is independent from the others, and its foci in m3 move downward in the
derivation as expected in the preemptive system. After the first step, its negative phase has
preempted the invertible phase v5, and it is thus written 73; 5 to emphasize that any rule of
this sequence will have all the invertible formulas of v in non-focused positions (positives in
the hypotheses, and negatives in the succedent). It can then be merged with the foci of 7o,
in which case it does not see the invertibles of v5 anymore. When it moves further down, the
invertible formulas in its topmost sequent, those consumed by v3, are present/preempted by
all the non-invertible rules of mo. It is eventually merged with 7.

The normal form of this rewrite sequence could be considered a maximally multi-focused
proof, in the sense that the foci happen as soon as possible in the derivation — which was
not the case in the initial proof, where w3 was delayed. However, while the initial proof is a
valid proof in the non-preemptive system, the last derivation is not: the invertible formulas
produced by w3 are not consumed as early as possible, but only at the very end of the
derivation, and the foci of 75 therefore happen while there are still invertible rules to be
applied.

We introduce a reinversion relation between proofs, written D > £, that turns the proof
D with possible preemption into a proof £ valid in the non-preemptive system, by doing the
inversions where they are required, without changing the structure of the negative phases —
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the foci are exactly the same. In our example, we have:

1%} 123 1%

23 V3 > 2
141 vy V3
1 ™3 ™ T3

» Definition 2 (Rewriting relation). If D and &£ are proofs of the non-preemptive system, we
write D = £ if there exists a £’ such that D —* &' > &.

Reinversion was not discussed directly in the original multi-focusing work [5], but it plays
an important role and can be described and understood in several fairly different ways. For
lack of space, we omit this discussion from this short article, and will only formally define
reinversion as a relation on the (more concise) proof terms in Section 3.1, Definition 4.

2.6 Maximal multi-focusing and canonicity

Now that we have defined the focusing-lowering rewrite (=) between non-preemptive proof,
we can define the notion of mazimal multi-focusing and its meta-theory. It is defined by
looking at the width of multi-focus phases in equivalence classes of rule permutations; but it
can also be characterized as the normal forms of the (=) relation.

For lack of space, we have omitted this development (which is a mere adaptation of the
previous work [5]) from this short article. The central result is summarized below.

» Definition. We say that two proofs D and £ are locally equivalent, or iso-polar, written
D =y, &, if one can be rewritten into the other using only local positive/positive and
negative/negative permutations, preserving their initial sequents.

» Definition. We say that two proofs D and € are globally equivalent, or iso-initial, written
D ~gi00 €, when one can be rewritten into the other using local permutations of any polarity
(so when seen as proofs in a non-focused system), preserving their initial sequents.

» Fact. Two multi-focused proofs are globally equivalent if and only if they are rewritten by
(=) in locally equivalent maximal proofs.

3 On the side of proof terms

3.1 Preemption and reinversion as term rewriting

Now that we have a notion of maximally multi-focused proofs in natural deduction, we
can cross the second bridge between multi-focusing and Lindley’s work by moving to a
term system. We define in Figure 5 a term syntax for multi-focused derivations in natural
deduction.

As the distinction between the preemptive and the non-preemptive systems are mostly
about invariants of the focusing rule, the same term calculus is applicable to both. The
only syntactic difference is that preemptive terms allow a multi-focusing f[n] to preempt an
ambient elimination focus n’'.

Structural constraints on the multi-focusing system (preemptive or not) guarantee that
strong typing invariants are verified. In particular, in a focused term (let z = n in p°t), the
n are typed by the formulas in A at the end of a I' | A elimination phase: by our release
discipline they have a positive or atomic type, so the let-introduced x are always bound to
positive types. The rewriting rules corresponding to the preemptive rewriting relation are
defined in Figure 6.
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t o= terms
| z,y,2 variable
| M)t lambda X atomic
| (t,t) pair The,z: XFz: X
| 6(x,x.t,x.t) case
| fl¢] focusing
Tz:A-t:C Fz:BFu:C T'Ht: A I'u:B z:A+-t: B
I'e: A+ BFi(z,zt,zu):C I'-(t,u): Ax B 'FXMa)t:A— B
p’ o= optional introduction focus
flO) == let z = n in p’0 multi-focusing | 0 no introduction
| p introduction focus

TpodlletZ=n:T" A f'p': A Do, TV Ft: A
T,oFletz=nin p?t t Apa

A, p: Bra (' ALyl C T T+ AL Un': AlL)E
AN"0:A A1 p:Bna I let (2')'€! = ()"l : (ALL,)E!
n = negatives
| 2,9,z variable
| m n pair projection
| n p(t) function application Iz Ana 4 22 Ana
| let Z=ninn focusing (only in the preemptive calculus)
IAUn:B—C Bfp:B ~t¢:B TAUn: By x By (1,2}
1€ 1,
;A np(t): C LAYym n: B;
Dopa I Lot (2)€1 = (n*)*€! AL, Copa, Ay A0/ A/
Copa; A I let (27)'€7 = (n)' inn/ : A/
p = positives A ftp: B '
| % identity ie€{1,2}

| o5 p sum injection Ana ftx: Ana Ay + Az o; pB

Figure 5 Preemptive term calculus.

» Lemma 3. Ift is a proof term for the preemptive derivation D, then t — w if and only if
u s a proof term for a preemptive derivation £ with D — E.

The reinversion relation also has a corresponding term-rewriting interpretation. To
perform each invertible rule as early as it should be, it suffices to let any invertible rule skip
over a non-invertible phase it does not depend on. Depending on the order of the invertible
rules after this phase, the invertible rule we want to move may be after a series of invertible
rules that cannot be moved.

We “skip” over invertible contexts, we reduce invertible rules happening inside contexts of
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AMy)letz=nint ven let Z=mnin \(y)t
((Iet:?c:ﬁ In t1)7t2) — let x =nin (tl,tg)
(tl, (Iet T=nin tz)) — let x =nin (tl,tg)
Sy, . (let T =7 in p't1), yo. (let T =7 in p’t2)) "B let T =7 in p’O(y, y1.tr, ya.ta)
m; (let  =ninn') — let z =ninm n
(letz=mninn')t — letz=ninn't
n' p(let z =nint) — let z =7ninn' p(t)
let y = (let Z =7 inn') in p’t — let z=ninlety =n'inp't
let 7 =nin p’(let § =n’ in ¢'t) gy let 7,5 =, 0’ in (p.q")t
pr0 = p g = q
? ?
0¢° = ¢  (oipla = oi(pq)

Figure 6 Preemptive rewriting on proof terms.

e ::|: JA((j)ED o.t) Chegld] == np(d)
| 6@, ot 2e0) | Cuegl] p(1)
| (t, [ﬁ) , | T Cneg[D]
| (D7 t) | C”i [Cneg [DH
GO == O | RG] Co[D] 5= let & =7 inp'0)

| let Z,y =7, Cpey[d] in pt

Figure 7 Invertible frames and contexts, non-invertible contexts and elimination contexts.

the form C,;[C;[ ]], where C;[t] is a notation for invertible contexts (defined using invertible
frames F;[t]), and C,;[t] for non-invertible contexts. Defining the latter requires describing
negative/elimination contexts Cpeg4[t], with holes where a term may appear in a series of
elimination-focused terms.

» Definition 4. Reinversion can be precisely defined as the transitive congruence closure of
the rewrite rules listed in Figure 8.

The rewrite conditions are expressed in terms of a C[0J] < ¢ relation (read “context C
blocks term-constructor ¢”) that indicates a dependency of an invertible construction ¢ on
a given context C[d]. For example, it would make no sense to extrude a A in argument
position in a destructor, or move a sum-elimination §(x) across the frame that defined the
variable x. This blocking relation is defined in Figure 9 — (A | B) in a rule means that the
rule holds with either A or B in place of (A | B).

It may at first seem surprising that reinversion rules have instances that are the opposite
of some of the preemptive rewriting rules — those about pos/neg permutations. But that is
precisely one of the purposes of reinversion: after preemptive rewriting rules have been fully
applied, we undo those that have gone “too far”, in the sense that they let a non-invertible
phase preempt a portion of an invertible phase below, but were blocked by dependencies
without reaching the next non-invertible phase. This blocked phase does not increase the
parallelism of multi-focusing in the proof, but stops the derivation from being valid in the
original multi-focusing system, so reinversion undoes its preemption.
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CoslCilM) 8] B @) il
CoilCil(t1, 1)) TR (CalCilta]), CuslCilta])

Chri[Ci[O]] A (x)
>

Cm [CZ [(5($, I .tl, {L‘Q.tg)]] (S(LU, ml-Cni [C’z [tl]], $2.Cni [C’z [tg”)

Figure 8 Reinversion rewrite rules.

yezx p#0 Chegld] < ¢
let z=ninp'0=<0(y) letz=ninpO=<(,)|A let 7,y = 7, Cpey[d] in p't < ¢

(B0 ED) M) O) < (G) 1A Mz)O<6(x) (§(x,y.0,2.8) | 0(z, z.t,y.00)) < 6(y)

np(@) < () 1A Creplt] ¢
p ’ Cneg“:’] p(t) | U Cneg[D] | an[cneg[D“ <c
Crild] < ¢ | Cregld] < ¢ FlO<ec|C0O] <¢ CnilO)<c| G0 < ¢
Cni[Cnegld]] < ¢ FlGO)] <c CrilCi[0]] < ¢

Figure 9 Reinversion blocking relation.

Remark, in relation to this situation, that preemptive rewriting cannot be easily defined
on equivalence classes of neg/neg permutations (or other presentations of focusing that crush
the invertible phase in one not-so-interesting step, such as higher-order focusing), as the
order of the invertible rules in a single phase may determine where a non-invertible phase
stops its preemption and is blocked in the middle of the invertible phase. Reinversion restores
this independence on invertible ordering. This explains why the meta-theory of maximal
multi-focusing was conducted in the non-preemptive system, using the relation between
proofs that always applies reinversion after preemptive rewriting.

The other interesting case is a non-invertible phase 7y having traversed a family of
non-invertible phases (7});cr, before merging into some non-invertible phase ;. Reinversion
will move its negative phase vy, reverting the preemption of the (7}) on the invertible formulas
introduced by mp. But the important preemptions that happened, namely the traversal by g
of each of the invertible phases (v});cs, are not reverted: each v} is blocked by the 7 below
and thus cannot be reverted below my. As g traversed both the v} and the =}, it does not
have the corresponding invertible formulas in its context anymore, and is well-positioned
even in a non-preemptive proof.

» Lemma 5. Ift is the proof term of the preemptive derivation D :T'F A, and u is such
that t > u, then w is a valid (preemptive) proof term for T F A.

» Lemma 6. If u is a valid proof term in the preemptive system, and a normal form of the
relation (), then u is also a valid proof term for the non-preemptive system.

» Theorem 7. If t is a proof term for D and u for £, then D = £ if and only there is a v’
such that t —* v’ > u, and u is a normal form for (>).
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3.2 Multi-focused terms as lambda-terms

There is a natural embedding [t| of a multi-focused term t into the standard lambda-
calculus, generated by the following transformation, where ¢[Z := @] represents simultaneous
substitution:

llet 7 =7 in p’t] := [p*]([t][z := [n]])
[0](t) =1t k] () =t Loi p](t) == o3 [p (1)

The substitutions break the invariant that the scrutinee of a sum-elimination construct is
always a variable. However, as only negative terms are substituted, sum-elimination scrutinee
are always neutrals — embedding of negative terms. In particular, this embedding does
not create any -redex. Proof terms coming from non-preemptive multi-focusing are also
always in n-long form, and this is preserved by the embedding; with the restriction present
in Lindley’s work that only neutral terms (eliminations) are expanded — this avoids issues
of commuting conversions. We mean here the weak n-long form, determined by the weak
equation (m : A+ B) =weak-y 0(M, Z1.01 T1,T2.02 T2).

» Lemma 8. If T' - ¢ : A in the preemptive multi-focused system, then T' b |t] : A in
simply-typed lambda-calculus, and |t| is in S-normal form. Ift is valid in the non-preemptive
system, then the pure neutral subterms of [t| are also in weak n-long form.

3.3 Lindley’s rewriting relation

The strong n-equivalence for sums makes lambda-term equivalence a difficult notion. For any
term m : A+ B and well-typed context C[0], it dictates that C[m] ~ §(m, z1.C[z1], x2.C[z2]).
In his article [8], Sam Lindley breaks it down in four simpler equations, including in particular
the “weak”, non-local n-rule (where F' represents a frame, that is a context of term-size
exactly 1):

m = d(m,x1.01 T1,T2.02 T2) (+.7)

F[6(p, x1.t1, x2.t2)] = §(p, x1. F[t1], z2. F[ta]) (move-case)

s (p, 21.0(p, y1.t1,Y2.t2),

~ € = . = ted- d
xg.é(p, Zl-U1722~U2) ) (p, x1.ti[y1 :=x1], T2.ug[20:=x2]) (repeated-guard)

o wadt
d(p, x1.t,x2.1) <k t (redundant-guard)

Lindley further refines the move-case equivalence into a less-local hoist-case rule. Writing

D for a frame that is either d(p, z1.0, x9.t) or §(p, x1.t, 22.00), D* for an arbitrary (possibly

empty) sequence of them, and H any frame that is not of this from, hoist-case is defined as:

H[D*[5(t, zy.t1, sz.tg)]] — 6(t, .Tl.H[D*[t1]], .TQ.H[D*[tQH)

Lindley’s equivalence algorithm (Theorem 36, p. 13) proceeds in three steps: rewriting
terms in Snyg-normal forms (using the weak (+.7) on sums), then rewriting them in v-normal
form, and finally using a decidable redundancy-eliminating equivalence relation called ~. The
rewriting relation v is defined as the closure of repeated-guard, redundant-guard (when read
left-to-right) and hoist-case; v is a weak restriction of it defined below. The equivalence ~
is the equivalence closure of the equivalence repeated-guard, redundant-guard, and move-case
restricted to D-frames — clauses of a sum elimination.
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We discuss redundancy elimination, that is aspects related to repeated-guard and redundant
guard, in Section 4, and focus here on explanation of the other rewriting processes (57vg and
hoist-case) in logical terms. We show that multi-focused terms in (=)-normal form embed
into fnygy-normal forms. As we ignore redundancy elimination, this is modulo ~.

The 8 and n rewriting rules are standard — for sums, this is the weak, local n-relation, and
not the strong n-equivalence. As explained in the previous subsection, embeddings of proof
terms valid in the non-preemptive system — as are (=)-normal forms — are in S7-normal
form. The rewriting vg is defined as the extrusion of a sum-elimination out of an elimination
context: O ¢ | m; O] (0, 1.1, z2.t).

» Lemma 9. Terms for valid preemptive multi-focusing derivations are in yg-normal form.

This rigid structure of focused proofs is well-known, just as Sn-normality or commuting
conversions are not the interesting points of Lindley’s work. The crux of the correspondence
is between the transformation to maximal proofs, computed by (=), and his y-rewriting
relation. There is an interesting dichotomy:

Preemptive rewriting, which merges non-invertible phases, is where most of the work

happens from a logical point of view. Yet this transformation, on the embeddings of the

multi-focused proof terms, corresponds to the identity!

Reinversion, which is obvious logically as it only concerns invertible rules which commute

easily, corresponds to y-rewriting on the embeddings.

Of course, preemptive rewriting is in fact crucial for y-rewriting. It is the one that
determines upto where negative terms can move in the derivation, and in particular the
scrutinees of sum eliminations. Reinversion would not work without the first preemptive
rewriting step, and applying reinversion on a proof term that is not in preemptive-normal
form may not give a y-normal embedding. Note that the proof of the last theorem in this
section makes essential use of the confluence of y-rewriting, one of Lindley’s key results.

» Lemma 10. Ift — u, then [t] =, |u].
> Lemma 11. [ft > u, then [t| =% [u].

» Lemma 12. If u is in (=)-normal form, then for some v =oc u, |u'] is in y-normal
form modulo ~.

» Theorem 13 (y-normal forms are embeddings of maximally-focused proofs). If |t] —3 n
and n is y-normal, then there are u /. u' such that t = u and |u'| ~ n. In particular, u is
mazximally multi-focused.

4 Redundancy elimination

In the previous section, we have glossed over the fact that Lindley’s v-reduction also simplifies
redundant and duplicated sum-eliminations. Those simplifications are not implied by multi-
focusing — they are not justified by proof theory alone. Our understanding is that they
correspond to purity assumptions that are stronger than the natural equational theory of
focused proofs. On the other hand, starting from maximally multi-focused forms is essential
to being able to define those extra simplifications. We do so in this section, to obtain a
system that is completely equivalent to Lindley’s.
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We simply have to add the following simplifications on proof terms:

REDUNDANT-FOCUS REDUNDANT-GUARD
- o= ? - = ? L x1,x2¢t
let Z,y,z = n,n',n' inp't =5 let Z,y =n,n  in p'tlz:=y] §(x, x1.t, w0.t) Roe t

REPEATED-CASE-1
O, 1.0 (2, yru, Youz), To.tz2) Rioc 0(3 x1.u1[y1 :=21], T2.12)

REPEATED-CASE-2
§(x, x1.t1, 2.0(2 yru, Yauz)) Noc (2 1.1, T2 Ua[y2 :=x2])

While those rules are not implied by focusing, they are reasonable in a focused setting,
as they respect the phase separation. As the redundancy-elimination rules test for equality
of subterms, they have an unpleasant non-atomic aspect (repeated cases only test variables),
but this seems unavoidable to handle sum equivalence (Lindley [8], or Balat, Di Cosmo
and Fiore [2], have a similar test in their normal form judgments), and have also been
used previously in the multi-focusing literature, for other purposes; in Alexis Saurin’s PhD
thesis [10], an equality test is used to give a convenient ®/& permutation rule (p. 231).

» Definition 14. We define the relation ¢ =4 u between proof terms of the (preemptive)
multi-focusing calculus as follows, where ¢; is a preemptive normal form, ¢, is a redundant-foci
normal form, and ug is a (>)-normal form: ¢ —* t; =% t3 >* ug Fec U

» Definition 15. We call the « in the target of the (=) relation simplified mazimal forms.

» Theorem 16 (Simplified maximal forms are vy-normal). Given a multi-focused term t, there
exists some u such that t = u, [t| =7 |u], and |u] is in y-normal form. This u is unique
modulo local equivalence.

» Corollary 17. Two multi-focused proof terms are extensionally equivalent if their maximally
multi-focused normal forms are locally equivalent (modulo redundancy elimination).

Related and Future work

Maximally multi-focused proofs were previously used to bridge the gap between sequent
calculus, as a rather versatile way of defining proof systems, and specialized proof structures
designed to minimize redundancy for a fixed logic. The original paper on multi-focusing [5]
demonstrated an isomorphism between maximal proofs and proof nets for a subset of linear
logic. In recent work [4], maximally multi-focused proof of a sequent calculus for first-order
logic have been shown isomorphic to ezpansion proofs, a compact description of first-order
classical proofs.

There are some recognized design choices in the land of equivalence-checking presentation
that can now be linked to design choices of focused system. For example, Altenkirch et al. [1]
proposed to make the syntax more canonical with respect to redundancy-elimination by using
a n-ary sum elimination construct, while Lindley prefers to quotient over local reorderings of
unary sum-eliminations. This sounds similar to the choice between higher-order focusing
([12]), where all invertible rules are applied at once, or quotienting of concrete proofs by
neg/neg permutations as used here.

When we started this work, we planned to also study the proof-term presentation of
preemptive rewriting, in a term language for sequent calculus. We have been collaborating
with Guillaume Munch-Maccagnoni to study the normal forms of an intuitionistic restriction
of System L, with sums. In this untyped calculus, syntactic phases appear that closely
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resemble a focusing discipline, and equivalence relations can be defined in a more uniform
way, thanks to the symmetric status of the (non)-invertible rules that “change the type of the
result” (terms, values) and those that only manipulate the environments (co-terms, stacks).

Conclusion

We propose a multi-focused calculus for intuitionistic logic in natural deduction, and establish
the canonicity of maximally multi-focused proofs by transposing the preemptive rewriting
technique [5] in our intuitionistic, natural deduction setting. By studying the computational
effect of preemptive rewriting on proof terms, we demonstrate the close correspondence with
the rewriting on lambda-terms with sums proposed by Lindley [8] to compute extensional
equivalence. Adding a notion of redundancy elimination to our multi-focused system makes
preemptive rewriting precisely equivalent to Lindley’s y-rules. In particular, the resulting
canonical forms, simplified mazimal proofs, capture extensional equality.

Acknowledgements. The author thanks his advisor, Didier Rémy for the freedom of making
an overly long detour through the proof search literature; Alexis Saurin for his advice, and
Pierre-Evariste Dagand, Sam Lindley, and anonymous reviewers for their helpful comments.
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—— Abstract

For A-terms constructed freely from a type signature in a type theory such as LF, there is a simple

inductive subordination relation that is used to control type-formation. There is a related — but
not precisely complementary — notion of independence that asserts that the inhabitants of the
function space 7 — 7 depend vacuously on their arguments. Independence has many practical
reasoning applications in logical frameworks, such as pruning variable dependencies or transport-
ing theorems and proofs between type signatures. However, independence is usually not given a
formal interpretation. Instead, it is generally implemented in an ad hoc and uncertified fashion.
We propose a formal definition of independence and give a proof-theoretic characterization of it
by: (1) representing the inference rules of a given type theory and a closed type signature as
a theory of intuitionistic predicate logic, (2) showing that typing derivations in this signature
are adequately represented by a focused sequent calculus for this logic, and (3) defining indepen-
dence in terms of strengthening for intuitionistic sequents. This scheme is then formalized in a
meta-logic, called G, that can represent the sequent calculus as an inductive definition, so the
relevant strengthening lemmas can be given explicit inductive proofs. We present an algorithm
for automatically deriving the strengthening lemmas and their proofs in G.

1998 ACM Subject Classification F.4.2. Mathematical logic: proof theory
Keywords and phrases subordination, independence, sequent calculus, focusing, strengthening

Digital Object Identifier 10.4230/LIPIcs. TLCA.2015.332

1 Introduction

In logical frameworks such as LF [6] or G [4] that are designed to reason about typed A-terms
qua data, one notion that appears again and again is dependency: when can the structure
of one group of A-terms depend essentially on that of another group of A-terms? The
most widely studied general notion of dependency is subordination [15, 17, 7], which is best
explained using an example. Consider A-terms built out of the following type signature of
constants, where nat and bt respectively denote natural numbers and binary trees with
natural numbers in the leaves.

z : nat. s : nat — nat. leaf : nat — bt. node : bt = bt — bt.

From this signature, it is immediately evident that a closed S-normal term of type bt can
— indeed, must — contain a subterm of type nat, so we say that nat is subordinate to bt. The
subordination relation < on types can be derived from a type signature as follows (adapting
[7, Definition 2.14]). For any type 7, write H(7) for its head, which is the basic type that
occurs rightmost in the chain of —s (or dependent products in the case of dependent types) in
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7. Then, for every type 71 — -+ — 7, — a (here, a is the head) that occurs anywhere in the
signature, set H(7;) < a for every i € 1..n. Finally, define 71 < 72 generally as H(r1) < H(72)
and close < under reflexivity and transitivity.

With this definition, and the above signature, we have that nat < bt but bt £ nat. This
notion of subordination, when strictly enforced such as in canonical LF [17, 7], enables a
kind of modularity of reasoning: inductive theorems about the A-terms of a given type can
be proved in the smallest relevant signature and imported into larger signatures that do not
contain subordinate types. For instance, meta-theorems about nats, proved in a context
of nat assumptions, can be transported to contexts of bt assumptions since bt jé nat. It
is indeed this complement of subordination that is most useful in reasoning: intuitively,
bt £ nat means that the inhabitants of bt — nat are functions whose arguments cannot
occur in their bodies in the S-normal form. This negative reading of subordination can
be used to prune dependencies during unification, which may bring an unsolvable higher-
order problem into a solvable pattern problem [9], or to prevent raising a variable over
non-subordinate arguments, producing more concise proofs [3].

However, this pleasingly simple notion of subordination has a somewhat obscure formal
interpretation: the definition is independent of the typing rules and it is unclear how they
are related. We set out to formalize such a relation in terms of an inductive characterization
of the (8-normal) inhabitants of types, and in the process we discovered a curious aspect of
the above definition of subordination that manifests for higher-order constructors. Take, for
instance, the alternative type (nat — bt) — bt for leaf. Nothing changes as far as the <
relation is concerned: nat — bt still occurs in the signature, so nat < bt is still true.! Yet,
if we look at all S-normal terms of type bt now, there can be no subterms of type nat since
there does not exist a constructor for injecting them into terms of type bt in the base case.
The definition of < above clearly over-approximates possible dependencies, for reasons that
are not at all obvious, so its complement is too conservative.

In this paper we propose an alternative view of dependency that is not based on the
subordination relation. We directly characterize when one type is independent of another
with a proof-theoretic view of independence: for every claimed independence, we establish,
by means of an induction over all typing derivations based on a given signature, that indeed
a certain dependency is not strict. This view has several benefits:

First, our notion of independence is larger than non-subordination, which means that it

can be used for more aggressive pruning of dependencies.

More important is that we have strong confidence in the correctness of our definition

of independence, since it is now a derived property of the type system. Indeed, we

propose an algorithm that extracts formal inductive proofs of independence that can be
verified without needing a built-in notion of subordination or independence. This changes
independence from a trusted framework-level procedure to a certifying procedure.

Finally, we use only standard and simple proof-theoretic machinery in our definition. We

require neither rich type systems nor sophisticated meta-theoretic tools.

Our view of independence has the following outline, which is also the outline of the paper.

1. We start (Section 2) by defining independence as a property of a given type theory.
2. We then (Section 3) describe a specification language built around the logic of higher-order
hereditary Harrop formulas (HH) [10]. This is a fragment of first-order intuitionistic logic

! In canonical LF [7, Definition 2.14], well-formedness of signatures requires subordination of argument
types of all dependent products.
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with a particularly simple focused proof system [16]. It can also be seen as the minimal
logical core of every logical framework.

3. We then (Section 4) use the language to give an adequate encoding of the inference system
that underlies a given type system. To keep the presentation simple, we have chosen to
use the simply typed A-calculus, but the technique generalizes at least to LF [13, 14]. In
terms of this encoding, we characterize independence as a particular kind of strengthening.

4. We then (Section 5) take the focused HH sequent calculus as an object logic in the
reasoning logic G that adds the remaining crucial ingredients: a closed world reading,
induction, fn-equality of A-terms, and generic reasoning. This is the two-level logic
approach [5] that underlies the Abella theorem prover [18].

5. Lastly (Section 6) we show how strengthening for typing derivations is formalized in G,
and give an algorithm for automatically deriving these lemmas from a given signature.
We show an application of the formalization to pruning unnecessary dependence between
variables in G.

The Abella development of examples in this paper is available at:

http://abella-prover.org/independence.

2 Independence in Type Theory

Intuitively, in a given type theory, 75 is independent of 7 if and only if the type 71 — 7
is only inhabited by abstractions whose bodies in the S-normal form do not contain the
arguments. We can write this as a property on typing derivations:

» Definition 1 (Independence). Let I'F¢ : 7 be the typing judgment in the given type theory.
The type 75 is independent of 71 in I if whenever I', x:7 ¢ : 75 holds for some ¢, the S-normal
form of ¢ does not contain z, i.e., I' ¢ : 75 holds. |

A straightforward way to prove such a property is to perform inductive reasoning on the
first typing derivation. For this, we need to know not only what are the possible ways to
prove a typing judgment, but also that they are the only ways. This is the closed-world
assumption that underlies reasoning about a fixed type signature. However, even with this
assumption, the inductive proofs for independence can be hard to establish: since the target
type 7y is fixed, the inductive hypothesis will not be applicable to new types encountered
during the induction. To see this, suppose we are working with the simply-typed A-calculus
(STLC). Typing rules for STLC derive judgments of the form I'¢ : 7 where T" is a context
that assigns unique types to distinct variables, ¢ is a A-term and 7 is its type. The typing
rules are standard:
T el 'tti:mm—7 Thta:m Dzmbt:r (z¢gl)

——— t-b t-a t-ab
TkFz:T as PHt1ta: 7 PP F'FXxXen.t:m — 7 abs

A direct induction on I' - ¢ : 7 using the typing rules produces three cases. The case when
t is an application results in two premises where the premise for the argument has a new
target type 71 (as shown in t-app). Since 7 can be any arbitrary type that is not necessarily
related to 7, it is not possible to appeal to the inductive hypothesis.

The key observation is that the signature must be fixed for the dependence between types
to be fully characterized. We propose an approach to formalize independence by (1) giving an
encoding of a given type theory and a closed signature in a specification logic which finitely
characterizes the dependence between types, (2) proving that the encoding is faithful to the
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Y, &m0, Fh,...,F - A (Fel) Z;F,[F]FAf
S TFIzr F= = F, = A reduce ST FA ocus

SHO:7 A=A {STHF[0)} foriel.n
50, [Her:mi, .oy TniTn. Ft = ... = F, = A'FA

backchain

Figure 1 Inference rules for HH. For reduce, we assume that £ ¢ X. In the backchain rule, 6
stands for a substitution [t1/x1,...,tn/Ts]; we write X+ 0 : 7 to mean X F¢; : 7; for each i € 1..n.

original type theory and signature, and (3) formally stating and proving the independence as
lemmas in a reasoning logic that gives an inductive reading of the encoding. The first two
tasks are covered by Section 3 and 4. The last task is the topic of Section 5 and 6. We use
STLC as the example throughout the paper; extending to other type theories such as LF is
left for future work.

3 The Specification Language

Let us begin with a sketch of a specification language for encoding rule-based systems. This
language will be used to encode type theories in later sections.

3.1 The HH Proof System

The logic of higher-order hereditary Harrop formulas (HH) is an intuitionistic and predicative

fragment of Church’s simple theory of types. Expressions in HH are simply typed A-terms.

Types are freely formed from built-in or user-defined atomic types containing at least the
built-in type o (of formulas) and the arrow type constructor — (right-associative). The head
type of T is the atomic type that occurs rightmost in a chain of —s. Terms are constructed
from a signature (written X); we write X - ¢ : 7 if a A-term ¢ has type 7 in ¥ with the
usual rules. Logic is built into HH by means of logical constants including = :0 —0 — o
(written infix and right-associative) for implications and IL; : (7 — o) — o for universal
quantification over values of a type 7 that does not contain o. Predicates are constants in
the signature with head type o. For readability, we will often write ¢t; < t5 for t; = ¢1, and
abbreviate Il (Az:7.t) as Ia:7.t and Hxqy:7y ... Ha,:7,. t as [Iz:7. ¢ where T = z1,..., 2,
and 7 = 71,...,7,. We also omit type subscripts when they are obvious from context.

An atomic formula (written A) is a term of type o that head-normalizes to a term that is
not an application of one of the logical constants = or II,. Every HH formula is equivalent
to a normalized formula (written F') of the form IIz:7. F} = --- = F,, = A. In the rest of
this paper we will assume that all formulas are normalized unless explicitly excepted. Given
a normalized formula F = Ilz:7. F} = --- = F,, = A, we write: H(F), the head of F, for
A; L(F), the body of F, for the multiset {F1,..., F,}; and B(F), the binders of F, for the
typing context z:T.

The inference system for HH is a negatively polarized focused sequent calculus, also known
as a uniform proof system, that contains two kinds of sequents: the goal reduction sequent
¥;T'F F and the backchaining sequent X: T, [F] = A with F under focus. In either case, T is
a multiset of formulas called program clauses and the right hand side formula of I~ is called
the goal formula. Figure 1 contains the inference rules.

An HH proof usually starts (reading conclusion upwards) with a goal-reduction sequent
;I'F F. If F is not atomic, then the reduce rule is applied to make it atomic; this rule
extends the signature with B(F) and the context with £(F'). Then the focus rule is applied
which selects a formula from the context I". This formula is then decomposed in the backchain
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rule that produces fresh goal reduction sequents for (instances of the) body, assuming that
the instantiated head of the focused formula matches the atomic goal formula. This process
repeats unless the focused formula has no antecedents.

The three rules of HH can be combined together into one synthetic rule for goal reduction
sequents that have an atomic goal formula.

Fel XH0:7 H(F)=A {E,B(G[O]);F,E(G[G]) I—H(G[G])} for G € L(F)
S, THA

bcred

Every premise of this rule is a goal reduction sequent with an atomic goal formula. In the
rest of this paper we will limit our attention to this fragment of HH.

3.2 Encoding Rule-based Systems in HH

Because the expressions of HH are A-terms, we can use the A-tree approach to syntax (\TS),
sometimes known as higher-order abstract syntaxz (HOAS), to represent the rules of deductive
systems involving binding using the binding structure of A-terms. Binding in object-language
syntax is represented explicitly by meta-language A-abstraction, and recursion over such
structures is realized by introducing fresh new constants using universal goals and recording
auxiliary properties for such constants via hypothetical goals. This kind of encoding is concise
and, as we shall see in later sections, has logical properties that we can use in reasoning.
We present the encoding of typing rules for STLC as described in Section 2 as a concrete
example of specifying in HH. Two basic types, ty and tm, are used for classifying types and
terms in STLC. We then use the following signature defining the type and term constructors:

b:ty. arr:ty — ty — ty. app : tm — tm — tm. abs:ty — (tm — tm) — tm.

The type of the abs uses ATS to encode binding. To illustrate, (Ay:b — b. Az:b. y x) is encoded
as abs (arr b b) (Ay.abs b (Az.app y z)).

We define a predicate of : tm — ty — o to encode the typing judgments in STLC, with the
context implicitly represented by the context of HH sequents. The typing rules are encoded
by the following program clauses (where the outermost universal quantifiers are omitted):

of (app M1 M) T <= of M; (arr T1 T) <= of M> Th
of (abs T4 R) (axrxr T1 T) <« (lz.of (Rz) T < of = T1)

Here, we are following the usual logic programming convention of writing universally quantified
variables using upper-case identifiers.

To see that these clauses accurately represent the typing rules of STLC, consider deriving
a HH sequent X;'Fof M T, where I' contains the clauses above and the possible assignments
of types to variables introduced by the second clause corresponding to the abstraction rule
t-abs. The only way to proceed is by focusing and backchaining on one of the clauses.
Backchaining on the first clause unifies the goal with the head formula and produces two
premises that corresponds to the premises of t-app. Backchaining on the second clause
followed by goal reduction results in X,z : tm;T',of x T} Fof (R ) T. Note that z is a fresh
variable introduced by reducing the universal goal and of x T} is the typing assignment of =
from reducing the hypothetical goal, which exactly captures the side condition of t-abs that
x must be fresh for I'. The rule t-bas is modeled by backchaining on assumptions in I' that
assigns types to variables introduced by t-abs.
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tAy b. tAy (arr Ty Tg) <= tAy T, < tAy Ts. tm (app M, Mz) < tn M, < tm M.
tm (abs T R) < (lz:tm.tm (R z) < tm ) < ty T.

Figure 2 An example encoding of an STLC signature into HH clauses

4 Independence via Strengthening

This section presents an encoding of STLC in HH that finitely captures the dependence
between types in a closed signature. Then the independence property can be stated as
strengthening lemmas and proved by induction.

4.1 An Adequate Encoding of STLC

The encoding is based on the types-as-predicates principle: every type is interpreted as
a predicate that is true of its inhabitants. The atomic types and constants of STLC are
imported directly into the HH signature. For every atomic type b, we define a predicate
b:b— o. We then define a mapping [—] from STLC types 7 to a function 7 — o as follows:

[b] = At.b ¢ if b is an atomic type. [ — =] = At Uz [11] 2 = [r2] (& z)

The mapping [—] is extended to typing contexts: for I' = x1:71, ..., &y:7,, we write [I'] for
the multiset of HH formulas {[n1] 1,..., [7] z»}. A typing judgment T'F ¢ : 7 is encoded
as an HH sequent I; [T'] F [7] ¢.

As an example, consider the signature with STLC as an object language as described
in Section 3.2 (not to be confused with STLC we are encoding). We have two predicates

tm:tm — o and ty : ty — o. Let I" be the STLC signature containing b, arr, app and abs.

It is translated into [I'] containing the program clauses in Figure 2 (in normalized form and
with outermost quantifiers elided): The typing judgment I,y : tm — tmtF abs b y : tm which
is provable in STLC is encoded as I', y:tm — tm; [I'], (llz:tm. tm x = tm (y o)) - tm (abs b y)
which is also provable in HH.

This encoding generalizes to richer type systems than STLC. An encoding of LF into HH
was presented in [2, 13, 14], which is essentially a superset of the encoding we are doing. The
soundness and completeness of the STLC encoding follows easily from the results in [13].

» Theorem 2. Let T be a well-formed context and T be a type in STLC. If '+t : 7 has
a derivation for a fn-normal term t, then there is a derivation of I';[I'] & [7] t in HH.
Conversely, if T; [T & [7] ¢ for any term t that is well-typed in HH, then T'Ft' : 7 where t’ is
the canonical (B-normal n-long) form of t.

Proof. This theorem is a special case of [13, Theorem 1]. The proof is almost the same. <

4.2 Independence as Strengthening Lemmas

By Definition 1 and Theorem 2, 75 is independent from 77 in I iff the following strengthening
lemma is true: if T', z:7y; [T'], [71] « F [72] ¢ holds for some ¢, then the S-normal form of ¢
does not contain x and T'; [I'] F [2] ¢ holds. Because the typing information in formulas
generated by [—] is statically determined by predicates and the translated program is finite,
it is possible to determine the dependence between types finitely. Thus, the independence
argument can be proved by induction.

Using the previous encoding example, let’s see how to prove that ty is independent of tm
in I which is the signature with STLC in Section 3.2. We need to show that I', x:tmF ¢ : ty
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implies T' - ¢ : ty, which by Theorem 2 is equivalent to ', z:tm; [['], tm x - ty ¢ implying
[; [T] -ty t. The proof proceeds by induction on the first assumption. Apparently, ty ¢
can only be proved by backchaining on clauses whose heads start with ty. The case when
ty t is proved by backchaining on ty b is immediate. For the case when t = arr t; to,
backchaining produces two premises I', z:tm; [['], tm « -ty t; (i € {1,2}). Applying the
inductive hypothesis we get T'; [['] -ty t;, from which the conclusion T; [I'] -ty (arr ¢; to)
follows easily.

5 The Two-Level Logic Approach
5.1 The Reasoning Logic G

When a relation is described as an inductive inference system, the rules are usually understood
as fully characterizing the relation. When interpreting the relation as a computation, we
can just give the inference rules a positive interpretation. However, when reasoning about
the properties of the inference system, the inductive definition must be seen in a negative
interpretation, i.e., as a prescription of the only possible ways to establish the encoded
property. Concretely, given the rules for typing A-terms in STLC, we not only want to identify
types with typable terms, but also to argue that a term such as Az.z x does not have a type.
We sketch the logic G that supports this complete reading of rule-based specifications by
means of fized-point definitions [4].

To keep things simple, G uses the same term language as HH and is also based on Church’s
simple theory of types. At the type level, the only difference is that G formulas have type
prop instead of o. The non-atomic formulas of G include formulas of ordinary first-order
intuitionistic logic, built using the constants T, L : prop, A,V,D: prop — prop — prop
(written infix), and V,,3; : (T — prop) — prop for types 7 that do not contain prop. To
this, G adds intensional equality at all types, =,: 7 — 7 — prop, which is interpreted as
Bn-convertibility. Like with HH earlier, we will drop the explicit types for these constants and
write quantifiers using more familiar notation. The proof system of G is a sequent calculus
with the standard derivation rules for logical constants [5], which we will not repeat here.

The next crucial ingredient in G is a mechanism for defining predicates by means of
fized-point definitions. Such a definition is characterized by a collection of definitional clauses
each of which has form Vz.A £ B where A is an atomic formula all of whose free variables
are bound by = and B is a formula whose free variables must occur in A. A is called the
head of such a clause and B is called its body. (For a fixed-point definition to be well-formed,
it must satisfy certain stratification conditions [8] that we do not elaborate on here.) To
illustrate definitions, let olist be a new basic type for lists of HH formulas, built from the
type signature nil : olist and (::) : 0 — olist — olist. Then, list membership (member)
and list concatenation (append) may be specified in G using the following definitional clauses:

member X (X :: L) = T. member X (Y :: L) = member X L.
append nil L L2 T. append (X :: L1) Ly (X :: L3) £ append L; L Ls.

As before, we use the convention of indicating universally closed variables with upper-case
identifiers. Read positively, these clauses can be used in the standard backchaining style to
derive atomic formulas: the goal must match with the head of a clause and the backchaining
step reduces the goal to deriving the instances of corresponding body. Read negatively, they
are used to do case analysis on an assumption: if an atomic formula holds, then it must be
the case that it unifies with the head of some clause defining it and the body of the clause is
derivable. It therefore suffices to show that the conclusion follows from each such possibility.
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Fixed-point definitions can also be interpreted inductively or coinductively, leading to
corresponding reasoning principles. We use an annotated style of reasoning to illustrate how
induction works in G. Its interpretation into the proof theory of G is described in [3]. When
proving a formula (Vz. Dy D --- D A D --- D D, D G) by induction on the atom A, the proof
reduces to proving G with the inductive hypothesis (vz.D; D --- D A* D --- D D, D Q)
and assumptions Dy, ..., A%, ..., D,. Here, A* and A® are simply annotated versions of A
standing for strictly smaller and equal sized measures respectively. When A is unfolded by
using a definitional clause, the predicates in the body of the corresponding clause are given
the * annotation. Thus, the inductive hypothesis can only be used on A* that results from
unfolding A® at least once.

The negative reading of fixed-point definitions in G requires some care. In the negative
view, universally quantified variables are interpreted extensionally, i.e., as standing for all their
possible instances. To illustrate, if nat were defined by nat z = T and nat (s X) £ nat X,
then one can derive Vx.nat x D G by case-analysis of the assumption nat x, which amounts
to proving [z/z]G and Vy.nat y D [s y/x|G. This extensional view of universal variables
is not appropriate when reasoning about binding structures viewed as syntax, where the
syntactic variables are not stand-ins for all terms but rather for names. To see this clearly,
consider the formula Yw. (Az.w) = (Az.z) D L. If equality of A-terms were interpreted
extensionally with V, we would be left with Vw. (Vz.w = z) D L which is not provable. Yet,
the A-terms (Az.w) and (Az.z) denote the constant and identity functions, respectively, and
are therefore intensionally different — neither is Sn-convertible to the other.

To achieve this intensional view, we come to the final ingredient of G: generic reasoning.
Every type of G is endowed with an infinite number of nominal constants, and there is
a quantifier V, : (7 — prop) — prop (for 7 not containing prop) to abstract over such
constants. The critical features of nominal constants are: (1) they are not Sn-convertible, so
Vz.Vy.x =y D L is derivable; and (2) formulas on the left and right of a G sequent interact
up to equivariance, which allows the nominal constants in one formula to be systematically
permuted to match those of the other. This latter property allows the V quantifier to permute
with all other connectives, including disjunction. The rules for introducing V quantified
formulas both as assumption and conclusion are similar: a formula Vz.A is reduced to [¢/z]A
where c¢ is a nominal constant that is not already present in A.

The general form of a G definitional clause therefore allows the V quantifier in heads:
Vz.(Vz.A) £ B. An instance of the clause must have z replaced by distinct nominal
constants that are not already present in the formula. Since  is quantified outside of z, their
instantiations cannot contain z, which is used to encode structural properties of terms in the
definitions. For example, (Vx.name x) = T defines name such that name X holds only if X
is a nominal constant. Another example is V7. (Vx.fresh x T) £ T which defines fresh
such that fresh X T holds only if X is a nominal constant that does not occur in T

5.2 An Encoding of HH in G

The HH proof system can be encoded as a fixed-point definition in G. The logical constants,
signatures, and terms are imported into G transparently from HH — this is possible since G
and HH use the same simple type system. The sequents of HH are then encoded in G using
the predicates seq: olist — o — prop and bch : olist — o — o — prop. The encodings
and their abbreviated notations are as follows:

HH g notation
>, I'FF seq' F {I'+F}
3 T,[FIFA bch ' FF A {I,[F]+ A}
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seq L (F=G)%&seq(F::L)G. bch L (G= F) A2seq L GAbch L F A.
seq L (lz:7. F z) & Vr:7.seq L (F ). beh L (Tlz:r. F ) A= 3t:.bch L (F t) A.
seq L A% atom AAmember F LAbch L F A, bch L AA2T.

Figure 3 Encoding of HH rules as inductive definitions in G.

The definitional clause for seq and bch are listed in Figure 3. Note that we use a list
of formulas to represent the multiset context in HH. This is not a problem since we can
prove that the ordering of clauses in the list in seq and bch formulas does not affect their
derivability as theorems about seq and bch in G.

The encoding of HH in G is adequate. The first two clauses defining seq exactly capture
the reduce rule. Note that in the second clause we use V to encode II in HH, since II
introduces fresh and unanalyzable eigenvariables into the HH signature. The third clause
encodes the focus rule, where atom is defined as

atom FF £ (VG.(F =Ma:7.G 2) D L) A (VG1,Ga. (F = (G1 = G2)) D 1).

The clauses defining bch exactly capture the backchain rule. Note that the two rules for
introducing IT actually represents a collection of rules for each instance of 7. In other words,
these rule are actually schematic rules. This is possible since the proof theory allows inductive
definitions to have infinitely many clauses. We will often write elements in olist in reverse
order separated by commas; the exact meaning of the comma depends on its context. For
example, given L1, Ly : olist and A : o, {L1, Lo, A+ G} stands for seq (A :: L) G for some
L : olist such that append L; Ly L holds.

Theorems of HH specifications can be proved through this encoding in G. As an example,
consider proving the uniqueness of the encoding of typing in STLC shown in Section 3.2. The
theorem can be stated as follows:

VL, M,T,T' . {TI',Ltof M T} >{T,LFof MT'} >T =T".

where T represents the program clauses defining of in Section 3.2.2

6 Formalizing Independence

This section first describes the formalization of independence in terms of strengthening for HH
sequents of a certain shape in G. Then a general algorithm for automatically deriving such
strengthening lemmas is presented. Lastly, an application of the formalization for pruning
variable dependencies in G is described.

6.1 Independence as Strengthening Lemmas in §

A strengthening lemma has the following form in G: Vz.{T', ' G} D {T'F G}. As we have
discussed in Section 3, an HH derivation always starts with applying reduce to turn the right
hand side to atomic form. Thus, it suffices to consider instances of strengthening lemmas
where G is atomic. This lemma is usually proved by induction on the only assumption. The
proof proceeds by inductively checking that a derivation of {I"”, F+ A} cannot contain any
application of focus rule on F'. In Section 3 we have shown that an HH derivation starting

2 This is not precisely correct, since the typing context L also needs to be characterized by some inductive
property; a complete exposition on this encoding can be found in the Abella tutorial [1].
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with an atomic goal can be seen as repeatedly applying bcred. At every point in such a proof,
we check whether the atomic goal A matches the head of F'. If such a match never occurs,
we can drop the assumption F' from every HH sequent.

We formalize this intuition to establish independence for STLC in terms of a kind of
strengthening lemma in G. Concretely, by the adequacy of the encoding of STLC in HH
and the adequacy of the encoding of HH in G, 75 is independent of 71 in I' if the following
strengthening lemma is provable in G:

VeV {[0], [n] zF [2] (t 2)} D 3.t = Oy t') A {[T] F [r2] ).

Note that the variables in the context I' become nominal constants of appropriate types
which are absorbed into formulas. The term (¢ x) indicates the possible dependence of ¢
on z. The conclusion ¢ = (Ay.t') asserts that ¢ is Sn-convertible to a term with a vacuous
abstraction; this is indicated by the fact that ¢’ is bound outside the scope of A. To prove
any instance of this lemma for particular types 7 and 75, we proceed by induction on the
only assumption. The conclusion 3t'.¢ = (Ay.t') is immediately satisfied when the atomic
goals in the derivation do not match [71] x, since this is the only hypothesis where 2 occurs.

As an example, ty is independent of tm in [I'] which contains the clauses in Figure 2 is
formalized as the following lemma;:

Vvt. Vo {[[],tmzFty (t2)} D3t .t = Ayt ) A{[T]Fty t'}
By induction on the assumption and introducing the goals, we get an inductive hypothesis
Ve Ve {[T],tmz -ty (t 2)} D3t .t = Qy.t') A{[T] -ty '}

and a new hypothesis {[T'], tm 2ty (¢ £)}®. Unfolding this hypothesis amounts to analyzing
all possible ways to derive this using the definitional clauses of Figure 3. Since ty (¢ z)
cannot match tm z, the selected focus cannot be tm x, so the only options are clauses selected
from [I'], of which only two clauses have heads compatible with ty (¢ x). In the first case, for
the clause ty b, we unite ¢ 2 with b, instantiating the eigenvariable ¢ with Ay.b; this in turn
gives us the witness for ¢’ to finish the proof. In the other case, ¢t z is united with arr #; t,
(for fresh eigenvariables ¢, and t). Here, t; and t are first raised over z to make the two
terms have the same nominal constants, and bcred then reduces the hypothesis to the pair of
hypotheses, {[['],tm x -ty (t; z)}* and {[I'], tm 2 -ty (t2 #)}*. The inductive hypothesis
applies to both of these, so we conclude that {['] -ty t}}* and {[['] -ty t5}* for suitable
t} and t} that are independent of z. We can then finish the proof by forward-chaining on
the definitional clauses for HH. Observe that this proof follows the informal proof described
in Section 4.2

As another example, let’s see why tm is not independent of ty, since abstractions contain
their argument types. The relevant lemma would be:

vt. Vo {[[],ty zFtm (t )} D 3 .t = (Ay. ') A{[T]Ftm t'}.

Here, a direct induction on the assumption would not work because we can now focus on
the fourth clause of Figure 2 that would extend the context of the HH sequent with a fresh
assumption of the form tm z’. The inductive hypothesis is prevented from being used because
the context has grown. This is a standard feature of HH derivations, and we therefore need
to give an inductive characterization of the structure of the dynamically growing context.
We use the technique of defining these dynamic extensions in terms of context definitions; for
example, for the tm predicate, this definition has the following clauses:

ctx nil & T; (Vz.ctx (tmx :: L)) £ ctx L.
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Then we generalize the lemmas as follows:
Vt,L.Vx.ctx LD {[T],L,ty ztm (t 2)} D .t = Qy.t') A{[T],L+tu t'}.

Now, by induction, when the fourth clause of Figure 2 is selected for focus, one of the
hypotheses of the resulting bered is {[I'], L, ty x -ty (t; z)} (for a new eigenvariable t1). It
is entirely possible that ty (¢; z) is proved by selecting ty x. Thus we cannot conclude the
original assumption does not depend on ty = — so tm is not independent of ty.

6.2 Automatically Deriving Strengthening Lemmas

The above illustrations show that these strengthening lemmas have a predictable form and
proof structure. We will now give an algorithm that extracts these proofs automatically. The
key insight is that the strengthening lemmas can be provable because of a failure to match
the heads of the encoded clauses against the right hand sides of the HH sequent. Therefore,
we simply need to enumerate the possible forms of the right hand sides and generate a
mutually inductive lemma to cover all possibilities. This intuition is not entirely trivial to
implement, since the HH contexts can potentially grow on every bcred step, which must then
be accounted for.

For = (lIz. Fy = ... = F, = A), let H,(F) stand for the head predicate in A and
L,(F) for {H,(F;) |1 €i.n}. To prove VZ.{[', F - A} D {T'F A}, we proceed as follows:

1. For every predicate a in I', we compute the possible dynamic contexts that arise in proofs
of atomic formulas of head a.

2. For every predicate a in I' and A, we compute a collection of predicates S(a) which
contains the head predicates of atomic formulas that may occur as the goal in a derivation
starting with an atomic goal formula A’ for which #,(A’) = a. That is, the provability
of any goal A’ of head a only depends on formulas whose heads are in S(a).

3. If Hy(A) =a and H,(F) & S(a), then for every predicate a’ € S(a) and any atomic goal
A st Hy(A') =d,Vz.{I,F+ A’} D {T'+ A’} is provable. The proof proceeds by a
simultaneously induction on all these formulas.

4. Since a € S(a), the required lemma is just one of the cases of the simultaneous induction.

Before we elaborate on these steps in the following subsections, note that our algorithm
is sound and terminating, but not complete. The existence of a decision procedure for
strengthening lemmas is outside the scope of this paper.

6.2.1 Calculating the dynamic contexts

Let I' be a context that contains only finite distinct clauses, A be an atomic goal and F' be some
program clause. We would like to prove the strengthening lemma Vz.{I', F- A} D {TF A} in
G. Let A be the set of predicates occurring in I'. For every predicate a € A, let C(a) denote
a set of formulas that can possibly occur in the dynamic contexts of atomic formulas of head
a. The only way formulas can be introduced into dynamic contexts is by applying bcred.
Given a program clause I1z. G; = - -+ = G,, = A, the dynamic context of H(G;) is obtained
by extending the context of A with program clauses in £(G;) for 1 <14 < n. Algorithm 1
derives a set of constraints C on C based on this observation. It traverses all the program
clauses and their sub-program clauses in formulas in I' and collects a set C of constraints for
dynamic contexts which must be satisfied by derivations starting with I" as the context.

To compute a set of dynamic contexts that satisfies C, we start with C(a) = () for all
a € A and iteratively apply the constraint equations until the constraint is satisfied. It is
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Algorithm 1 Collecting constraints on dynamic contexts

Let I be a finite set equal to I" and C + ()

while IV # () do
pick some D = (1Iz.G1 = -+ = G, = A) from T’
add equations {C(H,(G:)) = C(Hp(Gi)) UC(Hp(A)) UL(Gs) | i € 1.n} to C
remove D from I'' and add clauses in Uia”n L(G;) to T’

end while

Algorithm 2 Collecting constraints on the dependency relation

let I be a finite set equal to I' and S + 0
for all a € A do
for all D e ' U C(a) where D = (I2.G1 = ... = G, = A) and H,(A) =a do
add (S(a) = S(a) U Uiel_'n S(Hp(G:))) to S
end for
end for

easy to see that this algorithm terminates: since the iterations never shrink C(a) for a € A,

the only way the algorithm goes on forever is to keep adding new clauses in every iteration.

This is impossible since there are only finitely many distinct program clauses. In the end,

we get a finite set of dynamic clauses C'(a) for every a € A that satisfies constraints in C.

Suppose C(a) = {D1,...,D,} for a € A. We define the context relation ctx, as follows:

ctxqg nil 2 T; ctxq (D1:: L) £ ctx, L S ctxq (Dpn it L) £ ctx, L.

6.2.2 Generating the dependency relation between predicates

By the bcred rule, given a program clause [1z. G; = ... = G, = A, the provability of A will
depend on the provability of H(G;) for 1 € 1..n. For any a € AU {H,(A)}, a can proved by
backchaining on either some clause in T' or in the dynamic contexts C(a). Since both T and
C'(a) are known and finite, we can derive a set S(a) containing predicates that a depends on.

The steps for computing S are similar to that for C. First, we derive a set of constraints
S, by Algorithm 2. To generate the dependency relations, we start with S(a) = {a} for all
a€ AU{H,(A)} and iteratively apply the constraint equations until the constraints in &
are satisfied. The algorithm terminates by an analysis similar to the previous one.

6.2.3 Constructing proofs for the strengthening lemmas

Now we are in a position to prove the strengthening theorem vz. {I', F - A} D {T'F A} in
G. Since the proof of A may depend on formulas with different heads, we generalize the
strengthening lemma to take into account of related predicates.

» Theorem 3. Let S(H,(A)) = {a1,...,an}, The generalized strengthening lemma is

VI, %1. ctze, T D {T, T, Flrai1 21} D{T,T" a1 #1}) A - A
(YT, & ctae,, I D {T, T, FFan Zn} D {0, " Fa, #,})

If Hy(F) & S(Hp(A)), then this lemma has a proof in G.
Proof. By simultaneous induction on {I',T, F'l- a; Z;} for 1 <i < n. <

The original strengthening lemma is an immediate corollary of Theorem 3:

» Corollary 4. If H,(F) & S(H,(A)), then VZ.{T', F+ A} D {T'F A} has a proof in G. <
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Since the proofs for Theorem 3 is constructive, we obtain a certifying algorithm to state
and prove strengthening lemmas in G on demand.

6.3 Application

This section describes an application of the formalization of independence: to prune un-
necessary dependence on variables in G. When analyzing the terms containing nominal
constants in G, it is often necessary to introduce variable dependencies on such constants.
As an example, the V introduction rule creates a new eigenvariable that is raised over the
nominal constants in the principal formula. However, if we can show that the type of the
eigenvariable is independent from the types of the nominal constants, then we can suppress
this dependency. In Abella, the theorem prover based on G, an ad-hoc algorithm based on
checking of subordination relations is used to prune such dependencies, but the exact logical
basis of the algorithm has never been adequately formulated.

Now that we can derive independence lemmas, we can recast this pruning of nominal
constants in terms of the closed-world reading of types. To give it a formal treatment in
the logic, we reflect the closed-world reading of types into the proofs. This can be done by
encoding the type theory of HH (which is STLC) into an HH specification as described in
Section 4 and then to use the derived strengthening lemmas directly.

As an example, suppose we want to prove the following theorem

VX,T.name X D {of X T} D ---

where X has type tm and 7" has type ty. By introducing the assumptions and case analysis
on name X, X will be unified with a nominal constant n and the dependence of T" on n
will be introduced, resulting in the hypothesis {of n (T n)}. This dependence of T on n
is vacuous as we have already seen — types cannot depend on terms in STLC. However, to
formally establish the independence, we require T" to be a well-formed type, so we need to
change the theorem to

VX, T,L.ctx LD {T,L+ty T} Dname X D {of X T} D :--

where I" contains the program clauses described in Figure 2. For the purpose of demonstration,
we assume the context definition ctx contains infinitely many nominal constants of type tm,
which is defined as follows:

ctx nil = T; (Vz.ctx (tmx :: L)) 2 ctx L.

We perform the same introduction and case analysis on name X and get hypotheses ctx (L n),
{T, L nkty (T n)} and {of n (T'n)}. By the definition of ctx, when treated as a multiset, L n
must be equivalent to (tm n :: L') where L’ does not contain n. Thus {T', L', tm ntty (T n)}
holds. At this point, we can use the algorithm in Section 6.2 to derive and prove the following

strengthening lemma
VI.Vz AT, L tmz -ty (T 2)} D3IT. T = Qy. T)A{T, L' -ty T'}.

By applying it to {I', L', tm n+ty (T n)}, we get T = \y. T’ for some 1" not containing y.
Hence {of n (T n)} becomes {of n T'}. Note that we choose a particular definition of ctx
for demonstration; the exact context of well-formed terms can vary in practice, based on the
signature. Nevertheless, pruning of nominal constants can always be expressed by proving
and applying the strengthening lemmas derived from independence.



Y. Wang and K. Chaudhuri

7 Related Work

The earliest formulation of dependency that we were able to find is by Miller [9, Definition
11.3], where it is defined in terms of derivability of a certain fragment of strict logic for use
in a unification procedure. Although we do not have a proof of this, this notion appears to
coincide with the negation of our notion of independence. It is unclear why this definition
was never adopted in subsequent work on logical frameworks, but we can speculate that
one reason is its inherent cost, since it requires proving an arbitrary theorem of relevant
logic. Indeed, using independence in the core unification engine is probably inadvisable if
the unification engine is to be trusted.

It is more popular to define subordination relations independently of proof-theory, as has
been done for many variants of LF. In [15], Virga proposed a dependence relation between
types and type families in LF to constraint higher-order rewritings to well-behaved expressions.
Later, this relation was popularized as subordination and used in the type theory of canonical
LF to show that canonical terms of one type 7 is not affected by introduction of terms of
another type that is not subordinate to 7 [17, 7]. The subordination relations in these cases
are defined to be strong enough so that the type theory only deals with well-formed instances.

For reasoning applications, in order to move from one context to another, it is often
necessary to check if a term of type 7 can occur in the normal form of another type 75.
Traditionally, the complement of subordination has been thought to be the right interpretation
of independence. However, it is unclear how exactly it can be translated into evidence in the
theory that supports the reasoning. Thus, ad hoc algorithms have been developed in systems
like Twelf [11], Beluga [12] and Abella [18], which all lack formal definitions.

8 Conclusion and Future Work

We proposed a proof-theoretic characterization of independence in a two-level logic framework,
and gave an example of such characterization by encoding the type theory of STLC in the
logic HH and interpreting the independence relation as strengthening lemmas in a reasoning
logic G. We developed an algorithm to automatically establish the independence relation
and strengthening lemmas and showed its application to pruning variable dependence in G.

Interpreting independence as strengthening should be realizable in other logical frameworks
that support inductive reasoning. We chose the two-level logic framework because it provides
a first-class treatment of contexts, which makes proofs of strengthening lemmas easy. It
would be worth investigating a similar formal development in logical frameworks such as
Twelf and Beluga where contexts are either implicit or built into the type system.

The characterization of independence can be extended to more sophisticated type theories.
Recently, it was shown that the encoding of LF in G [13] can be used transparently to perform
inductive reasoning over LF specifications [14]. We plan to develop a characterization of
independence of LF based on this approach, which will formalize the important concept of
world subsumption for migrating LF meta-theorems between different LF context schema.

Finally, one benefit of a logical characterization that is almost too obvious to state is
that it opens up independence to both external validation and user-guidance. In LF, where
inhabitation is undecidable, the notion of independence proposed in this paper will generally
not be automatically derivable. Presenting the user with unsolved independence obligations
may be an interesting interaction mode worth investigating.
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