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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 15191 “Composi-
tional Verification Methods for Next-Generation Concurrency”. The seminar was successful and
facilitated a stimulating interchange between the theory and practice of concurrent programming,
and thereby laid the ground for the development of compositional verification methods that can
scale to handle the realities of next-generation concurrency.
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One of the major open problems confronting software developers today is how to cope with
the complexity of reasoning about large-scale concurrent programs. Such programs are
increasingly important as a means of taking advantage of parallelism in modern architectures.
However, they also frequently depend on subtle invariants governing the use of shared mutable
data structures, which must take into account the potential interference between different
threads accessing the state simultaneously. Just figuring out how to express such invariants
at all has proven to be a very challenging problem; even more challenging is how to support
local reasoning about such invariants, i.e., confining the reasoning about them to only the
components of the program that absolutely need to know about them.

Fortunately, we are now at a point where verification research has produced the critical
foundations needed to tackle this problem: namely, compositional methods, which exploit
the inherently modular structure of realistic concurrent programs in order to decompose
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verification effort along module boundaries. Fascinatingly, a variety of different but related
compositional methods have been developed contemporaneously in the last several years:

Separation logics: Separation logic was developed initially as a generalization of Hoare
logic – supporting local, compositional reasoning about sequential, heap-manipulating pro-
grams – and much of the early work on separation logic has been successfully incorporated
into automated verification tools like Smallfoot [2], SLAyer [3], Abductor [6], etc., scaling
to handle millions of lines of code. Recently, there have been a series of breakthroughs in
adapting separation logic to handle concurrent programs as well. Concurrent separation
logic [17] provides course-grained local reasoning about concurrent programs; combining
this local reasoning with rely-guarantee reasoning [26] provides fine-grained concurrent
reasoning; intertwining abstraction with local reasoning enables a client to reason about
the use of a set module [8] without having to think about the underlying implementation
using lists or concurrent B-trees; and, very recently, all this has been extended to account
for higher-order programs as well [21].
Kripke models: There is a long line of work on the use of semantic models like Kripke
logical relations [1, 9] (and more recently bisimulations [19, 20]) for proving observational
equivalence of programs that manipulate local state. Observational equivalence is use-
ful not only for establishing correctness of program transformations (e.g., in compiler
certification) but also as a verification method in its own right (e.g., one can prove
that a complex but efficient implementation of an ADT is equivalent to a simple but
inefficient reference implementation). However, it is only in the last few years that such
models have been generalized to account for the full panoply of features available in
modern languages: higher-order state, recursion, abstract types, control operators, and
most recently concurrency, resulting in some of the first formal proofs of correctness
of sophisticated fine-grained concurrent algorithms in a higher-order setting [1, 9, 23].
These advances have come about thanks to the development of more elaborate Kripke
structures for representing invariants on local state.
Hoare type theory: Dependent type theory provides a very expressive compositional
verification system for higher-order functional programs, so expressive that types can
characterize full functional correctness. Traditionally, however, dependent type theor-
ies were limited to verification of pure programs. Recent work on Hoare type theory
(HTT) [15] has shown how to integrate effects into dependent type theory by incorporating
Hoare triples as a new primitive type, and prototypes of HTT have been implemented in
Coq [7, 16], allowing for imperative programs to be verified mechanically as they are being
written. Moreover, first steps of extending HTT with concurrency have recently been
taken [14], thus giving hope for a potential future integration of design and verification
for higher-order concurrent programs.

All in all, the field of modular concurrency verification is highly active, with groundbreaking
new developments in these and other approaches coming out every year. Particularly
fascinating is the appearance of deep connections between the different methods. There are
striking similarities, for instance, between the advanced Kripke structures used in recent
relational models of higher-order state and the semantic models underlying recent concurrent
separation logics.

Nevertheless, there are a number of ways in which the advanced models and logics
developed thus far are still, to be honest, in their infancy. Most of these approaches, for
example, have only been applied to the verification of small, self-contained ADTs and have
not yet been scaled up to verify large-scale modular concurrent programs. Moreover, even
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the most state-of-the-art compositional methods do not yet account for a number of the
essential complexities of concurrent programming as it is practiced today, including:

Weak memory models: The vast majority of state-of-the-art compositional verification
methods are proved sound with respect to an operational semantics that assumes a
sequentially consistent memory model. However, modern hardware implements weak
memory models that allow for many more reorderings of basic operations. Thus there
is a clear gap between the verification theory and practice that needs to be filled (for
efficiency reasons we, of course, do not want to force programmers/compilers to insert
enough memory fence operations to make the hardware behave sequentially consistent).
This problem has been known for the last decade, but it is only in the last year or two
that formal descriptions of the behavior of programming languages with weak memory
models have been developed. Given this foundation, we should now be able to make
progress on extending compositional verification methods to weak memory models.
Higher-order concurrency: Higher-order functional abstraction is an indispensable fea-
ture of most modern, high-level programming languages. It is also central to a variety of
concurrent programming idioms, both established and nascent: work stealing [4], Con-
current ML-style events [18], concurrent iterators [13], parallel evaluation strategies [22],
STM [11], reagents [24], and more. Yet, only a few existing logics have been proposed that
even attempt to account for higher-order concurrency [21, 14, 12], and these logics are just
first steps – for example, they do not presently account for sophisticated “fine-grained”
concurrent ADTs. Verification of higher-order concurrent programs remains a largely
open problem.
Generalizing linearizability: Sophisticated concurrent data structures often use fine-
grained synchronization to maximize the possibilities for parallel access. The classical
correctness criterion for such fine-grained data structures is linearizability, which ensures
that every operation has a linearization point at which it appears (to clients) to atomically
take effect. However, existing logics do not provide a way to exploit linearizability
directly in client-side reasoning, and moreover the notion does not scale naturally to
account for operations (such as higher-order iterators) whose behavior is not semantically
atomic. Recently, researchers have started to investigate alternative approaches, based on
contextual refinement [10, 23]. And methods for reasoning about operations with multiple
linearizability points are also being developed.
Liveness properties: Synchronization of concurrent data structures can also affect the
progress of the execution of the client threads. Various progress properties have been
proposed for concurrent objects. The most important ones are wait-freedom, lock-freedom
and obstruction-freedom for non-blocking implementations, and starvation-freedom and
deadlock-freedom for lock-based implementations. These properties describe conditions
under which method calls are guaranteed to successfully complete in an execution.
Traditional definitions (which are quite informal) of these progress properties are difficult
to use in modular program verification because they fail to describe how the progress
properties affect clients. It is also unclear how existing separation logics, which were
primarily designed for proving partial correctness, can be adapted to prove progress
properties. Recently, researchers have started to combine quantitative reasoning of
resource bounds with separation logics, which offer new possibilities for verifying both
safety and liveness properties in a single framework.

Grappling with these kinds of limitations is essential if our verification technology is to
be relevant to real-world programs running on modern architectures, and as such it poses
exciting new research questions that we as a community are just beginning to explore.

15191



4 15191 – Compositional Verification Methods for Next-Generation Concurrency

In this seminar, we brought together a wide variety of researchers on concurrency
verification, as well as leading experts on concurrent software development in both high-
and low-level languages. The goal was to facilitate a stimulating interchange between the
theory and practice of concurrent programming, and thereby foster the development of
compositional verification methods that can scale to handle the realities of next-generation
concurrency.

Among the concrete research challenges investigated in depth during the seminar are the
following:

What are good ways of reasoning about weak memory models? It should be possible
to reason about low-level programs that exploit weak memory models (e.g., locks used
inside operating systems) but also to reason at higher levels of abstractions for programs
that use sufficient locking.
What is the best way to define a language-level memory model that is nevertheless
efficiently implementable on modern hardware. C11 is the state of the art, but it is flawed
in various ways, and we heard about a number of different ways of possibly fixing it.
What is the best way to mechanize full formal verification of concurrent programs, using
interactive proof assistants, such as Coq.
How can we adapt existing and develop new compositional techniques for reasoning about
liveness properties of concurrent programs? Can we apply quantitative techniques to
reduce the proof of a liveness property to the proof of a stronger safety property? Also,
recent work on rely-guarantee-based simulation can prove linearizability of a sophisticated
concurrent object by showing the concurrent implementation is a contextual refinement
of its sequential specification. We would hope that similar techniques can be used to
prove progress properties as well.
Only recently have researchers begun to propose logics and models for higher-order
concurrency [23, 21]. What are the right concurrency abstractions for higher-order
concurrent programming idioms as diverse as transactional memory [11], Concurrent
ML [18], joins [25], and reagents [24], among others? What is the best way to even specify,
let alone verify, programs written in these idioms, and are there unifying principles that
would apply to multiple different idioms?
Most verification work so far has focused on shared-memory concurrency, with little
attention paid to message-passing concurrency (except for some recent work on verifying
the C] joins library). Can the models and logics developed for the former be carried
over usefully to the latter, and what is the connection (if any) with recent work on
proof-theoretic accounts of session types [5]? Can session types help to simplify reasoning
about some classes of concurrent programs, e.g., those that only involve some forms of
message passing and not full shared memory?
A number of recent Kripke models and separation logics have employed protocols of
various forms to describe the invariants about how the semantic state of a concurrent
ADT can evolve over time. But different approaches model protocols differently, e.g.,
using enriched forms of state transition systems vs. partial commutative monoids. Is there
a canonical way of representing these protocols formally and thus better understanding
the relationship between different proof methods?
There seem to be tradeoffs between approaches to concurrency verification based on
Hoare logic vs. refinement (unary vs. relational reasoning), with the former admitting a
wider variety of formal specifications but the latter offering better support for reasoning
about atomicity. Consequently, a number of researchers are actively working on trying to
combine both styles of reasoning in a unified framework. What is the best way to do this?
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To what extent do we need linearizability to facilitate client-side reasoning? Is it possible
in many cases for clients to rely on a much weaker specification ? And which ways are
there to formalize looser notions, e.g. where there are multiple linearization points?
Now that we are finally developing logics and models capable of verifying realistic
concurrent algorithms, can we abstract away useful proof patterns and automate them?
What is needed in order to integrate support for concurrent invariants into automated
verification tools like SLAyer and Abductor?

These different challenges were discussed through talks and discussions by participants,
see the list of talk abstracts below.
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3 Overview of Talks

3.1 Analysing and Optimising Parallel Snapshot Isolaiton
Andrea Cerone (IMDEA Software – Madrid, ES)

License Creative Commons BY 3.0 Unported license
© Andrea Cerone

Joint work of Bernardi, Giovanni; Cerone, Andrea; Gotsman, Alexey, Yang; Hongseok

Large-scale Internet services often rely on distributed databases that provide consistency
models for transactions weaker than serialisability. Unfortunately, we currently lack a
systematic understanding of when programmers can use such models without violating
correctness. And when an application is correct on a given consistency model, we do not
know whether the model can safely be weakened even further to improve performance.

I will present work in progress to address these issues. In the talk I will concentrate
on a promising consistency model of Parallel Snapshot Isolation (PSI), which weakens the
classical snapshot isolation in a way that allows more efficient distributed implementations.
I will present a formalisation of PSI, a criterion for ensuring correctness of applications using
it, and a way of optimising the applications to improving performance.

3.2 Phantom Monitors: A Simple Foundation for Modular Proofs of
Fine-Grained Concurrent Programs

Adam Chlipala (MIT – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Adam Chlipala

Joint work of Bell, Christian J.; Lesani, Mohsen; Malecha, Gregory; Boyer, Stephan; Wang, Peng

I introduce a new approach to verifying fine-grained shared-memory concurrent programs
modularly, not based on program logics. Rather, we define an instrumented operational
semantics that includes fictitious code to watch all memory accesses and potentially signal a
failure, embodying some formal protocol for object sharing. Several variants of the framework
have been implemented in Coq at different levels of completeness, and one of our focuses is
supporting mostly automated proofs for client code of intricate data structures.

3.3 A Calculus for Relaxed Memory
Karl Crary (Carnegie Mellon University, US)

License Creative Commons BY 3.0 Unported license
© Karl Crary

Joint work of Crary, Karl; Sullivan, Michael J.
Main reference K. Crary, M. J. Sullivan, “A Calculus for Relaxed Memory,” in Proc. of the 42nd Annual ACM

SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL’15), pp. 623–636,
ACM, 2015; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1145/2676726.2676984
URL http://www.cs.cmu.edu/~crary/papers/2015/rmc.pdf

We propose a new approach to programming multi-core, relaxed-memory architectures in
imperative, portable programming languages. Our memory model is based on explicit,
programmer-specified requirements for order of execution and the visibility of writes. The
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compiler then realizes those requirements in the most efficient manner it can. This is
in contrast to existing memory models, which – if they allow programmer control over
synchronization at all – are based on inferring the execution and visibility consequences of
synchronization operations or annotations in the code.

We formalize our memory model in a core calculus called RMC. Outside of the program-
mer’s specified requirements, RMC is designed to be strictly more relaxed than existing
architectures. It employs an aggressively nondeterministic semantics for expressions, in which
actions can be executed in nearly any order, and a store semantics that generalizes Sarkar,
et al.’s and Alglave, et al.’s models of the Power architecture. We establish several results for
RMC, including sequential consistency for two programming disciplines, and an appropriate
notion of type safety. All our results are formalized in Coq.

3.4 Modular Termination Verification for Non-blocking Concurrency
Pedro Da Rocha Pinto (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Pedro Da Rocha Pinto

We present Total-TaDA, a program logic for verifying the total correctness of concurrent
programs: that such programs both terminate and produce the correct result. The termination
behaviour of a single thread can be conditional on the behaviour of its concurrent environment.
With Total-TaDA, we are able to specify such constraints. This allows us to verify total
correctness for non-blocking algorithms, such as a counter and a stack. Moreover, our
approach is modular: we can verify the operations of a module independently, and build up
modules on top of each other.

3.5 Speculation in Higher-Order Separation Logics (and why it’s tricky)
Thomas Dinsdale-Young (Aarhus University, DK)

License Creative Commons BY 3.0 Unported license
© Thomas Dinsdale-Young

Joint work of Dinsdale-Young, Thomas; Svendsen, Kasper

When relating an implementation to an abstract specification, the abstract behaviours can
depend on future concrete behaviours. We briefly motivate why this occurs, and consider
how we might reason about a simple example in a modular way using a separation logic.
Unfortunately, the naive approach is not sound, and we see why it leads to inconsistency.

3.6 Compositional C11 Program Transformation
Mike Dodds (University of York, GB)

License Creative Commons BY 3.0 Unported license
© Mike Dodds

Joint work of Batty, Mark; Dodds, Mike; Gotsman, Alexey

One objective for language-level relaxed memory models is to support program transform-
ations – i.e. compiler optimisations. However, it’s extremely subtle to calculate which
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transformations are valid. This talk is about a theory for program transformations on the
C11 relaxed model. Our theory is compositional: for each transformation, a limited number
of executions represent all interactions with the context. To express these interactions,
we use a partially-ordered record called a history (the set of histories could be seen as a
kind of denotation). Our theory builds on ideas from C11 library abstraction: replacing a
specification with an implementation is one instance of program transformation. This work
is still in progress, but we already cover the core of the C11 model and many important
transformations.

3.7 Static Verification of GPU Kernels
Alastair F. Donaldson (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Alastair F. Donaldson

Joint work of Betts, Adam; Chong, Nathan; Donaldson, Alastair F.; Ketema, Jeroen; Qadeer, Shaz; Thomson,
Paul; Wickerson, John

Main reference A. Betts, N. Chong, A. F. Donaldson, J. Ketema, S. Qadeer, P. Thomson, J. Wickerson, ‘The
Design and Implementation of a Verification Technique for GPU Kernels,” ACM Transactions on
Programming Languages and Systems (TOPLAS), 37(3):10:1–10:49, May 2015.

URL http://dx.doi.org/10.1145/2743017

During the presentation I gave a demonstration of GPUVerify, a static race-freedom verific-
ation tool for GPU kernels. GPUVerify enables scalable verification of massively parallel
kernels through a combination of abstraction and sequentialization. Abstraction is applied
to reduce the verification problem to the task of checking whether it is possible for two
arbitrary threads to race. Sequentialization then exploits properties of the barrier-based
GPU synchronization model so that verification for a pair of threads boils down to checking
assertion-based correctness of a sequential program, whose size is linear in that of the source
code for the original kernel (which itself is independent of the number of threads that execute
the kernel).

This is join work with the Multicore Programming Group at Imperial, and with Shaz
Qadeer at Microsoft Research, and is described in a recent TOPLAS journal article.

References
1 Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz Qadeer, Paul

Thomson, and John Wickerson. The design and implementation of a verification technique
for GPU kernels. ACM Trans. Program. Lang. Syst., 37(3):10:1–10:49, May 2015.

3.8 Making Sense of Rust (Work in Preservation)
Derek Dreyer (MPI-SWS – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Derek Dreyer

Joint work of Dreyer, Derek; Jung, Ralf; Turon, Aaron

Rust is a new language for “safe systems programming” developed at Mozilla, which uses an
affine type system to guarantee type/memory safety and data race freedom. While the core
type system is relatively simple and restrictive, essentially prohibiting aliased mutable state,
many Rust libraries make significant internal use of “unsafe blocks” in order to escape this
restriction. These uses of “unsafe” are supposedly encapsulated behind safe interfaces, but
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they also fundamentally affect the meaning of types. For example, Rust libraries like Rc and
Cell exhibit the phenomenon of “interior mutability”, whereby a supposedly “immutable”
(roughly, “read-only”) operation on an object may in fact mutate its private state, so long as
it does so in a way that does not violate the views of other aliases to the object. This has
significant implications for concurrency, in particular leading to the need for a “Send” trait
describing when a type is “thread-safe”. It’s also easy to get wrong, as evidenced by a recent
soundness bug that was uncovered in the “scoped threads” API. In this work, which we have
not yet even begun (!), we aim to develop a semantic model of Rust’s type system, based on
Kripke logical relations and concurrent separation logic, which will enable us to make sense
of what Rust types mean and to verify that the unsafe implementations of Rust libraries in
fact preserve the end-to-end safety guarantees of the language.

3.9 An operational approach to relaxed memory models
Xinyu Feng (Univ. of Science & Technology of China – Suzhou, CN)

License Creative Commons BY 3.0 Unported license
© Xinyu Feng

Joint work of Zhang, Yang; Feng, Xinyu
URL http://staff.ustc.edu.cn/~xyfeng/research/publications/OHMM.html

We present OHMM, an operational variation of the Happens-before Memory Model (HMM),
the basis of Java memory model (JMM). OHMM is specified by giving an operational
semantics to a language running on an abstract machine designed to simulate HMM. Thanks
to its generative nature, the model naturally prevents out-of-thin-air reads. On the other
hand, it uses a novel replay mechanism to allow instructions to be executed multiple times,
which can be used to model many useful speculations and optimization. The model satisfies
DRF- guarantee. It is weaker than JMM for lockless programs, thus can accommodate more
optimization, such as the reordering of independent memory accesses that is not valid in
JMM. Also many of the “ugly” examples in JMM are no longer ugly in our model. We hope
OHMM can serve as the basis for new memory models for Java-like languages.

3.10 Formally Specifying POSIX File Systems
Philippa Gardner (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Philippa Gardner

File system operations exhibit complex behaviour: they perform multiple actions affecting
different parts of the state. This is further exacerbated when the operations are used
concurrently. POSIX is a standard for operating systems, with a substantial part devoted to
specifying file system operations. The specification is given in English, contains ambiguities
and is generally under-specified with respect to concurrent behaviour. Therefore, it is not
clear what clients may expect and what implementations must do. We extend modern
concurrent program logics with a novel formalism for specifying multiple actions performed
by an operation, which may be atomic, non-atomic or a combination of both, and give
proof rules for client and implementation reasoning. With this formalism we give a formal
specification to a common fragment of POSIX file system operations, and reason about
clients such as lock files and an implementation of half-duplex pipes.
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3.11 An Unsophisticated Higher-Order-ish Logic for Modular
Specification and Verification of Total Correctness Properties of
Fine-Grained Concurrent Imperative Programs

Bart Jacobs (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
© Bart Jacobs

Many powerful higher-order logics have been proposed for the modular specification and
verification of fine-grained concurrent imperative programs. In this talk, I present a logic
that is fairly close to what my VeriFast modular verification tool for C and Java implements.
To achieve higher-order-ishness (higher-order assertions, nested triples, assertions in the
heap, etc.), a relatively simple approach is followed: assertion lambda applications and
nested triples may occur only in positive positions. Negative facts can be passed around in
the form of lemma lambdas, i.e. ghost command lambdas. We prove termination of such
higher-order ghost code using call permissions, a technique we are presenting at ECOOP
2015 this summer.

3.12 Reasoning about possible values in concurrency
Cliff B. Jones (Newcastle University, GB)

License Creative Commons BY 3.0 Unported license
© Cliff B. Jones

In joint research with Ian Hayes (Queensland) we are using a notation to express the ‘possible
values’ of variables. So, for example, in a post condition of one process (we can not only talk
about the initial and final values of a variable which might be changed by another process)
– we can also specify in terms of the set of values that the environment might assign to a
shared variable. Combined with rely/guarantee reasoning, this appears to offer clear and
tractable specifications and reasoned designs. The possible values notation was shown on the
example of Simpson’s four-slot implementation of Asynchronous Communication Mechanisms
(ACMs).

3.13 Iris: Monoids and Invariants as an Orthogonal Basis for
Concurrent Reasoning

Ralf Jung (MPI-SWS – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Ralf Jung

Joint work of Jung, Ralf; Swasey, David; Sieczkowski, Filip; Svendsen, Kasper; Turon, Aaron; Birkedal, Lars;
Dreyer, Derek

Main reference R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal, D. Dreyer, “Iris: Monoids
and Invariants as an Orthogonal Basis for Concurrent Reasoning,” in Proc. of the 42nd Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL’15),
pp. 637–650, ACM, 2015.

URL http://dx.doi.org/10.1145/2676726.2676980

We present Iris, a concurrent separation logic with a simple premise: monoids and invariants
are all you need. Partial commutative monoids enable us to express – and invariants enable
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us to enforce – user-defined protocols on shared state, which are at the conceptual core of
most recent program logics for concurrency. Furthermore, through a novel extension of the
concept of a view shift, Iris supports the encoding of logically atomic specifications, i.e.,
Hoare-style specs that permit the client of an operation to treat the operation essentially as
if it were atomic, even if it is not.

3.14 The Push/Pull Model of Transactions
Eric Koskinen (IBM TJ Watson Research Center – Yorktown Heights, US)

License Creative Commons BY 3.0 Unported license
© Eric Koskinen

Joint work of Koskinen, Eric; Parkinson, Matthew
Main reference E. Koskinen, M. J. Parkinson, “The Push/Pull model of transactions,” in Proc. of the 36th ACM

SIGPLAN Conf. on Programming Language Design and Implementation (PLDI’15), pp. 186–195,
ACM, 2015; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1145/2737924.2737995
URL http://researcher.watson.ibm.com/researcher/files/us-ejk/pushpull.pdf

We present a general theory of serializability, unifying a wide range of transactional algorithms,
including some that are yet to come. To this end, we provide a compact semantics in which
concurrent transactions PUSH their effects into the shared view (or UNPUSH to recall
effects) and PULL the effects of potentially uncommitted concurrent transactions into their
local view (or UNPULL to detangle). Each operation comes with simple criteria given in
terms of commutativity (Lipton’s left-movers and right-movers).

The benefit of this model is that most of the elaborate reasoning (coinduction, simulation,
subtle invariants, etc.) necessary for proving the serializability of a transactional algorithm is
already proved within the semantic model. Thus, proving serializability (or opacity) amounts
simply to mapping the algorithm on to our rules, and showing that it satisfies the rules’
criteria.

3.15 Curry-Howard for GUIs via Linear Temporal Classical Linear Logic
Neel Krishnaswami (University of Birmingham, GB)

License Creative Commons BY 3.0 Unported license
© Neel Krishnaswami

Modern graphical user interface are structured with an event-driven architecture: program-
mers write programs as a collection of small imperative callbacks, which are invoked by
an event loop as program events occur. That is, they must write higher-order imperative
programs in continuation-passing style, which is notoriously challenging.

Using ideas from realizability theory, it is possible to build a model of classical linear
logic on top of an event-based architecture. Since classical linear logic has a proof theory in
terms of process calculi, we gain a neat explanation of why programmers talk about GUI
programs in terms of concurrency, even though they implement them in terms of state and
control. Furthermore, we now also have a type structure upon which we can build powerful
abstractions – historically the bane of UI toolkits.
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3.16 Owicki-Gries Reasoning for Weak Memory Models
Ori Lahav (MPI-SWS – Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Ori Lahav

Joint work of Lahav, Ori; Vafeiadis, Viktor
Main reference O. Lahav, V. Vafeiadis, “Owicki-Gries Reasoning for Weak Memory Models,” in Proc. of the 42nd

International Colloquium on Automata, Languages, and Programming (ICALP’15) – Part II,
LNCS, Vol. 9135, pp. 311–323, Springer, 2015.

URL http://dx.doi.org/10.1007/978-3-662-47666-6_25

We show that even in the absence of auxiliary variables, the well-known Owicki-Gries method
for verifying concurrent programs is unsound for weak memory models. By strengthening
its non-interference check, however, we obtain OGRA, a program logic that is sound for
reasoning about programs in the release-acquire fragment of the C11 memory model. We
demonstrate the usefulness of this logic by applying it to several challenging examples,
ranging from small litmus tests to an implementation of the RCU synchronization primitives.

3.17 A Program Logic for Contextual Refinement of Concurrent
Objects under Fair Scheduling

Hongjin Liang (Univ. of Science & Technology of China – Suzhou, CN)

License Creative Commons BY 3.0 Unported license
© Hongjin Liang

Joint work of Liang, Hongjin; Feng, Xinyu

Existing program logics on concurrent object verification either ignore progress properties,
or aim for non-blocking progress (e.g., lock-freedom and wait-freedom), which cannot be
applied to blocking algorithms that progress only under fair scheduling.

We present a new program logic for compositional verification of contextual refinement
of concurrent objects under fair scheduling. As a key application, we show that starvation-
freedom and linearizability of concurrent objects with blocking algorithms can be reformulated
as contextual refinement, which can be verified using our program logic. With the logic,
we have successfully verified starvation-freedom of simple algorithms using ticket locks, the
two-lock queue algorithm and the lock-coupling list algorithm.

3.18 Formal Verification and Linux-Kernel Concurrency
Paul McKenney (IBM – Beaverton, US)

License Creative Commons BY 3.0 Unported license
© Paul McKenney

Main reference P.E. McKenney, “Formal Verification and Linux-Kernel Concurrency,” presentation to Dagstuhl
workshop 15191.

URL http://materials.dagstuhl.de/files/15/15191/15191.PaulMcKenney.Slides.pdf

This presentation reviews Linux-kernel validation, including its occasional use of formal
verification, and presents conditions that a formal-verification tool would need to meet in
order to be useful as part of the Linux kernel’s regression testing.
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3.19 Linearizability: Who Really Needs It?
Paul McKenney (IBM – Beaverton, US)

License Creative Commons BY 3.0 Unported license
© Paul McKenney

Main reference P.E. McKenney, “Linearizability: Who Really Needs It?,” Presentation to Dagstuhl 15191.
URL http://materials.dagstuhl.de/files/15/15191/15191.PaulMcKenney1.Preprint.pdf

Critique of the overuse of linearizability.

3.20 Some Examples of Kernel-Hacker Informal Correctness Reasoning
Paul McKenney (IBM – Beaverton, US)

License Creative Commons BY 3.0 Unported license
© Paul McKenney

Main reference P.E. McKenney, “Some Examples of Kernel-Hacker Informal Correctness Reasoning,” Technical
Report paulmck.2015.06.17a.

URL http://www2.rdrop.com/users/paulmck/techreports/IntroRCU.2015.06.17a.pdf

The examples include: (1) split counters, (2) RCU infrastructure, (3) RCU Small Bag use
case, RCU Large Bag use case.

Also illustrates kernel-hacker reasoning surrounding RCU, along with one method of
restoring consistency when using RCU. (Yes, there are other methods.)

3.21 Designing a Lock-Free Range Management Algorithm
Maged M. Michael (IBM TJ Watson Research Center – Yorktown Heights, US)

License Creative Commons BY 3.0 Unported license
© Maged M. Michael

The talk describes the design process of a lock-free algorithm for allocation and deallocation
of arbitrary large ranges. The algorithm is targeted to serve as a backend for known bounded-
block-size lock-free memory allocators. It can serve as a user-level alternative to the mmap
and munmap system calls in cases where the latter are unavaiulable or unsuitable. The
algorithm aims to guarantee full coalescing. It uses only single word primitives: read, write,
compare-and- swap; and it does not require any operating system calls. The algorithm
supports continuous space availability, i.e., the space unavailable for allocation is bounded
by the sum of allocated space and pending allocation requests.
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3.22 Viper – A Verification Infrastructure for Permission based
Reasoning

Peter Mueller (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Peter Mueller

Joint work of Juhasz, Uri; Kassios, Ioannis T.; Müller, Peter; Novacek, Milos; Schwerhoff, Malte; Summers,
Alexander J.

Main reference U. Juhasz, I. T. Kassios, P. Müller, M. Novacek, M. Schwerhoff, A. J. Summers, “Viper: A
Verification Infrastructure for Permission-Based Reasoning,” Unpublished manuscript.

URL http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=JKMNSS14.pdf

The automation of verification techniques based on first-order logic specifications has benefited
greatly from verification infrastructures such as Boogie and Why. These offer an intermediate
language that can express diverse language features and verification techniques, as well as
back-end tools such as verification condition generators.

However, these infrastructures are not well suited for verification techniques based on
separation logic and other permission logics, because they do not provide direct support
for permissions and because existing tools for these logics often prefer symbolic execution
over verification condition generation. Consequently, tool support for these logics is typically
developed independently for each technique, dramatically increasing the burden of developing
automatic tools for permission-based verification.

In this talk, we present a verification infrastructure whose intermediate language supports
an expressive permission model natively. We provide tool support, including two back-end
verifiers, one based on symbolic execution, and one on verification condition generation;
this facilitates experimenting with the two prevailing techniques in automated verification.
Various existing verification techniques can be implemented via this infrastructure, alleviating
much of the burden of building permission-based verifiers, and allowing the developers of
higher-level techniques to focus their efforts at the appropriate level of abstraction.

3.23 Structures with Intrinsic Sharing, Subjectively
Aleksandar Nanevski (IMDEA Software – Madrid, ES)

License Creative Commons BY 3.0 Unported license
© Aleksandar Nanevski

Joint work of Nanevski, Aleksandar; Ilya Sergey; Anindya Banerjee

The talk presents a new design pattern for proving correctness of data structures with deep
sharing, such as graphs. The idea is to use subjective kind of auxiliary state, based on PCMs,
which allows for threads to record their own changes to the datastructure, as well as the
modifications performed by the interfering threads. The talk also discusses a rule for hiding,
which introduces new auxiliary state within a delimited scope
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3.24 An operational semantics for C/C++11 concurrency
Kyndylan Nienhuis (University of Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Kyndylan Nienhuis

Joint work of Nienhuis, Kyndylan; Memarian, Kayvan; Pichon-Pharabod, Jean; Batty, Mark; Sewell, Peter

The axiomatic style of the C11 concurrency model makes it difficult to explore the possible
execution of programs without exhaustive enumeration of all their candidate executions.
Furthermore, since the rest of C is defined in an operational style, it is difficult to extend the
concurrency model to a semantics for the whole language.

We present ongoing research on an operational concurrency model for C11 that is
equivalent to the axiomatic model, executable, and integratable with an operational semantics
for sequential C. This work also reveals omissions in the definition of C: notions such as
lifetime and undefined behaviour are defined for sequential C only, and we discovered that
their definitions do not generalise to concurrent C.

3.25 Investigating Weak Memory Performance
Scott Owens (University of Kent, GB)

License Creative Commons BY 3.0 Unported license
© Scott Owens

Joint work of Ritson, Carl; Owens, Scott

This talk will describe some preliminary and ongoing work into the real-world performance
implications of fence placement strategies on ARM and POWER architectures.

3.26 Polarized Substructural Session Types
Frank Pfenning (Carnegie Mellon University, US)

License Creative Commons BY 3.0 Unported license
© Frank Pfenning

We provide an overview of session-typed message-passing concurrent programming, which
arises from a Curry-Howard interpretation of (intuitionistic) linear logic. Most recent work
considers multiple structural properties (linear, affine, and unrestricted) connected by modal
operators. The same modal operators (often called “up” and “down”) can also be used to
mediate between positive and negative linear proposition, one corresponding to output and
one to input.

References
1 Frank Pfenning and Dennis Griffith. Polarized substructural session types. In A. Pitts,

editor, Proceedings of the 18th International Conference on Foundations of Software Science
and Computation Structures (FoSSaCS 2015), pages 3–22, London, England, April 2015.
Springer LNCS 9034. Invited talk.
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3.27 An attempt at fixing C11 concurrency
Jean Pichon-Pharabod (University of Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Jean Pichon-Pharabod

The memory model of the C programming language, which defines what values a read in
a concurrent program can read, allows reads to read value that are not constructed by the
program, but appear “out of thin air”. We argue that this problem is due to the memory
model considering the wrong objects, namely configurations in the naive event structure
of the program. We propose an alternative memory model for locks and non-atomic and
relaxed accesses based on considering the whole event structure.

3.28 Automated and Modular Refinement Reasoning for Concurrent
Programs

Shaz Qadeer (Microsoft Corporation – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Shaz Qadeer

Joint work of Hawblitzel, Chris; Petrank, Erez; Qadeer, Shaz; Tasiran, Serdar
Main reference C. Hawblitzel, E. Petrank, S. Qadeer, S. Tasiran, “Automated and Modular Refinement Reasoning

for Concurrent Programs,” in Proc. of the 27th International Conference on Computer Aided
Verification (CAV’15), LNCS, Vol. 9207, pp. 449–465, Springer, 2015; preliminary technical report
available, MSR-TR-2015-8, Microsoft Research, 2015.

URL http://dx.doi.org/10.1007/978-3-319-21668-3_26
URL http://research.microsoft.com/apps/pubs/?id=238907
URL http://research.microsoft.com/apps/pubs/?id=258112

We present CIVL, a language and verifier for concurrent programs based on automated
and modular refinement reasoning. CIVL supports reasoning about a concurrent program
at many levels of abstraction. Atomic actions in a high- level description are refined to
fine-grain and optimized lower-level implementations. Modular specifications and proof
annotations, such as location invariants and procedure pre- and post-conditions, are specified
separately, independently at each level in terms of the variables visible at that level. We
have implemented CIVL as an extension to the Boogie language and verifier. We have used
CIVL to refine a realistic concurrent garbage collection algorithm from a simple high-level
specification down to a highly-concurrent implementation described in terms of individual
memory accesses.

3.29 CoLoSL: Concurrent Local Subjective Logic
Azalea Raad (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Azalea Raad

Joint work of Raad, Azalea; Villard, Jules; Gardner, Philippa
Main reference A. Raad, J. Villard, P. Gardner, “CoLoSL: Concurrent Local Subjective Logic,” in Proc. of the

24th European Symposium on Programming on Programming Languages and Systems (ESOP’15),
LNCS, Vol. 9032, pp. 710–735, Springer, 2015.

URL http://dx.doi.org/10.1007/978-3-662-46669-8_29

A key difficulty in verifying shared-memory concurrent programs is reasoning compositionally
about each thread in isolation. Existing verification techniques for fine-grained concurrency
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typically require reasoning about either the entire shared state or disjoint parts of the shared
state, impeding compositionality. In this work we introduce the program logic CoLoSL,
where each thread is verified with respect to its subjective view of the global shared state.
This subjective view describes only that part of the state accessed by the thread. Subjective
views may arbitrarily overlap with each other, and expand and contract depending on the
resource required by the thread. This flexibility gives rise to small specifications and, hence,
more compositional reasoning for concurrent programs. We demonstrate our reasoning on a
range of examples, including a concurrent computation of a spanning tree of a graph.

3.30 Concurrency-Aware Linearizability
Noam Rinetzky (Tel Aviv University, IL)
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2014 ACM Symp. on Principles of Distributed Computing (PODC’14), pp. 209–211, ACM, 2014;
pre-print available from author’s webpage.
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Linearizabilty allows to describe the behaviour of concurrent objects using sequential spe-
cifications. Unfortunately, as we show in this paper, sequential specifications cannot be
used for concurrent objects whose observable behaviour in the presence of concurrent opera-
tions should be different than their behaviour in the sequential setting. As a result, such
concurrency-aware objects do not have formal specifications, which, in turn, precludes formal
verification.

In this paper we present Concurrency Aware Linearizability (CAL), a new correctness
condition which allows to formally specify the behaviour of a certain class of concurrency-
aware objects. Technically, CAL is formalized as a strict extension of linearizability, where
concurrency-aware specifications are used instead of sequential ones. We believe that CAL
can be used as a basis for modular formal verification techniques for concurrency-aware
objects.

3.31 Anatomy of mechanized reasoning about fine-grained concurrency
Ilya Sergey (IMDEA Software – Madrid, ES)
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In this talk, I will give a quick hands-on demo, explaining the structure of the proofs when
verifying fine-grained concurrent programs in the recently proposed Coq-based framework of
Fine-grained Concurrent Separation Logic.

I will outline key stages of formalization of characteristic concurrent protocols, explaining
the encoding of atomic actions and stable specifications. I will also outline typical proof
patterns, appearing during the reasoning about composition of concurrent specifications.
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3.32 Using Iris as a meta-language for logical relations
Kasper Svendsen (Aarhus University, DK)
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In this talk, I argue that Iris is well-suited as a meta-language for defining binary Step-indexed
Kripke Logical Relations. Step-indexed Kripke Logical Relations provide a very powerful
proof technique for reasoning about realistic languages. However, they can be difficult to
define and work with directly, requiring explicit reasoning about steps and the existence of
recursively-defined Kripke worlds. Using Iris as a meta-language, we can hide the steps and
avoid the construction of recursively-defined worlds, by piggy-backing on Iris’ impredicative
invariants and monoids.

3.33 Verifying Read-Copy-Update in a Logic for Weak Memory
Joseph Tassarotti (Carnegie Mellon University, US)
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Proc. of the 36th ACM SIGPLAN Conf. on Programming Language Design and Implementation
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Read-Copy-Update (RCU) is a technique for letting multiple readers safely access a data
structure while a writer concurrently modifies it. It is used heavily in the Linux kernel in
situations where fast reads are important and writes are infrequent. Optimized implement-
ations rely only on the weaker memory orderings provided by modern hardware, avoiding
the need for expensive synchronization instructions (such as memory barriers) as much as
possible.

Using GPS, a recently developed program logic for the C/C++11 memory model, we
verify an implementation of RCU for a singly-linked list assuming “release-acquire” semantics.
Although release-acquire synchronization is stronger than what is required by real RCU
implementations, it is nonetheless significantly weaker than the assumption of sequential
consistency made in prior work on RCU verification. Ours is the first formal proof of
correctness for an implementation of RCU under a weak memory model

3.34 Software verification under weak memory consistency
Viktor Vafeiadis (MPI-SWS – Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
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Weak memory consistency makes reasoning about concurrent programs rather challenging as
it invalidates many of the traditional reasoning techniques that are sound under sequential
consistency. The talk demonstrates some of the challenges involved and possible solutions.
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3.35 Open Problems and State-of-Art of Session Types
Nobuko Yoshida (Imperial College London, GB)
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We give a summary of our recent research developments on multiparty session types for
verifying distributed and concurrent programs, and our collaborations with industry partners
and a major, long-term, NSF-funded project (Ocean Observatories Initiatives) to provide an
ultra large-scale cyberinfrustracture (OOI CI) for 25-30 years of sustained ocean measurements
to study climate variability, ocean circulation and ecosystem dynamics. We shall first talk how
Robin Milner, Kohei Honda and Yoshida started collaborations with industry to develop a web
service protocol description language called Scribble and discovered the theory of multiparty
session types through the collaborations. We then talk about the recent developments in
Scribble and the runtime session monitoring framework currently used in the OOI CI.
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