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Abstract
Up-to techniques are useful tools for optimising proofs of behavioural equivalence of processes.
Bisimulations up-to context can be safely used in any language specified by GSOS rules. We
showed this result in a previous paper by exploiting the well-known observation by Turi and
Plotkin that such languages form bialgebras. In this paper, we prove the soundness of up-to
contextual closure for weak bisimulations of systems specified by cool rule formats, as defined by
Bloom to ensure congruence of weak bisimilarity. However, the weak transition systems obtained
from such cool rules give rise to lax bialgebras, rather than to bialgebras. Hence, to reach our
goal, we extend our previously developed categorical framework to an ordered setting.
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1 Introduction

Bisimilarity (∼) is a fundamental equivalence for concurrent systems: two processes are
(strongly) bisimilar if they cannot be distinguished by an external observer interacting with
them. Formally, it is defined by coinduction, as the greatest fixpoint of a suitable predicate
transformer B – a monotone function on binary relations. In particular, to prove processes
bisimilar, it suffices to exhibit a bisimulation relating them, i.e., a relation R such that
R ⊆ B(R); this latter requirement codes for the standard game where the processes must
answer to the labelled transitions of each other.

Up-to techniques are enhancements of this coinduction principle; they were introduced
by Milner to simplify behavioural equivalence proofs of CCS processes, see [16]. The range
of applicability of up-to techniques goes well beyond concurrency theory: they have been
used to obtain decidability results [8], to optimise state-of-the-art automata algorithms [7] or
in conjuction with parameterized coinduction for mechanizations of coinductive proofs [13].

An up-to technique is a monotone map A on the poset of relations, and a bisimulation
up-to A is a relation R such that R ⊆ B(A(R)). If A is sound, that is, if every bisimulation
up-to A is included in a bisimulation, one can prove bisimilarity results by exhibiting
bisimulations up to A. This may be computationally less expensive than finding actual
bisimulations. Typical examples for (strong) bisimilarity include up-to bisimilarity, where A
is given by A(R) = ∼R∼, and up-to transitive closure, where A(R) is the least transitive
relation containing R. When the systems at hand are specified in some process algebra, via
an algebraic signature, a third example is up-to context – where one maps a relation to its
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closure with respect to the contexts of the language. Such a technique is sound in CCS, for
instance.

In practice, one is often interested in weak bisimilarity, a coarser notion allowing to abstract
over internal transitions, labelled with the special action τ . When the player proposes a
transition a→, the opponent must answer with a saturated transition a⇒, which is roughly a
transition a→ possibly combined with internal actions τ→. This slight dissymmetry results in
a much more delicate theory of up-to techniques. For instance, up-to weak bisimilarity and
up-to transitive closure are no longer sound for weak bisimulations. And up-to contextual
closure has to be restricted: the external choice from CCS cannot be freely used [20].

Simpler properties also become harder with weak bisimilarity. Consider structural
operational semantics [1]: if the semantics of a language is specified by rules adhering
to certain formats, then certain well-behavedness properties are automatically inferred.
For instance, in languages specified using De-Simone or GSOS rule formats [9, 5], strong
bisimilarity is guaranteed to be a congruence. However, those two formats do not ensure
congruence of weak bisimilarity, and more advanced formats had to be designed to this end,
like Bloom’s cool GSOS format [4].

Proving soundness of up-to techniques can be rather complicated. To simplify this
task, Sangiorgi and Pous devised the stronger notion of compatible up-to techniques, which
are always sound and, moreover, closed under composition. Proving compatibility of a
composite technique can thus be broken into simpler, independent proofs [18, 19]. We
recently generalised this framework to a fibrational setting [6], allowing to obtain once and
for all the compatibility of a wide range of techniques for strong bisimulation and simulation,
for systems modelled as bialgebras.

Concerning weak bisimilarity, we proved in [6] that for positive GSOS specification, if
the strong → and saturated ⇒ transition systems form bialgebras, then up-to context is
a compatible technique. Unfortunately, the bearing of this result in practical situations is
rather limited, since in many important cases the saturated transition system does not form
a bialgebra. Intuitively, in a bialgebra all and only the transitions of a composite system can
be derived by transitions of its components. For⇒, one implication fails: a composite system
performs weak transitions which are not derived from transitions of its components (see
Example 2). These systems give rise to so called lax bialgebras; this is the key observation
that lead to the rather involved refinement of the theory we propose here.

Contributions. In this paper: a) We extend the previously developed framework [6] to an
ordered setting, b) we prove that up-to context is compatible for lax models of positive [1]
GSOS specifications, and, c) as an application, we obtain soundness of up-to context for
weak bisimulations of systems specified by the cool rule format from [23].

Outline. We give some necessary preliminaries in Section 2. Then we move to an ordered
setting in Section 3, where we use lax bialgebras. In Section 4 we consider the special case
of lax bialgebras stemming from (lax models of) positive GSOS specifications. We finally
assemble in Section 5 all the technical pieces into our main result, Theorem 20.

2 Preliminaries

2.1 Transitions systems and bisimulations
A labelled transition system (LTS) with labels in L consists of a set of states X and a
transition function ξ : X → (PωX)L that, for every state x ∈ X and label a ∈ L, assigns a
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242 Lax Bialgebras and Up-To Techniques for Weak Bisimulations

finite set of possible successor states. We write x a→ y whenever y ∈ ξ(x)(a). A (strong)
bisimulation is a relation R ⊆ X2 on the states of an LTS such that for every pair (x, y) ∈ R:
(1) if x a−→ x′ then y a→ y′ for some y′ with (x′, y′) ∈ R, and (2) vice versa. A weak bisimulation
is a relation R ⊆ X2 such that for every pair (x, y) ∈ R: (1) if x a−→ x′ then y a⇒ y′ for some
y′ with (x′, y′) ∈ R and (2) if y a−→ y′ then x a⇒ x′ for some x′ with (x′, y′) ∈ R. Here ⇒ is
the saturation [16] of →, defined by the following rules where τ denotes a special label in L.

x
a→ y

x
a⇒ y x

τ⇒ x

x
τ⇒ y

τ⇒ z

x
τ⇒ z

x
τ⇒ x′

a⇒ y′
τ⇒ y

x
a⇒ y

(1)

Transition systems are an instance of the abstract notion of coalgebras: given a functor
F : C → C on some category C, an F -coalgebra is a pair (X, ξ) where X is an object and
ξ : X → FX a morphism. Indeed, LTSs are coalgebras for the functor (Pω−)L : Set→ Set.

Next, we recall the basic infrastructure of relations that allows us to study both strong
and weak bisimulations within a coalgebraic setting. Consider the category Rel whose objects
are relations R ⊆ X2 and morphisms from R ⊆ X2 to S ⊆ Y 2 are maps from X to Y sending
pairs in R to pairs in S. For each set X we denote by RelX the category (which in this case
is just a preorder) of binary relations on X, ordered by subset inclusion. For a function
f : X → Y in Set, we have the following situation in Rel:

Rel RelX RelY

Set X Y

p

∐
f

⊥

f∗

f

where p maps a relation R ⊆ X2 to X, and the functors (monotone maps) f∗ and
∐
f , which

we will call reindexing and direct image, are given by inverse and direct image, respectively:
f∗(S) = (f × f)−1(S) for all S ∈ RelY and

∐
f (R) = (f × f)[R] for all R ∈ RelX . Moreover

we have that
∐
f is a left adjoint for f∗.1

A functor F : Rel→ Rel is a lifting of F : Set→ Set whenever p ◦ F = F ◦ p; this means
that F maps a relation on X to a relation on FX. Any lifting F can thus be restricted
to a functor FX : RelX → RelFX , which is just a monotone function between posets. For
every functor F : Set → Set, there is a canonical lifting denoted by Rel(F ) : Rel → Rel. In
this paper the canonical lifting will play an important role but, for the sake of simplicity, we
avoid giving the general definition and refer the interested reader to [14]. As an example,
the canonical lifting of (Pω−)L is defined for all relations R ⊆ X2, and f, g ∈ (PωX)L as

f Rel((Pω−)L)(R) g iff ∀a ∈ L.∀x ∈ f(a). ∃y ∈ g(a).xRy
∀a ∈ L.∀y ∈ g(a). ∃x ∈ f(a).xRy (2)

We can now define bisimulations for any Set-functor F in terms of its canonical lifting.
For an F -coalgebra (X, ξ), a (Hermida-Jacobs) bisimulation [11] is a coalgebra for the functor

Rel(F )ξ , ξ∗ ◦ Rel(F )X : RelX → RelX .

1 The categorically minded reader may observe that the forgetful functor p : Rel→ Set is a bifibration, but
the concrete definitions given above suffice for understanding the forthcoming technical developments.
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The functor Rel(F )ξ is also called a predicate transformer. Bisimilarity is defined as the
largest bisimulation or, in other terms, as the final Rel(F )ξ-coalgebra. Since morphisms in
RelX are just inclusions, a coalgebra for Rel(F )ξ is a relation R such that R ⊆ Rel(F )ξ(R)
and, with (2), it is easy to check that for FX = (PωX)L this corresponds to the usual
definition of strong bisimulations on transition systems.

The above notion can be further generalised by taking an arbitrary lifting F : Rel→ Rel
of F : an F ξ-bisimulation then is a coalgebra for the endofunctor

F ξ , ξ∗ ◦ FX : RelX → RelX .

With this more abstract approach, we can capture various interesting coinductive predicates
other than strong bisimilarity, such as simulations [12] and weak bisimulations. Indeed,
weak bisimulations are coalgebras for the functor F × F ξ : RelX → RelX where F = (Pω−)L,
ξ = 〈→,⇒〉 : X → FX × FX is the pairing of the strong transition system → and its
saturation ⇒, and the functor F × F is the lifting of F × F to Rel given for a relation R by

(f, g) F × F (R) (f ′, g′) iff ∀a ∈ L.∀x ∈ f(a). ∃y ∈ g′(a).xRy
∀a ∈ L.∀x ∈ f ′(a). ∃y ∈ g(a).xRy (3)

2.2 Up-To techniques and Compatible functors
In the previous section we have seen how bisimulations can be regarded as coalgebras
(post-fixpoints) for a functor (monotone map) F ξ : RelX → RelX . In this perspective, an
up-to technique is a functor A : RelX → RelX and an F ξ-bisimulation up to A is an F ξA-
coalgebra. For instance, a bisimulation up to equivalence is a Rel(F )ξE-coalgebra, where
E : RelX → RelX is the functor mapping a relation to its equivalence closure.

We say that A is F ξ-compatible if there exists a distributive law (natural transformation)
ρ : AF ξ ⇒ F ξA. If A is F ξ-compatible then A is a sound up-to technique: every F ξ-
bisimulation up-to A is included in an F ξ-bisimulation. This is stated in [19, Theorem 6.3.9]
for the case of lattices, but it holds more generally in any category with countable coproducts
and, rather than considering just endofunctors F on Set and their liftings F to Rel, one
can take endofunctors and liftings in arbitrary fibrations [6]. For the sake of simplicity we
will avoid using fibrations: the reader should only know that the above result holds also for
Pre-endofunctors and their liftings to the category Rel↑ which we introduce in Section 3.

By tuning F , F and A one can consider different sorts of, respectively, state-based
systems (such as LTSs, deterministic or weighted automata), coinductive predicates (such
as bisimilarity, similarity or language equivalence) and up-to techniques (such as up-to
transitivity, up-to equivalence, up-to bisimilarity). In [6], we provided several techniques
for proving the compatibility of particular techniques. For up-to context, the state space
of the coalgebra needs to have some algebraic structure, for instance, the LTSs of process
algebras. This is captured systematically by bialgebras: given functors F, T : Set→ Set and
a distributive law ρ : TF ⇒ FT , a ρ-bialgebra consists of a set X, an algebra α : TX → X

and a coalgebra ξ : X → FX such that the following diagram commutes.

TX
α //

Tξ
��

X
ξ // FX

TFX
ρX

// FTX

Fα

OO

The function mapping a relation on X to its contextual closure can be obtained as

Ctx ,
∐
α ◦ Rel(T )X : RelX → RelX .
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244 Lax Bialgebras and Up-To Techniques for Weak Bisimulations

To prove the compatibility of Ctx w.r.t. different F ξ, we showed the theorem below, where we
adopt the following terminology: a natural transformation σ : F ⇒ G between Rel-functors
is a lifting of σ : F ⇒ G when for every R ∈ Rel we have that p(σR) = σp(R).

I Theorem 1 (see [6]). Let (X,α, ξ) be a ρ-bialgebra and T , F : E → E be liftings of T and
F . If ρ : T F ⇒ F T is a lifting of ρ, then

∐
α ◦T is F ξ-compatible.

2.3 Abstract GSOS specifications and their models
Abstract GSOS specifications are natural transformations of the form λ : S(F × Id)⇒ FT ,
where T is the free monad over S. As shown in [22], they generalise the concrete GSOS
rules, for which FX = (PωX)L, and S is a polynomial functor – a coproduct of products –
representing an algebraic signature, and hence TX is the set of terms over this signature
with variables in X. A model of a specification λ is a triple (X,α, ξ), where ξ : X → FX

and α : SX → X, making the following diagram commute:

SX
α //

S〈ξ,id〉
��

X
ξ // FX

S(FX ×X)
λX

// FTX

Fα]

OO

(4)

I Example 2. Consider the parallel operator of CCS [16], whose semantics is defined by the
following GSOS rules

p
µ→ p′

p|q µ→ p′|q
q
µ→ q′

p|q µ→ p|q′
p

a→ p′ q
a→ q′

p|q τ→ p′|q′

where µ ranges over arbitrary actions, namely inputs a, b, . . . outputs a, b, . . . or the internal
action τ . Take SX = X×X (for the binary parallel operator) and F = (Pω−)L where L is the
set of all actions. For every setX, the corresponding distributive law λX : S(FX×X)→ FTX

maps (f, x, g, y) ∈ (PωX)L ×X × (PωX)L ×X to the function

µ 7→

{
{(x′, y) | x′ ∈ f(µ)} ∪ {(x, y′) | y′ ∈ g(µ)} µ 6= τ

{(x′, y) | x′ ∈ f(τ)} ∪ {(x, y′) | y′ ∈ g(τ)} ∪ {(x′, y′) | ∃a. x′ ∈ f(a), y′ ∈ g(a)} µ = τ

Now take X to be the set of all CCS processes, ξ : X → (PωX)L the LTS generated by
the standard semantics of CCS [16] and α : X ×X → X to be the algebra mapping a pair of
processes (p, q) to their parallel composition p|q. It is easy to see that diagram (4) commutes,
i.e., (X,α, ξ) is a model for λ.

On the contrary, if we take ξ to be the saturation of the standard CCS semantics,
diagram (4) does not commute anymore: take the pairs of CCS processes (a.b.0, a.b.0) ∈ SX.
Following the topmost line, one first maps it to a.b.0|a.b.0 in the weak LTS that, for instance,
contains the transition τ⇒ 0|0. Following the other path in the diagram one obtains first the
tuple (((a 7→ {b.0}), a.b.0), ((a 7→ {b.0}), a.b.0)) where µ 7→ S denotes the function assigning
to the action µ the set S and to all the others actions the empty set. This tuple is mapped
by λX to the function

a 7→ {(b.0, a.b.0)} a 7→ {(a.b.0, b.0)} τ 7→ {(b.0, b.0)}

and then by Fα] to

a 7→ {b.0|a.b.0} a 7→ {a.b.0|b.0} τ 7→ {b.0|b.0}

Observe that with τ , one cannot reach the state 0|0.
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An abstract GSOS specification λ and a model (X,α, ξ) for it induce respectively a
distributive law ρ : T (F × Id)⇒ (F × Id)T of the monad T over the copointed functor F × Id
and a bialgebra (X,α], 〈ξ, id〉) for ρ [22, 15]. Using these facts and the characterization of
weak bisimulations given in (3) we were able to prove the following result.

I Proposition 3 (see [6]). Let FX = (PωX)L, and let λ : S(F × Id)⇒ FT be a GSOS spe-
cification with two models (X,α, ξ1) and (X,α, ξ2). If λ is positive (see, e.g., [1]) then:
1. There exists a distributive law ρ : T (F × F × Id)⇒ (F × F × Id)T s.t. (X,α], 〈ξ1, ξ2, id〉)

is a ρ-bialgebra.
2. There exists ρ : Rel(T )(F × F × Id) ⇒ (F × F × Id)Rel(T ) lifting ρ, where F × F is

defined as in (3).
3. By the previous points and Theorem 1, Ctx =

∐
α] ◦ Rel(T )X is (F × F × Id)〈ξ1,ξ2,id〉-

compatible.

The above result ensures compatibility w.r.t. (F × F × Id)〈ξ1,ξ2,id〉, which is not exactly
F × F 〈ξ1,ξ2〉. As discussed in [6], weak bisimulations are coalgebras for either of these two
predicate transformers. The extra Id is harmless for the above result and for Theorem 20.

Proposition 3 gives us compatibility of up-to Ctx for weak bisimulation whenever ξ2,
given by the saturation of ξ1, is a model for the GSOS specification. However, Example 2
shows that already for the simple case of parallel composition in CCS, ξ2 is not a model for
the GSOS specification. This motivates the need for relaxing the hypothesis of Proposition 3:
in the rest of the paper, we will introduce the notions of lax bialgebras and lax models and
we will show the analogues of Theorem 1 and Proposition 3 in an ordered setting.

3 Bialgebras and compatibility in an ordered setting

We recalled how to prove soundness of up-to techniques in a modular way, by considering
lifting functors and distributive laws along p : Rel→ Set. Now we extend those results to an
ordered setting. The first step (Section 3.1) consists in replacing the base category Set with
Pre, the category of preorders. (An object in Pre is a set equipped with a preorder, that is,
a reflexive and transitive relation; morphisms are monotone maps.) Accordingly, we move
from the category Rel of relations to its subcategory Rel↑ of up-closed relations (Section 3.2).
We finally obtain the ordered counterpart to Theorem 1, using the notion of lax bialgebra
(Section 3.3, Theorem 15).

3.1 Lifting functors from sets to preorders
We first explain how to lift functors and distributive laws from Set to Pre. Extensions of
Set-functors to preorders or posets have been studied via relators as in [12, 21] and using
presentations of functors and (enriched) Kan extensions [2, 3]. We are interested in extending
not only functors, but also natural transformations to an ordered setting. The description
using (lax) relation liftings [12] allows us to leverage some of our results in [6] to extend
natural transformations.

For a weak pullback preserving Set-endofunctor T we can consider its canonical relation
lifting Rel(T ) : Rel→ Rel. Then, using the following well-known result, we obtain an extension
of T to Pre, hereafter called the canonical Pre-lifting of T and denoted by Pre(T ).

I Lemma 4. If T preserves weak pullbacks then Rel(T ) restricts to a functor Pre(T ) on Pre.

However, sometimes we are interested in liftings of functors to Pre that are not restrictions
of the canonical relation lifting. One such example is the lifting of the LTS functor (Pω−)L
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246 Lax Bialgebras and Up-To Techniques for Weak Bisimulations

to Pre that maps a preordered set (X,≤) to ((PωX)L,v), where v is given by

f v g iff ∀a ∈ L : if x ∈ f(a) then there is y ∈ g(a) such that x ≤ y . (5)

This lifting is also a restriction to Pre of relation lifting for (Pω−)L,
albeit not the canonical one, but the lax relation lifting, as defined
in [12]. To describe it, recall from [12] that a Set-functor F is called
ordered when it factors through a functor F⊆ : Set→ Pre.

Pre

��
Set

F
//

F⊆
<<

Set

We denote by ⊆FX the order on FX given by F⊆(X). The lax relation lifting of F is
defined as the functor Rel⊆(F ) : Rel→ Rel that maps a relation R on X to ⊆FX⊗Rel(F )(R)⊗
⊆FX , where ⊗ denotes composition of relations. In [12, Lemma 5.5] it is shown that Rel⊆(F )
restricts to a functor Pre⊆(F ) on Pre, if the order ⊆FX has an additional property, namely
it is stable, see [12, Definition 4.3]. This property is duly satisfied by all the ordered functors
considered in this paper. We call the restriction of Rel⊆(F ) to Pre the lax Pre-lifting of F
and denote it by Pre⊆(F ).

I Example 5 (see [12]). The LTS functor (Pω−)L has a stable order ⊆(PωX)L given by
pointwise inclusion. The lax Pre-lifting of (Pω−)L with respect to this order coincides with
the lifting described above in (5).

We now show how to lift a natural transformation ρ : F ⇒ G between Set-functors to a
natural transformation % : F ⇒ G between Pre-functors. If F and G preserve weak pullbacks
and F and G are the canonical Pre-extensions Pre(F ) and Pre(G), then % is obtained via
the restriction of the natural transformation Rel(ρ) between the corresponding canonical
relation liftings (Rel(−) is functorial, see [14]). The situation is slightly more complex for
non-canonical liftings, such as the lax lifting of the LTS functor. In this case we can use
Lemma 7 below whenever ρ enjoys the following monotonicity property.

I Definition 6. Let F,G : Set→ Set be ordered functors that factor through F⊆, G⊆ : Set→
Pre respectively. We say that a natural transformation ρ : F ⇒ G is monotone if it lifts to a
natural transformation % : F⊆ ⇒ G⊆ defined by %X = ρX .

Spelling out Definition 6 we obtain that ρ is monotone iff for every t, u ∈ FX:

t ⊆FX u implies ρ(t) ⊆GX ρ(u)

where ⊆FX and ⊆GX denote the orders on FX and GX given by F⊆ and G⊆ respectively.

I Lemma 7. Let F,G : Set→ Set be ordered functors with orders given by F⊆, G⊆ : Set→ Pre
respectively, and assume ρ : F ⇒ G is a monotone natural transformation. Then ρ lifts to
a natural transformation ρ : Rel⊆(F ) ⇒ Rel⊆(G). Furthermore, if the lax relation liftings
of F and G restrict to Pre-endofunctors Pre⊆(F ) and Pre⊆(G) then ρ lifts to a natural
transformation % : Pre⊆(F )⇒ Pre⊆(G).

3.2 Relation liftings for Pre-endofunctors
In the previous section we have seen how to extend Set functors, such as those involved in
GSOS specifications, to preorders. To reason about relation liftings in this setting we ought
to consider a category of relations with a forgetful functor to Pre. On a preorder (X,≤) we
consider relations that are up-closed with respect to ≤, as defined next.
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I Definition 8. Given a preorder (X,≤) we define an up-closed relation on X as a relation
R ⊆ X2 such that for every x′, x, y, y′ ∈ X with x ≤ x′, y ≤ y′ and xRy we have that
x′Ry′. A morphism between up-closed relations R and S on (X,≤), respectively (Y,≤), is a
monotone map f : (X,≤)→ (Y,≤) such that R ⊆ (f × f)−1(S).

We denote by Rel↑ the category of up-closed relations. We have an obvious forgetful
functor þ: Rel↑ → Pre mapping every up-closed relation to its underlying preorder. For each
preorder (X,≤) we denote by Rel↑X the subcategory of Rel↑ whose objects are mapped by þ
to (X,≤) and morphisms are mapped by þ to the identity on (X,≤). Notice that Rel↑X is a
category, with morphisms given by inclusions of relations, hence, a preorder.

For a monotone map f : (X,≤)→ (Y,≤) in Pre, we have the following situation in Rel↑,
similar to the situation described for Rel in Section 2:

Rel↑ Rel↑X Rel↑Y

Pre (X,≤) (Y,≤)

þ

∐
f

⊥

f∗

f

Here, the reindexing functor f∗ is given by inverse image, i.e., f∗(S) = (f × f)−1(S) for all
S ∈ Rel↑Y while the direct image functor

∐
f is defined on a up-closed relation R ∈ Rel↑X as

the least up-closed relation containing (f × f)[R]. Just as in the case of Rel, the functor
∐
f

is a left adjoint of f∗, and þ: Rel↑ → Pre is a bifibration. Observe that if the preorder on Y
is discrete, then

∐
f is given simply by direct image.

I Remark 9. For every discrete preorder (X,∆X), any relation on X is automatically
up-closed. We can reformulate this in a conceptual way, using that the forgetful functor
U : Pre → Set has a left adjoint D : Set → Pre mapping a set X to the discrete preorder
(X,∆X). Then the adjunction D a U lifts to an adjunction D a U : Rel↑ → Rel.

Pre has an enriched structure, in the sense that the homsets are equipped with an order
themselves. Given morphisms f, g : (X,≤)→ (Y,≤) we say that f ≤ g if f(x) ≤Y g(x) for
every x ∈ X. This order is preserved by the reindexing functors:

I Lemma 10. For any Pre-morphisms f, g : (X,≤)→ (Y,≤) such that f ≤ g there exists a
(unique) natural transformation f∗ ⇒ g∗.

We now show how to port liftings of functors from Rel and Pre to Rel↑.

I Lemma 11. For a weak pullback preserving Set-functor T , the canonical Pre-lifting Pre(T )
has a lifting Pre(T ) to Rel↑ acting on a relation as the canonical relation lifting Rel(T ).

Some of the liftings used in Section 5 to describe weak bisimulations are not canonical, nor
lax relation liftings. In Equation (3) we saw how to obtain the weak bisimulation game via a
relation lifting F × F of the functor F × F with FX = (PωX)L. The next example gives a
lifting of F × F to Pre, such that the relation lifting (3) restricts to up-closed relations, thus
yielding a functor on Rel↑ for the weak bisimulation game.

I Example 12. For F = (Pω−)L we consider the Pre-endofunctor Pre(F )× Pre⊆(F ), where
Pre(F ) is the canonical Pre-lifting of F and Pre⊆(F ) is the lax Pre-lifting of Example 5. In
Appendix A, we show that for any preorder (X,≤) and R ∈ Rel↑(X,≤) we have that F × F (R)
as defined in (3) is an up-closed relation on Pre(F )(X,≤)× Pre⊆(F )(X,≤).
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Thus we obtain a lifting Pre(F )× Pre⊆(F ) of Pre(F ) × Pre⊆(F ) to Rel↑ such that
U Pre(F )× Pre⊆(F ) = (F × F ) U . This means that coalgebras for Pre(F )× Pre⊆(F )〈ξ1,ξ2〉
correspond to weak bisimulations, whenever ξ2 is the saturation of ξ1.

In Theorem 20 we will need liftings of natural transformations to Rel↑. We show next how
to obtain them leveraging existing liftings to Rel and Pre introduced in Sections 2 and 3.1.

I Lemma 13. Consider Set-functors F, T with respective liftings F , T on Rel; F , T on Pre.
Assume that F and T lift to F and T on Rel↑, such that UT = TU and UF = FU , as in
the diagram

Rel↑

��

U //F,T 88 Rel

��

F,Tff

Pre
U
//F,T 88 Set F,Tff

Assume further that we have a natural transformation ρ : TF ⇒ FT that lifts to both
% : T F ⇒ FT and ρ : TF ⇒ FT . Then % also lifts to a natural transformation % : T F ⇒ FT .

In the sequel, we use notations for liftings as in the above lemma: for a functor F , we
denote by calligraphic F a lifting along Pre→ Set and by F a lifting of F along Rel↑ → Pre;
for natural transformations, we use % for a lifting of ρ to Pre and % for a lifting of % to Rel↑.

3.3 Lax bialgebras and compatibility of contextual closure
As explained in the Introduction, we moved to an order enriched setting because we want to
reason about systems for which the saturated transition system forms a lax bialgebra:

I Definition 14. Given T ,F : Pre→ Pre such that there is a distributive law % : T F ⇒ FT ,
a lax bialgebra for % consists of a preorder X, an algebra α : T X → X and a coalgebra
ξ : X → FX such that we have the next lax diagram, with ≤ denoting the order on FX.

T X α //

T ξ
��

X
ξ //

≥

FX

T FX
%X

// FT X

Fα

OO

In this setting, the contextual closure of an up-closed relation is defined by the functor

Ctx ,
∐
α ◦ Pre(T )X : Rel↑X → Rel↑X

where Pre(T ) is the lifting of Pre(T ) to Rel↑ that, by Lemma 11, exists whenever T preserves
weak-pullbacks. For any Pre-functor F and lifting F , we can prove Fξ-compatibility of up-to
Ctx using the following result which extends Theorem 1 to a lax setting.

I Theorem 15. Let T ,F be Pre-endofunctors with liftings T ,F to Rel↑. Assume that
% : T F ⇒ FT is a natural transformation such that there exists a lifting % : T F ⇒ FT of %.
If (X,α, ξ) is a lax %-bialgebra, then the functor

∐
α ◦ T is Fξ-compatible.

4 Monotone GSOS in an ordered setting

In this section we describe how to obtain a distributive law in Pre and a lax bialgebra from an
abstract GSOS specification in Set and a lax model for it. The key property is monotonicity
(Definition 6) of the abstract GSOS specification.
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Let λ : S(F × Id)⇒ FT be an abstract GSOS specification. Suppose F has a stable order
given by a factorization through F⊆ : Set→ Pre and let ⊆FX denote the induced order on
FX. Then the functors F × Id, S(F × Id) and FT are ordered, as follows:

Pre

��
Set

F×Id
//

F⊆×D
??

Set

Pre

��
Pre

Pre(S) 77

Set
S(F×Id)

//

F⊆×D 77

Set

Pre

��
Set

F⊆ 77

Set
FT

//

T 77

Set

(6)

where D : Set→ Pre is the functor assigning to a set the discrete order (Remark 9). Recall
that Pre⊆(F ) is the lax Pre-lifting of F with respect to the order given by F⊆ and consider
the canonical Pre-lifting Pre(T ) of the monad T ; then the lax Pre-liftings of the functors
F × Id, S(F × Id) and FT with respect to the orders in (6) are given by Pre⊆(F ) × Id,
Pre(S)(Pre⊆(F )× Id), respectively Pre⊆(F )Pre(T ).

If the GSOS specification λ is monotone with respect to the orders in (6) (recall Defini-
tion 6) then, by Lemma 7, λ lifts to λ̇ : Pre(S)(Pre⊆(F )× Id)⇒ Pre⊆(F )Pre(T ).

If S is a polynomial functor representing a signature, then λ is monotone if and only if
for any operator σ (of arity n) we have

b1 ⊆FX c1 . . . bn ⊆FX cn
λX(σ(b,x)) ⊆FTX λX(σ(c,x)) (7)

where b,x = (b1, x1), . . . , (bn, xn) with xi ∈ X and similarly for c,x. When F = (Pω−)L
with the pointwise inclusion order ⊆(PωX)L from Example 5, then condition (7) corresponds
to the positive GSOS format [10] which, as expected, is GSOS without negative premises.

I Lemma 16. A monotone GSOS specification induces a distributive law ρ : T (F × Id)⇒
(F × Id)T that lifts to a distributive law % : Pre(T )(Pre⊆(F )× Id)⇒ (Pre⊆(F )× Id)Pre(T ).

I Definition 17. Let λ : S(F × Id)⇒ FT be a monotone abstract GSOS specification. A
lax model for λ is a triple (X,α, ξ) such that the next diagram is lax w.r.t. the order ⊆FX .

SX
α //

S〈ξ,id〉
��

X
ξ //

≥

FX

S(FX ×X)
λX

// FTX

Fα]

OO

(8)

I Example 18. Consider the GSOS specification λ given in Example 2. Since in the
corresponding rules there are no negative premises, it conforms to condition (7), namely
it is a positive GSOS specification. Lemma 16 ensures that we have a distributive law
% : Pre(T )(Pre⊆(F )× Id)⇒ (Pre⊆(F )× Id)Pre(T ).

Recall that ξ2 is the saturation of the standard semantics of CCS and that (X,α, ξ2) is not
a model for λ, since not all the weak transitions of a composite process p|q can be deduced
by the ones of the components p and q. However, (X,α, ξ2) is a lax model. Intuitively, the
fact that the inequality (8) holds means that only the weak transitions of p|q can be deduced
by those of p and q, i.e., p|q contains all the weak transitions that can be deduced from those
of p and q and the rules for parallel composition.

By unfolding the definitions of α and ⊆(PωX)L , (8) is equivalent to

Fα]λX(ξ2(p), p, ξ2(q), q)(µ) ⊆ ξ2(p|q)(µ)
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for all CCS processes p, q and actions µ ∈ L. When µ = τ (the others cases are simpler) this
is equivalent to

{p′|q | p τ⇒ p′} ∪ {p|q′ | q τ⇒ q′} ∪ {p′|q′ | p a⇒ p′, q
a⇒ q′} ⊆ {r | p|q τ⇒ r} (9)

which holds by simple calculations. Notice that (9) means exactly that the weak transition
system should be closed w.r.t. the rule of the GSOS specification: whenever ⇒ satisfies the
premises of a rule, then it should also satisfy its consequences.

For a non-example, consider the GSOS rules for the non-deterministic choice of CCS.

p
µ→ p′

p+ q
µ→ p′

q
µ→ q′

p+ q
µ→ q′

This specification is also positive, but the saturated transition system ξ2 is not a lax model.
Intuitively, not only the weak transitions of p+ q can be deduced by the weak transitions of
p and q: indeed from p

τ⇒ p one can infer that p+ q
τ⇒ p which is not a transition of p+ q.

The inclusion (9) in the previous example suggests a more concrete characterization for
the validity of (8): every transition that can be derived by instantiating a GSOS rule to the
transitions in ξ should be already present in ξ, namely, the transition structure is closed
under the application of GSOS rules. In contrast to (strict) models (see (4)), in a lax model
the converse does not hold: not all the transitions are derivable from the GSOS rules.

Lax models for a monotone GSOS specification λ induce lax bialgebras for the distributive
law % obtained as in Lemma 16.

I Lemma 19. Let (X,α, ξ) be a lax model for a monotone specification λ : S(F × Id)⇒ FT .
Then we have a lax bialgebra in Pre for the induced distributive law % carried by (X,∆X),
i.e., the set X with the discrete order, with the algebra map given by α] : Pre(T )X → X and
the coalgebra map given by 〈ξ, id〉 : X → Pre⊆(F )X ×X.

5 Weak bisimulations up-to context for cool GSOS

We put together the results of Sections 3 and 4 to obtain our main result: if the saturation
of a model of a positive GSOS specification is a lax model, then up-to context is compatible
for weak bisimulation.

I Theorem 20. Let λ : S(F × Id) ⇒ FT be a positive GSOS specification. Let ξ2 be the
saturation of an LTS ξ1. If (X,α, ξ1) and (X,α, ξ2) are, respectively, a model and a lax
model for λ, then Ctx is (Pre(F )× Pre⊆(F )× Id)〈ξ1,ξ2,id〉-compatible.

Proof. We apply Theorem 15. To this end we have to provide the following ingredients:
1. a distributive law % between Pre-endofunctors;
2. a lax bialgebra for %;
3. a lifting % of % between Rel↑-liftings of the aforementioned functors.

We will explain each step in turn.
1. From a monotone λ : S(F × Id)⇒ FT we first obtain a natural transformation λ̃ : S(F ×

F×Id)⇒ (F×F )T by pairing the natural transformations λ◦S〈π1, π3〉 : S(F×F×Id)⇒
FT and λ ◦ S〈π2, π3〉 : S(F × F × Id) ⇒ FT . Let G : Set → Set denote the functor
F ×F × Id. From the GSOS specification λ̃ we obtain a distributive law ρ : TG⇒ GT in
Set. Since λ is monotone w.r.t. the order given by F⊆, we have that λ̃ can be seen as a
monotone abstract GSOS specification for the functor F × F with the order ∆FX× ⊆FX
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on FX × FX given by the product of the discrete order and the one obtained from F⊆.
We consider the Pre-lifting G of G defined as G = Pre⊆(F ×F )× Id where Pre⊆(F ×F ) is
the lax Pre-lifting of F × F w.r.t. the order given above.2 By Lemma 16 we get a lifting
% : Pre(T )G → GPre(T ) of ρ, with Pre(T ) the canonical Pre-extension of T .

2. Since (X,α, ξ1) and (X,α, ξ2) are, respectively, a model and a lax model for λ, we have

SX
α //

S〈ξ1,id〉
��

X
ξ1 // FX

S(FX ×X)
λX

// FTX

Fα]

OO SX
α //

S〈ξ2,id〉
��

X
ξ2 //

≥
FX

S(FX ×X)
λX

// FTX

Fα]

OO

(10)

Notice that the left model is strict, yet we can also see it as a lax model for the discrete
order on F . Hence we can pair the two coalgebra structures to obtain a lax model

SX
α //

S〈ξ1,ξ2,id〉
��

X
〈ξ1,ξ2〉 //

≥

FX × FX

S(FX × FX ×X)
λ̃X

// (F × F )TX
Fα]×Fα]

OO

(11)

for the monotone GSOS specification λ̃ considered above. We apply Lemma 19 for the lax
model in (11) to obtain a lax bialgebra as in the next diagram with the carrier (X,∆X).

Pre(T )X α]
//

Pre(T )〈ξ1,ξ2,id〉
��

X
〈ξ1,ξ2,id〉 //

≥

GX

Pre(T )GX
%X

// GPre(T )X

Gα]

OO

3. We consider the Rel↑ liftings Pre(T ) and G of Pre(T ) and G obtained from Lemma 11,
respectively Example 12. Using Proposition 3 we know that the distributive law ρ lifts
to a distributive law ρ : TG ⇒ GT in Rel. To obtain the lifting of % to Rel↑ we apply
Lemma 13 for the liftings T , G, Pre(T ) and G and the liftings ρ and % of ρ to Rel,
respectively Pre. J

By Remark 9, since the order on X is discrete, we have that Rel↑X ∼= RelX . Hence the
functor Ctx is indeed the usual predicate transformer for contextual closure and coalgebras
for (Pre(F )× Pre⊆(F )× Id)〈ξ1,ξ2,id〉 correspond to the usual weak bisimulations.

I Example 21. Recall from Example 18 that → and ⇒ are, respectively, a model and a lax
model for the positive GSOS specification of Example 2. By Theorem 20, it follows that
up-to context (for the parallel composition of CCS) is compatible for weak bisimulation.

We can apply Theorem 20 to prove analogous results for the other operators of CCS with
the exception of + which is not part of a lax model, see Example 18. More generally, for any
process algebra specified by a positive GSOS, one simply needs to check that the saturated
transistion systems is a lax model. As explained in Section 4, this means that whenever
⇒ satisfies the premises of a rule, it also satisfies its consequence. By [23, Lemma WB],

2 Notice that G = Pre(F )× Pre⊆(F )× Id where Pre(F ) and Pre⊆(F ) are the canonical, respectively the
lax Pre-liftings of F w.r.t. the order given by F⊆.

CONCUR’15



252 Lax Bialgebras and Up-To Techniques for Weak Bisimulations

this holds for all calculi that conform to the so-called simply WB cool format [4], amongst
which it is worth mentioning the fragment of CSP consisting of action prefixing, internal and
external choice, parallel composition, abstraction and the 0 process ([23, Example 1]).

I Corollary 22. For a simply WB cool GSOS language, up-to context is a compatible technique
for weak bisimulation.

6 Conclusion

We have shown that up-to context is compatible (and thus sound) for weak bisimulation
whenever the strong and the weak transition systems are a model and a lax model for a
positive GSOS specification, as it is the case for calculi adhering to the cool GSOS format
[4, 23]. For our proof, we construct a tool-kit of abstract results that can be safely reused for
proving compatibility for other coinductive notions. For instance, with our technology it is
trivial to show that up-to context is compatible for bisimilarity and similarity for lax models
of positive GSOS specifications, while in [6] this was proved just for (strict) models. For
dynamic bisimilarity [17], one can use the lifting in (3) with a different saturated transition
system that is obtained as in (1) but without the axiom x

τ⇒ x. Then for all the rules of CCS
(including +), whenever this system satisfies the premises, it also satisfies its consequence,
so it is a lax model; hence up-to context is compatible for dynamic bisimulation. We leave
branching bisimilarity [24] for future work.
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A Details for Example 12

Assume we have the following situation

(h, k)
Rel(F )(≤)×Rel⊆(F )(≤)

F×F (R)
(h′, k′)

Rel(F )(≤)×Rel⊆(F )(≤)

(f, g)
F×F (R)

(f ′, g′)

This means that for all a ∈ L we have the following

(f, g) F × F (R) (f ′, g′) ⇔ ∀x ∈ f(a). ∃y ∈ g′(a).xRy

∀x ∈ f ′(a). ∃y ∈ g(a).xRy

(f, g) Rel(F )(≤)× Rel⊆(F )(≤) (h, k)
m

∀x ∈ f(a). ∃y ∈ h(a).x ≤ y

∀y ∈ h(a). ∃x ∈ f(a).x ≤ y

∀x ∈ g(a). ∃y ∈ k(a).x ≤ y

(f ′, g′) Rel(F )(≤)× Rel⊆(F )(≤) (h′, k′)
m

∀x ∈ f ′(a). ∃y ∈ h′(a).x ≤ y

∀y ∈ h′(a). ∃x ∈ f ′(a).x ≤ y

∀x ∈ g′(a). ∃y ∈ k′(a).x ≤ y

(12)

and we need to show

∀x ∈ h(a). ∃y ∈ k′(a).xRy
∀x ∈ h′(a). ∃y ∈ k(a).xRy

(13)

Using the fact the R is up-closed we can prove this using (12).
I Remark. Notice that some of the relations in (12) were not actually used in the proof. In
order for the lifting F × F (R) to restrict to up-closed relations, we need to carefully choose
the Pre-liftings for F × F . Indeed, we could replace the lifting Pre(F ) with the lax relation
lifting given by pointwise reverse inclusion Pre⊇(F ). However the proof would break if we
would consider instead the Pre-lifting of F ×F given by Pre⊆(F )×Pre⊆(F ), since the functor
Pre⊆(F )× Pre⊆(F ) does not have a Rel↑ lifting that also extends F × F .
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