
Safety of Parametrized Asynchronous
Shared-Memory Systems is Almost Always
Decidable∗

Salvatore La Torre1, Anca Muscholl2, and Igor Walukiewicz2

1 Dipartimento di Informatica, Università degli Studi di Salerno, Italy
slatorre@unisa.it

2 LaBRI, Bordeaux University, CNRS, France
{anca,igw}@labri.fr

Abstract
Verification of concurrent systems is a difficult problem in general, and this is the case even
more in a parametrized setting where unboundedly many concurrent components are considered.
Recently, Hague proposed an architecture with a leader process and unboundedly many copies
of a contributor process interacting over a shared memory for which safety properties can be
effectively verified. All processes in Hague’s setting are pushdown automata. Here, we extend it
by considering other formal models and, as a main contribution, find very liberal conditions on the
individual processes under which the safety problem is decidable: the only substantial condition
we require is the effective computability of the downward closure for the class of the leader
processes. Furthermore, our result allows for a hierarchical approach to constructing models of
concurrent systems with decidable safety problem: networks with tree-like architecture, where
each process shares a register with its children processes (and another register with its parent).
Nodes in such networks can be for instance pushdown automata, Petri nets, or multi-pushdown
systems with decidable reachability problem.
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1 Introduction

Parametrized concurrent systems, i.e., systems composed of an arbitrary number of concurrent
components of finitely many kinds, are the natural models of many concrete systems such as
distributed network protocols, operating system drivers, or multi-threaded applications for
multi-core hardware, just to mention a few. In some cases, they are algorithmically easier
to analyze than the corresponding non-parametrized models which makes them a suitable
abstraction for concurrency (see [21]).

Verification of shared-memory systems is a notoriously difficult problem, even for simple
properties as safety. As a classical example, two pushdown systems communicating via a
shared variable can directly simulate a Turing machine. In order to gain decidability, it is
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ClassD: possible instances for the leader ClassC: possible instances for contributors

pushdown automata,
Petri nets,
decidable subclasses of multi-stack push-
down automata,
stacked counter automata,
order-2 pushdown automata.

anything in ClassD,
higher-order pushdown automata with col-
lapse,
lossy channel systems,
hierarchical composition of (C, D)-
systems with ClassD and ClassC from
this table.

Figure 1 Examples of models that fit our general decidability result for (C, D)-systems.

crucial to limit the synchronization power of such systems, for example by placing restrictions
on the policies of the synchronization primitives, or bounding the number of interactions.
For parametrized systems, assuming that the components have no identities is helpful besides
being appropriate for many concurrent systems of interest (see also [14] for a survey).

In this paper, we revisit the verification problem for safety properties of parametrized
asynchronous shared-memory systems. These systems consist of a leader process D and
an arbitrary number of identical contributor processes C. The processes communicate via
shared memory modelled by read/write registers. There are two important features of such
(C,D)-systems: first, there are no locking mechanisms on the shared memory, and second,
contributors do not have identities.

This setting has been proposed by Hague [19], who studied the case when leaders and
contributors are pushdown automata and showed an Expspace upper bound. Esparza et
al. [16] settled the complexity of the problem for pushdown automata proving it Pspace-
complete. The interest for such systems is also related to the analysis of distributed protocols
that use no synchronization primitives, which is the case on wireless sensor networks where
a central co-ordinator (the base station) communicates with an arbitrary number of tiny
agents that run concurrently and asynchronously (see [16]).

In this paper, we prove a general decidability result for verifying safety properties of
(C,D)-systems. It gives conditions on leaders and contributors, expressed in terms of basic
language theoretic closure and effectiveness properties, under which the problem is decidable.
The main requirement is that the downward closure of the language of the leader should be
effectively computable. This requirement is interesting in itself, and we remark that, in our
setting, it is weaker than having effective semilinear Parikh images.

Our work shows that the setting of (C,D)-systems can be instantiated in many different
ways, while preserving the decidability of safety properties. Figure 1 lists some examples
of types of systems for leaders and for contributors that our theorem covers. For example,
the leader and contributors can be themselves Petri nets, or restrictions of multi-pushdown
processes with decidable reachability problem.

One interesting consequence of our main result is that it can be applied recursively, by
instantiating a contributor C by another (C,D)-system (see Figure 2). This implies that
safety properties can be verified for networks that have a tree-like architecture: each process
shares a register with its children processes (and another register with its parent). Nodes in
such networks can belong to one of the formal models listed above.

Finally, as a byproduct, our construction allows to reprove in a different way known
complexity results for (C,D)-systems over pushdown automata [16]. We believe that our
approach is simpler thanks to the use of downward closures.
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74 Safety of (C, D)-systems is Almost Always Decidable

Figure 2 Example of a hierarchical composition of (C, D)-systems, Pi are process types and
Ri are R/W registers. P0 is the leader D of a (C, D)-system whose contributors are themselves
(C, D)-systems each one with leader from P1 and contributors from P2.

Related work. Parametrized verification of shared-memory multi-threaded programs has
been studied for finite-state threads in [8, 22] and for threads modeled as pushdown systems
in [7, 10, 24, 25, 9]. The main difference with our setting is that in those models the
synchronization primitives are allowed, and thus for pushdown threads, reachability becomes
undecidable even if we restrict to finite data domains. The decidability results in [7, 10, 24,
25, 9] concern the reachability analysis up to a bounded number of execution contexts, and
in [7, 10], dynamic thread creation is allowed.

Parameterized reachability is also considered in [6] for shared-memory systems formed of
one pushdown and several counters.

There is a rich literature concerning the verification of asynchronously-communicating
parametrized programs that is mostly related to the verification of distributed protocols and
varies for approaches and models (see e.g. [17, 11, 15, 23] for some early work, and [13, 5, 29]
and references therein).

Parametrized tree systems, i.e., systems formed of an arbitrary number of processes
operating on a tree-like architecture, have been studied by tree rewritings (see [4, 3] and
references therein). Our hierarchical composition of (C,D)-systems is quite different from
the models studied there. Namely, each process shares a finite memory with its children
processes and its parent process: all the interactions with the network neighbours are through
asynchronous accesses to such memories. As processes, we allow several classes of systems,
not just finite-state systems. On the other side, in our model there is no notion of global
transitions.

Organization of the paper. In Section 2, we give some basic definitions and introduce the
notion of (C,D)-system. In Section 3, the accumulator semantics is introduced and shown
equivalent to the standard semantics of (C,D)-systems. In Section 4, we give two constructions
that allow to decompose the semantics of (C,D)-systems into the parts concerning respectively
the leader and the contributors. In Section 5, these constructions are used to give a decision
algorithm that shows the main result of the paper. In Section 6, we use our approach to
study the computational complexity of the reachability for (C,D)-systems for the classes of
finite automata and pushdown automata. We conclude in Section 7 with a few remarks.
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2 Preliminaries

We first define the parametrized systems that we consider, and their reachability problem.
These systems consist of one instance of a leader process D, and an arbitrary number of
instances of a contributor process C. Both C and D can be arbitrary, potentially infinite,
transition systems. One can think of them as transition systems generated by, for example,
pushdown automata, Petri nets, or lossy channel systems. Our decidability result will refer
to the closure properties of classes of transition systems over which C and D range.

A transition system is a graph with states and labelled edges. The labels of edges are
called actions. There may be infinitely many states in a transition system, but we will assume
that the set of actions is finite. A transition system will come with an initial state. A trace
is a sequence of actions labelling a path starting in the initial state. A word v is a subword
of u if it can be obtained from u by erasing letters.

The synchronized product of two transition systems is a system whose state set is the
product of the state sets of the two systems, and whose transitions are defined according
to the rule: for actions common to the two systems the transition should be synchronized,
whereas actions of only one of the two systems affect only the relevant component of the pair.
In particular, the synchronized product of two transition systems over the same alphabet is
just the standard product of the two.

For our decidability results we will assume implicitly that transition systems are given
by some finite description. For example, when we will talk about the class of pushdown
transition systems we will assume that they are given by pushdown automata.

We say that a class of transition systems is effectively closed under some operation if from
a description of a transition system in the class we can effectively construct a description of
the image of the transition system under that operation. Our decidability result will use
a couple of abstract properties of classes of transition systems. For a class C of transitions
systems we say that:
C is effectively closed under synchronized products with finite automata if for every
description of a system in C, and every finite automaton, one can effectively find a
description in C of the synchronized product of the transition system with the automaton.
C has decidable reachability problem if there is an algorithm deciding for a given action
and a description of a transition system in C if from the initial state of C there is a trace
containing this action.
C has an effective downward closure if there is an algorithm calculating for a given
description of a transition system in C the finite automaton accepting all subwords of the
traces of C from the initial state.

Observe that having effective downward closure implies having decidable reachability problem.
We will give an example of the use of these notions in a simple result on page 77 (Corollary 2).

We proceed to the formal definition of (C,D)-systems. These systems are composed of
arbitrary many instances of a contributor process C and one instance of a leader process
D. The processes communicate through a shared register. We write G for the finite set of
register values, and use g, h to range over elements of G. The initial value of the register is
denoted ginit . The alphabets of both C and D contain actions representing reads and writes
to the register:

ΣC = {r(g), w(g) : g ∈ G} , ΣD = {r̄(g), w̄(g) : g ∈ G} .

Both C and D are, possibly infinite, transition systems over these alphabets:

C = 〈S, δ ⊆ S × ΣC × S, sinit〉 D = 〈T,∆ ⊆ T × ΣD × T, tinit〉 .
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76 Safety of (C, D)-systems is Almost Always Decidable

The transition systems do not have internal actions. Adding them to the alphabets would
not modify our results, so for simplicity we prefer not to deal with them here. Internal
actions will be useful though when we consider hierarchical composition of (C,D)-systems.

A (C,D)-system consists of an unspecified number of copies of C, one copy of D, and a
shared register. A configuration of such a system can be represented by a triple (f : N→
S, t ∈ T, g ∈ G), consisting of a function f counting the number of instances of C in a given
state, the state t of D and the current register value g.

In principle we would expect that f is a partial function defined only on an initial interval
of N. This would represent that indeed there are only finitely many copies of C. Given the
questions we are interested in, this is irrelevant, so we prefer not to put this condition.

The transitions of the (C,D)-system are presented below. We extend the transition
relation δ of C from S to N → S and write f a−→ f ′ in δ, meaning that there is an index i
such that f(i) a−→ f ′(i) in C and f(j) = f ′(j) for j 6= i.

(f, t, g) w̄(h)−−−→(f, t′, h) if t w̄(h)−−−→ t′ in ∆

(f, t, g) r̄(h)−−−→(f, t′, h) if t r̄(h)−−−→ t′ in ∆ and h = g

(f, t, g) w(h)−−−→(f ′, t, h) if f w(h)−−−→ f ′ in δ

(f, t, g) r(h)−−−→(f ′, t, h) if f r(h)−−−→ f ′ in δ and h = g

The reachability problem is to decide if in a given (C,D)-system the register can contain
some error value that we denote by #. Observe that it may be assumed w.l.o.g. that this
value is written by the leader D. This means that we are asking if there is a trace of the
(C,D)-system from the initial configuration (finit , tinit , ginit), with label from (ΣC∪ΣD)∗w̄(#).
Here, finit is a constant function assigning the initial state of C to every i ∈ N. In the
following we will simply say that we want to decide if there is a #-trace in the (C,D)-system.

3 Accumulator semantics

The semantics we have presented above, although natural, is not that easy to work with.
Here we formulate a different semantics, called accumulator semantics, that is equivalent
if the reachability problem is considered. As an example of the advantage offered by the
accumulator semantics we give a very simple argument for the decidability in the case when
C ranges over finite state systems.

In the accumulator semantics, instead of a function f : N→ S we use a set A ⊆ S that we
call accumulator to reflect the fact that it can only grow. The idea is that since we reason in
parametrized setting, we do not need to count precisely how many copies of C have reached
a given state. Once that a state is reached, it can be “duplicated” an arbitrary number of
times. So in the accumulator semantics configurations are of the form (A ⊆ S, t ∈ T, g ∈ G),
and the transitions are:

(A, t, g) w̄(h)−−−→(A, t′, h) if t w̄(h)−−−→ t′ in ∆

(A, t, g) r̄(h)−−−→(A, t′, h) if t r̄(h)−−−→ t′ in ∆ and h = g

(A, t, g) w(h)−−−→(A ∪ {s′}, t, h) if s w(h)−−−→ s′ in δ for some s ∈ A

(A, t, g) r(h)−−−→(A ∪ {s′}, t, h) if h = g and s r(h)−−−→ s′ in δ for some s ∈ A

I Proposition 1. There is a #-trace from (finit , tinit , ginit) in the (C,D)-system iff there is
one from ({sinit}, tinit , ginit) in the accumulator semantics.



S. La Torre, A. Muscholl, and I. Walukiewicz 77

Proof. For the left to right direction, we take a run {(fi, ti, gi)}i=1,...,n and show that
{(Ai, ti, gi)}i=1,...,n is a run, where Ai is the set of the states of C that have appeared as a
value of one of f1, . . . , fi.

For the right to left direction we prove a more general statement. Suppose that σ is a
#-trace in the accumulator semantics from a state (A, t, g) and f is such that |{i : f(i) =
s}| ≥ 2|σ| for all s ∈ A. Then we show that there is a #-trace from (f, t, g) in (C,D)-system.
The proposition then follows since in finit we have arbitrarily many copies of sinit . The proof
of this statement is by induction on the length of σ. One step in the accumulator semantics
is simulated by letting either D take the step, or half of the copies of C take the step. J

Note that the standard and the accumulator semantics do not generate the same traces.
In order to simulate a step in the accumulator semantics, the (C,D)-system may need to
perform several steps.

If C is a finite state automaton then the A-part in the accumulator semantics is of bounded
size. This gives a simple decidability result:

I Corollary 2. Suppose that ClassD is closed under synchronized products with finite automata.
The reachability problem for (C,D)-systems where C is a finite-state automaton, and D is
from ClassD, effectively reduces to the reachability problem in ClassD.

Proposition 1 allows us to use the accumulator semantics as the semantics of (C,D)-
systems, and this will be our implicit assumption in the following sections.

4 Capacities and downward closures

Our objective is a decidability result for (C,D)-systems. It will be obtained by combining
two reductions that we describe in this section. First, we will decompose the semantics of a
(C,D)-system into the part concerning C and the one concerning D. Lemma 4 reduces our
problem to that of finding an input on which we can run separately two parts. The second
step starts from the observation that instead of D we can work with the downward closure
of D (Lemma 5). Then we can rely on the well-known fact that the downward closure of any
language is regular. Using a decomposition technique similar to that of Lemma 4 we obtain
our main technical result, Lemma 7. This will be turned into a decision procedure in the
next section.

We start by defining the transition system Dκ, that captures the part of the (C,D)-system
concerning D. The system Dκ is obtained by abstracting the register contributions of C by a
set K ⊆ G of possible values. Let Dκ = 〈P(G)× T ×G, δ, (∅, tinit , ginit)〉. So a configuration
of Dκ has the form

(K ⊆ G, t ∈ T, g ∈ G).

Intuitively, K represents a capacity: the values that contributors have already written
into the register up to the present point of the execution of the system. State t ∈ T is the
current state of D, and g ∈ G is the current content of the register.

To update the K-component of a configuration we introduce a new alphabet

Σν = {ν(g) : g ∈ G} ,

and let the alphabet of Dκ be ΣD ∪Σν . The intuition behind the transitions of Dκ presented
below is the following. Since an arbitrary number of copies of C can be started, whenever a
value g is written in the register by a contributor we can construct a different run where this
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instance of the contributor is duplicated some number of times. In this new run, any time in
the future of the computation when the value g is needed in the register we can use one of
these duplicates. We capture this phenomenon in the transitions of Dκ by enabling a read
action r̄(h) whenever h ∈ K.

Precisely, the transitions of Dκ are:

(K, t, g) w̄(h)−−−→(K, t′, h) if t w̄(h)−−−→ t′ in ∆,

(K, t, g) r̄(h)−−−→(K, t′, h) if t r̄(h)−−−→ t′ in ∆ and h ∈ K ∪ {g},

(K, t, g) ν(h)−−−→(K ∪ {h}, t, h) if h 6∈ K.

It is not difficult to see that if there is a #-trace in the (C,D)-system then there is one in
Dκ. The opposite is clearly not true because Dκ ignores the form of C: there is no check that
ν(h) actions can indeed come from writes of C. We will recover the equivalence by putting
an additional condition on traces of Dκ (cf. Lemma 4 below).

In order to obtain a sufficient condition on traces of Dκ we construct a “capacity aware”
version of C. This is the transition system Cκ = 〈P(G)× S ×G, δκ, (∅, sinit , ginit)〉 where δκ
is:

(K, s, g) w̄(h)−−−→ (K, s, h) (K, s, g) r̄(h)−−−→ (K, s, h) (K, s, g) ν(h)−−−→ (K ∪ {h}, s, h)

(K, s, g) w(h)−−−→(K, s′, h) if s w(h)−−−→ s′ in δ and h ∈ K

(K, s, g) r(h)−−−→(K, s′, h) if s r(h)−−−→ s′ in δ and h ∈ K ∪ {g}.

This automaton follows the actions of Dκ (first line above) in order to be aware of the current
contents of the register and the capacity. At the same time, Cκ can also do the w(h) actions
provided they are declared in the capacity K, and the r(h) actions when h is either in the
capacity K or in the register. So the capacity restricts the write actions of contributors and
allows for more read actions.

We stress the following:
1. Both for Cκ and Dκ, the content of the register after a transition is determined by the

executed action.
2. Both systems have two kinds of reads: from the register g, and from the capacity K. We

refer to actions r̄(h) and r(h) as capacity reads whenever h ∈ K. The idea is that these
reads simulate a read of a value written by a copy of C.

3. The K-component of Cκ and Dκ is determined by the sequence of ν(h)-moves. An
execution of Dκ can have at most one ν(h) action for every h ∈ G.

Lemma 4 below formulates the condition on traces of the transition system Dκ that
correspond to traces in the (C,D)-system.

Notation. We will use the convention of writing ΣD,ν for ΣD ∪ Σν . Similarly for ΣC,ν and
ΣC,D,ν . By v|Σ we will denote the subword of v obtained by erasing the symbols not in Σ.

I Definition 3. A trace v ν(h) ∈ Σ∗D,ν is C-supported if there exists a word u ∈ Σ∗C,D,ν such
that

u|ΣD,ν = v and u ν(h)w(h) ∈ L(Cκ).

A trace v ∈ Σ∗D,ν is totally C-supported if every prefix v′ν(h) of v is C-supported.
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q1 q2 · · · qi · · · qn+1

Σ1 Σ2 Σi Σn+1

a1 a2 ai−1 ai an

Figure 3 A pattern in Dκ↓.

The intuition behind this definition is that every ν(h) in a trace of Dκ should be supported
by a run of contributors witnessing that the write action w(h) is indeed possible.

I Lemma 4. There is a #-trace in a (C,D)-system if and only if there is a totally C-supported
#-trace in Dκ.

Lemma 4 tells us that in order to find a #-trace in (C,D)-system we need to find a #-trace
in Dκ and verify that it is supported. We will now see that we can actually work with the
set of subwords of Dκ. This is important, as for every language the set of its subwords is a
regular language. Moreover, the minimal automaton for the downward closure has a very
simple form. The main technical result of this section says that our initial problem reduces
to finding a particular pattern in this minimal automaton.

I Lemma 5. If v1ν(h1) . . . viν(hi) is a C-supported trace and vj is a subword of v′j ∈ Σ∗D for
every j = 1, . . . , i, then v′1ν(h1) . . . v′iν(hi) is C-supported.

The downward closure of language L, denoted L↓, is the set of subwords of the words
in L. In the following, we denote by Dκ↓ the minimal automaton accepting the downward
closure of the set of traces from Dκ. Every minimal automaton accepting a downward closed
language is a graph where the only cycles are self-loops on some states. So every word
accepted by Dκ↓ comes from a pattern of the form in Figure 3, where on each qi there is
a self-loop on letters from some, possibly empty, alphabet Σi ⊆ ΣD. Note that actions of
the form ν(h) do not occur on self-loops, since by observation 3 on page 78 their number is
bounded in any trace from D.

As Dκ↓ is a finite automaton, there are finitely many such patterns. We can thus take
patterns one by one, and check if there is one that determines a totally C-supported trace.
The problem is that to check this we need to fix a trace in advance, and it is not clear how
to do this since we have no bound on the length of a fully supported trace. The definition of
compatible patterns and the lemma that follows go around this problem.

I Definition 6. Consider a pattern as in Figure 3. The pattern is C-compatible up to position
i if for every j = 1, . . . , i there are words vj ∈ Σ∗j such that v0a1 . . . viai is C-supported. The
pattern is fully C-compatible if for every i = 1, . . . , n such that ai = ν(h) for some h, the
pattern is C-compatible up to position i. A #-pattern is one ending with an = w̄(#).

The difference between the above definition and Definition 3 is that in the latter we work
with a single trace that is C-supported. In Definition 6 we may have to consider different
C-supported traces for distinct positions of the pattern. This is necessary, because we cannot
fix in advance a trace for all positions of the pattern.

I Lemma 7. There is a totally C-supported #-trace in Dκ iff there is a fully C-compatible
#-pattern in Dκ↓.

Lemma 7 together with Lemma 4 reduces our reachability problem to the problem of
finding a fully C-compatible #-pattern in a finite automaton Dκ↓.

CONCUR’15



80 Safety of (C, D)-systems is Almost Always Decidable

5 A general decidability result

In this section we present the main result of the paper giving conditions under which the
reachability problem for (C,D)-systems is decidable. The theorem refers to the properties
of classes of transition systems defined on page 75. We also discuss the hypotheses of the
theorem as well its applicability referring back to examples from Figure 1.

I Theorem 8. Suppose ClassC ,ClassD are two classes of transition systems closed under
synchronized products with finite automata. If ClassC has a decidable reachability problem,
and ClassD has effective downward closure then the reachability problem for (C,D)-systems,
with C from ClassC and D from ClassD, is decidable.

Proof. We describe an algorithm deciding the reachability problem for (C,D)-systems. Given
C and D, the algorithm first computes Cκ and Dκ as defined on page 78. The definition of
Dκ tells us that it can be obtained by first extending D with actions in Σν and then making
a product with a finite automaton that takes care of the capacity set and the register content
(similar for Cκ). Then the algorithm computes the finite automaton Dκ↓ for the downward
closure of Dκ. These operations are effective since D is in ClassD.

In the next step the algorithm examines all #-patterns in Dκ↓ of the form:

q1 q2 · · · qn+1 qn+2

Σ1 Σ2 Σn+1

a1 a2 an #

and checks if there is one that is fully C-compatible. The algorithm answers yes if and only if
it finds a #-pattern in Dκ↓ that is fully C-compatible. Observe that by Lemma 7 this holds
iff Dκ has a fully C-supported #-trace, and thus by Lemma 4 iff there exists a #-trace in the
(C,D)-system.

To complete the proof, we need to show how to check that a pattern as above is fully
C-compatible. Let k1, . . . , kl be the indices such that aki is of the form ν(hi). The algorithm
checks if the prefix of the pattern up to aki is C-compatible for i = 1, . . . , l.

For each i = 1, . . . , l, the check proceeds as follows. First, starting from the pattern up to
aki it constructs the finite automaton accepting Γ∗1a1 . . .Γ∗kiν(hi)w(hi) where Γj = Σj ∪ ΣC
for j = 1, . . . , ki. Then, it takes the synchronized product of the resulting automaton with
Cκ. Denote it with (Cκ)i. The final step of the check is to test for reachability of w(hi) in
(Cκ)i. Note that this can be done by hypothesis since from the properties of ClassC , (Cκ)i
is still in ClassC. In fact, the test succeeds iff the pattern up to aki is C-compatible. This
concludes the proof. J

In Figure 1 we have listed some concrete instances of (C,D)-systems for which the
reachability problem is decidable thanks to Theorem 8. For all the listed classes the closure
under synchronized products required by the theorem is immediate, since all of them have
finite control.

The effective downward closure, and thus effective reachability problem, holds for push-
down automata [12], Petri net languages [18], stacked counter automata [31], and higher-order
pushdown automata of order 2 [30].

Multi-stack pushdown automata (MPA) are Turing powerful already with two stacks.
There are though subclasses of MPA with a decidable reachability problem such as path-tree
MPA, and scope-bounded MPA [26, 27]. The former include bounded-phase MPA and
ordered MPA. For all these classes it is known that visibly multi-pushdown languages have
effective semilinear Parikh images. Note that since a run of an MPA is a word over a visible
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alphabet, there is a simple reduction that allows to show semilinearity of Parikh images also
for the non visibly-pushdown languages accepted by any of these classes. Then Corollary 9
below implies decidability for these classes of MPA.

Reachability is decidable for lossy channel systems [1] and higher-order pushdown auto-
mata with collapse [20]. Lossy channel systems do not have effective downward closure: this
can be seen by a rather direct reduction from the problem of deciding boundedness of the
set of reachable configurations [28]. For higher-order pushdown automata it is not known if
the downward closure is effective.

Theorem 8 makes several assumptions about the classes ClassC and ClassD. It is worth
examining them closer.

The closure property of the theorem, closure under synchronized product, is implied by
closure under rational transductions. Given two alphabets Σ and Γ, a rational transduction
from Σ to Γ is the subset of Σ∗ × Γ∗ generated by a finite-state transducer.

A class of languages is closed under rational transductions if for every language L in the
class, and every finite-state transducer T the image of L under T is in the class. Observe
that the closure under synchronized products with finite automata does not imply closure
under projections, and more generally under homomorphisms. So the closure requirements
of our theorem are weaker than the closure under rational transductions.

Having an effective downward closure is an interesting condition in itself that probably
deserves to be better understood. Zetzsche [30] has recently shown that a sufficient condition
for a class to have an effective downward closure is to be closed under rational transductions
and to have effective semilinear Parikh images. The latter means that there is an algorithm
that given a description of a transition system calculates a semilinear representation of the
Parikh image of the language of the transition system. A closer examination of his argument
shows that our closure under synchronized product with finite automata, together with
effective semilinear Parikh images, already implies effective downward closure. Thus in our
theorem we can replace the requirement that ClassD has effective downward closure by
effective semilinear Parikh images.

I Corollary 9. Suppose that ClassC ,ClassD are two classes of transition systems closed
under synchronized products with finite automata. If ClassC has a decidable reachability
problem and ClassD has effective semilinear Parikh images then the reachability problem for
(C,D)-systems, with C from ClassC and D from ClassD, is decidable.

Some requirements of the theorem, as the closure under products with finite automata
seem rather unavoidable. Observe that if, for example, we take ClassD to be the class of
process algebra processes, then the register can act as a common state making the reachability
problem undecidable even for the case when ClassC is a trivial class containing one process
that does nothing. Clearly, the same holds for more general rewriting as process rewrite and
term rewriting systems.

Another example of a class that is not closed under products with finite automata is
the class of context-free FIFO rewriting systems (that has an effective downward closure
though [2]). Our theorem cannot be applied with this class as ClassC or ClassD, and we do
not know if the reachability problem becomes undecidable in this case.

6 Complexity issues

We have not yet discussed complexity issues. One of the reasons why the algorithm from the
proof of Theorem 8 may not be optimal is that it requires to generate the downward closure
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explicitly. Here we consider two instances where the downward closure can be generated
on-the-fly. The two results of this section are already known [16]. Our purpose is to indicate
that our approach is algorithmically interesting, and gives arguably more transparent proofs.

The first result is quite immediate thanks to the accumulator semantics.

I Proposition 10. The reachability problem for (C,D)-systems is in NP when C ranges over
finite state systems, and D over pushdown systems.

Proof. The claim is obvious if D is also finite state, since the first component in the accu-
mulator grows monotonically. Thus, a #-trace from ({sinit}, tinit , ginit) in the accumulator
semantics can be guessed in polynomial time. If D is a pushdown system, then a trace in the
accumulator semantics splits in ≤ |S| phases, where the accumulator component is constant
in each phase. So this reduces to (1) guessing the sequence of A-values and (2) a reachability
question for a pushdown system executing in ≤ |S| phases; each phase corresponding to a
particular value of the accumulator. In a phase with value A, the value of the register can
change via ε-transitions corresponding to contributor writes from states in A. J

The second result solves the case when both D and C are pushdown systems.

I Theorem 11. The reachability problem for (C,D)-systems is in Pspace when both C and
D range over pushdown systems.

The proof of this result starts with a construction by Courcelle [12] that provides an
exponential size NFA for Dκ↓; moreover the transitions of the automaton can be computed
on-the-fly in Pspace.

Let σ = h1, . . . , hi be a sequence of pairwise distinct values from G and 1 ≤ j ≤ i. Let Fj
be a pushdown automaton accepting C-supported words over ΣD,ν that contain exactly the
prefix of length j of σ as the occurrences of Σν-symbols. So Fj accepts words of the form

v1ν(h1) . . . vj−1ν(hj−1)vjν(hj) , vk ∈ Σ∗D (1)

and can be obtained essentially as the projection of Cκ on ΣD,ν augmented with a check that
the occurrences from Σν correspond to h1, . . . , hj (we also need to check for a transition on
w(hj) from the state entered after reading the last Σν). Note that once we fix σ, the size of
each pushdown Fj is polynomial in the size of C.

I Lemma 12. An NFA Bj can be effectively constructed such that:
1. L(Bj) ⊆ L(Fj);
2. for every u ∈ L(Fj) there is a subword v of u with v ∈ L(Bj).
The NFA Bj is of size exponential in the size of C and its transitions can be computed
on-the-fly in Pspace.

For the proof of the above lemma we refer e.g. to Theorem 7 in [16]. A alternative
proof is to take the NFA that accepts words generated by a CFG equivalent to Fσ with
derivation trees where no variable occurs more than once on any path. Note also that since
L(Bj) ⊆ L(Fj), the words accepted by this automaton are of the form (1) as well.

We use now Lemmas 5 and 12 in order to replace both D and C by NFAs. First we guess
a sequence σ = h1, . . . , hi of distinct register values.

For every 1 ≤ j ≤ i let F̂j be an NFA accepting extensions of the words accepted by Bj ,
more precisely the words u1ν(h1) . . . uj−1ν(hj−1)ujν(hj) with uk ∈ Σ∗D such that there are
subwords vk of uk with v1ν(h1) . . . vj−1ν(hj−1)vjν(hj) ∈ L(Bj). Observe that F̂j is of the
same size as Bj and its transitions can also be generated in Pspace. The next lemma shows
that L(Fj) = L(F̂j) for every 1 ≤ j ≤ i.
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I Lemma 13. L(Fj) = L(F̂j).

Proof. From item (2) of Lemma 12 and the definition of F̂j , we get L(Fj) ⊆ L(F̂j).
For the other direction take a word u ∈ F̂j . By definition, it is necessarily of the form

u = u1ν(h1) . . . uj−1ν(hj−1)uiν(hj). Moreover there is a word v accepted by Bj of the form
v = v1ν(h1) . . . vj−1ν(hj−1)vjw(hj), with vk subword of uk for every k. Since by Lemma 12,
L(Bj) ⊆ L(Fj), we have that v is accepted by Fj . Thus, by Lemma 5, u is C-supported
and contains the prefix of length j of σ as sequence of Σν symbols, therefore it is accepted
by Fj . J

The algorithm required in Theorem 11 nondeterministically guesses on-the-fly a trace
in Dκ↓, and runs simultaneously F̂1, . . . , F̂i on this trace in order to check if it is fully
supported according to Lemma 4. Since all the automata can be generated in Pspace the
whole algorithm is in Pspace.

7 Conclusions

Parametrized models with decidable reachability problem are relatively rare. We have
studied parametrized systems where processes have no identities, and there are no locking
mechanisms on the shared memory [19]. The model has turned out to have interesting
algorithmic properties: safety analysis is decidable when its components are chosen from
a wide range of formal models. Technically, there are two novelties of in our approach:
the accumulator semantics, and the use of downward closures. Our result allows for a
compositional construction of a formal model of a distributed system, as schematically
presented in Figure 2.

This work puts a spotlight on the effective downward closure property. It would be
interesting to investigate this property for other models, as for example for higher-order
pushdowns. Among other important issues raised by this work are the questions of the
complexity of computing downward closures, and in particular of computing them on-the-fly.

It is not clear if there is an elegant characterization of classes ClassC and ClassD for which
the reachability problem for (C,D)-systems is decidable. The differences between Corollary 2
and Theorem 8 appear difficult to bridge.
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