
A Modular Approach for Büchi Determinization∗

Dana Fisman1 and Yoad Lustig2

1 University of Pennsylvania, US
fisman@seas.upenn.edu

2 Google Inc., Israel
yoad.lustig@gmail.com

Abstract
The problem of Büchi determinization is a fundamental problem with important applications in
reactive synthesis, multi-agent systems and probabilistic verification. The first asymptotically op-
timal Büchi determinization (a.k.a. the Safra construction), was published in 1988. While asymp-
totically optimal, the Safra construction is notorious for its technical complexity and opaqueness
in terms of intuition. While some improvements were published since the Safra construction,
notably Kähler and Wilke’s construction, understanding the constructions remains a non-trivial
task.

In this paper we present a modular approach to Büchi determinization, where the difficulties
are addressed one at a time, rather than simultaneously, making the solutions natural and easy
to understand. We build on the notion of the skeleton trees of Kähler and Wilke. We first show
how to construct a deterministic automaton in the case the skeleton’s width is one. Then we
show how to construct a deterministic automaton in the case the skeleton’s width is k (for any
given k). The overall construction is obtained by running in parallel the automata for all widths.
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1 Introduction

The relationship between deterministic and non-deterministic models of computation is a
fundamental question in almost every model of computation. Büchi automata are not an
exception. Büchi automata were first introduced, as non-deterministic, in [2], in order to
prove the decidability of S1S (second order logic of one successor). The need to consider
deterministic automata, however, rose almost immediately. A natural extension of S1S
decidability was to prove the decidability of S2S (second order logic of two successors) [27].
(Deciding S2S also allowed solving the fundamental Church problem [3] which is an early
formulation of what we now call synthesis). To decide S2S, however, one needed automata
to run on trees, and while this is natural for deterministic automata, it does not work as
expected for non-deterministic automata (see [10] for a comprehensive discussion). Some
examples of applications requiring Büchi determization constructions can be found in reactive
synthesis [26], multi-agent systems [1] and probabilistic verification [34, 4]. In order to
work with deterministic automata, one has to tackle another difficulty: deterministic Büchi
automata are less expressive than non-deterministic ones [18]. As a result, the determinization
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of Büchi automata is the following problem: Given a non-deterministic Büchi automaton,
find an equivalent deterministic automaton whose acceptance condition may be other than
Büchi. (Modern determinization procedures usually use the Parity condition [25, 11].)

Another problem, which is closely related to Büchi determinization is Büchi comple-
mentation. Deterministic automata on finite words can be complemented by dualizing the
accepting set. Some of the automata on infinite words, namely Muller and Parity, can also
be complemented by dualizing the acceptance condition.1 For this reason determinization
constructions yield almost immediately a complementation procedure [28]. In [15] Kupferman
and Vardi proposed a complementation construction that actively avoids determinization
due to its complexity. Later, in [11], Kähler and Wilke introduced the reduced and skeleton
run trees, and both a complementation and a determinization constructions based on them.

The first asymptotically optimal Büchi determinization construction [28] (a.k.a the Safra
construction), was published in 1988. While asymptotically optimal, the Safra construction
is notorious for its technical complexity and opaqueness in terms of intuition. It took no
less than 18 years(!) before Piterman improved upon the Safra construction by modifying
it to produce a Parity automaton [25]. A large step forward, in terms of lifting the veil of
technical complexity, was made by Kähler and Wilke in [11] who modeled automaton runs
by the clear and elegant reduced and skeleton trees. Their complementation construction is
as elegant and simple as one can hope for. Their determinization construction is a large step
forward, yet it is still non-trivial to understand or implement.

Building on the reduced and skeleton trees of Kähler and Wilke [11], we present in this
work a novel Büchi determinization construction which is considerably simpler than previous
constructions. The real strength of the construction lies in its modularity. For the first time,
the determinization problem is broken down into simpler problems, where the solution of
each simple problem is based on one clear idea. Thus the overall solution can be grasped in
a gradual manner following several easy steps. This is in contrast to previous solutions in
which the correctness reasoning is deferred to the very end, where one needs to reason on a
very complex construction.

Overview. In Section 2, we discuss the notions of the reduced and skeleton trees of [11].
Both trees concisely summarize the runs of a given Büchi automaton A on given word w, in
that these trees have an accepting path iff A accepts w (where an accepting path is a path
with infinitely many accepting nodes). Some of the paths of the reduced tree are infinite and
some are finite. The skeleton tree is the tree obtained from the reduced tree by eliminating
the finite paths (i.e. the nodes with finitely many descendants and the edges leading to
them). Our constructions conceptually build on the skeleton tree but practically work on the
reduced tree. (This is since the skeleton tree, while being easier to reason about, depends on
the infinite suffix of the word, and cannot be computed by a deterministic automaton.)

The width of the skeleton tree, formally defined in Section 2, is a central notion in our
construction. Roughly speaking, the width of a given level of a tree, is the number of nodes
in that level. The width of levels of the skeleton tree are monotonically non-decreasing
and bounded by n, the number of states in the given Büchi automaton A. We refer to the
maximal width of the skeleton-tree levels by skel-width. We use slice to refer to the sequence
of nodes on a level.

1 Some, namely Büchi, cannot. Dualization of a Rabin automaton yields a Streett automaton and vice
versa.
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· · ·

Figure 1 A reduced tree with
skel-width one.

Figure 2 A reduced tree of skel-width 3, marked with
the partitions created by the decide-width construction. The
partitions manage to trap each skeleton path in its own
interval in the following sense: Starting from level 5, where
the skel-width stabilizes, each slice (see e.g. the marked
slice) has three intervals where the i-th interval contains
only nodes of the i-th skeleton path, or the finite paths
attached to it.

In Section 3, we discuss only words on which the skel-width is one, as depicted in Figure 1.2
For such words, we note that the word is accepted by A iff it is accepted by the construction
of Miyano-Hayashi [22] (henceforth MH) applied to the reduced tree. This is since the MH
construction answers if all infinite runs of an automaton are accepting, and in the case there
exists just one infinite run, asking whether all infinite runs is the same as asking if there
exists an infinite run. For the same reason, if we apply it on the reduced tree when the width
is greater than one, we may reject if one path accepts but another does not. So in a sense,
our mission is to separate the paths of the skeleton tree.

In Section 4 we answer the decision problem: Is the skel-width of the reduced tree smaller
than a given k? The solution to this problem creates a partition of a slice of the reduced
tree into intervals, i.e. consecutive sequences of nodes of the slice, such that each skeleton
path (along with the finite paths attached to it) resides in its own interval, as depicted in
Figure 2. We capitalize on this separation in consequent constructions.

In Section 5, we show that given a possible width k, we can construct a deterministic
automaton that accepts a word of width exactly k iff A accepts it. This construction
essentially runs both previous constructions together, by applying the MH construction on
the intervals of the decide width construction.

In Section 6, we show how to run in parallel the constructions for all k (upto the number
of A’s states), and deduce the correct answer for words of any width. Finally, we show that
the complexity of this construction is bounded by nO(n) states, essentially matching the
known lower bound of n! given by Michel [21]. In Appendix A, we give a one page illustrative
description of the constructions using tokens, bells and buzzers, as a recap. All missing
proofs are available in the full version of the paper. We conclude in Section 7.

2 In this figure (and the rest of the figures in the paper) the reduced tree consists of all nodes and edges,
and the skeleton tree of only the solid nodes and edges.
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Related Work. The first construction for Büchi determinization is due to McNaughton [20]
and dates to 1966. The complexity of this construction was 22O(n) , and it took a series of
improvements [31, 24] until in 1988, Safra came up with the first asymptotically optimal
construction [28] of nO(n). There was a series of works closely studying the exact bounds of
Safra, and suggesting improvements obtaining tighter bounds [29, 15, 32, 25, 8, 36, 19].

The works most related to the one presented here were concerned, as we are, in obtaining
a determinzation construction simpler than the Safra construction (and the subsequent work),
while remaining in nO(n). A state in the determinized automaton of the Safra construction
is a labeled tree of sets of states of the given Büchi automaton. The transition between
states, and the acceptance condition relies on the nodes labeling. Piterman [25] simplified the
labeling and provided a determinized automaton based on Parity acceptance condition, which
is simpler and better for many applications [25]. Schewe [30] moved the acceptance condition
from states to edges. In 1995, Muller and Schupp [23] proposed a different exponential
determinization construction. Kähler and Wilke [11] identified from [23] the so called
skeleton tree and proposed a construction unifying the determinization, complementation
and disambiguation problems of Büchi automata. The most recent works in this thread
of research introduce the notion of profile trees where a profile is the history of visits to
accepting states [33, 6, 7].

A related line of research is that of finding a Büchi complementation construction that does
not rely on Büchi determinization [31, 12, 15, 32, 16, 9, 8, 35]. Avoiding determinization, or
the Safra construction, was also pursued in other contexts e.g. games and tree automata [17],
compositional synthesis [14] and translating linear temporal logic to automata [5].

2 Preliminaries

Buchi and Parity Automata. An automaton A is a tuple (Σ, Q, I, δ, α) where Σ is the
alphabet, Q is a set of states, I ⊆ Q is the set of initial state, δ : Q×Σ→ 2Q is the transition
relation, and α is the acceptance condition. A run of the automaton on an infinite word
w = σ1σ2σ3 . . . is a sequence of states q0, q1, q2, . . . such that q0 ∈ I and qi ∈ δ(qi−1, σi) for
every i ≥ 1. For Büchi automata the acceptance condition is a set F ⊆ Q and a run is
accepting if it visits states in F infinitely often. We use F to denote the set of non-accepting
states, i.e. Q \ F . The acceptance condition of a Parity automaton is a coloring (or ranking)
function χ that associates with each state a color (or rank) from a given finite set of colors
{0, 1, 2, . . . ,m}. A run of the automaton is considered accepting iff the minimal color visited
infinitely often is odd. An automaton may have several runs on the same word, and it accepts
a word iff one of its runs on that word accepts it. An automaton is deterministic if |I| = 1
and |δ(q, σ)| = 1 for every q ∈ Q and σ ∈ Σ. A deterministic automaton has a single run on
each word.

We refer to automata by three letter acronyms. The first letter may be d or n signifying
if the automaton is deterministic or non-deterministic, the second letter may be b, p or f
signifying whether it is a Büchi automaton, a Parity automaton or an automaton on finite
words. The third letter signifies the object on which the automaton runs, which is w for
words in all automata in this paper. For example, nbw stands for non-deterministic Büchi
automaton on words, and dfw stands for deterministic finite automaton on words.

Words and Trees. We use the term word for a finite or infinite sequence of letters. We use
w[j] for the j-the letter of w, w[j..] for the suffix of w starting at j, w[i..j] for the infix of w
starting at i and ending in j, and w[..j] for the prefix of w up to z. Note that w[1] is the
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first letter of w, so is w[..1]. We use w[..0] for the empty string. In general, we use [1..n] for
the set {1, 2, . . . , n}.

We use annotated binary trees. The nodes of such trees are strings in {0, 1}∗. The root
node is the empty string ε. The left successor of a node t is t0 and the right successor is
t1. An annotated binary tree is a function from {0, 1}∗ to some domain D. A node mapped
to ∅ is regarded as absent from the tree. The depth of node t, denoted |t|, is its distance
from the root, and it equals the length of the string t. So the depth of the root is 0, and
the depth of its successors are 1. For t1, t2 ∈ {0, 1}∗ we say that t1 <lex t2 if the string t1 is
lexicographically smaller than t2. We say that t1 <lft t2 if |t1| = |t2| and t1 <lex t2. The i-th
level of an annotated tree T consists of all nodes in depth i. If t1 <lex t2 <lex · · · <lex tn are
all nodes the i-th level of T then the i-th slice of T is the sequence 〈T (t1), T (t2), . . . , T (tn)〉.
The width of the i-th level is the number of nodes in that level.

Summarizing Runs Concisely. The main task of a determinization construction is to find
a way to summarize all the information needed on all the runs of a given non-deterministic
automaton in the single run of the constructed deterministic automaton. On finite words, it
sufficed to record the set of reachable states. It is instructive to see why this approach fails
for Büchi automata. The unfamiliar reader is referred to the full version.

Kähler and Wilke [11] introduced the split tree, the reduced tree and the skeleton
tree, all of which concisely summarize the information needed on the runs of the non-
deterministic Büchi automaton. The split- reduced- and skeleton-trees are defined per
a given word w. A key invariant that is maintained is that if there exists an accept-
ing run of the automaton on w then there is an accepting infinite path in all of these
trees. The formal definitions of these trees is given Appendix B of the full version.
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a a
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T(ab)ω :

Figure 3 A Büchi automaton W and
its reduced and skeleton trees for aω and
(ab)ω (where a node labeled with multiple
digits stands for the subset containing the
corresponding states (e.g. 012 stands for
{0, 1, 2}).

Roughly speaking, the split tree refines the sub-
set construction by separating accepting and non-
accepting states. From each node of the tree the
left son holds the accepting states and the right
son the non-accepting. Thus an accepting path has
infintely many left turns, and is also referred to as
left recurring. The width of a slice of the split-tree
is generally unbounded. The reduced tree bounds
the number of nodes on a slice of the tree to n, the
number of states of the given Büchi automaton A,
by eliminating from a node of the tree all states
that appeared in a node to its left. The skeleton-
tree is the smallest sub-tree of the reduced-tree that
contains all its infinite paths.

I Example 1. Figure 3 shows a Büchi automaton
W and the reduced and skeleton trees for aω and
(ab)ω both of which have width 2. The word aω

is rejected and indeed none of the two skel-paths
is left recurring. The word (ab)ω is accepted and
indeed one of the two skel-paths is left recurring.

Computing the slices of the reduced tree. The skeleton tree thus concisely captures
whether the original automaton A has an accepting path on the given word w. Unfortunately,
it requires knowing or guessing which states will eventually have no successors, which seems
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a difficult if not impossible task for a deterministic automaton to conduct. Working with the
reduced tree, however, is practical.

A slice of the reduced tree is a sequence of length at most n of nodes of the reduced tree
i.e. an element of (2Q)≤n. The 0-th slice is 〈I〉. Given a slice S = 〈S1, S2, . . . , Sk〉 we can
compute the next slice with respect to a next letter σ as follows [11]. For 1 ≤ i ≤ k, let

S̃i = ∪ {S′
j | j < 2i} S′

2i = δ(Si, σ) ∩ F \ S̃i S′
2i+1 = δ(Si, σ) ∩ F \ S̃i

Let S′ = 〈S′2, S′3, . . . , S′2k+1〉. Let S′′ = 〈S′′1 , S′′2 , . . . , S′′` 〉 be the sequence obtained from S′
by deleting all the empty sets. Then the next slice of S with respect to A and σ, denoted
δRS(S, σ) is S′′. We define δRS also for a given interval I = 〈Si, ..., Sj〉 of the slices’ nodes.
Let I′ = 〈S′2i, S

′
2i+1, . . . , S

′
2j+1〉. Let I′′ be the sequence obtained from I′ by deleting all the

empty sets. Then δRS(S, I, σ) = I′′.

3 Determinizing assuming the width is one

We first tackle the simplest case where the skeleton’s width is one, i.e, there is a single infinite
run in the reduced tree. Our automaton then needs to check whether this path visits the
accepting set infinitely often. The problem is that we can process the reduced tree, not the
skeleton tree, so if we encounter an accepting node we don’t know if it is on the skeleton tree
or not. Demanding that there exists infinitely many slices where all the nodes are accepting
is too strong, as can be seen by considering T Aaω of Fig. 4, which although is accepting all
its slices consists at least one non-accepting node. Demanding that there exists infinitely
many slices where there exists at least one node which is accepting is too weak, as can be
seen by considering T Raω of Fig. 4, which although is rejecting all its slices consists at least
one accepting node.

1 2A :

a

a

a
a

1 2R :

a

a

1, 2

2 1

2 1

2 1

2 1

· · ·

T A
aω :

1, 2

2 1

2 1

2 1

2 1

· · ·

T R
aω :

Figure 4 The
reduced and skel-
eton trees of aω

for A and R.

So we need something a little more sophisticated. The breakpoint
construction of Miyano and Hayashi [22] (henceforth, the MH-construction)
answers whether all infinite runs of a given non-deterministic Büchi auto-
maton are accepting. Since, in the case considered here, we have just one
infinite path, asking whether all infinite paths are accepting, is the same
as asking whether the single infinite path is accepting. Thus, applying the
MH-construction on the slices of the reduced tree achieves what we want,
when the skeleton width is one.

The Miyano-Hayashi Construction. The idea of the MH-construction is,
in addition to tracking the successors of the current level as in the subset
construction, to maintain a bookkeeping about which path has visited the
accepting set recently. Other states are considered to owe a visit to the
accepting set. Each state of a layer thus carries with it a bit informing
whether it owes a visit or not. When a new layer is constructed the sons
of states that owe a visit, are also marked as owing a visit unless they are
accepting (in which case the corresponding path has just paid its debt).
The other states on the layer are not marked as owing since they are
known to have visited the accepting set recently. When none of the states
is marked as owing we have found evidence for all of them to visit the
accepting set recently. We thus start charging them again for a visit to the
accepting set. Such a step is considered a reset step. Visiting an accepting state recently thus
means visiting an accepting state since the last reset occurred. If there are infinitely many
reset steps, we know that between every two adjacent reset points all paths have visited an
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374 A Modular Approach for Büchi Determinization

accepting state at least once, and therefore all paths have visited the accepting set infinitely
often.

Formally, ifA = (Σ, Q,Q0, δ, F ) then the MH-construction results in E = (Σ, QE , Q0
E , δE , FE)

defined as follows. One can think of a state of E as a mapping f : Q → {a, o, v} where a
state of A mapped to a is absent from the layer, a state mapped to o is on the layer and
owes a visit, and a state mapped to v is in the layer and visited the accepting set since the
last reset. Alternatively, we can think of the states of E as pairs of subsets 〈QL, QO〉 where
QL are the states in the layer (those that are mapped to v or o) and QO are the states in the
layer that owe a visit (those that are mapped to o). The transition relation is then defined as
δE(〈QL, QO〉, σ) = 〈Q′L, Q′O〉 where Q′L = δ(QL, σ) and if QO 6= ∅ then Q′O = δ(QO, σ) \ F
and otherwise (when QO = ∅) Q′O = δ(QL, σ) \ F . The accepting states of E are the reset
states, i.e. those of the form 〈QL, ∅〉. The initial state is 〈I, ∅〉.

I Claim 1 ([22]). E accepts w iff all paths of A accept w.

Miyano-Hayashi on the Reduced Tree. The reduced tree already computes the next
successors and separates the states into accepting and non-accepting. The remaining task
is to carry the bookkeeping bit of the MH-construction. This can be achieved by the dbw
D1 = (Σ, Q1, I1, δMHoR, F1) as follows. The states Q1 are annotated slices of the form
〈(S1, b1), (S2, b2), . . . , (Sk, bk)〉. That is, Q1 ⊆ (2Q × {o, v})≤n. The accepting states F1 are
those where all the bi components are v. The initial state I1 is 〈(I, o)〉. The transition
relation builds the next slice of the reduced tree, and annotates the node as dictated by the
MH-construction. (A node of the reduced tree is considered to be accepting if it consists
of accepting states, otherwise it is considered non-accepting. Note that in the reduced tree
there are no nodes with both accepting and rejecting states.) Formally, given an annotated
slice S = 〈(S1, b1), (S2, b2), . . . , (Sk, bk)〉, a next letter σ, for 1 ≤ i ≤ k, let

S̃i = ∪ {S′
j | j < 2i}

S′
2i = δ(Si, σ) ∩ F \ S̃i,
S′

2i+1 = δ(Si, σ) ∩ F \ S̃i

b′
2i = v

b′
2i+1 =

{
o if ∀i. bi = v
bi otherwise

Let S′ = 〈(S′2, b′2), (S′3, b′3), . . . , (S′2k+1, b
′
2k+1)〉. Let S′′ be the sequence obtained from S′ by

deleting all pairs (S′i, b′i) where S′i is the empty set. Then δMHoR(S, σ) = S′′.

I Proposition 1. For any word w for which skel-width(A, w) = 1 the dbw constructed above
accepts w iff A accepts w.

Similar to δRS, for later constructions only, we define δMHoR(S, I, σ) for an interval
I = 〈(Si, bi), . . . , (Sj , bj)〉 of S, for some 1 ≤ i ≤ j ≤ k. Let I′ be the sequence 〈(S′2i, b

′
2i),

(S′2i+1, b
′
2i+1), . . . , (S′2j+1, b

′
2j+1)〉. Let I′′ be the sequence obtained from I′ by removing all

pairs whose first component is the empty set then δMHoR(S, I, σ) = I′′.

4 Deciding the width

Perhaps the simplest question regarding widths is: what is the width of the tree? or put as
a decision problem: is the width of the tree smaller than a given k? Before tackling this
problem, let’s consider a simplified case as a motivating discussion. We know the width of
the skeleton tree is monotonically non-decreasing, and bounded by n. Suppose we could
start at a time point z after the width has already stabilized. Suppose we could track each
of the nodes separately from the others, within its own interval. If we have ` nodes in level z
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we would start with ` intervals. The successor of a node in interval j are kept within the
same interval j.

If the width is k, then exactly k of the nodes we started with at level z have infinitely
many descendants, therefore their interval will always be non-empty. If we started with ` > k

nodes, then `− k of these have only finitely many descendants and therefore eventually their
interval will become empty. If we throw away empty intervals, then we will at some point
remain with exactly k non-empty intervals, forever long. Below we develop this intuition to
tackle the exact problem of deciding the width.

The states of the constructed dbw Bk are sequences of sequences of nodes of the reduced
tree, corresponding to a slice partitioned into several intervals. While a node of a reduced tree
is a subset of A’s states, in this construction a node can be thought of as the smallest element.
If S = 〈I1, I2, . . . , I`〉 we say that S has ` intervals, and denote it |S| = `. If |S| < k we put
all nodes of the next step in different (singleton) intervals, to track each of them separately.
We call such step a shredding step, and such state a shredding state. The accepting set is
the set of all shredding states. The initial state consists of a single interval S0 = 〈I1〉 where
I1 = 〈I〉, i.e. the interval consists of one node – the root of the reduced tree.

We first define the transition relation for a non-shredding state. Let S = 〈I1, I2, . . . , I`〉
be a state of Bk. We use ∪ S to abbreviate ∪1≤i≤` Ii, i.e. the set of nodes in all the intervals
together. For 1 ≤ i ≤ ` let I′i = δRS(∪S, Ii, σ) and let S′ = 〈I′1, I′2, . . . , I′`〉. Let S′′ be the
sequences obtained from S′ by deleting empty intervals. Then if S is non shredding (i.e.
` ≥ k) then δBk

(S, σ) = S′′.
To define the transition relation for a shredding state we introduce an additional notation.

If ∪S = {S1, S2, . . . , Sm} then we use Shred(S) to denote the sequence 〈I′1, I′2, . . . , I′m〉
where I′i = 〈Si〉. That is, in Shred(S) every node of S is put in its own interval. Now let
I′′i = δRS(∪S, I′i, σ) and let S′′ = 〈I′′1 , I′′2 , . . . , I′′` 〉. Let S′′′ be the sequences obtained from S′′
by deleting empty intervals. Then if S is a shredding state (i.e. ` < k) then δBk

(S, σ) = S′′′.

I Proposition 2. The dbw Bk constructed above accepts a word w iff skel-width(A, w) < k.

I Example 2. Consider the nbw W of Figure 3. Both words aω and (ab)ω have width 2 (as
is evident from the respective skeleton trees). The automata B2 and B3 for widths < 2 and
< 3 respectively, are given in Fig. 5. The accepting states are marked with a double edge
(and also colored blue). It can be seen that B2 rejects both aω and (ab)ω as required (since
their width is not smaller than 2), while B3 accepts both words as required (since their width
is smaller than 3).

Tracking the path of either words aω or (ab)ω on B2 or B3 (and comparing to the respective
trees in Figure 3) we can see how a state represents a slice of the reduced tree, separated
into intervals. And that the transition relation maintains the successors within the same
interval, unless shredding occurred in which case they are separated into singleton intervals.

Last, we can see that each skeleton path is eventually trapped within its own interval.
This brings us to our next claim.

I Claim 2 (skel-paths separation). Let w be a word with skel-width k, and let ρ1, ρ2, . . . , ρk be
the skel-paths from left to right. Let S0,S1,S2, . . . be the run of Bk on w. Then there exists
z1 ∈ N such that |Sz| = k for every z > z1. Moreover, assume Sz = 〈Iz

1, Iz
2, . . . , Iz

k〉 then for
every skel-path ρi = Si

0, S
i
1, S

i
2, . . ., for every z > z1, we have Si

z ∈ Iz
i .
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Figure 5 On the left: automata B2 and B3 answering whether the width of a word w.r.t. W
given in Fig. 3 is smaller than 2 and 3, respectively. The accepting states are those with a double
frame (also colored blue). On the right: automata P2 and P3 answering whether a word with width
exactly 2 and 3, resp. (w.r.t. W given in Fig. 3) is accepted by A. The states with a thick frame
have color 0 (red). The states with a double frame have color 1 (green). The states with a thin
frame have color 2 (gray). An underlined node is a node whose MH-bit is set to v.

5 Determinizing for a given width

We now show that we can build a deterministic parity automaton Pk that accepts a word
of width k iff it is accepted by A. The idea is to combine both constructions we have seen
previously. That is, we use the idea of the construction of Bk to keep the skel-paths separated
one from the other in different intervals, and we use the MHoR construction to check on each
of these intervals whether the skel-path is accepting. Essentially, we add the Miyano-Hayashi
bit to the construction of Bk.

As in Bk we work with k intervals, and apply shredding when the number of intervals
is smaller than k. Instead of using δRS as in Bk we use δMHoR as in D1, so the transition
relation computes for each successor of a node its MH-bit, and an MH-reset is preformed
when all bits of that interval are v. The states of Pk are sequences of at most n intervals,
where each interval is a sequence of pairs whose first element is a node of the reduced tree,
and whose second element is a bit in {o, v}. (Again, nodes are subsets of A’s states, but can
be thought of as the smallest elements of this construction.) The initial state is the sequence
S0 where S0 = 〈I1〉 and I1 = 〈(I, o)〉, i.e. the root of the reduced tree, labeled as owing.

Let S = 〈I1, I2, . . . , I`〉 be a state of Pk. First we define a non-shredding transition (i.e.
assume ` ≥ k). In this case, for 1 ≤ i ≤ ` and σ ∈ Σ, let I′i = δMHoR(∪S, Ii, σ) (where
δMHoR is as defined in Section 3). Let S′ = 〈I′1, I′2, . . . , I′k〉 and let S′′ be the sequence
obtained from S′ by deleting all pairs with an empty interval. Then δPk

(S, a) = S′′.
For a shredding transition (i.e. when ` < k), if ∪S = {P1, P2, . . . , Pm} where Pi is a pair

(Si, bi) where Si is a reduced-tree node and bi ∈ {o, v} then we use Shred(S) to denote the
sequence 〈I′1, I′2, . . . , I′m〉 where I′i = 〈Pi〉. That is, in Shred(S) every pair of S is put in its
own interval. Now let I′′i = δMHoR(∪S, I′i, σ) and let S′′ = 〈I′′1 , I′′2 , . . . , I′′` 〉. Let S′′′ be the
sequences obtained from S′′ by deleting the empty intervals. Then δPk

(S, σ) = S′′′.
Let S be a state. The coloring function assigns it 0 if it is a shredding states (i.e. |S| < k);

it assigns it 1 if |S| ≥ k and an MH-reset occurs, (i.e. for some interval i all the MH-bits of
pairs in that interval are v); and it assigns it 2 otherwise.

I Proposition 3. For all words w if skel-width(A, w) = k then Pk accepts w iff A does.
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I Example 3. Consider again the nbw W of Figure 3. Figure 5 provides the automata P2
and P3 for widths 2 and 3, respectively. The red states (also having a thick frame) have color
0, the green states (also having a double frame) have color 1 and the gray states have color
2. An underlined node corresponds to a node whose MH-bit is set to v. (The un-underlined
nodes have their MH-bit set to o.)

It is easy to construct P2 and P3 given B2 and B3. Indeed they just add the MH-bit for
the nodes of B2 and B3, respectively, undergoing an MH-reset, if all nodes of an interval are
underlined (i.e. have visited the accepting set recently). Note that P2 has more states than
B2 since for instance, we need two version of the lower right state, for different settings of
the node’s MH-bits.

Recall that both words aω and (ab)ω have width 2, thus P2 should provide the correct
result for both of them. Indeed P2 accepts (ab)ω and rejects aω exactly as A does.

We note that D1 is a private case of the construction of Pk for k = 1. Indeed, for k = 1
shredding will never occur, and so all states consist of a single interval which is the entire
slice. Thus P1, exactly as D1, simply tracks the MH-bits on the reduced tree.

We next turn to understand what answer Pk provides for words with skel-width different
from k. If the actual skel-width is k∗ and k > k∗ then after the stabilization point, we won’t
be able to maintain for long more than k∗ non-empty intervals, therefore shredding will occur
infinitely often and Pk will reject. If k∗ > k then as we state in Proposition 4 below, if Pk

accepts it does so rightfully.

I Proposition 4. The dpw Pk described above uses three colors {0, 1, 2} and for any word w
if skel-width(A, w) = k then Pk accepts w iff A does,
if skel-width(A, w) < k then Pk rejects w,
if Pk accepts w then w is accepted by A, and
Pk visits 0 infinitely often iff skel-width(A, w) < k.

Self-Correction

We observe that in a sense, the intervals are self-correcting. That is, for every word w and
every suffix w[j..] of w, if we are given the slice of the reduced tree on the respective prefix
w[1..j−1], partition it arbitrarily to intervals, and apply Bk from there on that suffix, we
will still get a correct result (i.e. a correct answer to the question whether the width of w is
smaller than k). Intuitively, because the intervals’ role is to detect a property that depends
only on the future.

In a similar manner, the MH-bits are self correcting. That is, for every word w and
every suffix w[j..] of w, if we are given the slice of the reduced tree on the respective prefix
w[1..j−1], and annotate it arbitrarily with MH-bits, and apply MHoR from there on that
suffix, we will still get a correct result (i.e. an answer whether w is accepted on all skel-paths).
Again, intuitively because the role of the MH-bits is to detect a property that depends only
on the future. Putting these together we get the following claim.

I Claim 3 (Intervals and MH-bits are self-correcting). Let S be a slice of the reduced tree on
prefix w[1..j] partitioned arbitrarily into intervals, and annotated arbitrarily with MH-bits.
Applying the construction of Pk on the suffix w[j+1..] from state S still satisfies all premises
of Proposition 4.
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6 Determinizing for any width

We now build a deterministic parity automaton P that recognizes the same language as
A. Intuitively, we want to run the automata P1,P2, . . . ,Pn from the previous section, in
parallel. We know that if the exact width is k∗ then the answer we look for is given by Pk∗

and apart from this, Pk for all k > k∗ rejects, and for all k < k∗, if Pk accepts it does so
rightfully. Thus, prioritizing results of Pk’s with lower k’s should give us the correct result.

Before we continue, let’s contemplate on the complexity we’ll get by running all Pk’s in
parallel. A state of Pk needs to encode, among other things, the partition into intervals,
which requires at least 2n states. Since we have n such components in a state, we’d need 2n2

which is more that we can allow, if we’d like to stay in the bounds of 2O(n log n).
We overcome this by working with a modification of Pk, termed Rk, which is obtained

using the observation of Claim 3. Specifically, Rk will differ from Pk in two places. One
is that Rk will undergo shredding whenever one of the Rj with j ≤ k decides to undergo
shredding. This entails that the partitions to intervals of Rk+1 will be a refinement of that of
Rk. Or put otherwise, every interval of Rk+1 would be fully contained in an interval of Rk.
The second place is that an interval of Rk will undergo an MH-reset whenever a subsuming
interval of one of the Rj ’s for j ≤ k decides to undergo an MH-reset. As we shall see in the
next subsection, this will enable an encoding of the state space that does not exceed nO(n).

To run these automata in parallel a state of our parity automaton will have n components
one corresponding to each of the automata Rk. The initial state will be the n-tuple consisting
of the initial states of R1,R2 . . . ,Rn and the transition relation will follow that of the Rk’s.
For the acceptance condition, we need to assign colors to these compound states.

A compound state has the following form (S1,S2, . . . ,Sn) where Si is a state of Ri for
1 ≤ i ≤ n. To assign a color to the compound state, it is convenient to let each Ri use its own
set of colors. More precisely, we will assume automaton Rk assigns colors in {2k, 2k+1, 2n+2}
instead of {0, 1, 2}, respectively. That is, the colors 2k and 2k+1 are uniquely used by Rk

whereas the color 2n+2 may be used by all Rk’s. Now for a given state P = (S1,S2, . . . ,Sn),
we can look at the corresponding sequence of colors (c1, c2, . . . , cn), where ci has values in
{2k, 2k+1, 2n+2}, and color the compound state P with the minimal color among the ci’s.

I Theorem 4. Let A be an nbw, with n states. The dpw P described above has 2n + 1
colors and it accepts an infinite word w iff A accepts w.

Complexity. We turn to show that the complexity of the construction of the dpw P in
Theorem 4 is nO(n).

A state Sk ofRk for some 1 ≤ k ≤ n is a slice of the reduced tree, partitioned into intervals,
where each node is annotated with its MH-bit. A state of P is an n-tuple (S1,S2, . . . ,Sk)
of such states. We shall see that we can encode a state of P more succinctly than directly
encoding each state Si of the tuple. In fact, we chose to work with Rk instead of Pk for this
reason exactly. For Rk we can show that the intervals of Rk+1 refine those of Rk. This will
entail also that the MH-bits for all Rk’s can be encoded more compactly.

First, we claim that the intervals of Rk+1 refine those of Rk, for every 1 ≤ k ≤ n.

I Claim 4 (Intervals refinement). Every interval Jm of the state of Rk+1 after reading w[..z],
is fully contained in an interval I` of the state of Rk after reading w[..z], for any z ∈ N.

Next, we show that if b1, b2, . . . , bn are the MH-bit of a given node in R1,R2, . . . ,Rn

resp. then b1b2 . . . bn ∈ v∗o∗.
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I Claim 5 (MH-bits entailment). Let bk(S) and bk+1(S) be the MH-bit encoding of node S in
the state of Rk and Rk+1, resp. after reading w[..z] for some z ∈ N. Then bk(S) = o implies
bk+1(S) = o, and bk+1(S) = v implies bk(S) = v.

We are now ready to fully encode a state P = (S1,S2, . . . ,Sn) of P. A state Si needs to
record (1) the original automaton states that are on the slice, in the order they appear, (2)
the partition to nodes, (3) the partition to intervals and (4) the Miyano-Hayshi bit of each
node. We have that (1) and (2) are shared among all Si’s since they all track the obtained
slice of the reduced tree. We’ll use Claims 4 and 5 to represent (3) and (4) in a combined
manner, rather than separately for each Si.

The states on the slice, can be represented by a permutation on [1..n].3 This requires
n! < nO(n). The partitions of states to nodes, can be encoded using a function h from [1..n]
to {0, 1}, so that h(i) = 1 means that a new node starts after the i-th state of slice (i.e. the
i-th and i+1-th states of the slice are in different nodes). This requires 2n < nO(n). The
partition to intervals for all Rk’s together, by Claim 4, can be encoded by a function F from
[1..n] to [0..n] so that F (i) = j means that a new interval begins between states i and i+1 of
the slice, in all Rk for k > j. This requires nn+1 < nO(n). Finally, let [1..n]h be the set of
indices for which h(i) = 1. That is, [1..n]h represents the nodes of the slice. By Claim 5, the
MH-bits of nodes in all Rk’s together can be represented by a function G from [1..n]h to
[1..n+ 1] so that G(i) = j means that node i is v in all Rk for k < j and it is o, in all Rk for
k ≥ j. This requires nn+1 < nO(n). So all in all, nO(n) suffices to represent all states of P
from Theorem 4.4

I Corollary 5. Let A be an nbw, with n states. The dpw P described above has nO(n) states
and 2n+ 1 colors and it accepts an infinite word w iff A accepts w.

7 Conclusions

Building on the reduced and skeleton trees of Kähler and Wilke [11] we provide a novel
simple construction for Büchi determinization.

A key observation is that conceptually we can partition the reduced tree into intervals so
that each infinite path of the reduced tree (along with the finite paths attached to it) resides
in an interval of its own, as depicted in Figure 2. The word is accepted by A iff in one of
these intervals the infinite path is accepting. The question whether in such an interval the
infinite path is accepting, can be answered by applying the MH-construction on that interval.

We show how we can build an automaton Pk that for words with width k, finds this
conceptual separation and by applying the MH-construction to each of the k intervals, returns
a correct result for all words of width k. Our overall construction runs in parallel (a minor
tweaking of) the automata P1,P2, . . . ,Pn to produce a correct result for words of any width.5

We have thus broken the determinization problem into two simpler problems (1) parti-
tioning the reduced tree into its skeleton-paths, and (2) providing an answer for a single
infinite path (in the presence of finite paths). For the latter we adapted the MH-construction.

3 We assume some arbitrary given order ≺ on the states of A so that states in the same node will be
ordered according to ≺, and we obtain a total order on the states of a slice.

4 In fact, the partition to nodes can be seen as the finest refinement of the partition to intervals, so we
can represent both (2) and (3) together by a function from [1..n] to [0..n+1]. So the overall number of
state is bounded by n! · nn+2 · nn+1 < n3n+3.

5 Appendix A provides an illustrative presentation of the constructions using tokens, bells, and buzzers.
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We tackled the former by answering the elemental decision problem of whether the number
of infinite paths in a tree with both finite and infinite paths is smaller than a given k.
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A Recap – The Construction using Tokens, Buzzers and Bells

Below we give a description of our construction, using tokens, bells and buzzers in the
style of the representation of Safra’s construction in [13]. The tokens are a visual means
to describe the states of the automaton. For a parity automaton with 3 colors {0, 1, 2} the
bell corresponds to a state colored 1 and the buzzer to a state colored 0, so that a word is
rejected if the buzzer buzzed infinitely many times, and otherwise, accepted if the bell rang
infinitely many times. For a parity automaton with 2m colors, we use m buzzers and m
bells. Suppose during a run on the word the minimal buzzer to buzz infinitely often is kbuzz

and the minimal bell to ring infinitely often is kbell. Then kbuzz, kbell ∈ [1..m] ∪ {∞} and if
kbell < kbuzz the word is accepted.

For width one. The construction builds the slices of the reduce tree slice by slice and marks
the slices’ nodes with violet and orange tokens (for the MH bits v and o, resp). On the root
of the tree, put violet if it is accepting, and orange otherwise. Given the current slice, put
tokens on the next slice as follows. For a son of a violet token, put a violet token. For a son
of an orange token, put a violet token if it is accepting and an orange token otherwise. If all
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tokens in the slice are violet, ring the bell. Then replace the tokens on all the non-accepting
nodes with orange tokens.

For width k. The construction builds the slices of the reduce tree slice by slice and marks the
slices’ nodes with violet and orange tokens that are numbered 1 to n (where n is the number
of states of the given nbw). That is, tokens = {violet(i) | i ∈ [1..n]} ∪ {orange(i) | i ∈ [1..n]}.
We use token(i) for violet(i) ∨ orange(i).

On the root of the tree, put violet(1) if it is accepting, and orange(1) otherwise. Given
the current slice, put tokens on the next slice as follows. For a son of a violet(i) token, put a
violet(i) token. For a son of an orange(i) token, put a violet(i) token if it is accepting and
an orange(i) token otherwise. If the number of i’s for which token(i) is in the current slice
is less than k, buzz the buzzer. Then put on each node of the slice a new token, with i’s
increasing from left to right, and with orange(i) placed on a non-accepting node and violet(i)
on an accepting node. If for some i, all token(i) are violet, ring the bell. Then replace all
the violet(i) tokens that are on a non-accepting node with orange(i) tokens.

Overall construction.6 Again, the construction builds the slices of the reduce tree slice by
slice and marks the slices’ nodes with tokens. Here we use n sets of violet and orange tokens,
numbered 1 to n. That is, tokens = {J-violet(i) | J, i ∈ [1..n]} ∪ {J-orange(i) | J, i ∈ [1..n]}.
We use J-token(i) for {J-violet(i), J-orange(i)} and J-token() for {J-violet(i) | i ∈ [1..n]} ∪
{J-orange(i) | i ∈ [1..n]}.

On the root of the tree, for every J ∈ [1..n], put J-violet(1) if it is accepting, and
J-orange(1) otherwise. Given the current slice, put tokens on the next slice as follows. For
a son of a J-violet(i) token, put a J-violet(i) token. For a son of a J-orange(i) token, put
J-violet(i) if it is accepting and J-orange(i) otherwise. If for some J the number of used
J-token()’s on the current slice is less than J , buzz the J-buzzer. Then, for all J ′ ≥ J , put
on all nodes of the slice a new J ′-token(), with i’s increasing from left to right, and with
J ′-orange(i) placed on a non-accepting node and J ′-violet(i) on an accepting node. If for
some i and J , all J-token(i) are violet, ring the J-bell. The for every non-accepting node
with J-violet(i) on it, for every J ′ ≥ J , if the current J ′-token() on it is J ′-violet(i′), replace
it with a J ′-orange(i′) token.

6 The construction here incorporates the modification required to get the complexity of nO(n).
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