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Preface

This volume contains the papers presented at the 18th International Workshop on Approxim-
ation Algorithms for Combinatorial Optimization Problems (APPROX 2015) and the 19th
International Workshop on Randomization and Computation (RANDOM 2015), which took
place concurrently in Princeton University, USA during August 24–26, 2015.

APPROX focuses on algorithmic and complexity issues surrounding the development of
efficient approximate solutions to computationally difficult problems, and was the 17th in
the series after Aalborg (1998), Berkeley (1999), Saarbrücken (2000), Berkeley (2001), Rome
(2002), Princeton (2003), Cambridge (2004), Berkeley (2005), Barcelona (2006), Princeton
(2007), Boston (2008), Berkeley (2009), Barcelona (2010), and Princeton (2011), Boston
(2012), Berkeley (2013), Barcelona (2014). RANDOM is concerned with applications of
randomness to computational and combinatorial problems, and was the 18th workshop in the
series following Bologna (1997), Barcelona (1998), Berkeley (1999), Geneva (2000), Berkeley
(2001), Harvard (2002), Princeton (2003), Cambridge (2004), Berkeley (2005), Barcelona
(2006), Princeton (2007), Boston (2008), Berkeley (2009), Barcelona (2010), Princeton (2011),
Boston (2012), Berkeley (2013), Barcelona (2014).

Topics of interest for APPROX and RANDOM are: design and analysis of approximation
algorithms, hardness of approximation, small space algorithms, sub-linear time algorithms,
streaming algorithms, embeddings and metric geometry, mathematical programming methods,
combinatorial problems in graphs and networks, algorithmic game theory and economic,
computational geometric problems, approximate learning, online algorithms, approaches that
go beyond worst case analysis, design and analysis of randomized algorithms, randomized
complexity theory, pseudorandomness and derandomization, random combinatorial structures,
random walks/Markov chains, expander graphs and randomness extractors, probabilistic proof
systems, random projections and embeddings, error-correcting codes, average-case analysis,
property testing, computational learning theory, and other applications of approximation
and randomness.

The volume contains 26 contributed papers, selected by the APPROX Program Committee
out of 61 submissions, and 30 contributed papers, selected by the RANDOM Program
Committee out of 79 submissions.

We would like to thank all of the authors who submitted papers, the invited speakers, the
members of the Program Committees, and the external reviewers. We gratefully acknowledge
the Department of Computer Science and Engineering of the Indian Institute of Technology
Delhi, the Institute of Computer Science of the Christian-Albrechts-Universität zu Kiel, the
Department of Computer Science and Engineering of the University of Washington, and the
Department of Computer Science of the University of Geneva.

August 2015 Naveen Garg
Klaus Jansen

Anup Rao
José D.P. Rolim
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Abstract
Imagine a wooden plate with a set of non-overlapping geometric objects painted on it. How
many of them can a carpenter cut out using a panel saw making guillotine cuts, i.e., only moving
forward through the material along a straight line until it is split into two pieces? Already fifteen
years ago, Pach and Tardos investigated whether one can always cut out a constant fraction if
all objects are axis-parallel rectangles. However, even for the case of axis-parallel squares this
question is still open. In this paper, we answer the latter affirmatively. Our result is constructive
and holds even in a more general setting where the squares have weights and the goal is to
save as much weight as possible. We further show that when solving the more general question
for rectangles affirmatively with only axis-parallel cuts, this would yield a combinatorial O(1)-
approximation algorithm for the Maximum Independent Set of Rectangles problem, and would
thus solve a long-standing open problem. In practical applications, like the mentioned carpentry
and many other settings, we can usually place the items freely that we want to cut out, which
gives rise to the two-dimensional guillotine knapsack problem: Given a collection of axis-parallel
rectangles without presumed coordinates, our goal is to place as many of them as possible in
a square-shaped knapsack respecting the constraint that the placed objects can be separated
by a sequence of guillotine cuts. Our main result for this problem is a quasi-PTAS, assuming
the input data to be quasi-polynomially bounded integers. This factor matches the best known
(quasi-polynomial time) result for (non-guillotine) two-dimensional knapsack.
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2 On Guillotine Cutting Sequences

1 Introduction

Two-dimensional cutting stock problems arise naturally in industrial manufacturing. The
goal is to cut out a given set of geometric objects from a large piece of parent material such as
wood, metal, or glass. Guillotine cutting sequences play an important role in such processes.
Starting from the large piece, in each step such a sequence takes one of the available pieces
and cuts it along a straight line into two smaller pieces. Eventually, each of the input objects
corresponds to one of the resulting pieces. Using guillotine cuts is often required by the
available technology since more complex cutting patterns are often not possible.

Guillotine cuts motivate interesting basic problems in combinatorics, computational
geometry, and combinatorial optimization. For instance, Urrutia [16] asked the following
simple and yet intricate question: Given a set of pairwise non-overlapping compact convex
geometric objects in the plane, can we always separate a constant fraction of them using a
guillotine cutting sequence? Since the answer would be trivially no if cutting through objects
is forbidden, such cuts are allowed at the expense of losing partial objects completely. This
is equivalent to asking how many of them we can cut out using only guillotine cuts, i.e., each
piece must not contain more than one complete object at the end. Pach and Tardos [15]
investigated this question and showed that already for straight line segments this cannot
always be achieved. They give a family of instances with straight line segments yielding an
upper bound of O(nlog 2/ log 3) for the number of line segments that can be cut out using only
guillotine cuts. On the other hand, they show that we can indeed cut out a constant fraction
of the input objects if – loosely speaking – all input objects have roughly the same size.1
In this paper, we investigate the natural related question when the objects to be cut are
rectangles2 as we describe in the sequel.

1.1 Guillotine cuts for squares and rectangles
Even though Urrutia’s general conjecture about convex objects was refuted, Pach and
Tardos [15] wrote that “it seems plausible” that the question can be answered in the
affirmative if the input objects are axis-parallel rectangles. They provided a cut sequence
that saves Ω(n/ logn) rectangles, and stated that they “were unable to verify [a bound of
Ω(n)] even for axis-parallel squares”.

In our first result in this paper, we answer the latter open question by giving a guillotine
cutting sequence that recovers an 1/81-fraction of any set of axis-parallel squares. We first
clean up the instance by placing a hierarchical grid with a random offset and delete some
of the squares according to it (a standard step, see e.g., [7]). Then, we show that in each
iteration of the cutting sequence we can find a cut that intersects at most O(1) of the
remaining squares while there is at least one surviving square on either side of the cut. By
viewing this sequence as a binary tree, we can elegantly charge the number of the intersected
squares to the number of surviving squares in the leaves.

Furthermore, we extend the previous result to the weighted case of the problem in which
each square i has a weight wi associated to it. As usual in combinatorial optimization,
the weight of each object is a measure for its importance and we are looking for a cutting
sequence that cuts out squares whose total weight is at least a constant fraction of the total
weight of the input squares. As our above techniques do not carry over to this case, we give

1 For a precise statement see Pach and Tardos [15].
2 In this paper all rectangles considered are axis-parallel and open: a line going through a boundary side

of such a rectangle does not destroy it.
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a new algorithm that is based on a suitable conflict graph with one vertex for each input
square. The graph has the important property that any independent set corresponds to
a set of squares that can be cut out completely without any further loss. Even more, we
show that we can color the vertices with at most 9 colors and thus there is an independent
set corresponding to a 1/9-fraction of the entire weight of the input squares. Furthermore,
our reasoning here directly extends to hypercubes in arbitrary dimensions. Thus, we can
recover a 4/729-fraction of the weight of the squares in the two-dimensional plane, and a
1/2O(d)-fraction in d dimensions.

I Theorem 1 (informal). For axis-parallel squares there is always a guillotine cutting sequence
that recovers a 1/81-fraction in the unweighted case, a 4/729-fraction in the weighted case,
and a 1/2O(d)-fraction in the weighted case in d dimensions.

An interesting aspect of our algorithms is that they only require axis-parallel cuts as
opposed to the original question posed by Urrutia [16] (and investigated by Pach and
Tardos [15]) where in principle also diagonal ones are allowed. Restricted to axis-parallel cuts
we prove that for unit squares there are instances in which any cutting sequence can recover
at most a 1/2-fraction of the squares (See Section 3 and Figure 3). Interestingly, although
this is the strongest negative result we can obtain, we can easily show an algorithm finding a
cutting sequence recovering 1/2-fraction of any set of unit squares, or more generally, for
rectangles of equal height or width (see Section 2.3).

1.2 Connection to Independent Set of Rectangles
Inspired by the previous comment, we formulate a conjecture which is slightly stronger than
the question investigated by Pach and Tardos [15].

I Conjecture 1.1. For any set of n non-overlapping axis-parallel rectangles there is a guillotine
cutting sequence with only axis-parallel cuts separating Ω(n) of them.

If the conjecture was true this would have exciting consequences for the notoriously hard
Maximum Independent Set of Rectangles (MISR) problem. Given a set of possibly overlapping
axis-parallel rectangles, we want to compute a non-overlapping subset of maximum size.
Finding a polynomial time O(1)-approximation algorithm for this problem is an important
open problem (see e.g, [1, 7, 4, 5] and references therein.) We show that there is a simple
dynamic program that computes the largest subset of the given rectangles that can be cut out
completely using only guillotine cuts. Now, the conjecture implies that an Ω(1)-fraction of
the optimal solution of a MISR-instance can be cut out using guillotine cuts. Assuming this,
we show that a simple dynamic programming (DP) algorithm yields an elegant combinatorial
O(1)-approximation for MISR (see Section 4).

I Theorem 2. If Conjecture 1.1 is true, then there is a O(1)-approximation algorithm for
MISR with running time O(n5).

1.3 Two-dimensional guillotine knapsack
The final contribution of this work concerns the two-dimensional guillotine knapsack problem.
In this problem we are given a set of rectangles and a square-shaped knapsack3, modeling a

3 While with our techniques we can also handle the case of a rectangular knapsack, in this extended
abstract for simplicity we assume the knapsack to be a square.

APPROX/RANDOM’15



4 On Guillotine Cutting Sequences

piece of parent material. We are interested in a placement of as many rectangles as possible
in the knapsack so that there is a guillotine cutting sequence extracting them.

The two-dimensional geometric knapsack problem, without taking into account the guillo-
tine cut constraint, is well-studied in the literature. For squares, a (5/4 + ε)-approximation is
presented by Harren [10], which was subsequently improved to a PTAS by Jansen and Solis-
Oba [12]. The best known polynomial time result for rectangles is a (2 + ε)-approximation
result due to Jansen and Zhang [14]. The same authors presented a faster and simpler
(2 + ε)-approximation for the unweighted case [13]. Recently, Adamaszek and Wiese pre-
sented a quasi-PTAS for rectangles that assumes the input data to be polynomially bounded
integers [2]. For rectangles, there are (1 + ε)-approximation algorithms known if we are
allowed to increase the size of the knapsack by a factor of 1 + ε in both dimensions [9], or
even only in one [11]. Also, there is a PTAS if the profit of each item equals its area [3].

It is worth noting that many of the known results for this problem can be easily adjusted
to take the guillotine cut constraint into account. However, this is not the case for the result
giving the best known approximation factor for the problem: the recent (1+ε)-approximation
with quasi-polynomial running time (QPTAS) [2]. The algorithm is based on partitioning the
placement area into (logn)O(1) rectangular boxes such that there is a near-optimal solution
in which – informally speaking – each box contains either only one big item, or high and
narrow items, or wide and thin items. Then, the objects are assigned to the boxes via linear
programming. This algorithm does not directly extend to the setting of guillotine cutting
sequences. First, the mentioned near-optimal solution might not allow a guillotine cutting
sequence (even if it is constructed based on such a solution) and second, the LP-rounding
procedure does not necessarily produce such solutions either. We overcome these problems
by showing that at additional (marginal) cost, we can construct a near-optimal solution in
which essentially the mentioned boxes can be cut out using guillotine cuts. Then, we replace
the LP-approach by a dynamic program. For this to work, we carefully round the items
such that after rounding there are only (logn)O(1) many different types of items and our DP
guesses the correct guillotine cuts step by step, together with the distribution of the items
on either side of the cut. In summary, our result is the following.

I Theorem 3. There is a quasi-PTAS for the unweighted two-dimensional guillotine knapsack
problem if all input data are quasi-polynomially bounded integers. This holds with and without
the possibility to rotate items by 90 degrees.

2 Guillotine cutting sequences for squares

In this section, we give guillotine cutting sequences recovering a constant fraction of a set of
non-overlapping axis-parallel squares 4 of arbitrary sizes. Our results generalize to higher
dimensions. First, we give some basic terminologies. In Section 2.1, we present a cutting
sequence for unweighted squares, and then in Section 2.2, we prove the result for the weighted
case.

Let P be a piece, i.e., a rectangle in the plane, and let H1 and H2 be the two open
disjoint half-planes bounded by a straight line `. Cutting P along ` gives us two sub-pieces
P1 = P ∩H1 and P2 = P ∩H2. A cutting strategy is represented by a binary tree T where
each non-leaf node v ∈ V (T ) is equipped with a piece Pv and a straight line `v such that
cutting Pv along the straight line `v gives us Pv1 and Pv2 , where v1, v2 are the children of v.

4 In this section, we henceforth implicitly assume all squares to be axis-parallel.
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Let O be a set of objects. We say that the cutting strategy T separates O if the following
statements hold

The piece Pr associated with the root node r is a rectangle containing all objects in O.
For each non-leaf node v, the straight line `v intersects no object inside Pv.
For each leaf node v, the piece Pv contains only one object in O.

We also say that O is guillotine separable if there is a cutting strategy T separating O. In
the rest of this section, we focus on the case when our input objects are squares of arbitrary
sizes. Let R denote the input set of squares.

Grid Lemma. One of the components in our proof is a collection of (multi-level) grid lines
drawn on the plane in a “nice” way. These grid lines will be used to suggest our cut sequence,
i.e., most of the straight lines in the strategy coincides with one of these grid lines. 5 We
draw grid lines of various granularities and remove squares from R according to the grid lines,
so that the remaining squares admit a guillotine cutting sequence. We say that a square
R ∈ R is at level-i if its side length is in the interval (N/2i+1, N/2i], where N ∈ N is used
for normalization so that level-0 contains the largest squares.

In a first step, we independently pick two random numbers x, y ∈ [0, N) defining a random
shift to draw the grid. For each i (i.e. level), the vertical grid lines at level-i are drawn at
x, x+N/2i, x+2 ·N/2i, . . . (wrapping up appropriately); similarly, the horizontal grid lines at
level-i are drawn at y, y+N/2i, y+2 ·N/2i . . .. Grid cells bounded by consecutive grid lines at
level i− 1 are said to be at level-i, so level-i grid cells are squares of size (2N/2i)-by-(2N/2i).
Note that the higher the level the more fine grained the grid is. A square R ∈ R is removed
from this step if it intersects with grid lines at levels below it, i.e. if R is in level-i, then it is
removed if it intersects a line at levels i− 1, . . . , 0. Let R1 be the set of squares that are not
removed from this step.
I Claim 2.1. A level-i square R ∈ R of side length `R ∈ (N/2i+1, N/2i] remains in R1 with
probability (1− µR)2 ≥ 1/4, where µR = `R2i−1/N .

Proof. The probability that a horizontal grid line at level i−1 intersects R is µR = `R2i−1/N

(because of the random shift). Notice that µR is between 1/4 and 1/2. Now, since the
shifts x, y are chosen independently, the probability that the square R survives in R1 is
(1− µR)2 ≥ 1/4. J

In a second step, we further sample R1 to obtain R2, where each square is sampled
with relatively large probability. Now we consider each grid cell C at level-i that contains a
subset of squares RC1 at level-i. Cell C may contain up to 9 squares, so if we are not careful,
we might end up paying an extra factor of 9 (giving 1/36 marginal only). So, we define a
distribution on RC1 where exactly one square R in RC1 is kept, and R is kept with probability

1
(1− µR)2 ·MC

, for MC =
∑
S∈RC1

1
(1− µS)2 .

Let R2 be the set of squares remaining after this process. We analyze the probability that a
level-i square R remains in R2. This can be broken down into:

Pr [R ∈ R1] ·Pr [R ∈ R2 | R ∈ R1] = (1− µR)2 ·
(

1
(1− µR)2MC

)
= 1/MC .

5 We may deviate from this strategy when considering subsets with a constant number of squares.
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6 On Guillotine Cutting Sequences

I Claim 2.2. MC ≤ 81/4.

Proof. Each square R ∈ RC1 satisfies µR ∈ (1/4, 1/2], and has side length `R strictly larger
than 1/4 of the side length of C. This implies |RC1 | ≤ 9. Furthermore, R consumes a
µ2
R-fraction of the area of C, and

∑
R∈RC1

µ2
R ≤ 1 must be satisfied. We argue below thatMC

is maximized when |RC1 | = 9 and µR = 1/3 for each square R ∈ RC1 , i.e., when RC1 is a set of
9 equal squares of area 1/9 of that of C. This gives MC ≤ 9 · (1− 1/3)−2 = 9 · (9/4) = 81/4.

We ignore the geometry of the squares and focus only on the values of µR that satisfy
the following:

max
∑
R∈RC1

1
(1− µR)2

s.t.
∑
R∈RC1

µ2
R ≤ 1, |RC1 | ≤ 9, µR ∈ (1/4, 1/2].

Let q be an integer in {1, . . . , 9}. Notice that for a fixed choice of |RC1 | = q, the objective
function is maximized when the values of µR are “balanced”: One can check that if there
are two values µR 6= µR′ , then we could have averaged these values to µ′R = µ′R′ =√

(µ2
R + µ2

R′)/2; the new choices of µ′R and µ′R′ still satisfy all constraints while increasing the
objective. Because 1/4 < µR ≤ 1/2, the objective values cannot exceed q

(1−1/2)2 ≤ 20 < 81/4
for q ≤ 5. Moreover, for a fixed q ∈ {6, . . . , 9}, the objective is optimized by setting µR such
that q · µ2

R = 1, i.e., µR = 1/√q. An enumeration of the corresponding objective values
reveals the maximum of 81/4 for q = 9, which proves the claim. J

Notice that in the random subset R2 ⊆ R, each square at level-i is not intersected by
grid lines at levels i − 1, . . . , 0, and each level-i grid cell has at most one square in level-i.
Then, using claims 2.1 and 2.2, we can state the main result of this section:

I Lemma 4. There exists a distribution D : 2R → [0, 1] such that each subset R′ in its
support admits a grid drawing, with some shift, satisfying the following properties:

Each square at level-i is not intersected by grid lines at levels i− 1, . . . , 0.
Each level-i grid cell has at most one square in level-i.

Moreover, each square R ∈ R appears in a randomly drawn subset with probability at least
ε1 = 4/81, i.e., PrR′∼D [R ∈ R′] ≥ ε1.

2.1 Unweighted case
Before we treat the more general weighted case, we first show how to save a linear number of
squares using guillotine cuts. The approach of this section is not subsumed by the one from
Section 2.2, as it yields a better constant than applying the latter with uniform weights. The
high-level idea comes from the observation that the number of leaves in a proper binary tree
is at least half the number of nodes. Thus, bounding the number of squares that are cut in
each node yields a lower bound on the number of square that are saved.

I Definition 5. We call a line a k-good separator, if it intersects at most k squares and each
side contains at least one square completely. We call a binary tree of a cutting strategy
k-good, if each internal node has a k-good separator.

I Lemma 6. If an instance admits a k-good tree, then there is a guillotine sequence such
that n/(k + 1) squares survive.
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h

Figure 1 Arising cases in the proof of Lemma 7.

Proof. Observe that the number of surviving squares is equal to the number of leaves, say
s, in the k-good tree. Let t be the number of nodes in this tree. The instance contains
one square for each leaf and at most k squares for each internal node. Thus, we obtain
n ≤ s+ k · (t− s) = s+ k · (s− 1) ≤ (k+ 1) · s, since t = 2s− 1 for a proper binary tree. J

I Lemma 7. There is a guillotine sequence with a 3-good tree for any subset in the support
of a distribution according to Lemma 4.

Proof. We iteratively define the cut sequence that gives us a 3-good tree. Starting from
the piece P0 that contains every square, we show that, given a piece P ′, a 3-good separator
for P ′ exists. Now we describe the existence proof of the separator. There are two cases to
consider. First, if P ′ contains at least 10 squares, consider the squares in P ′ as a sequence
S1, S2, . . . ordered by non-increasing side lengths. Let i be the level of S10. We consider the
grid cell of level i containing S10. Observe (see left of Figure 1 for an illustration) that the
edges of that cell can be covered by at most eight squares because these squares must be
at lower levels than i and the distance between two adjacent corners of the cell, which is
2N/2i, is not wide enough to contain two squares of lower levels, which have side lengths of
at least N/2i, in its interior. Thus, one of the four grid lines defining the cell separates S10
from some other square while intersecting at most three. Since we choose a separator by the
grid line at the level of S10, this line cannot intersect any square in {S11, S12, . . .}.

Let us now consider the other case when P ′ contains at most 9 squares. In this case, we
would choose a separator that does not necessarily correspond to a grid line. We order the
squares S1, . . . , S9 by non-increasing y-coordinates of the bottom boundaries. Consider a
horizontal line `1 that coincides with the bottom boundary of S5, so `1 cannot “stab” any
square in {S1, . . . , S5}. If `1 stabs at most 3 squares in {S6, S7, S8, S9}, we would be done,
`1 is our separator. Otherwise, `1 must stab all four squares and shares the border with S5.

There are (at least) 4 combinatorially different vertical lines that separate squares in
{S5, . . . , S9} without intersecting them. By “combinatorially different” we mean that they
do not separate the squares in the exact same way. Denote by L a set of four such vertical
lines. If there is a vertical line `′ ∈ L that intersects at most 3 squares in {S1, . . . , S4}, we

APPROX/RANDOM’15



8 On Guillotine Cutting Sequences

would be done, as we can use `′ as our separator. Otherwise, each of these four lines stabs
four squares in {S1, . . . , S4}, and in this case, we can use the horizontal line h that coincides
with the bottom boundary of S1 as our separator; this line cannot overlap with any square in
{S1, . . . , S4}, and it can only overlaps with at most two of the squares in {S5, . . . , S9}. J

I Theorem 8. There is always a cutting strategy for a 1
81 -fraction of squares.

Proof. We first apply the construction of Lemma 4. This guarantees the existence of a
3-good tree due to Lemma 7. This implies with Lemma 6 that a fraction of 4

81 ·
1
4 = 1

81 of
the given squares can be separated by guillotine cuts. J

2.2 Weighted case
In this setting, we are additionally given a weight function w : O → R≥0, and we want a
cutting strategy separating a subset with the largest possible weight. We restate this question
in an equivalent form with the following notion. An ε-guillotine sampling for objects O is
a distribution D : 2O → [0, 1] such that any object r ∈ O is sampled by D with probability
at least ε, i.e., PrO′∼D [r ∈ O′] ≥ ε, and each subset O′ in the support of D is guillotine
separable.

I Lemma 9. For any set of objects O, the following are equivalent: (i) there is an ε-guillotine
sampling for O and (ii) for any weight function w : O → R≥0, there is a subset O′ ⊆ O that
is guillotine separable and w(O′) ≥ ε · w(O).

Proof. The forward implication is easy to see. Suppose we have an ε-guillotine sampling D
for O. Let w : O → R≥0 be a weight function. We pick a random set O′ according to the
distribution D. Then, we have

E [w(O′)] =
∑
r∈O

w(r) ·Pr [r ∈ O′] ≥ ε · w(O).

This shows the existence of such a subset. For the backward implication, the proof is by LP
duality. Let FO be the set of all guillotine separable subsets of O. We write the following
linear program that reflects the best ε guillotine sampling:

(LP) max γ

s.t. γ ≤
∑

O′∈FO:r∈O′

pO′ for all object r ∈ O,

∑
O′∈FO

pO′ = 1,

pO′ ≥ 0 for all O′.

The dual of the above LP can be written as:

(LP’) min β

s.t. β ≥
∑
r∈O′

wr for all O′ ∈ FO,∑
r∈O

wr = 1,

wr ≥ 0 for all object r ∈ O.

Now, suppose that we can find a guillotine separable subset for any weight function w. This
means that (LP’) cannot be feasible for any (w, β) if β < ε, so the optimal value of (LP’) is at
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least ε. By duality, the optimal solution for (LP) gives us the distribution that is ε-guillotine
sampling for O. J

Lemma 9 allows us to focus on finding ε-guillotine samplings instead (this is an unweighted
question). In what follows, we present such a sampling for any input set R of squares. We
start by invoking Lemma 4 to find a distribution D′ for R. Consider each subset R′ in the
support of D′ together with its grid drawing G′. We will show that each such subset R′
can be further partitioned into 9 guillotine separable subsets, which will imply the following
theorem:

I Theorem 10. Any set of squares R is ε-guillotine samplable for ε = 4/729.

For each square R at level-i, let cell(R) be the level-i cell containing R. We say that two
squares R and S are conflicting if either R overlaps the boundary of cell(S) or S overlaps the
boundary of cell(R). Observe that any pair of conflicting squares belong to different levels
and if R overlaps the boundary of cell(S), then the level of R is smaller than that of S.

We define a conflict graph that encodes the conflict structures between squares. Let H
be the graph such that the vertex set V (H) corresponds to the squares in R′, and there is
an edge between squares R and S if and only if R and S are conflicting. The following two
lemmas complete the proof.

I Lemma 11. The graph H is 9-colorable.

Proof. We prove this by induction on the number of vertices. The base case when |V (H)| = 1
is obvious. Now, consider any graph H with at least two vertices, and any square R ∈ V (H)
whose size is minimum among the squares in V (H). Let ` be the side length of cell(R).
Consider the set NH(R) ⊂ V (H) of the squares S defining an edge with R. It can only
be that each square S in NH(R) is at the level below of that of R; so the lengths of these
squares are strictly greater than `/2. We claim that |NH(R)| ≤ 8: There can be at most 4
squares in NH(R) that contain some corner of cell(R), and for each side of cell(R), there can
be at most one square in NH(R) overlapping it and without containing a corner of cell(R).
By the induction hypothesis, the graph obtained from H by removing the vertex R can be
colored with 9 colors. Since the degree of R is at most 8, we can always assign a color to R,
distinct from the colors of its neighbors NH(R). J

I Lemma 12. Let I ⊆ V (H) be an independent set. The squares {R}R∈I are guillotine
separable.

Proof. We prove this by iteratively defining the cutting strategy. Our cut sequence always
cuts along grid lines, and any piece P produced in this process satisfies the following property:
P contains at most one square, or, otherwise, let RP be the set of squares inside P and `
the level of the second largest square in RP . Then, the sides of P are aligned with grid lines
of levels at most `.

Initially, let P0 be the single piece that contains all squares, so the above properties are
satisfied: One can assume that P0 is bounded by four grid lines at level-0. Now, if every
piece contains at most one square, then we are done. Otherwise, consider a piece P ′ with
more than one square in RP ′ . Let R and R′ be the largest and second largest squares in
RP ′ , respectively.

There are two cases. See Figure 2 for reference. First, if R and R′ belong to the same
level `, then we simply cut along any level-(`− 1) line L that separates the grid cells cell(R)
and cell(R′). Line L cannot intersect any square in RP ′ : By Lemma 4, these squares are

APPROX/RANDOM’15
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L

R

R′ L

R

R′

Q

Figure 2 An illustration of the proof of Lemma 12. The figure on the left shows the case when
the levels of R and R′ are the same, and the right figure shows the other case when their levels are
different.

at level at least `, and cannot be intersected by level-(`− 1) grid lines. Otherwise, suppose
R and R′ belong to different levels ` < `′, respectively. Let Q be the union of level-`′ grid
cells that overlap with square R. Notice that Q is a rectangle, and R′ cannot be inside
Q; otherwise, R would have intersected the boundaries of cell(R′), contradicting the fact
that they are not conflicting. This implies that Q and cell(R′) are disjoint. Let L be any
level-(`′ − 1) grid line that goes through a side of Q and separates Q from cell(R′). Again,
L cannot intersect any square in RP ′ (since squares in RP ′ are only at levels `′, `′ + 1, . . .),
and it separates R from R′ in a way that maintains the properties. J

2.3 A cutting strategy for rectangles of the same width/height
Let R be a set of weighted rectangles of the same width or height . In this section, we prove
the following lemma:

I Lemma 13. There is a polynomial time algorithm to find a guillotine strategy that separates
a set of rectangles of R with at least 1/2-fraction of its weight.

Proof. Without loss of generality, we can assume that the rectangles in R have unit width.
For every x ∈ [0, 1], consider the set Lx of vertical lines at coordinates {x+2k : k ∈ {0, . . . , N}.
Let Rx be the set of rectangles in R obtained by removing all rectangles intersecting a line
in Lx, and all rectangles whose right side is contained in a line of Lx.

It is easy to see that Rx is guillotine separable. Indeed, we can first cut through all the
lines in Lx to obtain a collection of vertical slabs of width 2 (In fact, we do not need to cut
through all the O(N) lines, since this could be non-polynomial in the number of rectangles.
Precisely, we do not cut through the lines separating slabs without rectangles in Rx). The
rectangles in Rx of each vertical slab can then be separated using horizontal cuts. This is
always possible, since the width of the slab does not allow two unit width rectangles side by
side (recall that we remove the ones whose right side is aligned with a line in Lx).

Observe that if we choose x uniformly at random from [0, 1], then every given rectangle
R ∈ R belongs to Rx with probability 1/2. This means that there is a value x for which Rx
contains at least 1/2 of the total weight of R. In fact, this value can be found deterministically
by standard techniques (the number of values of x with different sets Rx is linear in the
number of rectangles). This concludes the proof of the lemma. J
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2.4 Guillotine Cuts for d-Dimensional Boxes
By extending the ideas of this section, we can to get a 1/2O(d)-guillotine sampling for any
set of d-dimensional cubes of arbitrary sizes. We first need to generalize the notion of
guillotine cuts to higher dimensions. We say that a hyperplane is a canonical hyperplane if it
is orthogonal to a vector in the standard basis, i.e. those hyperplanes illustrated by xi = a

for i ∈ {1, . . . , d} and a ∈ R would be canonical. When we say a piece P ⊆ Rd, we mean
the region that are bounded by 2d canonical hyperplanes, i.e. P can be represented by the
intersection of 2d halfspaces and corresponds to

⋂d
i=1 {x : (ai ≤ xi ≤ bi)}.

Cutting a piece P along a canonical hyperplane h gives us two sub-pieces. A cutting
strategy is represented by a binary tree T where each non-leaf node v ∈ V (T ) is equipped
with a piece Pv and a hyperplane hv such that cutting Pv along hv gives us Pv1 and Pv2

where v1 and v2 are the children of v. We say that a set of objects O is guillotine separable
if there is a cutting strategy T for O such that:

The piece Pr associated with the root node contains all objects in O.
For each non-leaf node v, the canonical hyperplane hv intersects no object inside Pv.
For each leaf node v, the piece Pv contains only one object in O.

To handle the weighted case, we can define a similar concept of guillotine sampling for
objects. We prove the following theorem:

I Theorem 14. There is an ε-guillotine sampling for any set of cubes of arbitrary sizes, for
ε = 1/2O(d).

The rest of this section is spent on proving this theorem. The proof follows the same line
of ideas used in the case of two dimensions. There are two steps. In the first step, we define
the “high-dimensional grid” that will be used to suggest how the hyperplane will be selected.
In the second step, we define the conflict graph that is shown to be 2O(d) colorable.

Let R be a set of input cubes of arbitrary sizes. We say that a cube r ∈ R is at level-i if
its edge length is in (N/2i+1, N/2i]. We define special hyperplanes of various granularities.
For each integer i, for each axis xj , the special hyperplanes of type-j are drawn so that
consecutive hyperplanes are N/2i apart in distance (i.e. one can think of special hyperplanes
of type-j as those corresponding to xj = kN/2i for all integers k). The level-i grid cells are
those regions that are bounded by consecutive special hyperplanes from level-(i− 1). The
following lemma encapsulates the first step:

I Lemma 15. There exists a distribution D : 2R → [0, 1] such that each subset R′ in its
support admits a drawing of special hyperplanes with the following properties:

Each cube at level-i is not intersected by hyperplanes at levels i− 1, . . . , 0.
Each level-i grid cell has at most one cube in level-i.

Moreover, each cube r ∈ R appears in a randomly drawn subset with probability at least
ε1 = 1/23d.

Proof. For each dimension j, we pick a random shift sj and draw level-i special hyperplanes
at sj +N/2i, sj + 2×N/2i, and so on. The probability that each level-i cube r ∈ R of edge
length `r is intersected by special hyperplanes of type-(i−1) is exactly (1−`r2i−1/N)d ≥ 1/2d
since `r ≤ N/2i. This is the probability that each cube remains after placing the special
hyperplanes.

Now, inside each cell, there can be more than one cube, and in such a case, we randomly
select one of them to keep. This ensures that each cube that survives the first phase remains
with probability at least 1/22d because there can be at most 22d cubes inside each cell (just
because of the volume). This implies the lemma. J
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12 On Guillotine Cutting Sequences

Next, we consider a subset R′ in the support of the distribution given by the above
lemma. For each level-i cube r ∈ R, we define cell(r) as the level-i grid cell that contains r.
We say that two cubes r and r′ are conflicting if either r overlaps the boundary of cell(r′) or
r′ overlaps the boundary of cell(r).

We define the conflict graph H such that the vertex set V (H) corresponds to the cubes
in R′, and there is an edge between r and r′ if and only if r and r′ are conflicting. The
following two lemmas finish the proof.

I Lemma 16. The graph H is 2O(d) colorable.

Proof. We prove this by induction on the number of vertices. The base case, when |V (H)| = 1,
is obvious. Now consider any graph H with at least two vertices, and a cube r ∈ V (H) whose
size is minimum among the cubes in V (H). Notice that cell(r) has 2d bounding hyperplanes.

Now, consider the neighborhood NH(r) ⊂ V (H) of r. There can be at most 2d elements
of NH(r) that contain some corner of cell(r). We then count those that do not contain any
corner. Each cube r′ ∈ NH(r) must be at the level below of that of r, so the overlapping
volume of the intersection between r′ and the bounding hyperplane of cell(r) must be at
least 1/4d fraction of the total surface volume of such bounding hyperplane. Then, each such
hyperplane supports at most 4d cubes in NH(r), and since there are 2d bounding hyperplanes
in total, we have 2d4d cubes that do not intersect any corner of cell(r).

This implies that |NH(r)| ≤ 2d4d + 2d ≤ 2d23d = 2O(d). By induction hypothesis, we are
done: We can inductively color the graph resulting from removing the vertex r from H, and
since there are only 2O(d) neighbors of r, we can assign a distinct color to r. J

Finally, the following lemma can be proved similarly to the 2-dimensional case.

I Lemma 17. Let I be an independent set of H. Then I is guillotine separable.

Proof. We argue that we can iteratively define a sequence of cuts that separate all cubes.
Let P ′ be a piece that currently contains at least 2 cubes. Let R and R′ be the largest
and second largest cubes contained in P ′, respectively. If they are from the same level, we
would be done: Pick any special hyperplane that separates the two cells cell(R) and cell(R′).
Otherwise, if R and R′ are from levels ` < `′, respectively, we define Q as the union of
level-`′ cells that overlap with R. Notice that R′ cannot be inside Q; otherwise, this would
have contradicted the fact that they are independent in H. Now, we can pick any special
hyperplane that separates Q from R′. J

3 Negative result for unit squares

In this section, we give a sequence of instances Wn for which no guillotine strategy separates
more than a fraction of 1

2 + o(1). All these instances are formed by unit squares.
Given positive integers a, and b, the brick wall W (a, b) = {S(i, j) : 1 ≤ i ≤ a, 1 ≤ j ≤

b} is the set of unit squares such that the lower left corner of S(i, j) is at coordinates
i · (1, δ) + j · (−δ, 1) = (i− jδ, j + iδ), where δ is an arbitrarily small positive constant (say,
smaller than 1/(ab)). For example, Figure 3 shows W (5, 4). Let Wn = W (n, n).

I Lemma 18. The number of squares of Wn that can be separated by a guillotine strategy is
at most

⌈
n2+2n−2

2

⌉
≤ n2

2 + n.

In fact, we prove a more general version of Lemma 18. Define a subwall of a brick wall
W (a, b) as the subset of squares of W (a, b) contained inside a given rectangle. For example,
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S(1, 1)

S(1, 2)

S(1, 3)

S(1, 4)

S(2, 1)

S(2, 2)

S(2, 3)

S(2, 4)

S(3, 1)

S(3, 2)

S(3, 3)

S(3, 4)

S(4, 1)

S(4, 2)

S(4, 3)

S(4, 4)

S(5, 1)

S(5, 2)

S(5, 3)

S(5, 4)

Figure 3 The grid wall W (5, 4).

S(1, 1)

S(1, 2)

S(1, 3)

S(1, 4)

S(2, 1)

S(2, 2)

S(2, 3)

S(2, 4)

S(3, 1)

S(3, 2)

S(3, 3)

S(3, 4)

S(4, 1)

S(4, 2)

S(4, 3)

S(4, 4)

S′(1, 1)

S′(1, 2)

S′(1, 3)

S′(1, 4)

S′(2, 1)

S′(2, 2)

S′(2, 3)

S′(2, 4)

S′(3, 1)

S′(3, 2)

S′(3, 3)

S′(3, 4)

S′(4, 1)

S′(4, 2)

S′(4, 3)

S′(4, 4)

Figure 4 A subwall q of W (4, 4). On the right, the corresponding squares of q in the standard
unit grid. The region has an area of 7 and a perimeter of 14.

in Figure 4 (left) the set {S(2, 1), S(3, 1), S(1, 2), S(2, 2), S(3, 2), S(4, 2), S(2, 3)} is a subwall
of W (4, 4). It is easier to note the subwall in the “standard” square grid, as shown in Figure 4
(right). Define the area A(q) of a subwall q as the number of squares it contains, and the
perimeter P (q) as the number of edges (i.e. sides of squares) such that only one of its incident
squares is in q. The previous concepts coincide with the actual geometric area and perimeter
of the union of the corresponding squares in a standard square grid. Let also S(q) denote
the maximum number of squares that can be separated using a guillotine cutting sequence.

I Lemma 19. For any subwall q,

S(q) ≤
⌈

2A(q) + P (q)− 4
4

⌉
.

Proof. The proof is by induction on A(q). When A(q) = 1, S(q) = 1 and d 2A(q)+P (q)−4
4 e =

d 2+4−4
4 e = 1, so assume that A(q) ≥ 2. Consider the first guillotine cut of an optimal cutting

sequence for q (the one achieving S(q)). Without loss of generality, assume it is an horizontal
cut. This cut divides q into two subwalls q1 and q2, both with at least one complete square
inside. Let r be the number of squares cut in this first iteration. See Figure 5 for reference,
where the cut squares are shown in black. It is easy to see that:

A(q) = A(q1) +A(q2) + r,

and

P (q1) + P (q2)− 2(r + 1) ≤ P (q) ≤ P (q1) + P (q2)− 2r.
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Figure 5 An horizontal guillotine cut.

Note that P (q) attains the lower bound if the horizontal cut goes exactly through a
square edge (like in Figure 5). Otherwise, an extra square is destroyed and P (q) attains the
upper bound. Using the previous observation we have that

S(q) = S(q1) + S(q2) (by optimality)

≤
⌈

2A(q1) + P (q1)− 4
4

⌉
+
⌈

2A(q1) + P (q1)− 4
4

⌉
(inductive step)

≤
⌈

(2A(q1) + 2A(q2)) + (P (q1) + P (q2))− 6
4

⌉
(?)

≤
⌈

(2A(q)− 2r) + (P (q) + 2r + 2)− 6
4

⌉
=
⌈

2A(q) + P (q)− 4
4

⌉
.

To conclude the proof we need to check the validity of inequality (?). Note first that the
perimeter of any subwall is always even (because it can be computed as the length of a closed
path on the integer grid). Using this we only need to prove, for every pair of even integers x
and y, that

dx/4e+ dy/4e ≤ d(x+ y + 2)/4e,

or equivalently, for every pair of integers a and b, that

da/2e+ db/2e ≤ d(a+ b+ 1)/2e.

This is direct: if both a and b are even, then the left hand side (LHS) is (a+ b)/2 and the
right hand side (RHS) is (a+ b)/2 + 1. If only one of them is even, then both the LHS and
the RHS are equal to (a+ b+ 1)/2. If both numbers are odd, then both the LHS and RHS
are equal to (a+ b+ 2)/2. J

Lemma 18 follows immediately from Lemma 19.

4 Proof of Theorem 2

We assume that Conjecture 1.1 is true, and present an O(1)-approximation algorithm for
MISR. In our reasoning here, we assume that the given rectangles are open sets. Suppose we
are given a set of axis-parallel rectangles R. Since we consider the cardinality case in MISR,
we can assume w.l.o.g. that the input does not contain any two rectangles R,R′ such that
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R ⊆ R′. The algorithm is essentially the algorithm GEO-DP from [1], when parametrized
by k = 4. First, we can assume w.l.o.g. that all rectangles in R have integer coordinates in
the range {0, ..., 2n}. This can be achieved easily by suitable stretching of the instance. Our
algorithm is a dynamic program (DP) with a cell for every open rectangle P ⊆ [0, 2n]× [0, 2n]
whose corners have integer coordinates. Note that there are O(n4) many of them. Each of
these cells represents the problem of selecting the optimal Independent Set that consists only
of rectangles that lie completely within P , i.e., rectangles R with R ⊆ P . Intuitively, the DP
stores a near-optimal solution to this subproblem in the respective cell.

When computing the entry for such a cell, representing a rectangle P , the DP does
the following procedure. In the case where the rectangle P does not (completely) contain
any input rectangle, we define the empty set to be the solution corresponding to the cell.
Also, in the case where P coincides with an input rectangle R, i.e. P = R, then from our
assumption above we know that there is no rectangle R′ with R 6= R′ such that R′ ⊆ P and
therefore, we define {R} to be the solution corresponding to the cell. Otherwise, it tries all
possibilities of dividing P into two smaller pieces using a horizontal or vertical guillotine cut
such that the horizontal/vertical coordinate of this cut is an integer (since the rectangles
have integral coordinates we can safely restrict ourselves to those). Consider one such cut
and let P1 6= ∅ 6= P2 denote the resulting pieces. The DP looks up the solutions for the cells
representing P1 and P2 and combines them to a solution for P . It selects the cut yielding the
optimal total profit from the resulting two subproblems. Since there are O(n) possible cuts
for each rectangle P , it takes O(n) time to compute the solution for a given cell. Finally,
we output the solution that the DP computes for the cell corresponding to the rectangle
[0, 2n]× [0, 2n]. Since there are O(n4) cells in total, we obtain a total running time of O(n5).

To analyze this algorithm, we first show that it finds the largest subset of the input
rectangles that is guillotine separable. This can be easily shown by induction over the cells,
i.e., for each cell the algorithm computes a solution that is at least as profitable as the
best guillotine separable solution consisting only of rectangles completely contained in the
rectangle that the cell represents.

I Lemma 20. Let R′ ⊆ R be a largest subset of R that is guillotine separable. Then, the
DP finds a set of size |R′|.

If now Conjecture 1.1 holds, then |R′| ≥ Ω(|OPT |), where OPT denotes the optimal
solution to the given MISR instance. Hence, the DP finds a solution with at least Ω(|OPT |)
rectangles and it is hence a O(1)-approximation algorithm for MISR. This completes the
proof of Theorem 2.

We would like to note that the resulting algorithm is purely combinatorial and that it is
faster than solving the natural LP-relaxation of the problem (which is a natural candidate
for obtaining an O(1)-approximation algorithm for MISR).

5 QPTAS for two-dimensional geometric knapsack

In this section, we present a QPTAS for the unweighted two-dimensional guillotine knapsack
problem. It builds on the recent QPTAS for the problem without the guillotine constraint
[2] but requires substantial new ideas to handle this constraint. Like the latter QPTAS we
require all input data to be quasi-polynomially bounded integers.

Let ε > 0 and suppose that the knapsack has a capacity of N × N with N ∈ N. For
each item i denote by hi and wi its height and width, respectively. By standard shifting
arguments we can assume that there are values µ, δ > 0 such that for each item i we have
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that hi ∈ [0, µ ·N ] ∪ [δ ·N,N ] and wi ∈ [0, µ ·N) ∪ [δ ·N,N ], while losing only factor 1 + ε

in the approximation ratio. The values µ, δ can be chosen such that 1 ≥ δ > µ ≥ ( ε
logn )Oε(1)

and µ = (δ · ε
logn )Oε(1) (see Lemma 1 in [2]). Moreover, since we study the unweighted case

of the problem and allow quasi-polynomial running time, it is sufficient to compute a solution
with a set of items I ′ such that |I ′| ≥ (1 − ε)|OPT | − ( logn

ε )Oε(1) (see Proposition 2.1 in
[2]). We will call such solutions near-optimal solutions in the sequel. Using this property,
we assume from now on that there are no items i with hi ≥ δ · N and wi ≥ δ · N since
there can be only 1/δ2 = Oε(logn)Oε(1) of them in the optimal solution OPT . We partition
the remaining items into horizontal, vertical, and tiny items, given by sets H, V , and T ,
respectively. An item i is horizontal if wi ≥ δ ·N and hi ≤ µ ·N , vertical if wi ≤ µ ·N and
hi ≥ δ ·N , and tiny if wi ≤ µ ·N and hi ≤ µ ·N .

Box partition. The key ingredient in the QPTAS in [2] is a partition of the knapsack into
boxes which intuitively describe the topology of the optimal solution. More precisely, it is
shown that if OPT ∩ T = ∅ then there exists a partition of the knapsack into a set B of at
most ( logn

ε )Oε(1) axis-parallel rectangular boxes and a near-optimal solution OPT ′ such that
each box B ∈ B either contains only items from OPT ′∩H or only items from OPT ′∩V (the
tiny items are added later into the remaining empty space). By being more careful in the
construction, we can prove the following stronger statement which also takes our guillotine
cutting constraint into account. Note that the following lemma is non-constructive, so our
algorithm has to guess the partition given by it.

I Lemma 21. There is a partition of the N×N knapsack into at most ( logn
ε )Oε(1) rectangular

boxes B with integral coordinates and a near-optimal solution OPT ′ ⊆ OPT with the following
properties:

each item in OPT ′ is fully contained in some box B ∈ B,
each box B ∈ B is either a horizontal box which contains only items in OPT ′ ∩ (H ∪ T )
or a vertical box which contains only items in OPT ′ ∩ (V ∪ T ),
OPT ′ is constructed by removing some items from OPT and moving the remaining items
within the knapsack so that no horizontal item is moved to the left or right and no vertical
items is moved up or down,
for each box B ∈ B there exists a guillotine cutting sequence which cuts all items of OPT ′
that are contained in B.

Proof. We start with the solution OPT that is the optimal solution satisfying the guillotine
cut constraint. We use the same construction as in the proof of Lemma 2 in [2]. The proof of
the lemma follows. Note that the last property is satisfied since OPT satisfies the guillotine
cuts constraint by assumption, and after the modifications in the proof of Lemma 2 in [2]
the property is still true for each box B ∈ B. J

Guillotine cutting sequence. Using Lemma 21 we construct a guillotine cutting sequence
which intersects the items of OPT ′ in a very controlled way, as given by the following lemma.

I Lemma 22. There exists a guillotine cutting sequence with at most ( logn
ε )Oε(1) cuts, cutting

the knapsack into a set B′ of rectangular pieces, such that the following properties hold:
for each piece B′ ∈ B′ there is a box B ∈ B such that B′ ⊆ B,
at most ( logn

ε )Oε(1) items from OPT ′ ∩ (H ∪ V ) are intersected,
the intersected items from OPT ′ ∩ T have a total area of ≤ ( ε

logn )Oε(1) ·N2.
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The intersected items from OPT ′ ∩ (H ∪ V ) will be lost which is justified since we are
only interested in a near-optimal solution. For the intersected tiny items, we will argue that
we can free up some space in the boxes in B′ at only marginal cost to accommodate them.

We construct our guillotine cutting sequence now. Consider the first cut of the cutting
sequence of OPT (which does not intersect any item of OPT !) and assume w.l.o.g. that it is
a horizontal cut given by the line segment [0, N ]× {h}. By Lemma 21 we can show that if
we used exactly the same cut in OPT ′ then we would not intersect any item in OPT ′ ∩ V .
Denote by h1 the smallest integer such that h1 ≥ h and either [0, N ]×{h1 + 1} split an item
in OPT ′ ∩ V , or there is a box B ∈ B such that [0, N ] × {h1} cuts along the top edge of
B. Similarly, denote by h2 the largest integer such that h2 ≤ h and either [0, N ]× {h2 − 1}
split an item in OPT ′ ∩ V , or there is a box B′ ∈ B such that [0, N ]× {h2} cuts along the
bottom edge of B′. Our first two cuts are [0, N ]× {h1} and [0, N ]× {h2}. We then cut the
resulting piece between the two cuts by vertical cuts, such that we obtain smaller pieces
having non-empty intersection with at most one box in B. We continue iteratively on the
other resulting pieces. Consider the piece B1 := [0, N ]× [0, h1]. Observe that it is contained
in the piece B0 := [0, N ]× [0, h] which is the first piece that the optimal cutting sequence
obtains. For cutting B1 further, we consider the next cut on B0 of the optimal cutting
sequence which also cuts B1 (i.e., we ignore cuts of the form [0, N ]× {h̄} with h1 < h̄ < h).
Suppose that it is a vertical cut {h′} × [0, h]. Similarly as before, we denote by h′1 the
smallest integer such that h′1 ≥ h′ and either {h′1 + 1} × [0, h1] split an item in OPT ′ ∩H,
or there is a box B ∈ B such that {h′1} × [0, h1] cuts along the right edge of B. We define h′2
accordingly. Our next two cuts for B1 are {h′1} × [0, h1] and {h′2} × [0, h1]. We continue in
the same manner till we end up with the set B′.

For each box in B ∈ B we bound the number of cuts that go through B. There are two
types of these cuts. Cuts of the first type contains the corner of some box in B. Thus, the
number of these cuts is at most ( logn

ε )Oε(1). For the other type of cuts we can give a charging
scheme such that each box pays for at most O(1/δ) of them. Thus, the number of boxes in
B′ is bounded by O(1/δ) · ( logn

ε )Oε(1) · |B| ≤ ( logn
ε )Oε(1). Therefore, the total number of cuts

is bounded by the same value. Each cut intersects at most 1/δ = ( logn
ε )Oε(1) horizontal or

vertical items and tiny items with a total area of at most N · µN ≤ ( ε
logn )Oε(1) ·N2.

Adding back tiny items. In the above process, we intersected some tiny items (with small
total area). We do not want to lose them so we add them back now. To this end, we drop
some of the remaining items and create an empty space in each box B′ ∈ B′. Suppose that B′
contains only items from OPT ′∩ (H ∪T ) and has height hB′ . Denote by OPT ′B′ the items of
OPT ′ inside B′. We identify a horizontal slice of height ε ·hB′ inside B′ such that there are at
most O(ε) · |OPT ′B′ |+O( 1

δ ) items in OPT ′B′ that intersect this slice. We drop all these items.
By doing this with each box B′ ∈ B′ we can show that this creates enough empty space to
put back almost all tiny items that were intersected by our cutting sequence above. Even
more, by assigning them into the empty space by the Next-Fit-Decreasing-Height (NFDH)
algorithm [6] we can ensure that also a guillotine cutting sequence for them exists. Overall,
we obtain the property that for the items in each box B′ ∈ B′ there exists a guillotine cutting
sequence.

Details of this operation are the following: Observe that the number of guillotine cuts
that separate the boxes in B′ is exactly |B′| − 1. Every cut intersects tiny items with total
area at most µN2. The total area of the tiny items intersected in all cuts is µN2|B′| which
we can upper-bound by ε3N2 by choosing µ and δ such that µ|B′| ≤ ε3. We call a box
B′ ∈ B′ a good box if h(B′) ≥ µN

ε2 and w(B′) ≥ µN
ε2 . Otherwise the box is called a bad box.

APPROX/RANDOM’15



18 On Guillotine Cutting Sequences

The total area of bad boxes is at most (µNε2 )N |B′|. Recall that µ|B′| ≤ ε3. This implies that
the total area of bad boxes is at most εN2. This means that the total area of good boxes is
at least (1− ε)N2. In good boxes, we create empty space to accommodate the tiny items
whose total area is at least (ε− ε2)N2. Since we use the NFDH algorithm to accommodate
the tiny items, we only lose a constant fraction of the area [6]. Note that by definition any
tiny item fits into the created empty space of a good box. This implies that we are able to
accommodate all tiny items. We note that using the NFDH algorithm we can ensure that a
guillotine cutting sequence for the tiny items exist.

Rounding of item sizes. As the last step of the non-constructive part, we round the sizes
of the items such that at the end we have only ( logn

ε )Oε(1) many items types. We say that
two items i, i′ are of the same type if hi = hi′ and wi = wi′ . We round the item sizes in
each box in B′ separately. Like above, we create empty space of height ε · hB′ inside each
horizontal box B′ ∈ B′ while dropping only few items, at most ε|OPT ′|+ ( logn

ε )Oε(1) many
(and we do a similar adjustment for the vertical boxes). We use this empty space to round
up the height of each item to the next larger power of 1 + ε, yielding Oε(logn)O(1) many
height classes (we use here that the input data are quasi-polynomially bounded integers).
Using harmonic grouping like in De La Vega and Lueker [8] we round the widths of the
items such that among each height class there are only Oε(1) many widths arising, yielding
Oε(logn)O(1) different items types in total.

Algorithm. The algorithm first guesses the cutting sequence according to Lemma 22 for
which there are only n( logn

ε )Oε(1) many options. Then, it guesses the item types that arise
after the previous rounding. Note here that the height and width of each item type is either
a power of 1 + ε or coincides with the height or width of an input item, and thus we have
to choose ( logn

ε )Oε(1) types from nO(1) possible ones. So there are only n( logn
ε )Oε(1) many

options for this in total. For each item type we guess how many items there are in the
solution that we constructed above. Then we verify that our input items are consistent with
this guess which can be done by finding a perfect bipartite matching. In this matching we
have a node for every input item, and a set of nodes for each item type. For each item type
the number of nodes equals the guessed number of items of this type in the searched-for
solution. An edge between a node for an input item and a node for a guessed item of a type
is added if the input item can be drawn inside the guessed item. In this case finding a perfect
matching means that the guess is consistent with the input items, otherwise the guess is
rejected. For each box B′ ∈ B′ we guess how many items of each type we have to assign in
the box such that for them there is a guillotine cutting sequence. It remains to verify for each
box B′ ∈ B′ that the items we guessed to be assigned to it actually fit into B′. To this end,
we use a dynamic program. It guesses the first cut of the (existent) cutting sequence of the
items and then guesses how we have to partition the items to the two sides of the cut. Then
we recurse on both sides. Each arising subproblem is specified by a remaining rectangular
piece and a set of items that is to be assigned to it. Since for both quantities together there
are only n( logn

ε )Oε(1) many options, also this dynamic program runs in quasi-polynomial time.
For the version of the problem where we are allowed to rotate items by 90 degrees the above
methods can be adjusted easily. This completes the proof of Theorem 3.
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Abstract
We investigate the problem of approximate Nearest-Neighbor Search (NNS) in graphical metrics:
The task is to preprocess an edge-weighted graph G = (V,E) on m vertices and a small “dataset”
D ⊂ V of size n� m, so that given a query point q ∈ V , one can quickly approximate dG(q,D)
(the distance from q to its closest vertex in D) and find a vertex a ∈ D within this approximated
distance. We assume the query algorithm has access to a distance oracle, that quickly evaluates
the exact distance between any pair of vertices.

For planar graphs G with maximum degree ∆, we show how to efficiently construct a compact
data structure – of size Õ(n(∆ + 1/ε)) – that answers (1 + ε)-NNS queries in time Õ(∆ + 1/ε).
Thus, as far as NNS applications are concerned, metrics derived from bounded-degree planar
graphs behave as low-dimensional metrics, even though planar metrics do not necessarily have a
low doubling dimension, nor can they be embedded with low distortion into `2. We complement
our algorithmic result by lower bounds showing that the access to an exact distance oracle (rather
than an approximate one) and the dependency on ∆ (in query time) are both essential.
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Keywords and phrases Data Structures, Nearest Neighbor Search, Planar Graphs, Planar Met-
rics, Planar Separator
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1 Introduction

In the Nearest Neighbor Search (NNS) problem, the input is a dataset D = {p1, . . . , pn}
containing n points that lie in some large host metric space (M,d). These points should
be preprocessed into a data structure so that given a query point q ∈M , the dataset point
pi ∈ D closest to q can be reported quickly. The scheme’s efficiency is typically measured by
the space complexity of the data structure and the time complexity of the query algorithm.
NNS is a fundamental problem with numerous applications, and has therefore attracted a lot
of attention, including extensive experimental and theoretical analyses. Often, finding the
exact closest neighbor is relaxed to finding an approximate solution, called (1+ε)-NNS, where
the goal is to report a dataset point pi ∈ D satisfying d(q, pi) ≤ (1+ε) min{d(q, pj) | pj ∈ D}.

Previous work on NNS has largely focused on the case where the host metric is `p-norm for
some p, typically `1 or `2, over M = Rm for some dimension m > 0. In this common setting,
exact NNS exhibits a “curse of dimensionality” – either the space (storage requirement) or
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the query time must be exponential in the dimension – which provides a strong motivation
to study approximate solutions. When the dimension m is constant, known (1 + ε)-NNS
algorithms achieve almost linear space and a polylogarithmic query time; but when the
dimension is logarithmic (in n), all known algorithms, including approximate ones, require
(in the worst-case) either a super-linear space or a polynomial query time.

While the `p-norm setting captures many applications, certain data types cannot be
embedded (with low distortion) into Rm, and it is therefore desirable to consider other metric
spaces. However, the notion of dimensionality is not well-defined for general metrics, and
it is unclear a-priori what type of internal structure suffices for efficient approximate NNS
algorithms. A notable example of such an approach, initiated by [22, 17, 18], is the study of
NNS in general metric spaces assuming the algorithm has access to a distance oracle, i.e.,
that the distance function can be evaluated in unit time; their motivation was drawn from the
analysis of computer networks, where distances are derived from a huge graph (rather than
by a norm or another simple function of the vertex names). It is known [18, 19, 8, 15, 12]
that if the metric space restricted to the n dataset points has a bounded doubling dimension,
then (1 + ε)-NNS can be solved with near-linear space and polylogarithmic query time.

1.1 Our Results

We look at another family of metric spaces, those derived by way of shortest paths from a
graph with positive edge weights. Similarly to [22, 17, 18], we assume the NNS algorithm
has access to a distance oracle.

As a motivating application consider the case where the graph represents a road network,
say of the continental United States. Even though this graph has tens of millions of nodes,
extremely efficient exact distance oracles have been built for it (see [14, 6, 2]). Now suppose
we wish to find the nearest shop from a collection like the set of all Starbucks shops, which
currently has roughly 12, 000 locations in the US. This means we want to design a compact
application (e.g., mobile app) that has access to a generic server (like google maps). While
the server could use much larger space (but cannot be customized to support specialized
operations like NNS), the application must be very efficient in terms of query time and
space, and thus our goal is to build an NNS data structure whose efficiency depends on the
significantly smaller number of shops (n = |D| in our notation).

Our main result is that in planar graphs of bounded degree, (1 + ε)-NNS can be solved
using near-linear space and polylogarithmic query time. Thus, bounded-degree planar metrics
exhibit “low-dimensional” behavior, even though they do not necessarily have a low doubling
dimension, nor can they be embedded with low distortion into `2. This phenomenon, namely,
that the restricted topology of planar graphs maintains some of the geometric structure of
the Euclidean plane, is known in other contexts like compact routing and TSP, but here we
show it for the first time in the context of NNS.

I Theorem 1. Let (M,d) be a metric derived from a plane graph of maximum degree ∆ > 0
with positive edge weights, and let ε > 0. Then every dataset D ⊂ M of size n = |D| can
be preprocessed into a data structure of size O(ε−1n logn log |M |+ n∆ log2 n) words, which
can answer (1 + ε)-NNS queries in time O((ε−1 log logn+ tDO) logn log |M |+ logn ·∆tDO),
assuming the distance between any two points in M can be computed in time tDO.

The data structure’s size is measured in words, where a single word can accommodate a
point in M or a (numerical) distance value. The term plane graph refers to a planar graph
accompanied with a specific drawing in the plane.
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Theorem 1 makes two assumptions, that there is a bound on the maximum degree, and
that the data structure has access to an exact distance oracle. We further show (in Section 4)
that both of these assumptions are necessary. Roughly speaking, we prove that if the degree
is large, or if the distance oracle is approximate, the graph could contain symmetries that
only a large number of accesses to the distance oracle could break.

I Remark. We cannot dispose of the maximum degree assumption by “vertex splitting”,
where a high-degree vertex is replaced with a binary tree with zero edge weights, because we
assume access to a distance oracle for G (but not necessarily for a modified graph G′), since
the distance oracle models a generic server. For the same reason, we cannot make the usual
assumptions that G is triangulated or perturb the pairwise distances to be all distinct.

1.2 Related Work
Our model of NNS for a dataset D embedded inside a (huge) graph G is related to vertex-
sparsification of distances [20], where the goal is to construct a small graph G′ that (i) contains
all the dataset point D (called terminals here) and furthermore maintains all their pairwise
distances; and (ii) is isomorphic to a minor of G.

Here is another interesting related problem that is open: Given only the distances between
a dataset D, find in polynomial time a planar host graph G that contains D and realizes
their given pairwise distances (perhaps even approximately).

A key difference of our NNS model from these two problems is that the vertices outside of
D are actually used explicitly as query points. However, one may hope for some connections,
at least at a technical level.

1.3 Techniques
At a very high level, our algorithm is reminiscent of the classical k-d tree algorithm for NNS
due to Bentley [7], as it partitions the graph recursively using separators that split the current
dataset in an approximately balanced manner. While k-d trees use hyperplanes as separators
of the host space, for planar metrics we use shortest-paths as separators (see [23, 3, 1, 13]).
This recursive partitioning process can be described as creating a “hierarchy” tree T , whose
nodes correspond to “regions” in the metric space, and every leaf node represents a region
with at most one dataset point; in our graphical case, every region is an induced subgraph
of G. Given a query point q, one often uses a top-down algorithm to identify the leaf node
in the hierarchy tree T that “contains” q, by tracing the location of q along the recursive
partitioning, a process that we call the “zoom-in” phase. While this phase is trivial in k-d
trees, and simple in bounded treewidth graphs (see Section 1.4), it is quite non-trivial in
planar graphs, as explained below.

The key observation that completes the k-d tree algorithm is that once the tree leaf node
containing q has been located, the nearest neighbor of q must lie “near the boundary” of one
of the regions along the tree path leading to this leaf. Thus, all we need to store is just the
separators themselves and the dataset points near them.

In planar graphs, this master plan has two serious technical difficulties. First, the
separators themselves are too large to be stored explicitly. Recalling that the separators
consist of shortest paths, we can employ the known trick [23, 3, 1, 13] of using a carefully
chosen “net” to store them within reasonable accuracy, but since we actually need a net
of all nearby dataset points, our solution is more involved and roughly uses a net of nets.
Second, tracing the path to q along the hierarchy tree is a major technical challenge because
our storage is proportional to n = |D|, while the separator size could be much larger, even
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linear in |M |. Our solution is to store just enough auxiliary information to identify at each
level of the tree a few (rather than one) potential nodes, which suffices to “zoom-in” towards
a small set of leaves that one of them contains q. The construction is presented in Section 2.

As a warm-up to the main result, we demonstrate our approach on the much simpler case
of graphs with a bounded treewidth, where our algorithm solves NNS exactly using a standard
tool of vertex separators of bounded size. This is only an initial example how NNS algorithms
can leverage topological information, and the case of planar graphs is considerably more
difficult — our algorithm uses a path separator, whose size is not bounded, and consequently
solves NNS approximately (within factor 1 + ε).

1.4 Warmup: Bounded Treewidth Graphs
I Theorem 2. Let D be a dataset of n points in a metric (V, d) derived from an edge-weighted
graph of treewidth w ≥ 1 and maximum degree ∆ > 0. Then D can be preprocessed into a
data structure of size O(∆wn) words, which can answer (exactly) nearest neighbor search
queries in time O(∆w logn · tDO), assuming the distance between any two points in V can be
computed in tDO steps.

We assume for simplicity of exposition that an optimal tree decomposition is given to
us; otherwise, it is possible to compute in polynomial time a tree decomposition of width
O(w logw) [5] (or for fixed w, one of the algorithms of [9, 10]).

We use the following well-known property of bounded treewidth graphs: Given a set
X ⊂ V , we can efficiently find a separator S ⊂ V of size |S| ≤ w + 1 whose removal breaks
G into connected components V1, V2, . . . such that |Vi ∩X| ≤ |X|/2 for all i. (The separator
can be found by picking a single suitable node in the tree decomposition, and the width
bound implies the bound on the separator size, see e.g. [11, Lemma 6].) It follows that in G,
every path from Vi to Vj for i 6= j, must intersect the separator S.

The preprocessing phase

Given a dataset D = {p1, . . . , pn}, recursively compute a partition (using the above property)
with respect to the dataset points in the current component (i.e., D ∩ V ′ where V ′ ⊆ V

denotes the current component), until no dataset points are left (they were all absorbed in
the separators). It is easy to see that the depth of the recursion tree is O(logn), and the
number of separators used (non-leaf nodes in the recursion tree) is at most O(n), each with
at most w + 1 nodes. The data structure stores all the separators explicitly arranged in
the form of their recursion tree. In addition, for each vertex u in any of these separators, it
stores the following meta-data:

All the neighbors (at most ∆) of u, along with the index of the part Vi to which they
belong.
A dataset point that is closest to u, i.e., argminp∈D d(p, u), breaking ties arbitrarily.

The total number of vertices in all the separators is at most O(nw) and the meta-data
held for every separator vertex u is of size O(∆), hence the total size is O(∆wn) words.

The query phase

We first argue that given a query point q ∈ V and a separator S, it is possible to check, using
the meta-data stored in the preprocessing phase, which part Vi contains q. This would imply
that we can trace the path along the recursion tree all the way down to the last component
containing q, a process that was mentioned before as the “zoom-in” phase. Indeed, finding
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this Vi is done by finding a vertex u ∈ S that is closest to q, this task takes at most |S| = w+1
distance queries. If u = q we are done. Otherwise, compute u’s neighbor that is closest to q,
namely, v = argmin{d(q, v) | (v, u) ∈ E}, which takes another ∆ distance queries. Observe
that q must lie in the same part Vi as v, because the shortest between these two vertices
does not intersect S.

The next step after the zoom-in process is to find the nearest neighbor itself. Let S′ be
the union of all the vertices in all the separators encountered during the zoom-in on q. It is
easy to verify the following two facts:
|S′| ≤ O(w logn).
There exists u ∈ S′ that lies on the shortest-path between q and its nearest neighbor in
the dataset D. So q and u have the same nearest neighbor.

Recall that the vertices in S′ along with all their nearest neighbors are stored explicitly in
the data structure, and they can be “compared” against q using a distance oracle. Hence,
it is possible to find q’s exact nearest neighbor in time O(∆w logn), assuming access to a
distance oracle. This proves Theorem 2.
I Remark. Both the “zoom-in” phase and the calculation of the nearest neighbor itself were
made easy by the fact that we stored all the separators explicitly in the data structure.
Planar graphs on m nodes have separators of size O(

√
m), but in our model m � n, and

thus storing the separators explicitly is prohibitively expensive.

2 Planar Graph Metrics

In this section we start proving Theorem 1. Let G = (M,E) be a connected planar graph
with positive edge weights ω : E → R+, and let D ⊆M be the dataset vertices. We denote
n = |D|, m = |M |, and ∆ is the maximum degree in G. Assume the minimal edge weight
is 1, and let Diam be the diameter of the graph. We use dG(·, ·) to denote the shortest
path distance in G, and assume it can be computed in time tDO e.g., by having access to a
distance oracle.

We shall start with the case where shortest paths in G are unique, as it simplifies technical
matters considerably. A common workaround to this uniqueness issue is to perturb the edge
weights, but this solution is not applicable in our model of a black-box access to the distance
function dG(·, ·), because its implementation could potentially exploit ties (e.g., by assuming
all distances are small integers). The general case is sketched in Section 3.

It is worth pointing out that our algorithm relies on machinery developed in [1] to
recursively partition a planar graph G, which relies in turn on a two-path planar separator.
Unlike many algorithms for planar graphs, which use existence of small separators, this
machinery, described in detail in Section 2.1, uses the fact that the separators are shortest
paths, and therefore could be represented succinctly, even if they are large. While this idea
had been used before, applying it in the context of NNS (and providing matching lower
bounds) requires a considerable amount of technical novelty, as described in Section 2.2.

2.1 Building the Hierarchy tree T
Preprocessing algorithm, step 1. The algorithm fixes some vertex s ∈ M . It then con-
structs a shortest-path tree T rooted at s ∈M by invoking Dijkstra’s single-source shortest-
path algorithm from s.

Two-path planar separator. We use a version of the well-known Planar Separator Theorem
by Lipton and Tarjan [21], where the separator consists of two paths in the shortest-paths
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tree T of G. In the specific version stated below, we are only required to separate a subset
U ⊂ M , and the balance constraint refers to a subset W ⊂ U . As usual, G[U ] denotes
the subgraph of G induced on U ⊂ M(G). We apply this theorem recursively using the
same shortest-paths tree T . An additional concern for us is that this tree is too large to be
stored entirely (it spans all nodes M), hence our algorithm will store partial information
that suffices to efficiently perform the Zoom-In and Estimating the Distance operations.

Given a connected planar graph G, we assume throughout it is a plane graph, i.e.,
accompanied by a specific drawing in the plane, and that it is already triangulated. We
let the new edges introduced by the triangulation have infinite weight (hence they do not
participate in any shortest-path). While the triangulation operation may increase the
maximum degree, it will not affect our runtime bounds (which depend on ∆), because our
runtime bounds depend on the maximum degree in the tree T , which contains only edges
from the original graph (and not from the triangulated one).1

For a rooted spanning tree T̃ of G, define the root-path of a vertex v ∈ M in this tree,
denoted T̃v, to be the path in the tree T̃ connecting v to the root. (We use here T̃ for
generality, but will soon instantiate it with the tree T constructed in step 1.) The next
theorem has essentially the same proof as of [21, Lemma 2]. It is particularly convenient for
a recursive application, where U ⊂M is the “current” subset to work on, yet G and the tree
T̃ remain fixed through the recursive process. It shows that each set could be partitioned
using a cycle which composed of two paths in the shortest path tree, plus an edge called the
separator edge. We remark that G[U ] is not required to be connected.

I Lemma 3 ([21]). Given a triangulated plane graph G = (M,E), a rooted spanning tree T̃
of G, a subset U ⊂M , and a vertex subset W ⊆ U , one can find in linear time a non-tree
edge (u, v) ∈ E(G) \ E(T̃ ) such that the cycle T̃u ∪ T̃v ∪ {(u, v)} is a vertex-separator in the
following sense: U \ (T̃u ∪ T̃v) can be partitioned into two subsets U1 and U2 such that (i)
each of U1 ∩W and U2 ∩W is of size at most 2|W |/3; and (ii) all paths from a vertex in U1
to a vertex in U2 intersect T̃u ∪ T̃v at a vertex.

Preprocessing algorithm, step 2. We invoke the algorithm of Lemma 3 recursively to
construct a “hierarchy” tree T as follows. Each node µ in T corresponds to a triple
〈G(µ), D(µ), e(µ)〉 that records an invokation of Lemma 3 on G:

G(µ) records the induced subgraph used as G[U ];
D(µ) ⊂ D records the subset of data points used as W ;
the tree T constructed in step 1 is used as T̃ (the same tree for all µ); and
e(µ) records the edge of G obtained by this invokation.

The root of T corresponds to 〈G,D, e0〉 where e0 is the edge obtained by invoking Lemma 3
with U = M , W = D. Consider now some node µ in T , and let U1 and U2 be the two subsets
of U obtained from the corresponding invokation of Lemma 3 on G(µ) and D(µ). The two
children of µ in the tree, denoted µi for i = 1, 2, correspond, respectively, to the invokations
of Lemma 3 on the induced subgraphs G(µi) = G[Ui] with the sets D(µi) = Ui ∩D. The
recursion stops at a node µ if the corresponding G(µ) ∩D = ∅.

Structural properties of the hierarchy tree T . We need several definitions and proofs
from [1], which are repeated here for completeness. For a node µ ∈ T , let the level of

1 One can also triangulate G while increasing its maximum degree by at most a constant factor [16,
Theorem 4.4].
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Figure 1 An illustration of apices and frames. The left figure shows the tree T using solid
edges. The first separator-edge, at the hierarchy’s root, is the dashed edge (v1, u1). Let R be the
corresponding cycle’s interior region. This region R has a separator-edge (v2, u2). The cycle-separator
of this region R is the union of the two cycles defined by (v1, u1) and by (v2, u2). The apices of R
are labeled z1 and z2.
The right figure then shows what happens in region R1; the separator-edge is a green dashed line,
and the new apices are green circles. The frame of R is the subgraph colored blue. The frame of R2

contains all red and some blue edges. Note that all edges in the first separator Tv1 ∪ Tu1 belong to
the frame of only one of R1 and R2.

µ, denoted Level(µ), be the number of edges in T from µ to the root of T . Clearly,
0 ≤ Level(µ) ≤ 1 + log3/2 n ≤ 2 logn. We now associate with each node µ of T three
subgraphs of G. First, define the cluster of µ to be

Cluster(µ) := G(µ).

Second, define the cycle-separator of µ recursively as follows. If µ is the root of T , then
Cycle-Sep(µ) := Tu ∪ Tv ∪ {(u, v)}. Otherwise, let µ′ be the parent of µ in T , and let

Cycle-Sep(µ) := Cycle-Sep(µ′) ∪ Tu ∪ Tv ∪ {(u, v)} .

Third, define the separator of µ to be the subgraph of Cycle-Sep(µ) induced by the edges
of T , formally,

Sep(µ) := Cycle-Sep(µ) ∩ E(T ).

I Observation 4. For every µ, the subgraph Sep(µ) is a subtree of T containing its root s.

I Observation 5. For every µ (other than the root) and its parent µ′, the vertices of Sep(µ′)
separate Cluster(µ) from the rest of G. This is immediate from Lemma 3.

Define the home of a vertex x ∈ M , denoted Home(x), as the node µ of T of smallest
level such that x belongs to Sep(µ).

Define the apices of a node µ, denoted Apices(µ), as the set of vertices in Cycle-Sep(µ)
that have degree ≥ 3; see Figure 1 for an illustration. The apices of µ turn out to be a key
enabler of our solution. As we show below, there are very few apices per region and they
concisely represent the topological connections between nearby regions (note that degree 2
vertices of Cycle-Sep(µ) simply form paths between pairs of apices and topologically each
such path can be contracted into an edge)

The new apices of µ are defined as follows. If µ is the root of T , then NewApices(µ) :=
Apices(µ); otherwise, let NewApices(µ) := Apices(µ)\Apices(µ′), where µ′ is the parent
of µ in T . Intuitively, the new apices of µ are the vertices where the separator of µ
“disconnects" from its parent separator µ′.
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I Lemma 6 ([1]). For every µ we have |NewApices(µ)| ≤ 2.

We next define the frame of a node µ, which is, loosely speaking, a small subgraph of
Sep(µ′) that separates Cluster(µ) from the rest of G. Formally, if µ is the root of T , then
Frame(µ) is the empty graph. Otherwise, let µ′ be the parent of µ, and let Frame(µ) be
the subgraph of Sep(µ′) induced by the vertices x in Sep(µ′), which can be connected to
(some vertex z in) Cluster(µ) by a path whose internal vertices (i.e., all but x, z) are all
in Sep(µ′) \Apices(µ′). By construction, a path connecting a vertex of Cluster(µ) to a
vertex outside the cluster has to intersect Frame(µ).

The region of µ, denoted Reg(µ), is the subgraph of G induced by all the vertices of
Cluster(µ) ∪ Frame(µ).

I Lemma 7 ([1]). For every level ` ≥ 0 in T , every edge e ∈ E belongs to the frame of at
most two nodes µ for which Level(µ) = `.

2.2 Finding the Query’s Region
Our goal is to find for every level ` ≤ Level(Home(q)) the region that contains the query
q. (There is exactly one such region, because q is not in the separator.) We provide
a slightly weaker guarantee that is sufficient for our needs: we show how to compute
for every ` = 0, 1, . . . , 2 logn a set A`(q) of at most two regions, such that whenever
` ≤ Level(Home(q)), the set A`(q) contains the region containing q.

Query Algorithm for Region Finding (Zoom-In). For a node µ of T , let its near-apices
be the set of all edges incident to the apices of µ or to s (the root of the shortest path tree
T ); formally, NA(µ) := {(y, x) ∈ E | x ∈ Apices(µ) ∪ {s}}, where we view each (y, x) as an
ordered pair.

The query algorithm computes A`(q) iteratively for level ` = 0, 1, . . . , 2 logn. After
initializing A0(q) = {root(T )}, it computes the next set A`(q) using A`−1(q) as follows. Find
the edge (y, x) for which y is furthest away from s, among all edges (y, x) ∈ ∪µ∈A`−1(q)NA(µ)
such that (y, x) is on the shortest path from q to s. Here, we treat (y, x) as an ordered
pair, and insist that y appears before x along the path from q to s, or equivalently, that
dG(q, y) +ω(y, x) + dG(x, s) = dG(q, s), which can be checked using only a constant number
of distance oracle queries. Notice such (y, x) always exists, because the root s is an apex and
one of its incident edges is on the shortest paths from q to s. Next, let A`+1(q) be the set of
regions at level `+ 1 that contain the edge (y, x), which we prepare in advance (during the
preprocessing phase) as the set Â`′((y, x)). Finally, proceed to the next iteration.

algorithm FindRegions (q)
0. let A0(q) = {root(T )}
1. for ` = 1 to 2 logn do

a. pick (y, x) ∈ E of maximal dG(y, s) among all (y, x) ∈
∪µ∈A`−1(q)NA(µ) that satisfy dG(q, y)+ω(y, x)+dG(x, s) = dG(q, s)

b. let A`(q) = Â`((y, x))
2. return the sets A`(q) for ` = 0, . . . , 2 logn

Figure 2 Zooming-in on the query’s region.
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I Lemma 8. For every level ` ≤ Level(Home(q)), the query vertex q belongs to a region
in {Reg(µ) | µ ∈ A`(q)}.

Proof. The proof is by induction on `. For ` = 0, we initialized A0(q) = {root(T )} and the
corresponding region Reg(root(T )) is the entire graph G, hence q ∈ Reg(root(T )). Assume
now the claim holds for level ` and consider level `+ 1. Let (y, x) be the edge of maximal
dG(s, y) among all edges in ∪µ∈A`(q)NA(µ) that lie on a shortest path from q to s.

Suppose q ∈ R for a region R at level `+ 1, and let us show that R ∈ A`(q). Let µ be the
corresponding node in T , i.e., Reg(µ) = R, and let µ′ be the parent node of µ in T . Observe
that q ∈ Reg(µ′), because q must be in Cluster(µ) (rather than Frame(µ)), and all such
vertices are inside the region of the parent µ′. Thus by the induction hypothesis µ′ ∈ A`(q).

Let P (q, s) be the unique shortest path from q to s, and let z be the first vertex along
this path (furthest from the root s) which is in Apices(µ′). Such z exists (because the root
s is an apex) and is not the first vertex on the path (because q itself is not an apex), so let
z1 be vertex preceding z on this path.

We now claim that (z1, z) is exactly the edge (y, x) chosen. Indeed, the edge (z1, z)
satisfies the two requirements (it is in NA(µ′) and on the shortest path from q to s) by
definition, and moreover, z was chosen to that it is closest to q and thus furthest from s.

The claim implies, by the construction of z as the first apex on P (q, s), that the region R
containing q also contains the edge (z1, z) = (y, x), which means that the algorithm will add
R = Reg(µ) to A`+1(q). J

2.3 Estimating the Distance
Once we have located the region of q, we would like to complete the nearest neighbor search.
Let t∗ ∈ D be the closest dataset point to q, and let P (q, t∗) be the shortest path from q to
t∗, then we would like to approximate the length of P (q, t∗). Since we located q’s region, we
can follow the path from the root of the tree T to q’s region. We observe that at some tree
node µ we reach a situation where P (q, t∗) intersects Frame(µ). Indeed, the region at the
root of the tree contains both q and t∗; however, at the leaf µ of the tree, the region contains
q and either (i) does not contain t∗, in which case the path P (q, t∗) connects a vertex in
Cluster(µ) to one outside Cluster(µ), and thus must intersect Frame(µ); or (ii) it does
contain t∗, but only in its frame and not in its cluster (because Cluster(µ) ∩D = ∅), in
which case t∗ is itself in the intersection.

If the query procedure could identify a vertex v on this intersection between P (q, t∗) and
Frame(µ), then it could solve finding the nearest neighbor problem for q by finding the
nearest neighbor of v and reporting the exact same vertex (and this holds also for approximate
nearest neighbor). This is exactly the approach taken in our warmup, the bounded treewidth
case, where the preprocessing phase stores for every separator vertex its nearest neighbor
in D, and the query procedure just considers all the separator vertices in all the regions
encountered during the zoom-in process for q.

However, in the planar graph setting, the number of vertices on a single separator may be
arbitrarily large (compared to n). So we must exploit the separator’s structure as the union
of a few shortest paths. At a very high level, our solution is to carefully choose net-points on
the boundary of each region, and only for these net-point we store their nearest neighbor in
D. The challenge is to choose the net-points in such a way that (i) for at least one “good”
net-point in the sense that the distance from q through the net-point and then to D (i.e.,
to the nearest neighbor of this net-point) is guaranteed to approximate the optimal NNS
answer; and (ii) the query procedure can examine very few net-points (compared to the total
number of net-points stored, which is linear in n) until one of these good points is found.
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Before describing the algorithm in more detail, let us introduce some useful notations.
For a vertex c on a path P and a distance ρ′ > 0, let P (c, ρ′) be all nodes in P at distance
at most ρ′ from c. Let N (P, c, ρ, ρ′) be a set of nodes in P (c, ρ′) such that every node in
P (c, ρ′) has a node in N (P, c, ρ, ρ′) at distance ρ and every two nodes in N (P, c, ρ, ρ′) are
at distance at least ρ from one another (this set can be obtained by considering all nodes
on the path P (c, ρ′) from endpoint of the path to another and adding to N (P, c, ρ, ρ′) every
node that does not have yet a node in N (P, c, ρ, ρ′) at distance ρ from it). For a shortest
path P and a node v, let

Ni(v, P ) := N (P, cv, 2iε/32, 2i+1),

and
N(v, P ) :=

⋃
0≤i≤log (nDiam)

Ni(v, P ),

where cv is the vertex in P closest to v.
For a tree node µ ∈ T such that e(µ) = (u, v), we let N(Tu) := ∪w∈Cluster(µ)∩DN(w, Tu),

and similarly for N(Tv). (Formally, it depends also on µ, but we suppress this.) For a
shortest path P from s to some vertex f , let N(P, d1, d2) to be a vertex in N(P ) as follows.
If d2 > dG(s, f) then N(P, d1, d2) := f . If d1 < 0 then N(P, d1, d2) := s. Otherwise let
N(P, d1, d2) be the vertex x ∈ N(P ) with minimal dG(x, s) among all vertices x satisfying
d1 ≤ dG(x, s) ≤ d2; if no such vertex x exists, set N(P, d1, d2) := null. For a tree node µ,
let P(µ) = {Tu} ∪ {Tv} where e(µ) = (u, v).

Preprocessing. Let us describe the additional information stored by our data structure.
For every node µ, where we denote (u, v) = e(µ), store the sets N(Tz) for all z ∈ {u, v}. In
addition, construct a range reporting data structure on N(Tz) according to the distance from
s. Namely, a data structure that given two distances d1, d2 returns in O(log logn) time a
vertex x ∈ N(Tz) with dG(x, s) ∈ [d1, d2] that has minimal dG(x, s) among all such vertices,
or returns null if no such vertex exists. Observe that the range reporting data structure on
N(P ) makes it possible to find N(P, d1, d2) in O(log logn) time [4].

In addition, for every node µ, level ` ∈ {1, . . . , 2 logn} and apex x ∈ NewApices(µ), store
for every edge e incident to x the set Â`(e) = {µ ∈ T | e ∈ E(Reg(µ)) and Level(µ) = `},
namely, the set of level ` tree nodes µ for which e belongs to their region (recall there are at
most two such nodes). The algorithm also stores the number OT (v) for every vertex v that
is a neighbor of an apex of some node µ ∈ T (for all apices).

For every tree node µ the algorithm stores an indicator IL(µ) if µ is a leaf in T . Note
that if µ is a leaf in T then its cluster contains at most one dataset point, denoted by D(µ).
The algorithm also stores the dataset point D(µ) in case µ is a leaf.

Distance Query. The distance query given a vertex q is performed as follows. (See Figure 3
for a pseudo-code description.) The algorithm starts by invoking Procedure FindRegions to
obtain the sets {Ai(q)} for 1 ≤ i ≤ 2 logn, where each set Ai(q) contains at most two nodes
of level i in T such that q belongs to the region of at least one of them. The algorithm then
iterates on all path separators P in P(q) = ∪1≤i≤2 logn ∪µ∈Ai(q) P(µ). For a path P ∈ P(q),
let µ(P ) be the node such that P ∈ P(µ). For each such path separator P , the algorithm
invokes Procedure DistThroughPath to estimate dG(q,D ∩Cluster(µ(P )), P ), namely,
the length of the shortest path from q to some vertex in D ∩Cluster(µ(P )) among all such
paths that go through some vertex in P . Let d̃(P, q,D) be the estimated distance returned
by this invokation of Procedure DistThroughPath. In addition, the algorithm iterates over
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algorithm Dist(q)
1. {Ai(q)} ← FindRegions(q).
2. Let P(q) = ∪µ∈Ai(q),1≤i≤2 lognP(µ).
3. For every P ∈ P(q) do the following:

a. Set d̃(q,D, P )← DistThroughPath(q, P ).
4. Set d1 ←∞.
5. For every µ ∈ ∪µ∈Ai(q),1≤i≤2 logn do:

a. If IL(µ) then set d1 ← min{d1,dG(q,D(µ))}.
6. Return min({d̃(q,D, P ) | P ∈ P(q)} ∪ {d1}).

Figure 3 Our main algorithm for estimating the distance between a given query vertex q and the
closest data point to it in D.

algorithm DistThroughPath (q, P )
1. found = false.
2. Set p← s.
3. While (found = false)

a. Let d̃ = dG(p, q).
b. Find an d̃/8-net S′ on N(P ) ∩ P (p, 2d̃).
c. Set p to be the vertex in S′ ∪ {p} such that dG(q, p) is minimal.
d. If dG(q, p) > d̃/2 then set found = true.

4. For i from 1 to lognM do the following.
a. Find an 2iε/8-net Si on N(P ) ∩ P (p, 2i+3).
b. Set d̃(q,D, P )i to be the minimal distance dG(q, x) + dG(q,D) for x ∈ Si.

5. Set d̃(q,D, P ) to be the minimal distance d̃(q,D, P )i.
6. Return d̃(q,D, P ).

Figure 4 A procedure for estimating dG(q,D, P ), which is the minimum length of a path from a
given query vertex q to some vertex in D among all such paths that go through some vertex in P .

all nodes µ ∈ ∪1≤i≤2 lognAi(q) to check if µ is a leaf in T , and among all such leaf nodes
µ, the algorithm finds the node µ̃ such that dG(q,D(µ̃)) is minimal, denoting it d1. (This
computation is straightforward, since |D(µ̃)| ≤ 1 for leaf nodes.) The algorithm then returns
min({d1} ∪ {d̃(q,D, P ) | P ∈ P(q)}).

Procedure DistThroughPath is given (q, P ) and works in two stages. (See Figure 4 for
a pseudo-code description.) The first stage finds a vertex p ∈ P that is “close” to q, and the
second one uses this p to compute the estimated distance d̃(q,D, P ). The first stage is done
as follows. Initialize p = s and found = false, and now while found = false, do the following:
first, let d̃ = dG(p, q); second, find a d̃/8-net S′ on N(P ) ∩ P (p, 2d̃); third, set p to be a
vertex in S′ ∪ {p} that minimizes dG(q, p); finally, if dG(q, p) > d̃/2 then set found = true
(namely, the first part is finished).

The second stage is then done as follows. For i from 1 to log(nM) do the following. First,
find a 2iε/8-net Si on N(P ) ∩ P (p, 2i+3). Second, set d̃(q,D, P )i to be the minimal distance
dG(q, x) + dG(q,D) for x ∈ Si. Now return the minimal distance d̃(q,D, P )i as the final
answer d̃(q,D, P ).

2.4 Analysis
Recall that t∗ ∈ D is the closest data point to q.
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I Lemma 9. Consider a node µ ∈ T , let C = Cluster(µ) and e(µ) = (u, v). Let
P ∈ {Pu, Pv}. Consider a vertex x ∈ P , there is a vertex z ∈ N(P ) at distance at most
εdG(x,D ∩ C)/16 from x.

Proof. Let t ∈ D∩C be the vertex of minimal dG(x, t), namely, dG(x, t) = dG(x,D∩C). Let
i be the index such that 2i−1 ≤ dG(x, t) ≤ 2i. Note that dG(ct, x) ≤ dG(ct, t) + dG(t, x) ≤
2 dG(t, x). Hence x ∈ P (ct, 2i+1).

Recall that N(P ) contains N (P, ct, 2iε/32, 2i+1), namely, for every vertex y ∈ P (ct, 2i+1)
there is a vertex z′ ∈ N(P ) such that dG(y, z′) ≤ 2iε/32 ≤ εdG(x,D ∩ C)/16. Hence in
particular there is a vertex z ∈ N(P ) at distance at most εdG(x,D ∩ C)/16 from x. J

Consider a node µ̂ ∈ T such that t∗ ∈ Cluster(µ̂) and let e(µ̂) = (û, v̂). Let P ∈ {Tû, Tv̂}.
Let dG(q, t∗, P ) be the distance of the shortest path from q to t∗ among all q to t∗ paths that
contain at least one vertex in P . Consider Procedure DistThroughPath when invoking
on (q, P ). Let pfinal(P ) be the vertex p when the algorithm reaches step 4 of Procedure
DistThroughPath invoked on (q, P ).

I Lemma 10. dG(q, pfinal(P )) ≤ 4 dG(q, t∗, P ).

Proof. Let cq be the closest vertex to q in P . Let pi be the vertex p in the beginning of the
i’th iteration of the while loop in step 3 of Procedure DistThroughPath.

Note that the algorithm continues to the next iteration as long dG(q, pi+1) ≤ dG(q, pi)/2.
Let pr = pfinal(P ). Note also that dG(q, pr) > dG(q, pr−1)/2. From triangle inequality it
follows that cq ∈ P (pr−1, 2 dG(q, pr−1)).

Let S′ be the dG(q, pr−1)/8-net on N(P ) ∩ P (p, 2 dG(q, pr−1)) from step 3b of the
while loop. If dG(q, pr−1) ≤ 4 dG(q, t∗, P ) then we are done as dG(q, pr) ≤ dG(q, pr−1).
Seeking a contradiction assume dG(q, pr−1) > 4 dG(q, t∗, P ). By Lemma 9, N(P ) contains
a vertex z1 at distance εdG(cq, t∗)/16 from cq. Recall that S′ is an dG(q, pr−1)/8-net
on N(P ) ∩ P (pr−1, 2 dG(q, pr−1)). Hence there is a vertex z2 ∈ S′ at distance at most
dG(q, pr−1)/8 from z1.

We get that,

dG(q, pr) ≤ dG(q, z2)
≤ dG(q, cq) + dG(cq, z2)
≤ dG(q, t∗, P ) + εdG(cq, t∗)/16 + dG(q, pr−1)/8
≤ dG(q, t∗, P ) + ε(dG(cq, q) + dG(q, t∗))/16 + dG(q, pr−1)/8
≤ dG(q, t∗, P ) + ε(dG(q, t∗, P ) + dG(q, t∗, P ))/16 + dG(q, pr−1)/8
= dG(q, t∗, P )(1 + ε/8) + dG(q, pr−1)/8
≤ dG(q, pr−1)(1 + ε/8)/4 + dG(q, pr−1)/8
≤ dG(q, pr−1)/2,

contradiction. J

Let i be the index such that 2i−1 ≤ dG(q, t∗, P ) ≤ 2i.

I Lemma 11. The distance d̃G(q,D, P ) returned by the Procedure DistThroughPath
satisfies dG(q,D, P ) ≤ d̃G(q,D, P ) ≤ (1 + ε) dG(q, t∗, P ).

Proof. It is not hard to verify that dG(q,D, P ) ≤ d̃G(q,D, P ), we therefore only need to
show the second direction where d̃G(q,D, P ) ≤ (1 + ε) dG(q, t∗, P ).
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Let w ∈ P ∩ P (q, t∗, P ). Note that dG(w, t∗) ≤ dG(q, t∗, P ). By Lemma 9 there is a
vertex x ∈ N(P ) at distance at most εdG(w, t∗)/16 ≤ εdG(q, t∗, P )/16 from w.

We have

dG(x, pfinal(P )) ≤ dG(x,w) + dG(w, q) + dG(q, pfinal(P ))
≤ dG(x,w) + dG(w, q) + 4 dG(q, t∗, P )
≤ εdG(q, t∗, P )/16 + dG(q, t∗, P ) + 4 dG(q, t∗, P )
< 6 dG(q, t∗, P )
≤ 6 · 2i

< 2i+3,

where the second inequality follows by Lemma 10.
We get that x ∈ P (pfinal(P ), 2i+3). Recall that Si is an 2iε/8-net onN(P )∩P (pfinal(P ), 2i+3).

Hence there is a vertex x2 ∈ Si at distance at most 2iε/8 from x. Note that dG(x2, w) ≤
dG(w, x) + dG(x, x2) ≤ εdG(w, t∗)/16 + 2iε/8 ≤ εdG(q, t∗, P )/2. We get that

d̃G(q,D, P ) ≤ dG(q, x2) + dG(x2, t
∗)

≤ dG(q, w) + dG(w, x2) + dG(x2, w) + dG(w, t∗)
≤ dG(q, t∗, P ) + 2 dG(x2, w)
≤ (1 + ε) dG(q, t∗, P ).

J

The following lemma shows that the estimated distance returned by the algorithm satisfies
the desired stretch.

I Lemma 12. The distance d̃G(q,D) returned by the algorithm satisfies dG(q,D) ≤
d̃G(q,D) ≤ (1 + ε) dG(q,D).

Proof. it is not hard to verify that dG(q,D) ≤ d̃G(q,D), we therefore only need to show
the other direction, namely, d̃G(q,D) ≤ (1 + ε) dG(q,D). Let µ be the leaf node in T that
contains t∗.

If q ∈ Reg(µ), then note that by Lemma 8 µ ∈ {µ ∈ Ai(q) | 1 ≤ i ≤ 2 logn}, therefore
the algorithm examines the distance dG(q,D(µ)) and returns it if this is the minimal distance
examined by the algorithm. We get that d̃G(q,D) ≤ dG(q,D(µ)) = dG(q,D). So assume
q /∈ Reg(µ). Notice that there must be an ancestor node µ′ such that P (q, t∗) ∩ P 6= ∅ for
some P ∈ {Tu, Tv} where e(µ′) = (u, v). Notice that P ∈ P(q) and thus by the algorithm
and Lemma 11 we have d̃G(q,D) ≤ (1 + ε) dG(q,D, P ) = (1 + ε) dG(q,D). J

I Lemma 13. The query algorithm runs in time O( 1
ε · log logn+ tDO) logn logDiam+logn ·

∆tDO).

Proof. Let us start with bounding the time to find the sets A`(q) for 1 ≤ ` ≤ 2 logn in
Procedure FindRegions. Recall that in order to find the setsA`+1(q) the algorithm examines
all (y′, x′) ∈ ∪µ∈A`(q)NA(µ) and check which ones satisfy dG(q, y′) + ω(y′, x′) + dG(x′, s) =
dG(q, s), and among the ones that satisfy the equality, the algorithm picks the edge e = (y, x)
of minimal ÔT (e). Checking if an edge (y′, x′) satisfy dG(q, y′) + ω(y′, x′) + dG(x′, s) =
dG(q, s) can be done by constant queries to the distance oracle and thus takes O(tDO) time.

Let µ̃ be a node in A`+1(q) and let µ̃′ be its parent in T . Recall that µ̃′ ∈ A`(q). Recall
also that NA(µ̃) is the set of all edges incident to the apices of µ̃ or to s. Since µ̃ is a child
of µ̃′ we have Apices(µ̃) ⊆ Apices(µ̃′) ∪NewApices(µ̃).
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For level j let e = (xj , yj) ∈ ∪µ∈Aj(q)NA(µ) be the edge of minimal OT (yj) among all
edges (x′, y′) ∈ ∪µ∈Aj(q)NA(µ) that satisfy dG(q, y′) + ω(y′, x′) + dG(x′, s) = dG(q, s).

Let NNA(µ) be the set of all edges incident to the new apices of µ. It is not hard to
verify that in order to find e = (xj+1, yj+1) given the edge e = (xj , yj), it is enough to find
the edge (x, y) of minimal OT (y) among all edges (x′, y′) ∈ ∪µ∈Aj(q)NNA(µ) that satisfy
dG(q, y′) +ω(y′, x′) + dG(x′, s) = dG(q, s) and compare it with (xj , yj). Recall that Aj+1(q)
contains at most two nodes. Hence the time spend for level j + 1 is O(∆ · tDO). Hence the
total time to find all sets A`(q) is O(logn∆ · tDO).

We now turn to bound the running time of Procedure DistThroughPath invoked on
(q, P ). Recall that Procedure DistThroughPath has two main parts. The first part finds a
vertex pfinal such that dG(q, pfinal(P )) ≤ 4 dG(q, t∗, P ) and the second part uses pfinal(P )
to find an estimation on dG(q,D, P ).

Let pi be the vertex p in the beginning of the i’th iteration of the while loop in step 3
of Procedure DistThroughPath. The first part is done in iterations, where the algorithm
continues to the next iteration i as long as dG(q, pi) ≤ dG(q, pi−1). Therefore the number of
iteration is O(logDiam). It is not hard to see that the time of iteration i is dominated by the
maximum of the time for finding a d̃/8-net S′ on N(P )∩ P (pi, 2d̃) and the time for invoking
the distance oracle a constant number of times. Finding a d̃/8-net S′ on N(P ) ∩ P (pi, 2d̃)
can be done by O(log logn) using the range reporting data structure on N(P ) as follows.

For j from −16 to 15, find N(P,dG(s, pi) + jd̃/8,dG(s, pi) + (j + 1)d̃/8) and add it
to S′ (initially set to be empty). It is not hard to verify that S′ is indeed d̃/8-net on
N(P ) ∩ P (pi, 2d̃).

The time for a single invokation of the range reporting data structure takes O(log logn).
Note that the range reporting data structure is invoked a constant number of times. We get
that each iteration of the first part takes O(log logn+ tDO) time.

Hence the first part takes O((log logn+ tDO) logDiam) time.
Let us now turn to the second part of Procedure DistThroughPath. The second

part consists of lognM = O(logDiam) iterations. It is not hard to see that the time of
each iteration is dominated by the maximum of the time for finding a 2iε/8-net Si on
N(P ) ∩ P (p, 2i+3) and the time for invoking the distance oracle O(1/ε) times.

Similarly as explained in the first part finding a 2iε/8-net Si on N(P ) ∩ P (p, 2i+3) can
be done in O(1/ε log logn) time. Thus the total time for the second part is O((1/ε log logn+
tDO) logDiam) time. We get that the total time for Procedure DistThroughPath is
O((1/ε log logn+ tDO) logDiam).

Finally, we turn to bound the running time of Procedure Dist. Procedure Dist starts
by invoking Procedure FindRegions to obtain the sets {Ai(q)} for 1 ≤ i ≤ 2 logn. This
takes O(logn∆ · tDO) as explained above.

The algorithm then iterates on all path separators P in P(q) = ∪µ∈Ai(q),1≤i≤2 lognP(µ).
Recall that there are at most O(logn) such paths. For each such path P the algorithm
invokes Procedure DistThroughPath which takes O((1/ε log logn+ tDO) logDiam) time.
In addition, the algorithm iterates over all nodes µ ∈ ∪µ∈Ai(q),1≤i≤2 logn and invokes the
distance oracle a constant number of items for each iteration.

We get that the total running time of Procedure Dist is O((1/ε log logn + tDO) logn
logDiam+ logn∆ · tDO). J

I Lemma 14. The space requirement of the data structure is O( 1
εn logn logDiam+n∆ log2 n).

Proof. The number of nodes in T is O(n logn). It is not hard to verify that the depth
of T is O(logn) as for every node µ with parent node µ′ we have Cluster(µ) ∩ D ≤
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2/3 ·Cluster(µ′) ∩D. In addition, the number of nodes in each level is at most n as the
clusters of the nodes are disjoint and the cluster of each node contains a vertex in D.

For every node µ, every level ` and every apex x ∈ NewApices(µ), the algorithm stores
for every edge e that is incident to x the set of at most two nodes Â`(e) = {µ ∈ T | e ∈
E(Reg(µ)) and Level(µ) = `}. The algorithm also stores the number OT (v) for every
vertex v that is a neighbor of an apex of some node µ ∈ T .

There are at most two apices in NewApices(µ). For each such apex x there are most ∆
incident edges. For each such edge e and for each level ` the size of Â`(e) is two. We get
that the size stored for each node µ for this part is O(∆ logn). There are at most O(n logn)
nodes. Thus the total size for this part is O(n∆ log2 n).

For every node µ such that e(µ) = (u, v), the algorithm stores the sets N(Tz) in an
increasing distance from s for z ∈ {u, v}. In addition, construct a range reporting data
structure on N(Tz) according to the distance from s. The size of the range reporting data
structure is |N(Tz)|. We thus need to bound the size of all N(P ) for all path separators P .

Every vertex w ∈ D belongs to the clusters of at most 2 logn nodes µ. For each such
node µ such that e(µ) = (u, v), w contributes at most O(logDiam/ε) vertices to N(Tz). We
get that the sum of the sizes of all N(P ) for all path separators P is O(n logn logDiam/ε).
Thus the total size for this part is O(n logn logDiam/ε).

Finally, for every node µ the algorithm stores an indicator IL(µ) if µ is a leaf in T .
The algorithm also stores the data-point D(µ) in case µ is a leaf. Thus the total size
for this part is O(n logn). Overall, we get that the total size of the data structure is
O(n logn logDiam/ε+ n∆ log2 n). J

3 The General Case: Non-Unique Shortest Paths

In this section we show how to handle the general and seemingly much more involved case of
non-unique shortest paths. As mentioned above, the common workaround of perturbing the
edge weights is not applicable here because we assume only a black-box access to a distance
oracle. The main challenge is to efficiently perform the zoom-in operation. In the unique
shortest paths case, if we found a node x that is on the shortest path from q to s, then we
knew that x is an ancestor of q in the tree T . This provided us with a better idea on where
the query q is and and thus we could zoom in to the right regions. The main idea in handling
the non-unique case is to have a consistent way of breaking ties in the preprocessing phase
while constructing the shortest path tree T . This also considerably complicates the analysis
of the zoom-in operation, and we need to use planarity to show that our consistent way of
breaking the ties together with planarity is enough to be able to zoom-in correctly (it is easy
to create examples where the graph is not planar and then our way of breaking the ties does
not give us more information on where the query q is).

Let us start with the modifications needed in the preprocessing phase. We will later show
the modifications needed in the zoom-in operation and in the analysis.

3.1 Preprocessing: The General Case
The main difference in the preprocessing phase is in the way the algorithm chooses the
shortest path tree T . The definitions below provide a consistent way of breaking such ties,
and will be used later extensively.

Identifiers. Fix some vertex s ∈ M , and assign each vertex v ∈ M a unique identifier
id(v) ∈ [1..m], such that for all v1, v2 ∈ M with dG(s, v1) < dG(s, v2), we have id(v1) >
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id(v2). Such identifiers can be computed easily by ordering the vertices according to their
distance from s, breaking ties arbitrarily.

Partial-order on shortest paths. The unique identifiers and s ∈ M induce the following
partial order l on shortest paths in the graph. Let P = (s = z1, z2, . . . , zr) and P ′ = (s =
z′1, z

′
2, . . . , z

′
r′) be two shortest paths originating from the same vertex s. (Our definition below

actually extends to every two shortest paths, but we will only need the case z1 = z′1 = s.)
We say that P is smaller than P ′ with respect to l, denoted P l P ′, if the smallest index
j ≥ 1 for which zj 6= z′j , satisfies id(zj) < id(z′j). If no such index j exists, which happens if
P is a subpath of P ′ or the other way around, then the two paths are incomparable under l.
A shortest path P from s ∈M to v ∈M is called minimal with respect to l if it is smaller
with respect to l than every other shortest path from s to v. Observe that for every v ∈M ,
every two non-identical shortest paths from s to v are comparable, and thus exactly one of
all these shortest paths is minimal. We remark that in the above description, and also in
the foregoing discussion, it is convenient to implicitly consider paths as “directed” from one
endpoint to the other one (usually going further away from s).

Tree with ordered shortest paths. Let T be a shortest-path tree rooted at the fixed vertex
s ∈M , and let P (s, v, T ) denote the path in the tree from s to vertex v ∈M . We say that
the tree T is minimal with respect to l if for every vertex v ∈M the path P (s, v, T ), which
is obviously a shortest path, is minimal with respect to l.

Preprocessing algorithm, step 1’. The algorithm fixes some vertex s ∈M , and gives the
vertices unique identifiers as described above. It then constructs a shortest-path tree T
rooted at s ∈ M that is minimal with respect to l, by invoking Dijkstra’s single-source
shortest-path algorithm from s, with the following slight modification. When there is a tie,
namely, the algorithm has to choose an edge (x, y) that minimizes dG(s, x, T ) +ω(x, y), then
among all the edges achieving the minimum, the algorithm selects the (unique) one for which
the path P (s, xi, T ) is minimal with respect to l.

I Claim 3.1. A tree T constructed as above is indeed minimal with respect to l.

We now define a total order on the vertices induced by l and T as follows. We say that
v lT u if either (i) v and u are not related and P (s, v, T ) l P (s, u, T ); or (ii) v and u are
related and v is a descendant of u. The algorithm assigns every vertex v a number OT (v)
from [1..m] such that OT (u) < OT (v) iff ulT v.

In addition, the algorithm assigns every ordered edge e = (y, x) a number ÔT (e) ∈ [1..3m]
such that for two edges e = (y, x) and e′ = (y′, x′), we have ÔT (e) < ÔT (e′) iff OT (x) <
OT (x′) or OT (x) = OT (x′) and OT (y) < OT (y′).

The rest of the preprocessing phase is similar to the unique-distances case, with the slight
modification that every vertex v (resp., edge e) the algorithm stores, it also stores OT (v)
(resp., ÔT (e)).

3.2 Finding the Query’s Region: The General Case
In this section we describe the modifications needed in the zoom-in operation for the general
non-unique case. The main difference is in the analysis of the zoom-in operation.

The only modification to the zoom-in operation is as follows. Instead of picking the edge
(y, x) ∈ ∪µ∈A`(q)NA(µ) such that (y, x) is on any shortest path from q to s of maximum
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dG(s, x) and zooming in to regions of (y, x) on the next level, the algorithm picks the edge
(y, x) with minimal OT (y) among all edges (y, x) ∈ ∪µ∈A`(q)NA(µ) such that (y, x) is on
any shortest path from q to s (not necessarily the path in T ).

The following main lemma proves the correctness of the zoom-in operation for the
non-unique case (the proof is quite technical and is omitted from this version).

I Lemma 15. For every level ` ≤ Level(Home(q)), the query vertex q belongs to a region
in {Reg(µ) | µ ∈ A`(q)}.

4 Lower Bounds

Our approximate NNS scheme, presented in Theorem 1, requires access to an exact (rather
than approximate) distance oracle, and its space and time complexity bounds depend linearly
on the graph’s maximum degree ∆. In this section we prove that these two requirements are
necessary. The graphs used in our lower bounds are in fact trees (and thus certainly planar).
Let DO(u, v) denote (the answer for) a distance-oracle probe for the distance between points
u, v.

4.1 Linear Dependence on the Degree ∆
We first assume access to an exact distance oracle, and prove a lower bound on the NNS
worst-case query time, assuming that the space requirement is not prohibitively large. We
actually prove a stronger assertion, and bound the NNS query time only by the number of
distance-oracle probes, regardless of any other operations; in particular, we allow the NNS
query procedure to read the entire data structure!

Consider a c-approximate NNS (randomized) scheme with the following guarantee: When
given a planar graph with N vertices and maximum degree logN ≤ ∆ ≤ n, together with
a dataset of n vertices, it produces a data structure of size s. Using this data structure,
for every query vertex q, with probability at least 1/2 it finds q’s c−approximate nearest
neighbor using at most t distance-oracle probes. We are interested in the setting where
N � n, say N ≥ n2. The following theorem shows that unless s is huge, the query time t
must grow linearly with the maximum degree ∆. Let us justify the above requirements on
∆; the assumption ∆ ≤ n is necessary because t ≤ n is always achievable, by answering NNS
queries using exhaustive search (with no preprocessing); the assumption ∆ ≥ logN is for
ease of exposition, and can probably be removed with some extra technical work.

I Theorem 16. If s ≤ O(N/(∆ log∆ n)) bits, then t ≥ Ω(∆ log∆ n).

Outline. We prove the theorem by presenting a single distribution over inputs, which is
“hard” for all deterministic algorithms. That is, every deterministic algorithm is unlikely to
succeed in producing a correct answer, under certain space/time constraints (Lemma 20).
A bound for randomized algorithms is achieved by fixing the best possible coins (the easy
direction of Yao’s minimax principle).

The bound for deterministic algorithms is obtained in three steps. First we assume there
is no data structure, i.e., memory size s = 0, and show that no deterministic algorithm can
succeed with more than a constant probability (Lemma 18). We then amplify the bound by
considering a series of query points (Lemma 19), at which point the success probability is so
tiny that a small data structure cannot help.
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4.1.1 The hard distribution
We specify a distribution over NNS instances, namely, a distribution over tree graphs T of
size roughly N and degree roughly ∆, data sets D of size n and a query points q. All but
the last level of the tree would be fixed, and the randomization occurs only in the way the
leaves are connected.

The fixed part of T : Start with a complete tree of arity ∆ and exactly N leaves, which
means the tree’s depth is H := log∆N . (We shall assume for simplicity that all values are
integral, to avoid the standard yet tedious rounding issues.) The dataset D is formed by the
n vertices at depth (also called level) h := log∆ n, and they are labeled p1, . . . , pn. Let all
edges have unit length, except for the edges at level h, which have length cH. (To extend
our results to unweighted trees, replace these edges with paths of corresponding length.) In
particular, the distance between every two distinct dataset points is at least 2cH. Since this
part of the tree is fixed, we assume the algorithm “knows it”, i.e., it can compute distances
without any distance-oracle probes.

The random part of T : The last level H + 1 of the tree is random; it is constructed by
hanging N leaves labeled `1, . . . , `N independently at random. In other words, for each
vertex `i we sample uniformly at random one of the N/∆ nodes at level H − 1 and connect
to it. By standard tail bounds, with probability greater than 1− 1/n, at most 2∆ leaves are
attached to the same node, so the maximum degree of the graph is ≤ 2∆. We note that this
is the only place where we use that ∆ ≥ logN . We denote this input distribution by T .

Finally, we need to specify the distribution of query points. Throughout our analysis the
query point is chosen uniformly at random from the leaves, namely, a vertex `q for uniformly
random q ∈ [N ]. Observe that the nearest neighbor of `q is the dataset point pi which is
the unique ancestor of `q at level h. In fact, this pi is the unique c-approximate nearest
neighbor, because d(`q, pi) = H − h while for i′ 6= i we have d(`q, pi′) ≥ 2cH. Thus, in all
these instances, exact NNS is equivalent to c-approximate NNS.

4.1.2 The no-preprocessing case
Let A be a deterministic algorithm that solves c-approximate NNS without any preprocessing,
in other words, A has zero space requirements and consists of only a query algorithm. Define
TA as the number of distance-oracle probes that A makes given a query. Under the above
input distribution, TA is a random variable, and our goal is to show that it is likely to be
Ω(∆ log∆ n). Towards this end, we shall make a few adaptations to TA and to the algorithm
A.

Let T ′A be the number of distance-oracle probes of the form DO(`q, ·). Clearly T ′A ≤ TA
so it suffices to bound T ′A. We next show that in effect, we may restrict attention to
algorithms that do not probe the distance from `q to vertices at level bigger than h (i.e.,
strict descendants of the dataset D).

I Lemma 17. There is an algorithm A1 that probes DO(`q, w) only for vertices w at level
at most h, and with probability 1 (i.e., on every instance in the support), T ′A1

≤ T ′A.

Proof. Algorithm A1 simulates A probe by probe, except that when A probes DO(`q, w)
for some w at level bigger than h, algorithm A1 probes DO(`q, pi) where pi is the dataset
point which is the ancestor of w. Now, if pi is also the ancestor of `q then pi is the nearest
neighbor and A1 can output pi. Otherwise observe that d(`q, w) = d(`q, pi) + d(pi, w), so A1
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can compute d(`q, w) and continue the simulation of A. Since A1 uses one query to simulate
a query of A, clearly T ′A1

≤ T ′A.
The remaining thing to specify is how does A1 find the ancestor of w. Now, if w is not

a leaf, then it is part of the fixed graph, and the ancestor is hard-wired into A1. If w is a
leaf, we will assume that the parent pi is just given to A1 for free. Formally we allow A1 to
query DO(w, pj) for various j’s until w’s ancestor is found, and note that these queries are
not counted in T ′A1

. J

For illustration, consider the case where n = ∆ and N = n2, which means that the tree
has depth H = 2, and the dataset D lies at level h = 1. The algorithm A1 is given a label
for a leaf `q and has to find its parent. We only consider distance-oracle probes of the form
DO(`q, pi), which have value 1 if pi is the nearest neighbor of `q, and value 3 otherwise.
Observe that queries that don’t involve `q carry no information on the parent of `q, and in
queries of the form DO(`q, `q′), we effectively replace `q′ with its parent. The situation is
thus identical to searching in an unsorted array of size n. The algorithm “scans” the vertices
pi in some order, which is not deterministic (as it might depend on parents of other leaves)
but is independent of the correct answer (the parent of `q). Therefore, T ′A1

is distributed
uniformly in [∆].

We now return to the general hard distribution T which follows the same intuition but
requires additional technical maneuvers. Our goal is to show that without loss of generality,
A1 could be thought as finding the ancestors of q level by level, starting from the root at
level 0 and proceeding down to level h = log∆ n. Each level requires a search over ∆ items,
hence we will obtain a lower bound of Ω(∆h).

Given algorithm A1, define a new algorithm A2 as follows. Simulate A1, but whenever
A1 probes DO(`q, w), probe instead DO(`q, w′), where w′ is the minimum-level ancestor of
w for which DO(`q, w′) wasn’t probed yet. Now, based on the answer, detect whether `q is
a descendant of w′ and proceed according to the case at hand:

If `q is a not descendant of w′, proceed in the simulation of A1 by calculating the distance
d(`q, w) = d(`q, w′) + d(w′, w) without probing DO(`q, w) directly.
If `q is a descendant of w′, probe the entire path from w′ to w (namely, the distance
between `q and each vertex along this path) until you can compute d(`q, w), which could
happen by reaching either w itself or a vertex which is not an ancestor of `q.

We point out two crucial observations. First, A2 recovers the ancestors of `q one by one
starting from level 0 (the root) down to level h (some dataset point). Second, the extra
probes are along the path from the root to `q, with at most one probe outside that path at
each level. This is done only up to level h and without repeating the same probe. Thus in
total, A2 always makes at most 2h = 2 log∆ n more probes of the form DO(`q, ·) than A1
does, i.e., T ′A2

≤ T ′A1
+ 2h. The next lemma analyzes this “well-behaved” algorithm A2.

I Lemma 18. PrT ,q[T ′A2
≤ h∆/3] ≤ 1/16.

Proof. Let w0, w1, . . . , wh denote the ancestors of `q from level 0 to level h (e.g., w0 is the
root and wh ∈ D). We say A2 recovers wi, the first time it queries DO(`q, wi) and we recall
that a key feature of A2 is that it recovers these vertices one by one.

Denote by Xj , for j ∈ [h], the number of distance-oracle probes of the form DO(`q, ·)
that A2 makes after recovering wj−1 and until recovering wj . The main observation is that
Xj dominates a random value chosen uniformly from [∆], even when conditioned on the
sequence of probes made prior to recovering wj−1. Indeed, when sampling the location of
`q, the decision which child of wj−1 is the ancestor of `q could be deferred to the moment
the children of wj−1 are being probed. Hence algorithm A2 is essentially performing an
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exhaustive search, akin to searching in an unsorted array. It follows that E[Xj ] ≥ ∆/2 and
E[T ′A2

] ≥ h∆/2. Moreover, by applying Azuma’s inequality (assuming n is large enough),
Pr[T ′A2

≥ h∆/3] ≤ 1/16. J

Recalling that TA ≥ T ′A ≥ T ′A1
≥ T ′A2

− 2h (always) and assuming ∆ ≥ 24, we obtain
using Lemma 18 that

Pr
T ,q

[
TA ≤ h∆/4

]
≤ Pr
T ,q

[
T ′A2
− 2h ≤ h∆/4

]
≤ 1/16. (1)

A sequence of queries (with no preprocessing). We say algorithm A (with no prepro-
cessing) succeeds on a query `q if it outputs a correct answer and makes at most h∆/4
distance-oracle probes. Eq. (1) states that PrT ,q[A succeeds on query `q] ≤ 1/16. In order
to extend the argument to the case with preprocessing we need to decrease that probability
to be exponentially small, which we achieve by looking at a sequence of several queries. Let
q1, . . . , qm ∈ [N ] be chosen uniformly at random and independently.

I Lemma 19. For every m ≤ N/(4h∆),

Pr
T ,q1,...,qm

[A succeeds on all queries `q1 , . . . , `qm ] ≤ ( 1
8 )m.

Proof. The main difficulty here is that there might be dependencies between different query
points, e.g., if the algorithm’s first probe is DO(`6, `7), then there is a chance that q1 = 6
and q2 = 7, and we cannot argue the success of A on q1 and on q2 are independent. In
particular, we cannot assume that A never probes other leaves (other than the query point).

The way we handle it is by sampling the tree using deferred decisions, meaning that we
attach every leaf of the tree only when it is needed. Trace the executions of A on query qi for
i = 1, . . . ,m one by one, where each execution is restricted to at most h∆/4 distance-oracle
probes. Every time a leaf is probed for the first time (more precisely, the distance from/to
that leaf), determine its location by attaching it to a random vertex at level H − 1.

Now, assume algorithm A succeeded on queries q1, . . . , qi−1 and consider its execution on qi.
The number of leaves attached prior to this execution is at most (i−1)h∆/4 ≤ mh∆/4 ≤ N/16.
Thus, the probability that a random qi is one of these leaves is at most 1/16; if this is not
the case, then qi is completely random leaf, and Eq. (1) applies to it. Thus, assuming A
already succeeded on queries q1, . . . , qi−1 the probability it succeeds on query qi is at most
1/8. The theorem follows. J

4.1.3 Algorithm with preprocessing
We turn to the case where an algorithm can prepare a data structure of size s, and prove a
lower bound under the same input distribution as before. Specifically, an input tree is first
drawn from the distribution T , and then the tree is processed to create a data structure of s
bits. Next, a random leaf `q is chosen as a query point, and algorithm B, which can read the
entire data structure (as “advice”), answers the query. As before, we say that algorithm B

succeeds on a query `q if it outputs a correct answer and makes at most h∆/4 distance-oracle
probes.

I Lemma 20. If s ≤ N/(4h∆) then PrT ,q[B succeeds on a query q] < 1/2.

Proof. Assume for contradiction that B succeeds with probability at least 1/2. Define a
new algorithm A that guesses the s bits of advice at random and then simulates algorithm
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B. We will show that this algorithm A (which obviously uses no preprocessing) contradicts
Lemma 19.

Now consider sampling a tree from T . In expectation, algorithm B would succeed on
at least half the leaves of this tree (as query points), hence by Markov’s inequality, with
probability at least 1/4 (over the choice of the tree) algorithm B succeeds on at least
1 − 4

3 ·
1
2 = 1

3 of the leaves. In such a tree, the probability that B succeeds on m random
leaves is at least ( 1

3 )m.
Recall that Algorithm A guesses the advice strings independently at random. Thus, the

probability that A succeeds on all the m leaves of a random tree is at least ( 1
2 )s · 1

4 · (
1
3 )m.

Taking m = N/(4h∆) and observing s ≤ m, we have

Pr
T ,q1,...,qm

[A succeeds on all queries `q1 , . . . , `qm ] ≥ 1
4 · (

1
6 )m.

Now observe that for N (and hence m) large enough, we have contradicted Lemma 19. J

We can now complete the proof of Theorem 16.

Proof of Theorem 16. Assume towards contradiction there is a randomized algorithm C for
the c-approximate NNS problem, such that on tree instances with maximum degree at most
2∆ + 2, we have (the theorem would then follow by substituting ∆′ = 2∆ + 2): (a) for each
query point, with probability at least 3/4, the algorithm answers correctly (a c-approximate
nearest neighbor); (b) the space requirement is s ≤ N/(4h∆) = N/(4∆ log∆ n); and (c) for
each query point, the algorithm makes at most t ≤ h∆/4 distance-oracle probes.

By fixing the coins of algorithm C optimally, it immediately follows there exists some
deterministic algorithm B that achieves PrT ,q[B succeeds on a query q] ≥ 3

4 , in addition to
satisfying the space requirement (b) and query time bound (c), which contradicts Lemma 20.
The theorem follows. J

4.2 Approximate Distance Oracles
We now sketch the argument claiming it is essential to have an exact distance oracle (rather
than an approximate one). Suppose the distance oracle provides a (1 + δ) multiplicative
approximation of the distance for some δ > 0. We show an instance with the following
properties:

The total number of nodes is O(n2) and the maximum degree is O(logn).
The aspect ratio across edge weights is max{(2 logn)/δ, (1 + ε) logn}.
If the space of the data structure is ≤ n2 bits then the number of distance-oracle probes
needed is Ω(n).

The construction is as follows. Build a binary tree of height logn from root s, so the
binary tree has n leaves, and call this part of the graph the top tree. Now, from each leaf of
the top tree hang an edge of length max{2 logn/δ, (1 + ε) logn}. To simplify the exposition,
assume this maximum is 2 logn/δ. The bottom nodes of these edges are labeled p1, . . . , pn
and these are the dataset points. Finally, from each dataset point hang a binary tree of depth
logn, so we have a total of n2 leaves to which we hang random n2 nodes labeled l1, . . . , ln2 ,
thus creating nodes of maximum degree O(logn) with high probability. We call these trees
the bottom trees.

Observe that for each leaf li there is one pj for which d(li, pj) = logn while for k 6= j

d(li, pk) ≥ (1 + ε) logn. Thus, for a query li the algorithm must output pj , which is the
unique (1 + ε)-approximate nearest neighbor. When probed for DO(u, v), the distance oracle
answer is as follows:
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If both u, v belong to the top tree or to the same bottom tree, the oracle answers with
the exact distance between them.
If u belongs to a bottom tree and v belongs to a top tree, the oracle answers 2 logn/δ.
Note that the exact distance is in the range [2 logn/δ, (1 + δ)2 logn/δ].
If u and v belong to different bottom trees, the oracle outputs 4 logn/δ. Again, observe
that the correct distance is in the range [4 logn/δ, (1 + δ)4 logn/δ].

The way the distance oracle is set up, the NNS algorithm faces a situation which is
similar to the case where the root has degree n, and is connected to the all the dataset points
by distinct edges. In this case the total size of the graph is n2. The proof of the previous
section essentially shows that unless the data structure is of size roughly n2, the query time
is Ω(∆) = Ω(n).
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Abstract
In the Maximum Weight Independent Set of Rectangles (MWISR) problem, we are given a col-
lection of weighted axis-parallel rectangles in the plane. Our goal is to compute a maximum
weight subset of pairwise non-overlapping rectangles. Due to its various applications, as well as
connections to many other problems in computer science, MWISR has received a lot of attention
from the computational geometry and the approximation algorithms community. However, de-
spite being extensively studied, MWISR remains not very well understood in terms of polynomial
time approximation algorithms, as there is a large gap between the upper and lower bounds, i.e.,
O(logn/ log logn) v.s. NP-hardness. Another important, poorly understood question is whether
one can color rectangles with at most O(ω(R)) colors where ω(R) is the size of a maximum clique
in the intersection graph of a set of input rectangles R. Asplund and Grünbaum obtained an
upper bound of O(ω(R)2) about 50 years ago, and the result has remained asymptotically best.
This question is strongly related to the integrality gap of the canonical LP for MWISR.

In this paper, we settle above three open problems in a relaxed model where we are allowed
to shrink the rectangles by a tiny bit (rescaling them by a factor of (1−δ) for an arbitrarily small
constant δ > 0.) Namely, in this model, we show (i) a PTAS for MWISR and (ii) a coloring with
O(ω(R)) colors which implies a constant upper bound on the integrality gap of the canonical LP.

For some applications of MWISR the possibility to shrink the rectangles has a natural, well-
motivated meaning. Our results can be seen as an evidence that the shrinking model is a promis-
ing way to relax a geometric problem for the purpose of better algorithmic results.
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Keywords and phrases Approximation algorithms, independent set, resource augmentation, rect-
angle intersection graphs, PTAS
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1 Introduction

The main motivation of this paper is to study barriers in designing approximation algorithms
for the Maximum Weight Independent Set of Rectangles (MWISR) problem and propose
a way to break them. In this problem, we are given a collection of weighted axis-parallel
rectangles in the plane, and our goal is to select a maximum weight subset of pairwise
non-overlapping rectangles. Besides being a special case of Maximum Independent Set,
which has been one of the most extensively studied problems in combinatorial optimization,
MWISR is a fundamental geometric problem in itself. The problem arises in multiple
applications and has connections to other problems in various areas of computer science,
such as map labeling [4], data mining [19], networking [26], and pricing [14]. Therefore, it is
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not surprising that MWISR has received a significant amount of attention from researchers
in both computational geometry and approximation algorithms communities.

While for Maximum Independent Set in general it is NP-hard to obtain approximation
ratios of n1−ε for any ε > 0 [22, 28], much better approximation ratios are possible for MWISR.
Agarwal, van Kreveld and Suri first proposed the problem with tentative applications in map
labeling, where they showed the first O(logn)-approximation algorithm [4]. Since then, a
significant amount of research has been done in various directions: (i) Proposing O(logn)
approximation algorithms with faster running times [7, 12, 27] or (ii) Showing approximation
schemes or constant factor approximation algorithms for special cases, when the input
rectangles are squares [16, 11], unit-height rectangles [24], or have restricted positions [26, 15].
Currently the best result for the general case is a O(logn/log logn)-approximation by Chan
and Har-Peled [13]. When all rectangles have unit weights, Chalermsook and Chuzhoy [10]
present an O(log logn)-approximation algorithm. A much better approximation is possible
for super-polynomial time algorithms. Recently, Adamaszek and Wiese [1] showed a quasi-
polynomial time approximation scheme for MWISR, thus showing that the problem cannot
be APX-hard unless NP ⊆ DTIME(2poly(logn)).

Despite extensive effort of various groups of researchers, the approximability status of
MWISR has so far remained elusive. On one hand, the existence of the recent QPTAS suggests
that a PTAS is possible, but on the other hand, even a sub-logarithmic approximation has
not been obtained for two decades. No substantial progress in the lower bound has been
made, and even for the integrality gap of the natural LP relaxation we only have a lower
bound of 2!

Closely related to MWISR (and notoriously hard) is the question of rectangle coloring.
In this problem, we are given a collection of axis-parallel rectangles in the plane, and the
goal is to color the rectangles so that intersecting rectangles have different colors, while
minimizing the number of colors used. In 1948 [8] Bielecki asked whether one can bound the
number of colors in such a coloring by the clique size of the intersection graph of the input
rectangles. Denote the clique size of the intersection graph of R by ω(R). In 1960, Asplund
and Grunbaum [6] showed that at most O(ω(R)2) colors are needed. This status has not
changed for half a century. The upper bound of O(ω(R)2) is still asymptotically the best
known result, while the best known lower bound is 3ω(R) [6]. Closing this gap is seen as a
challenging open problem in discrete mathematics (see, e.g., a survey by Kostochka [25]).

The state of the art of these two problems gives convincing evidence that rectangle
problems are hard to deal with, and clearly new insights are needed.

1.1 A Relaxed Model: Shrinkable Rectangles
Motivated by the barriers of designing approximation algorithms for MWISR, we study a slight
relaxation of the problem. Instead of computing a set of pairwise non-overlapping rectangles,
we allow our algorithm to output a subset of rectangles that is almost feasible in the following
sense. The subset of the rectangles must be pairwise non-overlapping after we shrink each
rectangle by a multiplicative factor of 1−δ for some small constant δ > 0. Formally, this means
that a rectangle (a, a+x)× (b, b+y) will become (a+ δ

2x, a+(1− δ
2 )x)× (b+ δ

2y, b+(1− δ
2 )y).

We compare the value of our (almost feasible) solution to the value of an optimal feasible
solution. We call this problem δ-MWISR. Observe that δ-MWISR remains NP-hard (see
Appendix A for a proof). We remark that similar models have been studied before. In
particular, Har-Peled and Lee showed approximation algorithms for geometric set cover
problems for fat objects when the input objects are allowed to expand slightly [21]. In fact,
this relaxed model still serves the purposes of many applications such as map labeling where
it is tolerable to slightly shrink the rectangles without losing much benefit.
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1.2 Our Contributions
We solve three long-standing open problems in the domain of rectangle intersection graphs in
our new model. First, we give a polynomial time approximation scheme for δ-MWISR while,
as mentioned above, the best known polynomial time algorithm in the ordinary setting has a
superconstant approximation ratio of O(logn/ log logn).

I Theorem 1. Let ε, δ > 0 be any constants. There is a (1 + ε) approximation algorithm for
δ-MWISR that runs in time n( 1

εδ )O(1/ε) .

The core of this result is a plane cutting procedure that follows the framework of [1]. The
high-level idea is that we recursively partition the input plane into a collection of axis-parallel
polygons. Rectangles overlapping the boundaries of the partition are lost. In [1], it has been
shown that for any set of pairwise non-overlapping rectangles there exists such a cutting
sequence where only an ε-fraction of all rectangles (or rectangles of small total weight)
is cut and the maximum complexity of a polygon arising in this sequence is bounded by
(logn/ε)O(1). When guessing this cut sequence recursively, we obtain an (1+ε)-approximation
algorithm with a running time of n(logn/ε)O(1) , i.e., quasi-polynomial. For our relaxed model,
we construct a totally different cut sequence,

where any polygon arising in this sequence has constant complexity, and still only an
ε-fraction of the overall weight is lost. Therefore, when embedding the search for this cut
sequence into a dynamic program, we obtain a polynomial time approximation scheme.

Next, we study the rectangle coloring problem. Let us first give a formal statement of
the problem. For any collection R of axis-parallel rectangles in the plane, one can define an
intersection graph G = (V,E) by introducing one vertex in V for each rectangle in R and
connecting two vertices if and only if their corresponding rectangles overlap. We denote by
ω(R) the clique number of the resulting intersection graph of R and by χ(R) its chromatic
number. For rectangles, the clique number is identical to the minimum number q such that
any point in the plane is contained in at most q rectangles. Clearly, χ(R) ≥ ω(R). The main
open question is whether χ(R) = O(ω(R)) for any collection of rectangles R.

The relation between χ(R) and ω(R) is also interesting in our model. We now want to
compute a minimum number of colors c for which there exists a c-coloring of the rectangles
such that after the shrinking operation rectangles with the same color are pairwise non-
overlapping. We prove the following result.

I Theorem 2. For any δ > 0, any collection of axis-parallel rectangles R in the plane
can be colored with O(( 1

δ )2 log2( 1
δ ))ω(R) colors, such that after shrinking each rectangle by

a multiplicative factor of (1 − δ) the resulting rectangles with the same color are pairwise
non-overlapping. Moreover, we can compute such a coloring in polynomial time.

We prove this theorem by showing a rather general partitioning lemma that splits any
collection of rectangles into O(( 1

δ )2 log2( 1
δ )) sub-collections. Each of the resulting collections

has the property that its rectangles can be shrunk by a factor of at most (1− δ) such that
any two overlapping rectangles are either contained in one another or they do not overlap
on a corner, i.e., they cross each other. It has been shown in [9] (building on the previous
work [6, 13, 26]) that such collections of rectangles R′ admit a coloring algorithm with at
most ω(R′) colors. This gives us the desired result.

Due to a connection between coloring and the integrality gap of the natural LP-relaxation
of MWISR (see, e.g, [9]), we obtain the following corollary (in fact, our partitioning lemma
also yields this directly). We will define this relaxation formally in Section 3.
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I Corollary 3. The integrality gap for the natural LP relaxation for δ-MWISR is at most
O(( 1

δ )2 log2( 1
δ )) and there is a polynomial time O(( 1

δ )2 log2( 1
δ ))-approximation algorithm for

δ-MWISR that rounds this LP.

1.3 Other Related Work
The framework of Adamaszek and Wiese has been further extended in [2, 20] to give a
QPTAS for the maximum independent set of polygons in general. In polynomial time, the
best result is a nε-approximation by Fox and Pach [18] for independent set of arbitrary curves
in the plane. For the rectangle coloring problem better bounds are known for some special
cases of rectangles [26, 3]. Also, a small improvement over Asplund and Grünbaum was
discussed in [23]. We refer the readers to a nice survey by Kostochka for a more complete
literature on the coloring problem for other objects [25].

Finally, we remark that special cases of both MWISR and rectangle coloring when
intersection patterns are restricted are much simpler than the general problem. When one
rectangle is not allowed to contain any corner of another, the intersection graph is a perfect
graph; therefore both problems are polynomial time solvable (see, e.g., [13, 26]).

1.4 Problem Definition and Notation
We are given a set of n axis-parallel rectangles R = {R1, . . . , Rn} in the plane. Each input
rectangle Ri is specified by an open set Ri := {(x, y)|x(1)

i < x < x
(2)
i ∧ y

(1)
i < y < y

(2)
i }

together with its weight wi1. For each rectangle Ri we denote its width and height by
gi := |x(1)

i − x
(2)
i | and hi = |y(1)

i − y
(2)
i |, respectively. We say that a subset of rectangles

S ⊆ R is an independent set if every pair of rectangles Ri, Rj ∈ S satisfies Ri ∩Rj = ∅.
Our model uses the following relaxed notion of an independent set. For Ri ∈ R, a

δ-shrunk rectangle R−δi is defined by the x-coordinates x(1)
i + 1

2δgi and x
(2)
i − 1

2δgi, and the y-
coordinates y(1)

i + 1
2δhi and y

(2)
i − 1

2δhi respectively. Then, for any subset S ⊆ R of rectangles,
we denote by S−δ the collection of δ-shrunk rectangles of S, i.e., S−δ = {R−δi : Ri ∈ S}. We
say that a subset S ⊆ R is a δ-independent set if S−δ is an independent set.

Now we define our problems formally. In δ-MWISR our goal is to find a maximum weight
subset S ⊆ R that is δ-independent. For the coloring problem, we define a δ-chromatic
number, denoted by χ−δ(S), of a collection S ⊆ R as the minimum integer c such that
rectangles in S can be colored using c colors so that rectangles with the same color form a
δ-independent set. Our goal is to bound χ−δ(R) in terms of ω(R)2.

2 Approximation Scheme for Independent Set

In this section, we present a polynomial time approximation scheme for δ-MWISR for
any constant δ > 0. More precisely, for any constants ε > 0 and δ > 0, we present a
(1 + ε)-approximation algorithm for δ-MWISR with a running time of n( 1

εδ )O(1/ε) . Denote by
N := maxi{x(1)

i , y
(1)
i , x

(2)
i , y

(2)
i }. Suppose for now that N is bounded by a polynomial in n.

We will show later how to remove this assumption.

1 By linear scaling we can assume the rectangle coordinates to be integers, even if in the actual input we
are given rationals.

2 Notice that there is a collection R for which the lower bound of ω(R) still holds, e.g., consider a
collection of identical rectangles.
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(a) Partitioning of polygons
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2δ · µ′`
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(b) Shrinking of rectangles

Figure 1 Illustration of our algorithm. Figure 1a denotes the partition of polygon P (grey area)
into at most k smaller polygons, each with at most k edges. In Figure 1b depicted in light grays are
original rectangles Ri from the input, in dark gray the slightly shrunk rectangles R′

i, and in black
the shrunk rectangles.

2.1 The Algorithm

Our algorithm, called GEO-DP, is exactly the same dynamic program which was used
in [1] for obtaining a QPTAS for MWISR (without the shrinking assumption). GEO-DP is
parametrized by a value k ∈ N. For our purposes, we will later choose k := ( 1

εδ )O(1/ε).
Fix a parameter k ∈ N. Let P denote the set of all simple polygons within the [0, N ]×[0, N ]

input square whose corners have only integer coordinates, and which have at most k axis-
parallel edges each. We introduce a DP-cell for each polygon P ∈ P , where a cell corresponding

to P stores a near-optimal solution sol(P ) ⊆ R−δP , where R−δP denotes the set of all
rectangles from R−δ contained in P . Here, near-optimal means with respect to the optimal
solution using (original) rectangles from R contained in P .

I Proposition 4. The number of DP-cells is at most NO(k).

To compute the solution sol(P ) for some polygon P ∈ P we use the following procedure.
If R−δP = ∅ or |R−δP | = 1 then we set sol(P ) := R−δP and terminate. Otherwise, we enumerate
all possibilities to partition P into k′ polygons P1, . . . , Pk′ ∈ P such that k′ ≤ k. See Figure 1a
for an illustration. Since by Proposition 4 we have |P| ≤ NO(k), the number of potential
partitions we need to consider is upper bounded by

(
NO(k)

k

)
= NO(k2). Let P1, . . . , Pk′ , where

k′ ≤ k, be a feasible partition, i.e., each Pj has at most k edges and they form a partition of P .
For any enumerated set {P1, . . . , Pk′} ⊆ P , one can efficiently verify whether this is a feasible
partition since all polygons have axis-parallel edges with integer coordinates in {0, . . . , N}.
For each polygon Pi ∈ {P1, . . . , Pk′} we look up the DP-table value sol(Pi) and compute∑k′

i=1 w(sol(Pi)). We set sol′(P ) :=
⋃k′
i=1 sol(Pi) for the partition {P1, . . . , Pk′} which yields

the maximum profit. Now we define sol(P ) := sol′(P ) if w(sol′(P )) > maxR∈R−δ
P
w(R), and

otherwise sol(P ) := {Rmax} where Rmax ∈ R−δP is the rectangle with maximum weight in
R−δP . At the end, the algorithm outputs the value in the DP-cell which corresponds to the
polygon containing the entire input region [0, N ]× [0, N ].
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Thus, the entry in the DP-table for each polygon P can be computed in time NO(k2),
assuming that all entries for all polygons P ′ ( P have been computed already. Since we
have |P| ≤ NO(k), we get the following upper bound on the running time of GEO-DP.

I Proposition 5. When parametrized by k the running time of GEO-DP is upper bounded
by NO(k2).

For bounding the approximation ratio of GEO-DP for any parameter k, it is sufficient to
consider only the special case that the input set R is already an optimal feasible solution.
This can be proven formally by induction on the DP-cells. For R∗ ⊆ R being the optimal
solution, we can prove that when GEO-DP is given R as input, the value for each DP-cell is
at least as high as when given R∗ as input. Therefore, we will assume from now on in our
whole argumentation about GEO-DP that R is already the (optimal) independent set.

2.2 A Suitable Shrunk Solution

Consider ε, δ > 0 such that εδ < 1. We define k := ( 1
δε )

O(1/ε) and show that for this choice
of the parameter, GEO-DP yields a (1 + ε)-approximate solution for δ-MWISR. Starting
with an optimal solution R∗ ⊆ R for the (non-shrunk) input set R, we first define a (1 + ε)-
approximative set R′ consisting of one rectangle R′i for each rectangle Ri ∈ R∗ such that
R−δi ⊆ R′i ⊆ Ri. Then, in the second step, we show that if the input consisted only of R′,
then GEO-DP would compute the whole set R′ as a feasible solution. This implies that
GEO-DP finds a (1 + ε)-approximate solution for δ-MWISR.

Now we start with the description of the first step. Let R∗ ⊆ R be the maximum weight
set of pairwise non-overlapping rectangles, i.e., where w(R∗) = OPT. Assume for simplicity
that 1/ε and 1/δ are integers. We partition the rectangles of R into Oδ,ε(logN) groups
R`, according to the lengths of their respective longer edge (where Oδ,ε hides constants
that depend only on ε and δ). Using standard shifting techniques (see, e.g., Hochbaum and
Maas [24]), by losing only a factor of 1 + ε in our objective function, we can assume that for
any two rectangles in different groups, the lengths of their respective longer edge differ at
least by a factor of 1

εδ , and for any two rectangles in the same group they differ at most by a
factor of ( 1

εδ )1/ε.

I Lemma 6. By losing a factor of 1 + ε in the value of the optimal solution, we can assume
that there is a partition of the rectangles R into O(logN) groups R` and values µ′`, µ` ∈ N
for each group R` such that

µ′` ≤ max{gi, hi} < µ` for each Ri ∈ R` (recall that gi and hi are width and height of
rectangle Ri respectively), and
δε · µ′` = µ`+1 and µ`/µ′` = (1/δε)1/ε for each `.

Proof. We first group rectangles in R into R1, . . . ,Rm for m = O(logN) based on their
values vi = max{hi, gi}, where Rj = {Ri : vi ∈ [(1/δε)j−1, (1/δε)j)}. Then, we again group
every 1/ε consecutive groups Rj together to obtain supergroups. We define supergroups
with respect to different values of “shifts” as follows. For each shift s ∈ {1, . . . , 1/ε}, the
supergroup Ts,0 =

⋃s−1
j=1Rj and for each α ≥ 1, we have Ts,α =

⋃s+α/ε−1
j=s+(α−1)/ε+1Rj . Notice

that for each fixed s, if we take the union of supergroups Ts,α, we would get Ts =
⋃
α Ts,α =⋃

j:j 6=s (mod 1/ε)Rj .

I Observation 7.
∑1/ε
s=1 OPT(Ts) ≥ (1− ε)OPT/ε.
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Proof. Let R∗ be an optimal solution. We argue that

1/ε∑
s=1

w(Ts ∩R∗) ≥ (1− ε)w(R∗)/ε

Notice that each rectangle Ri ∈ R∗ appears in (1/ε)− 1 terms on the left-hand-side (more
precisely, if Ri ∈ Rj where j = s (mod 1/ε), then the contribution from rectangle Ri does
not appear). The claim then follows. J

Then there must be a shift s ∈ {0, . . . , 1/ε − 1} such that w(Ts ∩ R∗) ≥ (1 − ε)w(R∗).
We complete the proof of this lemma by observing that for each s, the collection Ts has the
following properties:

For any α, for any two rectangles Ri, Ri′ ∈ Ts,α, we have vi/vi′ ≤ (1/δε)(1/ε).
For two integers α < α′, for rectangles Ri ∈ Ts,α, Ri′ ∈ Ts,α′ , we have hi′/hi ≥ 1

δε .
J

The readers may think of the values µ0, µ
′
0, µ1, . . . , µ

′
q as being the values N,N(δε)1/ε,

N(δε)1+1/ε, N(δε)1+2/ε, . . .. Next, we place a grid with a random offset in the plane. Let
a ∈ {0, . . . , µ0 − 1} be a random offset. We draw the grid cells of various granularities, and
we use the notion of levels to indicate the granularities of the cells. Denote by G` the grid of
level `. Each grid cell of G` has a width and height of w` = 2δ · µ′` and there is one grid cell
whose top left corner has the coordinates (a, a). More formally, the horizontal (resp. vertical)
grid lines at level ` are those with y-coordinates (resp. x-coordinates) a, a+ w`, a+ 2w`, . . ..
Observe that each grid line in G` is a also a grid line in G`′ whenever `′ > `.

For each set R` we remove all rectangles which are intersected by a grid G`′ with `′ < `.
The next lemma shows that this comes at a negligible cost, by exploiting the fact that the
grid granularity w`′ of each grid G`′ is at least by a factor of 1/ε larger than max{gi, hi} for
any rectangle Ri in a set R` with `′ < `, and the fact that a was a random offset.

I Lemma 8. Let ε > 0 be any constant. There is a randomized algorithm that, given a
collection R of rectangles, produces a new collection R′ ⊆ R together with grid lines {G`}
such that no rectangle in group R` ∩R′ is intersected by grid lines G`′ for `′ < `. Moreover,
OPT(R′) ≥ (1− ε)OPT(R) in expectation.

Proof. We first argue that, for any `′ < `, the probability that a rectangle Ri ∈ R` is
intersected by a grid line of G`′ is at most ε`−`′ : Consider a rectangle Ri ∈ R`. Two
consecutive parallel grid lines of the grid G`′ have a distance of w`′ = 2δµ′`′ > 2

ε`−`′
µ` >

2
ε`−`′

max{gi, hi}. Therefore, the probability that Ri is intersected by a horizontal grid line
of G`′ is at most ε`−`′/2; similarly, the probability that Ri is intersected by a vertical grid
line of G`′ is at most ε`−`′/2. By the union bound the probability that Ri is intersected by
some grid line of G`′ is bounded by ε`−`′ .

Now let R∗ be an optimal solution. Observe that any rectangle R ∈ R`∩R∗ is removed if
it intersects some a grid line of G`′ with `′ < `. So the probability that R is removed from the
instance is, by the union bound, at most

∑
`′:`′>` ε

`′−` ≤ 2ε. Therefore, in expectation, the
total weight of the remaining rectangles in R∗ is at least (1− 2ε)w(R∗) ≥ 1

(1+3ε)w(R∗). J

We remark that if N is polynomially bounded in the number of input rectangles, our
algorithm does not need to execute this lemma; only the existential statement is sufficient
for the DP to find a good solution. The lemma is only needed when N is superpolynomial.

Denote by R̃ the set of rectangles from the optimal solution in the set obtained by
Lemma 8. We will now shrink these rectangles for the purpose of proving that GEO-DP finds
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a good solution. We remark that our algorithm does not need to compute this shrinking.
For each rectangle Ri ∈ R̃ we define a new rectangle R′i such that R−δi ⊆ R′i ⊆ Ri. Consider
a rectangle Ri ∈ R̃ ∩ R`. If µ′` ≤ hi < µ` then we move the top and bottom boundaries
of Ri towards each other so that they align with the closest horizontal grid lines of G`. If
µ′` ≤ gi < µ`, then we move the left and right boundaries of Ri towards each other so that
they align with the closest vertical grid lines of G`. Note that R−δi ⊆ R′i ⊆ Ri since we
apply the above procedure only to the edges that are at least µ′` = w`/2δ units long and in
their corresponding dimension Ri crosses at least 1/2δ grid lines of G`. See Figure 1b for an
illustration. Note, the actual shrinking for Ri is always R−δi (R′i is defined only for analysis.)
Denote by R′ the solution consisting of all rectangles R′i for Ri ∈ R̃.

2.3 Analysis of the Dynamic Program
In this section we show that, when given the set R as an input, GEO-DP will find the
solution R′ when parametrized by k := ( 1

εδ )10/ε. Using the fact that w(R′) ≥ (1−O(ε))w(R∗)
(from Lemmas 6 and 8), this implies that GEO-DP is a (1 + ε)-approximation algorithm for
δ-MWISR.

In its recursion, GEO-DP tries all possibilities to partition the input square [0, N ]× [0, N ]
into at most k smaller polygons and then selects the most profitable partition. For each
polygon in the latter partition, it again computes an optimal partition into at most k smaller
polygons and so on. The sequence of cuts produced by GEO-DP can be described by a tree
T where each node v is associated with a region Pv in the plane. We say that a tree T is a
good (k,R′)-region decomposition if the following holds:

For each node v in T and each rectangle R ∈ R′, we have that if R does not coincide
with Pv, i.e., R 6= Pv, then either R is contained in Pv, or R is disjoint from Pv.
For tree nodes u and v such that u is a parent of v, we have Pv ⊆ Pu. Each node v ∈ T
has at most k′ ≤ k children u1, . . . , uk′ in T , and

⋃k′
i=1 Pui = Pv.

For each leaf node v of T , the polygon Pv coincides with a rectangle in R′ or Pv has
empty intersection with every rectangle in R′.

I Lemma 9. If a good (k,R′)-region decomposition exists, then the algorithm GEO-DP
parametrized by k is a (1 + ε)-approximation algorithm for δ-MWISR.

Proof. We assume that there is a non-overlapping set of rectangles R′ with w(R′) ≥
(1−O(ε))OPT for which a (k,R′)-region decomposition exists. For each R′i ∈ R′, we denote
by Ri the original, non-shrunk counterpart of R′i. Let T be the tree that represents the
region decomposition for R′. We now prove the following statement by induction on the
structure of T from its leaves to the root:

For any node u ∈ T , when GEO-DP processes the instance given by the input
rectangles that are contained in Pu, it outputs a set of rectangles R̄u whose weight
w(R̄u) is at least the total weight of the rectangles in R′ that are contained in Pu.

In particular, this statement implies that for the root node r with Pr = [0, N ]× [0, N ]
GEO-DP computes a set of rectangles R̄r with weight w(R̄r) ≥ w(R′) ≥ (1−O(ε))OPT as
desired.

The base case is obvious: For each leaf node v its polygon Pv coincides with a rectangle
R′i ∈ R′ and thus R−δi is in Pv; so GEO-DP returns a solution whose weight is at least
w(R′i). Now for the inductive step, consider a node v for which the induction hypothesis
holds for all children of v. Let R′v denote all rectangles from R′ that are contained in
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Pv. Denote the children of v by v1, . . . , vk′ for some k′ ≤ k. We have that Pv =
⋃k′
j=1 Pvj

and that the polygons Pv1 , . . . , Pvk′ are pairwise disjoint. For each j ∈ {1, . . . , k′} let R′vj
denote the rectangles from R′ that are contained in Pvj . Since each rectangle in R′v is
contained in some polygon Pvj the sets R′vj form a partition. In particular, this implies
that w(R′v) =

∑k′

j=1 w(R′vj ). Moreover, GEO-DP considers the cut which partitions Pv into
Pv1 , . . . , Pvk′ and returns, by the induction hypothesis, a solution R̄v consisting of one solution
R̄vj for each polygon Pvj such that w(R̄v) =

∑k′

j=1 w(R̄vj ) ≥
∑k′

j=1 w(R′vj ) = w(R′v). This
completes the proof. J

We prove the existence of a (k,R′)-region decomposition by iteratively cutting the
polygons. Initially, before the first iteration, we have the tree T which contains only the
root r with corresponding region Pr = [0, N ]× [0, N ] (the whole input square). Denote the
grid lines we have by {G`}q`=0. In each iteration `, we use grid G` as a template to further
cut the polygons into sub-polygons (updating the tree T accordingly). We will ensure that
the following invariant holds at the beginning of iteration `: For each leaf node v ∈ T , the
polygon Pv has only four edges (i.e., it is a rectangular region3), and Pv is either contained
in a grid cell of G`−1 or Pv coincides with some rectangle in R′; each region Pv has empty
intersection with every rectangle in R′ ∩ (

⋃
`′<`R`′). Finally, every internal node has degree

at most k. It is not hard to see that if we have maintained the invariant until the last
iteration q, the tree T would satisfy all properties of good (k,R′)-region decomposition.

Partition into groups of cells

Now assume that we have so far maintained the invariant up to iteration `, and we will
provide a sequence of cuts extending the so far constructed tree such that the invariant holds
for ` + 1. Consider a leaf node v of T . If Pv coincides with a rectangle in R′, no further
partition is necessary (it satisfies the invariant until the end). Otherwise, we consider the
grid G` restricted to Pv. Denote by Rcorv,` ⊆ R′ ∩R` all rectangles of R′ ∩R` that overlap
corners of G` inside Pv. We add each such rectangle as a child node of v. Notice that these
nodes satisfy the invariant for level `+ 1. Let M = (µ′`/µ′`+1)2 (i.e., M equals the maximum
number of grid cells of G` within Pv). Since |Rcorv,` | ≤ M , the polygon Pv after removing
such rectangles has at most 4M + 4 edges. We then focus on the other rectangles. The way
we shrunk rectangles guarantees the following.

I Observation 10. Consider a grid cell C in G`. Either the cell C is not touched by any
rectangle R′i ∈ R` ∩R′, i.e., C ∩R′i = ∅ for all R′i ∈ R` ∩R′, or C is crossed by a rectangle
R′i ∈ R` ∩R′, i.e., C without the relative interior of R′i has two connected components.

Since their longer edges start and end at grid coordinates, the rectangles in Rcorv,` partition
the grid cells into three disjoint groups: cells which are not crossed by any rectangle in
R` ∩ R′, cells which are horizontally crossed, and cells which are vertically crossed (see
Figure 2). The cells of the first group already satisfy the invariant for ` + 1 because no
rectangle in R` ∩R′ intersects it (but we remark that there may be rectangles in R`+1, . . . ,

that may still be in such cells). For each of them we create a child node v′ of v. We partition
the remaining grid cells into at most M groups C1, C2, . . . such that two adjacent grid cells are
in the same group if and only if there is a rectangle R′i ∈ R` crossing both of them. For each

3 A rectangular region refers to a region in the plane which may not coincide with any input rectangle.
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group Cj we add a child node vj to v and we define the region Qj = (
⋃
C∈Cj C)\

⋃
Ri∈Rcorv,`

Ri

corresponding to node vj .

I Lemma 11. All cells in each group Cj are contained in either a grid row or a grid column
of G`. Moreover, the region Qj has at most 9M edges, and no rectangle in R′ ∩ (

⋃
`′≥`R`′)

touches its boundary.

Proof. Assume for contradiction that there is a group Cj that is not horizontally or vertically
contained in a grid row or column. Then Cj contains more than one cell and thus each cell
in Cj is crossed horizontally or vertically but no both. If there is no cell in Cj that is crossed
vertically then no two cells from Cj in different rows can be in the same group which is a
contradiction since we assumed Cj not to be contained in one grid row. The same reasoning
applies if no cell in Cj is crossed horizontally. Thus, there must be a grid cell C in Cj that is
crossed horizontally and another grid cell C ′ that is crossed vertically. However, then the
cells in Cj that are crossed horizontally and the ones that are crossed vertically must be in
different groups.

Moreover, the edges of Qj consist of the grid cell boundaries of G` (at most 4M edges as
there are M such cells with 4 edges each), the boundaries of rectangles in Rcor` (at most 4M
edges as there are at most M such rectangles), and the boundaries of the polygon Pv (at
most 4 edges by the induction hypothesis). So Qj has at most 8M + 4 ≤ 9M edges. Also,
no rectangle in a set R`′ with `′ ≥ ` touches the boundary of Qj because no rectangle in
R′ ∩R`′ can cross a grid line of G` (by Lemma 8), the boundary of other rectangles in R′,
or the boundary of the polygon Pv (by the induction hypothesis). J

So the “correct” partition of Pv has one polygon for each cell that is not crossed by a
rectangle in R`, one polygon for each group Cj , and one polygon for each rectangle in Rcorv,` .
Note that in total those are at most 5M many. Notice that these tree nodes for a group Cj
do not necessarily satisfy the invariant since Qj might not be contained in a grid cell of G`.

While this partition has similarities to quad-tree approaches like in Arora’s algorithm
for Euclidean TSP [5] we note that in such classical approaches the pieces arising in the
recursive partition (typically squares) do not depend on the instance and are predetermined.
In constrast, in our case this partition depends on the structure of the optimal solution R′
and the algorithm has to guess the correct one. Furthermore, before proceeding to the next
level we must further refine the partitions that correspond to groups Cj step-by-step as we
explain in the sequel.

Further partitioning of each group

Next, we show that there is a sequence of cuts that further partition each group Cj into a
family of smaller polygons such that at each intermediate step each polygon has at most
k edges. Consider group Cj that is horizontally crossed (the other case is symmetric). We
construct a (planar) graph Hj = (Vj , Ej) within Qj , see Figure 3 for a sketch. The set Vj
has a node for each vertex of the polygon Qj and for each intersection of the top or bottom
edge of a rectangle R′i ∈ R′ ∩ R` with a vertical grid line in G` (including the corners of
R′i). Denote by V (0)

j , V
(1)
j , V

(2)
j , . . . the vertices in Vj ordered by the vertical grid lines they

appear on, i.e. V (p)
j contains the vertices in Vj on the pth vertical grid line in G` inside Qj .

For each p, we introduce a horizontal edge in Ej between two vertices v ∈ V (p)
j , v′ ∈ V (p+1)

j

if and only if v and v′ lie on the same edge of a rectangle in R′ ∩R`; also we add a vertical
edge in Ej between two vertices v ∈ V (p)

j , v′ ∈ V (p)
j if the line segment L between v and v′
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Figure 2 The pieces P ′
j for the groups Cj and the grid cells that are not touched by any rectangle.

The shading indicates whether the group is a horizontal or a vertical group.

V
(0)
j V

(1)
j V

(2)
j V

(3)
j V

(4)
j V

(5)
j V

(6)
j V

(7)
j V

(8)
j

Figure 3 The graph Hj for one piece P ′
j . The thick lines represent the edges Ej of Hj .

does not cross any rectangle R′ ∩R` and also no other vertex v′′ ∈ V (p)
j with v′′ 6∈ {v, v′}.

By construction, no edge in Ej crosses through any rectangle in R′.
Now we cut the region Qj step-by-step along simple paths in Hj which go from left to

right, visiting a vertex in V (p)
j after having visited a vertex in V (p−1)

j , for each p. We call
such paths cutting paths. Each polygon arising in this partition sequence can be described as
the polygon P (σ, σ′) between two cutting paths σ and σ′ that start at some common point s
and end at t; also they are disjoint except at the two endpoints. Observe that such polygons
have at most O(M) edges each and that Qj itself equals P (σT , σB) where σT and σB denote
the paths describing the top and bottom boundary of Qj , respectively. Now the idea is that
if a polygon P (σ, σ′) for two cutting paths σ, σ′ does not satisfy the invariant, then it can be
further partitioned along another cutting path σ′′, as the following lemma shows (we will
prove it later in Section 2.4).

I Lemma 12. Let σ, σ′ be two cutting paths in Qj. Then either
P (σ, σ′) has rectangular shape, is contained in a grid cell of G`, and has empty intersection
with each rectangle in R` ∩R′, or
P (σ, σ′) has rectangular shape and it coincides with a rectangle in R′ ∩R`, or
there is a cutting path σ′′ with σ 6= σ′′ 6= σ′ such that P (σ, σ′) = P (σ, σ′′)∪̇P (σ′′, σ′).

We invoke Lemma 12 on each region Qj until the invariant is satisfied: If invoking the
lemma on Qj holds with the first or second cases, then we are done; otherwise, Qj can be
further partitioned into Q′ and Q′′ based on the cutting path. In such case, we add two
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nodes corresponding to regions Q′ and Q′′ into the tree T as children of Qj , and then invoke
the lemma on Q′ and Q′′. Since these polygons are always defined by two cutting paths,
their complexities are bounded by O(M). Now each leaf node that does not coincide with a
rectangle in R′ ∩R` satisfied the invariant. The above shows that there is a (k,R′)-region
decomposition for k = O(M) = (1/δε)1/ε.

Note that already in the last part—the partitioning of each group—one single group
might be partitioned into up to Ω(n) pieces. Thus, we cannot use an approach which guesses
this partition in a single step only. In particular, to ensure polynomial running time we
crucially need our DP and cannot replace it by a brute-force recursive algorithm since the
depth of T can be up to Ω(logn). This is a key difference to the QPTAS in [1] where instead
of the DP one could alternatively use such a recursion and obtain the same result.

Superpolynomial input data

To remove the assumption that N is bounded by a polynomial, observe that there are only
O(logN) recursion levels, which is polynomial in the length of the input encoding. Each
coordinate used in our cut sequence coincides with a coordinate of a rectangle in R′ or with a
horizontal or vertical grid line (these coordinates can be computed efficiently in a randomized
fashion by Lemma 8). While the last recursion level can give rise to up to Ω(N) of those, it
suffices to consider only grid lines belonging to grid cells C such that there exists an input
rectangle R with R ⊆ C. In each of the O(logN) levels, there can be only n such grid cells
which bounds the total number of needed coordinates by O(n logN). This completes the
proof of Theorem 1.

2.4 Proof of Lemma 12
In this section we prove Lemma 12. Assume w.l.o.g. that the polygon Qj is completely
contained in a grid row. Consider the polygon P (σ, σ′) defined by two cutting paths where σ
is above σ′, i.e. paths σ and σ′ contain the upper and lower boundaries of polygon P (σ, σ′)
respectively. Let H ′j be the subgraph of Hj induced by all vertices that are used by σ or σ′
or which lie in the relative interior of P (σ, σ′). We assume w.l.o.g. that paths σ and σ′ do
not intersect except at the endpoints, i.e. they both start at some node s ∈ V (H ′j) and end
at some node t ∈ V (H ′j). We will argue that one of the three cases of Lemma 12 applies.

We say that a path τ in H ′j is monotone if τ is empty or can be written as τ =
(v0, v1, . . . , vz) such that for each i, vertex vi is either on the left of vi+1 or on the top (i.e.
the monotone path only goes right or down.) First, we need the following lemma.

I Lemma 13. Let u ∈ V (H ′j) be a vertex that corresponds to the bottom-right corner of a
rectangle R in R`. Then there is a monotone path τ from vertex u to some vertex v′ on path
σ′; symmetrically, any top-left corner of a rectangle is reachable from a vertex in σ by a
monotone path.

Proof. We only prove this statement when u 6∈ σ′; otherwise, it is trivial (notice that u
cannot be on σ.) To prove this statement, it is sufficient to show that there is a monotone
path τ ′ that either connects vertex u to the bottom-right corner of another rectangle R′ or
to some vertex on σ′: Applying this claim iteratively gives us the lemma.

Now notice that vertex u is on the right boundary of rectangle R, so u ∈ V (p)
j for some p.

From the way we construct graph Hj , there must be a downward edge from u to either a
vertex on the top boundary of some other rectangle R′ or on the path σ′. In the latter case,
we are immediately done. In the former case, let u′ be a vertex on the top boundary of R′
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that is connected to u via an edge (u, u′). We define path τ ′ that first takes an edge (u, u′)
and then from u′ there is always a monotone path to the bottom-right corner of R′ using
edges on the boundary of R′. J

Using this lemma, we now prove Lemma 12. We have the following cases:
First, if there is a vertex u ∈ V (Hj) that is a corner of some rectangle R ∈ R` ∩R′, we
show that we can find a cutting path σ′′ implying the third case of the lemma. Define σ′′t
to be the monotone path that connects the top-left corner utop of R to u (this path could
be empty). Also σ′′b is the monotone path that connects u to the bottom-right corner
ubot of R. Observe that σ′′t is disjoint from σ′′b and that at least one edge in σ′′b ∪ σ′′t is in
the interior of P (σ, σ′).
We now apply Lemma 13 to find a path τt that connects a vertex vtop on σ to utop,
and similarly we can find a path τb that connects vertex ubot to some vertex vbot on
σ′. It is easy to see that all paths σ′′b , σ′′t , τb, τt are disjoint. Now the cutting path σ′′ is
easily defined: Start from s, follow path σ until it reaches vtop, then follow the paths
τt, σ

′′
t , σ

′′
b , τb in this order until vbot is reached, and finally from vbot we use the path σ′

towards vertex t. This is a cutting path because we always go from left to right and the
path cuts through the interior.
Now assume that there is no such corner in the interior. There are two possibilities. First
if there is no rectangle in R` ∩ R′ that lies in polygon P (σ, σ′), then either P (σ, σ′) is
contained in one cell (in which case we are done with the first case of Lemma 12 applied),
or there is a vertical edge that connects two vertices in V (p)

j for some p where we can cut.
Otherwise, there is a rectangle R ∈ R` ∩R′ that lies in P (σ, σ′) where all four corners
lie on the border of polygon P (σ, σ′), i.e. on σ ∪ σ′. If the upper boundary of R does
not lie on σ, we could cut the polygon P (σ, σ′) using this upper boundary as our σ′′
(in which case, the third case of Lemma 12 applies.) Similar arguments hold for the
bottom boundary of R. Hence, the only case left to analyze is when the top and bottom
boundaries of R lie on σ and σ′ respectively. In such case, polygon P (σ, σ′) coincides
with rectangle R, and the second case of Lemma 12 applies.

3 Coloring and Integrality Gap

In this section, we consider the rectangle coloring problem and bound the integrality gap of
the LP for MWISR in our model. Both results rely on a partitioning lemma that divides
rectangles into sub-collections with “nice” properties. We will first define these properties
precisely and state the partitioning lemma. Then we will describe how it can be used to
prove Theorem 2 and Corollary 3.

For pairs of intersecting rectangles we distinguish three types of intersections: crossing,
containment, and corner intersections. We say that two rectangles R,R′ have a crossing
intersection if no rectangle contains a corner of the other, a containment intersection if one
rectangle completely contains the other, and otherwise they have corner intersection. We
call a collection of rectangles nice if no two rectangles in R have corner intersections (but
may still have containment).

It is known that if a collection of rectangles R is nice then we have χ(R) = ω(R), see
e.g., [9, Theorem 4] (which implies that then the intersection graph is perfect). Note that this
statement is slightly more general than the classical result in [6] that the latter equality holds
if the rectangles in R have only crossing intersections (and thus no containment intersections).
Our partitioning scheme is formally summarized in the following lemma that we will prove
later in Section 3.1.
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I Lemma 14 (Partitioning lemma). Let R be a set of rectangles. For any δ > 0, there
is a value M = O(( 1

δ )2 log2(1/δ)) and a polynomial time algorithm computing a partition
of R into groups R1, . . . ,RM and a rectangle Si for each rectangle Ri ∈ R such that
R−δi ⊆ Si ⊆ Ri. The computed partition and the rectangles Si have the property that each
collection Sj = {Si : Ri ∈ Rj} is nice.

We explain now how to use Lemma 14 in order to prove Theorem 2 and Corollary 3.

Rectangle Coloring

It is straightforward to see that Lemma 14 implies the coloring algorithm. Partition the
input collection R into M = O(( 1

δ )2 log2(1/δ)) collections R1, . . . ,RM . Now we know that
each set Sj is nice, so we can color its rectangles with ω(Sj) ≤ ω(R) colors while using a
different set of colors for each set Sj . In total, the number of used colors is at most M ·ω(R).
This proves that χ−δ(R) ≤ O(( 1

δ )2 log2(1/δ))ω(R) and thus Theorem 2.

Integrality Gap

We use Lemma 14 in order to bound the integrality gap of the natural LP-formulation of
MWISR in our shrinking model. To this end, we first define this LP and the meaning of an
integrality gap in our model and subsequently prove Corollary 3.

First recall the following standard LP relaxation for MWISR. For each rectangle Ri, we
have a variable xi which indicates whether rectangle Ri is included in the solution.

(LP-IS) max
∑
Ri∈R

wixi

s.t.
∑

Ri:p∈Ri

xi ≤ 1 for all p ∈ P

xi ≥ 0 for all Ri ∈ R

Here P denotes the set of “interesting points” defined as follows: define a non-uniform grid by
drawing a horizontal and a vertical line through each corner of an input rectangle. Note that
each point in the interior of a grid cell is overlapped by exactly the same set of rectangles.
For each grid cell add an arbitrary point from its interior to P . Note that |P| ≤ O(|R|2). In
the MWISR problem, the integrality gap is the maximum possible ratio supR

LP(R)
OPT(R) where

LP(R) denotes the optimal value of (LP-IS) on the instance R. For the model of shrinking
the rectangles, we use the following natural modification of the integrality gap definition. For
each collection R, let OPTδ(R) be the weight of a maximum-weight δ-feasible independent
set R′ ⊆ R. Notice that for any δ > 0 we have that OPTδ(R) ≥ OPT(R). Then the δ-shrunk
integrality gap is defined as supR

LP(R)
OPTδ(R) . We need the following lemma.

I Lemma 15 (Implied by Theorem 4 in [9]). Let R be a nice collection of rectangles and let
x be a solution to (LP-IS) for R. Then there is a set of independent rectangles R′ ⊆ R with
w(R′) ≥

∑
Ri∈R wixi.

Now we prove Corollary 3. Let x∗ be an optimal LP solution to an input collection R of
rectangles, so we have

∑
Ri∈R wix

∗
i = LP(R). Use Lemma 14 to partition R into R1, . . . ,RM .

By the pigeon hole principle there must be a group Rj with
∑
Ri∈Rj wix

∗
i ≥ LP(R)/M .

Together with Lemma 15, applied on a nice set Rj , this yields the proof of Corollary 3.
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3.1 Proof of the Partitioning Lemma
We prove Lemma 14 now. Our algorithm deals with the x and y coordinates of the input
rectangles separately in the following way: We compute two collections of intervals Ix, Iy
obtained by projecting the rectangles in R onto the x and y-axes, respectively. Then for
each such collection we invoke the following lemma where for any interval I = (a, a+ x) we
define I−δ := (a+ δ

2x, a+ (1− δ
2 )x). For simplicity, we prove the following lemma only for

open intervals, as also our rectangles are defined as open sets. However, it holds also for
general intervals.

I Lemma 16. Let I = {I1, . . . , In} be a set of open intervals with integral start and end
points. There is a value M = O((1/δ) log(1/δ)) and a polynomial time algorithm computing
a partition of I into groups I1, . . . , IM and an open interval I ′i with I−δi ⊆ I ′i ⊆ Ii for each
interval Ii ∈ I such that each collection I ′j = {I ′i : Ii ∈ Ij} is nested (i.e. any two intervals
in it are either disjoint or one is contained in another.)

It follows straightforwardly that invoking this lemma for Ix and Iy gives the desired
result: Let {Ixj }Mj=1 and {Iyj }Mj=1 be the partitioning obtained by the lemma. We can define
a partition {Rj,k}Mj,k=1 where Rj,k = {Ri : Ixi ∈ Ixj and Iyi ∈ I

y
k}. Notice that any two

overlapping rectangles in the same set Rj,k must be nested in both x and y coordinates, so
either they are crossing or one is contained in the other.

The proof of the above lemma has two main steps. In the first step, we group intervals
into many groups by their lengths, where intervals in the same groups have roughly the same
length, and the ratio of lengths of two intervals in different groups is sufficiently large. We
pay a factor of O(log(1/δ)) in this step. In the second step, we partition the intervals into at
most O(1/δ) groups and shrink intervals in each group to obtain the claimed properties.

Step 1: Preprocessing

We first group the intervals geometrically by their lengths into I =
⋃
j Ij such that each

set Ij contains all intervals whose lengths are within [2j , 2j+1). Let L := dlog 8
δ e. For each

r ∈ {0, . . . , L − 1} we define a collection Γr = {Ij : j ≡ r mod L}. Notice that, for any
collection Γr, if we take two intervals from different sets Ij , their lengths differ by at least a
factor of 4/δ. This property will be crucial in our algorithm. In the next step, we further
partitioning each collection Γr into O(1/δ) sub-collections.

Step 2: Shrinking

Recall that our intervals have integral start and end points and assume w.l.o.g. that they
are all contained in [0, N ] for some large integer N . Consider a collection Γr. By the first
step, we know that Γr = {Ir, IL+r, I2L+r, . . . , I`maxL+r} with `max being the largest integer
such that I`maxL+r 6= ∅. We say that an interval is at level-` if it belongs to I`L+r, i.e., its
length is in the interval [2`L+r, 2 · 2`L+r). For later convenience, we define µ′` = 2`L+r and
µ` = 2`L+r+1. Note that µ′`+1/µ

′
` = 2L ≥ 8/δ for each `. Moreover, for each ` we define a

collection of level-` points P` = {k · δµ′`|k ∈ Z}.

I Observation 17. Each level-` interval contains at least 1/δ points in P`. Moreover, for
any two consecutive points p, p′ ∈ P`+1 there are µ′`+1/µ

′
` − 1 points in P` ∩ (p, p′).

We now describe our shrinking process. For each interval Ii = (xi, yi) at level `, we
shrink the left-endpoint of Ii towards its centroid to the closest point in P`; similarly for the
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right endpoint. Formally, we define I ′i :=
(⌈

xi
δµ′
`

⌉
· δµ′`,

⌊
yi
δµ′
`

⌋
· δµ′`

)
to be the shrunk interval

corresponding to Ii. From the above observation, each interval gets shrunk by a factor of at
most (1− 2δ). Let Igood be the set of intervals that do not contain points of levels higher
than the interval itself, i.e., each interval Ii is contained in Igood if and only if Ii does not
contain a point in P`+1. Note that the latter condition implies that Ii does not contain a
point in P`+2,P`+3, . . . since the values µ′`, µ′`+1, . . . pairwise divide each other.

I Lemma 18. The collection of intervals Igood can be partitioned into M ′ = O(1/δ) sub-
collections such that each shrunk sub-collection is nested.

Proof. We define M ′ := 2L = O(1/δ). Note that µ′`+1/µ
′
` = M ′ for each `. We partition

Igood into {Ja}M
′−1

a=0 as follows. Since each good level-` interval Ii does not contain a point
in P`+1, its shrunk counterpart I ′i is of the form (Kiδµ

′
`+1 + ai(δµ′`),Kiδµ

′
`+1 + bi(δµ′`)) for

some integers Ki, ai, bi, where ai, bi ∈ {0, . . . ,M ′ − 1}; that is for an interval Ii = (xi, yi)
with I ′i = (x′i, y′i), we have that

Ki =
⌊

x′i
δµ′`+1

⌋
, ai =

x′i −Kiδµ
′
`+1

δµ′`
and bi =

y′i −Kiδµ
′
`+1

δµ′`

We include each such interval Ii in the set Jai . There can be at most O(1/δ) such sets.
Now we argue that each set Ja is nested. Consider a set Ja for some a and two intervals

Ii, Ij ∈ Ja that are in levels `i and `j respectively. If Ii and Ij are disjoint, we are done, so
assume that they are overlapping. If `i 6= `j then one interval must contain the other. Here
we use that for each ` no level-` interval contains a point in P`+1,P`+2, . . .. If `i = `j we
have Ki = Kj , and therefore one interval must contain the other. J

Finally, we need to deal with intervals in Ibad = I \ Igood. The intuition is that, if we
define point sets similar to P` but with respect to some shift s, then the bad intervals are
behaving like the good intervals above. Formally, we define s = δ

∑
`
µ′`
4 be the shift and for

each ` we define P ′` = {s+ k · δµ′`|k ∈ Z}. The intervals in Ibad are shrunk with respect to
these new points in a way similar to intervals in Igood but instead we use the points in {P ′`}
rather than {P`}. Formally, for each interval Ii = (xi, yi) ∈ Ibad we define a new shrunk
counterpart I ′′i :=

(⌈
xi−s
δµ′
`

⌉
· δµ′` + s,

⌊
yi−s
δµ′
`

⌋
· δµ′` + s

)
.

I Lemma 19. Any level-` interval Ii ∈ Ibad does not contain any point in P ′`+1.

Proof. Assume otherwise that some level-` interval Ii ∈ Ibad intersects some new point
q′ ∈ P ′`+1. Since Ii ∈ Ibad, the interval intersects some old point q in P`+1 as well. Recall
that the length of the interval Ii is strictly smaller than 2µ′` ≤ δ

4µ
′
`+1.

It must be the case that the coordinate of q is a multiple of δµ′`+1, while the coordinate
of q′ is equal to s+ k′δµ′`+1 for some k′ ∈ Z. The shift s can also be written as k′′δµ′`+1 +
δ
∑
`′≤`+1

µ′
`′
4 for some k′′ ∈ Z (because the terms δµ′`+2, δµ

′
`+3, . . . , are multiples of δµ′`+1.)

Observe that the term δ
∑
`′≤`+1

µ′
`′
4 is at least δµ′`+1/4 and at most 3δµ′`+1/4 as the values

of µ′` are geometrically increasing in `. This implies that the distance between q and q′ is at
least δµ′`+1/4, and since the interval Ii contains both points, its length must be at least that
much. This is a contradiction. J

With similar arguments as in Lemma 18 we can partition Ibad into O(1/δ) sub-collections
whose respective shrunk counterparts I ′′i are nested.
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A NP-Hardness Proof

We give a sketch for the proof that δ-MWISR is NP-hard. We note that (ordinary) MWISR
is NP-hard even for unit squares [17, Theorem 2]. Let R be an instance produced by this
reduction. By analysing the proof in [17] one can easily show that the intersection area between
any pair of intersecting squares in R is at least a constant ε. Notice that shrinking a (unit)
square R ∈ R by a factor of (1−δ) reduces its area by at most 1−(1−δ)(1−δ) = 2δ−δ2 ≤ 2δ.
This implies that if δ is chosen such that 4δ < ε then any collection of rectangles S ⊆ R is
non-overlapping if and only if S−δ is non-overlapping. Thus, for the instance R, any subset
S ⊆ R is δ-independent if and only if S is independent. So if one were able to compute a
δ-independent set of value OPT(R) in polynomial time, it would also imply that such an
algorithm can compute an optimal independent set of R.
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Abstract
Robust optimization is concerned with constructing solutions that remain feasible also when a
limited number of resources is removed from the solution. Most studies of robust combinatorial
optimization to date made the assumption that every resource is equally vulnerable, and that the
set of scenarios is implicitly given by a single budget constraint. This paper studies a robustness
model of a different kind. We focus on bulk-robustness, a model recently introduced [3] for
addressing the need to model non-uniform failure patterns in systems.

We significantly extend the techniques used in [3] to design approximation algorithm for
bulk-robust network design problems in planar graphs. Our techniques use an augmentation
framework, combined with linear programming (LP) rounding that depends on a planar embed-
ding of the input graph. A connection to cut covering problems and the dominating set problem
in circle graphs is established. Our methods use few of the specifics of bulk-robust optimization,
hence it is conceivable that they can be adapted to solve other robust network design problems.
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1 Introduction

Robust optimization is concerned with finding solutions that perform well in any one of a
given set of scenarios. Many paradigms were proposed for robust optimization in the last
decades. Some models assume uncertainty in the cost structure of the optimization problem.
Such robust models typically have as scenarios different cost structures for the resources in
the system, and ask to find a solution whose worst-case cost is as small as possible. Another
kind of robustness postulates uncertainty in the feasible set of the optimization problem.
Typically, in such models scenarios correspond to different realizations of the feasible set.
A minimum-cost solution is then sought that is feasible in any possible realization of the
feasible set.

This paper deals with the latter class of robust models, i.e. ones that incorporate
uncertainty in the feasible set. Concretely, we are interested in robust network design
problems, that are generally defined as follows. The input specifies a graph G = (V,E),
a set of failure scenarios Ω, consisting of subsets of the nodes and edges of G, and some
connectivity requirement. The goal is to find a minimum-cost subgraph of G satisfying the
connectivity requirement, even when the elements in any one single scenario are removed from
the solution. Different problems are obtained for different types of connectivity requirement
and when different representations of the scenario set are assumed.
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Most existing models of robust network design assume uniform scenario sets. Given
interdiction costs for the resources, and a bound B ∈ Z≥0, such models assume that the
adversary can remove any subset of resources of interdiction cost at most B. In fact,
unit interdiction costs are almost always assumed. While such uniform robust network
design problems often enjoy good algorithms, they also often do not reflect realistically the
uncertainty in the modeled system, which feature highly non-uniform failure patterns.

In a recent paper, Adjiashvili, Stiller and Zenklusen [3] introduced a new model for
robust network design called bulk-robustness, specifically designed to model such highly
non-uniform failure patterns. In bulk-robust optimization failure scenarios are given explicitly,
as a list of subsets of the resources. These subsets may be arbitrary, and in particular, they
are allowed to vary in size. The goal, as in robust network design problems, is to find a
minimum-cost set of resources that contains a feasible solution, even when the resources in
any one of the scenarios are removed.

The authors justify the model by bringing many example from health care optimization,
computer systems, digitally controlled systems, military applications, financial systems and
more. For example, in computer systems, different components of the network rely on the
different resources, such a databases, power sources etc. At down-times of such resources,
the components that can not operate properly are exactly those that depend of the downed
resource. While no uniform failure model can capture such failure patterns, bulk-robutness
seems to be a suitable choice.

In [3] the authors study a number of problems in the bulk-robust model, including the
s-t connection problem, and the spanning tree problem. In particular, the approximability of
these problems is studied in general graphs. The goal of this paper is to extend the existing
tool set available for designing approximation algorithm for robust network design in this
model. In this paper we focus on the important special case of planar graphs. We show
a widely-applicable method for computing approximate solutions to bulk-robust network
design problem in planar graphs.

1.1 Results and methods
For an integer r ∈ Z≥0 we let [r] = {1, · · · , r} and [r]0 = {0, 1, · · · , r}. The bulk-robust
network design problem is defined as follows. Given an undirected graph G = (V,E),
a weight function w : E → Z≥0, a connectivity requirement C and a set of m scenarios
F1, · · · , Fm, each comprising a set of edges Fi ⊆ E, find a minimum-cost set of edges S ⊆ E,
such that (V, S \ Fi) satisfies C for every i ∈ [m]. When C is the requirement that two
specific nodes s, t ∈ V are to be connected we obtain the bulk-robust s-t connection
problem. When C is the requirement that all nodes are pair-wise connected, we obtain the
bulk-robust spanning tree problem. Other bulk-robust problems such as bulk-robust
Steiner tree and bulk-robust survivable network design are obtained analogously, by
choosing the appropriate C. We let n = |V |, and k = maxi∈[m] |Fi| denote the maximum size
of a scenario. The parameter k is called the diameter of the instance. Adjiashvili et. al. [3]
proved the following theorem.

I Theorem 1 (Adjiashvili et. al. [3]). The bulk-robust s-t connection problem admits a
polynomial 13-approximation algorithm in the case k = 2. The bulk-robust spanning tree
problem admits an (logn+ logm)-approximation algorithm.

On the complexity side, the authors prove set cover hardness for all considered bulk-
robust counterparts, implying a conditional logm lower bound on the approximation in
general graphs. In terms of the parameter k, the authors show that in general graphs a
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sub-exponential approximation factor is likely not achievable for certain variants of the
bulk-robust s-t connection problem.

1.1.1 Contribution
Our goal is to prove a significant strengthening of Theorem 1 for the special case where the
input graph is planar. Concretely, we prove the following theorem.

I Theorem 2. The bulk-robust s-t connection and the bulk-robust spanning tree problems
admit polynomial O(k2)-approximation algorithms on planar graphs.

The latter result implies constant-factor approximation algorithms for the case of fixed k.
In light of the results in [3] this is qualitatively best possible. To complement our algorithmic
result we also prove the following stronger inapproximability result.

I Theorem 3. For some fixed constant c > 0 it is NP-hard to approximate the bulk-robust
s-t connection and bulk-robust spanning tree problems within a factor of ck, even when the
input graphs are restricted to series-parallel graphs.

The expression ck in the latter theorem can be replaced with the concrete expression
1
2k − 1 + 1

2k − ε. Theorem 3 suggests that the dependence of the approximation factor on k
is necessary.

For concreteness and clarity of the exposition we prove Theorem 2 for the s-t connection
problem. We discuss the necessary minor adaptation needed for the spanning tree problem
later. Furthermore, the methods we employ use very little of the particularities of bulk-robust
optimization, and are thus likely to be adaptable to other robust problems on planar graphs.

1.1.2 Our methods
Our algorithm is a combination of combinatorial and LP-based techniques. On the top level,
our algorithm employs an augmentation framework, which constructs a feasible solution by
solving a sequence of relaxations of the problem. The lowest level corresponds to a simple
polynomial problem, while the last level corresponds to the original instance. The idea of
augmentation is well known in the literature of network design (see e.g. [26, 14]). We use
here the variant of the augmentation framework defined for bulk-robust optimization in [3].

We solve each stage of the augmentation problem by considering a suitable set cover
problem, the analysis of which comprises the core technical contribution of the paper. Using
a combinatorial transformation that amounts to finding certain shortest paths in the graph,
we obtain a simpler covering problem, which we call the link covering problem. The
remainder of the algorithm relies on the analysis of the standard LP relaxation of the
latter problem. Using properties of planar graphs, we show that the obtained LP has an
integrality gap of O(k), and that a solution of this quality can be obtained in polynomial
time. Our rounding procedure relies on a decomposition according to the planar embedding
of the graph, and a connection to the dominating set problem in circle graphs, for which we
develop an LP-respecting constant-factor approximation algorithm. The line of our proof
follows that of the proof in [3]. Our main technical contribution can hence be seen in the
additional techniques developed to deal with planar graphs. As we mentioned before, these
new techniques seem more general than the bulk-robust model, and are likely to be applicable
to other network design problems in planar graphs.

The proof of Theorem 3 relies on a reduction form the minimum vertex cover problem in
m-uniform, m-partite hypergraphs.
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1.1.3 Organization
In the remainder of this section we review related work. In Section 2 we present the algorithm
for the bulk-robust s-t connection problem, and prove Theorem 2 for this case. The required
modification for the bulk-robust spanning tree problem and possible extensions of our results
are discussed in Section 3. The proof of Theorem 3 is brought in Appendix B.

1.2 Related work
For a comprehensive survey on general models for robust optimization we refer the reader to
the paper of Bertsimas, Brown and Caramanis [7].

Robustness discrete optimization with cost uncertainty was initially studied by Kouvelis
and Yu [22] and Yu and Yang [27]. These works mainly consider the min-max model, where
the goal is to find a solution that minimizes the worst-case cost according to the given set of
cost functions. See the paper of Aissi, Bazgan and Vanderpooten [5] for a survey. A closely
related class of multi-budgeted problem has received considerable attention recently (see
e.g. [25, 24, 8, 16] and references therein).

An interesting class of problems with uncertainty in the feasible set was introduced by
Dhamdhere, Goyal, Ravi and Singh [11]. In this two-stage models the feasibility condition
is only fully revealed in the second stage. While resources can be bought in both stages,
they are cheaper in the first stage, in which only partial information about the feasible set is
available. This model was subsequently studied by several other authors (see [15, 12, 21]).
Different two-stage model was proposed in [4, 2] for the shortest path problem. Several other
important network design problems are motivated by robust optimization. Such problems
include the minimum k-edge connected spanning subgraph problem [9, 13] and the survivable
network design problem [19, 20]. Various other robust variants of classical combinatorial
optimization problems were proposed. For a survey of these results we refer the reader to
the theses of Adjiashvili [1] and Olver [23].

2 Bulk-robust s-t connection in planar graphs

In this section we are concerned with the bulk-robust s-t connection problem, which
given an undirected graph G = (V,E), a weight function w : E → Z≥0, two terminals s, t ∈ V
and a set of m scenarios F1, · · · , Fm ⊆ E, asks to find minimum-cost set of edges S, such
that S \ Fi contains an s-t path for every i ∈ [m].

The remainder of the section is organized as follows. First we explain the augmentation
framework in general. Then we define the set cover problem for the i-th augmentation step
and analyze its properties. Finally, we propose a LP-based approximation algorithm for the
set cover problem.

2.1 The augmentation framework
Consider the following sequence of relaxations of the given instance of the bulk-robust s-t
connection problem. For an integer i ∈ [k]0 define Ωi to be the collection of subsets of
cardinality at most i of the failure scenarios F1, · · · , Fm, i.e.

Ωi = {F ⊆ E | ∃j ∈ [m] F ⊆ Fj ∧ |F | ≤ i}.

Now, define the i-th level relaxation Pi of our instance to be the instance where Ω is
replaced by Ωi. Clearly P0 is simply the shortest path problem, as Ω0 = {∅}, and Pk is the
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original instance. Furthermore, we indeed obtained a sequence of relaxations, as any feasible
solution for Pi is feasible for Pj if i ≥ j.

The augmentation framework constructs the solution for the given instance by iteratively
adding additional edges to the solution. The solution Xi−1 obtained until the beginning of
the i-th augmentation step is feasible for Pi−1. The i-th augmentation problem is to
augment Xi−1 with additional edges Ai of minimum cost so that Xi−1 ∪Ai is feasible for Pi.
We denote by AUGi the optimal value the i-th augmentation problem.

2.2 The i-th augmentation problem
In the first iteration, the problem P0 becomes the shortest s-t path problem, and is solved in
polynomial time by any shortest path algorithm. We denote by Xi−1 ⊆ E the set of edges
presented to the i-augmentation problem, and let Gi−1 = (V,Xi−1).

Consider the i-th augmentation problem for some i ≥ 1. Since Xi−1 is a feasible solution
of Pi−1, we know that any scenario Ωj for j < i does not disconnect s from t in Gi−1. The
same may hold true for some scenarios in Ωi. If this holds for all scenarios in Ωi, then Xi−1
is already feasible for Pi, and we can set Xi = Xi−1. In the other case, some scenarios in Ωi
are still relevant, i.e. they disconnect s from t in Gi−1. We abuse notation and let Ωi denote
this set of relevant scenarios.

Let us formulate the i-th augmentation problem as a set cover problem. To this end we
let Ei = E \Xi−1 denote the set of edges not yet chosen to be included in the solution. Let
V̄ = V [Xi−1] be the set of nodes incident to Xi−1. Let us define the following useful notion
of links.

I Definition 4. Let u, v ∈ V̄ be distinct nodes. Define the u-v link Lu,v to be any shortest
u-v path in (V,Ei). Let `u,v = w(Lu,v) denote the length of this path.

Consider any optimal solution A∗ to the i-th augmentation problem. It is easy to see
that A∗ is acyclic, i.e. it forms a forest in (V,Ei). Instead of looking for forests, however, we
would like to restrict our search to collections of links.

The advantage of using links is twofold. On the one hand, it is possible to compute all
links using a shortest path algorithm in polynomial time. On the other hand, using links
will allows us to decompose the augmentation problem in a later stage. Let us define the
notion of covering with links next.

I Definition 5. A link Lu,v is said to cover F ∈ Ωi if its endpoints u and v lie on different
sides of the cut formed by F .

It is easy to see that a union of links forms a feasible solution to the augmentation
problem if and only if for every set F ∈ Ωi, at least one of the links in the union covers F .
This formulation naturally gives rise to our desired set cover problem, defined next.

I Definition 6. The i-th link covering problem asks to find a collection of links of
minimum total cost, covering every scenario F ∈ Ωi.

We also know that feasible solutions to the i-th links covering problem correspond to
feasible solutions of the i-th augmentation problem with the same objective function value, or
better. The following lemma from [3] states that any feasible solution to the i-th augmentation
problem corresponds to a feasible solution to the i-th links covering problem of at most twice
the cost, thus by solving the link covering problem we lose at most a factor of 2.
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I Lemma 7 (Adjiashvili et. al. [3]). There exists a collection Q1, · · · , Qr ⊆ Ei of paths, such
that for each F ∈ Ωi, the collection contains at least one path covering F and

∑r
j=1 w(Qj) ≤

2AUGi.

Before proposing an approximation algorithm for the link covering problem let us make
the following additional assumption. We assume that every edge e ∈ Xi−1 appears in
at least one scenario from Ωi. This assumption does not compromise generality, as any
edge not satisfying the latter condition can be safely contracted for the solution of the i-th
augmentation problem.

2.3 Approximating the link covering problem
We focus next on approximating the i-th link covering problem. For simplicity we drop the
index i from our notation in this section and use X,Ω and P for Xi−1,Ωi and Pi, respectively.
The case i = 1 is particularly simple and is treated as follows. In the case i = 1 the set X
simply corresponds to an s-t path. This path can be seen as a line and links can be seen as
intervals on this line. Scenarios F ∈ Ω are singletons corresponding to edges on this path,
and are interpreted as points on the line. The link covering problem now becomes an interval
covering problem that can be solved exactly in polynomial time using various algorithms.

In the case i ≥ 2, which we henceforth assume, the situation is much more complex.
Consider next the following standard linear programming relaxation of the link covering
problem. We include a variable xu,v ∈ [0, 1] for each link Lu,v, where xu,v = 1 is interpreted
as including the link Lu,v. Furthermore, we denote by cover(F ) all pairs {u, v} ⊆ V̄ × V̄
such that the link Lu,v covers F .

min

`(x) : xu,v ≥ 0 ∀{u, v} ∈ V̄ × V̄ ,
∑

{u,v}∈cover(F )

xu,v ≥ 1 ∀F ∈ Ω


It is well-known that in general, the latter LP has an integrality gap as large as logN ,

where N is the size of the ground set of the set cover problem. Our goal here is to show that
in the case of the link covering problem and when the input graph is required to be planar,
a stronger bound can be proved. Concretely, we will show that a fractional solution x∗ to
the LP can be rounded in polynomial time to an integral solution with cost at most 8i`(x∗),
thus also proving a bound of 8i on the integrality gap.

2.3.1 Solving the LP
Before we turn to our rounding algorithm, let us discuss the problem of solving the latter LP.
Clearly, if k is a fixed constant, the size of the LP is polynomial, and any polynomial time LP
algorithm can be used. In the other case, when the diameter k is not bounded by a constant,
the sets Ω might have exponential size, as they potentially contain all subsets of cardinality
i ≤ k of sets of cardinality k. It is however not difficult to design a polynomial-time separation
procedure for the latter LP as follows. Given a fractional vector x, we can check if it is
feasible for the LP by checking for every one of the polynomially many failure scenarios
F1, · · · , Fm, if it contains a subset F of size i that is both an s-t cut in Ḡ = (V,X), and∑

{u,v}∈V̄×V̄ covers F

xu,v < 1.



D. Adjiashvili 67

Let us call a set F of the latter type violating. This can be achieved as follows. Let Fj be
the scenario from the family of input scenarios that we would like to test. Let H = (V̄ , Y )
be the graph obtained from Ḡ by adding the direct edge {u, v} for every pair of distinct
nodes u, v ∈ V̄ . The new edge {u, v} represents the link Lu,v. Define an edge capacity vector
c : Y → R≥0 on the new edge set Y setting cj(e) = 1 if e ∈ Fj , cj(e) =∞ if e ∈ X \ Fj and
cj(e) = xe if e ∈ Y \X. It is now easy to verify that a violating set F ⊆ Fj exists if and only
if the capacity of the minimum s-t cut in H with capacity vector c is strictly bellow i+ 1.
Furthermore, if such a cut exists, the set F can be chosen to be all edges of Fj crossing the
minimum cut. Polynomiality of the latter transformation and the minimum s-t cut problem
now imply that the Ellipsoid algorithm can be used to solve the LP in polynomial time.

2.3.2 Rounding the LP
Let x∗ denote an optimal solution to our LP. We describe our rounding procedure next.

Our rounding technique heavily exploits the planarity of the input graph G. Let us
henceforth assume that G is presented with a planar embedding Γ. Such an embedding can
be computed in polynomial time. We let ψ1, · · · , ψq̄ denote the faces of the embedding of Ḡ,
induced by the embedding of G.

I Definition 8. We say that link Lu,v is of type j if it connects two nodes u, v on ψj , and
if Lu,v is completely contained in the face ψj . We call a link typed if it is of type j for some
j ∈ [q̄]. Links that are not typed are called untyped.

For what follows it will be convenient to assume that x∗ is clean, i.e. that x∗u,v = 0 holds
for every untyped link Lu,v. This assumption does not compromise generality, as we state
and prove in the following lemma.

I Lemma 9. Restricting the solutions of the LP to satisfy xu,v = 0 for every untyped link
Lu,v does not change the optimal value of the LP.

Proof. Assume that x∗ is an optimal solution to the LP with minimum possible weight
assigned to untyped links ∑

{u,v}∈V̄×V̄ untyped

x∗u,v.

Assume towards contradiction that x∗u,v > 0 holds for some untyped link Lu,v. Since Lu,v is
untyped, it forms a shortest path between the nodes u and v, composed of edges contained
in several faces of Ḡ. Let u = v1, · · · , vp = v be nodes on Lu,v with the following properties.

The nodes appear in this order on Lu,v, when it is traversed from u to v.
For every i ∈ [p− 1], it holds that Lvi,vi+1 is a typed link, i.e. it holds that vi, vi+1 ∈ V̄
and the sub-path of Lu,v between vi and vi+1 is completely contained in some face ψji .

Now, consider the LP solution y where
yu,v = 0,
yvi,vi+1 = min{1, x∗vi,vi+1

+ x∗u,v} for every i ∈ [p− 1], and
yw,z = x∗w,z everywhere else.

Since all links are shortest paths we have w(Lu,v) =
∑
i∈[p−1] w(Lvi,vi+1), and thus

`u,v =
∑
i∈[p−1] `vi,vi+1 . This implies that `(y) ≤ `(x∗).

The new solution is also a feasible LP solution. To see this we only need to verify that
for every F ∈ Ω, the constraint ∑

{z,w}∈cover(F )

yz,w ≥ 1
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holds. If Lu,v does not cover F , this is obvious from feasibility of x∗, since yz,w ≥ x∗z,w for
all links except Lu,v.

In the remaining case Lu,v covers F . Now, since the union of links ∪i∈[p−1]Lvi,vi+1

contains a u-v path, clearly at least one of these links, say Lvi∗ ,vi∗+1 , also covers F . If
yvi∗ ,vi∗+1 = 1 we are clearly done. In the other case

yvi∗ ,vi∗+1 = x∗vi∗ ,vi∗+1
+ x∗u,v,

and thus what is lost by reducing x∗u,v is compensated by increasing x∗vi∗ ,vi∗+1
, and the

constraint is also satisfied.
Finally, we obtained a new optimal solution y with a lower weight assigned to untyped

links, as all the links of the form Lvi,vi+1 are typed links, and the link Lu,v is untyped. This
contradicts the choice of x∗. J

A set of links S is clean if it only contains typed links. The following lemma proves
certain useful connections between the planar embedding of G and the link covering problem,
which we later use to round the LP solution. We say that an edge is on the boundary of
a face if both of its endpoint lie on the face.

I Lemma 10. Let F ∈ Ω be some failure scenario and let ψ ∈ {ψ1, · · · , ψq̄} be some face.
Then, if i ≥ 2, the number of edges of F that lie on the boundary of ψ is either zero or
two. Furthermore, the number of faces {ψ1, · · · , ψq̄} that contain two edges of F on their
boundary is exactly i.

Proof. Since F ∈ Ω we know that F is an s-t cut in Ḡ. Observe that (V̄ , X \ F ) contains
exactly two connected components, one Cs(F ) containing s and one Ct(F ) containing t.
This holds since, by definition of Ω and the augmentation problem, the set X is feasible for
Pi−1, and thus any subset of F is not an s-t cut in Ḡ.

This implies that all edges in F can be directed unambiguously from the node in Cs(F )
to the node in Ct(F ). Now consider any edge e ∈ F and any face ψ ∈ {ψ1, · · · , ψq̄} which
contains e on its boundary. Since ψ corresponds to a cycle in Ḡ, the number of edges of F
on its boundary cannot be odd, as an odd number of such edges would imply the existence
of path in Ḡ connecting Cs(F ) to Ct(F ), and containing no edge of F .

Next we prove that this number must be two, i.e. that ψ contains exactly one more edge
of F . Assume towards contradiction that there are at least four such edges. By traversing
the cycle in Ḡ, forming the face ψ, the cut defined by F is crossed every time an edge of
F is crossed. In particular, there are some four nodes u1, v1, u2, v2 appearing in this order
on the face, and such that u1, u2 belong to Cs(F ) and v1, v2 belong to Ct(F ). Let Q and
R be a u1-u2 path in Cs(F ) and a v1-v2 path in Ct(F ), respectively. Since ψ is a face, the
embedding of both Q and R is disjoint from the interior of ψ. Now, since Q and R form
continuous curves in the plane, and are connected to alternating nodes on the boundary of a
face, they must intersect at some point, contradicting the fact that Cs(F ) and Ct(F ) are
different connected components in (V̄ , X \ F ). Figure 1 illustrates this argument.

Finally, since every edge e ∈ F belongs to the boundary of exactly two faces from
ψ1, · · · , ψq̄, and since every face containing some edge of F on the boundary contains exactly
two such edges, we conclude that there are exactly |F | = i faces containing some edge of
F on the boundary. In the first assertion we assumed there are no cut edges in Ḡ. For
i ≥ 2 this can be assume without loss of generality, as cut edges are either contracted in
the pre-processing stage before the augmentation step, or, they are redundant, and can be
removed from X. J
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ψ

Q

R

Figure 1 The situation in the proof of Lemma 10.

For simplicity we say that a scenario F ∈ Ω is contained in a face ψ ∈ {ψ1, · · · , ψq̄},
if two edges of F lie on the boundary of ψ. Lemma 10 implies that a clean set S of links
is feasible if and only if for every F ∈ Ω, there exists a face ψj containing F , and a link
Lu,v ∈ S of type j with u and v on different sides of the cut defined by F . With this criterion
we are ready to prove the main lemma of this section.

I Lemma 11. Let x be a clean feasible solution to the LP. Then, there exists a feasible set
S of links with total cost at most 8i`(x).

Proof. We construct the desired set of links in two steps. First, we partition the set of
scenarios Ω into q̄ parts, one for each face of Ḡ. In the second stage, we process the faces of
Ḡ one by one, and for each face we use the part of the LP solution x corresponding to the
face to construct a set of links that cover the scenarios assigned to that face.

Consider any scenario F ∈ Ω. Since x is feasible we have∑
{u,v}∈cover(F )

xu,v ≥ 1.

Let ψp1 , · · · , ψpi ∈ {ψ1, · · · , ψq̄} be the set of faces that contain F . According to Lemma 10,
there are exactly i such faces. Now, since x is clean, the latter sum can be decomposed as
follows. ∑

{u,v}∈cover(F )

xu,v =
i∑

j=1

∑
{u,v}∈cover(F )
Lu,v type pj

xu,v

Let us denote the second sum on the right hand side by σj [F ], i.e. let

σj [F ] =
∑

{u,v}∈cover(F )
Lu,v type pj

xu,v.

Now since
∑i
j=1 σ

j [F ] ≥ 1, there exists at least one index j ∈ [i] such that σj [F ] ≥ 1
i . We

let j[F ] ∈ [i] be one such index. If several indices j ∈ [i] satisfy the latter condition, one is
chosen arbitrarily. Note that the index j[F ] is chosen is such a way that in the LP solution
x, the total weight of links of type pj[F ] that cover F is at least 1

i .
We are now ready to define the partition of Ω into q̄ parts, corresponding to the q̄ faces

of Ḡ. For j ∈ [q̄] we let
Ω(j) =

{
F ∈ Ω | pj[F ] = j

}
.
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Clearly, Ω = ∪j∈[q̄]Ω(j) is a partition of Ω. To conclude the first stage of the our procedure,
it remains to define a corresponding decomposition x =

∑
j∈[q̄] x

(j) of the LP solution x. The
vector x(j) is defined by setting x(j)

u,v = xu,v if Lu,v is of type j, and x(j)
u,v = 0 otherwise. This

concludes the first step of the rounding procedure.
In the second step we construct for every j ∈ [q̄], a set of links S(j) of total cost

8i`(x(j)) that covers all scenarios in Ω(j). By doing so we clearly conclude the proof of the
lemma, since by taking ∪j∈[q̄]S

(j) we obtain a feasible solution with total cost of at most∑
j∈[q̄] 8i`(x(j)) = 8i`(x), as desired.
It remains to show how a single set S(j) can be constructed. Our plan is the following.

First, we observe that, by construction, ix(j) is an LP solution that fractionally covers all
scenarios in Ω(j). Then, we observe that the link covering problem restricted to links of type
j, and to scenarios in Ω(j) essentially becomes a variant of the dominating set problem
on circle graphs. We explain the required transformation next, and conclude by proving
that the integrality gap of the standard LP relaxation for the latter problem is constant, and
that the corresponding integral solution can be found in polynomial time.

Recall that a circle graph is an intersection graph of the set of chords in a circle.
The dominating set problem in circle graphs hence corresponds to finding a minimum-cost
collection of chords that intersect every chord of the graph. We are interested in a variant
of this problem, where chords are partitioned into two groups called demand chords
and covering chords, and the goal is to find a minimum-cost set of covering chords that
dominates all the demand chords. We call this problem the restricted dominating set
problem in circle graphs.

The link covering problem restricted to a the face ψ can now be seen as a dominating set
problem on circle graphs as follows. Let v0, v1, · · · , vd = v0 be the nodes on the boundary
of ψ. We subdivide each edge {vj , vj+1} for j ∈ [d] by adding the node wj . This new cycle
corresponds to the circle of the circle graph we construct. Let us define the chords of the
graph, and their corresponding weights, next. For every scenario F contained in ψ we add
the demand chord αF connecting wj1 to wj2 , where {uj1 , uj1+1} ∈ F and {uj2 , uj2+1} ∈ F
(recall from Lemma 10 that there are exactly two such edges). Next, for every link of the
form Lvl,vr

, we add the covering chord βvl,vr
connecting vl with vr. The cost of this chord is

set to `vl,vr
, i.e. we set c(βvl,vr

) = `vl,vr
. This concludes the transformation.

To see that the latter problem indeed models the desired link covering problem it suffices
to make the following simple observation. Sets of chords corresponding to links that form a
restricted dominating set in the circle graph are in one-to-one correspondence with sets of
links that cover all scenarios, with identical costs. This is true, since a link Lvl,vr covers a
scenario F if and only if the chords αF and βvl,vr

intersect.
We can now naturally interpret the solution y(j) = ix(j) as a feasible fractional solution

to the standard LP relaxation of the restricted dominating set problem on the obtained
circle graph. In the following claim we show that the integrality gap of the latter LP is
constant. The proof of the claim uses a connection to a special case of the axes-parallel
rectangle covering problem, for which Bansal and Pruhs [6] provided an LP-respecting
2-approximation with the natural LP.

I Lemma 12. The integrality gap of the standard LP relaxation of the restricted dominating
set problem on circle graphs is bounded by 8.

Proof. Let H = (V d ∪ V c, E) be the given circle graph with V d and V c corresponding to
the demand chords and the covering chords, respectively. Let g : V c → Z≥0 denote the cost
function for the covering chords. Let p0, · · · , pm = p0 be all the points on the circle to which
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v1

v2

v3

v4

L[β]

T [β]

R

Figure 2 An illustration of the transformation. The chords α = (v1, v3) and β = (v2, v4) are
demand and covering chords, respectively. The ordering of the points on the circle is clockwise
starting from the highest point.

chords are connected, in the order that they appear when the circle is traversed in some
arbitrary direction. For a chord α ∈ V d ∪ V c we write α = (pl, pr) with l ≤ r to indicate the
endpoints of the chord in the circle.

We interpret the restricted dominating set problem as a kind of point covering problem
by axis-aligned rectangles as follows. Construct a large square R with side length m.
The points in R are indexed by pairs of points on the circle, with (p0, p0) and (pm−1, pm−1)
being, respectively, the lower-left corner of R and the upper-right corner of R. For four
points pl1 , pl2 , pr1 , pr2 with l1 ≤ l2 and r1 ≤ r2 we denote by [pl1 , pr1 ] × [pl2 , pr2 ] ⊆ R the
rectangle contained in R with lower-left point and upper-right point (pl1 , pr1) and (pl2 , pr2),
respectively.

Demand chords are interpreted as points in R. The chord α = (pl, pr) ∈ V d is interpreted
as the point Q[α] = (pl, pr) inside R. Observe that Q[α] is contained above the main diagonal
in R, that is the line connecting (p0, p0) and (pm−1, pm−1), as pl ≤ pr.

Covering chords are interpreted as pairs of rectangles contained in R. The chord
β = (pl, pr) ∈ V d is interpreted as the pair of rectangles

L[β] = [p0, pl]× [pl, pr] and T [β] = [pl, pr]× [pr, pm−1].

Observe the following property. L[β] intersects the left side of R and T [β] intersects the top
side of R.

It is now straightforward to verify that a covering chord β dominates a demand chord α
if and only if

Q[α] ∈ L[β] ∪ T [β].

Finally, we arrived at the desired covering problem, namely the problem of selecting a
minimum cost set of rectangles pairs L[β] ∪ T [β] in R, corresponding to covering chords, so
as to cover every point Q[α], corresponding to demand chords. The cost of a rectangle pair is
simply the cost of the corresponding covering chord. Figure 2 illustrates the transformation.

The standard LP relaxation for this covering problem reads

min

g(z) | zβ ≥ 0 ∀β ∈ V c,
∑

β :Q[α]∈L[β]∪T [β]

zβ ≥ 1 ∀α ∈ V d
 .

Let z be a fractional feasible solution to the latter LP. We construct an integral solution as
follows. First, observe that for every demand chord α ∈ V d, at least one of the following
holds due to feasibility of z:
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∑
β :Q[α]∈L[β] zβ ≥

1
2∑

β :Q[α]∈T [β] zβ ≥
1
2

Let V dL ⊆ V d be the set of all α ∈ V d for which the first condition holds. Let V dT = V d \ V dL
be all other demand chords. We show how to construct an integral solution of cost at most
4g(z) that dominates all chords in V dL . From symmetry, this implies that another integral
solution can be constructed for V dT with cost at most 4g(z). This will then prove the claim,
as the union of both solutions is an integral feasible solution of cost at most 8g(z).

To this end observe that 2z is a fractional feasible solution to the LP

min

g(z) | zβ ≥ 0 ∀β ∈ V c,
∑

β :Q[α]∈L[β]

zβ ≥ 1 ∀α ∈ V dL

 .

Now, it remains to observe that the latter LP is the natural LP relaxation of an ordinary
rectangle covering problem. The rectangles {L[β] | β ∈ V c} also have the additional property
that their left side lies on the left side of R. This restricted variant of the rectangle covering
problem was studied by Bansal and Pruhs [6], who proved that the standard LP relaxation
of the problem has integrality gap of 2. This implies that there exists an integral solution
covering V dL with cost 4g(z). This solution can also be constructed in polynomial time. This
concludes the proof of the claim. J

Lemma 12 concludes the proof. We note that Lemma 12 provides an 8-approximation
algorithms for the dominating set problem in circle graphs based on the natural LP relaxation.
While constant factor approximations were known for this problem (see e.g. [10]), to best of
our knowledge, none of the existing algorithms use LP rounding. J

2.3.3 Putting it all together
We are ready to prove Theorem 2.

Proof. The feasibility of the solution obtained after the final augmentation step is obvious.
It remains to compute the approximation guarantee. Let ALG denote the cost of the solution
returned by the algorithm. Clearly, AUGi ≤ 2OPT holds for every i ∈ [k], as any optimal
solution is feasible for any augmentation problem, and Lemma 7 asserts that by using unions
of paths we lose a factor of at most 2. According to Lemma 11, an 8i-approximation can
be obtained for the i-th augmentation problem in polynomial time. Also, the shortest path
comprising the solution of P0 has cost of at most OPT. In total, we obtain the bound
ALG ≤ OPT +

∑k
i=0 8i · 2OPT = O(k2)OPT.

J

3 Bulk-robust spanning trees and further extensions

3.1 Bulk-robust spanning trees
Let us discuss first the minor changes needed to prove Theorem 2 for the bulk-robust spanning
tree problem. More details are given in Appendix A.

The augmentation procedure remains unchanged, except that at every iteration i, the sets
in Ωi are those sets of cardinality i that disconnect the graph in any way. The link covering
problem and the obtained LP are essentially the same. The separation procedure of the LP
now requires a polynomial minimum cut algorithm, instead of a minimum s-t cut algorithm.
The rounding procedure only used the property that every set F ∈ Ωi creates exactly two
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connected components when removed from Xi−1. Finally, the augmentation algorithm for
i = 1 is no longer an interval covering problem, but can be treated as in Lemma 11, with the
outer face being the only face of Ḡ.

3.2 Further extensions
Let us conclude by discussing some further extensions and implications of our techniques.
First, our techniques can clearly be applied to other bulk-robust network design problems.
A treatment of the bulk-robust survivable network design problem is deferred to the full
version of the paper.

Also, as we mentioned in the introduction, our methods seem to be suitable for solving
other robust problems in planar graphs. Consider, for example, the uniform model with
varying interdiction costs, where each edge has an interdiction cost c(e) ∈ Z≥0, and the set
of scenarios is exactly the set of all edge subsets with total interdiction cost at most B ∈ Z≥0.
Our methods can be used to approximate this problem provided that a suitable (approximate)
separation oracle is provided for the resulting LP. In general, however, this separation problem
coincides with difficult interdiction problems (see e.g. [18, 28] and references therein).
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A Bulk-Robust Spanning Trees

In this section we describe the proof of Theorem 2 for the bulk-robust spanning tree problem.
As the changes are minor, we choose to follow the outline of the proof given in the main text,
and describe the required modifications.
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A.1 The augmentation framework
We use the same sets Ωi, i ∈ [k]0 to define the relaxations of the problem. The i-th
augmentation problem Pi is to augment the set Xi−1 of edges chosen so far to a set Xi with
the property that (V,Xi \ F ) is a connected graph for all F ∈ Ωi.

As for the bulk-robust s-t connection problem, the optimal solution to any augmentation
problem is a forest. As a consequence, Lemma 7 still applies, so we can again use unions of
paths to approximate the augmentation problem, at the loss of a factor 2.

The notion of links and covering by links is defined as before, except that now cuts formed
by sets F ∈ Ωi are arbitrary cuts in the graph, and not just s-t cuts.

A.2 Solving the link covering problem
The approximate solution to the link covering problems are obtained in essentially the same
way for the bulk-robust spanning tree problem, as for the bulk-robust s-t connection problem.
The differences are minor and are explained next.

The solution for P0 is computed by computing a minimum spanning tree in the input
graph in polynomial time. The cost of this tree is clearly at most OPT.

A.2.1 The case i = 1
The link covering problem corresponding to P1 is no longer equivalent to an interval covering
problem, but it can be approximated as follows. Recall that the solution obtained before the
first augmentation problem is a spanning tree of the graph. Each edge in this tree either
belong to some failure scenario Fi, in which case it comprises a failure scenario in Ω1, or it is
not contained in any failure scenario. In the latter case the edge can be simply contracted,
so we henceforth assume that all edges of the tree form a scenario in Ω1.

The augmentation problem now becomes a standard connectivity augmentation
problem, where, given a spanning tree T of a graph G, the task is to compute a minimum-
cost set of edges, not in the tree, whose addition to the tree will increase the size of the
minimum cut in the resulting graph to two. Indeed, on the one hand any set A of edges
satisfying that the graph (V, T ∪A) has no cut of size one is feasible, as the removal of any
edge of T cannot disconnect this graph. On the other hand, if a set A is such that (V, T ∪A)
does contain a cut edge, this edge must belong to T (since T is a spanning tree of G). Since
all edges of T are assumed to comprise failure scenarios in Ω1, this means that A is infeasible
for the augmentation problem.

It remains to note that the latter connectivity augmentation problem can be efficiently
approximated within a constant factor. One way to achieve this is to use the algorithm for
survivable network design in [19].

A.2.2 The case i ≥ 2
As before, we omit the index i from our notation, as we now discuss the i-th link covering
problem for some arbitrary i ≥ 2.

The set cover LP appropriate for modeling the link covering problem for the bulk-robust
spanning tree problem remain exactly the same as before. There is, however, a slight
difference in the design of the separation oracle for the LP. Concretely, the construction of
the capacitated graph H remains the same, but now violating sets correspond to sets of edges
in minimum cuts (instead of minimum s-t cuts), if the value of the minimum cut is bellow
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i+ 1. Since minimum cuts can be found in polynomial time, this separation procedure is
also polynomial.

Finally, the rounding procedure and its analysis remain unchanged. While it may seem
that the proof of Lemma 10 used the fact that (V̄ , X \ F ) contains exactly two connected
components Cs(F ) and Ct(F ), one containing s and the other containing t, the fact that two
specific nodes were separated by the cut was never used. The only property that is used is
that (V̄ , X \ F ) contains exactly two connected components. Here we can simply use instead
the fact that (V,X \ F ) contains exactly two connected components.

This concludes the description of the required modifications.

B Proof of Theorem 3

Recall that a hypergraph is a pair H = (V, E), where V is a finite set of nodes, and E ⊆ 2V
is a set of subsets of V called edges. Let m ∈ Z≥0. We say that H is m-uniform if |e| = m

for every e ∈ E . Observe that 2-uniform hypergraphs are graphs. H is m-partite if V can be
partitioned into m parts V = V1 ∪ · · · ∪ Vm such that for every e ∈ E and for every j ∈ [m] it
holds that

|e ∩ Vj | ≤ 1.

A vertex cover of H is a set S ⊆ V of nodes that touches every edge, i.e. such that
|S ∩ e| ≥ 1 holds for every e ∈ E . The hypergraph minimum vertex cover problem is
to find a vertex cover of H of minimum cardinality.

Our reduction relies on the following hardness-of-approximation result of Guruswami,
Sachdeva and Saket [17].

I Theorem 13 (Guruswami et. al. [17]). For any ε > 0 and any m ≥ 4 it is NP-hard to
approximate the minimum hypergraph vertex cover problem within a factor m

2 − 1 + 1
2m − ε,

even when the hypergraph is restricted to be m-uniform and m-partite, and the m-partition is
given as input.

We show that the minimum hypergraph vertex cover problem on k-uniform and k-partite
hypergraphs can be transformed to an equivalent instance of bulk-robust s-t connection with
diameter k, provided that the k-partition is given as input. We then extend the argument to
the bulk-robust spanning tree problem.

To this end let H = (V, E) be a k-uniform, k-partite hypergraph, and let V = V1∪· · ·∪Vk
be the given k-partition of V. We construct the series-parallel graph to be the input of the
bulk-robust s-t connection problem as follows.

Let p = |E| and nj = |Vj | for j ∈ [k]. For every j ∈ [k] we construct an ordering ej1, · · · , ejp
of E corresponding to Vj . This ordering is constructed as follows. First, order the nodes in Vj
in an arbitrary way, say vj1, · · · , vjnj

. Now, construct the ordering of edges by first including
all edges incident vj1 in any order, then all edges incident to vj2 in any order and so on, until
all vertices are traversed. Since Vj is a part in a k-partition, the latter procedure succeeds in
producing an ordering of E , as every edge is incident to exactly one node in Vj . By design,
the latter construction satisfies the following useful property that we will use later. For every
node v ∈ V there exists an index j ∈ [k] such that the set of edges Ev = {e ∈ E | v ∈ e}
incident to v appear as a sub-sequence in the j-th ordering. This index j can be chosen such
that v ∈ Vj .

Next, start constructing the series-parallel graph G = (V,E). First, include the nodes s, t
and connect them by k node-disjoint paths P 1, · · · , P k (the nodes s and t are common to all
paths). Each path P j contains exactly p edges f j1 , · · · , f jp , appearing in this order when P j
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is traversed from s to t. The edge f jl is associated with the edge e ∈ E of the hypergraph in
the l-th position of the j-th ordering, i.e., the edge ejl . Clearly, every edge e ∈ E is associated
with exactly one edge of G on every path P j and thus, in total, it is associated with k edges
of G.

Next, for every j ∈ [k] and v ∈ Vj add the edge αv to G, connecting two nodes wjv and
zjv on P j . These nodes are selected so that the set of edges between these nodes on the path
P j are exactly those that are associated with edges in Ev. Since the hypergraph edge in Ev
appear as a sub-sequence in the order used to construct P j , such two nodes wjv and zjv exist.
It is straightforward to verify that G is series-parallel.

To complete the construction of the graph we set the weights of all edges on the paths
P j for j ∈ [k] to zero, while the weight of edges of the type αv for v ∈ V is set to one.

To conclude the reduction it remains to specify the scenario set Ω of the bulk-robust s-t
connection problem. For e ∈ E we include in Ω a single failure scenario Fe ⊆ E. The set
Fe contains the k edges, one from every path P j , j ∈ [k], that are associated with e. Since
every edge e ∈ E is associated with exactly one edge on every such path, we have |Fe| = k,
as required.

We conclude the proof by showing that the resulting instance of the bulk-robust s-t
connection problem is equivalent to the hypergraph vertex cover instance. Formally, we show
that a solution to the hypergraph vertex cover instance can be transformed to a solution of
the bulk-robust s-t connection instance with the same cost, and vice versa.

Assume first that S ⊆ V is solution to the hypergraph vertex cover problem. Construct a
solution X ⊆ E to the the bulk-robust s-t connection problem as follows. Include in X all
paths P j for j ∈ [k] (at zero cost), as well as all edges αv such that v ∈ S. This solution
has cost |S|, as required. To see that this solution is feasible, consider any F = Fe ∈ Ω.
Since S is a vertex cover, there exists some v ∈ S such that v ∈ e. Let j ∈ [k] be such that
v ∈ Vj . Observe that the path starting at s, following P j until wjv, then crossing αv and
then continuing to t on P j is contained in X \ F .

Assume next that X ⊆ E is a feasible solution to the bulk-robust s-t connection instance.
Let S = {v ∈ V | αv ∈ X}. By the cost structure of the reduction we know that the cost of
X is exactly |S|. It remains to prove that S is a vertex cover. Consider any e ∈ E . Since X is
feasible, there exists an s-t path Q ⊆ X \ Fe. This s-t path must use some edge of the form
αv for v ∈ S as, by construction, every path P j intersects every failure scenario, and these
are node-disjoint s-t paths. Furthermore, we can assume that αv is the only such edge, as
from every path P j , only one edge is contained in Fe. Now, this edge αv ∈ Q connects some
nodes wjv and zjv on some path P j . Consequently, the unique edge in Fe ∪ P j is contained
on the sub-path connecting wjv and zjv and hence, by construction, v ∈ e. We conclude that
S is a vertex cover, as required.

The proof of the theorem for the bulk-robust s-t connection problem now directly follows
from the latter reduction and Theorem 13.

The reduction for the bulk-robust spanning tree problem is identical, and so is the
correspondence between feasible solutions to the hypergraph vertex cover and the bulk-robust
spanning tree problems. The paths P 1, · · · , P k together already span the entire graphs.
Since all cuts formed by failure scenarios are s-t cuts, the result readily follows from our
previous arguments.

J
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Abstract
We prove that for any constant k and any ε < 1, there exist bimatrix win-lose games for which
every ε-WSNE requires supports of cardinality greater than k. To do this, we provide a graph-
theoretic characterization of win-lose games that possess ε-WSNE with constant cardinality sup-
ports. We then apply a result in additive number theory of Haight [8] to construct win-lose
games that do not satisfy the requirements of the characterization. These constructions disprove
graph theoretic conjectures of Daskalakis, Mehta and Papadimitriou [7] and Myers [10].
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1 Introduction

A Nash equilibrium of a bimatrix game (A,B) is a pair of strategies that are mutual best-
responses. Nash equilibria always exist in a finite game [11], but finding one is hard, unless
PPAD ⊆ P [5]. This has lead to the study of relaxations of the equilbrium concept. A
notable example is an ε-approximate Nash equilibrium (ε-NE). Here, every player must receive
an expected payoff within ε of their best response payoff. Thus ε-NE are numerical relaxations
of Nash Equilibria. Counterintuitively, however, given that Nash’s existence result is via a
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fixed point theorem, Nash equilibria are intrinsically combinatorial objects. In particular, the
crux of the equilibrium problem is to find the supports of the equilibrium. In particular, at
an equilibrium, the supports of both strategies consist only of best responses. This induces a
combinatorial relaxation called an ε-well supported approximate Nash equilibrium (ε-WSNE).
Now the content of the supports are restricted, but less stringently than in an exact Nash
equilibrium. Specifically, both players can only place positive probability on strategies that
have payoff within ε of a pure best response.

Observe that in an ε-NE, no restriction is placed on the supports of the strategies.
Consequently, a player might place probability on a strategy that is arbitrarily far from
being a best response! This practical deficiency is forbidden under ε-WSNE. Moreover, the
inherent combinatorial structure of ε-WSNE has been extremely useful in examining the
hardness of finding Nash equilibria. Indeed, Daskalakis, Goldberg and Papadimitriou [6]
introduced ε-WSNE in proving the PPAD-completeness of finding a Nash equilibrium in
multiplayer games. They were subsequently used as the notion of approximate equilibrium
by Chen, Deng and Teng [5] when examining the hardness of bimatrix games.

This paper studies the (non)-existence of ε-WSNE with small supports. Without loss
of generality, we may assume that all payoffs in (A,B) are in [0, 1]. Interestingly, for ε-NE,
there is then a simple 1

2 -NE with supports of cardinality at most two [7]. Take a row r. Let
column c be a best response to r, and let r′ be a best response to c. Suppose the row player
places probability 1

2 on r and r′, and the column player plays column c as a pure strategy. It
is easy to verify that this is a 1

2 -NE. On the other hand, Althöfer [1] showed the existence of
zero-sum games for which every ε-NE, with ε < 1

4 , requires supports of cardinality at least
logn. This result is almost tight; a probabilistic argument shows the existence of ε-NE with
supports of cardinality O( log nε2 ), for any ε > 0; see Lipton et al. [9].

For the case of well-supported equilibria, Anbalagan et al. [2] recently showed the existence
of win-lose games for which every ε-WSNE, with ε < 2

3 , require supports of cardinality at
least 3

√
logn. They also proved, in contrast to ε-NE, that with supports of cardinality at

most two, it is not possible to guarantee the existence of an ε-WSNE, for any ε < 1.
The outstanding open problem in the area is whether there is a constant k and an

ε < 1 such that, for any bimatrix game, there is a ε-WSNE with supports of cardinality at
most k. In the paper we prove this is not the case. This result illustrates a fundamental
structural distinction between ε-WSNE and ε-NE. This structural distinction also has practical
implications with regards to behavioural models and popular equilibria search algorithms
that focus upon small supports. The key to our result is the disproof of graph theoretic
conjectures of Daskalakis, Mehta and Papadimitriou [7] and Myers [10] via an old result in
additive number theory of Haight [8].

2 WSNE and a Graph Theoretic Conjecture

A bimatrix game is a 2-player game with m × n payoff matrices A and B. We consider
normal form games with entries in the payoff matrices in [0, 1]. A pair of mixed strategies
{p, q} forms an ε-well supported Nash equilibrium (ε-WSNE) if every pure strategy in the
support of p (resp. q) is an ε-approximate best response to q (resp p). Thus {p, q} forms an
ε-WSNE if and only if:

∀i : pi > 0 ⇒ ei
TAq ≥ ejTAq − ε ∀j = 1, ..,m

and
∀i : qi > 0 ⇒ pTBei ≥ pTBej − ε ∀j = 1, .., n
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To analyse well-supported equilibria in a win-lose game (A,B), Daskalakis et al. [7]
applied a decorrelation transformation to obtain a pair of decorrelated matrices (A∗, B∗).
The exact details of this decorrelation transformation are not important here. What is
pertinent, however, is that the n × n square 0 − 1 matrix A∗ induces a directed, possibly
non-bipartite, graph H = (V,E). There are n vertices in V , and there is an arc ij ∈ E if an
only if A∗ij = 1. Moreover, Daskalakis et al. proved that the original win-lose game has a
(1− 1

k )-WSNE with supports of cardinality at most k if H contains either a directed cycle
of length k or a set of k undominated1 vertices. Furthermore, they conjectured that every
directed graph contains either a small cycle or a small undominated set.

I Conjecture 1 ([7]). There are integers k and l such that every digraph either has a cycle
of length at most k or an undominated set of l vertices.

Indeed, they believed the conjecture was true for k = l = 3 and, consequently, that
every bimatrix win-lose game has a 2

3 -WSNE with supports of cardinality at most three.
Interestingly, motivated by the classical Caccetta-Haggkvist conjecture [3] in extremal graph
theory, a similar conjecture was made previously by Myers [10].

I Conjecture 2 ([10]). There is an integer k such that every digraph either has a cycle of
length at most k or an undominated set of two vertices.

Myers conjectured that this was true even for k = 3, but Charbit [4] proved this special
case to be false.

We say that D is a (k, l)-digraph if every directed cycle in D has length at least k, and
every S ⊆ V (D) of cardinality at most l is dominated. In Section 4, we will prove that there
exists a finite (k, l)-digraph for every pair of positive integers k and l. This will imply that
Conjectures 1 and 2 are false.

3 A Characterization for Games with Small Support ε-WSNE.

In this section, we show Daskalakis et al.’s sufficiency condition extends to a characterization
of when a win-lose game has ε-WSNE with constant supports. To do this, rather than
non-bipartite graphs, it is more natural for bimatrix games to work with bipartite graphs.
In particular, any win-lose game (A,B) has a simple representation as a bipartite directed
graph G = (R ∪C,E). To see this, let G contain a vertex for each row and a vertex for each
column. There exists an arc (ri, cj) ∈ E if and only if Aij = 1. So ri is the best response for
the row player against the strategy cj of the column player. Similarly, there exists an arc
(cj , ri) ∈ E if and only if Bij = 1. So, cj is a best response for the column player against the
strategy ri of the row player.

We will now show that a win-lose game has a (1− 1
k )-WSNE with supports of cardinality

at most k if and only if the corresponding directed bipartite graph has either a small cycle
or a small set of undominated vertices. Thus we obtain a characterization of win-lose games
that have ε-WSNE with small cardinality supports.

It what follows, we will only consider undominated sets that are contained either in R or
in C

I Lemma 3. Let G be a win-lose game with minimum out-degree at least one. If G contains
an undominated set of cardinality k then there is a (1− 1

k )-WSNE with supports of cardinality
at most k.

1 A set S is undominated if there is no vertex v that has an arc to every vertex in S.
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Proof. Without loss of generality, let U = {r1, ..., rk} be the undominated set. Let the row
player play a uniform strategy p on these k rows. Since U is undominated, any column has
expected payoff at most 1− 1

k against p. Therefore every column cj is a (1− 1
k )-approximate

best response against p.
By assumption, each row vertex ri has out-degree at least one. Let cf(i) be an out-

neighbour of ri (possibly f(i) = f(j) for j 6= i). Now let the column player play a uniform
strategy q on {cf(i)}ki=1. Because q has support cardinality at most k, each pure strategy
ri ∈ U has an expected payoff at least 1

k against q. Thus, these ri’s are all (1− 1
k )-approximate

best responses for the row player against q. So {p, q} is a (1− 1
k )-WSNE with supports of

cardinality at most k. J

I Lemma 4. If G contains a cycle of length 2k then there is a (1− 1
k )-WSNE with supports

of cardinality k.

Proof. Let W be a cycle of length 2k in G. Since G is bipartite, k of the vertices in the
cycle are row vertices and k are column vertices. Let p be the uniform strategy on the rows
in W and let q be the uniform strategy on the columns in W . We claim that p and q form
a (1 − 1

k )-WSNE. To prove this, consider the subgraph F induced by the vertices of W .
Every vertex in F has out-degree (and in-degree) at least one since W ⊆ F . So, every pure
strategy in p, gives the row player an expected payoff of at least 1

k against q. Thus, every
pure strategy in p is a (1− 1

k )-best response for the row player against q. Similarly, every
pure strategy in q is a (1− 1

k )-best response for the column player against p. J

Lemma 3 and Lemma 4 immediately give the following corollary.

I Corollary 5. Let G be a win-lose game with minimum out-degree at least one. If G contains
a cycle of length 2k or an undominated set of cardinality k then then the win-lose game has
(1− 1

k )-WSNE with supports of cardinality at most k.

Importantly, the converse also holds.

I Lemma 6. Let G be a win-lose game with minimum out-degree at least one. If there is an
ε-WSNE (for any ε < 1) with supports of cardinality at most k then G either contains an
undominated set of cardinality k or contains a cycle of length at most 2k.

Proof. Take a win-lose game G = (R ∪ C,E) and let p and q be an ε-WSNE. Suppose the
supports of p and q, namely P ⊆ R and Q ⊆ C, have cardinality at most k.

We may assume that every set of cardinality every set of k (on the same side of the
bipartition) is dominated; otherwise we are already done. In particular, both P and Q are
dominated. Consequently, the row player has a best response with expected payoff 1 against
q. Similarly, the column player has a best response with expected payoff 1 against p. Thus,
for the ε-WSNE {p, q}, we have:

∀i : pi > 0 ⇒ ei
TRq ≥ 1− ε > 0

∀j : qj > 0 ⇒ pTCej ≥ 1− ε > 0

Here the strict inequalities follow because ε < 1. Therefore, in the subgraph F induced by
P ∪Q, every vertex has an out-degree at least one. But then F contains a cycle W . Since H
contains at most 2k vertices, the cycle W has length at most 2k. J

Corollary 5 and Lemma 6 then give the following characterization for win-lose games
with ε-WSNE with small cardinality supports
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I Theorem 7. Let G be a win-lose game with minimum out-degree at least one. Take any
constant k and any ε such that 1− 1

k ≤ ε < 1. The game contains an ε-WSNE with supports
of cardinality at most k if and only if G contains an undominated set of cardinality k or a
cycle of length at most 2k.

4 Digraphs of Large Girth with every Small Subset Dominated

In this section, we will first prove that there exists a finite (k, l)-digraph for every pair of
positive integers k and l and, hence, disprove Conjecture 1. We then adapt the resulting
counterexamples in order to apply Theorem 7 and deduce that, for any constant k and any
ε < 1, there exist bimatrix win-lose games for which every ε-WSNE require supports of
cardinality greater than k.

The main tool we require is a result of Haight [8] from additive number theory. We will
require the following notation. Let Γ be an additive group. Then, for X ⊆ Γ, denote

X −X = {x1 − x2 | x1, x2 ∈ X}, and
(k)X = {x1 + x2 + . . .+ xk | xi ∈ X for 1 ≤ i ≤ k}.

Finally, let Zq = {0, 1, . . . , q − 1} denote the additive group of Z/qZ, the integers modulo q.
Haight [8] proved:

I Theorem 8 ([8]). For all positive integers k and l, there exists a positive integer q̂ = q̂(k, l)
and a set X ⊆ Zq̂, such that X −X = Zq̂, but (k)X omits l consecutive residues.

To construct the finite (k, l)-digraph we will use the following corollary.

I Corollary 9. For every positive integer k, there exists a positive integer q = q(k) and a set
Y ⊆ Zq, such that Y − Y = Zq, but 0 6∈ (k)Y .

Proof. Let l = k and apply Theorem 8 with q = q(k) = q̂(k, k). Thus, we obtain a set
X ⊆ Zq with the properties that: (i) X−X = Zq, and (ii) (k)X omits k consecutive residues.
But these k consecutive residues must contain ky for some y ∈ Zq. Thus, there exists y ∈ Zq
such that ky 6∈ (k)X.

Now, define Y := X − y. Then Y − Y = X −X = Zq. Furthermore, ky 6∈ (k)(Y + y).
This implies that 0 6∈ (k)Y , as desired. J

We now construct a counter-example to Conjecture 2 of Myers. We will then show how
the construction can be extend to disprove Conjecture 1.

I Theorem 10. For any positive integer κ, there exists a (κ, 2)-digraph D.

Proof. Set k = (κ− 1)! and apply Corollary 9. Thus we find Y ⊆ Zq, with q = q(k) where
Y − Y = Zq, and 0 6∈ (k)Y . From Y , we create a directed graph D as follows. Let the vertex
set be V (D) = Zq. Let the arc set be E(D) = {z1z2 | z1 − z2 ∈ Y }.

Now take any pair z1, z2 ∈ Zq. Because Y − Y = Zq, there exist y1, y2 ∈ Y such that
z1 − z2 = y1 − y2. We now claim that the vertex pair z1, z2 ∈ V (D) is dominated. To
see this consider the vertex x ∈ V (D) where x = z1 + y2 = z2 + y1. Then xz1 is an arc
in E(D) because x − z1 = (z1 + y2) − z1 = y2 ∈ Y . On the other hand x = z2 + y1 and
so x − z2 = y1 ∈ Y . Consequently, xz2 is also in E(D). Hence, every subset of V (D) of
cardinality at most 2 is dominated.

It remains to prove that D contains no directed cycle of length less than κ. So, assume
there is a cycle C with ordered vertices z1, z2, . . . , zs, where s < κ. As zizi+1 is an arc we
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have that zi − zi+1 = yi where yi ∈ Y , for 1 ≤ i ≤ s (here we assume zs+1 = z1). Summing
around the cycle we have that y1 + y2 + · · ·+ ys = 0 modulo q. This implies that 0 ∈ (s)Y
as y1, y2, . . . , ys ∈ Y . Consequently, 0 ∈ (ts)Y for any positive integer t. In particular,
0 ∈ (k)Y = ((κ − 1)!)Y , as s ≤ κ − 1. This contradicts the choice of Y and, so, D is a
(κ, 2)-digraph, as desired. J

I Theorem 11. For every pair of positive integers k and l, there exists a finite (k, l)-digraph.

Proof. Without loss of generality, assume l ≥ 2. By Theorem 10, there exists a ((k − 1)(l −
1) + 1, 2)-digraph D′. We claim that the (l − 1)-st power of D′ is a (k, l)-digraph. More
precisely, let the digraph D be defined by V (D) = V (D′) and vw ∈ E(D) if and only if there
exists a directed walk from v to w in D′ using at most (l − 1) edges.

Suppose D has a cycle of length at most k − 1. This corresponds to a closed directed
walk of length a most (k − 1)(l − 1) in D′. This is a contradiction as D′ has no cycles of
length shorter than (k − 1)(l− 1) + 1. Therefore, the shortest directed cycle in D has length
at least k.

It remains to prove that every S ⊆ V (D) with |S| = l is dominated. So take S =
{v1, v2, . . . , vl}. Recall that every pair of vertices in V (D′) = V (D) is dominated in D′. So
there is a vertex z1 dominating v1 and v2 in D′. Now let zi+1 be a vertex dominating zi and
vi+2 for 1 ≤ i ≤ l − 2. By construction, there is a directed walk in D′ from zl−1 to vi of
length at most l − 1, for every 1 ≤ i ≤ l. Thus zl−1vi ∈ E(D), and S is dominated in D, as
desired. J

Observe that these constructions are non-bipartite. To exploit the characterization
of Theorem 7 (and therefore conclude that there are games with no ε-WSNE with small
supports), we desire bipartite constructions. These we can create using a simple mapping
from non-bipartite to bipartite graphs. Given a non-bipartite graph G = (V,E), we build
a win-lose game, that is, a bipartite directed graph G′ = (R ∪ C,E′) as follows. We set
R = C = V . Thus, for each vi ∈ V we have a row vertex ri ∈ R and a column vertex ci ∈ C.
Next, for each arc a = (vi, vj) in G, we create two arcs (ri, cj) and (ci, rj) in G′. Finally, for
each vi ∈ V we add an arc (ri, ci).

Now let’s understand what this mapping does to cycles and undominated sets. First,
suppose G contains a cycle of length k. Then observe that G′ contains a cycle of length k if
k is even and of length k + 1 if k is odd. On the other hand, suppose the minimum length
cycle in G′ is k + 1. This cycle will contain at most one pair of vertices type {ri, ci}, and if
it contains such a pair then these vertices are consecutive on the cycle. (Otherwise we can
find a shorter cycle in G′.) Thus, G contains a cycle of length k or k + 1.

Second, consider an undominated set S ⊆ V of size ` in G. Then S ⊆ R is undominated
in G′. (Note S ⊆ C may be dominated because we added arcs of the form (ri, ci) to G′). On
the other hand if S is undominated in G′ (either in R or C) then S is also undominated in G.

Applying this mapping to a non-bipartite (2k+ 1, k)-digraph produces a bipartite digraph
for which every set of k vertices (on the same side of the bipartition) is dominated but that
has no cycle of length at most 2k. Thus, by Theorem 7, the corresponding game has no
ε-WSNE, for any ε < 1, with supports of cardinality at most k.

I Theorem 12. For any constant k and any ε < 1, there exist bimatrix win-lose games for
which every ε-WSNE requires supports of cardinality greater than k.
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Abstract
We consider the online problem of minimizing the maximum flow-time on related machines. This
is a natural generalization of the extensively studied makespan minimization problem to the
setting where jobs arrive over time. Interestingly, natural algorithms such as Greedy or Slow-
fit that work for the simpler identical machines case or for makespan minimization on related
machines, are not O(1)-competitive. Our main result is a new O(1)-competitive algorithm for the
problem. Previously, O(1)-competitive algorithms were known only with resource augmentation,
and in fact no O(1) approximation was known even in the offline case.
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1 Introduction

Scheduling a set of jobs on machines to optimize some quality of service measure is one
of the most well studied problems in computer science. A very natural measure of service
received by a job is the flow-time, defined as the amount of time the job spends in the system.
In particular, if a job j arriving at time rj completes its processing at time Cj , then its
flow-time Fj is defined as Cj − rj ; i.e., its completion time minus its arrival time. Over the
last few years, several variants of flow-time related problems have received a lot of attention:
on single and multiple machines, in online or offline setting, for different objectives such as
total flow-time, `p norms of flow-time, stretch etc., with or without resource augmentation,
in weighted or unweighted setting and so on. We refer the reader to [15, 13, 12, 4] for a
survey of some of these results.

In this paper we focus on the objective of minimizing the maximum flow-time. This is
desirable when we want to guarantee that each job has a small delay. Maximum flow-time is
also a very natural generalization of the minimum makespan or the load-balancing problem,
that has been studied extensively (see e.g. [5, 9, 1] for a survey). In particular, if all jobs have
identical release times, then the maximum flow-time value is precisely equal to the makespan.
Minimizing the maximum flow-time is also related to deadline scheduling problems. In
particular, the maximum flow-time is at most D if and only if each job j completes by rj +D.
Moreover, note that arbitrary deadlines dj can be modeled by considering the weighted
version of maximum flow-time1.
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1 In deadline scheduling however, the deadlines are typically considered fixed and the focus is on maximizing

the throughput.
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Known results for maximum flow-time

For a single machine, it is easy to see that First In First Out (FIFO) is an optimal (online)
algorithm for minimizing the maximum flow-time. For identical multiple machines, Bender
et al. [8] showed that the Greedy algorithm, that schedules the incoming job on the least
loaded machine is 3 − 2/m competitive, where m is the number of machines. They also
showed that this bound is tight for the Greedy algorithm. If jobs can be preempted and
migrated (moved from one machine to another), [2] gave a 2-competitive algorithm.

A systematic investigation of the problem for various machine models was initiated
recently by Anand et al. [3]. Recall that in the related machines model each machine i has
speed si, and processing job j on machine i takes pij = pj/si units of time. In the more
general unrelated machines model, pij can be completely arbitrary.

Among other results, Anand et al. [3] gave a (1 + ε)-speed O(1/ε)-competitive algorithm
for the unrelated machine case, for any given ε > 0. Here the online algorithm can process
1 + ε units of work per time step, but is compared to an offline optimum that does not have
this extra resource augmentation [14, 15]. They also showed that in the unrelated setting
any algorithm without resource augmentation must be Ω(m) competitive. For the weighted
maximum flow-time objective, they gave a (1 + ε)-speed, O(1/ε3)-competitive algorithm for
the related machines setting, and showed that no O(1)-speed, O(1)-competitive algorithm
exists in the unrelated setting.

A natural question that remains is the complexity of the problem for related machines: Is
there an O(1)-competitive algorithm for the related machines setting, without using resource
augmentation?

This question is particularly intriguing as it is not at all clear what the right algorithm
should be [2]. In fact, no O(1)-approximation is known even in the offline case. One issue is
that the natural Slow-fit algorithm, that is O(1)-competitive for makespan minimization
(even when the jobs are temporary and have unknown durations [6]), is not O(1)-competitive
for maximum flow-time (Lemma 2 below). The algorithm of [3] for weighted maximum
flow-time with resource augmentation is also a variant of Slow-fit. Recently, [7] obtained
an O(logn) approximation for minimizing maximum flow-time on unrelated machines, where
n is the number of machines. However their techniques do not seem to give anything better
for the related machines setting either.

Our main result is the following.

I Theorem 1. There is a 13.5 competitive algorithm, Double-fit, for minimizing maximum
flow-time on related machines.

This also gives the first O(1) approximation for the offline problem. We also show that
no such result is possible in the weighted case (without resource augmentation), and give an
Ω(W ) lower bound on the competitive ratio where W is the maximum to minimum weight
ratio.

High-level approach

There are two competing trade-offs while scheduling on related machines. On one hand the
algorithm should keep as many machines busy as possible, otherwise load might accumulate
and delay future jobs. This accumulated load could be impossible to get rid of if there is no
resource augmentation. On the other hand, the algorithm should keep fast machines empty
for processing large jobs that might arrive later. In particular, fast machines are a scarce
resource that should not be wasted on processing small jobs unnecessarily. It is instructive
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to consider the lower bounds in Section 2, where both Slow-fit and Greedy are shown to
perform badly due to these opposite reasons.

To get around this, we design an algorithm that combines the good properties of both
Slow-fit and Greedy. In particular, the algorithm uses a two phase strategy while assigning
jobs to machines at each step. First, the jobs are spread out to ensure that machines are
busy as much as possible. Once machines are saturated, the algorithm shifts into a Slow-fit
mode, which ensures that small jobs do not unnecessarily go on fast machines.

The key difficulty in the analysis is to control how the two phases interact with each
other. To do this, we maintain two invariants that capture the dynamics of the algorithm,
and control how much the online algorithm’s load on a subset of machines deviates from
the offline algorithm’s load on those machines. The main part of the argument is to show
inductively that these invariants are maintained over time.

Notation and formal problem description

There are m machines indexed by non-decreasing order of speeds s1 ≤ s2 ≤ . . . ≤ sm. The
processing requirement of job j is pj , and it requires time pj/si on machine i. We will call
pj the work of j, and pj/si its load on machine i. Jobs arrive online over time and pj is
known immediately upon its release time rj . The goal is to find a schedule that minimizes
the maximum flow-time, and we assume that a job cannot be migrated from one machine to
another. We use Opt to denote some fixed optimum offline schedule, and also to denote the
value of this solution.

2 Lower bounds on Slow-fit and Greedy

Slow-fit

Algorithm Slow-fit takes as input a threshold Fopt (the current guess on optimum), and
schedules every incoming job on the slowest possible machine while keeping the load below
Fopt. If the jobs cannot be feasibly scheduled on any machine, the algorithm fails and the
threshold is doubled.

I Lemma 2. Slow-fit has a competitive ratio of Ω(m).

Proof. We describe an instance where the threshold Fopt keeps doubling until it reaches m
even though Opt = 2.

There are m identical machines (but we arbitrarily order them from slow to fast). Next,
we assume that Fopt ≥ 2, which can be achieved by giving 2m unit-size jobs initially at t = 0.

At each time step t ≥ 2, m unit-length jobs arrive. As Slow-fit will not use all m
machines initially, there will be some time t0 at which all the machines 1, . . . ,m− 1 have
load Fopt. At time t0 + 1, when these initial m− 1 machines have Fopt − 1 pending jobs, we
release 2m unit-size jobs. As there is at most m− 1 + Fopt total capacity available, these
jobs cannot be scheduled feasibly if Fopt ≤ m. On the other hand, at each time step Opt
distributes the incoming jobs over all machines and achieves value 2. J

Intuitively, Slow-fit unnecessarily builds up load on slow machines while keeping the
fast machines empty, and cannot recover if there is small burst of jobs.
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Greedy

When a job j arrives, Greedy schedules j on the machine that minimizes the flow-time of j
(assuming FIFO order). Ties are broken arbitrarily. The following bound is well-known [11],
but we sketch it here for completeness. The idea is that Greedy puts too many slow jobs
on fast machines, which causes problems when large jobs arrive.

I Lemma 3. Greedy has a competitive ratio of Ω(logm).

Proof. Consider an instance where we have k groups of machines where group Gi contains
22k−2i machines of speed 2i. Note that the total processing power in group Gi is equal
to Si = 22k−i. The processing power of groups i, . . . , k combined is thus equal to Pi =∑k

i′=i 22k−i′ ≤ 2Si.
We receive k sets of jobs, all at time 0, but in order. For all i = 1, . . . , k, set Ji contains

22k−2i jobs of size 2i. Again, note that the total size of jobs in set Ji is equal to 22k−i.
Greedy will spread jobs from set i over groups i, . . . , k. Group k (containing only a single
machine of speed 2k) will receive a Sk/Pi ≥ 1

2Sk/Si = 2−k+i−1 fraction of these jobs. This
means group k receives

∑k
i=1 22k−i2−k+i−1 = k2k−1 work. Since group k has a single machine

of speed 2k, finishing these jobs takes Ω(k) time.
However, optimum can schedule the i-th batch of jobs on group i machines, incurring a

maximum load of 1 (i.e., it does Slow-fit with threshold 1). J

3 The Algorithm Double-fit

We describe our algorithm, denoted by Double-fit hereafter. Double-fit takes an input
a parameter Fopt, which is supposed to be our estimate of Opt. By a slight variation on
the doubling trick that loses an additional factor of 1.5 (see Section 3.4), we will assume
henceforth that Fopt ∈ [Opt, 1.5Opt).

We divide time into intervals Ik of size 3Fopt as Ik = [3(k − 1)Fopt, 3kFopt). We refer to
time 3kFopt as the k-th epoch. For each k = 1, 2, . . . , Double-fit batches the jobs that
arrive during Ik and schedules them at epoch k using the algorithm in Figure 1. We use
[i : m] to denote the machines i, . . . ,m. If the total remaining work on jobs on machine i is
w(i) at time t, we say that it has load w(i)/si.

1. Let J denote the set of jobs arriving during Ik.
2. Partition jobs in J into classes J1, . . . , Jm, where each job j is in class Ji with the

smallest index i such that pj ≤ si · Fopt.
3. For i = m,m− 1, . . . , 1
4. Consider the jobs j in Ji in arbitrary order and assign them as follows:
5. (Saturation Phase:) If some machine in [i : m] is loaded below 3Fopt
6. schedule j on the slowest such machine.
7. (Slow-fit Phase:) Else schedule j on the slowest machine in [i : m]
8. such that its load stays below 6Fopt.
9. If no such machine exists return FAIL.

Figure 1 Algorithm Double-fit for the epoch k.
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Description

First, Double-fit classifies the jobs arriving during Ik depending on the smallest machine
on which they have size no larger than Fopt. Note that as Fopt ≥ Opt, if job j is put in class
Ji, then Opt cannot schedule job j onto a machine smaller than i either.

Double-fit considers jobs from classes Jm down to J1 (this ordering will be used
crucially). Each class is scheduled in two phases. In the saturation phase, when scheduling
a job j, it checks if there is some machine in [i : m] with load less than 3Fopt. If so, j is
scheduled on the slowest such machine. If no such machine exists, the algorithm enters the
Slow-fit phase (for class Ji), and performs Slow-fit for class Ji on machines [i : m] with
threshold 6Fopt.

3.1 Analysis
Our goal in this section is to show the following result.

I Theorem 4. If Fopt ≥ Opt, then the algorithm never fails.

This directly implies Theorem 1 as follows. Each job spends at most 3Fopt time waiting
to be assigned, and at most 6Fopt on its designated machine, thus the flow-time of any job is
at most 9Fopt. As Fopt ≤ 1.5Opt by the doubling trick, this implies a competitive ratio of
13.5

For the purpose of analysis, it will be convenient to consider a restricted Opt that also
batches jobs and schedules the jobs arriving in Ik at epoch k. Note that such a restricted
algorithm has objective at most 3Fopt + Opt ≤ 4Fopt (as we can take the original schedule
and delay every job by 3Fopt). To prove theorem 4, we will in fact prove the following
stronger result: Double-fit never fails for any instance where the restricted Opt has value
at most 4Fopt.

The Invariants

Fix an epoch k. Let Ai(k) and Bi(k) denote the total work on machines [i : m] in Double-
fit’s schedule just before and just after all the jobs from interval Ik are scheduled respectively.
Similarly, let Aopt

i (k) and Bopt
i (k) be the total work remaining on machines [i : m] in Opt’s

schedule.
We will show that the following two invariants hold at each epoch k.

Ai(k) ≤ Aopt
i (k) + Fopt

m∑
i′=i

si′ . (1)

Bi(k) ≤ max
{

3Fopt
m∑

i′=i

si′ , Bopt
i (k)

}
+ Fopt

m∑
i′=i

si′ . (2)

Roughly speaking, invariants (1) and (2) show that the load on any suffix of Double-fit’s
machines stays close to Opt’s load on those machines, both before and after the jobs are
scheduled in epoch k. We will prove that (1) and (2) hold by a careful induction over i and k.

Before we prove these invariants, let us first see why they imply Theorem 4.

Proof of Theorem 4. Consider a fixed epoch k. As the (restricted) Opt has maximum
flow-time at most 4Fopt, for each i it must hold that Bopt

i (k) ≤ 4Fopt
∑m

i′=i si′ . Thus by
(2) it follows that Bopt

i (k) ≤ 5Fopt
∑m

i′=i si′ for each i. Choosing i = m, this implies that
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Double-fit never loads machine m above 5Fopt and thus never fails (as machine m always
has room for an additional job). J

Proving the Invariants

The strategy for proving that (1) and (2) hold at all epochs k will be to show the following
two lemmas.

I Lemma 5. If at epoch k, (1) holds for all machines, then (2) also holds for all machines.

The next step will be to relate the conditions at epochs k and k + 1.

I Lemma 6. If at any epoch k, (2) holds for all machines, then (1) also holds for all
machines at epoch k + 1.

As (1) trivially holds for k = 0 (as Ai(0) = Aopt
i (0) = 0 for all i), applying Lemma 5 and

Lemma 6 alternately implies that (1) and (2) hold for all k.

3.2 Proof of Lemma 5
We first show that Double-fit is conservative in scheduling small jobs on fast machines.

I Lemma 7. Let i1 < i2. If some job j of class i1 is scheduled by Double-fit onto
machine i2 during the saturation phase (i.e. using threshold 3Fopt), then all jobs of class i
for i1 < i ≤ i2 are also scheduled during the saturation phase.

Proof. Consider the state of Double-fit’s machines just before j was scheduled. As j is
scheduled on machine i2 during the saturation phase, the load on i2 must be below 3Fopt at
that point. As jobs of class i for i1 < i ≤ i2 were considered before class i1-jobs, the load on
i2 was also below 3Fopt after scheduling class i jobs, and thus Double-fit must have never
switched to the Slow-fit phase while considering class i. J

Next we define the notion of separated machines, which will play a crucial role in the
analysis.

I Definition 8. Machines i1 and i2 (i1 < i2) are separated at epoch k if Double-fit
scheduled no jobs from classes [1 : i1] onto machines [i2 : m] at epoch k.

The following lemma shows that if two consecutive machines are separated, it is easy to
relate epochs k and k + 1.

I Lemma 9. If machines i − 1 and i are separated at epoch k, then (1) implies (2) for
machine i. Moreover this trivially holds for machine i = 1.

Proof. As machines i− 1 and i are separated at epoch k, no jobs from class [1 : i− 1] were
scheduled onto machines [i : m] at epoch k. Thus

Bi(k) = Ai(k) +
m∑

i′=i

|Ji′ |, (3)

where |Ji| represents the total work of all jobs in Ji.
As jobs from Ji cannot be scheduled onto machines [1 : i− 1] in an optimal schedule, we

also obtain

Bopt
i (k) ≥ Aopt

i (k) +
m∑

i′=i

|Ji|. (4)
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This implies that

Bi(k) = Ai(k) +
m∑

i′=i

|Ji′ | ≤ Ai(k) +Bopt
i (k)−Aopt

i (k) ≤ Bopt
i (k) + Fopt

m∑
i′=i

si′ , (5)

where the last step follows by our assumption that (1) holds for (i, k).
Finally for i = 1, we observe that both (3) and (4) hold with equality, and hence the

result holds trivially. J

We now have all the tools we need to prove Lemma 5.

Proof of Lemma 5. We use induction over i in the order of larger to smaller i. In particular,
to prove that (2) holds for some pair (i, k), we assume that (1) holds for all (i′, k) and that (2)
holds for all (i′, k) with i′ > i. As the base case note that this is vacuously true for i = m+ 1
(as all relevant quantities are 0).

We consider three cases depending on how Double-fit assigns jobs from classes [1 : i−1]
to machines [i : m].
1. No jobs from class [1 : i− 1] were scheduled onto machines [i : m]: In this case, machines

i− 1 and i are separated and (2) follows from Lemma 9.

2. Jobs from classes [1 : i− 1] are only scheduled onto machines [i : m] during the saturation
phase: Let imax ≥ i denote the smallest index such that machines i− 1 and imax + 1 are
separated (if no such machine exists, set imax = m). By the inductive hypothesis, we can
assume that (2) holds for imax + 1. In the case where imax = m, this holds vacuously.
As jobs from classes [1 : i − 1] are assigned to [i : m] (and hence to imax) during the
saturation phase, Lemma 7 implies that all jobs in classes [i : imax] were also scheduled
during the saturation phase, which implies that all machines [i : imax] are loaded below
4Fopt. This gives us the following:

Bi(k) ≤ 4Fopt
imax∑
i′=i

si′ +Bimax+1(k)

≤ 4Fopt
imax∑
i′=i

si′ + max
{

3Fopt
m∑

i′=imax+1
si′ , Bopt

imax+1(k)
}

+ Fopt

m∑
i′=imax+1

si′

= 3Fopt
imax∑
i′=i

si′ + max
{

3Fopt
m∑

i′=imax+1
si′ , Bopt

imax+1(k)
}

+ Fopt

m∑
i′=i

si′

≤ max
{

3Fopt
m∑

i′=i

si′ , Bopt
i (k)

}
+ Fopt

m∑
i′=i

si′ ,

where the second inequality follows from the inductive hypothesis for machine imax + 1.

3. Some job j from class [1 : i− 1] was scheduled onto machines [i : m] during Slow-fit phase
(using threshold 6Fopt): We assume that i > 1, otherwise the result follows from case 1.
Let imin < i denote the largest index such that machines [imin : i− 1] have load more
than 5Fopt and machine imin − 1 has load at most 5Fopt. If no such machine exists, set
imin = 1. imin is well-defined as i > 1 and machine i− 1 must have load more than 5Fopt
as job j from class [1 : i − 1] was assigned to a machine in [i : m] during the Slow-fit
phase.

I Claim 1. Machines imin − 1 and imin are separated or imin = 1.
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Proof. This is trivially true if imin = 1.
If imin > 1, suppose that some job j′ from class [1 : imin− 1] was scheduled onto machines
[imin : m]. Now j′ cannot be scheduled during the Slow-fit phase as this would imply that
the load on imin − 1 was more than 5Fopt, which contradicts the choice of imin.
So all jobs in [1 : imin − 1] that were assigned to [imin : m] must have been assigned
during the saturation phase. Let i′ ≥ imin denote the largest index where such a job is
assigned. By Lemma 7, it must be that all machines [imin : i′] were assigned load during
the saturation phase and must have load at most 4Fopt. This contradicts that imin has
load more than 5Fopt. J

By Lemma 9 applied to imin, we get that (2) holds for machine imin and thus

Bimin(k) ≤ max
{

3Fopt
m∑

i′=imin

si′ , Bopt
imin

(k)
}

+ Fopt

m∑
i′=imin

si′ . (6)

Furthermore, by choice of imin all the machines in [imin : i− 1] are loaded above 5Fopt.
This implies that

Bi(k) ≤ Bimin(k)− 5Fopt
i−1∑

i′=imin

si′ . (7)

As every machine is loaded below 4Fopt in an optimal schedule, we also have

Bopt
imin

(k) ≤ Bopt
i (k) + 4Fopt

i−1∑
i′=imin

si′ . (8)

Adding (6) and (7) we obtain that

Bi(k) ≤ max
{

3Fopt
m∑

i′=imin

si′ , Bopt
imin

(k)
}

+ Fopt

m∑
i′=imin

si′ − 5Fopt
i−1∑

i′=imin

si′

≤ max
{

4Fopt
m∑

i′=i

si′ , Bopt
imin

(k) + Fopt

m∑
i′=i

si′ − 4Fopt
i−1∑

i′=imin

si′

}

≤ max
{

4Fopt
m∑

i′=i

si′ , Bopt
i (k) + Fopt

m∑
i′=i

si′

}
By (8)

= max
{

3Fopt
m∑

i′=i

si′ , Bopt
i (k)

}
+ Fopt

m∑
i′=i

si′ ,

which implies that (2) holds for i.
J

3.3 Proof of Lemma 6
We now prove Lemma 6, which is relatively easier.

Proof of Lemma 6. We will apply induction over i (in decreasing order of machines). Con-
sider epoch k. We assume that (2) holds for all i′ at epoch k, and that (1) holds for all
i′ > i at epoch k + 1. For the base case of i = m+ 1 the lemma follows trivially since all the
relevant quantities are 0.

Consider some machine i. We consider two cases depending on the load of machine i
after the jobs were scheduled at epoch k.
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1. Machine i has load at most 4Fopt after epoch k, i.e., Bi(k) − Bi+1(k) ≤ 4Fopt · si: At
epoch k+1 before the jobs arriving during interval Ik+1 are scheduled, the load of machine
i will be at most Fopt. Thus we have that

Ai(k + 1) ≤ Ai+1(k + 1) + Fopt · si

≤ Aopt
i+1(k + 1) + Fopt

m∑
i′=i+1

si′ + Fopt · si

≤ Aopt
i (k + 1) + Fopt

m∑
i′=i

si′ .

Here the second inequality follows by the inductive hypothesis for machine i+ 1, and the
third inequality follows as Aopt

i (k + 1) is non-decreasing as i decreases.
2. Machine i is loaded above 4Fopt after epoch k, i.e., Bi(k)−Bi+1(k) > 4Fopt · si: In this

case, some job j must have been scheduled onto machine i during the Slow-fit phase.
This only happens if j could not be scheduled during the saturation phase. In particular,
this implies that all the machines [i : m] (which is surely a subset of machines where j
could have been scheduled) were loaded above 3Fopt. So the total work on all machines
[i : m] decreases by exactly 3Fopt

∑m
i′=i si′ during interval Ik+1.

Thus we have that

Ai(k + 1) = Bi(k)− 3Fopt
m∑

i′=i

si′ . (9)

Similarly, as Opt can complete at most 3Fopt
∑m

i′=i si′ on machines [i : m] during this
interval, we have

Aopt
i (k + 1) ≥ Bopt

i (k)− 3Fopt
m∑

i′=i

si′ . (10)

As (2) holds for each i at epoch k, we obtain that

Ai(k + 1) ≤ Bi(k)− 3Fopt
m∑

i′=i

si′

≤ Bopt
i (k) + Fopt

m∑
i′=i

si′ − 3Fopt
m∑

i′=i

si′ By (2)

≤ Aopt
i (k + 1) + Fopt

m∑
i′=i

si′ ,

and hence (1) holds for i at epoch k + 1, which completes the proof. J

3.4 Removing the assumption of knowledge of Opt
We describe a variant of the standard doubling trick where we increase the online estimate
of Opt by only 1.5 times at each step.

Consider some epoch k where the algorithm first fails with the current guess of Fopt. It
must be that (2) does not hold. In particular, (1) holds at epoch k as (2) holds at k−1. Now,
Lemma 5 implies that Fopt < Opt. We then abort epoch k, and do not schedule any jobs.
Instead, we set F ′opt = 1.5Fopt and redefine the new epoch to be the time (k− 1)Fopt + 3F ′opt.
Note that between these epochs 4.5Fopt time passes, so at the next epoch the load on all
machines in the schedule of Double-fit will be at most 6Fopt − 3F ′opt = 1.5Fopt = F ′opt.
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This implies that for all i

Ai(k) ≤ Fopt
m∑

i′=i

si′ ≤ Aopt
i (k) + Fopt

m∑
i′=i

si′ .

The crucial point is that (1) holds for all machines i at this new epoch irrespective of the
workload of the new restricted Opt (with parameter F ′opt). Thus, (2) holds if Fopt ≥ Opt
and Double-fit proceeds as normal.

4 Other Lower bounds

We also show simple (but strong) lower bounds for weighted maximum flow-time and
maximum stretch.

I Lemma 10. Any algorithm for minimizing maximum weighted flow-time on identical
machines must have a competitive ratio of Ω(W ), where W is the ratio between the largest
and smallest weight.

Proof. Consider the following instance on 2 machines. At time t = 0 we receive 2 jobs of
size w with weight 1. Now, any algorithm has three options: (i) it schedules both jobs on
the same machine, (ii) it schedules both jobs on different machines, or (iii) it waits before
assigning jobs. In all three cases, we show that it will end up trailing by at least w work
behind an optimal schedule.

In option (i), w work remains at time t = w, while optimum is empty. In option (ii) we
instantly receive another 2w-sized job with weight 1, so that one of our machines has load
3w. At time t = 2w we have w load remaining while an optimal schedule is empty. In option
(iii) we receive no jobs until algorithm decide to choose (i) or (ii). If we have not chosen by
time t = w we are trailing 2w work behind an optimal schedule.

Once we trail w work behind optimum, at every unit time step we receive 2 unit-size jobs
of weight w. If the trailing jobs are ever to be finished, at least w/2 delay is incurred on the
weight w jobs, implying an objective value of Ω(w2). Opt on other hand has value O(w). J

A lower bound of Ω(W 0.4) for maximum weighted flow-time follows from [10], using the
analogy between delay factor and weighted maximum flow-time described in [3]. By replacing
the unit size jobs by unit weight jobs in the above lower bound instance, this also directly
implies an Ω(S) lower bound on the competitive ratio for maximum stretch [3] where S is
the ratio between the size of the largest and the smallest job.

5 Concluding Remarks

Note that our algorithm Double-fit is not immediate dispatch, i.e., it does not dispatch
a job to a machine immediately upon arrival. We are unable to extend the ideas here
to obtain an O(1)-competitive immediate dispatch algorithm, and it is not clear to us
whether such an algorithm exists. Given that in the unrelated setting, there can be no
O(1)-speed, O(1)-competitive immediate dispatch algorithm [3] (while there is a (1+ε)-speed,
O(1/ε)-competitive algorithm), it would be quite interesting to resolve this question.
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Abstract
We consider a natural online optimization problem set on the real line. The state of the online
algorithm at each integer time t is a location xt on the real line. At each integer time t, a convex
function ft(x) arrives online. In response, the online algorithm picks a new location xt. The
cost paid by the online algorithm for this response is the distance moved, namely |xt − xt−1|,
plus the value of the function at the final destination, namely ft(xt). The objective is then to
minimize the aggregate cost over all time, namely

∑
t (|xt − xt−1|+ ft(xt)). The motivating

application is rightsizing power-proportional data centers. We give a 2-competitive algorithm for
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cost
∑
t (|xt − xt−1|+ ft(xt)) over all time. We refer to this problem as Online Convex

Optimization with Switching Costs (OCO). This problem is also referred to as Smoothed
Online Convex Optimization in the literature.

1.1 Motivation and Related Results
The OCO problem has been extensively studied recently, partly due to its application within
the context of rightsizing power-proportional data centers, see for example [1, 15, 12, 14,
10, 11, 13]. In these applications, the data center consists of a homogeneous collection of
servers/processors that are speed scalable and that may be powered down. The load on the
data center varies with time, and at each time the data center operator has to determine
the number of servers that will be operational. The standard assumption is that there is
some fixed cost for powering a server on, or powering the server off. Most naturally this
cost incorporates the energy used for powering up or down, but this cost may incorporate
ancillary terms such as the cost of the additional wear and tear on the servers. As for the
processor speeds, it natural to assume that the speed of a processor is scaled linearly with
its load (as would be required to maintain a constant quality of service), and that there
is a convex function P (s) that specifies the power consumed as a function of speed. The
most commonly used model for P (s) is sα + β for constants α > 1 and β. Here the first
term sα is the dynamic power and the second term β is the static or leakage power. At each
time, the state of the online algorithm represents the number of servers that are powered on.
In a data center, there are typically sufficiently many servers so that this discrete variable
can be reasonably be modeled a continuous one. Then, in response to a load Lt at time t,
the data center operator decides on a number of servers xt to use to handle this load. The
algorithm pays a cost of |xt−1 − xt| for either powering-up or powering-down servers, and
a cost of xt((Lt/xt)α + β) for handling the load, which is the most energy efficient way to
service the load Lt using xt processors. Note that the function xt((Lt/xt)α + β) is convex
in xt, and hence this application can be directly cast in our general online model where
ft(x) = x((Lt/x)α + β).

Lin et al. [12] observed that the offline problem can be modeled as a convex program,
and thus is solvable in polynomial time, and that if the line/states are discretized, then
the offline problem can be solved by a straight-forward dynamic program. They also give a
3-competitive deterministic algorithm. The algorithm computes (say via solving a convex
program) the optimal solution to date if moving to the left on the line was free, and the
optimal solution to date if moving to the right on the line was free, and then moves the least
distance possible so that it ends up between the final states of these two solutions. Note
that this algorithm solves a (progressively larger) convex program at each time. Andrew et
al. [1] show that there is an algorithm with sublinear regret, but that O(1)-competitiveness
and sublinear regret cannot be simultaneously achieved. They also claim that a particular
randomized online algorithm, RBG, is 2-competitive, but this claim has been withdrawn [16].

The OCO problem is also related to several classic online optimization problems. It is a
special case of the metrical task system problem in which the metric is restricted to be a line
and the costs are restricted to be convex functions on the real line. The optimal deterministic
competitive ratio for a general metrical task system is 2n−1, where n is the number of points
in the metric [5], and the optimal randomized competitive ratio is Ω(logn/ log logn) [4, 3],
and O(log2 n log logn) [8]. The OCO problem is closely related to the allocation problem
defined in [2], that arises when developing a randomized algorithm for the classic k-server
problem using tree embeddings of the underlying metric space [7, 2]. In fact, the algorithm
RBG in [1] is derived from a similar algorithm in [7] for this k-server “subproblem”. The
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classic ski rental problem, where randomized algorithms are allowed, is a special case of
the OCO problem. The optimal competitive ratio for randomized algorithms for the ski
rental problem is e/(e− 1) [9] and this translates to a matching lower bound for any online
algorithm for the OCO problem. The ski rental problem where only deterministic algorithms
are allowed is a special case of the deterministic version of the OCO problem, and the optimal
deterministic competitive ratio for the ski rental problem is exactly 2.

1.2 Our Results
2-Competitive Algorithm. Our main result, presented in Section 3, is a 2-competitive
algorithm (thus we improve the upper bound on the optimal competitive ratio from 3 to 2).
It will be convenient to first present a “fractional algorithm” A that maintains a probability
distribution p over locations. In Section 2 we show how to convert a fractional algorithm
into a randomized algorithm, and how to convert any c-competitive randomized algorithm
into a c-competitive deterministic algorithm. Although the observation that randomization
is not helpful is straight-forward, as best as we can tell, it has not previously appeared in
the literature on this problem. The deterministic algorithm that results from these two
conversations maintains the invariant that the current location is the expected location given
the probability distribution over the states that A maintains.

We now describe the fractional algorithm A. In response to the arrival of a new function
ft(x), the algorithm A computes a point xr to the right of the minimizer xm of ft(x) such
that the derivative of ft(xr) is equal to twice the total probability mass to the right of xr.
Similarly the algorithm A computes a point xl to the left of the minimizer xm such that the
(negative) derivative of ft(xl) is equal to twice the total probability mass to the left of xl.
Then, the probability mass at each state x ∈ [xl, xr] is increased by half the second derivative
of ft(x) at that point, while the probability mass for each state x 6∈ [xl, xr] is set to 0. A
simple calculation shows that this operation, along with our choices of xl and xr, preserves
the property that p is a valid probability distribution. One can convert such a probability
distribution into a deterministic algorithm by initially picking a random number γ ∈ [0, 1],
and at any time t, moving to the state xt such that the probability mass to the left of xt in
the current distribution is exactly γ.

The analysis of A uses an amortized local competitiveness argument, using the potential
function

Φ(p, x∗) = 2
∫ ∞
y=−∞

|x∗ − y|p(y) dy −
∫ ∞
x=−∞

∫ x

y=−∞
p(x)p(y)(x− y) dx dy.

where x∗ is the position of the adversary. The first term is depends on the expected distance
between A’s state and the adversary’s state, and the second term is proportional to the
expected distance of two randomly drawn states from A’s probability distribution on states.
This potential function can be viewed as a fractional generalization of the potential function
used to show that that the Double Cover algorithm is k-competitive for the k-server problem
on a line metric [6].

3-Competitive Memoryless Algorithm. Our algorithmA requires time and memory roughly
proportional to the number of states and/or the number of time steps to date. Similarly, the
3-competitive algorithm from [12], requires solving a convex program (with the entire history)
at each time step. However, as pointed out in [12], this may well be undesirable in settings
where the data center operator wants to adapt quickly to changes in load. Previously it was
not known if O(1)-competitiveness can be achieved by a “memoryless” algorithm. Intuitively
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in a memoryless algorithm the next state xt only depends upon the previous state xt−1 and
the current function ft(x). In Section 4 we show that O(1)-competitiveness is achievable by
a memoryless algorithm – we give a simple memoryless algorithmM, and show that it is
3-competitive. Given function ft(x) at time t, this algorithmM moves in the direction of
the minimizer of ft(x) until either it reaches the minimizer, or it reaches a state where its
movement cost equals twice the function cost of this state. The analysis is via an amortized
local-competitiveness argument using the distance between the online algorithm’s state and
the adversary’s state (times three) as the potential function.

Lower Bounds. In Section 5 we show a matching lower bound of 3 on the competitiveness
of any deterministic memoryless online algorithm. We also give a general lower bound of
1.86 on the competitiveness of any algorithm, which shows that in some sense this problem
is strictly harder than ski rental, which has an e/(e− 1)-competitive randomized algorithm.

2 Reduction From Randomized to Deterministic

In this section, we explain how to convert a probability distribution over locations into
randomized algorithm, and present a simple derandomization of any randomized algorithm.

Converting a Fractional Algorithm into a Randomized Algorithm: The randomized al-
gorithm initially picks a number γ ∈ [0, 1] uniformly at random. Then the randomized
algorithm maintains the invariant that at each time t the location xt has the property that
the probability mass to the left of xt in the distribution for the fractional algorithm is
exactly γ.

I Theorem 2.1. For the OCO problem, if there is a c-competitive randomized algorithm R
then there is a c-competitive deterministic algorithm D.

Proof. Let R denote the randomized algorithm, and let xt denote the random variable for its
position at time t. Then, our deterministic algorithm D sets its location to be the expected
location of R, i.e., its location at time t is µt := E [xt]. It is then a simple application of
Jensen’s inequality to observe that D’s cost is at most R’s expected cost for each time t.
Indeed, first observe that D’s cost at time t is |µt − µt−1|+ ft(µt), and R’s expected cost is
E [|xt − xt−1|]+E [ft(xt)]. Now, notice that both the absolute value function and the function
ft(·) are convex functions, and therefore R’s cost is at least |E [xt − xt−1] |+ ft(E [xt]), which
is precisely the cost incurred by the algorithm D. Summing over all t completes the proof. J

3 The Algorithm A and its Analysis

In this section, we describe the online algorithm A and prove that it is 2-competitive. For
simplicity, we will assume that the functions ft(x) are all continuous and smooth. That is,
we assume that the first derivative f ′t(x) and second derivative f ′′t (x) of ft(x) are well defined
functions. We also assume that ft(x) has a unique bounded minimizer xm, and f ′t(xm) = 0.
The assumptions are merely to simplify our presentation; we discharge these assumptions in
Section 3.1.

The algorithm A was informally described in the introduction, and is more formally
described in Figure 1. At any time t, the state of algorithm A is described by a probability
distribution pt(x) over the possible states x. So

∫ b
a
pt(x)dx is the probability that xt ∈ [a, b].

APPROX/RANDOM’15
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When a new function ft(·) arrives:
(i) Let xm = argminft(x) denote the minimizer of ft, xr ≥ xm denote the point to the

right of xm where 1
2
∫ xr

xm
f ′′(y) dy =

∫∞
xr
pt−1(y) dy.

(ii) Let xl ≤ xm denote the point to the left of xm where 1
2
∫ xm

xl
f ′′(y) dy =

∫ xl

−∞ pt−1(y) dy.
(iii) We update the probability density function of our online algorithm as pt(x) =

pt−1(x) + 1
2f
′′(x) for all x ∈ [xl, xr] and pt(x) = 0 for all other x.

Figure 1 The 2-competitive Online Algorithm A.

xm xrxl
1
2

∫ xr
xm

f ′′(y)dy =
∫∞
xr

pt−1(y)dy1
2

∫ xm
xl

f ′′(y)dy =
∫ xl−∞ pt−1(y)dy

Figure 2 Illustration of xm, xl and xr.

Before beginning our analysis of A, let us introduce some notation. Let Ht = E [ft(xt)] =∫∞
y=−∞ ft(y)pt(y) dy denote the expected hit cost for algorithm A at time t. Let Mt =
E [|xt − xt−1|], which is equal to the earthmover distance between the two probability
distributions1, denote the expected move cost for algorithm A at time t. Similarly, let x∗t be
the adversary’s state after time t. Let H∗t = ft(x∗t ) be the hit cost for the adversary at time
t, and M∗t = |x∗t − x∗t−1| be the movement cost for the adversary at time t. The analysis will
use the potential function:

Φ(p, x∗t ) = Φ1(p, x∗t ) + Φ2(p)

where
Φ1(p, x∗t ) = 2

∫ ∞
y=−∞

|x∗t − y| p(y) dy

and
Φ2(p) = −

∫ ∞
x=−∞

∫ x

y=−∞
p(x)p(y)(x− y) dx dy.

Note that Φ is initially zero. To see that Φ is nonnegative, we show that Φ1(p, x∗t ) ≥ −Φ2(p)
as follows:

−Φ2(p) =
∫ ∞
x=−∞

∫ x

y=−∞
p(x)p(y)(x− y) dx dy

1 Given two distributions, where each distribution is viewed as a unit amount of "dirt" piled on the line,
the earthmover distance (aka Wasserstein metric) is the minimum “cost” of turning one pile into the
other, which is the amount of dirt that needs to be moved times the distance it has to be moved.
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= 1
2

∫ ∞
x=−∞

∫ ∞
y=−∞

p(x)p(y)|x− y| dx dy

≤ 1
2

∫ ∞
x=−∞

∫ ∞
y=−∞

p(x)p(y) (|x− x∗t |+ |y − x∗t |) dx dy

= 1
2

(∫ ∞
x=−∞

p(x)|x− x∗t |
∫ ∞
y=−∞

p(y) dx dy

+
∫ ∞
y=−∞

p(y)|y − x∗t |
∫ ∞
x=−∞

p(x) dx dy
)

= 1
2

(∫ ∞
x=−∞

p(x)|x− x∗t | dx+
∫ ∞
y=−∞

p(y)|y − x∗t | dy
)

=
∫ ∞
x=−∞

p(x)|x− x∗t | dx

= 1
2Φ1(p, x∗t ) ≤ Φ1(p, x∗t ).

Thus, to prove that A is 2-competitive it is sufficient to show that at all times t:

Ht +Mt +
(
Φ(pt, x∗t )− Φ(pt−1, x

∗
t−1)

)
≤ 2(H∗t +M∗t ). (1)

We first consider the effect on inequality (1) as the adversary moves from x∗t−1 to x∗t .
The only term which increases in the LHS of inequality (1) is the first term in Φ, and this
increase is at most 2|x∗t−1 − x∗t | = 2M∗t , so inequality (1) holds. For the rest of the analysis
we consider the effect on inequality (1) when the algorithm A moves from pt−1 to pt.

To make this easier we make several simplifying assumptions, and simplify our notation
slightly. Without loss of generality, we assume that ft(xm) = 0 (i.e., the minimum value is 0).
Indeed, for general ft, we can assume gt(x) = ft(x)− ft(xm) and prove the entire analysis for
gt, and finally add the valid inequality ft(xm) ≤ 2ft(xm) to inequality (1) for gt to get the
corresponding inequality for ft. (Here we use that the functions ft are non-negative.) Also
without loss of generality we will translate the points so that xm = 0. To further simplify
exposition, let us decompose ft into two separate functions, f>t (x) and f<t (x), where the
former function is 0 for all x ≤ xm and ft(x) otherwise, and likewise, the latter function is
0 for all x ≥ xm and ft(x) otherwise. It is easy to see that ft(x) = f<t (x) + f>t (x) for all
x. Hence, we can imagine that we first feed f>t (·) to the online algorithm, and then feed
f<t (·) to the online algorithm, and separately show inequality (1) for each of these functions.
Henceforth, we shall assume that we are dealing with the function f>t (x). Finally we will
assume without loss of generality that xm is the leftmost point with non-zero probability
mass.

For notational simplicity, we avoid overuse of subscripts and superscripts by letting d
denote xr, z denote x∗t , p denote the original distribution pt−1, and q denote the resultant
distribution pt(·). So by the definition of the algorithm A, we have in our new notation,∫ d
x=0

1
2f
′′(x) dx =

∫∞
x=d p(x) dx. Here are some simple facts used repeatedly in our analysis.

I Fact 3.1. For any smooth convex function f , and any values a, b and c,∫ b

x=a
(c− x)f ′′(x) dx = (c− b)f ′(b)− (c− a)f ′(a) + f(b)− f(a) .

Proof. This is an application of integration by parts. J

I Fact 3.2.
∫∞
d
p(x) dx = f ′(d)/2. And hence,

∫ d
x=0 p(x) dx = 1− f ′(d)/2.
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Proof. By the definition of A, it is the case that 1
2
∫ d

0 f
′′(x)dx =

∫∞
d
p(x) dx. Then note

that 1
2
∫ d

0 f
′′(x)dx = 1

2 (f ′(d)− f ′(0)) = 1
2f
′(d), where the second equality follows because 0

is the minimizer of f . J

We now proceed bounding the various terms in the inequality (1).

I Lemma 3.3. The hit cost Ht is exactly
∫ d
x=0 f(x)p(x) dx+ 1

2
∫ d
x=0 f(x)f ′′(x) dx.

Proof. This follows from the definition of the hit cost, and the following facts: (i) f(x) = 0 if
x < 0, and (ii) the distribution q(x) is simply p(x) + 1

2f
′′(x) for x ∈ [0, d] and 0 if x > d. J

I Lemma 3.4. Mt =
∫∞
x=d xf(x) dx+ f(d)

2 −
df ′(d)

2 .

Proof. We can view the updating of the probability distribution as a two step procedure.
First, all the probability mass to the right of d moves to d, and then exactly a probability
mass of 1

2f
′′(x) moves from d to each point x ∈ [0, d]. Thus

Mt =
∫ d

0

1
2f
′′(x)(d− x) dx+

∫ ∞
d

p(x)(x− d) dx

= f(d)
2 +

∫ ∞
d

xp(x) dx− df ′(d)
2

Here we used Fact 3.1 to simplify the first term, and Fact 3.2 to simplify the second term. J

I Lemma 3.5. Φ1(q, z)− Φ1(p, z) ≤ 2f(z)− 2Mt.

Proof. First consider the case that z < d.

Φ1(q, z)− Φ1(p, z) = 2
∫ ∞

0
|x− z|(q(x)− p(x)) dx

=
∫ z

0
(z − x)f ′′(x) dx+

∫ d

z

(x− z)f ′′(x) dx− 2
∫ ∞
d

(x− z)p(x) dx

= 2f(z)− f(d)− (z − d)f ′(d)− 2
∫ ∞
d

xp(x) dx+ 2z
∫ ∞
d

p(x) dx

= 2f(z)− f(d)− (z − d)f ′(d)− 2
∫ ∞
d

xp(x) dx+ zf ′(d)

= 2f(z)− f(d) + df ′(d)− 2
∫ ∞
d

xp(x) dx

= 2f(z)− 2Mt

The first equality is by the definition of Φ1. The second equality is by the definition of the
algorithm A. The third equality is by application of Fact 3.1 and separating the last integral.
The fourth equality is by Fact 3.2. The final equality is uses Lemma 3.4.

Now consider that case that z ≥ d.

Φ1(q, z)− Φ1(p, z) = 2
∫ ∞

0
|x− z|(q(x)− p(x)) dx

=
∫ d

0
(z − x)f ′′(x) dx− 2

∫ z

d

(z − x)p(x) dx− 2
∫ ∞
z

(x− z)p(x) dx

= (z − d)f ′(d) + f(d)− 2
∫ z

d

(z − x)p(x) dx− 2
∫ ∞
z

(x− z)p(x) dx

= (z − d)f ′(d) + f(d)− 2
∫ ∞
d

(x− z)p(x) dx− 4
∫ z

d

(z − x)p(x) dx
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≤ (z − d)f ′(d) + f(d)− 2
∫ ∞
d

(x− z)p(x) dx

= (z − d)f ′(d) + f(d)− 2
∫ ∞
d

xp(x) dx+ 2
∫ ∞
d

zp(x) dx

= −df ′(d) + f(d)− 2
∫ ∞
d

xp(x) dx+ 2zf ′(d)

≤ 2f(z)− f(d) + df ′(d)− 2
∫ ∞
d

xp(x) dx

= 2f(z)− 2Mt

The first equality is by the definition of Φ1. The second equality is by the definition of the
algorithm A. The third equality is an application of integration by parts. The fourth equality
follows from replacing the term 2

∫∞
z

(x−z)p(x) dx by 2
∫∞
d

(x−z)p(x) dx−2
∫ z
d

(x−z)p(x) dx.
The first inequality from the fact that

∫ z
d

(z − x)p(x) dx ≥ 0 since z ≥ d. The sixth equality
uses Fact 3.2. The second inequality holds because, as f is convex, f(z) ≥ f(d)+(z−d)f ′(d),
and hence zf ′(d) ≤ f(z)− f(d) + df ′(d). The final equality is uses Lemma 3.4. J

We now turn to analyzing Φ2(q)− Φ2(p). We can express this as:

−
∫ d

x=0

∫ x

y=0
(x− y)

(
p(x) + 1

2f
′′(x)

)(
p(y) + 1

2f
′′(y)

)
dy dx

+
∫ ∞
x=0

∫ x

y=0
(x− y)p(x)p(y) dy dx

= − 1
4

∫ d

x=0

∫ x

y=0
(x− y)f ′′(x)f ′′(y) dy dx︸ ︷︷ ︸

T1

− 1
2

∫ d

x=0

∫ x

y=0
(x− y)p(x)f ′′(y) dy dx︸ ︷︷ ︸

T2

− 1
2

∫ d

x=0

∫ x

y=0
(x− y)f ′′(x)p(y) dy dx︸ ︷︷ ︸

T3

+
∫ ∞
x=d

∫ x

y=0
(x− y)p(x)p(y) dy dx︸ ︷︷ ︸

T4

(2)

We now bound the terms T1, T2, T3 and T4.

I Lemma 3.6. T1 = 1
4
∫ d

0 f(x)f ′′(x) dx

Proof. This follows by applying Fact 3.1 to the inner integral of T1. J

I Lemma 3.7. T2 = 1
2
∫ d

0 f(x)p(x) dx.

Proof. This follows by applying Fact 3.1 to the inner integral of T2. J

I Lemma 3.8. T3 = − f
′(d)
2
∫ d
x=0 xp(x) dx+

(
df ′(d)

2 − f(d)
2

)(
1− f ′(d)

2

)
+ 1

2
∫ d
x=0 f(x)p(x) dx.

Proof.

T3 = 1
2

∫ d

x=0

∫ x

y=0
(x− y)p(y)f ′′(x) dy dx

= 1
2

∫ d

y=0

∫ d

x=y
(x− y)p(y)f ′′(x) dx dy

= −1
2

∫ d

y=0
p(y)

∫ d

x=y
(y − x)f ′′(x) dx dy
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= −1
2

∫ d

y=0
p(y) [(y − d)f ′(d) + f(d)− f(y)] dy

= −f
′(d)
2

∫ d

y=0
yp(y) dy +

(
df ′(d)

2 − f(d)
2

)∫ d

y=0
dy + 1

2

∫ d

y=0
f(y)p(y) dy

= −f
′(d)
2

∫ d

x=0
xp(x) dx+

(
df ′(d)

2 − f(d)
2

)(
1− f ′(d)

2

)
+ 1

2

∫ d

x=0
f(x)p(x) dx

The second equality follows as the order of integration is just reversed. The fourth equality
is an application of Fact 3.1. The last equality uses Fact 3.2. J

I Lemma 3.9. T4 ≤
∫∞
d
xp(x) dx− f ′(d)

2
∫ d

0 xp(x) dx− df ′(d)2

4 .

Proof.

T4 =
∫ ∞
x=d

∫ x

y=0
(x− y)p(x)p(y) dy dx

=
∫ ∞
x=d

∫ d

y=0
(x− y)p(x)p(y) dx dy +

∫ ∞
y=d

∫ ∞
x=y

(x− y)p(x)p(y) dx dy (3)

The first expression in (3) can be rewritten as∫ ∞
x=d

∫ d

y=0
(x− y)p(x)p(y) dx dy =

∫ ∞
x=d

xp(x) dx
∫ d

y=0
p(y) dy −

∫ ∞
x=d

p(x) dx
∫ d

y=0
yp(y) dy

=
(

1− f ′(d)
2

)∫ ∞
x=d

xp(x) dx− f ′(d)
2

∫ d

y=0
yp(y) dy

The second equality follows by Fact 3.2. Similarly, for the second expression in (3), we get∫ ∞
y=d

∫ ∞
x=y

(x− y)p(x)p(y) dx dy ≤
(∫ ∞

y=d
p(y) dy

)∫ ∞
x=d

(x− d)p(x) dx

=
(∫ ∞

y=d
p(y) dy

)∫ ∞
x=d

xp(x) dx− d
∫ ∞
x=d

∫ ∞
y=d

p(y)p(x) dy dx

= f ′(d)
2

∫ ∞
x=d

xp(x)dx− df ′(d)2

4

Here, the inequality uses (x− y) ≤ (x− d), since y ≥ d, and the last equality uses Fact 3.2
again. Summing the expressions (and replacing the variable y by x) completes the proof. J

We now use Lemmas 3.3 to 3.9 to show that inequality (1) holds as follows:

Ht +Mt + Φ(pt)− Φ(pt−1)

≤
∫ d

x=0
f(x)p(x) dx+ 1

2

∫ d

x=0
f(x)f ′′(x) dx+ 2f(z)−

∫ ∞
x=d

xf(x) dx− f(d)
2 + df ′(d)

2

− 1
4

∫ d

0
f(x)f ′′(x) dx− 1

2

∫ d

0
f(x)p(x) dx

+ f ′(d)
2

∫ d

x=0
xp(x) dx−

(
df ′(d)

2 − f(d)
2

)(
1− f ′(d)

2

)
− 1

2

∫ d

x=0
f(x)p(x) dx

+
∫ ∞
d

xp(x) dx− f ′(d)
2

∫ d

0
xp(x) dx− df ′(d)2

4
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When a new function ft(·) arrives:
(i) Let xm = argminft(x) denote the minimizer of ft.
(ii) Move in the direction of xm until we reach either (a) a point x s.t. |x−xt−1| = ft(x)/2

or (b) the minimizer xm. Whichever happens first, set xt to be that point.

Figure 3 The 3-competitive Memoryless Algorithm M.

= 2f(z) + 1
4

∫ d

0
f(x)f ′′(x) dx− f(d)f ′(d)

4

= 2f(z) + 1
4

(
f(d)f ′(d)−

∫ d

y=0
(f ′(y))2 dy

)
− f(d)f ′(d)

4

≤ 2f(z)

The first equality follows by canceling identical terms. The second equality is an application
of integration by parts. This proves inequality (1) and hence the 2-competitiveness of our
algorithm.

3.1 Discharging the Assumptions
We now explain how to modify the algorithm and analysis if some of our simplifying
assumptions do not hold. If the functions are piecewise linear, then in the algorithm we
can suitably discretize the integral into a summation, and replace the second derivative at a
point by the difference in slopes between consecutive points and increase the probability at
each point by this difference amount. The analysis then goes through mostly unchanged. If
the minimizer is at infinity, then the analysis goes through pretty much unchanged except
that we can not translate so that the minimizer is at 0, and we have to explicitly keep xm
instead of 0 in the limits of the integration.

4 Memoryless Algorithm

In this section we present a simple 3-competitive memoryless algorithmM. The action of
M at time t depends only upon the past state xt−1 and the current function ft(x). The
algorithmM is described informally in the introduction, and more formally in Figure 3. We
adopt the same notation from the previous section using xt and x∗t to denote the locations of
the algorithm and of the adversary, using H∗t and M∗t to denote the move and hit cost for the
adversary, and we remove the expectations from the algorithm’s costs, so now Ht = ft(xt)
and Mt = |xt − xt−1|,

I Theorem 4.1. The online algorithmM is 3-competitive for the ACO problem.

Proof. We use the potential function Φ(x, x∗) = 3|x− x∗|. Clearly Φ is initially zero, and
always nonnegative. Thus it will be sufficient to show that for each time step:

Ht +Mt + (Φ(xt, x∗t )− Φ(xt−1, x
∗
t−1)) ≤ 3(H∗t +M∗t ). (4)

Two simple observations are that if xt−1 = xm then the algorithm does not move and,
secondly that for all t, Mt ≤ Ht/2. We now argue that equation (4) always holds. Indeed, we
can upperbound the change in potential by first making the adversary move and then moving
the algorithm’s point. Using the triangle inequality and the definition M∗t = |x∗t − x∗t−1|,

Φ(xt−1, x
∗
t )− Φ(xt−1, x

∗
t−1) ≤ 3M∗t . (5)
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Therefore, we will assume that the optimal solution has already moved to x∗t , and show that

Ht +Mt + Φ(xt, x∗t )− Φ(xt−1, x
∗
t ) ≤ 3H∗t . (6)

Adding equation (5) and equation (6) gives us equation (4), completing the proof. To
establish eq. (6) we now consider two cases, based on the relative values of Ht and H∗t .
Case 1: Suppose that Ht ≤ H∗t . We upper bound the change in potential from the algorithm
moving by 3Mt (again using the triangle inequality) and using the fact that Mt ≤ Ht/2, and
the inequality defining the case to obtain:

Ht +Mt + (Φ(xt, x∗t )− Φ(xt−1, x
∗
t )) ≤ Ht +Ht/2 + 3Mt ≤ 3Ht ≤ 3H∗t .

Case 2: Suppose that Ht > H∗t . In this case, all of the algorithm’s movement must have been
towards x∗t , since it was moving in the direction of decreasing value but did not reach x∗t .
Thus, the algorithm’s movement must decrease the potential function by 3Mt. Furthermore,
since the algorithm is not at xm, it must be the case that Mt = Ht/2. We therefore have

Ht +Mt + (Φ(xt, x∗t )− Φ(xt−1, x
∗
t )) ≤ Ht +Ht/2− 3Mt ≤ 0 ≤ 3H∗t .

This completes the proof. J

5 Lower Bounds

We first show that no memoryless deterministic algorithm can be better than 3-competitive.
We then show that the competitive ratio of every algorithm is at least 1.86.

5.1 Lower Bound for Memoryless Algorithms
We show that no memoryless deterministic algorithm B can be better than 3-competitive.
The first issue is that the standard definition of memorylessness, that the next state only
depends on the current state and the current input, is problematic for the OCO problem.
Because the state is a real number, any algorithm be converted into an algorithm in which all
the memory is encoded in the very low order bits of the current state, and is thus memoryless
under this standard definition. Intuitively we believe that the notion of memoryless for the
setting of OCO should mean that the algorithm’s responses don’t depend on the scale of
the line (e.g. whether distance is measured in meters or kilometers), and the algorithm’s
responses are bilaterally symmetric (so the algorithm’s response would be the mirror of
its current response if the function and the location were mirrored around the function
minimizer). We formalize this in the setting that all functions are “vee-shaped”, that is they
have the form ft(x) = a|x− b| for some constants a ≥ 0 and b. Our lower bound only uses
such functions. In this setting, say that an algorithm is memoryless if the ratio of the distance
that algorithm the moves to the distance from the previous location to the minimizer, namely
(|xt − xt−1|/(|xt−1 − b|) depends only on a, the slope of the vee-shaped function. We can
assume without any real loss of generality that a memoryless algorithm always moves towards
the minimizer, as any algorithm without this property cannot be O(1)-competitive.

Assume that the initial position is the origin of the line. The first function that arrives is
ε|x− 1| for some small slope ε. We consider two cases. In the first case, assume that the
distance δ that B moves is less than ε/2. Thus B’s hit cost is at least ε(1− δ) ≥ ε(1− ε/2) =
ε−ε2/2. In that case we continue bringing in copies of the function ε|x−1|. By the definition
of memorylessness, B will maintain the invariant that the ratio of its hit cost to its to its
movement cost is (ε(1− δ))/δ ≥ 2− ε. This continues until B gets very close to 1. Thus B’s
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move cost is asymptotically 1, and its hit cost is at least 2−ε. Thus B’s cost is asymptotically
3. A cost of 1 is achievable by moving to the state 1 when the first function arrives.

Now consider the case that the distance δ that B moves in response to the first function
is more than ε/2. In this case we bring many copies of the function ε|x|, until B has returned
to very near the origin. Thus B’s movement cost is approximately 2δ. By our assumption of
memorylessness, xt = δ(1− δ)t−1. Thus B’s hit cost is asymptotically

ε(1− δ) +
∞∑
t=2

εδ(1− δ)t−1 = 2ε(1− δ).

Thus B’s total cost is at least 2ε+ 2δ(1− ε). Using the fact that δ ≥ ε/2 in this case, B’s
cost is at least 3ε− 2ε2. A cost of ε is achievable by never leaving state 0.

5.2 General Lower Bound
We now prove a lower bound on the competitive ratio of any online algorithm.

I Theorem 5.1. There is no c-competitive algorithm for the OCO problem when c < 1.86.

Proof. By Lemma 2.1, we can restrict to deterministic algorithms without loss of generality.
Let O be an arbitrary c-competitive deterministic algorithm.

We now define our adversarial strategy. The initial position is 0. Then some number of
functions of the form ε|1− x| arrive. We will be interested in the limit as ε approaches 0.
Then some number, possibly none, of functions of the form ε|x| arrive.

For the deterministic algorithm, let b(s) denote the position of O after s/ε functions of
the type ε|1− x| have arrived. Intuitively, if b(s) is too small for large enough s, then it has
a high hit cost on the first s/ε functions whereas the optimal solution would have moved
immediately to the point 1 only incurring the moving cost. Alternately, if the position b(s)
is sufficiently far to the right (i.e., close to 1), then the adversary can introduce a very long
sequence of requests of type ε|x|, forcing the algorithm to eventually move back to 0 incurring
the movement cost of b(s) again. In this case, the optimal solution would have stayed at 0.

Formally, the total function cost O at time s/ε is at least b(s) +
∫ s

0 (1− b(y)) dy. Now, if
the adversary introduces an infinite sequence of functions of the form ε|x|, then the best that
the online algorithm can do is to move immediately to the origin incurring an additional
movement cost of b(s). Meanwhile, the optimal solution would have stayed at 0 throughout
incurring a total cost of s. Hence, if the online algorithm is c-competitive, we must have, for
all s,

2b(s) +
∫ s

0
(1− b(y)) dy ≤ cs. (7)

Alternately, if the functions ε|1−x| keep appearing forever, the online algorithm eventually
moves to 1 and its total cost is therefore at least 1 +

∫∞
0 (1− b(y)) dy and the optimal solution

would have moved to 1 at time 0 and only incurred the movement cost of 1. Hence, we also
have

1 +
∫ ∞

0
(1− b(y)) dy ≤ c. (8)

This establishes the dichotomy using which we complete our lower bound proof. Indeed,
define G(s) =

∫ s
0 (1− b(y)) dy. Then, G′(s) = 1− b(s) and we can write (7) as, for all s we

have

G′(s) ≥ 1
2 (2− cs+G(s)) (9)
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and (8) is simply
G(∞) ≤ c− 1 .

Now, notice that in order to minimize G(∞), we may assume that (9) is satisfied at equality
for all s (this can only reduce G(s), which in turn reduces G′(s) further), which in turn gives
us a unique solution to G.

Now, writing (9) as equality and differentiating w.r.t s, we get the first-order differential
equation b(s) = 2b′(s)− c+ 1. It is a simple calculation to verify that its unique solution
satisfying b(0) = 0 is b(s) = (c− 1) · (es/2 − 1). But now, we can plug this into G(∞) to get
that∫ 2 ln c

c−1

0
(1− b(s)) ds+ 1 =

∫ 2 ln c
c−1

0

(
1− (c− 1)

(
es/2 − 1

))
ds+ 1 ≤ c.

Evaluation of the integral and simplification yields

2 ln c

c− 1 − (c− 1)
(

2c
c− 1 − 2 ln c

c− 1 − 2
)

+ 1 = 2c ln c

c− 1 − 1 ≤ c,

which is false for c < 1.86. J

We conjecture that the optimal competitive ratio for the general problem is strictly less
than 2, and is achieved for the special case where all functions are of the form ε|x| or ε|x− 1|.
It is implausible that our lower bound for this special case is tight. Intuitively, the optimal
competitive ratio would be 2 if and only if the optimally competitive algorithm doesn’t
accelerate the rate of probability mass transfer, whereas it seems beneficial to accelerate the
rate of probability mass transfer.
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Abstract
We show that for any odd k and any instance = of the Max-kXOR constraint satisfaction problem,
there is an efficient algorithm that finds an assignment satisfying at least a 1

2 +Ω(1/
√
D) fraction

of =’s constraints, where D is a bound on the number of constraints that each variable occurs in.
This improves both qualitatively and quantitatively on the recent work of Farhi, Goldstone, and
Gutmann (2014), which gave a quantum algorithm to find an assignment satisfying a 1

2 +Ω(D−3/4)
fraction of the equations.

For arbitrary constraint satisfaction problems, we give a similar result for “triangle-free”
instances; i.e., an efficient algorithm that finds an assignment satisfying at least a µ+ Ω(1/

√
D)

fraction of constraints, where µ is the fraction that would be satisfied by a uniformly random
assignment.
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1 Introduction

An instance of a Boolean constraint satisfaction problem (CSP) over n variables x1, . . . , xn
is a collection of constraints, each of which is some predicate P applied to a constant number
of the variables. The computational task is to find an assignment to the variables that
maximizes the number of satisfied predicates. In general the constraint predicates do not
need to be of the same “form”; however, it is common to study CSPs where this is the
case. Typical examples include: Max-kSAT, where each predicate is the OR of k variables
or their negations; Max-kXOR, where each predicate is the XOR of exactly k variables or
their negations; and Max-Cut, the special case of Max-2XOR in which each constraint is of
the form xi 6= xj . The case of Max-kXOR is particularly mathematically natural, as it is
equivalent to maximizing a homogenous degree-k multilinear polynomial over {±1}n.

Given a CSP instance, it is easy to compute the expected fraction µ of constraints satisfied
by a uniformly random assignment; e.g., in the case of Max-kXOR we always have µ = 1

2 .
Thus the question of algorithmic interest is to find an assignment that satisfies noticeably
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more than a µ fraction of constraints. Of course, sometimes this is simply not possible; e.g.,
for Max-Cut on the complete n-variable graph, at most a 1

2 +O(1/n) fraction of constraints
can be satisfied.1 However, even when all or almost all constraints can be satisfied, it may
still be algorithmically difficult to beat µ. For example, Håstad [7] famously proved that
for every ε > 0, given a Max-3XOR instance in which a 1− ε fraction of constraints can be
satisfied, it is NP-hard to find an assignment satisfying a 1

2 + ε fraction of the constraints.
Håstad showed similar “approximation resistance” results for Max-3Sat and several other
kinds of CSPs.

One possible reaction to these results is to consider subconstant ε. For example, Håstad
and Venkatesh [8] showed that for every Max-kXOR instance with m constraints, one can
efficiently find an assignment satisfying at least a 1

2 + Ω(1/
√
m) fraction of them.2 (Here,

and elsewhere in this introduction, the Ω(·) hides a dependence on k, typically exponential.)
Relatedly, Khot and Naor [9] give an efficient algorithm for Max-3XOR that satisfies a
1
2 + Ω(ε

√
(logn)/n) fraction of constraints whenever the optimum fraction is 1

2 + ε.
Another reaction to approximation resistance is to consider restricted instances. One

commonly studied restriction is to assume that each variable’s “degree” — i.e., the number of
constraints in which it occurs — is bounded by some D. Håstad [6] showed that such instances
are never approximation resistant. More precisely, he showed that for, say, Max-kXOR,
one can always efficiently find an assignment satisfying at least a µ + Ω(1/D) fraction of
constraints.3 Note that this advantage of Ω(1/D) cannot in general be improved, as the case
of Max-Cut on the complete graph shows.

One may also consider further structural restrictions on instances. One such restriction
is that the underlying constraint hypergraph be triangle-free (see Section 2 for a precise
definition). For example, Shearer [12] showed that for triangle-free graphs there is an efficient
algorithm for finding a cut of size at least m

2 + Ω(1) ·
∑
i

√
deg(i), where deg(i) is the degree

of the ith vertex. As
∑
i

√
deg(i) ≥

∑
i

deg(i)√
D

= 2m√
D

in m-edge degree-D bounded graphs,
this shows that for triangle-free Max-Cut one can efficiently satisfy at least a 1

2 + Ω(1/
√
D)

fraction of constraints. Related results have also been shown for degree-bounded instances of
Maximum Acyclic Subgraph [2], Min-Bisection [1] and Ordering k-CSPs [5, 10].

1.1 Recent developments and our work
In a recent surprising development, Farhi, Goldstone, and Gutmann [4] gave an efficient
quantum algorithm that, for Max-3XOR instances with degree bound D, finds an assignment
satisfying a 1

2 + Ω(D−3/4) fraction of the constraints. In addition, Farhi et al. show that if
the Max-3XOR instance is “triangle-free” then an efficient quantum algorithm can satisfy a
1
2 + Ω(1/

√
D) fraction of the constraints.

Farhi et al.’s result was perhaps the first example of a quantum algorithm providing a
better CSP approximation guarantee than that of the best known classical algorithm (namely
Håstad’s [6], for Max-3XOR). As such it attracted quite some attention.4 In this paper we

1 Another trivial example is the Max-2XOR instance with the two constraints x = y and x 6= y. For this
reason we always assume that our Max-kXOR instances do not contain a constraint and its negation.

2 In [8] this is stated as an approximation-ratio guarantee: if the optimum fraction is 1
2 + ε then

1
2 + Ω(ε/

√
m) is guaranteed. However inspecting their proof yields the absolute statement we have

made.
3 The previous footnote applies also to this result.
4 As evidenced by the long list of authors on this paper; see also http://www.scottaaronson.com/blog/

?p=2155.
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show that classical algorithms can match, and in fact outperform, Farhi et al.’s quantum
algorithm.

First result: Max-kXOR

We will present two results. The first result is about instances of Max-kXOR.

I Theorem 1. There is a constant c = exp(−O(k)) and a randomized algorithm running
in time poly(m,n, exp(k)) that, given an instance = of Max-kXOR with m constraints and
degree at most D, finds with high probability an assignment x ∈ {±1}n such that∣∣∣∣val=(x)− 1

2

∣∣∣∣ ≥ c√
D
. (1)

Here val=(x) denotes the fraction of constraints satisfied by x. In particular, for odd k, by
trying the assignment and its negation, the algorithm can output an x satisfying

val=(x) ≥ 1
2 + c√

D
. (2)

In Section 3 we give a simple, self-contained proof of Theorem 1 in the special case of
Max-3XOR. For higher k we obtain it from a more general result (Theorem 7) that gives
a constructive version of a theorem of Dinur, Friedgut, Kindler and O’Donnell [3]. This
result shows how to attain a significant deviation from the random assignment value for
multivariate low-degree polynomials with low influences. See Section 4.

We note that the deviation Ω(1/
√
D) in (1) is optimal. To see why, consider any D-

regular graph on n vertices, and construct a Max-2XOR instance = as follows. For every
edge (i, j) in the graph we randomly and independently include either the constraint xi = xj
or xi 6= xj . For every fixed x, the quantity val=(x) has distribution 1

mBinomial(m, 1
2 ), where

m = nD
2 . Hence a Chernoff-and-union-bound argument shows that with high probability

all 2n assignments will have |val=(x) − 1
2 | ≤ O(

√
n/m) = O(1/

√
D). This can easily be

extended to Max-kXOR for k > 2.

General CSPs

As noted earlier, the case of Max-Cut on the complete graph shows that for general CSPs,
and in particular for Max-2XOR, we cannot guarantee a positive advantage of Ω(1/

√
D)

as in (2). In fact, a positive advantage of Ω(1/D) is the best possible, showing that the
guarantee of Håstad [6] is tight in general.

A similar example can be shown for Max-2SAT: consider an instance with D2 variables
and imagine them placed on a D ×D grid. For any two variables in the same row add the
constraint x∨ y and for any two variables in the same column add the constraint x̄∨ ȳ. Then
each variable participates in O(D) clauses, and it can be verified that the best assignment
satisfies 3/4+O(1/D) fraction of the clauses. We do not know if the same holds for Max-3SAT
and we leave that as an open question.

Sometimes no advantage over random is possible. For instance, consider the following
instance with 8 clauses on 6 variables, in which any assignment satisfies exactly 1/2 of the
clauses:

{NAE(x1, x2, x3),
AE(y1, x2, x3),AE(x1, y2, x3),AE(x1, x2, y3),
NAE(x1, y2, y3),NAE(y1, x2, y3),NAE(y1, y2, x3),
AE(y1, y2, y3)} ,

where NAE denotes the “not all equal” constraint, and AE is the “all equal” constraint.
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Second result: triangle-free instances of general CSPs

Despite the above examples, our second result shows that it is possible to recover the optimal
advantage of 1/

√
D for triangle-free instances of any CSP:

I Theorem 2. There is a constant c = exp(−O(k)) and a randomized algorithm running
in time poly(m,n, exp(k)) time that, given a triangle-free, degree-D CSP instance = with m
arbitrary constraints, each of arity between 2 and k, finds with high probability an assignment
x ∈ {±1}n such that

val=(x) ≥ µ+ c√
D
.

Here µ is the fraction of constraints in = that would be satisfied in expectation by a random
assignment.

This theorem is proved in Section 5. For simplicity, we state our results as achieving
randomized algorithms and leave the question of derandomizing them (e.g., by replacing true
random bits with O(k)-wise independence or some other such distribution) to future work.

1.2 Overview of our techniques
All three algorithms that we present in this work follow the same broad outline, while the
details are different in each case. To produce an assignment that beats a random assignment,
the idea is to partition the variables in to two sets (F,G) with F standing for ‘Fixed’ and G
standing for ‘Greedy’ (in Section 4, these correspond to [n] \ U and U respectively). The
variables in F are assigned independent and uniform random bits and the variables in G
are assigned values greedily based on the values already assigned to F . We will refer to
constraints with exactly one variable from G as active constraints. The design of the greedy
assignments and their analysis is driven by two key objectives.
1. Obtain a significant advantage over the random assignment on active constraints.
2. Achieve a value that is at least as good as the random assignment on inactive constraints.

The simplest example is the algorithm for Max-3XOR that we present in Section 3. First,
we appeal to a decoupling trick due to Khot-Naor [9] to give an efficient approximation-
preserving reduction from an arbitrary instance = of Max-3XOR to a bipartite instance =̃.
Specifically, the instance =̃ will contain two sets of variables {yi}i∈[n] and {zi}i∈[n], with
every constraint having exactly one variable from {yi}i∈[n] and two variables from {zj}j∈[n].
Notice that if we set G = {yi}i∈[n], then objective (2) holds vacuously, i.e., every constraint in
=̃ is active. The former objective (1) is achieved as a direct consequence of anticoncentration
of low degree polynomials (see Fact 5). In the case of Max-kXOR, the second objective is
achieved by slightly modifying the greedy assignment: we flip each of the assignments for
the greedy variables with a small probability η (that corresponds to one of the extrema of
the degree-k Chebyshev polynomials of the first kind).

Our algorithm for triangle-free instances begins by picking (F,G) to be a random partition
of the variables. In this case, after fixing a random assignment to F , a natural greedy strategy
would proceed as follows: Assign each variable in G a value that satisfies the maximum the
number of its own active constraints.

In order to achieve objective (2), it is sufficient if for each inactive constraint its variables
are assigned independently and uniformly at random. Since the instance is triangle-free, for
every pair of variables xi, xj ∈ G the active constraints of xi and xj are over disjoint sets
of variables. This implies that the greedy assignments for variables within each inactive
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constraint are already independent. Unfortunately, the greedy assignment as defined above
could possibly be biased, and in general much worse than a random assignment on the inactive
constraints. We overcome this technical hurdle by using a modified greedy strategy defined
as follows. Assign −1 to all variables in G and then for each variable xi ∈ G, consider the
change in the number of active constraints satisfied if we flip xi from −1 to 1. The algorithm
will flip the value only if this number exceeds an appropriately chosen threshold θi. The
threshold θi is chosen so as to ensure that over all choices of values to F , the assignment to
xi is unbiased. Triangle-freeness implies that these assignments are independent within each
inactive constraint. Putting these ideas together, we obtain the algorithm for triangle-free
instances discussed in Section 5.

2 Preliminaries

Constraint satisfaction problems

We will be considering a somewhat general form of constraint satisfaction problems. An
instance for us will consist of n Boolean variables and m constraints. We call the variables
x1, . . . , xn, and we henceforth think of them as taking the Boolean values ±1. Each constraint
is a pair (P`, S`) (for ` ∈ [m]) where P` : {±1}r → {0, 1} is the predicate, and S` is the
scope, an ordered r-tuple of distinct coordinates from [n]. The associated constraint is that
P`(xS`) = 1, where we use the notation xS to denote variables x restricted to coordinates S.
We always assume (without loss of generality) that P` depends on all r coordinates. The
number r is called the arity of the constraint, and throughout this paper k will denote an
upper bound on the arity of all constraints. Typically we think of k as a small constant.

We are also interested in the special case of Max-kXOR. By this we mean the case when
all constraints are XORs of exactly k variables or their negations; in other words, when
every P` is of the form P`(x1, . . . , xk) = 1

2 ±
1
2x1x2 · · ·xk. When discussing Max-kXOR we

will also always make the assumption that all scopes are distinct as sets; i.e., we don’t have
the same constraint or its negation more than once.

Hypergraph structure

We will be particularly interested in the degree deg(i) of each variable xi in an instance. This
is simply the number of constraints in which xi participates; i.e., #{` : S` 3 i}. Throughout
this work, we let D denote an upper bound on the degree of all variables.

For our second theorem, we will need to define the notion of “triangle-freeness”.

I Definition 3. We say that an instance is triangle-free if the scopes of any two distinct
constraints intersect on at most one variable (“no overlapping constraints”) and, moreover,
there are no three distinct constraints any two of whose scopes intersect (“no hyper-triangles”),
see Figure 1.

Fourier representation

We recall that any Boolean function f : {±1}n → R can be represented by a multilinear
polynomial, or Fourier expansion,

f(x) =
∑
S⊂[n]

f̂(S)xS , where xS def=
∏
i∈S

xi.
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Figure 1 The two forbidden configurations for triangle-free instances.

For more details see, e.g., [11]; we recall here just a few facts we’ll need. First, E[f(x)] = f̂(∅).
(Here and throughout we use boldface for random variables; furthermore, unless otherwise
specified x refers to a uniformly random Boolean string.) Second, Parseval’s identity is
‖f‖2

2 = E[f(x)2] =
∑
S f̂(S)2, from which it follows that Var[f(x)] =

∑
S 6=∅ f̂(S)2. Third,

Infi[f ] =
∑
S3i

f̂(S)2 = E[(∂if)(x)2],

where ∂if is the derivative of f with respect to the ith coordinate. This can be defined by the
factorization f(x) = xi · (∂if)(x′) + g(x′), where x′ = (x1, . . . , xi−1, xi+1, . . . , xn), or equival-
ently by ∂if(x′) = f(x′,+1)−f(x′,−1)

2 , where here (x′, b) denotes (x1, . . . , xi−1, b, xi+1, . . . , xn).
We record here a simple fact about these derivatives:

I Lemma 4. For any predicate P : {±1}r → {0, 1}, r ≥ 2, we have Var[(∂iP )(x)] ≥ Ω(2−r)
for all i.

Proof. The function ∂iP (x) takes values in {− 1
2 , 0,

1
2}. It cannot be constantly 0, since

we assume P depends on its ith input. It also cannot be constantly 1
2 , else we would

have P (x) = 1
2 + 1

2xi and so P would not depend on all r ≥ 2 coordinates. Similarly it
cannot be constantly − 1

2 . Thus ∂iP (x) is nonconstant, so its variance is Ω(2−r). J

Given an instance and an assignment x ∈ {±1}n, the number of constraints satisfied by
the assignment is simply

∑
` P`(xS`). This can be thought of as a multilinear polynomial

{±1}n → R of degree5 at most k. We would like to make two minor adjustments to it, for
simplicity. First, we will normalize it by a factor of 1

m so as to obtain the fraction of satisfied
constraints. Second, we will replace P` with P `, defined by

P ` = P` − E[P`] = P` − P̂`(∅).

In this way, P `(xS`) represents the advantage over a random assignment. Thus given an
instance, we define the associated polynomial P(x) by

P(x) = 1
m

m∑
`=1

P `(xS`).

This is a polynomial of degree at most k whose value on an assignment x represents the
advantage obtained over a random assignment in terms of the fraction of constraints satisfied.
In general, the algorithms in this paper are designed to find assignments x ∈ {±1}n with
P(x) ≥ Ω( 1√

D
).

5 We have the usual unfortunate terminology clash; here we mean degree as a polynomial.
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Low-degree polynomials often achieve their expectation

Our proofs will frequently rely on the following fundamental fact from Fourier analysis, whose
proof depends on the well-known “hypercontractive inequality”. A proof of this fact appears
in, e.g., [11, Theorem 9.24].

I Fact 5. Let f : {±1}n → R be a multilinear polynomial of degree at most k. Then
P[f(x) ≥ E[f ]] ≥ 1

4 exp(−2k). In particular, by applying this to f2, which has degree at most
2k, we get

P
[
|f(x)| ≥ ‖f‖2

]
≥ exp(−O(k))

which implies that

E
[
|f(x)|

]
≥ exp(−O(k)) · ‖f‖2 ≥ exp(−O(k)) · stddev[f(x)] .

3 A simple proof for Max-3XOR

We begin by proving Theorem 1 in the case of Max-3XOR, as the proof can be somewhat
streamlined in this case. Given an instance of Max-3XOR we have the corresponding
polynomial

P(x) =
∑
|S|=3

P̂(S)xS =
∑

i,j,k∈[n]

aijkxixjxk,

where P̂(S) ∈ {± 1
2m , 0} depending on whether the corresponding constraint exists in the

instance, and where we have introduced aijk = 1
6P̂({i, j, k}) for i, j, k ∈ [n] distinct. We

now use the trick of “decoupling” the first coordinate (cf. [9, Lem. 2.1]); i.e., our algorithm
will consider P̃(y, z) =

∑
i,j,k aijkyizjzk, where y1, . . . , yn, z1, . . . , zn are new variables. The

algorithm will ultimately produce a good assignment y, z ∈ {±1}n for P̃. Then it will define
an assignment x ∈ {±1}n by using one of three “randomized rounding” schemes:

w.p. 4
9 , xi =

{
yi w.p. 1

2

zi w.p. 1
2
∀i; w.p. 4

9 , xi =
{
yi w.p. 1

2

−zi w.p. 1
2
∀i; w.p. 1

9 , xi = −yi ∀i.

We have that

E[P(x)] = 4
9
∑
i,j,k

aijk(yi+zi2 )(yj+zj
2 )(yk+zk

2 ) + 4
9
∑
i,j,k

aijk(yi−zi2 )(yj−zj2 )(yk−zk2 )

+ 1
9
∑
i,j,k

aijk(−yi)(−yj)(−yk)

= 1
9

∑
i,j,k

aijk(yizjzk + ziyjzk + zizjyk) = 1
3P̃(y, z). (3)

Thus in expectation, the algorithm obtains an assignment for P achieving at least 1
3 of what

it achieves for P̃.
Let us now write P̃(y, z) =

∑
i yiGi(z), where Gi(z) =

∑
j,k aijkzjzk. It suffices for the

algorithm to find an assignment for z such that
∑
i |Gi(z)| is large, as it can then achieve

this quantity by taking yi = sgn(Gi(z)). The algorithm simply chooses z ∈ {±1}n uniformly
at random. By Parseval we have E[Gi(z)2] =

∑
j<k(2aijk)2 = 1

9 Infi[P] for each i. Applying
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Fact 5 (with k = 2) we therefore get E[|Gi(z)|] ≥ Ω(1)·
√

Infi[P]. Since Infi[P] = deg(i)/4m2,
we conclude

E
[∑
i

|Gi(z)|
]
≥ Ω(1) ·

∑
i

√
deg(i)
m ≥ Ω(1) ·

∑
i

deg(i)
m
√
D

= Ω(1) · 1√
D
.

As
∑
i |Gi(z)| is bounded by 1/2, Markov’s inequality implies that the algorithm can with

high probability find a z achieving
∑
i |Gi(z)| ≥ Ω( 1√

D
) after O(

√
D) trials of z. As stated,

the algorithm then chooses y appropriately to attain P̃(y, z) ≥ Ω( 1√
D

), and finally gets 1
3 of

this value (in expectation) for P(x).

Derandomization

It is easy to efficiently derandomize the above algorithm. The main step is to recognize that
“(2, 4)-hypercontractivity” is all that’s needed for Fact 5 (perhaps with a worse constant);
thus it holds even when the random bits are merely 4-wise independent. This is well known,
but we could not find an explicit reference; hence we give the proof in the case when f is
homogeneous of degree 2 (the case that’s needed in the above algorithm). Without loss of
generality we may assume E[f(x)] = 0 and E[f(x)2] = 1. Then it’s a simple exercise to check
that E[f(x)4] ≤ 15, and this only requires the bits of x to be 4-wise independent. But now

P[f(x) ≥ 0] = E[1{f(x)≥0}] ≥ E[.13f(x) + .06f(x)2 − .002f(x)4] ≥ .06− .002 · 15 = .03

where we used the elementary fact 1{t≥0} ≥ .13t+ .06t2 − .002t4 for all t ∈ R. Thus indeed
the algorithm can find a z achieving

∑
i |Gi(z)| ≥ Ω( 1√

D
) by enumerating all strings in a

4-wise independent set; it is well known this can be done in polynomial time. Following this,
the algorithm chooses string y deterministically. Finally, it is clear that each of the three
different randomized rounding schemes only requires 3-wise independence, and a deterministic
algorithm can simply try all three and choose the best one.

4 A general result for bounded-influence functions

One can obtain our Theorem 1 for higher odd k by generalizing the proof in the preceding
section. Constructing the appropriate “randomized rounding” scheme to decouple the first
variable becomes slightly more tricky, but one can obtain the identity analogous to (3) through
the use of Chebyshev polynomials. At this point the solution becomes very reminiscent of
the Dinur et al. [3] work. Hence in this section we will simply directly describe how one can
make [3] algorithmic.

The main goal of [3] was to understand the “Fourier tails” of bounded degree-k polynomials.
One of their key technical results was the following theorem, showing that if a degree-k
polynomial has all of its influences small, it must deviate significantly from its mean with
noticeable probability:

I Theorem 6. ([3, Theorem 3].) There is a universal constant C such that the following
holds. Suppose g : {±1}n → R is a polynomial of degree at most k and assume Var[g] = 1.
Let t ≥ 1 and suppose that Infi[g] ≤ C−kt−2 for all i ∈ [n]. Then

P[|g(x)| ≥ t] ≥ exp(−Ct2k2 log k).

In the context of Max-kXOR, this theorem already nearly proves our Theorem 1. The reason
is that in this context, the associated polynomial P(x) is given by

P(x) = 1
2m

m∑
`=1

b`
∏
j∈S`

xj , where b` ∈ {−1, 1}.
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Hence Var[P] = 1/4m and Infi[P] = deg(xi)/4m2 ≤ D/4m2. Taking g = 2
√
m · P and

t = exp(−O(k)) ·
√
m/D, Theorem 6 immediately implies that

P
[
|P(x)| ≥ exp(−O(k)) · 1√

D

]
≥ exp(−O(m/D)). (4)

This already shows the desired existential result, that there exists an assignment beating
the random assignment by exp(−O(k)) · 1√

D
. The only difficulty is that the low probability

bound in (4) does not imply we can find such an assignment efficiently.
However this difficulty really only arises because [3] had different goals. In their work, it

was essential to show that g achieves a slightly large value on a completely random input.6 By
contrast, we are at liberty to show g achieves a large value however we like — semi-randomly,
greedily — so long as our method is algorithmic. That is precisely what we do in this section
of the paper. Indeed, in order to “constructivize” [3], the only fundamental adjustment we
need to make is at the beginning of the proof of their Lemma 1.3: when they argue that
“P[|`(x)| ≥ t′] ≥ exp(−O(t′2)) for the degree-1 polynomial `(x)”, we can simply greedily
choose an assignment x with |`(x)| ≥ t′.

Our constructive version of Theorem 6 follows. It directly implies our Theorem 1, as
described above.

I Theorem 7. There is a universal constant C and a randomized algorithm such that the
following holds. Let g : {±1}n → R be a polynomial with degree at most k and Var[g] = 1 be
given. Let t ≥ 1 and suppose that Infi[g] ≤ C−kt−2 for all i ∈ [n]. Then with high probability
the algorithm outputs an assignment x with |g(x)| ≥ t. The running time of the algorithm is
poly(m,n, exp(k)), where m is the number of nonzero monomials in g.7

The algorithm AdvRand achieving Theorem 7 is given below. It is derived directly
from [3], and succeeds with probability that is inverse polynomial in n. The success probability
is then boosted by running the algorithm multiple times. We remark that η(k)

0 , η
(k)
1 , . . . , η

(k)
k

denote the k + 1 extrema in [−1, 1] of the kth Chebyshev polynomial of the first kind Tk(x),
and are given by η(k)

j = cos(jπ/k) for 0 ≤ j ≤ k. We now describe the algorithm below, for
completeness. In the rest of the section, we will assume without loss of generality that k is
odd (for even k, we just think of the polynomial as being of degree k + 1, with the degree
(k + 1) part being 0).

AdvRand: Algorithm for Advantage over Average for degree k polynomials
Input: a degree k-function g
Output: an assignment x
1. Let 1 ≤ s ≤ log2 k be a scale such that the mass (i.e., sum of squares of coefficients) of

the Fourier transform of g on levels between 2s−1 and 2s is at least 1/ log k.
2. For every i ∈ [n], put i in set U with probability 2−s. For every i /∈ U , set xi ∈ {−1, 1}

uniformly at random and let y be the assignment restricted to the variables in [n] \ U .
3. Let gy be the restriction obtained. For every j ∈ U , set xj = sign(ĝy({j})).
4. Pick r ∈ {0, 1, . . . , k} uniformly at random, and let η = η

(k)
r /2.

5. For each coordinate j ∈ U , flip xj independently at random with probability (1− η)/2.
6. Output x.

6 Also, their efforts were exclusively focused on the parameter k, with quantitative dependencies on t not
mattering. Our focus is essentially the opposite.

7 For simplicity in our algorithm, we assume that exact real arithmetic can be performed efficiently.
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We now give the analysis of the algorithm, following [3]. The second step of the algorithm
performs a random restriction, that ensures that gy has a lot of mass on the first-order
Fourier coefficients. The key lemma (that follows from the proof of Lemma 1.3 and Lemma
4.1 in [3]) shows that we can find an assignment that obtains a large value for a polynomial
with sufficient “smeared” mass on the first-order Fourier coefficients.

I Lemma 8. Suppose g : {±1}N → R has degree at most k, t ≥ 1, and
∑
i∈[N ]|ĝ({i})| ≥

2t(k + 1). Then a randomized polynomial time algorithm outputs a distribution over assign-
ments x ∈ {−1, 1}N such that

P
x

[|g(x)| ≥ t] ≥ exp(−O(k)).

The algorithm proving Lemma 8 corresponds to Steps (3-6) of the Algorithm AdvRand.

Proof. We sketch the proof, highlighting the differences to Lemma 1.3 of [3]. First we observe
that by picking the assignment x∗i = sign(ĝ({i})), we can maximize the linear portion as∑

i∈[N ]

ĝ({i})x∗i =
∑
i∈[N ]

|ĝ({i})| ≥ 2t(k + 1).

From this point on, we follow the proof of Lemma 1.3 in [3] with their initial point x0 being
set to x∗. Let z ←η {±1}N be a random string generated by independently setting each
coordinate zj = −1 with probability (1− η)/2 (as in step 5 of the algorithm), and let

(Tηg)(x∗) = E
z←η{±1}n

[g(x∗ · z)].

Lemma 1.3 of [3], by considering (Tηg)(x∗) as a polynomial in η and using the extremal
properties of Chebyshev polynomials (Corollary 2.8 in [3]), shows that there exists η ∈
{η

(k)
0
2 ,

η
(k)
1
2 , . . . ,

η
(k)
k

2 } such that

E
z←η{±1}n

[
|g(x∗ · z)|

]
≥ 2t(k + 1) · 1

(2k + 2) = t. (5)

Consider g(x∗ · z) as a polynomial in z, with degree at most k. As in [3], we will now
use the hypercontractivity to give a lower bound on the probability (over random z) that
|g(x∗ · z)| exceeds the expectation. Note that our choice of η ∈ [− 1

2 ,
1
2 ] and hence the bias is

in the interval [ 1
4 ,

3
4 ]. Using Lemma 2.5 in [3] (the analogue of Fact 5 for biased measures), it

follows that

P
z

[
|g(x∗ · z)| ≥ t

]
≥ 1

4 exp(−2k).

Hence when x is picked according to D, with probability at least 1/(k + 1) the algorithm
chooses an η such that (5) holds, and then a random z succeeds with probability exp(−O(k)),
thereby giving the required success probability. J

We now sketch the proof of the constructive version of Theorem 3 in [3], highlighting why
algorithm AdvRand works.

Proof of Theorem 7. The scale s is chosen such that the Fourier coefficients of g of order
[2s−1, 2s] have mass at least 1/ log k. The algorithm picks set U randomly by choosing each
variable with probability 2−s, and gy is the restriction of g to the coordinates in U obtained
by setting the other variables randomly to y ∈ {−1, 1}[N ]\U .

APPROX/RANDOM’15
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Let γi =
∑
S∩U={i} ĝ(S)2. Fixing U and y, let the indices T = {i ∈ U : ĝy({i})2 ≤

(2e)2kγi}. The proof of Theorem 3 in [3] shows that a constant fraction of the first order
Fourier coefficients are large; in particular after Steps 1 and 2 of the algorithm,

P
U,y

[∑
i∈T

ĝy({i})2 ≥ 1
100 log k

]
≥ exp(−O(k)) . (6)

Further, for i ∈ T , we have |ĝy({i})| ≤ (2e)k√γi ≤ (2e)k
√
Infi(g). Hence, when the above

event in (6) is satisfied we have∑
i∈U
|ĝy({i})| ≥ 1

maxi∈T |ĝy({i})| ·
∑
i∈T

ĝy({i})2

≥ 1
(2e)k

√
maxi Infi(g)

· 1
100 log k ≥ 2t(k + 1).

Hence, applying Lemma 8 with gy we get that

P
x∈D

[
|g(x)| ≥ t

]
≥ exp(−O(k)), (7)

where D is the distribution over assignments x output by the algorithm. Repeating this
algorithm exp(O(k)) times, we get the required high probability of success. J

5 Triangle-free instances

In this section we present the proof of Theorem 2, which gives an efficient algorithm for beating
the random assignment in the case of arbitrary triangle-free CSPs (recall Definition 3). We
now restate Theorem 2 and give its proof. As in the proof of Theorem 7, we can easily move
from an expectation guarantee to a high probability guarantee by first applying Markov’s
inequality, and then repeating the algorithm exp(k) poly(n,m) times; hence we will prove
the expectation guarantee here.

I Theorem 9. There is a poly(m,n, exp(k))-time randomized algorithm with the following
guarantee. Let the input be a triangle-free instance over n Boolean variables, with m arbitrary
constraints each of arity between 2 and k. Assume that each variable participates in at
most D constraints. Let the associated polynomial be P(x). Then the algorithm outputs an
assignment x ∈ {±1}n with

E[P(x)] ≥ exp(−O(k)) ·
n∑
i=1

√
deg(i)
m

≥ exp(−O(k)) · 1√
D
.

Proof. Let (F,G) be a partition of [n], with F standing for “Fixed” and G standing for
“Greedy”. Eventually the algorithm will choose the partition randomly, but for now we treat
it as fixed. We will write the two parts of the algorithm’s random assignment x as (xF ,xG).
The bits xF will first be chosen independently and uniformly at random. Then the bits xG
will be chosen in a careful way which will make them uniformly random, but not completely
independent.

To make this more precise, define a constraint (P`, S`) to be active if its scope S` contains
exactly one coordinate from G. Let us partition these active constraints into groups

Nj = {` : (P`, S`) is active and S` 3 j}, j ∈ G.
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For each coordinate j ∈ G, we’ll define Aj ⊂ F to be the union of all active scopes involving j
(but excluding j itself); i.e.,

Aj =
⋃
{S` \ {j} : ` ∈ Nj}.

This set Aj may be empty. Our algorithm’s choice of xG will have the following property:

∀j ∈ G, the distribution of xj is uniformly random, and depends only on (xi : i ∈ Aj). (†)

From property (†) we may derive:

I Claim 9.1. For every inactive constraint (P`, S`), the random assignment bits xS` are
uniform and independent.

Proof of Claim. First consider the coordinates j ∈ S`∩G. By the property (†), each such xj
depends only on (xi : i ∈ Aj); further, these sets Aj are disjoint precisely because of the
“no hyper-triangles” part of triangle-freeness. Thus indeed the bits (xj : j ∈ S` ∩ G) are
uniform and mutually independent. The remaining coordinates S` ∩ F are also disjoint from
all these (Aj)j∈S`∩G, by the “no overlapping constraints” part of the triangle-free property.
Thus the remaining bits (xi : i ∈ S` ∩ F ) are uniform, independent, and independent of the
bits (xj : j ∈ S` ∩G), completing the proof of the claim. J

An immediate corollary of the claim is that all inactive constraints, P ` contribute nothing, in
expectation, to E[P(x)]. Thus it suffices to consider the contribution of the active constraints.
Our main goal will be to show that the bits xG can be chosen in such a way that

∀j ∈ G E
[ ∑
`∈Nj

P `(xS`)
]
≥ exp(−O(k)) ·

√
|Nj | (8)

and hence

E[P(x)] ≥ 1
m
· exp(−O(k)) ·

∑
j∈G

√
|Nj |. (9)

Given (9) it will be easy to complete the proof of the theorem by choosing the partition
(F,G) randomly.

So towards showing (8), fix any j ∈ G. For each ` ∈ Nj we can write P `(xS`) =
xjQ`(xS`\{j}) +R`(xS`\{j}), where Q` = ∂jP ` = ∂jP`. Since the bits xi for i ∈ S` \ {j} ⊂ F
are chosen uniformly and independently, the expected contribution to (8) from the R`
polynomials is 0. Thus we just need to establish

E
[
xj ·

∑
`∈Nj

Q`

]
≥ exp(−O(k)) ·

√
|Nj |, where Q`

def= Q`(xS`\{j}). (10)

We now finally describe how the algorithm chooses the random bit xj . Naturally, we will
choose it to be +1 when

∑
`∈Nj Q` is “large” and −1 otherwise. Doing this satisfies the

second aspect of property (†), that xj should depend only on (xi : i ∈ Aj). To satisfy the
first aspect of property (†), that xj is equally likely ±1, we are essentially forced to define

xj = sgn
( ∑
`∈Nj

Q` − θj
)
, (11)

where θj is defined to be a median of the random variable
∑
`∈Nj Q`.

(Actually, we have to be a little careful about this definition. For one thing, if the median
θj is sometimes achieved by the random variable, we would have to carefully define sgn(0)
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to be sometimes +1 and sometimes −1 so that xj is equally likely ±1. For another thing,
we are assuming here that the algorithm can efficiently compute the medians θj . We will
describe how to handle these issues in a technical remark after the proof.)

Having described the definition (11) of xj satisfying property (†), it remains to verify the
inequality (10). Notice that by the “no overlapping constraints” aspect of triangle-freeness,
the random variables Q` are actually mutually independent. Further, Lemma 4 implies that
each has variance Ω(2−k); hence the variance of Q

def=
∑
`∈Nj Q` is exp(−O(k)) · |Nj |. Thus

inequality (10) is equivalent to

E[sgn(Q− θj)Q] ≥ exp(−O(k)) · stddev[Q] = exp(−O(k)) · stddev[Q− θj ].

Now

E[sgn(Q− θj)Q] = E[sgn(Q− θj)(Q− θj + θj)] = E[|Q− θj |] + E[xj · θj ]. (12)

We have E[xj · θj ] = 0 since E[xj ] = 0. And as for E[|Q− θj |], it is indeed at least
exp(−O(k)) · stddev[Q] by Fact 5, since Q is a degree-(k − 1) function of uniform and
independent random bits. Thus we have finally established (8), and therefore (9).

To conclude, we analyze what happens when the algorithm initially chooses a uniformly
random partition (F ,G) of [n]. In light of (9), it suffices to show that for each i ∈ [n] we
have

E
[
1[i ∈ G] ·

√
|N i|

]
≥ exp(−O(k)) ·

√
deg(i). (13)

We have P[i ∈ G] = 1
2 ; conditioning on this event, let us consider the random variable |N i|;

i.e., the number of active constraints involving variable xi. A constraint scope S` containing i
becomes active if and only if all the other indices in S` go into F , an event that occurs with
probability 2−k+1 (at least). Furthermore, these events are independent across the scopes
containing i because of the “no overlapping constraints” property of triangle-freeness. Thus
(conditioned on i ∈ G), each random variable |N i| is the sum A1 + · · ·+ Adeg(i) independent
indicator random variables, each with expectation at least 2−k+1. Thus we indeed have
E[
√
|N i|] ≥ exp(−O(k))

√
deg(i) as needed to complete the proof of (13). This follows from

the well known fact that E[
√
Binomial(d, p)] ≥ Ω(min(

√
dp, dp)). (Alternatively, this follows

from the fact that A1 + · · ·+ Adi is at least its expectation di2−k+1 with probability at least
exp(−O(k)), by Fact 5. Here we would use that the Aj ’s are degree-(k − 1) functions of
independent random bits defining (F ,G)). The proof is complete. J

I Remark. Regarding the issue of algorithmically obtaining the medians in the above proof:
In fact, we claim it is unnecessary for the algorithm to compute the median θj of each Qj

precisely. Instead, our algorithm will (with high probability) compute a number θ̃j and a
probabilistic way of defining sgn(0) ∈ {±1} such that, when xj is defined to be sgn(Q− θ̃j),
we have |E[xj ]| ≤ δ, where δ = 1/poly(m,n, exp(k)) is sufficiently small. First, let us briefly
say why this is sufficient. The above proof relied on E[xj ] = 0 in two places. One place was
in the last term of (12), where we used E[xj · θj ] = 0. Now in the approximate case, we’ll
have |E[xj · θ̃j ]| ≤ δm, and by taking δ appropriately small this will contribute negligibly
to the overall theorem. The other place that E[xj ] = 0 was used was in deducing from
Claim 9.1, that the inactive constraints contributed nothing to the algorithm’s expected
value. When we merely have |E[xj ]| ≤ δ (but still have the independence used in the claim),
it’s easy to see from Fourier considerations that each inactive constraint still contributes
at most 2kδ to the overall expectation, and again this is negligible for the theorem as
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a whole if δ = 1/ poly(m,n, exp(k)) is sufficiently small. Finally, it is not hard to show
that the algorithm can compute an appropriate θ̃j and probabilistic definition of sgn(0) in
poly(m,n, exp(k)) time (with high probability), just by sampling to find a good approximate
median θ̃j and then also estimating P[Qj = θ̃j ] to handle the definition of sgn(0).
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Abstract
We consider two fundamental problems in stochastic optimization: approximation algorithms for
stochastic matching, and sampling bounds in the black-box model. For the former, we improve
the current-best bound of 3.709 due to Adamczyk, Grandoni, and Mukherjee [1], to 3.224; we also
present improvements on Bansal, Gupta, Li, Mestre, Nagarajan, and Rudra [2] for hypergraph
matching and for relaxed versions of the problem. In the context of stochastic optimization, we
improve upon the sampling bounds of Charikar, Chekuri, and Pál [3].
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1 Introduction

Stochastic optimization deals with problems where there is uncertainty inherent in the input
[14]; this classical sub-area of optimization has received much attention in computer science
over the last decade, especially from the viewpoints of approximation algorithms and of
(efficiently) handling various models for the input (see, e.g., [3, 5, 10, 11, 12, 13, 15, 16]).
We make progress on two basic problems in this regard. First, matching is well-known to
be a bedrock of combinatorial optimization – a problem that has also played a key role in
the advancement of new algorithmic paradigms including parallel algorithms, randomized
algorithms, and, more recently, online algorithms in sponsored-search advertising. However,
we do not yet have a full algorithmic understanding even for various basic stochastic versions
of the problem. We advance this goal by improving upon the bounds of [2] and [1] for the
matching problem in graphs and in uniform hypergraphs. Second, a fundamental model in
this field is the black-box model: we assume that the input-distribution is represented by a
black box, from which we can sample inputs independently any number of times (in addition
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needed to solve various stochastic-optimization problems in this model, as a function of, e.g.,
the desired accuracy ε and the confidence (probability of successfully estimating to within ε).

Informally, the basic stochastic-matching problem is as follows [2, 4]. We are given a
graph G = (V,E) with a weight we ≥ 0 and a probability pe ∈ [0, 1] for each edge e; each
vertex v also has a positive integral “patience” tv. Our goal is to construct a matching
of maximum weight; however, there are a few catches. First, the edges are only present
probabilistically: each edge e is present independently with probability pe, and the presence
(or lack thereof) of any edge e can only be ascertained by probing for it – adaptively, in
any order we choose. However, if we choose to probe e = (u, v) and find that it is present,
we are forced to add it to our matching: in particular, all edges incident on e are removed
immediately if e is found to be present. Furthermore, the edges incident upon any vertex
v can only be probed for up to tv times; i.e., we cannot exceed the hard constraint of the
patience of any vertex. Under these constraints, the goal is to find a matching of maximum
expected weight, where the expectation is taken both over the stochastic existence of the
edges, and over any internal randomization of our algorithm. Intriguingly, it is not yet known
if this problem is NP -hard. The state of the art in terms of approximation is mainly from the
work of [2], who present a 3–approximation for bipartite graphs, and a 4–approximation for
general graphs. Recently, these bounds have been improved to 2.845 and 3.709 for bipartite
and general graphs respectively [1]. We present the following two improvements for the
general graphs, with Theorem 2 being a bicriteria result that allows the patience constraints
to be violated by at most 1:

I Theorem 1. There is a 3.224–approximation algorithm for the weighted stochastic matching
problem on a general graph.

I Theorem 2. There is a 2.675–approximation algorithm for the weighted stochastic matching
problem on a general graph if patience constraints are allowed to be violated by 1.

In essence, the LP-based approach of [2] uses a dependent-rounding algorithm of [7]
to first guarantee that the patience constraints are satisfied with probability one within
the context of their randomized algorithm; the probing is done on top of this setup. In
contrast, we randomly permute the edges and then probe them in this order, with probing
probabilities suggested by the LP – of course, not probing infeasible edges in the process.
An edge is infeasible if a neighboring edge has already been placed in the matching, or
if one of the two end-points has had its patience exhausted. While it is not too hard to
incorporate the matching constraints here, the patience constraints are far more complex
to handle well: e.g., direct use of Chernoff-type bounds will not help. We work to identify
extremal input-instances for our algorithm and combine this with rigorous computer-aided
calculations in order to conduct our analyses. Theorem 2 follows from a new attenuation
idea. The algorithms themselves are quite simple to implement; the main feature of our
work is a detailed analysis of the worst-case settings for our algorithms. All calculations and
proofs omitted from this preliminary version will appear in the full version.

Theorem 3 and Theorem 4 improve upon the (k + 1)–approximation of [2] for weighted
matching in k-uniform hypergraphs. Both of these algorithms use first to classify the
hyperedges as “small" or “large" based on the LP values, and treat each group separately.
The difference is as follows. The algorithm of Theorem 3 attenuates the small edges to boost
the performance of large edges; the algorithm of Theorem 4 uses a “weighted permutation”
of the hyperedges such that each large edge has a higher chance to fall behind a small edge.
Although Theorem 4 is asymptotically better, we present both theorems since their ideas
can be useful elsewhere. Note that the LP-based methods of [2] and ours cannot in general
do better than k − 1 + 1/k [6]; hence, we are close to optimal for LP-based approaches.
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I Theorem 3. There is a (k+ 1
2 +o(1))–approximation algorithm for the stochastic matching

problem on a k-uniform hypergraph, where the “o(1)” term is a function of k that vanishes
asymptotically.

I Theorem 4. For any given ε > 0, there is a (k+ ε+ o(1))–approximation algorithm for the
stochastic matching problem on a k-uniform hypergraph, where the “o(1)” term is a function
of k that vanishes asymptotically.

Finally, we significantly improve upon the sample complexity of [3] for stochastic optimiza-
tion in the black-box model. Since the bounds are somewhat technical, we defer discussion
of the actual parameters to Section 5: please see Theorems 13 and 14 for statements of the
state-of-the-art and of our improvement. The analysis of [3] has different worst-case settings,
but we show that the values of the parameters are very different in these different regimes.
This enables a careful analysis of how many samples the approach really needs. This black-
box model is quite general, and an improved sample complexity translates to more-efficient
implementations of the several applications of the work of [3] (see, e.g., [8, 9, 17]).

Preliminaries. We will often consider a uniformly random permutation π on a set of items
{e1, . . . , en}. We can assume that π is chosen as follows: for each item e, we pick independently
and uniformly at random a real number π(e) = ae ∈ [0, 1], and then sort these in increasing
order to obtain π. Note that we abuse notation by letting π denote both the permutation
and the reals chosen; however, this choice will be clear from the context.

We make use of the following form of the Chernoff bound:

I Definition 5 (Chernoff Bound.). Let X1, . . . , Xn be n independent random variables with
0 ≤ Xi ≤ 1. Let X = X1 + . . .+Xn and µ = E[X]. Then for any ε > 0,

Pr[X ≥ (1 + ε)µ] ≤ exp
(
− ε2

2 + ε
µ

)
, and

Pr[X ≤ (1− ε)µ] ≤ exp
(
−ε

2

2 µ
)

2 Stochastic Matching

We consider the following stochastic matching problem. The input is an undirected graph
G = (V,E) with a weight we and a probability value pe on each edge e ∈ E. In addition,
there is an integer value tv – the patience – for each vertex v ∈ V . Initially, each vertex
v ∈ V has patience tv. At any step in the algorithm, only an edge e(u, v) ∈ E such that
tu > 0 and tv > 0 can be probed. Upon probing such an edge e, one of the following happens:
(1) with probability pe, e exists; u and v get matched and are removed from G along with
their incident edges, or (2) with probability (1− pe), e does not exist; e is removed, and tu
and tv are reduced by 1. (All these edge-existence events are independent.) We seek to find
an adaptive strategy for probing edges; its performance is measured by the expected weight
of the matched edges. We prove Theorem 1 now.

Consider the following natural LP relaxation [2]: for any vertex v ∈ V , ∂(v) denotes the
edges incident to v. The LP variable ye denotes the probability that edge e(u, v) gets probed
in the adaptive strategy, and xe = yepe denotes the probability that e gets matched in the
strategy.
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maximize
∑
e∈E

wexe (2.1)

subject to
∑
e∈∂(v)

xe ≤ 1 ∀v ∈ V (2.2)

∑
e∈∂(v)

ye ≤ tv ∀v ∈ V (2.3)

xe = yepe ≥ 0, ye ≤ 1 ∀e ∈ E (2.4)

I Lemma 6 ([2]). The optimal value for the LP (2.1) is an upper bound on the performance
of any adaptive algorithm for stochastic matching.

We use (x, y) to denote the optimal solution to the LP in equation (2.1). For an edge
e(u, v), it is called safe at the time it is considered if: (1) neither u nor v is matched, and (2)
both of tu > 0 and tv > 0. Our algorithm, denoted by SM1, first fixes a uniformly random
permutation π on the set of edges E. It then inspects the edges one by one in the order of π.
If an edge e is safe, the algorithm probes it (independently) with probability ye, otherwise it
skips to the next one. For ease of analysis, we state our algorithm SM1 in a slightly different
but equivalent way in Algorithm 1.

Algorithm 1: SM1: Stochastic Matching
1 Choose a random permutation π on E.
2 For each edge e ∈ E, generate a random bit Ye = 1 independently with probability ye.
Let E′ be the set of edges with Ye = 1.

3 Follow the random order π to inspect edges in E′
4 If an edge e is safe, then probe it; otherwise, skip it.

To analyze the performance of our algorithm, we conduct an edge-by-edge analysis. Recall
that the LP variable xe = yepe denotes the probability that e is matched in the LP (2.1), and
the optimal value of the LP is exactly

∑
e∈E wepeye. The expected weight of the matching

found by our algorithm is E[SM1] =
∑
e∈E wepe Pr[e ∈ E′] Pr[e gets probed|e ∈ E′], which

is
∑
e∈E wepeye Pr[e gets probed|e ∈ E′] ≥

∑
e∈E wepeyeλ, assuming Pr[e gets probed|e ∈

E′] ≥ λ. This gives us a λ-approximation algorithm.
We now start to discuss how to compute the value of λ. Focus on a specific edge

e = e(u, v), let E(u) be the set of edges incident to u excluding e itself, i.e. E(u) = ∂(u)\{e}.
Conditioning on π(e) = x with 0 < x < 1 and Ye = 1, let Pu be the probability that e is not
blocked by any of edges in E(u) in the algorithm SM1. Here we say e is blocked by some edge
f in E(u) if f gets matched or patience constraint on u gets tight resulting from probing
f (tu = 0). We assume without loss of generality that |E(u)| ≥ tu, otherwise the patience
constraint for node u will be redundant.

A little thought gives us the following lower bound on Pu:

Pu ≥ Pu =
∑

S⊆E(u),|S|≤tu−1

x|S|
∏
f∈S

yf (1− pf )
∏
f /∈S

(1− xyf ) (2.5)

To see why this is true, let Y ′f (for any f ∈ E(u)) be the indicator random variable that
is 1 iff f gets matched when probed, i.e., Pr[Y ′f = 1] = pf . For each S ⊆ E(u), such that
|S| ≤ tu − 1, we associate an event ES that says: “(1) each edge f ∈ S falls before e in π
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with Yf = 1 and Y ′f = 0; and (2) each edge f /∈ S either falls after e in π or Yf = 0". We can
see that each ES is a sufficient condition for e being not blocked by any edge of S. Thus Pu
should be at least the probability that one or more of ES happen, which is exactly Pu.

In the following paragraphs, we carefully investigate the configuration of edges that
minimizes the value of Pu. We denote such adversarial configurations as the worst-case
structure (WS) of E(u). For each of these configurations, we have the constraints: (i)∑
f∈E(u) yfpf ≤ 1, (ii)

∑
f∈E(u) yf ≤ tu and (iii) 0 ≤ yf ≤ 1 for each f ∈ E(u). Here we

view x as a (given) parameter.

I Lemma 7. In WS, there will be at most one edge with pf = 1 and at most one edge with
0 < pf < 1. All other edges must have pf = 0.

Proof. We prove by contradiction. Assume there are two edges, say p1 = p2 = 1 in WS.
Then y1 + y2 ≤ 1 since

∑
i yipi ≤ 1. We perturb the current configuration as follows: merge

the two edges into a single edge e3 where y3 = y1 + y2 and p3 = 1. Notice that after this
perturbation, both of the values

∑
f∈E(u) yfpf and

∑
f∈E(u) yf remain unchanged. Thus

both of matching and patience constraints are maintained at u, and our perturbation gives a
feasible configuration.

The change brought by this perturbation to the value Pu is as follows: for each non-zero
term in Pu associated with some S ⊆ E(u) where e1 /∈ S, e2 /∈ S, the term (1− xy1)(1− xy2)
will be replaced with (1− x(y1 + y2)), which results in a strictly lower value of Pu. This is a
contradiction.

Now assume there are two edges a, b with 0 < pa, pb < 1 in WS. Consider the following
perturbation: for some small ε 6= 0, set p′a = pa + ε/ya and p′b = pb − ε/yb. After this
perturbation, both of

∑
f∈E(u) yfpf and

∑
f∈E(u) yf remains unchanged and the perturbed

configuration is still feasible.
Let f(ε) be the value of Pu after this update. In the expression of Pu, the terms

contributing to ε2 must be those associated with S where a, b ∈ S. Notice that

(1− p′a)(1− p′b) = (1− pa − ε/ya)(1− pb + ε/yb)

has a negative coefficient of ε2, implying that the second derivative f ′′ < 0. Therefore we
can always find a non-zero value of ε to make Pu strictly smaller. Again a contradiction. J

Let E1(u) and E0(u) be the set of edges in WS which have pf = 1 and pf = 0 respectively.
Let (ya, pa) be the potential edge taking a floating 0 < pa < 1 value. Lemma 7 tells us E1(u)
contains at most one edge in WS. Let A =

∑
f∈E1(u) yf .

Based on Lemma 7, we can update the expression of Pu as

Pu = (1− xA)(1− xya) Pr[Zu ≤ tu − 1] + (1− xA)xya(1− pa) Pr[Zu ≤ tu − 2] (2.6)

where Zu =
∑
f∈E0(u) Zf and {Zf |f ∈ E0(u)} are independent Bernoulli random variables

with Pr[Zf = 1] = xyf ,∀f ∈ E0(u). Here are two useful lemmas; the proofs will appear in
the full version.

I Lemma 8. In WS, pa = 0.

From Lemma 8, we can claim that there is no edge f that takes fractional pf value. Thus
we can further simplify the expression of Pu in equation (2.6) as

Pu = (1− xA) Pr[Zu ≤ tu − 1] (2.7)

I Lemma 9. In WS, A = 1 and Zu follows Poisson distribution with mean x(tu − 1).
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At this point, we have all the essentials to prove Theorem 1.

Proof. We have Pr[e gets probed |Ye = 1] =
∫ 1

0 PuPvdx ≥
∫ 1

0 PuPvdx, i.e., at least

H(tu, tv)
.=
∫ 1

0
(1− x)2 Pr[Zu ≤ tu − 1] Pr[Zv ≤ tv − 1]dx,

where Zu and Zv follow Poisson distributions with means E[Zu] = x(tu − 1) and E[Zv] =
x(tv − 1) respectively. The rest of the analysis splits into the following three cases.

We can numerically verify that H(tu, tv) achieves its minimum value of 0.31016 = 1/3.224
at tu = tv = 2 when 1 ≤ tu, tv ≤ 20.
For tu, tv ≥ 20, by applying the Chernoff bound, we get

H(tu, tv) ≥
∫ 1

0
(1− x)2

[
1− exp

(
−ε2

2 + ε
x(tu − 1)

)][
1− exp

(
−ε2

2 + ε
x(tv − 1

)]
dx,

where ε = ε(x) = 1
x − 1; by plugging in tu = tv = 20, we can verify numerically that this

integral is at least 0.316324.
Similarly, for 1 ≤ tu ≤ 20 while tv ≥ 20, we can verify numerically (by checking all
integers 1 ≤ tu ≤ 20) that with ε = 1

x − 1,

H(tu, tv) ≥
∫ 1

0
(1− x)2 Pr(Zu ≤ tu − 1)

[
1− exp

(
−ε2

2 + ε
x(20− 1)

)]
dx ≥ 0.312253.

This establishes the key claim that Pr[e gets probed |Ye = 1] ≥ 0.3106 for each e ∈ E. J

3 Stochastic Matching with Relaxed Patience

In this section, we consider the variant of the stochastic matching problem in which patience
constraints are allowed to be violated by at most 1, and prove Theorem 2. From the analysis
of Section 2, we observe that the edges with a large yepe value are probed with a much
higher probability than those with small ones. This indicates that small edges are the ones
that bottleneck the performance of our algorithm. Our high level idea here is to attenuate
such “large” edges in order to improve the performance of the small ones. The process
of attenuation carefully calculates a value he ∈ (0, 1], called as the attenuation factor, for
each e ∈ E. Instead of probing an edge e with probability ye as in algorithm SM1, our new
algorithm probes it with probability heye. We will show that such a strategy balances the
performance of large and small edges and improves the overall performance of SM1.

The overall picture of our algorithm, denoted SM2, is as follows. First we label each
edge e ∈ E as “large” if yepe > 1/2 or “small” if yepe ≤ 1/2. Similar to SM1, we follow
a random permutation π on the set of edges E to inspect each edge. If an edge e is safe
when considered, we probe it with probability heye; otherwise we skip it. Here he = h if e
is large and he = 1 otherwise, where h ≥ 1/2 is a parameter which we optimize later. For
ease of analysis, we state the algorithm SM2 in an alternate but essentially equivalent way
in Algorithm 2. In the spirit of Section 2, we conduct an edge-by-edge analysis. The full
analysis will appear in the full version.
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Algorithm 2: SM2: Stochastic Matching with relaxed patience
1 Choose a random permutation π of E.
2 For each edge e ∈ E, set he = h if yepe > 1/2, set he = 1 otherwise.
3 For each edge e ∈ E, generate a random bit Ye = 1 with probability heye. Let E′ be
the set of edges with Ye = 1.

4 Follow the random order π to inspect edges in E′
5 If an edge e is safe, probe it; otherwise, skip it.

4 Stochastic Hypergraph Matching

We now consider stochastic matching in a k-uniform hypergraph, i.e., a hypergraph where
all edges have size k. The standard LP can be obtained by naturally extending the LP in
(2.1) to the one below:

max
∑
e∈E

wexe :
∑
e∈∂(v)

xe ≤ 1,∀v ∈ V, xe = yepe ≥ 0, ye ≤ 1,∀e ∈ E (4.1)

Note that we do not consider the patience parameter at a vertex, as in Section 2. Here
∂(v) denotes the set of hyperedges incident to v.

4.1 An algorithm achieving (k + 1/2 + o(1)) approximation ratio
Let (x, y) be an optimal solution to the LP (4.1). At a high level, our algorithm proceeds
according to the outline below. Let c ≥ 1/2 be a parameter, which will be optimized at 1/2
later.

1. Divide the edges into two sets, the “small” edge set ES = {e|yepe ≤ c}, and the “large”
edge set EL = E \ ES .

2. Choose a random permutation π on ES .
3. Sample each edge e ∈ ES with probability ye, independent of other edges. Let E′S be the

set of edges sampled.
4. Follow the random order π to inspect if each small edge e ∈ E′S is safe or not. If e is safe,

probe it with probability he; otherwise, skip it. Here 0 < he ≤ 1 is a parameter to fix
later.

5. After inspecting all small edges, remove all the unsafe large edges from EL, and probe
the rest with probability 1 (in arbitrary order).

Roughly speaking, an edge e being “safe” means none of the edges in the neighborhood of
e are matched. Later, we will give a definition that is both stronger and exactly computable.
Based on the new definition, we compute an attenuation factor he for each e ∈ ES , such that
at the end of the algorithm, e is probed with probability exactly equal to ye/λ. Here, λ ≥ 1
is our target approximation ratio. All that remains is to analyze the performance of each
large edge e ∈ EL and show that e is probed with probability at least ye/λ. That gives us a
λ–approximation algorithm.

We redefine the notion of a small edge e being safe. Suppose π is the random order on
ES and π(e) = x, 0 < x < 1. Let NS [e] be the set of small edges in the neighborhood of e.
For each f ∈ NS [e], let Xf , Yf , Zf be three random variables such that: Xf = 1 if f falls
before e in π, Yf = 1 if f ∈ E′S and Zf = 1 if f exists in the hypergraph when probed. Note
that the collection of random variables {Xf , Yf , Zf |f ∈ NS [e]} are mutually independent.
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For each f ∈ NS [e], let Af be the event that (Xf + Yf +Zf ≤ 2) and Se = ∧f∈NS [e]Af . W e
say e is safe iff Se happens . Lemma 10 computes the probability that a small edge e is safe
in our algorithm.

I Lemma 10.

Pr[Se] =
∫ 1

0
Pr[Se|π(e) = x]dx =

∫ 1

0

∏
f∈NS [e]

(1− xyfpf )dx. (4.2)

Proof. By definition, Pr[Xf = 1|π(e) = x] = x. Note that Pr[Yf = 1] = yf , Pr[Zf =
1] = pf , and the two values are independent of π(e). Thus, given π(e) = x, Af will occur
with probability (1 − xyfpf ). Since the Af are independent for f ∈ NS [e], the proof is
completed. J

Here are two interesting points for the event Se: (1) When Se happens, e must be safe
according to our initial definition, i.e., none of the edges in its neighborhood get matched;
the contrary is not true. Thus the new definition is more strict. (2) On checking e in the
algorithm, we might not know if Se occurs or not due to some missing Zf for f ∈ NS [e]. For
instance, some f ∈ NS [e] gets blocked by some small edge f ′ ∈ NS [f ] while Xf = Yf = 1. In
this case, we do not know the value of Zf since f will not be probed. In order to continue
our algorithm, we simulate Zf by generating a random bit Zf = 1 with probability pf and
Zf = 0 otherwise. Notice that if Zf = 1, we will view e as not safe and will not probe it,
even though it might be safe according to our initial definition.

The full description and analysis of algorithm in Theorem 3 will appear in the full version.

4.2 An algorithm achieving (k + ε+ o(1)) approximation ratio
In this section, we present a randomized algorithm that achieves an approximation ratio of
(k+ ε+ o(1)) for stochastic matching on a k-uniform hypergraph, where ε is given in advance.

Let (x, y) be an optimal solution to the LP (4.1). W.L.O.G we assume 1/ε = N where N
is an integer. Let a be a constant such that 1− 1/N < a < 1. We say an edge e is large if
yepe > 1/N , otherwise we call e small. For each small edge e, we draw a random real number
xe uniformly from [0, 1]. For each large edge e, we draw a random real number xe from [0, δ]
with density a and from (δ, 1] with density (1−aδ)/(1−δ), where δ = min(1, N(1−a1/(N−1)).
Then we derive a random permutation π by sorting {xe, e ∈ E} in increasing order. Assuming
N is sufficiently large, the value δ is at most 1/N + o(1/N). Notice that N, a and δ are all
fixed constants. Based on π, we sketch our randomized algorithm below:

Algorithm 3: SM4: Stochastic Matching on a k-uniform hyergraph
1 Initially all edges are safe.
2 Follow the random order π to check each edge e ∈ E is safe or not.
3 If e is safe, then probe it with probability ye; otherwise, skip it.

The lemmas below are useful for the proof of Theorem 4.

I Lemma 11. For any c > 1/N and 0 < x < δ, we have

1− axc > (1− x/N)cN

Proof. Define F (x) = 1 − axc − (1 − x/N)cN . We can verify that: (1) F (0) = 0, and (2)
F ′(x) > 0 for any 0 ≤ x < δ. This gives the desired result. J
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Consider an edge e = (v1, v2, · · · , vk). Suppose yepe = ce < 1−1/N and xe = x, 0 < x < δ.
For each 1 ≤ i ≤ k, let ∂′(vi) denote the set of edges incident to vi excluding e itself. Denote
by Si the event that none of edges in ∂′(vi) come before e and get matched.

I Lemma 12.
Pr[Si] ≥ (1− x/N)(1−ce)N

The proof of Lemma 12 will appear in the full version. Now we start to prove Theorem 4.

Proof.
1. Consider a small edge e, say e = (v1, v2, · · · , vk) and xe = x. From Lemma 12, we see

Pr[Si] ≥ (1− x/N)N for each 1 ≤ i ≤ k. Thus by applying the FKG inequality, we get
Pr [
∧
i Si] ≥ (1− x/N)kN , which is followed by

Pr[ e is checked as safe ] ≥
∫ δ

0
(1− x/N)kNdx = 1

k + 1/N −O(kk0/k)

where k0 = (1− δ/N)N < 1 is a constant.
2. Consider a large edge e, say e = (v1, v2, · · · , vk) and xe = x. From Lemma 12, we see

Pr[Si] ≥ (1− x/N)N−1 for each 1 ≤ i ≤ k. Thus by applying FKG, we see when x ≤ δ,
Pr [
∧
i Si] ≥ (1− x/N)k(N−1), which is followed by

Pr[ e is checked as safe ] ≥
∫ δ

0
a(1−x/N)k(N−1)dx = aN

N − 1
1

k + 1/(N − 1)−O(kk0/k) > 1
k

where k0 = (1− δ/N)N−1 < 1 is a constant; we use the fact that a > 1− 1/N to get the
last inequality above. J

5 Sample Complexity of Black-Box Stochastic Optimization

In this section, we consider the following two-stage stochastic minimization program

min
x∈X

f(x) = c(x) + E
ω

[q(x, ω)]. (5.1)

An important context in which this problem arises is two-stage stochastic optimization
with recourse. In this model, a first-stage decision x ∈ X has to be made while having only
probabilistic information about the future, represented by the probability distribution π on
Ω. Then, after a particular future scenario ω ∈ Ω is realized, a recourse action r ∈ R may be
taken to ensure that the requirements of the scenario ω are satisfied. In the two-stage model,
c(x) denotes the cost of taking the first stage action x. Given a particular scenario ω and a
first-stage action x, the cost of the second stage q(x, ω) is represented as

q(x, ω) = min
r∈R
{costω(x, r)|(x, r) is a feasible solution for scenario ω}.

A natural approach to solve problems modeled by equation (5.1) is to take some number,
N , of independent samples ω1, . . . , ωN from the distribution π, and to approximate the
function f by the sample-average function

f̂(x) = c(x) + 1
N

N∑
i=1

q(x, ωi). (5.2)
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One might then hope that for a suitably chosen sample size N , a good solution x̂ to
equation (5.2) would be a good solution to f ; more precisely, x̂ ∈ X is an α-approximate
minimizer of the function f defined in (5.1), if for all x ∈ X, f(x̂) ≤ αf(x). This approach,
called the sample average approximation method (SAA), was considered by Charikar, Chekuri,
and Pál [3], who considered a setting with the following properties:

(P1) Non-negativity. c(x) ≥ 0 and q(x, ω) ≥ 0 for each x ∈ X and ω ∈ Ω.
(P2) Empty First stage. We assume there is an empty first stage action, 0 ∈ X with c(0) = 0,

q(x, ω) ≤ q(0, ω) for each x ∈ X,ω ∈ Ω.
(P3) Bounded Inflation Factor. For each x ∈ X,ω ∈ Ω, we have q(0, ω)− q(x, ω) ≤ λc(x).

In such a setting, a key result of [3] is:

I Theorem 13 ([3]). There is a constant K0 > 0 such that the following holds. Any exact
minimizer x̄ of the function f̂ defined in (5.2) constructed with K0 · λ

2

ε4 log |X| log 1
δ samples

is, with probability at least 1 − δ, an (1 + O(ε))-approximate minimizer of the function f

defined in (5.1).

Our result on improved sample complexity states as follows. The proof will appear in the
full version.

I Theorem 14. There is a constant K1 > 0 such that the following holds. Any exact
minimizer x̄ of the function f̂ defined in (5.2) constructed with N = K1 · log |X|δ ·max

[
λ2

ε2 ,
λ
ε3

]
samples is, with probability at least 1−δ, an (1+O(ε))-approximate minimizer of the function
f defined in (5.1).

This improvement, in turn, improves the runtime of the several applications that employ
this sampling framework; see, e.g., [8, 9, 17].
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Abstract
We consider the fully dynamic bin packing problem, where items arrive and depart in an online
fashion and repacking of previously packed items is allowed. The goal is, of course, to minimize
both the number of bins used as well as the amount of repacking. A recently introduced way of
measuring the repacking costs at each timestep is the migration factor, defined as the total size
of repacked items divided by the size of an arriving or departing item. Concerning the trade-off
between number of bins and migration factor, if we wish to achieve an asymptotic competitive
ratio of 1 + ε for the number of bins, a relatively simple argument proves a lower bound of Ω(1/ε)
on the migration factor. We establish a fairly close upper bound of O(1/ε4 log 1/ε) using a new
dynamic rounding technique and new ideas to handle small items in a dynamic setting such that
no amortization is needed. The running time of our algorithm is polynomial in the number of
items n and in 1/ε. The previous best trade-off was for an asymptotic competitive ratio of 5/4 for
the bins (rather than 1 + ε) and needed an amortized number of O(logn) repackings (while in
our scheme the number of repackings is independent of n and non-amortized).
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1 Introduction

For the classical bin packing problem, we are given a set I of items with a size function
s : I → (0, 1] and need to pack them into as few unit sized bins as possible. In practice, the
complete instance is often not known in advance, which has lead to the definition of a variety
of online versions of the bin packing problem. First, in the classical online bin packing [35],
items arrive over time and have to be packed on arrival. Second, in dynamic bin packing [8],
items also depart over time. This dynamic model is often used for instance in

the placement and movement of virtual machines onto different servers for cloud computing
[3, 4, 22, 23, 32, 36],
the development of guaranteed quality of service channels over certain multi-frequency
time division multiple access systems [28],
the placement of processes, which require different resources, onto physical host machines
[33, 34],
the resource allocation in a cloud network where the cost depends upon different parame-
ters [9, 26].
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Name Deletion Repacking
Online Bin Packing 7 7

Relaxed Online Bin Packing 7 3

Dynamic Bin Packing 3 7

Fully Dynamic Bin Packing 3 3

Figure 1 Overview of online models.

Third and fourth, we may allow already packed items to be slightly rearranged, leading to
online bin packing with repacking (known as relaxed online bin packing) [14] and dynamic
bin packing with repacking (known as fully dynamic bin packing) [16]. See Figure 1 for a
short overview on the different models.

The amount of repacking can be measured in different ways. We can either count the
total number of moved items at each timestep or the sum of the sizes of the moved items
at each timestep. If one wants to count the number of moved items, one typically counts a
group of tiny items as a single move. A shifting move [14] thus involves either a single large
item or a bundle of small items in the same bin of total size s with 1/10 ≤ s ≤ 1/5. Such a
bundle may consists of up to Ω(n) (very small) items. If an algorithm measures the repacking
by shifting moves, an occurring tiny item may lead to a large amount of repacking. In order
to guarantee that a tiny item i with size s(i) only leads to a small amount of repacking, one
may allow to repack items whose size adds up to at most β · s(i). The term β is called the
migration factor [29]. Note that shifting moves and migration factor are incomparable in the
sense that a small migration factor does not imply a small number of shifting moves and
vice versa.

In order to measure the quality of an online algorithm, we compare the costs incurred
by an online algorithm with the costs incurred by an optimal offline algorithm. An online
algorithm receives as input a sequence of items I = (i1, i2, i3, . . .) and decides at each timestep
t, where to place the item it without knowing future items it+1, it+2, . . .. We denote by
I(t) = (i1, i2, . . . , it) the instance containing the first t items of the instance I and by
opt(I(t)) the minimal number of bins needed to pack all items in I(t). Note that the
packings corresponding to opt(I(t)) and opt(I(t + 1)) may differ significantly, as those
packings do not need to be consistent. For an online algorithm A, we denote by A(I(t))
the number of bins generated by the algorithm on the input sequence I(t). Note that A
must make its decision online, while opt(I(t)) is the optimal value of the offline instance.
The quality of an algorithm for the online bin packing problem is typically measured by its
asymptotic competitive ratio. An online algorithm A is called an asymptotic α-competitive
algorithm, if there is a function f with limn→∞ sup

{
f(I)

opt(I) | opt(I) = n
}

= 0 such that
A(I(t)) ≤ αopt(I(t)) + f(I(t)) for all instances I and all t ≤ |I|. The minimum α such
that A is an asymptotic α-competitive algorithm is called the asymptotic competitive ratio
of A, denoted by ron

∞ (A), i. e., the ratio is defined as ron
∞ (A) = min{α | A is an asymptotic

α-competitive algorithm}. The online algorithm A thus has a double disadvantage: It does
not know future items and we compare its quality to the optimal offline algorithm which
may produce arbitrary different packings at time t and time t+ 1. In order to remedy this
situation, one may also compare the solution generated by A to a non-repacking optimal
offline algorithm. This non-repacking optimal offline algorithm knows the complete instance,
but is not allowed to repack, i.e., the solutions at time t and time t+ 1 must be consistent.

In this work, we present new results in fully dynamic bin packing where we measure
the quality of an algorithm against a repacking optimal offline algorithm and achieve an
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asymptotic competitive ratio of 1+ε. The amount of repacking is bounded by O(1/ε4 log(1/ε)).
While we measure the amount of repacking in terms of the migration factor, we also prove
that our algorithm uses at most O(1/ε4 log(1/ε)) shifting moves. Our algorithm runs in time
polynomial in the instance size and in 1/ε.

1.1 Previous Results on Online Variants of Bin Packing
Online Bin Packing
The classical version of the online bin packing problem was introduced by Ullman [35]. In
this classical model items arrive over time and have to be packed at their arrival, while one
is not allowed to repack already packed items. Ullman gave the very first online algorithm
FirstFit for the problem and proved that it its absolute competitive ratio is at most 2.
The next algorithm NextFit was given by Johnson [19], who proved that its absolute
competitive is also at most 2. The analysis of FirstFit was refined by Johnson, Demers,
Ullman, Garey and Graham [20], who proved that its asymptotic competitive ratio is at
most 17/10. A revised version of FirstFit, called Revised FirstFit was shown to have
asymptotic competitive ratio of at most 5/3 by Yao [39]. A series of developments of so called
harmonic algorithms for this problem was started by Lee and Lee [25] and the best known
algorithm of this class which has asymptotic competitive ratio at most 1.58889 was given by
Seiden [30].

The lower bound on the absolute approximation ratio of 3/2 also holds for the asymptotic
competitive ratio as shown by Yao [39]. This lower bound was first improved independently
by Brown [5] and Liang [27] to 1.53635 and subsequently to 1.54014 by van Vliet [37] and
finally to 1.54037 by Balogh, Békési and Galambos [1].

Relaxed Online Bin Packing Model
In contrast to the classical online bin packing problem, Gambosi, Postiglione and Talamo
[14] considered the online case where one is allowed to repack items. They called this model
the relaxed online bin packing model and proved that the lower bound on the competitive
ratio in the classical online bin packing model can be beaten. They presented an algorithm
that uses 3 shifting moves and has an asymptotic competitive ratio of at most 3/2, and an
algorithm that uses at most 7 shifting moves and has an asymptotic competitive ratio of
4/3. In another work, Ivković and Lloyd [15] gave an algorithm that uses O(logn) amortized
shifting moves and achieves an asymptotic competitive ratio of 1 + ε. In this amortized
setting, shifting moves can be saved up for later use and the algorithm may repack the
whole instance sometimes. Epstein and Levin [11] used the measure of the migration factor
to give an algorithm that has an asymptotic competitive ratio of 1 + ε and a migration
factor of 2O((1/ε) log2(1/ε)). This result was improved by Jansen and Klein [18] who achieved
polynomial migration of O(1/ε4) to achieve an asymptotic competitive ratio of 1 + ε.

Concerning lower bounds on the migration factor, Epstein and Levin [11] showed that no
optimal solution can be maintained while having a constant migration factor (independent of
1/ε). Furthermore, Balogh, Békési, Galambos and Reinelt [2] proved that a lower bound on
the asymptotic competitive ratio of 1.3877 holds, if one is only allowed to repack a constant
number of items.

Dynamic Bin Packing
An extension to the classical online bin packing model was given by Coffman, Garey and
Johnson [8], called the dynamic bin packing model. In addition to the insertion of items,
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items also depart over time. No repacking is allowed in this model. It is easily seen that no
algorithm can achieve a constant asymptotic competitive ratio in this setting. In order to
measure the performance of an online algorithm A in this case, they compared the maximum
number of bins used by A with the maximum number of bins used by an optimal offline
algorithm, i. e., an algorithm A in this dynamic model is called an asymptotic α-competitive
algorithm, if there is a function f with limn→∞ sup

{
f(I)

max-OPT(I) | max-opt(I) = n
}

= 0
where max-opt(I) = maxt opt(I(t)) such that maxtA(I(t)) ≤ α · maxt opt(I(t)) + f(I)
for all instances I. The minimum of all such α is called the asymptotic competitive ratio
of A. Coffman, Garey and Johnson modified the FirstFit algorithm and proved that its
asymptotic competitive ratio is at most 2.897. Furthermore, they showed a lower bound of
2.5 on the asymptotic competitive ratio when the performance of the algorithm is compared
to a repacking optimal offline algorithm, i. e., maxt opt(I(t)).

In the case that the performance of the algorithm is compared to an optimal non-repacking
offline algorithm, Coffman, Garey and Johnson showed a lower bound of 2.388. This bound
on the non-repacking optimum was improved to 2.428 by Chan, Lam and Wong [6], to 2.5
by Chan, Wong and Yung [7] and finally to 8/3 ≈ 2.666 by Wong, Yung and Burcea [38].

Fully Dynamic Bin Packing
We consider the dynamic bin packing when repacking of already packed items is allowed. This
model was first investigated by Ivković and Lloyd [16] and is called fully dynamic bin packing.
In this model, items arrive and depart in an online fashion and limited repacking is allowed.
The quality of an algorithm is measured by the asymptotic competitive ratio as defined in
the classical online model (no maximum is taken as in the dynamic bin packing model).
Ivković and Lloyd developed an algorithm that uses amortized O(logn) many shifting moves
(see definition above) to achieve an asymptotic competitive ratio of 5/4.

Related Results on the Migration Factor
Since the introduction of the migration factor, several problems were considered in this model
and different algorithms for these problems have been developed. Following the terminology of
Sanders, Sivadasan and Skutella [29] we sometimes use the term approximation ratio instead
of competitive ratio. Hence, we also use the terms asymptotic polynomial time approximation
scheme (APTAS) and asymptotic fully polynomial time approximation scheme (AFPTAS)
in the context of online algorithms. If the migration factor of an algorithm A only depends
upon the approximation ratio ε and not on the size of the instance, we call A robust.

In the case of online bin packing, Epstein and Levin [11] developed the first robust APTAS
for the problem using a migration factor of 2O((1/ε2) log(1/ε)). They also proved that there is
no online algorithm for this problem that has a constant migration factor and that maintains
an optimal solution. The APTAS by Epstein and Levin was later improved by Jansen
and Klein [18], who developed a robust AFPTAS for the problem with migration factor
O(1/ε4). In their paper, they developed new linear program (LP)/integer linear program (ILP)
techniques, which we make use of to obtain polynomial migration. It was shown by Epstein
and Levin [12] that their APTAS for bin packing can be generalized to packing d-dimensional
cubes into unit cubes. Sanders, Sivadasan and Skutella [29] developed a robust polynomial
time approximation scheme (PTAS) for the scheduling problem on identical machines with
a migration factor of 2O((1/ε) log2(1/ε)). Skutella and Verschae [31] studied the problem of
maximizing the minimum load given n jobs and m identical machines. They also considered a
dynamic setting, where jobs may also depart. They showed that there is no robust PTAS for
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this machine covering problem with constant migration. The main reason for the nonexistence
is due to very small jobs. By using an amortized migration factor, they developed a PTAS
for the problem with amortized migration of 2O((1/ε) log2(1/ε)).

1.2 Our Contributions
Main Result
In this work, we investigate the fully dynamic bin packing model. We measure the amount
of repacking by the migration factor ; but our algorithm uses a bounded number of shifting
moves as well. Since the work of Ivković and Lloyd from 1998 [16], no progress was made on
the fully dynamic bin packing problem concerning the asymptotic competitive ratio of 5/4. It
was also unclear whether the number of shifting moves (respectively migration factor) must
depend on the number of packed items n. In this paper we give positive answers for both of
these concerns. We develop an algorithm that provides at each time step t an approximation
guarantee of (1 + ε) opt(I(t)) + O(1/ε log(1/ε)). The algorithm uses a migration factor of
O(1/ε4 · log(1/ε)) by repacking at most O(1/ε3 · log(1/ε)) bins. Hence, the generated solution
can be arbitrarily close to the optimum solution, and for every fixed ε the provided migration
factor is constant (it does not depend on the number of packed items). The running time is
polynomial in n and 1/ε. In case that no deletions are used, the algorithm has a migration
factor of O(1/ε3 · log(1/ε)), which beats the best known migration factor of O(1/ε4) by Jansen
and Klein [18]. Since the number of repacked bins is bounded, so is the number of shifting
moves as it requires at most O(1/ε) shifting moves to repack a single bin. Furthermore, we
prove that there is no asymptotic approximation scheme for the online bin packing problem
with a migration factor of o(1/ε) even in the case that no items depart (and even if P = NP).

Technical Contributions
We use the following techniques to achieve our results:

In order to obtain a lower bound on the migration factor in Section 2, we construct a
series of instances that provably need migration of Ω(1/ε) in order to have an asymptotic
approximation ratio of 1 + ε.
In Section 3, we show how to handle large items in a fully dynamic setting. The fully
dynamic setting involves more difficulties in the rounding procedure, in contrast to the
setting where large items may not depart, treated in [18]. A simple adaption of the
dynamic techniques developed in [18] does not work (see introduction of Section 3). We
modify the offline rounding technique by Karmarkar and Karp [24] such that a feasible
rounding structure can be maintained when items are inserted or removed. This way, we
can make use of the LP-techniques developed in Jansen and Klein [18].
In Section 4, we explain how to deal with small items in a dynamic setting. In contrast
to the setting where departure of items is not allowed, the fully dynamic setting provides
major challenges in the treatment of small items. An approach is thus developed where
small items of similar size are packed near each other. We describe how this structure
can be maintained as new items arrive or depart. Note that the algorithm of Ivković and
Lloyd [16] relies on the ability to manipulate up to Ω(n) very small items in constant
time. See also their updated work for a thorough discussion of this issue [17].
In order to unify the different approaches for small and large items in Section 4.2, we
develop an advanced structure for the packing. We give novel techniques and ideas to
manage this mixed setting of small and large items. The advanced structure makes use
of a potential function, which bounds the number of bins that need to be reserved for
incoming items.
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Several proofs in this extended abstract are removed due to space constraints. The full
version1 contains all of these proofs.

2 Lower Bound

We start our investigation by analyzing the connection between the approximation ratio and
the migration factor of an algorithm. Intuitively, one would expect that a small migration
factor c leads to a worse approximation ratio rc. Whether the dependency between those
term is logarithmic, linear, quadratic or something completely different is unclear. A simple
argument shows that the dependency is at least linear, i. e., there is no robust asymptotic
approximation scheme for bin packing with migration factor of o(1/ε), even if P = NP.
This improves upon the lower bound given by Epstein and Levin [11], which states that
no algorithm for online bin packing, that maintains an optimal solution can have constant
migration.

I Theorem 1. For a fixed migration factor γ > 0, there is no robust approximation algorithm
for bin packing with asymptotic approximation ratio better than 1 + 1

6dγe+5 .

I Corollary 2. There is no robust asymptotic approximation scheme for bin packing with a
migration factor γ ≤ 1/6(1/ε− 11) = Θ(1/ε).

3 Dynamic Rounding

The goal of this section is to give a robust AFPTAS for the case that only large items arrive
and depart. In the first subsection we present a general rounding structure. In the second
subsection we give operations that modify the rounding in a way that the general structure
is preserved. We give the final algorithm for the insertion and departure of large items in
Section 3.3. Finally, the correctness is proved by using the LP/ILP techniques developed in
[18].

In [18], the last two authors developed a dynamic rounding technique based on an offline
rounding technique from Fernandez de la Vega and Lueker [13]. However, a simple adaption
of these techniques does not work in the dynamic case where items may also depart. In
the case of the offline rounding by Fernandez de la Vega and Lueker, items are sorted and
then collected in groups of the same cardinality. As a new item arrives in an online fashion,
this structure can be maintained by inserting the new item to its corresponding group. By
shifting the largest item of each group to the left, the cardinality of each group (except for
the first one) can be maintained. However, shifting items to the right whenever an item
departs leads to difficulties in the LP/ILP techniques. As the rounding for a group may
increase, patterns of the existing LP/ILP solution might become infeasible. We overcome
these difficulties by developing a new dynamic rounding structure and operations based
on the offline rounding technique by Karmarkar and Karp [24]. We felt that this dynamic
rounding technique is easier to analyze since the structure can essentially be maintained by
shifting items, instead of the use of multiple complex operations as in [18].

A bin packing instance consists of a set of items I = {i1, i2, . . . , in} with size function
s : I → [0, 1] ∩Q. A feasible solution is a partition B1, . . . , Bk of I such that

∑
i∈Bj s(i) ≤ 1

for j = 1, . . . , k. We call a partition B1, . . . , Bk a packing and a single set Bj is called a bin.
The goal is to find a solution with a minimal number of bins. If the item i is packed into the

1 The full version is available at http://arxiv.org/abs/1411.0960.

http://arxiv.org/abs/1411.0960
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bin Bj , we write B(i) = j. The smallest value k ∈ N such that a packing with k bins exists
is denoted by opt(I, s) or if the size function is clear by opt(I). A trivial, yet useful lower
bound on opt(I, s) is given by the value size(I, s) =

∑
i∈I s(i).

3.1 Rounding
First, we divide the set of items into small ones and large ones. An item i is called small
if s(i) < ε/14, otherwise it is called large. Instance I is partitioned accordingly into a set of
large items IL and a set of small items IS . We treat small items and large items differently.
Small items can be packed using an algorithm presented in Section 4.1 while large items will
be assigned using an ILP. In this section we discuss how to handle large items.

To obtain a LP formulation of fixed (independent of |I|) dimension, we use a rounding
technique based on the offline AFPTAS by Karmarkar and Karp [24]. Here, large items are
put into categories such that each item in category ` has size ∈ (2−(`+1), 2−`]. In each of
those categories, the items are sorted by their size and the first 2` · k items are put into the
first group, the second 2` · k items into the second group and so on. The size of every item in
a group is rounded to the maximal size in this group. Depending on a suitable choice of k,
there are at most O(1/ε log(1/ε)) groups and the additive error produced by the rounding is
bounded by ε.

In order to use this rounding technique for our dynamic setting, we generalize their
rounding by having groups of size 2` · k (the A-block) and groups of size 2`(k − 1) (the
B-block). This generalized rounding has a certain structure that is maintained throughout
the algorithm and guarantees an approximate solution for the original instance. As in [24],
we characterize the set of large items more precisely by their sizes. We say that an item i is
in size category ` if s(i) ∈ (2−(`+1), 2−`]. Denote the set of all size categories by W . As every
large item has size at least ε/14, the number of size categories is bounded by |W | ≤ log(1/ε)+5.
Next, items of the same size category are characterized by their block, which is either A or B
and their position r ∈ N in this block. Therefore, we partition the set of large items into a
set of groups G ⊆W ×{A,B}×N. A group g ∈ G thus consists of a triple (`,X, r) with size
category ` ∈W , block X ∈ {A,B} and position r ∈ N. The rounding function R : IL 7→ G

maps each large item i ∈ IL to a group g ∈ G. By g[R] we denote the set of items being
mapped to the group g, i. e., g[R] = {i ∈ IL | R(i) = g}.

Let q(`,X) be the maximal r ∈ N such that |(`,X, r)[R]| > 0, i.e., q(`,X) is the last
position in block X (with respect to the size category `). If (`,X1, r1) and (`,X2, r2) are
two different groups, we say that (`,X1, r1) is left of (`,X2, r1), if X1 = A and X2 = B or
X1 = X2 and r1 < r2. We say that (`,X1, r1) is right of (`,X2, r2) if it is not left of it.

(`, A, 0) . . . (`, A, q(`, A)) (`, B, 0) . . . (`, B, q(`, B)) s ∈ [2−(`+1), 2−`)

Figure 2 Grouping in (`, A, ·) and (`, B, ·).

Given an instance (I, s) and a rounding function R, we define the rounded size function
sR by rounding the size of every large item i up to the size of the largest item in its group,
i.e. sR(i) = maxi′ {s(i′) | R(i′) = R(i)}. We denote by opt(I, sR) the value of an optimal
solution of the rounded instance (I, sR).

Depending on a parameter k, we define the following properties for a rounding function R.
Property (a) guarantees that the items are categorized correctly according to their sizes.
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Property (b) guarantees that items of the same size category are sorted by their size and
properties (c) and (d) define the number of items in each group.
(a) For each i ∈ (`,X, r)[R] we have 2−(`+1) < s(i) ≤ 2−`.
(b) For each i ∈ (`,X, r)[R] and each i′ ∈ (`,X, r′)[R] and r < r′, we have s(i) ≥ s(i′).
(c) For each ` ∈W and 1 ≤ r ≤ q(`, A) we have that |(`, A, r)[R]| = 2`k and |(`, A, 0)[R]| ≤

2`k.
(d) For each ` ∈ W and 0 ≤ r ≤ q(`, B) − 1 we have |(`, B, r)[R]| = 2`(k − 1) and
|(`, B, q(`, B))[R]| ≤ 2`(k − 1).

The following lemma shows that the number of groups is bounded and the rounding
function does in fact yield a (1 + ε)-approximation for a suitable choice of k.

I Lemma 3. If size(IL, s) > 8/ε · (dlog(1/ε)e + 5) and k =
⌊

size(IL,s)·ε
2(blog(1/ε)c+5)

⌋
, the number of

non-empty groups is bounded by O(1/ε log(1/ε)).

I Lemma 4. Given an instance (IL, s) with items greater than ε/14 and a rounding function R
fulfilling properties (a) to (d), then opt(IL, sR) ≤ (1 + ε)OPT (IL, s).

3.2 Rounding Operations
Let us consider the case where large items arrive and depart in an online fashion. Formally
this is described by a sequence of pairs (i1, A1), . . . , (in, An) where Ai ∈ {Insert,Delete}.
At each time t ∈ {1, . . . , n} we need to pack the item it into the corresponding packing of
i1, . . . , it−1 if Ai = Insert or remove the item it from the corresponding packing of i1, . . . , it−1
if Ai = Delete. We will denote the instance i1, . . . , it at time t by I(t) and the corresponding
packing by Bt. We will also round our items and denote the rounding function at time t by Rt.
The large items of I(t) are denoted by IL(t). At time t we are allowed to repack several items
with a total size of β · s(it) but we intend to keep the migration factor β as small as possible.
The term repack(t) =

∑
i,Bt−1(i)6=Bt(i) s(i) denotes the sum of the items which are moved at

time t, the migration factor β of an algorithm is then defined as maxt {repack(t)/s(it)}. As the
value of size will also change over the time, we define the value κ(t) as

κ(t) = size(IL(t), s) · ε
2(blog(1/ε)c+ 5) .

As shown in Lemma 3, we will make use of the value k(t) := bκ(t)c.
We present operations that transform the current rounding Rt, the current packing Bt

with its corresponding LP/ILP solutions into a new rounding Rt+1, a new packing Bt+1
and new corresponding LP/ILP solutions for the new instance I(t+ 1). At every time t the
rounding Rt maintains properties (a) to (d). Therefore the rounding provides an asymptotic
approximation ratio of 1 + ε (Lemma 4) while maintaining only O(1/ε log(1/ε)) many groups
(Lemma 3). We will now present a way how to adapt this rounding to a dynamic setting,
where items arrive or depart online.

Our rounding Rt is manipulated by different operations, called the insert, delete, shiftA
and shiftB operation. Some ideas behind the operations are inspired by the operations
described by Epstein and Levin [11]. The insert operation is performed whenever a large
item arrives and the delete operation is performed whenever a large item departs. The shift
operations are used to modify the number of groups that are contained in the A and B block.
As we often need to filter the largest items of a group g in a rounding R, we denote this
item by λ(g,R). Due to space constraints we do not describe how the LP/ILP solutions are
modified by the operations (see full version). Intuitively, an insert operation finds the group
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g, where the new item needs to be placed and inserts it into g. In order to maintain the size
of g, the largest item from g is shifted to its left neighbour g′. The largest item of g′ is then
shifted to its left neighbour and so on. The deletion algorithm removes the item from its
group g. In order to maintain the size of g, the largest item from its right neighbour g′ is
shifted into g. The largest item of the right neighbour of g′ is then shifted into g′ and so on.

Insert: To insert item it, find the corresponding group (`,X, r) with
s(it) ∈ (2−(`+1), 2−`],
mini {s(i) | i ∈ (`,X, r − 1)} > s(it) and
s(λ((`,X, r + 1), R)) ≤ s(it).

We will then insert it into (`,X, r) and get the rounding R′ by shifting the largest element
of (`,X, r) to (`,X, r − 1) and the largest item of (`,X, r − 1) to (`,X, r − 2) and so on
until the first group (`, A, 0) is reached.

(`, A, 0) . . . (`,X, r) . . . (`,X, q(`,X))

i

(a) Insert i into (`, X, ·)

(`,X, 0) . . . (`,X, r) . . . (`, B, q(`, B))

i

(b) Delete i from (`, X, ·)

Figure 3 Insert and Delete.

Delete: To delete an item it that is in group (`,X, r), we remove it from this group and
move the largest item from (`,X, r+1) into (`,X, r) and the largest item from (`,X, r+2)
into (`,X, r + 1) and so on until the last group (`, B, q(`, B)) is reached.

To control the number of groups in A and B we introduce operations shiftA and shiftB
that increase or decrease the number of groups in A respectively B. An operation shiftA
increases the number of groups in A by 1 and decreases the number of groups in B by 1 by
shifting a group from block B to block A. The operation shiftB moves a group From block
A to block B. The ability to modify the blocks is needed later on, as the value k used by the
rounding changes over time.

shiftA: In order to move a group from B to A, shift exactly 2` items from (`, B, q(`, B)) to
(`, B, q(`, B)− 1). Then shift exactly 2` items from (`, B, q(`, B)− 1) to (`, B, q(`, B)− 2)
and so on until (`, B, 0) is reached. The group (`, B, 0) has now the same size as the
groups in (`, A, ·). We transfer (`, B, 0) to block A. Note that the total size of the 2`
items is bounded by 1.
shiftB: In order to move a group from A to B, shift 2` items from (`, A, q(`, A)) to
(`, A, q(`, A)− 1). Then shift exactly 2` items from (`, A, q(`, A)− 1) to (`, A, q(`, A)− 2)
and so on until (`, A, 0) is reached. The group (`, A, q(`, A)) has now the same size as the
groups in (`, B, ·). We transfer (`, A, q(`, A)) to block B.
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(`, B, 0) . . . (`, B, r) . . . (`, B, q(`, B))

2` 2` 2` 2`

Figure 4 shiftA.

The next lemma shows that all of these operations maintain the desired properties of the
rounding.

I Lemma 5. Let R be a rounding function fulfilling properties (a) to (d). Applying any of
the operations insert, delete, shiftA or shiftB on R results in a rounding function R′ fulfilling
properties (a) to (d).

According to Lemma 3 the rounded instance (I, sR) has O(1/ε log(1/ε)) different item sizes
(given a suitable k). Using the LP formulation of Eisemann [10], the resulting LP called
LP (I, sR) has m = O(1/ε log(1/ε)) constraints. We say a packing B corresponds to a rounding
R and an integral solution y of the ILP if all items in (I, sR) are packed by B according to y.
The operations also modify these ILP solutions.

I Lemma 6. Applying any of the operations insert, delete, shiftA or shiftB on a rounding R
and ILP solution y with corresponding packing B defines a new rounding R′ and a new
integral solution y′. The solution y′ is a feasible solution of the linear program LP (I, sR′).

3.3 Algorithm for Dynamic Bin Packing
We will use the operations from the previous section to obtain a dynamic algorithm for
bin packing with respect to large items. The operations insert and delete are designed to
process the input depending of whether an item is to be inserted or removed. Keep in mind
that the parameter k(t) = bκ(t)c =

⌊
size(IL(t))·ε

2(blog(1/ε)c+5)

⌋
changes over time as size(IL(t)) may

increase or decrease. In order to fulfill the properties (c) and (d), we need to adapt the
number of items per group whenever k changes. The shiftA and shiftB operations are thus
designed to manage the dynamic number of items in the groups as k changes. Note that a
group in the A-block with parameter k has by definition the same number of items as a group
in the B-block with parameter k − 1 if they are in the same size category. If k increases, the
former A block is treated as the new B block in order to fulfill the properties (c) and (d)
while a new empty A block is introduced. To be able to rename the blocks, the B block
needs to be empty. Accordingly the A block needs to be empty if k decreases in order to
treat the old B block as new A block. Hence we need to make sure that there are no groups
in the B-block if k increases and vice versa, that there are no groups in the A-block if k
decreases.

We denote the number of all groups in the A-blocks at time t by A(t) and the number
of groups in B-blocks at time t by B(t). To make sure that the B-block (respectively the
A-block) is empty when k increases (decreases) the ratio A(t)

A(t)+B(t) needs to correlate to
the fractional digits of κ(t) at time t denoted by ∆(t). For example, if ∆(t) = 0.98, nearly
every group must be in an A-block, as the B-blocks need to be empty if k(t) increases (see
Figure 5(a) for a sketch of the situation). Note that the term A(t)

A(t)+B(t) is 0 if the A-block
is empty and the term is 1 if the B-block is empty. This way, we can make sure that as
soon as k(t) increases, the number of B-blocks is close to 0 and as soon as k(t) decreases,
the number of A-blocks is close to 0. Therefore, the blocks can be renamed whenever k(t)
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k(t− 1) k(t− 1) + 1 k(t− 1) + 2

J0 J1 . . . Jj . . .

A(t− 1)

98%

B(t− 1)

2%

∆(t− 1)

(a) Before Insert

k(t)− 1
‖

k(t− 1)

k(t)
‖

k(t− 1) + 1

k(t) + 1
‖

k(t− 1) + 2

J0

Jj
‖
J1 . . . . . . . . .

A(t)

1%

B(t)

99%

∆(t)

(b) After Insert

Figure 5 Comparison of the situation before and after an Insert Operation.

changes. Hence we partition the interval [0, 1) into exactly A(t) + B(t) smaller intervals
Ji =

[
i

A(t)+B(t) ,
i+1

A(t)+B(t)

)
. We will make sure that ∆(t) ∈ Ji iff A(t)

A(t)+B(t) ∈ Ji.
The algorithm inserts an item via the insert operation and then uses shiftA and shiftB

operations to adjust the number of A- and B-blocks. Recall that a shiftA operation reduces
the number of groups in the B-block by 1 and increases the number of groups in the A-block
by 1 (shiftB works vice versa).

In the following algorithm we also make use of an algorithm called improve, which was
developed in [18] to reduce the number of used bins. Using improve(x) on a packing B with
approximation guarantee maxiB(i) ≤ (1 + ε̄) opt +C for some ε̄ = O(ε) and some additive
term C yields a new packing B′ with approximation guarantee maxiB(i) ≤ (1+ε̄) opt +C−x.
We use the operations in combination with improve to obtain a fixed approximation guarantee.
The similar deletion algorithm can be found in the full version.

I Algorithm 1 (AFPTAS for large items).

Algorithm: Insertion
if SIZE(I(t)) < (m+ 2)(1/δ + 2) or SIZE(I(t)) < 8(1/δ + 1) then

use offline Bin Packing;
else

improve(2); insert(i);
// Shifting to the correct interval
Let Ji be the interval containing ∆(t);
Let Jj be the interval containing A(t)

A(t)+B(t) ;
Set d = i− j;
if k(t) > k(t− 1) then // Modulo A(t) +B(t) when k increases

d = d + (A(t) +B(t));
for p := 0 to |d| − 1 do // Shifting d groups from B to A

if i+p = A(t) + B(t) then
Rename(A,B);

improve(1); shiftA;

Note that as exactly d = i − j groups are shifted from A to B (or B to A) we have
by definition that ∆(t) ∈

[
A(t)

A(t)+B(t) ,
A(t)+1

A(t)+B(t)

)
at the end of the algorithm. The following

lemmas prove that the algorithm works as expected by moving only a constant number of
groups.

I Lemma 7. At most 11 groups are shifted from A to B (or B to A) in Algorithm 1.
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I Lemma 8. Every rounding function Rt produced by Algorithm 1 fulfills properties (a) to
(d) with parameter k(t) =

⌊
size(IL(t))·ε

2(blog(1/ε)c+5)

⌋
.

Using analysing techniques developed in [18] we prove the following theorem.

I Theorem 9. Algorithm 1 is an AFPTAS with migration factor O( 1
ε3 · log(1/ε)) for the fully

dynamic bin packing problem with respect to large items.

If no deletions are present, we can use a simple FirstFit algorithm (as described by
Jansen and Klein [18]) to pack the small items into the bins. This does not change the
migration factor or the running time of the algorithm and we obtain a robust AFPTAS with
O( 1

ε3 · log(1/ε)) migration for the case that no items depart. This improves the best known
migration factor of O( 1

ε4 ) [18].

4 Handling Small Items

In this section we present methods for dealing with arbitrary small items in a dynamic
setting. First, we present a robust AFPTAS with migration factor of O(1/ε) for the case
that only small items arrive and depart. In Section 4.2 we generalize these techniques to a
setting where small items arrive into a packing, that already contains large items which can
not be rearranged. Finally we state the AFPTAS for the general fully dynamic bin packing
problem. In a robust setting without departing items, small items can easily be treated
by packing them greedily via the classical FirstFit algorithm of Johnson et al. [21] (see
Epstein and Levin [11] or Jansen and Klein [18]). However, in a setting where items may
also depart, small items need much more attention. We show in the full version that the
FirstFit algorithm does not work in this dynamic setting.

I Lemma 10. Using the FirstFit algorithm to pack small items may lead to an arbitrarily
bad approximation.

4.1 Only Small Items
We consider a setting where only small items exist, i.e., items with a size less than ε/14. One
way to overcome the problematic instances, like those in Lemma 10, is to make sure that
the small items remain ordered. If one has m bins b1, b2, . . . , bm, one can make sure that
the larger small items are in bins with lower indices as the smaller ones. A possible way
to maintain such a property works as follows: Whenever a small items i arrives, find the
bin with the smallest index that contains a set J of small items such that

∑
j∈J s(j) ≥ s(i).

Remove those items in J from the bin and add i in this place. Insert all of the items in J in
the same way. The deletion algorithm is very similar, but searches for a set J from smaller
sizes, that replaces the departing item i. In order to bound the migration of this operation,
we declare every 1/ε-th bin as buffer bin and terminate the procedure at the buffer bin. If
the moved items do not fit into the buffer bin, we declare the buffer bin as normal and open
a new buffer bin containing the remaining items. As only a fraction of ε of the bins are buffer
bins, this worsen the approximation ratio only by ε. The migration remains bounded as at
most 1/ε bins are changed.

Formally, we divide the set of small items into different size intervals Sj where Sj =[
ε

2j+1 ,
ε

2j
)
for j ≥ 1. Let b1, . . . , bm be the used bins of our packing. We say a size category Sj

is bigger than a size category Sk if j < k, i. e., the item sizes contained in Sj are larger (note
that a size category Sj with large index j is called small). We say a bin b is filled completely
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b1

. . .

b|Q1|−1 bb1Q1 b|Q1|+1

. . .

b|Q2|−1 bb2Q2

. . .

b|Qd−1|+1

. . .

b|Qd|−1 bbdQd

Figure 6 Distribution of bins with small items into queues.

if it has less than ε
2j remaining space, where Sj is the biggest size category appearing in

b, i.e., no item from the categories S1, S2, . . . , Sj fit into b. Furthermore we label bins b as
normal or as buffer bins and partition all bins b1, . . . , bm into queues Q1, . . . , Qd. A queue is
a consecutive subsequence of bins bi, bi+1 . . . , bi+c where bins bi, . . . , bi+c−1 are normal bins
and bin bi+c is a buffer bin. We denote the number of bins in Qi by |Qi|. The buffer bin of
queue Qi is denoted by bbi. See Figure 6 for a sketch of the situation.

We will maintain a special form for the packing of small items such that the following
properties are always fulfilled. For the sake of simplicity, we assume that 1/ε is integral.
1. For every item i ∈ bd with size s(i) ∈ Sj for some j, d ∈ N, there is no item i′ ∈ bd′ with

size s(i′) ∈ Sj′ such that d′ > d and j′ > j. This means: Items are ordered from left to
right by their size intervals.

2. Every normal bin is filled completely.
3. The length of each queue is at least 1/ε and at most 2/ε except for the last queue Qd.
Note that property (1) implies that all items in the same size interval Sj are packed into
consecutive bins bx, bx+1, . . . , bx+c. Items in the next smaller category Sj+1 are then packed
into bins bx+c, bx+c+1, . . . and so on. We denote by bS(j) the last bin in which an item of
category Sj appears.

The following lemma guarantees that a packing with properties (1) to (3) is close to the
optimum solution.

I Lemma 11. If properties (1) to (3) hold, then at most (1 +O(ε)) opt(I, s) + 2 bins are
used in the packing for every ε ≤ 1/3.

We will now describe the operations that are applied whenever a small item is inserted
or removed from the packing. The operations are designed such that properties (1) to (3)
are maintained. Lemma 11 thus guarantees a good approximation ratio at every step of
the algorithm. The operations are applied recursively such that some items from each size
interval are shifted from left to right (insert) or right to left (delete). The recursion halts if
the first buffer bin is reached. Therefore, the free space in the buffer bins will change over
time. Since the recursion always halts at the buffer bin, the algorithm is applied on a single
queue Qk.

The following Insert/Delete operation is defined for a whole set J = {i1, . . . , in} of items.
If an item i of size interval S` has to be inserted or deleted, the algorithm is called with
Insert({i}, bS(`), Qk) respectively Delete({i}, bx, Qk), where bx is the bin containing item i

and Qk is the queue containing bin bS(`) or bx. Recall that Sj =
[

ε
2j+1 ,

ε
2j
)
is a fixed interval

for every j ≥ 1 and define S≤j , S>j as S≤j =
⋃j
i=1 Si and S>j =

⋃
i>j Si.

Figure 7a shows an example call of Insert({i},bx,Qk). Item i with s(i) ∈ S1 is put into
the corresponding bin bx into the size interval S1. As bx now contains too many items, some
items from the smallest size interval S2 (marked by the dashed lines) are put into the last
bin bx+2 containing items from S2. Those items in turn push items from the smallest size
interval S3 into the last bin containing items of this size and so on. This process terminates
if either no items need to be shifted to the next bin or the buffer bin bbk is reached.
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S0

S1

S2

bx

i

S2

bx+1

S2

S3

bx+2

. . .

Sj

Sj+1

bbk

(a) Insert({i},bx,Qk) with s(i) ∈ S1

S0

S1

S2

bx

i
S2

bx+1

S2

S3

bx+2

. . .

Sj

Sj+1

bbk

(b) Delete({i},bx,Qk) with s(i) ∈ S1

Figure 7 Example calls of Insert and Delete.

I Algorithm 2 (Insert/Delete: only small items).
Insert(J, bx, Qk):

For J = {i1, . . . , in}, find the smallest ` such that s(ij) ∈ S≤` for all j ≥ 1 and insert
those items into bin bx. (By Lemma 12 the total size of J is bounded by O(1/ε) times
the size of the item which triggered the first Insert operation.)
Remove just as many items J ′ = {i′1, . . . , i′m} of the smaller size intervals S>` appearing
in bin bx (starting by the smallest) such that all items J fit into the bin bx. If there are
not enough items of smaller categories to insert all items from J , insert the remaining
items from J into bx+1.
Partition J ′ into J ′`+1, J

′
`+2, . . . such that J`+i contains the items in the respective size

interval S`+i. Put J ′`+i recursively into bin bS(`+i) (i. e., call Insert(J ′`+i, bS(`+i), Qk)
for each i ≥ 1). If the buffer bin bbk is left of bS(`+i) call Insert(J ′`+i, bbk, Qk) instead.

Delete(J, bx, Qk):
For J = {i1, . . . , in}, find the smallest ` such that s(ij) ∈ S≤` for all j ≥ 1 and remove
those from bin bx (By Lemma 12 the total size of J is bounded by O(1/ε) times the size
of the item which triggered the first Delete operation.)
Let S`′ be the smallest size interval appearing in bx. Insert as many items J ′ =
{i′1, . . . , i′m} from bS(`′) such that bx is filled completely. If there are not enough items
from the size category S`′ , choose items from the next size category S≥`′+1 in bin bx+1.
Partition J ′ into J ′`+1, J

′
`+2, . . . such that J`+i contains the items in the respec-

tive size interval S`+i. Remove items J ′`+i from bin bS(`+i) recursively (i. e., call
Delete(J ′`+i, bS(`+i), Qk) for each i ≥ 1). If the buffer bin bbk is left of bS(`+i), call
Delete(J ′`+i, bbk, Qk) instead.

Using the above operations, the normal bins are filled completely. However, the size of the
items in the buffer bins changes. In the following we describe how to handle buffer bins
that are being emptied or filled completely. If a buffer bin is filled completely, we add a new
empty buffer bin and split the queue if it contains too many bins. Similarly, if a buffer bin is
emptied completely, we remove it and label the last bin of the queue as buffer bin. If the
queue now contains too few bins, we merge the queue with its successor. There is thus no
need in introducing a new buffer bin, as one can simply use the buffer bin of the successor as
the new buffer bin.

I Algorithm 3 (Handle filled/emptied buffer bins).
Case 1: The buffer bin of Qi is filled completely by an insert operation.

Label the filled bin as a normal bin and add a new empty buffer bin to the end of Qi.
If |Qi| > 2/ε, split Qi into two queues Q′i, Q′′i with |Q′′i | = |Q′i|+ 1. The buffer bin of
Q′′i is the newly added buffer bin. Add an empty buffer bin to Q′i such that |Q′i| = |Q′′i |.

Case 2: The buffer bin of Qi is being emptied due to a delete operation.
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Remove the now empty bin.
If |Qi| ≥ |Qi+1| and |Qi| > 1/ε, choose the last bin of Qi and label it as new buffer bin
of Qi.
If |Qi+1| > |Qi| and |Qi+1| > 1/ε, choose the first bin of Qi+1, move it to Qi and label
it buffer bin.
If |Qi+1| = |Qi| = 1/ε, merge queues Qi and Qi+1. As Qi+1 already contains a buffer
bin, there is no need to label another bin as buffer bin for the merged queue.

Creating and deleting buffer bins this way guarantees that property (3) is never violated
since queues never exceed the length of 2/ε and never fall below 1/ε.

It remains to prove that the migration of the operations is bounded and that the properties
are invariant under those operations.

I Lemma 12.
(i) Let B be a packing that fulfills properties (1) to (3). Applying Algorithm 2 on B yields a

packing B′ that also fulfills properties (1) to (3).
(ii) The migration factor of a single operation is bounded by O(1/ε) for all ε ≤ 2/7.

4.2 Handling the General Setting
In the scenario that there are mixed item types (small and large items), we need to be
more careful in the creation and the deletion of buffer bins. To maintain the approximation
guarantee, we have to make sure that as long as there are bins containing only small items,
the remaining free space of all bins can be bounded. Packing small items into empty bins
and leaving bins with large items untouched does not lead to a good approximation, as the
free space of the bins containing only large items is not used. To tackle this problem we
developed new techniques and ideas using an even more refined distribution of the bins. A
bin that contains no small items is called a heap bin. The heap bins are then used as buffer
bins. In order to measure the number of buffer bins that are about to get filled, we developed
a potential function. The potential function is related to the number of heap bins and the
free space of the last buffer bin that contains large items. This relation allows us to extend
Algorithm 2 to the general case of both small and large items. The developed techniques
involve a complex structure of the packing and require an intricate analysis. See the full
version for details.

Combining all the results from the current and the previous section, we finally obtain our
central result.

I Theorem 13. There is a AFPTAS with a migration factor of at most O(1/ε4 · log 1/ε) for
the fully dynamic bin packing problem.
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Abstract
A hypergraph is said to be χ-colorable if its vertices can be colored with χ colors so that no
hyperedge is monochromatic. 2-colorability is a fundamental property (called Property B) of
hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 2-
colorable k-uniform hypergraph, it is NP-hard to find a 2-coloring miscoloring fewer than a
fraction 2−k+1 of hyperedges (which is trivially achieved by a random 2-coloring), and the best
algorithms to color the hypergraph properly require ≈ n1−1/k colors, approaching the trivial
bound of n as k increases.

In this work, we study the complexity of approximate hypergraph coloring, for both the
maximization (finding a 2-coloring with fewest miscolored edges) and minimization (finding a
proper coloring using fewest number of colors) versions, when the input hypergraph is promised
to have the following stronger properties than 2-colorability:

Low-discrepancy: If the hypergraph has a 2-coloring of discrepancy ` �
√
k, we give an

algorithm to color the hypergraph with ≈ nO(`2/k) colors.
However, for the maximization version, we prove NP-hardness of finding a 2-coloring mis-
coloring a smaller than 2−O(k) (resp. k−O(k)) fraction of the hyperedges when ` = O(log k)
(resp. ` = 2). Assuming the Unique Games conjecture, we improve the latter hardness factor
to 2−O(k) for almost discrepancy-1 hypergraphs.
Rainbow colorability: If the hypergraph has a (k − `)-coloring such that each hyperedge is
polychromatic with all these colors (this is stronger than a (`+1)-discrepancy 2-coloring), we
give a 2-coloring algorithm that miscolors at most k−Ω(k) of the hyperedges when ` �

√
k,

and complement this with a matching Unique Games hardness result showing that when
` =
√
k, it is hard to even beat the 2−k+1 bound achieved by a random coloring.

Strong Colorability: We obtain similar (stronger) Min- and Max-2-Coloring algorithmic res-
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1 Introduction

Coloring (hyper)graphs is one of the most important and well-studied tasks in discrete
mathematics and theoretical computer science. A k-uniform hypergraph G = (V,E) is said
to be χ-colorable if there exists a coloring c : V 7→ {1, . . . , χ} such that no hyperedge is
monochromatic, and such a coloring c is referred to as a proper χ-coloring. Graph and
hypergraph coloring has been the focus of active research in both fields, and has served as
the benchmark for new research paradigms such as the probabilistic method (Lovász local
lemma [16]) and semidefinite programming (Lovász theta function [27]).

While such structural results are targeted towards special classes of hypergraphs, given
a general χ-colorable k-uniform hypergraph, the problem of reconstructing a χ-coloring is
known to be a hard task. Even assuming 2-colorability, reconstructing a proper 2-coloring is a
classic NP-hard problem for k ≥ 3. Given the intractability of proper 2-coloring, two notions
of approximate coloring of 2-colorable hypergraphs have been studied in the literature of
approximation algorithms. The first notion, called Min-Coloring, is to minimize the number
of colors while still requiring that every hyperedge be non-monochromatic. The second
notion, called Max-2-Coloring allows only 2 colors, but the objective is to maximize the
number of non-monochromatic hyperedges.1

Even with these relaxed objectives, the promise that the input hypergraph is 2-colorable
seems grossly inadequate for polynomial time algorithms to exploit in a significant way. For
Min-Coloring, given a 2-colorable k-uniform hypergraph, the best known algorithm uses
O(n1− 1

k ) colors [13, 3], which tends to the trivial upper bound n as k increases. This problem
has been actively studied from the hardness side, motivating many new developments in
constructions of probabilistically checkable proofs. Coloring 2-colorable hypergraphs with
O(1) colors was shown to be NP-hard for k ≥ 4 in [18] and k = 3 in [15]. An exciting body
of recent work has pushed the hardness beyond poly-logarithmic colors [14, 17, 25, 22]. In
particular, [25] shows quasi-NP-hardness of 2(logn)Ω(1)-coloring a 2-colorable hypergraphs
(very recently the exponent was shown to approach 1/4 in [22]).

The hardness results for Max-2-Coloring show an even more pessimistic picture, wherein
the naive random assignment (randomly give one of two colors to each vertex independently
to leave a ( 1

2 )k−1 fraction of hyperedges monochromatic in expectation), is shown to have
the best guarantee for a polynomial time algorithm when k ≥ 4 (see [21]).

Given these strong intractability results, it is natural to consider what further relaxations
of the objectives could lead to efficient algorithms. For maximization versions, Austrin
and Håstad [6] prove that (almost2) 2-colorability is useless (in a formal sense that they
define) for any Constraint Satisfaction Problem (CSP) that is a relaxation of 2-coloring [37].
Therefore, it seems more natural to find a stronger promise on the hypergraph than mere
2-colorability that can be significantly exploited by polynomial time coloring algorithms
for the objectives of Min-Coloring and Max 2-Coloring. This motivates our main question
“how strong a promise on the input hypergraph is required for polynomial time algorithms to
perform significantly better than naive algorithms for Min-Coloring and Max-2-Coloring?”

There is a very strong promise on k-uniform hypergraphs which makes the task of proper
2-coloring easy. If a hypergraph is k-partite (i.e., there is a k-coloring such that each
hyperedge has each color exactly once), then one can properly 2-color the hypergraph in

1 The maximization version is also known as Max-Set-Splitting, or more specifically Max k-Set-Splitting
when considering k-uniform hypegraphs, in the literature.

2 We say a hypergraph is almost χ-colorable for a small constant ε > 0, there is a χ-coloring that leaves
at most ε fraction of hyperedges monochromatic.
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polynomial time. The same algorithm can be generalized to hypergraphs which admit a
c-balanced coloring (i.e., c divides k and there is a k-coloring such that each hyperedge has
each color exactly k

c times). This can be seen by random hyperplane rounding of a simple
SDP, or even simpler by solving a homogeneous linear system and iterating [2], or by a
random recoloring method analyzed using random walks [29]. In fact, a proper 2-coloring
can be efficiently achieved assuming that the hypergraph admits a fair partial 2-coloring,
namely a pair of disjoint subsets A and B of the vertices such that for every hyperedge e,
|e ∩A| = |e ∩B| > 0 [29].

The promises on structured colorings that we consider in this work are natural relaxations
of the above strong promise of a perfectly balanced (partial) coloring.

A hypergraph is said to have discrepancy ` when there is a 2-coloring such that in each
hyperedge, the difference between the number of vertices of each color is at most `.
A χ-coloring (χ ≤ k) is called rainbow if every hyperedge contains each color at least
once.
A χ-coloring (χ ≥ k) is called strong if every hyperedge contains k different colors.

These three notions are interesting in their own right, and have been independently
studied. Discrepancy minimization has recently seen different algorithmic ideas [8, 28, 33] to
give constructive proofs of the classic six standard deviations result of Spencer [36]. Rainbow
coloring admits a natural interpretation as a partition of V into the maximum number of
disjoint vertex covers, and has been actively studied for geometric hypergraphs due to its
applications in sensor networks [11]. Strong coloring is closely related to graph coloring by
definition, and is known to capture various other notions of coloring [1]. It is easy to see
that `-discrepancy (` < k), χ-rainbow colorability (2 ≤ χ ≤ k), and χ-strong colorability
(k ≤ χ ≤ 2k − 2) all imply 2-colorability. For odd k, both (k + 1)-strong colorability
and (k − 1)-rainbow colorability imply discrepancy-1, so strong colorability and rainbow
colorability seem stronger than low discrepancy.

Even though they seem very strong, previous works have mainly focused on hardness
with these promises. The work of Austrin et al. [5] shows NP-hardness of finding a proper 2-
coloring under the discrepancy-1 promise. The work of Bansal and Khot [9] shows hardness of
O(1)-coloring even when the input hypergraph is promised to be almost k-partite (under the
Unique Games Conjecture); Sachdeva and Saket [34] establish NP-hardness of O(1)-coloring
when the graph is almost k/2-rainbow colorable; and Guruswami and Lee [19] establish
NP-hardness when the graph is perfectly (not almost) k

2 -rainbow colorable, or admits a
2-coloring with discrepancy 2. These hardness results indicate that it is still a nontrivial task
to exploit these strong promises and outperform naive algorithms.

1.1 Our Results
In this work, we prove that our three promises, unlike mere 2-colorability, give enough
structure for polynomial time algorithms to perform significantly better than naive algorithms.
We also study these promises from a hardness perspective to understand the asymptotic
threshold at which beating naive algorithms goes from easy to UG/NP-Hard. In particular
assuming the UGC, for Max-2-Coloring under `-discrepancy or k − `-rainbow colorability,
this threshold is ` = Θ(

√
k).

I Theorem 1. There is a randomized polynomial time algorithm that produces a 2-coloring
of a k-uniform hypergraph H with the following guarantee. For any 0 < ε < 1

2 (let ` = kε),
there exists a constant η > 0 such that if H is (k − `)-rainbow colorable or (k + `)-strong
colorable, the fraction of monochromatic edges in the produced 2-coloring is O(( 1

k )ηk) in
expectation.
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Our results indeed show that this algorithm significantly outperforms the random assignment
even when ` approaches

√
k asymptotically. See Theorem 16 and Theorem 22 for the precise

statements.
For the `-discrepancy case, we observe that when ` <

√
k, the framework of the second

and the third authors [20] yields an approximation algorithm that marginally (by an additive
factor much less than 2−k) outperforms the random assignment, but we do not formally
prove this here.

The following hardness results suggest that this gap between low-discrepancy and rain-
bow/strong colorability might be intrinsic. Let the term UG-hardness denote NP-hardness
assuming the Unique Games Conjecture.

I Theorem 2. For sufficiently large odd k, given a k-uniform hypergraph which admits a
2-coloring with at most a ( 1

2 )6k fraction of edges of discrepancy larger than 1, it is UG-hard
to find a 2-coloring with a ( 1

2 )5k fraction of monochromatic edges.

I Theorem 3. For even k ≥ 4, given a k-uniform hypergraph which admits a 2-coloring with
no edge of discrepancy larger than 2, it is NP-hard to find a 2-coloring with a k−O(k) fraction
of monochromatic edges.

I Theorem 4. For k sufficiently large, given a k-uniform hypergraph which admits a 2-
coloring with no edge of discrepancy larger than O(log k), it is NP-hard to find a 2-coloring
with a 2−O(k) fraction of monochromatic edges.

I Theorem 5. For k such that χ := k−
√
k is an integer greater than 1, and any ε > 0, given

a k-uniform hypergraph which admits a χ-coloring with at most ε fraction of non-rainbow
edges, it is UG-hard to find a 2-coloring with a ( 1

2 )k−1 fraction of monochromatic edges.

For Min-Coloring, all three promises lead to an Õ(n 1
k )-coloring that is decreasing in

k. These results are also notable in the sense that our promises are helpful not only for
structured SDP solutions, but also for combinatorial degree reduction algorithms.

I Theorem 6. Consider any k-uniform hypergraph H = (V,E) with n vertices and m edges.
For any ` < O(

√
k), If H has discrepancy-`, (k − `)-rainbow colorable, or (k + `)-strong

colorable, one can color H with Õ((mn )
`2
k2 ) ≤ Õ(n `

2
k ) colors.

These results significantly improve the current best Õ(n1− 1
k ) colors that assumes only

2-colorability. Our techniques give slightly better results depending on the promise —
see Theorem 28. Table 1.1 summarizes our results.

1.2 Techniques
Our algorithms for Max-2-Coloring are straightforward applications of semidefinite pro-
gramming, namely, we use natural vector relaxations of the promised properties, and round
using a random hyperplane. The analysis however, is highly non-trivial and boils down to
approximating a multivariate Gaussian integral. In particular, we show a (to our knowledge,
new) upper bound on the Gaussian measure of simplicial cones in terms of simple properties
of these cones. We should note that this upper bound is sensible only for simplicial cones
that are well behaved with respect to the these properties. (The cones we are interested in
are those given by the intersection of hyperplanes whose normal vectors constitute a solution
to our vector relaxations). We believe our analysis to be of independent interest as similar
approaches may work for other k-CSP’s.
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Table 1.1 Summary of our algorithmic and hardness results with valid ranges of `. Two results
with † are implied in [20]. The numbers of the first row indicate upper bounds on the fraction of
monochromatic edges in a 2-coloring produced by our algorithms. δ := δ(k, `) > 0 is a small constant.
The second row shows lower bounds on the fraction of monochromatic edges achieved by polynomial
time algorithms. For the UG-hardness results, note that the input hypergraph does not have all
edges satisfying the promises but almost edges satisfying them. The third row shows upper bounds
upto log factors, on the number of colors the algorithms use to properly 2-color the hypergraph.

Promise `-Discrepancy (k − `)-Rainbow (k + `)-Strong

Max-2-Color 1/2k−1 − δ, ` <
√
k
† 1/kΩ(k), `�

√
k 1/kΩ(k), `�

√
k

Algorithm

Max-2-Color UG: 1/25k, ` = 1. UG: 1/2k−1, ` = Ω(
√
k)

Hardness NP: 1/kO(k), ` = 2.
NP: 1/2O(k), ` = Ω(log k)
UG: 1/2k−1, ` ≥

√
k
†

Min-Color n`2/k, ` = O(
√
k) n`2/k, ` = O(

√
k) n`2/k, ` = O(

√
k)

Algorithm

1.2.1 Gaussian Measure of Simplicial Cones

As can be seen via an observation of Kneser [26], the Gaussian measure of a simplicial cone
is equal to the fraction of spherical volume taken up by a spherical simplex (a spherical
simplex is the intersection of a simplicial cone with a ball centered at the apex of the cone).
This however, is a very old problem in spherical geometry, and while some things are known,
like a nice differential formula due to Schlafli (see [35]), closed forms upto four dimensions
(see [30]), and a complicated power series expansion due to Aomoto [4], it is likely hopeless
to achieve a closed form solution or even an asymptotic formula for the volume of general
spherical simplices.

Zwick [39] considered the performance of hyperplane rounding in various 3-CSP formula-
tions, and this involved analyzing the volume of a 4-dimensional spherical simplex. Due to
the complexity of this volume function, the analysis was tedious, and non-analytic for many of
the formulations. His techniques were based on the Schlafli differential formula, which relates
the volume differential of a spherical simplex to the volume functions of its codimension-2
faces and dihedral angles. However, to our knowledge not much is known about the general
volume function in even 6 dimensions. This suggests that Zwick’s techniques are unlikely to
be scalable to higher dimensions.

On the positive side, an asymptotic expression is known in the case of symmetric spherical
simplices, due to H. E. Daniels [32] who gave the analysis for regular cones of angle cos−1(1/2).
His techniques were extended by Rogers [31] and Boeroeczky and Henk [12] to the whole
class of regular cones.

We combine the complex analysis techniques employed by Daniels with a lower bound on
quadratic forms in the positive orthant, to give an upper bound on the Gaussian measure of
a much larger class of simplicial cones.
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1.2.2 Column Subset Selection

Informally, the cones for which our upper bound is relevant are those that are high dimensional
in a strong sense, i.e. the normal vectors whose corresponding hyperplanes form the cone,
must be such that no vector is too close to the linear span of any subset of the remaining
vectors.

When the normal vectors are solutions to our rainbow colorability SDP relaxation, this
need not be true. However, this can be remedied. We consider the column matrix of these
normal vectors, and using spectral techniques, we show that there is a reasonably large subset
of columns (vectors) that are well behaved with respect to condition number. We are then
able to apply our Gaussian Measure bound to the cone given by this subset, admittedly in a
slightly lower dimensional space.

2 Approximate Max-2-Coloring

In this section we show how the properties of (k + `)-strong colorability and (k − `)-rainbow
colorability in k-uniform hypergraphs allow one to 2-color the hypergraph, such that the
respective fractions of monochromatic edges are small. For ` = o(

√
k), these guarantees

handsomely beat the naive random algorithm (color every vertex blue or red uniformly and
independently at random), wherein the expected fraction of monochromatic edges is 1/2k−1.

Our algorithms are straightforward applications of semidefinite programming, namely, we
use natural vector relaxations of the above properties, and round using a random hyperplane.
The analysis however, is quite involved.

2.1 Semidefinite Relaxations

Our SDP relaxations for low-discrepancy, rainbow-colorability, and strong-colorability are the
following. Given that 〈vi, vj〉 = −1

χ−1 when unit vectors v1, . . . , vχ form a χ-regular simplex
centered at the origin, it is easy to show that they are valid relaxations. Due to space
constraints, we defer the proofs of feasibility to the full version [10].

Discrepancy `.

∀ e ∈ E,

∣∣∣∣∣
∣∣∣∣∣∑
i∈e

ui

∣∣∣∣∣
∣∣∣∣∣
2

≤ ` (2.1)

∀ i ∈ [n], ||ui||2 = 1
∀ i ∈ [n], ui ∈ IRn

(k − `)-Rainbow Colorability.

∀ e ∈ E,

∣∣∣∣∣
∣∣∣∣∣∑
i∈e

ui

∣∣∣∣∣
∣∣∣∣∣
2

≤ ` (2.2)

∀ e ∈ E, ∀ i < j ∈ e, 〈ui, uj〉 ≥
−1

k − `− 1
∀ i ∈ [n], ||ui||2 = 1

∀ i ∈ [n], ui ∈ IRn
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(k + `)-Strong Colorability.

∀ e ∈ E, ∀ i < j ∈ e, 〈ui, uj〉 = −1
k + `− 1 (2.3)

∀ i ∈ [n], ||ui||2 = 1
∀ i ∈ [n], ui ∈ IRn

Our rounding scheme is the same for all the above relaxations.

Rounding Scheme. Pick a standard n-dimensional Gaussian random vector r. For any
i ∈ [n], if 〈vi, r〉 ≥ 0, then vertex i is colored blue, and otherwise it is colored red.

2.2 Setup of Analysis

We now setup the framework for analyzing all the above relaxations.
Consider a standard n-dimensional Gaussian random vector r, i.e. each coordinate is
independently picked from the standard normal distribution N (0, 1). The following are well
known facts (the latter being due to Renyi),

I Lemma 7. r/ ||r||2 is uniformly distributed over the unit sphere in IRn.

Note. Lemma 7 establishes that our rounding scheme is equivalent to random hyperplane
rounding.

I Lemma 8. Consider any j < n. The projections of r onto the pairwise orthogonal unit
vectors e1, . . . , ej are independent and have distribution N (0, 1).

Next, consider any k-uniform hypergraph H = (V = [n], E ⊆
(
V
k

)
) that is feasible for

any of the aforementioned formulations. Our goal now, is to analyze the expected number
of monochromatic edges. To obtain this expected fraction with high probability, we need
only repeat the rounding scheme polynomially many times, and the high probability of a
successful round follows by Markov’s inequality. Thus we are only left with bounding the
probability that a particular edge is monochromatic.

To this end, consider any edge e ∈ E and let the vectors corresponding to the vertices in e
be u′1, . . . , u′k. Consider a k-flat F (subspace of IRn congruent to IRk), containing u′1, . . . , u′k.
Applying Lemma 8 to the standard basis of F , implies that the projection of r into F has the
standard k-dimensional Gaussian distribution. Now since projecting r onto Span(u′1, . . . u′k)
preserves the inner products {〈r, u′i〉}i , we may assume without loss of generality that
u′1, . . . , u

′
k are vectors in IRk, and the rounding scheme corresponds to picking a random

k-dimensional Gaussian vector r, and proceeding as before.

Let U be the k × k matrix whose columns are the vectors u′1, . . . , u′k and µ represent the
Gaussian measure in IRk. Then the probability of e being monochromatic in the rounding is
given by,

µ
({
x ∈ IRk

∣∣UTx ≥ 0
})

+µ
({
x ∈ IRk

∣∣UTx < 0
})

= 2µ
({
x ∈ IRk

∣∣UTx ≥ 0
})

(2.4)

In other words, this boils down to analyzing the Gaussian measure of the cone given by
UTx ≥ 0. We thus take a necessary detour.
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2.3 Gaussian Measure of Simplicial Cones
In this section we show how to bound the Gaussian measure of a special class of simplicial
cones. This is one of the primary tools in our analysis of the previously introduced SDP
relaxations. We first state some preliminaries.

2.3.1 Preliminaries
Simplicial Cones and Equivalent Representations. A simplicial cone in IRk, is given by
the intersection of a set of k linearly independent halfspaces. For any simplicial cone with
apex at position vector p, there is a unique set (upto changes in lengths), of k linearly
independent vectors, such that the direct sum of {p} with their positive span produces the
cone. Conversely, a simplicial cone given by the direct sum of {p} and the positive span
of k linearly independent vectors, can be expressed as the intersection of a unique set of
k halfspaces with apex at p. We shall refer to the normal vectors of the halfspaces above,
as simply normal vectors of the cone, and we shall refer to the spanning vectors above, as
simplicial vectors. We represent a simplicial cone C with apex at p, as (p, U, V ) where U is
a column matrix of unit vectors u1, . . . , uk (normal vectors), V is a column matrix of unit
vectors v1, . . . , vk (simplicial vectors) and

C =
{
x ∈ IRk

∣∣uT1 x ≥ p1, . . . , u
T
k x ≥ pk

}
=
{
p+ x1v1 + · · ·+ xkvk

∣∣∣x ≥ 0, x ∈ IRk
}

Switching Between Representations. Let C ≡ (0, U, V ) be a simplicial cone with apex at
the origin. It is not hard to see that any vi is in the intersection of exactly k − 1 of the k
halfspaces determined by U , and it is thus orthogonal to exactly k − 1 vectors of the form
uj . We may assume without loss of generality that for any vi, the only column vector of U
not orthogonal to it, is ui. Thus clearly V TU = D where D is some non-singular diagonal
matrix. Let AU = UTU and AV = V TV , be the gram matrices of the vectors. AU and AV
are positive definite symmetric matrices with diagonal entries equal to one (they comprise of
the pairwise inner products of the normal and simplicial vectors respectively). Also, clearly,

V = U−TD, AV = DA−1
U D (2.5)

One then immediately obtains: (AV )ij = aij√
aiiajj

, and (AU )ij = −a′ij√
a′
ii
a′
jj

. where aij and a′ij
are the cofactors of the (i, j)th entries of AU and AV respectively.

Formulating the Integral. Let C ≡ (0, U, V ) be a simplicial cone with apex at the origin,
and for x ∈ IRk, let dx denote the differential of the standard k-dimensional Lebesgue
measure. Then the Gaussian measure of C is given by,

1
πk/2

∫
UT x≥0

e−||x||
2
2 dx = det(V )

πk/2

∫
IRk+

e−||V x||
2
2 dx (x← V x)

= det(V )
πk/2

∫
IRk+

e−||U
−TDx||22 dx (Eq. (2.5)) = det(V )

πk/2 det(D)

∫
IRk+

e−||U
−T x||22 dx (x← Dx)

= 1
πk/2 det(U)

∫
IRk+

e−||U
−T x||22 dx = 1

πk/2
√

det(AU )

∫
IRk+

e−x
TA−1

U
x dx

(2.6)
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For future ease of use, we give a name to some properties.

I Definition 9. The para-volume of a set of vectors (resp. a matrix U), is the volume of the
parallelotope determined by the set of vectors (resp. the column vectors of U).

I Definition 10. The sum-norm of a set of vectors (resp. a matrix U), is the length of the
sum of the vectors (resp. the sum of the column vectors of U).

Walkthrough of Symmetric Case Analysis. We next state some simple identities that can
be found in say, [32], some of which were originally used by Daniels to show that the Gaussian
measure of a symmetric cone in IRk of angle cos−1(1/2) (between any two simplicial vectors)
is (1+o(1)) ek/2−1
√

2k+1√
k
k−1√

πk
. We state these identities, while loosely describing the analysis of the

symmetric case, to give the reader an idea of their purpose.
First note that the gram matrices SU and SV , of the symmetric cone of angle cos−1(1/2) are
given by:

SU = (1 + 1/k)I− 11T /k SV = (I + 11T )/2

Thus xTS−1
U x is of the form,

α ||x||21 + β ||x||22 (2.7)

The key step is in linearizing the ||x||21 term in the exponent, which allows us to separate
the terms in the multivariate integral into a product of univariate integrals, and this is easier
to analyze.

I Lemma 11 (Linearization).
√
πe−s

2 =
∫∞
−∞ e−t

2+2its dt.

I Observation 12. Let f : (−∞,∞) 7→ C be a continuous complex function. Then,∣∣∣∣∣∣
∞∫
−∞

f(t) dt

∣∣∣∣∣∣ ≤
∞∫
−∞

|f(t)| dt.

On applying Lemma 11 to Eq. (2.6) in the symmetric case, one obtains a product of
identical univariate complex integrals. Specifically, by Eq. (2.6), Eq. (2.7), and Lemma 11,
we have the expression,

∫
IRk+

e−β||x||
2
2−α||x||

2
1 dx =

∞∫
−∞

e−t
2

 ∞∫
0

e−βs
2+2it

√
αs ds

k

The inner univariate complex integral is not readily evaluable. To circumvent this, one can
change the line of integration so as to shift mass form the inner integral to the outer integral.
Then we can apply the crude upper bound of Observation 12 to the inner integral, and by
design, the error in our estimate is small.

I Lemma 13 (Changing line of integration). Let g(t) be a real valued function for real
t. If, when interpreted as a complex function in the variable t = a + ib, g(a + ib) is
an entire function, and furthermore, lim

a→∞
g(a + ib) = 0 for some fixed b, then we have,∫∞

−∞ g(t) dt =
∫∞
−∞ g(a+ ib) da.
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Squared L1 Inequality. Motivated by the above linearization technique, we prove the
following lower bound on quadratic forms in the positive orthant:

I Lemma 14. Consider any k × k matrix A, and x ∈ IRk
+, such that x is in the column

space of A. Let A† denote the Moore-Penrose pseudo-inverse of A. Then, xTA†x ≥ ||x||21
sum(A) .

Proof. Consider any x in the positive orthant and column space of A. Let v1, . . . , vq be the
eigenvectors of A corresponding to it’s non-zero eigenvalues. We may express x in the form
x =

∑
i βivi, so that

||x||1 = 〈1, x〉 =
∑
i∈[q]

βi〈1, vi〉 ⇒ ||x||21 = (
∑
i∈[q]

βi〈1, vi〉)2.

We also have
xTA†x = xT (

∑
i∈[q]

λ−1
i viv

T
i )x =

∑
i∈[q]

λ−1
i β2

i .

Now by Cauchy-Schwartz,(∑
i

λi〈1, vi〉2
)∑

i∈[q]

λ−1
i β2

i

 ≥ ||x||21 .
Therefore, we have

xTA†x ≥ ||x||21∑
i∈[q] λi〈1, vi〉2

=
||x||21
1TA1 =

||x||21
sum(A) .

J

Equipped with all necessary tools, we may now prove our result.

2.3.2 Our Gaussian Measure Bound
Let C ≡ (0, U, V ) be a simplicial cone with apex at the origin. We now show an upper
bound on the Gaussian measure of C that depends surprisingly on only the para-volume and
sum-norm of U . Since Gaussian measure is at most 1, it is evident when viewing our bound
that it can only be useful for simplicial cones wherein the sum-norm of their normal vectors
is O(

√
k), and the para-volume of their normal vectors is not too small.

I Theorem 15. Let C ≡ (0, U, V ) be a simplicial cone with apex at the origin. Let ` =
||
∑
i ui||2 (i.e. sum-norm of the normal vectors), then the Gaussian measure of C is at most(

e
2πk
)k/2 `k√

det(AU )

Proof. By the sum-norm property, the sum of entries of AU is `2. Also by the definition
of a simplicial cone, U , and cosequently AU , must have full rank. Thus we may apply
Lemma 14 over the entire positive orthant. We proceed to analyze the multivariate integral
in Eq. (2.6), by first applying Lemma 14 and then linearizing the exponent using Lemma 11.
Post-linearization, our approach is similar to the presentation of Boeroeczky and Henk [12].
We have,∫

IRk+

e−x
TA−1

U
x dx ≤

∫
IRk+

e−||x||
2
1/`

2
dx (by Lemma 14)
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= `k
∫

IRk+

e−||y||
2
1 dy (Subst. y ← x/`)

= `k√
π

∫
IRk+

∞∫
−∞

e

− t2 + 2it
∑
i∈[k]

yi

dt dy (by Lemma 11)

= `k√
π

∞∫
−∞

e−t
2
(∫ ∞

0
e2its ds

)k
dt Let g(t) = e−t

2
(∫ ∞

0
e2its ds

)k

|g(a+ ib)| ≤ e−a
2+b2

(∫ ∞
0

e−2bs ds
)k

⇒ lim
a→∞

g(a+ ib)→ 0, ∀b > 0

= `k√
π

∞∫
−∞

e−a
2+b2−2abi

(∫ ∞
0

e−2bs+2asi ds
)k

da ∀ b > 0, by Lemma 13

= ek/2 `k√
π(2k)k/2

∞∫
−∞

e−a
2
(

2be−ia/b
∫ ∞

0
e−2bs+2asi ds

)k
da Fixing b =

√
k/2

= ek/2 `k√
π(2k)k/2

∣∣∣∣∣∣
∞∫
−∞

e−a
2
(

2be−ia/b
∫ ∞

0
e−2bs+2asi ds

)k
da

∣∣∣∣∣∣ Expr. is real, +ve

≤ ek/2 `k√
π(2k)k/2

∞∫
−∞

e−a
2
(

2b
∫ ∞

0
e−2bs ds

)k
da By Observation 12

= ek/2 `k√
π(2k)k/2

∞∫
−∞

e−a
2

da = ek/2 `k

(2k)k/2

Lastly, the claim follows by substituting the above in Eq. (2.6). J

2.4 Analysis of Hyperplane Rounding given Strong Colorability
In this section we analyze the performance of random hyperplane rounding on k-uniform
hypergraphs that are (k + `)-strongly colorable.

I Theorem 16. Consider any (k + `)-strongly colorable k-uniform hypergraph H = (V,E).
The expected fraction of monochromatic edges obtained by performing random hyperplane
rounding on the solution of Relaxation 2.3, is O

(
`k−1/2( e

2π
)k/2 1

k(k−1)/2

)
.

Proof. Let U be any k × k matrix whose columns are unit vectors u1, . . . , uk ∈ Rek that
satisfy the edge constraints in Relaxation 2.3. Recall from Section 2.2, that to bound
the probability of a monochromatic edge we need only bound the expression in Eq. (2.4)
for U of the above form. By Relaxation 2.3, the gram matrix AU = UTU , is exactly,
AU = (1 + α)I − α11T where α = 1

k+`−1 . By matrix determinant lemma (determinant
formula for rank one updates), we know

det(AU ) = (1 + α)k
(

1− kα

1 + α

)
≥
(

`

k + `

)
= Ω

(
`

k

)
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Further, Relaxation 2.3 implies the length of
∑
i ui, is at most `. The claim then follows by

combining Eq. (2.4) with Theorem 15. J

Note. Being that any edge in the solution to the strong colorability relaxation corresponds
to a symmetric cone, Theorem 16 is directly implied by prior work on the volume of symmetric
spherical simplices. It is in the next section, where the true power of Theorem 15 is realized.

Remark. As can be seen from the asymptotic volume formula of symmetric spherical
simplices,

√
πk/(2e) is a sharp threshold for `, i.e. when ` > (1+o(1))

√
πk/(2e), hyperplane

rounding does worse than the naive random algorithm, and when ` < (1− o(1))
√
πk/(2e),

hyperplane rounding beats the naive random algorithm.

2.5 Analysis of Hyperplane Rounding given Rainbow Colorability
In this section we analyze the performance of random hyperplane rounding on k-uniform
hypergraphs that are (k − `)-rainbow colorable.

Let U be the k × k matrix whose columns are unit vectors u1, . . . , uk ∈ IRk satisfying
the edge constraints in Relaxation 2.2. We need to bound the expression in Eq. (2.4) for U
of the above form. While we’d like to proceed just as in Section 2.4, we are limited by the
possibility of U being singular or the parallelotope determined by U having arbitrarily low
volume (as u1 can be chosen arbitrarily close to the span of u2, . . . , uk while still satisfying
||
∑
i ui||2 ≤ `).

While U can be bad with respect to our properties of interest, we will show that some
subset of the vectors in U are reasonably well behaved with respect to para-volume and
sum-norm.

2.5.1 Finding a Well Behaved Subset
We’d like to find a subset of U with high para-volume, or equivalently, a principal sub-
matrix of AU with reasonably large determinant. To this end, we express the gram matrix
AU = UTU as the sum of a symmetric skeleton matrix BU and a residue matrix EU . Formally,
EU = AU −BU and BU = (1 + β)I − β11T where β = 1

k−`−1 .

BU = (1 + β)I − β11T where β = 1
k − `− 1

We have (assuming ` = o(k)), sum(AU ) ≤ `2 and sum(BU ) = k− k(k− 1)β = −`
1−o(1) . Let

s← sum(EU ) ≤ `2 − sum(BU ) = `2 + `
1−o(1) .

We further observe that EU is symmetric, with all diagonal entries zero. Also since
u1, . . . , uk satisfy Relaxation 2.2, all entries of EU are non-negative.

By an averaging argument, at most ckδ columns of EU have column sums greater than
s/(ckδ) for some parameters δ, c to be determined later. Let S ⊆ [k] be the set of indices
of the columns having the lowest k − ckδ column sums. Let k̃ ← |S| = k − ckδ, and let
AS , BS , ES be the corresponding matrices restricted to S (in both columns and rows).

2.5.1.1 Spectrum of BS and ES

I Observation 17. For a square matrix X, let λmin(X) denote its minimum eigenvalue.
The eigenvalues of BS are exactly (1 + β) with multiplicity (k̃ − 1), and (1 + β − k̃β) with
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multiplicity 1. Thus λmin(BS) = 1+β−k̃β. This is true since BS merely shifts all eigenvalues
of −β11T by 1 + β.

While we don’t know as much about the spectrum of ES , we can still say some useful things.

I Observation 18. Since ES is non-negative, by Perron-Frobenius theorem, its spectral
radius is equal to its max column sum, which is at most s/(ckδ). Thus λmin(ES) ≥ −s/(ckδ).

Now that we know some information about the spectra of BS and ES , the next natural
step is to consider the behaviour of spectra under matrix sums.

2.5.1.2 Spectral properties of Matrix sums

The following identity is well known.

I Observation 19. If X and Y are symmetric matrices with eigenvalues x1 > x2 > · · · > xm
and y1 > y2 > · · · > ym and the eigenvalues of A+B are z1 > z2 > · · · > zm, then

∀ 0 ≤ i+ j ≤ m, zm−i−j ≥ xm−i + ym−j .

In particular, this implies λmin(X + Y ) ≥ λmin(X) + λmin(Y ).

We may finally analyze the spectrum of AS .

2.5.1.3 Properties of AS

I Observation 20 (Para-Volume). Let the eigenvalues of AS be a1 > a2 > · · · > ak̃ By
Observation 17, Observation 18, and Observation 19 we have (Assuming ` < ckδ/2),

λmin(AS) = ak̃ ≥ 1 + β − k̃β − s

ckδ
= c

k1−δ −
`2

ckδ
− o(1)

a2, a3, . . . , ak̃−1 ≥ 1 + β − s

ckδ
= 1− `2

ckδ
− o(1)

Consequently,

det(AS) ≥
(

c

k1−δ −
`2

ckδ
− o(1)

)(
1− `2

ckδ
− o(1)

)k̃
≥
(

c

k1−δ −
`2

ckδ
− o(1)

)
e−k

In particular, note that AS is non-singular and has non-negligible para-volume when

`2

ckδ
= c

2k1−δ , i.e. ` ≈ ckδ−1/2 or, δ ≈ 1
2

log(`/c)
log k

I Observation 21 (Sum-Norm). Since EU is non-negative, sum(ES) ≤ sum(EU ) = s. Also
we know that the sum of entries of AS is

sum(BS) + sum(ES) = k̃(1 + β)− k̃(k̃ − 1)β + s ≤ ckδ + s (2.8)

2.5.2 The Result
We are now equipped to prove our result.

I Theorem 22. For ` <
√
k/100, consider any (k−`)-rainbow colorable k-uniform hypergraph

H = (V,E). Let θ = 1/2 + log(`)/ log(k) and η = 19(1− θ)/40. The expected fraction of
monochromatic edges obtained by performing random hyperplane rounding on the solution of
Relaxation 2.2, is at most

1
2.1k kηk
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Proof. Let U be any k × k matrix whose columns are unit vectors u1, . . . , uk ∈ IRk that
satisfy the edge constraints in Relaxation 2.3. Recall from Section 2.2, that to bound the
probability of a monochromatic edge we need only bound the expression in Eq. (2.4) for U
of the above form.

By Section 2.5.1, we can always choose a matrix US whose columns ũ1, . . . , ũk̃ are
from the set {u1, . . . , uk}, such that the gram matrix AS = UTS US satisfies Eq. (2.8) and
Observation 20. Clearly the probability of all vectors in U being monochromatic is at most
the probability of all vectors in US being monochromatic.

Thus just as in Section 2.2, to find the probability of US being monochromatic, we may
assume without loss of generality that we are performing random hyperplane rounding in
IRk̃ on any k̃-dimensional vectors ũ1, . . . , ũk̃ whose gram (pairwise inner-product) matrix is
the aforementioned AS .

Specifically, by combining Eq. (2.8) and Observation 20 with Theorem 15, our expression
is at most:( e

2π

)k̃/2(ckδ + s

k

)k̃/2 1√
det(AU )

≤ 3.2k̃/2
(

(1− o(1))c
k1−δ

)k̃/2
≤ 1

2.1k k(1−c)(1−δ)k

assuming c = 1/20, δ ≥ 1/2 and ` <
√
k/100 (constraint on ` ensures that non-singularity

conditions of Observation 20 are satisfied). The claim follows. J

Remark. Yet again we see a threshold for `, namely, when ` <
√
k/100, hyperplane rounding

beats the naive random algorithm, and for ` = Ω(
√
k), it fails to do better. In fact, as we’ll

see in the next section, assuming the UGC, we show a hardness result when ` = Ω(
√
k).

3 Hardness of Max-2-Coloring under Low Discrepancy

In this section we consider the hardness of Max-2-Coloring when promised discrepancy as low
as one. As noted in Section 2.5, our analysis requires the configuration of vectors in an edge
to be well behaved with respect to sum-norm and para-volume. While in the discrepancy case,
we can ensure good sum-norm, the vectors in an edge can have arbitrarily low para-volume.
While in the rainbow case we can remedy this by finding a reasonably large well behaved
subset of vectors, this is not possible in the case of discrepancy.

Indeed, consider the following counterexample: Start in 2 dimensions with k/3 copies
each of any u1, u2, u3 such that u1 +u2 +u3 = 0. Lift all vectors to 3-dimensions by assigning
every vector a third coordinate of value exactly 1/k. This satisfies Relaxation 2.1, yet every
superconstant sized subset has para-volume zero.

Confirming that this is not an artifact of our techniques and the problem is in fact hard,
we show in this section via a reduction from Max-Cut, that assuming the Unique Games
conjecture, it is NP-Hard to Max-2-Color much better than the naive random algorithm that
miscolors 2−k+1 fraction of edges, even in the case of discrepancy-1 hypergraphs.

3.1 Reduction from Max-Cut
Let k = 2t + 1. Let G = (V,E) be an instance of Max-Cut, where each edge has weight
1. Let n = |V | and m = |E|. We produce a hypergraph H = (V ′, E′) where V ′ = V × [k].
For each u ∈ V , let cloud(u) := {u} × [k]. For each edge (u, v) ∈ E, we add N := 2

(
k
t

)(
k
t+1
)

hyperedges

{U ∪ V : U ⊆ cloud(u), V ⊆ cloud(v), |U |+ |V | = k, ||U | − |V || = 1},
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each with weight 1
N . Call these hyperedges created by (u, v). The sum of weights is m for

both G and H.

3.1.1 Completeness
Given a coloring C : V 7→ {B,W} that cuts at least (1 − α)m edges of G, we color H so
that for every v ∈ V , each vertex in cloud(v) is given the same color as v. If (u, v) ∈ E is
cut, all hyperedges created by (u, v) will have discrepancy 1. Therefore, the total weight of
hyperedges with discrepancy 1 is at least (1− α)m.

3.1.2 Soundness
Given a coloring C ′ : V ′ 7→ {B,W} such that the total weight of non-monochromatic
hyperedges is (1 − β)m, v ∈ V is given the color that appears the most in its cloud (k
is odd, so it is well-defined). Consider (u, v) ∈ E. If no hyperedge created by (u, v) is
monochromatic, it means that u and v should be given different colors by the above majority
algorithm (if they are given the same color, say white, then there are at least t+ 1 white
vertices in both clouds, so we have at least one monochromatic hyperedge).

This means that for each (u, v) ∈ E that is uncut by the above algorithm (lost weight 1
for Max-Cut objective), at least one hyperedge created by (u, v) is monochromatic, and we
lost weight at least 1

N there for our problem. This means that the total weight of cut edges
for Max-Cut is at least (1− βN)m.

3.1.3 The Result
I Theorem 23 ([24]). Let G = (V,E) be a graph with m = |E|. For sufficiently small ε > 0,
it is UG-hard to distinguish the following cases.

There is a 2-coloring that cuts at least (1− ε)|E| edges.
Every 2-coloring cuts at most (1− (2/π)

√
ε)|E| edges.

Our reduction shows that

I Theorem 24. Given a hypergraph H = (V,E), it is UG-hard to distinguish the following
cases.

There is a 2-coloring where at least (1− ε) fraction of hyperedges have discrepancy 1.
Every 2-coloring cuts (in a standard sense) at most (1− (2/π)

√
ε
N ) fraction of hyperedges.

N = 2
(
k
t

)(
k
t+1
)
≤ (2/π)2k · 2k ≤ (2/π)22k. If we take ε = 2−6k for large enough k, we cannot

distinguish
There is a 2-coloring where at least (1− 2−6k) fraction of hyperedges have discrepancy 1.
Every 2-coloring cuts (in a standard sense) at most (1− 2−5k) fraction of hyperedges.

This proves Theorem 2.

3.2 NP-Hardness
In this subsection, we show that given a hypergraph which admits a 2-coloring with dis-
crepancy at most 2, it is NP-hard to find a 2-coloring that has less than k−O(k) fraction of
monochromatic hyperedges. Note that while the inapproximability factor is worse than the
previous subsection, we get NP-hardness and it holds when the input hypergraph is promised
to have all hyperedges have discrepancy at most 2. The reduction and the analysis closely
follow from the more general framework of Guruswami and Lee [19] except that we prove a
better reverse hypercontractivity bound for our case.
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3.2.1 Q-Hypergraph Label Cover
An instance of Q-Hypergraph Label Cover is based on a Q-uniform hypergraph H =
(V,E). Each hyperedge-vertex pair (e, v) such that v ∈ e is associated with a projection
πe,v : [R] → [L] for some positive integers R and L. A labeling l : V → [R] strongly
satisfies e = {v1, . . . , vQ} when πe,v1(l(v1)) = · · · = πe,vQ(l(vQ)). It weakly satisfies e when
πe,vi(l(vi)) = πe,vj (l(vj)) for some i 6= j. The following are two desired properties of instances
of Q-Hypergraph Label Cover.

Regular: every projection is d-to-1 for d = R/L.
Weakly dense: any subset of V of measure at least ε vertices induces at least εQ

2 fraction
of hyperedges.
T -smooth: for all v ∈ V and i 6= j ∈ [R], Pre∈E:e3v[πe,v(i) = πe,v(j)] ≤ 1

T .

The following theorem asserts that it is NP-hard to find a good labeling in such instances.

I Theorem 25 ([19]). For all integers T,Q ≥ 2 and η > 0, the following is true. Given
an instance of Q-Hypergraph Label Cover that is regular, weakly-dense and T -smooth, it is
NP-hard to distinguish between the following cases.

Completeness: There exists a labeling l that strongly satisfies every hyperedge.
Soundness: No labeling l can weakly satisfy η fraction of hyperedges.

3.2.2 Distributions
We first define the distribution µ′ for each block. 2Q points xq,i ∈ {1, 2}d for 1 ≤ q ≤ Q and
1 ≤ i ≤ 2 are sampled by the following procedure.

Sample q′ ∈ [Q] uniformly at random.
Sample xq′,1, xq′,2 ∈ {1, 2}d i.i.d.
For q 6= q′, 1 ≤ j ≤ d, sample a permutation ((xq,1)j , (xq,2)j) ∈ {(1, 2), (2, 1)} uniformly
at random.

3.2.3 Reduction and Completeness
We now describe the reduction from Q-Hypergraph Label Cover. Given a Q-uniform
hypergraph H = (V,E) with Q projections from [R] to [L] for each hyperedge (let d = R/L),
the resulting instance of 2Q-Hypergraph Coloring is H ′ = (V ′, E′) where V ′ = V × {1, 2}R.
Let cloud(v) := {v} × {1, 2}R. The set E′ consists of hyperedges generated by the following
procedure.

Sample a random hyperedge e = (v1, . . . , vQ) ∈ E with associated projections,
πe,v1 , . . . , πe,vQ from E.
Sample (xq,i)1≤q≤Q,1≤i≤2 ∈ {1, 2}R in the following way. For each 1 ≤ j ≤ L, independ-
ently sample ((xq,i)π−1

e,vq (j))q,i from (({1, 2}d)2Q,µ′).
Add a hyperedge between 2Q vertices {(vq, xq,i)}q,i to E

′. We say this hyperedge is
formed from e ∈ E.

Given the reduction, completeness is easy to show.

I Lemma 26. If an instance of Q-Hypergraph Label Cover admits a labeling that strongly
satisfies every hyperedge e ∈ E, there is a coloring c : V ′ → {1, 2} of the vertices of H ′ such
that every hyperedge e′ ∈ E′ has at least (Q− 1) vertices of each color.
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Proof. Let l : V → [R] be a labeling that strongly satisfies every hyperedge e ∈ E. For
any v ∈ V, x ∈ {1, 2}R, let c(v, x) = xl(v). For any hyperedge e′ = {(vq, xq,i)}q,i ∈ E′,
c(vq, xq,i) = (xq,i)l(vq), and all but one q satisfies

{
(xq,1)l(vq), (xq,2)l(vq)

}
= {1, 2}. Therefore,

the above strategy ensures that every hyperedge of E′ contains at least (Q− 1) vertices of
each color. J

3.2.4 Soundness
I Lemma 27. There exists η := η(Q) such that if I ⊆ V ′ of measure 1

2 induces less than
Q−O(Q) fraction of hyperedges in H ′, the corresponding instance of Q-Hypergraph Label
Cover admits a labeling that weakly satisfies a fraction η of hyperedges.

Proof. Consider a vertex v and hyperedge e ∈ E that contains v with a permutation
π = πe,v. Let f : {1, 2}R 7→ [0, 1] be a noised indicator function of I ∩ cloud(v) with
Ex∈{1,2}R [f(x)] ≥ 1

2 − ε for small ε > 0 that will be determined later. We define the inner
product

〈f, g〉 = Ex∈{1,2}R [f(x)g(x)].

f admits the Fourier expansion ∑
S⊆[R]

f̂(S)χS

where
χS(x1, . . . , xk) =

∏
i∈S

(−1)xi , f̂(S) = 〈f, χS〉.

In particular, f̂(∅) = E[f(x)], and∑
S

f̂(S)2 = E[f(x)2] ≤ E[f(x)] (3.1)

A subset S ⊆ [R] is said to be shattered by π if |S| = |π(S)|. For a positive integer J , we
decompose f as the following:

fgood =
∑

S: shattered
f̂(S)χS

fbad = f − fgood.

By adding a suitable noise and using smoothness of Label Cover, for any δ > 0, we can
assume that ||fbad||2 ≤ δ. See [19] for the details.

Each time a 2Q-hyperedge is sampled is formed from e, two points are sampled from
each cloud. Let x, y be the points in cloud(v). Recall that they are sampled such that for
each 1 ≤ j ≤ L,

With probability 1
Q , for each i ∈ π−1(j), xi and yi are independently sampled from {1, 2}.

With probability Q−1
Q , for each i ∈ π−1(j), (xi, yi) are sampled from {(1, 2), (2, 1)}.

We can deduce the following simple properties.
1. Ex,y[χ{i}(x)χ{i}(y)] = −Q−1

Q . Let ρ := −Q−1
Q .

2. Ex,y[χ{i}(x)χ{j}(y)] = 0 if i 6= j.
3. Ex,y[χS(x)χT (y)] = 0 unless π(S) = π(T ) = π(S ∩ T ).
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We are interested in lower bounding

Ex,y[f(x)f(y)] ≥ E[fgood(x)fgood(y)]− 3‖fbad(x)‖2‖f‖2 ≥ E[fgood(x)fgood(y)]− 3δ.

By the property 3.,

E[fgood(x)fgood(y)] =
∑

S: shattered
f̂(S)2ρ|S|

= E[f ]2 +
∑

S: shattered
f̂(S)2ρ|S|

≥ E[f ]2 + ρ(
∑
|S|>1

f̂(S)2) since ρ is negative

≥ E[f ]2 + ρ(E[f ]− E[f ]2) by (3.1)

≥ E[f ]2(1 + ρ)− ε since E[f ] ≥ 1
2 − ε⇒ E[f ]− E[f ]2 ≤ E[f ]2 + ε

≥ E[f ]2

Q
− ε.

By taking ε and δ small enough, we can ensure that

E[f(x)f(y)] ≥ ζ := 1
5Q. (3.2)

The soundness analysis of Guruswami and Lee [19] ensures ((3.2) replaces their Step 2) that
there exists η := η(Q) such that if the fraction of hyperedges induced by I is less than
Q−O(Q), the Hypergraph Label Cover instance admits a solution that satisfies η fraction of
constraints. We omit the details. J

3.2.5 Corollary to Max-2-Coloring under discrepancy O(log k)
The above NP-hardness, combined with the reduction techinque from Max-Cut in Section 3.1,
shows that given a k-uniform hypergraph, it is NP-hard to distinguish whether it has
discrepancy at most O(log k) or any 2-coloring leaves at least 2−O(k) fraction of hyperedges
monochromatic. Even though the direction reduction from Max-Cut results in a similar
inapproximability factor with discrepancy even 1, this result does not rely on the UGC and
hold even all edges (compared to almost in Section 3.1) have discrepancy O(log k).

Let r = Θ( k
log k ) so that s = k

r = Θ(log k) is an integer. Given a r-uniform hypergraph,
it is NP-hard to distinguish whether it has discrepancy at most 2 or any 2-coloring leaves
at least r−O(r) fraction of hyperedges monochromatic. Given a r-uniform hypergraph, the
reduction replaces each vertex v with cloud(v) that contains (2s − 1) new vertices. Each
hyperedge (v1, . . . , vr) is replaced by d := (

(2s−1
s

)
)r ≤ (2s)r = 2k hyperedges

{∪ri=1Vi : Vi ⊂ cloud(vi), |Vi| = s}.

If the given r-uniform hypergraph has discrepancy at most 2, the resulting k-uniform
hypergraph has discrepancy at most 2s = O(log k).

If the resulting k-uniform hypergraph admits a coloring that leaves α fraction of hyperedges
monochromatic, giving v the color that appears more in cloud(v) is guaranteed to leaves at
most dα fraction of hyperedges monochromatic. Therefore, if any 2-coloring of the input
r-uniform hypergraph leaves at least r−O(r) fraction of hyperedges monochromatic, any
2-coloring of the resulting k-uniform hypergraph leaves at least r−O(r)

d = 2−O(k) fraction of
hyperedges.
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3.3 Hardness of Max-2-Coloring under almost (k −
√

k)-colorability
Let k be such that ` :=

√
k be an integer and let χ := k − `. We prove the following

hardness result for any ε > 0 assuming the Unique Games Conjecture: given a k-uniform
hypergraph such that there is a χ-coloring that have at least (1− ε) fraction of hyperedges
rainbow, it is NP-hard to find a 2-coloring that leaves at most ( 1

2 )k−1 fraction of hyperedges
monochromatic.

The main technique for this result is to show the existence of a balanced pairwise
independence distribution with the desired support. Let µ be a distribution on [χ]k. µ is
called balanced pairwise independent if for any i 6= j ∈ [k] and a, b ∈ [χ],

Pr
(x1,...,xk)∼µ

[xi = a, xj = b] = 1
χ2 .

For example, the uniform distribution on [χ]k is a balanced pairwise distribution. We now
consider the following distribution µ to sample (x1, . . . , xk) ∈ [χ]k.

Sample S ⊆ [k] with |S| = χ uniformly at random. Let S = {s1 < · · · < sχ}.
Sample a permutation π : [χ] 7→ [χ].
Sample y ∈ [χ].
For each i ∈ [k], if i = sj for some j ∈ [χ], output xi = π(χ). Otherwise, output xi = y.

Note that for any supported by (x1, . . . , xk), we have {x1, . . . , xk} = [χ]. Therefore, µ is
supported on rainbow strings. We now verify pairwise independence. Fix i 6= j ∈ [k] and
a, b ∈ [χ].

If a = b, by conditioning on wheter i, j are in S or not,

Pr
µ

[xi = a, xj = b] = Pr[xi = a, xj = b|i, j ∈ S] Pr[i, j ∈ S]+

Pr[xi = a, xj = b|i ∈ S, j /∈ S] Pr[i ∈ S, j /∈ S]+
Pr[xi = a, xj = b|i /∈, j ∈ S] Pr[i /∈, j ∈ S]+
Pr[xi = a, xj = b|i, j /∈ S] Pr[i, j /∈ S]

=0 · (χ(χ− 1)
k(k − 1) ) + 2 · ( 1

χ2 ) · ( lχ

k(k − 1)) + ( 1
χ

) · ( `(`− 1)
k(k − 1))

=2`χ+ χ(`2 − `)
χ2k(k − 1) = χk + χ

√
k

χ2k(k − 1) =
√
k(
√
k + 1)

χk(
√
k + 1)(

√
k − 1)

= 1
χ(k −

√
k)

= 1
χ2 .

If a 6= b, by the same conditioning,

Pr
µ

[xi = a, xj = b] =( 1
χ(χ− 1)) · (χ(χ− 1)

k(k − 1) ) + 2 · ( 1
χ2 ) · ( `χ

k(k − 1)) + 0 · ( `(`− 1)
k(k − 1))

= χ2 + 2lχ
χ2k(k − 1) = χ+ 2`

χk(k − 1) = k +
√
k

χk(k − 1) = 1
χ2 .

Given such a balanced pairwise independent distribution supported on rainbow strings, a
standard procedure following the work of Austrin and Mossel [7] shows that it is UG-hard to
outperform the random 2-coloring. We omit the details.

4 Approximate Min-Coloring

In this section, we provide approximation algorithms for the Min-Coloring problem under
strong colorability, rainbow colorability, and low discrepancy assumptions. Our approach is
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standard, namely, we first apply degree reduction algorithms followed by the usual paradigm
pioneered by Karger, Motwani and Sudan [23], for coloring bounded degree (hyper)graphs.
Consequently, our exposition will be brief.

In the interest of clarity, all results henceforth assume the special cases of Discrepancy-1,
or (k − 1)-rainbow colorability, or (k + 1)-strong colorability. All arguments generalize easily
to the cases parameterized by `.

4.1 Approximate Min-Coloring in Bounded Degree Hypergraphs
4.1.1 The Algorithm
INPUT: k-uniform hypergraph H = ([n], E) with max-degree t and m edges, having Discrep-
ancy 1, or being (k − 1)-rainbow colorable, or being (k + 1)-strong colorable.
1. Let u1, . . . , un be a solution to the SDP relaxation from Section 2.1 corresponding to the

assumption on the hypergraph.
2. Let H1 be a copy of H, and let γ, τ be parameters to be determined shortly.
3. Until no vertex remains in the hypergraph, Repeat:

a. Find an independent set I in the residual hypergraph, of size at least γn by repeating
the below process until |I| ≥ γn:
(A) Pick a random vector r from the standard multivariate normal distribution.
(B) For all i, if 〈ui, r〉 ≥ τ , add vertex i to I.
(C) For every edge e completely contained in I, delete any single vertex in e, from I.

b. Color I with a new color and remove I and all edges involving vertices in I, from H1.

4.1.2 Analysis
First note that by Lemma 8, for any fixed vector a, 〈a, r〉 has the distribution N (0, 1). Note
that all SDP formulations in Section 2.1 satisfy,∣∣∣∣∣∣

∣∣∣∣∣∣
∑
j∈[k]

uij

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 1 (4.1)

Now consider any edge e = (i1, . . . , ik). In any fixed iteration of the inner loop, the probability
of e being contained in I at Step (B), is at most the probability of

〈r,
∑
j∈[k]

uij 〉 ≥ kτ

However, by Lemma 8 and Eq. (4.1), the inner product above is dominated by the distribution
N (0, 1). Thus in any fixed iteration of the inner loop, let H1 have n1 vertices and m1 edges,
we have

E [I] ≥ n1Φ(τ)−m1Φ(kτ)

≥ n1e
−τ2/2 − n1t

k
e−k

2τ2/2

= Ω(γn1) setting, τ2 = 2 log t
k2 − 1 , and γ = t−1/(k2−1)

Now by applying Markov’s inequality to the vertices not in I, we have, Pr[|I| < γn1] ≤
1− Ω(γ). Thus for a fixed iteration of the outer loop, with high probability, the inner loop
doesn’t repeat more than O(logn1/γ) times.

APPROX/RANDOM’15
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Lastly, the outermost loop repeats O(logn/γ) times, using one color at each iteration.
Thus with high probability, in polynomial time, the algorithm colors H with t1/(k2−1) logn col-
ors.

Important Note. We can be more careful in the above analysis for the rainbow and strong
colorability cases. Specifically, the crux boils down to finding the gaussian measure of the
cone given by

{
x
∣∣UTx ≥ τ } instead of zero. Indeed, on closely following the proof of

Theorem 15 we obtain for strong and rainbow coloring respectively (assuming max-degree
nk),

n
1
k(1− 3β

2 ) logn and n
1
k(1− 5β

4 ) logn, where β = log k
logn

While these improvements are negligible for small k, they are significant as k approaches
n2/3.

4.2 Degree Reduction Schemes under Promise
Wigderson [38] and Alon et al. [3] studied degree reduction in the cases of 3-colorable graphs
and 2-colorable hypergraphs, respectively. Assuming our proposed structures, we are able
to combine some simple combinatorial ideas with counterparts of the observations made
by Wigderson and Alon et al., to obtain degree reduction approximation schemes. Such
approximation schemes are likely not possible assuming only 2-colorability. Due to space
constraints we defer these degree reduction algorithms to the full version [10].

4.3 Main Min-Coloring Result
Combining results from Section 4.1.2 with our degree reduction approximation schemes from
the Section 4.2, we obtain the Min-Coloring results.

I Theorem 28. Consider any k-uniform hypergraph H = (V,E) with n vertices. In nc+O(1)

time, one can color H with

min
{(

n

c logn

)α
, n

1
k(1− 3β

2 ),
(m
n

) 1
k2
}

logn colors, if H is (k + 1)-strongly colorable.

min
{(n

c

)α
, n

1
k(1− 5β

4 ),
(m
n

) 1
k2
}

logn colors, if H is (k − 1)-rainbow colorable.

min
{(n

c

)α
,
(m
n

) 1
k2
}

logn colors, if H has discrepancy 1.

where, α = 1
k + 2− o(1) , β = log k

logn

I Remark. In all three promise cases the general polytime min-coloring guarantee paramet-
erized by `, is roughly n`2/k. Thus, the threshold value of `, for which standard min-coloring
techniques improve with k, is o(

√
k).
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Abstract
Users of cloud computing services are offered rapid access to computing resources via the Internet.
Cloud providers use different pricing options such as (i) time slot reservation in advance at a fixed
price and (ii) on-demand service at a (hourly) pay-as-used basis. Choosing the best combination
of pricing options is a challenging task for users, in particular, when the instantiation of computing
jobs underlies uncertainty.

We propose a natural model for two-stage scheduling under uncertainty that captures such
resource provisioning and scheduling problem in the cloud. Reserving a time unit for processing
jobs incurs some cost, which depends on when the reservation is made: a priori decisions, based
only on distributional information, are much cheaper than on-demand decisions when the actual
scenario is known. We consider both stochastic and robust versions of scheduling unrelated
machines with objectives of minimizing the sum of weighted completion times

∑
j wjCj and the

makespan maxj Cj . Our main contribution is an (8+ε)-approximation algorithm for the min-sum
objective for the stochastic polynomial-scenario model. The same technique gives a (7.11 + ε)-
approximation for minimizing the makespan. The key ingredient is an LP-based separation
of jobs and time slots to be considered in either the first or the second stage only, and then
approximately solving the separated problems. At the expense of another ε our results hold for
any arbitrary scenario distribution given by means of a black-box. Our techniques also yield
approximation algorithms for robust two-stage scheduling.
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1 Introduction

Users of cloud computing services are offered rapid access to computing resources such as
processing power, storage capacity, or network bandwidth via the Internet. Cloud providers,
e.g. Amazon EC2, use different pricing options such as on-demand and reserved instances [1].
In the reservation option, a user pays a priori a fixed amount to reserve resources in advance,
whereas on-demand instances are charged on a (e.g. hourly) pay-as-used basis. Users of cloud
computing services face the challenging task of choosing the best combination of pricing
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options when provisioning resources [4] – in particular, if instances of computing jobs underlie
uncertainty.

In this paper, we propose the following general model for two-stage scheduling with
reservation cost under uncertainty that captures such resource provisioning and scheduling
problem in the cloud. In the first stage, we are given distributional information about
scheduling scenarios, and in the second stage the actual scenario is revealed. The task is
to construct a schedule for the realized scenario. Using a time unit of processing in the
schedule incurs some fixed cost, independent of the used capacity (number of machines),
but dependent on when the time unit is reserved: low if it is reserved in the first stage, not
knowing the actual scenario, and high in the second stage, given full information. Such
a cost structure applies, for example, when reserving a time unit on a server gives access
to all processors on this server. In the stochastic setting, the overall goal is to minimize
total expected payment (in both stages) plus scheduling cost. In the robust setting, the
overall goal is to minimize the maximum, over all scenarios, of payment (in both stages) plus
scheduling cost.

This setting opens up a whole new class of scheduling problems with its own particular
challenges. As a first problem in this class we focus on scheduling preemptive jobs with
release dates on unrelated machines, the most general machine model in scheduling, such as to
minimize the total weighted completion time and makespan. The corresponding single-stage,
single-scenario versions of these problems are fundamental classical scheduling problems. We
give constant approximation algorithms for both objectives in the stochastic and the robust
model. Our results for the stochastic setting hold in the most general random model, the
so-called black-box model.

Problem Definition. In the underlying deterministic problem we are given a set of jobs
J = {1, . . . , n} and a set of machines M = {1, . . . ,m}. Each job j ∈ J is specified by a
release date rj ≥ 0, before which j cannot be processed, a machine-dependent processing
time pij ∈ N, the processing time when executing j completely on machine i ∈ M , and
a weight wj ≥ 1. In a feasible schedule each machine runs at most one job at the time
and no job runs at more than one machine at the same time. A job may be preempted at
any time and may resume processing on the same or any other machine. We assume that
time is discretized into unit time slots. For ease of exposition let completion time Cj of a
job j ∈ J be the end of the unit-size time slot in which it actually completes. For every
time slot, in which at least one machine is processing, a fixed reservation cost c is paid. The
objective is to minimize the sum of weighted completion times

∑
j∈J wjCj or the makespan

Cmax := maxj Cj plus total reservation cost.
In the two-stage version of this problem, the actual job set to be processed is one of a

set S of possible scenarios. Any time slot can be reserved either in the first stage at cost c,
and can be used in every scenario, or in the second stage, for a specific scenario, at cost λc,
where λ ≥ 1 is an inflation factor. We assume λ to be defined by the scenario as well. The
inflation factor together with the job set, (λk ≥ 1, Jk ⊆ J), make up a scenario k ∈ S.

In the stochastic setting, we consider two models with respect to randomness. In the
polynomial-scenario model, the distribution of S is given explicitly, i.e., each scenario k ∈ S
is associated with a probability πk ∈ [0, 1] with

∑
k∈S πk = 1. In the black-box model, we

have efficient access to an oracle that provides samples according to the unknown probability
distribution with possibly exponentially many and dependent scenarios. In the robust setting,
we restrict to the model with an explicit description of S, called discrete-scenario model.
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Related Work. Preemptively scheduling unrelated machines to minimize the sum of
(weighted) completion times, R | pmtn, (rj) |

∑
(wj)Cj , is APX -hard [23] and admits a (2+ε)-

approximation [18]. The makespan problem R | rj , pmtn |Cmax can be solved in polynomial
time [15].

Somewhat related to our scheduling problem with reservation cost is the problem of
scheduling with variable time-slot cost [27, 14, 6]. Our second-stage problem involves a
special case with time slots having cost either 0 or some fixed amount.

With respect to the stochastic problem, our work is closer to two- or multistage stochastic
versions of scheduling problems, see e.g. [3, 2], than to traditional dynamic stochastic
scheduling [17], in which the algorithm’s decision on processing a job or not crucially influences
the information release. However, the former involve different scheduling problems than
ours, and more importantly performance quality is assessed by computational experiments
instead of rigorous worst-case analysis. The only work on approximation algorithms for a
two-stage scheduling problem we are aware of is by Shmoys and Sozio [21]. They present a
(2 + ε)-approximation for two-stage stochastic throughput maximization on a single machine
in which jobs can be deferred in the first stage gaining some profit.

The study of approximation algorithms for two-stage stochastic optimization problems was
initiated in [8] with a polynomial-scenario model for a service-provision problem. Subsequently,
next to [21] above, various two-stage stochastic versions of combinatorial optimization
problems such as set cover, network design, maximum weight matching, etc. were studied,
see [25] for a nice overview on the earlier work. General frameworks for solving several
two-stage stochastic combinatorial optimization problems approximately have been proposed
in [11] and [22]. The cost-sharing based approach in [11] yields a 2-approximation for a two-
stage stochastic scheduling problem without release dates on identical parallel machines [16].
It is not clear how to apply it when there are release dates.

In the black-box model, we adopt the Sample Average Approximation (SAA) method
proposed in [13]. It replaces the distribution on the random parameters by its empirical
distribution defined by samples from it. Under certain conditions, good approximate solutions
are obtained by drawing only a polynomial number of samples and solving the resulting SAA
problem instead [5, 26].

In a two-stage setting, robust versions of multiple-scenario combinatorial optimization
problems have been studied for covering and network design problems in [7, 9, 12]. We are
not aware of any relevant scheduling work.

Our Contribution. We develop approximation algorithms for the stochastic and robust
two-stage variants of classical scheduling problems. Our results rely on a new scheduling-
tailored time slot and job-set separation procedure, which separates jobs into those processing
exclusively on either first-stage reserved slots or second-stage reserved slots. It is inspired
by [22] in which the idea of separating clients was introduced in the context of covering
and network design problems. The separation in our setting is achieved through solving
a generalization of the time-indexed unrelated machine scheduling LP [20] followed by an
application of the slow-motion technique, proposed in [19] for min-sum single machine
scheduling and extended later, among others, to unrelated machines scheduling in [18]. After
separating, our rounding is applied independently to both separated instances. The two
(possibly overlapping) solutions are merged to a feasible joint solution. Carefully balancing
the change in reservation and scheduling cost by exploiting properties of slow-motion and
α-points, the resulting procedure is proven to be an (8 + ε)-approximation algorithm for the
two-stage polynomial-scenario stochastic version of R | pmtn, rj |

∑
j wjCj (Sec. 2.3).

APPROX/RANDOM’15
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Our time slot and job-set separation procedure is based on a general result, which is inter-
esting on its own in the polynomial-scenario model: Given a ρ-approximation for the special
case in which slots are reserved only in the first stage, there is an 8ρ-approximation for the
two-stage model (Sec. 2.2). For this special case, we give a ρ = (3+ε)-approximation (Sec. 2.1).

Our techniques also yield a 64/9 + ε ≈ 7.11 + ε algorithm for the two-stage stochastic
version of the makespan problem R | rj , pmtn |Cmax (Sec. 2.3).

Adopting the SAA framework, mentioned before, we apply our algorithms to arrive at a
sampling-based (8 + ε)-approximation algorithm for the min-sum problem and a (64/9 + ε)-
approximation for minimizing the makespan (Sec. 3). We notice that the work of [5, 26]
leads to a first-stage reservation decision. It is not obvious in our model how to construct
a good second-stage solution given a set of slots for free from the first-stage solution. In
fact, considering this problem independently from the first-stage, it is unclear if a constant
approximation exists. But even when considering the two stages jointly, the difficult part is
to show how a second-stage solution for some scenario (not necessarily in the sample set)
can be found and bounded by the SAA solution for the sample set.

Finally, we argue that our algorithms can be adopted for the min-max robust optimization
model with a discrete set of scenarios (Sec. 4). For the min-

∑
wjCj problem, certain

randomized steps of our algorithm must be replaced by deterministic ones losing a factor 2 in
the approximation guarantee. For the robust makespan problem we derive a 2-approximation.

In this paper, we consider the most interesting and most general variants of the considered
problems. For several special cases we can improve results, omitting details in this paper.
E.g., when all jobs in all scheduling scenarios are released at time 0, then obviously the
(first-stage) reservation interval will be [0, t] for some t. It is not difficult to see that our
considered objective functions (as well as others such as minimizing the `p-norm of machine
loads) of the two-stage problems without release dates are convex in t. Hence, we find
the optimal t simply by a combination of binary search for t and known approximation
algorithms for the single-stage single-scenario problems to determine the total cost for a
given t. Thus, in the absence of release dates, the two-stage problem is not harder than
the underlying deterministic problem. This changes drastically when jobs have arbitrary
release dates. Further improved results for other special cases, such as less general machine
environments or a constant number of scenarios, will be given in the full version of the paper.

2 Polynomial-Scenario Model for Min-Sum Objective

Consider the two-stage stochastic version of R | rj , pmtn |
∑
wjCj in the polynomial-scenario

model, in which the set of scenarios S and its distribution are fully specified. For each
scenario k ∈ S the triple (πk, λk, Jk) describes its probability of occurring πk, the inflation
factor λk, and the set of jobs Jk.

We use a natural LP that generalizes and further relaxes the time-indexed LP for
unrelated-machine scheduling [20]. To facilitate the exposition, we will present an LP with
exponentially many variables and constraints and derive our algorithms based on its solution,
even though we cannot expect to solve it in polynomial time. However, using the standard
technique of time-intervals of geometrically increasing size [20] we obtain polynomial-time
algorithms loosing only a small factor.

To keep notation amenable, we re-index jobs, such that each job j refers to a unique
job-scenario combination, and we let J := J1 ∪ . . . ∪ JN . We choose the time horizon
T = maxk∈S,j∈Jk

{rj} + maxk∈S{
∑
j∈Jk

maxi∈M pij}, an obvious upper bound on any
completion time in a reasonable schedule. Variables xt and xkt represent the first and second
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stage reservation decisions for time slot [t, t + 1). Let yijt be the amount of time job j is
processed in interval [t, t+ 1) on machine i.

min
T−1∑
t=0

cxt +
N∑

k=1

πk

(∑
j∈Jk

wjC
LP
j + λkc

T−1∑
t=0

xkt

)
(1a)

s.t.
∑
j∈Jk

yijt ≤ xt + xkt ∀i ∈M,k ∈ S, 0 ≤ t ≤ T − 1 (1b)

∑
i∈M

yijt ≤ xt + xkt ∀j ∈ J, k ∈ S, 0 ≤ t ≤ T − 1 (1c)

xt + xkt ≤ 1 ∀k ∈ S, 0 ≤ t ≤ T − 1 (1d)
T−1∑
t=rj

∑
i∈M

yijt

pij
= 1 ∀j ∈ J (1e)

T−1∑
t=rj

∑
i∈M

(t+ 1) · yijt

pij
= CLP

j ∀j ∈ J (1f)

xt, xkt, yijt ∈ [0, 1] ∀i ∈M, j ∈ J, k ∈ S, 0 ≤ t ≤ T − 1 (1g)

Constraints (1b),(1d),(1e),(1g) are self-explaining. With (1c) we ensure that no job is
processed for more than the total amount reserved in [t, t+ 1) guaranteeing non-parallelism.
For (1f), consider an arbitrary schedule with tj = maxt{t|yijt > 0, i ∈ M}, then the true
completion time of job j in this schedule is tj + 1, while CLPj offers a lower bound. Thus,
even if we enforce all variables to be integral, the LP still gives a relaxation of our problem.

Given an LP solution (xt, xkt, yijt), we let LP r =
∑
t cxt + c

∑
k,t πkλkxkt denote the

reservation cost and we let LP s =
∑
k,j∈Jk

πkwjC
LP
j denote the scheduling cost.

2.1 An Algorithm for First-Stage Reservation Only
Consider the special case of the two-stage problem in which all reservation must be done
in the first stage; as if all inflation factors λk are excessive. We refer to it as problem with
first-stage reservation only. A lower bound is given by LP1 obtained from the above LP
by setting xkt = 0, for all k, t. W.l.o.g. we omit the πk pre-multiplication in the objective
function by assuming it to be incorporated into the weights wj , j ∈ Jk.

We describe a procedure for rounding a fractional solution (xt, yijt) of LP1 to a feasible
integer-value solution. We first round the first-stage decision on reserving slots xt by
maintaining a feasible LP solution, and then we determine the actual schedule. In the first
step, it is important to maintain a fractional scheduling solution in which the true completion
time of a job j, i.e., max{t+ 1 | yijt > 0, i ∈M}, does not diverge too much from CLPj . To
that end, we utilize the idea of slow-motion, proposed in [19] for single machine scheduling,
and extended to unrelated machines scheduling in [18].

For α ∈ [0, 1], let Cj(α) denote the earliest point in time in the LP-solution in which
job j has completed an α-fraction of its total processing requirement. We use the following
link between Cj(α) an CLPj adopted from [10], which is used for the analysis of randomized
algorithms.

I Lemma 1 ([10]).
∫ 1

0 Cj(α)dα =
∑
t

∑
i yijt/pij · (t+ 1/2) = CLPj − 1/2.

For deterministic algorithms, however, we use the following relation.

I Lemma 2 ([24]). CLPj ≥ α+ (1− α) · Cj(α).

APPROX/RANDOM’15
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Slow-Motion. Given a fractional solution (xt, yijt) for LP1 and β ≥ 1, we construct a new
β-expanded solution (βxt, βyijt) that we obtain by mapping every time point t to βt. Then
βxt indicates the amount of reservation for the interval [βt, β(t+ 1)), and βyijt the amount
of job j scheduled during [βt, β(t+ 1)).

Obviously (βxt, βyijt) is a new feasible solution to LP1, which over-schedules each job by
a fraction of β− 1. We simply delete the over-scheduled part and apply a lemma given in [19]
that upper bounds the completion times of jobs in the expanded solution. We directly adopt
their result to our requirement of job completion times being rounded up to integer values.

I Lemma 3 ([19]). The completion time of job j in the expanded solution is at most
dβCj(1/β)e.

Rounding time slot reservation. Given any fractional solution (xt, yijt), e.g. the expanded
LP1 solution, we show how to round the fractional reservation xt to 0 or 1 so that the number
of slots reserved will not be much higher than

∑
t xt but sufficiently large to accommodate

all workload. We reassign the workload to reserved slots ensuring that the completion times
remain relatively small.

We first apply a standard rounding technique, which we call accumulated reservation: Let
Xt =

∑t
h=0 xh, for t ∈ {0, 1, . . . , T − 1} and X−1 = 0. We set x̄t = 1, i.e., we reserve time

slot [t, t+ 1), if bXt−1c ≤ bXtc − 1, and set x̄t = 0 otherwise. In total, we reserve b
∑
t xtc

slots this way. To ensure sufficiently reserved time capacity we do an extra reservation: if
x̄t = 1 and x̄t+1 = 0 for some t, we reserve additionally the slot [t+ 1, t+ 2). The number of
extra reserved time slots is no more than the number of accumulatively reserved slots.

I Proposition 4. Given a fractional solution xt, the total cost for rounding to an integral
time slot reservation x̄t is c

∑T−1
t=0 x̄t ≤ 2cb

∑T−1
t=0 xtc ≤ 2LP r.

Our reservation policy creates intervals I1, I2, . . . of consecutive reserved time slots, each
of them starting with a set of accumulatively reserved time slots and ending with a single
extra time slot.

I Lemma 5. Every interval Ih = [th, th+2) has enough capacity to accommodate all workload
yijt assigned to time units [th−1 + 1, th−1 + 2), . . . , [th+1 − 1, th+1).

Proof. Consider interval Ih. Its last time slot [th + 1, th + 2) is the extra reserved time slot.
The total number (capacity) of the time slots in Ih is bXth

c − bXth−1
c+ 1. By definition of

our accumulative reservation and according to constraints (1b) and (1c), the total workload
in terms of yijt in the interval [th−1 + 1, th+1) is bounded by

t
h+1−1∑

t=th−1+1

xt =
t

h+1−1∑
t=0

xt −
th−1∑
t=0

xt ≤ Xth+1−1 − bXth−1
c ≤ bXth

c − bXth−1
c+ 1.

J

The lemma implies that none of the workload yijt, fractionally assigned to time slots up
to time slot [th, th + 1), needs to be done later than th + 2 if appropriately reassigned. In
particular, this holds for the last reserved interval, i.e., all jobs in all scenarios will have been
processed. Even stronger, workload assigned to the time slots [th+1, th+2), . . . , [th+1−1, th+1)
can be done within interval Ih, unless the release date of some job j is larger than th + 1,
preventing it to be scheduled in Ih.
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Reassigning workload. Given a (not necessarily feasible) solution with fractional scheduling
variables yijt and integer-valued reserved time slots x̄t, we describe a reassignment procedure
to arrive at a feasible solution in which all workload ȳijt is assigned to reserved slots.

In increasing order of t we claim a total fraction xt from time slot [th, th+ 1) if th−1 + 1 ≤
t < th for some h. All of the yijt is moved into this claimed space and added to ȳijth .
Otherwise if [t, t + 1) ∈ Ih, and t 6= th + 1, then we claim bXtc−Xt−1

Xt−Xt−1
xt from [t, t + 1) and

Xt−bXtc
Xt−Xt−1

xt from [t + 1, t + 2). All of the yijt is moved in equal proportions bXtc−Xt−1
Xt−Xt−1

yijt

and Xt−bXtc
Xt−Xt−1

yijt into the claimed space and added, respectively, to ȳijt and ȳij(t+1).
This assignment leaves (unclaimed) capacity dXth

e − Xth
of the extra reserved time

slot [th + 1, th + 2), for each h. As a second reassignment step we remove all yijt with
th−1 + 1 ≤ t < th and j with rj ≤ th−1 + 1 from ȳijth and add it to ȳijτ where τ = th−1 + 1.
This is feasible by Lemma 5.

I Lemma 6. Applying the reservation and reassignment procedures to a feasible solution
(xt, yijt) of LP1 increases the completion time of any job j by at most 1.

Proof. For every t for which yijt > 0, there are two cases:
Case 1 : [t, t+ 1) ∈ Ih, and t 6= th + 1 for some h. Then by the assignment procedure yijt
is moved into [t, t+ 1) and [t+ 1, t+ 2), whence that part of job j finishes at most 1 time
unit later than in the unrounded solution. In particular, this holds for the last t such that
yijt > 0.
Case 2 : th−1+1 ≤ t < th for some h. If rj ≤ th−1+1, then yijt is moved into [th−1+1, th−1+2)
and finishes earlier, or if rj > th−1 + 1, then yijt is moved into [th, th + 1). However, since
pij ≥ 1 (viz. integer), by the shifted-reservation policy job j cannot have been completed
before th, i.e., there must be a t ≥ th and/or another i such that yijt > 0. J

The one-stage reservation algorithm. Given an optimal solution to LP1, we apply slow-
motion to expand the solution and the time slot reservation to obtain integral reservations to
which we reassign the workload. It remains to specify the actual schedule for workload ȳijt
within a time slot [t, t+ 1) by ensuring that a job is not scheduled in parallel on multiple
machines. This is essentially R|pmtn|Cmax in each time slot, which is polynomial-time
solvable [15].

I Theorem 7. The one-stage reservation algorithm is a 3.5-approximation for two-stage
scheduling on unrelated machines with first-stage reservation only.

Proof (Sketch). Consider an optimal solution to LP1. By slow-motion we derive a β-
expanded solution with a reservation cost of βLP r, and job j completes at time dβCj(1/β)e
by Lemmas 1 and 3. Applying the rounding of time slot reservation and then reassigning
workload, Proposition 4 shows that the reservation cost becomes 2βLP r, while Lemma 6
ensures that job j completes at dβCj(1/β)e+ 1. Thus, by choosing the expansion parameter
β at random according to the density function f(α) = 3α2 where α = 1/β ∈ [0, 1], the total
cost for reservation and scheduling can be bounded by:

2LP r
∫ 1

0

1
α
f(α)dα +

∑
j

wj

∫ 1

0
(dCj(α)/αe+ 1)f(α)dα

≤ 3(LP r + LP s) + 1/2
∑
j

wj .

Obviously,
∑
j wj ≤

∑
j wjC

LP
j , since CLPj ≥ 1, which implies that the algorithm produces

a solution with objective value bounded by 3LP r + 3.5LP s. J
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A refinement of the algorithm and its analysis give an improved bound.

I Theorem 8. There exists a (3 + ε)-approximation algorithm for the two-stage scheduling
problem on unrelated machines with first-stage reservation only.

2.2 A Generic Algorithm for Two-Stage Scheduling
We first give a simple algorithm that allows a black-box application of the one-stage reservation
algorithm above to obtain the following general result.

I Theorem 9. Given a ρ-approximation algorithm for the two-stage problem with only
first-stage reservation, there exists an 8ρ-approximation algorithm for the two-stage problem.

The crucial ingredient is to separate the time slots and jobs to be considered for only
first-stage or only second-stage reservation.

I Lemma 10. Given an optimal solution (xt, xkt, yijt) to the LP with objective value
LP r + LP s, there exists a feasible solution (x′t, x′it, y′hjt) satisfying the following separ-
ation property:

Any time unit is reserved either in the first stage or in the second stage, or not at all;
i.e., for all t, x′t > 0⇒ x′kt = 0 ∀k.
A job is scheduled either completely in slots reserved in the first stage, or completely in
slots reserved in the second stage, i.e., J = JI ∪JII , s.t. JI = {j | x′t = 0⇒ y′ijt = 0 ∀ijt}
and JII = {j |

∑
k x
′
kt = 0⇒ y′ijt = 0∀ijt}.

The objective value is at most 2LP r + 4LP s.

Proof. We first double the number of time units: for every time unit [t, t+ 1) we obtain two
time units [2t, 2t + 1) and [2t + 1, 2t + 2). We reserve xt of the even slot [2t, 2t + 1), and
xkt of the odd slot [2t+ 1, 2t+ 2). We split yijt accordingly, such that for each of the slots
[2t, 2t+ 1) and [2t+ 1, 2t+ 2) constraints (1b) and (1c) are satisfied. Notice that in this way
we have blown up the scheduling cost by a factor of 2, while the reservation cost remains
the same. Furthermore, notice that every job is processed at least half either in odd slots or
in even slots. Thus by doubling again each slot and reserving in each of the two the same
fraction, we can enforce a job to be either entirely scheduled in slots that are reserved in the
first stage, or in slots reserved in the second stage. J

Proof (Thm. 9). Let (x′t, x′it, y′ijt) be a feasible LP solution that satisfies the separation
property and has objective value Z ′ ≤ 2LP r + 4LP s. We show that the existence of a
ρ-approximation algorithm for the problem with first-stage reservation only implies the
existence of an algorithm that produces a feasible schedule for the two-stage problem with
total cost at most 2ρZ ′.

Since jobs are divided into JI and JII in the solution (x′t, x′it, y′ijt), we denote by Z ′I and
Z ′II their contributions in Z ′ respectively: Z ′ = Z ′I + Z ′II . Consider scheduling JI with only
first-stage reservation and let ZI be the optimal value of the corresponding LP. Similarly, let
ZII be the optimal value of the LP for scheduling JII with only second-stage reservation.
Clearly, ZI ≤ Z ′I and ZII ≤ Z ′II . The ρ-approximation algorithm for the problem with only
first-stage reservation for JI returns a feasible schedule of cost at most ρZI . The problem
of reserving and scheduling jobs only in the second stage can be separated into N single
scenario problems, each of which is like a first-stage reservation problem, we thus also get a
feasible schedule of cost at most ρZII for JII .

Now we need to merge the two schedules for JI and JII . Notice that the two schedules
may overlap in the sense that some slot is reserved in both schedules. To handle this we
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further double the two schedules. For the schedule of JI , we double the time units and put
whatever is scheduled in [t, t+ 1) into the even slot [2t, 2t+ 1), while for the schedule of JII ,
we put whatever is scheduled in [t, t+ 1) into the odd slot [2t+ 1, 2t+ 2). Now the total cost
of the merged solution is bounded by 2ρ(ZI + ZII) ≤ 2ρZ ′. J

Directly applying Theorem 9 gives us a 8 · (3 + ε) = 24 + ε′-approximation.

2.3 A Refined Two-Stage Algorithm
I Theorem 11. There is an (8 + ε)-approximation algorithm for the two-stage stochastic
variant of R | rj , pmtn |

∑
wjCj in the polynomial-scenario model.

Proof (Idea). Given an optimal LP solution, we first apply slow-motion to get a β-expanded
solution. Then we apply time slot and job-set separation (Lemma 10) and obtain jobs and
slots to be covered by either first-stage or second-stage reservation only. Then, we apply the
technique of accumulative and extra reservation and reassign the workload separately on the
slots reserved in the first and second stage. Here the last procedure must be carried out with
caution so that after we separately round first and second stage reservation, they do not
overlap. A careful analysis gives the result. J

We conclude this section by remarking that our techniques lead to the following result
for the makespan objective.

I Theorem 12. There is a (64/9 + ε)-approximation algorithm for the two-stage stochastic
variant of R | rj , pmtn |Cmax in the polynomial-scenario model.

3 The Black-Box Model

We now show that at the expense of another ε our results for the two-stage stochastic
min-sum and makespan problem hold for any arbitrary scenario distribution given by means
of a black-box. Besides that, the problem is as before.

Given a first-stage reservation x̄ ∈ {0, 1}T , a lower bound on the second-stage cost for a
scenario Sk is as follows:

q(x̄, Sk) = min

∑
j∈Jk

wjC
LP
j + λkc

T−1∑
t=0

xkt | (1b) - (1g) ∧ xt = x̄t ∀t

 .

Let c(x) denote the cost of a (possibly fractional) reservation x ∈ [0, 1]T . Then the following
gives a lower bound on our two-stage stochastic scheduling problem.

min
x∈[0,1]T

f(x) = c(x) + ES∈S [q(x, S)] . (2)

For an unknown distribution in the black-box model we cannot solve this problem efficiently.
However, using the SAA method [13] we can approximate it. We draw a number N of
independent samples S1, . . . , SN from the black-box and solve the following sample average
problem:

min
x∈[0,1]T

f̂(x) = c(x) + 1
N
·
N∑
k=1

q(x, Sk) . (3)
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Notice that (3) is exactly the LP of Section 2 with all N scenarios having probability 1/N ,
and can thus be solved efficiently. It remains to determine the number of samples N that is
needed to guarantee a certain approximation. We can show that our LP in (2) can be cast
as a stochastic LP of type required in [26] for obtaining such a result. To that end, we must
be given λ := maxk∈S λk.

I Lemma 13 ([26]). There is a polynomially bounded number N such that any optimal solu-
tion xLP to the sample average problem (3) with N samples satisfies f(xLP ) ≤ (1 + ε) minx f(x)
with high probability.

Based on this lemma we can obtain a good integral first-stage solution. We drawN samples
and solve problem (3). Let (xLPt , xLPkt , y

LP
ijt ) be an optimal (fractional) solution. Applying

our rounding technique (Sec. 2) we derive a solution (x̄t, x̄kt, ȳijt) with (x̄t, x̄kt) ∈ {0, 1}. We
fix x̄t as first-stage reservation.

The difficult part is to find a second-stage solution for some scenario (that is not necessarily
in the sample set) and bound it by the LP solution for the sample set. The key is that
our rounding procedure for the first stage reservation x only depends on x itself and is
independent of the scheduling solution. Given x̄t and a scenario S, we solve the resulting
second-stage problem as follows: we solve the problem minx∈[0,1]T c(xLP ) + q(xLP , S), which
is again exactly the LP of Section 2 with a single scenario S, after fixing first-stage reservation
at xt = xLPt . Let (x′kt, y′ijt) be the optimal solution. Plugging in xLPt and applying our
rounding procedure on (xLPt , x′kt, y

′
ijt), we get a feasible schedule of total cost at most

(ρ + ε)(c(xLP ) + q(xLP , S)), with ρ = 8 for the min-sum objective and ρ = 64/9 for the
makespan. And, most importantly, the first stage reservation x̄t is consistent with our
first-stage reservation. Using Lemma 13 we have in expectation total cost of at most
(ρ+ ε)f(xLP ) ≤ (ρ+O(ε)) minx f(x) ≤ (ρ+ ε′)Z∗.

I Theorem 14. In the black-box model, there is a (ρ+ ε)-approximation algorithm for two-
stage stochastic variant of R | rj , pmtn |

∑
wjCj (ρ = 8) and R | rj , pmtn |Cmax (ρ = 64/9),

respectively.

4 Two-Stage Robust Scheduling

In the robust setting, we restrict to the model with an explicit description of the scenario
set S. The objective is now to minimize the worst-case total cost instead of the expected
total cost. Notice that the LP relaxations, that our algorithms in Sec. 2 rely on, can be easily
adopted.

Our approximation algorithms for the stochastic model are risk-averse, i.e., the perform-
ance guarantee holds for every scenario. Therefore, the techniques used for the stochastic
model also apply to the discrete-scenario robust model. For the min-

∑
wjCj problem, certain

randomized steps of our algorithm must be replaced by deterministic ones losing a factor 2
in the approximation guarantee. Such an adaptation is not needed for the robust makespan
problem and we directly obtain again a (7.11 + ε)-approximation algorithm. However, the
makespan problem is much easier and we provide a simple 2-approximation algorithm.

I Theorem 15. For two-stage discrete-scenario robust scheduling with reservation cost, there
is a ρ-approximation algorithm for the scheduling problems R | rj , pmtn |

∑
wjCj (ρ = 16+ ε)

and R | rj , pmtn |Cmax (ρ = 2), respectively.
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5 Conclusion

Inspired by the resource provisioning problem of cloud users, we propose an optimization
model that reflects two-stage decision processes in which computing resources must be
reserved under uncertainty about the set of computational tasks. It leads to a new class of
scheduling problems. We present first results that suggest higher approximation complexity
than their single stage, single scenario versions. The quest for better approximations is left
for future research.

We also leave open the approximability of the equivalent non-preemptive scheduling
problems with release dates. Notice that the second-stage problem would not admit a
constant approximation (large inflation factor, 2-partition), unless P=NP, when considering
it independently of the first stage problem. However, a two-stage algorithm may yield a
constant-factor approximation.

Another interesting variation of the problem arises if a user may reserve machines
individually, possibly at machine-dependent rates. We note that, even if reservation costs
are uniform over the machines, our proposed LP relaxation has a non-constant integrality
gap in this case.

References
1 Amazon EC2 Pricing Options: https://aws.amazon.com/ec2/pricing/.
2 Talal Al-Khamis and Rym M’Hallah. A two-stage stochastic programming model for the

parallel machine scheduling problem with machine capacity. Computers & OR, 38(12):1747–
1759, 2011.

3 Gerard M. Campbell. A two-stage stochastic program for scheduling and allocating cross-
trained workers. JORS, 62(6):1038–1047, 2011.

4 Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. Optimization of resource provisioning
cost in cloud computing. IEEE Trans. Serv. Comput., 5(2):164–177, 2012.

5 Moses Charikar, Chandra Chekuri, and Martin Pál. Sampling bounds for stochastic optim-
ization. In Proc. of APPROX and RANDOM 2005, pages 257–269, 2005.

6 Lin Chen, Nicole Megow, Roman Rischke, Leen Stougie, and José Verschae. Optimal
algorithms and a PTAS for cost-aware scheduling. To appear in Proc. of MFCS 2015,
2015.

7 Kedar Dhamdhere, Vineet Goyal, R. Ravi, and Mohit Singh. How to pay, come what may:
Approximation algorithms for demand-robust covering problems. In Proc. of FOCS 2005,
pages 367–376, 2005.

8 Shane Dye, Leen Stougie, and Asgeir Tomasgard. The stochastic single resource service-
provision problem. Naval Res. Logist., 50(8):869–887, 2003.

9 Uriel Feige, Kamal Jain, Mohammad Mahdian, and Vahab S. Mirrokni. Robust combin-
atorial optimization with exponential scenarios. In Proc. of IPCO 2007, pages 439–453,
2007.

10 Michel X. Goemans. Improved approximation algorthims for scheduling with release dates.
In Proc. of SODA 1997, pages 591–598, 1997.

11 Anupam Gupta, Martin Pál, R. Ravi, and Amitabh Sinha. Sampling and cost-sharing:
Approximation algorithms for stochastic optimization problems. SIAM J. Comput.,
40(5):1361–1401, 2011.

12 Rohit Khandekar, Guy Kortsarz, Vahab S. Mirrokni, and Mohammad R. Salavatipour.
Two-stage robust network design with exponential scenarios. Algorithmica, 65(2):391–408,
2013.

APPROX/RANDOM’15



186 Stochastic and Robust Scheduling in the Cloud

13 Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The sample average
approximation method for stochastic discrete optimization. SIAM J. Optim., 12(2):479–
502, 2001.

14 Janardhan Kulkarni and Kamesh Munagala. Algorithms for cost aware scheduling. In Proc.
of WAOA 2012, pages 201–214, 2013.

15 Eugene L. Lawler and Jacques Labetoulle. On preemptive scheduling of unrelated parallel
processors by linear programming. J. ACM, 25(4):612–619, 1978.

16 Stefano Leonardi, Nicole Megow, Roman Rischke, Leen Stougie, Chaitanya Swamy, and
José Verschae. Scheduling with time-varying cost: Deterministic and stochastic models.
Presentation at the 11th Workshop on Models and Algorithms for Planning and Scheduling
Problems (MAPSP 2013), 2013.

17 Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 2008.
18 Maurice Queyranne and Maxim Sviridenko. A (2+ε)-approximation algorithm for the gener-

alized preemptive open shop problem with minsum objective. J. Algorithms, 45(2):202–212,
2002.

19 Andreas S. Schulz and Martin Skutella. Random-based scheduling: New approximations
and LP lower bounds. In Proc. of APPROX and RANDOM 1997, pages 119–133, 1997.

20 Andreas S. Schulz and Martin Skutella. Scheduling unrelated machines by randomized
rounding. SIAM J. Discrete Math., 15(4):450–469, 2002.

21 David B. Shmoys and Mauro Sozio. Approximation algorithms for 2-stage stochastic
scheduling problems. In Proc. of IPCO 2007, pages 145–157. Springer, 2007.

22 David B. Shmoys and Chaitanya Swamy. An approximation scheme for stochastic linear
programming and its application to stochastic integer programs. J. ACM, 53(6):978–1012,
2006.

23 René A. Sitters. Approximability of average completion time scheduling on unrelated
machines. In Proc. of ESA 2008, pages 768–779, 2008.

24 Martin Skutella. List scheduling in order of α-points on a single machine. In Evripidis
Bampis, Klaus Jansen, and Claire Kenyon, editors, Efficient Approximation and Online
Algorithms, volume 3484 of LNCS, pages 250–291. Springer, 2006.

25 Chaitanya Swamy and David B. Shmoys. Approximation algorithms for 2-stage stochastic
optimization problems. SIGACT News, 37(1):33–46, 2006.

26 Chaitanya Swamy and David B. Shmoys. Sampling-based approximation algorithms for
multistage stochastic optimization. SIAM J. Comput., 41(4):975–1004, 2012.

27 G. Wan and X. Qi. Scheduling with variable time slot costs. Naval Research Logistics,
57:159–171, 2010.



On Approximating Node-Disjoint Paths in Grids
Julia Chuzhoy∗1 and David H. K. Kim†2

1 Toyota Technological Institute at Chicago
6045 S. Kenwood Ave., Chicago, Illinois 60637, USA
cjulia@ttic.edu

2 Department of Computer Science, University of Chicago
1100 East 58th Street, Chicago, Illinois 60615, USA
hongk@cs.uchicago.edu

Abstract
In the Node-Disjoint Paths (NDP) problem, the input is an undirected n-vertex graph G, and
a collection {(s1, t1), . . . , (sk, tk)} of pairs of vertices called demand pairs. The goal is to route
the largest possible number of the demand pairs (si, ti), by selecting a path connecting each
such pair, so that the resulting paths are node-disjoint. NDP is one of the most basic and
extensively studied routing problems. Unfortunately, its approximability is far from being well-
understood: the best current upper bound of O(

√
n) is achieved via a simple greedy algorithm,

while the best current lower bound on its approximability is Ω(log1/2−δ n) for any constant δ.
Even for seemingly simpler special cases, such as planar graphs, and even grid graphs, no better
approximation algorithms are currently known. A major reason for this impasse is that the
standard technique for designing approximation algorithms for routing problems is LP-rounding
of the standard multicommodity flow relaxation of the problem, whose integrality gap for NDP
is Ω(

√
n) even on grid graphs.

Our main result is an O(n1/4 · logn)-approximation algorithm for NDP on grids. We distin-
guish between demand pairs with both vertices close to the grid boundary, and pairs where at
least one of the two vertices is far from the grid boundary. Our algorithm shows that when all
demand pairs are of the latter type, the integrality gap of the multicommodity flow LP-relaxation
is at most O(n1/4 · logn), and we deal with demand pairs of the former type by other methods.
We complement our upper bounds by proving that NDP is APX-hard on grid graphs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Node-disjoint paths, approximation algorithms, routing and layout

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.187

1 Introduction

In the classical Node-Disjoint Paths (NDP) problem, the input is an undirected n-vertex
graph G = (V,E), and a collection {(s1, t1), . . . , (sk, tk)} of pairs of vertices, called source-
destination, or demand, pairs, that we would like to route. In order to route a pair (si, ti),
we need to select some path P connecting si to ti. The goal is to route the largest possible
number of the demand pairs on node-disjoint paths: that is, every vertex of G may participate
in at most one path in the solution.

NDP is one of the most basic and extensively studied routing problems. When the number
of the demand pairs k is bounded by a constant, Robertson and Seymour [27, 29] have
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shown an efficient algorithm for the problem, as part of their seminal Graph Minors project.
However, when k is a part of the input, the problem is known to be NP-hard [17]. Even
though the NDP problem, together with its many variants, has been extensively studied, its
approximability is still poorly understood. The best currently known upper bound on the
approximation factor is O(

√
n) [22], achieved by the following simple greedy algorithm: start

with graph G and an empty solution. While G contains any path connecting any demand pair,
choose the shortest such path P , add P to the solution, and delete all vertices of P from G.
Surprisingly, this elementary algorithm is the best currently known approximation algorithm
for NDP, even for restricted special cases of the problem, where the input graph G is a planar
graph, or even just a grid. On the negative side, it is known that there is no O(log1/2−δ n)-
approximation algorithm for NDP for any constant δ, unless NP ⊆ ZPTIME(npoly logn) [5, 4].
Perhaps the biggest obstacle in breaking the O(

√
n)-approximation barrier for the problem is

the fact that the integrality gap of the standard multicommodity flow LP-relaxation for NDP
is Ω(

√
n), even in grid graphs. In the LP-relaxation, instead of connecting the demand pairs

by paths, we try to send as much flow as possible between the demand pairs, subject to the
constraint that each vertex carries at most one flow unit. The O(

√
n)-approximation greedy

algorithm described above can be cast as an LP-rounding algorithm for the multicommodity
flow LP, and therefore, the integrality gap of the LP is Θ(

√
n). So far, rounding this LP

relaxation has been the main method used in designing approximation algorithms for a
variety of routing problems, and it appears that new techniques are needed in order to
improve the O(

√
n)-approximation factor for NDP.

In this paper we break the O(
√
n)-barrier on the approximation factor for NDP on

grid graphs 1, by providing an O(n1/4 · logn)-approximation algorithm. Our algorithm
distinguishes between two types of demand pairs: an (si, ti) pair is bad if both si and ti are
close to the grid boundary, and it is good otherwise. Interestingly, the standard integrality
gap examples for the multicommodity flow LP relaxation usually involve a grid graph, and
bad demand pairs. Our algorithm deals with bad and good demand pairs separately, and
in particular it shows that if all demand pairs are good, then the integrality gap of the
LP relaxation becomes O(n1/4 · logn) (but unfortunately it still remains polynomial in n -
see Section 6). We complement these results by showing that NDP is APX-hard even on
grid graphs. We believe that understanding the approximability of NDP on grid graphs is
an important first step towards understanding the approximability of the NDP problem in
general, as grids seem to be the simplest graphs, for which the approximability of the NDP
problem is widely open, and the integrality gap of the multicommodity flow LP is Ω(

√
n).

We hope that some of the techniques introduced in this paper will be helpful in breaking the
O(
√
n)-approximation barrier in general planar graphs.

NDP in grid graphs has been studied in the past, often in the context of VLSI layout.
Aggarwal, Kleinberg and Williamson [1] consider a special case, where the set of the demand
pairs is a permutation — that is, every vertex of the grid participates in exactly one demand
pair. They show that for any permutation, one can route Ω(

√
n/ logn) demand pairs. They

also show that with spacing d, every permutation contains a set of Ω(
√
nd/ logn) pairs that

can be routed on node-disjoint paths. Our algorithm for routing on grids is inspired by their
work.

Cutler and Shiloach [16] studied NDP in grids in the following three settings. They
assume that all source vertices appear on the top row R1 of the grid, and all destination

1 Since n denotes, by convention, the number of vertices in the input graph, the size of the grid is
(
√

n×
√

n).
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vertices appear on some other row R` of the grid, sufficiently far from the top and the
bottom rows (for example, ` = dn/2e). In the packed-packed setting, the sources are a set
of k consecutive vertices of R1, and the destinations are a set of k consecutive vertices of
R`. They show a necessary and a sufficient condition for when all demand pairs can be
routed in the packed-packed instance. The second setting is the packed-spaced setting. Here,
the sources are again a set of k consecutive vertices of R1, but the distance between every
consecutive pair of the destination vertices on R` is at least d. For this setting, the authors
show that if d ≥ k, then all demand pairs can be routed. We extend their algorithm to a
more general setting, where the destination vertices may appear anywhere in the grid, as
long as the distance between any pair of the destination vertices, and any destination vertex
and the boundary of the grid, is at least Ω(k). This extension of the algorithm of [16] is
used as a basic building block in both our algorithm, and the APX-hardness proof. We
note that Robertson and Seymour [28] provided sufficient conditions for the existence of
node-disjoint routing of a given set of demand pairs in the more general setting of graphs
drawn on surfaces, and they provide an algorithm whose running time is poly(n) · f(k) for
finding the routing, where f(k) is at least exponential in k. Their result implies the existence
of the routing on grids, when the destination vertices are sufficiently spaced from each other
and from the grid boundaries. However, we are not aware of an algorithm for finding the
routing, whose running time is polynomial in n and k, and we provide such an algorithm
here. The third setting studied by Cutler and Shiloach is the spaced-spaced setting, where
the distance between any pair of source vertices, and any pair of destination vertices is at
least d. The authors note that they could not come up with a better algorithm for this
setting, than the one provided for the packed-spaced case.

Other Related Work

A problem closely related to NPD is the Edge-Disjoint Paths (EDP) problem. It is defined
similarly, except that now the paths chosen to the solution are allowed to share vertices,
and are only required to be edge-disjoint. It is easy to show, by using a line graph of the
EDP instance, that NDP is more general than EDP. The approximability status of EDP
is very similar to that of NDP: there is an O(

√
n)-approximation algorithm [13], and it is

known that there is no O(log1/2−δ n)-approximation algorithm for any constant δ, unless
NP ⊆ ZPTIME(npoly logn) [5, 4]. As in the NDP problem, we can use the standard mul-
ticommodity flow LP-relaxation of the problem, in order to obtain the O(

√
n)-approximation

algorithm, and the integrality gap of the LP-relaxation is Ω(
√
n) even on planar graphs.

However, for even-degree planar graphs, Kleinberg [19], building on the work of Chekuri,
Khanna and Shepherd [12, 11], has shown an O(log2 n)-approximation LP-rounding al-
gorithm. Aumann and Rabani [8] showed an O(log2 n)-approximation algorithm for EDP on
grid graphs, and Kleinberg and Tardos [21, 20] showed O(logn)-approximation algorithms
for wider classes of nearly-Eulerian uniformly high-diameter planar graphs, and nearly-
Eulerian densely embedded graphs. Recently, Kawarabayashi and Kobayashi [18] gave an
O(logn)-approximation algorithm for EDP when the input graph is either 4-edge-connected
planar or Eulerian planar. It appears that the restriction of the graph G to be Eulerian, or
near-Eulerian, makes the EDP problem significantly simpler, and in particular improves the
integrality gap of the LP-relaxation. The analogue of the grid graph for the EDP problem is
the wall graph (see Figure 1): the integrality gap of the standard LP relaxation for EDP on
wall graphs is Ω(

√
n), and to the best of our knowledge, no better than O(

√
n)-approximation

algorithm for EDP on walls is known. Our O(n1/4 · logn)-approximation algorithm for NDP
on grids can be extended to the EDP problem on wall graphs (see Section 7).
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Figure 1 A wall graph.

A variation of the NPD and EDP problems, where small congestion is allowed, has been
a subject of extensive study. In the NDP with congestion (NDPwC) problem, the input is
the same as in the NDP problem, and we are additionally given a non-negative integer c.
The goal is to route as many of the demand pairs as possible with congestion at most c: that
is, every vertex may participate in at most c paths in the solution. EDP with Congestion
(EDPwC) is defined similarly, except that now the congestion bound is imposed on edges and
not vertices. The classical randomized rounding technique of Raghavan and Thompson [25]
gives a constant-factor approximation for both problems, if the congestion c is allowed to be
as high as Θ(logn/ log logn). A recent line of work [12, 24, 3, 26, 14, 15, 10, 9] has lead to an
O(poly log k)-approximation for both NDPwC and EDPwC problems, with congestion c = 2.
For planar graphs, a constant-factor approximation with congestion 2 is known [30]. All
these algorithms perform LP-rounding of the standard multicommodity flow LP-relaxation
of the problem.

Organization

We start with Preliminaries in Section 2, and show a generalization of the algorithm of Cutler
and Shiloah [16] for routing with well-separated destinations in Section 3. In Section 4 we
provide an O(n1/4 · logn)-approximation algorithm for NDP on grids, and we provide the
APX-hardness proof in Section 5. We discuss the integrality gap of the multicommodity
flow LP-relaxation when all terminals are far from the grid boundary in Section 6, and we
sketch the extension of our O(n1/4 logn)-approximation algorithm to EDP on wall graphs in
Section 7.

2 Preliminaries

We consider the NDP problem in two-dimensional grids: The input is an (N ×N)-grid graph
G = (V,E), and a collectionM = {(s1, t1), . . . , (sk, tk)} of pairs of vertices, called demand,
or source-destination, pairs. The goal is to find a largest cardinality collection P of paths,
where each path in P connects some demand pair (si, ti), and every vertex of G participates
in at most one path in P . The vertices in the set {s1, t1, . . . , sk, tk} are called terminals. By
convention, we denote n = |V |, so n = N2.

We assume that the grid rows are indexed R1, . . . , RN in the top-to-bottom order, and
the columns are indexed C1, . . . , CN in the left-to-right order. We denote by v(i, j) the
unique vertex in Ri ∩ Cj . Given a vertex v ∈ V , let col(v) denote the column, and row(v)
denote the row in which v lies. The boundary of the grid is Γ(G) = R1 ∪ RN ∪ C1 ∪ CN .
We call R1, RN , C1, CN the boundary edges of the grid. Given any integers 1 ≤ i ≤ i′ ≤ N ,
1 ≤ j ≤ j′ ≤ N , we denote by G[i : i′, j : j′] the sub-graph of G, induced by the set
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{v(i′′, j′′) | i ≤ i′′ ≤ i′, j ≤ j′′ ≤ j′} of vertices. We sometimes say that G[i : i′, j : j′] is the
sub-grid of G, spanned by rows Ri, . . . , Ri′ and columns Cj , . . . , Cj′ .

Given a path P in G, and a set S of vertices of G, we say that P is internally disjoint
from S, if no vertex of S serves as an inner vertex of P . We will use the following simple
observation.

I Observation 1. Let G be a (h×w)-grid, with w, h > 2, and let k ≤ min {w − 2, h− 2} be
an integer. Then for any pair L,L′ of opposing boundary edges of G, for any pair S ⊆ V (L),
T ⊆ V (L′) of vertex subsets on these boundary edges, with |S| = |T | = k, there is a set P of
k node-disjoint paths, connecting the vertices of S to the vertices of T in G, such that all
paths in P are internally disjoint from V (L ∪ L′). Moreover, the path set P can be found
efficiently.

Proof. Let G′ be the sub-graph of G, obtained by deleting all vertices of (L ∪ L′) \ (S ∪ T )
from G. It is enough to show that there is a set P of k disjoint paths connecting the vertices
of S to the vertices of T in G′.

Assume without loss of generality that L is the top and L′ is the bottom boundary edge of
G. Assume for contradiction that such a set P of paths does not exist. Then from Menger’s
theorem, there is a set Z of at most k − 1 vertices, such that in G′ \ Z, there is no path
from a vertex of S \ Z to a vertex of T \ Z. However, the vertices of S lie on k distinct
columns of G, so at least one such column, say C, does not contain a vertex of Z. Similarly,
there is some column C ′ of G that contains a vertex of T , and V (C ′) ∩ Z = ∅. Finally, since
there are at least k + 2 rows in G, there is some row R 6= R1, Rh, that contains no vertex of
Z. Altogether, (C ∪R ∪ C ′) ∩G′ lie in the same connected component of G′ \ Z, and this
connected component contains a vertex of S and a vertex of T , a contradiction. The set P
of paths can be found efficiently by computing the maximum single-commodity flow between
the vertices of S and the vertices of T in G′, and using the integrality of flow. J

Consider the input grid graph G. The L∞-distance between two vertices v(i, j) and
v(i′, j′) is defined as d∞(v(i, j), v(i′, j′)) = max(|i− i′|, |j − j′|). The distance between a set
S ⊆ V (G) of vertices and a vertex v ∈ V (G) is d∞(v, S) = minu∈S {d∞(v, u)}.

Multicommodity Flow LP Relaxation

For each demand pair (si, ti) ∈ M, let Pi be the set of all paths connecting si to ti in G,
and let P =

⋃k
i=1 Pi. In order to define the multicommodity flow LP-relaxation of NDP,

every path P ∈ P is assigned a variable f(P ) representing the amount of flow that is sent
on P , and for each demand pair (si, ti), we introduce variable xi, whose value is the total
amount of flow sent from si to ti. The LP-relaxation is then defined as follows.

(LP-flow) max
∑k
i=1 xi

s.t.
∑
P∈Pi

f(P ) = xi ∀1 ≤ i ≤ k∑
P :v∈P f(P ) ≤ 1 ∀v ∈ V
f(P ) ≥ 0 ∀1 ≤ i ≤ k,∀P ∈ Pi

Even though this LP-relaxation has exponentially many variables, it can be efficiently
solved by standard techniques, e.g. by using an equivalent polynomial-size edge-based
formulation.

It is well known that the integrality gap of (LP-flow) is Ω(
√
n) even in grid graphs.

Indeed, let G be an (N ×N)-grid, and let k = N − 2. We let the sources s1, . . . , sk appear
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s1 s2 sk !

tk t1 t2 !

s3 

t3 

Figure 2 Integrality gap example.

consecutively on row R1, starting from v(1, 1) in this order, and the destinations appear
consecutively on row RN starting from v(N, 1), in the opposite order: tk, . . . , t1 (see Figure 2).
It is easy to see that there is a solution to (LP-flow) of value k/3 = Ω(N): for each pair
(si, ti), we send 1/3 flow unit on the path Pi, where Pi is an si–ti path lying in the union
of columns Ci, CN−i−1 and row Ri + 1. On the other hand, it is easy to see that the value
of any integral solution is 1, since any pair of paths connecting the demand pairs have to
cross. Since the number of vertices in G is n = N2, this gives a lower bound of Ω(

√
n) on

the integrality gap of (LP-flow).

3 Routing with Well-Separated Destinations

In this section we generalize the results of Cutler and Shiloach [16], by proving the following
theorem.

I Theorem 2. Let H be the (N ×N)-grid, and let M = {(s1, t1), . . . , (sk, tk)} be a set of
k ≥ 4 demand pairs in H, such that: (i) s1, . . . , sk are all distinct, and they appear on the
first row of H; (ii) for all 1 ≤ i 6= j ≤ k, d∞(ti, tj) > 4k + 4; and (iii) for all 1 ≤ i ≤ k,
d∞(ti, V (Γ(H))) > 4k + 4. Then there is an efficient algorithm that routes all demand pairs
inM in graph H.

The rest of this section is devoted to proving Theorem 2. For each destination vertex
tj , we define a sub-grid Bj of H of size ((2k + 3) × (2k + 3)), centered at tj , that is, if
tj = v(i, i′), then Bj is a sub-grid of G spanned by rows Ri−(k+1), . . . , Ri+(k+1) and columns
Ci′−(k+1), . . . , Ci′+(k+1) of H.

We call the resulting sub-grids B1, . . . , Bk boxes. Notice that all boxes are disjoint from
each other, due to the spacing of the destination terminals. We start with a high-level intuitive
description of our algorithm. For each box Bj , we can associate an interval I(Bj) ⊆ (1, N)
with Bj , as follows: If Ci1 , Ci2 are the columns of H containing the first and the last columns
of Bj , respectively, then I(Bj) = (i1, i2). We say that the resulting set I = {I(Bj)}kj=1 of
intervals is aligned, if for all i 6= j, either I(Bi) = I(Bj), or I(Bi)∩ I(Bj) = ∅. For simplicity,
assume first that all intervals in I are aligned, and let {I1, I2, . . . , Ir} be the set of all distinct
intervals in I, ordered in their natural left-to-right order. For each 1 ≤ h ≤ r, let Bh be the
set of all boxes Bj with I(Bj) = Ih, and let B = {Bj | 1 ≤ j ≤ k}. We define a “snake-like”
ordering of the boxes in B as follows. For all 1 ≤ h < h′ ≤ r, the boxes of Bh appear before
all boxes of Bh′ in this ordering. Within each set Bh, if h is odd, then the boxes of Bh are
ordered in the order of their position in H from top to bottom, and otherwise they are
ordered in the order of their position in H from bottom to top. We then define a set P of
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Figure 3 Traversing the boxes.

k paths, that start from the sources s1, . . . , sk, and visit all boxes in B in this order (see
Figure 3). We will make sure that when the paths of P traverse any box Bj , the path Pj ∈ P
that originates at sj visits the vertex tj . In order to accomplish this, we need the following
lemma.

I Lemma 3. Let B be the ((2k + 3)× (2k + 3)) grid, t = v(k + 2, k + 2) the vertex in the
center of the grid, and 1 ≤ j ≤ k any integer. Let X = {x1, . . . , xk} be any set of k vertices
on the top boundary edge L of B and Y = {y1, . . . , yk} any set of k vertices on the bottom
boundary edge L′ of B, both sets ordered from left to right. Then we can efficiently find k
disjoint paths P ′1, . . . , P ′k in B, such that for 1 ≤ i ≤ k, path P ′i connects xi to yi; all paths
are internally disjoint from V (L ∪ L′); and path P ′j contains t.

Proof. Let U = {u1, . . . , uk} be any set of k vertices on row Rk+2 of B, ordered from left to
right, such that uj = t. Let B′ ⊆ B be the grid spanned by the top k + 2 rows of B, and
B′′ ⊆ B the grid spanned by the bottom k + 2 rows of B. Note that B′ ∩B′′ = Rk+2.

From Observation 1, there is a set P1 of k node-disjoint paths in B′, connecting the
vertices of X to the vertices of U , and there is a set P2 of k node-disjoint paths in B′′,
connecting the vertices of U to the vertices of Y . Moreover, the paths in P1∪P2 are internally
disjoint from V (Rk+2 ∪ L ∪ L′). By concatenating the paths in P1 and P2, we obtain a set
P ′ of k node-disjoint paths in B, connecting the vertices of X to the vertices of Y , such that
the paths in P ′ are internally disjoint from L ∪ L′. The intersection of each path in P ′ with
the row Rk+2 is exactly one vertex. Since graph B is planar, the paths in P ′ cross the row
Rk+2 in the same left-to-right order in which their endpoints appear on L and L′. Therefore,
for 1 ≤ i ≤ k, the ith path connects xi to yi, and the jth path contains the vertex t. J

Since in general the intervals in I may not be aligned, we need to define the ordering
between the boxes, and the set of paths traversing them more carefully. We start by
defining an ordering of the destination vertices {tj}kj=1, which will define an ordering of their
corresponding boxes.

We draw vertical lines in the grid at every column whose index is an integral multiple
of (3k + 2), and let {V1, V2, . . . } denote the sets of vertices of the resulting vertical strips of
width 3k + 2, that is, for 1 ≤ m ≤ dN/(3k + 2)e,

Vm = {v(j, j′) | (m− 1)(3k + 2) < j′ ≤ min {m(3k + 2), N} ; 1 ≤ j ≤ N} .

We assign every terminal tj to the unique set Vm containing tj . We then define a collection
S of vertical strips of H as follows: For each set Vm, such that at least one terminal is
assigned to Vm, we add H[Vm] to S. We assume that the set of strips S = {S1, . . . , Sp} is
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indexed in their natural left-to-right order. Abusing the notation, we will denote V (Sm) by
Vm, for 1 ≤ m ≤ p.

Consider some vertical strip Sm, and let ti, tj ∈ Vm, for j 6= i. Then the horizontal
distance between ti and tj , | col(ti)− col(tj)| ≤ 3k + 2, and since d∞(ti, tj) > 4k + 4, ti and
tj must be at a vertical distance at least 4k + 4. Therefore, we can order the destination
terminals assigned to the same vertical strip in the increasing or decreasing row index. We
define the ordering of all destination terminals as follows: (1) for every 1 ≤ m < m′ ≤ p,
every terminal ti ∈ Vm precedes every terminal tj ∈ Vm′ ; and (2) for ti, tj ∈ Vm, with
row(tj) > row(ti), if m is odd then ti precedes tj , and if m is even, then tj precedes ti. Let
B = {Bj | 1 ≤ j ≤ k} be the set of boxes corresponding to the destination vertices. The
ordering of the destination vertices now imposes an ordering on B. We re-index the boxes Bj
according to this ordering, and we denote by t(Bj) the unique destination terminal lying in
Bj . We will say that a box Bj belongs to strip Sm iff the corresponding terminal t(Bj) ∈ Vm.
(Note that Bj is not necessarily contained in Sm). The following observation is immediate.

I Observation 4. If box Bj belongs to strip Sm, then at least k + 2 vertices from the top
boundary of Bj, and at least k + 2 vertices from the bottom boundary of Bj belong to Vm.

In order to complete the construction of the set P of paths routing all demand pairs, we
define, for 1 ≤ i ≤ k, a set Pi of k disjoint paths, with the following properties:

P1. Paths in P1 connect {si}ki=1 to some set of k vertices on the top boundary of B1;
P2. For i > 1:

if Bi−1 and Bi belong to the same strip Sm, and m is odd, then paths in Pi connect k
vertices on the bottom row of Bi−1 to k vertices on the top row of Bi;
if Bi−1 and Bi belong to the same strip Sm, and m is even, then paths in Pi connect
k vertices on the top row of Bi−1 to k vertices on the bottom row of Bi;
if Bi−1 belongs to strip Sm and Bi to strip Sm+1, and m is odd, then paths in Pi
connect k vertices on the bottom row of Bi−1 to k vertices on the bottom row of Bi;
if Bi−1 belongs to strip Sm and Bi to strip Sm+1, and m is even, then paths in Pi
connect k vertices on the top row of Bi−1 to k vertices on the top row of Bi; and

P3. All paths in
⋃k
i=1 Pi are disjoint from each other, and each path is internally disjoint

from
⋃
B∈B V (B).

I Theorem 5. There is an efficient algorithm to find the collections P1, . . . ,Pk of paths with
properties (3)–(3).

We prove Theorem 5 below, and we first complete the proof of Theorem 2 here. Assume
that we are given the path sets P1, . . . ,Pk with properties (3)–(3). For each box Bj , let
Xj ⊆ V (Bj) be the set of k vertices that serve as endpoints of the paths of Pj , and let
Yj ⊆ V (Bj) be the set of k vertices that serve as endpoints of the paths in Pj+1. (For j = k,
we choose the set Yk of k vertices on the top or the bottom boundary of Bk (opposing the
boundary edge where the vertices of Xk lie) arbitrarily). We construct the set P of paths
gradually, by starting with P = P1, and performing k iteration. We assume that at the
beginning of iteration i, set P contains k disjoint paths, connecting the k source vertices
to the vertices of Xi. This is clearly true at the beginning of the first iteration. The ith
iteration is executed as follows. Assume that t(Bi) = tr, and let u ∈ Xi be the vertex where
the path of P originating at sr terminates. From Lemma 3, we can find a set Qi of paths
inside Bi, connecting the vertices of Xi to the vertices of Yi, that are internally disjoint from
the top and the bottom boundary edges of Bi, such that the path originating at u contains
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the vertex tr. We then concatenate the paths in P with the paths in Qi, and, if i < k, with
the paths in Pi+1, to obtain the new set P of paths, and continue to the next iteration. After
k iterations, we obtain a collection of k node-disjoint paths that traverse all boxes Bj , such
that for each 1 ≤ i ≤ k, the path originating from si contains the vertex ti. It now remains
to prove Theorem 5.

Proof of Theorem 5. For each box Bj , for 1 ≤ j ≤ k, we define four sub-graphs of H,
Ztj , Z

b
j , Z

tt
j , Zbbj , that will be used in order to route the sets Pj , Pj+1 of paths.

Consider some box Bj , and assume that it belongs to strip Sm. Let C`, Cr be the columns
of H that serve as the left and the right boundaries of Sm, respectively. Let Rt, Rb be the
rows of H containing the top and the bottom row of Bj , respectively. Intuitively, Ztj is the
sub-grid of strip Sm, containing the k+ 1 rows immediately above row Rt, in addition to the
row Rt, and Zbj is defined similarly below Bj . Formally, Ztj is the sub-grid of H spanned by
columns C`, . . . , Cr, and rows Rt−k−1, . . . , Rt, so Ztj contains k+ 2 rows and 3k+ 2 columns.
Similarly, Zbj is the sub-grid of H spanned by columns C`, . . . , Cr, and rows Rb, . . . , Rb+k+1,
so Zbj contains k + 2 rows and 3k + 2 columns (see Figure 4).

We now turn to define the grids Zttj and Zbbj . Graph Zttj is defined as follows. Assume
w.l.o.g. that m is odd (recall that Sm is the strip containing t(Bj)). If Bj is not the topmost
box that belongs to Sm, then let Ra be the row of H containing the bottom row of Zbj−1;
otherwise let Ra = R2k+1 if j > 1 and Ra = Rk+1 if j = 1. Let Ra′ be the row of H
containing the top row of Ztj . We would like Zttj to be the grid containing the segments of
the middle k columns of Sm, between rows Ra and Ra′ . Formally, we let Zttj be the sub-grid
of H spanned by rows Ra, . . . , Ra′ , and columns C`+k+2, . . . , C`+2k+1.

We define the graph Zbbj similarly. If Bj is not the bottommost box of Sm, then let Rc
be the row of H containing the top row of Ztj+1, and otherwise let Rc = RN−k−1. Let Rc′
be the row of H containing the bottom row of Zbj . Graph Zbbj is the sub-grid of H spanned
by rows Rc′ , . . . , Rc, and columns C`+k+2, . . . , C`+2k+1.

Notice that if Bj is not the topmost box of Sm, then Zttj = Zbbj−1, and if Bj is not the
bottommost box of Bm, then Zbbj = Zttj+1. We need the following observation.
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I Observation 6. For all 1 ≤ q ≤ k, Bq ∩ Zttj , Bq ∩ Zbbj = ∅. Moreover, if q 6= j, then
additionally Bq ∩ Zbj , Bq ∩ Ztj = ∅.

Proof. We prove for Ztj and Zttj . The proofs for Zbj and Zbbj are symmetric.
Consider some box Bq with q 6= j, and assume for contradiction that Bq ∩ Ztj 6= ∅. Then

the vertical distance between t(Bq) and t(Bj) is less than 4k + 4, and so the horizontal
distance between them must be greater than 4k + 4. However, t(Bj) lies in the strip Sm,
and, since Bq intersects Ztj , the horizontal distance between t(Bq) and the left or the right
column of Sm is at most k + 1, and so the total horizontal distance between t(Bq) and t(Bj)
is at most 4k + 4, a contradiction.

Consider now some box Bq, for 1 ≤ q ≤ k, and assume for contradiction that Bq∩Zttj 6= ∅.
If Bj is the topmost box in Sm, then Bq cannot belong to Sm. If Bj is not the topmost box
of Sm, then Bq cannot belong to Sm due to the definition of Zttj . Therefore, t(Bq) lies in
either Sm+1 or Sm−1. But since Bq is a box of width 2k + 3, with t(Bq) lying in (k + 2)th
column of Bq, it is impossible for Bq to intersect Zttj . J

We are now ready to define the sets Pi of paths. In order to do so, we define a collection
{H1, . . . ,Hk} of disjoint sub-graphs of H, and each such sub-graph Hi will be used to route
the set Pi of paths. We start by letting H1 be the union of three graphs, Zt1, Ztt1 , and the
sub-grid of H spanned by the top k + 1 rows of H. We denote this latter graph by H ′1.
Recall that the terminal t(B1) lies in strip S1. Let A1 be the set of k vertices on the top
boundary of Ztt1 , A2 the set of k vertices on the bottom row of Ztt1 , and let A3 be any set of
k vertices on the top row of B1, that lie in S1 (from Observation 4, such a set exists). From
Observation 1, we can construct three sets of paths: set P ′1 in H ′1, connecting each source
vertex to some vertex of A1; set P ′′1 in Ztt1 connecting the vertices of A1 to the vertices of A2
(the paths in P ′′1 are just the columns of Ztt1 ), and set P ′′′1 in Zt1, connecting the vertices of
A2 to the vertices of A3. We let P1 be obtained by concatenating the paths in P ′1,P ′′1 , and
P ′′′1 .

Consider now some index 1 < j ≤ k, and assume that Bj−1 belongs to some strip Sm.
We assume w.l.o.g. that m is odd (the case where m is even is dealt with similarly), and we
show how to construct the set Pj of paths. We consider two cases. The first case is when
Bj also lies in Sm. We then let Hj be the union of Zbj−1, Z

bb
j−1 and Ztj . The set Pj of paths

will be contained in Hj , and it is defined as follows. Let A1 be any set of k vertices on the
bottom row of Bj−1, that lie in Vm (this set exists due to Observation 4); let A2 and A3
be the vertices of the top and the bottom rows of Zbbj−1, respectively, and let A4 be any set
of k vertices on the top row of Bj that lie in Vm. As before, using Observation 1, we can
construct three sets of paths: set P ′j in Zbj−1, connecting each vertex of A1 to some vertex of
A2; set P ′′j in Zbbj−1 connecting the vertices of A2 to the vertices of A3 (the paths in P ′′j are
just the columns of Zbbj−1), and set P ′′′j in Ztj , connecting the vertices of A3 to the vertices of
A4. We let Pj be obtained by concatenating the paths in P ′j ,P ′j , and P ′′′j .

Finally, assume that Bj belongs to Sm+1. Let C` and Cr be the columns of H that serve
as the left boundary of Sm and the right boundary of Sm+1, respectively. Let H ′j be the
sub-grid of H, spanned by columns C`, . . . , Cr, and rows RN−k−1, . . . , RN . We let Hj be
the union of Zbj−1, Z

bb
j−1, H

′
j , Z

b
j and Zbbj . Using methods similar to those described above, it

is easy to find a set Pj of k disjoint paths in Hj , connecting k vertices on the bottom row of
Bj−1 to k vertices on the bottom row of Bj .

The case where m is even is dealt with similarly. The only difference is that in the
case where Bj belongs to Sm+1, we use rows Rk+2, . . . , R2k+1 to define H ′j , instead of rows
RN−k+1, . . . , RN , to avoid collision with the graph H ′1.
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From the construction of the graphs Hi, it is easy to see that all such graphs are mutually
disjoint, and therefore we obtain the desired sets P1, . . . ,Pk of paths with properties (3)–(3).

J

4 An Õ(n1/4)-Approximation Algorithm

We assume that we are given the (N × N) grid graph G = (V,E), so n = |V | = N2, and
a collection M = {(si, ti)}ki=1 of demand pairs. We say that a demand pair (si, ti) is bad
if both d∞(si,Γ(G)), d∞(ti,Γ(G)) ≤ 4

√
N + 4, and we say that it is good otherwise. Let

M′,M′′ ⊆ M denote the sets of the good and the bad demand pairs in M, respectively.
We find an approximate solution to each of the two sub-problems, defined byM′ andM′′,
separately, and take the better of the two solutions. The following two subsections describe
these two algorithms.

4.1 Routing the Good Pairs
Our first algorithm provides an O(n1/4 logn)-approximation for the special case when all
demand pairs are good. We start with a high-level overview of the algorithm. The algorithm
is based on LP-rounding of (LP-flow), and so it proves that the integrality gap of (LP-flow)
for this special case is O(n1/4 logn). The first step of the algorithm is to reduce the problem
to the following special case: We are given a grid A of size (Θ(m)×Θ(m)), where m ≤ N/8
is some integer, and two disjoint sub-grids Q,Q′ of A, of size (m×m) each, such that the
minimum L∞-distance between a vertex in Q and a vertex in Q′ is Ω(m). We are also given
a setM(Q,Q′) of demand pairs, where for each pair (s, t) ∈M(Q,Q′), s ∈ Q, t ∈ Q′, and
d∞(s,Γ(Q)) > 4

√
N + 4 (where N is the size of the side of our original grid G). We refer

to the resulting routing problem as 2-square routing. We show that an α-approximation
algorithm to the 2-square routing problem immediately implies an O(α logn)-approximation
to the original problem. We note that a similar reduction to the 2-square routing problem has
been used in the past, e.g. in [1]. It is now enough to design an O(

√
m) = O(

√
N) = O(n1/4)-

approximation algorithm for the 2-square routing problem. Let OPT′ be the optimal solution
to this problem, and letM∗ ⊆M(Q,Q′) be the subset of the demand pairs routed in OPT′.
Notice that |OPT′| ≤ 4m, since each path in the optimal solution must contain at least one
vertex of Γ(Q). We define a partition X of Q into sub-squares of size (Θ(

√
m)×Θ(

√
m)),

and show an efficient algorithm to find a subset M̃ ⊆M(Q,Q′) of Ω(|OPT′|/
√
m) demand

pairs, with |M̃| ≤
√
m, so that the following holds. Let S′ and T ′ denote the sets of the

source and the destination vertices, participating in the pairs in M̃, respectively. Then (i) for
each square X ∈ X , |V (X) ∩ S′| ≤ 1; (ii) all vertices in T ′ can be simultaneously routed to
Γ(Q′) \ Γ(G) on node-disjoint paths; and (iii) every vertex of A participates in at most one
demand pair. Set M̃ is found by setting up an appropriate instance of the maximum flow
problem. It is then easy to route all vertices in T ′ to Γ(Q) on paths that are node-disjoint
and internally disjoint from Q. We then use Theorem 2 to complete the routing inside Q.
We now turn to describe the algorithm more formally.

Let (f, x) be the optimal solution to the linear program (LP-flow) on instance (G,M′),
and let OPTLP be its value. We show an algorithm that routes Ω(OPTLP/(n1/4 · logn))
demand pairs. The algorithm consists of two steps. In the first step, we reduce the problem
to routing between two square sub-grids of G. We note that a similar reduction has been used
in prior work, e. g. by Aggarwal et al. [1]. In the second step, we show an approximation
algorithm for the resulting sub-problem.
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Reduction to the 2-Square Problem

In this step, we reduce the problem of routing on G with a general setM′ of good demand
pairs, to a problem where we are given two disjoint sub-grids (or squares) Q1, Q2 of G, and
every demand pair (sj , tj) has sj ∈ Q1 and tj ∈ Q2, or vice versa.

We start by partitioning the setM′ of the demand pairs into dlogNe subsets,M1, . . . ,MdlogNe,
where

Mh =
{

(sj , tj) ∈M′ | 2h−1 ≤ d∞(sj , tj) < 2h
}
.

For each 1 ≤ h ≤ dlogNe, let Fh =
∑

(sj ,tj)∈Mh
xj , where xj is the amount of flow

sent from sj to tj in the solution to (LP-flow). We let h∗ be the index maximizing Fh∗ , so
Fh∗ ≥ OPTLP/ dlogNe. From now on, we focus on routing the pairs inMh∗ , and we will
route Ω(Fh∗/n1/4) such pairs.

Assume first that h∗ ≤ 6. In this case, we partition the grid into sub-grids of size
at most (256 × 256) with a random offset, as follows. Select an integer 0 ≤ z < 256
uniformly at random, and use the set C = {Cz+256i}b(N−z)/256c

i=0 of columns and the set
R = {Rz+256i}b(N−z)/256c

i=0 of rows to partition the grid into sub-grids. Let Q be the resulting
collection of sub-grids. We define a new LP-solution as follows: start with the original
LP-solution; for every demand pair (sj , tj) 6∈ Mh∗ , set xj = 0, and f(P ) = 0 for all paths
P ∈ Pj . For every demand pair (sj , tj) ∈Mh∗ , if sj or tj lie on a row of R or a column of
C, or if they belong to different sub-grids in Q, set xj = 0 and f(P ) = 0 for all paths P ∈ Pj .
Since for each pair (sj , tj) ∈Mh∗ , d∞(sj , tj) < 64, it is easy to see that the expected value
of the resulting LP-solution is W = Ω(Fh∗) = Ω(OPTLP/ logN) = Ω(OPTLP/ logn). By
trying all possible values 0 ≤ z < 256, we can find a partition Q of G, and a corresponding
LP-solution, whose value is at least W . Notice that for each sub-grid Q ∈ Q, the number of
vertices of Q is bounded by 2562, and so the total amount of flow routed between the demand
pairs contained in Q is bounded by 2562. For each sub-grid Q ∈ Q, if there is any demand
pair (sj , tj) ∈Mh∗ with sj , tj ∈ Q, and a non-zero value xj in the current LP-solution, we
select any such pair and route it via any path P contained in Q, which is disjoint from
the boundary of Q. It is easy to see that the total number of the demand pairs routed is
Ω(W ) = Ω(OPTLP/ logn). From now on, we assume that h∗ > 6.

For convenience, we denote h∗ by h from now on. Let m = 2h/16. We partition the
grid into a collection Q = {Qp,q | 1 ≤ p ≤ bN/mc , 1 ≤ q ≤ bN/mc} of disjoint sub-grids, or
squares, as follows. First, partition G into bN/mc disjoint vertical strips V1, . . . , VbN/mc,
each containing m consecutive columns of G, except for the last strip, that may contain
between m and 2m− 1 columns. Next, partition each vertical strip Vp into bN/mc disjoint
sub-grids, where each sub-grid contains m consecutive rows of Vp, except possibly for the
last sub-grid, that may contain between m and 2m− 1 rows. The width and the hight of
each such sub-grid is then between m and 2m− 1, where m ≤ N/16. Notice that for each
such grid Qp,q ∈ Q, if L is the left boundary edge of Qp,q, and L′ is the left boundary edge
of G, then either L ⊆ L′, or L and L′ are separated by at least m− 1 columns. The same
holds for the other three boundary edges. We need the following observation.

I Observation 7. Let (sj , tj) ∈ Mh be a demand pair, and assume that sj ∈ Qp,q and
tj ∈ Qp′,q′ . Then:

5 ≤ |p− p′|+ |q − q′| ≤ 34.

Proof. We first show that |p− p′|+ |q − q′| ≥ 5. Indeed, assume otherwise. Then both the
horizontal and the vertical distances between sj and tj are less than 8m = 8 · 2h/16 = 2h−1,
while d∞(sj , tj) ≥ 2h−1, a contradiction.



J. Chuzhoy and D.H.K. Kim 199

Assume now for contradiction that |p− p′|+ |q − q′| > 34. Then d∞(sj , tj) > 16m = 2h,
contradicting the fact that d∞(sj , tj) < 2h. J

We say that a pair (Qp,q, Qp′,q′) of squares in Q is interesting iff 5 ≤ |p−p′|+ |q−q′| ≤ 34.
Let Z be the set of all interesting pairs of squares in Q. We associate an NDP instance with
each such pair Z = (Qp,q, Qp′,q′), as follows. LetM(Z) ⊆Mh be the set of all demand pairs
(sj , tj) ∈ Mh where sj ∈ Qp,q and tj ∈ Qp′,q′ , or vice versa. We also define a box A(Z),
that contains Qp,q ∪Qp′,q′ , and adds a margin of m around them, if possible. More precisely,
let ` be the smallest integer, such that R` ∩ (Qp,q ∪ Qp′,q′) 6= ∅, and let `′ be the largest
integer, such that R`′ ∩ (Qp,q ∪Qp′,q′) 6= ∅. Similarly, let b and b′ be the smallest and the
largest integers, respectively, such that Cb ∩ (Qp,q ∪ Qp′,q′), Cb′ ∩ (Qp,q ∪ Qp′,q′) 6= ∅. We
then let A(Z) be the sub-grid of G spanned by rows Rmax{1,`−m}, . . . , Rmin{`′+m,N}, and by
columns Cmax{1,b−m}, . . . , Cmin{b′+m,N}. For every interesting pair of squares Z ∈ Z, we now
define an instance of the NDP problem on graph A(Z), with the setM(Z) of demand pairs.
Let F (Z) be the total amount of flow routed between the demand pairs in M(Z) in the
current LP-solution Fh to our original problem (notice that in our LP-solution, the fractional
routing of the demand pairs inM(Z) is not necessarily contained in A(Z)). From the above
discussion,

∑
Z∈Z F (Z) = Ω(OPTLP/ logN). We will show an algorithm that routes, for

each Z ∈ Z, Ω(F (Z)/n1/4) demand pairs inM(Z) integrally, in graph A(Z). However, it is
possible that for two pairs Z,Z ′ ∈ Z, A(Z) ∩A(Z ′) 6= ∅, and the two routings may interfere
with each other. We resolve this problem in the following step.

From Observation 7, it is easy to see that for each interesting pair of squares Z ∈ Z, the
number of pairs Z ′ ∈ Z with A(Z)∩A(Z ′) 6= ∅ is bounded by some constant c. We construct
a graph H, whose vertex set is V (H) = {vZ | Z ∈ Z}, and there is an edge (vZ , vZ′) iff
A(Z) ∩A(Z ′) 6= ∅. As observed above, the maximum vertex degree in this graph is bounded
by some constant c, and so we can color H with c+ 1 colors. Let Ui ⊆ V (H) be the set of
vertices of color i. We select a color class i∗, maximizing the value F i∗ =

∑
vZ∈Ui∗

F (Z).
Clearly, F i∗ = Ω(OPTLP / logN). For every pair vZ , vZ′ of vertices in Ui∗ , we now have
A(Z) ∩ A(Z ′) = ∅. In order to obtain an O(n1/4 logn)-approximation algorithm for the
special case where all demand pairs are good, it is now enough to prove the following theorem.

I Theorem 8. There is an efficient algorithm, that, for every interesting pair Z ∈ Z of
squares, routes Ω(F (Z)/n1/4) demand pairs ofM(Z) inside the grid A(Z).

The Rounding Algorithm

From now on we focus on proving Theorem 8. We assume that we are given an interesting
pair Z = (Q,Q′) of squares, where the width and the height of each square is bounded by
2m − 1. We are also given a collection M(Z) of demand pairs, that, for convenience, we
denote byM from now on. For each demand pair (sj , tj) ∈M, we can assume without loss
of generality that sj ∈ Q and tj ∈ Q′. Recall that we have a fractional solution (f, x) that
routes F ∗ = F (Z) flow units between the demand pairs inM, in the grid G. Additionally,
we are given a square A = A(Z), containing Q and Q′, as defined above. Recall that for any
pair v ∈ Q, v′ ∈ Q′ of vertices, d∞(v, v′) ≥ 5m.

From our definition of good demand pairs, it is possible that for a pair (sj , tj) ∈ M,
d∞(sj ,Γ(G)) ≤ 4

√
N + 4, or d∞(tj ,Γ(G)) ≤ 4

√
N + 4, but not both. We say that (sj , tj)

is a type-1 pair if d∞(sj ,Γ(G)) ≤ 4
√
N + 4, and we say that it is a type-2 demand pair

otherwise. Let F1 be the total flow in the LP-solution between the type-1 demand pairs, and
F2 the total flow between type-2 demand pairs. We assume without loss of generality that
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F1 ≤ F2, so F2 ≥ F ∗/2. From now on we focus on routing type-2 demand pairs. Abusing
the notation, we useM to denote the set of all type-2 demand pairs.

We next define a sub-grid Q+ of A, obtained by adding a margin of m around the
grid Q, if possible. Specifically, let R`, R`′ be the rows of G, containing the top and the
bottom rows of Q, respectively. Similarly, let Cb, Cb′ be the columns of G, containing the
left and the right columns of Q, respectively. We let Q+ be the sub-grid of G, spanned
by rows Rmax{1,`−m}, . . . , Rmin{N,`′+m} and columns Cmax{1,b−m}, . . . , Cmin{N,b′+m}. From
our definition of A, Q+ ⊆ A. Moreover, since m ≤ N , and since we have assumed that all
demand pairs are type-2 good pairs, all source vertices corresponding to the demand pairs in
M are within L∞ distance at least 4

√
m+ 5 from the boundary of Q+. We start with the

following simple observation.

I Observation 9. Let L′ be a boundary edge of Q′, such that L′ 6⊆ Γ(G), and let Y ⊆ V (L′)
be any set of its vertices. Then there is a boundary edge L of Q+, and a set P of |Y | disjoint
paths in graph A, connecting every vertex of Y to a distinct vertex of L, such that the paths
in P are internally disjoint from Q+ ∪Q′.

Proof. If the top boundary edge L̃ of Q+ is separated by at least m rows from the top
boundary edge of G, then set L = L̃; otherwise, let L be the bottom boundary edge of Q+

- notice that it must be separated by at least m rows from the bottom boundary edge of
G. Let X ⊆ V (L) be any set of |Y | vertices, and let A′ be the graph obtained from A, by
deleting all vertices in Q+ \X and Q′ \ Y from it. It is enough to show that there is a set
P of |X| = |Y | disjoint paths in A′, connecting the vertices of X to the vertices of Y . Let
z = |X|. From Menger’s theorem, if such a set of paths does not exist, then there is a set
J of at most z − 1 vertices, such that in A′ \ J there is no path from a vertex of X \ J to
a vertex of Y \ J . But from our definition of Q+, Q′, and A, it is clear that no such set of
vertices exists. J

Let r be the smallest integral power of 2 greater than 4
√
m + 4, so r = Θ(

√
m). Our

next step is to partition Q into a collection X of disjoint sub-grids of size (r × r) each.
For 1 ≤ p, q ≤ m/r, we let Xp,q be the sub-grid of Q, spanned by rows R(p−1)r+1, . . . , Rpr
and columns C(q−1)r+1, . . . , Cqr of Q. We then let X = {Xp,q | 1 ≤ p, q ≤ m/r}. The next
theorem is key to finding the final routing.

I Theorem 10. There is a subsetM1 ⊆M of Ω(F ∗/n1/4) demand pairs, such that every
vertex of Q ∪Q′ participates in at most one demand pair. Moreover, if S1 and T1 denote the
sets of all source and all destination vertices of the pairs inM1, respectively, then:

for every square Xp,q ∈ X , at most one vertex of Xp,q belongs to S1; and
there is a boundary edge L′ of Q′, with L′ 6⊆ Γ(G), and a set P1 of node-disjoint paths in
graph Q′, connecting every vertex of T1 to a distinct vertex of L′.

Proof. Let U be the union of the boundary edges L′ of Q′, with L′ 6⊆ Γ(G). We build a
flow network N , starting with the graph Q′. We add a source vertex a, that connects to
every vertex in U with a directed edge. Let S ⊆ Q be the set of all vertices participating
in the demand pairs inM as sources. Observe that each vertex s ∈ S may participate in
several demand pairs inM. We add every vertex s ∈ S to graph N , and for each demand
pair (s, t) ∈M, we connect t to s with a directed edge. Next, for each square Xp,q ∈ X, we
add a vertex up,q, and we connect every vertex s ∈ S ∩Xp,q to up,q with a directed edge.
Finally, we add a destination vertex b, and connect every vertex up,q for 1 ≤ p, q ≤ m/r to b
with a directed edge. We set all vertex-capacities (except for those of a and b) to 1.



J. Chuzhoy and D.H.K. Kim 201

We claim that there is a valid flow of value Ω(F ∗/
√
m) from a to b in N . Indeed, consider

the multicommodity flow between the demand pairs inM, given by our current LP-solution.
For each (sj , tj)-pair in M, we send xj/4r flow units on the edge (tj , sj) in N . For each
flow-path P ∈ Pj , notice that P must contain some vertex of U . Let v be the last such
vertex on P (where we view P as directed from sj to tj), and let P ′ be the sub-path of P
from v to tj . We send f(P )/4r flow units on every edge in P ′. For every vertex v ∈ U , we
set the flow on the edge (a, v) to be the total flow leaving the vertex v; for each vertex s ∈ S,
with s ∈ Xp,q, we set the flow on the edge (s, up,q) to be the total amount of flow entering
s. The flow on edge (up,q, b) is then set to the total amount of flow entering up,q. Notice
that for each square Xp,q, every flow-path originating at a vertex of S ∩Xp,q must cross the
boundary Γ(Xp,q) of Xp,q, that contains at most 4r vertices. Therefore, the total amount of
flow in the original LP-solution leaving the vertices in S ∩Xp,q is at most 4r. It is now easy
to see that we have defined a valid a-b flow of value F̃ = Ω(F ∗/

√
m).

From the integrality of flow, there is an integral flow of the same value in N . Let P be
the set of paths carrying one flow unit in the resulting flow. Then there is a boundary edge
L′ of Q′, such that L′ 6⊆ Γ(G), with at least F̃ /4 of the paths in P containing a vertex of L′.
Let P ′ ⊆ P be this set of paths. We are now ready to define the final setM1 of the demand
pairs, and the corresponding set P1 of paths. Consider some path P ∈ P ′, and let (t, s) be
the unique edge with (s, t) ∈ M on this path. We then add (s, t) to M1. Let P ′ be the
sub-path of P , starting from the last vertex on P that belongs to L′, to vertex t. We add P ′
to P1. This finishes the definition of the subsetM1 of demand pairs, and the corresponding
set P1 of paths. J

If |M1| >
√
m, then we discard pairs fromM1, until |M1| ≤

√
m holds, and we update

the sets S1, T1, and P1 accordingly.
For w,w′ ∈ {0, 1}, let Sw,w′ be a subset containing all vertices s ∈ S1 lying in the

squares Xp,q, where p = w mod 2 and q = w′ mod 2. Then there is some choice of
w,w′ ∈ {0, 1}, so that |Sw,w′ | ≥ |S1|/4. We let S2 = Sw,w′ for this choice of w,w′, and we
defineM2 = {(s, t) ∈M1 | s ∈ S2}, and T2 as the set of all destination vertices for the pairs
inM2. Let P2 ⊆ P1 be the set of paths originating from the vertices of T2. Let Y be the
set of endpoints of the paths in P2 that lie on the boundary edge L′ of Q′. Finally, from
Observation 9, there is a boundary edge L of Q+, a set Y ′ of |Y | vertices of L, and a set
P ′2 of disjoint paths in A, connecting every vertex in Y to a distinct vertex of Y ′, so that
the paths in P ′2 are internally disjoint from Q+ ∪Q′. By concatenating the paths in P2 and
P ′2, we obtain a new set P∗ of paths, connecting every vertex of T2 to a distinct vertex of
Y ′. Denote M2 = {(sj , tj)}|M2|

j=1 , and let uj ∈ Y ′ be the vertex where the path Pj ∈ P∗,
originating at vertex tj , terminates. Notice that all vertices in S2 are now at the L∞-distance
at least r > 4

√
m+ 4 from each other, and at distance at least 4

√
m+ 5 from the boundaries

of Q+, and |M1| ≤
√
m. From Theorem 2, we can efficiently find a set Y of disjoint paths

in graph Q+, connecting every vertex sj ∈ S2 to the corresponding vertex uj ∈ Y ′. By
concatenating the paths in P∗ and Y, we obtain a set of paths routing all pairs inM2.

Notice that from the above discussion, |M2| = min {Ω(
√
m),Ω(F ∗/

√
m)}. It is easy to

see that F ∗ ≤ 4m, since every flow-path routing a pair inM must cross the boundary of
Q′. Therefore, |M2| = Ω(F ∗/

√
m). Since m ≤ N =

√
n, our algorithm routes Ω(F ∗/n1/4)

demand pairs.

4.2 Routing the Bad Pairs
The goal of this section is to prove the following theorem.
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I Theorem 11. Let (G,M) be an instance of the NDP problem, where G is an (N × N)
grid, and M = {(s1, t1), . . . , (sk, tk)}. Assume further that for each demand pair (sj , tj),
both d∞(sj ,Γ(G)), d∞(tj ,Γ(G)) < d∗, for some parameter 1 ≤ d∗ ≤ N/4. Then there is an
efficient algorithm that finds an O(d∗)-approximate solution to the NDP instance (G,M).

Notice that by setting d∗ = 4
√
N + 5, so that d∗ = Θ(n1/4), we obtain an O(n1/4)-

approximate solution for NDP instances on grid graphs, where all demand pairs are bad.
The rest of this section is dedicated to proving Theorem 11. Let T be the set of all

vertices participating in the bad demand pairs. We call the vertices in T terminals. Let
L1, L2, L3, L4 be the four boundary edges of the grid G. Notice that a terminal t ∈ T may be
within distance d∗ from up to two boundary edges. For each terminal t ∈ T , we let L(t) be
any boundary edge of G, such that d∞(t, V (L(t))) < d∗. We now partition all bad demand
pairs into 16 subsets: for 1 ≤ p, q ≤ 4, setMp,q contains all pairs (sj , tj), where L(sj) = Lp
and L(tj) = Lq. Let OPT be the optimal solution to the NDP instance. For every possible
choice of 1 ≤ p, q ≤ 4, let OPTp,q be the optimal solution restricted to the pairs in Mp,q.
Clearly, there is a choice of p and q, such that at least |OPT|/16 of the demand pairs routed
in OPT belong toMp,q, and so |OPTp,q| ≥ OPT/16. For each choice of values 1 ≤ p, q ≤ 4,
we show an algorithm that routes Ω(|OPTp,q|/d∗) demand pairs inMp,q. We then take the
best of these solutions, thus obtaining an O(d∗)-approximation algorithm.

Fix some 1 ≤ p, q ≤ 4. We consider three cases.
The first case happens when Lp and Lq are two distinct opposing boundary edges of G.

We assume without loss of generality that Lp is the top, and Lq is the bottom boundary
of G. We say that a subset M′ ⊆ Mp,q of demand pairs is a monotone matching, if the
following holds. Let S′ be the set of all source vertices, and T ′ the set of all destination
vertices, participating in the pairs inM′. Then:

All vertices of S′ lie in distinct columns of G;
All vertices of T ′ lie in distinct columns of G;
Every vertex of S′ ∪ T ′ participates in exactly one demand pair; and
For any two distinct pairs (si, ti), (sj , tj) ∈M′, col(si) < col(sj) iff col(ti) < col(tj).

The following observation is immediate.

I Observation 12. Let M′ ⊆ Mp,q be any monotone matching with |M′| ≤ N/2. Then
there is an efficient algorithm to route all pairs inM′ in graph G.

Our algorithm then simply computes the largest monotone matchingM′ ⊆Mp,q, using
standard dynamic programming: We maintain a dynamic programming table Π, that
contains, for all 0 ≤ x, y ≤ N , an entry Π(x, y), whose value is the size of the largest
monotone matchingM(x, y) ⊆Mp,q, such that every source vertex s participating in pairs
in M(x, y) has 1 ≤ col(s) ≤ x, and every destination vertex t participating in pairs in
M(x, y) has 1 ≤ col(t) ≤ y. We fill the entries of the table from smaller to larger values of
x+ y, initializing Π(x, 0) = 0 and Π(0, y) = 0 for all x and y. Entry Π(x, y) is computed as
follows. If there is a pair (s, t) ∈ Mp,q, with col(s) = x and col(t) = y, then we let Π(x, y)
be the maximum of Π(x− 1, y − 1) + 1, Π(x− 1, y), and Π(x, y − 1). Otherwise, Π(x, y) is
the maximum of Π(x− 1, y), and Π(x, y − 1). The size of the largest monotone matching
M′ ⊆ Mp,q is then stored in Π(N,N), and we can use standard techniques to compute
the matching itself. Finally, we show that there is a large enough monotone matching
M′ ⊆Mp,q.

I Lemma 13. There is a monotone matchingM′ ⊆Mp,q of cardinality Ω(OPTp,q/d∗).
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Proof. For every source vertex s of a demand pair inMp,q, let P (s) denote the segment of
the column in which s lies, from the first row of G to s itself. Similarly, for each destination
vertex t of a demand pair inMp,q, let P (t) denote the segment of the column in which t lies,
from t to the last row of G.

Consider the solution OPTp,q, and letM∗ ⊆Mp,q be the set of the demand pairs routed
in it. For each pair (si, ti) ∈M∗, let Pi ∈ OPTp,q be the path routing this demand pair in
the solution. We say that two demand pairs (si, ti) and (sj , tj) in M∗ have a conflict iff
either Pi contains a vertex of P (sj) ∪ P (tj), or Pj contains a vertex of P (si) ∪ P (ti).

Let H be a directed graph, that contains a vertex vi for every pair (si, ti) ∈M∗, and a
directed edge (vi, vj) iff path Pi intersects P (sj) or P (tj). Notice that the length of every
path P (sj) or P (tj) is bounded by d∗, and so every vertex of H has in-degree bounded by
2d∗. Therefore, any vertex-induced sub-graph H ′ of H with z vertices has at most 2d∗z edges,
and contains at least one vertex whose degree (including the incoming and the outgoing
edges) is at most 4d∗.

We now construct the set M′ of demand pairs as follows. Start with M′ = ∅. While
H is non-empty, let vi be any vertex of degree at most 4d∗. Delete vi and all its neighbors
from H, and add the pair (si, ti) toM′. When this procedure terminates, it is easy to see
that M′ contains at least |OPTp,q|/(4d∗ + 1) = Ω(|OPTp,q|/d∗) demand pairs. Moreover,
if (si, ti) and (sj , tj) are distinct pairs inM′, then there is no conflict between (si, ti) and
(sj , tj). In particular, this means that col(si) 6= col(sj) and col(ti) 6= col(tj). Moreover, if
we assume that col(si) < col(sj), then col(ti) < col(tj) must hold: this is since the union of
Pi, P (si) and P (ti) partitions the face defined by Γ(G) into a number of sub-faces, and both
sj and tj must be contained in a single sub-face, as the path Pj cannot intersect the paths
Pi, P (si) and P (ti). J

This concludes the analysis of the algorithm for the case where Lp and Lq are two distinct
opposing boundary edges of G. The case where Lp and Lq are two adjacent boundary edges
of G is dealt with very similarly. Finally, we consider the case where Lp = Lq. Assume
without loss of generality that Lp is the bottom boundary edge of the grid. We say that a
subsetM′ ⊆Mp,q is a nested matching, if the following holds. Let S′ be the set of all source
vertices, and T ′ the set of all destination vertices, participating in the pairs inM′. Then:

All vertices of S′ lie in distinct columns of G;
All vertices of T ′ lie in distinct columns of G;
Every vertex of S′ ∪ T ′ participates in exactly one demand pair; and
For any two distinct pairs (si, ti), (sj , tj) ∈ M′, with col(si) lying to the left of col(sj),
either both col(si), col(ti) lie to the left of both col(sj), col(tj), or both col(sj), col(tj) lie
between col(si) and col(ti), or both col(si), col(ti) lie between col(tj) and col(sj).

It is immediate to see that any nested matching M′ ⊆ Mp,q, with |M′| ≤ N/2 can
be routed efficiently in G. As before, we can find a largest-cardinality nested matching
M′ ⊆ Mp,q using standard dynamic programming techniques. The following lemma will
then finish the proof.

I Lemma 14. There is a nested matchingM′ ⊆Mp,q of cardinality Ω(OPTp,q/d∗).

Proof. We construct the paths P (s), P (t), the graph H ′, and the matchingM′ corresponding
to an independent set in H ′ exactly as in the proof of Lemma 13. As before, |M′| =
Ω(OPTp,q/d∗). Moreover, if (si, ti) and (sj , tj) are distinct pairs in M′, then there is
no conflict between (si, ti) and (sj , tj). As before, this means that col(si) 6= col(sj) and
col(ti) 6= col(tj). Assume now that col(si) lies to the left of col(sj). Then the union of
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Pi, P (si) and P (ti) partitions the face defined by Γ(G) into a number of sub-faces, and both
sj and tj must be contained in a single sub-face, as before. In this case, this means that
either both col(si), col(ti) lie to the left of both col(sj), col(tj), or both col(sj), col(tj) lie
between col(si) and col(ti), or both col(si), col(ti) lie between col(tj) and col(sj). J

4.3 Putting Everything Together
Our algorithm for an input NDP instance (G,M), where G is an (N × N) grid, applies
the algorithm from Section 4.1 to the setM′ of the good demand pairs, and the algorithm
from Section 4.2 to the setM′′ of the bad demand pairs, and returns the better of the two
solutions. Since each of the two algorithms achieves an O(n1/4 logn)-approximation to the
corresponding problem, and since at least half of the demand pairs routed in the optimal
solution are either all good pairs, or all bad pairs, we obtain an O(n1/4 logn)-approximation
overall.

5 APX-Hardness Proof

In this section we prove that NDP does not have a (1 + δ)-approximation algorithm on grid
graphs, for some fixed δ > 0, unless P = NP. We perform a reduction from the 3SAT(5)
problem. In this problem we are given a 3SAT formula ϕ on n variables and 5n/3 clauses.
Each clause contains exactly 3 distinct literals and each variable participates in exactly
5 different clauses. We say that ϕ is a Yes-Instance if it is satisfiable. We say that ϕ is
a No-Instance with respect to some parameter ε, if no assignment satisfies more than an
ε-fraction of clauses. The following well-known theorem follows from the PCP theorem [7, 6].

I Theorem 15. There is a constant ε : 0 < ε < 1, such that it is NP-hard to distinguish
between Yes-Instances and No-Instances (defined with respect to ε) of the 3SAT(5) problem.

Let ϕ be the input 3SAT(5) formula, defined over the set {x1, . . . , xn} of variables, and
a set C1, . . . , Cm of clauses, where m = 5n/3. Our graph G is the (N × N) grid, where
N = (m + 1)(4m + 6). The set M of demand pairs consists of three subsets: set M1
representing the variables of ϕ, setM2 representing the clauses, and setM3 of additional
auxiliary pairs. We now define each set of the demand pairs in turn.

Let I1, . . . , In be any set of mutually disjoint sub-paths of the top row R1 of the grid,
each containing exactly 13 vertices of R1. For 1 ≤ j ≤ n, let sj be the vertex lying exactly
in the middle of Ij , so sj is the 7th vertex of Ij from the left. Let tj and t′j be the first and
the last vertices of Ij , respectively. We then define:

M1 =
{

(sj , tj), (sj , t′j) | 1 ≤ j ≤ n
}
.

Let V (j, T ) be the set of vertices lying on Ij between tj and sj (excluding tj and sj), and
similarly, let V (j, F ) be the set of vertices lying on Ij between sj and t′j . The intuition is
that, since the paths routing the demand pairs are required to be completely disjoint, for
each 1 ≤ j ≤ n, we can only route one of the two pairs: (sj , tj) or (sj , t′j). The routing of
the former pair is interpreted as assigning the value ‘F’ to variable xj , and the routing of the
latter pair is interpreted as assigning the value ‘T’ to variable xj . Intuitively, in the former
case, all vertices of V (j, T ) will be “blocked” by the path routing (sj , tj), while in the latter
case all vertices of V (j, F ) are “blocked”.

We now turn to define the second set,M2 of the demand pairs. Let R = RN−4m−6 be
the row lying within distance 4m+ 6 from the bottom row of the grid. Let y1, . . . , ym be
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any set of m vertices on R, ordered from left to right, so that the distance between every
consecutive pair is at least 4m+ 5; the distance between y1 and the left boundary of G is at
least 4m+ 5, and the distance between ym and the right boundary of G is at least 4m+ 5.
Since the grid size is N ×N , and N = (m+ 1)(4m+ 6), we can find such vertices y1, . . . , ym.
For each 1 ≤ h ≤ m, vertex yh will serve as a source vertex corresponding to the clause
Ch. We will associate it with three destination vertices, z1

h, z
2
h, z

3
h, as follows. Assume that

Ch = `h1 ∨ `h2 ∨ `h3 . For 1 ≤ i ≤ 3, let xhi
be the variable corresponding to the literal

`hi . If `hi = xhi , then we let zih be some vertex in set V (hi, T ), and otherwise we let zih be
some vertex in set V (hi, F ). We select the vertices zih in such a way, that all vertices in set
Z =

{
zih | 1 ≤ h ≤ m, 1 ≤ i ≤ 3

}
are distinct. Since each variable participates in exactly 5

clauses, and each set V (j, T ), V (j, F ) contains 5 vertices, we can ensure that all vertices in
Z are distinct. We define:

M2 =
{

(yh, z1
h), (yh, z2

h), (yh, z3
h) | 1 ≤ h ≤ m

}
.

Before we define the third set of the demand pairs, we provide some intuition. As
mentioned above, we associate each assignment in {T, F} to each variable xj with the routing
of either (sj , tj) or (sj , t′j) along the corresponding segment of the first row. For each clause
Ch, if at least one of its literals `hi

is satisfied, we will route the corresponding demand
pair (yh, zih) (we discuss this in more detail later). However, in the No-Instance case, a
solution can “cheat” by routing the pairs (sj , tj), or (sj , t′j) differently: for example, we can
route them on a path that goes around some of the sources yh. In order to avoid this, we
create an artificial “bottleneck” by adding a new set of demand pairs. Recall that v(i, j) is
a vertex lying in the intersection of row Ri and column Cj of the grid. The last set M3
of demand pairs contains 8m demand pairs {ai, bi}8m

i=1, where for 1 ≤ i ≤ 8m, we define
ai = v(m+ 4 + i,m+ 1), and bi = v(m+ 4 + i,N). In other words, the ith demand pair in
setM3 consists of the (m+ 1)st and the last vertex of the row Rm+4+i. The final set of the
demand pairs isM =M1 ∪M2 ∪M3. This completes the description of the NDP instance.
We now analyze its properties.

Completeness

Assume that the 3SAT(5) formula ϕ is a Yes-Instance. We show that in this case we can
route 9m+ n = 16n demand pairs. Consider the assignment f : {x1, . . . , xn} → {T, F} that
satisfies ϕ.

For each 1 ≤ i ≤ n, if xi is assigned the value ‘T’, then we route the pair (si, t′i) via the
segment of the row R1 between these two vertices; if xi is assigned value F , then we route
the pair (si, ti) via the corresponding segment of R1. For each pair (ai, bi) ∈M3, we route
(ai, bi) via the segment of row Rm+4+i connecting these two vertices. Finally, we define the
routing of m demand pairs inM2. For each clause Ch, let `∗h be any of the literals of Ch
that is satisfied by the assignment f , and let zh = zih be the destination vertex corresponding
to `∗h, so that (yh, zh) ∈M2. We will route the pairs {(yh, zh)}1≤h≤m.

In order to do so, we define three sub-grids of G: B1 is the sub-grid spanned by
rows R2, . . . , Rm+5, and all columns of the grid; B2 is the sub-grid spanned by rows
Rm+5, . . . , R9m+4 and columns C1, . . . , Cm of the grid; andB3 spanned by rowsR9m+4, . . . , RN
and all columns of the grid.

For each 1 ≤ h ≤ m, let eh be the unique vertical edge of the grid incident on vertex
zh, and let z′h be its other endpoint. Let S1 = {z′h | 1 ≤ h ≤ m}, so S1 contains m distinct
vertices on the top row of B1, and let E′ = {eh | 1 ≤ h ≤ m}. Let S2 be the set of m vertices
on the top boundary of B2. Then the vertices of S2 also lie on the bottom boundary of B1,
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and from Observation 1, there is a set P1 of disjoint paths in B1, connecting all vertices of
S1 to the vertices of S2, so that the paths in P1 are internally disjoint from V (R2 ∪Rm+5).
Let S3 be the set of m vertices on the bottom boundary of B2, and let P2 be the set of the
columns of B2, so P2 is a set of m paths, connecting all vertices of S2 to the vertices of S3, in
graph B2. Finally, consider the graph B3, and observe that S3 is a set of m distinct vertices
lying on the top boundary of B3, while {yh | 1 ≤ h ≤ m} is a set of m vertices lying at
L∞-distance at least 4m+5 from each other, and from the boundary of B3. From Theorem 2,
we can route any matching between the vertices of S3 and the vertices of {yh | 1 ≤ h ≤ m} in
graph S3. Let P ′ be the set of paths obtained by concatenating E′,P1,P2. Then P ′ is a set
of disjoint paths connecting the vertices of {zh | 1 ≤ h ≤ m} to the vertices of S3. We denote
the vertices of S3 by {z′′1 , . . . , z′′m}, where z′′h is the vertex that serves as an endpoint of the
path of P ′ originating at zh. We can now construct a set P3 of disjoint paths in B3, routing
the pairs {(yh, z′′h) | 1 ≤ h ≤ m}. By concatenating the paths in P ′ and P3, we obtain the
final routing of the pairs in {(yh, zh) | 1 ≤ h ≤ m}. Altogether, we route n demand pairs in
M1, all 8m demand pairs inM3, and m demand pairs inM2, routing n+ 9m = 16n pairs
in total.

Soundness

Let δ = (1−ε)/200, where ε is the constant from Theorem 15. Assume that ϕ is a No-Instance,
so no assignment can satisfy more than εm clauses of ϕ. We show that the value of the
optimal solution of the corresponding NDP problem is at most (1−δ) ·16n. Assume otherwise,
and let P be a set of paths, routing more than (1− δ) · 16n demand pairs.

Our first observation is that at least 6m of the demand pairs inM3 must be routed by
P . Indeed, assume otherwise. Then P routes at most n pairs inM1, fewer than 6m pairs in
M3, and at most m pairs inM2. In total, P routes at most n+ 7m = 38n/3 < (1− δ) · 16n
pairs, since δ < 1/200. Therefore, at least 6m of the demand pairs inM3 are routed. Let
i be the smallest index, so that (ai, bi) is routed in P, and let P ∈ P be the path routing
(ai, bi). Let U be the set of vertices of column Cm+1 (the column where the sources of the
pairs inM3 lie), that belong to rows R1, . . . , R9m+4. We use the following observation.

I Observation 16. There is a contiguous sub-path P ′ of P , containing bi and some vertex
of U , such that P ′ is internally disjoint from U , and it does not contain any vertex of row
R = RN−4m−6.

Proof. If P does not contain any vertex of R, then, since it must contain at least one vertex
of U (the vertex ai), such path P ′ clearly exist. Therefore, we assume that P ∩R 6= ∅. Let v
be the last vertex of P lying on row R, where we view P as directed from ai to bi. Let P ∗
be the segment of P from v to bi.

We claim that P ∗ ∩ U 6= ∅. Indeed, assume otherwise. Let Cj be the column in which
v lies and let Q be the segment of Cj from v to the bottom vertex of Cj . If Cj is the
last column, then path P ∗ separates all vertices in {aj}8m

j=1 from all vertices in {tj}8m
j=i+1,

contradicting the fact that at least 6m demand pairs inM3 are routed, and i is the smallest
index for which pair (ai, bi) is routed. Therefore, Cj is not the last column. The union
of Q and P ∗ partitions the face defined by Γ(G) into a number of sub-faces. Let F2 be
the sub-face containing the top left boundary of the grid, and let F1 be the union of the
remaining sub-faces. Since P ∗ ∪ Q is disjoint from U , all vertices {aj}8m

j=1 belong to F2,
while the vertices {tj}8m

j=i+1 belong to F1. Therefore, all paths of P routing the pairs inM3
must intersect Q, while Q contains only 4m+ 7 vertices, a contradiction. We conclude that
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P ∗ ∩ U 6= ∅. Let u be the last vertex on P ∗ that belongs to U . We can then let P ′ be the
segment of P ∗ between u and bi. J

Let v∗ be the endpoint of P ′ lying in U , and let R′ = row(v∗). Let I be the sub-path of
R′ between v∗ and the first vertex of row R′ (excluding v∗). Since path P ′ is disjoint from
row R, it is easy to see that every path in P that routes a demand pair inM2 has to contain
at least one vertex of I.

We partition the set of variables of ϕ into three subsets. Set X1 contains all variables xj ,
such that none of the pairs (sj , tj), (sj , t′j) is routed by P ; X2 contains all variables xj , such
that one of the pairs (sj , tj), (sj , t′j) is routed by some path Qj ∈ P, and |Qj ∩ I| ≥ 2. Set
X3 contains all remaining variables. We need the following three observations.

I Observation 17. |X1| ≤ 16δn.

Proof. Assume otherwise. Then P routes fewer than n(1−16δ) pairs ofM1, at most 8m pairs
ofM2 and at most m pairs ofM3. In total, this is fewer than n(1− 16δ) + 9m = 16n(1− δ)
pairs, a contradiction. J

I Observation 18. |X2| ≤ 8δn.

Proof. Assume otherwise. As observed above, if (y, z) ∈M2 is routed by P via some path Q,
then Q∩ I 6= ∅. Since |I| = m, the number of pairs inM2 routed by P is less than m− 16δn,
and the total number of pairs routed is smaller than n+ (m− 16δn) + 8m = 16n(1− δ). J

I Observation 19. Let xj ∈ X3 be some variable, and let Q ∈ P be the path originating at
sj. If Q terminates at tj, then no path of P, routing a demand pair in M2, may contain
any vertex of V (j, T ), and if Q terminates at t′j, then no path of P, routing a demand pair
inM2, may contain any vertex of V (j, F ).

Proof. Assume that Q terminates at tj : the proof for t′j is symmetric. Since |I ∩Q| < 2, the
path Q, together with the sub-path of R1 between tj and sj , forms a closed curve L in the
natural drawing of the grid, such that all sources of all pairs inM2 lie outside L. Therefore,
the paths of P originating from the sources of the demand pairs inM2 cannot contain the
vertices of V (j, T ). J

We now define an assignment to the variables of ϕ that satisfies more than εm clauses
of ϕ, leading to a contradiction. The assignment is defined as follows. For each variable
xj ∈ X3, let Qj ∈ P be the path originating at sj . If Qj terminates at tj , then we assign
the value ‘F’ to xj ; otherwise we assign the value ‘T’ to it. All other variables are assigned
arbitrary values.

Let C be the collection of clauses Ch, such that there is a path originating at vertex
yh in P. It is easy to see that |C| ≥ m − 16δn, since otherwise P contains fewer than
n+ 8m+ (m− 16δn) = 16n(1− δ) paths. Let C′ ⊆ C be the subset of clauses containing the
variables ofX1∪X2. Since each variable participates in at most 5 clauses, from Observations 17
and 18, |C′| ≤ 5 · 24δn = 120δn. Let C∗ = C \ C′. Then |C∗| ≥ m− 136δn ≥ εm. We claim
that every clause Ch ∈ C∗ is satisfied by our assignment. Indeed, let P ∈ P be the path
originating at yh, and let zih be its other endpoint. Assume that the corresponding literal
`hi

corresponds to variable xj . From our definition of C∗, xj ∈ X3. Let P ′ ∈ P be the path
originating from sj . If zih ∈ V (j, T ), then `hi

= xj . From Observation 19, P ′ terminates at t′j ,
and variable xj is assigned the value ‘T’. If zih ∈ V (j, F ), then `hi

= xj . From Observation 19,
P ′ terminates at tj , and variable xj is assigned the value ‘F’. In either case, the assignment
to xj satisfies the clause Ch.
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To conclude, we have shown an efficient algorithm, that, given a 3SAT(5) formula ϕ,
constructs an instance (G,M) of the NDP problem, where G is a grid graph, whose size is
polynomial in the size of ϕ. If ϕ is a Yes-Instance, then there is a solution of value 16n to
the NDP instance, and if ϕ is a No-Instance, then no solution routes more than 16n(1− δ)
demand pairs in the NDP instance, for some constant δ. Since it is NP-hard to distinguish
the Yes- and the No-instances of 3SAT(5), we conclude that no efficient algorithm can obtain
a better than (1− δ)-approximation for NDP on grids, unless P = NP.

6 Integrality Gap of (LP-flow) for Good Pairs

We prove that the integrality gap of (LP-flow) is Ω(n1/8) even when all of the terminals are
far from the grid boundary. We note that the family of instances that we construct here
was previously used by Cutler and Shiloah [16], to provide a lower bound on the size of
permutation layouts. Our analysis also closely follows theirs.

Given any integer p > 10, let k = p2 and N = 6k. We show that the integrality gap of
(LP-flow) on the (N ×N) grid G, where all terminals are within distance at least N/6 from
Γ(G) is Ω(k1/4) = Ω(n1/8), where n = N2 is the number of vertices in the grid.

In order to define the demand pairs, we let S be any set of k consecutive vertices on
row R2k of G, where all vertices are at distance at least 2k from both the left and the right
boundary of G, and define a set T of k consecutive vertices on row R4k similarly. We partition
the set S into p subsets S1, . . . , Sp of p consecutive vertices each, where for 1 ≤ i, j ≤ p, the
jth vertex in set Si is denoted by si,j . Similarly, we partition T into p subsets T1, . . . , Tp of
p consecutive vertices each, and for 1 ≤ i, j ≤ p, the jth vertex in set Ti is denoted by ti,j .
The setM of the demand pairs is then:

M = {(si,j , tj,i) | 1 ≤ i, j ≤ p} .

It is easy to see that there is a solution to (LP-flow) of value k/3: for each pair (si,j , tj,i),
we send 1/3 flow unit on the path P , lying in the union col(si,j), col(tj,i) and Rip+j , that
connects si,j to tj,i. We next show that the value of any integral solution is O(k3/4), thus
establishing the integrality gap of Ω(k1/4).

In our analysis we use the notions of graph drawing and graph crossing number. A
drawing of a graph H in the plane is a mapping, in which every vertex of H is mapped into
a point in the plane, and every edge into a continuous curve connecting the images of its
endpoints, such that no three curves meet at the same point, and no curve contains an image
of any vertex other than its endpoints. A crossing in such a drawing is a point where the
images of two edges intersect, and the crossing number of a graph H, denoted by cr(H), is
the smallest number of crossings achievable by any drawing of H in the plane. We use the
following well-known theorem [2, 23].

I Theorem 20. For any graph H = (V,E) with |E| > 7|V |, cr(H) ≥ |E|3
29|V |2 .

Let OPT denote the optimal integral solution for the instance (G,M), letM∗ ⊆M be
the set of the demand pairs routed by OPT, and let x = |OPT|. We define two bipartite
graphs. The first bipartite graph, H = (S, T,E∗) is defined over the sets S and T of the
source and the destination vertices ofM, and it contains an edge e = (s, t) for every pair
(s, t) ∈M∗. The second graph is H ′ = (A,B,E′), where A = {v1, . . . , vp}, B = {u1, . . . , up},
and E′ contains all edges (vi, uj), where (si,j , tj,i) ∈M∗. The following claim is central to
our analysis.

I Claim 21. There is a drawing of H ′ with at most 2px crossings.
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bipartite graph, H = (S, T, E⇤) is defined over the sets S and T of the source and the destination
vertices of M, and it contains an edge e = (s, t) for every pair (s, t) 2 M⇤. The second graph
is H 0 = (A, B, E0), where A = {v1, . . . , vp}, B = {u1, . . . , up}, and E0 contains all edges (vi, uj),
where (si,j , tj,i) 2 M⇤. The following claim is central to our analysis.

Claim 6.2 There is a drawing of H 0 with at most 2px crossings.

If |E0| < 14p, then |OPT| = O(
p

k) and we are done, so we assume that |E0| � 14p. Then from

Theorem 6.1, cr(H 0) � x3

29p2 , while from Claim 6.2, cr(H 0)  2px. Therefore, x = O(p3/2) = O(k3/4).
It now remains to prove Claim 6.2.

Proof of Claim 6.2: Notice that the natural drawing of the grid G, together with the solution
OPT to the NDP instance gives a planar drawing ' of the graph H in the plane. For each 1  i  p,
let S0

i ✓ Si be the set of the sources that have an edge incident to them in E⇤, and define T 0
i ✓ Ti

similarly. Let xi = |S0
i| and yi = |T 0

i |. For each 1  i  p, if xi = 0, then the vertex vi of H 0,
corresponding to Si is an isolated vertex, and we can draw it anywhere. Otherwise, let si,j 2 S0

i

be any vertex. We draw vi at '(si,j). Let I(i) be the segment of row R2k containing the vertices
of Si, and no other vertices. Let Li be a very thin strip (of height 1/10) around the segment I(i)
(see Figure 4). We alter the drawings of all edges in E⇤, originating at the vertices of S0

i, so that
they now originate at '(si,j), by re-routing them inside the strip Li. Since the number of paths in
OPT containing the vertices of Si is bounded by p, it is easy to do so, by introducing at most pxi

crossings. We perform the same transformation for the sets Ti of destination vertices, and obtain
a drawing of the graph H 0 with at most p

Pp
i=1(xi + yi)  2px crossings.

(a) Before (b) After

Figure 4: Altering the drawing around Si.
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crossings. We perform the same transformation for the sets Ti of destination vertices, and obtain
a drawing of the graph H 0 with at most p

Pp
i=1(xi + yi)  2px crossings.

(a) Before (b) After

Figure 4: Altering the drawing around Si.
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(b) After

Figure 5 Altering the drawing around Si.

We prove Claim 21 below, after we complete the analysis of the integrality gap here.
If |E′| ≤ 14p, then |OPT| = O(

√
k) and we are done, so we assume that |E′| > 14p.

Then from Theorem 20, cr(H ′) ≥ x3

116p2 , while from Claim 21, cr(H ′) ≤ 2px. Therefore,
x = O(p3/2) = O(k3/4). It now remains to prove Claim 21.

Proof of Claim 21. Notice that the natural drawing of the grid G, together with the solution
OPT to the NDP instance gives a planar drawing ϕ of the graph H in the plane. For each
1 ≤ i ≤ p, let S′i ⊆ Si be the set of the sources that have an edge incident to them in E∗,
and define T ′i ⊆ Ti similarly. Let xi = |S′i| and yi = |T ′i |. For each 1 ≤ i ≤ p, if xi = 0, then
the vertex vi of H ′, corresponding to Si is an isolated vertex, and we can draw it anywhere.
Otherwise, let si,j ∈ S′i be any vertex. We draw vi at ϕ(si,j). Let I(i) be the segment of
row R2k containing the vertices of Si, and no other vertices. Let Li be a very thin strip (of
height 1/10) around the segment I(i) (see Figure 5). We alter the drawings of all edges in
E∗, originating at the vertices of S′i, so that they now originate at ϕ(si,j), by re-routing
them inside the strip Li. Since the number of paths in OPT containing the vertices of Si is
bounded by p, it is easy to do so, by introducing at most pxi crossings. We perform the same
transformation for the sets Ti of destination vertices, and obtain a drawing of the graph H ′
with at most p

∑p
i=1(xi + yi) ≤ 2px crossings.

J

7 Approximation Algorithm for EDP on Wall Graphs

In this section we show that the algorithm from Section 4 can be adapted to give an
O(n1/4 · logn)-approximation for EDP on wall graphs of width and height N = Ω(

√
n). In

order to construct a wall W of height h and width r (or an (h× r)- wall), we start from a
grid of height h and width 2r. Consider some column Cj of the grid, for 1 ≤ j ≤ r, and
let ej1, e

j
2, . . . , e

j
h−1 be the edges of Cj , in the order of their appearance on Cj , where ej1 is

incident on v(1, j). If j is odd, then we delete from the graph all edges eji where i is even. If
j is even, then we delete from the graph all edges eji where i is odd. We process each column
Cj of the grid in this manner, and in the end delete all vertices of degree 1. The resulting
graph is a wall of height h and width r, that we denote by W (See Figure 1).

Let E1 be the set of edges of W that correspond to the horizontal edges of the original
grid, and let E2 be the set of the edges of W that correspond to the vertical edges of the
original grid. The sub-graph of W induced by E1 is a collection of h node-disjoint paths,
that we refer to as the rows of W . We denote these rows by R1, . . . , Rh, where for 1 ≤ i ≤ h,
Ri is incident on v(i, 1). Let V1 denote the set of all vertices in the first row of W , and Vh
the set of vertices in the last row of W . There is a unique set C of r node-disjoint paths,
where each path C ∈ C starts at a vertex of V1, terminates at a vertex of Vh, and is internally
disjoint from V1 ∪ Vh. We refer to these paths as the columns of W . We order these columns
from left to right, and denote by Cj the jth column in this ordering, for 1 ≤ j ≤ r. The
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sub-graph Γ(W ) = R1 ∪ C1 ∪ Rh ∪ Cr of W is a simple cycle, that we call the boundary
of W .

For every vertex v ∈ V (W ), we let col(v) and row(v) denote the column and the row of
W to which v belongs. As before, for a pair u, v ∈ V (W ) of vertices, we define:

d∞(u, v) = max {| col(v)− col(u)|, | row(v)− row(u)|} ,

and for a vertex v and a subset U ⊆ V (W ) of vertices, we let d∞(v, U) = minu∈U {d∞(u, v)}.
Assume now that we are given an (N ×N)-wall graph G = (V,E), so n = |V | = Θ(N2),

and a collectionM = {(si, ti)}ki=1 of demand pairs. As before, we say that a demand pair
(si, ti) is bad if both d∞(si,Γ(G)), d∞(ti,Γ(G)) ≤ 4

√
N + 4, and we say that it is good

otherwise. LetM′,M′′ ⊆M denote the sets of the good and the bad demand pairs inM,
respectively. We find an approximate solution to each of the two sub-problems, defined by
M′ andM′′, separately, and take the better of the two solutions.

The algorithm for the bad pairs remains exactly the same as the algorithm from Section 4.2.
We now focus on the problem defined by the setM′ of the good pairs. Let G′ be the (N×N)-
grid obtained from G, by contracting, for each 1 ≤ i, j ≤ N , the unique edge e ∈ Ri ∩ Cj ,
and consider the NDP problem instance (G′,M′). Any collection P ′ of node-disjoint paths
in G′, routing a subset M̃ ⊆ M′ of the demand pairs immediately gives a collection P ′′
of edge-disjoint paths in G, routing the same subset of the demand pairs. Moreover, it is
easy to see that there is an LP-solution to (LP-flow) on instance (G′,M′) of value OPT′/2,
where OPT′ is the optimal solution for the EDP instance (G,M′). Indeed, for every path
P ∈ OPT′, we simply set f(P ′) = 1/2, where P ′ is the path of G′ corresponding to the path
P of G, and for every demand pair (sj , tj) routed by OPT′, we set xj = 1/2. It is immediate
to verify that this is a feasible solution to (LP-flow) on NDP instance (G′,M′), of value
OPT′/2. We then use the algorithm from Section 4.1 to find an O(n1/4 · logn)-approximation
solution to (G′,M′), which in turn gives an O(n1/4 · logn)-approximation solution to the
EDP instance (G,M′).
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Abstract
In the Upper Degree-Constrained Partial Orientation (UDPO) problem we are given
an undirected graph G = (V,E), together with two degree constraint functions d−, d+ : V → N.
The goal is to orient as many edges as possible, in such a way that for each vertex v ∈ V the
number of arcs entering v is at most d−(v), whereas the number of arcs leaving v is at most
d+(v). This problem was introduced by Gabow [SODA’06], who proved it to be MAXSNP-hard
(and thus APX-hard). In the same paper Gabow presented an LP-based iterative rounding
4/3-approximation algorithm.

As already observed by Gabow, the problem in question is a special case of the classic 3-
Dimensional Matching, which in turn is a special case of the k-Set Packing problem. Back
in 2006 the best known polynomial time approximation algorithm for 3-Dimensional Matching
was a simple local search by Hurkens and Schrijver [SIDMA’89], the approximation ratio of which
is (3 + ε)/2; hence the algorithm of Gabow was an improvement over the approach brought from
the more general problems.

In this paper we show that the UDPO problem when cast as 3-Dimensional Matching admits
a special structure, which is obliviously exploited by the known approximation algorithms for
k-Set Packing. In fact, we show that already the local-search routine of Hurkens and Schrijver
gives (4 + ε)/3-approximation when used for the instances coming from UDPO. Moreover, the
recent approximation algorithm for 3-Set Packing [Cygan, FOCS’13] turns out to be a (5 + ε)/4-
approximation for UDPO. This improves over 4/3 as the best ratio known up to date for UDPO.
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Keywords and phrases graph orientations, degree-constrained orientations, approximation al-
gorithm, local search

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.212

1 Introduction

During the last decades several graph orientation problems were studied (see Section 8.7
in [2] and Section 61.1 in [13]). One of the most recently introduced is the Upper Degree-
Constrained Partial Orientation, abbreviated as UDPO. In the UDPO problem we
are given an undirected graph G = (V,E), together with two degree constraint functions
d−, d+ : V → N. The goal is to orient as many edges as possible, in such a way that for
each vertex v ∈ V the number of arcs entering v is at most d−(v), whereas the number of
arcs leaving v is at most d+(v). This problem was introduced by Gabow [9], motivated by a
variant of the maximum bipartite matching problem arising when planning a two-day event
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with several parallel sessions and each participant willing to attend one chosen session each
day, but without a particular order on the two selected sessions (for the exact definition,
see [9]).

Upper Degree-Constrained Partial Orientation (UDPO)
Input: Undirected graph G, degree constraints d+, d− : V (G)→ Z≥0
Find: A subset F ⊆ E(G) which admits an orientation F satisfying deg+

F (v) ≤ d+(v)
and deg−F (v) ≤ d−(v) for each v ∈ V (G).
Maximize: |F |
Gabow proved the problem to be MAXSNP-hard (thus also APX-hard), and showed an

LP-based iterative rounding 4/3-approximation algorithm. As he already observed, UDPO
is a special case of the 3-Dimensional Matching problem, which in turn is a special case
of the k-set packing problem defined as follows.
k-set packing
Input: A family F of subsets of a finite universe U , such that |F | ≤ k for every F ∈ F
Find: A subfamily F0 ⊆ F of pairwise-disjoint subsets
Maximize: |F0|
Note that at the time when these results were published, the best known approximation

ratio for 3-set packing was the simple local search of Hurkens and Schrijver [12] with
approximation ratio (3 + ε)/2. Therefore the 4/3 ratio achieved by Gabow improved upon
the results obtained using the algorithm for the more general problem.

1.1 Our results
In this paper we analyze the behaviour of two known approximation algorithms for the
k-set packing problem as solutions for UDPO. We prove that these algorithms obliviously
exploit hidden structural properties present in every 3-set packing instance obtained via
the natural reduction from UDPO. Consequently, when cast as algorithms for the UDPO
problem, these local-search routines attain better approximation ratios than they do for the
worst-case instances of the 3-set packing or 3-Dimensional Matching problems.

First, we show that already the simple local-search routine of Hurkens and Schrijver [12]
is a (4 + ε)/3-approximation when used for the instances coming from UDPO. Next, we
prove that the recent algorithm for 3-set packing [7], again, used as a black box, turns out
to be a (5 + ε)/4-approximation for UDPO. This way we derive the best known ratio for
UDPO, improving over 4/3 obtained by the algorithm of Gabow. In fact, our approximation
ratio matches the 5/4 lower bound on the integrality gap of the underlying natural LP
relaxation [9].

Technical contribution of our paper is based on the analysis of simple instances, where all
the degree bounds are either zero or one, which means that each vertex can have only zero
or one incoming and outgoing arcs. Interestingly, for a wide class of local-search routines,
simple instances are actually no easier than arbitrary ones. The properties of these instances
give rise to a 4-set packing-like structure which can be used in the analysis, though it is
not explicitly used by the algorithms.

1.2 Organization of the paper
In the following subsection we discuss related work on the subject. Next, in Section 2.1
we recall the reduction from UDPO to 3-set packing, followed by Section 2.2 where we
describe the local-search algorithms from previous work on k-set packing. In Section 3 we
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state the main properties behind the analyses of the approximation ratios of both algorithms
and slightly strengthen both these results.

In the remaining sections we provide an improved analysis of the performance of both
algorithms on instances obtained via the reduction from UDPO. In Section 4 we prove that
the worst-case approximation ratio is already attained by simple instances (with all degree
bounds at most one). The properties of simple instances are applied in Section 5 to obtain
a performance guarantee complementary to those in Section 3. Finally, in Section 6 we
combine the two to derive our main results.

1.3 Related work on k-set packing
Prior to the the recent improvements for the k-set packing problem [7, 14], quasipolynomial-
time algorithms with approximation ratios (k+ 2)/3 [10] and (k+ 1 + ε)/3 [8] were obtained.

There is also a line of research on the weighted variant of k-set packing, where we want
to select a maximum-weight family of pairwise-disjoint sets from F . Arkin and Hassin [1]
gave a (k − 1 + ε)-approximation algorithm, later Chandra and Halldórsson [6] improved
it to a (2k + 2 + ε)/3-approximation. Currently, the best-known approximation ratio is
(k + 1 + ε)/2 due to Berman [3]. All the mentioned results are based on local search.

For the standard (unweighted) k-set packing problem, Chan and Lau [5] also presented
a strengthened LP relaxation with integrality gap (k + 1)/2.

On the other hand, Hazan et al. [11] proved that k-set packing is hard to approximate
within a factor of O(k/ log k). Concerning small values of k, Berman and Karpinski [4]
obtained a (98/97 − ε)-hardness for 3-Dimensional Matching, which implies the same
lower bound for 3-set packing.

2 Preliminaries

Let G be an undirected (multi)graph. We sometimes treat G as a directed graph where
each edge e ∈ E(G) is represented by a pair of oppositely directed arcs in A(G). For an arc
e ∈ A(G) we denote by e the corresponding edge in E(G), and by eR the reverse arc. We
also define A = {e : e ∈ A} and AR = {eR : e ∈ A} for an arbitrary subset A ⊆ A(G).

A partial orientation of G can be defined as a subset F ⊆ A(G) such that FR∩F = ∅. It is
called feasible (for degree constraints d = (d+, d−)), if deg+

F (v) ≤ d+(v) and deg−F (v) ≤ d−(v)
for each v ∈ V (G), that is, if the number of arcs leaving v and the number of arcs entering v
do not violate the upper bounds. Now, UDPO can be reformulated as the problem of finding
a maximum feasible partial orientation F , rather than the corresponding set of undirected
edges F .

For an undirected (multi)graph G and a set U ⊆ V (G) we also define NG(U) as the set
of vertices v /∈ U adjacent to some u ∈ U ; we also set NG[U ] = NG(U) ∪ U . The subgraph
induced by a subset X ⊆ V (G) is denoted as G[X]. A bipartite graph H with a fixed
bipartition V (H) = A ∪ B is often represented as a triple (A,B,E(H)). The subgraph
induced by A′ ∪B′ with A′ ⊆ A and B′ ⊆ B is then dented as H[A′, B′].

2.1 Reduction to 3-set packing
The following reduction to 3-set packing was introduced by Gabow [9]. Let I = (G, d) be
an instance of UDPO. We construct an equivalent instance of the 3-set packing problem,
i.e., a set family F over a universe U .
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The universe U is a disjoint union of three sets: V +, V − and E. The set V + contains
d+(v) copies v+

i of each v ∈ V (G), V − contains d−(v) copies v−i of each v ∈ V (G), and E
is defined as E(G). The family F consists of sets {u+

i , v
−
j , e} and {v

+
j , u

−
i , e} for each edge

e = {u, v} and all possible indices i, j.
Given a feasible partial orientation F , the degree constraints clearly let us choose for

each arc e = uv two copies u+
i and v−j , so that the choices are distinct across all arcs leaving

u and entering v, respectively. Consequently, the sets {u+
i , v

−
j , e} form a disjoint subfamily

of F . Similarly, given any disjoint set-family F0 ⊆ F it is easy to see that orienting ē from u

to v for any {u+
i , v

−
j , e} ∈ F0 gives a feasible partial orientation.

2.2 Local search for k-set packing
In this section we recall and reinterpret some of the results behind two local-search approaches
to the k-set packing problem: the classic one yielding a (k + ε)/2-approximation [12] and
the recent (k + 1 + ε)/3-approximation by Cygan [7].

For an instance (U,F) of the k-set packing problem, we build an undirected conflict
graph G = G(F) with V (G) = F and vertices F, F ′ made adjacent if F ∩ F ′ 6= ∅. Observe
that solutions to this instance of k-set packing correspond to independent sets in this
graph. The algorithms maintain a solution F0 ⊆ F and try to replace it with a larger,
but similar solution. They try to use a disjoint family X ⊆ F \ F0 and replace F0 by
F ′0 = (F0 \ NG(X)) ∪ X, where G = G(F) is the conflict graph. Note that NG(X) ∩ F0
consists exactly of those members of F0 which cannot be present together with X in a single
disjoint family. It is reasonable to preform this operation if the resulting family F ′0 is larger
than F0, or equivalently |NG(X) ∩ F0| < |X|. This leads to a notion of improving sets,
defined for F0 ⊆ F as disjoint families X ⊆ F \ F0 such that |NG(X) ∩ F0| < |X|. The
classic approach to the k-set packing problem is to search for improving sets of sufficiently
large constant size.

I Fact 1 (Weak rule). There exists an algorithm that, given a k-set-packing instance F
and a disjoint family F0 ⊆ F , in |F|O(r) time determines whether there exists an improving
set X ⊆ F \ F0 of size at most r and if so, finds such an improving set.

The novel idea of [7] was to consider larger improving sets satisfying structural properties,
which allow for efficient detection of these sets. This is achieved using a structural parameter
of a graph called pathwidth. In this paper we only use some results of [7] as a black-box,
so we do not need to recall the relatively complex definition of pathwidth. Pathwidth of
an undirected graph G, denoted as pw(G), does not exceed the number of vertices in any
connected component of G. Pathwidth of an improving set X is defined as pw(G[X ∪ F0])
where G = G(F) is the conflict graph. The following theorem uses techniques of fixed-
parameter tractability to find improving sets of logarithmic size and constant pathwidth.

I Theorem 2 (Strong rule: [7], Theorem 3.6). There is an algorithm that, given a k-set-
packing instance F and a disjoint family F0 ⊆ F , in |F|O(C·k) time determines whether
there exists an improving set X ⊆ F \ F0 of size at most C log |F| and pathwidth at most C,
and if so, finds such an improving set.

Note that pw(G[X ∪ F0]) ≤ |X ∪ (F0 ∩ N(X))| < 2|X| for any improving set. Thus, the
strong rule is able to find all improving sets discovered by the weak rule if only we set C ≥ 2r.
Moreover, let us note that both rules are monotone in a certain sense.
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I Observation 3. If no improving set can be found using Theorem 2 for F0 ⊆ F , then
one still cannot find an improving set if the instance F is restricted to any F ′ such that
F0 ⊆ F ′ ⊆ F . The weak rule of Fact 1 enjoys the same property.

We say that a partial orientation F is a local optimum if the underlying family F0 cannot
be improved using the reduction rule in question. For the weak rule of Fact 1 (with fixed r)
we call such orientations weak local optima and for the strong rule of Theorem 2 (with
fixed C) — strong local optima.

The remaining part of this paper is devoted to the analysis how large these local optima
can be compared to the global optimum. More precisely, we show that for every ε > 0
there is an appropriate choice of parameters such that |F | ≥ ( 3

4 − ε)|OPT | for any weak
local optimum F and global optimum OPT , while for any strong local optimum this can be
improved to |F | ≥ ( 4

5 − ε)|OPT |. The parameters r = rε and C = Cε do not depend on the
instance, so the running time of the implementations of both local-search rules is polynomial.

3 Tools from k-set packing

In this section we recall and reinterpret several pieces of the analyses of the local-search
algorithms for k-set packing; see [12, 7]. We focus on the subgraph of the conflict graph
G(F) induced by two solutions: a local and a global optimum. Sets belonging to both
families can be ignored, which leads to a bipartite graph with degrees bounded by k. The
following results are stated in the language of abstract bipartite graphs so that we can later
use some of them in a slightly different context.

I Definition 4. Let H = (A,B,E(H)) be a bipartite graph. A set X ⊆ B is called improving,
if |NH(X)| < |X|.

A slightly simpler version of the following lemma is a part of the analysis of the classic
(k + ε)/2-approximation local search, which goes back to Hurkens and Schrijver [12]. Here,
we observe that the worst-case (k + ε)/2 ratio can be attained only if (almost) all vertices
in A are of degree k. If a constant fractions of vertices does not satisfy this property, our
variant lets us derive a better bound.

I Lemma 5. Fix a positive integer k ≥ 3. For every ε > 0 there exists a constant cε
satisfying the following property. Let H = (A,B,E(H)) be a bipartite graph with degrees not
exceeding k. If there is no improving set X ⊆ B with |X| ≤ cε, then

|B| ≤ k−1+ε
2 |A|+ 1

2 |{a ∈ A : degH(a) = k}|.

The proof below is based on the proof of Lemma 3.11 in [7], where the following auxiliary
lemma is (implicitly) proved. For completeness, we provide its proof in the Appendix.

I Lemma 6 ([7]). Fix a positive integer k ≥ 3 and a real number ε > 0. Let H = (A,B,E(H))
be a bipartite graph with degrees not exceeding k. If there is no improving set X ⊆ B with
|X| ≤ 2(k + 1)ε−1 , then there exists an induced subgraph H ′ = H[A′, B′] such that:
(a) |A \A′| = |B \B′|,
(b) there are no vertices b ∈ B′ with degH′(b) = 0,
(c) there are at most ε|A| vertices b ∈ B′ with degH′(b) = 1.

Proof of Lemma 5. Lemma 6 applied to the graph H gives its subgraph H ′ = H[A′, B′].
For every integer d define B′d = {b ∈ B′ : degH′(b) = d} and B′d+ = {b ∈ B′ : degH′(b) ≥ d}.
Let us count edges of H ′: clearly, |E(H ′)| ≤ (k − 1)|A′| + |{a ∈ A′ : degH′(a) = k}| since
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the degrees do not exceed k. On the other hand, |E(H ′)| ≥ |B′1|+ 2|B′2+|, and consequently
|B′1|+ 2|B′2+| ≤ (k − 1)|A′|+ |{a ∈ A′ : degH′(a) = k}|. Combining this inequality with the
properties of H ′ following from Lemma 6, we get

2|B| = 2|B \B′|+ 2|B′| = 2|A \A′|+ 2|B′1|+ 2|B′2+| ≤
2|A \A′|+ |B′1|+ (k − 1)|A′|+ |{a ∈ A′ : degH′(a) = k}| ≤

(k − 1 + ε)|A| + |{a ∈ A : degH(a) = k}|,

that is, |B| ≤ k−1+ε
2 |A|+ 1

2 |{a ∈ A : degH(a) = k}|. J

The following lemma is a slightly stronger variant of Lemma 3.11 in [7]. Again we provide
a better bound whenever a constant fraction of vertices in A does not have full degree.

I Lemma 7. Fix a positive integer k ≥ 3. For every ε > 0 there exists a constant Cε
satisfying the following property. Let H = (A,B,E(H)) be a bipartite graph with degrees
not exceeding k. If there is no improving set X ⊆ B such that |X| ≤ Cε log |V (H)| and
pw(H[NG[X]]) ≤ Cε, then

|B| ≤ (k3 + ε)|A|+ 1
3 |{a ∈ A : degH(a) ≥ k}|.

Proof. The proof is similar to that of Lemma 5. Instead of Lemma 6, we use the following
auxiliary result proved in [7]. The construction of the subgraph H ′ is the same as in the
proof of Lemma 6 (see Appendix). However, to derive point (4), formulated as Claim 3.12
in [7], the wider range of possibilities for X is exploited.

I Claim 8 ([7]). For every ε > 0 the constant Cε can be chosen so that there exists an
induced subgraph H ′ = H[A′, B′] such that:
(a) |A \A′| = |B \B′|,
(b) there are no vertices b ∈ B′ with degH′(b) = 0,
(c) there are at most ε|A| vertices b ∈ B′ with degH′(b) = 1,
(d) there are at most (1 + ε)|A′| vertices b ∈ B′ with degH′(b) = 2.

Again, for every integer d define B′d = {b ∈ B′ : degH′(b) = d} and B′d+ = {b ∈ B′ :
degH′(b) ≥ d}. As before, we count edges E(H ′). We have |E(H ′)| ≥ |B′1|+ 2|B′2|+ 3|B′3+|
and |E(H ′)| ≤ (k − 1)|A′|+ |{a ∈ A′ : degH′(a) = k}|. Summing up, we obtain

3|B| = 3|B \B′|+ 3|B′1|+ 3|B′2|+ 3|B′3+| = 3|A \A′|+ 2|B′1|+ |B′2|+ |E(H ′)| ≤
3|A \A′|+ 2ε|A|+ (1 + ε)|A′|+ (k − 1)|A′|+ |{a ∈ A′ : degH′(a) = k}| ≤
3|A \A′|+ k|A′|+ 3ε|A|+ |{a ∈ A′ : degH(a) = k}| ≤

(k + 3ε)|A| + |{a ∈ A : degH(a) = k}|,

that is, |B| ≤ (k3 + ε)|A|+ 1
3 |{a ∈ A : degH(a) = k}|. J

4 Reduction to simple instances

An instance I = (G, d) of UDPO is called simple if d+(v), d−(v) ∈ {0, 1} for every v ∈ V (G)
and proper if degG(v) ≥ max(d+(v), d−(v)) > 0 for every v ∈ V . Clearly, any instance can
be easily reduced to an equivalent proper instance by decreasing the degree constraints.
In this section we show that it suffices to analyze the local-search algorithms for simple
instances. More precisely, we prove that the worst-case ratio between the sizes of a local and
a global optima is attained already for simple instances. Although this is stated below as an
existential result, our reduction is constructive and it could be efficiently implemented.
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I Theorem 9. Fix a monotone local-search rule for 3-set packing. Suppose that there
exists an instance I of UDPO with a locally-optimum partial orientation F such that
|F | = α|OPTI |. Then there exists a simple instance I ′ of UDPO with a locally-optimum
partial orientation F ′ satisfying |F ′| = α|OPTI′ |.

Let I = (G, d) be an arbitrary instance. For a pair of distinct non-adjacent vertices
u, v ∈ V (G) we define the operation of joining u and v as follows: u and v are identified
in G into a single vertex w and their degree constraints for w are obtain by summing the
respective constraints for u and v.

Let us analyze how joining can be interpreted in terms of 3-set packing instances
obtained through the reduction of Section 2.1. Let F and F ′ families of 3-sets produced from
instances I and I ′, respectively before and after joining. The universes U = V + ∪ V − ∪ E
and U ′ = V ′+ ∪ V ′− ∪E′ of both families can regarded as equal. This is because identifying
non-adjacent vertices preserves the edge-set of the graph and because d+(u) copies of u and
d+(v) copies of v in V + can be identified with d+(w) = d+(u) + d+(v) copies of w in V ′+
(similarly for V − and V ′−). In this setting all 3-sets in F also belong to F ′ (though F ′ might
be a strict superset of F). Consequently, if a partial orientation is feasible in I, it is also
feasible in the resulting instance I ′, but the converse does not necessarily hold.

If I ′ is obtained from I by joining u and v into w, we say that I can be obtained from I ′

by splitting w. Splitting is said to preserve a partial orientation A, if A is feasible in I ′ and
remains feasible in I.

u v

join

split

w

I Lemma 10. Let I = (G, d) be a proper instance with two feasible partial orientations A,B.
If max(d+(v), d−(v)) ≥ 2 for some v ∈ V (G), then one can split v so that both A and B are
preserved and the resulting instance I ′ is proper.

Proof. First, let us introduce an auxiliary vertex v′ connected to v by d+(v) + d−(v) parallel
edges. We extend d to v′ setting the constraints in v′ large enough to accommodate all
edges incident to v′. Note that this operation does not alter the original edges of G and the
constraints at their endpoints. Hence, it has no effect on feasibility of A or B, in particular
on whether one can split v.

Now, let us modify A to obtain A′ by orienting d+(v)− deg+
A(v) edges from v to v′ and

d−(v) − deg−A(v) edges from v′ to v. Note that A′ is feasible in the extended graph and
the degree constraints for v are tight. Analogously, we extend B to B′. A larger partial
orientation may only be harder to preserve, so it suffices to prove that one can split v
preserving A′ and B′. Equivalently, the construction in this paragraph lets us assume that
deg+

A(v) = deg+
B(v) = d+(v) and deg−A(v) = deg−B(v) = d−(v).

Both for A and B we classify edges of G incident to v into three types: oriented towards
v (−), oriented towards the other endpoint (+) and not included in the orientation (0). In
total, we get a partition of the set δ(v), consisting of edges incident to v, into nine sets Eab
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with a, b ∈ {+,−, 0}; here a corresponds to the orientation in A and b to the orientation
in B.

In some situations, one can clearly take a few edges incident to v, and split v into two
vertices, one new vertex ṽ incident to the selected edges, and the other, still denoted as v,
incident to the remaining edges. We refer to this operation as splitting out some edges. Note
that in order to preserve both A and B, we need to split out edges so that for ṽ the number
incoming edges is the same in both orientations, similarly for the outgoing arcs. We shall
make sure that this number is always 0 or 1, i.e., (d+(ṽ), d−(ṽ)) ∈ {(0, 1), (1, 0), (1, 1)}. The
constraints at v are decreased accordingly.
1. If E++ 6= ∅, one can split out a single edge e ∈ E++ setting constraints (1, 0);

symmetrically if E−− 6= ∅ one sets (0, 1).
2. If E+− 6= ∅ and E−+ 6= ∅, one can split out two edges – one of each type, setting

constraints (1, 1).
3. If E0+ 6= ∅ and E+0 6= ∅, one can split out two edges – one of each type, setting constraints

(1, 0); symmetrically if E0− 6= ∅ and E−0 6= ∅ one sets (0, 1).
4. If E+− 6= ∅, E0+ 6= ∅, and E−0 6= ∅, one can split out three edges – one of each type,

setting constraints (1, 1); symmetrically, if E−+ 6= ∅, E+0 6= ∅, and E0− 6= ∅, one also
sets (1, 1).

We shall prove that one of these rules is always applicable. Note that the resulting
instance is guaranteed to be proper as we have max(d+(v), d−(v)) ≥ 2, so it is impossible to
leave v with both constraints equal to 0, which is forbidden in proper instances.

We proceed by contradiction, showing that if no rule is applicable, then d+(v) = d−(v) = 0,
which is impossible because I is proper. Let nab = |Eab|. Recall that we have made an
assumption that deg+

A(v) = deg+
B(v) = d+(v) and deg−A(v) = deg−B(v) = d−(v), which implies

the following equalities:

n0+ + n++ + n−+ = d+(v) = n+0 + n++ + n+−,

n0− + n+− + n−− = d−(v) = n−0 + n−+ + n−−.

If n++ > 0 or n−− > 0 we could apply rule 1. Therefore

n0+ + n−+ = d+(v) = n+0 + n+−,

n0− + n+− = d−(v) = n−0 + n−+.

If n+− > 0 and n−+ > 0 we could apply rule 2; without loss of generality we assume n+− = 0
and thus

n0+ + n−+ = d+(v) = n+0,

n0− = d−(v) = n−0 + n−+.

Consequently, we have n+0 ≥ n0+ and n0− ≥ n−0. Therefore, if n0+ > 0 or n−0 > 0, we
could apply rule 3, which means that both these values are equal to 0 and

n0− = n+0 = n−+ = d+(v) = d−(v).

However, if the common value of these variables was not equal to 0, we could apply rule 4.
This way we get the announced contradiction. J

I Corollary 11. If I is a proper instance with feasible partial orientations A and B, then
with a finite sequence of vertex splitting preserving both A and B, one can obtain a simple
proper instance I ′.
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Proof. It suffices to exhaustively apply Lemma 10. Observe that this process must terminate,
as vertex splitting increases the number of vertices and changes neither D+ =

∑
v∈V (G) d

+(v)
nor D− =

∑
v∈V (G) d

−(v), while |V (G)| ≤ D+ +D− for every proper instance. J

For a proof of Theorem 9, it suffices to apply Corollary 11 for A = F and B = OPTI .
Vertex splitting may only reduce the family of feasible partial orientations, so OPTI is still a
global optimum. Also, this operation preserves F as a local optimum with respect any fixed
monotone local-search rule. This follows from the fact that vertex splitting can be seen as
removing sets in the underlying instance of 3-set packing (without changing the size of
the universe), and monotonicity means that removing sets from the universe does not make
finding an improving set easier.

Therefore, Corollary 11 gives a simple instance I ′ for which F and OPTI are still a local
and a global optimum, respectively.

5 Another conflict graph for simple instances

We start the analysis of the local-search algorithms with a different construction of a conflict
graph for a pair of feasible partial orientations A and B in a simple instance I of UDPO.
The construction exploits the properties of simple instances and does not naturally generalize
to arbitrary ones.

Let us consider an undirected graph G′ = (V (G), A ∩ B) and let C be the family of
connected components of G′. For a connected component C ∈ C we define δA[C] as the set
of arcs e ∈ A incident to exactly one vertex of C; analogously we define δB [C].

I Fact 12. For every component C ∈ C we have |δA[C]| ≤ 2 and |δB [C]| ≤ 2.

Proof. As I is a simple instance, all the vertices in G′ are of degree at most two, which
means that C is a path or a cycle. Consequently, in either case, again by the assumption
that I is simple, we have |δA[C]| ≤ 2 and |δB [C]| ≤ 2, because, both in A and in B, at most
2|C| arc endpoints can be incident to C and at least 2(|C| − 1) of these are endpoints of arcs
induced by C. J

Let A′ = {e ∈ A : ē ∈ A \ B} and B′ = {e ∈ B : ē ∈ B \ A}. We construct a bipartite
graph H = (A′, B′, EH) so that a ∈ A′ is adjacent to b ∈ B′ whenever there is a component
C ∈ C such that simultaneously a ∈ δA[C] and b ∈ δB[C]. Since every arc in A′ or B′ is
incident to exactly two components, Fact 12 lets us easily bound the degrees in H.

I Corollary 13. The degree of every vertex in H is at most 4.

The following lemma lets us interpret H as a conflict graph between A and B.

I Lemma 14. For any X ⊆ B′ the following three-step procedure modifies A into another
feasible partial orientation AX :
(a) remove all arcs in NH(X),
(b) add all arcs in X,
(c) reverse all arcs in components C such that X ∩ δB [C] 6= ∅.

Proof. We shall prove that that resulting orientation AX satisfies the degree constraints for
every vertex v ∈ V (G). Let C be the component of v in G′ (possibly C = {v}).

If X ∩ δB[C] 6= ∅, we shall prove that arcs incident to v in AX form a subset of arcs
incident to v in B. Indeed, by construction of H, all arcs e ∈ A′ incident to C were removed
in step (1). Moreover, all arcs induced by C were reoriented in step (3) (from the orientation
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consistent with A to the orientation consistent with B). We might have added some arcs
e ∈ X incident to v in step (2) but these arcs are also present in B. Similarly, if X∩δB [C] = ∅,
we shall prove that arcs incident to v in AX form a subset of arcs incident to v in A. Indeed,
no arcs incident to C could have been added in step (1) and the arcs induced by C were not
reoriented in step (3). The only possible changes were removals in step (1).

In both cases we have shown that the arcs incident to v in AX form a subset of arcs
incident to v in another feasible partial orientation. Hence, AX is feasible at any vertex v. J

Unfortunately, improvements through Lemma 14 in general might yield reorientation of
many edges, which is unfeasible for our local-search rules. Thus, we slightly restrict the graph
H to make sure that small improving sets in H yield small improving sets in the underlying
3-set packing instance.

I Lemma 15. Let I be a simple instance of UDPO and let A,B be a pair of feasible partial
orientations. For any ε > 0 there exists a bipartite graph Hε = (A′, Bε, EHε) such that:
(a) Bε ⊆ B′ and |Bε| ≥ |B′| − ε|A|,
(b) degrees in Hε do not exceed 4,
(c) for any X ⊆ Bε there is a feasible partial orientation AX with |AX | = |A| + |X| −
|NHε(X)| and |AX \A| ≤ (1 + 4ε−1)|X|.

Proof. Let Cε ⊆ C consist of components inducing at least 2ε−1 edges in G′. Note that
the total size of components C ∈ C is |A ∩ B| ≤ |A|, so |Cε| ≤ ε

2 |A|. We set Bε as the
set of arcs e ∈ B′ which are not incident to any component C ∈ Cε. Fact 12 implies
|B′ \Bε| ≤ 2|Cε| ≤ ε|A| as claimed in (1). We take Hε as the induced subgraph H[A,Bε], so
(2) immediately follows from Corollary 13.

Note that NHε
(X) = NH(X) for any X ⊆ Bε. Thus, we can apply Lemma 14 to obtain

the orientation AX of the desired size. For every arc b ∈ X step (3) yields reorientation of
arcs induced by at most two components C ∈ C \ Cε. These components consist of up to 2ε−1

edges each, so in total we reorient no more than 4ε−1|X| arcs. Together with X itself, this
gives at most (1 + 4ε−1)|X| arcs in AX \A. J

Next, we analyze this conflict graph using tools originally developed for the classic
local-search (2 + ε)-approximation of 4-set packing.

I Lemma 16. For any δ > 0 there exists a constant rδ such that for any simple instance I
of UDPO the following condition holds. Let F be a weak local optimum (with r = rδ) and
let OPT be an optimum partial orientation. Then |OPT \ F | ≤ 2|F \OPT |+ δ|F |.

Proof. We proceed with a proof by contradiction for rδ to be specified later. We apply
Lemma 15 to A = F , B = OPT and ε = 1

2δ to obtain a bipartite graph Hε. Note that
|Bε| ≥ |OPT \ F | − ε|F | ≥ 2|F \OPT |+ ε|F | ≥ (2 + ε)|F \OPT | = (2 + ε)|A′|.

We plug Hε to Lemma 5 for k = 4 to conclude that there is an improving set X ⊆ Bε of
size at most cε. Lemma 15(3) implies that there exists a feasible orientation FX such that
|FX | > |F | and |FX \F | ≤ (1 + 4ε−1)cε. Thus, setting rδ = (1 + 8δ−1)cδ/2 we can make sure
that the weak rule of Fact 1 is able to perform the underlying improvement. This contradicts
the assumption that F is a weak local optimum. J

6 Analysis

Finally, we combine Lemma 16 with generic properties of 3-set packing local optima.

APPROX/RANDOM’15



222 Approximating Upper Degree-Constrained Partial Orientations

I Theorem 17. For every ε > 0 there exists a constant rε such that for any instance of
UDPO and any feasible partial orientation F which is a weak local optimum (with r = rε),
we have |OPT | ≤ ( 4

3 + ε)|F |, where OPT is a maximum feasible partial orientation.

Proof. By Theorem 9, it suffices to prove the claim for simple instances only. Let C = OPT ∩
F . Note that F \C and OPT \C induce a bipartite subgraph H = (F \C,OPT \C,E(H))
of the conflict graph in the underlying instance of 3-set packing.

Suppose degH(e) = 3 for some arc e ∈ F . Note that e = uv is represented by a 3-set
{u+

i , v
−
j , ē} for some indices i ≤ d+(u) and j ≤ d−(v). The three neighbours of e in H are

represented by disjoint 3-sets intersecting {u+
i , v

−
j , ē}. One of them must contain ē and since

e /∈ OPT , we conclude that eR ∈ OPT . Consequently, |{e ∈ F : degH(e) = 3}| ≤ |OPT ∩F |.
We set rε at least as large as in Lemma 16 and as cε in Lemma 5 for k = 3. The latter

result yields

|OPT | = |C|+ |OPT \ C| ≤ |C|+ (1 + ε)|F \ C|+ 1
2 |{e ∈ F \ C : degH(e) = 3}| ≤

(1 + ε)|F | + 1
2 |OPT ∩ F |.

If |OPT ∩ F | ≤ 2
3 |F |, this already concludes the proof. Otherwise |F \OPT | ≤ 1

3 |F | and we
apply Lemma 16 to get |OPT \ F | ≤ 2|F \OPT |+ ε|F |, and consequently obtain

|OPT | = |OPT \ F |+ |OPT ∩ F | ≤ 2|F \OPT |+ |OPT ∩ F |+ ε|F |
= |F \ OPT | + (1 + ε)|F | ≤ ( 4

3 + ε)|F |,

which concludes the proof. J

I Theorem 18. For every ε > 0 there exists a constant Cε such that for any instance of
UDPO and any feasible partial orientation F which is a strong local optimum (with C = Cε),
we have |OPT | ≤ ( 5

4 + ε)|F |, where OPT is a maximum feasible partial orientation.

Proof. We apply the same argument except that we use Lemma 7 instead of Lemma 5. We
take Cε at least as large as in Lemma 7 for k = 3 and so that Cε ≥ 2rε from Lemma 16.
Then

|OPT | ≤ |C|+ (1 + ε)|F \ C|+ 1
3 |{e ∈ F \ C : degH(e) = 3}| ≤ (1 + ε)|F |+ 1

3 |OPT ∩ F |.

If |OPT ∩ F | ≤ 3
4 |F |, this already concludes the proof. Otherwise |F \OPT | ≤ 1

4 |F | and we
apply Lemma 16 to obtain |OPT | ≤ |F \OPT |+ (1 + ε)|F | ≤ ( 5

4 + ε)|F |. J
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A Proof of Lemma 6

I Lemma 6. Fix a positive integer k ≥ 3 and a real number ε > 0. Let H = (A,B,E(H))
be a bipartite graph with degrees not exceeding k. If there is no improving set X ⊆ B with
|X| ≤ 2(k + 1)ε−1 , then there exists an induced subgraph H ′ = H[A′, B′] such that:
(a) |A \A′| = |B \B′|,
(b) there are no vertices b ∈ B′ with degH′(b) = 0,
(c) there are at most ε|A| vertices b ∈ B′ with degH′(b) = 1.

Proof. We inductively construct a sequence of induced subgraphs (Hi)`i=0 with H0 = H and
H` = H ′ such that each Hi = H[Ai, Bi] satisfies the following properties:
1. |A \Ai| = |B \Bi| ≥ εi|A|.
2. in Hi there is no subset X ⊆ Bi such that |X| ≤ 2(k + 1)ε−1−i and |NHi

(X)| < |X|,

Note that H0 = H trivially satisfies both these properties. For the inductive step, consider
the graph Hi. Let us classify vertices of Bi based on their degree in Hi: we define Bdi as the
set of vertices of degree d, and Bd+

i as the set of vertices of degree at least d. Note that the
property 1. implies i ≤ 1

ε , and thus 2(k + 1) 1
ε−i ≥ 2. Consequently, by property 2., B0

i = ∅
and the vertices of B1

i have distinct neighbours (otherwise we would have an improving set
of size one or two, respectively).
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XX ′ \X

NHi+1(X)

Figure 1 Lifting an improving set X in Hi+1 to an improving set X ′ in Hi. Gray vertices belong
to Hi but not to Hi+1.

We consider two cases, depending on whether |B1
i | ≤ ε|A|. If this inequality is satisfied,

we shall prove that we can terminate at i = ` and return H ′ = Hi. The inequality directly
corresponds to (3) in the statement of the lemma. Moreover, B0

i = ∅ is equivalent to (2) and
the property 1. gives (1).

Otherwise, if |B1
i | > ε|A|, we perform a further step of the construction. We build Hi+1

setting Bi+1 = B2+
i and Ai+1 = Ai \NHi

[B1
i ]. As we have noted, vertices in B1

i do not share
neighbours, so |Ai \ Ai+1| = |B1

i | = |Bi \ Bi+1|, and consequently |B \ Bi+1| = |A \ Ai+1|.
Also, we clearly have |B \Bi+1| ≥ εi|A|+ |B1

i | ≥ ε(i+ 1)|A|.
Hence, it suffices to show that Hi+1 satisfies property 2. Take X ⊆ Bi+1 such that

|NHi+1(X)| < |X|. We construct X ′ ⊆ Bi with |NHi
(X ′)| < |X ′| such that |X ′| ≤ (k+1)|X|.

Clearly, if X then contradicts 2. for Hi+1, so does X ′ for Hi. Recall that Hi[Bi \Bi+1, Ai \
Ai+1] is a perfect matching. We denote the unique neighbour of a vertex v in this graph
by m(v). We simply define X ′ = X ∪ {m(a) : a ∈ (Ai \ Ai+1) ∩ NHi

(X)} (see also
Figure 1). Then NHi(X ′) = NHi(X) = NHi+1(X) ∪ {m(b) : b ∈ X ′ \ X}. Consequently,
|NHi

(X ′)| = |NHi+1(X)| + |X ′ \ X| < |X| + |X ′ \ X| = |X ′|. Moreover, by the degree
restriction in H, we have |NHi

(X)| ≤ k|X|, and thus |X ′| ≤ |X|+ |NHi
(X)| ≤ (k + 1)|X|,

as claimed.
Finally, note that the property 1. implies i ≤ ε−1 so the construction terminates. J
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Abstract
A hit rate curve is a function that maps cache size to the proportion of requests that can be
served from the cache. (The caching policy and sequence of requests are assumed to be fixed.)
Hit rate curves have been studied for decades in the operating system, database and computer
architecture communities. They are useful tools for designing appropriate cache sizes, dynam-
ically allocating memory between competing caches, and for summarizing locality properties of
the request sequence. In this paper we focus on the widely-used LRU caching policy.

Computing hit rate curves is very efficient from a runtime standpoint, but existing algorithms
are not efficient in their space usage. For a stream of m requests for n cacheable objects, all
existing algorithms that provably compute the hit rate curve use space linear in n. In the
context of modern storage systems, n can easily be in the billions or trillions, so the space usage
of these algorithms makes them impractical.

We present the first algorithm for provably approximating hit rate curves for the LRU policy
with sublinear space. Our algorithm uses O

(
p2 log(n) log2(m)/ε2

)
bits of space and approximates

the hit rate curve at p uniformly-spaced points to within additive error ε. This is not far from
optimal. Any single-pass algorithm with the same guarantees must use Ω(p2 +ε−2 +logn) bits of
space. Furthermore, our use of additive error is necessary. Any single-pass algorithm achieving
multiplicative error requires Ω(n) bits of space.
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1 Introduction

Caches are a fundamental concept in the design of computer systems. They are a mechanism
for addressing the tradeoff between capacity and performance of different memory technologies.
Even the early computers of the 1950s involved several memory technologies, and the interplay
between these memories led to the foundational research on caching mechanisms in the 1960s.

The importance of caching is even more acute today. The memory hierarchy of a typical
modern computer involves three levels of CPU caches, main memory, a mixture of solid-state
and spinning disks for secondary storage, not to mention network file storage and web caches.
The performance of nearly every modern computer depends crucially on caching mechanisms
that aim to store the most appropriate data in the fastest memory.

A hit rate curve is a function that shows the performance benefit of caching as a function
of the cache size. The study of hit rate curves began in the 1960s as computer designers aimed
to optimize the price-performance ratio of their systems. One of the earliest discussions of
hit rate curves appears in Belady’s seminal 1966 paper [4] on caching and paging. Naturally,
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the question of how to efficiently compute a hit rate curve arose soon thereafter, and several
algorithms were developed in the 1970s [19, 5, 25].

Although hit rate curves are not well-known within the theoretical computer science
community, they feature prominently in the computer architecture and systems communities.
Hit rate curves have been used in memory partitioning [27, 32, 26], garbage collection
[30], program analysis [10, 31], workload phase detection [24], and cloud computing [16, 6].
CloudPhysics Inc., a datacenter performance analytics company, has recently developed a
cloud-based workload analysis system using hit rate curves [28].

There are two key reasons for the resurgence of interest in hit rate curves. The first
is the increasing computational penalty of cache misses. Over the past forty years, CPU
speeds have improved roughly a thousandfold, whereas the latency of spinning disks has
barely improved tenfold. Consequently, cache misses in storage systems are increasingly
costly from a computational standpoint: there has been a substantial increase in the number
of computational steps that are wasted while waiting to retrieve the data from disk. This
phenomenon motivates the study of more computationally intensive cache analysis to avoid
costly cache misses.

The second reason for the interest in hit rate curves is the increased amount of cache
sharing, particularly due to the use of virtualization. CPU caches are shared among cores
and threads; memory and solid-state storage devices are shared among processes and virtual
machines. The marginal utility of increasing a process’ cache allocation depends on the
resulting performance improvement, which itself is determined by that process’ hit rate curve.
Consequently, hit rate curves are a useful ingredient for effective cache allocation.

Improved algorithms for computing hit rate curves have been developed over the years,
but primarily by applied researchers rather than by theoretical algorithms researchers
[5, 22, 1, 10, 32, 13, 21, 28]. There are two main goals of these improvements. The first is
improved runtime, e.g. [13]: CPU cache analysis typically involves a fairly small data set
but very high speeds, so performing this analysis online requires very fast runtime. The
second is improved space usage, e.g. [28]: storage cache analysis typically involves extremely
large data sets but at much lower speeds, so space usage is the primary concern. Typically a
storage system cannot afford even a single bit of main memory for each block that appears
in the secondary storage. Accordingly, most of the algorithms for computing hit rate curves
in a storage context involve some sort of sampling or compression, but without rigorous
guarantees.

This paper is the first to rigorously study space-efficient algorithms for computing hit rate
curves. We focus on the LRU (Least Recently Used) caching policy. LRU and its variants
are by far the most widely used caching policy for storage systems: the Linux, MacOS
and Windows virtual memory systems all use approximations to LRU. In contrast, CPU
caches tend to use simpler policies as speed is the primary concern. One policy that could
potentially supplant LRU in a storage context is ARC [20], but its use has been hampered
by intellectual property concerns.

1.1 Our Results
Our main result is an algorithm that computes an approximate hit rate curve for the LRU
caching policy with a workload of length m involving n cacheable objects. The approximate
hit rate curve achieves additive error ε at p uniformly-spaced points. The algorithm performs
a single pass and uses O

(
p2 log(n) log2(m)/ε2

)
bits of space.

We also prove lower bounds on the space. Any single-pass algorithm that achieves additive
error ε at p uniformly-spaced points must use Ω(min

{
p2 + ε−2 + logn, n

}
) bits of space.
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Moreover, our use of additive error is necessary: any single-pass algorithm that achieves
multiplicative error requires Ω(n) bits of space.

1.1.1 Practical Impact
It is often the case that an improved theoretical understanding of a problem leads to improved
results in practice as well. That is indeed the case with the present work. Our algorithm
has been incorporated into the enterprise storage system built by Coho Data, Inc. In these
multi-terabyte storage systems, n and m are on the order of billions, whereas the hit rate
curve as displayed to the user only requires p on the order of dozens, so the space used by
our algorithm is dramatically less than previous methods. At the time of this writing, the
Coho Data system is reporting live workload statistics for over a thousand virtual machines
deployed in 30 customer environments, representing a level of workload characterization and
insight that has not been possible in the past. A discussion of the practical aspects of this
system was published in OSDI 2014 [29].

1.2 Preliminaries
In a caching system, there are n objects which can potentially be stored in the cache. Using
the terminology of disk caches, we will refer to each item as a block, and we will identify the
blocks with the integers [n] = {1, . . . , n}. Blocks are requested at discrete points in time,
which for simplicity we will always assume to be indexed by the set [m] = {1, . . . ,m}. There
is a sequence of blocks B = (b1, . . . , bm) where bt ∈ [n] for each t ∈ [m]. We will refer to B
as a sequence of requests, and say that the block bt is requested at time t. A caching policy
is a scheme for maintaining a set, called the cache, of at most k blocks. At each time step t,
the block bt is added to the cache, and some block may need to be removed to ensure that
the cache size is at most k. If block bt was already in the cache at time t then this request is
called a hit, otherwise it is called a miss.

For a fixed sequence of requests B, a fixed size k, and a fixed caching policy, the hit rate
is the fraction of requests that are a hit. The typical goal of a caching policy is to maximize
the hit rate. If a caching policy is parameterized by the size k, then the hit rate curve is the
function mapping k to the hit rate under this policy with cache size k.

The LRU caching policy can be defined concisely as: the cache consists of the k most
recently requested distinct blocks. Whenever a miss occurs, the newly requested block must
be inserted into the cache, and the least recently requested block must be removed from the
cache (assuming that the cache was already full). LRU caches satisfy the inclusion property:
for any fixed sequence of requests, the LRU cache of size k is, at each time step, a subset
of the LRU cache of any size K ≥ k. This follows directly from the definition of the LRU
caching policy. Therefore a system with a cache of size K can easily simulate, or determine
the hit rate, for any smaller cache. In the extreme case of K = n, the hit rate for every cache
size (i.e., the entire hit rate curve) can be determined. This is the key observation that was
exploited in previous algorithms [19].

1.3 The Main Idea
To understand this observation in more detail, consider a request bt at time t, let r < t

be the time of the previous request for block bt = br, and let d = |{br, . . . , bt−1}| be the
number of distinct blocks that were requested since time r. The request at time t would be a
hit if the cache size k were at least d, and a miss for any cache size k < d or if r does not
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exist. Thus, to compute the hit rate curve, it suffices to determine, for every request bt, the
number of distinct blocks that were requested since the previous request for bt. All previous
hit rate curve algorithms either compute this number using a dictionary data structure or
estimate it using statistical arguments [5, 22, 1, 10, 32, 13, 21, 28]. The statistical arguments
unfortunately do not give worst-case guarantees.

Our main idea is very natural. We estimate the number of distinct blocks that were
requested since the previous request for bt using an F0-estimator (distinct element estimator)
from the streaming algorithms literature. That is not the end of the story, of course. A
single F0-estimator would only give the number of distinct elements for a single sequence of
requests, whereas we require such an estimate for all suffixes of B. This leads to the fruitful
idea of using a sliding window F0-estimator [9, 7] which, suitably modified, can provide the
required estimate for all suffixes. Unfortunately this does not solve the problem either: the
algorithm cannot easily determine which suffix to use because it cannot afford to store the
previous request time of all blocks – that would also require Ω(n) bits of space. Ultimately,
our algorithm avoids this issue by continuously measuring the contribution from all suffixes,
and using those contributions to update the histogram in a somewhat intricate way.

1.4 Notation
To state our results precisely, let us fix some notation. Recall that we are only interested in
requests that occur at discrete points in time indexed by t ∈ {1, . . . ,m}. The set of requested
blocks between time t′ and strictly before time t is:

B(t′, t) = { bi : i ∈ [m] and t′ ≤ i < t } .

At time t, the most recent request for block bt occurred at time

R(t) = max { x : x < t and bx = bt } .

We define R(t) = −∞ if bt was not requested before time t. At time t, the number of distinct
blocks requested since the most recent request for block b is

D(t) =
{
|B(R(t), t)| (if R(t) > −∞)
∞ (otherwise).

As observed above, an LRU cache of size k has a hit at time t if and only D(t) ≤ k. The hit
rate curve is the function C : [n]→ [0, 1] for which C(k) is the hit rate for an LRU cache of
size k. Thus

C(k) = |{ t ∈ [m] : D(t) ≤ k }|/m.

In this paper we are concerned with computing the hit rate curve at p uniformly-spaced
points, where p is a parameter. For simplicity, assume that n = pw, where w is an integer
that denotes the “width” between the points. The histogram of D (with width w) is the
function H : [p]→ N where

H(i) = |{ t ∈ [m] : (i− 1)w < D(t) ≤ iw }|. (1)

The fraction of requests that are hits with a cache of size xw is
∑x
i=1 H(i)/m. The hit rate

curve at the desired p uniformly-spaced points is

C(xw) =
x∑
i=1

H(i)/m ∀x ∈ [p].
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1.5 Statement of results
Our main algorithmic result is:

I Theorem 1. There is an algorithm, parameterized by p and ε, that performs a single pass
over the input B ∈ [n]m and produces an approximate hit rate curve Ĉ satisfying

C
(
(x− 1)w

)
− ε ≤ Ĉ(xw) ≤ C(xw) + ε ∀x ∈ [p+ 1], (2)

where C is the true hit rate curve for B. The algorithm uses O
(
p2 log(n) log2(m)/ε2

)
bits of

space.

The accuracy guarantee of (2) is unusual in that it involves approximation in the domain
(horizontal error) and in the range (vertical error) of the function. The following theorem
shows that both horizontal and vertical error are necessary: as ε→ n−1/2 or w → n1/2, we
have s→ Ω(n).

I Theorem 2. Suppose there is an algorithm A that uses s bits of space and outputs a
function Ĉ satisfying

C
(
(x− 1)w

)
− ε ≤ Ĉ(xw) ≤ C(xw) + ε ∀x ∈ [p+ 1] (3)

where n = pw, p ≥ 3 and ε ≤ 1/5. Then s ≥ Ω(min
{
p2 + 1/ε2 + log(n), n

}
).

In particular, this result shows that other authors’ claims of using “constant space” [28]
cannot hold in a worst-case sense. As mentioned earlier, our use of additive vertical error
in (2) is necessary. We show in Appendix C that any algorithm with multiplicative vertical
error must use linear space.

2 Deterministic Algorithms for Hit Rate Curves

It is obvious from the definitions that the hit rate curve C can be computed exactly in
polynomial time. It is not hard to see that it can be computed in O(m logn) time and O(n)
space using a balanced tree [5, 22, 1]. In this paper we are interested in approximations to C;
in particular, we are only concerned with its value at p uniformly-spaced points. We begin
with Algorithm 1 which computes those values. This algorithm can also be implemented in
O(m logn) time and O(n) space.

Algorithm 1: Algorithm for computing the hit rate curve at p = n/w uniformly-spaced
points.

1 Input: A sequence of requests (b1, . . . , bm) ∈ [n]m
2 Initialize the vector H ∈ Np with zeros
3 for t = 1, . . . ,m do
4 If D(t) is finite then increment H[dD(t)/we] by 1
5 B H[i] satisfies condition (1).
6 Output the hit rate curve values C(xw) =

∑x
i=1 H[i]/m for x ∈ [p].

This paper considers streaming algorithms that access the request sequence B in a single
pass. Such algorithms will not be able to compute the function D from scratch, and must
update H using a compact data structure that represents D. We define an abstract data
type called a suffix-structure to encapsulate that compact representation. A suffix-structure
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supports two operations, Register(t, b), which records that block b was requested at time t,
and GetSuffixF0(t), which estimates the number of distinct blocks requested since time t.
A trivial and inefficient implementation of a suffix-structure is shown in Algorithm 2.

Algorithm 2: A trivial suffix-structure.
1 c← 0
2 Function Register(t, bt):
3 B Assert t = c+ 1
4 A[t]← bt
5 c← t

6 Function GetSuffixF0(t):
7 B Assert t ≤ c
8 Return |{A[t], A[t+ 1], . . . , A[c]}|

Next we present Algorithm 3, our algorithm that uses a suffix-structure to approximate
hit rate curves. All algorithms in this paper for computing hit rate curves are simply
instantiations of Algorithm 3 that use different suffix-structures.

Algorithm 3: An algorithm for approximating the hit rate curve at p uniformly-spaced
points, given an implementation S of a suffix-structure.

1 Input: A sequence of requests (b1, . . . , bm) ∈ [n]m
2 Initialize the vector H ∈ Np with zeros
3 B For convenience, let τi denote (i− 1)w + 1
4 for t = 1, . . . ,m do
5 B Receive request bt
6 S.Register(t, bt)
7 Let c← dt/we
8 for i = 1, . . . , c do
9 Let Xi(t+ 1)← S.GetSuffixF0(τi)

10 for i = 1, . . . , c− 1 do
11 Increment H[dXi(t)/we] by

(
Xi+1(t+1)−Xi+1(t)

)
−
(
Xi(t+1)−Xi(t)

)
12 Increment H[dXc(t)/we] by 1−

(
Xc(t+1)−Xc(t)

)
13 Output the hit rate curve approximation given by C(xw) =

∑x
i=1 H[i]/m for x ∈ [p].

Consider executing Algorithm 3 using a trivial suffix-structure. We now show that its
output differs from that of Algorithm 1 only by the presence of horizontal error.

I Lemma 3. Let C be the hit rate curve computed by Algorithm 1. Let Ĉ be the hit rate
curve computed by Algorithm 3 using a trivial suffix-structure. Then

C
(
(x− 1)w

)
≤ Ĉ(xw) ≤ C(xw) ∀x ∈ [p].

Proof Sketch. First of all, note that line 9 in Algorithm 3 satisfies

Xi(t) = |B(τi, t)| ∀i, t. (4)

So Xi(t + 1) −Xi(t) is 1 if bt 6∈ B(τi, t) and otherwise zero. From this one can infer that
the increment of line 11 is 1 precisely when the previous request for bt occured at a time in
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[τi, τi+1); otherwise the increment is zero. It follows that the update to H in Algorithm 3 is
very similar to the update in Algorithm 1. J

A formal proof appears in Appendix A.

3 Suffix-structures using black-box F0-estimators

In this section we design an improved suffix-structure using ideas from streaming algorithms.
The main idea is to use F0-estimators, which are probabilistic data structures supporting two
operations. The Insert operation takes a value x ∈ [n] and the Query operation reports a
value v satisfying

|S| ≤ v ≤ (1 + α)|S|, (5)

where S is the set of elements that were inserted so far.
The improved suffix-structure, shown in Algorithm 4, periodically creates F0-estimators,

and inserts each new block into all existing F0-estimators. Note that it only creates a new
F0-estimator at the times τi = (i− 1)w + 1 for i ≥ 1, because Algorithm 3 only ever calls
GetSuffixF0(τi) for some i.

Algorithm 4: An approximate suffix-structure, implemented using F0-estimators.
1 c← 1
2 Function Register(t, bt):
3 c← dt/we
4 if t ≡ 1 (mod w) then
5 Create the new F0-estimator K[c]
6 for i = 1, . . . , c do
7 K[i].Insert(bt)

8 Function GetSuffixF0(t):
9 Return K[dt/we].Query()

We consider only F0-estimators which satisfy the following simple properties.
Consistency: Two consecutive calls to Query (without any intervening insertions) return
the same value.
Idempotency: Reinserting an item that was previous inserted does not change the value
of Query.
Monotonicity: The values returned by Query do not decrease as more elements are
inserted.

There exist F0-estimators, e.g. [17], that satisfy these properties, for which (5) holds with
high probability for poly(m) queries, and which use s := poly(1/α, log(nm)) bits of space.
We do not discuss the exact space usage here as our algorithm of Section 4 will achieve even
better space usage.

We now analyze Algorithm 3 when executed with the approximate suffix-structure of
Algorithm 4. Our aim is to show that its output is a good approximation to the true hit rate
curve. We will use F0-estimators with accuracy parameter α = εw/2n = ε/2p.

APPROX/RANDOM’15



232 Approximating Hit Rate Curves using Streaming Algorithms

3.1 Accuracy
The following theorem compares the outputs of Algorithm 3 when executed with a trivial
suffix-structure or an approximate suffix-structure.

I Theorem 4. Let C be the hit rate curve produced by Algorithm 3 using a trivial suffix-
structure. Let Ĉ be the hit rate curve produced using an approximate suffix-structure. Then

C
(
(x− 1)w

)
− ε ≤ Ĉ(xw) ≤ C(xw) + ε ∀x ∈ [p+ 1]. (6)

I Corollary 5. Let C∗ denote the true hit rate curve. Let Ĉ refer to the hit rate curve
produced from Algorithm 3 using an approximate suffix-structure, with 2p points instead of p.
(That is, with w′ = w/2 instead of w). Then C∗ and Ĉ satisfy

C∗
(
(x− 1)w

)
− ε ≤ Ĉ(xw) ≤ C∗(xw) + ε ∀x ∈ [p+ 1].

This is the condition guaranteed by Theorem 1.

Proof. Combining (6), Lemma 3 and the definition of α yields

C∗
(
(x− 2)w′

)
− ε ≤ Ĉ(xw′) ≤ C∗(xw′) + ε ∀x ∈ [2p+ 1].

Substituting w/2 for w′ completes the proof. J

3.2 Space usage
After calling S.Register(t, bt) m times, the approximate suffix-structure will have created
dm/we F0-estimators, each of which uses s bits of space, so the total space usage is O(ms/w)
bits. This does not quite meet our goal of poly(p, 1/ε, log(nm)) bits. The algorithm can be
improved to use only O(ps/ε) bits (while still using the F0-estimators as a black box) but we
do not discuss that improvement here, as the algorithm of Section 4 achieves even better
space usage. Details of this improvement may be found in [11].

Proof of Theorem 4. Let H and Xi refer to the quantities using the trivial suffix-structure,
and let Ĥ and X̂i refer to the corresponding quantities using the approximate suffix-structure.
We require the following proposition, which is proven in Appendix B.

I Proposition 6. For any times a ≤ b and any index i, we have Xi(a) − Xi+1(a) ≥
Xi(b)−Xi+1(b).

The histogram H and the hit rate curve C are obtained by summing contributions from
each consecutive pair of cardinality values Xi and Xi+1. The same is true of Ĥ and Ĉ, using
instead the pair X̂i and X̂i+1. So, to prove (6), we will show that the contribution from the
pair X̂i and X̂i+1 to Ĉ approximately equals the contribution from the pair Xi and Xi+1 to
C.

3.3 Contribution to C

Fix any x ∈ [p] and recall that C(xw) =
∑x
j=1 H[j]/m. By considering lines 11 and 12

of Algorithm 3 we see that the pair Xi and Xi+1 can only contribute to C(xw) while
dXi(t)/we ≤ x. So, let Ti be the first time t at which dXi(t)/we > x, i.e.,

Ti = min { t : Xi(t) > xw } .
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At all times t ≥ Ti, the pair Xi and Xi+1 do not contribute to C(x). The contribution to
m · C(xw) from the pair Xi and Xi+1 is{

Xi+1(t+ 1)−Xi+1(t)−Xi(t+ 1) +Xi(t) (for t ∈ {τi+1, . . . , Ti − 1})
1−Xi(t+ 1) +Xi(t) (for t ∈ {τi, . . . , τi+1 − 1}).

Summing up, the total contribution is∑
τi≤t<τi+1−1

(
1−Xi(t+ 1) +Xi(t)

)
+

∑
τi+1≤t<Ti

(
Xi+1(t+1)−Xi+1(t)−Xi(t+1) +Xi(t)

)
= w −Xi(τi+1) +Xi(τi) +Xi(τi+1)−Xi+1(τi+1) +Xi+1(Ti)−Xi(Ti)
= w +Xi+1(Ti)−Xi(Ti). (7)

3.4 Contribution to Ĉ

Similarly, let T̂i = min{ t : X̂i(t) > xw }. Then at all times t ≥ T̂i, the pair X̂i and X̂i+1 do
not contribute to Ĉ(x). (This assertion uses the Monotonicity property.) Summing up as
before, the total contribution of the pair X̂i and X̂i+1 to m · Ĉ(xw) is

w + X̂i+1(T̂i)− X̂i(T̂i). (8)

3.4.1 Upper bound on contribution to Ĉ(xw)
The difference between the contribution of X̂i and X̂i+1 to m · Ĉ(xw) and the contribution
of Xi and Xi+1 to m · C(xw) is the difference between (8) and (7), namely

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(Ti) +Xi(Ti). (9)

We now upper bound this quantity. First note that T̂i ≤ Ti, by (5). Then Proposition 6
shows that (9) is at most

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(T̂i) +Xi(T̂i)

≤ αXi+1(T̂i) (by (5))

≤ αXi(T̂i) (by definition of Xi and Xi+1)

≤ α(xw + 1) (since T̂i ≤ Ti and by definition of Ti). (10)

3.4.2 Lower bound on contribution to Ĉ(xw)
For the lower bound, we must consider the contribution of Xi and Xi+1 to C((x−1)w). Define
T ′i = min { t : Xi(t) > (x− 1)w } . Arguing as before, we get that the total contribution of
this pair to m · C((x− 1)w) is

w +Xi+1(T ′i )−Xi(T ′i ). (11)

The difference between (8) and (11) is

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(T ′i ) +Xi(T ′i ). (12)
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We now claim that T ′i < T̂i. By definition of T ′i , we have Xi(T ′i ) = (x − 1)w + 1. By
definition of α, we have αn = εw < w. So, by (5),

X̂i(T ′i ) ≤ (1 + α)Xi(T ′i ) ≤ (1 + α)
(
(x− 1)w + 1

)
≤ (x− 1)w + 1 + αn < xw + 1 ≤ X̂i(T̂i).

By the Monotonicity property, the claim is proven. So we may use Proposition 6 to show
that (12) is at least

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(T̂i) +Xi(T̂i)

≥ −αXi(T̂i) (by (5))

≥ −α(xw + 1) (since T̂i ≤ Ti and by definition of Ti). (13)

3.5 Proof of (6)
We now combine our previous observations to establish (6). Recall that c = dm/we is the
total number of F0-estimators. Summing (10) over all i, we obtain that

mĈ(xw) ≤ mC(xw) + αc(xw + 1) ≤ mC(xw) + 2αmx.

This proves the second inequality of (6). The first inequality of (6) follows analogously from
(13). J

4 Suffix-structures using a timestamped F0-estimator

As mentioned in Section 1, the idea of sliding window estimators [9] is very relevant for
estimating properties of the suffixes of a stream. One of the main ideas is to modify known
streaming estimators by incorporating timestamps. By restricting the estimator’s data
structure to entries with sufficiently large timestamps, one can construct an estimator for the
desired suffix of the stream. Let us now discuss that idea for the special case of F0-estimators
[9, §7.5].

Many F0-estimators rely on a {0, 1}-matrixM that is continously updated while processing
the stream [2, 14, 3, 17]. Each item b in the stream is hashed to a binary string σ, and then
M is updated based on lsb(σ), the number of trailing zeros in σ. We will call such a matrix
M a bitmatrix.

The simplest F0-estimator [2] uses a single hash function h, and the matrix M has a
single column. At any point during stream processing, Mj is set to 1 if a block b was
observed with lsb(h(b)) ≥ j. After the stream is processed, the algorithm outputs 2j∗ , where
j∗ is the greatest index of a non-zero row. This gives only a O(1) approximation. Other
algorithms refine this estimate by using additional columns and another hash function g,
which determines which column to update. The estimate could be, for example, a function of
the average of the lowest non-zero value in each column [12, 14], or the number of non-zero
elements below a certain row (Algorithm 3 in [3]). All of these algorithms can boost their
success probability by taking medians of independent, parallel instantiations.

Suppose that Algorithm 4 uses an F0-estimator of this type, and that all instantiations
of that estimator use the same hash functions h and g. Let M j denote the bitmatrix
corresponding to the jth F0-estimator. For any j ≤ j′, M j has undergone all of the updates
that M j′ has, so it follows that M j ≥M j′ in an entrywise sense. This observation leads to
following idea: instead of storing the bitmatrices for each estimator separately, we can store
a single unified matrix from which all bitmatrices can be computed.
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Algorithm 5: An implementation of a suffix-structure based on a timestamped F0-
estimator. We consider a F0-estimator that is based on a bitmatrix as described above.
The algorithm A specifies how the bitmatrix is updated on an Insert operation, and
how to produce the estimate for the Query operation. The set Q has many independent
copies of the hash functions and the resulting table. We need only |Q| = O(log(1/δ))
with δ = m−3.

Data: A collection Q of pairs (Q,H), where Q is a matrix, H is a set of hash functions
An algorithm A for estimating F0 from a bitmatrix

1 c← 1
2 Function Register(t, bt):
3 c← dt/we
4 for (Q,H) ∈ Q do
5 Update Q using bt according to A

6 Function GetSuffixF0(t’):
7 for Q ∈ Q do
8 Let r = dt′/we

9 Define the bitmatrix Mr by Mr
i,j =

{
1 if Qi,j − r ≥ 0
0 otherwise

10 Feed Mr into algorithm A to obtain estimate RQ
11 Return the median of estimates RQ

4.1 Analysis
In order to analyze Algorithm 5, we must specify A, a concrete F0-estimator. We will use
Algorithm 2 from the paper of Bar-Yossef et al. [3].1 In this algorithm, each matrix Q has
log(n) rows, and k = O(1/α2) columns. Each collection H consists of k t-wise independent
hash functions, where t is O

(
log(1/α)

)
. To update Q, for j ∈ [k], we set Qi,j = c if

lsb(hj(bt)) ≥ i. Given the bitmatrix M , the F0-estimator can produce its estimate.

I Proposition 7. The space used by Algorithm 5 is O
(
p2 log(n) log(m) log(1/δ)/ε2

)
bits.

Proof. Each Q has O(1/α2) columns, logn rows, and each cell requires logm bits space.
Thus Q requires O

(
log(n) log(m)/α2) bits of space. Each collection H requires only

O
(

log2(1/α) logn
)
bits of space, which is negligible. We have log(1/δ) such pairs (Q,H).

Thus the total space requirement is O
(
α−2 log(n) log(m) log(1/δ)

)
. Substituting α = ε/p

completes the proof. J

I Theorem 8. Algorithm 3 using Algorithm 5 as its suffix-structure satisfies (2).

Proof. Let Xi(t) be the result of GetSuffixF0(τi) at time t, which is an estimate of
|B(τi, t)|. It suffices to show that Xi(t) ∈ [1, 1 + α] · |B(τi, t)| with high probability, in which
case the argument of Theorem 1 applies.

1 It is natural to wonder why we do not use the optimal algorithm of Kane et al. [17]. The reason is
that the Kane et al. algorithm is an enhancement of the Bar-Yossef et al. algorithm that manages to
save some additional space. In contrast, our algorithm will consume extra space by adding timestamps,
which ruins the space-saving enhancements of Kane et al.
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For any i, t, by taking the median of log(1/δ) estimates of A, we have Pr[|Xi(t) −
|B(τi, t)|| > α|B(τi, t)|] ≤ δ. At time t, the algorithm computes estimates for t/w F0-
estimators, and thus O(m2) estimates are taken in total. By a union bound, the probability
that any estimate is poor is ≤ δm2. J

Combining Proposition 7 and Theorem 8 and taking δ = 1/m3 proves Theorem 1.

5 Discussion

In this paper we have presented the first single-pass, sublinear space algorithm with provable
guarantees for estimating hit rate curves for the LRU caching policy. The space usage is
O(p2 log(n) log2(m)/ε2) bits. This space usage is not far from optimal, due to our Ω(p2 +
ε−2 + log(n)) lower bound. A practical implementation of this algorithm has been deployed
in an enterprise storage system [29].

As this is the first theoretical paper on hit rate curve computation, it suggests several
directions for further algorithmic research.

It would be nice to improve either our upper bound or lower bound on the space usage.
Our suspicion is that the lower bounds can be improved.
In practice the runtime of our algorithm is very good [29], but we have not studied
the runtime from a theoretical perspective. In particular, optimizing the runtime of
Algorithm 5 seems quite interesting.
Instead of approximating the hit rate curve at p uniformly-space points, it is natural to
wonder whether the p points can be adaptively chosen during the algorithm.
It would be interesting to extend our techniques beyond just the LRU caching policy. The
algorithm of Mattson et al. [19] works for all policies that satisfy the inclusion property –
is there a single-pass streaming algorithm for all such policies?
A key operation in our algorithm is to take the difference of F0-estimators. (In fact,
we estimate |A \ B| where B ⊆ A.) There are F0-estimators that have been explicitly
designed for this purpose, e.g., [15]. It would be interesting to study whether such
specialized F0-estimators can improve our algorithm, either theoretically or practically.
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element estimators. We thank Andrew McGregor and the anonymous reviewers for helpful
comments.
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A Proofs from Section 2

Proof. ]Proof of Lemma 3] Let H and Ĥ respectively denote the histograms computed by
Algorithms 1 and 3. Note that bt 6∈ B(t′, t) for t′ > R(t) but bt ∈ B(t′, t) for t′ ≤ R(t).
Because of (4), we have

Xi(t+1)−Xi(t) =
{

1 (if R(t) < τi ≤ t)
0 (if 1 ≤ τi ≤ R(t))

.

It follows that the increment in line 11 equals 1 if τi ≤ R(t) < τi+1 and otherwise it equals
zero. Similarly, the increment in line 12 equals 1 if τc ≤ R(t). At most one of these conditions
can hold, so for each value of t, Algorithm 3 increments at most one entry of Ĥ. Specifically,
if R(t) is finite then the algorithm increments Ĥ[dXi∗(t)/we] where i∗ = dR(t)/we.

When R(t) is finite, we have τi∗ < R(t) ≤ τi∗+1. Since Xi∗(t) = |B(τi∗ , t)| and D(t) =
|B(R(t), t)|, we derive Xi∗+1(t) ≤ D(t) ≤ Xi∗(t). However,

Xi∗(t)−Xi∗+1(t) = |B(τi∗ , t)| − |B(τi∗+1, t)| = |B(τi∗ , t) \B(τi∗+1, t)|
≤ |B(τi∗ , τi∗+1)| ≤ w.

So ⌈
Xi∗(t)
w

⌉
− 1 ≤

⌈
D(t)
w

⌉
≤
⌈
Xi∗(t)
w

⌉
.

Algorithm 1 increments H[dD(t)/we], whereas Algorithm 3 increments Ĥ[dXi∗(t)/we]. So
x∑
i=1

Ĥ[i]︸ ︷︷ ︸
Ĉ(xw)

≤
x∑
i=1

H[i]︸ ︷︷ ︸
C(xw)

≤
x+1∑
i=1

Ĥ[i]︸ ︷︷ ︸
Ĉ
(

(x+1)w
)
.

Rearranging this yields the desired inequality. J

B Proofs from Section 3

Proposition 6. For any times a ≤ b and any index i, we have Xi(a) − Xi+1(a) ≥
Xi(b)−Xi+1(b).



Z. Drudi, N. J. A. Harvey, S. Ingram, A. Warfield, and J. Wires 239

Proof. Recall that Xi(t) = |B(τi, t)|. As τi < τi+1, we get Xi(t)−Xi+1(t) = |B(τi, τi+1) \
B(τi+1, t)|. Thus

Xi(a)−Xi+1(a)− (Xi(b)−Xi+1(b))
= |B(τi, τi+1) \B(τi+1, a)| − |B(τi, τi+1) \B(τi+1, b)|
≥ 0,

as B(τi+1, a) ⊂ B(τi+1, b). J

C Lower Bounds

In this section we prove lower bounds on the space needed by one-pass algorithms to compute
approximate hit rate curves. As is typical with streaming algorithms, our lower bounds are
based on communication complexity [18].

C.1 Lower Bounds for Hit Rate Curve Estimation
Our lower bounds are based on reductions from the Gap Hamming Distance (GHD) problem.
In GHDq,t,g, Alice and Bob are respectively given vectors x, y ∈ {0, 1}q. They are required
to determine whether the Hamming distance between x and y, denoted d(x, y), is less than
t− g or greater than t+ g, outputting 0 or 1, respectively. The following optimal lower bound
for GHD is known.

I Theorem 9 (Chakrabarti-Regev [8]). Any protocol that solves GHDq,q/2,g with probability
≥ 2/3 communicates Ω(min{q, q2/g2}) bits.

Proof of Theorem 2. Let c = 10 and q = n/(c + 2). Consider an instance of GHDq,q/2,g,
where g will be specified later. Alice has x ∈ {0, 1}q and Bob has y ∈ {0, 1}q. Let us say
that GHD(x, y) = 0 if d(x, y) < q/2− g, and GHD(x, y) = 1 if d(x, y) > q/2 + g.

Alice and Bob produce an input stream to the algorithm A as follows. Each stream
element is a member of [n]. The elements in [cq] ⊂ [n] are called “type-1”, and those in
[n] \ [cq] are called “type-2”. Alice first provides to A the type-1 elements, then certain type-2
elements. Specifically, she provides the sequence (1, 2, . . . , cq), then provides cq + j if xj = 1
and (c + 1)q + j if xj = 0, for j ∈ [q]. She then communicates A’s state to Bob, which
requires s bits of communication. Bob first provides to A certain type-2 elements, then the
type-1 elements. Specifically, he provides cq + j if yj = 0 and (c + 1)q + j if yj = 1, then
provides the sequence (1, 2, . . . , cq). The total length of the stream provided to A is exactly
m = 2(c+ 1)q.

Observation 1: The number of type-2 elements that occur in the stream is exactly 2q. The
number that occur twice is exactly d(x, y). Hence, the number of distinct type-2 elements
that occur in the stream is exactly 2q − d(x, y).

Observation 2: Every type-1 element appears exactly twice in the stream. The number
of distinct elements that occur between those two occurrences is exactly cq + 2q − d(x, y).
Depending on whether GHD(x, y) is 0 or 1, we have

If GHD(x, y) = 0: cq + 2q − d(x, y) > (c+ 3/2)q + g =: H

If GHD(x, y) = 1: cq + 2q − d(x, y) < (c+ 3/2)q − g =: L

The only other requests that possibly contribute to C are Bob’s type-2 elements, of which
there are only q. (Alice’s inputs contribute nothing to C.)
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Case 1: w ≤ εn. Equivalently, p ≥ 1/ε. In this case we take g = w. Let β = (c+ 3/2)q/w.
Then

L = (β − 1)w and βw < H. (14)

Suppose that Ĉ satisfies (3). If GHD(x, y) = 1 then

Ĉ(βw) ≥ C
(
(β − 1)w

)
− ε (by (3))

= C(L)− ε (by (14))

≥ cq

m
− ε (by Observation 2)

≥ c

2(c+ 1) −
1
5 >

1
4 (c ≥ 10 and ε ≤ 1/5).

On the other hand, if GHD(x, y) = 0 then

Ĉ(βw) ≤ C(βw) + ε (by (3))
≤ C(H) + ε (by (14))

≤ q

m
+ ε (by Observation 2)

≤ 1
2(c+ 1) + 1

5 <
1
4 (c ≥ 10 and ε ≤ 1/5).

Therefore Alice and Bob can distinguish whether GHD(x, y) is 0 or 1. The number of bits of
space necessary is Ω(min

{
q, q2/g2}) = Ω(min

{
n, p2}).

Case 2: w > εn. Equivalently, 1/ε > p. In this case we take g = 22εq. Set β =
1 + dp/(c+ 2)e. Then

(β − 1)w ≥ p

c+ 2w = q

βw < (2 + p
c+2 )w = ( 2

p + 1
c+2 )n ≤ ( 2

3 + 1
c+2 )n < c

c+2n = cq.

By observation 2, the type-1 elements do not contribute to C(cq). So consider any type-
2 element. If it appears twice, then the number of distinct elements between those two
appearances is at most q. By observation 1, the number of type-2 elements that appear twice
is exactly d(x, y). It follows that C(cq) = C(q) = d(x, y)/m. So, if Ĉ satisfies (3), we have

d(x, y)
m

− ε ≤ C(q)− ε ≤ Ĉ(βw) ≤ C(cq) + ε = d(x, y)
m

+ ε.

Thus
|m · Ĉ(βw)− d(x, y)| ≤ mε = 2(c+ 1)qε < g.

It follows that Alice and Bob can distinguish whether GHD(x, y) is 0 or 1. The number of
bits of space necessary is Ω(min

{
q, q2/g2}) = Ω(min

{
n, 1/ε2

}
).

The lower bound of Ω(logn) is left as an easy exercise. J

C.2 Impossibility of Multiplicative Error

Lastly, we show that any algorithm with multiplicative vertical error must use linear space,
even if it also has additive horizontal error.
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I Theorem 10. Let n = pw where w ≥ 1 is arbitrary. Let ε ∈ [0, 1) be arbitrary. Suppose
there is a single-pass algorithm A that uses s bits of space and outputs a function Ĉ satisfying

(1− ε) · C
(
(i− 1)w

)
≤ Ĉ(iw) ≤ (1 + ε) · C(iw) ∀i ∈ [p+ 1]. (15)

Then s = Ω(n).

Proof. The disjointness problem DISJ : {0, 1}n×{0, 1}n → {0, 1} is defined to be DISJ(x, y) =∏
i(1 − xiyi). Razborov’s lower bound [23, 18] implies that, even under the promise that∑
i xi =

∑
i yi = (n+ 1)/4 and

∑
i xiyi ∈ {0, 1}, any randomized communication protocol

that can decide DISJ must use Ω(n) bits of communication.

C.2.1 Reduction
Alice and Bob produce an input stream to the algorithm A as follows. Each stream element
is a member of [n]. Alice provides to A the set { i ∈ [n] : xi = 1 } in any order. She
then communicates A’s state to Bob, which requires s bits. Bob provides to A the set
{ i ∈ [n] : yi = 1 } in any order. The total length of the stream provided to A is exactly
m = (n+ 1)/2.

If DISJ(x, y) = 1 then every stream element is distinct, so C(n) = 0. On the other
hand, if DISJ(x, y) = 0 then the promise ensures that C(n) = 1/m. Let us apply (15) with
i = p + 1, and recall from the definition of C that C(pw) = C

(
(p + 1)w

)
. It follows that

Alice and Bob can decide DISJ(x, y), so Razborov’s result implies that s = Ω(n). J
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Abstract
In this paper we study terminal embeddings, in which one is given a finite metric (X, dX) (or a
graph G = (V,E)) and a subset K ⊆ X of its points are designated as terminals. The objective
is to embed the metric into a normed space, while approximately preserving all distances among
pairs that contain a terminal. We devise such embeddings in various settings, and conclude that
even though we have to preserve ≈ |K| · |X| pairs, the distortion depends only on |K|, rather
than on |X|.

We also strengthen this notion, and consider embeddings that approximately preserve the
distances between all pairs, but provide improved distortion for pairs containing a terminal.
Surprisingly, we show that such embeddings exist in many settings, and have optimal distortion
bounds both with respect to X ×X and with respect to K ×X.

Moreover, our embeddings have implications to the areas of Approximation and Online Al-
gorithms. In particular, [7] devised an Õ(

√
log r)-approximation algorithm for sparsest-cut in-

stances with r demands. Building on their framework, we provide an Õ(
√

log |K|)-approximation
for sparsest-cut instances in which each demand is incident on one of the vertices of K (aka, ter-
minals). Since |K| ≤ r, our bound generalizes that of [7].
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1 Introduction

Embedding of finite metric spaces is a very successful area of research, due to both its
algorithmic applications and its natural geometric appeal. Given two metric space (X, dX),
(Y, dY ), we say that X embeds into Y with distortion α if there is a map f : X → Y and a
constant c > 0, such that for all u, v ∈ X,

dX(u, v) ≤ c · dY (f(u), f(v)) ≤ α · dX(u, v) .

Some of the basic results in the field of metric embedding are: a theorem of [15], asserting
that any metric space on n points embeds with distortion O(logn) into Euclidean space
(which was shown to be tight by [35]), and probabilistic embedding into a distribution of
ultrametrics (or trees) with expected distortion O(logn) [23], or expected congestion O(logn)
[40] (which are also tight [12]).

In this paper we study a natural variant of embedding, in which the input consists of
a finite metric space or a graph, and in addition, a subset of the points are designated as
terminals. The objective is to embed the metric into a simpler metric (e.g., Euclidean metric),
or into a simpler graph (e.g., a tree), while approximately preserving the distances between
the terminals to all other points. We show that such embeddings, which we call terminal
embeddings, can have improved parameters compared to embeddings that must preserve all
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pairwise distances. In particular, the distortion (and the dimension in embedding to normed
spaces) depends only on the number of terminals, regardless of the cardinality of the metric
space.

We also consider a strengthening of this notion, which we call strong terminal embedding.
Here we want a distortion bound on all pairs, and in addition an improved distortion bound
on pairs that contain a terminal. Such strong terminal embeddings enhance the classical
embedding results, essentially saying that one can obtain the same distortion for all pairs,
with the option to select some of the points, and obtain improved approximation of the
distances between any selected point to any other point.

As a possible motivation for studying such embeddings, consider a scenario in which a
certain network of clients and servers is given as a weighted graph (where edges correspond
to links, weights to communication/travel time). It is conceivable that one only cares about
distances between clients and servers, and that there are few servers. We would like to have
a simple structure, such as a tree spanning the network, so that the client-server distances in
the tree are approximately preserved.

We show that there exists a general phenomenon; essentially any known metric embedding
into an `p space or a graph family can be transformed via a general transformation into a
terminal embedding, while paying only a constant blow-up in the distortion. In particular, we
obtain a terminal embedding of any finite metric into any `p space with terminal distortion
O(log k), using only O(log k) dimensions. We also show that many of the embeddings into
normed spaces, probabilistic embedding into ultrametrics (including capacity preserving
ones), and into spanning trees, have their strong terminal embedding counterparts. Our
results are tight in most settings.1

It is well known that embedding a graph into a single tree may cause (worst-case)
distortion Ω(n) [38]. However, if one only cares about client-server distances, we show that
it is possible to obtain distortion 2k − 1, where k is the number of servers, and that this is
tight. Furthermore, we study possible tradeoffs between the distortion and the total weight
of the obtained tree. This generalizes the notion of shallow light trees [32, 11, 21], which
provides a tradeoff between the distortion with respect to a single designated server and the
weight of the tree.

We then address probabilistic approximation of metric spaces and graphs by ultrametrics
and spanning trees. This line of work started with the results of [4, 12], and culminated in
the O(logn) expected distortion for ultrametrics by [23], and Õ(logn) for spanning trees
by [3]. These embeddings found numerous algorithmic applications, in various settings, see
[23, 19, 3] and the references therein for details. In their work on Ramsey partitions, [36]
implicitly showed that there exists a probabilistic embedding into ultrametrics with expected
terminal distortion O(log k) (see Section 2 for the formal definitions). Here we generalize this
result by obtaining a strong terminal embedding with the same expected O(log k) distortion
guarantee for all pairs containing a terminal, and O(logn) for all other pairs. We also show a
similar result that extends the embedding of [3] into spanning trees, with Õ(log k) expected
distortion for pairs containing a terminal, and Õ(logn) for all pairs. A slightly different
notion, introduced by [39], is that of trees which approximate the congestion (rather than
the distortion), and [40] showed a distribution over trees with expected congestion O(logn).
We provide a strong terminal version of this result, and show expected congestion of O(log k)
for all edges incident on a terminal, and O(logn) for the rest. In [1], it was shown that the

1 All our terminal embeddings are tight, except for the probabilistic spanning trees, where they match
the state-of-the-art [3], and except for our terminal spanners.
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average distortion (taken over all pairs) in an embedding into a single tree can be bounded
by O(1) (in contrast to the Ω(logn) lower bound for the average stretch over edges). Here
we extend and simplify their result, and obtain O(1) average terminal distortion, that is, the
average is over pairs containing a terminal. We do this both in the ultrametric and in the
spanning tree settings.

We also consider spanners, with a stretch requirement only for pairs containing a terminal.
Our general transformation produces for any t ≥ 1 a (4t− 1)-terminal stretch spanner with
O(k1+1/t + n) edges. The drawback is that this is a metric spanner, not a subgraph of the
input graph. We alleviate this issue by constructing a graph spanner with the same stretch
and O(

√
n · k1+1/t + n) edges.2 A result of [41] implicitly provides a terminal graph spanner

with (2t− 1) stretch and O(t · n · k1/t) edges. Our graph terminal spanner is sparser than
that of [41] as long as k ≤ t · n1/2(1+1/t).

1.1 Algorithmic Applications
We overview a few of the applications of our results to approximation and online algorithms.
Some of the most striking applications of metric embeddings are to various cut problems,
such as the sparsest-cut, min-bisection, and also to several online problems. Our method
provides improved guarantees when the input graph has a small set of "important" vertices.
Specifically, these vertices can be considered as terminals, and we obtain approximation
factors that depend on the cardinality of the terminal set, rather than on the input size.
The exact meaning of importance is problem specific; e.g. in the cut problems, we require
that the set of important vertices touches every demand pair, or every edge (that is, forms a
vertex cover).

For instance, consider the (general) sparsest-cut problem [34, 10, 35]. We are given
a graph G = (V,E) with capacities on the edges c : E → R+, and a collection of pairs
(s1, t1), . . . , (sr, tr) along with their demands D1, . . . , Dr. The goal is to find a cut S ⊆ V

that minimizes the ratio between capacity and demand across the cut:

φ(S) =
∑
{u,v}∈E c(u, v)|1S(u)− 1S(v)|∑r

i=1Di|1S(si)− 1S(ti)|
,

where 1S(·) is the indicator for membership in S. Following the breakthrough result of
[9], which showed O(

√
logn) approximation for the uniform demand case, [7] devised an

Õ(
√

log r) approximation for the general case. If there is a set of k important vertices, such
that every demand pair contains an important vertex, we obtain an Õ(

√
log k) approximation

using the terminal embedding of negative-type metrics to `1. Observe that k ≤ r, and so our
result subsumes the result of [7]. Our bound is particularly useful for instances with many
demand pairs but few distinct sources si (or few targets ti).

We also consider other cut problems, and show a similar phenomenon: the O(logn)
approximation for the min-bisection problem can be improved to an approximation of only
O(log k), where k is the size of the minimum vertex cover of the input graph. For this result
we employ our terminal variant of Räcke’s result [40] on capacity-preserving probabilistic
embedding into trees.

We then focus on one application of probabilistic embedding into ultrametrics [12, 23],
and illustrate the usefulness of our terminal embedding result by the (online) constrained
file migration problem [13]. Given a graph G = (V,E) representing a network, each node

2 Note that the number of edges is linear whenever k ≤ n1/(2(1+1/t)).
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v ∈ V has a memory capacity mv, and there is a set of files that reside at the nodes, at
most mv files may be stored at node v at any given time. The cost of accessing a file is
the distance in the graph to the node storing it (no copies are allowed). Files can also be
migrated from one node to another. This costs D times the distance, for a given parameter
D ≥ 1. When a sequence of file requests from nodes arrives online, the goal is to minimize
the cost of serving all requests. [12] showed a algorithm with O(logm · logn) competitive
ratio for graphs on n nodes, where m =

∑
v∈V mv is the total memory available.3 A setting

which seems particularly natural is one where there is a small set of nodes who can store files
(servers), and the rest of the nodes can only access files but not store them (clients). We
employ our probabilistic terminal embedding into ultrametrics to provide a O(logm · log k)
competitive ratio, for the case where there are k servers. (Note that this ratio is independent
of n.)

1.2 Overview of Techniques
The weak variant of our terminal embedding into `2 maps every terminal x into its image
f(x) under an original black-box (e.g., Bourgain’s) embedding of K into `2. This embedding
is then appended with one additional coordinate. Terminals are assigned 0 value in this
coordinate, while each non-terminal point y is mapped to (f(x), d(x, y)), where x is the
closest terminal to y. It is not hard to see that this embedding guarantees terminal distortion
O(γ(k)), where γ(k) is the distortion of the original black-box embedding, i.e., O(log k) in
the case of Bourgain’s embedding. On the other hand, the new embedding employs only
β(k) + 1 dimensions, where β(k) is the dimension of the original blackbox embedding (i.e.,
O(log2 k) in the case of Bourgain’s embedding). 4 This idea easily generalizes to a number
of quite general scenarios, and under mild assumptions (see Theorem 3) it can be modified
to produce strong terminal embeddings.

This framework, however, does not apply in many important settings, such as embedding
into subgraphs, and does not provide strong terminal guarantees in others. Therefore we
devise embeddings tailored to each particular setting in a non-black-box manner. For instance,
our probabilistic embedding into trees with strong terminal congestion requires an adaptation
of a theorem of [6], about the equivalence of distance-preserving and capacity-preserving
random tree embeddings, to the terminal setting. Perhaps the most technically involved
is our probabilistic embedding into spanning trees with strong terminal distortion. This
result requires a set of modifications to the recent algorithm of [3], which is based on a
certain hierarchical decomposition of graphs. We adapt this algorithm by giving preference
to the terminals in the decomposition (they are the first to be chosen as cluster centers), and
the crux is assuring that the distortion of any pair containing a terminal is essentially not
affected by choices made for non-terminals. Furthermore, one has to guarantee that each
such pair can be separated in at most O(log k) levels of the hierarchy.

The basic technical idea that we use for constructing (4t− 1)-terminal subgraph spanners
with O(

√
nk1+1/t + n) edges is the following one. As was mentioned above, our general

transformation constructs metric (i.e., non-subgraph) (4t− 1)-terminal spanners with O(n+
k1+1/t) edges. The latter spanners employ some edges which do not belong to the original
graph. We provide these edges as an input to a pairwise preserver. A pairwise preserver

3 The original paper shows O(logm · log2 n), the improved factor is obtained by using the embedding of
[23].

4 We can also get dimension O(log k) for terminal embeddings into `2 by replacing Bourgain’s embedding
with that of [2].
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[18] is a sparse subgraph that preserves exactly all distances between a designated set of
vertex pairs. We use these preservers to fill in the gaps in the non-subgraph terminal spanner
constructed via our general transformation. As a result we obtain a subgraph terminal
spanner which outperforms previously existing terminal spanners of [41] in a wide range of
parameters.

1.3 Related Work
Already in the pioneering work of [35], an embedding that has to provide a distortion
guarantee for a subset of the pairs is presented. Specifically, in the context of the sparsest-
cut problem, [35] devised a non-expansive embedding of an arbitrary metric into `1, with
distortion at most O(log r) for a set of r specified demand pairs.

Terminal distance oracles were studied by [41], who called them source restricted distance
oracles. In their paper, [41] show (2t− 1)-terminal stretch using O(t · n · k1/t) space. Implicit
in our companion paper [20] is a distance oracle with (4t− 1)-terminal stretch, O(t · k1/t +n)
space and O(1) query time. Terminal spanners with additive stretch for unweighted graphs
were recently constructed in [31]. Specifically, they showed a spanner with Õ(n5/4 · k1/4)
edges and additive stretch 2 for pairs containing a terminal. Another line of work introduced
distance preservers [18]; these are spanners which preserve exactly distances for a given
collection of pairs.

In the context of preserving distances just between the terminals, [26, 16, 22, 30] studied
embeddings of a graph into a minor over the terminals, while approximately preserving
distances. In their work on the requirement cut problem, among other results, [27] obtain
for any metric with k specified terminals, a distribution over trees with expected expansion
O(log k) for all pairs, and which is non-contractive for terminal pairs. (Note that this is
different from our setting, as the extra guarantee holds for terminals only, not for pairs
containing a terminal.)

Another line of research [37, 17, 22] studied cut and vertex sparsifiers. A cut sparisifier of
a graph G = (V,E) with respect to a subset K of terminals is a graph H = (K,EH) on just
the set of terminals, so that for any subset A ⊂ K, the minimum value of a cut in G that
separates A from K \A is approximately equal to the value of the cut (A,K \A) in H. Note
that this notion is substantially different from the notion of terminal congestion-preserving
embedding, which we study in the current paper.

In a companion paper [20], we study prioritized metric structures and embeddings. In
that setting, along with the input metric (X, d), a priority ranking of the points of X is
given, and the goal is to obtain a data structure (distance oracle, routing scheme) or an
embedding with stretch/distortion that depends on the ranking of the points. This has
some implications to the terminal setting, since the k terminals can be given as the first k
points in the priority ranking. More concretely, implicit in [20] is an embedding into a single
(non-subgraph) tree with strong terminal distortion O(k), a probabilistic embedding into
ultrametrics with expected strong terminal distortion O(log k), and embedding into `p space
with strong terminal distortion Õ(log k). In the current paper we provide stronger and more
general results: our single tree embedding has tight 2k − 1 stretch, the tree is a subgraph,
and it can have low weight as well (at the expense of slightly increased stretch); we obtain
probabilistic embedding into spanning trees. and in congestion-preserving trees; and our
terminal embedding to `p space has a tight strong terminal distortion (O(log k), O(logn))
and low dimension. Furthermore, the results of this paper apply to numerous other settings
(e.g., embeddings tailored for graphs excluding a fixed minor, negative-type metrics, spanners,
etc.).
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1.4 Organization
The general transformations are presented in Section 3, and the results on graph spanners
appear in Section 4. The tradeoff between terminal distortion and lightness in a single tree
embedding is shown in Section 5 (corresponding lower bounds in several settings are deferred
to the full version). The probabilistic congestion preserving embedding into trees appears
in Section 6 (see [20] for the distortion version). Finally, in Section 7 we describe some
algorithmic applications of terminal embeddings.

In the full version of the paper we present our probabilistic embedding into spanning
trees with strong terminal distortion, and an embedding into a single tree (ultrametric or a
spanning tree) with constant average terminal distortion.

2 Preliminaries

Here we provide formal definitions for the notions of terminal distortion. Let (X, dX) be
a finite metric space, with K ⊆ X a set of terminals. Throughout the paper we assume
|K| ≤ |X|/2.

I Definition 1. Let (X, dX) be a metric space, and let K ⊆ X be a subset of terminals. For
a target metric (Y, dY ), an embedding f : X → Y has terminal distortion α if there exists
c > 0, such that for all v ∈ K and u ∈ X,5

dX(v, u) ≤ c · dY (f(v), f(u)) ≤ α · dX(v, u) .

We say that the embedding has strong terminal distortion (α, β) if it has terminal
distortion α, and in addition there exists c′ > 0, such that for all u,w ∈ X,

dX(u,w) ≤ c′ · dY (f(u), f(w)) ≤ β · dX(u,w) .

For a graph G = (V,E) with a terminal set K ⊆ V , an α-terminal (metric) spanner is a
graph H on V such that for all v ∈ K and u ∈ V ,

dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v) . (1)

H is a graph spanner if it is a subgraph of G.
Denote by diam(X) = maxy,z∈X{dX(y, z)}. For any x ∈ X and r ≥ 0 let BX(x, r) =

{y ∈ X | dX(x, y) ≤ r} (we often omit the subscript when the metric is clear from context).
For a point x ∈ X and a subset A ⊆ X, dX(x,A) = mina∈A{dX(x, a)}. For K ⊆ X we
denote by (K, dK) the metric space where dK is the induced metric.

3 A General Transformation

In this section we present general transformation theorems that create terminal embeddings
into normed spaces and graph families from standard ones. We say that a family of graphs
G is leaf-closed, if it is closed under adding leaves. That is, for any G ∈ G and v ∈ V (G),
the graph G′ obtained by adding a new vertex u and connecting u to v by an edge, belongs
to G. Note that many natural families of graphs are leaf-closed, e.g. trees, planar graphs,
minor-free graphs, bounded tree-width graphs, bipartite graphs, general graphs, and many
others.

5 In most of our results the embedding has a one-sided guarantee (that is, non-contractive or non-expansive)
for all pairs.
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I Theorem 2. Let X be a family of metric spaces. Fix some (X, dX) ∈ X , and let K ⊆ X
be a set of terminals of size |K| = k, such that (K, dK) ∈ X . Then the following assertions
hold:

If there are functions α, γ : N → R, such that every (Z, dZ) ∈ X of size |Z| = m

embeds into `γ(m)
p with distortion α(m), then there is an embedding of X into `γ(k)+1

p

with terminal distortion 2(p−1)/p · ((2α(k))p + 1)1/p.6
If G is a leaf-closed family of graphs, and any (Z, dZ) ∈ X of size |Z| = m embeds into
G with distortion α(m) such that the target graph has at most γ(m) edges, then there is
an embedding of X into G with terminal distortion 2α(k) + 1 and the target graph has at
most γ(k) + n− k edges.

I Remark. The second assertion holds under probabilistic embeddings as well.

Proof. We start by proving the first assertion. By the assumption there exists an embedding
f : K → Rγ(k) with distortion α(k) under the `p norm. We assume w.l.o.g that f is
non-contractive. For each x ∈ X, let kx ∈ K be the nearest point to x in K (that is,
d(x,K) = d(x, kx)). Extend f to an embedding f̂ : X → Rγ(k)+1 by defining for x ∈ X,
f̂(x) = (f(kx), d(x, kx)). Observe that this is indeed an extension. Fix any t ∈ K and
x ∈ X. Note that by definition of kx, d(x, kx) ≤ d(x, t), and by the triangle inequality,
d(t, kx) ≤ d(t, x) + d(x, kx) ≤ 2d(t, x), so that,

‖f̂(t)− f̂(x)‖pp = ‖f(t)− f(kx)‖pp + d(x, kx)p

≤ (α(k) · d(t, kx))p + d(x, kx)p

≤ (2α(k) · d(t, x))p + d(t, x)p

= d(t, x)p · ((2α(k))p + 1) .

On the other hand, since f does not contract distances,

‖f̂(t)− f̂(x)‖pp = ‖f(t)− f(kx)‖pp + d(x, kx)p

≥ d(t, kx)p + d(x, kx)p

≥ (d(t, kx) + d(x, kx))p/2p−1

≥ d(x, t)p/2p−1 ,

where the second inequality is by the power mean inequality. We conclude that the terminal
distortion is at most 2(p−1)/p · ((2α(k))p + 1)1/p.

For the second assertion, there is a non-contractive embedding f of K into G ∈ G with
distortion at most α(k). As above, for each x ∈ X \K define kx as the nearest point in K to
x. And for each x ∈ X, add to G a new vertex f(x) that is connected by an edge of length
dG(x, kx) to f(kx). The resulting graph G′ ∈ G, because it is a leaf-closed family. Fix any
x ∈ X and t ∈ K, then as above d(t, kx) ≤ 2d(t, x), and so

dG′(f(t), f(x)) = dG(f(t), f(kx)) + dG′(f(x), f(kx))
≤ α(k) · d(t, kx) + d(x, kx)
≤ d(t, x) · (2α(k) + 1) .

Also note that

dG′(f(t), f(x)) = dG(f(t), f(kx)) + d(x, kx) ≥ d(t, kx) + d(x, kx) ≥ d(t, x) ,

6 Note that for any p, α ≥ 1 we have that 2(p−1)/p · ((2α)p + 1)1/p ≤ 4α.
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so the terminal distortion is indeed 2α(k) + 1. Since f embeds into a graph with γ(k) edges,
and we added n − k new edges, the total number of edges is bounded accordingly, which
concludes the proof. J

Next, we study strong terminal embeddings into normed spaces. Fix any metric (X, d), a
set of terminals K ⊆ X and 1 ≤ p ≤ ∞. Let f : K → `p be a non-expansive embedding. We
say that f is Lipschitz extendable, if there exists a non-expansive f̂ : X → `p which is an
extension of f (that is, the restriction of f̂ to K is exactly f). It is not hard to verify that
any Fréchet embedding7 is Lipschitz extendable. For example, the embeddings of [15, 33, 8]
are Fréchet.

I Theorem 3. Let X be a family of metric spaces. Fix some (X, dX) ∈ X , and let K ⊆ X
be a set of terminals of size |K| = k, such that (K, dK) ∈ X . If any (Z, dZ) ∈ X of
size |Z| = m embeds into `γ(m)

p with distortion α(m) by a Lipschitz extendable map, then
there is a (non-expansive) embedding of X into `γ(n)+γ(k)+1

p with strong terminal distortion
O(α(k), α(n)).

Proof. By the assumptions there is a non-expansive embedding g : X → `
γ(n)
p with distortion

at most α(n), and there exists a Lipschitz extendable embedding f : K → `
γ(k)
p , which

is non-expansive and has distortion α(k). Let f̂ be the extension of f to X, note that
by definition of Lipschitz extendability, f̂ is also non-expansive. Finally, let h : X → R
be defined by h(x) = d(x,K). The embedding F : X → `

γ(n)+γ(k)+1
p is defined by the

concatenation of these maps F = g ⊕ f̂ ⊕ h.
Since all the three maps g, f̂ , h are non-expansive, it follows that for any x, y ∈ X,

‖F (x)− F (y)‖pp ≤ ‖g(x)− g(y)‖pp + ‖f̂(x)− f̂(y)‖pp + |h(x)− h(y)|p ≤ 3d(x, y)p ,

so F has expansion at most 31/p for all pairs (which can easily be made 1 without affecting
the distortion by more than a constant factor). Also note that

‖F (x)− F (y)‖p ≥ ‖g(x)− g(y)‖p ≥
d(x, y)
α(n) ,

which implies the distortion bound for all pairs is satisfied. It remains to bound the contraction
for all pairs containing a terminal. Let t ∈ K and x ∈ X, and let kx ∈ K be such that
d(x,K) = d(x, kx) (it could be that kx = x). If it is the case that d(x, t) ≤ 3α(k) · d(x, kx)
then by the single coordinate of h we get sufficient contribution for this pair:

‖F (t)− F (x)‖p ≥ |h(t)− h(x)| = h(x) = d(x, kx) ≥ d(x, t)
3α(k) .

The other case is that d(x, t) > 3α(k) · d(x, kx), here we will get the contribution from f̂ .
First observe that by the triangle inequality,

d(t, kx) ≥ d(t, x)− d(x, kx) ≥ d(t, x)(1− 1/(3α(k))) ≥ 2d(t, x)/3 . (2)

7 In our context, it will be convenient to call an embedding f : K → `t
p Fréchet, if there are sets

A1, . . . , At ⊆ X such that for all i ∈ [t], fi(x) = d(x,Ai)
t1/p .
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By another application of the triangle inequality, using that f̂ is non-expansive, and that f
has distortion α(k) on the terminals, we get the required bound on the contraction:

‖F (t)− F (x)‖p ≥ ‖f̂(t)− f̂(x)‖p
≥ ‖f̂(t)− f̂(kx)‖p − ‖f̂(kx)− f̂(x)‖p
≥ ‖f(t)− f(kx)‖p − d(x, kx)

≥ d(t, kx)
α(k) −

d(t, x)
3α(k)

(2)
≥ 2d(t, x)

3α(k) −
d(t, x)
3α(k)

= d(t, x)
3α(k) .

J

I Remark. The results of Theorems 2 and 3 hold also if X is a family of graphs, rather than
of metrics, provided that the embedding for this family has the promised guarantees even for
graphs with Steiner nodes. (E.g., if Ẑ ∈ X is a graph and Z is a set of vertices of size m, then
there exists a (Lipschitz extendable) embedding of (Z, dZ) to `γ(m)

p with distortion α(m),
where dZ is the shortest path metric on Ẑ induced on Z.) We note that many embeddings
of graph families satisfy this condition, e.g. the embedding of [33] to planar and minor-free
graphs.8

Here are some of the implications of Theorems 2 and 3.

I Corollary 4. Let (X, d) be a metric space on n points, and K ⊆ X a set of terminals of
size |K| = k. Then for any 1 ≤ p ≤ ∞,
1. (X, d) can be embedded to `O(log k)

p with terminal distortion O(log k).
2. If (X, d) is an `2 metric, it can be embedded to `O(log k)

2 with terminal distortion O(1).
3. For any t ≥ 1 there exists a (4t − 1)-terminal (metric) spanner of X with at most

O(k1+1/t) + n edges.
4. If (X, d) is an `2 metric, for any t ≥ 1 there exists a O(t)-terminal spanner of X with at

most O(k1+1/t2) + n edges.
5. (X, d) can be embedded to `O(logn+log2 k)

p with strong terminal distortion (O(log k), O(logn)).
6. If (X, d) is a shortest-paths metric of a graph that excludes a fixed minor (e.g., a planar

metric), it can be embedded to `p with strong terminal distortion
(O((log k)min{1/2,1/p}), O((logn)min{1/2,1/p})).

7. If (X, d) is a negative type metric, it can be embedded to `2 with strong terminal distortion
(Õ(
√

log k), Õ(
√

logn)).

The first two items use the first assertion of Theorem 2, the next two use its second
assertion, and the last three apply Theorem 3. The corollary follows from known embedding
results: (1) and (5) are from [15], with improved dimension due to [2], (2) is from [29], (3) is
from [5] and (4) from [28], (6) from [33], and (7) from [8, 7].

8 We remark that this requirement is needed for those graph families for which the following question is
open: given a graph Z in the family with terminals K, is there another graph in the family over the
vertex set K, that preserves the shortest-path distances with respect to Z (up to some constant). This
question is open, e.g., for planar metrics.
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4 Graph Terminal Spanners

While Theorem 2 provides a general approach to obtain terminal spanners, it cannot provide
spanners which are subgraphs of the input graph. We devise a construction of such terminal
spanners in this section, while somewhat increasing the number of edges. Specifically, we
show the following.

I Theorem 5. For any parameter t ≥ 1, a graph G = (V,E) on n vertices, and a set of
terminals K ⊆ V of size k, there exists a (4t − 1)-terminal graph spanner with at most
O(n+

√
n · k1+1/t) edges.

I Remark. Note that the number of edges is linear in n whenever k ≤ n1/(2(1+1/t)).

We shall use the following result:

I Theorem 6 ([18]). Given a weighted graph G = (V,E) on n vertices and a set P ⊆
(
V
2
)
of

size p, then there exists a subgraph G′ with O(n+
√
n · p) edges, such that for all {u, v} ∈ P ,

dG(u, v) = dG′(u, v).

Proof of Theorem 5. The construction of the subgraph spanner with terminal stretch will
be as follows. Consider the metric induced on the terminals K by the shortest path metric
on G. Create a (2t − 1) (metric) spanner H ′ of this metric, using [5], and let P ⊆

(
K
2
)

be the set of edges of H ′. Note that p = |P | ≤ O(k1+1/t). Now, apply Theorem 6 on the
graph G with the set of pairs P , and obtain a graph G′ that for every {u, v} ∈ P , has
dG′(u, v) = dG(u, v). This implies that G′ is a (2t − 1)-spanner for each pair of vertices
u,w ∈ K. Moreover, G′ has at most O(n +

√
n · p) edges. Finally, create H out of G′ by

adding a shortest path tree in G with the set K as its root. This will guarantee that the
spanner H will have for each non-terminal, a shortest path to its closest terminal in G. This
concludes the construction of H, and now we turn to bounding the stretch. Since H is a
subgraph clearly it is non-contracting. Fix any v ∈ K and u ∈ V , let ku be the closest
terminal to u, then dG(ku, v) ≤ dG(ku, u) + dG(u, v) ≤ 2dG(u, v), and thus

dH(u, v) ≤ dH(u, ku) + dG′(ku, v) ≤ dG(u, v) + (2t− 1)dG(ku, v) ≤ (4t− 1)dG(u, v) .

Finally observe that the total number of edges in H is at most O(n+
√
n · p) = O(n+

√
n ·

k1+1/t). J

5 Light Terminal Trees for General Graphs

In this section we find a single spanning tree of a given graph, that has both light weight, and
approximately preserves distances from a set of specified terminals. Theorem 2 can provide a
tree with terminal distortion 2k − 1 (using that any graph has a tree with distortion n− 1),
but that tree may not be a subgraph and may have large weight.

For a weighted graph G = (V,E,w) where w : E → R+, given a subgraph H of G, let
w(H) =

∑
e∈E(H) w (e), and define the lightness of H to be Ψ (H) = w(H)

w(MST (G)) , where
w(MST ) is the weight of a minimum spanning tree of G. The result of this section is
summarized as follows.

I Theorem 7. For any parameter α ≥ 1, given a weighted graph G = (V,E,w), and a subset
of terminals K ⊆ V of size k, there exists a spanning tree T of G with terminal distortion
k · α+ (k − 1)α2 and lightness 2α+ 1 + 2

α−1 .

APPROX/RANDOM’15
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When substituting α = 1 in Theorem 7 we obtain a single tree with terminal distortion
exactly 2k− 1, which is optimal. More specifically, for small ε > 0, we get terminal distortion
2k − 1 + ε and lightness 3 + 6k

ε . Also, note that the bound 2α+ 1 + 2
α−1 is minimized by

setting α = 2, so there is no point in using the theorem with α > 2.
Next we describe the algorithm for constructing a spanning tree that satisfies the assertion

of Theorem 7.
A spanning tree T is an (α, β)-SLT with respect to a root v ∈ V , if for all u ∈ V ,

dT (v, u) ≤ α · dG(v, u), and T has lightness β. A small modification of an SLT-constructing
algorithm produces for any subset K ⊂ V , a forest F , such that every component of F
contains exactly one vertex of K.9 The forest F has distortion α with respect to K, and
lightness 1 + 2

α−1 . (Such a forest F is said to have distortion α with respect to K, if for every
vertex u ∈ V , dF (K,u) ≤ α · dG (K,u).)

The algorithm starts by building the aforementioned SLT-forest F from the terminal setK.
No two terminals belong to the same connected component of F . DenoteK = {v1, . . . , vk}, let
Vi be the unique connected component of F containing vi, and let Ti ⊆ F be the edges of the
forest F induced by Vi. It follows that for every u ∈ Vi, dF (K,u) = dTi (vi, u) ≤ α ·dG (K,u).
Let G′ = (K,E′, w′) be the super-graph in which two terminals share an edge between
them if and only if there is an edge between the components Vi to Vj in G. Formally,
E′ = {{vi, vj} : ∃ui ∈ Vi, uj ∈ Vj such that {ui, uj} ∈ E}. The weight w′ (vi, vj) is defined
to be the length of the shortest path between vi and vj which uses exactly one edge that does
not belong to F . (In other words, among all the paths between vi and vj inG which use exactly
one edge that does not belong to F , let P be the shortest one. Then w′ (vi, vj) = w (P ).)
Note also that w′ (vi, vj) is given by w′ (vi, vj) = min e∈E

{
dF∪{e} (vi, vj)

}
. We call the

edge ei,j = {ui, uj} that implements this minimum (w′ (vi, vj) = dF∪{ei,j} (vi, vj)) the
representative edge of {vi, vj}. (W.l.o.g the shortest paths, and thus the representative
edges, are unique.) Observe that {vi, vj} ∈ E′ implies that w′ (vi, vj) < ∞. Let T ′ be the
MST of G′. Define R =

{
ei,j |ei,j is the representative edge of e′i,j = (vi, vj) ∈ T ′

}
. Finally,

set T = F ∪R =
⋃k
i=1 Ti ∪R. Obviously, T is a spanning tree of G.

5.1 Proof of Theorem 7
As an embedding of a graph into its spanning tree is non-contractive, the tree T will have
terminal distortion α if for all v ∈ K, u ∈ V , dT (v, u) ≤ α ·dG (v, u). We shall assume w.l.o.g
that all edge weights are different, and every two different paths have different lengths. If it
is not the case, then one can break ties in an arbitrary (but consistent) way.

The next lemma shows that for every pair of terminals vi, vj , there is a path between
them in G′ in which all edges have weight (with respect to w′) at most α · dG (vi, vj).

I Lemma 8. [The bottleneck lemma:] For every vi, vj ∈ K, there exists a path P : vi =
z0, z1, ..., zr = vj in G′ such that for every s = 0, 1, . . . , r − 1, it holds that {zs,zs+1} ∈ E′
and w′ (zs, zs+1) ≤ α · dG (vi, vj).

Proof. Let Pi,j : vi = u0, u1, ..., us = vj be the shortest path from vi to vj in G, i.e.,
w(Pi,j) = dG (vi, vj). For each 0 ≤ a ≤ s, denote by V (a) the connected component of F
that contains ua, and let v(a) be the unique terminal in that component. Consider the path

9 To obtain such a forest F , one should add a new vertex vK to the graph and connect it to each of the
vertices of K with edges of weight zero. Then we compute an (α, β)-SLT with respect to vK in the
modified graph. Finally, we remove vK from the SLT. The resulting forest is F .
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vi = u0 u1 u2

ua

ua+1

v(a)

v(a+1)

us−2

us−1
vj = us

V (a+1)

V (a)

Figure 1 An illustration for the bottleneck lemma: vi and vj are terminals. The edge {ua, ua+1}
belongs to the shortest path from vi to vj in G. We conclude that for terminals v(a), v(a+1) such
that ua ∈ V (a) and ua+1 ∈ V (a+1) it holds that w′

(
v(a), v(a+1)) ≤ α · dG (vi, vj).

P = v(0), v(1), ..., v(s). (This path is not necessarily simple. In particular, it might contain
self-loops.) For every index a < s, (see Figure 1 for illustration)

w′
(
v(a), v(a+1)

)
≤
(1)

dF∪{{ua,ua+1}}

(
v(a), v(a+1)

)
= dF

(
v(a), ua

)
+ dG (ua, ua+1) + dF

(
ua+1, v

(a+1)
)

≤
(2)

α · dG (vi, ua) + dG (ua, ua+1) + α · dG (vj , ua+1)

< α · (dG (vi, ua) + dG (ua, ua+1) + dG (vj , ua+1))
=
(3)

α · dG (vi, vj) .

Note that if for some index a it holds that v(a) = v(a+1) then w′
(
v(a), v(a+1)) = 0, and

the inequality above holds trivially. Otherwise, if v(a) 6= v(a+1), then inequality (1) follows
from the assumptions that {ua, ua+1} ∈ E, ua ∈ V (a), ua+1 ∈ V (a+1). Inequality (2) follows
from the properties of the SLT tree T (as dF

(
v(a), ua

)
= dF (K,ua) ≤ α · dG (K,ua) ≤

α · dG (vi, ua)) . Equality (3) follows because the edge {ua, ua+1} is on the shortest path
from vi to vj in G.

In particular, one can remove cycles from P and obtain a simple path with the desired
properties. We get a simple path P ′ such that for every edge v, v′ on this path, we have
w′ (v, v′) ≤ α · dG (vi, vj), as required. J

The following is a simple corollary.

I Corollary 9. For {vi, vj} ∈ T ′, we have w′ (vi, vj) = dT (vi, vj) ≤ α · dG (vi, vj).

Proof. By Lemma 8, w′ (vi, vj) ≤ α · dG (vi, vj). (Indeed, otherwise the edge {vi, vj} is
strictly the heaviest edge in a cycle in G′, contradiction to the assumption that it belongs to
the MST of G′.) Since {vi, vj} ∈ E′ and the representative edge of {vi, vj} was taken into T ,
it follows that w′ (vi, vj) = dT (vi, vj). J

We conclude the following lemma, which bounds the stretch of terminal pairs.

I Lemma 10. For vi, vj ∈ K, we have dT (vi, vj) ≤ dT ′ (vi, vj) ≤ α · (k − 1) · dG (vi, vj).

APPROX/RANDOM’15
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Pj,i

P ′

vi = v(0) vj = v(h)

v(1)
v(i)

Figure 2 The two paths P ′ and Pj,i considered in the proof of Lemma 10. The path P ′ is
contained in T ′, while all edges of Pj,i have weight at most α · dG (vi, vj).

Proof. Let P ′ : vi = v(0)v(1) . . . v(h) = vj be the (unique) path in T ′ between vi and vj .
Since T ′ is a spanning tree of the k-vertex graph G′, it follows that h ≤ k − 1. Observe also
that for every index a ∈ [h− 1], by Corollary 9 the edge w′

(
v(a), v(a+1)) = dT

(
v(a), v(a+1)).

Also, we next argue that w′
(
v(a), v(a+1)) ≤ α · dG (vi, vj). Indeed, suppose for contradiction

that w′
(
v(a), v(a+1)) > α · dG (vi, vj). Let Pj,i be a path between vj and vi in G′ such that

all its edges have weight at most α · dG (vi, vj). The existence of this path is guaranteed by
Lemma 8. In particular, since w′

(
v(a), v(a+1)) > α·dG (vi, vj), it follows that

{
v(a), v(a+1)} /∈

Pj,i. Consider the cycle P ′ ◦ Pj,i in G′. It is not necessarily a simple cycle, but since{
v(a), v(a+1)} /∈ Pj,i, the edge {v(a), v(a+1)} belongs to a simple cycle C contained in P ′ ◦Pj,i.

The heaviest edge of C clearly does not belong to Pj,i, because the edge
{
v(a), v(a+1)} is

heavier than each of them. Hence the heaviest edge belongs to P ′, but P ′ ⊆ T ′. This is a
contradiction to the assumption that T ′ is an MST of G′. (See Figure 2 for an illustration).
Hence dT

(
v(a), v(a+1)) = w′

(
v(a), v(a+1)) ≤ α · dG (vi, vj). Finally,

dT (vi, vj) ≤
h−1∑
a=0

dT

(
v(a), v(a+1)

)
=
h−1∑
a=0

w′
(
v(a), v(a+1)

)
≤

h−1∑
a=0

α · dG (vi, vj) ≤ h · α · dG (vi, vj) ≤ α · (k − 1) · dG (vi, vj) .

J

Next, we analyze the terminal distortion of T .

I Lemma 11. The terminal distortion of T is at most k · α+ (k − 1)α2.

Proof. For each terminal vi ∈ K and any vertex u ∈ Vj , it holds that

dT (vi, u) ≤ dT (vi, vj) + dT (vj , u) ≤ α · (k − 1) · dG (vi, vj) + α · dG (vi, u)
≤ α · (k − 1) · (dG (vi, u) + dG (u, vj)) + α · dG (vi, u)
≤ α · (k − 1) · (dG (vi, u) + α · dG (vi, u)) + α · dG (vi, u)
=

(
k · α+ (k − 1)α2) · dG (vi, u) .

The last inequality is because dG (vj , u) ≤ dF (vj , u) = dF (K,u) ≤ α · dG (K,u) ≤ α ·
dG (vi, u). J
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We now turn to analyze the lightness of T . A tree T = (K,E′, w′) is called a Steiner tree
for a graph G = (V,E,w) if (1) V ⊆ K, (2) for any edge e ∈ E ∩ E′, the edge has
the same weight in both G and T , i.e. w (e) = w′ (e), and (3) for any pair of vertices
u, v ∈ V it holds that dT (u, v) ≥ dG (u, v). The minimum Steiner tree T of G, denoted
SMT (G), is a Steiner tree of G with minimum weight. It is well-known that for any graph
G, w (SMT (G)) ≥ 1

2MST (G). (See, e.g., [25], Section 10.) The next lemma bounds the
lightness of the tree T .

I Lemma 12. The lightness of T is bounded by Ψ (T ) ≤ 2α+ 1 + 2
α−1 .

Proof. The main challenge is to bound w (R). (Recall that R is the set of the representative
edges of T ′.) Consider an edge {vi, vj} ∈ T ′, and let {ui, uj} be its representative edge. Then
dG (ui, uj) ≤ w′ (vi, vj). Also, since {vi, vj} ∈ T ′ ⊆ E′, it follows that w′ (vi, vj) = dG′ (vi, vj).
Hence dG (ui, uj) ≤ dG′ (vi, vj). Therefore, w (R) ≤ w′ (T ′). Next we provide an upper bound
for w′ (T ′). Define the graph G̃ as the complete graph on the vertex set K, with weights w̃
induced by dG (the shortest path distances in G). Let T̃ be the MST of G̃. We build a new
tree T̂ by the following process:

1. Let T̂ ← T̃ ;
2. For each {vi, vj} = ẽ ∈ T̃ :

a. Let Pẽ be a path from vi to vj which consists of edges in E′, such that for each edge e
in Pẽ, w′ (e) ≤ α · dG (vi, vj) = α · w̃ (ẽ); (By Lemma 8, such a path exists);

b. Let e′ ∈ Pẽ be an edge such that (T̂ \ {ẽ}) ∪ {e′} is connected;
c. Set T̂ ← (T̂ \ {ẽ}) ∪ {e′};

In each step in the loop we replace an edge ẽ = {vi, vj} from T̃ by an edge e′ from
G′ of weight w′ (e) ≤ α · w̃ (ẽ). Hence, the resulting tree T̂ is a spanning tree of G′,
and w′

(
T̂
)
≤ α · w̃

(
T̃
)
. Since T ′ is the MST of G′, it follows that w′ (T ′) ≤ w′

(
T̂
)
.

The MST of G is a Steiner tree for G̃, so that w̃
(
SMT

(
G̃
))
≤ w (MST (G)). Also,

w̃
(
MST

(
G̃
))

= w̃
(
T̃
)
≤ 2 · w̃

(
SMT

(
G̃
))
≤ 2 · w (MST (G)). We obtain that

w (R) ≤ w′ (T ′) ≤ w′
(
T̂
)
≤ α · w̃

(
T̃
)
≤ 2 · α · w (MST (G)) .

Since w (F ) ≤
(

1 + 2
α−1

)
· w (MST (G)), we conclude that

w (T ) = w (R ∪ F ) = w (R) + w (F ) ≤
(

2α+ 1 + 2
α− 1

)
· w (MST (G)) .

J

6 Probabilistic Embedding into Trees with Terminal Congestion

In this section we focus on embeddings into trees that approximate capacities of cuts, rather
than distances between vertices. This framework was introduced by Räcke [39] (for a single
tree), and in [40] he showed how to obtain capacity preserving probabilistic embedding from
a distance preserving one, such as the ones given by [23]. Later, [6] showed a complete
equivalence between these notions in random tree embeddings. Here we show our terminal
variant of these results. Informally, we construct a distribution over capacity-dominating
trees (each cut in each tree is at least as large as the corresponding cut in the original graph),
and for each edge, its expected congestion is bounded accordingly, with an improved bound
for edges containing a terminal.

APPROX/RANDOM’15
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Recall that an ultrametric (U, d) is a metric space satisfying a strong form of the triangle
inequality, that is, for all x, y, z ∈ U , d(x, z) ≤ max {d(x, y), d(y, z)}. The following definition
is known to be an equivalent one (see [14]).

I Definition 13. An ultrametric U is a metric space (U, d) whose elements are the leaves of
a rooted labeled tree T . Each z ∈ T is associated with a label Φ (z) ≥ 0 such that if q ∈ T is
a descendant of z then Φ (q) ≤ Φ (z) and Φ (q) = 0 iff q is a leaf. The distance between leaves
z, q ∈ U is defined as dT (z, q) = Φ (lca (z, q)) where lca (z, q) is the least common ancestor of
z and q in T .

Next, we define probabilistic embeddings with terminal distortion. For a class of metrics
Y , a distribution D over embeddings fY : X → Y with Y ∈ Y has expected terminal distortion
α if each fY is non-contractive (that is, for all u,w ∈ X and Y ∈ supp(D), it holds that
dX(u,w) ≤ dY (fY (u), fY (w))), and for all v ∈ K and u ∈ X,

EY∼D[dY (fY (v), fY (u))] ≤ α · dX(v, u) .

The notion of strong terminal distortion translates to this setting in the obvious manner.
We will need the following theorem, implicit in our companion paper [20].

I Theorem 14. [20] Given a metric space (X, d) of size |X| = n and a subset of terminals
K ⊆ X of size |K| = k, there exists a distribution over embeddings of X into ultrametrics
with strong terminal distortion (O(log k), O(logn)).

We next elaborate on the notions of capacity and congestion, and their relation to distance
and distortion, following the notation of [6]. Given a graph G = (V,E), let P be a collection
of multisets of edges in G. A map M : E → P , where M(e) is a path between the endpoints
of e, is called a path mapping (the path is not necessarily simple). Denote by Me′(e) the
number of appearances of e′ in M(e).

The path mapping relevant to the rest of this section is constructed as follows: given a
tree T = (V,ET ) (not necessarily a subgraph), for each edge e′ ∈ ET let PG(e′) be a shortest
path between the endpoints of e′ in G (breaking ties arbitrarily), and similarly for e ∈ E, let
PT (e) be the unique path between the endpoints of e in T . Then for an edge e ∈ E, where
PT (e) = e′1e

′
2 . . . e

′
r, the path M(e) is defined as M(e) = PG(e′1)◦PG(e′2)◦ · · · ◦PG(e′r) (where

◦ denotes concatenation). In what follows fix a tree T , and let M be the path mapping of T .
Fix a weight function w : E → R+, and a capacity function c : E → R+. For an edge

e ∈ E, distT (e) =
∑
e′∈EMe′(e) · w (e′) is the weight of the path M(e), and loadT (e) =∑

e′∈EMe(e′) · c (e′) is the sum (with multiplicities) of the capacities of all the edges whose
path is using e. Define distortionT (e) = distT (e)

w(e) to be the distortion of e in T , and

congT (e) = loadT (e)
c(e) is the congestion of e. Note that if T is a subgraph of G, then distT (e)

is the length of the unique path between the endpoints of e, while loadT (e) is the total
capacity of all the edges of E that are in the cut obtained by deleting e from T (for e /∈ T ,
loadT (e) = 0).

I Definition 15. Let K ⊆ V be a set of terminals of size k, and let EK ⊆ E be the set of
edges that contain a terminal. We say that a distribution D over trees has strong terminal
congestion (α, β) if for every e ∈ EK .

congD(e) := ET∼D[congT (e)] ≤ α ,

and for any e ∈ E, congD(e) ≤ β.
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A tight connection between distance preserving and capacity preserving mappings was
shown in [6]. We generalize their theorem to the terminal setting in the following manner.

I Theorem 16. The following statements are equivalent for a graph G:
For every possible weight assignment G admits a probabilistic embedding into trees with
strong terminal distortion (α, β).
For every possible capacity assignment G admits a probabilistic embedding into trees with
strong terminal congestion (α, β).

An immediate corollary of Theorem 16, achieved by applying Theorem 14, is:10

I Corollary 17. For any graph G = (V,E) on n vertices, a set K ⊆ V of k terminals, and
any capacity function, there exists a distribution over trees with strong terminal congestion
(O(log k), O(logn)).

Proof of Theorem 16. Assuming the first item holds we prove the second. Let κ(e) ={
1/α e ∈ EK
1/β otherwise . Given any capacity function c : E → R+, we would like to show

that there exists a distribution D′ such that for any e ∈ E, ET∼D′ [κ(e) · congT (e)] ≤ 1. By
applying the minimax principle (as in [4]), it suffices to show that for any coefficients {λe}e∈E
with λe ≥ 0 and

∑
e∈E λe = 1, there exists a single tree T such that∑

e∈E
λe · κ(e) · congT (e) ≤ 1 . (3)

To this end, define the weights w(e) = κ(e) · λe

c(e) , and by the first assertion there exists a
distribution D over trees such that for any e ∈ E,

ET∼D[κ(e) · distortionT (e)] ≤ 1 .

By applying the minimax again, there exists a single tree T such that∑
e∈E

λe · κ(e) · distortionT (e) ≤ 1 .

Now,

1 ≥
∑
e∈E

λe · κ(e) · distortionT (e)

=
∑
e∈E

λe · κ(e) ·
∑
e′∈EMe′(e) · w (e′)

w(e)

=
∑
e∈E

λe · κ(e) ·
∑
e′∈EMe′(e) · κ(e′) · λe′/c(e′)

κ(e) · λe/c(e)

=
∑
e′∈E

λe′ · κ(e′) ·
∑
e∈EMe′(e) · c(e)

c(e′)

=
∑
e′∈E

λe′ · κ(e′) · congT (e′) ,

which concludes the proof of (3). The second direction is symmetric. J

10Even though the embedding of Theorem 14 is into ultrametrics, which contain Steiner vertices, these
can be removed while increasing the distortion of each pair by at most a factor of 8 [26].
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Capacity Domination Property. As [40, 6] showed, under the natural capacity assignment,
any tree T supported by the distribution of Theorem 16 has the following property: Any
multi-commodity flow in G can be routed in T with no larger congestion. We would like
to show this explicitly, using the language of cuts, as this will be useful for the algorithmic
applications.

Fix some tree T = (V,ET ), and for any edge e′ ∈ ET let ST,e′ ⊆ V be the cut obtained
by deleting e′ from T . Define the capacities CT : ET → R+ by

CT (e′) =
∑

e∈E(ST,e′ ,S̄T,e′ )

c(e) ,

where E(S, S̄) denotes the set of edges in the graph crossing the cut S. (Observe that for
spanning trees, CT (e) = loadT (e).)

I Lemma 18. For any graph G = (V,E) and tree T = (V,ET ) with capacities as defined
above, for any set S ⊆ V it holds that∑

e∈E(S,S̄)
c(e) ≤

∑
e′∈ET (S,S̄)

CT (e′) ≤
∑

e∈E(S,S̄)
loadT (e) . (4)

Proof. We begin with the left inequality. For any graph edge e ∈ E(S, S̄), there exists a
tree edge e′ ∈ ET (S, S̄) such that e′ ∈ PT (e), because the path PT (e) must cross the cut.
Since removing e′ from T separates the endpoints of e, CT (e′) will contain the term c(e). We
conclude that∑

e∈E(S,S̄)
c(e) ≤

∑
e′∈ET (S,S̄)

CT (e′) .

For the right hand side, consider an edge e ∈ E, and note that for any tree edge e′ ∈ ET
such that e ∈ PG(e′), every edge e′′ ∈ E(ST,e′ , S̄T,e′) will have e ∈M(e′′) and thus contribute
to loadT (e) (perhaps multiple times, due to different e′). This implies that

loadT (e) =
∑

e′∈ET : e∈PG(e′)

CT (e′) . (5)

Next, observe that any tree edge e′ ∈ ET (S, S̄) must have at least one graph edge e ∈ E(S, S̄)
such that e ∈ PG(e′). This suggests that∑

e∈E(S,S̄)

loadT (e) (5)=
∑

e∈E(S,S̄)

∑
e′∈ET :e∈PG(e′)

CT (e′)

=
∑
e′∈ET

|E(S, S̄) ∩ PG(e′)| · CT (e′)

≥
∑

e′∈ET (S,S̄)

CT (e′) .

J

7 Applications

In this section we illustrate several algorithmic applications of our techniques. Some of
our applications are suitable for graphs with a small vertex cover. Recall that for a graph
G = (V,E), a set A ⊆ V is a vertex cover of G, if for any edge e ∈ E, at least one of its
endpoints is in A. A polynomial time 2-approximation algorithm to this problem is folklore.
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7.1 Sparsest-Cut
In the sparsest-cut problem we are given a graph G = (V,E) with capacities on the edges
c : E → R+, and a collection of pairs (s1, t1), . . . , (sr, tr) along with their demandsD1, . . . , Dr.
The goal is to find a cut S ⊆ V that minimizes the ratio between capacity and demand
across the cut:

φ(S) =
∑
{u,v}∈E c(u, v)|1S(u)− 1S(v)|∑r

i=1Di|1S(si)− 1S(ti)|
,

where 1S(·) is the indicator for membership in S. Arora et. al. [7] present an Õ
(√

log r
)

approximation algorithm to this problem. Our contribution is the following.

I Theorem 19. If there exists a set K ⊆ V of size k such that any demand pair contains
a vertex of K, then there exists a Õ

(√
log k

)
approximation algorithm for the sparsest-cut

problem.

The key ingredient of the algorithm of [7] is a non-expansive embedding from `22 (negative-
type metrics) into `1, which has Õ

(√
log r

)
contraction for all demand pairs. We will use

the strong terminal embedding for negative type metrics given in item (7) of Corollary 4 to
improve the distortion to Õ

(√
log k

)
.

We now elaborate on how to use the embedding of `22 into `1 to obtain an approximation
algorithm for the sparsest-cut, all the details can be found in [35, 9, 7], and we provide
them just for completeness. First, write down the following SDP relaxation with triangle
inequalities:

Algorithm 1 Sparsest Cut SDP Relaxation
min

∑
{u,v}∈E c(u, v) · ‖ū− v̄‖22

s.t.
∑r
i=1Di · ‖s̄i − t̄i‖22 = 1

For all u, v, w ∈ V , ‖ū− v̄‖22 + ‖v̄ − w̄‖22 ≥ ‖ū− w̄‖22
For all u ∈ V , ū ∈ Rn

Note that this is indeed a relaxation: if S is the optimal cut, set ρ =
∑r
i=1Di · |1S(si)−

1S(ti)|; for u ∈ S set ū = ( 1√
ρ , 0, ..., 0), and for u /∈ S, set ū = (0, ..., 0). It can be checked to

be a feasible solution of value equal to that of the cut S.
Let K ⊆ V be a vertex cover of the demand graph (V, {{si, ti}ri=1}) of size at most 2k

(recall that we can find such a cover in polynomial time). Let X = {v̄ ∈ Rn | v ∈ V } be an
optimal solution to the SDP (it can be computed in polynomial time), which is in particular
an `22 (pseudo) metric. By Corollary 4 there exists a non-expansive embedding f : X → `1
with terminal distortion Õ

(√
log k

)
(where K is the terminal set).11 This implies that for

any u, v ∈ V and any 1 ≤ i ≤ r,

‖ū− v̄‖22 ≥ ‖f(v̄)− f (ū) ‖1
‖s̄i − t̄i‖22 ≤ Õ(

√
log k) · ‖f(s̄i)− f(t̄i)‖1 . (6)

Let ‖f(v̄) − f (ū) ‖1 =
∑
S⊆V αS |1S(v)− 1S(u)| be a representation of the `1 metric as

a nonnegative linear combination of cut metrics (it is well known that there is such a

11The embedding of Corollary 4 is in fact into `2, but there is an efficient randomized algorithm to embed
`2 into `1 with constant distortion [24].
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representation with polynomially many cuts S having αS > 0). We conclude

opt(SDP) =
∑

{u,v}∈E

c(u, v) · ‖ū− v̄‖22

=
∑
{u,v}∈E c(u, v) · ‖ū− v̄‖22∑r

i=1Di · ‖s̄i − t̄i‖22
(6)
≥

∑
{u,v}∈E c(u, v) · ‖f(v̄)− f (ū) ‖1∑r

i=1Di · Õ
(√

log k
)
· ‖f(s̄i)− f

(
t̄i
)
‖1

= 1
Õ
(√

log k
) · ∑{u,v}∈E c(u, v) ·

∑
S(V αS |1S(v)− 1S(u)|∑r

i=1Di ·
∑
S(V αS |1S(si)− 1S(ti)|

≥ 1
Õ
(√

log k
) min
S:αS>0

∑
{u,v}∈E c(u, v) · |1S(v)− 1S(u)|∑r

i=1Di · |1S(si)− 1S(ti)|

= min
S:αS>0

φ(S)
Õ
(√

log k
) .

In particular, among the polynomially many sets S ⊆ V with αS > 0, there exists one which
has sparsity at most Õ(

√
log k) times larger than the optimal one.

7.2 Min Bisection

In the min-bisection problem, we are given a graph G = (V,E) on an even number n of
vertices, with capacities c : E → R+. The purpose is to find a partition of V into two equal
parts S ⊆ V and S̄ = V \ S, that minimizes

∑
e∈E(S,S̄) c(e). This problem is NP-hard, and

the best known approximation is O (logn) by [40]. We obtain the following generalization.

I Theorem 20. There exists a O(log k) approximation algorithm for min-bisection, where k
is the size of a minimal vertex cover of the input graph.

Proof. Our algorithm follows closely the algorithm of [40], the major difference is that we
use our embedding into trees with terminal congestion. Let K ⊆ V be the set of terminals,
which is a vertex cover of size at most 2k, and D a distribution over trees with strong
terminal congestion (O(log k), O(logn)) given by Corollary 17. The algorithm will sample a
tree T = (V,ET ) from D, find an optimal bisection in T and return it. We refer the reader
to Section 6 for details on notation and on the definition of capacities CT : ET → R+ for
T . We note that there is polynomial time algorithm (by dynamic programming) to find a
min-bisection in trees.

It remains to analyze the algorithm. Let S ⊆ V be the optimal solution in G, and ST be
the optimal bisection for the tree T . The expected cost of using ST in G can be bounded
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using Lemma 18 as follows∑
T∈supp(D)

Pr [T ]
∑

e∈E(ST ,S̄T )
c (e)

(4)
≤

∑
T

Pr [T ]
∑

e′∈ET (ST ,S̄T )
CT (e′)

≤
∑
T

Pr [T ]
∑

e′∈ET (S,S̄)
CT (e′)

(4)
≤

∑
T

Pr [T ]
∑

e∈E(S,S̄)
loadT (e)

=
∑

e∈E(S,S̄)
ET∼D [loadT (e)]

≤
∑

e∈E(S,S̄)
O (log k) · c(e)

= O (log k) · opt (G) ,

where the last inequality uses that every edge touches a terminal, so its expected congestion
is O(log k). The algorithm can be derandomized using standard methods, see e.g. [6]. J

7.3 Online Algorithms: Constrained File Migration
We illustrate the usefulness of our probabilistic terminal embedding into ultrametric via
the constrained file migration problem. This is an online problem, in which we are given a
graph G = (V,E) representing a network, each node v ∈ V has a memory capacity mv, and
a parameter D ≥ 1. There is some set of files that reside at the nodes, at most mv files may
be stored at node v in any given time. The cost of accessing a file that currently lies at v
from node u is dG(u, v) (no copies of files are allowed). Files can also be migrated from one
node to another, this costs D times the distance. When a sequence of file requests arrives
online, the goal is to minimize the cost of serving all requests. The competitive ratio of an
online algorithm is the maximal ratio between its cost to the cost of an optimal (offline)
solution. For randomized algorithms the expected cost is used.

We consider the case where there exists a small set of vertices which are allowed to store
files (i.e. mv > 0). One may think about these vertices as servers who store files, while
allowing file requests from all end users. Let K ⊆ V be the set of terminal vertices that are
allowed to store files, with |K| = k. Our result is captured by the following theorem.

I Theorem 21. There is a randomized algorithm for the constrained file migration problem
with competitive ratio O(logm · log k), where k vertices can store files and m is the total
memory available.

This theorem generalizes a result of [12], who showed an algorithm with competitive ratio
O(logm · logn) for arbitrary graphs on n nodes. Both results are based on the following
theorem. (Recall that a 2-HST is an ultrametric (see Definition 13) such that the ratio
between the label of a node to any of its children’s label is at least 2.)

I Theorem 22 ([12]). For any 2-HST, there is a randomized algorithm with competitive
ratio O (logm) for constrained file migration with total memory m.

By Theorem 14 there is a distribution D over embeddings of G into ultrametrics with
expected terminal distortion O (log k), but in fact every tree in that distribution is a 2-HST.

APPROX/RANDOM’15
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Assume that in the optimal (offline) solution there are suv times a file residing on v was
accessed by u, and tuv files were migrated from v to u. Let cuv = suv +D · tuv be the total
cost of file traffic from v to u. Note that as mv = 0 for any v /∈ K, then for any u ∈ V we
have cuv = 0. Using the fact that the terminal distortion guarantee of D applies to all of the
relevant distances, we obtain that

optG =
∑

u∈V,v∈K
cuv · dG(u, v) (7)

≥ 1
O(log k) ·

∑
u∈V,v∈K

cuv · ET∼D[dT (u, v)]

= 1
O(log k) · ET∼D

[ ∑
u∈V,v∈K

cuv · dT (u, v)
]
.

Observe that for any tree T ∈ supp (D) we could have served the request sequence in the
same manner as the optimal algorithm, which would have the cost

∑
u∈V,v∈K cuv · dT (u, v).

In particular, the optimal solution optT for the same requests with the input graph T cannot
be larger than that, i.e.∑

u∈V,v∈K
cuv · dT (u, v) ≥ optT . (8)

Our algorithm will operate as follows: Pick a random tree according to the distribution
D, pick a random strategy S for transmitting files in T according to the distribution S(T )
guaranteed to exists by Theorem 22, and serve the requests according to S. Denote by
costH(S) the cost of applying strategy S with distances taken in the graph H. For any
possible T ∈ supp (D) it holds that

optT ≥
ES∼S(T )[costT (S)]

O(logm) ≥
ES∼S(T )[costG (S)]

O(logm) , (9)

where the last inequality holds since T dominates G (i.e. dT (u, v) ≥ dG(u, v) for all u, v ∈ V ).
Combining equations (7), (8) and (9) we get that

optG ≥
ET∼DES∼S(T )[costG (S)]

O(log k logm) .

Hence our randomized algorithm has O (logm log k) competitive ratio, as promised.
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Abstract
We study some linear programming relaxations for the Unsplittable Flow problem on trees (UFP-
tree). Inspired by results obtained by Chekuri, Ene, and Korula for Unsplittable Flow on paths
(UFP-path), we present a relaxation with polynomially many constraints that has an integrality
gap bound of O(logn ·min{logm, logn}) where n denotes the number of tasks and m denotes the
number of edges in the tree. This matches the approximation guarantee of their combinatorial
algorithm and is the first demonstration of an efficiently-solvable relaxation for UFP-tree with
a sub-linear integrality gap.

The new constraints in our LP relaxation are just a few of the (exponentially many) rank
constraints that can be added to strengthen the natural relaxation. A side effect of how we prove
our upper bound is an efficient O(1)-approximation for solving the rank LP. We also show that
our techniques can be used to prove integrality gap bounds for similar LP relaxations for packing
demand-weighted subtrees of an edge-capacitated tree.

On the other hand, we show that the inclusion of all rank constraints does not reduce the
integrality gap for UFP-tree to a constant. Specifically, we show the integrality gap is Ω(

√
logn)

even in cases where all tasks share a common endpoint. In contrast, intersecting instances of
UFP-path are known to have an integrality gap of O(1) even if just a few of the rank 1 constraints
are included.

We also observe that applying two rounds of the Lovász-Schrijver SDP procedure to the nat-
ural LP for UFP-tree derives an SDP whose integrality gap is also O(logn ·min{logm, logn}).
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1 Preliminaries

In the Unsplittable Flow problem on trees (UFP-tree), we are given a tree T = (V,E)
with a nonnegative capacity ce ≥ 0 specified for each edge e ∈ E. Throughout, we will let
m denote the number of edges in T . Additionally, we are given n tasks where each task
1 ≤ i ≤ n is specified by endpoints si, ti ∈ V , a demand di ≥ 0, and a weight wi ≥ 0.

For a task i we let span(i) denote all edges e ∈ E lying between the unique si − ti path
in T . A set of tasks S is said to be feasible if∑

i∈S:e∈span(i)

di ≤ ce for each edge e ∈ E.
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The goal is to find a feasible set of tasks S with maximum possible weight.
The seemingly unusual “Unsplittable Flow” name is inherited from a generalization to

arbitrary graphs G where the problem is to select a maximum weight set tasks and select a
single si − ti path for each chosen task upon which to route all of the task’s demand. This
generalization captures the well-studied Edge-Disjoint Paths problem in undirected graphs
for which the best true approximation is O(

√
n) [10]. We will not pursue a discussion of this

generalization as all of our results pertain only to trees.
In UFP-tree, there is only one possible path for each task to follow so the difficulty is

only in selecting which tasks to route. Still, UFP-tree is NP-hard even if the tree consists
of only a single edge as this case is just a reformulation of the classic Knapsack problem. A
more interesting specialization of UFP-tree when the tree is a path (UFP-path). Currently,
the best approximation for UFP-path is 2 + ε for any constant ε > 0 [2] and the best lower
bound is only strong NP-hardness [6]. It may still be possible to obtain a PTAS for UFP-
path; indeed a (1 + ε)-approximation with running time nOε(log n) was recently developed
by Batra et al. [4], improving over a previous (1 + ε)-approximation with running time
nOε(log n·log(nD)) where D is the ratio of the maximum to minimum density (i.e. wi/di) [3].

The current best approximation for UFP-tree is considerably worse than the (2 + ε)-
approximation for UFP-path, with a ratio of O(logn ·min{logm, logn}) [9]. It is known
that UFP-tree is APX-hard [14], which rules out a PTAS unless P = NP.

A major barrier to developing better approximations for UFP-tree is that the following
natural LP relaxation has an Ω(n) integrality gap even in UFP-path instances [8].

maximize
∑

i

wi · xi (Nat-LP)

s.t.
∑

i:e∈span(i)

di · xi ≤ ce ∀ e ∈ E

0 ≤ xi ≤ 1 ∀ 1 ≤ i ≤ n

This bad gap is witnessed by a simple “staircase” example: suppose the nodes in the
underlying path are indexed by {0, 1, . . . , n}. Then for every 1 ≤ i ≤ n we set the capacity
of edge (i − 1, i) to 2−i and create a task with endpoints 0, i, demand 2−i and weight 1.
The all- 1

2 solution is feasible for Nat-LP with value n/2, but the optimum integer solution
selects only one task (if i < j then di + dj > 2−i = c(i−1,i)).

Nat-LP can still be used to obtain reasonable approximations in two important special
cases of UFP-tree. First, if there is some value B such that di ≤ B for all tasks i and
B ≤ ce for all edges e (the no-bottleneck property) then the integrality gap is at most 48 [11].
Second, if δ > 0 is such that di ≤ (1− δ) · ce for each task i and each e ∈ span(i), then the
integrality gap is O(δ−3 · log(1/δ)) [9].

Strengthenings of the natural LP relaxation for UFP-path have been considered in [9, 1].
In [9], a polynomial-size LP relaxation was presented for UFP-path and its integrality gap
was proven to be O(min{logm, logn}). In particular, they show the gap is O(1) if all tasks
span a common vertex and used a simple reduction from the general case to this intersecting
case that loses an O(min{logm, logn})-factor. The constraints they added are of the form∑

i∈S xi ≤ 1 for a certain collection of subsets S such that {i, j} is infeasible for any distinct
i, j ∈ S.

These are just some of the so-called rank constraints one can add to strengthen a
packing LP. In their full generality, the rank constraint for a set of tasks S is the constraint∑

i∈S xi ≤ rank(S) where rank(S) is the size of the largest feasible subset of S. The authors
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of [9] also consider the more powerful LP that includes adding the rank constraints for every
set of tasks that span a common node (Rank-LP in our paper, formally defined in Section
1.2). They show how to solve Rank-LP in UFP-path instances within an O(1)-factor and
leave approximating Rank-LP in UFP-tree instances as an open problem.

Additionally, two other polynomial-size LP relaxation for UFP-path were introduced
in [1]. The constraints in one of these relaxations are motivated by a geometric view of
UFP-path that was initially identified in [6]. They showed its integrality gap was O(1)
in unit-weight, but not necessarily intersecting, instances (i.e. wi = 1 for all i). Their LP
also approximates Rank-LP for UFP-path within O(1). The other relaxation essentially
“embeds” a dynamic programming algorithm introduced by Bonsma et al [6] for instances
that have a bad integrality gap and is shown to have a constant integrality gap. We remark
that no such dynamic programming procedure is known for UFP-tree, so these techniques
do not seem to apply to this more general setting.

To date, there has not been any demonstration of a polynomial-time solvable (or even
O(1)-approximable) LP relaxation for UFP-tree that has a o(n) integrality gap. Our results
settle this open problem affirmatively by presenting a LP relaxation for UFP-tree with
polynomially many constraints that has an integrality gap of O(logn ·min{logm, logn}).
Meanwhile, we show how to solve Rank-LP in UFP-tree instances within a constant
factor.

Another potential avenue to strengthen the natural LP relaxation would be to use lift-
and-project techniques (a.k.a hierarchies). Such techniques start with a linear or semidefinite
programming relaxation of a {0, 1} integer program and strengthen the relaxation through
a number of rounds. Typically, one can solve the `’th round of the resulting relaxation
with nO(`) overhead over solving the original formulation. We omit an introduction to such
techniques (Lovász-Schrijver, Sherali-Adams, Lasserre hierarchies, etc.) from this extended
abstract since our lift-and-project observations are secondary to our main results. A good
introduction can be found in [12].

While some positive lift-and-project results are known for the restricted case of a single
edge (i.e. Knapsack) [16, 13], the only known result for more general UFP-tree instances
is a negative one. Namely, LP-based hierarchies seem ineffective even for UFP-path: the
integrality gap of Nat-LP strengthened with ` rounds of the Sherali-Adams hierarchy is
Ω(n/`) [9]. In this paper, we show that applying two rounds of the Lovász-Schrijver SDP
procedure (a SDP version of the Lovász-Schrijver hierarchy) to the natural LP for UFP-tree
derives a SDP relaxation for UFP-tree with an integrality gap of O(logn·min{logm, logn}).

1.1 A Generalization to Packing Trees
We will also (briefly) consider the following generalization of UFP-tree to the setting where
each task is now a subtree of T , rather than just a path in T . Here a task i is specified by a
subtree Ti of T , a demand di, and a weight wi. The goal is still to find a maximum-weight
subset of tasks S so that

∑
i∈S:e∈span(i) di ≤ ce for each edge e where, naturally, span(i)

denotes the edges lying on Ti. We let k-TreePacking denote this problem where each input
tree Ti is further restricted to contain at most k leaves. In this way, UFP-tree is the same
as k-TreePacking with k = 2.

While some special cases of k-TreePacking have been studied (e.g. UFP-path, UFP-
tree, and, as discussed below, the Maximum Independent Set Problem), it seems that
the general problem has not been considered before. There is a simple reduction from the
Maximum Independent Set Problem in graphs with degree at most k to k-TreePacking
instances where T is just a star, and all demands, capacities, and weights are 1. Namely,
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if G = (V,E) is a Maximum Independent Set instance then we let T be a star with leaves
indexed by E. For each v ∈ V , we create a subtree Tv whose leaves in T are the edges
in G incident to v. Thus, an independent set in G is the same as a feasible collection of
subtrees in the k-TreePacking instance and we get the following as a corollary of Maximum
Independent Set hardness results for bounded degree graphs in [7, 5].

I Corollary 1 (of [7, 5]). The following hardness results hold for k-TreePacking even if
all demands, capacities, and weights are 1 and T is a star:
1. There is no k

O(log4 k) -approximation unless P = NP.
2. There is no k

O(log2 k) -approximation unless the Unique Games conjecture is false.

While k-TreePacking has not been explicitly studied before, it is easy to generalize
the O(logn ·min{logm, logn})-approximation for UFP-tree in [9] to get a combinatorial
O(k · logn ·min{logm, log(kn)}) approximation. However, as with UFP-tree, no compact
LP relaxation was known for k-TreePacking that has a o(n) integrality gap. In this
paper, we first present a LP relaxation for k-TreePacking with an integrality gap of
O(k · logn ·min{logm, log(kn)}), which is o(n) when considering k as a fixed constant. In
particular, this LP relaxation has an integrality gap at most 4k + 1 for the instances with
unit weight subtrees sharing a common node. Note that both ratios in Corollary 1 are
asymptotically larger than k1−c for any constant c > 0. Thus, in this case the integrality gap
of our LP relaxation is close to matching the hardness lower bounds stated in Corollary 1.

1.2 Results and Techniques
In this subsection, we present all our main results and techniques. The proofs are deferred
to later sections and the appendix. Our main results pertain to UFP-tree. Our techniques
extend to obtain LP relaxations with bounded integrality gaps for k-TreePacking, but
those are secondary to our main result and will be discussed later. We assume that the
singleton set {i} is feasible for each task i. Otherwise, we can discard any task that does not
fit by itself 1.

We establish some notation to describe our strengthening of Nat-LP. For any two vertices
u, v we let P (u, v) be the set of edges lying between u and v in T . Similarly, for an edge e
and vertex v we let P (e, v) be the set of edges lying between e and v in T , including e itself.

I Definition 2. For every task i, every vertex v spanned by task i, and every endpoint
a ∈ {si, ti} we form a blocking set C(i, v, a) of tasks as follows. C(i, v, a) includes i and every
other task j that satisfies the following conditions.
1. v is also spanned by j
2. dj ≥ di

3. di + dj > ce for some e ∈ P (a, v) ∩ span(j)
This is a natural generalization of the RightBlock and LeftBlock sets used in the relaxation
Compact UFP-LP for UFP-path from [9].

For every collection of tasks S such that {i, j} is infeasible for any distinct i, j ∈ S, we
say S is a pairwise infeasible clique. The following lemma, whose proof is found at the start
of Section 2, shows that a blocking set is a pairwise infeasible clique.

I Lemma 3. For any distinct j, j′ in some blocking set C(i, v, a), the set {j, j′} is not
feasible.

1 This preprocessing step is not necessary when using lift-and-project techniques as a single level of even
the Lovász-Schrijver LP hierarchy will enforce xi = 0 for such tasks.
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From this, we formulate our stronger LP relaxation for UFP-tree.

maximize
∑

i

wi · xi (Compact-LP)

s.t.
∑

i:e∈span(i)

di · xi ≤ ce ∀ e ∈ E (1)

∑
i∈C(j,v,a)

xi ≤ 1 ∀ blocking sets C(j, v, a) (2)

0 ≤ xi ≤ 1 ∀ 1 ≤ i ≤ n

Note that there are O(n · m) constraints in this relaxation. We could omit the xi ≤ 1
constraints because they are enforced by the blocking constraints (2), but we will keep them
for ease of notation because the dual variables for xi ≤ 1 serve a slightly different purpose
than dual variables for blocking sets in our analysis.

We say that a set of tasks S is intersecting if there is some vertex v that lies on the si− ti
path for every i ∈ S. A UFP-tree instance is said to be intersecting if the set of all tasks is
intersecting. Finally, say that an instance is a unit-weight instance if wi = 1 for all tasks i.

I Theorem 4. The integrality gap of Compact-LP is O(logn ·min{logm, logn}) and is
at most 9 in unit-weight, intersecting instances of UFP-tree.

More specifically, we show that the greedy combinatorial algorithm in [9] for unit-weight,
intersecting instances of UFP-tree finds a feasible solution S such that |S| is within a factor
of 9 from the LP optimum. In our analysis, we construct a feasible dual solution and then
verify that a relaxation of the complementary slackness conditions holds, in some appropriate
sense, on average.

Chekuri, Ene, and Korula also introduce a larger family of constraints. For every collection
of tasks S we say rank(S) is the size of the largest subset of S that is feasible (paying no
attention to the weights wi). They consider the following even stronger LP which, in our
language, is presented as follows.

maximize
∑

i

wi · xi (Rank-LP)

s.t.
∑

i:e∈span(i)

di · xi ≤ ce ∀ e ∈ E

∑
i∈S

xi ≤ rank(S) ∀ intersecting sets of tasks S (3)

0 ≤ xi ≤ 1 ∀ 1 ≤ i ≤ n

In the full version of [9], the integrality gap of Rank-LP is shown to be O(1) on intersecting
instances of UFP-path with arbitrary weights wi. They also show a connection to their
version of the blocking sets for UFP-path which, in our notation, means that if x is a feasible
solution to Compact-LP for a UFP-path instance, then x/18 is feasible for Rank-LP.
However, they do not identify any such connection for UFP-tree nor do they provide a way
to even approximate Rank-LP; this is left as an open problem.

We resolve this open problem affirmatively by showing that a consequence of Theorem 4
is that we can solve Rank-LP within constant factors in UFP-tree. Specifically, we prove
the following as a special case of a slightly more general statement about packing problems.

I Theorem 5. If x is a feasible solution to Compact-LP for UFP-tree, then x/9 is a
feasible solution to Rank-LP.
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It is known that there is a reduction from the (general) UFP-tree instances to the inter-
secting UFP-tree instances losing an approximation factor at most O(min{logm, logn}).
An intriguing possibility for obtaining an O(logn)-approximation for UFP-tree would be
to show the integrality gap of Rank-LP is O(1) in intersecting cases. Indeed, this is the
case for UFP-path [9]. Unfortunately, we have examples showing that the integrality gap
can be super-constant in intersecting cases of UFP-tree.

I Theorem 6. The integrality gap of Rank-LP for UFP-tree is Ω(
√

logn) even in
instances with a common end node r (i.e. ti = r for all tasks i).

We would like to briefly reflect on this result. Essentially by definition, the integrality
gap of Rank-LP on intersecting, unit-weight instances of UFP-tree is 1: consider the
rank constraint for S being the set of all tasks. In fact, for any subset of tasks S in an
intersecting instance, the LP is requiring that

∑
i∈S xi ≤ rank(S) so this might seem like

a very strong formulation. However, it is not the case that the set of feasible solutions to
Rank-LP is equal to the convex hull of integer solutions. Theorem 6 basically says that one
can choose the weight vector to make the integrality gap very large. We are not aware of
any other packing problems for which the integrality gaps of the unweighted and a weighted
versions have been observed to differ by a super-constant factor (though, it is easy to argue
the difference is never worse than O(logn), see Appendix A.1). This observation may be of
general interest.

Our techniques extend easily to k-TreePacking. The notion of a blocking set naturally
generalizes to k-TreePacking and one can consider an analogous relaxation of Compact-
LP (details of this generalization are in Appendix B).

I Theorem 7. The integrality gap of Compact-LP for k-TreePacking is O(k · logn ·
min{logm, log(kn)}) and is at most 4k + 1 in intersecting, unit weight instances.

Note that the latter bound is close to the hardness lower bounds stated in Corollary 1. Also,
our integrality gap analysis is tight within constant factors for intersecting, unit weight
instances.

I Lemma 8. For any k ≥ 2, there are intersecting, unit weight instances instances of
k-TreePacking with integrality gap at least k/2 in Compact-LP.

Finally, we observe that applying two rounds of Lovász-Schrijver SDP operatator (see [12]
for a definition) to Nat-LP derives the constraint

∑
i∈S xi ≤ 1 for any pairwise infeasible

clique S. Since a blocking set is a pairwise infeasible clique, the integrality gap bounds for
Compact-LP stated in Theorem 4 also holds for the two-round Lovász-Schrijver SDP for
UFP-tree and, more generally, for k-TreePacking.

I Lemma 9. Let LSt
+ denote the t rounds of the Lovász-Schrijver SDP operator, and let P be

the polytope defined by the constraints of Nat-LP for k-TreePacking. Then the integrality
gap of max{wT · x : x ∈ LS2

+(P)} is O(k · logn · min{logm, log(kn)}). In particular, for
UFP-tree, the integrality gap is O(logn ·min{logm, logn}).

Thus, SDP hierarchies are much more effective than LP hierarchies for k-TreePacking
since, as mentioned earlier, the integrality gap using t rounds of the Sherali-Adams operator
is Ω(n/t) even in UFP-path instances [9].

The paper is organized as follows. Section 2 contains the proof of Theorem 4, Section
3 contains the proof of Theorem 5, and Section 4 presents the lower bound in Theorem
6. Concluding remarks are made in Section 5. For the sake of space, the results for k-
TreePacking mentioned in Theorem 7 and Lemma 8 are discussed in Appendix B and the
proof of Lemma 9 is deferred to Appendix C.
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2 A Stronger, Compact LP For UFP-tree

We begin by proving Lemma 3 from Section 1.2, referring to the three conditions in Definition
2 for the blocking sets.

Proof of Lemma 3. Condition 3 implies {i, j} itself is not feasible for any j ∈ C(i, v, a)\{i}.
Now consider any two distinct j, j′ ∈ C(i, v, a) \ {i}. Let e, e′ ∈ P (a, v) be any edges that
are violated by {i, j} and {i, j′}, respectively, as in condition 3. Suppose, without loss of
generality, that e′ ∈ P (e, v) so condition 1 implies e′ ∈ span(j) as well. By conditions 2 and
3, we have dj + dj′ ≥ di + dj′ > ce′ so {j, j′} violates the capacity of edge e′. J

The following summarizes some of the reductions performed in the combinatorial UFP-
tree-approximation [9] that remain valid for our LP-based arguments. For convenience, we
have sketched these reductions in Appendix A.

I Lemma 10. If the integrality gap of Compact-LP for intersecting, unit-weight UFP-
tree instances is O(1), then the integrality gap of of Compact-LP in general UFP-tree
instances is O(logn ·min{logm, logn}).

Thus, to prove Theorem 4 it suffices to prove that the integrality gap of Compact-LP is 9.
The rest Section 2 is devoted to proving this statement.

2.1 Duality and Complementary Slackness
From now on, we will assume that there is a root node r such that every task spans r. We
will also assume, for simplicity, that there are precisely 2n leaves of the tree and each leaf of
T is an endpoint of precisely one task. This is without any loss of generality since we can
append a new node ` to every endpoint of every task i, move that endpoint of i to the new
node `, and set the capacity of the parent edge of ` to di. This does not change the set of
feasible LP solutions for Compact-LP.

It is important to remember that we are considering Compact-LP in unit-weight
instances in this analysis, which is why we state the dual of Compact-LP only for unit-
weight instances. To avoid clutter, we will let C refer to a blocking set of the form C(j, v, a).
For example, a sum of the form

∑
C:i∈C sums over all blocking sets of the form C(j, v, a)

that contain i. We let ye be the dual variables for constraints (1), zC be the dual variables
for constraints (2) and z′i be the dual variables for constraints xi ≤ 1.

minimize
∑

e

ce · ye +
∑

C

zC +
∑

i

z′i (Dual-LP)

s.t.
∑

e∈span(i)

di · ye +
∑

C:i∈C

zC + z′i ≥ 1 ∀ tasks i (4)

y, z, z′ ≥ 0

Relaxed Complementary Slackness. We construct feasible primal x and dual (y, z, z′)
solutions satisfying the following conditions.
1. xi ∈ {0, 1} for each task i
2. xi = 1 =⇒

∑
e∈span(i)

di · ye ≤ 2

3. ye > 0 =⇒
∑

i:e∈span(i)

di · xi ≥
ce

2
4.
∑

C zC +
∑

i z
′
i ≤ 5

∑
i xi
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Let OPTf denote the optimal fractional solution to Compact-LP for the intersecting,
unit-weight instance we are considering.

I Lemma 11. Suppose x and (y, z, z′) are feasible primal and dual solutions that satisfy
conditions 1− 4 above. Then x is an integer solution with value ≥ OPTf/9.

Proof. Let α, β > 0 be quantities we will set later that satisfy α+ β = 1. Then∑
i

xi = α
∑

i

xi + β
∑

i

xi

≥ α

2
∑

i

∑
e∈span(i)

xi · di · ye + β

5

(∑
C

zC +
∑

i

z′i

)

= α

2
∑

e

ye

∑
i:e∈span(i)

xi · di + β

5

(∑
C

zC +
∑

i

z′i

)

≥ α

4
∑

e

ce · ye + β

5

(∑
C

zC +
∑

i

z′i

)
.

The first inequality uses conditions 2 and 4 and the second inequality uses condition 3.
Setting α = 4

9 and β = 5
9 shows

∑
i

xi ≥
1
9

(∑
e

ce · ye +
∑

C

zC +
∑

i

z′i

)
.

Finally, by weak duality and since (y, z, z′) is feasible for Dual-LP with cost
∑

e ce · ye +∑
C zC +

∑
i z
′
i, then

∑
i xi ≥ 1

9OPTf . J

We will prove there indeed exists such x and (y, z, z′). The x-values will be obtained by a
simple greedy algorithm and the corresponding (y, z, z′)-values will be carefully constructed
to witness the near-optimality of x as a solution to Compact-LP.

2.2 The Greedy Algorithm
Algorithm 1 is essentially the greedy algorithm of [9] for unit-weight, intersecting instances
of UFP-tree. We have augmented it with some bookkeeping for use in our analysis. In the
algorithm, we say that e is undersaturated by S if

∑
i∈S:e∈span(i) di < ce/2.

Algorithm 1 Greedy algorithm for unit-weight, intersecting instances.
1: Initialize S,Du and Ds to ∅.
2: for each task i in increasing order of demand di do
3: if S ∪ {i} is feasible then add i to S
4: else
5: Let B(i) be the edges whose capacities are violated by S ∪ {i}.
6: if some e ∈ B(i) is undersaturated by S then add i to Du

7: else add i to Ds

8: return S

Intuitively, for i 6∈ S we have that B(i) consists of the edges that “blocked” i; those edges
that would have their capacity constraint violated by S′ ∪ {i} (for the set S′ ⊆ S of tasks
that were chosen at the time i was considered). Then Du consists of tasks that were blocked
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r

Figure 1 The tree T ′ is partitioned into six paths. Two are drawn with bold edges, two with
thin edges, and two with dashed edges. Note that the root has degree 2, but the path it lies on is
broken into two paths.

by at least one undersaturated edge and Ds consists of tasks that were blocked only by
“mostly saturated” edges. Note that once an edge blocks some task, no more tasks spanning
that edge will be added to S.

Let x be defined by xi = 1 if i ∈ S and xi = 0 if i 6∈ S. By construction, x is a feasible
integer solution to Compact-LP. We must show

∑
i xi = |S| is within a factor of 9 from

the optimum LP solution.

2.3 Constructing the Dual Solution
We will show that Du can be partitioned into at most 4 · |S| sets such that each is a subset
of some blocking set of the form C(j, a, s). Given this, we set zC = 1 for each of the at
most 4 · |S| blocking sets C that contain one of the partitions of Du and set zC′ = 0 for the
remaining blocking sets C ′. Finally, we set z′i = 1 for each i ∈ S and z′i = 0 for i 6∈ S. This
will satisfy the 4th complementary slackness condition.

Note that the dual constraints (4) in Dual-LP for i ∈ Du will be satisfied by the z-
variables alone and that the dual constraints for i ∈ S will be satisfied by z′ alone. Finally,
we will set the ye values to satisfy the dual constraints for i ∈ Ds. The rest of the analysis
breaks into two parts: 1) finding the appropriate partition of Du into subsets of blocking
sets and 2) setting the ye variables to satisfy the dual constraints for i ∈ Ds. The second
part must be done carefully to ensure the dual constraints for i ∈ S are not too slack to
satisfy condition 2 while maintaining ye = 0 for undersaturated edges to satisfy condition 3.

2.4 Finding the Blocking Sets
Consider the subtree T ′ of T consisting only of the nodes and edges of T that are spanned by
some task i ∈ S. Since we are assuming the leaves of T are in one-to-one correspondence with
the 2 · n endpoints of the tasks, then T ′ has precisely 2 · |S| leaves. Let P be the collection of
paths in T ′ such that for every P ∈ P, the endpoints of P have degree 6= 2 in T ′ and the
internal nodes of P have degree 2. If it so happens that r has degree 2 in T ′, then we also
break the path P containing r into two paths, both containing r as one endpoint. The paths
in P form a partition of the set of edges of T ′. Figure 1 illustrates the partitioning of a tree
into paths P in this manner.

Since the number of leaves of T ′ is 2 · |S| and we only split at most one of the degree-2
paths in T ′ into two paths, then there are at most 4 · |S| paths in P . We will partition Du into
at most 4 · |S| subsets that we denote by C(P ), P ∈ P. Partitioning Du is straightforward.
For each i ∈ Du we have that some e ∈ B(i) was undersaturated when i was considered in
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the algorithm and remains undersaturated throughout the rest of the algorithm. Pick any
such edge and call it e(i). Add i to C(P ) where P ∈ P is such that e(i) ∈ P .

For each P ∈ P with C(P ) 6= ∅, we will identify a blocking set C containing C(P ). Let
iP denote the task with least demand in C(P ), let vP denote the node on P nearest to r
(which must be spanned by i since i ∈ C(P )), and let aP be the endpoint of iP such that
e(i) ∈ P (a, vP ).

I Lemma 12. For this choice of iP , vP , a, we have C(P ) ⊆ C(iP , vP , aP ).

Proof. Consider any j ∈ C(P ). We clearly have diP ≤ dj by our choice of iP . Furthermore,
since P lies below vP and since e(j) ∈ P then vP ∈ span(j).

Note that every i′ ∈ S that spans some edge of P must, in fact, span all of P by how we
decomposed T ′ into degree-2 subpaths. Let ∆ =

∑
i′∈S:P⊆span(i′) di′ be the total demand of

tasks in S routed across P . Since task j is blocked by e(j), then dj + ∆ > ce(j). Since e(j)
was undersaturated when j was blocked, then ∆ < ce(j)/2 so dj > ce(j)/2 > ∆. Note that
this argument also works for iP : diP > ∆.

To finish the proof, we have to show that if j 6= iP then j conflicts with iP somewhere on
P (aP , vP ). Now, since both e(j) and e(iP ) lie in P , then either e(j) ∈ span(iP ) or e(iP ) ∈
span(j). Suppose e(j) ∈ span(iP ) (the other case is similar). Then dj + diP > dj + ∆ > ce(j)
meaning {j, iP } conflicts across e(j) ∈ P . Thus, C(P ) ⊆ C(iP , vP , aP ). J

2.5 Setting ye

Recall that for an edge e, the set P (e, r) consists of all edges on the path between e and r
including e itself. Also, for a vertex v we let P (v, r) denote the set of all edges lying on the
unique v − r path in the tree T .

Let F ′ be the set of all edges e ∈ E such that
∑

i∈S:e∈span(i) di ≥ ce/2. Fix any subset
F ⊆ F ′ that is minimal with respect to the property that for every task i ∈ Ds and every
endpoint a ∈ {si, ti}, if F ′ ∩B(i) ∩ P (a, r) 6= ∅ then F ∩B(i) ∩ P (a, r) 6= ∅. In other words,
we are looking at each a− r subpath for each endpoint a of a task i ∈ Ds. If i was blocked
by some edge on this subpath, then F should still contain some edge on this subpath that
blocked i.

Say that an edge e ∈ F is critical for i ∈ Ds if F ∩B(i)∩P (a, r) = {e} for some endpoint
a of i. Note that up to (but no more than) 2 edges may be critical for a single task i, one
per endpoint of i. By minimality of F , every e ∈ F is critical for at least one task in Ds.
So, for any e ∈ F we define i(e) := arg min{di : i ∈ Ds and e is critical for i} (breaking ties
arbitrarily).

We now set values to the dual variables ye, e ∈ E.

I Lemma 13. There is a y ≥ 0 such that ye = 0 for e 6∈ F and
∑

e′∈P (e,r) di(e)ye′ = 1 for
e ∈ F .

Proof. We set the values ye, e ∈ F inductively in increasing size of |P (e, r)∩ F |. If P (e, r)∩
F = {e} then we simply set ye = 1

di(e)
.

If |P (e, r) ∩ F | ≥ 2 then let e′ be the deepest edge on (P (e, r) ∩ F ) \ {e}. That is,
F ∩ (P (e, r) \ {e}) = F ∩ P (e′, r). Set ye = 1

di(e)
− 1

di(e′)
; it must be that ye ≥ 0. Otherwise,

i(e′) is considered before i(e) in Algorithm 1. But then e′ ∈ B(i(e)), contradicting the fact
that e ∈ F is critical for i(e).

Finally, by our setting of ye and because
∑

e′′∈P (e′,r) di(e′)ye′′ = 1, we have∑
e′′∈P (e,r)

di(e)ye′′ = 1.
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J

The following Lemma shows the dual constraints are now satisfied for each i ∈ Ds even if
the blocking set variables zC are ignored.

I Lemma 14. For i ∈ Ds we have
∑

e∈span(i) diye ≥ 1.

Proof. The statement holds for each i of the form i(e) for some e ∈ F by Lemma 13 (and
noting P (e, r) ⊆ span(i)). So, we suppose that i ∈ Ds is such that i 6= i(e) for all e ∈ F .

Since i ∈ Ds, there is some endpoint a of i such that P (a, r) ∩ B(i) 6= ∅. By how we
selected F , then P (a, r) ∩ B(i) ∩ F 6= ∅ as well. Let e be an edge in P (a, r) ∩ B(i) ∩ F
that is furthest from the root. The claim is that di ≥ di(e). If so, then

∑
e′∈span(i) diye′ ≥∑

e′∈P (e,r) diye′ ≥
∑

e′∈P (e,r) di(e)ye′ = 1 by Lemma 13.
There are two cases.

1. P (si, r) ∩B(i) ∩ F = {e}. Then e is critical for i. But since i(e) 6= i, it must be that by
our choice of i(e) (being the least demand task for which e is critical) that di(e) ≤ di.

2. |P (si, r)∩B(i)∩F | ≥ 2. Since e is furthest from the root, then there is some e′ 6= e with
e′ ∈ P (e, r) ∩ B(i) ∩ F . If di < di(e), then i was considered before i(e) in Algorithm 1.
But since e′ ∈ F blocks i, it would have also blocked i(e) contradicting the fact that e is
critical for i(e).

J

2.6 Putting It All Together

I Lemma 15. x and (y, z, z′) are feasible for Compact-LP and its dual and satisfy the
relaxed complementary slackness conditions.

Proof. Clearly x is a feasible solution since it is the indicator vector of the set S selected
by the greedy algorithm. Now, y, z and z′ are nonnegative by construction. We had set
z′i = 1 for each i ∈ S, so the dual constraints for i ∈ S are satisfied. We also partitioned
Du into subsets of blocking sets and set the z-value for each such blocking set to 1, so the
dual constraints for i ∈ Du are also satisfied. Finally, the the dual constraints for i ∈ Ds are
satisfied by Lemma 14.

Next we verify the relaxed complementary slackness conditions. By construction, all
xi are {0, 1}-valued. The third condition holds because ye > 0 only for edges that are not
undersaturated by S (c.f. Lemma 13).

We set zC = 1 for at most 4 · |S| blocking sets, and zC = 0 for the rest. Similarly, z′i = 1
for i ∈ S and z′i = 0 for i 6∈ S. Thus, the fourth relaxed complementary slackness conditions
hold.

The only thing left to prove is that the second relaxed complementary slackness conditions
hold. So, consider some i ∈ S. We will show

∑
e∈P (a,r) diye ≤ 1 for each endpoint a of i. Since

each e ∈ span(i) lies on some P (a, r) path for some endpoint a of i, then
∑

e∈span(i) diye ≤ 2.
Recall the definitions of F and i(e) from Section 2.5. If P (a, r) ∩ F = ∅, then we have∑

e∈P (a,r) diye = 0. Otherwise, let e be the deepest edge P (a, r) ∩ F . That is, e ∈ F and
F ∩ P (a, r) = F ∩ P (e, r). It must be that di ≤ di(e), otherwise i(e) would have been
considered before i in Algorithm 1. This is impossible because e would then have blocked
i ∈ S. Thus,

∑
e′∈P (a,r) diye′ =

∑
e′∈P (e,r) diye′ ≤

∑
e′∈P (e,r) di(e)ye′ = 1 where the last

equality is by Lemma 13. J
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3 Approximating Rank-LP

We prove Theorem 5 as a special case of the following more general statement about packing
problems. Suppose Ax ≤ b, x ∈ {0, 1}n defines the set of feasible solutions to an integer
program over n variables where all entries of A are nonnegative. For a nonempty subset of
indices S ⊆ {1, . . . , n}, let AS and xS denote the restriction of A to the columns indexed by
S and x to the entries indexed by S. Also let rank(S) be the largest subset of S that can be
packed feasibly. Finally, let 1 denote the all-1 vector.

I Lemma 16. Let S be a collection of nonempty subsets of {1, . . . , n}. Suppose x ∈ Rn

satisfies Ax ≤ b and x ∈ [0, 1]n. Finally, suppose α is an upper bound on the integrality gaps
of all (unit-weight) linear programs max{1T · xS

i : ASxS ≤ b, xS ∈ [0, 1]|S|} for S ∈ S. Then
for every S ∈ S we have

∑
i∈S xi ≤ α · rank(S).

Proof. For any S ∈ S, xS is feasible for the unit-weight LP max{1T · xS
i : ASxs ≤ b, xS ∈

[0, 1]|S|} because A is nonnegative. By the integrality gap assumption, there is a feasible
packing of at least

∑
i∈S x

S
i /α items in S. That is,

∑
i∈S x

S
i /α ≤ rank(S). J

To prove Theorem 5, apply the integrality gap bound from Theorem 4 to Lemma 16,
with S being the collection of all intersecting collections of tasks.

4 Lower Bound

We give an example showing that the integrality gap of Rank-LP in weighted, intersecting
cases of UFP-tree can be as bad as Ω(

√
logn). Note that an upper bound of O(logn) for

weighted intersecting cases follows from the O(1) upper bound for unit-weight, intersecting
cases demonstrated in Section 2 and the reduction in Appendix A.1. This also shows that
the our averaging argument using relaxed complementary slackness cannot be adapted to
prove a constant gap for weighted intersecting instances.

For any integer h ≥ 2, we define a tree Th. Initially, consider a complete tree with height
h− 1 and branching factor 2h−1 and say leveli, 1 ≤ i ≤ h, are the vertices in level i of this
tree. Finally, we add one additional node r and connect r to the single vertex in level1 to
obtain our tree Th. We say that r is the root of T and that level0 = {r}. The number of
nodes in Th is n = 1 + 2h(h−1)−1

2h−1−1 ≤ 2h2 . Hence, h ≥
√

log2 n.
For each edge uv with u ∈ levelk−1 and v ∈ levelk, we set ce = 2h(h−k+1). Finally, for

every v ∈ levelk, 1 ≤ k ≤ h we create a single task i(v) with start node v and end node r.
We give i(v) demand di(v) = 2h(h−k+1) − 2h(h−k) and weight wi(v) = 1

2(k−1)(h−1) = 1
|levelk| .

That is, for each 1 ≤ k ≤ h we have distributed exactly one unit of weight evenly among the
tasks {i(v) : v ∈ levelk}.

Figure 2 illustrates the construction of Th for h = 3. For convenience, we define S(v) for
a vertex v of Th to be the set of tasks i where si lies in the subtree rooted at v. We begin by
establishing a lower bound on the integrality gap of Compact-LP.

I Lemma 17. The solution xi = 1
2 for all tasks i is feasible for Compact-LP on instance

Th with value h/2.

Proof. Consider the solution xi = 1
2 for each task i, which has objective function value

h/2. We first prove by reverse induction on k that the constraint for an edge e = uv with
u ∈ levelk−1, v ∈ levelk is satisfied by x. This is clearly true for k = h.
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v

r

S(v)

Task i(v)

level0

level1

level2

level3

Figure 2 Bad instance T 3. The span of task i(v) is drawn with bold lines. The outlined group of
nodes are the starting points of tasks in S(v).

Inductively, consider k < h and suppose no child edge of v has its corresponding constraint
violated by x. Recall that there are 2h−1 children of v, each with capacity 2h(h−k). By
induction, the total fractional demand from tasks in S(v) in the solution x is at most

di(v)

2 +
∑

u child of v

cvu ≤
c(e)

2 + 2h(h−k) · 2h−1 = c(e)

so the Constraint (1) for edge e is satisfied.
Note that {i, j} is feasible for any tasks i, j. That is, suppose {i, j} violated the capacity

of some edge cuv. Then i, j ∈ S(v) and if {i, j} violates the capacity of uv, then so to does
i(v), i(w) for some child w of v. But a simple calculation shows di(v) + di(w) ≤ cuv, which
is a contradiction. This means Constraints (2) of Compact-LP are vacuous, thus trivially
satisfied. J

I Lemma 18. Every UFP-tree solution in Th has value at most 2.

Proof. Consider any edge e = (u, v) where u ∈ levelk−1 and v ∈ levelk. Note that S(v1) is
the set of all tasks where level1 = {v1}. Thus, it suffices to show the following.

Claim: If v ∈ levelk, the maximum weight of a feasible subset I ⊆ S(v) is at most 2
2(h−1)(k−1) .

We prove this claim by induction on k from h to 1. Clearly, for k = h it is true since
the weight of each task from the lowest level is 1

2(h−1)(h−1) . Inductively, consider k < h and
suppose the statement is true for all v′ ∈ levelk+1.

Case a: i(v) /∈ I.
In this case, I is a union of feasible solutions Iw ⊆ S(w) for each child w of v. By the
induction hypothesis, the weight of each Iw is at most 2

2(h−1)k . Since there are 2h−1 children
of v, then the weight of I is bounded by 2h−1 2

2(h−1)k = 2
2(h−1)(k−1) .

Case b: i(v) ∈ I.
The weight of i(v) is 1

2(h−1)(k−1) and the remaining capacity of e is 2h(h−k). By how we set
the demands and weights, it is not hard to see that the task from the lowest level have the
largest density (i.e. wi/di), which is 1

2h−1 ·
1

2(h−1)·(h−1) ≤ 1
2h(h−1) . Hence, the weight of I− i(v)

is at most 2h(h−k)

2h(h−1) ≤ 1
2(h−1)(k−1) . Adding this to wi(v) completes the proof. J
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By Lemmas 17 and 18, the integrality gap of Compact-LP is at least h/4 = Ω(
√

logn).
To complete the proof of Theorem 6, simply note that since the all-1/2 solution is feasible
for Compact-LP then the solution x with xi = 1/18 for all tasks i is feasible for Rank-LP
by Theorem 5. Thus, the integrality gap of Rank-LP is also Ω(

√
logn).

5 Conclusion

We saw how adding only O(n ·m) constraints to the natural LP relaxation for UFP-tree
reduces the integrality gap from Ω(n) to O(logn ·min{logm, logn}). Unfortunately, we also
know that including all rank constraints does not reduce the gap to a constant. The bad
gap example we demonstrated has all tasks sharing a common endpoint. Interestingly, such
instances admit an FPTAS.

Our analysis of the upper bound of Rank-LP may not be tight. It may also be possible to
further strengthen the LP. Closing the gap between the upper and lower bound is an important
problem, especially since UFP-tree has been a testbed for more general column-restricted
packing LP ideas (e.g. [9, 11]).

It would also be interesting to determine the integrality gap of Rank-LP on unit-weight
instances of UFP-tree that are not necessarily intersecting. In UFP-path, it is known
to be O(1) [1]. If it is also constant in UFP-tree, then this immediately leads to an
O(logn)-approximation in general. On the other hand, if this gap is super-constant then
this may indicate that UFP-tree has no constant-factor approximation.

For the more general problem k-TreePacking, we gave an O(k) upper bound on the
integrality gap of Compact-LP (in Appendix B), matching the guarantee of the combin-
atorial approximation implicit in [9]. Corollary 1 means that we cannot find significantly
better approximations, but it may still be possible to get a o(k)-approximation. In particular,
there is an Õ

(
k

log2 k

)
-approximation for the Maximum Independent Set problem in degree

≤ k graphs [15] (the tilde is supressing log log k terms). Our integrality gap analysis for
Compact-LP was asymptotically tight, so other techniques must be considered to get a
slightly better approximation.

Acknowledgements. The authors thank Joseph Cheriyan and Chaitanya Swamy for many
helpful discussions.
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A Reduction to Unit-Weight, Intersecting Cases

The proof of Lemma 10 uses essentially the same arguments as in [9]. We start with a general
instance of UFP-tree.

A.1 Reduction to Unit-Weight Instances

The idea is to bucket the tasks by their weight and round each bucket separately. The general
idea works for every packing problem, not just UFP-tree.

Consider a feasible LP solution x to Compact-LP. Let W be the maximum weight
of the tasks. We know the value of x is at least W because we are assuming each task is
feasible by itself. Discard all tasks i with wi ≤ W

2n and let x′ denote the restriction of x to
the remaining tasks. Since we discarded at most n tasks and since xi ≤ 1 for each tasks i,
then w′T · x′ ≥ wT · x/2 (where w′ is the restriction of w to the remaining tasks).

For a ∈ {1, . . . , dlog2 2ne}, form the “bucket” Ba = {i : 2−aW < wi ≤ 2−a+1W}. Notice
that there are O(logn) different buckets Ba and they partition the remaining tasks. For each
such a, let xa denote the restriction of x to tasks in Ba.

Now, xa is a feasible LP solution Compact-LP. If we know the integrality gap is β for
unit-weight instances, then we can find a feasible set of at least

∑
i∈Ba

xi/β tasks in Ba. The
weight of these tasks is at least (wa)T · xa/2β (where wa denotes the restriction of w to Ba)
and the best solution found among all buckets Ba has weight at least w′T · x′/2βdlog2 2ne.
Thus, the integrality gap is O(logn · β).

Note that β will depend on the input size in the coming arguments, namely β =
O(min{logm, logn}). However, since it is non-decreasing with the input size then the above
arguments remain valid.
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A.2 Reduction to Intersecting Instances

Recall that we are assuming the integrality gap of unit-weight, intersecting cases is bounded
by α = O(1). We describe a recursive algorithm, with the base case being when the instance
itself is already intersecting. In this case, there is a feasible set of tasks S of size at least∑

i xi/α by assumption
Otherwise, recall that every tree T has a “centre” node v such that the number of edges

in each component of T − v is at most half the number of edges m of T . Fix such a centre
node v and let Iv be the set of tasks spanning v. The integrality gap assumption means
there is a feasible subset S of Iv with size at least

∑
i∈Iv xi/α.

Let T (1), . . . , T (b) denote the connected subtrees of T that remain after v is deleted. For
each i 6∈ Iv, the entire si − ti path is entirely contained in some T (j) so we consider the b
different UFP-tree instances defined by each T (j) and the tasks contained entirely within
T (j), say Ij . Furthermore, the restriction of x to each of these subinstances is feasible for
that instance. Finally, each T (j) has at most m/2 edges by our choice of v.

Recursively, we find a feasible set of tasks Sj of size at least
∑

i∈Ij xi/(α · log2(m/2))
from each subinstance Ij . The set ∪jSj is feasible because no two tasks contained in
different subinstances span a common edge. This gives us a feasible solution ∪jSj of size∑

i6∈Iv xi/(α · log2(m/2)).
Keep the largest of S or ∪jSj as our solution for the instance on the tree T . A quick

calculation shows that max{|S|, | ∪j Sj |} has size at least
∑

i xi/(α · log2 m·). That is, the
integrality gap of Compact-LP in unit-weight instances is at most α · log2 m = O(logm).

A.3 Reducing the Number of Edges

Combining the previous two reductions shows the integrality gap is at most O(logn · logm).
We can also bound the integrality gap by O(log2 n) by performing the following preprocessing
step before applying the previous two reductions.

Consider a node v of T that has degree at most 2 and is not an endpoint of any task. If
v has degree 2 with incident edges uv and vw, we remove v from T and add the edge uw
with capacity min{cuv, cvw}. If v is a leaf of T , then we just discard v and its incident edge
from T . In either case, the set of feasible solutions x to Compact-LP does not change.

Let m′ be the number of edges in the resulting tree, the claim is that m′ ≤ 4n. To see
this, recall that the number of edges in a tree with ` leaves and b degree 2 nodes is at most
2`+ b. The only leaves and degree 2 nodes in the resulting tree are endpoints of one of the n
tasks, so there are at most 2n leaves and degree 2 nodes. Thus, m′ ≤ 4n.

Applying the previous two reductions to this tree that we obtained, we see the integrality
gap can also be bounded by O(logn logm′), which is bounded by O(log2 n).

B Extensions to k-TreePacking

Here we briefly discuss how to modify the algorithm and analysis from Section 2 to get
integrality gap bounds for k-TreePacking. Recall that each subtree Ti in the input has at
most k leaves.

We use similar notation, for a subset S of input tasks/subtrees we let rank(S) denote the
largest subset of S that is feasible. A subset S is called intersecting if there is a vertex r
that lies on all subtrees Ti for tasks in S. In this way, Rank-LP can also be regarded as a
relaxation for k-TreePacking.
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Because the integrality gap of Rank-LP is just 1 in intersecting, unit-weight instances
of k-TreePacking and because such instances are hard to approximate within factors close
to k (c.f. Corollary 1), we cannot hope to solve this LP within a factor that is much better
than k. We will sketch how to solve it within a factor of 4k+ 1 by adapting our approach for
UFP-tree.

First, we generalize the notion of a blocking set. For any vertex v, any i such that the
subtree Ti contains v, and any leaf node a of Ti we let C(i, v, a) denote the set containing i
and all j such 1) dj ≥ di, 2) Tj spans v, and 3) di + dj > ce for some edge e ∈ P (a, v) ∩ Tj .
Lemma 12 and its proof generalize without effort to k-TreePacking.

I Lemma 19. For any such i, v, a, rank(C(i, v, a)) ≤ 1.

Thus, we may also consider the generalization of Compact-LP to k-TreePacking. It
has O(n ·m · k) constraints. Before discussing the integrality gap upper bound, we begin by
providing a lower bound.

Proof of Lemma 8. Let T be a star with
(

k+1
2
)
leaves. Index the leaves by subsets of

{1, . . . , k+ 1} of size 2. For each 1 ≤ i ≤ k, create a subtree Ti with leaves being the k leaves
of T that correspond to pairs containing i. Set all demands, capacities, and weights to 1.

The solution xi = 1
2 is feasible for Compact-LP since each blocking set has size at most

2. However, the optimum k-TreePacking solution picks only a single subtree, as selecting
any pair of subtrees Ti, Tj would violate the capacity of the edge incident to of leaf {i, j}. J

Finally, our upper bound for k-TreePacking is the following.

I Theorem 20. The integrality gap of Compact-LP for k-TreePacking is at most 4k+ 1
in intersecting, unit-weight instances and is O(k · logn · min{logm, log(kn)}) in general
instances.

Rather than presenting the whole proof from scratch, we just mention how to generalize the
proof for UFP-tree to this setting.

The algorithm for unit-weight, intersecting instances is the same as Algorithm 1 for
UFP-tree: greedily try to add subtrees in increasing order of demand and form the sets
Du, Ds for the tasks i that are not included in the final solution S. For a subtree Ti, let
span(i) naturally denote the set of edges lying on Ti. The relaxed complementary slackness
conditions we consider are:
1. xi ∈ {0, 1} for each subtree Ti

2. xi = 1 =⇒
∑

e∈span(i)

di · ye ≤ k

3. ye > 0 =⇒
∑

i:e∈span(i)

di · xi ≥
ce

2
4.
∑

C zC +
∑

i z
′
i ≤ (2k + 1)

∑
i xi

The proof of why this suffices is the same as the proof of Lemma 11, except we choose
α = 2k

4k+1 , β = 2k+1
4k+1 .

We still set z′i = 0 for i 6∈ S and z′i = 1 for i ∈ S. The set Du is partitioned into at
most 2k · |S| sets, each of which can be shown to be contained in some blocking set C(i, v, a).
More specifically, the steps in Section 2.4 are adapted to this setting in the following way.
Construct the subtree T ′ of T consisting of edges used by tasks in S and note that Du will
have at most k · |S| leaves. Partitioning T ′ into maximal paths (again, perhaps also splitting
the path that goes through the root) produces at most 2k · |S| paths, and the tasks C(P )
that were blocked by an undersaturated edge on P can be shown to be contained in some
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in the same way as in the proof of Lemma 12. This shows the last relaxed complementary
slackness condition holds.

The setting of the dual variables ye is essentially the same and the second complementary
slackness condition holds because this construction ensures

∑
e∈P (a,r) di · ye ≤ 1 for each

i ∈ S and each of the k leaves a of Ti. This also satisfies the third condition because positive
dual is assigned only to ye variables that are mostly saturated.

Finally, to get the O(k · logn ·min{logm, log(kn)}) bound in the general case we reduce to
the unit-weight case and lost an O(logn) as in Appendix A.1 and the reduction to intersecting
instances is the same as Appendix A.2 and loses an additional O(logm)-factor.

Finally, an easy adaptation of the preprocessing in Appendix A.3 reduces the number of
edges in the tree to at most 2nk. That is, we can merge the edges incident to a degree-2
vertex that is not an endpoint of some task and remove leaf nodes do not lie on any subtree.
This reduction produces a tree where the number of leaf nodes plus the number of internal
degree-2 nodes is at most nk, meaning it has O(nk) edges overall.

C Lift-and-Project Bounds

The definitions of the hierarchies discussed here can be found in [12], for example. Let P
denote the polytope defined by the constraints of Nat-LP. For an integer t ≥ 0, let Last

and LSt
+ denote t rounds of the Lasserre and Lovász-Schrijver SDP operators, respectively.

The following lemma is stated for k-TreePacking, but it generalizes immediately to any
relaxation of a packing integer program. It is easy to see it holds if LS2

+ is replaced by Las2

by invoking the decomposition theorem of Karlin, Mathieu, and Nguyen [16]. However, it is
interesting to note that the result still holds in the weaker Lovász-Schrijver SDP hierarchy.

I Lemma 21. Suppose x ∈ LS2
+(P). For any pairwise infeasible clique S of subtrees,∑

i∈S xi ≤ 1.

Proof. Suppose x ∈ LS2
+ and let Y � 0 be a protection matrix for x. Y is indexed by the

subtrees 1 ≤ i ≤ n and one additional index which we denote by 0. Then Y is symmetric and
Y0 = diag(Y ) = (1, x) where Y0 is the first row of Y . We also claim that Yi,j = 0 whenever
{i, j} is an infeasible pair of subtrees.

Consider any distinct pair of subtrees i, j with Yi,j > 0. We can condition on xi = 1 to
get a point x′ ∈ LS1

+(P) with x′i′ = Yi,i′

Yi,i
for any subtree i′. In particular, x′i = 1 and x′j > 0.

We can further condition on x′j = 1 to get a point x′′ ∈ P that has both x′′i = x′′j = 1. Thus,
{i, j} is a feasible pair of subtrees.

Finally, we verify
∑

i∈S xi ≤ 1 for any pairwise infeasible clique of subtrees S, meaning
x is a feasible solution to Compact-LP. This follows by standard theta body theory for
graphs (e.g. Chapter 67 of [17]) since Y witnesses the inclusion of x in the theta body of
the graph H whose vertices correspond to subtrees and whose edges correspond to infeasible
pairs of subtrees. However, the argument is simple so we include it for completeness.

Consider the vector z with z0 = 1, zi = −1 for i ∈ S and zi = 0 for v 6∈ S. Because Y � 0
we have the following bound. Note, the indices in the sums on the first line below range over
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all subtrees i but not index 0.

0 ≤ zTY z = z0Y0,0z0 + 2
∑

i

z0ziY0,i +
∑
i,j

zizjYi,j

= 1− 2
∑
i∈S

xi +
∑

i,j∈S

Yi,j

= 1− 2
∑
i∈S

xi +
∑
i∈S

xi

= 1−
∑
i∈S

xi.

The first and second equalities follow simply by definition of z and the fact that Y is
symmetric with Y0 = (1, x). The third equality uses Yi,j = 0 for distinct i, j ∈ S and
diag(Y ) = (1, x). J

In fact, this proof does not require the “level 1” protection matrices for x ∈ LS2
+(P) to

be positive semidefinite.
Lemma 9 immediately follows Lemma 21 and Theorem 7. In fact, the integrality gaps

are reduced even further in special cases of UFP-path that were studied in [1, 9]. By how
we proved Theorem 5, if x is feasible for Compact-LP in a UFP-path instance then x/9 is
feasible for Rank-LP. All integrality gaps mentioned in the following corollary are known
to hold in Rank-LP, so they also hold (within a factor of 9) in the mentioned SDPs. Again,
recall that P is the polytope defined by the constraints of Nat-LP.

I Corollary 22. The integrality gap of the SDP max{wT · x : x ∈ LS2
+(P)} is O(1) in inter-

secting, unit-weight instances of UFP-tree, O(min{logm, logn}) for UFP-path instances,
and O(1) in intersecting or unit-weight instances of UFP-path.
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Abstract
Given an undirected graph G = (VG, EG) and a fixed pattern graph H = (VH , EH) with k

vertices, we consider the H-Transversal and H-Packing problems. The former asks to find the
smallest S ⊆ VG such that the subgraph induced by VG \ S does not have H as a subgraph, and
the latter asks to find the maximum number of pairwise disjoint k-subsets S1, ..., Sm ⊆ VG such
that the subgraph induced by each Si has H as a subgraph.

We prove that if H is 2-connected, H-Transversal and H-Packing are almost as hard to
approximate as general k-Hypergraph Vertex Cover and k-Set Packing, so it is NP-hard to
approximate them within a factor of Ω(k) and Ω̃(k) respectively. We also show that there is a
1-connected H where H-Transversal admits an O(log k)-approximation algorithm, so that the
connectivity requirement cannot be relaxed from 2 to 1. For a special case of H-Transversal
where H is a (family of) cycles, we mention the implication of our result to the related Feedback
Vertex Set problem, and give a different hardness proof for directed graphs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Constraint Satisfaction Problems, Approximation resistance

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.284

1 Introduction

Given a collection of subsets S1, ..., Sm of the underlying set U , the Set Transversal problem
asks to find the smallest subset of U that intersects every Si, and the Set Packing problem
asks to find the largest subcollection Si1 , ..., Sim′ which are pairwise disjoint.1 It is clear
that optimum of the former is always at least that of the latter (i.e. weak duality holds).
Studying the (approximate) reverse direction of the inequality (i.e. strong duality) as well as
the complexity of both problems for many interesting classes of set systems is arguably the
most studied paradigm in combinatorial optimization.

This work focuses on set systems where the size of each set is bounded by a constant
k. With this restriction, Set Transversal and Set Packing are known as k-Hypergraph
Vertex cover (k-HVC) and k-Set Packing (k-SP), respectively. This assumption significantly
simplifies the problem since there are at most nk sets. While there is a simple factor k-
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Given a large graph G = (VG, EG) and a fixed graph H = (VH , EH) with k vertices, one of
the natural attempts to further restrict set systems is to set U = VG, and take the collection
of subsets to be all copies of H in G (formally defined in the next subsection). This natural
representation in graphs often results in a deeper understanding of the underlying structure
and better algorithms, with Maximum Matching (H = K2) being the most well-known
example. Kirkpatrick and Hell [39] proved that Maximum Matching is essentially the only
case where H-Packing can be solved exactly in polynomial time – unless H is the union
of isolated vertices and edges, it is NP-hard to decide whether VG can be partitioned into
k-subsets each inducing a subgraph containing H. A similar characterization for the edge
version (i.e. U = EG) was obtained much later by Dor and Tarsi [22].

We extend these results by studying the approximability of H-Transversal and H-Packing.
We use the term strong inapproximability to denote NP-hardness of approximation within a
factor Ω(k/polylog(k)). We give a simple sufficient condition that implies strong inapprox-
imability – if H is 2-vertex connected, H-Transversal and H-Packing are almost as hard
to approximate as k-HVC and k-SP. We also show that there is a 1-connected H where
H-Transversal admits an O(log k)-approximation algorithm, so 1-connectivity is not sufficient
for strong inapproximability for H-Transversal. It is an interesting open problem whether
1-connectivity is enough to imply strong inapproximability of H-Packing, or there is a class of
connected graphs where H-Packing admits a significantly nontrivial approximation algorithm
(e.g. factor kε for some ε < 1).

Our results give an unified answer to questions left open in many independent works
studying a special case where H is a cycle or clique, and raises some new open questions.
In the subsequent subsections, we state our main results, review related work, and state
potential future directions.

1.1 Problems and Our Results
Given an undirected graphs G = (VG, EG) and H = (VH , EH) with |VH | = k, we define the
following problems.

H-Transversal asks to find the smallest F ⊆ VG such that the subgraph of G induced by
VG \ F does not have H as a subgraph.
H-Packing asks to find the maximum number of pairwise disjoint k-subsets of S1, ..., Sm
of VG such that the subgraph induced by each Si has H as a subgraph.

Our main result states that 2-connectivity of H is sufficient to make H-Transversal and
H-Packing hard to approximate.

I Theorem 1. If H is a 2-vertex connected with k vertices, unless NP ⊆ BPP, no polynomial
time algorithm approximates H-Transversal within a factor better than k− 1, and H-Packing
within a factor better than Ω( k

log7 k
).

Let k-Star denote K1,k−1, the complete bipartite graph with 1 and k − 1 vertices on
each side. The following theorem shows that k-Star Transversal admits a good approxima-
tion algorithm, so the assumption of 2-connectedness in Theorem 1 is required for strong
inapproximability of H-Transversal.

I Theorem 2. k-Star Transversal can be approximated within a factor of O(log k) in poly-
nomial time.

This algorithmic result matches Ω(log k)-hardness of k-Star Transversal via a simple
reduction from Minimum Dominating Set on degree-k graphs [16]. This problem has the
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following equivalent but more natural interpretation: given a graph G = (VG, EG), find the
smallest F ⊆ VG such that the subgraph induced by VG \ F has maximum degree at most
k − 2. Our algorithm, which uses iterative roundings of 2-rounds of Sherali-Adams hierarchy
of linear programming (LP) followed by a simple greedy algorithm for Constrained Set Cover,
is also interesting in its own right, but we defer the details to Appendix A.

Our hardness results for transversal problems rely on hardness of k-HVC which is NP-hard
to approximate within a factor better than k − 1 [21]. Our hardness results for packing
problems rely on hardness of Maximum Independent Set on graphs with maximum degree
k and girth strictly greater than g (MIS-k-g). Almost tight inapproximability of MIS on
graphs with maximum degree k (MIS-k) is recently proved in Chan [11], which rules out an
approximation algorithm with ratio better than Ω( k

log4 k
). We are able to extend his result

to MIS-k-g with losing only a polylogarithmic factor. All applications in this work require
g = Θ(k).

I Theorem 3. For any constants k and g, unless NP ⊆ BPP, no polynomial time algorithm
approximates MIS-k-g within a factor of Ω( k

log7 k
).

We remark that assuming the Unique Games Conjecture (UGC) slightly improves our
hardness ratios through better hardness of k-HVC [38] and MIS-k [3], and even simplifies
the proof for some problems (e.g. k-Clique Transversal) through structured hardness of
k-HVC [5]. Indeed, an earlier (unpublished) version of this work [30] relied on the UGC to
prove that MIS-k-k is hard to approximate within a factor of Ω( k

log4 k
), while only giving

Ω̃(
√
k)-factor hardness without it. Now that we obtain almost matching hardness, we focus

on proving hardness results without the UGC.

1.2 Related Work and Special Cases

After the aforementioned work characterizing those pattern graphs H admitting the existence
of a polynomial-time exact algorithm for H-Packing [39, 22], Lund and Yannakakis [45]
studied the maximization version of H-Transversal (i.e. find the largest V ′ ⊆ VG such that
the subgraph induced by V ′ does not have H as a subgraph), and showed it is hard to
approximate within factor 2log1/2−ε n for any ε > 0. They also mentioned the minimization
version of two extensions of H-Transversal. The most general node-deletion problem is
APX-hard for every nontrivial hereditary (i.e. closed under node deletion) property, and the
special case where the property is characterized by a finite number of forbidden subgraphs
(i.e. {H1, ...,Hl}-Transversal in our terminology) can be approximated with a constant ratio.
They did not provide explicit constants (one trivial approximation ratio for {H1, ...,Hl}-
Transversal is max(|VH1 |, ..., |VHl |)), and our result can be viewed as a quantitative extension
of their inapproximability results for the special case of H-Transversal.

H-Transversal / Packing has been also studied outside the approximation algorithms
community. The duality between our H-Transversal and H-Packing is closely related to the
famous Erdős-Pósa property actively studied in combinatorics. The recent work of Jansen
and Marx [36] considered problems similar to our H-Packing with respect to fixed-parameter
tractability (FPT).

Many other works on H-Transversal / Packing focus on a special case where H is a cycle
or clique. We define k-Cycle (resp. k-Clique) to be the cycle (resp. clique) on k vertices.
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1.2.1 Cycles
The initial motivation for our work was to prove a super-constant factor inapproximability for
the Feedback Vertex Set (FVS) problem without relying on the Unique Games Conjecture.
Given a (directed) graph G, the FVS problem asks to find a subset F of vertices with the
minimum cardinality that intersects every cycle in the graph (equivalently, the induced
subgraph G \F is acyclic). One of Karp’s 21 NP-complete problems, FVS has been a subject
of active research for many years in terms of approximation algorithms and fixed-parameter
tractability (FPT). For FPT results, see [8, 14, 18, 15] and references therein.

FVS on undirected graphs has a 2-approximation algorithm [4, 7, 17], but the same problem
is not well-understood in directed graphs. The best approximation algorithm [48, 26, 25]
achieves an approximation factor of O(logn log logn). The best hardness result follows from
a simple approximation preserving reduction from Vertex Cover, which implies that it is
NP-hard to approximate FVS within a factor of 1.36 [20]. Assuming UGC [37], it is NP-hard
to approximate FVS in directed graphs within any constant factor [29, 50] (we give a simpler
proof in [30]). The main challenge is to bypass the UGC and to show a super-constant
inapproximability result for FVS assuming only P 6= NP or NP 6⊆ BPP.

By Theorem 1, we prove that k-Cycle Transversal is hard to approximate within factor
Ω(k). In the full version of this work [31], we prove the following theorem that improves the
result of Theorem 1 in the sense that in the completeness case, a small number of vertices not
only intersect cycles of length exactly k, but intersect every cycle of length 3, 4, ..., O( logn

log logn ).

I Theorem 4. Fix an integer k ≥ 3 and ε ∈ (0, 1). Given a graph G = (VG, EG) (directed
or undirected), unless NP ⊆ BPP, there is no polynomial time algorithm to tell apart the
following two cases.

Completeness: There exists F ⊆ VG with 1
k−1 + ε fraction of vertices that intersects every

cycle of at most length O( logn
log logn ) (hidden constant in O depends on k and ε).

Soundness: Every subset F with less than 1− ε fraction of vertices does not intersect at
least one cycle of length k. Equivalently, any subset with more than ε fraction of vertices
has a cycle of length exactly k in the induced subgraph.

This can be viewed as some (modest) progress towards showing inapproximability of FVS
in the following sense. Consider the following standard linear programming (LP) relaxation
for FVS.

min
∑
v∈VG

xv subject to
∑
v∈C

xv ≥ 1 ∀ cycle C , and 0 ≤ xv ≤ 1 ∀v ∈ VG

The integrality gap of the above LP is upper bounded by O(logn) for undirected graphs [6]
and O(logn log logn) for directed graphs [26]. Suppose in the completeness case, there exists
a set of measure c that intersects every cycle of length at most log1.1 n (or any number
bigger than the known integrality gaps). If we remove these vertices and consider the
above LP on the remaining subgraphs, since every cycle is of length at least log1.1 n, setting
xv = 1/ log1.1 n is a feasible solution, implying that the optimal solution to the LP is at most
n/ log1.1 n. Since the integrality gap is at most O(logn log logn), we can conclude that the
remaining cycles can be hit by at most O(n log logn/ log0.1 n) = o(n) vertices, extending
the completeness result to every cycle. Thus, improving our result to hit cycles of length
ω(logn log logn) in the completeness case will prove a factor-ω(1) inapproximability of FVS.

Another interesting aspect about Theorem 4 is that it also holds for undirected graphs.
This should be contrasted with the fact that undirected graphs admit a 2-approximation
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algorithm for FVS, suggesting that to overcome logn-cycle barrier mentioned above, some
properties of directed graphs must be exploited. Towards developing a directed graph specific
approach, we also present a different reduction technique called labeling gadget. It has an
additional advantage of being derandomized and assumes only P 6= NP.

For cycles of bounded length, Kortsarz et al. [41] studied k-Cycle Edge Transversal, and
suggested a (k− 1)-approximation algorithm as well as proved that improving the ratio 2 for
K3 will have the same impact on Vertex Cover, refuting the Unique Games Conjecture [38].

For the dual problem of packing cycles of any length, called Vertex-Disjoint Cycle Packing
(VDCP), the results of [42, 28] imply that the best approximation factor by any polynomial
time algorithm lies between Ω(

√
logn) and O(logn). In a closely related problem Edge-

Disjoint Cycle Packing (EDCP), the same papers showed that Θ(logn) is the best possible.
In directed graphs the vertex and edge version have the same approximability, the best
known algorithms achieves O(

√
n)-approximation while the best hardness result remains

Ω(logn).
Variants of k-Cycle Packing have also been considered in the literature. Rautenbach

and Regen [47] studied k-Cycle Edge Packing on graphs with girth k and small degree.
Chalermsook et al. [10] studied a variant of k-Cycle Packing on directed graphs for k ≥ n1/2

where we want to pack as many disjoint cycles of length at most k as possible, and proved
that it is NP-hard to approximate within a factor of n1/2−ε. This matches the algorithm
implied by [42].

1.2.2 Cliques
Minimum Maximal (resp. Maximum) Clique Transversal asks to find the smallest subset of
vertices that intersects every maximal (resp. maximum) clique in the graph. In mathematics,
Tuza [51] and Erdős et al. [24] started to estimate the size of the smallest such set depending
on structure of graphs. See the recent work of Shan et al. [49] and references therein. In
computer science, exactly computing the smallest set on special classes of graphs appears in
many works [32, 44, 12, 23, 43].

Both the edge and vertex version of k-Clique Packing also have been studied actively
both in mathematics and computer science. In mathematics, the main focus of research
is lower bounding the maximum number of edge or vertex-disjoint copies of Kk in very
dense graphs (note that even K3 does not exist in Kn,n which has 2n vertices and n2 edges).
See the recent paper [52] or the survey [53] of Yuster. The latter survey also mentions
approximation algorithms, including APX-hardness and the general approximation algorithm
for k-Set Packing which now achieves k+1+ε

3 for the vertex version and (k2)+1+ε
3 for the edge

version [19]. Feder and Subi [27] considered H-Edge Packing and showed APX-hardness
when H is k-cycle or k-clique. Chataigner et al. [13] considered an interesting variant where
we want to pack vertex-disjoint cliques of any size to maximize the total number of edges
of the packed cliques, and proved APX-hardness and a 2-approximation algorithm. Exact
algorithms for special classes of graphs have been considered in [9, 33, 35, 40].

1.3 Open Problems
For H-Transversal, 1-connectivity is not sufficient for strong hardness, because k-Star
Transversal admits an O(log k)-approximation algorithm by Theorem 2. It is open whether
1-connectivity is sufficient or not for such strong hardness for H-Packing. k-Star Packing is
at least as hard as MIS-k by a trivial reduction, but the approximability of k-Path Packing
appears to be still unknown. Whether k-Path Transversal admits a factor o(k) approximation
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algorithm is also an intriguing question. For directed acyclic graphs, Svensson [50] proved
that it is Unique Games-hard to approximate k-Path Transversal within a factor better
than k.

The approximability of H-Edge Transversal and H-Edge Packing is less understood than
the vertex versions. Proving tight characterizations for the edge versions similar to Theorem 1
is an interesting open problem.

1.4 Organization
The rest of the main body is devoted to proving Theorem 1 for H-Transversal / Packing
and Theorem 3 for MIS-k-g. Section 2 recalls and extends previous hardness results for the
problems we reduce from; Sections 3 and 4 prove hardness of H-Transversal and H-Packing
respectively. Appendix A gives an O(log k)-approximation algorithm for k-Star Transversal,
proving Theorem 2. Theorem 4 is proved in the full version of this work [31].

2 Preliminary

2.1 Notation
A k-uniform hypergraph is denoted by P = (VP , EP ) such that each e ∈ EP is a k-subset
of VP . We denote e as an ordered k-tuple e = (v1, . . . , vk). The ordering can be chosen
arbitrarily given P , but should be fixed throughout. If v indicates a vertex of some graph,
we use a superscript vi to denote another vertex of the same graph, and ei to denote the ith
(hyper)edge. For an integer m, let [m] = {1, 2, . . . ,m}. Unless otherwise stated, the measure
of F ⊆ V is obtained under the uniform measure on V , which is simply |F ||V | .

2.2 k-HVC
An instance of k-HVC consists of a k-uniform hypergraph P , where the goal is to find a set
C ⊆ VP with the minimum cardinality such that it intersects every hyperedge. The result of
Dinur, Guruswami, Khot and Regev [21] states that

I Theorem 5 ([21]). Given a k-uniform hypergraph (k ≥ 3) and ε > 0, it is NP-hard to tell
apart the following cases:

Completeness: There exists a vertex cover of measure 1+ε
k−1 .

Soundness: Every vertex cover has measure at least 1− ε.
Therefore, it is NP-hard to approximate k-HVC within a factor k − 1 + 2ε.

Moreover, the above result holds even when the degree of a hypergraph is bounded by d
depending on k and ε.

2.3 MIS-k
Given a graph G = (VG, EG), a subset S ⊆ VG is independent if the subgraph induced by S
does not contain any edge. The Maximum Independent Set (MIS) problem asks to find the
largest independent set, and MIS-k indicates the same problem where G is promised to have
maximum degree at most k. The recent result of Chan [11] implies

I Theorem 6 ([11]). Given a graph G with maximum degree at most k, it is NP-hard to tell
apart the following cases:

Completeness: There exists an independent set of measure Ω(1/(log k)).
Soundness: Every subset of vertices of measure O( log3 k

k ) contains an edge.
Therefore, it is NP-hard to approximate MIS-k within a factor Ω( k

log4 k
).
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3 H-Transversal

In this section, given a 2-connected graph H = (VH , EH) with k vertices, we give a reduction
from k-HVC to H-Transversal. The simplest try will be, given a hypergraph P = (VP , EP )
(let n = |VP |,m = |EP |), to produce a graph G = (VG, EG) where VG = VP , and for each
hyperedge e = (v1, . . . , vk) add |EH | edges that form a canonical copy of H to EG. While
the soundness follows directly (if F ⊆ VP contains a hyperedge, the subgraph induced by F
contains H), the completeness property does not hold since edges that belong to different
canonical copies may form an unintended non-canonical copy. To prevent this, a natural
strategy is to replace each vertex by a set of many vertices (call it a cloud), and for each
hyperedge (v1, . . . , vk), add many canonical copies on the k clouds (each copy consists of
one vertex from each cloud). If we have too many canonical copies, soundness works easily
but completeness is hard to show due to the risk posed by non-canonical copies, and in the
other extreme, having too few canonical copies could result in the violation of the soundness
property. Therefore, it is important to control the structure (number) of canonical copies
that ensure both completeness and soundness at the same time.

Our technique, which we call random matching, proceeds by creating a carefully chosen
number of random copies of H for each hyperedge to ensure both completeness and soundness.
We remark that properties of random matchings are also used to bound the number of
short non-canonical paths in inapproximability results for edge-disjoint paths on undirected
graphs [2, 1]. The details in our case are different as we create many copies of H based on a
hypergraph.

Fix ε > 0, apply Theorem 5, let c := 1+ε
k−1 , s := 1 − ε be the measure of the minimum

vertex cover in the completeness and soundness case respectively, and d := d(k, ε) be the
maximum degree of hard instances. Let a and B be integer constants greater than 1, which
will be determined later. Lemma 7 and 9 with these parameters imply the first half of
Theorem 1.

3.1 Reduction
Without loss of generality, assume that VH = [k]. Given a hypergraph P = (VP , EP ),
construct an undirected graph G = (VG, EG) such that

VG = VP × [B]. Let n = |VP | and N = |VG| = nB. For v ∈ VP , let cloud(v) := {v} × [B]
be the copy of [B] associated with v.
For each hyperedge e = (v1, . . . , vk), for aB times, take l1, . . . , lk independently and
uniformly from [B]. For each edge (i, j) ∈ H (1 ≤ i < j ≤ k), add ((vi, li), (vj , lj)) to EG.
Each time we add |EH | edges isomorphic to H, and we have aB of such copies of H per
each hyperedge. Call such copies canonical.

3.2 Completeness
The next lemma shows that if P has a small vertex cover, G also has a small H-Transversal.

I Lemma 7. Suppose P has a vertex cover C of measure c. For any ε > 0, with probability
at least 3/4, there exists a subset F ⊆ VG of measure at most c+ ε such that the subgraph
induced by VG \ F has no copy of H.

Proof. Let F = C × [B]. We consider the expected number of copies of H that avoid F
and argue that a small fraction of additional vertices intersect all of these copies. Choose k
vertices (v1, l1), . . . , (vk, lk) which satisfy
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Figure 1 Two examples where k = 4 and H is a 4-cycle. On the left, purported edges are divided
into two groups (dashed and solid edges). Each copy of canonical cycle should match the labels of
three vertices to ensure it covers 2 designated edges (6 labels total). On the right, one canonical
copy can cover all the edges, and it only needs to match the labels of four vertices (4 labels total).

v1 ∈ VP can be any vertex.
l1, . . . , lk ∈ B can be arbitrary labels.
For each (i, j) ∈ EH , there must be a hyperedge of P containing both i and j.

There are n possible choices for v1, B choices for each li, and at most kd choices for each
vi (i > 1). The number of possibilities to choose such (v1, l1), . . . , (vk, lk) is bounded by
n(dk)kBk. Note that no other k-tuple of vertices induce a connected graph and contain a
copy of H. Further discard the tuple when two vertices are the same.

We calculate the probability that the subgraph induced by ((v1, l1), . . . , (vk, lk)) contains a
copy in this order – formally, for all (i, j) ∈ EH , ((vi, li), (vj , lj)) ∈ EG. For each (i, j) ∈ EH ,
we call a pair ((vi, li), (vj , lj)) ∈

(
VG
2
)
a purported edge. For a set of purported edges, we say

that this set can be covered by a single canonical copy if one copy of canonical copy of H
can contain all purported edges with nonzero probability. Suppose that all |EH | purported
edges can be covered by a single canonical copy of H. It is only possible when there is
a hyperedge whose k vertices are exactly {v1, . . . , vk}. In this case, ((v1, l1), . . . , (vk, lk))
intersects F . (right case of Figure 1). When |EH | purported edges have to be covered by
more than one canonical copy, some vertices must be covered by more than one canonical
copy, and each canonical copy covering the same vertex should give the same label to that
vertex. This redundancy makes it unlikely to have all k edges exist at the same time. (left
case of Figure 1). The below claim formalizes this intuition.

I Claim 1. Suppose that ((v1, l1), . . . , (vk, lk)) cannot be covered by a single canonical copy.
Then the probability that it forms a copy of H is at most (adk)k

2

Bk
.

Proof. Fix 2 ≤ p ≤ |EH |. Partition |EH | purported edges into p nonempty groups I1, . . . , Ip
such that each group can be covered by a single canonical copy of H. There are at most
p|EH | possibilities to partition. For each v ∈ VP , there are at most d hyperedges containing
v and at most aBd canonical copies intersecting cloud(v). Therefore, all edges in one group
can be covered simultaneously by at most aBd copies of canonical copies. There are at most
(aBd)p possibilities to assign a canonical copy to each group. Assume that one canonical
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copy is responsible for exactly one group. This is without loss of generality since if one
canonical copy is responsible for many groups, we can merge them and this case can be dealt
with smaller p.

Focus on one group I of purported edges, and one canonical copy L = (VL, EL) which is
supposed to cover them. Let I ′ ⊆ VG be the set of vertices which are incident on the edges in I.
Suppose VL = {(u1, l′1), . . . , (uk, l′k)}, which is created by a hyperedge f = (u1, . . . , uk) ∈ EP .
We calculate the probability that L contains all edges in I over the choice of labels l′1, . . . , l′k
for L. One necessary condition is that {v|(v, l) ∈ I ′ for some l ∈ [B]} (i.e. the set I ′ projected
to VP ) is contained in f . Otherwise, some vertices of I ′ cannot be covered by L. Another
necessary condition is vi 6= vj for any (vi, li) 6= (vj , lj) ∈ I ′. Otherwise (i.e. (v, li), (v, lj) ∈ I ′
for li 6= lj), since L gives only one label to each vertex in f ⊆ VP , (v, li) and (v, lj) cannot be
contained in L simultaneously. Therefore, we have a nice characterization of I ′: It consists
of at most one vertex from the cloud of each vertex in f .

The probability that L contains I is at most the probability that for each (vi, li) ∈ I ′,
li is equal to the label L assigns to vi, which is B−|I′|. Now we need the following lemma
saying that the sum of |I ′| is large, which relies on 2-connectivity of H.

I Lemma 8. Fix p ≥ 2. For any partition I1, ..., Ip of purported edges into p non-empty
groups,

∑p
i=1 |I ′i| ≥ k + p.

Proof. Let t be the number of vertices contained in at least two I ′is. Call them boundary
vertices. Note that exactly k − t vertices belongs to exactly one I ′i. For i = 1, ..., p, let bi be
the number of boundary vertices in |I ′i|. Since (I ′i, Ii) is a proper subgraph of H and H is
2-vertex connected, bi ≥ 2 for each i. Therefore,

p∑
i=1
|I ′i| = (k − t) + max(2p, 2t) ≥ k + p. J

We conclude that for each partition, the probability of having all the edges is at most

(aBd)p
p∏
q=1

B−|I
′
q| = (aBd)p

Bk+p = (ad)p

Bk
.

The probability that ((v1, l1), . . . , (vk, lk)) forms a copy is therefore bounded by

|EH |∑
p=2

p|EH |
(ad)p

Bk
≤ (adk)k2

Bk
. J

Therefore, the expected number of copies that avoid F is bounded by n(kd)kBk · (adk)k
2

Bk
.

With probability at least 3/4, the number of such copies is at most 4n(adk)2k2 . Let
B ≥ 4(adk)2k2

ε . Then these copies of H can be covered by at most εnB = εN vertices. J

3.3 Soundness
The soundness claim above is easier to establish. By an averaging argument, a subset I
of VG of measure 2ε must contain εB vertices from the clouds corresponding to a subset
S of measure ε in VP . There must be a hyperedge e contained within S, and the chosen
parameters ensure that one of the canonical copies corresponding to e is likely to lie within I.
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I Lemma 9. For a = a(k, ε) and B = Ω(log |EP |), if every subset of VP of measure at least
ε contains a hyperedge in the induced subgraph, with probability at least 3/4, every subset of
VG with measure 2ε contains a canonical copy of H.

Proof. We want to show that the following property holds for every hyperedge e =
(v1, . . . , vk): if a subset of vertices I ⊆ VG has at least ε fraction of vertices from each
cloud(vi), then I will contain a canonical copy. Fix A1 ⊆ cloud(v1), . . . , Ak ⊆ cloud(vk) be
such that for each i, |Ai| ≥ εB. There are at most 2kB ways to choose such A’s. The prob-
ability that one canonical copy associated with e is not contained in (v1, A1)× · · · × (vk, Ak)
is at most 1− εk. The probability that none of canonical copy associated with e is contained
in (v1, A1)× · · · × (vk, Ak) is (1− εk)aB ≤ exp(−aBεk).

By union bound over all A1, . . . , Ak, the probability that there exists A1, . . . , Ak containing
no canonical copy is at most exp(kB − aBεk) = exp(−B) ≤ 1

4|EP | by taking a large enough
constant depending on k and ε, and B = Ω(log |EP |). Therefore, with probability at least
3/4, the desired property holds for all hyperedges.

Let I be a subset of VG of measure at least 2ε. By an averaging argument, at least ε
fraction of good vertices v ∈ VP satisfy that |cloud(vi) ∩ I| ≥ εB. By the soundness property
of P , there is a hyperedge e contained in the subgraph induced by the good vertices, and the
above property for e ensures that I contains a canonical copy. J

4 H-Packing and MIS-k-g

Given a 2-connected graph H, the reduction from MIS-k-k to H-Packing is relatively
straightforward. Here we assume that hard instances of MIS-k-k are indeed k-regular for
simplicity. Given an instance M = (VM , EM ) of MIS-k-k, we take G = (VG, EG) to be its
line graph – VG = EM , and e, f ∈ VG are adjacent if and only if they share an endpoint as
edges of M .

For each vertex v ∈ VM , let star(v) := {e ∈ VG : v ∈ e}. star(v) induces a k-clique, and
for v, u ∈ VM , star(v) and star(u) share one vertex if u and v are adjacent, and share no
vertex otherwise. Given an independent set S of M , we can find |S| pairwise disjoint stars in
G, which gives |S| vertex-disjoint copies of H. On the other hand, 2-connectivity of H and
large girth of M implies that any copy of H must be entirely contained in one star, proving
that many disjoint copies of H in G also give a large independent set of M with the same
cardinality, completing the reduction from MIS-k-k to H-Packing. The following theorem
formalizes the above intuition.

I Lemma 10. For a 2-connected graph H with k vertices, there is an approximation-preserving
reduction from MIS-k-k to H-Packing.

Proof. Let M = (VM , EM ) be an instance of MIS-k-k M with maximum degree k and
girth greater than k. First, let G = (VG = EM , EG) be the line graph of M . For each
vertex v ∈ VM with degree strictly less than k, we add k − deg(v) new vertices to VG. Let
star(v) ⊆ VG be the union of the edges of M incident on v and the newly added vertices for v.
Note that | star(v)| = k for all v ∈ VM . Add edges to G to ensure that every star(v) induces
a k-clique. For two vertices u and v of M , star(u) and star(v) share exactly one vertex if u
and v are adjacent in M , and share no vertex otherwise.

Let S be an independent set of M . The |S| stars {star(v)}v∈S are pairwise disjoint and
each induces a k-clique, so G contains at least |S| disjoint copies of H.

We claim that any k-subset of VG that induces a 2-connected subgraph must be star(v) for
some v. Assume towards contradiction, let T be a k-subset inducing a 2-connected subgraph
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of G that cannot be contained in a single star. We first show T must contain two disjoint
edges of M . Take any (u, v) ∈ T . Since T /∈ star(u), T contains an edge of M not incident
on u. If it is not incident on v either, we are done. Otherwise, let (w, v) be this edge. The
same argument from T /∈ star(v) gives another edge (w′, u) in T . If w 6= w′, (w, v) and (w′, u)
are disjoint. Otherwise, w, u, v form a triangle in M , contradicting a large girth. Let (u, v),
(w, x) be two disjoint edges of M in contained in T .

Since the subgraph of G vertex-induced by T is 2-connected, there are two internally
vertex-disjoint paths P1, P2 in G from (u, v) to (w, x). The sum of the two lengths is at
most k, where the length of a path is defined to be the number of edges. By considering
the internal vertices of Pi (edges of M) and deleting unnecessary portions, we have two
edge-disjoint paths P ′1, P ′2 in M where each P ′i connects {u, v} and {w, x}, with length at
most the length of Pi minus one. There is a cycle in M consists only of the edges of P ′1, P ′2
together with (u, v), (w, x). Since |P ′1|+ |P ′2|+ 2 ≤ k, it contradicts that M has girth strictly
greater than k. J

We prove that MIS-k-g is also hard to approximate by a reduction from MIS-d (d = Ω̃(k)),
using a slightly different random matching idea. Given a degree-d graph with possibly small
girth, we replace each vertex by a cloud of B vertices, and replace each edge by a copies of
random matching between the two clouds. While maintaining the soundness guarantee, we
show that there are only a few small cycles, and by deleting a vertex from each of them and
sparsifying the graph we obtain a hard instance for MIS-k-g. Note that g does not affect the
inapproximability factor but only the runtime of the reduction.

I Theorem 11 (Restatement of Theorem 3). For any constants k and g, unless NP ⊆ BPP,
no polynomial time algorithm approximates MIS-k-g within a factor of Ω( k

log7 k
).

Proof. We reduce from MIS-d to MIS-k-g where k = O(d log2 d). Given an instance G0 =
(VG0 , EG0) of MIS-d, we construct G = (VG, EG) and G′ = (VG′ , EG′) by the following
procedure:

VG = VG0 × [B]. As usual, let cloud(v) = {v} × [B].
For each edge (u, v) ∈ EG0 , for a times, add a random matching as follows.

Take a random permutation π : [B]→ [B].
Add an edge ((u, i), (v, π(i)) for all i ∈ [B].

Call the resulting graph G. To get the final graph G′,
For any cycle of length at most g, delete an arbitrary vertex from the cycle. Repeat
until there is no cycle of length at most g.

Note that the step of eliminating the small cycles can be implemented trivially in time
O(ng). Let n = |VG0 |,m = |EG0 |, N = nB = |VG| ≥ |VG′ |,M = m · aB = |EG| ≥ |EG′ |. The
maximum degree of G and G′ is at most ad. By construction, girth of G′ is at least g + 1.

Girth Control. We calculate the expected number of small cycles in G, and argue that
the number of these cycles is much smaller than the total number of vertices, so that |VG|
and |VG′ | are almost the same. Let k′ be the length of a purported cycle. Choose k′ vertices
(v1, l1), . . . , (vk′ , lk′) which satisfy

v1 ∈ VG0 can be any vertex.
For each 1 ≤ i < k′, (vi, vi+1) ∈ EG0 .
l1, . . . , lk

′ ∈ B can be arbitrary labels.
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There are n possible choices for v1, B choices for each li, and d choices for each vi (i > 1).
The number of possibilities to choose such (v1, l1), . . . , (vk′ , lk′) is bounded by ndk′−1Bk

′ .
Without loss of generality, assume that no vertices appear more than once.

For each edge e = (u,w) ∈ G0, consider the intersection of the purported cycle
((v1, l1), ..., (vk′ , lk′)) and the subgraph induced by cloud(u) ∪ cloud(w). It is a bipartite
graph with the maximum degree 2. Suppose there are q purported edges e1, . . . , eq (ordered
arbitrarily) in this bipartite graph. By slightly abusing notation, let ei also denote the event
that ei exists in G. The following claim upper bounds Pr[ei|e1, . . . , ei−1] for each ei.

I Claim 2. Pr[ei|e1, . . . , ei−1] ≤ a
B−i .

Proof. There are a random matchings between cloud(u) and cloud(w), and for each j < i,
there is at least one random matching including ej . We fix one random matching and
calculate the probability that the random matching contains ei, conditioned on the fact that
it already contains some of e1, . . . , ei−1.

If there is ej (j < i) that shares a vertex with ei, ei cannot be covered by the same
random matching with ej . If a random matching covers p of e1, . . . , ei−1 which are disjoint
from ei, the probability that ei is covered by that random matching is 1

B−p , and this is
maximized when p = i− 1.

By a union bound over the a random matchings, Pr[ei|e1, . . . , ei−1] ≤ a
B−i . J

The probability that all of e1, . . . , eq exist is at most

q∏
i=1

a

B − i
≤
(

a

B − q

)q
≤
(

a

B − k′

)q
.

Since edges of G0 are processed independently, the probability of success for one fixed
purported cycle is ( a

B−k′ )
k′ . The expected number of cycles of length k′ is

ndk
′−1Bk

′
·
( a

B − k′
)k′

= ndk
′−1ak

′
(

1 + k′

B − k′

)k′
≤ndk

′−1ak
′
exp
( k′2

B − k′
)
≤ en(ad)k

′

by taking B − k′ ≥ k′2. Summing over k′ = 1, . . . , g, the expected number of cycles of
length up to g, is bounded by eg(ad)gn. Take B ≥ 4d2 · eg(ad)g. Then with probability at
least 3/4, the number of cycles of length at most g is at most Bn

d2 . By taking 1/d2 fraction
of vertices away (one for each short cycle), we have a girth at least g + 1, which implies(

1− 1
d2

)
|VG| ≤ |VG′ | ≤ |VG|.

Hardness of MIS-d states that it is NP-hard to distinguish the case G0 has an independent
set of measure c := Ω( 1

log d ) and the case where the maximum independent set has measure
at most s := O( log3 d

d ).

Completeness. Let I0 be an independent set of G0 of measure c. Then I = I0 × [B] is
also an independent set of G of measure c. Let I ′ = I ∩ VG′ . I ′ is independent in both G
and G′, and the measure of I ′ in G′ is at least the measure of I ′ in G, which is at least
c− 1/d2 = Ω( 1

log d ).
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Soundness. Suppose that every subset of VG0 of measure at least s contains an edge. Say
a graph is (β, α)-dense if we take β fraction of vertices, at least α fraction of edges lie within
the induced subgraph. We also say a bipartite graph is (β, α)-bipartite dense if we take
β fraction of vertices from each side, at least α fraction of edges lie within the induced
subgraph.

I Claim 3. For a = O( log(1/s)
s ) and B = O( logm

s ) the following holds with probability at
least 3/4: For every (u,w) ∈ EG0 , the bipartite graph between cloud(u) and cloud(w) is
(ε, ε2/8)-bipartite dense for all ε ≥ s.

Proof. Fix (u,w), and ε ∈ [s, 1], and X ⊆ cloud(u) and Y ⊆ cloud(w) be such that |X| =
|Y | = εB. The possibilities of choosing X and Y is(

B

εB

)2
≤ exp(O(ε log(1/ε)B))

Without loss of generality, let X = Y = [εB]. In one random matching, let Xi (i ∈ [εB])
be the random variable indicating whether vertex (u, i) ∈ X is matched with a vertex in Y or
not. Pr[X1 = 1] = ε, and Pr[Xi = 1|X1, . . . , Xi−1] ≥ ε/2 for i ∈ [εB/2] and any X1, . . . , Xi−1.
Therefore, the expected number of edges between X and Y is at least ε2B/4. With a random
matchings, the expected number is at least aε2B/4. By Chernoff bound, the probability that
it is less than aε2B/8 is at most exp(aε

2B
32 ). By union bound over all possibilities of choosing

X and Y , the probability that the bipartite graph is not (ε, ε2/8)-bipartite dense is

exp(ε log(1/ε)B) · exp
(
−aε

2B

32

)
≤ 1

4mB

by taking a = O( log(1/s)
s ) and B = O

( logm
s

)
. A union bound over all possible choices of ε

(B possibilities) and m edges of E0 implies the claim. J

I Claim 4. With the parameters a and B above, G is (4s log(1/s),Ω( sd ))-dense.

Proof. Fix a subset S of measure 4s log(1/s). For a vertex v of G0, let µ(v) := |cloud(v)∩S|
B .

Note that Ev[µ(v)] = 4s log(1/s). Partition VG0 into t + 1 buckets B0, . . . , Bt (t :=
dlog2(1/s)e), such that B0 contains v such that µ(v) ≤ s, and for i ≥ 1, Bi contains v
such that µ(v) ∈ (2i−1s, 2is]. Denote

µ(Bi) :=
∑
v∈Bi µ(v)
|VG0 |

.

Clearly µ(B0) ≤ s. Pick i ∈ {1, . . . , t} with the largest µ(Bi). We have µ(Bi) ≥ 2s since
Ev[µ(v)] ≥ 4s log(1/s). Let γ = 2i−1s. All vertices of Bi has µ(v) ∈ [γ, 2γ], so |Bi| ≥ (s/γ)n.

Since G0 has no independent set with more than ns vertices, Turán’s Theorem says that
the subgraph of G0 induced by Bi has at least |Bi|2 ( |Bi|ns − 1) = Ω( s

γ2n) edges. This is at least
Ω( s

dγ2 ) fraction of the total number of edges.
For each of these edges, by Claim 3, at least γ2/8 fraction of the edges from the bipartite

graph connecting the clouds of its two endpoints, lie in the subgraph induced by S (since
γ ≥ s). Overall, we conclude that there are at least Ω( s

dγ2 ) · γ
2

8 = Ω( sd ) fraction of edges
inside the subgraph induced by S. J
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Sparsification. Recall that G′ is obtained from G by deleting at most 1
d2 fraction of vertices

to have girth greater than g. In the completeness case, G′ has an independent set of measure
at least c− 1/d2 = Ω( 1

log d ). In the soundness case, G is (4s log(1/s),Ω( sd ))-dense, so G′ is
(β, α)-dense where β := Ω( log4 d

d ), α := Ω( log3 d
d2 ). Using density of G′, we sparsify G′ again –

keep each edge of G′ by probability kn
|EG′ |

so that the expected total number of edges is kn.
Fix a subset S ⊆ VG′ of measure β. Since there are at least α fraction of edges in the

subgraph induced by S, the expected number of picked edges in this subgraph is at least
αkn. By Chernoff bound, the probability that it is less than αkn

8 is at most exp(−αkn32 ). By
union bound over all sets of measure exactly β (there are at most

(
n
nβ

)
≤ exp(2β log(1/β)n)

of them), and over all possible values of β (there are at most n possible sizes), the desired
property fails with probability at most

n · max
β∈[β0,1]

{
exp(−αkn/32) · exp(2β log(1/β)n)

}
≤ n · e−n

when k = O(β log(1/β)
α ) = O(d log2 d). In the last step we remove all the vertices of degree

more than 10k. Since the expected degree of each vertex is at most 2k, the expected fraction
of deleted vertices is exp(−Ω(k))� β.

Combining all these results, we have a graph with small degree 10k = O(d log2 d) and
girth strictly greater than g, where it is NP-hard to approximate MIS within a factor of
c− 1

d2
β = Ω( d

log5 d
) = Ω( k

log7 k
). Therefore, it is NP-hard to approximate MIS-k-g within a

factor of Ω( k
log7 k

). J
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A Approximation Algorithm for k-Star Transversal

In this section, we show that k-Star Transversal admits an O(log k)-approximation algorithm,
matching the Ω(log k)-hardness obtained via a simple reduction from Minimum Dominating
Set on degree-(k− 1) graphs [16], and proving Theorem 2. Let G = (VG, EG) be the instance
of k-Star Transversal. This problem has a natural interpretation that it is equivalent to
finding the smallest F ⊆ VG such that the subgraph induced by VG \F has maximum degree
at most k − 2. Our algorithm consists of two phases.
1. Iteratively solve 2-rounds of Sherali-Adams linear programming (LP) hierarchy and put

vertices with a large fractional value in the transversal. If this phase terminates with a
partial transversal F , the remaining subgraph induced by VG \ F has small degree (at
most 2k) and the LP solution to the last iteration is highly fractional.

2. We reduce the remaining problem to Constrained Set Multicover and use the standard
greedy algorithm. While the analysis of the greedy algorithm for Constrained Set
Multicover is used as a black-box, low degree of the remaining graph and high fractionality
of the LP solution imply that the analysis is almost tight for our problem as well.

A.1 Iterative Sherali-Adams
Given G, 2-rounds of Sherali-Adams hierarchy of LP relaxation has variables {xv}v∈VG ∪
{xu,v}u,v∈VG . An integral solution y : VG 7→ {0, 1}, where y(v) = 1 indicates that v is picked
in the transvesal, naturally gives a feasible solution to the hierarchy by xv = yv, xu,v = yuyv.
Consider the following relaxation for k-Star Transversal.

minimize
∑
v∈VG

xv

subject to 0 ≤ xu,v, xv ≤ 1 ∀u, v ∈ VG
xu,v ≤ xu ∀u, v ∈ VG
xu + xv − xu,v ≤ 1 ∀u, v ∈ VG∑
v:(u,v)∈EG

(xv − xu,v) ≥ (deg(u)− k + 2)(1− xu) ∀u ∈ VG

The first three constraints are common to any 2-rounds of Sherali-Adams hierarchy, and
ensure that for any u, v ∈ VG, the local distribution on four assignments α : {u, v} 7→ {0, 1}
forms a valid distribution. In other words, the following four numbers are nonnegative and
sum to 1: Pr[α(u) = α(v) = 1] := xu,v, Pr[α(u) = 0, α(v) = 1] := xv − xu,v, Pr[α(u) =
1, α(v) = 0] := xu − xu,v, Pr[α(u) = α(v) = 0] := 1− xu − xv + xu,v.

The last constraint is specific to k-Star Transversal, and it is easy to see that it is a
valid relaxation: Given a feasible integral solution y : VG 7→ {0, 1}, the last constraint is
vacuously satisfied when yu = xu = 1, and if not, it requires that at least deg(u) − k + 2
vertices should be picked in the transversal so that there is no copy of k-Star in the induced
subgraph centered on u. The first phase proceeds as the following.
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Let S ← ∅.
Repeat the following until the size of S does not increase in one iteration.

Solve the above Sherali-Adams hierarchy for VG \ S – it means to solve the above
LP with additional constraints xv = 1 for all v ∈ S, which also implies xu,v = xu for
v ∈ S, u ∈ VG. Denote this LP by SA(S).
S ← {v : xv ≥ 1

α}, where α := 10.

We need to establish three properties from the first phase:
The size of S is close to that of the optimal k-Star Transversal.
Maximum degree of the subgraph induced by VG \ S is small.
The remaining solution has small fractional values – xv < 1

α for all v ∈ VG \ S.

The final property is satisfied by the procedure. The following two lemmas establish the
other two properties.

I Lemma 12. Let Frac be the optimal value of SA(∅). When the above procedure terminates,
|S| ≤ αFrac.

Proof. Assume that the above loop iterated l times, and for i = 0, ..., l, let Si be S after the
ith loop such that S0 = ∅, ..., Sl = S. We use induction from the last iteration. Let Fraci be
the optimal fractional solution to SA(Si) minus |Si| such that Frac = Frac0.

We first establish |Sl| − |Sl−1| ≤ αFracl−1. This is easy to see because, when x is the
optimal fraction solution to SA(Sl−1),

|Sl| − |Sl−1| = |{v /∈ Sl−1 : xv ≥
1
α
}| ≤ αFracl−1 .

For i = l− 2, l− 1, ..., 0, we show that |Sl| − |Si| ≤ αFraci. Let x be the optimal fraction
solution to SA(Si), and x′ be the solution obtained by partially rounding x in the following
way.

x′v = 1 if v ∈ Si. Otherwise, x′v = xv.
x′u,v = x′u (v ∈ Si), x′v (u ∈ Si), or xu,v otherwise.

It is easy to check that it is a feasible solution to SA(Si+1) (intuitively, rounding up only
helps feasibility), so its value is

|Si|+
∑

v/∈Si,xv< 1
α

xv ≥ |Si|+ Fraci+1,

which implies

Fraci =
∑

v/∈Si,xv≥ 1
α

xv +
∑

v/∈Si,xv< 1
α

xv ≥
1
α

(|Si+1| − |Si|) + Fraci+1 .

Finally, we have

|Sl| − |Si|
= (|Sl| − |Si+1|) + (|Si+1| − |Si|)

≤ αFraci+1 +(|Si+1| − |Si|)
≤ αFraci,

where the first inequality follows from the induction hypothesis. This completes the induction.
J
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I Lemma 13. After the termination, every vertex has degree at most 2k in the subgraph
induced by VG \ S.

Proof. We prove that at least one vertex is added to S if the subgraph induced by VG \ S
has a vertex of degree more than 2k. Fix one such iteration, and let S1 and S2 be S before
and after the iteration respectively. Let G′ be the subgraph of G induced by VG \ S1. If the
subgraph induced by VG \ S2 does not have any vertex with degree more than 2k, we are
done. Otherwise, fix one such vertex u ∈ VG \ S2. Note that the degree of u in G′ is also
more than 2k.

We show that at least one neighbor v of u satisfies v /∈ S1 but v ∈ S2. Let x be the
optimal fractional solution to SA(S1) and consider the following constraint for u.∑

v:(u,v)∈EG

(xv − xu,v) ≥ (deg(u)− k + 2)(1− xu).

Let Nbr(u) and Nbr′(u) be the set of neighbors of u in G and G′ respectively, and deg′(u) =
|Nbr′(u)|. Note that Nbr′(u) = Nbr(u) \ S1, and for v ∈ Nbr(u) ∩ S1, xv = 1 and xu,v = xu.
Therefore, the above constraint is equivalent to∑

v:Nbr(u)∩S1

(1− xu) +
∑

v:Nbr′(u)

(xv − xu,v) ≥ (deg(u)− k + 2)(1− xu)

⇔
∑

v:Nbr′(u)

(xv − xu,v) ≥ (deg′(u)− k + 2)(1− xu).

The fact that u /∈ S2 implies that xu < 1
α , which implies∑

v∈Nbr′(u)

xv

≥
∑

v∈Nbr′(u)

(xv − xu,v) ≥ (1− 1
α

)(deg′(u)− k) = (1− 1
α

) deg′(u)(1− k

deg′(u)
).

Therefore, there is one v ∈ Nbr′(u) with xv ≥ (1− 1
α )(1− k

deg′(u) ) ≥ 9
10 ·

1
2 >

1
α . v satisfies

v /∈ S1 but v ∈ S2. J

A.2 Constrained Set Multicover
The first phase returns a set S whose size is at most α times the optimal solution and the
subgraph induced by VG \ S has maximum degree at most 2k. As above, let G′ be the
subgraph induced by VG \ S, Nbr(u),Nbr′(u) be the neighbors of u in G and G′ respectively,
and deg(u) = |Nbr(u)|, deg′(u) = |Nbr′(u)|. The remaining task is to find a small subset
F ⊆ VG \ S such that the subgraph of G′ (and G) induced by VG \ (S ∪ F ) has no vertex of
degree at least k − 1. We reduce the remaining problem to the Constrained Set Multicover
problem defined below.

I Definition 14. Given an set system U = {e1, ..., en}, a collection of subsets C =
{C1, ..., Cm}, and a positive integer re for each e ∈ U , the Constrained Set Multicover
problem asks to find the smallest subcollection (each set must be used at most once) such
that each element e is covered by at least re times.

Probably the most natural greedy algorithm does the following:
Pick a set C with the largest cardinality (ties broken arbitrarily).
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Set re ← re − 1 for e ∈ C. If re = 0, remove it from U . For each C ∈ C, let C ← C ∩ U .
Repeat while U is nonempty.

Constrained Set Cover has the following standard LP relaxation, and Rajagopalan and
Vazirani [46] showed that the greedy algorithm gives an integral solution whose value is at
most Hd (i.e. the dth harmonic number) times the optimal solution to the LP, where d is
the maximum set size.

minimize
∑
C∈C

zC

subject to
∑
C:e∈C

zC ≥ re e ∈ U

0 ≤ zC ≤ 1 C ∈ C

Our remaining problem, k-Star Transversal on G′, can be thought as an instance of
Constrained Set Cover in the following way: U := {u ∈ VG \ S : deg′(u) ≥ k − 1} with
ru := deg′(u) − k + 2, and for each v ∈ VG \ S, add Nbr′(v) ∩ U to C. Intuitively, this
formulation requires at least ru neighbors be picked in the transversal whether u is picked or
not. This is not a valid reduction because the optimal solution of the above formulation can
be much more than the optimal solution of our problem. However, at least one direction
is clear (any feasible solution to the above formulation is feasible for our problem), and it
suffices to show that the above LP admits a solution whose value is close to the optimum of
our problem. The LP relaxation of the above special case of Constrained Set Cover is the
following:

minimize
∑

v∈VG\S

zv

subject to
∑

v:v∈Nbr′(u)

zv ≥ deg′(u)− k + 2 u ∈ U

0 ≤ zv ≤ 1 v ∈ VG \ S

Consider the last iteration of the first phase where we solved SA(S). Let x be the optimal
solution to SA(S) and Frac :=

∑
v xv−|S|. Note that xv <

1
α when v /∈ S. Define {yv}v∈V \S

such that yv := 2xv.

I Lemma 15. {yv} is a feasible solution to the above LP for Constrained Set Cover.

Proof. By construction 0 ≤ yv < 2
α , so it suffices to check for each u ∈ U ,∑

v:v∈Nbr′(u)

yv ≥ deg′(u)− k + 2.

Fix u ∈ U . Recall that Sherali-Adams constraints on x imply that∑
v:Nbr′(u)

(xv − xu,v) ≥ (deg′(u)− k + 2)(1− xu)

⇒
∑

v:Nbr′(u)

xv ≥ (deg′(u)− k + 2)(1− xu)

⇒
∑

v:Nbr′(u)

2xv ≥ deg′(u)− k + 2,

where the last line follows from the fact that 1− 1
α >

1
2 . J
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Therefore, Constrained Set Cover LP admits a feasible solution of value 2 Frac, and the
greedy algorithm gives a k-Star Transversal F with |F | ≤ 2 · Frac ·H2k. Since Frac is at most
the size of the optimal k-Star Transversal for G′ (and clearly G), |S ∪ F | is at most O(log k)
times the size of the smallest k-Star Transversal of G.
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Abstract
A Boolean constraint satisfaction problem (CSP) is called approximation resistant if independ-
ently setting variables to 1 with some probability α achieves the best possible approximation ratio
for the fraction of constraints satisfied. We study approximation resistance of a natural subclass
of CSPs that we call Symmetric Constraint Satisfaction Problems (SCSPs), where satisfaction of
each constraint only depends on the number of true literals in its scope. Thus a SCSP of arity k
can be described by a subset S ⊆ {0, 1, . . . , k} of allowed number of true literals.

For SCSPs without negation, we conjecture that a simple sufficient condition to be approx-
imation resistant by Austrin and Håstad is indeed necessary. We show that this condition has
a compact analytic representation in the case of symmetric CSPs (depending only on the gap
between the largest and smallest numbers in S), and provide the rationale behind our conjec-
ture. We prove two interesting special cases of the conjecture, (i) when S is an interval (i.e.,
S = {i | l ≤ i ≤ r} for some l ≤ r) and (ii) when S is even (i.e., s ∈ S ⇔ k − s ∈ S). For
SCSPs with negation, we prove that the analogous sufficient condition by Austrin and Mossel is
necessary for the same two cases, though we do not pose an analogous conjecture in general.
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Based on these works, recent works on approximability of CSPs focus on characterizing
every CSP according to its approximation resistance. We define random assignments to be
the class of algorithms that assign xi ← 1 with probability α independently. A CSP is called
approximation resistant, if for any ε > 0, it is NP-hard to have a (ρ∗ + ε)-approximation
algorithm, where ρ∗ is the approximation ratio achieved by the best random assignment.
Even assuming the UGC, the complete characterzation of approximation resistance has not
been found, and previous works either change the notion of approximation resistance or
study a subclass of CSPs to find a characterization, and more general results tend to suggest
more complex characterizations.

This work considers a natural subclass of CSPs where a predicate Q is symmetric –
for any permutation π : [k] 7→ [k], (x1, . . . , xk) ∈ Q if and only if (xπ(1), . . . , xπ(k)) ∈ Q.
Equivalently, for every such Q, there exists S ⊆ [k] ∪ {0} such that (x1, . . . , xk) ∈ Q if
and only if (x1 + · · · + xk) ∈ S. Let SCSP(S) denote such a symmetric CSP. While this
is a significant restriction, it is a natural one that still captures the following fundamental
problems, such as Max-SAT, Max-Not-All-Equal-SAT, t-out-of-k-SAT (with negation), and
Max-Cut, Max-Set-Splitting, Discrepancy minimization (without negation). Except the work
of Austrin and Håstad [2], many works on this line focused CSPs with negation, while we
feel that the aforementioned problems without negation have a very natural interpretation
as (hyper)graph coloring and are worth studying.

There is a simple sufficient condition to be approximation resistant due to Austrin and
Mossel [4] with negation, and due to Austrin and Håstad [2] without negation. For SCSPs,
we show that these simple sufficient conditions can be further simplfied and understood more
intuitively, and suggest that they might also be necessary for and thus precisely characterize
approximation resistance. We prove it for two natural special cases (which capture all
problems mentioned in the last paragraph) for both SCSPs with / without negation, and
provide reasons that we believe this is true at least for SCSPs without negation.

1.1 Related Work
Given the importance of CSPs and the variety of problems that can be formulated as a
CSP, it is a natural task to classify all CSPs according to their computational complexity
for some well-defined task. For the task of deciding satisfiability (i.e., finding an assignment
that satisfies every constraint if there is one), the work of Schaefer [14] gave a complete
characterization on the Boolean domain in 1978.

However, such a classification seems much harder when we study approximability of
CSPs. Since the seminal work of Håstad [11], many natural problems have been proven to be
approximation resistant. These examples include Max-3SAT / Max-3LIN (with negation) and
Max-4-Set-Splitting (without negation), and for Boolean CSPs of arity 3, putting together
the hardness results of [11] with the algorithmic results of Zwick [16], it is known that a
CSP is approximation resistant if and only if it is implied by parity. However, characterizing
approximation resistance of every CSP for larger arity k is a harder task. The Ph.D. thesis of
Hast [10] is devoted to this task for k = 4, and succeeds to classify 354 out of 400 predicates.

The advent of the Unique Games Conjecture (UGC) [12], though it is not as widely
believed as P 6= NP, revived the hope to classify every CSP according to its approximation
resistance. For CSPs with negation, the work of Austrin and Mossel [4] gave a simple
sufficient condition to be approximation resistant, namely the existence of a balanced
pairwise independent distribution that is supported on the satisfying assignments of the
predicate. The work of Austrin and Håstad [2] proved a similar sufficient condition for
CSPs without negation, and that if this condition is not met, this predicate (both with /
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without negation) is useful for some polynomial optimization – for every such Q, there is
a k-variate polynomial p(y1, . . . , yk) such that if we are given an instance of CSP(Q) that
admits a (1− ε)-satisfying assignment, the altered problem, where we change each constraint
Cj ’s payoff from I[(xj,1 ⊕ bj,1, . . . , xj,k ⊕ bj,k) ∈ Q] (where I[·] is the indicator function) to
p(xj,1 ⊕ bj,1, . . . , xj,k ⊕ bj,k), admits an approximation algorithm that does better than any
random assignment.

Predicates that don’t admit a pairwise independent distribution supported on their
satisfying assignments can be expressed as the sign of a quadratic polynomial (see [2]). This
motivates the study of the approximability of such predicates, though it is known that
there are approximation resistant predicates that can be expressed as a quadratic threshold
function and thus the sufficient condition of Austrin and Mossel [4] is not necessary for
approximation resistance. Still this motivates the question of understanding which quadratic
threshold functions can be approximated non-trivially.

Cheraghchi, Håstad, Isaksson, and Svensson [8] studied the simpler case of predicates
which are the sign of a linear function with no constant term, obtaining algorithms beating
the random assignment threshold of 1/2 in some special cases. Austrin, Benabbas, and
Magen [1] conjecture that every such predicate can be approximated better than a factor 1/2
and is therefore not approximation resistant. They prove that predicates that are the sign of
symmetric quadratic polynomials with no constant term are not approximation resistant.

Assuming the UGC, the work of Austrin and Khot [3] gave a characterization of ap-
proximation resistance for even k-partite CSPs, and Khot, Tulsiani, and Worah [13] gave
a characterization of strong approximation resistance for general CSPs – strong approxim-
ation resistance roughly means hardness of finding an assignment that deviates from the
performance of the random assignment in either direction (i.e., it is hard to also find an
assignment saisfying a noticeably smaller fraction of constraints than the random assignment).
These two works are notable in studying approximation resistance of general CSPs, but their
characterizations become more complicated, which they suggest is necessary.

Without the UGC, even the existence of pairwise independent distribution supported on
the predicate is not known to be sufficient for approximation resistance. Another line of work
shows partial results either by using a stronger condition [7], or by using a restricted model
of computation (e.g., Sherali-Adams or Lasserre hierarchy of convex relaxations) [15, 6, 5].

1.2 Our Results
Our work was initially motivated by a simple observation that for symmetric CSPs, the
sufficient condition to be approximation resistant by Austrin and Håstad [2] admits a more
compact and intuitive two-dimensional description in R2.

Fix a positive integer k and denote [k] = {1, 2, . . . , k}. For s ∈ [k]∪{0}, let P (s) ∈ R2 be
the point defined by P (s) := ( sk ,

s(s−1)
k(k−1) ). For any s, P (s) lies on the curve y = k

k−1x
2 − x

k−1 ,
which is slightly below the curve y = x2 for x ∈ [0, 1]. Given a subset S ⊆ [k] ∪ {0}, let
PS := {P (s) : s ∈ S} and conv(PS) be the convex hull of PS . For symmetric CSPs, the
condition of Austrin and Håstad depends on whether this convex hull intersects a certain
curve or a point.

For SCSP(S) without negation, the condition becomes whether conv(PS) intersects the
curve y = x2. If we let smin and smax be the minimum and maximum number in S

respectively, by convexity of y = k
k−1x

2 − x
k−1 , it is equivalent to that the line passing

P (smin) and P (smax) and y = x2 intersect, which is again equivalent to (see Lemma A.4)

(smax + smin − 1)2

k − 1 ≥ 4smaxsmin
k

. (1)
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Figure 1 An example when k = 10 and S = {2, 5, 8}. The solid curve is y = x2 and the dashed
curve is y = k

k−1x
2 − x

k−1 , where all P (s) lie. In this case the triangle conv(PS) intersects y = x2,
so SCSP(S) is approximation resistant.

A simple calculation shows that the above condition is implied by (smax − smin) ≥√
2(smax + smin) which in turn holds if (smax − smin) ≥ 2

√
k. This means that SCP(S) is

approximation resistant unless smin and smax are very close. See Figure 1 for an example.
We conjecture that this simple condition completely characterizes approximation resistance
of symmetric CSPs without negation. Note that we exclude the cases where S contains 0 or
k, since without negation, a trivial deterministic strategy to give the same value to every
variable satisfies every constraint.

I Conjecture 1.1. For S ⊆ [k − 1], SCSP(S) without negation is approximation resistant if
and only if (1) holds.

The hardness claim, the “if” part, is currently proved only under the UGC, but our focus
is on the algorithmic claim that the violation of (1) leads to an approximation algorithm
that outperforms the best random assignment. Even though we were not formally able to
prove Conjecture 1.1, we explain the rationale behind the conjecture and we prove it for the
following two natural special cases in Section 2:
1. S is an interval: S contains every integer from smin to smax.
2. S is even: s ∈ S if and only if k − s ∈ S.

I Theorem 1.2. If S ⊆ [k−1] and S is either an interval or even, SCSP(S) without negation
is approximation resistant if and only if (1) holds (the hardness claim, i.e., the “if" part, is
under the Unique Games conjecture).

For SCSP(S) with negation, the analogous condition is whether conv(PS) contains a
single point ( 1

2 ,
1
4 ) or not. While it is tempting to pose a conjecture similar to Conjecture 1.1,

we refrain from doing so due to the lack of evidence compared to the case without negation.
However, we prove the following theorem which shows that the analogous characterization
works at least for the two special cases introduced above.

I Theorem 1.3. If S ⊂ [k]∪{0} and S is either an interval or even, SCSP(S) with negation
is approximation resistant if and only if conv(PS) contains ( 1

2 ,
1
4 ) (the hardness claim, i.e.,

the “if" part, is under the Unique Games conjecture).
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1.3 Techniques
We mainly focus on SCSPs without negation, and briefly sketch why the violation of (1)
might lead to an approximation algorithm that outperforms the best random assignment.
Let α∗ be the probability that the best random assignment uses, and ρ∗ be the expected
fraction of constraints satisfied by it. Our algorithms follow the following general framework:
sample correlated random variables X1, . . . , Xn, where each Xi lies in [−α∗, 1 − α∗], and
independently round xi ← 1 with probability α∗ +Xi.

Fix one constraint C = (x1, . . . , xk) (for SCSPs with negation, additionally assume that
offsets are all 0). Using symmetry, the probability that it is satisfied by the above strategy
can be expressed as

ρ∗ +
k∑
l=1

cl E
I∈([k]

l )
[
∏
i∈I

Xi].

For some coefficients {cl}l∈[k]. These coefficients cl can be expressed by the following two
ways.

Let f(α) : [0, 1] 7→ [0, 1] the probability that a constraint is satisfied by a random
assignment with probability α. cl is proportional to f (l)(α∗), the l’th derivative of f
evaluated at α∗.
Let Q = {(x1, . . . , xk) ∈ {0, 1}k : (x1 + · · ·+ xk) ∈ S} be the predicate associated with S.
When α∗ = 1

2 , cl is proportional to the Fourier coefficient Q̂(T ) with |T | = l.

Given this observation, α∗ for SCSPs without negation has nice properties since it should
be a global maximum in the interval [0, 1]. In particular, it should be a local maximum so
that c1 = f ′(α) = 0 and c2, f

′′(α) ≤ 0. By modifying an algorithm by Austrin and Håstad [2],
we prove that we can sample X1, . . . , Xn such that the average second moment E[XiXj ] is
strictly negative if (1) does not hold. By scaling Xi’s so that the product of at least three
Xi’s becomes negligible, this idea results in an approximation algorithm that outperforms
the best random assignment, except the degenerate case where c2 = f ′′(α∗) = 0 even though
α∗ is a local maximum. This is the main rationale behind Conjecture 1.1 and we elaborate
this belief more in Section 2. It is notable that our conjectured characterization for the case
without negation only depends on the minimum and the maximum number in S, while α∗
depends on other elements.

For SCSPs with negation where α∗ is fixed to be 1
2 , the situation becomes more complicated

since c1 and f ′(α) are not necessarily zero and there are many ways that conv(PS) does
not contain ( 1

2 ,
1
4 ) (in the case of SCSPs without negation, the slope of the line separating

conv(PS) and y = x2 is always positive, but it is not the case here). Therefore, a complete
characterization requires understanding interactions among c1, c2, and the separating line.
We found that the somewhat involved method of Austrin, Benabbas, and Magen [1] gives a
way to sample these X1, . . . , Xn with desired first and second moments to prove our results
when S exhibits additional special structures, but believe that a new set of ideas are required
to give a complete characterization.

1.4 Organization
In Section 2, we study SCSPs without negation. We further elaborate our characterization
in Section 2.1, and provide an algorithm in Section 2.2. We study SCSPs with negation in
Section 3.
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2 Symmetric CSPs without negation

2.1 A 2-dimensional characterization
Fix k and S ⊆ [k − 1]. Our conjectured condition to be approximation resistant is that
conv(PS) intersects the curve y = x2, which is equivalent to (1). Austrin and Håstad [2]
proved that this simple condition is sufficient to be approximation resistant.

I Theorem 2.1 ([2]). Let S ⊆ [k − 1] be such that (1) holds. Then, assuming the Unique
Games Conjecture, SCSP(S) without negation is approximation resistant.

They studied general CSPs and their condition is more complicated than stated here. See
Appendix A to see how it is simplified for SCSPs. We conjecture that for SCSPs, this
condition is indeed equivalent to approximation resistance.

I Conjecture 2.2 (Restatement of Conjecture 1.1). For S ⊆ [k−1], SCSP(S) without negation
is approximation resistant if and only if (1) holds.

To provide our rationale behind the conjecture, we define the function f : [0, 1] 7→ [0, 1]
to be the probability that one constraint is satisfied by the random assignment that gives
xi ← 1 independently with probability α.

f(α) =
∑
s∈S

(
k

s

)
αs(1− α)k−s

Let α∗ ∈ [0, 1] be a value that maximizes f(α), and ρ∗ := f(α∗). There might be more
than one α with f(α) = ρ∗. In Section 2.2, we prove that S is not approximation resistant if
there exists one such α∗ with a negative second derivative.

I Theorem 2.3. S ⊆ [k − 1] be such that (1) does not hold and there exists α∗ ∈ [0, 1] such
that f(α∗) = ρ∗ and f ′′(α∗) < 0. Then, there is a randomized polynomial time algorithm for
SCSP(S) that satisfies strictly more than ρ∗ fraction of constraints in expectation.

Since f(0) = f(1) = 0 < ρ∗, every α ∈ [0, 1] with f(α) = ρ∗ must be a local maximum,
so it should have f ′(α) = 0 and f ′′(α) ≤ 0. If α is a local maximum, f ′′(α) = 0 also
implies f ′′′(α) = 0, so ruling out this degeneracy at a global maximum gives the complete
characterization!

Ruling out this degeneracy at a global maximum does not seem to be closely related to
general shape of f(α) or S. It might still hold even if f(α) has multiple global maxima, or S
satisfies (1) so that SCSP(S) is approximation resistant.

However, examples in Figure 2 led us to believe that the condition (1) is also related to
general shape of f . When S contains two numbers l and r with l + r = k, as two numbers
become far apart, f becomes unimodal to bimodal, and the transition happens exactly
when (1) starts to hold. Furthermore, the degenerate case f ′(α∗) = f ′′(α∗) = 0 happens
when (1) holds with equality. Intuitively, when two numbers l and r are far apart, it is a
better strategy to focus on only one of them (i.e. α∗ ≈ l

k or r
k ) so f is bimodal, but if (1)

does not hold and l and r are close enough, it is better to target in the middle to satisfy both
l and r with reasonability probability so that f is unimodal with a large negative curvature
at α∗.

Having more points between l and r seems to strengthen the above intuition, and removing
the assumption that l + r = k only seems to add algebraic complication without hurting the
intuition. Thus, we propose the following stronger conjecture that implies Conjecture 1.1.
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Figure 2 Examples for k = 36. Left: S = {18}, (1) is not satisfied, unimodal with α∗ = 1
2 ,

f ′′( 1
2 ) < 0. Middle: S = {15, 21}, (1) is satisfied with equality, unimodal with α∗ = 1

2 , but
f ′′( 1

2 ) = 0. Right: S = {14, 22}, (1) is satisfied with slack, bimodal with two α∗, but f ′′(α∗) < 0.

I Conjecture 2.4. If (1) does not hold, f(α) is unimodal in [0, 1] with the unique maximum
at α∗, and f ′′(α∗) < 0.

While we are unable to formally prove Conjecture 2.4 for every S, we establish it for the
case when S is either an interval (Section 2.3) or even (Section 2.4), thus proving Theorem 1.2.

2.2 Algorithm
Let α∗ ∈ [0, 1] be such that f(α∗) = ρ∗ and f ′′(α∗) < 0. Furthermore, suppose that S
does not satisfy (1). We give a randomized approximation algorithm which is guaranteed to
satisfy strictly more than ρ∗ fraction of constraints in expectation, proving Theorem 2.3. Let
D := D(k) be a large constant determined later. Our strategy is the following.
1. Sample X1, . . . , Xn from some correlated multivariate normal distribution where each Xi

has mean 0 and variance at most σ2 for some σ := σ(k).
2. For each i ∈ [n], set

X ′i =


−Dα∗ if Xi < −Dα∗

D(1− α∗) if Xi > D(1− α∗)
Xi otherwise

so that α∗ + X′i
D is always in [0, 1].

3. Set xi ← 1 independently with probability α∗ + X′i
D .

Fix one constraint C and suppose that C = (x1, . . . , xk). We consider a multivariate
polynomial

g(y1, . . . , yk) :=
∑

T⊆[k],|T |∈S

∏
i∈T

(α∗ + yi
D

)
∏

i∈[k]\T

(1− α∗ − yi
D

).

g(X ′1, . . . , X ′k) is equal to the probability that the constraint C is satisfied. By symmetry,
for any 1 ≤ i1 < · · · < il ≤ k, the coefficient of a monomial yi1yi2 . . . yil only depends on l.
Let cl be this coefficient.

I Lemma 2.5. cl = (k−l)!
k!Dl f

(l)(α∗).

Proof. Note that g(y, y, . . . , y) = f(α∗ + y
D ), which has the Taylor expansion

k∑
l=0

f (l)(α∗)
l! ( y

D
)l.
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Since g is multilinear, by symmetry, the coefficient of a monomial yi1yi2 . . . yil in g(y1, . . . , yk)
is equal to the coefficient of yl in f(α∗ + y

D ) divided by
(
k
l

)
, which is cl = (k−l)!

k!Dl f
(l)(α∗). J

We analyze the overall performance of this algorithm. Let Dl be the distribution on([n]
l

)
where we sample a constraint C uniformly at random, sample l distinct variables from(

C
l

)
, and output their indices. We prove the following lemma, which implies that by taking

large D, the effect of truncation from Xi to X ′i and the contribution of monomials of degree
greater than two become small.

I Lemma 2.6. The expected fraction of constraints satisfied by the above algorithm is at
least

ρ∗ + c2

(
k

2

)
E

(i,j)∼D2
[XiXj ]−Ok( 1

D3 ) = ρ∗ + f ′′(α∗)
2D2 E

(i,j)∼D2
[XiXj ]−Ok( 1

D3 ),

where Ok(·) is hiding constants depending on k.

Proof. Note that as long as S does not contain 0 or k, α∗ ∈ [ 1
k , 1−

1
k ]. For any 1 ≤ l ≤ k

and 1 ≤ i1 < · · · < il ≤ k, we apply Lemma B.1 (set D ← D
k ),

|E[
l∏

j=1
Xij ]− E[

l∏
j=1

Xij ]| ≤ 2l · σl · l! · e−D/kl.

If we expand f(α) =
∑k
l=0 alα

l, each coefficient al has magnitude at most 2k, which
means that |f (l)(α∗)| is bounded by k2kk!. Therefore, any |cl| is at most k2kk!. Let cmax
be this quantity. Summing over this error for all monomials, the probability that a fixed
constraint C = {x1, . . . , xk} is satisfied is

E[g(X ′1, . . . , X ′k)] ≥ E[g(X1, . . . , Xk)]− cmax · 22k · σk · k! · e−D/k
2

= ρ∗ +
k∑
l=1

cl
∑

1≤i1<···<il≤k
Xi1Xi2 . . . Xil −Ok(e−D/k

2
)

= ρ∗ +
k∑
l=1

cl
∑

1≤i1<···<il≤k
Xi1Xi2 . . . Xil −Ok(e−D/k

2
)

Averaging over m constraints, the expected fraction of satisfied constraints is at least

ρ∗ +
k∑
l=1

cl

(
k

l

)
E

(i1,...,il)∼Dl

[Xi1 . . . Xil ]−Ok(e−D/k
2
)

= ρ∗ + c2

(
k

2

)
E

(i1,i2)∼D2
[Xi1Xi2 ] +

k∑
l=3

cl

(
k

l

)
E

(i1,...,il)∼Dl

[Xi1 . . . Xil ]−Ok(e−D/k
2
)

= ρ∗ + c2

(
k

2

)
E

(i1,i2)∼D2
[Xi1Xi2 ]−Ok( 1

D3 ),

where the first equality follows from the fact that E[Xi] = 0 for all i. Recall that cl =
(k−l)!
k!Dl f

(l)(α∗) so that |cl| = Ok( 1
Dl ). J

Therefore, if we have a way to sample X1, . . . , Xn such that each Xi has mean 0 and
variance at most σ2, and E(i,j)∼D2 [XiXj ] < −δ for some δ := δ(k) > 0, taking D large
enough ensures that the algorithm satisfies strictly more than ρ∗ fraction of constraints. We
now show how to do such a sampling.
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We assume that for some ε := ε(k) > 0, the given instance admits a solution that
satisfies (1− ε) fraction of constraints. Otherwise, the random assignment with probability
α∗ guarantees the approximation ratio of ρ∗

1−ε . The following lemma completes the proof of
Theorem 2.3.

I Lemma 2.7. Suppose that S does not satisfy (1). For sufficiently small ε, δ > 0 and
sufficiently large σ all depending only on k, given an instance of SCSP(S) where (1 − ε)
fraction of constraints are simultaneously satisfiable, it is possible to sample X1, . . . , Xn from
a multivariate normal distribution such that each Xi has mean 0 and variance bounded by
σ2, and E(i,j)∼D2 [XiXj ] < −δ.

Proof. Recall that (1) is equivalent to the fact that the line ` passing P (smin) and P (smax)
intersects the curve y = x2. Let a be the value that the vector (a,−1) is orthogonal to `. a
is strictly positive since ` has a positive slope. If ` and y = x2 do not intersect, there is a
line with the same slope as ` that strictly separates y = x2 and {P (s) : s ∈ S} – in other
words, there exists c ∈ R such that

ax− y + c > γ > 0 for (x, y) ∈ {P (s) : s ∈ S}.
ax− x2 + c < 0 for any x ∈ R⇒ c < −a2

4 .

Consider a constraint C = (x1, . . . , xk). Since (Ei∈[k][xi],Ei 6=j∈[k][xixj ]) = P (x1+· · ·+xk),
if C is satisfied,

a E
i∈[k]

[xi]− E
i 6=j∈[k]

[xixj ] + c > γ.

Let

η := − min
x1,...,xk∈{0,1}

(
a E
i∈[k]

[xi]− E
i 6=j∈[k]

[xixj ] + c

)
.

We solve the following semidefinite programm (SDP):

maximize a E
i∈D1

[〈v0, vi〉]− E
i,j∈D2

[〈vi, vj〉] + c

subject to ||v0|| = 1
〈vi, v0〉 = ||vi||2 for all i ∈ [n]

Note that 〈vi, v0〉 = ||vi||2 implies ||vi|| ≤ 1. For any assignment to x1, . . . , xn, setting
vi = xiv0 satisfies that xi = 〈v0, vi〉 and xixj = 〈vi, vj〉. Since at least (1 − ε) fraction
of constraints can be simultaneously satisfied, the optimum of the above SDP is at least
(1− ε)γ − εη. Given γ > 0 and η, take sufficiently small ε, δ > 0 such that (1− ε)γ − εη = δ.
There are finitely many S (thus γ and η) for each k, so ε and δ can be taken to depend only
on k. Given vectors v0, v1, . . . , vn, we sample X1, . . . , Xn by the following simple procedure:
1. Sample a vector g whose coordinates are independent standard normal.
2. Let Xi = 〈g, vi − a

2v0〉.

It is clear that E[Xi] = 0 for each i, and E[X2
i ] = ||vi − a

2v0||2 ≤ (a+ 1)2 + 1, so taking
σ := σ(k) large enough ensures that the variance of each Xi is bounded by σ2. We now
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compute the second moment.

E
i,j∼D2

[XiXj ]

= E
i,j∼D2

[〈vi −
a

2v0, vj −
a

2v0〉]

= E
i,j∼D2

[〈vi, vj〉]− a E
i∈D1

[〈vi, v0〉] + a2

4
< E

i,j∼D2
[〈vi, vj〉]− a E

i∈D1
[〈vi, v0〉]− c

≤ − ((1− ε)γ − εη) = −δ,

where the first inequality follows from c < −a
2

4 and the second follows from the optimality
of our SDP. J

2.3 Case of Interval S
We study properties of f(α) when S is an interval – S = {smin, smin+ 1, . . . , smax−1, smax},
and prove Conjecture 2.4 for this case. One notable fact is that as long as S is interval, the
conclusion of Conjecture 2.4 is true even if S does satisfy (1) and becomes approximation
resistant.

I Lemma 2.8. Suppose S ⊆ [k − 1] is an interval. Then, f(α) is unimodal in [0, 1] with the
unique maximum at α∗ and f ′′(α∗) < 0.

Proof. Let l := smin and r = smax. Given

f(α) =
r∑
s=l

(
k

s

)
αs(1− α)k−s

and

f ′(α) =
r∑
s=l

(
k

s

)(
sαs−1(1− α)k−s − (k − s)αs(1− α)k−s−1

)
,

since
(
k
s

)
(k − s) =

(
k
s+1
)
(s+ 1), we have

f ′(α) =
(
k

l

)
lαl−1(1− α)k−l −

(
k

r

)
(k − r)αr(1− α)k−r−1.

If 0 < α < 1, setting β := α
1−α gives a unique non-zero solution to f ′(β) = 0. This proves

the unimodality. For the second derivative,

f ′′(α) =
(
k

l

)
l(l − 1)αl−2(1− α)k−l −

(
k

l

)
l(k − l)αl−1(1− α)k−l−1+(

k

r

)
(k − r)(k − r − 1)αr(1− α)k−r−2 −

(
k

r

)
r(k − r)αr−1(1− α)k−r−1

=
(
k

l

)
lαl−2(1− α)k−l−1

(
(l − 1)(1− α)− (k − l)α

)
+(

k

r

)
(k − r)αr−1(1− α)k−r−2

(
(k − r − 1)α− r(1− α)

)
.
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Since l−1
k−1 <

l
k ≤ α

∗ ≤ r
k <

r
k−1 ,

(l − 1)(1− α∗)− (k − l)α∗ = (l − 1)− (k − 1)α∗ < 0

and

(k − r − 1)α∗ − r(1− α∗) = (k − 1)α∗ − r < 0,

so that f ′′(α∗) < 0. J

2.4 Case of Even S
We study properties of f(α) when S is even – s ∈ S if and only if k − s ∈ S, and prove
Conjecture 2.4 for this case. We first simplify (1) for this setting. If we let l := smin and
r := smax = k − l, (1) is equivalent to

(l + r − 1)2

k − 1 ≥ 4lr
k

⇔ k(k − 1) ≥ 4lr ⇔ (r − l)2 ≥ k.

Therefore, (1) is equivalent to

r − l ≥
√
k (2)

I Lemma 2.9. Suppose S ⊆ [k − 1] is even. If (2) does not hold, f(α) is unimodal in [0, 1]
with the unique maximum at α∗ = 1

2 and f ′′(α∗) < 0.

Proof. Given a even S, let S1 = {s ∈ S : s ≤ k/2}. When we write fS to denote the
dependence of f on S, we can decompose fS(α) =

∑
s∈S1

f{s,k−s}(α), so the following claim
proves the lemma. J

I Claim 2.10. Let l ≤ k
2 and r = k− l such that r− l <

√
k ⇔ k(k−1) < 4lr. Let S = {l, r}.

f is unimodal with the unique maximum at 1
2 , and f

′′( 1
2 ) < 0.

Proof. Note that f is symmetric around α = 1/2. If there exists a local maximum at
α′ ∈ (0, 1/2), f also has a local maximum at (1−α′) with the same value, so there must exist
a local minimum in (α′, 1− α′). In particular, there is α ∈ (α′, 1− α′) such that f ′(α) = 0
and f ′′(α) ≥ 0. We prove that such α cannot exist.

f ′(α) = 0

⇔
(
k

l

)
αl−1(1− α)r−1(l − kα) +

(
k

r

)
αr−1(1− α)l−1(r − kα) = 0

⇔
(
k
l

)
αl−1(1− α)r−1(

k
r

)
αr−1(1− α)l−1

=
(
k
l

)
(1− α)r−l(
k
r

)
αr−l

= − (kα− r)
(kα− l)

Similarly,

f ′′(α) ≥ 0

⇔
(
k
l

)
(1− α)r−l(
k
r

)
αr−l

≥ −r(r − 1)(1− α)2 − 2rlα(1− α) + l(l − 1)α2

l(l − 1)(1− α)2 − 2rlα(1− α) + r(r − 1)α2 .
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By symmetry, we can assume α ≥ 1
2 , so that (kα− l) ≥ 0 and l(l − 1)(1− α)2 − 2rlα(1−

α) + r(r − 1)α2 ≥ 0.

(kα− r)
(kα− l) ≤

r(r − 1)(1− α)2 − 2rlα(1− α) + l(l − 1)α2

l(l − 1)(1− α)2 − 2rlα(1− α) + r(r − 1)α2

⇔ (kα− r)(l(l − 1)(1− α)2 − 2rlα(1− α) + r(r − 1)α2)
≤ (kα− l)(r(r − 1)(1− α)2 − 2rlα(1− α) + l(l − 1)α2)

⇔ α2(l3 − r3 − (l2 − r2) + rl(l − r)− 2k(l2 − r2) + 2k(l − r))+
α(k(l2 − r2)− k(l − r))− rl(l − r) ≤ 0

⇔ α2(−k2 + k) + α(k2 − k)− rl ≥ 0 divide by (l − r) and use l + r = k

However, α2(−k2 + k) +α(k2− k)− rl has a negative leading coefficient and its discriminant
is

(k2 − k)2 − 4rl(k2 − k) = (k2 − k)(k2 − k − 4rl) < 0

by the assumption of the claim. J

We do not formally prove the converse, but Figure 2 shows examples where it is tight.
When (2) holds with equality, f still has the unique local maximum at 1

2 but f ′′( 1
2 ) = 0, and

even when (2) holds with small slack, two local maxima start to appear. This phenomenon is
one of the main reasons that we pose Conjecture 2.4. Though we were not able to formally
prove for the general case, we believe that the violation of (1) not only allows us to sample
random variables with desired second moments but also ensures that f(α) is a nice unimodal
curve.

3 Approximability of symmetric CSPs with negation

Fix k and S ⊂ [k] ∪ {0}. In this section, we consider SCSP(S) with negation and prove
Theorem 1.2. Note that in this section we allow S to contain 0 or k. For example, famous
Max-3SAT is 3-SCSP({1, 2, 3}). We still exclude the trivial case S = [k] ∪ {0}.

The condition we are interested in is whether conv(PS) contains ( 1
2 ,

1
4 ). In SCSPs with

negation, the sufficient condition of Austrin and Mossel on general CSPs to be approximation
resistant becomes equivalent to it. See Appendix A to see the equivalence.

I Theorem 3.1 ([2]). Fix k and let S ⊂ [k] ∪ {0} be such that conv(PS) contains ( 1
2 ,

1
4 ).

Then, assuming the Unique Games Conjecture, SCSP(S) with negation is approximation
resistant.

On the other hand, we now show that the algorithm of Austrin et al. [1], which is inspired
by Hast [10], can be used to show that if S is an interval or even and conv(PS) does not
contain ( 1

2 ,
1
4 ), SCSP(S) is not approximation resistant.

Let f : {0, 1}k 7→ {0, 1} be the function such that f(x1, . . . , xk) = 1 if and only if
(x1 + · · ·+xk) ∈ S. Define the inner product of two functions as 〈f, g〉 = Ex∈{0,1}k [f(x)g(x)],
and for T ⊆ [k], let χT (x1, . . . , xk) =

∏
i∈T (−1)xi . It is well known that {χT }T⊆[k] form an

orthonormal basis and every function has a unique Fourier expansion with respect to this
basis,

f =
∑
T⊆[k]

f̂(T )χT , f̂(T ) := 〈f, χT 〉.
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Define

f=d(x) =
∑
|T |=d

f̂(S)χT (x).

The main theorem of Austrin et al. [1] is

I Theorem 3.2 ([1]). Suppose that there exists η ∈ R such that

2η√
2π
f=1(x) + 2

π
f=2(x) > 0 (3)

for every x ∈ f−1(1). Then there is a randomized polynomial time algorithm that approximates
SCSP(S) better than the random assignment in expectation.

We compute f=1 and f=2.

f̂({1}) = 〈f, χ{1}〉 = 1
2k
∑
s∈S

((
k − 1
s

)
−
(
k − 1
s− 1

))
f̂({1, 2}) = 〈f, χ{1,2}〉 = 1

2k
∑
s∈S

((
k − 2
s

)
− 2
(
k − 2
s− 1

)
+
(
k − 2
s− 2

))
By symmetry, f̂T =: f̂1 is the same for all |T | = 1 and f̂T =: f̂2 is the same for all |T | = 2. If
we let s = x1 + · · ·+ xk,

f=1(x) = f̂1
∑
i∈[k]

(−1)xi = kf̂1 E
i∈[k]

[−2xi + 1] = kf̂1(−2 s
k

+ 1)

f=2(x) = f̂2
∑
i6=j

(−1)xi+xj =
(
k

2

)
f̂2 E

i 6=j
[(−2xi + 1)(−2xj + 1)] =

(
k

2

)
f̂2(4 s(s− 1)

k(k − 1) − 4 s
k

+ 1).

3.1 When S is an interval
Let S = {l, l + 1, . . . , r − 1, r}. If r ≤ k

2 , we have (−2s
k + 1) ≤ 0 for all s ∈ S, so choosing η

either large enough or small enough ensures (3). Similarly, if l ≥ k
2 , (3) holds. Therefore, we

assume that l < k
2 and r > k

2 , and compute f̂2.

f̂2 = 1
2k

r∑
s=l

((
k − 2
s

)
− 2
(
k − 2
s− 1

)
+
(
k − 2
s− 2

))
= 1

2k

((
k − 2
l − 2

)
−
(
k − 2
l − 1

)
+
(
k − 2
r

)
−
(
k − 2
r − 1

))
Since

(
k−2
l−1
)
>
(
k−2
l−2
)
for 0 < l < k

2 and
(
k−2
r−1
)
>
(
k−2
r

)
for k

2 < r < k, f̂2 < 0 except when
l = 0 and r = k (i.e., S = [k] ∪ {0}).

If conv(PS) does not contain ( 1
2 ,

1
4 ), there exist α, β ∈ R such that for any (a, b) ∈

conv(PS),

α(a− 1
2) + β(b− 1

4) > 0.

If k is even, s := k
2 ∈ S and P (s) = ( 1

2 ,
s−1

2(k−1) ) where s−1
2(k−1) <

1
4 , which implies β < 0 since

the above inequality should hold for all s ∈ S. When k is odd (let k = 2s+ 1), s and s+ 1
should be in S and

1
2

(
P (s) + P (s+ 1)

)
= (1

2 ,
s2

k(k − 1)),
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where s2

k(k−1) <
1
4 . Therefore, we can conclude β < 0 in any case. For any x ∈ f−1(1) with

s = x1 + · · ·+ xk and P (s) = (a, b),
2η√
2π
f=1(x) + 2

π
f=2(x)

= 2η√
2π
kf̂1(−2a+ 1) + 2

π

(
k

2

)
f̂2(4b− 4a+ 1)

= 8
βπ

(
k

2

)
f̂2

( 2η√
2πkf̂1

8
βπ

(
k
2
)
f̂2

(−2a+ 1) + β(b− a+ 1
4)
)

= 8
βπ

(
k

2

)
f̂2

(
(−α+ β

2 )(−2a+ 1) + β(b− a+ 1
4)
)

by adjusting η so that
2η√
2πkf̂1

8
βπ

(
k
2
)
f̂2

= −α+ β

2

= 8
βπ

(
k

2

)
f̂2

(
α(a− 1

2) + β(b− 1
4)
)

> 0.

Therefore, (3) is satisfied if S is an interval and conv(S) does not contain ( 1
2 ,

1
4 ).

3.2 When S is even
Given S, let Q ∈ {0, 1}k be the predicate associated with S and f : {0, 1}k 7→ {0, 1} be the
indicator function of Q. We want to show that when S is even,

2η√
2π
f=1(x) + 2

π
f=2(x) > 0

is satisfied for any x ∈ f−1(1). When S is even,

f̂1 = 1
2k+1

∑
s∈S

((
k − 1
s

)
−
(
k − 1
s− 1

)
+
(
k − 1
k − s

)
−
(

k − 1
k − s− 1

))
= 0.

We compute the sign of the contribution of each s to f̂2.(
k − 2
s

)
− 2
(
k − 2
s− 1

)
+
(
k − 2
s− 2

)
≥ 0

⇔ (k − s)(k − s− 1)− 2s(k − s) + s(s− 1) ≥ 0
⇔ 4s2 − 4sk + k2 − k ≥ 0

⇔ s ≤ k −
√
k

2 or s ≥ k +
√
k

2

We also consider the line passing P (s) and P (k − s). If we denote t = k − s, Its slope is
t(t−1)−s(s−1)

k(k−1)
t−s
k

= t2 − s2 − (t− s)
(k − 1)(t− s) = 1,

and the value of this line at 1
2 is at least 1

4 when

s(s− 1) + (k − s)(k − s− 1)
2k(k − 1) ≥ 1

4
⇔ 2s(s− 1) + 2(k − s)(k − s− 1) ≥ k(k − 1)

⇔ s ≤ k −
√
k

2 or s ≥ k +
√
k

2 .
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Intuitively, if we consider the line of slope 1 that passes ( 1
2 ,

1
4 ), P (s) is below this line

if s ∈ (k−
√
k

2 , k+
√
k

2 ). Let S1 = S ∩ {0, 1, . . . , dk2 e}. If S1 contains a value s1 ≤ k−
√
k

2 and a
value s2 ≥ k−

√
k

2 (including the case s1 = s2 = k−
√
k

2 is an integer in S1), the line passing
P (s1) and P (k − s1) passes a point ( 1

2 , t1) for some t1 ≥ 1
4 and the line passing P (s2) and

P (k − s2) passes a point ( 1
2 , t2) for some t2 ≤ 1

4 . Therefore, conv(PS) contains a point ( 1
2 ,

1
4 )

and S becomes balanced pairwise independent. We consider the remaining two cases.
1. s < k−

√
k

2 for all s ∈ S1: f̂2 > 0 and for all s ∈ S, −( sk −
1
2 )+ ( s(s−1)

k(k−1) −
1
4 ) > 0. Therefore,

for any x ∈ f−1 with s = x1 + · · ·+ xk,

2η√
2π
f=1(x) + 2

π
f=2(x)

= 2
π
f=2(x)

= 2
π

(
k

2

)
f̂2(4 s(s− 1)

k(k − 1) − 4 s
k

+ 1)

> 0.

2. s > k−
√
k

2 for all s ∈ S1: f̂2 < 0 and for all s ∈ S, −( sk −
1
2 ) + ( s(s−1)

k(k−1) −
1
4 ) < 0. Similarly

as above, for any x ∈ f−1 with s = x1 + · · ·+ xk, (3) is satisfied.
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A Austrin-Håstad Condition for Symmetric CSPs

This section explains how the condition of Austrin-Håstad [2] is simplified for SCSPs. They
studied general CSPs where a predicate Q is a subset of {0, 1}k. Note that given S ⊆ [k]∪{0},
SCSP(S) is equivalent to CSP(Q) where

Q = {(x1, . . . , xk) ∈ {0, 1}k : (x1 + · · ·+ xk) ∈ S} (4)

Given Q, their general definition of pairwise independence and positive correlation is given
below.

I Definition A.1. Q is balanced pairwise independent if there is a distribution µ supported
on Q such that Prµ[xi = 1] = 1

2 for every i ∈ [k] and Prµ[xi = xj = 1] = 1
4 for every

1 ≤ i < j ≤ k.

I Definition A.2. Q is positively correlated if there is a distribution µ supported on Q and
p, ρ ∈ [0, 1] with ρ ≥ p2 such that Prµ[xi = 1] = p for every i ∈ [k] and Prµ[xi = xj = 1] = ρ

for every 1 ≤ i < j ≤ k.

We formally prove that their definitions have simpler descriptions in R2 for symmetric
CSPs. Recall that given s ∈ [k] ∪ {0},

P (s) = ( s
k
,
s(s− 1)
k(k − 1)) ∈ R2 and PS := {P (s) : s ∈ S} .

I Lemma A.3. Let S ⊆ [k] ∪ {0} and Q be obtained by (4). Q is pairwise independent if
and only if conv(PS) contains ( 1

2 ,
1
4 ), and Q is positively correlated if and only if conv(PS)

intersects the curve y = x2.

Proof. We first prove the second claim of the lemma. Let Q be positively correlated
with parameters p, ρ (ρ ≥ p2) and the distribution µ such that Prµ[xi = 1] = p for all i,
Prµ[xi = xj = 1] = ρ and for all i < j. Let ν be the distribution of x1 + · · · + xk where
(x1, . . . , xk) are sampled from µ.

(p, ρ) = (E
i
[xi], E

i<j
[xixj ]) = ( E

s∼ν
[ s
k

], E
s∼ν

[ s(s− 1)
k(k − 1) ]) = E

s∼ν
[P (s)],

proving that positive correlation of Q implies (p, ρ) ∈ conv(PS). Since P (s) is strictly below
the curve y = x2 for any s ∈ [k − 1] and (p, ρ) is on or above this curve, conv(PS) must
intersect y = x2.

Suppose that conv(PS) intersects the curve y = x2. There exists a distribution ν on
S such that Es∼ν [P (s)] = (p, p2). Let µs be the distribution on {0, 1}k that uniformly
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samples a string with exactly s 1’s. Let µ be the distribution where s is sampled from ν

and (x1, . . . , xk) is sampled from µs. By definition, Prµ[xi = 1] and Prµ[xi = xj = 1] do not
depend on choice of indices,

Pr
µ

[x1 = 1] = E
µ

[x1] = E
s∼ν

E
x∼µs

[x1] = E
s∼ν

[ s
k

] = p

Pr
µ

[x1 = x2 = 1] = E
µ

[x1x2] = E
s∼ν

E
x∼µs

[x1x2] = E
s∼ν

[ s(s− 1)
k(k − 1) ] = p2,

implying that (p, p2) ∈ conv(PS).
The proof of the first claim is similar except that the curve y = x2 is replaced by

( 1
2 ,

1
4 ). J

I Lemma A.4. conv(PS) intersects the curve x = y2 if and only if

(smax + smin − 1)2

k − 1 ≥ 4smaxsmin
k

.

Proof. Let l = smin and r = smax. The line passing P (l) and P (r) has a slope
r(r−1)−l(l−1)

k(k−1)
r−l

k

=
r+l−1
k−1 and a y-intercept b such that

l(l − 1)
k(k − 1) = r + l − 1

k − 1 · l
k

+ b⇔ b = l(l − 1)− l(r + l − 1)
k(k − 1) = −lr

k(k − 1) .

This line intersects y = x2 if and only if

x2 = r + l − 1
k − 1 x− lr

k(k − 1)

has a real root, which is equivalent to

(r + l − 1
k − 1 )2 − 4lr

k(k − 1) ≥ 0⇔ (r + l − 1)2

k − 1 ≥ 4lr
k
. J

B Technical Proof

I Lemma B.1. Let Y1, . . . , Yl be sampled from a multivariate normal distribution where each
Yi has mean 0 and variance at most σ2. Let Y ′1 , . . . , Y ′l be such that

Y ′i =


Yi if |Yi| ≤ D
D if Yi > D

−D if Yi < −D

Then, for large enough D,

|E[
l∏
i=1

Yi]− E[
l∏
i=1

Y ′i ]| ≤ 2l · σl · l! · e−D/l.

Proof. For each i ∈ [l], let Y ′′i = Y ′i − Yi. Take D large enough so that

E[|Y ′′i |l] = 2
∫ ∞
y=D

(y −D)lφ(y) ≤ 2
∫ ∞
y=D

ylφ(y) ≤ e−D.
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Also each Yi, a normal random variable with mean 0 and variance σ, satisfies E[|Yi|l] ≤ σl · l!.
We have

|E[
l∏
i=1

Yi]− E[
l∏
i=1

Y ′i ]| =

∣∣∣∣∣∣
∑

T⊆[l],T 6=[l]

E[
∏
i∈T

Yi
∏
i/∈T

Y ′′i ]

∣∣∣∣∣∣
≤

∑
T⊆[l],T 6=[l]

∏
i∈T

(E[|Yi|l])1/l
∏
i/∈T

(E[|Y ′′i |l])1/l

(by Generalized Hölder’s inequality [9])

≤ 2l · σl · l! · e−D/l . J
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Abstract
The all-terminal reliability polynomial of a graph counts its connected subgraphs of various sizes.
Algorithms based on sequential importance sampling (SIS) have been proposed to estimate a
graph’s reliability polynomial. We show upper bounds on the relative error of three sequential
importance sampling algorithms. We use these to create a hybrid algorithm, which selects the
best SIS algorithm for a particular graph G and particular coefficient of the polynomial.

This hybrid algorithm is particularly effective when G has low degree. For graphs of average
degree ≤ 11, it is the fastest known algorithm; for graphs of average degree ≤ 45 it is the
fastest known polynomial-space algorithm. For example, when a graph has average degree 3, this
algorithm estimates to error ε in time O(1.26nε−2).

Although the algorithm may take exponential time, in practice it can have good performance
even on medium-scale graphs. We provide experimental results that show quite practical per-
formance on graphs with hundreds of vertices and thousands of edges. By contrast, alternative
algorithms are either not rigorous or are completely impractical for such large graphs.
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1 Introduction

Let G be a connected undirected multi-graph with vertex set V and edge set E. We define
Rel(p), the all-terminal reliability polynomial of G, to be the probability that the graph
remains connected when edges are removed independently with probability p. This function
is a polynomial which can be factored as

Rel(p) =
m∑
i=0

Ni(1− p)ipm−i

where Ni is the number of connected subgraphs of G with i edges. This polynomial has
various physical applications, for example determining the reliability of a computer network
or power grid.
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Exactly computing the reliability polynomial is known to be #P-complete [20]. The
best-known algorithm at this time is due to [3]; it runs in 2n time and 2n space, or 3n time
and polynomial space. While this is a great theoretical achievement, and works well on small
graphs (n ≈ 40), it is completely impractical for larger graphs.

In this paper, we give an algorithm targeting sparse graphs (graphs with average degree
α = O(1)), running in polynomial space and exponential time, to estimate the reliability
polynomial coefficients Nt to some relative error ε. When α is a small constant, the algorithm
may be significantly faster than [3]. When α ≤ 11, this algorithm runs faster than the
exponential-space variant of [3], plus our algorithm is polynomial-space; in fact, our algorithm
is the fastest known method in this regime. When α ≤ 45, it runs faster than the polynomial-
space variant of [3]. Furthermore, our algorithm can be easily parallelized — absolutely no
communication or memory is required between different processing elements.

Furthermore, in practice this algorithm seems to scale much better than the theoretical
guarantees would imply. We have conducted extensive experiments on relatively large graphs,
up to hundreds of vertices. The algorithm can achieve a 10% error rate on all coefficients
after a minutes’ run-time. This put real-world networks within reach. By contrast, the
existing algorithms such as [3] simply cannot be run on such large graphs — these algorithms
will use more space or time than exists on any computer.

1.1 Background

A variety of approaches have been proposed to estimate the reliability polynomial, or fragments
of it, for a graph. Some algorithms seek to compute Rel(p0) for a fixed probability p0, such
as [10] or [16]. The problem of estimating Rel(p0) is related to the problem of estimating
the reliability polynomial coefficients Ni, but they are not equivalent especially in terms of
evaluating the relative error. For example, Karger’s algorithm [16] gives a fully-polynomial
relative approximation scheme (fpras) for the problem of estimating 1− Rel(p0).

Other algorithms, for example [19], [20] can estimate Nt in polynomial time, but only for
a narrow range of value of t, such as t = O(1) or t = m− n−O(1). [5] gives an algorithm
to transform a given dense graph G into a relatively sparse graph G′, with only O(n logn)
edges, which has approximately the same reliability. There is no known polynomial-time
algorithm to estimate arbitrary coefficients.

Many heuristic algorithms have been studied to approximate the all-terminal reliability.
For example, [4] discusses an algorithm based on Monte-Carlo-Markov-Chain sampling of
connected subgraphs. For the special case of directed acyclic graphs, [18] describes an
algorithm based on Monte-Carlo sampling for the closely related problem of estimating
s − t connectivity. Algorithms based on sequential importance sampling are described in
[2],[14],[8]. While these approximations can be effective in practice, typically they do not have
rigorous complexity bounds. This can be especially problematic for estimation algorithms: if
the algorithm is run for too few iterations, then it may produce a wrong estimate despite
outwardly appearing to run successfully.

1.2 The Tutte polynomial

The reliability polynomial is a special case of the Tutte polynomial, a very powerful graph
invariant. While the reliability polynomial counts only the connected subgraphs of G, the
Tutte polynomial also encodes information about the decomposition of G into its connected
components.
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In [3], Bjorklund et al. gave an algorithm running in 2n time and space, or time 3n
and polynomial space, to exactly compute all the Tutte polynomial coefficients. The
Tutte polynomial can be specialized to compute the reliability polynomial, and in fact the
algorithm of [3] provides the fastest algorithm, in general, for computing the reliability
polynomial. Under appropriate complexity-theoretic assumptions, the Tutte polynomial
cannot be computed in time exp(o(n)) [9], or even approximated in polynomial-time [12]. (It
is possible that the reliability polynomial may be a tractable special-case, though).

For classes of sparse graphs, alternative algorithms may be still faster. For example,
the algorithm of Bjorklund et al. itself can be specialized for graphs of maximum degree
∆; on such a graph, the algorithm has running time exp((2∆+1 − 1)1/(∆+1)n+ o(1)). Other
algorithms have been proposed to regular graphs (such as [7]) or bounded-degree graphs
(such as [11]), although these appear to be dominated by the algorithm of [3].

The algorithm of Bjorklund et al. represents a breakthrough from the theoretical point of
view, in reality is impractical graphs of even moderate size. For example, experiments in [3]
describe a computation time of four days to solve a graph with 22 vertices.

1.3 Our contribution

In this paper, we will propose a new algorithm to estimate the reliability polynomial
coefficients Nt for graphs whose average degree α is smal. The running time of this algorithm
will have the form (χα+oα(1))n/ε2, where ε is the desired relative error and χα is a parameter
depending on α. The space required by the algorithm is polynomial in all parameters. This
algorithm has a number of advantages over the existing ones, both from a theoretical and a
practical point of view.

First, the theory: for small α, the algorithm may be significantly faster than Bjorklund
et al. or any other known algorithm. As we will see, this algorithm will be faster than any
known algorithm for α ≤ 11. At this point, the algorithm of Bjorklund et al. becomes faster,
although the latter requires exponential space. Our algorithm will be faster than any known
polynomial-space algorithm for α ≤ 45.1 Note that we are considering the most general class
of sparse graphs, while other algorithms of [3], [7], [11] were specialized to more restrictive
classes of sparse graphs (most prominently, bounded-degree).

Second, in practice this algorithm seems to scale much better than the theoretical
guarantees would imply. We have conducted extensive experiments on medium-scale graphs,
up to hundreds of vertices. The algorithm can achieve a 10% error rate on all coefficients after
a minutes’ run-time. This puts real-world networks within reach, whereas the alternative
exponential-time algorithms would never finish their computations on such large graphs.

There is a synergy between the theoretical analysis and the practical performance. Certain
key parameters must be tuned accurately for our algorithm to guarantee good performance.
These parameters are difficult to set empirically, and if they are set incorrectly, the algorithm
can appear to run perfectly well but nevertheless return inaccurate results. By setting these
parameters in accordance with the worst-case analysis, we tend to achieve results that are
accurate in practice. This is despite the fact that the worst-case analysis, for such large
graphs, is not directly relevant to practical computations.

1 This is likely a conservative estimate of the worst-case behavior of our algorithm; an accurate estimate
would require solving some open problems in extremal graph theory.

APPROX/RANDOM’15



326 SIS Algorithms for Estimating All-terminal Reliability of Sparse Graphs

2 General approach

The algorithm we propose is based on sequential-importance sampling (SIS). Three SIS
approaches were proposed in [2],[14],[8]. Experimental evidence showed that these algorithms
could give quite effective estimates, at least in certain parameter ranges.

The SIS algorithms can be divided into two types. The first, which we refer to as
top-down, start by removing edges from the initial graph G and counting the connectivity of
the resulting subgraph. The second, which we refer to as bottom-up, start from a spanning
tree of G and add edges. On any particular graph, the top-down algorithms tend to have
better relative variance when the t is large; the bottom-up algorithms tend to have better
relative variance when t is small. (Recall Nt is the coefficient of interest.)

There is a natural strategy to combine the strengths of these algorithms: for any given
graph G and any desired coefficient Nt, run all three algorithms in parallel and select the one
which gives the best estimate. Unfortunately, there is not any generic method to determine
which statistic has lowest variance, and in fact exponentially many samples may be required
to calculate a sample variance accurately. Thus, exponential time might be incurred in simply
accumulating enough statistical information in order to select the appropriate algorithm.

In this paper, we compute upper bounds on the precision of the three algorithms. These
upper bounds play two roles. First, they allow us to find upper bounds on the running time
required to achieve any desired level ε of relative accuracy. The main probabilistic tool we
use in this paper is to estimate the relative variance of the estimate

rv(F ) = E[F 2]/E[F ]2.

As a consequence of the Chebyshev inequality, one achieves the desired precision with
high probability after extracting Θ(rv(F )/ε2) independent samples. Hence, if we can bound
the relative variance of any of the SIS algorithms as (χ+o(1))n, this implies that the running
time of the resulting hybrid algorithm will also be (χ + o(1))n/ε2. We will see that for a
fixed value of the average degree α, we can achieve good bounds on χα.

The second, less-obvious function of these upper bounds, is that they allow us to create a
hybrid algorithm, which computes the upper bounds and publishes the statistic with smallest
upper-bound on precision. That is, for any fixed graph G, these bounds give us a sensible
strategy on which coefficients to estimate with the top-down algorithm and which coefficients
to estimate with a bottom-up algorithm.

In practice, these SIS algorithms can be far more accurate than the worst-case analysis
would predict. We will examine some examples of this in Section 5. Thus, we can evaluate
this hybrid algorithm empirically, and we see that it can give useful estimates for graphs
of moderate size (hundreds of vertices), while the exact exponential-time algorithms are
impractical for tens of vertices.

Once we estimate Nt, we can automatically estimate Rel(p) for any fixed value of p. For,
if we estimate N̂t up to relative error ε for all t, we may then estimate

R̂el(p) =
∑
i

N̂ip
i(1− p)m−i (1)

and we note that all the summands in (1) are positive.
Despite the advantages of our algorithm, we note that it is ultimately much more

specialized than that of Bjorklund et al., for three reasons. First, we only estimate the
coefficients instead of computing them exactly, and we do so probabilistically instead of
deterministically. Second, this algorithm applies only to the reliability polynomial, which is
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a special case of the Tutte polynomial. Third, the complexity of our algorithm is exponential
in the number of edges, and hence for dense graphs it is slower.

2.1 Notation

We are given an connected undirected graph G, which may have multiple edges or self-loops.
We will use m,n to refer to the number of edges and vertices in the graph G. Our algorithm
seeks to estimate Nt, and t is always the index of the coefficient we are interested in. The
average degree α is given by α = 2m/n. Note that as G is connected, we must have
α ≥ 2− 2/n.

In this paper, we will only be concerned with the case that α is a small constant. Hence,
we will assume throughout that α ≤ Cn, where C is some large fixed constant. Together
with the restriction that α ≥ 1, this implies that any asymptotics in m can be reduced to
equivalent asymptotics in n. We will make this assumption m = Θ(n) throughout this paper.

We let K = m− n+ 1 and let k = t− n+ 1. Note that spanning trees of G have n− 1
edges, and so k counts the distance of t from its maximal value K. This is particularly
useful for algorithms which add edges to spanning trees. We let κ(G) denote the number of
(labelled) spanning trees of G. Note that using the Kirchoff formula, κ(G) can be computed
in polynomial time.

We will frequently use the entropy function in estimating binomial coefficients. To simplify
the notation in these estimates we define l(x) = x ln x. By Stirling’s formula, for any c ∈ [0, 1]
we have

exp(n(−l(1− c)− l(c))− o(1)) ≤
(
n

cn

)
≤ exp(n(−l(1− c)− l(c)) + o(1)) (2)

We will always use the notation β = t/n. Note that β ∈ [1− 1/n, α/2].

2.2 The Kruskal-Katona Theorem

We will frequently need to lower-bound Nt in terms of κ(G). A key technical tool to do so
comes from the Krusal-Katona Theorem [17]. This is a basic combinatorial principle which
gives bounds on the number of objects in a family of sets which is upward-closed. Graph
connectivity has this property, as if a graph H is connected and H ′ ⊇ H then H ′ must be
connected as well. We will use a simplified version of this pricniple, which is slightly less
accurate than the full Kruskal-Katona bound but it adequate for our purposes.2

I Theorem 1 ([17]). Let m′ be the unique integer such that(
m′

K

)
≤ κ(G) <

(
m′ + 1
K

)
.

Then for all t ≥ n− 1 we have

Nt ≥
(

m′

m− t

)
.

2 We contrast our use of the Kruskal-Katona Theorem to that of [1]. [1] uses this bound, or variants of it,
to estimate Nt itself. We use this bound to estimate the error committed by our SIS algorithms, but
these algorithms do not themselves refer to the Kruskal-Katona bounds in any way.
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We can explain the intuition behind this result. If we completely ignore graph connectivity,
then there are exactly

(
m
m−t

)
subgraphs with t edges. Thus, the Kruskal-Katona Theorem

states that the number of connected subgraphs and the number of subgraphs have a similar
behavior as a function of t.

We will use throughout the notation

γ′ = m′/n

Note that K ≤ m′ ≤ m, so that γ ∈ [α/2− 1− 1/n, α/2].

3 The basic algorithms

We begin by describing two very simple statistics to estimate Nt. These statistics are accurate
for different ranges of the parameter t. We then discuss how to select the best statistic for a
given value of t.

3.1 Top-down algorithm bounds
Let us first consider a top-down estimate, which starts with the original graph and removes
edges until it reaches a disconnected graph. Two such algorithms are discussed in [2], [15],
which use a variety of heuristics to select which edge to remove. These heuristics are somewhat
difficult to analyze, although they are very useful in practice, so for this paper we will consider
a simplified algorithm. The following algorithm, which we refer to as TOPDOWN, has
strictly larger relative variance compared to [2], [15]:
1. Select uniformly at random a subgraph H ⊆ G with t edges.
2. Check if H is connected.
3. If H is connected estimate N̂t =

(
m
t

)
; otherwise estimate N̂t = 0.

Note that this algorithm is not really a “top-down” algorithm any more, since we could
produce H by adding edges as well as removing edges.

The statistic produced by TOPDOWN is clearly an unbiased estimator for Nt.

I Proposition 2. Define

fT = l(α/2)− l(β)− l(γ) + l(β + γ − α/2)

Then TOPDOWN has relative variance exp(n(fT + o(1))).

Proof. TOPDOWN is a Bernoulli random variable with probability Nt/
(
m
t

)
, so it has

relative variance (m
t )
Nt

. By Theorem 1, this is at most (m
t )

( m′
m−t)

. Recalling that t = βn,m =

alphan/2,m′ = γn, e apply Stirling’s formula (2). (We note here that m = Θ(n), so all
asymptotic terms can be reduced to o(n)). This gives the estimate:

rvT ≤ exp(n(fT + o(1)))

J

We note one key difference between this algorithm, based on estimating the reliability
coefficients, and similar algorithms such as [21] which seek to compute the coefficients exactly.
In this case, we are doing a Monte-Carlo estimation of the number of connected subgraphs,
so our algorithm is more efficient when the subgraphs are numerous. Enumerative algorithms,
by contrast, must explore each subgraph individually, and so they are more efficient when
the subgraphs are few.
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3.2 Bottom-up, no edge weighting
The bottom-up algorithm is based on starting with a random spanning tree and adding
edges to it. This type of algorithm is discussed in [8], [14]. In Section 4, we will consider
more sophisticated variants which use add edges with a non-uniform probability. However,
as a warm-up exercise, we consider the following simple algorithm which we refer to as
BOTTOMUP:
1. Choose a spanning tree T uniformly at random from G. (This can be done efficiently as

described in e.g. [22])
2. Choose k = t − n + 1 edges uniformly at random from G − T , and add these edges to

obtain a connected subgraph H ⊆ G.
3. Estimate N̂t = κ(G)(K

k )
κ(H)

Recall that κ(G) can be computed in polynomial time, so this is a polynomial-time algorithm.

I Proposition 3. Define

fB = −l(β − 1)− l(1− α/2 + γ) + l(β − α/2 + γ)

Then algorithm BOTTOMUP is an unbiased estimator with relative variance at most
exp(n(fB + o(1))).

Proof. Let H be a connected subgraph of G with t edges. Then BOTTOMUP selects H
with probability pH = κ(H)

κ(G)(K
k ) . Integrating over all such H, we see that the expected value

of N̂t is given by

E[N̂t] =
∑
H

pH
κ(G)

(
K
k

)
κ(H) =

∑
H

1 = Nt

as desired.
Next, we can estimate

E[N̂t
2
] =

∑
H

pH

(κ(G)
(
K
k

)
κ(H)

)2
= Ntκ(G)

(
K

k

)
EH [1/κ(H)] ≤ Ntκ(G)

(
K

k

)
Hence, the relative variance is given by

rv ≤
Ntκ(G)

(
K
k

)
N2
t

≤
m
(
m′

K

)(
K
k

)(
m′

m−t
)

Applying Stirling’s formula (2), and recalling m = Θ(n), shows that this is at most
exp(n(fB + o(1))), as desired. J

3.3 Hybrid algorithm
Now define the hybrid algorithm which, for any graph G and any desired coefficient t,
computes fT and fB. If fT < fB, then this algorithm outputs TOPDOWN; otherwise it
outputs BOTTOMUP. By Propositions 2, 3, this hybrid algorithm satisfies

rv ≤ exp(nmin(fT , fB) + o(n))

Let us examine how to bound the quantity min(fT , fB) as a function of β, γ. For any
fixed γ, fT is an decreasing function of β and fB is a increasing function of β, reaching
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extreme values fT = 0 at β = α/2 and fB = 0 at β = 1. Hence the maximum value of
min(fT , fB) occurs at the point where fT = fB .

We seek to maximize fB subject to fT = fB . In general, there is no closed form solution.
However, for any given value of α we can numerically optimize this as follows. Given any
value of γ, there is a unique value β such that fT = fB, which can be found to arbitrary
accuracy via bisection. This essentially reduces the search to a single variable γ. One can
verify that the resulting function fT is unimodal in γ, and hence the maximum value of γ
can be found again by a golden-section search strategy. This allows us to find a value β∗, γ∗
maximizing min(fT , fB) to an arbitrary accuracy. The resulting value χα is the worst-case
for the running time, as a function of α. That is, when α is constant and n→∞, we have
rv = exp(nχα + o(n)) for graphs with average degree ≤ α.

The following table shows bounds on χα for various values of α. Note that unlike
algorithms which restrict to regular or bounded-degree graphs, there is no restriction on the
integrality of α.

α χα α χα

3 1.32 15 2.34
4 1.51 20 2.55
6 1.76 25 2.72
8 1.93 30 2.87
10 2.08 35 2.99

For α ≤ 8, this algorithm is strictly faster than [3]; for α ≤ 35 this algorithm is faster
than the polynomial-space variant of Bjorklund et al. We will improve this still further in
the next section.

4 Bottom-up, edge weighting

We consider a variant of the bottom-up algorithm in which a weighting function is used to
select the edges to add to the spanning tree, as described in [14]. Again without concerning
ourselves with polynomial efficiency, we summarize this algorithm as
1. Select a spanning tree T uniformly at random
2. For i = 1, . . . , k, repeat the following:

3. Randomly select an edge ei to add to T . We use the probability distribution Pi (which
is conditioned on e1, . . . , ei−1, T ) to select the edge ei, and this probability distribution
Pi is given by

Pi(e′) ∝ κ(T ∪ e1 · · · ∪ ei−1 ∪ e′)−ρ

4. Estimate
N̂t = κ(G)P1(e1)P2(e2) . . . Pk(ek)

k!κ(H)

This is a generalization of the algorithm of [14], in that we allow a weighting factor
ρ ∈ [0, 1]. (In the algorithm of [14], ρ = 1). Note that for ρ = 0, there is a uniform
distribution on the new edge ei, and so this reduces to the unweighted bottom-up algorithm
of Section 3.2.

Experimental evidence in [14] suggested that this algorithm had better variance for
estimating Nt for small values of t. In this section, we examine this algorithm rigorously and
show an upper bound which is better than that of Section 3.2.
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For any connected subgraph H ⊆ G, we define the notations for this section:

λH(e) = κ(H ∪ e)/κ(H)

SH =
∑

e∈G−H
λH(e)−ρ

and we define
Hi = T ∪ e1 ∪ · · · ∪ ei−1

where T is the spanning tree selected at step (1) of this algorithm. Thus, we have Pi(e) =
λHi(e)/SHi for i = 1, . . . , k.

We first show that this is an unbiased estimator. Any T, e1, . . . , ek is selected with
probability p = 1

κ(G)P1(e1)P2(e2) . . . Pk(ek). Integrating over T, e1, . . . , ek, we compute the
expected value:

E[N̂t] =
∑

T,e1,...,ek

p× 1
κ(H)k!p

=
∑
H

∑
T⊆H

e1,...,ek∈H−T

1
k!κ(H)

=
∑
H

1
k!κ(H)κ(H)k! = Nt

so the statistic is unbiased. Next, the mean square is given by

E[N̂t
2
] =

∑
H

κ(G)
k!2κ(H)2

∑
T⊆H

e1,...,ek∈H−T

SH1SH2 . . . SHk
λH1(e1)ρ . . . λHk

(ek)ρ

=
∑
H

κ(G)
k!2κ(H)2

∑
T⊆H

e1,...,ek∈H−T

SH1SH2 . . . SHk

(κ(H2)
κ(H1)

)ρ(κ(H3)
κ(H2)

)ρ · · · ( κ(H)
κ(Hk)

)ρ
=
∑
H

κ(G)
k!2κ(H)2

∑
T⊆H

e1,...,ek∈H−T

SH1SH2 . . . SHk
κ(H)ρ

To interpret this quantity, consider the following random process. We select a connected
subgraph H with t edges, uniformly at random among all such subgraphs. Next, we
select a random spanning tree T of H and a random permutation of the remaining edges
e1, . . . , ek ∈ H − T . We then output the random variable R given by

R = SH1 . . . SHk

k!κ(H)1−ρ .

We see now that E[N̂t
2
] ≤ Ntκ(G)E[R], and hence the relative variance of the weighted

bottom-up estimate is given by

rv ≤ Ntκ(G)E[R]
N2
t

≤ κ(G)E[R](
m′

m−t
)

Thus, it suffices to estimate E[R]. We will in fact show an upper bound on R. We begin
with a simple estimate. For any graph H, we have λH(e) ≥ 1. Thus SHi

≤ K − i. Noting
that ρ ≤ 1 and that κ(H) ≥ 1, we have R ≤

(
K
k

)
. This simple estimate leads to the same

bound as in Section 3.2.
Lemma 4 improves on this estimate as follows:
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I Lemma 4. Let ρ ∈ [0, 1].
Define the function

Aρ(y) =
∫ y

0
(1−

( x

1 + x

)ρ)dx.
Then, for any connected subgraph H ⊆ G with βn edges, we have R ≤ exp(n(fB2 +o(1))),

for

fB2 = max
φ∈[0,α/2−β]

−(1− ρ)
(
l(γ)− l(α/2− 1)− l(1− α/2 + γ)− l(1 + φ) + l(φ)

)
− l(β − 1) + l

(
α/2− 1−Aρ(φ)

)
− l
(
α/2− β −Aρ(φ)

)
Proof. See Appendix B. J

This then implies that the relative variance of the bottom-up algorithm is bounded by
rv = exp((fB2 + o(1))n). Note that to compute fB2 itself requires a numerical maximization
over φ ∈ [0, α/2− β].

As before, for any given α we seek β∗, γ∗ so that the resulting upper bound min(fT , fB2) is
maximized. This expression is too complicated for us to solve in closed form, or even to prove
that all relevant functions have the appropriate smoothness to allow a rigorous numerical
analysis. However, for any fixed ρ ∈ [0, 1] we can approximately solve this numerically. Using
off-the-shelf numerical libraries, we optimize fB2 subject to fT = fB2. We can furthermore
set ρ to minimize the resulting fB2.

For any average degree α, we select an optimal parameter ρ∗. The following table shows
various values of α as well as the corresponding ρ∗ and χα:

α ρ∗ χα α ρ∗ χα

3 0.71 1.26 12 0.84 2.01
4 0.74 1.41 15 0.85 2.15
6 0.79 1.62 20 0.87 2.34
8 0.81 1.78 30 0.89 2.64
10 0.83 1.90 40 0.90 2.87
11 0.83 1.96 45 0.91 2.97

For α ≤ 11, this algorithm is strictly faster than [3]; for α ≤ 45 this algorithm is faster
than the polynomial-space variant of [3].

5 Practical Performance

One key advantage of this algorithm is that it can be used on real-world graphs up to
hundreds of vertices. In this case, the worst-case analysis would indicate exponentially low
accuracy. However, in practice the accuracy may be much better than this.

For our first test case, we generated Erdős-Renyi graphs of average degree 10 and ran the
algorithm as specified in Appendix A. (Qualitatively similar results are seen for other edge
densities). We tabulate the estimated relative error as well as the running time of a single
iteration. For the most part, implementing this algorithm requires only slight modifications
to the codes of [14],[15]; see these for more details. Figure 1 lists the estimated relative error
of this algorithm.

The relative variance is clearly growing exponentially with n, but the rate of growth
(about 1.05n) is much slower than the bound of 1.89n as indicated in the worst-case analysis.
Hence for graphs of moderate size n ≈ 200 this algorithm remains quite practical.



D.G. Harris and F. Sullivan 333

20 40 60 80 100 120 140

2
10

50
50

0
50

00

n

rv

Figure 1 Relative error for Erdős-Renyi graphs. Note logarithmic vertical scale.
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Figure 2 Relative error for Barabasi-Albert graphs. Note logarithmic vertical scale.

A similar result was seen for Barabasi-Albert random graphs, again of average degree 10,
as shown in Figure 2.

The relative variance is significantly higher in this case, but the rate of increase remains
slowly exponential, about 1.075n.

The running times of these algorithms are relatively modest, and growing at a rate of
about n1.5, as indicated in Figure 3.

Recall that to achieve a relative error ε, we must repeat this algorithm for a number of
samples T = rv× ε−2. In order to achieve a relative error of say 10% on the Erdős-Renyi
graph with n = 150, we would need to run for approximately 200000 iterations; this would
entail a running time of about 300 seconds. (And furthermore this work could be completely
parallelized). Hence this algorithm provides a quite practical method for estimating graph
reliability on medium-scale graphs.

By way of comparison, [13] implemented an optimized version of an algorithm to exactly
compute the Tutte polynomial. This program requires days of computations for graphs with
only ∼ 20 vertices and ∼ 100 edges.
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Figure 3 Running time for a single sample on an Erdős-Renyi graph.

5.1 Possible further improvements
The parameters (specifically, the choice of β) suggested by our worst-case analysis are not
optimal for these sample graphs. By choosing parameters better, we could reduce the error
by orders of magnitude. There seem to be three main reasons these bounds are not tight
in practice. First, the top-down algorithm of [15] is much more accurate than the simple
top-down algorithm we analyze in this paper.

Second, our estimate for the accuracy of the bottom-up algorithm is too conservative.
The bottom-up error should be discounted by a factor of E[1/κ(H)], where H is the subgraph
chosen by the bottom-up algorithm. In the worst case, the expected value of this term
might be very large if some subgraphs H have many spanning trees and some have few. In
practice, all the subgraphs H tend to have about the same number of spanning trees, and so
E[1/κ(H)] is small.

Third, our method of setting the parameter ρ depends on estimating κ(H ∪ e1 · · · ∪ ei)
where H is a subgraph of G and ei are edges in G−H. It is currently an open problem in
graph theory to determine tight bounds in this case. We are forced to use an upper bound
for κ(H ∪ e1 · · · ∪ ei) which is much larger than necessary. This causes us to set ρ to an
excessively large value.

6 Conclusion

We have shown exponential bounds on the relative variance of three SIS algorithms for
estimating the graph reliability polynomial. These bounds are simple computable functions
of G. By choosing the algorithm which minimizes the upper bound, we define a hybrid
algorithm with worst-case relative variance O(χnα). Hence with O(χnα/ε2) work, one can,
with high probability, estimate the graph reliability polynomial to relative error ε. Although
this is exponential, we believe it is the fastest known algorithm for estimating the graph
reliability polynomial when the average degree α is small.

Note that this bound on relative variance depended on bounding the number of spanning
trees of certain sparse graphs. As this is an open problem in graph theory, the bounds we
use are far from tight. It is likely that the true behavior of this algorithm is much better
than the indicated values of χα.
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In practice, these SIS algorithms tend to exhibit exponential relative variance on real-
world graphs [14], [15]; however, the errors increase much slower than the worst-case analysis
predicts. Hence, on many medium-scale graphs (n ≈ 200) these algorithms can give a quite
practical approach to estimate the graph reliability. In these cases exact, exponential-time
algorithms such as [3] are absolutely infeasible.

Acknowledgments. Thanks to Isabel Beichl and Aravind Srinivasan for helpful comments
and revisions.
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A Full algorithm

For completeness, we include a pseudo-code of the entire hybrid algorithm. Suppose we are
given a graph G, and wish to estimate Nt up to relative error ε.
1. Compute α = m/n and β = t/n.
2. Using the Kirchoff formula, compute the number of spanning trees κ(G). Find m′ such

that
(
m′

m−n
)

= κ(G) and let γ = m′/n.
3. Compute the bound on the top-down algorithm fT .
4. Find the critical h∗ for r(h, α, β, γ). Use this to obtain the bottom-up bound fB2.
5. If fT < fB2, draw the following statistic F1 for T = exp(n(fT + c))/ε2 iterations:

6. Select a subgraph H ⊆ G uniformly at random among subgraphs with t edges.
7. Check if H is connected
8. If H is connected set F1 =

(
m
t

)
else set F1 = 0.

9. Else if fB2 ≤ fT , draw the following statistic F2 for T = exp(n(fB2 + c))/ε2 iterations:
10. Select a spanning tree H uniformly at random
11. Successively select edges e1, . . . , ek to add to H. At stage i, select edge ei with

probability Pi given by

Pi(e′) ∝ 1/κ(H ∪ e1 · · · ∪ ei−1 ∪ e′)ρ
∗

12. Estimate
F2 = κ(G)P1(e1)P2(e2) . . . Pk(ek)

k!κ(H)
13. Average the T samples of the appropriate statistic and output this sample mean.

This algorithm estimates Nt within relative error ε with probability at least 3/4 for n
sufficiently large; furthermore, the worst-case running time of this algorithm is (χα+o(1))n/ε2.

In practice, we use the algorithm of [2],[15] for the top-down estimation instead of the
indicated steps (5) — (8). It is almost as fast as the simple Monte Carlo top-down estimation,
and it is as least as accurate (in the worst-case) while being much more accurate in practice.

B Proof of Lemma 4

The heart of Lemma 4 is to show an upper bound on the quantity SH =
∑
e∈G−H λH(e)−ρ.

We begin with two elementary propositions concerning the number of spanning trees in
various subgraphs.

I Proposition 5. For any graph H and edges e1, . . . , ei /∈ H, we have

κ(H ∪ e1 · · · ∪ ei) ≤ κ(H)
(
n− 1 + i

n− 1

)
Proof. Any spanning tree T of H ∪ e1 · · · ∪ ei may be formed as follows: choose a spanning
tree T ′ of H, add the edges e1, . . . , ei, and extract a spanning tree T of T ′ ∪ e1 ∪ · · · ∪ ei. J
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We note that Proposition 5 can be improved exponentially. However, the formulas are
quite complicated and the improvement is slight, so we elect to take this simple estimate.
As discussed in [6], the state of research is very poor for estimating κ(H ∪ e1 · · · ∪ ei), even
when H is itself a spanning tree. Preliminary results for small graphs seem to indicate that
the true upper bound is much smaller than κ(H)

(
n−1+i
n−1

)
. If so, this would lead to much

better bounds on the behavior of our algorithm.

I Proposition 6. For any graph H and edges e1, . . . , ei /∈ H, we have

κ(H ∪ e1 · · · ∪ ei) ≤ λH(e1) · · ·λH(ei)

Proof. It suffices to show that λH∪e′(e) ≤ λH(e) for any H, e, e′ ∈ G −H. We recall the
Kirchoff matrix-tree theorem used to count the number of spanning trees of a graph. Let AG
be the adjacency matrix of G, and let D be a diagonal matrix whose ith entry is the degree
of vertex vi. The Kirchoff formula states that κ(G) = det(D −AG)11, the minor of D −AG
obtained by removing the first row and column.

When we update H by adding edge e′, we must update λH to the new λH∪e′ . For any
edge e = 〈i, j〉 we define δe to be the column vector is +1 in coordinate i, is −1 in coordinate
j, and is zero elsewhere. Observe that when edge e′ is added to G, the matrix L changes by
δe′δ

T
e′ :

LH∪e′ = LH + δe′δ
T
e′ .

Now let us examine how to update λ:

λH∪e′(e) = κ(H ∪ e ∪ e′)/κ(H ∪ e′)
= det(LH∪e∪e′)/ det(LH∪e′)
= det(LH + δeδ

T
e′ + δeδ

T
e )/det(LH + δe′δ

T
e )

= det
(
I + (LH + δe′δ

T
e′)−1δeδ

T
e

)
= 1 + δTe (LH + δe′δ

T
e′)−1δe

= 1 + δTe
(
L−1
H −

uuT

1− δTe u
)
δe where u = L−1

H δe′

= 1 + δTe L
−1
H δe −

(δTe u)2

1− δTe u

= λH(e)− (δTe u)2

λH(e′) ≤ λH(e)

J

I Proposition 7. Suppose H ⊆ G is a subgraph with t edges. Suppose s ∈ Z+ satisfies
κ(H)

(
n−1+s
n−1

)
< κ(G). Then s ≤ m− t.

Proof. Suppose that s > m− t, then we would have:

κ(G)
κ(H)

(
n−1+s
n−1

) < κ(G)
κ(H)

(
n−1+m−t

n−1
)

≤
κ(H)

(
n−1+(m−t)

n−1
)

κ(H)
(
n−1+m−t

n−1
) by Proposition 5

≤ 1

contradicting our hypothesis on s. J
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We can combine Propositions 5 and 6 to bound SH for subgraphs H ⊆ G:

I Lemma 8. Let H ⊆ G be a connected subgraph with t = n− 1 + k edges. Suppose s ∈ Z+
satisfies κ(H)

(
n−1+s
n−1

)
< κ(G). Define

Aρ(y) =
∫ y

0
(1−

( x

1 + x

)ρ)dx
Then we have ∑

e∈G−H
λH(e)−ρ ≤ K + 1− k − nAρ(s/n)

Proof. Observe that by Proposition 7, we have s ≤ m− t.
Let e1, . . . , em−t enumerate the edges of G − H sorted by decreasing order of λH , so

that λH(e1) ≥ λH(e2) ≥ · · · ≥ λH(em−t). To simplify the notation, write λi = λH(ei). By
Propositions 5, 6, for any i ≤ m− t, we have that

κ(G) = κ(H ∪ e1 · · · ∪ ei ∪ ei+1 ∪ · · · ∪ em−t)

≤ κ(H ∪ ei+1 · · · ∪ em−t)
(
n− 1 + i

n− 1

)
≤ κ(H)λi+1 . . . λm−t

(
n− 1 + i

n− 1

)
Define λm−t+1 = 1. Then ~λ satisfies the following system of constraints for i = 1, . . . ,m−t:

λi . . . λm−t ≥
κ(G)

κ(H)
(
n−2+i
n−1

) (Constraint Ci)

λi ≥ λi+1

Hence, it suffices to maximize on S′ =
∑m−t
i=1 λ−ρi subject to these constraints. By compact-

ness, such a maximum exists.
We first claim that in any such maximum, ~λ must satisfy λi > λi+1 for i = 1, . . . , s

strictly. Suppose that we have a block of equalities of the form λi = · · · = λk, where i ≤ s is
minimal and k is maximal. We assume for simplicity that i > 1 (the case in which i = 1 is
essentially identical.) Let η = λi = · · · = λk.

There are two ways in which k could be maximal. First, it might be that k = m− t+ 1.
In this case, we have λi = · · · = λm−t = 1. But then constraint Ci states that

1 ≥ κ(G)
κ(H)

(
n−2+i
n−1

)
which implies that

κ(G) ≤ κ(H)(
n−2+i
n−1

) ≤ κ(H)(
n−2+s
n−1

)
which contradicts the definition of s.

The other case is that we have λk > λk+1 for k ≤ m− t. We claim that in this case, it
must be that constraints Ci+1, . . . , Ck are slack. For, suppose that constraint Cj is tight for
some j in the range i + 1, . . . , k. Collecting all the terms other than λj−1, λj , λj+1 into a
single constant c gives us the constraints:(

n− 2 + (j − 1)
n− 1

)
η2 ≥ c (Cj−1)
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(
n− 2 + j

n− 1

)
η = c (Cj)(

n− 2 + j + 1
n− 1

)
≥ c (Cj+1)

(Note that constraint (Cj) is an equality.)
From constraint Cj−1, we can eliminate η to obtain that

c ≥
(
n−2+j
n−1

)2(
n−2+(j−1)

n−1
)

and, substituting this into constraint Cj+1 we obtain:(
n−2+(j+1)

n−1
)(
n−2+(j−1)

n−1
)(

n−2+j
n−1

)2 ≥ 1

which reduces to
(j + n− 1)(j − 1)
j(j + n− 2) ≥ 1

which is a contradiction.
We have shown that if λi = · · · = λk then constraints Ci+1, . . . , Ck must be slack. Now

divide λk by δ and multiply λi by δ for some δ > 1. For δ sufficiently small, this does
not change the sorted order of λ1, . . . , λm−t. Furthermore, this only affects the constraints
Ci+1, . . . , Ck, which are slack, and thus for δ sufficiently small all constraints remain satisfied.
As λi = λk this modification increases S′, which is a contradiction.

We have thus shown that λi > λi+1 for i = 1, . . . , s.
We next claim that all of the constraints C1, . . . , Cs are tight. For, if Ci was slack for

some i ≥ 2, then we could multiply λi−1 by δ and divide λi by δ for sufficiently small δ > 1.
As λi−2 > λi−1 > λi > λi+1, for δ sufficiently small this does not affect the sorted order of
~λ, preserves all constraints, and increases S′. (For i = 1, simply divide λi by δ.)

We have now shown that when S′ is maximized then all constraints C1, . . . , Cs must be
tight. Dividing constraint Ci by Ci+1 yields λi = n+i−1

i for i = 1, . . . , s− 1. We also must
have λi ≥ 1 for i = s, . . . ,m− t, so we have

SH ≤ S′ ≤ (m− t− s+ 1) +
s−1∑
j=1

(n+ j − 1
n

)−ρ

≤ (K − k − s+ 1) +
∫ s

j=0
( j

n+ j
)ρdj

= (K − k − s+ 1) + n

∫ s/n

x=0
( x

1 + x
)ρdx setting x = j/n

= K + 1− k − nAρ(s/n).

J

I Corollary 9. Suppose S satisfies κ(H)
(
n−1+s
n−1

)
< κ(G). Let H ⊆ G be a subgraph of G

and T a spanning tree of H and e1, . . . , ek enumerate the edges of H − T (in any order).
Then for i = 1, . . . , k we have

ST∪e1···∪ei−1 ≤ K + 1− i− nAρ(s/n)
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Proof. By Lemma 8 we have SHi ≤ K + 1 − i − nAρ(si/n) where si is maximal such
that κ(Hi)

(
n−1+si

n−1
)
< κ(G). Observe that κ(Hi) ≤ κ(H) and so si ≥ s. Thus SHi

≤
K + 1− i− nAρ(s/n) as claimed. J

We now pass to the limit, bounding the asymptotic growth of R.

I Lemma 10. Let ρ ∈ [0, 1].
Define the function

Aρ(y) =
∫ y

0
(1−

( x

1 + x

)ρ)dx.
Then, for any connected subgraph H ⊆ G with βn edges, we have R ≤ exp(n(r + o(1))),

for

r = max
φ∈[0,α/2−β]

−(1− ρ)
(
l(γ)− l(α/2− 1)− l(1− α/2 + γ)− l(1 + φ) + l(φ)

)
− l(β − 1) + l

(
α/2− 1−Aρ(φ)

)
− l
(
α/2− β −Aρ(φ)

)
Proof. Let h = ln(κ(H))/n. Let s be maximal such that κ(H)

(
n−1+s
n−1

)
< κ(G), and let

φ = s/n. By Corollary 9, we have SHi ≤ K − i − nAρ(φ) for i = 1, . . . , k. Also, by
Proposition 7, we have s ≤ m− t and so φ ≤ α/2− β.

So

lnR ≤ ln(K − nA(φ)) + · · ·+ ln(K − k − nA(φ))− (ρ− 1) ln κ(H)− ln(k!)

We have that s is maximal such that
(
n−1+s
n−1

)
< κ(G)/κ(H). Hence

(
n−1+s
n−1

)
is within a

factor of n of κ(G)/κ(H), so that

ln κ(G)/κ(H)− lnn ≤ ln
(
n− 1 + s

n− 1

)
We apply Stirling’s formula (2), and divide by n to get that

l(φ+ 1)− l(φ) ≥ ln κ(G)/κ(H)
n

− o(1)

Now note that, by definition of m′ and γ, we have that

κ(G) ≥
(
m′

K

)
= exp(n(l(γ)− l(α/2− 1)− l(1− α/2 + γ))− o(1))

Thus it follows that

l(φ+ 1)− l(φ) ≥ l(γ)− l(α/2− 1)− l(1− α/2 + γ)− h− o(1)

Now we have:

lnR ≤ ln(K + 1− nA(φ)) + · · ·+ ln(K + 1− k − nA(φ))− (1− ρ) ln κ(H)− ln(k!)

≤ ln
(
K + 1− nA(φ+ o(1))

k

)
− (1− ρ)h+ o(n)

≤ ln
(
K − nA(φ) + o(n)

k

)
− (1− ρ)

(
l(φ+ 1)− l(φ)− l(γ) + l(α/2− 1) + l(1− α/2− γ)

)
+ o(n)

≤ r + o(n) as φ ∈ [0, α/2− β]

J
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that there are as few unsatisfied constraints as possible. It is known [15, 17] that, from
an approximability standpoint, this problem is equivalent to the notorious Unique-Games
problem [14]. The special case of q = 2 is particularly interesting and can be equivalently
stated as follows: Given a “supply graph” G and a “demand graph” H over the same set of
vertices V , partition V into two parts so as to minimize the total number of cut supply edges
and uncut demand edges. The further special case when the supply graph G is empty (i.e.,
every equation is of the form xi − xj = 1 (mod 2)) is equivalent to the Max-Cut problem.

Let’s say that an algorithm guarantees an (ε, ε′)-approximation if, given any instance in
which the best solution falsifies at most an ε-fraction of the constraints, the algorithm finds
a solution falsifying at most an ε′-fraction of the constraints. If an algorithm guarantees
(ε, Cε)-approximation for every ε then we also say that it is a factor-C approximation.

We remark here that we are prioritizing the so-called “Min-Deletion” version of the
2-Lin(2) problem. We feel it is the more natural parameterization. For example, in the
more traditional “Max-2-Lin(2)” formulation, the discrepancy between known algorithms
and NP-hardness involves two quirky factors, 0.878 and 0.912. However, this disguises what
we feel is the really interesting question – the same key open question that arises for the
highly analogous Sparsest-Cut problem: Is there an efficient (ε, O(ε))-approximation, or even
one that improves on the known (ε, O(

√
logn)ε)- and (ε, O(

√
ε))-approximations?

The relative importance of the “Min-Deletion” version is even more pronounced for
the 2-Lin(q) problem. As we describe below, this version of the problem is essentially
equivalent to the highly notorious Unique-Games problem. By way of contrast, the traditional
maximization approximation factor measure for Unique-Games is not particularly interesting
– it’s known [10] that there is no constant-factor approximation for “Max-Unique-Games”,
but this appears to have no relevance for the Unique Games Conjecture.

1.1 History of the problem
No efficient (ε, O(ε))-approximation algorithm for 2-Lin(2) is known. The best known efficient
approximation guarantee with no dependence on n dates back to the seminal work of Goemans
and Williamson:

I Theorem 1 ([11]). There is a polynomial-time (ε, 2
π

√
ε+ o(ε))-approximation algorithm

for 2-Lin(2).

Allowing the approximation to depend on n, we have the following result building on [3]:

I Theorem 2 ([1]). There is a polynomial-time factor-O(
√

logn) approximation for 2-Lin(2).

Generalizing Theorem 1 to 2-Lin(q), we have the following result of Charikar, Makarychev,
and Makarychev:

I Theorem 3 ([7]). There is a polynomial time (ε, Cq
√
ε)-approximation for 2-Lin(q) (and

indeed for Unique-Games), for a certain Cq = Θ(
√

log q).

The question of whether or not this theorem can be improved is known to be essentially
equivalent to the influential Unique Games Conjecture of Khot [14]:

I Theorem 4. The Unique Games Conjecture implies ([15, 17]) that for all sufficiently small
ε > 0, (ε, 2

π

√
ε+o(ε))-approximating 2-Lin(2) is NP-hard, and for general q, (ε,Ω(

√
log q)

√
ε)-

approximating 2-Lin(q) is NP-hard. On the other hand ([19]), if there exists q = q(ε) such
that (ε, ω(

√
ε))-approximating 2-Lin(q) is NP-hard then the Unique Games Conjecture holds.
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The recent work of Arora, Barak, and Steurer has also emphasized the importance of
subexponential-time algorithms in this context:

I Theorem 5 ([2]). For any β ≥ log logn
logn there is a 2O(qnβ)-time algorithm for (ε, O(β−3/2)

√
ε)-

approximating 2-Lin(q). For example, there is a constant K < ∞ and an O(2n0.001)-time
algorithm for (ε,K

√
ε)-approximating 2-Lin(q) for any q = no(1).

Finally, we remark that there is an exact algorithm for 2-Lin(2) by [21] that runs in time
roughly 1.73n.

The known NP-hardness results for 2-Lin(q) are rather far from the known algorithms. It
follows easily from the PCP Theorem that for any q, there exists C > 1 such that factor-C
approximation of 2-Lin(q) is NP-hard. However, getting an explicit value for C has been
a difficult task. In 1995, Bellare, Goldreich, and Sudan [5] introduced the Long Code
testing technique, which let them prove NP-hardness of approximating 2-Lin(2) to factor of
roughly 1.02. Around 1997, Håstad [13] gave an optimal inapproximability result for the
3-Lin(2) problem; combining this with the “automated gadget” results of Trevisan et al. [20]
allowed him to establish NP-hardness of factor-C approximation for any C < 5

4 . By including
the “outer PCP” results of Moshkovitz and Raz [16] we may state the following more precise
theorem:

I Theorem 6 ([13]). Fix any C < 5
4 . Then it is NP-hard to (ε, Cε)-approximate 2-Lin(2)

(for any 0 < ε ≤ ε0 = 1
4). In fact ([16]), there is a reduction with quasilinear blowup; hence

(ε, Cε)-approximation on size-N instances requires 2N1−o(1) time assuming the Exponential
Time Hypothesis (ETH).

Since 1997 there had been no improvement on this hardness factor of 5
4 , even for the

(presumably much harder) 2-Lin(q) problem. We remark that Håstad [13] showed the same
hardness result even for Max-Cut (albeit with a slightly smaller ε0) and that O’Donnell
and Wright [18] showed the same result for 2-Lin(q) (even with a slightly larger ε0, namely
ε0 → 1

2 as q →∞).

1.2 Our results and techniques
In this work we give the first known improvement to the factor- 5

4 NP-hardness for 2-Lin(2)
from [13]:

I Theorem 7. Fix any C < 11
8 . Then it is NP-hard to (ε, Cε)-approximate 2-Lin(2) (for

any 0 < ε ≤ ε0 = 1
8). Furthermore, the reduction takes 3-Sat instances of size n to 2-Lin(2)

instances of size n7+o(1); hence (ε, Cε)-approximating 2-Lin(2) instances of size N requires
at least 2N1/7−o(1) time assuming the ETH.

I Remark. The power 7 in the size of the reduction comes from Chan’s hardness reduction
for the 7-ary Hadamard predicate [6].
We sketch the proof of this theorem in Section 3. The same theorem also holds in the special
case of Max-Cut (albeit with some smaller, inexplicit value of ε0). Proofs for both results
can be found in the full version of the paper.

Our result is a gadget reduction from the “7-ary Hadamard predicate” CSP, for which
Chan [6] recently established an optimal NP-inapproximability result. In a sense our The-
orem 7 is a direct generalization of Håstad’s Theorem 6, which involved an optimal gadget
reduction from the “3-ary Hadamard predicate” CSP, namely 3-Lin(2). That said, we should
emphasize some obstacles that prevented this result from being obtained 15 years ago.
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First, we employ Chan’s recent approximation-resistance result for the 7-ary Hadamard
predicate. In fact, what’s crucial is not its approximation-resistance, but rather the stronger
fact that it’s a useless predicate, as defined in the recent work [4]. That is, given a nearly-
satisfiable instance of the CSP, it’s NP-hard to assign values to the variables so that the
distribution on the 7-tuples of the constraints is noticeably different from the uniform
distribution.

Second, although in principle our reduction fits into the “automated gadget” framework
of Trevisan et al. [20], in practice it’s completely impossible to find the necessary gadget
automatically, since it would involve solving a linear program with ∼ 2120 constraints. Instead
we had to construct and analyze our gadget by hand. On the other hand, by also constructing
an appropriate LP dual solution, we are able to show the following.

I Theorem 8 (Informally stated). Our gadget achieving factor- 11
8 NP-hardness for 2-Lin(2)

is optimal among gadget reductions from Chan’s 7-ary Hadamard predicate hardness.

In spite of Theorem 8, it seems extremely unlikely that factor- 11
8 NP-hardness for 2-Lin(2)

is the end of the line. Indeed, we view Theorem 7 as more of a “proof of concept” illustrating
that the longstanding factor- 5

4 barrier can be broken; we hope to see further improvements
in the future. In particular, in Section 4 we present a candidate NP-hardness reduction from
high-arity useless CSPs that we believe may yield NP-hardness of approximating 2-Lin(2) to
any factor below 3

2 . The analysis of this reduction eventually depends on a certain conjecture
regarding analysis of Boolean functions that we were unable to resolve; thus we leave it as
an open problem.

Finally, in Section 5 we show an inherent limitation of the method of gadget reductions
from pairwise-independent predicates. We prove that such reductions can never establish an
NP-hardness factor better than 1

1−e−1/2 ≈ 2.54 for (ε, Cε)-approximation of 2-Lin(2). We
believe that this highlights a serious bottleneck in obtaining hardness results matching the
performance of algorithms for this problem as most optimal NP-inapproximability results
involve pairwise-independent predicates.

2 Preliminaries

I Definition 9. Given x, y ∈ {−1, 1}n, the Hamming distance between x and y, denoted
dH(x, y), is the number of coordinates i where xi and yi differ. Similarly, if f, g : V → {−1, 1}
are two functions over a variable set V , then the Hamming distance dH(f, g) between them
is the number of inputs x where f(x) and g(x) disagree.

I Definition 10. A predicate on n variables is a function φ : {−1, 1}n → {0, 1}. We say that
x ∈ {−1, 1}n satisfies φ if φ(x) = 1 and otherwise that it violates φ.

I Definition 11. Given a predicate φ : {−1, 1}n → {0, 1}, Sat(φ) is the set of satisfying
assignments.

I Definition 12. A set S ⊆ {−1, 1}n is a balanced pairwise-independent subgroup if it satisfies
the following properties:
1. S forms a group under bitwise multiplication.
2. If x is selected from S uniformly at random, then Pr[xi = 1] = Pr[xi = −1] = 1

2 for any
i ∈ [n]. Furthermore, xi and xj are independent for any i 6= j.

A predicate φ : {−1, 1}n → {0, 1} contains a balanced pairwise-independent subgroup if there
exists a set S ⊆ Sat(φ) which is a balanced pairwise-independent subgroup.
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I Definition 13. For a subset S ⊆ [n], the parity function χS : {−1, 1}n → {−1, 1} is defined
as χS(x) :=

∏
i∈S xi.

I Definition 14. The Hadk predicate has 2k − 1 input variables, one for each nonempty
subset S ⊆ [k]. The input string {xS}∅6=S⊆[k] satisfies Hadk if for each S, xS = χS(x).

I Fact 15. The Hadk predicate contains a balanced pairwise-independent subgroup. (In fact,
the whole set Sat(Hadk) is a balanced pairwise-independent subgroup.)

Given a predicate φ : {−1, 1}n → {0, 1}, an instance I of the Max-φ CSP is a variable
set V and a distribution of φ-constraints on these variables. To sample a constraint from this
distribution, we write C ∼ I, where C = ((x1, b1), (x2, b2), . . . , (xn, bn)). Here the xi’s are
in V and the bi’s are in {−1, 1}. An assignment A : V → {−1, 1} satisfies the constraint C if

φ (b1 ·A(x1), b2 ·A(x2), . . . , bn ·A(xn)) = 1.

We define several measures of assignments and instances.

I Definition 16. The value of A on I is just val(A; I) := PrC∼I [A satisfies C], and the value
of the instance I is val(I) := maxassignments A val(A; I). We define uval(A; I) := 1− val(A; I)
and similarily uval(I).

I Definition 17. Let (=) : {−1, 1}2 → {0, 1} be the equality predicate, i.e. (=)(b1, b2) = 1
iff b1 = b2 for all b1, b2 ∈ {−1, 1}. We will refer to the Max-(=) CSP as the Max-2-Lin(2)
CSP. Any constraint C = ((x1, b1), (x2, b2)) in a Max-2-Lin(2) instance tests “x1 = x2” if
b1 · b2 = 1, and otherwise tests “x1 6= x2”.

Typically, a hardness of approximation result will show that given an instance I of the
Max-φ problem, it is NP-hard to tell whether val(I) ≥ c or val(I) ≤ s, for some numbers
c > s. A stronger notion of hardness is uselessness, first defined in [4], in which in the second
case, not only is val(I) small, but any assignment to the variables A appears “uniformly
random” to the constraints. To make this formal, we will require a couple of definitions.

I Definition 18. Given two probability distributions D1 and D2 on some set S, the total
variation distance dTV between them is defined to be dTV (D1,D2) :=

∑
e∈S

1
2 |D1(e)−D2(e)|.

I Definition 19. Given a Max-φ instance I and an assignment A, denote by D(A, I) the
distribution on {−1, 1}n generated by first sampling ((x1, b1), . . . , (xn, bn)) ∼ I and then
outputting (b1 ·A(x1), . . . , bn ·A(xn)).

The work of [6] showed uselessness for a wide range of predicates, including the Hadk
predicate.

I Theorem 20 ([6]). Let φ : {−1, 1}n → {0, 1} contain a balanced pairwise-independent
subgroup. For every ε > 0, given an instance I of Max-φ, it is NP-hard to distinguish between
the following two cases:

(Completeness): val(I) ≥ 1− ε.
(Soundness): For every assignment A, dTV (D(A, I),Un) ≤ ε, where Un is the uniform
distribution on {−1, 1}n.

APPROX/RANDOM’15
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1 1 1 1 1 1 1
1 1 −1 1 −1 −1 −1
1 −1 1 −1 1 −1 −1
1 −1 −1 −1 −1 1 1
−1 1 1 −1 −1 1 −1
−1 1 −1 −1 1 −1 1
−1 −1 1 1 −1 −1 1
−1 −1 −1 1 1 1 −1


Figure 1 The Had3-matrix. The rows are the satisfying assignments of Had3.

2.1 Gadgets
The work of Trevisan et al [20] gives a generic methodology for constructing gadget reductions
between two predicates. In this section, we review this with an eye towards our eventual
Hadk-to-2-Lin(2) gadgets.

Suppose φ : {−1, 1}n → {0, 1} is a predicate one would like to reduce to another predicate
ψ : {−1, 1}m → {0, 1}. Set K := |Sat(φ)|. We begin by arranging the elements of Sat(φ) as
the rows of a K × n matrix, which we will call the φ-matrix. An example of this is done for
the Had3 predicate in Figure 1.

The columns of this matrix are elements of {−1, 1}K . Naming this set V := {−1, 1}K ,
we will think of V as the set of possible variables to be used in a gadget reduction from φ

to ψ. One of the contributions of [20] was to show that the set V is sufficient for any such
gadget reduction, and that any gadget reduction with more than 2K variables has redundant
variables which can be eliminated.

Of these variables, the n variables found as the columns of the φ-matrix are special; they
correspond to n of the variables in the original φ instance and are therefore called generic
primary variables. We will call them v1, v2, . . . , vn, where they are ordered by their position
in the φ-matrix. The remaining variables are called generic auxiliary variables. For example,
per Figure 1, (1, 1, 1, 1,−1,−1,−1,−1) and (1,−1,−1, 1,−1, 1, 1,−1) are generic primary
variables in any gadget reducing from φ, but (−1,−1, 1,−1, 1,−1, 1,−1) is always a generic
auxiliary variable.

On top of the variables V will be a distribution of ψ constraints. As a result, a gadget G
is just an instance of the Max-ψ CSP using the variable set V . As above, we will associate
G with the distribution of ψ constraints and write C ∼ G to sample a constraint from this
distribution. Given an assignment A : V → {0, 1}, the goal is for G to be able to detect
whether the values A assigns to the generic primary variables satisfy the φ predicate. For
shorthand, we will say that A satisfies φ when

φ (A(v1), A(v2), . . . , A(vn)) = 1.

On the other hand, A fails to satisfy φ when this expression evaluates to 0. Of all assignments,
we are perhaps most concerned with the dictator assignments. The i-th dictator assignment,
written di : {−1, 1}K → {−1, 1}, is defined so that di(x) = xi for all x ∈ {−1, 1}K . The
following fact shows why the dictator assignments are so important:

I Fact 21. Each dictator assignment di satisfies φ.

Proof. The string ((v1)i, (v2)i, . . . , (vn)i) is the i-th row of the φ-matrix, which, by definition,
satisfies φ. J
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At this point, we can now give the standard definition of a gadget. Typically, one
constructs a gadget so that the dictator assignments pass with high probability, whereas
every assignment which fails to satisfy φ passes with low probability. This is formalized in
the following definition, which is essentially from [20]:

I Definition 22 (Old definition). A (c, s)-generic gadget reducing Max-φ to Max-ψ is a
gadget G satisfying the following properties:

(Completeness): For every dictator assignment di, uval(di;G) ≤ c.
(Soundness): For any assignment A which fails to satisfy φ, uval(A;G) ≥ s.

We use uval as our focus is on the deletion version of 2-Lin(2). We include the word generic
in this definition to distinguish it from the specific type of gadget we will use to reduce Hadk
to 2-Lin(2). See Section 2.3 for details.

This style of gadget reduction is appropriate for the case when one is reducing from a
predicate for which one knows an inapproximability result and nothing else. However, in our
case we are reducing from predicates containing a balanced pairwise-independent subgroup,
and Chan [6] has shown uselessness for this class of predicates (see Theorem 20). As a result,
we can relax the (Soundness) condition in Definition 22; when reducing from this class of
predicates, it is sufficient to show that this (Soundness) condition holds for distributions
of assignments which appear random on the generic primary variables. In the following
paragraph we expand on what this means.

Denote by A a distribution over assignments A. The value of A is just the average value
of an assignment drawn from A, i.e. val(A;G) := EA∼A val(A;G), and similarly for uval(A;G).
We say that A is random on the generic primary variables if the tuple

(A(v1), A(v2), . . . , A(vn))

is, over a random A ∼ A, distributed as a uniformly random element of {−1, 1}n.

I Definition 23. Denote by Rgen(φ) the set of distributions which are (uniformly) random
on the generic primary variables.

Our key definition is the following, which requires that our gadget only does well against
distributions in Rgen(φ).

I Definition 24 (New definition). A (c, s)-generic gadget reducing Max-φ to Max-ψ is a
gadget G satisfying the following properties:

(Completeness): For every dictator assignment di, uval(di;G) ≤ c.
(Soundness): For any A ∈ Rgen(φ), uval(A;G) ≥ s.

The following proposition is standard, and we sketch its proof for completeness.

I Proposition 25. Suppose there exists a (c, s)-generic gadget reducing Max-φ to Max-ψ,
where Max-φ is any predicate containing a balanced pairwise-independent subgroup. Then for
all ε > 0, given an instance I of Max-ψ, it is NP-hard to distinguish between the following
two cases:

(Completeness): uval(I) ≤ c+ ε.
(Soundness): uval(I) ≥ s− ε.

Proof sketch. Let I be an instance of the Max-φ problem produced via Theorem 20. To
dispense with some annoying technicalities, we will assume that every constraint C in the
support of I is of the form C = ((x1, 1), . . . , (xn, 1)). Construct an instance I ′ of Max-ψ as
follows: for each constraint C = ((x1, 1), . . . , (xn, 1)) in the support of I, add in a copy of G
– call it GC – whose total weight is scaled down so that it equals the weight of C. Further,
identify the primary variables v1, . . . , vn of GC with the variables x1, . . . , xn.

APPROX/RANDOM’15
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Completeness: In this case, there exists an assignment A to the variables of I which
violates at most an ε-fraction of the constraints. We will extend this to an assignment
for all the variables of I ′ as follows: for any constraint C = ((x1, 1), . . . , (xn, 1)) which A
satisfies, there is some dictator assignment to the variables of GC which agrees with A on
the primary variables v1, . . . , vn. Set A to also agree with this dictator assignment on the
auxiliary variables in GC. Regardless of how A is extended in the remaining GC’s, it now
labels a (1 − ε)-fraction of the G gadgets in I ′ with a dictator assignment, meaning that
uval(A; I ′) ≤ (1− ε) · c+ ε · 1 ≤ c+ ε.

Soundness: Let A be an assignment to the variables in I ′. Consider the distribution
A of assignments to the gadget G generated as follows: sample C ∼ I and output the
restriction of A to the variables of GC. Because the distribution (A(x1), . . . , A(xn)) is ε-
close to uniform in total variation distance, A is ε-close in total variation distance to some
distribution A′ ∈ Rgen(φ). As a result, uval(A;G) ≥ uval(A′;G) − ε ≥ s − ε. But then
uval(A;G) = uval(A; I), which is therefore bounded below by s− ε. J

2.2 Reducing into 2-Lin(2)
In this section, we consider gadgets which reduce into the 2-Lin(2) predicate. We show
several convenient simplifying assumptions that can be made in this case.

I Definition 26. An assignment A : {−1, 1}K → {−1, 1} is folded if A(x) = −A(−x) for all
x ∈ {−1, 1}K . Here −x is the bitwise negation of x. In addition, a distribution A is folded if
every assignment in its support is folded.

The following proposition shows that when designing a gadget which reduces into 2-Lin(2),
it suffices to ensure that its (Soundness) condition holds for folded distributions. The proof
is standard.

I Proposition 27. For some predicate φ, suppose G is a gadget reducing Max-φ to Max-
2-Lin(2) which satisfies the following two conditions:

(Completeness): For every dictator assignment di, uval(di;G) ≤ c.
(Soundness): For any folded A ∈ Rgen(φ), uval(A;G) ≥ s.

Then there exists a (c, s)-generic gadget reducing Max-φ to Max-2-Lin(2).

Proof. For each pair of antipodal points x and −x in {−1, 1}K , pick one (say, x) arbitrarily,
and set

canon(x) := canon(−x) := x.

This is the canonical variable associated to x and −x. The one constraint is that if either
x or −x is one of the generic primary variables, then it should be chosen as the canonical
variable associated to x and −x. Now, let G′ be the gadget whose constraints are sampled as
follows:
1. Sample a constraint A(x1) ·A(x2) = b from G.
2. For i ∈ {1, 2}, set bi = 1 if canon(xi) = xi and bi = −1 otherwise.
3. Output the constraint A(canon(x1)) ·A(canon(x2)) = b · b1 · b2.
We claim that G′ is a (c, s)-gadget reducing Max-φ to Max-2-Lin(2). To see this, set is-canon(x)
to be 1 if canon(x) = x and (−1) otherwise. Then the probability that an assignment A fails
on G′ is the same as the probability that the assignment A′(x) := is-canon(x) ·A(canon(x))
fails on G. For any dictator function di, di(x) = is-canon(x) ·di(canon(x)) for all x. Therefore,
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di fails G′ with probability c. Next, it is easy to see that for any assignment A, A′ is folded
and, due to our restriction on canon(·), A′ agrees with A on the generic primary variables.
Thus, given a distribution A ∈ Rgen(φ), A fails on G′ with the same probability that some
folded distribution in Rgen(φ) fails on G, which is at least s. J

I Proposition 28. For fixed values of c and s, let G be a gadget satisfying the (Completeness)
and (Soundness) conditions in the statement of Proposition 27. Then there exists another
gadget satisfying these conditions which only uses equality constraints.

Proof. Let G′ be the gadget which replaces each constraint in G of the form x 6= y with the
constraint x = −y. If A is a folded assignment,

A(x) 6= A(y) ⇐⇒ A(x) = A(−y).

Thus, for every folded assignment A, val(A;G) = val(A,G′). As the (Completeness) and
(Soundness) conditions in Proposition 27 only concern folded assignments, G′ satisfies these
conditions. J

This means that sampling from G can be written as (x, y) ∼ G, meaning that we have sampled
the constraint “x = y”.

2.3 The Hadk-to-2-Lin Gadget
Now we focus on our main setting, which is constructing a Hadk-to-2-Lin(2) gadget. Via
Section 2.2, we need only consider how well the gadget does against folded assignments.

The Hadk predicate has 2k−1 variables. In addition, it hasK := 2k satisfying assignments,
one for each setting of the variables x{1} through x{k}. It will often be convenient to take
an alternative (but equivalent) viewpoint of the variable set V := {−1, 1}K as the set of
k-variable Boolean functions, i.e.

V =
{
f
∣∣ f : {−1, 1}k → {−1, 1}

}
.

The Hadk matrix is a 2k × (2k − 1) matrix whose rows are indexed by strings in {−1, 1}k and
whose columns are indexed by nonempty subsets S ⊆ [k]. The (x, S)-entry of this matrix is
χS(x). This can be verified by noting that for any x ∈ {−1, 1}k,(

χ{1}(x), χ{2}(x), . . . , χ{k}(x), χ{1,2}(x), . . . , χ{1,2,...,k}(x),
)

is a satisfying assignment of the Hadk predicate. As a result, for each S 6= ∅, χS is a column
in the Hadk matrix. Therefore, these functions are the generic primary variables. However, it
will be convenient to consider a larger set of functions to be primary. For example, because
we plan on using our gadget on folded assignments, χS and −χS will always have opposite
values, and so the −χS ’s should also be primary variables. In addition, it is a little unnatural
to have every parity function but one be a primary variable, so we will include the constant
function χ∅ and its negation −χ∅ in the set of primary variables. In total, we have the
following definition.

I Definition 29. The primary variables of a Hadk-to-2-Lin(2) gadget are the functions ±χS ,
for any S ⊆ [k]. The remaining functions are auxiliary variables.

To account for the inclusion of χ∅ as a primary variable, we will have to modify some of
our definitions from Section 2.1. We begin by defining a modification to the Hadk predicate.
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I Definition 30. The Had∗k predicate has 2k input variables, one for each subset S ⊆ [k].
The input string {xS}S⊆[k] satisfies Had∗k if for each S, xS = x∅ ·

∏
i∈S x{i}.

In other words, if x∅ = 1, then the remaining variables should satisfy the Hadk predicate, and
if x∅ = −1, then their negations should. We will say that A satisfies the Had∗k predicate if

Had∗k
(
A (χ∅) , A

(
χ{1}

)
, . . . , A

(
χ{k}

)
, A
(
χ{1,2}

)
, . . . , A

(
χ[k]
))

= 1.

Otherwise, A fails to satisfy the Had∗k predicate. We say that A is random on the primary
variables if the tuple(

A (χ∅) , A
(
χ{1}

)
, . . . , A

(
χ{k}

)
, A
(
χ{1,2}

)
, . . . , A

(
χ[k]
))

is, over a random A ∼ A, distributed as a uniformly random element of {−1, 1}K .

I Definition 31. Denote by R(Hadk) the set of folded distributions which are uniformly
random on the primary variables.

I Definition 32. A (c, s)-gadget reducing Max-Hadk to Max-2-Lin(2) is a gadget G satisfying
the following properties:

(Completeness): For every dictator assignment di, uval(di;G) ≤ c.
(Soundness): For any A ∈ R(Hadk), uval(A;G) ≥ s.

I Proposition 33. The following two statements are equivalent:
1. There exists a (c, s)-gadget reducing Max-Hadk to Max-2-Lin(2).
2. There exists a (c, s)-generic gadget reducing Max-Hadk to Max-2-Lin(2).

Proof. We prove the two directions separately.

(1) ⇒ (2): Let G be a (c, s)-gadget reducing Max-Hadk to Max-2-Lin(2). We claim that
for any folded A ∈ Rgen(Hadk), uval(A;G) ≥ s. To see this, consider the distribution
A′ ∈ R(Hadk) which samples A ∼ A and outputs either A or −A, each with half probability.
Then uval(A′;G) = uval(A;G), and furthermore we know that uval(A;G) ≥ s. As a result, G
satisfies the (Completeness) and (Soundness) conditions in the statement of Proposition 27,
meaning there exists a (c, s)-generic gadget reducing Max-Hadk to Max-2-Lin(2).

(2) ⇒ (1): Let G be a (c, s)-generic gadget reducing Max-Hadk to Max-2-Lin(2). Let
A ∈ R(Hadk), and for b ∈ {−1, 1}, write A(b) for A conditioned on the variable χ∅ being
assigned the value b. Then b · A(b) (by which we mean the distribution where we sample
A ∼ A(b) and output b ·A) is in Rgen(Hadk) for both b ∈ {−1, 1}, and so uval

(
b · A(b);G

)
≥ s.

As uval(A(b);G) = uval
(
b · A(b);G

)
, uval(A;G) ≥ s, and so G is a (c, s)-gadget reducing

Max-Hadk to Max-2-Lin(2). J

Combining this with Proposition 25, we have the following corollary.

I Corollary 34. Suppose there exists a (c, s)-gadget reducing Max-Hadk to Max-2-Lin(2).
Then for all ε > 0, given an instance I of Max-2-Lin(2), it is NP-hard to distinguish between
the following two cases:

(Completeness): uval(I) ≤ c+ ε.
(Soundness): uval(I) ≥ s− ε.
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2.4 Reducing to the length-one case
When constructing good gadgets, we generally want dictators to pass with as high of
probability as possible. By Proposition 28, we can assume that our gadget operates by
sampling an edge (x, y) and testing equality between the two endpoints. Any such edge of
Hamming distance i will be violated by i

K of the dictator assignments. Intuitively, then, if we
want to dictators to pass with high probability, we should concentrate the probability mass
of our gadget G on edges of low Hamming distance. The following proposition shows that
this is true in the extreme: so long as we are only concerned with maximizing the quantity
s
c , we can always assume that G is entirely supported on edges of Hamming distance one.

I Proposition 35. Suppose there exists a (c, s)-gadget G reducing Max-Hadk to Max-2-Lin(2).
Then there exists a (c′, s′)-gadget reducing Max-Hadk to Max-2-Lin(2) using only length-one
edges for which

s′

c′
≥ s

c
.

Proof. For each i ∈ {1, . . . ,K}, let pi be the probability that an edge sampled from G has
length i, and let Gi denote the distribution of G conditioned on this event. Then sampling
from G is equivalent to first sampling a length i with probability pi, and then sampling an
edge from Gi.

Let Q = 1 · p1 + 2 · p2 + . . .+K · pK , and for each i ∈ {1, . . . ,K} define qi = i·pi
Q . It is

easy to see that the qi’s form a probability distribution. Now we may define the new gadget
G′ as follows:
1. Sample a length i with probability qi.
2. Sample (x, y) ∼ Gi.
3. Pick an arbitrary shortest path x = x0, x1, . . . , xi = y through the hypercube {−1, 1}K .
4. Output a uniformly random edge (xj , xj+1) from this path.
Note that G′ only uses length-one edges. Let G′i denote the distribution of G′ conditioned
on i being sampled in the first step. (Note that G′i is defined in a way that is different from
the way Gi is defined.)

Let A : {−1, 1}K → {−1, 1} be any assignment. Then

uval(A;G) =
K∑
i=1

pi · uval(A;Gi), and uval(A;G′) =
K∑
i=1

qi · uval(A;G′i).

We can relate uval(A;G′i) to uval(A;Gi) as follows: if A assigns different values to the
endpoints of the edge (x, y) ∼ G, then on any shortest path x = x0, x1, . . . , xi = y through
the hypercube {−1, 1}K , A must assign different values to at least one of the edges (xj , xj+1).
As a result, every time A errs on Gi, it must err at least a (1/i)-fraction of the time on G′i.
This means that:

uval(A;G′i) ≥
uval(A;Gi)

i
. (1)

In the case when A is a dictator function, Equation (1) becomes an equality. This is because
x = x0, x1, . . . , xi = y is a shortest path between x and y through the hypercube {−1, 1}K . If
A assigns the same values to x and y, then it will assign the same values to all of x0, x1, . . . , xi.
If, on the other hand, it assigns different values to x and y, then it will assign different values
to the endpoints of exactly one edge (xj , xj+1).
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Now we can use this relate uval(A;G′) to uval(A;G):

uval(A;G′) =
K∑
i=1

qi · uval(A;G′i)

≥
K∑
i=1

(
i · pi
Q

)
· uval(A;Gi)

i

= 1
Q

K∑
i=1

pi · uval(A;Gi)

= 1
Q

uval(A;G). (2)

Here the inequality follows from the definition of qi and Equation (1). As Equation (1) is an
equality in the case when A is a dictator function, we have that uval(A;G′) = 1

Quval(A;G) in
this case.

Let A ∈ R(Hadk) maximize val(A;G′), and let di be any dictator function. Then

s′

c′
= uval(A;G′)

uval(di;G′)
≥

1
Quval(A;G)
1
Quval(di;G)

= uval(A;G)
uval(di;G) ≥

s

c
.

Here the first inequality is by Equation (2) (and the fact that it is an equality for dictators),
and the second inequality follows from the fact that uval(A,G) ≥ s and uval(di,G) = c. J

2.5 Linear programs
One of the key insights of the paper [20] is that optimal gadgets (as per Definition 22) can
be computed by simply solving a linear program. Fortunately, the same holds for computing
optimal gadgets as per Definition 32. In our case, the appropriate linear program (taking
into account Proposition 35) is:

max s

s.t. uval(A;G) ≥ s, ∀A ∈ R(Hadk),
G is a gadget supported on edges of length one.

As written, this linear program has an (uncountably) infinite number of constraints, but
this can fixed by suitably discretizing the set R(Hadk). This is not so important for us, as
even after performing this step, the linear program is simply too large to ever be feasible in
practice. What is important for us is that we can take its dual; doing so yields the following
linear program:

I Definition 36. The dual LP is defined as

min s

s.t. Pr
A∼A

[A(x) = A(y)] ≤ s, ∀ edges (x, y) of length one, (3)

A ∈ R(Hadk). (4)

The dual linear program shows us that we can upper-bound the soundness of any gadget
with the value s by exhibiting a distribution on assignments in R(Hadk) which passes each
length-one edge with probability at least s. Moreover, strong LP duality tells us that the
optimum values of the two LPs are the same. Hence, we can prove a tight upper bound by
exhibiting the right distribution. We do this in Section 3 for gadgets reducing Max-Had3 to
Max-2-Lin(2).
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2.6 The Had3 gadget
In this section, we will prove some structural results about the hypercube {−1, 1}8 which
are relevant to any Had3-to-2-Lin(2) gadget. The results of this section will be useful for
Section 3.

Given a string x ∈ {−1, 1}n and subset of strings B ⊆ {−1, 1}n, we define the distance
of x to B as dH(x,B) := miny∈B dH(x, y).

I Proposition 37. The vertex set V = {−1, 1}8 can be partitioned as V = V0 ·∪V1 ·∪V2, in
which V0 is the set of primary variables, and Vi = {x ∈ V | dH(x, V0) = i}, for i = 1, 2.

I Proposition 38. |V0| = 16, |V1| = 128, and |V2| = 112.

I Proposition 39.
Each x ∈ V0 has eight neighbors in V1.
Each x ∈ V1 has one neighbor in V0 and seven neighbors in V2.
Each x ∈ V2 has eight neighbors in V1. Furthermore, there are four elements of V0 which
are Hamming distance two away from x.

I Proposition 40. Let f ∈ V2, and let g1, g2, g3, and g4 be the four elements of V0 which
are Hamming distance two away from f . Then for any x ∈ {−1, 1}3, three of the gi’s have
the same value and one has a different value, and f(x) = sign(g1(x) + g2(x) + g3(x) + g4(x)).

Proof of Propositions 37, 38, 39, and 40. In this proof, we will take the viewpoint of V
as the set of 3-variable Boolean functions. The primary variables are of the form ±χS , where
S ⊆ [3]. There are 16 such functions, and so |V0| = 16.

Let f ′ differ from one of the primary variables on a single input. From above, it must be
at least distance 3 from any of the other primary variables. This immediately implies that
f ′’s seven other neighbors are in V2. There are 16 · 8 = 128 distinct ways of constructng f ′,
and so |V1| = 128.

This leaves 256−16−128 = 112 variables in V not yet accounted for. We will now show a
method for constructing 112 different elements of V2; by the pigeonhole principle, this shows
that V can be partitioned as Proposition 37 guarantees. Given three primary variables b1χS1 ,
b2χS2 , and b3χS3 , where b1, b2, b3 ∈ {−1, 1}, set b4 := −b1 · b2 · b3 and S4 := S1∆S2∆S3.
Consider the function f : {−1, 1}3 → {−1, 1} defined as

f(x) := sign (b1χS1(x) + b2χS2(x) + b3χS3(x) + b4χS4(x)) .

Our claim is that f is distance-2 from each of the biχSi ’s. First, to see that this sign(·) is
well-defined, note that by definition,

∏4
i=1 biχSi(x) = −1 for all x ∈ {−1, 1}3. As a result,

for any x, three of the biχSi(x)’s have the same value, while the other one has a different
value. This means that

4∑
i=1

biχSi(x) = 2 · sign
( 4∑
i=1

biχSi(x)
)
.

for all x. Thus, the correlation of any of the biχSi ’s with f is

E
x

[f(x) · biχSi ] = 1
2 E

x

[( 4∑
i=1

biχSi(x)
)
· biχSi

]
= 1

2 .

In other words, Prx[f(x) = biχSi ] = 3
4 for each i ∈ {1, . . . , 4}.

APPROX/RANDOM’15
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There are 8 neighbors of f ; each biχSi neighbors two of them. As a result, all of f ’s
neighbors are in V1. In addition, since they are neighbors to the biχSi ’s, they can’t be
neighbors for any of the other primary variables. This means that the only variables in V0
that f is distance 2 from are the biχSi ’s.

There are 2 ·
(8

3
)

= 112 ways of selecting the biχSi ’s. As there are only 112 variables in V
which are not in either V0 or V1, all of the remaining variables in V must be contained in V2,
and they must all be generated in the manner above. J

I Proposition 41. Let B = sat(Had∗3). Then

Pr
x

[dH(x, B) = 0] = 1
16 , Pr

x
[dH(x, B) = 1] = 1

2 , and Pr
x

[dH(x, B) = 2] = 7
16 ,

where x is a uniformly random element of {−1, 1}8.

Proof. This can be proven using a proof similar to Proposition 38. Alternatively, we can
just show a direct correspondence between the setting here and the setting in Proposition 38,
as follows.

The input to Had∗3 is a set of bits {xS}S⊆[k], which can also be thought of as the function
f : P({1, 2, 3}) → {−1, 1} in which f(S) := xS . The satisfying assignments are then any
function of the form S → b · χS(x), where b ∈ {−1, 1} and x ∈ {−1, 1}3 are both fixed. For
a string x ∈ {−1, 1}3, let α(x) be the corresponding set, i.e. α(S)i = −1 if and only if
i ∈ S. For any function f : P({1, 2, 3}) → {−1, 1}, we can associate it with the function
α(f) : {−1, 1}3 → {−1, 1} defined by α(f)(x) := f(α(x)) for all x. Then α maps any
satisfying assignment to Had∗3 into one of the primary variables in V0, and more generally,
dH(f,B) = i if and only if α(f) ∈ Vi. The proposition therefore follows by applying
Proposition 38 and by noting that 16

256 = 1
16 ,

128
256 = 1

2 , and
112
256 = 7

16 . J

I Proposition 42.
1. Let f, g ∈ V0 be a pair of distinct affine functions. Then either dH(f, g) = 8, or

dH(f, g) = 4.
2. For any x, y ∈ {−1, 1}3, x 6= y, bx, by ∈ {−1, 1}, the number of functions f ∈ V0 such that

f(x) = bx is 8, and the number of functions f ∈ V0 such that f(x) = bx and f(y) = by is
4.

Proof. Proof of (1): Let f = bfχS , and g = bgχT . Then E[fg] = bfbg E[χS∆T ] where ∆ is
the symmetric difference of two sets. If f = −g, then clearly dH(f, g) = 8. Now we assume
that f 6= ±g, and therefore S 6= T . Then E[χS∆T ] = 0. This completes the proof.

Proof of (2): Consider function f(x) = a0 + a1x1 + a2x2 + a3x3. Construct a linear
system where a0, a1, a2, a3 are the variables and f(x) = bx and f(y) = by are the constraints.
The result follows from working out the size of the solution space. J

2.7 Reducing to Max-Cut
I Definition 43. Let ( 6=) : {−1, 1}2 → {0, 1} be the inequality predicate, i.e. ( 6=)(b1, b2) = 1
iff b1 6= b2 for all b1, b2 ∈ {−1, 1}. The Max-Cut CSP is the special case of the Max-( 6=) CSP
in which every constraint C = ((x1, b1), (x2, b2)) satisfies b1 = b2 = 1. In other words, every
constraint is of the form “x1 6= x2”.

I Proposition 44. For some predicate φ, suppose G is (c, s)-generic gadget reducing Max-φ
to Max-2-Lin(2). Then there exists a (c′, s′)-gadget reducing Max-φ to Max-Cut satisfying

s′

c′
= s

c
.
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Proof. Suppose the vertex set of G is V = {−1, 1}K . Let G′ be the gadget which operates
as follows:
1. With probability 1− 1

2K−1 , pick x ∈ {−1, 1}K and output the constraint “x 6= −x”.
2. Otherwise, sample C ∼ G. If C is of the form “x 6= y”, output “x 6= y”. If C′ is of the form

“x = y”, output “x 6= −y”.
Any folded assignment A fails G’ with probability at most 1

2K−1 . Any assignment A which is
not folded fails G’ with probability at least 1

2K−1 . As a result, we can always assume that
any assignment is folded.

Now, if A is folded, then for any x, y ∈ {−1, 1}K , A(x) = A(y) if and only if A(x) 6=
A(−y). As a result, uval(A;G′) = uval(A;G)/2k−1. Thus, c′ = c/2k−1, s′ = s/2k−1, and so
s′/c′ = s/c. J

3 The factor-11/8 gadget and its optimality

In this section, we prove the following main theorem.

I Theorem 45. There is a
( 1

8 ,
11
64
)
-gadget reducing Had3 to 2-Lin(2). By a simple padding

argument, this implies that for any C < 11
8 , it is NP-hard to achieve a factor-C approximation

for both the Max-2-Lin(2) and the Max-Cut CSPs.
Furthermore, the value of the LP in (3) is 11

64 . This means that for every (c, s)-gadget
reducing Max-Had3 to Max-2-Lin(2), s

c ≤
11
8 . In other words, the gadget we construct is

optimal among gadget reductions from Chan’s 7-ary Hadamard predicate.

The result of NP-hardness for Max-2-Lin(2) and Max-Cut follows from discussions in
Section 2. We now focus on the gadget construction part. First, we give the construction
of our

( 1
8 ,

11
64
)
-gadget reducing Had3 to 2-Lin(2). Recall that the set of variables in our

gadget is the set of Boolean functions on 3 variables. Let V0 := {±χS}S⊆[k], V1 be the set
of 3-variable Boolean functions that are at distance 1 from some function in V0, and V2 be
those at distance 2 from some function in V0.

We will assign a non-negative weight to each constraint in the gadget. Our gadget will
then sample each constraint with probability equal to its weight normalized by the weight
of the entire gadget. As argued in Proposition 35, the gadget will only use constraints on
functions at distance 1. For f, g ∈ V with dH(f, g) = 1, the weight of the edge {f, g} is 5 if
and only if either f ∈ V0 or g ∈ V0, and otherwise the weight is 1. The total weight of the
edges in G is 5× 128 + 896 = 1536.

To prove completeness, the fact that the dictators pass with probability 7
8 follows

immediately from the fact that G only uses edges of length one. The soundness is proved by
case analysis on the effect of different partial assignments based on the structure of the gadget.
Since there are no edges between variables in V1, whenever we have a partial assignment to
the variables in V0 and V2, we can complete it optimally by giving assignments greedily to
variables in V1. We then argue that given any folded partial assignment to variables in V0,
there is some greedy heuristics for assigning values to variables in V2 that always achieves
optimum.

To establish optimality of our gadget, we construct an optimal solution to the dual LP
given in (3). Our goal is to construct A ∈ R(Had3), i.e. a folded distribution of assignments
which is random on the primary variables. For i ∈ {0, 1, 2}, denote by Ri(Had3), the set of
distributions Ai such that over a random assignment A ∼ Ai, the string

(
{A(χS)}S⊆[k]

)
is

distributed like a uniformly random element of {0, 1}8 that is at distance i from satisfying
the Had3 predicate. We construct three separate distributions A0, A1, and A2 with the

APPROX/RANDOM’15
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property that Ai ∈ Ri(Had3) for each i ∈ {0, 1, 2}. Then, we set A = 1
16A0 + 1

2A1 + 7
16A2.

We study the value of A0, A1 and A2 on edges between V0 and V1, and edges between V1
and V2, and show that the values of A on both sets of edges are 53

64 . We complete the proof
by noting that 1− 53

64 = 11
64 , the number guaranteed by the theorem.

A complete proof of Theorem 45 can be found in Section 3 and 4 of the full paper.

4 A candidate factor-3/2 hardness reduction

Herein we present an interesting problem concerning analysis of Boolean functions. We
make a conjecture about its solution which, if true, implies NP-hardness of factor-( 3

2 − δ)
approximating 2-Lin(2) for any δ > 0.

I Definition 46. Let g : {−1, 1}n → {−1, 1} be an odd function (i.e., g(−x) = −g(x)). The
Game Show, played with Middle Function g, works as follows. There are two players: the
Host and the Contestant. Before the game begins, the Host secretly picks a uniformly random
monotone path π from (1, 1, . . . , 1) to (−1,−1, . . . ,−1) in the Hamming cube. (We say that a
path is monotone if at each step, a 1 is changed to a −1. Equivalently, π is a uniformly random
permutation on [n].) The Host also secretly picks T ∼ Binomial(n, 1

2 ). We define the secret
half-path to be the sequence of the first T edges along π: (x0, x1), (x1, x2), . . . , (xT−1, xT ).
Note that xT is uniformly distributed on {−1, 1}n.

The Game now begins, with the current time being t = 0, the current point being
x0 = (1, 1, . . . , 1), and the current function being g̃ = g. (The current function will always be
±g.) At each time step t = 0, 1, 2, . . . , the Host asks whether the Contestant would like to
negate the current function, meaning replace g̃ with −g̃. If the Contestant does not negate
the current function there is no cost. However, if the Contestant elects to negate the current
function, the Contestant must pay a cost of w(t) := 1

(1−t/n)2 . After the Contestant makes the
decision, the Host reveals to the Contestant what the (t+ 1)-th point on the secret half-path
is, and increases the time by 1.

As soon as time T is reached, the Game ends. At this instant, if g̃(xT ) 6= 1, then the
Contestant incurs a further cost of w(T ). (It’s as though the Contestant is now obliged
to negate g̃.) Thus one can think of the Contestant’s goal throughout the Game as trying
to ensure that g̃(xT ) will equal 1, while trying to minimize the total cost incurred by all
negations.

We define cost(g) to be the least expected cost that a Contestant can achieve when
the Game Show is played with Middle Function g. For g : {−1, 1}n → {−1, 1} and
“negation pattern” b ∈ {−1, 1}n, we write g+b to denote the function defined by g+b(x) =
g(b1x1, . . . , bnxn).

Roughly speaking, our conjecture about the Game Show is that for every odd g, the
average value of cost(g+b) over all b is at least 3

2 . To be precise, we need to be concerned
with averaging over merely pairwise-independent distributions on b.

I Game Show Conjecture. Let g : {−1, 1}n → {−1, 1} be odd and let D be any distribution
on {−1, 1}n which is pairwise-independent and symmetric (meaning PrD[b] = PrD[−b]).
Then Eb∼D[cost(g+b)] ≥ 3

2 − on(1).

Our motivation for making the Game Show Conjecture is the following result:

I Theorem 47. Suppose the Game Show Conjecture is true. Then it is NP-hard to approx-
imate 2-Lin(2) (and hence also Max-Cut) to factor 3

2 − δ for any δ > 0.
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The proof of the above theorem can be found in the complete version of the paper.
We remark that given a Middle Function g, in some sense it is “easy” to determine the

Contestant’s best strategy. It can done with a dynamic program, since the Game Show is
essentially a 2-Lin(2) instance on a tree graph. Nevertheless, we have been unable to prove
the conjecture. A discussion about some of our efforts in proving the conjecture can be found
in the full paper.

5 Limitations of gadget reductions

In this section, we show a limitation to proving inapproximability using gadget reductions
from balanced pairwise-independent predicates: that is, predicates φ that admit a set
S ⊆ sat(φ) satisfying Property 2 in Definition 12. We show that gadget reductions from φ to
2-Lin(2) can not prove inapproximability larger than a factor-2.54 for the deletion version.
Note that this applies to the Hadk predicates and to a broader class of predicates that do
not necessarily admit a natural group operation.

I Theorem 48. Let G be a (c, s)-generic gadget reducing Max-φ to Max-2-Lin(2), where φ
admits a balanced pairwise-independent set. Then

s

c
≤ 1

1− e−1/2 ≈ 2.54.

Proof. As before, K is the number of satisfying assignments of φ. Recall that the vertex set
of G is V = {−1, 1}K . Further, via Propositions 27 and 28, we need only consider folded
assignments to these variables, and we can assume G only uses (=)-constraints. Finally,
via Proposition 35, we can assume that every (=)-constraint used by G is between two
variables x and y which are Hamming distance one from each other. Let P be the set of
generic primary variables, let −P be their negations, and let P± = P ∪ (−P ) denote the
union of the two. Since φ is balanced pairwise-independent, we have a set S ⊆ [K] so that
for i picked uniformly at random from S, Pri[ui = vi] = 1/2 for distinct primary variables
u, v ∈ P .

Define the similarity between x and y to be sim(x, y) := Pri[xi = yi] and set sim(x, P±) :=
maxy∈P± sim(x, y). Pairwise-independence allows us to claim that any variable x is strongly
similar (i.e. has similarity > 3

4 ) with at most one variable y ∈ P±; define y to be x’s closest
primary variable.

I Fact 49. For any x ∈ V , if sim(x, y) > 3
4 for some y ∈ P±, then sim(x, y′) < 3

4 for all
other y′ ∈ P±.

Proof. If x has sim(x, y1) > 3
4 and sim(x, y2) ≥ 3

4 for y1, y2 ∈ P±, then

sim(y1, y2) ≥ sim(y1, x) + sim(x, y2)− 1 > 1
2 ,

contradicting the assumption on φ. J

This fact allows us to design the following “threshold-rounding” procedure to construct
a distribution A ∈ Rgen(φ). Let C = 2

e2−e3/2 , and D be a distribution over [3/4, 1] with
probability density function D(t) = C · e2t, for t ∈ [3/4, 1].
1. Pick a random assignment to the primary variables.
2. Pick a number t ∼ D. For any variable x ∈ V , call x type 1 if sim(x, P±) > t and type 2

otherwise.

APPROX/RANDOM’15
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3. Assign all type-1 variables the value of their closest primary variable.
4. Pick a uniformly random dictator di and set all the type-2 variables to agree with this

dictator.
5. Output the resulting assignment.
Note that the assignments are folded and are random on the primary variables. We analyse
the performance of this assignment. Let (x, y) be an edge in {−1, 1}K of Hamming weight
one. If both sim(x, P±), sim(y, P±) ≤ 3

4 , then regardless of the value of t, x and y will
both always be type-2 variables, in which case A violates the edge between them with the
probability of a random dictator, which is 1

K ≤
1

1−e−1/2 · 1
K .

On the other hand, suppose WLOG that sim(x, P±) > sim(y, P±) and that sim(x, P±) >
3
4 . If we set s := sim(y, P±), then sim(x, P±) = s + 1

K . Because y is distance one from x,
s ≥ 3

4 . Not only that, if y has a closest primary variable, then that variable is the same as
x’s closest primary variable (this is by Fact 49). Now, to calculate the probability that A
violates (x, y), there are three cases:
1. If t ∈

[ 3
4 , s
)
, then x and y are assigned the value of the same variable in P±, so (x, y) is

never violated in this case.
2. If t ∈

[
s, s+ 1

K

)
, then y’s value is chosen according to a uniformly random dictator

assignment, meaning that it is a uniformly random ±1-bit. independent from x’s value
In this case, (x, y) is violated with probabiltiy 1

2 .
3. If t ∈

[
s+ 1

K , 1
]
, then both x and y are assigned values according to a random dictator,

in which case (x, y) is violated with probability 1
K .

In total,

Pr[A violates (x, y)] = 1
2 · Pr

t∼D
[t ∈ [s, s+ 1/K)] + 1

K
· Pr
t∼D

[t ∈ [s+ 1/K, 1)]

= 1
2

∫ s+ 1
K

s

Ce2tdt+ 1
K

∫ 1

s+ 1
K

Ce2tdt

≤ 1
2 ·

Ce2s+2/K

K
+ 1
K

∫ 1

s+ 1
K

Ce2tdt

= Ce2

2K = 1
1− e−1/2 ·

1
K
,

as promised. Here the inequality follows from the fact that e2t is an increasing function. As
G only uses length-one edges, c = 1

K . We have just shown that uval(A;G) ≤ 1
1−e−1/2 · 1

K .
Because A ∈ Rgen(φ), we conclude that s

c ≤
1

1−e−1/2 . J

6 Conclusion

As mentioned, we view our factor- 11
8 NP-hardness result more as a proof of concept, illustrating

that the longstanding barrier of factor- 5
4 NP-hardness for Max-Cut/2-Lin(2)/Unique-Games

can be broken. There are quite a few avenues for further work:
Derive a better NP-hardness result for 2-Lin(2) by reduction from Had4. As one can
always embed a Had3-based gadget into a Had4-based gadget, this will always yield a
hardness of at least 11

8 . But presumably the optimal Had4-based gadget will do slightly
better.
Since our analysis of the optimal Had3 gadget is already somewhat complicated, it might
be challenging to analyze the Had4 case explicitly. A weaker but more plausible goal
would be to prove (perhaps indirectly) that there exists a δ0 > 0 such that the optimal
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Had4 gadget achieves factor-( 11
8 +δ0) NP-hardness. This would at least definitely establish

that 11
8 is not the “correct answer” either.

Prove the Game Show Conjecture which would yield the improved NP-hardness factor of
3
2 . It may also be simpler to try to prove a non-optimal version of the conjecture, yielding
some hardness factor better than 11

8 but worse than 3
2 .

For Max-Cut, our work establishes NP-hardness of (ε, Cε)-approximation for any C < 11
8 ,

but only for ε ≤ ε0 where ε0 is some not-very-large constant (see full version for details).
It would be nice to get a Max-Cut gadget yielding a larger ε0, like the ε0 = 1

8 we have for
2-Lin(2).
A recent result of Gupta, Talwar, and Witmer [12] showed NP-hardness of approximating
the (closely related) Non-Uniform Sparsest Cut problem to factor- 17

16 , by designing a
gadget reduction from the old ( 4

21 ,
5
21 )-approximation hardness of Håstad [13]. A natural

question is whether one can use ideas from this paper to make a direct reduction from
Had2 or Had3 to Non-Uniform Sparsest Cut, improving the NP-hardness factor of 17

16 .
We are now in the situation (similar to the situation prior to [18]) wherein the best
NP-hardness factor we know how to achieve for 2-Lin(q) (or Unique-Games) is achieved
by taking q = 2. In fact, we don’t know how to achieve an NP-hardness factor better
than 5

4 for 2-Lin(q) for any q > 2, even though 2-Lin(q) is presumably harder for larger q.
Can this be remedied?
In light of the limitations described in Section 5, it makes sense to seek alternative
methodology of establishing improved NP-hardness for 2-CSPs. An example showing that
this is not at all hopeless comes from the decade-old work of Chlebík and Chlebíková [8],
which shows NP-hardness of approximating 2-Sat(-Deletion) to factor 8

√
5− 15 ≈ 2.8885.

Their result is essentially a small tweak to the Vertex-Cover hardness of Dinur and Safra [9]
and thus indeed uses a fairly radical methodology for establishing two-bit CSP-hardness,
namely direct reduction from a specialized Label-Cover-type problem.

Acknowledgments. The authors would like to warmly thank Per Austrin for his assistance
with computer analysis of the 11

8 -gadget.
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Abstract
The problem of finding a maximum cardinality stable matching in the presence of ties and
unacceptable partners, called MAX SMTI, is a well-studied NP-hard problem. The MAX SMTI
is NP-hard even for highly restricted instances where (i) ties appear only in women’s preference
lists and (ii) each tie appears at the end of each woman’s preference list. The current best lower
bounds on the approximation ratio for this variant are 1.1052 unless P=NP and 1.25 under the
unique games conjecture, while the current best upper bound is 1.4616. In this paper, we improve
the upper bound to 1.25, which matches the lower bound under the unique games conjecture.
Note that this is the first special case of the MAX SMTI where the tight approximation bound
is obtained. The improved ratio is achieved via a new analysis technique, which avoids the
complicated case-by-case analysis used in earlier studies. As a by-product of our analysis, we
show that the integrality gap of natural IP and LP formulations for this variant is 1.25. We also
show that the unrestricted MAX SMTI cannot be approximated with less than 1.5 unless the
approximation ratio of a certain special case of the minimum maximal matching problem can be
improved.
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1 Introduction

The stable marriage problem [12, 27] is a classical combinatorial problem introduced by Gale
and Shapley in their celebrated seminal paper [9]. An input of this problem includes two sets;
a set of men and a set of women. Each man submits a preference list that orders women
according to his preference, and similarly each woman submits her preference list. Given
these lists, the problem is to find a stable matching, a matching without any blocking pairs,
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Table 1 Four problem settings of MAX SMTI

Two-sided-ties case (2T) One-sided-ties case (1T)
m1 : w2 w1 w1 : m1 m2

m2 : (w1 w2) w3 w2 : m1 m2

m3 : w3 w3 : (m2 m3)

m1 : w2 w1 w1 : m1

m2 : w2 w3 w2 : (m1 m2) m3

m3 : w3 w2 w3 : m2 m3

Restricted two-sided-ties case (R2T) Restricted one-sided-ties case (R1T)
m1 : w2 w1 w1 : m1 m2

m2 : w1 (w2 w3) w2 : m1 m2

m3 : w3 w3 : (m2 m3)

m1 : w1 w3 w1 : m1 m3

m2 : w2 w3 w2 : m2

m3 : w3 w1 w3 : m2 (m1 m3)

where a blocking pair is that of a man and a woman who might elope (a formal definition is
given in Sec. 2). There are several variants of the problem in terms of the format of preference
lists. In its most general setting, preference lists may contain ties (i.e., two or more men
indifferent to woman w may be included in a tie of w’s list), and may be incomplete (i.e., a
man who is not acceptable to w is missing in her list). It is known that there exists at least
one stable matching in any instance, but there may exist stable matchings of different sizes.
The problem of finding a maximum cardinality stable matching in this setting (called the
Maximum Stable Marriage problem with Ties and Incomplete lists, or MAX SMTI for short)
is NP-hard [18, 28]; therefore, the approximability of the MAX SMTI has been intensively
studied.

The MAX SMTI has been studied for various settings (see Table ??). The most general
setting is the two-sided-ties problem (2T), where ties may appear in both men’s and women’s
lists. The second setting is the one-sided-ties problem (1T), where ties can appear only
in women’s lists (i.e., men’s preference lists are strictly ordered and may not include ties).
The third setting is the restricted one-sided-ties problem (R1T), where, in addition to the
second setting, ties can appear only at the end of women’s preference lists. The R1T was
first studied by Irving and Manlove [17], inspired by an actual application for the Scottish
Foundation Allocation Scheme (SFAS) [16]. The SFAS is designed to assign residents to
hospitals under the condition that a resident (a man in our marriage case) submits a strictly-
ordered preference list while a hospital (a woman) submits a preference list that may contain
one tie of arbitrary length at the end of the list. In this paper, we also consider another
natural setting, the restricted two-sided ties problem (R2T), which was not studied before.
In R2T, ties can appear in both sexes’ lists, but the position must be the end of the lists.

Let us review previous results on the approximability of the MAX SMTI for 2T, 1T,
and R1T. It is easy to see that any algorithm that produces a stable matching is a 2-
approximation algorithm, but the existence of a (2 − ε)-approximation algorithm for the
MAX SMTI is nontrivial. For 2T, after several attempts to obtain (2− o(1))-approximation
algorithms [19, 20], a 1.875-approximation algorithm was first presented in [21]. Later,
Király [25] improved it to 1.6667 and McDermid [30] to 1.5, which is the current best
approximation ratio. Recently, Király [26] and Paluch [31] presented simpler linear time
algorithms with the same approximation ratio of 1.5. On the negative side, it is known that
1.1379-approximation is NP-hard and 1.3333-approximation is UG-hard via a reduction from
the vertex cover problem [35]. (Here “UG-hard” means that there is no better approximation
algorithm if the unique games conjecture [24] is true.) Also, an integrality gap for 2T is
shown to be at least 1.5− o(1) [22] for a natural integer programming formulation, which
rules out the possibility of using some current techniques (e.g., rounding and primal-dual
algorithms) to show (1.5− ε)-approximation.
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Table 2 Upper and lower bounds on approximation ratio and lower bounds on integrality gap
(new results discussed in this paper are in bold)

2T R2T 1T R1T

Upper bounds 1.5 [30] 1.5 [30] 1.4616 [5] 1.4616 [5]
on approximation ratio → 1.25

Lower bounds 1.5− o(1) [22] – 1.3678 [22] –
on integrality gap → 1.3333 → 1.5− o(1) → 1.25
UG lower bounds 1.3333 [35] – 1.25 [13, 35] 1.25 [13, 35]

on approximation ratio → 1.3333
Lower bounds assuming – – – –
MMM-Bi-APM is hard → 1.5

to approximate

It is still open whether there exists a (1.5− ε)-approximation algorithm for 2T and R2T,
but this problem is resolved for 1T and R1T by providing a 1.4706-approximation algorithm
that uses a linear programming (LP) relaxation [22]. Huang and Kavitha [15] improved
the approximation ratio to 1.4667 by developing a linear time algorithm, and Radnai [32]
tightened the analysis of this algorithm to show 1.4643-approximation. Very recently, Dean
and Jalasutram [5] showed that the algorithm presented in [22] provides the current best
approximation ratio 1.4616 through an analysis using the idea of factor-revealing LP. On
the negative side of 1T and R1T, it is known that 1.1052-approximation is NP-hard and
(1.25− ε)-approximation is UG-hard, via a reduction from the vertex cover problem [13, 35].
The integrality gap of the natural IP formulation is known to be at least 1.3678 for 1T [22],
but there is no known lower bound on the integrality gap for R1T.

Our contributions

Our contributions (and previous results) are summarized in Table 2.
Our first contribution is to provide a tight upper bound of 1.25 for R1T. This is the first

upper bound result for the MAX SMTI that matches a UG lower bound. Our algorithm
is LP-based, which is almost the same as that in [22], but in this paper we introduce a
novel analysis, which not only avoids the tedious case-analysis used in earlier studies, but
also significantly improves the approximation ratio. In all previous analyses of the current
algorithms, we create a bipartite graph G that is the union of two matchings M∗ and
M , where M∗ is a largest stable matching and M is a stable matching obtained from an
approximation algorithm (see Fig. 1). It is easy to see that the number of short paths
in this graph is directly related to the approximation factor. Indeed, Király [25] showed
that his algorithm does not create length-three paths for 1T, and McDermid [30] did the
same for 2T, both achieving a 1.5 upper bound. The analyses of the algorithms discussed
in [15, 22] bounded the number of length-five paths for 1T, which led to breaking the 1.5
barrier. Unfortunately, natural extension of this approach to longer paths seems to have
a quick limit since there is no obvious way of getting rid of complicated case analysis. In
fact, the current best bound for 1T [5], resulting in an improvement from 1.4643 to 1.4616,
requires a computer-assisted proof to bound the numbers of length-seven and length-nine
paths.

In this paper, we come back to a more direct and standard approach in the analysis
of an LP-based approximation algorithm. That is, we just apply a formula relating the

APPROX/RANDOM’15
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Figure 1 Illustrations of (a) a length-three path and (b) a length-five path in the union graph G,
where solid edges represent pairs from M and dashed edges represent pairs from M∗.

LP-relaxed (optimum) value and the optimum integral value. A notable difference between
our new analysis and the old one [22] is that we partition M into three sets of pairs based
on M and M∗ in the old analysis, whereas we do so based on M only in the new analysis.
This difference allows us to avoid handling long paths (such as length-seven and length-nine
paths). One might be curious about an extension of this approach to 1T or even 2T, which
is our obvious future goal.

Our second contribution is to give a 1.3333-UG lower bound for R2T, which is obtained
by modifying the reduction used to show the same UG lower bound for 2T [35]. This result
implies that R2T is strictly harder than R1T under the unique games conjecture, while such
a separation is unknown for 2T and 1T. For R2T, we also show that the integrality gap of
the natural IP formulation is at least 1.3333.

Our third contribution is to show a new lower bound on the integrality gap for 1T.
Specifically, we construct an instance of 1T whose integrality gap is at least 1.5− o(1). This
result suggests that the integrality gap of 1.5 for 2T is no longer a convincing bad sign for
improving the current 1.5 upper bound because we already have a better approximation
ratio for 1T (1.4616) than the integrality gap. Note that our new integrality gap of 1.5− o(1)
does not contradict the upper bounds of less than 1.5 [5, 22] since the technique used in the
algorithms of these studies is not a simple LP rounding.

Our final contribution is to give support to the inapproximability of 2T by relating 2T to
the minimum maximal matching problem (MMM). The MMM is a classical optimization
problem, which asks us to find a maximal matching with minimum cardinality in a given
undirected graph. This problem is known to be NP-hard even for a very restricted class of
graphs (including bipartite graphs) [10, 14, 36]. It is also known that the MMM is equivalent
to the minimum edge dominating set problem (MEDS) with respect to approximability [36],
that is, there exists an α-approximation algorithm for the MMM if and only if there exists
an α-approximation algorithm for the MEDS. So far, the approximability of the MMM (and
equivalently that of the MEDS) has been extensively studied [2, 3, 8, 11, 29], but none
achieved a (2− ε)-approximation for any constant ε > 0 even on bipartite graphs. Regarding
the inapproximability, the current best lower bound under P6=NP is 7/6 for general graphs [4].
Based on the reduction in [18], we show that a (1.5− ε)-approximation algorithm for 2T for a
constant ε > 0 implies a (2− ε′)-approximation algorithm for the MMM on bipartite graphs
with an almost-perfect matching (which we call the MMM-Bi-APM) for a constant ε′ > 0.
Note that there is no known (2− ε′)-approximation algorithm, even for the MMM-Bi-APM.

2 Preliminaries

We now give notations, most of which are taken from [22]. An instance I of the MAX SMTI
is composed of n men, n women, and each person’s preference list that may be incomplete
and may include ties. If a person p includes a person q (of the opposite sex) in p’s preference
list, we say that q is acceptable to p. Without loss of generality, we assume that a man m is
acceptable to w if and only if w is acceptable to m. A matching M is a set of pairs (m,w)
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such that m is acceptable to w and vice versa, and each person appears at most once in M .
If (m,w) ∈M , we say that m (w) is matched in M , and write M(m) = w and M(w) = m.
If p does not appear in M , we say that p is single in M . If m strictly prefers wi to wj , we
write wi �m wj . If wi and wj are tied in m’s list (including the case in which wi = wj), we
write wi =m wj . The statement wi �m wj is true if and only if wi �m wj or wi =m wj . We
use similar notations for women’s preference lists. We say that m and w form a blocking pair
for a matching M (or simply, (m,w) blocks M) if the following three conditions are met:
(i) M(m) 6= w but m and w are acceptable to each other, (ii) w �m M(m) or m is single in
M , and (iii) m �w M(w) or w is single in M . A matching M is called stable if there is no
blocking pair for M .

The MAX SMTI is the problem of finding the largest stable matching. The following IP
formulation of MAX SMTI instance I, denoted as IP (I), is a generalization of the one for
the original stable marriage problem given in [33, 34]. For each pair (m,w), we introduce a
binary variable xm,w.

Maximize:
∑
i

∑
j

xi,j

Subject to:
∑
i

xi,w ≤ 1 ∀w (1)∑
j

xm,j ≤ 1 ∀m (2)

∑
j�mw

xm,j +
∑
i�wm

xi,w − xm,w ≥ 1 ∀(m,w) ∈ A (3)

xm,w = 0 ∀(m,w) 6∈ A (4)
xm,w ∈ {0, 1} ∀(m,w) (5)

Here, A is the set of mutually acceptable pairs, that is, (m,w) ∈ A if and only if m and w
are acceptable to each other. In this formulation, “xm,w = 1” is interpreted as “m and w
are matched,” and “xm,w = 0” otherwise. Thus the objective function is equal to the size
of a matching. Note that Constraint (3) ensures that (m,w) is not a blocking pair. When
xm,w = 1, all three terms of the left-hand side are 1; hence, Constraint (3) is satisfied. When
xm,w = 0, either the first or the second term of the left-hand side must be 1, which implies
that m (respectively w) must be matched with a partner as good as w (respectively m). The
notation LP (I) denotes the linear program relaxation of IP (I) in which Constraint (5) is
replaced with “0 ≤ xm,w ≤ 1.”

3 Approximation Algorithm for R1T

3.1 Algorithm GSA-LP

We now describe our approximation algorithm GSA-LP for instance I in which the men’s
lists are strict and the women’s lists may contain ties. This algorithm is a simpler version of
the algorithm given in [22], whose pseudo-code is given in Algorithm 1. In this algorithm,
we maintain a variable pm (initially set to one), which stores the current position for m in
his preference list, and another priority value fm (initially set to zero) for each m.

The GSA-LP algorithm consists of a sequence of proposals from men to women, as the
standard Gale-Shapley algorithm. When a woman receives proposals from two men, she
keeps the better one and rejects the other. If two men are in the same tie, the woman chooses

APPROX/RANDOM’15



366 A Tight Approximation Bound for the Stable Marriage Problem with Restricted Ties

Algorithm 1 GSA-LP (Gale-Shapley Algorithm with LP solution)
Input: An SMTI instance I
Output: A matching M
1: Formulate the given instance I as an integer program IP (I)
2: Solve its LP relaxation LP (I) and obtain an optimal solution x∗(= {x∗i,j})
3: Let M := ∅
4: Set fm := 0 and pm := 1 for each man m
5: while there exists an m such that (m is single in M) and (fm ≤ 3) do
6: Let m be an arbitrary such man
7: if pm is no larger than the length of m’s preference list then
8: Let w be the pm-th woman of m’s preference list
9: if m has not proposed to w yet then

10: Set fm := fm + x∗m,w and pm := 1
11: else
12: Set pm := pm + 1
13: end if
14: // Let m propose to w
15: if w is single in M then
16: Set M := M ∪ {(m,w)}
17: else if m �w M(w) or (m =w M(w) and fm > fM(w)) then
18: Set M := M ∪ {(m,w)} \ {(M(w), w)}
19: end if
20: else
21: Set fm := fm + 2 and pm := 1 // m goes to the second round
22: end if
23: end while
24: return M

the man with the larger priority value fm (if two values are the same, she keeps the current
partner).

Intuitively, there are two rounds of proposals for each m. In the first round, whenever m
sends a proposal to w for the first time, the priority value fm is increased by x∗m,w (Lines
9–10). When he is rejected by w (either immediately or later after once accepted), he restarts
his sequence of proposals from the top of his list. Note that in the restarted sequence of
proposals, women he proposes to are not new until w. Up to that woman, fm does not change
and the restart does not happen. If m has proposed to all of the women in his list and he is
still single, then fm increases by 2 and m goes to his second round (Lines 20–21). In the
second round, m sends a sequence of proposals from the top of his list again. Meanwhile, fm
does not change and restart never happens (that is, m sends at most one proposal to each
woman in the second round). It is not hard to see that this algorithm runs in polynomial
time and outputs a stable matching based on a similar argument in [22].

This algorithm is designed so that, if w is eventually matched to m at the termination
of the algorithm, and there is another man m′ who proposed to w at least once and is tied
with m in her preference list (i.e., m =w m

′), then we have the following inequality

fm′ =
∑

j′�m′w,j′ 6∈S

x∗m′,j′ ≤
∑

j�ml(m),j 6∈S

x∗m,j = fm, (6)

where l(m) denotes the woman least preferred bym among those who have received a proposal
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from m during the algorithm. Here, fm and fm′ refer to the values at the termination of the
algorithm. Also note that, when m proposes to the woman at the end of his list for the first
time, fm ≤ 1. If m is single in M at the termination of the algorithm, he has proposed to all
the women in his list, and fm > 1 holds.

3.2 Analysis of Approximation Ratio
3.2.1 Overview of Analysis
Our analysis is similar to the LP-based analysis used in [22], but the major difference between
these two approaches is that our analysis does not use the bipartite graph on which older
analyses (e.g., [15, 22, 25, 30]) heavily rely. Let us fix an instance I, and let M be the
stable matching output from GSA-LP. We partition M into P , R, and T . Specifically, P
is the set of pairs (m,w) ∈ M such that fm > 1 at the end of the algorithm, T is the set
of pairs (m,w) ∈ M such that fm ≤ 1, w has a tie, and m is contained in her tie, and
R = M \ (P ∪ T ). Let S be the set of men and women who are single in M .

Now we analyze the approximation ratio of GSA-LP under the assumption that ties can
appear only at the end of women’s preference lists. Recall that x∗i,j is the value of xi,j for
the optimum solution x∗ of LP (I). Note that if x∗m,w > 0 for m,w ∈ S, then (m,w) ∈ A by
Constraint (4) of LP (I), so (m,w) is a blocking pair for M . This contradicts the stability of
M ; hence,

∑
i,j∈S x

∗
i,j = 0. Now, let us define the value x∗(X) for a subset X ⊆M as:

x∗(X) =
∑

(m,w)∈X

∑
j

x∗m,j +
∑
i

x∗i,w +
∑
j∈S

x∗m,j +
∑
i∈S

x∗i,w

 .

It is not difficult to see that x∗(P ) + x∗(R) + x∗(T ) = 2
∑
i

∑
j x
∗
i,j , since

∑
i,j∈S x

∗
i,j = 0.

Note that |M∗| and
∑
i

∑
j x
∗
i,j are the optimal values for IP (I) and LP (I) respectively,

where M∗ is an optimal solution of I (that is, one of the maximum stable matchings of I).
Hence we have that |M∗| ≤

∑
i

∑
j x
∗
i,j = (x∗(P ) + x∗(R) + x∗(T ))/2. We later prove the

following key lemma.

I Lemma 1. x∗(P ) + x∗(R) + x∗(T ) ≤ 5
2 (|P |+ |R|+ |T |).

From this, we have that |M∗| ≤ (x∗(P ) + x∗(R) + x∗(T ))/2 ≤ 5
4 (|P |+ |R|+ |T |) = 5

4 |M |,
and Theorem 2 follows:

I Theorem 2. The approximation ratio of GSA-LP is at most 5/4 for R1T.

Remarks on Integrality Gap

The proof of Theorem 2 implies∑
i

∑
j

x∗i,j ≤
5
4 |M | ≤

5
4 |M

∗|,

and this means that the integrality gap of IP (I) is at most 5/4. This result is tight because
the integrality gap of IP (I) is at least 5/4, which is shown in Threorem 17.

3.2.2 Proof Sketch of Lemma 1
For readability, we first give a simpler proof of Lemma 1 for a special case in which two
conditions (which we explain shortly) hold. The full proof (without conditions) is included
in Sec. 3.2.3. We first define the following symbols (see also Fig. 2).

APPROX/RANDOM’15
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mp : · · ·wp · · ·︸ ︷︷ ︸
π

mr : · · ·︸︷︷︸
ρ

wr · · ·︸ ︷︷ ︸
ρ

mt : · · ·wt · · · l(mt)︸ ︷︷ ︸
τ

· · ·︸︷︷︸
τ

wp : · · ·mp · · ·︸ ︷︷ ︸
p

wr : · · ·mr︸ ︷︷ ︸
r

· · ·︸︷︷︸
r

wt : · · · · · · (· · ·mt · · · )︸ ︷︷ ︸
t

Figure 2 Illustrations of symbols π, ρ, ρ, τ , τ , p, r, r, and t for pairs (mp, wp) ∈ P , (mr, wr) ∈ R,
and (mt, wt) ∈ T .

π = {(m, j) ∈ A | (m,w) ∈ P, j 6∈ S},
p = {(i, w) ∈ A | (m,w) ∈ P, i 6∈ S},
ρ = {(m, j) ∈ A | (m,w) ∈ R, j �m w, j 6∈ S},
ρ = {(m, j) ∈ A | (m,w) ∈ R,w �m j, j 6∈ S},
r = {(i, w) ∈ A | (m,w) ∈ R, i �w m, i 6∈ S},
r = {(i, w) ∈ A | (m,w) ∈ R,m �w i, i 6∈ S},
τ = {(m, j) ∈ A | (m,w) ∈ T, j �m l(m), j 6∈ S},
τ = {(m, j) ∈ A | (m,w) ∈ T, l(m) �m j, j 6∈ S}, and
t = {(i, w) ∈ A | (m,w) ∈ T, i 6∈ S}.

For X ∈ {π, ρ, ρ, τ, τ , p, r, r, t}, Y ∈ {π, ρ, ρ, τ, τ}, and Z ∈ {p, r, r, t}, we define σ(X) and
σ(Y,Z) as

σ(X) =
∑

(m,w)∈X

x∗m,w and σ(Y,Z) =
∑

(m,w)∈Y ∩Z

x∗m,w.

The two conditions we use in this section are (I) P = ∅ and (II) σ(ρ)/|R| ≤ σ(τ)/|T |.
Condition (II) is introduced to avoid using Inequality (6) in the analysis, which can make
the proof significantly simpler. Inequality (6) implies that we have fm′ ≤ fm for any
(m,w) ∈ T and (m′, w′) ∈ R such that both m and m′ have proposed to w during the course
of GSA-LP. The intuitive meaning of Condition (II) is that fm′ ≤ fm holds on average if
we choose (m,w) ∈ T and (m′, w′) ∈ R uniformly at random. Note that fm ≈ σ(τ)/|T | and
fm′ ≈ σ(ρ)/|R| for m and m′ selected in this manner. Note also that Condition (II) does
not hold in general because, in its interpretation, we do not guarantee that m′ proposes to w
(which is the case for Inequality (6)).

First, we prove several useful lemmas. Note that the claims similar to these lemmas are
already proven in [22]. Lemma 3 is immediate from the definition since σ(π) = σ(p) = 0 from
Condition (I). Lemma 4 also holds under Condition (I), but Lemmas 5–7 hold without any
condition. Among these lemmas, Lemma 7 plays a key role in the analysis for R1T because
it uses the restriction that each woman can contain a tie at the end of her preference list.

I Lemma 3. (Under Condition (I)) σ(ρ) + σ(ρ) + σ(τ) + σ(τ) = σ(r) + σ(r) + σ(t).

I Lemma 4. (Under Condition (I)) σ(r) = σ(ρ, r) + σ(τ , r).

Proof. By definition and Condition (I), we have σ(r) = σ(ρ, r) + σ(ρ, r) + σ(τ, r) + σ(τ , r).
To prove this lemma, we show that σ(ρ, r) + σ(τ, r) = 0. If this does not hold, then there
is a pair (i, j) ∈ (ρ ∪ τ) ∩ r. Such (i, j) satisfies M(j) 6= i by the definitions of ρ, τ , and r.
Also, i =j M(j) holds because (i, j) ∈ r means that i �j M(j) and (i, j) ∈ ρ ∪ τ means that
i must have proposed to j and woman j rejected the proposal, which implies M(j) �j i.
However, (M(j), j) ∈ R means that M(j) is not included in j’s tie; a contradiction. J
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I Lemma 5. For any (m,w) ∈M ,∑
j�mw,j∈S

x∗m,j = 0 and
∑

i�wm,i∈S
x∗i,w = 0.

Proof. For the left equation, suppose that there is a woman j such that j ∈ S and j �m w.
Then j must include m in her list. Hence, (m, j) blocks M , which contradicts the stability
of M . Therefore, no such j exists; hence,

∑
j�mw,j∈S x

∗
m,j actually sums up an empty set of

variables. The right equation can also be validated in a similar way. J

I Lemma 6. σ(ρ) + σ(r) ≥ |R|.

Proof. For each (m,w) ∈ R, we have∑
j�mw,j 6∈S

x∗m,j +
∑

i�wm,i 6∈S

x∗i,w =
∑
j�mw

x∗m,j +
∑
i�wm

x∗i,w ≥ 1.

The equality comes from Lemma 5 and the fact that m is not in a tie of w’s list because
(m,w) ∈ R. The inequality comes from Constraint (3) of LP formulation. By adding this
inequality for all (m,w) ∈ R, we have σ(ρ) + σ(r) ≥ |R|. J

I Lemma 7. For any (m,w) ∈ T , ∑
i∈S

x∗i,w = 0.

Proof. Since (m,w) ∈ T , there is no man i such that m �w i because m is included in w’s
tie, which is located at the end of the list. If i ∈ S and i �w m, then x∗i,w = 0 by Lemma 5.
We show that there is no i such that i ∈ S and i =w m. Suppose on the contrary that i(∈ S)
and m are tied in w’s list. Since i is single in M , i must have proposed to w with fi > 1.
By the definition of T , fm ≤ 1 when m proposed to w. Therefore, it is impossible that m,
rather than i, is matched with w in M ; a contradiction. This completes the proof. J

Now we are ready to give the proof of Lemma 1. Recall that P = ∅ by Condition (I);
hence, x∗(P ) = 0. Our goal here is x∗(R)+x∗(T ) ≤ 5

2 (|R|+ |T |). If σ(ρ) > |R||T |/(|R|+ |T |),
then we have

x∗(R) + x∗(T ) =
∑

(m,w)∈R

2
∑
j

x∗m,j + 2
∑
i

x∗i,w −
∑
j 6∈S

x∗m,j −
∑
i6∈S

x∗i,w


+

∑
(m,w)∈T

2
∑
j

x∗m,j + 2
∑
i

x∗i,w −
∑
j 6∈S

x∗m,j −
∑
i6∈S

x∗i,w


≤ 4|R|+ 4|T | − σ(ρ)− σ(ρ)− σ(τ)− σ(τ)− σ(r)− σ(r)− σ(t)
= 4|R|+ 4|T | − 2σ(ρ)− 2σ(ρ)− 2σ(τ)− 2σ(τ) (by Lemma 3)
≤ 4|R|+ 4|T | − 2σ(ρ)− 2σ(ρ, r)− 2σ(τ)− 2σ(τ , r)
= 4|R|+ 4|T | − 2σ(ρ)− 2σ(τ)− 2σ(r) (by Lemma 4)
≤ 2|R|+ 4|T | − 2σ(τ) (by Lemma 6)

≤ 2|R|+ 4|T | − 2 |T |
|R|

σ(ρ) (by Condition (II))

< 2|R|+ 4|T | − 2|T |2

|R|+ |T | (since σ(ρ) > |R||T|/(|R|+|T|))

≤ 5
2(|R|+ |T |).
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Otherwise (i.e., σ(ρ) ≤ |R||T |/(|R|+ |T |)), then we have

x∗(R) + x∗(T ) =
∑

(m,w)∈R

2
∑
j

x∗m,j + 2
∑
i

x∗i,w −
∑
j 6∈S

x∗m,j −
∑
i 6∈S

x∗i,w


+

∑
(m,w)∈T

2
∑
j

x∗m,j +
∑
i6∈S

x∗i,w −
∑
j 6∈S

x∗m,j

 (by Lemma 7)

≤ 4|R| − σ(ρ)− σ(ρ)− σ(r)− σ(r) + 2|T |+ σ(t)− σ(τ)− σ(τ)
= 4|R|+ 2|T | − 2σ(r)− 2σ(r) (by Lemma 3)
≤ 4|R|+ 2|T | − 2(|R| − σ(ρ)) (by Lemma 6)

≤ 2|R|+ 2|T |+ 2|R||T |
|R|+ |T | (since σ(ρ) ≤ |R||T|/(|R|+|T|))

≤ 5
2(|R|+ |T |).

J

3.2.3 Full Proof of Lemma 1
In this section, we give a full proof of Lemma 1 (without Conditions (I) and (II)). Recall
that in Sec. 3.2.2, we defined nine symbols such as π and p. For the full proof, we need three
more symbols: For each (m,w) ∈ T , let

τm = {(m, j) ∈ A | j �m l(m), j 6∈ S},
τm = {(m, j) ∈ A | l(m) �m j, j 6∈ S}, and
tw = {(i, w) ∈ A | i 6∈ S}.

The following Lemmas 8–10 are unconditional counterparts of Lemmas 3 and 4 in
Sec. 3.2.2.

I Lemma 8. (i) For any w, σ(tw) = σ(π, tw) + σ(ρ, tw) + σ(ρ, tw) + σ(τ, tw) + σ(τ , tw) and
(ii) σ(t) = σ(π, t) + σ(ρ, t) + σ(ρ, t) + σ(τ, t) + σ(τ , t).

Proof. By definition, tw = (π ∩ tw) ∪ (ρ ∩ tw) ∪ (ρ ∩ tw) ∪ (τ ∩ tw) ∪ (τ , tw), and the five
intersections in the right-hand side are mutually disjoint. This proves (i). (ii) can be proved
similarly. J

I Lemma 9. (i) σ(r) ≥ σ(π, r) +σ(ρ, r) +σ(τ, r). (ii) σ(ρ) ≥ σ(ρ, r) +σ(ρ, t). (iii) σ(τm) ≥
σ(τm, r). (iv) σ(p) ≥ σ(π, p) + σ(ρ, p) + σ(τ, p). (v) σ(τm) ≥ σ(τm, t). (vi) σ(τm) ≥
σ(τm, r) + σ(τm, t).

Proof. (i) By definition, σ(r) = σ(π, r) + σ(ρ, r) + σ(ρ, r) + σ(τ, r) + σ(τ , r) ≥ σ(π, r) +
σ(ρ, r) + σ(τ, r). (ii)–(vi) can be proved similarly. J

I Lemma 10. (i) σ(ρ) = σ(ρ, p) + σ(ρ, r) + σ(ρ, t). (ii) σ(π) = σ(π, p) + σ(π, r) + σ(π, t).
(iii) σ(τ) = σ(τ, p) + σ(τ, r) + σ(τ, t). (iv) σ(r) = σ(ρ, r) + σ(τ , r).

Proof. (i) By definition, σ(ρ) = σ(ρ, p) +σ(ρ, r) +σ(ρ, r) +σ(ρ, t). Now we show σ(ρ, r) = 0.
If this does not hold, then there is a pair (i, j) ∈ ρ∩r. Pair (i, j) ∈ ρ implies that (i,M(i)) ∈ R
and j �i M(i), and (i, j) ∈ r implies that (M(j), j) ∈ R and i �j M(j). Since (M(j), j) ∈ R,
i and M(j) are not tied in j’s preference list; hence, i �j M(j). Since j �i M(i), i proposed
to j during the algorithm. Hence, j must be matched with i or more a preferable man, which
contradicts i �j M(j). Therefore, no such (i, j) exists and σ(ρ, r) = 0.
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(ii) By definition, σ(π) = σ(π, p)+σ(π, r)+σ(π, r)+σ(π, t). We show that σ(π, r) = 0. If
not, there are a man i and a woman j such that (i,M(i)) ∈ P , (M(j), j) ∈ R, and i �j M(j).
It is impossible that i =j M(j) because i 6= M(j) since (i,M(i)) ∈ P and (M(j), j) ∈ R, and
i and M(j) are not tied in j’s preference list by the definition of R. Therefore i �j M(j).
Also, by the definition of P , fi > 1 at the end of the algorithm; hence, i must have proposed
to all of the women in his list, especially, to j. Using a similar argument to the proof of part
(i), we have a contradiction, implying that σ(π, r) = 0.

(iii) By definition, σ(τ) = σ(τ, p) + σ(τ, r) + σ(τ, r) + σ(τ, t). By noting that m proposes
to all the women from the top of the list to l(m), we can show that σ(τ, r) = 0 using a similar
argument as the proofs of parts (i) and (ii).

(iv) By definition, σ(r) = σ(π, r) +σ(ρ, r) +σ(ρ, r) +σ(τ, r) +σ(τ , r). We already proved
that σ(π, r) = 0, σ(ρ, r) = 0, and σ(τ, r) = 0. J

The following Lemma 11 is an elaborate version of Lemma 7.

I Lemma 11. (i) For any (m,w) ∈ P ,
∑
j∈S x

∗
m,j = 0. (ii) For any (m,w) ∈ T ,

∑
i∈S x

∗
i,w =

0.

Proof. (i) (m,w) ∈ P implies that m has proposed to all the women in his list; hence, they
are matched in M . Therefore, there is no (m, j) such that (m,w) ∈ P and j ∈ S.

(ii) Since (m,w) ∈ T , there is no man i such that m �w i because w includes m in her
tie at the end of her preference list. If i ∈ S and i �w m, then x∗i,w = 0 by Lemma 5. We
show that there is no i such that i ∈ S and i =w m. Suppose on the contrary that i(∈ S)
and m are tied in w’s list. Since i is single in M , i must have proposed to w with fi > 1.
By the definition of T , fm ≤ 1 when m proposed to w. Therefore, it is impossible that m,
rather than i, is matched with w in M ; a contradiction. This completes the proof. J

In the subsequent three lemmas, we bound x∗(P ), x∗(R), and x∗(T ), which will lead to
the proof of Lemma 15.

I Lemma 12. x∗(P ) ≤ 2|P |+ σ(π, r) + σ(π, t)− σ(ρ, p)− σ(τ, p).

Proof. We have

x∗(P ) =
∑

(m,w)∈P

∑
j

x∗m,j +
∑
i

x∗i,w +
∑
j∈S

x∗m,j +
∑
i∈S

x∗i,w


=

∑
(m,w)∈P

∑
j 6∈S

x∗m,j + 2
∑
i

x∗i,w −
∑
i 6∈S

x∗i,w


≤ σ(π) + 2|P | − σ(p)
≤ σ(π) + 2|P | − σ(π, p)− σ(ρ, p)− σ(τ, p)
= 2|P |+ σ(π, r) + σ(π, t)− σ(ρ, p)− σ(τ, p).

The first equality is the definition of x∗(P ), and the second equality is from Lemma 11(i). The
first inequality is from the definitions of σ(π) and σ(p), and the fact that

∑
(m,w)∈P

∑
i x
∗
i,w ≤

|P | by Constraint (1) of LP formulation. The second inequality is from Lemma 9(iv). The
last equality is from Lemma 10(ii). J

I Lemma 13. x∗(R) ≤ 2|R|+ σ(ρ)− σ(ρ, t) + σ(τ , r)− σ(r).

APPROX/RANDOM’15
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Proof. We have

x∗(R) =
∑

(m,w)∈R

∑
j

x∗m,j +
∑
i

x∗i,w +
∑
j∈S

x∗m,j +
∑
i∈S

x∗i,w


=

∑
(m,w)∈R

2
∑
j

x∗m,j + 2
∑
i

x∗i,w −
∑
j 6∈S

x∗m,j −
∑
i 6∈S

x∗i,w


≤ 2|R|+ 2|R| − (σ(ρ) + σ(ρ))− (σ(r) + σ(r))
≤ 2|R|+ σ(ρ)− σ(ρ, r)− σ(ρ, t) + σ(r)− σ(r)
= 2|R|+ σ(ρ)− σ(ρ, t) + σ(τ , r)− σ(r).

The first equality is the definition of x∗(R). The first inequality is from Constraints (1) and
(2) of LP formulation and definitions of σ(ρ), σ(ρ), σ(r), and σ(r). The last inequality is
from Lemmas 9(ii) and 6. The last equality is from Lemma 10(iv). J

I Lemma 14.

x∗(T ) ≤ 2|T | − σ(τ , r)− σ(t) +
∑

(m,w)∈T

min{2− σ(τm), 2σ(tw)− (σ(τm, t) + σ(τm, t))}.

Proof. By definition,

x∗(T ) =
∑

(m,w)∈T

∑
j

x∗m,j +
∑
i

x∗i,w +
∑
j∈S

x∗m,j +
∑
i∈S

x∗i,w

 .

We will bound the quantity inside the parentheses in two ways. First, for each (m,w) ∈ T ,
we have∑

j

x∗m,j +
∑
i

x∗i,w +
∑
j∈S

x∗m,j +
∑
i∈S

x∗i,w

≤ 1 + 1 + (1− σ(τm)− σ(τm)) + (1− σ(tw))
≤ 4− (σ(τm) + σ(τm, r))− σ(tw). (7)

The first inequality is from Constraints (1) and (2) of LP formulation and definitions of
σ(τm), σ(τm), and σ(tw). The last inequality is from Lemma 9(iii).

Next, for each (m,w) ∈ T , we have

∑
j

x∗m,j +
∑
i

x∗i,w +
∑
j∈S

x∗m,j +
∑
i∈S

x∗i,w

= 2
∑
j

x∗m,j +
∑
i 6∈S

x∗i,w −
∑
j 6∈S

x∗m,j

≤ 2 + σ(tw)− (σ(τm) + σ(τm))
≤ 2 + σ(tw)− (σ(τm, t) + σ(τm, r) + σ(τm, t)). (8)

The equality comes from Lemma 11(ii) and the last inequality is from (v) and (vi) of Lemma 9.
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Combining Inequalities (7) and (8), we have

x∗(T ) =
∑

(m,w)∈T

∑
j

x∗m,j +
∑
i

x∗i,w +
∑
j∈S

x∗m,j +
∑
i∈S

x∗i,w


≤

∑
(m,w)∈T

min{4− (σ(τm) + σ(τm, r))− σ(tw),

2 + σ(tw)− (σ(τm, t) + σ(τm, r) + σ(τm, t))}
= 2|T | − σ(τ , r)− σ(t)

+
∑

(m,w)∈T

min{2− σ(τm), 2σ(tw)− (σ(τm, t) + σ(τm, t))}.

J

To simplify notation, let δm,w = 2(σ(τ, tw) + σ(τ , tw) − σ(τm, t) − σ(τm, t)) for each
(m,w) ∈ T .

I Lemma 15. x∗(P ) + x∗(R) + x∗(T ) ≤

2|P |+ 2|R|+ 2|T |+
∑

(m,w)∈T

min{2− 2σ(τm), 2σ(π, tw) + 2σ(ρ, tw) + δm,w}.

Proof. Starting from Lemmas 12, 13, and 14, we have the sequence of deformations of the
formula. To help following the deformations, we give underlines to the terms that are used
for the deformation.

x∗(P ) + x∗(R) + x∗(T )
≤ 2|P |+ 2|R|+ 2|T |+ (σ(π, r) + σ(π, t)− σ(ρ, p)− σ(τ, p))

+(σ(ρ)− σ(ρ, t)+σ(τ , r)− σ(r))

−σ(τ , r)− σ(t) +
∑

(m,w)∈T

min{2− σ(τm), 2σ(tw)− (σ(τm, t) + σ(τm, t))}

= 2|P |+ 2|R|+ 2|T |+ (σ(π, r) + σ(π, t)− σ(ρ, p)− σ(τ, p))
+(σ(ρ)−σ(ρ, t)− σ(r))

−σ(t) +
∑

(m,w)∈T

min{2− σ(τm), 2σ(tw)− (σ(τm, t) + σ(τm, t))}

≤ 2|P |+ 2|R|+ 2|T |+ (σ(π, r)+σ(π, t)− σ(ρ, p)− σ(τ, p)) + (σ(ρ)−σ(r))

−σ(t) +
∑

(m,w)∈T

min{2− σ(τm), 2σ(tw)− (σ(ρ, tw) + σ(τm, t) + σ(τm, t))}

(Use Lemmas 8(ii) and 9(i).)
≤ 2|P |+ 2|R|+ 2|T | − σ(ρ, p)− σ(τ, p) + (σ(ρ)−σ(ρ, r)− σ(τ, r))
−σ(ρ, t)−σ(ρ, t)− σ(τ , t)− σ(τ, t)

+
∑

(m,w)∈T

min{2− σ(τm), 2σ(tw)− (σ(ρ, tw) + σ(τm, t) + σ(τm, t))}

(Use Lemma 10(i).)
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= 2|P |+ 2|R|+ 2|T |−σ(τ, p)− σ(τ, r)− σ(ρ, t)− σ(τ , t)− σ(τ, t)

+
∑

(m,w)∈T

min{2− σ(τm), 2σ(tw)− (σ(ρ, tw) + σ(τm, t) + σ(τm, t))}

(Use Lemma 10(iii).)
≤ 2|P |+ 2|R|+ 2|T |

+
∑

(m,w)∈T

min{2− 2σ(τm), 2σ(tw)− (2σ(ρ, tw) + 2σ(τm, t) + 2σ(τm, t))}

(Use Lemma 8(i).)
= 2|P |+ 2|R|+ 2|T |+

∑
(m,w)∈T

min{2− 2σ(τm),

2σ(π, tw) + 2σ(ρ, tw) + 2(σ(τ, tw) + σ(τ , tw)− σ(τm, t)− σ(τm, t))}.

For the last inequality, we also used the inequality min{a, b} − c ≤ min{a− x, b− y}, where
x ≤ c and y ≤ c. J

I Lemma 16.∑
(m,w)∈T

min{2− 2σ(τm), 2σ(π, tw) + 2σ(ρ, tw) + δm,w} ≤
1
2(|P |+ |R|+ |T |).

Proof. For each pair (m,w) ∈ T , let P (w) = {i | (i,M(i)) ∈ P, i =w m}, R(w) = {i |
(i,M(i)) ∈ R, i =w m,w �i M(i)}, and PR(w) = P (w) ∪ R(w). Then it is not difficult to
see that

σ(π, tw) + σ(ρ, tw) =
∑

(i,M(i))∈P

x∗i,w +
∑

(i,M(i))∈R,w�iM(i)

x∗i,w

=
∑

(i,M(i))∈P,i=wm

x∗i,w +
∑

(i,M(i))∈R,w�iM(i),i=wm

x∗i,w

=
∑

i∈PR(w)

x∗i,w. (9)

The first equality is from the definitions of σ(π, tw) and σ(ρ, tw) for (m,w) ∈ T . For the
second equality, first note that there is no man i such that m �w i because (m,w) ∈ T . Also,
note that any i considered in the summation has proposed to w during the execution of the
algorithm; hence, there is no i such that i �w m and x∗i,w > 0. Therefore, considering only i
such that i =w m suffices. The last equality is from the definition of PR(w).

For w such that (m,w) ∈ T and a man i ∈ PR(w), we define πi = {(i, j) ∈ A} if i ∈ P (w),
ρi = {(i, j) ∈ A | j �i M(i)} if i ∈ R(w), and πρi = πi ∪ ρi for i ∈ PR(w). Then, define
νi,w = x∗i,w/σ(πρi) and

νw =
∑

i∈PR(w)

νi,w.

Now, for each (m,w) ∈ T , we have

σ(τm) =
∑

j�ml(m)

x∗m,j ≥ max
i∈PR(w)

σ(π, ρi) ≥
∑

i∈PR(w)

νi,w
νw

σ(π, ρi) = 1
νw

∑
i∈PR(w)

x∗i,w. (10)

The first equality is due to the definition of τm and the fact that m has proposed to any
woman j such that j �m l(m). For the first inequality, we used Inequality (6). More
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specifically, we used the fact that each man i ∈ PR(w) must have proposed to w with the
f -value of at least

σ(π, ρi) =
∑

(i,j)∈πρi

x∗i,j ,

but m, who proposed to w with the f -value∑
j�ml(m)

x∗m,j ,

is eventually matched to w. For the second inequality, we used the fact that a (weighted)
average of σ(π, ρi) over i ∈ PR(w) is no more than the maximum over i ∈ PR(w).

For (m,w) ∈ T such that ∑
i∈PR(w)

x∗i,w ≤
νw

2(1 + νw) (2− δm,w),

we have

2σ(π, tw) + 2σ(ρ, tw) + δm,w = 2
∑

i∈PR(w)

x∗i,w + δm,w ≤
2νw + δm,w

1 + νw
≤ 1 + νw

2 + δm,w. (11)

The first equality comes from Equation (9). For the last inequality, we used δm,w

1+νw
≤ δm,w,

and the fact that 2x/(1 + x) ≤ (1 + x)/2 holds for any x ≥ 0.
For (m,w) ∈ T such that ∑

i∈PR(w)

x∗i,w ≥
νw

2(1 + νw) (2− δm,w),

we have, from Inequality (10)

2− 2σ(τm) ≤ 2− 2
νw

∑
i∈PR(w)

x∗i,w ≤ 2− 2− δm,w
1 + νw

= 2νw + δm,w
1 + νw

≤ 1 + νw
2 + δm,w. (12)

Therefore, we have∑
(m,w)∈T

min{2− 2σ(τm), 2σ(π, tw) + 2σ(ρ, tw) + δm,w}

≤
∑

(m,w)∈T

(
1 + νw

2 + δm,w

)
=

∑
(m,w)∈T

1 + νw
2 + 2

∑
(m,w)∈T

(σ(τ, tw) + σ(τ , tw)− σ(τm, t)− σ(τm, t))

=
∑

(m,w)∈T

1 + νw
2

= 1
2

∑
(m,w)∈T

1 +
∑

i∈PR(w)

νi,w


= |T |

2 + 1
2

∑
(i,M(i))∈P∪R

∑
(m,w)∈T

νi,w

≤ |P |+ |R|+ |T |
2 .
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The first inequality comes from Inequalities (11) and (12). For the second equality, note that∑
(m,w)∈T

(σ(τ, tw) + σ(τ , tw)) = σ(τ, t) + σ(τ , t) =
∑

(m,w)∈T

(σ(τm, t) + σ(τm, t))

by the definitions of σ(τ, tw), σ(τ , tw), σ(τm, t), and σ(τm, t). For the last equality, we
exchanged the order of summation. The last inequality is due to the fact that for each
(i,M(i)) ∈ P ∪R, ∑

(m,w)∈T

νi,w ≤ 1.

J

Combining Lemmas 15 and 16, we can easily obtain Lemma 1. J

4 Lower Bounds

In this section, we show several results related to the inapproximability of the MAX SMTI.
We first show three lower bounds on the integrality gap of the IP formulation given in Sec. 2,
though the proof of Theorem 18 is omitted due to limitations of space.

I Theorem 17. The integrality gap of the IP formulation given in Sec. 2 is at least 1.25 for
R1T.

Proof. We show an R1T instance I1 whose integrality gap is (at least) 1.25.

m1: w1 w1: m2 m3 m1

m2: w2 w1 w2: (m2 m3)
m3: w2 w1 w3 w3: m3

One of the largest stable matchings for I1 is M∗ = {(m2, w1), (m3, w2)}. There is a feasible
fractional solution x for LP (I1) such that xm1,w1 = xm2,w1 = xm2,w2 = xm3,w2 = xm3,w3 =
0.5. Hence, the integrality gap is at least (5× 0.5)/|M∗| = 1.25. J

I Theorem 18. The integrality gap of the IP formulation given in Sec. 2 is at least 1.3333
for R2T.

I Theorem 19. The integrality gap of the IP formulation given in Sec. 2 is at least 1.5−o(1)
for 1T.

Proof. We show a 1T instance I3 whose integrality gap is 1.5− o(1).

m1: w1 w
′
1 w1: (m1 m2 m3 · · · mk) m′1

m2: w1 w2 w
′
2 w2: (m2 m3 · · · mk) m′1

m3: w1 w2 w3 w
′
3 w3: (m3 · · · mk) m′3

...
mk−1: w1 w2 w3 · · · wk−1 w

′
k−1 wk−1: (mk−1 mk) m′k−1

mk: w1 w2 w3 · · · wk−1 wk w
′
k wk: mk m

′
k

m′1: w1 w′1: m1
...
m′k: wk w′k: mk
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The largest stable matchingM∗ for this instance is {(m1, w1), (m2, w2), . . . , (mk, wk)}. There
is a feasible fractional solution x for LP (I3) such that xmi,wj

= 1/k, xmi,w′
i

= 1− i/k, and
xm′

j
,wj

= (j − 1)/k for all of the pairs (i, j) ∈ {1, 2, . . . , k}2. Hence, the integrality gap is at
least

LP (I3)/|M∗| =

k +
k∑
j=1

j − 1
k

 /k = 3/2− o(1).

J

The lower bound of Theorem 19 is an improvement over the previous bound of 1.3678 [22].
This result rules out some current techniques to obtain an approximation algorithm with a
factor of 1.5− ε for 1T.

Second, we show a relation between the general 2T case of the MAX SMTI and a
special case of the minimum maximal matching problem (MMM-Bi-APM(ε)) with respect to
inapproximability, which is formally written as Theorem 21.

I Definition 20. The MMM-Bi-APM(ε) (for given ε such that 0 < ε < 1/2) is the problem
to find a minimum maximal matching on a given balanced bipartite graph G = (U, V,E)
(|U | = |V |) that contains a matching M of size at least (1− ε)|U | (= (1− ε)|V |).

I Theorem 21. If the MMM-Bi-APM(ε) is NP-hard to approximate to within a factor of
2− ε, then the MAX SMTI with two-sided ties (2T) is NP-hard to approximate to within a
factor of 3/2−O(ε).

Proof. We show that, if there is an approximation algorithm with approximation ratio
α = 3/(2 + ε+ 2ε(1− ε)) = 3/2−O(ε) for the MAX SMTI with two-sided ties (2T), then
there is a (2− ε)-approximation algorithm for the MMM-Bi-APM(ε).

To show this, let G = (U, V,E) such that |U | = |V | = n be a balanced bipartite graph, an
input of the MMM-Bi-APM(ε). Let U = {u1, . . . , un} and V = {v1, . . . , vn}. We construct
an instance IG of MAX SMTI as follows. Let k = b(1 + ε)n/2c. IG consists of n+ k men
ui(1 ≤ i ≤ n) and xi(1 ≤ i ≤ k), and n+ k women vi(1 ≤ i ≤ n) and wi(1 ≤ i ≤ k). Each
man ui corresponds to a vertex ui of U , and each woman vi corresponds to a vertex vi of
V . Hereafter, we do not distinguish between the names of these persons and vertices. The
preference lists are given in the following. For a vertex v ∈ U ∪ V , N(v) denotes the set of
vertices incident to v, and [N(v)] denotes an arbitrary ordering of vertices in N(v).

u1: ([N(u1)]) w1 · · · wk v1: ([N(v1)]) x1 · · · xk

...
...

...
...

un: ([N(un)]) w1 · · · wk vn: ([N(vn)]) x1 · · · xk

x1: v1 · · · vn w1: u1 · · · un

...
...

...
...

xk: v1 · · · vn wk: u1 · · · un

LetM∗ be a minimum maximal matching of G = (U, V,E). Then |M∗| ≥ (1−ε)n/2 by the
assumption that G contains a matching of size at least (1−ε)n. Next, it is easy to see that the
above MAX SMTI instance IG has a stable matching of size |M∗|+(2n−2|M∗|) = 2n−|M∗|.
(If (ui, vj) ∈ M∗ then include the pair (ui, vj). If ui is unmatched in M∗, then include
(ui, wi′) for some i′, and similarly if vj is unmatched in M∗, include (xj′ , vj) for some
j′.) Therefore, if we have an α-approximation algorithm for the MAX SMTI, then this
algorithm produces a matching M of size at least (2n − |M∗|)/α. Let T be the set of
pairs in M between people in U and V . First, it is easy to see that T is a maximal
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matching of G since if G is not maximal then M contains a blocking pair. Next, note
that the size of M is exactly 2n − |T |, which implies that 2n − |T | ≥ (2n − |M∗|)/α.
Hence we have |T |/|M∗| ≤ 2(1 − 1/α)n/|M∗| + 1/α ≤ 4(1 − 1/α)/(1 − ε) + 1/α, where
we use |M∗| ≥ (1 − ε)n/2 for the last inequality. Therefore, if there is an algorithm with
approximation ratio α = 3/(2 + ε+ 2ε(1− ε)) for the MAX SMTI, then T is an approximate
solution for the MMM-Bi-APM(ε) with an approximation ratio at most

|T |/|M∗| ≤ 4(1− 1/α)/(1− ε) + 1/α
= 4(1− (2 + ε+ 2ε(1− ε))/3)/(1− ε) + (2 + ε+ 2ε(1− ε))/3

= 4
3 −

8
3ε+ 1

3(2 + ε+ 2ε(1− ε))

= 2− 5
3ε−

2
3ε

2

< 2− ε.

J

The (in)approximability of the MMM-Bi-APM(ε) is unknown, but we informally discuss
it. It would be easy to construct a (2 − ε)-approximation algorithm for the MMM-Bi-
APM(ε) if we had an approximation algorithm with a constant approximation ratio for
the maximum balanced independent set problem on bipartite graphs, which asks us to find
a largest independent set U ′ ∪ V ′ such that U ′ ⊆ U , V ′ ⊆ V , and |U ′| = |V ′| in a given
bipartite graph G = (U, V,E). However, this problem is known to be NP-hard and is hard
to approximate (does not allow any constant approximation algorithm) under plausible
assumptions [1, 6, 7, 23]. Although these results do not immediately rule out the existence
of the (2− ε)-approximation algorithm for the MMM-Bi-APM(ε), they imply some difficulty
of this problem.

Finally, we also show another inapproximability result for R2T, which is formally written
as Theorem 22. This result can be obtained by slightly modifying the inapproximability
proof for 2T given in [35].

I Theorem 22. The MAX SMTI problem in which each person is allowed to include a tie
only at the end of the preference list (R2T) is NP-hard to approximate with any factor smaller
than 33/29 and is UG-hard to approximate with any factor smaller than 4/3.

Proof. Yanagisawa [35] used a reduction from the minimum vertex cover problem with a
perfect matching (which is UG hard to (2 − ε)-approximate) to the 2T problem. In the
reduction, he used the following gadget for each edge in a perfect matching.

vA
j : vb

j va
i : vB

i

vB
i : (ec

ij v
b
j) vb

i1 · · · v
b
idi

va
i vb

j : eC
ij v

B
i vB

j1 · · · v
B
jdj

vA
j

eC
ij : ec

ij (vb
i v

b
j) ec

ij : (vB
j vB

i ) eC
ij

vB
j : (ec

ij v
b
i ) vb

j1 · · · v
b
jdj

va
j vb

i : eC
ij v

B
j vB

i1 · · · v
B
idi

vA
i

vA
i : vb

i va
j : vB

j

By modifying this gadget to the following one, we can satisfy the restriction that all the ties
appear at the end of preference lists.

vA
j : vb

j va
i : vB

i

vB
i : ec

ij v
b
j v

b
i1 · · · v

b
idi

va
i vb

j : eC
ij v

B
i vB

j1 · · · v
B
jdj

vA
j

eC
ij : ec

ij (vb
i v

b
j) ec

ij : (vB
j vB

i eC
ij)

vB
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b
j1 · · · v

b
jdj

va
j vb

i : eC
ij v

B
j vB

i1 · · · v
B
idi

vA
i

vA
i : vb

i va
j : vB

j
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It is easy to see that a matching M is stable for a MAX SMTI instance obtained from the
original gadget if and only if M is stable for the MAX SMTI instance obtained from the
modified gadget. Hence, the inapproximability result for 2T carries over to R2T. J
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Abstract
From the publish-subscribe systems of the early days of the Internet to the recent emergence of
Web 3.0 and IoT (Internet of Things), new problems arise in the design of networks centered at
producers and consumers of constantly evolving information. In a typical problem, each terminal
is a source or sink of information and builds a physical network in the form of a tree or an overlay
network in the form of a star rooted at itself. Every pair of pub-sub terminals that need to be
coordinated (e.g. the source and sink of an important piece of control information) define an edge
in a bipartite demand graph; the solution must ensure that the corresponding networks rooted
at the endpoints of each demand edge overlap at some node. This simple overlap constraint, and
the requirement that each network is a tree or a star, leads to a variety of new questions on the
design of overlapping networks.

In this paper, for the general demand case of the problem, we show that a natural LP
formulation has a non-constant integrality gap; on the positive side, we present a logarithmic
approximation for the general demand case. When the demand graph is complete, however, we
design approximation algorithms with small constant performance ratios, irrespective of whether
the pub networks and sub networks are required to be trees or stars.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Approximation Algorithms, Steiner Trees, Publish-Subscribe Systems,
Integrality Gap, VPN.

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.381

1 Introduction

In large Internet publishing systems, a variety of sources of information constantly refresh
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their corresponding consumers. Common examples include syndication systems as well as
distributed databases that contain information originating at sources with sinks interested in
the most up to date copies.

A natural approach to enable efficient information transfer in such systems is to build a
cost-effective collection of networks, one for each publisher and supplier: the publishers push
their updates to a set of locations via their respective networks, while the subscribers pull the
information, refreshed by multiple publishers, from these intermediate nodes using their own
networks. Note that each subscriber network needs only to overlap those publishers’ networks
that are of interest. Such interests are represented by an auxiliary bipartite demand graph
with publishers on one side, subscribers on the other, and edges (of interest) between the two.
Since the individual networks are being used for scatter/gather or push/pull operations (by
publishers/subscribers respectively) the two natural structures are trees and overlay stars.
Trees correspond to situations where the entity (e.g. a pusher, such as Facebook, or a puller,
such as the IRS) has sufficient network presence to employ multicast/reverse-multicast while
overlay stars correspond to point-to-point communication (e.g. a puller, such as a single user
who can’t share bandwidth, or has to pull directly from the source).

This basic framework gives rise to a class of problems we have christened DON or Design
of Overlapping Networks. Given their relevance to developments in the internet ecosystem,
these theoretical problems are significant from a practical perspective. Our central goal is
to settle the polynomial-time approximability for the most general DON problem, in which
we have an arbitrary demand graph, and arbitrary choice of tree or overlay star by each
publisher/subscriber. In this paper, we obtain a constant approximation for the special case
when all subscribers are interested in all publishers, and a logarithmic approximation for the
general case. The latter approximation is, in fact, with respect to the value of a natural linear
programming relaxation of the problem. In a contrasting result, we establish a non-constant
integrality gap for this linear program. However, the exact approximability status of the
general DON problem remains tantalizingly open.

1.1 Problem Definition
In the general DON problem we are given an undirected graph G = (V (G), E(G)) with non-
negative costs on the edges c : E → Z+, subsets of nodes P, S ⊆ V with P ∩S = ∅ (publishers
and subscribers respectively), the type of network to be installed for each publisher and
subscriber, Type : P ∪ S → {tree, star}, and an auxiliary demand graph D = (V (D), E(D))
where V (D) = P ∪ S and E(D) ⊆ P × S specifying (publisher, subscriber) pairs whose
networks are required to overlap (intersect). The goal is to build a collection of networks
where each node in P ∪ S builds a network rooted at it of the specified type, and for all
pairs (p, s) ∈ E(D) the network rooted at p and the network rooted at s share a node. The
objective is to minimize the sum of the costs of all the networks. We assume that the edge
costs form a metric: they are symmetric and satisfy the triangle inequality. Any instance of
the general DON problem can be split into four sub-instances; this subdivision only loses
a factor of 4 in the approximation algorithms. When the type requirement Type is tree
(resp., star) for all publishers and subscribers we refer to the problem as tree-tree DON (resp.
star-star DON). We also use tree-star DON to refer to the two problem variants where on
one side, say the publishers, we are required to build rooted trees while on the other, we are
required to build rooted stars. We use the prefixes general and complete to denote arbitrary
and complete demand graphs, respectively, as in general tree-tree DON or complete tree-star
DON, etc. Thus, the term general (complete) DON refers to the problem where the demand
graph is arbitrary (complete) and the type requirement may vary across terminals.
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We denote the installed network by N = (V,EN ); Pi denotes the network rooted at
publisher pi and Sj the network rooted at subscriber sj . Then, the multi-graph N =
(∪pi∈PPi) ∪ (∪sj∈SSj) is the (multi-set) union of all the installed networks. The cost of N is
the sum of the costs of all the constituent networks, with each edge counted as many times
as the number of individual networks they are present in. Recall that the installed networks
are operated autonomously by each publisher and subscriber, and thus the cost of an edge
needs to be multiplied by the number of such independent networks that build and utilize it
in their updates.

1.2 Results and Techniques
We present new algorithms and results for several DON problems.
1. We conjecture that a polynomial-time constant-factor approximation for general DON is

not achievable. We present in Section 2.1 an Ω(log logn) integrality gap for a natural LP
relaxation of the general tree-tree DON; note that this result also extends to the general
DON problem. This integrality gap proof, which is our strongest technical contribution,
is based on a novel reduction from a well-studied LP relaxation for the group Steiner
problem, applied to a hypercube demand graph instance of DON.
On the positive side, we present an O(logn)-approximation algorithm for the general
DON problem in Section 2.2. The main ingredient of our result is a constant-factor
approximation algorithm for tree-star DON on tree metrics, by a careful determinis-
tic rounding of an LP relaxation of the problem. The logarithmic approximation for
general DON follows by extending to general metrics using the methods of Bartal and
Fakcharoenphol et. al [7, 2] and combining with previously known results for the star-star
and tree-tree variants [3].

2. We next study the complete DON variants where the demand graph is complete. We
give constant-factor approximation algorithms for all three variants – tree-tree, star-star
and tree-star – which together yield a constant-factor approximation for complete DON.
Unlike our algorithm for general DON, all of our algorithms for the complete demand case
are combinatorial; they combine structural characterizations of near-optimal solutions
with interesting connections to access network design and facility location problems.
a. Our approximation factor for complete tree-tree DON in Section 3.1 is 4.74 via a

reduction to asymmetric VPN. The 4.74 comes from the result by Eisenbrand and
Grandoni [5] on asymmetric VPN.

b. Our approximation factor for complete star-star DON in Section 3.2 is 4α, where
α is the best approximation factor achieved for uncapacitated facility location; this
improves upon the result in [3].

c. For the complete tree-star-DON problem, we get a 4ρTS-approximation in Section 3.3
where ρTS is the best known approximation for the tree-star Access Network Design
problem, which is generalized by the Connected Facility Location or CFL problem
(thus ρTS ≤ ρCFL ≤ 4 [6]).

1.3 Related Work
Data Dissemination Networks. Our formulation of DON generalizes network data dissem-
ination problems first studied in [3]. Using our terminology, the relevant results of [3] are
O(logn)-approximation algorithms for general tree-tree DON and general star-star DON, and
a 14.57-approximation for the complete star-star DON. Our work improves the approximation
factor for complete star-star DON to under 6 (since the current best approximation for
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uncapacitated facility location is 1.488 [14]), and presents new results for many other DON
problems. The star-star DON problem is also closely related to the minimum-cost 2-spanner
problem studied in [4, 13]. In particular, a greedy algorithm essentially along the same lines
as an algorithm of [4] yields an O(logn)-approximation for the star-star-DON problem even
when the underlying distances do not form a metric.

Network Design. There has been considerable work in network design, which is concerned
with the design of network structures that satisfy some connectivity properties and optimize
some underlying cost structure [22]. Well-known problems in this area include the minimum
Steiner tree, group Steiner tree [8], and general survivable networks [12]. One key distinction
between many of these network design problems and DON is that the desired solution in
DON is a collection of networks (as opposed to a single network), and each edge contributes
to the total cost of the solution as many times as it occurs in the network collection. On the
other hand, the goal in many classical network design problems is to build a single network.
Note that the problem of building a single minimum-cost network such that every pair of
nodes in a given demand graph is connected in the network is exactly the generalized Steiner
network problem, for which polynomial-time constant-factor approximations exist [1].

Multicommodity facility location. Another stream of work has addressed the extension of
facility location problems to reach clients with additional restrictions on the facility opening
costs, to reach facilities more robustly [21], or with the addition of services that facilities
open to satisfy the clients with various cost functions governing the installation of services
and facilities [17, 19]. The work in [15] arising from publisher-subscriber mechanisms is most
closely related to our work, and rather than use a network from each publisher, models the
publisher as a commodity that can be supplied at various nodes in the network by installing
“facilities" of appropriate costs; the subscribers build minimum-cost networks to reach these
facility installations of the appropriate publishers.

Access Networks and Connected Facility Location. Our algorithms for the complete DON
problem are connected to to the access network design and facility location problems. In
a version of the Access Network Design problem [16], we are given an undirected graph,
a root node and nonnegative metric costs on the edges, along with a subset of terminal
nodes. The goal is to design a backbone network in the form of a tree or tour which is
built with higher speed and higher quality cables, while the terminals access the backbone
using direct access edges. Thus the overall network is a backbone rooted Steiner tree (or
tour), with access networks that are stars arising from the terminals and ending at the nodes
of the backbone. We are given a cost multiplier µ that denotes the cost overhead factor
for the backbone compared to the access network and the objective to be minimized is the
total cost µ · c(backbone network T ) +

∑
stars s c(s). A ρAN = 3 + 2

√
2-approximation is

presented for this problem [16] when the backbone is a ring and the access network is a star.
Subsequent work [10, 20, 6] present constant-factor approximations for other generalizations
and variants of this problem as well using LP rounding and primal-dual methods. The
current best approximation factor for the CFL generalization is ρCFL ≤ 4 [6], which also
extends to tree-star access network design, i.e. ρAN ≤ ρCFL ≤ 4.

Virtual Private Network. The DON problems are also closely related to the VPN and
asymmetric VPN problems. The VPN problem can be solved exactly [9], while the asymmetric
VPN problem is NP-hard but has a constant approximation [18, 5]. The VPN problems differ
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from DON as each VPN problem instance seeks only one network, while a DON instance
builds multiple networks. Nevertheless, we are able to decompose an approximate solution for
asymmetric VPN into multiple networks, and obtain a useful approximation for the complete
tree-tree DON problem (Section 3.1). In Section 3.1, we also present a more direct approach
to the complete tree-tree DON problem that yields insights into the tree-star case at the
cost of a slightly worse approximation ratio (as opposed to the reduction to VPN for the
tree-tree case)."

2 DON with General Demands

In this section, we consider approximation algorithms for the general DON problem. We
present in Section 2.1 an Ω(log logn) integrality gap for a natural LP relaxation of the general
tree-tree DON problem. In Section 2.2, we present an O(logn)-approximation algorithm for
general DON.

2.1 Integrality Gap for Tree-Tree DON
In this section, we show that a natural LP formulation for the general tree-tree DON problem
has super-constant integrality gap. We note that the same lower bound on integrality gap
extends to the appropriate LP for general DON. A natural integer program, IPDON for the
tree-tree DON problem is as follows (all variables are 0 − 1): we let r ∈ P ∪ S denote a
publisher or subscriber node, and denote its tree Nr; zre is an indicator variable that is 1 iff
edge e ∈ E(G) is in tree Nr; yrh is an indicator variable that is 1 iff vertex h is in tree Nr;
xr,sh is an indicator variable that is 1 iff vertex h is in both trees, Nr and Ns. X will refer
to a cut which is a subset of vertices of V (G) and δ(X) will denote the edges between X
and its complement V (G) \X. The integer program IPDON for the tree-tree DON has the
following nontrivial constraints.

min
∑

r∈V (D),e∈E(G)

cez
r
e∑

e∈δ(X)

zre ≥ yrh ∀X, r ∈ X,h ∈ V (G) \X

xr,sh ≤ yrh ∀r, s ∈ V (D), h ∈ V (G)
xr,sh ≤ ysh ∀r, s ∈ V (D), h ∈ V (G)∑

h∈V (G)

xr,sh ≥ 1 ∀(r, s) ∈ E(D)

xr,sh , yrh, z
r
e ≥ 0 ∀r, s ∈ V (D), e ∈ E(G), h ∈ V (G)

xr,sh , yrh, z
r
e are integers ∀r, s ∈ V (D), e ∈ E(G), h ∈ V (G)

(IPDON)

The first set of cut covering constraints enforce that the tree rooted at r is connected with
all nodes h for which yrh is set to one. The fourth set enforces all pairs of terminals r, s in
the demand graph must meet in some hub vertex h. The second and third sets enforce that
if a node h is used as a hub for a pair, it is required to occur in both these trees. Relaxing
the above integer program by dropping the integrality constraints gives us the natural linear
program LPDON. Observe that the feasible integral solutions of the linear program are
exactly the solutions to the integer program.
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I Theorem 1. For every sufficiently large n, there exist instances of tree-tree DON with
n = |V (G)| for which LPDON has an Ω(log logn) integrality ratio.

Proof. Recall that the integrality ratio of a (minimizing) linear program is the minimum
ratio between any feasible integral point and the optimum fractional solution. Our proof will
proceed by a reduction from a linear program for the Group Steiner Tree (GST) problem.

Given a tree T with edge costs and a collection of k groups of leaves, g1, g2, . . . gk, the
Group Steiner Tree problem is to find a minimum cost subtree such that at least one vertex
from every group is connected to the root. In [11] it was shown that a natural linear program
for the GST problem has an Ω(log2 n) integrality ratio even when the input metric costs c
arise from an underlying tree. Similar to the linear program for the tree-tree DON problem
we present the linear program LPGST as the relaxation of an integer program IPGST with
0− 1 variables.

min
∑

e∈E(T )

xece

∑
e∈δ(X)

xe ≥ 1 ∀X, gi : gi ∩X = ∅, r ∈ X

xe ≥ 0 ∀e
xe integer ∀e

(IPGST)

Here we give an explanation of what the variables in IPGST represent: xe is an indicator
variable that is 1 iff edge e ∈ E(T ) is in the solution subtree; and X is a subset of vertices
of V (G) referring to a cut and δ(X) will denote the edges between X and its complement
V (G) \X. The main cut covering constraints enforce that each group is connected to the
root node r. As before, dropping the integrality constraints gives us LPGST.

As stated before Halperin et.al [11] show that LPGST has an integrality ratio of Ω(log2 n)
even on tree metrics when k, the number of groups, is Ω(n) where n = |V (T )|.

Given an instance, TGST of LPGST with n = V (T ) vertices and k groups, we transform
it into an instance of Tree-Tree DON, LPDON, with N = 2kn = |V (G)| vertices in the host
graph such that

corresponding to every fractional solution, of value fGST , of LPGST there is a fractional
solution of value fDON ≤ 2kfGST to LPDON, and
corresponding to every feasible integral point, of value IDON , of LPDON there is a feasible
integral point of value IGST ≤ IDON (1+log k)

2k to LPGST.

The transformation is intuitive: we take a “graph product” of the Group Steiner Tree
instance with a hypercube of dimension k, where k is the number of groups. We will make 2k
copies of the tree T . Each root r of a copy of T will be either a publisher or subscriber. The
demand graph D is a hypercube of dimension k. Now let Tr denote the copy of T rooted at
r. Now consider s such that there is an edge (r, s) in the ith dimension in D, and v ∈ gi.
We will connect the copy of v in Tr to the copy of v in Ts with a zero cost edge.

It is easy to see that fDON ≤ 2kfGST for the above transformation - observe that
replicating the fractional solution to LPGST in each of the 2k copies of T is a valid fractional
solution to LPDON.

For the other direction, i.e., to see IGST ≤ IDON (1+log k)
2k first observe that for edge (r, s)

in dimension i of the demand hypercube, at least one of the trees corresponding to r or s must
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cross dimension i and the only way to cross dimension i is along a 0-cost edge connecting
two corresponding group gi leaves. Now note that any tree Nr (the network that r builds) in
a solution to IPDON can be transformed into a subtree of T by keeping an edge in T if Nr
contains the corresponding edge in any copy of T in G. Let the subtree of T so obtained
be called the retract of Nr. It is easy to see that if Nr ever crosses dimension j then a leaf
in group gj is connected to the root of T in its retract and that the cost of a retract is
never more than the cost of the original Nr. By our earlier observation for any edge (r, s) in
dimension i at least one of the two retracts of Nr, Ns must connect a node in group gi to the
root. Hence if we select a node in D at random and take its retract then any given group is
connected with probability at least 1/2 and it has expected cost IDON

2k . Thus if we take the
union of 1 + log k retracts chosen uniformly at random then the resulting subgraph of T has
expected cost IDON (1+log k)

2k and the probability any given group is not connected to the root
is less than 1

k . Since there are k groups this means there exists a subgraph of T , connecting
the root to every group, of cost at most IDON (1+log k)

2k , i.e., IGST ≤ IDON (1+log k)
2k .

From fDON ≤ 2kfGST and IGST ≤ IDON (1+log k)
2k it follows that IDON

fDON
≥ IGST

fGST
(1 + log k).

By [11], when k = θ(n) we have that IGST

fGST
= Ω(log2 n) from which it follows that IDON

fDON
=

Ω( log2 n
log k ) = Ω(logn) but the size of the transformed instance is N = 2kn, i.e., n = Ω( logN

log logN ).
In other words, the integrality gap is IDON

fDON
= Ω(logn) = Ω(log( logN

log logN )) = Ω(log logN) J

2.2 O(log n) approximation

We next show that the general DON problem can be approximated to within an O(logn)
factor in polynomial time. As discussed in Section 1, the general DON problem can be
split into three problems: tree-tree DON, star-star DON, and tree-star DON. In previous
work, O(logn)-approximation algorithms have been developed for tree-tree DON and star-
star DON [3]. We now present an O(logn)-approximation for tree-star DON, implying an
O(logn)-approximation for general DON.

Our O(logn)-approximation for tree-star DON is obtained by deriving a constant-factor
approximation for the special case of tree metrics, and invoking the standard reduction from
general metrics to tree metrics [7]. Our constant-factor approximation algorithm, which
rounds an LP relaxation, essentially generalizes a result of [15] on multicommodity facility
location from a uniform facility cost case to the case where the facility costs form a tree
metric.

I Theorem 2. The tree-star DON problem with general demands on tree metrics can be
approximated to within a constant factor in polynomial time. This implies an O(logn)-
approximation algorithm for general DON on general metrics.

We first present a linear programming relaxation for the problem. Let T denote the
given tree which is our metric. For a publisher j and an edge e of T , let zje represent the
extent to which j’s tree uses e. For a subscriber i and leaf node v, let yiv denote the extent
to which i’s star visits v. For leaf node u, subscriber i and publisher j such that (i, j) is in
the demand graph, let xi,ju denote the extent to which j meets i at u. Let d(u, v) denote the
distance between u and v under the tree metric; abusing notation somewhat, let d(e) denote
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the distance between the two endpoints of the edge e. Then, we have the following LP.

min
∑
j,e

zjed(e) +
∑
i,u

yiud(i, u)

zje ≥
∑
u:e∈Pju

xi,ju for all i, j, e∑
u x

i,j
u ≥ 1 for all (i, j) in demand graph

yiu ≥ xi,ju for all i, j, u
xi,ju , y

i
u, z

j
e ≥ 0 for all i, j, u, e

(LPTS)

The first set of constraints guarantees that every edge, e, in j’s tree can support the
extent that j meets any other node below e. The second set of constraints guarantees that
all demands are satisfied. The third set of constraints guarantee that i’s star supports how
much i must meet with other nodes.

We now present our algorithm. We introduce some useful notation first. Let Y iv denote
the sum of yiw, over all leaves w in the subtree rooted at v. Similarly, let Xi,j

v denote the
sum of xi,jw , over all leaves w in the subtree rooted at v.

We will identify three different types of hubs in the tree to which a subscriber will build
it’s star. These different types of hubs are paid for by different parts of the LP and guarantee
a connection to the publisher trees in different ways.
1. Solve LPTS to obtain a fractional solution (x, y, z).
2. For every subscriber i:

For every node v such that Y iv ≥ 1/3 and there is no child c of v such that Y ic ≥ 2/3:
we mark node v.
For each marked node v such that no ancestor of v is marked, we add v to σ(v); we
refer to v as a type-C hub for i.
For every node v such that (a) there is no ancestor of v that is a type-C hub for i, and
(b) there are two children c1 and c2 of v such that Y ic1

≥ 1/3 and Y ic2
≥ 1/3, we add v

to σ(v); we refer to v as a type-A hub for i.
For every node v that is an ancestor of a type-C hub, we define W i

v to be sum, over
every child c of v that is not an ancestor of a type-C hub, of Y ic .
For every path p from the root or a type-A hub node to a descendant type-A hub or
type-C hub node: we divide p into minimal contiguous segments such that the sum
of W i

v, over all v in the segment, is at least 1/3; for each such segment, we create a
type-B hub for i at the lowest node in the segment.
The star network for i connects i to each type-A, -B, and -C hub.

3. For every publisher j, the tree network consists of all edges e such that zje ≥ 1/3.

We prove Theorem 2 by establishing the following two lemmas.

I Lemma 3. For any edge (i, j) in the demand graph, the tree of publisher j overlaps with
the star of subscriber i at least one node.

Proof. Fix publisher j and subscriber i such that (i, j) is an edge in the demand graph.
Consider some subtree rooted at a node r0 such Xi,j

r0
is at least 1/3 in the LP solution, while

for any child c of r0, Xi,j
c < 1/3. Suppose (r0, r1, . . . , rf ) denote the path from r0 to the root

of the tree.
We first show that if there is a type-C hub at a node rk, then the tree of publisher

j includes node rk. By our algorithm’s choice of locating type-C hubs, it follows that
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Y irk−1
< 2/3. Therefore, publisher j meets subscriber i to an extent less than 2/3 in the

subtree rooted at rk−1. We consider two cases. If j is in the subtree rooted at rk−1, then
for the edge e = (rk−1, rk), zje ≥ 1/3. Otherwise, since Xi,j

rk−1
≥ Xi,j

r0
≥ 1/3, again we have

zje ≥ 1/3. Thus, in both cases, we ensure that the tree for publisher j contains rk.
We next show that if there is a type-A or type-B hub for i at a node rk and there are no

hubs for i at any rg, 0 ≤ g < k, then the tree for j must include rk. Since there is no type-A
hub at any rg, 0 ≤ g < k, each rg has at most one child that has a descendant with a type-C
hub; if there were two such children, then rg would have a type-A hub. Furthermore, there
must be a type-C hub in the subtree rooted at r0; if not, then the first ancestor of r0 to have
a hub would have a type-C hub, which would contradict our assumption. So suppose there is
a type-C hub in the subtree rooted at r0, say under the child r−1 of r0. Then, it must be
the case that the sum of W i

rg
, over 0 ≤ g < k, is at most 1/3, since otherwise we would have

a type-B hub at rg. Furthermore, by the definition of r0, Xi,j
r−1

< 1/3. This implies that j
meets i to an extent of 1/3 outside the subtree rooted at rk−1 and at least 1/3 inside the
subtree rooted at rk−1. Thus, regardless of where j is located for edge e = (rk−1, rk), we
will have zje ≥ 1/3, ensuring that the tree for publisher j contains rk. J

I Lemma 4. The total cost of the tree and star networks is at most twelve times the LP
optimal.

Proof. An edge e is added to the tree of publisher j exactly when zje ≥ 1/3. Therefore, the
cost of the tree network of j is within three times the cost for j in the LP.

We next consider the costs of the subscriber stars. There are three parts to it. The first is
the distance to the type-A hubs. If a type-A hub for i is created at a node r, then there exist
two children c1 and c2 of r such that Y ic1

and Y ic2
are both at least 1/3. Clearly, i is either

not in the subtree rooted at c1 or not in the subtree rooted at c2. In either case, the cost for
i in the LP solution for reaching the fractional hubs in one of c1 or c2 is at least d(i, r)/3.
Adding this over all the type-A hubs yields a cost that is at most 3 times the LP cost for i.

If a type-C hub is created at a node r, then we consider two cases: r is a strict ancestor
of i and r is not an ancestor of i or r = i. When r is not an ancestor of i or r = i, then we
know that Y ir ≥ 1/3 and all the distances from i to r’s subtree are at least d(i, r) so these
type-C hub yield a cost that is at most 3 times the LP cost for i. Now if r is a strict ancestor
of i, then let c be the child of r whose subtree contains i. We know that Y ic ≤ 2/3. So, we
know at least 1/3 of the LP cost associated with i travels distances d(i, r). There is only one
C-hub who is a strict ancestor of i. Therefore the type-C hubs yield a cost that is at most 6
times the LP cost for i.

If a type-B hub is created at a node r, then consider the sequence of ancestors a of r,
whose W i

a add up to 1/3. The cost of i reaching the fractional hubs in the LP that contribute
to these W i

a is at least d(i, r)/3.
The fractional hubs against which we have charged the type-C and type-B hubs are

different, so the cost for the type-B and type-C hubs is at most 3 times the LP cost for i,
yielding an O(1)-approximation for the overall total cost. J

3 DON with Complete Demands

In this section, we present constant factor approximation algorithms for the DON problem
when the demand graph is complete. We obtain this result by deriving constant-factor
approximations for the three variants – tree-tree, star-star and tree-star – in the following
subsections.
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3.1 Complete tree-tree DON
The complete tree-tree DON problem has an interesting connection to the asymmetric VPN
problem [18, 5], which we can exploit to obtain a constant-factor approximation.

First we introduce the VPN problem. Given a graph G, with edge costs c, and marginals
for each vertex, the VPN problem is to build a network of minimum cost such that for any
set of pairwise demands which obey the marginals, the flow can be routed on our network. A
set of pairwise demands obeys the marginals if the demands a vertex is involved in does not
exceed its marginal. One crucial distinction between VPN and the DON problems is that
while the VPN problem seeks the design of a single network, DON problems seek networks
for every node involved.

Now we define asymmetric VPN. Here the flows are directed, and each vertex has two
marginals, one for how much can flow out of the node, and one for how much can flow into
the node. We restrict to the case where the terminals allow 1 flow out of the node and no
flow in (sources), or they allow 1 flow into the node, and no flow out (sinks).

It turns out that for asymmetric VPN, there is always a tree solution which is within a
constant factor of an optimal solution [18]. We now use this tree solution to get a solution
for complete tree-tree DON.

I Lemma 5. Given a complete tree-tree DON problem, consider an asymmetric VPN problem
with the same input as the DON problem, with the subscribers as sources, and the publishers
as sinks. Then, any tree solution for the asymmetric VPN problem can be transformed into a
solution of the same cost for the complete tree-tree DON problem.

Proof. Let T be the tree which is a solution to asymmetric VPN. Since our solution to
asymmetric VPN is a tree which is adjacent to all the publishers and subscribers, then every
edge in the tree induces a partition of the terminal nodes.

Consider any edge e ∈ T ; we decide which trees use e. Let S1, P1 be the subscribers
and publishers respectively on one side of the partition; likewise let S2, P2 be the remaining
subscribers and publishers respectively. Now let a = min(|S1|, |P2|) and b = min(|P1|, |S2|).
Now a valid demand matrix would be to require a unit flow from a elements of S1 to a
elements of P2 and to require a unit flow from b elements of S2 to b elements of P1. These
a+ b flows must all cross e since T is a tree, therefore e has multiplicity at least a+ b.

Now if |S1| ≤ |P2|, then we assign e to be in the trees for the elements of S1, otherwise e
is in the trees for the elements of P2. Likewise if |S2| ≤ |P1| we assign e to be in the trees for
the elements of S2, otherwise e is in the trees for the elements of P1. The number of times
we use e is

min(|S1|, |P2|) + min(|S2|, |P1|) = a+ b

So, we don’t overuse e.
We next need to show that the edges assigned to a node form a tree. Since the original

structure was a tree, we only need to show that the edges assigned to a terminal t are
connected. Without loss of generality, suppose that a copy of e was assigned to be in Ts for
s ∈ S1. Let Q be the path in the tree T from e to s. Let e′ ∈ Q. Let V ′ be the vertices on
the same side as s of the partition formed by removing e′ from T . We know that S ∩V ′ ⊆ S1.
Likewise we know that P2 ⊆ P ∩ V ′C . Since |S1| ≤ |P2| (because e ∈ Ts), then we know
|S ∩ V ′| ≤ |P ∩ V ′C | where V ′C = V \ V ′. So, e′ is assigned to be in the tree for nodes in
S ∩ V ′. Therefore we have that Q ⊆ Ts. Therefore e is connected to s. Hence the graphs
formed by our assignment scheme are connected.



J. Iglesias, R. Rajaraman, R. Ravi, and R. Sundaram 391

Lastly, we must show that for every s ∈ S and p ∈ P then Ts and Tp intersect. Consider
s ∈ S and p ∈ P . Let Q be the path in T from p to s and e be an edge in Q. When we
look at the S1, S2, P1, P2 formed by removing e, then either s ∈ S1 and p ∈ P2, or s ∈ S2
or p ∈ P1. Without loss of generality, assume s ∈ S1 and p ∈ P2. Then e is assigned to be
in either the tree for all elements of S1 or for all elements in P2. So e is in either Ts or Tp.
Since Ts and Tp are connected subtrees of the same tree, and Q ⊆ TS ∪ Tp then Ts and Tp
meet at some vertex in Q. Therefore, all demands are satisfied and this is a valid solution to
the complete tree-tree DON problem. J

Using the current best results on asymmetric VPN which generates a tree solution [5],
this provides an 4.74 approximation algorithm for the complete tree-tree DON problem.

Next, we present a direct approximation algorithm which we build on for the tree-star
case. This approach has a worse approximation factor than the reduction from asymmetric
VPN, but the techniques used are what give us the insight into the tree-star case.

I Theorem 6. There is a 4ρTS-approximation algorithm for complete tree-tree DON, where
ρTS is the best factor for the tree-star access network design problem.

In the rest of this subsection, we give a proof of Theorem 6. Given N∗, an optimal solution,
let us denote the publisher and subscriber networks by P1, P2, . . . , Pk and S1, S2, . . . , Sl where
we index the nodes so that we have c(P1) ≤ c(P2) ≤ · · · ≤ c(Pk) and c(S1) ≤ c(S2) ≤ · · · ≤
c(Sl). Let c∗P and c∗S denote the total cost of the publisher and subscriber trees. Let sj be the
subscriber whose network is Sj and let pi be the publisher whose network is Pi. Note that
feasibility requires that Pi ∩ Sj 6= ∅ for all i, j. Let us also assume without loss of generality
that c(P1) ≤ c(S1).

The key transformation of the optimal solution is a reconfiguration of the subscriber
networks where we replace each tree Sj for j 6= 1 by the direct edge from subscriber node
j to subscriber node 1 concatenated with the subscriber tree S1. In other words, we set
S′j = {(sj , s1)} ∪ S1 for every subscriber sj 6= s1. Let us assign Sj = S′j .

Note that the modified subscriber trees are still feasible since the original subscriber
tree S1 intersects every publisher tree. We now bound the cost of the additional edge from
subscriber j to the subscriber 1, the root of S1.

I Lemma 7. For every subscriber j 6= 1, we have ci1 ≤ 3c(Sj).

p1

s1

si

Figure 1 The solid lines show the trees Si and S1 and the dashed lines show the tree P1. The
dotted line here is the path from si to s1 through the trees Si, P1, and S1.

Proof. To see this, note that by taking the path from j in Sj to its intersection with P1 and
following it to the intersection of P1 and S1 and continuing along S1 to the subscriber node
1, we have found a path from j to 1 of cost no more than the sum of the costs of Sj , P1 and
S1. However, since c(Sj) ≥ c(S1) ≥ c(P1), the length of this path is at most 3c(Sj). J
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Given that every subscriber contains the tree S1, it is particularly simple to design the
publisher network P ′i (for publisher pi) that needs to reach this tree: it will simply be a direct
edge that represents the shortest path from the publisher pi to the tree S1. The union of all
such direct edges gives a collection of stars that end at the subscriber tree S1. Furthermore
since the subscriber tree S1 is going to be used by every subscriber node, its cost must be
counted |S| = l times in the objective.

The resulting problem of finding the best tree for S1 is exactly the tree-star access
network design problem [16] with the root being subscriber 1, the multiplier M = |S| and the
terminals being R = P , the publisher nodes. Given an optimal solution N∗ for the complete
tree-tree DON problem, we thus have a solution to the tree-star access network instance of
cost at most c∗P + |S| · c(S1). We thus have the following lemma.

I Lemma 8. For the correct choice of the subscriber node 1 as the root with multiplier |S|
and terminals P , there is a solution to the tree-star access network design problem of cost at
most c∗P + |S| · c(S1). J

Proof of Theorem 6. The approximation algorithm tries every subscriber node as the root
of the tree-star access network problem formulated above. By adding the direct edge from
each other subscriber to this root, and extending the backbone tree with each such edge, we
get a solution to the complete tree-tree DON problem. The algorithm keeps the solution
of smallest total cost among all choices of the root subscriber node. The total cost of the
solution is the sum of the cost of the tree-star access network design problem and the sum of
the costs of the direct edges from the subscribers to the root. By Lemma 7, the latter cost
is no more than three times the cost of the tree (with the multiplier of |S|) in the solution
to the tree-star access network design problem. By Lemma 8 and the ρTS-approximation
factor for the tree-star access network design problem, we thus obtain a total cost of at most
4ρTS(c∗P + |S| · c(S1)) which is at most 4ρTS times the cost of N∗. J

It is not hard to extend the above methods to the case when the input terminals are
partitioned into more than two subsets, say R = P1 ∪ P2 ∪ . . . ∪ Pk and the demand graph
is the complete k-partite graph between these k subsets. By considering the partition that
has the cheapest tree network in the optimal solution to be in P1, the above argument can
be adapted to give a constant-factor approximation. We omit the details in this extended
abstract.

3.2 Complete star-star DON
In this section, we present a constant-factor approximation for complete star-star DON.

I Theorem 9. There is a 4α-algorithm for complete star-star DON, where α is the best
approximation achievable for metric uncapacitated facility location.

Our algorithm and the proof of Theorem 9 are based on an argument that there exists
a constant-factor approximate solution that has a special structure; our algorithm then
computes a constant-factor approximate solution with this special structure.

Given a solution where the publisher network is P1, P2, . . . , Pk and subscriber network
is S1, S2, . . . Sl, let P1 be the publisher network of smallest cost and S1 be the subscriber
network of smallest cost without loss of generality. Also, let σ(pi) denote the set of nodes
(which we refer to as hubs for pi) in the star for the ith publisher. Likewise, let σ(sj) be
the set of nodes in the star for the jth subscriber. Thus, we can refer to solutions using the
maps defined by σ and denote the optimal one by σ∗. We let c(σ) be the cost of the solution
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defined by σ, and c(σ(x)) denotes the cost of x’s star. The next lemma shows a near-optimal
solution with a very simple structure.

I Lemma 10. There exists a solution σ such that c(σ) ≤ 4c(σ∗)), and either σ(si) = σ(sj)
for all pairs of subscribers si, sj and |σ(pi)| = 1 for each publisher pi or σ(pi) = σ(pj) for
all pairs of publishers pi, pj and |σ(si)| = 1 for each subscriber si.

Proof. Let σ∗ be an optimal solution with publisher networks P1, P2, . . . , Pk and subscriber
networks S1, S2, . . . Sl. Without loss of generality, let c(P1) ≤ c(S1). Since each subscriber
star intersects all publisher stars, we have d(si, s1) ≤ c(Si) + c(P1) + c(S1) ≤ 3c(Si). Let
C1 denote the set of publishers that share any hub with p1. Let p2 denote the least-cost
publisher not in C1. Let C2 be the set of all publishers not in C1 that share any hub with p2.
In general, let pj+1 be the least-cost publisher not in

⋃
1≤i≤j Ci. Let Cj+1 denote the set

of all publishers not in
⋃

1≤i≤j Ci that share any hub with pj+1. Let hj denote any hub in
σ∗(s1) ∩ σ∗(pj).

pi

s1

σ(pi)

Ci

Figure 2 Here is an example of a Pi. We have shown all it’s hubs, σ(pi). Ci consists of all those
pj ’s not in a previous Ck connecting to one of the hubs. Here hi can be chosen to be either of the
top two hubs in σ(Pi).

Let pj′ be an arbitrary publisher in Cj . We first obtain the following equation d(pj′ , pj) ≤
2c(Pj′) (owing to a shared hub and the fact that c(Pj) ≤ c(Pj′)). By construction, for any
two distinct pi and pj , we have σ∗(pi) ∩ σ∗(pj) = ∅; i.e., pi and pj do not share any hubs.
Note that this may not be true of all pairs of publishers in Ci × Cj .

We now consider two cases. In the first case when c(Pj) ≤ d(s1, hj), we have all subscribers
meet all the publishers in cluster Cj at pj . Consider any subscriber si. It meets pj at some
hub, say hij . Its increase in cost for meeting pj now is at most c(Pj) ≤ d(s1, hj), which equals
one leg of s1’s star. Since two different pj ’s do not share any hubs, the hij ’s (for a given i)
are all different. Hence, the total increase in cost for si is at most

∑
j d(s1, hj), which is at

most c(S1).
If c(Pj) > d(s1, hj), then we will have all publishers in Cj , go to s1. Fix a publisher p′j in

Cj . Its total cost is at most d(p′j , pj)+c(Pj)+d(s1, hj) ≤ d(p′j , pj)+2c(Pj) ≤ 4c(P ′j). All the
subscribers also go to s1 to handle this case. We have d(si, s1) ≤ c(Si)+c(P1)+c(S1) ≤ 3c(Si).

So overall, we obtain a blowup of at most 4 in the cost for each publisher and each
subscriber. We have proved that there exists a solution of cost at most 4 · OPT in which
every subscriber’s star connects to exactly the same set of hubs and every publisher’s star is
just a line to one of the hubs. J

Proof of Theorem 9. Using Lemma 10, we now give a polynomial-time 4α-algorithm where
α is the best approximation achievable for the uncapacitated facility location problem.

Our algorithm considers all possible choices for s1, a linear number (where by symmetry
s1 could be on either side). For a given choice of s1, we formulate an uncapacitated facility
location problem, with the set of publishers as the clients, and the potential facility locations
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being the publishers and s1. The cost of opening a facility at any of these nodes is the
sum of the distances of all the subscribers to that node. Given a solution to this facility
location problem, we obtain a solution to the complete star-star DON problem as follows:
each publisher’s star is a singleton edge to the facility it is assigned to; each subscriber’s star
consists of edges to all the open facilities, paid for by the facility costs.

We solve all the linear number of facility location problems, and then the corresponding
problems with the roles of subscribers and publishers reversed, and take the best solution.
This yields the desired approximation. J

3.3 Complete tree-star DON

We now present a constant factor approximation for complete tree-star DON. Without loss
of generality, let us suppose that the publishers will build trees, and the subscribers will
build stars. The main idea is to show that either the appropriately defined complete star-star
DON solution or complete tree-tree DON solution is within a constant factor of optimal.

Let N∗ be an optimal solution. Let the trees be indexed P1, P2, . . . Pk and the stars
S1, . . . S` such that c(P1) ≤ · · · ≤ c(Pk) and c(S1) ≤ · · · ≤ c(Sk).

First consider the case where c(P1) ≥ c(S1). Note that every Pi and Sj must have a
non-empty intersection. Now for every tree Pj we can redirect it to P1 and then make a copy
of P1. So we will let: P ′j = {(pj , p1)} ∪ P1.

This solution is feasible because P1 must intersect all the stars. These additions to the
solution cost at most 3c(N∗), as seen in Lemma 7. Now all the stars can simply take an edge
which is the shortest edge to the tree.

The approximation algorithm from this point follows the tree-tree case exactly. In this
case, we get that the final solution has cost at most 4ρTSc(N∗). Where ρTS is the best
constant approximation for the tree-star access problem.

Next consider the case that c(S1) ≥ c(P1). We will now choose pi’s in a similar fashion
to the complete star-star DON problem. Let p1 be the publisher with the smallest cost tree.
Let C1 be all the publishers whose trees meet p1’s tree. Now let p2 be the smallest tree
which does not intersect p1’s tree. Let C2 be all the publishers not in C1 who meet p2’s tree.
Likewise pj+1 will be the smallest tree not in ∪1≤i≤jCi. Let Cj+1 be all the publishers which
intersect pj+1’s tree not in ∪1≤i≤jCi.

Now from hereon, the proof follows that for the complete star-star DON case. Hence
we have a solution within a constant factor of optimal where all the stars go to s1 (the
subscriber with star S1), and some of the publishers: Popen. Each tree goes to the nearest
node in S1 ∪ Popen. This establishes the following lemma.

I Lemma 11. The complete tree-star DON has an O(1)-approximate solution in which either
all the subscribers go to some hubs and each tree goes to the nearest hub among a set of
one subscriber and some publishers, or where all the publisher trees are identical and all the
subscribers go to the closest node in that tree. J

For solving the complete tree-star DON problem, we apply our constant-factor approxi-
mation algorithm for the complete tree-tree DON instance, together with our constant-factor
algorithm for the complete star-star DON instance, and take the better of the two. This
completes our argument showing that complete tree-star DON can be approximated to within
a constant factor.
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Abstract
In this paper, we present a polynomial-time algorithm that approximates sufficiently high-value
Max 2-CSPs on sufficiently dense graphs to within O(Nε) approximation ratio for any constant
ε > 0. Using this algorithm, we also achieve similar results for free games, projection games on
sufficiently dense random graphs, and the Densest k-Subgraph problem with sufficiently dense
optimal solution. Note, however, that algorithms with similar guarantees to the last algorithm
were in fact discovered prior to our work by Feige et al. and Suzuki and Tokuyama.

In addition, our idea for the above algorithms yields the following by-product: a quasi-
polynomial time approximation scheme (QPTAS) for satisfiable dense Max 2-CSPs with better
running time than the known algorithms.
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1 Introduction

Maximum constraint satisfaction problem (Max CSP) is a problem of great interest in
approximation algorithms since it encapsulates many natural optimization problems; for
instance, Max k-SAT, Max-Cut, Max-DiCut, Max k-Lin, projection games, and unique
games are all families of Max CSPs. In Max CSP, the input is a set of variables, an
alphabet set, and a collection of constraints. Each constraint’s domain consists of all the
possible assignments to a subset of variables. The goal is to find an assignment to all the
variables that satisfies as many constraints as possible.

In this paper, our main focus is on the case where each constraint depends on exactly
k = 2 variables and the alphabet size is large. This case is intensively researched in hardness
of approximation and multi-prover games.

For Max 2-CSP with large alphabet size, the best known polynomial-time approximation
algorithm, due to Charikar et al. [10], achieves an approximation ratio of O((nq)1/3) where
n is the number of variables and q is the alphabet size. On the other hand, it is known
that, there is no polynomial-time 2log1−δ(nq)-approximation algorithm for Max 2-CSP unless
NP 6⊆ DTIME(npolylog(n)) [16]. Moreover, it is believed that, for some constant c > 0, no
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polynomial-time O((nq)c)-approximation algorithm exists for projection games, a family
of Max 2-CSP we shall introduce later, unless P = NP [15]. This is also known as the
Projection Games Conjecture (PGC). As a result, if the PGC holds, one must study special
cases in order to go beyond polynomial approximation ratio for Max 2-CSP.

One such special case that has been particularly fruitful is dense Max 2-CSP where
density is measured according to number of constraints, i.e., an instance is δ-dense if there
are δn2 constraints. Note that, for convenience, we always assume that there is at most one
constraint on a pair of variables. In other words, we form a simple graph by letting vertices
represent the variables and edges represent the constraints. This is the interpretation that we
will use throughout the paper. According to this view, δn is the average degree of the graph.

In 1995, Arora, Karger and Karpinski [3] invented a polynomial-time approximation
scheme (PTAS) for dense Max 2-CSP when the density δ and alphabet size q are constants.
More specifically, for any constant ε > 0, the algorithm achieves an approximation ratio 1 + ε

and runs in time O(n1/ε2). Unfortunately, the running time becomes quasi-polynomial time
when q is not constant.

Another line of development of such PTASs centers around subsampling technique (e.g.
[1, 2, 4]). In summary, these algorithms function by randomly sampling the variables
according to some distribution and performing an exhaustive search on the induced instance.
Since the sampled set of variables is not too large, the running time is not exponential.
However, none of these algorithm achieves polynomial running time for large alphabets. In
particular, all of them are stuck at quasi-polynomial running time.

Since none of these algorithms runs in polynomial time for large alphabet, a natural
and intriguing question is how good a polynomial-time approximation algorithm can be
for dense Max 2-CSPs. In this paper, we partially answer this question by providing a
polynomial-time approximation algorithm for dense high-value Max 2-CSPs that achieves
O((nq)ε) approximation ratio for any constant ε > 0. Moreover, our technique also helps us
come up with a quasi-polynomial time approximation scheme for satisfiable Max 2-CSPs
with running time asymptotically better than that those from [1, 2, 3, 4].

The central idea of our technique is a trade-off between two different approaches: greedy
assignment algorithm and “choice reduction” algorithm. In summary, either a simple
greedy algorithm produces an assignment that satisfies many constraints or, by assigning an
assignment to just one variable, we can reduce the number of optimal assignment candidates
of other variables significantly. The latter is what we call the choice reduction algorithm. By
applying this argument repeatedly, either one of the greedy assignments gives a high-value
assignment, or we are left with only few candidate labels for each variable. In the latter case,
we can then just pick a greedy assignment at the end.

Not only that our technique is useful for Max 2-CSP, we are able to obtain approximation
algorithms for other problems in dense settings as well. The first such problem is free games,
which can be defined simply as Max 2-CSP on balanced complete bipartite graphs. While
free games have been studied extensively in the context of parallel repetition [5, 17] and
as basis for complexity and hardness results [1, 9], the algorithm aspect of it has not been
researched as much. In fact, apart from the aforementioned algorithms for dense Max
2-CSP that also works for free games, we are aware of only two approximation algorithms,
by Aaronson et al. [1] and by Brandao and Harrow [8], specifically developed for free games.
Similar to the subsampling lemmas, these two algorithms are PTASs when q is constant
but, when q is large, the running times become quasi-polynomial. Interestingly, our result
for dense Max 2-CSP directly yields a polynomial-time algorithm that can approximate
free games within O((nq)ε) factor for any constant ε > 0, which may be the first non-trivial
approximation algorithm for free games with such running time.
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Secondly, our idea is also applicable for projection games. The projection games problem
(also known as Label Cover) is Max 2-CSP on a bipartite graph where, for each assignment
to a left vertex of an edge, there is exactly one satisfiable assignment to the other endpoint
of the edge. Label Cover is of great significance in the field of hardness of approximation
since almost all NP-hardness of approximation results known today are reduced from the
NP-hardness of approximation of projection games (e.g. [6, 12]).

The current best polynomial-time approximation algorithm for satisfiable projection
games is the authors’ with O((nq)1/4) ratio [14]. Moreover, as mentioned earlier, if the PGC
is true, then, in polynomial time, approximating Label Cover beyond some polynomial
ratio is unlikely. In this paper, we exceed this bound on random balanced bipartite graphs
with sufficiently high density by proving that, in polynomial time, one can approximate
satisfiable projection games on such graphs to within O((nq)ε) factor for any constant ε > 0.

Finally, we show a similar result for Densest k-Subgraph, the problem of finding a size-k
subgraph of a given graph that contains as many edges as possible. Finding best polynomial-
time approximation algorithm for Densest k-Subgraph(DkS) is an open question in the
field of approximation algorithms. Currently, the best known algorithm for DkS achieves an
approximation ratio of O(n1/4+ε) for any constant ε > 0 [7]. On the other hand, however,
we only know that there is no PTAS for DkS unless P=NP [13].

Even though Densest k-Subgraph on general graphs remains open, the problem is
better understood in some dense settings. More specifically, Arora et al. [3] provided a PTAS
for the problem when the given graph is dense and k = Ω(N) where N is the number of
vertices of the given graph. Later, Feige et al. [11] and Suzuki and Tokuyama [18] showed
that, if we only know that the optimal solution is sufficiently dense, we can still approximate
the solution to within any polynomial ratio in polynomial time. Using our approximation
algorithm for dense Max 2-CSP, we are able to construct a polynomial-time algorithm for
Densest k-Subgraph with similar conditions and guarantees as those of the algorithms
from [11] and [18].

The theorems we prove in this paper are stated in Section 3 after appropriate preliminaries
in the next section.

2 Preliminaries and Notation

In this section, we formally define the problems we focus on and the notation we use
throughout the paper. First, to avoid confusion, let us state the definition of approximation
ratio for the purpose of this paper.

I Definition 1. An approximation algorithm for a maximization problem is said to have
an approximation ratio α if the output of the algorithm is at least 1/α times the optimal
solution.

Note here that the approximation ratio as defined above is always at least one.
Next, before we define our problems, we review the standard notation of density of a

graph.

I Definition 2. A simple undirected graph G = (V,E) is defined to be of density |E|/|V |2.

Moreover, for a graph G and a vertex u, we use ΓG(u) to denote the set of neighbors
of u in G. We also define ΓG2 (u) to denote the set of neighbors of neighbors of u in G, i.e.,
ΓG2 (u) = ΓG(ΓG(u)). When it is unambiguous, we will leave out G and simply write Γ(u) or
Γ2(u).

Now, we will define the problems starting with Max 2-CSP.
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I Definition 3. An instance (q, V,E, {Ce}e∈E) of Max 2-CSP consists of
a simple undirected graph (V,E), and
for each edge e = (u, v) ∈ E, a constraint (or constraint) Ce : [q]2 → {0, 1} where [q]
denotes {1, 2, . . . , q}.

The goal is to find an assignment (solution) ϕ : V → [q] that maximizes the number of
constraints Ce’s that are satisfied, i.e. C(u,v)(ϕ(u), ϕ(v)) = 1. In other words, find an
assignment ϕ : {x1, . . . , xn} → [q] that maximizes

∑
(u,v)∈E C(u,v)(ϕ(u), ϕ(v)). The value of

an assignment is defined as the fraction of edges satisfied by it and the value of an instance
is defined as the value of the optimal assignment.

A Max 2-CSP instance (q, V,E, {Ce}e∈E) is called δ-dense if the graph (V,E) is δ-dense.
Throughout the paper, we use n to denote the number of vertices (variables) |V | and N to
denote nq, which can be viewed as the size of the problem.

Free games and projection games are specific classes of Max 2-CSP, which can be defined
as follows. Note that n,N , density and value are defined in a similar fashion for free games
and projection games as well.

I Definition 4. A free game (q, A,B, {Ca,b}(a,b)∈A×B) consists of
Two sets A,B of equal size, and
for (a, b) ∈ A×B, a constraint Ca,b : [q]2 → {0, 1}.

The goal is to find an assignment ϕ : A ∪ B → [q] that maximizes the number of edges
(a, b) ∈ A×B that are satisfied, i.e., Ca,b(ϕ(a), ϕ(b)) = 1.

I Definition 5. A projection game (q, A,B,E, {πe}e∈E) consists of
a simple bipartite graph (A,B,E), and
for each edge e = (a, b) ∈ E, a “projection” πe : [q]→ [q].

The goal is to find an assignment to the vertices ϕ : A ∪B → [q] that maximizes the number
of edges e = (a, b) that are satisfied, i.e., πe(ϕ(a)) = ϕ(b).

Both free games and projection games can be viewed as special cases of Max 2-CSP.
More specifically, free games are simply Max 2-CSPs on complete balanced bipartite graphs.

For projection games, one can view πe as a constraint Ce : [q]2 → {0, 1} where Ce(σu, σv) =
1 if and only if πe(σu) = σv. In other words, projection game is Max 2-CSP on bipartite
graph where an assignment to the endpoint in A of an edge determines the assignment to
the endpoint in B.

For convenience, we will define the notation of “optimal assignment” for Max 2-CSP
intuitively as follows.

I Definition 6. For a Max 2-CSP instance (q, V,E, {Ce}e∈E), for each vertex u ∈ V , let
σOPTu be the assignment to u in an assignment to vertices that satisfies maximum number of
edges, i.e., ϕ(u) = σOPTu is the assignment that maximizes

∑
(u,v)∈E C(u,v)(ϕ(u), ϕ(v)). In

short, we will sometimes refer to this as “the optimal assignment”.

Note that since projection games and free games are families of Max 2-CSP, the above
definition also carries over when we discuss them.

Lastly, we define Densest k-Subgraph.

IDefinition 7. In the Densest k-Subgraph problem, the input is a simple graphG = (V,E)
of N = |V | vertices. The goal is to find a subgraph of size k that contain maximum number
of edges.
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3 Summary of Results

We are finally ready to describe our results and how they relate to the previous results. We
will start with the main theorem on approximating high-value dense Max 2-CSP.

I Theorem 8 (Main Theorem). For every constant γ > 0, there exists a polynomial-time
algorithm that, given a δ-dense Max 2-CSP instance of value λ, produces an assignment of
value Ω((δλ)O(1/γ)N−γ) for the instance.

Note that, when δ, λ = N−o(1), by choosing γ < ε, the algorithm can achieve O((nq)ε)
approximation ratio for any constant ε > 0.

Since every free game is 1/2-dense, Theorem 8 immediately implies the following corollary.

I Corollary 9. For every constant γ > 0, there exists a polynomial-time algorithm that, given
a free game of value λ, produces an assignment of value Ω(λO(1/γ)N−γ) for the instance.

Again, note that when λ = N−o(1), the algorithm can achieve O((nq)ε) approximation
ratio for any constant ε > 0.

The next result is a similar algorithm for projection games on sufficiently dense random
graphs as stated below.

I Theorem 10. For every constant γ > 0, there exists a polynomial-time algorithm that,
given a satisfiable projection game on a random bipartite graph (A,B,E) ∼ G(n/2, n/2, p)
for any p ≥ 10

√
logn/n, produces an assignment of value Ω(N−γ) for the instance with

probability 1− o(1).

Note that G(n/2, n/2, p) is defined in Erdős-Rényi fashion, i.e., the graph contains n/2
vertices on each side and, each pair of left and right vertices is included as an edge with
probability p independently.

In addition, it is worth noting here that the required density for projection games is
much lower than that of Max 2-CSP; our Max 2-CSP algorithm requires the degree to be
Ω(n/N−o(1)) whereas the projection games algorithm requires only Ω̃(

√
n).

As stated earlier, we are unaware of any non-trivial polynomial-time algorithm for dense
Max 2-CSP, free games, or projection games on dense random graphs prior to our algorithm.

Next, we state our analogous result for Densest k-Subgraph.

I Corollary 11. For every constant γ > 0, there exists a polynomial-time algorithm that,
given a graph G = (V,E) on N vertices such that its densest subgraph with k vertices is
δ-dense, produces a subgraph of k vertices that is Ω(δO(1/γ)N−γ)-dense with high probability.

Note that the density condition is on the optimal solution, not the given graph G. The
condition and the algorithm are exactly the same as that of [11] and [18]. However, the
techniques are substantially different. While [11] deals combinatorially directly with the
given graph G and [18] employs subsampling technique, we simply use our algorithm from
Theorem 8 together with a simple reduction from Densest k-Subgraph to Max 2-CSP
due to Charikar et al. [10].

Lastly, we also give a quasi-polynomial time approximation scheme for satisfiable dense
Max 2-CSP as described formally below.

I Corollary 12 (QPTAS for Dense Max 2-CSP). For any 1 ≥ ε > 0, there exists an
(1 + ε)-approximation algorithm for satisfiable δ-dense Max 2-CSP that runs in time
NO(ε−1δ−1 logN).
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Comparing to the known algorithms, our QPTAS runs faster than QPTASs from [2, 3, 4],
each of which takes at least NO(ε−2δ−1 logN) time. However, while our algorithm works only
for satisfiable instances, the mentioned algorithms work for unsatisfiable instances as well but
with an additive error of ε in value instead of the usual multiplicative guarantee of (1 + ε).

4 Proof of The Main Theorem

In this section, we prove the main theorem. In order to do so, we will first show that we do
not have to worry about the density δ at all, i.e., it is enough for us to prove the following
lemma.

I Lemma 13. For every γ > 0, there exists a polynomial-time algorithm that, given a free
game (q, A,B, {C(a,b)}(a,b)∈A×B) of value λ′, produces an assignment of value λ′O(1/γ)q−γ

for the instance.

The proof of the main theorem based on the lemma above is shown below.

Proof of Theorem 8 based on Lemma 13. The proof is based on putting in “dummy edges”
where the constraints are always false regardless of the assignment to make the game more
dense. More specifically, given a Max 2-CSP instance (q, V,E, {Ce}e∈E) of value λ and
density δ, we construct a free game (q′, A,B, {C ′(a,b)}(a,b)∈A×B) as follows:

Let A,B be copies of V and let q′ = q.
For each a ∈ A and b ∈ B, let C ′(a,b) = C(a,b) if (a, b) ∈ E. Otherwise, let C ′(a,b) := 0.

It is not hard to see that, if we assign the optimal assignment of the original instance
to the free game, then δλn2 edges are satisfied where n = |V |. In other words, the value
of the free game is at least δλ. Thus, from Lemma 13, for any constant γ, we can find an
assignment ϕ′ : A ∪B → [q′] of value at least (δλ)O(1/γ)q−γ for the free game.

We create an assignment ϕ : V → [q] based on ϕ′ as follows. For each vertex v ∈ V , let
av ∈ A and bv ∈ B be the vertices corresponding to v in the free game. Set ϕ(v) to be either
ϕ′(av) or ϕ′(bv) with equal probability.

From the above construction, the expected number of edges satisfied by ϕ in the Max
2-CSP instance is

E

[ ∑
(u,v)∈E

C(u,v)(ϕ(u),ϕ(v))
]

=
∑

(u,v)∈E

E
[
C(u,v)(ϕ(u), ϕ(v))

]

(From our choice of ϕ) =
∑

(u,v)∈E

1
4

 ∑
σu∈{ϕ′(au),ϕ′(bu)}

∑
σv∈{ϕ′(av),ϕ′(bv)}

C(u,v)(σu, σv)


≥

∑
(u,v)∈E

1
4
(
C(u,v)(ϕ′(au), ϕ′(bv)) + C(u,v)(ϕ′(bu), ϕ′(av))

)
= 1

4
∑

(u,v)∈E

(
C(u,v)(ϕ′(au), ϕ′(bv)) + C(u,v)(ϕ′(bu), ϕ′(av))

)
(From definition of C ′) = 1

4
∑

(a,b)∈A×B

C ′(a,b)(ϕ′(a), ϕ′(b)).
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Observe that ∑
(a,b)∈A×B

C ′(a,b)(ϕ′(a), ϕ′(b))

is the value of ϕ′ with respect to the free game, which is at least (δλ)O(1/γ)q−γ . As a result,
we can conclude that ϕ is of expected value at least 1

4 (δλ)O(1/γ)q−γ = Ω((δλ)O(1/γ)N−γ)
with respect to the instance (q, V,E, {Ce}e∈E).

Lastly, we note that while the algorithm above is non-deterministic, the standard deran-
domization technique via conditional probability can be employed to make the algorithm
deterministic without affecting the guarantee on the value of ϕ, which completes our proof
for the main theorem. J

Now, we finally give the proof for Lemma 13. As mentioned in the introduction, the
main idea of the proof is a trade-off between the greedy algorithm and the choice reduction
algorithm. In other words, either the greedy assignment has high value, or we can reduce the
number of candidates of the optimal assignment for many variables significantly by assigning
only one variable. This argument needs to be applied multiple times to arrive at the result;
the more variables we iterate on, the better guarantee we get on the output assignment value.

For the purpose of analysis, we will define our algorithm recursively and use induction to
show that the output assignment meets the desired criteria.

Proof of Lemma 13. First, let us define notation that we will use throughout the proof.
For a free game (q,A,B, {C(a,b)}(a,b)∈A×B), define EOPT to be the set of edges satisfied
by {σOPTu }u∈V . In other words, EOPT = {(u, v) ∈ E | C(u,v)(σOPTu , σOPTv ) = 1}. We also
define ΓOPT (u) to be the neighborhood of u with respect to (V,EOPT ) and let dOPTu be the
degree of u in (V,EOPT ), i.e., dOPTu = |ΓOPT (u)|. In addition, let n′ = n/2 be the size of A
and B.

We will prove the lemma by induction. Let P (i) represent the following statement: there
exists anO

(
(nq)2i)-time algorithm Approx-FreeGamei(q,A,B, {C(a,b)}(a,b)∈A×B , {Sb}b∈B)

that takes in a free game instance (q,A,B, {C(a,b)}(a,b)∈A×B) of value λ′ and a reduced al-
phabet set Sb for every b ∈ B, and produces an assignment that satisfies at least

n′

∑
b∈B

(
dOPTb

n′

) i+1
2
(

1
|Sb|

) 1
i

1σOPT
b

∈Sb


edges. Note here that 1σOPT

b
∈Sb denotes an indicator variable for whether σOPTb ∈ Sb.

Moreover, for convenience, we use the expression (1/|Sb|)
1
i 1σOPT

b
∈Sb to be represent zero

when Sb = ∅.
Before we proceed to the induction, let us note why P (i) implies the lemma. By setting

i = d1/γe and Sb = [q] for every b ∈ B, since σOPTb ∈ Sb for every b ∈ B, the number of
edges satisfied by the output assignment of the algorithm in P (i) is at least

n′
∑
b∈B

(
dOPTb

n′

) i+1
2
(

1
q

) 1
i

= n′
1
q1/i

∑
b∈B

(
dOPTb

n′

) i+1
2


(From Hölder’s inequality) ≥ (n′)2

q1/i

(
1
n′

∑
b∈B

dOPTb

n′

) i+1
2

= (n′)2

q1/i

(
|EOPT |

(n′)2

) i+1
2
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(Since |EOPT |/(n′)2 is the value of the instance) = (n′)2

q1/i (λ′)
i+1
2

(From our choice of i) ≥ (n′)2λ
′O(1/γ)

qγ
,

which is the statement of the lemma.
Now, we finally show that P (i) is true for every i ∈ N by induction.
Base Case. The algorithm Approx-FreeGame1(q, A,B, {C(a,b)}(a,b)∈A×B , {Sb}b∈B) is

a greedy algorithm that works as follows:
1. For each a ∈ A, assign σ∗a ∈ Sa that maximizes

∑
b∈B

1
|Sb|

(∑
σb∈Sb C(a,b)(σa, σb)

)
to it.

2. For each b ∈ B, assign σ∗b ∈ Sb that maximizes the number of edges satisfied, i.e.,∑
a∈A C(a,b)(σ∗a, σb), to it.

It is obvious that the algorithm runs in O(n2q2) time as desired.
Next, we need to show that the algorithm gives an assignment that satisfies at least

n′

(∑
b∈B

(
dOPTb

n′

)(
1
|Sb|

)
1σOPT

b
∈Sb

)
=
∑
b∈B

dOPTb

|Sb|
1σOPT

b
∈Sb

edges.
To prove this, observe that, from our choice of σ∗b , the number of satisfied edges by the

output assignment can be bounded as follows.

∑
b∈B

∑
a∈A

C(a,b)(σ∗a, σ∗b ) ≥
∑
b∈B

1
|Sb|

∑
σb∈Sb

(∑
a∈A

C(a,b)(σ∗a, σb)
)

=
∑
a∈A

∑
b∈B

1
|Sb|

( ∑
σb∈Sb

C(a,b)(σ∗a, σb)
)

(From our choice of σ∗a) ≥
∑
a∈A

∑
b∈B

1
|Sb|

( ∑
σb∈Sb

C(a,b)(σOPTa , σb)
)

≥
∑
a∈A

∑
b∈B

1
|Sb|

C(a,b)(σOPTa , σOPTb )1σOPT
b

∈Sb

=
∑
b∈B

∑
a∈A

1
|Sb|

C(a,b)(σOPTa , σOPTb )1σOPT
b

∈Sb

(From definition of dOPTb ) =
∑
b∈B

1
|Sb|

dOPTb 1σOPT
b

∈Sb

=
∑
b∈B

dOPTb

|Sb|
1σOPT

b
∈Sb .

Thus, we can conclude that P (1) is true.
Inductive Step. Let j be any positive integer. Suppose that P (j) holds.
We will now describe Approx-FreeGamej+1 based on Approx-FreeGamej as follows.

1. For each a ∈ A and σa ∈ Sa, do the following:
a. For each b ∈ B, compute Sa,σab = {σb ∈ Sb | C(a,b)(σa, σb) = 1}.
b. Call Approx-FreeGamej(q, A,B, {C(a,b)}(a,b)∈A×B , {Sa,σab }b∈B). Let the output

assignment be ϕa,σa .
2. Execute the following greedy algorithm:

APPROX/RANDOM’15



404 Approximating Dense Max 2-CSPs

a. For each a ∈ A, assign σ∗a ∈ Sa to it that maximizes
∑
b∈B

1
|Sb|

(∑
σb∈Sb C(a,b)(σa, σb)

)
.

b. For each b ∈ B, assign σ∗b ∈ Sb to it that maximizes the number of edges satisfied, i.e.,
maximizes

∑
a∈A C(a,b)(σ∗a, σb).

3. Output an assignment among the greedy assignment and ϕa,σa for every a, σa that satisfies
maximum number of edges.

Since every step except the Approx-FreeGamej(q, A,B, {C(a,b)}(a,b)∈A×B , {Sb}b∈B)
calls takes O((nq)2) time and we call Approx-FreeGamej only at most (nq)2 times, we
can conclude that the running time of Approx-FreeGamej+1 is O((nq)2j+2) as desired.

Define R to be n′
(∑

b∈B

(
dOPTb

n′

) j+2
2
(

1
|Sb|

) 1
j+1 1σOPT

b
∈Sb

)
, our target number of edges

we want to satisfy. The only thing left to show is that the assignment output from the
algorithm indeed satisfies at least R edges. We will consider two cases.

First, if there exist a ∈ A and σa ∈ Sb such that the output assignment from Approx-
FreeGamej(q,A,B, {C(a,b)}(a,b)∈A×B , {Sa,σab }b∈B) satisfies at least R edges, then it is
obvious that the output assignment of Approx-FreeGamej+1 indeed satisfies at least R
edges as well.

In the second case, for every a ∈ A and σa ∈ Sa, the output assignment from Approx-
FreeGamej(q,A,B, {C(a,b)}(a,b)∈A×B , {Sa,σab }b∈B) satisfies less than R edges. For each
a ∈ A, since the output assignment from Approx-FreeGamej(q, A,B, {C(a,b)}(a,b)∈A×B ,
{Sa,σ

OPT
a

b }b∈B) satisfies less than R edges, we arrive at the following inequality:

R > n′

∑
b∈B

(
dOPTb

n′

) j+1
2
(

1
|Sa,σ

OPT
a

b |

) 1
j

1
σOPT
b

∈Sa,σ
OPT
a

b


≥ n′

 ∑
b∈ΓOPT (a)

(
dOPTb

n′

) j+1
2
(

1
|Sa,σ

OPT
a

b |

) 1
j

1
σOPT
b

∈Sa,σ
OPT
a

b

 .

Now, observe that, for every b ∈ ΓOPT (a), we have 1
σOPT
b

∈Sa,σ
OPT
a

b

= 1σOPT
b

∈Sb . This is

because, from our definition of ΓOPT , C(a,b)(σOPTa , σOPTb ) = 1 for every b ∈ ΓOPT (a), which
means that, if σOPTb is in Sb, then it remains in Sa,σ

OPT
a

b . Thus, the above inequality can be
written as follows:

R > n′

 ∑
b∈ΓOPT (a)

(
dOPTb

n′

) j+1
2
(

1
|Sa,σ

OPT
a

b |

) 1
j

1σOPT
b

∈Sb

 . (1)

We will use inequality (1) later in the proof. For now, we will turn our attention to the
number of edges satisfied by the greedy algorithm, which, from our choice of σ∗b , can be
bounded as follows:

∑
b∈B

∑
a∈A

C(a,b)(σ∗a, σ∗b ) ≥
∑
b∈B

1
|Sb|

∑
σb∈Sb

(∑
a∈A

C(a,b)(σ∗a, σb)
)

=
∑
a∈A

∑
b∈B

1
|Sb|

( ∑
σb∈Sb

C(a,b)(σ∗a, σb)
)

(From our choice of σ∗a) ≥
∑
a∈A

∑
b∈B

1
|Sb|

( ∑
σb∈Sb

C(a,b)(σOPTa , σb)
)
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(Since C(a,b)(σOPTa , σb) = 1 for every σb ∈ S
a,σOPTa

b ) ≥
∑
a∈A

∑
b∈B

1
|Sb|
|Sa,σ

OPT
a

b |

=
∑
a∈A

∑
b∈B

|Sa,σ
OPT
a

b |
|Sb|

≥
∑
a∈A

∑
b∈ΓOPT (a)

|Sa,σ
OPT
a

b |
|Sb|

.

Moreover, from inequality (1), we can derive the following inequalities:

Rj

(∑
a∈A

∑
b∈ΓOPT (a)

|Sa,σ
OPT
a

b |
|Sb|

)

=
∑
a∈A

Rj

 ∑
b∈ΓOPT (a)

|Sa,σ
OPT
a

b |
|Sb|


(From (1)) ≥ (n′)j

∑
a∈A

 ∑
b∈ΓOPT (a)

(
dOPTb

n′

) j+1
2
(

1
|Sa,σ

OPT
a

b |

) 1
j

1σOPT
b

∈Sb

j

·

 ∑
b∈ΓOPT (a)

|Sa,σ
OPT
a

b |
|Sb|


(Hölder’s inequality) ≥ (n′)j

∑
a∈A

 ∑
b∈ΓOPT (a)

(
dOPTb

n′

) j
2
(

1
|Sb|

) 1
j+1

1σOPT
b

∈Sb

j+1

By applying Hölder’s inequality once again, the last term above is at least

(n′)jn′
 1
n′

∑
a∈A

∑
b∈ΓOPT (a)

(
dOPTb

n′

) j
2
(

1
|Sb|

) 1
j+1

1σOPT
b

∈Sb

j+1

=

∑
b∈B

∑
a∈ΓOPT (b)

(
dOPTb

n′

) j
2
(

1
|Sb|

) 1
j+1

1σOPT
b

∈Sb

j+1

(Since dOPTb = |ΓOPT (b)|) =

∑
b∈B

dOPTb

(
dOPTb

n′

) j
2
(

1
|Sb|

) 1
j+1

1σOPT
b

∈Sb

j+1

=

n′∑
b∈B

(
dOPTb

n′

) j+2
2
(

1
|Sb|

) 1
j+1

1σOPT
b

∈Sb

j+1

= Rj+1.

Hence, we can conclude that

∑
a∈A

∑
b∈ΓOPT (a)

|Sa,σ
OPT
a

b |
|Sb|

≥ R.

In other words, our greedy algorithm satisfies at least R edges, which means that P (j + 1) is
also true for this second case.
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As a result, P (i) is true for every positive integer i, which completes the proof for
Lemma 13. J

5 Approximation Algorithm for Projection Games

In this section, we will present our approximation algorithm for projection games. The
main idea of this algorithm is a reduction from projection games on dense random graphs to
free games, which we use together with the approximation algorithm for free games from
Corollary 9 above to prove Theorem 10. The reduction’s properties can be stated formally
as follows.

I Lemma 14. There is a polynomial-time reduction from a satisfiable projection game
(q, A,B,E, {πe}e∈E) where (A,B,E) is sampled from a distribution G(n/2, n/2, p) where
p ≥ 10

√
logn/n to a satisfiable free game instance (q′, A′, B′, {C(a,b)}(a,b)∈A′×B′) such that,

with probability 1− o(1),
1. |A′|, |B′| ≤ |A| and q′ ≤ q, and
2. For any 1 ≥ ε ≥ 0, given an assignment ϕ′ : A′ ∪B′ → [q′] to the free game instance of

value ε, one can construct an assignment ϕ : A∪B → [q] for the projection game of value
Ω(ε) in polynomial time.

Before we describe the reduction, we give a straightforward proof for Theorem 10 based
on the above lemma.

Proof of Theorem 10 based on Lemma 14. The proof is simple. First, we use the reduc-
tion from Lemma 14 to transform a projection game on dense graph to a free game. Since
the approximation ratio deteriorates by only constant factor with probability 1− o(1) in the
reduction, we can use the approximation algorithm from Corollary 9 with λ = 1, which gives
us an assignment of value at least Ω(1/Nγ). J

To prove the reduction lemma, we use the following two properties of random graphs.
We do not prove the lemmas as they follow from a standard Chernoff bound.

I Lemma 15. When p ≥ 10
√

logn/n, with probability 1 − o(1), every vertex in G ∼
G(n/2, n/2, p) has degree between np/10 and 10np.

I Lemma 16. In G ∼ G(n/2, n/2, p) with p ≥ 10
√

logn/n, with probability 1− o(1), every
pair of vertices a, a′ on the left has at least np2/10 common neighbors.

Now, we are ready to prove the reduction lemma. Roughly speaking, the idea of the
proof is to “square” the projection game, i.e., use A as the vertices of the new game and, for
each pair of vertices in A, add a constriant between them based on their constraints with
their common neighbors in the projection game. This can be formalized as follows.

Proof of Lemma 14. The reduction proceeds as follows.
1. Partition A into A1, A2 of equal sizes. Then, set A′ ← A1, B

′ ← A2 and q′ ← q.
2. For each a1 ∈ A1, a2 ∈ A2, σa1 , σa2 ∈ [q], let C(a1,a2)(σa1 , σa2) to be one if and only if these

two assignments agree on every b ∈ Γ(a1) ∩ Γ(a2). In other words, C(a1,a2)(σa1 , σa2) = 1
if and only if π(a1,b)(σa1) = π(a2,b)(σa2) for every b ∈ Γ(a1) ∩ Γ(a2).

It is obvious that the reduction runs in polynomial time, the first condition holds, and
the new game is satisfiable. Thus, we only need to prove that, with probability 1− o(1), the
second condition is indeed true.
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To show this, we present a simple algorithm that, given an assignment ϕ′ : A′ ∪B′ → [q′]
of the free game instance of value ε, output an assignment ϕ : A ∪B → [q] of the projection
game of value Ω(ε). The algorithm works greedily as follows.
1. For each a ∈ A, let ϕ(a)← ϕ′(a).
2. For each b ∈ B, pick ϕ(b) = σ∗b to be the assignment to b that satisfies maximum number

of edges, i.e., maximize |{a ∈ Γ(b) | π(a,b)(ϕ(a)) = σb}|.

Trivially, the algorithm runs in polynomial time. Thus, we only need to prove that, with
probability 1− o(1), the produced assignment is of value at least Ω(ε). To prove this, we will
use the properties from Lemma 15 and Lemma 16, which holds with probability 1− o(1).

The number of satisfied edges can be written as follows.∑
b∈B

∑
a∈Γ(b)

1π(a,b)(ϕ(a))=ϕ(b) =
∑
b∈B

∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σ∗
b
.

Let du be the degree of u in (A,B,E) for every u ∈ A ∪ B, i.e. du = |Γ(u)|. We can
further rearrange the above expression as follows.

∑
b∈B

∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σ∗
b

=
∑
b∈B

 1
db

 ∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σ∗
b

 db


=
∑
b∈B

 1
db

 ∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σ∗
b

 ∑
a∈Γ(b)

1


=
∑
b∈B

 1
db

 ∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σ∗
b

 ∑
a∈Γ(b)

∑
σb∈[q]

1π(a,b)(ϕ′(a))=σb


=
∑
b∈B

 1
db

 ∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σ∗
b

 ∑
σb∈[q]

∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σb


=
∑
b∈B

 1
db

∑
σb∈[q]

 ∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σ∗
b

 ∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σb


(
From the choice

of σ∗b

)
≥
∑
b∈B

 1
db

∑
σb∈[q]

 ∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σb

2


=
∑
b∈B

 1
db

∑
σb∈[q]

∑
a,a′∈Γ(b)

1π(a,b)(ϕ′(a))=σb1π(a′,b)(ϕ′(a′))=σb


=
∑
b∈B

 1
db

∑
a,a′∈Γ(b)

∑
σb∈[q]

1π(a,b)(ϕ′(a))=σb1π(a′,b)(ϕ′(a′))=σb


Observe that

∑
σb∈[q] 1π(a,b)(ϕ′(a))=σb1π(a′,b)(ϕ′(a′))=σb = 1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′)). Thus,

the number of satisfied edges is at least

∑
b∈B

 1
db

∑
a,a′∈Γ(b)

1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′))

 .
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Moreover, from Lemma 15, db ≤ 10np for every b ∈ B with probability 1 − o(1). This
implies that, with probability 1− o(1), the output assignment satisfied at least

1
10np

∑
b∈B

∑
a,a′∈Γ(b)

1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′))

edges.
We can further reorganize this quantity as follows.

1
10np

∑
b∈B

∑
a,a′∈Γ(b)

1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′))

≥ 1
10np

∑
b∈B

∑
(a,a′)∈A′×B′
s.t. a,a′∈Γ(b)

1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′))

= 1
10np

∑
(a,a′)∈A′×B′

∑
b∈Γ(a)∩Γ(a′)

1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′)).

Now, observe that, from its definition, if C(a,a′)(ϕ′(a), ϕ′(a′)) is one, then
1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′)) is also one for every b ∈ Γ(a) ∩ Γ(a′). Thus, we have

1
10np

∑
(a,a′)∈A′×B′

∑
b∈Γ(a)∩Γ(a′)

1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′))

≥ 1
10np

∑
(a,a′)∈A′×B′

∑
b∈Γ(a)∩Γ(a′)

C(a,a′)(ϕ′(a), ϕ′(a′))

= 1
10np

∑
(a,a′)∈A′×B′

|Γ(a) ∩ Γ(a′)|C(a,a′)(ϕ′(a), ϕ′(a′)).

From Lemma 16, with probability 1 − o(1), |Γ(a) ∩ Γ(a′)| ≥ np2/10 for every (a, a′) ∈
A′ ×B′. Hence, we can conclude that the above expression is, with probability 1− o(1), at
least

1
10np

∑
(a,a′)∈A′×B′

np2

10 C(a,a′)(ϕ′(a), ϕ′(a′)) = p

100
∑

(a,a′)∈A′×B′
C(a,a′)(ϕ′(a), ϕ′(a′)).

Next, note that
∑

(a,a′)∈A′×B′ C(a,a′)(ϕ′(a), ϕ′(a′)) is the number of edges satisfied by ϕ′
in the free game, which is at least ε|A′||B′| = εn2/16. Thus, we have

p

100
∑

(a,a′)∈A′×B′
C(a,a′)(ϕ′(a), ϕ′(a′)) ≥ εn2p

1600 .

Finally, again from Lemma 15, the total number of edges is at most 5n2p with probability
1− o(1). As a result, with probability 1− o(1), the algorithm outputs an assignment that
satisfies at least ε

8000 = Ω(ε) fraction of edges of the projection game instance as desired. J

6 Approximation Algorithm for Densest k-Subgraph

The main goal of this section is to prove Corollary 11. As stated previously, we simply use
our algorithm from Theorem 8 together with a reduction from Max 2-CSP to DkS from [10].
First, let us start by stating the reduction from Theorem 8, which we rephrase as follows.
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I Lemma 17 ([10]). There exists a randomized polynomial-time algorithm that, given a
graph G of N vertices and an integer k ≤ N , produces an instance (q, V,E, {Ce}e∈E) of Max
2-CSP such that

q ≤ N,n = k, and
any solution to the instance can be translated in polynomial time to a subgraph of G of
k vertices such that the number of edges in the subgraph equals to the number of edges
satisfied by the Max 2-CSP solution, and
with constant probability, the number of edges satisfied by the optimal solution to the
instance is at least 1/100 times the number of edges in the densest k-subgraph of G.

We will not show the proof of Lemma 17 here; please refer to Theorem 6 from [10] for
the proof. Instead, we will now show how to use the reduction to arrive at the proof of
Corollary 11.

Proof of Corollary 11. First, we note that, to prove Corollary 11, it is enough to find a
randomized polynomial-time algorithm with similar approximation guarantee to that in
Corollary 11 except that the probability of success is a constant (instead of high probability
as stated in Corollary 11). This is because we can then repeatedly run this algorithm Θ(logn)
times and produce the desired result.

The algorithm proceeds as follows:
1. Use the reduction from Lemma 17 on the input graphG and k to produce (q, V,E, {Ce}e∈E).
2. Run the algorithm from Theorem 8 on (q, V,E, {Ce}e∈E).
3. Transform the assignment from previous step according to Lemma 17 and output the

result.

From the property of the reduction, we know that, with constant probability, the optimal
assignment to (q, V,E, {Ce}e∈E) satisfies Ω(δk2) edges. If this is the case, we can conclude
that the density of (V,E) is Ω(δ) and, similarly, that the value of the instance is Ω(δ). As
a result, the output assignment from step 2 has value at least Ω(δO(1/γ)N−γ). Since the
reduction from Lemma 17 preserves the optimum, our algorithm produces a subgraph of
density at least Ω(δO(1/γ)N−γ) as well, which concludes our proof for this corollary. J

7 QPTAS for Dense Max 2-CSPs

At first glance, it seems that the QPTAS would follow easily for our main theorem. This,
however, is not the case as the algorithm in the main theorem always loses at least a constant
factor. Instead, we need to give an algorithm that is similar to that of the main theorem
but have a stronger guarantee in approximation ratio for satisfiable instances, which can be
stated as follows.

I Lemma 18. For every positive integer i > 0, there exists an O
(
(nq)O(i))-time algorithm

that, for any satisfiable Max 2-CSP instance on the complete graph, produces an assignment
of value at least 1/q1/i.

Lemma 18 can be viewed as a special case of the main theorem when the graph is complete.
However, it should be noted that Lemma 18 is more exact in the sense that the guaranteed
lower bound of the value of the output assignment is not asymptotic. The proof of this
lemma is also similar to that of Lemma 13 except that we need slightly more complicated
algorithm and computation to deal with the fact that the underlying graph is not bipartite.
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Proof of Lemma 18. We will prove the lemma by induction. Note that throughout the
proof, we will not worry about the randomness that the algorithm employs; it is not hard to
see that the random assignment algorithms described below can be derandomized via greedy
approach so that the approximation guarantees are as good as the expected guarantees of
the randomized ones and that we still end up with the same asymptotic running time.

Let P (i) represent the following statement: there exists an O
(
(nq)3i)-time algorithm

Approx-CompleteGamei(q, V,E, {Ce}e∈E , {Su}u∈V ) that takes in a satisfiable Max 2-
CSP instance (q, V,E, {Ce}e∈V ) where (V,E) is a complete graph and a reduced alphabet
set Su for every u ∈ U such that, if σOPTu ∈ Su for every u ∈ V , then the algorithm outputs

an assignment of value at least
(∏

u∈V
1
|Su|

) 1
ni .

Observe that P (i) implies the lemma by simply setting Su = [q] for every u ∈ V .
Base Case. The algorithm Approx-CompleteGame1(q, V,E, {Ce}e∈E , {Su}u∈V ) is a

simple random assignment algorithm. However, before we randomly pick the assignment, we
need to first discard the alphabets that we know for sure are not optimal. More specifically,
Approx-CompleteGame1(q, V,E, {Ce}e∈E , {Su}u∈V ) works as follows.
1. While there exist u, v ∈ U and σu ∈ Su such that C(u,v)(σu, σv) = 0 for every σv ∈ Sv,

remove σu from Su.
2. For each u ∈ V , pick ϕ(u) independently and uniformly at random from Su. Output ϕ.

It is obvious that the algorithm runs in O(n3q3) time as desired.
Now, we will show that, if σOPTu ∈ Su for every u ∈ V , then the algorithm gives an

assignment that is of value at least
(∏

u∈V
1
|Su|

) 1
n in expectation.

First, observe that σOPTu remains in Su after step 1 for every u ∈ V . This is because
C(u,v)(σOPTu , σOPTv ) = 1 for every v 6= u.

Next, Consider the expected number of satisfied edges by the output assignment, which
can be rearranged as follows:

E

 ∑
(u,v)∈E

C(u,v)(ϕ(u), ϕ(v))

 =
∑

(u,v)∈E

E
[
C(u,v)(ϕ(u), ϕ(v))

]
=

∑
(u,v)∈E

1
|Su||Sv|

∑
σu∈Su

∑
σv∈Sv

C(u,v)(σu, σv).

From the condition of the loop in step 1, we know that after the loop ends, for each
σu ∈ Su, there must be at least one σv ∈ Sv such that C(u,v)(σu, σv) = 1. In other words,∑

σu∈Su

∑
σv∈Sv

C(u,v)(σu, σv) ≥
∑
σu∈Su

1 = |Su|.

Similarly, we can also conclude that∑
σu∈Su

∑
σv∈Sv

C(u,v)(σu, σv) ≥ |Sv|.

Thus, we have ∑
σu∈Su

∑
σv∈Sv

C(u,v)(σu, σv) ≥ max{|Su|, |Sv|}

for every u 6= v.
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Hence, we can bound the expected number of satisfied edges as follows:∑
(u,v)∈E

1
|Su||Sv|

∑
σu∈Su

∑
σv∈Sv

C(u,v)(σu, σv) ≥
∑

(u,v)∈E

1
|Su||Sv|

max{|Su|, |Sv|}

=
∑

(u,v)∈E

1
min{|Su|, |Sv|}

≥
∑

(u,v)∈E

1√
|Su||Sv|

(A.M. - G.M. inequality) ≥ |E|

 ∏
(u,v)∈E

1√
|Su||Sv|

 1
|E|

= |E|

 ∏
(u,v)∈E

1√
|Su||Sv|

 2
n(n−1)

(Each u ∈ V appears in exactly n− 1 edges) = |E|

(∏
u∈V

1
|Su|

)(n−1)/2
 2

n(n−1)

= |E|
(∏
u∈V

1
|Su|

)1/n

,

which implies that P (1) is true as desired.
Inductive Step. Let j be any positive integer. Suppose that P (j) holds.
We will now describe Approx-CompleteGamej+1 based on Approx-CompleteGamej

as follows.

1. Define R to be
(∏

u∈V
1
|Su|

) 1
n(j+1) , our target value we want to achieve.

2. Run the following steps 2(a)i to 2(a)iv until no Su is modified by neither step 2(a)iv nor
step 2(a)ii.
a. For each u ∈ V and σu ∈ Su, do the following:

i. For each v ∈ V , compute Su,σuv = {σv ∈ Sv | C(u,v)(σu, σv) = 1}. This is the set of
reduced assignments of v if we assign σu to u. Note that when v = u, let Su = {σu}.

ii. If Su,σuv = ∅ for some v ∈ V , then remove σu from Su and continue to the next
u, σu pair.

iii. Compute Ru,σu =
(∏

v∈V
1

|Su,σuv |

) 1
nj . If R′ < R, continue to the next u, σu pair.

iv. Execute Approx-CompleteGamej(q, V,E, {Ce}e∈E , {Su,σuv }v∈V ). If the output
assignment is of value less than Ru,σu , then remove σu from Su. Otherwise, return
the output assignment as the output to Approx-CompleteGamej+1.

3. If the loop in the previous step ends without outputting any assignment, just output a
random assignment (i.e. pick ϕ(u) independently and uniformly at random from Su).

Observe first that the loop can run at most nq times as the total number of elements
of Sv’s for all v ∈ V is at most nq. This means that we call Approx-CompleteGamej at
most nq times. Since every step except the Approx-CompleteGamej calls takes O((nq)3)
time and we call Approx-CompleteGamej only at most n2q2 times, we can conclude that
the running time of Approx-CompleteGamej+1 is O((nq)3j+3) as desired.
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The only thing left to show is that the assignment output from the algorithm indeed is of
expected value at least R. To do so, we will consider two cases.

First, if step 3 is never reached, the algorithm must terminate at step 2(a)iv. From the
return condition in step 2(a)iv, we know that the output assignment is of value at least
Ru,σu ≥ R as desired.

In the second case where step 3 is reached, we first observe that when we remove su from Su
in step 2(a)iv, the instance is still satisfiable. The reason is that, if σu = σOPTu is the optimal
assignment for u, then σOPTv remains in Su,σuv for every v ∈ V . Hence, from our inductive hy-
pothesis, the output assignment from Approx-CompleteGamej(q, V,E, {Ce}e∈E , {Su,σuv }v∈V )
must be of value at least Ru,σu . As a result, we never remove sOPTu from Su, and, thus, the
instance remains satisfiable throughout the algorithm.

Moreover, notice that, if Ru,σu ≥ R for any u, σu, we either remove σu from Su or output
the desired assignment. This means that, when step 3 is reached, Ru,σu < R for every u ∈ V
and σu ∈ Su.

Now, let us consider the expected number of edges satisfied by the random assignment.
Since our graph (V,E) is complete, it can be written as follows.

E

 ∑
(u,v)∈E

C(u,v)(ϕ(u), ϕ(v))

 = E

1
2
∑
u∈V

∑
v∈V
v 6=u

C(u,v)(ϕ(u), ϕ(v))


= 1

2
∑
u∈V

∑
v∈V
v 6=u

E
[
C(u,v)(ϕ(u), ϕ(v))

]

= 1
2
∑
u∈V

∑
v∈V
v 6=u

1
|Su||Sv|

( ∑
σu∈Su

∑
σv∈Sv

C(u,v)(σu, σv)
)

(From definition of Su,σuv ) = 1
2
∑
u∈V

∑
v∈V
v 6=u

1
|Su||Sv|

( ∑
σu∈Su

|Su,σuv |

)

= 1
2
∑
u∈V

1
|Su|

∑
σu∈Su

∑
v∈V
v 6=u

|Su,σuv |
|Sv|


(A.M.-G.M. inequality) ≥ 1

2
∑
u∈V

1
|Su|

∑
σu∈Su

(n− 1) n−1

√√√√∏
v∈V
v 6=u

|Su,σuv |
|Sv|

= (n− 1)
2

∑
u∈V

1
|Su|

∑
σu∈Su

n−1

√√√√∏ v∈n
v 6=u
|Su,σuv |∏

v∈V
v 6=u
|Sv|

(From our definition of Ru,σu , R) = (n− 1)
2

∑
u∈V

1
|Su|

∑
σu∈Su

n−1

√
(Ru,σu)−nj
R−n(j+1)

|Su|

(Since Ru,σu < R) > (n− 1)
2

∑
u∈V

1
|Su|

∑
σu∈Su

n−1
√
|Su|Rn

= (n− 1)
2

∑
u∈V

n−1
√
|Su|Rn

= (n− 1)
2 Rn/(n−1)

(∑
u∈V

n−1
√
|Su|

)
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(A.M.-G.M. inequality) ≥ (n− 1)
2 Rn/(n−1)

n n(n−1)

√∏
u∈V
|Su|


(From our definition of R) = (n− 1)

2 Rn/(n−1)

n n(n−1)

√∏
u∈V

R−n(j+1)


= n(n− 1)

2 R(n−1−j)/(n−1)

(Since R ≤ 1 and j ≥ 0) ≥ n(n− 1)
2 R.

Since n(n−1)
2 is the number of edges in (V,E), we can conclude that the random assignment

is indeed of expected value at least R.
Thus, we can conclude that P (j + 1) is true. As a result, P (i) is true for every positive

integer i, which completes the proof for Lemma 18. J

Next, we will prove Corollary 12 by reducing it to Max 2-CSP on complete graph, and,
then plug in Lemma 18 with appropriate i to get the result.

First, observe that, since log(1 + ε′) = Ω(ε′) for every 1 ≥ ε′ > 0, by plugging in
i = C log q/ε′ for large enough constant C into Lemma 18, we immediately arrive the
following corollary.

I Corollary 19. For any 1 ≥ ε′ > 0, there exists an (1 + ε′)-approximation algorithm for
satisfiable Max 2-CSP on the complete graph that runs in time NO(ε′−1 logN).

Now, we will proceed to show the reduction and, thus, prove Corollary 12.

Proof of Corollary 12. First of all, notice that, since 1
1+ε = 1−Θ(ε). It is enough for us to

show that there exists an NO(ε−1δ−1 logN)-time algorithm for satisfiable δ-dense Max 2-CSP
that produces an assignment of value at least 1− ε.

On input (q, V,E, {Ce}e∈E), the algorithm works as follows:
1. Construct a Max 2-CSP instance (q, V,E′, {C ′e}e∈E′) where (V,E′) is a complete graph

and C ′e is defined as Ce if e ∈ E. Otherwise, Ce := 1. In other words, we put in dummy
constraints that are always true just to make the graph complete.

2. Run the algorithm from Corollary 19 on (q, V,E′, {C ′e}e∈E′) with ε′ = εδ and output the
assignment got from the algorithm.

To see that the algorithm indeed produces an assignment with value 1 − ε for the
input instance, first observe that, since (q, V,E, {Ce}e∈E) is satisfiable, (q, V,E′, {C ′e}e∈E′)
is trivially satisfiable. Thus, from Corollary 19, the output assignment has value at least
1/(1 + δε) ≥ 1− δε with respect to (q, V,E′, {C ′e}e∈E′). In other words, the assignment does
not satisfy at most δεn2 edges. Thus, with respect to the input instance, it satisfies at least
δn2 − δεn2 = (1− ε)δn2 edges. In other words, it is of value at least 1− ε as desired.

Lastly, note that the running time of this algorithm is determined by that of the algorithm
from Corollary 19, which runs in NO(ε′−1 logN) = NO(ε−1δ−1 logN) time as desired. J

8 Conclusions and Open Questions

Finally, we conclude by listing the open questions and interesting directions related to the
techniques and problems presented here. We also provide our thoughts regarding each
question.
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Can our algorithm be extended to work for Max k-CSP for k ≥ 3? Other algorithms for
approximating Max 2-CSP such as those from [2, 3, 4] are applicable for Max k-CSP
for any value of k as well. So it is possible that our technique can be employed for Max
k-CSP too.
Can one also come up with an algorithm that approximates Max 2-CSP to within O(Nε)
factor for any ε > 0 for low-value dense Max 2-CSP? Our algorithm needs the value
λ to be N−o(1) in order to give such a ratio so it is interesting whether we can remove
or relax this condition. However, we do not think that one can remove the condition
completely because, with similar technique to the proof of Corollary 12, we can arrive at
a reduction from any Max 2-CSP to dense Max 2-CSP where the approximation ratio
is preserved but the value decreases. This means that, if we can remove the condition on
λ, then we are also able to refute the PGC. This argument nonetheless does not rule out
relaxing the condition for λ without removing it completely.
Can our QPTAS be extended to unsatisfiable instances? One of the main disadvantages
of our QPTAS is that it requires the instance to be satisfiable. This renders our QPTAS
useless against many problems such as Max 2-SAT and Max-Cut because the satisfiable
instances of those problems are trivial. If we can extend our QPTAS to work on
unsatisfiable instances as well, then we may be able to produce interesting results for
those problems. Note, however, that, with similar argument to the preceding question,
QPTAS for low-value instances likely does not exist. Instead, the case of unsatisfiable
instances where [2, 3, 4] are successful is when they look for an additive error guarantee
instead of a multiplicative one. Currently, it is unclear whether our technique can achieve
such results.
Can one arrive at a similar or even better algorithm using SDP hierarchies? SDP
hierarchies have been very useful in finding approximation algorithms for combinatorial
optimization problems. A natural question to ask is whether one can apply SDP hierarchies
to get similar results to ours. For example, can the O(i)-level of the Lasserre hierarchy
produce an approximation algorithm with ratio O(q1/i) for dense Max 2-CSP? If so,
then this may also be an interesting direction to pursue an algorithm with guarantee
additive error discussed previously.
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Abstract
We introduce and study a network resource management problem that is a special case of non-
metric k-median, naturally arising in cross platform scheduling and cloud computing. In the
continuous d-dimensional container selection problem, we are given a set C ⊂ Rd of input points,
for some d ≥ 2, and a budget k. An input point p can be assigned to a “container point” c only
if c dominates p in every dimension. The assignment cost is then equal to the `1-norm of the
container point. The goal is to find k container points in Rd, such that the total assignment cost
for all input points is minimized. The discrete variant of the problem has one key distinction,
namely, the container points must be chosen from a given set F of points.

For the continuous version, we obtain a polynomial time approximation scheme for any fixed
dimension d ≥ 2. On the negative side, we show that the problem is NP-hard for any d ≥ 3.
We further show that the discrete version is significantly harder, as it is NP-hard to approx-
imate without violating the budget k in any dimension d ≥ 3. Thus, we focus on obtaining
bi-approximation algorithms. For d = 2, the bi-approximation guarantee is (1 + ε, 3), i.e., for any
ε > 0, our scheme outputs a solution of size 3k and cost at most (1 + ε) times the optimum. For
fixed d > 2, we present a (1 + ε, O( 1

ε log k)) bi-approximation algorithm.
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1 Introduction

This paper introduces and studies the container selection problem, a special case of the
non-metric k-median problem [12]. This network resource management problem naturally
occurs in virtualized distributed computer environments, the goal being to maximize resource
utilization. This environment may consist, e.g., of a private cloud [13], or a collection of
in-house, physical computer processors employing a cluster manager such as Mesos [9] or
YARN [16].

We describe and motivate the container selection problem as follows. The input points
correspond to tasks, each of which can be described in terms of multiple resource requirements.
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These dimensions typically include both CPU and memory, sometimes also network and
I/O bandwidth. The tasks are then placed and executed in virtual containers, and of course
each task must “fit” into its assigned container. For a variety of reasons, including ease of
selection, maintenance and testing, it is important to create only a modest number k of
container sizes. Amazon’s EC2 cloud offering [2], for example, allows its customers to choose
from k = 13 standard “instance types”. The goal is to select k container sizes so that the
aggregate resource usage (when each task is assigned its “smallest” dominating container) is
minimized. We use the (normalized) sum of resources as the aggregate resource usage of
a container. In these applications, the container sizes are usually determined in advance,
before the actual tasks arrive: so suitably massaged historical task data is used as input. We
refer the reader to [17] for more details.

Formally, an instance of the continuous container selection problem consists of a set
of input points C in a d-dimensional space Rd, and a budget k. We say that a point
c(c1, c2, . . . , cd) dominates (or, contains) a point p(x1, x2, . . . , xd) if xi ≤ ci, for all i ∈ [d].
The cost of assigning any input point p to a container point c(c1, c2, . . . , cd) is the `1-norm
of the container point, i.e, c1 + c2 + . . .+ cd, if c dominates p; else, the assignment cost is
∞. The goal is to choose a set S ⊆ Rd of k container points, such that each input point
is assigned to a container point in S, and the total assignment cost is minimized. In the
discrete version of the problem, we have a further restriction that S ⊆ F , where F ⊆ Rd is
an arbitrary, but finite, subset of points in the space. This problem variant is motivated by
the fact that each container must itself “fit” into at least one physical processing node, or by
the fact that certain resources (memory, for instance) are only allocated in fixed increments.

Related work. Clustering problems such as k-median, k-center, and k-means have received
considerable attention in recent decades [10, 11, 3] (and references therein). Below, we
only discuss the highlights directly relevant to our work. Our problem is a special case of
the non-metric k-median problem. It also bears some similarity to the Euclidean k-median
problem under the `1-norm metric. However, this similarity cannot be leveraged due to the
“non-metric" characteristics of our problem. There is a (1 + ε, (1 + 1

ε ) lnn) bi-approximation
algorithm for non-metric k-median [12], which finds a solution whose cost is within a (1 + ε)
factor of optimal, for any constant ε > 0, while using at most k(1 + 1

ε ) lnn centers. The
paper [12] also shows, using a reduction from the set cover problem, that these guarantees are
the best one can hope for. On the other hand, the metric variant of the k-median problem is
known to have small constant-factor approximation algorithms, with no violation of k. The
best known ratio 2.611 + ε is due to [6]. For the Euclidean k-median problem, which is a
special case of metric k-median, there is a polynomial time approximation scheme (PTAS) [4].

Ackermann et al. [1] obtain PTAS for the non-metric k-median problem assuming that
the following property holds: the corresponding 1-median problem can be approximated
within a 1 + ε factor by choosing a constant size sample and computing the optimal 1-median
of such a sample. However, we note that the container selection problem does not satisfy
this property. Indeed, consider a simple 1-dimensional instance with n− 1 points close to
origin, and one point far away from origin. Clearly, with high probability, any constant size
sample will, not contain the point far away from origin. An optimal 1-median of such a
sample would in turn be infeasible for the original instance.

Our contribution. As noted above, the container selection problem is a special case of
non-metric k-median, which is inapproximable unless we violate k significantly [12]. However,
our problem still has sufficient geometric structure. This structure allows us to obtain near
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optimal algorithms that, in the case of continuous container selection, do not violate k, and
in the discrete case, violate k mildly. In particular, we show that:

the continuous container selection problem admits a PTAS, for any fixed d.
On the negative side, we show that the problem is NP-hard for d ≥ 3.
the discrete variant (for d ≥ 3) is NP-hard to approximate within any guarantee if the
budget k is not violated. On a positive note, we obtain constant factor bi-approximation
algorithms for this variant. For any constant ε > 0, the guarantees are (1 + ε, 3), for d = 2,
and (1 + ε, O(dε log dk)), for any d ≥ 3. The latter result is an improvement over the
bi-approximation that follows from non-metric k-median [12] as long as k = o(logO(1) n),
d = o( logn

log logn ).

Techniques and outline. Our PTAS for the continuous problem (Section 2) relies on
showing the existence of a near-optimal solution, where every container point lies on one
among a constant number of rays through the origin. Ensuring this structure costs us a
1 + ε factor in the approximation ratio. The algorithm itself is then a dynamic program
which optimally solves such a “restricted” container selection problem. A seemingly simpler
approach is to use the near-optimal structure, where every container point lies on a grid with
O(logn) geometrically spaced values in each dimension; however, this is not directly useful,
as we do not know an exact algorithm for the resulting sub-problem.

The flexibility of using container points in the continuous space is essential − not just for
our algorithm, but for any approach: we show the discrete version is NP-hard to approximate
to any factor when d ≥ 3. The reduction (Section 4) is from a restricted version of planar
vertex cover [7], and in fact shows that even testing feasibility is NP-hard. We also reduce the
discrete container selection problem to the continuous version (not approximation preserving),
which proves its NP-hardness when d ≥ 3.

We obtain two different algorithms for the discrete container selection problem, both of
which provide bi-approximation guarantees. The first algorithm (Section 3.1) is specialized
to dimension two and is a (1 + ε, 3)-approximation. The main idea here is a partitioning
of R2

+ into O(logn) “cells”, where all points in a cell have roughly the same `1-norm, thus
allowing to decouple “local assignments” within a single cell, and “distant assignments” from
one cell to another. This partitioning uses the definition of rays from the algorithm for the
continuous problem. (Using a more standard partitioning yields O(log2 n) cells which is too
large for a polynomial-time algorithm.) The algorithm then uses enumeration to handle
distant assignments and a dynamic-program for the local assignments. This decoupling
necessitates the violation in the bound k.

The second algorithm for the discrete version (Section 3.2) works for any dimension d and
yields a (1 + ε, O(dε log dk))-approximation. This is based on the natural linear programming
relaxation used even for the non-metric k-median problem [12]. However, we obtain a sharper
guarantee in the violation of k, using the geometry specific to our setting. In particular, we
show an LP-based reduction to hitting-set instances having VC-dimension O(d). Then our
algorithm uses the well-known result of [8, 5] for such hitting-set instances. We note that
a constant bi-approximation algorithm for d = 2 also follows from this approach, using a
known O( 1

ε )-size ε-net construction for “pseudo-disks” [14]. However, the constant obtained
here is much larger than our direct approach.

I Remark. There is also a quasi-polynomial time approximation scheme (no violation of the
bound k) for the discrete container selection problem in dimension d = 2. This is based on
a different dynamic program (details deferred to the full version). However, this approach
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does not lead to any non-trivial approximation ratio in polynomial time. We leave open the
possibility of a polynomial-time O(1)-approximation algorithm for this problem (d = 2).

Notation. For integers a < b, we use [b] := {1, 2, · · · b} and [a, b] := {a, a + 1, . . . , b}. All
co-ordinates of input points are assumed to be non-negative. A point c(c1, c2, . . . , cd) ∈ Rd
dominates (or, contains) another p(x1, x2, . . . , xd) ∈ Rd if, for all i ∈ [d], xi ≤ ci. By p ≺ c,
we mean c dominates p. Two points p1 and p2 are called incomparable if p2 ⊀ p1 and p1 ⊀ p2.
The `1-norm of a point c(c1, c2, . . . , cd) is denoted by ‖c‖, i.e., ‖c‖ = c1 + c2 . . . + cd. For
a subset of container points, S, we denote the total cost of assignment by cost(S). The
cartesian product of two sets A and B is denoted by A×B.

2 The Continuous Container Selection Problem

In this section, we describe a polynomial time approximation scheme for the continuous
container selection problem. We start with a formal definition.

I Definition 1 (continuous container selection). In an instance of the problem, we are given
a set of input points C in Rd+ and a budget k. The goal is to find a subset S of k container
points in Rd+, such that the following cost is minimized.

Min
S⊆Rd

|S|≤k

∑
p∈C

Min
c∈S
p≺c

‖c‖

We describe the algorithm for d = 2 in Section 2.1 and subsequently, in Section 2.2 we extend
this to dimension d > 2.

2.1 The two dimensional container selection problem
We denote the set of input points by C = {pi(xi, yi) : i ∈ [n]}. Let Sopt denote an optimal set
of k container points. Let X = {xi : i ∈ [n]} and Y = {yi : i ∈ [n]}. It is an easy observation
that Sopt ⊆ X × Y . We call X × Y the set of potential container points and denote it by
F = {cj(uj , vj) : j ∈ [m]}, where m ≤ n2.

Algorithm outline. Given an instance of the problem, we transform it into an easier instance
where all the chosen container points must lie on a certain family of rays. The number of rays
in this family will be bounded by a constant that depends on ε, where 1 + ε is the desired
approximation ratio. Subsequently, we show that the restricted problem can be solved in
polynomial time using a dynamic program.

Transformation of container points. Fix a constant θ ≈ ε
2 ∈ (0, π4 ], such that η = π

2θ is
an integer. Define the following lines lr ≡ y cos (r − 1)θ − x sin (r − 1)θ = 0, for r ∈ [η + 1].
We define the following transformation of any point cj(uj , vj) ∈ F to construct the set
of potential container points FT . If cj lies on the line lr, for some r ∈ [η], then cTj = cj .
Otherwise, cj is contained in the region bounded by the lines lr and lr+1, for some r ≤ η.
Now define two points cuj (uj + ∆u, vj) and cvj (uj , vj + ∆v), such that cuj is on lr and cvj is on
lr+1. Now, the transformed point can be defined as follows:

cTj =
{
cuj , if ∆u ≤ ∆v
cvj , otherwise
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l1

l2

l3

lη−3
lη−2

lη−1

lη

(a) Transformation of the container points

(r − 1)θ

θ

(uj, vj)

≥ vj cot rθ

= vj cot(r − 1)θ

≥ uj tan(r − 1)θuj tan rθ

lr+1

lr

∆u

∆v

(b) Computing the error in transformation

Figure 1 Continuous container selection problem.

Figure 1a illustrates this transformation. We emphasize that this transformation is only
performed on the potential container points F . The input points C themselves are unchanged.
Under this transformation the optimal solution is preserved within an approximation factor
of (1 + ε).

I Lemma 2. For instance I = (C, k), let Sopt = {o1, o2, . . . , ok} be an optimal solution.
Further, let STopt = {oT1 , oT2 , . . . , oTk } ⊆ FT be the set of transformed points corresponding to
Sopt. Then, STopt is a feasible solution to I and cost(STopt) ≤ (1 + ε)cost(Sopt).

Proof. Recall that η = π
2θ and θ ≈ ε

2 . The feasibility of STopt follows from the observation
that if a point pi ∈ C is dominated by a container oi ∈ Sopt, it is also dominated by the
point oTi . We now argue that cost(STopt) ≤ (1 + ε)cost(Sopt). It suffices to show that for
every point oj = (uj , vj), uTj + vTj ≤ (1 + ε)(uj + vj), where oTj = (uTj , vTj ). The claim holds
trivially in the case where oj lies on a line lr, for r ∈ [1, 2, . . . , η + 1]. Hence, assume that oj
lies in the region bounded by the two lines lr and lr+1, where r ∈ [1, 2, . . . , η]. Further, let
ouj = (uj + ∆u, vj) and ovj = (uj , vj + ∆v), be the points on lines lr and lr+1 respectively.
By geometry (refer to Figure 1b), we have the following equations:

∆u ≤ vj
(

cos(r − 1)θ
sin(r − 1)θ −

cos rθ
sin rθ

)
= vj

sin θ
sin rθ sin(r − 1)θ (1)

∆v ≤ uj
(

sin rθ
cos rθ −

sin(r − 1)θ
cos(r − 1)θ

)
= uj

sin θ
cos rθ cos(r − 1)θ (2)

Let ∆ = min(∆u,∆v). From Equations 1 and 2, we have,

(uj + vj) sin θ ≥ ∆(sin rθ sin(r − 1)θ + cos rθ cos(r − 1)θ) = ∆ cos θ.
So ∆ ≤ (uj + vj) tan θ ≤ (uj + vj)(2θ) = (uj + vj)ε. (3)

Now, the claim follows from Equation 3 and the fact that uTj + vTj = (uj + vj) + ∆. J

In Section 2.3, we show that the following restricted problem can be solved in polynomial
time (by dynamic programming), for any fixed dimension d ≥ 2.

I Definition 3 (restricted container selection). For a constant η ≥ 0, let Ld = {l1, l2, . . . , lη}
be a given family of η rays in Rd+. The input is a set of points C ⊆ Rd+, a set of potential
container points F that lie on the lines in Ld and a budget k. The goal is to find a subset
S ⊆ F with |S| ≤ k such that cost(S) is minimized.
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By Lemma 2, the 2D continuous container selection problem reduces to this restricted
problem, at a (1 + ε)-factor loss. So we obtain a PTAS for the 2D continuous container
selection problem.

2.2 Continuous container selection in dimension d > 2
We now consider the container selection problem in higher, but fixed, dimensions. Formally,
an instance, I = (C, k), of the d-dimensional container selection problem consists of a set of
input points, C = {pi(xi1, xi2, . . . , xid) : i ∈ [n]} and a budget k.

Potential container points. For each dimension j ∈ [d], we define Xj = {xij : i ∈ [n]}, as
the set of jth coordinates of all input points. An easy observation is that any container point
chosen by any optimal solution must belong to F = X1×X2× . . .×Xd = {ci(ui1, ui2, . . . , uid) :
i ∈ [m]} where, m ≤ nd.

Algorithm outline. As in the two dimensional case, the main idea is a reduction to the
following restricted problem. An instance is I = (C, k, Ld) where C is a set of input points
in Rd, k is an integer and Ld is a family of rays in Rd+ with |Ld| = Od(1). The goal is to
choose k container points that lie on the rays in Ld, such that the total assignment cost of C
is minimized.

Transformation of container points. Fix a constant θ ≈ ε
2 ∈ (0, π4 ], such that η = π

2θ is an
integer. In order to construct Ld, we use the recursive procedure described in Algorithm 1.
Let ūi denote the ith unit vector (i ≤ d), i.e., ūi is a 0-1 vector with value 1 at the ith
coordinate and 0 elsewhere. Starting from the family L2 of rays in two dimensions (using the
transformation in Section 2), we add one dimension at a time and construct the corresponding
families for higher dimensions. In the recursive step, we start with the family Lr−1 and
observe that each of these rays will induce a 2-D plane in r-dimensions. Then, we use the two
dimensional construction to handle the extra dimension. Observe that |Ld| ≤ (π/θ)d = O(1)
for any fixed θ and d.

Algorithm 1 Construction of the family of lines in r-dimensions: Lr
1: let ū1, ū2, . . . , ūr be the unit vectors along the axis lines
2: if r = 2 then return equiangular rays in R2

+ from Section 2 (see also Figure 1)
3: construct the family Lr−1 in Rr−1

+ recursively.
4: initiate: Lr ← ∅
5: for all ` ∈ Lr−1 do
6: let ¯̀ be the unit vector along the line `
7: consider the (two dimensional) plane Π` formed by the vectors ūr and ¯̀
8: let Q` be the family of rays obtained by applying the 2D transformation in Section 2

to the plane Π`

9: Lr ← Lr ∪Q`
10: end for
11: return Lr

Algorithm 2 describes a recursive procedure to transform a point c(u1, u2, . . . , ud) ∈ F to
a point cT that lies on some line in Ld. The idea is as follows: for any r ≥ 3, first recursively
transform the point cr−1(u1, u2, . . . , ur−1) ∈ Rr−1 into a point cTr−1(u′1, u′2, . . . , u′r−1) that
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lies on some line ` ∈ Lr−1. Now, consider the point c′r(u′1, u′2, . . . , u′r−1, ur), where ur is the
rth coordinate of the original point c. The point c′r lies on the 2D plane spanned by ¯̀, the
unit vector along the line `, and ūr. Using the 2D transformation we move c′r to a point cTr
that lies on some line in Lr.

Algorithm 2 The transformation of cr = (u1, u2, . . . ur) onto Lr, r ≤ d
1: if r = 2 then use the 2D transformation from the Section 2 (see also Figure 1)
2: cr−1 ← (u1, u2, . . . , ur−1)
3: recursively transform cr−1 into a point on some line ` in Lr−1 and compute the trans-

formed point cTr−1 = (u′1, u′2, . . . , u′r−1)
4: c′r ← (u′1, u′2, . . . , u′r−1, ur), which lies on the plane Π` spanned by ūr and ¯̀
5: let Q` denote the lines on plane Π` from Algorithm 1 step 8.
6: use the 2D transformation (Section 2) on plane Π` to move c′r onto a line in Q` and

obtain cTr = (uT1 , uT2 , . . . , uTr−1, u
T
r )

7: return cTr

I Lemma 4. For any θ = ε
2 ∈ (0, 1

2d−2 ] and point c(u1, u2, . . . , ud) ∈ F , applying Al-
gorithm 2, we obtain cT = (uT1 , uT2 , . . . , uTd ) where c ≺ cT and:

‖cT ‖ ≤ (1 + 2(d− 1)ε)‖c‖.

Proof. It is straightforward to see c ≺ cT . Using induction we will show that

‖cTr ‖ ≤ (1 + ε)r−1‖cr‖

The base case r = 2 follows from Lemma 2. Now consider r ≥ 3 and assume the statement
for r − 1. In Algorithm 2, cTr is obtained by transforming the point c′r in the 2D plane Π`.
Note that c′r has coordinates

√
(u′1)2 + (u′2)2 + . . .+ (u′r−1)2 and ur in plane Π`. Hence, as

shown in Lemma 2, we can obtain the following:

uT1 + uT2 + . . .+ uTr−1 + uTr ≤ (1 + ε)(
√

(u′1)2 + (u′2)2 + . . .+ (u′r−1)2 + ur)

≤ (1 + ε)(u′1 + u′2 + . . .+ u′r−1 + ur) (4)

By the inductive hypothesis, u′1 + u′2 + . . .+ u′r−1 = ‖cTr−1‖ ≤ (1 + ε)r−2‖cr−1‖, i.e.

u′1 + u′2 + . . .+ u′r−1 ≤ (1 + ε)r−2(u1 + u2 + . . .+ ur−1) (5)

Using Equations 4, 5, we have

uT1 + uT2 + . . .+ uTr−1 + uTr ≤ (1 + ε)((u′1 + u′2 + . . .+ u′r−1) + ur)
≤ (1 + ε)((1 + ε)r−2(u1 + u2 + . . .+ ur−1) + ur)
≤ (1 + ε)r−1(u1 + u2 + . . .+ ur)

Now since (d− 1)ε ≤ 1, using r = d above, ‖cT ‖ ≤ (1 + ε)d−1‖c‖ ≤ (1 + (2d− 2)ε) · ‖c‖. J

For any ε′ > 0, setting ε = ε′

2(d−1) , we can restrict the loss to a (1 + ε′) factor. Thus, we
have reduced the original instance to a restricted instance, where the potential container
points lie on a family with a constant number of lines. Using the exact algorithm for this
problem (Section 2.3) we obtain:

I Theorem 5. There is a PTAS for continuous container selection in fixed dimension d.
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2.3 Algorithm for restricted container selection
Here we provide an exact algorithm for the restricted container selection problem (Definition 3).
We need the following notion of a profile of a given subset of container points.

Profile of a subset. For a given line li and S ⊆ F , let ci ∈ S be the container point on li
with maximum `1-norm; if there is no such point then ci is set to the origin. We define the
profile of S, denoted by Π(S), as the ordered tuple (c1, c2, . . . , cη). The feasible region of a
profile Π(S) = (c1, c2, . . . , cη), denoted by feas(Π(S)), is the set of those input points that
are dominated by at least one of the points ci, i ∈ [η]. We slightly abuse this notation and
refer to the tuple itself as a profile, without any mention of S.

I Observation 6. The number of distinct profiles is at most
(
|F |
η

)η
.

Proof. Let ni be the number of potential container points on the line li. The total number
of distinct profiles is simply the number of ways of choosing the tuple (c1, c2, . . . , cη), which

is equal to n1n2 . . . nη ≤
(∑η

i=1 ni
η

)η
=
(
|F |
η

)η
. J

For a given profile Π = (c1, c2, . . . , cη), let cm denote the profile point with maximum `1-
norm, i.e., cm = arg max

ci

‖ci‖. Further, let c′m ≺ cm be some potential container point such

that both the points are on the line lm; if c′m does not exist we set it to the origin. We
define the child profile of Π corresponding to c′m, denoted by chld(Π, c′m), as the profile
(c1, c2, . . . , cm−1, c

′
m, . . . , cη). A profile tuple could have multiple child profiles. The following

observation is immediate from the definition of a child profile.

I Observation 7. Any profile tuple Π has at most |F | child profile tuples.

The DP variable. For every possible profile tuple Π = (c1, c2, . . . , cη) and all budgets
k′ ≤ k, define the dynamic program variable, M (Π, k′) as the cost of an optimal solution
S ⊆ feas(Π)∩F , to assign all the input points in feas(Π), such that |S| ≤ k′, and ci ∈ S, for
i ∈ [η]. The following lemma allows us to set up the dynamic program recurrence.

I Lemma 8. Let Π = (c1, c2, . . . , cη) be a profile with cm as the point with maximum `1-norm.
For a given child profile chld(Π, c′m) of Π, let n(c′m) = |feas(Π)\ feas(chld(Π, c′m))|. Then,
for any k′ ≥ 1, the following holds.

M (Π, k′) = Min
c′

m

(M (chld(Π, c′m), k′ − 1) + n(c′m)‖cm‖)

Proof. We denote the optimal solution corresponding to the variable M (Π, k′) by S(Π, k′).
Firstly, note that, for any c′m, the solution S(chld(Π, c′m), k′−1)∪{cm} is a feasible candidate
for the computation of M (Π, k′). Hence, we have

M (Π, k′) ≤ Min
c′

m

(M (chld(Π, c′m), k′ − 1) + n(c′m)‖cm‖) (6)

Let lm be the ray containing the point cm. Further, let q0 = (0d), q1, . . . , qj−1, qj = pi be
the container points, on lm and in S(Π, k), in the increasing order of `1-norm. Now, we set
q′ = qj−1 and prove that the child profile corresponding to q′ satisfies the following equation:

M (Π, k′) = M (chld(Π, q′), k′ − 1) + n(q′)‖cm‖
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To this end, we first observe that, without loss of generality, no point in feas (chld(Π, q′))
is assigned to cm. Indeed, this follows from the fact that cm is the container point with
maximum cost and therefore, any point in the above feasible region can be assigned to some
container point on the profile chld(Π, q′) without increasing the solution cost. Further, any
point in feas(Π) \ feas(chld(Π, q′)) must be assigned to cm, since it is the only potential
container point that dominates these points. Now,

M (Π, k′) = M (chld(Π, q′), k′ − 1) + n(q′)‖cm‖
≥ Min

c′
m

(M (chld(Π, c′m), k′ − 1) + n(c′m)‖cm‖) (7)

From Equations 6 and 7, we have our lemma. J

Algorithm 3 describes the dynamic program.

Algorithm 3 Dynamic program for the restricted container selection problem
Input: Family of lines Ld = {l1, l2 . . . , lη}, input points C, potential container points set F

on Ld and a budget k
1: for all profile tuples Π (w.r.t Ld) and integers k′ ≤ k do
2: if k′ = 0 then
3: if Π = ((0d), (0d), . . . , (0d)) then
4: M (Π, k′) = 0
5: else
6: M (Π, k′) =∞
7: end if
8: else
9: let cm be the container point with maximum `1-norm in Π

10: for all c′m ≺ cm such that both cm and c′m lie on the same line lm do
11: n(c′m)← |feas(Π) \ feas(chld(Π, c′m))|
12: f(c′m)← (M (chld(Π, c′m), k′ − 1) + n(c′m)‖cm‖)
13: end for
14: M (Π, k′)← Min

c′
m

f(c′m)

15: end if
16: end for
17: return profile Π with least cost M (Π, k) such that C = feas(Π).

3 The Discrete Container Selection Problem

In this section, we consider the discrete version of the container selection problem. We start
with the problem definition.

I Definition 9 (discrete container selection). In an instance of the problem, I = (C,F , k),
we are given a set of input points C ⊂ Rd+, a set of potential container points F ⊂ Rd+ and a
budget k. The goal is to find a subset of container points S ⊆ F , such that |S| ≤ k and the
total assignment cost of all the input points, cost(S) is minimized.

This problem is considerably harder than the continuous version, as we show that there is
no true approximation algorithm for this problem, unless P = NP , for d ≥ 3. Hence, we look
for bi-approximation algorithms, defined as follows. An (α, β) bi-approximation algorithm
obtains a solution S, such that |S| ≤ β · k and cost(S) ≤ α · cost(Sopt).
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I Theorem 10 (two-dimensions). For d = 2, and any constant ε > 0, there is a (1 + ε, 3)-bi-
approximation algorithm for the discrete container selection problem.

I Theorem 11 (higher-dimensions). For d > 2 and ε > 0, there is a (1 + ε, O(dε log dk))-bi-
approximation algorithm for the discrete container selection problem.

3.1 Two dimensional discrete container selection problem
Algorithm outline. The first step is to partition the plane into a logarithmic number of
“cells”, such that the `1-norms of points in a particular cell are approximately uniform. One
standard way of doing this, where we create a two-dimensional grid with logarithmic number
of lines in each dimension, fails because such a process would yield Ω(log2 n) cells. Our
approach uses the rays partitioning idea. Given such a partitioning, we “guess” the “good”
cells that have any container points belonging to a fixed optimal solution. For each one of
these good cells, we then pick two representative container points. These points are chosen
such that if, in the optimal solution, an input point i outside a cell e is assigned to a container
point inside e, at least one of the representative points in e dominates i. This enables us
to make “local decisions” for each cell independently. We then solve this localized instance,
using k more container points. Hence, in total we use 3k container points.

pemax

Cell e

pemin

Figure 2 Description of the cells.

The algorithm. Choose δ = ε
11 such that π

4δ = η is
an integer. We first use a simple scaling argument to
bound the maximum to minimum ratio of `1-norms by
O(n). We guess the maximum norm container point
pmax that is used in some fixed optimal solution (there
are only |F | guesses) and delete all larger points from
F . Let pmin be the point in C ∪F with minimum
positive norm. We increase the x-coordinates of all
the input points and the container points by δ

n‖pmax‖
and then divide all the co-ordinates of all points by
‖pmin‖.
I Observation 12. Let Sopt and S′opt be the optimal
solutions of a given instance before and after scaling
respectively. ‖pmin‖cost(S′opt) ≤ cost(Sopt)(1 + δ)

Proof. Since all the points are increased and scaled
uniformly, the feasibility is maintained. Further, we note that cost(Sopt) ≥ ‖pmax‖ since our
guess pmax ∈ Sopt. If the cost of assignment of any input point is C in the original instance,
the new cost is equal to (C + δ

n‖pmax‖)/‖pmin‖ and the lemma follows. J

From now on, we assume that all the points are scaled as above and therefore ‖pmin‖ = 1
and ‖pmax‖ ≤ n

δ . Let t = log1+δ ‖pmax‖ and define the following families of rays.

L1 = {x sin(rδ)− y cos(rδ) = 0 : r ∈ [0, η)} L3 = {y = (1 + δ)i : i ∈ [0, t]}

L2 = {x sin(rδ)− y cos(rδ) = 0 : r ∈ [η, 2η]} L4 = {x = (1 + δ)i : i ∈ [0, t]}

Cells. We define the notion of cell as exemplified in the Figure 2. A cell is a quadrilateral
formed with the following bounding lines: either, two consecutive lines in L1 and two
consecutive lines in L4, or, two consecutive lines in L2 and two consecutive lines in L3. The
number of cells formed is at most (2η + 1)t = O(logn)
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I Lemma 13. For a given cell e, let pemin and pemax be the points of minimum and maximum
cost, respectively. Then,

‖pemax‖ ≤ (1 + ε)(‖pemin‖)

Proof. Without loss of generality, let e be formed by lines y = (1 + δ)i, y = (1 + δ)i+1,
x sin θ − y cos θ = 0 and x sin(θ + δ)− y cos(θ + δ) = 0, where θ ≥ π

4 . Clearly, as shown in
Figure 2, we have

pemin = ((1 + δ)i cot(θ + δ), (1 + δ)i)

pemax = ((1 + δ)i+1 cot θ, (1 + δ)i+1)

‖pemax‖
‖pemin‖

= (1 + δ)i+1(1 + cot θ)
(1 + δ)i(1 + cot(θ + δ)) = (1 + δ) (sin θ + cos θ) sin(θ + δ)

(sin(θ + δ) + cos(θ + δ)) sin θ

= (1 + δ) sin θ sin(θ + δ) + cos θ sin(θ + δ)
sin(θ + δ) sin θ + cos(θ + δ) sin θ

= (1 + δ)
(

1 + cos θ sin(θ + δ)− cos(θ + δ) sin θ
sin(θ + δ) sin θ + cos(θ + δ) sin θ

)
= (1 + δ)

(
1 + sin δ

sin(θ + δ) sin θ + cos(θ + δ) sin θ

)
≤ (1 + δ)

(
1 + sin δ

sin2 θ

)
≤ (1 + δ)(1 + 2δ) = (1 + 3δ + 2(δ)2) ≤ (1 + ε)

We note that the second last inequality follows from the fact that sin2 θ ≥ sin2 π
4 ≥

1
2 . J

Representative points. For a given optimal solution, a cell is good if at least one container
point is chosen from it (we break the ties between two cells sharing an edge arbitrarily).
Since, there are O(logn) cells, there are a polynomial number of good-bad classifications.
Therefore, we can try out all possible configurations and assume that we know which cells
are good. For each good cell e, let pex be the container point with maximum x-coordinate
and pey the one with maximum y-coordinate. We define the set of representative points,
R = { pex, pey : ∀ e good cell }. Clearly |R| ≤ 2k. We will show (in Lemma 15) that any
input point that is not assigned to a “local container” (one in the same cell) in the optimal
solution, can be re-assigned to some point of R at approximately the same cost.

Localized container selection problem. In an instance of the localized container selection
problem, (C,F1,F2, k), we are given a set of input points C, a set of potential container
points F1, a set of pre-chosen container points F2 and a budget k. Moreover, for each cell e,
the points in F1 ∩ e are all incomparable to each other. For a cell e, let ∆e

max = Max
p∈F1∩e

‖p‖,
be the maximum `1-norm of any container point in e. The cost of assignment of any input
point to any point, in F1 ∩ e, is uniform and equal to ∆e

max. The cost of assignment of an
input point to a container point c ∈ F2 is ‖c‖. Further, any input point p in the cell e, can
only be assigned to:

a container point c ∈ F2 such that p ≺ c, or
a container point c ∈ F1 such that c belongs to e and p ≺ c.

Given an instance of the discrete container selection problem, I = (C,F , k), we construct
the following instance of the localized container selection problem, I ′ = (C,F1,F2, k).

I Construction 14. The input point set C, remains the same and F2 is the set of representative
points, i.e., F2 = R. F1 is constructed as follows: starting with F1 = F \ R, while there
are two points p and p′ in F1 that belong to same cell e and p ≺ p′, delete p from F1.
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I Lemma 15. For a given instance of the discrete container selection problem, I = (C,F , k),
with the optimal solution cost OPT , the corresponding localized container selection instance
I ′ = (C,F1,F2, k) has an optimal cost of at most (1 + ε)OPT .

Proof. Suppose S is an optimal solution for the instance I. We iteratively construct a
solution, S′, for the instance I ′. Initiating S′ = φ, we add exactly one container point for
every container point c ∈ S in the following way: let c belong to a cell e. If c ∈ F1, then
we add c to S′; otherwise, we add some c′ ∈ F1 ∩ e, such that c ≺ c′, which must exist by
Construction 14. Clearly |S′| ≤ |S| ≤ k. We show that S′ is a feasible solution, with a cost
at most (1 + ε)OPT , for the instance I ′.

Consider an input point p that is assigned to some container point c ∈ S, in the optimal
solution for I. Suppose, firstly, that c and p are contained in the same cell e. By the
construction of S′, there must be some c′ ∈ S′ ∩ e (possibly c = c′) such that c ≺ c′ and we
can assign p to c′. Further, note that since p and c′ belong to the same cell this is a valid
“local” assignment and by Lemma 13, the cost of assignment equals ∆e

max ≤ ‖c‖(1 + ε).
Subsequently, assume that p belongs to a cell e1 and c belongs to a cell e2, such that

e1 6= e2. We show that p can be assigned to one of the two representative points of e2, namely
pe2
x or pe2

y . Recall that pe2
x (resp. pe2

y ) is a container point in e2 with maximum x-coordinate
(resp. y-coordinate). We first claim that there must exist a separating line y = mx + C

with slope m ≥ 0, such that e1 and e2 lie on the opposite sides of this line (they could share
a boundary along this line). We overload notation and allow m = ∞ in which the line is
x+ C = 0. So when m = 0 the line (y = C) is parallel to the x-axis and when m =∞ the
line (x = −C) is parallel to the y-axis.

Observe that by our construction, all the boundary lines have non-negative slopes.
Therefore, if e1 and e2 share a boundary line segment, this will be our separating line.
Suppose, on the other hand, that they do not share a boundary line segment and therefore
are disjoint. If e1 and e2 are on the opposite sides of the line y = x, this will be our
separating line. So, we assume that both the cells are on the same side of y = x, without
loss of generality say above y = x. Then both these cells must be bounded by lines
from the families L2 and L3. Let the lines bounding e1 and e2, respectively be, B1 =
{y = (1 + δ)i, y = (1 + δ)i+1, x sin θ − y cos θ = 0, x sin(θ + δ) − y cos(θ + δ) = 0} and
B2 = {y = (1 + δ)j , y = (1 + δ)j+1, x sin θ′ − y cos θ′ = 0, x sin(θ′ + δ)− y cos(θ′ + δ) = 0}.
Now, if i = j, then for the cells not to intersect, we must have θ ≥ θ′+δ or θ′ ≥ θ+δ. Without
loss of generality, let θ ≥ θ′+ δ. In this case, clearly the separating line is x sin θ− y cos θ = 0.
In the case, where i > j (resp. i < j), y = (1 + δ)j (resp. y = (1 + δ)i) is a separating line.

We consider two different cases based on the value of m and prove that p can be assigned
to some representative point in e2.

Case 1: m ∈ {0,∞} . The separating line between e1 and e2 is axis parallel, say x = a,
without loss of generality. Since p ≺ c, we have that the x-co-ordinates of all points in e1 are
less than a and x-coordinates of all points in e2 are more than a. Hence, clearly the point
with maximum y-coordinate in e2, namely pe2

y must dominate p.

Case 2: m > 0 and finite. Let the separating line be y = mx+ C. There are two further
cases here. First assume that p lies below the y = mx + C and c lies above it. Letting
p = (x1, y1), c = (x2, y2) and pe2

x = (x3, y3), we have y1 ≤ mx1 + C and y2 ≥ mx2 + C and
y3 ≥ mx3 +C. By definition, x1 ≤ x2 ≤ x3 and we focus on showing that y1 ≤ y3. Indeed we
have y1 ≤ mx1 +C ≤ mx2 +C ≤ mx3 +C ≤ y3. Thus, p ≺ pe2

x . Next, we assume that p lies
above y = mx+ C and c lies below it. Letting p = (x1, y1), c = (x2, y2) and pe2

y = (x3, y3),
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we have y1 ≥ mx1 + C, y2 ≤ mx2 + C and y3 ≤ mx3 + C. By definition, y1 ≤ y2 ≤ y3.
Further, x1 ≤ y1/m−C/m ≤ y2/m−C/m ≤ y3/m−C/m ≤ x3. Hence, p ≺ pe2

y . Therefore,
we have shown that if p is assigned to c, we can assign it to a representative point, cr,
that lies in the same cell as c. From Lemma 13, this implies that our cost of assignment is
‖cr‖ ≤ (1 + ε)‖c‖. J

We now describe a dynamic program based poly-time algorithm to solve the localized
container selection problem. This completes the proof of Theorem 10.

Algorithm for localized container selection. We define the dynamic program variable,
M(e, ke), for a given cell e, as the optimal cost of assigning all input points in e, to ke ≤ k
newly chosen container points in e, along with the set R of representative container points.
We note that this variable can be computed in polynomial time using ideas in [15]. For
completeness, we describe a simple algorithm to compute this variable for every e and ke ≤ k.

We recall that by the problem definition, all the container points in e are incomparable
and have the same cost, C. Let c1(x1, y1), c2(x2, y2), . . . , cl(xl, yl) be the ordering of the
container points in e, in the descending order of the yi. That is y1 ≥ y2 ≥ . . . ≥ yl and
x1 ≤ x2 ≤ . . . ≤ xl. For a given index i ∈ [l] and integer ki ≤ ke, we define the variable
N (i, ki, j) as the optimal cost of assigning every input point, (x, y), in e, such that y > yi+1,
by choosing ki container points with index ≤ i, with j ≤ i being the highest index container
point chosen (that is cj is chosen and none of cj+1, . . . , ci are chosen). The following
recurrence computes the variable N (i, ki, j). Let ni be the number of input points contained
by ci, whose y-co-ordinates are > yi+1. If ci is chosen,

N (i, ki, i) = Min
j<i
N (i− 1, ki − 1, j) + niC

Now, if ci is not chosen and cj is the highest index container point chosen, with j ≤ i, we
assign the input points contained in ci with x-coordinate > xj and y-coordinate > yi+1 to
the nearest representative container point (if no such point exists, then the cost of assignment
is ∞). Further, we assign those, so far, unassigned input points with y-co-ordinate > yi+1
and x-co-ordinate ≤ xj to cj . Let Ci denote the total cost of assignment of all these input
points. We have

N (i, ki, j) = N (i− 1, ki, j) + Ci

We can computeM, using the following equation: M(e, ke) = Min
j≤l
N (l, ke, j) Let there be

µ cells in total. We order them arbitrarily as e1, e2 . . . eµ. We define the variable D(i, ki)
as the total cost of assigning all the input points in the cells ej , for j ∈ [i], while choosing
ki new container points from these cells and using the representative set R. The following
simple recurrence defines the dynamic program.

D(i, ki) = Min
`≤ki

D(i− 1, ki − `) +M(ei, `)

The optimal solution has a cost D(µ, k).
I Remark. This approach does not extend directly even to dimension d = 3. There are issues
in both main steps of the algorithm (1) we do not know a similar construction with O(logn)
cells, and (2) the localized container selection problem also appears hard. In Section 3.2 we
obtain an algorithm for the discrete container selection problem in d > 2 dimensions, using a
linear programming relaxation and prove Theorem 11.
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3.2 Discrete container selection in higher dimension

Min
∑
i∈F

‖i‖
∑
j∈C

yij

s.t. yij ≤ xi, ∀i ∈ F , j ∈ C,
yij = 0, ∀j 6≺ i,∑
i∈F

yij ≥ 1, ∀j ∈ C,∑
i∈F

xi ≤ k,

x, y ≥ 0.

We now consider the discrete container selec-
tion problem in any dimension d > 2. Recall
that C denotes the input points and F the
potential container points. We prove The-
orem 11. Our algorithm is based on the
linear programming relaxation in the adja-
cent figure.

When the x and y variables are restricted
to lie in {0, 1} note that we obtain an exact
formulation. This LP relaxation is similar to
the one for (non-metric) facility location [12].
Indeed, our problem is a special case of non-metric k-median, for which the result of [12]
implies a

(
1 + ε, O( 1

ε logn)
)
-bicriteria approximation algorithm. Our result (Theorem 11) is

an improvement for fixed dimensions since k ≤ n.
The first step in our algorithm is to solve the LP. Let (x, y) denote an optimal LP solution.

The second step performs a filtering of the y variables, as in [12]. Let C∗j =
∑
i∈F ‖i‖ · yij

denote the contribution of input point j ∈ C to the optimal LP objective. Define:

yij =
{

(1 + 1
ε )yij if ‖i‖ ≤ (1 + ε)C∗j

0 otherwise.

Also define xi = (1 + 1
ε )xi for all i ∈ F , and Cj = (1 + ε)C∗j for j ∈ C.

I Claim 16. For each j ∈ C,
∑
i∈F yij ≥ 1. For each j ∈ C and i ∈ F , yij ≤ xi.

Proof. Fix any j ∈ C and let Fj = {i ∈ F : ‖i‖ > (1 + ε)C∗j }. By Markov’s inequality we
have

∑
i∈Fj

yij <
1

1+ε . So
∑
i∈F yij = (1 + 1

ε )
∑
i∈F\Fj

yij ≥ 1. J

The third step of our algorithm formulates a geometric hitting-set problem with VC-
dimension d. For each input point j ∈ C, define a polytope Pj ⊆ Rd given by

Pj = {v ∈ Rd : j ≺ v and ‖v‖ ≤ Cj} =
{
v ∈ Rd : vr ≥ jr ∀r ∈ [d],

d∑
r=1

vr ≤ Cj

}
.

Note that each Pj is described by d+ 1 parallel inequalities of the form:

{−etrv ≤ −jr}dr=1 ∪ {etv ≤ Cj}.

Above er denotes the rth coordinate unit vector and e = (1, 1, . . . , 1).

I Claim 17. For each j ∈ C,
∑
i∈F∩Pj

xi ≥ 1.

Proof. This follows directly from Claim 16 since yij = 0 for all j ∈ C and i 6∈ Pj . J

VC dimension bound. We use the following fact about the VC-dimension of a range space
(F ,P) where F is a finite set of points in Rd and P consists of all positive scaling and
translations of a fixed polytope Q ⊆ Rd with q ≥ d facets.

I Lemma 18. The VC-dimension of (F ,P) is at most q.
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Proof. This may be a known result; in any case we give a short proof here. Let polytope
Q = {x ∈ Rd : αtrx ≤ βr, ∀r ∈ [q]} where each αr ∈ Rd and βr ∈ R.

The VC-dimension is the size of the largest subset A ⊆ F such that {A∩P : P ∈ P} = 2A.
Consider any such set A. Suppose (for contradiction) that |A| > q, then we will show a
subset A′ ⊆ A such that there is no P ∈ P with A ∩ P = A′. This would prove the claim.

For each constraint r ∈ [q] let ar ∈ A denote a point that maximizes {αtrx : x ∈ A}. Set
A′ = {ar}qr=1. Note that there is some a′ ∈ A \A′ since |A| > q and |A′| ≤ q; moreover, by
the choice of ars, we have αtra′ ≤ αtrar for all r ∈ [q].

Suppose P ∈ P is any polytope that contains all points in A′. Note that P = {x ∈ Rd :
αtrx ≤ γr, ∀r ∈ [q]} for some {γr ∈ R}qr=1 since it is a scaled translation of the fixed polytope
Q. Since ar ∈ P for each r ∈ [q], we have γr ≥ αtrar ≥ αtra′. This means that a′ ∈ P as well.
Hence there is no set P ∈ P with P ∩A = A′. J

Applying Lemma 18 we obtain (F , {Pj : j ∈ C}) has VC-dimension at most d + 1.
Moreover, by Claim 17 the hitting set instance (F , {Pj : j ∈ C}) has a fractional hitting set
{xi : i ∈ F} of size (1 + 1

ε )k. Thus we can use the following well-known result:

I Theorem 19 ([8, 5]). Given any hitting set instance on a set-system with VC-dimension
d and a fractional hitting set of size k, there is a polynomial time algorithm to compute an
integral hitting set of size O(d log(dk)) · k.

This completes the proof of Theorem 11.

I Remark. We can also use this LP-based approach to obtain a constant-factor bicriteria
approximation for the discrete container selection problem in R2. This is based on the ε-net
result for “pseudo-disks” in R2 [14] and the observation that in dimension two the above
set-system (F , {Pj : j ∈ C}) is a collection of pseudo-disks. However, the constant factor
obtained via this approach is much worse than the direct approach in Section 3.1.

4 Hardness Results

In this section, we provide hardness results for the continuous and discrete container selection
problems in dimension d = 3. All hardness results discussed here are strongly NP-hard. The
reductions are based on the planar degree 3 vertex cover problem. The following restriction
of this problem is also known to be NP-hard [7].

I Definition 20 (Plane Degree 3 Vertex Cover (PVC)). The input is a bound k and a plane
drawing of a degree 3 planar graph G = (V,E) with girth at least 4, where the Euclidean
distance between any pair u, v ∈ V of vertices is exactly one if (u, v) ∈ E and at least

√
3

if (u, v) 6∈ E. The decision problem is to determine whether G has a vertex cover of size at
most k.

We first show that the following auxiliary problem is NP-hard.

I Definition 21 (∆-hitting problem). The input is a bound k, a set V of points in the plane
where each pairwise distance is at least one and a set {∆e}e∈E of (possibly intersecting)
equilateral triangles with side s := 2√

3 that are all translates of each other. The goal is to
find a subset T ⊆ V with |T | ≤ k such that T ∩∆e 6= ∅ for all e ∈ E.

I Theorem 22. The ∆-hitting problem is NP-hard.
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Proof. We reduce the NP-hard PVC problem to the ∆-hitting problem (refer to Figure 3).
An instance of PVC consists of a plane drawing of graph G = (V,E) and bound k. We
construct an instance of the ∆-hitting problem as follows. The set of points is V and the
bound is k. Note that the the distance between each pair of points is at least one, by
Definition 20. For each edge e = (u, v) ∈ E we can find (in polynomial time) an equilateral
triangle ∆e with side s = 2√

3 such that V ∩∆e = {u, v}. To see this, first note that we can
easily find ∆e 3 u, v as d(u, v) = 1. Since the diameter of ∆e is 2√

3 <
√

3 the vertices V ∩∆e

form a clique in G, and as G has girth 4 we must have |V ∩∆e| = 2. The set of triangles
in the ∆-hitting problem is {∆e}e∈E . Moreover, we can ensure that the triangles {∆e}e∈E
are all translates of some canonical triangle. It is now clear that the ∆-hitting problem is a
yes-instance if and only if the PVC instance has a vertex cover of size at most k. J

I Theorem 23. The 3-dimensional discrete container selection problem is NP-hard.

Proof. We reduce the ∆-hitting problem to this problem (refer to Figure 4). Consider an
instance as described in Definition 21. We construct an instance of the discrete problem in R3

as follows. Set A = 2|V | and let Π denote the plane x+y+z = A. We place the points V and
triangles {∆e}e∈E of the ∆-hitting instance on plane Π oriented so that every triangle ∆e is
parallel1 to the triangle {(A, 0, 0), (0, A, 0), (0, 0, A)}. We can ensure that all points in V are
in the positive orthant since A is large. The potential container points are V . Observe that
for each triangle ∆e there is a unique point pe ∈ R3 such that ∆e = Π ∩ {x ∈ R3 : pe ≺ x}.
The set of input points is {pe}e∈E . The bound k is same as for the ∆-hitting problem.

It is easy to see that the discrete container selection instance has a feasible solution with
k containers if and only if the ∆-hitting instance is a yes-instance. J

We immediately have the following corollary of the Theorem 23, which stems from the
fact that it is NP-hard to even test feasibility of the discrete container selection problem.

I Corollary 24. It is NP-hard to approximate the 3-dimensional discrete container selection
problem within any approximation guarantee.

I Theorem 25. The 3-dimensional continuous container selection problem is NP-hard.

Proof. We reduce a special variant of the discrete container selection problem whose instances
are defined as in Theorem 23. Let I1 = (C,F , k) denote an instance of the discrete container
selection problem g from Theorem 23 where C are the input points and F denotes the
potential container points. Note that all points of F lie on the plane x+ y + z = A, and the
distance between every pair of points in F is at least one. Observe that the latter property
implies that the points in F are incomparable.

We construct an instance I2 = (C′, k′), of the continuous problem in the following way.
Fix parameter δ < 1

2 . For every point c ∈ F we define another point ĉ := c+ δ( 1
3 ,

1
3 ,

1
3 ); note

that ‖ĉ‖ = ‖c‖+ δ and ĉ dominates c but no other point in F \ {c}. Let F̂ = {ĉ : c ∈ F}.
Observe that this is well-defined: since the distance between every pair of points in F is at
least one, any point dominating more than one point of F costs at least A+ 1.

Now, the set C′ of input points is constructed as follows. Let M1 � |C|A and M2 �
2(|C|A + |F |M1) be two sufficiently large integers. For each c ∈ F , we create M1 input
points at c and M2 input points at ĉ, which are added to C′. Finally we also add the points C
to C′. The bound k′ := k + |F |. We claim that I1 is feasible if and only if I2 has a solution
of cost at most T := |C|A+ |F |(M1 +M2)(A+ δ)− kM1δ.

1 Two triangles ∆1 and ∆2 are parallel if and only if their corresponding sides are mutually parallel
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(a) Plane degree 3 vertex cover instance (b) ∆-hitting set instance

Figure 3 Reduction of a PVC instance to a ∆-hitting set instance:For every edge in Figure 3a,
we construct an equilateral triangle, in Figure 3b, that contains the incident vertices of the edge
and no other vertex. All such triangles are translates of each other. A vertex cover in the former
instance is a ∆-hitting set in the latter and vice versa.

X-axis Y-axis

Z-axis

x+ y + z = A

Potenial container point

Input points in 3D

Figure 4 Reduction of the ∆-hitting set problem to the discrete container selection problem (in
3D). We consider special instances of the latter where all the potential container points are assumed
to be on the plane Π ≡ x + y + z = A and all input points lie below Π. Notice that the projections
of input points onto Π form equilateral triangles as shown. Any feasible solution for the container
selection problem is a ∆-hitting set in the resulting instance and vice versa.
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Forward direction. Let S = {c1, c2, . . . , ck} be the set of container points chosen by a
feasible solution of I1. Consider the set S′ = S ∪ F̂ . Observe that S′ is a feasible solution
for the instance I2. We now compute the assignment cost of this solution.

The assignment cost for each point in C is A (it is covered by S).
The input points at locations of S have assignment cost A (there are kM1 such points).
The remaining (|F | − k)M1 + |F |M2 input points have assignment cost A+ δ each.

Therefore the total cost of this solution is exactly T .

Backward direction. Let S′ with |S′| = k+ |F | be a feasible solution to I2 of cost at most
T . We first argue that F̂ ⊆ S′. Indeed, assume that it is not true. Observe that, in this case,
the input points at F̂ should be dominated by < |F | container points. So some container
point s ∈ S′ should dominate input points at two distinct locations ĉi and ĉj . Note that
|s| ≥ A+ 1 since ci, cj ≺ s (using the distance one separation between points of F ). Hence
any such solution has assignment cost at least AM1|F |+ (A+ δ)M2|F |+ (1− δ)M2 > T

using the definition ofM2. We now assume F̂ ⊆ S′. Next we show that each of the remaining
k container points in S′ dominates at most one point of F . If s ∈ S′ dominates two distinct
locations ci and cj , its cost |s| ≥ A+ 1 as noted above. However, any input point can be
assigned to one of the container points in F̂ at cost A + δ < A + 1, which makes point s
redundant.

Now we show that each of the k container points S′ \ F̂ dominates some point of F . If
not, consider a container point s′ ∈ S′ that does not dominate any F point. Let f ∈ F be
some point which is not dominated by any S′ \ F̂ ; note that this must exist since each S′ \ F̂
dominates at most one F -point and |S′ \ F̂ | = k ≤ |F |. Suppose we modify the solution by
removing s′ and adding f : the increase in cost is at most |C|(A+δ)+M1A−M1(A+δ) < 0 by
the definition of M1. Thus, F̂ ⊆ S′ and S′′ = S′ \ F̂ ⊆ F . We now claim that S′′ dominates
every point of C. For a contradiction, suppose there is some point of C that is not dominated
by S′′ : then this point has assignment cost A+ δ. Every other points of C has assignment
cost at least A. The assignment cost of points at F̂ ∪F is |F |(M1 +M2)(A+ δ)− kM1δ.
So the total assignment cost is at least T + δ, a contradiction. Hence S′′ is a feasible solution
for I1. J
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Abstract
Despite the large amount of work on solving graph problems in the data stream model, there do
not exist tight space bounds for almost any of them, even in a stream with only edge insertions.
For example, for testing connectivity, the upper bound is O(n logn) bits, while the lower bound
is only Ω(n) bits. We remedy this situation by providing the first tight Ω(n logn) space lower
bounds for randomized algorithms which succeed with constant probability in a stream of edge
insertions for a number of graph problems. Our lower bounds apply to testing bipartiteness,
connectivity, cycle-freeness, whether a graph is Eulerian, planarity, H-minor freeness, finding a
minimum spanning tree of a connected graph, and testing if the diameter of a sparse graph is
constant. We also give the first Ω(nk logn) space lower bounds for deterministic algorithms for
k-edge connectivity and k-vertex connectivity; these are optimal in light of known deterministic
upper bounds (for k-vertex connectivity we also need to allow edge duplications, which known
upper bounds allow). Finally, we give an Ω(n log2 n) lower bound for randomized algorithms
approximating the minimum cut up to a constant factor with constant probability in a graph
with integer weights between 1 and n, presented as a stream of insertions and deletions to its
edges. This lower bound also holds for cut sparsifiers, and gives the first separation of maintaining
a sparsifier in the data stream model versus the offline model.
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1 Introduction

In a data stream one sees a sequence of elements a1, . . . , am one by one and one would like
to evaluate certain functions of the stream. There are example data streams which come
from internet search logs, network traffic, sensor networks, and scientific data streams. The
elements ai may be numbers, points, edges in a graph, etc. Due to the sheer size of the
sequence, very stringent requirements are imposed on a data stream algorithm. For instance,
it is often assumed that the algorithm can only make one, or a small number, of passes
over the stream. Moreover, the algorithm is assumed to have very limited memory, which
in particular makes storing the stream in its entirety infeasible. We refer the reader to the
surveys [4, 29] for a more thorough introdution to this area.
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In this paper we focus on the case when the elements ai are edges of an underlying
graph G. That is, we insert edges into the graph one at a time, and would like to compute
a function of G. Graphs arise is many applications to model relationships bewteen basic
entities, such as links between webpages or network flows between destinations. These
graphs are often massive and running classical algorithms on such graphs has proven quite
challenging. This has motivated the recent work on processing graphs in the data stream
model. In the case when only edges are inserted into the stream (as opposed to also being
deleted), we have algorithms for a number of problems, including testing connectivity, finding
minimum spanning trees, computing cut and spectral sparsifiers, counting subgraphs, finding
matchings, and many other problems. We refer the reader to the survey by McGregor [28]
for an overview of these results.

It is known for many graph problems that there is a space lower bound of Ω(n) [16, 17].
The graph streaming model is therefore sometimes identified with the “semi-streaming”
model, which allows the streaming algorithm to use n · polylog(n) bits of space. Note that
this is still a substantial improvement over the naïve algorithm of storing the graph, which
may take Ω(n2) bits of space. Despite the fact that we have n ·polylog(n) space upper bounds
and Ω(n) space lower bounds for a number of graph problems in the data stream model, we
are not aware of a single natural problem for which we have asymptotically tight bounds.
Could it be that simple upper bounds, such as the O(n logn) bit upper bound for testing if
a graph is connected by maintaining a spanning forest in the stream, can be improved using
more clever hashing techniques to represent the edges, perhaps chosen adaptively as the
stream is presented? Such a scheme could potentially allow us to avoid spending O(logn)
bits to remember each edge in the spanning forest.

Dowling and Wilson [14] show that the deterministic communication complexity of
connectivity is Ω(n logn) bits, see also [31] for a discussion. Via standard connections to
data streams (see Section 1.3 below), this implies any deterministic streaming algorithm
requires Ω(n logn) bits. However, to the best of our knowledge, there was no lower bound
for randomized 1-way protocols known, prior to this work, stronger than Ω(n) bits.

Graph problems in a data stream should be contrasted to a number of other areas in
streaming for which tight asymptotic space bounds are known, such as estimating frequency
moments [2, 7, 18, 22, 23, 27], empirical entropy [8, 11, 20, 21, 22], numerical linear algebra
[10], and compressed sensing [3, 30]. The goal of this paper is to remedy this situation.

1.1 Our Results
Throughout this paper we will restrict our attention to 1-pass algorithms and focus on their
space complexity. Our focus is on the model in which edges are only allowed to be inserted
into the graph, i.e., the “insertion model”, rather than also being allowed to be deleted,
which is referred to as the “turnstile model”. Since we prove lower bounds, this only makes
our bounds stronger. We will, however, show how to use our techniques to obtain stronger
lower bounds in the turnstile model for approximating the minimum cut of a graph.

Our results are summarized in Table 1. We provide the first tight space lower bounds for
a number of graph problems in a stream of edge insertions. In particular, for randomized
algorithms which succeed with constant probability, we show an Ω(n logn) lower bound for
testing if a graph is connected, testing if a graph with O(n) edges has diameter at most 5 or
diameter ∞, testing if a graph is Eulerian, testing if a graph is bipartite, testing if a graph is
cycle-free, finding a minimum spanning tree in a graph that is promised to be connected,
testing if a graph is planar, and testing whether a graph contains a fixed graph H as a minor.
No lower bounds better than Ω(n) were known for any of these problems. Many of the upper
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Table 1 Summary of our results. All lower bounds are new and given by this work. In the
comments we say “UB stores graph” for those problems for which there is no graph with more than
C · n edges, for a constant C > 0, satisfying the property. For such problems it suffices to store all
edges in the graph and abort if more than C · n edges are inserted, yielding an O(n log n) bit upper
bound. All upper bounds, with the exception of Eulerian-testing, either come from previous work
or “UB stores graph” applies to the problem. For Eulerian-testing the upper bound maintains a
spanning forest and the parities of node degrees, using that a graph is Eulerian iff it is connected
and all node degrees are even.

Problem Lower Bound Upper Bound Comments
Connectivity Ω(n log n) O(n log n) [28] –

Diameter in sparse graphs Ω(n log n) O(n log n) UB stores graph
Eulerian-testing Ω(n log n) O(n log n) UB: spanning forest, degrees
Bipartiteness Ω(n log n) O(n log n) [28] –
Cycle-freeness Ω(n log n) O(n log n) UB stores graph

MST in connected graphs Ω(n log n) O(n log n) [28] –
Planarity Ω(n log n) O(n log n) UB stores graph

H-Minor Free Ω(n log n) O(n log n) UB stores graph
k-Edge Connectivity Ω(kn log n) O(kn log n) [13] Deterministic bounds

k-Vertex Connectivity w/edge duplications Ω(kn log n) O(kn log n) [15] Deterministic bounds
O(1)-Approximate Minimum Cut Ω(n log2 n) O(n log4 n) [1, 24] Bounds in the turnstile model

bounds follow simply by storing all edges in the graph and aborting if the number of edges is
too large; see Table 1 for details.

Next, we turn to k-edge connectivity, which is equivalent to testing if the minimum cut
of the graph is at least k. There is a deterministic space upper bound of O(kn logn) bits
[13, 28]. We show a matching Ω(kn logn) bit lower bound for deterministic algorithms. For
randomized algorithms our space bound is a weaker Ω(kn), and closing the logn factor
gap for deterministic and randomized k-edge connectivity algorithms remains an important
open question. For k-vertex connectivity, there is a deterministic space upper bound of
O(kn logn) bits due to [15]. We are able to prove a matching Ω(kn logn) bit lower bound
for deterministic algorithms, but require that multiple edges are allowed, i.e., our hard
instance is a multi-graph for this problem. We notice, however, that the upper bound of
[15] also holds for multi-graphs. Our lower bound becomes a weaker Ω(kn) in the case
of randomized algorithms, and closing the logn factor gap for randomized algorithms for
k-vertex connectivity and/or removing the edge duplication assumption is an important open
problem.

Finally, we illustrate the power of our technique by proving an Ω(n log2 n) lower bound
for approximating the minimum cut up to a constant factor of a graph with integer weights
between 1 and n, in the turnstile model. The same lower bound holds for cut sparsifiers
(since they can be used to approximate the minimum cut), and gives the first separation of
maintaining a sparsifier in the data stream model versus the offline model. Indeed, in the
offline model, by a result of Batson et al. [6] it is possible to build a cut sparsifier (in fact,
a stronger notion of a spectral sparsifier) of a graph using only O(n) reweighted edges of
the input graph, with O(logn) bits to specify each edge and its weight. Our Ω(n log2 n) bit
lower bound shows it is fundamentally impossible to implement the algorithm of [6] in a
dynamic stream. For general integer edge weights between 1 and W , our lower bound is
Ω(n logn logW ).
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1.2 Our Techniques
Our results come from identifying a new two-player one-way communication problem which
generalizes the well-studied Index problem [26], to a problem Perm which is more suitable
for proving graph lower bounds. Despite the simplicity of the Perm problem, we are able to
apply it to the wide array of problems above. In this problem, Alice is given a permutation σ
on [n] def= {1, 2, . . . , n}, which she represents in a slightly redundant way as an n logn-length
bitstring σ(1), . . . , σ(n) formed by concatenating the images of 1, 2, . . . , n under σ. We
call this the redundant encoding of σ. Bob is interested in obtaining the i-th bit in the
redundant encoding of σ. We show that if Alice sends a single message to Bob, then for Bob
to succeed with constant probability, Alice’s message needs to be Ω(n logn) bits long. In
other words, the randomized 1-way communication complexity R1−way(Perm) = Ω(n logn).
We generalize this to the case where Alice has r permutations σ1, . . . , σr each on [n], while
Bob now has an index i ∈ [n], an index k ∈ [r], as well as Alice’s permutations σk+1, . . . , σr,
and Bob is interested in the i-th bit in the redundant encoding of σk. We call this problem
r-AugmentedPerm and show R1−way(r-AugmentedPerm)= Ω(rn logn).

After identifying Perm and r-AugmentedPerm as the right problems to study, the proofs of
their respective lower bounds follow standard information-theoretic arguments used to prove
lower bounds for Index and direct sum theorems in streaming [5, 9], with small modifications
to account for the redundancy. The second part of our proofs is reducing graph problems to
these communication problems. The core idea of our lower bounds is to identify a permutation
σ as a random matching on a bipartite graph with n vertices in the left part L and n vertices
in the right part R. This is Alice’s input graph G in many of our reductions. Alice runs
the streaming algorithm on G, sends the state to Bob, who then inserts edges into G in
a problem-specific way. As Bob is interested in learning a bit of the redundant encoding
of Alice’s permutation, this corresponds to a bit j of the unique neighbor in R of a vertex
u ∈ L. We therefore create gadgets which group all vertices in R into two groups, based
on the value of their j-th bit, and connect these groups to vertices in L in different ways
depending on the particular problem.

1.3 Preliminaries
Let f : X × Y → {0, 1} be a Boolean function, where X and Y are two arbitrary sets. In the
one-way communication model Alice receives an input x ∈ X and Bob receives an input y ∈ Y .
Alice is only allowed to send one message to Bob and no message is allowed to be sent from
Bob to Alice. The goal is for Bob to compute f(x, y). The communication cost is measured
by the number of bits Alice sends in the worst case. Denote by D1−way(f) the minimum
communication cost over all deterministic one-way protocols for f . For a randomized protocol
P , we say P has error probability at most ε if Pr(P (x, y) = f(x, y)) ≥ 1− ε for all inputs
x and y. The randomness here is only over the private coin tosses of Alice and Bob. The
one-way (bounded-error) randomized communication complexity of f , denote by R1−way(f),
is the minimum communication cost over all randomized one-way protocols for f with error
probability at most 1/3.

Communication lower bounds on D1−way(f) and R1−way(f) provide lower bounds on
the memory required of deterministic and randomized data stream algorithms, respectively,
via a standard reduction. Indeed, Alice creates a stream σx from her input x, and runs
the streaming algorithm on σx, passing the state of the algorithm to Bob. Bob creates a
stream σy from his input y, and continues the execution of the streaming algorithm on σy.
If the output of the streaming algorithm on the concatenated stream σx ◦ σy can be used
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to solve the problem f , either deterministically or with constant error probability, then the
space complexity of the streaming algorithm must be at least D1−way(f) or R1−way(f),
respectively.

We also need a few concepts and notation from information theory. We refer the reader
to [12] for a more comprehensive introduction. We give a short primer on the standard
properties we use in Appendix A.

2 Permutation Problems

We consider the following communication problem Perm which will be used in our reduc-
tions. In this problem Alice is given a permutation σ of [n], represented as an ordered list
σ(1), σ(2), . . . , σ(n). This list has n logn bits. Bob is given an index i ∈ [n logn] and would
like to know the i-th bit of σ. This problem is similar to the well-studied Index problem in
randomized 1-way communication complexity, but it is slightly different in that σ(1), . . . , σ(n)
is a redundant encoding of a permutation.

I Lemma 1. R1−way(Perm) = Ω(n logn).

Proof. Let us place the uniform distribution on strings σ. Let M(σ) be Alice’s message
to Bob, which is a random variable depending on the randomness of σ and the private
random coin tosses of Alice. Then R1−way(Perm) ≥ H(M(σ)) ≥ I(M(σ);σ), so it suffices to
lower bound I(M(σ);σ). We write σj to denote the j-th bit in the list σ(1), . . . , σ(n), where
j ∈ {1, 2, . . . , n logn}.

By the chain rule,

I(M(σ);σ) =
n logn∑
j=1

I(M(σ);σj | σ<j)

=
∑
j

(H(σj | σ<j)−H(σj |M(σ), σ<j))

≥
∑
j

H(σj | σ<j)−
∑
j

H(σj |M(σ))

= H(σ)−
∑
j

H(σj |M(σ)).

Using Stirling’s approximation, H(σ) = logn! = n log(n/e) + O(logn). Now consider
H(σj |M(σ)). Since M is randomized protocol which succeeds on every pair of inputs (σ, i)
with probability at least 9/10, and M does not depend on j, it follows that from M(σ) Bob
can predict σi for any given i with probability at least 9/10. By Fano’s inequality, for each j
this implies H(σj |M(σ)) ≤ H(1/10). Hence,

I(M(σ);σ) ≥ n log(n/e)−H(1/10)n logn ≥ (1−H(1/10))n logn−O(n).

This completes the proof. J

We also define the problem r-AugmentedPerm, used in our reductions. In this problem, Alice
is given r permutations σ1, . . . , σr, where each σj is represented as a list of n logn bits. Bob
is given an index i ∈ [n logn], an index k ∈ [r], and is given σk+1, σk+2, . . . , σr. Bob’s goal
is to output σki , which is the i-th bit of σk.

I Lemma 2. R1−way(r-AugmentedPerm)= Ω(rn logn).

APPROX/RANDOM’15
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Proof. As in the proof of Lemma 1, we place the uniform distribution on strings σj ,
for each j ∈ [r], and the σj are independent. Let M(σ1, . . . , σr) be Alice’s message
to Bob, which is a random variable depending on the randomness of σ1, . . . , σr and
her private random coin tosses. Then R1−way(r-AugmentedPerm)≥ H(M(σ1, . . . , σr)) ≥
I(M(σ1, . . . , σr);σ1, . . . , σr), so it suffices to lower bound I(M(σ1, . . . , σr);σ1, . . . , σr).

By the chain rule,

I(M(σ1, . . . , σr);σ1, . . . , σr) =
r∑

k=1
I(M(σ1, . . . , σr);σk | σk+1, . . . , σr) (1)

We claim that for each k ∈ [r],

I(M(σ1, . . . , σr);σk | σk+1, . . . , σr) = Ω(n logn).

To see this, consider any fixing of the random variables σk+1, . . . , σr, and let Π be a
randomized protocol which succeeds on every input to AugmentedPerm with probability at
least 9/10, over its random coin tosses. Then, given an input (σ, i) to the Perm problem,
Alice and Bob can use Π as follows. Alice hardwires the fixed values of σk+1, . . . , σr. Alice
also sets σk = σ. Finally, she randomly and independently samples uniform permutations
σ1, . . . , σk−1. Bob, given i as the input to Perm, also holds the input k and has the hardwired
values of σk+1, . . . , σr. Alice and Bob run Π on these inputs to AugmentedPerm, and output
whatever Π outputs. By correctness of Π, it follows that this is a correct 1-way protocol for
the Perm problem with probability at least 9/10. Hence, as argued in the proof of Lemma
1, I(M ′(σ);σ) = Ω(n logn), where M ′ is Alice’s resulting message function in the created
protocol for Perm. By construction,

I(M(σ1, . . . , σr);σk | σk+1, . . . , σr) = I(M ′(σ);σ) = Ω(n logn),

as claimed. Plugging into (1), it follows that

I(M(σ1, . . . , σr);σ1, . . . , σr) = Ω(rn logn),

which completes the proof. J

3 Lower Bounds for Graph Problems

3.1 Connectivity
We start with an Ω(n logn) bit lower bound for the randomized one-way communication of
the graph connectivity problem, denoted Conn. In this problem, Alice has a subset EA of
edges of an undirected graph G on a set V of n vertices, while Bob has a disjoint subset
EB of the edges of G. Alice sends a single randomized message M(EA) to Bob, who should
decide if the graph (V,EA ∪ EB) is connected. Bob should succeed with probability at least
9/10. We let R1−way(Conn) denote the minimum, over all correct protocol for Conn with
probability at least 9/10, of the maximum length message sent, over all inputs and random
coin tosses.

I Theorem 3. R1−way(Conn) = Ω(n logn).

Proof. We perform a reduction from Perm on instances of size n/2. Alice, given a permutation
σ, creates a perfect matching from [n/2] to [n/2] where the i-th left vertex connects to the
σ(i)-th right vertex. Alice’s edgeset EA consists of the edges in this perfect matching. Let L
and R denote the two parts of the vertex set V , each of size n/2.
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Suppose Bob has the input i to Perm. This corresponds to the `-th bit in σ(j) for some
j ∈ [n/2] and ` ∈ [log(n/2)]. Bob creates his input edgeset to Conn from i as follows. Let
S ⊂ R denote the subset of vertices whose `-th bit is equal to 0. Bob’s input edgeset EB
consists of a spanning tree on the vertices in (L \ {j}) ∪ S. We can ensure the edges of the
spanning tree are disjoint from EA by including a new vertex w, and including edges from
all vertices in (L \ {j}) ∪ S to w.

Observe that since the vertices in L \ {j} are connected, it follows that since we placed a
perfect matching from L to R, that any vertex u is connected to any other vertex except
possibly to j or σ(j). Now, if the σ(j)-th right vertex has its `-th bit equal to 0, then σ(j) is
connected to S, and hence to L \ {j}. It follows that the graph is connected. On the other
hand, if the σ(j)-th right vertex has its `-th bit equal to 1, then the edge from the j-th left
vertex to the σ(j)-th right vertex is isolated, that is, it is not incident to any other vertices.
In this case the graph is disconnected.

Let M(EA) be Alice’s message to Bob in a protocol for Conn. Suppose Bob can decide,
from M(EA) and EB, if the resulting graph on vertex set L ∪ R and edgeset EA ∪ EB is
connected with probability at least 9/10. It follows that Bob can solve Perm with probability
at least 9/10, and therefore from Lemma 1, R1−way(Conn) = Ω(n logn). J

I Remark. The lower bound in Theorem 3 is matched by a simple O(n logn) bit upper
bound in which Alice sends a spanning forest of her edges to Bob.

3.2 Diameter
As a corollary of Conn, we show a lower bound for the following Diameter-k problem on
sparse graphs, i.e., graphs with O(n) edges: Given k ∈ [n− 1], Bob wants to decide if the
diameter d of (V,EA ∪ EB) is at most k, or ∞.

I Theorem 4. For any k ≥ 4, R1−way(diameter-k) = Ω(n logn).

Proof. In the Conn proof, instead of only putting a spanning tree on the vertices in (L\{j})∪S,
we also put a clique on the vertices in L \ {j} and a clique on the vertices in S. It follows
that the diameter of (V,EA ∪EB) is either +∞ if the graph is disconnected, or 4 if the graph
is connected. Therefore, the Diameter-k problem is as hard as Conn. J

I Remark. For sparse graphs the upper bound is just to store the entire graph with O(n)
edges.

3.3 Eulerian-Testing
In this part we show a lower bound for the Eulerian problem: Bob wants to decide if
(V,EA ∪ EB) is an Eulerian graph.

I Theorem 5. R1−way(Eulerian) = Ω(n logn).

Proof. In the Conn proof, call the graph G1 = (L,R,E), make another copy of the graph
G2 = (L′, R′, E′), i.e., in G2 the edges are the same as in G1. Alice and Bob also add
the following edges to EA and EB: if there is an edge (u, v) in G1, add edges (u, v′) and
(u′, v). Let V = L ∪ R ∪ L′ ∪ R′. It is easy to check that the degree of every vertex is
twice its degree in G1, thus is an even number. Therefore, the resulting graph is Eulerian
if and only if it is connected, but this is equivalent to the connectivity of G1. Hence,
R1−way(Eulerian) = Ω(n logn). J
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I Remark. An upper bound is to maintain a spanning forest to test connectivity, as well as
to maintain the parities of all node degrees. Then one uses that a graph is Eulerian if and
only if it is connected and all node degrees are even.

3.4 Bipartiteness

We now give a lower bound for the the Bipartite problem. In this problem Alice has a subset
EA of edges of an undirected graph G on a set V of n vertices, while Bob has a disjoint
subset EB of the edges of G. Alice sends a single randomized message M(EA) to Bob, who
should decide if the graph (V,EA ∪ EB) is bipartite.

I Theorem 6. R1−way(Bipartite) = Ω(n logn).

Proof. We again reduce from Perm on instances of size n/2. Alice, given a permutation σ,
creates a perfect matching from [n/2] to [n/2] where the i-th left vertex connects to the
σ(i)-th right vertex. Alice’s edgeset EA consists of the edges in this perfect matching. Let L
and R denote the two parts of the vertex set V , each of size n/2.

Suppose Bob has the input i to Perm. This corresponds to the `-th bit in σ(j) for some
j ∈ [n/2] and ` ∈ [log(n/2)]. Bob creates his input edgeset to Bipartite from i as follows. We
create a new node w (so the input graph has n+ 1 nodes) and Bob includes an edge in EB
from the j-th vertex in L, denoted v, to w. Bob also includes all edges in EB from w to any
vertex in R whose `-th bit is equal to 0.

Since EA is a perfect matching, it is bipartite. Further, all edges in EB are incident to
w, and therefore G is bipartite if and only if there is no odd cycle which contains w. If
we remove the edge {v, w} then the graph is acyclic, and so any cycle must contain {v, w},
and hence also {v, σ(v)}, and hence also {σ(v), w}. It follows that an odd cycle exists iff
{σ(v), w} is in EB , that is, iff the `-th bit of σ(j) is equal to 0.

It follows that Bob can solve Perm with probability at least 9/10, and therefore from
Lemma 1, R1−way(Bipartite) = Ω(n logn). J

I Remark. There is an upper bound of O(n logn) bits for bipartiteness; see section 3.1 of [28].
It is stated as a streaming algorithm which immediately gives rise to a 1-way communication
protocol.

3.5 Cycle-free

As a corollary of Bipartite, we show a lower bound for the following Cycle-free problem: Bob
wants to decide if there is a cycle in (V,EA ∪ EB).

I Theorem 7. R1−way(cycle-free) = Ω(n logn).

Proof. In the Bipartite proof, if the `-th bit of σ(j) is 0, then there is a cycle between j,
σ(j) and w. If the `-th bit of σ(j) is 0, then there is no cycle. Therefore, R1−way(cycle-
free) = Ω(n logn). J

I Remark. There is an upper bound of O(n logn) bits by storing the first n− 1 edges of G.
If G has more than n− 1 edges, it necessarily contains a cycle. If it has fewer, one can test
whether it contains a cycle.
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3.6 Minimum Spanning Tree
We now present an application to the minimum spanning tree (MST) of a connected graph.
In the MST problem, Alice has a subset EA of edges of an undirected graph G on a set V of
n vertices, while Bob has a disjoint subset EB of the edges of G = (V,EA,∪EB), and the
players are promised that G is a connected graph. Alice sends a single randomized message
M(EA) to Bob, who should output a spanning tree of G. Note that in the case that G is
unweighted, all such spanning trees are minimal.

I Theorem 8. R1−way(MST) = Ω(n logn).

Proof. We again reduce from Perm on instances of size n/2. Alice, given a permutation σ,
creates a perfect matching from [n/2] to [n/2] where the i-th left vertex connects to the
σ(i)-th right vertex. Alice’s edgeset EA consists of the edges in this perfect matching. Let L
and R denote the two parts of the vertex set V , each of size n/2.

Bob’s edgeset EB is just a line connecting the vertices in L. Observe that G = (V,EA∪EB)
is connected and has n−1 edges, and therefore is itself the only spanning tree of G. Therefore,
Bob can reconstruct G. Hence, the players can solve the Perm problem with probability
at least 9/10 given a protocol for MST which succeeds with probability at least 9/10, and
therefore and therefore from Lemma 1, R1−way(MST) = Ω(n logn). J

I Remark. There is an O(n logn) bits of space upper bound for MST for integer weights
bounded by poly(n), see section 2.1 of [28].

3.7 k-Edge Connectivity
I Theorem 9. D1−way(k-Edge Connectivity) = Ω(nk logn).

Proof. Consider a bipartite graph with parts L and R. L is partitioned into k/2 blocks
Li each of n/k vertices. Similarly R is partitioned into k/2 blocks Ri each of n/k vertices.
For each pair (Li, Rj) containing a left block and a right block, we have a random perfect
matching between the blocks. Alice has all of these edges. Bob is interested in the t-th bit of
the neighbor of vertex a in the block Rb.

We show a kn logn lower bound for deterministic protocols. Bob guesses each vertex
c in Rb to see if it the neighbor of vertex a in Rb; since the protocol is deterministic it
does not err, and so he will figure out the correct neighbor and thus reconstruct the graph
as follows. Suppose c is the current candidate. Bob adds edges connecting vertices in the
set (L \ a) ∪ (R \ c) to make the graph on these vertices k-edge-connected. This can be
done without edge duplications by introducing a clique of k new vertices, and connecting
all vertices in (L \ a) ∪ (R \ c) to each of these k new vertices. Bob also adds a set W of
O(k) additional vertices and places a k-connected graph H on vertex set {a, c} ∪W . The
resulting graph is k-edge-connected iff there is an edge {a, c}; if there is such an edge, then
by deleting k/2− 1 neighbors of a and k/2− 1 neighbors of c, one deletes in total k− 2 edges
and causes H to be disconnected from the rest of the graph. On the other hand if there is
no such edge, then at least k edges need to be deleted.

Hence, Bob reconstructs the input graph, which by construction has Ω(nk logn) bits of
entropy, since there are (k/2)2 random perfect matchings, so the logarithm of the number
of possible graphs is log2(((n/k)!)k2/4), which gives the desired Ω(nk logn) bits of entropy
lower bound. This implies D1−way(k-Edge Connectivity) = Ω(nk logn). J

I Remark. There is a deterministic upper bound of O(kn logn) bits. See Theorem 1 in [13].
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3.8 k-Vertex Connecvitiy
I Theorem 10. D1−way(k-Vertex Connectivity) = Ω(nk logn).

Proof. Consider a bipartite graph with parts L and R. L is partitioned into k − 1 blocks Li
each of n/(k − 1) vertices. Similarly R is partitioned into k − 1 blocks Ri each of n/(k − 1)
vertices. For each pair of left block and right block (Li, Rj), we have a random perfect
matching between the blocks. Alice has all of these edges. Bob is interested in the t-th bit of
the neighbor of a in the block Rb. Bob guesses each vertex c in Rb to see if c is the neighbor
of a in Rb; since the protocol is deterministic, it does not err, so Bob will figure out the
correct neighbor as follows. Suppose c is the current candidate.

Bob adds k new vertices and connects every vertex except a to all k new vertices. Bob
also puts a clique on the k new vertices. Finally, Bob adds the edge {a, c} to the graph.

Then if {a, c} existed in the graph before Bob added it, then vertex a still has only k − 1
neighbors and so the graph is disconnected by deleting these k − 1 neighbors. On the other
hand, if {a, c} did not exist in the graph, then vertex a now has k neighbors and the graph
is k-vertex connected.

Thus, since the protocol is deterministic, Bob can reconstruct the input graph, which has
Ω(kn logn) bits of entropy by construction. This shows D1−way(k-Vertex Connectivity) =
Ω(nk logn). J

I Remark. There is a streaming algorithm due to Eppstein et al. [15] (see also [19] for a
discussion) which includes a new edge {a, b} iff there are no k-vertex disjoint paths connecting
a to b among the edges already stored. Correctness follows from Menger’s theorem for vertex
connectivity. Note that the algorithm is insensitive to edge duplications, and is deterministic.
It achieves O(kn logn) bits of space.

3.9 H-minor-free
Let H be a fixed graph. In the H-minor-free problem Alice has a subset EA of edges of an
undirected graph G on a set V of n vertices and Bob has a subset EB of the edges of G.
Alice sends a single randomized message M(EA) to Bob, who should decide if the graph
(V,EA ∪ EB) is H-minor-free. Bob should succeed with probability at least 9/10.

I Theorem 11. For any fixed graph H with minimum degree at least 2, R1−way(H-minor-
free) = Ω(n logn).

Proof. We again reduce from Perm on instances of size n/2. Alice, given a permutation σ,
creates a perfect matching from [n/2] to [n/2] where the i-th left vertex connects to the
σ(i)-th right vertex. Alice’s edgeset EA consists of the edges in this perfect matching. Let L
and R denote the two parts of the vertex set V , each of size n/2.

Suppose Bob has the input i to Perm. This corresponds to the `-th bit in σ(j) for some
j ∈ [n/2] and ` ∈ [log(n/2)]. Bob creates his input to H-minor-free from i and H as follows.
Suppose H has r + 1 vertices h0, h1, . . . , hr. Since δ(H) ≥ 2, w.l.o.g., we assume there are
two edges {h0, h1} and {h0, h2} in E(H). Bob creates r new vertices p1, . . . , pr and puts
a copy of H \ {h0, h1} between j and p1, . . . , pr with the mapping h0 → j and hi → pi
(i = 1, . . . , r), i.e., j, p1, . . . , pr, is an isomorphism to H except for the one edge (j, p1). Let
V = L ∪R ∪ {p1, . . . , pr} and S ⊂ R denote the subset of vertices whose `-th bit is equal to
1. Bob also includes all edges in EB from p1 to all vertices in S.

Now we claim that there is an H-minor in (V,EA ∪ EB) iff the `-th bit of σ(j) is 1.
Indeed, if the `-th bit of σ(j) is 1, then there is a edge between σ(j) and p1 in EB . We can
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contract the edges {j, σ(j)} and {σ(j), p1} and we obtain a copy of H. Hence H is a minor
of EA ∪ EB .

For the case that the `-th bit of σ(j) is 0, then σ(j) /∈ S and j is not adjacent to any
vertex in S. Note that we can delete all isolated matching edges since δ(H) ≥ 2. Also since
j is not adjacent to a vertex in S and H has minimum degree at least 2, we can contract
all edges incident to S, and then contract all nodes in S to p1. These operations preseve
the property of having an H-minor since the minimum degree of H is at least 2. We can
also contract σ(j) ∈ R to j since deg(σ(j)) = 1 and δ(H) ≥ 2. At this point we are left with
vertices p1, ..., pr, and j, with edgeset exactly equal to that of H except we are missing the
edge (p1, j). This implies H is not a minor. J

I Remark. Kostochka [25] shows that an H-minor-free graph has at most O(n|H|
√

log |H|)
edges. Storing all these edges can be done using O(n logn) bits. So our lower bound is tight.

As a corollary, we show that the Planar problem in which Bob want to decide if (V,EA∪EB)
is planar also has a lower bound of Ω(n logn) bits.

I Corollary 12. R1−way(Planar) = Ω(n logn).

Proof. Consider H = K5 in the previous proof. The graph (V,EA ∪EB) is either contracted
to a K5, or a K5 with one missing edge, according to the `-th bit of σ(j). Notice that the
former one is non-planar and the latter is planar. Therefore, Planar is as hard as Perm. J

I Remark. There is an O(n logn) bit upper bound for Planar, simply store up to 3n edges
and use that any graph with more than 3n edges cannot be planar.

3.10 Approximate Min-Cut
In this section we show an Ω(n log2 n) lower bound for 1-way protocols which provide a
constant-factor approximation with constant probability to the minimum cut value of a graph
with integer edge weights between 1 and n. Our lower bound also implies an Ω(n log2 n) bit
lower bound for O(1)-approximate cut sparsifiers of such graphs, as such sparsifiers can be
used to approximate the minimum cut value. We let c-approx Min-Cut denote the problem
of approximating the minimum cut up to a factor of c > 1.

I Theorem 13. Suppose a graph has edges with weights in the set {1, 2, . . . ,W}, where
W is at most 2γn for a sufficiently small constant γ > 0. Then for any constant c > 1,
R1−way(c-approx Min-Cut) = Ω(n logn logW ). In particular, if W = n, then R1−way(c-
approx Min-Cut) = Ω(n log2 n).

Proof. We can reduce the r-AugmentedPerm problem to c-approx Min-Cut, which we abbre-
viate as the Min-Cut problem in the remainder of the proof. Let α = 2c+ 1 and r = logαW .
Suppose Alice is given r random permutations σ1, . . . , σr of size n/2. As in the construction
in the proof of Conn, Alice creates r perfect matchings from σ1, . . . , σr as her input to the
Min-Cut problem. All edge weights in the i-th instance are equal to αi (i = 1, . . . , r). The
largest weight is αr = W . In expectation there will be O(r2) duplicate edges when we
overlay the matchings. Alice can send the identities of all the duplicate edges together with
which instances they occur in to Bob, and not include these in her graph. This only requires
O(log2 W (logn+ log logW )) additional communication from Alice to Bob, using our choice
of r. This is negligible given the upper bound on W in the theorem statement.

Suppose in the r-AugmentedPerm problem Bob is given an index i ∈ [n logn], and index
k ∈ [r], and σk+1, . . . , σr. For the Min-Cut problem, Bob will delete all the edges in the
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matchings corresponding to σk+1, . . . , σn. Bob, depending on which instances he deletes
from r-AugmentedPerm, can decide which of the duplicate edges to put back in Alice’s graph.
As in the Conn problem, Bob also adds a spanning tree to the vertices (L \ {j}) ∪ S in the
matching corresponding to σk.

Now if σki = 0, then the graph is connected. Hence the minimum cut is at least αk.
On the other hand, if σki = 1, then the k-th instance is disconnected. In the instances
corresponding to σ1, . . . , σk−1, all the vertices have degree one, so if we cut {j, σk(j)} from
other vertices, the total weight of this cut is at most 2(α + α2 + · · ·+ αk−1) < 2·αk

α−1 = αk

c .
Therefore, if Bob can c-approximate the total weight of the min-cut, then he can distinguish
the case σki = 0 from σki = 1, i.e., he can solve r-AugmentedPerm. J

Acknowledgements. We thank Andrew McGregor for helpful discussions regarding this
work.
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A Information Theory Facts

For a discrete random variable X with possible values {x1, x2, . . . , xn}, the Shannon entropy
of X is defined as H(X) = −

∑n
i=1 Pr(X = xi) log2 Pr(X = xi). Let Hb(p) = −p log2 p−(1−

p) log2(1−p) denote the binary entropy function when p ∈ (0, 1). For two random variables X
and Y with possible values {x1, x2, . . . , xn} and {y1, y2, . . . , ym}, respectively, the conditional
entropy of X given Y is defined as H(X | Y ) =

∑
i,j Pr(X = xi, Y = yj) log2

Pr(Y=yj)
Pr(X=xi,Y=yj) .

Let I(X;Y ) = H(X) − H(X | Y ) = H(Y ) − H(Y | X) denote the mutual information
between two random variables X,Y . Let I(X;Y | Z) denote the mutual information between
two random variables X,Y conditioned on Z, i.e., I(X;Y | Z) = H(X | Z)−H(X | Y,Z).

The following summarizes several basic properties of entropy and mutual information.

I Proposition 14. Let X,Y, Z,W be random variables.
1. If X takes value in {1, 2, . . . ,m}, then H(X) ∈ [0, logm].
2. H(X) ≥ H(X | Y ) and I(X;Y ) = H(X)−H(X | Y ) ≥ 0.
3. If X and Z are independent, then we have I(X;Y | Z) ≥ I(X;Y ). Similarly, if X,Z are

independent given W , then I(X;Y | Z,W ) ≥ I(X;Y | W ).
4. (Chain rule of mutual information) I(X,Y ;Z) = I(X;Z) + I(Y ;Z | X).

More generally, for any random variables X1, X2, . . . , Xn, Y ,
I(X1, . . . , Xn;Y ) =

∑n
i=1 I(Xi;Y | X1, . . . , Xi−1).

Thus, I(X,Y ;Z | W ) ≥ I(X;Z | W ).
5. (Fano’s inequality) Let X be a random variable chosen from domain X according to distri-

bution µX , and Y be a random variable chosen from domain Y according to distribution
µY . For any reconstruction function g : Y → X with error δg,

Hb(δg) + δg log(|X | − 1) ≥ H(X | Y ).
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1 Introduction

‘No, Virginia, there is no constant-query tester.’

Understanding properties and characteristics of an unknown probability distribution is a
fundamental problem in statistics, and one that has been thoroughly studied. However, it is
only since the seminal work of Goldreich and Ron [15] and Batu et al. [5] that the problem
has been considered through the lens of theoretical computer science, more particularly in
the setting of property testing.

Over the following decade, a flurry of subsequent work explored and delved into this new
area, resulting in a better and often complete understanding of a number of questions in
distributional property testing (see e.g. [15, 4, 6, 20, 24, 2, 7, 23, 17, 3, 12, 29] or [8] for a
survey). In many cases, these culminated in provably sample-optimal algorithms. However,
the standard setting of distribution testing, where one only obtains independent samples
from an unknown distribution D, does not encompass all scenarios one may encounter. In
recent years, stronger models have thus been proposed to capture more specific situations [16,
11, 9, 18, 10]: among these is the conditional oracle model [11, 9] which will be the focus
of our work. In this setting, the testing algorithms are given the ability to sample from
conditional distributions: that is, to specify a subset S of the domain and obtain samples
from DS , the distribution induced by D on S (the formal definition of the model can be
found in Definition 2.1). In particular, the hope is that allowing algorithms to have stronger
interactions with the unknown underlying distributions might significantly reduce the number
of samples they need, thereby sidestepping the strong lower bounds that hold in the standard
sampling model.

1.1 Background and previous work
We focus in this paper on proving lower bounds for testing two extremely natural properties
of distributions, namely equivalence testing (“are these two datasets identically distributed?”)
and support size estimation (“how many different outcomes can actually be observed?”).
Along the way, we use some of the techniques we develop to obtain an upper bound on the
query complexity of the latter. We state below the informal definition of these two problems,
along with closely related ones (uniformity and identity testing). Hereafter, “oracle access”
to a distribution D over [n] = {1, . . . , n} means access to samples generated independently
from D.
Uniformity testing: granted oracle access to D, decide whether D = U (the uniform distri-

bution on [n]) or is far from it;
Identity testing: granted oracle access to D and the full description of a fixed D∗, decide

whether D = D∗ or is far from it;
Equivalence (closeness) testing: granted independent oracle accesses to D1, D2 (both un-

known), decide whether D1 = D2 or D1, D2 are far from each other.
Support size estimation: granted oracle access to D, output an estimate of the size of the

support1 supp(D) ={ x : D(x) > 0 }, accurate within a multiplicative factor.
It is not difficult to see that each of the first three problems generalizes the previous, and is
therefore at least as hard. All of these tasks are known to require sample complexity nΩ(1)

1 For this problem, it is typically assumed that all points in the support have probability mass at least
Ω(1)/n, as without such guarantee it becomes impossible to give any non-trivial estimate (consider for
instance a distribution D such that D(i) ∝ 1/2in).
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in the standard sampling model (SAMP); yet, as prior work [11, 9] shows, their complexity
decreases tremendously when one allows the stronger type of access to the distribution(s)
provided by a conditional sampling oracle (COND). For the problems of uniformity testing
and identity testing, the sample complexity even becomes a constant provided the testing
algorithm is allowed to be adaptive (i.e. when the next queries it makes can depend on the
samples it previously obtained).

Testing uniformity and identity

Given the complete description of a distribution D∗ over [n], a parameter ε > 0, and oracle
access to a distribution D, identity testing asks to distinguish the case D1 = D∗ from
where their total variation distance dTV(D,D∗) is at least ε. This is a generalization of
uniformity testing, where D∗ is taken to be the uniform distribution over [n]. The complexity
of these tasks is well-understood in the sampling model; in particular, it is known that
for both uniformity and identity testing Θ

(√
n/ε2) samples are necessary and sufficient

(see [15, 5, 20, 29] for the tight bounds on these problems).
The uniformity testing problem emphasizes the additional flexibility granted by conditional

sampling: as Canonne, Ron, and Servedio [9] showed, in this setting only Õ
(
1/ε2) adaptive

queries now suffice (and this is optimal, up to logarithmic factors). They further prove that
identity testing has constant sample complexity as well, namely Õ

(
1/ε4) – very recently

improved to a near-optimal Õ
(
1/ε2) by Falahatgar et al. [13]. The power of the COND model

is evident from the fact that a task requiring polynomially many samples in the standard
model can now be achieved with a number of samples independent of the domain size n.

Focusing on the case of non-adaptive algorithms, Chakraborty et al. [11] describe a
poly(logn, 1/ε)-query tester for uniformity, showing that even without the full power of
conditional queries one can still get an exponential improvement over the standard sampling
setting. They also obtain an Ω(log logn) lower bound for this problem, and leave open the
possibility of improving this lower bound up to a logarithmic dependence. The present work
answers this question, establishing that any non-adaptive uniformity tester must perform
Ω(logn) conditional queries.

Testing equivalence

A natural generalization of these two testing problems is the question of equivalence testing,
defined as follows. Given oracle access to two unknown distributions D1 and D2 over [n]
and a parameter ε > 0, equivalence testing asks to distinguish between the cases D1 = D2
and dTV(D1, D2) > ε. This problem has been extensively studied over the past decade,
and its sample complexity is now known to be Θ(max(n2/3/ε4/3,

√
n/ε2)) in the sampling

model [5, 30, 12].
In the COND setting, Canonne, Ron, and Servedio showed that equivalence testing is

possible with only poly(logn, 1/ε) queries. Concurrent to our work, Falahatgar et al. [13]
brought this upper bound down to Õ

(
(log logn)/ε5), a doubly exponential improvement over

the nΩ(1) samples needed in the standard sampling model. However, these results still left
open the possibility of a constant query complexity: given that both uniformity and identity
testing admit constant-query testers, it is natural to wonder where equivalence testing lies2.

This question was explicitly posed by Fischer at the Bertinoro Workshop on Sublinear
Algorithms 2014 [14]: in this paper, we make decisive progress in answering it, ruling out

2 It is worth noting that an Ω(logc n) lower bound was known for equivalence testing in a weaker version
of the conditional oracle, PAIRCOND (where the tester’s queries are restricted to being either [n] or
subsets of size 2 [9]).
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the possibility of any constant-query tester for equivalence. Along with the upper bound
of Falahatgar et al. [13], our results essentially settle the dependence on the domain size,
showing that (log logn)Θ(1) samples are both necessary and sufficient.

Support size estimation

Finally, the question of approximating the support size of a distribution has been considered
by Raskhodnikova et al. [21], where it was shown that obtaining additive estimates requires
sample complexity almost linear in n. Subsequent work by Valiant and Valiant [28, 26]
settles the question, establishing that an n/ logn dependence is both necessary and sufficient.
Note that the proof of their lower bound translates to multiplicative approximations as well,
as they rely on the hardness of distinguishing a distribution with support s ≤ n from a
distribution with support s+ εn ≥ (1 + ε)s. To the best of our knowledge, the question of
getting a multiplicative-factor estimate of the support size of a distribution given conditional
sampling access has not been previously considered. We provide upper and lower bounds for
both the adaptive and non-adaptive versions of this problem.

1.2 Our results
In this work, we make significant progress in each of the problems introduced in the previous
section, yielding a better understanding of their intrinsic query complexities. We prove four
results pertaining to the sample complexity of equivalence testing, support size estimation,
and uniformity testing in the COND framework. Our main result on the sample complexity
of equivalence testing is presented in this extended abstract, the details of the other results
are available in the full version of this paper [1].

Our main result considers the sample complexity of testing equivalence with adaptive
queries under the COND model, resolving in the negative the question of whether constant-
query complexity was achievable [14]. More precisely, we prove the following theorem:

I Theorem 1.1 (Testing Equivalence). Any adaptive algorithm which, given COND access
to unknown distributions D1, D2 on [n], distinguishes with probability at least 2/3 between
(a) D1 = D2 and (b) dTV(D1, D2) ≥ 1

4 , must have query complexity Ω
(√

log logn
)
.

Combined with the recent Õ(log logn) upper bound of Falahatgar et al. [13], this almost
settles the sample complexity of this question. Furthermore, as the related task of identity

Table 1 Summary of results. Note that the lower bound (†) can also be easily derived from our
lower bound on testing equivalence.

Problem COND model Standard model
Are D1, D2 (both unknown)

equivalent? (adaptive)
Õ
(

log logn
ε5

)
[13] Θ

(
max

(
n2/3

ε4/3 ,
n1/2

ε2

))
[12]

Ω
(√

log logn
)
[this work]

What is the support size of
D? (adaptive)

Õ
(

log logn
ε3

)
[this work]

Θ
(

n
logn

)
[26]Ω

(√
log logn

)
[11] (†)

What is the support size of
D? (non-adaptive)

O(poly(logn, 1/ε)) [this work]
Ω(logn) [this work]

Is D uniform over the
domain? (non-adaptive)

Õ
(

log5 n
ε6

)
[11] Θ

(√
n
ε2

)
[15, 5, 20]

Ω(logn) [this work]
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testing can be performed with a constant number of queries in the conditional sampling
model, this demonstrates an intriguing and intrinsic difference between the two problems. Our
result can also be interpreted as showing a fundamental distinction from the usual sampling
model, where both identity and equivalence testing have polynomial sample complexity.

Next, we establish a logarithmic lower bound on non-adaptive support size estimation,
for any factor larger than a fixed constant. This improves on the result of Chakraborty
et al. [11], which gave a doubly logarithmic lower bound for constant factor support-size
estimation.

I Theorem 1.2 (Non-Adaptive Support Size Estimation). Any non-adaptive algorithm which,
given COND access to an unknown distribution D on [n], estimates the size of its support up
to a factor γ must have query complexity Ω

(
logn
log γ

)
, for any γ ≥

√
2.

Moreover, the approach used to prove this theorem also implies an analogous lower bound
on non-adaptive uniformity testing in the conditional model, answering a conjecture of
Chakraborty et al. [11]:

I Theorem 1.3 (Non-Adaptive Uniformity Testing). Any non-adaptive algorithm which, given
COND access to an unknown distribution D on [n], distinguishes with probability at least 2/3
between (a) D = U and (b) dTV(D,U) ≥ 1

4 , must have query complexity Ω(logn).

We note that these results complement polylog(n)-query upper bounds, the former of which
we sketch in the full version of this paper, and the latter obtained by Chakraborty et al. [11].
This shows that both of these problems have query complexity logΘ(1) n in the non-adaptive
case.

Finally, we also show an upper bound for adaptive support size estimation. Specifically,
we provide a Õ(log logn)-query algorithm for support size estimation. This shows that the
question becomes double exponentially easier when conditional samples are allowed.

I Theorem 1.4 (Adaptive Support Size Estimation). Let τ > 0 be any constant. There exists
an adaptive algorithm which, given COND access to an unknown distribution D on [n] which
has minimum non-zero probability τ/n and accuracy parameter ε makes Õ

(
(log logn)/ε3)

queries to the oracle and outputs a value ω̃ such that the following holds. With probability at
least 2/3, ω̃ ∈ [ 1

1+ε · ω, (1 + ε) · ω], where ω = |supp(D)|.

1.2.1 Relation to the Ron-Tsur model
Recent work of Ron and Tsur [22] studies a model which is slightly stronger than ours.
In their setting, the algorithm still performs queries consisting of a subset of the domain.
However, the algorithm is also given the promise that the distribution is uniform on a subset
of the domain, and whenever a query set contains 0 probability mass the oracle explicitly
indicates this is the case. Their paper provides a number of results for support size estimation
in this model.

We point out two connections between our work and theirs. First, our Ω(logn) lower
bound for non-adaptive support size estimation (Theorem 1.2) leads to the same lower
bound for the problem in the model of Ron and Tsur. Although lower bounds in the
conditional sampling setting do not apply directly to theirs, we note that our construction
and analysis still carry over. This provides a nearly tight answer to this question, which
was left unanswered in their paper. Also, our Õ(log logn)-query algorithm for adaptive
support size estimation (Theorem 1.4) can be seen as generalizing their result to the weaker
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454 A Chasm Between Identity and Equivalence Testing with Conditional Queries

conditional sampling model (most significantly, when we are not given the promise that the
distribution be uniform).

1.3 Techniques and proof ideas
We now provide an overview of the techniques and arguments used to prove our results.

Lower bound on adaptive equivalence testing

In order to prove our main ω(1) lower bound on the query complexity of testing equivalence
in the conditional sampling model, we have to deal with one main conceptual issue: adaptivity.
While the standard sampling model does not, by definition, allow any choice on what the next
query to the oracle should be, this is no longer the case for COND algorithms. Quantifying the
power that this grants an algorithm makes things much more difficult. To handle this point,
we follow the approach of Chakraborty et al. [11] and focus on a restricted class of algorithms
they introduce, called “core adaptive testers” (see Section 2.2 for a formal definition). They
show that this class of testers is equivalent to general algorithms for the purpose of testing
a broad class of properties, namely those which are invariant to any permutation of the
domain. Using this characterization, it remains for us to show that none of these structurally
much simpler core testers can distinguish whether they are given conditional access to (a)
a pair of random identical distributions (D1, D1), or (b) two distributions (D1, D2) drawn
according to a similar process, which are far apart.

At a high level, our lower bound works by designing instances where the property can be
tested if and only if the support size is known to the algorithm. Our construction randomizes
the support size by embedding the instance into a polynomially larger domain. Since the
algorithm is only allowed a small number of queries, Yao’s Principle allows us to argue
that, with high probability, a deterministic algorithm is unable to “guess” the support size.
This separates queries into several cases. First, in a sense we make precise, it is somehow
“predictable” whether or not a query will return an element we have previously observed. If
we do, it is similarly predictable which element the query will return. On the other hand, if
we observe a fresh element, the query set is either “too small” or “too large.” In the former
case, the query will entirely miss the support, and the sampling process is identical for both
types of instance. In the latter case, the query will hit a large portion of the support, and
the amount of information gleamed from a single sample is minimal.

At a lower level, this process itself is reminiscent of the lower bound construction of
Canonne, Ron, and Servedio [9] on testing identity (with a PAIRCOND oracle), with one
pivotal twist. As in their work, both D1 and D2 are uniform within each of ω(1) “buckets”
whose size grows exponentially and are grouped into “bucket-pairs.” Then, D2 is obtained
from D1 by internally redistributing the probability mass of each pair of buckets, so that the
total mass of each pair is preserved but each particular bucket has mass going up or down
by a constant factor (see Section 3.1 for details of the construction). However, we now add a
final step, where in both D1 and D2 the resulting distribution’s support is scaled by a random
factor, effectively reducing it to a (randomly) negligible fraction of the domain. Intuitively,
this last modification has the role of “blinding” the testing algorithm: we argue that unless
its queries are on sets whose size somehow match (in a sense formalized in Section 3.2) this
random size of the support, the sequences of samples it will obtain under D1 and D2 are
almost identically distributed. The above discussion crucially hides many significant aspects
and technical difficulties which we address in Section 3. Moreover, we observe that the lower
bound we obtain seems to be optimal with regard to our proofs techniques (specifically, to
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the decision tree approach), and not an artifact of our lower bound instances. Namely, there
appear to be conceptual barriers to strengthening our result, which would require new ideas.

Lower bound on non-adaptive support size estimation

Turning to the (non-adaptive) lower bound of Theorem 1.2, we define two families of
distributions D1 and D2, where an instance is either a draw (D1, D2) from D1 × D2, or
simply (D1, D1). Any distribution in D2 has support size γ times that of its corresponding
distribution in D1. Yet, we argue that no non-adaptive deterministic tester making too few
queries can distinguish between these two cases, as the tuple of samples it will obtain from
D1 or (the corresponding) D2 is almost identically distributed (where the randomness is over
the choice of the instance itself). To show this last point, we analyze separately the case
of “small” queries (conditioning on sets which turn out to be much smaller than the actual
support size, and thus with high probability will not even intersect it) and the “big” ones
(where the query set A is so big in front of the support size S that a uniform sample from
A∩ S is essentially indistinguishable from a uniform sample from A). We conclude the proof
by invoking Yao’s Principle, carrying the lower bound back to the setting of non-adaptive
randomized testers.

Interestingly, this argument essentially gives us Theorem 1.3 “for free:” indeed, the
big-query-set case above is handled by proving that the distribution of samples returned on
those queries is indistinguishable, both for D1 and D2, from samples obtained from the actual
uniform distribution. Considering again the small-query-set case separately, this allows us to
argue that a random distribution from (say) D1 is indistinguishable from uniform.

Upper bound on support size estimation

Our algorithm for estimating the support size to a constant factor (Theorem 1.4) is simple
in spirit, and follows a guess-and-check strategy. In more detail, it first obtains a “reference
point” outside the support, to check whether subsequent samples it may consider belong
to the support. Then, it attempts to find a rough upper bound on the size of the support,
of the form 22j (so that only log logn many options have to be considered); by using its
reference point to check if a uniform random subset of this size contains, as it should, at
least one point from the support. Once such an upper bound has been obtained using this
double-exponential strategy, a refined bound is then obtained via a binary search on the new
range of values for the exponent, {2j−1, . . . , 2j}. Not surprisingly, our algorithm draws on
similar ideas as in [22, 25], with some additional machinery to supplement the differences in
the models. Interestingly, as a side-effect, this upper bound shows our analysis of Theorem 1.1
to be tight up to a quadratic dependence. Indeed, the lower bound construction we consider
(see Section 3.1) can be easily “defeated” if an estimate of the support size is known, and
therefore cannot yield better than a Ω(log logn) lower bound. Similarly, this also shows that
the adaptive lower bound for support size estimation of Chakraborty et al. [11] is also tight
up to a quadratic dependence.

Organization

The rest of the paper describes details and proofs of the results mentioned in the above
discussion. In Section 2, we introduce the necessary definitions and some of the tools we
shall use. Section 3 covers our main result on adaptive equivalence testing, Theorem 1.1.
Further details on our other results are available in the full version of this paper.
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456 A Chasm Between Identity and Equivalence Testing with Conditional Queries

2 Preliminaries

2.1 Notation and sampling models
All throughout this paper, we denote by [n] the set {1, . . . , n}, and by log the logarithm in
base 2. A probability distribution over a (countable) domain [n] is a non-negative function
D : [n] → [0, 1] such that

∑
x∈[n]D(x) = 1. We denote by U(S) the uniform distribution

on a set S. Given a distribution D over [n] and a set S ⊆ [n], we write D(S) for the total
probability mass

∑
x∈S D(x) assigned to S by D. Finally, for S ⊆ [n] such that D(S) > 0,

we denote by DS the conditional distribution of D restricted to S, that is DS(x) = D(x)
D(S) for

x ∈ S and DS(x) = 0 otherwise.

As is usual in distribution testing, in this work the distance between two distributions
D1, D2 on [n] will be the total variation distance:

dTV(D1, D2) def= 1
2‖D1 −D2‖1 = 1

2
∑
x∈[n]

|D1(i)−D2(i)| = max
S⊆[n]

(D1(S)−D2(S)) (1)

which takes value in [0, 1].

In this work, we focus on the setting of conditional access to the distribution, as introduced
and studied in [11, 9]. We reproduce below the corresponding definition of a conditional
oracle, henceforth referred to as COND:

I Definition 2.1 (Conditional access model). Fix a distribution D over [n]. A COND oracle
for D, denoted CONDD, is defined as follows: the oracle takes as input a query set S ⊆ [n],
chosen by the algorithm, that has D(S) > 0. The oracle returns an element i ∈ S, where the
probability that element i is returned is DS(i) = D(i)/D(S), independently of all previous
calls to the oracle.

Note that as described above the behavior of CONDD(S) is undefined if D(S) = 0, i.e., the
set S has zero probability under D. Various definitional choices could be made to deal with
this. These choice do not do not make significant difference in most situations, as most
(adaptive) algorithms can always include in their next queries a sample previously obtained;
while our lower bounds can be thought of as putting exponentially small probability mass
of elements outside the support. For this reason, and for convenience, we shall hereafter
assume, following Chakraborty et al., that the oracle returns in this case a sample uniformly
distributed in S.

Finally, recall that a property P of distributions over [n] is a set consisting of all distri-
butions that have the property. The distance from D to a property P, denoted dTV(D,P),
is then defined as infD′∈P dTV(D,P). We use the standard definition of testing algorithms
for properties of distributions over [n], tailored for the setting of conditional access to an
unknown distribution:

I Definition 2.2 (Property tester). Let P be a property of distributions over [n]. A t-query
COND testing algorithm for P is a randomized algorithm T which takes as input n, ε ∈ (0, 1],
as well as access to CONDD. After making at most t(ε, n) calls to the oracle, T either outputs
ACCEPT or REJECT, such that the following holds:

2 Recall that a non-adaptive tester is an algorithm whose queries do not depend on the answers obtained
from previous ones, but only on its internal randomness. Equivalently, it is a tester that can commit
“upfront” to all the queries it will make to the oracle.
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if D ∈ P, T outputs ACCEPT with probability at least 2/3;
if dTV(D,P) ≥ ε, T outputs REJECT with probability at least 2/3.

We observe that the above definitions can be straightforwardly extended to the more
general setting of pairs of distributions, where given independent access to two oracles
CONDD1 , CONDD2 the goal is to test whether (D1, D2) satisfies a property (now a set of
pairs of distributions). This will be the case in Section 3, where we will consider equivalence
testing, that is the property Peq ={ (D1, D2) : D1 = D2 }.

2.2 Adaptive Core Testers
In order to deal with adaptivity in our lower bounds, we will use ideas introduced by
Chakraborty et al. [11]. These ideas, for the case of label-invariant properties3 allow one to
narrow down the range of possible testers and focus on a restricted class of such algorithms
called adaptive core testers. These core testers do not have access to the full information
of the samples they draw, but instead only get to see the relations (inclusions, equalities)
between the queries they make and the samples they get. Yet, Chakraborty et al. [11] show
that any tester for a label-invariant property can be converted into a core tester with same
query complexity; thus, it is enough to prove lower bounds against this – seemingly – weaker
class of algorithms.

We here rephrase the definitions of a core tester and the view they have of the interaction
with the oracle (the configuration of the samples), tailored to our setting.

I Definition 2.3 (Atoms and partitions). Given a family A = (A1, . . . , At) ⊆ [n]t, the atoms
generated byA are the (at most) 2t distinct sets of the form

⋂t
r=1 Cr, where Cr ∈ {Ar, [n]\Ar}.

The family of all such atoms, denoted At(A), is the partition generated by A.

This definition essentially captures “all sets (besides the Ai’s) about which something can
be learnt from querying the oracle on the sets of A.” Now, given such a sequence of queries
A = (A1, . . . , At) and pairs of samples s = ((s(1)

1 , s
(2)
1 ), . . . , (s(1)

t , s
(2)
t )) ∈ A2

1 × · · · × A2
t , we

would like to summarize “all the label-invariant information available to an algorithm that
obtains ((s(1)

1 , s
(2)
1 ), . . . , (s(1)

t , s
(2)
t )) upon querying A1, . . . , At for D1 and D2.” This calls for

the following definition:

I Definition 2.4 (t-configuration). Given A = (A1, . . . , At) and s = ((s(1)
j , s

(2)
j ))1≤j≤t as

above, the t-configuration of s consists of the 6t2 bits indicating, for all 1 ≤ i, j ≤ t, whether
s

(k)
i = s

(`)
j , for k, ` ∈ {1, 2}; and (relations between samples)

s
(k)
i ∈ Aj , for k ∈ {1, 2}. (relations between samples and query sets)

In other terms, it summarizes which is the unique atom Si ∈ At(A) that contains s(k)
i , and

what collisions between samples have been observed.

As aforementioned, the key idea is to argue that, without loss of generality, one can
restrict one’s attention to algorithms that only have access to t-configurations, and generate
their queries in a specific (albeit adaptive) fashion:

I Definition 2.5 (Core adaptive tester). A core adaptive distribution tester for pairs of
distributions is an algorithm T that acts as follows.

3 Recall that a property is label-invariant (or symmetric) if it is closed under relabeling of the elements of
the support. More precisely, a property of distributions (resp. pairs of distributions) P is label-invariant
if for any distribution D ∈ P (resp. (D1, D2) ∈ P) and permutation σ of [n], one has D ◦ σ ∈ P (resp.
(D1 ◦ σ,D2 ◦ σ) ∈ P).
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458 A Chasm Between Identity and Equivalence Testing with Conditional Queries

In the i-th phase, based only on its own internal randomness and the configuration of the
previous queries A1, . . . , Ai−1 and samples obtained (s(1)

1 , s
(2)
1 ), . . . , (s(1)

i−1, s
(2)
i−1) – whose

labels it does not actually know, T provides:
a number kAi for each A ∈ At(A1, . . . , Ai−1), between 0 and

∣∣∣A \ {s(1)
j , s

(2)
j }1≤j≤i−1

∣∣∣
(“how many fresh, not-already-seen elements of each particular atom A should be
included in the next query”)
sets K(1)

i ,K
(2)
i ⊆ {1, . . . , i− 1} (“which of the samples s(k)

1 , . . . , s(k)i−1 (whose label
is unknown to the tester, but referred to by the index of the query it got them) will be
included in the next query”).

based on these specifications, the next query Ai is drawn (but not revealed to T ) by
drawing uniformly at random a set Λi in{

Λ ⊆ [n] \ {s(1)
j , s

(2)
j }1≤j≤i−1 : ∀A ∈ At(A1, . . . , Ai−1), |Λ ∩A| = kAi

}
.

That is, among all sets, containing only “fresh elements,” whose intersection with each
atom contains as many elements as T requires.
adding the selected previous samples to this set:

Γi
def=
{
s

(1)
j : j ∈ K(1)

i

}
∪
{
s

(2)
j : j ∈ K(2)

i

}
; Ai

def= Λi ∪ Γi .

This results in a set Ai, not fully known to T besides the samples it already got and
decided to query again; in which the labels of the fresh elements are unknown, but the
proportions of elements belonging to each atom are known.
samples s(1)

i ∼ (D1)Ai and s(2)
i ∼ (D2)Ai are drawn (but not disclosed to T ). This defines

the i-configuration of A1, . . . , Ai and (s(1)
1 , s

(2)
1 ), . . . , (s(1)

i , s
(2)
i ), which is revealed to T .

Put differently, the algorithm only learns (i) to which of the A`’s the new sample belongs,
and (ii) if it is one of the previous samples, in which stage(s) and for which of D1, D2 it
has already seen it.

After t = t(ε, n) such stages, T outputs either ACCEPT or REJECT, based only on the
configuration of A1, . . . , At and (s(1)

1 , s
(2)
1 ), . . . , (s(1)

t , s
(2)
t ) (which is all the information it ever

had access to).

Note that in particular, T does not know the labels of samples it got, nor the actual queries
it makes: it knows all about their sizes and sizes of their intersections, but not the actual
“identity” of the elements they contain.

2.3 On the use of Yao’s Principle in our lower bounds
We recall Yao’s Principle (e.g., see Chapter 2.2 of [19]), a technique which is ubiquitous
in the analysis of randomized algorithms. Consider a set S of instances of some problem:
what this principle states is that the worst-case expected cost of a randomized algorithm on
instances in S is lower-bounded by the expected cost of the best deterministic algorithm on
an instance drawn randomly from S.

As an example, we apply it in a standard way for the proofs of Theorems 1.2 and 1.3:
instead of considering a randomized algorithm working on a fixed instance, we instead analyze
a deterministic algorithm working on a random instance. (We note that, importantly, the
randomness in the samples returned by the COND oracle is “external” to this argument, and
these samples behave identically in an application of Yao’s Principle.)

On the other hand, our application for the proof of Theorem 1.1 in Section 3 is slightly
different, due to our use of adaptive core testers. Once again, we focus on deterministic
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algorithms working on random instances, and the randomness in the samples is external
and therefore unaffected by Yao’s Principle. However, we stress that the randomness in the
choice of the set Λi is also external to the argument, and therefore unaffected – similar to
the randomness in the samples, the algorithm has no control here. Another way of thinking
about this randomness is via another step in the distribution over instances: after an instance
(which is a pair of distributions) is randomly chosen, we permute the labels on the elements of
the distribution’s domain uniformly at random. We note that since the property in question
is label-invariant, this does not affect its value. We can then use the model as stated in
Section 2.2 for ease of analysis, observing that this can be considered an application of the
principle of deferred decisions (as in Chapter 3.5 of [19]).

3 A Lower Bound for Equivalence Testing

We prove our main lower bound on the sample complexity of testing equivalence between
unknown distributions. We construct two priors Y and N over pairs of distributions (D1, D2)
over [n]. Y is a distribution over pairs of distributions of the form (D,D), namely the
case when the distributions are identical. Similarly, N is a distribution over (D1, D2) with
dTV(D1, D2) ≥ 1

4 . We then show that no algorithm T making O
(√

log logn
)
queries to

CONDD1 ,CONDD2 can distinguish between a draw from Y and N with constant probability
(over the choice of (D1, D2), the randomness in the samples it obtains, and its internal
randomness). We describe the construction of Y and N in Section 3.1, and provide a detailed
analysis in Section 3.2. (Due to space constraints, some of the proofs are deferred to the full
version of the paper.)

3.1 Construction
We now summarize how a pair of distribution is constructed under Y and N . (Each specific
step will be described in more detail in the subsequent paragraphs.)
1. Effective Support

a. Pick kb from the set {0, 1, . . . , 1
2 logn} at random.

b. Let b = 2kb and m def= b · n1/4.
2. Buckets

a. ρ and r are chosen with
∑2r
i=1 ρ

i = n1/4.
b. Divide {1, . . . ,m} into intervals B1, . . . , B2r with |Bi| = b · ρi.

3. Distributions
a. Assign probability mass 1

2r uniformly over Bi to generate distribution D1.
b. (i) Let π1, . . . , πr be independent 0/1 with Pr(πi = 0) = 1

2 .
(ii) If πi = 0, assign probability mass 1

4r and 3
4r over B2i−1 and B2i respectively, else

3
4r and 1

4r respectively. This generates a distribution D2.
3. Support relabeling

a. Pick a permutation σ ∈ Sn of the total support n.
b. Relabel the symbols of D1 and D2 according to σ.

4. Output: Generate (D1, D1) for Y, and (D1, D2) otherwise.

We now describe the various steps of the construction in greater detail.

Effective support. Both D1 and D2, albeit distributions on [n], will have (common) sparse
support. The support size is taken to be m def= b · n1/4. Note that, from the above
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definition, m is chosen uniformly at random from products of n1/4 with powers of 2,
resulting in values in [n1/4, n3/4].

In this step b will act as a random scaling factor. The objective of this random scaling
is to induce uncertainty in the algorithm’s knowledge of the true support size of the
distributions, and to prevent it from leveraging this information to test equivalence. In
fact one can verify that the class of distributions induced for a single value of b, namely
all distributions have the same value of m, then one can distinguish the Y and N cases
with only O(1) conditional queries.

Buckets. Our construction is inspired by the lower bound of Canonne, Ron, and Servedio [9,
Theorem 8] for the more restrictive PAIRCOND access model. We partition the support
in 2r consecutive intervals (henceforth referred to as buckets) B1, . . . , B2r, where the size
of the i-th bucket is bρi. We note that r and ρ will be chosen such that

∑2r
i=1 bρ

i = bn1/4,
i.e., the buckets fill the effective support.

Distributions. We output a pair of distributions (D1, D2). Each distribution that we con-
struct is uniform within any particular bucket Bi. In particular, the first distribution
assigns the same mass 1

2r to each bucket. Therefore, points within Bi have the same
probability mass 1

(2rbρi) . For the Y case, the second distribution is identical to the
first. For the N case, we pair buckets in r consecutive bucket-pairs Π1, . . . ,Πr, with
Πi = B2i−1 ∪B2i. For the second distribution D2, we consider the same buckets as D1,
but repartition the mass 1/r within each Πi. More precisely, in each pair, one of the
buckets gets now total probability mass 1

4r while the other gets 3
4r (so that the probability

of every point is either decreased by a factor 1
2 or increased by 3

2 ). The choice of which
goes up and which goes down is done uniformly and independently at random for each
bucket-pair determined by the random choices of πi’s.

Random relabeling. The final step of the construction randomly relabels the symbols, namely
is a random injective map from [m] to [n]. This is done to ensure that no information
about the individual symbol labels can be used by the algorithm for testing. For example,
without this the algorithm can consider a few symbols from the first bucket and distinguish
the Y and N cases. As mentioned in Section 2.3, for ease of analysis, the randomness in
the choice of the permutation is, in some sense, deferred to the randomness in the choice
of Λi during the algorithm’s execution.

Summary. A no-instance (D1, D2) is thus defined by the following parameters: the support
size m, the vector (π1, . . . , πm) ∈ {0, 1}r (which only impacts D2), and the final permuta-
tion σ of the domain. A yes-instance (D1, D1) follows an identical process, however, π
has no influence on the final outcome. See Figure 1 for an illustration of such a (D1, D2)
when σ is the identity permutation and thus the distribution is supported over the first
m natural numbers.

Values for ρ and r. By setting r = logn
8 log ρ + O(1), we have as desired

∑2r
i=1|Bi| = m and

there is a factor (1 + o(1))n1/4 between the height of the first bucket B1 and the one of
the last, B2r. It remains to choose the parameter ρ itself; we shall take it to be 2

√
logn,

resulting in r = 1
8
√

logn + O(1). (Note that for the sake of the exposition, we ignore
technical details such as the rounding of parameters, e.g. bucket sizes; these can be easily
taken care of at the price of cumbersome case analyses, and do not bring much to the
argument.)
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B1B2B3 B4 (. . . )

Dj(i)

im n

Figure 1 A no-instance (D1, D2) (before permutation).

3.2 Analysis
We now prove our main lower bound, by analyzing the behavior of core adaptive testers
(as per Definition 2.5) on the families Y and N from the previous section. In Section 3.2.1,
we argue that, with high probability, the sizes of the queries performed by the algorithm
satisfy some specific properties. Conditioned upon this event, in Section 3.2.2, we show
that the algorithm will get similar information from each query, whether it is running on a
yes-instance or a no-instance.

Before moving to the heart of the argument, we state the following fact, straightforward
from the construction of our no-instances:

I Fact 3.1. For any (D1, D2) drawn from N , one has dTV(D1, D2) = 1/4.

Moreover, as allowing more queries can only increase the probability of success, we hereafter
focus on a core adaptive tester that performs exactly q = 1

10
√

log logn (adaptive) queries;
and will show that it can only distinguish between yes- and no-instances with probability o(1).

3.2.1 Banning “bad queries”
As mentioned in Section 3.1, the draw of a yes- or no-instance involves a random scaling of the
size of the support of the distributions, meant to “blind” the testing algorithm. Recall that
a testing algorithm is specified by a decision tree, which at step i, specifies how many unseen
elements from each atom to include in the query ({kAi }) and which previously seen elements
to include in the query (sets K(1)

i ,K
(2)
i , as defined in Section 2.2), where the algorithm’s

choice depends on the observed configuration at that time. Note that, using Yao’s Principle
(as discussed in Section 2.3), these choices are deterministic for a given configuration – in
particular, we can think of all {kAi } and K

(1)
i ,K

(2)
i in the decision tree as being fixed. In this

section, we show that all kAi values satisfy with high probability some particular conditions
with respect to the choice of distribution, where the randomness is over the choice of the
support size. Due to space constraints, all proofs from this section are deferred to the full
version.

First, we recall an observation from [11], though we modify it slightly to apply to
configurations on pairs of distributions and we apply a slightly tighter analysis. This
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462 A Chasm Between Identity and Equivalence Testing with Conditional Queries

essentially limits the number of states an algorithm could be in by a function of how many
queries it makes.

I Proposition 3.2. The number of nodes in a decision tree corresponding to a q-sample
algorithm is at most 26q2+1.

For the sake of the argument, we will introduce a few notions applying to the sizes of
query sets: namely, the notions of a number being small, large, or stable, and of a vector being
incomparable. Roughly speaking, a number is small if a uniformly random set of this size does
not, in expectation, hit the largest bucket B2r. On the other hand, it is large if we expect
such a set to intersect many bucket-pairs (i.e., a significant fraction of the support). The
definition of stable numbers is slightly more quantitative: a number β is stable if a random
set of size β, for each bucket Bi, either completely misses Bi or intersects it in a number
of points very close to the expected number (in this case, we say the set concentrates over
Bi). Finally, a vector of values (βj) is incomparable if the union of random sets S1, . . . , Sm

of sizes β1, . . . , βm contains (with high probability) an amount of mass D
(⋃

j Sj

)
which is

either much smaller or much larger than the probability D(s) of any single element s.
We formalize these concepts in the definitions below. To motivate them, it will be useful to
bear in mind that, from the construction described in Section 3.1, the expected intersection
of a uniform random set of size β with a bucket Bi is of size βbρi/n; while the expected
probability mass from Bi it contains (under either D1 or D2) is β/(2rn).

I Definition 3.3. Let q be an integer, and let ϕ = Θ(q5/2). A number β is said to be small
if β < n

bρ2r ; it is large (with relation to some integer q) if β ≥ n
bρ2r−2ϕ .

Note that the latter condition equivalently means that, in expectation, a set of large size
will intersect at least ϕ + 1 bucket-pairs (as it hits an expected 2ϕ + 1 buckets, since
β|B2r−2ϕ| /n ≥ 1). From the above definitions we get that, with high probability, a random
set of any fixed size will in expectation either hit many or no buckets:

I Proposition 3.4. A number is either small or large with probability 1−O
(
ϕ log ρ
logn

)
.

The next definition characterizes the sizes of query sets for which the expected intersection
with any bucket is either close to 0 (less than 1/α, for some threshold α), or very big (more
than α). (It will be helpful to keep in mind that we will eventually use this definition with
α = poly(q).)

I Definition 3.5. A number β is said to be α-stable (for α ≥ 1) if, for each j ∈ [2r],
β /∈

[
n

αbρj ,
αn
bρj

]
. A vector of numbers is said to be α-stable if all numbers it contains are

α-stable.

I Proposition 3.6. A number is α-stable with probability 1−O
(
r logα
logn

)
.

The following definition characterizes the sizes of query sets which have a probability
mass far from the probability mass of any individual element. (For the sake of building
intuition, the reader may replace ν in the following by the parameter b of the distribution.)

I Definition 3.7. A vector of numbers (β1, . . . , β`) is said to be (α, τ)-incomparable with
respect to ν (for τ ≥ 1) if the two following conditions hold.

(β1, . . . , β`) is α-stable.
Let ∆j be the minimum ∆ ∈ {0, . . . , 2r} such that βjνρ

2r−∆

n ≤ 1
α , or 2r if no such ∆

exists. For all i ∈ [2r], 1
2rn
∑`
j=1 βj∆j 6∈

[
1

τ2rνρi ,
τ

2rνρi

]
.
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Recall from the definition of α-stability of a number that a random set of this size either has
essentially no intersection with a bucket or “concentrates over it” (i.e., with high probability,
the probability mass contained in the intersection with this bucket is very close to the
expected value). The above definition roughly captures the following. For any j, ∆j is the
number of buckets that will concentrate over a random set of size βj . The last condition
asks that the total probability mass from D1 (or D2) enclosed in the union of m random
sets of size β1, . . . , β` be a multiplicative factor of τ from the individual probability weight

1
2rbρi of a single element from any of the 2r buckets.

I Proposition 3.8. Given that a vector of numbers of length ` is α-stable, it is (α, q2)-
incomparable with respect to b with probability at least 1−O

(
r log q
logn

)
.

We put these together to obtain the following lemma:

I Lemma 3.9. With probability at least 1−O
(

26q2+q(r logα+ϕ log ρ)+26q2
(r log q)

logn

)
, the following

holds for the decision tree corresponding to a q-query algorithm:
the size of each atom is α-stable and either large or small;
the size of each atom, after excluding elements we have previously observed,4 is α-stable
and either large or small;
for each i, the vector (kAi )A∈At(A1,...,Ai) is (α, q2)-incomparable (with respect to b).

Proof. From Proposition 3.2, there are at most 26q2+1 tree nodes, each of which contains one
vector (kAi )A, and at most 2q atom sizes. The first point follows from Propositions 3.4 and 3.6
and applying the union bound over all 26q2+1 · 2 · 2q sizes, where we note the additional factor
of 2 comes from either including or excluding the old elements. The latter point follows from
Proposition 3.8 and applying the union bound over all 26q2+1 (kAi ) vectors. J

3.2.2 Key lemma: bounding the variation distance between decision
trees

In this section, we prove a key lemma on the variation distance between the distribution on
leaves of any decision tree, when given access to either an instance from Y or N . This lemma
will in turn directly yield Theorem 1.1. Hereafter, we set the parameters α (the threshold for
stability), ϕ (the parameter for smallness and largeness) and γ (an accuracy parameter for
how well things concentrate over their expected value) as follows:5 α def= q7, ϕ def= q5/2 and
γ

def= 1/ϕ = q−5/2. (Recall further that q = 1
10
√

log logn.)

I Lemma 3.10. Conditioned on the events of Lemma 3.9, consider the distribution over
leaves of any decision tree corresponding to a q-query adaptive algorithm when the algorithm
is given a yes-instance, and when it is given a no-instance. These two distributions have total
variation distance o(1).

4 More precisely, we mean to say that for each i ≤ q, for every atom A defined by the partition of
(A1, . . . , Ai), the values kA

i and |A \ {s(1)
1 , s

(2)
1 , . . . , s

(1)
i−1, s

(2)
i−1}| − k

A
i are α-stable and either large or

small;
5 This choice of parameters is not completely arbitrary: combined with the setting of q, r and ρ, they
ensure a total bound o(1) on variation distance and probability of “bad events” as well as a (relative)
simplicity and symmetry in the relevant quantities.

APPROX/RANDOM’15



464 A Chasm Between Identity and Equivalence Testing with Conditional Queries

Proof. This proof is by induction. We will have three inductive hypotheses, E1(t),E2(t),
and E3(t). Assuming all three hold for all t < i, we prove E1(i). Additionally assuming
E1(i), we prove E2(i) and E3(i).

Roughly, the first inductive hypothesis states that the query sets behave similarly to
as if we had picked a random set of that size. It also implies that whether or not we get
an element we have seen before is “obvious” based on past observances and the size of the
query we perform. The second states that we never observe two distinct elements from the
same bucket-pair. The third states that the next sample is distributed similarly in either
a yes-instance or a no-instance. Note that this distribution includes both features which
our algorithm can observe (i.e., the atom which the sample belongs to and if it collides
with a previously seen sample), as well as those which it can not (i.e., which bucket-pair
the observed sample belongs to). It is necessary to show the latter, since the bucket-pair a
sample belongs to may determine the outcome of future queries.

More precisely, the three inductive hypotheses are as follows:
E1(i): In either a yes-instance or a no-instance, the following occurs: For an atom S in
the partition generated by A1, . . . , Ai, let S′ = S \ {s(1)

1 , s
(2)
1 , . . . , s

(1)
i−1, s

(2)
i−1}. For every

such S′, let `S′ be the largest index ` ∈ {0, . . . , 2r} such that |S
′|bρ`

n ≤ 1
α , or 0 if no such

` exists. We claim that `S′ ∈ {0, . . . , 2r − ϕ− 2} ∪ {2r}, and say S′ is small if `S′ = 2r
and large otherwise. Additionally:

for j ≤ `S′ , |S′ ∩Bj | = 0;
for j > `S

′ , |S′ ∩Bj | lies in [1− iγ, 1 + iγ] |S
′|bρj

n .
Furthermore, let p1 and p2 be the probability mass contained in Λi and Γi, respectively.
Then p1

p1+p2
≤ O

(
1
q2

)
or p2

p1+p2
≤ O

(
1
q2

)
(that is, either almost all the probability mass

comes from elements which we have not yet observed, or almost all of it comes from
previously seen ones).
E2(i): No two elements from the set {s(1)

1 , s
(2)
1 , . . . , s

(1)
i , s

(2)
i } belong to the same bucket-

pair.
E3(i): Let T yes

i be the random variable representing the atoms and bucket-pairs6 con-
taining (s(1)

i , s
(2)
i ), as well as which of the previous samples they intersect with, when the

i-th query is performed on a yes-instance, and define T no
i similarly for no-instances. Then

dTV(T yes
i , T no

i ) ≤ O
(

1
q2 + 1

ρ + γ + 1
ϕ

)
= o(1).

We state the lemmata, whose proofs are deferred to the full version of this paper:

I Lemma 3.11. Assuming that E1(t),E2(t),E3(t) hold for all 1 ≤ t ≤ i − 1, then E1(i)
holds with probability at least 1−O

(
2i exp

(
− 2γ2α

3

))
= 1− 2i−Ω(q2).

I Lemma 3.12. Assuming that E1(t),E2(t),E3(t) hold for all 1 ≤ t ≤ i−1 and additionally
E1(i), then E2(i) holds with probability at least 1−O

(
i
ϕ

)
.

I Lemma 3.13. Assuming that E1(t),E2(t),E3(t) hold for all 1 ≤ t ≤ i−1 and additionally
E1(i), then E3(i) holds.

Let T yes be the random variable representing the q-configuration and the bucket-pairs
containing each of the observed samples in a yes-instance, and define T no similarly for a
no-instance. We note that this random variable determines which leaf of the decision tree

6 If a sample s(k)
i does not belong to any bucket (if the corresponding i-th query did not intersect the

support), it is marked in T yes
i with a “dummy label” to indicate so.
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we reach. By a union bound over all q queries of the algorithm, a coupling argument, and
the triangle inequality, the above lemmata imply that the total variation distance between
T yes and T no will be O

(
2q exp

(
− 2γ2α

3

)
+ q2

ϕ + 1
q + q

ρ + qγ + q
ϕ

)
= o(1) (from our choice of

α, γ, ϕ), concluding the proof of Lemma 3.10. J

With this lemma in hand, the proof of the main theorem is straightforward:

Proof of Theorem 1.1. Conditioned on Lemma 3.9, Lemma 3.10 implies that the distribu-
tion over the leaves in a yes-instance vs. a no-instance is o(1). Since an algorithm’s choice to
accept or reject depends deterministically on which leaf is reached, this bounds the difference
between the conditional probability of reaching a leaf which accepts. Since Lemma 3.9
occurs with probability 1− o(1), the difference between the unconditional probabilities is
also o(1). J
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Abstract
Gibbs measures induced by random factor graphs play a prominent role in computer science,
combinatorics and physics. A key problem is to calculate the typical value of the partition
function. According to the “replica symmetric cavity method”, a heuristic that rests on non-
rigorous considerations from statistical mechanics, in many cases this problem can be tackled by
way of maximising a functional called the “Bethe free energy”. In this paper we prove that the
Bethe free energy upper-bounds the partition function in a broad class of models. Additionally,
we provide a sufficient condition for this upper bound to be tight.
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1 Introduction

Many problems in combinatorics, computer science and physics can be cast along the following
lines [2, 23]. There are a (large) number of variables, each of them ranging over a finite
domain Ω. The variables interact through constraints that each bind a few variables. Every
constraint comes with a “weight function” that either encourages or discourages certain value
combinations of the incident variables. The interactions can be described naturally by a
factor graph, whose vertices are the variables and the constraints. A constraint is adjacent
to the variables that it binds. The weight of an assignment σ that maps each variable to a
value from Ω is the product of all the weights of the constraints. The obvious questions is:
how many assignments of a specific total weight exist?

In this paper we are concerned with models where the factor graph is random. An
excellent example is the random k-SAT model: there are n Boolean variables x1, . . . , xn and
m clauses a1, . . . , am. Each clause binds k variables, which are chosen independently and
uniformly from x1, . . . , xn, and discourages them from taking one of the 2k possible value
combinations. This value combination is chosen uniformly and independently for each clause.
The key quantity associated with the random k-SAT instance Φ is its partition function,
defined as

Zβ,Φ =
∑

σ∈{0,1}n

m∏
i=1

exp(−β1 {σ violates ai}) (β > 0). (1)
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468 Harnessing the Bethe Free Energy

In words, we sum the weights of all 2n possible truth assignments σ. Each σ incurs a “penalty
factor” of exp(−β) for every violated clause. It is not difficult to see that the random variable
Zβ,Φ incorporates key characteristics of the model. For instance, the maximum number of
clauses that can be satisfied simultaneously equals

m+ lim
β→∞

∂

∂β
lnZβ,Φ.

Apart from random k-SAT, there are a host of other models of a similar nature. Prominent
examples include the random graph colouring problem, LDPC codes or the so-called “mean-
field” models of statistical mechanics [23].

Over the past decade the second moment method has emerged as the principal tool for
the analysis of such models [1, 2, 15]. Its “vanilla” version works as follows. If the partition
function Z of the model satisfies the bound E[Z2] ≤ O(E[Z]2) in the limit as the number n
of variables tends to infinity, then n−1 ln(Z/E[Z]) converges to 0 in probability. Since E[Z] is
normally easy to compute, we thus obtain the exponential order of Z. In fact, by calculating
E[Z2]/E[Z]2 accurately enough it is sometimes possible to infer the limiting distribution of
Z [20].

However, in many examples the use of the second moment method is precluded by large
deviations phenomena. The random k-SAT model with m = dαne clauses is a case in point
as n−1 ln(Zβ,Φ/E[Zβ,Φ]) does not converge to 0 as n→∞ for any α, β > 0. The reason is
that the first moment E[Zβ,Φ] is driven up by a “lottery effect”: there are a tiny minority
of formulas with an abundance of “good” assignments [1, 3, 4]. Of course, this implies that
E[Z2

β,Φ] ≥ exp(Ω(n))E[Zβ,Φ]2. Thus, the second moment method fails rather spectacularly.
The obvious remedy is to condition such lottery effects away. That is, we ought to

condition on an event U that pins down those parameters of the model whose large deviations
drive E[Z] up. But even if we manage to identify the relevant parameters, the necessary
conditioning on U may be so complicated as to render a second moment computation at
best unpleasant and at worst infeasible. Indeed, the recent history of the random k-SAT
problem illustrates how conditioning turns a second moment computation into a formidable
task [7, 12].

A completely different but non-rigorous method for calculating Z, the replica symmetric
cavity method, has been suggested on the basis of ideas from statistical physics [23]. According
to the cavity method, under certain assumptions the asymptotic value of n−1 lnZ can be
calculated by maximising a functional called the Bethe free energy. Furthermore, the physics
recipe for solving this maximisation problem is to iterate a message passing algorithm called
Belief Propagation on the factor graph until convergence. This recipe is somewhat plausible
due to the (rigorous) fact that the stationary points of the Bethe free energy are in one-to-one
correspondence with the Belief Propagation fixed points [32]. However, in general there are
several fixed points and non-trivial insights are necessary to steer Belief Propagation toward
the “correct” one. Even worse, in general the maximum value of the Bethe free energy may
or may not approximate n−1 lnZ well.1

The purpose of this paper is to provide a rigorous foundation for the idea of using Belief
Propagation to calculate the free energy. We establish two main results. First, that under
mild assumptions the maximum of the Bethe free energy provides an upper bound on the
typical value of n−1 lnZ on a random factor graph (Theorem 3). The proof of this is based

1 The quantity n−1 ln Z is called the free energy of the factor graph. We do not use this term to avoid
confusion with the Bethe free energy.
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on a physics-enhanced version of the classical “first moment method”. Along the way we
derive several general results on Gibbs distributions that should be of independent interest
(e.g., Theorem 6). Second, we propose a corresponding refined “second moment method”
(Theorem 14). More specifically, we prove that if the maximum of the Bethe free energy on
a certain auxiliary model is upper-bounded by a term that corresponds to the square of the
first moment and if certain additional (reasonable) assumptions hold, then the free energy
converges in probability to the value predicted by the cavity method.

2 Related work

Belief Propagation has been re-discovered several times in varying degrees of generality [5,
17, 29]. On finite acyclic factor graphs Belief Propagation has a unique fixed point and the
corresponding Bethe free energy equals n−1 lnZ. (e.g., [23, Chapter 14]). To what extent
this is true in the presence of cycles is a long-standing problem.

The results of the present paper are most relevant in cases where the local structure of the
factor graph is not perfectly “uniform”. For instance, we are going to be interested in the case
that different variable nodes may have different degrees. More subtly, different variable nodes
may have different marginals under the Gibbs distribution that the factor graph induces, see
(3) below. The case of uniform models is conceptually simpler and has been treated before [9].
In fact, in the uniform case the computation of n−1 lnZ can essentially be transformed into
the problem of maximising the Bethe free energy of a “tensorised” model on the d-regular
tree [9, 13, 11]. This fact has played a key role in recent work on the hardness of counting
problems [16, 26, 30]. Although we use a similar tensor construction in our second moment
argument as well (cf. Proposition 13), non-uniformity makes matters far more intricate, as
witnessed by recent work on random k-SAT [7, 12]. Thus, the main point of the present
work is to establish a connection between the Bethe free energy and |V |−1 lnZ even in the
non-uniform case.

That said, if the model enjoys certain spatial mixing properties (such as “Gibbs unique-
ness”), then the Bethe free energy is known to yield the correct value of n−1 lnZ even in
the non-uniform case [10, 25]. However, the necessary spatial mixing properties are quite
strong and they cease to be satisfied, e.g., in the random k-SAT model from (1) for large β
for clause/variable ratios as low as about ln k/k [25]. By comparison, the k-SAT threshold is
about 2k ln 2 [12].

The “interpolation method” provides a different approach to calculating or at least upper-
bounding n−1 lnZ [14, 19]. In particular, the upper bound comes in a variational form [28].
For example, this can be used to obtain a tight upper bound on the k-SAT threshold [12].
Generally speaking, the interpolation method is great if it works, but it comes with certain
(convexity-type) assumptions that are not always satisfied. Furthermore, it seems difficult to
use the interpolation method directly to carry out a second moment argument in order to
lower-bound the partition function. By contrast, Theorems 3 and 14 do not require such
assumptions.

The physicists’ cavity method comes in several instalments; for a detailed discussion we
refer to [23]. In this paper we are chiefly concerned with the simplest, “replica symmetric”
variant. This version does not always provide the correct value of n−1 lnZ [8]. It seems that
one reason for this is that models such as random k-SAT undergo a so-called “condensation
phase transition” [21]. The more complex “1-step replica symmetry breaking (1RSB)” version
of the cavity method [24] is expected to yield the correct value of n−1 lnZ some way beyond
condensation. However, another phase transition called full replica symmetry breaking seems
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to spell doom on even the 1RSB cavity method (see [23] for details). In summary, we do not
hope for an unconditional result that vindicates either the replica symmetric or the 1RSB
version of the cavity method.

3 Random factor graphs

In this section we explain the class of models that we deal with. Throughout, ∆ > 0 is an
integer, Ω,Θ are finite sets and Ψ = {ψ1, . . . , ψl} is a finite set of maps ψi : Ωhi → (0,∞),
where 1 ≤ hi ≤ ∆. The following abstract definition encompasses a multitude of concrete
examples.

I Definition 1. A (∆,Ω,Ψ,Θ)-model M = (V, F, d, t, ψ) consists of
M1 a countable set V of variable nodes,
M2 a countable set F of constraint nodes,
M3 a map d : V ∪ F → [∆] such that

∑
x∈V d(x) =

∑
a∈F d(a),

M4 a map t : CV ∪ CF → Θ, where we let

CV =
⋃
x∈V
{x} × [d(x)], CF =

⋃
a∈F
{a} × [d(a)],

such that
∣∣t−1(θ) ∩ CV

∣∣ =
∣∣t−1(θ) ∩ CF

∣∣ for each θ ∈ Θ,
M5 a map F → Ψ, a 7→ ψa such that ψa : Ωd(a) → (0,∞) for all a ∈ F .
The size of the model is defined as #M = |V |. Furthermore, a M-factor graph is a
bijection

G : CV → CF , (x, i) 7→ Gx,i such that t(Gx,i) = t(x, i) for all (x, i) ∈ CV .

Of course, the equalities in M3 and M4 require that either both quantities are infinite
or both are finite, in which case they have to coincide.

The semantics is that the map d prescribes the degree of each variable and constraint
node (i.e., their number of neighbours in anyM-factor graph). Just like in the “configuration
model” of graphs with a given degree sequence we create d(v) “clones” of each node v. The
sets CV , CF contain the clones of the variable and constraint nodes, respectively. Additionally,
the map t assigns each clone a “type” from the set Θ. Moreover, each constraint node a
comes with a “weight function” ψa from the set Ψ.

Like in the “configuration model” a M-factor graph is a type-preserving matching G
of the variable and constraint clones. Let G(M) be the set of allM-factor graphs and let
G(M) denote a uniformly random sample from G(M). We usually think of G ∈ G(M) as
the (multi-)graph obtained by contracting the clones of each node. Clearly, this yields a
bipartite graph with |V | variable nodes and |F | constraint nodes. For a node x ∈ V we
denote by ∂Gx the set of neighbours of x in this multi-graph, i.e., the set of all a ∈ F such
that there exist i ∈ [d(x)], j ∈ [d(a)] such that Gx,i = (a, j). Analogously, for a ∈ F and
j ∈ [d(a)] we write ∂G(a, j) = x if there is i ∈ [d(x)] such that Gx,i = (a, j). Moreover,
∂Ga = {∂G(a, j) : j ∈ [d(a)]}. Finally, we denote the inverse image of a clone (a, j) ∈ CF
under the bijection G simply by Ga,j .

AM-assignment is a map σ : V → Ω. Let CM be the set of allM-assignments. Further,
define the partition function of G ∈ G(M) as

ZG =
∑
σ∈CM

∏
a∈F

ψa
(
σ(∂G(a, 1)), . . . , σ(∂G(a, d(a)))

)
. (2)
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It is closely intertwined with the Gibbs distribution of G, which is the distribution on CM
defined by

µG(σ) = Z−1
G

∏
a∈F

ψa
(
σ(∂G(a, 1)), . . . , σ(∂G(a, d(a)))

)
. (3)

Our key object of study is the random variable |V |−1 lnZG(M).

I Example 2 (The random k-SAT model). Let Ω = {0, 1}. Given some β ≥ 0 let Ψ contain
the 2k weight functions

ψ(τ) : Ωk → (0,∞), σ 7→ exp(−β1{σ = τ}) for τ ∈ Ωk.

Let ∆ > 0 be a positive integer and let Θ = {?}. We obtain a (∆,Ω,Ψ,Θ)-modelMSAT by
letting V = {x1, . . . , xn} and F = {a1, . . . , am}. Pick any degree sequence d : V → [∆] such
that

∑
x∈V d(x) = km and let d(a) = k for all a ∈ F . Further, pick some ψa ∈ Ψ for each

a ∈ F , thereby prescribing a “sign pattern” for each “clause” a. Finally, let t : CV ∪CF → Θ
be the trivial (constant) map. Then G(MSAT ) corresponds to choosing a random k-SAT
formula with the given degree sequence and sign patterns. Moreover, n−1 lnZG(MSAT )
accounts for weighted truth assignments (cf. (1)) [18].

In Example 2 we did not actually use the types in a non-trivial way. They could be used
to prescribe not merely the degree of each variable but also how many times each Boolean
variable appears positively or negatively.

While Definition 1 encompasses a many problems of interest, there are two restrictions.
They arise because we are going to be interested in sequences (Mn)n of (∆,Ω,Ψ,Θ)-models of
sizes #Mn = n. That is, the size of the model tends to infinity while ∆,Ω,Ψ,Θ remain fixed.
In effect, the maximum degree remains bounded as n→∞. This is not quite the case in, e.g.,
the “standard” random k-SAT model where clauses are chosen uniformly and independently
and where consequently the variable degrees are asymptotically Poisson. However, in such
examples the free energy can by means of standards arguments be approximated arbitrarily
well by truncating the degrees at a large enough ∆.

The second restriction is that the weight functions ψ ∈ Ψ are assumed to be strictly
positive. This condition precludes hard constraints such as “no single clause must be violated”.
Although most of our proofs extend to the case of hard constraints, we chose to exclude them
from the general statement of the results for the sake of clarity. For instance, the positivity
assumption ensures that ZG > 0 for all G ∈ G(Mn) and hence that the random variable
n−1 lnZG(Mn) has a finite mean. Furthermore, the case of hard constraints can be handled
by introducing an “inverse temperature” parameter β > 0 like in Example 2 and ultimately
taking the limit β →∞ (cf. [25]), although some additional work is needed.

In Section 4 we will prove that the “Bethe free energy” provides an upper bound on
|V |−1 lnZG(M). Further, in Section 5 we are going to provide a sufficient condition under
which this upper bound is asymptotically tight.

Preliminaries
Throughout the paper we always let ∆ ≥ 1 be an integer, Ω,Θ finite sets, and Ψ a finite set
of functions as in Definition 1. We let #ψ be the arity of ψ ∈ Ψ, i.e., ψ : Ω#ψ → (0,∞).

For a finite set X 6= ∅ we denote by P(X ) the set of probability measures on X , which
we identify with the |X |-simplex. For µ ∈ P(X ) we denote by H(µ) = −

∑
x∈X µ(x) lnµ(x)

APPROX/RANDOM’15
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the entropy of µ (with the convention 0 ln 0 = 0). Further, if µ, ν : X → [0,∞) are such that
ν(x) > 0 only if µ(x) > 0, then

D(ν‖µ) =
∑
x∈X

ν(x) ln(ν(x)/µ(x))

signifies the Kullback-Leibler divergence. Moreover, for integers k > 0, j ∈ [k] and µ ∈ P(X k)
we let µ↓j ∈ P(X ) be the marginal of the jth component.

For µ ∈ P(X ) we write σµ for an random element of X chosen according to µ. Where µ
is apparent from the context we drop the index. Further, if X : X → R is a random variable
we write 〈X〉µ =

∑
σ∈X X(σ)µ(σ) for the expectation of X with respect to µ. For the sake

of brevity we normally write 〈 · 〉G instead of 〈 · 〉µG for G ∈ G(M).
Further, if S is a subset of the set V of variable nodes ofM, σ : V → Ω and ω ∈ Ω we

write
σ[ω|S] = 1

|S|
∑
x∈S

1 {σ(x) = ω} .

Thus, σ[ · |S] ∈ P(Ω) is the empirical distribution of σ on S. Analogously, if G ∈ G(M) is a
factor graph and A 6= ∅ is a set of factor nodes such that all a ∈ A have degree d(a) = l for
some l > 0, then we let

σ[ω1, . . . , ωl|A] = 1
|A|

∑
a∈A

l∏
j=1

1 {σ(∂G(a, j)) = ωj} .

Thus, σ[ · |A] ∈ P(Ωl) is the joint empirical distribution of the value combinations induced
by σ on a ∈ A.

4 The upper bound

LetM = (V, F, d, t, (ψa)a∈F ) be a (∆,Ω,Ψ,Θ)-model of finite size n = |V |. Let G = G(M)
for brevity.

4.1 The Bethe free energy
The aim in this section is to show that the “Bethe free energy”, a concept that hails from the
cavity method, provides an upper bound on the partition function. To formulate the result
we need the following definition [23, Chapter 14]. Let G ∈ G(M). A marginal sequence
of G is a family ν = (νx, νa)x∈V,a∈F such that νx ∈ P(Ω) for each x ∈ V , νa ∈ P(Ωd(a)) for
each a ∈ F and if Gx,i = (a, j) entails that νx = νa↓j . Thus, if a variable x occurs in the jth
position of a constraint a, then the jth marginal of νa coincides with νx. The Bethe free
energy2 of (G, ν) is

BM(G, ν) = − 1
n

[∑
a∈F

D (νa‖ψa) +
∑
x∈V

(d(x)− 1)H(νx)
]
.

Additionally, the Bethe free energy of G is

BM(G) = max {BM(G, ν) : ν is a marginal sequence of G} .

2 For a detailed derivation of the Bethe free energy in the context of the cavity method see [23, Chapter 14].
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I Theorem 3. For any ∆,Ω,Ψ,Θ and any ε > 0 there exists n0 > 0 such that the following
is true. Suppose that M is a finite (∆,Ω,Ψ,Θ)-model of size n > n0. Moreover, let
∅ 6= U ⊂ G(M) be an event. Then

n−1 lnE[ZG1{G ∈ U}] ≤ max {BM(G) : G ∈ U}+ ε.

Thus, there exists a number n0 that depends only on the basic parameters ∆,Ω,Ψ,Θ
and the desired accuracy ε such that for any model of size n ≥ n0 the Bethe free upper
bounds on the expectation of ZG on U . The following corollary provides a handy way to
apply Theorem 3.

I Corollary 4. Let (Mn)n be a sequence of (∆,Ω,Ψ,Θ)-models such that #Mn = n. Assume
that b > 0 is such that the event Un = {BMn

(G(Mn)) ≤ b} satisfies limn→∞ P [Un] = 1.
Then

lim sup
n→∞

n−1 lnE
[
ZG(Mn)|Un

]
≤ b.

By Markov’s and Jensen’s inequalities, the bound lim supn→∞ n−1 lnE
[
ZG(Mn)|Un

]
≤ b

entails that
lim
ε↘0

lim
n→∞

P
[
n−1 lnZG(Mn) ≤ b+ ε

]
= 1.

In other words, if the Bethe free energy is bounded by b with high probability, then
n−1 lnZG(Mn) ≤ b+ o(1) with high probability.

The proof of Theorem 3 contains several concepts that we deem to be of independent
interest. The most important one is that of a “state”. More specifically, we prove Theorem 3 by
showing that the lion’s share of E[ZG1{G ∈ U}] comes from a set Γ of factor graph/assignment
pairs (G, σ) such that certain key parameters of all pairs (G, σ) ∈ Γ approximately coincide.
For instance, for (almost) any ψ and value combination ω = (ω1, . . . , ω#ψ), about the same
number of constraint nodes a with ψa = ψ display the value combination ω. Theorem 3
will follow because the contribution of any single state s to E[ZG1{G ∈ U}] can be cast as
the Bethe free energy of a marginal sequence induced by s. We proceed with the precise
definition of states.

4.2 States
For an integer N ≥ 1 we write

Ψ[N ] = {(ψ, h1, . . . , h#ψ) : h1, . . . , h#ψ ∈ [N ]} .

I Definition 5. AM-state of size N ≥ 1 consists of
ST1 a map s : V → [N ] such that s(x) = s(y) only if d(x) = d(y) and t(x, i) = t(y, i) for all

i ∈ d(x),
ST2 a probability distribution s̄ = (s̄ψ,h)ψ,h on Ψ [N ],
ST3 a set ŝ ⊂ Ψ[N ],
ST4 a sequence (s̃h)h∈[N ] of probability distributions on Ω,
ST5 for any (ψ, h) ∈ Ψ [N ] a distribution s̃ψ,h ∈ P(Ω#ψ) such that s̃ψ,h↓j = s̃hj for all

j ∈ [#ψ].

Normally we denote anM-state simply by s and we write #s for its size. Moreover, let

V sh = s−1(h) for h ∈ [#s], V sψ,h =
∏

j∈[#ψ]

V shj for (ψ, h) ∈ Ψ [N ] .
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In addition, if G ∈ G(M) and (ψ, h) ∈ Ψ [N ] we let

∂G,s(ψ, h) =
{
a ∈ F : ψa = ψ, ∂G(a) ∈ V sψ,h

}
.

Thus, a state induces a partition V s1 , . . . , V
s
N of the set of variable nodes. Condition

ST1 ensures that this partition respects the degrees and the types. Let us call G ∈ G(M)
ε-compatible with s for some ε > 0 (“G |=ε s”) if∑

(ψ,h)∈Ψ[N ]

∣∣∣∣ |∂G,s(ψ, h)|
|F |

− s̄ψ,h
∣∣∣∣ < ε,

∑
(ψ,h)∈Ψ[N ]

1 {(ψ, h) ∈ ŝ} s̄ψ,h < ε.

Thus, for any (ψ, h) there are about s̄ψ,h|F | constraint nodes a with ψa = ψ that join variable
nodes from the classes V sh1

, . . . , V sh#ψ
. And no more than an ε fraction of all constraint nodes

belong to the “rogue classes” (ψ, h) ∈ ŝ.
Further, suppose that G |=ε s and σ ∈ CM. We say that (G, σ) is ε-judicious with

respect to s (in symbols: (G, σ) |=ε s) if
J1 for all h ∈ [N ] we have ‖s̃h − σ[ · |V sh ]‖TV < ε,
J2 for all (ψ, h) ∈ Ψ [N ] \ ŝ such that ∂G,s(ψ, h) 6= ∅ we have ‖s̃ψ,h − σ[ · |∂G,s(ψ, h)]‖TV < ε.
Hence, the empirical distributions σ[ · |V sh ] do not deviate by more than ε from s̃h. Similarly,
for a “non-rogue” (ψ, h) the empirical distribution σ[ · |∂G,s(ψ, h)] of the ψ-factors that
connect variables in V sψ,h is within ε of s̃ψ,h. The following theorem provides the key fact
about states. It should be of interest in its own right.

I Theorem 6. For any ∆,Ω,Ψ,Θ and any ε > 0 there exists η > 0 such that the following
is true. LetM be a finite (∆,Ω,Ψ,Θ)-model of size #M≥ 1/η and let G ∈ G(M). Then
there exists aM-state s of size #s ≤ 1/η such that G |=ε s and 〈1 {(G,σ) |=ε s}〉G ≥ η.

Crucially, the number η promised by Theorem 6 depends on ε and the basic parameters
∆,Ω,Ψ,Θ only. It is independent of the model and its size. Hence, for any large enoughM
and any G ∈ G(M) there is a single “dominant state” s that captures a constant fraction of
the mass of the Gibbs distribution µG.

Theorem 6 sits well with the replica symmetry breaking picture drafted by the cavity
method. According to this prediction, there are three possible shapes that the Gibbs
distribution can take. Roughly speaking, in the case of replica symmetry the joint distribution
of any two variable nodes that are far apart (say, at distance at least ln lnn) in the factor
graph is close to a product distribution. The state corresponding to this scenario simply
partitions the variable nodes according to their Gibbs marginals. In the second scenario,
called 1-step replica symmetry breaking, the Gibbs distribution is mixture of a bounded
number of distributions, i.e.,∥∥∥∥∥µG −

K∑
i=1

wiµG,i

∥∥∥∥∥
TV

< ε where (w1, . . . , wK) ∈ P([K]), µG,1, . . . , µG,K ∈ P(CM).

Each µG,i corresponds to a “cluster” of assignments and is such that the joint distribution of
far apart variables factorises. In this case, we obtain a state by partitioning the variables
according to their µG,i-marginals for some i with wi ≥ η. In the third case, called full replica
symmetry breaking, the µG,i themselves are mixtures of distributions µG,i,j . Further, each
of the µG,i,j decomposes into clusters etc., yielding an infinite cascade. A dominant state
would truncate the cascade after a finite number of steps (depending on ε) and home in on
one of the sub-clusters.

The key concept behind the proof of Theorem 6 is the following.
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I Definition 7. Let Ω be a finite set, let ε > 0, let n be an integer and let µ be a probability
measure on Ωn. A partition V = (V1, . . . , VN ) of [n] is called ε-homogeneous with respect
to µ if there is a set J ⊂ [N ] such that

∑
i∈[N ]\J |Vi| < εn and such that for all j ∈ J the

following is true.

For any subset S ⊂ Vj of size |S| ≥ ε|Vj | we have
〈
‖σ[ · |S]− σ[ · |Vj ]‖TV

〉
µ
< ε.

If V = (V1, . . . , Vk), then we call #V = k the size of V . Furthermore, a partition
W = (W1, . . . ,Wl) refines another partition V = (V1, . . . , Vk) if for each i ∈ [l] there is
j ∈ [k] such that Wi ⊂ Vj . The proof of Theorem 6 builds upon

I Theorem 8. Let Ω be a finite set. For any ε > 0 there exists N = N(ε,Ω) such that for
n > N and any probability measure µ on Ωn the following is true. Let V 0 be a partition of [n]
such that #V 0 ≤ 1/ε. Then V 0 has a refinement V of size #V ≤ N that is ε-homogeneous
with respect to µ.

Theorem 8 and its proof are inspired by the proof of Szemerédi’s regularity lemma [31].
Theorem 6 produces a “dominant state” for each individual factor graph. In combina-

tion with a compactness argument this entails that a single state suffices to approximate
1
n lnE[ZG1{G ∈ U}] for a given event U .

I Corollary 9. For any ε > 0 and any ∆,Ω,Ψ,Θ there exist γ > 0, n0 > 0 such that the
following is true. Suppose thatM is a finite (∆,Ω,Ψ,Θ)-model of size #M≥ n0 and that
∅ 6= U ⊂ G(M). Then there exist aM-state s and G0 ∈ U such that G0 |=γ s and

n−1 lnE[ZG1{G ∈ U}] ≤ ε+ n−1 lnE
[
ZG 〈(G,σ) |=γ s〉G

∣∣G |=γ s
]
.

Finally, it is not difficult to derive Theorem 3. Indeed,

n−1 lnE
[
ZG 〈(G,σ) |=γ s〉G

∣∣G |=γ s
]

can be cast as the Bethe free energy of the marginal sequence induced by s: let νx = s̃s(x)
for x ∈ V and νa = s̃ψ,h for all a ∈ ∂G0,s(ψ, h). But how we can get a handle on the Bethe
free energy BM(G)?

4.3 Belief Propagation
The Bethe free energy of a given factor graph G can be calculated by analysing the Belief
Propagation message passing algorithm. Belief Propagation can be viewed as an operator
acting on the message space MesM(G) of G, which we define as the set of all maps
ν̂ : CV ∪ CF → P(Ω), (v, j) 7→ ν̂v,j . The Belief Propagation operator BP : MesM(G)→
MesM(G) maps ν̂ ∈ MesM(G) to ν̃ = BP(ν̂) defined by3

ν̃x,i(ωi) ∝
∏

h∈[d(x)]\{i}

ν̂Gx,h(ωi) (4)

for (x, i) ∈ CV , ωi ∈ Ω and

ν̃a,j(ωj) ∝
∑

(ωh)h∈[d(a)]\{j}

ψa(ω1, . . . , ωd(a))
∏

h∈[d(a)]\{j}

ν̂Ga,h(ωh) (5)

3 As per common practice, we use the ∝ symbol to define probability distributions on a finite set X as
follows. If f : X → [0, ∞), then p ∝ f means that p(ω) = f(ω)/

∑
x∈X f(x) unless

∑
x∈X f(x) = 0, in

which case p is the uniform distribution.
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for (a, j) ∈ CF , ω1, . . . , ωd(a) ∈ Ω. Let FixM(G) be the set of all Belief Propagation fixed
points, i.e., all ν̂ ∈ MesM(G) such that BP(ν̂) = ν̂. Any point ν̂ ∈ FixM(G) gives rise to a
marginal sequence, namely

ˆ̂νx(ω) ∝
∏

h∈[d(x)]

ν̂Gx,h(ω) (6)

for x ∈ V, ω ∈ Ω and

ˆ̂νa(ω1, . . . , ωd(a)) ∝ ψa(ω1, . . . , ωd(a))
∏

h∈[d(a)]

ν̂Ga,h(ωh) (7)

for a ∈ F, ω1, . . . , ωd(a) ∈ Ω.

I Proposition 10. We have BM(G) = max
{
BM(G, ˆ̂ν) : ν̂ ∈ FixM(G)

}
.

Proof. The set M of marginal sequences is compact. Because the functions ψ ∈ Ψ are
strictly positive and as the derivative of the entropy diverges as ν approaches the boundary
∂M , BM(G, · ) does not attain its global maximum on ∂M . Furthermore, for any stationary
point ν ∈ M of the Bethe free energy BM(G, · ) there exists ν̂ ∈ FixM(G) such that
BM(G, ν) = BM(G, ˆ̂ν) [23, Proposition 14.6]. J

Theorem 3 shows that the Bethe free energy provides an upper bound on n−1 lnZG(M).
Furthermore, Proposition 10 reduces the problem of calculating the Bethe free energy to
the task of determining the “dominant fixed point” of Belief Propagation, i.e., the task of
analysing an algorithm on a random graph.

5 The lower bound

In this section we consider a sequence (M(n) = (Vn, Fn, dn, tn, (ψn,a))n of (∆,Ω,Ψ,Θ)-
models such that #M(n) = n. Let G(n) = G(M(n)) and G(n) = G(M(n)).

5.1 A Bethe-enhanced second moment method
The cavity method provides a “recipe” for calculating a number φ such that (n−1 lnZG(n))n
is deemed to converge to φ in probability. This number is determined by applying Belief
Propagation and the Bethe free energy to the “limit” of the typical local structure of G(n) as
n→∞. The aim in this section is to develop a version of the second moment method that
allows us to prove such a claim rigorously. But first we need to formalise the “limiting local
structure”. To this end we adapt the concept of local weak convergence of graph sequences [22,
Part 4] to our current setup, which can be viewed as a generalisation of the one from [10].

I Definition 11. A (∆,Ω,Θ,Ψ)-template consists of a (∆,Ω,Ψ,Θ)-modelM, a connected
factor graph H ∈ G(M) and a root (rH , iH), which is a variable or factor clone. We denote
the template by H. Its size is #H = #M.

Two templates H,H ′ with modelsM = (V, F, d, t, (ψa), σ∗),M′ = (V ′, F ′, d′, t′, (ψ′a), σ′∗)
are isomorphic if there exists a bijection π : V ∪ F → V ′ ∪ F ′ such that the following
conditions are satisfied.
ISM1 π(x) ∈ V ′ for all x ∈ V and π(a) ∈ F ′ for all a ∈ F ,
ISM2 if rH = (xH , iH) and rH′ = (xH′ , iH′), then π(xH) = xH′ and iH = iH′ ,
ISM3 d(v) = d′(π(v)), σ∗(v) = σ′∗(π(v)) for all v ∈ V ∪ F and t(v, i) = t′(π(v, i)) for all

(v, i) ∈ CV ∪ CF ,
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ISM4 ψa = ψπ(a) for all a ∈ F ,
ISM5 for all (v, i) ∈ CV we have Hv,i = (a, j) iff H ′π(v),i = (π(a), j).
We denote the isomorphism class of a template H by [H]. Let G = G(∆,Ω,Θ,Ψ) be the
set of all isomorphism classes. Further, let T ⊂ G be the set of all isomorphism classes
of acyclic templates. For each [H] ∈ G and ` ≥ 1 let ∂`[H] be the isomorphism class of
the template obtained by removing all vertices at a distance greater than ` from the root
if the root is a variable clone and ` + 1 if the root is a factor node. We endow G with
the coarsest topology that makes all the functions Γ ∈ G 7→ 1{∂`[Γ] = ∂`[Γ0]} ∈ {0, 1} for
` ≥ 1,Γ0 ∈ G continuous. Moreover, the space P(G) of probability measures on G carries
the weak topology. So does the space P2(G) of probability measures on P(G). For Γ ∈ G

and λ ∈ P(G) we write δΓ ∈ P(G) and δλ ∈ P2(G) for the Dirac measure that puts mass
one on Γ resp. λ.

For a factor graph G ∈ G(n) and a clone (v, i) we write [G, v, i] for the isomorphism class
of the connected component of (v, i) in G rooted at (v, i). Each G ∈ G(n) gives rise to the
empirical distribution

λG = 1
|CVn |+ |CFn |

∑
(v,i)∈CVn∪CFn

δ[G,v,i] ∈ P(G).

Let Λn = E[δλG(n) ] ∈ P2(G). We say that (M(n))n converges locally to ϑ ∈ P(T) if
limn→∞ Λn = δϑ.

Additionally, to exclude some pathological cases we need the following assumption. Let
us call a factor graph G `-acyclic if it does not contain a cycle of length at most `. We say
that the sequence (M(n))n of models has high girth if for any ` > 0 we have

lim inf
n→∞

P [G(n) is `-acyclic] > 0.

The key prediction of the “replica symmetric cavity method” can be cast as follows:
(n−1 lnZG(n))n converges in probability to the Bethe free energy of a “Belief Propagation
fixed point” on the (possibly infinite) trees in the support of ϑ [23]. To formalise this, let
T ϑ ∈ T be a sample from ϑ ∈ P(T). Further, let V be the event that the root of T ϑ is a
variable clone and let F be the event that the root is a constraint clone. For T ∈ T let dT
denote the degree of the root of T . Moreover, for j ∈ [dT ] let T ↑ j ∈ T denote the tree
pending on the jth child of the root of T . Finally, if the root is the clone of a constraint
node we let ψT be its associated function.

I Definition 12. A measurable map p : T→ P(Ω), T 7→ pT is called a ϑ-Belief Propaga-
tion fixed point if the following conditions are satisfied ϑ-almost surely.

1. if the root of T is a variable clone (x, i), then

pT (ω) ∝
∏

j∈[dT ]\{i}

pT↑j(ω).

2. if the root of T is a factor clone (a, i) with associated factor ψ ∈ Ψ, then

pT (ωi) ∝
∑

(ωj)j∈[dT ]\{i}

ψ(ω1, . . . , ωdT )
∏

j∈[dT ]\{i}

pT↑j(ωj).
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Further, we need to define the Bethe free energy of a ϑ-Belief Propagation fixed point p.
To this end, we turn p into a map that assigns each tree a “marginal”. More precisely, we let

p̂T (ω) ∝
∏
j∈[dT ]

pT↑j(ω) if T ∈ V, ω ∈ Ω,

p̂T (ω1, . . . , ω#ψT ) ∝ ψT (ω1, . . . , ω#ψT )
∏

j∈[#ψT ]

pT↑j(ωj) if T ∈ F , ω1, . . . , ω#ψT ∈ Ω.

The Bethe free energy of p with respect to ϑ is

Bϑ(p) =
(
E
[
d−1

Tϑ
(1− dTϑ)H(p̂Tϑ)|V

]
− E

[
d−1

Tϑ
D (p̂Tϑ‖ψTϑ(σ)) |F

])
E[dTϑ |V]

Finally, to obtain a sufficient condition for the convergence n−1 lnZG(n) → Bϑ(p) we
are going to apply Theorem 3 to upper-bound the second moment of ZG(n). The necessary
construction, reminscent of those used in [9, 13, 11, 16, 26, 30], is as follows.

I Proposition 13. For any ε > 0 there exists η > 0 such that the following is true. Suppose
thatM is a (∆,Ω,Ψ,Θ)-model of size n = #M≥ 1/η. There exists a finite set of functions
Ψ⊗ and a (∆,Ω× Ω,Ψ⊗,Θ)-modelM⊗ with the following properties.
(i) There is a bijection G(M)→ G(M⊗), G 7→ G⊗.
(ii) Let U ⊂ G(M) be an event such that P [G ∈ U ] > ε. Then

n−1 lnE[Z2
G|U ] ≤ max

{
BM⊗(G⊗) : G ∈ U

}
+ ε.

Proof. Let Ω⊗ = Ω× Ω and denote (ω, ω′) ∈ Ω⊗ by ω ⊗ ω′. For ψ ∈ Ψ let

ψ⊗ : (Ω⊗)#ψ → (0,∞), (ω1 ⊗ ω′1, . . . , ω#ψ ⊗ ω′#ψ) 7→ ψ(ω1, . . . , ω#ψ) · ψ(ω′1, . . . , ω′#ψ).

ThenM⊗ = (V, F, d, t, (ψ⊗a )a∈F ) satisfies the requirements. J

I Theorem 14. Suppose that (M(n))n≥1 has high girth and converges locally to ϑ ∈ P(T).
Furthermore, assume that there is a ϑ-Belief Propagation fixed point p such that for any
ε > 0 we have

lim
n→∞

P
[
BM⊗(n)(G⊗(n)) ≤ 2Bϑ(p) + ε

]
= 1 and (8)

lim
`→∞

lim
n→∞

1
n
E

[
ln

E[ZG(n)1{BM⊗(n)(G⊗(n)) ≤ 2Bϑ(p) + ε}|T`]
E[ZG(n)|T`]

]
= 0. (9)

Then 1
n lnZG(n) converges to Bϑ(p) in probability.

For a given ϑ the construction or, at least, identification of the ϑ-Belief Propagation
fixed point p in Theorem 14 is similar to the computations done in the physics literature.
However, to apply Theorem 14 it will generally be necessary to perform these calculations
more thoroughly, e.g., by means of the contraction method [27]. Further, to verify condition
(8) we need to study the Bethe free energy of the modelsM⊗n , which will typically be done
by way of analysing Belief Propagation on the random factor graph G⊗(n). This task may
be far from trivial, but at least it is a well-defined combinatorial problem.

Finally, (9) provides that given that the local structure up to depth ` is “typical”,
conditioning on the event that the second moment Bethe free energy is bounded by 2Bϑ(p)+ε
does not cause a substantial drop in the first moment. This is a technical condition that
can be verified by studying an auxiliary probability space, namely a variant of the “planted
model” with a given local structure. Technically, this task can be tackled via a generalised
“configuration model” as put forward in [6].
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Abstract
We study internal compression of communication protocols to their internal entropy, which is
the entropy of the transcript from the players’ perspective. We provide two internal compression
schemes with error. One of a protocol of Feige et al. for finding the first difference between two
strings. The second and main one is an internal compression with error ε > 0 of a protocol with
internal entropy Hint and communication complexity C to a protocol with communication at
most order (Hint/ε)2 log(log(C)).

This immediately implies a similar compression to the internal information of public-coin
protocols, which provides an exponential improvement over previously known public-coin com-
pressions in the dependence on C. It further shows that in a recent protocol of Ganor, Kol and
Raz, it is impossible to move the private randomness to be public without an exponential cost.
To the best of our knowledge, No such example was previously known.
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1 Introduction

The problem of compressing information and communication is fundamental and useful. This
paper studies one shot compression of interactive communication (as opposed to amortized
compression).

The basic scenario, the transmission problem, was studied by Fano and Shannon [12]
and by Huffman [17]. In it, Alice wishes to transmit to Bob a message u ∈ U with u

that is distributed according to a known distribution µ over U . They proved that the
above transmission can be optimally compressed in the sense that Alice may send u to
Bob using roughly log(1/µ(u)) many bits on average, and conversely if Alice sends fewer
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than log(1/µ(u)) bits on average then information is lost. In the transmission problem, the
information flow is one-way, only Alice talks.

How about more complex communication protocols in which both sides are allowed
to talk? The standard model for interactive communication was introduced by Yao [28].
Interactive communication, not surprisingly, allows for more efficient conversations than
one-way ones. For example, the following lemma (which we also use later on) demonstrates
the power of interaction (and of public randomness) in handling a variant of the transmission
problem in which only Bob knows the distribution µ over U .

I Lemma 1.1. Let U be a finite set, and 0 < ε < 1/2. Assume Alice knows some ua ∈ U and
that Bob knows a distribution µ on U which Alice does not know. Using public randomness,
Alice and Bob can communicate at most 2 log(1/µ(ua)) + log(1/ε) + 5 bits, after which Bob
outputs ub so that ua = ub with probability at least 1− ε.

This lemma describes a one shot protocol (i.e. for a single instance) that enables trans-
mission when Bob has some prior knowledge on Alice’s input. A stronger version of this
lemma was proved in [5] and also in [6], but since this lemma is sufficient for us and its proof
is simpler than that of [5, 6] we provide its proof in Section A.3. A related result for the case
when there is also an underlying distribution on Alice’s input is the Slepian-Wolf theorem
[26] which solves an amortized version of this problem. It is also related to the transmission
problem considered by Harsha et al. [16] who studied the case that Alice knows µ and Bob
wishes to sample from it.

Continuing recent works which we survey below, the main question we study is compression
of interactive communication protocols. Compression of protocols, on a high level, means to
simulate a given protocol π by a more efficient protocol σ in the sense that the communication
complexity of σ is roughly the “information content” of π. It was shown to be strongly related
to direct sum and product questions in randomized communication complexity [5, 2, 7].

We describe new compression schemes, and also provide a preliminary discussion of
concepts and basic facts related to compression.

1.1 A preliminary discussion
In this section we provide intuitive definitions of important concepts. See Section 2 for formal
definitions.

1.1.1 Computation and simulation
There is a distinction between external computation and internal computation [2, 7]. A
protocol externally computes a function f if an external observer can deduce the value
of f from the transcript, and a protocol internally computes f if the value of f may be
privately obtained by Alice and Bob but not necessarily by an external observer (who only
sees the transcript of the protocol but not the inputs). Note that for f : X × Y → Z the
difference between internal and external computation of f can be at most log |Z|. Indeed,
every protocol that internally computes f can be transformed to a protocol that externally
computes f by adding one more message in which one of the parties sends the value of the
function. Therefore, this distinction is only meaningful for large Z.

It is interesting that for deterministic protocols these two seemingly different notions coin-
cide, so the strength of internal computation is evident only in randomized or distributional
settings (the proof is given in Section A.1).
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I Proposition 1.2. Let f : X × Y → Z. If π is a deterministic protocol that internally
computes f then it also externally computes f .

External and internal computations induce the corresponding types of simulations. Here
we provide an intuitive meaning of the notion of simulation. In Section 2 we provide formal
definitions, and discuss them in more detail. A protocol σ externally simulates the protocol
π if an external observer who has access only to the public data (i.e. transcript and public
randomness) of σ can deduce from it the public data of π. The protocol σ internally simulates
π if each of Alice and Bob can obtain their private data of π from their private data of σ (i.e.
transcript and private randomness).

As an example which illustrates the difference between internal and external simulation,
consider the simple case when (x, y) are jointly distributed so that x = y, Alice knows x,
Bob knows y and π is the protocol in which Alice sends x to Bob. In this case, it is clear
that the empty protocol internally simulates π but every external simulation of π must in
general use many bits. This example also demonstrates that Proposition 1.2 does not hold
for promise problems, when the inputs are guaranteed to come from a non rectangular set.

1.1.2 Compression
To define compression, we should ask ourselves what is the “benchmark quantity” that
we should strive to compress to. Shannon’s source coding theorem [25] states that in the
transmission problem (i.e., one-way communication), the entropy of the message is equal
to the amortized communication of sending many independent messages. Braverman and
Rao [5] analogously showed that the internal information (defined below) is equal to the
amortized cost of making several independent conversations. Entropy and internal information
are therefore two reasonable choices for “benchmark quantities”. Below we survey several
additional options.

1.1.3 Information complexities
The most studied measures in the context of protocol compression are information complex-
ities. For every communication protocol π and every distribution µ on inputs, two versions
of information have been defined: The internal information [1, 2] denoted Iintµ (π) and the
external one [9] denoted Iextµ (π) (see Section 2 for formal definitions). The intuitive semantic
of internal information is the amount of information the communication transcript reveals to
Alice and Bob about the inputs, and the intuitive semantic of external information is the
amount of information the communication transcript reveals to an external observer about
the inputs. It always holds that the internal information is at most the external one, which
is at most the average communication complexity CCavgµ (π) (see e.g. [2, 18]).

The following claim shows that information provides a lower bound for errorless simulations.
This generalizes the basic fact that entropy provides a lower bound for errorless transmission.
This claim seems to be known but we could not find an explicit reference to it so we provide a
proof in Section A.2 (the special case of deterministic external simulation was proved in [23]).

I Claim 1.3. Let π be a general protocol with input distribution µ.
If σ simulates π externally without error then CCavgµ (σ) ≥ Iextµ (π).
If σ simulates π internally without error then CCavgµ (σ) ≥ Iintµ (π).

Although Iintµ (π) ≤ Iextµ (π), the second bullet in the claim above does not follow from
the first, since not every internal simulation is an external simulation.

APPROX/RANDOM’15
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In the other direction, [2] provided two different compression schemes for general protocols.
An external compression with error that uses roughly Iextµ (π) log(CC(π)) bits, and an
internal compression with error that uses roughly

√
Iintµ (π) · CC(π) bits. A second internal

compression with error that uses at most roughly 2I
int
µ (π) bits, regardless of CC(π), appears

in [3]. Later on, [8, 24] showed that the internal compression from [2] applied to public-coin
protocols yields a much better compression with only order Iintµ (π) log(CC(π)) bits. We
discuss connections of these works to ours below.

1.1.4 Entropy complexities
We consider two additional complexity measures for compression:

The first one, which was studied in [11], is the external entropy Hext
µ (π). Its semantic is

how many bits are required for describing the transcript of π to an external observer. The
second measure we consider is the internal entropy Hint

µ (π). Its semantic is the number of
bits required in order to describe the transcript to Alice plus the number of bits required to
describe the transcript to Bob (see Section 2 for formal definitions).

Some connections between the information measures and the entropy measures are
provided in the following claim.

I Claim 1.4. Let π be a protocol with input distribution µ. Then,

Hext
µ (π) ≥ Iextµ (π) and Hint

µ (π) ≥ Iintµ (π).

Moreover, if π does not have private randomness then

Hext
µ (π) = Iextµ (π) and Hint

µ (π) = Iintµ (π).

As mentioned, in the case of one-way deterministic protocols, the external entropy fully
captures the compression problem. The above claim combined with Claim 1.3 implies
that, more generally, for public-coin protocols entropy provides a lower bound on errorless
simulation. Interestingly, the authors of [11] proved that this lower bound is essentially tight.
They gave an optimal external compression of general protocols1

I Theorem 1.5 ([11]). Every protocol π can be externally simulated without error by a
protocol σ so that CCavgµ (σ) ≤ O(Hext

µ (π)).

1.1.5 With or without error
Another important distinction is between exact simulation and simulation with error.

A meaningful example already appears in the transmission problem, when there is a
distribution µ on inputs x and Alice sends a (prefix free) encoding of x to Bob. Any exact
solution to this problem requires expected communication of at least H(µ). However, if
µ is highly concentrated on a point but with probability ε it is uniform on the remaining
elements, an empty protocol simulates µ with ε error while the entropy is potentially huge.
So entropy and information are not in general lower bounds for simulation with error, and
the lower bounds from Claim 1.3 do not hold for simulation with error.

In the other direction, we have seen that entropy (or information) provides a lower bound
on errorless simualtion. We shall see below that this lower bound is not tight, that is, there
are protocols with small entropy that can not be efficiently simulated without error.

1 They only considered deterministic protocols but their arguments can be generalized to general protocols.
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1.2 Internal compression
1.2.1 Impossibility of errorless compression
Theorem 1.5 above provides errorless compression to external entropy. The main compression
question is, however, whether a protocol can be internally simulated with communication
that is close to its internal information. Motivation for studying this questions comes from
direct sum and product questions in randomized communication complexity [5, 2, 7].

How about an errorless internal compression to internal entropy? It is long known that
internal compression to internal entropy is not always possible [14, 22, 20, 3]. In [22], for
example, Orlitsky studied zero-error compression of the transmission protocol in which Alice
sends her input x to Bob who knows y, and constructed distributions on (x, y) such that
every errorless internal simulation of the transmission protocol must communicate at least
H(x) bits, which is strictly larger than the internal entropy H(x|y). Later on, Naor, Orlitskty
and Shor [20] strengthened it to the amortized setting. A concrete statement (that can be
proved e.g. using ideas from [3, 18]) is that for every n, there is a one round deterministic
protocol π and input distribution µ so that Hint

µ (π) ≤ 1 and CC(π) ≤ n but if σ is an
errorless internal simulation of π then CCavgµ (σ) ≥ n− 2.

Our internal compression scheme and the ones from [2, 3] must therefore introduce errors.

1.2.2 Finding the first difference
Before stating our general compression scheme, we demonstrate its ideas by an internal
compression of the finding the first difference problem, which lies at the heart of the internal
compression schemes of [2, 8, 24]. Feige et al. [13] gave an optimal randomized protocol for
this problem in terms of communication complexity (Viola [27] proved a matching lower
bound).

I Theorem 1.6 ([13]). There is a public-coin protocol that on inputs x, y ∈ {0, 1}n externally
outputs the smallest index i in which x, y differ (or outputs “equal” if x = y) with probability
at least 1− ε. The communication complexity of this protocol is at most O(log(n/ε)).

The protocol of Feige et al. externally solves the problem. The following Theorem provides
an internal solution for this problem, which is more efficient when the internal information is
small (the protocol is presented in Section 3).

I Theorem 1.7. Let µ be a distribution on (x, y) ∈ {0, 1}n × {0, 1}n, and let ε > 0. Denote
by i = i(x, y) the smallest index in which x, y differ (or i = “equal” if x = y). Denote
hint = H(i|x) +H(i|y). There is a public-coin protocol and an event E ⊂ {0, 1}n × {0, 1}n
with probability µ(E) < ε so that for all (x, y) 6∈ E, the communication complexity of the
protocol on input (x, y) is at most2

O

(
log
(

1
µ(i|x) · µ(i|y)

)
log
(

log(n)hint/ε
))

,

and it internally computes i with probability at least 1 − ε. The overall communication
complexity with error ε is at most

O

(
hint

ε
log
(

log(n)hint/ε
))

.

2 Here and below, for simplicity of notation, we write µ(i|y) to denote µ({(x, y) : i(x, y) = i}|{y}).
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We state the theorem in this form since it hints at the core of its proof. To understand it
better, it may be helpful to observe

H(i|x) +H(i|y) = I(i; y|x) + I(i;x|y) = Eµ log
(

1
µ(i|x) · µ(i|y)

)
.

This protocol gives an improvement over that of [13] when the internal entropy is small. It
highlights the importance of internal computation and may help to understand the more
general compression below. It may also be useful in future internal compression schemes.

1.2.3 Main compression
We finally state our internal compression scheme (see Section 4 for its description). As
mentioned above, such a compression must have positive error, even for one round protocols.

I Theorem 1.8. Let µ be a distribution on X × Y and let ε > 0. Let π be a protocol with
inputs from µ. Then, there is a public-coin protocol σ with communication complexity

CC(σ) ≤ O
((

Hint
µ (π)

)2

ε2 · log(log(CC(π)))
)

that internally simulates π with error ε.

As noted earlier, if π is a protocol that uses no private randomness then the internal entropy
of π is equal to the internal information of π. So, for public-coin protocols, Theorem 1.8
gives an internal compression in terms of internal information, which exponentially improves
[8, 24] in terms of the dependence on CC(π). It, therefore, also concerns the power of
private randomness in saving information, which we now discuss.

1.2.4 Transferring private to public randomness
Every private-coin protocol can be simulated by a public-coin protocol with the same com-
munication complexity. Conversely, Newman [21] proved that for communication complexity
public randomness may be efficiently replaced by private one, when dealing with computation
of relations (it however does not yield a simulation of public-coin protocols by private-coin
protocols). In the information complexity context the situation is opposite, every public-coin
protocol can be simulated by a private-coin protocol with the same information complexity.
The authors of [8, 4] showed that for information complexity private randomness may be
efficiently simulated by public one when the number of rounds is bounded. If any private-coin
protocol could be simulated by a private-coin one without increasing the information and
communication complexities, then to compress general protocol it would suffice to compress
public-coin protocols.

Our compression shows limitations on moving private randomness to being public. A
recent work of Ganor, Kol and Raz [15] shows that for every large enough k ∈ N there is a
distribution µ and a private-coin protocol π0 with internal information O(k) so that every
protocol that internally simulates π0 with small error must communicate at least 2k bits.
This marks the first known separation between information and communication complexities.
The protocol π0 has communication complexity O(k · 24k) so that log(log(CC(π0)) = O(k).
Together with our compression scheme, this means that there is no way to simulate π0 using
only public randomness without a cost; for example, every public-coin internal simulation of
π0 with near-optimal information complexity of O(k) must communicate at least 222Ω(k)

bits.
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1.2.5 Discussion of the proof of Theorem 1.8

Compression to internal entropy, as mentioned above, must be done in an internal fashion.
Namely, an observer of the conversation (who does not know the inputs nor the private
randomness) should not be able to make much sense of it.

The only two compression schemes with this property that were previously known are
from [2, 3]. The scheme from [3] is not efficient in terms of information complexity so we do
not discuss it in detail here. In the scheme from [2] the players privately sample a candidate
transcript, and they communicate to fix errors. After an error is located, the candidate
transcript is modified until converging to the correct transcript. The errors are fixed using
the protocol of Feige et al. for finding the first difference, and each error fixing costs about
log(CC(π)) bits.

The main problem in analyzing their protocol is bounding the number of errors in terms
of the internal information. They are able to do so but the cost is quite high and the overall
upper bound on the number of errors they show is order3

√
CC(π)Iintµ (π). The authors

of [8, 24] showed that for a deterministic protocol π, the expected number of errors in
this scheme decreases4 to roughly Iint(π) which sums up to total communication of order
Iint(π) log(CC(π)) bits.

It is natural to consider a slight variation of this scheme in which the errors are fixed
using our protocol from Theorem 1.7, instead of the protocol of Feige et al. However, it is not
clear that this modified scheme yields the desired result. On a high level, this is because it
may be the case that the additional information that is revealed from correcting the mistakes
is large, and we do not know how to bound it by the internal information of the simulated
protocol.

Our approach is different and starts with the compression of deterministic protocols to
external entropy of [11]. The main idea there is that a deterministic protocol induces a
distribution on the leaves of the protocol tree, and that there is always a vertex u in the
tree with probability mass roughly 1/2 (Lemma 2.1 below). Both players know u and they
can check if the rectangle5 it defines contains x and y with 2 bits of communication. It can
easily be shown that by doing so they (roughly) learn one bit of information. This yields an
optimal but external compression (an observer knows u as well).

In the internal case, there is no single node that is good for both players. Alice knows a
node va and Bob a node vb, which are in general arbitrary nodes in the protocol tree. The
crux of our protocol is an efficient way for Alice and Bob to learn enough about va, vb so
that at least one of them obtains one bit of information. We show that using Theorem 1.6
one of them, say Alice, can identify a good vertex u to focus on (roughly, u is somewhere in
between va, vb). Using Lemma 1.1 Alice then tries to internally transmit u to Bob. If this
transmission succeeds, then, with high probability, Bob learns one bit of information, and if
this transmission fails then, with high probability, Alice learns one bit of information. The
transmission is indeed internal in that an external observer does not in general learn u even
when Bob does. The full protocol appears in Section 4.

3 On a high level this cost occurs for the following reason: if we denote by h(p) the entropy of a random
bit with bias p ∈ [0, 1], then h( 1

2 + δ)− h( 1
2 ) is of order δ2. The second power of δ yields the square

root CC(π) in the analysis.
4 The improvement comes from that h(δ)− h(0) is of order δ.
5 The set of inputs that reach u is a rectangle, that is, it is of the form X ′ × Y ′ ⊂ X × Y.

APPROX/RANDOM’15
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2 Definitions and preliminaries

Logarithms in this text are to the base two. We provide the basic definitions needed for
this text. For background and more details on information theory see the book [10] and on
communication complexity see the book [19].

2.1 Information theory
The entropy of a random variable X taking values in U is defined as

H(X) =
∑
u∈U

Pr[X = u] log(1/Pr[X = u]).

The entropy of X conditioned on Y is defined as H(X|Y ) = H(X,Y )−H(Y ). The mutual
information between X,Y conditioned on Z is defined as I(X;Y |Z) = H(X|Z)−H(X|Y,Z).

2.2 Protocols
A deterministic communication protocol π with inputs from X ×Y is a rooted directed binary
tree with the following structure. Edges are directed from root to leaves. Each internal node
in the protocol is owned by either Alice or Bob. For every x ∈ X , each internal node v owned
by Alice is associated with an edge ev,x from v to one of the children of v. Similarly, for
every y ∈ Y, each internal node v owned by Bob is associated with an edge ev,y. On input
x, y, a protocol π is executed by starting at the root and following the unique path defined
by ev,x, ev,y until reaching a leaf. We denote by Tπ = Tπ(x, y) the leaf reached, which we
also call the transcript of π with input (x, y). The length of a transcript, denoted |Tπ|, is the
depth of the corresponding leaf.

In a public-coin protocol, Alice and Bob also have access to public randomness r that
they both know. In a private-coin protocol, Alice has access to a random string ra, and Bob
has access to a random string rb. A general protocol is a protocol which uses both public and
private coins. The four random variables (x, y), r, ra, rb are always assumed independent.

The communication complexity of a deterministic π, denoted by CC(π), is the maximum
length of a transcript. For general protocols, CC(π) is defined as the maximum communication
complexity over all randomness as well (i.e. over x, y, r, ra, rb), and CCavgµ (π) is the expected
length of a transcript over all randomness.

2.3 Computation
A deterministic protocol π externally computes a function f : X ×Y → Z if there is a mapM
so that f(x, y) = M(Tπ(x, y)) for all x, y. A deterministic protocol π internally computes a
function f if there are two maps Ma,Mb so that Ma(x, Tπ(x, y)) = Mb(y, Tπ(x, y)) = f(x, y)
for all x, y. In the randomized setting, M may depends on r; Ma may depend on r, ra; Mb

may depend on r, rb; and the equalities should hold with probability at least 1− ε over the
distribution of r, ra, rb for all x, y. In the distributional setting, the probability is taken over
x, y as well.

2.4 Information and entropy of protocols
For a distribution µ on the inputs, define

Iintµ (π) = I(Tπ;X|Y,R,Rb) + I(Tπ;Y |X,R,Ra)
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and
Iextµ (π) = I(Tπ;X,Y |R).

Similarly, define
Hint
µ (π) = H(Tπ|Y,R,Rb) +H(Tπ|X,R,Ra)

and
Hext
µ (π) = H(Tπ|R).

Note that each of these measures also induce a corresponding complexity measure for
functions/relations in the standard way.

2.5 Simulation
Let π, σ be protocols, let µ be a distribution on the input space X × Y and let ε ≥ 0.

Our goal is defining when σ simulates π with error ε in the distributional setting6. Namely,
probabilities are taken over all randomness of inputs as well as private and public coins.

The randomness in σ is s, sa, sb, and the randomness in π is r, ra, rb. We say that σ
externally simulates π with error ε if there exists a function M = M(Tσ, s) so that the
distribution of (x, y, (Tπ, r)) is ε-close in L1 distance to the distribution of (x, y,M(Tσ, s)).

We say that σ internally simulates π with error ε if there exist functions Ma =
Ma(Tσ, x, sa, s) and Mb = Mb(Tσ, y, sb, s) so that the distribution of (x, y, (Tπ, r, ra)) is
ε-close in L1 distance to the distribution of (x, y,Ma), and the distribution of (x, y, (Tπ, r, rb))
is ε-close in L1 distance to the distribution of (x, y,Mb).

The simulation we present in the proof of Theorem 1.8 is in fact of a stronger form. In
the beginning of σ, Alice and Bob interpret the public randomness as a pair s = (r, s′) and
their private randomness as sa = (ra, s′a) and sb = (rb, s′b). They think of r, ra, rb as the
fixed randomness of π, and communicate in order to privately compute the fixed transcript
Tπ = Tπ(x, y, r, ra, rb), with error probability (over the remaining randomness s′, s′a, s′b) of at
most ε.

This stronger type of simulation is sometimes too strong to be useful, as the following
example demonstrates. Consider a protocol in which x, ra are uniform in {0, 1}n, and Alice
just sends x+ ra ∈ {0, 1}n to Bob. The transcript of this protocol is just a random noise,
and its external information is indeed zero. It can, indeed, be externally simulated without
error by a protocol with zero communication; interpret s as a uniform element in {0, 1}n
and set M(∅, s) = (s, ∅). However, every strong simulation of this protocol (as the one in
Theorem 1.8 mentioned above) must communicate many bits. Indeed, the transcript of a
strong simulation must reveal the value of x+ ra to Bob, with high probability. This stronger
type of simulation corresponds to internal entropy rather than internal information. In the
example above, the internal information is 0 but the internal entropy is n.

2.6 Balanced nodes in trees
We use the following well known lemma (see e.g. [19]).

I Lemma 2.1. Let µ be a probability measure on the leaves of a rooted binary tree. The
distribution µ may be extended to a function on all nodes in the tree by setting µ(v) to be the
µ-probability that a leaf that is a successor of v is chosen. Then, there exists a node u such
that either u is a leaf and µ(u) ≥ 2/3, or 1/3 ≤ µ(u) ≤ 2/3.

6 There is also a natural variant of this definition in the randomized setting but it is not relevant for this
text.
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3 Finding the first difference

Proof of Theorem 1.7. Denote by E the (event) set of inputs (x, y) so that

µ(i|x) · µ(i|y) < 2−2hint/ε.

By Markov’s inequality,
µ(E) < ε/2.

For inputs in E , the protocol may fail. For the rest of the proof, fix (x, y) 6∈ E and set
i = i(x, y).

The protocol proceeds in iterations indexed by t ∈ N. For every t, Alice knows a
distribution αt on [n] ∪ {“equal′′} and Bob a distribution βt on [n] ∪ {“equal′′} where we
use the order 1 < 2 < . . . < n < “equal′′. It may help to think of the distributions αt and
βt as representing Alice and Bob’s opinions for what is the first difference, given what they
have learned upto iteration t. They start with

α0(j) = Pr
µ

[i = j|x] and β0(j) = Pr
µ

[i = j|y], for all j.

Iteration t starts with Alice knowing αt and Bob knowing βt, and ends with an update
of these distributions to αt+1, βt+1. There are O(hint/ε) iterations, and the probability of
failure in each iteration is at most δ for δ = cε2/hint for a small constant c > 0. The union
bound implies that the overall error is at most ε.

The goal of every iteration is, given αt, βt, to construct with probability at least 1−O(δ)
distributions αt+1, βt+1 so that (if they did not stop)

αt+1(i) ≥ αt(i) , βt+1(i) ≥ βt(i)

and
αt+1(i) · βt+1(i) ≥ 3

2 · αt(i) · βt(i).

This immediately implies that the number of iterations is at most O
(

log
(

1
µ(i|x)·µ(i|y)

))
=

O(hint/ε) since we conditioned on not E and since αt, βt are probability distributions so
their maximum value is at most 1.

The protocol uses the following subroutine we call check(j) with error δ. It gets as input
j ∈ [n] ∪ {“equal′′} and with communication O(log(1/δ)) it externally outputs “yes” if j = i

and “no” if j 6= i. This subroutine just uses public randomness7 to check if x<j = y<j and
xj 6= yj for j ∈ [n] or if x = y for j = “equal′′.

Iteration t is performed as follows:

1. Let da be the maximum integer so that αt({1, 2, . . . , da − 1}) < 2/3 and let db be the
maximum integer so that βt({1, 2, . . . , db − 1}) < 2/3. Alice knows da and Bob db. Using
the protocol from Theorem 1.6, with communication O(log(log(n)/δ)) the players find8 d
that is between da, db with error at most δ.

2. If αt(d) > 1/3 then the players check(d) with error δ. If the answer is “yes” then they
stop and output d.
If the answer is “no” then they update αt, βt to αt+1, βt+1 by conditioning on the event
([n] ∪ “equal′′) \ {d} and continue to the next iteration.

7 For example, using the standard randomized protocol for equality [19].
8 If we represent da, db as binary strings of length order log(n) then to find d it suffices to find the first
index in which da, db differ.
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3. If βt(d) > 1/3 then the players check(d) with error δ. If the answer is “yes” then they stop
and output d. If the answer is “no” then they update αt, βt to αt+1, βt+1 by conditioning
on the event ([n] ∪ “equal′′) \ {d} and continue to the next iteration.

4. The players check using public randomness with error δ if x<d = y<d.
If the answer is “yes” then they update αt, βt to αt+1, βt+1 by conditioning on the event
{d, d+ 1, . . . , n} ∪ {“equal′′} and continue to the next iteration.
If the answer is “no” then they update αt, βt to αt+1, βt+1 by conditioning on the event
{1, 2, . . . , d− 1} and continue to the next iteration.

We analyse the correctness step by step assuming that no error occurred (we have already
bounded the probability of error):

1. The players found d that is between da, db.
2. If αt(d) > 1/3 and the players output d then indeed the output is correct. If αt(d) > 1/3

and the players do not output d then d 6= i which means that

αt+1(i) = αt(i)
1− αt(d) >

αt(i)
2/3

and βt+1(i) ≥ βt(i).
3. As in previous case.
4. If the players reached here then αt(d), βt(d) ≤ 1/3. Assume without loss of generality

that da ≤ db. The proof in the other case is similar.
If x<d = y<d then i ≥ d ≥ da. This implies that βt+1(i) ≥ βt(i). By choice,

αt({d, d+ 1, . . . , n}) = αt(d) + 1− αt({1, . . . , d}) ≤
1
3 + 1

3 ≤
2
3 ,

which implies αt+1(i) ≥ 3αt(i)/2.
If x<d 6= y<d then i < d ≤ db. This implies that αt+1(i) ≥ αt(i). By choice,

βt({1, 2, . . . , d− 1}) ≤ 2
3 ,

which implies βt+1(i) ≥ 3βt(i)/2. J

4 Internal compression

Proof of Theorem 1.8. Let x, y be the inputs to π, let r be the public randomness, and let
ra, rb be the private randomness. The first observation is that

Hint = Hint
µ (π) = Ex,y,r,ra,rb log

(
1

µ(Tπ|x, r, ra) · µ(Tπ|y, r, rb)

)
,

where here Tπ = Tπ(x, y, r, ra, rb) . Denote by E the event (i.e. set of (x, y, r, ra, rb)) that

µ(Tπ|x, r, ra) · µ(Tπ|y, r, rb) < 2−2Hint/ε.

By Markov’s inequality,
Pr(E) < ε/2.

When E occurs, the protocol σ may fail. For the rest of the proof, fix (x, y, r, ra, rb) 6∈ E and
set Tπ = Tπ(x, y, r, ra, rb).

The protocol σ proceeds in iterations indexed by t ∈ N. The starting point of every
iteration is a distribution αt on leaves of π that Alice knows and a distribution βt on the

APPROX/RANDOM’15
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leaves of π that Bob knows. These distributions reflect the current perspective of the players
after the communication so far. The first distributions are

α0(v) = Pr[v|x, r, ra] and β0(v) = Pr[v|y, r, rb]

for all leaves v of the protocol tree (the probability in α0 for example is over Bob’s randomness).
The goal of every iteration is to construct with probability at least 1−δ distributions αt+1, βt+1
so that

αt+1(Tπ) ≥ αt(Tπ) , βt+1(Tπ) ≥ βt(Tπ)

and
αt+1(Tπ) · βt+1(Tπ) ≥ 3

2 · αt(Tπ) · βt(Tπ).

The number of iterations is set to be at most

O(log(22Hint/ε)) = O(Hint/ε),

and the communication complexity of each iteration is at most

O

(
log
(

log(CC(π))
δ

)
+ Hint

ε
+ log(1/δ)

)
.

Thus, setting δ = cε2/Hint for some small constant c > 0, the union bound implies the
overall bound on the error.

Here is how iteration t is performed:

1. Alice finds a vertex va promised by Lemma 2.1 with αt, and Bob finds vb promised by
Lemma 2.1 with βt. Denote da = depth(va) and db = depth(vb).

2. Using the protocol from Lemma 1.6, with communication O(log(log(CC(π))/δ)) the
players find9 d that is between da, db with error δ/2.

3. If da ≥ db, the players do the following: Let u be the ancestor of va at depth d and let U
be the set of nodes of depth d of π . Using the protocol from Lemma 1.1 Alice sends u
to Bob. They use this protocol with error parameter δ/2, where Alice’s input is u and
Bob’s input is the distribution βt induced on U .
If this stage takes more than O((Hint/ε) + log(1/δ)) bits, then the players abort.
At the end of this stage, either Bob thinks10 he knows u as well or they have aborted.

If Bob thinks he knows u there are two options:
If u is a leaf then the players stop and internally output u.
Otherwise, the players set αt+1 = αt and βt+1 to be the distribution βt conditioned
on passing through u.
Otherwise, the players aborted and they set βt+1 = βt and αt+1 to be the distribution
αt conditioned on not passing through u.

4. When da < db, the players exchange roles.

We now analyse the performance in iteration t. For this, we assume that no error occurred.
That is, that the protocols from Theorem 1.6 and Lemma 1.1 gave the desired result (this
happens with probability at least 1− δ). The analysis follows the outline of the protocol:

9 Represent da, db as binary strings of length roughly log(CC).
10There is some small probability that Bob holds some u′ 6= u but he still thinks he knows u.
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1. Lemma 2.1 says that there are always such nodes va, vb.
2. the players find d that is between da, db.
3. We distinguish between two cases:

Bob thinks he knows u: This means that βt(u) > 0 and so (y, rb) is in the rectangle
defined by u. Thus, ((x, ra), (y, rb)) is in the rectangle defined11 by u, which implies
that Tπ is a successor of u.
If u is a leaf then indeed Tπ = u.
Otherwise, there are two cases:
The first is when vb is an ancestor of u. In this case, vb is not a leaf, βt(vb) ≥ βt(u)
and

βt+1(Tπ) = βt(Tπ)
βt(u) ≥

βt(Tπ)
βt(vb)

≥ βt(Tπ)
2/3 .

The second is when vb is not an ancestor of u. In this case, βt(u) ≤ 1− βt(vb) ≤ 2/3
and

βt+1(Tπ) = βt(Tπ)
βt(u) ≥

βt(Tπ)
2/3 .

Bob does not think he knows u: Since we assumed E does not occur, if u is an ancestor
of Tπ then

βt(u) ≥ βt(Tπ) ≥ β0(Tπ) ≥ 2−2Hint/ε.

Since the players aborted (we ignore possibility of error), this means that u is not an
ancestor of Tπ. Since u is an ancestor of va, αt(u) ≥ αt(va) ≥ 1/3. Thus, by choice,

αt+1(Tπ) = αt(Tπ)
1− αt(u) ≥

αt(Tπ)
1− αt(va) ≥

αt(Tπ)
2/3 .

4. When da < db, the proof is similar. J
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A Appendix

A.1 Internal deterministic computation is also external
Proof of Proposition 1.2. There are maps Ma,Mb so that for all x, y,

Ma(x, Tπ(x, y)) = Mb(y, Tπ(x, y)) = f(x, y).

Fix some rectangle ρ = {(x, y) : Tπ(x, y) = Tπ(x0, y0)}. For every (x, y) ∈ ρ, we know
Ma(x, ρ) = f(x, y) = f(x, y0), and similarly Mb(y0, ρ) = f(x, y0) = f(x0, y0). Therefore, f is
constant on ρ and we can define M(ρ) = f(x0, y0). J

A.2 Information lower bounds errorless simulation
Proof of Claim 1.3. The external case: Let σ be a protocol that externally simulated π

without error. By definition of simulation, there exists a function M so that for all (x, y) so
that µ(x, y) > 0, it holds that pσ = pπ, where pσ is the distribution of M(Tσ, s) and pπ is
that of (Tπ, r). Thus,

CCavgµ (σ) ≥ Iextµ (σ) (see e.g. [18])
= I(Tσ;X,Y |S)
= I(Tσ, S;X,Y ) (S is independent of (X,Y ))
≥ I(M(Tσ, S);X,Y ) (data processing inequality)
= I(Tπ, R;X,Y ) (errorless simulation)
= I(Tπ;X,Y |R) (R is independent of (X,Y ))
= Iextµ (π).

The internal case: similarly to the external case,

CCavgµ (σ) ≥ Iextµ (σ)
≥ Iintµ (σ)
= I(Tσ, S, Sb;X|Y ) + I(Tσ, S, Sa;Y |X)
≥ I(Mb(Tσ, Y, S, Sb);X|Y ) + I(Ma(Tσ, X, S, Sa);Y |X)
= I(Tπ, R,Rb;X|Y ) + I(Tπ, R,Ra;Y |X)
= Iintµ (π).

J

A.3 Transmission
Proof of Lemma 1.1. The players interpret the public randomness as boolean random hash
functions on U . The protocol proceeds in iterations indexed by t ∈ N. In iteration t = 0, the
following is performed:

1. Alice sends k = dlog(1/ε)e+ 2 hash values of ua to Bob.
2. Bob computes the set

S0 = {u ∈ U : µ(u) ∈ (1/2, 1]}.

He compares every element of S0 to the k hash values he received. He deletes every
s ∈ S0 that does not agree with at least one of these k hash values. Denote by S′0 the set
S0 after this deletion.
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If S′0 is empty, he sends a “0” to Alice.
If S′0 is not empty, he sets ub as an arbitrary element S′0, and sends “1” to Alice, and the
players stop.

For every t = 1, 2, . . ., the following is performed (until the players stop):

1. Alice sends 2 new hash values of ua to Bob.
2. Bob computes the set

St = {u ∈ U : µ(u) ∈ (2−t−1, 2−t]}.

He compares every element of St to the k + 2t hash values he received so far. He deletes
every s ∈ St that does not agree with at least one of these hash values. Denote by S′t the
set St after this deletion.
If S′t is empty, he sends a “0” to Alice.
If S′t is not empty, he sets ub as an arbitrary element in S′t, and sends “1” to Alice, and
the players stop.

We now analyse the protocol. Let t0 be so that ua ∈ St0 . First, the protocol stops after
at most t0 ≤ log(1/µ(ua)) + 1 iterations, because ua agrees with all hash values sent. Second,
for every t, by the union bound,

Pr[S′t 6= {ua} ∩ St] ≤ 2−(k+2t)2t+1 ≤ 2− log(1/ε)−t−1 = ε

2t+1 .

Thus, by the union bound, the probability that either there is some t < t0 for which S′t 6= ∅
or S′t0 6= {ua} is at most

∑∞
t=0 ε/2t+1 ≤ ε. J
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Abstract
A recent result of Moshkovitz [10] presented an ingenious method to provide a completely ele-
mentary proof of the Parallel Repetition Theorem for certain projection games via a construction
called fortification. However, the construction used in [10] to fortify arbitrary label cover in-
stances using an arbitrary extractor is insufficient to prove parallel repetition. In this paper, we
provide a fix by using a stronger graph that we call fortifiers. Fortifiers are graphs that have
both `1 and `2 guarantees on induced distributions from large subsets.

We then show that an expander with sufficient spectral gap, or a bi-regular extractor with
stronger parameters (the latter is also the construction used in an independent update [11] of [10]
with an alternate argument), is a good fortifier. We also show that using a fortifier (in particular
`2 guarantees) is necessary for obtaining the robustness required for fortification.
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1 Introduction

Label-cover and general two-prover games
A label cover instance is specified by a bipartite graph G = ((X,Y ), E), a pair of alphabets
ΣX and ΣY and a set of constraints ψe : ΣX → ΣY on each edge e ∈ E. The goal is to label
the vertices of X and Y using labels from ΣX and ΣY so as to satisfy as many constraints
are possible.

This problem is often viewed as a two-prover game. The verifier picks an edge (x, y) at
random and sends x to the first prover and y to the second prover. They are to return a
label of the vertex that they received, and the verifier accepts if the labels they returned are
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by the acceptance probability of the verifier maximized over all possible strategies of the
provers. These are also called projection games as the constraints are functions from ΣX to
ΣY . They are called general games if the constraint on each edge is an arbitrary relation
ψ(x,y) ⊆ ΣX × ΣY .

These two notions are equivalent in the sense that val(G) is exactly equal to the maximum
fraction of constraints that can be satisfied by any labelling.

This problem is central to the PCP Theorem [2, 1] and almost all inapproximability
results that stem from it. The (Strong) PCP Theorem can be rephrased as stating that for
every ε > 0, it is NP-hard to distinguish whether a given label cover instance has val(G) = 1
or val(G) < ε. An important step is a way to transform instances with val(G) < 1 − ε to
instances G′ with val(G′) < ε. This is usually achieved via the Parallel Repetition Theorem.

Parallel Repetition
The k-fold repetition of a game G, denoted by Gk, is the following natural definition –
the verifier picks k edges (x1, y1), · · · , (xk, yk) from E uniformly and independently, sends
(x1, . . . , xk) and (y1, . . . , yk) to the provers respectively, and accepts if the labels returned by
them are consistent on each of the k edges.

If val(G) = 1 to start with then val(Gk) still remains 1. How does val(Gk) decay with k
if val(G) < 1? Turns out even this simple operation of repeating a game in parallel has a
counter-intuitive effect on the value of the game. It is easy to see that val(Gk) ≥ val(G)k
as provers can use a same strategy as in G to answer each query (xi, yi). The first surprise
is val(Gk) is not val(G)k, but sometimes can be much larger than val(G)k. Fortnow [8]
presented a game G for which val(G2) > val(G)2, Feige [6] improved this by giving an
example of game G with val(G) < 1 but val(G2) = val(G). Indeed, there are known examples
[15] of projection games where val(G) = (1− ε) but val(Gk) ≥

(
1− ε

√
k
)
for a large range

of k.
The first non trivial upper bound on val(Gk) was proven by Verbitsky [17] who showed

that if val(G) < 1 then the value val(Gk) must go to zero as k goes to infinity. It is indeed
true that val(Gk) decays exponentially with k (if val(G) < 1). This breakthrough was first
proved by Raz [14], and has subsequently seen various simplifications and improvements
in parameters [9, 13, 5, 4]. The following statements are due to Holenstein [9], Dinur and
Steurer [5] respectively.

I Theorem 1.1 (Parallel repetition theorem for general games). Suppose G is a projection
game such that val(G) ≤ 1− ε and let |ΣX | |ΣY | ≤ s. Then, for any k ≥ 0,

val(Gk) ≤
(
1− ε3/2

)Ω(k/ log s)
.

I Theorem 1.2 (Parallel repetition theorem for projection games). Suppose G is a projection
game such that val(G) ≤ ρ. Then, for any k ≥ 0,

val(Gk) ≤
( 2√ρ

1 + ρ

)k/2
.

Although a lot of these results are substantial simplifications of earlier proofs, they con-
tinue to be involved and delicate. Arguably, one might still hesitate to call them elementary
proofs.
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Recently, Moshkovitz [10] came up with an ingenious method to prove a parallel repetition
theorem for certain projection games by slightly modifying the underlying game via a process
that she called fortification. The method of fortification suggested in [10] was a rather mild
change to the underlying game and proving parallel repetition for such fortified projection
games was sufficient for most applications. The advantage of fortification was that parallel
repetition theorem for fortified games had a simple, elementary and elegant proof as seen in
[10].

1.1 Fortified games
Fortified games will be described more formally in Section 2, but we give a very rough
overview here. Moshkovitz showed that there is an easy way to bound the value of repeated
game if we knew that the game was robust on large rectangles. We shall first need the notion
of symmetrized projection games.

Symmetrized Projection games. Given a projection game G on ((X,Y ), E), the symmet-
rized game Gsym is a game on the (multi)graph ((X,X), E′) such that, there is an edge
(x, x′) ∈ E′, for every y ∈ Y with (x, y), (x′, y) ∈ E, with the constraint π(x,y)(σx) =
π(x′,y)(σx′).

For projection games, it would be more convenient to work with the above symmetrized
version for reasons that shall be explained shortly. It is not hard to see that val(G) and
val(Gsym) are within a quadratic factor of each other. Thus for projection games, we shall
work with the game Gsym instead of the original game G.

I Definition 1.3 ((δ, ε)-robust games). Let G be a two-prover game on ((X,X), E). For any
pair of sets S, T ⊆ X, let GS×T be the game where the verifier chooses his random query
(x, x′) ∈ E conditioned on the event that x ∈ S and x′ ∈ T .

G is said to be (δ, ε)-robust if for every S, T ⊆ X with |S|, |T | ≥ δ|X|, we have that

val(GS×T ) ≤ val(G) + ε.

I Theorem 1.4 (Parallel repetition for robust projection games [10]). Let G be a projection
game on a bi-regular bipartite graph ((X,Y ), E) with alphabets ΣX and ΣY . For any positive
integer k, if ε1, ε2, δ > 0 are parameters such that 2δ|ΣY |k−1 ≤ ε1 and Gsym is (δ, ε2)-robust,
then1

val(Gksym) ≤ (val(Gsym) + ε2)k + kε1.

Not all projection games are robust on large rectangles, but Moshkovitz suggested a neat
way of slightly modifying a projection game and making it robust. This process was called
fortification.

On a high level, for any two-prover game, the verifier chooses to verify a constraint
corresponding to an edge (x, y) but is instead going to sample several other dummy vertices
and give the provers two sets of D vertices {x1, . . . , xD} and {y1, . . . , yD} such that x = xi
and y = yj for some i and j. The provers are expected to return labels of all D vertices sent
to them but the verifier checks consistency on just the edge (x, y). This is very similar to the
“confuse/match” perspective of Feige and Kilian [7].

1 The following is the corrected statement from [11].
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To derandomize this construction, Moshkovitz [10] uses a pseudo-random bipartite graph
where given a vertex w, the provers are expected to return labels of all its neighbours
(Definition 2.1). The most natural candidate of such a pseudo-random graph is an (δ, ε)-
extractor, as we really want to ensure that conditioned on “large enough events” S and T ,
the underlying distribution on the constraints does not change much. This makes a lot of
intuitive sense, since on choosing a random element of S and then a random neighbour,
the extractor property guarantee that the induced distribution on vertices in X is ε-close
to uniform. Thus, it is natural to expect that conditioning on the events S and T should
not change the underlying distribution on the constraints by more than O(ε). This was the
rough argument in [10], which unfortunately turns out to be false. We elaborate on this in
Section 3.2 and Appendix A.

A recent updated version [11] of [10] provides an different argument for the fortification
lemma using a stronger extractor. We discuss this at the end of Section 1.2.

1.2 Our contributions
We present a fix to the approach of [10], by describing a way to transform any given game
instance G into a robust instance G∗ with the same value following the framework of [10]
but using a different graph for concatenation, and a different analysis.

We first describe a concrete counter-example to the original argument of [10] in Section 3.2,
that shows concatenating (Definition 2.1) with an arbitrary (δ, ε)-extractor is insufficient. In
fact, as we show in Appendix B, concatenating (Definition 2.1) with any left-regular graph
with left-degree by o(1/εδ) fails to make arbitrary instances (δ, ε)-robust. We instead use
bipartite graphs called fortifiers, defined below.

I Definition 1.5 (Fortifiers). A bipartite graph H = ((W,X), EH) is an (δ, ε1, ε2)-fortifier if
for any set S ⊆W such that |S| ≥ δ|W |, if π is the probability distribution on X induced by
picking a uniformly random element w from S, and a uniformly random neighbor x of w,
then

|π − u|1 ≤ ε1 and ‖π − u‖2 ≤ ε2

|X|
.

Notice that a fortifier is an extractor, with the additional condition that the `2-distance of
π from the uniform distribution is small. This is what enables us to show that concatenation
(Definition 2.1) with a fortifier produces a robust instance.

I Theorem 1.6 (Fortifiers imply robustness). Suppose G is a two-prover projection game on a
bi-regular graph ((X,Y ), E). Then, for any ε, δ > 0, if H = ((W,X), EH) is a (δ, ε, ε)-fortifier,
then the symmetrized concatenated game G∗ = (H ◦G)sym is (δ,O(ε))-robust.

In particular, bipartite spectral expanders are good fortifiers, as Lemma 2.8 shows. This
gives us our main result which follows from Lemma 2.8 and Theorem 1.6:

I Corollary 1.7. Let G be a two-prover projection game on a bi-regular graph ((X,Y ), E).
For any ε, δ > 0, if H = ((X,X), EH) is a symmetric bipartite graph that is a λ-expander
(Definition 2.3) with λ < ε

√
δ then the symmetrized concatenated game G∗ = (H ◦G)sym is

(δ, 4ε)-robust.

As one would expect, the condition on the fortifier can be relaxed if the underlying graph
of Gsym is a spectral-expander. We prove the following theorem. Theorem 1.6 follows from
this theorem by setting λ0 = 1.
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I Theorem 1.8. Let G be a two-prover projection game on bi-regular graph ((X,Y ), E) where
Gsym is a λ0-expander. Then for any ε, δ > 0, if H = ((W,X), EH) is a (δ, ε, (ε/λ0))-fortifier,
then the symmetrized concatenated game G∗ = (H ◦G)sym is (δ,O(ε))-robust.

One could ask if the definition of a fortifier is too strong, or if a weaker object would
suffice. We argue in Section 3.1 that if we proceed through concatenation, fortifiers are
indeed necessary to make a game robust.

Bipartite Ramanujan graphs of degree Θ(1/ε2δ) have λ < ε
√
δ and are therefore good

fortifiers. In Appendix B, we show that this is almost optimal by proving a lower bound
of Ω(1/εδ) on the left-degree of any graph that can achieve (δ, ε)-robustness. This shows
that our construction of using expanders to achieve robustness is almost optimal, in terms of
the degree of the fortifier graph. Note that the degree of the fortifier is important as the
alphabet size of the concatenated game is the alphabet size of the original game raised to the
degree. There are known explicit constructions of bi-regular (δ, ε)-extractors with left-degree
poly(1/ε)poly log(1/δ). But the lower bound in Section 3.1 shows that (δ, ε)-extractors are
not fortifiers if δ � ε, which is usually the relevant setting (see Theorem 1.4).

Independently, the author of [10] came up with a different argument to obtain robustness
of projection games by using a (δ, εδ)-extractor. This is described in an updated version [11]
present on the author’s homepage.

It is also seen from Theorem 1.8 that bi-regular (δ, εδ)-extractors are indeed (δ, ε, ε)-
fortifiers as well. Using an expander instead is arguably simpler, and is almost optimal.

I Remark. Although this fix provides a proof of a Parallel Repetition Theorem for projection
games following the framework of [10], the degree of the fortifier is too large to get the
required PCP for proving optimal hardness of the Set-Cover problem that Dinur and
Steurer [5] obtained. See [11] for a discussion on this.

Remark about parallel repetition for general games

A fairly straightforward generalization Theorem 1.4 to robust general games on bi-regular
graphs is the following.

I Claim 1.9. Let G be a general two-prover game on a bi-regular graph ((X,Y ), E) with
alphabets ΣX and ΣY . For any positive integer k, if ε, δ > 0 are parameters such that
2δ|ΣX × ΣY |k−1 ≤ ε and G is (δ, ε)-robust, then

val(Gk) ≤ (val(G) + ε)k + kε.

One could attempt a fortifying any game by using a fortifier on both sides. But the
issue with this procedure is that it makes |ΣX | = exp(1/δ) and in such scenarios δ|ΣX | � 1
making it infeasible to ensure 2δ|ΣX × ΣY |k−1 ≤ ε. Hence, though Lemma 1.9 may be
useful in cases where we know that the game G is robust via other means, the technique
of fortification via concatenation increases the alphabet size too much for Lemma 1.9 to be
applicable.

For the case of projection games, this is not an issue as Theorem 1.4 only requires
2δ|ΣY |k−1 < ε and concatenating Gsym by a fortifier only increases |ΣX | and keeps ΣY

unchanged. Thus, one can indeed choose ε and δ small enough to give a parallel repetition
theorem for a robust version of an arbitrary projection game.
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2 Preliminaries

Notation
For any vector a, let |a|1 :=

∑
i |ai|, and ‖a‖ :=

√∑
i a2

i be the `1 and `2-norms
respectively.
We shall use uS to refer to the uniform distribution on a set S. Normally, the set S
would be clear from context and in such case we shall drop the subscript S.
For any vector a, we shall use a‖ to refer to the component along the direction of u, and
a⊥ to refer to the component orthogonal to u.
We shall assume that the underlying graph for the games is bi-regular.

We define the concatenation operation of a two-prover games with a bipartite graph that
was alluded to in Section 1.1.

I Definition 2.1 (Concatenation). Given bipartite graphs G = ((X,Y ), E), H = ((W,X), EH)
where H is regular with left degree D, the concatenated graph H ◦ G = ((W,Y ), E′) is a
multigraph such that there is an edge (w, y) ∈ E′, for every pair of edges (w, x) ∈ EH , (x, y) ∈
E.

Given a two-prover projection game on a graph G = ((X,Y ), E) with a set of constraints
ψ, a pair of alphabets ΣX and ΣY , a bipartite graph H = ((W,X), EH) with left degree D,
the concatenated game is a game on the multigraph H ◦G = ((W,Y ), E′) with ΣW = ΣDX . For
any edge (w, y) ∈ E′ which corresponds to the pair (w, x) ∈ E, (x, y) ∈ EH , the constraint
π(w,y)(a) := πx,y(ax), where a ∈ ΣDX and ax is the alphabet at the coordinate corresponding
to x (assuming some fixed ordering of vertices in X). The distribution over the edges in the
multigraph H ◦G is uniform.

I Remark. The concatenated game H ◦G is also a projection game. We shall be working
with the symmetrized version G∗ = (H ◦G)sym of this game.

I Lemma 2.2 (Concatenation preserves value). [10] Given any two-prover game on G, and a
biregular bipartite graph H:

val(H ◦G) = val(G).

Expanders, extractors and fortifiers
I Definition 2.3 (Expanders). For a symmetric, stochastic matrix M , define

λ(M) def= max
v⊥1

‖Mv‖
‖v‖

A D-regular graph H = (X,E) is a graph H is a λ-expander, if λ(H) ≤ λ, where H is
the normalized adjacency matrix of the graph H.

For a symmetric bipartite graph G = ((X,X), E), we say G is a bipartite λ-expander if
λ(H) ≤ λ where H is the normalized biadjacency matrix of G.

Henceforth, when we refer to a bipartite graph as being a λ-expander, we implicitly mean
a bipartite λ-expander.

Any expander H = (X,EH) can be transformed to a natural bipartite expander H ′ on
X ×X, by including the edge (x, x′) and (x′, x) to H ′ for every (x, x′) ∈ EH . We shall abuse
notation and call this graph H ′ = ((X,X), EH) although each edge in H occurs “twice” in
H ′.
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I Lemma 2.4 (Explicit expanders [3]). For every D > 0, there exists a fully explicit family
of graphs {Gi}, such that Gi is D-regular and λ(Gi) ≤ D−1/2(logD)3/2.

I Definition 2.5 (Extractors). A bipartite graph H = ((X,Y ), E) is an (δ, ε)-extractor if for
every subset S ⊆ X such that |S| ≥ δ|X|, if π is the induced probability distribution on Y
by taking a random element of S and a random neighbour, then

|π − u|1 ≤ ε.

I Lemma 2.6 (Explicit Extractors [16]). There exists explicit (δ, ε)-extractors G = (X,Y,E)
such that |X| = O(|Y |/δ) and each vertex of X has degree D = O(exp(poly(log log(1/δ))) ·
(1/ε2)).

Our earlier definition of a fortifier (Definition 1.5) has properties of both an expander
and an extractor. Indeed, we can build fortifiers by just taking a product an expander and
an extractor.

I Lemma 2.7. Let H1 = ((V,W ), E1) is a bi-regular (δ, ε)-extractor, and let H2 = (W,E2)
is a regular λ-expander. Denote H ′2 to be the bipartite graph ((W,W ), E2). Then the
concatenated graph H1 ◦H ′2 is an (δ, ε, λ2ε/δ)-fortifier.

Proof. Let H2 be the normalized adjacency matrix of graph H2. Let πS denotes the
probability distribution on W obtained by picking an element of S ⊆ V uniformly and
then choosing a random neighbour in H1. Thus, H2πS is the probability distribution on W
induced by the uniform distribution on S and a random neighbour in H1 ◦H ′2. We want to
show for all S such that |S| ≥ δ|V |,

|H2πS − u|1 ≤ ε and ‖H2πS − u‖2 ≤ λ2ε/δ

|X|
.

The first inequality is obtained as |H2πS−u|1 = |H2(πS−u)|1 ≤ |πS−u|1 ≤ ε, where we use
the fact that |H2v|1 ≤ |v|1 for any v and any normalized adjacency matrix, and |πS−u|1 ≤ ε
follows form the extractor property of H1.
As for the second inequality, observe that

‖πS − u‖2 ≤ max
w∈W

(πS(w)) · |πS − u|1 ≤ ε · max
w∈W

(πS(w)).

For a bi-regular extractor2 H1 of left-degree D, the degree of any w ∈ W is (|V | ·D/|W |)
and the number of edges out of S is least δ|V | ·D. Hence, maxw πS(w) ≤ 1/(δ|W |), which is
achieved if all neighbours of w are in S. Therefore,

‖πS − u‖2 ≤ (ε/δ)
|W |

=⇒ ‖H2(πS − u)‖2 ≤ λ2 |W |
|X|
‖πS − u‖2 ≤ |W |

|X|
· λ

2 · (ε/δ)
|W |

= λ2 · (ε/δ)
|X|

. J

In particular, any bi-regular (δ, ε)-extractor is a (δ, ε, ε/δ)-fortifier. Hence, if the underlying
graph G of the two-prover game is a

√
δ-expander, then Theorem 1.8 states that merely

using an (δ, ε)-extractor as suggested in [10] would be sufficient to make it (δ,O(ε))-robust.
Also, since any graph is trivially a 1-expander, a bi-regular (δ, εδ)-extractor is also an

(δ, ε, ε)-fortifier. The following lemma also shows that expanders are also fortifiers with
reasonable parameters as well.

2 The bound on the right-degree guaranteed by bi-regularity is crucial for this claim. Without this,
extractors are not sufficient for fortification (Section 3.2).
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I Lemma 2.8. Let H = (X,EH) be any λ-expander. Then, for every δ > 0, the bipartite
graph H ′ = ((X,X), EH) is also a (δ,

√
λ2/δ, λ2/δ)-fortifier. In particular, if λ ≤ ε

√
δ, then

H ′ is an (δ, ε, ε)-fortifier.

Proof. Let H be the normalized adjacency matrix of H. Let S ⊆W such that |S| ≥ δ|W |.
We have,

‖u⊥S ‖2 ≤
1

δ|W |
.

Hence, by the expansion property of H,

‖HuS − u‖2 := ‖Hu⊥S ‖2 ≤ λ2 · |W |
|X|
· ‖u⊥S ‖2 ≤

λ2/δ

|X|
.

|HuS − u|1 ≤
√
λ2/δ follows from above and Cauchy-Schwarz inequality. J

Although Lemma 2.8 shows that expanders are also fortifiers for reasonable parameters,
the construction in Lemma 2.7 is more useful when the underlying graph for the two-prover
game is already a good expander. For example, if the underlying graph G was a δ-expander,
then Theorem 1.8 suggests that we only require a (δ, ε, ε/δ)-fortifier. Lemma 2.7 implies that
an (δ, ε)-extractor is already a (δ, ε, ε/δ)-fortifier and hence is sufficient to make the game
robust. The main advantage of this is the degree of δ-expanders must be Ω(1/δ2) whereas
we have explicit (δ, ε)-extractors of degree (1/ε2) exp(poly log log(1/δ)) which has a much
better dependence in δ. This dependence on δ is crucial for certain applications.

3 Sub-games on large rectangles

Consider a projection game on graph G = ((X,Y ), E) which is biregular with degree d. For
a biregular bipartite graph H = ((W,X), EH) with degree dH , consider the symmertized
concatenated game G∗ = (H ◦G)sym = ((W,W ), E′). Let S, T ⊆W and µS (or µT ) denote
the induced distributions on X obtained by picking a uniformly random element of S (or T )
and taking a uniformly random neighbour in H. In the next claim, we give an expression
for the distribution of verifier checking the underlying constraint on (x, x′) in the subgame
(G∗)S×T .

I Claim 3.1. For any x, x′ ∈ X such that there are edges (x, y), (x′, y) ∈ E,

πx,x′ = µS(x)µT (x′)∑
(x,x′)∈Gsym

µS(x)µT (x′) . (1)

Proof. Let dS,x, dT,x′ denote the degree of x to S and x′ to T respectively in H. Let NH(x)
denote the neighbor set of a vertex x in H. Then,

µS(x) = dS,x∑
z∈X dS,z

.

The probability πx,x′ of the verifier in (G∗)S×T checking a constraint corresponding to a
constraint (x, x′) in Gsym, is proportional to the number of edges (w,w′) in the graph G∗
such that w ∈ S ∩NH(x), and w′ ∈ T ∩NH(x′). Since every such edge in G∗ was equally
likely, we have:

πx,x′ = dS,x · dT,x′∑
(x,x′)∈Gsym

dS,xdT,x′
= µS(x)µT (x′)∑

(x,x′)∈Gsym

µS(x)µT (x′) .

J
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One way to show that the concatenated game G∗ is (δ,O(ε))-robust would be to show
that the above distribution πx,x′ is O(ε)-close to uniform whenever |S|, |T | have density at
least δ because then the distribution on constraints that the verifier is going to check in
G∗S×T is O(ε) close to the distribution on constraints in G. Hence, up to additive factor of
O(ε) the quantity val(G∗S×T ) is same as val(G). The main question here what properties
should H satisfy so that the above distribution is close to uniform?

3.1 Fortifiers are necessary
To prove that fortifiers are necessary, we shall restrict ourselves to games on graphs G =
((X,X), E). We show that if a bipartite graph H = ((W,X), EH), makes a game on a
particular graph G, (δ,O(ε))-robust, then H is a good fortifier.

As mentioned earlier, if the graph G had some expansion properties, then the requirements
on the graph H to concatenate with can be relaxed. Thus, naturally, the worst case graph G
is one that expands the least – a matching.

I Lemma 3.2 (Fortifiers are necessary). Let ε, δ > 0 be small constants. Let H = ((W,X), EH)
be a bi-regular graph, and let G = ((X,X), E) be a matching. Suppose that for every subset
S, T ⊆W with |S|, |T | ≥ δ|W |, the distribution (defined in Equation (1)) induced by the sub
game on S × T of G∗ := (H ◦G)sym on the edges of G is ε-close to uniform. Then, for every
S ⊆W with |S| ≥ δ|W |,

|µS − u|1 = ε, (2)

‖µS − u‖2 = O(ε)
|X|

. (3)

Proof. It is clear that (2) is necessary as the distribution on constraints in the sub-game
G∗S×W (as defined in (1)) is essentially µS (as µT in this case is uniform).

As for (3), let us assume that

‖µS − u‖2 = c

|X|
.

Taking T = S, we obtain that the distribution (defined in Equation (1)) induced by the game
G∗S×S on the edges of G is given by

πx,x = µS(x)2∑
x µS(x)2 =

(
|X|

1 + c

)
· µS(x)2,

where the last equality used the fact that ‖µS‖2 =
∥∥µ⊥S ∥∥2 + ‖u‖2.∑

x∈X

∣∣∣∣( |X|c+ 1

)
· µS(x)2 − 1

|X|

∣∣∣∣ =
(
|X|

1 + c

)
·
∑
x∈X

∣∣∣∣µS(x)2 − c+ 1
|X|2

∣∣∣∣
=

(
|X|

1 + c

)
·
∑
x∈X

∣∣∣∣µS(x) −
√
c+ 1
|X|

∣∣∣∣ · (µS(x) +
√
c+ 1
|X|

)

≥
(

1√
1 + c

)
·
∑
x∈X

∣∣∣∣µS(x) −
√
c+ 1
|X|

∣∣∣∣
≥

(
1√

1 + c

)
·

((√
1 + c − 1

)
−
∑
x∈X

∣∣∣∣µS(x) − 1
|X|

∣∣∣∣
)

≥
(

1√
1 + c

)
·
((√

1 + c − 1
)
− ε

)
.
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Thus, if the distribution on constraints is ε-close to uniform, then the above lower bound
forces c = O(ε). J

3.2 General (non-regular) extractors are insufficient
Suppose H = ((W,X), EH) is an arbitrary (δ,O(ε))-extractor and G∗ is the symmetrized
concatenated game. Consider a possible scenario where there is a subset S ⊆ W with
|S| ≥ δ|W | such that µS is of the form

µS =
(
ε,

1− ε
|X| − 1 , . . . ,

1− ε
|X| − 1

)
.

Notice that this is a legitimate distribution that may be obtained from a large subset S as
|µS − u|1 is easily seen to be at most 2ε. However, if G = ((X,X), E) was d-regular with
d = o(|X|), then using (1), the probability mass on the edge (1, 1) on the sub-game over
S × S is

π1,1 =

 ε2

ε2 +O
(
εd
|X|

)
 ≈ 1.

In other words, if such a distribution µS can be induced by the extractor, then the provers
can achieve value close to 1 in the game G∗S×S by just labelling the edge (1, 1) correctly.
Thus, G∗ is not even (δ, 0.9)-robust.

In Appendix A we show that we can adversarially construct a (δ,O(ε))-extractor, although
non-regular, that induces such a skew distribution. In Appendix B we also show that left-
regular graphs of left-degree o(1/δε) are not fortifiers.

4 Robustness from fortifiers

In this section, we show that concatenating a symmetrized two-prover game by fortifier(s)
yields a robust game as claimed by Theorem 1.8.

I Lemma 4.1 (Distributions from large rectangles are close to uniform). Let G = ((X,X), E)
be a graph of a symmetrized two-prover game such that |X| = n. Let µS and µT be two
probability distributions such that∣∣µ⊥S ∣∣1 ≤ ε1 and

∣∣µ⊥T ∣∣1 ≤ ε1, (4)∥∥µ⊥S ∥∥2 ≤
(ε2

n

)
and

∥∥µ⊥T ∥∥2 ≤
(ε2

n

)
. (5)

If the bipartite graph G is a λ0-expander then the distribution on edges (x, y) of G given by
(1) is (2ε1 + ε2

1 + 2λ0 · ε2)-close to uniform.

As described in Section 3, if H is a (δ, ε1, ε2)-fortifier, then for any set S and T of density
at least δ, the distribution on the constraints of G∗S×T is given by (1). Applying the above
lemma for the graph of the symmetrized game yields that the value of the game on any large
rectangle can change only by the above bound on the statistical distance. By setting the
parameters, Theorem 1.8 follows immediately from Lemma 4.1. Further, Theorem 1.7 also
follows from Lemma 4.1 and Lemma 2.8 as any graph is trivially a 1-expander.

The rest of this section would be devoted to the proof of Lemma 4.1. For convenience,
we let d be the left-degree (and hence also, right-degree) of the biparite graph G. We shall
prove Lemma 4.1 by proving the following two claims.
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I Claim 4.2.

∑
(x,y)∈G

∣∣∣∣∣∣∣
µS(x)µT (y)∑

(x,y)∈G
µS(x)µT (y) −

µS(x)µT (y)
d/n

∣∣∣∣∣∣∣ ≤ λ0 · ε2

I Claim 4.3.∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)
d/n

− 1
n · d

∣∣∣∣ ≤ 2ε1 + ε2
1 + λ0 · ε2

Clearly, Lemma 4.1 follows from Claim 4.2 and Claim 4.3.

Proof of Claim 4.2. Let G also denote the normalized biadjacency matrix of G. Observe
that

∑
(x,y)∈G µS(x)µT (y) = d · 〈GµS , µT 〉. If we resolve µS and µT in the direction of the

uniform distribution and the orthogonal component, we have

〈GµS , µT 〉 = 〈u,u〉 +
〈
Gµ⊥S , µ

⊥
T

〉
= 1

n
+
〈
Gµ⊥S , µ

⊥
T

〉
=⇒

∣∣∣∣〈GµS , µT 〉 − 1
n

∣∣∣∣ ≤ λ0 ·
∥∥µ⊥S ∥∥ · ∥∥µ⊥T ∥∥

≤
(
λ0 · ε2

n

)
. (using (5))

Therefore,

∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)
d 〈GµS , µT 〉

− µS(x)µT (y)
d/n

∣∣∣∣ ≤ ∑
(x,y)∈G

(
µS(x)µT (y)
d 〈GµS , µT 〉

)
|1 − 〈GµS , µT 〉|

≤ λ0 · ε2. J

Proof of Claim 4.3.

∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)
d/n

− 1
n · d

∣∣∣∣ =
(n
d

) ∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)− 1
n2

∣∣∣∣ .
Since µS(x) = 1

n + µ⊥S (x) and µT (y) = 1
n + µ⊥T (y),

(n
d

) ∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)− 1
n2

∣∣∣∣ =
(n
d

) ∑
(x,y)∈G

∣∣∣∣µ⊥S (x)
n

+ µ⊥T (y)
n

+ µ⊥S (x)µ⊥T (y)
∣∣∣∣

(Using triangle inequality) ≤ 1
d

∑
(x,y)∈G

∣∣µ⊥S (x)
∣∣+ 1

d

∑
(x,y)∈G

∣∣µ⊥T (y)
∣∣

+
(n
d

) ∑
(x,y)∈G

∣∣µ⊥S (x)µ⊥T (y)
∣∣

=
∣∣µ⊥S ∣∣1 +

∣∣µ⊥T ∣∣1 +
(n
d

) ∑
(x,y)∈G

∣∣µ⊥S (x)µ⊥T (y)
∣∣ ,

where the last equality uses the fact that G is a bi-regular graph. Define fS(x) ≡ |µ⊥S (x)| is
a vector with the entrywise absolute values of µ⊥S , and similarly fT . Then, the RHS above
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equation reduces to∣∣µ⊥S ∣∣1 +
∣∣µ⊥T ∣∣1 +

(n
d

) ∑
(x,y)∈G

∣∣µ⊥S (x)µ⊥T (y)
∣∣ =

∣∣µ⊥S ∣∣1 +
∣∣µ⊥T ∣∣1

+
(n
d

)
·
∑

(x,y)∈G

fS(x)fT (y)

=
∣∣µ⊥S ∣∣1 +

∣∣µ⊥T ∣∣1 + n 〈GfS , fT 〉
(Using (4)) ≤ 2ε1 + n · 〈GfS , fT 〉 . (6)

A simple bound for n · 〈GfS , fT 〉 would n
∥∥Gµ⊥S ∥∥∥∥µ⊥T ∥∥ by Cauchy-Schwarz inequality. We

can use the expansion of G again to estimate this better. Consider the decomposition
fS = α1 ·u + f⊥S and fT = α2 ·u + f⊥T . It follows that α1 = |fS |1 and α2 = |fT |1, and hence
α1, α2 ≤ ε1 by (4). Hence,

n · 〈GfS , fT 〉 = α1 · α2 + n ·
〈
Gf⊥S , f

⊥
T

〉
≤ ε2

1 + n
∥∥Gf⊥S ∥∥∥∥f⊥T ∥∥

≤ ε2
1 + n · λ0 ·

∥∥µ⊥S ∥∥ · ∥∥µ⊥T ∥∥
(Using (5)) ≤ ε2

1 + λ0ε2.

Combining this with (6), we get

∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)
d/n

− 1
n · d

∣∣∣∣ ≤ 2ε1 + ε2
1 + λ0ε2. J
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A An explicit extractor that does not provide robustness

Let H = ((W,X), EH) be any (δ, ε)-extractor. Let us assume that the extractor is left-regular
with left-degree D, and let m = |W | and n = |X|. For any x ∈ X and S ⊆ W , let dS(x)
denote the degree of x in S. Let us fix one S ⊂W such that |S| = δ|W |.

We will transform the graph H so that the distribution induced by the set S looks like
the counter-example described in Section 3.2 in the following two steps by altering the edges
in the subgraph S ×X:
1. First change the degree into X from S to be exactly uniform.
2. Next further change the degrees into X from S to be like the counterexample
Both these operations can be achieved in a monotone fashion: for every x ∈ X, the
neighborhood of every vertex is either a superset, or a subset of its neighborhood before each
operation.

We will show that moving the edges this way does not perturb the indegree distribution
from other large sets by too much, and the resulting graph is a (δ,O(ε)) extractor as long
as the number of edges we relocate is at most O(εδ ·mD). This process will preserve the
left-regularity of H but would not preserve bi-regularity.

First let us move edges (monotonically) from S into X create the uniform distribution on
X. When doing this, the degree of each vertex changes by ∆S(x) := |dS(x)− δmD

n |, where
dS(x) was the old degree. From the extractor property, we know that:

∑
x∈X

∆S(x) =
∑
x∈X

(δmD)
∣∣∣∣ dS(x)∑

dS(x) −
(

1
n

)∣∣∣∣ ≤ εδ ·mD. (7)
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Every vertex x ∈ X now has degree dSavg. Fix some vertex x1 ∈ X, and relocate from
every other x 6= x1 any set of ε · dSavg edges to be incident on x1. Thus, if d′S(x) refers to the
new degrees, we have d′S(x1) is (1 + εn)dSavg where as d′S(x) is (1 − ε)dSavg for every other
x 6= x1.

The further change in degrees incurred on any x ∈ X is ∆′S(x) :=
∣∣d′S(x)− δmD

n

∣∣. Since
we this process only relocates O(ε · dSavg|X|) edges, we have∑

x∈X
∆′S(x) =

∑
x∈X

∣∣d′S(x)− dSavg
∣∣ ≤ O(n · ε · dSavg) = O(εδ ·mD). (8)

Thus, the neighbourhood of any vertex x has changed additively by at most ∆S(x)+∆′S(x).
Therefore, for any subset T ⊆W of size at least δ|W |,∑

x∈X

∣∣d′T (x)− dTavg
∣∣ ≤ ∑

x∈X

∣∣dT (x)− dTavg
∣∣ +

∑
x∈X
|d′T (x)− dT (x)|

≤ ε|T |D +
∑
x∈X

(∆S(x) + ∆′S(x))

≤ ε|T |D + O(εδ ·mD) (using (7) and (8))
≤ O(ε · |T |D).

Thus, the new graph after relocating edges is still an (δ,O(ε))-extractor. This extractor,
induces a distribution similar to the one described in Section 3.2 and hence cannot provide
robustness.

B Lower bounds on degree of fortifiers

In this section, we will show that an attempt to make a game (δ, ε)-robust by concatenating
any left-regular graph with left degree D fails if D ≤ o(1/εδ).

I Lemma 2.1. Let H = ((W,X), EH) be a left-regular bipartite graph with left-degree
D = 1/(c · εδ) for some c > 0, and small enough constants ε, δ. Then, there exists a subset
S ⊆ W with |S| ≥ δ|W | such that if p was the distribution on X induced by the uniform
distribution on S then

‖p− u‖2 ≥ Ω(cε)
|X|

.

Proof. Let davg = |W |D/|X|. Note that at most |X|/2 vertices x satisfy deg(x) ≥ 2davg.
Further, if there is a set S of |X|/4 vertices x that deg(x) < (0.5)davg, then if p is the
distribution on X induced by the uniform distribution on W , then |p − u|1 > 1/4 which
implies that ‖p− u‖22 ≥

1
4|X| by Cauchy-Schwarz.

Otherwise, there exists X ′ ⊂ X such that |X ′| = c εδ2|X| and for each x ∈ X ′ we have
(0.5)davg < deg(x) < 2davg. Consider the set S0 of all neighbours of X ′. If D < 1/(cεδ), we
have |S0| ≤ 2c δ2ε · |W |D = 2δ|W | which is a very small fraction of |W | when δ is small
enough. Consider an arbitrary set S1 ⊆ W such that |S1| = δm, with S1 ∩ S0 = ∅. Let
S2 = S0 ∪ S1. Let π1, π2 be the probability distribution on X induced by S1, S2 respectively.
Note that |S2| ≤ 3δ|W |.

For every x ∈ X ′, we know that π1(x) = 0 and π2(x) = Ω
(

1
δ|X|

)
. Therefore,

‖π1 − π2‖2 ≥ Ω
(
cδ2ε|X|
δ2|X|2

)
= Ω(cε)
|X|

.
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Since ‖π1 − π2‖ ≤ ‖π1 − u‖ + ‖π2 − u‖, we have that one of the sets S1 or S2 shows the
validity of the lemma J

We thus immediately infer the following:

I Corollary 2.2. For all small enough δ, ε > 0, no left-regular graph H = ((W,X), EH) with
left-degree D = o(1/εδ) is an (δ, ∗, ε)-fortifier.

Note that any (δ, ε, ε)-fortifier is in particular an (δ, ε)-extractor, and hence we also have
that D = Ω((1/ε2) log(1/δ)) [12]. We also point out that the construction of Lemma 2.8 has
left-degree D = Õ(1/ε2δ). The above essentially shows this construction is almost optimal.
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Abstract
Monotone Boolean functions, and the monotone Boolean circuits that compute them, have been
intensively studied in complexity theory. In this paper we study the structure of Boolean functions
in terms of the minimum number of negations in any circuit computing them, a complexity
measure that interpolates between monotone functions and the class of all functions. We study
this generalization of monotonicity from the vantage point of learning theory, establishing nearly
matching upper and lower bounds on the uniform-distribution learnability of circuits in terms
of the number of negations they contain. Our upper bounds are based on a new structural
characterization of negation-limited circuits that extends a classical result of A. A. Markov. Our
lower bounds, which employ Fourier-analytic tools from hardness amplification, give new results
even for circuits with no negations (i.e. monotone functions).
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1 Introduction

A monotone Boolean function f : {0, 1}n → {0, 1} is one that satisfies f(x) ≤ f(y) whenever
x � y, where � denotes the bitwise partial order on {0, 1}n. The structural and combinatorial
properties of monotone Boolean functions have been intensively studied for many decades,
see e.g. [12] for an in-depth survey. Many important results in circuit complexity deal
with monotone functions, including celebrated lower bounds on monotone circuit size and
monotone formula size (see e.g. [22, 23] and numerous subsequent works).

Monotone functions are also of considerable interest in computational learning theory,
in particular with respect to the model of learning under the uniform distribution. In
an influential paper, Bshouty and Tamon [6] showed that any monotone Boolean function
f : {0, 1}n → {0, 1} can be learned from uniform random examples to error ε in time nO(

√
n/ε).

They also gave a lower bound, showing that no algorithm running in time 2cn for any c < 1
can learn arbitrary monotone functions to accuracy ε = 1/(

√
n logn). (Many other works in

learning theory such as [3, 11, 5, 1, 26, 20, 21] deal with learning monotone functions from a
range of different perspectives and learning models, but we limit our focus in this paper to
learning to high accuracy with respect to the uniform distribution.)
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1.1 Beyond monotonicity: Inversion complexity, alternations, and
Markov’s theorem

Given the importance of monotone functions in complexity theory and learning theory, it is
natural to consider various generalizations of monotonicity. One such generalization arises
from the simple observation that monotone Boolean functions are precisely the functions
computed by monotone Boolean circuits, i.e. circuits which have only AND and OR gates
but no negations. Given this, an obvious generalization of monotonicity is obtained by
considering functions computed by Boolean circuits that have a small number of negation
gates. The inversion complexity of f : {0, 1}n → {0, 1}, denoted I(f), is defined to be the
minimum number of negation gates in any AND/OR/NOT circuit (with access to constant
inputs 0/1) that computes f . We write Cnt to denote the class of n-variable Boolean functions
f : {0, 1}n → {0, 1} that have I(f) ≤ t.

Another generalization of monotonicity is obtained by starting from an alternate char-
acterization of monotone Boolean functions. A function f : {0, 1}n → {0, 1} is monotone
if and only if the value of f “flips” from 0 to 1 at most once as the input x ascends any
chain in {0, 1}n from 0n to 1n. (Recall that a chain of length ` is an increasing sequence
(x1, . . . , x`) of vectors in {0, 1}n, i.e. for every j ∈ {1, . . . , `− 1} we have xj ≺ xj+1.) Thus,
it is natural to consider a generalization of monotonicity that allows more than one such
“flip” to occur. We make this precise with the following notation and terminology: given a
Boolean function f : {0, 1}n → {0, 1} and a chain X = (x1, . . . , x`), a position j ∈ [`− 1] is
said to be alternating with respect to f if f(xj) 6= f(xj+1). We write A(f,X) ⊆ [`− 1] to
denote the set of alternating positions in X with respect to f , and we let a(f,X) = |A(f,X)|
denote its size. We write a(f) to denote the maximum of a(f,X) taken over all chains X in
{0, 1}n, and we say that f : {0, 1}n → {0, 1} is k-alternating if a(f) ≤ k.

A celebrated result of A. A. Markov from 1957 [14] gives a tight quantitative connection
between the inversion and alternation complexities defined above:

I Markov’s Theorem. Let f : {0, 1}n → {0, 1} be a function which is not identically 0.
Then (i) if f(0n) = 0, then I(f) = dlog(a(f) + 1)e − 1; and (ii) if f(0n) = 1, then
I(f) = dlog(a(f) + 2)e − 1.

This robustness motivates the study of circuits which contain few negation gates, and
indeed such circuits have been studied in complexity theory. Amano and Maruoka [2] have
given bounds on the computational power of such circuits, showing that circuits for the clique
function which contain fewer than 1

6 log logn many negation gates must have superpolynomial
size. More recently, Rossman [24] proved that there exists an explicit monotone function
that cannot be computed by fan-in two circuits of logarithmic depth containing less than( 1

2−ε
)

logn negations. Other works have studied the effect of limiting the number of negation
gates in formulas [16, 9], bounded-depth circuits [25, 27], and non-deterministic circuits [17].
Another line of work that has received attention lately is the role of monotonicity and
negation complexity in cryptography and related areas [8, 10].

In the present work, we study circuits with few negations from the vantage point of
computational learning theory, giving both positive and negative results. We observe that
some of the recent works mentioned [10, 9] build on techniques introduced in a preliminary
version of this paper.

1.2 Our results
We begin by studying the structural properties of functions that are computed or approximated
by circuits with few negation gates. In Section 2 we establish the following extension of
Markov’s theorem:

APPROX/RANDOM’15
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I Theorem 1.1. Let f be a k-alternating Boolean function. Then f can be expressed as
f(x) = h(m1(x), . . . ,mk(x)), where each mi(x) is monotone and h is either the parity
function or its negation. Conversely, any function of this form is k-alternating.

Theorem 1.1 along with Markov’s theorem yields the following characterization of Cnt :

I Corollary 1.2. Every f ∈ Cnt can be expressed as f = h(m1, . . . ,mT ) where h is either
PART or its negation, each mi : {0, 1}n → {0, 1} is monotone, and T = O(2t).

A well-known consequence of Markov’s theorem is that every Boolean function is exactly
computed by a circuit which has only logn negation gates, and as we shall see an easy argument
shows that every Boolean function is 0.01-approximated by a circuit with 1

2 logn + O(1)
negations. In Section 2 we note that no significant savings are possible over this easy upper
bound:

I Theorem 1.3. For almost every function f : {0, 1}n → {0, 1}, any Boolean circuit C that
0.01-approximates f must contain 1

2 logn−O(1) negations.

We then turn to our main topic of investigation, the uniform-distribution learnability of
circuits with few negations. We use our new extension of Markov’s theorem, Theorem 1.1,
to obtain a generalization of the Fourier-based uniform-distribution learning algorithm of
Bshouty and Tamon [6] for monotone circuits:

I Theorem 1.4. There is a uniform-distribution learning algorithm which learns any unknown
f ∈ Cnt from random examples to error ε in time nO(2t

√
n/ε).

We observe that many natural functions are indeed computed by circuits with few negations.
As an example, consider the property of undirected graphs that is satisfied by an n-vertex
graph G if and only if G contains a triangle but does not contain a cycle of size logn. Clearly,
this property is non-monotone. However, it is easy to see that it can be represented by a
Boolean function f : {0, 1}(

n
2) → {0, 1} that is computed by a circuit with a single negation.

Our positive result implies that learning such properties does not take much more time than
learning monotone properties.1

Theorem 1.4 immediately leads to the following question: can an even faster learning
algorithm be given for circuits with t negations, or is the running time of Theorem 1.4
essentially the best possible? Interestingly, prior to our work a matching lower bound for
Theorem 1.4 was not known even for the special case of monotone functions (corresponding
to t = 0). As mentioned earlier, Bshouty and Tamon proved that to achieve accuracy
ε = 1/(

√
n logn) any learning algorithm needs time ω(2cn) for any c < 1 (see Claim 3.13 for

a slight sharpening of this statement). For larger values of ε, though, the strongest previous
lower bound was due to Blum, Burch and Langford [5]. Their Theorem 10 implies that any
membership-query algorithm that learns monotone functions to error ε < 1

2 − c (for any
c > 0) must run in time 2Ω(

√
n) (in fact, must make at least this many membership queries).

However, this lower bound does not differentiate between the number of membership queries
required to learn to high accuracy versus “moderate” accuracy – say, ε = 1/n1/10 versus
ε = 1/10. Thus the following question was unanswered prior to the current paper: what is

1 In contrast to the robustness we show in the learning setting, there are natural computational problems
whose complexity changes drastically with the addition of a single negation gate. For instance, checking
if a monotone circuit is non-constant is trivial. Nevertheless, it is possible to prove that the same
computational problem for circuits with a single negation gate admits polynomial time algorithms if
and only if P = NP.
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the best lower bound that can be given, both as a function of n and ε, on the complexity of
learning monotone functions to accuracy ε?

We give a fairly complete answer to this question, providing a lower bound as a function of
n, ε and t on the complexity of learning circuits with t negations. Our lower bound essentially
matches the upper bound of Theorem 1.4, and is thus simultaneously essentially optimal
in all three parameters n, ε and t for a wide range of settings of ε and t. Our lower bound
result is the following:

I Theorem 1.5. For any t ≤ 1
28 logn and any ε ∈ [1/n1/12, 1/2− c], c > 0, any membership-

query algorithm that learns any unknown function f ∈ Cnt to error ε must make 2Ω(2t
√
n/ε)

membership queries.

We note that while our algorithm uses only uniform random examples, our lower bound
holds even for the stronger model in which the learning algorithm is allowed to make arbitrary
membership queries on points of its choosing.

Theorem 1.5 is proved using tools from the study of hardness amplification. The proof
involves a few steps. We start with a strong lower bound for the task of learning to high
accuracy the class of balanced monotone Boolean functions (reminiscent of the lower bound
obtained by Bshouty and Tamon). Then we combine hardness amplification techniques and
results on the noise sensitivity of monotone functions in order to get stronger and more
general lower bounds for learning monotone Boolean functions to moderate accuracy. Finally,
we use hardness amplification once more to lift this result into a lower bound for learning
circuits with few negations to moderate accuracy. An ingredient employed in this last stage
is to use a k-alternating combining function which “behaves like” the parity function on
(roughly) k2 variables; this is crucial in order for us to obtain our essentially optimal final
lower bound of 2Ω(2t

√
n/ε) for circuits with t negations. These results are discussed in more

detail in Section 3.2.
Lastly, we mention an interesting research direction left unanswered by our results.

Specifically, we focus in this work on the uniform-distribution learnability to high accuracy,
i.e. when the error parameter ε is thought of as “small” (or at least bounded away from
1/2). While we provide almost optimal bounds for this regime, the complexity of weakly
learning circuits with negations – that is obtaining inverse-polynomial advantage over random
guessing – remains open. As a concrete question, is there an efficient algorithm that learns
circuits with a single negation with error at most 1/2− Ω(1/nc) for some c > 0? (Note that
the analogue question for monotone circuits is well-understood [5, 1, 21].)

2 Structural facts about computing and approximating functions
with low inversion complexity

2.1 An extension of Markov’s theorem
We begin with the proof of our new extension of Markov’s theorem. For any A ⊆ {0, 1}n
let 1[A] : {0, 1}n → {0, 1} be the characteristic function of A. For f : {0, 1}n → {0, 1} and
x ∈ {0, 1}n, we write af (x) to denote

af (x) def= max{a(f,X) : X is a chain that starts at x},

and note that a(f) = maxx∈{0,1}n{af (x)} = af (0n). For 0 ≤ ` ≤ a(f) let us write Sf` to
denote Sf`

def= {x ∈ {0, 1}n : af (x) = `}, and let T f`
def= Sf0∪· · ·∪S

f
` .We note that Sf0 , . . . , S

f
a(f)

partition the set of all inputs: Sfi ∩S
f
j = ∅ for all i 6= j, and T fa(f) = Sf0 ∪· · ·∪S

f
a(f) = {0, 1}n.
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We will need the following simple observation:

I Observation 2.1. Fix any f and any x ∈ {0, 1}n. If x ∈ Sf` and y � x then y ∈ Sf`′ for
some `′ ≤ `. Furthermore, if f(y) 6= f(x) then `′ < `.

I Theorem 1.1. (Restated) Fix f : {0, 1}n → {0, 1} and let k def= a(f). Then f can be
expressed as f = h

(
1
[
T f0
]
, . . . ,1

[
T fk−1

])
, where

(i) the functions 1
[
T f`
]
are monotone for all 0 ≤ ` ≤ k,

(ii) h : {0, 1}k → {0, 1} is PARk if f(0n) = 0 and ¬PARk if f(0n) = 1,
and PARk(x) = x1 ⊕ · · · ⊕ xk is the parity function on k variables. Conversely, for any
monotone Boolean functions m1, . . . ,mk, any Boolean function of the form h(m1, . . . ,mk) is
k-alternating.

Proof. Claim 1 follows immediately from Observation 2.1 above. The proof of 2 is by
induction on k. In the base case k = 0, we have that f is a constant function and the claim
is immediate.

For the inductive step, suppose that the claim holds for all functions f ′ that have
a(f ′) ≤ k−1. We define f ′ : {0, 1}n → {0, 1} as f ′ = f ⊕1

[
Sfk
]
. Observation 2.1 implies that

Sf
′

` = Sf` for all 0 ≤ ` ≤ k−2 and Sf
′

k−1 = Sfk−1∪S
f
k , and in particular, a(f) = k−1. Therefore

we may apply the inductive hypothesis to f ′ and express it as f ′ = h′
(
1
[
T f
′

0
]
, . . . ,1

[
T f
′

k−2
])
.

Since T f
′

` = T f` for 0 ≤ ` ≤ k−2, we may use this along with the fact that 1
[
Sfk
]

= ¬1
[
T fk−1

]
to get:

f = f ′⊕1
[
Sfk
]

= h′
(
1
[
T f
′

0
]
, . . . ,1

[
T f
′

k−2
])
⊕¬1

[
T fk−1

]
= h′

(
1
[
T f0
]
, . . . ,1

[
T fk−2

])
⊕¬1

[
T fk−1

]
and the inductive hypothesis holds (note that 0n ∈ Sfk ).

The converse is easily verified by observing that any chain in {0, 1}n can induce at most
k + 1 possible vectors of values for (m1, . . . ,mk) because of their monotonicity. J

Theorem 1.1 along with Markov’s theorem immediately yields the following corollary:

I Corollary 1.2. Every f ∈ Cnt can be expressed as f = h(m1, . . . ,mT ) where h is either
PART or its negation, each mi : {0, 1}n → {0, 1} is monotone, and T = O(2t).

2.2 Approximation
As noted earlier, Markov’s theorem implies that every n-variable Boolean function can be
exactly computed by a circuit with (essentially) logn negations (since a(f) ≤ n for all f).
If we set a less ambitious goal of approximating Boolean functions (say, having a circuit
correctly compute f on a 1− ε fraction of all 2n inputs), can significantly fewer negations
suffice?

We first observe that every Boolean function f is ε-close (with respect to the uniform
distribution) to a function f ′ that has a(f ′) ≤ O(

√
n log 1/ε). The function f ′ is obtained

from f simply by setting f ′(x) = 0 for all inputs x that have Hamming weight outside
of [n/2− O(

√
n log 1/ε), n/2 + O(

√
n log 1/ε)]; a standard Chernoff bound implies that f

and f ′ disagree on at most ε2n inputs. Markov’s theorem then implies that the inversion
complexity I(f ′) is at most 1

2 (logn+ log log 1
ε ) +O(1). Thus, every Boolean function can be

approximated to high accuracy by a circuit with only 1
2 logn+O(1) negations.

We now show that this upper bound is essentially optimal: for almost every Boolean
function, any 0.01-approximating circuit must contain at least 1

2 logn−O(1) negations. To
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prove this, we recall the notion of the total influence of a Boolean function f : this is

Inf [f ] =
n∑
i=1

Inf i[f ], where Inf i[f ] = Prx∈{0,1}n [f(x) 6= f(x⊕i)]

and x⊕i denotes x with its i-th coordinate flipped. The total influence of f is easily seen to
equal αn, where α ∈ [0, 1] is the fraction of all edges e = (x, x′) in the Boolean hypercube
that are bichromatic, i.e. have f(x) 6= f(x′). In Appendix A.1 we prove the following lemma:

I Lemma 2.2. Suppose f : {0, 1}n → {0, 1} is such that Inf [f ] = Ω(n). Then a(f) = Ω(
√
n).

It is easy to show that a random function has influence n
2 (1 − o(1)) with probability

1− 2−n. Given this, Claim 2.2, together with the elementary fact that whenever f ′ is ε-close
to f then |Inf(f ′)− Inf(f)| ≤ 2εn, directly yields the following:

I Theorem 1.3. With probability 1− 2−n, any 0.01-approximator f ′ for a random function
f must have inversion complexity I(f ′) ≥ 1

2 logn−O(1).

I Remark. The results in this section (together with simple information-theoretic arguments
showing that random functions are hard to learn) imply that one cannot expect to have
a learning algorithm (even to constant accuracy) for the class Cn1

2 logn+O(1) of circuits with
1
2 logn+O(1) negations in time significantly better than 2n. As we shall see in Section 3.1,
for any fixed δ > 0 it is possible to learn Cn( 1

2−δ) logn to accuracy 1− ε in time 2Õ(n1−δ)/ε.

3 Learning circuits with few negations

3.1 A learning algorithm for Cnt
We sketch the learning algorithm and analysis of Bshouty and Tamon [6]; using the results
from Section 2 our Theorem 1.4 will follow easily from their approach. Our starting point
is the simple observation that functions with good “Fourier concentration” can be learned
to high accuracy under the uniform distribution simply by estimating all of the low-degree
Fourier coefficients. This fact, established by Linial, Mansour and Nisan, is often referred to
as the “Low-Degree Algorithm:”

I Theorem 3.1 (Low-Degree Algorithm ([13])). Let C be a class of Boolean functions such
that for ε > 0 and τ = τ(ε, n),∑
|S|>τ

f̂(S)2 ≤ ε

for any f ∈ C. Then C can be learned from uniform random examples in time poly(nτ , 1/ε).

Using the fact that every monotone function f : {0, 1}n → {0, 1} has total influence
Inf(f) ≤

√
n, and the well-known Fourier expression Inf(f) =

∑
S f̂(S) · |S|2 for total

influence, a simple application of Markov’s inequality let Bshouty and Tamon show that
every monotone function f has∑
|S|>

√
n/ε

f̂(S)2 ≤ ε.

Together with Theorem 3.1, this gives their learning result for monotone functions.

APPROX/RANDOM’15
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Armed with Corollary 1.2, it is straightforward to extend this to the class Cnt . Corollary 1.2
and a union bound immediately give that every f ∈ Cnt has Inf(f) ≤ O(2t)

√
n, so the Fourier

expression for influence and Markov’s inequality give that∑
|S|>O(2t)

√
n/ε

f̂(S)2 ≤ ε

for f ∈ Cnt . Theorem 1.4 follows immediately using the Low-Degree Algorithm.

An immediate question is whether this upper bound on the complexity of learning Cnt is
optimal; we give an affirmative answer in the next subsection.

3.2 Lower bounds for learning
As noted in the introduction, we prove information-theoretic lower bounds against learning
algorithms that make a limited number of membership queries. We start by establishing a
new lower bound on the number of membership queries that are required to learn monotone
functions to high accuracy, and then build on this to provide a lower bound for learning Cnt .
Our query lower bounds are essentially tight, matching the upper bounds (which hold for
learning from uniform random examples) up to logarithmic factors in the exponent.

We first state the results; the proofs are deferred to Section 3.2.1. We say that a Boolean
function f is balanced if Prx[f(x) = 0] = Prx[f(x) = 1] = 1/2.

I Theorem 3.2. There exists a class Hn of balanced n-variable monotone Boolean functions
such that for any ε ∈ [ 1

n1/6 , 1/2− c], c > 0, learning Hn to accuracy 1− ε requires 2Ω(√n/ε)
membership queries.

This immediately implies the following corollary, which essentially closes the gap in our
understanding of the hardness of learning monotone functions:

I Corollary 3.3. For any ε = Ω
(
1/n1/6) bounded away from 1/2, learning n-variable

monotone functions to accuracy 1− ε requires 2Θ̃(
√
n)/ε queries.

Using this class H as a building block, we obtain the following hardness of learning result
for the class of k-alternating functions:

I Theorem 3.4. For any function k : N→ N, there exists a class H(k) of balanced k = k(n)-
alternating n-variable Boolean functions such that, for any n sufficiently large and ε > 0
such that (i) 2 ≤ k < n1/14, and (ii) k7/3/n1/6 ≤ ε ≤ 1

2 − c, learning H
(k) to accuracy 1− ε

requires 2Ω(k√n/ε) membership queries.

(We note that the tradeoff between the ranges of k and ε that is captured by condition (ii)
above seems to be inherent to our approach and not a mere artifact of the analysis; see
Observation 3.16.) This theorem immediately yields the following:

I Corollary 3.5. Learning the class of k-alternating functions to accuracy 1 − ε in the
uniform-distribution membership-query model requires 2Ω(k√n/ε) membership queries, for
any k = O

(
n1/28) and ε ∈ [1/n1/12, 1

2 − c].

I Corollary 3.6. For t ≤ 1
28 logn, learning Cnt to accuracy 1− ε requires 2Ω(2t

√
n/ε) mem-

bership queries, for any ε ∈ [27t/3/n1/6, 1
2 − c].
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3.2.1 Proofs
We require the following standard notion of composition for two functions f and g:

I Definition 3.7 (Composition). For f : {0, 1}m → {0, 1} and g : {0, 1}r → {0, 1}, we denote
by g ⊗ f the Boolean function on n = mr inputs defined by

(g ⊗ f)(x) def= g(f, . . . , f︸ ︷︷ ︸
r

)(x) = g(f(x1, . . . , xm), . . . , f(x(r−1)m+1, . . . , xrm))

Similarly, for any g : {0, 1}r → {0, 1} and Fm a class of Boolean functions on m variables,
we let

g ⊗Fm = { g ⊗ f : f ∈ Fm }

and g ⊗F = {g ⊗Fm}m≥1.

Overview of the arguments. Our approach is based on hardness amplification. In order to
get our lower bound against learning k-alternating functions, we (a) start from a lower bound
ruling out very high-accuracy learning of monotone functions; (b) use a suitable monotone
combining function to get an XOR-like hardness amplification, yielding a lower bound for
learning (a subclass of) monotone functions to moderate accuracy; (c) repeat this approach
on this subclass with a different (now k-alternating) combining function to obtain our final
lower bound, for learning k-alternating functions to moderate accuracy.[

high-accuracy
monotone

]
(a)

⊗
-like

−−−−−−−−→
monotone

[
moderate accuracy

monotone

]
(b)

⊗
-like

−−−−−−−−→
k-alternating

[
moderate accuracy
k-alternating

]
(c)

(1)

In more detail, in both steps (b) and (c) the idea is to take as base functions the hard
class from the previous step (respectively “monotone hard to learn to high accuracy,” and
“monotone hard to learn to moderate accuracy”), and compose them with a very noise-sensitive
function in order to amplify hardness. Care must be taken to ensure that the combining
function satisfies several necessary constraints (being monotone for (b) and k-alternating for
(c), and being as sensitive as possible to the correct regime of noise in each case).

Useful tools

We begin by recalling a few notions and results that play a crucial role in our approach.

I Definition 3.8 (Noise stability). For f : {0, 1}n → {0, 1}, the noise stability of f at
η ∈ [−1, 1] is

Stabη(f) def= 1− 2 Pr[ f(x) 6= f(y) ]

where x is drawn uniformly at random from {0, 1}n and y is obtained from x by independently
for each bit having Pr[yi = xi] = (1 + η)/2 (i.e., x and y are η-correlated).

I Definition 3.9 (Bias and expected bias). The bias of a Boolean function h : {0, 1}n → {0, 1}
is the quantity bias(h) def= max(Pr[h = 1 ] ,Pr[h = 0 ]), while the expected bias of h at δ is
defined as ExpBiasδ(h) def= Eρ[bias(hρ)], where ρ is a random restriction on n coordinates
where each coordinate is independently left free with probability δ and set to 0 or 1 with
same probability (1− δ)/2.

APPROX/RANDOM’15
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I Fact 3.10 (Proposition 4.0.11 from [19]). For δ ∈ [0, 1/2] and f : {0, 1}n → {0, 1}, we have

1
2 + 1

2 Stab1−2δ(f) ≤ ExpBias2δ(f) ≤ 1
2 + 1

2
√

Stab1−2δ(f).

Building on Talagrand’s probabilistic construction [28] of a class of functions that are
sensitive to very small noise, Mossel and O’Donnell [18] gave the following noise stability
upper bound. (We state below a slightly generalized version of their Theorem 3, which follows
from their proof with some minor changes; see Appendix A.2 for details of these changes.)

I Theorem 3.11 (Theorem 3 of [18]). There exists an absolute constant K and an infinite
family of balanced monotone functions gr : {0, 1}r → {0, 1} such that Stab1−τ/

√
r(gr) ≤

1−Kτ holds for all sufficiently large r, as long as τ ∈ [16/
√
r, 1].

Applying Fact 3.10, it follows that for the Mossel–O’Donnell function gr on r inputs and
any τ as above, we have

1
2 ≤ ExpBiasγ(gr) ≤

1
2 + 1

2
√

1−Kτ ≤ 1− K

4 τ (2)

for γ def= τ√
r
.

We will use the above upper bound on expected bias together with the following key tool
from [7], which gives a hardness amplification result for uniform distribution learning. This
result builds on the original hardness amplification ideas of O’Donnell [19]. (We note that
the original theorem statement from [7] deals with the running time of learning algorithms,
but inspection of the proof shows that the theorem also applies to the number of membership
queries that the learning algorithms perform.)

I Theorem 3.12 (Theorem 12 of [7]). Fix g : {0, 1}r → {0, 1}, and let F be a class of m-
variable Boolean functions such that for every f ∈ F , bias(f) ≤ 1

2 + ε
8r . Let A be a uniform

distribution membership query algorithm that learns g ⊗ F to accuracy ExpBiasγ(g) + ε

using T (m, r, 1/ε, 1/γ) queries. Then there exists a uniform-distribution membership query
algorithm B that learns F to accuracy 1 − γ using O(T · poly(m, r, 1/ε, 1/γ)) membership
queries.

Hardness of learning monotone functions to high accuracy. At the bottom level, corres-
ponding to step (a) in (1), our approach relies on the following simple claim which states
that monotone functions are hard to learn to very high accuracy. (We view this claim, as
essentially folklore; as noted in the introduction it slightly sharpens a lower bound given
in [6]. A proof is given for completeness in Appendix A.3.)

I Claim 3.13 (A slice of hardness). There exists a class of balanced monotone Boolean
functions G = {Gm}m∈N and a universal constant C such that, for any constants 0 < α ≤
1/10, learning Gm to error 0 < ε ≤ α/

√
m requires at least 2Cm membership queries.

We now prove Theorem 3.2, i.e. we establish a stronger lower bound (in terms of the
range of accuracy it applies to) against learning the class of monotone functions. We do
this by amplifying the hardness result of Fact 3.13 by composing the “mildly hard” class of
functions G with a monotone function g – the Mossel–O’Donnell function of Theorem 3.11
– that is very sensitive to small noise (intuitively, the noise rate here is comparable to the
error rate from Fact 3.13).
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Proof of Theorem 3.2. We will show that there exists an absolute constant α > 0 such that
for any n sufficiently large and τ ∈ [ 1

n1/6 , 1/2 − c], there exist m = m(n), r = r(n) (both
of which are ωn(1)) such that learning the class of (balanced) functions Hn = gr ⊗ Gm on
n = mr variables to accuracy 1− τ requires at least 2α

√
n/τ membership queries.

By contradiction, suppose we have an algorithm A which, for all m, r, τ as above, learns
the class Hn to accuracy 1− τ using T = TA(n, τ) < 2α

√
n/τ membership queries. We show

that this implies that for infinitely many values of m, one can learn Gm to error ε = .1/
√
m

with 2o(m) membership queries, in contradiction to Fact 3.13.
Fix any n large enough and τ ∈ [ 1

n1/6 , .1], and choose m, r satisfying mr = n and
5
K ·

τ√
r

= .1√
m
, where K is the constant from Theorem 3.11. Note that this implies m =

K
50 ·

√
n
τ ∈ [Θ(n1/2),Θ(n2/3)] so indeed both m and r are ωn(1). (Intuitively, the value .1√

m
is

the error we want to achieve to get a contradiction, while the value 5
K ·

τ√
r
is the error we

can get from Theorem 3.12.) Note that we indeed can use the Mossel–O’Donnell function
from Theorem 3.11, which requires τ > 16√

r
– for our choice of r, this is equivalent to

τ >
(

16
√
K√

50

)2/3
1

n1/6 . Finally, set ε
def= .1/

√
m.

We apply Theorem 3.12 with g
def= gr, γ = (5/K)τ/

√
r and ε = τ/4. (Note that all

functions in Gm are balanced, and thus trivially satisfy the condition that bias(f) ≤ ε
8r , and

recall that 1− γ is the accuracy the theorem guarantees against the original class Gm.) With
these parameters we have

ExpBiasγ(g) + ε ≤
Eq.(2)

1− K

4
5τ
K

+ τ

4 = 1− τ ≤ accuracy(A).

Theorem 3.12 gives that there exists a learning algorithm B learning Gm to accuracy
1 − γ ≥ 1 − ε with TB = O(T · poly(m, r, 1/τ, 1/γ)) = O(T · poly(n, 1/τ)) membership
queries, that is, TB = TA(n, τ) · poly(n, 1/τ) < 2α

√
n/τ+o(√n/τ) many queries. However, we

have 2(α+o(1))
√
n/τ = 2(α+o(1))m·

√
n

τm < 2Cm, where the inequality comes from observing that√
n

τm = 50
K (so that it suffices to pick α satisfying 50α/K < C). This contradicts Claim 3.13

and proves the theorem. J

I Remark (Improving this result). Proposition 1 of [18] gives a lower bound on the best noise
stability that can be achieved by any monotone function. If this lower bound were in fact
tight – that is, there exists a family of monotone functions {fr} such that for all γ ∈ [−1, 1],
Stab1−γ(fr) = (1− γ)(

√
2/π+o(1))

√
r – then the above lower bound could be extended to an

(almost) optimal range of τ , i.e. τ ∈ [Φ(n)/
√
n, 1

2 − c] for Φ any fixed superconstant function.

From hardness of learning monotone Boolean functions to hardness of learning
k-alternating functions. We now establish the hardness of learning k-alternating func-
tions. Hereafter we denote by H = {gr ⊗ Gm}m,r the class of “hard” monotone functions
from Theorem 3.2. Since gr is balanced and every f ∈ Gm has bias 1/2, it is easy to see that
H is a class of balanced functions.

We begin by recalling the following useful fact about the noise stability of functions that
are close to PAR:

I Fact 3.14 (e.g., from the proof of Theorem 9 in [4]). Let r ≥ 1. If f is a Boolean function
on r variables which η-approximates PARr, then for all δ ∈ [0, 1],

Stab1−2δ(f) ≤ (1− 2η)2(1− 2δ)r + 4η(1− η). (3)
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We use the above fact to define a function that is tailored to our needs: that is, a
k-alternating function that is very sensitive to noise and is defined on roughly k2 inputs.
Without the last condition, one could just use PARk, but in our context this would only let
us obtain a

√
k (rather than a k) in the exponent of the lower bound, because of the loss

in the reduction. To see why, observe that by using a combining function on k variables
instead of k2, the number of variables of the combined function gk ⊗ Gm would be only
n = km. However, to get a contradiction with the hardness of monotone functions we shall
need k

√
n/ε �

√
m/τ , where τ ≈ ε/k, as the hardness amplification lemma requires the

error to scale down with the number of combined functions.

I Definition 3.15. For any odd2 r ≥ k ≥ 1, let PAR′k,r be the symmetric Boolean function
on r inputs defined as follows: for all x ∈ {0, 1}r,

PAR′k,r(x) =


0 if |x| ≤ r−k

2

1 if |x| ≥ r+k
2

PARr(x) otherwise.

In particular, PAR′k,r is k-alternating, and agrees with PARr on the k + 1 middle layers of
the hypercube. By an additive Chernoff bound, one can show that PAR′k,r is η-close to PARr,
for η = e−k

2/2r.

Proof of Theorem 3.4. H(k)
n will be defined as the class PAR′k,r ⊗Hm for some r and m

such that n = mr (see below). It is easy to check that functions in H(k)
n are balanced

and k-alternating. We show below that for n sufficiently large, 2 ≤ k < n1/14 and ε ∈
[(1/300)(k14/n)1/6, 1

2 − c], learning H
(k)
n to accuracy 1− ε requires 2Ω(k√n/ε) membership

queries.
By contradiction, suppose we have an algorithm A learning for all n, k, ε as above the class

of k-alternating functions to accuracy 1− ε using TA(n, k, ε) < 2β
k
√
n
ε membership queries,

where β > 0 is a universal constant to be determined during the analysis. We claim that this
implies that for infinitely many values of m, one can learn Hm to some range of accuracies
with a number of membership queries contradicting the lower bound of Theorem 3.2.

Fix any n large enough, k and ε as above (which in particular impose k = O
(
n1/14)).

The constraints we impose on m, r and τ are the following:

mr = n; ExpBiasτ (PAR′k,r) + ε ≤ 1− ε; m = ωn(1); τ ≥ 1
m1/6 ; (4)

βk

√
n

ε
< α

√
m

τ
, (5)

where the constraints in (4) are for us to apply the previous theorems and lemmas, while (5)
is needed to ultimately derive a contradiction.

One can show that by taking r def=
⌊

k2

2 ln 5

⌋
≥ 1 and τ def= 100ε

r , the second constraint of (4) is
satisfied, as then Stab1−τ (PAR′k,r) ≤ 1−8ε (for the derivation, see Appendix A.4). Then, with
the first constraint of (4), we get (omitting for simplicity the floors) m def= nτ

100ε = (2 ln 5) nk2 ,

2 The above definition can be straightforwardly extended to r ≥ k ≥ 1 not necessarily odd, resulting in
a similar k-alternating perfectly balanced function PAR′

k,r that agrees with PARr on k + O(1) middle
layers of the cube and is 0 below and 1 above those layers. For the sake of simplicity we leave out the
detailed description of the other cases.
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so as long as k = o(
√
n), the third constraint of (4) is met as well. With these settings,

the final constraint of (4) can be rewritten as ε ≥ 1
100

(
r7

n

)1/6
= 1

100(2 ln 5)7/6

(
k14

n

)1/6
. As

(2 ln 5)7/6 > 3, it is sufficient to have ε ≥ 1
300

(
k14

n

)1/6
, which holds because of the lower

bound on ε.
It only remains to check Constraint (5) holds:

k

√
n

ε
= 100k

√
n

τr
= 100 k√

r

√
m

τ
≤

(
100

√
2 ln 5

1− 2 ln 5/k2

) √
m

τ
≤ 300

√
2 ln 5 ·

√
m

τ
,

where the first inequality holds because as 1
r ≤

1
k2

2 ln 5−1
and the second holds because k ≥ 2.

So for the right choice of β = Ω(1), e.g. β = α/600, βk
√
n
ε < α

√
m
τ , and (5) is satisfied.

It now suffices to apply Theorem 3.12 to PAR′k,r ⊗Hm, with parameters γ = τ and ε,
on algorithm A, which has accuracy acc(A) ≥ 1 − τ ≥ ExpBiasγ(PAR′k,r) + ε. Since the
functions of H are unbiased, it follows that there exists an algorithm B learning Hm to
accuracy 1− τ , with τ > 1/2m1/6, making only

TB(m, τ) = O(TA(n, k, ε) poly(n, k, 1/ε)) = 2βk
√
n
ε (1+o(1)) < 2α

√
m
τ

membership queries, which contradicts the lower bound of Theorem 3.2. J

I Observation 3.16 (On the relation between ε and k). The tradeoff in the ranges for k and
ε appear to be inherent to this approach. Namely, it comes essentially from Constraint (4),
itself deriving from the hypotheses of Theorem 3.2. However, even getting an optimal range
in the latter would still require τ = Ω(1/

√
m), which along with r ≈ k2 and τ ≈ ε/r impose

k = O
(
n1/6) and ε = Ω

(
k3/
√
n
)
.
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A Proofs

A.1 Proof of Claim 2.2
Suppose Inf [f ] ≥ αn for some α ∈ (0, 1]: this means that at least an α fraction of all edges
are bichromatic. Define the weight level k (denoted Wk) to be the set of all edges going
from a vertex of Hamming weight k to a vertex of Hamming weight k + 1 (in particular,
|Wk| = (n− k)

(
n
k

)
), and consider weight levels n/2− a

√
n, . . . , n/2 + a

√
n−1 (the “middle

levels”) for a def=
√

(1/2) ln(8/α). (We suppose without loss of generality that n/2− a
√
n is
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a whole number.) Now, the fraction of all edges which do not lie in these middle levels is at
most

1
n2n−1 · 2

n
2−a
√
n−1∑

j=0
|Wk| ≤

2n
n2n−1

n
2−a
√
n−1∑

j=0

(
n

k

)
≤ 4

2n

n
2−a
√
n−1∑

j=1

(
n

k

)
≤ 4e−2a2

= α

2 .

So no matter how many of these edges are bichromatic, it must still be the case that at least
an α/2 fraction of all edges in the “middle levels” are bichromatic.

Since the ratio∣∣Wn/2
∣∣∣∣Wn/2−a
√
n

∣∣ =
n
2
(
n
n/2
)(

n
2 + a

√
n
) (

n
n/2−a

√
n

)
converges monotonically from below (when n goes to infinity) to C def= e2a2 , any two weight
levels amongst the middle ones have roughly the same number of edges, up to a multiplicative
factor C. Setting p = α/6C and q = α/6, this implies that at least a p fraction of the weight
levels in the middle levels have at least a q fraction of their edges being bichromatic. (Indeed,
otherwise we would have, letting bk denote the number of bichromatic edges in weight layer k,

α

2 ·
n
2 +a
√
n−1∑

k=n
2−a
√
n

|Wk|

︸ ︷︷ ︸
total

≤
n
2 +a
√
n−1∑

k=n
2−a
√
n

bk

≤
∑

k∈[n2−a
√
n,n2 +a

√
n−1]

bk>q|Wk|

|Wk|+
∑

k∈[n2 a
√
n,n2 +a

√
n−1]

bk≤q|Wk|

q · |Wk|

≤ p · 2a
√
n ·
∣∣Wn/2

∣∣+ q ·
n
2 +a
√
n−1∑

k=n
2−a
√
n

|Wk|

≤ p · C ·
n
2 +a
√
n−1∑

k=n
2−a
√
n

|Wk|+ q ·
n
2 +a
√
n−1∑

k=n
2−a
√
n

|Wk| .

So α
2 · total ≤ p · C · total + q · .total, which gives α

2 ≤
α

6C · C + α
6 = α

3 , a contradiction.)
Let S be this collection of at least 2a

√
np weight levels (from the middle ones) that each

have at least a q fraction of edges being bichromatic, and write pi to denote the fraction of
bichromatic edges in Wi, so that for each i ∈ S it holds that pi ≥ q. Consider a random
chain from 0n to 1n. The marginal distribution according to which an edge is drawn from
any given fixed weight level i is uniform on Wi, so by linearity, the expected number of
bichromatic edges in a random chain is at least

∑
i∈S pi ≥ 2a

√
npq = Ω(

√
n), and hence

some chain must have that many bichromatic edges. J

A.2 Derivation of Theorem 3.11 using Theorem 3 of [18]
The original theorem is stated for τ = 1, with the upper bound being 1− Ω(1). However,
the proof of [18] goes through for our purposes until the very end, where they set ε def= 1√

r

and need to show that

e−2
(

1− (1− ε+ 2
√
ε/r)

√
r
)

= Ω(1).
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More precisely, the proof goes overall as follows: for some realization of the Talagrand
function on r variables gr, we want (for some absolute constant K) that

1−Kτ ≥ Stab1− τ√
r
(gr) = 1− 2 Pr

[
gr ◦N1− τ√

r
(x) 6= gr(x)

]
.

That is, one needs to show Pr
[
gr ◦N1− τ√

r
(x) 6= gr(x)

]
≥ K

2 τ ; and in turn, it is sufficient
to prove that for g a random Talagrand function on r variables,

Eg

[
Pr
[
g ◦N1− τ√

r
(x) 6= g(x)

] ]
≥ K

2 τ.

This is where we slightly adapt the [18] proof. Where they set a parameter ε to be equal to
1/
√
r and analyze Eg[Pr[ g ◦N1−2ε(x) 6= g(x) ]], we set for our purposes ε def= τ

2
√
r
. The rest

of the argument goes through until the very end, where it only remains to show that

ae−2
(

1− (1− ε+ 2
√
ε/r)

√
r
)
≥ K

2 τ (6)

(a being a small constant resulting from the various conditionings in their proof), or equi-
valently, that (1 − ε + 2

√
ε/r)

√
r ≤ 1 − e2K

2a τ . But the left-hand side can be rewritten
as

(1− ε+ 2
√
ε/r)

√
r = e

√
r ln(1−ε+2

√
ε/r) = e

√
r ln(1−τ/2

√
r+
√

2τ/r3/4)

= e

√
r ln
(

1− τ
2
√
r

(
1− 2

√
2√

r1/2τ

))
≤ e
−
√
r· τ2
√
r

(
1− 2

√
2√

r1/2τ

)
(as τ

2
√
r

(
1− 2

√
2√

r1/2τ

)
< 1)

= e
− τ2

(
1− 2

√
2√

r1/2τ

)
≤ e−

τ
2 (1− 1√

2
) (as τ > 16√

r
)

≤ e− τ7 ≤ 1− τ

8 ≤ 1− e2K

2a τ.

(first as τ < 1, then for a suitable choice of K)

J

A.3 Proof of Fact 3.13
We give the proof for m even; by standard techniques, it extends easily to the odd case.
For any m ∈ 2N, define Cm as the class of functions f generated as follows: let R =
{ x ∈ {0, 1}m : |x| = m/2 }, and partition R in |R|/2 pairs of elements (x`, x̄`). For all
x ∈ {0, 1}m,

f(x) =


0 if |x| < m/2
r` if x ∈ R and x = x`

1− r` if x ∈ R and x = x̄`

1 if |x| > m/2

where the |R| /2 bits r` are chosen independently and uniformly at random. Clearly, f is
balanced, and we have

|R| =
(
m

m/2

)
∼

m→∞

√
2
π
· 2m√

m

def= γ2m.
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Suppose we have a learning algorithm A for Cm making q < 2Cm membership queries.
Fix 0 < α ≤ 1, and ε = α/

√
m; to achieve error at most ε overall, A must in particular

achieve error at most ε
γ =

√
π
2α on R. But after making q queries, there are still at least

t = γ2m/2− 2Cm > 0.99 |R| points in R (for m big enough) A has not queried, and hence
with values chosen uniformly at random; on each of these points, A is wrong with probability
exactly half, and in particular

Pr
[
error ≤ ε

γ

]
< Pr[ error ≤ 2α ] = Pr

[
t∑
i=1

Xi ≤ 2α |R|
]

≤ Pr
[

t∑
i=1

Xi ≤
200
99 αt

]

≤ e−
(1− 400

99 α)2t
2 = o(1)

with an additive Chernoff bound. This means that with high probability over the choice of
the target concept, A will fail to learn it to accuracy 1− ε. J

A.4 Derivation of the bound Stab1−τ (PAR′k,r) ≤ 1− 8ε

By setting r as stated we get that r ≤ k2/ ln(1/ε) and the distance between PAR′k,r and
PARr becomes η = e−k

2/2r ≤ 1/5. Since we aim at having ExpBiasτ (PAR′k,r) ≤ 1 − 2ε,
it is sufficient to have

√
Stab1−τ (PAR′k,r) ≤ 1 − 4ε; which would in turn be implied by

Stab1−τ (PAR′k,r) ≤ 1− 8ε.
By Fact 3.14, it is sufficient to show that (1− 2η)2(1− τ)r + 4η(1− η) ≤ 1− 8ε; note

that since ε < 1/100 and by our choice of τ ,

(1− 2η)2(1− τ)r + 4η(1− η) ≤ (1− 2η)2

1 + 100ε + 4η(1− η) ≤ (1− 2η)2(1− 50ε) + 4η(1− η)

≤ (1− 4η + 4η2)(1− 50ε) + 4η(1− η)
= 1− 4η − 50ε+ 200ηε+ 4η2 − 200εη2 + 4η − 4η2

= 1− 50ε+ 200εη(1− η) ≤ 1− 50ε+ 32ε = 1− 18ε
≤ 1− 8ε.

J
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Abstract
The random-cluster model has been widely studied as a unifying framework for random graphs,
spin systems and random spanning trees, but its dynamics have so far largely resisted analysis.
In this paper we study a natural non-local Markov chain known as the Chayes-Machta dynamics
for the mean-field case of the random-cluster model, and identify a critical regime (λs, λS) of
the model parameter λ in which the dynamics undergoes an exponential slowdown. Namely, we
prove that the mixing time is Θ(logn) if λ 6∈ [λs, λS ], and exp(Ω(

√
n)) when λ ∈ (λs, λS). These

results hold for all values of the second model parameter q > 1. In addition, we prove that the
local heat-bath dynamics undergoes a similar exponential slowdown in (λs, λS).
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1 Introduction

Background and previous work. Let H = (V,E) be a finite graph. The random-cluster
model on H with parameters p ∈ (0, 1) and q > 0 assigns to each subgraph (V,A ⊆ E) a
probability

µp,q(A) ∝ p|A|(1− p)|E|−|A|qc(A),

where c(A) is the number of connected components in (V,A). A is a configuration of the
model.

The random-cluster model was introduced in the late 1960s by Fortuin and Kasteleyn [10]
as a unifying framework for studying random graphs, spin systems in physics and random
spanning trees; see the book [14] for extensive background. When q = 1 this model
corresponds to the standard Erdős-Rényi model on subgraphs of H, but when q > 1 (resp.,
q < 1) the resulting probability measure favors subgraphs with more (resp., fewer) connected
components, and is thus a strict generalization.

For the special case of integer q ≥ 2 the random-cluster model is, in a precise sense, dual
to the classical ferromagnetic q-state Potts model, where configurations are assignments of
spin values {1, . . . , q} to the vertices of H; the duality is established via a coupling of the
models (see, e.g., [9]). Consequently, the random-cluster model illuminates much of the
physical theory of the Ising/Potts models. Indeed, recent breakthrough work by Beffara
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and Duminil-Copin [1] uses the geometry of the random-cluster model in Z2 to establish the
critical temperature of the q-state Potts model, settling a long-standing conjecture.

At the other extreme, when q, p→ 0 and p approaches zero at a slower rate (i.e., q/p→ 0)
the random-cluster measure µp,q converges to the uniform random spanning tree measure on
H. Random spanning trees are fundamental probabilistic objects, whose relevance goes back
to Kirchhoff’s work on electrical networks [16]. In this paper we investigate the dynamics
of the random-cluster model, i.e., Markov chains on random-cluster configurations that
are reversible w.r.t. µp,q and thus converge to it. The dynamics of physical models are of
fundamental interest, both as evolutionary processes in their own right and as Markov chain
Monte Carlo (MCMC) algorithms for sampling configurations in equilibrium. In both these
contexts the central object of study is the mixing time, i.e., the number of steps until the
dynamics is close to the equilibrium measure µp,q starting from any initial configuration.
While dynamics for the Ising and Potts models have been widely studied, very little is
known about random-cluster dynamics. The main reason for this appears to be the fact
that connectivity is a global property which has led to the failure of existing Markov chains
analysis tools.

We focus on the mean-field case, where H is the complete graph on n vertices. In this
case the random-cluster model may be viewed as the standard random graph model Gn,p,
enriched by a factor that depends on the component structure. As we shall see, the mean-field
case is already quite non-trivial; moreover, it has historically proven to be a useful starting
point in understanding the dynamics on more general graphs. The structural properties
of the mean-field model are already well understood [3, 19]; in particular, it exhibits a
phase transition (analogous to that in Gn,p) corresponding to the appearance of a “giant”
component of linear size. It is natural here to re-parameterize by setting p = λ/n; the phase
transition then occurs at the critical value λ = λc(q) given by

λc(q) =

q for 0 < q ≤ 2;
2
(
q−1
q−2

)
log(q − 1) for q > 2.

For λ < λc(q) all components are of size O(logn) w.h.p.1, while for λ > λc(q) there is a
unique giant component of size θn (for some constant θ that depends on q and λ). The
former regime is called the disordered phase, and the latter is the ordered phase. Henceforth
we assume q > 1, since the q < 1 regime is structurally quite different; the dynamics are
trivial for q = 1.

Our main object of study is a non-local dynamics known as the Chayes-Machta (CM)
dynamics [6]. Given a random-cluster configuration (V,A), one step of this dynamics is
defined as follows:
(i) activate each connected component of (V,A) independently with probability 1/q;
(ii) remove all edges connecting active vertices;
(iii) add each edge connecting active vertices independently with probability p, leaving the

rest of the configuration unchanged.
It is easy to check that this dynamics is reversible w.r.t. µp,q [6]. Until now, the mixing

time of the CM dynamics has not been rigorously established for any non-trivial random-
cluster measure µp,q on any graph. Our goal in this paper is to analyze the CM dynamics in
the mean-field case for all values of q > 1 and all values of λ > 0.

1 We say that an event occurs with high probability (w.h.p.) if it occurs with probability approaching 1 as
n→∞.
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For integer q, the CM dynamics is a close cousin of the well studied and widely used
Swendsen-Wang (SW) dynamics [20]. The SW dynamics is primarily a dynamics for the
Ising/Potts model, but it may alternatively be viewed as a Markov chain for the random-
cluster model using the coupling of these measures mentioned earlier. However, the SW
dynamics is only well-defined for integer q, while the random-cluster model makes perfect
sense for all q > 0. The CM dynamics was introduced precisely in order to allow for this
generalization.

The SW dynamics for the mean-field case is fully understood for q = 2: recent results
of Long, Nachmias, Ning and Peres [18], building on earlier work of Cooper, Dyer, Frieze
and Rue [7], show that the mixing time is Θ(1) for λ < λc, Θ(logn) for λ > λc, and Θ(n1/4)
for λ = λc. Until recently, the picture for integer q ≥ 3 was much less complete: Huber [15]
gave bounds of O(logn) and O(n) on the mixing time when λ is far below and far above λc
respectively, while Gore and Jerrum [13] showed that at the critical value λ = λc the mixing
time is exp(Ω(

√
n)). All these results were developed for the Ising/Potts model, so their

relevance to the random-cluster model is limited to the case of integer q. In work that
appeared after the submission of this manuscript [2], Galanis, Štefankovič and Vigoda [11]
provide a more comprehensive analysis of the q ≥ 3 mean-field case. Finally, for the very
different case of the d-dimensional torus, Borgs et al. [4, 5] proved exponential lower bounds
for the mixing time of the SW dynamics for λ = λc and q sufficiently large.

Our work is the first to provide tight bounds for the mixing time of any random-cluster
dynamics for general (non-integer) values of q.

Results. To state our results we identify two further critical points, λs(q) and λS(q), with
the property that λs(q) ≤ λc(q) ≤ λS(q). (For 1 < q ≤ 2 these three points coincide; for
q > 2 they are all distinct.) The definitions of these points are somewhat technical and can
be found in Section 2.

Our first result shows that the CM dynamics reaches equilibrium very rapidly for λ
outside the “critical” window [λs, λS ]. Moreover, our bounds are tight throughout the fast
mixing regime.

I Theorem 1. For any q > 1, the mixing time of the mean-field CM dynamics is Θ(logn)
for λ 6∈ [λs, λS ].

Our next result shows that, inside the critical window (λs, λS), the mixing time is
dramatically larger. (We state this result only for q > 2 as otherwise the window is empty.)

I Theorem 2. For any q > 2, the mixing time of the mean-field CM dynamics is eΩ(
√
n) for

λ ∈ (λs, λS).

We now provide an interpretation of the above results. When q > 2 the mean-field random-
cluster model exhibits a first-order phase transition, which means that at criticality (λ = λc)
the ordered and disordered phases mentioned earlier coexist [19], i.e., each contributes about
half of the probability mass. (For q ≤ 2, there is no phase coexistence.) Phase coexistence
suggests exponentially slow mixing for most natural dynamics, because of the difficulty
of moving between the phases. Moreover, by continuity we should expect that, within a
constant-width interval around λc, the effect of the non-dominant phase (ordered below λc,
disordered above λc) will still be felt, as it will form a second mode (local maximum) for the
random-cluster measure. This leads to so-called metastable states near that local maximum
from which it is very hard to escape, so slow mixing should persist throughout this interval.
Intuitively, the values λs, λS mark the points at which the local maxima disappear. A similar
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phenomenon was captured in the case of the Potts model by Cuff et al. [8]. Our results
make the above picture for the dynamics rigorous for the random-cluster model for all q > 2;
notably, in contrast to the Potts model, in the random-cluster model metastability affects
the mixing time on both sides of λc. Note that our results leave open the behavior of the
mixing time exactly at λs and λS .

As a byproduct of our main results above, we deduce new bounds on the mixing time of
local dynamics for the random-cluster model (i.e., dynamics that modify only a constant-size
region of the configuration at each step). For definiteness we consider the canonical heat-bath
(HB) dynamics, which in each step updates a single edge of the current configuration (V,A)
as follows:
(i) pick an edge e ∈ E u.a.r;
(ii) replace A by A ∪ {e} with probability µp,q(A∪{e})

µp,q(A∪{e})+µp,q(A\{e}) , else by A \ {e}.
Local dynamics for the random-cluster model are currently very poorly understood (but

see [12] for the special case of graphs with bounded tree-width). However, in a recent
surprising development, Ullrich [21, 22] showed that the mixing time of the heat-bath
dynamics on any graph differs from that of the SW dynamics by at most a poly(n) factor.
Thus the previously known bounds for SW translate to bounds for the heat-bath dynamics
for integer q. By adapting Ullrich’s technology to our CM setting, we are able to obtain a
similar translation of our results, thus establishing the first non-trivial bounds on the mixing
time of the mean-field heat-bath dynamics for all q > 1.

I Theorem 3. For any q > 1, the mixing time of the heat-bath dynamics for the mean-field
random-cluster model is Õ(n4) for λ /∈ [λs, λS ], and eΩ(

√
n) for λ ∈ (λs, λS).

The Õ here hides polylogarithmic factors. We conjecture that the upper bound should be
Õ(n2) for all λ /∈ [λs, λS ]; the additional n2 factor is inherent in Ullrich’s spectral approach.

We conclude this introduction with some brief remarks about our techniques. Both our
upper and lower bounds on the mixing time of the CM dynamics focus on the evolution
of the one-dimensional random process given by the size of the largest component (which
approaches θn for λ > λc and Θ(logn) for λ < λc). A key ingredient in our analysis is a
function that describes the expected change, or “drift”, of this random process at each step;
the critical points λs and λS discussed above arise naturally from consideration of the zeros
of this drift function.

For our upper bounds, we construct a multiple-phase coupling of the evolution of two
arbitrary configurations, showing that they converge in O(logn) steps; this coupling is similar
in flavor to that used by Long et al. [18] for the SW dynamics for q = 2, but there are
additional complexities in that our analysis has to identify the “slow mixing” window (λs, λS)
for q > 2, and also has to contend with the fact that only a subset of the vertices (rather
than the whole graph, as in SW) are active at each step. This latter issue is handled using
precise concentration bounds for the number of active vertices, tailored estimates for the
component structure of random graphs and a new coupling for pairs of binomial random
variables.

For our exponential lower bounds we use the drift function to identify the metastable
states mentioned ealier from which the dynamics cannot easily escape. For both upper and
lower bounds, we have to handle the sub-critical and super-critical cases, λ < λc and λ > λc,
separately, even though our final results are insensitive to λc, because the structure of typical
configurations differs in the two cases.
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2 Preliminaries

In this section we gather a number of standard definitions and background results that we
will refer to repeatedly in our proofs. For those results that are not available in the literature,
we provide proofs in the full version of this paper [2].

Mixing time. Let P be the transition matrix of a finite, ergodic Markov chain M with
state space Ω and stationary distribution π. The mixing time of M is defined by

τmix = max
z∈Ω

min
t

{
||P t(z, ·)− π(·)||TV ≤ 1/4

}
where ||µ−ν||TV = maxA⊂Ω |µ(A)−ν(A)| is the total variation distance between distributions
µ and ν.

A (one step) coupling of the Markov chainM specifies for every pair of states (Xt, Yt) ∈ Ω2

a probability distribution over (Xt+1, Yt+1) such that the processes {Xt} and {Yt}, viewed
in isolation, are faithful copies of M , and if Xt = Yt then Xt+1 = Yt+1. The coupling time is
defined by

Tcoup = max
x,y∈Ω

min
t
{Xt = Yt|X0 = x, Y0 = y}.

For any δ ∈ (0, 1), the following standard inequality (see, e.g., [17]) provides a bound on the
mixing time:

τmix ≤ min
t
{Pr[Tcoup > t] ≤ 1/4} ≤ O

(
δ−1) ·min

t
{Pr[Tcoup > t] ≤ 1− δ} . (1)

Random graphs. Let Gd be distributed as a G(n, p = d/n) random graph where d > 0.
Let L(Gd) denote the largest component of Gd and let Li(Gd) be the size of the i-th largest
component of Gd. (Thus, L1(Gd) = |L(Gd)|.) In our proofs we will use several facts about
the random variables Li(Gd), which we gather here for convenience.

I Lemma 4 ([18, Lem. 5.7]). Let I(Gd) denote the number of isolated vertices in Gd. If
d = O(1), then there exists a constant A > 0 such that Pr[I(Gd) > An] = 1−O

(
n−1).

I Lemma 5. If d = O(1), then L2(Gd) < 2n11/12 with probability 1 − O
(
n−1/12) for

sufficiently large n.

I Lemma 6 ([7, Lem. 7]). If d < 1 is bounded away2 from 1, then L1(Gd) = O(logn) with
probability 1−O

(
n−1).

For d > 1, let β = β(d) be the unique positive root of the equation

e−dx = 1− x. (2)

I Lemma 7. Let G̃dn
be distributed as a G(n+m, dn/n) random graph where limn→∞ dn = d

and |m| = o(n). Assume 1 < dn = O(1) and dn is bounded away from 1 for all n ∈ N. Then,
L2(G̃dn

) = O(logn) with probability 1−O
(
n−1), and for A = o(logn) and n large enough,

there exists a constant c > 0 such that

Pr[|L1(G̃dn
)− β(d)n| > |m|+A

√
n] ≤ e−cA

2
.

I Corollary 8. With the same notation as in Lemma 7, |E[L1(G̃dn)]−β(d)n| < |m|+O(
√
n).

I Lemma 9 ([13, Lem. 6]). If d < 1 is bounded away from 1, then L1(Gd) = O(
√
n) with

probability 1− e−Ω(
√
n).

2 We say that d is bounded away from a if there exists a constant ξ such that |d− a| ≥ ξ.
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The random-cluster model. Recall from the introduction that the mean-field random-
cluster model exhibits a phase transition at λ = λc(q) (see [3]): in the sub-critical regime
λ < λc the largest component is of size O(logn), while in the super-critical regime λ > λc
there is a unique giant component of size ∼θrn, where θr = θr(λ, q) is the largest x > 0
satisfying the equation

e−λx = 1− qx

1 + (q − 1)x. (3)

(Note that, as expected, this equation is identical to (2) when q = 1.)

Drift function. As indicated in the introduction, our analysis relies heavily on understanding
the evolution of the size of the largest component under the CM dynamics. To this end, for
fixed λ and q let φ(θ) be the largest x > 0 satisfying the equation

e−λx = 1− qx

1 + (q − 1)θ . (4)

This equation corresponds to (2) for a G(αn, λ/n) random graph where α = (1+(q−1)θ)q−1.
Thus, φ(θ) = β(αλ) and consequently φ is well-defined when αλ > 1. In particular, φ is
well-defined in the interval (θmin, 1], where θmin = max {(q − λ)/λ(q − 1), 0}.

We will see in Section 3 that for a configuration with a unique “large” component of size
θn, the expected “drift” in the size of the largest component will be determined by the sign
of the function f(θ) = θ − φ(θ): f(θ) > 0 corresponds to a negative drift and f(θ) < 0 to a
positive drift. Thus, let

λs = max{λ ≤ λc : f(θ) > 0 ∀θ ∈ (θmin, 1]}, and

λS = min{λ ≥ λc : f(θ)(θ − θr) > 0 ∀θ ∈ (θmin, 1]}.

In words, λs and λS are the maximum and minimum values, respectively, of λ for which the
drift in the size of the largest component is always in the right direction (i.e., towards 0 in
the sub-critical case and towards θrn in the super-critical case). The following lemma reveals
basic information about these quantities.

I Lemma 10. For q ≤ 2, λs = λc = λS = q; and for q > 2, λs < λc < λS = q.

For integer q ≥ 3, λs corresponds to the threshold βs in the mean-field q-state Potts
model at which the local (Glauber) dynamics undergoes an exponential slowdown [8]. In
fact, a change of variables reveals that λs = 2βs for the specific mean-field Potts model
normalization in [8].

In Figure 1 we sketch f in its only two qualitatively different regimes: q ≤ 2 and q > 2.
The following lemma provides bounds for the drift of the size of the largest component under
CM steps.

I Lemma 11. For all θ ∈ (θmin, 1],
(i) If λ < λs, there exists a constant δ > 0 such that f(θ) ≥ δ.
(ii) When λ > λS, if θ > θr, then θ ≥ φ(θ) ≥ θr and if θ < θr, then θ ≤ φ(θ) ≤ θr.
(iii) If λ > λS , there exists a constant δ ∈ (0, 1) such that δ|θ − θr| ≤ |φ(θ)− θ|.

Binomial coupling. In our coupling constructions we will use the following fact about the
coupling of two binomial random variables.
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λ<λs

λ=λs

λ>λs

f(θ)

θ
θr(λ, q)

1

λ<λs

λs<λ < λS

λ>λS

f(θ)

θ
θr(λ, q)

1

Figure 1 Sketch of the function f . (Left figure corresponds to q ≤ 2 and right figure to q > 2.)

I Lemma 12. Let X and Y be binomial random variables with parameters m and r, where
r ∈ (0, 1) is a constant. Then, for any y ∈ N, there exists a coupling (X,Y ) such that for a
suitable constant γ = γ(r) > 0,

Pr[X − Y = y] ≥ 1− γy√
m
.

Moreover if y = a
√
m for a fixed constant a, then γa < 1.

Hitting time for supermartingales. We will require the following easily derived hitting
time estimate.

I Lemma 13. Consider the stochastic process {Zt} such that Zt ∈ [−n, n] for all t ≥
0. Assume Z0 > a for some a ∈ [−n, n] and let T = min{t > 0 : Zt ≤ a}. Suppose
E[Zt+1 − Zt|Ft] ≤ −A, where A > 0 and Ft is the history of the first t steps. Then,
E[T ] ≤ 4n/A.

3 Mixing time upper bounds

In this section we prove the upper bound portion of Theorem 1 from the introduction.

I Theorem 14. Consider the CM dynamics for the mean-field random-cluster model with
parameters p = λ/n and q where λ > 0 and q > 1 are constants independent of n. If
λ 6∈ [λs, λS ], then τmix = O(logn).

Proof Sketch. Consider two copies {Xt} and {Yt} of the CM dynamics starting from two
arbitrary configurations X0 and Y0. We design a coupling (Xt, Yt) of the CM steps and show
that Pr[XT = YT ] = Ω(1) for some T = O(logn); the result then follows from (1). The
coupling consists of four phases. In the first phase {Xt} and {Yt} are run independently. In
Section 3.1 we establish that after O(logn) steps {Xt} and {Yt} each have at most one large
component with probability Ω(1). We call a component large if it contains at least 2n11/12

vertices; otherwise it is small.
In the second phase, {Xt} and {Yt} also evolve independently. In Sections 3.2 and 3.3 we

show that, conditioned on the success of Phase 1, after O(logn) steps with probability Ω(1)
the largest components in {Xt} and {Yt} have sizes close to their expected value: O(logn)
in the sub-critical case and ∼θrn in the super-critical case. In the third phase, {Xt} and
{Yt} are coupled to obtain two configurations with the same component structure. This
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coupling, described in Section 3.4, makes crucial use of the binomial coupling of Section 2,
and conditioned on a successful conclusion of Phase 2 succeeds with probability Ω(1) after
O(logn) steps. In the last phase, a straightforward coupling is used to obtain two identical
configurations from configurations with the same component structure. This coupling is
described in Section 3.5 and succeeds w.h.p. after O(logn) steps, conditioned on the success
of the previous phases.

Putting all this together, there exists a coupling (Xt, Yt) such that, after T = O(logn)
steps, XT = YT with probability Ω(1). The reminder of this section fleshes out the above
proof sketch. J

We now introduce some notation that will be used throughout the rest of the paper. As
before, we will use L(Xt) for the largest component in Xt and Li(Xt) for the size of the i-th
largest component of Xt. (Thus, L1(Xt) = |L(Xt)|.) For convenience, we will sometimes
write θtn for L1(Xt). Also, we will use Et for the event that L(Xt) is activated, and At for
the number of activated vertices at time t.

3.1 Convergence to configurations with a unique large component

I Lemma 15. For any starting random-cluster configuration X0, there exists T = O(logn)
such that XT has at most one large component with probability Ω(1).

Proof. Let Nt be the number of new large components created in sub-step (iii) of the CM
dynamics at time t. If At < 2n11/12, then Nt = 0. Together with Lemma 5 this implies that
Pr[Nt > 1|Xt, At = a] ≤ a−1/12 for all a ∈ [0, n]. Thus,

E[Nt|Xt] =
n∑
a=0

E[Nt|Xt, At = a] Pr[At = a|Xt]

≤
n∑
a=0

(
Pr[Nt ≤ 1|Xt, At = a] + a

2n11/12 Pr[Nt > 1|Xt, At = a]
)

Pr[At = a|Xt]

≤
n∑
a=0

(
1 + a

2n11/12
1

a1/12

)
Pr[At = a|Xt] ≤ 2.

Let Kt be the number of large components in Xt and let Ct be the number of activated large
components in sub-step (i) of the CM dynamics at time t. Then,

E[Kt+1|Xt] = Kt − E[Ct|Xt] + E[Nt|Xt] ≤ Kt −
Kt

q
+ 2 ≤

(
1− 1

2q

)
Kt

provided Kt ≥ 4q. Assuming that Kt ≥ 4q for all t < T , we have

E[KT |X0] ≤
(

1− 1
2q

)T
K0.

Hence, Markov’s inequality implies that KT < 4q w.h.p. for some T = O(logn). If at time
T the remaining KT large components become active, then KT+1 ≤ 1 w.h.p. by Lemma 5.
All KT components become active simultaneously with probability at least q−4q and thus
KT+1 ≤ 1 with probability Ω(1), as desired. J
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3.2 Convergence to typical configurations: the sub-critical case
I Lemma 16. Let λ < λs; if X0 has at most one large component, then there exists
T = O(logn) such that L1(XT ) = O(logn) with probability Ω(1).

The following fact will be used in the proof. Let ξ =
√

2n23/12 logn.

I Fact 17. If Xt has at most one large component, then for sufficiently large n each of the
following holds with probability 1−O(n−1):
(i) If L(Xt) is inactive, then all new components in Xt+1 have size O(logn).
(ii) If L(Xt) is active, then At ∈ Jt :=

[
L1(Xt) + n−L1(Xt)

q − ξ, L1(Xt) + n−L1(Xt)
q + ξ

]
.

(iii) If there is no large component in Xt, then the largest new component in Xt+1 have size
O(logn).

Proof of Lemma 16. If X0 has at most one large component, then it is easy to check that
Xt retains this property for O(logn) CM steps w.h.p. Thus, we condition on this event
throughout this phase. We show first that one step of the CM dynamics contracts the size of
the largest component in expectation.

For ease of notation set Θs := θmin, with θmin defined as in Section 2. Note that
(Θs + (1 − Θs)q−1)λ = 1. Hence, if L1(Xt) = Θsn and L(Xt) is activated, then the
percolation step (sub-step (iii) of the CM dynamics) is critical with non-negligible probability.
This makes the analysis in the neighborhood of Θsn more delicate.

We consider first the case where θt ≥ Θs + ε for some small constant ε > 0 to be chosen
later. By Fact 17(i), if L(Xt) is inactive all the new components have size O(logn) with
probability 1−O(n−1). Thus,

E[L1(Xt+1) |Xt,¬Et] ≤ L1(Xt) +O(1) = θtn+O(1). (5)

To bound E[L1(Xt+1) |Xt, Et], let h+(θt) = θtn + (1 − θt)q−1n + ξ and let `+(θt) be a
random variable distributed as the size of the largest component of a G(h+(θt), p) random
graph. Then, by Fact 17(ii) we have

E[L1(Xt+1) |Xt, Et] ≤
∑
a∈Jt

E[L1(Xt+1) |Xt, Et, At = a] Pr[At = a |Xt, Et] +O(1)

≤ E[L1(Xt+1) |Xt, Et, At = h+(θt)] +O(1) = E[`+(θt)] +O(1).

When θt ≥ Θs + ε, G(h+(θt), p) is a super-critical random graph. Thus, Corollary 8 implies

E[L1(Xt+1) | Xt, Et] ≤ φ(θt)n+O(ξ), (6)

where φ(θt) is defined as in (4). Since λ < λs, by Lemma 11 there exists a constant δ > 0
such that θt − φ(θt) ≥ δ. Therefore, putting (5) and (6) together, we have

E[L1(Xt+1) | Xt] ≤ (1− q−1)θtn+ q−1φ(θt)n+O(ξ) ≤ θtn− δq−1n+O(ξ). (7)

As mentioned before, in a close neighborhood of Θs the percolation step is critical with
non-negligible probability, so when θt ∈ (Θs − ε,Θs + ε) we use monotonicity to simplify
the analysis. Namely, we assume that θt = Θs + ε and use the previous steps to obtain (7).
Thus, there exists a constant γ > 0 such that for all θt > Θs − ε:

E[L1(Xt+1)− L1(Xt) |Xt] ≤ −γn.

Let τ = min{t > 0 : L1(Xt) ≤ (Θs − ε)n}. Lemma 13 implies E[τ ] ≤ 4/γ and thus
Pr[τ > 8/γ] ≤ 1/2 by Markov’s inequality. Hence, L1(XT ) ≤ (Θs − ε)n for some T = O(1)
with probability Ω(1).
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To conclude, we show that after O(logn) additional steps the largest component has size
O(logn) with probability Ω(1). If L1(XT ) ≤ (Θs − ε)n and L(XT ) is activated, then the
definition of Θs implies that the percolation step of the CM dynamics is sub-critical, and thus
XT+1 has no large component w.h.p. Hence, XT+1 has no large component with probability
Ω(1). Now, by Fact 17(iii) and a union bound, all the new components created during
the O(logn) steps immediately after time T + 1 have size O(logn) w.h.p. Another union
bound over components shows that during these O(logn) steps, every component in XT+1 is
activated w.h.p. Thus, after O(logn) steps the largest component in the configuration has
size O(logn) with probability Ω(1), which establishes Lemma 16. J

The reader is referred to the full version [2] for the proof of Fact 17, as well as some of
the details omitted from the proof of Lemma 16.

3.3 Convergence to typical configurations: the super-critical case
I Lemma 18. Let λ > λS = q and ∆t := |L1(Xt) − θrn|. If X0 has at most one large
component, then for some T = O(logn) there exists a constant c > 0 such that Pr[ ∆T >

A
√
cn ] < 1/A for all A > 0.

The following facts, whose proofs can be found in the full version [2], will be useful. Let
ξ(r) =

√
nr logn, ΘS := 1− q/λ and µt = L1(Xt) + n−L1(Xt)

q .

I Fact 19. If X0 has at most one large component, then there exists T = O(logn) such that
with probability Ω(1): L1(XT ) > (ΘS + ε)n, L2(XT ) = O(logn) and

∑
j≥2 Lj(XT )2 = O(n).

Moreover, once these properties are obtained they are preserved for a further T ′ = O(logn)
CM steps w.h.p.

I Fact 20. Assume Xt has exactly one large component and all its other components have
size at most r < 2n11/12. Then, for a small constant ε > 0 and sufficiently large n, each of
the following holds with probability 1−O

(
n−1):

(i) If L(Xt) is inactive and L1(Xt) > (ΘS + ε)n, then all new components in Xt+1 have
size O(logn).

(ii) If L(Xt) is active, then At ∈ Jt,r := [µt − ξ(r), µt + ξ(r)] and G(At, p) is a super-critical
random graph.

Proof of Lemma 18. We show that one step of the CM dynamics contracts ∆t in expectation.
Observe that by Fact 19 we may assume X0 is such that L1(X0) > (ΘS + ε)n, L2(X0) =
O(logn) and

∑
j≥2 Lj(X0)2 = O(n), and that Xt retains these properties for the O(logn)

steps of this phase w.h.p. Consequently, if L(Xt) is inactive, then L1(Xt+1) = L1(Xt) with
probability 1−O(n−1) by Fact 20(i). Hence,

E[∆t+1 | Xt,¬Et] ≤ E [ |L1(Xt+1)− L1(Xt)| | Xt,¬Et] + |L1(Xt)− θrn| ≤ ∆t +O(1). (8)

To bound E[∆t+1 |Xt, Et], let Mt = At − µt and let `t(m) denote the size of the largest
component of a G(µt +m, p) random graph. Also, let ∆′t+1 := |L1(Xt+1)− φ(θt)n|. Note
that, conditioned on Mt = m, L1(Xt+1) and `t(m) have the same distribution. Moreover, if
At ∈ Jt,r then Mt ∈ J ′t,r := [−ξ(r), ξ(r)]. Hence, Fact 20(ii) with r = O(logn) implies

E[∆′t+1 | Xt, Et] ≤
∑

m∈J′
t,r

E[∆′t+1 | Xt, Et,Mt = m] Pr[Mt = m | Xt, Et] +O(1)

=
∑

m∈J′
t,r

E[|`t(m)− φ(θt)n|] Pr[Mt = m | Xt, Et] +O(1).
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Now, by Fact 20(ii), G(µt + m, p) is a super-critical random graph, and thus E[|`t(m) −
φ(θt)n|] ≤ |m|+O(

√
n) by Corollary 8. Hence,

E[∆′t+1 | Xt, Et] ≤ E[|Mt| | Xt, Et] +O(
√
n).

Since
∑
j≥2 Lj(Xt)2 = O(n), it follows from Hoeffding’s inequality that E[|Mt| |Xt, Et] =

O(
√
n) (the explicit calculation is provided in the full version [2]), and thus E[∆′t+1 |Xt, Et] =

O(
√
n). The triangle inequality then implies

E[∆t+1 | Xt, Et] ≤ E[∆′t+1 | Xt, Et] + |θr − φ(θt)|n ≤ |θr − φ(θt)|n+O(
√
n). (9)

Putting (8) and (9) together, we have

E[∆t+1 | Xt] ≤ (1− q−1)∆t + q−1|θr − φ(θt)|n+O(
√
n).

By Lemma 11(iii), there exists a constant δ ∈ (0, 1) such that δ|θt − θr| ≤ |θt − φ(θt)|.
Together Lemma 11(ii), this implies |θr − φ(θt)| ≤ (1 − δ)|θt − θr|. Thus, there exists a
constant δ′ > 0 such that

E[∆t+1 | Xt] ≤ (1− δ′)∆t + ξ

where ξ = O(
√
n). Inducting, E[∆t] ≤ (1 − δ′)t∆0 + ξ/δ′. Hence, for some t = O(logn),

E[∆t] = O(
√
n) and so Markov’s inequality implies Pr [∆t > A

√
cn] ≤ 1/A for some constant

c > 0 and any A > 0. J

3.4 Coupling to the same component structure
In this section we design a coupling of the CM steps which, starting from two configurations
with certain properties (namely, those obtained in Sections 3.2 and 3.3 for the sub-critical
and super-critical case respectively), quickly converges to a pair of configurations with the
same component structure. (We say that two random-cluster configurations X and Y have
the same component structure if Lj(X) = Lj(Y ) for all j ≥ 1.)

The only additional property we will require is that the starting configurations should
have a linear number of isolated vertices. Although in Sections 3.2 and 3.3 we do not
guarantee this, observe that a single CM step from a configuration with at most one large
component activates a linear number of vertices w.h.p., and thus Lemma 4 implies that the
new configuration has a linear number of isolated vertices w.h.p. We will focus first on the
super-critical case, since a simplified version of the arguments works in the sub-critical case.

I Lemma 21. Let λ > q and let X0, Y0 be random-cluster configurations with Ω(n) isolated
vertices such that: L2(X0) = O(logn), |L1(X0)−θrn| = O(

√
n log2 n),

∑
j≥2 Lj(X0)2 = O(n)

and similarly for Y0. Then, there exists a coupling of the CM steps such that XT and YT
have the same component structure after T = O(logn) steps with probability Ω(1).

Proof. It is straightforward to check that Xt, Yt retain the above structural properties of
X0, Y0 for O(logn) CM steps w.h.p. (The details are provided in the full version [2].)

Our coupling will be a composition of three couplings. Coupling I contracts a certain
notion of distance between {Xt} and {Yt}. This contraction will boost the probability of
success of the other two couplings. Coupling II is a one-step coupling which guarantees
that the largest components from {Xt} and {Yt} have the same size with probability Ω(1).
Coupling III uses the binomial coupling from Lemma 12 to achieve two configurations with
the same component structure with probability Ω(1).
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Coupling I: Excluding L(Xt) and L(Yt), consider a maximal matching Wt between the
components of Xt and Yt with the restriction that only components of equal size are matched
to each other. Let M(Xt) and M(Yt) be the components in the matching from Xt and Yt
respectively. Let D(Xt) and D(Yt) be the complements of L(Xt)∪M(Xt) and L(Yt)∪M(Yt)
respectively, and let dt := |D(Xt)|+ |D(Yt)| where | · | denotes the total number of vertices
in the respective components.

The activation of the components in M(Xt) and M(Yt) is coupled using the matching
Wt. That is, c ∈M(Xt) and Wt(c) ∈M(Yt) are activated simultaneously with probability
1/q. The activations of L(Xt) and L(Yt) are also coupled, and the components in D(Xt) and
D(Yt) are activated independently. Let A(Xt) and A(Yt) denote the set of active vertices in
Xt and Yt respectively, and w.l.o.g. assume |A(Xt)| ≥ |A(Yt)|. Let Rt be an arbitrary subset
of A(Xt) such that |Rt| = |A(Yt)| and let Qt = A(Xt) \Rt. The percolation step is coupled
by establishing an arbitrary vertex bijection bt : Rt → A(Yt) and coupling the re-sampling of
each edge (u, v) ∈ Rt ×Rt with (bt(u), bt(v)) ∈ A(Yt)×A(Yt). Edges within Qt and in the
cut Ct = Rt ×Qt are re-sampled independently. The following claim establishes the desired
contraction in dt.

I Claim 22. Let ω(n) = n/ log4 n; after T = O(log logn) steps, dT ≤ ω(n) w.h.p.

Proof. Let Da(Xt) and Da(Yt) be the number of active vertices from D(Xt) and D(Yt)
respectively, and let Ft be the history of the first t steps. Observe that Coupling I guarantees
that Rt and A(Yt) will have the same component structure internally. However, the vertices
in Qt will contribute to dt+1 unless they are part of the new large component, and each
edge in Ct could increase dt+1 by at most (twice) the size of one component of Rt, which is
O(logn). Thus,

E[dt+1 |A(Xt), A(Yt), Ct,Ft] ≤ dt − (|Da(Xt)|+ |Da(Yt)|) + |Qt|+ 2|Ct| ×O(logn). (10)

Observe that E[|Da(Xt)|+ |Da(Yt)| |Ft] = dt/q, and E[|Ct| |A(Xt), A(Yt),Ft] = |Rt||Qt|p ≤
λ|Qt|. Since |Qt| = O(

√
n log2 n), taking expectations in (10) we get

E[dt+1 | Ft] ≤ dt −
dt
q

+O
(√
n log3 n

)
≤
(

1− 1
2q

)
dt

provided dt > ω(n). Thus, Markov’s inequality implies dT ≤ ω(n) for some T = O(log logn)
w.h.p. Note that for larger values of T , this argument immediately provides stronger bounds
for dT , but neither our analysis nor the order of the coupling time benefits from this. J

Coupling II: Assume now that dt ≤ ω(n) and let Im(Xt) and Im(Yt) denote the isolated
vertices in M(Xt) and M(Yt) respectively. The activation in Xt \ Im(Xt) and Yt \ Im(Yt)
is coupled as in Coupling I, except we condition on the event that L(Xt) and L(Yt) are
activated, which occurs with probability 1/q. This first part of the activation could activate
a different number of vertices from each copy of the chain; let ρt be this difference.

First we show that ρt = O(
√
n) with probability Ω(1). By Lemma 18 (with A =

2), we have |L1(Xt) − L1(Yt)| = O(
√
n) with probability Ω(1). If this is the case, then

||D(Xt)| − |D(Yt)|| = O(
√
n). Also, since

∑
j≥2 Lj(Xt)2 =O(n) and

∑
j≥2 Lj(Yt)2 =O(n),

by Hoeffding’s inequality the numbers of active vertices from D(Xt) and D(Yt) differ by at
most O(

√
n) with probability Ω(1). Thus, ρt=O(

√
n) with probability Ω(1).

Now we show how to couple the activation in Im(Xt), Im(Yt) in a way such that |A(Xt)|=
|A(Yt)| with probability Ω(1). The number of active isolated vertices from Im(Xt) is binomially
distributed with parameters |Im(Xt)| and 1/q, and similarly for Im(Yt). Hence, the activation
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of the isolated vertices may be coupled using the binomial coupling from Section 2. Since
|Im(Xt)|= |Im(Yt)|=Ω(n) and ρt=O(

√
n), Lemma 12 implies that this coupling corrects the

difference ρt with probability Ω(1). If this is the case, then by coupling the edge sampling
bijectively as in Coupling I, we ensure that L1(Xt+1) = L1(Yt+1) and dt+1 ≤ ω(n) with
probability Ω(1).

Coupling III: Assume L1(X0) = L1(Y0) and d0 ≤ ω(n). The component activation is
coupled as in Coupling II, but we do not require the two large components to be active;
rather, we just couple their activation together.

If L1(Xt) = L1(Yt), then |D(Xt)| = |D(Yt)| and thus the expected number of active
vertices from D(Xt) and D(Yt) is the same. Consequently, since dt ≤ ω(n), Hoeffding’s
inequality implies ρt = O

(√
n log−1 n

)
w.h.p. Let Ft be the event that the coupling of the

isolated vertices succeeds in correcting the error ρt. Since |Im(Xt)| = |Im(Yt)| = Ω(n), Ft
occurs with probability 1−O(log−1 n) by Lemma 12. If this is the case, the updated part
of both configurations will have the same component structure; thus, L1(Xt+1) = L1(Yt+1)
and dt+1 ≤ dt. Hence, if Ft occurs for all 0 ≤ t ≤ T , then XT and YT fail to have the same
component structure only if at least one of the initial components was never activated. For
T = O(logn) this occurs with at most constant probability. Since Ft occurs for T = O(logn)
consecutive steps with at least constant probability, thenXT and YT have the same component
structure with probability Ω(1). J

In the sub-critical case we may assume also that L1(X0) and L1(Y0) are O(logn). There-
fore, a simplified version of the same coupling works since Coupling II is not necessary.

I Corollary 23. If λ < λs and X0, Y0 are as in Lemma 21, then there exists a coupling of
the CM steps such that XT and YT have the same component structure with probability Ω(1),
for some T = O(logn).

3.5 Coupling to the same configuration
I Lemma 24. Let X0 and Y0 be two random-cluster configurations with the same component
structure. Then, there exists a coupling of the CM steps such that after T = O(logn) steps
XT = YT w.h.p.

Proof. Let Bt a bijection between the vertices of Xt and Yt. We first describe how to
construct B0. Consider a maximal matching between the components of X0 and Y0 with
the restriction that only components of equal size are matched to each other. Since the two
configurations have the same component structure all components are matched. Using this
matching, vertices between matched components are mapped arbitrarily to obtain B0.

Vertices mapped to themselves we call “fixed”. At time t, the component activation is
coupled according to Bt. That is, if Bt(u) = v for u ∈ Xt and v ∈ Yt, then the components
containing u and v are simultaneously activated with probability 1/q. Bt+1 is adjusted
such that if a vertex w becomes active in both configurations then Bt+1(w) = w; the
rest of the activated vertices are mapped arbitrarily in Bt+1 and the inactive vertices are
mapped like in Bt. The percolation step at time t is then coupled using Bt+1. That is, the
re-sampling of the active edge (u, v) ∈ Xt is coupled with the re-sampling of the active edge
(Bt+1(u), Bt+1(v)) ∈ Yt.

This coupling ensures that the component structures of Xt and Yt remain the same for
all t ≥ 0. Moreover, once a vertex is fixed it remains fixed forever. The probability that
a vertex is fixed in one step is 1/q2. Therefore, after O(logn) steps the probability that a
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vertex is not fixed is at most 1/n2. A union bound over all vertices implies that XT = YT
w.h.p. after T = O(logn) steps. J

4 Mixing time lower bounds

In this section we prove the exponential lower bound on the mixing time of the CM dynamics
for λ in the critical window (λs, λS), as stated in Theorem 2 in the introduction. We also
prove a Ω(logn) lower bound in the “fast mixing” regime, showing that our upper bounds in
Section 3 are tight.

Recall from the introduction that when q = 2 and λ < λs = λc, the SW dynamics mixes
in Θ(1) steps and thus the CM dynamics requires Θ(logn) additional steps to mix. This
is due to the fact that the CM dynamics may require as many steps to activate all the
components from the initial configuration.

I Theorem 25. For any q > 1, the mixing time of the CM dynamics is exp(Ω(
√
n)) for

λ ∈ (λs, λS), and Ω(logn) for λ 6∈ [λs, λS ].

Proof. Note that when q ≤ 2 the interval (λs, λS) is empty and the exponential lower bound
is vacuously true. It is natural to divide the proof into four cases: λ < λs, λ ∈ (λs, λc),
λ ∈ [λc, λS) and λ > λS . First consider the case when λ < λs. Let X0 be a configuration
where all the components have size Θ(log2 n) and let b = q/(q − 1). The probability that a
particular component is not activated in any of the first T = 1

2 logb n steps is (1− 1/q)T =
n−1/2. Therefore, the probability that all initial components are activated in the first T steps
is (1 − n−1/2)K with K = Θ(n/ log2 n). Thus, after T steps, L1(XT ) = Θ(log2 n) w.h.p.,
and the result follows.

Consider now the case q > 2 and λc ≤ λ < λS = q. Let S be the set of graphs G such
that L1(G) = Θ(

√
n) and let X0 ∈ S. Let µ := E[A0] = n/q; then by Hoeffding’s inequality

Pr [|A0 − µ| > εn] ≤ 2 exp
(
−2ε2√n

)
. If A0 < µ+ εn, the percolation step is sub-critical for

sufficiently small ε. Therefore, Lemma 9 implies that Pr[X1 6∈ S|X0 ∈ S] ≤ e−c
√
n for some

constant c > 0. Hence, Pr[X1, ..., Xt ∈ S|X0 ∈ S] ≥ 1− te−c
√
n ≥ 3/4 for t = bec

√
n/4c, and

the result follows.
The intuition for the other two cases, which are more technically involved, comes directly

from Figure 1. When q > 2 and λs < λ < λc, the function f(θ) = θ − φ(θ) has two positive
zeros θ∗ and θr in (θmin, 1]. Moreover, f is negative in the interval (θ∗, θr). Therefore, any
configuration with a unique large component of size θn with θ ∈ (θ∗, θr) will drift towards a
configuration with a bigger large component. However, a typical random-cluster configuration
in this regime does not have a large component. This drift in the incorrect direction is
sufficient to prove the exponential lower bound in this regime.

When λ > λS , we show that the derivative of f between its unique zero θr and 1 is
bounded above by a constant. This implies that, starting from the complete graph, it takes
at least Ω(logn) steps for the size of the largest component to shrink to close to θrn. The
reader is referred to the full version [2] for the proofs of the last two cases. J

5 Local dynamics

In this section we sketch the proof of Theorem 3 from the introduction; the full proof is
included in the full version [2]. Consider an arbitrary finite graph H = (V,E) and let
ΩE = {(V,A) : A ⊆ E} be the set of random-cluster configurations on H. Let P be the
transition matrix of a finite, ergodic and reversible Markov chain over ΩE with stationary
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distribution µ = µp,q and eigenvalues 1 = λ1 ≥ λ2 ≥ ... ≥ λn. The spectral gap of P is defined
by λ(P ) := 1 − λ∗, where λ∗ = max{|λ2|, |λn|}. Let µmin = minx∈ΩE µ(x); the following
bounds on the mixing time are standard (see, e.g., [17]):

λ−1(P )− 1 ≤ τmix(P ) ≤ log
(
2eµ−1

min
)
λ−1(P ). (11)

For r ∈ N, let ΩV = {0, 1..., r − 1}V be the set of “r-labelings” of V , and let ΩJ =
ΩV × ΩE. Assume P can be decomposed as a product of stochastic matrices of the form
P = M(

∏m
i=1 Ti)M∗, where:

(i) M is a |ΩE|× |ΩJ| matrix indexed by the elements of ΩE, ΩJ such that M(A, (σ,B)) 6= 0
only if A = B.

(ii) Each Ti is a |ΩJ| × |ΩJ| matrix indexed by the elements of ΩJ, reversible w.r.t. the
distribution ν = µM and such that Ti((σ,A), (τ,B)) 6= 0 only if σ = τ .

(iii) M∗ is a |ΩJ|× |ΩE| matrix indexed by the elements of ΩJ, ΩE such that M∗((σ,A), B) =
1(A = B).
In words, M assigns a (random) r-labeling to the vertices of H; (

∏m
i=1 Ti) performs a

sequence of m operations Ti, each of which updates some edges of H; and M∗ drops the
labels from the vertices.

Consider now the matrix PL = M( 1
m

∑m
i=1 Ti)M∗. It is straightforward to verify that

PL is also reversible w.r.t. µ. The following theorem, which generalizes a recent result of
Ullrich [21, 22], relates the spectral gaps of P and PL up to a factor of O(m logm).

I Theorem 26. If M , M∗ and Ti are stochastic matrices satisfying (i)–(iii) above, and the
Ti’s are idempotent commuting matrices, then λ(PL) ≤ λ(P ) ≤ 8m logm · λ(PL).

We pause to note that this fact has a very attractive intuitive basis: PL performs a single
update Ti chosen u.a.r., while P performs all m updates Ti, so by coupon collecting one
might expect that O(m logm) PL steps should suffice to simulate a single P step. However,
the proof has to take account of the fact that the Ti updates are interleaved with the vertex
re-labeling operations M and M∗ in PL. The proofs in [21] and [22] are specific to the case
where P corresponds to the SW dynamics. Our contribution is the realization that these
proofs still go through (without essential modification) under the more general assumptions
of Theorem 26, as well as the framework described above that provides a systematic way of
deriving PL from P .

The key observation in the proof of Theorem 3 is that we can express PCM, the transition
matrix of the CM dynamics, as a product of stochastic matrices as above: specifically,
PCM = L(

∏
e∈E Te)L∗ where L is the matrix that assigns a random active-inactive labeling

to a random-cluster configuration, Te samples e with probability p provided both its endpoints
are active, and L∗ drops the active-inactive labeling from a joint configuration.

Now consider the Markov chain given by the matrix PSU = L( 1
|E|
∑
e∈E Te)L∗, which

we call the Single Update (SU) dynamics (PSU plays the role of the matrix PL above.)
The matrices L, L∗ and the Te’s satisfy the assumptions in Theorem 26, so we have
λ(PSU) ≤ λ(PCM) ≤ 8|E| log |E| · λ(PSU).

The SU dynamics is very closely related to the heat-bath dynamics defined in the
introduction; in fact, their spectral gaps differ by a constant. Hence, Theorem 3 now follows
from (11) and Theorems 1 and 2 since in the mean-field case log(µ−1

min) = Õ(n2).
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1 Introduction

The standard way to attack the problem of showing a lower bound on the randomised
communication complexity of a function f is to choose a probability distribution µ on the
inputs, and then show that the deterministic distributional complexity is large for f w.r.t.
µ – i.e., that any deterministic protocol that computes f with small error under µ must
communicate much. This approach eliminates the need to argue about the randomness used
by the protocol.1

It is well known that this approach can be used without loss of generality, due to von
Neumann’s minimax theorem (see [20]; the same principle applies to many nonuniform
computational models):

max
µ

Dµ
ε (f) = Rε(f),

where Dµ
ε (f) denotes the deterministic complexity of protocols that compute f with error ε

under the distribution µ of input to f , and Rε(f) is the public coin randomised communication
complexity of f with worst-case error ε.2

As a matter of convenience, one first tries to use a simple distribution µ, for instance
the uniform distribution, or more generally, product distributions over the inputs to Alice
and Bob. This works for some problems, like Inner Product modulo 2 [7]. However, Babai,
Frankl, and Simon [4] observed that for the Disjointness problem DISJ one cannot obtain
lower bounds larger than Ω(

√
n logn) under any product distribution, i.e., they show that

an upper bound of O(
√
n logn) holds for every product distribution. They also give a lower

bound of Ω(
√
n) under a product distribution. Later, Kalyanasundaram and Schnitger [16]

obtained the tight Θ(n) bound, and Razborov [22] showed that indeed Dµ
ε (DISJ) = Θ(n)

for an explicit simple distribution µ, for any sufficiently small constant ε > 0 (that such a µ
exists is immediate from the result in [16] and the minimax theorem, but their proof does not
exhibit such a distribution explicitly). Distributional complexity under product distributions
has been also frequently used to show structural properties like direct product theorems
(e.g., [15, 12]). Furthermore, distributional communication complexity is the natural average
case version of communication complexity, and it makes sense to study this for distributions
that are ‘easy’, in order to get a different model than randomised complexity. It seems
natural to measure “easiness” via mutual information.

For many years it was open how large the gap between RI=0
ε (f) = maxµ productD

µ
ε (f)

and Rε(f) (for constant ε > 0) can be. Sherstov [25] finally gave a proof that there are total
Boolean functions f , where the former is O(1) and the latter is Ω(n). In his result f is not
given explicitly. Very recently Alon et al. [2] give the following optimal explicit separation.
Consider the problem where Alice gets a point and Bob a line from a projective plane
containing 2Θ(n) points and lines. In this case the VC-dimension of the projective plane is at
most 2, which implies that the distributional complexity under any product distribution is at
most O(1) (even for one-way protocols), whereas the sign-rank of the communication matrix
is 2Ω(n), and hence the randomised (even unbounded error) communication complexity is
Ω(n).

This leaves open a more precise investigation of the amount of correlation in µ needed
to make Dµ(f) equal to R(f). It is natural to quantify this via the mutual information

1 We note that the popular information complexity method (see e.g.[5]) also uses distributional complexity,
but does not seek to eliminate randomness from protocols.

2 Throughout the paper we do not consider private coin randomised protocols.
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I(X : Y ), when the input (X,Y ) is drawn from µ. We define the following measure:

RI≤kε (f) = max
µ:I(X:Y )≤k

Dµ
ε (f).

We note here that the quantity on the right hand side does not change if randomised
or deterministic protocols are allowed, because in the distributional setting the randomness
can be fixed without increasing the error (under any distribution). The investigation of this
measure has been initiated by Jain and Zhang [14] in the setting of one-way communication
complexity (we discuss their contribution at the end of Section 1.3). We note that RI≤nε (f) =
Rε(f) for all functions f : {0, 1}n × {0, 1}n → {0, 1}.

This family of complexity measures allows us to investigate how much correlation is
needed in the input distribution to get good lower bounds. We have 3 main applications.
First, we closely investigate the case of the Disjointness problem. Second, we show that a
certain problem exhibits a threshold behaviour, i.e., only with almost maximal correlation
can a tight lower bound be proved, and this correlation can also be larger than the actual
communication complexity of the problem. Third, we investigate the dependence of one-way
communication complexity under product distributions on the allowed error.

1.1 The Disjointness problem

In the Disjointness problem (DISJ), Alice and Bob receive, respectively, subsets x, y ⊆
{1, . . . , n}, and their task is to decide whether x and y are disjoint. This is one of the
most-studied problem in communication complexity, which arguably has the biggest number
of known applications to other models (see [20]). We give a complete characterisation of the
information-bounded distributional complexity of Disjointness for all values of k = I(X : Y ),
both in the randomised and in the quantum case.

I Theorem 1. For all 0 ≤ k ≤ n and constant ε we have
1. RI≤kε (DISJ) = Θ(

√
n(k + 1)).

2. QI≤kε (DISJ) = Õ((n(k + 1))1/4).
3. QI≤kε (DISJ) = Ω((n(k + 1))1/4).

Previously, a lower bound of Ω(
√
n) was known for a product distribution [4], and the

Ω(n) lower bound by Razborov [22] uses a distribution µ with Iµ(X : Y ) = Θ(n). Babai
et al. [4] also gave an upper bound of O(

√
n logn) for the case of product distributions,

which we improve by a log-factor. Our results interpolate between the previously-known
extreme cases, and also show that one needs input correlation Ω(n) to prove tight lower
bounds. Interestingly, the bounds depend inverse-polynomially on the error probability,
except for the extreme cases of zero correlation and of maximal correlation. We also note
that a nearly-optimal complexity for randomised protocols can be achieved in a protocol
with two rounds of communication (though not in one round).

The tight bound in the randomised case is based on a two-phase protocol, in which the
players first remove “uninteresting” elements from their sets, until they are (essentially)
small enough to be communicated. For the quantum case this two-phase approach cannot be
optimal, because the first phase reveals “too much” information about the input. Therefore
we give a completely different protocol for the quantum case, in which the players identify
uninteresting elements a priori. This approach is tight up to a log-factor.



R. C. Bottesch, D. Gavinsky, and H. Klauck 547

1.2 Mutual information in hard distributions
Note that for DISJ the complexity increases with the information parameter, and the
randomised communication complexity bound Θ(n) is reached only once the information
in the hard distribution reaches Ω(n). For other problems like Inner Product mod 2 the
tight bound of Ω(n) is reached already under product distributions [7]. But can the mutual
information between the input sides that is required to show a tight lower bound ever be
larger than the actual communication complexity? I.e., is it ever necessary to use distributions
that are (much) more strongly correlated than the communication lower bound we want to
show, or is it always possible to prove a tight lower bound for a (total) function f by using a
hard distribution with I(X : Y ) ≤ poly(R(f))? A weak example is the quantum complexity
of Disjointness, where the tight Ω(

√
n) bound is only reached when the information reaches

Ω(n), but even here the complexity increases gradually with the information. We resolve
this question, although our example is not explicit.

I Theorem 2. For every n ≤ d ≤ 2n/100 there is a function fd : {0, 1}n × {0, 1}n → {0, 1}
that has R(fd) = Θ(log d), but under all bipartite distributions with mutual information less
than n/1000 the communication bound is RI≤n/1000

1/10 (fd) ≤ O(logn).

Hence for fd the complexity stays low until the information is almost maximal, and then
shoots up.

1.3 Dependence of RA→B,I=0
ε (f) on ε 3

Finally, we investigate the error dependence of RI≤kε (f) for arbitrary f . In the unrestric-
ted case, by standard boosting techniques we have Rε(f) ≤ O(R1/3(f) · log(1/ε)). We
call a function f and a class C of distributions on the inputs with maxµ∈C Dµ

ε (f) ≤
O(maxµ∈C Dµ

1/3(f) · log(1/ε)) boost-able. For this definition we require the above to be true
for all ε. One can easily show that there are distributions µ and functions f , such that
e.g. Dµ

1/4((f) = Ω(n) and Dµ
1/3(f) = 0, by placing a hard problem with weight 1/3 in an

otherwise constant matrix, so for a fixed distribution µ one cannot in general expect the
error dependence to behave nicely.

Boost-ability is a property of a class of distributions. The class of all distributions clearly
has the property, but what about the class of distributions with information at most I? In
particular, what about I = 0?

The issue is particularly interesting for product distributions, because boost-ability can
be used to derive upper bounds on RI≤k(f) from upper bounds on RI=0(f): due to the
substate theorem (Fact 4 below), a protocol that solves f under all product distributions
with error ε2−9k/ε can be used to solve f under distributions with I(X : Y ) = k with error ε,
hence boost-ability implies RI≤kε (f) ≤ O((k + 1) ·RI=0

1/3 (f)/ε).
We will use the super-script “A→ B” to denote one-way communication. In this model

the class of product distributions is boost-able:

I Theorem 3. RA→B,I=0
ε (f) ≤ O(RA→B,I=0

1/3 (f) · log(1/ε)).

We also show that when the information is between 1 and n1−Ω(1), then neither randomised
nor distributional quantum protocols are, in general, boost-able, see our Corollaries 20 and 27.

3 The same result has been obtained recently by Molinaro et al. [21] independently. The methods being
used in the two works are similar; [21] has been published prior to the current publication, while our
results have been presented during a public talk prior to either publication.
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It is well known that RA→B,I=0
1/3 (f) = Θ(V C(f)) [19], where V C(f)) is the VC-dimension

of the set of rows of the communication matrix. This even extends to the quantum case
[3, 18]. The VC-dimension is also known to characterise the hardness of PAC-learning (see
the monograph by Kearns and Vazirani [17]) – in fact, the previous proofs of the upper
bound on RA→B,I=0

ε (f) in terms of VC-dimension have been done by explicitly simulating
learning algorithms in the one-way communication model: Random examples are generated
using a public coin, and Alice classified the examples in order to teach Bob a row of the
communication matrix of f in the PAC sense (examples were generated from the public coin,
and Alice labelled those examples spending 1 bit per example).

The main limitation of this approach is that for PAC learning one needs Ω(1/ε) examples
to achieve error 1/ε. On the other hand, this approach ignores two strengths of the one-way
model: First, Alice and Bob know the underlying distribution; second, Alice can do more than
simply label examples. One can interpret the one-way communication model under product
distributions as a learning model, in which Alice is an (old-fashioned) teacher, who teaches
by monologue, but using shared randomness that does not count towards the communication.
Does such a teacher offer any advantage over learning from random examples? At first glance
no, since both models are characterised by the VC-dimension, and one could conclude that
learning from experience is all it takes. Our Theorem 3, however, shows that the final error
can be made much smaller when learning from a teacher, comparing to learning “just from
experience”. Note that in practice 1/ε can also easily become the dominating factor in the
complexity of a learning algorithm.

The main idea in our protocol is that Alice and Bob can beforehand agree on an ε-net
among the rows of the communication matrix, and Alice simply sends the name of the nearest
row in the net. During a PAC learning algorithm, on the other hand, the ε-net is generated
from examples, which is more costly.

We can now discuss the previous result of Jain and Zhang [14]. They show that for all
total Boolean functions f in the one-way model:

RA→B,I≤kε (f) ≤ O((k + 1) ·RA→B,I=0
1/3 (f) · 1/ε2 · log(1/ε)).

This extends the VC-dimension upper bound to distributions with nonzero information.
Their protocol for information-k distributions is constructed by simulating the PAC learning
algorithm for the row x, and by generating examples y′, f(x, y′) using a rejection-sampling
protocol. We can improve the error dependence to 1/ε by the following idea. Due to the
Substate Theorem (Fact 4 below) it is enough to find a protocol that has error 2−9k/ε under
the product of the marginal distributions of a distribution µ (with information k). But this
can be achieved with communication O((k + 1)/ε ·RA→B,I=0

1/3 (f)) according to Theorem 3.

2 Preliminaries and Definitions

2.1 Information Theory
We refer to [8] for standard definitions concerning information theory.

The relative entropy of two distributions on a discrete support is denoted by D(ρ||σ).
The relative max-entropy is D∞(ρ||σ) = maxx log(ρ(x)/σ(x)). Note that these quantities are
infinite, if the support of σ does not contain the support of ρ. We mostly consider bipartite
distributions on {0, 1}n × {0, 1}n. The mutual information is I(X : Y ) = D(µ||µX × µY ),
where µ is the joint distribution of (X,Y ) and µX , and µY are the two marginal distributions
of µ. We also use the quantity I∞(X : Y ) = D∞(µ||µX × µY ). If we want to indicate the
distribution used we write its name as a superscript, like Iµ(X : Y ).
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We first state the following well-known fact, see [13].

I Fact 4 (Substate Theorem).
1. I(X : Y ) ≤ I∞(X : Y ).
2. For a given µ there is a µ′ with ||µ− µ′|| ≤ ε, and Iµ′∞(X : Y ) ≤ Iµ(X : Y ) · 4/ε, where
||µ− µ′|| is the total variation distance between µ and µ′.

We will use the following lemmas and facts. The first follows from the definition of
relative entropy.

I Lemma 5. Let µ be a bipartite distribution, ρ = µA × µB, and σ = σA × σB any product
distribution.

Then D(µ||σ) = D(µ||ρ) +D(ρ||σ) = Iµ(X : Y ) +D(ρ||σ).

The following is a consequence of the log-sum inequality.

I Lemma 6. Let µ, σ be distributions (for concreteness on {0, 1}n×{0, 1}n), and E an event.
Then we have that

∑
x,y∈E µ(x, y) log(µ(x, y)/σ(x, y)) ≥ max{−1, µ(E) log(µ(E)/σ(E))}.

I Lemma 7. Let µ be a distribution on {0, 1}n×{0, 1}n, E an event, and µ′ the distribution
µ restricted to E. Furthermore, assume that under µ we have that Prob(E) = α. Then
D(µ′||σ) ≤ (D(µ||σ) + 1)/α− logα.

Proof. For all x, y ∈ E we have µ′(x, y) = µ(x, y)/α, otherwise µ′(x, y) = 0.

D(µ||σ)

=
∑
x,y

µ(x, y) log(µ(x, y)
σ(x, y) )

(∗)
≥

∑
x,y∈E

µ(x, y) log(µ(x, y)
σ(x, y) )− 1

≥
∑
x,y∈E

µ′(x, y) · α · log(µ
′(x, y) · α
σ(x, y) )− 1

= D(µ||σ) · α+ α logα− 1,

where for (*) we use Lemma 6 with the event {0, 1}n × {0, 1}n − E. J

We will use the following rejection sampling protocol from [10].

I Fact 8. Let µ and ν be distributions on {0, 1}n with D(µ||ν) = k. Assume that Alice and
Bob both know ν, and can create samples from ν using a public coin. Then Alice can send a
message of expected length k + 2 log k +O(1) to Bob, which allows Bob (and Alice) to obtain
a shared sample from the distribution µ. The expectation is over the public coin tosses, and
Bob’s sample is distributed exactly with µ.

The next lemma follows from a calculation and shows that a distribution can decrease a
joint probability compared to the product of marginal distributions only in the presence of
mutual information.

I Lemma 9. Let X,Y be Boolean random variables with a joint distribution µ and marginal
distributions µA, µB. If µA(X = 1)µB(Y = 1) ≥ 2µ(X = Y = 1), then Iµ(X : Y ) ≥ µA(X =
1)µB(Y = 1)/4.

Finally, we show that this is true for any product distribution, not just the product of
marginals.
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I Lemma 10. Let X,Y be Boolean random variables with a joint distribution µ (and set
ρ = µA × µB), and σ any product distribution. If σA(X = 1)σB(Y = 1) ≥ 4µ(X = Y = 1)
then D(µ||σ) ≥ σ(X = Y = 1)/16.

Proof. If ρ(X = Y = 1) ≥ σ(X = Y = 1)/2, then by the above lemma D(µ||σ) ≥ D(µ||ρ) =
Iµ(X : Y ) ≥ ρ(X = Y = 1)/4 ≥ σ(X = Y = 1)/8, because σ is a product distribution and the
relative entropy of µ and a product distribution is minimal for ρ. If ρ(X = Y = 1) ≤ σ(X =
Y = 1)/2, then we can bound D(µ||σ) ≥ D(ρ||σ) = D(µA||σA) +D(µB ||σB). Assume that
α = µA(X = 1) ≤ β/

√
2 = σA(X = 1)/

√
2. Then (1−α) log((1−α)/(1−β)) +α log(α/β) ≥

β/16. Hence in this case D(ρ||σ) ≥ D(µA||σA) ≥ β/16 = σA(X = 1)/16 ≥ σA(X =
1)σB(Y = 1)/16. Other cases follow by symmetry.

J

2.2 Communication Complexity
We assume familiarity with classical and quantum communication complexity. For the former
consult [20], the latter is surveyed in [9]. We concentrate on distributional complexity, which
we define here.

I Definition 11. The distributional complexity Dµ
ε (f) is the minimal worst case commu-

nication cost of any deterministic protocol that computes f with error ε under µ. Similarly
we define Rµε (f) for randomised public coin protocols and Qµε (f) for quantum protocols (we
consider quantum protocols with shared entanglement, but do not use the entanglement in
our protocols). When we drop the error ε from the notation, we set ε = 1/3. When we drop
the superscript we mean the ordinary, worst-case communication complexity.

We observe that Rµε (f) = Dµ
ε (f) for all f, µ, ε, because one can fix the public coin random-

ness without increasing the error. Hence, we adopt the R-notation, and use randomness in
upper bounds and deterministic protocols in lower bounds. Note that Qµε (f) can be smaller
than Rµε (f), for instance for Disjointness under the hard distribution exhibited by Razborov
[22], where Rµ(DISJ) = Θ(n), since the quantum complexity of DISJ is at most O(

√
n) [1].

We consider functions f : {0, 1}n × {0, 1}n → {0, 1}.

I Definition 12. Define by D(k) the set of distributions on the inputs that have I(X : Y ) ≤ k.
We define RI≤kε (f) = maxµ∈D(k)R

µ
ε (f) and use an analogous definition for the quantum

case.

Clearly R(f) = RI≤n(f) and RI=0(f) is the complexity under the hardest product
distribution.

I Definition 13. One-way protocols allow only a single message from Alice to Bob, who
produces the output. We indicate this model by a superscript, like RA→B,I≤k(f).

Finally, we note the following fingerprinting technique [20].

I Fact 14. There is a public coin protocol that can check equality of strings (of any length)
with error 1/2k and communication k.

3 Randomised Complexity of Disjointness

3.1 Upper Bound
In this section we prove the upper bound for DISJ under bounded information distributions.
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First we consider the case of 0 mutual information, for which we show an upper bound
of O(

√
n log(1/ε)). Let µ be a product distribution on the inputs to DISJ. Babai et al. [4]

already show a protocol of cost O(
√
n logn log(1/ε)) [they do not state the dependence

on ε, which is however easy to derive from their proof]. Note that one can combine their
protocol for product distributions with the Substate Theorem (Fact 4) to get a bound of
O(
√
n(k + 1) logn/ε) on the distributional complexity under distributions with information

k: every distribution with information k approximately sits with probability 1/24k/ε inside
the product of its marginal distributions, hence it is enough to use a product distribution
protocol with very small error. This bound is worse in the dependence on k than what is
proved below.

I Theorem 15. RI=0
ε (DISJ) ≤ O(

√
n · log(1/ε)).

The proof is in the appendix. The main issue here is to achieve the small error dependence.
The protocol has a 2-phase structure, where in phase 1, assuming that Bob holds a large
set and that the probability that x ∩ y′ = ∅ is large, random y′ are drawn using the public
coin and, if disjoint from x, removed from the universe (initially {1, . . . , n}). After doing
this sufficiently many times, the universe becomes small, and in phase 2 we use the small set
disjointness protocol due to Hastad and Wigderson [11].

Now we turn to distributions with more information. The protocol has the same structure,
but we need to sample from a distribution of y′ that is not independent of x, which takes
communication. The protocol also does not have the same error dependence, which we
show is unavoidable later. Due to this we may just analyse expected communication, and
show that the worst case communication cannot be more than 1/ε the established bound by
appealing to the Markov bound.

I Theorem 16. RI≤kε (DISJ) ≤ O(
√
n(k + 1)/ε2).

The proof is in the appendix. The main idea is to follow the 2-phase approach, and shrink
the universe until is has size S =

√
n(k + 1). At this point the Hastad-Wigderson small

set Disjointness protocol [11] takes over. To shrink the universe we need to sample inputs
y′ from the distribution conditioned on x, and on being disjoint from x. This is achieved
using the rejection sampling protocol of Fact 8. We need to carefully bound the information
increase, but on average we remove S elements from the universe with communication cost
O(k/ε), and there are at most n/S iterations in phase 1, hence the expected communication
is at most n/S · k/ε.

In the next section we will also show a lower bound of Ω(
√
n/ε), so the error dependence

cannot be made logarithmic, in contrast to the the 0 information case.
One more issue we would like to consider is the number of rounds used. The above

protocol can easily use a large number of rounds, and it is not immediately clear whether
this is necessary. It is well known that the complexity of DISJ under product distributions
for one-way protocols is Θ(n) [19]. We have the following modification that saves most of the
interaction.

I Theorem 17.
1. The complexity of DISJ under distributions with information at most k for protocols with

2 rounds is at most O(
√
n(k + 1) logn/ε2).

2. The complexity of DISJ under distributions with information at most k for O(log∗ n)
rounds is at most O(

√
n(k + 1)/ε2).

3. In the case of 0 mutual information, the error dependence drops to a factor of log(1/ε).
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Proof. For the first item we observe that in phase 1 Alice can simply act as if Bob’s set was
large, and continue to let him discover y′i’s that are disjoint with x until Ui is guaranteed
to be small. This does not increase the bound on the communication. After this Bob can
tell Alice, in which ‘round’ his set really became small, so that she can recover the proper
universe Uj . He also sends her his set using

√
n(k + 1) logn bits. Note that in this protocol

only Alice learns the result.
For the second item we do as above, but when Bob’s set is small also repeat the same

in reverse until both sets are small. Saglam and Tardos [24] have a protocol that solves
the small set disjointness problem in phase 2 in O(log∗ n) rounds with communication
O(
√
n(k + 1) log(1/ε)).

Finally, note that for product distributions we can use the same modifications to the
protocol described in Theorem 15. J

3.2 Lower Bound

In this section we prove that the protocol of the previous section is optimal (except regarding
the exact dependence on ε).

For the lower bound we employ a distribution, depending on n and k, such that the
mutual information of the two inputs according to the marginal distributions is at most k;
we then prove an Ω(

√
n(k + 1)) lower-bound for the distributional complexity under this

distribution. In what follows we consider k = k(n) as being ∈ o(n), since for k = Ω(n) the
upper bound on the information is trivial and the lower bound on the communication is
known.

Let c = 1
log e and m = c

√
n(k + 1). Note that m = o(n) as well. Now µn,k can be defined

as the distribution obtained by mixing two distributions, one where a pair of disjoint subsets
of {1, . . . , n} of size m is chosen uniformly among all such pairs, and one where a pair of
subsets of size m with intersection of size 1 is chosen uniformly among all such pairs. This is
essentially the distribution used in the proof by Razborov [22], but with smaller sets.

We show in the appendix that the information is bounded by k.

I Theorem 18. For any sufficiently small ε > 0 we have that Dµn,k
ε (DISJ) = Ω(

√
n(k + 1)),

and hence that RI≤kε (DISJ) = Ω(
√
n(k + 1)).

While the proof is similar to that of the original proof of Razborov [22], two difficulties
arise when working with smaller sets: The first is that by mixing the two distributions with
equal probability, the weight of any pair of intersecting sets is much larger than that of
a pair of disjoint sets. Since the proof relies heavily on the properties of the distribution
when conditioned on certain events, and in particular on the proportion of the weight of
1-inputs and the weight of 0-inputs when conditioning, this imbalance complicates several
computations.

The second difficulty comes from the fact that Razborov’s entropy “counting” argument
no longer works in our case, because in that argument a linear number of terms have their
entropy upper-bounded as H

( 1
2
)

= 1. Since we still have to deal with a linear number
of terms while having much less total entropy, we require a finer combinatorial counting
argument instead.

Now we give a simple argument that shows that error dependence cannot be logarithmic
in 1/ε.

I Theorem 19. RI≤1
ε (DISJ) = Ω(

√
n/ε) for ε ≥ Ω(1/n).
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Proof. Above we have described a distribution µn,k with information at most k such that
Ω(
√
n(k + 1)) communication is needed for some constant error δ. We define σn,k to be

1/(2k) · µn,k + (1− 1/(2k))ρ, where ρ is some product distribution for DISJ that puts weight
1/2 on 1-inputs. Clearly, for error δ/(4k) the communication must be at least Ω(

√
n(k + 1)).

Set k = 4δ/ε (note that k ≤ n).
It remains to show that the information in σ is at most 1. Let E be an indicator variable

that indicates that x, y have been chosen according to µk. Then I(X : Y ) ≤ I(XE : Y ) =
I(E : Y ) + I(X : Y |E) ≤ H(E) + (1/2k) · k ≤ H(1/(2k)) + 1/2 ≤ 1. J

I Corollary 20. The class of distributions with information k with 1 ≤ k ≤ n1−Ω(1) is not
boost-able for randomised protocols.

Proof. Consider k = 1. We have that RI≤1
1/3 (DISJ) ≤ O(

√
n). If distributions with at most

1 bit information were boost-able, then we would have RI≤1
ε (DISJ) ≤ O(

√
n log(1/ε)). But

the left hand side is at least Ω(
√
n/ε), which puts a lower bound on ε, whereas boost-ability

should work for all ε.
In the case of larger k we use the same proof, to get that

√
ε · log(1/ε) ≥ Ω(1/

√
k + 1),

which remains a restriction on ε until k exceeds n1−Ω(1), and the assumption of Theorem 19
is violated. J

4 Quantum Complexity of Disjointness

4.1 Upper Bound: First Attempt
Consider the two-phase approach from the previous section. The second phase ‘quantises’
readily, if we do not care about log-factors: Simply use distributed quantum search by
amplitude amplification to obtain a quadratic speedup in this part [6]. We mention here that
the tight protocol for DISJ due to Aaronson and Ambainis [1] does not seem to work well for
the small set case and so we do not know if the logarithmic factor is needed or not.

The problem is the first phase of the classical protocol, which seems impossible to quantise.
Since phase 2 is now cheaper one can re-balance the costs of the two phases (details are left
to the reader) and find a protocol with cost Õ((n(k + 1))1/3.

In the next section we will show that this bound is not optimal. We do note here, however,
that the error dependence for the case I(X : Y ) = 0 is a factor of O(− log ε) for the above,
which will not be the case in the protocol we present next.

4.2 Upper Bound: Almost Optimal Protocol
We now describe a different approach that also works in the classical case, but loses a
logarithmic factor and has a worse error dependence for product distributions. The approach
we use identifies two blocks of “interesting” positions (i.e., the blocks are subsets of [n]), such
that Alice can conduct a search efficiently on one block, and Bob on the other one, because
their sets are expected to be small on their respective blocks, and on the other hand, the
situation when the input sets intersect but not on any interesting position is unlikely. This
conforms to the rough intuition that if “large” x and y come from a product distribution
that puts constant weight on 1-inputs, then there must be many “semi-interesting” and
“uninteresting” positions – i.e., such i ∈ [n] that not both i ∈ x and i ∈ y is likely.

Let µ be a distribution on {0, 1}n × {0, 1}n with Iµ(X : Y ) ≤ k. Denote by Ei the event
that x, y drawn from µ satisfy

∑
1≤j≤i−1 xiyi = 0, i.e., x and y are disjoint on {1, . . . , i− 1}.
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We set si = Probµ(Ei). We assume that si ≥ α for all i, and some α ≥ ε. If this is not the
case, then the probability that x, y are disjoint is less than ε, and the distribution is trivial.

Define q′xi = Prob(Yi = 1|X = x,Xi = 1, Ei) and p′yi = Prob(Xi = 1|Y = y, Yi = 1, Ei).
Our protocol follows the simple idea that Alice should search among those positions i, such
that q′xi is large, similarly for Bob and p′yi .

The Protocol. A position is chosen by Alice, if q′xi ≥ ε3/
√

80000(k + 1)n and i ∈ x and
chosen by Bob, if p′yi ≥ ε3/

√
(80000(k + 1)n and i ∈ y. Denote the former set by CA and

the latter by CB . Alice is responsible for finding intersecting positions in CA, Bob for finding
intersecting positions in CB. In the protocol Alice organises a search for an intersecting
position based on amplitude amplification on her positions CA (using a distributed Grover
search as in [6]). More precisely, Alice creates a superposition over all positions in CA, and
the two players can mark intersecting positions like in Grover search by communicating logn
qubits back and forth, and conduct amplitude amplification to find an intersection there. In
phase 2 the same is done with CB and the roles of the players reversed. If the players find
an intersecting position, they reject, otherwise they accept.

Communication. For all x we have
∑
i∈x q

′x
i si ≤ Prob(DISJ(x, y) = 0) ≤ 1. Hence

|CA| ≤ O(
√

(k + 1)n/ε4), since all si ≥ α ≥ ε. Amplitude amplification needs O(((k +
1)n)1/4/ε2 · log(1/ε)) iterations, each taking logn communication.

Error Analysis. Let us define some probabilities. By ~x, ~y we denote prefixes of strings x, y
of length i − 1, where i is usually clear from the context. The random variable ~X is the
prefix of length i− 1 of the random variable X (Alice’s inputs), and similarly for Y .

Denote p~xi = Prob(Xi = 1|Ei, ~X = ~x), q~xi = Prob(Yi = 1|Ei, ~X = ~x), and similarly for p~yi
and q~yi . Denote also p′~yi = Prob(Xi = 1|Ei, Yi = 1, ~Y = ~y), and similarly for p′~xi , q′~xi and q′~yi .
Denote also q′~x,~yi = Prob(Yi = 1|Ei, Xi = 1, ~X = ~x, ~Y = ~y), and similarly for p′~x,~yi . Denote
by r~xi = p~xi q

′~x
i = p′~xi q

~x
i the probability that Xi = Y1 = 1 under the conditions ~X = ~x and Ei,

and similarly for other conditions (i.e., the super-script specifies the condition): say, ri is the
probability that Xi = Yi = 1 conditioned on Ei, and so on.

As a first step we “get rid” of the input positions that are very unlikely to contribute,
compared to the average for a position. We say that x with xi = 1 is A-bad for i, if
q′ xi ≤ εq′ ~xi /10. These are the positions where x depresses the probability of intersection
compared to ~x. Similarly, y with yi = 1 is B-bad for i, if p′ yi ≤ εp′ ~yi /10. Denote by Vi
the event that x is A-bad for i, and by Wi the event that y is B-bad for i. Finally, set
q̃′ ~xi = Prob(Yi = 1 ∧ Vi|Xi = 1, ~X = ~x,Ei) and p̃′ ~yi = Prob(Xi = 1 ∧Wi|Yi = 1, ~Y = ~y,Ei).

Note that r~xi si = p~xi q
′ ~x
i si is the probability that the first intersection between X and Y

is on position i when ~X = ~x. The probability that x is A-bad for i and the first intersection
is on i is p~xi q̃′~xi si. Similarly, the probability that y is B-bad for i and the first intersection is
on i is p̃′ȳi q

~y
i si. The following lemma shows that possible intersections at such positions i

that either x is A-bad for i or y is B-bad for i can be safely ignored.

I Lemma 21. q̃′~xi ≤ εq′~xi /10 and p̃′~yi ≤ εp
′~y
i /10.

Proof. Denote by Bad(x, i) the property that x is A-bad for i and by Ei(x, y) the property
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that x, y are disjoint on {1, . . . , i− 1}.

q̃′~xi = Prob(Vi ∧ Yi = 1 ∧Xi = 1 ∧ ~X = ~x ∧ Ei)
Prob(Xi = 1 ∧ ~X = ~x ∧ Ei)

=
∑

x:xi=1,x1,...,xi−1=~x,Bad(x,i)

∑
y:yi=1,Ei(x,y)

µ(x, y)/Prob(Xi = 1 ∧ ~X = ~x ∧ Ei)

=
∑

x:xi=1,x1,...,xi−1=~x,Bad(x,i)

q′xi · Prob(X = x ∧ Ei)/Prob(Xi = 1 ∧ ~X = ~x ∧ Ei)

≤ (ε/10) · q′~xi ·
∑

x:xi=1,x1,...xi−1=~x

Prob(X = x ∧ Ei)/Prob(X1 = 1 ∧ ~X = ~x ∧ Ei)

≤ (ε/10) · q′~xi .

J

Therefore, ignoring possible intersections where x or y are bad for i, one can introduce
error at most ε/5, because the probability of an A-bad (first) intersections is at most
p~xi q̃
′~x
i si ≤ (ε/10)p~xi q′~xi si for any ~x, with a similar bound for B-bad. Hence in the following we

assume that all x, y are not bad for i.
We call a position i and inputs x, y lucky, if p~xi ≤ 400(k + 1)p′~yi /ε3. The remaining

positions are unlucky for x, y. There are four possible sources of error in our protocol: There
are “bad” intersections (considered above). Among the positions for which the input is not
bad, there may be unchosen lucky positions and unchosen unlucky positions. Finally, some
error comes from the amplitude amplification quantum searches.

“Bad” intersections contribute error at most ε/5, as shown above. The amplitude
amplification error can be pushed below ε/20 by increasing communication by a factor of
O(− log ε), which is already absorbed in the stated communication bound above. It remains
to deal with the unchosen lucky and unlucky positions (for which the input is not bad).

We first consider the error contributed by lucky positions i that are not chosen by either
Alice or Bob – denote these by L. Fix the input prefixes ~x, ~y and assume that the inputs are
not bad for i. Positions that are not chosen satisfy p′~yi q′~xi ≤ (10/ε)2 ·p′yi q′xi ≤ ε4/(800(k+1)n).
We have that the probability that the first intersection is at position i ∈ L but i is not chosen,
is (conditioned on ~x)

r~xi si = p~xi q
′~x
i si ≤ 400(k + 1)p′~yi q

′~x
i si/ε

3 ≤ ε/(2n) · si ≤ ε/(2n),

where the first inequality is because of ‘lucky’, and the second because of ‘unchosen’. Summing
up, and taking expectations (over ~x under µi), this gives

∑
i Prob(Xi = Yi = 1∧Ei ∧ i lucky,

not chosen) ≤ ε/2, hence error at most ε/2.
Now we turn to the error contributed by unlucky positions. For these we have that

p~xi > 400(k + 1)/ε3 · p′~yi .
We use the following lemma.

I Lemma 22. Assume that for no x or y the conditional probability of non-intersection is
less than α, and that for no x and i the probability that Xi = Yi = 1 conditioned on X = x

and Ei is larger than 1/2, and the same for all y, i. Then∑
i

Eµi
~x,~y p~xi q

~y
i ≤ 16k/α+ 68/α2,

where ~x, ~y are prefixes of length i− 1.
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Note that the first assumption of the lemma can be made since otherwise we can just
reject x (resp., y) with error α. The second assumption can be made since otherwise i is
chosen by Alice (resp., Bob), and no error happens there.

Now we can bound the probability that an unlucky position i has the first intersection
(conditioned on ~y) by

r~yi si ≤ r
~y
i = p′~yi q

~y
i ≤ ε

3p~xi q
~y
i /(400(k + 1)).

Summing up over all i (not just the unlucky ones) and taking expectation over µi we get by
our lemma that∑

i

E~x,~y ε
3/(400(k + 1)) · p~xi q

~y
i

≤ ε3/(400(k + 1)) · ((16k/α) + 68/α2)
≤ ε/4.

Hence the total error is not more than ε/20 + ε/4 + ε/5 + ε/2 ≤ ε and we get the following.

I Theorem 23. QI≤kε (f) ≤ O((n(k + 1))1/4/ε2 · logn · log(1/ε)).

It remains to prove the lemma.

Proof of Lemma 22. Denote by µi the probability distribution µ, restricted to the event Ei.
We know that k ≥ Iµ(X : Y ) = D(µ||σ), where σ is the product of marginals of µ. Denote
by σi the product of marginals of µi, and by µ~x,~y,ji the distribution µi, conditioned on the
event X1 = x1, . . . , Xj = xj , Y1 = y1, . . . , Yj = yj , which we abbreviate by F ~x,~y,j . Similarly,
σ~x,~y,ji is σi conditioned on F ~x,~y,j . Note that for the latter probability distribution we first
take the product of marginals of µi, and then condition. This is different from considering
conditional mutual information, in which one would first condition and then take the product
of marginals. We also stress that here j denotes the length of ~x, ~y, unlike before. In the
following, when we do not mention j explicitly, it is i− 1: e.g., µ~x,~yi = µ~x,~y,i−1

i .
By the chain rule for relative entropy we get that∑
j=1,...,n

Eµi
~x,~y,j−1D(µ~x,~y,j−1

i (Xj , Yj)||σ~x,~y,j−1
i (Xj , Yj)) = D(µi||σi) = Iµi(X : Y ),

where the expectation is over the prefixes ~x, ~y of length j − 1 under µi. We are interested in

ki = Eµi
~x,~yk

~x,~y
i = Eµi

~x,~yD(µ~x,~yi (Xi, Yi)||σ~x,~yi (Xi, Yi)).

For this, i determines both the condition on previous positions, and the choice of distribution.
The chain rule can be used if we fix µi, but here we want to vary µi as well. For the moment
suppose we can bound

∑
ki by a k′ not much larger than k.

Observe that p~xi q
~y
i is the probability that Xi = Yi = 1 under the distribution σ~x,~yi (Xi, Yi).

σi is a product distribution, and hence conditioning on Y ′s does note change the probability
of Xi = 1 etc., and so we get that p~xi = Probσi(Xi = 1| ~X = ~x, ~Y = ~y).

We can now apply Lemma 10 to learn that either p~xi q
~y
i ≤ 4r~x,~yi or

D(µ~x,~yi (Xi, Yi)||σ~x,~yi (Xi, Yi)) ≥ p~xi q
~y
i /16. Hence

p~xi q
~y
i ≤ 4r~x,~yi + 16D(µ~x,~yi (Xi, Yi)||σ~x,~yi (Xi, Yi)).

Then∑
i

p~xi q
~y
i ≤

∑
i

4r~x,~yi + 16k~x~yi .



R. C. Bottesch, D. Gavinsky, and H. Klauck 557

Noting that
∑
i Eµi

~x,~yr
~x,~y
i si ≤

∑
risi ≤ 1 and hence

∑
i Eµi

~x,~yr
~x,~y
i ≤ 1/α it remains

to bound k′ =
∑
ki by k/α + 4/α2. For this we need to first compare µi+1(x, y) and

µi(x, y). If (x, y) ∈ Ei+1, then we get µi+1(x, y) = µi(x, y)/(1 − ri). Also, we have
σi+1(x, y) =

∑
y′:(x,y′)∈Ei+1

µi(x, y′)/(1− ri) ·
∑
x′:(x′,y)∈Ei+1

µi(x′, y)/(1− ri), and, denoting
ryi = Probµi(Xi = Yi = 1|Y = y) that is equal to

∑
y′:(x,y′)∈Ei µi(x, y

′) · (1− rxi )/(1− ri) ·∑
x′:(x′,y)∈Ei µi(x

′, y) · (1− ryi )/(1− ri). Which is µi(x) · µi(y) · (1− rxi )(1− ryi )/(1− ri)2.
Let us compute an upper bound on D(µi+1||σi+1)

=
∑

(x,y)∈Ei+1

µi+1(x, y) log µi+1(x, y)
σi+1(x, y)

=
∑

(x,y)∈Ei+1

µi(x, y)/(1− ri) · log µi(x, y) · (1− ri)
σi(x, y)(1− rxi )(1− ryi )

(∗)
≤

∑
(x,y)∈Ei

µi(x, y)/(1− ri) · log µi(x, y) · (1− ri)
σi(x, y)(1− rxi )(1− ryi )

− µi(Ei − Ei+1)/(1− ri) · log(4µi(Ei − Ei+1)/σi(Ei − Ei+1))

≤
∑

(x,y)∈Ei

µi(x, y) log
(
µi(x, y)
σi(x, y)

)
/(1− ri)

+
∑

(x,y)∈Ei

µi(x, y)/(1− ri) · log 1− ri
(1− rxi )(1− ryi ) − ri/(1− ri) · log(4ri)

(∗∗)
≤ D(µi||σi)/(1− ri) + 2

∑
(x,y)∈Ei

µi(x, y) · 2 · (rxi + ryi )− 2ri log(4ri)

≤ D(µi||σi)/(1− ri) + 12ri − 2ri log(ri),

where in (*) we use Lemma 6, in (**) we use that − log(1− λ) = − ln(1− λ)/ ln(2) ≤ 2λ, for
all 0 ≤ λ ≤ 1/2, and in general use that rxi , r

y
i , ri ≤ 1/2 by the assumption in the lemma.

The conclusion is that the relative entropy increases only slightly.
Now we turn to the terms ki in the chain rule expansion. Fix X1 = x1, . . . , Xi = xi

and Y1 = y1, . . . , Yi = yi. We are interested in D(µ~x,~y,ii+1 ||σ
~x,~y,i
i+1 ) and its relation to to

D(µ~x,~y,ii ||σ~x,~y,ii ). Note that the distributions involved are on Xi+1, . . . , Xn, Yi+1, . . . , Yn. We
assume xjyj 6= 1 for all j < i+ 1, otherwise the inputs are not in Ei+1 and have no weight
under µi+1. We have

D(µ~x,~yi+1(Xi+1, . . . , Xn, Yi+1, . . . , Yn)||σ~x,~yi+1(Xi+1, . . . , Xn, Yi+1, . . . , Yn))

=
∑

x,y∈Ei+1:x1,...,xi=~x,y1,...,yi=~y

µi+1(x, y|~x, ~y) log
(
µi+1(x, y|~x, ~y)
σi+1(x, y|~x, ~y)

)

≤
∑

x,y∈Ei:x1,...,xi=~x,y1,...,yi=~y

µi(x, y|~x, ~y) log
(

µi(x, y|~x, ~y)
σi(x, y|~x, ~y) · (1− rxi )(1− ryi )

)
≤ D(µ~x,~y,ii (Xi+1, . . . , Xn, Yi+1, . . . , Yn)||σ~x,~y,ii (Xi+1, . . . , Xn, Yi+1, . . . , Yn))

+
∑

x,y:x1,...,xi=~x,y1,...,yi=~y

µi(x, y|~x, ~y) · log
(

1
(1− rxi )(1− ryi )

)
≤ D(µ~x,~y,ii (Xi+1, . . . , Xn, Yi+1, . . . , Yn)||σ~x,~y,ii (Xi+1, . . . , Xn, Yi+1, . . . , Yn))

+
∑

x,y:x1,...,xi=~x,y1,...,yi=~y

µi(x, y|~x, ~y)(2rxi + 2ryi )

≤ D(µ~x,~y,ii (Xi+1 . . .)||σ~x,~y,ii (Xi+1, . . .)) + 2r~yi + 2r~xi .
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Note here that conditioned on ~x, ~y, the condition Ei+1 is satisfied for all inputs, and no
re-scaling happens going from µi+1 to µi conditioned on ~x, ~y.

We can now bound
∑
i ki =

∑
i Eµi

~x,~y k
~x,~y
i . Note that µ1 = µ.

k ≥ D(µ||σ)
= D(µ1(X1, Y1)||σ1(X1, Y1))
+ Eµ1

x1,y1
D(µx1,y1

1 (X2, . . . , Xn, Y2, . . . , Yn)||σx1,y1
1 (X2, . . . , Xn, Y2, . . . , Yn))

≥ D(µ1(X1, Y1)||σ1(X1, Y1))
+ Eµ1

x1,y1
D(µx1,y1

2 (X2, . . . , Xn, Y2, . . . , Yn)||σx1,y1
2 (X2, . . . Xn, Y2, . . . , Yn))− 4r1

≥ D(µ1(X1, Y1)||σ1(X1, Y1))
+ Eµ2

x1,y1
D(µx1,y1

2 (X2, . . .)||σx1,y1
2 (X2, . . .)) · (1− r1)− 4r1

= D(µ1(X1, Y1)||σ(X1, Y1))
+ Eµ2

x1,y1
D(µx1,y1

2 (X2, Y2)||σx1,y1(X2, Y2)) · (1− r1)
+ Eµ2

x1,x2,y1,y2
D(µx1,x2,y1,y2

2 (X3, . . .)||µx1,x2,y1,y2
2 (X3, . . .)) · (1− r1)− 4r1

≥ D(µ1(X1, Y1)||σ1(X1, Y1)) + Eµ2
x1,y1

D(µx1,y1
2 (X2, Y2)||σx1,y1

2 (X2, Y2)) · (1− r1)
+ Eµ2

x1,x2,y1,y2
D(µx1,x2,y1,y2

3 (X3, . . .)||µx1,x2,y1,y2
3 (X3, . . .)) · (1− r1)

− 4r1 − 4r2 · (1− r1)
≥ D(µ1(X1, Y1)||σ1(X1, Y1)) + Eµ2

x1,y1
D(µx1,y1

2 (X2, Y2)||σx1,y1
2 (X2, Y2)) · (1− r1)

+ Eµ3
x1,x2,y1,y2

D(µx1,x2,y1,y2
3 (X3, . . .)||µx1,x2,y1,y2

3 (X3, . . .)) · (1− r1)(1− r2)
− 4r1 − 4r2 · (1− r1)
...
≥

∑
i

Eµi
~x,~yD(µ~x,~yi (Xi, Yi)||σ~x,~yi (Xi, Yi)) · α− 4

∑
i

ri

=
∑
i

ki · α− 4/α,

where in the last step we use that
∏
i=1,...,n(1− ri) ≥ α and

∑
i ri ≤ 1/α.

This means that
∑
ki ≤ k/α+ 4/α2. J

4.3 Lower Bound
We use exactly the same hard distribution for the quantum case as for the classical case,
see Section 3.2, where also the mutual information of this distribution is shown to be at
most k. Conveniently, Razborov [23] has done most of the hard work for us by analysing the
quantum complexity of Disjointness for all set sizes. We get the following main result:

I Theorem 24. The distributional quantum communication complexity of Disjointness under
µn,k is at least Ω((n(k + 1))1/4).

Proof. Recall the distributions νn,k, σn,k as defined in Section 3.2. These are the distributions
of sets of size s = O(

√
n(k + 1) from a size n universe (not intersecting resp. intersecting).

We employ the following result by Razborov [23]:

I Fact 25. Any quantum protocol that solves DISJ with error ε under νn,k and error ε under
σn,k needs communication Ω(

√
s) = Ω((n(k + 1))1/4).
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This follows from Razborov’s proof, in which given a quantum protocol with commu-
nication c for DISJ (on inputs of size s from a size n universe), a uni-variate polynomial of
degree O(c) on {0, 1, . . . , s} is constructed such that p(i) is close to 0 for all {0, 1, . . . , s− 1}
and p(s) = 1. Such a polynomial must have degree Ω(

√
s). The construction is done by

averaging of the acceptance probabilities on all inputs x, y where x, y have size s, and hence
it is enough if the given protocol for DISJ is correct on average inputs under νn,k and under
σn,k. But any protocol with small error under µn,k must also have small error under both of
these distributions, and we get the same lower bound under this distribution as in the worst
case, as stated by Razborov. J

We also note that again, the error dependence cannot be polylogarithmic. The proof is
the same as in the classical case.

I Theorem 26. QI≤1
ε (DISJ) ≥ Ω((n/ε)1/4).

We again obtain this following.

I Corollary 27. The class of distributions with information k with 1 ≤ k ≤ n1−Ω(1) is not
boost-able for quantum protocols.

5 Large Correlation is Needed for Tight Bounds

In this section we show that there is a function, for which the distributional communication
complexity is far from the randomised communication complexity if the information in the
distribution is less than Ω(n). The main idea is that random sparse problems make it hard
for low information distributions to ‘focus’ on the 1-inputs.

Define fn,d as a random variable that takes as its values functions f : {0, 1}n ×{0, 1}n →
{0, 1}. The functions are generated randomly as follows. Each input x, y is chosen to be a
1-input independently with probability d/2n.

Note that the communication matrix of fn,d has expected d 1-inputs for each row
and column. In the following d should be thought of as some value like 2

√
n. We need

2n/100 ≥ d ≥ 6n.
We first show that the complexity of fn,d is Θ(log d) with high probability. Then, we

show that with high probability fn,d has a property that allows an O(logn) protocol under
all low information distributions.

First we note that by the Chernoff bound the probability that a row or column has more
than 2d or less than d/2 1-inputs is at most 2e−d/3 ≤ 2−2n. By the union bound it is true
for all rows and columns (with high probability) that they contains between d/2 and 2d
1-inputs. Throughout this section we assume that fn,d has this property.

I Lemma 28. R(fn,d) ≤ O(log d) with high probability.

Proof. With high probability there are at most 2d 1-inputs (x1, y), . . . , (x2d, y) in Bob’s
column. If Alice sends a fingerprint of x as in Fact 14, using 2 log d bits, then Bob can check
whether x = xj for some 1 ≤ j ≤ 2d with error 2d · 2−2 log d ≤ 2/d. If so, then he accepts,
otherwise he rejects. J

I Lemma 29. R(fn,d) ≥ Ω(log d) with high probability.

Proof. The proof is by the probabilistic method. We use the minimax theorem and the
following hard distribution: Put 1/2 weight on 1-inputs and 1/2 weight on 0-inputs to fn,d.
Note that the mutual information of this distribution is Ω(n): for 1-inputs, given x there are
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at most d inputs y out of 2n such that x, y is a 1-input. Hence the information is at least
(n− log d)/2.

We employ the 1-sided discrepancy method. The 1-sided discrepancy under a distribution
µ is disc′(f, µ) = maxR µ(f−1(1) ∩ R) − µ(f−1(0) ∩ R), where the maximum is over all
rectangles. Then Rµ(f) ≥ − log disc′(f, µ) for all µ that put weight 1/2 on the 1-inputs. Our
goal is to show that the 1-sided discrepancy is small with high probability over the choice of
fn,d.

Fix a rectangle R and consider a random fn,d. We would like to compute the probability
that disc′(R) = µ(f−1

n,d(1) ∩R)− µ(f−1
n,d(0) ∩R) is large. Note that this is a random variable

and that µ depends on fn,d
If µ(R ∩ f−1(1)) ≤ 4/d1/4, then disc′(R) ≤ 4/d1/4 and we are done. Hence we assume

the opposite. For R to contain at least a 4/d1/4 fraction of all 1-inputs it must be the case
that R contains at least (4/d1/4) · 2nd/2 1-inputs, and no row or column contains more than
2d of them, which implies that R must have at least 2n/d1/4 rows and columns.

Write R = A×B, where |A|, |B| ≥ 2n/d1/4. The expected number of 1-inputs in R is at
most |A| · |B| · d/2n. The 1-inputs are chosen independently, and the Chernoff bound yields
that Prob(R contains more than (1 + d−1/2)|A||B|d/2n 1-inputs) ≤ e−|A||B|d/(3·2

nd1/4) ≤
e−2nd1/4/3. Similarly, we can bound Prob(R contains less than (1 − d−1/2)|A||B|d/2n 1-
inputs).

Furthermore, since there are at most 22n+1 rectangles, and by the union bound with high
probability these estimates are correct for all rectangles with enough rows and columns (in
particular the rectangle consisting of all inputs).

Note that R contains at least |A| · |B| − |A|2d 0-inputs, each of which have weight
at least 1/(22n+1), for a total 0-weight of at least |A||B|/22n+1 − d/2n. The weight of a
single 1-input is at most 1/(1 − d−1/2) · 1/(d2n+1) and the total 1-weight of R is at most
(1 + d−1/2)/(1− d−1/2) · |A||B|/22n+1 by the above. Hence the one-sided discrepancy is at
most O(d−1/2|A||B|/22n+1) ≤ O(d−1/2). J

We will now show that most functions fn,d are easy under all low information distributions,
but hard for information n distributions, by showing that fn,d has a certain property with
high probability. We assume in the following that d ≤ 2ε2n and set ε = 1/10.

I Definition 30. We say a Boolean 2n × 2n matrix is good, if it is true that every rectangle
A × B with min{|A|, |B|} ≤ 22n/3 has no more than 100 max{|A|, |B|} 1-entries. We also
call any rectangle A×B with min{|A|, |B|} ≤ 22n/3 in a good matrix good.

I Lemma 31. With high probability the communication matrix of fn,d is good.

Proof. Fix A,B. Assume that |B| ≥ |A| and that |A| ≤ 22n/3. The probability that a fixed
x, y is a 1-input is d/2n. The probability that there are at least 100|B| 1-inputs in R is at
most

(|A||B|
100|B|

)
· (d/2n)100|B| ≤ ( |A|d2n )100|B| ≤ d

2n/3
100|B|.

There are
(2n
|A|
)(2n
|B|
)
≤ (e2n/|B|)2|B| rectangles of this size. By the union bound the

probability that there is a rectangle that is not good is small. J

Now assume that f (or rather its matrix) is good. Consider any ν such that I(X : Y ) ≤ ε3n.
We have to give a protocol for f under ν. By Fact 4 there is another distribution µ, that is
ε/2-close to ν and has I∞(X : Y ) ≤ 8ε2n. We describe a protocol for f under µ with error
ε/2. The same protocol has error at most ε under ν. We assume d ≤ 2ε2n.

Alice and Bob consider the marginal distributions µA and µB . Alice sends 0, if µA(x) ≤
2−n/2−εn, and 1, otherwise, and Bob does the same for µB(y). We first consider the rectangle
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R00 the messages were 00. Then µA(x) · µB(y) ≤ 2−n−2εn for all x, y in R00. Hence on
this rectangle

∑
x,y∈R:f(x,y)=1 µA(x)µB(y) ≤ 2d2−2εn. That means that under µA × µB

the probability of 1-inputs in R00 is at most 2d2−2εn. But since I∞(X : Y ) ≤ 8ε2n, the
probability of 1-inputs there under µ is at most 2−2εn+O(ε2n). We can reject on R00 without
introducing much error.

Now consider one of the remaining rectangles, say R10 = A×B. Clearly, this rectangle
has |A| ≤ 2n/2+εn. Assume |A| ≤ |B|. By the above lemma this means that A×B is good,
i.e., contains relatively few 1-inputs, on average only 100 per column.

On R10 Alice and Bob send public coin fingerprints of x, y each, with error guarantee
ε/1000. This takes communication O(− log ε). If a row or column contains few 1-inputs Alice
resp. Bob can test with the fingerprint whether x, y is one of these. But R10 only contains
few 1-inputs on average, and it is quite possible that both the row and the column of x, y
have many 1-inputs.

Let A = A0 and B = B0. Assume that |A| ≤ |B|. Define Ai as the set of x ∈ Ai−1 such
that there are at least 1000 1-inputs x, y′ with y′ ∈ Bi−1 and Bi the set of y ∈ Bi−1 such
that there are at least 1000 1-inputs x′, y with x′ ∈ Ai−1.

Clearly, all Ai × Bi are good. Assume that |Ai| ≤ |Bi|. Ai × Bi has at most 100|Bi|
1-inputs. Ai × Bi+1 has at least 1000|Bi+1| 1-inputs, hence |Bi+1| ≤ |Ai|/10, because
Ai ×Bi+1 is good: 1000|Bi+1| ≤ 100 max{|Ai|, |Bi+1|}. That means that for odd i we have
|Bi| ≤ |Ai−1|/10 and for even i we have |Ai| ≤ |Bi−1|/10.

All sets Ai, Bi are known to Alice and Bob without communication. Also, due to the
shrinking sizes, all i ≤ O(n).

The protocol works as follows: Alice determines the first i such that on Ai ×Bi−1 her
row contains at most 1000 1-inputs and sends this information. Bob also sends the index j,
such that on Aj−1 ×Bj his column contains at most 1000 1-inputs. If i < j, then Bob also
sends a fingerprint of y with error guarantee 1/10000 (see Fact 14). If there is a y′ ∈ Bi−1
with the same fingerprint and f(x, y′) = 1 then Alice accepts, otherwise she rejects. If i > j,
then Alice sends the fingerprint, and Bob accepts if and only if there is an x′ ∈ Aj−1 with
f(x′, y) = 1. Clearly the communication is 2 logn+O(1), and is done in 2 rounds.

Correctness: Assume i < j. The players can be sure that x, y ∈ Ai × Bi−1. There are
at most 1000 1-inputs in row x in Bi−1. If f(x, y) = 1, then certainly the fingerprints will
coincide, and Alice accepts. Otherwise the probability that the fingerprints equal is at most
100/10000 = 1/10.

I Lemma 32. Under ν with information at most ε3n and for 6n ≤ d ≤ 2ε2n we have that
Rνε (f) ≤ O(logn), if f is good.

I Theorem 33. For every 6n ≤ d ≤ 2n/100 there is a function fd such that
R(fd) = Θ(log d),
R
I≤n/1000
1/10 (fd) ≤ O(logn).

6 One-Round Error Dependence

We now consider the general question of error dependence under distributions with limited
information. In the case, where the information is bounded only by n, we get the standard ran-
domised (resp. quantum) communication complexity, for which the usual boosting techniques
(i.e., the Chernoff bound) show that the error dependence is at most factor of O(log(1/ε)).
Furthermore, Corollary 20 shows that for all information parameters 1 < k < n1−Ω(1) the
error dependence is polynomial. This leaves the case of product distributions, where in the
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randomised two-way communication case DISJ has logarithmic error dependence. In this
section we show that for all total functions, in the case of one-way communication complexity
the error dependence is small under product distributions. The corresponding statement
about two-way protocols remains open.

In [19] Kremer et al. show that the complexity of one-way protocols for total functions
under product distributions is determined by the VC-dimension (see also [17]).

I Definition 34. The VC-dimension of a Boolean matrix M is the largest k such that there
is a 2k × k rectangle R in M such that R contains all Boolean strings of length k as rows.

The VC-dimension in turn characterises the number of examples needed to PAC-learn the
concept class given by the rows of the communication matrix of f , under any distribution
on the columns. Usually in learning theory a concept class is a set of Boolean functions
(’concepts’), and here we view rows of the communication matrix of f as functions fx(y) =
f(x, y). The task of PAC learning is for the learner to be able to compute fx(y) for most y
under a distribution µ, after having seen labelled examples from the same distribution. It is
well known, that O(V C(f) · 1/ε · log(1/ε)) examples suffice [17].

Kremer et al. [19] proved the following upper bound on one-way communication complexity:
RA→B,I=0
ε (f) ≤ O(V C(f)·1/ε·log(1/ε)). The idea is that Alice and Bob can choose examples

y′ from the public coin, which Alice can label by sending f(x, y′). Bob simulates the PAC
learning algorithm for the rows of the communication matrix, and hence he can successfully
predict f(x, y) for most y, including (likely) his own input. Note that there is also a lower
bound of QA→B,I=0(f) ≥ (1−H(ε))V C(f) (which is even true in the entanglement assisted
case with an additional factor of 1/2)[19, 3, 18].

While it is known, that the number of examples needed to PAC-learn is at least Ω(V C(f)/ε)
[17], we get an exponentially better dependence on the error here for the one-way communic-
ation model under product distributions.

Our result has an appealing interpretation. Both the one-way model under product
distributions and the PAC model can be viewed as learning models (for this it is crucial
that the distributional one-way model is considered under product distributions). In the
PAC model Alice (or nature) labels random examples drawn from a distribution, and Bob
has to end up being able to label new examples mostly correct (under the same, unknown
distribution). In the one-way model, there is a known distribution on examples (columns),
and a known distribution on concepts (rows). The one-way model under product distributions
can clearly simulate any PAC algorithm. But Alice can send any information she deems
useful, not just label examples. Nevertheless, in both models the complexity is determined
by the VC-dimension. Is a teacher like Alice not more useful than random labelled examples?
We show that the one-way model (i.e., a teacher) is better in the sense that making the error
small is exponentially cheaper there, compared to the PAC model.

I Theorem 35. For all total f : RA→B,I=0
ε (f) ≤ O(QA→B,I=0

1/3 (f) · log(1/ε))

Proof. First, QA→B,I=0
1/3 (f) = Θ(V C(f)). Hence we need to show only that RA→B,I=0

ε (f) ≤
O(V C(f) · log(1/ε)).

For a given distribution µ on the columns, an ε-net among the rows of the communication
matrix is a subset N of the set of rows, such that for every row x there is a row x′ ∈ N which
coincides with x with probability 1− ε under µ. We have the following simple observation,
due to the fact that Alice can simply send the name of the closest x′ ∈ N to Bob.

I Lemma 36. RµA×µBε (f) is upper bounded by the logarithm of the size of the smallest ε-net
for f and µB.
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Hence instead of the simulation Alice and Bob can agree on an ε-net beforehand, and the
size of the ε-net determines the complexity of the protocol. Note that PAC-learners also try
to find an ε-net, but they are restricted to finding one from random examples. The size of
the constructed ε-net is much smaller than the number of examples (this is not surprising,
since otherwise the concept is not learned yet). Indeed, Sauer’s lemma tells us enough about
the size of the ε-net, when the specified number of examples have been chosen.

I Fact 37 (Sauer). Let M be a Boolean matrix with r rows and c columns and VC-dimension
d. Then r ≤ Φ(c, d), where Φ(c, d) =

∑
i=0,...,d

(
c
i

)
≤ d ·

(
c
d

)
.

We now state the fundamental result from PAC learning (see Theorem 3.3 in [17]).

I Fact 38. Consider any function f : {0, 1} × {0, 1}n → {0, 1}. Assume we fix any x, and
there is a distribution µ on y’s that does not depend on x. We are given c = O(V C(f) · 1/ε ·
log(1/ε)) random examples y1, . . . , yc from the distribution and labels `1 = f(x, y1), . . . , `c =
f(x, yc). If we use any x′ that is consistent with these values, i.e., f(x′, yi) = `i for all
i = 1, . . . , c, then the probability that f(x′, y) 6= f(x, y) is at most ε under µ, i.e., if we choose
a string x′ consistent with any vector `1, . . . , `c, then we get an ε-net for f, µ.

The size of this ε-net is clearly at most 2c. Sauer’s lemma can be used to show that the
constructed ε-net is actually much smaller. The size of the ε-net constructed in Fact 38 is at
most the size of the set of distinct rows in the matrix for f , when we restrict the matrix to
the c chosen columns (we may choose one x′ for every distinct value of the c labels appearing
and add it into the ε-net).

The size of the number of distinct rows is bounded now by Sauer’s lemma as follows:
V C(f)·

(
c

V C(f)
)

= V C(f)·
(
const·V C(f)·1/ε·log(1/ε)

V C(f)
)
≤ (1/ε)O(V C(f)). Hence the communication

is at most the logarithm of this size, which yields the theorem. J

7 Open Problems

Can the error dependence of a tight upper bound on QI=0
ε (DISJ) be improved to

log(1/ε)?
Can the error dependence of RI=0

ε (f) be improved to log(1/ε) for every total function f?
What is the trade-off between the number of rounds and the randomised complexity of
DISJ under product distributions?
What is the quantum communication complexity of DISJ where the inputs are sets of
size
√
n from a size n universe? The best known lower bound is Ω(n1/4), the best known

upper bound is O((n1/4) logn).
What is the largest gap between QI=0(f) and RI=0(f)? In the one-way model there is
at most a constant gap for any total function. We have shown a quadratic gap for DISJ.
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A Randomised Protocol for DISJ under Product Distributions

Proof of Theorem 15. Fix any product distribution µ on {0, 1}n × {0, 1}n. The main idea
is (just like in [4]) to have a first phase in which large sets are reduced in size until both
sets have size O(

√
n). In phase 2 we employ the randomised protocol for DISJ on small sets

given by Hastad and Wigderson [11] (instead of communicating the sets). To simplify our
presentation we describe a randomised protocol.

Set S =
√
n. In phase 1 Alice and Bob try to shrink the universe U (without removing

positions in x∩ y) until the size of U is at most S. At that point also |x∩U | and |y ∩U | are
at most of size S and the players move to phase 2. The protocol starts with the universe
U0 = {1, . . . , n}. The players maintain a current universe Ui until Ui is small at some point.

The protocol proceeds in rounds during phase 1 (we later explain how to get rid of all
but two rounds). In each round Alice and Bob exchange a bit each, indicating whether
|x|, |y| ≥ S or not. If both are smaller, they move to phase 2. The players also maintain
a current rectangle of inputs Ri = Ai × Bi (this would be immediate in a deterministic
protocol, but needs to be maintained in the randomised case).

After this exchange, Alice and Bob each compute Prob(x, y are disjoint) on the current
distribution restricted to Ri and their row/column. If this probability is less than ε for
someone, they reject and quit the protocol. Otherwise, one player who has a large set still,
say Alice, uses the public coin to generate samples y′ ∈ Bi. These are disjoint from x with
probability at least ε. Hence, Alice can name a disjoint y′ with expected communication
O(log(1/ε)). Since x ∩ y is disjoint with y′ they set Ui+1 = Ui − y′. The size of the universe
decreases by at least

√
n in each round in phase 1, the communication is expected O(log(1/ε))

per round, and there are at most
√
n rounds.

Phase 2, as mentioned, is the protocol from [11], which solves DISJ with communication
O(
√
n log(1/ε)) and worst case error ε on sets of size at most

√
n.

Hence the total expected communication is at most O(
√
n log(1/ε)). We need a protocol

with a worst case communication bound, though, but note that during each round in phase 1,
using the public coin to pick a new y′ corresponds to a Bernoulli trial with success probability
at least ε. The communication cost is the logarithm of the number of the first successful
trial. The probability that this is larger than t log(1/ε) is at most e−1/εt−1 . Assume there
are T rounds in phase 1. The probability that the message length in any round is more than
(T + 1) log(1/ε) is at most T · e−1/εT ≤ ε. Hence we can assume that the message length is at
most (T + 1) log(1/ε) in all rounds (the probability that this is not the case is bounded by ε).

We now bound the probability that the total message length is more than 10T log(1/ε),
by appealing to the Hoeffding bound. Note that the message lengths of all rounds are (still)
independent, and that we just established an upper bound on the message length. The
Hoeffding bound now implies that the probability of the total message length being larger
than the stated bound is at most ε. Furthermore, we have that T ≤

√
n with certainty. This

shows that the communication of phase 1 is at most O(
√
n log(1/ε)). Note that the protocol

needs to be modified such that it aborts if the communication in phase 1 exceeds this bound.
This introduces error at most ε. J

B Randomised Protocol and Distributions with Bounded Mutual
Information

Proof of Theorem 16. Fix any distribution µ′ that has information at most k. The protocol
we describe again has 2 phases. Informally, the first phase shrinks the sets of Alice and
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Bob (which could be arbitrarily large) until their sizes are both small enough. The second
phase is small set disjointness, as considered before by Hastad and Wigderson [11], and more
recently by Saglam and Tardos [24]. We will establish an upper bound of O(

√
n(k + 1)/ε)

on the expected communication complexity with error ε. Then the theorem (which claims a
worst-case bound) follows via the Markov inequality: if the stated communication bound is
violated, stop the protocol and output a random bit.

Set S =
√

(k + 1)n. The goal of the first phase is to make both sets smaller than S.
Suppose Alice holds x and Bob y. They communicate to determine one of them has a set
larger than S. This needs communication O(1). If both sets are small we move to phase 2
described below.

In phase 1 Alice and Bob try to shrink the universe U until the size of U is at most S.
At that point also |x ∩ U | and |y ∩ U | are at most S and the players move to phase 2. The
protocol starts with the universe U0 = {1, . . . , n}. The players maintain a current universe
Ui until Ui is small at some point.

Note that while the information under µ0 = µ is at most k, in some branches of the
protocol the information on the current sub-rectangle can grow, and we need that on average
it is bounded by k. We keep a transcript Ti = Ui, Vi, Ri, which contains the messages
exchanged in phase 1 up to round i (in every round either Alice or Bob sends a message,
which goes into Ui resp. Vi), as well as the random variable Ri containing the public coins
used so far. Note that conditioned on a fixed value r of Ri the message transcript Ui(r)×Vi(r)
is a rectangle in the communication matrix.

Then I(X : Y |Ti) = H(XUiVi|Ri) + H(Y UiVi|Ri) − H(UiVi|Ri) − H(XY UiVi|Ri) ≤
H(XUi|Ri) + H(Y Vi|Ri) − H(XY UiVi|Ri) + I(Ui : Vi|Ri) = I(XUi : Y Vi|Ri) = I(X :
Y |Ri) = I(X : Y ), hence the information does not increase on average.

Denote by µti the distribution on inputs conditional on the transcript being Ti = ti. µxti
is µti restricted to the row X = x. µ̃, µ̃ti , µ̃xti denote the distributions restricted to 1-inputs
of DISJ. µti,Y is the marginal of µti on Bob’s inputs. µ̃xti,Y is the distribution on y’s under
Ti = ti, for fixed x and conditioned on x ∩ y = ∅. µxti,Y is the distribution on y’s under
Ti = ti, for fixed x.

Here is the protocol for phase 1. Explanations follow.

1. Alice and Bob check whether |x| ≤ S and |y| ≤ S on Ui. If both are, they move to phase
2. W.l.o.g. assume that |y| ≥ S, otherwise the following steps are done by Bob in an
analogous fashion.

2. Alice computes the probability that DISJ(x, y′) = 1 if y′ is chosen from µxti . If this
probability is less than ε/2, she ends the protocol with output 0.

3. Alice computes µ̃xti,Y . Another distribution, this one known to both players, is µti,Y .
4. Alice and Bob use rejection sampling as in Fact 8 (using the distributions µ̃xti,Y and µti,Y )

to discover a y′i distributed according to µ̃xti,Y .
5. Alice and Bob set Ui+1 = Ui − y′i.
6. ti+1 is ti together with the message and randomness from 1. µti+1 is µ conditioned on

Ti+1 = ti+1.
7. Move to step 1.

We note the following on the different steps.
1. Communication is O(1).
2. Clearly the total error introduced by these steps under µ can never be more than ε/2. If

the protocol moves ahead the probability of DISJ(x, y) = 1 is at least ε/2 under µxti .
3. Since I(X : Y |Ti) ≤ k we have that Eti,xD(µxti,Y ||µti,Y ) ≤ k.
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4. D(µ̃xti,Y ||µti,Y ) ≤ 2(D(µxti,Y ||µti,Y ) + 1)/ε − log(ε/2) due to Lemma 7 and hence the
rejection sampling protocol from Fact 8 uses expected communication O((k + 1)/ε).
Drawn y′i are always disjoint from x.

5. |y′i| ≥ S. Hence |Ui − Ui+1| ≥ S. This step can be performed at most n/
√
n/(k + 1)

times.

The protocol ends phase 1 with sets x ∩ Uj held by Alice and y ∩ Uj held by Bob, and
|x ∩ Uj |, |y ∩ Uj | ≤ S, and DISJ(x, y) = 1 ⇔ DISJ(x ∩ Uj , y ∩ Uj) = 1. The probability
that the protocol ends during phase 1 and makes an error is at most ε/2. The expected
communication is at most O(

√
n(k + 1)/ε.

Phase 2 is simply the Hastad Wigderson protocol for small set disjointness [11], that
finishes the protocol in communication O(

√
n(k + 1) log(1/ε)) and with worst case error ε/2.

Hence we get a protocol with error ε, and expected communication O(
√
n(k + 1)/ε). J

C Randomised Lower Bound for DISJ

We first bound the information. Letting X and Y follow the marginal distributions of µn,k,
respectively, we have:

I(X : Y ) = H(X)−H(X|Y ) = log
(
n

m

)
−Ey∈Y (Pr(y)H(X|Y = y))

= log
(
n

m

)
−H(X|Y = y0) (where y0 is any set with P (y0) > 0)

= log
(
n

m

)
−
(

2 log
(
n−m
m

)
+ 2 log

(
n−m
m− 1

)
+ 2
)

≤ log
(
n

m

)
− log

(
n−m
m

)
= log n(n− 1) · . . . · (n−m+ 1)

(n−m) · . . . · (n− 2m+ 1)

≤ log
(

1 + m

n− 2m+ 1

)m
≤ (log e) m2

n− 2m+ 1
= c2(log e)(1 + o(1))(k + 1) ≤ k

for any sufficiently large n.

Proof of Theorem 18. We may assume that k = o(n), since otherwise (if k = Ω(n)), the
original proof by Razborov [22] applies directly. Let l ∈ N be given and assume that n = 4l−1.
Let γ = logl(c

√
n(k + 1)), where c = (log e)−1. Thus γ ∈

( 1
2 , 1
)
(for n sufficiently large)

and our distribution will pick sets of size lγ = c
√
n(k + 1). Throughout the proof we will

treat numbers like lγ as natural numbers, and avoid using the floor function for the sake of
readability. We will also identify P({1, . . . , n}) with {0, 1}n.

We now give an alternative definition for the distribution µ = µn,k, as the distribution
induced by the following process: First, a triple T = (T1, T2, i) is chosen uniformly among all
such triples, where |T1| = |T2| = 2l−1 and {T1, T2, {i}} form a partition of the set {1, . . . , n}.
Then, with probability 1

2 the set x is chosen uniformly among all subsets of T1 ∪ {i} with
lγ elements and such that they contain i, and with probability 1

2 the set x is chosen as a
subset of T1 with lγ elements, again uniformly among all such subsets of T1. Similarly, and
independently of the choice of x, y is chosen with probability 1

2 uniformly as a subset of
T2 ∪ {i} with lγ elements and such that it contains i, and with probability 1

2 uniformly
among the subsets of T2 with lγ elements (not containing i). Thus non-zero probabilities are
assigned only on the set {(x, y) | x, y ⊆ {1, . . . , n}, |x| = |y| = lγ , |x ∩ y| ∈ {0, 1}}.
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Now the statement that Dµn,k
ε (DISJ) = Ω(

√
n(k + 1)) for any sufficiently small constant

ε > 0, follows directly from Lemma 39 below. J

I Lemma 39. Let γ and µ be defined as in the proof of Theorem 18. Let A = {(x, y) |
µ(x, y) > 0 and x∩ y = ∅} and B = {(x, y) | µ(x, y) > 0 and x∩ y 6= ∅}. For any sufficiently
small ε > 0 we have for any rectangle R = C ×D ⊆ P({1, . . . , n})2 that

µ(B ∩R) ≥ Ω(µ(A ∩R))− 2−Ω(nγ).

Proof. We consider ε > 0 to be fixed (but will specify its value later). We begin by defining
for any triple T = (T1, T2, {i}) as above, the numbers Row(T ) = Pr[x ∈ C | x ⊆ T1 ∪ {i}],
Row0(T ) = Pr[x ∈ C | x ⊆ T1 ∪ {i}, i /∈ x] and Row1(T ) = Pr[x ∈ C | x ⊆ T1 ∪ {i}, i /∈ x],
and similarly Col(T ) = Pr[y ∈ D | y ⊆ T2 ∪ {i}], Col0(T ) = Pr[y ∈ D | y ⊆ T2 ∪ {i}, i /∈ y]
and Col1(T ) = Pr[y ∈ D | y ⊆ T2 ∪ {i}, i /∈ y]. It is important to note that Row(T ) =
1
2 (Row0(T )+Row1(T )) and Col(T ) = 1

2 (Col0(T )+Col1(T )), just as in the case of Razborov’s
original distribution, and for the same reasons.

Next, for a triple T = (T1, T2, {i}) (and under the above distribution µ) we say that T is
x-bad if Row1(T ) < 1

6Row0(T )− 2−εnγ , and that T is y-bad if Col0(T ) < 1
6Col0(T )− 2−εnγ .

If T is x-bad or y-bad, we say that T is bad. Let Badx(T ), Bady(T ) and Bad(T ) be the
respective event indicators.

I Claim 40. For all t2 ⊆ {1, . . . , n}, with |t2| = 2l− 1, we have that Pr[Badx(T ) = 1 | T2 =
t2] ≤ 1

5 and Pr[Bady(T ) = 1 | T2 = t2] ≤ 1
5 .

Proof of the Claim. We prove the first statement, the second one having an almost identical
proof.

Let t2 ⊆ {1, . . . , n}, with |t2| = 2l − 1, be fixed. Under our distribution, Row(T ) can
take different values even when T is restricted to partitions for which T2 = t2. Thus we first
treat the case when max{Row(T ) | T2 = t2} ≤ 2−εnγ . If this inequality holds, then for all T
with T2 = t2 we have: Row(T ) ≤ 2−εnγ , and hence Row0(T ) ≤ 2Row(T ) ≤ 2 · 2−εnγ so that
Row0(T )

6 − 2−εnγ < 0 ≤ Row1(T ) holds trivially (and hence Pr[Badx(T ) = 1 | T2] = 0).
Next we treat the case where max{Row(T ) | T2 = t2} > 2−εnγ . Define S = {x ∈ C |

|x| = lγ , x ⊂ {1, . . . , n} \ t2}. Note that for any T with T2 = t2, Row(T ) measures the
conditional probability (conditioned on T ) of the same set S, with each x ∈ S having a
different (conditional) probability depending on whether i ∈ x. Specifically, if i ∈ x then the
probability of x being chosen, conditioned on T , is 1

2
(2l−1
lγ−1

)−1, otherwise the probability is
1
2
(2l−1
lγ

)−1 = 1
2
(2l−1
lγ−1

)−1 lγ

2l−lγ = 1
2
(2l−1
lγ−1

)−1 1
2l1−γ−1 . Thus, when T is fixed, the probability of

each set x containing i is 2l1−γ − 1 times that of a set which does not contain i.
The proof of this case will proceed as follows: First, we show that under the assumption

that a sufficiently large part of the partitions T with T2 = t2 are x-bad, three quarters of the
elements of S (which are subsets of {1, . . . , n} \ T2) must have at least 21

25 of their elements
in a subset of {1, . . . , n} \ T2 of size 8l

5 . We will then upper-bound the number of subsets of
{1, . . . , n} \ T2 of size lγ that have this property (regardless of whether they are in C or not).
Next, we will lower-bound 3

4 |S| in terms of ε, and show that for a suitable choice of ε, the
lower bound for 3

4 |S| is in fact larger than the upper bound we computed before, which is a
contradiction showing that it is not possible for that T with T2 = t2 to be x-bad for that
many choices of i.

Note first that whenever T2 is fixed (in our case to t2), the choice of i ∈ {1, . . . , n} \ T2
also fixes T1 and hence all of T , and that the choice of i determines the proportion of x ∈ S
whose weights are counted in Row1(T ). If for a particular choice of i the resulting T is
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x-bad, then by definition we have that Row1(T ) < 1
6Row0(T ) − 2−εnγ , and in particular

that Row1(T ) < 1
6Row0(T ). If we let S′ be the set of x ∈ S with i ∈ x, then we may rewrite

this inequality as:

|S′|(2l−1
lγ−1

) < |S| − |S′|
6
(2l−1
lγ

) ⇐⇒ |S′| < |S| − |S′|
6(2l1−γ − 1)

⇐⇒ |S′|
(

1 + 1
6(2l1−γ − 1)

)
<

|S|
6(2l1−γ − 1) ,

and we may conclude that for l sufficiently large, |S′| < |S|
10l1−γ (under the assumption that T

is x-bad). For the last inequality we have used the fact that limn→∞ l1−γ =∞, which holds
because: limn→∞ log l1−γ = limn→∞(1 − γ) log l = limn→∞(1 − logl(c

√
n(k + 1))) log l ≥

limn→∞(log l − log
√
n(k + 1)) ≥ limn→∞ log

√
n+1

16(k+1) =∞ (since k = o(n)).
Let B = {i ∈ {1, . . . , n} | the partition ({1, . . . , n} \ (t2 ∪ {i}), t2, {i}) is x-bad}, and as-

sume that |B| ≥ 2l
5 , that is, assume that for at least one fifth of the possible choices for i

the corresponding partition is x-bad. By excluding some elements of B, we may assume
that |B| = 2l

5 . Now, if we consider the number of pairs (x, i) with x ∈ S and i ∈ x, we have
by the inequality in the last paragraph that each of the i ∈ B can be the second element
of at most |S|

10l1−γ such pairs, and hence B can contribute the second element of at most
2l
5
|S|

10l1−γ = 1
25 l

γ |S| of the total of lγ |S| pairs. Applying the Colouring Lemma below with
X = S, Y = {1, . . . , lγ}, c(x, i) = 0 if and only if the i-th smallest element of x is in B (so
that p ≥ 24

25 ) and r = 21
25 , we have that at least three quarters of all x ∈ S have the property

that more than 21
25 of their elements lie in G = {1, . . . , n} \ (t2 ∪ B). Let Q be the set of

subsets x ⊆ B ∪ G = {1, . . . , n} \ t2, with |x| = lγ and the property that |x ∩ G| ≥ 21
25 l

γ .
Then we must have that |Q| ≥ 3

4 |S|. We will now upper-bound the size of the set Q.
Since every x ∈ Q can have a proportion of at most 4/25 of its elements in B, we have

that

log |Q| ≤ log

 4
25 l

γ∑
i=0

( 2l
5
i

)( 8l
5

lγ − i

) ≤ log

 4
25 l

γ∑
i=0

(
2le
5i

)i( 8le
5(lγ − i)

)lγ−i
≤ log

[
4
25 l

γ

(
2le
5

25
4lγ

) 4
25 l

γ (
8le
5

25
21lγ

) 21
25 l

γ]

= log
[

4
25 l

γ

(
5e
2 l

1−γ
) 4

25 l
γ (

40e
21 l

1−γ
) 21

25 l
γ]

≤ γ log l + 4
25 l

γ log
(

5e
2 l

1−γ
)

+ 21
25 l

γ log
(

40e
21 l

1−γ
)

+O(1)

= (1− γ)lγ log l +
(

4
25 log 5e

2 + 21
25 log 40e

21

)
lγ +O(log l)

≤ (1− γ)lγ log l + 2.43508 · lγ +O(log l),

where in the first line we used the inequality
(
m
k

)
≤
(
em
k

)k for each term of the sum. The
inequality sign between the first and second line can be justified as follows: For x ∈ (0, 1

2 ),
consider the expression

log
[( 2

5el

x · lγ

)x·lγ ( 8
5el

(1− x)lγ

)(1−x)lγ]
= (1−γ)lγ log l+lγ

(
x log 2e

5x + (1− x) log 8e
5(1− x)

)
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and set f(x) = x log 2e
5x + (1− x) log 8e

5(1−x) = x log 1
x + (1− x) log 1

1−x + (1 + log e)x+ (3 +
log e)(1− x)− log 5 = 3 + log e− log 5 +H(x)− 2x. Then f ′(x) = H ′(x)− 2 = log 1−x

x − 2.
Note that the function 1−x

x is decreasing but positive on (0, 1), and we have that the smallest
value x0 ∈ (0, 1

2 ) for which we can have f ′(x0) = 0 is x0 = 1
5 , which implies that f(x), and

hence also the argument of the logarithm in the expression above, is strictly increasing on
(0, 1

5 ). Thus the terms of the sum
4

25 l
γ∑

i=0

(
2le
5i

)i( 8le
5(lγ − i)

)lγ−i
are increasing, so that each term is upper-bounded by the final term, which justifies the
inequality between the the first and second line above.

Next we compute a lower bound for 3
4 |S|. Let T ∗ be a partition with T ∗2 = t2 and

Row(T ∗) = max{Row(T ) | T2 = t2}. Then we have that 3
4 |S| = 3

4 [Row0(T ∗)
(2l−1
lγ

)
+

Row1(T ∗)
(2l−1
lγ−1

)
] ≥ 3

4 (Row0(T ∗) + Row1(T ∗))
(2l−1
lγ−1

)
= 6

4Row(T ∗)
(2l−1
lγ−1

)
> 2−εnγ

(2l−1
lγ−1

)
. Fi-

nally we have:

log 3
4 |S| > log

[
2−εn

γ

(
2l − 1
lγ − 1

)]
≥ lγ log

(
(e− o(1))2l − 1

lγ − 1

)
− εnγ −Θ(log l)

≥ (1− γ)lγ log l + lγ log(2(e− o(1)))− ε · (4l − 1)γ −Θ(log l)
(for large l) ≥ (1− γ)lγ log l + 2.4426 · lγ − ε · (4l)γ −Θ(log l).

For ε ≤ 1
1000·4γ we get the desired contradiction, that 3

4 |S| > |Q|.
The lower-bound for

(2l−1
lγ−1

)
above can be obtained using the Stirling bounds for the

factorial,
√

2πn
(
n
e

)n ≤ n! ≤ e
√
n
(
n
e

)n, as follows:(
2l − 1
lγ − 1

)
≥

√
2π(2l − 1) · (2l − 1)2l−1

e2
√

(lγ − 1)(2l − lγ) · (lγ − 1)lγ−1 · (2l − lγ)2l−lγ

=
√

2π(2l − 1)
e2
√

(lγ − 1)(2l − lγ)

(
2l − 1
lγ − 1

)lγ−1( 2l − 1
(2l − 1)− (lγ − 1)

)2l−lγ

=
√

2π(2l − 1)
e2
√

(lγ − 1)(2l − lγ)

(
2l − 1
lγ − 1

)lγ−1
(1 + lγ − 1

2l − lγ

) 2l−lγ
lγ−1

l
γ−1

≥
√

2π
e2

1√
(lγ − 1)

(
2l − 1
lγ − 1

)lγ−1
(e− o(1))l

γ−1.

J

I Claim 41. E[Row0(T )Col0(T )(1−Bad(T ))] > 1
5E[Row0(T )Col0(T )].

Proof of the Claim. Since Bad(T ) ≤ Badx(T ) +Bady(T ), it is enough to prove that
E[Row0(T )Col0(T )Badx(T )] ≤ 2

5E[Row0(T )Col0(T )], with a similar statement for Bady(T )
being proved in the same fashion. For each t2 ⊆ {1, . . . , n}, with |t2| = 2l − 1, we will
show that the desired inequality holds when conditioned on T2 = t2, which implies that the
unconditioned inequality holds. All triples T with T2 = t2 have the same value for Col0(T ),
so let this value be called c′. Also let r = E[Row(T ) | T2 = t2]. Now we have:

E[Row0(T )Col0(T )Badx(T ) | T2 = t2] ≤ c′E[Row0(T )Badx(T ) | T2 = t2]
≤ c′E [2 ·E[Row(T ) | T2 = t2] ·Badx(T ) | T2 = t2]
≤ 2c′rE[Badx(T ) | T2 = t2]
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≤ 2
5c
′r (by Claim 1)

= 2
5c
′E[Row(T ) | T2 = t2]

= 2
5c
′E[Row0(T ) | T2 = t2]

= 2
5E[Row0(T )Col0(T ) | T2 = t2]

The inequality between the second and the third line can be justified as follows: Recall that,
as observed in the proof of Claim 1, even when considering only triples T2 = t2, the value
of Row(T ) can differ by a factor of at most 2l1−γ − 1. This is due to the fact that Row(T )
measures the probability (conditioned on T ) of the same set S = {x ∈ C | |x| = lγ , x ⊆
{1, . . . , n} \ t2}, but depending on whether i ∈ x (for a particular choice of i and hence of
T ), an x ∈ S will have (conditional) probability either 1

2
(2l−1
lγ−1

)−1 or 1
2
(2l−1
lγ

)−1. Thus if T ∗
is a triple with T ∗2 = t2 for which Row0(T ∗) = max{Row0(T ) | T2 = t2}, then Row(T ∗)
must be the minimum among all values of Row(T ) when T2 = t2, because when T = T ∗

the largest portion of elements of S have probability 1
2
(2l−1
lγ

)−1 instead of 1
2
(2l−1
lγ−1

)−1. It
follows that for all T with T2 = t2 we have Row(T ) ≥ Row(T ∗) ≥ 1

2Row0(T ∗), and hence
that E[2Row(T ) | T2 = t2] ≥ Row0(T ∗). On the other hand we have that for all T with
T2 = t2, Row0(T ) ≤ Row0(T ∗), so finally we get that Row0(T ) ≤ 2E[Row(T ) | T2 = t2] for
all T with T2 = t2. J

I Claim 42. For any rectangle R: µ(B ∩ R) = 1
4E[Row1(T )Col1(T )] and µ(A ∩ R) =

3
4E[Row0(T )Col0(T )] (with the expectation taken over all partitions T ).

The proof of this claim is identical to the case where µ is the distribution in Razborov’s
proof (see [20]), since the relevant observations also apply to our modified distribution: 1.
µ(B) = 1

4 (and hence µ(A) = 3
4 ), because for every fixed partition T , i ∈ x with probability

1
2 and i ∈ y with probability 1

2 , independently. 2. i ∈ x and i ∈ y are independent events
(for the same reason). 3. For every (x, y) with x ∩ y = ∅ we have that Pr[(x, y) | (i /∈
x)∧ (i /∈ y)] = Pr[(x, y) | ((i /∈ x)∧ (i /∈ y))∨ ((i ∈ x)∧ (i /∈ y))∨ ((i /∈ x)∧ (i ∈ y))], because
conditioning on either one of the two events induces the uniform distribution on the set
{(x, y) | x, y ⊂ {1, . . . , n}, x ∩ y = ∅, |x| = |y| = lγ}.

We now use claims 2 and 3 to prove the statement of the lemma:

µ(B ∩R) = 1
4E[Row1(T )Col1(T )]

≥1
4E[Row1(T )Col1(T )(1−Bad(T ))]

≥1
4E
[(

Row0(T )
6 − 2−εn

γ

)(
Col0(T )

6 − 2−εn
γ

)
(1−Bad(T ))

]
(by def. of Bad)

=1
4E
[(

Row0(T )Col0(T )
36 − 2−εnγ

6 (Row0(T ) + Col0(T )) + 2−2εnγ
)

(1−Bad(T ))
]

≥Ω (E[Row0(T )Col0(T )(1−Bad(T ))])− 2−εn
γ

(since Row0(T ) + Col0(T ) ≤ 2)
≥Ω (E[Row0(T )Col0(T )])− 2−εn

γ

(by Claim 2)
≥Ω(µ(A ∩R))− 2−εn

γ

(by Claim 3)

Choosing ε to be smaller than both the constant in front of µ(A ∩R) and 1
1000·4γ completes

the proof. J

APPROX/RANDOM’15



572 Correlation in Hard Distributions in Communication Complexity

I Lemma 43 (Colouring Lemma.). Let X and Y be non-empty finite sets, and let c : X×Y 7→
{0, 1} be a colouring of X × Y such that a proportion p ∈ (0, 1) of the elements of X × Y
are mapped to 1, that is, such that |c−1(1)|/|X × Y | = p. Then for any r ∈ (0, p) such that
r|Y | ∈ N, we have that for at least p−r

1−r |X| elements x ∈ X, |({x} × Y ) ∩ c−1(1)| > r|Y |.

Proof. We call sets of the form {x} × Y rows, and let the number w(x) =
∑
y∈Y c(x, y) =

|({x}×Y )∩ c−1(1)| be the weight of the row {x}×Y , for each x ∈ X. Let c be a colouring of
X × Y as above, but such that the smallest possible proportion of rows have weight > r|Y |,
and denote this proportion by q. Thus q is such that for any colouring c′ satisfying the
conditions of the lemma, at least q|X| elements x ∈ X satisfy |({x} × Y ) ∩ c−1(1)| > r|Y |.

We may assume that all rows with weight ≤ r|Y | have weight exactly r|Y |: If this is not
the case, we may repeatedly perform the operation of changing a 0 into 1 on a row with
weight < r|Y |, and a 1 into 0 on a row with weight > r|Y |, until the above statement is true.
(It is easy to see that the colouring c must have rows with weight > r|Y |, since otherwise the
overall proportion of elements mapped to 1 would be ≤ r < p.) This operation leaves the
proportion of elements that are mapped to 1 unchanged, and the minimality of the chosen
colouring c guarantees that the number of rows with weight > r|Y | does not decrease (and
therefore remains unchanged).

Next, we may assume that all but at most one of the rows with weight > r|Y | have weight
exactly |Y |: If this is not the case, we may fix one such row, replace all zeroes with ones on
all other rows of weight > r|Y | (thus making their weight exactly |Y |), and on the fixed row
change the same number of ones into zeroes so as to match the changes made on all other
rows. Again the overall proportion of elements being mapped to 1 does not change, and the
minimality of the colouring c guarantees that the weight of the fixed row stays > r|Y |.

Based on the above we now have: p|X||Y | = q|X||Y | − α|Y | + (1 − q)|X|r|Y |, where
α ∈ [0, 1 − r) is the proportion of zeroes on the one row that has weight > r|Y | but not
necessarily = |Y |. Thus we have:

p ≤ q + (1− q)r ⇐⇒ p ≤ (1− r)q + r ⇐⇒ p− r
1− r ≤ q. J
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1 Introduction

With the vast amount of data being generated today, algorithms for data streams continue
to play an important role for many practical applications. As the data being generated
continues to grow at a staggering rate, streaming algorithms are increasingly becoming more
important as a practical tool to analyze and make sense of all the information. Data streams
have recently received a lot of attention with good reason, as evidenced by their wide array
of applications. In particular, applications for streaming algorithms which operate over
input that arrives on the fly and use a small amount of memory are numerous, ranging from
monitoring packets flowing across a network to analyzing patterns in DNA sequences. In
practice, such applications generate vast amounts of data in a very short period of time, so
it is infeasible to store all this information. This presents a pressing question: when is it
possible to avoid storing all the information while still providing approximate solutions with
good theoretical guarantees?

Typically, algorithms are developed for data streams in the unbounded model, where
some statistic is maintained over the entire history of the stream. For certain applications,
it is useful to only compute such statistics over recent data. For instance, we may wish to
analyze stock market transactions in a particular timeframe or monitor packets transmitted
over a network in the last hour to identify suspicious activity. This framework is known as the
sliding window model, where we maintain statistics over the current window of size at most
N , which slides as time progresses. In the sequence-based model, exactly one element arrives
and expires from the window per time step. In the timestamp-based model, any number of
elements may arrive or expire. Clearly, the timestamp-based model is more general.

In a landmark paper that influenced the streaming field, the work of Alon, Matias and
Szegedy [3] studied the following fundamental framework. For a universe U = {1, . . . , n}
and an input stream (i.e., a sequence of integers drawn from U), let M = (m1, . . . ,mn) be
the vector where mi denotes the frequency that element i ∈ U appears in the stream. At
any point in time, the paper of [3] showed how to approximate various frequency moments
in sublinear space. Informally, for the kth frequency moment Fk =

∑
i∈U m

k
i , it was shown

that F0, F1, and F2 can be approximated in polylogarithmic space, while for k > 2, an upper
bound of O∗(n1−1/k) was shown (the notation O∗(f(n)) hides polylogarithmic factors). In
addition, a lower bound of Ω(n1−5/k) was shown for every k ≥ 6. As discussed in [3], such
frequency functions are very important in practice and have many applications in databases,
as they indicate the degree to which the data is skewed. The fundamental work of Indyk and
Woodruff [24] showed how to compute Fk for k > 2 in space O∗(n1−2/k), which was the first
optimal result for such frequency moments. They reduced the problem of computing Fk to
computing heavy hitters, and indeed our construction builds on their methods. Recently, Li,
Nguyễn, and Woodruff [28] showed that any one-pass streaming algorithm that approximates
an arbitrary function in the turnstile model can be implemented via linear sketches. Our
work is related, as our algorithms are based on linear sketches of [3].

Such works have opened a line of research that is still extremely relevant today. In
particular, what other types of frequency-based functions admit efficient solutions in the
streaming setting, and which functions are inherently difficult to approximate? In our paper,
we strive to answer this question for frequency-based, monotonically increasing functions
in the sliding window model. We make progress on two significant, open problems outlined
in [2] by Nelson and [1] by Sohler. Specifically, we are the first to formalize the notion of
universality for streaming over sliding windows (since the sliding window model is more
general than the standard unbounded model, our universality result is also the first such
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contribution in the unbounded model). Our main result is the construction of a universal
algorithm in the timestamp-based sliding window model for a broad class of functions. That
is, we define a class of functions and design a single streaming algorithm that produces
a data structure with the following guarantee. When querying the data structure with a
function G taken from the class, our algorithm approximates

∑n
i=1 G(mi) without knowing

G in advance (here, mi denotes the frequency that element i appears in the window). This
is precisely the notion of universality that we develop in our paper, and it is an important
step forward towards resolving the problem in [2].

Along the way, we design a zero-one law for a broader class of monotonically increasing
functions G which are zero at the origin that specifies when

∑n
i=1 G(mi) can be approximated

with high probability in one pass, using polylogarithmic memory. If G satisfies the conditions
specified by the test, then given the function G we construct an explicit, general algorithm
that is able to approximate the summation to within a (1± ε)-factor using polylogarithmic
memory. If the function G does not pass the test, then we provide a lower bound which
proves it is impossible to do so. This result generalizes the work of [9] to the sliding window
setting, and makes important progress towards understanding the question posed in [1].

1.1 Contributions and Techniques
Our contributions in this paper make progress on two important problems:
1. We are the first to formally define the notion of universality in the streaming setting.

We define a large class of functions U such that, for the entire class, we design a single,
universal algorithm for data streams in the sliding window model which maintains a data
structure with the following guarantee. When the data structure is queried with any
function G ∈ U , it outputs a (1± ε)-approximation of

∑n
i=1 G(mi) without knowing G

in advance (note that the choice of G can change). Our algorithm uses polylogarithmic
memory, makes one pass over the stream, and succeeds with high probability.

2. We give a complete, algebraic characterization for the class of tractable functions over
sliding windows. We define a broader set of functions T such that, for any non-decreasing
function G with G(0) = 0, if G ∈ T , then we have an algorithm that gives a (1 ± ε)-
approximation to

∑n
i=1 G(mi), uses polylogarithmic space, makes one pass over the

stream, and succeeds with high probability. Moreover, if G 6∈ T , we give a lower bound
which shows that super-polylogarithmic memory is necessary to approximate

∑n
i=1 G(mi)

with high probability. This extends the work of [9] to the sliding window model.

Our algorithms work in the timestamp-based sliding window model and maintain the
sum approximately for every window. The value ε can depend on n and N , so that the
approximation improves as either parameter increases. Our construction is very general,
applying to many functions using the same techniques. In stark contrast, streaming algorithms
typically depend specifically on the function to be approximated (e.g., F2 [3, 22] and
F0 [17, 13, 3]). The problems we study have been open for several years, and our construction
and proofs are non-trivial. Surprisingly, despite us using existing techniques, their solutions
have remained elusive.

For our main result, item 1, it is useful to understand our techniques for solving item 2.
When designing the correct zero-one law for tractable functions, a natural place to begin
is to understand whether the predicate from [9] suffices for designing an algorithm in the
sliding window model. As it turns out, there are some functions which are tractable in the
unbounded model but not the sliding window model, and hence the predicate is insufficient.
Part of the novelty of our techniques is the identification of an extra smoothing assumption
for the class of tractable functions over sliding windows.

APPROX/RANDOM’15



576 Zero-One Laws for Sliding Windows and Universal Sketches

If a function does not satisfy our smoothing assumption, we show a super-polylogarithmic
lower bound, inspired by the proof of [15]. For our positive result, we observe that the
sliding window model adds extra error terms relative to the unbounded model, which our
smoothness condition can bound. We also draw on the methods of [9, 10, 24] by finding
heavy elements according to the function G, and then reducing the sum problem to the
heavy elements problem. Our work sheds light on the question posed in [1], by exhibiting
a strict separation result between the unbounded and sliding window models. A function
which serves as a witness to this separation (i.e., tractable in the unbounded model as defined
in [9] but not in the sliding window model) is a monotonically increasing, piecewise linear
function that alternates between being constant and linearly increasing. The function can be
seen as a linear approximation to log(x).

To obtain our main result, we observe that one can remove the assumption from our
initial constructions that G is given up front (so that all applications of G happen at the
end of the window). However, some technical issues arise, as our construction relies on some
parameters of G that stem from our zero-one law. To address these issues, we parameterize
our class of functions U by a constant, allowing us to build a single algorithm to handle the
entire parameterized class.

1.2 Related Work
The paper of Braverman and Ostrovsky [9] is the most closely related to our paper. We
extend their result from the unbounded model to the timestamp-based sliding window model
(by formalizing a new characterization of tractable functions) and by designing a universal
algorithm for a large class of functions. Our results build on [9, 10, 24].

Approximating frequency moments and Lp norms has many applications, and there are
indeed a vast number of papers on the subject. Compared to such works, we make minimal
assumptions and our results are extremely broad, as we design general algorithms that can
not only handle frequency moments, but other functions as well. Flajolet and Martin [17]
gave an algorithm to approximate F0 (i.e., counting distinct elements), and Alon, Matias, and
Szegedy [3] showed how to approximate Fk for 0 ≤ k ≤ 2 using polylogarithmic memory, while
for k > 2 they showed how to approximate Fk using O∗(n1−1/k) memory. They also showed
an Ω(n1−5/k) lower bound for k ≥ 6. Indyk [22] used stable distributions to approximate
Lp norms for p ∈ (0, 2]. Indyk and Woodruff [24] gave the first optimal algorithm for Fk
(k > 2), where an O∗(n1−2/k) upper bound was developed. In a followup work, Bhuvanagiri,
Ganguly, Kesh, and Saha [6] improved the space by polylogarithmic factors. Bar-Yossef,
Jayram, Kumar, and Sivakumar [4] gave an Ω(n1−(2+ε)/k) lower bound, which was improved
to Ω(n1−2/k) by Chakrabarti, Khot, and Sun [11] for any one-pass streaming algorithm. The
literature is vast, and other results for such functions include [23, 31, 5, 12, 13, 16, 18, 26, 27].

There is also a vast literature in streaming for sliding windows. In their foundational paper,
Datar, Gionis, Indyk, and Motwani [15] gave a general technique called exponential histograms
that allows many fundamental statistics to be computed in optimal space, including count,
sum of positive integers, average, and the Lp norm for p ∈ [1, 2]. Gibbons and Tirthapura [19]
made improvements for the sum and count problem with algorithms that are optimal in
space and time. Braverman and Ostrovsky [8] gave a general framework for a large class
of smooth functions, which include the Lp norm for p > 0. Our work complements their
results, as the functions they studied need not be frequency based. Many works have studied
frequency estimation and frequent item identification, including [20, 25, 14, 32, 21, 30, 7].
Many of our constructions rely on computing frequent elements, but we must do so under a
broad class of functions.
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1.3 Roadmap
In Section 2, we describe notation used throughout this paper, give some definitions, and
formalize the main problems we study. In Section 3, we give a lower bound for functions that
are not tractable (i.e., we show the “zero” part of our zero-one law) and we give an algorithm
for any tractable function (i.e., we show the “one” part of our zero-one law). Finally, in
Section 4, we show the main result of this paper by giving a universal streaming algorithm.

2 Notation and Problem Definition

We have a universe of n elements [n], where [n] = {1, . . . , n}, and an integer N . A stream
D(n,N) is a (possibly infinite) sequence of integers a1, a2, . . ., each from the universe [n],
where N is an upper bound on the size of the sliding window. Specifically, at each time step,
there is a current window W that contains active elements, where |W | ≤ N . The window W

contains the most recent elements of the stream, and elements which no longer belong in the
window are expired. We use the timestamp-based model for sliding windows (i.e., any number
of elements from the stream may enter or leave the window at each time step). We denote the
frequency vector by M(W ), where M(W ) = (m1, . . . ,mn) and each mi is the frequency of
element i ∈ [n] in window W (i.e., mi = |{j | aj = i ∧ j is active}|). For the window W , the
kth frequency moment Fk(M(W )) =

∑n
i=1 m

k
i . For a vector V = (v1, . . . , vn), we let |V | be

the L1 norm of V , namely |V | =
∑
i |vi|. For a vector V = (v1, . . . , vn) and a function f , we

define the f -Vector as f(V ) = (f(v1), . . . , f(vn)). We say that x is a (1± ε)-approximation
of y if (1− ε)y ≤ x ≤ (1 + ε)y. We define O∗(f(n,N)) = O(logO(1)(nN)f(n,N)). We say a
probability p is negligible if p = O∗

( 1
nN

)
. Consider the following problem:

I Problem 1 (G-Sum). Let G : R → R be an arbitrary non-decreasing function such
that G(0) = 0. For any stream D(n,N), any k, and any ε = Ω(1/ logk(nN)), output a
(1± ε)-approximation of

∑n
i=1 G(mi) for the current window W .

We first give some definitions which will be useful throughout the paper and help us
define our notion of tractability, beginning with the local jump:

I Definition 2 (Local Jump). ∀ε > 0, x ∈ N, we define the local jump πε(x) as

min {x,min {z ∈ N | G(x+ z) > (1 + ε)G(x) ∨G(x− z) < (1− ε)G(x)}}.

That is, πε(x) is essentially the minimum amount needed to cause G to jump by a (1±ε)-factor
by shifting either to the left or right of x.

I Definition 3 (Heavy Element). For a vector V = (v1, . . . , vn), parameter d > 0, and function
f , we say an element i is (f, d)-heavy with respect to the vector V if f(vi) > d

∑
j 6=i f(vj).

I Definition 4 (Residual Second Moment). If there is an (F2, 1)-heavy element vi with respect
to V = (v1, . . . , vn), we define the residual second moment as F res2 (V ) = F2(V ) − v2

i =∑
j 6=i v

2
j .

I Definition 5 (Sampled Substream). For a stream D(n,N) and function H : [n]→ {0, 1},
we denote by DH the sampled substream of D consisting of all elements that are mapped to
1 by the function H. More formally, DH = D ∩H−1(1).

We analogously define WH to be the corresponding window for the sampled substream DH .
We are now ready to define our zero-one law.
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I Definition 6 (Tractability). We say a function G is tractable if G(1) > 0 and:

∀k ∃N0, t ∀x, y ∈ N+ ∀R ∈ R+ ∀ε :(
R > N0,

G(x)
G(y) = R, ε >

1
logk(Rx)

)
⇒

((
πε(x)
y

)2
≥ R

logt(Rx)

)
and (1)

∀k ∃N1, r ∀x ≥ N1 ∀ε : ε > 1
logk(x)

⇒ πε(x) ≥ x

logr(x) . (2)

We let Tractable be the set of functions that satisfy the above predicate. We now turn to our
universal setting and develop an analogous notion of tractability in the context of universality.
It is similar to Definition 6, except we need to upper bound some parameters by a constant.

I Definition 7 (Universal Tractability). Fix a constant C. Let U(C) denote the set of
non-decreasing functions G where G(0) = 0, G(1) > 0, and:

∀k ≤ C ∃N0, t ≤ 10C ∀x, y ∈ N+ ∀R ∈ R+ ∀ε :(
R > N0,

G(x)
G(y) = R, ε >

1
logk(Rx)

)
⇒

((
πε(x)
y

)2
≥ R

logt(Rx)

)
and (3)

∀k ≤ C ∃N1, r ≤ 10C ∀x ≥ N1 ∀ε : ε > 1
logk(x)

⇒ πε(x) ≥ x

logr(x) . (4)

Some examples of functions that are tractable in the universal sense include the moments xp
for p ≤ 2, for which πε(x) = Ω(εx), along with other functions such as (x+ 1) log(x+ 1).

I Definition 8 (Universal Core Structure). A data structure S is a universal core structure for
a fixed vector V = (v1, . . . , vn) with parameters ε, δ, α > 0, and a class of functions G, where
G ∈ G satisfies G : R → R, if given any G ∈ G, S outputs a set T = {(x1, j1), . . . , (x`, j`)}
such that with probability at least 1− δ we have: 1) For each 1 ≤ i ≤ `, (1− ε)G(vji) ≤ xi ≤
(1 + ε)G(vji), and 2) If there exists i such that vi is (G,α)-heavy with respect to V , then
i ∈ {j1, . . . , j`}.

I Definition 9 (Universal Core Algorithm). An algorithm A is a universal core algorithm
with parameters ε, δ, α > 0, and a class of functions G, where G ∈ G satisfies G : R→ R, if,
given any stream D(n,N), A outputs a universal core structure for the vector M(W ) with
parameters ε, δ, α, and G.

I Definition 10 (Universal Sum Structure). A data structure S is a universal sum structure
for a fixed vector V = (v1, . . . , vn) with parameters ε, δ > 0, and a class of functions G, where
G ∈ G satisfies G : R→ R, if given any G ∈ G, S outputs a value x such that with probability
at least 1− δ we have: (1− ε)

∑n
i=1 G(vi) ≤ x ≤ (1 + ε)

∑n
i=1 G(vi).

I Definition 11 (Universal Sum Algorithm). An algorithm A is a universal sum algorithm
with parameters ε, δ > 0, and a class of functions G, where G ∈ G satisfies G : R → R, if,
given any stream D(n,N), A outputs a universal sum structure for the vector M(W ) with
parameters ε, δ, and G.

In this paper, our main result is the proof of the following theorem:
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I Theorem 12. Fix a constant C and let U(C) be the universally tractable set from Defi-
nition 7. There is a universal sum algorithm that has parameters ε = Ω(1/ logk(nN)) (for
0 ≤ k ≤ C), δ = 0.3, and G = U(C), uses polylogarithmic space in n and N , and makes a
single pass over the input stream D(n,N).

We can reduce the constant failure probability to inverse polynomial via standard methods.
To formalize our other main result, we define the following class:

I Definition 13 (STREAM-POLYLOG). We say function G ∈ STREAM-POLYLOG if ∀k =
O(1), ∃t = O(1) and an algorithm A such that for any universe size n, window size N ,
ε ≥ 1/ logk(nN), and stream D(n,N): 1) A makes one pass over D, 2) A uses O(logt(nN))
space, and 3) For any window W , A maintains a (1± ε)-approximation of |G(M(W ))| except
with probability at most 0.3.

Note that the constant error probability can be made to be as small as an inverse
polynomial by standard techniques. Our other main result is the following:

I Theorem 14. Let G be a non-decreasing function such that G(0) = 0. Then we have
G ∈ STREAM-POLYLOG⇐⇒ G ∈ Tractable.

3 A Characterization for Tractable Functions

In this section, we prove Theorem 14 by first giving a lower bound for non-tractable functions.
We first show a deterministic lower bound for any algorithm that approximates G-Sum. Our
technique is inspired by the lower bound proof in [15] for estimating the number of 1’s for
sliding windows.

I Theorem 15. Let G be a function such that G 6∈ Tractable. Then, any deterministic
algorithm that solves the G-Sum problem with relative error ε′ = 1/ logb(nN) (for some
constant b) must use space at least Ω(loga(nN)), where a is arbitrarily large.

Proof. We construct a set of input streams such that, for any pair of data streams in the set,
the algorithm must distinguish between these two inputs at some point as the window slides.
Therefore, the space of the algorithm must be at least logarithmic in the size of this set.

Since G 6∈ Tractable, in Definition 6, either Predicate (1) or Predicate (2) does not
hold. If Predicate (1) is not true, then the lower bound from [9] applies and the theorem
follows. Hence, we assume that Predicate (2) does not hold, which implies the following:
∃k,∀r,N1,∃x ≥ N1, ε : ε > 1

logk(x) ∧ πε(x) < x
logr(x) . Let k be given, and let r be arbitrarily

large. This negation implies that there are infinitely many increasing points x1, x2, x3, . . .

and corresponding values ε1, ε2, ε3, . . ., where εi > 1
logk(xi)

and πεi(xi) < xi
logr(xi) .

Surprisingly, we construct our lower bound with a universe of size n = 1, namely U = {1}.
For each xi, we construct a set of streams with a fixed, upper bounded window size of N = xi,
and argue that the algorithm must use memory at least logr(xi) (note that, as the xi are
monotonically increasing, our lower bound applies for asymptotically large N). We assume
without loss of generality that G(xi − πεi(xi)) < (1− εi)G(xi). Our constructed streams are
defined as follows. For each N = xi, note that our window consists of elements which have
arrived in the past xi time steps. For the first xi time steps, we construct many streams
by choosing b xi

πεi (xi)c of these time steps (each choice defining a different stream). For each
chosen time step, we insert πεi(xi) 1’s into the stream, and for each time step that is not
chosen, we insert zero elements. For technical reasons, we pad the last time step xi in the
first window with xi − πεi(xi)b xi

πεi (xi)c 1’s. Note that the number of elements in the first
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window at time xi is πεi(xi)b xi
πεi (xi)c + (xi − πεi(xi)b xi

πεi (xi)c) = xi. We insert nothing at
time step xi + 1. For the remaining time steps xi + 2, . . . , 2xi − 1, we simply repeat the
first xi − 2 time steps of the stream (i.e., if time step t was chosen in the first xi time steps,
1 ≤ t ≤ xi − 2, then we insert πεi(xi) 1’s at time step xi + t+ 1).

Now, we argue that for any such pair of constructed streams A, B which are different,
any algorithm with relative error smaller than ε′ = 1/ logk(nN) must distinguish between
these two inputs. To see this, consider the earliest time d when the two streams differ (note
that 1 ≤ d ≤ xi − 1). Let WA be the window for stream A (similarly, we define WB as the
window for stream B). Let c be the number of chosen time steps in the first d time steps of
stream A. Without loss of generality, we assume that time step d was chosen in stream A but
not in stream B. Hence, the number of chosen time steps in stream B up to time d is c− 1.
Consider the windows at time step xi+d. The number of elements inWA at this time is given
by πεi(xi)[b xi

πεi (xi)c− c+ (c− 1)] +xi−πεi(xi)b xi
πεi (xi)c = xi−πεi(xi). Moreover, the number

of elements in WB is given by πεi(xi)[b xi
πεi (xi)c− (c− 1) + (c− 1)] +xi−πεi(xi)b xi

πεi (xi)c = xi.
Hence, the G-Sum value at time xi + d for WA is G(x − πεi(xi)) < (1 − εi)G(xi). As
long as the algorithm has relative error ε′ = 1/ logk(nN) < εi, streams A and B must be
distinguished at some point in time as the window slides.

Thus, the algorithm’s memory is lower bounded by the logarithm of the number of

constructed streams, of which there are
( xi
b xi
πεi

(xi)
c
)
for each xi. We have log

(( xi
b xi
πεi

(xi)
c
))
≥

b xi
πεi (xi)c log(πεi(xi)) ≥

logr(xi)
2 log(πεi(xi)). If πεi(xi) = 1, we repeat the proof inserting two

1’s at each time step and the proof goes through. Observing that r can be made arbitrarily
large gives the proof. J

We now have a randomized lower bound by appealing to Yao’s minimax principle [29]
and building on top of our deterministic lower bound, similarly to [15] (applying the principle
with the uniform distribution suffices).

I Theorem 16. Let G be a function where G 6∈ Tractable. Then, any randomized algorithm
that solves G-Sum with relative error smaller than ε′ = 1/ logb(nN) for some constant b and
succeeds with at least constant probability 1− δ must use memory Ω(loga(nN)), where a is
arbitrarily large.

We now complete the proof of Theorem 14 by first approximating heavy elements (note
that we reduce the G-Sum problem to the following problem):

I Problem 17 (G-Core). We have a stream D(n,N) and parameters ε, δ > 0. For each
window W , with probability at least 1−δ, maintain a set S = {g′1, . . . , g′`} such that ` = O∗(1)
and there exists a set of indices {j1, . . . , j`} where (1−ε)G(mji) ≤ g′i ≤ (1+ε)G(mji) for each
1 ≤ i ≤ `. If there is a (G, 1)-heavy element mi with respect to M(W ), then i ∈ {j1, . . . , j`}.

We begin solving the above problem via the following lemma (taken from [9]).

I Lemma 18. Let V = (v1, . . . , vn) be a vector with non-negative entries of dimension n

and H be a pairwise independent random vector of dimension n with entries hi ∈ {0, 1} such
that P (hi = 1) = P (hi = 0) = 1

2 . Denote by H ′ the vector with entries 1− hi. Let K > 104

be a constant, and let X = 〈V,H〉 and Y = 〈V,H ′〉. If there is an (F1,K)-heavy element
vi with respect to V , then: P ((X > KY ) ∨ (Y > KX)) = 1. If there is no (F1,

K
104 )-heavy

element with respect to V , then: P ((X > KY ) ∨ (Y > KX)) ≤ 1
2 .

We now give some lemmas related to how approximating values can affect the function G.
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I Lemma 19. Let 0 < ε ≤ 1
2 , and let x, u, v, y ≥ 0 satisfy |x − u| ≤ 0.1πε(x) and v, y <

0.1πε(x), where πε(x) > 1. Then (1− 4ε)G(u+ v + y) ≤ G(u) ≤ (1 + 4ε)G(u− v − y).

Proof. First, we note that u+ v + y ≤ x+ 0.1πε(x) + v + y ≤ x+ 0.3πε(x) ≤ x+ πε(x)− 1
(recalling πε(x) > 1). We can similarly get that u − v − y ≥ x − (πε(x) − 1). Hence, we
get that (1 − ε)G(x) ≤ G(x − (πε(x) − 1)) ≤ G(u − v − y) ≤ G(u) ≤ G(u + v + y) ≤
G(x+ (πε(x)− 1)) ≤ (1 + ε)G(x).

We conclude by noting: (1+4ε)G(u−v−y) ≥ (1+4ε)(1−ε)G(x) ≥ (1+4ε)(1−ε)
1+ε G(u) ≥ G(u).

Similarly, we get (1− 4ε)G(u+ v + y) ≤ (1− 4ε)(1 + ε)G(x) ≤ (1−4ε)(1+ε)
1−ε G(u) ≤ G(u). J

I Lemma 20. Let x, u, v, y ≥ 0 be such that |x − u| ≤ v + y, and let 0 < ε < 1. If
(1− ε)G(u+ v + y) ≤ G(u) ≤ (1 + ε)G(u− v − y), then (1− ε)G(x) ≤ G(u) ≤ (1 + ε)G(x).

Proof. We have (1 − ε)G(x) ≤ (1 − ε)G(u + v + y) ≤ G(u) ≤ (1 + ε)G(u − v − y) ≤
(1 + ε)G(x). J

We now give a useful subroutine over sliding windows which we use in our main algorithm
for approximating heavy elements and prove its correctness (there is a similar algorithm and
proof in [9], though it must be adapted to the sliding window setting).

1 for i = 1 to O(log(nN)) do
2 for j = 1 to C = O(1) do
3 Generate a random hash function H : [n]→ {0, 1} with pairwise independent

entries.
4 Let H ′ = 1−H (i.e., h′k = 1− hk, where hk is the kth entry of H).
5 Let fH be a (1± .1)-approximation of F2 on DH (with negligible error

probability), via the smooth histogram method for sliding windows [8].
6 Let fH′ be a (1± .1)-approximation of F2 on DH′ (with negligible error

probability), via the smooth histogram method for sliding windows [8].
7 Let Xij = 10 min{fH , fH′}.
8 Let Yi = Xi1+···+XiC

C (i.e., Yi is the average of C independent Xij ’s).
9 Output r =

√
mediani{Yi} for the current window W .

Algorithm 1: Residual-Approximation(D)

I Lemma 21. Let D(n,N) be any input stream. Algorithm Residual-Approximation makes
a single pass over D and uses polylogarithmic space in n and N . Moreover, if the current
window W contains an (F2, 2)-heavy element mi with respect to M(W ), then the algorithm
maintains and outputs a value r such that 2

√
F res2 (M(W )) < r < 3

√
F res2 (M(W )) (except

with negligible probability).

Proof. Assume the current window W has an (F2, 2)-heavy element mk with respect to
the vector M(W ). Due to the properties of smooth histograms from [8], we know that
.9F2(M(WH)) ≤ fH ≤ 1.1F2(M(WH)), where M(WH) is the multiplicity vector of the
current window in substream DH (similarly for fH′). Hence, the random variable Xij =
10 min{fH , fH′} is a (1± .1)-approximation of the random variable Z = 10

∑
` 1H(`) 6=H(k)m

2
`

(here, 1H(`)6=H(k) is the indicator random variable which is 1 if H(`) 6= H(k) and 0 otherwise).
To see why, suppose that element k is mapped to 1 by H, so that k belongs to the sampled
substream DH . Then observe that

fH ≥ .9F2(M(WH)) ≥ .9m2
k > 1.8

∑
` 6=k

m2
` ≥ 1.1

∑
`

1H(`) 6=H(k)m
2
` ≥ fH′ .
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Thus, the minimum of fH and fH′ is indeed a (1± .1)-approximation to
∑
` 1H(`)6=H(k)m

2
` ,

since this is the second moment of the vector M(WH′) (the case is symmetric if element k is
mapped to 0 by H).

Now, since H is pairwise independent, we have that E(Z) = 5F res2 (M(W )). In particular,
since we always have 0 ≤ Z ≤ 10F res2 (M(W )), we can bound the variance by V ar(Z) ≤
E(Z2) ≤ 100(F res2 (M(W )))2. If we denote by A the random variable which is the average of
C independent Z’s, then we have V ar(A) = 1

CV ar(Z) ≤ 100
C (F res2 (M(W )))2. Hence, if we

choose C to be sufficiently large, then by Chebyshev’s inequality we have:

P (|A− 5F res2 (M(W ))| ≥ 0.1F res2 (M(W ))) ≤ 100V ar(A)
(F res2 (M(W )))2 ≤

104

C
≤ 0.1

(for instance, C = 105 is sufficient).
Now, if we take the median T of O(log(nN)) independent A’s, then by Chernoff bound

this would make the probability negligible. That is, we have 4.9F res2 (M(W )) ≤ T ≤
5.1F res2 (M(W )) except with negligible probability. We can repeat these arguments and
consider the median of O(log(nN)) averages (i.e., the Yi’s) of O(1) independent Xij ’s. Since
there are only O(log(nN)) Xij ’s total (with each one being a (1± .1)-approximation to its
corresponding random variable Z, except with negligible probability), then by the union
bound all the Xij ’s are (1 ± .1)-approximations except with negligible probability (since
the sum of polylogarithmically many negligible probabilities is still negligible). Therefore,
the median of averages would give a (1± .1)-approximation to T . Taking the square root
guarantees that 2

√
F res2 (M(W )) < r < 3

√
F res2 (M(W )) (except with negligible probability).

Note that the subroutine for computing an approximation to F2 on sliding windows using
smooth histograms can be done in one pass and in polylogarithmic space (even if we demand
a (1± .1)-approximation and a negligible probability of failure). J

Now, we claim that Algorithm Compute-Hybrid-Major solves the following:

I Problem 22 (Hybrid-Major(D, ε)). Given a stream D and ε > 0, maintain a value r ≥ 0
for each window W such that: 1) If r 6= 0, then r is a (1 ± 4ε)-approximation of G(mj)
for some mj, and 2) If the current window W has an element mi such that πε(mi) ≥
205
√
F res2 (M(W )), then r is a (1± 4ε)-approximation of G(mi).

1 Let a be a (1± ε′)-approximation of L2 for window W using the smooth histogram
method [8] (with negligible probability of error), for ε′ = 1

logΩ(1)(N) .
2 Repeat O(log(nN)) times, independently and in parallel:
3 Generate a uniform pairwise independent vector H ∈ {0, 1}n.
4 Maintain and denote by X ′ a (1± .2)-approximation of the second moment for the

window WH using a smooth histogram [8] (with negligible probability of error).
5 Similarly define Y ′ for the window W1−H .
6 If X ′ < (20)4Y ′ and Y ′ < (20)4X ′, output 0 and terminate the algorithm.
7 In parallel, apply Residual-Approximation(D) to maintain the residual second moment
approximation, let b denote the output of the algorithm.

8 If (1− 4ε)G(a+ b+ 2ε′a) > G(a) or G(a) > (1 + 4ε)G(a− b− 2ε′a), output 0.
9 Otherwise, output G(a).

Algorithm 2: Compute-Hybrid-Major(D, ε)

Before delving into the proof, we show the following lemma.



V. Braverman, R. Ostrovsky, and A. Roytman 583

I Lemma 23. Suppose the current window W has an (F2, 1)-heavy element mi. Moreover,
let a be a (1 ± ε′)-approximation of the L2 norm of the current window W , where ε′ < 1.
Then −ε′mi ≤ a−mi ≤ (1 + ε′)

√
F res2 (M(W )) + ε′mi ≤ 2

√
F res2 (M(W )) + ε′mi.

Proof. Since a is a (1 ± ε′)-approximation of the L2 norm of the vector M(W ), we know
(1− ε′)

√∑n
k=1 m

2
k ≤ a ≤ (1 + ε′)

√∑n
k=1 m

2
k. Hence, we have that

a−mi ≤ (1 + ε′)

√√√√ n∑
k=1

m2
k −mi ≤ (1 + ε′)mi + (1 + ε′)

√∑
j 6=i

m2
j −mi

≤ ε′mi + (1 + ε′)
√
F res2 (M(W )).

We conclude by noting that mi − a ≤ mi − (1 − ε′)
√∑n

k=1 m
2
k ≤ mi − (1 − ε′)mi, which

gives the lemma. J

I Lemma 24. For any function G ∈ Tractable, Algorithm Compute-Hybrid-Major solves the
Hybrid-Major problem with negligible probability of error.

Proof. First, we show that if there is no (F2, 2)-heavy entry in the current window W , then
the output is 0 except with negligible probability. Consider a single iteration of the main
loop of the algorithm. Let M ′ be the vector with entries m2

i and denote X = 〈M ′, H〉, Y =
|M ′| − 〈M ′, H〉. Since we have an F2 approximation over sliding windows, except with
negligible probability, X ′ and Y ′ are (1± .2)-approximations of X and Y , respectively. Hence,
4
5X ≤ X ′ ≤ 5

4X and 4
5Y ≤ Y ′ ≤ 5

4Y . By Lemma 18, except with probability at most
0.5+o(1): X ′ ≤ 5

4X ≤
5
2 (10)4Y < (20)4Y ′ and Y ′ < (20)4X ′. Thus, the algorithm outputs 0

except with negligible probability.
Assume that there is an (F2, 2)-heavy entry mi. Then, applying Lemma 23 with some 0 <

ε′ < 1 to be set later, we know |mi−a| ≤ 2
√
F2(M(W ))+ε′mi and a ≥ (1−ε′)mi (except with

negligible probability). By Lemma 21, it follows that 2
√
F res2 (M(W )) < b < 3

√
F res2 (M(W ))

except with negligible probability. Hence, we have |mi − a| ≤ b + ε′mi ≤ b + 2ε′a, since
2ε′a ≥ 2ε′(1− ε′)mi ≥ ε′mi (assuming ε′ ≤ 1

2 ). Now, observe that if the algorithm outputs
G(a), then it must be that (1− 4ε)G(a+ b+ 2ε′a) ≤ G(a) ≤ (1 + 4ε)G(a− b− 2ε′a). Thus,
by applying Lemma 20 with parameters x = mi, u = a, v = b, and y = 2ε′a, it follows that if
the algorithm outputs G(a), then G(a) is a (1± 4ε)-approximation of G(mi). Thus, the first
condition of Hybrid-Major follows.

Finally, assume πε(mi) ≥ (20)5
√
F res2 (M(W )). By definition, mi ≥ πε(mi) and so mi

is (F2, 2010)-heavy with respect to M(W ). By Lemma 18, we have (except with negligible
probability): X ′ > 204Y ′ or Y ′ > 204X ′. Hence, except with negligible probability, the
algorithm does not terminate before the last line. Let N1 be the constant given by the
definition of tractability in Definition 6 (N1 may depend on the parameter k from Definition 6,
but we apply the definition for k = O(1) determined by ε). We assume mi ≥ N1 (otherwise
the number of elements in the window is constant). Also, let r be given by Definition 6.
By applying Lemma 23 with ε′ = 1

logr+1(N) , we have |mi − a| ≤ 2
√
F res2 (M(W )) + ε′mi ≤

0.01πε(mi) + 1
logN

mi
logr(mi) ≤ .01πε(mi) + πε(mi)

logN ≤ .02πε(mi) for sufficiently large N (since
G is tractable) and b ≤ 3F res2 (M(W )) < 0.01πε(mi). Since b ≤ .1πε(mi) and 2ε′a ≤
2ε′(mi + b+ ε′mi) ≤ 2 · (.03πε(mi)) ≤ .1πε(mi), then by Lemmas 19 and 20 (which we apply
with the same parameters, x = mi, u = a, v = b, and y = 2ε′a), the algorithm outputs G(a)
which is a (1± 4ε)-approximation of G(mi). Thus, the second condition of Hybrid-Major
follows, which gives the lemma. J

APPROX/RANDOM’15
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Consider the following lemma, which is from [9] (the proof of Lemma 25 uses Predicate
(1) from Definition 6).

I Lemma 25. Let G be a non-decreasing tractable function. Then for any k = O(1), there
exists t = O(1) such that for any n,N and for any ε > log−k(nN) the following holds.
Let D(n,N) be a stream and W be the current window. If there is a (G, 1)-heavy element
mi with respect to M(W ), then there is a set S ⊆ [n] such that |S| = O(log(N)) and:
π2
ε (mi) = Ω

(
log−t(nN)

∑
j /∈S∪{i}m

2
j

)
.

We now give the algorithm Compute-G-Core, which solves G-Core (i.e., Problem 17), and
prove its correctness. A similar algorithm appears in [9], we repeat it here for completeness,
and to help design and understand our main result on universality.

1 Generate a pairwise independent hash function H : [n] 7→ τ , where τ = O∗
(

1
p

)
.

2 ∀k ∈ [τ ], compute in parallel ck = Compute-Hybrid-Major(DHk ,
ε
4 ), where

Hk(i) = 1H(i)=k.
3 Output S = {ck : ck > 0}.

Algorithm 3: Compute-G-Core(D, ε, p)

I Theorem 26. Algorithm Compute-G-Core solves the G-Core problem, except with proba-
bility asymptotically equal to p. The algorithm uses O∗(1) memory bits if p = Ω(1/ logu(nN))
and ε = Ω(1/ logk(nN)) for some u, k ≥ 0.

Proof. Let W denote the current window. First, except with negligible probability, every
positive ci is a (1± 4 · ε4 )-approximation of some distinct entry G(mj), which implies that ci
is a (1± ε)-approximation of G(mj). Second, assume that there exists a (G, 1)-heavy entry
mi with respect to M(W ). Denote X =

∑
j 6=im

2
j1H(j)=H(i). By pairwise independence of

H, we have E(X) = 1
τ (F2(M)−m2

i ). By Lemma 25, there exists a set S and t ≥ 0 such that
|S| = O(logN) and:

π2
ε (mi) = Ω

(∑
j /∈S∪{i}m

2
j

logt(nN)

)
. (5)

Let L be the event that π2
ε (mi) > 2010X, and let B be the event that ∀j ∈ S : H(j) 6= H(i).

By Markov’s inequality, by pairwise independence of H, and by Equation (5), there exists
τ = O∗

(
1
p

)
such that:

P (¬L) = P (¬L | B) · P (B) + P (¬L | ¬B) · P (¬B)

≤ E(X | B)2010

π2
ε (mi)

· 1 + 1 · O(logN)
τ

≤ O∗
(

1
τ

)
= p.

If L occurs, which happens with probability at least 1−p, then cH(i) is a (1±ε)-approximation
of G(mi) except with negligible probability (by Lemma 24). Thus, the final probability of
error is approximately equal to p.

It is not too hard to see that Algorithm Compute-G-Core uses polylogarithmic memory.
The subroutine depth is constant, and there are only polylogarithmically many subroutine
calls at each level. At the lowest level, we only do direct computations on the stream that
require polylogarithmic space or a smooth histogram computation for F2 or L2, which also
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requires polylogarithmic space. We get that for any constant k, there exists a constant t
such that we can solve G-Core (except with probability p) using O(logt(nN)) space, where
ε ≥ log−k(nN). J

In Appendix A, we show how to reduce the G-Sum problem to the G-Core problem. In
particular, we prove the following theorem. The algorithm and proof of correctness follow
from [10]. We restate the algorithm and results using our notation for completeness.

I Theorem 27. If there is an algorithm that solves G-Core using memory O∗(1) and makes
one pass over D except with probability O(log−u(nN)) for some u > 0, then there is an
algorithm that solves G-Sum using memory O∗(1) and makes one pass over D except with
probability at most 0.3.

We can reduce the failure probability to inverse polynomial using standard methods.
Combining this with Theorem 26 and Theorem 16, we have Theorem 14.

4 Universality

In this section, we show the main result of this paper, Theorem 12, by designing a universal
sum algorithm. We first construct a universal core algorithm, which we call UCA. That
is, given a data stream, the algorithm produces a universal core structure with respect to
the frequency vector (m1, . . . ,mn) defined by the current window W without knowing the
function G to be approximated in advance. Let C be a constant and let U(C) be the set
according to Definition 7. The structure guarantees that, when queried with any function G
from U(C) (after processing the stream), it outputs the set T according to Definition 8.

Universal Core Algorithm (UCA): The algorithm constructs a universal core structure S
and our techniques build on the results from Section 3. Algorithm Residual-Approximation
from Section 3 does not depend on the function G, and hence it clearly carries over to our
universal setting.

Algorithm Compute-Hybrid-Major depends on G, so we modify it accordingly. We do
not rewrite the whole algorithm, as there are only a few modifications. In Step 1, we set
ε′ = 1

log10C+1(N) . We get rid of Steps 8 and 9, and instead create a new Step 8 where we find
the index j of an (F2, 2)-heavy element mj , if it exists (finding such an index can be done
using standard methods, the details of which we omit for brevity). We also create a new
Step 9 where we output the triple (a, b, j) (assuming none of the parallel copies from Step 2
outputs 0).

We also modify Algorithm Compute-G-Core. In particular, the value of τ in Step 1
should depend on C, and we set it to be log10C+2(nN)

p . Moreover, we remove Step 3 from
the algorithm and store ck for each k ∈ [τ ] as part of our data structure S (recall that ck
is either 0 or a triple (ak, bk, jk), where ak, bk are the values computed in the kth parallel
instance of the subroutine Compute-Hybrid-Major and jk is the index of the corresponding
(F2, 2)-heavy element).

Querying the Structure: Given a function G ∈ U(C) as a query to our universal core
structure, we explain how to produce the set T according to Definition 8. For each stored
ck in the data structure S (k ∈ [τ ]), if ck = 0, then we do not include it in our output
set T . Otherwise, if ck is a triple (ak, bk, jk), then we include the pair (G(ak), jk) in our
set T as long as (1 − 4ε)G(ak + bk + 2ε′ak) ≤ G(ak) ≤ (1 + 4ε)G(ak − bk − 2ε′ak) (recall
ε′ = 1

log10C+1(N) ).

APPROX/RANDOM’15
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I Theorem 28. Fix a constant C and let U(C) be the set of tractable functions corresponding
to the definition of universal tractability. Then UCA is a universal core algorithm with
parameters ε = Ω(1/ logk(nN)) (for 0 ≤ k ≤ C), δ = Ω(1/ logu(nN)) (for u ≥ 0), α = 1,
and G = U(C).

Proof. The correctness of UCA essentially follows from the proofs of the results in Section 3.
In particular, Lemma 21 still holds since Algorithm Residual-Approximation is unchanged.

Lemma 24 still mostly holds without much modification. Using the same notation as
in the original proof, if there is no (F2, 2)-heavy element, then the proof of Lemma 24
can still be applied and the modified version of Compute-Hybrid-Major outputs 0 (except
with negligible probability). In such a case, the universal core structure stores the value
0. If there is an (F2, 2)-heavy element mik and the structure stores (ak, bk, ik), then again
the proof applies. The reason is that, when querying the universal core structure with a
function G, we check if (1− 4ε)G(ak + bk + 2ε′ak) ≤ G(ak) ≤ (1 + 4ε)G(ak − bk − 2ε′ak), in
which case the proof argues that G(ak) is a (1± 4ε)-approximation of G(mik). In the case
that πε(mik) ≥ (20)5

√
F res2 (M(W )), the proof still goes through since we apply Lemma 23

with ε′ = 1
log10C+1(N) , and we have |mik − ak| ≤ 2

√
F res2 (M(W )) + ε′mik ≤ 0.01πε(mik) +

1
logN

mik
log10C(mik ) ≤ 0.01πε(mik) + 1

logN
mik

logr(mik ) ≤ .01πε(mik) + πε(mik )
logN ≤ .02πε(mik) (here,

similarly to Lemma 24, r is the constant given by the definition of universal tractability for
U(C), and hence r ≤ 10C).

Finally, we must argue the correctness of Theorem 26. Using some notation taken
from the proof, consider an output ck = (ak, bk, ik) (if ck = 0, the data structure does
not output it to the set T ) and observe that G(ak) for any ak satisfying (1 − 4ε)G(ak +
bk + 2ε′ak) ≤ G(ak) ≤ (1 + 4ε)G(ak − bk − 2ε′ak) is a (1 ± 4 · ε4 )-approximation of a
distinct entry G(mik). Moreover, if there is a (G, 1)-heavy element mik , then we again have
π2
ε (mik) = Ω

(
log−(t+1)(nN)

∑
j /∈S∪{ik}m

2
j

)
. In fact, delving into the proof of Lemma 25

(found in [9]), we see that the specific value of t depends on G, and is given by the definition
of universal tractability for U(C). Since t ≤ 10C and we choose τ = log10C+2(nN)

p , we get the
probability of the bad event ¬L (using the same notation from Theorem 26) is bounded by:

E(X | B)2010

π2
ε (mik) + O(logN)

τ
=

2010 logt+1(nN)
∑
j /∈S∪{ik}m

2
j

τ
∑
j /∈S∪{ik}m

2
j

+ O(logN)
τ

≤ p.

The rest of the proof goes through in the same way, and hence this gives the theorem. J

We now argue how to use our universal core algorithm UCA as a subroutine to give the
main result of the paper. The proof of the theorem below can be found in Appendix B, the
argument of which follows a similar one found in [10].

I Theorem 29. Fix a constant C and let U(C) be the set of tractable functions from the
definition of universal tractability. Suppose there is a universal core algorithm that has
parameters ε = Ω(1/ logk(nN)) (for 0 ≤ k ≤ C), δ = Ω(1/ logu(nN)) (for u ≥ 0), α = 1,
and G = U(C), uses polylogarithmic memory in n and N , and makes one pass over D. Then
there is a universal sum algorithm that has parameters ε = Ω(1/ logk(nN)) (for 0 ≤ k ≤ C),
δ = 0.3, and G = U(C), uses polylogarithmic space in n and N , and makes one pass over D.

We can reduce the failure probability to inverse polynomial using standard techniques.
Our main result, Theorem 12, follows from Theorem 28 and Theorem 29.
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28 Y. Li, H. Nguyễn, and D. Woodruff. Turnstile streaming algorithms might as well be linear
sketches. In STOC, 2014.

29 R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
30 G. Nie and Z. Lu. Approximate frequency counts in sliding window over data stream. In

CCECE, 2005.
31 D. Woodruff. Optimal space lower bounds for all frequency moments. In SODA, 2004.
32 L. Zhang and Y. Guan. Frequency estimation over sliding windows. In ICDE, 2008.

A G-Sum from G-Core

We now show how to reduce the G-Sum problem to the G-Core problem. In particular, we
prove the following theorem. The algorithm and proof of correctness follow from [10]. We
restate the algorithm and results using our notation for completeness.

I Theorem 30. If there is an algorithm that solves G-Core using memory O∗(1) and makes
one pass over D except with probability O(log−u(nN)) for some u > 0, then there is an
algorithm that solves G-Sum using memory O∗(1) and makes one pass over D except with
probability at most 0.3.

Note that we can reduce the failure probability from constant to inverse polynomial
using standard techniques. Combining this with Theorem 26 and Theorem 16, we have
Theorem 14.

Let G be a tractable function according to Definition 6, and let D(n,N) be a stream given
as input. We show how to construct an algorithm that solves the G-Sum problem by using our
algorithm for G-Core as a subroutine. In particular, consider the Compute-G-Core algorithm
that solves the G-Core problem. Note that for the output set S = {g′1, . . . , g′`} maintained by
Compute-G-Core, using standard techniques one can easily obtain the explicit set of indices
{j1, . . . , j`} such that (1 − ε)G(mji) ≤ g′i ≤ (1 + ε)G(mji) for each 1 ≤ i ≤ `. Hence, we
assume that Compute-G-Core outputs a set of pairs of the form {(g′1, j1), . . . , (g′`, j`)}.

In the language of [10], Compute-G-Core produces a (1, ε)-cover with respect to the vector
G(M(W )) = (G(m1), . . . , G(mn)) with probability at least 1− δ, where ε = Ω(1/ logk(nN))
(for any k ≥ 0) and δ = Ω(1/ logu(nN)) (for any u ≥ 0). Given the tractable function G, our
algorithm for G-Sum is as follows:

1 Generate φ = O(log(n)) pairwise independent, uniform zero-one vectors
H1, . . . ,Hφ : [n]→ {0, 1}, and let hki = Hk(i). Let Dk be the substream defined by
DH1H2...Hk , and let G(M(Wk)) denote (G(m1), . . . , G(mn)) for the substream Dk and
window W (where k ∈ [φ]).

2 Maintain, in parallel, the cores Qk = Compute-G-Core(Dk,
ε2

φ3 , ε,
1
φ ) for each k ∈ [φ].

3 If F0(G(M(Wφ))) > 1010, then output 0.
4 Otherwise, precisely compute Yφ = |G(M(Wφ))|.
5 For each k = φ− 1, . . . , 0, compute Yk = 2Yk+1 −

∑
(g′
i
,ji)∈Qk(1− 2hkji)g

′
i.

6 Output Y0.
Algorithm 4: Compute-G-Sum(D, ε)

Note that, in our paper, Compute-G-Core(D, ε, δ) only takes three parameters (the stream
D, error bound ε, and failure probability δ), while the algorithm from [10] assumes four
parameters of the form Compute-G-Core(D,α, ε, δ). Here, D, ε, and δ have the same meaning
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as in our paper. The parameter α controls how heavy an element needs to be (according to
the function G) in order to necessarily be in the output set of Compute-G-Core. That is, in
the set T = {(g′1, j1), . . . , (g′`, j`)} output by Compute-G-Core, if there is an i such that mi

is (G,α)-heavy with respect to M(W ), then i ∈ {j1, . . . , j`}. We solve the G-Core problem
for α = 1, but Algorithm Compute-G-Sum needs the problem solved for α = ε2

φ3 . However,
using standard techniques, we can reduce the problem of solving G-Core for α = ε2

φ3 to the
same problem for α = 1.

I Theorem 31. For any tractable function G, Algorithm Compute-G-Sum outputs a (1± ε)-
approximation of |G(M(W ))| except with probability at most 0.3, where ε = Ω(1/ logk(nN))
for any k ≥ 0. The algorithm uses memory that is polylogarithmic in n and N .

Proof. The proof of this theorem follows directly from Theorem 1 in [10]. J

B Universal Sum from Universal Core

We now prove Theorem 29. The algorithm and proof are similar to that of the reduction
from the G-Sum problem to the G-Core problem found in Appendix A, except that we need
to carry out the argument within our universal framework. As mentioned, the algorithm and
correctness follow from [10]. We do not rewrite the whole algorithm, but instead describe
the necessary modifications that need to be made from Appendix A.

Let D(n,N) be a stream given as input to our universal sum algorithm. Let UCA be our
universal core algorithm from Theorem 28, Section 4, the parameters of which are specified
in our universal sum algorithm description.

Universal Sum Algorithm: We describe the modifications that need to be made to Algorithm
Compute-G-Sum from Appendix A.

In Step 2, instead we need to maintain and store the output Qk = UCA with parameters
α = ε2

φ3 , ε (i.e., the one given as input to our universal sum algorithm), δ = 1
φ , and G = U(C)

for each k ∈ [φ] (in the kth parallel iteration, UCA is given the stream Dk as input). As
in Appendix A, we construct a universal core structure for α = 1, but we can reduce the
problem of α = ε2

φ3 to α = 1. Note that Qk is of the form {(a1, b1, j1), . . . , (a`, b`, j`)} (Qk
may have 0’s as well, which we simply ignore). For each such triple (ai, bi, ji), we also store
the value of hkji = Hk(ji).

In Step 3, instead we check if F0(M(Wφ)) ≤ 1010, and if so we store M(Wφ) (recall
M(Wφ) denotes the frequency vector (m1, . . . ,mn) for the substream Dφ induced by W ).
We remove Steps 4, 5, and 6.

Querying the Structure: Now, given a function G ∈ U(C), we explain how to query the
universal sum structure output by our universal sum algorithm to approximate |G(M(W ))|.
In particular, for each k we first query the universal core structure output by UCA to get
a set Q′k = {(x1, j1), . . . , (x`′ , j`′)}. Then, we compute Yφ = |G(M(Wφ))| and, for each
k = φ− 1, . . . , 0, we recursively compute Yk according to:

Yk = 2Yk+1 −
∑

(xi,ji)∈Qk

(1− 2hkji)xi.

Once each Yk has been computed for 0 ≤ k ≤ φ, we output Y0.

APPROX/RANDOM’15
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I Theorem 32. Fix a constant C and let U(C) be the set of tractable functions corresponding
to the definition of universal tractability. There is a universal sum algorithm with parameters
ε = Ω(1/ logk(nN)) (for 0 ≤ k ≤ C), δ = 0.3, and G = U(C). The algorithm uses
polylogarithmic space in n and N and makes a single pass over D. When querying the
universal sum structure (output by the universal sum algorithm) with a function G ∈ U(C),
it outputs a (1± ε)-approximation of |G(M(W ))| except with probability at most 0.3.

Proof. The proof of this theorem follows directly from Theorem 1 in [10]. J
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model which has δi = 1, for all i, but is the same otherwise. In an insertion-only stream
N = m ≥M .

Streams model computing scenarios where the processor has very limited access to the
input. The processor reads the updates one-at-a-time, without control of their order, and
is tasked to compute a function on the frequency vector. The processor can perform its
computation exactly if it stores the entire vector f , but this may be undesirable or even
impossible when the dimension of f is large. Thus, the goal is to complete the computation
using as little storage as possible. Typically, exact computation requires storage linear in n,
so we seek approximations.

Given a stream with frequencies fd, for d ∈ [n], we consider the problem of approximating
the frequency negative moments, specifically Fp =

∑
|fd|p where p < 0 and the sum is

taken over all items d ∈ [n] with nonzero frequency. We characterize, up to factors of
O(ε−1 log2 n logM) in the turnstile model and O(ε−1 logM) in the insertion-only model, the
space necessary to produce a (1± ε)-approximation to Fp, for p < 0, in terms of the accuracy
ε, the dimension n, and the L1 length m of f .

Negative moments, also known as “inverse moments”, of a probability distribution have
found several applications in statistics. Early on, they were studied in application to sampling
and estimation problems where the sample size is random [35, 18] as well as in life-testing
problems [31]. More recently, they appear in the design of multi-center clinical trials [24] and
in the running time analysis of a quantum adiabatic algorithm for 3-SAT [37, 38]. F0/F−1
is the harmonic mean of the (nonzero) frequencies in the insertion-only model, and more
generally, the value (Fp/F0)1/p is known as the pth power mean [10]. The harmonic mean
is the truest average for some types of data, for example speeds, parallel resistances, and
P/E ratios [34].

To our knowledge this is the first paper to consider streaming computation of the frequency
negative moments and the first to determine the precise dependence of the space complexity
of streaming computations on m. In fact, in the process of characterizing the storage
necessary to approximate the frequency negative moments, we actually characterize the
space complexity of a much larger class of streaming sum problems. Specifically, given
any nonnegative, nonincreasing function g : N → R we determine to within a factor of
O(ε−1 log2 n logM) the space necessary to approximate

g(f) :=
∑

d∈supp(f)

g(|fd|),

where supp(f) := {d ∈ [n] : fd 6= 0} is the support of f . Furthermore, the sketch providing a
(1± ε)-approximation for g(f) is universal for a (1± ε)-approximation for any nonnegative
nonincreasing function with the same or smaller space complexity as g. This partially answers
a question of Nelson [33] – which families of functions admit universal sketches?

The attention on m is warranted; in fact, the complexity in question depends delicately
on this parameter. If we forget about m for a moment, then a standard reduction from the
communication problem Index implies that computing a (1± 1

2 )-approximation to Fp, for
p < 0, requires Ω(n) bits of storage – nearly enough to store the entire vector f . However,
the reduction requires m = Ω(n1−1/p), recall that p < 0. If m = o(n1−1/p) then, as we show,
one can often get away with o(n) bits of memory.

The next two sections outline our approach to the decreasing streaming sum problem and
state our main results. Section 1.3 reviews previous work on streaming sum problems. In
Section 2 we show how our results solve the frequency negative moments problem. Sections 3
and 5 prove the main results. Section 4 and Section 6 describe the implementation details
for the streaming setting.
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1.1 Preliminaries
Let F = {f ∈ Nn :

∑
fd ≤ m} and let T and I denote the sets of turnstile streams and

insertion-only streams, respectively, that have their frequency vector f satisfying |f | ∈ F .
The set F is the set of all nonnegative frequency vectors with L1 norm at most m. Clearly,
F is the image under coordinate-wise absolute value of the set of all frequency vectors with
L1 norm at most m. We assume n ≤ m.

In order to address the frequency negative moments problem we will address the following
more general problem. Given a nonnegative, nonincreasing function g : N→ R, how much
storage is needed by a streaming algorithm that (1± ε)-approximates g(f), for the frequency
vector f of any stream S ∈ T or S ∈ I? Equivalently, we can assume that g(0) = 0, g
is nonnegative and nonincreasing on the interval [1,∞), and extend the domain of g to Z
by requiring it to be symmetric, i.e., g(−x) = g(x). Therefore, g(f) =

∑n
i=1 g(fd). For

simplicity, we call such functions “decreasing functions”.
A randomized algorithm A is a turnstile streaming (1± ε)-approximation algorithm for

g(f) if

P {(1− ε)g(f) ≤ A(S) ≤ (1 + ε)g(f)} ≥ 2
3

holds for every stream S ∈ T , and insertion only algorithms are defined analogously. For
brevity, we just call such algorithms “approximation algorithms” when g, ε, and the streaming
model are clear from the context. We consider the maximum number of bits of storage used
by the algorithm A with worst case randomness on any valid stream.

A sketch is a, typically randomized, data structure that functions as a compressed version
of the stream. Let G ⊆ RN × (0, 1/2]. We say that a sketch is universal for a class G if for
every (g, ε) ∈ G there is an algorithm that, with probability at least 2/3, extracts from the
sketch a (1± ε)-approximation to g(f). The probability here is taken over the sketch as well
as the extraction algorithm.

Our algorithms assume a priori knowledge of the parameters m and n, where m = ‖f‖1
and n is the dimension of f . In practice, one chooses n to be an upper bound on the number
of distinct items in the stream. Our algorithm remains correct if one instead only knows
m ≥ ‖f‖1, however if m� ‖f‖1 the storage used by the algorithm may not be optimal. We
assume that our algorithm has access to an oracle that computes g on any valid input. In
particular, the final step of our algorithms is to submit a list of frequencies, i.e., a sketch, as
inputs for g. We do not count the storage required to evaluate g or to store its value.

1.2 Our results
Our lower bound is proved by a reduction from the communication complexity of disjointness
wherein we parameterize the reduction with the coordinates of |f |, the absolute value of a
frequency vector. The parameterization has the effect of giving a whole collection of lower
bounds, one for each frequency vector among a set of many. Specifically, if f ∈ F and
g(f) ≤ ε−1g(1) then we find an Ω(| supp(f)|) lower bound on on the number of bits used by
any approximation algorithm. This naturally leads us to the following nonlinear optimization
problem

σ(ε, g,m, n) := max
{
| supp(f)| : f ∈ F , g(f) ≤ ε−1g(1)

}
, (1)

which gives us the “best” lower bound. We will use σ = σ(ε, g,m, n) when ε, g, m, and n are
clear from the context. Our main lower bound result is the following.

APPROX/RANDOM’15
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I Theorem 1. Let g be a decreasing function, then any k-pass insertion-only streaming
(1± ε)-approximation algorithm requires Ω(σ/k) bits of space.

Before we consider approximation algorithms, let us consider a special case. Suppose
there is an item d∗ in the stream that satisfies g(fd∗) ≥ εg(f). An item such as d∗ is called
an ε-heavy element. If there is an ε-heavy element in the stream, then g(1) ≥ g(fd∗) ≥ εg(f)
which implies | supp(f)| ≤ σ, by the definition of σ. Of course, in this case it is possible
compute g(f) with O(σ logM) bits in one pass in the insertion-only model and with not
much additional space in the turnstile model simply by storing a counter for each element of
supp(f). Considering the Ω(σ) lower bound, this is nearly optimal. However, it only works
when f contains an ε-heavy element.

Our approximation algorithm is presented next. It gives a uniform approach for handling
all frequency vectors, not just those with ε-heavy elements.

Algorithm 1 (1± ε)-approximation algorithm for g(f).
1: Compute σ = σ(ε, g,m, n) and let

q ≥ min
{

1, 9σ
ε| supp(f)|

}
. (2)

2: Sample pairwise independent random variables Xd ∼ Bernoulli(q), for d ∈ [n], and let
W = {d ∈ supp(f) : Xd = 1}.

3: Compute fd, for each d ∈W .
4: Output q−1∑

d∈W g(fd).

Algorithm 1 outlines the important components of our streaming algorithm and suppresses
the details needed to implement it on a stream. In particular, | supp(f)| is not known ahead
of time, and in fact, any streaming algorithm that computes it exactly requires Ω(n) bits of
storage. This and the remaining details can be handled with existing streaming technology
as described in Section 6.

Algorithm 1 simply samples each element of supp(f) pairwise independently with prob-
ability q. The expected sample size is q| supp(f)|, so in order to achieve optimal space we
should take equality in Equation 2. The choice yields, in expectation, q| supp(f)| = O(σ/ε)
samples. Section 4 explains how to compute σ quickly and with small storage, and the
correctness of Algorithm 1 is established by the following theorem. It is proved in Section 3.

I Theorem 2. There is a turnstile streaming algorithm that, with probability at least 2/3,
outputs a (1± ε)-approximation to g(f) and uses O(ε−1σ log2(n) log(M)) bits of space. The
algorithm can be implemented in the insertion-only model with O(ε−1σ log(M) + log2 n) bits
of space.

It is worth mentioning that the suppressed constants in the asymptotic bounds of
Theorems 1 and 2 are independent of g, ε, m, and n.

The optimization problem (1) reappears in the proof of Theorem 2. The key step is the
observation mentioned above. Namely, for the particular frequency vector f that is our input,
if there is an item d satisfying g(|fd|) ≥ εg(f) then | supp(f)| ≤ σ.

Let us now emphasize a particular feature of this algorithm. Previously, we commented
that choosing equality in (2) is optimal in terms of the space required. However, Algorithm 1
is still correct when the inequality is strict. Notice that the sketch is just a (pairwise
independent) random sample of supp(f) and its only dependence on g and ε is through the
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parameter σ/ε. Let g′ and ε′ be another decreasing function and error parameter satisfying
σ(ε′,g′,m,n)

ε′ ≤ σ(ε,g,m,n)
ε , then

q′ = min
{

1, 9σ′

ε′| supp(f)|

}
≤ q = min

{
1, 9σ
ε| supp(f)|

}
.

In particular, this means that the sketch that produces an (1 ± ε)-approximation to g(f)
also suffices for an (1± ε′)-approximation to g′. For example, if one takes g′ ≥ g, pointwise
with g′(1) = g(1), then σ(ε, g′,m, n) ≤ σ(ε, g,m, n) so one can extract from the sketch
(1 ± ε)-approximations to g(f) and g′(f), each being separately correct with probability
2/3. Thus, the sketch is universal for any decreasing function g′ and accuracy ε′ where
σ(ε′,g′,m,n)

ε′ ≤ σ(ε,g,m,n)
ε . In the context of the frequency negative moments, this implies

that the sketch yielding a (1 ± ε)-approximation to Fp, for p < 0, is universal for (1 ± ε)-
approximations of Fp′ , for all p ≤ p′ < 0.

Computing the sketch requires a priori knowledge of σ. If one over-estimates σ the
algorithm remains correct, but the storage used increases. To know σ requires knowledge
of m, or at least an good upper bound on m. This is a limitation, but there are several
ways to mitigate it. If one does not know m but is willing to accept a second pass through
the stream, then using the algorithm of [26] one can find a (1 ± 1

2 )-approximation to m
with O(logM) bits of storage in the first pass and approximate g(f) on the second pass. A
(1± 1

2 )-approximation to m is good enough to determine σ to within a constant, which is
sufficient for the sketch. Alternatively, one can decide first on the space used by the algorithm
and, in parallel within one pass, run the algorithm and approximate m. After reading the
stream one can determine for which decreasing functions g and with what accuracy ε does
the approximation guarantee hold.

1.3 Background
Much of the effort dedicated to understanding streaming computation, so far, has been
directed at the frequency moments Fp =

∑
|fi|p, for 0 < p <∞, as well as F0 and F∞, the

number of distinct elements and the maximum frequency respectively. In the turnstile model,
F0 is distinguished from L0 = | supp(f)|, the number of elements with a nonzero frequency.

The interest in the frequency moments began with the seminal paper of Alon, Matias,
and Szegedy [1], who present upper and lower bounds of O(ε−2n1−1/p) and Ω(n1−5/p),
respectively, on the space needed to find a (1 ± ε)-approximation to Fp, and a separate
O(ε−2 logm) space algorithm for F2. Since then, many researchers have worked to push the
upper and lower bounds closer together. We discuss only a few of the papers in this line
of research, see [36] an the references therein for a more extensive history of the frequency
moments problem.

To approximate Fp, Alon, Matias, and Szegedy inject randomness into the stream and
then craft an estimator for Fp on the randomized stream. A similar approach, known as stable
random projections, is described by Indyk [22] for Fp, when 0 < p ≤ 2 (also referred to as `p
approximation). Kane, Nelson, and Woodruff [26] show that Indyk’s approach, with a more
careful derandomization, is optimal. Using the method of stable random projections, Li [29]
defined the so-called harmonic mean estimator for Fp, when 0 < p < 2, which improves upon
the sample complexity of previous methods. We stress that this is not an estimator for the
harmonic mean of the frequencies in a data stream, rather it is an estimator for Fp that
takes the form of the harmonic mean of a collection of values.

For p > 2, the AMS approach was improved upon [15, 16] until a major shift in the design
of streaming algorithms began with the algorithm of Indyk and Woodruff [23] that solves the
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frequency moments problem with, nearly optimal, n1−2/p( 1
ε logn)O(1) bits. Their algorithm

introduced a recursive subsampling technique that was subsequently used to further reduce
space complexity [5, 7], which now stands at O(ε−2n1−2/p logn) in the turnstile model [17]
with small ε and O(n1−2/p) in the insertion-only model with ε = Ω(1) [6].

Recently, there has been a return to interest in AMS-type algorithms motivated by the
difficulty of analyzing algorithms that use recursive subsampling. “Precision Sampling” of
Andoni, Krauthgamer, and Onak [2] is one such algorithm that accomplishes nearly optimal
space complexity without recursive subsampling. Along these lines, it turns out that one can
approximate g(f) by sampling elements d ∈ [n] with probability roughly qd ≈ g(fd)/ε2g(f),
or larger, and then averaging and scaling appropriately, see Proposition 4. Algorithm 1 takes
this approach, and also fits in the category of AMS-type algorithms. However, it is far from
clear how to accomplish this sampling optimally in the streaming model for a completely
arbitrary function g.

A similar sampling problem has been considered before. Monemizadeh and Woodruff [32]
formalized the problem of sampling with probability qd = g(fd)/g(f) and then go on to focus
on Lp sampling, specifically g(x) = |x|p, for 0 ≤ p ≤ 2. In follow-up work, Jowhari, Săglam,
and Tardos offer Lp sampling algorithms with better space complexity [25].

As far as the frequency moments lower bounds go, there is a long line of research following
AMS [4, 13, 19, 3] that has led to a lower bound matching the best known turnstile algorithm
of Ganguly [17] to within a constant [30], at least for some settings of m and ε. The insertion-
only algorithm of Braverman et al. [6] matches the earlier lower bound of Chakrabarti, Khot,
and Sun [13].

For a general function g not much is known about the space-complexity of approximating
g(f). Most research has focused on specific functions. Chakrabarti, Do Ba, and Muthukrish-
nan [12] and Chakrabarti, Cormode, and Muthukrishnan [11] sketch the Shannon Entropy.
Harvey, Nelson, and Onak [21] approximate Renyi log(‖f‖αα)/(1−α), Tsallis (1−‖x‖αα)/(α−1),
and Shannon entropies. Braverman, Ostrovsky, and Roytman [8, 9] characterized nonnegative,
nondecreasing functions that have polylogarithmic-space approximation algorithms and they
present a universal sketching algorithm for this class of functions. Their algorithm is based
on the subsampling technique. Guha, Indyk, McGregor [20] study the problem of sketching
common information divergences between the streams, i.e., statistical distances between the
probability distributions with p.m.f.s e/‖e‖1 and f/‖f‖1.

2 The frequency negative moments

Before proving Theorems 1 and 2, let us deploy them to determine the streaming space
complexity of the frequency negative moments. It will nicely illustrate the trade-off between
the length of the stream and the space complexity of the approximation.

The first step is to calculate σ(ε, g,m, n), where g(x) = |x|p, for x 6= 0 and p < 0, and
g(0) = 0. There is a maximizer of (1) with L1 length m because g is decreasing. The
convexity of g on [0,∞) implies that σ ≤ max{s ∈ R : s(m/s)p ≤ ε−1}, and σ is at least
the minimum of n and max{s ∈ N : s(m/s)p ≤ ε−1} by definition. Thus, we can take
σ = min

{
n, θ

(
ε
−1

1−pm
−p

1−p

)}
. This gives us the following corollary to Theorems 1 and 2.

I Corollary 3. For any p < 0 and ε > 0, any algorithm that outputs a (1± ε)-approximation
to Fp requires Ω(min{n, ε

−1
1−pm

−p
1−p }) bits of space. Such an approximation can be found with

O(ε−
2−p
1−pm

−p
1−p log2 n logM) bits in a turnstile stream and O(ε−

2−p
1−pm

−p
1−p logM) bits in an

insertion-only stream.
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For example, taking p = −1, which is what we need to estimate the harmonic mean, we
find that the complexity is approximately σ

ε = min{n, θ(ε−3/2m1/2)}. This is also the space
complexity of approximating the harmonic mean of the nonzero frequencies. It is apparent
from the formula that the relationship between m and n is important for the complexity.

3 Correctness of the algorithm

This section presents the proof that our approximation algorithm is correct. Algorithm 1
describes the basic procedure, and Section 6 describes how it can be implemented in the
streaming setting. The correctness relies on our ability to perform the sampling and the
following simple proposition.

I Proposition 4. Let g be a nonnegative function and let Xd ∼ Bernoulli(pd) be pair-
wise independent random variables with pd ≥ min

{
1, 9g(fd)

ε2g(f)

}
, for all d ∈ [n]. Let Ĝ =∑n

d=1 p
−1
d Xdg(fd), then P (|Ĝ− g(f)| ≤ εg(f)) ≥ 8

9 .

Proof. We have EĜ = g(f) and V ar(Ĝ) ≤
∑
d p
−1
d g(fd)2 = 1

9 (εg(f))2, by pairwise indepen-
dence. The proposition now follows from Chebyshev’s inequality. J

The algorithm samples each element of supp(f) with probability about σ/ε supp(f). In
order to show that this sampling probability is large enough for Proposition 4 we will need
one lemma. It gives us some control on σ(ε, g,m, n) as ε varies.

I Lemma 5. If α < ε, then ε(1 + σ(ε, g,m, n)) ≥ ασ(α, g,m, n).

Proof. Let σε = σ(ε, g,m, n) and define σα similarly. Let f ∈ F such that σα = | supp(f)|
and g(f) ≤ α−1g(1), without loss of generality the coordinates are ordered such that
f1 ≥ f2 ≥ · · · ≥ fσα > 0. Let s′ = α

ε σα, and let f ′ be the vector that takes the first bs′c
coordinates from f and is 0 thereafter. The choice is made so that f ′ ∈ F and

g(f ′) ≤ α

ε
g(f) ≤ ε−1g(1).

Then, by definition of σε, we have

σε ≥ | supp(f ′)| =
⌊α
ε
σα

⌋
≥ α

ε
σα − 1. J

For brevity, we only state here the correctness of the streaming model sampling algorithm,
which uses standard techniques. The details of the algorithm are given in the Section 6.

I Lemma 6. Given s ≤ n, there is an algorithm using O(s log2 n logM) bits of space in
the turnstile model and O(s logM + log2 n) bits in the insertion-only model that samples
each item of supp(f) pairwise-independently with probability at least min{1, s/| supp(f)|}
and, with probability at least 7/9, correctly reports the frequency of every sampled item and
the sampling probability.

Finally, we prove the correctness of our approximation algorithm. Here is where we will
again use the optimality of σ in its definition (1). In regards to the lower bound of Theorem 1,
this upper bound leaves gaps of O(ε−1 log2 n logM) and O(ε−1 logM) in the turnstile and
insertion-only models, respectively.
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Proof of Theorem 2. We use the algorithm of Lemma 6 to sample with probability at least
q = min{1, 9(σ + 1)/ε| supp(f)|}. Let us first assume that q ≥ min{1, 9g(fd)/ε2g(f)}, for all
d, so that the hypothesis for Proposition 4 is satisfied. The algorithm creates samples Wi,
for i = 0, 1, . . . , O(logn), where each item is sampled in Wi with probability qi = 2−i. For
each i such that qi ≥ q, Proposition 4 guarantees that Ĝi = q−1

i

∑
d∈Wi

g(fd) is a (1 ± ε)-
approximation with probability at least 8/9. With probability at least 7/9, the algorithm
returns one of these samples correctly, and then the approximation guarantee holds. Thus,
the approximation guarantee holds with probability at least 2/3.

It remains to show that q ≥ min{1, 9g(fd)/εg(f)}, for all d ∈ [n]. Let α = g(1)/g(f) then
define σε = σ(ε, g,m, n) and σα = σ(α, g,m, n). By definition | supp(f)| ≤ σα, thus if α ≥ ε
then | supp(f)| ≤ σα ≤ σε, so the sampling probability is 1 and the claim holds.

Suppose that α < ε. For all d ∈ [n], we have

g(fd)
g(f) ≤

g(1)
g(f) = α ≤ ε(1 + σε)

σα
≤ ε(1 + σε)
| supp(f)| ,

where the second inequality comes from Lemma 5 and the third from the definition of σα as
a maximum. In particular, this implies that

9ε−1(σ + 1)
| supp(f)| ≥

9g(fd)
ε2g(f) ,

which completes the proof. J

4 Computing σ

The value σ is a parameter that is needed for Algorithm 1. That means we need a way
to compute it for any decreasing function. As we mentioned before, the only penalty for
overestimating σ is inflation of the storage used by the algorithm so to over-estimate σ by a
constant factor is acceptable. This section shows that one can find σ′ such that σ ≤ σ′ ≤ 4σ
quickly, with O(logn) bits of storage, and by evaluating g at just O(logm) points.

Because g is decreasing, the maximum of (1) will be achieved by a vector f of length m.
This is regardless of whether m ≤ n or m > n. Lemma 7 says that we might as well take all
of the other frequencies to be equal, so we can find a near maximizer by enumerating the
single value of those frequencies. Specifically,

s(y) = min
{
m

y
,
g(1)
εg(y)

}
is the maximum bound we can achieve using y as the single frequency. The value of σ is at
most twice max{s(y) : (m/n) ≤ y ≤ m}, by Lemma 7.

But we do not need to check every y = 1, 2, . . . ,m to get a pretty good maximizer. It
suffices to check only values where y is a power of two. Indeed, suppose that y∗ maximizes
s(y) and let y∗ ≤ y′ ≤ 2y∗. We will show that s(y′) ≥ s(y∗)/2, and since there is a power of
two between y∗ and 2y∗ this implies that its s value is at least s(y∗)/2 ≥ σ/4.

Since y∗ is a maximizer we have s(y′) ≤ s(y∗), and because y′ ≥ y∗ and g is decreasing
we have g(y′) ≤ g(y∗). This gives us

g(1)
εg(y′) ≥

g(1)
εg(y∗) ≥ s(y

∗).

We also have
m

y′
≥ m

2y∗ ≥
1
2s(y

∗).
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Combining these two we have s(y′) ≥ s(y∗)/2.
Thus, one can get by with enumerating at most lgm values to approximate the value

of the parameter σ. Take the largest of the lgm values tried and quadruple it to get the
approximation to σ.

5 Lower bounds for decreasing streaming sums

It bears repeating that if g(x) decreases to 0 as x→∞ then one can always prove an Ω(n)
lower bound on the space complexity of approximating g(f). However, the stream needed
for the reduction may be very long (as a function of n). Given only the streams in T or I,
those with L1-length m or less, a weaker lower bound may be the best available. The present
section proves this “best” lower bound, establishing Theorem 1.

The proof uses a reduction from the communication complexity of disjointness, see the
book of Kushilevitz and Nisan [28] for background on communication complexity. The
proof strategy is to parameterize the lower bound reduction in terms of the frequencies f .
Optimizing the parameterized bound over f ∈ F gives the best possible bound from this
reduction.

The proof of Theorem 1 is broken up with a two lemmas. The first lemma is used in the
reduction from Disj(s), the s-element disjointness communication problem. It will show up
again later when we discuss a fast scheme for computing σ for general functions.

I Lemma 7. Let yi ∈ R≥0, for i ∈ [s], and let v : R→ R≥0. If
∑
yi ≤ Y and

∑
v(yi) ≤ V ,

then there exists i such that s
2yi ≤ Y and s

2v(yi) ≤ V .

Proof. Without loss of generality y1 ≤ y2 ≤ · · · ≤ ys. Let ij , j ∈ [σ], order the sequence
such that v(yi1) ≤ v(yi2) ≤ · · · ≤ v(yis) and let I = {ij |j ≤ bs/2c+ 1}. By the Pigeon Hole
Principle, there exists i ∈ I such that i ≤ bs/2c+ 1. Thus s

2yi ≤
∑s
j=bs/2c+1 yij ≤ Y and

s
2v(yi) ≤

∑s
j=bs/2c+1 v(yj) ≤ V . J

I Lemma 8. Let g be decreasing and ε > 0. If f = (y, y, . . . , y, 0, . . . , 0) ∈ F and g(f) ≤
ε−1g(1), then any k-pass (1 ± ε)-approximation algorithm requires Ω(| supp(f)|/k) bits of
storage.

Proof. Let s = b| supp(f)|/2c and let A be an (1 ± ε)-approximation algorithm. The
reduction is from Disj(s, 2) where Alice receives A ⊆ [s] and Bob receives B ⊆ [s]. Their goal
is to jointly determine whether A ∩B = ∅ or not. Our protocol will answer the equivalent
question: is B ⊆ Ac or not? Alice and Bob will answer the question by jointly creating a
notional stream, running A on it, and thresholding the outcome.

For each d ∈ Ac, Alice puts (d, 1) in the stream y times. She then runs A on her portion
of the stream and sends the contents its memory to Bob. For each d ∈ B, Bob adds (d, 1)
to the stream. Bob runs A on his portion of the stream and sends the memory back to
Alice. She recreates her portion of the stream, advances A, sends the memory to Bob, etc.,
until each player has acted k times. In addition to the algorithm’s memory, on each pass
Alice sends at most dk−1 lg |A|e binary digits of |A| so that Bob knows |A| at the end of the
protocol.

The stream is a member of I by construction; let f ′ be its frequency vector. At the end,
Bob finishes computing A(f ′). All of the frequencies are y, y + 1, or 1. If

A(f ′) ≤ (1 + ε)[|B|g(y + 1) + (s− |A| − |B|)g(y)],

then Bob declares B ⊆ Ac and otherwise B 6⊆ Ac.
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The exact value of g(f ′) is

|A ∩B|g(1) + |B \A|g(y + 1) + (s− |A| − |B|+ |A ∩B|)g(y).

If B ⊆ Ac this value is

V0 := |B|g(y + 1) + (s− |A| − |B|)g(y),

and otherwise, because g is decreasing, it is at least

V1 := g(1) + (|B| − 1)g(y + 1) + (s− |B| − |A|+ 1)g(y).

We find

V1 − V0 ≥ g(1) ≥ εg(f) ≥ 2εsg(y) ≥ 2εV0

Hence, if A(f ′) is a (1±ε)-approximation to g(f ′), then Bob’s decision is correct. The protocol
with solves Disj(s) which requires, in the worst case, Ω(s) bits of communication including
O(k−1 lg s) bits to send |A| and Ω(s) = Ω(| supp(f)|) bits for (2k − 1) transmissions of the
memory of A. Thus, in the worst case, at least one transmission has size Ω(| supp(f)|/k). J

Proof of Theorem 1. Let f ∈ F be a maximizer of (1) and apply Lemma 7 to the positive
elements of f . From this we find that there exists y such that ys′ ≤ ‖f‖1 and g(1) ≥ εs′g(y),
for s′ = σ/2. Therefore, f ′ = (y, y, . . . , y, 0, . . . , 0) ∈ F with bs′c coordinates equal to y.
Applying Lemma 8 to f ′ implies the desired bound. J

With Lemma 7 in mind, one may ask: why not restrict the maximization problem in (1),
the definition of σ, to streams that have all frequencies equal and still get the same order lower
bound? This is valid alternative definition. In fact, doing so does appreciably affect the effort
needed to compute σ, it is one of the main steps used by our algorithm to approximate σ in
Section 4. However, it makes reasoning about σ a bit messier. For example, in Section 1.2
we comment that if the frequency vector f contains an ε-heavy element then | supp(f)| ≤ σ.
This comes directly from the fact that {f ′ ∈ F : g(f ′) ≤ ε−1g(1)} is the feasible set for (1).
If we restrict the feasible set, then we cannot so directly draw the conclusion. Rather, we
must compare g(f) to points in the restricted feasible set by again invoking Lemma 7.

6 Details of the algorithm

The streaming implementation in the turnstile model will make use of the Count Sketch
algorithm of Charikar, Chen, and Farach-Colton [14]. It is easy to adapt their algorithm for
the purpose of finding supp(f). This gives us the following theorem.

I Theorem 9 (Charikar, Chen, Farach-Colton [14]). Suppose that S is a stream with at most s
items of nonzero frequency. There is a turnstile streaming algorithm Count Sketch(S, s, δ)
using O(s log n

δ logM) bits that, with probability at least 1 − δ, returns all of the nonzero
frequencies in S.

The sampling algorithm follows. Since we do not know | supp(f)| at the start of the
stream, we guess O(logn) possible values for it and try each one. After parsing the entire
stream, we can use an estimate of L0 = | supp(f)| in order to determine which guess is
correct. We use L̂0(S(i), ε, δ) to denote the output of an algorithm that produces a (1± 1

8 )-
approximation to L0 with probability at least 1 − δ, for example the algorithm of Kane,
Nelson, and Woodruff [27]. After the formal presentation of the algorithm we prove its
correctness and the claimed storage bounds.
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Algorithm 2 Pairwise independent sampling with probability q ≥ s/| supp(f)|.
1: procedure Sketch(Stream S, s > 0)
2: `← dlg(n/s)e
3: for 0 ≤ i ≤ ` do
4: Sample pairwise independent r.v.s Xi,d ∼ Bernoulli(2−i), for d ∈ [n]
5: Let S(i) be the substream of S with items {d : Xi,d = 1}
6: U (i) ← Count Sketch(S(i), 96s, 1/48)
7: end for
8: L← L̂0(S(i), 1/8, 1/18)
9: i∗ ← max

{
0,
⌊
lg L

18s
⌋}

10: return U (i∗), q = 2−i∗

11: end procedure

I Theorem 10. With probability at least 7/9, Algorithm 2 samples each item in supp(f)
with probability q ≥ s/| supp(f)| and the resulting sample of size O(s). The algorithm can be
implemented with O(s log(M) log2(n)) bits of space.

Proof. Let

k =
⌊

lg | supp(f)|
16s

⌋
.

If i∗ ∈ {k − 1, k}, the streams S(k−1) and S(k) both have small enough support, and the two
outputs U (k−1) and U (k) of Count Sketch are correct, then the output is correct. We
show that the intersection of these events occurs with probability at least 7/9.

First, with probability at least 17/18 L is (1± 1/8)-approximation to | supp(S)|. A direct
calculations then shows that i∗ ∈ {k − 1, k}.

The following two inequalities arise from the definition of k

64s
| supp(f)| ≥ 2−(k−1) ≥ 2−k ≥ 16s

| supp(f)| . (3)

The first inequality implies that the expected support sizes of S(k−1) and S(k) and their
variances are all at most 64s. Chebyshev’s inequality implies that each of these values exceeds
96s with probability no larger than 64/322 = 1/16. So long as they don’t, both streams are
valid inputs to Count Sketch. The last inequality of (3), with Theorem 9, implies that
the sampling probability is correct.

Putting it together, the total probability of failure is no larger than

1
18 + 2

16 + 2
48 = 2

9 , (4)

where the terms come from the | supp(f)| estimation, the support sizes of substreams k − 1
and k, and Count Sketch.

The space bound for turnstile streams follows from Theorem 9. Approximating the
support size of the stream with L̂0 can accomplished with O(logn log lognM) bits using the
algorithm of Kane, Nelson, and Woodruff [27]. J

Because of deletions in the turnstile model, we need to wait until the end of the stream
to rule out any of the guesses of | supp(f)|. This is not the case in the insertion only model.
As soon as the number of nonzero counters grows too large we can infer that the sampling
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probability is too large and discard the sample. It turns out that doing so is enough to cut a
logn factor from the space complexity of Algorithm 2. A further logn factor can be saved
because Count Sketch is not needed in the insertion-only model.

I Corollary 11. Algorithm 2 can be implemented with O(s logM + log2 n) bits of storage for
insertion-only streams.

Proof. Define ` independent collections of pairwise independent random variables Yi,d ∼
Bernoulli(1/2), for d ∈ [n], and choose the random variables in the algorithm to be

Xi,d =
i∏

j=1
Yi,d.

One easily checks that each collection {Xi,d}d∈[n] is pairwise independent and that P (Xi,d =
1) = 2−i, for all i and d. Storing the seeds for the collection Yi,d requires O(log2 n) bits.

We can first save a logn factor by bypassing Count Sketch and instead simply storing
counters for each element that appears in each of the ` substreams. The counters should be
stored in a hash table or other data structure with no space overhead and a small look-up
time. Let us label the maximum number of counters to be stored for each substream as t.
We choose t = max{96s, `}. If the set of counters for each substream is discarded as soon as
the number of nonzero counters exceeds the limit of O(t), then the total storage cannot grow
to large.

According to Lemma 12, the algorithm uses more than 12t counters with probability at
most 1/6`, at any given instant.

For each 0 ≤ i ≤ ` let T (i) be the longest prefix of stream S(i) such that | supp(T (i))| ≤ s
and let k(i) denote the number of updates in T (i). Now, notice that the number of counters
stored locally maximum at each k(i) and increasing for updates between k(i) and k(i+1).
Thus, it is sufficient to bound the storage used by the algorithm at these points.

By a union bound, the probability that the number of counters used by the algorithm
at any point k(1), k(2), . . . , k(`) is more than 12t is at most ` · 1/6` = 1/6. Finally, adapting
the final union bound of (4) in the previous proof we have that the probability of error is at
most (1/18) + (1/6) = 2/9. J

I Lemma 12. Let v ∈ {0, 1}n, define ` independent collections of pairwise independent
random variables Yi,d ∼ Bernoulli(1/2), for s ∈ [n] and i ∈ [`], and set

Xi,d =
i∏

j=1
Yi,d.

For a given s ∈ N, set k = 0 if
∑
d vd ≤ s or k = max{i : vTXi > s} otherwise, where

Xi = (Xi,1, Xi,2, . . . , Xi,n) ∈ {0, 1}n. Then

P (
∑̀
i=k+1

vTXi > 4s) ≤ 1
2s .

Proof. The sum is clearly monotonically increasing, so without loss of generality assume
` =∞. Notice that if k > 0, the sum is unchanged (i.e., it remains the same random variable)
upon replacing v with the coordinate-wise product of v and Xk. Thus we may also assume
that k = 0, i.e., | supp(v)| ≤ s.
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For each d ∈ supp(v), let Zd = sup{i : Xi,d = 1}. Notice that {Zd}d∈supp(v) is a pairwise
independent collection of Geometric(1/2) random variables and let Z =

∑
d∈supp(v) Zd. We

have that

Z =
∞∑
i=0

vTXi,

because Xi,d = 0 implies Xj,d = 0 for all j > i.
Pairwise independence implies EZ = V ar(Z) = 2| supp(v)| ≤ 2s, and by Chebyshev’s

inequality

P (|Z − 2s| > 2s) ≤ V ar(Z)
4s2 ≤ 1

2s . J

7 Conclusion

It may be possible to apply our methods in order to parameterize according to lengths other
than L1, for example L∞, or in terms of more general constraints on the set of feasible
streams. One challenge with such an adaptation is to ensure that the reduction “preserves”
these constraints. For example, if one replaces the L1 length constraint defining F with
the constraint that the L∞ length, i.e., maximum frequency, is at most M , then she must
take care to ensure that the reduction from Disj never produces a stream with maximum
frequency larger thanM . It is immediate from the structure of the reduction that it preserves
upper bounds on the L1 size of the frequencies, but our reduction may not preserve an upper
bound on the maximum frequency.

Recall that we require an upper bound on the L1 length of the frequency vector at the
start of the algorithm (in order to compute σ). Here the L1 length has an additional practical
advantage over other lengths because it can be computed exactly for insertion-only and
strict-turnstile streams by a one pass algorithm with at most O(logM) bits of memory, and
a (1± ε)-approximation requires only O(ε−2 logM) bits in the turnstile model [26]. Thus,
one can determine after the fact whether the supposed upper bound actually holds.
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Abstract
We initiate a study of a relaxed version of the standard Erdős-Rényi random graph model, where
each edge may depend on a few other edges. We call such graphs dependent random graphs.
Our main result in this direction is a thorough understanding of the clique number of dependent
random graphs. We also obtain bounds for the chromatic number. Surprisingly, many of the
standard properties of random graphs also hold in this relaxed setting. We show that with
high probability, a dependent random graph will contain a clique of size p1´op1qq logpnq

logp1{pq , and the
chromatic number will be at most n logp1{p1´pqq

log n . We expect these results to be of independent
interest. As an application and second main result, we give a new communication protocol for
the k-player Multi-Party Pointer Jumping (mpjk) problem in the number-on-the-forehead (NOF)
model. Multi-Party Pointer Jumping is one of the canonical NOF communication problems, yet
even for three players, its communication complexity is not well understood. Our protocol for
mpj3 costs Opnplog lognq{ lognq communication, improving on a bound from [9]. We extend our
protocol to the non-Boolean pointer jumping problem ympjk, achieving an upper bound which is
opnq for any k ě 4 players. This is the first opnq protocol for ympjk and improves on a bound of
Damm, Jukna, and Sgall [12], which has stood for almost twenty years.
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1 Introduction

Random Graphs

The study of random graphs revolves around understanding the following distribution
on graphs: Given n and p, define a distribution Gpn, pq on n vertex graphs G “ pV,Eq

by placing each edge pi, jq P E independently with probability p. The first paper on
this topic, authored by Erdős and Rényi [14], focused on connectivity of graphs. Later,
Bollobás and Erdős [7] found the interesting result that almost every graph has a clique number
of either r or r`1, for some r « 2 log n

log 1{p . This remarkable concentration of measure result led to
further investigations of these graphs. Then, Bollobás [5] solved the question of the chromatic
number and showed that almost every graph has chromatic number p1 ` op1qq´n log p1´pq

2 log n .
For more details, consult Bollobás [6] and Alon and Spencer [2].
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We extend this model by allowing each edge to depend on up to d other edges. We make
no a priori assumptions on how the edges depend on each other except that edges must be
independent of all but at most d other edges. This defines a family of graph distributions
Gdpn, pq. We initiate a study of dependent random graphs by considering the clique number
and the chromatic number. As far as we know, this is the first work to systematically study
such distributions. However, other relaxations of the standard random graph model have been
studied. The most relevant for us is that of Alon and Nussboim [1], who study random graphs
where edges are k-wise independent. Alon and Nussboim give tight bounds for several graph
properties, including the clique number, the chromatic number, connectivity, and thresholds
for the appearance of subgraphs. The bounds for k-wise independent graph properties are not
as tight as the standard random graphs, but this is to be expected since k-wise independent
random graphs are a family of distributions rather than a single distribution. Our dependent
random graphs similarly represent a family of graph distributions. However, dependent
random graphs are generally not even almost k-wise independent, even for small values of d.

NOF Communication Complexity

As an application of our dependent random graphs, we study multi-party communication
problems in the Number-On-The-Forehead (NOF) communication model defined by Chandra
et al. [11]. In this model, there are k players plr1, ¨ ¨ ¨ ,plrk who wish to compute some
function fpx1, . . . , xkq of their inputs using the minimal communication possible. Initially,
players share a great deal of information: each plri sees every input except xi.1 Note
that a great deal of information is shared before communication begins; namely, all players
except plri see xi. As a result, for many functions little communication is needed. Precisely
how this shared information affects how much communication is needed is not currently
well understood, even when limiting how players may communicate. We consider two well-
studied models of communication. In the one-way communication model, players each send
exactly one message in order (i.e., first plr1 sends his message, then plr2, etc.) In the
simultaneous-message (or SM) model, each player simultaneously sends a single message to
a referee, who processes the messages and outputs an answer. We use Dpfq and D‖pfq to
denote the communication complexity of f in the one-way and simultaneous-message models
respectively.

To date, no explicit function is known which requires a polynomial amount of communi-
cation for k “ Θppolylognq players in the SM model. Identifying such a function represents
one of the biggest problems in communication complexity. Furthermore, a chain of results
[22, 16, 4] showed that such a lower bound would place f outside of the complexity class
ACC0. ACC0 lies at the frontier of our current understanding of circuit complexity, and until
the recent work of Williams [21] it wasn’t even known that NEXP Ę ACC0. The Multi-Party
Pointer Jumping problem is widely conjectured to require enough communication to place it
outside of ACC0. This motivates our study.

The Pointer Jumping Problem

There are many variants of the pointer jumping problem. Here, we study two: a Boolean
version mpjn

k , and a non-Boolean version ympjn
k . (From now on, we suppress the n to ease

notation). We shall formally define these problems in Section 2, but for now, each may

1 Imagine xi being written on plri’s forehead. Then, plri sees inputs on other players’ foreheads, but
not his own.
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be described as problems on a directed graph that has k ` 1 layers of vertices L0, . . . , Lk.
The first layer L0 contains a single vertex s0, and layers L1, . . . , Lk´1 contain n vertices
each. In the Boolean version, Lk contains two vertices, while in the non-Boolean version Lk

contains n vertices. For inputs, each vertex in each layer except Lk has a single directed
edge pointing to some vertex in the next layer. The output is the the unique vertex in Lk

reachable from s0; i.e., the vertex reached by starting at s0 and “following the pointers” to
the kth layer. Note that the output is a single bit for mpjk and a logn-bit string for ympjk.
To make this into a communication game, we place on plri’s forehead all edges from vertices
in Li´1 to vertices in Li. If players speak in any order except plr1, ¨ ¨ ¨ ,plrk, there is an
easy Oplognq-bit protocol for mpjk.

This problem was first studied by Wigderson,2 who gave an Ωp
?
nq lower bound for

mpj3. This was later extended by Viola and Wigderson [20], who showed that mpjk requires
Ω̃pn1{pk´1qq communication, even under randomized communication. On the upper-bounds
side, Pudlak et al. [19] showed a protocol for mpj3 that uses only O pnplog lognq{ lognq
communication, but only works when the input on plr2’s forehead is a permutation. Damm
et al. [12] show that Dpympj3q “ Opn log lognq and Dpympjkq “ Opn logpk´1q nq, where
logprq n is the rth iterated log of n. Building on [19], Brody and Chakrabarti [9] showed
Dpmpj3q “ O

´

n
a

plog lognq{ logn
¯

; they give marginal improvements for mpjk for k ą 3.
Several works [19, 12, 15, 10, 9, 8] have shown strong lower bounds for certain restricted
classes of protocols motivated by the above upper bounds. Despite the attention devoted
to this problem, the upper and lower bounds for general protocols remain far apart, even
for k “ 3 players, where Dpmpj3q “ Ωp

?
nq and Dpmpj3q “ Opn

a

plog lognq{ lognq. For
this reason, in this work we focus on mpjk and ympjk for small values of k. We strongly
believe that fully understanding the communication complexity of mpj3 will shed light on
the general problem as well.

1.1 Our Results
We give two collections of results: one for dependent random graphs, and the other for the
communication complexity of mpjk and ympjk. For our work on dependent random graphs,
we focus on the clique number and on the chromatic number. The clique number of a graph
G, denoted cliquepGq, is the size of the largest clique; the chromatic number χpGq is the
number of colors needed to color the vertices such that the endpoints of each edge have
different colors. We use cliquepGdpn, pqq and χpGdpn, pqq to refer to cliquepGq and χpGq for
some G „ Gdpn, pq. We achieve upper and lower bounds for each graph property. Say that a
graph property P holds almost surely (a.s.) if it holds with probability approaching 1 as
n approaches 8 i.e. if P holds with probability 1´ op1q.

Our strongest results3 give a lower bound for cliquepGdpn, pqq and an upper bound for
χpGdpn, pqq.

I Theorem 1. If 0 ă p ă 1{4 and d{p ăă
?
n, then Gdpn, pq almost surely has a clique of

size Ω
´

log n
log 1{p

¯

.

I Theorem 2. If 3{4 ă p ă 1 and d “ nop1q then almost surely χpGdpn, pqq ď p1 `
εq´n logp1´pq

log n .

2 This was unpublished, but an exposition appears in [3].
3 Our choice of p is motivated by what was needed to obtain the communication complexity bounds for

mpjk. We suspect that tweaking our technical lemmas will give bounds for any constant p.
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These bounds nearly match similar results for Erdős-Rényi random graphs. Our bounds on
the other side are not as tight.

I Theorem 3. If 0 ă p ă 1 and d ď n{ log2 n, then almost surely cliquepGdpn, pqq ď d logn.

I Theorem 4. If 0 ă p ă 1 and d ď n{ log2 n, then almost surely χpGdpn, pqq ě n{pd lognq.

For large values of d, there are wide gaps in the upper and lower bounds of clique number
and chromatic number. Are these gaps necessary? The existing bounds for random graphs
show that Theorems 1 and 2 are close to optimal. Our next result witnesses the tightness for
cliquepGdpn, pqq.

I Lemma 5. For any d “ opnq and any 0 ă p ă 1
1. there are d-dependent random graphs that almost surely contain cliques of size Ωpdq.
2. there are d-dependent random graphs that almost surely contain cliques of size Ωp

?
d lognq.

This result shows that Theorem 3 is also close to optimal. It also demonstrates that tight
concentration of measure does not generally hold for dependent random graphs, even for
small values of d. Nevertheless, we expect that for many specific dependent random graphs,
tight concentration of measure results will hold. Finally, we give two simple constructions
which show that with too much dependence, very little can be said about cliquepGdpn, pqq.

I Lemma 6. For any d ě 2n, the following statements hold.
1. For any 0 ă p ă 1, there exists a d-dependent random graph Gdpn, pq that is bipartite

with certainty.
2. For any 1{2 ď p ă 1, there exists a d-dependent random graph Gdpn, pq that contains a

clique of size n{2 with certainty.

Results for Multi-Party Pointer Jumping

Our main NOF communication complexity result is a new protocol for mpj3.

I Theorem 7. Dpmpj3q “ Opnplog lognq{ lognq.

This is the first improvement in the communication complexity of mpj since the work of
Brody and Chakrabarti [9]. Next, we use this protocol to get new bounds for the non-Boolean
version.

I Theorem 8. Dpympj4q “ O
´

n plog log nq2

log n

¯

.

Our protocol for ympj4 is the first sublinear-cost protocol for ympjk for any value of k and
improves on the protocol of Damm et al. [12] which has stood for nearly twenty years.4 Our
last pointer jumping results give upper bounds in the SM setting. First we show how to
convert our protocol from Theorem 7 to a simultaneous messages protocol.

I Lemma 9. D‖pmpj3q “ O
´

n log log n
log n

¯

.

4 The ympjk protocol of Damm et al uses Opn log log ¨ ¨ ¨ lognq communication, with k´ 1 logs and is quite
simple. It works by having players send an increasing number of bits of information about each possible
pointer; their main result is a strong lower bound for conservative protocols, in which each player i has
access only to f1 ˝ ¨ ¨ ¨ ˝ fi´1 instead of f1, . . . , fi´1. It is worth noting that their protocol is conservative.
Our protocols are not conservative.
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Note that to solve ympj3, players can compute each bit of f3pf2piqq using an mpj3 protocol.
By running logn instances in parallel, players compute all of ympj3pi, f2, f3q. Thus, we get
the following bound for ympj3.

I Corollary 10. D‖pympj3q “ Opn log lognq.

This matches the bound from [12] but holds in the more restrictive SM setting.

1.2 Obtaining Bounds for Dependent Random Graph Properties
In this subsection, we describe the technical hook we obtained to prove our bounds for
Theorems 1 and 2. A key piece of intuition is that when looking at only small subgraphs
of G „ Gdpn, pq, the subgraph usually looks like Gpn, pq. This intuition is formalized in the
following definition and lemma.

I Definition 11. Given a dependent random graph Gdpn, pq, call a subset of vertices S Ď V

uncorrelated if any two edges in the subgraph induced by S are independent.

I Lemma 12. Suppose d and k are integers such that dk3 ď n. Fix any d-dependent graph
Gdpn, pq, and let S be a set of k vertices uniformly chosen from V . Then, we have

PrrS is uncorrelateds ě 1´ 3dk3

2n .

At first glance, it might appear like we are now able to appeal to the existing arguments
for obtaining bounds for cliquepGpn, pqq and then χpGpn, pqq. Unfortunately, this is not the
case – while most potential k-cliques are uncorrelated, allowing correlation between edges
drives up the variance. In effect, we might expect to have roughly the same number of
k-cliques, but these cliques bunch together. Nevertheless, we are able to show that when d is
small enough, these cliques don’t bunch up too much. Appropriately bounding the variance
is the most technically involved hurdle in this work, and is necessary to obtain both the
upper bound on the chromatic number, and the efficient pointer jumping protocol. We leave
details to Section 5.

1.3 Road Map
The rest of the paper is organized as follows. In Section 2 we specify some notation, give
formal definitions for the problems and models we consider, and provide some technical
lemmas on probability which we’ll need in later sections. We develop our results for dependent
random graphs in Section 3, deferring some technical lemmas to Section 5. We present our
main result for mpj3 in Section 4, deferring the secondary mpjk results to Section 7. In
Section 6 we prove Lemmas 5 and 6.

2 Preliminaries and Notation

We use rns to denote the set t1, . . . , nu, N to denote
`

n
2
˘

, and exppzq to denote ez. For
a string x P t0, 1un, let xrjs denote the jth bit of x. For a sequence of random variables
X0, X1, . . ., we use Xi to denote the subsequence X0, . . . , Xi. For a graph G “ pV,Eq, Ḡ
denotes the complement of G. Given sets A Ă B Ă V , we use BzA to denote the set of edges
tpu, vq : u, v P B and tu, vu Ę Au.

For a communication problem, we refer to players as plr1, . . . ,plrk. When k “ 3, we
anthropomorphize players as Alice, Bob, and Carol. Our communication complexity measures
were defined in Section 1; for an in-depth development of communication complexity, consult
the excellent standard textbook of Kushilevitz and Nisan [18].
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2.1 Probability Theory and Random Graphs
Next, we formalize our notion of dependent random graphs and describe the tools we use to
bound cliquepGdpn, pqq.

I Definition 13 ([13], Definition 5.3). A sequence of random variables Y0, Y1, . . . , Yn is a
martingale with respect to another sequence X0, X1, . . . , Xn if for all i ě 0 we have

Yi “ gipXiq

for some functions tgiu and, for all i ě 1 we have

ErYi|Xi´1s “ Yi´1 .

I Theorem 14 (Azuma’s Inequality). Let Y0, . . . , Yn be a martingale with respect to X0, . . . , Xn

such that ai ď Yi ´ Yi´1 ď bi for all i ě 1. Then

PrrYn ą Y0 ` ts,PrrYn ă Y0 ´ ts ď exp
ˆ

´
2t2

ř

ipbi ´ aiq
2

˙

.

Of particular relevance for our work is the edge-exposure martingale. Let G be a random
graph. Arbitrarily order possible edges of the graph e1, . . . , eN , and let Xi be the indicator
variable for the event that ei P G. Let f :

`

n
2
˘

Ñ R be any function on the edge set, and
let Yi :“ ErfpX1, . . . , XN q|Xis. It is easy to verify that for any f , ErYi|Xăis “ Yi´1, and
therefore tYiu are a martingale with respect to tXiu. We say that tYiu is the edge-exposure
martingale for G.

It is worth noting that martingales make no assumptions about the independence of
tXiu. We’ll use martingales on graph distributions where each edges may depend on a small
number of other edges. This notion of local dependency is formalized below.

A dependency graph for a set of random variables X “ tX1, . . . , XNu is a graph H on
rN s such that for all i, Xi is independent of tXj : pi, jq R Hu. We say that a set of variables
X is d-locally dependent if there exists a dependency graph for X where each vertex has
degree at most d.

The following lemma of Janson [17] (rephrased in our notation) bounds the probability
that the sum of a series of random bits deviates far from its expected value, when the random
bits have limited dependence.

I Lemma 15 ([17]). Let X “ tXiuiPrNs be a d-locally dependent set of identically distributed
binary variables, and let Y “

ř

iPrNsXi. Then, for any t we have

Prr|Y ´ ErY s| ě ts ď e
´2t2
pd`1qN .

For more details and results on probability and concentration of measure, consult the
textbook of Dubhashi and Panconesi [13].

I Definition 16. A distribution Gdpn, pq is d-dependent if each edge is placed in the graph
with probability p, and furthermore that the set of edges are d-locally dependent.

Note that taking d “ 0 gives the standard Erdős-Rényi graph model. As with k-wise
independent random graphs, d-dependent random graphs are actually a family of graph
distributions. We make no assumptions on the underlying distribution beyond the fact that
each edge depends on at most d other edges. We abuse notation somewhat and let Gdpn, pq

denote both the family of d-dependent random graph distributions as well as an arbitrary
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d-dependent random graph distribution. Unless specified otherwise (by stating e.g. “there
exists a d-dependent random graph distribution. . . ”) all of our results apply to an arbitrary
d-dependent random graph distribution. Following convention in the random graph literature,
we use “a depedent random graph” to denote a random variable distributed according to a
d-dependent random graph distribution.

A clique in a graph G “ pV,Eq is a set of vertices S such that the subgraph induced on
S is complete. Similarly, an independent set T is a set of vertices whose induced subgraph is
empty. A clique cover of G is a partition of V into cliques. We let cliquepGq denote the size
of the largest clique in G. Let χpGq denote the chromatic number of G; i.e., the minimum
number of colors needed to color the vertex set such that no two adjacent vertices are colored
the same. Note that χpGq is the size of the smallest clique cover of Ḡ.

2.2 Multi-Party Pointer Jumping
Finally, we formally define the Boolean Multi-Party Pointer Jumping function. Let i P rns,
and let f2, . . . , fk : rnsn, be functions from rns to rns. Let x P t0, 1un. We define the k-player
pointer jumping function mpjn

k : rns ˆ prnsnqk´2
ˆ t0, 1un recursively as follows:

mpjn
3 pi, f2, xq :“ xrf2piqs ,

mpjn
k pi, f2, . . . , fk´1, xq :“ mpjn

k´1pf2piq, f3, . . . , fk´1, xq .

The non-Boolean version ympjn
k : rns ˆ prnsnqk´1 is defined similarly recursively:

ympjn
3 pi, f2, f3q :“ f3pf2piqq ,

ympjn
k pi, f2, . . . , fkq :“ ympjn

k´1pf2piq, f3, . . . , fkq .

Henceforth, we drop the superscript n to ease notation. Each problem is turned into a
communication game in the natural way. plr1 is given i; for each 2 ď j ă k, plrj receives
fj , and plrk receives x. Players must communicate to output mpjkpi, f2, . . . , fk´1, xq.

3 Dependent Random Graphs

In this section, we prove our main results regarding dependent random graphs, namely that
with high probability they contain a large clique, and with high probability the chromatic
number is not too large. The two theorems are formally stated below.

I Theorem 17 (Formal Restatement of Theorem 1). For all 0 ă ε ă 1{4 there exists n0 such
that

PrrcliquepGdpn, pqq ą ks ą 1´ expp´n1`εq ,

for all n ě n0, for all n´ε{4 ă p ă 1
4 and for all d, k such that k ď logpn{p2d log3 nqq

logp1{pq and
d{p ď n1{2´ε.

This theorem shows cliquepGdpn, pqq “ Ω
´

log n
log 1{p

¯

with high probability, as long as d{p is
bounded away from

?
n. Furthermore, when d “ nop1q, cliquepGdpn, pqq ě p1 ´ εq log n

logp1{pq
with high probability.

Proof. This proof follows the classic technique of Bollobás [5], modified to handle dependent
random graphs. We need to show that Gdpn, pq contains clique of size k. To that end, let
Y be the largest number of edge-disjoint uncorrelated k-cliques. First, we give a lower
bound on ErY s; we defer its proof to Section 5.
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I Lemma 18. ErY s ě n2p
19k5 .

Now, we use the edge-exposure martingale on Gdpn, pq to show that with high probability, Y
does not stray far from its expectation. Let Y0, Y1, ¨ ¨ ¨YN , be the edge exposure martingale
on Gdpn, pq. Recall that Y0 “ ErY s, YN “ Y , and Yi “ ErY |Xis. In a standard random
graph model where all edges are independently placed in G, it is easy to see that conditioning
on whether or not an edge is in the graph changes the expected number of edge-disjoint
uncorrelated k-cliques by at most one. This no longer holds when edges are dependent.
However, if the graph distribution is d-dependent, then conditioning on Xi changes the
expected number of edge-disjoint uncorrelated k-cliques by at most d. Therefore, |Yi`1 ´

Yi| ď d. Then, by Azuma’s inequality, Lemma 18, and our assumption that d{p ď n1{2´ε,
we have

PrrY “ 0s ď PrrY ´ ErY s ď ´ErY ss

ď exp
ˆ

´ErY s2

2Nd2

˙

“ exp
ˆ

´
n2p2

192d2k10 p1` op1qq
˙

ď expp´n1`εq .

Thus, it follows that Gdpn, pq contains an uncorrelated k-clique with probability at least
1´ expp´n1`εq. Since every uncorrelated clique is still a clique, it is clear that

PrrcliquepGdpn, pqq ě ks ě 1´ expp´n1`εq .

J

Next, we use the lower bound on cliquepGdpn, pqq to obtain an upper bound on χpGdpn, pqq.

I Theorem 19. For all 0 ă ε ă 1{8 there exists n0 such that

Pr
„

χpGdpn, qqq ă p1` 4εq´n logp1´ qq
logn



ą 1´ exppn1`εq ,

for all 3{4 ă q ă 1´ n´ε{4, all d ď nop1q, and all n ě n0.

Proof. This follows a greedy coloring approach similar to [5, 19], but adapted to dependent
random graphs. Set m “ n

log2 n
, ε1 “ 2ε, and p “ 1 ´ q. Let E be the event that every

induced subgraph H of Gdpn, qq with m vertices has an independent set of size at least
k :“ p1´ ε1q log m

´ logp1´qq . Independent sets in Gdpn, qq correspond to cliques in the complement
graph Gdpn, qq, which is distributed identically to Gdpn, pq. Thus, we’re able to leverage
Theorem 17 to bound PrrEs. In particular, since d ď nop1q ď mop1q,5 by Theorem 17 and a
union bound we have

PrrEs ą 1´
ˆ

n

m

˙

expp´n1`ε1q ą 1´ exp
ˆ

n

logn ´ n
1`ε1

˙

ą 1´ expp´n1`εq .

Now, assume E holds. We iteratively construct a coloring for Gdpn, qq. Start with each vertex
uncolored. Repeat the following process as long as more than m uncolored vertices remain:

5 note that nδ “ mδ1 , where δ1 “ δ logn
logn´2 log logn . If δ “ op1q then δ1 “ op1q as well.
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Select m uncolored vertices. From their induced subgraph, identify an independent set I of
size at least k. Then, color each vertex in I using a new color. When at most m uncolored
vertices remain, color each remaining vertex using a different color. Since two vertices share
the same color only if they are in an independent set, it’s clear this is a valid coloring. More
over, for each color in the first phase, we color at least k ą p1´ ε1q log m

´ log p ą p1´p3{2qεq
log n
´ log p

vertices. Hence, the overall number of colors used is at most

n´m

p1´ p3{2qε1qplognq{p´ logp1´ qqq `m ď p1` 4εq´n logp1´ qq
logn .

Therefore, χpGdpn, qqq ď p1`4εq´n logp1´qq
log n as long as E holds. This completes the proof. J

Finally, we give an upper bound on cliquepGdpn, pqq and a lower bound on χpGdpn, pqq,
which follow directly from Lemma 15.

I Theorem 20. For all 0 ă p ă 1 and d ď n{ log2 n, almost surely cliquepGdpn, pqq “

Opd lognq.

Proof. Let G „ Gdpn, pq, and fix some constant c to be determined later. For a set of
vertices S Ď V of size |S| “ cd logn, let BADS denote the event that S is a clique, and let
BAD :“

Ž

S BADS . Note that there are
`

n
cd log n

˘

ď exppcd log2 nq such events. Since G is
d-dependent and S Ă V , then the subgraph induced by S is also d-dependent. Now, define
z :“

`

cd log n
2

˘

and let X1, . . . , Xz be indicator variables for the edges in the subgraph induced
by S. Finally, let Y :“

ř

i Xi. Then, ErY s “ pz, and BADS amounts to having Y “ z. By
Lemma 15,

PrrBADSs “ PrrY “ zs

“ PrrY ´ ErY s ě zp1´ pqs

ď exp
ˆ

´
2z2p1´ pq2

pd` 1qz

˙

“ exp
ˆ

´
2zp1´ pq2

d` 1

˙

.

Choosing c “ 1{p1´ pq2 and using a union bound yields

PrrBADs ď
ˆ

n

z

˙

PrrBADSs ď exp
ˆ

cd log2 n´
2p1´ pq2

d` 1 pcd lognq2
˙

“ exp
`

cd log2 np1´ 2cp1´ pq2q
˘

ă expp´Ωpd log2 nqq .

Thus, almost surely Gdpn, pq has no clique of size ě cd logn. J

Our lower bound on χpGdpn, pqq follows as a direct corollary, since any independent set in
Gdpn, pq is a clique in the complement graph ĞGdpn, pq, which is also d-dependent.

I Corollary 21. If 0 ă p ă 1 and d ď n{ log2 n, then almost surely χpGdpn, pqq ě n{pd lognq.

4 A New Protocol for MPJ3

Below, we describe a family of mpj3 protocols tPHu parameterized by a bipartite graph
H “ pAYB,Eq with |A| “ |B| “ n. In each protocol PH , Alice and Bob each independently
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send a single message to Carol, who must take the messages and the input she sees and
output mpj3pi, f, xq. Bob’s communication in each protocol is simple: given i, he sends xj for
each j such that pi, jq P H. Alice’s message is more involved. Given H and f , she partitions
rns into clusters. For each cluster in the partition, she sends the xor of the bits for x. (e.g.
if one cluster is t1, 3, 5u, then Alice would send xr1s ‘ xr3s ‘ xr5s) This partition of rns into
clusters is carefully chosen and depends on H and f . Crucially, it is possible to make this
partition so that for any inputs i, f , Bob sends xrjs for each j in the cluster containing
fpiq, except for possibly xrfpiqs itself. We formalize this clustering below. Thus, Carol can
compute xrfpiqs by taking the relevant cluster from Alice’s message and “xor-ing out” the
irrelevant bits using portions of Bob’s message.

Each protocol PH will correctly compute mpj3pi, f, xq; we then use the probabilistic
method to show that there exists a graph H such that PH is efficient. At the heart of this
probabilistic analysis is a bound on the chromatic number of a dependent random graph.
For functions with large preimages, this dependency becomes too great to handle.

I Definition 22. A function f : rns Ñ rns is d-limited if |f´1pjq| ď d for all j P rns.

We end up with a protocol PH that is efficient for all inputs pi, f, xq as long as f is
d-limited (d « logn suffices); later, we generalize PH to work for all inputs.
I Remark. This construction is inspired by the construction of Pudlák et al. [19], who gave
a protocol for mpj3 that works in the special case that the middle layer is a permutation π

instead of a general function f . They also use the probabilistic method to show that one PH

must be efficient. The probabilistic method argument in our case depends on the chromatic
number of a dependent random graph; the analysis of the permutation-based protocol in [19]
relied on the chromatic number of the standard random graph Gpn, pq.

Description of PH

Let H “ pA Y B,Eq be a bipartite graph with |A| “ |B| “ n. Given H and f , define a
graph Gf,H by placing pi, jq P Gf,H if and only if both pi, fpjqq and pj, fpiqq are in H. Let
C1, . . . , Ck be a clique cover of Gf,H , and for each 1 ď ` ď k, let S` :“ tfpjq : j P C`u.

The protocol PH proceeds as follows. Given f and x, Alice constructs Gf,H . For each
clique C`, Alice sends b` :“

À

jPS`
xrjs. Bob, given i and x, sends xrjs for all pi, jq P H.

We claim these messages enable Carol to recover mpj3pi, f, xq. Indeed, given i and f , Carol
computes Gf,H . Let C be the clique in the clique cover of Gf,H containing i, and let
S :“ tfpjq : j P Cu and b :“

À

jPS xrjs. Note that Alice sends b. Also note that for any
j ‰ i P C, there is an edge pi, jq P Gf,H . By construction, this means that pi, fpjqq P H,
so Bob sends xrfpjqs. Thus, Carol computes xrfpiqs by taking b (which Alice sends) and
“XOR-ing out” xrfpjqs for any j ‰ i P C. In this way, PH computes mpj3.

While PH computes mpj3, it might not do so in a communication-efficient manner. The
following lemma shows that there is an efficient protocol whenever f has small preimages.

I Lemma 23. For any d ď nop1q, there exists a bipartite graph H such that for all i P rns, x P
t0, 1un, and all d-limited functions f , we have

costpPHq “ O

ˆ

n
log logn

logn

˙

.

Before proving Lemma 23, let us see how this gives the general upper bound.

I Theorem 24 (Restatement of Theorem 7). Dpmpj3q “ Opnplog lognq{ lognq.

APPROX/RANDOM’15
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Proof. Fix d “ logn and let PH be the protocol guaranteed by Lemma 23. We construct a
general protocol P for mpj3 as follows. Given f , Alice and Carol select a d-limited function
g such that gpjq “ fpjq for all j such that |f´1pfpjqq| ď d. Note that Alice and Carol can do
this without communication, by selecting (say) the lexicographically least such g. On input
pi, f, xq, Alice sends the message she would have sent in PH on input pi, g, xq, along with
xrjs for all j with large preimages. Bob merely sends the message he would have sent in PH .
If the preimage of fpiq is large, then Carol recovers xrfpiqs directly from the second part of
Alice’s message. Otherwise, Carol computes mpj3pi, g, xq using PH . Since fpiq has a small
preimage, we know that xrgpiqs “ xrfpiqs “ mpj3pi, f, xq, so in either case Carol recovers
mpj3pi, f, xq.

The communication cost of P is the cost of PH , plus one bit for each j with preimage
|f´1pjq| ą d. There are at most n{d such j. With d “ logn and using Lemma 23, the cost
of P is

costpPq ď costpPHq`n{d “ Opnplog lognq{ lognq`Opn{ lognq “ Opnplog lognq{ lognq .J

Proof of Lemma 23. We use the Probabilistic Method. Place each edge in H independently
with probability p “ Θ

´

log log n
log n

¯

. Now, for any d-limited function f , consider the graph
Gf,H . Each edge pi, jq is in Gf,H with probability p2, but the edges are not independent.
However, we claim that if f is d-limited, then Gf,H is (2d´ 2)-dependent. To see this, note
that pi, jq is in Gf,H if both pi, fpjqq and pj, fpiqq are in H. Therefore, pi, jq is dependent
on (i) any edge pi, j1q such that fpj1q “ fpjq, and (ii) any edge pi1, jq such that fpiq “ fpi1q.
Since f is d-limited, there are at most d ´ 1 choices each for i1 and j1. Thus, each edge
depends on at most 2d´ 2 other edges, and Gf,H is p2d´ 2q-dependent.

In PH , Alice sends one bit per clique in the clique cover of Gf,H . Bob sends one bit
for each neighbor of i in H. Thus, we’d like a graph H such that every i P rns has a few
neighbors and every d-limited function f has a small clique cover.

Let BADi denote the event that i has more than 2pn neighbors in H. By a standard
Chernoff bound argument, PrrBADis ď expp´np2{2q. Next, let BADf be the event that at
least p1`εq´n logpp2

q

log n cliques are needed to cover the vertices in Gf,H . Note that any clique in
Gf,H is an independent set in the complement graph ĘGf,H , so the clique cover number of Gf,H

equals the chromatic number of ĘGf,H . Also note that ĘGf,H is itself a d-dependent random
graph, with edge probability q “ 1´p2. Therefore, by Theorem 19, PrrBADf s ă expp´n1`εq.
Finally, let BAD :“ p

Ž

i BADiq
Ž

´

Ž

d-limited f BADf

¯

. There are n indices i and at
most nn ď exppn lognq d-limited functions f . Therefore, by a union bound we have

PrrBADs ă nPrrBADis ` n
n PrrBADf s ă ne´

np2
2 ` nne´n1`ε

ă 1.

Therefore, there exists a good H. Also note that in PH for a good H, Alice and Bob each
communicate Opn log log n

log n q bits. This completes the proof. J

Simultaneous Messages

We conclude this section by showing how to convert PH into an SM protocol. Observe that
Carol selects a bit from Alice’s message (namely, the clique containing fpiq) and a few bits
from Bob’s message (the neighbors of i in H) and xors them together. To convert PH to an
SM protocol, Alice and Bob send the same messages as in PH . Carol, given i and f , sends a
bit mask describing which bit from Alice’s message and which bits from Bob’s message are
relevant. The Referee then xors these bits together, again producing mpj3pi, f, xq. Carol
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sends one bit for each bit of communication sent by Alice and Bob. Thus, this SM protocol
costs twice as much as the cost of PH . We get the following result.

I Lemma 25 (Restatement of Lemma 9). D‖pmpj3q “ Opn log log n
log n q.

5 Proofs of Main Technical Lemmas

In this section, we state and prove three technical lemmas which form key insights to our
contribution. The first lemma states that most sets of k vertices “look independent”. The
second bounds the expected number of intersecting k-cliques. The final lemma gives a lower
bound on the expected number of disjoint uncorrelated k-cliques.

We remind the reader that all three lemmas apply to arbitrary d-dependent random
graph distributions.

I Lemma 26 (Restatement of Lemma 12). Suppose d and k are integers such that dk3 ď n.
Fix any d-dependent graph Gdpn, pq, and let S be a set of k vertices uniformly chosen from
V . Then, we have

PrrS is uncorrelateds ě 1´ 3dk3

2n .

Proof. We divide the possible conflicts into two classes, bound the probability of each, and
use a union bound. Say that correlated edges are local if they share a vertex. Otherwise, call
them remote. Let L and R be the events that S contains a local and remote dependency
respectively.

First, we bound PrrRs. Imagine building S by picking vertices v1, . . . , vk one at a time
uniformly. Let Si :“ tv1, . . . , viu, and let Bi be the the set of vertices that would create a
remote dependency if added to Si. Note that B1 “ H since there are no edges in S1 (it
contains only one vertex). More importantly, for i ą 1, there are at most

`

i
2
˘

¨ p2dq ă di2

vertices in Bi, because Si contains
`

i
2
˘

edges; each edge depends on at most d other edges,
and each of these edges contributes at most two vertices to Bi. It follows that R is avoided
if vi`1 R Bi for each i “ 2 . . . k ´ 1. There are pn´ iq choices for vi`1, so

Prr Rs ě
k´1
ź

i“2

ˆ

1´ di2

n´ i

˙

ě

ˆ

1´ dk2

n´ k

˙k´2

ě 1´ dk3

n
,

Hence PrrRs ď dk3{n. At first glance, it might appear like we’ve handled local dependencies
as well. However, it is possible that when adding vi, we add local dependent edges, if these
edges are both adjacent to vi. Thus, we handle this case separately.

Let Lij denote the event that i, j P S and there are no local dependencies in S involving
pi, jq. Call a vertex ` bad for pi, jq if either pi, `q or pj, `q depend on pi, jq. There are at most
d bad vertices for pi, jq. Note that Prri, j P Ss “

`

n´2
k´2

˘

{
`

n
k

˘

“ kpk ´ 1q{npn´ 1q and that

Prr Lij |i, j P Ss ě

ˆ

n´ 2´ d
k ´ 2

˙

{

ˆ

n´ 2
k ´ 2

˙

ě

d´1
ź

z“0

ˆ

1´ k ´ 2
n´ 2´ z

˙

ě

ˆ

1´ k ´ 2
n´ 2´ d

˙d

ě 1´ dpk ´ 2q
n´ 2´ d

ě 1´ dk

n
.
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It follows that PrrLijs “ Prri, j P SsPrrLij |i, j P Ss ď
kpk´1q
npn´1q ¨

dk
n . There are

`

n
2
˘

possible
pairs i, j, so by a union bound, we have PrrLs ď npn´1q

2
kpk´1q
npn´1q

dk
n ď dk3

2n . Another union
bound on R and L completes the lemma. J

I Lemma 27. Let d, p, k be such that k ă logpn{p2d log3 nqq
log 1{p . Fix a d-dependent random graph

distribution Gdpn, pq. Let G „ Gdpn, pq, and let W be the set of ordered pairs pS, T q such
that S, T are intersecting uncorrelated k-cliques. Then,

Er|W |s ď 2k
ˆ

n

k

˙

p2pk
2q´1

ˆ

k

2

˙ˆ

n

2

˙

.

Note: To understand the relationship between d, k, p, n, it is helpful to consider the case
d “ nop1q. In this setting, the lemma holds as long as k ď p1´ op1qq log n

log 1{p .

Proof. Let S, T be arbitrary sets of k vertices, and let X “ S X T . We calculate Er|W |s by
iterating over all possible values of S,X and for each pair, counting the expected number of
T such that S X T “ X and S, T are both k-cliques. For S,X, let F pS,Xq be the expected
number of uncorrelated k-cliques T such that S X T “ X, conditioned on S being a
k-clique. Also let F p`q be the maximum of all F pS,Xq, taken over all S and all X Ă S with
|X| “ `. We have

Er|W |s “
ÿ

S

PrrS is k-cliques
ÿ

XĂS

ÿ

T :SXT“X

PrrT is k-clique|S is k-cliques (1)

“
ÿ

S

pp
k
2q

ÿ

XĂS

F pS,Xq (2)

ď
ÿ

S

pp
k
2q

k´1
ÿ

`“2

ÿ

XĂS
|X|“`

F p`q (3)

ď

ˆ

n

k

˙

pp
k
2q
ÿ

`

ˆ

k

`

˙

F p`q . (4)

Next, we obtain an upper bound on F p`q. Since we need only an upper bound, we take a
very pessimistic approach. Let M Ă rns zS be the set of vertices adjacent to an edge e that
depends on some edge from SzX. Each edge in SzX depends on at most d other edges, and
there are

`

k
2
˘

´
`

`
2
˘

edges in SzX. Therefore, |M | ď dp
`

k
2
˘

´
`

`
2
˘

q. Now, let EpMq be the set of
edges with one endpoint in M and the other endpoint in M YX. Each of these edges may be
correlated with edges in SzX, so for any e P EpMq we assume only Prre|S is k-cliques ď 1.
On the other hand, by construction any edge e not in EpMq is independent of S, and
therefore Prre P G|S is k-cliques “ p. Next, we sum over all possible T , grouping by how
much T intersects M . Suppose |T XM | “ `1 for some 0 ď `1 ď k ´ `. Then, T contains

`

k
2
˘

edges,
`

`
2
˘

of these edges have both endpoints in X, and are fixed after conditioning on S
being a k-clique. Of the remaining edges, ` ¨ `1 `

`

`1

2
˘

are in EpMq; the rest are independent
of S. Thus, when |T XM | “ `1, then PrrT is k-clique|S is k-cliques ď pp

k
2q´p

`
2q´``1´p`1

2q.
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F p`q “
ÿ

T :SXT“X

PrrT is k-clique|S is k-cliques (5)

“

k´
ÿ̀

`1“0

ÿ

T :SXT“X
|TXM |“`1

PrrT is k-clique|S is k-cliques (6)

ď

k´
ÿ̀

`1“0

ˆ

M

`1

˙ˆ

n´ k ´M

k ´ `´ `1

˙

pp
k
2q´p

`
2q´``1´p`1

2q (7)

“ pp
k
2q´p

`
2q

k´
ÿ̀

`1“0
F˚p`1q , (8)

where F˚p`1q :“
`

M
`1

˘`

n´k´M
k´`´`1

˘

p´``1´p`1

2q. Next, we show that the summation in Equation (8)
telescopes.

I Claim 28. If k ď
log

´

n
2d log3 n

¯

log 1{p then
řk´1

`1“0 F
˚p`1q ď 2F˚p0q.

Proof. Fix any 0 ď i ă k ´ `, and consider F˚pi ` 1q{F˚piq. Using
`

a
b`1

˘

{
`

a
b

˘

“ a´b
b`1 and

`

a
b´1

˘

{
`

a
b

˘

“ b
a´b´1 and recalling that M ă d

`

k
2
˘

, we have:

F˚pi` 1q
F˚piq

“

`

M
i`1

˘`

n´k´M
k´pi`1q

˘

p´`pi`1q´pi`1qi{2

`

M
i

˘`

n´k´M
k´i

˘

p´`i´ipi´1q{2

“
M ´ 1
i` 1

k ´ i

n´ k ´M ´ k ` i
p´`´i

ď
dk2

2
k

n´ opnq

ˆ

1
p

˙k

ă
dk3

n

ˆ

1
p

˙k

ă
k3

2 log3 n

ă 1{2 ,

where the penultimate inequality holds because of our assumption on k, and the final
inequality holds because k ă logn. We’ve shown that for all i, F˚pi` 1q{F˚piq ă 1{2. Hence
F˚piq ă F˚p0q2´i, and so

ř

`1 F
˚p`1q ď

ř

`1 F
˚p0q2´`1 ď 2F˚p0q. J

From claim 28, we see that

F p`q ď pp
k
2q´p

`
2q

k´
ÿ̀

`1“0
F˚p`1q ď 2pp

k
2q´p

`
2qF˚p0q “ 2pp

k
2q´p

`
2q

ˆ

n´ k ´M

k ´ `

˙

.

Now, plugging this inequality back into Equation 4, we get

Er|W |s ď

ˆ

n

k

˙

pp
k
2q
ÿ

`

ˆ

k

`

˙

F p`q ď 2
ˆ

n

k

˙

pp
k
2q
ÿ

`

ˆ

k

`

˙

pp
k
2q´p

`
2q

ˆ

n´ k ´M

k ´ `

˙

.

Let Gp`q :“ pp
k
2q´p

`
2q
`

k
`

˘`

n´k´M
k´`

˘

, and for 2 ď ` ă k ´ 1, let G˚p`q :“ Gp`q{Gp` ` 1q. Note
that

G˚p`q “ p` `` 1
k ´ `

n´ 2k ´M ` `` 1
k ´ `

.
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We claim that G˚p`q decreases as long as p ă 8{27´ Ωp1q. To see this, note that

G˚p`q

G˚p`` 1q “ p
`` 1
`

¨

ˆ

k ´ `` 1
k ´ `

˙2
n´ 2k ´M ` `` 1
n´ 2k ´M ` `

ă pp3{2q3p1` op1qq ,

where the inequality holds because pa` 1q{a “ 1` 1{a and because `, k´ ` ě 2 for the range
of ` we need when calculating G˚p`q. In a way, saying that G˚p`q is decreasing amounts to
saying that Gp`q is convex – once Gpiq ď Gpi` 1q, then Gpjq ď Gpj ` 1q for all j ą i. Next,
a straightforward calculation using our choice of k shows that Gpk ´ 1q ď Gp2q. Thus, it
must be the case that Gpiq ď Gp2q for all i, and therefore

Er|W |s ď 2
ˆ

n

k

˙

pp
k
2qkGp2q

“ 2k
ˆ

n

k

˙

p2pk
2q´1

ˆ

k

2

˙ˆ

n´ k ´M

k ´ 2

˙

ă 2k
ˆ

n

k

˙

p2pk
2q´1

ˆ

k

2

˙ˆ

n

k ´ 2

˙

.

This completes the proof of Lemma 27. J

Finally, we prove the lemma that in any d-dependent graph distribution, the expected
number of disjoint uncorrelated k-cliques is large. Recall that Y is the maximal number
of disjoint uncorrelated k-cliques.

I Lemma 29 (Restatement of Lemma 18). ErY s ě n2p
19k5 .

Proof. We construct Y probabilistically, by selecting each potential uncorrelated k-clique
with small probability and removing any pairs of k-cliques that intersect. Let K denote the
family of uncorrelated k-cliques. By Lemma 12 and our choice of d, a randomly chosen
set S of k vertices is uncorrelated with probability at least 2{3. By this and our choice of
k, we have

Er|K|s ě
2
3

ˆ

n

k

˙

pp
k
2q .

Recall that W is the set of ordered pairs tS, T u of uncorrelated k-cliques such that
2 ď |S X T | ă k. For our argument, we require an upper bound on Er|W |s. In the standard
random graph model, if |S X T | “ `, then PrrS, T both k-cliquess “ pp

k
2q´p

`
2q. However, this

no longer holds for d-dependent distributions, even if S and T are both uncorrelated.
This is because while edges in S and T are independent, edges in S but not T may be
correlated with edges in T but not S. As an extreme case, suppose all edges in S are
independent, but each edge in S zT is completely correlated with an edge in T zS. Then,
PrrS, T k-cliquess “ PrrS is k-cliques “ PrrT is k-cliques “ pp

k
2q. Essentially, allowing edges

to be correlated has the potential to drive up the variance on the number of k-cliques, even
when these k-cliques are uncorrelated. This is perhaps to be expected. Nevertheless, in
Lemma 27, we were able to show that when d is small, this increase is not much more than
in the standard graph model.

With this claim, we are now able to construct a large set of disjoint uncorrelated
k-cliques with high probability. Create K 1 Ď K by selecting each uncorrelated S P K

independently with probability

PrrS P K 1s “ γ “
1

12kpp
k
2q´1`k

2
˘`

n
k´2

˘

.
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Finally, create L from K 1 by removing each pair S, T P K 1 such that S, T P W . By
construction, L is a set of edge-disjoint uncorrelated k-cliques; furthermore, we have

Er|L|s “ γEr|K|s ´ 2γ2Er|W |s

ě
2γ
3

ˆ

n

k

˙

pp
k
2q ´

2γ ¨ 2k
`

n
k

˘

p2pk
2q´1`k

2
˘`

n
k´2

˘

12kpp
k
2q´1`k

2
˘`

n
k´2

˘

“
2γ
3

ˆ

n

k

˙

pp
k
2q ´

γ

3

ˆ

n

k

˙

pp
k
2q

“
γ

3

ˆ

n

k

˙

pp
k
2q

“

`

n
k

˘

pp
k
2q

3 ¨ 12kpp
k
2q´1`k

2
˘`

n
2
˘

ě

`

n
k

˘

`

n
k´2

˘

p

36k
1
`

k
2
˘

ě
p

18k3

`

n
k

˘

`

n
k´2

˘

“
p

18k3
pn´ k ´ 2qpn´ k ´ 1q

kpk ´ 1q

ě
p

18k3
18n2

19k2

“
n2p

19k5 ,

where the final inequality holds for large enough n. J

6 Dependent Graphs with Large Cliques or Large Dependency

In this section, we provide results that witness the tightness of our current bounds. The next
lemma shows that there exist dependent random graphs that almost surely contain cliques
of size Ωpdq, and others that almost surely have cliques of size Ωp

?
d logpnqq.

I Lemma 30 (Restatement of Lemma 5). For all constant 0 ă p ă 1 and d “ opnq,
1. there exists a d-dependent random graph Gdpn, pq such that

Pr
„

cliquepGdpn, pqq ą
d
?
p

2 ´ d
1
2 p

1
4



ą 1´ e´2n{d .

2. there exists a d-dependent random graph Gdpn, pq such that almost surely

cliquepGdpn, pqq “ Ωp
?
d logpnqq .

Proof. We give two constructions.
For the first result, fix d1 :“ d

?
p

2 ´
a

d
?
p and M1 :“ 2n{d. Partition the vertices into

M1 sets V1, . . . , VM1 each of size d{2. Let cpiq denote the part containing i (we think of i
has having color c). Now, let tXi,c : i P V, 1 ď c ďM1u be a series of i.i.d. random bits with
PrrXi,c “ 1s “ ?p, and place pi, jq P Gdpn, pq if Xi,cpjq

Ź

Xj,cpiq “ 1. Thus, pi, jq is an edge
with probability p. Also note that edges pi, jq and pi1, j1q are dependent if either cpiq “ cpi1q

or cpjq “ cpj1q. Since there are d{2 vertices in each V`, pi, jq is dependent on at most d other
edges and Gdpn, pq is d-dependent.

APPROX/RANDOM’15
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Now, fix a color c, and let Sc :“ ti : cpiq “ c ^ Xi,c “ 1u. For any i, j P Sc we have
Xi,c “ Xj,c “ 1 and that cpiq “ cpjq “ c. Therefore, pi, jq P Gdpn, pq for any i, j P Sc, hence
Sc is a clique.

Next, consider |Sc|. There are d{2 vertices with color c, so Er|Sc|s “
d
?

p

2 . By the Chernoff
bound, Prr|Sc| ă d1s ă 1

e , so the probability that there is some color c with |Sc| ě d1 is at
least 1´ e´2n{d. Therefore, Gdpn, pq almost surely contains a clique of size at least d1.

For the second graph, partition the vertices rns into M2 :“ n{
?
d subsets V1, . . . , VM2 ,

each of size
?
d. Let cpiq be the subset containing i. Let tXc1,c2 : 1 ď c1, c2 ďM2u be a set

of independent, identically distributed binary variables with PrrXc,c1 “ 1s “ p. Now, place
edge pi, jq in the graph if Xcpiq,cpjq “ 1. In this way, for any Vs, Vt, either all edges between
Vs and Vt exist, or none do, and similarly for any Vs, either all edges between vertices in Vs

will be in the graph, or none will.
Next, let S be the set of all i such that edges between vertices in Vi are in the graph. Each

i P S with probability p. By standard Chernoff bounds, |S| ě pM2{2 with high probability.
Let M 1 :“ pM2{2. The construction above induces a new random graph G1 on M 1 vertices
where all edges are i.i.d. in G1 with probability p. i.e., G1 is an Erdős-Rényi random graph
on M 1 vertices. By [7], cliquepG1q ě 2 logpM 1q{ logp1{pq “ Ωplogpnq{ logp1{pqq with high
probability. Finally, a clique of size k in G1 gives a clique of size k

?
d in G, hence G contains

a clique of size Ωp
?
d logpnq{ logp1{pqq with high probability. J

Our second result in this section shows that when the dependency factor becomes Ωpnq,
essentially nothing can be said about the clique number of dependent random graphs.

I Lemma 31 (Restatement of Lemma 6). Fix d :“ 2n´ 2. Then, the following statements
hold.
1. For any 0 ă p ă 1, there exists a d-dependent random graph Gdpn, pq that is bipartite

with certainty.
2. For any 1{2 ď p ă 1, there exists a d-dependent random graph Gdpn, pq such that

cliquepGdpn, pqq ě n{2 with certainty.

Proof. We again provide two constructions. For the first construction, set q1 :“ 1´
?

1´ p,
and let X1, . . . , Xn be i.i.d. random bits such that Xi “ 1 with probability q1. Think of each
Xi as being assigned to vertex vi. Now, place edge pi, jq P Gdpn, pq iff Xi ‘Xj “ 1. Note
that pi, jq P Gdpn, pq with probability 2qp1´ qq “ p. It is easy to see that pi, jq depends on
pi1, j1q only if either i “ i1 or j “ j1. There are at most 2pn´1q such edges, hence the random
graph is d-dependent. Finally, we claim that the graph is bipartite. To see this, suppose for
the sake of contradiction that Gdpn, pq contains an odd cycle p1, 2, . . . , 2k ` 1, 1q. Without
loss of generality, assume that X1 “ 1 (the proof is similar if X1 “ 0.) Since each edge
pi, i` 1q P Gdpn, pq, we must have that X2, X4, . . . , X2k all equal 0, and X1, X3, . . . , X2k`1
all equal 1. But then X1 “ X2k`1 “ 1, hence p1, 2k ` 1q R Gdpn, pq. This contradicts the
assumption that p1, 2, . . . , 2k ` 1, 1q is a cycle.

We proceed with the second construction in a similar manner. Let q2 :“ 1
2 p1´

?
2p´ 1q,

and let X1, . . . , Xn be i.i.d. random bits with PrrXi “ 1s “ q2. This time, place pi, jq P
Gdpn, pq iff Xi “ Xj . Note that pi, jq is an edge with probability q2 ` p1´ qq2 “ p. Now, let
S0 :“ ti : Xi “ 0u and similarly S1 :“ ti : Xi “ 1u. It is easy to see that S0 and S1 both
cliques in Gdpn, pq. One of them must contain at least half the vertices. J
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7 Results for Non-Boolean Pointer Jumping

In this section, we leverage the protocol for mpj3 to achieve new results for the non-Boolean
Pointer Jumping problem ympj. Let Q be the protocol for mpj3 given in Lemma 9. First, we
give a protocol for ympj3. The cost matches the upper bound from [12] but has the advantage
of working in the Simultaneous Messages model.

I Lemma 32 (Restatement of Lemma 10). There is an Opn log lognq-bit SM protocol for
ympj3.

Proof. Run Q logn times in parallel, on inputs pi, f2, z1q, pi, f2, z2q, . . . , pi, f2, zlog nq, where
zj denotes the jth most significant bit of f3. This allows the Referee to recover each bit of
f3pf2piqq “ ympjpi, f2, f3q. J

Next we give a new upper bound for ympj4. As far as we know, this is the first protocol
for ympjk for any k that uses a sublinear amount of communication.

I Theorem 33 (Restatement of Theorem 8). There is a one-way protocol for ympj4 with cost
Opn plog log nq2

log n q.

Proof. Let i, f2, f3, f4 be the inputs to ympj4, and for 1 ď j ď logn, let zj P t0, 1un

be the string obtained by taking the jth most significant bit of each f3pwq (i.e., zjrws

is the jth most significant bit of f3pwq.) Fix a parameter k to be determined shortly.
plr1,plr2, and plr3 run Q on tpi, f2, zjq : 1 ď j ď ku. From this, plr3 learns the first
k bits of f3pf2piqq. She then sends f4pzq for every z P t0, 1ulog n whose k most significant
bits match those of f3pf2piqq. plr4 sees i, f2, and f3, computes z˚ :“ f3pf2piqq, and
recovers f4pz

˚q from plr3’s message. Note that there are n{2k strings that agree on
the first k bits, and for each of these strings, plr3 sends logn bits. Therefore, the cost
of this protocol is k costpQq ` n logpnq{2k “ O

´

kn log log n
log n ` n logpnq2´k

¯

. Setting k :“
2 log ln 2 log n

log log n “ Θplog lognq minimizes the communication cost, giving a protocol with cost

O
´

n plog log nq2

log n

¯

. J
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Abstract
Low-degree polynomial approximations to the sign function underlie pseudorandom generators for
halfspaces, as well as algorithms for agnostically learning halfspaces. We study the limits of these
constructions by proving inapproximability results for the sign function. First, we investigate the
derandomization of Chernoff-type concentration inequalities. Schmidt et al. (SIAM J. Discrete
Math. 1995) showed that a tail bound of δ can be established for sums of Bernoulli random
variables with only O(log(1/δ))-wise independence. We show that their results are tight up
to constant factors. Secondly, the “polynomial regression” algorithm of Kalai et al. (SIAM
J. Comput. 2008) shows that halfspaces can be efficiently learned with respect to log-concave
distributions on Rn in the challenging agnostic learning model. The power of this algorithm relies
on the fact that under log-concave distributions, halfspaces can be approximated arbitrarily well
by low-degree polynomials. In contrast, we exhibit a large class of non-log-concave distributions
under which polynomials of any degree cannot approximate the sign function to within arbitrarily
low error.
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1 Introduction

Approximation theory is a classical area of mathematics that studies how well functions can
be approximated by simpler ones. It has found many applications in computer science. Most
of these applications of approximation theory focus on the approximation of functions by
polynomials in the uniform norm (or infinity norm). For instance, approximate degree, which
captures how well a boolean function can be approximated by low-degree polynomials in the
uniform norm, underlies important lower bounds in circuit complexity [6, 7, 66], quantum
query complexity [5, 1], and communication complexity [65]. It also underlies state-of-the
art algorithms in learning theory [35, 41], streaming [31], and in spectral methods [63].

While it is compelling to study polynomial approximations under the uniform norm,
there are scenarios where it is more natural to study weighted polynomial approximations,
where error is measured in terms of an Lp norm under some distribution. For instance, in
agnostic learning, the polynomial regression algorithm of Kalai et al. [35] has guarantees
based on how well functions in a concept class of interest can be approximated by low-degree
polynomials in L1 distance.
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In this work, we show how ideas from weighted approximation theory can yield tight
lower bounds for several problems in theoretical computer science. As our first application,
in the area of derandomization, we give a tight characterization of the amount of k-wise
independence necessary to establish Chernoff-like concentration inequalities. Second, we
establish a strong limitation on the distributions under which halfspaces can be learned using
the polynomial regression algorithm of Kalai et al.

1.1 Tail Bounds for Limited Independence
The famous Hoeffding bound [32] implies that if X ∈ {±1}n is a uniform random variable
and r ∈ Rn is fixed, then, for all T ≥ 0,

P
X

[|X · r| ≥ T ] ≤ 2e
− T2

2||r||22 .

We ask the following question:

For what pseudorandom X is the Hoeffding bound true?

More precisely, given T and δ, can we construct a pseudorandom X ∈ {±1}n such that
P
X

[|X · r| ≥ T ] ≤ δ for all r ∈ {±1}n?1 Of particular interest is the parameter regime

δ = 1/poly(n) and T = Θ(||r||2
√

log(1/δ)), which is natural in the context of derandomizing
efficient randomized algorithms.2 The probabilistic method gives a non-constructive proof
that there exists such an X which can be sampled with seed length O(log(n/δ)). The
challenge is to give an explicit construction of such an X which can be efficiently sampled
with a short seed.

This is a very natural pseudorandomness question: Concentration of measure is a
fundamental property of independent random variables and one of the key objectives of
pseudorandomness research is to replicate such properties for random variables with low
entropy. Finding a pseudorandom X exhibiting good concentration is also a relaxation of
a more general and well-studied pseudorandomness question, namely that of constructing
pseudorandom generators that fool linear threshold functions [21, 48, 28, 22]. This problem
can also be viewed as a special case of constructing pseudorandom generators for space-
bounded computation [57, 33, 60, 14, 15, 43, 61].

For δ = 1/ poly(n) and T = Θ(
√
n log(1/δ)), we can construct explicit X that can be

sampled with seed length O(log2 n) using a variety of methods (including [57, 48]). In
particular, it suffices for X to be O(log(1/δ))-wise independent:

I Theorem 1 (Tail Bound for Limited Independence). Let n ≥ 1, η > 0, and δ ∈ (0, 1) be
given. Let X ∈ {±1}n be k-wise independent for k = 2dη loge(1/δ)e. Let r ∈ Rn and set
T = e(η+1)/2η

√
k ||r||2. Then

P [|X · r| ≥ T ] ≤ δ.

Limited independence is a very general and intuitively appealing technique in pseudor-
andomness. As a tool for derandomization, it has been studied in the contexts of hashing
[46, 50], dimensionality reduction [37], random graphs [3], and circuits [4, 13]. A k-wise

1 For simplicity we restrict our attention to r ∈ {±1}n, instead of arbitrary real-valued r.
2 Smaller values of δ are also interesting and our results apply in these settings. However, our results are

most stark for reasonably large values of δ.



M. Bun and T. Steinke 627

independent X ∈ {±1}n can be sampled with seed length O(k · logn) [2], yielding a seed
length of O(log2 n) for the setting of parameters above.

In this work, we ask whether the tail bound of Theorem 1 for k-wise independence is
tight. That is, can we prove stronger tail bounds for k-wise independent X?

I Question 2. How much independence is needed for X to satisfy a Hoeffding-like tail bound?
That is, what is the minimum k = k(n, δ, T ) for which any k-wise independent X ∈ {±1}n
satisfies

P
X

[|X · r| ≥ T ] ≤ δ

for all r ∈ {−1, 1}n, where · denotes the inner product.

We remark that limited independence is not the only technique for derandomizing
concentration bounds. Another construction which achieves seed length O(logn · log(1/δ)) is
to sample X from a small-bias space [52]. Very recently, Gopalan et al. [27] constructed a
much more sophisticated generator with seed length Õ(log(n/δ)), which is nearly optimal.

1.1.1 Our Results
Theorem 1 shows that k(n, δ, T ) ≤ O(log(1/δ)) for T = O(

√
n log(1/δ)). In this work, we

show that this is essentially tight:

I Theorem 3. Let c > 5 be a constant and n sufficiently large. For 2−no(1) ≤ δ ≤ 1
poly(n)

and T = c
√
n log(1/δ), we have

k(n, δ, T ) ≥ Ω
(

log(1/δ)
log(c)

)
.

This means there exists a k-wise independent distribution X ∈ {±1}n such that

P

∣∣∣∣∣∣
∑
i∈[n]

Xi

∣∣∣∣∣∣ ≥ T
 > δ,

for k = k(n, δ, T ), n, δ, and T as above.
The only previous lower bound was

k(n, δ, T ) ≥ Ω
(

log(1/δ)
logn

)
,

which holds for any T ≤ n and is due to [64]. This is meaningful when δ < n−ω(1), but the
lower bound is trivial for δ = 1/poly(n). Thus our lower bound closes a large gap for the
δ = 1/ poly(n) regime, which is of considerable interest [29, 48, 27].

The lower bound of [64] follows immediately from the fact that a random variable X
that can be sampled with seed length s cannot satisfy a nontrivial tail bound with δ < 2−s,
and that there exist k-wise independent distributions that can be sampled with seed length
s ≤ O(k · logn). Indeed this lower bound holds for all distributions with small seed length
and is not specific to k-wise independence.

The most natural way to prove Theorem 3 would be to construct a family of k-wise
independent distributions that do not satisfy the required tail bound. However, we instead
study the dual formulation of the problem (following [4, 20, 9]) and then use lower bound
techniques from approximation theory. To the best of our knowledge, this indirect approach

APPROX/RANDOM’15
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is novel for proving impossibility results for k-wise independence. Our results imply the
existence of k-wise independent distributions with poor tail bounds, but give no immediate
indication as to how to construct them!

We now describe the proof idea in slightly more detail. The answer to Question 2 can be
posed in terms of the value of a certain linear program. The variables represent the probability
distribution of the random variable X and the constraints force X to be k-wise independent.
The objective of the linear program is maximize the tail probability P [|X · r| ≥ T ]. Thus, the
value of the program is at most δ if and only if k ≥ k(n, δ, T ). Taking the dual of this linear
program and appealing to strong duality yields an alternative characterization of k(n, δ, T ).
Namely, k(n, δ, T ) is the smallest k for which the threshold function FT (x) = 1(|x| ≥ T )
admits an upper sandwiching polynomial of degree k and expectation at most δ. Here, an
upper sandwiching polynomial is simply a polynomial p for which p(x) ≥ FT (x) pointwise.

We then use ideas from weighted approximation theory to give a lower bound on k

for which such sandwiching polynomials exist. In order to apply these ideas, we make a
few symmetrization and approximation arguments to reduce the problem to a continuous
one-dimensional problem: Find a degree lower bound for a univariate polynomial that is
a good upper sandwich for the function fT (x) = sgn(|x| − T ), with respect to a Gaussian
distribution. The solution to this problem appeals to a weighted Markov-type inequality.
This inequality generalizes the classical Markov inequality for uniform approximations, which
gives a bound on the derivative of a low-degree polynomial that is bounded on the unit
interval:
I Theorem 4 ([47]). Let p be a polynomial of degree d with |p(x)| ≤ 1 on the interval [−1, 1].
Then |p′(x)| ≤ d2 on [−1, 1].
The idea is that an upper sandwich for fT must have a large jump at the threshold T , which
is impossible for low-degree polynomials. The formal proof of this claim is based on a variant
of an “infinite-finite range” inequality, which asserts that the weighted norm of a polynomial
on the real line is bounded by its norm on a finite interval.

1.2 Agnostically Learning Halfspaces
Halfspaces are a fundamental concept class in machine learning, both in theory and in
practice.3 Their study dates back to the Perceptron algorithm of the 1950s. Halfspaces serve
as building blocks in many applications, including boosting and kernel methods.

Halfspaces can be learned in the PAC model [67] either by solving a linear program, or
via simple iterative update algorithms (e.g. the Perceptron algorithm). However, learning
halfspaces with classification noise is a much more difficult problem, and often needs to be
dealt with in practice.

In this work, we study a challenging model of adversarial noise – the agnostic learning
model of Kearns et al. [38]. In this model, a learner has access to examples drawn from a
distribution D on X × {±1} and must output a hypothesis h : X → {±1} such that

P
(x,y)∼D

[h(x) 6= y] ≤ opt + ε,

where opt is the error of the best concept in the concept class – that is,

opt = min
f∈C

P
(x,y)∼D

[f(x) 6= y] .

3 A halfspace is a function f : Rn → {±1} given by f(x) = sgn(w · x− θ) for w ∈ Rn and θ ∈ R, where
sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 otherwise.
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The theory of agnostic learning is not well-understood, even in the case of halfspaces.
Positive results for efficient agnostic learning of high-dimensional halfspaces are restricted to
limited classes of distributions.4 For instance, halfspaces can be learned under the uniform
distribution over the hypercube or the unit sphere, or on any log-concave distribution [35, 39].
On the negative side, a variety of both computational and information-theoretic hardness
results are known. For instance, proper agnostic learning of halfspaces (where the learner is
required to output a hypothesis that is itself a halfspace) is known to be NP-hard [24, 30].
Moreover, agnostically learning halfspaces under arbitrary distributions is as hard as PAC
learning DNFs [44], which is a longstanding open problem.

There is essentially only one known technique for agnostically learning high-dimensional
halfspaces: the L1 regression algorithm [35], which we discuss in more detail in Section 3.2.
In its most general form, the algorithm selects a linear space of functions H ⊂ {h : X → R}.
After drawing a number of examples (xi, yi) from D, it computes

h∗ = argmin
h∈H

∑
i

|h(xi)− yi|.

The output of the algorithm is sgn(h∗(x) − t) for some t. We need to ensure that the
minimisation can be computed efficiently (e.g. by linear programming) and that every
concept f ∈ C can be approximated by some h ∈ H – that is E

x∼D
[|h(x)− f(x)|] ≤ ε. If this

is the case, then C is agnostically learnable in time poly(|H|).
Kalai et al. (and most subsequent work on learning using L1 regression, e.g. [40, 26,

11, 36, 25]) chose H to be the class of low-degree polynomials. They showed that under
certain classes of distributions, every halfspace can be approximated by a polynomial of
degree Oε(1), and hence halfspaces are agnostically learnable in time nOε(1).

Distributional assumptions arise because the L1 approximation measure (namely
E
x∼D

[|h(x)− f(x)|]) depends on the underlying distribution. A distribution-independent
approximation would require an L∞ approximation, which is too much to hope for in many
circumstances.

1.2.1 Our Results
In this work, we ask whether polynomial regression can be extended to work beyond the
classes of distributions studied by Kalai et al. In particular, can polynomials provide good
L1 approximations to halfspaces under distributions with heavy tails? Such distributions,
including power law distributions, arise naturally in many physical, biological, and networking
contexts. Certain learning problems even require heavy tailed distributions on examples [51].

Our result addressing this question (Theorem 6) is a negative one. We show that
polynomial approximations to halfspaces do not exist for a large class of distributions,
namely:

I Definition 5. An absolutely continuous distribution D on R is a log-superlinear (LSL)
distribution if there exist C > 0 and γ ∈ (0, 1) such that the density w of D satisfies
w(x) ≥ C exp(−|x|γ).5

4 An efficient algorithm is one which runs in time polynomial in the dimension n for any constant ε > 0 –
that is, time nOε(1).

5 The name log-superlinear comes from the fact that the tails of the probability density function of a LSL
distribution are heavier than that of the log-linear Laplace distribution.

APPROX/RANDOM’15
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I Theorem 6. For any LSL distribution D, there exists ε > 0 such that no polynomial (of
any degree) can approximate the sign function with L1 error less than ε with respect to D.

In particular, this implies that the polynomial regression algorithm is not able to ag-
nostically learn thresholds on the real line to within arbitrarily small error. Note that this
result does not rule out the possibility that halfspaces can be agnostically learned by other
techniques. Indeed, the classic approach of empirical risk minimization (see [38] and the
references therein) gives an efficient algorithm for learning thresholds (which are halfspaces
in one dimension) under arbitrary distributions. Thus the problem of learning real thresholds
under LSL distributions is an explicit example for which polynomial regression fails while
other techniques can succeed.

If we were to take γ ≥ 1, the probability density function C(γ)e−|x|γ (where C(γ) is a
normalising constant) would give a log-concave distribution, in which case Kalai et al. [35]
show that good polynomial approximations to halfspaces exist. Thus our result gives a
threshold between where polynomial approximations to halfspaces exist and where they do
not.

Our result for thresholds extends readily to an impossibility result for learning halfspaces
over Rn:

I Theorem 7. For any product distribution D on Rn with a LSL marginal distribution on
some coordinate, there exists ε > 0 and a halfspace h such that no polynomial can approximate
h with L1 error less than ε with respect to D.

As with Theorem 3, the proof of Theorem 6 relies on several Markov-type inequalities
for weighted polynomial approximations. Early work on the approximate degree of boolean
functions [56, 59] used Markov’s inequality to get tight lower bounds on the degree of
uniform approximations to symmetric functions. For weighted approximations under LSL
distributions, we actually get a much stronger statement. It turns out that the derivative of
a polynomial is bounded near the origin independent of the degree as long as that polynomial
is absolutley bounded when integrated under a LSL distribution. With this powerful fact in
hand, the proof of Theorem 6 is quite simple. Consider the threshold function f(t) = sgn(t).
Since f has a “jump” at zero, any good polynomial approximation to f must be bounded
and have a large derivative near zero. The higher quality the approximation, the larger a
derivative we need. But since the derivative of any polynomial is bounded by a constant, we
cannot get arbitrarily good approximations to f using polynomials.

We give the full proof in Section 3.4, and discuss the multivariate generalization in Section
3.5.

1.2.2 Related Work
Our result echoes prior work establishing the limits of uniform polynomial approximations
for various concept classes. For instance, the seminal work of Minsky and Papert [49] showed
that there is an intersection of two halfpsaces over Rn which cannot be represented as
the sign of any polynomial. Building on work of Nisan and Szegedy [56], Paturi [59] gave
tight lower bounds for uniform approximations to symmetric boolean functions. This, and
subsequent work on lower bounds for approximate degree, immediately imply limitations for
distribution-independent agnostic learning via polynomial regression. Klivans and Sherstov
[42] also showed a strong generalization of Paturi’s result to disjunctions, giving limitations on
how well they can be approximated by linear combinations of arbitrary features. By contrast
to all of these results, our work shows a strong limitation for certain distribution-dependent
polynomial approximations.
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In the distribution-dependent setting, Feldman and Kothari [25] showed that polynomial
regression cannot be used to learn disjunctions with respect to symmetric distributions on
the hypercube. Recent work of Daniely et al. [19] also uses ideas from approximation theory
to show limitations on a broad class of regression and kernel-based methods for learning
halfspaces, even under a margin assumption. While our results only apply to polynomial
regression, they hold for approximations of arbitrarily high complexity (i.e. degree), and for
a large class of natural distributions.

The limitations we prove for polynomial regression do not rule out the existence of other
agnostic learning algorithms, including those using L1 regression with different feature spaces.
Wimmer [68] showed how to use a different family of basis functions to learn halfspaces over
symmetric distributions on the hypercube. Subsequent work of Feldman and Kothari [25]
improved the running time in the special case of disjunctions. We leave it as an intriguing
open question to determine whether other basis functions can be used to learn halfspaces
under LSL distributions.

2 Tail Bounds for Limited Independence

Our proof consists of three steps:
§2.1 First we reformulate the question of tail bounds for k-wise independent distributions

using linear programming duality and symmetrisation. This reduces the problem to
proving a degree lower bound on univariate polynomials. Namely we need to give a lower
bound on the degree of a polynomial p : {0, 1, · · · , n} → R such that p(i) ≥ 0 for all i,
p(i) ≥ 1 if |i−n/2| ≥ T , and E [p(i)] ≤ δ, where i is drawn from the binomial distribution.

§2.2 We then transform the problem from one about polynomials with a discrete domain to
one about polynomials with a continuous domain. This amounts to showing that, since
E [p(i)] ≤ δ with respect to the binomial distribution, we can bound E [p(x+ n/2)] with
respect to a truncated Gaussian distribution on x.

§2.3 Finally we can apply the tools of weighted approximation theory. We know that
p(x + n/2) is small for x near the origin, but p(T + n/2) ≥ 1. We show that any low-
degree polynomial that is bounded near the origin cannot grow too quickly. This implies
that p must have high degree.

2.1 Dual Formulation
Question 2 from the introduction is equivalent to finding the smallest k for which the value
of the following linear program is at most δ.

Linear Program Formulation of Question 2

max
ψ

∑
x∈{−1,1}n

ψ(x)FT (x)

s.t.
∑

x∈{−1,1}n
ψ(x)χS(x) = 0 for all |S| ≤ k

∑
x∈{−1,1}n

ψ(x) = 1

0 ≤ ψ(x) ≤ 1 for all x ∈ {−1, 1}n.

Here, FT (x) = 1 if |x| ≥ T and is 0 otherwise, and χS(x) is the Fourier character corresponding
to S ⊆ [n].

APPROX/RANDOM’15
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If we set P
X

[X = x] = ψ(x), then the constraints impose that X is a k-wise independent

distribution, while the objective function is P
X

[∣∣∣∑i∈[n] Xi

∣∣∣ ≥ T]. Thus the above linear
program finds the k-wise independent distribution with the worst tail bound. If the value of
the program is at most δ, then all k-wise independent distributions satisfy the tail bound, as
required.

Taking the dual of the above linear program yields the following.

Dual Formulation of Question 2

min
p

2−n
∑

x∈{−1,1}n
p(x)

s.t. deg(p) ≤ k
p(x) ≥ FT (x) for all x ∈ {−1, 1}n.

By strong duality, the value of the dual linear program is the same as that of the primal.
The multilinear polynomial p is an “upper sandwich” of FT – that is, p ≥ FT and
E

X∈{±1}n
[p(X)] is minimal. Therefore, k(n, δ, T ) is the smallest k for which FT admits an

upper sandwiching polynomial of degree k with expectation δ.
Consider the shifted univariate symmetrization of FT

F ′T (x) =
{

1 if |x− n/2| ≥ T
0 otherwise.

By applying the well-known Minsky-Papert symmetrization [49] to the dual formulation
above, we get the following characterization.

I Theorem 8. The quantity k(n, δ, T ) from Question 2 is the smallest k for which there
exists a degree-k univariate polynomial p : {0, . . . , n} → R such that
1. p(i) ≥ F ′T (i) for all 0 ≤ i ≤ n and
2. 2−n

∑n
i=0
(
n
i

)
p(i) ≤ δ.

The upper bound on k(n, δ, T ) (Theorem 1) is proved (in the appendix) by showing that

p(i) =
(
i− n/2
T

)k
satisfies the requirements of Theorem 8 for an appropriate even k.6 So this characterisation
does in fact capture how upper bounds are proved. The fact that it is a tight characterisation
allows us to prove that a barrier to the technique is in fact an impossibility result.

With this characterisation of our problem, we may move on to proving inapproximability
results.

2.2 A Continuous Version
To apply techniques from the theory of weighted polynomial approximations, we move to
polynomials on a continuous domain. We replace the binomial distribution upon which
Theorem 8 evaluates p with a Gaussian distribution.

6 While our results show that this polynomial is asymptotically optimal, numerical experiments have
shown that it is not exactly optimal.
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Define the probability density function

w(x) = 1√
π
e−x

2
.

We define the L∞ norm with respect to the weight w:

‖g‖L∞(S) = sup
x∈S
|g(x)|w(x).

Now we can give the continuous version of the problem:

I Theorem 9. Let T = c
√
n log(1/δ) for c ≥ 5, and d = k(n, δ, T ). Assume n ≥

(12c)2(3 log(1/δ))3. Then for T ′ = 4cT/
√
n, there is a degree d polynomial q such that

1. q(T ′) = q(−T ′) ≥ 1 and
2. ‖q‖L∞[−

√
d,
√
d] ≤ δ

0.9(n+ 1).

The following lemma is key to moving from the discrete to the continous setting. It
shows that if a polynomial is bounded at evenly spaced points, then it must also be bounded
between those points, assuming the number of points is sufficiently large relative to the
degree.

I Lemma 10 (adaptation of [23, 62, 56]). Let q be a polynomial of degree d such that |q(i)| ≤ 1
for i = 0, 1, . . . ,m, where 3d2 ≤ m. Then |q(x)| ≤ 3

2 for all x ∈ [0,m].

Proof. Let a = maxx∈[0,m] |q′(x)|. Then by the mean value theorem, |q(x)| ≤ 1 + a/2 for
x ∈ [0,m]. By Markov’s inequality ([47], see also [17]),

a ≤ 2d2(1 + a/2)
m

.

Rearranging gives

a

2 + a
≤ d2

m
≤ 1

3 .

Therefore, a ≤ 1, and hence |q(x)| ≤ 3
2 for x ∈ [0,m]. J

We also require the following anti-concentration lemma.

I Lemma 11.(
n

n/2 + α
√
n

)
≥ 2n−6α2

n+ 1 .

Proof. It is well known via Stirling’s approximation that
(
n
k

)
≥ 2nH(k/n)/(n+ 1), where H(·)

denotes the binary entropy function. We estimate

H

(
1
2 + α√

n

)
≥
(

1
2 + α√

n

)(
1− 2α

(log 2)
√
n

)
+
(

1
2 −

α√
n

)(
1 + 2α

(log 2)
√
n

)
≥ 1− 4α2

(log 2)n,

which concludes the proof. J
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Proof of Theorem 9. Let p be the polynomial promised by Theorem 8. By Theorem 1, we
know that d ≤ 3 log(1/δ). Define

q(x) = p(x
√
n/4c+ n/2).

Then q(±T ′) = p(±T + n/2) ≥ F ′T (±T + n/2) = 1, dispensing with the first claim.
Now for all integers i in the interval n/2±

√
nd/4c, we have

2−n
(
n

i

)
|p(i)| ≤ δ

and hence, by Lemma 11,

|p(i)| ≤ 2nδ(
n

n/2+
√
nd/4c

) ≤ (n+ 1)δ26d/16c2
≤ (n+ 1)δ1−18/16c2

≤ (n+ 1)δ0.9.

By Lemma 10, |p(x)| ≤ 3
2 (n + 1)δ0.9 on the whole interval n/2 ±

√
nd/4c. Thus |q(x)| ≤

3
2 (n+ 1)δ0.9 on [−

√
d,
√
d], completing the proof. J

2.3 The Lower Bound
Now we state the result we need from approximation theory. The following “infinite-finite
range inequality” shows that the norm of weighted polynomial on the real line is determined
by its norm on a finite interval around the origin. Thus, an upper bound on the magnitude
of a polynomial near the origin yields a bound on its growth away from the origin. We will
apply this to the polynomial given to us in Theorem 9.

I Theorem 12. For any polynomial p of degree d and B > 1,

‖p‖L∞(R\[−B
√
d,B
√
d]) ≤ (2eB)d exp(−B2d)‖p‖L∞[−

√
d,
√
d].

The proof follows [45, Theorem 6.1] and [54, Theorem 4.16.12].

Proof. Let p̃ be a polynomial of degree d. Let Td(x) denote the dth Chebyshev polynomial
of the first kind [17]. By the extremal properties of Td, we have

|p̃(x)| ≤ |Td(x)|
(

max
t∈[−1,1]

|p̃(t)|
)
≤ (2|x|)d

(
max

t∈[−1,1]
|p̃(t)|

)
for |x| ≥ 1. Rescaling p(x) = p̃(x/

√
d) yields

|p(x)| ≤
(

2|x|√
d

)d(
max

t∈[−
√
d,
√
d]
|p(t)|

)
≤
√
πed

(
2|x|√
d

)d
‖p‖L∞[−

√
d,
√
d]

for |x| ≥
√
d. Now let |x| = B

√
d for some B > 1. Then

|p(x)|w(x) ≤ ed(2B)d exp(−B2d)‖p‖L∞[−
√
d,
√
d].

Since the coefficient (2eB)d exp(−B2d) is decreasing in B, this proves the claim. J

The above approximation theory result, combined with our continuous formulation
Theorem 9, enables us to complete the proof.

I Theorem 13. Let T = c
√
n log(1/δ) for c ≥ 5. Assume n ≥ (12c)2(3 log(1/δ))3 and

δ ≤ 1/n4. Then k(n, δ, T ) > log(1/δ)/9 log c.
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Proof. Let q be the polynomial given by Theorem 9. Let T ′ = 4cT/
√
n, d = log(1/δ)/9 log c,

and B = T ′/
√
d = 12c2√log c. For the sake of contradiction, we suppose that q satisfies the

conditions of Theorem 9, but deg(q) ≤ d. Then

‖q‖L∞(R\[−B
√
d,B
√
d]) = ‖q‖L∞(R\[−T ′,T ′]) ≥

exp(−T ′2)√
π

.

On the other hand, applying Theorem 12, gives

‖q‖L∞(R\[−B
√
d,B
√
d]) ≤ (2eB)d exp(−T ′2)δ0.9(n+ 1).

Combining the two inequalities gives

1√
π
≤ (2eB)dδ0.9(n+ 1) ≤

(
24ec2

√
log(c)

)log(1/δ)/9 log(c)
δ0.9(n+ 1) ≤ δ1/3(n+ 1),

which is a contradiction. J

Theorem 13 yields Theorem 3.

3 Agnostically Learning Halfspaces

The class of log-concave distributions over Rn (defined below) is essentially the broadest
under which we know how to agnostically learn halfspaces. While many distributions
used in machine learning are log-concave, such as the normal, Laplace, beta, and Dirichlet
distributions, log-concave distributions do not capture everything. For instance, the log-
normal distribution and heavier-tailed exponential power law distributions are not log-concave.
The main motivating question for this section is whether we can relax the assumption of
log-concavity for agnostically learning halfspaces. To this end, we show a negative result: for
LSL distributions, agnostic learning of halfspaces will require new techniques.

3.1 Background
Our starting point is the work of Kalai et al. [35]. Among their results is the following.

I Theorem 14 ([35]). The concept class of halfspaces over Rn is agnostically learnable in
time poly(nOε(1)) under log-concave distributions.

A log-concave distribution is an absolutely continuous probability distribution such
that the logarithm of the probability density function is concave. For example, the
standard multivariate Gaussian distribution on Rn has the probability density function
x 7→ e−||x||

2
2/2/(2π)n/2. The natural logarithm of this is −||x||22/2− n/2 · log(2π), which is

concave. The class of log-concave distributions also includes the Laplace distribution and
other natural distributions. However, it does not contain heavy-tailed distributions (such as
power laws) nor non-smooth distributions (such as discrete probability distributions).

Kalai et al. also show that we can agnostically learn halfspaces under the uniform
distribution over the hypercube {±1}n or over the unit sphere {x ∈ Rn : ||x||2 = 1}.

3.2 The L1 Regression Algorithm
The results of Kalai et al. are based on the so-called L1 regression algorithm, which relies on
being able to approximate the concept class in question by a low-degree polynomial:

APPROX/RANDOM’15
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I Theorem 15 ([35]). Fix a distribution D on X × {±1} and a concept class C ⊂ {f : X →
{±1}}.7 Suppose that, for all f ∈ C, there exists a polynomial p : X → R of degree at most d
such that E

x∼DX
[|p(x)− f(x)|] ≤ ε, where DX is the marginal distribution of D on X. Then,

with probability 1− δ the L1 regression algorithm outputs a hypothesis h such that

P
(x,y)∼D

[h(x) 6= y] ≤ min
f∈C

P
(x,y)∼D

[f(x) 6= y] + ε

in time poly(nd, 1/ε, log(1/δ)) with access only to examples drawn from D.

The L1 regression algorithm solves a linear program to find a polynomial p of degree at
most d that minimises

∑
i |p(xi)− yi|, where (xi, yi) are the examples sampled from D. The

hypothesis is then h(x) = sgn(p(x)− t), where t ∈ [−1, 1] is chosen to minimise the error of
h on the examples.

Given Theorem 15, proving Theorem 14 reduces to showing that halfspaces can be
approximated by low-degree polynomials under the distributions we are interested in. It
is important to note that making assumptions on the distribution is necessary (barring a
major breakthrough): Agnostically learning halfspaces under arbitrary distributions is at
least as hard as PAC learning DNF formulas [44]. Moreover, proper learning of halfspaces
under arbitrary distributions is known to be NP-hard [24].

In fact, we can reduce the task of approximating a halfspace to a one-dimensional problem.
A halfspace is given by f(x) = sgn(w · x− θ) for some w ∈ Rn and θ ∈ R. It suffices to find
a univariate polynomial p of degree at most d such that E

x∼Dw,θ
[|p(x)− sgn(x)|] ≤ ε, where

Dw,θ is the distribution of w · x− θ when x is drawn from DX . If DX is log-concave, then so
is Dw,θ.

3.3 On the Density of Polynomials
In this section, we give some intuition for why one might expect that polynomial approx-
imations do not suffice for learning under LSL distributions. It turns out that under a
LSL distribution w, polynomials actually fail to be dense in the space C0[w] of continuous
functions vanishing at infinity when weighted by w. This is in stark contrast to the classical
Weierstrass approximation theorem, which asserts that the polynomials are dense in C0
under the uniform weight. These kinds of results address Bernstein’s approximation problem
[10], a precise statement of which is as follows.

I Question 16. Let w : R→ [0, 1] be a measurable function. Let C0[w] denote the space of
continuous functions f for which lim|x|→∞ f(x)w(x) = 0. Under what conditions on w is it
true that for every f ∈ C0[w], there is a sequence of polynomials {pn}∞n=1 for which

lim
n→∞

‖(pn − f)w‖∞ = 0?

(The choice of the L∞ norm here appears to make very little difference). If Bernstein’s
problem admits a positive resolution, we say that the polynomials are dense in C0[w]. The
excellent survey of Lubinsky [45] presents a number of criteria for when polynomials are
dense. The one that is most readily applied was proved by Carleson [16] (but appears to be
implicit in [34]):

7 Here X = Rn.
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I Theorem 17. Let w be even and positive with log(w(ex)) concave. Then the polynomials
are dense in C0[w] iff∫ ∞

0

logw(x)
1 + x2 dx = −∞.

This immediately yields the following dichotomy result for exponential power distributions:

I Corollary 18. For γ > 0 and wγ(x) = exp(−|x|γ), the polynomials are dense in C0[wγ ] iff
γ ≥ 1.

In particular, this justifies our assertion that the polynomials fail to be dense in the
continuous functions under LSL distributions.

So what does this have to do with agnostically learning halfspaces? Recall that the
analysis of the L1-regression algorithm of Kalai et al. [35] reduces approximating a halfspace
under a distribution D to the problem of approximating each threshold function sgn(x− θ)
under each marginal distribution of D. So for the algorithm to work, we require D to have
marginals w under which sgn(x− θ) can be approximated arbitrarily well by polynomials.
Now if the polynomials are dense in C0[w], then threshold functions can also be approximated
arbitrarily well (since C0[w] is in turn dense in L1[w]). Such an appeal to density actually
underlies Kalai et al.’s proof of approximability under log-concave distributions. On the other
hand, if the polynomials fail to be dense, then one might conjecture that thresholds cannot
be arbitrarily well approximated.

Our result, presented in the next section, confirms the conjecture that even the sign
function cannot be approximated arbitrarily well by polynomials under LSL distributions

3.4 Lower Bound for One Variable
Consider the LSL density function

wγ(x) := C(γ) exp(−|x|γ)

on the reals for γ ∈ (0, 1), where C(γ) is a normalizing constant. Define the sign function
sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 otherwise. In this section, we show that for sufficiently
small ε, the sign function does not have an L1 approximation under the distribution wγ .
More formally,

I Proposition 19. For any γ ∈ (0, 1), there exists an ε = ε(γ) such that for any polynomial
p, ∫

R
|p(x)− sgn(x)|wγ(x) dx > ε.

The proof is based on the following Markov-type inequality, which roughly says that a
bounded polynomial cannot have a large derivative (under the weight wγ). This implies the
claim, since the sign function we are trying to approximate has a large “jump” at the origin.

I Lemma 20. For γ ∈ (0, 1) there is a constant M(γ) such that

sup
x∈R

(|p′(x)|wγ(x)) ≤M(γ)
∫
R
|p(x)|wγ(x) dx.

Proof. The lemma is a combination of a Markov-type inequality and a Nikolskii-type,
available in a survey of Nevai [54]:

APPROX/RANDOM’15
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I Theorem 21 ([55], [54, Theorem 4.17.4]). There exists a constant C1(γ) such that for any
polynomial p,∫

R
|p′(x)|wγ(x) dx ≤ C1(γ)

∫
R
|p(x)|wγ(x) dx.

I Theorem 22 ([53], [54, Theorem 4.17.5]). There exists a constant C2(γ) such that for any
polynomial p,

sup
x

(|p(x)|wγ(x)) ≤ C2(γ)
∫
R
|p(x)|wγ(x) dx.

J

Proof of Proposition 19. Fix ε ∈ (0, 1) and suppose p is a polynomial satisfying∫
R
|p(x)− sgn(x)|wγ(x) dx ≤ ε.

Since the absolute value of the sign function integrates to 1, this forces∫
R
|p(x)|wγ(x) dx ≤ 1 + ε ≤ 2.

Therefore, we have by Lemma 20 that |p′(x)|wγ(x) ≤ 2M(γ) for every x.
The idea is now to show that there is some x0 for which |p′(x0)|wγ(x0) ≥ Ω(1/ε). To

see this, let δ = 4ε/C(γ) and observe that there must exist some x+ ∈ [0, δ] such that
p(x+) ≥ 1/2. If this were not the case, then we would have∫

R
|p(x)− sgn(x)|wγ(x) dx ≥

∫ δ

0

(
1− 1

2

)
C(γ) exp(−xγ) dx ≥ δ

2C(γ) exp(−δγ) ≥ ε

for ε small enough, and hence δ small enough, to make exp(−δγ) ≥ 1/2, yielding a contradic-
tion. A similar argument shows that there is some x− ∈ [−δ, 0] with p(x−) ≤ −1/2. Therefore,
by the mean value theorem, there is some x0 ∈ [x−, x+] with p′(x0) ≥ 1/2δ = C(γ)/8ε.
Moreover, because we took δ small enough, we also have p′(x0)w(x0) ≥ C(γ)/16ε. This
shows that no polynomial ε-approximates sgn as long as ε < C/32M . J

Moreover, the proposition shows that it is impossible to get arbitrarily close polynomial
approximations to halfspaces under densities w for which there are constants C and γ ∈ (0, 1)
with w(x) ≥ C exp(−|x|γ) for all x ∈ R. This shows that LSL distributions on R do not
enable arbitrarily close polynomial approximations to halfspaces.

3.5 Extending the Lower Bound to Multivariate Distributions
It is straightforward to extend the lower bound from the previous section to product
distributions with LSL marginals.

I Theorem 23. Let X = (X1, . . . , Xn) be a random variable over Rn with density fX(x) =
w(x1)f(x2, . . . , xn). Suppose the density w specifies a univariate γ-LSL distribution. Then
there exists an ε = ε(γ) such that for any polynomial p,∫

Rn
|p(x1, . . . , xn)− sgn(x1)|fX(x1, . . . , xn) dx1dx2 . . . dxn > ε.

That is, the linear threshold function sgn(x1) cannot be approximated arbitrarily well by
polynomials.
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Proof. Let p(x1, . . . , xn) be a polynomial, and define a univariate polynomial q by “averaging
out” the variables x2, . . . , xn:

q(x1) :=
∫
Rn−1

p(x1, . . . , xn)f(x2, . . . , xn) dx2 . . . dxn.

Then we have∫
R
|q(x1)− sgn(x1)|w(x1) dx1

=
∫
R

∣∣∣∣∫
Rn−1

(p(x1, . . . , xn)− sgn(x1))f(x2, . . . , xn) dx2 . . . dxn

∣∣∣∣w(x1) dx1

≤
∫
R

(∫
Rn−1

|p(x1, . . . , xn)− sgn(x1)|f(x2, . . . , xn) dx2 . . . dxn

)
w(x1) dx1

=
∫
Rn

∫
Rn
|p(x1, . . . , xn)− sgn(x1)|fX(x1, . . . , xn) dx1dx2 . . . dxn.

By Proposition 19, the latter quantity must be at least ε(γ). J

Let wnγ (x) ∝ exp(−(|x1|γ+ · · ·+ |xn|γ)) denote the density of the “prototypical” multivari-
ate LSL distribution, with each marginal having the same exponential power law distribution.
Our impossibility result holds uniformly for every distribution in the sequence {wnγ }. That
is, for every γ ∈ (0, 1), there exists ε = ε(γ) for which halfspaces cannot be learned by
polynomials under any of the distributions specified by {wnγ }.

As a consequence, we get inapproximability results for several natural classes of distribu-
tions that dominate {wnγ } by constant factors (i.e. not growing with n).

1. Any power-law distribution, i.e. a distribution with density ∝ ‖x‖−M for some constant
M , since such a distribution dominates every wnγ .

2. Multivariate generalizations of the log-normal distribution, i.e. any distribution with
density ∝ exp(− polylog(‖x‖)).

3. Multivariate exponential power distributions, which have densities ∝ exp(−‖x‖γ) for
γ ∈ (0, 1). These distributions dominate the prototypical wnγ by the inequality of `p-norms:

‖x‖γ ≤ |x1|γ + · · ·+ |xn|γ

for every 0 ≤ γ ≤ 2.

4 Further Work

Our negative results naturally suggest a number of directions for future work.
Are there other suitable derandomizations of concentration inequalities? In this work,

we focused on understanding the limits of k-wise independent distributions. Gopalan et
al. [27] gave a much more sophisticated generator with nearly optimal seed length. But
could simple, natural pseudorandom distributions, such as small-bias spaces, give strong tail
bounds themselves?

Are halfspaces agnostically learnable under LSL distributions? Our negative result does
not even necessarily rule out the use of L1 regression for this task: The polynomial regression
algorithm of Kalai et al. [35] is in fact quite flexible. Nothing is really special about the basis
of low-degree monomials, and the algorithm works equally well over any small, efficiently
evaluable “feature space”. That is, if we can show that halfspaces are well-approximated
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by linear combinations of features from a feature space F under a distribution D, then we
can agnostically learn halfspaces with respect to D in time proportional to |F|. Could one
hope for such approximations? Wimmer [68] and Feldman and Kothari [25] have shown how
to use non-polynomial basis functions to obtain faster learning algorithms on the boolean
hypercube. On the other hand, recent work of Dachman-Soled et al. [18] shows that, at
least for product distributions on the hypercube, polynomials yield the best basis for L1
regression.

Acknowledgements. We thank Varun Kanade, Scott Linderman, Raghu Meka, Jelani
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A Upper Bound for Limited Independence

Theorem 1 follows from the following well-known [64, 8] lemma, which we prove for com-
pleteness.

I Lemma 24. Let X ∈ {±1}n be uniform and r ∈ Rn. For all even k ≥ 2,

E
[
(X · r)k

]
≤
(
e ||r||22 k

)k/2
.

An even stronger form of Lemma 24 follows immediately from the hypercontractivity theorem
[12] [58, §9]: Letting f(x) = x · r, we have

E
[
(X · r)k

]
= ||f ||kk ≤

(
(k − 1)deg(f)/2 ||f ||2

)k
=
(√

k − 1 ||r||2
)k
,

as required. A self-contained proof follows.

Proof. We start by bounding the moment generating function of X · r: Let t ∈ R be fixed
later. For any i ∈ [n], we have
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etriXi
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2
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By independence,
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2r2
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We wish to bound a single moment, namely E
[
(X · r)k∗

]
for an even k∗. We do this by

picking one term out of the taylor series of E
[
et(X·r)]. First we remove the odd terms:

∑
k even
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])
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We have E
[
(X · r)k

]
≥ 0 for even k, so we can remove terms from the above infinite sum

without increasing it. Thus
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Rearranging and setting t =
√
k∗/ ||r||2, we obtain
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as required. J

Now we can prove the upper bound for k-wise independence using the connection between
moment bounds and tail bounds [64].

Proof of Theorem 1. Note that, if X ∈ {±1}n is k-wise independent, then

E
[
(X · r)k

]
=

∑
i1···ik∈[n]

 k∏
j=1

rij

 · E
 k∏
j=1

Xij


is the same as for uniform X, as this is the expectation of a degree-k polynomial. By Lemma
24 and Markov’s inequality, we have (assuming k is even),

P [|X · r| ≥ T ] = P
[
(X · r)k ≥ T k

]
≤

E
[
(X · r)k

]
T k
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(
e ||r||22 k
T 2
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.

Substituting k = 2dη loge(1/δ)e and T = e(η+1)/2η
√
k ||r||2, we have

P [|X · r| ≥ T ] ≤
(

e ||r||22 k
(e(η+1)/2η

√
k ||r||2)2

)dη loge(1/δ)e

= e−dη loge(1/δ)e/η ≤ δ.
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1 Introduction

While randomness has become an indispensable tool for algorithm design, many (though not
all) randomized algorithms have later been derandomized, i.e., shown to have equivalent,
comparably fast deterministic algorithms. One highly successful method for derandomization
of whole classes of algorithms has been the “hardness as randomness” paradigm [2, 7, 28, 19,
5, 12, 24, 22, 26]. In this paradigm, problems that are hard for the type of computation to
be derandomized are converted into indistinguishable pseudo-random generators (PRGs) for
the same class, which then replace the random choices of the randomized algorithm.

It has long been observed that this method seems to require hardness for the non-uniform
version of the class (at least for worst-case derandomization). PRGs are a special case of
“black-box” derandomization methods, where the algorithm to be accessed is only modified by
replacing the random decisions with deterministic choices. It is relatively straightforward to
show that “black-box” derandomization requires a circuit bound against the type of algorithm
to be derandomized (see, e.g., [10]). Thus, via the hardness as randomness paradigm, strong
circuit lower bounds can be proved equivalent to universal “black-box” derandomization.

More surprisingly, there are results that show the reverse direction, that derandomization
requires strong circuit lower bounds, is true even for non-black-box algorithms [11]. In fact,
even derandomizing a specific algorithm, the randomized polynomial identity test (PIT) of
Schwartz and Zippel (also discovered by DeMillo and Lipton) [21, 29, 8], would imply strong
lower bounds for arithmetic circuits [14, 13, 1]. However, the proofs of these statements
are not direct reductions, but instead go through various complexity class collapses, and
the conclusions in one direction are not usually exact matches for the other. So, unlike for
“black-box” algorithms, we do not usually get a literal equivalence between a derandomization
result and a circuit lower bound (one exception is [13]).

In this paper, we tighten the connections between circuit lower bounds and derandomiza-
tion in several ways, for each of the three types of derandomization: general derandomization
of promise-BPP (connected to Boolean circuits), derandomization of PIT over fixed finite
fields (connected to arithmetic circuit lower bounds over the same field), and derandomization
of PIT over the integers (connected to arithmetic circuit lower bounds over the integers).
We show how to make these connections equivalences, although at the expense of using
somewhat less common versions of complexity classes and a less studied notion of inclusion,
the “robustly-often” inclusion introduced by [9]. Even for worst-case inclusion, we simplify
and strengthen the known connections in several ways.

1.1 Our results
Following [13], let ml-NE denote the class of multilinear n-variate polynomials F = {fn}n≥0
over a domain D (for D the set of integers or a finite field) whose graph:

{(a1, . . . , an, fn(a1, . . . , an)) | n ≥ 0, ai ∈ D, 1 ≤ i ≤ n}

is in the class NE = NTIME[2O(n)].

For finite fields, we show that derandomization of PIT implies that some polynomial
F ∈ ml-NE does not have polynomial sized arithmetic circuits over the same field, nor
does any polynomially bounded power of F .
This is the first result getting circuit lower bounds from derandomization of a randomized
PIT algorithm over fixed finite fields1.

1 Kabanets and Impagliazzo [14] prove a related but weaker version of the hardness-to-pseudorandomness
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We improve on the advice requirements for known connections between derandomization
of PIT over the integers and arithmetic circuit lower bounds over the integers.
Impagliazzo et al. [11] showed that (even nondeterministic) polynomial-time derandomiza-
tion of promise-BPP would imply a Boolean circuit lower bound for NEXP. We strengthen
this to the circuit lower bound for the smaller class NEXP ∩ coNEXP. This is the same
class where sufficiently strong circuit lower bounds would imply that promise-BPP ⊆ NP.
[11] also showed that a Boolean circuit lower bound for NEXP would follow from the
existence of an NP-computable non-empty property of Boolean functions that is useful
for proving superpolynomial circuit lower bounds (in the sense of natural proofs of
Razborov and Rudich [20]). We also strengthen this to the lower bound for the class
NEXP ∩ coNEXP.
The two notions of inclusion and hardness most frequently used in complexity are
“every length” inclusion and hardness, and “infinitely often” inclusion and hardness.
Unfortunately, the negation of everywhere inclusion is only infinitely often hardness, and
vice versa. This prevents many of the connections above from being literal equivalences
between lower bounds and derandomization. Using a third notion of inclusion, a variant
of the “robustly often” inclusion of [9], we make all four of the above connections into
literal equivalences2.

1.2 Overview and related work
How can we argue that an upper bound on algorithmic complexity (efficient derandomization)
yields a lower bound on algorithmic complexity (circuit lower bounds)? The various results
in this area all follow the same general template (see, e.g., [3] for a formal treatment): We
assume that we have both a circuit upper bound for some large class such as NEXP, and a
general derandomization technique, and get a contradiction as follows:

Simulation: Meyer, Karp and Lipton [17] introduced techniques to give consequences of
non-uniform (circuit) upper bounds for uniform classes. Using interactive proofs [6, 23],
many of these can be extended to show that if a large class C such as EXP or PSPACE has
small circuits, then C also has short (constant-round) interactive proofs (see, e.g., [5]).

Derandomization: Invoking the generic derandomization technique in the above simulation,
we get that C can be simulated only with non-determinism.

Contradict a known lower bound: If C is NEXP itself, as in [11] and [27], the contradiction
comes from some version of the non-deterministic time hierarchy theorem. An alternate
method used by [1] is to pad up the non-trivial simulation of C in small non-deterministic
time to show that some analogous class superpoly-C can be simulated in NEXP. The class
superpoly-C will often be strong enough that a lower bound in that class can be shown by
direct diagonalization (see, e.g., [16]). By simulation, NEXP will inherit the same lower
bound.

result for finite fields: their arithmetic-complexity hardness assumption is not for a polynomial (defined
over all extension fields), but rather for the function that agrees with the polynomial over a particular
extension field.

2 [13] has an alternative method of getting an equivalence for the case of PIT over the integers, but at the
expense of moving to versions of the classes with advice.

APPROX/RANDOM’15
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If both the circuit upper bound assumed and the derandomization assumed are worst-case,
then the above template can be filled out to get a variety of trade-offs. However, when one
or the other is only assumed to occur for infinitely many lengths of input, care needs to be
taken to compare the input sizes where the simulation is possible, the corresponding lengths
where derandomization is possible, and what non-worst-case versions of the known lower
bounds are true.

While the general issue of connections between circuit complexity and derandomization
has been the subject of intense research by many people, the papers most directly parallel to
this work are [11, 14, 1, 13, 18]. Here, we briefly describe the main results and techniques of
these five papers, and compare them to our results and techniques.

Promise-BPP. [11] considers the question of derandomizing promise-BPP. While there are
several other results in the paper, the main result for our purposes is an equivalence between
a circuit lower bound for NEXP and a “non-trivial” simulation of promise-BPP.

I Theorem 1 ([11]). NEXP 6⊂ P/poly if and only if promise-BPP ⊆ ∩ε>0io-NTIME[2nε ]/nε.

While this is a strong result, and in fact an equivalence, there are some questions raised
by the details in this statement. Since promise-BPP ⊆ P/poly, we know that advice can
be powerful in this context. How significant is the small amount of advice allowed in the
sub-exponential time algorithms for promise-BPP? Is it really necessary or just a by-product
of the proof? Can we get a stronger conclusion if we assume a Circuit Acceptance Probability
Problem (estimating the acceptance probability of a size-n Boolean circuit to within an
additive error of at most 1/n; CAPP) algorithm with no advice? Also, [11] use the “Easy
Witness Lemma” to obtain their result, which is itself derived by a somewhat convoluted
indirect argument. Is this use of the Easy Witness Lemma necessary?

Here, we give some answers to these questions. Using arguments parallel to those in
[1, 18] with respect to PIT, we remove the Easy Witness Lemma. Then (as [1] did for PIT) we
show that sufficiently strong nondeterministic algorithms for promise-BPP (without advice)
imply the stronger conclusion that (NEXP ∩ coNEXP) 6⊆ P/poly (Theorem 5). So there does
seem to be a real difference between derandomizations with and without advice.

One use of advice in the original argument is that, if we have a different CAPP algorithm
for every ε > 0, then, for each length, the best value of ε and the algorithm that achieves that
ε can be both given as advice. To remove this advice, we need to have a single algorithm
that runs in nondeterministic sub-exponential time, 2nε(n) for some computable ε(n) ∈ o(1).
This seems an equally natural definition of a problem being computable in sub-exponential
time, and we adopt it throughout our paper. We prove some closure properties and normal
forms for this notion that might be of independent interest.

Circuit lower bounds and nontrivial useful properties. Razborov and Rudich [20] defined
an NP-constructive property useful against P/poly to be an NP-computable predicate on
2n-bit inputs (the truth tables of n-variate Boolean functions) such that, whenever the
predicate holds for infinitely many input lengths of a given family of Boolean functions
f = {fn}n≥0, it follows that f 6∈ P/poly. Call such a property nontrivial if there are infinitely
many input lengths n such that at least one truth table of size 2n satisfies the property.

It was shown in [11] that the existence of a nontrivial NP-constructive property useful
against P/poly implies that NEXP 6⊆ P/poly. We strengthen this to the circuit lower bound
for NEXP ∩ coNEXP for nontrivial NP-constructive properties useful against computably
superpolynomial circuit size. Moreover, we make this connection into an equivalence, using a
variant of the “robustly often” notion of [9] (Theorem 7).
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Polynomial identity testing over the rationals. [14] extends the connections between
derandomization and circuit lower bounds to the arithmetic-complexity setting. In one
direction, they show that if both NEXP ⊆ P/poly and the permanent function has polynomial-
size arithmetic circuits over the rationals, then no nondeterministic sub-exponential time
algorithm can solve PIT, even for infinitely many input sizes. In the other direction, either
NEXP 6⊆ P/poly or the permanent requiring super-polynomial sized circuits gives some
nontrivial algorithm for PIT, although not quite a direct converse.

This again raises some questions. Stating the result in the contrapositive, a nontrivial
algorithm for PIT would yield either a Boolean circuit lower bound or an arithmetic circuit
lower bound. Intuitively, Boolean circuit lower bounds should be more difficult, so can we
get a similar result that only mentions arithmetic circuit lower bounds?

This question was addressed in [1, 18] and [13]. First, [1] and [18] give an alternate version
of the final contradiction step that allows them to avoid the Easy Witness Lemma. This not
only simplified the proof, but allowed them to replace the condition that NEXP ⊂ P/poly
with the weaker condition that (NEXP ∩ coNEXP) ⊂ P/poly. ([14] had also shown that
(NEXP ∩ coNEXP) ⊂ P/poly and the easiness of the permanent sufficed to show PIT 6∈ NP.)
[13] show that the Boolean and arithmetic lower bounds can be in some sense combined.
They show that derandomizing a certain version of PIT, low-PIT, in non-deterministic sub-
exponential time is equivalent to proving a super-polynomial lower bound for circuits with
restricted degrees on a multi-linear function whose values can be computed in NEXP/O(n).
However, being determined by the correct advice, the functions where the arithmetic lower
bound would hold in their result are somewhat non-constructive, and when the advice is
incorrect, the corresponding functions might not be defined at all, so they cannot be combined
into one universal function for each length.

We show that by using the [1, 18] type contradiction step, the two lower bounds can be
replaced by a single arithmetic circuit lower bound for a multilinear polynomial definable in
NEXP ∩ coNEXP, thus removing this somewhat awkward non-uniformity.

Polynomial identity testing over a fixed finite field. The polynomial identity testing
problem and arithmetic circuit complexity are also important over other fields, such as fixed
finite fields. Here one fixes some constant-size finite field F, and then asks for an efficient
algorithm to decide if a given arithmetic circuit C over F, defining a low-degree polynomial p
(over F and any finite field extending F), is such that p ≡ 0. The latter can be easily decided
by a randomized polynomial-time Schwartz-Zippel algorithm evaluating p on random points
from a sufficiently large (larger than the degree of p) extension field of F.

Do similar connections between hardness and pseudorandomness hold for fixed finite
fields? Before the work here, almost no such connections were known.

There are a number of obstacles to directly translating the [14] techniques to fixed
finite fields. First, in the “derandomization of PIT to arithmetic hardness” direction, [14]
use the clean algebraic recursive “expansion by minors” definition of the permanent, a
problem complete for #P. While the same recursion holds for the permanent over finite
fields, permanent over finite fields is not known to be #P complete, or even NP-hard (under
deterministic reductions).

Secondly, in the “arithmetic hardness to derandomization of PIT” direction, if the hitting
set generator from [14] fails using a given f as the hard function over a finite field, it only
follows that some power of f had a small arithmetic circuit, not the f itself. Though this
power of f can be manipulated to obtain an arithmetic circuit that agrees with f over some
particular extension field, the polynomial computed by this circuit would not be identically
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equivalent to f (see Section 2.5 for the difference between testing for identity and agreement
of polynomials over a finite field). Therefore, a power of f could still have small arithmetic
circuits and this would not contradict the hardness assumption used by [14] in the hardness
to randomness direction. Thus, [14] has only a weak hardness-to-randomness result in the
case of circuits over finite fields.

We give the first proof that nondeterministic polynomial identity testing over a fixed
finite field yields an arithmetic circuit lower bound (Theorem 2). We avoid the permanent by
showing a simulation lemma for an even larger class, PSPACE, by using a version of a PSPACE-
complete function of [25] with a similar algebraic recursive definition. We observe that, not
only would a small circuit for this function itself yield the required simulation, but also any
circuit for a small power of the function would have a similar consequence. This matches the
type of arithmetic lower bounds needed to derandomize polynomial identity testing using
the hitting set generator of [14]. Thus, the correct connection is between derandomizing PIT
and proving lower bounds on circuits that compute powers of polynomials.

Equivalence between circuit lower bounds and derandomization. While the results above
come closer to showing that each of these three derandomization problems are equivalent
to a corresponding lower bound, they are not literal equivalences. This is because of the
distinction between infinitely often computation and worst-case computation. Making worst-
case assumptions about algorithms is necessary to get even infinitely often hardness, but
infinitely often hardness only suffices to get algorithms that work infinitely often.

To make versions of our results that are literal equivalences, we consider an intermediate
notion between worst-case and infinitely-often computation, robustly-often computation
introduced by [13]. Informally, an algorithm solves a given problem robustly often if there
are infinitely many intervals of superpolynomially many input lengths where the algorithm
is correct on each length in the interval.

While this, somewhat less standard, notion of inclusion (as well as the related notion of
separation) is exactly what we need to make the connections between circuit lower bounds
and derandomization into equivalences (Theorems 3, 4, and 6), we feel that this notion
is quite natural and can be justified, e.g., by the following considerations. As technology
improves, in general, all computational elements will improve somewhat. But computational
elements will often get more diverse, so that say, the CPU in cell phones will not be improving
its computational power as quickly as the top super-computer will. A reasonable model is to
assume that there are two different Moore’s laws, one for “high-end” technology and one for
“low-end”, with different periods of doubling. Thus, high-end and low-end technologies will
be polynomially related in their resources, and the intermediate technologies will span the
range between them. Thus, it is natural to look at polynomially related ranges of parameters,
not just single values. Robust computation does just that, looking at whether computation
is possible not just on infinitely many single input lengths, but whether there are infinitely
many “technology levels” of unbounded polynomial reach where this computation is possible.

Remainder of the paper. The definitions are in Section 2. We formally state our main
results with proof sketches in Section 3, see the full version for complete proofs.

2 Definitions

2.1 Arithmetic circuit complexity classes
For a finite field F, define ASizeF[s(n)] to be the class of all families of n-variate polynomials
{fn} over F such that, for all sufficiently large n, the polynomial fn is computed by some
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arithmetic circuit Cn of size at most s(n) over F ( i.e., the polynomials fn(x1, . . . , xn) and
Cn(x1, . . . , xn) are formally the same when viewed as the sums of monomials). Over the
integers, the class ASizeZ[s(n)] is defined analogously.

We denote by ASizeDegF[s(n)] the subclass of ASizeF[s(n)] of families of n-variate poly-
nomials fn that have degree at most s(n). Over the integers, we denote by ASizeDegZ[s(n)]
the restricted class of polynomial families {fn} that have formal degree3 at most s(n).

“Easy” polynomials. Over the integers, we shall consider a polynomial f “easy” if some
constant multiple c · f is computable by a “small” arithmetic circuit. More formally, we
define ASizeDegMul[s(n)] as the class of polynomial families {fn} over Z of degree at most
s(n) such that, for some function g : N→ N we have {g(n)× fn} ∈ ASizeDegZ[s(n)] and g is
computed by a family of variable-free ASizeDegZ[s(n)] circuits. Thus, for each input length
n, we could compute a different constant multiple of f . ASizeDegMul is equivalent to the
class ASIZEDEG′ of [13].

Over finite fields, we shall consider a polynomial f “easy” if some bounded power fd
of f is computable by a “small” arithmetic circuit. More formally, over a finite field F,
we define the class ASizeDegPowF[s(n)] as the class of polynomial families {fn} over F of
degree at most s(n) such that, for some function d : N → N with d(n) ≤ s(n), we have
{fd(n)
n } ∈ ASizeDegF[s(n)].

2.2 Polynomials computable in NE: The class ml-NE
Fix an arbitrary finite field F = Fpk of characteristic p. Let f = {fn(x1, . . . , xn)}n≥0 be an
arbitrary family of polynomials over F. For a polynomial f and a monomial m, denote by
coeff(f,m) the coefficient of f at the monomial m (when f is written out as the sum of its
monomials). Define the languagemonomial(f) = {(a1, . . . , an, c) | a1, . . . , an ∈ {0, 1}, c ∈
F, coeff(fn, xa1

1 . . . xann ) = c}. We denote by monomial(fn) the restriction of monomial(f)
to the case of fn, i.e., monomial(fn) defines the coefficients of the n-variate polynomial
fn. For multilinear polynomial families f over the integers, the language monomial(f) is
defined similarly, with the natural change that the coefficient c be an integer in binary.

We say that a family of multilinear polynomials f = {fn}n≥0 over a finite field F or over
integers Z is in the class ml-NE if monomial(f) ∈ NE.

Observe that if monomial(f) ∈ NE, then monomial(f) ∈ coNE also. Thus, we have
monomial(f) ∈ NE ⇐⇒ monomial(f) ∈ (NE∩coNE), and so ml-NE = ml-(NE∩coNE); the
same equivalence holds also for the definition of ml-NE used by Jansen and Santhanam [13]4.

2.3 Computably subexponential and superpolynomial bounded classes
We call a function α : N→ R≥0 computably super-constant, denoted by α(n) ∈ ωc(1), if there
exists computable, monotone non-decreasing function α′ : N→ R≥0 with α′(n)→∞ such
that, for all sufficiently large n ∈ N, α(n) ≥ α′(n). Without loss of generality, we may always
assume that our computably super-constant functions α(n) are computable in time poly(n)
(see full version for details).

3 For input gates, regardless of their label, the formal degree is 1; an addition gate has the formal degree
equal to the maximum of the formal degree of its input gates; a multiplication gate has the formal
degree equal to the sum of the formal degrees of its input gates.

4 The graph definition of ml-NE used by [13] and the monomial-coefficient definition of ml-NE given here
are equivalent because of efficient interpolation. We use the coefficient definition in our work just for
convenience, as it makes it obvious that one can evaluate polynomials over extensions of finite fields.
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The standard definition of NSUBEXP is
⋂
ε>0 NTIME[2nε ]. This is problematic when we

need to run a padding argument for some language in this class, because the amount of
padding required will depend on ε. There is no uniform way to produce the specific ε required
for a particular amount of padding, so any padding argument must rely on advice to use the
correct value of ε. We use our notion of computably super-constant functions to trade a more
restricted class for freedom from advice, and define computably subexponential-time classes
as follows: We say that a language L is in nondeterministic computably subexponential
time, denoted L ∈ NSUBEXPc, if L ∈ NTIME[2n1/α(n) ] for some α(n) ∈ ωc(1). We denote by
superpolyc any function nα(n) for some α(n) ∈ ωc(1).

2.4 Robustness

To establish equivalences between circuit lower bounds and derandomization, we need notions
that are intermediate between infinitely-often and almost-everywhere. In the spirit of [9], we
define “robust” notions of containment and separation for complexity classes. Our robust
ranges are some fixed computably super-polynomial function in length, whereas the ranges of
[9] are for every fixed polynomial function. The reason we require this alternative notion
is because the simulation steps of our arguments use superpolynomial amounts of padding.
The [9] definition handles fixed polynomial-time translations or translations with fixed
polynomial advice, but not superpolynomial translations. Our definition is an attempt to
make the minimal extention possible to [9] that can handle superpolynomial translations.
Thus we do not expect our results to hold under the [9] robustness notions, without major
technical innovation in hardness-randomness tradeoffs that dispenses with the necessity for
superpolynomial padding.

For functions l, r : N→ N, called left and right “interval functions”, define the (l, r)-core
of a set S ⊆ N to be the set of intervals [l(m), r(m)] that are entirely contained in S, i.e.,
core(S) = {m ∈ N | ∀n ∈ N (l(m) ≤ n ≤ r(m) =⇒ n ∈ S)}. A set S is called (l, r)-
robust if the (l, r)-core of S is infinite. Finally, we say that S is computably robust if S is
(m1/α(m),mα(m))-robust for some α ∈ ωc(1). For brevity, we shall call such a set S simply
α-robust.

Robust inclusions. For a language L and a complexity class C, we say that L is uniform
robustly often in C, denoted L ∈ ro?-C, if there is a language N ∈ C such that the set
S = {n ∈ N | Ln = Nn} is computably robust, where Ln = L ∩ {0, 1}n is the nth slice of L.
Our definition is “uniform” compared to the notion of [9] because the notion defined there
has interval lengths that are defined by every fixed polynomial function – this is an infinite
(but very regular) set of functions giving interval lengths. Our robust sets have a fixed pair
of interval functions.

We say that a family f = {fn} of multilinear polynomials (over a finite field F or
over integers Z) is in ro?-ml-NE, robustly often ml-NE, if, for some NE machine M , the set
S = {n ∈ N |M correctly decides monomial(fn)} is computably robust.

Robust promise classes. For a language L and a semantic complexity C, we say that L is
in uniform robustly promise C, denoted L ∈ rp?-C, if there is a Turing machine M such that

S = {n ∈ N | for all x ∈ {0, 1}n, M(x) is a C-type machine and M(x) decides if x ∈ Ln}

is computably robust.
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I Remark. In general, ro?-C and rp?-C are different for a semantic class C. For example,
L ∈ ro?-(NE ∩ coNE) if there is a language N ∈ (NE ∩ coNE) that robustly often agrees with
L. That is, there is a pair of NE machines M1 and M2 such that, for every x ∈ {0, 1}n,
exactly one of M1 and M2 accepts x, and S = {n ∈ N |M1 decides Ln and M2 decides Ln}
is computably robust, where Ln is the complement of Ln.

In contrast, L ∈ rp?-(NE ∩ coNE) if there is a pair of NE machines M1 and M2 such that
S = {n ∈ N | M1 decides Ln and M2 decides Ln} is computably robust. Note that, in the
second case, the machines M1 and M2 may not be “complementary” on the input lengths
outside of S, and so we may not have any language N ∈ (NE ∩ coNE) that agrees with L
robustly often: in the rp?- case, the promise is not required to hold for slices outside the
robust set.

Significant separations. To complement the inclusion types above, we define uniform
significant separations denoted ro?-C 6⊆ SIZE[s(n)]. We write ro?-C 6⊆ SIZE[s(n)] if there is a
language L ∈ ro?-C over computably robust set S such that Ln cannot be computed by a
circuit of size s(n) for infinitely many values n ∈ core(S).

Intuitively, a uniform significant separation means that we can always locate hard lengths
for the separated class in the “middle” of large, computably robust intervals. This is different
from the [9] notion, which says (intuitively) that hard lengths are never too far apart. Under
our definition, if the robust set comes with a promise, this means that hard lengths are
located in the center of large ranges where the promise holds. This is what our arguments
for equivalence will hinge on. The generalization of this definition to arithmetic circuits and
uniform robust promise classes is obvious. For example, we define two uniform significant
separations below.

We say that ro?-ml-NE 6⊆ ASize[s(n)] if there is a polynomial family f = {fn} ∈ ro?-ml-NE,
with monomial(f) correctly decided by some NE machine on a computably robust set S,
such that fn cannot be computed by an arithmetic circuit of size s(n) for infinitely many
values n ∈ core(S). The case of other arithmetic circuit classes (ASizeDeg and ASizeDegPow)
is similar.

We say that rp?-(NE ∩ coNE) 6⊆ SIZE[s(n)] if there is a promise problem L ∈ rp?-(NE ∩
coNE), with a pair of NE machines correctly deciding L and L̄ over a computably robust set
S of input lengths, such that Ln cannot be computed by a Boolean circuit of size s(n) for
infinitely many input lengths n ∈ core(S).

2.5 Derandomization of Polynomial Identity Testing
Let F be any finite field. For D ∈ {Z,F}, the Polynomial Identity Testing over D, denoted
PITD, is the task to decide if a given arithmetic circuit C over D computes the identically
zero polynomial (when the polynomial C is expanded as the sum of monomials5). The
low-PITD variant is restricted to test only circuits that have degree (or, in the case of Z,
formal degree) less than their size.

A hitting set generator for PITD is a function H, that on input 1n, outputs a collection
of t tuples a1, . . . , at ∈ Dn such that, for every arithmetic circuit C(x1, . . . , xn) over D of

5 Stating this definition using sums-of-monomials is crucial, because over a finite field F, testing if
a polynomial agrees with the zero polynomial for all inputs over F is actually coNP-complete. The
sum-of-monomials definition that we use puts PITF ∈ BPP, and thus it is meaningful to ask for a
derandomization of this problem.
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size at most n, if C 6≡ 0, then there is at least one i ∈ [t] where C(ai) 6= 0. In case of a finite
field F, we allow the tuples a1, . . . , at to come from (F′)n for some extension field F′ of F.

It was shown by [14] that a multilinear polynomial f 6∈ ASizeDegPowF[superpolyc] can be
used to derandomize low-PITF in subexponential time (by constructing a hitting set).

2.6 Derandomization of promise-BPP
Derandomizing promise-BPP is equivalent to getting an efficient algorithm for estimating the
acceptance probability of a given Boolean circuit C(x1, . . . , xn) of size n to within an additive
error 1/n; the latter problem is called Circuit Acceptance Probability Problem (CAPP). We
use the notation promise-BPP ⊆ NSUBEXPc to mean that there is a nondeterministic Turing
machine that runs in computably subexponential time, and solves CAPP with an additive
approximation error 1/n. That is, on a given circuit C(x1, . . . , xn), the nondeterministic
machine has at least one accepting computation, and every accepting computation yields a
value r such that |Pra∈{0,1}n [C(a) = 1]− r| ≤ 1/n.

We say that promise-BPP ⊆ ro?-NSUBEXPc if a NSUBEXPc algorithm correctly approx-
imates CAPP only robustly often.

A collection a1, . . . , at ∈ {0, 1}n is a discrepancy set of size t for circuits of size n if, for every
Boolean circuit C of size n on n inputs,

∣∣Prz∈{0,1}n [C(z) = 1]−Pri∈[t][C(ai) = 1]
∣∣ ≤ 1/n.

It was shown by [5] that the truth table of a superpolynomial circuit-complexity Boolean
function can be used to get a subexponential-size discrepancy set (in subexponential time).

3 Our results

3.1 PIT vs. arithmetic circuit lower bounds
I Theorem 2. Fix an arbitrary finite field F. We have
1. low-PIT ∈ NSUBEXPc ⇒ ml-NE 6⊆ ASizeDegPow[superpolyc].
2. ml-NE 6⊆ ASizeDegPow[superpolyc] ⇒ low-PIT ∈ ro?-NSUBEXPc.

Proof sketch. (1) Assume a nondeterministic subexponential-time algorithm for low-PIT, but
that ml-NE has “small” arithmetic circuits. We arithmetize TQBF to get a PSPACE-complete
multilinear polynomial f = {fn} over F. This polynomial f turns out to be computable in
ml-NE, and so, by our assumption, some powers fdnn , for “small” dn, have small arithmetic
circuits over F.

For each n, we nondeterministically guess a small circuit and a small dn. Using the
ideas of the PSPACE = IP proof, we then verify that the guessed circuit computes the
polynomial fdnn . This verification algorithm uses our assumed low-PIT algorithm, and runs
in NSUBEXPc.

Computing powers fdnn is still PSPACE-complete, and so we get PSPACE ⊆ NSUBEXPc.
By padding, we obtain SPACE[superpolyc] ⊆ NE. By diagonalization, SPACE[superpolyc]
contains a language L of some computably superpolynomial Boolean circuit complexity,
almost everywhere. It follows that the multilinear extension of L over F requires arithmetic
circuits of computably superpolynomial size, almost everywhere. On the other hand, each
coefficient of this multilinear polynomial is computable in SPACE[superpolyc], and hence in
NE.

(2) Assume that some family g = {gn} of polynomials in ml-NE is such that all powers
gdnn , for “small” dn, require superpolynomial arithmetic circuit complexity for infinitely many
input lengths n. By [14], we get that low-PIT is in NSUBEXPc infinitely often. The input
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lengths where low-PIT is easy (derandomized) correspond to the (smaller) input lengths
where the polynomials gn are actually hard.

To improve this “infinitely often” result to the “robustly often” one, we do the following:
when asked to derandomize low-PIT for a certain input length n, we go to the related smaller
length n′, and consider polynomials over a superpolynomial interval of input lengths above
n′ as candidate hard polynomials; we use each such polynomial to construct a candidate
hitting set by [14]. If the given interval above n′ contains a length m such that gm is hard,
then our derandomization succeeds. Since there infinitely many intervals containing a length
m where gm is hard, there will be infinitely many intervals of superpolynomial length where
our low-PIT algorithm is correct. J

I Theorem 3. Fix an arbitrary finite field F. We have

low-PIT ∈ ro?-NSUBEXPc ⇔ rp?-ml-NE 6⊆ ASizeDegPow[superpolyc].

Proof sketch. (⇒) We start as in the proof of Theorem 2, implication (1). We get a
PSPACE-complete multilinear polynomial f = {fn} over F such that some powers fdnn are
computable by small arithmetic circuits, for almost all input lengths n. Since our low-PIT
algorithm is correct for infinitely many superpolynomial intervals of input lengths, we can
guarantee the successful verification of an arithmetic circuit for fdnn for the corresponding
superpolynomial intervals of input lengths only. This yields PSPACE ⊆ ro?-NSUBEXPc,
and by padding, SPACE[superpolyc] ⊆ ro?-NE. Finally, by diagonalization and multilinear
extension, we get a family of multilinear polynomals gn over F that require computably
superpolynomial arithmetic circuit complexity almost everywhere, and yet we can compute
the coefficients of gn in NE for infinitely many superpolynomial intervals of input sizes n.

(⇐) As in the proof of Theorem 2, implication (2), we will use hard polynomials to
derandomize low-PIT by [14]. The difference now is that a given NE machine computes a
valid polynomial only over some computably robust set S of input lengths n, and that this
polynomial is hard only for infinitely many lengths n ∈ core(S). Still we can use this NE
machine to construct a candidate hitting set for a given low-PIT instance so that, for infinitely
many lengths n ∈ core(S), we get a correct hitting set, and so low-PIT ⊆ io-NSUBEXPc.
To boost this to the robustly often inclusion, we employ a similar trick as before: use a
superpolynomial-size interval of input lengths to get a collection of candidate hitting sets, and
take their union. When all input lengths fall into an interval where our NE machine computes
a valid polynomial, we get that the union of such candidate hitting sets is well-defined. If, in
addition, the polynomial computed by our NE machine is actually hard on some length in
this interval, then we get a correct hitting set. J

We have analogous results also for the case of integers Z, with analogous proofs (using the
analysis of [13] showing that Kaltofen’s [15] polynomial factorization algorithm over integers
respects formal degree). In particular, we have the following equivalence.

I Theorem 4. Over Z,

low-PIT ∈ ro?-NSUBEXPc ⇔ rp?-ml-NE 6⊆ ASizeDegMul[superpolyc].

3.2 Promise-BPP vs. Boolean circuit lower bounds
I Theorem 5. We have
1. promise-BPP ⊆ NSUBEXPc ⇒ (NE ∩ coNE) 6⊆ SIZE[superpolyc].
2. (NE ∩ coNE) 6⊆ SIZE[superpolyc] ⇒ promise-BPP ⊆ ro?-NSUBEXPc.
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Proof sketch. (1) Assume that CAPP is correctly approximated by an NSUBEXPc algorithm,
but every language in (NE ∩ coNE) has small superpolynomial-size Boolean circuits. The
latter means that E ⊆ SIZE[superpolyc], and hence, by [4], that E ⊆ MA[superpolyc], for
a related small superpolynomial time complexity. Using our CAPP algorithm, we get
MA[superpolyc] ⊆ NSUBEXPc. By padding the inclusion E ⊆ NSUBEXPc, we get that
TIME[2superpolyc ] ⊆ NE. Finally, by diagonalization, we get a language L ∈ TIME[2superpolyc ] ⊆
NE that requires computably superpolynomial circuit complexity (almost everywhere). Since
L̄ ∈ TIME[2superpolyc ] ⊆ NE, the conclusion follows.

(2) Assume we have a pair of NE machines that compute L and L̄ for a language L
requiring superpolyc-size circuits infinitely often. By the hardness-randomness tradeoff of [5],
we get a NSUBEXPc algorithm that correctly approximates CAPP infinitely often; the input
lengths where the CAPP algorithm is correct correspond to the (smaller) input lengths where
the language L is actually hard. To boost this to the desired promise-BPP ⊆ ro?-NSUBEXPc
inclusion, we use the same “interval trick” as in the arithmetic case (Theorem 2, (2)), to
show that there is a NSUBEXPc algorithm that, robustly often, produces a discrepancy set
for circuits of size n. J

We extend the two implications of Theorem 5 to the equivalence, by carefully adapting
the arguments above to the setting of robust inclusions and separations.

I Theorem 6. promise-BPP ⊆ ro?-NSUBEXPc ⇔ rp?-(NE ∩ coNE) 6⊆ SIZE[superpolyc].

3.3 Robustly-often nontrivial useful properties
A property of Boolean functions is a family P = {Pn}n≥0 of predicates Pn : {0, 1}2n → {0, 1}.
For a function s : N→ N, we say that a property P is useful against SIZE[s] at length n if,
whenever Pn accepts the truth table of a Boolean n-variate function fn : {0, 1}n → {0, 1},
this means that fn requires circuit size at least s(n). We say that P is nontrivial at length n
if Pn accepts at least one truth table of length 2n. Finally, we say that P is robustly-often
nontrivially useful against SIZE[superpolyc] (denoted ro?-useful) if, for some s(n) ∈ superpolyc,
1. S = {n ∈ N | P is nontrivial at length n} is computably robust, and
2. P is useful against SIZE[s] at length n for infinitely many lengths n ∈ core(S).

As a corollary of Theorem 6, we get the following equivalence between circuit lower
bounds for NEXP ∩ coNEXP and the existence of ro?-useful properties.

I Theorem 7. The following are equivalent:
rp?-(NE ∩ coNE) 6⊆ SIZE[superpolyc] ⇐⇒
there is a NP-computable ro?-useful property
there is a P-computable ro?-useful property

Proof. (⇒) Assume we have a pair of NE machines M1 and M0 that correctly compute L
and L̄, respectively, for some computably robust set S of input lengths, where L requires
superpolyc circuit size for infinitely many input lengths in core(S). Define a property P as
follows:

“On input T ∈ {0, 1}2n , guess 2n candidate witnesses a1, . . . , a2n of length 2O(n) each,
and check, for every 1 ≤ i ≤ 2n, if Ti = b, for b ∈ {0, 1}, then Mb(i) accepts ai as a
witness. If succeed for all i’s, then accept. Otherwise, reject.”
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Clearly, P is NP-computable. Note that Pn accepts the truth table of Ln (and nothing
else) for the computably robust set S of input lengths n, and so P is robustly-often nontrivial.
Finally, since L requires circuit size superpolyc for infinitely many input lengths n ∈ core(S),
we get that P is useful against SIZE[superpolyc] at length n for infinitely many n ∈ core(S).
Thus P is ro?-useful.

(⇐) Given an NP-computable property P that is nontrivial on a computably robust set
S of input lengths n, and useful against SIZE[superpolyc] for infinitely many n ∈ core(S),
we use P to nondeterministically guess a truth table T of length 2n, nondeterministically
verify that T is accepted by Pn, and use T as a “hard” Boolean function to derandomize
promise-BPP (using the hardness-randomness tradeoff of [5]).

We get that promise-BPP ⊆ io-NSUBEXPc, since infinitely often we get a truth table T of
superpolynomial circuit complexity. Using the “interval trick” (as in the proof of Theorem 5,
implication (2)), we boost this inclusion to get promise-BPP ⊆ ro?-NSUBEXPc, which, by
Theorem 6, implies rp?-(NE ∩ coNE) 6⊆ SIZE[superpolyc]. J
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Abstract
The average distance from a node to all other nodes in a graph, or from a query point in a metric
space to a set of points, is a fundamental quantity in data analysis. The inverse of the average
distance, known as the (classic) closeness centrality of a node, is a popular importance measure
in the study of social networks. We develop novel structural insights on the sparsifiability of the
distance relation via weighted sampling. Based on that, we present highly practical algorithms
with strong statistical guarantees for fundamental problems. We show that the average distance
(and hence the centrality) for all nodes in a graph can be estimated using O(ε−2) single-source
distance computations. For a set V of n points in a metric space, we show that after preprocessing
which uses O(n) distance computations we can compute a weighted sample S ⊂ V of size O(ε−2)
such that the average distance from any query point v to V can be estimated from the distances
from v to S. Finally, we show that for a set of points V in a metric space, we can estimate the
average pairwise distance using O(n + ε−2) distance computations. The estimate is based on a
weighted sample of O(ε−2) pairs of points, which is computed using O(n) distance computations.
Our estimates are unbiased with normalized mean square error (NRMSE) of at most ε. Increasing
the sample size by a O(logn) factor ensures that the probability that the relative error exceeds
ε is polynomially small.
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1 Introduction

Measures of structural centrality based on shortest-paths distances, first studied by Bavelas [3],
are classic tools in the analysis of social networks and other graph datasets. One natural
measure of the importance of a node in a network is its classic closeness centrality, defined
as the inverse of its average distance to all other nodes. This centrality measure, which is
also termed Bavelas closeness centrality or the Sabidussi Index [13, 14, 24], was proposed
by Bavelas [4], Beauchamp [5], and Sabidussi [20]. Formally, for a graph G = (V,E) with
|V | = n nodes, the classic closeness centrality of v ∈ V is

cc(v) = n− 1∑
u∈V dist(u, v) , (1)
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where dist(u, v) is the length of a shortest path between v and u in G and n is the number
of nodes. Intuitively, this measure of centrality reflects the ability of a node to send goods to
all other nodes.

In metric spaces, the average distance of a point z to a set V of n points,
∑
x∈V dist(z, x)/n,

is a fundamental component in some clustering and classification tasks. For clustering, the
quality of a cluster can be measured by the sum of distances from a centroid (usually 1-median
or the mean in Euclidean data). Consequently, the (potential) relevance of a query point to
the cluster can be estimated by relating its average distance to the cluster points to that of
the center or more generally, to the distribution of the average distance of each cluster point
to all others. This classification method has the advantages of being non-parametric (making
no distribution assumptions on the data), similarly to the popular k nearest neighbors [10]
(kNN) classification. Average distance based classification complements kNN, in that it
targets settings where the outliers in the labeled points do carry information that should
be incorporated in the classifier. A recent study [16] demonstrated that this is the case for
some data sets in the UCI repository, where average distance based classification is much
more accurate than kNN classification.

These notions of centrality and average distance had been extensively used in the analysis
of social networks and metric data sets. We aim here to provide better tools to facilitate the
computation of these measures on very large data sets. In particular, we present estimators
with tight statistical guarantees whose computation is highly scalable.

We consider inputs that are either in the form of an undirected graph (with nonnegative
edge weights) or a set of points in a metric space. In case of graphs, distance of the underlying
metric correspond to lengths of shortest paths. Our results also extend to inputs specified as
directed strongly connected graphs where the distance are the round trip distances [6]. We
use a unified notation where V is the set of nodes if the input is a graph, or the set of points
in a metric space. We denote |V | = n. We use graph terminology, and mention metric spaces
only when there is a difference between the two applications. We find it convenient to work
with the sum of distances

W(v) =
∑
u∈V

dist(v, u) .

Average distance is then simply W(v)/n and centrality is cc(v) = (n− 1)/W(v). Moreover,
estimates Ŵ(v) that are within a small relative error, that is (1 − ε) W(u) ≤ Ŵ(u) ≤
(1 + ε) W(u), imply a small relative error on the average distance, by taking Ŵ(v)/n, and
for centrality cc(v), by taking ĉc(v) = (n− 1)/Ŵ(v).

We list the fundamental computational problems related to these measures.
All-nodes sums: Compute W(v) of all v ∈ V .
Point queries (metric space): Preprocess a set of points V in a metric space, such that
given a query point v (any point in the metric space, not necessarily v ∈ V ), we can
quickly compute W(v).
1-median: Compute the node u of maximum centrality or equivalently, minimum W(u).
All-pairs sum: Compute the sum of the distances between all pairs, that is aps(V ) ≡
1
2
∑
v∈V W(v).

In metric spaces, we seek algorithms that compute distances for a small number of pairs
of points. In graphs, a distance computation between a specific pair of nodes u, v seems to be
computationally equivalent in the worst-case to computing all distances from a single source
node (one of the nodes) to all other nodes. Therefore, we seek algorithms that perform a
small number of single-source shortest paths (SSSP) computations. An SSSP computation
in a graph can be performed using Dijkstra’s algorithm in time that is nearly linear in



S. Chechik, E. Cohen, and H. Kaplan 661

the number of edges [12]. To support parallel computation, it is also desirable to reduce
dependencies between the distance or single-source distance computations.

The best known exact algorithms for the problems that we listed above do not scale well.
To compute W(v) for all v, all-pairs sum, and 1-median, we need to compute the distances
between all pairs of nodes, which in graphs is equivalent to an all-pairs shortest paths (APSP)
computation. To answer point queries, we need to compute the distances from the query
point to all points in V . In graphs, the hardness of some of these problems was formalized
by the notion of subcubic equivalence [23]. Abboud et al [1] showed that exact 1-median is
subcubic equivalent to APSP and therefore is unlikely to have a near linear time solution.
We apply a similar technique and show (in Section 7) that the all-pairs sum problem is also
subcubic equivalent to APSP. In general metric spaces, exact all pairs sum or 1-median
clearly requires Ω(n2) distance computations.1

Since exact computation does not scale to very large data sets, work in the area focused
on approximations with small relative errors. We measure approximation quality by the
normalized root mean square error (NRMSE), which is the square root of the expected (over
randomization used in the algorithm) square difference between the estimate and the actual
value, divided by the mean. When the estimator is unbiased (as with sample average), this
is the ratio between the standard deviation and the mean, which is called the coefficient of
variation (CV). Chebyshev’s inequality implies that the probability that the estimator is
within a relative error of η from its mean is at least 1− (CV )2/(η)2. Therefore a CV of ε
implies that the estimator is within a relative error of η = cε from its mean with probability
≥ 1− 1/c2.

The sampling based estimates that we consider are also well concentrated, meaning
roughly that the probability of a larger error decreases exponentially. With concentration,
by increasing the sample size by a factor of O(logn) we get that the probability that the
relative error exceeds ε, for any one of polynomially many queries, is polynomially small. In
particular, we can estimate the sum of the distances of the 1-median from all other nodes up
to a relative error of ε with a polynomially small error probability.

Previous work
We review previous work on scalable approximation of 1-median, all-nodes sums, and all-pairs
sum. These problems were studied in metric spaces and graphs. A natural approach to
approximate the centrality of nodes is to take a uniform sample S of nodes, perform |S| single
source distance computations to determine all distances from every v ∈ S to every u ∈ V ,
and then estimate W(v) by Ŵ(v) = n

|S| WS(v), where WS(v) =
∑
a∈S dist(v, a) is the sum

of the distances from v to the nodes of S. This approach was used by Indyk [18] to compute
a (1 + ε)-approximate 1-median in a metric space using only O(ε−2n) distance computations
(See also [17] for a similar result with a weaker bound.). We discuss this uniform sampling
approach in more detail in Section 6, where for completeness, we show how it can be applied
to the all-nodes sums problem.

The sample average of a uniform sample was also used to estimate all-nodes centrality [11]
(albeit with weaker, additive guarantees) and to experimentally identify the (approximate)

1 Take a symmetric distance matrix with all entries in (1− 1/n, 1]. To determine the 1-median we need
to compute the exact sum of entries in each raw, that is, to exactly evaluate all entries in the raw. This
is because an unread entry of 0 in any raw would determine the 1-median. Similarly, to compute the
exact sum of distances we need to evaluate all entries. Deterministically, this amounts to

(
n
2

)
distance

computations.
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top k centralities [19]. When the distance distribution is heavy-tailed, however, the sample
average as an estimate of the true average can have a large relative error. This is because
the sample may miss out on the few far nodes that dominate W(v).

Recently, Cohen et al [6] obtained ε NRMSE estimates for W(v) for any v, using single-
source distance computations from each node in a uniform sample of ε−3 nodes. Estimates
that are within a relative error of ε for all nodes were obtained using ε−3 logn single-source
computations. This approach applies in any metric space. The estimator for a point v is
obtained by using the average of the distances from v to a uniform sample for nodes which
are “close” to v and estimating distances to nodes “far” from v by their distance to the
sampled node closest to v. The resulting estimate is biased, but obtains small relative errors
using essentially the information of single-source distances from a uniform sample.

For the all-pairs sum problem in metric spaces, Indyk [17] showed that it can be estimated
by scaling up the average of Õ(nε−3.5) distances between pairs of points selected uniformly
at random. The estimate has a relative error of at most ε with constant probability. Barhum,
Goldreich, and Shraibman [2] improved Indyk’s bound and showed that a uniform sample of
O(nε−2) distances suffices and also argued that this sample size is necessary (with uniform
sampling). Barhum et al. also showed that in an Euclidean space a similar approximation
can be obtained by projecting the points onto O(1/ε2) random directions and averaging
the distances between all pairwise projections. Goldreich and Ron [15] showed that in an
unweighted graph O(ε−2√n) distances between random pairs of points suffice to estimate
the sum of all pairwise distances, within a relative error of ε, with constant probability.
They also showed that O(ε−2√n) distances from a fixed node s to random nodes v suffice to
estimate W(v), within a relative error of ε, with constant probability. A difficulty with using
this result, however, is that in graphs it is expensive to compute distances between random
pairs of points in a scalable way: typically a single distance between a particular pair of
nodes s and t is not easier to obtain than a complete single source shortest path tree from s.

Contributions and overview
Our design is based on computing a single weighted sample that provides estimates with
statistical guarantees for all nodes/points. A sample of size O(ε−2) suffices to obtain estimates
Ŵ(z) with a CV of ε for any z. A sample of size O(ε−2 logn) suffices for ensuring a relative
error of at most ε for all nodes in a graph or for polynomially many queries in a metric space,
with probability that is at least 1− 1/poly(n).

The sampling algorithm is provided in Section 2. This algorithm computes a coefficient
γv for each v ∈ V such that

∑
v γv = O(1). Then for a parameter k, we obtain sampling

probabilities pu ≡ min{1, kγv} for u ∈ V . Using the probabilities pv, we can obtain a Poisson
sample S of expected size

∑
u pu = O(k) or a VarOpt sample [8] that has exactly that size

(rounded to an integer).
We present our estimators in Section 3. For each node u, the inverse probability estimator

d̂ist(z, u) is equal to dist(z, u)/pu if u is sampled and is 0 otherwise. Our estimate of the
sum W(z) is the sum of these estimates

Ŵ(z) =
∑
u∈V

d̂ist(z, u) =
∑
u∈S

d̂ist(z, u) =
∑
u∈S

dist(z, u)
pu

. (2)

Since pu > 0 for all u, the estimates d̂ist(z, u) and hence the estimate Ŵ(z) are unbiased.
We provide a detailed analysis in Section 4. We will show that our sampling probabilities

provide the following guarantees. When choosing k = O(ε−2), Ŵ(z) has CV ε. Moreover, the
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estimates have good concentration, so using a larger sample size of O(ε−2 logn) we obtain
that the relative error is at most ε for all nodes v ∈ V with probability at least 1− 1/poly(n).

In order to obtain a sample with such guarantees for some particular node z, the sampling
probability of a node v should be (roughly) proportional to its distance dist(z, v) from z.
Such a Probability Proportional to Size (PPS) sample of size k = ε−2 uses coefficients
γv = dist(v, z)/W(z) and has CV of ε. We will work with approximate PPS coefficients,
which we define as satisfying γv ≥ cdist(v, z)/W(z) for some constant c. With approximate
PPS we obtain a CV of ε with a sample of size O(ε−2). It is far from clear apriori, however,
that there is a single set of universal PPS coefficients which are simultaneously (approximate)
PPS for all nodes and are of size

∑
v γv = O(1). That is, a single sample of size O(ε−2),

which is independent of n and of the dimension of the space, would work for all nodes.
Beyond establishing the existence of universal PPS coefficients, we are interested in

obtaining them, and the sample itself, using a near-linear computation. The dominant
component of the computation of the sampling coefficients is performing O(1) single-source
distance computations. Therefore, it requires O(m logn) time in graphs and O(n) pairwise
distance queries in a metric space. A universal PPS sample of any given size k can then be
computed in a single pass over the coefficients vector γ (O(n) computation). We represent the
sample S as a collection {(u, pu)} of nodes/points and their respective sampling probabilities.
We can then use our sample for estimation using (2).

When the input is a graph, we compute single-source distances from each node in S to
all other nodes in order to estimate W(v) of all v ∈ V . This requires O(|S|m logn) time and
O(n) space.

I Theorem 1. All-nodes sums (W(v) for all v ∈ V ) can be estimated unbiasedly as follows:
With CV ε, using O(ε−2) single source distance computations.
When using O(ε−2 logn) single source distance computations, the probability that the
maximum relative error, over the n nodes, exceeds ε is polynomially small.

In a metric space, we can estimate W(x) for an arbitrary query point x, which is not
necessarily a member of V , by computing the distances dist(x, v) for all v ∈ S and applying
the estimator (2). Thus, point queries in a metric space require O(n) distance computations
for preprocessing and O(ε−2) distance computations per query.

I Theorem 2. We can preprocess a set of points V in a metric space using O(n) time
and O(n) distance computations (O(1) single source distance computations) to generate a
weighted sample S of a desired size k. From the sample, we can unbiasedly estimate Ŵ(z)
using the distances between z and the points in S with the following guarantees:

When k = O(ε−2), for any point query z, Ŵ(z) has CV at most ε.
When k = O(ε−2 logn), the probability that the relative error of Ŵ(z) exceeds ε for any
of polynomially many queries z is polynomially small.

We can also estimate all-pairs sum, using either primitive of single-source distances (for
graphs) or distance computations (metric spaces).

I Theorem 3. All-pairs sum can be estimated unbiasedly with the following statistical
guarantees:

CV of at most ε, using O(ε−2) single-source distance computations. With a relative
error that exceeds ε with a polynomially small probability, using O(ε−2 logn) single-source
distance computations.
With CV of at most ε, using O(n+ ε−2) distance computations. With a relative error that
exceeds ε with polynomially small probability, using O(n+ε−2 logn) distance computations.
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The proof details are provided in Section 5. The part of the claim that uses single-source
distance computations is established by using the estimate âps(V ) = 1

2
∑
z∈V Ŵ(z). When

the estimates have CV of at most ε, even if correlated, so does the estimate âps(V ).2 For
the high probability claim, we use O(logn) single-source computations to ensure we obtain
universal PPS coefficients with high probability (details are provided later), which imply
that each estimate Ŵ (z), and hence the sum is concentrated.

For the second part that uses distance computations, we consider an approximate PPS
distribution that is with respect to dist(u, v), that is, the probability of sampling the pair
(u, v) is at least cdist(u, v)/aps(V ) for some constant c. We show that we can compactly
represent this distribution as the outer product of two probability vectors of size n. Using
this representation we can draw O(ε−2) pairs independently in linear time, which we use for
estimating the average.

Compared to the all-nodes sums algorithms of [6], our result here improves the dependency
in ε from ε−3 to ε−2 (which is likely to be optimal for a sampling based approach), provides
an unbiased estimates, and also facilitates approximate average distance oracles with very
small storage in metric spaces (the approach of [6] would require the oracle to store a
histogram of distances from each of ε−3 sampled nodes). For the all-pairs sum problem in
graphs, we obtain an algorithm that uses O(ε−2) single source distance computations, which
improves over an algorithm that does O(ε−3) single source distance computations implied by
[6]. For the all pairs sum problem in a metric space, we obtain a CV of ε using O(n+ ε−2)
distance computation rather than O(nε−2) distance computations required by the algorithms
in [2, 17].

While our analysis does not optimize constants, our algorithms are very simple and we
expect them to be effective in applications.

2 Constructing the sample

We present Algorithm 1 that computes a set of sampling probabilities associated with the
nodes of an input graph G. We use graph terminology but the algorithm applies both in
graphs and in metric spaces. The input to the algorithm is a set S0 of base nodes and a
parameter k (we discuss how to choose S0 and k below). The algorithm consists of the
following stages. We first compute a sampling coefficient γv for each node v such that∑
v γv = O(1). Then we use the parameter k and compute the sampling probabilities

pv = min{1, kγv}. Finally we use the probabilities pv to draw a sample of expected size O(k),
by choosing v with probability pv. We usually apply the algorithm once with a pre-specified
k to obtain a sample, but there are applications (see discussion in Section 8.4) in which we
want to choose the sample size adaptively using the same coefficients.

Running time and sample size

The running time of this algorithm on a metric space is dominated by |S0|n distance
computations. On a graph, the running time is |S0|m logn, and is dominated by the
|S0| single-source shortest-paths computations. The expected size of the final sample S is∑
v pv ≤ k

∑
v γv = O(k).

2 In general if random variables X and Y have CV ε then so does their sum: Var(X+Y )
(E(X+Y ))2 =

Var(X)+Var(Y )+2 Cov(X,Y )
(E(X+Y ))2 ≤ Var(X)+Var(Y )+2

√
Var(X) Var(Y )

(E(X+Y ))2 ≤ ε2(E(X))2+ε2(E(Y ))2+2ε2E(X)E(Y )
(E(X+Y ))2 ≤ ε2.
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Algorithm 1 Compute universal PPS coefficients and sample
Input: Undirected graph with vertex set V or a set of points V in a metric space, base

nodes S0, parameter k
Output: A universal PPS sample S
// Compute sampling coefficients γv
foreach node v do

γv ← 1/n
foreach u ∈ S0 do

Compute shortest path distances dist(u, v) from u to all other nodes v ∈ V
W ←

∑
v dist(u, v)

foreach node v ∈ V do
γv ← max{γv, dist(u,v)

W }

foreach node v ∈ V do // Compute sampling probabilities pv
pv ← min{1, kγv}

S ← ∅ // Initialize sample
foreach v ∈ V do // Poisson sample according to pv

if rand() < pv then
S ← S ∪ {(v, pv)}

return S

Choosing the base set S0

We will show that in order to obtain the property that each estimate Ŵ(v) has CV O(ε), it
suffices that the base set S0 includes a uniform sample of ≥ 2 nodes and we need to choose
k = ε−2. Note that the CV is computed over the randomization in the choice of nodes to
S0 and of the sample we choose using the computed coeffcients. We will also introduce a
notion of a well positioned node, which we precisely define in the sequel. We will see that
when S0 includes such a node, we also have CV of O(ε) with k = ε−2. This time using only
the randomization in the selection of the sample. Moreover, if we choose k = ε−2 logn and
ensure that S0 contains a well-positioned node with probability at least 1− 1/poly(n) then
we obtain that the probability that the relative error exceeds ε is polynomially small. We
will see that most nodes are well positioned, and therefore, it is relatively simple to identify
such a node with high probability.

3 Estimation

3.1 Centrality values for all nodes in a graph
For graphs, we compute estimates Ŵ(v) for all nodes v ∈ V as in Algorithm 2. We initialize
all estimates to 0, and perform a SSSP computation from each node in u ∈ S. When scanning
node v, during such SSSP computation, we add dist(u, v)/pu to the estimate Ŵ(v). The
algorithms runs in O(|S|m logn) time, dominated by the |S| SSSP computations from each
node in the sample S.

3.2 Point queries (metric space)
For a query point z (which is not necessarily a member of V ), we compute the distance
dist(z, x) for all x ∈ S, and apply (2). This takes |S| distance computations for each query.

APPROX/RANDOM’15
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Algorithm 2 Compute estimates Ŵ(v) for all nodes v in the graph
Input: Weighted graph G, a sample S = {(u, pu)}
foreach v ∈ V do

Ŵ(v)← 0
foreach u ∈ S do

Perform a single-source shortest-paths computation from u.
foreach scanned node v ∈ V do

Ŵ(v)← Ŵ(v) + dist(u, v)/pu

return (v, Ŵ(v)) for v ∈ V

4 Correctness

We first show (Section 4.1) show that when k = ε−2, and S0 includes either a uniform sample
of size at least 2 then each estimate Ŵ(v) has CV of O(ε). We then define well-positioned
nodes in Section 4.2 and show that if S0 contains a well positioned node we and sample size
is k = ε−2 then the CV is O(ε) (Section 4.3) and when k = O(ε−2 logn), the probability that
the relative error exceeds ε is polynomially small (Section 4.5).

In Section 4.4 we establish an interesting property of our sampling coefficients: They can
not grow too much even if the base set S0 is very large. Clearly,

∑
v γv ≤ 1 + |S0|, but we

will show that it is O(1) regardless of the size of S0.
We start with some useful lemmas.

I Lemma 4. Suppose that S0 contains a node u. Consider a node z such that u is the (qn)th
closest node to z. Then for all nodes v,

γv ≥
1− q

4 · dist(z, v)
W(z) . (3)

Proof. From the specification of Algorithm 1, the sampling coefficients γv satisfy

γv ≥ max
{

1
n
,

dist(u, v)
W(u)

}
. (4)

Let Q = dist(z, u). Consider a classification of the nodes v ∈ V to “close” nodes and “far”
nodes according to their distance from z:

L = {v ∈ V | dist(z, v) ≤ 2Q}
H = {v ∈ V | dist(z, v) > 2Q} .

Since γv ≥ 1/n, for v ∈ L we have

γv ≥
1
n
≥
(

1− q
2

)(
2

1− q

)
1
n

=
(

1− q
2

)(
2Q

(1− q)Q

)
1
n
≥
(

1− q
2

)
dist(z, v)

W(z) , (5)

where the last inequality holds since for v ∈ L we have dist(z, v) ≤ 2Q, and since W(z) ≥
(1− q)nQ if u is the (qn)th closest node to z.

For all v, we have that dist(u, v) ≥ dist(z, v)−Q by the triangle inequality. We also have
W(u) ≤W(z) + nQ. Substituting into (4) we get that for every v

γv ≥
dist(u, v)

W(u) ≥ dist(z, v)−Q
W(z) + nQ

. (6)
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In particular, for v ∈ H, we have

dist(z, v)−Q ≥ 1
2 dist(z, v) . (7)

As already mentioned, we also have W(z) ≥ (1− q)nQ and thus

nQ ≤ W(z)
1− q , (8)

and

W(z) + nQ ≤W(z)
(

1 + 1
1− q

)
= W (z)

(
2− q
1− q

)
. (9)

Substituting (9) and (7) in (6), we obtain that for v ∈ H,

γv ≥
dist(z, v)−Q
W(z) + nQ

≥ 1
2

(
1− q
2− q

)
dist(z, v)

W(z) . (10)

The lemma now follows from (5) and (10). J

I Lemma 5. Consider a set of sampling coefficients γv such that for a node z, for all v and
for some c > 0, γv ≥ cdist(z,v)

W(z) . Let S be a sample obtained with probabilities pv = min{1, kγv}
(as in Algorithm 1), and let Ŵ(z) be the inverse probability estimator as in (2). Then

Var[Ŵ(z)] ≤ W(z)2

k · c
. (11)

Proof. The variance of our estimator is

Var[Ŵ(z)] =
∑
v

[
pv

(
dist(z, v)

pv
− dist(z, v)

)2
+ (1− pv) dist(z, v)2

]

=
∑
v

(
1
pv
− 1
)

dist(z, v)2 . (12)

Note that nodes v for which pv = 1 contribute 0 to the variance. For the other nodes we
use the lower bound pv ≥ ck dist(z,v)

W(z) .∑
v∈V

(
1
pv
− 1
)

dist(z, v)2 =
∑

v∈V |pv<1

(
1
pv
− 1
)

dist(z, v)2

≤ W(z)
k · c

∑
v∈V

dist(z, v)

≤ W(z)2

k · c
.

J

4.1 Base set containing a uniform sample
We now consider a situation where S0 includes a uniform sample of nodes, and consider the
corresponding expected approximation quality:

I Lemma 6. Suppose that S0 contains a uniform random sample of b nodes. Then for any
node z,

Var[Ŵ(z)] ≤ W(z)2

k

4b
b− 1 . (13)

APPROX/RANDOM’15
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Proof. We apply Lemma 5 with the bound on the coefficients as in Lemma 4 with u being
the closest node to z in S0. Assume that u is the xth closest node to z. By Lemma 4 and
Lemma 5 we have

Var[Ŵ(z) | x] ≤ W(z)2

k

4
1− x/n . (14)

Observe that x is a random variable which is the rank (= position in the sorted order of the
nodes by distance from z) of the closest node to z in a uniform sample of size b. In particular
x take values ∈ {1, 2, . . . , n− b+ 1} (x = 1 iff u = z). We have that the probability of rank
x is

b

(
1
n

)(
n− x
n− 1

)(
n− x− 1
n− 2

)
· · ·
(
n− x− b+ 2
n− b+ 1

)
≤ b

(
1− x

n

)b−1
.

(We choose the random subset of S0 of b nodes without replacement, we split into b events
according to the step in which the node of rank x is chosen. Other items should be chosen
from the n− x nodes of rank larger than x. ) The variance Var[Ŵ(z)] is the expectation,
over x ∈ {1, 2, . . . , n− b+ 1}, of Var[Ŵ(z) | x]. So from (14), we get

Var[Ŵ(z)] ≤
n−b+1∑
x=1

b
(

1− x

n

)b−1
(

W(z)2

k

4
(1− x/n)

)

≤ W(z)2

k
4b

n−b+1∑
x=1

(
1− x

n

)b−2

≤ W(z)2

k
4b
∫ 1

0
(1− y)b−2dy

= W(z)2

k

4b
b− 1 .

J

It follows from Lemma 6 that if we choose b ≥ 2 nodes uniformly into S0 and k = ε−2,
then for any node z, our estimator has Var[Ŵ(z)] = O(ε2 W(z)2). This concludes the proof of
the per-node (per-point) O(ε) bound on the CV of the estimator in the first part of Theorems
1 and 2 for a sample of size O(ε−2).

4.2 Well-positioned nodes
We provide a precise definition of a well positioned node. Let the median distance of a node
u, denote by m(u), be the distance between u and the d1 + n/2e closest node to u in V . Let
MinMed = minv∈V m(v) be the minimum median distance of any node v ∈ V . In a metric
space, we can define m(u) for any point u in the space (also for u 6∈ V ), and accordingly,
define MinMed as the minimum m(u) over all points u in the metric space.

We say that a node u is well positioned if m(u) ≤ 2 MinMed, that is, m(u), the median
distance of u is within a factor of 2 of the minimum median distance. We now show that
most nodes are well positioned.

I Lemma 7. Let v be such that is m(v) = MinMed. Then all d1 + n/2e nodes in V that
are closest to v are well positioned.

Proof. Let u be one of the d1 + n/2e nodes closest to v. Then dist(u, v) ≤ MinMed and
a ball of radius 2 MinMed around u contains all the d1 + n/2e nodes closest to v. So
m(u) ≤ 2 MinMed. J
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We are interested in well positioned nodes because of the following property:

I Lemma 8. If u is a well positioned node, then for every node z we have that dist(z, u) ≤
3m(z).

Proof. For every two nodes u and z we have that dist(u, z) ≤ m(u) +m(z) since there must
be at least one node x that is both within distance m(u) from u and within distance m(z)
from z, and by the triangle inequality dist(u, z) ≤ dist(u, x) + dist(x, z). The lemma follows
since if u is well positioned then m(u) ≤ 2m(z). J

As we shall see, this means that sampling probabilities proportional to the distances from
a well positioned node u approximate sampling probabilities proportional to the distances
from any other node z, for nodes whose distance from z is substantially larger than m(z).

4.3 Base set with a well-positioned node

We now consider the case where S0 contains a well-positioned node. We show that in this
case the coefficients γv satisfy what we call a universal PPS property:

I Lemma 9. Suppose that S0 contains a well-positioned node u. Then for all nodes v,

γv ≥
1
18 max

z

dist(z, v)
W(z) . (15)

Proof. We show that for any node z, γv ≥ 1
18

dist(z,v)
W(z) using a variation of the proof of

Lemma 4.
We partition the nodes into two sets. A set L which contains the nodes v such that

dist(z, v) ≤ 6m(z) and a set H which contains the remaining nodes. By the definition of
m(z) we have that W(z) ≥ m(z)(bn2 c − 1) ≥ m(z)n3 (for n ≥ 9). We obtain that for all
v ∈ L,

dist(v, z)
W(z) ≤ 6m(z)

m(z)n3
= 18

n
.

Therefore,

γv ≥
1
n
≥ 1

18
dist(v, z)

W(z) .

We next consider v ∈ H. Since u is well positioned, by Lemma 8 we have that dist(z, u) ≤
3m(z). From the triangle inequality, dist(u, v) ≥ dist(z, v)−dist(z, u) ≥ dist(z, v)− 3m(z) ≥
dist(z, v)/2. We also have W(u) ≤W(z)+n dist(z, u) ≤W(z)+3nm(z) ≤ 9 W(z). Therefore

γv ≥
dist(u, v)

W(u) ≥ (dist(z, v)/2)
9 W(z) = 1

18
dist(z, v)

W(z) . J

As a corollary, applying Lemma 5, we obtain:

I Corollary 10. If S0 contains a well-positioned node, then for any node z, Var[Ŵ(z)] ≤
18 W(z)2

k .

APPROX/RANDOM’15
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4.4 Upper bound on the sum of the coefficients
One consequence of Lemma 9 is that the coefficients γu cannot grow too much even if the
base set S0 includes all nodes.

I Corollary 11. Let
γv ≡ max

z

dist(z, v)
W(z) .

Then ∑
v

γv = O(1) .

Proof. Consider the case where S0 consists of a single well positioned node. By the definition
of γv we have that

∑
v γv ≤ 2. By Lemma 15 we have γv ≥ 1

18 maxz dist(z,v)
W(z) . Therefore∑

v γv ≤ 18
∑
v γv ≤ 36. J

4.5 High probability estimates
Lastly, we establish concentration of the estimates, which will conclude the proof of the very
high probability claims in Theorem 1 and 2.

We need the following lemma:

I Lemma 12. If our sampling coefficients are approximate PPS for a node z, that is, there
is a constant c such that for all nodes v, γv ≥ cdist(z,v)

W(z) , and we use k = O(ε−2 logn), then

Pr
[
|Ŵ(z)−W(z)|

W(z) ≥ ε

]
= O(1/poly(n)) .

Proof. We apply the Chernoff-Hoeffding bound. Let τ = W (z)/(ck). We have

pv ≥ min{1, dist(z, v)/τ} = min{1, ck dist(z, v)/W(z)} . (16)

The contribution of a node v to the estimate Ŵ(z) is as follows. If dist(z, v) ≥ τ ,
then the contribution is exactly dist(z, v). Otherwise, the contribution Xv of node v is
dist(z, v)/pv ≤ τ with probability pv and 0 otherwise.

The contributions Xv of the nodes with dist(z, v) ≤ τ are thus independent random
variables, each in the range [0, τ ] with expectation dist(z, v). We complete the proof by
applying the Chernoff-Hoeffding bound to bound the deviation of expectation of the sum of
these random variables. We defer the details to the full version of the paper. J

We need the condition of Lemma 12 to hold for all nodes z with probability 1 −
O(1/poly(n)). Equivalently, we would like γ to be universal PPS with very high prob-
ability. If so, we apply a union bound to obtain that the estimates Ŵ(z) for all nodes z have
a relative error of at most ε with probability 1−O(1/poly(n)). The same argument applies
to polynomially many queries in metric spaces.

It follows from Lemma 9 that we obtain the universal PPS property if S0 includes a well
positioned node. We would like this to happen with very high probability. We mention
several ways to achieve this effect: (i) Since most nodes are well positioned (Lemma 7), taking
a uniform random sample U of O(logn) nodes, and choosing the node u = arg minu∈U m(u)
with minimum distance to its dn/2 + 1e closest node, means that we are guaranteed with
probability 1− 1/poly(n) that u is well positioned. This identification step involves O(logn)
single-source distance computations. (ii) Alternatively, we can ensure that S0 contains a
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well positioned node (with a polynomially small error) by simply placing O(logn) uniformly
selected nodes in S0. The computation of the coefficients will then require O(logn) single-
source distance computations. (iii) Lastly, if S0 contains O(logn) uniformly selected nodes
then we can apply a direct argument that with a polynomially small error for each node
z, one of the dn/2 + 1e closest nodes to z is in S0. This means we can apply Lemma 4
with q ≤ 0.5 to obtain that with a polynomially small error, the sampling probabilities are
approximate PPS for all nodes and thus universal PPS with a polynomially small error.

To establish the second part of Theorem 2 in metric spaces, we would like to identify
a well positioned node with a polynomially small (O(1/poly(n))) error using only O(n)
distance computations, which is more efficiently than by using O(logn) single-source distance
computations.

To do so, we first provide a slightly relaxed definition of well positioned node and show
that it retains the important properties. We will then show that a “relaxed” well positioned
node can be identified with very high probability using only O(log2 n) distance computations.
When we identify such a node, we can use it in the base set S0. This means we can use
O(n) distance computations in total to compute coefficients γ which are universal PPS
with a polynomially small error. We then use O(n) time to compute a sample of size
k = O(ε−2 logn), and use this sample to process point queries.

What remains is to introduce the relaxed definition of a well-positioned node and show
that it has the claimed properties.

4.6 Relaxed well positioned points
For Q ≥ d1+n/2e, we define the Q-quantile distancemQ(v) for a point v as the distance of the
Qth closest point to v. We then define MinMedQ as the minimum Q-quantile distance over
all points. Now, we define a point v to be Q well positioned if md1+n/2e(v) ≤ 2 MinMedQ.

Now observe that at least half the points have mQ(v) ≤ 2 MinMedQ and in particular
are well positioned (extension of Lemma 7). Also observe that if z is Q well positioned then
for any node u, dist(z, u) ≤ 3mQ(u) (extension of Lemma 8). We can also verify that for
any Q < 0.6n (any constant strictly smaller than 1 would do), a base set S0 containing one
Q well positioned point would also yield coefficients that satisfy the universal PPS property,
albeit with a slightly larger constant.

We next show that we can identify a 0.6n well positioned point within a polynomially
small error using very few distance computations:

I Lemma 13. We can identify a 0.6n well positioned point with probability 1−O(1/poly(n))
using O(log2 n) distance computations.

Proof. We choose uniformly at random a set of points C of size O(logn). For each point
in v ∈ C, we choose a uniform sample Sv of O(logn) points and compute the 0.55 quantile
of {dist(v, u) | u ∈ Sv}. We then return the point v ∈ C with the minimum sample 0.55
quantile.

We refer to C as the set of candidates. Note that since at least half the points v ∈ V
are such that m0.6n(v) ≤ 2 MinMed0.6n, the set C contains such a point with probability
1−O(1/poly(n)).

The estimates are such that with probability 1−O(1/poly(n)), for all points in C, the
sample 0.55 quantile is between the actual 0.5 and 0.6 quantiles. Therefore the point we
returned (with a polynomially small error) has m0.5n at most the smallest m0.6n in C, which
is at most 2 MinMed0.6n. J

APPROX/RANDOM’15
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5 All-pairs sum

We now establish the claims of Theorem 3 for the all-pairs sum problem. We start with
the first part of the claim, which is useful for graphs, estimates aps(V ) using single-source
computations. To do so, we apply Algorithm 1 to compute sampling coefficients γ and then
apply Algorithm 2 to compute estimates Ŵ(v) for all v. Finally, we return the estimate
âps(V ) = 1

2
∑
z∈V Ŵ(z).

To obtain an estimate âps(V ) with CV of at most ε, we choose a base set S0 that contains
2 uniformly sampled nodes when applying Algorithm 1. We then use sample size of O(ε−2)
to ensure that the per-node estimates Ŵ(z) have CV of at most ε. Note that the estimates
of different nodes are correlated, as they all use the same sample, but the CV of the sum of
estimates each with CV of at most ε must be at most ε. The total time amounts to O(ε−2)
single-source distance computations.

To obtain universal PPS with polynomially small error we can identify a well positioned
node with a polynomially small error, which can be done using O(logn) single-source
computations. We then compute the sampling coefficients γ for a base set that contains
this well-positioned node. (Which uses a single-source distance computation). The sampling
coefficients we obtain have the universal PPS property and the sample-based estimates are
concentrated. A sample size of size O(ε−2 logn) would yield a relative error of at most ε
with probability 1 − 1/poly(n), for each Ŵ(z) and thus for the sum âps(V ). In total, we
used O(ε−2 logn) single-source computations.

The remaining part of this section treats the second part of the claim of Theorem 3,
which applies to the all-pairs sum problem in metric spaces. We start with an overview
of our approach. In order to obtain a good sample of pairs, we would like to sample pairs
proportionally to pij = dist(i,j)

aps(V ) . The obvious difficulty we have to overcome is that the explicit
computation of the probabilities pij requires a quadratic number of distance calculations.

Our first key observation is that we can obtain a sample with (nearly) the same statistical
guarantees if we relax a little the sampling probabilities and the sample size: For some
constant c ≥ 1, we work with probabilities that satisfy pij ≥ c−1 dist(i,j)

aps(V ) and use a sample of
size k = cε−2.

We use independent sampling with replacement to compute a multiset S of pairs of points
from V × V . The estimator we use is the sample average inverse probability estimator:

âps(V ) = 1
|S|

∑
(i,j)∈S

dist(i, j)/pij .

This sample average is an unbiased estimate of aps(V ) and has CV of at most
√
k/c which is ε

when we use sample size k = cε−2. Moreover, each summand is by definition at most caps(V )
and therefore we obtain concentration by a direct application of Hoeffding’s inequality: The
probability of a relative error that is larger than ε when the sample size is k is at most
2e−2kε2c−2 . In particular, if we take a sample size that is O(ε−2 logn), we obtain that the
probability that the relative error exceeds ε is polynomially small in n.

We next discuss how we facilitate such sampling efficiently. We would like to be able
to sample with respect to relaxed pij and also have the sampling probabilities available for
estimation. We show that we can express a set of relaxed probabilities (for some constant c)
as the outer product of two probability distributions over points, γρT . The distribution γ
has the universal PPS property with respect to some constant c′. The probability distribution
ρ has the property that for some constant c′′, for all v, ρv ≥ c′′ W(v)∑

u
W(u)

. We now observe

that for some constant c = c′c′′, for all pairs u, v, ρuγv ≥ cdist(u,v)
aps(V ) . That is, we can sample
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according to puv = ρuγv and satisfy the relaxed conditions and obtain the desired statistical
guarantees.

What remains is to provide details on (i) how we use the vectors γ and ρ to obtain a
sample of pairs and (ii) how we compute such vectors that satisfy our conditions within a
polynomially small error. These are addressed in the next two subsections.

5.1 Sampling pairs using the coefficient vectors
We show how we obtain k samples (v, u) from γvρu efficiently, using computation that is
O(n+ k). Many sampling schemes (with or without replacement) will have the concentration
properties we seek and the implementations are fairly standard. For completeness, we
describe a scheme that computes independent samples with replacement. Our scheme obtains
a sample from V × V by sampling independently a point i according to the probability
distributions γ and a point j according to distribution ρ and returning (i, j).

What remains is to describe how we can obtain k independent samples with replacement
from a probability vector γ in time O(n+ k).

We arbitrarily order the points, WLOG i ∈ V is the ith point in the order. We compute
ai =

∑
h<i γh and associate the intervals [ai, ai + γi] with the point i.

To randomly draw a point i ∈ V according to γ, we can draw a random number x ∼ U [0, 1]
and take the point i ∈ V such that x ∈ [ai, ai + γi). If we have k sorted random values, we
can map all of them to points in V in O(n) time using one pass on the sorted values and the
sorted nodes. For completeness, we describe one way to obtain a sorted set of k independent
random draws x1, . . . , xk ∼ U [0, 1] using O(k) operations: (i) We draw k values y1, . . . yk
where yi ∼ Exp[k+ 1− i] is exponentially distributed with parameters k+ 1− i. This can be
done by drawing independent uniform ui ∼ U [0, 1] and take yi = − ln(ui)/(k + 1− i). (iii)
Now observe that x′i ≡

∑
j≤i yj for i ∈ [k] are k independent exponential random variables

with parameter 1 which are sorted in increasing order. We can then transform x′i to uniform
random variables xi using xi = 1 − exp(−x′i). Since the transformation is monotone, we
obtain that xi are sorted. Note that prefix sums of yj and hence all xi can be computed in
O(k) operations. Also note that we only need precision to the point needed to identify the
point that each xi maps into.

5.2 Computing the coefficient vectors
We recall that universal PPS coefficients can be computed using Algorithm 1 using n distance
computations (and O(n) additional computation), when our base set S0 contains a well
positioned point. The probability vector γ we work with is the universal PPS coefficients
scaled to have a sum of 1.

We next discuss how we obtain the probability distribution ρ. We show that given
a 0.6n well positioned point (see Section 4.6), we can compute ρv that has the claimed
properties with very high probability. From Lemma 13, we can identify a point that is
0.6n well positioned with probability at least (1− 1/poly(n)), using only O(log2 n) distance
computations. We use the following lemma, which a variation of claim used for the pivoting
upper bound estimate in [6]. What it roughly says is that for any node u and any node z
that is within a constant times some quantile distance from u, we can get a constant factor
approximation of W(u) from W(z) and dist(u, z).

I Lemma 14. Consider a point u and a point z such that dist(u, z) is at most c times the
distance of the (qn)th closest point to u. Then

W(u) ≤ n dist(u, z) + W(z) ≤
(

1 + 2c
1− q

)
W(u) .

APPROX/RANDOM’15
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Proof. Left hand side is immediate from the triangle inequality. To establish the right
hand side, first note that (1 − q)n of the points are at least as far as dist(z, u)/c, thus
W (u) ≥ (1−q)

c n dist(u, z). From triangle inequality we have W(z) ≤ W(u) + n dist(u, z).
Combining we get:

W(z) + n dist(u, z) ≤W(u) + 2n dist(u, z) ≤ (1 + 2c
1− q ) W(u) . J

Now consider a point z that is 0.6n well positioned and using the rough estimates

Ŵ′(u) = n dist(u, z) + W(z)

for all points u and accordingly the sampling probabilities

ρi = Ŵ′(i)∑
j Ŵ′(j)

.

By definition, for all points u, the point z satisfies dist(u, z) ≤ 3m0.6n(u). We therefore
can apply the lemma with q = 0.6 and c = 3 and obtain that for all v, ρv ≥ 1−q

1−q+2c
W(v)∑

j
W(j)

.

Note that given z, the vector ρ can be computed for all points using n distance computations,
from z to all other points.

6 Uniform sampling based estimates

For completeness, we briefly present another solution for the all-points/nodes problem that
is based on uniform sampling. The disadvantages over our weighted sampling approach is
that it provides biased estimates and requires ε−2 logn samples even when we are interested
only in per-query guarantees.

To do so, we use a key lemma proved by Indyk [18, 17]. A proof of this lemma also
appears in [22], and used to establish the correctness of his approximate 1-median algorithm.

I Lemma 15. Let Q ⊂ V , |Q| = k sampled uniformly at random (from all subsets of size k).
Let u and v be two vertices such that W(v) ≥ (1 + ε) W(u). Then Pr(WQ(u) > WQ(v)) ≤
e−ε

2|Q|/64.

Lemma (15) shows that if the average distance of two nodes differ by a factor larger than
1 + ε, and we use a sample of size Ω(ε−2) then the probability that the vertex of smaller
average distance has larger average distance to the sample decays exponentially with the
sample size. This lemma immediately implies that the 1-median with respect to a sample of
size O(logn/ε2) is (1 + ε)-approximate 1-median with high probability.

To approximate all-pairs W(u), we use a uniform sample of size O(ε−2 logn) and order
the nodes according to the average distance to the sample. Using the lemma, and comparing
to the ideal sorted order by exact W(v), two nodes v, u that are transposed have with high
probability W(v) and W(u) within 1± ε from each other.

Recall however that the average distance to the uniform sample can be a very bad
approximation of the average distance to the data set. We therefore perform adaptively
another set of O(ε−1 logn) single-source distance computations to compute exact W(v) of
enough nodes in this nearly sorted order, so that the difference between exact W(v) of
consecutive processed nodes is within (1± ε).

We also mention here, for completeness, an improved approximate 1-median algorithm
provided by Indyk. This algorithm only applies in metric spaces and computes a (1 + ε)-
approximate 1-median with constant probability using only O(nε−2) distance computations
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(eliminating the logarithmic factor). The algorithm works in iterations, where in each
iteration a fraction of the points, those with largest average distance to the current sample,
are excluded from further considerations. The sample size is then increased by a constant
factor, obtaining more accurate estimates for the remaining points. The final sample size
used is linear, but the set of remaining nodes is very small. This algorithm only applies in
metric spaces because, as we mentioned in the introduction, arbitrary distance computations
are not efficient in graphs. Indyk’s approach can be extended to compute any approximate
quantile of the distribution with similar probabilistic guarantees.

7 Hardness of Computing Sum of All-Pairs Distances

In this section we show that if there is a truly subcubic algorithm for computing aps(V ),
the exact sum of all pairs distances then there is a truly subcubic algorithm for computing
All Pairs Shortest Paths (APSP).

Williams and Williams [23] showed that APSP is subcubic equivalent to negative triangle
detection. In the negative triangle detection problem we are given an undirected weighted
graph G = (V,E) with integer weights in {−M, ...,M} and the goal is to determine if the
graph contains a negative triangle, that is, a triangle whose edge weights sum up to a
negative number. Therefore to show that a subcubic algorithm for aps(V ) implies a subcubic
algorithm to APSP it suffices to give a subcubic reduction from the negative triangle detection
problem to computing aps(V ). We show this by the following lemma.

I Lemma 16. Given a O(T (n,m)) time algorithm for computing the sum of all distances
(aps(V )) there is O(T (n,m) + n2) time algorithm for detecting a negative triangle.

Proof. For an input instance G = (V,E) for the negative triangle detection problem we
construct a graph G′ = (V ′, E′) for the sum of all distances problem. The vertex set V ′ is
the union of three copies of V , that is V ′ = V1 ∪ V2 ∪ V3 where vertex ui ∈ Vi, i = 1, 2, 3,
corresponds to vertex u ∈ V . We set E′ = {(u, v) | u, v ∈ V ′}, that is G′ is a complete graph.

Let ω(e) denote the length of an edge e ∈ E. Recall that ω(e) ∈ {−M, ...,M}. Let
N = 4M . We define the length ω′(e) of an edge e ∈ E′ as follows. For every (u, v) ∈ E we
define ω′(u1, v2) = N + ω(u, v), ω′(u2, v3) = N + ω(u, v), and ω′(u3, v1) = 2N − ω(u, v). We
set w(e) = 3N/2 for any other edge e ∈ E′.

We claim that aps(V ′) =
∑

(u,v)∈E′ ω
′(u, v) if and only if G does not contain a negative

triangle. In other words, we claim that either every edge in G′ is a shortest path or G
contains a negative cycle.

To see the first direction, assume G contains a negative triangle (u, v), (u, x), (x, v). Now
consider the path P = (u3, x2), (x2, v1) from u3 to v1. Note that the length of this path is
ω′(u3, x2) +ω′(x2, v1) = N +ω(u3, x2) +N +ω(x2, v1) < 2N −ω(u3, v1) = ω′(u3, v1), where
the strict inequality follows since (u, v), (u, x), (x, v) is a negative triangle. If follows that
aps(V ′) <

∑
(u,v)∈E′ ω

′(u, v).
To see the second direction, assume that aps(V ′) <

∑
(u,v)∈E′ ω

′(u, v). We need to show
that G has a negative triangle.

We first claim that for every edge (u, v) which does not correspond to an edge in G (and
hence w(e) = 3N/2) we have ω′(u, v) = distG′(u, v) (regardless if G has a negative triangle
or not). To see this, note that ω′(u, v) = 3N/2 = 6M and that every path from u to v that
consists of more than one edge is of weights at least 2N − 2M = 6M . The same argument
also holds for every edge from V1 to V2 and for every edge from V2 to V3.

It follows that only edges (x, y) ∈ E′ such that x ∈ V3 and y ∈ V1 may not be shortest
paths. If aps(V ′) <

∑
(u,v)∈E′ ω

′(u, v) then there must be an edge (u3, v1) ∈ E′ such that

APPROX/RANDOM’15



676 Average Distance Queries through Weighted Samples in Graphs and Metric Spaces

u3 ∈ V3 and v1 ∈ V1 and the edge (u3, v1) is not a shortest path. It is not hard to verify that
only paths of the form (u3, x2), (x2, v1) such that both edges (u3, x2) and (x2, v1) correspond
to edges of G, could be shorter than the path (u3, v1). Let (u3, x2), (x2, v1) be the shortest
path from u3 to v1. We get that N + ω(u3, x2) +N + ω(x2, v1) = ω′(u3, x2) + ω′(x2, v1) <
ω′(u3, v1) = 2N − ω(u3, v1). So ω(u3, x2) + ω(x2, v1) + ω(u3, v1) < 0 and G has a negative
triangle. J

8 Extensions and Comments

8.1 The distribution of centrality values
What can we say about the centrality distribution? First we observe that the range of
average distance W(v)/n values is between D/n to D, where D is the diameter (maximum
distance between a pair of points in V ). To see the upper bound, note that the average of
values that are at most D, is at most D. For the lower bound, let u and v be nodes such
that dist(u, v) = D. Then for all h ∈ V , from triangle inequality, dist(u, h) + dist(h, v) ≥ D,
thus, W(h) ≥ D.

I Lemma 17. The highest average distance value must satisfy

max
v∈V

W(v)/n ≥ D/2 .

Proof. Consider the two nodes u and v such that dist(u, v) = D. From triangle inequality, any
point h ∈ V has dist(u, h) + dist(h, v) ≥ D. Summing over h we obtain that W(u) + W(v) ≥
nD. Therefore, either W(u) or W(v) is at least nD/2. J

I Lemma 18. If z = arg minv∈V W(v) is the 1-median, then at least half the nodes satisfy
W(v) ≤ 3 W(z).

Proof. Take the median distance m(z) from z. Then the average distance from z is at least
m(z)/2. Thus, n ·m(z) ≤ 2 W(z). Consider now a node v that is one of the n/2 closest to z.
For any node u, dist(v, u) ≤ dist(z, u) +m(z). Therefore,

W(v) =
∑
u

dist(v, u) ≤
∑
u

dist(z, u) + nm(z) ≤ nm(z) + W(z) ≤ 3 W(z) . J

Last we observe that it is easy to realize networks where there is a large spread of centrality
values. At the extreme, consider a single point (node) that has distance D to a very tight
cluster of n− 1 points. The points in the cluster have W(v) ≈ D whereas the isolated point
has W(v) ≈ nD. More generally, networks (or data sets) containing well separated clusters
with different sizes would exhibit a spread in centrality values.

A side comment is that as a corollary of the proof of Lemma 17 we obtain that the all
pairs sum in metric spaces can be estimated with CV ε and good concentration by the scaled
average of distances of O(nε−2) pairs sampled uniformly at random – as established in [2].
This is because there are at least n− 1 pairwise distances that are at least D/2, since each
point that is not an endpoint of the diameter is of distance at least D/2 from at least one of
the endpoints. Since the maximum distance is D, this immediately implies our claim. Recall,
however, that when we are restricted to using O(ε−2) single-source distance computations
from a uniform sample of nodes, the estimates can have large CV, but a similar bound can
still be obtained using our weighted sampling approach (see Corollary 3).
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8.2 Limitation to distances

We showed that any set of points V in any metric space can be “sparsified” in the sense that
a weighted sample of size O(ε−2) allows us to estimate W(v) for any point v in the space.
We refer to such a sample as a universal PPS sample, since it encapsulates a PPS sample of
the entries in each row of the matrix. One can ask if we can obtain similar sparsification
with respect to other nonnegative symmetric matrices. We first observe that in general, the
size of a universal PPS sample may be Ω(n): Consider a matrix An×n so that for i ∈ [n/2],
A2i−1,2i � 0 but all other entries are 0 (or close to 0). The average of each row is dominated
by the other member of the pair (2i− 1, 2i), and therefore, any universal PPS sample must
sample most points with probability close to 1.

Such a matrix can not be realized with distances, as it violates the triangle inequality,
but it can be realized when entries correspond to (absolute value) of inner products of n
vectors in n-dimensional Euclidean space Rn. In this case, the sampling question we ask is
a well studied embedding problem [21], for which it is known that the size of a universal
PPS sample (the terminology leverage scores is used) can be of size Θ(dε−2), where d is the
dimension [9, 21]. Intuitively, the gap between the universal PPS size between distances and
inner products stems from the observation that being “far” (large distance) is something
that usually applies with respect to many nodes, whereas being “close” (large inner product)
is a local property.

8.3 Weighted centrality

Often different points v have different importance β(v). In this case, we would like our
centrality measure to reflect that by considering a weighted average of distances∑

i β(i) dist(xi, xj)∑
i β(i) .

Our results, and in particular, the sampling construction extend to the weighted setting.
First, instead of uniform base probabilities 1/n, we use PPS probabilities according to
β(i)/

∑
j β(j) for node i. Second, when considering distances and probabilities from a base

node, we use weight equal to the product of β(v) dist(u, v) (product of β and distance.).
Third, in the analysis, we need to take quantiles/medians with respect to β mass and not
just the number of points.

8.4 Adaptive (data dependent) sampling

We showed that the number of samples needed to determine an approximate 1-median on
graphs is O(ε−2 logn), where for each sample we perform a single-source distance computation.
This bound is worst case which materializes when the 1-median z is such that all other points
have W(u) = (1 + ε) W(z). In this case, only the exact 1-median qualifies as an approximate
1-median and also, since there are so many other points, some are likely to have estimated
Ŵ(u) < Ŵ(z) if we use a smaller sample. On realistic instances, however, we would expect
a larger separation between the 1-median and most other points. This would allow us to use
fewer samples if we adaptively determine the sample size. Such an approach was proposed in
[7] to identify a node with approximate maximum marginal influence and similarly can be
applied here for the 1-median.
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9 Conclusion

Weighted samples are often used as compact summaries of weighted data. With weighted
sampling, even of very skewed data, a PPS sample of size ε−2 would provide us with good
estimates with CV of O(ε) on the total sum of the population. The surprise factor of our
result, which relies only on properties of metrics, is that we can design a single set of sampling
probabilities, which we termed universal PPS, that forms a good weighted sample from the
perspectives of any point in the metric space. Moreover, we do so in an almost lossless way
in terms of the sample size to estimation quality tradeoffs. In particular, the sample size
does not depend on the number of points n or the dimension of the space. Another perhaps
surprising consequence of our results is that there is a rank-1 matrix that approximates the
PPS probabilities of the full pairwise distances matrix. The approximation can be expressed
as the outer product of two vectors, which can be computed using a linear number of distance
computations.
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Abstract
In this paper, two structural results concerning low degree polynomials over finite fields are
given. The first states that over any finite field F, for any polynomial f on n variables with degree
d ≤ log(n)/10, there exists a subspace of Fn with dimension Ω(d·n1/(d−1)) on which f is constant.
This result is shown to be tight. Stated differently, a degree d polynomial cannot compute an
affine disperser for dimension smaller than Ω(d ·n1/(d−1)). Using a recursive argument, we obtain
our second structural result, showing that any degree d polynomial f induces a partition of Fn
to affine subspaces of dimension Ω(n1/(d−1)!), such that f is constant on each part.

We extend both structural results to more than one polynomial. We further prove an analog
of the first structural result to sparse polynomials (with no restriction on the degree) and to
functions that are close to low degree polynomials. We also consider the algorithmic aspect of
the two structural results.

Our structural results have various applications, two of which are:
Dvir [11] introduced the notion of extractors for varieties, and gave explicit constructions of
such extractors over large fields. We show that over any finite field any affine extractor is also
an extractor for varieties with related parameters. Our reduction also holds for dispersers,
and we conclude that Shaltiel’s affine disperser [26] is a disperser for varieties over F2.
Ben-Sasson and Kopparty [6] proved that any degree 3 affine disperser over a prime field
is also an affine extractor with related parameters. Using our structural results, and based
on the work of Kaufman and Lovett [19] and Haramaty and Shpilka [17], we generalize this
result to any constant degree.
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1 Introduction

In this paper, we consider the following question concerning polynomials on n variables over
the field with q elements, Fq, where q is some prime power:

What is the largest number k = kq(n, d), such that any polynomial on n variables
over Fq, with degree1 at most d, is constant on some affine subspace of Fnq with
dimension k?

1 Here, and throughout the paper, by degree we mean total degree.

© Gil Cohen and Avishay Tal;
licensed under Creative Commons License CC-BY

18th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’15) /
19th Int’l Workshop on Randomization and Computation (RANDOM’15).
Editors: Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim; pp. 680–709

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.680
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


G. Cohen and A. Tal 681

A related question was studied by Tardos and Barrington ([28], Lemma 3) who proved
that for any prime power q and for any degree d polynomial f on n variables over the ring
Zq, there exists a “cube” with dimension k = Ω(n1/d), on which f is constant. That is,
there exist linearly independent vectors ∆1, . . . ,∆k ∈ Znq such that for every α ∈ {0, 1}k,
f(
∑k
i=1 αi∆i) = f(0). Although the problem studied in [28] is different than the problem

mentioned above in several respects, one can make use of the proof idea of Tardos and
Barrington and show that k2(n, d) = Ω(n1/(d−1)) for all n, d (see Appendix B).

The proof idea of [28] seems to be applicable to our problem only for q = 2, and new
ideas are required for larger fields. For any q, the case d = 1 is trivial – kq(n, 1) = n − 1.
The case d = 2, at least over fields of characteristic 2, is also well understood. By Dickson’s
theorem ([9], Theorem 199), kq(n, 2) ≥ bn/2c for fields of characteristic 2. This is tight, as
can be seen by considering the inner product function x1x2 + x3x4 + · · ·+ xn−1xn.

1.1 Our Results
Our first result is an asymptotically tight upper and lower bounds on kq(n, d) for any q and
d < log(n)/10. The following theorem gives a lower bound for kq(n, d). In fact, it has a
stronger guarantee which is required by one of our applications (see Theorem 6). Informally,
for any degree d polynomial f and a point u0 ∈ Fnq , there exists a large subspace U such
that f is constant on u0 + U . Note that this is equivalent to saying that there exists a large
linear subspace on which f is constant (namely, the affine shift is by the zero vector).

I Theorem 1 (Structural Result I). For any n, d, let k be the least integer such that

n ≤ k + (d+ 1) ·
d−1∑
j=0

(d− j) ·
(
k + j − 1

j

)
. (1)

Let q be a prime power. Let f : Fnq → Fq be a degree d polynomial, and let u0 ∈ Fnq . Then,
there exists a subspace U ⊆ Fnq of dimension k such that f |u0+U is constant.

In particular, there exists a universal constant c1 ∈ (0, 1) such that for all n, d, q, it
holds that kq(n, d) ≥ c1 · n1/(d−1). Moreover, for d ≤ log(n)/10 it holds that kq(n, d) =
Ω(d · n1/(d−1)).

Few remarks are in order:

Tightness. Theorem 1 is tight for d ≤ log(n)/10. Indeed, one can show that, with probability
at most q−(kd),2 a random degree d polynomial on n variables over Fq is constant on
any fixed affine subspace of dimension k. There are at most q(k+1)n affine subspaces
of dimension k, so by the union bound, kq(n, d) must be smaller than any k such that(
k
d

)
> (k + 1)n. Hence, kq(n, d) < d1+1/(d−1) · n1/(d−1). For d ≤ log(n)/10, the ratio

between our upper and lower bound is dO(1/d) = 1 +O(log(d)/d).
Low degree polynomials, affine dispersers and affine extractors. An affine disperser for

dimension k is a function f : Fnq → Fq with the following property. For every affine
subspace u0 + U ⊆ Fnq of dimension k, f restricted to u0 + U is not constant 3. Thus,
in the language of pseudorandomness, Theorem 1 states that a degree d ≤ log (n)/10

2 The expression
(

k
d

)
in the exponent can be replaced by the number of solutions to the equation

r1 + · · ·+ rk ≤ d, where ri ∈ {0, . . . , q − 1}.
3 An alternative definition requires that almost all field elements are obtained by f on u0 + U .

APPROX/RANDOM’15



682 Two Structural Results for Low Degree Polynomials and Applications

polynomial is not an affine disperser for dimension o(d · n1/(d−1)), and in particular,
polynomials with constant degree are not affine dispersers for sub-polynomial dimension.
For the special case q = 2, based on the work of Ben-Eliezer et al. [2], one can say
something stronger regarding the tightness of Theorem 1. A function f : Fnq → Fq is called
an affine extractor for dimension k with bias ε, if for every affine subspace u0 + U ⊆ Fnq
of dimension k, it holds that f(x), where x is sampled uniformly from u0 + U , is ε-close
in statistical distance, to the uniform distribution over Fq. By [2] it holds that for every
d ≥ 1, there exists a degree d affine extractor f : Fn2 → F2 for any k ≥ Ω(d · n1/(d−1)),
with ε = 2−Ω(k/d)(see Section 3.3).

The case of unbounded degree. Theorem 1 yields a non-trivial bound only for d ≤ O(logn).
When the degree of the polynomial is unbounded things behave differently. For example,
it is considered a folklore that any function f : Fn2 → F2 is constant on some affine
subspace with dimension Ω(logn). Namely, k2(n,∞) = Ω(logn) (this is, in fact, tight).
On the other hand, Gabizon and Raz [12] noted that the polynomial x1

1 + x2
2 + · · ·+ xnn

over the field with n+ 1 elements is not constant on any dimension 1 affine subspace (see
also [8]). Thus, kn+1(n,∞) = 1.

The independence of the field size. Note that the bound on kq(n, d) in Theorem 1 is in-
dependent of q. That is, when considering bounded degree polynomials, the field size
does not affect kq(n, d). Throughout the paper we focus on low degree polynomials –
polynomials of degree up to log(n)/10. In this range of parameters, Theorem 1 and the
fact that it is tight, allow us to suppress the field size and write k(n, d) instead of kq(n, d),
as we do from here on.

Partition of Fn to affine subspaces, induced by a low degree polynomial
Theorem 1 states that for any degree d polynomial f on n variables, there exists at least one
large affine subspace, restricted to which, f is constant. However, for some of our applications
we need a stronger structural result. More specifically, we ask what is the maximum number
K = Kq(n, d), such that any degree d polynomial on n variables over Fq induces a partition
of Fnq to dimension K affine subspaces, on each of which f is constant. Using Theorem 1, we
show that Kq(n, d) = Ω(n1/(d−1)!). That is, we obtain the following result.
I Theorem 2 (Structural Result II). There exists a universal constant c2 > 0 such that the
following holds. Let q be a prime power. Let f : Fnq → Fq be a degree d polynomial. Then,
there exists a partition of Fnq to affine subspaces (not necessarily shifts of the same subspace),
each of dimension c2 · n1/(d−1)!, such that f is constant on each part.
We do not know whether the lower bound in Theorem 2 for Kq(n, d) is tight or not for all d
(note that it is tight for d ≤ 3), and leave this as an open problem. More precisely, we ask
what is the asymptotic behavior of Kq(n, d)? Does it depend on q for, say, constant d?

Generalization of the structural results to many polynomials
Being a natural generalization and also necessary for some of our applications, we generalize
the two structural results to the case of any number of polynomials (see Section 3.4). Let
f1, . . . , ft : Fnq → Fq be polynomials of degree at most d. The generalization of the first
structural result states that there exists an affine subspace of dimension Ω((n/t)1/(d−1)) on
which each of the t polynomials is constant (see Theorem 19). By applying a probabilistic
argument, one can show that the dependence in t is tight. For the second structural result,
the guaranteed dimension in Theorem 2 is replaced by Ω(n1/(d−1)!/te), where e is the base
of the natural logarithm (see Theorem 20).
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The algorithmic aspect
We further study the algorithmic aspect of the structural results (see Section 4). We devise
a poly(n)-time deterministic algorithm (see Theorem 22), that given a degree d polynomial
f : Fn2 → F2 as a black-box, performs poly(n) queries, and outputs a subspace of dimension
Ω(k(n, d)), restricted to which, f has degree at most d − 1. By applying this algorithm
recursively d times, one can efficiently obtain a subspace of dimension Ω(n1/(d−1)!) on which
f is constant. Our algorithm only works for the binary field. Devising an algorithm for
general fields is a natural problem.

Note that there is a gap between k(n, d) and the dimension of the affine subspace that
our algorithm produce. A natural open problem is whether this gap can be eliminated.
Specifically, we ask whether there is a poly(n)-time algorithm that, given a black-box access
to a degree d polynomial f : Fn2 → F2, finds an affine subspace with dimension k(n, d) on
which f is constant?

Whether there exists an algorithm as in the problem above is not at all clear to us.
Verifying that a degree d polynomial is constant on a given affine subspace with dimension
k(n, d) can be done in time O(k(n, d)d) ≤ O(n2), and it might be the case that this problem
is expressive enough to be NP-hard. We show that the latter scenario is unlikely, at least for
constant d, by devising an exp(n1− 1

d−1 ) · nd-time algorithm that outputs an affine subspace
with dimension Ω(k(n, d)) on which f is constant (see Theorem 24). We note that the naive
algorithm iterates over all

( 2n
k(n,d)

)
= exp(n1+ 1

d−1 ) affine subspaces with dimension k(n, d). It
is also worth mentioning that this algorithm works for all finite fields.

Sparse polynomials

We further give an analog of the first structural result to sparse polynomials (regardless of
their degree) over any finite field. We have the following.

I Theorem 3. Let q be a prime power. For any integer c ≥ 1 the following holds. Let f be a
polynomial on n variables over Fq, with at most nc monomials. Then, there exists an affine
subspace of dimension Ω

(
n1/(4(q−1)c)) on which f is constant.

We note that unlike in the case of low degree polynomials, the field size q does affect the
dimension of the affine subspace promised by Theorem 3. Some sort of dependency cannot
be avoided. Indeed, as mentioned above, the polynomial x1

1 +x2
2 + · · ·+xnn over the field with

n+ 1 elements is not constant on any dimension 1 affine subspace, even though it has only
n monomials. On the other hand, Theorem 3 gives no guarantee already for q = Ω(logn),
while the example above requires fields of size Ω(n). We leave open the problem of improving
upon the dependence of Theorem 3 in the field size q, or proving that this dependence is
optimal.

We note that for the special case q = 2, the lower bound in Theorem 3 is Ω
(
n1/(4c)),

which is essentially tight up to the constant 4 in the exponent, as implied by our tightness
result for degree d polynomials. We do not know whether the constant 4 is necessary. Indeed,
for degree d polynomials (which may have nd monomials), the guarantee given by Theorem 1
is stronger, namely, Ω

(
n1/(d−1)).

Functions that are close to low degree polynomials

Theorem 1 implies that any function that is close to a low degree polynomial, is constant on
some large affine subspace.
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I Corollary 4. Let q be a prime power. Let g : Fnq → Fq be a function that agrees with some
degree d polynomial f : Fnq → Fq on all points but for some subset B ⊆ Fnq . Then, there
exists an affine subspace with dimension Ω((n− logq(|B|))1/(d−1)) on which g is constant.

To see that, note that by averaging argument there is an affine subspace w+W of dimension
n− logq(|B|)− 1 on which f and g agrees. Applying Theorem 1 to f |w+W gives an affine
subspace u+ U ⊆ w +W on which f , and thus g, is constant on. We suspect that better
parameters can be achieved.

1.2 Applications
We now present several applications of our structural results.

Extractors and Dispersers for Varieties over all Finite Fields
Let F be some finite field. An affine subspace of Fn can be thought of as the set of common
zeros of one or more degree 1 polynomials with coefficients in F. Recall that an affine
extractor over the field F is a function f : Fn → F that has small bias on every large enough
affine subspace. In [11], the study of the following natural generalization was initiated:
construct a function that has small bias on the set of common zeros of one or more degree
d > 1 polynomials. In general, the set of common zeros of one or more polynomials is called
a variety. For a set of polynomials g1, . . . , gt on n variables over F, we denote their variety by
V(g1, . . . , gt) = {x ∈ Fn : g1(x) = · · · = gt(x) = 0}. A function f : Fn → F as above is called
an extractor for varieties.

In [11], two explicit constructions of extractors for varieties were given. For simplicity,
we suppress here both the bias of the extractor and the number of output bits. Dvir’s
first construction works under no assumption on the variety size (more precisely, some
assumption is made, but that assumption is necessary). The downside of this construction
is that the underlining field is assumed to be quite large, more precisely, |F| > dΩ(n2). The
second construction works for fields with size as small as poly(d), however the construction is
promised to work only for varieties with size at least |F|n/2. Dvir applies tools from algebraic
geometry for his constructions.

Even the construction of affine extractors, which is a special case of extractors for varieties,
is extremely challenging. Indeed, the (far from optimal) constructions known today use either
very sophisticated exponential sum estimates [4, 33] or involved composition techniques [20],
where the correctness relies, among other results, on deep structural results from additive
combinatorics [30] and on XOR lemmas for low degree polynomials [32, 3]. The same can be
said about the constructions of affine dispersers.

Given the difficulties in constructing affine extractors and dispersers, one may suspect
that the construction of extractors and dispersers for varieties will be substantially more
challenging, especially for small fields that seem to be immune against algebraic geometry
based techniques. Nevertheless, based on our structural results, the following theorem states
that any affine extractor is also an extractor for varieties with related parameters.

I Theorem 5. Let q be a prime power. For any integers n, d, t the following holds. Let
f : Fnq → Fq be an affine extractor for dimension Ω(n1/(d−1)!/te) with bias ε, where e is the
base of the natural logarithm. Then, f is an extractor with bias ε for varieties that are the
common zeros of any t polynomials, each of degree at most d.

In fact, one can view Theorem 5 as an explanation for the difficulty of constructing affine
extractors for dimension nδ for constant δ < 1.
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We also obtain a reduction that does not depend on the number of polynomials defining
the variety, but rather on the variety size (see Theorem 26). The proof idea in this case is
to “approximate” the given variety by a variety induced by a small number of low degree
polynomials, and then apply Theorem 5.

The state of the art explicit constructions of affine extractors for the extreme case q = 2,
work only for dimension Ω(n/

√
log logn) [4, 33, 20], and thus the reduction in Theorem 5 only

gives an explicit construction of an extractor for varieties defined by quadratic polynomials
(and in fact, up to (log logn)1/(2e) quadratic polynomials). However, a similar reduction to
that in Theorem 5 also holds for dispersers.

I Theorem 6. Let n, d, t be integers such that d < log(n/t)/10. Let f : Fnq → Fq be an affine
disperser for dimension Ω(d · (n/t)1/(d−1)). Then, f is a disperser for varieties that are the
common zeros of any t polynomials of degree at most d.

Over F2, an explicit construction of an affine disperser for dimension as small as 2log0.9 n is
known [26]. Thus, we obtain the first disperser for varieties over F2.

I Theorem 7. For any n, d, t such that d < (1− on(1)) · log (n/t)
log0.9 n

, there exists an explicit con-
struction of an affine disperser for varieties which are the common zeros of any t polynomials
of degree at most d. In particular, when t ≤ nα for some constant α < 1, the requirement on
the degree is d < (1− α− on(1)) · log0.1 n.

A few words regarding the limitation of the reduction in Theorem 6 are in order. Note
that even if f is an optimal affine disperser, that is, a disperser for dimension O(logn),
Theorem 6 only guarantees that f is a disperser for varieties defined by degree O(logn)
polynomials. One cannot expect much more from the reduction. Indeed, there exists a degree
O(logn) polynomial that computes an optimal affine disperser (this can be proven via a
probabilistic argument. See also Theorem 36). However, this affine disperser is clearly not a
disperser for varieties defined by even a single degree O(logn) polynomial.

Thus, the reduction in Theorem 6 is useful only for varieties defined by degree o(logn)
polynomials. A recent work of Hrubeš and Rao [16] shows that it would be challenging to
construct an explicit f which is an extractor (or even a disperser) for varieties of size 2ρn
defined by degree nε polynomials over F2, for any constants 0 < ε, ρ < 1. Indeed, such a
function would solve Valiant’s problem [29], since f cannot be computed by Boolean circuits
of logarithmic depth and linear size.

From Affine Dispersers to Affine Extractors
Constructing an affine disperser is, by definition, an easier task than constructing an affine
extractor. Nevertheless, Ben-Sasson and Kopparty [6] proved (among other results) that any
degree 3 affine disperser is also an affine extractor with comparable parameters. 4 Using
the extension of Theorem 1 to many polynomials, we are able to generalize the reduction of
Ben-Sasson and Kopparty, over prime fields, to any degree d ≥ 3.

I Theorem 8. Let p be a prime number. For all d ≥ 3 and δ > 0, there exists c = c(d, δ)
such that the following holds. Let f : Fnp → Fp be an affine disperser for dimension k, which
has degree d as a polynomial over Fp. Then, f is also an affine extractor for dimension
k′ , c · kd−2 with bias δ.

4 A reduction from “low rank” extractors to dispersers in the context of two sources was also obtained,
by Ben-Sasson and Zewi [7], conditioned on the well-known Polynomial Freiman-Ruzsa conjecture from
additive combinatorics.
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Note that Theorem 8 is only interesting in the case where kd−2 < n. However, this case
is achievable since a random polynomial of degree d is an affine disperser for dimension
O(d · n1/(d−1)). In particular, Theorem 8 implies that an explicit construction of an optimal
affine disperser that has a constant degree as a polynomial, suffices to break the current
natural barrier in the construction of affine extractors, namely, constructing affine extractors
for dimension n1−δ for some constant δ > 0 (here δ = 1/(d− 1)).

On top of Theorem 1, the key ingredient we use in the proof of Theorem 8 is the work of
Kaufman and Lovett [19], generalizing a result by Green and Tao [13] (see Section 6). For
d = 4, we get a better dependency between k and k′ based on the work of Haramaty and
Shpilka [17] (see Theorem 28).

AC0[⊕] Circuits and Affine Extractors / Dispersers
Constructing affine dispersers, and especially affine extractors, is a challenging task. As
mentioned, the state of the art explicit constructions for affine extractors over F2 work only
for dimension Ω(n/

√
log logn). By a probabilistic argument however, one can show the

existence of affine extractors for dimension (1 + o(1)) logn (see Lemma 31). Thus, there is
an exponential gap between the non-explicit construction and the explicit ones.

It is therefore tempting to try and utilize this situation and prove circuit lower bounds
for affine extractors. This idea works smoothly for AC0 circuits. Indeed, by applying the
work of Håstad [14], one can easily show that an AC0 circuit on n inputs cannot compute
an affine disperser for dimension o(n/polylog(n)) (see Corollary 30). However, strong lower
bounds for AC0 circuits are known, even for much simpler and more explicit functions such
as Parity and Majority. Thus, it is far more interesting to prove lower bounds against circuit
families for which the known lower bounds are modest. One example would be to show that
a De Morgan formula of size O(n3) cannot compute a good affine extractor, improving upon
the best known lower bound [15]. 5

Somewhat surprisingly, we show that even depth 3 AC0[⊕] circuit (that is, AC0 circuits
with XOR gates) can compute an optimal affine extractor over F2. In fact, the same
construction can also be realized by a polynomial-size De Morgan formula and has degree
(1 + o(1)) logn as polynomial over F2 (see Theorem 36).

Theorem 36 is implicit in the works of [22, 24] who studied a similar problem in the
context of bipartite Ramsey graphs (that is, two-source dispersers). We give an alternative
proof in Appendix A, which can be extended to work also in the context of bipartite Ramsey
graphs.

Given that depth 3 AC0[⊕] circuits exhibit the surprising computational power mentioned
above, it is natural to ask whether depth 2 AC0[⊕] circuit can compute a good affine extractor.
We stress that even depth 2 AC0[⊕] circuits should not be disregarded easily! For example,
such circuits can compute, in a somewhat different setting, optimal Ramsey graphs (see [18],
Section 11.7). Moreover, any degree d polynomial f : Fn2 → F2 can be computed by a depth
2 AC0[⊕] circuit with size nd. Nevertheless, we complement the above result by showing that
a depth 2 AC0[⊕] circuit cannot compute an affine disperser for sub-polynomial dimension.
The proof is based on the following reduction.

I Lemma 9. Let C be a depth 2 AC0[⊕] circuit on n inputs, with size nc. Let k <

n/10− c log(n). If C computes an affine disperser for dimension k, then there exists a degree
2c polynomial over F2 on

√
n/5 variables which is an affine disperser for dimension k.

5 The property of being an affine extractor meets the largeness condition of the natural proof barrier [23].
However, it does not necessarily get in the way of improving existing polynomial lower bounds.
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The proof of Lemma 9 uses ideas from our proof of the structural result for sparse
polynomials (see Lemma 21). Lemma 9 together with Theorem 1 imply the following
theorem.

I Theorem 10. Let C be a depth 2 AC0[⊕] circuit on n inputs, with size nc, which is an
affine disperser for dimension k. Then, k > k(

√
n/5, 2c) = Ω(n1/4c).

Good Affine Extractors are Hard to Approximate by Low Degree
Polynomials
Using our second structural result, Theorem 2, we obtain an average-case hardness result,
or in other words, correlation bounds for low degree polynomials. Namely, we show that
any affine extractor with very good parameters cannot be approximated by low degree
polynomials over F2.

I Corollary 11. Let f : Fn2 → F2 be an affine extractor for dimension k with bias ε. Then,
for any polynomial g : Fn2 → F2 of degree d such that k = Ω(n1/(d−1)!), it holds that

Cor(f, g) , E
x∼Fn2

[
(−1)f(x) · (−1)g(x)

]
≤ ε.

Proof. Let g be a degree d polynomial over F2 on n variables. By Theorem 2, there exists a
partition of Fn2 to affine subspaces P1, P2, . . . , P`, each of dimension k = Ω(n1/(d−1)!), such
that for all i ∈ [`], g|Pi is some constant g(Pi). Thus,

Cor(f, g) =
∣∣∣∣ E
x∼Fn2

[(−1)f(x)+g(x)]
∣∣∣∣ =

∣∣∣∣ E
i∼[`]

E
x∼Pi

[(−1)f(x)+g(Pi)]
∣∣∣∣

≤ E
i∼[`]

∣∣∣∣(−1)g(Pi) · E
x∼Pi

[(−1)f(x)]
∣∣∣∣ ,

which is at most ε since f is an affine extractor for dimension k with bias ε. J

As mentioned, explicit constructions of affine extractors for dimension Ω(n/
√

log logn)
are known. Corollary 11 implies that these extractors cannot be approximated by quadratic
polynomials. Corollary 11 also implies that for any constant β ∈ (0, 1), affine extractors for di-
mension k ≤ 2(logn)β with bias ε have correlation ε with degree d ≤ Oβ (log logn/ log log logn)
polynomials.6 Unfortunately, an explicit construction for extractors with such parameters
has not yet been achieved.

We also note that stronger correlation bounds are known in the literature for explicit
(and simple) functions (see [31] and references therein). Nevertheless, we find the fact that
any affine extractor has small correlation with low degree polynomials interesting.

The Granularity of the Fourier Spectrum of Low-Degree Polynomials
over F2

The bias of an arbitrary function f : Fn2 → F2 is clearly some integer multiplication of 2−n.
Theorem 2 readily implies that the bias of a degree d polynomial on n variables has a
somewhat larger granularity – the bias is a multiplication of 2Ω(n1/(d−1)!)/2n by some integer.7

6 This is the best d we can guarantee for any k, and we gain nothing more by taking k = O(log n).
7 Throughout the paper, for readability, we supress flooring and ceiling. In the last expression, however,

it should be noted that we mean 2k−n, where k is some integer such that k = Ω(n1/(d−1)!).
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In fact, Theorem 2 implies that all Fourier coefficients of a low degree polynomial has this
granularity. To see this, apply Theorem 2 to obtain a partition P1, . . . , P` of Fn2 to affine
subspaces of dimension k = Ω(n1/(d−1)!), such that for each i ∈ [`], f |Pi is some constant
f(Pi). Let β ∈ Fn2 . Then,

2n · f̂(β) =
∑
x∈Fn2

(−1)〈β,x〉 · (−1)f(x) =
∑̀
i=1

∑
x∈Pi

(−1)〈β,x〉 · (−1)f(x)

=
∑̀
i=1

(−1)f(Pi) ·
∑
x∈Pi

(−1)〈β,x〉.

The proof then follows as for all i ∈ [`], the inner sum
∑
x∈Pi (−1)〈β,x〉 is either 0 or ±2k.

1.3 Proof Overview
In this section we give proof sketches for some of our structural results. We start with
Theorem 1, and consider first the special case q = 2. As mentioned, the proof for this special
case follows the proof idea of [28]. We then consider general finite fields and present the new
ideas required for this case.

We are given a point u0 ∈ Fn2 and assume, without loss of generality, that f(u0) = 0. We
iteratively construct affine subspaces, restricted to which, f is zero. We start with affine
subspaces of dimension 0, which are just the singletons {x}, where x ∈ Fn2 is such that
f(x) = 0. Assume that we were able to find basis vectors ∆1, . . . ,∆k for a subspace U such
that f restricted u0 + U is constantly 0. Consider all cosets x + U , restricted to which f
is constantly 0. We call such cosets good. Clearly the coset u0 + U is good. If at least one
more good coset x+ U exists, then we can pick a new direction ∆k+1 to be x+ u0, and get
that f is zero on u0 + span{∆1, . . . ,∆k+1}, as indeed

u0 + span{∆1, . . . ,∆k+1} = (u0 + span{∆1, . . . ,∆k}) ∪ (u0 + ∆k+1 + span{∆1, . . . ,∆k})
= (u0 + span{∆1, . . . ,∆k}) ∪ (x+ span{∆1, . . . ,∆k}) .

The main observation used to derive Theorem 1 is the following. Given ∆1, . . . ,∆k,
there exists a degree D ≤ d2 · kd−1 polynomial t : Fn2 → F2, such that x + U is a good
coset if and only if t(x) = 1. Since we know that t is not the constant 0 function (as
t(u0) = 1), the DeMillo-Lipton-Schwartz-Zippel lemma (see Lemma 13) implies that there
are at least 2n−D x’s such that t(x) = 1, namely, 2n−D good cosets. So in each iteration,
by our choice of ∆k+1, we ensure that one coset in the next iteration is good, and then use
DeMillo-Lipton-Schwartz-Zippel to claim that many other cosets are good as well. One can
continue expanding the subspace U until n ≤ D, which completes the proof.

For a general finite field, Fq, we similarly define a polynomial t(x) over Fq that attains
only the values 0 and 1, and whose 1’s capture the good cosets. The polynomial t(x) is of
degree at most (q−1)·d2 ·kd−1. We wish to find a new direction ∆k+1, linearly independent of
∆1, . . . ,∆k, such that all cosets along the line {u0 +∆k+1 ·a}a∈Fq , i.e. {u0 +∆k+1 ·a+U}a∈Fq ,
are good. Over F2 this task was easy since u0 + U and x+ U define such a line.

The main new idea needed over Fq is to consider a polynomial

s(y) =
∏
a∈Fq

t(u0 + y · a),
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whose variable represents a direction in Fnq rather than a point. Note that s(y) has degree at
most q · deg(t) and that s(y) = 1 if and only if t(u0 + y · a) = 1 for all a ∈ Fq. Thus, s(y) = 1
iff f is zero on all cosets {u0 +y ·a+U}a∈Fq , whose union is a dimension k+1 affine subspace
as long as y /∈ U . As before, since s(0) = 1, by a generalized DeMillo-Lipton-Schwartz-Zippel
lemma, it holds that s(·) has many 1’s, and as long as k � n1/(d−1) there is some y ∈ s−1(1)
such that y /∈ U . We can now pick such a y as ∆k+1. A slightly more careful argument
shows that actually there is no dependency of the dimension k in the field size q.

The proof of the second structural result (Theorem 2) can be described informally as
follows. Consider a degree d polynomial f . Theorem 1 implies the existence of an affine
subspace u0 + U with dimension Ω(n1/(d−1)) on which f is constant. One can then show
(see Lemma 16) that restricting f to any affine shift of U yields a degree (at most) d − 1
polynomial. Thus, one can partition each such affine subspace recursively to obtain a partition
of Fnq to affine subspaces (not necessarily shifts of one another), such that f is constant on
each one of them.

In fact, to prove Theorem 2, one is not required to find an affine subspace on which f is
constant, and it suffices to find an affine subspace on which the degree of f decreases. In
order to obtain the first algorithmic result (Theorem 22), we devise an algorithm that finds
such an affine subspace and proceed similarly to the proof of Theorem 2. To obtain the
second algorithmic result (Theorem 24), we observe that the polynomial t described above
has many linear factors. This structure of t allows us to save on the running time.

The generalization of Theorems 1 and 2 to more than one polynomial is quite straightfor-
ward.

2 Preliminaries

We shall denote prime numbers with the letter p and prime powers with q. The set {1, . . . , n}
is denoted by [n]. We denote by log(·) the logarithm to the base 2. Throughout the paper,
for readability sake, we suppress flooring and ceiling. For x, y ∈ Fnq we denote by 〈x, y〉 their
scalar product over Fq, i.e., 〈x, y〉 =

∑n
i=1 xi · yi. The vector ei is the unit vector defined as

having 1 in the ith entry and 0 elsewhere. For a set T ⊆ [n], we denote by 1T the indicating
vector of T with 1 in the ith entry if i ∈ T and 0 otherwise. For a vector α ∈ Nm, we denote
its weight by wt(α) ,

∑
i αi.

The statistical distance between two random variables X,Y , over the same domain D,
denoted by SD(X,Y ), is defined as SD(X,Y ) = maxA⊆D |Pr[X ∈ A]− Pr[Y ∈ A]|. It is
known that SD(X,Y ) is a metric. More precisely, it is (up to a multiplicative constant
factor of 2) the `1 norm of the vector (Pr[d ∈ X] − Pr[d ∈ Y ])d∈D ∈ R|D|. In particular,
we have the triangle inequality: for X,Y, Z over D, SD(X,Z) ≤ SD(X,Y ) + SD(Y,Z).
Moreover, if X can be written as a convex combination of two random variables Y,Z as
follows X = (1− γ) · Y + γ · Z, where γ ∈ [0, 1], then SD(X,Y ) ≤ γ. We sometimes abuse
notation, and for a set S ⊆ D, consider S also as the random variable that is uniformly
distributed over the set S.

Restriction to an affine subspace
Let f : Fnq → Fq be a function, U ⊆ Fnq a subspace of dimension k and u0 ∈ Fnq some vector.
We denote by f |u0+U : (u0 + U)→ Fq the restriction of f to u0 + U . The degree of f |u0+U
is defined as the minimal degree of a polynomial (from Fnq to Fq) that agrees with f on
u0 +U . For recursive arguments, it will be very useful to fix some basis u1, . . . , uk for U and
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to consider the function g : Fkq → Fq defined by

g(x1, . . . , xk) = f

(
u0 +

k∑
i=1

xi · ui

)
.

Note that the deg(g) = deg(f |u0+U ) regardless of the choice for the basis.

Polynomials
We review some definitions and known facts about polynomials that we use.

The degree of a function f : Fnq → Fq, denoted by deg(f), is the degree of the unique
multivariate polynomial over Fq, where each individual degree is at most q − 1, which agrees
with f on Fnq . In the special case q = 2, such polynomials are called multi-linear. We will
abuse notation and interchange between a function and its unique polynomial over Fq that
agrees with f on Fnq .

I Definition 12. Let f : Fnq → Fq be a polynomial of degree d, and let ∆ ∈ Fnq . The
polynomial ∂f

∂∆ (x) , f(x+ ∆)− f(x) is called the derivative of f in direction ∆.

It is easy to verify that deg
(
∂f
∂∆

)
≤ deg(f)− 1. Let ∆1, . . . ,∆k ∈ Fnq then

∂kf

∂∆1 . . . ∂∆k
(x) =

∑
S⊆[k]

(−1)1+|S| · f

(
x+

∑
i∈S

∆i

)

is a degree ≤ deg(f)− k polynomial.
The following lemma is a variant of the well-known DeMillo-Lipton-Schwartz-Zippel

lemma [10, 25, 34].

I Lemma 13 (DeMillo-Lipton-Schwartz-Zippel). Let q be a prime power. Let f ∈ Fq[x1, . . . , xn]
be a degree d non-zero polynomial. Then, Prx∼Fnq [f(x1, . . . , xn) 6= 0] ≥ q−d/(q−1).

For completeness, we give the proof of Lemma 13 in Appendix C. The following folklore fact
about polynomials over F2 is easy to verify.

I Lemma 14 (Möbius inversion formula). Let f(x1, . . . , xn) =
∑
S⊆[n] aS ·

∏
i∈S xi be a

polynomial over F2. Then, its coefficients are given by the formula: aS =
∑
T⊆S f(1T ).

Circuits
A Boolean circuit is an unbounded fan-in circuit composed of OR and AND gates, and literals
xi, ¬xi. The size of such a circuit is the number of gates in it. A Boolean formula is a
Boolean circuit such that every OR and AND gate has fan-out 1. De Morgan formula is a
Boolean formula where each gate has fan-in at most 2. We recall that an AC0 circuit is a
Boolean circuit of polynomial size and constant depth. An AC0[⊕] circuit is an AC0 circuit
with unbounded fan-in XOR gates as well.

3 Structural Results

This section contains the proofs of all the structural results in this paper. In Section 3.1 we
give a proof for Theorem 1. Section 3.2 contains the proof for Theorem 2. The tightness of
the first structural result is given in Section 3.3. In Section 3.4 we describe the generalization
of the two structural results to many polynomials. In Section 3.5 we prove Theorem 3.
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3.1 Proof of Theorem 1
In this section we prove Theorem 1. For a slightly simpler proof, for the special case q = 2,
we refer the reader to Appendix B. The proof of Theorem 1 is based on the following lemma.

I Lemma 15. Let f : Fnq → Fq be some function, and let U be a subspace of Fnq with basis
vectors ∆1, . . . ,∆k. Then, there exist polynomials (fα)α∈{0,1,...,q−1}k such that
1. deg(fα) ≤ deg(f)− wt(α) for all α ∈ {0, 1, . . . , q − 1}k.
2. Let x ∈ Fnq , then f |x+U ≡ 0 if and only if fα(x) = 0 for all α ∈ {0, 1, . . . , q − 1}k.

Proof. Complete ∆1, . . . ,∆k into a basis of Fnq by picking vectors ∆k+1, . . . ,∆n ∈ Fnq . Let
A be the linear transformation which maps the standard basis into ∆1, . . . ,∆n, and let
g(y) := f(Ay) (alternatively, f(x) = g(A−1x)). Write g as a polynomial over Fq:

g(y) =
∑

γ∈{0,1,...,q−1}n
cγ ·

n∏
i=1

yγii .

Since both f and g can be obtained from one another by applying a linear transformation
to the inputs, we have deg(f) = deg(g). Think of the input to g as a concatenation of two
parts y = z ◦ w, where z ∈ Fkq , w ∈ Fn−kq . Let Pz : Fnq → Fkq be the projection of a vector
of length n to the first k coordinates and let Pw : Fnq → Fn−kq be the projection to the last
n− k coordinates. We may rewrite g as

g(z ◦ w) =
∑

α∈{0,1,...,q−1}k

∑
β∈{0,1,...,q−1}n−k

cα◦β ·
k∏
i=1

zαii ·
n−k∏
i=1

wβii .

By reordering the summations we get

g(z ◦ w) =
∑

α∈{0,1,...,q−1}k
gα(w) ·

k∏
i=1

zαii ,

where

gα(w) =
∑

β∈{0,1,...,q−1}n−k
cα◦β ·

n−k∏
i=1

wβii .

Note that deg(gα) ≤ deg(g)− wt(α). We have

f |x+U ≡ 0 ⇐⇒ g|A−1x+A−1U ≡ 0
⇐⇒ g|A−1x+span{e1,...,ek} ≡ 0 (∗) .

Writing (z, w) = (Pz(A−1x), Pw(A−1x)) gives

(∗) ⇐⇒ ∀z′ ∈ Fkq : g(z′ ◦ w) = 0
⇐⇒ ∀α : gα(w) = 0
⇐⇒ ∀α : gα(Pw(A−1x)) = 0 .

Taking fα to be the composition gα ◦ Pw ◦A−1 we obtain Item 2. As Pw ◦A−1 is simply a
linear transformation, it is clear that deg(fα) ≤ deg(gα) ≤ deg(g)−wt(α) ≤ deg(f)−wt(α) ,
which completes the proof. J
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Proof of Theorem 1. Assume without loss of generality that f(u0) = 0, as otherwise we
can look at the polynomial g(x) = f(x)− f(u0) which is of the same degree. The proof is by
induction. Let k be such that

n > k + (d+ 1) ·
d−1∑
j=0

(d− j) ·
(
k + j − 1

j

)
. (2)

We assume by induction that there exists an affine subspace u0 + span{∆1, . . . ,∆k} ⊆ Fnq ,
where the ∆i’s are linearly independent vectors, on which f evaluates to 0. Assuming
Equation 2 holds, we show there exists a vector ∆k+1, linearly independent of ∆1, . . . ,∆k,
such that f ≡ 0 on u0 + span{∆1, . . . ,∆k+1}. To this aim, consider the set

A =
{
x ∈ Fnq

∣∣∣∣ f |x+span{∆1,...,∆k} ≡ 0
}
.

By the induction hypothesis, u0 ∈ A. By Lemma 15, for any x ∈ Fnq ,

f |x+span{∆1,...,∆k} ≡ 0 ⇐⇒ ∀α ∈ {0, 1, . . . , q − 1}k : fα(x) = 0 ,

where fα is of degree at most d−wt(α). Thus fα ≡ 0 for wt(α) > d, and we may write A as

A =
{
x ∈ Fnq | ∀α : wt(α) ≤ d, fα(x) = 0

}
.

Hence, A is the set of solutions to a system of ≤
(
k+d
d

)
polynomial equations, where there are

at most
(
k+j−1
j

)
equations which correspond to α’s of weight j and thus to degree (at most)

d− j polynomials. One can also write A as the set of non-zeros to the single polynomial

t(x) :=
∏

α:wt(α)≤d

(1− fα(x)q−1) ,

which is of degree

deg(t) ≤ (q − 1) ·
d−1∑
j=0

(d− j) ·
(
k + j − 1

j

)
.

Note that t(x) obtains only the values 0 and 1. Let R ⊆ Fq be an arbitrary subset of Fq
with size |R| = min(q, d+ 1). Define a polynomial s(y) :=

∏
r∈R t(u0 + r · y). We claim that

any non-zero of s not in the span of {∆1, . . . ,∆k} can be taken to be the desired ∆k+1.
Indeed, if y is such that s(y) = 1, then t(u0 + r · y) = 1 for all r ∈ R. That is, for every
z ∈ span(∆1, . . . ,∆k) and any r ∈ R it follows that f(u0 + z + r · y) = 0. Namely, f obtains
|R| roots on the affine line with offset u0 + z and direction y. If R = Fq then clearly this
implies that f is the zero function restricted to the line. Otherwise, |R| = d+ 1 and thus f ,
which is a degree d polynomial, obtains d+ 1 zeros on the line. Thus, again f is the zero
function on this line. Hence, f(u0 + z + r · y) = 0 for all r ∈ Fq.

Thus, we just have to show that there exists some non-zero of s which is linearly
independent of {∆1, . . . ,∆k}. Since the trivial solution y = 0 is a non-zero of s, we get that s
is not the constant 0 function. Thus, by Lemma 13 it holds that Pr[s(y) 6= 0] ≥ q− deg(s)/(q−1).

The above equation implies that s has at least qn−deg(s)/(q−1) ones. Since we need to avoid
qk linear combinations of the previous ∆1, . . . ,∆k, it is enough to have

n− deg(s)
q − 1 > k . (3)
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Since

deg(s) ≤ (d+ 1) · (q − 1) ·
d−1∑
j=0

(d− j) ·
(
k + j − 1

j

)
and by the assumption on k in Equation (2) we have that Equation (3) holds. J

3.2 Proof of Theorem 2
In this section we prove Theorem 2. To this end we use the following lemma.

I Lemma 16. Let q be a prime power. Let f : Fnq → Fq be a degree d polynomial. Assume
there exists an affine subspace u0 + U , restricted to which f has degree at most d− 1. Then,
the degree of f restricted to any affine shift of U is at most d− 1.

Proof. Fix u1 ∈ Fnq . Now, for any u ∈ U

f(u1 + u) = f(u1 + u)− f(u0 + u) + f(u0 + u) = ∂f

∂(u1 − u0) (u0 + u) + f(u0 + u).

Since the degree of the partial derivative of f is at most d− 1 and the degree of f |u0+U is
also at most d− 1, we get that f |u1+U has degree at most d− 1. J

Proof of Theorem 2. Let c1 ∈ (0, 1) be the constant from Theorem 1. Define the sequence
{βd}∞d=1 as follows.

βd =
{

1/2, d = 1;
βd−1 · c

1
(d−2)!
1 , d > 1.

We will prove by induction on d, the degree of a given polynomial f , that there exists a
partition of Fnq to affine subspaces of dimension ≥ βd · n1/(d−1)!, such that f restricted to
each part is constant. The proof then follows by noting that for all d ≥ 1,

βd = 1
2 · c

1
(d−2)! +···+ 1

1! + 1
0!

1 ≥ ce1
2 ,

and thus one can take c2 = ce1/2 to be the constant in the theorem statement.
The base case of the induction, namely d = 1, trivially follows as f is an affine function,

and we can partition Fnq to q affine subspaces of dimension n − 1 ≥ n/2 = β1n, such that
on each of which f is constant. Assume now that f is a degree d > 1 polynomial. By
Theorem 1 and Lemma 16, there exists a partition of Fnq to affine subspaces of dimension
k ≥ c1 · n1/(d−1), such that f restricted to any affine subspace in the partition has degree
at most d− 1. Fix some affine subspace u0 + U in this partition, and apply the induction
hypothesis to the polynomial f ′ = f |u0+U , which has degree d′ ≤ d− 1. 8 By the induction
hypothesis, we obtain a partition of u0 + U such that f is constant on each part. Moreover,
the dimension of each such part is at least

βd′ ·k
1

(d′−1)! ≥ βd−1 ·k
1

(d−2)! ≥ βd−1 ·
(
c1 · n

1
d−1

) 1
(d−2)! = βd−1 ·c

1
(d−2)!
1 ·n

1
(d−1)! = βd ·n

1
(d−1)! ,

where the first inequality follows since {βd}∞d=1 is monotonically decreasing and d′ ≤ d− 1,
and the last equality follows by the definitions of the βd’s. J

8 We may apply the induction because there exists a linear bijection from U to FdimU
q . More precisely, if A is

an n×k matrix over Fq that maps U to Fk
q bijectively, then one can apply the induction to the polynomial

f ′′(x) = f ′(u0 + Ax), defined on k variables, and then induce a partition of u0 + U from the partition of
Fk

q obtained by the induction. The induction can be carried on f ′′ since deg f ′′ ≤ deg f ′ ≤ d− 1, where
the first inequality holds because the variables of f ′′ are linear combinations of the variables of f ′.
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3.3 On the Tightness of Structural Result I
Roughly speaking, Theorem 1 states that for any prime power q, a degree d polynomial over
Fq in n variables is not an affine disperser for dimension k = Ω(n1/(d−1)). We mentioned that
this result is tight in the sense that by increasing k a bit, there exists a degree d polynomial
which is an affine disperser. In this section we show, that in the special case q = 2, a stronger
claim can be proven. Namely, by increasing k a bit, there exists a degree d polynomial which
is an affine extractor.

I Theorem 17. There exists a constant c such that the following holds. Let n, d be such that
d < n/2. There exists a degree d polynomial f : Fn2 → F2, such that for every affine subspace
u0 + U ⊆ Fn2 of dimension k ≥ cd · n1/(d−1), bias(f |u0+U ) ≤ 2−Ω(k/d).

To prove Theorem 17 we apply the following lemma due to Ben-Eliezer, Hod and Lovett [2].

I Lemma 18 ([2], Lemma 2). Fix ε > 0 and let f : Fn2 → F2 be a random degree d polynomial 9
for d ≤ (1− ε)n. Then,

Prf
[
bias(f) > 2−c1n/d

]
≤ 2−c2( n≤d),

where 0 < c1, c2 < 1 are constants depending only on ε.

Proof of Theorem 17. Let f : Fn2 → F2 be a random polynomial of degree at most d. Fix
an affine subspace u0 + U ⊆ Fn2 of dimension k. One can easily show that f |u0+U is
equidistributed as a random polynomial on k variables, of degree at most d. Therefore, by
Lemma 18,

Prf
[
bias(f |u0+U ) > 2−c1k/d

]
≤ 2−c2( k

≤d),

where c1, c2 are the constants from Lemma 18 suitable for the (somewhat arbitrary) choice
ε = 1/2. By taking the union bound over all ≤ 2n ·

(2n
k

)
affine subspaces of Fn2 of dimension

k, it is enough to require that

2−c2( k≤d) · 2n ·
(

2n

k

)
< 1

so to conclude the proof of the theorem. It is easy to verify that one can choose c, as
a function of c2, such that the above equation does hold for k as defined in the theorem
statement. J

3.4 Generalization of the Structural Results to Many Polynomials
I Theorem 19 (Structural Result I for many polynomials). Let q be a prime power. Let
f1, . . . , ft : Fnq → Fq be polynomials of degree d1, . . . , dt respectively. Let k be the least integer
satisfying the inequality

n ≤ k +
t∑
i=1

(di + 1) ·
di−1∑
j=0

(di − j) ·
(
k + j − 1

j

)
.

Then, for every u0 ∈ Fnq there exists a subspace U ⊆ Fnq of dimension k, such that for all
i ∈ [t], fi restricted to u0 + U is a constant function. In particular, if d1, . . . , dt ≤ d then
k = Ω((n/t)1/(d−1)). Moreover, for d ≤ log(n/t)/10, k = Ω(d · (n/t)1/(d−1)).

9 That is, every monomial of degree at most d appears in f with probability 1/2, independently of all
other monomials.
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Before proving Theorem 19 we note that by applying a probabilistic argument, it can be
shown that the theorem is tight. In particular, it has the right dependency in the number of
polynomials t.

Proof. The proof is very similar to that of Theorem 1, so we only highlight the differences.
As in the proof of Theorem 1, we may assume that f1, . . . , ft evaluate to 0 at u0. We build
by induction an affine subspace u0 + U on which all the t polynomials evaluate to 0. Given
we already picked basis vectors ∆1, . . . ,∆k, we consider the set A to be the following:

A =
{
x ∈ Fnq

∣∣∣∣ ∀i ∈ t, fi|x+span{∆1,...,∆k} ≡ 0
}
.

As in the proof of Theorem 1, A can be written as the set of solutions to a single polynomial
equation t(x) = 1, where

deg(t) ≤ (q − 1) ·
t∑
i=1

(di + 1)
di−1∑
j=0

(di − j) ·
(
k + j − 1

j

)
,

Similarly to Theorem 1, the polynomial s is now defined, where deg(s) ≤ (d+ 1) · deg(t) and
such that any non-zero of s, that is independent of ∆1, . . . ,∆k, can be taken to be ∆k+1.
By DeMillo-Lipton-Schwartz-Zippel lemma, it follows that as long k is not too large, such a
root can be found. J

Similarly to the way we deduced Theorem 2 from Theorem 1, one can deduce the following
theorem from Theorem 19. We omit the proof.

I Theorem 20 (Structural Result II for many polynomials). Let q be a prime power. Let
f1, . . . , ft : Fnq → Fq be polynomials of degree at most d. Then, there exists a partition of Fnq
to affine subspaces, each of dimension Ω(n1/(d−1)!/te), such that f1, . . . , ft are all constant
on each part.

3.5 Sparse Polynomials
In this section we prove Theorem 3. To this end, we prove the following lemma.

I Lemma 21. Let f be a polynomial on n variables over Fq, with nc monomials. If f is
an affine disperser for dimension k, then there exists a subspace U of dimension Ω(

√
n) on

which f |U is of degree at most 2(q − 1)c.

Lemma 21 implies Theorem 3. Indeed, the above lemma states that for any polynomial
f on n variables and nc monomials over Fq, there exists an affine subspace of Fnq , with
dimension k(Ω(

√
n), 2(q−1)c), on which f is constant. By Theorem 1, k(Ω(

√
n), 2(q−1)c) =

Ω(n1/(4(q−1)c)), as desired.

Proof of Lemma 21. We perform a random restriction to all variables x1, . . . , xn. For each
i ∈ [n], independently, with probability 1−(2 ·nc)−1/(2c), we set xi to 0. Consider a monomial
that has at least 2c distinct variables. The probability that such a monomial survives the
restriction is at most 1/(2 · nc). Thus, by the union bound, with probability at least 1/2, no
monomial with more than 2c distinct variables survived the restriction. Restricting ourselves
to this event, since we may assume that the individual degree of each variable in the original
polynomial is at most q − 1, any surviving monomial has degree at most 2(q − 1)c.
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The expected number of variables that survived the random restriction is n·(2·nc)−1/(2c) =
Ω(
√
n). Thus, by the Chernoff bound, with probability at least, say, 3/4, the number of

surviving variables is Ω(
√
n).

Thus, there exists a restriction of the variables that keeps Ω(
√
n) of them alive, and such

that the resulting polynomial has degree at most 2(q − 1)c. J

4 The Algorithmic Aspect

4.1 Efficient Algorithm for Finding a Somewhat Large Subspace
I Theorem 22. Let f : Fn2 → F2 be a polynomial of degree d ≤ log(n)/3 given as a black-box.
Then, there exists an algorithm that makes poly(n) queries to f , runs in time poly(n), and
finds an affine subspace U of dimension Ω(d · n1/(d−1)) such that deg(f |U ) ≤ d− 1.

The proof of Theorem 22 is deferred to Appendix B.1 as it relies on notations and ideas from
the proof of the first structural result for the binary field, which can be found in Appendix B.
We advise the reader to look at the latter section before reading the proof of Theorem 22.

Theorem 22 yields the following corollary.

I Corollary 23. There exists an algorithm that given a degree d polynomial f : Fn2 → F2 as
a black box, runs in poly(n)-time and finds an affine subspace of dimension Ω(n1/(d−1)!) on
which f is constant.

4.2 Subexponential-Time Algorithm for Finding an Optimal Subspace
I Theorem 24. There exists a constant β > 0 such that the following holds. There is an
algorithm that given f : Fnq → Fq, a degree d polynomial (as a list of monomials), where 3 ≤
d ≤ log(n)/10, and u0 ∈ Fnq as inputs, finds an affine subspace u0+U of dimension Ω(k(n, d)),
restricted to which f is constant. The algorithm runs in time qβ·n(d−2)/(d−1) · poly(nd), and
uses poly(nd, log q) space.

We obtain the following corollary.

I Corollary 25. There exists a qn−k ·poly(nd)-time poly(nd, log q)-space algorithm that given
f : Fnq → Fq, a degree d polynomial, partitions Fnq to affine subspace of dimension k on each
of which f is constant, where k = Ω(n1/(d−1)!).

In particular, one can compute the number of satisfying assignments for f using Corollary 25.

Proof. We follow the proof of Theorem 1. Again, we may assume f(u0) = 0. Given the
previously chosen vectors ∆1, . . . ,∆k such that f is the constant 0 on u0 +span{∆1, . . . ,∆k},
we show how to find a new vector ∆k+1 which is linearly independent of ∆1, . . . ,∆k, such
that f is constantly zero on u0 + span{∆1, . . . ,∆k+1}. The set A is the set of solutions to
the following set of polynomial equations:

{fα(x) = 0 : α ∈ {0, 1, . . . , q − 1}k,wt(α) ≤ d− 1} ,

and by our assumptions, u0 is a solution to all of these equations. By treating the polynomial
f as a formal sum of monomials we can calculate each fα in poly(nd) time. Let R be
some arbitrary subset of Fq of size min (q, d+ 1) then any solution y to the following set of
equations which is linearly independent of ∆1, . . . ,∆k can be the new direction ∆k+1:

{fα(u0 + r · y) = 0 : α ∈ {0, 1, . . . , q − 1}k,wt(α) ≤ d− 1, r ∈ R} .
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It is therefore enough to find more than qk different solutions to this set of equations, in
order to guarantee that one of them will be linearly independent of the previous ∆i’s. In
order to do so, we partition the set of equations into the set of linear equations and the set
of non-linear equations:

L = {fα(u0 + r · y) = 0 : α ∈ {0, 1, . . . , q − 1}k,wt(α) ≤ d− 1, deg(fα) = 1, r ∈ R} .
NL = {fα(u0 + r · y) = 0 : α ∈ {0, 1, . . . , q − 1}k,wt(α) ≤ d− 1, deg(fα) > 1, r ∈ R} .

Let m =
∑
fα∈NL deg(fα). Since 0n is a solution to all equations in L ∪NL, we can impose

new linear equations which hold for 0n, keeping the system consistent. More specifically, we
define a new set L′, which initially is equal to L, and iteratively add equations of the form
{yi = 0} to L′ until dim(L′) = n−m− k − 1. 10

The set of solutions to both L′ and NL is non-empty as it contains the all zeros vector.
Furthermore, the sum of the degrees of equations in L′∪NL is exactly (n−m−k−1) +m =
n − k − 1. Therefore, by Lemma 13, there are at least qk+1 solutions to the equations in
L′ ∪NL, which guarantees that one of the solutions is linearly independent of ∆1, . . . ,∆k.

Next, we show how to find all solutions to the equations in L′ ∪NL. We find a basis for
the set of solutions to L′ using Gaussian elimination, and iterate over all vectors in the affine
subspace this basis spans. For each vector y in this affine subspace we verify that all the
equations in NL are satisfied by y. The running time of this process is O(qn−dim(L′) ·|NL|·nd),
which is O(qm+k+1 · n · nd).

As m ≤ min(d+ 1, q) ·
∑d−2
i=0 (d− i) ·

(
k+i−1
i

)
, an elementary calculation shows that for

k ≤ d
10e ·n

1/(d−1) and 3 ≤ d ≤ log(n)/10 we have m+ k ≤ β ·n(d−2)/(d−1) for some universal
constant β. Thus, the total running time of the algorithm is qβ·n(d−2)/(d−1) · poly(nd). The
algorithm uses O((|NL|+ |L|) ·nd ·polylog(q)) space to store and manipulate the polynomials
fα. In addition, O(n2 ·polylog(q)) space is used to perform the Gaussian elimination. Overall
the space used by the algorithm is O(nd+1 · polylog(q)). J

5 Extractors and Dispersers for Varieties

We start this section by proving Theorem 5.

Proof of Theorem 5. Let g1, . . . , gt : Fnq → Fq be degree d polynomials. By Theorem 20,
there exists a partition of Fnq to affine subspaces P1, . . . , P`, each of dimension Ω(n1/(d−1)!/te),
such that gj |Pi is constant for all i ∈ [`] and j ∈ [t]. Since f is an affine extractor for such
dimension, with bias ε, then for all i ∈ [`] it holds that SD(f(Pi),Fq) ≤ ε.

Let I ⊆ [`] be the set of indices of affine subspaces in the partition such that i ∈ I if and
only if gj |Pi = 0 for all j ∈ [t]. In other words, we consider the partition of V(g1, . . . , gt) to
affine subspaces, induced by the partition of Fnq to P1, . . . , P`. Since the Pi’s are disjoint,
the random variable f(V(g1, . . . , gt)) = f(∪i∈IPi) is a convex combination of the random
variables {f(Pi)}i∈I . Thus, SD(f(V(g1, . . . , gt)),Fq) ≤ maxi∈I SD(f(Pi),Fq) ≤ ε. J

We now give a formal statement and proof for the reduction from extractors for varieties to
affine extractors, which does not depend on the number of polynomials defining the variety,
but rather on the variety size.

10We add these constraints as concentrating at finding a solution of this form (that is, a solution
that satisfies all equations in L′ ∪ NL rather than only the equations in L ∪ NL) is easier from the
computational aspect.
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I Theorem 26. For every d ∈ N and δ, ρ ∈ (0, 1) the following holds. Let f : Fnq → Fq be an
affine extractor for dimension Ω(n1/(d−1)!/`e) with bias ε, where ` = logq (1/(ρδ)). Then, f
is an extractor with bias ε+ δ for varieties with density at least ρ (i.e., size at least ρ · qn),
that are the common zeros of any degree (at most) d polynomials.

Proof. Let g1, . . . , gt : Fnq → Fq be degree (at most) d polynomials. First, we prove the
existence of ` polynomials h1, . . . , h` : Fnq → Fq, each of degree at most d, with a variety that
approximates V(g1, . . . , gt). More precisely, we will have

V(g1, . . . , gt) ⊆ V(h1, . . . , h`) and Prx∼Fnq [x ∈ V(h1, . . . , h`)\V(g1, . . . , gt)] ≤ q−`, (4)

The proof of this claim follows by a standard argument, like the one that appears in [21, 27]:
Let α1, . . . , α` be random vectors, sampled uniformly and independently from Ftq. For each
i ∈ [`], define the (random) polynomial

Hi(x) =
t∑

j=1
(αi)j · gj(x),

where the summation and multiplications are taken over Fq. Clearly, if x ∈ V(g1, . . . , gt) then
Hi(x) = 0 with probability 1 (where the probability is taken over α1, . . . , α`). Otherwise,
for each i ∈ [`], Pr [Hi(x) = 0] = 1/q. By an averaging argument, one can fix α1, . . . , α`
and obtain fixed polynomials h1, . . . , h`, of degree at most d, that satisfy the conditions in
Equation (4).

Since f is an affine extractor with bias ε for dimension Ω(n1/(d−1)!/`e), Theorem 5 implies
that SD(f(V(h1, . . . , h`)),Fq) ≤ ε. To conclude the proof, we show that

SD(f(V(h1, . . . , h`)), f(V(g1, . . . , gt))) ≤ δ.

To see this, observe that V(h1, . . . , h`) can be written as a convex combination

V(h1, . . . , h`) = |V(g1, . . . , gt)|
|V(h1, . . . , h`)|

·V(g1, . . . , gt) +
(

1− |V(g1, . . . , gt)|
|V(h1, . . . , h`)|

)
· E ,

where E is some random variable over Fq. Thus, by Equation (4),

SD(V(h1, . . . , h`),V(g1, . . . , gt)) ≤ 1− |V(g1, . . . , gt)|
|V(h1, . . . , h`)|

≤ q−`

ρ
= δ.

This implies that SD(f(V(h1, . . . , h`)), f(V(g1, . . . , gt))) ≤ δ, as claimed. J

Next, we prove Theorem 6 which gives an analog reduction from dispersers for varieties
to affine dispersers.

Proof of Theorem 6. Let g1, . . . , gt : Fnq → Fq be degree (at most) d polynomials. Let
u0 ∈ V(g1, . . . , gt) (if V(g1, . . . , gt) = ∅, there is nothing to prove). By Theorem 19, there
exists a subspace U of dimension Ω(d · (n/t)1/(d−1)) such that u0 + U ⊆ V(g1, . . . , gt). The
proof then follows as f is an affine disperser for dimension Ω(d · (n/t)1/(d−1)). J

6 From Affine Dispersers to Affine Extractors

To prove Theorem 8, we use the following theorem of Kaufman and Lovett [19].
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I Theorem 27 ([19]). Let p be a prime number and let f : Fnp → Fp be a degree (at most) d
polynomial with bias(f) ≥ δ. Then, there exist c = c(d, δ) polynomials f1, . . . , fc of degree at
most d− 1 such that f = G(f1, . . . , fc), for some function G : Fcp → Fp. Moreover, f1, . . . , fc

are derivatives of the form ∂f
∂y where y ∈ Fnp .

Proof of Theorem 8. We show by a counter-positive argument that if f is not an affine
extractor for dimension k′ with bias δ, then f is not an affine disperser for dimension
k. Let f : Fnp → Fp be a function which is not an affine extractor for dimension k′

with bias δ. Then, there exists an affine subspace u0 + U , with dim(U) = k′ such that
bias(f |u0+U ) > δ. Let u1, . . . , uk′ be a basis for U and let g : Fk′p → Fp be the function
defined by g(y1, . . . , yk′) = f(u0 +

∑k′

i=1 ui · yi). Then, g is a δ-biased polynomial of degree
≤ d. Applying Theorem 27 to g, we can write it as G(g1, . . . , gc), where the gi’s are of degree
at most d− 1, and c = c(d, δ) as defined in Theorem 27.

By Theorem 19, there is an affine subspace W of Fk′p with dimension c1 · (k′/c)1/(d−2)

for which all the gi’s are constant, for some constant c1 > 0. In particular g|W is constant,
which implies that there exists a subspace of Fnp , with the same dimension, on which the
original function f is constant. Taking k′ = kd−2 · c(d,δ)

cd−2
1

completes the proof. J

For degree 3 and 4, we rely on stronger results from [17]. Although degree 3 was treated
in [6], we present it here for completeness.

I Theorem 28. Let f : Fnp → Fp be an affine disperser for dimension k of degree d. If d = 3
then f is an affine extractor for dimension k′ = k +O(log(1/δ)2) with bias δ. If d = 4 then
f is an affine extractor for dimension k′ = k · poly(1/δ) with bias δ.

Proof. As in the proof of Theorem 8, it is enough to show that if g is a degree 3 or 4
polynomial over Fp with k′ variables and bias ≥ δ then there exists a subspace of dimension
k on which g is constant. We consider the two cases deg(f) = 3, 4 separately.

Cubic (deg(g) = 3)

Implicit in [17], any polynomial of degree 3 with bias ≥ δ, in particular g, can be represented
as
∑r
i=1 `i(x) · qi(x) + q0(x), where the `i’s are linearly independent linear functions (with

no constant term), deg(qi) ≤ 2 and r = O(log2(1/δ)). Restricting to the subspace W defined
by {x : `i(x) = 0} reduces the degree of g to at most 2, and by Lemma 16, this is also true
for any coset of this subspace. By averaging, there is a coset on which bias(g|w+W ) ≥ δ.
By Dickson’s theorem [9], there is an affine subspace w′ + W ′ of w + W of co-dimension
O(log(1/δ)) on which g is constant. Setting k′ = k +O(log2(1/δ)) ensures that dim(W ′) is
at least k.

Quartic (deg(g) = 4)

Theorem 4 in [17] states that any polynomial of degree 4 with bias ≥ δ, in particular g, can
be represented as

r∑
i=1

`i(x) · gi(x) +
r∑
i=1

qi(x) · q′i(x) + g0(x),

where deg(`i) ≤ 1, deg(qi) ≤ 2, deg(q′i) ≤ 2,deg(gi) ≤ 3 and r = poly(1/δ). By Theorem 19,
there exists a subspace W of dimension Ω(n/r) on which all `i’s, qi’s and q′i’s are constants.
By Lemma 16, in any coset of W the degrees of `i, qi and q′i for i = 1, . . . , r are decreased
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by at least 1, hence g|w+W is of degree at most 3 for any coset w +W . Since bias(g) ≥ δ,
by averaging there is a coset on which bias(g|w+W ) ≥ δ. Using the earlier case of biased
cubic polynomials, there is an affine subspace w′ +W ′ of dimension Ω(n/r)−O(log2(1/δ))
on which g is constant. Setting k′ = k · poly(1/δ) ensures that the dimension of W ′ is at
least k. J

Remark
It may be tempting to think that the polynomial loss of parameters in our reduction from
affine extractors to affine dispersers, k′ = Oδ,d(kd−2), is not necessary. Indeed, Theorem 28
shows that for degree 3 and 4 one can take the dimension k′ of the affine extractor (for
a constant error, say) to be linear in k – the dimension of the affine disperser. However,
this linear dependency breaks for d ≥ 6, as pointed up to us by Shachar Lovett. To see
this, take f : Fn2 → F2 to be the product of two random degree 3 polynomials. It is easy
to check that, with high probability, f is an affine disperser for dimension Θ(

√
n), whereas

Pr[f = 1] = 1/4 + o(1). Namely, f is not even an (n, n) affine extractor.
Nonetheless, a better polynomial dependency may still be possible. Perhaps k′ =

Oδ,d(k(d−2)/2) (which is not ruled out by similar counterexamples).

7 AC0[⊕] Circuits and Affine Extractors / Dispersers

In Section 7.1 we (easily) derive lower bounds on the dimension for which an AC0 circuit can
be affine disperser. In Section 7.2 we prove that a depth 2 AC0[⊕] circuit on n inputs cannot
compute an affine disperser for dimension no(1). We do so by a reduction to Theorem 1.

7.1 AC0 Circuits Cannot Compute Affine Dispersers for Dimension
o(n/polylog(n))

The next lemma, following Håstad’s work [14], appears in [5].

I Lemma 29 ([5], Corollary 3.7, restated). Let f : Fn2 → F2 be a function computable by a depth
d and size s Boolean circuit. Then, there is a restriction ρ leaving n

10(10 log(s))d−2 − log(s)
variables alive, under which f |ρ is constant.

Lemma 29 readily implies the following corollary.

I Corollary 30. Let f : Fn2 → F2 be a function computable by a Boolean circuit of depth d
and size s. Then, f cannot be a bit fixing disperser (and, in particular, f cannot be an affine
disperser) for min-entropy k < n

10(10 log(s))d−2 − log(s).

7.2 Depth 2 AC0[⊕] Circuits Cannot Compute Good Affine Dispersers
As mentioned in the introduction, to prove Theorem 10, one only needs to prove Lemma 9.

Proof of Lemma 9. During the proof we will exploit the fact that if a function f on n inputs
is an affine disperser for dimension k, then fixing the values of m inputs or even the values of
m linear functions on the inputs, one gets an affine disperser on n−m inputs for the same
dimension k.

We assume that the top gate is an XOR gate. Afterwards we justify this assumption by
showing that if the top gate is not an XOR gate, then the circuit C could not have computed
an affine disperser with the claimed parameters to begin with.
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Note that one might as well assume that there are no XOR gates at the bottom level.
Indeed, assume there are t XOR gates at the bottom level, and denote by `1, . . . , `t the linear
functions computed by these gates, respectively. Define the linear function ` = `1 ⊕ · · · ⊕ `t.
Note that if ` is the constant 1 then by removing all the t gates from C and wiring the
constant 1 as an input to the top gate, one gets an equivalent circuit with no XOR gates at
the bottom layer. Assume therefore that ` is not the constant 1. Then, by removing all the
XOR gates at the bottom layer, we get a circuit, with no XOR gates at the bottom layer,
that is equivalent to the original circuit on the affine subspace {x : `(x) = 0}. Hence, the
resulting circuit is an affine disperser on n− 1 inputs for dimension k.

We perform a random restriction to all variables, leaving a variable alive with probability
p = 1

4
√
n
and otherwise setting the value of a variable uniformly and independently at random.

We show that the restriction shrinks all OR,AND gates to have fan-in smaller than 2c with
positive probability. We consider AND gates, but our arguments may be carried to OR gates
similarly. The restriction shrinks every AND gate in the following way: if one of the literals
which is an input to the AND gate is false under the restriction, the AND gate is eliminated.
Otherwise, the AND gate shrinks to be the AND of all the remaining live variables. We wish
to bound the probability that each AND gate is of fan-in greater than 2c after the restriction.
Let m be the fan-in of the AND gate before the restriction, and m′ its fan-in afterwards. We
have

Pr[m′ ≥ 2c] =
m∑
i=2c

(
m

i

)
· pi ·

(
1− p

2

)m−i
≤

m∑
i=2c

(
m

i

)
· pi · (1/2)m−i

= (1/2)m ·
m∑
i=2c

(
m

i

)
· (2p)i .

Since 2p is smaller than 1, the right hand side of the above inequality is at most (1/2)m ·
2m · (2p)2c = (2p)2c. Thus, Pr[m′ ≥ 2c] ≤ (2p)2c. By our choice of parameter p, this is at
most 1/(4n)c. By union bound over all ≤ nc AND and OR gates, with probability at least
1− 1/4c ≥ 3/4 over the random restrictions, the fan-in of all AND and OR gates, under the
restriction, is smaller than 2c. Furthermore, by Chernoff bound, with probability greater
than 1/2 over the random restrictions, the number of surviving variables is at least

√
n/5.

Therefore, there exists a restriction where the number of surviving variables is
√
n/5 and all

AND and OR gates in the resulting circuit, under the restriction, have fan-in smaller than
2c. Expressing the resulting circuit as a polynomial over F2 we get a polynomial on at least√
n/5 variables with degree at most 2c which is an affine disperser for dimension k.
We are left to justify the assumption that the top gate must be an XOR gate. For

contradiction, assume that the top gate is an OR gate. The case where the top gate is an
AND gate is handled similarly. If there is an XOR gate at the bottom layer of C, we choose
such gate and consider the affine subspace of co-dimension 1 on which this XOR gate outputs
1. Since the top gate is an OR gate, the circuit C is the constant 1 on an affine subspace
of co-dimension 1. This stands in contradiction as k is (much) smaller than n − 1. Thus,
we obtain a depth 2 AC0 circuit with size s = nc. However, under the assumption that
k < n/10− log(s) this is a contradiction to Corollary 30. J
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A Depth 3 AC0[⊕] Circuits Can Compute Optimal Affine Extractors

We start this section by giving a proof for the following folklore lemma. We bother doing so
because afterwards we argue that the proof implies, in fact, something stronger, which we
make use of.

I Lemma 31. There exist universal constants n0, c such that the following holds. For every
ε > 0 and n > n0 there exists an affine extractor for dimension k with bias ε, f : Fn2 → F2,
where k = log n

ε2 + log log n
ε2 + c.

The proof of Lemma 31 makes use of Hoeffding bound.

I Theorem 32 (Hoeffding Bound). Let X1, . . . , Xn be independent random variables for
which Xi ∈ [ai, bi]. Define X = 1

n ·
∑n
i=1Xi, and let µ = E[X]. Then,

Pr[|X − µ| ≥ ε] ≤ 2 · exp
(
− 2n2ε2∑n

i=1 (bi − ai)2

)
.

Proof of Lemma 31. Let F : Fn2 → F2 be a random function, that is, {F (x)}x∈Fn2 are
independent random bits. Fix an affine subspace u0 + U ⊆ Fn2 of dimension k as defined
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above. By Hoeffding Bound (Theorem 32),

Pr
[

1
2k

∣∣∣∣∣ ∑
u∈u0+U

(−1)F (u)

∣∣∣∣∣ ≥ ε
]
≤ 2 · exp

(
−2kε2

2

)
.

The number of affine subspaces of dimension k is bounded by 2n
(2n
k

)
≤ 2(k+1)n. Hence, by

union bound over all affine subspaces, if 2(k+1)n · 2e−2kε2/2 < 1 then there exists a function
f : Fn2 → F2 that is an affine extractor for dimension k with bias ε. It is a simple calculation
to show that our choice of k suffices for the above equation to hold. J

For the proof of Theorem 36, we introduce the following notion.

I Definition 33. An (n, k, d) linear injector with size m is a family of d × n matrices
{A1, . . . , Am} over F2 with the following property: for every subspace U ⊆ Fn2 of dimension
k, there exists an i ∈ [m] such that ker(Ai) ∩ U = {0}.

I Lemma 34. For every n, k such that 2 ≤ k ≤ n, there exists an (n, k, k+ 1) linear injector
with size m = nk.

Proof. Fix a subspace U ⊆ Fn2 of dimension k. Let A be a d×n matrix such that every entry
of A is sampled from F2 uniformly and independently at random. For every u ∈ U \ {0}
it holds that Pr[Au = 0] = 2−d. By taking the union bound over all elements in U \ {0},
we get that Pr[ker(A) ∩ U 6= {0}] ≤ 2k−d. Let A1, . . . , Am be d× n matrices such that the
entry of each of the matrices is sampled from F2 uniformly and independently at random.
By the above equation, it holds that Pr[∀i ∈ [m] ker(Ai)∩U 6= {0}] ≤ 2m(k−d). The number
of linear subspaces of dimension k is bounded above by

(2n
k

)
, which is bounded above by

2nk−1 for k ≥ 2. Thus, if 2nk−1 · 2m(k−d) < 1 there exists an (n, k, d) linear injector with size
m. The latter equation holds for d = k + 1 and m = nk. J

I Lemma 35. Let n0, c be the constants from Lemma 31. Let n > n0 and let k, ε be such
that k = log n

ε2 + log log n
ε2 + c. Let {A1, . . . , Am} be an (n, k, d) linear injector with size m.

Then, there exist functions f1, . . . , fm : Fd2 → F2 such that the function f : Fn2 → F2 defined
by

f(x) =
m⊕
i=1

fi(Aix) (5)

is an affine extractor for dimension k with bias ε.

Proof. Recall that in the proof of Lemma 31, we took F to be a random function. We
observe however, that the proof did not use the full independence offered by a uniformly
sampled random function. In fact, the proof required only that for every affine subspace
u0 + U ⊆ Fn2 of dimension k, {f(u)}u∈u0+U are independent random bits.

Let F1, . . . , Fm : Fd2 → F2 be independent random functions, that is, the random bits
{Fi(x)}i∈[m],x∈Fd2 are independent. Define the random function F : Fn2 → F2 as follows

F (x) =
m⊕
i=1

Fi(Aix).

We claim that for every affine subspace u0 + U ⊆ Fn2 of dimension k, the random bits
{F (u)}u∈u0+U are independent. By the observation above, proving this will conclude the
proof. Let u0 +U ⊆ Fn2 be an affine subspace of dimension k. As {A1, . . . , Am} is an (n, k, d)
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linear injector, there exists an i ∈ [m] such that ker(Ai) ∩ U = {0}. This implies that for
every two distinct elements u, v ∈ U it holds that Ai(u0 + u) 6= Ai(u0 + v). Otherwise
Ai(u + v) = 0 and thus u + v, a non-zero vector in U , lies in ker(Ai). This stands in
contradiction to the choice of i. Recall that Fi is a random function, and from the above
it follows that Ai behaves as an injection to the domain u0 + U . Hence, the random bits
{Fi(Aiu)}u∈u0+U are independent. Since F (x) is defined to be the XOR of Fi(Aix) with
m− 1 other independent random variables, we get that {F (u)}u∈u0+U are also independent
random bits, as claimed. J

I Theorem 36. Let f be the function from Equation (5), where {A1, . . . , Am} is the (n, k, d)
linear injector from Lemma 34 (that is, m = nk and d = k+1). Then, f is an affine extractor
for dimension k and bias ε, where k = log (n/ε2) + log log (n/ε2) +O(1). Moreover,
1. deg(f) = log (n/ε2) + log log (n/ε2) +O(1).
2. f can be realized by an XOR−AND−XOR circuit of size O((n/ε)2 · log3 (n/ε)).
3. f can be realized by a De Morgan formula of size O((n5/ε2) · log3 (n/ε)).

Proof. To prove the first item, we note that each of the fi’s is a function on d = k+ 1 inputs,
and thus can be computed by a polynomial with degree at most k+ 1. The proof then follows
as in the computation of f , each fi is composed with linear functions of the variables, and f
is the XOR of the fi’s.

To prove the second item, we show an XOR−AND−XOR circuit C with the desired size,
that computes the function f . Since each of the functions fi are degree d polynomials on d
inputs, each of them can be computed by an XOR−AND circuit, where the fan-in of the top
XOR gate is bounded above by 2d and the fan-in of each AND gate is at most d. Thus, for
i ∈ [m], each of the functions fi(Aix) on n inputs is computable by an XOR− AND− XOR
circuit.

By its definition, f is the XOR of these functions and so one can collapse this XOR together
with the top m XOR gates. This yields an XOR− AND− XOR circuit C that computes f .

The size of the circuit C is O(m · d · 2d) as each of the m functions fi(Aix) applies 2d
AND gates, each on d XOR gates (whom in turn compute the linear injector). Since m = nk

and d = k + 1, size(C) = O((n/ε)2 · log3(n/ε)) as stated.
As for the third item, we show a De Morgan formula with the desired size, that computes

f . Since each of the functions fi are on d inputs, each of them can be computed by a De
Morgan formula of size O(2d). Moreover, every XOR operation needed for the computation
of the linear injector {A1, . . . , Am} can be implemented in size O(n2). Replacing each leaf in
the formula for fi with the relevant formula computing the corresponding bit of Aix (or its
negation), results in an O(2dn2) size De Morgan formula computing fi(Aix). Again, since
the XOR of bits y1, . . . , ym can be computed by a De Morgan formula of size O(m2), and
one can replace each leaf marked by yi (or ¬yi) with the formula computing fi(Aix) (or its
negation), one gets a De Morgan formula computing f of size

O(m2 · 2d · n2) = O((nk)2 · 2k · n2) = O((n5/ε2) · log3(n/ε)),

as desired. J

B A Slightly Simpler Proof of the First Structural Result for F2

In this section we give a slightly simpler proof for Theorem 1, for the special case q = 2,
based on ideas in [28]. We prove the following:

APPROX/RANDOM’15



706 Two Structural Results for Low Degree Polynomials and Applications

I Theorem 37 (Structural Result I for the Binary Field). Let k be the smallest integer such
that

n ≤ k +
d−1∑
j=0

(d− j) ·
(
k

j

)
.

Let f : Fn2 → F2 be a degree d polynomial, and let u0 ∈ Fn2 . Then, there exists a subspace
U ⊂ Fn2 of dimension k such that f |u0+U is constant.

Proof. Fix u0 ∈ Fn2 . We assume without loss of generality that f(u0) = 0, as otherwise we
can look at the polynomial g(x) = f(x)− f(u0) which is of the same degree. The proof is by
induction. Let k be such that

n > k +
d−1∑
j=0

(d− j) ·
(
k

j

)
. (6)

We assume by induction that there exists an affine subspace u0 + span{∆1, . . . ,∆k} ⊆ Fn2 ,
where the ∆i’s are linearly independent vectors on which f evaluates to 0. Assuming
Equation 6 holds, we show there exists a vector ∆k+1, linearly independent of ∆1, . . . ,∆k,
such that f ≡ 0 on u0 + span{∆1, . . . ,∆k+1}. To this aim, consider the set

A =
{
x ∈ Fn2

∣∣∣∣ ∀S ⊆ [k], f
(
x+

∑
i∈S

∆i

)
= 0
}
.

By the induction hypothesis, u0 ∈ A. It can be verified that for any x ∈ Fn2

∀S ⊆ [k] : f
(
x+

∑
i∈S

∆i

)
= 0 ⇔ ∀S ⊆ [k] : fS(x) = 0 ,

where fS is defined by

fS(x) ,
∑
T⊆S

f

(
x+

∑
i∈T

∆i

)
.

Namely, fS is the derivative of f in directions {∆i}i∈S . In particular, deg(fS) ≤ d − |S|.
Thus fS ≡ 0 for |S| > d, and we may write A as

A = {x ∈ Fn2 | ∀S ⊆ [k] : |S| ≤ d, fS(x) = 0} .

Hence, A is the set of solutions to a system of
(
k
≤d
)
polynomial equations, where there

are
(
k
j

)
equations which correspond to sets S of size j and thus to degree (at most) d− j

polynomials. 11 One can also write A as the set of solutions to the single polynomial equation∏
S⊆[k]:|S|≤d

(1− fS(x)) = 1,

11 In particular, equations that correspond to sets S of size d are of the form cS = 0 for some constant
cS ∈ F2. Since A is non-empty, the constants cS must be 0, making those equations tautologies 0 = 0
that does not depend on x. Moreover, most of the remaining equations correspond to sets S of size
d− 1, and are therefore either linear equations or tautologies.
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which is of degreeD ≤
∑d−1
j=0 (d− j) ·

(
k
j

)
. Since A is non-empty, by DeMillo-Lipton-Schwartz-

Zippel lemma (Lemma 13, for q = 2) we have that

|A| ≥ 2n−D ≥ 2n−
∑d−1

j=0
(d−j)·(kj). (7)

This, together with Equation (6) implies that |A| > 2k. Hence, there exists a point y ∈ A
such that y − u0 /∈ span{∆1,∆2, . . . ,∆k}. Pick such a point u arbitrarily and denote by
∆k+1 , u−u0. Since both u0 and u are in A we have that f ≡ 0 on u0+span{∆1, . . . ,∆k+1} .
The inductive proof shows that there exists a subspace U of dimension k such that f is
constant on u0 + U and

n ≤ k +
d−1∑
j=0

(d− j) ·
(
k

j

)
, (8)

since otherwise we could have continue this process and pick a bigger subspace U ′. J

B.1 Proof of Theorem 22
The proof of Theorem 22 uses the following lemma.

I Lemma 38. Let f : Fn2 → F2 be a degree d polynomial, and let U be a linear subspace with
basis ∆1, . . . ,∆k. Then, deg(f |U ) ≤ d− 1 if and only if fS(0) = 0 for all S ⊆ [k] of size d,
where fS(x) :=

∑
T⊆S f

(
x+

∑
i∈T ∆i

)
.

Proof of Lemma 38. As noted in the Preliminaries section, the degree of f |U is equal to the
degree of g : Fk2 → F2 defined as g(y1, . . . , yk) = f(

∑k
i=1 yi∆i). Since deg(g) ≤ d, we may

write g(y) =
∑
S⊆[k],|S|≤d aS ·

∏
i∈S yi, where aS ∈ F2 are constants. By Möbius inversion

formula (Fact 14), aS =
∑
T⊆S g(1T ). By the definition of g, we establish the relation

aS =
∑
T⊆S f(

∑
i∈T ∆i) = fS(0). Hence,

deg(f |U ) ≤ d− 1 ⇐⇒ deg(g) ≤ d− 1
⇐⇒ ∀S ⊆ [k] s.t. |S| = d, aS = 0
⇐⇒ ∀S ⊆ [k] s.t. |S| = d, fS(0) = 0,

which completes the proof. J

Proof of Theorem 22. Similarly to the proof of Theorem 37, we find by induction basis
vectors ∆1, . . . ,∆k for the subspace U . We assume by induction that deg(f |U ) ≤ d − 1,
and we wish to find a new vector ∆k+1, linearly independent of ∆1, . . . ,∆k, for which
deg(f |U ′) ≤ d − 1, where U ′ = span{∆1, . . . ,∆k+1}. We continue doing so as long as(
k
d−1
)

+ k < n.12
By Lemma 38, for any set S ⊆ [k] of size d, fS(0) = 0. We wish to find a new vector ∆k+1

such that for all S ⊆ [k + 1] of size d, fS(0) = 0. It suffices to consider sets S of size d that
contains k + 1, since the correctness for all other sets is implied by the induction hypothesis.

For sets S of size d − 1, fS(x) is an affine function and can be written as fS(x) =
〈`S , x〉 + cS , where `S ∈ Fn2 and cS ∈ F2. Let W be the linear subspace of Fn2 spanned
by {`S : S ⊆ [k], |S| = d − 1}. Let ∆k+1 be any vector orthogonal to W , and linearly
independent of ∆1,∆2, . . . ,∆k. Since, dim(W⊥) = n− dim(W ) ≥ n−

(
k
d−1
)
, which by our

12Note that this is slightly better than the expression we had in Theorem 37.
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assumption is strictly bigger than k, such a vector ∆k+1 exists. Let S ⊆ [k + 1] be a set of
size d that contains k + 1 and let S′ = S ∩ [k], then

fS(0) = fS′(0) + fS′(∆k+1) = 〈`S′ , 0〉+ cS′ + 〈`S′ ,∆k+1〉+ cS′ = 0 ,

where in the first equality we used the definitions of fS and fS′ , and in the last equality
we used the fact that ∆k+1 is orthogonal to `S′ . Using Lemma 38 we have shown that our
choice of ∆k+1 gives a linear subspace U ′ = span{∆1, . . . ,∆k+1} for which f |U ′ is of degree
≤ d− 1.

We now explain how to find, for any set S of size d− 1, the affine function fS(x) (that is,
`S and cS) by performing 2d−1 · (n+ 1) queries to f . As fS is affine, knowing the values of fS
on the inputs 0, e1, e2, . . . , en determines `S and cS : cS = fS(0) and (`S)i = cS + fS(ei) for
i ∈ [n]. Each one of the values fS(0), fS(e1), . . . , fS(en) can be computed using 2d−1 queries
to f , by the definition of fS .

We now describe how can one efficiently find the vector ∆k+1 given ∆1, . . . ,∆k. Using
Gaussian elimination we find a basis for W⊥. We check for each basis vector if it is not in
the span of ∆1, . . . ,∆k; after checking k + 1 vectors we are promised to find such a vector.
Next, we analyze the dimension of the subspace returned by the algorithm, the number of
queries it makes to f , and the total running time.

Dimension of subspace
We abuse notation and denote by k the number of rounds in our algorithm, which is also the
dimension of the subspace the algorithm returns. Since the algorithm stopped, we know that(
k
d−1
)

+ k ≥ n. By a simple calculation, under the assumption that d ≤ log(n)/3 we get that
k = Θ(d · n1/(d−1)).

Number of queries
Overall through the k rounds of the algorithm we query f on all vectors of the form
v +

∑
i∈T ∆i for v ∈ {0, e1, . . . , en} and T ⊆ [k] of size ≤ d− 1. Hence, if we make sure not

to query f more than once on the same point, the number of queries is (n+ 1) ·
(

k
≤d−1

)
which

is at most O(n2) for d ≤ log(n)/3.

Running time
The total running time per round is O(n3) since we perform Gaussian elimination to calculate
the basis for W⊥, and another Gaussian elimination to check which of the first k + 1 vectors
of this basis is not in span{∆1, . . . ,∆k+1}. In addition, in each round we calculate the linear
functions `S , but this only takes O(n2 ·2d) time, which is negligible compared to O(n3) under
the assumption that d ≤ log(n)/3. Therefore, the total running time is O(n3 · k). J

C Proof of DeMillo-Lipton-Schwartz-Zippel Variant

In this section we provide a proof for Lemma 13. Our proof is adapted from the proof of
Lemma A.36 in the book of Arora and Barak [1].

Proof of Lemma 13. Since we only care about the values the polynomial take on Fnq , we
may assume without loss of generality that the individual degree of each variable is at most
q − 1, since aq = a for all a ∈ Fq.
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We use induction on n. If n = 1 then f is a univariate polynomial of degree d for
some d ≤ q − 1, since we assumed each individual degree is at most q − 1. We have
Pr[f(x1) 6= 0] ≥ 1 − d/q ≥ q−d/(q−1), where the first inequality follows since a univariate
degree d polynomial over a field obtains at most d roots, and the last inequality can be
verified for any d ≤ q − 1 using basic calculus. Suppose the statement is true when the
number of variables is at most n− 1. Then f can be written as

f(x1, . . . , xn) =
min(d,q−1)∑

i=0
xi1 · fi(x2, . . . , xn)

where fi is of total degree at most d− i. Let k be the largest i such that fi is a non-zero
polynomial. By conditioning we have,

Pr[f(x1, . . . , xn) 6= 0] ≥ Pr[fk(x2, . . . , xn) 6= 0] ·Pr[f(x1, . . . , xn) 6= 0 | fk(x2, . . . , xn) 6= 0] .

By the induction hypothesis, the first multiplicand is at least q−(d−k)/(q−1). As for the second
multiplicand, for any fixed (x2, . . . , xn) = (a2, . . . , an) such that fk(a2, . . . , an) 6= 0, we get
that f(x1, a2, . . . , an) is a non-zero univariate polynomial, in the variable x1, of degree k.
Hence, Prx1∼Fq [f(x1, a2, . . . , an) 6= 0] ≥ q−k/(q−1) from the base case. Overall we get

Pr[f(x1, . . . , xn) 6= 0] ≥ q−(d−k)/(q−1)q−k/(q−1) = q−d/(q−1) . J
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Abstract
In the planted bisection model a random graph G(n, p+, p−) with n vertices is created by parti-
tioning the vertices randomly into two classes of equal size (up to ±1). Any two vertices that
belong to the same class are linked by an edge with probability p+ and any two that belong
to different classes with probability p− < p+ independently. The planted bisection model has
been used extensively to benchmark graph partitioning algorithms. If p± = 2d±/n for numbers
0 ≤ d− < d+ that remain fixed as n→∞, then w.h.p. the “planted” bisection (the one used to
construct the graph) will not be a minimum bisection. In this paper we derive an asymptotic
formula for the minimum bisection width under the assumption that d+ − d− > c

√
d+ ln d+ for

a certain constant c > 0.
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v 6= w with probability pσ(v)σ(w) independently, where 0 ≤ p−1 < p+1 ≤ 1. To ease notation,
we often write p+ for p+1 and p− for p−1, and handle subscripts similarly for other parameters.

Given the random graph G (but not the planted bisection σ), the task is to find a
minimum bisection of G, i.e., to partition the vertices into two disjoint sets S, S̄ = [n] \ S
whose sizes satisfy ||S| − |S̄|| ≤ 1 such that the number of S-S̄-edges is minimum. The
planted bisection model has been employed to gauge algorithms based on spectral, semidefinite
programming, flow and local search techniques, to name but a few [5, 6, 7, 8, 9, 11, 14, 15,
16, 22, 23, 27, 31, 29].

Remarkably, for a long time the algorithm with the widest range of n, p± for which a
minimum bisection can be found efficiently was one of the earliest ones, namely Boppana’s
spectral algorithm [6]. It succeeds if

n(p+ − p−) ≥ c
√
np+ lnn

for a certain constant c > 0. Under this assumption the planted bisection is minimum w.h.p.
In fact, recently the critical value c∗ > 0 for which this statement is true was identified
explicitly [36]. In particular, for n(p+ − p−) > c∗

√
np+ lnn the minimum bisection width

simply equals ( 1
4 + o(1))n2p− w.h.p.

But if n(p+−p−) < c∗
√
np+ lnn, then the minimum bisection width will be strictly smaller

than the width of the planted bisection w.h.p. Yet there is another spectral algorithm [9]
that finds a minimum bisection w.h.p. under the weaker assumption that

n(p+ − p−) ≥ c
√
np+ ln(np+), (1.1)

for a certain constant c > 0, and even certifies the optimality of its solution. However, [9]
does not answer what is arguably the most immediate question: what is the typical value of
the minimum bisection width?

In this paper we derive the value to which the (suitably scaled) minimum bisection width
converges in probability. We confine ourselves to the case that n

2 p± = d± remain fixed as
n→∞. Hence, the random graph G has bounded average degree. This is arguably the most
interesting case because the discrepancy between the planted and the minimum bisection gets
larger as the graphs get sparser. In fact, it is easy to see that in the case of fixed n

2 p± = d±
the difference between the planted and the minimum bisection width is Θ(n) as the planted
bisection is not even locally optimal w.h.p.

Although we build upon some of the insights from [9], it seems difficult to prove our
main result by tracing the fairly complicated algorithm from that paper. Instead, our
main tool is an elegant message passing algorithm called Warning Propagation that plays
an important role in the study of random constraint satisfaction problems via ideas from
statistical physics [32]. Running Warning Propagation on G naturally corresponds to a fixed
point problem on the 2-simplex, and the minimum bisection width can be cast as a function
of the fixed point.

1.2 The main result
To state the fixed point problem, we consider the functions

ψ : R→ R, x 7→


−1 if x < −1
x if − 1 ≤ x ≤ 1
1 if x > 1,

ψ̃ : R→ R, x 7→

{
−1 if x ≤ −1
1 if x > −1.
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712 The Minimum Bisection in the Planted Bisection Model

Let P({−1, 0, 1}) be the set of probability measures on {−1, 0, 1}. Clearly, we can identify
P({−1, 0, 1}) with the set of all maps p : {−1, 0, 1} → [0, 1] such that p(−1)+p(0)+p(1) = 1,
i.e., the 2-simplex. Further, let us define a map

Td+,d− : P({−1, 0, 1})→ P({−1, 0, 1}) (1.2)

as follows. Given p ∈ P({−1, 0, 1}), let (ηp,i)i≥1 be a family of i.i.d. {−1, 0, 1}-valued random
variables with distribution p. Moreover, let γ± = Po(d±) be Poisson variables that are
independent of each other and of the ηp,i. Let

Zp,d+,d− :=
γ+∑
i=1

ηp,i −
γ++γ−∑
i=γ++1

ηp,i. (1.3)

Then we let Td+,d−(p) ∈ P({−1, 0, 1}) be the distribution of ψ(Zp,d+,d−). Further, with
(ηp,i)i≥1 and γ± as before, let

ϕd+,d− :P({−1, 0, 1})→ R,

p 7→ 1
2E

 γ+∑
i=1

1
{
ηp,i = −ψ̃(Zp,d+,d−)

}
+

γ++γ−∑
i=γ++1

1
{
ηp,i = ψ̃(Zp,d+,d−)

} .
Moreover, let us call p ∈ P({−1, 0, 1}) skewed if p(1) ≥ 1 − d−10

+ . Finally, we denote the
minimum bisection width of a graph G by bis(G).

I Theorem 1.1. There exists a constant c > 0 such that for any d± > 0 satisfying d+ ≥ 2
and d+−d− ≥ c

√
d+ ln d+ the map Td+,d− has a unique skewed fixed point p∗ and n−1bis(G)

converges in probability to ϕd+,d−(p∗).

Note that Td+,d− may have further fixed points besides p∗, but p∗ is the only fixed point
which is skewed. We also note that the condition d+ ≥ 2 is not optimised – any constant
larger than 1 would do as a lower bound, but then in any case the condition d+ ≥ 2 follows
from the lower bound on d+ − d− for sufficiently large c.

In the following sections we will use that the assumptions of Theorem 1.1 allow us to
assume that also d+ is sufficiently large.

1.3 Further related work
Determining the minimum bisection width of a graph is NP-hard [18] and there is evidence
that the problem does not even admit a PTAS [26]. On the positive side, it is possible to
approximate the minimum bisection width within a factor of O(lnn) for graphs on n vertices
in polynomial time [38].

The planted bisection model has been studied in statistics under the name “stochastic
block model” [20]. However, in the context of statistical inference the aim is to recover
the planted partition σ as best as possible given G rather than to determine the minimum
bisection width. Recently there has been a lot of progress, much of it inspired by non-rigorous
work [12], on the statistical inference problem. The current status of the problem is that
matching upper and lower bounds are known for the values of d± for which it is possible to
obtain a partition that is non-trivially correlated with σ [30, 33, 35]. Furthermore, there
are algorithms that recover a best possible approximation to σ under certain conditions on
d± [1, 34, 36]. But since our objective is different, the methods employed in the present
paper are somewhat different and, indeed, rather simpler.
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Finally, there has been recent progress on determining the minimum bisection width
on the Erdős-Rényi random graph. Although its precise asymptotics remain unknown in
the case of bounded average degrees d, it was proved in [13] that the main correction term
corresponds to the “Parisi formula” in the Sherrington-Kirkpartrick model [39]. Additionally,
regarding the case of very sparse random graphs (i.e. with constant average degree), there is
a sharp threshold (at np = ln 4) for the minimum bisection width to be linear in n [28].

Generally speaking, the approach that we pursue is somewhat related to the notion of
“local weak convergence” of graph sequences as it was used in [2]. More specifically, we are
going to argue that the minimum bisection width of G is governed by the “limiting local
structure” of the graph, which is a two-type Galton-Watson tree. The fixed point problem in
Theorem 1.1 mirrors the execution of a message passing algorithm on the Galton-Watson
tree. The study of this fixed point problem, for which we use the contraction method [37], is
the key technical ingredient of our proof. We believe that this strategy provides an elegant
framework for tackling many other problems in the theory of random graphs as well. In
fact, in a recent paper [10] we combined Warning Propagation with a fixed point analysis on
Galton-Watson trees to the k-core problem, and in [4] Warning Propagation was applied to
the random graph coloring problem.

2 Outline

From here on we keep the notation and the assumptions of Theorem 1.1. In particular, we
assume that d+ − d− ≥ c

√
d+ ln d+ for a large enough constant c > 0 and that d± remain

fixed as n→∞. Furthermore we assume that d+ is bounded from below by a large enough
constant. Throughout the paper all graphs will be locally finite and of countable size.

Three main insights enable the proof of Theorem 1.1. The first one, which we borrow
from [9], is that w.h.p. G features a fairly large set C of vertices such that for any two optimal
bisections τ1, τ2 of G (i.e. maps τ1, τ2 : V (G)→ {±1}), we either have τ1(v) = τ2(v) for all
v ∈ C or τ1(v) = −τ2(v) for all v ∈ C. In the language of random constraint satisfaction
problems, the vertices in C are “frozen”. While there remain Ω(n) unfrozen vertices, the
subgraph that they induce is subcritical, i.e., all components are of size O(lnn) and indeed
most are of bounded size.

The second main ingredient is an efficient message passing algorithm called Warning
Propagation, (cf. [32, Chapter 19]). We will show that a bounded number of Warning
Propagation iterations suffice to arrange almost all of the unfrozen vertices optimally (i.e. to
assign almost all of the vertices to two classes such that there is a minimum bisection respecting
this assignment) and thus to obtain a very good approximation to the minimum bisection
w.h.p. (Proposition 2.2). This insight reduces our task to tracing Warning Propagation for a
bounded number of rounds.

This last problem can be solved by studying Warning Propagation on a suitable Galton-
Watson tree, because G only contains a negligible number of short cycles w.h.p. (Lemma 2.3).
Thus, the analysis of Warning Propagation on the random tree is the third main ingredient
of the proof. This task will turn out to be equivalent to studying the fixed point problem
from Section 1.2 (Proposition 2.5). We proceed to outline the three main components of the
proof.
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2.1 The core
Given a vertex u of a graph G let ∂Gu denote the neighbourhood of u in G. We sometimes
omit the subscript G when the graph is clear from the context. More particularly, in the
random graph G, let ∂±u denote the set of all neighbours w of u in G with σ(w)σ(v) = ±1.
Following [9], we define C as the largest subset U ⊂ [n] such that

||∂±u| − d±| ≤
c

4
√
d+ ln d+ and |∂u \ U | ≤ 100 for all u ∈ U. (2.1)

Clearly, the set C, which we call the core, is uniquely defined because any union of sets U
that satisfy (2.1) also has the property. Let σC : C → {±1}, v 7→ σ(v) be the restriction of
the “planted assignment” to C.

Furthermore, for a graph G, a set U ⊂ V (G) and a map σ : U → {−1, 1} we let

cut(G, σ) := min
{ ∑
{v,w}∈E(G)

1− τ(v)τ(w)
2

∣∣∣∣
τ : V (G)→ {±1} satisfies τ(v) = σ(v) for all v ∈ U

}
.

In words, cut(G, σ) is the smallest number of edges in a cut of G that separates the vertices
in U ∩ σ−1(−1) from those in U ∩ σ−1(1). In particular, cut(G, σC) is the smallest cut of G
that separates the vertices in the core C that are frozen to −1 from those that are frozen to 1.

Finally, for any vertex v we define a set Cv = Cv(G, σ) of vertices via the following process.
C1 Let C(0)

v = {v} ∪ ∂Gv.
C2 Inductively, let C(t+1)

v = C(t)
v ∪

⋃
u∈C(t)

v \C
∂Gu and let Cv =

⋃
t≥0 C

(t)
v .

I Lemma 2.1 ([9], Proposition 19 and Section 3.6). We have bis(G) = cut(G,σC) and
|C| ≥ n(1 − d−100

+ ) w.h.p. Furthermore, for any ε > 0 there exists ω > 0 such that w.h.p.∑
v∈[n] |Cv| · 1 {|Cv| ≥ ω} ≤ εn.

2.2 Warning Propagation
To calculate cut(G,σC) we adopt the Warning Propagation (“WP”) message passing al-
gorithm1. Let us first introduce WP for a generic graph G = (V (G), E(G)) and a map
σ : U ⊂ V (G) → {−1, 1}. At each time t ≥ 0, WP sends a “message” µv→w(t|G, σ) ∈
{−1, 0, 1} from v to w for any edge {v, w} ∈ E(G). The messages are directed objects, i.e.,
µv→w(t|G, σ) and µw→v(t|G, σ) may differ. They are defined inductively by

µv→w(0|G, σ) :=
{
σ(v) if v ∈ U,
0 otherwise,

µv→w(t+ 1|G, σ) := ψ

 ∑
u∈∂v\w

µu→v(t|G, σ)

 .

(2.2)

Note that U does not appear explicitly in the notation µv→w(t|G, σ) despite being integral
to the definition – it is however implicit in the notation since U is the domain of σ.

Thus, the WP messages are initialised according to σ. Subsequently, v sends message ±1
to w if it receives more ±1 than ∓1 messages from its neighbours u 6= w. If there is a tie, v

1 A discussion of Warning Propagation in the context of the “cavity method” from statistical physics can
be found in [32].
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sends out 0. Finally, for t ≥ 0 define

µv(t|G, σ) :=
∑
w∈∂v

µw→v(t|G, σ).

The intuition is that the message µv→w which v sends to w indicates which class v is most
likely to be in based on the current local information it receives from its other neighbours.
To minimise the cut, we would like to place v into the class in which most of its neighbours
lie. The initialisation is given by the set U , which we will choose to be the core.

I Proposition 2.2. For any ε > 0 there exists t0 = t0(ε, d+, d−) such that for all t ≥ t0
w.h.p. ∣∣∣∣∣∣cut(G,σC)−

1
2
∑
v∈[n]

∑
w∈∂v

1
{
µw→v(t|G,σ) = −ψ̃ (µv(t|G,σ))

}∣∣∣∣∣∣ ≤ εn.
We defer the proof of Proposition 2.2 to Section 3.

2.3 The local structure
Proposition 2.2 shows that w.h.p. in order to approximate cut(G,σC) up to a small error
of εn we merely need to run WP for a number t0 of rounds that is bounded in terms of
ε. The upshot is that the WP messages µw→v(t|G,σ) that are required to figure out the
minimum bisection width are determined by the local structure of G. We show that the local
structure of G “converges to” a suitable Galton-Watson tree. For this purpose, for simplicity
we always say that the number of potential neighbours of any vertex in each class is n/2.
This ignores the fact that if n is odd the classes do not have quite this size and the fact that
a vertex cannot be adjacent to itself. However, ignoring these difficulties will not affect our
calculations in any significant way.

Our task boils down to studying WP on that Galton-Watson tree. Specifically, let
T = T d+,d− be the Galton-Watson tree with two types +1,−1 and offspring matrix(

Po(d+) Po(d−)
Po(d−) Po(d+)

)
. (2.3)

Hence, a vertex of type ±1 spawns Po(d+) vertices of type ±1 and independently Po(d−)
vertices of type ∓1. Moreover, the type of the root vertex rT is chosen uniformly at random.
Let τ = τ d+,d− : V (T )→ {±1} assign each vertex of T its type.

The random graph (G,σ) “converges to” (T , τ ) in the following sense. For two triples
(G, r, σ), (G′, r′, σ′) of graphs G,G′, root vertices r ∈ V (G), r′ ∈ V (G′) and maps σ :
V (G)→ {±1}, σ′ : V (G′)→ {±1} we write (G, σ) ∼= (G′, σ′) if there is a graph isomorphism
ϕ : G → G′ such that ϕ(r) = r′ and σ = σ′ ◦ ϕ. Further, we denote by ∂t(G, r, σ) the
rooted graph obtained from (G, r) by deleting all vertices at distance greater than t from r

together with the restriction of σ to this subgraph. The following lemma characterises the
local structure of (G,σ).

I Lemma 2.3. Let t > 0 be an integer and let T be any tree with root r and map τ : V (T )→
{±1}. Then

1
n

∑
v∈[n]

1
{
∂t(G, v,σ) ∼= ∂t(T, r, τ)

} n→∞→ P
[
∂t(T , rT , τ ) ∼= ∂t(T, r, τ)

]
in probability.

Furthermore, w.h.p. G does not contain more than lnn vertices v such that ∂t(G, v,σ)
contains a cycle.
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Proof. Given a tree T with root r and map τ : V (T )→ {±1}, let

Xt = Xt(T, r, τ) = 1
n

∑
v∈[n]

1
{
∂t(G, v,σ) ∼= ∂t(T, r, τ)

}
and

pt = pt(T, r, τ) = P
[
∂t(T , rT , τ ) ∼= ∂t(T, r, τ)

]
.

The proof proceeds by induction on t. If t = 0, pick a vertex v ∈ [n] uniformly at random,
then X0 = Pv (σ(v) = τ(r)) = 1

2 and p0 = PT (τ (rT ) = τ(r)) = 1
2 for any τ(r) ∈ {±1}. To

proceed from t to t+ 1, let d denote the number of children v1, . . . , vd of r in T . For each
i = 1, . . . , d, let Ti denote the tree rooted at vi in the forest obtained from T by removing r and
let τi : V (Ti)→ {±1} denote the restriction of τ to the vertex set of Ti. Finally, let C1, . . . , Cd̃
for some d̃ ≤ d denote the distinct isomorphism classes among {∂t(Ti, vi, τi) : i = 1, . . . , d},
and let cj = |{i : ∂t(Ti, vi, τi) ∈ Cj}|. Let v ∈ [n] be an arbitrary vertex in G. Our aim is to
determine the probability of the event {∂t+1(G, v,σ) ∼= ∂t+1(T, r, τ)}. Therefore, we think
of G as being created in three rounds. First, partition [n] in two classes. Second, randomly
insert edges between vertices in [n] \ {v} according to their planted sign. Finally, reveal the
neighbours of v. For the above event to happen, v must have d neighbours in G. Since |∂±v|
are independent binomially distributed random variables with parameters n

2 and p± and
because n

2 p± = d±, we may approximate |∂±v| with a poisson distribution, and v has degree
d with probability

(d+ + d−)d

d! exp(d+ + d−) + o(1).

Conditioned on v having degree d, by induction v is adjacent to precisely cj vertices with
neighbourhood isomorphic to ∂t(Ti, vi, τi) ∈ Cj with probability

(
d

c1 . . . cd̃

) d̃∏
j=1

pt(Cj) + o(1).

The number of cycles of length ` ≤ 2t+ 3 in G is stochastically bounded by the number of
such cycles in G(n, d+/n) (the standard 1-type binomial random graph). For each `, this
number tends in distribution to a poisson variable with bounded mean (see e.g. Theorem 3.19
in [21]) and so the total number of such cycles is bounded w.h.p. Thus all the pairwise
distances (in G− v) between neighbours of v are at least 2t+ 1 w.h.p. (and in particular
this proves the second part of the lemma). Therefore

EG[Xt+1] = (d+ + d−)d

d! exp(d+ + d−)

(
d

c1 . . . cd̃

) d̃∏
j=1

pt(Cj) + o(1).

By definition of T , we obtain E[Xt+1] = pt+1 + o(1). To apply Chebyshev’s inequality, it
remains to determine E[X2

t+1]. Let v,w ∈ [n] be two randomly choosen vertices. Then
w.h.p. v and w have distance at least 2t+ 3 in G, conditioned on which ∂t+1(G,v,σ) and
∂t+1(G,w,σ) are independent. Therefore we obtain

Pv,w
(
∂t+1(G,v,σ) ∼= ∂t+1(T, r, τ) ∧ ∂t+1(G,w,σ) ∼= ∂t+1(T, r, τ)

)
= Pv

(
∂t+1(G,v,σ) ∼= ∂t+1(T, r, τ)

)
Pw
(
∂t+1(G,w,σ) ∼= ∂t+1(T, r, τ)

)
+ o(1)
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And finally

EG[X2
t+1] =EG

[
Pv
(
∂t+1(G,v,σ) ∼= ∂t+1(T, r, τ)

)
Pw
(
∂t+1(G,w,σ) ∼= ∂t+1(T, r, τ)

)]
+ 1
n
EG[Xt+1] + o(1)

=EG[Xt+1]2 + o(1).

The first assertion follows from Chebyshev’s inequality. J

2.4 The fixed point
Let (T, r, τ) be a rooted tree together with a map τ : V (T ) → {±1}. Then for any pair
v, w of adjacent vertices we have the WP messages µv→w(t|T, τ), t ≥ 0, as defined in (2.2).
Since we are going to be particularly interested in the messages directed towards the root,
we introduce the following notation. Given the root r, any vertex v 6= r of T has a unique
parent vertex w (the neighbour of v on the unique path from v to r). Initially, let

µv↑(0|T, r, τ) = τ(v) (2.4)

and define

µv↑(t|T, r, τ) = µv→w(t|T, τ) (2.5)

for t > 0. In addition, set µr↑(0|T, r, τ) = τ(r) and let

µr↑(t+ 1|T, r, τ) = ψ

( ∑
v∈∂T r

µv↑(t|T, r, τ)
)

(t ≥ 0) (2.6)

be the message that r would send to its parent if there was one.
For p = (p(−1), p(0), p(1)) ∈ P({−1, 0, 1}) we let p̄ = (p(1), p(0), p(−1)). Remembering

the map
T = Td+,d− : P({−1, 0, 1})→ P({−1, 0, 1})

from Section 1.2 and writing T t for its t-fold iteration, we observe the following.

I Lemma 2.4. Let pt = T t(0, 0, 1).
1. Given that τ (rT ) = +1, the message µrT ↑(t|T , rT , τ ) has distribution pt.
2. Given that τ (rT ) = −1, the message µrT ↑(t|T , rT , τ ) has distribution p̄t.

Proof. The proof is by induction on t. In the case t = 0 the assertion holds because
µrT ↑(0|T , rT , τ ) = τ (rT ). Now, assume that the assertion holds for t. To prove it for
t + 1, let C± be the set of all children v of rT with τ (rT )τ (v) = ±1. By construction,
|C±| has distribution Po(d±). Furthermore, let (T v, v, τv) signify the subtree pending on a
child v of rT . Because T is a Galton-Watson tree, the random subtrees T v are mutually
independent. Moreover, each T v is distributed as a Galton-Watson tree with offspring matrix
(2.3) and a root vertex of type ±τ (rT ) for each v ∈ C±. Therefore, by induction the message
µv↑(t|T v, v, τ v) has distribution pt if τ (v) = 1 resp. p̄t if τ (v) = −1. As a consequence,

µrT ↑(t+ 1|T , rT , τ ) = ψ

∑
v∈C+

µv↑(t|T v, v, τ v) +
∑
v∈C−

µv↑(t|T v, v, τ v)


has distribution pt+1 if τ (rT ) = 1 and p̄t+1 otherwise. J
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Lemma 2.4 shows that the operator T mimics WP on the Galton-Watson tree (T , rT , τ ).
Hence, to understand the behaviour of WP after a large enough number of iterations we
need to investigate the fixed point to which T t(0, 0, 1) converges as t→∞. In Section 4 we
will establish the following.

I Proposition 2.5. The operator T has a unique skewed fixed point p∗ and
limt→∞ T t(0, 0, 1) = p∗.

Proof of Theorem 1.1. Consider the random variables

Xn := 1
n

bis(G), Y (t)
n := 1

2
1
n

∑
v∈[n]

∑
w∈∂Gv

1
{
µw→v(t|G,σ) = −ψ̃ (µv(t|G,σ))

}
.

Then Lemma 2.1 and Proposition 2.2 imply that for any ε > 0,

lim
t→∞

lim
n→∞

P
[
|Xn − Y (t)

n | > ε
]

= 0. (2.7)

By Definition (2.2), µw→v(t|G,σ) and µv(t|G,σ) are determined by ∂tGv and the initialisation
µu→w(0|G,σ) for all u,w ∈ ∂tGv, {u,w} ∈ E(G). Since (2.5) and (2.6) match the recursive
definition (2.2) of µw→v(t|G,σ) and µv(t|G,σ), Lemma 2.3 implies that for any fixed t > 0
(as n tends to infinity),

Y (t)
n

n→∞→ x(t) := 1
2E
[ ∑
w∈∂T rT

1{µw↑(t|T , rT , τ ) = −ψ(µrT
(t|T , rT , τ ))}

]
in probability. (2.8)

Now let p∗ denote the unique skewed fixed point of T guaranteed by Proposition 2.5. Since
each child of rT can be considered a root of an independent instance of T to which we can apply
Lemma 2.4, we obtain that given (τ (w))w∈∂rT

the sequence (µw↑(t|T , rT , τ ))w∈∂rT
converges

to a sequence of independent random variables (ηw)w∈∂rT
with distribution p∗ (if τ (w) = 1)

and p̄∗ (if τ (w) = −1). By definition µrT
(t|T , rT , τ ) converges to

∑
w∈∂rT ,τ (w)=1 ηw +∑

w∈∂rT ,τ (w)=−1 ηw. Considering the offspring distributions of rT in both cases, i.e. τ (rT ) =
±1, we obtain from ϕd+,d−(p) = ϕd+,d−(p̄) for all p ∈ P({−1, 0, 1}) that

lim
t→∞

x(t) = ϕd+,d−(p∗). (2.9)

Finally, combining (2.7)–(2.9) completes the proof. J

3 Proof of Proposition 2.2

I Lemma 3.1. If v ∈ C and w ∈ ∂Gv, then µv→w(t|G,σ) = σ(v) = µv→w(t|G,σC) for all
t ≥ 0.

Proof. We proceed by induction on t. For t = 0 the assertion is immediate from the
initialisation of the messages. To go from t to t+ 1, consider v ∈ C and w ∈ ∂Gv. We may
assume without loss of generality that σ(v) = 1. By the definition of the WP message,

µv→w(t+ 1|G,σ) = ψ

 ∑
u∈∂Gv\{w}

µu→v(t|G,σ)

 = ψ (S+ + S− + S0) (3.1)
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where

S+ :=
∑

u∈C∩σ−1(+1)∩∂Gv\{w}

µu→v(t|G,σ),

S− :=
∑

u∈C∩σ−1(−1)∩∂Gv\{w}

µu→v(t|G,σ),

S0 :=
∑

u∈∂Gv\(C∪{w})

µu→v(t|G,σ).

Now, (2.1) ensures that

S+ ≥ d+ −
c

4
√
d+ ln d+, S− ≥ −d− −

c

4
√
d+ ln d+, S0 ≤ 100 ≤ c

4
√
d+ ln d+, (3.2)

provided that the constant c > 0 is chosen large enough. Combining (3.1) and (3.2), we see
that S+ + S− + S0 ≥ 1 and thus µv→w(t+ 1|G,σ) = 1. The exact same argument works for
µv→w(t+ 1|G,σC) = 1. J

Let Gv denote the subgraph of G induced on Cv. To prove Proposition 2.2, fix s > 0
large enough. Let S = S(s) be the set of all vertices such that either |Cv| >

√
s or Gv is

cyclic. Then Lemma 2.1 (with slightly smaller ε) and Lemma 2.3 imply that |S| ≤ εn w.h.p.
For the rest of this section, let v 6∈ S be fixed.

For w ∈ Cv \ {v} we let w↑v be the neighbour of w on the path from w to v. We
define Gw→v as the component of w in the graph obtained from Gv by removing the edge
{w,w↑v}. The vertex set of Gw→v will be denoted by Cw→v. Further, hw→v is the maximum
distance between w and any other vertex in Gw→v. Additionally, hv is the maximum distance
between v and any other vertex in Gv. Finally, let σv : Cv → {±1}, w 7→ σ(w) and let
σC,v : Cv ∩ C → {±1}, w 7→ σC(w).

I Lemma 3.2.
1. For any w ∈ Cv \ {v} and any t > hw→v we have

µw→w↑v
(t|G,σ) = µw→w↑v

(hw→v + 1|G,σ) = µw→w↑v
(t|G,σC).

2. For any t ≥ hv we have µv(t|G,σ) = µv(hv + 1|G,σ) = µv(t|G,σC).

Proof. The proof of (1) proceeds by induction on hw→v. The construction C1–C2 of Cv
ensures that any w ∈ Cv with hw→v = 0 either belongs to C or has no neighbour besides
w↑v. Hence for the first case the assumption follows from Lemma 3.1. If ∂Gw \ {w↑v} = ∅
we obtain that µw→w↑v

(t|G,σ) = µw→w↑v
(t|G,σC) = 0 for all t ≥ 1 by the definition of the

WP messages. Now, assume that hw→v > 0 and let t > hw→v. Then all neighbours u 6= w↑v
of w in Gw→v satisfy hu→v < hw→v. Thus, by induction

µw→w↑v
(t|G,σ) = ψ

 ∑
u∈∂Gw\{w↑v}

µu→w(t− 1|G,σ)


= ψ

 ∑
u∈∂Gw\{w↑v}

µu→w(hu→v + 1|G,σ)

 = µw→w↑v
(hw→v + 1|G,σ).

An analogous argument applies to µw→w↑v
(t|G,σC). The proof of (2) is similar. J

For each vertex w ∈ Cv, w 6= v, let µ∗w→v = µw→w↑v
(s|G,σ). Further, let µ∗w =

µw(s|G,σ). In addition, for z ∈ {±1} let

σzw→v : Cw→v ∩ ({w} ∪ C)→ {±1} , u 7→

{
z if u = w,

σ(u) otherwise.
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In words, σzw→v freezes w to z and all other u ∈ Cw→v that belong to the core to σ(u).
Analogously, let

σzv : Cv ∩ ({v} ∪ C)→ {±1} , u 7→

{
z if u = v,

σ(u) otherwise.

I Lemma 3.3. Suppose that u ∈ Cv \ {v}, such that hu→v ≥ 1.
1. If z = µ∗u→v ∈ {−1, 1}, then

cut(Gu→v,σ
z
u→v) < cut(Gu→v,σ

−z
u→v). (3.3)

Similarly, if z = ψ(µ∗v) ∈ {−1, 1}, then

cut(Gv,σ
z
v) < cut(Gv,σ

−z
v ). (3.4)

2. If µ∗u→v = 0, then

cut(Gu→v,σ
+1
u→v) = cut(Gu→v,σ

−1
u→v). (3.5)

Similarly, if µ∗v = 0, then

cut(Gv,σ
+1
v ) = cut(Gv,σ

−1
v ). (3.6)

Proof. We prove (3.3) and (3.5) by induction on hu→v. If hu→v = 1 then we have that
all neighbours w ∈ ∂Cu→vu of u with µ∗u→v 6= 0 are in C, i.e. fixed under σzu→v. Since
Cu→v = ∂Gu \ {u↑v} ∪ {u}, we obtain

cut(Cu→v,σ−zu→v)− cut(Cu→v,σzu→v) =

∣∣∣∣∣∣
∑

w∈∂Gu\{u↑v}

µ∗w→v

∣∣∣∣∣∣ (3.7)

by definition of z. By the induction hypothesis and because Gu→v is a tree (as v 6∈ S) we
have that (3.7) holds for hu→v > 1 as well. A similar argument yields (3.4) and (3.6). J

Now, let Uv be the set of all w ∈ Cv such that µ∗w→v 6= 0. Furthermore, let

σ↑v : Uv ∪ {v} → {−1,+1} , w 7→

{
ψ̃(µ∗v) if w = v,

µ∗w→v otherwise.

Thus, σ↑v sets all w ∈ Cv∩C \{v} to their planted sign and all w ∈ Uv \C to µ∗w→v. Moreover,
σ↑v sets v to ψ(µ∗v) if ψ(µ∗v) 6= 0 and to 1 if there is a tie.

I Corollary 3.4. We have cut(Gv,σC) = cut(Gv,σ↑v).

Proof. This is immediate from Lemma 3.3. J

Hence, in order to determine an optimal cut of Gv we merely need to figure out the
assignment of the vertices in Cv \ ({v} ∪ Uv). Suppose that σ∗↑v : Cv → {±1} is an optimal
extension of σ↑v to a cut of Gv, i.e.,

cut(Gv,σ↑v) =
∑

{u,w}∈E(Gv)

1
2(1− σ∗v↑(u)σ∗v↑(w)).

I Corollary 3.5. It holds that
∑
w∈∂Gv

1
2 (1−σ∗v↑(v)σ∗v↑(w)) =

∑
w∈∂Gv

1
{
µ∗w→v = −ψ̃ (µv)

}
.
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Proof. Part (2) of Lemma 3.3 implies that σ∗v↑(v)σ∗v↑(w) = 1 for all w ∈ ∂Gv such that
µ∗w→v = 0. J

Proof of Proposition 2.2. Given ε > 0 choose δ = δ(ε, d+, d−) sufficiently small and s =
s(ε, δ, d+, d−) > 0 sufficiently large. In particular, pick s large enough so that

P (|S| ≥ δn) < ε. (3.8)

Provided that δ is suitable small, the Chernoff bound implies that for large n

P

(
1
2
∑
v∈S
|∂Gv| ≥ εn

∣∣∣∣∣ |S| < δn

)
< ε. (3.9)

Now, suppose that σ∗C is an optimal extension of σC to a cut of G and let v 6∈ S. Then using
the definition of Cv, Corollary 3.4 implies that∑

w∈∂Gv

(1− σ∗C(v)σ∗C(w)) =
∑

w∈∂Gv

(1− σ∗v↑(v)σ∗v↑(w)).

Therefore, we obtain

P

∣∣∣∣∣∣cut(G,σC)−
1
2
∑
v 6∈S

∑
w∈∂Gv

(1− σ∗v↑(v)σ∗v↑(w))

∣∣∣∣∣∣ ≥ εn
 ≤ P

(
1
2
∑
v∈S
|∂Gv| ≥ εn

)
≤ 2ε.

The assertion follows from Lemma 3.2 for t ≥ s. J

4 Proof of Proposition 2.5

We continue to denote the set of probability measures on X ⊂ Rk by P(X ). For a X -valued
random variable X we denote by L(X) ∈ P(X ) the distribution of X. Furthermore, if
p, q ∈ P(X ), then Pp,q(X ) denotes the set of all probability measures µ on X × X such that
the marginal distribution of the first (resp. second) component coincides with p (resp. q). The
space P({−1, 0, 1}) is complete with respect to (any and in particular) the L1-Wasserstein
metric, defined by

`1(p, q) = inf {E|X − Y | : X,Y are random variables with L(X,Y ) ∈ Pp,q({−1, 0, 1})} .

In words, the infimum of E|X − Y | is over all couplings (X,Y ) of the distributions p, q. Such
a coupling (X,Y ) is optimal if `1(p, q) = E|X − Y |. Finally, let P∗({−1, 0, 1}) be the set
of all skewed probability measures on {−1, 0, 1}. Being a closed subset of P({−1, 0, 1}),
P∗({−1, 0, 1}) is complete with respect to `1( · , · ).

As in the definition (1.2)-(1.3) of the operator T = Td+,d− for p ∈ P({−1, 0, 1}) we
let (ηp,i)i≥1 be a family of independent random variables with distribution p. Further, let
γ± = Po(d±) be independent of each other and of the (ηp,i)i≥1. We introduce the shorthands

Zp = Zp,d+,d− , Zp,+ =
γ+∑
i=1

ηp,i, Zp,− =
γ++γ−∑
i=γ++1

ηp,i so that Zp = Zp,+ − Zp,−.

Also set λ = c
√
d+ ln d+ and recall that c > 0 is a constant that we assume to be sufficiently

large.

I Lemma 4.1. The operator T maps P∗({−1, 0, 1}) into itself.
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Proof. Suppose that p ∈ P({−1, 0, 1}) is skewed. Then

P (Zp < 1) ≤ P
(
Zp,+ ≤ d+ −

λ− 1
2

)
+ P

(
Zp,− ≥ d− + λ− 1

2

)
. (4.1)

Since |ηp,i| ≤ 1 for all i, we can bound the second summand from above by invoking the
Chernoff bound on a binomial approximation of the Poisson distribution to obtain

P
(
γ− ≥ d− + c

2
√
d+ ln d+ −

1
2

)
<

1
3d
−10
+ , (4.2)

provided c is large enough. To bound the other summand from above we use that (ηp,i)i≥1
is a sequence of independent skewed random variables, whence by the Chernoff bound

P
(
Zp,+ ≤ d+ −

λ− 1
2

)
≤ P (|γ+ − d+| > λ/8) + P

(
Zp,− ≤ d+ −

λ− 1
2

∣∣∣∣γ+ ≥ d+ − λ/8
)

≤ 1
3d
−10
+ + P

[
Bin(d+ − λ/8, 1− d−10

+ ) ≤ d+ − λ/7
]
<

2
3d
−10
+ , (4.3)

provided that c is sufficiently big. Combining (4.1)–(4.3) completes the proof. J

I Lemma 4.2. The operator T is `1-contracting on P∗({−1, 0, 1}).

Proof. Let p, q ∈ P∗({−1, 0, 1}). We aim to show that `1(T (p), T (q)) ≤ 1
2`1(p, q). To this

end, we let (ηp,i, ηq,i)i≥1 be a family of random variables with distribution p resp. q such
that (ηp,i)i≥1 are independent and (ηq,i)i≥1 are independent but such that the pair (ηp,i, ηq,i)
is an optimal coupling for every i. Then by the definition of `1( · , · ),

`1(T (p), T (q)) ≤ E |ψ(Zp)− ψ(Zq)| . (4.4)

To estimate the r.h.s., let η̃p,i = 1{ηp,i = 1}, η̃q,i = 1{ηq,i = 1}. Further, let Fi be the
σ-algebra generated by η̃p,i, η̃q,i and let F be the σ-algebra generated by γ+, γ− and the
random variables (η̃p,i, η̃q,i)i≥1. Additionally, let γ = γ+ + γ− and consider the three events

A1 =
{

γ∑
i=1

η̃p,iη̃q,i ≥ γ − 10
}
, A2 = {γ ≥ 2d+} , A3 = {γ+ − γ− ≤ 20} .

We are going to bound |ψ(Zp) − ψ(Zq)| on A1 \ (A2 ∪ A3), A1 ∪ A2 ∪ A3, A2 and A3 \ A2
separately. The bound on the first event is immediate: if A1 \ (A2 ∪ A3) occurs, then
ψ(Zp) = ψ(Zq) = 1 with certainty. Hence,

E
[
|ψ(Zp)− ψ(Zq)| · 1A1\(A2∪A3)

]
= 0. (4.5)

Let us turn to the second event A1 ∪ A2 ∪ A3. Because the pairs (ηp,i, ηq,i)i≥1 are mutually
independent, we find

E [ |ηp,i − ηq,i||F] = E [ |ηp,i − ηq,i||Fi] for all i ≥ 1. (4.6)

Clearly, if η̃p,iη̃q,i = 1, then ηp,i − ηq,i = 0. Consequently,

E [ |ηp,i − ηq,i||Fi] ≤
E|ηp,i − ηq,i|
P[η̃p,iη̃q,i = 0] = E|ηp,1 − ηq,1|

P[η̃p,1η̃q,1 = 0] . (4.7)
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Since the events A1,A2,A3 are F-measurable and because Ā2 ensures that γ < 2d+, (4.6)
and (4.7) yield

E[|ψ(Zp)− ψ(Zq)| |F]1A1∪A2∪A3
≤ 2d+E|ηp,1 − ηq,1|

P[η̃p,1η̃q,1 = 0] · 1A1∪A2∪A3
. (4.8)

Further, because the pairs (ηp,i, ηq,i)i≥1 are independent and because p, q are skewed,

P
(
A1 ∪ A2 ∪ A3

)
≤ P

(
γ ≤ 2d+,

γ∑
i=1

η̃p,iη̃q,i ≤ γ − 10
)
≤ (2d+ P (η̃p,1η̃q,1 = 0))10

. (4.9)

Combining (4.8) and (4.9), we obtain

E
[
E [|ψ(Zp)− ψ(Zq)||F] 1A1∪A2∪A3

]
≤ (2d+)11 P (η̃p,1η̃q,1 = 0)9 E|ηp,1 − ηq,1|. (4.10)

Since p, q are skewed, we furthermore obtain P (η̃p,1η̃q,1 = 0) ≤ 2d−10
+ . Therefore

E
[
|ψ(Zp)− ψ(Zq)|1A1∪A2∪A3

]
= E

[
E [|ψ(Zp)− ψ(Zq)||F] 1A1∪A2∪A3

]
≤ 220d−79

+ E|ηp,1 − ηq,1|.

With respect to A2, the triangle inequality yields

E[|ψ(Zp)− ψ(Zq)|1A2 ] ≤ 2E|ηp,1 − ηq,1| · E[γ1A2 ]. (4.11)

Further, since γ = Po(d+ + d−), the Chernoff bound entails that E[γ1A2 ] ≤ d−1
+ if the

constant c is chosen large enough. Combining this estimate with (4.11), we get

E[|ψ(Zp)− ψ(Zq)|1A2 ] ≤ 2d−1
+ E|ηp,1 − ηq,1|. (4.12)

Finally, on A3 \ A2 we have

E[|ψ(Zp)− ψ(Zq)|1A3\A2 ] ≤ 4d+E|ηp,1 − ηq,1|P [γ+ − γ− ≤ 20] . (4.13)

Since γ± = Po(d±) and d+ − d− ≥ λ, the Chernoff bound yields P [γ+ − γ− ≤ 20] ≤ d−2
+ , if

c is large enough. Hence, (4.13) implies

E[|ψ(Zp)− ψ(Zq)|1A3\A2 ] ≤ 4d−1
+ E|ηp,1 − ηq,1|. (4.14)

Finally, the assertion follows from (4.4), (4.5), (4.10), (4.12) and (4.14). J

Proof of Proposition 2.5. The assertion follows from Lemmas 4.1 and 4.2 and the Banach
fixed point theorem. J
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Abstract
Let G = G(n,m) be a random graph whose average degree d = 2m/n is below the k-colorability
threshold. If we sample a k-coloring σ of G uniformly at random, what can we say about the
correlations between the colors assigned to vertices that are far apart? According to a prediction
from statistical physics, for average degrees below the so-called condensation threshold dk,cond, the
colors assigned to far away vertices are asymptotically independent [Krzakala et al: PNAS 2007].
We prove this conjecture for k exceeding a certain constant k0. More generally, we determine the
joint distribution of the k-colorings that σ induces locally on the bounded-depth neighborhoods
of a fixed number of vertices.
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1 Introduction

We let G = G(n,m) denote the random graph on the vertex set [n] = {1, . . . , n} with precisely
m edges. Unless specified otherwise, we assume that m = m(n) = ddn/2e for a fixed number
d > 0.

Going back to the seminal paper of Erdős and Rényi [18], the problem of coloring the random
graph G remains one of the longest-standing challenges in probabilistic combinatorics. Over
the past half-century, efforts have been devoted to problems ranging from determining
the likely value of the chromatic number [4, 9, 26, 29] and its concentration [5, 27, 36] to
algorithmic ones such as constructing or sampling colorings of the random graph [3, 12, 14,
16, 23, 24, 38].

The last few years have witnessed substantial progress w.r.t. estimating χ(G) accurately.
Achlioptas and Friedgut [2] proved that for any number k ≥ 3 of colors there exists a sharp
threshold sequence dk−col = dk−col(n) such that for any fixed ε > 0, G is k-colorable w.h.p. if
2m/n < dk−col(n)−ε, while χ(G) > k w.h.p. if 2m/n > dk−col(n)+ε. Furthermore, starting
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from [4] there is a sequence of results which improve on the bounds for dk−col(n). The best
current bounds read

(2k−1) ln k−2 ln 2+δk ≤ lim inf
n→∞

dk−col(n) ≤ lim sup
n→∞

dk−col(n) ≤ (2k−1) ln k−1+δk, (1)

where limk→∞ δk = 0, see [10, 11]. In addition, the understanding of the geometry of the set
of k-colorings has advanced significantly [1, 32], too.

Much of the recent work has been inspired by ideas from statistical physics. Indeed, based
on a systematic but non-rigorous approach, the "cavity method" [30, 31], physicists have
derived "predictions" on a wide range of problems in combinatorics. More specifically, from
the statistical mechanics viewpoint, problems such as random graph coloring are examples of
"disordered systems", and the principal interest is in the associated Gibbs distributions. For
instance, if k ≥ 3 is an integer and G = (V,E) is a k-colorable graph, this is a probability
distribution on [k]V , namely the uniform distribution µG,k on the set Sk(G) of all k-colorings
of G. The fact that graph coloring is computationally hard suggests that µG,k is a quite a
complex object to study, and so it is. Not only does the Gibbs distribution reflect structural
properties of the problem such as the geometry of the space of colorings. But it is also
expected that its spatial mixing properties, i.e. the nature of correlations under the Gibbs
distribution, have a substantial impact on the performance of algorithms both for finding
and sampling (counting) colorings [13, 16, 28, 38]. Moreover, the existence of long range
correlation phenomena under the Gibbs distribution have been related to the hardness of
certain computational problems, e.g. see [37, 19, 20].

The usual setting where we study spatial mixing under the Gibbs distribution is as
follows: Considering a small region of vertices Λ ⊂ V (G), we analyze how the coloring of Λ
is correlated with that of vertices at some distance ω around Λ, as ω increases. It turns out
that spatial mixing is the most fundamental variant in understanding the behavior of Gibbs
distribution.

As far as the case where G = G(n,m) is regarded, it seems that the local treelike
structure of the graph plays a prominent role in the study of spatial mixing. It is well
known that the neighborhood structure within a fixed radius around some vertex v ∈ G is
asymptotically distributed as a Galton-Watson tree with offspring distribution Po(d), where
d = 2m/n. This observation motivates the question of whether it is possible to study the
spatial mixing properties of the Gibbs distribution on G by means of the Gibbs distribution
on Galton-Watson trees with Po(d) offspring. For certain questions like the so-called Gibbs
uniqueness (e.g. see [21]) the reduction from G to a Galton-Watson tree is trivially true.
However, for different kinds of spatial mixing this reduction turns out to be far from trivial,
e.g. the reconstructibility we consider here.

In this work we study the above question in its full generality. We investigate the
asymptotic relation between the Gibbs distribution over the k-colorings of a Po(d) Galton-
Watson tree and the marginal of the Gibbs distribution over the k-colorings of G on a fixed
size neighborhood around some vertex v. We show that these two distributions converge
to each other in a very specific way, provided that the average degree d is smaller than the
so-called condensation threshold

dk,cond = inf
{
d > 0 : lim sup

n→∞
E[Zk(G(n,m))1/n] < k(1− 1/k)d/2

}
.

The precise value of dk,cond has recently been determined rigorously (for k exceeding a
certain constant k0) [7]. An asymptotic expansion of that precise formula yields the explicit
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expression

dk,cond = (2k − 1) ln k − 2 ln 2 + δk with δk → 0,

matching the best current lower bound on dk−col (cf. (1)). Based on non-rigorous considera-
tions from statistical physics, we do not expect that the aforementioned convergence is true
for d > dk,cond (see further discussion in Section 3).

As a matter of fact we show that the above convergence does hold even if we consider
a fixed number of neighborhoods jointly. That is, for some fixed r, we consider r many
vertices in G and a small radius neighborhood around each vertex. We show that the joint
distribution of the k-colorings of these neighborhoods under µG,k converges to the product
of r Gibbs distributions over the k-colourings of a Po(d) Galton-Watson tree.

All the above imply that the reduction from G to the Galton-Watson tree is indeed
correct for studying any generic spatial mixing condition as long as d < dk,cond. A direct
corollary of our results is to verify the existence of a certain kind of decorrelation between
the color assignments of distant vertices, that was predicted by physicists using the cavity
method, see [25]. Furthermore, there is an impressing consequence that comes from the
observation that dk,cond is asymptotically equal to the k-colorability threshold for G. Our
result shows that the long-range effects that drive up the chromatic number of G are not
noticeable at a "local scale" (see further discussion in Section 3).

The challenging task in our analysis is that even though we speak about the local behavior
of the Gibbs distribution of G, we still need to argue about its global properties. To this
end we make a novel use of the "planted trick", introduced in [1]. In particular, we generalize
the planted model by introducing what we call the "planted replica model". The planting,
now, involves two independent k-colorings rather than just one. Our formalization of the
problem as well as the use of planting are quite generic. For this reason, we expect that our
approach can be extended to other models on random (hyper)graphs such as the hard-core
model, hypergraph two coloring, random k-SAT, etc.

2 Results

For a k-colorable graph G = (V,E), a vertex v and an integer ω ≥ 0 we let ∂ω(G, v) signify
the depth-ω neighborhood of v, i.e., the graph obtained from G by deleting all vertices at
a distance greater than ω from v. Additionally, for a set U ⊂ V we let µk,G|U denote the
projection of µk,G onto [k]U , i.e.,

µk,G|U (σ0) = µk,G
({
σ ∈ [k]V : ∀u ∈ U : σ(u) = σ0(u)

})
(σ0 ∈ [k]U ).

If H is a subgraph of G we briefly write µk,G|H = µk,G|V (H). Additionally, given a graph
G, we let v1,v2, . . . denote vertices of G that are chosen uniformly and independently at
random. Finally, let ‖ · ‖TV be the total variation norm. The main result of this paper is

I Theorem 1. There is a constant k0 > 0 such that for any k ≥ k0, d < dk,cond, l ≥ 1,
ω ≥ 0 we have

lim
n→∞

E

∥∥∥∥∥µk,G|∂ω(G,v1)∪···∪∂ω(G,vl) −
l⊗
i=1

µk,∂ω(G,vi)

∥∥∥∥∥
TV

= 0. (2)

In words, suppose that k ≥ k0 is not too small, let d < dk,cond and fix integers l, ω. Choose
a random graph G and pick l vertices v1, . . . ,vl uniformly and independently at random.
Standard properties of the random graph ensure that w.h.p. their depth-ω neighborhoods
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∂ω(G,v1), . . . , ∂ω(G,vl) are pairwise disjoint and acyclic. Hence, each ∂ω(G,vi) is a tree
w.h.p. However, w.h.p. in G there are paths of length Ω(logn) joining (most of) the vertices
at distance precisely ω from the randomly choosen "roots" vi. Now, (2) states that w.h.p. the
total variation distance of the following two distributions tends to 0 as n→∞. Under the
first distribution, choose a k-coloring σ of the entire random graph G uniformly at random
and consider its projection onto the forest ∂ω(G,v1) ∪ · · · ∪ ∂ω(G,vl). In particular, σ has
to respect the constraints imposed by the "long paths" that join the different components
∂ω(G,vi). Under the second distribution, ignore these long-range effects and obtain a
k-coloring of ∂ω(G,v1)∪· · ·∪∂ω(G,vl) simply by picking a k-coloring of each tree ∂ω(G,vi)
independently and uniformly at random (a task that can be performed efficiently by dynamic
programming).

Setting ω = 0 in Theorem 1 yields the following statement, which is of interest in its own
right.

I Corollary 2. There is a number k0 > 0 such that for all k ≥ k0, d < dk,cond and any
integer l > 0 we have

lim
n→∞

E

∥∥∥∥∥µk,G|{v1,...,vl} −
l⊗
i=1

µk,G|{vi}

∥∥∥∥∥
TV

= 0. (3)

By the symmetry of the colors, for each vertex v the "marginal distribution" µk,G|{v}
is just the uniform distribution on [k] for every vertex v. Hence, Corollary 2 states that
for d < dk,cond w.h.p. in the random graph G for randomly chosen vertices v1, . . . ,vl the
following is true: if we choose a k-coloring σ of G at random, then (σ(v1), . . . , σ(vl)) ∈ [k]l
is asymptotically uniformly distributed. Prior results of Montanari and Gershenfeld [22] and
of Montanari, Restrepo and Tetali [33] imply that (3) holds for d < 2(k − 1) ln(k − 1), about
an additive ln k below dk,cond.

Another interesting special case occurs if we set l = 1 in Theorem 1. In this case we
obtain a result about the well-known reconstruction problem. Suppose we draw a k-coloring
σ of G at random and we reveal the assignment of a vertex v. The reconstruction problem
amounts to studying how the information about the assignment at v biases the distribution
of assignments of other vertices in G, i.e. point to set correlation. It is straightforward
that the assignments at the neighbors of v are correlated with that of v since they must be
distinct. More generally, the reconstruction problem considers the bias on the assignments
of vertices on a fixed "radius" ω from v. If this correlation persists as ω →∞ we say that
reconstruction is possible on G. Otherwise we say that reconstruction is impossible. A similar
notion can be defined on a random Galton-Watson tree T(k, d) with offspring distribution
Po(d). That is, the reconstruction problem considers how the color assignment at the root
biases the distribution of the assignments of the vertices at level ω in a random k-colouring
of T(k, d). 1

I Corollary 3. There is a number k0 > 0 such that for all k ≥ k0 and d < dk,cond the
following is true.

Reconstruction is possible on G ⇔ tree reconstruction is possible on T (k, d). (4)

The point of Corollary 3 is that it reduces the reconstruction problem on a combinatorially
extremely intricate object, namely the random graph G, to the same problem on a much

1 Formal definitions can be found in [22].
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simpler structure, namely the Galton-Watson tree. That said, the reconstruction problem on
T(d) is far from trivial. The best current bounds show that there exists a sequence (δk)k → 0
such that non-reconstruction holds in T(d) if d < (1− δk)k ln k, while reconstruction occurs
if d > (1 + δk)k ln k [15].

Montanari, Restrepo and Tetali [33] proved (4) for d < 2(k − 1) ln(k − 1), about an
additive ln k below dk,cond. This gap could alternatively be plugged by invoking recent results
on the geometry of the set of k-colorings [6, 10, 32]. However, Corollary 3 is an immediate
consequence of Theorem 1.

3 Discussion and related work

Erdős’ observation [17] that the random graph G provides an example of a graph with high
girth and high chromatic number is, quite literally, a textbook application of the "probabilistic
method". One possible proof is to combine (1) with the well-known observation that for any
` ≥ 3 the probability that G fails to contain a cycle of length at most ` remains bounded
away from 0 as n → ∞. The difficulty of coming up with a deterministic construction of
such a graph highlights the extent to which the phenomenon baffles intuition [34].

Theorem 1 goes one step further. It shows that the long-range effects that drive up the
chromatic number of G are "locally elusive". Indeed, suppose we project a random k-coloring
of G to the depth-ω neighborhood of a bounded number of vertices. Then Theorem 1
shows that asymptotically no traces of the long-range effects that drive up the chromatic
number remain as the induced coloring is distributed as though no such effects were present.
In particular, w.h.p. any k-coloring of the neighborhood of a given vertex v extends in
asymptotically the same number of ways to the entire graph. Needless to say, we are unaware
of any deterministic construction that exhibits this property.

It is instructive to discuss the relationship between Theorem 1 and the geometry of the
set Sk(G) of k-colorings. For (1 + ηk)k ln k < d < dk,cond, where limk→∞ ηk = 0, w.h.p.
the set Sk(G) shatters into an exponential number of disjoint "clusters" C1, . . . , CN , each
containing merely an exponentially small fraction of the set Sk(G) [1]. Additionally, w.h.p. a
randomly chosen coloring σ of G belongs to a cluster Ci that is "frozen" [1, 32]. That is, there
is a number Ω(n) of vertices v that receive the same color under all the k-colorings in Ci.
Conversely, the cluster Ci can be characterised (almost) completely by a map τ : V → [k]∪{∗}
that assigns all frozen vertices their color and that sets all other variables to the "joker color"
∗ [10, 32]. In effect, the internal structure of a typical cluster is subject to strong long-range
correlations. For instance, if we consider the projection of a random k-coloring τi chosen
from the cluster Ci to a bounded number v1, . . . ,vl of randomly chosen vertices, then the
distribution of the resulting color vector (τi(v1), . . . , τi(vl)) would be far from uniform. What
Theorem 2 and Corollary 2 show is that these long range correlations "cancel out perfectly"
due to the large overall number of clusters.

No such cancellation is expected to occur for d beyond dk,cond but below the k-colorability
threshold [25]. In fact, non-rigorous but sophisticated arguments from physics predict that
in this regime, the so-called condensed phase, the set Sk(G) is dominated by a bounded
number of frozen clusters. Hence, the joint distribution (σ(v1), . . . , σ(vl)) will be a mixture
of a bounded number of "frozen" distributions (τi(v1), . . . , τi(vl)). Consequently, we expect
Theorem 1 to be best-possible in terms of the range of d.

Theorem 1 deals with the absence of "long-range correlations" in the random graph
coloring problem. It makes sense to raise similar questions in a wide variety of other problems
as well. In fact, the method that we develop in this paper is rather generic, and we expect



A. Coja-Oghlan, C. Efthymiou, and N. Jaafari 731

that it will generalise to various other problems; the following section will provide a detailed
discussion. Immediate examples that spring to mind include random hypergraph coloring
or models from physics such as the Potts model. Another potential candidate may be the
hardcore model on the random regular graph, which was studied by Bhatnagar, Sly and
Tetali via a rather different approach [8], and its generalisations [35].

4 Outline

Throughout this section we assume that k ≥ k0 and that d < dk,cond.

4.1 Spatial mixing via replicas

The proof of Theorem 1 consists of three components. The first part is to reduce the proof of
Theorem 1 to studying the distribution called random replica model. This is a distribution
over triples (G, σ1, σ2) such that G is a k-colorable graph and σ1, σ2 ∈ Sk(G). In particular,
it is induced by the following experiment.
RR1 Choose a random graph G = G(n,m) subject to the condition that G is k-colorable.
RR2 Sample two k-colorings σ1, σ2 of G uniformly and independently.

In an analogous manner we define the distribution T⊗(k, d) as follows: The distribution
is over triples (T, τ1, τ2), where T is an instance of the Galton-Watson tree with offspring
distribution Po(d) and τ1, τ2 are two independent random k-colorings of T.

So as to proceed with our arguments we need a bit of terminology. A rooted graph is
a graph G = (V,E) with vertex set V ⊂ R together with a distinguished vertex v0 ∈ V ,
the root. Further, a dicolored rooted graph is a k-colorable rooted graph (G, v0) together
with two k-colorings σ1, σ2 ∈ Sk(G). An isomorphism between two dicolored rooted graphs
(G, v0, σ1, σ2), (G′, v′0, σ′1, σ′2) is a graph isomorphism ϕ : G → G′ such that ϕ(v0) = v′0,
σ1 = σ′1 ◦ ϕ, σ2 = σ′2 ◦ ϕ and ϕ(v) < ϕ(w) iff v < w for all vertices v, w of G. In words, ϕ
preserves the roots, both colorings and the order of the vertices (which are real numbers). For
ω ≥ 0 we denote by ∂ω(G, v, σ1, σ2) the rooted dicolored graph obtained from (G, v, σ1, σ2)
by deleting all vertices whose distance from v exceeds ω.

Given Γ a rooted dicolored graph and ω ≥ 0, for some graph G = (V,E), σ1, σ2 ∈ Sk(G),
we let

QΓ,ω(G) = 1
|V |

∑
v∈V

1 {∂ω(G, v, σ1, σ2) ∼= ∂ωΓ} .

That is, QΓ,ω(G) is the fraction of vertices of G whose depth-ω neighbourhood, dicolored as
in (σ1, σ2), are isomorphic to ∂ωΓ. The following proposition reduces the proof of Theorem 1
to studying the quantity QΓ,ω under the random replica model. In particular, it holds

I Proposition 4. Assume that for any dicolored rooted tree θ and any integer ω ≥ 0, we have

Qθ,ω(G, σ1, σ2) P−→ P
[
∂ωT⊗(d, k) ∼= ∂ωθ

]
. (5)

Then (2) holds for any ω ≥ 0, l ≥ 0.

The proof of Proposition 4 is based on an averaging argument that generalises a very elegant
argument from [22]. More details can be found in Section 5.
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4.2 Planting replicas
The above implies that we need to study the random variable Qθ,ω(G, σ1, σ2) with (G, σ1, σ2)
chosen from the random replica model. It turns out that studying the random replica model
is a formidable task. E.g. for half the range of d we consider there is not even a practical way
of finding a k-coloring not to mention generating one at random (cf. the discussion in [1]).
For this reason we study the random replica model by means of the planted replica model.
The planted replica model, is a probability distribution that is easy both to implement and
to analyse.

For two maps σ1, σ2 : [n]→ [k] let

F(σ1, σ2) =
k∑
i=1

[(
|σ−1

1 (i)|
2

)
+
(
|σ−1

2 (i)|
2

)]
−

k∑
i,j=1

(
|σ−1

1 (i) ∩ σ−1
2 (j)|

2

)
,

i.e. F(σ1, σ2) is the number of edges of the complete graph on [n] that are monochromatic
in at least one of σ1 or σ2.

The planted replica model is induced by the following experiment.
PR1 Sample two maps σ̂1, σ̂2 : [n]→ [k] independently and uniformly at random subject to

the condition that F(σ̂1, σ̂2) ≤
(
n
2
)
−m.

PR2 Choose a graph Ĝ on [n] with precisely m edges uniformly at random, subject to the
condition that both σ̂1, σ̂2 are proper k-colorings of Ĝ.

The above experiment is easy to get a handle on. Indeed, for large enough n the
conditioning in PR1 is essentially void as E[F(σ̂1, σ̂2)] ∼ (1 − 1/k)2n and m = O(n). In
addition, PR2 amounts to simply choosing a random set of m edges out of the

(
n
2
)
−F(σ̂1, σ̂2)

"allowed" edges of the complete graph.
The random replica model and the planted replica model are a priori two different

distributions. However, we show that they are closely related in the following sense.

I Proposition 5. For any sequence (An)n of events we have

lim
n→∞

P
[
(Ĝ, σ̂1, σ̂2) ∈ An

]
= 0 ⇒ lim

n→∞
P [(G, σ1, σ2) ∈ An] = 0.

In probability jargon, Proposition 5 states that the random replica model is contiguous
with respect to the planted replica model. That is, triples (G, σ1, σ2) that are typical w.r.t.
the first distribution are typical w.r.t. the second distribution, too. The above proposition
generalises a result from [6]. For more details about Proposition 5, see Section 6.

4.3 A coupling argument
The following proposition summarises the third and last ingredient to the proof of Theorem 1.

I Proposition 6. Let θ be a dicolored rooted tree θ and let ω ≥ 0. Then Qθ,ω(Ĝ, σ̂1, σ̂2)
converges in probability to P [∂ωT⊗(k, d) ∼= ∂ωθ] as n→∞.

The proof of Proposition 6 is based on a coupling argument that illustrates how convenient
it is to work with the planted replica model. Namely, to prove Proposition 6 it is merely
necessary to couple the distribution of the breadth first search tree from a random vertex v
in (Ĝ, σ̂1, σ̂2) up to depth ω with the truncated random tree ∂ωT⊗(k, d). The coupling is
rather immediate from the definitions of these two distributions.

To complete the proof of Theorem 1, we combine Propositions 5 and 6 to conclude that
for any θ, ω,. Qθ,ω(G, σ1, σ2) converges in probability to P [∂ωT⊗(d, k) ∼= ∂ωθ]. Hence, the
assertion follows from Proposition 4.
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5 Proof of Proposition 4

Let G be a graph and Zk(G) = |Sk(G)|. For some X : Sk(G)→ R, we write

〈X(σ)〉G = 1
Zk(G)

∑
σ∈Sk(G)

X(σ).

That is, 〈X(σ)〉G denotes the expectation of X over the choice of random colorings of G.
Let some integers l, ω ≥ 0, let θ1, . . . , θl be rooted trees and let τ1 ∈ Sk(θ1), . . . , τl ∈ Sk(θl).

For a graph G, let U = U(G) denote the number of vertex sequences v1, . . . , vl such that
∂ω (G, vi) ∼= θi for each i ∈ [l]. Let Y (G) denote the set of vertex sequences v1, . . . , vl that
in addition to ∂ω (G, vi) ∼= θi for each i ∈ [l], also satisfy∣∣∣∣∣

〈
l∏
i=1

1 {∂ω(G, vi, σ) ∼= (θi, τi)}
〉
G

−
l∏
i=1

Zk(θi)−1

∣∣∣∣∣ > δ,

for fixed δ > 0. Conditional on the convergence condition in (5) we show that

n−l|Y (G)| P−→ 0. (6)

Then, the proposition follows by using (6) and noting that the random graph converges
locally to the Galton-Watson tree with offspring distribution Po(d), i.e. w.h.p. we have that

n−l|U| = o(1) +
l∏
i=1

P[T(d) ∼= θi].

For (6), we extend an argument from [22, Proposition 3.2]. Given a sequence ε = ε(n),
we let Xθ1,...,θl

(G, [l], ω) be the set of all vertex sequences u1, . . . , ul such that ∂ω (G, ui) ∼= θi
while ∣∣∣∣∣∣

〈∏
i∈[l]

(
1 {∂ω (G, ui, σ) ∼= (θi, τi)} −

1
Zk(θi)

)〉
G

∣∣∣∣∣∣ > ε.

Conditional on the convergence assumption in (5), we show that there is a sequence ε =
ε(n) = o(1) such that w.h.p. (over the graph instances) it holds that |Xθ1,...,θl

(G, [l], ω)| ≤ εnl.
In particular, let zi = Zk(θi) and ti(v, σ) = 1 {∂ω (G, v, σ) ∼= (θi, τi)}. Moreover, set

Qi(v) = 1 {∂ω (G, v) ∼= θi} ·
〈
(ti(v, σ1)− z−1

i )(ti(v, σ2)− z−1
i )
〉

G , Qi = 1
n

∑
v∈[n]

Qi(v).

The convergence assumption in (5) implies that there exists ε = ε(n) = o(1) such that∑
i∈[l]Qi ≤ ε3. Then fixing an arbitrary i0 ∈ [l] we get that

ε2

nl
|Xθ1,...,θl

(G, [l], ω)| ≤ 1
nl

∑
u1,...,ul∈[n]

〈∏
i∈[l]

(ti(ui, σ)− z−1
i )
〉2

G

l∏
i=1

1 {∂ω (G, ui) ∼= θi}

≤ 1
nl

∑
u1,...,ul∈[n]

〈
(ti0(ui0 , σ1)− z−1

i0
)(ti0(ui0 , σ2)− z−1

i0
)
〉
G

l∏
i=1

1 {∂ω (G, ui) ∼= θi}

[as σ1, σ2 are independent]

≤ 1
nl

∑
u1,...,ul∈[n]

Qi0(ui0) = Qi0 ≤ ε3, (7)
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which implies that w.h.p. |Xθ1,...,θl
(G, [l], ω)| ≤ εnl. Now, we consider the sequences of l

vertices which do not belong to Xθ1,...,θl
(G, [l], ω), i.e. the majority of the l-tuples. We show

that all of them are, somehow, well behaved.

I Claim 7. Let Eθ1,...,θl
be the set of all l-tuples (v1, . . . , vl) of distinct vertices such that

∂ω (G, vi) ∼= θi for all i ∈ [l]. Under the assumption in (5) the following is true: There is a
number C > 0 such that for all (v1, . . . , vl) ∈ Eθ1,...,θl

\ Xθ1,...,θl
(G, [l], ω)∣∣∣∣∣∣

〈∏
i∈[l]

1 {∂ω (G, vi, σ) ∼= (θi, τi)}
〉

G

−
∏
i∈[l]

z−1
i

∣∣∣∣∣∣ ≤ Cε1/2.

Then we get (6) from (7) and Claim 7. The proposition follows.

6 Proof of Proposition 5

Before proving the proposition, we consider the following: Given two maps σ1, σ2 : [n]→ [k],
we let the overlapmatrix ρ(σ1, σ2) be a k×k matrix such that ρij(σ1, σ2) = 1

n

∣∣σ−1
1 (i) ∩ σ−1

2 (j)
∣∣.

I Claim 8. Let ρ̄ be the uniform distribution on [k]2. Then, there is k0 > 0 such that for all
k ≥ k0 and all d < dk,cond, it holds that E[〈‖ρ(σ1, σ2)− ρ̄‖F 〉G] = o(1).

In words, the above claim asserts that for typical instances of G the expectation over the
choice of the random graph G(the outer E) of the average `2-distance of the overlap of two
randomly chosen k-colorings of G from ρ̄ goes to 0 as n→∞. The d < 2(k−1) ln(k−1) case
of Claim 8 was previously proved in [33] by way of the second moment analysis from [4]. As it
turns out, the regime 2(k−1) ln(k−1) < d < dk,cond requires a somewhat more sophisticated
argument.

In addition to Claim 8, we need the following concentration result from [6].

I Theorem 9 ([6]). There is k0 > 0 such that for all k ≥ k0 and all d < dk,cond we have

lim
ω→∞

lim
n→∞

P [| lnZk(G)− lnE[Zk(G)]| ≤ ω] = 1.

Proof. The proof of the proposition is by contradiction. Assume that (A′n)n≥1 is a sequence
of events such that for some fixed number ε > 0 we have

lim
n→∞

P
[
(Ĝ, σ̂1, σ̂2) ∈ A′n

]
= 0 while lim sup

n→∞
P [(G, σ1, σ2) ∈ A′n] > 2ε. (8)

Setting ω(n) = ln ln
(

1/P
[
(Ĝ, σ̂1, σ̂2) ∈ A′n

])
, we let Bn be the set of all pairs (σ1, σ2)

of maps [n]→ [k] such that ‖ρ(σ1, σ2)− ρ̄‖2 ≤
√
ω/n. Also we let

An = {(G, σ1, σ2) ∈ A′n : (σ1, σ2) ∈ Bn} .

We observe that

ω(n) = ln ln
(

1/P
[
(Ĝ, σ̂1, σ̂2) ∈ An

])
→∞. (9)

Then Claim 8 and (8) imply that

lim
n→∞

P
[
(Ĝ, σ̂1, σ̂2) ∈ An

]
= 0 while lim sup

n→∞
P [(G, σ1, σ2) ∈ An] > ε.
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The assumption that limn→∞ P
[
(Ĝ, σ̂1, σ̂2) ∈ An

]
= 0, implies that

E[Zk(G)21 {An}] =
∑

(σ1,σ2)∈Bn

P [σ1, σ2 ∈ Sk(G), (G, σ1, σ2) ∈ An]

=
∑

(σ1,σ2)∈Bn

P [(G, σ1, σ2) ∈ An|σ1, σ2 ∈ Sk(G)]P [σ1, σ2 ∈ Sk(G)]

≤ qn
∑

(σ1,σ2)∈Bn

P [(G, σ1, σ2) ∈ An|σ1, σ2 ∈ Sk(G)] , (10)

where qn = max {P [σ1, σ2 ∈ Sk(G)] : (σ1, σ2) ∈ Bn}. Using the definition of the planted
replica model, (10) writes as follows:

E[Zk(G)21 {An}] ≤ k2nqn P
[
(Ĝ, σ̂1, σ̂2) ∈ An

]
. (11)

Furthermore, since
∑k
j=1 ρij(σ1, σ2)2,

∑k
i=1 ρij(σ1, σ2)2 ≥ 1/k for all i, j ∈ [k], inclusion/ex-

clusion principle implies that

1
n

lnP [σ1, σ2 ∈ Sk(G)] ≤ d

2 ln
(

1− 2
k

+ ‖ρ(σ1, σ2)‖22
)

+O(1/n)

= d ln(1− 1/k) +O(ω/n) for all (σ1, σ2) ∈ Bn.

Hence, qn ≤ (1 − 1/k)2m exp(O(ω)). Plugging this bound into (11) and setting z̄ =
E[Zk(G)], we get that

E[Zk(G)21 {An}] ≤ k2n(1− 1/k)2m exp(O(ω))P
[
(Ĝ, σ̂1, σ̂2) ∈ An

]
= z̄2 exp(O(ω))P

[
(Ĝ, σ̂1, σ̂2) ∈ An

]
. (12)

On the other hand, if P [(G, σ1, σ2) ∈ A′n] > ε, then Theorem 9 implies that

P [(G, σ1, σ2) ∈ A′n ∩ {Zk(G) ≥ z̄/ω}] > ε/2.

Hence, the distribution of the random replica model yields

E[Zk(G)21 {An}] ≥
ε

2

(
z̄

ω

)2
. (13)

But due to (9), (13) contradicts (12). The proposition follows. J
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Abstract
We study resistance sparsification of graphs, in which the goal is to find a sparse subgraph
(with reweighted edges) that approximately preserves the effective resistances between every pair
of nodes. We show that every dense regular expander admits a (1 + ε)-resistance sparsifier of
size Õ(n/ε), and conjecture this bound holds for all graphs on n nodes. In comparison, spectral
sparsification is a strictly stronger notion and requires Ω(n/ε2) edges even on the complete graph.

Our approach leads to the following structural question on graphs: Does every dense regular
expander contain a sparse regular expander as a subgraph? Our main technical contribution,
which may of independent interest, is a positive answer to this question in a certain setting of
parameters. Combining this with a recent result of von Luxburg, Radl, and Hein [16] leads to
the aforementioned resistance sparsifiers.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases edge sparsification, spectral sparsifier, graph expansion, effective resist-
ance, commute time

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.738

1 Introduction

Compact representations of discrete structures are of fundamental importance, both from an
applications point of view and from a purely mathematical perspective. Graph sparsification
is perhaps one of the simplest examples: given a graph G(V,E), is there a subgraph that
represents G truthfully, say up to a small approximation? This notion has had different names
in different contexts, depending on the property that is being preserved: preserving distances
is known as a graph spanner [11], preserving the size of cuts is known as a cut sparsifier [3],
while preserving spectral properties is known as a spectral sparsifier [13]. These concepts are
known to be related, for example, every spectral sparsifier is clearly also a cut sparsifier, and
spectral sparsifiers can be constructed by an appropriate sample of spanners [6].

Our work is concerned with sparsification that preserves effective resistances. We define
this in Section 1.1, but informally the effective resistance between two nodes u and v is
the voltage differential between them when we regard the graph as an electrical network
of resistors with one unit of current injected at u and extracted at v. Effective resistances
are very useful in many applications that seek to cluster nodes in a network (see [16] and
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references therein for a comprehensive list), and are also of fundamental mathematical
interest. For example, they have deep connections to random walks on graphs (see [10] for
an excellent overview of this connection). Most famously, the commute time between two
nodes u and v (the expected time for a random walk starting at u to hit v plus the expected
time for a random walk starting at v to hit u) is exactly 2m times the effective resistance
between u and v, where throughout n := |V | and m := |E|. Hence, we are concerned with
sparsification which preserves commute times.

We ask whether graphs admit a good resistance sparsifier : a reweighted subgraph
G′(V,E′, w′) in which the effective resistances are equal, up to a (1 + ε)-factor, to those in
the original graph. The short answer is yes, because every (1 + ε)-spectral sparsifier is also a
(1 + ε)-resistance sparsifier. Using the spectral-sparsifiers of [2], we immediately conclude
that every graph admits a (1 + ε)-resistance sparsifier with O(n/ε2) edges.

Interestingly, the same 1/ε2 factor loss appears even when we interpret “sparsification” far
more broadly. For example, a natural approach to compressing the effective resistances is to
use a metric embedding (instead of looking for a subgraph): map the nodes into some metric,
and use the metric’s distances as our resistance estimates. This approach is particularly
attractive since it is well-known that effective resistances form a metric space which embeds
isometrically into `2-squared (i.e., the metric is of negative type, see e.g. [5]). Hence, using
the Johnson-Lindenstrauss dimension reduction lemma, we can represent effective resistances
up to a distortion of (1 + ε) using vectors of dimension O(ε−2 logn), i.e., using total space
Õ(n/ε2). In fact, this very approach was used by [14] to quickly compute effective resistance
estimates, which were then used to construct a spectral sparsifier.

Since a 1/ε2 term appears in both of these natural ways to compactly represent effective
resistances, an obvious question is whether this is necessary. For the stronger requirement of
spectral sparsification, we know the answer is yes – every spectral sparsifier of the complete
graph requires Ω(n/ε2) edges [2, Section 4] (see also [1]). However, it is currently unknown
whether such a bound holds also for resistance sparsifiers, and the starting point of our work
is the observation (based on [16]) that for the complete graph, every O(1/ε)-regular expander
is a (1 + ε)-resistance sparsifier, despite not being a (1 + ε)-spectral sparsifier! We thus put
forward the following conjecture.

I Conjecture 1. Every graph admits a (1 + ε)-resistance sparsifier with Õ(n/ε) edges.

We make the first step in this direction by proving the special case of dense regular
expanders (which directly generalize the complete graph). Even this very special case turns
out to be nontrivial, and in fact leads us to another beautiful problem which is interesting in
its own right.

I Question 2. Does every dense regular expander contain a sparse regular expander as a
subgraph?

Our positive answer to this question (for a certain definition of expanders) forms the bulk
of our technical work (Sections 2 and 3), and is then used to find good resistance sparsifiers
for dense regular expanders (Section 4).

1.1 Results and Techniques
Throughout, we consider undirected graphs, and they are unweighted unless stated otherwise.
In a weighted graph, i.e., when edges have nonnegative weights, the weighted degree of a
vertex is the sum of weights on incident edges, and the graph is considered regular if all of
its weighted degrees are equal. Typically, a sparsifying subgraph must be weighted even
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when the host graph is unweighted, in order to exhibit comparable parameters with far fewer
edges.

Before we can state our results we first need to recall some basic definitions from spectral
graph theory. Given a weighted graph G, let D be the diagonal n× n matrix of weighted
degrees, and let A be the weighted adjacency matrix. The Laplacian of G is defined as
L := D −A, and the normalized Laplacian is the matrix L̂ := D−1/2LD−1/2.

I Definition 3 (Effective Resistance). Let G(V,E,w) be a weighted graph, and let P the
Moore-Penrose pseudo-inverse of its Laplacian matrix. The effective resistance (also called
resistance distance) between two nodes u, v ∈ V is

RG(u, v) := (eu − ev)TP (eu − ev),

where eu and ev denote the standard basis vectors in RV that correspond to u and v

respectively.

When the graph G is clear from context we will omit it and write R(u, v). We can now define
the main objects that we study.

I Definition 4 (Resistance Sparsifier). Let G(V,E,w) be a weighted graph, and let ε ∈ (0, 1).
A (1 + ε)-resistance sparsifier for G is a subgraph H(V,E′, w′) with reweighted edges such
that (1− ε)RH(u, v) ≤ RG(u, v) ≤ (1 + ε)RH(u, v), for all u, v ∈ V .

It will turn out that in order to understand resistance sparsifiers, we need to use expansion
properties.

I Definition 5 (Graph Expansion). The edge-expansion (also known as the Cheeger constant)
of a weighted graph G(V,E,w) is

φ(G) := min
{
w(S, S̄)
|S|

: S ⊂ V, 0 < |S| ≤ |V |/2
}
,

where w(S, S̄) denotes the total weight of edges with exactly one endpoint in S ⊂ V . The
spectral expansion of G, denoted λ2(G), is the second-smallest eigenvalue of the graph’s
normalized Laplacian.

Our main result is the following. Throughout this paper, “efficiently” means in randomized
polynomial time.

I Theorem 6. Fix β, γ > 0, let n be sufficiently large, and 1/n0.99 < ε < 1. Every D-regular
graph G on n nodes with D ≥ βn and φ(G) ≥ γD contains (as a subgraph) a (1+ε)-resistance
sparsifier with at most ε−1n(logn)O(1/βγ2) edges, and it can be found efficiently.

While dense regular expanders may seem like a simple case, even this special case requires
significant technical work. The most obvious idea, of sparsifying through random sampling,
does not work — selecting each edge of G uniformly at random with probability Õ(1/(Dε))
(the right probability for achieving a subgraph with Õ(n/ε) edges) need not yield a (1 + ε)-
resistance sparsifier. Intuitively, this is because the variance of independent random sampling
is too large (see Theorem 26 for the precise effect), and the easiest setting to see this is the
case of sparsifying the complete graph. If we sparsify through independent random sampling,
then to get a (1 + ε)-resistance sparsifier requires picking each edge independently with
probability at least 1/(ε2n), and we end up with n/ε2 edges. To beat this, we need to use
correlated sampling. More specifically, it turns out that a random O(1/ε)-regular graph is
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a (1 + ε)-resistance sparsifier of the complete graph, despite not being a (1 + ε)-spectral
sparsifier. So instead of sampling edges independently (the natural approach, and in fact the
approach used to construct spectral sparsifiers by Spielman and Srivastava [14]), we need to
sample a random regular graph.

In order to prove Theorem 6, we actually need to generalize this approach beyond the
complete graph. But what is the natural generalization of a random regular graph when
the graph we start with is not the complete graph? It turns out that what we need is an
expander, which is sparse but maintains regularity of its degrees. This motivates our main
structural result, that every dense regular expander contains a sparse regular expander (as a
subgraph). This can be seen as a type of sparsification result that retains regularity.

I Theorem 7. Fix β, γ > 0 and let n be sufficiently large. Every D-regular graph G on
n nodes with D ≥ βn and φ(G) ≥ γD contains a weighted d-regular subgraph H with
d = (logn)O(1/βγ2) and φ(H) ≥ 1

3 . All edge weights in H are in {1, 2}, and H can be found
efficiently.

To prove this theorem, we analyze a modified version of the cut-matching game of
Khandekar, Rao, and Vazirani [8]. This game has been used in the past to construct expander
graphs, but in order to use it for Theorem 7 we need to generalize beyond matchings, and
also show how to turn the graphs it creates (which are not necessarily subgraphs of G) into
subgraphs of G.

The expansion requirement for G in Theorem 7 is equivalent to λ2(G) = Ω(1), when
β and γ are viewed as absolute constants. We note that H is a much weaker expander,
satisfying only λ2(H) = Ω(1/polylog(n)), but this is nonetheless sufficient for Theorem 6.
Also, H is regular in weighted degrees. For completeness we give a variant of Theorem 7 that
achieves an unweighted H by requiring stronger expansion from G, but this is not necessary
for our application to resistance sparsifiers, which anyway involves reweighting the edges.

I Theorem 8. For every β > 0 there is 0 < γ < 1 such the following holds for sufficiently
large n. Every D-regular graph G on n nodes with D ≥ βn and φ(G) ≥ γD contains an
(unweighted) d-regular subgraph H with d = (logn)O(1/βγ) and φ(H) ≥ 1

3 , and it can be
found efficiently.

The algorithm underlying Theorems 6, 7 and 8 turns out to be quite straightforward:
decompose the host graph into disjoint perfect matchings or Hamiltonian cycles (which are
“atomic” regular components), and subsample a random subset of them of size d to form
the target subgraph. However, since the decomposition leads to large dependencies between
inclusion of different edges in the subgraph, it is unclear how to approach this algorithm
with direct probabilistic analysis. Instead, our analysis uses the adaptive framework of [8] to
quantify the effect of gradually adding random matching/cycles from the decomposition to
the subgraph.

1.2 Related Work
The line of work most directly related to resistance sparsifiers is the construction of spectral
sparsifiers. This was initiated by Spielman and Teng [13], and was later pushed to its
limits by Spielman and Teng [15], Spielman and Srivastava [14], and Batson, Spielman, and
Srivastava [2], who finally proved that every graph has a (1 + ε)-spectral sparsifier with
O(n/ε2) edges and that this bound is tight (see also [1]).

The approach by Spielman and Srivastava [14] is particularly closely related to our work.
They construct almost-optimal spectral sparsifiers (a logarithmic factor worse than [2]) by
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sampling each edge independently with probability proportional to the effective resistance
between the endpoints. This method naturally leads us to try the same thing for resistance
sparsification, but as discussed, independent random sampling (even based on the effective
resistances) cannot give improved resistance sparsifiers. Interestingly, in order to make
their algorithm extremely efficient they needed a way to estimate effective resistances very
quickly, so along the way they showed how to create a sketch of size O(n logn/ε2) from which
every resistance distance can be read off in O(logn) time (essentially through an `2-squared
embedding and a Johnson-Lindenstrauss dimension reduction).

2 Sparse Regular Expanding Subgraphs

In this section we prove Theorem 7, building towards it in stages. Our starting point is
the Cut-Matching game of Khandekar, Rao and Vazirani (KRV) [8], which is a framework
to constructing sparse expanders by iteratively adding perfect matchings across adaptively
chosen bisections of the vertex set. The resulting graph H is regular, as it is the union
of perfect matchings, and if the matchings are contained in the input graph G then H is
furthermore a subgraph of G, as desired. In Section 2.1, we employ this approach to prove
Theorem 7 in the case D/n = 3

4 + Ω(1).
To handle smaller D, we observe that the perfect matchings in the KRV game can be

replaced with a more general structure that we call a weave, defined as a set of edges where
for every vertex at least one incident edge crosses the given bisection. To ensure that H
is regular (all vertices have the same degree), we would like the weaves to be regular. We
thus decompose the input graph to disjoint regular elements – either perfect matchings or
Hamiltonian cycles – and use them as building blocks to construct regular weaves. Leveraging
the fact that for some bisections, G contains no perfect matching but does contain a weave,
we use this extension in Section 2.2 to handle the case D/n = 1

2 + Ω(1).
Finally, for the general case D/n = Ω(1), we need to handle a graph G that contains

no weave on some bisections. The main portion of our proof constructs a weave that is not
contained in G, but rather embeds in G with small (polylogarithmic) congestion. Repeating
this step sufficiently many times as required by the KRV game, yields a subgraph H as
desired.

Notation and terminology

For a regular graph G, we denote deg(G) the degree of each vertex. We say that a graph H
is an edge-expander if φ(H) > 1

3 . A bisection of a vertex set of size n is a partition (S, S̄)
with equal sizes 1

2n if n is even, or with sizes b 1
2nc and d

1
2ne if n is odd.

2.1 The Cut-Matching Game
Khandekar, Rao and Vazirani [8] described the following game between two players. Start
with an empty graph (no edges) H on a vertex set of even size n. In each round, the cut
player chooses a bisection, and the matching player answers with a perfect matching across
the bisection. The game ends when H is an edge-expander. Informally, the goal of the cut
player is to reach this as soon as possible, and that of the matching player is to delay the
game’s ending.

I Theorem 9 ([8, 7]). The cut player has an efficiently computable strategy that wins (i.e.,
is guaranteed to end the game) within O(log2 n) rounds, and a non-efficient strategy that
wins within O(logn) rounds.
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The following result illustrates the use of the KRV framework in our setting.

I Theorem 10. Let δ > 0 and let n be even and sufficiently large (n ≥ n0(δ)). Then every
n-vertex graph G(V,E) with minimum degree D ≥ ( 3

4 + δ)n contains an edge-expander H
that is d-regular for d = O(logn), and also an efficiently computable edge-expander H ′ that
is a d′-regular for d′ = O(log2 n).

Proof. Apply the Cut-Matching game on V with the following player strategies. For the cut
player, execute the efficient strategy from Theorem 9 that wins within O(log2 n) rounds. For
the matching player, given a bisection (S, S̄), consider the bipartite subgraph G[S, S̄] of G
induced by (S, S̄). Each vertex in S has in G at least D ≥ 3

4n neighbors, but at most 1
2n− 1

of them are in S, and the rest must be in S̄, which implies that G[S, S̄] has minimum degree
≥ 1

4n. Hence, as a simple consequence of Hall’s theorem (see Proposition 29), it contains a
perfect matching that can be efficiently found. The matching player returns this matching
as his answer. We then remove this matching from G before proceeding to the next round,
to ensure that different iterations find disjoint matchings. The slackness parameter δ (and n
being sufficiently large) ensure that the minimum degree of G does not fall below 3

4n during
the O(log2 n) iterations, so the above argument holds in all rounds.

The game ends with an edge-expander H ′ which is a disjoint union of d′ = O(log2 n)
perfect matchings contained in G, and hence is a d′-regular subgraph of G, as required. To
obtain the graph H, apply the same reasoning but using the non-efficient strategy from
Theorem 9 that wins within O(logn) rounds. J

2.2 The Cut-Weave Game
For values of D below 3

4n, we can no longer guarantee that every bisection in G admits a
perfect matching. However, we observe that one can allow the matching player a wider range
of strategies while retaining the ability of the cut player to win within a small number of
rounds.

I Definition 11 (weave). Given a bisection (S, S̄) of a vertex set V , a weave on (S, S̄) is a
subgraph in which every node has an incident edge crossing (S, S̄).

I Definition 12 (Cut-Weave Game). The Cut-Weave game with parameter r is the following
game of two players. Start with a graph H on a vertex set of size n and no edges. In each
round, the cut player chooses a bisection of the vertex set, and the weave player answers
with an r-regular weave on the bisection. The edges of the weave are added to H.

Note that the r = 1 case is the original Cut-Matching game (when n is even). The following
theorem is an extension of Theorem 9. For clarity of presentation, its proof is deferred to
Section 3.

I Theorem 13. In the Cut-Weave game with parameter r, the cut player has an efficient
strategy that wins within O(r log2 n) rounds, and furthermore ensures φ(H) ≥ 1

2r.

In order to construct regular weaves, we employ a decomposition ofG into disjoint Hamiltonian
cycles. The following theorem was proven by Perkovic and Reed [12], and recently extended
by Csaba, Kühn, Lo, Osthus and Treglown [4].

I Theorem 14. Let δ > 0. Every D-regular graph G on n nodes with D ≥ ( 1
2 + δ)n, admits

a decomposition of its edges into b 1
2Dc Hamiltonian cycles and possibly one perfect matching

(if D is odd). Furthermore, the decomposition can be found efficiently.
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Now we can use the Cut-Weave framework to make another step towards Theorem 7.

I Theorem 15. Let δ > 0 and let n be sufficiently large. Then every n-vertex graph G(V,E)
with minimum degree D ≥ ( 1

2 + δ)n contains a d-regular edge-expander H with d = O(log3 n),
which furthermore can be efficiently found.

Proof. We simulate the Cut-Weave game with r = 16δ−1 logn. The proof is the same as
Theorem 10, only instead of a perfect matching we need to construct an r-regular weave
across a given bisection (S, S̄). We apply Theorem 14 to obtain a Hamiltonian decomposition
of G. For simplicity, if D is odd we discard the one perfect matching from Theorem 14. Let
C be the collection of Hamiltonian cycles in the decomposition.

Suppose w.l.o.g. |S| = d 1
2ne. Every v ∈ S has at most |S| − 1 ≤ 1

2n neighbors in S, and
hence at least δn incident edges crossing to S̄. We set up a Set-Cover instance of the cycles C
against the nodes in S, where a node v is considered covered by a cycle C is v has an incident
edge crossing to S̄, that belongs to C. This is a dense instance: since each cycle visits v
only twice, v can be covered by 1

2δn cycles. Therefore, 4δ−1 logn randomly chosen cycles
form a cover with high probability (see Proposition 30 for details). We then repeat the same
procedure to cover the nodes on side S̄. The result is a collection of 8δ−1 logn = 1

2r disjoint
Hamiltonian cycles, whose union forms an r-regular weave on (S, S̄), which we return as the
answer of the weave player. Applying Theorem 13 with r = O(logn) concludes the proof of
Theorem 15. J

Observe that in the proof of Theorem 15, the weave player is in fact oblivious to the
queries of the cut player: all she does is sample random cycles from C, and the output
subgraph H is the union of those cycles. Therefore, in order to construct H, it is sufficient to
decompose G into disjoint Hamiltonian cycles, and choose a random subset of size O(log3 n)
of them. There is no need to actually simulate the cut player, and in particular, the proof
does not require her strategy (from Theorem 13) to be efficient.

2.3 Reduction to Double Cover
We now begin to address the full range of parameters stated in Theorem 7. In this range there
is no Hamiltonian decomposition theorem (or a result of similar flavor) that we are aware of,
so we replace it with a basic argument which incurs edge weights w : V × V → {0, 1, 2} in
the target subgraph H, as well as a loss in its degree.

Given the input graph G(V,E), we construct its double cover, which is the bipartite graph
G′′(V ′′, E′′) defined by V ′′ = V × {0, 1} and E′′ = {((v, 0)(u, 1)) : vu ∈ E}. It is easily seen
that if G is D-regular then so is G′′, and since |V ′′| = 2|V | we have D ≥ 1

2β|V
′′|. It also well

known that λ2(G) = λ2(G′′), and therefore by the discrete Cheeger inequalities,

φ(G′′) ≥ 1
2λ2(G′′)D = 1

2λ2(G)D ≥ 1
2γ

2(G)D.

G′′ satisfies the requirements of Theorem 7 with β′′ = 1
2β and γ′′ = 1

2γ
2. Suppose

we find in G′′ a d-regular edge-expander H ′′ with d = (logn)O(1/β′′γ′′) = (logn)O(1/βγ2).
We carry it over to a subgraph H of G, by including each edge uv ∈ E in H with weight
|{(v, 0)(u, 1), (u, 0)(v, 1)} ∩ E(H ′′)|, where E(H ′′) denotes the edge set of H ′′. Each edge
then appears in H with weight either 1 or 2 (or 0, which means it is not present in H). It can
be easily checked that H is d-regular in weighted degrees, and φ(H) ≥ 1

2φ(H ′′). Therefore
H is a suitable target subgraph for Theorem 7.

The above reduction allows us to restrict our attention to regular bipartite graphs G, but
on the other hand we are forced to look for a subgraph H which is unweighted and d-regular
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with d = (logn)O(1/βγ) (which is tighter than stated in Theorem 7). We take this approach
in the remainder of the proof. The gain is that such G admits a decomposition into disjoint
perfect matchings, which can be efficiently found, as a direct consequence of Hall’s theorem.
We will use this fact where we have previously used Theorem 14.

2.4 Constructing an Embedded Weave
We now get to the main technical part of the proof. Given a bisection (S, S̄) queried by the
cut player, we need to construct an r-regular weave on the bisection, where this time we
choose r = (logn)O(1/βγ). Unlike the proof of Theorem 15, we cannot hope to find a weave
which is a subgraph of G, since if D < 1

2n, any bisection in which one side contains some
vertex and all its neighbors would not admit a weave in G. Instead, we aim for a weave
which embeds into G with polylogarithmic congestion.

We will use two types of graph operations: The union of two graphs on the same vertex
set V is obtained by simply taking the set union of their edge sets, whereas the sum of
the two graphs is given by keeping parallel edges if they appear in both graphs. We now
construct the weave in 4 steps.

Step 1

Fix µ = βγ2

4 . We partition the entire vertex set V into subsets S0, S1, . . . , St by the following
process:
1. Set S0 ← S̄ and T ← S.
2. While T 6= ∅, take Si ⊆ T to be the subset of nodes with at least µD neighbors in Si−1,

and set T → T \ Si.

I Lemma 16. The process terminates after t ≤ 2
βγ iterations.

Proof. Consider an iteration i ≤ 2
βγ that ends with T 6= ∅. Denote T̄ = V \ T = ∪ij=0Sj .

By the hypothesis φ(G) ≥ γD we have at least γD|T | edges crossing from T to T̄ , so by
averaging over the nodes in T , there is v ∈ T with γD neighbors in T̄ . For every j < i, v
must have less than µD neighbors in Sj , or it would already belong to Sj+1 ⊆ T̄ . Summing
over j = 0, . . . , i− 1, we see that v has less than iµD ≤ 1

2γD neighbors in T̄ \ Si, so at least
1
2γD neighbors in Si. This implies |Si| ≥ 1

2γD. We have shown that each of the first 2
βγ

iterations either terminates the process or removes 1
2γD ≥

1
2γβn nodes from T , so after 2

βγ

iterations we must have T = ∅. J

Step 2

By Section 2.3 we have a decomposition of all the edges in G into a collection M of D
disjoint perfect matchings. For every i = 1, . . . , t, we now cover the nodes in Si with perfect
matchings, similar to the proof of Theorem 15. A node v ∈ Si is considered covered by a
matching if v has an incident edge with the other endpoint in Si−1, and that edge lies on the
matching. Since v has µD incident edges crossing to Si−1, and each matching touches v with
at most one edge, we have µD matchings that can cover v. Therefore k = 1

µ logn randomly
chosen matchings fromM form a cover of Si (see Proposition 30), which we denote as Ki.
Thus, for each i we have a subgraph Ki which is k-regular, such that each node in Si has an
incident edge in Ki with the other endpoint in Si−1. Denote henceforth

K = ∪ti=1Ki.
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Note that K is a regular subgraph of G, since it is a union of disjoint perfect matchings from
M, and deg(K) ≤ kt.

Step 3

In this step we construct a graph K∗ from the subgraph K. As discussed, K∗ will not be a
subgraph of G but will embed into it with reasonable congestion. Let us formally define the
notion of graph embedding that we will be using.

I Definition 17 (Graph embedding with congestion). Let G(V,E) and G′(V,E′) be graphs
on the same vertex set. Denote by PG the set of simple paths in G. An embedding of G′ into
G is a map f : E′ → PG such that every edge in G′ is mapped to a path in G with the same
endpoints.

The congestion of f on an edge e ∈ E is cngf (e) := |e′ ∈ E′ : e ∈ f(e′)|. The congestion
of f is cng(f) := maxe∈E cngf (e). We say that G′ embeds into G with congestion c if there
is an embedding f with cng(f) = c.

The following claim is a simple observation and we omit its proof.

I Claim 18. If G′ embeds into G with congestion c, then φ(G) ≥ 1
cφ(G′).

We generate K∗ with the following inductive construction.

I Lemma 19. Let ρ0 = c0 = 0. We can efficiently construct subgraphs K∗1 , . . . ,K∗t (which
may have parallel edges and self-loops), such that for every i = 1, . . . , t,
1. K∗i is ρi-regular, where ρi = k(1 + ρi−1).
2. K∗i embeds into K with congestion ci, where ci = 1 + kci−1.
3. Every v ∈ Si has an incident edge in K∗i with the other endpoint in S0.

Proof. We go by induction on i. For the base case i = 1 we simply set K∗1 = K1. The claim
holds as we recall that
1. K1 is k-regular.
2. K1 is a subgraph of K, hence it embeds into K with congestion 1 = 1 + kc0.
3. By Step 2, every v ∈ S1 has an incident edge in K1 crossing to S0.

We turn to the inductive step i > 1. Start with a graph K ′ which is a fresh copy of K∗i−1,
with each edge duplicated into k parallel edges. By induction, K ′ is (kρi−1)-regular. Now
sum Ki into K ′; recall this means keeping parallel edges instead of unifying them. Since Ki

is k-regular, K ′ is ρi-regular.
Let v ∈ Si. By Step 2, there is an edge vw ∈ Ki such that w ∈ Si−1. By induction, there

is an edge wu ∈ K∗i−1 such that u ∈ S0. Note that both edges vw and wu are present in K ′.
Perform the following crossing operation on K ′: Remove the edges vw and wu, and add an
edge vu and a self-loop on w.

Perform this on every v ∈ Si. The resulting graph is K∗i . We need to show that it is well
defined in the following sense: we might be using the same edge wu for several v’s, and we
need to make sure each wu appears sufficiently many times, to be removed in all the crossing
operations in which it is needed. Indeed, we recall that Ki is the union of k disjoint perfect
matchings, and therefore each w ∈ Si−1 has at most k edges in Ki incoming from Si. Since
K ′ contains k copies of each edge wu, we have enough copies to be removed in all necessary
crossing operations.

Lastly we show that K∗i satisfies all the required properties.
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1. Since K ′ was ρi-regular, and the switching operations do not effect vertex degrees, we
see that K∗i is ρi-regular.

2. Each edge vu in K∗i which is not original from K ′, corresponds to a path (of length 2) in
K ′ that was removed upon adding that edge; hence K∗i embeds into K ′ with congestion
1. K ′ is the sum of Ki, which is a subgraph of K, and k copies of K∗i−1, which by
induction embeds into K with congestion ci−1. Hence K ′ embeds into K with congestion
1 + kci−1 = ci. Therefore, K∗i embeds into K with congestion ci.

3. For every v ∈ Si, we added to K∗i an edge vu such that u ∈ S0. J

We now take K∗ =
∑t
i=1K

∗
i . By Claim 19, K∗ is (

∑t
i=1 ρi)-regular, embeds into K with

congestion
∑t
i=1 ci, and every v ∈ S has an incident edge vu ∈ K∗ such that u ∈ S̄. (To see

why the latter point holds, recall that we put S̄ = S0.)

Step 4

In this final step we repeat Steps 1–3, only with the roles of S and S̄ interchanged. This
results in a subgraph K̄ of G which is kt-regular, and a graph K̄∗ which is (

∑t
i=1 ρi)-regular,

embeds into K̄ with congestion
∑t
i=1 ci, and every v ∈ S̄ has an incident edge vu ∈ K̄∗ such

that u ∈ S.
Our final weave is K∗ + K̄∗. By the above it is clearly a weave, and moreover it is

r-regular and embeds into K ∪ K̄ (and hence into G, which contains K ∪ K̄) with congestion
c, where r = 2

∑t
i=1 ρi and c = 2

∑t
i=1 ci. By inspecting the recurrence formulas from

Claim 19, in which ρi and ci were defined, we can bound ρi, ci ≤ (2k)i ≤ (2k)t for every
i, and hence r, c ≤ 2t(2k)t. Recalling that t ≤ 2

βγ + 1 and k = 1
µ logn = O(logn), we find

r, c ≤ (logn)O(1/βγ).

2.5 Completing the Proof of Theorem 7
We play the Cut-Weave game for L rounds, where L = O(r log2 n) is the number of rounds
required by the efficient strategy in Theorem 13. For each round ` = 1, . . . , L, we constructed
above an r-regular weave W ∗` = K∗ + K̄∗, that embeds into a subgraph W` = K ∪ K̄ of G
with congestion c. Let H = ∪L`=1W` and H∗ =

∑L
1=`W

∗
` . Then H is a union of disjoint

perfect matchings from M, and hence regular. Moreover deg(H) ≤ 2ktL, since H is the
union of L subgraphs {W`}L`=1, where each W` is a union W` of two kt-regular graphs K, K̄.

Now consider H∗. Since each W ∗` embeds into W` with congestion c, we see that H∗
embeds into H with congestion (at most) cL. By Theorem 13 we have φ(H∗) ≥ 1

2r, and this
now implies φ(H) ≥ r

2cL .
Recalling the parameters:

t = O(1) ; k = O(logn) ; r, c = O(logO(1/βγ) n) ; L = O(r log2 n),

we see that H is a d-regular subgraph of d = (logn)O(1/βγ) and φ(H) ≥ 1/(logn)O(1/βγ).
We can now repeat this Cut-Weave game (logn)O(1/βγ) disjoint times, because if each time
we remove the graph H we have found, we decrease the degree D = βn of each node by only
polylog (n). By repeating the game this many times and taking the union of the disjoint
resulting subgraphs, we find a regular subgraph H of G with deg(H) = (logn)O(1/βγ) and
φ(H) ≥ 1. Lastly recall that unfolding the reduction from Section 2.3 puts on H edge weight
in {1, 2}, and weakens the degree bound to deg(H) = (logn)O(1/βγ2). This completes the
proof of Theorem 7.

Regarding the algorithm to construct H, the observation made after Theorem 15 applies
here as well. The weave player’s strategy is oblivious to the queries of the cut player, since she
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just samples random matchings fromM to form H. The cut player strategy does not actually
need to be simulated, nor the graphs K∗ need to actually be constructed. The algorithm
to construct H then amounts to the following: Construct the double cover graph G” of G;
decompose G” into disjoint perfect matchings; choose a random subset of (logn)O(1/βγ2) of
them to form a subgraph H” of G”; and unfold the double cover construction to obtain the
final subgraph H from H”.

2.6 Proof of Theorem 8
The theorem follows from replacing the reduction to the double cover in Section 2.3 by a
Hamiltonian decomposition result that holds for this stronger expansion requirement, due to
Kühn and Osthus [9, Theorem 1.11]. The trade-off between β and γ is inherited from their
theorem (in which it is unspecified). Circumventing Section 2.3 also improves the dependence
of d on γ. The proof of Theorem 8 is otherwise identical to the proof of Theorem 7.

3 Proof of the Cut-Weave Theorem

Recall the setting of the Cut-Weave game with parameter r: The game starts with a graph
G0 on n vertices and without edges. In each round t = 1, 2, . . ., the weave player queries a
bisection of the vertex set, and the weave player answers with an r-regular weave Ht on that
bisection. The weave is then unified into the graph, putting Gt = Gt−1 ∪Ht.

We now prove Theorem 13 by an adaptation of the analysis from [8]. The main change is
in Lemma 25.

For each step t, let Mt be the matrix describing one step of the natural lazy random walk
on Ht: W.p. 1

2 stay in the current vertex, and with probability 1
2r move to a neighbor. The

cut player strategy is as follows:
Choose a random unit vector z ⊥ 1 in Rn.
Compute u = MtMt−1 . . .M1z.
Output the bisection (S, . . . S) where S is the bn/2c vertices with smallest values in u.

Let us analyze the game with this strategy. In the graph Gt (which equals ∪tt′=1Ht′), we
consider the following t-steps random walk: Take one (lazy) step on H1, then on H2, and so
on until Ht. In other words, the walk is given by applying sequentially M1, then M2, and so
on.

Let Pij(t) denote the probability to go from node j to node i within t steps. Let Pi
denote the vector (Pi1, Pi2, . . . , Pji). We use the following potential function:

Ψ(t) =
∑
i,j∈V

(Pij − 1/n)2 =
n∑
i=1
‖Pi − 1/n‖22.

I Lemma 20. For every t and every i ∈ V , we have
∑
j∈V Pij(t) = 1.

Proof. By induction on t: It holds initially, and in each step t, vertex i trades exactly half
of its total present probability with its neighbors in Ht. (Note that this relies on the fact
that Ht is regular.) J

I Lemma 21. If Ψ(t) < 1/4n2 then G = Gt has edge-expansion at least 1
2r.

Proof. If Ψ(t) < 1/4n2 then Pji(t) ≥ 1
2n for all i, j ∈ V . Hence the graph Kt on V , in which

each edge ij has weight Pji(t) + Pij(t), has edge-expansion 1
2 . We finish by showing that

Kt embeds into Gt with congestion 1/r. Proof by induction: Consider the transition from
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Gt−1 to Gt, which is unifying Ht into Gt−1. Let i, j ∈ V be connected with an edge in Ht,
and let k be any vertex. In the transition from Kt−1 to Kt, we need to ship 1

2r of the type-k
probability in i (namely 1

2rPik) to j, and similarly, ship 1
2rPjk probability from j to i. (The

“type-k” probabiility is probability mass that was originally located in k.) In total, we need
to ship 1

2r
∑
k∈V Pik = 1

2r from i to j and a similar amount from j to i. In total the edge ij
in Ht needs to support 1

r flow (of probability) in the transition, so the claim follows. J

We turn to analyzing the change in potential in a single fixed round t. To simplify
notation we let

Pji = Pji(t) ; Qji = Pji(t+ 1).

Moreover recall we have a vector u generated by the cut player in the current round:

u = MtMt−1 . . .M1z.

Denote its entries by u1, . . . , un. We are now adding the graph Ht+1 to Gt to produce Gt+1.

I Lemma 22. For every i, ui is the projection of Pi on r, i.e. ui = PTi z.

Proof. Fix i. Abbreviate M = MtMt−1 . . .M1( 1
n1). If φ is any distribution on the vertices

then PTi φ is the probability that the random walk lands in vertex i after t steps, meaning

(Mφ)i = PTi φ. (1)

Let z′ = 1
n‖z‖∞

z. Applying (1) with φ = z′+ 1
n1 gives (M(z′+ 1

n1))i = PTi (z′+ 1
n1). Applying

(1) again with φ = 1
n1 gives (M 1

n1)i = PTi ( 1
n1) and together we get (Mz′)i = PTi z

′, which
implies ui = (Mz)i = PTi z. J

I Lemma 23. With probability 1− 1/nΩ(1) over the choice of z, for all pairs i, j ∈ V ,

‖Pi − Pj‖22 ≥
n− 1
C logn |ui − uj |

2.

Proof. Similar to [8, Lemma 3.4]. J

I Lemma 24. Let E(S, S̄) denote the set of edges in Ht+1 that cross the bisection (S, S̄)
produced by the cut player (from the vector u). Then,

(n− 1)E

 ∑
ij∈E(S,S̄)

|ui − uj |2
 ≥ Ψ(t).

Proof. Denote by deg(S,S̄)(i) the number of edges in E(S, S̄) incident to vertex i. Note that
deg(S,S̄)(i) ≥ 1 for every i ∈ V , since Ht+1 is a weave on (S, S̄). Recall that S contains the
vertices with smallest entries in u. Hence there is a number η ∈ R such that i ≤ η ≤ j for
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each edge ij ∈ E(S, S̄). Hence,∑
ij∈E(S,S̄)

|ui − uj |2 ≥
∑

ij∈E(S,S̄)

((ui − η)2 + (η − uj)2)

=
∑
i∈V

deg(S,S̄)(i)(ui − η)2

≥
∑
i∈V

(ui − η)2

=
∑
i∈V

u2
i − 2η

∑
i∈V

ui + nη2

≥
∑
i∈V

u2
i ,

where the last equality is by noting that z ⊥ 1, hence u ⊥ 1, hence
∑
i ui = 0.

Next, since ui = PTi z and z ⊥ 1 we have ui = (Pi − 1/n)T z. Hence ui is the projection
of Pi − 1/n on z. By properties of random projections we have E[u2

i ] = 1
n−1‖Pi − 1/n‖22 (see

details in [8]), hence

E

[∑
i∈V

u2
i

]
= 1
n− 1

∑
i∈V
‖Pi − 1/n‖22 = 1

n− 1Ψ(t),

and the lemma follows from combining this with the above. J

I Lemma 25. Let Et+1 denote the edge set of Ht+1. The potential reduction is

Ψ(t)−Ψ(t+ 1) = 1
r

∑
ij∈Et+1

‖Pi − Pj‖22.

Proof. We construct from G a graph G′ by splitting each vertex i into r copies i1, . . . , ir,
assigning arbitrarily one edge from the r edges incident to i in Et+1 to the copies, and
distributing the type-j probability in i, for each j, evenly among the copies. We denote
by Pjik the amount of type-j probability on ik before adding Et+1 to G′, and by Qjik the
type-j probability in i after adding Et+1. Note that we have defined Pjik = 1

rPji for all
i, j ∈ V and k ∈ [r], but for the Qjik ’s all we know is that

∑r
k=1Qjik = Qji, so Qji may be

distributed arbitrarily among the Qjik ’s. As usual Pik denotes the vector with entries Pjik ,
and Qik is defined similarly.

Define the potential of G′ as:

Ψ′(t) =
∑
i∈V

r∑
k=1
‖Pik − 1/nr‖22.

We thus have

Ψ(t) =
∑
i∈V
‖Pi − 1/n‖22 = r

r∑
k=1

∑
i∈V
‖1
r
Pi − 1/nr‖22 = r

r∑
k=1

∑
i∈V
‖Pik − 1/nr‖22 = rΨ′(t).

To relate Ψ(t + 1) to Ψ′(t + 1), we use the general fact that for any constants c and X,
the solution to min‖x− c1‖ s.t. x ∈ Rr,

∑
i xi = X is attained on x = X

r 1. Since we have
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∑r
k=1Qjik = Qji for all i, j, we infer

Ψ(t+ 1) =
∑
i∈V
‖Qi − 1/n‖22

=
∑
i,j∈V

(Qji − 1/n)2

=
∑
i,j∈V

r

r∑
k=1

(1
r
Qji − 1/nr)2

≤
∑
i,j∈V

r

r∑
k=1

(Qjik − 1/nr)2

= r
∑
i∈V

r∑
k=1
‖Qik − 1/nr‖22

= rΨ′(t+ 1).

We have thus proven,

Ψ(t)−Ψ(t+ 1) ≥ r(Ψ′(t)−Ψ′(t+ 1)).

Now observe that Et+1 is, by construction, a perfect matching on G′. Therefore by [8,
Lemma 3.3] (which the current lemma generalizes),

Ψ′(t)−Ψ′(t+ 1) ≥
∑

ik,jk′∈Et+1

‖Pik − Pjk′‖22

=
∑

ik,jk′∈Et+1

‖1
r
Pi −

1
r
Pj‖22

= 1
r2

∑
i,j∈Et+1

‖Pi − Pj‖22,

and the lemma follows. J

Proof of Theorem 13. The initial potential is Ψ(0) = n− 1, and by Lemma 21 we need to
get it below 1/4n2. Putting Lemmas 23 to 25 together, we see that in each step we have
in expectation Ψ(t+ 1) ≤ (1− 1

Cr logn )Ψ(t). Hence, in expectation, it is enough to play for
O(r log2 n) rounds. J

4 Resistance Sparsification

We prove Theorem 6 by combining Theorem 7 with the following known result.

I Theorem 26 (von Luxburg, Radl and Hein [16]). Let G be a non-bipartite weighted graph
with maximum edge weight wmax and minimum weighted degree dmin. Let u, v be nodes in G
with weighted degrees du, dv respectively. Then∣∣∣∣RG(u, v)−

(
1
du

+ 1
dv

)∣∣∣∣ ≤ 2
(

1
λ2(G) + 2

)
wmax

d2
min

.

Qualitatively, the theorem asserts that in a sufficiently regular expander, the resistance
distance is essentially determined by vertex degrees. Therefore an expanding subgraph H of
G with the same weighted degrees can serve as a resistance sparsifier. In particular, in order
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to resistance-sparsify a regular expander, all we need is a regular expanding subgraph, as we
have by Theorem 7. Since Theorem 26 does not apply to bipartite graphs, we will use the
following variant that holds also for bipartite graphs as long as they are regular. Its proof
appears in Section A.1.

I Theorem 27. Let G be a weighted graph which is d-regular in weighted degrees, with
maximum edge weight wmax. Let u, v be nodes in G. Then∣∣∣∣RG(u, v)− 2

d

∣∣∣∣ ≤ 12
(

1
λ2(G) + 2

)
wmax

d2 .

Proof of Theorem 6. Using Theorem 7 we obtain a d-regular subgraph H of G with φ(H) >
1
3 . By removing the obtained subgraph H from G and iterating, we can apply the theorem
3d/ε times and obtain disjoint subgraphs H. Since d = (logn)O(1) and D = Ω(n), the
degree of G does not significantly change in the process, and the requirements of Theorem 7
continue to hold throughout the iterations (with a loss only in constants). Taking the union
of the disjoint subgraphs produced in this process, we obtain a subgraph H of G which is
(3d2/ε)-regular with φ(H) ≥ d/ε. By the discrete Cheeger inequality,

λ2(H) ≥ 1
2

(
φ(H)

deg(H)

)2
≥ 1

18d2 .

Recall that H has edge weights in {1, 2}. We now multiply each weight by εD/(3d2),
rendering it D-regular in weighted degrees. This does not affect λ2(H) since it is an eigenvalue
of the normalized Laplacian.

Let u, v ∈ V . Apply Theorem 27 on both G and H. As G is D-regular with wmax = 1
and λ2(G) = Ω(1), we know that RG(u, v) = 2

D ± O
( 1
D2

)
. And as H is D-regular with

wmax = O( εDd2 ) and λ2(H) = Ω(1/d2), we know that RH(u, v) = 2
D ±O

(
ε
D

)
. Putting these

together, we get RH(u,v)
RG(u,v) = 1 ± O

(
ε+ 1

D

)
= 1 ± O (ε) , where the last equality holds for

sufficiently large n since D = Ω(n). Scaling ε down by the constant hidden in the last O(ε)
notation yields the theorem. J
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the theorem holds (due to poor expansion), so we henceforth assume d′ ≥ 3.

For brevity we denote the error term in Theorem 26 as

err := 2
(

1
λ2(G) + 2

)
wmax

d2 .

We will use the notion of hitting time: For a pair of vertices u, v, the hitting time HG(u, v)
is defined as the expected time it takes a random walk in G that starts at u, to hit v. Define
the normalized hitting time hG(u, v) = 1

2WHG(u, v), where W is the sum of all edge weights
in G. We then have,

RG(u, v) = hG(u, v) + hG(v, u). (2)

We will use the following bound on the normalized hitting time, which is given in the same
theorem by von Luxburg, Radl and Hein [16].
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I Theorem 28. In the same setting of Theorem 26,

∀u 6= v ∈ V, hG(u, v) = 1
dv
± err.

(Like Theorem 26, this theorem does not apply to bipartite graphs, and this is the obstacle
we are now trying to circumvent.)

We begin by handling pairs of vertices contained within the same partition side, say V1.
We construct from G a weighted graph G1 on the vertex set V1, with weights w1, by putting

∀i 6= j ∈ V1, w1(i, j) = 1
d

∑
k∈V2

w(i, k)w(j, k).

We argue that HG1(u, v) = 1
2HG(u, v). This follows by observing that we set the weights w1

such that for any i, j ∈ V1, the probability to walk in one step from i to j in G1 equals the
probability to walk in two steps from i to j in G via an intermediate node in V2. Furthermore,
we have normalized the weights w1 such that G1 is d-regular in weighted degrees. Recalling
that |V1| = 1

2 |V |, we have

hG1(u, v) = 1
d|V1|

HG1(u, v) = 2
d|V |

· 1
2HG(u, v) = hG(u, v).

Recalling that the unweighted degree in G is d′ ≥ 3, we see that by construction, G1 contains
a triangle and hence is non-bipartite. Hence we can apply to it Theorem 28 and obtain
hG1(u, v) = 1

d ± err1, where err1 is the error term of G1. Note that for every i 6= j ∈ V1 we
have w1(i, j) ≤ wmax

d

∑
k∈V2

w(i, k) = wmax, so the maximum edge weight in G1 is bounded
by wmax, and λ2(G1) ≥ λ2(G) (easy to verify by construction), so err1 ≤ err, and we have
hG1(u, v) = 1

d ± err. Hence,

hG(u, v) = 1
d
± err.

Recalling that RG(u, v) = hG(u, v) + hG(v, u), we have established that

RG(u, v) = 2
d
± 2err

for every pair u, v ∈ V1. The same arguments hold for every pair u, v ∈ V2 as well. We are
left to handle the case u ∈ V1, v ∈ V2. Recalling the definition of hitting time, we have

HG(u, v) = 1 + w(u, v)
d

· 0 +
∑

x∈V2\{v}

w(u, x)
d

HG(x, v) (factoring out the first step)

= 1 + w(u, v)
d

· 0 +
∑

x∈V2\{v}

w(u, x)
d

· 2W · hG(x, v)

= 1 + 2W
∑

x∈V2\{v}

w(u, x)
d

(
1
d
± err

)
(since v, x ∈ V2)

= 1 + 2W
(

1− w(u, v)
d

)(
1
d
± err

)
.

Therefore

hG(u, v) = 1
2W +

(
1− w(u, v)

d

)(
1
d
± err

)
,
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which implies

hG ≤
1

2W + 1
d
± err

and

hG(u, v) ≥ 1
2W +

(
1− wmax

d

)(1
d
± err

)
= 1

2W + 1
d
± 2err.

Together, hG(u, v) = 1
d + 1

2W ± 2err. Now, since for an arbitrary vertex i we have

d = deg(i) =
∑
j∈V

w(i, j) ≤ nwmax,

we see that 1
2W = 1

nd ≤
wmax
d2 ≤ err and hence

hG(u, v) = 1
d
± 3err.

Plugging this into RG(u, v) = hG(u, v) + hG(v, u), we find

RG(u, v) = 2
d
± 6err,

which completes the proof of Theorem 27. J

A.2 Further Omitted Proofs
I Proposition 29. Let G(V,U ;E) be a bipartite graph on n nodes with |V | = |U | = 1

2n, and
minimum degree ≥ 1

4n. Then G contains a perfect matching.

Proof. Let S ⊂ V be non-empty, and denote N(S) ⊂ U the set of nodes with a neighbor in S.
If |S| ≤ 1

4n then since any v ∈ S has 1
4n neighbors in U , we have |N(S)| ≥ N({v}) ≥ 1

4n ≥ |S|.
If |S| > 1

4n then by the minimum degree condition on side U , every u ∈ U must have a
neighbor in S, and hence |N(S)| = |U | = |V | ≥ |S|. The same arguments apply for S ⊂ U ,
so the condition of Hall’s Marriage Theorem is verified, and it implies that G contains a
perfect matching. J

I Proposition 30. Consider an instance of Set Cover with a set S of n elements, and
a family M of subsets of S. Suppose each x ∈ S belongs to at least a µ-fraction of the
subsets in M. Then for sufficiently large n, we can efficiently find a cover M ⊂ M with
|M | ≤ 1.1

µ logn.

Proof. Pick q uniformly random sets (with replacement) fromM to formM . The probability
that a given element in S is not covered by M is upper-bounded by (1− µ)q. Taking a union
bound over the element, we need to ensure that n(1− µ)q < 1 in order to ensure that with
constant probability, M is a solution to the given Set Cover instance. This can be achieved
by q ≤ 1.1

µ logn. J
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Colourings of General Galton-Watson Trees∗
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Abstract
The broadcasting models on trees arise in many contexts such as discrete mathematics, biolo-
gy, information theory, statistical physics and computer science. In this work, we consider the
k-colouring model. A basic question here is whether the assignment at the root affects the
distribution of the colourings at the vertices at distance h from the root. This is the so-called
reconstruction problem. For the case where the underlying tree is d-ary it is well known that
d/ ln d is the reconstruction threshold. That is, for k = (1 + ε)d/ ln d we have non-reconstruction
while for k = (1− ε)d/ ln d we have reconstruction.

Here, we consider the largely unstudied case where the underlying tree is chosen according to
a predefined distribution. In particular, we consider the well-known Galton-Watson trees. The
corresponding model arises naturally in many contexts such as the theory of spin-glasses and its
applications on random Constraint Satisfaction Problems (rCSP). The study on rCSP focuses
on Galton-Watson trees with offspring distribution B(n, d/n), i.e. the binomial with parameters
n and d/n, where d is fixed. Here we consider a broader version of the problem, as we assume
general offspring distribution which includes B(n, d/n) as a special case.

Our approach relates the corresponding bounds for (non)reconstruction to certain concentra-
tion properties of the offspring distribution. This allows to derive reconstruction thresholds for a
very wide family of offspring distributions, which includes B(n, d/n). A very interesting corollary
is that for distributions with expected offspring d, we get reconstruction threshold d/ ln d under
weaker concentration conditions than what we have in B(n, d/n).

Furthermore, our reconstruction threshold for the random colorings of Galton-Watson with
offspring B(n, d/n), implies the reconstruction threshold for the random colourings of G(n, d/n).
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1 Introduction

The broadcasting models on trees and the closely related reconstruction problem are studied
in statistical physics, biology, communication theory, e.g. see [8, 21, 14]. Our work is
motivated from the study of random Constraint Satisfaction Problems (rCSP) such as
random graph colouring, random k-SAT etc. This is mainly because the models on random
trees capture some of the most fundamental properties of the corresponding models on
random (hyper)graphs, e.g. [7, 15, 20].

∗ This work was supported by ARC – Georgia Institute of Technology, College of Computing.

© Charilaos Efthymiou;
licensed under Creative Commons License CC-BY

18th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’15) /
19th Int’l Workshop on Randomization and Computation (RANDOM’15).
Editors: Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim; pp. 756–774

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.756
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


C. Efthymiou 757

The most fundamental problem in the study of broadcasting models is to determine
the reconstruction/non-reconstruction threshold. I.e. whether the configuration of the root
biases the distribution of the configuration of distant vertices. The transition from non-
reconstruction to reconstruction can be achieved by adjusting appropriately the parameters
of the model. Typically, this transition exhibits a threshold behaviour. So far, the main
focus of the study was to determine the precise location of this threshold for various models
when the underlying graph is a fixed tree, mostly regular. In these cases, typically the
reconstruction threshold is expressed in terms of the maximum degree of the underlying tree,
e.g. [3, 26, 2, 4].

In a lot of applications, e.g. phylogeny reconstruction, rCSP, usually the underlying tree
is random. Motivated by such problems, in this work we study the reconstruction problem
for the colouring model when the underlying tree is chosen according to some predefined
probability distribution. In particular, we consider Galton-Watson trees (GW-trees) with
some general offspring distribution.

In our setting, the main technical challenge is to deal with the so-called “effect of high
degrees”. That is, we expect to have vertices in the tree which are of degree much higher than
the expected offspring. The deviation from the expected degree is so large that expressing the
(non)reconstruction bounds in terms of maximum degree leads to highly suboptimal results.
Similar challenges appear in related problems in random graphs G(n, d/n) e.g. sampling
colourings [11, 10, 13, 27].

It is a folklore conjecture that when the offspring distribution is “reasonably” concentrated
about its expectation, then the reconstruction threshold can be expressed in terms of the
expected offspring of the underlying tree. Somehow, the concentration makes the high degree
vertices sufficiently rare, such that their effect on the phenomenon is negligible. Our aim is
to make the intuitive base of this relation rigorous by adopting the most generic assumptions
about the offspring distribution.

More specifically, our result summarizes as follows: We provide a concentration criterion
for the distributions over the non-negative integers about the expectation. For a GW-tree
with offspring distribution that satisfies this criterion, the transition from non-reconstruction
to reconstruction exhibits a threshold behaviour at the critical point d/ ln d, where d is the
expected offspring. Interestingly, the aforementioned concentration criterion is much weaker
than the standard tail bounds we have for many natural distributions, e.g. B(n, d/n) with
fixed d.

On the other hand, when the concentration of the offspring distribution is not sufficiently
high to provide thresholds, we still get upper and lower bounds for reconstruction and
non-reconstruction, respectively. These bounds are expressed in terms of the tails of the
offspring distribution.

Concluding, let us remark that the reconstruction threshold we get for the random colou-
rings of GW-tree with offspring B(n, d/n), allows to compute the corresponding threshold
for the random colourings of G(n, d/n) [7, 15, 20]. See Section 2.1 for more discussion.

2 Definitions and Results

For the sake of brevity, we define the colouring model and the reconstruction problem, first,
in terms of a fixed complete ∆-ary T of height h, where ∆, h > 0 are integers. Later we will
extend these definitions w.r.t. GW trees.

The broadcasting models on a tree T are models where information is sent from the
root over the edges to the leaves. For some finite set of spins (colours) S = {1, 2, . . . , k}, a
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758 Reconstruction Threshold for Colourings of Galton-Watson Trees

configuration on T is an element in SV (T ), i.e. it is an assignment of spins to the vertices
of T . The spin of the root r is chosen according to some initial distribution over S. The
information propagates along the edges of the tree as follows: There is a k × k stochastic
matrix M such that if the vertex v is assigned spin i, then its child u is assigned spin j with
probability Mi,j . The k-colouring model we consider here corresponds to having M such
that

Mi,j =
{ 1

k−1 for i 6= j

0 otherwise.

We let µ be the uniform distribution over the k-colourings of T . We also refer to µ as
the Gibbs distribution. The broadcasting process gives rise to Gibbs distributions on the
underlying tree T . Fixing the spin (colour assignment) at the root of T , the configuration
we get after the broadcasting process has finished is distributed as in µ conditional the spin
of the root.

The reconstruction problem can be cast very naturally in terms of the corresponding
Gibbs distribution. More specifically, let r(T ) (or rT ) denote the root of the tree T . Also,
let Lh(T ) be the set of vertices at distance h from the root r(T ). Finally, we let µi be the
distribution µ conditional that the spin at rT is i ∈ S. Reconstructibility is defined as follows:

I Definition 1. For any i, j ∈ S let ||µi − µj ||Lh denote the total variation distance of the
projections of µi and µj on Lh. We say that a model is reconstructible on a tree T if there
exists i, j ∈ S for which

lim
h→∞

||µi − µj ||Lh(T ) > 0.

When the above limit is zero for every i, j, then we say that the model has non-reconstruction.

Non-reconstruction implies, also, that typical colourings of the vertices at level h of the
tree have a vanishing effect on the distribution of the colouring of r(T ), as h grows.

For the colouring model on ∆-ary trees it is well-known that the reconstruction threshold
is at the critical value ∆/ ln ∆, see [3, 22, 25, 26]. That is, for any given fixed ε > 0
and sufficiently large ∆, we have non-reconstruction when k ≥ (1 + ε)∆/ ln ∆ while for
k ≤ (1− ε)∆/ ln ∆ we have reconstruction.

Rather than considering a fixed tree, here, we consider a Galton Watson tree (GW-trees)
with some general offspring distribution. In particular, we let the following:

I Definition 2. Let ξ be a distribution over the non negative integers. We let Tξ denote a
Galton-Watson tree with offspring distribution ξ. Also, given some integer h > 0, we let T hξ
denote the restriction of Tξ to its first h levels1.

For the sake of brevity any distribution ξ on the non-negative integers is represented as
a stochastic vector. That is, for Z distributed as in ξ and any integer i ≥ 0, it holds that
Pr[Z = i] = ξ(i) (or ξi).

For the case of a random tree, e.g. Galton-Watson tree, the notion of reconstructibility,
extends as follows:

1 In other words, T h
ξ is the induced subtree of Tξ which contains all the vertices within graph distance h

from the root.
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I Definition 3. We say that a model is reconstructible on Tξ if there exists i, j ∈ S for which

lim
h→∞

E||µi − µj ||Lh > 0,

where the expectation is w.r.t. the instances of the tree. When the above limit is zero for
every i, j ∈ S, then we say that the model has non-reconstruction.

So as to have a threshold behavior for reconstruction, it is natural to require a certain
kind of parametrization for the offspring distribution ξ. This parametrization allows to adjust
the expectation from low to high. In this work we assume that we are dealing with such
distribution.

I Definition 4. Consider Tξ for some offspring distribution ξ with expected offspring dξ.
For the k-colouring model on Tξ we have a reconstruction threshold θ for some function
θ : R+ → R+, if the following holds: For any α > 0 and dξ > dξ(α), we have non-
reconstruction when k ≥ (1 + α)θ(dξ), while we have reconstruction when k ≤ (1− α)θ(dξ).

One of the main results of this work is to show that we have a threshold behaviour for
the reconstruction/non-reconstruction transition for the k-colourings of Tξ when ξ is well
concentrated. The notion of well concentration is defined as follows:

I Definition 5. A distribution ξ over the positive integers with expectation dξ is defined to
be “well concentrated” if the following is true: There is an absolute constant c > 0 such that
for any fixed γ > 0, sufficiently large dξ and any x ≥ (1 + γ)dξ it holds that∑

j≥x

ξj ≤ x−c and
∑

j≤(1−γ)dξ

ξj ≤ (dξ)−c. (1)

The quantity c is independent of the distribution ξ. We do not compute the exact value
of c but it is implicit from our analysis.

The following theorem is one of the main results in our work.

I Theorem 6. Let ξ be a well concentrated distribution over the non-negative integers. Then,
the colouring model on Tξ, with expected offspring dξ, has reconstruction threshold dξ/ ln dξ.

The above theorem follows as a corollary of a more general and more technical result, Theorem
10. This theorem is more general as it covers non-threshold cases, too.

It is not hard to show that B(n, d/n) is well concentrated. This follows trivially by just
using standard Chernoff bounds (e.g. [24]). Then, Theorem 6 implies the following corollary.

I Corollary 7. Consider Tξ where ξ is the distribution B(n, d/n), where d is fixed. Then,
the colouring model on Tξ, has reconstruction threshold d/ ln d.

As a matter of fact, it is elementary to verify that B(n, d/n) is, by no means, the less well
concentrated offspring distribution we can have. That is, a distribution with less heavy tails
than B(n, d/n) can be well concentrated.

2.1 From Galton-Watson trees to Random Graphs
The non-reconstruction phenomenon in rCSP seems to be central in the algorithmic problems.
In particular, it has been related to the efficiency of local algorithms which search for
satisfying solutions. That is, when we have non-reconstruction, usually there is an efficient
(simple) local algorithm which finds satisfying assignments efficiently e.g. [6, 16]. On the
other hand, in the reconstruction regime there is no efficient algorithm which finds solutions.
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For this reason, the transition from non-reconstruction to reconstruction on rCSPs has been
attributed the name “algorithmic barrier”2, see [1].

The ingenious, however, mathematically non-rigorous Cavity Method, introduced by
physicists [18, 17], makes very impressive predictions about the fundamental properties of
rCSP. One of the most interesting parts of these predictions involves the Gibbs distribution
and its spatial mixing properties like reconstructibility. The Cavity Method predicts that
the spatial mixing properties of the Gibbs distribution over the colouring of G(n, d/n) can
be studied by means of the Gibbs distribution of the k-colourings over a Galton-Watson
tree with offspring distribution B(n, d/n), where d is fixed independent of n. That is, choose
some vertex v in G(n, d/n) and some fixed radius neighborhood around v. The projection of
Gibbs distribution on this neighborhood is, somehow, “similar” to the corresponding Gibbs
distribution over the Galton-Watson tree. The above line of arguments, led to conjecture
that the colouring model on a random graph G(n, d/n) has the same reconstruction threshold
as that of the GW tree with offspring B(n, d/n).

All the above considerations from the Cavity Method have been studied on a rigorous
basis in [7, 15, 20]. We have a quite accurate picture of the relation between the local
projection of Gibbs distribution on G(n, d/n) and the Gibbs distribution on the B(n, d/n)
Galton-Watson tree. In particular, we have mathematically rigorous arguments which imply
that indeed the reconstruction thresholds for G(n, d/n) and GW-tree coincide as far as the
colouring model is concerned 3. That is, Corollary 7 implies that, indeed, the reconstruction
threshold for the colouring model on G(n, d/n) is d/ ln d.

3 High Level Description

In this section, we give a high level overview of how do we derive upper and lower bounds
for reconstruction and non-reconstruction, respectively. Consider an instance of T hξ for some
distribution ξ over the non-negative integers and some integer h > 0.
I Remark. For a set of vertices Λ in the tree, we use the term random colouring of Λ to
indicate the following way of colouring Λ: Take a random colouring of the tree and keep only
the colouring of the vertices in Λ. Also, when we refer to a typical colouring of vertex set Λ,
we imply that this colouring is typical w.r.t. the aforementioned distribution.

Depending on the tails of ξ we choose appropriate quantities ∆+ and ∆− such that
∆− ≤ dξ ≤ ∆+. Given these two quantities we show that we have non-reconstruction for
k ≥ (1+α)∆+/ ln ∆+ and we have reconstruction for k ≤ (1−α)∆−/ ln ∆−, for the colouring
model on T hξ , where α > 0 is fixed. We show (non)reconstruction by arguing about the
structure of T hξ .

3.1 Non Reconstruction
First, we focus on non-reconstruction. Given ∆+, we define a set of structural specifications
such that if T hξ satisfies them, then we have non-reconstruction for k ≥ (1 + α)∆+/ ln ∆+.
We should consider ∆+ to be a parameter for the specifications.

In particular, given ∆+, we introduce the notion of mixing vertex. Roughly speaking, a
vertex v ∈ T hξ is mixing if the following is true: A typical k-colouring of the vertices at level h

2 We should mention that this observation is empirical as there is no corresponding (rigorous) computa-
tional hardness result.

3 For more details on the convergence between the distribution on the GW-tree and G(n, d/n), see [7].
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(e.g. above remark) does not bias the colouring of v by too much when k ≥ (1+α)∆+/ ln ∆+.
A vertex is biased if it is forced to choose from a relatively small set of colours. Perhaps a
simple example of a vertex u not being mixing is when the subtree rooted at u has minimum
degree much larger than ∆+.

Whether some vertex in T hξ is mixing or not depends on the subtree that hangs below
it. An inductive definition of a mixing vertex, roughly, is as follows: A non leaf vertex v is
mixing if the number of its children is at most ∆+ while no more than o(∆+) of its children
are non-mixing vertices. We consider the leaves of the tree to be mixing vertices, by default.

Furthermore, our specifications require that the mixing vertices are sufficiently many and
well spread over the tree. To be more specific, we want the following: Every path from the
root of T hξ to a vertex at level h contains a sufficiently large number of vertices which are
mixing. Additionally, we would like that the number of vertices at level h should not deviate
significantly from their expectation.

Then, we argue that non-reconstruction holds for the colouring model on any, arbitrary,
instance of T hξ which satisfies the aforementioned specifications when k ≥ (1 + α)∆+/ ln ∆+.
The choice of ∆+ ≥ dξ is the smallest possible that guarantees that T hξ satisfies the structural
specifications with probability that tends to 1 as h→∞.

For showing non-reconstruction, given a fixed tree of the desired structure, we use an
idea introduced in [4]. The authors there show non-reconstruction by upper bounding
appropriately the second moment of a quantity called “magnetization of the root”. This
approach has turned out to be quite popular for showing non-reconstruction bounds for
various models on fixed trees e.g. [3, 26, 2, 4]. Additionally to [4], our approach builds on
the very elegant combinatorial formalization from [3], which uses the notion of unbiasing
boundary to deal with the magnetization of the root.

The approach in [3], for ∆-ary trees, shows non-reconstruction by arguing that the typical
colourings of the vertices at level h do not bias the colouring of the vertices in the largest part
of the underlying (regular) tree. The additional challenge here is that the trees we consider
are highly non-regular. So as to get an effect similar to that of an unbiasing boundary from
the colorings at level h, we need to argue about the subtree structure of each vertex in the
tree. At this point we use the specification requirement. In other words, the setting we
develop here with the mixing vertices somehow allows, to a certain extent, to apply the idea
of unbiasing boundaries to control the magnetization of the root of the non-regular trees we
deal with.

3.2 Reconstruction
As opposed to non-reconstruction, the reconstruction bound is well known in the special case
where the offspring distribution is B(n, d/n), e.g. [19, 25]. Our approach deviates from both
[19, 25] in that it applies to GW-trees with a general offspring distributions, while it focuses
on the structural properties of the underlying tree, i.e. as we do for the non-reconstruction
case.

We are based on the following observation. Consider some fixed tree T of height h and
some positive integer k. Take a random k-colouring of the vertices at level h of that tree.
Consider, now, the probability that this colouring “freezes” the colouring of the root of
T . The assignment at the root gets frozen when the colouring of the vertices at level h
specifies uniquely the colouring at the root. A sufficient condition for reconstruction is that
the probability that the colouring of the root gets frozen is bounded away from zero for any
h > 0. The reconstruction bound for a ∆-ary tree follows exactly from this argument. That
is, for k ≤ (1− α)∆/ ln ∆, a random colouring of Lh(T ) freezes the colour assignment of the
root with probability bounded away from zero for any h > 0, see [25, 22].
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The above argument extends naturally to the case of a non-regular tree T ′ of height h.
More specifically, if T ′ has a h-level, ∆-ary subtree, rooted at r(T ′), then the colouring model
on T ′ has reconstruction for k ≤ (1− α)∆/ ln ∆.

As far as the reconstruction for Tξ is regarded, we work as follows: We consider some
parameter ∆− which depends on the offspring distribution ξ. We show that T hξ has a ∆−-ary
subtree with h levels rooted at r(T hξ ), with probability bounded away from zero for any h > 0.
The considerations in the previous paragraphs and Definition 3, imply that the colouring
model in Tξ has reconstruction for k ≤ (1− α)∆−/ ln ∆−. Our choice of ∆− is the largest
possible that guarantees exactly the subtree specification for T hξ .

4 Upper and Lower Bounds

We start our analysis by focusing on the upper and the lower bounds for reconstruction and
non-reconstruction, respectively. Consider T hξ and the k-colouring model on this tree. We
define appropriate quantities ∆− and ∆+ which depend on the statistics of the offspring
distribution ξ. As far as ∆+ is concerned, we have the following:

I Definition 8. Consider a distribution ξ over the non negative integers with expectation
dξ. Given some fixed δ ∈ (0, 1/10), we let ∆+ = ∆+(δ) ≥ dξ be the minimum integer such
that the following holds: There are q ∈ [0, 3/4) and β ≥ 4, independent of dξ, such that

q ≥
∑
i>∆+

ξi + Pr
[
B(∆+, q) ≥ (∆+)δ

]
(2)

and∑
t>∆+

t · ξt ≤ exp (−2β ln dξ) , Pr
[
B(∆+, q) > (∆+)δ

]
≤ exp (−2β ln dξ) . (3)

We discuss how do we choose δ in the range (0, 1/10) a bit later. Given ξ and δ we choose
the minimum ∆+ that satisfy the above requirements. Then we use ∆+ as a parameter
to specify a set of structural specifications for trees (roughly described in Section 3). For
any instance of Tξ which satisfies these specification we have non-reconstruction for any
k ≥ (1 + α)∆+/ ln ∆+, where α is fixed.

I Remark. It turns out that there is a relation between the quantities α and δ. This means
that given α we should choose appropriately δ, or the other way around.

The notion of mixing vertex is related to Definition 8 in the following way: A vertex v in
T hξ is mixing if the number of its children is at most ∆+, while at most (∆+)δ of them are
non-mixing.

To get further intuition, perhaps, it is useful to consider the condition in (2) and its
implication in terms of the mixing vertices. Since we need the tree to have sufficiently many
and well-spread mixing vertices, it is natural to require that the probability of a vertex in
T hξ to be mixing is sufficiently large regardless of its level in the tree. We satisfy exactly this
requirement from (2).

Let q be an upper bound for the probability of each child of some v ∈ T hξ to be non-
mixing4. It is straightforward to show that the r.h.s. of (2) is an upper bound for v to be
non-mixing. Moreover, if (2) holds, then clearly q is an upper bound for v to be non-mixing,

4 The probability of a vertex being non-mixing depends only on the subtree rooted at this vertex.
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too. That is, if some vertex at some level l of the tree is non-mixing with probability at most
q, then (2) guarantees that for any vertex at level l− 1 the probability of it being non-mixing
has the same upper bound q. This implies that regardless of its level at the tree, each vertex
v is mixing with probability at least 1− q. For further details see in Section 8.

As far as ∆− is concerned, we have the following.

I Definition 9. Let ξ be a distribution over the non negative integers. Given some δ ∈
(0, 1/10), we let ∆− = ∆−(δ) ≤ dξ be the maximum integer such that the following holds:
There is g ∈ [0, 3/4) such that

g ≥
∑
i<∆−

ξi +
∑
i≥∆−

ξi · Pr
[
B(i, 1− g) < (∆−)− (∆−)δ

]
. (4)

The arguments for reconstruction are based on showing that with probability bounded
away from zero for any h, the following holds for T hξ : The root of T hξ has a subtree of height
h such that each non leaf vertex has at least ∆− − (∆−)δ many children. In the full version
of this extended abstract, in [12], we show that the condition in (4) guarantees that T hξ has
exactly this property.

The following theorem is the main technical result of this work. The trees considered in
Theorem 10 do not necessarily have well concentrated offspring distribution ξ.

I Theorem 10. Let some fixed α > 0. Consider an instance of T hξ such that the expected
offspring dξ is sufficiently large. Set δ = min{α/2, 1/10}, i.e. the variable that specifies both
∆+ and ∆−.

For µ, the Gibbs distribution over the k-colourings of T hξ , the following is true:
non-reconstruction: For k = (1 + α)∆+/ ln ∆+ and any i, j ∈ [k] it holds that

E||µi − µj ||Lh ≤ 8k2(2∆+)−0.45δh.

reconstruction: For k = (1− α)∆−/ ln ∆− there are i, j ∈ [k] such that

E||µi − µj ||Lh ≥
1
4

(
1− 2

log k

)
.

Both of the expectations above are taken w.r.t. the tree instances.

The whole proof of Theorem 10 appears in the full version of this work in [12]. In this
extended abstract we provide a sketch for the proof of the most interesting part of the
theorem, the non-reconstruction part. See in Section 5.

Given Theorem 10, it is elementary to show that Theorem 6 holds. I.e. given that the
offspring distribution is well concentrated (Definition 5), we to show that ∆− and ∆+ are
sufficiently close to each other. The derivations are simple they can be found in the full
version of this paper in [12].

Notation. For any tree T we let r(T ) or rT denote its root. Let Lh(T ) denote the set of
vertices at graph distance h from r(T ). For every vertex v ∈ T , we define T̃v the subtree
of T as follows: Delete the edge between v and its parent in T . Then T̃v is the connected
component that contains v. We use the convention that r(T̃v) = v.

We use capital letters of the Latin alphabet to indicate random variables which are
colourings of the tree T , e.g. X, Y , etc. We use small letters of the greek alphabet to indicate
fixed colourings, e.g. σ, τ , etc. We use the notation σΛ or X(Λ) to indicate that the vertices
in Λ have a colour assignment specified by the colourings σ,X, respectively.

Given a tree T , we let µ denote the Gibbs distribution for its k-colourings. Usually
we consider µ under certain boundary conditions. That is, given some Λ ⊂ T , and σ, a
k-colouring of T , we consider the Gibbs distribution conditional that the vertices in Λ have
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764 Reconstruction Threshold for Colourings of Galton-Watson Trees

fixed colouring σΛ. In this case we denote the corresponding Gibbs distribution as µσΛ . For
Ξ ⊆ T we let µΞ denote the marginal of the Gibbs distribution for the vertices in Ξ. We
denote marginals over the vertex set Ξ of a Gibbs distribution with boundary σΛ in the
natural way, i.e. µσΛ

Ξ .

5 Proof of Theorem 10 – Non Reconstruction

First, consider a fixed tree T of height h and we let L = Lh(T ). From [23] we have that

||µi − µ||rT ≤ k ·
∑

σ(L)∈[k]L
µL(σL) · ||µσ(L) − µ||rT . (5)

Furthermore, from the definition of the total variation distance we have that∑
σ(L)∈[k]L

µL(σL) · ||µσ(L) − µ||rT = 1
2

∑
σ(L)∈[k]L

µL(σL) ·
∑
c∈[k]

∣∣∣µσ(L)
rT (c)− 1/k

∣∣∣
= 1

2
∑
c∈[k]

∑
σ(L)∈[k]L

µL(σL) ·
∣∣∣µσ(L)
rT (c)− 1/k

∣∣∣ . (6)

The quantity
∣∣∣µσ(L)
r(T )(c)− 1/k

∣∣∣, is usually called magnetization of the root r(T ), e.g. see
[5]. The inner sum is the average magnetization at the root, w.r.t. boundary conditions at
the set L. We bound this average magnetization by using the following standard result.

I Proposition 11. Consider a fixed tree T of height h and some integer k > 0. For every
c ∈ [k] the following is true: Let X be a random k-colouring of T conditional that X(rT ) = c.
It holds that∑

σ(L)∈[k]L
µL(σ(L)) ·

∣∣∣µσ(L)
rT (c)− 1/k

∣∣∣ ≤√1
k
·
∣∣∣∣∣∣µXL(·)− µZ

q
L(·)

∣∣∣∣∣∣
{rT }

, (7)

where Zq is random colouring of T conditional that Zq(rT ) = q, where q maximizes the r.h.s.
of (7).

The proof of Proposition 11, which is very similar to the proof of Lemma 1 in [4], appears
also in the full version of this work in [12].

The quantity on the r.h.s. of (7) is a deterministic one, i.e. it depends only the tree T, c
and k. We let

Gc,k(T ) =
∣∣∣∣∣∣µXL(·)− µZ

q
L(·)

∣∣∣∣∣∣
{rT }

.

Consider T hξ as in the statement of Theorem 10. The quantity Gc,k(T hξ ) is a random
variable. In the light of (6), (5) and Proposition 11, it suffices to show that E

[
Gc,k(T hξ )

]
tends to zero with h sufficiently fast, for any c ∈ [k] .

I Definition 12 (Mixing Root). Let ∆+ and δ be as in the statement of Theorem 10. For a
tree T of height h, its root is called mixing if the following holds: When h = 0, then r(T ) is
mixing, by default. When h > 0, r(T ) is mixing if and only if deg(rT ) ≤ ∆+ and there are
at most (∆+)δ many vertices v children of r(T ) such that T̃v does not have a mixing root.

I Definition 13. Given ζ ∈ [0, 1] and some integer t > 0, we let At,ζ denote the set of trees
T of height at most t such that the following holds: Every path P of length t from r(T ) to
Lt(T ) contains at least (1− ζ)t vertices v such that T̃v has a mixing root.
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Before presenting our next result, we need to do the following remark. In Definition 8,
given ξ and δ, among others the following inequality should hold for ∆+,∑

t≥∆+

t · ξt < exp (−2β ln dξ) ,

where β ≥ 4. Given ∆+ and ξ the exact value of the parameter β is already specified. That
is, when we define ∆+ and ξ, the value of β is implicit.

I Proposition 14. Assume that the distribution ξ, δ, ∆+ are as defined in the statement of
Theorem 10. Let C = β ln dξ. Also, let ζ ∈ (0, 1) and θ = θ(ζ) > 1 be such that (1− ζ)θ < 1
and β(1− θ) < −1. Then, for every h ≥ 1 it holds that

Pr[T hξ ∈ Ah,ζ ] ≥ 1− exp [−(1− θ(1− ζ))C · h] .

The proof of Proposition 14 appears in Section 8.

I Theorem 15. Let ξ, δ,∆+ and α be as in the statement of Theorem 10. Also, let ζ ∈ (0, 1)
and let the integer h ≥ 1. For k = (1 + α)∆+/ ln ∆+, it holds that

E
[
G
(
T hξ
)∣∣ T hξ ∈ Ah,ζ] ≤ 4(2∆+)−0.9(3/4−ζ)δh

Pr[T hξ ∈ Ah,ζ ]
.

The proof of Theorem 15 appears in Section 6.
Set ζ = 1/4, and θ = 1.3, applying Proposition 14 we get that

Pr[T hξ /∈ Ah,ζ ] ≤ d−0.1h
ξ . (8)

For the same values of ζ, θ as above, (8) with Theorem 15 gives that

E
[
G(T hξ )

∣∣ T hξ ∈ Ah,ζ] ≤ 8(2∆+)−0.45δh. (9)

Since we always have 0 ≤ G(T ) ≤ 1, for ζ and θ as above, we get that

E
[
G(T hξ )

]
≤ E

[
G(T hξ )

∣∣ T hξ ∈ Ah,1/4]+ Pr
[
T hξ /∈ Ah,1/4

]
≤ 16(2∆+)−0.45δh,

where the last inequality follows from (8) and (9). The theorem follows.

6 Proof of Theorem 15

Consider first the quantity Gc,k(T ), for some fixed tree T . Then, it holds that

Gc,k(T ) =
∣∣∣∣∣∣µXL(·)− µZ

q
L(·)

∣∣∣∣∣∣
rT
. (10)

An important remark from Proposition 11 is that it allows to use any kind of correlation
between the X,Zq. For this reason we assume that (X,Zq) is distributed as in νTc,q. We are
going to specify this distribution later. First we get the following result.

I Proposition 16. Let ξ, δ,∆+ and α be as in the statement of Theorem 15. Also let
0 ≤ γ ≤ δ. Then for k = (1 + α)∆+/ ln ∆+, it holds that

E
[
Gc,k

(
T hξ
) ∣∣T hξ ∈ Ah,ζ ]
≤ 1

Pr
[
T hξ ∈ Ah,ζ

](2 exp
(
−1

8(∆+)
h/4−1

2 δ+ 7
8

α
1+α

)
· E
[∣∣Lh (T hξ )∣∣]

+ 2(2(∆+)−γ)(3/4−ζ)h · E[H(XL, Z
q
L)]
)
. (11)
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For the above proposition we remark the following: On the r.h.s. of (11) the rightmost
expectation term is w.r.t. both the joint distribution of X,Zq and the distribution over the
tree T hξ . The rest expectations are w.r.t. the distributions over trees only, i.e. T hξ . The proof
of Proposition 16 appears in Section 7.

For showing the theorem we bound appropriately the two expectations on the r.h.s. of
(11). It is elementary that

E
[∣∣Lh (T hξ )∣∣] = (dξ)h . (12)

For bounding E [H(XL, Z
q
L)] we need to specify a coupling between the random variables

X and Zq which minimizes their expected Hamming distance. Observe that the expected
hamming distance is both w.r.t. the coupling and the randomness of the trees.

The coupling of X and Zq we use, can be defined inductively as follows: We colour
the vertices from the root down to the leaves. For a vertex v whose father w is such that
X(w) = Zq(w) we couple X(v) and Zq(v) identically, i.e. X(v) = Zq(v). On the other hand,
when X(w) 6= Zq(w) we set X(v) = Zq(v) unless X(v) = Zq(w), then we set Zq(v) = X(w).

Let w be a vertex in the tree and let u be a child of w. Then, for the coupling above, it
holds that

Pr [X(u) 6= Zq(u)|X(w) 6= Zq(w)] = k−1.

In T hξ , the expected number of children per (non-leaf) vertex is dξ. Then, it is elementary
to show that for a disagreeing vertex, the expected number of disagreeing children is
dξ/k ≤ ln ∆+

1+α , since ∆+ > dξ. Furthermore, it holds that

E[H(XL, YL)] ≤
(

ln ∆+

(1 + α)

)h
. (13)

Observe that the above expectation is w.r.t. both tree instances and the joint distribution of
the two random colourings.

The theorem follows by combining (13), (12) and Proposition 16.

7 Proof of Proposition 16

The previous setting allows to use ideas based on the notion of biasing-unbiasing boundary
(introduced in [3]) to prove Proposition 16. To be more precise, the definition of biasing
non-biasing boundaries we use here is slightly different than that [3], but the approach is
similar.

I Definition 17 (Non-Biasing Boundary). For α, γ, δ,∆+ as in the statement of Proposition
16, we let k = (1 + α)∆+/ ln ∆+, and let some integer t ≥ 1. Consider a tree H of height t
such that r(H) is mixing. For σ, a k-colouring of H, we say that σL does not bias the root if
the following holds:

if t = 1, then σ(Lt(G)) uses all but at least (∆+)γ many colours.
if t > 1, then the following holds: We let v1, . . . , vs be the children of the root of H,
where s ≤ ∆+. Also, let S ⊆ {H̃v1 , H̃v2 , . . . , H̃vs} contain only the subtrees whose roots
are mixing. Then, there are at most ∆δ

+ many subtrees H̃vi ∈ S such that σ(Lt−1(H̃vi))
biases the root r(H̃vi).

Also, we let U(T ) denote the set of all boundary conditions on L which are not biasing.

Note the notion of non-biasing boundary condition makes sense only for trees with mixing
root.
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I Lemma 18. Let γ, α,∆+ be as in the statement of Proposition 16. Let k = (1 + α) ∆+
ln ∆+

,
also let some integer t ≥ 1. Consider a fixed tree T of height t and let L = Lt(T ). For σ, a
k-colouring of T , such that σL is biasing for the root of T the following is true: There is at
least one c ∈ [k] such that for X, a random k-colouring of T , it holds that

Pr[Xr(T ) = c|XL = σL] ≥ (∆+)−γ .

For a proof of Lemma 18 see in the full version of this work in [12].

I Definition 19. Let α, γ, δ,∆+, h be as in the statement of Proposition 16. Consider a tree
T of height h and let L = Lh(T ). For every vertex w ∈ L we define the set of boundaries
Uw ⊆ [k]L as follows: Let P denote the path that connects rT and w and we let

M =
{
v ∈ P : dist(rT , v) ≤ (3/4)h, T̃v has mixing root

}
.

Then Uw contains the boundary conditions on L which do not bias the root of any of the
subtrees T̃v where v ∈M.

I Proposition 20. Let α, γ, δ,∆+, h, ζ be as in the statement of Proposition 16. Let some
fixed tree T ∈ Ah,ζ and let L = Lh(T ). Consider σ, τ to be two k-colourings of T such
that H(σL, τL) = 1. Furthermore, assume that σ(w) 6= τ(w) for some w ∈ L, while both
σL, τL ∈ Uw. Then it holds that

||µσL − µτL ||r(T ) ≤ ∆∗ζ,h = (2∆−γ+ )(3/4−ζ)h.

Proof. For showing the proposition we use disagreement percolation coupling construction.
This approach is somehow standard and it has been used in different contexts, e.g. [9, 11].
For the full proof of the propositions see in the full version of this work in [12]. J

I Proposition 21. Let α, γ, δ,∆+, h, ζ be as in the statement of Proposition 16. Consider a
fixed tree T ∈ Ah,ζ . Let X be a random k-colouring of T . For k = (1 + α)∆+/ ln ∆+ and
any w ∈ Lh(T ) it holds that

Pr [XL /∈ Uw] ≤ 2 exp
(
−1

8(∆+)
h/4−1

2 δ+ 7
8

α
1+α

)
.

For the proof of Proposition 21 see in the full version of this work in [12].

Proof of Proposition 16. First, consider some fixed tree T ∈ Ah,ζ and we let L = Lh(T ).
Usually we fix a colouring of L and we call it (the colouring) boundary condition. We also
use the term “free” boundary to indicate the absence of any boundary condition on L or
some of its vertices.

Consider two colourings of the leaves σ(L) and τ(L). We let m be the Hamming distance
between σ(L) and τ(L), i.e. m = H(σL, τL). Let v1, . . . , vm be the vertices in L for which σL
and τL disagree. Consider the sequence of boundary conditions Z0, . . . , Z2m ∈ [k]L such that
σL = Z1, τL = Z2m while the rest of the members are as follows: For i ≤ m, we get Zi from
Zi−1 be substituting the assignment of vi from σ(vi) to “free”. Also, for i ≥ m we get Zi+1
from Zi by substituting Z(vi−m) from “free” to τ(vi−m). It is direct that H(Zi, Zi+1) = 1.

From triangle inequality, it holds that

||µσL − µτL ||r(T ) ≤
2m−1∑
i=0
||µZi − µZi+1 ||r(T ). (14)

APPROX/RANDOM’15
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Also, it is not hard to see that for every w ∈ L the following is true: if σL ∈ Uw, then Zi ∈ Uw
for every i = 1, . . . ,m. Similarly, if τL ∈ Uw, then Zi ∈ Uw for every i = m, . . . , 2m.

Let the event Uσ,τvi = “σL, /∈ Uvi
⋃
τL /∈ Uvi”. Then it holds that

||µZi − µZi+1 ||r(T ) ≤ I{Uvi} +
(

1− I{Uvi}
)

∆∗ζ,h, (15)

where ∆∗ζ,h is defined in the statement of Proposition 20. In words, the above inequality
states the following: if at least one of the σL, τL are not in Uvi , then the l.h.s. of (15) is at
most 1. On the other hand, if both σL, τL ∈ Uvi then the total variation distance on the l.h.s.
can be upper bounded by using Proposition 20.

Plugging (15) into (14) we have that

||µσL − µτL ||r(T ) ≤ 2 ·
∑

v∈Lh(T )

I{σv 6=τv} ·
[
I{Uv} +

(
1− I{Uv}

)
·∆∗ζ,h

]
. (16)

Now, we consider the quantity Gc,k(T ), i.e. Gc,k(T ) = ||µXL − µZ
q
L ||r(T ). For bounding

Gc,k(T ) we are going to use (16). That is

Gc,k(T ) = ||µXL − µZ
q
L ||r(T ) ≤

∑
σL,τL∈[k]L

Pr [XL = σL, Z
q
L = τL] · ||µσL − µτL ||r(T )

≤ 2 ·
∑

σL,τL∈[k]L
Pr [XL = σL, Z

q
L = τL]

·
∑

v∈Lh(T )

I{σv 6=τv} ·
(
I{Uσ,τv } +

(
1− I{Uσ,τv }

)
∆∗ζ,h

)
[from (16)]

≤ 2 ·
∑

v∈Lh(T )

(
Pr
[
X(v) 6= Zq(v),UXL,Z

q
L

v

]
+ Pr [X(v) 6= Zq(v)] ·∆∗ζ,h

)
≤ 2 ·

∑
v∈Lh(T )

Pr
[
UXL,Z

q
L

v

]
+ 2 ·

∑
v∈Lh(T )

Pr [X(v) 6= Zq(v)] ·∆∗ζ,h.

Due to symmetry it holds that Pr [X(L) /∈ Uv] = Pr [Zq(L) /∈ Uv]. Using this observation
and a union bound, the above inequality implies that

Gc,k(T ) ≤ 4
∑
v∈L

Pr [X(L) /∈ UPv ] + ∆∗ζ,h
∑
v∈L

Pr [X(v) 6= Zq(v)]

≤ 2 exp
(
−1

8(∆+)
h/4−1

2 δ+ 7
8

α
1+α

)
· |Lh(T )|+ 2∆∗ζ,h · Eνc,q [H(XL, Z

q
L)],

where in the last inequality we used Proposition 21 to bound Pr [X(L) /∈ UPv ].
Eνc,q [H(X(L), Zq(L))] is the expected Hamming distance between XL and ZqL and depends
only on the joint distribution of X,Zq, which is denoted as νc,q.

The proposition follows by averaging over T hξ , conditional that we have a tree in Ah,ζ .
That is

E
[
Gc,k

(
T hξ
)
| T hξ ∈ Ah,ζ

]
≤ 1

Pr
[
T hξ ∈ Ah,ζ

](2 exp
(
−1

8(∆+)
h/4−1

2 δ+ 7
8

α
1+α

)
· E
[∣∣Lh (T hξ )∣∣]

+ 2(2∆−γ+ )(3/4−ζ)h · E[H(XL, Z
q
L)]
)
.
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The rightmost expectation term is w.r.t. both νc,q and the distribution of random trees T hξ .
In the above derivations we used the following, easy to derive, inequality

E
[
f
(
T hξ
) ∣∣T hξ ∈ Ah,ζ ] ≤ E

[
f
(
T hξ
)]
/Pr

[
T hξ ∈ Ah,ζ

]
,

where f is any non-negative functions on the support of the distribution T hξ . The proposition
follows. J

8 Proof of Proposition 14

For i = (1 − ζ)h we let Qh,i = Pr
[
T hξ /∈ Ah,ζ

]
. Also, we let Qth,i = Pr

[
T hξ /∈ Ah,ζ

∣∣∣
deg(r(Thξ )) = t

]
Using a simple union bound we get the following: For t ≤ (∆+)δ it holds

that

Qth,i ≤ t ·Qh−1,i−1. (17)

Intuitively, the above is implied by the following: If deg(r(Thξ )) ≤ (∆+)δ, then, regardless of
its children, the root r(Thξ ) is mixing. Conditional that deg(r(Thξ )) ≤ (∆+)δ holds, so as to
have T hξ /∈ Ah,ζ , there should be a vertex v, child of r(Thξ ) such that the following is true:
The subtree T̃v has a path from its root to its vertices of at level h− 1 which contain less
than i− 1 mixing vertices.

Using similar arguments, for (∆+)δ ≤ t ≤ ∆+, we get the following lemma, whose proof
appear in Section 8.1.

I Lemma 22. For (∆+)δ < t ≤ ∆+, it holds that

Qth,i ≤ 2t
(
Qh−1,i−1 +Qh−1,i · Pr

[
B(∆+, q) ≥ (∆+)δ

])
.

Finally, using a simple union bound we get that for t > ∆+ it holds that

Qth,i ≤ t ·Qh−1,i. (18)

The above follows by a line of arguments similar to those we used for (17) and by noting
that if deg(r(Thξ )) ≥ ∆+, then the root of Thξ is non-mixing.

We are bounding Qh,i by using (17), (18) and Lemma 22. We have that

Qh,i =
n∑
t=0

Qth,iξt

= Qh−1,i−1 ·
(∆+)δ∑
t=0

t · ξt + 2Qh−1,i−1 ·
∆+∑

t=(∆+)δ+1

t · ξt +

+2Qh−1,i · Pr
[
B(∆+, q) ≥ (∆+)δ

]
·

∆+∑
t=(∆+)δ+1

t · ξt +Qh−1,i ·
∑

t≥(∆+)+1

t · ξt

≤ 2Qh−1,i−1

∆+∑
t=0

t · ξt +Qh−1,i

2 Pr
[
B(∆+, q) ≥ (∆+)δ

] ∆+∑
t=(∆+)δ

t · ξt

+
∑

t≥(∆+)+1

t · ξt


≤ 2dξ ·Qh−1,i−1 +Qh−1,i

2dξ · Pr
[
B(∆+, q) ≥ (∆+)δ

]
+

∑
t≥(∆+)+1

t · ξt

 . (19)
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The following lemma uses (19) to derive an upper bound on Qh,i.

I Lemma 23. Let h, β, C be as in the statement of Proposition 14. Also, let λ ∈ (0, 1) and
θ′ > 1 be a fixed numbers such that β(1− θ′) < −1 and λθ′ < 1. Then for i = λh and Qh,i
that satisfies the inequality in (19), it holds that

Qh,i ≤ exp [−(1− λθ′) · C · h] . (20)

The proof of Lemma 23 appears in Section 8.2
The proposition follows by using the above lemma and setting λ = (1− ζ) and θ′ = θ,

where ζ and θ are defined in the statement of Proposition 14.

8.1 Proof of Lemma 22
Let qh−1 be the probability for each child of r(T hξ ) to be non-mixing. Conditional that r(T hξ )
has degree t, the number of non-mixing children of r(T hξ ) is binomially distributed with
parameters, t, qh−1, i.e. B(t, qh−1). Letting QMh,i = Pr

[
T hξ /∈ Ah,ζ

∣∣∣ r (Thξ ) is mixing
]
and

QNh,i = Pr
[
T hξ /∈ Ah,ζ

∣∣∣ r (Thξ ) is not mixing
]
, it holds that

Qth,i ≤
(∆+)δ∑
j=0

(
t

j

)
qjh−1(1− qh−1)t−j

[
(t− j)QMh−1,i−1 + jQNh−1,i−1

]
+

+
t∑

j=(∆+)δ+1

(
t

j

)
qjh−1(1− qh−1)t−j

[
(t− j)QMh−1,i + jQNh−1,i

]
.

Using the standard equality that (t− j)
(
t
j

)
= t
(
t−1
j

)
, we get that

Qth,i ≤ t(1− qh−1)QMh−1,i−1

(∆+)δ∑
j=0

(
t− 1
j

)
qjh−1(1− qh−1)t−1−j

+tqh−1Q
N
h−1,i−1

(∆+)δ∑
j=1

(
t− 1
j − 1

)
qj−1
h−1(1− qh−1)t−j

+t(1− qh−1)QMh−1,i

t−1∑
j=(∆+)δ+1

(
t− 1
j

)
qjh−1(1− qh−1)t−1−j

+tqh−1Q
N
h−1,i

t∑
j=(∆+)δ+1

(
t− 1
j − 1

)
qj−1
h−1(1− qh−1)t−j .

It is not hard to see that for any h, i it holds that qhQNh,i ≤ Qh,i and (1 − qh)QMh,i ≤ Qh,i.
Using these two inequalities we get that

Qth,i ≤ tQh−1,i−1
(
Pr
[
B(t− 1, qh−1) ≤ (∆+)δ

]
+ Pr

[
B(t− 1, qh−1) ≤ (∆+)δ − 1

])
+tQh−1,i

(
Pr
[
B(t− 1, qh−1) ≥ (∆+)δ + 1

]
+ Pr

[
B(t− 1, qh−1) ≥ (∆+)δ

])
≤ 2tQh−1,i−1 + 2tQh−1,i Pr

[
B(t− 1, qh−1) ≥ (∆+)δ

]
. (21)

Note that that Pr
[
B(t− 1, qh−1) ≥ (∆+)δ

]
is increasing with t. That is, for t ≤ ∆+ it holds

that

Pr
[
B(t− 1, qh−1) ≥ (∆+)δ

]
≤ Pr

[
B(∆+, qh−1) ≥ (∆+)δ

]
. (22)
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At this point we observe that the quantity q, defined in Definition 8, is an upper bound for
qh, for every h. This follows by an inductive argument, i.e. induction on h the number of
levels of T hξ .

Clearly, for h = 0, the assertion is true. The tree with zero levels consists of only one
vertex, which is a leaf. By default the leaves are mixing vertices, i.e. the probability of a
leaf to be non-mixing is zero. Since q ∈ [0, 3/4), q is an upper bound for the vertex to be
non-mixing.

Given h > 0, assume that the assertion is true for T h′ξ , for any h′ ≤ h . We are going to
show that this is true for Thξ . Let N be the number of non-mixing children of the root of Thξ .
It holds that

Pr[r(T hξ ) is non-mixing] ≤ Pr[deg(r(T hξ )) > ∆+] + Pr[N > (∆+)δ|deg(r(T hξ )) ≤ ∆+].

Given that deg(r(T hξ )) = D, for some integer D ≥ 0, N is a binomial variable with parameters
D, qh−1. Due to our induction hypothesis it holds that qh−1 < q. Since we have conditioned
that D < ∆+, it is clear that N is dominated by a binomial variable with parameters ∆+, q,
that is

Pr[r(T hξ ) is non-mixing] ≤ Pr[deg(r(T hξ )) > ∆+] + Pr[B(∆+, q) > (∆+)δ]

≤
∑
i≥∆+

ξi + Pr[B(∆+, q) > (∆+)δ] ≤ q,

where the last inequality follows from the definition of q, i.e. in Definition 8. The above
inequality with (22) imply that

Pr
[
B(∆+, qh−1) ≥ (∆+)δ

]
≤ Pr

[
B(∆+, q) ≥ (∆+)δ

]
,

as B(∆+, qh−1) is stochastically dominated by B(∆+, q), since, qh−1 ≤ q, for any h.
The lemma follows by plugging the above inequality into (21).

8.2 Proof of Lemma 23

We are going to use induction to prove the lemma. First we are going to show that if (20) is
true for some h > 1 then it is also true for h+ 1. Let λ = i

h , λ
− = i−1

h−1 and λ+ = i
h−1 . We

rewrite (19) in terms of λ, λ+ and λ− as follows:

Q{h,λh}

≤ 2d ·Q{h−1,λ−(h−1)} +Q{h−1,λ+(h−1)}

2dPr
[
B(∆+, q) ≥ (∆+)δ

]
+

∑
t≥(∆+)+1

t · ξt

 .

(23)

Using the induction hypothesis and noting that λ− = λ− 1−λ
h−1 we have that

Q{h−1,λ−(h−1)} ≤ exp
[
−(1− θλ−)(h− 1)C

]
≤ exp

[
−
(

1− θ′
(
λ− 1− λ

h− 1

))
(h− 1)C

]
≤ exp [− (1− θ′λ) (h− 1)C] · exp [−θ′ (1− λ) C]
≤ exp [− (1− θ′λ)h C] · exp [(1− θ′) C] .

APPROX/RANDOM’15
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As far as Q{h−1,i} is regarded, we use the fact that λ+ = λ+ λ
h−1 and we get that

Q{h−1,λ+·(h−1)} ≤ exp
[
−(1− θ′λ+)(h− 1)C

]
≤ exp

[
−
(

1− θ′λ− θ′λ

h− 1

)
(h− 1)C

]
≤ exp [− (1− θ′λ) (h− 1)C] · exp [θ′λC]
≤ exp [− (1− θ′λ)hC] exp [C] . (24)

Substituting the bounds for Q{h−1,i−1}, Q{h−1,i} above into (23) we get that

Q{h,λh}

≤ exp [− (1− θ′λ)hC]

×

2d · exp [(1− θ′) C] + exp (C)

2dPr
[
B(∆+, q) ≥ (∆+)δ

]
+

∑
t≥(∆+)+1

t · ξt

 .

From to our assumption that β(1− θ′) < −1 it is direct that

2d · exp [(1− θ′) C] = 2d1+β(1−θ′) ≤ 1/5.

Also due to our assumptions about ∆+, δ we get that

exp (C)

2dPr
[
B(∆+, q) ≥ (∆+)δ

]
+

∑
t≥∆++1

t · ξt

 ≤ 2
5 .

Using the two bounds above (??) writes as follows:

Q{h,λh} ≤ exp [− (1− θ′ · λ)hC] .

It remains to show the base of the induction, i.e the case h = 1. Since the leaves of the trees
are, by default, mixing, for any fixed λ ∈ (0, 1) and h = 1 it holds that

Q{h,λ·h} ≤ Pr[deg(r(T )) ≥ ∆+] =
∑
t≥∆+

ξt ≤ exp [−2C] ≤ exp [− (1− θ′ · λ) C] ,

as λ, θ > 0 while λ · θ′ < 1. The lemma follows.
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Abstract
A quantile summary is a data structure that approximates to ε-relative error the order statistics
of a much larger underlying dataset.

In this paper we develop a randomized online quantile summary for the cash register data
input model and comparison data domain model that uses O( 1

ε log 1
ε ) words of memory. This

improves upon the previous best upper bound of O( 1
ε log3/2 1

ε ) by Agarwal et al. [1]. Further,
by a lower bound of Hung and Ting [4] no deterministic summary for the comparison model can
outperform our randomized summary in terms of space complexity. Lastly, our summary has the
nice property that O( 1

ε log 1
ε ) words suffice to ensure that the success probability is 1−e−poly(1/ε).
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1 Introduction

A quantile summary S is a fundamental data structure that summarizes an underlying
dataset X of size n, in space much less than n. Given a query φ, S returns a sample y of X
such that the rank of y in X is (probably) approximately φn. Quantile summaries are used
in sensor networks to aggregate data in an energy-efficient manner and in database query
optimizers to generate query execution plans.

Quantile summaries have been developed for a variety of different models and metrics.
The data input model we consider is the standard online cash register streaming model, in
which a new item is added to the dataset at each new timestep, and the total number of
items is not known until the end. The data domain model we consider is the comparison
model, in which stream items come from an arbitrary ordered domain (and specifically, not
necessarily from the integers).

Formally, our quantile summary problem is defined over a totally ordered domain D and
by an error parameter ε ≤ 1/2. There is a dataset X that is initially empty. Time occurs
in discrete steps. In timestep t, stream item xt arrives and is then processed, and then any
quantile queries φ in that step are received and processed. To be definite, we pick the first
timestep to be 1. We write Xt or X(t) for the t-item prefix stream x1 . . . xt of X. The goal
is to maintain at all times t a summary St of the dataset Xt that, given any query φ in
(0, 1], can return a sample y = y(φ) so that |R(y,Xt)− φt| ≤ εt, where R(a, Z) is the rank
of item a in set Z, defined as |{z ∈ Z : z ≤ a}|. For randomized summaries, we only require
that ∀t∀φ, P (|R(y,Xt)− φt| ≤ εt) ≥ 2/3; that is, y’s rank is only probably close to φt, not
definitely close. In fact, it will be easier to deal with the rank directly, so we define ρ = φt

and use that in what follows.
© David Felber and Rafail Ostrovsky;
licensed under Creative Commons License CC-BY

18th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’15) /
19th Int’l Workshop on Randomization and Computation (RANDOM’15).
Editors: Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim; pp. 775–785

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.775
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


776 A Randomized Online Quantile Summary in O(1
ε

log 1
ε
) Words

1.1 Previous work
The two most directly relevant pieces of prior work ([1, 2] and [6]) are randomized online
quantile summaries for the cash register/comparison model. Aside from oblivious sampling
algorithms (which require storing Ω(1/ε2) samples) the only other such work of which we
are aware is an approach by Wang, Luo, Yi, and Cormode [11] that combines the methods
of [1, 2] and [6] into a hybrid with the same space bound as [1, 2].

The newer of the two is that of Agarwal, Cormode, Huang, Phillips, Wei, and Yi [1, 2].
Among other results, Agarwal et al. develop a randomized online quantile summary for the
cash register/comparison model that uses O( 1

ε log3/2 1
ε ) words of memory. This summary

has the nice property that any two such summaries can be combined to form a summary of
the combined underlying dataset without loss of accuracy or increase in size.

The earlier such summary is that of Manku, Rajagopalan, and Lindsay [6], which uses
O( 1

ε log2 1
ε ) space. At a high level, their algorithm downsamples the input stream in a

non-uniform way and feeds the downsampled stream into a deterministic summary, while
periodically adjusting the downsampling rate.

We note here for those familiar with the result of Manku et al. that, while our algorithm
at a high level may appear similar, there are important differences. We defer a discussion of
similarities and differences to Section 4 after the presentation of our algorithm in Section 3.

For the comparison model, the best deterministic online summary to date is the (GK)
summary of Greenwald and Khanna [3], which uses O( 1

ε log εn) space. This improved upon
a deterministic (MRL) summary of Manku, Rajagopalan, and Lindsay [5] and a summary
implied by Munro and Paterson [7], which use O( 1

ε log2 εn) space.
A more restrictive domain model than the comparison model is the bounded universe

model, in which elements are drawn from the integers {1, . . . , u}. For this model there is a
deterministic online summary by Shrivastava, Buragohain, Agrawal, and Suri [9] that uses
O( log u

ε ) space.
Not much exists in the way of lower bounds for this problem. There is a simple lower

bound of Ω(1/ε) which intuitively comes from the fact that no one sample can satisfy more
than 2εn different rank queries. For the comparison model, Hung and Ting [4] developed a
deterministic Ω( 1

ε log 1
ε ) lower bound. Whether this bound can be extended to hold for our

weaker probabilistic guarantee, and whether our algorithm can be modified to satisfy the
stronger deterministic guarantee, are both open questions.

1.2 Our contributions
In the next section we describe a simple O( 1

ε log 1
ε ) streaming summary that is online except

that it requires n to be given up front and that it is unable to process queries until it has seen
a constant fraction of the input stream. This simple summary is not new (it is mentioned
in Wang et al. [11], for example) but the discussion provides exposition for Section‘3, in
which we develop this summary into a fully online summary with the same asymptotic space
complexity that can answer queries at any point in time. We close in Section 4 by examining
the similarities and differences between our summary and previous work and discuss a design
approach for similar streaming problems.

2 A simple streaming summary

Before we describe the algorithm we must first describe its two main components in a bit
more detail than was used in the introduction. The two components are Bernoulli sampling
and the GK summary [3].
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2.1 Bernoulli sampling

Bernoulli sampling downsamples a stream X of size n to a sample stream S by choosing to
include each next item into S with independent probability m/n. (As stated this requires
knowing the size of X in advance.) At the end of processing X, the expected size of S is
m, and the expected rank of any sample y in S is E(R(y, S)) = m

n R(y,X). In fact, for any
times t ≤ n and partial streams Xt and St, where St is the sample stream of Xt, we have
E(|St|) = mt/n and E(R(y, St)) = m

n R(y,Xt). To generate an estimate for R(y,Xt) from
St we use R̂(y,Xt) = n

mR(y, St). The following theorem bounds the probability that S is
very large or that R̂(y,Xt) is very far from R(y,Xt). A generalization of this theorem is due
Vapnik and Chervonenkis [10]; the proof of this special case is a simple known application of
Chernoff bounds.

I Theorem 1. For all times t ≥ n/64,

P (|St| > 2tm/n) < exp(−m/192)

Further, for all times t ≥ n/64 and items y,

P (|R̂(y,Xt)−R(y,Xt)| > εt/8) < 2 exp(−ε2m/12288)

Proof. For the first part,

P (|St| > 2tm/n) < exp(−tm/3n) < exp(−m/192)

since t ≥ n/64. For the second part,

P (|R̂(y,Xt)−R(y,Xt)| > εt/8) = P (|R(y, St)− E(R(y, St))| > εtm/8n)

The Chernoff bound is

P (|R(y, St)− E(R(y, St))| > δE(R(y, St))) < 2 exp(−min{δ, δ2}E(R(y, St))/3)

Here, δ = εt/8R(y, St), so

P < 2 exp(−ε2t2m/192nE(R(y, St))) ≤ 2 exp(−ε2m/12288)

finishing the proof. J

This means that, given any 1 ≤ ρ ≤ t, if we choose to return the sample y ∈ St with
R(y, St) = ρm/n, then R(y,Xt) is likely to be close to ρ, as long as m is Ω( 1

ε2 log 1
ε ).

2.2 GK summary

The GK summary is a deterministic summary that can answer queries to relative error over
any portion of the received stream. Let Gt be the summary after inserting the first t items Xt

from stream X into G. Greenwald and Khanna guarantee in [3] that with only O( 1
ε log(εt))

words, given any 1 ≤ ρ ≤ t, Gt can return a sample y ∈ Xt so that |R(y,Xt) − ρ| ≤ εt/8.
We call this the GK guarantee.

APPROX/RANDOM’15
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X → S
sampling

S stream of
≈ m samples GK(ε/8)stream

input X
query

quantiles

Figure 1 The big picture.

2.3 A simple streaming summary
We combine Bernoulli sampling with the GK summary by downsampling the input data
stream X to a sample stream S and then feeding S into a GK summary G. It looks like in
Figure 1.

The key reason this gives us a small summary is that we never need to store S; each
time we sample an item into S we immediately feed it into G. Therefore, we only use as
much space as G(S(Xt)) uses. In particular, for m = O(poly(1/ε)), we use only O( 1

ε log 1
ε )

words. To answer a query ρ for Xt, we scale ρ by m/n, ask G(S(Xt)) for that, and return
the resulting sample y.

We formalize this intuition in the following lemma, which combines the ideas in the proof
of Theorem 1 with the GK guarantee to yield approximation and correctness guarantees.

I Lemma 2. Fix some time t ≥ n/64 and some rank ρ ≤ t, and consider querying G(S(Xt))
with q = min{ρm/n, |S|}, obtaining y as the result.

Say that S = S(Xt) is good if ||S| −mt/n| ≤ εmt/8n and if none of the first ≤ mt/n

samples z in S has |R(z, S)− m
n R(z,Xt)| > εmt/8n.

If S is good then |R(y,Xt)− ρ| ≤ εt/2.
Further, if m ≥ 400000 ln 1/ε

ε3 then P (S is not good) ≤ ε3e−1/ε/8.

Proof. First, by the GK guarantee, G(S) returns some item y with |R(y, S)− q| ≤ εt/8. If
S is good, then |q − ρm/n| ≤ εmt/8n, and also |R(y, S) − m

n R(y,Xt)| ≤ εmt/8n. By the
triangle inequality, |mn R(y,Xt)− ρm/n| ≤ 3εmt/8n. Equivalently, |R(y,Xt)− ρ| ≤ 3εt/8.

Now, following the proof of Theorem 1, we have that

P (||St| −mt/n| > εmt/8n) < 2 exp(−ε2m/12288)

and also for each of the first ≤ m samples z that

P (|R(z, S)− m
n R(z,Xt)| > εmt/8n) < 2 exp(−ε2m/12288)

By the union bound, P (S is not good) ≤ 4m exp(−ε2m/12288). Choosing m ≥ 400000 ln 1/ε
ε3

suffices to bound this quantity by ε3e−1/ε/8. J

2.4 Caveats
There are two serious issues with this summary. The first is that it requires us to know
the value of n in advance to perform the sampling. Also, as a byproduct of the sampling,
we can only obtain approximation guarantees after we have seen at least 1/64 (or at least
some constant fraction) of the items. This means that while the algorithm is sufficient for
approximating order statistics over streams stored on disk, more is needed to get it to work
for online streaming applications, in which (1) the stream size n is not known in advance, and
(2) queries can be answered approximately at all times t ≤ n and not just when t ≥ n/64.
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Adapting this basic streaming summary idea to work online constitutes the next section
and the bulk of our contribution. We start with a high-level overview of our online summary
algorithm. In Section 3.1 we formally define an initial version of our algorithm whose
expected size at any given time is O( 1

ε log 1
ε ) words. In Section 3.2 we show that our

algorithm guarantees that ∀n∀ρ, P (|R(y,Xn)−ρ| ≤ εn) ≥ 1−exp(−1/ε). In Section 3.3 we
discuss the slight modifications necessary to get a deterministic O( 1

ε log 1
ε ) space complexity,

and also perform a time complexity analysis.

3 An online summary

Our algorithm works in rows, which are illustrated in figure 2. Row r is a summary of the
first 2r32m stream items. Since we don’t know how many items will actually be in the
stream, we can’t start all of these rows running at the outset. Therefore, we start each row
r ≥ 1 once we have seen 1/64 of its total items. However, since we can’t save these items for
every row we start, we need to construct an approximation of this fraction of the stream,
which we do by using the summary of the previous row, and join this approximating stream
with the new items that arrive while the row is live. We then wait until the row has seen a
full half of its items before we permit it to start answering queries; this dilutes the influence
of approximating the 1/64 of its input that we couldn’t store.

Operation within a row is very much like the operation of our fixed-n streaming summary.
We feed the joint approximate prefix + new item stream through a Bernoulli sampler to get
a sample stream, which is then fed into a GK summary (which is stored). After row r has
seen half of its items, its GK summary becomes the one used to answer quantile queries.
When row r + 1 has seen 1/64 of its total items, row r generates an approximation of those
items from its GK summary and feeds them as a stream into row r + 1.

Row 0 is slightly different in order to bootstrap the algorithm. There is no join step since
there is no previous row to join. Also, row 0 is active from the start. Lastly, we get rid of
the sampling step so that we can answer queries over timesteps 1 . . .m/2.

After the first 32m items, row 0 is no longer needed, so we can clean up the space used
by its GK summary. Similarly, after the first 2r32m items, row r is no longer needed. The
upshot of this is that we never need storage for more than six rows at a time. Since each GK
summary uses O( 1

ε log 1
ε ) words, the six live GK summaries also only use O( 1

ε log 1
ε ) words.

Our error analysis, on the other hand, will require us to look back as many as Θ(log 1/ε)
rows to ensure our approximation guarantee. We stress that we will not need to actually
store these Θ(log 1/ε) rows for our guarantee to hold; we will only need that they didn’t have
any bad events (as will be defined) when they were alive.

3.1 Algorithm description
Our algorithm works in rows. Each row r has its own copy Gr of the GK algorithm that
approximates its input to ε/8 relative error. For each row r we define several streams: Ar

is the prefix stream of row r, Br is its suffix stream, Rr is its prefix stream replacement
(generated by the previous row), Jr is the joint stream Rr followed by Br, Sr is its sample
stream, and Qr is a one-time stream generated from Gr by querying it with ranks ρ1 . . . ρ8/ε,
where ρq = q(ε/8)(m/32) for r ≥ 1 and ρq = qεm/8 for r = 0.

The prefix stream Ar = X(2r−1m) for row r ≥ 1, importantly, is not directly received
by row r. Instead, at the end of timestep 2r−1m, row r−1 generates Qr−1 and duplicates
each of those 8/ε items 2r−1εm/8 times to get the replacement prefix Rr, which is then
immediately fed into row r before timestep 2r−1m+1 begins.

APPROX/RANDOM’15
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Figure 2 Each row r has its own copy Gr of the GK algorithm that approximates its input to
ε/8 relative error. Ar is the prefix stream of row r, Br is its suffix stream, Rr is its prefix stream
replacement (generated by the previous row), Jr is the joint stream Rr followed by Br, Sr is its
sample stream, and Qr is a one-time stream generated from Gr at time 2rm to get the replacement
prefix Rr+1.
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Each row can be live or not and active or not. Row 0 is live in timesteps 1 . . . 32m and
row r ≥ 1 is live in timesteps 2r−1m+1 . . . 2r32m. Live rows require space; once a row is no
longer live we can free up the space it used. Row 0 is active in timesteps 1 . . . 32m and row
r ≥ 1 is active in timesteps 2r16m+1 . . . 2r32m. This definition means that exactly one row
r(t) is active in any given timestep t. Any queries that are asked in timestep t are answered
by Gr(t). Given query ρ, we ask Gr(t) for ρ/2r(t)32 (if r ≥ 1) or for ρ (if r = 0) and return
the result.

At each timestep t, when item xt arrives, it is fed as the next item in the suffix stream Br

for each live row r. Br joined with Rr defines the joined input stream Jr. For r ≥ 1, Jr is
downsampled to the sample stream Sr by sampling each item independently with probability
1/2r32. For row 0, no downsampling is performed, so S0 = J0. Lastly, Sr is fed into Gr.

Figure 2 shows the operation of and the communication between the first six rows.
Solid arrows indicate continuous streams and dashed arrows indicate one-time messages.
Algorithm 1 is a pseudocode listing of the algorithm.

Initially, allocate space for G0. Mark row 0 as live and active.
for t = 1, 2, . . . do

foreach live row r ≥ 0 do
with probability 1/2r32 do

Insert xt into Gr.
if t = 2r−1m for some r ≥ 1 then

Allocate space for Gr. Mark row r as live.
Query Gr−1 with ρ1 . . . ρ8/ε to get y1 . . . y8/ε.
for q = 1 . . . 8/ε do

for 1 . . . 2r−1εm/8 do
with probability 1/2r32 do

Insert yq into Gr.
if t = 2r16m for some r ≥ 1 then

Mark row r as active. Unmark row r−1 as active.
if t = 2r32m for some r ≥ 0 then

Unmark row r as live. Free space for Gr.
on query ρ do

Let r = r(t) be the active row.
Query Gr for rank ρ/2r32 (if r ≥ 1) or for rank ρ (if r = 0).
Return the result.

Algorithm 1. Procedural listing of the algorithm in Section 3.1.

3.2 Error analysis
Define Cr = x(2r32m+1), x(2r32m+2), . . . and Yr to be Rr followed by Br and then Cr.
That is, Yr is just the continuation of Jr for the entire length of the input stream.

Fix some time t. All of our claims will be relative to time t; that is, if we write Sr we
mean Sr(t). Our error analysis proceeds as follows. We start by proving that R(y, Yr) is a
good approximation of R(y, Yr−1) when certain conditions hold for Sr−1. By induction, this
means that R(y, Yr) is a good approximation of R(y,X=Y0) when the conditions hold for all
of S0 . . . Sr−1, and actually it’s enough for the conditions to hold for just Sr−log 1/ε . . . Sr−1 to
get a good approximation. Having proven this claim, we then prove that the result y = y(ρ)
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of a query to our summary has R(y,X) close to ρ. Lastly, we show that m = O(poly(1/ε))
suffices to ensure that the conditions hold for Sr−log 1/ε . . . Sr−1 with very high probability
(1− e−1/ε).

I Lemma 3. Let αr be the event that |Sr| > 2m and let βr be the event that any of the first
≤ 2m samples z in Sr has |2r32R(z, Sr)−R(z, Yr)| > εt/8. Say that Sr is good if neither
αr nor βr occur (or if r = 0).

For all rows r ≥ 1 such that t ≥ tr = 2r−1m, and all for all items y, if Sr−1 is good then
we have that |R(y, Yr)−R(y, Yr−1)| ≤ 2rεm.

Proof. At the end of time tr we have Yr(tr) = Rr(tr), which is each item y(ρq) in Qr−1
duplicated εtr/8 times. If Sr−1(tr) is good then |R(y(ρq), Yr−1(tr)) − 2r−132ρq| ≤ εtr/2
following Lemma 2.

Fix q so that y(ρq) ≤ y < y(ρq+1), where y(ρ0) and y(ρ1+8/ε) are defined to be inf D and
supD for completeness. Fixing q this way implies that R(y, Yr(tr)) = 2r−132ρq. By the
above bound on R(y(ρq), Yr−1(tr)) we also have that

2r−132ρq − εtr/2 ≤ R(y, Yr−1(tr)) < 2r−132ρq+1 + εtr/2

Recalling that ρq = qεm/256, these bounds imply that

|R(y, Yr(tr))−R(y, Yr−1(tr))| ≤ 2rεm

For each time t after tr, the new item xt changes the rank of y in both streams Yr and Yr−1
by the same additive offset, so

|R(y, Yr)−R(y, Yr−1)| = |R(y, Yr(tr))−R(y, Yr−1(tr))| ≤ 2rεm

yielding the lemma. J

By applying this lemma inductively we can bound the difference between Yr and X = Y0:

I Corollary 4. For all r ≥ 1 such that t ≥ tr = 2r−1m, if all of S0(t1), S1(t2), . . . , Sr−1(tr)
are good, then |R(y, Yr)−R(y,X)| ≤ 2 · 2rεm.

To ensure that all of these Si are good would require m to grow with n, which would be
bad. Happily, it is enough to require only the last log2 1/ε sample summaries to be good,
since the other items we disregard constitute only a small fraction of the total stream.

I Corollary 5. Let d = log2 1/ε. For all r ≥ 1 such that t ≥ tr = 2r−1m, if all of
Sr−1(tr), . . . , Sr−d(tr−d+1) are good, then |R(y, Yr)−R(y,X)| ≤ 2r+2εm.

Proof. By Lemma 3 we have |R(y, Yr)−R(y, Yr−d)| ≤ 2r+1εm. At time t ≥ tr−d, Yr−d and
X share all except possibly the first 2(r−d)−1m = 2r−1m/2d = 2r−1εm items. Thus

|R(y, Yr)−R(y,X)| ≤ |R(y, Yr)−R(y, Yr−d)|+ |R(y, Yr−d)−R(y,X)| ≤ 2r+1εm+ 2rεm

proving the corollary. J

We now prove that if the last several sample streams were good then querying our
summary will give us a good result.

I Lemma 6. Let d = log2
1
ε and r = r(t). If all Sr(t), Sr−1(tr), . . . , Sr−d(tr−d+1) are good,

then querying our summary with rank ρ (= querying the active GK summary Gr with ρ/2r32
if r ≥ 1, or with ρ if r = 0) returns y = y(ρ) such that |R(y,X)− ρ| ≤ εt.
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Proof. For r ≥ 1 we have by Corollary 5 that |R(y, Yr) − R(y,X)| ≤ 2r+2εm ≤ εt/2. We
apply Lemma 2 once more at row r, which tells us that |R(y, Yr)− ρ| ≤ εt/2, and combine
these bounds with the triangle inequality.

For r = 0, the GK guarantee alone proves the lemma. J

Lastly, we prove that m = O(poly(1/ε)) suffices to ensure that all of Sr(t), Sr−1(tr), . . . ,
Sr−d(tr−d+1) are good with probability at least 1− e−1/ε.

I Lemma 7. Let d = log2 1/ε and r = r(t). If m ≥ 400000 ln 1/ε
ε3 then all Sr(t), Sr−1(tr), . . . ,

Sr−d(tr−d+1) are good with probability at least 1− e−1/ε.

Proof. There are at most 1+log2 1/ε ≤ 4/ε of these summary streams total. Lemma 2 and
the union bound give us

P (some Sr is bad) ≤ 4
ε

ε3

8 e
−1/ε ≤ e−1/ε

which implies our claim. J

3.3 Space and time complexity
A minor issue with the algorithm is that, as written in section 3.1, we do not actually have a
bound on the worst-case space complexity of the algorithm; we only have a bound on the
space needed at any given point in time. This issue is due to the fact that there are low
probability events in which |Sr| can get arbitrarily large and the fact that over n items there
are a total of Θ(logn) sample streams. The space complexity of the algorithm is O(max |Sr|),
and to bound this value with constant probability using the Chernoff bound appears to
require that max |Sr| = Ω(log logn), which is too big.

Fortunately, fixing this problem is simple. Instead of feeding every sample of Sr into
the GK summary Gr, we only feed each next sample if Gr has seen < 2m samples so far.
That is, we deterministically restrict Gr to receiving only 2m samples. Lemmas 3 through 6
condition on the goodness of the sample streams Sr, which ensures that the Gr receive at
most 2m samples each, and the claim of Lemma 7 is independent of the operation of Gr.
Therefore, by restricting each Gr to receive at most 2m inputs we can ensure that the space
complexity is deterministically O( 1

ε log 1
ε ) without breaking our error guarantees.

From a practical perspective, the assumption in the streaming setting is that new items
arrive over the input stream X at a high rate, so both the worst-case per-item processing
time as well as the amortized time to process n items are important. For our per-item time
complexity, the limiting factor is the duplication step that occurs at the end of each time
tr = 2r−1m, which makes the worst-case per-item processing time as large as Θ(n). Instead,
at time tr we could generate Qr−1 and store it in O(1/ε) words, and then on each arrival
t = 2r−1m+1 . . . 2rm we could insert both xt and also the next item in Rr. By the time
tr+1 = 2tr that we generate Qr, all items in Rr will have been inserted into Jr. Thus the
worst-case per-item time complexity is O( 1

εT
max
GK ), where Tmax

GK is the worst-case per-item
time to query or insert into one of our GK summaries. Over 2r32m items there are at most
2m insertions into any one GK summary, so the amortized time over n items in either case
is O( m log(n/m)

n TGK), where TGK is the amortized per-item time to query or insert into one
of our GK summaries. Algorithm 2 includes the changes of this section.

4 Discussion

Our starting point is a very natural idea used in Manku et al. [6]: downsample the input
stream and feed the resulting sample stream into a deterministic summary data structure
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Initially, allocate space for G0. Mark row 0 as live and active.
for t = 1, 2, . . . do

foreach live row r ≥ 0 do
with probability 1/2r32 do

Insert xt into Gr if Gr has seen < 2m insertions.
if r ≥ 1 and 2r−1m < t ≤ 2rm and Gr has seen < 2m insertions then

with probability 1/2r32 do
Also insert item t−2r−1m of Rr into Gr.

if t = 2r−1m for some r ≥ 1 then
Allocate space for Gr. Mark row r as live.
Query Gr−1 with ρ1 . . . ρ8/ε to get Qr−1 = y1 . . . y8/ε.
Store Qr−1, to implicitly define Rr.

if t = 2r16m for some r ≥ 1 then
Mark row r as active. Unmark row r−1 as active.

if t = 2r32m for some r ≥ 0 then
Unmark row r as live. Free space for Gr.

on query ρ do
Let r = r(t) be the active row.
Query Gr for rank ρ/2r32 (if r ≥ 1) or for rank ρ (if r = 0).
Return the result.

Algorithm 2. Procedural listing of the algorithm in Section 3.3. The changes between
Sections 3.1 and 3.3 are that Gr never has more than 2m insertions and that stream
Rr is paired with items in Br.

(compare our Figure 1 with figure 1 on page 254 of [6]). At a very high level, we are
simply replacing their deterministic O( 1

ε log2 εn) MRL summary [5] with the deterministic
O( 1

ε log εn) GK summary [3].
However, our implementation of this idea differs conceptually from the implementation of

Manku et al. in two important ways. First, we use the GK algorithm strictly as a black box,
whereas Manku et al. peek into the internals of their MRL algorithm, using its algorithm-
specific interface (New, Collapse, Output) rather than the more generic interface (Insert,
Query). At an equivalent level, dealing with the GK algorithm is already unpleasant—the
space complexity analysis in [3] is quite involved, and in fact a simpler analysis of the GK
algorithm is an open problem [8]. Using the generic interface, our implementation could
just as easily replace the GK boxes in the diagram in Figure 2 with MRL boxes; or, for the
bounded universe model, with boxes running the q-digest summary of Shrivastava et al. [9].

The second way in which our algorithm differs critically from that of Manku et. al. is
that we operate on streams rather than on stream items. We use this approach in our proof
strategy too; the key step in our error analysis, Lemma 3, is a statement about (what to us
are) static objects, so we can trade out the complexity of dealing with time-varying data
structures for a simple induction. We believe that developing streaming algorithms with
analyses that hinge on analyzing streams rather than just stream items is likely to be a useful
design approach for many problems.
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Abstract
Let G = (V,E) be an undirected graph with maximum degree d. The k-disc of a vertex v ∈ V is
defined as the rooted subgraph that is induced by all vertices whose distance to v is at most k.
The k-disc frequency vector of G, freqk(G), is a vector indexed by all isomorphism types of k-discs.
For each such isomorphism type Γ, the k-disc frequency vector counts the fraction of vertices that
have k-disc isomorphic to Γ. Thus, the frequency vector freqk(G) of G captures the local structure
of G. A natural question is whether one can construct a much smaller graph H such that H
has a similar local structure. N. Alon proved that for any ε > 0 there always exists a graph H
whose size is independent of |V | and whose frequency vector satisfies ‖freqk(G)− freqk(H)‖1 ≤ ε.
However, his proof is only existential and neither gives an explicit bound on the size of H nor an
efficient algorithm. He gave the open problem to find such explicit bounds [9]. In this paper, we
solve this problem for the special case of high girth graphs. We show how to efficiently compute
a graph H with the above properties when G has girth at least 2k+2 and we give explicit bounds
on the size of H.
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1 Introduction

Given a graph G = (V,E), the problem to find a smaller graph H that approximates G
with respect to some of its properties is a basic problem in the area of graph algorithms.
For example, spanner graphs [4] approximate G with respect to the shortest path structure,
combinatorial sparsifiers [2] approximate G with respect to the cut structure, spectral
sparsifiers [14] approximate G with respect to the spectral structure, and for a dense graph
G the regularity lemma [15] may be thought of as providing a constant size weighted graph
that captures an important part of the combinatorial structure of G.

In this paper we consider a different type of approximation. We study the problem of
constructing a small graph H that has approximately the same local structure as G, where G
is assumed to be undirected and to have a maximum degree bounded by d. The motivation
to consider such an approximation is that any algorithm that only uses local information
will behave similarly on inputs G and H. This is, for example, interesting in the context of
property testing in the bounded degree graph model introduced by Goldreich and Ron [7],
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where we are given oracle access to the adjacency lists of a graph G with maximum degree d
and the goal is to distinguish graphs with a given property Π from graphs that are ε-far from
Π, that is, graphs that have to be changed in more than εd|V | edges to obtain a graph with
property Π. It is known that many constant time property testers in this model depend only
on the local structure of the input graph. For example, all minor-closed properties can be
tested in this way [3, 8]. If one allows the property testing algorithm to be (non-uniformly)
depending on n (and ε and d) then every hyperfinite property is testable [13], that is, every
graph property that contains only graphs that can be partitioned into connected components
of constant size by removing an ε-fraction of the edges.

We now continue to make the problem more precise. Given a vertex v ∈ V , the k-disc of
v is defined as the rooted subgraph that is induced by all vertices whose distance to v is at
most k. The k-disc frequency vector of G, freqk(G), is an L-dimensional vector indexed by
all isomorphism types of k-discs, where L is the number of such isomorphism types. For each
isomorphism type Γ, the k-disc frequency vector counts the fraction of vertices that have
k-disc Γ. In other words, freqk(G) is the frequency distribution of local neighborhoods over
the vertices of G. Given G with maximum degree d and a parameter ε our problem is to
compute a smaller graph H such that ‖freqk(G)− freqk(H)‖1 ≤ ε, where freqk(G) , freqk(H)
denote the frequency vectors of G and H, respectively.

1.1 Previous Work

There is a surprisingly simple proof by Alon showing that for every ε > 0 and constants d
and k, there is an M(ε) such that for every d-bounded degree graph G, there is a graph H of
size M(ε) such that the `1-norm distance of freqk(G) and freqk(H) is bounded by ε (see [11,
Proposition 19.10] for the proof). In other words, for every d-bounded graph G of arbitrary
size, there exists a small graph H of constant size that approximates the local neighborhood
distribution of G. This result may be viewed as an analogue to a weak version of Szemerédi’s
regularity lemma for dense graphs [15] (see [10, Section 5.5] for more details).

The proof by Alon is based on a compactness argument and does not give explicit bound
on M(ε). Obtaining such a bound was suggested by Alon as an open problem [9].

The problem is also related to the theory of graph limits and may be viewed as a finite
version of the Aldous-Lyons conjecture [1]. A special case of this conjecture was solved
by Elek [5]: He proved that every involution-invariant probability measure on the space of
d-bounded trees arises as the local limit of some (infinite) sequence of d-bounded graphs.

1.2 Our Results

In this paper, we give a bound on M(ε) for the special case when the input graph has high
girth, where the girth of a graph G is defined as the length of the shortest cycle in G. In
other words, we focus on the class of graphs where all k-discs are trees. This class contains
some very interesting graphs already. For example, it is known that a random regular graph
with high girth is an expander graph with high probability (cf. [6, 12]).

We develop an algorithm that, given oracle access to a graph G with maximum degree d,
computes in constant time and with a constant number of queries a small graph H such that
‖freqk(G)− freqk(H)‖1 ≤ ε. Here, a query asks for the adjacency list of a vertex v ∈ V (G).

I Theorem 1. Let d ≥ 2, k ≥ 1, ε, δ ∈ (0, 1) and define ϕ := 300d3k+2L3

ε2δ . Let G = (V,E)
be a d-bounded degree graph of size |G| ≥ 2ϕ2/δ with girth(G) ≥ 2k + 2. Then, there is an
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algorithm that outputs, with probability 1− δ, a graph H such that

‖freqk(G)− freqk(H)‖1 ≤ ε and |V (H)| ≤ ϕ .

The algorithm has time and query complexity O(1) for constant d, k, ε and δ.

If we allow the algorithm to be less efficient (but deterministic), the size of H can be
reduced by a factor of L2/ε.

I Theorem 2. Let d ≥ 2, k ≥ 1, ε ∈ (0, 1) and let G = (V,E) be a d-bounded graph with
girth(G) ≥ 2k+ 2. Then, there is a deterministic algorithm that outputs a graph H such that

‖freqk(G)− freqk(H)‖1 ≤ ε and |V (H)| ≤ 36d
3k+2L

ε
.

The algorithm has time complexity O(|V (G)|).

We remark that our results can be directly generalized to graphs that are close to having
high girth. For any ε > 0 and integer k, two d-bounded graphs G and G′ are called to be
ε-close to each other if one can obtain G′ by inserting/deleting at most εdn edges to/from
G. By noting that the `1-norm distance of the frequency vectors of two graphs G and G′ is
small if they are close to each other, we have the following corollary.

I Corollary 3. Let d ≥ 2, k ≥ 1, ε ∈ (0, 1) and let G = (V,E) be a d-bounded graph that is
ε

6dk+1 -close to some graph G′ with girth(G′) ≥ 2k + 2. Then, there exists a graph H of size
at most 72d

3k+2L
ε such that ‖freqk(G)− freqk(H)‖1 ≤ ε.

1.3 Proof Overview and Techniques
Our result is based on the following transformation of a graph G that fully preserves the
local structure of G: Let (u1, v2), (u2, v1) ∈ E be two edges with the properties that (a)
the distance from u1 to v1 and the distance from v2 to u2 in G are large and (b) the local
neighborhoods of u1 and u2 are isomorphic and (c) the local neighborhoods of v2 and v1
are isomorphic. Then one can replace the edges (u1, v2), (u2, v1) by (u1, v1), (u2, v2) without
changing the local structure of the graph. We believe that this local transformation might
be also interesting in the context of lower bounds in property testing, since if we consider
sufficiently large local neighborhoods, the behavior of any constant-query property testing
algorithm does not change under this transformation.

Our algorithm now works as follows. We use random sampling to identify a subset U ⊆ V
of constant size that has approximately the same distribution of neighborhoods (with respect
to G) as V . Then we use our transformation to turn G into a graph G′ where U has a small
cut (relative to the size of U) to V \ U and the neighborhood distribution of G is preserved.
Then the graph G′[U ] has constant size and a similar distribution of neighborhoods as G.

2 Preliminaries

Let G = (V,E) be an undirected graph. We will assume G to be a d-bounded degree graph,
that is, the maximum degree of a vertex in G is upper bounded by d. Throughout the
paper, d is assumed to be a constant. Given two vertices u, v ∈ V , let dtG(u, v) be the
length of the shortest path between u and v. The girth of G, girth(G), is defined as the
length of the shortest cycle in G. The cut of V1, V2 ⊆ V where V1 ∩ V2 = ∅ is defined as
E ∩ {(u, v) | u ∈ V1 ∧ v ∈ V2}.
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For any v ∈ V , the k-disc of v, denoted by disck(G, v), is defined as the subgraph that is
induced by the vertices that are at distance at most k to v and is rooted at v. Two k-discs are
isomorphic if and only if there exists a root-preserving graph isomorphism, that is, a graph
isomorphism that identifies the roots. For any two k-discs Γ′ and Γ′′, we write Γ′ ' Γ′′ if Γ′ is
isomorphic to Γ′′, and write Γ′ 6' Γ′′ otherwise. We denote the number of all non-isomorphic
d-bounded degree rooted graphs with radius at most k (that is, k-discs) by L := L(d, k).
The set of all such graphs is denoted by Tk = (Γ1, . . . ,ΓL). Since G has d-bounded degree,
the size of each of its k-discs Γi ∈ Tk is bounded by 1 + d+ . . .+ dk ≤ 3dk/2.

I Fact 4. The size of a k-disc Γ ∈ Tk is at most 3dk/2.

The k-disc count vector cntk(G) of a graph G is an L-dimensional vector where the i-th
entry counts the number of k-discs in G that are isomorphic to Γi ∈ Tk. By Fact 4, L is finite.
Note that the total number of k-discs in G is exacly |V (G)|. Given a k-disc isomorphism
type Γ, cntk(G)Γ is defined as the entry in cntk(G) that corresponds to Γ. Given a subset of
vertices S ⊆ V , let cntk(S | G) be the k-disc count vector such that the ith entry counts the
number of k-discs of G with root vertex in S that are isomorphic to Γi.

The k-disc frequency vector of G, denoted by freqk(G), is the vector where the i-th
entry counts the fraction of k-discs in G that are isomorphic to Γi ∈ Tk, or equivalently,
freqk(G) := cntk(G) /|V (G)|. We define freqk(S | G) := cntk(S | G) /|S| and freqk(G)Γ :=
freqk(G)Γ /|V (G)| similarly.

In the following, we consider both k-discs and (k − 1)-discs. We use Γ to denote k-discs
and ∆ to denote (k − 1)-discs.

For any integer k and Γ′,Γ′′ ∈ Tk, we call an edge (u, v) ∈ E a (Γ′,Γ′′)-edge if disck(G, u) '
Γ′ and disck(G, v) ' Γ′′. For any two subsets V1, V2 ⊆ V and any two k-disc types Γ′,Γ′′, we
let e(Γ′,Γ′′ |V1, V2) denote the number of (Γ′,Γ′′)-edges from V1 to V2, that is, the number
of edges (u, v) such that u ∈ V1, v ∈ V2, disck(G, u) ' Γ′ and disck(G, v) ' Γ′′.

For any k-disc Γ ∈ Tk and (k − 1)-disc ∆ ∈ Tk−1, Γ is called ∆-extensive if the (k − 1)-disc
of the root of Γ is isomorphic to ∆. We denote the set of all ∆-extensive k-discs Γ by ext(∆).
Given a k-disc Γ ∈ Tk with root r and a (k − 1)-disc ∆ ∈ Tk−1, let neigh(Γ,∆) be the number
of neighbors of r whose (k − 1)-disc is isomorphic to ∆, that is,

neigh(Γ,∆) :=
∣∣{v | (r, v) ∈ E(Γ) ∧ disck−1(Γ, v) ' ∆}

∣∣ .
For any ∆1,∆2 ∈ Tk−1, let neighΣ(∆′,∆′′) be the total number of (∆′,∆′′)-edges starting
at the root of any k-disc Γ ∈ ext(∆′), that is, neighΣ(∆′,∆′′) :=

∑
Γ∈ext(∆′) neigh(Γ,∆′′).

Note that neighΣ(·, ·) is not necessarily symmetric. Since |ext(∆′)| ≤ |Tk| ≤ L and for every
Γ ∈ ext(∆′), its root’s degree is at most d, we get the following bound.

I Fact 5. For every pair of (k − 1)-discs ∆′, ∆′′ ∈ Tk−1, we have neighΣ(∆′,∆′′) ≤ Ld.

3 Rewiring Edges

In this section, we show that for every partitioning V1 ∪̇ V2 = V of a graph G = (V,E) with
girth at least 2k + 2 and freqk(V1 | G) , freqk(V2 | G) ≈ freqk(G), one can reduce the size of
the cut of V1 and V2 to some constant by rewiring edges without any effect on freqk(Vi | G),
i ∈ {1, 2}, and freqk(G). Removing the remaining edges in the cut changes the k-disc
frequency vectors only slightly. Thus, two smaller graphs with approximately the same k-disc
frequency vector as G are obtained.

To this end, our first lemma shows that the fraction of (∆′,∆′′)-edges that start in an
arbitrary subset V1 ⊆ V is approximately the same as for another arbitrary subset V2 ⊆ V if
the frequency distributions of the k-discs in V1 and V2 are close.
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I Lemma 6. Let G = (V,E) be a d-bounded degree graph, k ∈ N, λ ∈ [0, 1] and let
V1, V2 ⊆ V be such that |freqk(V1 | G)Γ − freqk(V2 | G)Γ | ≤ λ for all k-discs Γ ∈ Tk. Then,
for all (k − 1)-discs ∆′,∆′′ ∈ Tk−1 such that ∆′ 6' ∆′′, it holds that∣∣∣∣e(∆′,∆′′ |V1, V )

|V1|
− e(∆′,∆′′ |V2, V )

|V2|

∣∣∣∣ ≤ λ · neighΣ(∆′,∆′′) .

Proof. Consider any ∆′-extensive k-disc Γ ∈ ext(∆′). Then the number of (∆′,∆′′)-edges in
G such that the root of ∆′ belongs to V1 equals

e(∆′,∆′′ |V1, V ) =
∑

Γ∈ext(∆′)

cntk(V1 | G)Γ · neigh(Γ,∆′′) .

An analogous equation holds for e(∆′,∆′′ |V2, V ). Note that since ∆′ 6' ∆′′, even edges
that start and end in V1 are counted only once in the right-hand side of the equation because
ext(∆′) ∩ ext(∆′′) = ∅. Therefore,∣∣∣∣e(∆′,∆′′ |V1, V )

|V1|
− e(∆′,∆′′ |V2, V )

|V2|

∣∣∣∣
=

∣∣∣∣∣
∑

Γ∈ext(∆′) cntk(V1 | G)Γ · neigh(Γ,∆′′)
|V1|

−
∑

Γ∈ext(∆′) cntk(V2 | G)Γ · neigh(Γ,∆′′)
|V2|

∣∣∣∣∣
≤

∑
Γ∈ext(∆′)

|freqk(V1 | G)Γ − freqk(V2 | G)Γ| · neigh(Γ,∆′′)

≤ λ ·
∑

Γ∈ext(∆′)

neigh(Γ,∆′′)

= λ · neighΣ(∆′,∆′′) . J

If V1, V2 is a partitioning of V , the former result can be improved. In particular, we
show that if freqk(V1 | G) ≈ freqk(V2 | G), then for almost every (∆′,∆′′)-edge from V1 to
V2 there is a counterpart, that is, a (∆′,∆′′)-edge from V2 to V1. We will later use this result
to reduce the size of the cut without altering the k-disc frequency vector by swapping the
endpoints of edges in the cut so that the new edges lie completely in V1 and V2, respectively.
I Lemma 7. Let G = (V,E) be a d-bounded degree graph, k ∈ N, λ ∈ [0, 1] and let V1∪̇V2 = V

be a partitioning of V such that |freqk(V1 | G)Γ − freqk(V2 | G)Γ | ≤ λ for all k-discs Γ ∈ Tk.
Then, for all (k − 1)-discs ∆′,∆′′ ∈ Tk−1, it holds that

|e(∆′,∆′′ |V1, V2)− e(∆′,∆′′ |V2, V1)| ≤ |V1||V2|
|V |

· λ ·
[
neighΣ(∆′,∆′′) + neighΣ(∆′′,∆′)

]
.

Proof. If ∆′ ' ∆′′, the bound holds trivially because e(∆′,∆′′ |V1, V2) = e(∆′,∆′′ |V2, V1).
Therefore, assume that ∆′ 6' ∆′′ now. Note that by symmetry it holds that

e(∆′,∆′′ |Vi, Vj) = e(∆′′,∆′ |Vj , Vi) i, j ∈ {1, 2} . (1)

Furthermore, since V1 ∪̇ V2 is a partitioning of V , we have

e(∆′,∆′′ |Vi, V ) = e(∆′,∆′′ |Vi, V1) + e(∆′,∆′′ |Vi, V2) i ∈ {1, 2} (2)

and an analogous equation for e(∆′′,∆′ |Vi, V ). Now, we have

|e(∆′,∆′′ |V1, V2)− e(∆′,∆′′ |V2, V1)|

= |V1||V2|
|V |

· (|V1|+ |V2|)
|V1||V2|

·
∣∣e(∆′,∆′′ |V1, V2)− e(∆′,∆′′ |V2, V1)

∣∣
= |V1||V2|

|V |
·
∣∣∣∣( 1
|V1|

+ 1
|V2|

)
·
(

e(∆′,∆′′ |V1, V2)− e(∆′′,∆′ |V1, V2)
)

+ 0− 0
∣∣∣∣
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= |V1||V2|
|V |

·
∣∣∣∣ ( 1
|V1|

+ 1
|V2|

)
·
(

e(∆′,∆′′ |V1, V2)− e(∆′′,∆′ |V1, V2)
)

+ e(∆′,∆′′ |V1, V1)− e(∆′′,∆′ |V1, V1)
|V1|

− e(∆′,∆′′ |V2, V2)− e(∆′′,∆′ |V2, V2)
|V2|

∣∣∣∣
= |V1||V2|

|V |
·
∣∣∣∣e(∆′,∆′′ |V1, V1) + e(∆′,∆′′ |V1, V2)

|V1|
− e(∆′,∆′′ |V2, V2) + e(∆′,∆′′ |V2, V1)

|V2|

− e(∆′′,∆′ |V1, V1) + e(∆′′,∆′ |V1, V2)
|V1|

+ e(∆′′,∆′ |V2, V2) + e(∆′′,∆′ |V2, V1)
|V2|

∣∣∣∣
= |V1||V2|

|V |
·
∣∣∣∣e(∆′,∆′′ |V1, V )

|V1|
− e(∆′,∆′′ |V2, V )

|V2|
− e(∆′′,∆′ |V1, V )

|V1|
+ e(∆′′,∆′ |V2, V )

|V2|

∣∣∣∣
≤ |V1||V2|

|V |
· λ
[
neighΣ(∆′,∆′′) + neighΣ(∆′′,∆′)

]
,

where the fourth equation follows from Eq. (1), the fifth equation follows from Eq. (2) and
the inequality follows from applying Lemma 6. J

The former result enables us to analyze our main technical tool, that is, the rewiring
of edges. First, we will prove that under some condition we can rewire two (∆′,∆′′)-edges
without altering the k-disc frequency distribution of the graph or the partitions. This part
of the proof shows that there exists, for every vertex v ∈ V , an isomorphism function that
maps the k-disc of v in the original graph to the k-disc of v in the rewired graph. We then
show that if we cannot find such (∆′,∆′′)-edges, the cut of V1 and V2 is small. This implies
that the removal of the remaining edges changes the k-disc frequency vector of the graph
only slightly.

I Lemma 8. Let G = (V,E) be a d-bounded graph with girth(G) ≥ 2k + 2, k ∈ N, λ ∈ [0, 1]
and let V1 ∪̇ V2 = V be a partitioning of V such that |freqk(V1 | G)Γ − freqk(V2 | G)Γ | ≤ λ

for all k-discs Γ ∈ Tk. Then either there exists a graph H = (V, F ) such that

girth(H) ≥ 2k + 2 (3)
|F ∩ (V1 × V2)| ≤ |E ∩ (V1 × V2)| − 2 (4)

disck(H,w) ' disck(G,w) ∀w ∈ V (5)

or the cut between V1 and V2 is small:

e(V1, V2) ≤ 6d2k+2L+ 2λLd ·min(|V1|, |V2|) . (6)

Proof. Consider the following condition (see Fig. 1):

(?) There exist (u1, v2) ∈ (V1 × V2) ∩ E and (u2, v1) ∈ (V2 × V1) ∩ E such that dtG(u1, v1),
dtG(v2, u2) ≥ 2k+1, disck−1(G, u1) ' disck−1(G, u2) and disck−1(G, v2) ' disck−1(G, v1).

Informally, it states that, for a suitable choice of (k − 1)-discs ∆′ and ∆′′, there exists a
(∆′,∆′′)-edge from V1 to V2 and a (∆′,∆′′)-edge from V2 to V1 such that two endpoints of
different edges are not too close. We prove in the following that if condition (?) is satisfied,
then there exists a graph H with the desired properties, and that Eq. (6) holds otherwise.

I Claim 9. If condition (?) is satisfied, there exists a graph H = (V, F ) such that Ineq. (3)
and (4) and Expr. (5) are satisfied.

Proof. Suppose that condition (?) is satisfied. We define an intermediate graph G′ := (V,E′)
that is obtained by deleting the edges (u1, v2) and (u2, v1) from G, that is, E′ := E \
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u2v1

v2u1

≥ 2k + 1

V2V1

≥ 2k + 1

Figure 1 If condition (?) is satisfied (as here for k = 2), it is possible to replace the edges
(u1, v2) and (u2, v1) by (u1, v1) and (u2, v2), respectively, without changing the k-disc vector of G.
Otherwise, the cut of V1 and V2 is small and removing these edges affects only few k-discs in V1.

{(u1, v2), (u2, v1)}. We further define H := (V, F ) to be the graph that is obtained by adding
the edges (u1, v1) and (u2, v2) to G′, that is, F := E′ ∪ {(u1, v1), (u2, v2)}.

Observe that since dtG(u1, v1), dtG(u2, v2) ≥ 2k + 1, Ineq. (3) holds, and by definition
of H, Ineq. (4) holds. Thus, it remains to prove that Expr. (5) also holds, that is, for
any vertex w, the k-discs of w in G and H are isomorphic. In what follows, we carefully
construct a root-preserving bijection f : V (disck(G,w))→ V (disck(H,w)) such that for all
x, y ∈ V (disck(G,w)), (x, y) ∈ E(disck(G,w)) if and only if (f(x), f(y)) ∈ E(disck(H,w)) to
formally prove this somewhat intuitive observation.

Let w ∈ V . We distinguish between the cases that neither (u1, v2) nor (u2, v1), either
one of them, or both are contained in disck(G,w). First, we will specify two isomorphism
functions gu : V (disck(G, u1))→ V (disck(G, u2)) and gv : V (disck(G, v2))→ V (disck(G, v1))
for disck(G, u1) ' disck(G, u2) and disck(G, v2) ' disck(G, v1), respectively. If there is more
than one candidate for gu and gv respectively, we make an arbitrary choice unless stated
otherwise. We will then define f using these two functions gu and gv and prove that f is an
isomorphism between disck(G,w) and disck(H,w).

Case 1: (u1, v2) /∈ disck(G,w), (u2, v1) /∈ disck(G,w). In this case, we define f(x) := x for
all x ∈ V (disck(G,w)). We claim that neither (u1, v1) nor (v2, u2) belongs to E(disck(H,w)).
Without loss of generality assume that (u1, v1) ∈ E(disck(H,w)). Then dtG(w, u1), dtG(w, v1)
≤ k, which implies that dtG(u1, v1) ≤ dtG(u1, w) + dtG(w, v1) ≤ 2k. This is a contradiction
to the assumption that dtG(u1, v1) ≥ 2k + 1. The same argument shows that (u2, v2) /∈
E(disck(G,w)). Therefore, the k-discs disck(G,w) and disck(H,w) do not contain any of the
edges (u1, v2), (u2, v1), (u1, v1), (u2, v2) and thus disck(G,w) ' disck(H,w) by our definition
of H.

Case 2: (u1, v2) ∈ disck(G,w), (u2, v1) /∈ disck(G,w). In this case it holds that u2, v1 /∈
disck(G,w), since otherwise, either dtG(u1, v1) ≤ 2k or dtG(v2, u2) ≤ 2k, which contradicts
condition (?).

Now we observe that since girth(G) ≥ 2k + 2, the k-disc disck(G,w) is a tree. This
implies that the deletion of the edge (u1, v2) will partition disck(G,w) into two connected
components, say Pu1 and Pv2 , which represent the set of vertices in disck(G,w) that are
connected to u1 after deleting (u1, v2) and the set of remaining vertices that are connected
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u2

v1

v2

u1

w

V2

= gv(x)
f(x)

f(x) = x

V1

Pu1

Pv1

disck(G,w)

Figure 2 The k-disc of w in G, disck(G, w), is partitioned into two parts Pu1 (white background)
and Pv2 (dark gray background) by the edge (u1, v2). The dashed edges are only present in either G

or H but not in G′. If w ∈ Pu1 as in the figure, then f(x) := x for any x ∈ Pu1 , and f(x) := gv(x)
for any x ∈ Pv2 , where gv is chosen such that the image of Pv2 under gv is a subset of disck(G′, v1)
(light gray background).

to v2, respectively. Without loss of generality assume that w ∈ Pu1 . The case that w ∈ Pv2

can be analyzed similarly.
Let f(x) = x if x ∈ Pu1 and f(x) = gv(x) if x ∈ Pv2 . If there is more than one candidate

for gv, we make an arbitrary choice among all isomorphism functions that map Pv2 to (a
subset of) disck−1(G′, v1), that is, the (k − 1)-disc of v1 after deleting (u2, v1) (see Fig. 2).
Since disck−1(G, v2) ' disck−1(G, v1) by (?), there is always an isomorphism function that
satisfies this condition. Moreover, f is a bijection because gv is a bijection, and the image of
V (disck(G,w)) under f is V (disck(H,w)) by the construction of H. We now prove that f is
an isomorphism function between disck(G,w) and disck(H,w).

First note that f(w) = w, f(u1) = u1 and f(v2) = gv(v2) = v1. Now consider any
x, y ∈ V (disck(G,w)). If x, y ∈ Pu1 or x, y ∈ Pv2 , then f(x) = x, f(y) = y or f(x) = gv(x),
f(y) = gv(y), respectively. Therefore, (x, y) ∈ E(G) if and only if (f(x), f(y)) ∈ E(H).

Now consider the case that x ∈ Pu1 and y ∈ Pv2 . If x = u1 and y = v2, then we know
that (x, y) ∈ E(G) and also that (f(x), f(y)) = (u1, v1) ∈ E(H) by the definition of H.
Otherwise, either x 6= u1 or y 6= v2. In this case, there is no edge (x, y) in G since disck(G,w)
is a tree and x, y lie on different sides of the edge (u1, v2). Recall that f(u1) = u1 and
f(v2) = gv(v2) = v1. Since f is a bijection, either f(x) 6= u1 or f(y) 6= v1. Observe that
disck(H,w) is a tree by Ineq. (3). Hence there is no edge between f(x) and f(y) in H as they
lie on different sides of the edge (u1, v1). The case that x ∈ Pv2 and y ∈ Pu1 is symmetric.

Therefore, the function f is a root-preserving isomorphism function between disck(G,w)
and disck(H,w).

Case 3: (u1, v2) /∈ disck(G,w), (u2, v1) ∈ disck(G,w). This case can be analyzed similarly
to the foregoing case.

Case 4: (u1, v2) ∈ disck(G,w), (u2, v1) ∈ disck(G,w). Note that this case cannot happen
because otherwise we would have dtG(u1, v1),dtG(u2, v2) ≤ 2k, which contradicts the as-
sumption that dtG(u1, v1), dtG(u2, v2) ≥ 2k + 1. This completes the case analysis and the
proof of Claim 9. J
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I Claim 10. If condition (?) is not satisfied, then Eq. (6) holds.

Proof. Suppose that condition (?) is not satisfied. First, note that we have

e(V1, V2) =
∑

∆′∈Tk−1

∑
∆′′∈Tk−1

e(∆′,∆′′ |V1, V2) .

Now, let ∆′,∆′′ ∈ Tk−1 be any two (k − 1)-disc isomorphism types. The key observation is
that if (u1, v2) is a (∆′,∆′′)-edge from V1 to V2, then for every (∆′,∆′′)-edge (u2, v1) from
V2 to V1 the distance between u2 and v2 or the distance between v1 and u1 must be smaller
than 2k + 1 (otherwise, the edges could be rewired and (?) would be satisfied). Since the
graph is degree-bounded, this implies an upper bound on the number of possible endpoints
u2, v1 and thus implies an upper bound on e(∆′,∆′′ |V2, V1). It follows that e(∆′,∆′′ |V1, V2)
is also bounded by Lemma 7. In case there is no (∆′,∆′′)-edge from V1 to V2, the number of
(∆′,∆′′)-edges from V2 to V1 can be bounded directly by Lemma 7.

We proceed to make this precise. For every choice of ∆′,∆′′ ∈ Tk−1, we distinguish two
cases as mentioned before: whether we can find a (∆′,∆′′)-edge from V1 to V2 or not.

Case 1: There exist u1 ∈ V1 and v2 ∈ V2 such that (u1, v2) ∈ E, disck−1(G, u1) ' ∆′ and
disck−1(G, v2) ' ∆′′, that is, e(∆′,∆′′ |V1, V2) > 0. Since condition (?) is not satisfied, at
least one endpoint of every (∆′,∆′′)-edge (u2, v1) from V2 to V1 must have distance less than
2k + 1 to u1 or v2. Without loss of generality, fix such an edge with dtG(u2, v2) < 2k + 1.
The case dtG(u1, v1) < 2k + 1 can be analyzed similarly. There are at most 3d2k/2 vertices
with distance less than 2k+ 1 to v2 by Fact 4. Each of these near vertices can be adjacent to
at most d vertices in V1 whose (k − 1)-discs are isomorphic to ∆′′. Taking the symmetric
case dtG(u1, v2) < 2k + 1 into account, we have e(∆′,∆′′ |V2, V1) ≤ 2 · 3d2k/2 · d ≤ 3d2k+1.
Now by Lemma 7, it holds that

e(∆′,∆′′ |V1, V2)+e(∆′,∆′′ |V2, V1) ≤ 6d2k+1+ |V1||V2|
|V |

·λ
[
neighΣ(∆′,∆′′)+neighΣ(∆′′,∆′)

]
.

Case 2: There do not exist u1 ∈ V1 and v2 ∈ V2 such that (u1, v2) ∈ E, disck−1(G, u1) ' ∆′
and disck−1(G, v2) ' ∆′′, that is, e(∆′,∆′′ |V1, V2) = 0. By Lemma 7, we have

e(∆′,∆′′ |V1, V2) + e(∆′,∆′′ |V2, V1) ≤ 0 + |V1||V2|
|V |

·λ
[
neighΣ(∆′,∆′′) + neighΣ(∆′′,∆′)

]
.

This completes the case analysis. Note that each k-disc Γ ∈ Tk determines the (k − 1)-discs
of its root and of its at most d neighbors. Moreover, the number of different k-disc isomorphism
types in G is at most L. Therefore, the number of pairs ∆′,∆′′ such that there exists an
edge between a vertex with (k − 1)-disc ∆′ and a vertex with (k − 1)-disc ∆′′ is at most Ld,
that is, e(∆′,∆′′ |V1, V2) 6= 0 for at most Ld pairs ∆′,∆′′, and we have

e(V1, V2)

=
∑

∆′∈Tk−1

∑
∆′′∈Tk−1

e(∆′,∆′′ |V1, V2)

≤ Ld · max
∆′,∆′′∈Tk−1

e(∆′,∆′′ |V1, V2)

≤ Ld ·
(

6d2k+1 + λ|V1||V2|
|V |

· max
∆′,∆′′∈Tk−1

[
neighΣ(∆′,∆′′) + neighΣ(∆′′,∆′)

])
≤ 6d2k+2L+ λ ·min(|V1|, |V2|) · 2Ld,

where the last step follows from Fact 5. This completes the proof of Claim 10 and Lemma 8.
J
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4 Proof of the Main Theorems

We first prove Theorem 1 by arguing along the execution of Algorithm 1.

Algorithm 1
1: function PartitionAndRewire(G = (V,E), ϕ)
2: V1 ← sample ϕ vertices from V uniformly at random
3: V2 ← V \V1
4: E′ ← E, G′ ← (V,E′)
5: for all (u1, v2) ∈ (V1 × V2) ∩ E′ and (u2, v1) ∈ (V2 × V1) ∩ E′ do
6: if disck−1(G′, u1) ' disck−1(G′, u2) ∧ disck−1(G′, v2) ' disck−1(G′, v1)

∧ dtG′(u1, v1) ≥ 2k + 1 ∧ dtG′(u2, v2) ≥ 2k + 1 then
7: E′ ← E′ \ {(u1, v2), (u2, v1)} ∪ {(u1, v1), (u2, v2)}
8: G′ ← (V,E′)
9: Goto line 5

10: end if
11: end for
12: return H := G′[V1]
13: end function

Proof of Theorem 1. We prove that the output of Algorithm 1 is a graph with the desired
properties. First, we sample ϕ vertices v1, . . . , vϕ from G uniformly at random (cf. line 2).
Let E1 denote the event that all the sampled vertices are different. Note that for any i, j
such that 1 ≤ i < j ≤ ϕ, the probability that vi = vj is at most 1/|V |, which implies that
Pr[E1] ≥ 1− ϕ2

|V | ≥ 1− δ
2 because |V | ≥ 2ϕ2/δ.

Let V2 := V \V1. For each i ≤ ϕ, let ~f i ∈ {0, 1}L denote the random vector that equals the
indicator vector ~1Γ if the k-disc of vi is isomorphic to Γ. Note that freqk(V1 | G) =

∑
i
~f i/ϕ

and that Pr[~f i = ~1Γ] = freqk(G)Γ, and thus E[freqk(V1 | G)] = E[~f i] = freqk(G). Let
X := ‖freqk(G)− freqk(V1 | G)‖22. We bound the deviation between freqk(G) and

∑
i
~f i/ϕ.

It holds that

E[X] = E

∥∥∥∥∥freqk(G)−
∑ϕ
i=1

~f i
ϕ

∥∥∥∥∥
2

2

 = E

 1
ϕ2

∥∥∥∥∥
ϕ∑
i=1

(freqk(G)− ~f i)

∥∥∥∥∥
2

2


= 1
ϕ2 E

[
ϕ∑
i=1
‖freqk(G)− ~f i‖22

]

= 1
ϕ2

ϕ∑
i=1

E
[
‖freqk(G)− ~f i‖22

]
= 1
ϕ

E
[
‖freqk(G)− ~f1‖22

]
≤ 1
ϕ

E
[
‖freqk(G)− ~f1‖1

]
≤ 2
ϕ
,

where the third equation follows from the fact that all ~f i are independent of each other;
the penultimate inequality follows from the fact that the absolute values of all entries of
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freqk(G′)− ~f1 are at most 1. Now by Markov’s inequality,

Pr

∥∥∥∥∥freqk(G)−
∑
i
~f i
ϕ

∥∥∥∥∥
2

2

≥ 2
δ
· 2
ϕ

 ≤ Pr
[
X ≥ 2

δ
· E[X]

]
≤ δ

2 .

Therefore, if we let λ = ε
6Ldk+1 , then with probability at least 1− δ/2,∥∥∥∥∥freqk(G)−

∑
i
~f i
ϕ

∥∥∥∥∥
1

≤
√
L ·

∥∥∥∥∥freqk(G)−
∑
i
~f i
ϕ

∥∥∥∥∥
2

≤
√
L ·
√

4
δϕ
≤ λ/2,

where the last inequality follows from our choice of ϕ = 300d3k+2L3

ε2δ = 300dkL
36λ2δ ≥

16L
λ2δ . This

further implies that (with probability at least 1− δ/2)

‖freqk(G)− freqk(V1 | G)‖1 =

∥∥∥∥∥freqk(G)−
∑
i
~f i
ϕ

∥∥∥∥∥
1

≤ λ

2 . (7)

Let E2 denote the event that ‖freqk(G)− freqk(V1 | G)‖1 ≤
λ
2 . Thus Pr[E2] ≥ 1− δ/2.

If E2 occurs, then ‖freqk(G)− freqk(V2 | G)‖1 ≤
λ
2 because |V2| ≥ |V1|, and therefore

‖freqk(V1 | G)− freqk(V2 | G)‖1 ≤ λ.
Conditioning on both events E1 and E2, which occur with probability Pr[E1 ∩ E2] ≥

1−2 · δ2 = 1−δ, we apply Lemma 8 with G,λ and partition V1, V2 as follows: Let G′ = (V,E′)
be a copy of G. As long as condition (?) is satisfied, we replace G′ by the rewired graph
that satisfies Ineq. (3) and (4) and Expr. (5) (cf. lines 5 to 11). After rewiring, there remain
at most 6d2k+2L + 2λLdϕ edges in the cut of V1 and V2, which are (virtually) deleted by
returning the graph H := G′[V1].

The k-disc of a vertex is altered if and only if an edge is inserted to the k-disc or removed
from it. The maximum size of a k-disc is at most 3dk/2 by Fact 4. Therefore, removing a
single edge alters at most 3dk/2 k-discs. By Lemma 8 it holds that

‖freqk(V1 | G)−freqk(H)‖1 ≤
3dk/2 ·

(
6d2k+2L+ 2λLdϕ

)
ϕ

≤ 9d3k+2L

ϕ
+3Ldk+1λ ≤ 3ε

4 , (8)

where the last inequality follows from our choice of ϕ = 300d3k+2L3

ε2δ and λ = ε
6Ldk+1 . It follows

from Eqs. (7) and (8) and the triangle inequality that

‖freqk(G)− freqk(H)‖1 ≤
λ

2 + 3ε
4 ≤ ε .

Now we analyze the query (and time) complexity of the above algorithm. Note that the
algorithm only needs to sample ϕ vertices and query all the (k + 2)-discs of vertices in V1.
In particular, the rewiring step (cf. line 6) can be performed as follows: we consider all the
vertices that are endpoints of some edges leaving V1 by exploring the neighbors of all vertices
in V1. We want to find u1, v1 ∈ V1 with dtG(u1, v1) ≥ 2k+1 such that (u1, v2) ∈ (V1×V2)∩E′
and (u2, v1) ∈ (V2 × V1) ∩E′. To test if we should rewire the corresponding edges or not, we
only need to consider the (k + 1)-discs of v2, u2 ∈ V2 to determine if dtG(v2, u2) ≥ 2k + 1.
This implies that we only need to query the (k + 2)-discs of all vertices in V1. It follows that
the algorithm makes at most ϕ · 3dk+2

2 = O(1) queries for constants d, ε and k to the oracle
of G. Also note that since |V1| ∈ O(1), the number of rewiring steps as well as the number
of eges with at least one end in V1 is at most |V1|d ∈ O(1). Therefore, the algorithm has
constant time complexity. J
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Algorithm 2
1: function RewireAndSplit(G = (V,E), ϕ)
2: Partition V into V1, V2 such that

|V1| = ϕ and |freqk(V1 | G)Γ − freqk(V2 | G)Γ | ≤ 1/ϕ for all Γ
3: E′ ← E, G′ ← (V,E′)
4: for all (u1, v2) ∈ (V1 × V2) ∩ E′ and (u2, v1) ∈ (V2 × V1) ∩ E′ do
5: if disck−1(G′, u1) ' disck−1(G′, u2) ∧ disck−1(G′, v2) ' disck−1(G′, v1)

∧ dtG′(u1, v1) ≥ 2k + 1 ∧ dtG′(u2, v2) ≥ 2k + 1 then
6: E′ ← E′ ∩ {(u1, v2), (u2, v1)} ∪ {(u1, v1), (u2, v2)}
7: G′ ← (V,E′)
8: Goto line 4
9: end if

10: end for
11: return H := G′[V1]
12: end function

Now, we prove Theorem 2 by arguing along the execution of Algorithm 2.

Proof of Theorem 2. We prove that the output of Algorithm 2 is a graph with the desired
properties. Let ϕ := 12Ld3k+2/ε. Without loss of generality assume that ϕ ≤ |V (G)|/3
(otherwise just output H := G directly). First, we partition V into two parts V1 and V2
such that ϕ ≤ |V1| ≤ 2ϕ and for any k-disc Γ, |freqk(G)Γ − freqk(Vi | G)Γ | ≤ 1/ϕ (cf.
line 2). Such a partition can be constructed as follows: For each k-disc Γ ∈ Tk, we put
dϕ · freqk(G)Γe vertices v with disck(G, v) ' Γ into V1 and the remaining ones into V2. Thus,
ϕ ≤ |V1| ≤ ϕ+ |Tk| ≤ 2ϕ and we have

|freqk(G)Γ − freqk(V1 | G)Γ | ≤
∣∣∣∣ϕ · freqk(G)Γ − dϕ · freqk(G)Γe

ϕ

∣∣∣∣ ≤ 1/ϕ .

Since |V2| = n− 2ϕ ≥ ϕ, we also have |freqk(G)Γ − freqk(V2 | G)Γ | ≤ 1/ϕ. By the triangle
inequality, the partitions V1 and V2 satisfy the prerequisite of Lemma 8 with λ = 2/ϕ.
Additionally, it follows that

‖freqk(G)− freqk(V1 | G)‖1 ≤
L

ϕ
. (9)

Let G′ = (V,E′) be a copy of G. As long as G′ and the partition V1, V2 satisfy the
prerequisite of Lemma 8 and condition (?), we rewire the edges of G′ according to Lemma 8
so that G′ will satisfy the properties given by Ineq. (3) and (4) and Expr. (5), (cf. lines 4 to
10). When G′ does not satisfy condition (?) anymore, we let H := G′[V1] and we are done.
Note that at the end of the process, G′ satisfies Eq. (6), which implies that the number of
edges between V1 and V2 in G′, that is, the boundary of H, is at most

6d2k+2L+ 2λdL ·min(|V1|, |V2|) ≤ 6d2k+2L+ 4dL
ϕ
· ϕ ≤ 7d2k+2L.

Now note that for any vertex v ∈ H, the k-disc of v in H differs from the k-disc of v
in G′ only if v is within distance at most k to the boundary of H, which in turn has size
at most 7d2k+2L. By Fact 4, we have that the total number of vertices in H with different
k-discs in H and G′ is at most 3dk/2 · 7d2k+2L ≤ 11d3k+2L, which implies that

‖freqk(V1 | G)− freqk(H)‖1 ≤
11d3k+2L

ϕ
. (10)
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It follows from Eqs. (9) and (10) and the triangle inequality that

‖freqk(G)− freqk(H)‖1 ≤
L+ 11d3k+2L

ϕ
≤ 12d3k+2L

ϕ
≤ ε,

where the last inequality follows from our choice of ϕ.
Finally, we note that the graph H can be constructed by the following deterministic

algorithm. We first compute the frequency vector freqk(G) of G, which takes time |V (G)|.
Then we consider all d-bounded graphs of size at most ϕ and output the graph H with
frequency vector that is closest to freqk(G) in `1-norm distance, which can be done in
constant time. In total, the running time of the algorithm is O(|V (G)|). J

Finally, we give a short proof of Corollary 3.

Proof of Corollary 3. We first note that the number of vertices whose k-discs may be altered
by inserting / deleting a single edge e = (u, v) is upper bounded by the number of k-discs
that contain this edge. The number of such k-discs is exactly the number of vertices w such
that there exists a path of length at most k from u to w and a path of length at most k from
v to w, and is thus upper bounded by 1 + d+ d(d− 1) + · · ·+ d(d− 1)k−1 ≤ 3dk/2.

Let δ = ε
6dk+1 . Since G′ is δ-close to G, G′ can be obtained from G by inserting / deleting

at most δd|V | edges, and thus the total number of vertices that may have different k-discs
in G and G′ is at most δd|V | · 3dk/2. Finally, since a vertex that has different k-discs in G
and G′ may contribute at most 2/|V | to the s`1-norm distance of freqk(G) and freqk(G′),
we have

‖freqk(G)− freqk(G′)‖1 ≤
2
|V |
·
(
δd|V | · 3dk

2

)
= 3δdk+1 ≤ ε

2 .

Now since G′ satisfies that girth(G′) ≥ 2k + 2, by Theorem 2, we know that there exists
a graph H with size at most 72d

3k+2L
ε such that ‖freqk(G′)− freqk(H)‖1 ≤ ε/2. Therefore,

‖freqk(G)− freqk(H)‖1 ≤ ε. J
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1 Introduction

The broad area of pseudorandomness deals with efficiently generating objects that exhibit the
desirable properties of “random-like” objects despite being constructed either explicitly or
with limited randomness. Pseudorandomness is a central and influential theme in many areas
such as complexity theory, derandomization, coding theory, cryptography, high-dimensional
geometry, graph theory, and additive combinatorics. The topic has witnessed much progress
over the years and continues to be intensively studied. We now have non-trivial construc-
tions of various pseudorandom objects such as expander graphs, randomness extractors and
condensers, Ramsey graphs, list-decodable codes, compressed sensing matrices, Euclidean
sections, and pseudorandom generators for various concrete models. Despite the seemingly
different definitions and contexts of these objects, insights in pseudorandomness have un-
covered intimate connections between them, and this has led to a rich theory of “Boolean
pseudorandomness” drawing a common pool of broadly useful techniques (see for instance
the recent survey by Vadhan [26].)

Recently, there is an emerging theory of “linear-algebraic pseudorandomness” aimed at
understanding the linear-algebraic analogs of fundamental Boolean pseudorandom objects
where the dimension of subspaces plays the role analogous to min-entropy. Examples of
such algebraic objects include dimension expanders, subspace-evasive sets, subspace designs,
rank-preserving condensers, etc. In addition to their intrinsic interest, these notions also have
surprising applications; for instance, subspace-evasive sets to the construction of Ramsey
graphs [22] and list-decodable codes [13, 15], subspace designs to list decoding both in the
Hamming metric and the rank metric [16, 14], and rank-preserving condensers to affine
extractors [10] 1 and polynomial identity testing [18, 9].

In this work, we study several interesting pseudorandom objects in the linear-algebraic
world, such as subspace evasive sets, subspace designs, dimension expanders, seeded rank
condensers, and two-source rank condensers. The last two notions are also introduced in
this work, though closely related concepts were studied earlier in the literature. We briefly
and informally define these notions now, with more precise statements appearing in later
sections. A subspace evasive set is a (large) subset of Fn that has small intersection with
every low-dimensional subspace of Fn. Subspace designs are a (large) collection of subspaces
such that every low-dimensional subspace intersects few of them. Dimension expanders are
a (small) collection of linear maps Ai : Fn → Fn such that for every subspace V ⊆ Fn of
bounded dimension, the dimension of

∑
iAi(V ) is at least α · dim(V ) for a constant α > 1

(so that the dimension grows, or expands). Rank condensers are a (small) collection of linear
maps Fn → Ft (for t� n) such that for every subspace of dimension r, its image under at
least one of the maps has large dimension. That is, the ambient dimension n is condensed to
t while roughly the preserving the rank (to r in the lossless case (so that no rank is lost),
and to Ω(r) in the lossy case). A two-source rank condenser is a map E : Fn × Fn → Ft
such that for every pair A,B ⊆ Fn with rank r each, f(A×B) has rank Ω(r2) (or even r2

in the lossless case) – the tensor product construction is lossless but requires t = n2, so the
challenge here is to “derandomize” the tensor product and achieve t� n2 (and even t� n

1 Despite the usage of rank condensers in the Gabizon-Raz [10] construction of affine extractors, affine
extractors seem to not quite fit the restricted notion of a “linear-algebraic pseudorandom object” in the
sense of this paper. That is, the objects we consider focus on functions and their interactions with the
rank of certain sets of vectors. In contrast, affine extractors (maps which convert uniform distributions
over large-enough subspaces of the input into uniform distributions over full-dimensional subspaces)
require further statistical properties. The weaker notion of an affine disperser (a map which is almost
surjective on its range when applied to a large-enough subspace of the input) similarly requires one-sided
statistical guarantees.
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for the lossy case for r �
√
n).

We remark that there are two perspectives on the above objects. The first is that of
subspaces, so that we only consider subspaces and their dimension. The second is that of sets
of vectors, where we consider arbitrary sets of vectors measured by their rank (the dimension
of their span). When the underlying functions are linear (or multilinear) these viewpoints
are equivalent. For example, one can equally discuss dimension expanders as expanding the
dimension of subspaces or as increasing the rank of matrices through matrix multiplication.
In this work, we take both views, using “dimension” to refer to subspaces and “rank” to refer
to the dimension of the span of a set of vectors.

Conceptually, our work highlights close interconnections between the above pseudoran-
domness notions. In particular, we show that subspace designs (which were introduced
in the context of list decoding variants of algebraic-geometric codes of Guruswami and
Xing [16]) are the same concept as lossless rank condensers while emphasizing a different
regime of parameters. This connection also highlights that a strong variant of subspace
designs yields lossy rank condensers. The near-optimal explicit construction of (strong)
subspace designs of Guruswami-Kopparty [12] then yields lossless and lossy rank condensers
with parameters close to the existential constructions. Our main technical application is an
explicit construction of constant-degree dimension expanders over polynomially large fields,
that expands all subspaces of Fn of dimension n/2 (say) by a factor α > 1. We achieve this
construction by first increasing the rank in a trivial way by increasing the dimension of the
ambient space, and then using a lossy rank condenser to reduce the ambient space back
to Fn while preserving the rank up to a constant factor. While previous constructions of
dimension expanders were at least as complicated as constructions of standard expander
graphs (or more so), our construction and analysis is rather elementary. Unfortunately, unlike
previous work, our techniques are currently best suited to large fields due to connections
with Reed-Solomon codes. However, we do obtain dimension expanders over small fields by
paying various logarithmic penalties.

Turning to two-source rank condensers, our original motivation to propose them was a
possible route to iteratively construct subspace-evasive sets that might offer some way around
the exponential dependence on intersection size that seems inherent to constructions based
on algebraic varieties. While there appears to be serious obstacles to such an approach, the
notion seems a fundamental one to study regardless. In this work, we focus on two-source
rank condensers f : Fn × Fn → Ft where the map f is bilinear as this seems like a natural
class of constructions to study. We observe that the lossless variant is equivalent to the
notion of a linear rank-metric code. Known optimal constructions of rank-metric codes such
as the Gabidulin codes thereby yield lossless two-source condensers with optimal output
length (equal to Θ(nr) for rank-r subsets of Fn). For lossy two-source rank condensers, we
can enumerate over the seeds of our seeded lossy condenser, applying it to both sources
separately and condensing the sources to rΘ(1) dimensions (from the original n). For small r
(e.g., constant), we can “concatenate” this construction with a near-optimal lossy two-source
condenser found by brute-force to obtain output length Θ(n/r), matching the non-constructive
bound. In general, our method reduces the problem to the case of relatively high “rate”
(when r ≈ n1/3), which is typically easier to tackle.

Organization: In the next three sections, we state (informal versions of) our results, all of
ideas behind them, and brief discussions of prior work for seeded rank condensers (section 2),
dimension expanders (section 3), and two-source rank condensers (section 4). An expanded
treatment with formal statements and proofs can be found in the full version of this work
(arXiv:1411.7455).

http://arxiv.org/abs/1411.7455
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2 Subspace Designs and Rank Condensers

We begin by discussing the notion of a subspace design, as recently defined by Guruswami
and Xing [16], and contrast this with the notion of a seeded (single source) rank condenser
to which we add the qualifier of lossless, as defined by Forbes, Saptharishi and Shpilka [8].
We will describe how these objects are essentially the same notion, where the rank condenser
can be considered the “primal” object and the subspace design the “dual” object. We then
introduce lossy rank condensers, a new notion that is key to our construction of dimension
expanders see section 3) and describe how the construction of subspace designs of Guruswami
and Kopparty [12] implies nearly optimal lossy rank condensers.

2.1 Subspace Designs
We begin with the definition of a subspace design, which is a collection of subspaces {Hi}i
such that small-dimensional subspaces V intersect few of the Hi.

I Definition 1 (Guruswami-Xing [16] and Guruswami-Kopparty [12]). Let F be a field. A
collection H = {Hi}i of subspaces Hi ⊆ Fn is a weak (r, L)-subspace design if for every
subspace V ⊆ Fn with dimV = r,

|{i | dim(Hi ∩ V ) > 0}| 6 L .

The collection H is a strong (r, L)-subspace design if for every subspace V ⊆ Fn with
dimV = r,∑

i

dim(Hi ∩ V ) 6 L .

The collection H is explicit if given an index i ∈ [|H|] a basis for the i-th subspace in H can
be constructed in poly(n, log |H|) operations in F.

We note here that the above subspaces Hi are not constrained to be of equal dimension.
Allowing the dimension of the Hi to vary could conceivably allow for improved constructions,
but no construction so far uses this freedom. As such, we will primarily concern ourselves
with the case when the dimensions are equal.

Guruswami-Xing [16] defined subspace designs as a way to prune list-decodable codes to
ensure a small list-size while maintaining high rate. As such, one wishes for the size |H| of
the design to be large while maintaining L of moderate size. In particular, they showed that
large designs exist non-constructively.

I Proposition (Guruswami-Xing [16]). Let Fq be a finite field. Let ε > 0, n > 8/ε and s 6 εn/2.
Then there is a strong (s, 8s/ε)-subspace design H of (1− ε)n-dimensional subspaces in Fnq
with |H| = qεn/8.

Note that the co-dimension of the subspaces in H is εn, which is twice that of the
maximum dimension s ≈ εn/2. We now further remark on the variations of this definition.
The following relation between the weak and strong versions is immediate.

I Lemma 2 (Guruswami-Kopparty [12]). Let F be a field, and let H be a collection of subspaces
in Fn. Then if H is a strong (r, L)-subspace design, then H is a weak (r, L)-subspace design.
If H is a weak (r, L)-subspace design, then H is a strong (r, rL)-subspace design.

We also observe that as every dimension 6 r subspace can be padded to a dimension r
subspace, we immediately can see that subspace designs apply to smaller subspaces as well.
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I Lemma 3. Let F be a field, and let H be a weak/strong (r, L)-subspace design in Fn. Then
H is a (s, L)-subspace design over Fn for every 1 6 s 6 r.

While the above seems to allow one to focus on dimension r as opposed to dimension 6 r,
this is not strictly true as one can achieve a better list size L for dimension s� r. Similarly,
the above lemma relating strong and weak designs seems to suggest that qualitatively (up to
polynomial factors) these notions are the same. However, as described in the full version,
obtaining the appropriate (strong) list size simultaneously for all s 6 r will be crucial for our
application to constant-degree dimension expanders.

2.2 Seeded Lossless Rank Condensers
Strong subspace designs ask that for any small subspace V there is some Hi ∈ H so that
Hi ∩ V is small (that is, by averaging, dimHi ∩ V 6 L/|H|). Equivalently, the amount
of dimension in V that is outside Hi is large so that in some sense the dimension of V
is preserved. This perspective is more naturally phrased in the language of (seeded) rank
condensers, as defined by Forbes, Saptharishi and Shpilka [8]. The definition we use here is
tuned to the equivalence with subspace designs, and we recover their definition as the lossless
version of what we term here a lossy seeded rank condenser (see Theorem 6). We will discuss
prior work and motivation for rank condensers that is less immediately relevant in the full
version.

We begin with the definition of rank condensers, which are a collection of linear maps
ϕ : Fn → Ft (given explicitly as matrices E ∈ Ft×n) such that for any small-dimensional
subspace V , most of the maps have dimϕ(V ) = dimV .

I Definition 4. Let F be a field and n > r > 1. A collection of matrices E ⊆ Ft×n is a weak
(seeded) (r, L)-lossless rank condenser if for all matrices M ∈ Fn×r with rankM = r,

|{E | E ∈ E , rankEM < rankM}| 6 L .

The collection E is a strong (seeded) (r, L)-lossless rank condenser if for all matrices
M ∈ Fn×r with rankM = r,∑

E∈E
(rankM − rankEM) 6 L .

The collection E is explicit if given an index i ∈ [|E|] the i-th matrix of E can be constructed
in poly(t, n, log |E|) operations in F.

As we have many types of condensers in this paper (weak, strong, lossless, lossy, two-
source, etc.) we will often just refer to them as “condensers” (perhaps with some relevant
parameters such as “(r, ε)”) when the relevant adjectives are clear from context.

As it can only increase the quality of the condenser, one naturally considers the case
when rankE = t for all E ∈ E . However, we do not impose this restriction just as we do not
impose the condition that subspaces in subspace designs all have the same dimension. In
fact, by the equivalence of subspace designs and lossless rank condensers one can see that
these two restrictions are equivalent.

We briefly remark that as all of the pseudorandom objects we consider in this work are
linear (or in the case of two-source condensers, bilinear) we will often freely pass between
subspaces V ⊆ Fn of dimension r and matricesM ∈ Fn×r of rank r, using that we can choose
a basis for V so that col-spanM = V . As such, we will often treat a matrix M ∈ Fn×r as a
list of r vectors in Fn.

We now note that subspace designs are equivalent to lossless rank condensers.
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I Proposition 5. Let F be a field and n > r > 1. Let H = {Hi}i∈[N ] be a collection of
subspaces Hi ⊆ Fn and let E = {Ei}i∈[N ] ⊆ Ft×n be a collection of matrices, where we have
that row-spanEi = (Hi)⊥ for i ∈ [N ]. Then H is a weak/strong (r, L)-subspace design iff E
is a weak/strong (r, L)-lossless rank condenser.

While the above proposition is quite simple, it offers a unifying perspective of these
different objects which was key to obtaining further results.

2.3 Seeded Lossy Rank Condensers
While the above seeded lossless rank condensers already have applications to list-decodable
codes, rank condensers were defined in Forbes, Saptharishi and Shpilka [8] for quite different
reasons. We now give a definition closer to their motivation.

I Definition 6. Let F be a field and n > r > 1 and ε > 0. A collection of matrices E ⊆ Ft×n
is a (seeded) (r, ε)-lossy rank condenser if for all matrices M ∈ Fn×r with rankM = r,

rankEM > (1− ε) rankM ,

for some E ∈ E . The collection E is a (seeded) (6 r, ε)-lossy rank condenser if it a
(s, ε)-lossy condenser for all 1 6 s 6 r.

The collection E is explicit if given an index i ∈ [|E|] the i-th matrix of E can be
constructed in poly(t, n, log |E|) operations in F.

This notion is a natural linear-algebraic analogue of condensers for min-entropy from
the realm of Boolean pseudorandomness. One contrast is that we do not require that
most E ∈ E have the desired condensing property as this does not seem important for our
applications, although we note that our constructions can meet this stronger requirement
with the appropriate modifications2.

In is worthwhile to contrast this object with subspace designs or lossless rank condensers.
The goal of subspace designs was (due to connections with list-decodable codes) to construct
a large design while less focus was on the exact list-size bound. Here, we have the somewhat
different goal of obtaining a small collection of matrices, which is akin to obtaining a very
small list size in a subspace design. The focus on the collection being small is from the use
of such condensers in derandomization, as we will need to enumerate over each matrix in the
collection.

In particular, the notion of a (r, 0)-lossy rank condenser is of interest because it is lossless,
which is important for many applications. In particular, this notion was previously defined
as a “rank condenser (hitting set)” in the work of Forbes, Saptharishi and Shpilka [8], but
the construction and usage of these objects predates them3. In particular, Gabizon and
Raz [10] constructed a (r, 0)-condenser with size nr2, and they used this to construct affine
extractors over large fields. Karnin and Shpilka [18] named the construction of Gabizon and
Raz [10] to be “rank preserving subspaces” and used this construction to make a polynomial

2 More precisely, this stronger definition requiring most E to condense rank is closer to the definition
of a min-entropy condenser. Only requiring some E to condense rank is more akin to the notion of a
somewhere condenser as defined by Barak-Kindler-Shaltiel-Sudakov-Wigderson [3].

3 We note that the works we highlight are not necessarily the first or last in their respective lines of
research, and rather we only highlight those that (to the best of our knowledge) had results concerning
lossless rank condensers.

APPROX/RANDOM’15



806 Dimension Expanders via Rank Condensers

identity testing4 algorithm of Dvir and Shpilka [7] work in the black box model. Forbes
and Shpilka [9] later gave an improved construction of a rank condenser with only nr size,
and showed how they can be used to make another polynomial identity testing algorithm
of Raz and Shpilka [24] work in the black-box model. Forbes, Saptharishi and Shpilka [8],
building on the work of Agrawal, Saha, and Saxena [1], analyzed “multivariate” lossless rank
condensers as they arose naturally in a polynomial identity testing algorithm.

Beyond applications to polynomial identity testing, Lokshtanov, Misra, Panolan and
Saurabh [19] used these condensers to derandomize a fixed-parameter-tractable algorithm
of Marx [21] for `-matroid intersection. Cheung, Kwok and Lau [6] rediscovered the rank
condenser of Gabizon and Raz [10] and (among other things) used this to give faster
randomized algorithms for exact linear algebra. Forbes, Saptharishi and Shpilka [8] showed
a generic recipe to construct such rank condensers from any error-correcting code (over large
fields). Given these applications and connections present in (r, ε)-lossy rank condensers for
ε = 0, we expect the ε > 0 version will similarly have many applications.

We now quote the parameters given by the probabilistic method.

I Proposition 7. Let Fq be a finite field. Let n > r > 1, ε > 0 and t > (1− ε)r. Then there
is a collection E of k matrices E ⊆ Ft×nq that is a (r, ε)-lossy rank condenser whenever

k >
rn+ oq(1)

(t− (1− ε)r)(bεrc+ 1)− oq(1) . (2.1)

For ε > 0, there is a collection E of size k that is a (6 r, ε)-lossy rank condenser whenever

k >
n+ oq(1)

ε(t− (1− ε)r)− oq(1) .

Thus we can make the output size t of the condenser to be almost equal to the guaran-
teed dimension bound of (1 − ε)r. Further, we see that there is essentially no penalty in
(existentially) insisting for a (6 r, ε)-condenser over a (r, ε)-condenser. However, we show in
the full version that the notion of (6 r, ε)-condenser is provably stronger.

2.4 Our Results
We now turn to our constructions of condensers. We begin with the following construction,
which is the rank condenser of Forbes and Shpilka [9] and was named the folded Wronskian
by Guruswami-Kopparty [12].

I Construction 8 (Folded Wronskian). Let F be a field. Let ω ∈ F be an element of
multiplicative order > n. Define the matrix Wt,ω(x) ∈ F[x]JtK×JnK by (Wt,ω(x))i,j := (ωix)j.

Identifying FJnK with the vector space of degree < n polynomials F[x]<n, the matrix
Wt,ω(x) defines the linear map Wt,ω(x) : F[x]<n → F[x]t given by

f(x) 7→ (f(x), f(ωx), . . . , f(ωt−1x)) .

That is, we define JnK := {0, . . . , n − 1} so that in the above the indices i and j are
indexed from zero. When the value of ω is clear from context we will just write “Wt”. Note

4 The polynomial identity testing problem is when given a algebraic circuit C (perhaps from a restricted class
of circuits) to deterministically decide whether the circuit C computes the identically zero polynomial.
The black box version is where we only allow access to C by evaluating the polynomial it computes. See
Shpilka and Yehudayoff [25] for more on this problem.
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that the fact that ω has large multiplicative order means that we require a large field, in
particular that |F| > n.

The key result that forms the starting point for our constructions is the following analysis
of the folded Wronskian by Guruswami and Kopparty [12]. While their analysis was originally
in the context of subspace designs, we state their result here in the language of lossless rank
condensers as it is more natural in our context.

I Theorem 9 (Guruswami-Kopparty [12]). Assume the setup of Theorem 8 where we take
t > r > 1. Let S ⊆ {(ω`)j | j > 0} where ` > t− r + 1. Then {Wt(α) | α ∈ S} ⊆ Ft×n is a
strong (r, r(n−r)t−r+1 )-lossless rank condenser.

We note here that the above parameters are slightly stronger than what Guruswami and
Kopparty [12] obtain, as they only obtain a list bound of r(n−1)

t−r+1 . This improved bound
follows by using some of the analysis from Forbes, Saptharishi and Shpilka [8] as explained in
the full version. Note that this construction essentially matches the non-constructive bound
(2.1) when ε = 0.

The above analysis indicates that for a matrixM ∈ Fn×r of rank r that the total rank loss
over all maps in E is at most r(n−r)t−r+1 . Thus, by an averaging argument, at most 1/k · r(n−r)t−r+1 such
maps can have a rank loss of > k. This observation thus shows that the above construction
is not just a lossless rank condenser but also a lossy condenser (with different parameters).

I Corollary 10. Let F be a field. Let n, t > r > 1 and ε > 0, where ω ∈ F is an element
of multiplicative order > poly(n). Define E := {Wt,ω((ωt)j) | 0 6 j < n

ε(t−r+1)}, that is,
the folded Wronskian evaluated at n

ε(t−r+1) distinct powers of ωt. Then E is an explicit
(6 r, ε)-lossy rank condenser.

To motivate our below application to dimension expanders, suppose that r = n/3, t = n/2

and ε > 0. This says then that we construct a rank condenser that maps Fn to Fn/2 that
maps rank n/3 subspaces to rank (1− ε)n/3 subspaces. Further, this condenser is a collection
of at most

n

ε(n/2− n/3) = 6/ε

maps such that one map from the collection always preserves the desired rank. To obtain
these parameters, it is key to the analysis that we have a strong lossless condenser and
that it obtains the (near-optimal) bound given by Guruswami and Kopparty [12]. Note
that these condensing parameters are similar to the min-entropy condensers of Raz [23] and
Barak-Kindler-Shaltiel-Sudakov-Wigderson [3], which use a constant number of random bits
to condense a source with a constant-rate of min-entropy.

3 Dimension Expanders

We now turn to our main object of interest, dimension expanders. Dimension expanders
were defined by Barak, Impagliazzo, Shpilka and Wigderson [2] in an attempt to translate
challenges in the explicit construction of objects in Boolean pseudorandomness into the regime
of linear algebra. Indeed, in combinatorics there is a well-established analogy between subsets
of [n] and subspaces of vector spaces over finite fields. In the context of pseudorandomness,
we can then translate questions that manipulate the size of subsets S ⊆ {0, 1}n (or more
generally, the min-entropy of distributions over {0, 1}n) into questions about manipulating the
dimension of subspaces V ⊆ Fn. While these regimes seem different, it is conceivable that such
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linear algebraic constructions could yield new constructions in Boolean pseudorandomness
(such as how the inner-product function is a two-source extractor). Indeed, as in the work of
Guruswami and Wang [13], this idea has borne fruit (if in a perhaps unexpected way) by
showing how linear-algebraic pseudorandom objects can improve list-decodable codes. We
now define dimension expanders.

I Definition 11. Let F be a field, n > 1, ε > 0 and α ∈ R with α > 1. A collection of
matrices A = {A1, . . . , Ad} ⊆ Fn×n is a (ε, α)-dimension expander of degree d if for all
subspaces V ⊆ Fn of dimension 6 εn that

dim
d∑
i=1

Ai(V ) = dim span{Ai(V )}di=1 > α · dimV .

The collection A is explicit if given an index i ∈ [|A|] the i-th matrix in A can be constructed
in poly(n, log |A|) operations in F.

We remark that in the above definition one can generally assume that all of the maps Ai
are of full-rank, as that can only increase dim

∑d
i=1Ai(V ). Similarly, one can assume that

A1 equals the identity matrix In as we can use the transform Ai 7→ A−1
1 Ai as again this does

not affect the size of the outputted dimension. While these assumptions are thus without
loss of generality, we will not impose them.

In general we will be most interested in (Ω(1), 1 + Ω(1))-dimension expanders of constant
degree, which we shall thus call “dimension expanders” without any quantification. This
parameter regime is of interest because it matches that of the probabilistic method, which
we quote the results of below.

I Proposition 12. Let Fq be a finite field, n > 1, ε > 0 and α ∈ R with α > 1. Then there
exist a collection matrices A = {A1, . . . , Ad} ⊆ Fn×n which is a (ε, α)-dimension expander
of degree d whenever

d > α+ 1
1− αε + oq(1) .

Put into more concrete terms, we see that one can existentially obtain (1/2d, d−O(1))-
dimension expansion with degree d. That we have an expansion of (1 − ε)d in a degree
d expander is akin to lossless (vertex) expanders which have a similar degree/expansion
relation, and these expanders have applications beyond those of normal expanders (see
Capalbo, Reingold, Vadhan and Wigderson [5] and references therein). While previous work
focused on obtaining constant-degree dimension expanders, our work raises the questions of
obtaining lossless dimension expanders so that we match the above bound. Our work, as
discussed below, lends itself to being particularly quantitative with regards to the size and
parameters of the construction. However, we do not obtain lossless dimension expanders,
and to the best of our knowledge, neither do the other previous constructions of dimension
expanders discussed below.

While we discuss prior work in depth in the full version, we briefly summarize the state
of art in dimension expanders in the following theorems.

I Theorem (Lubotzky and Zelmanov [20] and Harrow [17]). Let F be a field of characteristic
zero and n > 1. There exists an explicit O(1)-sized collection A ⊆ Fn×n such that A is a
(1/2, 1 + Ω(1))-dimension expander over Fn.

This construction requires characteristic zero as it uses a notion of distance that lacks a
good definition in finite characteristic.
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I Theorem (Bourgain and Yehudayoff [4]). Let n > 1. There exists an explicit O(1)-sized
collection A ⊆ {0, 1}n×n such that A is a (1/2, 1 + Ω(1))-dimension expander over Fn, over
every field F.

Note that the above construction is only a function of n, and not of the field, so that this
single construction is a dimension expander over all fields.

As explained in the full version of this work, both of the above constructions in some
way attempt to extend existing ideas about expander graphs into the world of dimension
expanders. The first replicates the representation theory approach to constructing expanding
Cayley graphs, and the second shows how bipartite expanders (with the strong requirement
of monotonicity) extend to also be dimension expanders.

Our Work: In our work we take a different approach to constructing dimension expanders
that treats such expanders as part of an emerging theme of linear-algebraic pseudorandomness
as seen by recent linear-algebraic approaches to list-decoding [11, 15, 13, 16, 14] and linear-
algebraic derandomization of subclasses of polynomial identity testing [18, 9]. The first
consequence of this perspective is that we work in fields that are at least polynomially large
as this is the setting of Reed-Solomon codes. To obtain dimension expanders over smaller
fields, a natural solution within this theory is to use “code concatenation” ideas from coding
theory. Unfortunately the idea of code concatenation is somewhat subtle in our setting and
so only supplies a concatenation (based on converting Reed-Solomon codes to BCH codes)
that incurs a logarithmic loss in the parameters. The second consequence is that we build
our dimension expanders out of the existing linear-algebraic pseudorandom objects that have
emerged from prior work. That is, just how in Boolean pseudorandomness the notions of
expanders, extractors and list-decodable codes are all related (see for example Vadhan [26]),
we leverage such connections to construct our expanders from the above mentioned rank
condensers.

We now explain our construction, which while ultimately was motivated by the connections
between two-source rank condensers and dimension expanders, can be explained in a self-
contained manner. The first observation is that one can easily obtain “(1, d)-expanders” of
degree d ∈ N if one is willing to allow the ambient space to grow. That is, consider the
tensor product Fn ⊗ Fd = Fnd. By properties of the tensor product, for V ⊆ Fn of rank
r 6 n we know that V ⊗ Fd is of rank rd in Fnd. Further, V ⊗ Fd can be seen as the image
of d maps Ti : Fn → Fnd where the i-th map places the space Fn into the “i-th block” of
(Fn)d = Fnd. In analogy to bipartite expander graphs, this is akin to giving each left vertex
its own “private neighborhood” of right vertices into which it expands.

While trivial, the above step now allows us to convert a question of expansion to a
question of condensing. That is, tensoring achieves expansion only because the output of the
maps are larger than the input, while the non-trivial aspect of dimension expanders is to
expand while keeping the output size the same. However, tensoring has expanded dimension
and thus we can now focus on reducing the output size. Specifically, suppose that we consider
V ⊆ Fn of rank r = n/2d. Then its image under the above tensoring is W :=

∑
i Ti(V ) of

dimension n/2. This subspace W lies in an nd-dimensional space and we wish return it to an
n-dimensional space while not losing too much in the dimension. However, this last problem
is exactly the question of lossy rank condensing. For constant d, the above discussion shows
that we can condense such constant-rate dimension in a lossy way using a constant number
of maps. In this example, we can condense W to Fn using dn

ε(n−n/2) = 2d
ε maps, at least one

of which produces a (1 − ε)n/2 dimensional space. Thus, this expands V ⊆ Fn of rank n
2d

to be of dimension (1− ε)n/2 within Fn, all while using d · 2d
ε = 2d2

ε maps (we multiply the
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Fn Fnd Fn
tensoring

(6 εdn, δ)-lossy
condenser

degree d degree dn
δ(n−εdn)

dim εn dim εdn dim (1− δ)εdn

Figure 1 Constructing dimension expanders from tensoring and lossy rank condensers.

number of maps due to the composition). We summarize this composition in Figure 1.
We note that the above discussion has only discussed constant-rate rank, that is, subspaces

of Fn with rank Ω(n). Dimension expanders however are required to expand all small
subspaces. Our construction also handles this case as the lossy rank condensers we use will
preserve a (1− δ) fraction of the input rank, as long as that rank is small enough. In the
above sketch there is also the technicality that we must tensor with Fd with d being integral,
which restricts d > 2 as d = 1 does not yield expansion. With this construction alone one
would only obtain expansion in Fn for rank < n/d 6 n/2, but we manage to sidestep this
restriction by a simple truncation argument. Putting the above pieces together we obtain
the following theorem.

I Theorem 13 (Main Theorem). Let n, d > 1 and let 0 < ε 6 η < 1 be constants. Let
F be a field with |F| > poly(n). There is an explicit (ε, η/ε)-dimension expander in Fn of
degree Θ

(
1

ε2(1−η)2

)
. If ε < 1/d then for any δ > 0 there is an explicit (ε, (1− δ)d)-dimension

expander in Fn with degree d2

δ(1−εd) .

These expanders yield an expansion of α with degree ≈ α2, and thus are not lossless. In
particular, existential methods show that there are (ε, η/ε)-dimension expanders with degree
≈ 1/ε + 1

1−η . In remains an interesting challenge to obtain such lossless dimension expanders.
In particular, we note that we get “all of the dimension” from the tensoring step using only
one map from the condenser. This occurs despite the fact that most maps in the condenser
preserve all of the dimension (assuming we double the seed length). It seems natural to
hope that an integrated analysis of the tensoring and condensing stages would show that the
construction has a better expansion than what we obtain.

Over small fields our results are comparatively weaker as we simulate a larger field within
the small field (as how one transforms Reed-Solomon codes to BCH codes), so that we pay
various logarithmic penalties.

I Corollary 14. Let Fq be finite and n, d > 1. Then there are explicit
(

Θ
(

1
d logq dn

)
,Θ(d)

)
-

dimension expanders in Fnq of degree Θ(d2 logq dn).

4 Two-Source Rank Condensers

In the context of Boolean pseudorandomness, it is well known (see for example Vadhan [26])
that strong min-entropy seeded extractors (extractors that output the entropy of the source
plus the entropy of the seed) are equivalent to a form of vertex expansion. Such extractors
are a special case of (seedless) two-source min-entropy extractors where one of the sources
is very small and of full entropy. Thus, as a generalization of the dimension expanders we
have already defined, we can thus define the notion of a (seedless) two-source rank condenser.
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While it is often most natural to consider the two sources to be of equal dimension, to highlight
the connection to dimension expanders we consider sources with unbalanced dimension.

I Definition 15. Let F be a field and n > r > 1 andm > s > 1. A function f : Fn×Fm → Ft
is a (seedless) (r, s, ε)-two-source rank condenser if for all sets A ⊆ Fn and B ⊆ Fm
with rankA = r and rankB = s,

rank f(A×B) = rank{f(v, w)}v∈A,w∈B > (1− ε) rankA · rankB .

The function f is a (6 r, s, ε)-condenser if it is a (r′, s, ε)-condenser for all 1 6 r′ 6 r, and
(6 r,6 s, ε)-condensers are defined similarly. If ε = 0 we say the rank condenser is lossless
and it is otherwise lossy. The function f is bilinear if f(v, w) = (vtrEiw)ti=1 for Ei ∈ Fn×m.
The function f is explicit if it can be evaluated in poly(n,m, t) steps.

While this definition is naturally motivated as a generalization of dimension expanders, we
originally were motivated to study these objects due to potential applications for constructing
subspace evasive sets, as we describe in the full version.

Note that in general we allow the function f to be arbitrary, but in this work we will
restrict ourselves to bilinear functions f as they are the most natural. In this case, as
discussed after Theorem 4, we see that the function f acts on subspaces so that we ask that
for subspaces V ⊆ Fn and W ⊆ Fm that dim f(V,W ) > (1− ε) dimV · dimW . In this way,
f can be thought of as a derandomized tensor product.

We now quote the parameters as given by the probabilistic method.

I Proposition 16. Let Fq be a finite field. Let n > r > 1 and m > s > 1 and ε > 0.
Then there exists a function f : Fn × Fm → Ft which is a bilinear (r, s, ε)-two-source rank
condenser, assuming that

t >
n

εs
+ m

εr
+ (1− ε)rs+ oq(1) .

for ε > 0. Further, there exists an f which is a (6 r, s, ε)-condenser assuming that

t >
n

εs
+ m

ε
+ (1− ε)rs+ oq(1) .

If ε = 0, then there exists an f which is a (r, s, 0)-condenser assuming that

t > rn+ sm+ rs+ oq(1) .

In particular, in the balanced case of n = m and r = s this shows that any t >
2n
εr + (1 − ε)r2 + oq(1) suffices. Note that unlike the single-source setting, there is a large
penalty for condensing all small enough sources. Thus, the above gives (r, r, 1/2)-condensers
with output ≈ n

r + r2 but to obtain a (6 r, r, 1/2)-condenser the resulting output size is
≈ n+ r2 (and the full version shows that a linear dependence on n is needed in this case).

Note that in our definitions of seeded rank condensers there was no analogue of strong
min-entropy extractors, which are extractors that also recover the entropy of the seed in
addition to the entropy of the source. That is, in our setting, there is no “rank of the seed”
to recover as the seed is simply an index into the collection E . The notion of a two-source
rank condenser in some sense allows the second source to be a “seed” in that we can associate
elements of E with elements in a basis for Fm. However, we do not pursue this analogy
further as two-source rank condensers meeting the probabilistic method do not seem to yield
good lossy rank condensers in all regimes as two-source condensers can require an output
size which is linear in the input size.

APPROX/RANDOM’15
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However, the connection between two-source extractors and expanders does hold tightly
for the notion of rank, as we show. Note that for this connection it suffices to have condensers
that work when one of the two sources has full rank.

I Proposition 17. Let Fq be a finite field. For large n and all other parameters constant,
constructions of bilinear (6 δn,m, ε)-two-source rank condensers f : Fn × Fm → Ft that
meet the probabilistic method bound yield constructions of (δ, α)-dimension expanders in Fn
meeting the probabilistic method bound.

We also give constructions of two-source condensers using seeded rank condensers. That
is, for two sources we use a seeded rank condenser to condense each source and use a union
bound to show that the seed-length only doubles. We then enumerate over seeds and for each
seed we then tensor the two condensed sources together. While this approach seems wasteful,
we show that it yields optimal lossless two-source rank condensers by appropriate pruning. In
particular, we observe that this is the same construction as given by Forbes and Shpilka [9]
for an object known as a rank-metric code. We push this observation further to see that
bilinear lossless two-source rank condensers are equivalent to rank-metric codes. Using this
connection, we obtain optimal such condensers over any field using known constructions of
rank-metric codes.

I Theorem 18. Let F be a field and n > r > 1 and m > s > 1. Then there is an
explicit bilinear f : Fn × Fm → Ft which is a (r, s, 0)-two-source rank condenser with
t 6 O(min{r, s} · (n+m)).

We then turn to constructions of lossy two-source condensers, where our results are
considerably weaker. However, we are able to give near-optimal results for constant r by
using a brute force “inner condenser” and using our condense-then-tensor results as an “outer
condenser”.

I Proposition 19. Let F be a field and n > r > 1, where |F| > poly(n) and r 6 O(1). Then
there is an explicit bilinear (r, r, 1− (1− ε)3)-two source rank condenser f : Fn × Fn → Ft
with t 6 O(n/ε2r).

5 Open Questions

This work leaves several directions for future work.

1. Can one obtain (r, ε)-lossy seeded rank extractors, where the output is ≈ (1− ε)r? Our
methods require the output to be > r.

2. Can one develop of theory of “code concatenation” to improve our results for small fields?
3. Can one obtain lossy two-source rank condensers with output size o(nr) for r = ω(1)?
4. Can one obtain lossless dimension expanders, where the degree/expansion relationship

matches the probabilistic method?
5. What is the complexity of computing dimension expansion? That is, given matrices

A1, . . . , Ad ∈ Fn×n, compute the largest α so that A := {Ai}di=1 is a (1/2, α)-dimension
expander.
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Abstract
We study the q-state ferromagnetic Potts model on the n-vertex complete graph known as the
mean-field (Curie-Weiss) model. We analyze the Swendsen-Wang algorithm which is a Markov
chain that utilizes the random cluster representation for the ferromagnetic Potts model to recolor
large sets of vertices in one step and potentially overcomes obstacles that inhibit single-site
Glauber dynamics. The case q = 2 (the Swendsen-Wang algorithm for the ferromagnetic Ising
model) undergoes a slow-down at the uniqueness/non-uniqueness critical temperature for the
infinite ∆-regular tree ([16]) but yet still has polynomial mixing time at all (inverse) temperatures
β > 0 ([7]). In contrast for q ≥ 3 there are two critical temperatures 0 < βu < βrc that are
relevant, these two critical points relate to phase transitions in the infinite tree. We prove that
the mixing time of the Swendsen-Wang algorithm for the ferromagnetic Potts model on the n-
vertex complete graph satisfies: (i) O(logn) for β < βu, (ii) O(n1/3) for β = βu, (iii) exp(nΩ(1))
for βu < β < βrc, and (iv) O(logn) for β ≥ βrc. These results complement refined results of Cuff
et al. [10] on the mixing time of the Glauber dynamics for the ferromagnetic Potts model. The
most interesting aspect of our analysis is at the critical temperature β = βu, which requires a
delicate choice of a potential function to balance the conflating factors for the slow drift away from
a fixed point (which is repulsive but not Jacobian repulsive): close to the fixed point the variance
from the percolation step dominates and sufficiently far from the fixed point the dynamics of the
size of the dominant color class takes over.
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models manifest in the behavior of the mixing time; these connections are the topic of this
paper.

We study the q-state ferromagnetic Potts model. In the following definition the case
q = 2 corresponds to the Ising model and q ≥ 3 is the Potts model. For a graph G = (V,E)
the configurations of the model are assignments σ : V → [q] of spins to vertices, and let Ω
denote the set of all configurations. The model is parameterized by β > 0, known as the
(inverse) temperature. For a configuration σ ∈ Ω let m(σ) be the number of edges in E

that are monochromatic under σ and let its weight be w(σ) = exp(βm(σ)). Then the Gibbs
distribution µ is defined as follows, for σ ∈ Ω, µ(σ) = w(σ)/Z(β), where Z(β) =

∑
σ∈Ω w(σ)

is the normalizing constant, known as the partition function.
A useful feature for studying the ferromagnetic Potts model is its alternative formulation

known as the random-cluster model. Here configurations are subsets of edges and the weight
of such a configuration S ⊆ E is

w(S) = p|S|(1− p)|E\S|qk(S),

where p = 1− exp(−β) and k(S) is the number of connected components in the graph G′ =
(V, S) (isolated vertices do count). The corresponding partition function Zrc =

∑
S⊆E w(S)

satisfies Zrc = (1− p)|E|Z.
The focus of this paper is the random-cluster (Curie-Weiss) model which in computer

science terminology is the n-vertex complete graph G = (V,E). The interest in this model is
that it allows more detailed results and these results are believed to extend to other graphs
of particular interest such as random regular graphs. For convenience we parameterize the
model in terms of a constant B > 0 such that the Gibbs distribution is as follows:

µ(σ) = 1
Z(β) (1−B/n)−m(σ). (1)

(Note that β = − ln(1−B/n) ∼ B/n for large n.) The following critical points Bu < Bo <

Brc for the parameter B are well-studied 1 and relevant to our study of the Potts model on
the complete graph:

Bu = sup
{
B ≥ 0

∣∣∣ B − z
B + (q − 1)z 6= e−z for all z > 0

}
= min

z≥0

{
z + qz

ez − 1

}
, (2)

Bo = 2(q − 1) ln(q − 1)
q − 2 , Brc = q. (3)

These thresholds correspond to the critical points for the infinite ∆-regular tree T∆ and
random ∆-regular graphs by taking appropriate limits as ∆ → ∞. (More specifically, if
B(∆) is a threshold on T∆ or the random ∆-regular graph then lim∆→∞∆(B(∆)− 1) is the
corresponding threshold in the Curie-Weiss model.) In this perspective, Bu corresponds to the
uniqueness/non-uniqueness threshold on T∆; Bo corresponds to the ordered/disordered phase
transition; and Brc was conjectured by Häggström to correspond to a second uniqueness/non-
uniqueness threshold for the random-cluster model on T∆ with periodic boundaries (in
particular, he conjectured that non-uniqueness holds iff B ∈ (Bu,Brc)). For a detailed
exposition of these critical points we refer the reader to [10] (see also [11] for their relevance
for random regular graphs).

1 Bo is βc in [9, Equation (3.1)] andBu is equivalent to βs in [10, Equation (1.1)] under the parametrization
z = B(qx− 1)/(q − 1). We follow the convention of counting monochromatic edges [9] as opposed to
counting monochromatic pairs of vertices [10]; hence our thresholds are larger than those in [10] by a
factor of 2.
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The Glauber dynamics is a classical tool for studying the Gibbs distribution. These are
the class of Markov chains whose transitions update the configuration at a randomly chosen
vertex and are designed so that its stationary distribution is the Gibbs distribution. The
limitation of local Markov chains, such as the Glauber dynamics, is that they are typically
slow to converge at low temperatures (large B). The Swendsen-Wang algorithm is a more
sophisticated Markov chain that utilizes the random cluster representation of the Potts
model to potentially overcome bottlenecks that obstruct the simpler Glauber dynamics. It is
formally defined as follows.

The Swendsen-Wang algorithm is a Markov chain (Xt) whose transitions Xt → Xt+1 are
as follows. From a configuration Xt ∈ Ω:

Let M be the set of monochromatic edges in Xt.
For each edge e ∈ M , delete it with probability 1 − B/n. Let M ′ denote the set of
monochromatic edges that were not deleted.
In the graph (V,M ′), independently for each connected component choose a color uniformly
at random from [q] and assign all vertices in that component the chosen color. Let Xt+1
denote the resulting spin configuration.

Recall, the mixing time Tmix of an ergodic Markov chain is defined as the number of steps
from the worst initial state to get within total variation distance ≤ 1/4 of its unique stationary
distribution. For the Swendsen-Wang algorithm for the ferromagnetic Ising model on the
complete graph, Cooper et al. [7] showed that Tmix = O(

√
n) for all temperatures. Long et

al. [16] showed more refined results establishing that the mixing time is Θ(1) for β < βc,
Θ(n1/4) for β = βc, and Θ(logn) for β > βc where βc is the uniqueness/non-uniqueness
threshold.

For the Swendsen-Wang algorithm for the ferromagnetic Potts model, it was shown that
the mixing time is exponentially large in n = |V | at the critical point B = Bo by Gore
and Jerrum [13] for the complete graph, Cooper and Frieze [8] for G(n, p) for p = Ω(n−1/3),
Galanis et al. [11] for random regular graphs, and Borgs et al. [4, 5] for the d-dimensional
integer lattice for q ≥ 25 at the analogous critical point. For the Glauber dynamics for
the ferromagnetic Potts model on the complete graph, Cuff et al. [10] showed that the
mixing time satisfies (their results are significantly more precise than what we state here for
convenience): Θ(n logn) for B < Bu, exponentially slow mixing for B > Bu, and Θ(n4/3)
mixing time for B = Bu (and a scaling window of O(n−2/3) around Bu).

We can now state our main result which is a complete classification of the mixing time of
the Swendsen-Wang dynamics when the parameter B is a constant independent of n.

I Theorem 1. For all q ≥ 3, the mixing time Tmix of the Swendsen-Wang algorithm on the
n-vertex complete graph satisfies:
1. For all B < Bu, Tmix = O(logn).
2. For B = Bu, Tmix = O(n1/3).
3. For all Bu < B < Brc, Tmix = exp(nΩ(1)).
4. For all B ≥ Brc, Tmix = O(logn).

In an independent work, Blanca and Sinclair [2] analyze a closely related chain to the
Swendsen-Wang dynamics which is also suitable for sampling random cluster configurations.
They provide an analogue of Theorem 1, though their analysis excludes the critical points
B = Bu and B = Brc.

In the following section, we discuss the critical points Bu,Bo,Brc, present a function F
which captures a simplified view of the Swendsen-Wang dynamics, and then we present a
lemma connecting the behavior of F with the critical points. We also present in Section 2 a

APPROX/RANDOM’15



818 Swendsen-Wang Algorithm on the Mean-Field Potts Model

high-level sketch of the proof of Theorem 1. In Section 3 we prove the slow mixing result
(Part 3 of Theorem 1). We then prove the rapid mixing results for B > Brc in Section 4 and
for B = Bu in Section 5. The cases B = Brc and B < Bu are given in Sections C and D,
respectively, of the full version [12].

2 Proof Approach

2.1 Critical Points for Phase Transitions
We review the thresholds Bu,Bo,Brc for the mean-field Potts model, the reader is referred
to [3] for further details which also apply to the random-cluster model. The thresholds
Bu,Bo,Brc are related to the critical points of the following function of the partition function.
We first need to introduce some notation. For a configuration σ : V → [q] and a color i ∈ [q],
let αi(σ) be the fraction of vertices with color i in σ, i.e., αi(σ) = |{v ∈ V : σ(v) = i}|/n.
We also denote by α(σ) the vector (α1(σ), . . . , αq(σ)), and refer to it as the phase of σ.

For a q-dimensional probability vector α, let Ωα be the set of configurations σ whose
phase is α. Let

Zα =
∑
σ∈Ωα

w(σ) and Ψ(α) := lim
n→∞

1
n

lnZα.

There are two relevant phases: the uniform phase u := (1/q, . . . , 1/q) and the majority
phase m := (a, b, . . . , b) and its q permutations. For the majority phase, a, b are such that
a+ (q − 1)b = 1 and a > 1/q is a local maximum of

Ψ1(a) := Ψ
(
a, b, . . . , b

)
= −a ln a− (1− a) ln 1− a

q − 1 + B

2

(
a2 + (1− a)2

q − 1

)
(4)

and hence satisfies

ln (q − 1)a
1− a = B(a− (1− a)/(q − 1)). (5)

The thresholds Bu,Bo,Brc relate to the critical points of Ψ, see Figure 1 for an illustration
of the following. For B ≤ Bu the uniform phase is the unique local maximum of Ψ. For
Bu < B < Brc there are q + 1 local maxima: the uniform phase and the q majority phases,
and at B = Bo they are all global maxima. Finally, for B ≥ Brc the q majority phases are
the only local maxima.

2.2 Connections to Simplified Swendsen-Wang
The following function from [1/q, 1] to [0, 1] will capture the behavior of the Swendsen-Wang
algorithm.

F (z) := 1
q

+
(

1− 1
q

)
zx, (6)

where x = 0 for z ≤ 1/B and for z > 1/B, x ∈ (0, 1] is the unique solution of

x+ exp(−zBx) = 1. (7)

The function F captures the size of the largest color class when there is a single heavy
color where heavy means that the color class is supercritical in the percolation step of the
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(a) B < Bu (b) B = Bu (c) Bu < B < Bo

(d) B = Bo (e) Bo < B < Brc (f) B ≥ Brc

Figure 1 The function Ψ1 (free energy) plotted in different regimes of B (defined in (4)). The
critical points Bu,Bo,Brc are given by (2) and (3). In the regime B < Bu (figure 1a), the function
Ψ1 has a unique local maximum at the disordered phase. At B = Bu (figure 1b), the function
Ψ1 has a saddle point at the ordered phase. In the regime Bu < B < Brc (figures 1c, 1d and 1e)
the function Ψ1 has two local maxima; these are both global maxima iff B = Bo. In the regime
B ≥ Brc (figure 1f), the function Ψ1 has a unique local maximum at the ordered phase and a saddle
point at the disordered phase.

Swendsen-Wang process. Hence after the percolation step this heavy color will have a giant
component and the other color classes will all be broken into small components. So say
initially the one heavy color has size zn for 1/B < z < 1 and let’s consider its size after one
step of the Swendsen-Wang dynamics. After the percolation step, this heavy color will have
a giant component of size roughly xzn (where x is as in (7)) and all other components will
be of size O(logn). Then a 1/q fraction of the small components will be recolored the same
as the giant component, and hence the size of the largest color class will be (roughly) nF (z)
after this one step of the Swendsen-Wang dynamics.

Our next goal is to tie together the functions F and Ψ1 so that we can relate the behavior
of the Swendsen-Wang dynamics with the underlying phase transitions of the model. We first
need some terminology. A critical point a of a function f : R → R is a hessian maximum
if the second derivative of f at a is negative (this is a sufficient condition for a to be a
local maximum). A fixpoint a of a function F : R → R is a jacobian attractive fixpoint if
|F ′(a)| < 1 (this is a sufficient condition for a to be an attractive fixpoint).

I Lemma 2. The critical points of Ψ1 correspond to fixpoints of F . The hessian maxima of
Ψ1 correspond to jacobian attractive fixpoints of F .

Lemma 2 is proved in Section E of the full version [12].
The behavior of F is the basic tool for proving Theorem 1. Recall the earlier discussion

of the uniform vector u := (1/q, . . . , 1/q) and the q permutations of the majority phase
m := (a, b, . . . , b). The following lemma (proved in Section F of the full version [12]) provides
some basic intuition about the proof of Theorem 1, see Figure 2 for a depiction of the various
regimes.

APPROX/RANDOM’15
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(a) B < Bu (b) B = Bu (c) Bu < B < Brc

(d) B = Brc (e) B > Brc

Figure 2 The drift function F (z) − z, where F is defined by (6), (7). The critical points
Bu,Bo,Brc are given by (2) and (3). In the regime B < Bu (figure 2a), the function F has a unique
attractive fixpoint at the disordered phase. At B = Bu (figure 2b), F also has a (non-jacobian)
repulsive fixpoint at the ordered phase. In the regime Bu < B < Brc (figures 2c), F has attractive
fixpoints at the ordered and disordered phases. At B = Brc (figure 2d), the disordered phase is no
longer attactive; it is jacobian repulsive. Finally, in the regime B > Brc (figure 2e), the function F
has a unique attractive fixpoint at the ordered phase.

I Lemma 3. For the function F ,
1. For B < Bu, u = 1/q is the unique fixpoint and it is jacobian attractive.
2. For B = Bu, there are 2 fixpoints: u and a where a is defined as in the majority phase

m. Of these, only u is (jacobian) attractive. The fixpoint a is repulsive but not jacobian
repulsive.

3. For Bu < B < Brc there are 2 attractive fixpoints: u and a where a is defined as in the
majority phase m. Both of these are jacobian attractive.

4. For B = Brc, both a and u are fixpoints. The fixpoint u is (jacobian) repulsive, while the
fixpoint a is jacobian attractive.

5. For B > Brc, a is the only fixpoint and it is jacobian attractive.

The reason that u abruptly changes from a jacobian attractive fixpoint (B < Brc) to a
jacobian repulsive fixpoint (B = Brc) stems from the fact that in the regime B < Brc, F is
constant in a small neighborhood around 1/q (precisely, in the interval [1/q, 1/B]), which is
no longer the case for B = Brc.

2.3 Proof Sketches
We explain the high-level proof approach for the various parts of Theorem 1 before presenting
the detailed proofs in subsequent sections.

Slow mixing: For Part 3 of Theorem 1, the main idea is that the function F has 2 attractive
fixpoints (see Lemma 3). At least one of the corresponding phases, u or m, is a global
maximum for Ψ. Consider the other phase, say it is u for concreteness. Consider the local
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ball around u, these are configurations that are close in `∞ distance from u. The key is that
since u is an attractive fixpoint for F , if the initial state is in this local ball then with very
high probability after one step of the Swendsen-Wang dynamics it will still be in the local
ball (see Lemma 4, and Lemma 5 for the analogous lemma for m). The result then follows
since one needs to sample from the local ball around the phase which corresponds to the
global maximum of Ψ to get close to the stationary distribution.

Fast mixing for B > Brc: For a configuration σ and spin i, say the color class is heavy
if the number of vertices with spin i is > n/B and light if it is < n/B. If a color class is
heavy then it is super-critical for the percolation step of Swendsen-Wang and hence there
will be a giant component. The key is that for any initial state X0, then with constant
probability the largest components from all of the colors will choose the same new color
and consequently there will be only one heavy color class and the other q − 1 colors will be
light. Hence we can assume there is one heavy color class and q − 1 light color classes, and
then the function F suitably describes the size of the largest color class during the evolution
of the Swendsen-Wang dynamics. Since the only local maximum for F corresponds to the
majority phase m, after O(logn) steps we’ll be close to m – the difference will be due to
the stochastic nature of the process. Then it is straightforward to define a coupling for two
chains (Xt, Yt) whose initial states X0, Y0 are close to m so that after T = O(logn) steps we
have that XT = YT .

Fast mixing for B = Brc: The basic outline is similar to the B > Brc case except here
the argument is more intricate when the heaviest color lies in the scaling window (for the
onset of a giant component). We need a more involved argument that we get away from
initial configurations that are close to the uniform phase; informally, the uniform fixpoint is
jacobian repulsive, so an initial displacement increases geometrically by a constant factor.

Fast mixing for B < Bu: Here the argument is similar to the B > Brc case, in fact it
is easier. The critical point for a giant component in the percolation step is density 1/B.
In this case we have that B < Bu and since Bu < Brc = q we have that in the uniform
phase (which is the only local maxima) the color classes are all subcritical. Hence once we
are close to the uniform phase all of the components after the percolation step will be of
size O(logn). So the basic argument is similar to the B > Brc case in how we approach the
local maxima, which is the uniform phase in this case. Then once we reach density < 1/B
then in the next step the configuration will be close to the uniform phase in the next step
and then it is straightforward to couple two such configurations.

Fast mixing for B = Bu: This is the most difficult part. As in the B > Brc case with
constant probability there will be at most one heavy color class after one step. We then
track the evolution of the size of the heavy color class. The difficulty arises because the
size of the component does not decrease in expectation at the majority fixpoint. However
variance moves the size of the component into a region where the size of the component
decreases in expectation. The formal argument uses a carefully engineered potential function
that decreases because of the variance (the function is concave around the fixpoint) and
expectation (the function is increasing) of the size of the largest color class, see Section 5.

APPROX/RANDOM’15
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3 Slow Mixing for Bu < B < Brc

Let B(v, δ) be the `∞-ball of configuration vectors of the q-state Potts model in Kn around
v of radius δ, that is,

B(v, δ) = {w ∈ Zq | ‖w/n− v‖∞ ≤ δ}.

We will show that for B < Brc the Swendsen-Wang algorithm is exponentially unlikely
to leave the vicinity of the uniform configuration.

I Lemma 4. Assume B < Brc. There exists ε0 > 0 such that for all ε ∈ (0, ε0) for
S = B(u, ε)

PSW (S, S) ≥ 1− exp(−Θ(n1/2)).

The reason for Lemma 4 failing for B > Brc is that the first step of the Swendsen-Wang
algorithm on a cluster of size n/q yields linear sized connected components, and these allow
the algorithm to escape the neighborhood of u.

We also analyze the behavior of the algorithm around the majority configuration (for the
configuration to exist we need B ≥ Bu).

I Lemma 5. Assume B > Bu and let m = (a, b, . . . , b) where a > 1/q is the attractive
fixpoint of F of Lemma 3. There exists ε0 > 0 such that for all ε ∈ (0, ε0) for S = B(m, ε)
we have

PSW (S, S) ≥ 1− exp(−Θ(n1/3)).

Combining Lemmas 4 and 5 we obtain Part 3 of Theorem 1.

I Corollary 6. For B ∈ (Bu,Brc), the mixing time of the Swendsen-Wang algorithm on the
complete graph on n vertices is exp(Ω(n1/3)).

We prove here Lemma 5, the (very similar) proof of Lemma 4 is given in Section G of the
full version [12].

We will need several known results on the G(n, p) model in the supercritical regime
(p = c/n, where c > 1). The size of the giant component is asymptotically normal [19]. We
will use the following moderate deviation inequalities for the sizes of the largest and second
largest components of G.

I Lemma 7. Let G ∼ G(n, c/n) where c > 1. Let β ∈ (0, 1) be the solution of x+exp(−cx) =
1. Let X,Y be the sizes of the largest and second largest components of G respectively. Then

P (|X − βn| ≥ n2/3) ≤ exp(−Θ(n1/3)), (8)

P (Y ≥ n1/3) ≤ exp(−Θ(n1/3)). (9)

Equation (8) is proved in [1, Theorem 3.1]. Equation (9) of Lemma 7 is proved in Section
A.1 of the full version [12].

I Lemma 8 (see, e.g., [15], p.109). Let t ∈ (0, 1] be a constant. Let G ∼ G(n, c/n) where
c < 1. Let X be the size of the largest component of G.

P (X ≥ nt) ≤ exp(−Θ(nt)).

Proof of Lemma 5. Let X0 ∈ S and let γ := F ′(a) (recall that |γ| < 1, since a is Jacobian
attractive fixpoint by Lemma 3). The first step of the Swendsen-Wang algorithm chooses,
for each color class, a random graph from G(m, p), where p = B/n and m is the number of



A. Galanis, D. Štefankovič, and E. Vigoda 823

vertices of that color. Let m1 be the number of vertices of the dominant color. Since X0 ∈ S
we have m1/n = a+ τ =: a′ where |τ | < ε. We can write

p = (m1B/n)/m1 = (a′B)/m1,

where a′B > 1 for sufficiently small ε0 > 0 (using aB > 1 from Lemma 38 in the full
version [12]). This means that the G(m, p) process in this component is supercritical. Let
β ∈ (0, 1] be the root of x + exp(−a′Bx) = 1. By Lemma 7 the random graph will have,
with probability ≥ 1− exp(−Θ(n1/3)), one component of size a′βn± n2/3 and all the other
components will have size at most n1/3.

Let m2 be the number of vertices in one of the non-dominant colors. Since X0 ∈ S we
have m2/n =: b′ where

b− ε0 ≤ b− ε ≤ b′ ≤ b+ ε ≤ b+ ε0. (10)

We can write
p = (m2B/n)/m2 = (b′B)/m2,

where b′B < 1 for sufficiently small ε0 > 0 (using bB < 1, again from Lemma 38 in the
full version [12]). This means that the G(m, p) process in this component is subcritical. By
Lemma 8 (with t = 1/3), with probability ≥ 1− exp(−Θ(n1/3)) the random graph will have
all components of size at most n1/3.

To summarize: starting from a configuration in S after the first step of the Swendsen-
Wang algorithm we have, with probability ≥ 1 − q exp(−Θ(n1/3)) one large component
of size a′βn ± n2/3 and the remaining components are of size ≤ n1/3 (small components).
In the second step of the algorithm the components get colored by a random color. By
symmetry, in expectation each color obtains (n − a′βn ∓ n2/3)/q vertices from the small
components and by Azuma’s inequality this number is (n − a′βn ∓ n2/3)/q ± n5/6 with
probability ≥ 1− exp(−Θ(n1/3)). Combining the analysis of the first and the second step
we obtain that at the end with probability ≥ 1− 2q exp(−Θ(n1/3)) we have one color with
F (a′)n± 2n5/6 vertices and the rest of the colors have 1−F (a′)

q−1 n± 2n5/6 vertices each.
For sufficiently small ε0 > 0 there exists γ′ ∈ (γ, 1) such that for all |τ | < ε0 we have

|F (a + τ) − a| < γ′τ . Hence for sufficiently small ε0 > 0 and sufficiently large n we have
|F (a′)n± 2n5/6 − an| ≤ εn and | 1−F (a′)

q−1 n± 2n5/6 − bn| ≤ εn. This finishes the proof of the
lemma. J

4 Fast mixing for B > Brc

The lemmas stated in this section are proved in Section H of the full version [12].
Once the phases align then it is straightforward to couple the chains so that the configu-

rations agree. The following lemma is essentially identical to [7, Lemma 4], which is also
used in [16, Lemma 4.1].

I Lemma 9 ([7], Lemma 4). For any constant B > 0, for all q ≥ 2, all ε > 0, for T = O(logn)
there is a coupling where Pr[XT 6= YT | α(X0) = α(Y0)] ≤ ε.

It is enough to get the phases within O(
√
n) distance from m and then there is a coupling

so that with constant probability the phases will be identical after one additional step. More
precisely, we have the following.

I Lemma 10 ([16], Theorem 6.5). Let B > Bu. Let X0, Y0 be a pair of configurations where
‖α(X0)−m‖∞ ≤ Ln−1/2, ‖α(Y0)−m‖∞ ≤ Ln−1/2, for a constant L > 0. There exists a
coupling such that with prob. Θ(1), α(X1) = α(Y1).

APPROX/RANDOM’15
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Let ε > 0. We say a color i is ε-heavy if αi ≥ (1 + ε)/B. We say that a color is ε-light if
αi ≤ (1− ε)/B. For a state Xt, we denote by St the size of the largest color class in Xt. We
will show that the SW-algorithm has a reasonable chance of moving into a state where one
color is ε-heavy and the remaining q − 1 colors are ε-light.

I Lemma 11. Assume B > Brc is a constant. There exists ε > 0 such that the following
hold. For any n and any initial state X0 with probability Θ(1) the next state X1 has one
ε-heavy color and the remaining q − 1 colors are ε-light. Further, if X0 has one ε-heavy
color and the remaining q − 1 colors are ε-light, then the same is true for X1 with probability
1− o(1).

Afterwards the behavior of the algorithm will be controlled by the function F (St+1 will
be close to nF (St/n)) and then with constant probability after O(1) steps the state will be
close to the majority phase m.

I Lemma 12. Assume B > Brc is a constant. For any constant δ > 0 and any starting
state X0 after T = O(1) steps with probability Θ(1) the SW-algorithm moves to state XT

such that ‖α(XT )−m‖∞ ≤ δ.

Then we show that once we are within constant distance from m then in O(logn) steps
the distance to m further decreases to O(n−1/2).

I Lemma 13. For B > Bu, there exist δ, L > 0 such that the following is true. Suppose
that we start at a state X0 such that ‖α(X0)−m‖∞ ≤ δ. Then in T = O(logn) steps with
probability Θ(1) the SW algorithm ends up in a state Xt such that

‖α(XT )−m‖∞ ≤ Ln−1/2. (11)

From Lemmas 9, 10, 12 and 13 we conclude the following.

I Corollary 14. Let B > Brc be a constant. The mixing time of the Swendsen-Wang
algorithm on the complete graph on n vertices is O(logn).

Proof. Consider two copies (Xt), (Yt) of the SW-chain. We will show that for T = O(logn),
there exists a coupling of (Xt) and (Yt) such that Pr(XT = YT ) = Ω(1). It will then follow
by elementary arguments that the mixing time is O(logn).

Let δ, L be as in Lemma 13. By Lemma 12, for T1 = O(1) with probability Θ(1) we have
that

‖α(XT1)−m‖∞ ≤ δ and ‖α(YT1)−m‖∞ ≤ δ.

By Lemma 13, for T2 = O(logn) with probability Θ(1), we have that

‖α(XT1+T2)−m‖∞ ≤ Ln−1/2 and ‖α(YT1+T2)−m‖∞ ≤ Ln−1/2. (12)

Let T3 = T1 + T2 + 1. Conditioning on (12), by Lemma 10 there exists a coupling so that
α(XT3) = α(YT3) with probability Ω(1). Once the phases agree we can apply Lemma 9 to
get the two chains to agree. More precisely, by Lemma 9, there exists T4 = O(logn) and
a coupling such that Pr(XT3+T4 = YT3+T4 | α(XT3) = α(YT3)) = Ω(1). Let T = T3 + T4.
We have shown that for all X0, Y0 there is a coupling so that Pr(XT = YT ) = Ω(1). For
all η > 0, by repeating this coupling O(log(1/η)) times we obtain a coupling so that for
T ′ = O(T log(1/η)) we have that Pr(XT ′ 6= YT ′) ≤ η, which completes the proof by setting
η = 1/4. J
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5 Fast Mixing at B = Bu

We will track the size of the largest color class. Roughly, our goal is to show that the chain
reaches the uniform phase in O(n1/3) steps.

As a starting point, we have the following analogue of Lemma 11.

I Lemma 15. For sufficiently small (constant) ε > 0, for any starting state X0 of the
SW-chain, with probability Θ(1), there are at least q − 1 colors in state X1 which are ε-light.
Further, if state X0 has q − 1 ε-light colors, then with probability 1− exp(−nΩ(1)), the same
is true for X1.

Let St be the size of the largest color class in state Xt of the SW-chain. The key part
of our arguments is to track the evolution of St when there are (q − 1) ε-light colors. The
following lemma gives some statistics of St/n throughout the range (1/B, 1], i.e., when the
largest color class is supercritical in the percolation step of the SW-dynamics. Recall the
function F defined in (6),(7).

I Lemma 16. Let ε > 0 be a constant and condition on the event that Xt has q − 1 colors
which are ε-light.

Assume that ζ satisfies (1 + ε)/B ≤ ζ/n ≤ 1. Let Z = E[St+1 |St = ζ]. Then, for all
sufficiently large n, it holds that

nF (ζ/n)− n1/10 ≤ Z ≤ nF (ζ/n) + n1/10. (13)

Also, there exist absolute constants Q1, Q2 (depending only on ε) such that

nQ1 ≤ V ar[St+1 |St = ζ] ≤ nQ2, (14)

Finally, for every integer k ≥ 3 and constant ε′ > 0, there exists a constant c > 0 such that

E
[∣∣St+1 − Z

∣∣k|St = ζ
]
≤ cnk/2+ε′

. (15)

The trickiest part of our arguments is to argue that the SW-chain escapes the vicinity of the
majority phase, i.e., when the largest color class St is roughly na (recall that a is the marginal
of the majority phase and satisfies F (a) = a). In particular, note that when St/n = a, from
(13) the expected value of St+1/n is a as well. More generally, the drift of the process in the
window |St − na| ≤ εn2/3 for some small ε > 0 is very weak. An expansion of F around the
point a yields that in this region nF (St/n) ≈ St − c(St − an)2/n for some constant c > 0, so
the change (in expectation) of St+1 relative to St is roughly ε2n1/3. In particular how does
the process escape this window?

The rough intuition is that inside the window the variance of the process aggregates
the right way, that is, after n1/3 steps, the process is displaced by the square root of the
“aggregate variance”, i.e., roughly

√
n1/3n = n2/3. In the meantime, it holds that F (z) ≤ z

so St is bound to escape the window from its lower end. From that point on, the drift coming
from the expectation of St (or else the function F ) is sufficiently strong to take over and
drive the process to the uniform phase.

The easiest way to capture the progress of the chain towards the uniform phase is by a
potential function argument. Namely, we use Lemma 16 to show the following.

I Lemma 17. There exist constants M, τ > 0 such that for all constant ε > 0, for all
sufficiently large n the following holds. There exists a three-times differentiable potential
function G : [1/q, 1]→ [0,Mn1/3] with G(1/q) = 0 such that for any ζ ≥ (1 + ε)n/B, if Xt

has (q − 1) colors which are ε-light it holds that

E[G(St+1/n) |St = ζ] ≤ G(ζ/n)− τ. (16)

APPROX/RANDOM’15
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To motivate briefly our choice of G, by taking expectations in the second order expansion of
G(St+1/n) around E[St+1 |St = ζ] we obtain

E[G(St+1/n) |St = ζ] ≈ G(F (ζ/n)) + 1
2V ar[St+1/n |St = ζ]G′′(F (ζ/n)). (17)

(The precise conditions on the derivatives of G such that the approximation in (17) is
sufficiently accurate are given in Lemma 26 of the full version [12].) From (17), in order
to satisfy (16), the function G has to be carefully chosen to control the interplay between
G(F (x)) − G(x) and G′′(F (x)). The first derivative of G should correspond to the drift
F (x)− x of the process coming from its expectation while the second derivative of G to the
variance of the process. More precisely, when x is outside the critical window, the choice of
the potential function is such that G(F (x))−G(x) is bounded above by a negative constant
(i.e., its derivative is 1/(x−F (x))); by our earlier remarks this should be sufficient to establish
progress outside the critical window. Indeed, with this choice it turns out that |G′′(x)|/n
is bounded above by a small constant outside the critical window, so that (16) is satisfied.
Inside the critical window, where x ≈ F (x) and hence G(F (x))−G(x) ≈ 0, we choose G so
that G′′(x) is negative. More precisely, to satisfy (16), since V ar[St+1/n |St = ζ] = Θ(1/n)
from Lemma 16, we set G′′(x) = −Cn for some constant C > 0. The remaining part is then
to interpolate between these two regimes keeping G′(x)/G′′(x) sufficiently large (so that (16)
is satisfied) and G(x) small (i.e., O(n1/3)); this is possible due to the quadratic behaviour of
F (z)− z around z = a. (See Lemma 27 in the full version [12] and its proof for the explicit
specification of G.)

Lemmas 16 and 17 capture the SW-dynamics when the largest color class is supercritical.
In the complementary regime, we have the following.

I Lemma 18. Let ε > 0 be a sufficiently small constant. Suppose that X0 is such that q − 1
colors are ε-light and that S0 < (1 + ε)n/B. Then with probability 1− exp(−nΩ(1)) it holds
that S1 < (1 + 3qε)n/q.

We next combine Lemmas 15, 17 and 18 to show the following.

I Lemma 19. For B = Bu, there exists L > 0 such that the following is true. For any
starting state X0, in T = O(n1/3) steps, with probability Θ(1) the SW algorithm ends up in
a state XT such that ‖α(XT )− u‖∞ ≤ Ln−1/2.

Proof. Let ε > 0 be a sufficiently small constant, to be picked later. We will assume that
the state X1 has q− 1 ε-light colors since (by the first part of Lemma 15) this event happens
with probability Θ(1). Henceforth, we will condition on this event.

Recall that St is the size of the largest color component at time t. We first prove that with
probability Θ(1) for some T = O(n1/3) it holds that ST < (1 + ε)n/B. Assuming this for the
moment, then in the next step, i.e., at time T + 1, by Lemma 18 all color classes have size at
most (1 + 3qε)n/q and (for all sufficiently small ε) are thus subcritical in the percolation step
of the SW-dynamics. It follows that the components sizes after the percolation step satisfy, by
Lemma 22 in the full version [12], E

[∑
i |Ci|2

]
= O(n). Hence, after the coloring step, using

Azuma’s inequality with constant probability we have color classes of size (n+O(n1/2))/q
(see the derivation of Equations (91) and (92) in the full version [12] for details).

It remains to argue that T = O(n1/3). We will show in fact that T = 3Mn1/3, where
M is the constant in Lemma 17. Let Pt be the probability that at time t it holds that
St < (1 + ε)n/B. Our goal is to show that PT = Θ(1). We will use Lemma 17 and the
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potential function G therein to bound PT . In particular, we will show that for all n sufficiently
large, for all t = 1, . . . , T − 1, it holds that

E[G(St+1/n)] ≤ E[G(St/n)]− τ(1− Pt) + τ/2, (18)

where τ is the constant in Lemma 17. Prior to that, let us conclude the argument assum-
ing (18). Note that if St < (1 + ε)n/B then St+1 < (1 + ε)n/B with probability at least
1− exp(−nΩ(1)) (by Lemma 18), so Pt ≤ Pt+1 +O(1/n). It thus follows from (18) that

E[G(ST /n)] ≤ E[G(S1/n)]− τT (1/2− PT ) + o(1),

which gives PT ≥ 1/2 − Mn1/3/T + o(1) where M is the constant in Lemma 17. For
T = 3Mn1/3 we thus have PT ≥ 1/6 as wanted.

Finally, we prove (18) for t = 1, . . . , T − 1. Note that Lemmas 17 and 18 apply whenever
Xt has q − 1 ε-light colors, so we will need to account for the (small-probability) event
that this fails. Namely, let Et denote the event that Xt has q − 1 ε-light colors. Since we
condition on the event that E1 holds, we have that

⋂T
t=2 Et holds with probability at least

1− exp(−nΩ(1)) (by the second part of Lemma 15).
Let Ft be the event that St < (1 + ε)n/B and note that Pt = Pr(Ft). By taking

expectations in inequality (16) of Lemma 17, we have

E
[
G(St+1/n) | Et,¬Ft

]
≤ E[G(St/n) | Et,¬Ft]− τ. (19)

Note that if St < (1 + ε)n/B, then by Lemma 18, with probability 1− exp(−nΩ(1)) we have
St+1 < (1 + 3qε)n/q and thus (by choosing ε sufficiently small) the continuity of G and
G(1/q) = 0 yield G(St+1/n) ≤ τ/3. It follows that

E
[
G(St+1/n) | Et,Ft

]
≤ τ/3. (20)

Let P ′t be the probability that at time t it holds that St < (1 + ε)n/B conditioned on the
event Et, i.e., P ′t := Pr(Ft | Et). Note that Pt ≥ P ′t(1 − exp(−nΩ(1))) ≥ P ′t − exp(−nΩ(1)).
Combining (19) and (20), we obtain

E[G(St+1/n) | Et] ≤ E[G(St/n) | Et]− τ(1− P ′t ) + τ/3. (21)

Since G is bounded by a polynomial and since the probability of the event ¬Et is exponentially
small, removing the conditioning in (21) only affects the inequality by an additive o(1).
Similarly, replacing P ′t with Pt in (21) only affects the inequality by an additive o(1). This
proves that (18) holds for all sufficiently large n, thus concluding the proof of Lemma 19. J

Using Lemma 19, it is not hard to obtain the following corollary.
I Corollary 20. Let B = Bu. The mixing time of the Swendsen-Wang algorithm on the
complete graph on n vertices is O(n1/3).
Proof. Consider two copies (Xt), (Yt) of the SW-chain. As in the proof of Corollary 14, it
suffices to show that for T = O(n1/3), there exists a coupling of (Xt) and (Yt) such that
Pr(XT = YT ) = Ω(1).

By Lemma 19, for T1 = O(n1/3), it holds that with probability Θ(1)

‖α(XT1)− u‖∞ ≤ Ln−1/2 and ‖α(YT1)− u‖∞ ≤ Ln−1/2. (22)

Conditioning on (22), by an analogue of Lemma 10 (see Lemma 36 in the full version
[12]), there exists a coupling such that with probability Θ(1) for T2 = T1 + 1, it holds
that α(XT2) = α(YT2). By Lemma 9, there exists T3 = O(logn) and a coupling such that
Pr(XT2+T3 = YT2+T3 | α(XT2) = α(YT2)) = Ω(1). It is now immediate to combine the
couplings to obtain a coupling such that Pr(XT = YT ) = Ω(1) with T = T2 + T3 = O(n1/3),
as desired. J
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Abstract
Tensor rank and low-rank tensor decompositions have many applications in learning and com-
plexity theory. Most known algorithms use unfoldings of tensors and can only handle rank up
to nbp/2c for a p-th order tensor in Rnp . Previously no efficient algorithm can decompose 3rd
order tensors when the rank is super-linear in the dimension. Using ideas from sum-of-squares
hierarchy, we give the first quasi-polynomial time algorithm that can decompose a random 3rd
order tensor decomposition when the rank is as large as n3/2/ poly logn.

We also give a polynomial time algorithm for certifying the injective norm of random low
rank tensors. Our tensor decomposition algorithm exploits the relationship between injective
norm and the tensor components. The proof relies on interesting tools for decoupling random
variables to prove better matrix concentration bounds.
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1 Introduction

Tensors, as natural generalization of matrices, are often used to represent multi-linear
relationships or data that involves higher order correlation. A p-th order tensor T ∈ Rnp

is a p-dimensional array indexed by [n]p. A tensor T is rank-1 if it can be written as the
outer-product of p vectors T = a1 ⊗ · · · ⊗ ap, where ai ∈ Rn (for i = 1, . . . , p). Equivalently,
Ti1,...,ip =

∏p
j=1 aj(ij) where aj(ij) denotes the ij-th entry of vector aj .

Low rank tensors – similar to low rank matrices – are widely used in many applications.
The rank of tensor T is defined as the minimum number m such that T can be written as
the sum of m rank-1 tensors. This agrees with the definition of matrix rank. However, most
of the corresponding tensor problems are much harder: for p ≥ 3 computing the rank of the
tensor (as well as many related problems) is NP-hard [22, 23]. Tensor rank is also not as
well-behaved as matrix rank (see for example the survey [15]).

Unlike matrices, low rank tensor decompositions are often unique [24], which is important
in many applications. In special cases (especially when rankm is less than dimension n) tensor
decomposition can be efficiently computed. Such specialized tensor decompositions have
been the key algorithmic ideas in many recent algorithms for learning latent variable models,
including mixture of Gaussians, Independent Component Analysis, Hidden Markov Model
and Latent Dirichlet Allocation (see [4]). In many cases tensor decomposition can be viewed
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830 Decomposing Overcomplete 3rd Order Tensors using Sum-of-Squares Algorithms

as reinterpreting previous spectral learning results [14, 26, 2, 5]. This new interpretation has
also inspired many new works (e.g. [3, 13, 19]).

A common limitation in early tensor decomposition algorithms is that they only work for
the undercomplete case when rank m is at most the dimension n. Although there are some
attempts to decompose tensors in the overcomplete case (m > n) [16, 13, 7, 18, 17], these
works either require at least 4-th order tensors, or is polynomial time only when in mildly
overcomplete case (when m is a constant factor larger than n). In many machine learning
applications, the number of samples required to accurately estimate a 4-th order tensor is too
large. In practice algorithms based on 3rd order tensor are much more preferable. Therefore
we are interested in the key question: are there any efficient algorithms for overcomplete 3rd
order tensor decomposition?

In the worst case setting, overcomplete 3rd order tensors are not well-understood.
Kruskal [24] showed the tensor decomposition is unique when the rank m ≤ 1.5n − 1
and the components are in general position, but there is no efficient algorithm known for
finding this decomposition. Constructing an explicit 3rd order tensor with rank Ω(n1+ε) will
give nontrivial circuit complexity lowerbounds [29], while the best known rank bound for an
explicit 3rd order matrix is only 3n−O(logn) [1].

For many of the learning applications, it is natural to consider the average case problem
where the components of the tensor are chosen according to a random distribution. In this
case [6] give a polynomial time algorithm that can find the true components when m = Cn

for any constant C > 0 (however the runtime depends exponentially on C).
This paper also considers this average case setting and gives a quasi-polynomial algorithm

for decomposing the tensor when m can be as large as n3/2. The main idea of the algorithm
is based on sum-of-squares (SoS) SDP hierarchy ([27, 25], see Section 2 and the recent survey
[12]). The main difficulty in handling overcomplete 3rd order tensors is that there is no
natural unfolding (i.e. mapping to a matrix) that can certify the rank of the tensor. We can
unfold a 4-th order tensor T into a matrix M of size n2×n2 where M(i1,i2),(i3,i4) = Ti1,i2,i3,i4 .
However, unfolding 3rd order tensor will result in a very unbalanced matrix of dimension
n× n2 that cannot have rank more than n. Intuitively, the power of SoS-based algorithm
is that it can provide higher-order “pseudo-moments” that will allow us to use nontrivial
unfoldings.

In particular, the key component of the proof is a way of certifying injective norm (see
Section 2) of random tensors, which is closely related to the problem of certifying the 2-to-4
norm of random matrices[8]. Recently, there has been an increasing number of applications
of SoS hierarchy to learning problems. [9] give algorithms for finding the sparsest vectors in
a subspace, which is closely related to many learning problems. [10] give a new algorithm for
dictionary learning that can handle nearly linear sparsity, and also an algorithm for robust
tensor decomposition.However their result requires a tensor of high order. [11] studies a
related problem of tensor prediction, also using ideas of SoS hierarchies.

1.1 Our Results
In this paper we give a quasi-polynomial time algorithm for decomposing third-order tensors
when the rank m is almost as large as n3/2 and the components of the tensor is chosen
randomly. More concretely, we define Dm,n to be a distribution of third order tensors of the
following form:

T =
m∑
i=1

a⊗3
i ,
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where the vectors ai ∈ Rn are uniformly random vectors in {± 1√
n
}n and a⊗3

i is short for
ai ⊗ ai ⊗ ai. Our goal is to recover these components ai’s. Since any permutation of ai’s is
still a valid solution, we say two decompositions are ε-close if they are close after an arbitrary
permutation:

I Definition 1 (ε-close). Two sets of vectors {ai}i∈[m] and {âi}i∈[m] in Rn are ε-close if there
exists a permutation π : [m]→ [m] such that ‖âπ(i) − ai‖ ≤ ε. Two decompositions of the
tensor T are ε-close if their components are ε-close.

For tensors in distribution Dm,n our algorithm can recover the decomposition as long as
m� n3/2.

I Theorem 2. Given a tensor T =
∑m
i=1 a

⊗3
i sampled from distribution Dm,n, when m�

n3/2 there is an algorithm that runs in time nO(logn) and with high probability returns a
decomposition T ≈

∑m
i=1 â

⊗3
i that is 0.1-close to the true decomposition.

Our result easily generalizes to many other distributions for ai (including a uniform
random vector in unit sphere or a spherical Gaussian).

The algorithm does not output a very accurate solution (the accuracy can be improved to
ε with an exponential dependency on 1/ε). However it is known that alternating minimization
algorithms can refine the decomposition once we have a nice initial point[6]:

I Theorem 3 ([6]). Given a tensor T from distribution Dm,n (m � n3/2), and an initial
solution that is 0.1-close to the true decomposition, then for any ε > 0 (that may depend on
n) there is an algorithm that runs in time poly(n, log 1/ε) that with high probability finds a
refined decomposition that is ε-close to the true decomposition.

Combining the two results we have an algorithm that runs in time nO(logn) poly log(1/ε)
that recovers a decomposition that is component-wise ε-close to the true decomposition.

I Corollary 4. Given a tensor T =
∑m
i=1 a

⊗3
i sampled from distribution Dm,n, when m�

n3/2 for any ε > 0 there is an algorithm that runs in time nO((logn)) poly log(1/ε) and
with high probability returns a decomposition T ≈

∑m
i=1 â

⊗3
i that is ε-close to the true

decomposition.

The main idea in proving Theorem 2 is the observation that when the tensor is generated
randomly from Dm,n, the true components are close to the maximizers of the multilinear
form T (x, x, x) =

∑
i,j,k∈[n] Ti,j,kxixjxk =

∑m
i=1〈ai, x〉3. The maximum value of T (x, x, x)

on unit vectors ‖x‖ = 1 is known as the injective norm of the tensor. Computing or even
approximating the injective norm is known to be hard [20, 21]. A key component of our
approach is a sum-of-square algorithm (see Section 2 for preliminaries about sum-of-square
algorithms) that certifies that the injective norm of a random tensor from Dm,n is small.

I Theorem 5. For a tensor T in distribution Dm,n, when m� n3/2 with high probability
the injective norm of T is bounded by 1 + o(1). Further, this can be certified in polynomial
time.

Our results (Theorem 2 and 5) still hold when we are given a tensor T̃ that is 1/poly(n)-
close to T in the sense that the spectral norm of an unfolding of T̃ − T is O(1/poly log(n)).
Theorem 3 (and hence Corollary 4) requires a tensor T̃ such that the unfolding of T̃ − T has
spectral norm bounded by ε/ poly(n).
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Organization

The rest of this paper is organized as follows: In Section 2 we introduce tensor notations
and SoS hierarchies. Then we describe the main idea of the proof which relates tensor
decomposition to the injective norm of tensor (Section 3). In Section 4 we give a polynomial
time algorithm for certifying the injective norm of a random 3rd order tensor. Using this as
a key tool in Section 5 we present the quasi-polynomial time algorithm that can decompose
randomly generated tensors when m� n3/2.

2 Preliminaries

2.1 Notations
In this paper we use ‖ · ‖ to denote the `2 norm of vectors and the spectral norm of matrices.
That is, ‖v‖ =

√∑
i v

2
i and ‖A‖ = sup‖u‖=1 ‖Au‖. Note that we will be using the sum-norm

instead of expectation norm ‖v‖exp =
√
Ei[v2

i ] because the scaling of sum-norm is more
natural for the tensor decomposition setting. We use 〈u, v〉 to denote the inner product of u
and v. When A and B are two matrices, we use standard notation A � B to denote the fact
that B −A is a positive semidefinite. For a m× n matrix U and a p× q matrix V , we define
the Kronecker product U ⊗ V as the mp× nq block matrix

U ⊗ V =

U1,1V · · · U1,nV
...

. . .
...

Um,1V · · · Um,nV


We use Õ notations to hide dependencies on polylog factors in n and m. When we write

f � g we mean f ≤ g/O(poly logn). Throughout the paper high probability means the
probability is at least 1− n−ω(1).

2.2 Tensors
Tensors are multi-dimensional arrays. In this paper for simplicity we only consider 3rd order
symmetric tensors and their symmetric decompositions. For a third order symmetric tensor
T , the value of Ti,j,k only depends on the multi-set {i, j, k}, so Ti,j,k = Tj,i,k = Tk,i,j (and
more generally all the 6 permutations are equal). For a vector v ∈ Rn, we use v⊗3 ∈ Rn3 to
denote the symmetric third order tensor such that v⊗3

i,j,k = vivjvk. Our goal is to decompose
a tensor T as T =

∑m
i=1 a

⊗3
i .

There is a bijection between 3rd order symmetric tensors and homogeneous degree 3
polynomials. In particular, for a tensor T we define its corresponding polynomial T (x, x, x) =∑n
i,j,k=1 Ti,j,kxixjxk. It is easy to verify that if T =

∑m
i=1 a

⊗3
i then T (x, x, x) =

∑m
i=1〈ai, x〉3.

The injective norm ‖T‖inj is defined to be the maximum value of the corresponding
polynomial on the unit sphere, that is:

‖T‖inj := sup
‖x‖=1

T (x, x, x).

It is not hard to prove when m� n3/2, and the tensor T is chosen from the distribution
Dm,n, with high probability 1− o(1) ≤ ‖T‖inj ≤ 1 + o(1), and in fact the value T (x, x, x) is
only close to 1 if x is close to one of the components ai. We will give a (SoS) proof of this
fact in Section 5
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2.3 Sum-of-Square Algorithms and Proofs
Here we will only briefly introduce the notations and key concepts that are used in this
paper, for more detailed discussions and references about SoS proofs we refer readers to [12]
(especially Section 2).

Sum-of-squares proof system is a proof system for polynomial equalities and inequalities.
Given a set of constraints {ri(x) = 0}, and a degree bound d, we say there is a degree d
SoS proof for p(x) ≥ q(x) if p(x)− q(x) can be written as a sum of squares of polynomials
modulo ri(x) = 0, as defined formally below.

IDefinition 6 (SoS proof of degree d). For a set of constraints R = {r1(x) = 0, . . . , rt(x) = 0},
and an integer d, we write

p(x) �R,d q(x)

if there exists polynomials hi(x) for i = 0, 1, . . . , ` and gj(x) for j = 1, . . . , t such that
deg(h2

0(p(x)− q(x))) ≤ d, deg(hi) ≤ d/2 (for i > 0) and deg(gjrj) ≤ d that satisfy

h0(x)2(p(x)− q(x)) =
∑̀
i=1

hi(x)2 +
t∑

j=1
rj(x)gj(x),

We will drop the subscript d when it is clear form the context.

Note that the constraints set can be easily generalized to a set of inequalities by adding
auxiliary variables. For example, constraint r(x) ≥ 0 can be implemented as r(x) = z2 where
z is an auxiliary variable.

Many well-known inequalities can be proved using a low degree SoS proof, among them
the most useful and important one is Cauchy-Schwarz inequality, which can be proved via
degree-2 sum of squares. Another one is that xTAx � ‖A‖‖x‖2. This is pretty useful when
A is a random matrix where we can use random matrix theory to bound the spectral norm
of A.

In order to turn an SoS arguments into an algorithm, we often consider the pseudo-
expectation. Just as we have expectations for real distributions, we think of pseudo-expectation
as expectations for pseudo-distributions that cannot be distinguished from true expectations
using low degree polynomials. Pseudo-expectation can be viewed as a dual of SoS refutations.

I Definition 7 (pseudo-expectation). A degree d pseudo-expectation Ẽ is a linear operator
that maps degree d polynomials to reals. The operator satisfies Ẽ[1] = 1 and Ẽ[p2(x)] ≥ 0 for
all polynomials p(x) of degree at most d/2. We say a degree-d pseudo-expectation Ẽ satisfies
a set of equations {ri(x) : i = 1 . . . , `} if for any i and any q(x) such that deg(riq) ≤ d,

Ẽ [ri(x)q(x)] = 0

By definition, if p(x) �R,d q(x), and degree-d pseudo-expectation satisfies R, then we
can take pseudo-expectation on both sides and obtain Ẽ [p(x)] ≤ Ẽ [q(x)]. We will use this
property of pseudo-expectation many times in the proofs.

The relationship between pseudo-expectations and SoS refutations can be summarized in
the following informal lemma:

I Lemma 8 ( [27, 25], c.f. [12], informal stated). For a set of constraints R, either there is
an SoS refutation of degree d that refutes R, or there is a degree d pseudo-expectation that
satisfies R. Such a refutation/pseudo-expectation can be found in poly(tnd) time.

APPROX/RANDOM’15
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3 Relating Tensor Decompositions and Injective Norm

In this section we introduce the main idea of our proof. Given a tensor T =
∑m
i=1 a

⊗3
i

from distribution Dm,n, we first make some observations about its corresponding polynomial
T (x, x, x) =

∑m
i=1〈ai, x〉3.

When x = a1, we know T (a1, a1, a1) = 1 +
∑m
i=2〈ai, a1〉3. Here conditioned on a1, the

second term is a sum of independent random variables (〈ai, a1〉3). By the distribution
Dm,n we know these variables have mean 0 and absolute value around 1/n3/2. Standard
concentration bounds show when m� n3/2 with high probability T (a1, a1, a1) = 1± o(1).

On the other hand, suppose x is a random vector in the unit sphere, then T (x, x, x) =∑m
i=1〈ai, x〉3 is again a sum of random variables. By concentration bounds we know for any

particular x, when m� n3/2 with high probability T (x, x, x) = o(1). This can actually be
generalized to all vectors x that do not have large correlation with ai’s using ε-net arguments.

I Observation. For a random tensor T ∼ Dm,n, when m = n3/2 with high probability
T (x, x, x) ≤ 1 + o(1) for ‖x‖ = 1. Further when T (x, x, x) is close to 1 the vector x is close
to one of the components ai’s.

Later we will give a SoS proof for this observation. Based on this observation, if we want
to find a component, then it suffices to find a vector x such that T (x, x, x) is close to 1.
Using the idea of pseudo-expectations, we can do this in two steps:

1. Find a pseudo-expectation Ẽ[x] that satisfies the constraint ‖x‖2 − 1 = 0 and maximizes
Ẽ[T (x, x, x)].

2. “Sample” from this pseudo-distribution with psuedo-expectations Ẽ to get a vector x
such that T (x, x, x) ≈ 1, in particular x will be close to one of the components ai’s.

In Section 4 we will prove the first part of the observation. In particular we show even
though we are maximizing over pseudo-expectation Ẽ[x] (instead of real distributions over
x), we can still guarantee the maximum value Ẽ[T (x, x, x)] is at most 1 + 1/ logn with high
probability.

In Section 5 we give algorithms for finding a component given a pseudo-expectation
Ẽ with Ẽ[T (x, x, x)] ≈ 1. The main idea of our algorithm is similar to the robust tensor
decomposition algorithm in [10]: first we show there must be a component ai such that
Ẽ[〈ai, x〉d] is large for a large d, then we use ideas in [10] to find the component ai.

4 Certifying Injective Norm

Algorithm 1 Certifying Injective Norm
Input: A random 3-tensor T
Output: If ‖T‖inj > 1 + 1/ logn, return NO. If T ∼ Dm,n(m� n3/2), then w.h.p. return

YES.
Solve the following optimization and obtain optimal value OPT

Maximize Ẽ [T (x, x, x)]
Subject to Ẽ is a degree-12 pseudo-expectation (1)

that satisfies {r(x) = ‖x‖2 − 1 = 0} (2)
return YES if OPT ≤ 1 + 1/ logn and NO otherwise.
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In this section, we give Algorithm 1 based on SoS hierarchy that certifies the injective
norm of random tensor. In particular, we will prove Theorem 5 which we restate in more
details here.

I Theorem 9. Algorithm 1 always returns NO when ‖T‖inj > 1 + 1/ logn. When T ∼ Dm,n
and m � n3/2, Algorithm 1 returns YES with high probability over the randomness of T .
Further, the same guarantee holds given an approximation T̃ where if M ∈ Rn×n2 is an
unfolding of T − T̃ , ‖M‖ ≤ 1/2 logn.

When ‖T‖inj > 1 + 1/ logn, then by definition there must be a vector x∗ that satisfies
‖x∗‖ = 1 and T (x∗, x∗, x∗) > 1/ logn. We can take Ẽ to be the expectation of a distribution
that is only supported on x∗ (i.e. with probability 1 x = x∗). Clearly this pseudo-expectation
is valid, and OPT will be at least larger than 1/ logn. Hence the algorithm returns NO.

For random tensor T , we hope to show that with high probability, the tensor norm is less
than 1 + 1/ logn can be proved via SoS.

I Theorem 10. With high probability over the randomness of the tensor T , for r(x) =
‖x‖2 − 1,

T (x, x, x) �r,12 1 + Õ(m/n3/2) (3)

Note that taking pseudo-expectation Ẽ on both hand sides of (3), for any degree-12
pseudo-expectation Ẽ that is consistent with r(x),

Ẽ [T (x, x, x)] ≤ 1 + Õ(m/n3/2)

That is, when m � n3/2, the objective value of the convex program in Algorithm 1 is
less than 1 + 1/ logn with high probability for random tensor.

Now we need to prove Theorem 10. We first use Cauchy-Schwarz inequality to transform
LHS of (3) to a degree-4 polynomial, which would then correspond to 4th order tensors and
enable non-trivial unfoldings.

I Claim 11.

[T (x, x, x)]2 �r,12

m∑
i=1
〈ai, x〉4︸ ︷︷ ︸

2-4 norm

+
∑
i 6=j
〈ai, aj〉〈ai, x〉2〈aj , x〉2︸ ︷︷ ︸

:=p(x)

. (4)

Proof. This is a direct application of Cauchy-Schwarz inequality:

(
T · x⊗3)2 =

〈
m∑
i=1
〈ai, x〉2ai, x

〉2

�

∥∥∥∥∥
m∑
i=1
〈ai, x〉2ai

∥∥∥∥∥
2

‖x‖2 �r

∥∥∥∥∥
m∑
i=1
〈ai, x〉2ai

∥∥∥∥∥
2

Expanding this quantity, and using the fact that ‖ai‖ = 1, we get

∥∥∥∥∥
m∑
i=1
〈ai, x〉2ai

∥∥∥∥∥
2

=
m∑
i=1
〈ai, x〉4 +

∑
i 6=j
〈ai, aj〉〈ai, x〉2〈aj , x〉2. (5)

J
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The first term is closely related to 2-to-4 norm of random matrices: let A ∈ Rm×n be
a matrix whose rows are equal to ai’s, then ‖A‖2→4 = sup‖x‖=1 ‖Ax‖4. Clearly, ‖A‖4

2→4 =
sup‖x‖=1

∑m
i=1〈ai, x〉4 is the maximum value of the first term. This is considered in [8] where

they gave a SoS proof that when m� n2 the first term is bounded by O(1). Here we are
in the regime m� n3/2 so we can improve the bound to 1 + o(1) (The proof is deferred to
Appendix A.1):

I Lemma 12. With high probability over the randomness of ai’s,
m∑
i=1
〈ai, x〉4 �r,12 1 + Õ(m/n3/2) (6)

The harder part of the proof is to deal with the second term p(x) on the RHS of (4). The
naive idea would be to let y = x⊗2 and view p(x) as a degree-2 polynomial of y,

q(y) =
∑
i 6=j
〈ai, aj〉〈ai ⊗ ai, y〉〈aj ⊗ aj , y〉 = yTNy. (7)

Here N is an n2 by n2 random matrix that depends on ai’s. Suppose N has spectral norm
less than o(1), then we have yTNy � ‖N‖‖y‖2, and by replacing y = x ⊗ x we obtain
p(x) = q(x⊗ x) � o(1). However, in our case the matrix N have spectral norm much larger
than o(1).

Our key insight is that we could have different ways to unfold p(x) into a degree-2
polynomial. In particular, we use the following way of unfolding:

q′(y) =
∑
i 6=j
〈ai, aj〉〈ai ⊗ aj , y〉〈ai ⊗ aj , y〉 = yTMy (8)

where M is the n2 by n2 matrix that encodes the coefficients of q′(y),

M =
∑
i 6=j
〈ai, aj〉(ai ⊗ aj)(ai ⊗ aj)T

It turns out that q′(y) still have the property that q′(x⊗ x) = p(x). The matrix M has
much better spectral norm bound, which leads us to the bound for p(x).

I Lemma 13. When m� n3/2, the matrix M =
∑
i6=j〈ai, aj〉(ai⊗aj)(ai⊗aj)T has spectral

norm at most Õ(m/n3/2) and as a direct consequence,

p(x) �r,4 Õ(m/n3/2)

First we give an informal and suboptimal bound for intuition. Let B be the n2×m2 matrix
whose (i, j)-column (i, j ∈ [m]) is ai ⊗ aj (viewed as an n2 dimensional vector). Then M can
be written as M = B diag(〈ai, aj〉)i6=jBT . Note that B can also be written as A⊗A where ⊗
is the Kronecker product of two matrices, so we have ‖B‖ = ‖A‖2 . m/n. Then we can bound
the norm of M by ‖M‖ ≤ ‖B‖‖ diag(b)‖‖B‖ ≤ (m/n) ·maxi,j |〈ai, aj〉| · (m/n) . m2/n5/2,
where we used the incoherence of ai’s, that is, |〈ai, aj〉| . 1/

√
n. This will only be o(1) when

m . n1.25.
Intuitively, this proof is not tight because we ignored potential cancellation caused by

the randomness of 〈ai, aj〉. Note that 〈ai, aj〉 have expectation 0, but we treated them
all as positive 1/

√
n. If we assume that 〈ai, aj〉’s are independent ±1/

√
n, then M =



R. Ge and T. Ma 837

∑
i 6=j〈ai, aj〉(ai ⊗ aj)(ai ⊗ aj)T would be a sum of PSD matrices with random weights and

we can apply more standard matrix concentration bounds to make sure cancellations happen.
However, 〈ai, aj〉 are of course not independent and our key idea is to decouple the

randomness of 〈ai, aj〉.

Proof. (Sketch) We first replace the vectors ai’s with σiai where σi is a random ±1 variable.
This is OK because the distribution of ai and σiai are the same. Now we first sample the
ai’s, conditioned on the samples M =

∑
i 6=j σiσj〈ai, aj〉(ai ⊗ aj)(ai ⊗ aj)T (where only σi’s

are still random). Now since the vectors ai’s are all fixed, the correlation between different
terms only depends on scalar variables σiσj , and we never use the term σ2

i (because i 6= j).
By a result of [28], in this case we can decouple the product σiσj . In particular, in order

to prove concentration properties for M , it suffices to prove concentration for a different
matrix

∑
i 6=j σiτj〈ai, aj〉(ai ⊗ aj)(ai ⊗ aj)T . Here τ ∈ {±1}m is an independent copy of σi’s.

In this way we have decoupled the randomness in σi and τi, and the rest of the Lemma can
follow from careful matrix concentration analysis. J

We give the full proof of Lemma 13 in Appendix A.2.

Proof Sketch of Main Theorem

Theorem 10 follows directly from Lemma 12 and Lemma 13. Using Lemma 8, we get the
main Theorem 9 in the noiseless case. When there is noise, since we have bounds on spectral
norm of an unfolding of T̃ − T , it implies (by Lemma 33) [T̃ − T ](x, x, x) �r,12 1/2 logn.it is
easy to verify that T̃ (x, x, x) = T (x, x, x) + [T̃ − T ](x, x, x) �r,12 1 + 1/ logn, so Theorem 9
still holds. We give more details in Appendix A.3.

5 Quasi-polynomial Time Algorithm for Tensor Decomposition

In this section we give a quasi-polynomial time algorithm for decomposing random 3rd order
tensors in distribution Dm,n. In particular, we prove Theorem 2 which we restate with more
details below:

I Theorem 14. Let T be a tensor chosen from Dm,n, when m� n3/2 with high probability
over the randomness of T Algorithm 2 returns {âi} that is 0.1-close to {ai} in time nO(logn).
Further, the same guarantee holds given an approximation T̃ where if M ∈ Rn×n2 is an
unfolding of T − T̃ , ‖M‖ ≤ 1/10 logn.

A key component of our algorithm is a way of sampling pseudo-distributions given in [10]:

I Theorem 15 (Theorem 5.1 in [10]). For every k ≥ 0, there exists a randomized algorithm
with running time nO(k) and success probability 2−k/ poly(ε) for the following problem: Given
a degree-k pseudo distribution {u} over Rn that satisfies the polynomial constraint ‖u‖2 = 1
and the condition Ẽ[〈c, u〉k] ≥ e−εk for some unit vector c ∈ Rn, output a unit vector c′ ∈ Rn
with 〈c, c′〉 ≥ 1−O(ε).

The basic idea of Algorithm 2 is as follows. At each iteration, the algorithm tries to find
a new vector âi. As we discussed in Section 3, in order to find a vector close to ai it finds a
vector x with large T (x, x, x) value. Moreover, It enforces that the new vector is different
from all previous found vectors by the set of polynomial equations {〈s, x〉2 ≤ 1/8 : s ∈ S}.
Intuitively, if we haven’t found all of the vectors ai’s any of the remaining ai’s will satisfy
the set of constraints {〈s, x〉2 ≤ 1/8 : s ∈ S} and T (x, x, x) ≥ 1− 1/ logn. Therefore each
time we can find a valid pseudo-expectation Ẽ.

APPROX/RANDOM’15
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What we need to prove is for any pseudo-expectation Ẽ we found, it always satisfies
Ẽ[〈ai, x〉k] ≥ e−εk for some k = O((logn)/ε) for some small enough constant ε. Then by
Theorem 15we can obtain a new vector that is O(ε)-close to one of the ai’s. We formalize
this in the following lemma:

Algorithm 2 Overcomplete Random 3-Tensor Decomposition
Input: Random 3-tensor T =

∑m
i=1 a

⊗3
i ∼ Dm,n.

Output: â1, . . . , âm ∈ Rn s.t. {âi} is 0.1-close to {ai}
1: S ← ∅
2: repeat
3: Using semidefinite programming to find a degree k = O(logn) pseudo-expectation Ẽ

that satisfies the constraints {T (x, x, x) ≥ 1− 1/ logn, ‖x‖2 = 1} and {〈s, x〉2 ≤ 1/8 :
s ∈ S}.

4: Run the algorithm in Theorem 5.1 of [10] (for nO(k) times) with input Ẽ and obtain
vector c such that T (c, c, c) ≥ 0.99.

5: add vector c to S.
6: until |S| = m

7: return {âi} = S.

I Lemma 16. When T is chosen from Dm,n where m� n3/2, with high probability over the
randomness of T , the pseudo-expectation found in Step 3 of Algorithm 2 satisfies the following:
there exists an ai such that Ẽ[〈ai, x〉k] ≥ e−εk for sufficiently small constant ε (where the
pseudo-expectation has degree 4k and k = O((logn)/ε)). In particular, applying Theorem 15,
repeat the algorithm for nO(k) time will give a vector c such that 〈c, ai〉 ≥ 1−O(ε).

The main intuition is to use Cauchy-Schwarz and Hölder inequalities (like what we used
in Claim 11) to raise the power in the sum

∑m
i=1〈ai, x〉d (we start with d = 3 and hope to

get to d = k). When the degree is high enough we can afford to do an averaging argument
and lose a factor of m to go from the sum to a individual vector, because e−εk = poly(m).
The detailed proof is given in Appendix B.1.

Now we are ready to prove Theorem 14.

Proof. (sketch) We prove Theorem 14 by induction. Suppose s already contains a set of
vectors âi’s, where for each âi there is a corresponding aj that satisfies ‖âi − aj‖ ≤ 0.1. We
would like to show with high probability in the next iteration, the algorithm finds a new
component that is different from all the previously found ai’s.

In order to do that, we need to show the following:
1. The SDP in Step 3 of Algorithm 2 is feasible and gives a valid pseudo-expectation.
2. For any valid pseudo-expectation, with high probability we get an unit vector c that

satisfies T (c, c, c) ≥ 0.99, and c is far from all the previously found ai’s.
3. For any unit vector c such that T (c, c, c) ≥ 0.99, there must be a component ai such that
‖ai − c‖ ≤ 0.1.

In these three steps, Step 1 follows because we can take Ẽ to be the expectation of a true
distribution: x = ai with probability 1 for some unfound ai. Step 2 is basically Lemma 16,
when we choose ε to be a small enough constant, it is easy to prove that all the vectors
that satisfy 〈c, ai〉 ≥ 1−O(ε) must satisfy T (c, c, c) ≥ 0.99. Step 3 is the second part of our
observation in Section 3, which we prove in the appendix. J

The details in this proof can be found in Appendix B.2.
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6 Conclusion

In this paper we give the first algorithm that can decompose an overcomplete 3rd order
tensor when the rank m is almost n3/2 that matches the np/2 bounds for even order tensors.
Our argument is based on a special unfolding of the tensor and a decoupling argument for
matrix concentration. We feel such techniques can be useful in other settings.

Tensor decompositions are widely applied in machine learning for learning latent variable
models. Although the SoS based algorithm have poor dependency on the accuracy ε, in the
case of tensor decomposition we can actually use SoS as an initialization algorithm. We hope
such ideas can help solving more problems in machine learning.

Acknowledgements. We would like to thank Anima Anandkumar, Boaz Barak, Johnathan
Kelner, David Steurer, Venkatesan Guruswami for helpful discussions at various stages of
this work
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A Omitted Proofs in Section 4

A.1 Proof of Lemma 12
We first restate the lemma here.

I Lemma 17. With high probability over the randomness of ai’s,
m∑
i=1
〈ai, x〉4 �r,12 1 + Õ(m/n3/2) (9)

Recall [8] showed that when m� n2,

m∑
i=1
〈ai, x〉4 ≤ O(1) (10)

Here in order to improve this bound, we consider the square of the LHS of (6) and apply
Cauchy-Schwarz (similar to Claim 11),(

m∑
i=1
〈ai, x〉4

)2

=
〈

m∑
i=1
〈ai, x〉3ai, x

〉2

�

∥∥∥∥∥
m∑
i=1
〈ai, x〉3ai

∥∥∥∥∥
2

‖x‖2 by Cauchy-Schwarz

�r

∥∥∥∥∥
m∑
i=1
〈ai, x〉3ai

∥∥∥∥∥
2

=
m∑
i=1
〈ai, x〉6 +

∑
i 6=j
〈ai, aj〉〈ai, x〉3〈aj , x〉3 (11)

We will bound the first term of (11) by 1 + o(1). We simply let y = x⊗3 and let B
be the matrix whose ith row is a⊗3

i . Then f(y) = ‖By‖2 has the property that f(x⊗3) =∑m
i=1〈ai, x〉6. Therefore it suffices to prove that f(y) � (1 + o(1)‖y‖2 or equivalently

‖B‖ ≤ 1 + o(1).
Consider the matrix BBT . It is a n by n matrix with diagonal entries 1 and off diagonal

entries of the form 〈a⊗3
i , a⊗3

j 〉 = 〈ai, aj〉3. By the incoherence of ai’s, we have 〈ai, aj〉3 .

1/n3/2. Then by Gershgorin disk theorem, we have ‖BBT ‖ ≤ 1 + Õ(m/n3/2) = 1 + δ. It
follows that ‖B‖ ≤ 1 + Õ(m/n3/2). Therefore,

m∑
i=1
〈ai, x〉6 = ‖Bx⊗3‖2 � (1 + Õ(m/n3/2))‖x⊗3‖ ≤r 1 + Õ(m/n3/2) (12)

For the second term of (11), we apply Cauchy-Schwarz again:

∑
i 6=j
〈ai, aj〉〈ai, x〉3〈aj , x〉3

2

�

∑
i 6=j
〈ai, aj〉2〈ai, x〉2〈aj , x〉2

∑
i6=j
〈ai, x〉4〈aj , x〉4


�

 1
n
·
∑
i

〈ai, x〉2
∑
j

〈aj , x〉2
∑

i

〈ai, x〉4
∑
j

〈aj , x〉4


(13)
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Note that the matrix A = [a1| . . . |am] has spectral norm bound ‖A‖ .
√
m/n, and

therefore ∑
i

〈ai, x〉2 = ‖ATx‖2 � ‖A‖2‖x‖2 �r ‖A‖2

Then using Equation 10, and the equation above, we have

RHS of (13) �r
1
n
· m
n
· m
n
·O(1) ·O(1) ≤ Õ(m2/n3) (14)

Then by 13 and 14 and Lemma 34, we have that∑
i6=j
〈ai, aj〉〈ai, x〉3〈aj , x〉3 �r Õ(m2/n3) (15)

Hence, combining equation (15), (12) and (11) we have that

(
m∑
i=1
〈ai, x〉4

)2

�r
m∑
i=1
〈ai, x〉6 +

∑
i 6=j
〈ai, aj〉〈ai, x〉3〈aj , x〉3 (16)

�r 1 + Õ(m/n3/2) + Õ(m/n3/2) = 1 + Õ(m/n3/2)

Using Lemma 34 again, we complete the proof of Lemma 6.

A.2 Proof of Lemma 13
We first restate the lemma:

I Lemma 18. When m� n3/2, the matrix M =
∑
i6=j〈ai, aj〉(ai⊗aj)(ai⊗aj)T has spectral

norm at most Õ(m/n3/2) and as a direct consequence,

p(x) �r,4 Õ(m/n3/2)

Proof. As suggested in the proof sketch, we first use a simple symmetrization which allows
us to focus on the randomness of signs of 〈ai, aj〉. For simplicity of notation, let Qij :=
〈ai, aj〉(ai ⊗ aj)(ai ⊗ aj)T . Let σ ∈ {±1}m be uniform random ±1 vector and define M ′ as

M ′ =
∑
i 6=j

σiσjQij .

We claim that M ′ has the same distribution as M , since ai has the same distribution as
σiai. Then from now on we condition on the event that ai’s have incoherence property and
low spectral norm, that is, 〈ai, aj〉 . 1/

√
n, ‖A‖ = ‖[a1|a2 . . . |am]‖ .

√
m/n, and we will

only focus on the randomness of σ. Ideally we want to write M ′ as a sum of independent
random matrices so that we can apply matrix Bernstein inequality. However, now the random
coefficients are σiσj , and they are not independent with each other.

A key observation here is that the sum is only over the indices (i, j) with i 6= j, therefore
we can use Theorem 1 of [28] (restated as Theorem 29 in the end) to decouple the correlation
first.

Theorem 29 basically says that to study the concentration of a sum of the form∑
i6=j fij(Xi, Xj), it is up to constant factor similar to the concentration of the sum∑
i6=j fij(Xi, Yj) where Yi is an independent copy of Xi. Applying the theorem to our

situation, we have that there exists absolute constant C such that

Pr[‖M ′‖ ≥ t] ≤ C Pr[M ′′ ≥ t/C] (17)
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where
M ′′ :=

∑
i 6=j

σiτjQij ,

and σ, τ are independently uniform over {−1,+1}m.
Now it suffices to bound the norm of M ′′. We proceed by rewriting M ′′ as

M ′′ =
∑
i

σi
∑
j 6=i

τjQij :=
∑
i

σiTi,

where

Ti :=
∑
j 6=i

τjQij (18)

We study the properties of Ti first.

I Claim 19. With high probability over the randomness of ai’s, for all i, Ti � Õ(
√
m/n)(aiaTi )⊗

I.

Proof. Recall that Qij = 〈ai, aj〉(ai ⊗ aj)(ai ⊗ aTj ). In the definition 18 of Ti, the index
i is fixed and we take sum over j. Therefore it will be convenient to write Qij as Qij =
〈ai, aj〉(aiaTi )⊗ (ajaj)T where ⊗ is the Kronecker product between matrices. Then Ti can
be written as

Ti = (aiaTi )⊗

∑
j

τj〈ai, aj〉ajaTj

 .

We apply the Matrix Bernstein inequality (Theorem 30) on the right factor. Matrix
Bernstein bound requires spectral norm bound for individual matrices, and a variance bound.

For the spectral norm of individual matrices, we check that ‖τj〈ai, aj〉ajaTj ‖ . 1/
√
n (by

incoherence). For variance we know

‖E[
∑
j

τ2
j (〈ai, aj〉ajaTj )2]‖ = ‖A diag(〈ai, aj〉2)j 6=iAT ‖ . m/n2,

where we used the spectral norm of A and the fact that 〈ai, aj〉2 . 1/n.
Therefore by Matrix Bernstein’s inequality (Theorem 30) we have that whp, over the

randomness of τ ,
‖
∑
j

τj〈ai, aj〉ajaTj ‖ ≤ Õ(
√
m/n).

Using the fact that for two matrices P and Q, if P � Q and R is PSD, then R⊗P � R⊗Q
(see Claim 20), it follows that

Ti � (aiaTi )⊗ (Õ(
√
m/n) · I).

Finally we use union bound and conclude with high probability this is true for any i. J

Now we can apply matrix Bernstein for the sumM ′′ =
∑m
i=1 σiTi. The individual spectral

norm is bounded by Õ(
√
m/n) by the Claim 19. The variance is

‖
m∑
i=1

T 2
i ‖ ≤ Õ(m/n2)‖

m∑
i=1

((aiaTi )⊗ I)2‖ = Õ(m/n2)‖(AAT )⊗ I‖ = Õ(m2/n3).

Using matrix Bernstein inequality, we know with high probability ‖M ′′‖ ≤ Õ(m/n3/2).
Using (17), we get that whp, ‖M ′‖ ≤ Õ(m/n3/2). Since M ′ and M has the same

distribution, we conclude that whp, ‖M‖ ≤ Õ(m/n3/2). J
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We complete the proof by providing the following claim about Kronecker products.

I Claim 20. If P � Q and R is psd, then R⊗ P � R⊗Q.

Proof. It suffices to prove this when R = uuT (as we can always decompose R as sum of
rank one components). In that case, for any y ∈ Rn2 , we can write y = u⊗ v + z where z is
orthogonal to u⊗ ei for all i ∈ [n]. Now (R⊗ P )z = 0, therefore

yT (R⊗ P )y = (u⊗ v)T (R⊗ P )(u⊗ v) = (uTRu)(vTPv) ≤ (uTRu)(vTQv) = yT (R⊗Q)y.

Therefore R⊗ P � R⊗Q. J

A.3 Main Theorem for Certifying Injective Norm
Now we are ready to prove Theorem 9.

I Theorem 21. Algorithm 1 always returns NO when ‖T‖inj > 1+1/ logn. When T ∼ Dm,n
and m � n3/2, Algorithm 1 returns YES with high probability over the randomness of T .
Further, the same guarantee holds given an approximation T̃ where if M ∈ Rn×n2 is an
unfolding of T − T̃ , ‖M‖ ≤ 1/2 logn.

Proof. We first prove whenever ‖T‖inj > 1 + 1/ logn, the algorithm returns NO. This is
because a large injective norm implies there exists an unit vector x∗ with T (x∗, x∗, x∗) = 1.
We can construct a pseudo-expectation Ẽ as Ẽ[p(x)] = p(x∗). Clearly this is a valid pseudo-
expectation (it is even the expectation of a true distribution: x = x∗ with probability 1).
Also, we know Ẽ[T (x, x, x)] = T (x∗, x∗, x∗) > 1+1/ logn, so in particular OPT > 1+1/ logn
and the algorithm must return NO.

Next we show the algorithm returns YES with high probability when T is chosen from D.
This follows directly from Theorem 10, which in turn follows from Lemmas 12 and 13. In
particular, we know there is a degree-12 SoS proof that shows T (x, x, x) ≤ 1 + Õ(m/n3/2) ≤
1 + 1/2 logn, so by Lemma 8 this must also hold for any pseudo-expectation.

When we are only given tensor T̃ such that the unfolding of T̃ − T has spectral norm
1/2 logn. Let M be the unfolding of T̃ − T , and y = x ⊗ x, then by Lemma 33 we know
(xTMy)2 � ‖x‖2‖M‖2‖y‖2, which implies (by Lemma 33) [T̃ − T ](x, x, x) = xTMy �r,12
‖M‖ ≤ 1/2 logn. Combining the two terms we know

T̃ (x, x, x) = T (x, x, x) + [T̃ − T ](x, x, x) �r,12 1 + 1/ logn.

J

B Omitted Proof in Section 5

B.1 Proof of Lemma 16
We first restate the lemma here:

I Lemma 22. When T is chosen from Dm,n where m� n3/2, with high probability over the
randomness of T , the pseudo-expectation found in Step 3 of Algorithm 2 satisfies the following:
there exists an ai such that Ẽ[〈ai, x〉k] ≥ e−εk for sufficiently small constant ε (where the
pseudo-expectation has degree 4k and k = O((logn)/ε)). In particular, applying Theorem 15,
repeat the algorithm for nO(k) time will give a vector c such that 〈c, ai〉 ≥ 1−O(ε).

First we will show that for a valid pseudo-expectation, the sum of 〈ai, x〉4 and 〈ai, x〉6
are also bounded. This actually follows directly from the proof of Lemma 12 and 13.
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I Lemma 23. With high probability over the randomness of T , we have that for any degree-12
pseudo expectation Ẽ that satisfies the constraints {‖x‖2 = 1, T (x, x, x) ≥ 1 − τ}, it also
satisfies

1 + ε ≥ Ẽ

[
m∑
i=1
〈ai, x〉4

]
≥ 1− ε (19)

1 + ε ≥ Ẽ

[
m∑
i=1
〈ai, x〉6

]
≥ 1− ε (20)

for ε = Õ(m/n3/2) +O(τ).

Proof. We essentially just take pseudo-expectation on the SoS proofs for Lemma 12 and 13.
The upper bounds follows directly by taking pseudo-expectation on equation (9) and (12).
Fo the lower bounds, by taking pseudo-expectation over the SoS equation in Lemma 13,
we have that Ẽ [p(x)] ≤ Õ(m/n3/2). Taking pseudo-expectation over Claim 11, using the
assumption that Ẽ satisfies T (x, x, x) ≥ 1− τ , we have that

1− τ ≤ Ẽ
[
[T (x, x, x)]2

]
≤ Ẽ

[
〈ai, x〉4

]
+ Ẽ [p(x)] ≤ Ẽ

[
〈ai, x〉4

]
+ Õ(m/n3/2) (21)

which implies

Ẽ
[
〈ai, x〉4

]
≥ 1− τ − Õ(m/n3/2). (22)

For proving the lower bounds in (20), we first pseudo-expectation on equation 15, we
have that

Ẽ

∑
i6=j
〈ai, aj〉〈ai, x〉3〈aj , x〉3

 ≤ Õ(m2/n3)

Then taking pseudo-expectation over equation (16), we obtain that

Ẽ

( m∑
i=1
〈ai, x〉4

)2
 ≤ Ẽ

[
m∑
i=1
〈ai, x〉6

]
+ Ẽ

∑
i6=j
〈ai, aj〉〈ai, x〉3〈aj , x〉3


Note that by equation (22) and Cauchy-Schwarz, we have

Ẽ

( m∑
i=1
〈ai, x〉4

)2
 ≥ (Ẽ[ m∑

i=1
〈ai, x〉4

])2

≥ 1−O(τ)− Õ(m/n3/2)

Combining the two equations above, we obtain that

Ẽ

[
m∑
i=1
〈ai, x〉6

]
≥ 1−O(τ)− Õ(m/n3/2)

J

Next we are going to prove that Ẽ also satisfies the condition of Theorem 5.2 of [10].
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I Lemma 24. For k = O((logn)/ε) with constant ε < 1, If Ẽ is a degree-k pseudo-expectation
that satisfies equation (20) and (19), then there must exists i ∈ [m] such that Ẽ[〈ai, x〉k] ≥
e−(2ε+δ)k with δ = Õ(m/n3/2).

Proof. By equation (2.5) of [10], we the following SoS version of Holder inequality. For any
integer t, d and k = t(d− 2),

‖v‖dtd �k ‖v‖kk · ‖v‖2t

Let vi = 〈ai, x〉2, we have(
m∑
i=1
〈ai, x〉2d

)t
�k

m∑
i=1
〈ai, x〉2k ·

(
m∑
i=1
〈ai, x〉4

)t
(23)

By Lemma 12, we have that with high probability over randomness of ai’s,
∑m
i=1〈ai, x〉4 �

1 + Õ(m/n3/2), and it follows that(
m∑
i=1
〈ai, x〉4

)t
≤ (1 + Õ(m/n3/2))t (24)

By picking d = 3, we have t = k. Taking t = O(logm/ε) and combining equation (23)
and (24), we have that(

m∑
i=1
〈ai, x〉6

)k
�k

m∑
i=1
〈ai, x〉2k ·

(
m∑
i=1
〈ai, x〉4

)k
�k (1 + Õ(m/n3/2))k

m∑
i=1
〈ai, x〉2k

Applying pseudo-expectation on both hands, we obtain,

Ẽ

( m∑
i=1
〈ai, x〉6

)k ≤ (1 + Õ(m/n3/2))k · Ẽ

[
m∑
i=1
〈ai, x〉2k

]

Note that by Cauchy-Schwarz and equation (20), we have

(1− ε)k ≤ Ẽ

[
m∑
i=1
〈ai, x〉6

]k
≤ Ẽ

( m∑
i=1
〈ai, x〉6

)k
Combining the two equations above, we obtain that for δ = Õ(m/n3/2),

Ẽ

[
m∑
i=1
〈ai, x〉2k

]
≥ (1− δ)k(1− ε)k (25)

Therefore by averaging argument, there exists i such that

Ẽ[〈ai, x〉2k] ≥ (1− δ)k/m = e−δk−logm−εk

when k ≥ (logm)/ε, we have that Ẽ[〈ai, x〉2k] ≥ e−(2ε+δ)k J

Lemma 16 follows directly from the two lemmas above.
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B.2 Proof of Theorem 14
In this section we prove the main theorem in Section 5.

I Theorem 25. Let T be a tensor chosen from Dm,n, when m� n3/2 with high probability
over the randomness of T Algorithm 2 returns {âi} that is 0.1-close to {ai} in time nO(logn).
Further, the same guarantee holds given an approximation T̃ where if M ∈ Rn×n2 is an
unfolding of T − T̃ , ‖M‖ ≤ 1/10 logn.

As suggested in the proof sketch, we prove this theorem by induction. The induction
hypothesis is that all vectors si ∈ S are 0.1-close (in `2 norm) to distinct components ai’s.
We break the proof into three claims:

I Claim 26. With high probability over the tensor T , suppose all the previously found si’s
are 0.1-close (in `2 norm) to some components aj’s, then there exists a pseudo-expectation
that satisfies Step 3 in Algorithm 2.

Proof. We first prove that with high probability T (ai, ai, ai) ≥ 1− 1/ logn for all i. This
is easy because T (ai, ai, ai) = 1 +

∑
j 6=i〈ai, aj〉3. Conditioned on ai, the values 〈ai, aj〉 are

sub-Gaussian random variables with mean 0 and variance 1/n, so by standard concentration
bounds we know with high probability

∑
j 6=i〈ai, aj〉3 ≥ −1/ logn. We can then take the

union bound and conclude T (ai, ai, ai) ≥ 1− 1/ logn for all i.
Now for simplicity of notation, assume that S = {s1, . . . , st} for some t < m, where si is

0.1-close to ai. We can construct a pseudo-expectation Ẽ[p(x)] = p(at+1). Clearly this is
a valid pseudo-expectation that satisfies ‖x‖2 = 1. For the inequality constraints we also
know 〈at+1, si〉2 ≤ 2(〈at+1, ai〉2 + 〈at+1, ai − si〉2) < 1/8 (where the whole proof only uses
Cauchy-Schwarz and (A+B)2 ≤ 2(A2 +B2), so the proof is SoS). Therefore the system in
Step 3 must have a feasible solution. J

I Claim 27. For any valid pseudo-expectation in Step 3, with high probability we get an unit
vector c that satisfies T (c, c, c) ≥ 0.99, and c is far from all the previously found ai’s.

Proof. By Lemma 16 we know there must be a vector ai such that Ẽ[〈ai, x〉k] ≥ e−εk for
sufficiently small constant ε. We show that this vector ai cannot be among the previously
found ones. By Lemma 32 we know that for even number k,

(〈si, x〉+ 〈si − ai, x〉)k ≤ 2k−1(〈si − ai, x〉k + 〈si, x〉k)

Taking pseudo-expectations over both sides, we have that

Ẽ[〈ai, x〉k] �2k 2k−1(Ẽ[〈si, x〉k] + kẼ[〈si − ai, x〉k]) �‖x|2=1,2k e
−εk

where we’ve used the constraint 〈si, x〉2 ≤ 1/8 and induction hypothesis ‖si − ai‖ ≤ 0.1.
Now applying Theorem 15 we get a vector c that is has inner-product 1 − O(ε) with

ai. Therefore T (c, c, c) = T (ai, ai, ai) + T (c − ai, ai, ai) + T (c, c − ai, ai) + T (c, c, ai) ≥
1 − 1/ logn − 3‖T‖inj‖c − ai‖ ≥ 0.99. Here T (x, y, z) =

∑
i1,i2,i3

Ti1,i2,i3xi1yi2zi3 is the
multilinear form for the tensor, and note that this step of the proof does not need to be SoS
because we already have the vector c from Theorem 15. J

I Claim 28. For any unit vector c such that T (c, c, c) ≥ 0.99, there must be a component ai
such that ‖ai − c‖ ≤ 0.1.
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Proof. We define the following trivial pseudo-expectation Ẽ
c defined by c: Ẽ

c [p(x)] = p(c).
Then we know that Ẽ

c does satisfy equation T (x, x, x) ≥ 0.99, and the degree of Ẽ
c can

be any finite number. Therefore, by Lemma 24, we have that Ẽ
c [〈ai, x〉k] ≥ e−(2ε+δ)k for

k = O(logn). Therefore using the definition of Ẽ
c, we have that Ẽ

c [〈ai, x〉k] = 〈ai, c〉k ≥
e−(2ε+δ)k. Taking ε = 0.001 and then we have that 〈ai, c〉 ≥ 0.999 − δ and it follows that
‖ai − c‖ ≤ 0.99. J

These three claims finishes the induction in the noiseless case. For the noisy case, we can
handle it the same ways as Theorem 9: note that [T̃ − T ](x, x, x) �‖x‖2=1,12 1/2 logn and
this additional term does not change any part of the proof.

Finally, the runtime of Line 3 in Algorithm 2 is nO(k), and the run-time of line 4 is also
nO(k). Therefore the total runtime is nO(k).

C Matrix Concentrations

In this section we introduce theorems used to prove matrix concentrations. First we need
the following lemma for decoupling the randomness in the sum.

I Theorem 29 (Special case of Theorem 1 of [28]). Let X1, . . . , Xn, Y1, . . . , Yn are independent
random variables on a measurable space over S, where Xi and Yi has the same distribution
for i = 1, . . . , n. Let fij(·, ·) be a family of functions taking S×S to a Banach space (B, ‖ · ‖).
Then there exists absolute constant C, such that for all n ≥ 2, t > 0,

Pr

∥∥∥∥∥∥
∑
i 6=j

fij(Xi, Xj)

∥∥∥∥∥∥ ≥ t
 ≤ C Pr

∥∥∥∥∥∥
∑
i 6=j

fij(Xi, Yj)

∥∥∥∥∥∥ ≥ t/C


We also need the Matrix Bernstein’s Inequality:

I Theorem 30 (Matrix Bernstein, [30]). Consider a finite sequence {Xk} of independent,
random symmetric matrices with dimension d. Assume that each random matrix satisfies

E[Xk] = 0 and ‖Xk‖ ≤ R almost surely.

Then, for all t ≥ 0,

Pr[‖
∑
k

Xk‖ ≥ t] ≤ d · exp
(
−t2/2

σ2 +Rt/3

)
where σ2 := ‖

∑
k

E[X2
k ]‖.

D Sum-of-Square Proofs

In this section we state some lemmas that can be proved by low-degree SoS proofs. Most of
these lemmas can be found in [12] and [9] but we still give the proofs here for completeness.

I Lemma 31. [SoS proof for Cauchy-Schwarz] Cauchy-Schwarz inequality can be proved by
degree-2 sum of squares proofs,(

n∑
i=1

a2
i

)(
n∑
i=1

b2
i

)
−

(∑
i

aibi

)2

=
∑
i,j

(aibj − ajbi)2

I Lemma 32. For any vector x, y, we have that for even number k,

‖x+ y‖k �k 2k−1(‖x‖k + ‖y‖k)
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Proof. Note that it suffices to prove it for one dimensional vector x, y. We prove by induction.
For k = 2, it just follows Cauchy-Schwarz. Suppose it is true for k − 2 case, we have

(x+ y)k = (x+ y)k−2(x+ y)2 � 2k−3(xk−2 + yk−2) · 2(x2 + y2)

Note that

2(xk + yk)− (xk−2 + yk−2)(x2 + y2) = (x2 − y2)2(xk−4 + xk−6y2 + · · ·+ yk−4) � 0

Combing the two equations above we obtain the desired result. J

I Lemma 33. Suppose M is m× n matrix with spectral norm ‖M‖, then

(xTMy)2 �4 ‖x‖2‖y‖2‖M‖2

Proof. Assume m ≤ n without loss of generality, and suppose M has singular decomposition
M = UΣV T where Σ = diag(σ1, . . . , σm). Let z = xTU and w = V T y. Then

(xTMy)2 =
(

m∑
i=1

σiziwi

)2

�4

(
m∑
i=1

σ2
i z

2
i

)(
m∑
i=1

w2
i

)
≤ ‖M‖2‖z‖2‖w‖2 = ‖x‖2‖y‖2‖M‖2

J

I Lemma 34. For a nonnegative real number a and a set of polynomial R and positive integer
k, if a polynomial p(x) satisfy p(x) �R,k a2, then p(x) �R,k′ a for k′ = max{k, 2 deg(p)}.

Proof. By a simple manipulation of algebra, we have that

p(x)− a �R,k
1
2a (p(x)− a)2 �R,k′ 0.

J
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Abstract
We give an efficient structural decomposition theorem for formulas that depends on their negation
complexity and demonstrate its power with the following applications:

We prove that every formula that contains t negation gates can be shrunk using a random
restriction to a formula of size O(t) with the shrinkage exponent of monotone formulas. As a
result, the shrinkage exponent of formulas that contain a constant number of negation gates
is equal to the shrinkage exponent of monotone formulas.
We give an efficient transformation of formulas with t negation gates to circuits with log t
negation gates. This transformation provides a generic way to cast results for negation-limited
circuits to the setting of negation-limited formulas. For example, using a result of Rossman
([33]), we obtain an average-case lower bound for formulas of polynomial-size on n variables
with n1/2−ε negations.

In addition, we prove a lower bound on the number of negations required to compute one-way
permutations by polynomial-size formulas.
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Understanding the complexity of classical computational models for Boolean functions is the
holy grail of theoretical computer science. We focus on one of the simplest and most well
studied models known as Boolean formulas over the De Morgan basis. Such a formula is a
Boolean formula over the basis that includes AND, OR and NOT gates, where the former
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are known (see [14, 12] and references therein).1 Bridging this gap is a major challenge
since even a super-polynomial lower bound on the size of formulas (for a function that is
constructible deterministically in polynomial-time) would separate P from NC1.

In 1962 Nechiporuk [27] considered the model of formulas with a limited number of
negation gates and proved the following classical result: dn/2e negation gates are sufficient
to compute any Boolean function on n variables by a formula, and moreover, any formula
can be efficiently transformed into a formula that computes the same function but contains
at most dn/2e negation gates (see [27, 25] and [22]).

In this paper, we continue this line of research and study negation-limited formulas with
two main perspectives. The first perspective, which is motivated by bridging the gap between
monotone and non-monotone formulas, is that we view negation-limited formulas as a natural
extension of monotone formulas and try to extend various complexity properties of monotone
formulas to the negation-limited setting. The second perspective, which is motivated by
separating the power of circuits and formulas, is that we view negation-limited formulas as a
restricted form of negation-limited circuits and ask natural questions about negation-limited
circuits in the setting of formulas.

1.1 Our Contributions
The main tool: efficient decomposition of negation-limited formulas
We prove an efficient structural decomposition theorem for negation-limited formulas. Spe-
cifically, we prove that any function f that can be computed using a formula of size s that
contains t negation gates can be decomposed (in polynomial-time) into T + 1 functions
h, g1, . . . , gT such that f(x) ≡ h(g1(x), . . . , gT (x)), where T = O(t), h is a read-once formula,
each gi is a monotone function and the total (monotone) formula size of all the gi’s is at
most 2s. That is, roughly speaking, we are able to (efficiently) push all the negation gates to
the root of the formula while increasing its size only by a small constant factor (i.e., 2).

This decomposition theorem serves us as the main tool to extend results for monotone
formulas to negation-limited formulas, and to leverage results concerning negation-limited
circuits to negation-limited formulas. We give two applications to demonstrate the usage of
our main tool.

Application 1: shrinkage of negation-limited formulas under random restrictions

One of the most successful methods for proving lower bounds in several computational models
is the method of shrinkage under random restrictions.2 This method was invented and first
used by Subbotovskaya [35] who proved a lower bound of Ω(nΓ) on size of formulas that
compute the parity function on n variables, where Γ ≥ 1.5 is referred to as the shrinkage
exponent of (De Morgan) formulas under random restrictions. Subsequent improvements on

1 More precisely, there exists an explicit Boolean function on n inputs such that every formula that
computes it must be of size n3−o(1) (see [16, 37]). Moreover, there exists an explicit monotone function
on n inputs such that every monotone formula that computes it must be of size 2Ω(n/ logn) (see [12]).

2 A random restriction with parameter p ∈ [0, 1] is a vector ρ ∈ {0, 1, ?}n such that with probability p
each entry gets the value ? and with probability 1− p each entry is assigned, with equal probabilities,
to 0 or 1. Given a function f : {0, 1}n → {0, 1} and a random restriction ρ as above, the restricted
function f |ρ is defined in the following way: if ρi ∈ {0, 1} then the ith input variable of f is fixed to 0
or 1, respectively, and otherwise it is still an unfixed variable. We say that formulas have shrinkage
exponent Γ if for every function f the expected formula size of f |ρ is at most O(pΓ · L(f) + 1), where
L(f) is the formula size of f and the expectation is over the choice of ρ.
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the constant Γ led to improved lower bounds on formula size. Impagliazzo and Nisan [20]
and Paterson and Zwick [31] proved that Γ ≥ 1.55 and Γ ≥ 1.63, respectively, Håstad [16]
proved that Γ ≥ 2− o(1) and very recently Tal [37] closed the gap and proved that Γ = 2.
Apart from being useful for proving lower bounds, shrinkage results have a broad scope of
applications in other areas including pseudorandomness [19], Fourier concentration [18] and
#SAT algorithms [7, 8].

A major open problem (mentioned e.g., in [31, 16, 37]) is to understand what is the
shrinkage exponent of monotone formulas.3 We study the related question of understanding
the shrinkage exponent of negation-limited formulas and provide a trade-off between the
number of negations and the shrinkage exponent. More precisely, we prove that every formula
that contains t negation gates can be shrunk using a random restriction to size O(t) with
the shrinkage exponent of monotone formulas. As a simple instantiation of our result, we get
that the shrinkage exponent of formulas that contain a constant number of negation gates is
exactly the same as the shrinkage exponent of monotone formulas.

Application 2: efficient transformation from negation-limited formulas to circuits

The decomposition theorem gives a way to efficiently transform formulas with t negations
into circuit with roughly log t negations. Specifically, we prove that a formula of size s that
contains t negations can be transformed into a circuit of size 2s+O(t · log t) that contains
only log t+O(1) negation gates.

This transformation also provides a generic way to cast results for negation-limited
circuits to the setting of negation-limited formulas. Informally, algorithms for circuits with
log t negation gates will apply for formulas with t negation gates (with almost the same size
and depth), and lower bound for circuits with log t negations will imply lower bounds for
formulas with t negation gates (with almost the same size and depth). As an example, this
allows us to cast the recent average-case lower bound for mNC1 [33], lower bounds for several
cryptographic primitives [13], and the upper bound on learning circuits with few negations
[5] to the setting of negation-limited formulas as we elaborate in Section 4.2.1.

More Results
Lower bound on negation complexity of one-way permutations

We prove a lower bound for implementing one-way permutations by negation-limited formulas.
Specifically, we show that every permutation on n bits that can be computed by a formula
of size s that contains t negation gates can be inverted (on every image) in time 22t · s. This
implies, in particular, that every implementation of a one-way permutation as a polynomial-
size formula must contain at least ω(logn) negation gates. As a comparison, Guo et al. [13]
left open the question of whether one-way permutations are computable by circuits that
contain a single negation gate.

Upper bound on the total influence

Total influence has many applications in various areas of theoretical computer science. Most
relevant to our context, it serves as the main tool in recent studies of negation-limited circuits
in computational learning [5] and cryptography [13].

3 It is conjectured that the shrinkage exponent of monotone formulas is equal to 3.27, the shrinkage
exponent of read-once formulas (see Conjecture 3 in [31]).
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The literature on negation complexity defines a measure, a(·), called “alternation com-
plexity” which denotes the maximal number of times a function f : {0, 1}n → {0, 1} changes
its value along a chain (i.e., a monotone sequence of strings) starting at 0n and ending at 1n.
Blais et al. [5] proved (using their inefficient decomposition theorem) that for any function f
it holds that Inf(f) ≤ O(a(f) ·

√
n). We give a simple direct probabilistic argument for this

fact.

1.2 Related Work
An inefficient decomposition theorem for negation-limited circuits into monotone circuits
explicitly appeared in [5]. They proved that any function f that can be computed using
a circuit with t negations can be decomposed into T + 1 functions h, g1, . . . , gT such that
f(x) ≡ h(g1(x), . . . , gT (x)), where T = O(2t), h is either the parity function or its negation
and each gi is a monotone function.4 An efficient version of this decomposition theorem
(with related parameters) appeared explicitly in [13] and implicitly in [2, 33].

Besides the above, the power of negations in different models has been studied in many
works including [24, 27, 10, 34, 32, 39, 4, 36, 2, 25, 21]. For more information on negations
in complexity theory we refer to Jukna’s book [22, §10] and references therein.

1.3 Overview of Our Techniques
In this section we present a high-level overview of the techniques used to obtain some of our
results.

Efficient decomposition of negation-limited formulas

Using the theorem of Nechiporuk [27] it is quite straightforward to cast the decomposition
theorem of [5] to the setting of negation-limited formulas which results in the same statement
except that T = O(t) (rather than T = O(2t)). More precisely, it gives that and function f
can be rewritten as f(x) ≡ h(g1(x), . . . , gT (x)), where T = O(t), h is either the parity function
or its negation and each gi is a monotone function. Unfortunately, such a decomposition is
not enough for us since it is inefficient, in particular, it does not preserve the size or depth
of the original formula. Note that the efficiency of the decomposition was mostly not an
issue in [5, 13], whereas for us it is crucial since, for example, shrinkage is a combinatorial
property that general circuits do not have (unlike formulas).

To overcome this we prove an efficient version in which the resulting formula has almost
the same size and depth as the original one.5 Technically, our decomposition is more involved
than the inefficient version and is influenced by ideas and techniques used in recent papers
on De Morgan formulas [19, 23, 37].

As an applications of this theorem, we prove the shrinkage result and the transformation
from negation-limited formulas to circuits. The shrinkage theorem relies on two properties of
the decomposition: it does not introduce much overhead in the formula size and the gi’s are
monotone, and thus, shrink as well as monotone formulas. To get the transformation result,

4 We refer to this decomposition as “inefficient” since the decomposed monotone components (i.e., the
gi’s) may have exponential size.

5 We note that our transformation is efficient in a strong sense: (1) it can be implemented in polynomial-
time in the size of the input formula, and (2) it results with a formula of polynomial-size (close to the
size of the input formula).
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we use our efficient decomposition theorem for formulas, view h as a circuit on t inputs, and
apply Fischer’s transformation [10] (see also [4]) to implement h with dlog2(t+ 1)e negations.

Negation complexity of one-way permutations

Our lower bound on the number of negations required to compute one-way permutations
relies crucially on the fact that the fan-out of formulas is 1. We take advantage of this fact
together with Talagrand’s inequality [38] in a way that might be of independent interest. We
emphasize that previously it was known that one-way permutations cannot be computed by
a monotone circuit.

1.4 Paper Organization
The remainder of this paper is organized as follows. In Section 2 we provide an overview
of the notation, definitions, and tools underlying our proofs. In Section 3 we present our
central tool: the decomposition theorem for negation-limited formulas. In Sections 4.1 to
4.3 we give the statements of the shrinkage result, the transformation from negation-limited
formulas to negation-limited circuits, the lower bound for one-way permutations, and the
influence bound for negation-limited formulas.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For
an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote by
x ← X the process of sampling a value x from the distribution X. Similarly, for a set X
we denote by x← X the process of sampling a value x from the uniform distribution over
X . Unless explicitly stated, we assume that the underlying probability distribution in our
equations is the uniform distribution over the appropriate set. Further, we let U` denote the
uniform distribution over {0, 1}`. We use log x to denote a logarithm in base 2. We denote
by wt(x) the Hamming weight of a string x ∈ {0, 1}n (i.e., the number of 1’s in the string).

Boolean Formulas
We recall some standard definitions and notation regarding formulas. We refer to [22]
for a thorough introduction. We consider formulas over the De Morgan basis BDM =
{AND,OR,NOT}, where the AND and OR gates are of fan-in two. Whenever we refer to
formulas we actually refer to De Morgan formulas.

A Boolean formula is a Boolean circuit whose fan-out is at most one. A De Morgan
formula is represented by a tree such that every leaf is labeled by an input variable and every
internal node is labeled by an operation from B2. A formula is said to compute a function
f : {0, 1}n → {0, 1} if on input x ∈ {0, 1}n it outputs f(x). The computation is done in the
natural way from the leaves to the root. The size of a formula F , denoted by L(F ), is defined
as the number of leaves it contains. For a function f , we denote by L(f) the size of the
smallest formula that computes the function f .

A formula is called read-once if every input variable labels at most one leaf. A formula F
that does not contain negation gates is called a monotone formula. We say that a formula F
is anti-monotone if F is the negation of a monotone formula.

Consider a formula F . Let q be a node in F (q can be either an internal node or a leaf).
We refer to the tree rooted at q as a subformula of F or a subtree of F .
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Let f : {0, 1}n → {0, 1}m be a Boolean multi-bit output function. Such a function can be
computed by m formulas F1, . . . , Fm such that Fi computes the ith output bit of f . The size
of the formula that computes f is the sum of the sizes of F1, . . . , Fm. Moreover, the number
of negation gates in f is the sum of the number of negation gates in F1, . . . , Fm.

Decrease, Alternating and Inversion Complexity
For two strings x, y ∈ {0, 1}n, we write x � y if xi ≤ yi for every i ∈ [n]. If x � y and
x 6= y, then we write x ≺ y. A chain X = (x1, . . . , xt) is a monotone sequence of strings
over {0, 1}n, i.e., xi � xi+1 for every i ∈ [t]. We say i is a jump-down position of f along a
chain X = (x1, x2, . . . , xt) if f(xi) = 1 and f(xi+1) = 0. We let d(f,X ) be the number of all
jump-down positions of f on chain X We say a chain X = (x1, x2, . . . , xt) is k-alternating with
respect to a function f if there exist indexes i0 < i1 < . . . < ik such that f(xij ) 6= f(xij+1),
for every j ∈ [0, k − 1]. We let a(f,X ) be the size of the largest set of indexes satisfying this
condition. The decrease of a Boolean function f is given by d(f) def= maxX d(f,X ) and the
alternating complexity of a Boolean function f is given by a(f) def= maxX a(f,X ), where X is
a chain over {0, 1}n. Note that a(f) ≤ 2d(f) + 1.

For a Boolean function f , we define the inversion complexity of f , denoted by I(f), as
the minimum number of NOT gates in any formula that computes f . The relation between
the inversion complexity and decrease complexity is stated in the following theorem.
I Theorem 1 ([27, 25]). For every Boolean function f it holds that

I(f) = d(f),

where I(f) is the inversion complexity of f and d(f) is the decrease of f .

Fourier Basis and Influence
For each S ⊆ [n], define χS : {0, 1}n → {−1, 1} as χS(x) =

∏
i∈S(−1)xi . It is well known

that the set {χS}S⊆[n] is an orthonormal basis (called the Fourier basis) for the space of all
functions f : {0, 1}n → R. It follows that every function f : {0, 1}n → R can be represented
as

f(x) =
∑
S⊆[n]

f̂(S)χS(x),

where f̂ : {0, 1}n → R, and f̂(S) def= Ex[(−1)
∑

i∈S
xi+f(x)] is called the Fourier coefficient of f

at S ⊆ [n]. We use Infi(f) to denote the influence of the i-th input variable on f , i.e.,

Infi(f) def= Pr
x

[f(x) 6= f(x⊕i)],

where x⊕i denotes the string obtained from x by flipping its i-th coordinate. The influence
of f (also known as average-sensitivity) is defined as Inf(f) def=

∑
i∈[n] Infi(f). We refer to

O’Donnell’s book [30] for an introduction to Fourier analysis.
Some of our proofs rely on the following inequality for monotone Boolean functions.

I Proposition 2 (Talagrand [38]). For any pair of monotone Boolean functions f, g : {0, 1}n →
{0, 1}, it holds that

Pr
x

[f(x) = 1 ∧ g(x) = 1] ≥ Pr
x

[f(x) = 1] · Pr
x

[g(x) = 1] + ψ
( ∑
i∈[n]

Infi(f) · Infi(g)
)
,

where ψ(x) def= c · x/ log (e/x), e is the base of the natural logarithm and c > 0 is a fixed
constant independent of n.
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One-Way Functions and One-Way Permutations
We say that a function f : {0, 1}n → {0, 1}m is an (s, ε)-secure one-way function (OWF) if
for every circuit C of size at most s,

Pr
x←{0,1}n, y=f(x)

[C(y) ∈ f−1(y)] ≤ ε.

If m = n, we say that f is length-preserving. If f is an (s, ε)-secure one-way function that
is lengh-preserving and one-to-one, we say that f is an (s, ε)-secure one-way permutation
(OWP).

3 Efficient Decomposition for Negation-Limited Formulas

In this section we present our main tool, an efficient structural decomposition theorem for
formulas which, intuitively, pushes all negation gates to the root of the formula.

I Theorem 3. Let f : {0, 1}n → {0, 1} be a Boolean function computed by a formula
F of size s containing t > 0 negation gates. Then, there exist T ≤ 15(t + 1) func-
tions g1, . . . , gT : {0, 1}n → {0, 1} and a function h : {0, 1}T → {0, 1} such that f(x) =
h(g1(x), . . . , gT (x)), h is computable by a read-once formula and g1, . . . gT are computable by
monotone formulas of total size at most 2s.

We first need the following claim that states that any formula that has t negation gates can
be decomposed into 2(t+1) subformulas such that each of them is monotone or anti-monotone
(i.e., either it has zero negations or it has one negation in the root). Moreover, each such
subformula has at most two “special” children which are subformulas by themselves. We
note that the proof of Theorem 3 draws ideas from a proof of a different decomposition
theorem used by Tal [37] which, in turn, is partially built on ideas that were used before in
[19] and then in [23]. However, since the properties of our decomposition are very different,
we cannot use the other theorems as a black-box.

I Claim 4. Let F be a formula of size s that contains t > 0 negations. Then, F can be
decomposed into at most 2(t+ 1) subformulas of total size s, such that (1) each subformula
has at most one negation gate in its root, and (2) each subformula has at most two “special”
children which are other subformulas.

Proof. Execute the following step t times: let g1, . . . , gs be the nodes of the formula F sorted
by their distance from the root gs. For any i = 1, . . . s if gi = NOT we set Fi to be the
subformula rooted at gi and set F = F \ Fi. This process results with T = t+ 1 subformulas
F1, . . . , FT whose total size is s and each is either monotone (i.e., does not include a NOT
gate) or includes one NOT gate located at its root (i.e., it is anti-monotone). This process
results with at most t+ 1 subformulas.

For each subformula Fi with more than two subformula children, find a subformula F ′i of
Fi with exactly two subformula children, and divide Fi into F ′i and Fi \F ′i . Note that Fi \F ′i
now has one fewer subformula children. Continue doing this until all subformulas have at
most two subformula children. This process results with the desired number of subformulas,
2(t+ 1), since the above process can happen at most the original number of subformulas. J

Proof of Theorem 3. Let F be as in the lemma. Apply the decomposition from Claim 4
on F to get the subformulas F1, . . . , FT ′ , where T ′ = 2(t+ 1). We show by induction on T ′
that one can construct a read-once formula H of size T ≤ 7T ′ and T monotone formulas
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G1, . . . , GT of size s such that F (x) = H(G1(x), . . . , GT (x)). For t = 0 (and T ′ = 1) the
statement holds trivially.

Assume that the root of the formula F is a node in the subformula F1, and that the
subformula F1 has two subformula children F2 and F3. (The case in which F1 has only one
subformula child is handled similarly). Denote by k(1)

2 , k
(1)
3 ∈ F1, k(2)

1 ∈ F2 and k(3)
1 ∈ F3

the nodes such that k(2)
1 and k(3)

1 are the roots of F2 and F3, respectively, k(1)
2 is the father

of k(2)
1 , and k(1)

3 is the father of k(3)
1 . Disconnect F2 and F3 from F1 and add two new leaves

labeled by z2 and z3 to F1 as a child of k(1)
2 and k(1)

3 , respectively.
Call the formula F1 with the two new leaves F ′. Notice that by Claim 4, F ′ is either

monotone or anti-monotone, namely a negation of a monotone function. We prove the case
when F ′ is anti-monotone and the argument for monotone case is similar. Let F ′1 be the
minimal subformula of F ′ that contain both z2 and z3 and let F ′2 and F ′3 be the corresponding
subformulas such that F ′1 = F ′2 gate F ′3, where gate ∈ {AND,OR}, and F ′2 contains z2 (but
not z3) and F ′3 contains z3 (but not z2). We will construct a formula which is equivalent to
F ′1.

We observe that F ′2 = F ′2|z2=0 OR (F ′2|z2=1 AND z2). This is true since F ′2 is monotone
(i.e., does not contain any negation gates). Similarly, F ′3 = F ′3|z3=0 OR (F ′3|z3=1 AND z3).
Thus,

F ′1 = (F ′2|z2=0 OR (F ′2|z2=1 AND z2)) gate (F ′3|z3=0 OR (F ′3|z3=1 AND z3)).

Replacing F ′1 with a new leaf z (where z is a new special variable) we have (by a similar
argument) that F1 = F1|z=1 OR (F1|z=0 AND z) (this follows by the anti-monotonicity of
F1). By expanding according to the definition of z we get that

F1 = F1|z=1 OR (F1|z=0 AND ((F ′2|z2=0 OR (F ′2|z2=1 AND z2)) gate
(F ′3|z3=0 OR (F ′3|z3=1 AND z3)))).

Now, we observe that the right hand side can be rewritten as F ′′(G1, . . . , G6, z2, z3), where
F ′′ is read-once and G1, . . . , G6 are formulas of size at most s (defined over the same set of
variables as the initial F ).

Let t2 and t3 be the number of subformulas which are descendants of F2 and F3 in the
formula decomposition, respectively. By induction the subformula of F rooted at k(2)

1 is
equivalent to F ′2(G(2)

1 (x), . . . , G(2)
6t2(x)), where F ′2 is read-once and G(2)

i is of size at most s.
Similarly, the subformula of F rooted at k(3)

1 is equivalent to F ′3(G(3)
1 (x), . . . , G(3)

6t3(x)), where
F ′3 is read-once and G(3)

i is of size at most s. Thus,

F (x) = F ′′(G1(x), . . . , G6(x), F ′2(G(2)
1 (x), . . . , G(2)

6t2(x)), G(3)
1 (x), . . . , G(3)

6t3(x))).

By rearranging the right hand size we get a read-once formula of size T ≤ 6 + 6t2 + 6t3 ≤ 7T ′
and T monotone subformulas each of size at most s such that their composition is equivalent
to F . To see that the total size of the subformulas is bounded by 2s notice that every
subformula was duplicated at most once. J

4 The Complexity of Negation-Limited Formulas

4.1 Shrinkage under Random Restrictions
A well known property of formulas is called shrinkage. We begin with several definitions. Let
f : {0, 1}n → {0, 1} be a Boolean function. A restriction ρ is a vector of length n of elements
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from {0, 1, ?}. We denote by f |ρ the function f restricted according to ρ in the following
sense: if ρi = ? then the i-th input bit of f is unassigned and otherwise the i-th input bit
of f is assigned to be ρi. A p-random restriction is a restriction as above that is sampled as
follows. For every i ∈ [n], independently with probability p set ρi = ? and with probability
1−p

2 set ρi to be 0 and 1, respectively. We denote this distribution of restrictions by Rp.

I Definition 5 (Shrinkage exponent). Let F be a class of formulas. The shrinkage exponent
of F is said to be Γ if for any F ∈ F

E
ρ←Rp

[L(F |ρ)] ≤ O
(
pΓ · L(F ) + 1

)
.

Denote by Γ,Γ0,Γ∗ the shrinkage exponent of (De Morgan) formulas, monotone formulas
and read-once formulas, respectively. Denote by Γt the shrinkage exponent of formulas that
contain at most t negation gates. It is known that (1) Γ = 2 [16, 37], (2) Γ∗ = log√5−1 2 ≈ 3.27
[9, 17], and (3) for every t ≥ 0 it holds that Γ∗ ≥ Γt ≥ Γt+1 ≥ Γ = 2. Figuring out the
value of Γ0, the shrinkage exponent of monotone Boolean formulas, is a major open problem
[31, 16, 37].

Our main theorem of this section is a trade-off between the number of negations in the
formula and its shrinkage exponent. In particular, we get that the shrinkage exponent of
formulas that contain a constant number of negation gates is equal to Γ0.

I Theorem 6. Let F be a formula that contains t > 0 negation gates. It holds that

E
ρ←Rp

[L(F |ρ)] ≤ O
(
pΓ0 · L(F ) + t

)
.

Proof of Theorem 6. Given a formula F we decompose it using Theorem 3 to getH,G1, . . . , GT ,
where T ≤ 15(t+ 1),

∑T
i=1 L(Gi) ≤ 2 · L(F ) and F (x) = H(G1(x), . . . , GT (x)). Clearly we

have that the formula size of F is at most the sum of the sizes of the Gi’s. Namely,

L(F ) ≤
T∑
i=1

L(Gi) ≤ 2 · L(F ), (1)

where the second inequality is true by the guarantee of the decomposition from Theorem 3.
Let ρ← Rp be a random restriction. For each i ∈ [T ] since Gi is monotone, we have that
Eρ[L(Gi|ρ)] ≤ O(pΓ0 · L(Gi) + 1). Thus, the expected size of L(F ) after applying ρ is

E
ρ
[L(F |ρ)] ≤

T∑
i=1

E
ρ

[L (Gi|ρ)] (Linearity of expectation)

≤
T∑
i=1

O
(
pΓ0 · L (Gi) + 1

)
(Each Gi is monotone)

≤O
(
pΓ0 · L(F ) + t

)
. (Equation (1))

J

Notice that when t = O(1) we get that Eρ[L(F )|ρ] ≤ O(pΓ0 · L(F ) + 1) which means
that the shrinkage exponent of such formulas is exactly equal to the shrinkage exponent of
monotone formulas. More generally, Theorem 6 implies that every formula F that contains
t > 0 negation gates can be shrunk in two steps of random restrictions such that in the first
step the formula F shrinks to size O(t) as monotone formulas shrink (i.e., with Γ0 as the
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shrinkage exponent) and in the second step the formula (of size O(t)) shrinks as formulas
shrink (with Γ as the shrinkage exponent). To be more precise, F can be restricted with a
random restriction ρ1 ← Rp1 , where p1 = Γ0

√
t/L(F ), to get a formula F1 of size O(t) and

then it can be restricted with a random restriction ρ2 ← Rp for any p to get a formula F2 of
size O(pΓ · t+ 1). In the following corollary we state a shrinkage result parameterized by t,
the number of negations, p, the restriction parameter, and L(F ), the formula size.

I Corollary 7. Let F be a formula that contains t = t(L(F )) > 0 negations and let c > 0 be
a constant. Then, for p ≥ Γ0

√
(c · t)/L(F ), it holds that

E
ρ←Rp

[L(F |ρ)] ≤ O
(
pΓ0 · L(F )

)
.

4.2 Efficient Transformation from Negation-Limited Formulas to
Circuits

In this section we show that negation-limited formulas can be transformed into negation-
limited circuits with exponentially smaller number of negations with almost linear blowup in
the size and depth. An inefficient transformation was previously known due to the theorems
of Markov [24] and Nechiporuk [27].6

I Theorem 8. Let F : {0, 1}n → {0, 1} be a formula of size s and depth d and t negations,
then there is a circuit C of size s′, depth d′ and t′ negations computing F such that s′ =
2s+O(t log t), d′ = d+O(log t) and t′ = log t+O(1).

Fischer’s theorem [10] can efficiently transform negation-limited formulas with t negations
into negation-limited circuits with logn negations. Our theorem combines Fischer’s theorem
and our decomposition theorem (Theorem 3) to efficiently transform the negation-limited
formulas with t negations into negation-limited circuits with log t negations.

Proof. Our decomposition theorem (Theorem 3) states that the function f computed by F
can be written as f(x) = h(g1(x), . . . , gT (x)) where T ≤ 15(t+1), g1, . . . , gT : {0, 1}n → {0, 1}
are computable by monotone formulas of total size at most 2s (also depth at most d) and
h : {0, 1}T → {0, 1} is computable by a read-once formula. We use the efficient version of
Markov’s theorem to get a circuit with few negations that compute h.

I Proposition 9 ([10, 4]). If a function on n variables can be computed by circuit over a
basis that includes AND, OR and NOT gates of size s and depth d, then it can be computed
by a circuit of size at most 2s+O(n logn) and depth d+O(logn) using at most dlog (n+ 1)e
negations.

The read-once formula computing h has input size T so that size is at most T and
depth is at most log T . By the above theorem, we conclude that h can be computed by
a circuit of size at most 2T + O(T log T ) = O(t log t) and depth O(log T ) using at most
dlog (T + 1)e = log t+O(1) negations. It is easy to see we can compose the circuit for h with
formulas for g1, . . . , gT to compute f . Since g1, . . . , gT are computable by monotone formulas
of total size at most 2s and depth at most d, we can further conclude that f are computable
by a circuit of size at most 2s+O(t log t), depth d+O(log t) and O(log t) negations. J

6 By the theorem of Nechiporuk [27], the decrease of a function computable by a formula with t negations
is t. Then, by the theorem of Markov [24], any function with decrease t is computable by a circuit
with dlog (t+ 1)e negations. The size of the resulting circuit, however, is unbounded (i.e., it can be
exponential in the number of inputs).
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4.2.1 Applications
In this section we exemplify the usefulness of Theorem 8.

Average-case lower bounds for negation-limited formulas

An average-case computation (a.k.a. approximate computation) of a function f : {0, 1}n →
{0, 1} is a computation that is required to agree with f only on a 1/2+δ fraction of the inputs.
Besides being interesting in their own right, average-case lower bounds (a.k.a. correlation
bounds) have proved useful in many fields of complexity theory, such as derandomization
(e.g., [28, 29]).

Recently, Rossman [33] proved the first average-case lower bound for mNC1, the class
of polynomial-size logarithmic-depth monotone circuits, or equivalently, polynomial-size
monotone formulas. More precisely, for every ε > 0, Rossman gives an explicit monotone
function on n variables which is (1/2 + n−1/2+ε)-hard to approximate in mNC1 under
the uniform distribution. His bound for mNC1 extends to circuits in NC1 with at most
(1/2− ε) logn negations. Using Theorem 8 and [33], we get the following corollary.

I Corollary 10. For every ε > 0, there is an explicit function f : {0, 1}n → {0, 1} such that
for every polynomial-size formula F with n1/2−ε negations, it holds that Prx←{0,1}n [F (x) =
f(x)] ≤ 1/2 + o(1).

We remark that Theorem 10 crucially relies on that the transformation in Theorem 8 is
efficient.

Cryptography in negation-limited formulas

One of the goals of cryptography is to study how simple cryptographic primitives can be,
where simplicity can be measured by e.g., the required assumptions, the circuit depth and
more. Recently, Guo et al. [13] (following on [11]) proved lower bounds on the number of
negations required to represent many cryptographic primitives as circuits. The simplicity
of a cryptographic primitive can also be measured by the simplicity of the model in which
it can be implemented (see e.g., [3] and concrete examples in [15, 26]). Using Theorem 8,
one can easily cast some of the results of [13] to the setting of negation-limited formulas
and obtain exponentially higher lower bounds on several primitives including pseudorandom
functions, hardcore predicates and extractors. (We refer the reader to [13] for the relevant
notation and definitions.)

I Corollary 11. If f : {0, 1}λ × {0, 1}n → {0, 1} is a (poly(n), 1/3)-secure pseudorandom
function, then any Boolean formula computing f contains at least Ω(n) negation gates.

I Corollary 12. Assume that there exists a family f = {fn}n∈N of (poly(n), n−ω(1))-secure
one-way functions, where each fn : {0, 1}n → {0, 1}n. Then, for every ε > 0, there exists a
family gε = {gn}n∈N of (length-preserving) (poly(n), n−ω(1))-secure one-way functions for
which the following holds. If h = {hn}n∈N is a (poly(n), n−ω(1))-secure hardcore predicate for
gε, then for every n sufficiently large, any formula computing hn contains at least Ω(n1/2−ε)
negations.

I Corollary 13. Let 0 < α < 1/2 be a constant, and m = m(n) ≥ 100. Further, suppose
that H ⊆ {h | h : {0, 1}n → {0, 1}m} is a family of functions such that each output bit
hi : {0, 1}n → {0, 1} of a function h ∈ H is computed by a formula and the total number of
negations of a function h ∈ H is at most t. If H is an (n 1

2−α, 1/2)-extractor, then t = Ω(nα).7

7 We remark that the above bound can be further improved to Ω(m · nα) if one combines the proof of
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Uniform-distribution learnability of negation-limited formulas

Monotone functions are known to be somewhat efficiently learnable with high accuracy given
uniformly distributed examples. Namely, Bshouty and Tamon [6] showed that any monotone
Boolean function on n variables can be learned from uniformly distributed examples to error
ε in time O(n

√
n/ε). Recently, Blais et al. [5] studied the question of learning negation-limited

circuits. They showed that any function on n variables that can be computed by a circuit
with t negations can be learned from uniformly distributed examples to error ε in time
nO(2t·

√
n/ε). Using Theorem 8 we obtain the following corollary.

I Corollary 14. There is a uniform-distribution learning algorithm that learns any Boolean
function f on n variables that can be computed by a formula with t negations to error ε in
time nO(t·

√
n/ε).

4.3 One-Way Functions and Permutations in Negation-Limited
Formulas

In this section we study the negation-limited complexity of one-way functions and one-way
permutations in the model of Boolean formulas. We start with a simple observation (see
Observation 15) that if one-way functions in NC1 exist, then there exist one-way functions
that can be computed by monotone logarithmic-depth formulas. Then, in Theorem 16,
we show that any one-way permutation is not computable by a formula that has O(logn)
negations.

I Observation 15. Assume that there is a one-way function in NC1. Then, there is a
one-way function computable by a logarithmic-depth monotone formula.

Proof. Recall the transformation of Goldreich and Izsak [11] that transformed every one-way
function into a monotone one-way function. Let C be a circuit that computes a one-way
function and let C ′ be a circuit obtained from C by pushing all negation gates to the leaves
and replacing negated variables by auxiliary variables, namely, C(x) = C ′(x, x̄), where
x̄i = ¬xi. Let Thk : {0, 1}n → {0, 1} be a function such that Thk(x) = 1 if and only if the
hamming weight of x is at least k. Notice that for any x of hamming weight k it holds that
¬xi = Thk(x∧ 1i−101n−i). Therefore, N(x) = (Thk(x∧ 01n−1), . . . ,Thk(x∧ 1n−10)) and we
get that

C ′′(x) = (Thn/2 ∧ C ′(x,N(x))) ∨ Th(n/2)+1(x)

is a monotone function which is efficiently computable and weakly one-way. Then, applying
the standard hardness amplification process they obtain a one-way function (we refer to [11]
for the exact detail).

We observe that if we start with a one-way functions in NC1, then the reduction of [11]
results with a monotone one-way function which is in NC1. Then, we use the standard
transformation from circuits in NC1 to formulas. Since this transformation preserves mono-
tonicity and depth, we complete the proof. We note that the above transformation of [11]
uses threshold functions which are computable by (uniform) formula of logarithmic depth
(using sorting networks [1]). J

[13] (with slight modifications) and the total influence upper bound given in Theorem 17.
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I Theorem 16. Let f : {0, 1}n → {0, 1}n be a permutation. If f is computable by a formula
of size s that contains t negations, then there exists a deterministic algorithm whose running
time is 22t · s such that given as input any y = f(x) outputs x. In particular, if s ∈ poly(n)
and t = O(logn), then the algorithm runs in polynomial-time.

Proof. Let fi : {0, 1}n → {0, 1} be the Boolean function corresponding to the i-th output bit
of f and Fi : {0, 1}n → {0, 1} be a formula computing fi. Let S = {i ∈ [n] | Fi is monotone},
i.e., the collection of indices i ∈ [n] for which Fi contains no negations. Since f has t < n

negations, we obtain |S| ≥ n − t. Let S1 = {i ∈ S | ∃j ∈ [n],∀x ∈ {0, 1}n : Fi(x) = xj},
i.e., the collection of indices i ∈ S for which Fi is a dictator function. Let Ii = {j ∈ [n] |
Infj(fi) 6= 0}, i.e., the set of input variables that fi depends on.

Consider functions f` and fk, where ` 6= k ∈ S. By Talagrand’s inequality (Proposition 2),

Pr
x

[f`(x) = 1 ∧ fk(x) = 1] ≥ Pr
x

[f`(x) = 1] · Pr
x

[fk(x) = 1] + ψ
( ∑
i∈[n]

Infi(f`) · Infi(fk)
)
.

Since f is a permutation, Prx[f`(x) = 1∧fk(x) = 1] = 1/4 and Prx[f`(x) = 1] = Prx[fk(x) =
1] = 1/2. Thus, since f` and fk are monotone and using the definition of ψ, we get that∑

i∈[n]

Infi(f`) · Infi(fk) = 0.

Therefore, I` ∩ Ik = ∅, i.e., f` and fk depend on a disjoint set of input variables. Since the
above holds for every pair `, k such that ` 6= k ∈ S, we obtain

n ≥
∣∣∣ ⋃
i∈S

Ii

∣∣∣ =
∑
i∈S
|Ii| =

∑
i∈S1

|Ii|+
∑

i∈S\S1

|Ii| . (2)

For i ∈ S \ S1, since the function fi is non-constant we have that |Ii| ≥ 2. Plugging this
into Equation (2), we obtain

n ≥
∑
i∈S1

1 +
∑

i∈S\S1

2 = 2 |S| − |S1| ≥ 2(n− t)− |S1| ,

which implies that |S1| ≥ n− 2t.
Given y = f(x), we can invert y and find x′ = x using following algorithm:

1. For every i ∈ S1, we set x′j to be yi where j is the only element in the set Ii.
2. Go over all possible assignments on the unassigned variables in x′ until f(x′) = y,
3. Output x′.
After the first step, |S1| ≥ n− 2t variables are assigned correctly. The number of unassigned
variables is at most 2t, so that we can try all possible assignments on the remaining unassigned
variables in time 22t · s, where s is the evaluation time of the permutation. If s ∈ poly(n)
and t = O(logn), we get that the above algorithm runs in polynomial-time. J

4.4 Total Influence of Negation-Limited Formulas
In this section we prove a general connection between total influence and negation complexity
of Boolean functions.

I Theorem 17. For any function f : {0, 1}n → {0, 1}, it holds that Inf(f) ≤ O (a(f) ·
√
n),

where Inf(f) is the total influence of f and a(f) is the alternating complexity of f .
In particular, if f can be computed by a formula with t negations, then Inf(f) ≤ O (t ·

√
n).
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A proof of Theorem 17 was given (somewhat implicitly in this full generality) in [5]
using their (inefficient) decomposition theorem. We show a direct probabilistic proof for
Theorem 17 which arguably simplifies their arguments and might be of independent interest.

We note that the bound in Theorem 17 is tight up to constants. Indeed, for any n ∈ N, any
constant c ∈ N (independent of n) and any t ≤ c·

√
n consider the function f : {0, 1}n → {0, 1}

defined as

f(x) =
{

wt(x) mod 2 if |wt(x)− n/2| ≤ t/2,
0 otherwise.

First, it is easy to see that t − 1 ≤ a(f) ≤ t + 1. Moreover, a simple analysis shows that
Inf(f) ≥ Ω(t·

√
n). To see this observe that since t ≤ O(

√
n), then Prx←{0,1}n [|wt(x)− n/2| ≤

t/2] ≥ Ω(t/
√
n), and that if x satisfies that |wt(x)− n/2| ≤ t/2, then changing each of its n

coordinates will flip the value of the function.

Proof of Theorem 17. The “In particular” part of the above theorem follows by Nechiporuk’s
theorem (see Theorem 1). We proceed with the main part.

Denote by D the set of all pairs of points in {0, 1}n that differ at one coordinate. Namely,
(x, y) ∈ D if and only if there exists an i ∈ [n] such that x⊕i = y.

We define two ways to sample edges from D and show that they define the same
distribution. The first way to sample an edge from D is by first sampling a point x ∈ {0, 1}n
and then sampling a random direction i ∈ [n]. This gives rise to the edge (x, x⊕i). Notice
that for any edge e ∈ D it holds that Prx←{0,1}n,i←[n][(x, x⊕i) = e] = 1

n·2n−1 . Moreover,
observe that by the definition of total influence, we have that

Inf(f)
n

= Pr
x←{0,1}n,i←[n]

[f(x) 6= f(x⊕i)]. (3)

The second way is defined as follows. Denote by C the set of all valid chains starting from
0n and ending at 1n. First, we sample a random chain X = (x0 = 0n, x1, . . . , xn−1, xn = 1n)
from C. Notice that wt(xi) = i for all i ∈ [n] ∪ {0}. Then, we pick the edge e(i) = (xi, xi+1)
for i ∈ [n−1]∪{0} on the chain with probability

(
n−1
i

)
/2n−1. Notice that this is a probability

distribution since we have that
∑n−1
i=0

(
n−1
i

)
/2n−1 = 1. Also, observe that a random chain X

from C contains an arbitrary edge (x, x′) ∈ D with probability 1/(
(
n−1
wt(x)

)
· n). In total, using

the above process, the probability to pick an edge e ∈ D is

Pr
X←C,(xi,xi+1)←X

[(xi, xi+1) = e] = Pr
(xi,xi+1)←X

[(xi, xi+1) = e | e ∈ X ] · Pr
X←C

[e ∈ X ]

=
(
n−1
wt(x)

)
2n−1 ·

1(
n−1
wt(x)

)
· n

= 1
n · 2n−1 .

Therefore, we got that the two ways to sample an edge on the cube have the same
distribution. Thus, using Equation (3), we get that

Inf(f)
n

= Pr
X←C,(xi,xi+1)←X

[f(xi) 6= f(xi+1)]. (4)

However, notice that for any X ∈ C it holds that

Pr
(xi,xi+1)←X

[f(xi) 6= f(xi+1)] ≤ a(f) · max
i∈[n−1]∪{0}

{(
n−1
i

)
2n−1

}
≤ O

(
a(f)/

√
n
)
,
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where the first inequality follows by the definition of a(f) (the maximum number of alterna-
tions at any chain) and the second inequality holds since the second term is maximized roughly
when i ≈ n/2 and it is known (by e.g., Stirling’s approximation) that

(
n
n/2
)

= O(2n/
√
n).

Plugging this back into Equation (4) we get that Inf(f) ≤ O(a(f) ·
√
n). J

5 Open Problems

In this paper we study the power of negation gates in the model of Boolean De Morgan
formulas. Our shrinkage result (Theorem 6) implies that as long as t� L(F ), the shrinkage
exponent of F is essentially Γ0, the shrinkage exponent of monotone formulas. In addition,
we showed that formulas with t negation gates can be efficiently transformed into circuits
with roughly log t negation gates without incurring significant blow-up in size or depth.

Morizumi [25] showed that any formula F can be transformed into a formula F ′ that has
only dn/2e negations and such that L(F ′) ≤ L(F ) · O(n6.3). His transformation uses as a
building block the monotone formula that compute the threshold function of Valiant [40]
which gives a short but non-explicit construction. We leave open the question whether one
can come up with an explicit and efficient transformation from any formula to a formula
with few negations.

Lastly, we mention the important open problem of determining the shrinkage exponent
of monotone formulas.
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Abstract
The noise model of deletions poses significant challenges in coding theory, with basic questions
like the capacity of the binary deletion channel still being open. In this paper, we study the
harder model of worst-case deletions, with a focus on constructing efficiently encodable and de-
codable codes for the two extreme regimes of high-noise and high-rate. Specifically, we construct
polynomial-time decodable codes with the following trade-offs (for any ε > 0):
(i) Codes that can correct a fraction 1 − ε of deletions with rate poly(ε) over an alphabet of

size poly(1/ε);
(ii) Binary codes of rate 1− Õ(

√
ε) that can correct a fraction ε of deletions; and

(iii) Binary codes that can be list decoded from a fraction (1/2−ε) of deletions with rate poly(ε).
Our work is the first to achieve the qualitative goals of correcting a deletion fraction ap-

proaching 1 over bounded alphabets, and correcting a constant fraction of bit deletions with rate
approaching 1 over a fixed alphabet. The above results bring our understanding of deletion code
constructions in these regimes to a similar level as worst-case errors.
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1 Introduction

This work addresses the problem of constructing codes which can be efficiently corrected
from a constant fraction of worst-case deletions. In contrast to erasures, the locations of
deleted symbols are not known to the decoder, who receives only a subsequence of the original
codeword. The deletions can be thought of as corresponding to errors in synchronization
during communication. The loss of position information makes deletions a very challenging
model to cope with, and our understanding of the power and limitations of codes in this
model significantly lags behind what is known for worst-case errors.

The problem of communicating over the binary deletion channel, in which each transmitted
bit is deleted independently with a fixed probability p, has been a subject of much study (see
the excellent survey by Mitzenmacher [17] for more background and references). However,
even this easier case is not well-understood. In particular, the capacity of the binary deletion
channel remains open, although it is known to approach 1− h(p) as p goes to 0, where h(p)
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is the binary entropy function (see [5, 6, 25] for lower bounds and [12, 13] for upper bounds),
and it is known to be positive (at least (1− p)/9) [18]) even as p→ 1.

The more difficult problem of correcting from adversarial rather than random deletions
has also been studied, but with a focus on correcting a constant number (rather than fraction)
of deletions [16]. Codes that can correct a single deletion have received a fair bit of attention
(see the survey [23]), but it turns out that even correcting two deletions poses significant
challenges and is not well understood, with efficient codes with low redundancy discovered
only very recently [2].

Coding for a constant fraction of adversarial deletions, which is the focus of this work, has
been considered previously by Schulman and Zuckerman [21]. They construct constant-rate
binary codes which are efficiently decodable from a small constant fraction of worst-case
deletions and insertions, and can also handle a small fraction of transpositions. The rate of
these codes are bounded away from 1, whereas existentially one can hope to achieve a rate
approaching 1 for a small deletion fraction.

The central theoretical goal in error-correction against any specific noise model is to
understand the combinatorial trade-off between the rate of the code and noise rate that
can be corrected, and to construct codes with efficient error-correction algorithms that
ideally approach this optimal trade-off. While this challenge is open in general even for the
well-studied and simpler model of errors and erasures, in the case of worst-case deletions, our
knowledge has even larger gaps. (For instance, we do not know the largest deletion fraction
which can be corrected with positive rate for any fixed alphabet size.) Over large alphabets
that can grow with the length of the code, we can include the position of each codeword
symbol as a header that is part of the symbol. This reduces the model of deletions to that of
erasures, where simple optimal constructions (eg. Reed-Solomon codes) are known.

Given that we are far from an understanding of the best rate achievable for any specified
deletion fraction, in this work we focus on the two extreme regimes — when the deletion
fraction is small (and the code rate can be high), and when the deletion fraction approaches
the maximum tolerable value (and the code rate is small). Our emphasis is on constructing
codes that can be efficiently encoded and decoded, with trade-offs not much worse than
random/inefficient codes (whose parameters we compute in Section 2). Our results, described
next, bring the level of knowledge on efficient deletion codes in these regimes to a roughly
similar level as worst-case errors. There are numerous open questions, both combinatorial
and algorithmic, that remain open, and it is our hope that the systematic study of codes for
worst-case deletions undertaken in this work will spur further research on good constructions
beyond the extremes of low-noise and high-noise.

1.1 Our results
The best achievable rate against a fraction p of deletions cannot exceed 1− p, as we need
to be able to recover the message from the first (1− p) fraction of codeword symbols. As
mentioned above, over large (growing) alphabets this trade-off can in fact be achieved by a
simple reduction to the model of erasures. Existentially, as we show in Section 2, for any
γ > 0, it is easy to show that there are codes of rate 1 − p − γ to correct a fraction p of
deletions over an alphabet size that depends only on γ. For the weaker model of erasures,
where the receiver knows the locations of erased symbols, we know explicit codes, namely
certain algebraic-geometric codes [22] or expander based constructions [1, 8], achieving the
optimal trade-off (rate 1− p− γ to correct a fraction p of erasures) over alphabets growing
only as a function of 1/γ. For deletions, we do not know how to construct codes with such a
trade-off efficiently. However, in the high-noise regime when the deletion fraction is p = 1− ε
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for some small ε > 0, we are able to construct codes of rate poly(ε) over an alphabet of size
poly(1/ε). Note that an alphabet of size at least 1/ε is needed, and the rate can be at most
ε, even for the simpler model of erasures, so we are off only by polynomial factors.

I Theorem (Theorem 7). Let 1/2 > ε > 0. There is an explicit code of rate Ω(ε2) and
alphabet size poly(1/ε) which can be corrected from a 1− ε fraction of worst-case deletions.

Moreover, this code can be constructed, encoded, and decoded in time Npoly(1/ε), where
N is the block length of the code.

The above handles the case of very large fraction of deletions. At the other extreme,
when the deletion fraction is small, the following result shows that we achieve high rate
(approaching one) even over the binary alphabet.

I Theorem (Theorem 11). Let ε > 0. There is an explicit binary code C ⊆ {0, 1}N which is
decodable from an ε fraction of deletions with rate 1− Õ(

√
ε) in time Npoly(1/ε).

Moreover, C can be constructed and encoded in time Npoly(1/ε).

I Remark. For both of the above results, the construction and encoding/decoding complexity
can be improved to poly(N) · (logN)poly(1/ε) at the expense of slightly worse parameters.
See Theorems 16 and 10.

The next question is motivated by constructing binary codes for the “high noise” regime.
In this case, we do not know (even non-constructively) the minimum fraction of deletions
that forces the rate of the code to approach zero. (Contrast this with the situation for
erasures (resp. errors), where we know the zero-rate threshold to be an erasure fraction 1/2
(resp. error fraction 1/4).) Clearly, if the adversary can delete half of the bits, he can always
ensure that the decoder receives 0n/2 or 1n/2, so at most two strings can be communicated.
Surprisingly, in the model of list decoding, where the decoder is allowed to output a small
list consisting of all codewords which contain the received string as a subsequence, one can
in fact decode from an deletion fraction arbitrarily close to 1/2, as our third construction
shows:

I Theorem (Theorem 19). Let 0 < ε < 1/2. There is an explicit binary code C ⊆ {0, 1}N
of rate Ω̃(ε3) which is list-decodable from a 1/2 − ε fraction of deletions with list size
(1/ε)O(log log(1/ε)).

This code can be constructed, encoded, and list-decoded in time Npoly(1/ε).

We should note that it is not known if list decoding is required to correct deletion fractions
close to 1/2, or if one can get by with unique decoding. Our guess would be that the largest
deletion fraction unique decodable with binary codes is bounded away from 1/2. The cubic
dependence on ε in the rate in the above theorem is similar to what has been achieved
for correcting 1/2− ε fraction of errors [9]. We anticipate (but have not formally checked)
that a similar result holds over any fixed alphabet size k for list decoding from a fraction
(1− 1/k − ε) of symbol deletions.

Construction approach
Our codes, like many considered in the past, including those of [3, 4, 20] in the random
setting and particularly [21] in the adversarial setting, are based on concatenating a good
error-correcting code (in our case, Reed-Solomon or Parvaresh-Vardy codes) with an inner
deletion code over a much smaller block length. This smaller block length allows us to find
and decode the inner code using brute force. The core of the analysis lies in showing that
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the adversary can only affect the decoding of a bounded fraction of blocks of the inner code,
allowing the outer code to decode using the remaining blocks.

While our proofs only rely on elementary combinatorial arguments, some care is needed
to execute them without losing in rate (in the case of Theorem 11) or in the deletion fraction
we can handle (in the case of Theorems 7 and 19). In particular, for handling close to fraction
1 of deletions, we have to carefully account for errors and erasures of outer Reed-Solomon
symbols caused by the inner decoder. To get binary codes of rate approaching 1, we separate
inner codeword blocks with (not too long) buffers of 0’s and we exploit some additional
structural properties of inner codewords that necessitate many deletions to make them
resemble buffers. The difficulty in both these results is unique identification of enough inner
codeword boundaries so that the Reed-Solomon decoder will find the correct message. The
list decoding result is easier to establish, as we can try many different boundaries and use
a “list recovery” algorithm for the outer algebraic code. To optimize the rate, we use the
Parvaresh-Vardy codes [19] as the outer algebraic code.

1.2 Organization

In Section 2, we consider the performance of certain random and greedily constructed codes.
These serve both as benchmarks and as starting points for our efficient constructions. In
Section 3, we construct codes in the high deletion regime. In Section 4, we give high-rate
binary codes which can correct a small constant fraction of deletions. In Section 5, we give
list-decodable binary codes up to the optimal error fraction. Some open problems appear in
Section 6.

2 Existential bounds for deletion codes

A quick recap of standard coding terminology: a code C of block length m over an alphabet
Σ is a subset C ⊆ Σm. The rate of C is defined as log |C|

m log |Σ| . The encoding function of
a code is a map E : [|C|] → Σm whose image equals C (with messages identified with
[|C|] in some canonical way). Our constructions all exploit the simple but powerful idea
of code concatenation: If Cout ⊆ Σnout is an “outer” code with encoding function Eout, and
Cin ⊆ Σmin is an “inner” code encoding function Ein : Σout → Σmin , the the concatenated code
Cout ◦ Cin ⊆ Σnmin is a code whose encoding function first applies Eout to the message, and
then applies Ein to each symbol of the resulting outer codeword.

In this section, we show the existence of deletion codes in certain ranges of parameters,
without the requirement of efficient encoding or decoding. The proofs (found in the full
version of this paper [11]) follow from standard probabilistic arguments, but to the best of
our knowledge, these bounds were not known previously. The codes of Theorem 4 will be
used as inner codes in our final concatenated constructions.

Throughout, we will write [k] for the set {1, . . . , k}. We will also use the binary entropy
function, defined for δ ∈ [0, 1] as h(δ) = δ log 1

δ + (1− δ) log 1
1−δ . All logarithms in the paper

are to base 2.
We note that constructing a large code in [k]m which can correct from a δ fraction of

deletions is equivalent to constructing a large set of strings such that for each pair, their
longest common subsequence (LCS) has length less than (1− δ)m.

We first consider how well a random code performs, using the following theorem from
[15], which upper bounds the probability that a pair of randomly chosen strings has a long
LCS.
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I Theorem 1 ([15], Theorem 1). For every γ > 0, there exists c > 0 such that if k and
m/
√
k are sufficiently large, and u, v are chosen independently and uniformly from [k]m, then

Pr
[∣∣LCS(u, v)− 2m/

√
k
∣∣ ≥ γm√

k

]
≤ e−cm/

√
k.

Fixing γ to be 1, we obtain the following.

I Proposition 2. Let ε > 0 be sufficiently small and let k = (4/ε)2. There exists a code
C ⊆ [k]m of rate R = Ω

(
ε/ log(1/ε)

)
which can correct a 1 − ε = 1 − 4/

√
k fraction of

deletions.

The following results, and in particular Corollary 6, show that we can nearly match the
performance of random codes using a simple greedy algorithm.

We first bound the number of strings which can have a fixed string s as a subsequence.

I Lemma 3. Let δ ∈ (0, 1/k), set ` = (1 − δ)m, and let s ∈ [k]`. The number of strings
s′ ∈ [k]m containing s as a subsequence is at most

m∑
t=`

(
t− 1
`− 1

)
km−t(k − 1)t−` ≤ km−`

(
m

`

)
.

When k = 2, we have the estimate
m∑
t=`

(
t− 1
`− 1

)
2m−t ≤ δm

(
m

`

)
.

I Theorem 4. Let δ, γ > 0. Then for every m, there exists a code C ⊆ [k]m of rate
R = 1− δ − γ such that:

C can be corrected from a δ fraction of worst-case deletions, provided k ≥ 22h(δ)/γ .
C can be found, encoded, and decoded in time kO(m).

Moreover, when k = 2, we may take R = 1− 2h(δ)− log(δm)/m.

I Remark. The authors of [14] show a similar result for the binary case, but use the weaker
bound in Lemma 3 to get a rate of 1− δ − 2h(δ).

With a slight modification to the proof of Theorem 4, we obtain the following construction,
which will be used in Section 4. The so-called “β-dense” property will help us to distinguish
codewords, which have high Hamming weight, from long strings of zeroes.

I Proposition 5. Let δ, β ∈ (0, 1). Then for every m, there exists a code C ⊆ {0, 1}m of
rate R = 1− 2h(δ)−O(log(δm)/m)− 2−Ω(βm)/m such that:

For every string s ∈ C, s is “β-dense”: every interval of length βm in s contains at least
βm/10 ones,
C can be corrected from a δ fraction of worst-case deletions, and
C can be found, encoded, and decoded in time 2O(m).

In the high-deletion regime, we have the following corollary to Theorem 4, obtained by
setting δ = 1− ε and γ = (1− θ)ε, and noting that h(ε) ≤ ε log(1/ε) + 2ε when ε < 1/2.

I Corollary 6. Let 1/2 > ε > 0 and θ ∈ (0, 1/3]. There for every m, there exists a code
C ⊆ [k]m of rate R = ε · θ which can correct a 1 − ε fraction of deletions in time kO(m),
provided k ≥ 64/ε

2
1−θ .
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3 Coding against 1 − ε deletions

In this section, we construct codes for the high-deletion regime. We will use a concatenated
coding approach, with an enlarged alphabet to help us determine the location of inner
codewords. By choosing the parameters carefully, we are able to correct a large fraction of
deletions. More precisely, we have the following theorem.

I Theorem 7. Let 1/2 > ε > 0. There is an explicit code of rate Ω(ε2) and alphabet size
poly(1/ε) which can be corrected from a 1− ε fraction of worst-case deletions.

Moreover, this code can be constructed, encoded, and decoded in time Npoly(1/ε), where
N is the block length of the code.

We first define the code. Theorem 7 is then a direct corollary of Lemmas 8 and 9.

The code: Our code will be over the alphabet {0, 1, . . . , D − 1} × [k], where D = 8/ε and
k = O(1/ε3).

We first define a code C ′ over the alphabet [k] by concatenating a Reed-Solomon code
with an inner code over [k] which can correct a slightly higher fraction of deletions.

More specifically, let Fq be a finite field. For any n′ ≤ n ≤ q, the Reed-Solomon code
of length n ≤ q and dimension n′ is a subset of Fnq which admits an efficient algorithm to
uniquely decode from t errors and r erasures, provided r+ 2t < n−n′ (see, for example, [24]).

In our construction, we will take n = q = 2n′/ε. We first encode our message to a
codeword c = (c1, . . . , cn) of the Reed-Solomon code. For each i, we then encode the pair
(i, ci) using an inner code over some alphabet [k] which can correct a 1 − ε/2 fraction of
deletions.

To obtain our final code C, we replace every symbol s in C ′ which encodes the ith
RS coordinate by the pair

(
i (mod D), s

)
∈ {0, 1, . . . , D − 1} × [k]. The first coordinate, i

(mod D), contains the location of the codeword symbol modulo D, and we will refer to it as
a header.

In order to obtain the parameters stated in Theorem 7, we will instantiate the inner code
using Corollary 6, setting θ = 1/3. This gives an inner code C1 : [n] × Fq → [k]m, where
m = 12 log q/ε and k = O(1/ε3), which can correct a 1− ε/2 fraction of deletions.

I Lemma 8. For an inner code of rate Rin, the rate of C is Ω(εRin). In particular, the rate
of C can be taken to be Ω(ε2).

Proof. The rate of the outer Reed-Solomon code, labeled with indices, is at least ε/4. Finally,
the alphabet increase in transforming C ′ to C decreases the rate by a factor of log(k)

log(Dk) = Ω(1).
By Corollary 6, the rate of the inner code can be taken to be Ω(ε).This gives us a final

rate of Ω(ε2). J

I Lemma 9. Let the inner code have block length m and be decodable from a 1− ε/2 fraction
of worst-case deletions in time T (m). Then the concatenated code C can be decoded from a
1− ε fraction of worst-case deletions in time poly(N) · T (m), where N is the block length
of C.

In particular, the concatenated code using Corollary 6 can be decoded in time NO(poly 1/ε).

Proof. We apply the following algorithm to decode C.

We partition the received word into blocks as follows: The first block begins at the first
coordinate, and each subsequent block begins at the next coordinate whose header differs
from its predecessor. This takes time poly(N).
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We begin with an empty set L.
For each block which is of length between εm/2 and m, we remove the headers by
replacing each symbol (a, b) with the second coordinate b. We then apply the decoder
from Corollary 6 to the block. If this succeeds, outputting a pair (i, ri), then we add
(i, ri) to L. This takes time poly(N) · T (m).
If for any i, L contains multiple pairs with first coordinate i, we remove all such pairs from
L. L thus contains at most one pair (i, ri) for each index i. We apply the Reed-Solomon
decoding algorithm to the string r whose ith coordinate is ri if (i, ri) ∈ L and erased
otherwise. This takes time poly(N).

Analysis: For any i, we will decode a correct coordinate
(
i, ci
)
if there is a block of length at

least εm/2 which is a subsequence of C1(i, ci). (Here and in what follows we abuse notation
by disregarding headers on codeword symbols.)

Thus, the Reed-Solomon decoder will receive the correct value of the ith coordinate unless
one of the following occurs:
1. (Erasure) The adversary deletes a ≥ 1− ε/2 fraction of C1(i, ci).
2. (Merge) The block containing (part of) C1(i, ci) also contains symbols from other code-

words of C1, because the adversary has erased the codewords separating C1(i, ci) from
its neighbors with the same header.

3. (Conflict) Another block decodes to (i, r) for some r. Note that an erasure cannot cause
a coordinate to decode incorrectly, so a conflict can only occur from a merge.

We would now like to bound the number of errors and erasures the adversary can cause.

If the adversary causes an erasure without causing a merge, this requires at least (1−ε/2)m
deletions within the block which is erased, and no other block is affected.
If the adversary merges t inner codewords with the same label, this requires at least
(t− 1)(D − 1)m deletions, of the intervening codewords with different labels. The merge
causes the fully deleted inner codewords to be erased, and causes the t merged codewords
to resolve into at most one (possibly incorrect) value. This value, if incorrect, could also
cause one conflict.
In summary, in order to cause one error and r ≤ (t − 1)D + 2 erasures, the adversary
must introduce at least (t− 1)(D − 1)m ≥ (2 + r)(1− ε/2)m deletions.

In particular, if the adversary causes s errors and r1 erasures by merging, and r2 erasures
without merging, this requires at least

≥ (2s+ r1)(1− ε/2)m+ r2(1− ε/2)m = (2s+ r)(1− ε/2)m

deletions. Thus, when the adversary deletes at most a (1− ε) fraction of codeword symbols,
we have that 2s + r is at most (1 − ε)mn/(1 − ε/2)m < n(1 − ε/2). Recalling that the
Reed-Solomon decoder in the final step will succeed as long as 2s + r < n(1 − ε/2), we
conclude that the decoding algorithm will output the correct message. J

I Remark (Improving the encoding and decoding complexity). Our decoding algorithm requires
only that the inner code C1 be correctable from a 1 − ε/2 fraction of deletions. By using
the concatenated code of Theorem 7 as the inner code in our construction (that is, with two
levels of concatenation), we can reduce the time complexity significantly, at the cost of a
polynomial reduction in other parameters of the code. This is summarized in the following
theorem.
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I Theorem 10. Let 1/2 > ε > 0. There is an explicit code of rate Ω(ε3) and alphabet size
poly(1/ε) which can be corrected from a 1 − ε fraction of worst-case deletions. Moreover,
this code can be constructed, encoded, and decoded in time poly(N) · (logN)poly(1/ε), where
N is the block length of the code.

4 Binary codes against ε deletions

4.1 Construction overview
The goal in our constructions is to allow the decoder to approximately locate the boundaries
between codewords of the inner code, in order to recover the symbols of the outer code. In
the previous section, we were able to achieve this by augmenting the alphabet and letting
each symbol encode some information about the block to which it belongs. In the binary
case, we no longer have this luxury.

The basic idea of our code is to insert long runs of zeros, or “buffers,” between adjacent
inner codewords. The buffers are long enough that the adversary cannot destroy many of
them. If we then choose the inner code to be dense (in the sense of Proposition 5), it is
also difficult for a long interval in any codeword to be confused for a buffer. This approach
optimizes that of [21], which uses an inner code of rate 1/2 and thus has final rate bounded
away from 1.

The balance of buffer length and inner codeword density seems to make buffered codes
unsuited for high deletion fractions, and indeed our results only hold as the deletion fraction
goes to zero.

4.2 Our construction
We now give the details of our construction. For simplicity, we will not optimize constants in
the analysis.

I Theorem 11. Let ε > 0. There is an explicit binary code C ⊆ {0, 1}N which is decodable
from an ε fraction of deletions with rate 1− Õ(

√
ε) in time Npoly(1/ε).

Moreover, C can be constructed and encoded in time Npoly(1/ε).

The code: We again use a concatenated construction with a Reed-Solomon code as the
outer code, choosing one which can correct a 12

√
ε fraction of errors and erasures. For each

i, we replace the ith coordinate ci with the pair (i, ci). In order to ensure that the rate stays
high, we use a RS code over Fqh , with block length n = q, where we will take h = 1/ε.

The inner code will be a good binary deletion code C1 of block length m correcting a
δ = 40

√
ε fraction of deletions. We will also require the codewords of C1 to be β-dense, for

β = δ/4. Recall that a string of length m is β-dense if any interval of length βm contains at
least βm/10 1’s. We will assume each codeword begins and ends with a 1.

Now, between each pair of adjacent inner codewords of C1, we insert a buffer of δm zeros.
This gives us our final code C.

In order to obtain the final parameters stated in Theorem 11, we will construct the
inner code C1 using Proposition 5. This gives a code of rate 1− 2h(δ)− o(1) satisfying the
requirements of our construction.

I Lemma 12. For an inner code of rate Rin, the rate of the concatenated code C is
Rin · (1−O(

√
ε).

In particular, the rate of the concatenated code using Proposition 5 is 1− Õ(
√
ε)).
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Proof. The rate of the outer (labeled) Reed-Solomon code is (1 − 24
√
ε) · h

h+1 . Finally,
adding buffers reduces the rate by a factor of 1

1+δ .
Combining these with our choice of δ, we get that the rate of C is Ri(1− Õ(

√
ε)).

The rate of the inner code C1 can be taken to be 1 − 2h(δ) − o(1), by Proposition 5,
giving a final rate of 1− Õ(

√
ε). J

I Lemma 13. Let the inner code have block length m and be decodable from a δ fraction of
worst-case deletions in time T (m). Then the concatenated code C can be decoded from a ε
fraction of worst-case deletions in time poly(N) · T (m), where N is the block length of C.

In particular, the concatenated code with inner code constructed using Proposition 5 can
be decoded in time NO(poly 1/ε).

The algorithm:
The decoder first locates all runs of at least δm/2 contiguous zeroes in the received word.
These runs (“buffers”) are removed, dividing the codeword into blocks of contiguous
symbols which we will call decoding windows. Any leading zeroes of the first decoding
window and trailing zeroes of the last decoding window are also removed. This takes
time poly(N).
We begin with an empty set L.
For each decoding window, we apply the decoder from Proposition 5 to attempt to recover
a pair (i, ri). If we succeed, this pair is added to L. This takes time poly(N) · T (m).
If for any i, L contains multiple pairs with first coordinate i, we remove all such pairs from
L. L thus contains at most one pair (i, ri) for each index i. We apply the Reed-Solomon
decoding algorithm to the string r whose ith coordinate is ri if (i, ri) ∈ L and erased
otherwise, attempting to recover from a 12

√
ε fraction of errors and erasures. This takes

time poly(N).

Analysis: Notice that if no deletions occur, the decoding windows will all be codewords
of the inner code C1, which will be correctly decoded. At a high level, we will show that
the adversary cannot corrupt many of these decoding windows, even with an ε fraction of
deletions.

We first show that the number of decoding windows considered by our algorithm is close
to n, the number of windows if there are no deletions.

I Lemma 14. If an ε fraction of deletions have occurred, then the number of decoding
windows considered by our algorithm is between (1− 2

√
ε)n and (1 + 2

√
ε)n.

Proof. Recall that the adversary can cause at most εnm(1 + δ) ≤ 2εnm deletions.
Upper bound: The adversary can increase the number of decoding windows only by

creating new runs of δm/2 zeroes (that are not contained within a buffer). Such a new run
must be contained entirely within an inner codeword w ∈ C1. However, as w is δ/4-dense, in
order to create a run of zeroes of length δm/2, at least δm/20 = 2

√
ε 1’s must be deleted for

each such run. In particular, at most
√
εn blocks can be added.

Lower bound: The adversary can decrease the number of decoding windows only by
decreasing the number of buffers. He can achieve this either by removing a buffer, or by
merging two buffers. Removing a buffer requires deleting δm/2 = 20

√
εm zeroes from the

original buffer. Merging two buffers requires deleting all 1’s in the inner codewords between
them. As inner codewords are δ/4-dense, this requires at least

√
εm deletions for each merged

buffer. In particular, at most 2
√
εn buffers can be removed. J
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We now show that almost all of the decoding windows being considered are decoded
correctly by the inner decoder.

I Lemma 15. The number of decoding windows which are incorrectly decoded is at most
4
√
εn.

Proof. The inner decoder will succeed on each decoding window which is a subsequence of a
valid inner codeword w ∈ C1 of length at least (1− δ)m. This will happen unless:
1. The window is too short:

(a) a subsequence of w has been marked as a (new) buffer, or
(b) a ρ fraction of w has been marked as part of the adjacent buffers, combined with a

δ − ρ fraction of deletions within w.
2. The window is not a subsequence of a valid inner codeword: the window contains buffer

symbols and/or a subsequence of multiple inner codewords.

We first show that (1) holds for at most 3
√
εn windows.

From the proof of Lemma 14, there can be at most
√
εn new buffers introduced, thus

handling Case 1(a). In Case 1(b), if ρ < δ/2, then there must be δ/2 deletions within w. On
the other hand, if ρ ≥ δ/2, one of two buffers adjacent to w must have absorbed at least
δm/4 symbols of w, so as w is δ/4-dense, this requires δm/40 =

√
εm deletions, so can occur

in at most 2
√
εn windows.

We also have that (2) holds for at most
√
εn windows, as at least δm/2 symbols must be

deleted from a buffer in order to prevent the algorithm from marking it as a buffer. As in
Lemma 14, this requires 20

√
ε deletions for each merged window, and so there are at most√

εn windows satisfying case (2). J

We now have that the inner decoder outputs (1− 6
√
ε)n correct values. After removing

possible conflicts in the last step of the algorithm, we have at least (1 − 12
√
ε)n correct

values, so that the Reed-Solomon decoder will succeed and output the correct message.
I Remark (Improving the encoding and decoding efficiency). Our decoding algorithm succeeds
as long as the inner code can correct a δ fraction of deletions, and consists of codewords
which are δ/4-dense. As in the high deletion case, the time complexity of Theorem 11 can
be improved using a more efficient inner code, at the cost of a reduction in rate.

Because of the addition of buffers, the code of Theorem 11 may not be dense enough to
use as an inner code. However, we can modify the construction to obtain a dense inner code
(details can be found in the full version [11]). In particular, these modifications give us the
following.

I Theorem 16. Let ε > 0. There is an explicit binary code C ⊆ {0, 1}N which is decodable
from an ε fraction of deletions with rate 1− Õ( 4

√
ε) in time poly(N) · (logN)poly(1/ε).

Moreover, C can be constructed and encoded in time poly(N) · (logN)poly(1/ε).

5 List-decoding binary deletion codes

The results of Section 4 show that we can have good explicit binary codes when the deletion
fraction is low. In this section, we address the opposite regime, of high deletion fraction. As
a first step, notice that in any reasonable model, including list-decoding, we cannot hope to
efficiently decode from a 1/2 deletion fraction with a polynomial list size and constant rate.
With block length n and n/2 deletions, the adversary can ensure that what is received is
either n/2 1’s or n/2 0’s.
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Thus, for binary codes and ε > 0, we will consider the question of whether it is possible
to list decode from a fraction 1/2− ε of deletions.

I Definition 17. We say that a code C ⊆ {0, 1}m is list-decodable from a δ deletion fraction
with list size L if every sequence of length (1− δ)m is a subsequence of at most L codewords.
If this is the case, we will call C (δ, L) list-decodable from deletions.

I Remark. Although the results of this section are proven in the setting of list-decoding, it
is not known that we cannot have unique decoding of binary codes up to deletion fraction
1/2− ε. See the first open problem in Section 6.

5.1 List-decodable binary deletion codes (existential)
In this section, we show that good list-decodable codes exist. This construction will be the
basis of our explicit construction of list-decodable binary codes. The proof appears in the
appendix.

I Theorem 18. Let δ, L > 0. Let C ⊆ {0, 1}m consist of 2Rm independently, uniformly
chosen strings, where R ≤ 1 − h(δ) − 3/L. Then C is

(
δ, L
)
list-decodable from deletions

with probability at least 1− 2−m.
Moreover, such a code can be constructed and decoded in time 2poly(mL).
In particular, when δ = 1/2− ε, we can construct and decode in time 2poly(m/ε) a code

C ⊆ {0, 1}m of rate Ω(ε2) which is
(
δ,O(1/ε2)

)
list-decodable from deletions.

5.2 List-decodable binary deletion codes (explicit)
We now use the existential construction of Theorem 18 to give an explicit construction of
constant-rate list-decodable binary codes. Our code construction uses Parvaresh-Vardy codes
([19]) as outer codes, and an inner code constructed using Section 5.1.

The idea is to list-decode “enough” windows and then apply the list recovery algorithm
of Theorem 20.

I Theorem 19. Let 0 < ε < 1/2. There is an explicit binary code C ⊆ {0, 1}N of rate Ω̃(ε3)
which is list-decodable from a 1/2− ε fraction of deletions with list size (1/ε)O(log log ε).

This code can be constructed, encoded, and list-decoded in time Npoly(1/ε).

We will appeal in our analysis to the following theorem, which can be found in [10].

I Theorem 20 ([10], Corollary 5). For all integers s ≥ 1, for all prime powers r, every pair
of integers 1 < K ≤ N ≤ q, there is an explicit Fr-linear map E : FKq → FNqs whose image C ′
is a code satisfying:

There is an algorithm which, given a collection of subsets Si ⊆ Fqs for i ∈ [N ] with∑
i|Si| ≤ N`, runs in poly

(
(rs)s, q, `

)
time, and outputs a list of size O

(
(rs)sN`/K

)
that includes precisely the set of codewords (c1, . . . , cN ) ∈ C ′ that satisfy ci ∈ Si for at
least αN values of i, provided

α > (s+ 1)(K/N)s/(s+1)`1/(s+1).

The code: We set s = O(log 1/ε), r = O(1), and N = K poly
(
log(1/ε)

)
/ε in Theorem 20

in order to obtain a code C ′ ⊆ FNqs . We modify the code, replacing the ith coordinate ci with
the pair (i, ci) for each i, in order to obtain a code C ′′. This latter step only reduces the rate
by a constant factor.

APPROX/RANDOM’15
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Recall that we are trying to recover from a 1/2−ε fraction of deletions. We use Theorem 18
to construct an inner code C1 : [N ] × Fsq → {0, 1}m of rate Ω(ε2) which recovers from a
1/2− δ deletion fraction (where we will set δ = ε/4). Our final code C is a concatenation of
C ′′ with C1, which has rate Ω̃(ε3).

I Theorem 21. C is list-decodable from a 1/2− ε fraction of deletions in time Npoly(1/ε).

Proof. Our algorithm first defines a set of “decoding windows”. These are intervals of
length (1/2 + δ)m in the received codeword which start at positions 1 + tδm for t =
0, 1, . . . , N/δ − (1/2 + δ)/δ, in addition to one interval consisting of the last (1/2 + δ)m
symbols in the received codeword.

We use the algorithm of Theorem 18 to list-decode each decoding window, and let L be
the union of the lists for each window. Finally, we apply the algorithm of Theorem 20 to L
to obtain a list containing the original message.

Correctness: Let c = (c1, . . . , cN ) be the originally transmitted codeword of C ′. If an inner
codeword C1(i, ci) has suffered fewer than a 1/2− 2δ fraction of deletions, then one of the
decoding windows is a substring of C1(i, ci), and L will contain the correct pair (i, ci).

When δ = ε/4, by a simple averaging argument, we have that an ε fraction of inner
codewords have at most 1/2− 2δ fraction of positions deleted. For these inner codewords, L
contains a correct decoding of the corresponding symbol of c.

In summary, we have list-decoded at most N/δ windows, with a list size of O(1/δ2)
each. We also have that an ε fraction of symbols in the outer codeword of C ′ is correct.
Setting ` = O(1/δ3) in the algorithm of Theorem 20, we can take α = ε. Theorem 20 then
guarantees that the decoder will output a list of poly(1/ε) codewords, including the correct
codeword c. J

6 Conclusion and open problems

In this work, we initiated a systematic study of codes for the adversarial deletion model,
with an eye towards constructing codes achieving more-or-less the correct trade-offs at the
high-noise and high-rate regimes. There are still several major gaps in our understanding
of deletion codes, and below we highlight some of them (focusing only on the worst-case
model):
1. For binary codes, what is the supremum p∗ of all fractions p of adversarial deletions for

which one can have positive rate? Clearly p∗ ≤ 1/2; could it be that p∗ = 1/2 and this
trivial limit can be matched? Or is it the case that p∗ is strictly less than 1/2?

2. Can one construct codes of rate 1− p− γ to efficiently correct a fraction p of deletions
over an alphabet size that only depends on γ?
Note that this requires a relative distance of p, and currently we only know algebraic-
geometric and expander-based codes which achieve such a tradeoff between rate and
relative distance.

3. Can one improve the rate of the binary code construction to correct a fraction ε of deletions
to 1− ε poly(log(1/ε)), approaching more closely the existential 1−O(ε log(1/ε)) bound?
In the case of errors, an approach using expanders gives the analogous tradeoff (see [7]
and references therein). Could such an approach be adapted to the setting of deletions?
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Abstract
We introduce the notion of one-way communication schemes with partial noiseless feedback. In
this setting, Alice wishes to communicate a message to Bob by using a communication scheme
that involves sending a sequence of bits over a channel while receiving feedback bits from Bob for
δ fraction of the transmissions. An adversary is allowed to corrupt up to a constant fraction of
Alice’s transmissions, while the feedback is always uncorrupted. Motivated by questions related
to coding for interactive communication, we seek to determine the maximum error rate, as a
function of 0 ≤ δ ≤ 1, such that Alice can send a message to Bob via some protocol with δ

fraction of noiseless feedback. The case δ = 1 corresponds to full feedback, in which the result
of [1] implies that the maximum tolerable error rate is 1/3, while the case δ = 0 corresponds
to no feedback, in which the maximum tolerable error rate is 1/4, achievable by use of a binary
error-correcting code.

In this work, we show that for any δ ∈ (0, 1] and γ ∈ [0, 1/3), there exists a randomized
communication scheme with noiseless δ-feedback, such that the probability of miscommunication
is low, as long as no more than a γ fraction of the rounds are corrupted. Moreover, we show
that for any δ ∈ (0, 1] and γ < f(δ), there exists a deterministic communication scheme with
noiseless δ-feedback that always decodes correctly as long as no more than a γ fraction of rounds
are corrupted. Here f is a monotonically increasing, piecewise linear, continuous function with
f(0) = 1/4 and f(1) = 1/3. Also, the rate of communication in both cases is constant (dependent
on δ and γ but independent of the input length).
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1 Introduction

Motivated by questions in interactive coding, we introduce the model of communication with
partial noiseless feedback. Alice wishes to communicate a message, say in {0, 1}k, to Bob.
Alice sends a total of N bits to Bob, and she receives δN bits of feedback from Bob for some
fixed δ > 0. We have an adversary who can corrupt γN of the bits sent by Alice, but the
feedback bits are left uncorrupted. We wish to find the maximal tolerable error fraction γ
(on Alice’s transmissions) under which we can guarantee that Bob is able to receive Alice’s
message correctly. This problem is summarized in Figure 1.

We introduce this problem as a generalization of the problem of communication with
complete noiseless feedback (corresponds to δ = 1 above), where after each bit sent by Alice,
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Alice Bob
Adversary

x x̃

N

δN

Figure 1 Communication with partial noiseless feedback.

Bob sends the received bit as feedback, so that Alice can use her knowledge of exactly what
Bob has received thus far to possibly adapt her future transmissions. Indeed, Berlekamp
showed that in this setting, one can tolerate any error rate less than 1/3 with non-vanishing
communication rate if we require that any possible error pattern of up to the error rate be
corrected [1], and moreover, this is the maximal error fraction one can hope to correct with
constant rate. This bound also follows from the game of questions with liars [20].

On the other extreme, if there were no feedback at all (i.e. δ = 0), then this is equivalent
to error correcting codes, for which it is known that one can tolerate up to 1/4 error fraction
while still achieving positive communication rate [12, 21]. And an error fraction of ≥ 1/4

necessarily results in zero asymptotic rate, due to the Plotkin bound [15]. Thus, feedback
increases the set of achievable communication rates in the adversarial error model. This is in
contrast to the random-error setting in which random error patterns need to be corrected
only with high probability, as Shannon showed that feedback does not increase the capacity
of a discrete memoryless channel [19].

1.1 Coding for interactive communication
The problem of communication with noiseless feedback has garnered further interest recently
in the context of coding for interactive communication. In this setting, Alice and Bob are
given inputs x and y, respectively, and they are required to compute some function f(x,y)
by exchanging messages over a noisy channel. In particular, up to a γ fraction of the total
transmitted bits may get flipped by the channel, and one requires a coding scheme that
allows successful computation even in the presence of noise, preferably with a only constant
blow up in communication. Schulman was the first to investigate the problem, and in a series
of works, he gave the first constant rate scheme that could tolerate an error fraction of up to
γ = 1/240 [16, 17, 18]. Subsequently, in an influential work, Braverman and Rao [6] showed a
coding scheme that works for any error rate γ < 1/4, and moreover, they showed that any error
rate of ≥ 1/4 cannot be tolerated as long as the encoded protocol is non-adaptive (meaning
that whose turn it is to speak during each round of communication is predetermined). There
have been a lot of subsequent works since, which deal with computational efficiency [2, 4, 3, 9],
allowing adaptivity [11], list-decoding [11, 10, 5], interactive channel capacity under random
noise [14] and adversarial noise [13] etc.

Approaching an error fraction of 1/4 in the non-adaptive setting requires communicating
symbols from a growing alphabet size. If we restrict ourselves to communicating bits, then
the coding scheme of Braverman and Rao [6] tolerates any error fraction γ < 1/8. Determining
the maximum tolerable noise for interactive coding with symbols from a binary alphabet is
still an open question. However, the optimality of 1/3 as the maximal tolerable error fraction
in the noiseless feedback problem can be used to establish an upper bound of 1/6 for the
maximal tolerable error fraction for interactive coding over binary alphabets! Furthermore,
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Efremenko, Gelles and Haeupler [7] show a coding scheme over binary alphabets that tolerates
any error fraction γ < 1/6 if noiseless feedback is allowed in the interactive setting as well.
Also, Gelles and Haeupler [8] show that for an error fraction of ε, any alternating interactive
protocol can be encoded with rate 1−Θ(H(ε)) over channels with noiseless feedback as well
as erasure channels.

1.2 Our results
In this work, we show that for any δ ∈ (0, 1] and γ ∈ [0, 1/3), there exists a randomized com-
munication scheme with noiseless δ-feedback, such that the probability of miscommunication
is low, as long as no more than a γ fraction of the rounds are corrupted. Moreover, we show
that for any δ ∈ (0, 1] and γ < f(δ), there exists a deterministic communication scheme with
noiseless δ-feedback that always decodes correctly as long as no more than a γ fraction of
rounds are corrupted. Here f is a monotonically increasing, piecewise linear, continuous
function with f(0) = 1/4 and f(1) = 1/3. Also, the rate of communication in both cases is
constant (dependent on δ and γ but independent of the input length).

1.3 Organization of this paper
In Section 2, we give some of the basic definitions and notations as well as the statements
of the two main theorems in this work. In Section 3, we describe a simple deterministic
communication scheme with 1-feedback that tolerates up to 1/3 fraction errors. In Section 4,
we describe our randomized communication scheme with partial noiseless feedback. In
Section 5, we describe our deterministic communication schemes which comes about by a
de-randomization of the randomized communication scheme. Finally, we give a summary of
our results and suggest possible future directions in Section 6.

2 Preliminaries and results

In this section, we describe our problem set-up and state our results.

2.1 One-way communication schemes with partial noiseless feedback
We consider the problem of one-way communication with partial noiseless feedback, which we
define as follows:

IDefinition 1. For all δ ∈ [0, 1], a “one-way communication scheme with noiseless δ-feedback”
is defined as follows (summarized in Figure 1):

Alice wishes to send a message in x ∈ Σk to Bob.
Alice and Bob engage in a communication protocol of length N + δN , out of which N
symbols are sent by Alice (forward rounds) and δN symbols are sent by Bob (feedback
rounds). At most one of the parties can send a symbol in any round.
The adversary can corrupt at most γN of the forward rounds, but none of the feedback
rounds.
At the end of the protocol, Bob is required to decode the message x from the transcript
of the protocol.

We call N as the length of the communication scheme. The ‘rate’ of the scheme is k/N , and
γ is the error fraction tolerated. (We will often drop the words ‘one-way’ and ‘noiseless’. All
feedback in this paper will be assumed to be noiseless.)

APPROX/RANDOM’15
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The protocol can be deterministic or randomized (but with only private randomness).
In deterministic schemes, we require that Bob is always able to recover x correctly. In
randomized schemes, we require that Bob is able to recover x correctly with probability at
least 1− ok(1), where the probability is over the private randomness of Alice and Bob.

Note. All the results in this paper will only be for Σ = {0, 1}. Thus, for the rest of the
paper, we will work with communication schemes over a binary alphabet.

An important remark about randomized communication schemes is that the adversary is
not aware of the random bits being used by the parties in advance. The adversary can only
infer the random bits after they are used. We emphasize that it is this remark that makes
de-randomizing such communication schemes very challenging!

In this work, we wish to fix δ and find an infinite sequence of communication schemes
with noiseless δ-feedback, for increasing values of k, where the communication schemes have
length N(k). The asymptotic rate of the sequence of communication schemes is defined to be
limk→∞ k/N(k). For the remainder of the paper, we will often say “communication scheme”
with a particular “rate” as shorthand for an infinite sequence of communication schemes for
increasing message lengths with a particular asymptotic rate.

The main question we seek to answer in this work is: For a fixed δ ∈ [0, 1], what is the
largest error fraction that can be tolerated by an infinite sequence of communication schemes
with feedback fraction at most δ? We can ask this question for both deterministic as well as
randomized communication schemes.

I Definition 2. For any δ ∈ [0, 1], we define Γdet(δ) and Γrand(δ) as follows:
Γdet(δ) is the supremum over γ such that there exists a deterministic communication
scheme with δ-feedback that tolerates an error fraction of γ and has constant rate.1
Γrand(δ) is the supremum over γ such that there exists a randomized communication
scheme with δ-feedback that tolerates an error fraction of γ and has constant rate.

We know that error correcting codes with distance 1/2− ε exist for all ε > 0. Thus, we
get that an error fraction of γ = 1/4− ε can be tolerated even without having any feedback,
and thus, Γrand(δ) ≥ Γdet(δ) ≥ 1/4 for all δ ≥ 0.

2.2 Upper bounds on the tolerable error fraction
It is known that for δ = 1, if the communication scheme uses the mirror feedback structure,
then no communication scheme can tolerate a 1/3 error fraction for arbitrarily large message
length [1]. The mirror feedback structure means that the communication protocol consists of
alternating forward and feedback rounds, where each feedback bit sent by Bob is simply the
bit that he has received from Alice in the preceding round.

I Observation 3. If δ = 1, we can assume without loss of generality that any deterministic
one-way communication scheme with noiseless δ-feedback has only mirror feedback, namely,
after every bit sent by Alice, Bob simply sends back the (potentially corrupted) bit he received.

The observation follows because if Bob were to send back the precise bits that he receives
from Alice, then Alice can compute any deterministic function of the same and thus any
1-feedback protocol can be simulated by using only mirror feedback. Combined with the

1 rate that can depend on γ and δ, but not on the length of the input x.
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upper limit of 1/3 from [1], we get that for any δ > 0, no deterministic communication scheme
with δ-feedback can tolerate an error fraction of 1/3. For completeness, we give a proof of
this result in Appendix A.

I Theorem 4. For any δ ≥ 0, we have that Γdet(δ) ≤ 1/3.

2.3 Main results
We prove two results that provide lower bounds on Γrand(δ) and Γdet(δ), respectively. Our
first result presents a randomized communication scheme that tolerates any error fraction
γ < 1/3 for any δ > 0.

I Theorem 5. For any δ > 0, we have that Γrand(δ) ≥ 1/3. Namely, for any δ > 0 and
for all ε > 0, and γ = 1/3− ε, there is a randomized communication scheme with noiseless
δ-feedback that tolerates an error fraction of γ. Furthermore, one can achieve a rate of
communication of Ω(εδ) with failure probability exp(−Ω(k)), where k is the length of the
message being transmitted.

Our second result presents a ‘derandomization’ of the underlying randomized communic-
ation scheme of Theorem 5 that beats the 1/4 bound achieved by error correcting codes for
all δ > 0. The tolerable error fraction becomes 1/3 for δ ≥ 2/3, which is optimal.

I Theorem 6. Define f : (0, 1]→ R as follows:

f(δ) def=


1
3 , if 2

3 ≤ δ ≤ 1
max

{
δ(r+1)

2 , r+2
4r+7

}
, if 0 < δ < 2

3
where r = r(δ) def=

⌊
1
2δ −

3
4

⌋
Then, for any δ ∈ (0, 1], Γdet(δ) ≥ f(δ). Namely, for any δ > 0 and for all ε > 0, there is
a deterministic communication scheme with δ-feedback that tolerates an error fraction of
γ = f(δ)− ε such that the rate of communication is Ω(εδ).

I Remark. The function f defined in Theorem 6 is a monotonically increasing piecewise linear
function that is continuous on the interval in which it is defined (see Figure 2). Moreover
limδ→0+ f(δ) = 1/4, and one can easily tolerate any error fraction less than 1

4 with zero
feedback by simply using a binary error-correcting code with relative distance of twice the
desired error fraction. For the other extremal case, namely δ = 1, the protocol πdet

1 (γ)
(Figure 3 adapted from [7]) can be used to tolerate any error fraction less than f(1) = 1/3.
The main contribution of this work is to establish the achievability of error fractions up to
f(δ) for intermediate values of δ ∈ (0, 1). This shows that any non-zero feedback fraction
allows us to beat the 1/4 limit on the tolerable error fraction in the presence of no feedback.

Note that Γdet(δ) ≤ 1/3 for all δ ∈ [0, 1] (as implied by Theorem 4), and Theorem 5 shows
us that randomized communication schemes are able to get arbitrarily close to this limit for
all non-zero feedback fractions. We do not know whether the same is true for deterministic
communication schemes, as the positive result of Theorem 6 exhibits a gap to the 1/3 upper
bound for 0 < δ < 2/3. We leave the question of whether Γdet(δ) = 1/3 for all δ as an open
problem. The error fractions tolerated by our communication schemes are summarized in
Figure 2.

3 Deterministic communication scheme with full feedback

For completeness, we first present a communication scheme πdet
1 (γ) with 1-feedback that

tolerates an error fraction of γ = 1/3 − ε (where ε > 0). Such a protocol was obtained
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δ

Γ(δ)

0 1

1/3

1/4

2
3

4
7

2
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using error-correcting codes

lower bound on Γdet(δ) (Thm 6)

lower bound on Γrand(δ) (Thm 5)

Figure 2 Maximum error fraction tolerated as function of δ.

previously by Berlekamp [1]. We present a very simple scheme (in Figure 3) that was implicit
in [7]. It is easy to see that the communication scheme presented has rate Θ(ε).

Correctness of πdet
1 (γ)

We first introduce a couple of notations. Firstly, for all s ∈ {0, 1}∗, define len(s) to be the
length of s. Next, for strings s which do not contain consecutive 0’s, we define the weight of
s as follows.

I Definition 7 (Weight of a string). Given string s ∈ {0, 1}∗, such that s has no consecutive
0’s, we define the weight of s as follows: Suppose s breaks into a 0’s, b 1’s and c 10’s, with
the smallest number of pieces. We define wt(s) def= 2a+ 2b+ c.

For example,
wt(‘0110101’) = 2 · 1 + 2 · 2 + 1 · 2 = 8, since ‘0110101’ = ‘0’ + ‘1’ + ‘10’ + ‘10’ + ‘1’.
wt(‘111010’) = 2 · 0 + 2 · 2 + 1 · 2 = 6, since ‘111010’ = ‘1’ + ‘1’ + ‘10’ + ‘10’.

Note that since s does not contain consecutive 0’s, it follows that a = 1 if s starts with a
‘0’ and a = 0 otherwise.

To prove that the communication scheme πdet
1 (γ) in Figure 3 tolerates an error fraction

of γ, we define a potential function as Φ = Φ(T ) def= len(Tright)− wt(Twrong). Note that the
scheme in Figure 3 ensures that Twrong never has consecutive 0’s, and thus wt(Twrong) is
always well defined.

The following easy proposition shows how Φ changes after each round of communication.
The proof appears in Appendix B.

I Proposition 8. After each round of communication, if Alice’s bit is received correctly by
Bob, then Φ increases by at least 1. On the other hand, if Alice’s bit is received incorrectly
by Bob, then Φ decreases by at most 2.

As an easy corollary of Proposition 8, we get a lower bound on Φ at the end of the
protocol, as a function of the error fraction.

I Corollary 9. If γ fraction of Alice’s transmissions in communication scheme πdet
1 (γ) (given

in Figure 3) are corrupted, then at the end of the protocol, Φ ≥ (1− 3γ)N .

Proof. We have that there are (1 − γ)N forward rounds of the protocol which are not
corrupted in which Φ increases by 1, while γN rounds which are corrupted in which Φ
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Parameters:
ε = 1

3 − γ
Alice Bob

Input: Message x ∈ {0, 1}k

Initialization:
. y← E(x) ∈ {0, 1}n . . . (1)
. N ← dn/3εe . . . (2)
. T, Tright, Twrong ← ∅ . . . (3)

Initialization:
. N ← dn/3εe . . . (2)
. T ← ∅ . . . (3)

—————– Repeat N times —————–

if Twrong = ∅ then
b← y(len(Tright) + 1)

else
b← ‘0’

end if

T ← T ◦ b̃
if T ends in ‘00’ then
Backtrack last 3 bits in T

end if

b

b̃

T ← T ◦ b̃
if T ends in ‘00’ then
Backtrack last 3 bits in T

end if
Set Tright, Twrong appropriately

b̃

b̃

—————– End of repeat —————–

Output: E−1(T [1, · · · , n])

(1) E(x) is a simple encoding of x such that E(x) does not contain any consecutive ‘0’s. One
way to do this: add a ‘1’ between two consecutive bits, making n = 2k. We will refer to the bits
of y as y(i). For i > n, we will assume y(i) = ‘1’.

(2) N is the number of rounds

(3) T is the transcript as maintained by Bob. However, Alice is able to decompose T as T =
Tright ◦ Twrong, where Tright is the largest prefix of T which exactly matches the prefix of y of the
same length, and Twrong is the remaining part in T . Basically, Twrong is the part of the transcript
which starts with an incorrectly received bit, and so all the following bits have to be erased
before proceeding further.

Figure 3 Communication scheme with complete feedback : πdet
1 (γ).

APPROX/RANDOM’15
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decreases by at most 2. Thus, by Proposition 8, we see that at the end of the protocol,

Φ(T ) ≥ 1 · (1− γ)N − 2 · γN = (1− 3γ)N

J

Thus, by the above Corollary, if γ = 1/3− ε fraction of the forward rounds of protocol
πdet

1 (γ) are corrupted, then at the end of the protocol we will have,

len(Tright) ≥ Φ(T ) ≥ 3εN

By our choice of N , we have that 3εN ≥ n. Therefore, at the end of the protocol, len(Tright) ≥
n, meaning that the first n bits of T are exactly y. Hence, Bob is able to decode x correctly
by just applying E−1 on the first n bits of T .

4 Randomized communication scheme with partial feedback

In this section, we prove Theorem 5 by giving a randomized protocol πrand
δ (γ) with δ-feedback

(for any δ ∈ (0, 1]), that tolerates an error fraction of γ = 1/3− ε (where ε > 0) and has a rate
of Θ(εδ). The full details of πrand

δ (γ) can be found in Figure 4. The main idea is as follows:
We wish to simulate πdet

1 (γ) with a smaller feedback fraction. We break the protocol
into N0 = d2n/3εe iterations, where each iteration roughly corresponds to one forward
and feedback round of πdet

1 (γ). In each iteration, Alice sends D = d2/δe bits, namely
c = (c1, · · · , cD) = bD (i.e. D copies of bit b she would have sent in πdet

1 ). Bob receives
a set of symbols c̃ = (c̃1, · · · , c̃D). He uses a ‘soft decoding’ scheme to obtain b̃ which is
his interpretation of what b must have been. Let m be the number of ‘1’s present in c̃. If
m ≤ D/2, then he interprets b̃ as ‘0’ with probability 1− 2m/D, and if m > D/2, then he
interprets b̃ to be ‘1’ with probability 2m/D − 1. In other cases, Bob interprets b̃ to be ‘?’.
If b̃ 6= ‘?’, then Bob then makes appropriate progress on the protocol πdet

1 (γ). As feedback,
Bob sends back the value of b̃ (which takes 2 bits of feedback). Thus, the entire protocol
uses N = d2/δeN0 number of forward bits of communication and 2N0 bits of feedback, and
thus it uses (2/ d2/δe)-feedback (which is at most δ-feedback), and has rate Θ(εδ). All that
remains to show now is that this protocol tolerates an error fraction of γ = 1/3− ε.

Correctness of πrand
δ (γ)

We show that for any δ ∈ (0, 1] and γ < 1/3, the communication scheme πrand
δ (γ) tolerates

an error fraction of γ with constant rate. This immediately implies Theorem 5.

I Theorem 10. For any δ ∈ (0, 1] and γ = 1/3− ε (where ε > 0), the communication scheme
πrand
δ (γ) (from Figure 4) tolerates an error fraction of γ with rate being Θ(εδ).

Proof. Suppose that an adversary corrupts at most γN = (1/3− ε)N of Alice’s transmissions
in πrand

δ (γ) (recall that N = d2/δeN0). We will show that for any fixed error pattern, Bob
can successfully recover Alice’s message with high probability.

Consider the potential function Φ that was used for proving the correctness of protocol
πdet

1 (γ). In any iteration 1 ≤ i ≤ N0 of the simulating protocol πrand
δ (γ) (in Figure 4) above,

with e fraction of errors (i.e. with eD errors), the potential function Φ changes by an amount
Xi given as follows (see Proposition 8):

if ei ≤ 1/2, then with probability 1 − 2ei, Φ increases by at least Xi = 1, and with
probability 2ei the potential function remains unchanged (Xi = 0). In expectation, Φ
increases by at least E[Xi] = (1− 2ei).
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Parameters:
ε = 1

3 − γ
Alice Bob

Input: Message x ∈ {0, 1}k

Initialization:
. y← E(x) ∈ {0, 1}n . . . (1)
. N0 ← d2n/3εe . . . (2)
. T, Tright, Twrong ← ∅ . . . (3)
. D ← d2/δe . . . (4)

Initialization:
. N0 ← d2n/3εe . . . (2)
. T ← ∅ . . . (3)
. D ← d2/δe . . . (4)

—————– Repeat N0 times —————–
if Twrong = ∅ then
b← y(len(Tright) + 1)

else
b← ‘0’

end if
c← bD

m←
∣∣{i : c̃i = 1}

∣∣
if m ≤ D/2 then

b̃←
{
‘0’ w.p. 1− 2m/D
‘?’ w.p. 2m/D

else
b̃←

{
‘1’ w.p. 2m/D − 1
‘?’ w.p. 2− 2m/D

end if
if b̃ 6= ‘?’ then
T ← T ◦ b̃
if T ends in ‘00’ then
Backtrack last 3 bits in T
end if
Set Tright, Twrong appropriately

end if

c c̃

if b̃ 6= ‘?’ then
T ← T ◦ b̃
if T ends in ‘00’ then
Backtrack last 3 bits in T
end if
Set Tright, Twrong appropriately

end if

b̃
b̃

—————– End of repeat —————–

Output: E−1(T [1, · · · , n])

(1), (2) and (3) as defined in the scheme πdet
1 (γ) (Figure 3)

(4) D is the number of bits sent in every iteration.

Figure 4 Randomized communication scheme with complete feedback : πrand
δ (γ).

APPROX/RANDOM’15
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if ei > 1/2, then with probability 2ei − 1, Φ decreases by at most 2, i.e. increases by at
least Xi = −2, and with probability 2− 2ei the potential function remains unchanged
(Xi = 0). In expectation, Φ increases by at least E[Xi] = −(4ei − 2).

Suppose we use N0 phases of the above protocol and suppose that the fraction of errors
that the adversary makes in each of these N0 phases is e1, e2, · · · , eN0 , respectively. Let
S1 = {i : ei ≤ 1/2} and S2 = {i : ei > 1/2}.

Thus, the expected value of the potential function at the end of N0 phases will be,

E[Φ] ≥
N∑
i=1

E[Xi]

=
∑
i∈S1

(1− 2ei)−
∑
j∈S2

(4ej − 2)

=
∑

i∈S1∪S2

(1− 2ei)−
∑
j∈S2

(2ej − 1)

= N0 −
N0∑
i=1

2ei −
∑
j∈S2

(2ej − 1)

We want to bound E[Φ] from below. Firstly,
∑N0
i=1 ei ≤ N0 (1/3− ε). Also, since each

ej ≤ 1, we have that |S2| ≥
∑
j∈S2

ej , and hence
∑
j∈S2

(2ej − 1) ≤
∑
j∈S2

ej ≤
∑N0
i=1 ei ≤

N0 (1/3− ε). Thus, from above equations we have that,

E[Φ] ≥ N0 − 2N0

(
1
3 − ε

)
−N0

(
1
3 − ε

)
= 3εN0.

Since we choose N0 = d2n/3εe, we have that E[Φ] ≥ 2n. Also, note that either Xi ∈ [0, 2]
or Xi ∈ [−2, 0] for all i. Thus, using Hoeffding’s concentration inequality, we have

Pr[Φ ≥ n] ≥ Pr[X1 +X2 + · · ·+XN0 ≥ n]

≥ 1− Pr
[∣∣∣X1 +X2 + · · ·+XN0 − E

[∑N0
i=1 Xi

]∣∣∣ ≥ n]
≥ 1− 2e−2n2/4N0

≥ 1− 2e−3εn/4 [putting N0 = d2n/3εe]

Recall that if Φ ≥ n at the end of the protocol, then Bob is able to decode Alice’s
message correctly. Thus, we conclude that πrand

δ (γ) works with a failure probability of at
most exp(−Ω(k)) (since n = Θ(k)). J

I Remark. In the application of the Hoeffding’s inequality we required the error pattern to be
fixed, that is, the adversary pre-commits to the error pattern (although unknown to Alice and
Bob). We feel that this is only a technical difficulty and it should be generalizable to adaptive
adversaries. Nevertheless, in the next section, we de-randomize this protocol, although with
a smaller error fraction. For deterministic protocols, it does not matter whether the errors
are adaptive or not, as we require a worst-case guarantee.

5 Deterministic communication schemes with partial feedback

In this section, we prove Theorem 6 by giving a deterministic protocol πdet
δ (γ) with δ-feedback

(for any δ ∈ (0, 1]). We first give a deterministic communication scheme with δ-feedback for
δ = 2/(4r + 3) for any r ∈ N (this scheme is described in Section 5.1), which we obtain by
a certain derandomization of πrand

δ . Next, for 2
4r+7 < δ < 2

4r+3 , we give a communication
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scheme that interpolates between πdet
2/(4r+3) and πdet

2/(4r+7) (the full details are described in
Section 5.2).

5.1 Deterministic communication scheme for δ = 2/(4r + 3)

In this section, we present a deterministic communication scheme πdet
δ (γ), where δ = 2/(4r+3)

for any r ∈ N. We show that this scheme tolerates an error fraction of γ = (r+1)/(4r+3)−ε
and has rate Θ(εδ). We obtain this by instantiating the communication scheme πdet

δ (γ) in
Figure 5, with Di = (4r + 3) and ri = r for all i. The main idea behind the protocol is as
follows:

We will consider a protocol identical to πrand
δ , except that in each of the N0 iterations,

Bob chooses a value (‘0,’ ‘1,’ or ‘?’) for b̃ in a deterministic fashion. In particular, in any
iteration, Alice sends D = (4r + 3) = 2/δ bits (say c given by bD), which Bob then receives
as c̃. Let m be the number of 1’s in c̃. Bob chooses b̃ as follows:

b̃ ←


‘0’ if m ≤ r
‘1’ if m ≥ D − r
‘?’ if r < m < D − r

Thus, r + 1 is the minimum number of bits of c that an adversary must corrupt in order
to force Bob to interpret the round as a ‘?’, and D − r is the minimum number of bits of c
that must be corrupted in order to force Bob to interpret the round as opposite of the bit
that Alice intended to send. The decoding strategy of Bob is summarized in the following
figure:

0 r D − r D

‘0’ ‘?’ ‘1’

Thus, the entire protocol uses N = DN0 = (2/δ)N0 number of forward bits of communic-
ation and 2N0 bits of feedback, and thus it uses δ-feedback. We will choose N0 = dn/3εe,
and hence the rate is Θ(εδ). So all that remains to show now is that this protocol tolerates
an error fraction of γ = (r+ 1)/(4r+ 3)− ε. The following proposition (which is an analogue
of Corollary 9) will be useful in proving the same.

I Proposition 11. For δ = 2/(4r + 3), if γ fraction of Alice’s transmissions in commu-
nication scheme πdet

δ (γ) (from Figure 5) are corrupted, then at the end of the protocol,
Φ ≥

(
1− (4r+3)γ

r+1

)
N0.

Proof. In the communication scheme πdet
δ (γ), any iteration is considered correctly decoded if

b̃ is set to be the bit that appears in c, while it is said to be incorrectly decoded if b̃ is set to
the opposite bit. An iteration is considered ambiguous if b̃ is set to be ‘?’.

Now, suppose an adversary corrupts the scheme such that AN0, BN0, and CN0 are
the number of iterations that are ambiguous, correctly decoded and incorrectly decoded
respectively. Note that the adversary has a total budget of γDN0 corruptions, where γ is
the overall error fraction of the protocol. Thus, we have the following constraints:

A+B + C = 1 (1)
(r + 1)A+ (D − r)C ≤ γD (2)

APPROX/RANDOM’15
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Alice Bob

Input: Message x ∈ {0, 1}k

Initialization:
. y← E(x) ∈ {0, 1}n . . . (1)
. N0 ← Θδ,γ(n) . . . (2)
. T, Tright, Twrong ← ∅ . . . (3)
. {Di}i∈[N0] , {ri}i∈[N0] . . . (4)

Initialization:
. N0 ← Θδ,γ(n) . . . (2)
. T ← ∅ . . . (3)
. {Di}i∈[n] , {ri}i∈[n] . . . (4)

—————– Repeat N0 times —————–
if Twrong = ∅ then
b← y(len(Tright) + 1)

else
b← ‘0’

end if
c← bDi

m←
∣∣{i : c̃i = 1}

∣∣
b̃←


‘0’ if m ≤ ri
‘1’ if m ≥ Di − ri
‘?’ if ri < m < Di − ri

if b̃ 6= ‘?’ then
T ← T ◦ b̃
if T ends in ‘00’ then
Backtrack last 3 bits in T
end if
Set Tright, Twrong appropriately

end if

c
c̃

if b̃ 6= ‘?’ then
T ← T ◦ b̃
if T ends in ‘00’ then
Backtrack last 3 bits in T
end if
Set Tright, Twrong appropriately

end if

b̃
b̃

—————– End of repeat —————–

Output: E−1(T [1, · · · , n])

(1), (2) and (3) as defined in the scheme πdet
1 (Figure 3)

(4) Di is the number of forward bits sent in iteration i. ri is the deterministic threshold used by
Bob to interpret the received stream as either ‘0’, ‘?’ or ‘1’ in iteration i. The total number of
forward bits is

∑
iDi, and total number of feedback bits is 2N0. The exact choice of Di’s and

ri’s will depend on δ and γ.

Figure 5 Template for deterministic communication scheme with complete feedback : πdet
δ (γ).
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Equation 1 follows because the total number of iterations is N0. Inequality 2 follows because,
we may assume without loss of generality, that an adversary corrupts 0 bits for an iteration
that is correctly decoded, D − r bits for an iteration that is incorrectly decoded, and r + 1
bits for an iteration that is ambiguous. This is because these are the minimum number of
bits needed to be corrupted for each category, and an adversary cannot possibly gain by
corrupting more than the minimum.

From Proposition 8, we have that Φ ≥ (B − 2C)N0. And so, we wish to lower bound
B − 2C. For this, we subtract 3

D−r times Inequality (2) from Equation (1) to obtain

B − 2C −A
(

3(r + 1)
D − r

− 1
)
≥ 1− 3γD

D − r

Since D = 4r + 3, it follows that 3(r+1)
D−r = 1, and so,

B − 2C ≥ 1− 3γD
D − r

= 1− (4r + 3)γ
r + 1

Thus, we get that at the end of the protocol, Φ ≥
(

1− (4r+3)γ
r+1

)
N0. J

By the above Proposition, ifN0 = dn/3εe and γ = r+1
4r+3−ε fraction of Alice’s transmissions

in πdet
δ (γ) are corrupted, then at the end of the protocol we will have,

len(Tright) ≥ Φ ≥
(

1− 4r + 3
r + 1

(
r + 1
4r + 3 − ε

))
N0 = (4r + 3)ε

r + 1 N0 ≥ n

This guarantees that at the end of the protocol len(Tright) ≥ n meaning the first n bits of T
are exactly y and Bob can correctly decode Alice’s message by applying E−1 on the first n
bits of T .

5.2 Deterministic communication schemes for all δ ∈ (0, 1]
In the previous section we gave a deterministic communication scheme πdet

δ (γ) for δ =
2/(4r + 3), and showed that one can tolerate an error fraction of up to r+1

4r+3 . In the section,
we give a communication scheme πdet

δ (γ) for any feedback fraction δ ∈
(

2
4r+7 ,

2
4r+3

)
, that

can tolerate an error fraction of γ = δ(r+1)
2 − ε (where ε > 0).

The key is to “interpolate” the protocols πdet
δ that we obtain for δ = 2

D between D = 4r+3
and D = 4(r + 1) + 3. In particular, we will have that for the first qN0 iterations, we use
Di = 4r+ 7 and ri = r+ 1, and the later (1− q)N0 iterations, we use Di = 4r+ 3 and ri = r.
We let N0 ≥ (r + 1)δn/2ε. This also gives that the rate is Θ(εδ) (since δ ≥ 2/(4r + 7)).

Let A1N0, B1N0, and C1N0 be the number of iterations that are ambiguous, correctly
decoded and incorrectly decoded respectively in the first qN0 iterations. Similarly, let A2N0,
B2N0, and C2N0 be the number of iterations that are ambiguous, correctly decoded and
incorrectly decoded respectively in the later (1−q)N0 iterations. Also note that the adversary
has a total budget of γ(q(4r + 7) + (1− q)(4r + 3))N0 corruptions, where γ is the overall
error fraction of the protocol.

Note that δ = 2/(q(4r+7)+(1−q)(4r+3)) = 2/(4q+4r+3) and hence q = 1
2δ −

(4r+3)
4 . We have

the following constraints:

A1 +B1 + C1 = q (3)
A2 +B2 + C2 = 1− q (4)

(r + 2)A1 + (r + 1)A2 + (3r + 6)C1 + (3r + 3)C2 ≤ γ(4q + (4r + 3)) (5)

APPROX/RANDOM’15
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From Proposition 8, we have that the potential at the end of the protocol satisfies Φ ≥
(B1 +B2 − 2C1 − 2C2)N0. Thus, we wish to lower bound (B1 +B2 − 2C1 − 2C2). We add
equations 3 and 4 and subtract (1/(r+1)) times inequality 5, to get,

B1 +B2 − 2C1 − 2C2 −
A1

r + 1 −
3C1

r + 1 ≥ 1− γ(4q + 4r + 3)
r + 1 = 1− 2γ

(r + 1)δ

Since A1, C1 ≥ 0 and γ = (r + 1)δ/2− ε, we get that,

Φ ≥ (B1 +B2 − 2C1 − 2C2)N0 ≥
2εN0

(r + 1)δ ≥ n

where the last inequality follows because we chose N0 ≥ (r + 1)δn/2ε. This guarantees that
at the end of the protocol len(Tright) ≥ Φ ≥ n meaning the first n bits of T are exactly y
and Bob can correctly decode Alice’s message by applying E−1 on the first n bits of T .

5.3 Putting it all together
Proof of Theorem 6. In Section 5.2, we showed that when 2

4r+7 ≤ δ ≤
2

4r+3 , we have that
Γdet(δ) ≥ (r + 1)δ/2. But from Section 5.1, we obtained that Γdet

(
2

4r+7

)
≥ r+2

4r+7 , and thus
by monotonicity of Γdet(δ), we have that for all δ ≥ 2

4r+7 , Γdet(δ) ≥ r+2
4r+7 . Combining the

two results we get that,

∀r ∈ Z≥0 ∀δ ∈
[

2
4r + 7 ,

2
4r + 3

]
Γdet(δ) ≥ max

{
(r + 1)δ

2 ,
r + 2
4r + 7

}
J

6 Discussion

We have introduced the notion of communication schemes under partial noiseless feedback as
a natural interpolation between two familiar settings, namely, the problem of transmission
over a binary channel with adversarial errors (achievable by the use of error-correcting codes)
as well as the problem of transmission over a binary feedback channel (achievable by the
protocol in [1]). The results of this work show that the availability of a non-zero fraction
of feedback, however small, allows Alice to communicate a message to Bob in a way that
tolerates an adversarial error fraction of more than 1/4, the limit for error-correcting codes.
An upper bound of 1/3 on the tolerable error fraction for a deterministic communication
scheme holds for all feedback fractions 0 ≤ δ ≤ 1, and we show how to obtain a randomized
communication scheme that tolerates any error fraction up to 1/3. Furthermore, we have
shown deterministic communication schemes that tolerates error fractions of up to f(δ),
where f is a monotonically increasing, piecewise linear, continuous function with f(0) = 1/4

and f(1) = 1/3. In particular, we have shown that our deterministic scheme can tolerate any
error fraction less than 1/3 for all δ ≥ 2/3.

Our work points to several interesting directions for further investigation.

Is the bound Γdet(δ) ≥ f(δ) provided by Theorem 6 is tight? Currently we only know
that f(δ) ≤ Γdet(δ) ≤ 1/3 for δ < 2/3. In particular, is it possible for a deterministic
communication scheme to tolerate error fractions up to 1/3 for all δ in the way that the
randomized scheme πrand

δ can. One possible direction is to derandomize πrand
δ in a more

clever way that avoids loss in the error fraction tolerance. Otherwise, is it possible to
prove better upper bounds than 1/3 on Γdet(δ)?
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In this work, we have considered only protocols over binary alphabets. It will be interesting
to determine the limits on the tolerable error fraction for communication schemes with
partial feedback that use symbols from non-binary alphabets as well as to find explicit
communication schemes in this setting. Over an alphabet of size q, we know that error
correcting codes can tolerate an error fraction of (1 − 1/q)/2, whereas, with noiseless
feedback, one can tolerate an error fraction of up to 1/2 (see [7] for example).
In this work we only studied the model of noiseless feedback. It will be interesting
to understand what bounds could be proved for the noisy feedback model, where the
adversary is allowed to corrupt the feedback as well. An immediate question is whether
it is even possible to correct more than 1/4 fraction errors in this model (for any amount
of feedback - where we measure the error budget as a fraction of the length of the entire
protocol and not just Alice’s transmissions).
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A Upper bound on tolerable error fraction for mirror feedback

For completeness we give a proof of the following theorem, which was already proved by
Berlekamp [1] and also later by Spencer-Winkler in the context of questions with liars [20].

I Theorem 12. Any one-way communication scheme with noiseless feedback which uses the
mirror feedback structure (that is, each feedback bit sent by Bob is simply the bit that he
receives from Alice), cannot tolerate 1/3 fraction of errors, as long as the input space of Alice
has at least three elements.

Proof. Let A, B and C be three possible inputs that Alice receives. Consider three parallel
executions of any communication scheme with mirror feedback. We will show that there
exists an adversary who can ensure that the view of Bob in two out of these three executions
are the same by using only 1/3 fraction errors in each of the executions. We describe the
adversary below.

Let ai, bi and ci be the bits sent by Alice in the i-th round of these three executions.
Clearly at least two out of these three bits have to be the same. Thus, if one of these three
bits is different from the other two, then the adversary will corrupt that bit, otherwise he
will not corrupt any of the bits. This ensures that up to any round i, Bob’s view of the
protocol in all the three executions are the same.
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Eventually, it might happen that the adversary has committed 1/3 fraction errors on one
of three executions. In this case, the adversary ignore that execution and focusses only on
the other two. Suppose without loss of generality that the executions of A and B are still
surviving. In the future rounds, whenever ai 6= bi, the adversary chooses to corrupt the
execution where the number of error so far have been fewer.

Since the adversary makes at most one error in any round of the three executions, it is
clear that the adversary never makes more than 1/3 fraction of errors on any of the executions.
Moreover, at the end of the executions, Bob will have identical views of the transcript in the
executions corresponding to both A and B. J

B Changes in potential function

Proof of Proposition 8. We consider the following four exhaustive cases. Recall that T does
not contain consecutive ‘0’s.
Case 1 (Twrong = ∅): Suppose Alice sends a bit b. In the case, that it is correctly received

by Bob, len(Tright) increases by 1 and wt(Twrong) remains 0. Thus, Φ increases by 1.
Suppose it is incorrectly received by Bob. If b = 1 and the last bit of Tright is 0, then note
that Bob would have received two consecutive 0’s and hence will backtrack two symbols
and len(Tright) decreases by 2, while Twrong remains ∅. In all other cases, Tright remains
unchanged after the transmission, while Twrong is either ‘1’ or ‘0’, which means len(Tright)
remains unchanged and wt(Twrong) becomes 2. In either case, Φ decreases by 2.

Case 2 (Twrong ends in a ‘1’): In this case, the scheme ensures that Alice sends a ‘0’. If
Bob correctly receives the bit, then the unit ‘1’ is now converted to ‘10’. Thus, wt(Twrong)
decreases by 1, causing Φ to increase by 1. On the other hand, if Bob does not receive
the correct bit, another ‘1’ is added to Twrong which means wt(Twrong) increases by 2,
causing Φ to decrease by 2.

Case 3 (Twrong is ‘0’): In this case, the scheme ensures that Alice sends a ‘0’. If Bob
correctly receives the ‘0’, then len(Tright) goes down by at most 1, but wt(|Twrong|) goes
down by 2, implying that Φ increases by at least 1. On the other hand, if Bob incorrectly
receives a ‘1’, then wt(Twrong) increases by 2 and thus Φ goes down by 2.

Case 4 (Twrong ends in ‘10’): In this case, the scheme ensures that Alice sends a ‘0’. If Bob
correctly receives the ‘0’, then he will backtrack the ‘10’, and thus wt(Twrong) decreases
by 1, implying that Φ increases by 1. On the other hand, if Bob receives a ‘1’, then
wt(Twrong) increases by 2, and thus Φ decreases by 2. J
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Abstract
Kernel methods are an extremely popular set of techniques used for many important machine
learning and data analysis applications. In addition to having good practical performance, these
methods are supported by a well-developed theory. Kernel methods use an implicit mapping of
the input data into a high dimensional feature space defined by a kernel function, i.e., a function
returning the inner product between the images of two data points in the feature space. Central
to any kernel method is the kernel matrix, which is built by evaluating the kernel function on a
given sample dataset.

In this paper, we initiate the study of non-asymptotic spectral properties of random kernel
matrices. These are n×n random matrices whose (i, j)th entry is obtained by evaluating the ker-
nel function on xi and xj , where x1, . . . ,xn are a set of n independent random high-dimensional
vectors. Our main contribution is to obtain tight upper bounds on the spectral norm (largest
eigenvalue) of random kernel matrices constructed by using common kernel functions such as
polynomials and Gaussian radial basis.

As an application of these results, we provide lower bounds on the distortion needed for re-
leasing the coefficients of kernel ridge regression under attribute privacy, a general privacy notion
which captures a large class of privacy definitions. Kernel ridge regression is standard method
for performing non-parametric regression that regularly outperforms traditional regression ap-
proaches in various domains. Our privacy distortion lower bounds are the first for any kernel
technique, and our analysis assumes realistic scenarios for the input, unlike all previous lower
bounds for other release problems which only hold under very restrictive input settings.

1998 ACM Subject Classification F. Theory of Computation

Keywords and phrases Random Kernel Matrices, Spectral Norm, Subguassian Distribution,
Data Privacy, Reconstruction Attacks

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.898

1 Introduction

In recent years there has been significant progress in the development and application of
kernel methods for many practical machine learning and data analysis problems. Kernel
methods are regularly used for a range of problems such as classification (binary/multiclass),
regression, ranking, and unsupervised learning, where they are known to almost always
outperform “traditional” statistical techniques [23, 24]. At the heart of kernel methods
is the notion of kernel function, which is a real-valued function of two variables. The
power of kernel methods stems from the fact for every (positive definite) kernel function
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it is possible to define an inner-product and a lifting (which could be nonlinear) such that
inner-product between any two lifted datapoints can be quickly computed using the kernel
function evaluated at those two datapoints. This allows for introduction of nonlinearity into
the traditional optimization problems (such as Ridge Regression, Support Vector Machines,
Principal Component Analysis) without unduly complicating them.

The main ingredient of any kernel method is the kernel matrix, which is built using
the kernel function, evaluated at given sample points. Formally, given a kernel function
κ : X ×X → R and a sample set x1, . . . ,xn, the kernel matrix K is an n× n matrix with its
(i, j)th entry Kij = κ(xi,xj). Common choices of kernel functions include the polynomial
kernel (κ(xi,xj) = (a〈xi,xj〉 + b)p, for p ∈ N) and the Gaussian kernel (κ(xi,xj) =
exp(−a‖xi − xj‖2), for a > 0) [23, 24].

In this paper, we initiate the study of non-asymptotic spectral properties of random
kernel matrices. A random kernel matrix, for a kernel function κ, is the kernel matrix K
formed by n independent random vectors x1, . . . ,xn ∈ Rd. The prior work on random kernel
matrices [13, 2, 6] have established various interesting properties of the spectral distributions
of these matrices in the asymptotic sense (as n, d → ∞). However, analyzing algorithms
based on kernel methods typically requires understanding of the spectral properties of these
random kernel matrices for large, but fixed n, d. A similar parallel also holds in the study of
the spectral properties of “traditional” random matrices, where recent developments in the
non-asymptotic theory of random matrices have complemented the classical random matrix
theory that was mostly focused on asymptotic spectral properties [27, 20].

We investigate upper bounds on the largest eigenvalue (spectral norm) of random kernel
matrices for polynomial and Gaussian kernels. We show that for inputs x1, . . . ,xn drawn
independently from a wide class of probability distributions over Rd (satisfying the subgaussian
property), the spectral norm of a random kernel matrix constructed using a polynomial
kernel of degree p, with high probability, is roughly bounded by O(dpn). In a similar setting,
we show that the spectral norm of a random kernel matrix constructed using a Gaussian
kernel is bounded by O(n), and with high probability, this bound reduces to O(1) under
some stronger assumptions on the subgaussian distributions. These bounds are almost tight.
Since the entries of a random kernel matrix are highly correlated, the existing techniques
prevalent in random matrix theory cannot be directly applied. We overcome this problem by
careful splitting and conditioning arguments on the random kernel matrix. Combining these
with subgaussian norm concentrations form the basis of our proofs.

1.1 Applications
Largest eigenvalue of kernel matrices plays an important role in the analysis of many
machine learning algorithms. Some examples include, bounding the Rademacher complexity
for multiple kernel learning [16], analyzing the convergence rate of conjugate gradient
technique for matrix-valued kernel learning [26], and establishing the concentration bounds
for eigenvalues of kernel matrices [12, 25].

In this paper, we focus on an application of these eigenvalue bounds to an important
problem arising while analyzing sensitive data. Consider a curator who manages a database
of sensitive information but wants to release statistics about how a sensitive attribute (say,
disease) in the database relates with some nonsensitive attributes (e.g., postal code, age,
gender, etc). This setting is widely considered in the applied data privacy literature, partly
since it arises with medical and retail data. Ridge regression is a well-known approach for
solving these problems due to its good generalization performance. Kernel ridge regression
is a powerful technique for building nonlinear regression models that operate by combining
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ridge regression with kernel methods [21].1 We present a linear reconstruction attack that
reconstructs, with high probability, almost all the sensitive attribute entries given sufficiently
accurate approximation of the kernel ridge regression coefficients. In a linear reconstruction
attack, given the released information ρ, the attacker constructs a system of approximate
linear equalities of the form Az ≈ ρ for a matrix A and attempts to solve for z.

We consider reconstruction attacks against attribute privacy, a loose notion of privacy,
where the goal is to just avoid any gross violation of privacy. Concretely, the input is assumed
to be a database whose ith row (record for individual i) is (xi, yi) where xi ∈ Rd is assumed to
be known to the attacker (public information) and yi ∈ {0, 1} is the sensitive attribute, and a
privacy mechanism is attribute non-private if the attacker can consistently reconstruct a large
fraction of the sensitive attribute (y1, . . . , yn). We show that any privacy mechanism that
always adds ≈ o(1/(dpn)) noise2 to each coefficient of a polynomial kernel ridge regression
model is attribute non-private. Similarly any privacy mechanism that always adds ≈ o(1)
noise2 to each coefficient of a Gaussian kernel ridge regression model is attribute non-private.
As we later discuss, there exists natural settings of inputs under which these kernel ridge
regression coefficients, even without the privacy constraint, have the same magnitude as these
noise bounds, implying that privacy comes at a steep price. While the linear reconstruction
attacks employed in this paper themselves are well-known [9, 15, 14], these are the first
attribute privacy lower bounds that: (i) are applicable to any kernel method and (ii) work for
any d-dimensional data, analyses of all previous attacks (for other release problems) require
d to be comparable to n. Additionally, unlike previous reconstruction attack analyses, our
bounds hold for a wide class of realistic distributional assumptions on the data.

1.2 Comparison with Related Work
In this paper, we study the largest eigenvalue of an n × n random kernel matrix in the
non-asymptotic sense. The general goal with studying non-asymptotic theory of random
matrices is to understand the spectral properties of random matrices, which are valid
with high probability for matrices of a large fixed size. This is contrast with the existing
theory on random kernel matrices which have focused on the asymptotics of various spectral
characteristics of these random matrices, when the dimensions of the matrices tend to
infinity. Let x1, . . . ,xn ∈ Rd be n i.i.d. random vectors. For any F : Rd × Rd × R → R,
symmetric in the first two variables, consider the random kernel matrix K with (i, j)th
entry Kij = F (xi,xj , d). El Karoui [13] considered the case where K is generated by either
the inner-product kernels (i.e., F (xi,xj , d) = f(〈xi,xj〉, d)) or the distance kernels (i.e.,
F (xi,xj , d) = f(‖xi − xj‖2, d)). It was shown there that under some assumptions on f

and on the distributions of xi’s, and in the “large d, large n” limit (i.e., and d, n→∞ and
d/n→ (0,∞)): a) the non-linear kernel matrix converges asymptotically in spectral norm to
a linear kernel matrix, and b) there is a weak convergence of the limiting spectral density.
These results were recently strengthened in different directions by Cheng et al. [2] and Do et
al. [6]. To the best of our knowledge, ours is the first paper investigating the non-asymptotic
spectral properties of a random kernel matrix.

Like the development of non-asymptotic theory of traditional random matrices has found
multitude of applications in areas including statistics, geometric functional analysis, and
compressed sensing [27], we believe that the growth of a non-asymptotic theory of random

1 We provide a brief coverage of the basics of kernel ridge regression in Section 4.
2 Ignoring the dependence on other parameters, including the regularization parameter of ridge regression.
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kernel matrices will help in better understanding of many machine learning applications that
utilize kernel techniques.

The goal of private data analysis is to release global, statistical properties of a database
while protecting the privacy of the individuals whose information the database contains. Dif-
ferential privacy [7] is a formal notion of privacy tailored to private data analysis. Differential
privacy requires, roughly, that any single individual’s data have little effect on the outcome of
the analysis. A lot of recent research has gone in developing differentially private algorithms
for various applications, including kernel methods [11]. A typical objective here is to release
as accurate an approximation as possible to some function f evaluated on a database D.

In this paper, we follow a complementary line of work that seeks to understand how
much distortion (noise) is necessary to privately release some particular function f evaluated
on a database containing sensitive information [5, 8, 9, 15, 4, 18, 3, 19, 14]. The general
idea here, is to provide reconstruction attacks, which are attacks that can reconstruct
(almost all of) the sensitive part of database D given sufficiently accurate approximations to
f(D). Reconstruction attacks violate any reasonable notion of privacy (including, differential
privacy), and the existence of these attacks directly translate into lower bounds on distortion
needed for privacy.

Linear reconstruction attacks were first considered in the context of data privacy by
Dinur and Nissim [5], who showed that any mechanism which answers ≈ n logn random
inner product queries on a database in {0, 1}n with o(

√
n) noise per query is not private.

Their attack was subsequently extended in various directions by [8, 9, 18, 3].
The results that are closest to our work are the attribute privacy lower bounds analyzed

for releasing k-way marginals [15, 4], linear/logistic regression parameters [14], and a subclass
of statistical M -estimators [14]. Kasiviswanathan et al. [15] showed that, if d = Ω̃(n1/(k−1)),
then any mechanism which releases all k-way marginal tables with o(

√
n) noise per entry

is attribute non-private.3 These noise bounds were improved by De [4], who presented an
attack that can tolerate a constant fraction of entries with arbitrarily high noise, as long
as the remaining entries have o(

√
n) noise. Kasiviswanathan et al. [14] recently showed

that, if d = Ω(n), then any mechanism which releases d different linear or logistic regression
estimators each with o(1/

√
n) noise is attribute non-private. They also showed that this

lower bound extends to a subclass of statistical M -estimator release problems. A point to
observe is that in all the above referenced results, d has to be comparable to n, and this
dependency looks unavoidable in those results due to their use of least singular value bounds.
However, in this paper, our privacy lower bounds hold for all values of d, n (d could be � n).
Additionally, all the previous reconstruction attack analyses critically require the xi’s to
be drawn from product of univariate subgaussian distributions, whereas our analysis here
holds for any d-dimensional subgaussian distributions (not necessarily product distributions),
thereby is more widely applicable. The subgaussian assumption on the input data is quite
common in the analysis of machine learning algorithms [1].

2 Preliminaries

2.1 Notation
We use [n] to denote the set {1, . . . , n}. dH(·, ·) measures the Hamming distance. Vectors
used in the paper are by default column vectors and are denoted by boldface letters. For

3 The Ω̃ notation hides polylogarithmic factors.
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a vector v, v> denotes its transpose and ‖v‖ denotes its Euclidean norm. For two vectors
v1 and v2, 〈v1,v2〉 denotes the inner product of v1 and v2. For a matrix M , ‖M‖ denotes
its spectral norm, ‖M‖F denotes its Frobenius norm, and Mij denotes its (i, j)th entry. In
represents the identity matrix in dimension n. The unit sphere in d dimensions centered
at origin is denoted by Sd−1 = {z : ‖z‖ = 1, z ∈ Rd}. Throughout this paper C, c, C ′, also
with subscripts, denote absolute constants (i.e., independent of d and n), whose value may
change from line to line.

2.2 Background on Kernel Methods
We provide a very brief introduction to the theory of kernel methods; see the many books on
the topic [23, 24] for further details.

I Definition 1 (Kernel Function). Let X be a non-empty set. Then a function κ : X ×X → R
is called a kernel function on X if there exists a Hilbert space H over R and a map φ : X → H
such that for all x,y ∈ X , we have

κ(x,y) = 〈φ(x), φ(y)〉H.

For any symmetric and positive semidefinite4 kernel κ, by Mercer’s theorem [17] there
exists: (i) a unique functional Hilbert space H (referred to as the reproducing kernel Hilbert
space, Definition 2) on X such that κ(·, ·) is the inner product in the space and (ii) a map φ
defined as φ(x) := κ(·,x)5 that satisfies Definition 1. The function φ is called the feature
map and the space H is called the feature space.

I Definition 2 (Reproducing Kernel Hilbert Space). A kernel κ(·, ·) is a reproducing kernel
of a Hilbert space H if ∀f ∈ H, f(x) = 〈κ(·,x), f(·)〉H. For a (compact) X ⊆ Rd, and
a Hilbert space H of functions f : X → R, we say H is a Reproducing Kernel Hilbert
Space if there ∃κ : X × X → R, s.t.: a) κ has the reproducing property, and b) κ spans
H = span{κ(·,x) : x ∈ X}.

A standard idea used in the machine-learning community (commonly referred to as the
“kernel trick”) is that kernels allow for the computation of inner-products in high-dimensional
feature spaces (〈φ(x), φ(y)〉H) using simple functions defined on pairs of input patterns
(κ(x,y)), without knowing the φ mapping explicitly. This trick allows one to efficiently
solve a variety of non-linear optimization problems. Note that there is no restriction on the
dimension of the feature maps (φ(x)), i.e., it could be of infinite dimension.

Polynomial and Gaussian are two popular kernel functions that are used in many machine
learning and data mining tasks such as classification, regression, ranking, and structured
prediction. Let the input space X = Rd. For x,y ∈ Rd, these kernels are defined as:
1. Polynomial Kernel: κ(x,y) = (a〈x,y〉+ b)p, with parameters a, b ∈ R and p ∈ N. Here

a is referred to as the slope parameter, b ≥ 0 trades off the influence of higher-order
versus lower-order terms in the polynomial, and p is the polynomial degree. For an input
x ∈ Rd, the feature map φ(x) of the polynomial kernel is a vector with a polynomial in d
number of dimensions [23].

4 A positive definite kernel is a function κ : X × X → R such that for any n ≥ 1, for any finite set of
points {xi}n

i=1 in X and real numbers {ai}n
i=1, we have

∑n

i,j=1 aiajκ(xi,xj) ≥ 0.
5 κ(·,x) is a vector with entries κ(x′,x) for all x′ ∈ X .
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2. Gaussian Kernel: (frequently referred to as the radial basis kernel): κ(x,y) =
exp

(
−a‖x− y‖2) with real parameter a > 0. The value of a controls the locality

of the kernel with low values indicating that the influence of a single point is “far” and
vice-versa [23]. An equivalent popular formulation, is to set a = 1/2σ2, and hence,
κ(x,y) = exp

(
−‖x− y‖2/2σ2). For an input x ∈ Rd, the feature map φ(x) of the

Gaussian kernel is a vector of infinite dimensions [23]. Note that while we focus on the
Gaussian kernel in this paper, the extension of our results to other exponential kernels
such as the Laplacian kernel (where κ(x,y) = exp (−a‖x− y‖1)), is quite straightforward.

2.3 Background on Subgaussian Random Variables
Let us start by formally defining subgaussian random variables and vectors.

I Definition 3 (Subgaussian Random Variable and Vector). We call a random variable x ∈ R
subgaussian if there exists a constant C > 0 if Pr[|x| > t] ≤ 2 exp(−t2/C2) for all t > 0. We
say that a random vector x ∈ Rd is subgaussian if the one-dimensional marginals 〈x,y〉 are
subgaussian random variables for all y ∈ Rd.

The class of subgaussian random variables includes many random variables that arise naturally
in data analysis, such as standard normal, Bernoulli, spherical, bounded (where the random
variable x satisfies |x| ≤M almost surely for some fixed M). The natural generalizations of
these random variables to higher dimension are all subgaussian random vectors. For many
isotropic convex sets6 K (such as the hypercube), a random vector x uniformly distributed
in K is subgaussian.

I Definition 4 (Norm of Subgaussian Random Variable and Vector). The ψ2-norm of a
subgaussian random variable x ∈ R, denoted by ‖x‖ψ2 is:

‖x‖ψ2 = inf
{
t > 0 : E[exp(|x|2/t2)] ≤ 2

}
.

The ψ2-norm of a subgaussian random vector x ∈ Rd is:

‖x‖ψ2 = sup
y∈Sd−1

‖〈x,y〉‖ψ2 .

I Claim 5 (Vershynin [27]). Let x ∈ R be a subgaussian random variable. Then there exists
a constant C > 0, such that Pr[|x| > t] ≤ 2 exp(−Ct2/‖x‖2

ψ2
).

Consider a subset T of Rd, and let ε > 0. An ε-net of T is a subset N ⊆ T such that
for every x ∈ T , there exists a z ∈ N such that ‖x − z‖ ≤ ε. We would use the following
well-known result about the size of ε-nets.

I Proposition 6 (Bounding the size of an ε-Net [27]). Let T be a subset of Sd−1 and let
ε > 0. Then there exists an ε-net of T of cardinality at most (1 + 2/ε)d.

The proof of the following claim follows by standard techniques.

I Claim 7 (Vershynin [27]). Let N be a 1/2-net of Sd−1. Then for any x ∈ Rd, ‖x‖ ≤
2 maxy∈N 〈x,y〉.

6 A convex set K in Rd is called isotropic if a random vector chosen uniformly from K according to the
volume is isotropic. A random vector x ∈ Rd is isotropic if for all y ∈ Rd, E[〈x,y〉2] = ‖y‖2.
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3 Largest Eigenvalue of Random Kernel Matrices

In this section, we provide the upper bound on the largest eigenvalue of a random kernel
matrix, constructed using polynomial or Gaussian kernels. Notice that the entries of a
random kernel matrix are dependent. For example any triplet of entries (i, j), (j, k) and (k, i)
are mutually dependent. Additionally, we deal with vectors drawn from general subgaussian
distributions, and therefore, the coordinates within a random vector need not be independent.

We start off with a simple lemma, to bound the Euclidean norm of a subgaussian random
vector. A random vector x is centered if E[x] = 0.

I Lemma 8. Let x1, . . . ,xn ∈ Rd be independent centered subgaussian vectors. Then for all
i ∈ [n], Pr[‖xi‖ ≥ C

√
d] ≤ exp(−C ′d) for constants C,C ′.

Proof. To this end, note that since xi is a subgaussian vector (from Definition 3)

Pr
[
|〈xi,y〉| ≥ C

√
d/2
]
≤ 2 exp(−C2d),

for constants C and C2, any unit vector y ∈ Sd−1. Taking the union bound over a (1/2)-net
(N ) in Sd−1, and using Proposition 6 for the size of the nets (which is at most 5d as ε = 1/2),
we get that

Pr
[
max
y∈N
|〈xi,y〉| ≥ C

√
d/2
]
≤ exp(−C3d),

From Claim 7, we know that ‖xi‖ ≤ 2 maxy∈N 〈xi,y〉. Hence, Pr
[
‖xi‖ ≥ C

√
d
]
≤

exp(−C ′d). J

3.1 Polynomial Kernel
We now establish the bound on the spectral norm of a polynomial kernel random matrix.
We assume x1, . . . ,xn are independent vectors drawn according to a centered subgaussian
distribution over Rd. Let Kp denote the kernel matrix obtained using x1, . . . ,xn in a
polynomial kernel. Our idea to split the kernel matrix Kp into its diagonal and off-diagonal
parts, and then bound the spectral norms of these two matrices separately. The diagonal part
contains independent entries of the form (a‖xi‖2 + b)p, and we use Lemma 8 to bound its
spectral norm. Dealing with the off-diagonal part of Kp is trickier because of the dependence
between the entries, and here we bound the spectral norm by its Frobenius norm. We
also verify the upper bounds provided in the following theorem by conducting numerical
experiments (see Figure 1a).

I Theorem 9. Let x1, . . . ,xn ∈ Rd be independent centered subgaussian vectors. Let p ∈ N,
and let Kp be the n × n matrix with (i, j)th entry Kpij = (a〈xi,xj〉 + b)p. Assume that
n ≤ exp(C1d) for a constant C1. Then there exists constants C0, C

′
0 such that

Pr
[
‖Kp‖ ≥ Cp0 |a|pdpn+ 2p+1|b|pn

]
≤ exp(−C ′0d).

Proof. To prove the theorem, we split the kernel matrix Kp into the diagonal and off-diagonal
parts. Let Kp = D+W , where D represents the diagonal part of Kp and W the off-diagonal
part of Kp. Note that

‖Kp‖ ≤ ‖D‖+ ‖W‖ ≤ ‖D‖+ ‖W‖F .



S. P. Kasiviswanathan and M. Rudelson 905

Let us estimate the norm of the diagonal part D first. From Lemma 8, we know that for all
i ∈ [n] with C3 = C ′,

Pr
[
‖xi‖ ≥ C

√
d
]

= Pr
[
‖xi‖2 ≥ (C

√
d)2
]
≤ exp(−C3d).

Instead of ‖x‖2
i , we are interested in bounding (a‖xi‖2 + b)p.

Pr
[
‖xi‖2 ≥ (C

√
d)2
]

= Pr
[
(a‖xi‖2 + b)p ≥ (a(C

√
d)2 + b)p

]
. (1)

Consider (a(C
√
d)2 + b)p. A simple inequality to bound (a(C

√
d)2 + b)p is7

(a(C
√
d)2 + b)p ≤ 2p(|a|p(C

√
d)2p + |b|p).

Therefore,

Pr
[
(a‖xi‖2 + b)p ≥ 2p(|a|p(C

√
d)2p + |b|p)

]
≤ Pr

[
(a‖xi‖2 + b)p ≥ (a(C

√
d)2 + b)p

]
.

Using (1) and substituting in the above equation, for any i ∈ [n]

Pr
[
(a‖xi‖2 + b)p ≥ 2p(|a|pC2pdp + |b|p)

]
≤ Pr

[
‖xi‖ ≥ C

√
d
]
≤ exp(−C3d).

By applying a union bound over all n non-zero entries in D, we get that for all i ∈ [n]

Pr
[
(a‖xi‖2 + b)p ≥ 2p(|a|pC2pdp + |b|p)

]
≤ n · exp(−C3d) ≤ exp(C1d) · exp(−C3d)

≤ exp(−C4d),

as we assumed that n ≤ exp(C1d). This implies that

Pr[‖D‖ ≥ 2p(|a|pC2pdp + |b|p)] ≤ exp(−C4d). (2)

We now bound the spectral norm of the off-diagonal part W using Frobenius norm as an
upper bound on the spectral norm. Firstly note, by definition, for any y ∈ Rd, the random
variable 〈xi,y〉 is subgaussian with its ψ2-norm at most C5‖y‖ for some constant C5. This
follows as:

‖〈xi,y〉‖ψ2 := inf
{
t > 0 : E[exp(〈xi,y〉2/t2)] ≤ 2

}
≤ C5‖y‖.

Therefore, for a fixed xj , ‖〈xi,xj〉‖ψ2 ≤ C5‖xj‖. For i 6= j, conditioning on xj ,

Pr [|〈xi,xj〉| ≥ τ ] = Exj
[Pr [|〈xi,xj〉| ≥ τ | xj ]] .

From Claim 5,

Exj
[Pr [|〈xi,xj〉| ≥ τ | xj ]] ≤ Exj

[
exp

(
−C6τ

2

‖〈xi,xj〉‖2
ψ2

)]
≤ Exj

[
exp

(
−C6τ

2

(C5‖xj‖)2

)]
= Exj

[
exp

(
−C7τ

2

‖xj‖2

)]
,

7 For any a, b,m ∈ R and p ∈ N, (a ·m+ b)p ≤ 2p(|a|p|m|p + |b|p).
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where the last inequality uses the fact that ‖〈xi,xj〉‖ψ2 ≤ C5‖xj‖. Now let us condition the
above expectation on the value of ‖xj‖ based on whether ‖xj‖ ≥ C

√
d or ‖xj‖ < C

√
d. We

can rewrite

Exj

[
−C7τ

2

‖xj‖2

]
≤ Exj

[
exp

(
−C7τ

2

C2d

) ∣∣∣∣∣ ‖xj‖ < C
√
d

]
Pr[‖xj‖ < C

√
d]

+ Exj

[
exp

(
−C7τ

2

‖xj‖2

) ∣∣∣∣∣ ‖xj‖ ≥ C√d
]

Pr[‖xj‖ ≥ C
√
d].

The above equation can be easily be simplified as:

Exj

[
−C7τ

2

‖xj‖2

]
≤ exp

(
−C8τ

2

d

)
+ Exj

[
exp

(
−C7τ

2

‖xj‖2

) ∣∣∣∣∣ ‖xj‖ ≥ C√d
]

Pr[‖xj‖ ≥ C
√
d].

From Lemma 8, Pr[‖xj‖ ≥ C
√
d] ≤ exp(−C3d), and

Exj

[
exp

(
−C7τ

2

‖xj‖2

) ∣∣∣∣∣ ‖xj‖ ≥ C√d
]
≤ 1.

This implies that as Pr[‖xj‖ ≥ C
√
d] ≤ exp(−C3d)),

Exj

[
exp

(
−C7τ

2

‖xj‖2

) ∣∣∣∣∣ ‖xj‖ ≥ C√d
]

Pr[‖xj‖ ≥ C
√
d] ≤ exp(−C3d).

Putting the above arguments together,

Pr [|〈xi,xj〉| ≥ τ ] = Exj
[Pr [|〈xi,xj〉| ≥ τ | xj ]] ≤ exp

(
−C8τ

2

d

)
+ exp(−C3d).

Taking a union bound over all (n2 − n) < n2 non-zero entries in W ,

Pr
[
max
i6=j
|〈xi,xj〉| ≥ τ

]
≤ n2

(
exp

(
−C8τ

2

d

)
+ exp(−C3d)

)
.

Setting τ = C · d in the above and using the fact that n ≤ exp(C1d),

Pr
[
max
i 6=j
|〈xi,xj〉| ≥ C · d

]
≤ exp(−C9d). (3)

We are now ready to bound the Frobenius norm of W .

‖W‖F =

∑
i 6=j

(a〈xi,xj〉+ b)2p

1/2

≤
(
n222p (|a|2p〈xi,xj〉2p + |b|2p

))1/2

≤ n2p (|a|p|〈xi,xj〉|p + |b|p) .

Plugging in the probabilistic bound on |〈xi,xj〉| from (3) gives,

Pr [‖W‖F ≥ n2p (|a|p|Cpdp + |b|p)] ≤ Pr [n2p (|a|p|〈xi,xj〉|p + |b|p) ≥ n2p (|a|p|Cpdp + |b|p)]
Pr [‖W‖F ≥ n2p (|a|p|Cpdp + |b|p)] ≤ Pr [n2p (|a|p|〈xi,xj〉|p + |b|p) ≥ n2p (|a|p|Cpdp + |b|p)]

≤ exp(−C9d). (4)
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Plugging bounds on ‖D‖ (from (2)) and ‖W‖F (from (4)) to upper bound ‖Kp‖ ≤ ‖D‖+
‖W‖F yields that there exists constants C0 and C ′0 such that,

Pr
[
‖Kp‖ ≥ Cp0 |a|pdpn+ 2p+1|b|pn

]
≤ Pr

[
‖D‖+ ‖W‖F ≥ Cp0 |a|pdpn+ 2p+1|b|pn

]
≤ exp(−C ′0d).

This completes the proof of the theorem. The chain of constants can easily be estimated
starting with the constant in the definition of the subgaussian random variable. J

I Remark. Note that for our proofs it is only necessary that x1, . . . ,xn are independent
random vectors, but they need not be identically distributed.

The above spectral norm upper bound on Kp (again with exponentially high probability)
could be improved to

O
(
Cp0 |a|p(dp + dp/2n) + 2p+1n|b|p

)
,

with a slightly more involved analysis (omitted here). For an even p, the expectation of every
individual entry of the matrix Kp is positive, which provides tight examples for this bound.

3.2 Gaussian Kernel
We now establish the bound on the spectral norm of a Gaussian kernel random matrix.
Again assume x1, . . . ,xn are independent vectors drawn according to a centered subgaussian
distribution over Rd. LetKg denote the kernel matrix obtained using x1, . . . ,xn in a Gaussian
kernel. Here an upper bound of n on the spectral norm on the kernel matrix follows trivially
as all entries of Kg are less than equal to 1. We show that this bound is tight, in that for
small values of a, with high probability the spectral norm is at least Ω(n) (Theorem 10
(Part 2)).

In fact, even for large a’s, it is impossible to obtain better than O(n) upper bound on
the spectral norm of Kg without additional assumptions on the subgaussian distribution, as
illustrated by this example: Consider a distribution over Rd, such that a random vector drawn
from this distribution is a zero vector (0)d with probability 1/2 and uniformly distributed
over the sphere in Rd of radius 2

√
d with probability 1/2. A random vector x drawn from this

distribution is isotropic and subgaussian, but Pr[x = (0)d] = 1/2. Therefore, in x1, . . . ,xn
drawn from this distribution, with high probability more than a constant fraction of the
vectors will be (0)d. This means that a proportional number of entries of the matrix Kg will
be 1, and the norm will be O(n) regardless of a.

This situation changes, however, when we add the additional assumption that x1, . . . ,xn
have independent centered subgaussian coordinates8 (i.e., each xi is drawn from a product
distribution formed from some d centered univariate subgaussian distributions). In that
case, the kernel matrix Kg is a small perturbation of the identity matrix, and we show
that the spectral norm of Kg is with high probability bounded by an absolute constant (for
a = Ω(logn/d)). For this proof, similar to Theorem 9, we split the kernel matrix into its
diagonal and off-diagonal parts. The spectral norm of the off-diagonal part is again bounded
by its Frobenius norm. We also verify the upper bounds presented in the following theorem
by conducting numerical experiments (see Figure 1b).

8 Some of the commonly used subgaussian random vectors such as the standard normal, Bernoulli satisfy
this additional assumption.

APPROX/RANDOM’15



908 Spectral Norm of Random Kernel Matrices with Applications to Privacy

I Theorem 10. Let x1, . . . ,xn ∈ Rd be independent centered subgaussian vectors. Let a > 0,
and let Kg be the n × n matrix with (i, j)th entry Kgij

= exp(−a‖xi − xj‖2). Then there
exists constants c, c0, c

′
0, c1 such that

1. ‖Kg‖ ≤ n.
2. If a < c1/d, Pr [‖Kg‖ ≥ c0n] ≥ 1− exp(−c′0n).
3. If all the vectors x1, . . . ,xn satisfy the additional assumption of having independent

centered subgaussian coordinates, and assume n ≤ exp(C1d) for a constant C1. Then for
any δ > 0 and a ≥ (2 + δ) logn

d , Pr [‖Kg‖ ≥ 2] ≤ exp(−cζ2d) with ζ > 0 depending only
on δ.

Proof. Proof of Part 1 is straightforward as all entries of Kg do not exceed 1.
Let us prove the lower estimate for the norm in Part 2. For i = 1, . . . , n define

Zi =
n∑

j= n
2 +1

Kgij .

From Lemma 8 for all i ∈ [n], Pr
[
‖xi‖ ≥ C

√
d
]
≤ exp(−C ′d). In other words, ‖xi‖ is less

than C
√
d for all i ∈ [d] with probability at least 1 − exp(−C ′d). Let us call this event

E1. Under E1 and assumption a < c1/d, E[Zi] ≥ c2n and E[Z2
i ] ≤ c3n

2. Therefore, by
Paley-Zygmund inequality (under event E1),

Pr[Zi ≥ c4n] ≥ c5. (5)

Now Z1, . . . , Zn are not independent random variables. But if we condition on xn/2+1, . . . ,xn,
then Z1, . . . , Zn/2 become independent (for simplicity, assume that n is divisible by 2).
Thereafter, an application of Chernoff bound on Z1, . . . , Zn/2 using the probability bound
from (5) (under conditioning on xn/2+1, . . . ,xn and event E1) gives:

Pr
[
Zi ≥ c4n for at least c5n entries Zi ∈ {Z1, . . . , Zn/2}

]
≥ 1− exp(−c6n).

The first conditioning can be removed by taking the expectation with respect to xn/2+1, . . . ,xn
without disturbing the exponential probability bound. Similarly, conditioning on event E1
can also be easily removed.

LetK ′g be the submatrix ofKg consisting of rows 1 ≤ i ≤ n/2 and columns n/2+1 ≤ j ≤ n.
Note that ‖K ′g‖ ≥ u>K ′gu, where u =

(√
2
n , . . . ,

√
2
n

)
(of dimension n/2). Then

Pr[‖Kg‖ ≤ c0n] ≤ Pr[‖K ′g‖ ≤ c7n] ≤ Pr[u>K ′gu ≤ c7n]

Pr

 2
n

n/2∑
i=1

Zi ≤ c7n

 ≤ exp(−c′0n).

The last line follows as from above arguments with exponentially high probability above more
than Ω(n) entries in Z1, . . . , Zn/2 are greater than Ω(n), and by readjusting the constants.

Proof of Part 3: As in Theorem 9, we split the matrix Kg into the diagonal (D) and the
off-diagonal part (W ) (i.e., Kg = D +W ). It is simple to observe that D = In, therefore we
just concentrate on W . The (i, j)th entry in W is exp(−a‖xi − xj‖2), where xi and xj are
independent vectors with independent centered subgaussian coordinates. Therefore, we can
use Hoeffding’s inequality, for fixed i, j,

Pr
[
exp(−a‖xi − xj‖2) ≥ exp(−a(1− ζ)d)

]
= Pr

[
‖xi − xj‖2

d
≤ (1− ζ)

]
≤ exp(−c8ζ

2d),

(6)
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where we used the fact that if a random variable is subgaussian then its square is a subexpo-
nential random variable [27].9 To estimate the norm ofW , we bound it by its Frobenius norm.
If a ≥ (2+δ) logn

d , then we can choose ζ > 0 depending on δ such that n2 exp(−a(1−ζ)d) ≤ 1.
Hence,

Pr[‖Kg‖ ≥ 2] ≤ Pr[‖D‖+ ‖W‖F ≥ 2] = Pr[‖W‖F ≥ 1]

= Pr

 ∑
1≤i,j≤n,i 6=j

exp(−a‖xi − xj‖2) ≥ 1


≤ Pr

 ∑
1≤i,j≤n,i 6=j

exp(−a‖xi − xj‖2) ≥ n2 exp(−a(1− ζ)d)


≤ Pr

 ∑
1≤i,j≤n

exp(−a‖xi − xj‖2) ≥ n2 exp(−a(1− ζ)d)


≤ n2 Pr

[
max

1≤i,j≤n
exp(−a‖xi − xj‖2) ≥ exp(−a(1− ζ)d)

]
≤ n2 exp(−c8ζ

2d)
≤ exp(−cζ2d) for some constant c.

The first equality follows as ‖D‖ = 1, and the second-last inequality follows from (6). This
completes the proof of the theorem. Again the long chain of constants can easily be estimated
starting with the constant in the definition of the subgaussian random variable. J

I Remark. Note that again the xi’s need not be identically distributed.
The analysis in Theorem 10 could easily be reworked to handle other exponential kernels

such as the Laplacian kernel.

4 Privately Releasing Kernel Ridge Regression Coefficients

We consider an application of Theorems 9 and 10 to obtain noise lower bounds for privately
releasing coefficients of kernel ridge regression. For privacy violation, we consider a general-
ization of blatant non-privacy [5] referred to as attribute non-privacy (formalized in [15]).
Consider a database D ∈ Rn×d+1 that contains, for each individual i, a sensitive attribute
yi ∈ {0, 1} as well as some other information xi ∈ Rd which is assumed to be known to the
attacker. The ith record is thus (xi, yi). Let X ∈ Rn×d be a matrix whose ith row is xi, and
let y = (y1, . . . , yn). We denote the entire database D = (X|y) where | represents vertical
concatenation. Given some released information ρ, the attacker constructs an estimate ŷ
that she hopes is close to y. We measure the attack’s success in terms of the Hamming
distance dH(y, ŷ). A scheme is not attribute private if an attacker can consistently get an
estimate that is within distance o(n). Formally:

IDefinition 11 (Failure of Attribute Privacy [15]). A (randomized) mechanismM : Rn×d+1 →
Rl is said to allow (θ, γ)-attribute reconstruction if there exists a setting of the nonsensitive

9 We call a random variable x ∈ R subexponential if there exists a constant C > 0 if Pr[|x| > t] ≤
2 exp(−t/C) for all t > 0.
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Figure 1 Largest eigenvalue distribution for random kernel matrices constructed with a polynomial
kernel (left plot) and a Gaussian kernel (right plot). The actual value plots are constructed by
averaging over 100 runs, and in each run we draw n independent standard Gaussian vectors in
d = 100 dimensions. The predicted values are computed from bounds in Theorems 9 and 10 (Part 3).
The kernel matrix size n is varied from 10 to 10000 in multiples of 10. For the polynomial kernel, we
set a = 1, b = 1, and p = 4, and for the Gaussian kernel a = 3 log(n)/d. Note that our upper bounds
are fairly close to the actual results. For the Gaussian kernel, the actual values are very close to 1.

attributes X ∈ Rn×d and an algorithm (adversary) A : Rn×d×Rl → Rn such that for every
y ∈ {0, 1}n,

Pr
ρ←M((X|y))

[A(X, ρ) = ŷ : dH(y, ŷ) ≤ θ] ≥ 1− γ.

Asymptotically, we say that a mechanism is attribute nonprivate if there is an infinite sequence
of n for whichM allows (o(n), o(1))-attribute reconstruction. Here d = d(n) is a function of
n. We say the attack A is efficient if it runs in time poly(n, d).

4.1 Kernel Ridge Regression Background

One of the most basic regression formulation is that of ridge regression [10]. Suppose that we
are given a dataset {(xi, yi)}ni=1 consisting of n points with xi ∈ Rd and yi ∈ R. Here xi’s
are referred to as the regressors and yi’s are the response variables. In linear regression the
task is to find a linear function that models the dependencies between xi’s and the yi’s. A
common way to prevent overfitting in linear regression is by adding a penalty regularization
term (also known as shrinkage in statistics). In kernel ridge regression [21], we assume a
model of form y = f(x) + ξ, where we are trying to estimate the regression function f and ξ
is some unknown vector that accounts for discrepancy between the actual response (y) and
predicted outcome (f(x)). Given a reproducing kernel Hilbert space H with kernel κ, the
goal of ridge regression kernel ridge regression is to estimate the unknown function f? such
the least-squares loss defined over the dataset with a weighted penalty based on the squared
Hilbert norm is minimized.

Kernel Ridge Regression: argminf∈H

(
1
n

n∑
i=1

(yi − f(xi))2 + λ‖f‖2
H

)
, (7)
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where λ > 0 is a regularization parameter. By representer theorem [22], any solution f?

for (7), takes the form

f?(·) =
n∑
i=1

αiκ(·,xi), (8)

where α = (α1, . . . , αn) is known as the kernel ridge regression coefficient vector. Plugging
this representation into (7) and solving the resulting optimization problem (in terms of α
now), we get that the minimum value is achieved for α = α?, where

α? = (K + λIn)−1y, where K is the kernel matrix with
Kij = κ(xi,xj) and y = (y1, . . . , yn). (9)

Plugging this α? from (9) in to (8), gives the final form for estimate f?(·). For a new point
x ∈ Rd, the predicted response is f?(x) =

∑n
i=1 α

?
i κ(x,xi) where α? = (K + λIn)−1y and

α? = (α?1, . . . , α?n). Therefore, knowledge of α? and x1, . . . ,xn suffices for making future
predictions.

If K is constructed using a polynomial kernel (defined in 1. in Section 2.2) then the
above procedure is referred to as the polynomial kernel ridge regression, and similarly if K is
constructed using a Gaussian kernel (defined in 2. in Section 2.2) then the above procedure
is referred to as the Gaussian kernel ridge regression.

4.2 Reconstruction Attack from Noisy α∗

Algorithm 1 outlines the attack. The privacy mechanism releases a noisy approximation
to α?. Let α̃ be this noisy approximation, i.e., α̃ = α? + e where e is some unknown noise
vector. The adversary tries to reconstruct an approximation ŷ of y from α̃. The adversary
solves the following `2-minimization problem to construct ŷ:

minz∈Rn‖α̃− (K + λIn)−1z‖. (10)

In the setting of attribute privacy, the database D = (X|y). Let x1, . . . ,xn be the rows of
X, using which the adversary can construct K to carry out the attack. Since the matrix
K + λIn is invertible for λ > 0 as K is a positive semidefinite matrix, the solution to (10) is
simply z = (K + λIn)α̃, element-wise rounding of which to closest 0, 1 gives ŷ.

Algorithm 1 Reconstruction Attack from Noisy Kernel Ridge Regression Coefficients
Input: Public information X ∈ Rn×d, regularization parameter λ, and α̃ (noisy α?).

1: Let x1, . . . ,xn be the rows of X, construct the kernel matrix K with Kij = κ(xi,xj)
2: Return ŷ = (ŷ1, . . . , ŷn) defined as follows:

ŷi =
{

0 if ith entry in (K + λIn)α̃ < 1/2
1 otherwise

I Lemma 12. Let α̃ = α? + e, where e ∈ Rn is some unknown (noise) vector. If ‖e‖∞ ≤ β
(absolute value of all entries in e is less than β), then ŷ returned by Algorithm 1 satisfies,
dH(y, ŷ) ≤ 4(K + λ)2β2n. In particular, if β = o

(
1

‖K‖+λ

)
, then dH(y, ŷ) = o(n).
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Proof. Since α? = (K + λIn)−1y, α̃ = (K + λIn)−1y + e. Now multiplying (K + λIn) on
both sides gives,

(K + λIn)α̃ = y + (K + λIn)e.

Concentrate on ‖(K + λIn)e‖. This can be bound as

‖(K + λIn)e‖ ≤ ‖(K + λIn)‖‖e‖ = (‖K‖+ λ)‖e‖.

If the absolute value of all the entries in e are less than β then ‖e‖ ≤ β
√
n. A simple

manipulation then shows that if the above hold then (K + λIn)e cannot have more than
4(‖K‖+ λ)2β2n entries with absolute value above 1/2. Since ŷ and y only differ in those
entries where (K + λIn)e is greater than 1/2, it follows that dH(y, ŷ) ≤ 4(‖K‖ + λ)2β2n.
Setting β = o( 1

‖K‖+λ ) implies dH(y, ŷ) = o(n). J

For a privacy mechanism to be attribute non-private, the adversary has to be able
reconstruct an 1 − o(1) fraction of y with high probability. Using the above lemma, and
the different bounds on ‖K‖ established in Theorems 9 and 10, we get the following lower
bounds for privately releasing kernel ridge regression coefficients.

I Theorem 13.
1. Any privacy mechanism which for every database D = (X|y) where X ∈ Rn×d and

y ∈ {0, 1}n releases the coefficient vector of a polynomial kennel ridge regression model
(for constants a, b, and p) fitted between X (matrix of regressor values) and y (response
vector), by adding o( 1

dpn+λ ) noise to each coordinate is attribute non-private. The attack
that achieves this attribute privacy violation operates in O(dn2) time.

2. Any privacy mechanism which for every database D = (X|y) where X ∈ Rn×d and
y ∈ {0, 1}n releases the coefficient vector of a Gaussian kennel ridge regression model
(for constant a) fitted between X (matrix of regressor values) and y (response vector), by
adding o( 1

2+λ ) noise to each coordinate is attribute non-private. The attack that achieves
this attribute privacy violation operates in O(dn2) time.

Proof. For Part 1, draw each individual i’s non-sensitive attribute vector xi independently
from any d-dimensional subgaussian distribution, and use Lemma 12 in conjunction with
Theorem 9.

For Part 2, draw each individual i’s non-sensitive attribute vector xi independently from
any product distribution formed from some d centered univariate subgaussian distributions,
and use Lemma 12 in conjunction with Theorem 10 (Part 3).10

The time needed to construct the kernel matrix K is O(dn2), which dominates the overall
computation time. J

We can ask how the above distortion needed for privacy compares to typical entries in
α?. The answer is not simple, but there are natural settings of inputs, where the noise
needed for privacy becomes comparable with coordinates of α?, implying that the privacy
comes at a steep price. One such example is if the xi’s are drawn from the standard normal
distribution, y = (1)n, and all other kernel parameters are constant, then the expected value
of the corresponding α? coordinates match the noise bounds obtained in Theorem 13.

10Note that it is not critical for xi’s to be drawn from a product distribution. It is possible to analyze the
attack even under a (weaker) assumption that each individual i’s non-sensitive attribute vector xi is
drawn independently from a d-dimensional subgaussian distribution, by using Lemma 12 in conjunction
with Theorem 10 (Part 1).
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Note that Theorem 13 makes no assumptions on the dimension d of the data, and holds
for all values of n, d. This is different from all other previous lower bounds for attribute
privacy [15, 4, 14], all of which require d to be comparable to n, thereby holding only either
when the non-sensitive data (the xi’s) are very high-dimensional or for very small n. Also all
the previous lower bound analyses [15, 4, 14] critically rely on the fact that the individual
coordinates of each of the xi’s are independent11, which is not essential for Theorem 13.

4.3 Note on using `1-reconstruction Attacks
A natural alternative to (10) is to use `1-minimization (also known as “LP decoding”). This
gives rise to the following linear program:

minz∈Rn‖α̃− (K + λIn)−1z‖1. (11)

In the context of privacy, the `1-minimization approach was first proposed by Dwork et al. [8],
and recently reanalyzed in different contexts by [4, 14]. These results have shown that, for
some settings, the `1-minimization can handle considerably more complex noise patterns than
the `2-minimization. However, in our setting, since the solutions for (11) and (10) are exactly
the same (z = (K + λIn)α̃), there is no inherent advantage of using the `1-minimization.

5 Concluding Remarks

We initiate the study of non-asymptotic spectral properties of random kernel matrices, and
provide tight bounds on the spectral norm of these matrices when constructed using kernel
functions such as polynomials and Gaussian radial basis. Using these results, we provide lower
bounds on the distortion needed for releasing coefficients of kernel ridge regression under
attribute privacy, a general privacy notion that captures a large class of privacy definitions.

We believe that developing a non-asymptotic spectral theory for random kernel matrices
is an interesting research direction that would provide deep insights into the workings of
many kernel-based machine learning algorithms.

Acknowledgements. We are grateful for helpful initial discussions with Adam Smith and
Ambuj Tewari.
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In the decision tree model, we wish to compute a function f : {0, 1}n → {0, 1} on an
input x ∈ {0, 1}n, but we only have access to the input via a black box. The black box can
be queried with an index i ∈ [n], where [n] = {1, 2, . . . , n}, and will respond with the value
of xi, the ith bit of x. The goal is to compute f(x), while minimizing the number of queries
made to the black box.

For a function f : {0, 1}n → {0, 1}, let D(f) denote the deterministic query complexity
(or decision tree complexity) of computing f , the minimum number of queries made by
a deterministic algorithm that computes f correctly on all inputs. Let R0(f) denote the
zero-error randomized query complexity of computing f , the minimum expected cost of a
zero-error randomized algorithm that computes f correctly on all inputs. Finally, let R(f)
denote the bounded-error randomized query complexity of computing f , the number of
queries made in the worst case by a randomized algorithm that outputs f(x) on input x with
probability at least 2/3. More precise definitions can be found in Section 2.

Several lower bound techniques have been developed for query complexity over the years,
most of which are based on the following observation: A decision tree that computes f
and makes d queries partitions the set of all inputs, the hypercube {0, 1}n, into a set of
monochromatic subcubes where each subcube has at most d fixed variables. A subcube is a
restriction of the hypercube in which the values of some subset of the variables have been
fixed. For example, the set of n-bit strings in which the first variable is set to 0 is a subcube
of {0, 1}n with one fixed variable. A subcube is monochromatic if f takes the same value
on all inputs in the subcube. This idea is also the basis of many lower bound techniques in
communication complexity [13], where a valid protocol partitions the space of inputs into
monochromatic rectangles.

However, not all subcube partitions arise from decision trees, which naturally leads
to a potentially more powerful model of computation. This model is called the subcube
partition model in [7], but has been studied before under different names (see e.g., [4]).
The deterministic subcube partition complexity of f , denoted by Dsc(f), is the minimum
d such that there is a partition of the hypercube into a set of monochromatic subcubes in
which each subcube has at most d fixed variables. Since a decision tree making d queries
always gives rise to such a partition, we have Dsc(f) ≤ D(f). Similarly, we define zero-error
and bounded-error versions of subcube partition complexity, denoted by Rsc

0 (f) and Rsc(f),
respectively, and obtain the inequalities Rsc

0 (f) ≤ R0(f) and Rsc(f) ≤ R(f). As expected,
we also have Rsc

0 (f) ≤ Dsc(f) and Rsc(f) ≤ Dsc(f).
This brings up the obvious question of whether these models are equivalent. Separating

them is difficult, precisely because most lower bound techniques for query complexity also
lower bound subcube partition complexity. The analogous question in communication
complexity is also a long-standing open problem (see [13, Open Problem 2.10] or [12, Chapter
3.2]). In fact, Friedgut, Kahn, and Wigderson [7, Question 1.1] explicitly ask if these measures
are asymptotically different in the randomized model with zero error:

I Question 1. Is there a function (family) f = (fn) such that Rsc
0 (f) = o(R0(f))?

Similarly, one can ask the same question for bounded-error randomized query complexity.
The main result of this paper resolves these questions:

I Theorem 2. There exists a function f = (fh), with fh : {0, 1}4h → {0, 1}, such that
Dsc(f) ≤ 3h, but D(f) = 4h, R0(f) ≥ 3.2h, and R(f) = Ω(3.2h).

This shows that query complexity and subcube partition complexity are asymptotically
different in the deterministic, zero-error, and bounded-error settings. Besides resolving this
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question, our result has another application. We know several techniques to lower bound
bounded-error randomized query complexity, such as approximate polynomial degree [18],
block sensitivity [17], randomized certificate complexity [1] and the classical adversary bound
[15, 22, 2]. All these techniques are subsumed by the partition bound of Jain and Klauck
[9], which in turn is subsumed by the public-coin partition bound of Jain, Lee, and Vishnoi
[10]. Additionally, this new lower bound is within a quadratic factor of randomized query
complexity. In other words, if PPRT(f) denotes the bounded-error public-coin partition
bound for a function f , we have PPRT(f) ≤ R(f) and also R(f) = O(PPRT(f)2). This
leaves open the intriguing possibility that this technique is optimal and is asymptotically
equal to bounded-error randomized query complexity. Jain, Lee, and Vishnoi [10] indeed ask
the following question:

I Question 3. Is there a function (family) f = (fn) such that PPRT(f) = o(R(f))?

Our result also answers this question, because, as we show in Section 2, PPRT(f) ≤ Rsc(f).
Thus, our asymptotic separation between Rsc(f) and R(f) also separates PPRT(f) from
R(f).

We now provide a high-level overview of the techniques used in this paper. The main
result is based on establishing the various complexities of a certain function. The function
we choose is based on the quaternary majority function 4-MAJ : {0, 1}4 → {0, 1}, defined as
the majority of the four input bits, with ties broken by the first bit. This function has low
deterministic subcube complexity, Dsc(4-MAJ) ≤ 3, but has deterministic query complexity
D(4-MAJ) = 4. From this function, we define an iterated function 4-MAJh on 4h variables
by composing the function with itself h times, which gives us a function on 4h bits. Since
deterministic query complexity and deterministic subcube complexity behave nicely under
composition, we have D(4-MAJh) = 4h and Dsc(4-MAJh) ≤ 3h. The same function was also
used by Savický [21], who studied this question in terms of decision tree size, as opposed to
decision tree depth. These results are further discussed in Section 3. To prove Theorem 2, it
remains to show that the randomized query complexity of this function is Ω(3.2h).

We lower bound the randomized query complexity of 4-MAJh using a strategy similar
to the information-theoretic technique of Jayram, Kumar, and Sivakumar [11] and its
simplification by Landau, Nachmias, Peres, and Vanniasegaram [14]. However, the original
strategy was applied to lower bound a symmetric function (iterated 3-MAJ), whereas our
function is not symmetric since the first variable of 4-MAJ is different from the rest. We
modify the technique to apply it to asymmetric functions and establish the claimed lower
bound. The lower bound relies on choosing a “hard distribution” of inputs and establishing
a recurrence relation between the complexities of the function and its subfunctions on this
distribution. Unlike 3-MAJ, where there is a natural candidate for a hard distribution, our
chosen distribution is not obvious and is constrained by the fact that it must fit nicely into
these recurrence relations. We prove this lower bound in Section 4. We end with some
discussion and open problems in Section 5.

Subsequent work

Independent of our work, Göös, Pitassi, and Watson [8] improved the separation between
deterministic query complexity and deterministic subcube complexity by exhibiting a function
on n bits with deterministic query complexity Ω̃(n) and deterministic subcube complexity
Õ(n2/3). It may be possible to adapt their ideas, as done in [3], to improve the separation
between randomized query complexity and subcube complexity.

APPROX/RANDOM’15
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2 Preliminaries

In this section, we formally define the various models of query complexity and subcube
partition complexity, and the partition bound [9] and public-coin partition bound [10]. We
then study the relationships between these quantities.

For the remainder of the paper, let f : {0, 1}n → {0, 1} be a Boolean function on n bits
and x = (x1, x2, . . . , xn) ∈ {0, 1}n be any input. Let [n] denote the set {1, 2, . . . , n} and let
the support of a probability distribution p be denoted by supp(p). Lastly, we require the
notion of composing two Boolean functions. If f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}
are two Boolean functions, the composed function f ◦g : {0, 1}nm → {0, 1} acts on the Boolean
string y = (y11, . . . , y1m, y21, . . . , ynm) as f ◦ g(y) = f(g(y11, . . . , y1m), . . . , g(yn1, . . . , ynm)).

2.1 Decision tree or query complexity
The deterministic query complexity of a function f , D(f), is the minimum number of queries
made by a deterministic algorithm that computes f correctly.

Formally, a deterministic decision tree A on n variables is a binary tree in which each
leaf is labeled by either a 0 or a 1, and each internal node is labeled with a value i ∈ [n]. For
every internal node of A, one of the two outgoing edges is labeled 0 and the other edge is
labeled 1. On an input x, the algorithm A follows the unique path from the root to one of
its leaves in the natural way: for an internal node labeled with the value i, it follows the
outgoing edge labeled by xi. The output A(x) of the algorithm A on input x is the label of
the leaf of this path. We say that the decision tree A computes f if A(x) = f(x) for all x.

We define the cost of algorithm A on input x, denoted by C(A, x), to be the number of
bits queried by A on x, that is the number of internal nodes evaluated by A on x. The cost
of an algorithm A, denoted C(A), is the worst-case cost of the algorithm over all inputs x,
that is C(A) = maxx C(A, x). Now, let Dn denote the set of all deterministic decision trees
on n variables and let D(f) ⊆ Dn be the set of all deterministic decision trees that compute
f . We define the deterministic query complexity of f as D(f) = minA∈D(f) C(A).

One of the features of deterministic query complexity that we use in this paper is its
composition property [23, 16]. This property is very intuitive: it asserts that the best way to
compute the composition of f and g is to use optimal algorithms for f and g independently.

I Proposition 4. For any two Boolean functions f and g, D(f ◦ g) = D(f)D(g).

We can now move on to randomized analogs of deterministic query complexity. In a
randomized algorithm, the choice of the queries might also depend on some randomness.
Formally, a randomized decision tree B on n variables is defined by a probability distribution
b over Dn, that is by a function b : Dn → [0, 1] such that

∑
A∈Dn

b(A) = 1. On an input
x, the algorithm B picks a deterministic decision tree A with probability b(A) and outputs
A(x). Thus, for every x, the value B(x) of B on x is a random variable.

We say that a randomized algorithm B computes f with error ε ≥ 0 if Pr[B(x) = f(x)] ≥
1−ε for all x, that is if

∑
A(x)=f(x) b(A) ≥ 1−ε for all x. Let Rn be the set of all randomized

decision trees over n bits and let Rε(f) ⊆ Rn be the set of all randomized decision trees
that compute f with error ε. A randomized algorithm B then computes f with zero error
if supp(b) ⊆ D(f), that is the probability distribution b is completely supported on the set
of deterministic decision trees that compute f . A zero-error randomized algorithm, also
known as a Las Vegas algorithm, always outputs the correct answer. The cost of a zero-error
randomized algorithm B on x is defined as C(B, x) =

∑
A∈Dn

b(A)C(A, x) = E[C(A, x)], the
expected number of queries made on input x. The zero-error randomized query complexity of
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f , denoted by R0(f), is defined as R0(f) = minB∈R0(f) maxx C(B, x). From the definition
of zero-error randomized query complexity, it is clear that R0(f) ≤ D(f). The complexity
R0(f) can be of strictly smaller order of growth than D(f): there exists a function f for
which R0(f) = o(D(f)), e.g., the iterated NAND-function [20].

Randomized algorithms with error ε > 0 might give incorrect answer on their inputs
with probability ε. We say that a randomized algorithm is of bounded-error (sometimes
called a Monte Carlo algorithm) if on any input x, the probabilistic output is incorrect
with probability at most 1/3. The constant 1/3 is not important and replacing it with
any constant strictly between 0 and 1/2 will only change the complexity by a constant
multiplicative factor. For ε > 0, the cost of an ε-error randomized algorithm B on x

is defined as C(B, x) = maxA∈supp(b) C(A, x), the maximum number of queries made on
input x by an algorithm in the support of b. Note how this definition differs from the
one given for the zero-error case. We define the ε-error randomized complexity of f as
Rε(f) = minB∈Rε(f) maxx C(B, x), and the bounded-error randomized query complexity of f
as R(f) = R1/3(f). Note that this definition is valid only for ε > 0 and does not coincide
with R0(f) defined above for ε = 0. Setting ε = 0 in this definition simply gives us the
deterministic query complexity D(f). Nonetheless, it is true that R(f) = O(R0(f)). This
distinction is discussed in more detail in Section 5. Lastly, note that for all ε > 0, we have
Rε(f) ≤ D(f), and that there exist functions for which R(f) = o(D(f)) [20].

In order to establish lower bounds on randomized query complexity, it is useful to take
a distributional view of randomized algorithms [24], that is to consider the performance
of randomized algorithms on a chosen distribution over inputs. Let µ be a probability
distribution over all possible inputs of length n, and let B be a randomized decision tree
algorithm. The cost of B under µ is C(B,µ) =

∑
x∈{0,1}n µ(x)C(B, x) = E[C(B, x)]. We

define the ε-error distributional complexity of f under µ as ∆µ
ε (f) = minB∈Rε(f) C(B,µ).

The following simple fact is the basis of many lower bound arguments.

I Proposition 5. For every distribution µ over {0, 1}n, and for all ε ≥ 0, we have ∆µ
ε (f) ≤

Rε(f).

Proof. This follows by expanding out the definitions and using the simple inequality between
expectation and maximum:

∆µ
ε (f) = min

B∈Rε(f)
C(B,µ) = min

B∈Rε(f)
E[C(B, x)] ≤ min

B∈Rε(f)
max
x

C(B, x) = Rε(f). (1)

J

2.2 Subcube partition complexity
A subcube of the hypercube {0, 1}n is a set of n-bit strings obtained by fixing the values of
some subset of the variables. In other words, a subcube is the set of all inputs consistent with
a partial assignment of n bits. Formally, a partial assignment on n variables is a function
a : Ia → {0, 1}, with Ia ⊆ [n]. Given a partial assignment a, we call S(a) = {y ∈ {0, 1}n :
yi = a(i) for all i ∈ Ia} the subcube generated by a. A set S ⊆ {0, 1}n is a subcube of the
hypercube {0, 1}n if S = S(a) for some partial assignment on n variables a. Clearly, for
every subcube, there exists exactly one such a. We denote by IS the domain Ia ⊆ [n] of a
where S = S(a). For example, the set {0100, 0101, 0110, 0111} is a subcube of {0, 1}4. It is
generated by the partial assignment a : {1, 2} → {0, 1}, where a(1) = 0 and a(2) = 1. An
alternative representation of a partial assignment is by an n-bit string where a position i
takes the value a(i) if i ∈ Ia and takes the value ∗ otherwise. For this example, the subcube

APPROX/RANDOM’15
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{0100, 0101, 0110, 0111} is generated by the partial assignment 01 ∗ ∗. Finally, another useful
representation is in terms of a conjunction of literals, that is satisfied by all strings in the
subcube. For example, the subcube {0100, 0101, 0110, 0111} consists exactly of all 4-bit
strings that satisfy the formula x1 ∧ x2.

The subcube partition model of computation, studied previously in [7, 4, 6], is a gener-
alization of the decision tree model. A partition {S1, . . . , S`} of {0, 1}n is a set of pairwise
disjoint subsets of {0, 1}n that together cover the entire hypercube, that is

⋃
i Si = {0, 1}n

and Si ∩ Sj = ∅ for i 6= j.
A deterministic subcube partition P on n variables is a partition of {0, 1}n with a Boolean

value s ∈ {0, 1} associated to each subcube, that is P = {(S1, s1), (S2, s2), . . . , (S`, s`)},
where each Si is a subcube and {S1, . . . , S`} is a partition of {0, 1}n. If the assignment a
generates Si for some i, we call a a generating assignment for P . For any x, we let Sx denote
the subcube containing x, that is, if x ∈ Si, then Sx = Si. We define the value P (x) of P on
x as si.

We say that a deterministic subcube partition P computes f if P (x) = f(x) for all x.
Note that every deterministic decision tree algorithm A computing f induces a subcube
partition computing f that consists of the subcubes generated by the partial assignments
defined by the root–leaf paths of the tree and the Boolean values of the corresponding leaves.
We define the cost of P on x as C(P, x) = |ISx |, analogous to the number of queries made
on input x in query complexity. We define the worst-case cost as C(P ) = maxx C(P, x). Let
Dsc
n be the set of all deterministic subcube partitions on n variables and let Dsc(f) ⊆ Dsc

n be
those partitions that compute f . We define the deterministic subcube partition complexity of
f as Dsc(f) = minP∈Dsc(f) C(P ). Deterministic subcube partition complexity also satisfies a
composition theorem.

I Proposition 6. For any f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, Dsc(f ◦ g) ≤
Dsc(f)Dsc(g).

Proof. Let P = {(S1, s1), (S2, s2), . . . , (Sp, sp)} and Q = {(T1, t1), . . . , (Tq, tq)} be optimal
deterministic subcube partitions computing f and g respectively. Suppose that Sh is generated
by ah for h ∈ [p], and that Tj is generated by bj for j ∈ [q]. Let Iah

= {i1, . . . , ich
}. We

define the deterministic subcube partition P ◦Q on nm variables as follows. The generating
assignments for P ◦Q are ah ◦ (bj1 , . . . , bjch

), for all h ∈ [p], and j1, . . . , jch
∈ [q] that satisfy

a(ik) = tjk
for k ∈ [ch]. When |Ibjk

| = dk, the assignment e = ah ◦ (bj1 , . . . , bjch
) is defined

by Ie = {(1, 1), . . . , (1, d1), (2, 1), . . . , (ch, dch
)}, and e(k, r) = bjk

(r) for 1 ≤ r ≤ dk. The
Boolean value associated with e is sh. It is easy to check that P ◦Q computes f ◦ g and that
C(P ◦Q) ≤ C(P )C(Q). J

As in the case of query complexity, we extend deterministic subcube complexity to
the randomized setting. A randomized subcube partition R on n variables is given by a
distribution r over all deterministic subcube partitions on n variables. As for randomized
decision trees, R(x) is a random variable and we say that R computes f with error ε ≥ 0 if
Pr[R(x) = f(x)] ≥ 1− ε for all x. Let Rsc

n be the set of all randomized subcube partitions
over n variables and Rsc

ε (f) ⊆ Rsc
n be the set of all randomized subcube partitions that

compute f with error ε.
The cost of a zero-error randomized subcube partition R on x is defined by C(R, x) =

E[C(P, x)], where the expectation is taken over R. For an ε-error subcube partition R, with
ε > 0, the cost on x is C(R, x) = maxP∈supp(r) C(P, x). For ε ≥ 0, we define the ε-error
randomized subcube complexity of f by Rsc

ε (f) = minR∈Rsc
ε (f) maxx C(R, x).
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As mentioned before, a deterministic decision tree induces a deterministic subcube
partition with the same cost and thus a randomized decision tree induces a randomized
subcube partition with the same cost, which yields the following.

I Proposition 7. For an n-bit Boolean function f : {0, 1}n → {0, 1}, we have that Dsc(f) ≤
D(f) and, for all ε ≥ 0, we have that Rsc

ε (f) ≤ Rε(f).

2.3 Partition bounds
In 2010, Jain and Klauck [9] introduced a linear programming based lower bound technique for
randomized query complexity called the partition bound. They showed that it subsumes all
known general lower bound methods for randomized query complexity, including approximate
polynomial degree [18], block sensitivity [17], randomized certificate complexity [1], and the
classical adversary bound [15, 22, 2].

Recently, Jain, Lee, and Vishnoi [10] presented a modification of this method called
the public-coin partition bound, which is easily seen to be stronger than the partition
bound. Furthermore, they were able to show that the gap between this new lower bound
and randomized query complexity can be at most quadratic. We define these lower bounds
formally.

I Definition 8 (Partition bound). Let f : {0, 1}n → {0, 1} be an n-bit Boolean function and
let Sn denote the set of all subcubes of {0, 1}n. Then, for any ε ≥ 0, let prtε(f) be the
optimal value of the following linear program:

minimize:
wS,z

1∑
z=0

∑
S∈Sn

wS,z · 2|IS | (2)

subject to:
∑
S:x∈S

wS,f(x) ≥ 1− ε (for all x ∈ {0, 1}n), (3)

∑
S:x∈S

1∑
z=0

wS,z = 1 (for all x ∈ {0, 1}n), (4)

wS,z ≥ 0 (for all S ∈ Sn and z ∈ {0, 1}). (5)

The ε-partition bound of f is defined as PRTε(f) = 1
2 log2(prtε(f)).

We now define the public-coin partition bound. Although our definition differs from the
original definition [10], it is not too hard to see that they are equivalent. Before presenting
the definition, recall that Dsc

n is the set of deterministic subcube partitions on n variables, and
Rsc
ε (f) is the set of randomized subcube partitions that compute f with error at most ε ≥ 0.

For a randomized subcube partition R ∈ Rsc
ε (f), we let r be the probability distribution over

deterministic subcube partitions corresponding to R.

I Definition 9 (Public-coin partition bound). Let f : {0, 1}n → {0, 1} be an n-bit Boolean
function. Then, for any ε ≥ 0, let pprtε(f) be the optimal value of the following linear
program:

minimize:
R

1∑
z=0

∑
S∈Sn

∑
P :(S,z)∈P

r(P ) · 2|IS | (6)

subject to: R ∈ Rsc
ε (f). (7)

The ε-public-coin partition bound of f is defined as PPRTε(f) = 1
2 log2(pprtε(f)).

APPROX/RANDOM’15
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Using the original definition, it is trivial that prtε(f) ≤ pprtε(f), since the public-coin
partition bound is defined using the same linear program, with additional constraints. This
statement also holds with the definitions given above, as we now prove.

I Proposition 10. For any Boolean function f and for all ε ≥ 0, we have that prtε(f) ≤
pprtε(f).

Proof. Let R′ be a randomized subcube partition achieving the optimal value for the linear
program of pprtε(f) and r′ be the corresponding probability distribution over deterministic
subcube partitions. Then, for all (S, z) where S is a subcube and z ∈ {0, 1}, let

w′S,z =
∑

P :(S,z)∈P

r′(P ). (8)

This family of variables satisfies the conditions of the pprtε(f) linear program and is such
that

1∑
z=0

∑
S∈Sn

w′S,z · 2|IS | =
1∑
z=0

∑
S∈Sn

∑
P :(S,z)∈P

r′(P ) · 2|IS | . (9)

J

Recall that both partition bounds lower bound randomized query complexity, as shown
in [10]. In particular, for all ε > 0, PRTε(f) ≤ PPRTε(f) ≤ Rε(f) and, when ε = 0, we
have that PRT0(f) ≤ PPRT0(f) ≤ D(f). It is not known if the zero-error partition bound
also lower bounds zero-error randomized query complexity. However, as mentioned, the
partition bounds also lower bound subcube partition complexity, which implies that they
lower bound query complexity. The proof for query complexity easily extends to subcube
partition complexity.

I Proposition 11. For every Boolean function f and for all ε > 0, we have that PPRTε(f) ≤
Rsc
ε (f) and PPRT0(f) ≤ Dsc(f).

Proof. Let R′ ∈ Rsc
ε (f) be a randomized subcube partition that achieves Rsc

ε (f) and let
r′ be its corresponding probability distribution over deterministic subcube partitions. Let
P ∈ supp(r′). By definition, for every (S, z) ∈ P , we have that |IS | ≤ C(P ). Also by
definition, C(P ) ≤ Rsc

ε (f). Furthermore, if P = {(S1, z1), (S2, z2), . . . , (Sm, zm)}, then

|P | · 2n−C(P ) = m · 2n−C(P ) ≤
m∑
i=1

2n−|ISi
| = 2n. (10)

This implies that |P | ≤ 2C(P ) ≤ 2Rsc
ε (f) and, therefore, that

pprtε(f) =
1∑
z=0

∑
S∈Sn

∑
P :(S,z)∈P

r′(P ) · 2|IS | ≤ 2R
sc
ε (f)

1∑
z=0

∑
S∈Sn

∑
P :(S,z)∈P

r′(P ) (11)

= 2R
sc
ε (f)

∑
P∈supp(r′)

r′(P ) · |P | ≤ 2R
sc
ε (f) · 2R

sc
ε (f)

∑
P∈supp(r′)

r′(P ) (12)

= 22Rsc
ε (f). (13)

The first inequality holds since |IS | ≤ Rsc
ε (f), and the second inequality uses the fact that

|P | ≤ 2Rsc
ε (f). Setting ε = 0 gives PPRT0(f) ≤ Dsc(f). J
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D(f)

Dsc(f)

Rε(f)

Rsc
ε (f)

PPRTε(f)

PPRT0(f)

R0(f)

Rsc
0 (f)

Figure 1 Relationships between the complexity measures introduced. An arrow from X to Y

represents X ≤ Y . For example, Dsc(f)→ D(f) means Dsc(f) ≤ D(f).

The following theorem summarizes the known relations between the introduced complexity
measures.

I Theorem 12. For any Boolean function f : {0, 1}n → {0, 1} and for all ε > 0, the relations
indicated in Figure 1 hold.

Proof. The upper three vertical arrows represent the relations between query complexity and
subcube partition complexity established in Proposition 7. The remaining vertical arrows
represent the relations between the public-coin partition bounds and subcube partition
complexity established in Proposition 11. The other inequalities are immediate and follow
from their definitions. J

3 Iterated quaternary majority function

We now introduce the function we use to separate randomized query complexity from subcube
partition complexity and establish some of its properties.

Let MAJ denote the Boolean majority function of its input bits when the number of
bits is odd. The quaternary majority function 4-MAJ : {0, 1}4 → {0, 1} is defined by
4-MAJ(x1, x2, x3, x4) = x1(x2 ∨ x3 ∨ x4) ∨ x2x3x4. This function was introduced in [21]. We
call it 4-MAJ, because the output of the function is the majority of its input bits, with the first
variable breaking equality in its favor. In other words, the first variable has two votes, while
the others have one, that is 4-MAJ(x1, x2, x3, x4) = MAJ(x1, x1, x2, x3, x4). This function has
previously been used to separate deterministic decision tree size from deterministic subcube
partition size [21]. We use this function because its subcube partition complexity is smaller
than its query complexity.

I Proposition 13. We have Dsc(4-MAJ) = 3 and D(4-MAJ) = 4.

Proof. Observe that, for any choice of w ∈ {0, 1}, we have that

4-MAJ(0, 0, 1, w) = 4-MAJ(0, w, 0, 1) = 4-MAJ(0, 1, w, 0) = 4-MAJ(w, 0, 0, 0) = 0
and that

4-MAJ(1, 1, 0, w) = 4-MAJ(1, w, 1, 0) = 4-MAJ(1, 0, w, 1) = 4-MAJ(w, 1, 1, 1) = 1.

The subcubes generated by these 8 partial assignments are disjoint and of size two, forming a
partition of {0, 1}4. Thus, with the right Boolean values, they form a deterministic subcube

APPROX/RANDOM’15
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partition that computes 4-MAJ. Since all partial assignments have length 3, Dsc(4-MAJ) ≤
3. Although we do not use the inequality Dsc(4-MAJ) ≥ 3 in our results, this can be
verified by enumerating all deterministic subcube partitions with complexity 2. Furthermore,
D(4-MAJ) ≤ 4 since any function can be computed by querying all input bits. D(4-MAJ) ≥ 4
can be shown either by enumerating all decision trees that make 3 queries or by using the
lower bound in the next section. J

While our results only require us to show lower bounds on the randomized query complexity
of 4-MAJ, we want to mention that the randomized query complexity of 4-MAJ is indeed
smaller than its deterministic query complexity.

I Proposition 14. For the 4-MAJ function, R0(4-MAJ) ≤ 13/4 = 3.25.

Proof. The randomized algorithm achieving this complexity is simple: with probability 1/4,
the algorithm queries the first variable and then it checks if the other variables all have the
opposite value; with probability 3/4, it checks if the last three variables have all the same
value and, if not, it queries the first variable. J

Since the 4-MAJ function separates deterministic subcube complexity from deterministic
query complexity, a natural candidate for a function family that separates these measures is
the iterated quaternary majority function, 4-MAJh, defined recursively on 4h variables, for
h ≥ 0. In the base case, 4-MAJ0 is the identity function on one bit. For h > 0, we define
4-MAJh = 4-MAJ◦4-MAJh−1. In other words, for h > 0, let x be an input of length 4h, and for
i ∈ {1, 2, 3, 4}, let x(i) denote the ith quarter of x, that is |x(i)| = 4h−1 and x = x(1)x(2)x(3)x(4).
Then, we have that 4-MAJh(x) = 4-MAJ(4-MAJh−1(x(1)), 4-MAJh−1(x(2)), 4-MAJh−1(x(3)),
4-MAJh−1(x(4))).

The function 4-MAJh inherits several properties from 4-MAJ. It has low deterministic
subcube complexity, but high deterministic query complexity:

I Proposition 15. For all h ≥ 0, Dsc(4-MAJh) ≤ 3h and D(4-MAJh) = 4h.

Proof. For h = 0, the statement is trivial and for h = 1, the statement is Proposition 13.
Proposition 4 and Proposition 6 used recursively imply the result. J

We now introduce terminology that we use to refer to this function. We view 4-MAJh as
defined by the read-once formula on the complete quaternary tree Th of height h in which
every internal node is a 4-MAJ gate. We identify the leaves of Th from left to right with the
integers 1, . . . , 4h. For an input x ∈ {0, 1}4h , the bit xi defines the value of the leaf i. We
then evaluate recursively the values of the internal nodes. The value of the root is 4-MAJh(x).
For every internal node v in Th, we denote its children by v1, v2, v3 and v4, from left to right.
For any node v in Th, let Z(v) denote the set of variables associated with the leaves in the
subtree rooted at v. We say that a node v is at level ` in Th if the distance between v and
the leaves is `. The root is therefore at level h, and the leaves are at level 0. For 0 ≤ ` ≤ h,
the set nodes at level ` is denoted by Th(`).

4 Randomized query complexity of 4-MAJh

In this section, we prove our main technical result, a lower bound on the randomized query
complexity of 4-MAJh. We prove this by using distributional complexity, that is by using
the inequality in Proposition 5. First, we define a “hard distribution” dh for which we will
show that ∆dh

ε (4-MAJh) ≥ (1− 2ε)(16/5)h, which implies our main result (Theorem 2).



R. Kothari, D. Racicot-Desloges, and M. Santha 925

4.1 The hard distribution

Intuitively, the distribution we use in our lower bound has to be one on which it is difficult
to compute 4-MAJh. We start by defining a hard distribution for 4-MAJ and extend it to
4-MAJh in the natural way: by composing it with itself.

The hard distribution d on inputs of length 4 is defined from d0 and d1, the respective
hard distributions for 0-inputs and 1-inputs of length 4, by setting d(x) = 1

2d
b(x) when

4-MAJ(x) = b. We define d0 as

d0(1000) = 2
5 , d0(0011) = d0(0101) = d0(0110) = 1

6 ,

d0(0001) = d0(0010) = d0(0100) = 1
30 , and d0(0000) = 0. (14)

The definition of d1 is analogous, or can be defined by d1(x1, x2, x3, x4) = d0(1 − x1, 1 −
x2, 1 − x3, 1 − x4). Given that the function 4-MAJ is symmetric in x2, x3, and x4, there
are only 4 equivalence classes of 0-inputs, to which we have assigned probability masses
2/5, 1/2, 1/10, and 0, and then distributed the probabilities uniformly inside each class. The
probabilities were chosen to make the recurrence relations in Lemma 17 and Lemma 18 work,
while putting more weight on the intuitively difficult inputs. For example x = 0000 seems
like an easy input since all inputs that are Hamming distance 1 from it are also 0-inputs,
and thus reading any 3 bits of this input is sufficient to compute the function. In Lemma 18
we will give an equivalent characterisation of the hard distribution which is more directly
related to the recurrence relations in the lemmas.

From this distribution we recursively define, for h ≥ 0, the hard distribution dh on inputs
of length 4h. In the base case, d0(0) = d0(1) = 1

2 . For h > 0, as for d, the distribution dh is
defined from d0

h and d1
h, the respective hard distributions for 0-inputs and 1-inputs of length 4h,

by setting dh(x) = 1
2d
b
h(x) when 4-MAJ(x) = b. Let x = x(1)x(2)x(3)x(4) be a b-input, where

x(i) is a bi-input of length 4h−1, for i ∈ {1, 2, 3, 4}. Then, dbh(x) = db(b1b2b3b4)·Π4
i=1d

bi

h−1(x(i)).
It is easily seen that according to dh, for each node v in Th, if the value of v is b, then the
children of v have values distributed according to db. With the additional constraints that
the root has uniform distribution over {0, 1}, this actually makes an alternative definition of
dh.

We will also require the notion of a minority path in our proof. For a given input, a
minority path is a path from the root to a leaf in which each node has a value different
from its parent’s value. (Recall that the value of a node is the function 4-MAJ evaluated on
the values of its children.) For example, for the 4-MAJ function, on input 1000 the unique
minority path is the edge from the root to the first variable, whereas on input 1001 there are
two minority paths from the root to the second and third variable. In general, since there
may be multiple such paths, the minority path is defined to be a random variable over all
root–leaf paths. Formally, for every input x ∈ {0, 1}4h , we define the minority path M(x) as
a random variable over all root–leaf paths in Th as follows. First, the root is always in M(x).
Then, for any node v in M(x), if there is a unique child w of v with value different from
that of v, then w ∈M(x). Otherwise, there are exactly two children with different values,
and we put each of them in M(x) with probability 1

2 . Note that with this definition, if x is
chosen from the hard distribution dh, conditioned on the node v being in M(x), the first
child v1 is in the minority path with probability 2

5 , and the child vi is in the minority path
with probability 1

5 , for i ∈ {2, 3, 4}.

APPROX/RANDOM’15
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4.2 Complexity of 4-MAJh under the hard distribution
We can now lower bound the distributional complexity of 4-MAJh under the hard distribution.

I Theorem 16. For all ε ≥ 0 and h ≥ 0, we have ∆dh
ε (4-MAJh) ≥ (1− 2ε)(16/5)h.

To show this, we need to define some quantities. For a deterministic decision tree
algorithm A computing 4-MAJh, let LA(x) denote the set of variables queried by A on
input x. Let B be a randomized decision tree algorithm that computes 4-MAJh with
error ε, and let b be its probability distribution over deterministic algorithms. For any
two (not necessarily distinct) nodes of Th, u and v, we define the function EB(v, u) as
EB(v, u) = E

[
|Z(v) ∩ LA(x)|

∣∣u ∈M(x)
]
, where the expectation is taken over b, dh and the

randomness in M(x). In words, EB(v, u) is the expected number of queries below the node
v over the randomness of B, the hard distribution and the randomness for the choice of the
minority path, under the condition that u is in the minority path. For 0 ≤ ` ≤ h, we also
define the functions JεB(h, `), Kε

B(h, `), Jε(h, `), and Kε(h, `) by

JεB(h, `) =
∑

v∈Th(`)

EB(v, v), (15)

Kε
B(h, `) =

∑
v∈Th(`)

2
5

4∑
i=2

EB(vi, v1) + 1
5

4∑
j=2

∑
i 6=j

EB(vi, vj)

 , (16)

Jε(h, `) = min
B∈Rε(4-MAJh)

JεB(h, `) and Kε(h, `) = min
B∈Rε(4-MAJh)

Kε
B(h, `). (17)

Observe that Jε(h, h) = minB∈Rε(4-MAJh) E[C(B, x)] = ∆dh
ε (4-MAJh).

The proof of Theorem 16 essentially follows from the following two lemmas.

I Lemma 17. For all 0 < l ≤ h, we have that Jε(h, `) ≥ Kε(h, `) + 1
5J

ε(h, `− 1).

Proof. This proof mainly involves expanding the quantity EB(v, v) in terms of EB(vi, vj),
where v1, v2, v3, and v4 are the children of v. Since, for every node v, the set of leaves below
v is the disjoint union of the sets of leaves below its children, for every B we have that

JεB(h, `) =
∑

v∈Th(`)

4∑
i=1

EB(vi, v). (18)

By conditioning on the minority child of v, we get that

JεB(h, `) =
∑

v∈Th(l)

4∑
i=1

4∑
j=1

EB(vi, vj) Pr[vj ∈M(x)|v ∈M(x)] . (19)

As mentioned before, if x is chosen according to the distribution dh, if v ∈ M(x), then
v1 ∈M(x) with probability 2

5 and vi ∈M(x) with probability 1
5 , for i ∈ {2, 3, 4}. Substituting

these values we get

JεB(h, `) = Kε
B(h, `) + 1

5J
ε
B(h, `− 1) + 1

5EB(v1, v1). (20)

Discarding the last term on the right hand side, which is always non-negative, and taking
the minimum over B for all remaining terms gives the result. J
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Having established this, we need to relate Kε(h, `) with Jε(h− 1, `− 1). Informally, given
a randomized algorithm that performs well on 4-MAJh at depth `, we construct another
algorithm that performs well on 4-MAJh−1 at depth `− 1.

I Lemma 18. For all 0 < ` ≤ h, we have that Kε(h, `) ≥ 3Jε(h− 1, `− 1).

Proof. For any B ∈ Rε(4-MAJh), we will construct B′ ∈ Rε(4-MAJh−1) such that

1
3K

ε
B(h, `) = JεB′(h− 1, `− 1). (21)

Taking the minimum over all B ∈ Rε(4-MAJh) implies the statement.

We start by giving a high level description of our construction of B′ from B. First B′
will choose a random injective mapping from {x1, . . . , x4h−1} to {x1, . . . , x4h}, identifying
each variable of Th−1 with some variable of Th. Then, it will choose a random restriction
for the remaining variables of Th. Note that these choices are not made uniformly. Let
Br denote the algorithm for 4h−1 variables defined by B after the identification and the
restriction according to randomness r. B′ then simply executes Br. Our embedding of the
smaller instance into the larger instance is done in a way that preserves the output.

We now describe the random identification and restriction in detail. First, observe that
there is a natural correspondence between the nodes of Th−1(`− 1) and Th(`) (since they are
of the same size): we simply map the ith node of Th−1(`− 1) from the left to the ith node of
Th(`) from the left. For every node u ∈ Th−1(`− 1), let v ∈ Th(`) be its corresponding node.
The algorithm B′ makes the following independent random choices. To generate the random
identification, B′ randomly chooses a child w of v, where w = v1 with probability 1

5 , and
w = vi with probability 4

15 , for i ∈ {2, 3, 4}. Then, the variables of Z(u) and the variables of
Z(w) are identified naturally, again from left to right.

For generating the random restriction, B′ first generates random values for the three
siblings of w. If w = v1, then it chooses for (v2, v3, v4) one of the six strings from the set
{001, 010, 100, 110, 101, 011} uniformly at random. If w ∈ {v2, v3, v4}, it chooses for v1, a
uniformly random value from {0, 1}, and for the remaining two siblings, it picks the opposite
value. From this, the restriction is generated as follows: for each sibling w′ of w with value
b ∈ {0, 1}, a random string of length 4`−1 is generated according to db`−1, and the variables
in Z(w′) receive the values of this string. This finishes the description of B′.

We now show that B′ ∈ Rε(4-MAJh−1). Because of the identification of the variables of
Z(u) and Z(w), for every x ∈ {0, 1}4h−1 , the value of u coincides with the value of w. The
random values chosen for the siblings of w are such that whatever value w gets, it is always a
majority child of v. Therefore, for every input x, and for every randomness r, the value of u
is the same as the value of v. This implies that for every x and every randomness r, the value
of the roots of Th−1(`− 1) and Th(`) are the same. Since B is an algorithm which computes
4-MAJh with error at most ε, this means that Br is an algorithm which computes 4-MAJh−1
with error at most ε, for every randomness r. From this, it follows that B′ ∈ Rε(4-MAJh−1).

Finally we prove the equality in (21). For this, the main observation (which can be
checked by direct calculation) is that when w gets a random Boolean value, the distribution
of values generated by B′ on the children of v is exactly the hard distribution d. Therefore,
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EB′(u, u) = EB(w, v). Consequently, we have that

JεB′(h−1, `− 1) =
∑

v∈Th(`)

EB(w, v) =
∑

v∈Th(`)

4∑
i=1

EB(vi, v) Pr[w = vi|v ∈M(x)]

=
∑

v∈Th(`)

4∑
i=1

4∑
j=1

EB(vi, vj) Pr[w = vi] Pr[vj ∈M(x)|w = vi, v ∈M(x)]

= 1
3K

ε
B(h, `). (22)

The third equality holds since the choice of w is independent from the fact that v is in the
minority path. For the last equality, we used that the conditional probabilities evaluate to
the following values:

Pr[vj ∈M(x)|w = vj , v ∈M(x)] = 0, for j ∈ {1, 2, 3, 4};

Pr[vj ∈M(x)|w = v1, v ∈M(x)] = 1
3 , for j 6= 1;

Pr[v1 ∈M(x)|w = vi, v ∈M(x)] = 1
2 , for i 6= 1;

Pr[vj ∈M(x)|w = vi, v ∈M(x)] = 1
4 , for i, j ∈ {2, 3, 4} and i 6= j. J

We can now return to proving Theorem 16.

Proof of Theorem 16. We claim that, for all 0 ≤ ` ≤ h, we have that

Jε(h, `) ≥ (1− 2ε)(16/5)`. (23)

The proof is done by induction on `. For the base case ` = 0, let B ∈ Rε(4-MAJh). Then,
we have that

JεB(h, 0) =
∑

v∈Th(0)

Pr[B queries v
∣∣v ∈M(x)]. (24)

Observe that any randomized decision tree algorithm computing a nonconstant function with
error at most ε must make at least one query with probability at least 1− 2ε, since otherwise
it would output 0 or 1 with probability greater than ε, and thus on some input would err
too much. Let therefore A be a deterministic algorithm from the support of B which makes
at least one query. Then∑

v∈Th(0)

Pr[A queries v
∣∣v ∈M(x)] ≥

∑
v∈Th(0)

Pr[A first query is v
∣∣v ∈M(x)] = 1, (25)

since in the summation the term corresponding to the first query of A is 1, whereas all other
terms are 0. Thus, Jε(h, 0) ≥ 1− 2ε for all h ≥ 0.

Now let ` > 0, and assume the statement holds for ` − 1. For h ≥ `, using Lemma 17
and Lemma 18, we get that Jε(h, `) ≥ 3Jε(h− 1, `− 1) + 1

5J
ε(h, `− 1). Therefore, by the

induction hypothesis, we have that

Jε(h, `) ≥ 3(1− 2ε)
(

16
5

)`−1
+ 1

5(1− 2ε)
(

16
5

)`−1
= (1− 2ε)

(
16
5

)`
. (26)

The theorem follows when we set h = ` by noting that Jε(h, h) ≤ ∆dh
ε (4-MAJh). J
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Combining Proposition 15 and Theorem 16 gives us our main result, an asymptotic sepa-
ration between deterministic subcube partition complexity and randomized query complexity:

I Theorem 2. There exists a function f = (fh), with fh : {0, 1}4h → {0, 1}, such that
Dsc(f) ≤ 3h, but D(f) = 4h, R0(f) ≥ 3.2h, and R(f) = Ω(3.2h).

We can also immediately deduce that the 4-MAJh function positively answers both
Question 1 and Question 3.

I Corollary 19. We have that Rsc
0 (4-MAJh) = o(R0(4-MAJh)).

I Corollary 20. For 0 ≤ ε ≤ 1/3, we have that PPRTε(4-MAJh) = o(Rε(4-MAJh)).

5 Discussion and open problems

Our main result is actually stronger than stated. In addition to the zero-error and ε-error
randomized query complexities we defined, we can also define ε-error expected randomized
complexity. In this model, we only charge for the expected number of queries made by
the randomized algorithm, like in the zero-error case, but we also allow the algorithm
to err. Formally, the ε-error expected randomized query complexity of f is Rexp

ε (f) =
minB∈Rε(f) maxx C(B, x)). Observe that since this generalizes zero-error randomized query
complexity, Rexp

0 (f) = R0(f), and it is immediate that, for all ε ≥ 0, we have that Rexp
ε (f) ≤

Rε(f) ≤ D(f).
Randomized query complexity is usually defined in the worst case [5], that is as Rε(f)

instead of Rexp
ε (f). The main reason for not dealing with these measures separately is

that worst case and expected randomized complexities are closely related. We have already
observed that (obviously), in expectation, one can not make more queries than in the worst
case. On the other hand, if for some constant η > 0 we let the randomized algorithm that
achieves Rexp

ε (f) make 1
2ηR

exp
ε (f) queries, and give a random answer in case the computation

is not finished, we get an algorithm of error ε+ η which never makes more than 1
2ηR

exp
ε (f)

queries. Therefore, for all ε ≥ 0 and η > 0, we have that Rε+η(f) ≤ 1
2ηR

exp
ε (f).

The result we show actually lower bounds Rexp
ε (f) as well. Thus, a stronger version of

our result is the following: For all ε ≥ 0, Rexp
ε (4-MAJh) ≥ (1− 2ε)(3.2)h.

We end with some open problems. It would be interesting to exactly pin down the
randomized query complexity of 4-MAJh. For example we know that R0(4-MAJh) ≥ 3.2h
and R0(4-MAJh) ≤ 3.25h. The best separation between subcube partition complexity and
query complexity remains open, even in the deterministic case.

Finally it would be interesting to know if the partition bounds also lower bound expected
randomized query complexity, and in particular whether the zero-error partition bound lower
bounds zero-error randomized query complexity.
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Abstract
We consider the reconstruction of a phylogeny from multiple genes under the multispecies coales-
cent. We establish a connection with the sparse signal detection problem, where one seeks to
distinguish between a distribution and a mixture of the distribution and a sparse signal. Using
this connection, we derive an information-theoretic trade-off between the number of genes, m,
needed for an accurate reconstruction and the sequence length, k, of the genes. Specifically, we
show that to detect a branch of length f , one needs m = Θ(1/[f2

√
k]).
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1 Introduction

In the sparse signal detection problem, one is given m i.i.d. samples X1, . . . , Xm and
the goal is to distinguish between a distribution P(m)

0

H
(m)
0 : Xi ∼ P(m)

0 ,

and the same distribution corrupted by a sparse signal P(m)
1

H
(m)
1 : Xi ∼ Q(m) := (1− σm)P(m)

0 + σm P(m)
1 .

Typically one takes σm = m−β , where β ∈ (0, 1). This problem arises in a number of
applications [19, 27, 7, 30]. The Gaussian case in particular is well-studied [26, 20, 5]. For
instance it is established in [26, 20] that, in the case P(m)

0 ∼ N(0, 1) and P(m)
1 ∼ N(λm, 1)
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with λm =
√

2r logm, a test with vanishing error probability exists if and only if r exceeds
an explicitly known detection boundary r∗(β).

In this paper, we establish a connection between sparse signal detection and the re-
construction of phylogenies from multiple genes or loci under a population-genetic model
known as the multispecies coalescent [43]. The latter problem is of great practical interest
in computational evolutionary biology and is currently the subject of intense study. See
e.g. [31, 17, 2, 42] for surveys. There is in particular a growing body of theoretical res-
ults [15, 16, 14, 38, 32, 1, 45, 10, 46, 47], although much remains to be understood. The
problem is also closely related to another very active area of research, the reconstruction of
demographic history in population genetics. See e.g. [41, 4, 29] for some recent theoretical
results.

By taking advantage of the connection to sparse signal detection, we derive a detection
boundary for the multilocus phylogeny estimation problem and use it to characterize the
trade-off between the number of genes needed to accurately reconstruct a phylogeny and
the quality of the signal that can be extracted from each separate gene. Our results apply
to an important class of reconstruction methods known as distance-based methods. Before
stating our results more formally, we begin with some background. See e.g. [48] for a general
introduction to mathematical phylogenetics.

1.1 Species tree estimation
An evolutionary tree, or phylogeny, is a graphical representation of the evolutionary rela-
tionships between a group of species. Each leaf in the tree corresponds to a current species
while internal vertices indicate past speciation events. In the classical phylogeny estimation
problem, one sequences a single common gene (or other locus such as pseudogenes, introns,
etc.) from a representative individual of each species of interest. One then seeks to reconstruct
the phylogeny by comparing the genes across species. The basic principle is simple: because
mutations accumulate over time during evolution, more distantly related species tend to have
more differences between their genes.

Formally, phylogeny estimation boils down to learning the structure of a latent tree
graphical model from i.i.d. samples at the leaves. Let T = (V,E, L, r) be a rooted leaf-labelled
binary tree, with n leaves denoted by L = {1, . . . , n} and a root denoted by r. In the
Jukes-Cantor model [28], one of the simplest Markovian models of molecular evolution, we
associate to each edge e ∈ E a mutation probability

pe = 1− e−νete , (1)

where νe is the mutation rate and te is the time elapsed along the edge e. (The analytical
form of (1) derives from a continuous-time Markov process of mutation along the edge. See
e.g. [48].) The Jukes-Cantor process is defined as follows:

Associate to the root a sequence sr = (sr,1, . . . , sr,k) ∈ {A, C, G, T}k of length k where each
site sr,i is uniform in {A, C, G, T}.
Let U = {r}.
Repeat until U = ∅:

Pick a u ∈ U .
Let u− be the parent of u.
Associate a sequence su ∈ {A, C, G, T}k to u as follows: su is obtained from su− by
mutating each site in su− independently with probability p(u−,u); when a mutation
occurs at a site i, replace su,i with a uniformly chosen state in {A, C, G, T}.
Remove u from U and add the children (if any) of u to U .
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Let T−r be the tree T where the root is suppressed, i.e., where the two edges adjacent to
the root are combined into a single edge. We let L[T, (pe)e, k] be the distribution of the
sequences at the leaves s1, . . . , sn under the Jukes-Cantor process. We define the single-locus
phylogeny estimation problem as follows:

Given sequences at the leaves (s1, . . . , sn) ∼ L[T, (pe)e, k], recover the (leaf-labelled)
unrooted tree T−r.

(One may also be interested in estimating the pes, but we focus on the tree. The root is
in general not identifiable.) This problem has a long history in evolutionary biology. A
large number of estimation techniques have been developed. See e.g. [24]. For a survey
of the learning perspective on this problem, see e.g. [40]. On the theoretical side, much is
known about the sequence length—or, in other words, the number of samples—required
for a perfect reconstruction with high probability, including both information-theoretic
lower bounds [49, 34, 35, 39] and matching algorithmic upper bounds [22, 11, 12, 44].
More general models of molecular evolution have also been considered in this context; see
e.g. [23, 9, 37, 13, 3].

Nowadays, it is common for biologists to have access to multiple genes—or even full
genomes. This abundance of data, which on the surface may seem like a blessing, in fact comes
with significant new challenges. See e.g. [18, 42] for surveys. One important issue is that
different genes may have incompatible evolutionary histories—represented by incongruent
gene trees. In other words, if one were to solve the phylogeny estimation problem separately
for several genes, one may in fact obtain different trees. Such incongruence can be explained
in some cases by estimation error, but it can also result from deeper biological processes such
as horizontal gene transfer, gene duplications and losses, and incomplete lineage sorting [33].
The latter phenomenon, which will be explained in Section 2, is the focus of this paper.

Accounting for this type of complication necessitates a two-level hierarchical model for
the input data. Let S = (V,E, L, r) be a rooted leaf-labelled binary species tree, i.e., a tree
representing the actual succession of past divergences for a group of organisms. To each
gene j shared by all species under consideration, we associate a gene tree Tj = (Vj , Ej , L),
mutation probabilities (pje)e∈Ej

, and sequence length kj . The triple (Tj , (pje)e∈Ej
, kj) is

picked at random according to a given distribution G[S, (νe, te)e∈E ] which depends on the
unknown species tree, mutation parameters νe and inter-speciation times te. It is standard
to assume that the gene trees are conditionally independent given the species tree. In the
context of incomplete lineage sorting, the distribution of the gene trees, G, is given by the
so-called multispecies coalescent, which is a canonical model for combining speciation history
and population genetic effects [43]. The detailed description of the model is deferred to
Section 2, as it is not needed for a high-level overview of our results. For the readers not
familiar with population genetics, it is useful to think of Tj as a noisy version of S (which, in
particular, may result in Tj having a different (leaf-labelled) topology than S).

Our two-level model of sequence data is then as follows. Given a species tree S, parameters
(νe, te)e∈E and a number of genes m:
1. [First level: gene trees] Pick m independent gene trees and parameters

(Tj , (pje)e∈Ej
, kj) ∼ G[S, (νe, te)e∈E ], j = 1, . . . ,m.

2. [Second level: leaf sequences] For each gene j = 1, . . . ,m, generate sequence data at
the leaves L according to the (single-locus) Jukes-Cantor process, as described above,

(sj1, . . . , sjn) ∼ L[Tj , (pje)e, kj ], j = 1, . . . ,m,

independently of the other genes.

APPROX/RANDOM’15
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We define the multi-locus phylogeny estimation problem as follows:

Given sequences at the leaves (sj1, . . . , sjn), j = 1, . . . ,m, generated by the process
above, recover the (leaf-labelled) unrooted species tree S−r.

In the context of incomplete lineage sorting, this problem is the focus of very active research
in statistical phylogenetics [31, 17, 2, 42]. In particular, there is a number of theoretical
results, including [15, 16, 14, 38, 32, 1, 45, 10, 46, 47]. However, many of these results
concern the statistical properties (identifiability, consistency, convergence rate) of species
tree estimators that (unrealistically) assume perfect knowledge of the Tjs. We only have a
very incomplete picture of the properties of estimators that are based on sequence data, i.e.,
that do not require the knowledge of the Tjs. (See below for an overview of prior results.)

Here we consider the data requirement of such estimators based on the sequences. To
simplify, we assume that all genes have the same length, i.e., that kj = k for all j = 1, . . . ,m
for some k. (Because our goal is to derive a lower bound, such simplification is largely
immaterial.) Our results apply to an important class of methods known as distance-based
methods, which we briefly describe now. In the single-locus phylogeny estimation problem, a
natural way to infer T−r is to use the fraction of substitutions between each pair, i.e., letting
‖ · ‖1 denote the `1-distance,

θ(sa, sb) := ‖sa − sb‖1, ∀a, b ∈ [n]. (2)

We refer to reconstruction methods relying solely on the θ(sa, sb)s as distance-based methods.
Assume for instance that νe = ν for all e, i.e., the so-called molecular clock hypothesis.
Then it is easily seen that single-linkage clustering (e.g., [25]) applied to the distance matrix
(θ(sa, sb))a,b∈[n] converges to T−r as k → +∞. (In this special case, the root can be recovered
as well.) In fact, T can be reconstructed perfectly as long as, for each a, b, 1

kθ(sa, sb) is close
enough to its expectation (e.g. [48])

θab := 3
4(1− e−dab) with dab :=

∑
e∈P (a,b)

νete,

where P (a, b) is the edge set on the unique path between a and b in T . Here “close enough”
means O(f) where f := mine νete. This observation can been extended to general νes. See
e.g. [22] for explicit bounds on the sequence length required for perfect reconstruction with
high probability.

Finally, to study distance-based methods in the multi-locus case, we restrict ourselves to
the following multi-locus distance estimation problem:

Given an accuracy ε > 0 and distance matrices θ(sja, s
j
b)a,b∈[n], j = 1, . . . ,m, estimate

dab as defined above within ε for all a, b.

Observe that, once the dabs are estimated within sufficient accuracy, i.e., within O(f), the
species tree can be reconstructed using the techniques referred to in the single-locus case.

1.2 Our results
How is all this related to the sparse signal detection problem? Our main goal here is to
provide a lower bound on the amount of data required for perfect reconstruction, in terms of
m (the number of genes) and k (the sequence length). Consider the three possible (rooted,
leaf-labelled) species trees with three leaves, as depicted in Figure 1, where we let the time
to the most recent divergence be 1− f (from today) and the time to the earlier divergence
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1 2 3 1 3 2

2 3 1

f

1

Figure 1 Three species trees.

be 1. In order for a distance-based method to distinguish between these three possibilities,
i,e., to determine which pair is closest, we need to estimate the dabs within O(f) accuracy.
Put differently, within the multi-locus distance estimation problem, it suffices to establish
a lower bound on the data required to distinguish between a two-leaf species tree S with
d12 = 2 and a two-leaf species tree S+ with d12 = 2− 2f , where in both cases νe = 1 for all
e. We are interested in the limit f → 0.

Let P0 and Q be the distributions of θ(s1
1, s1

2) for a single gene under S and S+ respectively,
where for ease of notation the dependence on k is implicit. For m genes, we denote the
corresponding distributions by P⊗m0 and Q⊗m. To connect the problem to sparse signal
detection we observe below that, under the multispecies coalescent, Q is in fact a mixture of
P0 and a sparse signal P1, i.e.,

Q = (1− σf )P0 + σf P1, (3)

where σf = O(f) as f → 0.
When testing between P⊗m0 and Q⊗m, the optimal sum of Type-I (false positive) and

Type-II (false negative) errors is given by (e.g. [8])

inf
A
{P⊗m0 (A) + Q⊗m(Ac)} = 1− ‖P⊗m0 −Q⊗m‖TV, (4)

where ‖ · ‖TV denotes the total variation distance. Because σf = O(f), for any k, in order to
distinguish between P0 and Q one requires that, at the very least, m = Ω(f−1). Otherwise
the probability of observing a sample originating from P1 under Q is bounded away from
1. In [38] it was shown that, provided that k = Ω(f−2 log f−1), m = Ω(f−1) suffices. At
the other end of the spectrum, when k = O(1), a lower bound for the single-locus problem
obtained by [49] implies that m = Ω(f−2) is needed. An algorithm achieving this bound
under the multispecies coalescent was recently given in [10].

We settle the full spectrum between these two regimes. Our results apply when k = f−2+2κ

and m = f−1−µ where 0 < κ, µ < 1 as f → 0.

I Theorem 1 (Lower bound). For any δ > 0, there is a c > 0 such that

‖P⊗m0 −Q⊗m‖TV ≤ δ,

APPROX/RANDOM’15



936 Distance-based Species Tree Estimation under Coalescent

whenever
m ≤ c 1

f2
√
k
.

Notice that the lower bound on m interpolates between the two extremal regimes discussed
above. As k increases, a more accurate estimate of the gene trees can be obtained and one
expects that the number of genes required for perfect reconstruction should indeed decrease.
The form of that dependence is far from clear however. We in fact prove that our analysis is
tight.

I Theorem 2 (Matching upper bound). For any δ > 0, there is a c′ > 0 such that

‖P⊗m0 −Q⊗m‖TV ≥ 1− δ,

whenever
m ≥ c′ 1

f2
√
k
.

Moreover, there is an efficient test to distinguish between P⊗m0 and Q⊗m in that case.

Our proof of the upper bound actually gives an efficient reconstruction algorithm under the
molecular clock hypothesis. We expect that the insights obtained from proving Theorem 1
and 2 will lead to more accurate practical methods as well in the general case.

1.3 Proof sketch
Let Z be an exponential random variable with mean 1. We first show that, under P0
(respectively Q), θ(s1

1, s1
2) is binomial with k trials and success probability 3

4
(
1− e−2(ζ+Z)),

where ζ = 1 (respectively ζ = 1−f). Equation (3) then follows from the memoryless property
of the exponential, where σf is the probability that Z ≤ f .

A recent result of [6] gives a formula for the detection boundary of the sparse signal
detection problem for general P0, P1. However, applying this formula here is non-trivial.
Instead we bound directly the total variation distance between P⊗m0 and Q⊗m. Similarly to
the approach used in [6], we work instead with the Hellinger distance H2(P⊗m0 ,Q⊗m) which
tensorizes as follows (see e.g. [8])

1
2H

2(P⊗m0 ,Q⊗m) = 1−
(

1− 1
2H

2(P0,Q)
)m

, (5)

and further satisfies

‖P⊗m0 −Q⊗m‖2
TV ≤ H2(P⊗m0 ,Q⊗m)

[
1− 1

4H
2(P⊗m0 ,Q⊗m)

]
. (6)

All the work is in proving that, as f → 0,

H2(P0,Q) = O
(
f2
√
k
)
.

More details are given in Section 3.1.
The proof of Theorem 2 on the other hand involves the construction of a statistical

test that distinguishes between P⊗m0 and Q⊗m. In the regime k = O(1), an optimal test
(up to constants) compares the means of the samples [10]. In the regime k = ω(f−2), an
optimal test (up to constants) compares the minima of the samples [38]. A natural way to
interpolate between these two tests is to consider an appropriate quantile. We show that the
1/
√
k-quantile leads to the optimal choice.
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1 2 3

Figure 2 An incomplete lineage sorting event. Although 1 and 2 are more closely related in the
species tree (fat tree), 2 and 3 are more closely related in the gene tree (thin tree). This incongruence
is caused by the failure of the lineages originating from 1 and 2 to coalesce within the shaded branch.

1.4 Organization.
The gene tree generating model is defined in Section 2. The proofs of the main theorems
are omitted from this extended abstract. These can be found at the Arxiv version of the
paper [36].

2 Further definitions

In this section, we give more details on the model.

2.1 A little coalescent theory
As we mentioned in the previous section, our gene tree distribution model G[S, (νe, te)e∈E ]
is the multispecies coalescent [43]. We first explain the model in the two-species case. Let
1 and 2 be two species and consider a common gene j. One can trace back in time the
lineages of gene j from an individual in 1 and from an individual in 2 until the first common
ancestor. The latter event is called a coalescence. Here, because the two lineages originate
from different species, coalescence occurs in an ancestral population. Let τ be the time of
the divergence between 1 and 2 (back in time). Then, under the multispecies coalescent, the
coalescence time is τ + Z where Z is an exponential random variable whose mean depends
on the effective population size of the ancestral population. Here we scale time so that the
mean is 1. (See e.g. [21] for an introduction to coalescent theory.)

We immediately get for the two-level model of sequence data:

I Lemma 3 (Distance distribution). Let S be a two-leaf species tree with d12 = 2τ and νe = 1
for all e and let θ(s1

1, s1
2) be as in (2) for some k. Then the distibution of θ(s1

1, s1
2) is binomial

with k trials and success probability 3
4
(
1− e−2(τ+Z)).

The memoryless property of the exponential gives:

I Lemma 4 (Mixture). Let S be a two-leaf species tree with d12 = 2 and let S+ be a two-leaf
species tree with d12 = 2 − 2f , where in both cases νe = 1 for all e. Let P0 and Q be the
distributions of θ(s1

1, s1
2) for a single gene under S and S+ respectively. Then, there is P1

APPROX/RANDOM’15
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such that,

Q = (1− σf )P0 + σf P1,

where σf = O(f), as f → 0. More specifically, P1 is obtained by conditioning Q on the event
that Z is ≤ f and σf is the probability of that event.

More generally (this paragraph may be skipped as it will not play a role below), consider
a species tree S = (V,E;L, r) with n leaves. Each gene j = 1, . . . ,m has a genealogical
history represented by its gene tree Tj distributed according to the following process: looking
backwards in time, on each branch of the species tree, the coalescence of any two lineages
is exponentially distributed with rate 1, independently from all other pairs; whenever
two branches merge in the species tree, we also merge the lineages of the corresponding
populations, that is, the coalescence proceeds on the union of the lineages. More specifically,
the probability density of a realization of this model for m independent genes is

m∏
j=1

∏
e∈E

exp
(
−
(
Oej
2

)[
σ
e,Oe

j +1
j − σe,O

e
j

j

]) Ie
j−O

e
j∏

`=1
exp

(
−
(
`

2

)[
σe,`j − σ

e,`−1
j

])
,

where, for gene j and branch e, Iej is the number of lineages entering e, Oej is the number
of lineages exiting e, and σe,`j is the `th coalescence time in e; for convenience, we let σe,0j
and σe,I

e
j−O

e
j +1

j be respectively the divergence times of e and of its parent population. The
resulting trees Tjs may have topologies that differ from that of the species tree S. This may
occur as a result of an incomplete lineage sorting event, i.e., the failure of two lineages to
coalesce in a population. See Figure 2 for an illustration.

2.2 A more abstract setting
Before discussing the proofs, we re-set the problem in a more generic setting that will make
the computations more transparent. We consider two distributions P0 and P1 for a random
variable θ taking values in {0, . . . , k} for some k. We assume that the distribution of θ takes
the form

P0[θ = `] =
(
k

`

)
E0[X`(1−X)k−`],

where E0 is the expectation operator corresponding to P0, and X is some random variable
admitting a density over [0, 1]. The distribution is similarly defined under P1. We make the
following assumptions, which are satisfied in the setting of the previous section:

A1. Under P0 and P1, X admits a density whose support is (p0, p
0) under P0 and (p0−φf , p0)

under P1, where 0 < p0 < p0 < 1 (independent of f) and φf = O(f). (In the setting of
Lemma 4, p0 = 3

4 (1− e−2), p0 − φf = 3
4 (1− e−(2−2f)), and p0 = 3/4.)

A2. Under P0, the density of X (on its support) is in [ρ, ρ−1] for some ρ > 0 (independent of
f) away from p0, that is, below some p0 < p̄ < p0. (In the setting of Lemma 4, under P0

the density of X on (p0, p
0) is 4e1/2

3 (1− 4x/3)−3/4.)
As before, we let

Q = (1− σf )P0 + σf P1,

for some σf = O(f).

3 Main steps of the proof

We give a few more details on the proofs.
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3.1 Lower bound
We briefly sketch the main steps of the proof of the lower bound. In the abstract setting of
Section 2, the Hellinger distance can be written as

H2(P0,Q) =
k∑
j=0

[√
Q[θ = j]−

√
P0[θ = j]

]2

=
k∑
j=0

[√
1 + σf

(
P1[θ = j]
P0[θ = j] − 1

)
− 1
]2

P0[θ = j]

=
k∑
j=0

[√
1 + σf

(
E1[Xj(1−X)k−j ]
E0[Xj(1−X)k−j ] − 1

)
− 1
]2

P0[θ = j] (7)

We prove the following proposition, which implies Theorem 1.

I Proposition 5. Assume that k = f−2+2κ where 0 < κ < 1 and that Assumptions A1 and
A2 hold. As f → 0,

H2(P0,Q) = O
(
f2
√
k
)
.

From (7), in order to bound the Hellinger distance, we need to control the ratio E1[Xj(1−X)k−j ]
E0[Xj(1−X)k−j ]

and the probability P0[θ = j]. Because the standard deviation of θ/k is O(1/
√
k) and

f
√
k = o(1), the dominant term in the sum (7) turns out to come from X being within

O(1/
√
k) of p0 under E0 (an event of probability O(1/

√
k)) and θ/k being within O(1/

√
k)

of p0 as well (in which case the ratio E1[Xj(1−X)k−j ]
E0[Xj(1−X)k−j ] is of order O(1)). The contribution of

the dominant term is then indeed of order O(f2
√
k). The full details are somewhat delicate

and appear in the Arxiv version of the paper [36].

3.2 Upper bound
To prove the upper bound, we use (4) and construct an explicit test A. Let W be the
number of genes such that θ/k ≤ p0. Let w = P0[θ/k ≤ p0] and w′ = Q[θ/k ≤ p0]. Then
W ∼ Bin(m,w) under P0 and W ∼ Bin(m,w′) under Q. Let

w∗ = mw + m

2 (w′ − w) = mw′ − m

2 (w′ − w),

and consider the event
A = {W ≥ w∗}.

We show in the Arxiv version of the paper [36] that P⊗m0 [A] ≤ δ
2 , and Q⊗m [Ac] ≤ δ

2 when
c′ is large enough.
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Abstract
We present the first efficient deterministic algorithm for factoring sparse polynomials that split
into multilinear factors and sums of univariate polynomials. Our result makes partial progress
towards the resolution of the classical question posed by von zur Gathen and Kaltofen in [6] to
devise an efficient deterministic algorithm for factoring (general) sparse polynomials. We achieve
our goal by introducing essential factorization schemes which can be thought of as a relaxation
of the regular factorization notion.
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1 Introduction

In this paper we study the problem of factorization of sparse polynomials.

1.1 Multivariate Polynomial Factorization
One of the fundamental problems in algebraic complexity is the problem of polynomial
factorization: given a polynomial P ∈ F[x1, x2, . . . , xn] over a field F, find its irreducible
factors. Other than being natural, the problem has many applications such as list decoding
[29, 9] and derandomization [10]. A large amount of research has been devoted to finding
efficient algorithms for this problem (see e.g. [5]) and numerous randomized algorithms were
designed [6, 12, 15, 5, 13, 4]. However, the question of whether there exist deterministic
algorithms for this problem remains an interesting open question (see [5, 17]).

1.2 Sparse Polynomials
Let P ∈ F[x1, x2, . . . , xn] be a n-variate polynomial over the field F. We denote by ‖P‖ the
sparsity of P . That is, the number of non-zero monomials in P . Suppose that the individual
degree of each variable xi is bounded by d, then the above number can reach (d+ 1)n. Our
case of interest is when ‖P‖ � (d+ 1)n. Indeed, in various applications [30, 6, 1, 7, 25, 21]
the desired regime is when ‖P‖ = poly(n, d). Such polynomials are refereed to as sparse
polynomials. More generally, we call a polynomial P s-sparse if ‖P‖ ≤ s. Otherwise, we say
that P is s-dense.
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Coming up with an efficient deterministic factorization algorithm for sparse polynomials
(given as a list of monomials) is a classical open question posed by von zur Gathen and
Kaltofen in [6]. An inherent difficulty in tackling the problem lies within the fact that a
factor of a sparse polynomial need not be sparse. The following example demonstrates that a
blow-up in the sparsity of a factor can be super-polynomial over any field. A similar example
appears as Example 5.1 in [6].

I Example 1. Let n ≥ 1. Consider the polynomial f(x̄) =
∏
i∈[n]

(xni −1) which can be written

as a product of g(x̄) =
∏
i∈[n]

(1 + xi + . . .+ xn−1
i ) and h(x̄) =

∏
i∈[n]

(xi − 1).

Observe that ‖f‖ = ‖h‖ = 2n while ‖g‖ = nn, resulting in a quasi-polynomial blow-up.

Consequently, just writing down the irreducible factors as lists of monomials can take super-
polynomial time 1. In fact, the randomized algorithm of [6] assumes that the upper bound on
the sparsity of the factors is known. In light of this difficulty, a simpler problem was posed in
that same paper: Given m+ 1 sparse polynomials f1, f2, . . . fm, g test if g = f1 · f2 · . . . · fm.
This problem is referred to as “testing sparse factorization”.

Over the last three decades this question has seen only a very partial progress. For the
testing version of the problem, Saha et al. [20] presented an efficient deterministic algorithm
for the special case when the sparse polynomials are sums of univariate polynomials. (P
is a sum of univariate polynomial or a sum of univariates, for short, if it can be written
as a sum of univariate polynomials. That is, P =

∑n
i=1 Ti(xi).) Shpilka & Volkovich [25]

gave efficient deterministic factorization algorithms for multilinear sparse polynomials (see
Lemma 8 for more details). In this work, we make another step towards the resolution of the
problem. We consider the model of sparse polynomials that split into multilinear factors or
“multilinearly-split” for short. Formally, we say that a polynomial P is multilinearly-split if it
can be written as a product of multilinear polynomials.

Clearly, this model extends the one considered by Shpilka & Volkovich. Moreover, it can
be seen as a multivariate version of algebraically closed fields in the following sense. The only
irreducible univariate polynomials over algebraically closed fields are linear polynomials (i.e.
αx+ β) since every univariate polynomial splits into linear factors. However, this is not the
case in the multivariate setting. For example, the polynomial P (x, y) = x2 + y is irreducible
over any field. In our model, the above phenomenon does not occur as every polynomial
splits into multilinear factors. In addition, our model evades the aforementioned inherent
difficulty since a multilinear factor of a sparse polynomial is itself a sparse polynomial (see
Lemma 23 for more details). Below is our main result:

I Theorem 2 (Main). There exists a deterministic algorithm that given an s-sparse
multilinearly-split polynomial F ∈ F[x1, x2, . . . , xn] of degree d outputs its irreducible mul-
tilinear factors. The running time of the algorithm is poly(n, d, s, p, `) when F = Fp` and
poly(n, d, s, b) when F = Q and b is the bit complexity of the coefficients in F .

Our next results extend the ones in [20].

I Theorem 3. Let F ∈ F[x1, x2, . . . , xn] be a polynomial of degree d that splits into sums of
univariates. There exists a deterministic algorithm that given an oracle access to F outputs
its irreducible factors. The running time of the algorithm is poly(n, d, p, `) when F = Fp` and
poly(n, d, b) when F = Q and b is the bit complexity of the coefficients in F .

1 Although g is not irreducible, this issue can be resolved using standard techniques. For example, by
considering the product f + yh = (g + y)h for a new variable y.
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Combining the result with the efficient algorithm of [20] for testing divisibility by a sum
of univariates, we obtain the following:

I Theorem 4. There exists a deterministic algorithm that given an s-sparse polynomial to
F ∈ F[x1, x2, . . . , xn] of degree d outputs its irreducible factors that are sums of univariates (if
any). The running time of the algorithm is poly(n, d, s, p, `) when F = Fp` and poly(n, d, s, b)
when F = Q and b is the bit complexity of the coefficients in F .

Note that the running times of our algorithms are essentially optimal, as we are invoking
the state-of-the-art deterministic factoring algorithm for a constant number of variables.
We note that even for the univariate case the best known deterministic factoring algorithm
has a polynomial dependence on the characteristic p. While in the randomized setting, the
dependence is polynomial in log p. A lot of effort was invested in trying to derandomize the
factorization algorithm when the characteristic of F is large (see e.g. [23, 5, 3, 17]).

1.3 Techniques

Let C be a class of polynomials and let fact(C) denote the class of factors of P ∈ C. Suppose
we want to map n-variate polynomials from C to (other) polynomials with, potentially, a
smaller number of variables in a way that two distinct (composite) polynomials P,Q ∈ C
remain distinct under the map. In particular, this implies that each irreducible polynomial
in fact(C) must be mapped into a non-constant polynomial. Moreover, a pair of non-similar,
irreducible polynomials must be mapped into a pair of non-similar polynomials. And, ideally,
an irreducible polynomial should remain irreducible. Those goals are achieved in [6, 11, 12, 15]
and other works by considering a projection to a random low-dimensional space (i.e a line or
a plane). The purpose of the last two requirements is to ensure that factors from different
images could not be combined together. In other words, there is only one way to interpret a
product of images under the map. As preserving irreducibility deterministically is still an
open question, we introduce a relaxation of the original requirements with the hope that it
would be easier to fulfill. We call it an essential factorization scheme.

Consider a polynomial map {H}n = Ft(n) → Fn with t� n such that for every irreducible
P ∈ fact(C) the composition P (H) might be reducible, yet results in a polynomial that contains
an irreducible “essential” factor ΨH(P ) which describes P uniquely. In addition, ΨH(P )
cannot be a factor of any Q(H) when P 6= Q ∈ fact(C). Given that property of H, for any
F ∈ C the polynomial F (H) describes F uniquely. Consequently, for any F,R ∈ C we get
that F ≡ R ⇐⇒ F (H) = R(H). We formalize this notion in Definition 17.

Observe that this reasoning can be extended to handle products of polynomials for C.
That is,

∏k
i=1 F1. Consequently, if we could establish an essential factorization scheme for

sparse polynomials, we would solve the sparse factorization testing problem.
Unfortunately, we are not there yet for the entire set of sparse polynomials. In this

paper, we make a step towards this goal by establishing an essential factorization scheme
for multilinear sparse polynomials. In fact, our scheme has an additional property: given a
factor, we can efficiently decide whether or not it is an essential factor of some polynomial P .
Moreover, we can efficiently compute P from its essential factor ΨH(P ). Consequently, in
order to compute the irreducible factors of multilinearly-split polynomial F , we first compute
the irreducible factor of F (H) and then recover the “original” factors of F . We note that
since F (H) is t-variate polynomial with t � n, we can carry out the factorization phase
deterministically by a brute-force derandomization of the best randomized algorithm while
still being efficient. Formally, see Lemma 24

APPROX/RANDOM’15
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We show that our essential factorization scheme works for some other classes of multilinear
polynomials as well. Our construction can be seen as another link in the line of works
[14, 25, 19] that connect polynomial factoring and polynomial identity testing.

1.4 Organization
We start by some basic definitions and notation in Section 2. In Section 3, we formally
introduce essential factorization schemes and demonstrate their properties. In that same
section, we also construct such a scheme for classes of multilinear polynomials. In Section 4,
we present our factoring algorithm for sparse multilinearly-split polynomials, thus proving
our main theorem. Finally, in Section 5 we present an algorithm for factoring polynomials
that split into sums of univariate (Theorem 3) and for finding sums of univariate factors of
sparse polynomials (Theorem 4). We conclude the paper with some remarks in Section 6.

2 Preliminaries

Let F denote a field, finite or otherwise, and let F denote its algebraic closure. We assume
that elements of F are represented in binary using some standard encoding.

2.1 Polynomials
A polynomial P ∈ F[x1, x2, . . . , xn] depends on a variable xi if there are two inputs ᾱ, β̄ ∈ Fn

differing only in the ith coordinate for which P (ᾱ) 6= P (β̄). We denote by var(P ) the set of
variables that P depends on. We say that P and Q are similar and denote by it P ∼ Q if
P = αQ for some α 6= 0 ∈ F.

For a polynomial P (x1, . . . , xn), a variable xi and a field element α, we denote with
P |xi=α the polynomial resulting from substituting α to xi. Similarly given a subset I ⊆ [n]
and an assignment ā ∈ Fn, we define P |xI=āI

to be the polynomial resulting from substituting
ai to xi for every i ∈ I.

I Definition 5 (Leading Coefficient). Let xi ∈ var(f). We can write: P =
∑d
j=0 Pj · x

j
i

such that ∀j, xi 6∈ var(Pj) and Pd 6≡ 0. The leading coefficient of P w.r.t to xi is defined as
lcxi(P ) ∆= Pd. The individual degree of xi in P is defined as degxi

(P ) ∆= d.

It easy to see that for every P,Q ∈ F[x1, x2, . . . , xn] and i ∈ [n] we have that: lcxi(P ·Q) =
lcxi

(P ) · lcxi
(Q).

I Definition 6. For P,Q ∈ F[x1, x2, . . . , xn] and ` ∈ [n] let D`(P,Q) be the polynomial
defined as follows:

D`(P,Q)(x̄) ∆=
∣∣∣∣( P P |x`=0

Q Q|x`=0

)∣∣∣∣ (x̄) = (P ·Q|x`=0 − P |x`=0 ·Q)(x̄).

Note that D` is a bilinear transformation. The following lemma from [21] gives a useful
property of D` that is easy to verify.

I Lemma 7 ([21]). Let P,Q ∈ F[x1, x2, . . . , xn] be irreducible multilinear polynomials and
let ` ∈ var(P ). Then D`(Q,P ) ≡ 0 iff P | Q.

The next corollary from [25] shows that a multilinear sparse polynomial can be factored
efficiently. Moreover, all its factors are sparse.

I Lemma 8 (Corollary from [25]). Given a multilinear polynomial P ∈ F[x1, x2, . . . , xn], there
is a poly(n, ‖P‖) time deterministic algorithm that outputs the irreducible factors, h1, . . . , hk
of P . Furthermore, ‖h1‖ · ‖h2‖ · . . . · ‖hk‖ = ‖P‖.



I. Volkovich 947

2.2 Commutator
The Commutator was originally defined in [25] where it was used to devised efficient factoriza-
tion algorithms for classes of multilinear polynomials. Later, it was also used in reconstruction
algorithms [8, 26] for arithmetic formulae. The following definitions are taken from [25].

I Definition 9. Let f ∈ F[x1, x2, . . . , xn] be a polynomial. We say that f is (xi, xj)-
decomposable if f can be written as f = g·h for polynomials g and h such that i ∈ var(g)\var(h)
and j ∈ var(h) \ var(g).

I Definition 10 (Commutator). Let f ∈ F[x1, x2, . . . , xn] be a multilinear polynomial and let
i, j ∈ [n]. We define the commutator between xi and xj as ∆ijf

∆= f |xi=1,xj=1 · f |xi=0,xj=0−
f |xi=1,xj=0 · f |xi=0,xj=1.

The crucial property of the commutator is given by the lemma below.

I Lemma 11 ([25]). Let f ∈ F[x1, x2, . . . , xn] be a multilinear polynomial and let i, j ∈ var(f).
Then f is (xi, xj)-decomposable if and only if ∆ijf ≡ 0.

The following observation connects between ∆ij and Di.

I Observation 12. ∆ij(P ) = Di

(
P |xj=1, P |xj=0

)
.

2.3 Maps and Generators for Classes of Polynomials
In this section, we formally define the notion of generators and hitting sets for polynomials
as well as describe a few of their useful properties. For a further discussion see [24, 28, 16].

A map G = (G1, . . . ,Gn) : Fq → Fn is a generator for the polynomial class C if for every
non-zero n-variate polynomial P ∈ C, it holds that P (G) 6≡ 0. The image of the map G is
denoted as Im (G) = G(Fq). Ideally, q should be very small compared to n. A set H ⊆ Fn is
a hitting set for a polynomial class C, if for every non-zero polynomial P ∈ C, there exists
ā ∈ H, such that P (ā) 6= 0. A generator can also be viewed as a map containing a hitting
set for C in its image. That is, for every non-zero P ∈ C, there exists ā ∈ Im (G) such
that P (ā) 6= 0. In identity testing, generators and hitting sets play the same role. Given
a generator one can easily construct a hitting set by evaluating the generator on a large
enough set of points. Conversely in [24], an efficient method of constructing a generator from
a hitting set was given.

I Lemma 13 ([24]). Let |F| > n. Given a set H ⊆ Fn, there is an algorithm that runs in time
poly(|H| , n, log |F|) and constructs a map G(w̄) : Ft → Fn such that G(0̄) = 0̄, H ⊆ Im (G)
with t ∆= dlog n |H|e and the individual degrees of Gi are bounded by n − 1. Moreover, for
each ā ∈ H, its preimage, β̄ ∈ Fq s.t. ā = G(β), can be computed in time poly(|H| , n).

2.4 SV-Generator
The Gn,k generator was defined in [24] where it was shown that for certain values of k the
map Gn,k is generator for read-once polynomials. In [16] this was generalized to multilinear
read-k polynomials2. We will use the Gn,k in our construction.

2 A read-k polynomial is a polynomial computable by a formula where each variable appears at most k
times.

APPROX/RANDOM’15
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I Definition 14 (SV-Generator [24]). Let a1, . . . , an denote n distinct elements from a field
F and for i ∈ [n] let Li(x) .=

∏
j 6=i

x−aj

ai−aj
denote the corresponding Lagrange interpolant. For

every k ∈ N, define

Gn,k(y1, . . . , yk, z1, . . . , zk) .=

 k∑
j=1

L1(yj)zj ,
k∑
j=1

L2(yj)zj , . . . ,
k∑
j=1

Ln(yj)zj

 .

Let (Gn,k)i denote the ith component of Gn,k; we refer to ai as the Lagrange constant
associated with this ith component.

For intuition, it is helpful to view the action of Gn,1(y1, z1) on a random element of F2 as
selecting a random variable (via the value of y1) and a random value for that variable (via
the value of z1). This is not completely accurate because for values outside the Lagrange
constants the generator does not uniquely select a component. Since the SV-generator is
a polynomial map, it is natural to define the sum of two copies of the generator by their
component-wise sum and to furthermore view Gn,k as the sum of k independent choices of
variables and values. For this reason, we take the convention that for two generators G1 and
G2 with the same output length that G1 + G2 is the generator obtained by adding a sample
from G1 to an independent sample from G2, and where the seed variables are implicitly
relabelled so as to be disjoint. With this convention in mind, the SV-generator has a number
of useful properties that follow immediately from its definition.

I Proposition 15 ([24, 16]). Let k, k′ be positive integers.
1. Gn,k(ȳ, 0̄) ≡ 0̄.
2. Gn,k(y1, . . . , yk, z1, . . . , zk)|yk=ai

= Gn,k−1(y1, . . . , yk−1, z1, . . . , zk−1) + zk · ēi, where ēi
is the 0-1-vector with a single 1 in position i and ai the ith Lagrange constant.

3. Gn,k(y1, . . . , yk, z1, . . . , zk) +Gn,k′(yk+1, . . . , yk+k′ , zk+1, . . . , zk+k′)
= Gn,k+k′(y1, . . . , yk+k′ , z1, . . . , zk+k′)

The first item states that zero is in the image of the SV-generator. The second item
shows how to make a single output component (and no others) depend on a particular zj .
The final item shows that sums of independent copies of the SV-generator are equivalent to
a single copy of the SV-generator with the appropriate parameter k. The above properties
give rise to the following operator.

I Definition 16 (Reviving). Let P ∈ F[x1, x2, . . . , xn] be a polynomial and
Gn(w̄) ∆=

(
G1
n(w̄), . . . ,Gnn(w̄)

)
be a polynomial map. Let k ≤ n. Consider Hn

∆= Gn(w̄) +
Gn,k(ȳ, z̄). Let i ∈ [n]. We call the operation:

R{xi}(P (Hn)) ∆= P (Hn)|yk=ai,zk=xi−Gi,z1=z2=...=zk−1=0

a revival of xi. By Proposition 15, the result of such a revival equals:

P (G1
n(w̄), . . . ,Gi−1

n (w̄), xi,Gi+1
n (w̄), . . . ,Gnn(w̄))

which can be seen as lifting the polynomial map substituted into xi. Similarly, we can extend
the definition RI to any subset I ⊆ [n] of size |I| ≤ k as reviving all the variables in I.

3 Essential Factorization Scheme

In this section, we formally define the notions of essential factors and essential factorization
schemes. For a class of polynomials C we denote by fact(C) = {P | ∃g 6= 0, P · g ∈ C } the
class of factors of C.
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I Definition 17 (Essential Factorization Scheme). Let C be a class of polynomials over a field
F. We say that a polynomial map {H}n = Ft(n) → Fn is an essential factorization scheme
for C if there exists (another) map ΨH : F[x1, x2, . . . , xn] → F[w1, w2, . . . , wt(n)] such that
given two irreducible polynomials P,Q ∈ fact(C):
1. ΨH(P ) is a non-constant, irreducible factor of P (H), called the essential factor of P .
2. ΨH(P ) | Q(H) iff P ∼ Q.

Let us discuss the definition. Let P ∈ fact(C) be an irreducible factor of some F ∈ C.
The intuition is that the essential factor of P , i.e. ΨH(P ), should contain “all the essential”
information about P and, in addition it cannot appear as a factor of any other polynomial
Q ∈ fact(C). In particular, it follows from the definition that ΨH(P ) ∼ ΨH(Q) iff P ∼ Q.
The next lemma shows that our definition is sufficient in achieving our original goal. That
is, ensuring that two distinct (composite) polynomials F,R ∈ C remain distinct under the
mapping.

I Lemma 18 (Uniqueness from essential factorization). Let F,R ∈ C be two polynomials (not
necessarily irreducible) and let H be as in the above definition. Then F ≡ R iff F (H) = R(H).

Proof. The proof is by induction on deg(F ) + deg(R). The base case is when both F and
R are constant polynomials and the claim clearly follows. Now suppose wlog that F is
non-constant. By the properties of H, F (H) is also non-constant and since F (H) = R(H),
R must be non-constant as well. Let F = P1 · . . . · Pk and R = Q1 · . . . · Q` denote F ’s
and R’s factorization into irreducible factors (possibly with repetitions), respectfully where
Pi, Qj ∈ fact(C). We have that:

P1(H) · . . . · Pk(H) = F (H) = R(H) = Q1(H) · . . . ·Q`(H).

By definition, ΨH(P1) | P1(H). Therefore, by uniqueness of factorization, there exist j ∈ [`]
such that ΨH(P1) | Qj(H), since ΨH(P1) is an irreducible polynomial. By Property 2, there
exists α 6= 0 ∈ F such that P1 = αQj . Now, consider: F ′ ∆= F

P1
and R′ ∆= R

αQj
. It follows that

F ′(H) = R′(H) when deg(F ′) + deg(R′) < deg(F ) + deg(R). By the induction hypothesis
F ′ ≡ R′ and thus F = P ′ · P1 ≡ Q′ · αQj = R. J

3.1 Essential Factorization Schemes for Multilinear Polynomials
In this section, we show how to construct essential factorization schemes for classes of
multilinear polynomials that admit efficient identity testing algorithms. In fact, if we want
to apply our results for a class C, we require algorithms for a somewhat larger class.

Let C be a class of multilinear polynomials over the field F. From Lemma 8, it follows
that fact(C) = C. Gn(w̄) ∆=

(
G1
n(w̄), . . . ,Gnn(w̄)

)
be a generator for polynomials of the form

Di(P,Q) where P,Q ∈ C are irreducible, n-variate polynomials and i ∈ [n]. We show that
the map Hn

∆= Gn(w̄) +Gn,2(y1, y2, z1, z2) is an essential factorization scheme for C. As was
mentioned earlier, this construction demonstrates another connection between polynomial
factorization and polynomial identity testing. We begin by specifying ΨH. To that end, we
require the following definition:

I Definition 19 (Variable-Essential Factor). Let P (Hn) = f1 · f2 · · · fm be the unique factor-
ization of P (Hn) into irreducible factors. We define the variable-essential factor of P , as fe
such that for each xi ∈ var(P ), we have that xi ∈ var(R{xi}(fe)). To avoid ambiguity, we
take the monic3fe.

3 The coefficient of the largest monomial according to the lexicographic order in 1.

APPROX/RANDOM’15
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Given the above, we define ΨH(P ) to be the variable-essential factor of P . Observe that
applying R{xi} on P (Hn) results in applying R{xi} on each factor f`. Therefore, since P is a
multilinear polynomial there can be at most one factor fe that depends on xi, when revived.
Consequently, there can be at most one factor fe with the required property. However, this
still does not guarantee an existence of such a variable-essential factor. We will now show
that in our case such a factor always exists.

I Lemma 20. Let P ∈ fact(C) = C be an irreducible polynomial. Then ΨH(P ) is well-defined.

Proof. As previously, let P (Hn) = f1 · f2 · · · fm be the unique factorization of P (Hn) into
irreducible factors. First, we claim that for each xi ∈ var(P ) there exists ki ∈ [m] such that
xi ∈ var(R{xi}(fki

)). By definition R{xi}(P (Hn)) = Pi(Gn) ·xi+P0(Gn) when P = Pixi+P0.
Since Pi = Di(P, 1) we get that the map Gn hits Pi which implies that P (Hn) depends
on xi, and the claim follows. To finish the proof, we need to show that ki = kj for all
xj , xi ∈ var(P ).

Assume for a contradiction and wlog that k1 = 1, k2 = 2. As P is an irreducible
polynomial, ∆12(P ) 6≡ 0 by Lemma 11. By Observation 12, the map Gn hits ∆12(P ). In
other words, there exists β̄ ∈ Im (Gn) such that ∆12(P )(β̄) 6= 0 and P (x1, x2, β3, . . . , βn)
depends of xi and xj . Let γ̄ ∈ G−1(β̄). Consider

P̃
∆= R{x1,x2}(P (Hn))|w̄=γ̄ = P (x1, x2,G3

n(γ̄), . . . ,Gnn(γ̄)) = P (x1, x2, β3, . . . , βn).

By the choice of β̄, the LHS depends on both xi and xj . On the other hand,

P (x1, x2, β3, . . . , βn) = f1(x1, x2, β3, . . . , βn) · f2(x1, x2, β3, . . . , βn) · · · fm(x1, x2, β3, . . . , βn)

so xi ∈ var(fi) for i = 1, 2 and by Lemma 11 ∆12(P )(β̄) = 0, thus reaching a contradiction.
J

As was established, ΨH is well-defined and satisfies Property 1 of Definition 17. Note that
given a list of purported factors it is easy to identify the variable-essential ones by reviving
one variable at a time and testing dependence. Since P (H) is a t(n)-variate polynomial of
polynomial degree and typically t(n)� n, testing dependence can be carried out efficiently
by a computing the monomial expansion of P (H). In particular, in light of this uniqueness it
must be the case that ΨH(P ) | Q(H) =⇒ ΨH(P ) ∼ ΨH(Q). Therefore, in order to show that
ΨH satisfies Property 2 it is sufficient to show ΨH(P ) ∼ ΨH(Q) =⇒ P ∼ Q. The intuition
is that ΨH(P ) should contain all the information about P since ΨH(P ) encapsulates in itself
the information on each single variable of P .

I Lemma 21. Let P,Q ∈ C be two irreducible polynomials. Then ΨH(P ) ∼ ΨH(Q) iff
P ∼ Q.

Proof. The first direction is trivial. For the other direction note that since ΨH(P ) and
ΨH(Q) are both normalized we actually have that f ∆= ΨH(P ) = ΨH(Q). In other words,
P (Hn) = f · P ′ and Q(Hn) = f · Q′. For xi ∈ var(P ), we can write: P = Pixi + P0,
Q = Qixi +Q0. Consider the revival of xi in both P (Hn) and Q(Hn). By the definition of
the variable-essential factors, xi ∈ var(R{xi}(f)). Therefore:

R{xi}(P (Hn)) = (Pi(Gn) · xi + P0(Gn)) = (f̂ixi + f̂0) · R{xi}(P
′)

R{xi}(Q(Hn)) = (Qi(Gn) · xi +Q0(Gn)) = (f̂ixi + f̂0) · R{xi}(Q
′)
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where R{xi}(f) = f̂ixi + f̂0. By setting xi = 0 we obtain:

Pi(Gn) = f̂i · R{xi}(P
′) , P0(Gn) = f̂0 · R{xi}(P

′)

Qi(Gn) = f̂i · R{xi}(Q
′) , Q0(Gn) = f̂0 · R{xi}(Q

′).

And hence: Di(P,Q)(Gn) = Pi(Gn) ·Q0(Gn)−Qi(Gn) ·P0(Gn) ≡ 0. Since Gn hits Di(P,Q) we
know that Di(P,Q) ≡ 0 to begin with. As P,Q are both irreducible, P ∼ Q by Lemma 7. J

The following theorem summarizes this section.

I Theorem 22. Let C be a class of multilinear polynomials over the field F and let Gn(w̄) be
a generator for the polynomials of the form Di(P,Q) where P,Q ∈ C are irreducible, n-variate
polynomials and i ∈ [n]. Then Hn

∆= Gn(w̄) +Gn,2(y1, y2, z1, z2) is an essential factorization
scheme for C. And in particular, for all F,R ∈ C: F ≡ R ⇐⇒ F (Hn) = R(Hn).

4 Factoring Sparse Multilinearly-Split Polynomials

In this section we prove our main result - Theorem 2. First, we give the outline of the proof.
We say that a set H is an interpolating set for a class C if for every P ∈ C the evaluations
P |H determine P uniquely. In particular, an interpolating set can serve as a hitting set since
P ≡ 0 ⇐⇒ P |H ≡ 0.

Let H be the interpolating set for sparse polynomials given by Lemma 26. Our plan is to
evaluate each essential factor separately on H and then apply the reconstruction algorithm
of Lemma 26 to recover the original factors. However, there are couple of obstacles that
stand in our way. First of all, how do we get access to every essential factor separately? To
overcome this obstacle, we use H in conjunction with Theorem 22. Observe that H hits
polynomials of the form Di(P,Q) where P and Q are sparse. Therefore, it satisfies the
conditions of Theorem 22 (invoking Lemma 13). We then invoke Lemma 24 to factor our
polynomial. As the new number of variables is small, this step can be carried out efficiently.
This leads us to a second obstacle: we only obtain evaluations of the essential factors rather
than the original factors.

Although by definition the essential factors contain “enough” information, this information
might still be insufficient for the reconstruction algorithm since in order to reconstruct a
sparse polynomial P the algorithm requires the values of P on H while we only have the
values of a factor of P at hand. For the second obstacle, we make our reconstruction algorithm
more “resilient” to information loss by extedning it to handle rational functions (Lemma 25).

We now move to the formal proof. To this end, we require the following results. The
first result states that a multilinear factor of sparse polynomial is itself a sparse polynomial.
Example 1 demonstrates that this is not the case for general sparse polynomials.

I Lemma 23 ([8]). Let 0 6≡ P,Q ∈ F[x1, x2, . . . , xn] be polynomials such that P is multilinear.
Then P | Q =⇒ ‖P‖ ≤ ‖Q‖.

The next result which is implicit in many factorization algorithms, exhibits an efficient
factorization algorithm for certain regime of parameters. In particular, for polynomials with
constantly-many variables and a polynomial degree. We note that this the state-of-the-art
algorithm for this regime of parameters.

I Lemma 24 (Implicit [5, 12]). There exists a deterministic algorithm that given a t-variate,
degree d polynomial P over F outputs its irreducible factors. The running time of the algorithm
is (d, p, `)O(t) when F = Fp` and (d, b)O(t) when F = Q and b is the bit complexity of the
coefficients in P .

APPROX/RANDOM’15
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The following result converts a reconstruction algorithm for sparse polynomials into
a reconstruction algorithm for sparse rational functions, introducing only a polynomial
overhead.

I Lemma 25 ([2]). Let A be a deterministic algorithm that can reconstruct a s-sparse
polynomial P ∈ F[x1, x2, . . . , xn] of degree d in time T (n, s, d, |H|) given the evaluations P |H.
Let R,Q ∈ F[x1, x2, . . . , xn] be two coprime s-sparse polynomials of degree d and σ̄ ∈ Fn such
that Q(σ̄) 6= 0. Finally, let V ⊆ F be a subset of size 2d. Then there exists a deterministic
algorithm B that given the evaluations (R/Q)|V ·H+σ̄

4 outputs R′, Q′ such that R′ = cR and
Q′ = cQ for some c 6= 0 ∈ F in time poly(|H| , n, d, T (n, s, d, |H|)) and uses the algorithm A

as an oracle. If Q(σ̄) = 0 the algorithm fails.

We conclude the list with an efficient reconstruction algorithm for sparse polynomials.

I Lemma 26 ([18]). Let n, s, d > 1. There exists a deterministic algorithm that in time
poly(n, s, d) outputs an interpolating set H such that given the evaluations P |H of a s-
sparse polynomial P ∈ F[x1, x2, . . . , xn] of degree d in time poly(n, s, d) the algorithm can
reconstruct P .

We are ready to proceed with the proof of our main theorem (Theorem 2). Our algorithm
combines the above results. The description of the algorithm is given in Algorithm 1.

Input: s-sparse, multilinearly-split polynomial F ∈ F[x1, x2, . . . , xn] of degree d
Output: A list P1, . . . , Pk of the irreducible factors of F . That is, F = P1 · . . . · Pk.

1 Choose a subset {1} ∈ V ⊆ F of size 2d ;
2 Invoke the algorithm in Lemma 26 with n, 2s2, d = 2n to obtain an interpolating set H;
3 Apply Lemma 13 on H′ = V · H to obtain the map G /* note that H ⊆ H′ ⊆ Im (G)

*/
4 Set Hn

∆= G(ū) + G(w̄) +Gn,2(ȳ, z̄) ;
5 Use Lemma 24 to Factor F (Hn). Let S be the set of the irreducible factors ;
6 Initialize E ← ∅ /* The set of all the essential factors */
7 foreach f ∈ S, i ∈ [n] do
8 if xi ∈ var(R{xi}(f)) /* Check by looking at the monomial expansion */
9 then

10 E ← E ∪
{

(R{xi}(f), i)
}

/* Move to the next f ∈ S */
/* Reconstruct the original factors */

11 foreach (f̂ , i) ∈ E, β̄ ∈ G−1(H) do
12 Set: f̂0(ū, w̄) ∆= f̂ |xi=0, f̂i(ū, w̄) ∆= f̂ |xi=1 − f̂0 ;
13 Apply Lemma 25 jointly with the reconstruction algorithm from Lemma 26 on

f̂0(ū, β̄)/f̂i(ū, β̄) to obtain R′, Q′. ;
14 On a success, output P = Q′ · xi +R′ ;

Algorithm 1. Factoring algorithm for sparse multilinearly-split polynomials.

Proof of Theorem 2. We analyze Algorithm 1. For the running time we get (n, s, d, p, `)O(t)

when F = Fp` and (n, s, d, b)O(t) when F = Q. By Lemmas 13 and 26 t = O(log n |H|) =
O(log n(nsd)). Therefore, if all the parameters are poly(n) we get the claimed running time.

4 V · H+ σ̄
∆= {α · ā+ σ̄ | α ∈ V, ā ∈ H}
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We now move to the correctness. Let F = P1 · P2 · . . . · Pm be F ’s factorization into
irreducible factors (possibly with repetitions). By Lemma 23, each Pj above is s-sparse.
First, observe that H (and consequently H′) is a hitting set for Di(P,Q) where P,Q ∈
F[x1, x2, . . . , xn] are s-sparse multilinear polynomials. By Lemma 13, the map G(ū) hits
those polynomials. As G(0̄) = 0̄, the same holds true for G(ū)+G(w̄) as well. By Theorem 22,
Hn is an essential factorization scheme for s-sparse multilinear polynomials. Therefore, by the
properties of Definition 17 each ΨH(Pj) is a non-constant factor of F (H) and ΨH(Pj) ∼ ΨH(Pk)
iff Pj ∼ Pk. Therefore, we can access all ΨH(Pj)-s by factoring F (H) and reviving one
variable at a time to distinguish essential factors from the non-essential ones. Now, let
f = ΨH(Pj) and Pj(Hn) = f · P ′j . By repeating the reasoning in the proof of Lemma 21 we
get:

[Pj ]i(G(ū) + G(w̄)) · xi + [Pj ]0(G(ū) + G(w̄)) = R{xi}(Pj(Hn)) =

f̂(ū, w̄) · R{xi}(P
′
j) = (f̂i(ū, w̄)xi + f̂0(ū, w̄)) · R{xi}(P

′
j)

and hence
[Pj ]i(G(ū) + G(w̄)) = f̂i(ū, w̄) · R{xi}(P

′
j)

[Pj ]0(G(ū) + G(w̄)) = f̂0(ū, w̄) · R{xi}(P
′
j).

when Pj = [Pj ]i · xi + [Pj ]0. Since [Pj ]i is a non-zero s-sparse polynomial, there exists σ̄ ∈ H
such that [Pj ]i(σ) 6= 0. By Lemma 13 we can efficiently iterate over H to find β̄ ∈ G−1(σ).
Finally observe that

f̂0(ū, β̄)/f̂i(ū, β̄) = [Pj ]0(G(ū) + σ̄) / [Pj ]i(G(ū) + σ̄).

Therefore given access to f̂0(ū, β̄)/f̂i(ū, β̄) the algorithm can query the polynomial [Pj ]0/[Pj ]i
on every point of the forms V · H + σ as required by Lemma 25. Consequently, we can
apply Lemma 25 jointly with the reconstruction algorithm from Lemma 26 to obtain
R′ = c[Pj ]0, Q′ = c[Pj ]i resulting in P = Q′ · xi +R′ = c[Pj ]i · xi + c[Pj ]0 = cPj and we are
done. J

5 Factoring Products of Sums of Univariates

In this section we prove Theorems 3 and 4. As was mentioned earlier, P is a sum of univariates
if it is of the form P =

∑n
i=1 Ti(xi) Models related to these polynomial were previously

studied in the literature [22, 20, 27]. We begin with a simple observation.

I Observation 27. Let I ⊆ [n] be a set of size |I| ≤ k ≤ n. Then

RI (P (Gn,k)) =
∑
i∈I

Ti(xi) +
∑
j 6∈I

Tj(0).

Next, we require two results from [20].

I Lemma 28 ([20]). There exists a deterministic algorithm that given an s-sparse polynomial
to F ∈ F[x1, x2, . . . , xn] and a sum of univariatess P ∈ F[x1, x2, . . . , xn] both of degree d and
e ≥ 0 checks if P e | F . The running time of the algorithm is poly(n, d, e, s, log p, `) when
F = Fp` and poly(n, d, e, s, b) when F = Q and b is the bit complexity of the coefficients in F .

I Lemma 29 ([20]). Let P ∈ F[x1, x2, . . . , xn] be a polynomial that is a sum of univariates
with |var(P )| ≥ 3. Then either P is irreducible, or P is a p-th power of some polynomial
where p = char(F).
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I Corollary 30. Let P ∈ F[x1, x2, . . . , xn] be an irreducible polynomial that is a sum of
univariates and let xj , xk ∈ var(P ) (not necessarily distinct). Then there exists a set
{xj , xk} ⊆ I ⊆ [n] of size |I| ≤ 3 such that P |x̄[n]\I=0̄I

is irreducible as well.

Proof. If |var(P )| ≤ 3, the claim clearly holds. Let P =
n∑
i=1

Ti(xi) and suppose that

|var(P )| ≥ 4. Since P is irreducible, there exists ` ∈ [n] such that T`(x`) is not a perfect p-th
power. Consider the set I = {xj , xk, x`}. If |I| < 3, add arbitrary elements from var(P ) to I
so that |I| = 3. By definition, P |x̄[n]\I

is an trivariate polynomial which is not a perfect p-th
power, due to T`(x`), and thus irreducible by Lemma 29. J

We show that the map Hn
∆= Gn,3(ȳ, z̄) is an essential factorization scheme for sum of

univariates. Similarly to Section 3.1, we define ΨH(P ) as the (monic) variable-essential factor
of P (Hn). We now show that it satisfies Definition 17.

I Lemma 31. Let P be an irreducible polynomial which can be expressed as sums of
univariates. Then ΨH(P ) is well-defined.

Proof. Let P (Hn) = f1 ·f2 · · · fm be the unique factorization of P (Hn) into irreducible factors.
Let xi ∈ var(P ). By Observation 27, R{xi}(P (Hn)) = Ti(xi)+

∑
j 6=i Tj(0). Therefore, at least

one of fk-s depends on xi. Now, assume for a contradiction and wlog that xj ∈ var(R{xj}(f1))
and xk ∈ var(R{xk}(f2)). As xj , xk ∈ var(P ), let I be the set guaranteed by Corollary 30.
By Observation 27 we have that:

P |x̄[n]\I=0̄I
= RI (P (Hn)) = RI(f1) · RI(f2) · · ·RI(fm)

in contradiction to the irreducibility of P |x̄[n]\I=0̄I
. J

We are ready to proceed with the proof of Theorem 3. The description of the algorithm
is given in Algorithm 2.

Proof of Theorem 3. We analyze Algorithm 2. The claim regarding the running time is
clear. Let F = P1 · P2 · . . . · Pm be F ’s factorization into irreducible factors (possibly with
repetitions). Observe that the algorithm finds all the variable-essential factors f of each
such P . That is, f = ΨH(P ) and P (Hn) = f · P ′. We claim that for each Pj the algorithm
outputs αj · Pj for some 0 6= αj ∈ F. Therefore, the correct constant is found in Line 9. By
definition, R{xi}(P ′) ∈ F and hence R{xi}(f) ∼ R{xi}(P (Hn)). We consider three cases:

1. V = {xi} for some i ∈ [n]. Then the algorithm outputs
R{xi} (f)

lcxi

(
R{xi}

) ∼ R{xi}(P (Hn)) = P

(as the first term is 0).
2. V = {xi, xj} for some i 6= j ∈ [n]. Then the algorithm outputs

R{xi,xj} (f)

lcxi

(
R{xi,xj}

) ∼
R{xi}(P (Hn)) = P (as the second term is 0).

3. |V | ≥ 3. By Lemma 29 P must be of the form P =
∑n
m=1 Tm(xm). We get that:

R{xi,xj}(f) =
R{xi,xj}(f)
R{xi,xj}(P ′)

=
R{xi,xj}(f)
R{xi,xj}(P ′)

=
Ti(xi) + Tj(xj) +

∑
m 6=i,j Tm(0)

R{xi,xj}(P ′)

Therefore

lcxi

(
R{xi,xj}(f)

)
= lcxi

(Ti)
R{xi,xj}(P ′)
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Input: A polynomial F ∈ F[x1, x2, . . . , xn] of degree d which splits into sums of
univariate polynomials.

Output: A list P1, . . . , Pk of the irreducible factors of F . That is, F = P1 · . . . · Pk.

1 Set Hn
∆= Gn,3(ȳ, z̄) ;

2 Use Lemma 24 to Factor F (Hn). Let S be the set of the irreducible factors ;
3 foreach f ∈ S do
4 Compute V =

{
i
∣∣ xi ∈ var(R{xi}(f))

}
/* By brufeforce monomial expansion

*/
5 if |V | = 0 then continue to the next f ∈ S;
6 Pick i ∈ V ;
7 Output

P =
∑

j∈V \{i}

R{xi,xj}(f)
lcxi

(
R{xi,xj}

) − (|V | − 2) ·
R{xi}(f)

lcxi

(
R{xi}

)
8 Compute α ∈ F such that F (Hn) = α · P1(Hn) · . . . · Pk(Hn) /* via 6-variate

polynomial interpolation */
9 Set P1 ← α · P1.
Algorithm 2. Factoring algorithm for polynomials that split into sums of univariate
polynomials

and hence
R{xi,xj}(f)

lcxi

(
R{xi,xj}

) =
Ti(xi) + Tj(xj) +

∑
m 6=i,j Tm(0)

lcxi
(Ti)

.

Similarly,

R{xi}(f)
lcxi

(
R{xi}

) =
Ti(xi) +

∑
` 6=i T`(0)

lcxi
(Ti)

.

Consequently, the algorithm outputs
∑n

m=1
Tm(xm)

lcxi
(Ti) ∼ P .

J

We now move to the proof of Theorem 4. The naive approach is to Apply 2 to an arbitrary
sparse polynomial and then use Lemma 28 to get rid of the spurious factors. However, it
might be the case that F (Gn,3) ≡ 0 although F 6≡ 0. We solve this problem by considering
F along the line F (Gn,3 + t · ā) when ā ∈ Fn is such that F (ā) 6= 0. We then set t = 0.
Formally, the description of the algorithm is given in Algorithm 3.

Proof of Theorem 4. We analyze Algorithm 3. The analysis is similar to the analysis of
Algorithm 2 barring two observations. First, observe that F (Hn) 6≡ 0 since
F (Hn)|z1=z2=z3=0,t=1 = F (ā) 6= 0. Second, let P be a sum of univariates such that P | F .
Then ΨH(P ) ∈ L. J

6 Conclusions and Remarks

In this paper we give the first efficient deterministic factorization algorithm for sparse
polynomials that split into multilinear factors and sums of univariate polynomials. The
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956 Deterministically Factoring Sparse Polynomials into Multilinears and
∑
Univariates

Input: An s-sparse polynomial F ∈ F[x1, x2, . . . , xn] of degree d
Output: A list P1, . . . , Pk of factors of F such that Pj is a sum of univariates.

1 Find ā ∈ Fn such that F (ā) 6= 0 ;
2 Set Hn

∆= Gn,3(ȳ, z̄) + t · ā ;
3 Use Lemma 24 to Factor F (Hn). Let S be the set of the irreducible factors ;
4 Compute S′ ∆= {f |t=0 | f ∈ S } ;
5 Use Lemma 24 to the polynomials in S′. Let S′′ be the result.;
6 Invoke Algorithm 2 with S′′ instead of S. Let L be the result. ;
7 foreach P ∈ L do
8 Find the largest e ≤ d such that P e | F using Lemma 28. ;
9 if e > 0 then Output P e times.;

Algorithm 3. Computing sums of univariates factors of sparse polynomials.

key ingredient in the algorithm is the Essential Factorization Schemes. We hope that these
schemes could be applied to handle richer classes of sparse polynomials.

A natural question to ask is whether it would possible to extend the algorithm to compute
multilinear factors of an arbitrary sparse polynomial. Another open question is to improve
the dependence on the characteristic from polynomial to polylogarithmic.

On a final note, Example 5.1 in [6] is followed by a question (quote): “Can the output size
for the factoring problem be actually more than quasi-polynomial in the input size?” Our next
example provides a positive answer to this question over fields with super-polylogarithmic
characteristics.

I Example 32. Let p = 2k−1 be an odd prime, F = Fp` and n, ` ≥ 1. Consider the polynomial
f(x̄) = (x1 +x2 + . . .+xn)p+1 which can be written as a square of g(x̄) = (x1 +x2 + . . .+xn)k.
Observe that f(x̄) = (xp1 + xp2 + . . .+ xpn) · (x1 + x2 + . . .+ xn) and therefore ‖f‖ ≤ n2. On
the other hand, ‖g‖ =

(
n+p/2−1

p/2
)

= Ω
(

(n+p
p )p + (n+p

n )n
)
.
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