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Abstract
We consider simply typed lambda-calculus with fixpoints as a non-interpreted functional pro-
gramming language: the result of the execution of a program is its normal form that can be seen
as a potentially infinite tree of calls to built-in operations. Properties of such trees are properties
of executions of programs and monadic second-order logic (MSOL) is well suited to express them.

For a given MSOL property we show how to construct a finitary model recognizing it. In other
words, the value of a lambda-term in the model determines if the tree that is the result of the
execution of the term satisfies the property. The finiteness of the construction has as consequences
many known results about the verification of higher-order programs in this framework.
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1 Introduction

Higher-order functions are being adopted by most mainstream programming languages.
Higher-order functions not only increase modularity and elegance of the code, but also help
to address such fundamental issues as scalability and fault-tolerance. In consequence, higher-
order functions are increasingly used for writing programs interacting with an environment,
like, for example, client-server web applications. To accompany this evolution, new kinds
of analysis tools are needed, focusing on behavioural properties of higher-order functional
programs. For example, some guidelines for secure web programming may require that if a
database access is required infinitely often then calls to a logging function must be made
again and again. Our objective is to develop denotational models for such kinds of properties.

We consider λY -calculus, the simply typed λ-calculus with fixpoints, as an abstraction of
a higher-order programming language that faithfully represents the control flow. Under the
name of recursive program schemes the calculus has been studied since 1960s [11, 5, 6, 7, 13, 19].
The particularity of this approach is to focus on the free interpretation: all constants are
non-interpreted symbols and the interpretation of a term is a tree composed from constants.
In the context of λ-calculus this tree is called the Böhm tree. Figure 1 presents the Böhm
tree of the map function. It is a generic iterator taking a function and a list, and applying
the function to every element of the list. Observe that even for such a simple program its
Böhm tree is infinite and not regular.

Program properties can be grouped in two families. The first, and the most obvious one,
concerns the absence of run-time errors. A slogan “well-typed programs never go wrong”
clearly expresses this idea. More generally, this family contains all kinds of safety properties,
i.e., those determined by a set of finite executions considered as admissible. The other family
is that of liveness properties that talk about infinite executions. For example: “logging
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if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

nil cons

Figure 1 The map function and its semantics in the form of a (simplified) Böhm tree.

function is called again and again” or “every initiated communication is eventually closed”.
Concerning the map function, we can say for example that if l is a finite list then the call
map(f, l) evokes f only finitely many times. In fact all fairness properties are particular
liveness properties. Such properties are of relevance to servers, web services, operating
systems, and more generally, to all kinds of interactive applications. Regarding liveness
properties, monadic second-order logic (MSOL), or equivalently automata on infinite objects,
sets the standard of expressivity and algorithmic manageability. Moreover, thanks to the
result of Ong [19], it is decidable if the Böhm tree of a given term of the λY -calculus satisfies
a given MSOL property.

In this paper we show how to construct for a given MSOL property a finitary model so
that the value of a term in the model determines if the Böhm tree of the term satisfies the
property. More precisely, we work with the formalism of parity automata instead of MSOL.
We show that the value of a term of the base type in the model constructed from a given
automaton is simply the set of states from which the automaton accepts the Böhm tree of
the term (Theorem 12).

Our model construction shows how to extend Scott models to integrate the parity condition
of a given automaton. Finitary Scott models are the simplest models of the λY -calculus: the
base type is interpreted as a finite lattice, functional types as the sets of monotone functions,
and the fixpoint as the least fixpoint. Such models correspond in a precise sense to safety
properties, or equivalently to finite automata on infinite trees that are Ω-blind and have
trivial acceptance conditions [22]. This implies that in order to capture the expressive power
of parity automata some modification of Scott models is needed. The straightforward idea of
introducing ranks of the parity condition directly in the base type does not seem to work.
Instead our construction introduces ranks only in higher types. The other crucial point is
the interpretation of function spaces: we cannot take all monotone functions but only those
that behave well with respect to ranks. This is formalized with a new domain identity we
call stratification.

The model construction gives a completely compositional approach to verification: the
result of a term is calculated from the results for its subterms. In particular, we give the
meaning of a fixpoint constant as a particular fixpoint of its argument. The construction
implies the transfer theorem for MSOL [21], and with it a number of consequences offered by
this theorem. Finitary models are used in program transformations: during its execution the
program can calculate the values of chosen subterms [22, 9]. In our case it can, for example,
detect if an argument satisfies a particular liveness property.

Our construction is based on the insights from a very influential paper of Kobayashi
and Ong [15], where, amongst other contributions, they give a type system to capture the
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same dependencies inside terms that we represent in our model. Although the quest for
models for behavioural properties has begun some time ago, the results started to appear
only recently. Tsukada and Ong [27] extended the approach from [15] to a type system for
the whole λY -calculus. In this system the fixpoint is still treated externally via games, and
the model underlying the system is not finitary. They use game semantics to understand a
difficult problem of the behaviour of the application operation at the level of Böhm trees.
Also last year, Hofmann and Chen provided a model for verifying path properties expressed
in MSOL [10]. Their construction is restricted only to first-order λY -terms. They use in an
elegant way Wilke algebras that are an algebraic notion of recognizer for languages of infinite
words. One of the problems we are facing here is that there does not exist equally satisfying
notion of an algebraic recognizer for infinite trees. Even if we wanted to stay with properties
of paths, it is not clear how to extend Wilke algebras to higher orders, the problem being to
find an admissible class of fixpoint operations. More recently, Grellois and Mellies [8] have
given a categorical account of the behaviour of ranks in a model. They derive an infinite
model via elegant general constructions. About the same time, we have provided a model
construction for properties expressed in weak MSOL [25]. The model is a sort of layered
Scott model. The restriction to weak MSOL greatly simplifies the integration of ranks in
the model. As a consequence, it was possible to adapt classical arguments from domain
theory to prove the correctness of the model. The present construction does not follow the
line of [25]. Apart from [15], the main influence comes from the work of Mellies [17] clearly
showing the value of using the morphism composition similar to that in Kleisli categories.
Furthermore, the stratification property is essential to get the model to satisfy the required
equations. The proof methods for the correctness of the model are extensions of game based
methods we have developed for the proof of the transfer theorem [21]. With respect to
other proposals [15, 27, 8] (which capture the so-called Ω-blind automata [22]) our model
is capturing automata that are able to detect the divergence symbol Ω: for a run to be
accepting, the ranks assigned to the nodes labelled Ω should be even. On a model side,
stratification condition is essential.

Apart from model based approaches cited above, there is a very active research in
verification of behavioural properties of higher-order programs. Among the closest methods
using the class of properties and programs we consider here we can list [14, 4, 20]. Similar
research objectives are also pursued in different settings. We would like to mention the
work of Naik and Palsberg [18] who make a connection between model-checking and typing.
They consider only safety properties, and focus on first-order imperative programs. Another
interesting line of research is proposed by Jeffrey [12] who shows how to incorporate Linear
Temporal Logic into types using a richer dependent types paradigm. The calculus is intended
to talk about control and data in functional reactive programming framework, and aims at
using SMT solvers.

Organization of the paper: In the next preliminary section we introduce basic definitions,
and present two special cases that allow us to introduce the main concepts in a simpler
setting. Section 3 is devoted to the definition of the model and its properties. The main
theorem of the paper is stated in this section. Section 4 shows some consequences of the
model construction. The conclusions section outlines some directions for further research. A
long version of the paper that gives the details of the proofs is available [24].

CSL 2015



232 A Model for Behavioural Properties of Higher-order Programs

2 Preliminaries

We start by introducing λY -calculus and parity automata. Then we present two simple
special cases of the main result of the paper. The first case shows what can be achieved with
the classical notion of a model for λY -calculus. The second considers only terms of order at
most 1. It allows us to introduce some crucial elements of the general solution.

2.1 λY -calculus
The set of types is constructed from a unique basic type o using a binary operation → that
associates to the right. Thus o is a type and if A, B are types, so is (A→ B). The order of
a type is defined by: order(o) = 0, and order(A→ B) = max(1 + order(A), order(B)). We
work with tree signatures that are finite sets of typed constants of order at most 1. Types of
order 1 are of the form o→ · · · → o→ o that we abbreviate oi → o when they contain i+ 1
occurrences of o. For convenience we assume that o0 → o is just o. If Σ is a signature, we
write Σ(i) for the set of constants of type oi → o.

Simply typed λY -terms are built from the constants in the signature, and constants Y A,
ΩA for every type A. These stand for the fixpoint combinator and undefined term and
they respectively have type (A → A) → A and A. Apart from constants, for each type
A there is a countable set of variables xA, yA, . . . . Terms are built from these constants
and variables using typed application and λ-abstraction. We shall write sequences of λ-
abstractions λx1. . . . λxn. M with only one λ: either λx1 . . . xn. M , or even shorter λ~x. M .
The usual operational semantics of the λ-calculus is given by β-reduction and δ-reduction.
The corresponding contraction rules are (λx.M)N →β M [N/x] and YM →δ M(YM).

The Böhm tree of a term M is obtained by reducing it until one reaches a term of the
form λ~x.N0N1 . . . Nk with N0 a variable or a constant. Then BT (M) is a tree having its root
labelled by λ~x.N0 and having BT (N1), . . . , BT (Nk) as subtrees. Otherwise BT (M) = ΩA,
where A is the type of M . Böhm trees are infinite normal forms of λY -terms. A Böhm tree
of a closed term of type o over a tree signature is a potentially infinite ranked tree: a node
labelled by a constant a of type oi → o has i successors. Among constants ΩA, only constant
Ωo can appear in the Böhm tree of such a term.

2.2 MSOL and parity automata
We are interested in properties of trees expressed in monadic second-order logic (MSOL).
This is an extension of first-order logic with quantification over sets of elements. Over infinite
trees MSOL formulas define precisely regular tree languages. This class of languages has
numerous other characterizations. Here we will rely on the one using parity tree automata.

Automata will work on Σ-labelled trees, where Σ is a tree signature. Trees are partial
functions t : N∗ ·→ Σ ∪ {Ω} such that the number of successors of a node is determined by
the label of the node. In particular, if t(u) ∈ Σ(0) then u is a leaf. The nodes of t, are the
elements of the domain of t. The set of nodes should be prefix closed. A label of a node u is
t(u).

We will use nondeterministic max-parity automata, that we will call parity automata for
short. Such an automaton accepts trees over a fixed tree signature Σ. It is a tuple

A = 〈Q,Σ, {δi}i∈N, rk : Q→ [m]〉

where Q is a finite set of states, rk is the rank function with the range [m] = {0, . . . ,m},
and δi : Q× Σ(i) → P(Qi) is the transition function. Observe that since the signature Σ is
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finite, only finitely many δi are nontrivial. From the definition it follows that, for example,
δ2 : Q× Σ(2) → P(Q×Q) and δ0 : Q× Σ(0) → {∅, {∅}}. We will simply write δ without a
subscript when this causes no ambiguity. We require that δ(q,Ωo) = {∅} if the rank of q is
even, and δ(q,Ωo) = ∅ otherwise1.

A run of A on t from a state q0 is a labelling of nodes of t with the states of A such that:
(i) the root is labelled with q0, (ii) if a node u is labelled q and its k-successors (with k > 0)
are labelled by q1, . . . qk, respectively, then (q1, . . . , qk) ∈ δk(q, t(u)); recall that t(u) is the
letter labelling the node u.

A run is accepting when: (i) for every leaf u of t, if q is the state of the run in u then
δ0(q, t(u)) = {∅}, and moreover (ii) for every infinite path of t, the labelling of the path given
by the run satisfies the parity condition. This means that if we look at the ranks of states
assigned to the nodes of the path then the maximal rank appearing infinitely often is even.
A tree is accepted by A from a state q0 if there is an accepting run from q0 on the tree.

It is well known that for every MSOL formula there is a parity automaton recognizing
the set of trees that are models of the formula. The converse also holds. Let us also recall
that the automata model can be extended to alternating parity automata without increasing
the expressive power. Here, for simplicity of the presentation, we will work only with
nondeterministic automata but our constructions apply also to alternating automata.

In the context of verification of higher-order properties, automata with trivial acceptance
conditions have gathered considerable attention [14]. These are obtained by requiring that
all states have rank 0. In terms of runs it means that every run of such an automaton on
an infinite tree without leaves is accepting. For the reasons that will be apparent in the
next subsection one more simplifying condition is imposed in the literature. An automaton
is Ω-blind if δ(q,Ω) = {∅} for all states q. So Ω-blind automaton unconditionally accepts
divergent computations, while our definition allows to test divergence with the rank of the
state.

A parity automaton together with a state recognizes a language of closed terms of type o:

L(A, q0) = {M :M is closed term of type o, BT (M) is accepted by A from q0} .

2.3 Models with the least fixpoint
A Scott model associates to each type A a finite lattice DA in which λY -terms of type A
can be interpreted. For a type B → C, this lattice is the set of monotone functions f from
DB to DC . The set DB→C is ordered pointwise (f ≤ g when for every b ∈ DB , f(b) ≤ g(b))
making it a lattice. Constants are interpreted as functions of the appropriate type. Fixpoint
operators Y are interpreted as the least fixpoints.

The semantics of a termM of type A in a given valuation υ, denoted [[M,υ]], is an element
of DA. As usual, a valuation is a partial function from variables to elements of the model
respecting types: if defined υ(xA) is an element of DA. We use ∅ for the empty valuation.
The inductive definition of the semantics is presented in Figure 2. For illustration we have
also included a clause for constants and implicitly assumed that Do is of the form P(Q). It
explains the case when we would like to construct a model from an automaton as stated in
the theorem below. Let us remark that Theorem 1 allows to make a boolean combination
Ω-blind automata when constants have arbitrary interpretation in arbitrary finitary Scott
model.

1 This unusual treatment of Ωo is a small but important ingredient of our construction. Any other choice
looses the correspondance between ranks in A and fixpoint alternation in the definition of the fixpoint.
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[[x, υ]] =υ(x) [[a, υ]]h1 . . . hk ={q : ∃(q1,...,qk)∈δ(q,a)qi ∈ hi for all i}
[[λx.M, υ]]h =[[M,υ[h/x]]] [[MN,υ]] =[[M,υ]]([[N, υ]])

[[Y ]] f =
∨
{fn(⊥) | n ∈ N} [[Ω]] =⊥

Figure 2 Semantics in a Scott model.

A Scott model can be used to recognize a set of terms. A subset R of Do is said to
recognize the set of closed λY -terms M of type o whose semantics is in R, i.e. [[M, ∅]] ∈ R.
This notion of recognition [23] generalizes the usual notion of recognition for words by finite
monoids. In this way, finitary Scott models determine a class of languages of λY -terms
they recognize. The following theorem characterizes this class (that Scott domains capture
Ω-blind automata was first established in [1]).

I Theorem 1 ([22]). A language of λY -terms is recognized by a boolean combination of
Ω-blind automata with trivial acceptance condition iff it is recognized by a Scott model where
Y constants are interpreted as the least fixpoint.

This theorem determines the limits of Scott models with least fixpoints. By duality this also
applies to models with greatest fixpoints. So in order to capture more properties we need to
be able to construct some other fixpoints.

2.4 The case of terms of order at most 1
The case of Scott models clearly pointed out the challenge of a model construction for all
parity automata. In this section we will present the special case of our construction for terms
of order at most 1. Such terms have only variables of type o and all their subterms are
of type of order at most 1. We will construct a model for an arbitrary parity automaton.
The advantage of terms of order at most 1 is that we can describe in a direct way what our
semantics expresses. The semantic equations for the general case will be the same as here.
We hope that this presentation will give some general intuitions about what properties of
Böhm trees the model captures, as well as specific intuitions about the operation (·)�r (cf.
Definition 3) that deals with parity acceptance conditions at the level of semantics. One can
see the construction below as a reformulation of the type system of Kobayashi and Ong [15]
in terms of models.

For the rest of the subsection we fix a parity automaton A = 〈Q,Σ, δ, rk : Q→ [m]〉.
Let us first consider terms without fixpoints. If M is a closed term of type o then BT (M)

is a finite tree with internal nodes labelled by constants of types of order 1 and leaves labelled
by constants of type o. It is clear what is an accepting run of automaton A on BT (M).

Suppose now that M has free variables, that are necessarily of type o. If M is of type o
then BT (M) is still a finite tree but it may have nodes labelled by variables. We can thus
consider variables as holes where we can put states and ask whether there is a run. The
parity condition requires to keep more information. So in addition to states, we keep track
of the maximal ranks of states that appear on the paths from the root to the leaves labelled
with variables. This idea is formalized in the following definition and illustrated in Figure 3.

I Definition 2. Let M : o be a term of order at most 1. Let υ be a function assigning to
every free variable of M a value from P(Q× [m]). We say that A accepts BT (M) from q to
v iff there is a run of A on BT (M) starting in q, satisfying the conditions of an accepting
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Figure 3 (q′, i), (q′′, j) ∈ υ(x) as the maximal color seen on a path from the root to occurrences
of x respectively labeled with states q′ and q′′ are i and j.

run from page 233, and such that for every variable x and leaf of BT (M) labelled by x: if q′
is a state of the run in the leaf, and i is the maximal rank of states on the path from the
root to the leaf then (q′, i) ∈ υ(x).

We will define a semantics of λ-terms that captures this notion of acceptance. First we
define semantic domains for types of order at most 1:

Do = P(Q) Ro = P({(q, r) : q ∈ Q and rk(q) ≤ r ≤ m})
Do→···→o→o = Ro → · · · → Ro → Do

So Ro is the set of sets of ranked states, with the restriction that the rank should be at least
as big as the rank assigned to the state in the automaton. The intended meaning of ranks
given by the above definition clearly justifies this restriction. We call the elements of Ro
residuals.

Both Do and Ro are ordered by inclusion, and Doi→o is ordered pointwise.
We now introduce the operation (·)�r that is handling the parity condition at the level of

semantics. Even though the definition may at first sight seem technical, Lemma 4 provides
some rather clear intuitions about how it works.

I Definition 3. For h ∈ Ro, and r ∈ [m] we put

h�r = {(q, i) ∈ h : r ≤ i} ∪ {(q, j) : (q, r) ∈ h, rk(q) ≤ j ≤ r} .

As an example, observe that h�0 = h.

I Lemma 4. For h ∈ Ro, q ∈ Q, and r, r1, r2 ∈ [m]:
(h�r1)�r2 = h�max(r1,r2);
(q, rk(q)) ∈ h�r iff (q,max(r, rk(q))) ∈ h

The above two properties characterize the family of operations (·)�r. So Definition 3 is
imposed on us if we want to have properties listed in the lemma.

The proof of Proposition 6 below, illustrates how we use the two properties from Lemma 4
to capture in a compositional way the acceptance of Böhm trees of Definition 2.

We also use two other operations. The first is a lifting of elements from Do to Ro. The
second projects an element of Ro to Do by taking a sort of diagonal.

f · r ={(q, r) : q ∈ f and rk(q) ≤ r} for f ∈ Do and r ∈ [m]
h∂ ={q : (q, rk(q)) ∈ h} .

Given a valuation υ : V ars → Ro the semantics of a term M of type A is an element
[[M,υ]] ∈ DA. Its definition is presented in Figure 4. Put next to the semantics in a Scott
model from Figure 2, one can clearly see the differences that are due to the presence of ranks.

CSL 2015
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[[x, υ]] =(υ(x))∂

[[a, υ]]h1 . . . hk ={q : ∃(q1,...,qk)∈δ(q,a) qi ∈ (hi�rk(q))∂ for all i}

[[λx.M, υ]]h =[[M,υ[h/x]]]

[[MN,υ]] =[[M,υ]]〈〈N, υ〉〉 where 〈〈N, υ〉〉 =
m∨
r=0

(
[[N, υ�r]] · r

)
Figure 4 Semantics in an extension of the Scott model with ranks.

For example, in the variable rule it is necessary to convert the meaning of a variable from
Ro to Do. Later, in the application rule, it is necessary to lift the meaning of N from Do to
Ro. The notation υ�r means υ where (.)�r is applied pointwise.

In our characterization of the semantics we will use step functions. For f1, . . . , fk ∈ Ro
and q ∈ Do we write

f1 7→ . . . 7→ fk 7→ q

for the function h of type Rko → Do such that h(f ′1, . . . , f ′k) = {q} if f ′i ≥ fi for all i = 1, . . . , k
and h(f ′1, . . . , f ′k) = ∅ otherwise. A step function f1 7→ . . . 7→ fk 7→ (q, i) for some (q, i) ∈ Ro
is defined similarly.

I Example 5. Take a signature with three constants a, b, c of arity 2, 1, 0, respectively.
Consider a parity automaton A = 〈{q0, q1},Σ, δ, rk : Q→ [1]〉 where the rank of a state is
given by its index, and the only pairs for which the value of δ is not ∅ are δ(q0, a) = Q×Q,
δ(q1, b) = Q, and δ(q0, b) = δ(q1, c) = {∅}. So from q0 the automaton recognizes the set of
trees with root labelled a and only finitely many b’s on every path.

We are going to evaluate the term a x (f(b x)) in the model induced by A and in the
valuation υ that maps x to {(q1, 1)} and f to the step function {(q1, 1)} 7→ (q0, 0). The
variable f is meant to represent a closed term so as to make the example not too long. We
get [[a x(f(b x)), υ]] = {q0} with the following calculation:

[[x, υ]] = {q1} 〈〈x, υ〉〉 ={(q1, 1)}
[[b x, υ]] ={q1} 〈〈b x, υ〉〉 ={(q1, 1)}

[[f(b x), υ]] ={q0} 〈〈f(b x), υ〉〉 ={(q0, 0)}
[[a x(f(b x)), υ]] ={q0} .

I Proposition 6. [[M,υ]] ≥ f1 7→ . . . 7→ fk 7→ q iff for some fresh variables z1 . . . zk, A
accepts BT (Mz1 . . . zk) from q to υ[f1/z1 . . . fk/zk].

Proof. The case of a variable follows by unrolling the definitions. If BT (M) is just the
variable, A accepts BT (M) from q to υ iff (q, rk(q)) ∈ υ. This is because the maximal rank
of a state seen from the root of BT (M) to the leaf (which are the same nodes) is rk(q).

A more interesting case is that of a constant a, say it is of a type o→ o→ o. For the left
to right implication, suppose [[a, υ]] ≥ f1 → f2 → q. We need to show that az1z2 admits a run
from q to a valuation υ[f1/z1, f2/z2]. From the definition of the semantics we have (q1, q2) ∈
δ(q, a) such that (qi, rk(qi)) ∈ fi�rk(q). By Lemma 4 we get (qi,max(rk(qi), rk(q))) ∈ fi. So
we can take a run on az1z2 assigning q to the root and q1, q2 to the leafs labelled z1, z2,
respectively. Since indeed max(rk(qi), rk(q)) is the maximal rank seen in the run from the
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Figure 5 The case of application.

root to zi this shows that A accepts az1z2 from q to υ. The other direction is analogous
thanks to the equivalence in Lemma 4.

We consider the case of the application. We will only present the left to right direction.
Suppose [[MN,υ]] ≥ f1 7→ · · · 7→ fk 7→ q, and let us look what is the semantics of the
application. Since we are considering only terms of order at most 1, N is of type o and
〈〈N, υ〉〉 is in Ro. We have [[M,υ]]〈〈N, υ〉〉 ≥ f1 7→ · · · 7→ fk 7→ q, which is the same as
[[M,υ]] ≥ 〈〈N, υ〉〉 7→ f1 7→ · · · 7→ fk 7→ q. Now the induction hypothesis tells us that
BT (Mz0z1 . . . zk) is accepted by A from q to υ[〈〈N, υ〉〉/z0, f1/z1, . . . fk/zk]. Now let us look
what it means that (q′, r′) ∈ 〈〈N, υ〉〉. By unfolding the definitions we obtain q′ ∈ [[N, υ�r′ ]].
Using the induction hypothesis for N , we have a run of A on BT (N) from q′ to υ�r′ . From
these observations we construct a required run on BT (MNz1 . . . zk) from q to υ.

Observe that BT (MNz1 . . . zk) is obtained from BT (Mz0z1 . . . zk) by plugging in every
leaf labelled z0 the tree BT (N) (cf. Figure 5). We want to construct on BT (MNz1 . . . zk) a
run from q to υ. For this we just take a run on BT (Mz0z1 . . . zk) from q to the valuation
υ[〈〈N, υ〉〉/z0, f1/z1, . . . fk/zk]. Then for every leaf l of BT (Mz1 . . . zk) labelled z0 with ql
the state of the run in l and rl the maximal rank from the root to l, we prolong the run with
the run on BT (N) from ql to υ�rl

.
To show that this run is as required we take a leaf l2 of BT (MNz1 . . . zk) labelled by

some variable y. We suppose that q2 is the state assigned by the run to l2 and that r is the
maximal rank of states of the run on the path from the root to l2. We want to show that
(q2, r) ∈ υ(y). If l2 is a leaf of BT (Mz0z1 . . . zk) then this directly follows from the definition
of the run. If it is not, then the path to l2 passes through the leaf l1 of BT (Mz0z1 . . . zk)
labelled by z0 and then gets to BT (N); cf. Figure 5. Let q1 be the state labelling l1, let
r1 be the maximal rank from the root to l1, and let r2 be the maximal rank from l1 to l2.
By looking at the part of the run on BT (N) we get (q2, r2) ∈ υ�r1(y). Lemma 4 then gives
(q2,max(r1, r2)) ∈ υ(y), that is exactly the required property. J

The above proof is so simple because the composition of Böhm trees of terms of order at
most 1 is easy. We can now try to add a fixpoint to our syntax. We consider terms of the
form YM with M of type o→ o. The semantics of a term [[M,υ]] is a function from Ro to
Do. If we want to calculate the semantics of YM then we need to do some manipulation with
the function [[M,υ]] as its domain and co-domain are different. The situation becomes clearer
when we recall that Ro ⊆ P(Q× [m]). So [[M,υ]] is essentially a function of m arguments.
This is very fortunate as we can expect that the computation of the semantics of YM needs
m fixpoints alternating between the least and the greatest fixpoints.

We will give a general formula for calculating the fixpoint in Section 3 when we fully
describe our model. Since we have Y in the syntax, this formula itself should denote an
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element of our model. Here let us show the formula for the case of m = 1. This means that
we have two ranks 0 and 1. Using f : Ro → Do to denote the function [[M,υ]] the semantics
[[YM, υ]] is given by F0 ∈ Do defined by

F0 =νZ0. f
∂(Z0 · 0 ∪ F1 · 1) F1 =µZ1νZ0. (f�1)∂(Z0 · 0 ∪ Z1 · 1)

We omit a, not so short, proof of the correctness of this formula. The proof for the general
case is presented in [24]. The set F0 is the set of states in which the term M is accepted
when it is in a context where the maximal color from the root to it is 0 (this includes the
empty context), while F1 is the set of states in which the term M is accepted when the color
is 1. This distinction is only important for terms with free variables, where, as we have seen,
the values associated to variables by valuations depend on the context. So for closed terms
F0 and F1 are equal.

3 A model recognizing MSOL properties

We now extend the definitions we have given in the previous section to higher orders.
Mellies [16] sketched a definition of fixpoint that only worked for closed terms. We here give
a definition of higher-order fixpoints that work for open terms. As ranks in the model are
used to keep track of the context where variables occur, most of the technical difficulties of
the construction of the model appear in this definition. With this definition, we obtain a
model of the λY -calculus that recognizes terms whose Böhm trees are accepted by a given
parity automaton. More precisely, for every closed λY -term M of type o we will have:

[[M, ∅]] = {q : A accepts BT (M) from q} .

For the rest of this section we fix a parity automaton A = 〈Q,S, δ, rk : Q → [m]〉. In
particular, m is the maximal rank of a state of A.

We start by generalizing the definition of residuals Ro to all types. At the same time we
will generalize the operation (·)�r, as well as define a new operation (·)⇓q. For a residual
f in Ro, we let f⇓q be {r : (q, r) ∈ f}. Now we define RA→B to be the set of monotone
functions f that satisfy the following stratification property:

∀g ∈ RA. ∀q ∈ Q. (f(g))⇓q = (f(g�rk(q)))⇓q (strat)

at the same time we define for every g ∈ RA:

f⇓q(g) = (f(g))⇓q, f�r(g) = (f(g))�r .

The elements of RA are ordered using the pointwise order. It can be shown that this order
makes RA a lattice.

For an intuition behind the (strat) property it may be useful to look back at Figure 5.
Suppose f is the meaning of M and g is the meaning of N . The formula f(g)⇓q then means
that we are interested in the runs on BT (MN) starting from q. As can be seen from the
proof of Proposition 6, in such a run every appearance of BT (N) will be lifted with �r
operation where r is the maximal rank seen from the root to this appearance. We do not
know what this r will be, but it will be at least rk(q), so it is safe to already apply �rk(q)
to g. In other words, for the runs starting in q we should get the same result from f(g) as
from f(g�rk(q)). Yet another more formal intuition comes from the application clause. The
meaning of 〈〈N, υ〉〉 as a function of υ satisfies the (strat) property.
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As in the previous section, we do not interpret λY -terms in the lattices RA, but rather
in the lattices DA that are generalizations at every type of Do. For this we must define f⇓q
for f ∈ DA: we put f⇓q = f ∩ {q} for f ∈ Do; and f⇓q(g) = (f(g))⇓q for f ∈ DA→B, and
g ∈ RA. Using the same notation for the operation ⇓q when it acts on DA or RA should
not confuse the reader as in both cases, it corresponds to focusing on the behaviour of the
function on the state q. With this definition we let DA→B be the set of monotone functions
from RA to DB that satisfy the same (strat) identity.

I Remark. The definitions of (·)�r and (·)⇓q are covariant and they become more intuitive
when we consider types written as A1 → · · · → Ak → o, or in an abbreviated form as ~A→ o.
In this case, using →ms for the set of monotone and stratified functions, we have:

D ~A→o = RA1 →ms · · · →ms RAk
→ms Do

R ~A→o = RA1 →ms · · · →ms RAk
→ms Ro

g⇓q(~h) = (g(~h))⇓q g�r(~h) = (g(~h))�r

where ~h is a vector of elements from RA1 × · · · × RAk
, and the operations ⇓q, �r are applied

only to elements from Do or Ro, depending on whether g is from D ~A→o or R ~A→o.

Before we define the semantics, we observe several properties of the domains and the
operations we have introduced. First, the generalization of (·)�r to higher orders preserves
the properties of Lemma 4.

I Lemma 7. For every type A, both DA and RA are finite complete lattices. When A is
A1 → · · · → Al → o, g ∈ RA, ~h ∈ RA1 × · · · × RAl

and r, r1, r2 ∈ [m] then:
(g�r1)�r2 = g�max(r1,r2);
(q, rk(q)) ∈ g�r(~h) iff (q,max(rk(q), r)) ∈ g(~h).

For every g1, g2 in RA: (g1 ∨ g2)�r = g1�r ∨ g2�r and (g1 ∧ g2)�r = g1�r ∧ g2�r.

We now extend to higher-orders the operations (·)∂ and (·) · r we have introduced in
Section 2.4. These extensions use the same covariant pattern as the extensions of (·)⇓q and
(·)�r; we first define the operations for objects of type o and then extend them to all higher
types. For g0 ∈ Ro, f0 ∈ Do, g1 ∈ RA→B , f1 ∈ DA→B we have:

g∂0 ={q : (q, rk(q)) ∈ g0} g∂1 (h) =(g1(h))∂

f0 · r ={(q, r) : q ∈ f0, rk(q) ≤ r} (f1 · r)(h) =(f1(h)) · r

Thus g∂ converts an element of RA to an element of DA, and f · r does the opposite.

I Lemma 8. For every type A, every f ∈ DA, g ∈ RA, and r ∈ [m], we have: f · r ∈ RA,
g�r ∈ RA, and g∂ ∈ DA.

The semantics of a term M of some type A, under a given valuation υ is denoted [[M,υ]].
It is an element of DA provided υ is defined for all free variables of M . As in Section 2.4, a
valuation is a function assigning to a variable of type B an element of RB. The semantic
clauses are those from Figure 4, so they are the same as for the order 1 case of Section 2.4.
It remains to define the fixpoint:

[[Y A, υ]]h = fix(h, 0) = νf0.h
∂(f0 · 0 ∨

m∨
i=1

fix(h, i) · i
)
.
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where for l = 0, . . . ,m we define

fix(h, l) = σfl. . . . µf1.νf0. (h�l)∂
( l∨
i=0

fi · i ∨
m∨

i=l+1
fix(h, i) · i

)
.

We use σ to stand for µ or ν depending on whether l is odd or even, respectively.
The structure of this formula may be better visible if we look at fix(h,m), and assume

that m is odd:

µfm.νfm−1 . . . µf1.νf0. (h�m)∂
( m∨
i=0

fi · i
)
.

So we see a rather expected alternation of least and greatest fixpoints, and inside the big
brackets we see an operation of composing fi’s to one residual. This operation is of the same
shape as in the clause for application. Observe that the expression (

∨m
i=0 fi · i) considered as

a function of f0, . . . , fm is a monotone function from Dm+1
A to DA. This remark together

with Lemma 8 and the fact that DA is a complete lattice explains why fix(h, l) is well-defined,
for every l.

We state a couple of lemmas implying that what we have defined is indeed a model.

I Lemma 9. For every type A, if f is in RA→A then for every k, l ∈ [m]: (i) fix(f, l) is in
DA; and (ii) fix(f�k, l) = fix(f,max(k, l)) .

The next lemma implies that for every term M of type A, the value [[M,υ]] assigned by
the semantics is indeed in DA.

Notation: We write (·)�q for (·)�rk(q).

I Lemma 10. For every term M , every υ, and ~f , of appropriate types:
1. If υ ≤ υ′ and ~f ≤ ~g then [[M,υ]]~f ≤ [[M,υ′]]~g.
2. For every q ∈ Q: q ∈ [[M,υ]]~f iff q ∈ [[M,υ]]~f�q iff q ∈ [[M,υ�q]]~f�q.
3. [[M,υ]] and 〈〈M,υ〉〉 satisfy the (strat) property.
4. 〈〈M,υ�q〉〉 = 〈〈M,υ〉〉�q.

The above lemmas allow us to show that the interpretation of terms is invariant under
=βδη, or, put differently, that we have constructed a model of λY -calculus.

I Proposition 11. For every M , N and υ, if M =βδη N , then [[M,υ]] = [[N, υ]] and
〈〈M,υ〉〉 = 〈〈N, υ〉〉 .

It now remains to explain how this model is related to the acceptance of the Böhm trees
of λY -terms by A. This explanation is given by the following theorem which is the main
result of the paper. Recall that we denote the empty valuation by ∅.

I Theorem 12 (Correctness). For a given parity automaton A, the semantics defined above
is such that for every closed term M of type o and every state q of A:

q ∈ [[M, ∅]] iff A accepts BT (M) from state q.

I Example 13. Continuing the example from page 236 we will calculate the value of the term
Mo→o = Y (λfx.a x (f(b x))). This term is a simplified version of the map function from the



S. Salvati and I. Walukiewicz 241

Introduction, in the sense that it has a Böhm tree of a similar shape. In order to show that
every path of BT (Mc) contains only finitely many b’s we show q0 ∈ [[Mc, ∅]]. In the first part
of the example we have established [[a x (f(b x)), υ]] = {q0} where υ that maps x to {(q1, 1)}
and f to the step function {(q1, 1)} 7→ (q0, 0). This implies that [[λfx.a x(f(b x))]] ≥ g where
g = ({(q1, 1)} 7→ {(q0, 0)}) 7→ {(q1, 1)} 7→ q0. We now compute fix(g, 0). We observe that
g(> · 0 ∨ ⊥ · 1) = {(q1, 1)} 7→ q0 and, g(h · 0 ∨ ⊥ · 1) = h, for h = {(q1, 1)} 7→ q0. Therefore
νg0.g(g0 ·0∨⊥·1) = h. Now, g(h ·0∨h ·1) = h which implies that µg1.νg0.g(g0 ·0∨g1 ·1) = h.
With this we have showed [[M, ∅]] ≥ h which finally gives us q0 ∈ [[Mc]].

4 Applications

The model construction we have presented allows us to derive a number of results on
verification of higher-order schemes and the λY -calculus. Since the constructed model is
finite, it implies the decidability of the model-checking problem [19]. More importantly, it
implies the transfer theorem [21]. Actually this theorem is proved in op. cit. also for infinite
terms. This cannot be done solely with the techniques in the present paper. The transfer
theorem gives an effective reduction of the MSOL theory BT (M) to the MSOL theory of
the tree representation of M . The strength of the theorem lies in the fact that the reduction
is uniform for all terms over a fixed set of variables and types.

A term can be represented as a tree with back edges: the nodes of the tree are labelled
with the application symbol, the lambda abstraction, a variable, or a constant. The back
edges go from occurrences of variables to their binding lambdas. This representation makes
it rather clear what it means for a term to be a model of an MSOL formula [21]. We will use
Terms(Σ, T , X) for the set of terms over a signature Σ, such that all their (free or bound)
variables are from X , and all their subterms have types in T .

I Theorem 14 ([21]). Let Σ be a finite tree signature, X a finite set of typed variables, and
T a finite set of types. For every MSOL formula ϕ one can effectively construct an MSOL
formula ϕ̂ such that for every λY -term M ∈ Terms(Σ, T ,X ) of type o:

BT (M) � ϕ iff M � ϕ̂.

Proof. Let A be the automaton equivalent to ϕ. Consider the model DA given by Theorem 12.
The model DA is finite in every type. So the set of possible semantical values of terms from
Term(Σ, T ,X ) is finite.

There is a correspondence between subterms of the term and the nodes of the tree
representation of the term. So the labelling assigning to a node of the tree representation
the meaning of the subterm it represents is a colouring of the tree with colours from a finite
set. Let us call it the semantic colouring. The next observation is that if we are given any
colouring of the tree representation of a term with elements of the model then we can check
if it is the semantic colouring by verifying some local constraints implied by the definition of
the model. For example, the local constraints say that the meaning assigned to the node
labelled by the application symbol is indeed the result of the application of the meaning
assigned to the first child applied to the meaning assigned to the second child. This can
be checked by a looking in a finite table. Now the desired MSOL formula can guess such a
colouring of the tree representation of a term, verify that it satisfies the local constraints,
and that the initial state of the automaton A belongs to the colour of the root node. J

This theorem implies the global model checking property [3]. In particular, a model
clearly explains how to solve the synthesis problem from higher-order modules [21]. The
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synthesized program is composed from modules using application. Since the set of modules is
fixed and finite, we can evaluate the meaning of such a composition using a finite automaton.
Thus the synthesis problem is reduced to the emptiness problem for finite automata on finite
trees.

As described in [22], a model can be used to design program transformations. A general
principle of such a transformation is that during evaluation the program “knows” what is
its meaning in the model. Such a program, or in our case a term of λY-calculus, is called
reflective [2]. This intuitive statement requires some explanation. What we mean is that when
evaluating a term M we reach a head normal form, say bN1N2. Then b is a non-interpreted
symbol that is output as the root of the tree BT (M), and the evaluation process splits to
evaluation of N1 and N2. While at the beginning we can simply calculate the semantics
[[M ]] in the model, it is the reflective program itself that needs to calculate [[N1]] and [[N2]].
Interestingly, this general method of translating a term into a reflective term follows a simple
inductive pattern. We refer to [22] for more details.

5 Conclusions

We have extended Scott models with ranks, and have shown that this extension recognizes
all MSOL properties of λY -terms. The meaning of the fixpoint operator is an alternation of
the least and the greatest fixpoints reminiscent to the fixpoint characterization of winning
positions in a parity game. This is somehow expected since acceptance for parity automata
is expressed in terms of existence of a strategy in a parity game.

The model construction reduces the higher-order verification problem to the evaluation
problem. Surprisingly, even the problem of evaluating terms without fixpoints in a Scott
model is not that well studied (cf. [26]). We believe that the evaluation problem can be
an unifying algorithmic problem for many kinds of program analyses whose theoretical
complexity is “sufficiently high” to justify a semantic approach. Verification of MSOL
properties considered in this paper is one such case. The model we construct is essentially of
the same size as the Scott model so the evaluation approach should be essentially as efficient
as approaches based on intersection types refining simple types. Indeed, every step function
in the model can be represented by such a type.

We hope that our result is a step towards understanding infinitary properties in the usual
frameworks of semantics, and with this to extend semantic methods to reactive programs
and their behaviors. We have tried here to make the presentation as concrete as possible. It
is evident though that a more abstract description bringing out the structure of the model
should be pursued. A more ambitious goal is to find an abstract description of models
recognizing MSOL properties. Let us mention that the expressive power of Scott models with
arbitrary (be it as combinations of least and greatest fixpoints, or other kinds of fixpoints)
interpretations of fixpoints is unknown. In particular, we may wonder whether they capture
properties beyond those expressible with parity automata.
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