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Abstract
Assume that we may prove in Arithmetic with Comprehension axiom that a primitive recursive
binary relation R is well-founded, using the inductive definition of well-founded. In this paper we
prove that the proof that R is well-founded may be made intuitionistic. Our result generalizes
to any implication between such formulas. We conclude that if we are able to formulate any
mathematical problem as the fact that some primitive recursive relation is well-founded, then
intuitionistic and classical provability coincide, and for such a statement we may always find an
intuitionistic proof, if we may find a proof at all.
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1 Introduction. A conservativity result for the statements of
inductive well-foundedness

The proof principle of induction, originally called transfinite induction, is credited to the
founder of intuitionism, Brouwer ([19]). In 1967 Howard and Kreisel [10] remarked that
(transfinite) induction is the most useful formulation of well-foundedness in an intuitionistic
context. In 1971, P. Martin-Löf studied an intuitionistic natural deduction version of
transfinite induction [13]. By building over their work, many classical theorems, whose
original version is not intuitionistically provable, have been reformulated in such a way to
become intuitionistically provable. For some primitive recursive relations R1, . . . , Rn, R
over Nat, the new statements have the following form:

(1) “if R1, . . . , Rn are inductively well-founded, then R is inductively well-founded”

Among many examples we recall: Higman Lemma [5], [7], compactness results in formal
topology [6], Ramsey Theorem in Combinatorial Mathematics, the Termination Theorem
and the Size-Change Termination Theorem in Computer Science [3], [20].

The results of this paper are an a posteriori justification of the existence of these
intuitionistic results. We guarantee, in the case of a classical proof of a statement of the
form (1), that constructivization is always possible in principle, at least for the arithmetical
proofs using Comprehension of all finite orders: second order arithmetic, third order and so
forth. Comprehension axiom for sets of natural numbers says that any predicate on natural
numbers defines a set, Comprehension axiom for sets of sets of natural numbers says that
any predicate on sets of natural numbers defines a set of sets, and so forth, for all finite
orders. Let us call impredicative a proof possibly using Comprehension axiom of some finite
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344 Classical and Intuitionistic Well-Foundedness

order. We prove that any impredicative proof of a statement of the form (1) may avoid the
use of Excluded Middle. Often the resulting proof will be intuitionistic but impredicative.

We claim having an effective method for transforming classical proofs into intuitionistic
ones, however, we do not claim that this method is feasible in practice. We do not claim we
found an optimal proof, either. Our meta-proof that a result is intuitionistically provable
uses intuitionistic but impredicative meta-reasoning. We are not yet able to define some
simple effective procedure to turn classical proofs of well-foundedness into intuitionistic ones.
We tried with Gödel’s ¬¬-translation and with Friedman’s A-translation [8], but they did
not work.

There are results along the same direction. Sieg proved in his ph.d. thesis that whenever
ω-iterated inductive definitions prove that a primitive recursive ordinal is well-founded, then
the ordinal belongs to some primitive recursive denotation system, which may be proved to
be well-founded intuitionistically. An account of his proof may be found in [18].

Here we address a more general case: a classical proof using the Comprehension axioms
of all finite orders. The conclusion of the classical proof has the more general form: if R1,
. . . , Rn are inductively well-founded, then R is inductively well-founded, with R1, . . . , Rn, R

primitive recursive relations over Nat.
Our result may be seen as a generalization of the well-known result of conservativity

of classical analysis w.r.t. intuitionistic analysis for Π0
2-formulas by Kreisel [12]. This

conservativity results generalizes to any implications between Π0
2-formulas (this is an old

remark, for a proof see for instance [4]). We extend the conservativity result to all implications
among Π1

1-formulas, provided these formulas may be expressed through the well-foundedness
of some primitive recursive relation, and using the inductive definition of well-foundedness.
The predicate “being the code of a primitive recursive well-founded relation” is Π1

1-complete
(see for instance [9]). Thus, our result allows to reformulate any classical theorem which
is an implication between Π1

1-formulas by some classically equivalent and intuitionistically
provable implication between statements of inductive well-foundedness. The original classical
theorem may be not intuitionistically provable.

This is the plan of the paper. In Section 2 we introduce PAω, classical arithmetic with
Comprehension of order ω, the formal system we deal with in this paper. In Section 3
we describe the inductive definition of well-founded relation and its basic properties in
Intuitionistic Arithmetic. In Section 4 we sketch the proof idea for the conservativity result,
and in §5 we prove it. In Section 6 we draw our conclusions and we provide some examples.
The acknowledgments are in Paragraph 6.1.

2 The conservativity result and the formal system for Classical
Higher Order Arithmetic

Assume R1, . . . , Rn, R are some primitive recursive binary relations on Nat. Let us denote with
WF(R) the statement “R is inductively well-founded” (to be defined later). We want to prove:
whenever we have a proof of WF(R1), . . . , WF(Rn) =⇒ WF(R) in Classical Peano Arithmetic
with Comprehension axiom of order ω, then we may prove WF(R1), . . . , WF(Rn) =⇒ WF(R) in
the “Theory of Species” [14]. The “Theory of Species” is a natural deduction with higher order
predicate variables, and Comprehension axiom of level ω hidden in the ∀-elimination rule.
Comprehension of level two (for sets of natural numbers) proves Paris-Harrington Theorem,
the Theorem about Goodstein Sequences, Higman Lemma, Kruskal Lemma, which are not
provable in first order arithmetic (classical or intuitionistic). Each level of comprehension
adds new theorems. In spite of these strong assumptions, the “Theory of Species” is an
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intuitionistic logic, because it has the disjunctive property and the witness property ([14], p.
231, Section 11.1, 11.2). In fact, it may be considered as the Intuitionistic Arithmetic with
Comprehension axiom of order ω.

In this paper we are interested in the mere existence of an intuitionistic formal proof,
and not in an efficient way of writing of it. We prove our result using intuitionistic but
impredicative meta-reasoning. For the moment, we do not have a meta-proof using first
order arithmetical reasoning.

We first define a sequent calculus version of the Intuitionistic Theory of Species plus
Excluded Middle. We call this system the Classical Arithmetic with Comprehension axiom
of order ω. Following [13], [16], we use a superscript to denote the level of comprehension,
and we call this system PAω. PAω should not be confused with PAω, the system for first order
classical arithmetic having higher order functions and no Comprehension axiom. We do not
have higher order functions instead. We do have higher order predicate types: Nat→ Prop
(the type of sets of natural numbers), (Nat → Prop) → Prop (the type of sets of sets of
natural numbers), and so forth. Comprehension for second order, third order, . . . , arithmetic
is the statement ∃Xσ→Prop.(∀xσ.X(x)⇔ P ), for σ = Nat, (Nat→ Prop), . . .. Comprehension
is not an axiom of our sequent calculus PAω, but we will express it through left-introduction
rules for universal quantifiers: ∀XNat→Prop.A, ∀X(Nat→Prop)→Prop.A, . . . . This is analogous
to the way Martin-Lof expresses Comprehension axiom through the ∀-elimination rule. We
choose this formalization of Comprehension in order to use Girard’s candidate method for
deriving normalization of PAω.

I Definition 1 (The Language of PAω). PAω is the formal system having:
1. One numeral for each n ∈ Nat, one symbol for each primitive recursive function, infinitely

many variables xNat, yNat, zNat, . . . of type Nat. All terms we may define from them.
2. Predicates types: the type Prop of formulas, and with σ, τ also σ → τ and Nat→ τ . If σ is

a predicate type, its degree deg(σ) is inductively defined by deg(Nat) = 1, deg(Prop) = 2
and deg(σ → τ) = max(deg(σ) + 1,deg(τ)).

3. One predicate constant p for each primitive recursive predicate on Nat of any arity,
infinitely many variables Xσ, Y σ, Zσ, . . . for each predicate type σ.

4. All formulas we may define from the atomic formulas p(t1, . . . , tn), X(t1, . . . , tn) using
the connective →, and two kinds of ∀: quantification over Nat, and for any predicate
type σ, quantification over σ.

5. All predicates we may define from formulas by simply typed λ-abstraction.
6. As predicate equality, the smallest equivalence relation including: the β-reduction and

the reduction replacing a closed term t : Nat by the numeral it denotes.
7. Two-sided sequents Γ ` ∆, for any finite sets of formulas Γ, ∆.

The degree of a type is inductively defined by deg(Nat) = 1, deg(Prop) = 2, deg(σ →
τ) = max(1 + deg(σ),deg(τ)). The order of a formula is the maximum degree of the types of
its variables: first order formulas have integer variables, second order formulas have integer
variables and variables on sets of integers, and so forth. For any predicate type σ, the
formula ∃Xσ.A is not a primitive formula of the language but it is expressed through its
canonical higher order definition: ∀ZProp.(∀Xσ.(A → ZProp)) → ZProp, for ZProp not free
in A. In the same way we define A ∨ B as ∀ZProp.(A → ZProp), (B → ZProp) → ZProp,
and A ∧ B as ∀ZProp.(A,B → ZProp) → ZProp, for ZProp not free in A, B, and A ⇔ B as
(A→ B) ∧ (B → A). Thus, we may now write Comprehension ∃Xσ→Prop.(∀xσ.X(x)⇔ P )
as a defined formula. If deg(σ) = n we say that this formula is Comprehension of order n.

We will identify a numeral with the number it denotes. We often skip the type superscript
of a variable, but we always use lower case letters x, y, z, . . . for natural number variables

CSL 2015



346 Classical and Intuitionistic Well-Foundedness

and upper case letters X,Y, Z, . . . for predicate variables. We consider any recursively
enumerable set of basic arithmetical axioms. Any basic arithmetical axiom should have the
form α1, . . . , αn ` α or β1, . . . , βn `, with each formula of the form p(t1, . . . , tn) for some
primitive recursive p and some terms t1, . . . , tn. Basic arithmetical axioms should include
t + 1 = u + 1 ` t = u and 0 = t + 1 ` ∅, all rules making = an equivalence relation, and
all definition rules for all primitive recursive maps and relations. Basic arithmetical axioms
should be true, and should be closed under substitution and cut. The last clause is required
if we want to have full cut-elimination for PAω, otherwise cuts between axioms cannot be
eliminated.

Proof rules are those of two-sided sequent calculus, with left-introduction rules for ∀Xσ.A

expressing comprehension of any finite order.

I Definition 2 (Proofs of PAω). Proof trees of PAω are exactly the finite trees built by the
rules below, where Γ, ∆ are finite sets of formulas, A,B are formulas, α1, . . . , αn ` α and
β1, . . . , βn ` are basic arithmetical axioms.
Γ, α1, . . . , αn ` ∆, α (axiom)

Γ, β1, . . . , βn ` ∆ (axiom)

Γ, A ` ∆, A (id)
Γ1 ` ∆1, A Γ2, A ` ∆2

Γ1,Γ2 ` ∆1,∆2
(cut)

Γ, A =⇒ B ` ∆, A Γ, A =⇒ B,B ` ∆
Γ, A =⇒ B ` ∆ ( =⇒l)

Γ, A ` ∆, A =⇒ B,B

Γ ` ∆, A =⇒ B
( =⇒r)

Γ,∀xA,A[t/x] ` ∆
Γ,∀xA ` ∆ (First Order ∀l)

Γ ` ∆,∀xA,A[z/x] (z 6∈ FV(Γ ` ∆,∀xA))
Γ ` ∆,∀xA (First Order ∀r)

Γ,∀XσA,A[P/Xσ] ` ∆
Γ,∀XσA ` ∆ (Higher Order ∀l)

Γ ` ∆,∀XA,A[Z/X] (Z 6∈ FV(Γ ` ∆,∀XA))
Γ ` ∆,∀XA (Higher Order ∀r)

Γ ` ∆,∀xA,A[0/x] Γ, A[z/x] ` ∆,∀xA,A[z + 1/x] (z 6∈ FV(Γ ` ∆,∀xA))
Γ ` ∆,∀xA (ind)

We say that a ∀l-rule for a formula ∀XσA has order n if deg(σ) = n. Choose any
predicate type σ with deg(σ) = n. Then the sequent ` ∃Xσ→Prop.(∀xσ.X(x)⇔ P ) expresses
Comprehension axiom of level n. We claim that there is a proof of this sequent using ∀l-rules
of order ≤ n + 1 only. For instance, the rules ∀l of order ≤ 2 derive Comprehension of
order 1, or Comprehension for sets of integers. We call order n Peano Arithmetic, and we
denote by PAn, the system with ∀l restricted to the order ≤ n. For instance, First Order
Arithmetic PA1 derives no Comprehension axiom, while Second Order Arithmetic PA2 only
derives Comprehension of order 1 (for sets of natural numbers).

In the identity rule and in the cut rule, formulas are identified up to predicate equality
(Def. 1.5). In all rules but cut the conclusion of the rule is included in each premise (if any).

The relation R we fixed, being a primitive recursive binary predicate, is a symbol of the
language of PAω. Let us assume PAn ` WF(R). We will intuitionistically prove WF(R) using
Comprehension of order n+ 1.

This is the proof idea. We first define an infinitary semi-formal proof system, then we
interpret the finitary proof system in the infinitary one and we use the infinitary system to
derive our result.
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I Definition 3 (ω-rule). Let PAω +recursive ω-rule be the semi-formal system obtained from
PAω by:
1. considering only the sequents with no free number variables,
2. replacing the rules ind and ∀r for Nat with the recursive ω-rule: derive Γ ` ∆,∀xNat.A

from a recursively given family of proof-trees, one proof of Γ ` ∆,∀xA,A[m/xNat] for
each numeral m ∈ Nat.

We write π : Γ ` ∆ for: π is a well-founded recursive proof-tree with ω-rule of conclusion
Γ ` ∆. Let n > 0. PAn+recursive ω-rule is PAω+recursive ω-rule with the ∀l-rules restricted
to all orders ≤ n.

The ω-rule may be represented as follows:

. . . Γ ` ∆,∀xA,A[m/x] . . . (for all m ∈ Nat)
Γ ` ∆,∀xA (ω-rule)

Proofs of PAω + recursive ω-rule are at most countable well-founded recursive trees
decorated with the rules of the system. A proof tree is called normal if it has no cut rule. It is
well-known that there is an effective method for turning any proof of any A in PAn into a proof
of A in PAn + recursive ω-rule. It is also well-known that the system PAn + recursive ω-rule
has a normalization algorithm, turning any proof-tree of Γ ` ∆ into a normal proof-tree, and
that the proof may be expressed using order n+ 1 Comprehension.

3 The inductive definition of a well-founded relation

In Intuitionistic Arithmetic, we define well-founded relations through an inductive definition.
Let R be any binary relation over a set I. Classically, the usual definition of “R is well-
founded” says: “there is no infinite R-decreasing chain”, or: “all R-decreasing chains are
finite”. In Intuitionistic Arithmetic, these statements are not informative enough, and we
prefer the inductive definition of well-foundedness, which runs as follows. A predicate X
over a set I is called R-inductive if X contains x whenever X contains all y such that yRx.
We say that I, R (or just R for short) is inductively well-founded, and we write WF(R), if all
R-inductive properties X are true for all x ∈ I. By definition unfolding, we obtain:

WF(R) = ∀x ∈ I.∀X.(∀y ∈ I.(∀z ∈ I.zRy =⇒ X(z)) =⇒ X(y)) =⇒ X(x)

From now on, we will often write “well-founded” as a shorthand for “inductive well-
founded”. If (I,R) is well-founded, then, in order to prove that ∀x ∈ I.P (x), it is enough to
prove that P is R-inductive. This well-known proof method is called “by induction on x and
R”. For instance, when R is the successor relation on Nat, we re-obtain induction on Nat.
Induction may be nested. In order to prove P (x) we may use induction again, over some set
Ix and some relation Rx, possibly depending on x ∈ I. In this case we speak of “secondary
induction on y ∈ Ix and Rx”.

Our conservativity proofs deals with the sub-formulas of WF(R). Now we will list them,
just skipping the atomic sub-formulas and the implications of atomic formulas. If we
list the sub-formulas of WF(R) from right to left, the first four sub-formulas we find are
atomic, or implications of atomic. The fifth sub-formula, and the first in our list, is: (1)
∀z ∈ I.zRy =⇒ X(z). Then we find, in this order: (2) (∀z ∈ I.zRy =⇒ X(z)) =⇒ X(y),
then (3) ∀y ∈ I.(∀z ∈ I.zRy =⇒ X(z)) =⇒ X(y), then (4) (∀y ∈ I.(∀z ∈ I.zRy =⇒
X(z)) =⇒ X(y)) =⇒ X(x), then (5) ∀X.(∀y ∈ I.(∀z ∈ I.zRy =⇒ X(z)) =⇒
X(y)) =⇒ X(x), and eventually (6) the formula WF(R) itself. These 6 expressions are
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348 Classical and Intuitionistic Well-Foundedness

cumbersome, therefore we will introduce a name for each of them. There is nothing to
understand here: we assign 6 names (including WF(R) itself) we will use later.

I Definition 4 (Formal definition of (inductive) well-foundedness). Let R be any binary relation
over a set I and X : I → Prop any variable of unary predicate over I.
1. IH(y,X) = ∀z ∈ I.(zRy =⇒ X(z)) (R-inductive hypothesis in y for X)
2. Ind(y,X) = (IH(y,X) =⇒ X(y)) (X is R-inductive in y)
3. IND(X) = ∀y ∈ I.Ind(y,X) (X is R-inductive)
4. wf(x,X) = (IND(X) =⇒ X(x)) (x is R-well-founded w.r.t. X)
5. Wf(x) = ∀X.wf(x,X) (x is R-well-founded)
6. WF(R) = ∀x ∈ I.Wf(x) ((I,R) is well-founded)

We abbreviate “(I,R) is well-founded” by “R is well-founded” when I is clear from the
context. The predicates defined in the points 1− 5 above, to be accurate, should be written
with an extra argument R. We skipped R because it is fixed and would clutter our formulas
uselessly. We left the argument X, even if X is fixed, as a memo for the name of the variable
X denoting a generic unary predicate on I in the formula WF(R).

ω-rule is complete w.r.t. the statements of the form WF(R).We may state this fact as
follows. Recall that π : Γ ` ∆ denotes that π is a well-founded recursive proof-tree of
conclusion Γ ` ∆.

I Lemma 5 (ω-rule is complete for WF(R)). There is some recursive family of trees indexed
over binary primitive recursive relations over Nat, of the form {πR|R bin.prim.rec.}, such
that:

WF(R) =⇒ πR : WF(R)

This fact is provable in Second Order Intuitionistic Arithmetic.

Classically and using choice, the inductive definition of WF(R) is equivalent to the classical
formulation which says “all descending R-chains are finite”. This equivalence is not provable
in Higher Order Intuitionistic Arithmetic.

A method for proving well-foundedness is the simulation of a relation into another well-
founded relation. Informally, we may simulate x ∈ I by y ∈ J using a relation ∼ if, by
moving from I to J using ∼, we may simulate R-chains through S-chains. Our method
is an intuitionistic and simplified version of the method used for proving that a labeled
state transition systems strongly terminates [15], if we take as set of labels of a transition a
singleton.

I Definition 6 (Simulation). Assume R is a binary relation over a set I and S is a binary
relation over a set J . Assume ∼ ⊆ I × J .
1. ∼ is a simulation of (I,R) into (J, S) if whenever x∼y and x′Rx then for some y′ ∈ J we

have y′Sy and x′∼y′.
2. ∼ is a bisimulation if both ∼ and ∼−1 are simulations.
3. ∼ is a weak simulation of (I,R) into (J, S) if whenever x∼y and x′Rx then for some

y′ ∈ J we have: y′Sy and either x∼y′ or x′∼y′.

In the rest of the paper we will use some well-known definitions and facts about well-
founded relations and simulations.

We first state the Kleene-Brouwer Theorem. We denote by σ∗τ the concatenation of
two finite sequences σ, τ , and with σ@n = σ∗〈n〉 the appending of an element to a list. We
denote the one-step extension relation on finite sequences by ≺1, and we define it by σ@n≺1σ.
We denote by ≺ the strict prefix relation, and we define it by σ∗〈n〉∗τ≺σ. We denote by
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≺≺ the post-order, a total order over the finite sequences over Nat. ≺≺ is defined as follows:
σ@n∗τ≺≺σ, and if n′ < n then σ@n′∗τ≺≺σ@n∗ρ. Then the Kleene-Brouwer Theorem may be
stated as follows: “if (T,≺1) is a well-founded tree of finite sequences over Nat, then (T,≺≺)
is well-founded”.

The main property of simulations we need to prove is: if y ∈ J simulates some x ∈ I
and y is S-well-founded, then x is R-well-founded. Recall that “well-founded” is short for
“inductively well-founded” here.

All these results have an intuitionistic proof, included in the next Lemma.

I Lemma 7. Properties of well-founded relations] Assume T is any tree of finite sequences
over some set K, with x child of y if and only if x≺1y. Assume I, J are any sets, and R,S
are any binary relations, respectively, on I and on J .
1. (a) Well-foundedness is an inductive predicate: for any x ∈ I we have

∀y.(yRx =⇒ y is R-well-founded ) =⇒ x is R-well-founded
(b) The converse holds: for any x ∈ I we have

x is R-well-founded =⇒ ∀y.(yRx =⇒ y is R-well-founded )
2. (a) A tree is well-founded if and only if all proper descendants of the root of the tree are

well-founded.
(b) A tree is well-founded if and only if its root is.

3. Assume ∼ is a simulation relation from I, R to J , S. If x∼y and y ∈ J is S-well-founded,
then x ∈ I is R-well-founded.

4. Kleene-Brouwer Theorem. If (T,≺1) is a tree of sequences over Nat, and (T,≺1) is
well-founded, then (T,≺≺) is well-founded.

5. A relation R is well-founded if and only if the tree of all R-decreasing sequences is well-
founded. x ∈ I is R-well-founded if and only if the tree of all R-decreasing sequences from
x is well-founded.

6. Assume ∼ is a weak simulation relation from a set I with a relation R to a set J with a
relation S. If (J, S) is well-founded and S is transitive then ∼ is a simulation.

Proof.
1. (a) Well-foundedness is inductive. Assume ∀y.(yRx =⇒ y is R-well-founded), in order

to prove that x is R-well-founded, that is, that for any inductive predicate X we have
x ∈ X. Since X is inductive, then our thesis follows by proving ∀z.(zRx =⇒ z ∈ X).
In order to prove it, let z be such that zRx. Then by hypothesis z is R-well-founded,
hence, by the assumption that X is inductive, we have z ∈ X, as we wished to show.

(b) Assume (x is R-well-founded), in order to prove ∀y.(yRx =⇒ y is R-well-founded),
that is, that for any inductive predicate X and any y ∈ I we have y ∈ X. If X
is inductive, then we may prove by definition unfolding that Y = {x ∈ I|X(x) ∧
∀y.(yRx) =⇒ y ∈ X} is inductive. Then x ∈ Y by R-well-foundation of x, and by
definition of Y we have ∀y.(yRx) =⇒ y ∈ X, as wished.

2. (a) Assume T is a tree and all proper descendants of the root of T are ≺1-well-founded.
We have to prove that all nodes of T are ≺1-well-founded: we only have to prove that
the root is well-founded. All children of the root are ≺1-well-founded by assumption,
therefore the root is ≺1-well-founded by point 1.a above.

(b) Assume that the root of T is ≺1-well-founded. Then all nodes of T , being reachable
from the root, are ≺1-well-founded by point 1.b above.

3. Assume J , S is well-founded and x∼y and y is S-well-founded in order to prove that x is
R-well-founded. We prove that all x∼y are R-well-founded by induction on y ∈ J . By
point 1, it is enough to prove that all zRx are R-well-founded. By definition of simulation
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there is some t ∈ J such that z∼t and tSy. By induction hypothesis on t we conclude
that z is R-well-founded, as we wished to show.

4. Kleene-Brouwer Theorem. Assume that (T,≺1) is well-founded and T is a tree of sequences
over Nat. For any σ ∈ T , denote with Tσ the set {τ |σ∗τ ∈ T}. We prove that Tσ, ≺≺
is well-founded by ≺1-induction on σ. The thesis will follow by choosing σ = 〈〉: in
this case we have Tσ = T . Assume that (Tσ′ ,≺≺) is well-founded for all σ′≺1σ, in order
to prove that Tσ, ≺≺ is well-founded. All σ′≺1σ have the form σ@n for some n ∈ Nat.
All τ ∈ Tσ but the root 〈〉 are 〈n〉∗ρ for some n ∈ Nat and some ρ ∈ Tσ@n. Define
J = {(n, ρ)|n ∈ Nat ∧ ρ ∈ Tσ@n}. Let (n′, ρ′)S(n, ρ) if and only if n′ < n or n′ = n and
ρ′≺≺ρ. Then J is well-founded: the proof is by principal induction on n, < and secondary
induction on ρ ∈ Tσ@n, ≺≺. For all τ ∈ Tσ, we define a relation τ∼(n, ρ) if and only
if τ = 〈n〉∗ρ. ∼ is a simulation of Tσ, ≺≺ in J , S. Indeed, if τ ′≺≺τ and τ∼(n, ρ) then
τ ′ = 〈n′〉∗ρ′. By definition of ≺≺, either n′ < n or n′ = n and ρ′≺≺ρ. In both cases by
definition of ∼ and S we have: τ ′∼(n′, ρ′) and (n′, τ ′)S(n, τ). Thus, by point 3 above τ
is ≺1-well-founded, for all τ = 〈n〉∗ρ, that is, for all τ ∈ Tσ different from the root 〈〉. By
point 2 we conclude that Tσ is well-founded.

5. Assume T is the tree of all R-decreasing sequences on I (all 〈x1, . . . , xn〉 such that
xnRxn−1R . . . Rx1). We may define a simulation ∼ of (I,R) into (T,≺1) by x ∼
〈x1, . . . , xn〉 if and only if n > 0 and x = xn. ∼ is a bisimulation. Indeed, assume that
x∼〈x1, . . . , xn〉, that is, n > 0 and x = xn. If yRx then 〈x1, . . . , xn, y〉 is R-decreasing
and y∼〈x1, . . . , xn, y〉. Conversely, if 〈x1, . . . , xn, y〉 is R-decreasing then yRxn = x. For
all x ∈ I we have 〈x〉 ∈ T and x∼〈x〉. Thus, if T is ≺1-well-founded then all x ∈ I are
R-well-founded by point 3. If R is well-founded then all sequences in T with one or more
points are well-founded by 3, therefore (T,≺1) is well-founded by point 2 above.
Assume Tx is the tree of all R-decreasing sequences 〈x1, . . . , xn〉 on I such that n > 0
and xn = x. Define ∼′ by restricting ∼ to the set of all pairs (y, 〈x1, . . . , xn〉) such that
〈x1, . . . , xn〉 ∈ Tx (that is, such that n > 0 and xn = x and x1 = x). Then a reasoning
similar to the previous one shows that ∼′ is a bisimulation, therefore x is R-well-founded
if and only if 〈x〉 is well-founded in Tx. By point 2, since 〈x〉 is the root of Tx, this is
equivalent to the fact that Tx is well-founded.

6. Assume ∼ is a weak simulation relation from a set I with a relation R to a set J with a
relation S. Assume x∼y and zRx in order to prove that for some tSy we have z∼t. We
argue by induction on y w.r.t. S. By definition of weak simulation, for some tSy we have
either x∼t or z∼t. In the second case we have the thesis. In the first case by induction
hypothesis on t there is some uSt such that z∼u. By transitivity of S and uSt, tSy we
have uSy: we conclude our thesis. J

4 The proof idea for the conservativity result

Assume π is a proof of PAω or of PAω + recursive ω-rule. Recall that we write π : Γ ` ∆ for
“π has conclusion Γ ` ∆”, and that a proof is cut-free if it includes no cut rule. We consider
the notion of sub-formula in which the sub-formulas of ∀x.A (quantification over Nat) are all
A[n/x] with n ∈ Nat. A proofs of PAω + recursive ω-rule satisfies the sub-formula property if
all formulas in any sequent of the proof are a sub-formula of some formula in the conclusion
and they occur in the left-hand-side if they are negative sub-formulas, in the right-hand-side
if they are positive sub-formulas.

Let R,R1, . . . , Rn be primitive recursive binary predicates on Nat. We assume PAω ` WF(R)
in order to intuitionistically derive WF(R). Then we will generalize the result to a statement
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of the form WF(R1), . . . , WF(Rn) =⇒ WF(R). We first recall some well-known intuitionistic
results about PAn and PAn + recursive ω-rule.

Our first step is to prove that if PAn ` WF(R), then PAn + recursive ω-rule ` WF(R) with
some normal proof.

I Lemma 8 (Embedding and Normalization). Let Γ ` ∆ be a sequent and π be a proof of PAω.
Assume σ be any substitution of the first order free variables of Γ ` ∆ with numerals.
1. There is a recursive map f taking any proof π : Γ ` ∆ in PAω, any first order substitution

σ, and returning a proof Π = f(π, σ) : σ(Γ ` ∆) in PAω + recursive ω-rule.
2. Let n > 0. There is a recursive map g, taking any infinitary proof-tree π : Γ ` ∆ in

PAn + recursive ω-rule, and returning some cut-free proof Π = g(π) : Γ ` ∆ in the same
system. This fact has an intuitionistic proof using Comprehension of order n+ 1.

3. Any normal proof of PAω + recursive ω-rule satisfies the sub-formula property.

Proof.
1. We recursively define a map f taking any proof π : Γ ` ∆ in PAω, any first order

substitution σ, and returning a proof f(π, σ) : σ(Γ ` ∆) in PAω + recursive ω-rule. The
proof follows the pattern of the analogous result for PA1 obtained by Tait ([17], p. 277,
Thm. 28.9). Any rule of PAω, different from the rule ∀r for Nat and from the rule ind, is
translated in PAω + recursive ω-rule by the rule itself . There are two cases left.
a. Assume π ends with some ∀r-rule, whose unique assumption is π1 : Γ ` ∆,∀xA,A[z/x]

in PAω, for some z 6∈ FV(Γ ` ∆,∀x.A). Let σ[n/z] be any extension of the substitution
σ to z with some numeral n. By assumption z is not free in Γ,∆,∀xA, hence z
may occur free in A only if z = x. σ is a closed substitution, therefore z occurs
in no σ(y). Thus, σ[n/z](Γ ` ∆,∀xA) = σ(Γ ` ∆,∀xA) and σ[n/z](A[z/x]) =
σ(A[z/x][n/z]) = σ(A[n/x]) = σ(A)[n/x]. Then by induction hypothesis we have
f(π1, σ[n/z]) : σ[n/z](Γ ` ∆,∀xA,A[z/x]) = σ(Γ ` ∆,∀xA,A[n/x]). Eventually, we
define some proof f(π, σ) : σ(Γ ` ∆,∀x.A) by recursive ω-rule.

b. Assume π ends with some ind-rule, whose assumptions are π1 : Γ ` ∆,∀xA,A[0/x]
and π2 : Γ, A[z/x] ` ∆,∀xA,A[z + 1/x] in PAω, for some z 6∈ FV(Γ ` ∆,∀x.A). Let
σ[n/z] be any extension of the substitution σ to z with some numeral n. With
the same reasoning we did on z in the previous case we obtain σ[n/z](A[0/x]) =
σ(A)[0/x] and σ[n/z](A[z/x]) = σ(A)[n/x] and σ[n/z](A[z + 1/x]) = σ(A)[n+ 1/x].
Then by induction hypothesis we have f(π1, σ[n/z]) : σ[n/z](Γ ` ∆,∀xA,A[0/x]) =
σ(Γ ` ∆,∀xA,A[0/x]) and f(π2, σ[n/z]) : σ[n/z](Γ, A[z/x] ` ∆,∀xA,A[z + 1/x]) =
σ(Γ, A[n/x] ` ∆,∀xA,A[n + 1/x]). We inductively define a recursive family Πn :
σ(Γ ` ∆,∀xA,A[n/x]) of proofs indexed by n ∈ Nat by Π0 = f(π1, σ[n/z]) : σ(Γ `
∆,∀xA,A[0/x]) and Πn+1 = the cut of Πn : σ(Γ ` ∆,∀xA,A[n/x]) and f(π2, σ[n/z]) :
σ(Γ, A[n/x] ` ∆,∀xA,A[n+ 1/x]). Eventually, we define f(π, σ) : σ(Γ ` ∆,∀x.A) by
recursive ω-rule from {Πn|n ∈ Nat}.

2. (Proof Sketch). Using Girard’s candidates, adapted to the sequent calculus. T. Altenkirch
formalized Girard’s candidates in LEGO using an inductive definition over second order
formulas and third order quantifiers ([1], p.109). His idea may be easily generalized:
defining Girard’s candidates for PAn + ω-rule requires Comprehension of order n+ 1. We
need Comprehension of order 3 for defining Girard’s candidates for PA2, and so forth. We
postpone the details to a journal version of this paper.

3. By induction over the normal proof. J

In order to derive WF(R), now it is enough to prove that for a normal proof π of WF(R)
in PAω + recursive ω-rule there is simulation relation ∼ between the R-decreasing sequences
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with the one-step extension relation, and the proof-tree π itself, with the post-order relation
≺≺. By Lemma 7.6, even a weak simulation relation is enough. Then our conservativity result
will follow by Lemma 7.3. The proof is intuitionistic because Lemma 7 is.

5 Simulating a primitive recursive relation into a normal infinitary
proof of its well-foundedness

In this section we will define a simulation relation ∼ between the tree of decreasing R-
sequences and π, ≺≺, a normal proof-tree with ω-rule of the statement WF(R), with the
post-order relation.

Let R be the relation we fixed, I = Nat, x, y ∈ I. Assume X is any unary predicate
variable. Assume that π is a normal proof in PAω + recursive ω-rule of ` WF(R).

By the sub-formula property for normal proofs (Lemma 8.3), for any sequent Γ ` ∆
occurring in π, all A ∈ Γ are negative sub-formulas of WF(R), and all B ∈ ∆ are positive
sub-formulas of WF(R). We refer to Def. 4 for the names we assigned to the sub-formulas
of WF(R). The immediate sub-formulas of WF(R) = ∀x.Wf(x) are Wf(n) for all n ∈ Nat
(positive). The immediate sub-formula of Wf(n) = ∀X.wf(n,X) is wf(n,X) (positive). The
sub-formulas of wf(n,X) = (IND(X) =⇒ X(n)) are: X(n) (positive) IND(X) = ∀y.Ind(y,X)
(negative), for allm ∈ Nat, Ind(m,X) = (IH(m,X) =⇒ X(m)) (negative), X(m) (negative),
IH(m,X) = ∀z.(zRm =⇒ X(z)) (positive), for all p ∈ Nat, (pRm =⇒ X(p) (positive),
X(p) (positive), pRm (negative). All sub-formulas of WF(R) but those of the form X(m) for
some m have a unique sign. Summing up, we just proved:

I Lemma 9 (Sequents in π). Every formula F in every sequent Γ ` ∆ in any normal proof
π of ` WF(R) in PAω + recursive ω-rule falls in at least one of the following cases, for some
n,m, p ∈ Nat:
1. F = WF(R) = ∀x.Wf(x) ∈ ∆
2. F = Wf(n) = ∀X.wf(n,X) ∈ ∆
3. F = wf(n,X) = (IND(X) =⇒ X(n)) ∈ ∆
4. F = IND(X) = ∀y.Ind(y,X) ∈ Γ
5. F = Ind(m,X) = (IH(m,X) =⇒ X(m)) ∈ Γ
6. 1. F = X(m) ∈ Γ

2. F = X(m) ∈ ∆
3. F = IH(m,X) = ∀z.(zRm =⇒ X(z)) ∈ ∆
4. F = ((pRm) =⇒ X(p)) ∈ ∆
5. F = (pRm) ∈ Γ

We apply the post-order relation ≺≺ to the proof-tree π, taking the same order among
the premises of a rule we have in the proof (this order is fixed in Def. 2).

Let us denote with T the tree of R-decreasing sequences on Nat. We will define a weak
simulation relation of (T,≺1) in (π,≺≺), relating any node of T with some node in π. From
the well-foundedness of π, ≺≺ (Lemma 7.4) and the fact that ≺≺ is transitive we will deduce
that ∼ is a simulation (Lemma 7.6), therefore any node of T is well-founded (Lemma 7.3).
We will conclude that T is well-founded, and R itself is well-founded (Lemma 7.5).

If ν is any node of π, we write ν : Γ ` ∆ for “the sub-proof of π of root ν has conclusion
Γ ` ∆”. Let σ = akRak−1R . . . Ra2Ra1 ∈ T be any R-decreasing chain. We define a relation
σ∼ν between R-sequences and nodes of π.

Informally, σ∼ν : Γ ` ∆ says that ∆ is a property of the nodes ak, . . . , a1 of the R-
decreasing sequence σ, and in all formulas aRb ∈ Γ and aRb =⇒ X(a) ∈ ∆, the element a
is the successor of b in σ. The precise definition follows.
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I Definition 10 (The relation ∼). Let T be the tree of R-decreasing sequences and σ =
akRak−1R . . . Ra2Ra1 ∈ T be any R-decreasing chain, with possibly k = 0. Let π : ` WF(R)
be a normal proof in PAω + ω-rule. We say that σ is simulated by a node ν : Γ ` ∆ in π, and
we write σ∼ν, if:
1. every numeral m occurring in ∆ is ai for some i = 1, . . . , k
2. every (closed) formula (pRm) ∈ Γ and (pRm) =⇒ X(p) ∈ ∆ is, respectively, (ai+1Rai),

(ai+1Rai) =⇒ X(ai+1) for some i = 1, . . . , k − 1

ν is a node of π, therefore Lemma 9 lists all formulas which may occur in the conclusion
Γ ` ∆ of ν. Using Lemma 9 we may reformulate the definition of ∼ in the following equivalent
form.

I Lemma 11 (An alternative definition of ∼). σ∼ν : Γ ` ∆ if and only if every formula
F ∈ Γ ` ∆ falls in at least one of the following cases:
1. F = WF(R) = ∀x.Wf(x) ∈ ∆
2. F = Wf(ai) = ∀X.wf(ai, X) ∈ ∆, for some ai ∈ σ
3. F = wf(ai, X) = (IND(X) =⇒ X(ai)) ∈ ∆, for some ai ∈ σ
4. F = IND(X) ∈ Γ
5. F = Ind(m,X) ∈ Γ for some m ∈ Nat
6. 1. F = X(m) ∈ Γ for some m ∈ Nat

2. F = X(ai) ∈ ∆ for some ai ∈ σ.
3. F = IH(ai, X) ∈ ∆ for some ai ∈ σ.
4. F = ((ai+1Rai) =⇒ X(ai+1)) ∈ ∆ for some ai, ai+1 ∈ σ.
5. F = (ai+1Rai) ∈ Γ for some ai, ai+1 ∈ σ.

The relation ∼ is closed under ancestor: if σ∼ν and ν≺µ then σ∼µ. The reason is that
all rules 6= cut of PAω + recursive ω-rule are contravariant w.r.t. the descendant relation ≺:
if ν : Γ ` ∆, ν′ : Γ′ ` ∆′ and ν≺ν′ then Γ ` ∆ ⊇ Γ′ ` ∆′, therefore ν′ : Γ′ ` ∆′ satisfies the
clauses for σ if ν : Γ ` ∆ satisfies the clauses for σ.

The relation ∼ is total: for every σ ∈ T there is some ν ∈ π such that σ∼ν. Proof. Let µ0
be the root of π. Then we have µ0 : ` WF(R). Every F in ` WF(R) satisfies F = WF(R) ∈ ∆.
By Lemma 11 we have σ∼µ0 for every σ ∈ T .

We recall that (τ≺1σ) means that τ is of the form ak+1RakR . . . Ra1, that is, that τ is a
generic one-step extension of σ. We write µ≺1ν for “µ is a child of ν in π”, too. We first
prove that ∼ is a weak simulation, then that ∼ is a simulation.

I Lemma 12 (Weak simulation). Let T be the tree of R-decreasing sequences, π : ` WF(R) a
normal proof in PAω + ω-rule, and ∼ as in Def. 10. Then ∼ is a weak simulation between
(T,≺1) and (π,≺≺).

Proof. Assume σ = akRak−1R . . . Ra1 and τ = ak+1RakR . . . Ra1≺1σ and σ∼ν. We have
to prove that there is some µ≺1ν in π such that σ∼µ, or τ∼µ. There are 9 classes of formulas
∈ Γ ` ∆. We distinguish 9 cases according to the formula inferred in ν.

1. WF(R). We infer WF(R) ∈ ∆ from all Wf(p) ∈ ∆ with p ∈ Nat, using the ω-rule with one
premise µp≺1ν for each p. We choose p = ak+1, the node added in τ . The extra formula
Wf(ak+1) we have in the right-hand-side of the premise µp satisfies the clause 2 of Lemma
11 for τ , therefore τ∼µp.

2. Wf(ai). We infer Wf(ai) ∈ ∆ from some wf(ai, X) ∈ ∆ using the rule ∀r with a single
premise µ≺1ν. The extra formula wf(ai, X) we have in the right-hand-side of the premise
satisfies the clause 3 of Lemma 11 for σ, therefore σ∼µ.
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3. wf(ai, X) for some ai ∈ σ. We infer wf(ai, X) = (IND(X) =⇒ X(ai)) ∈ ∆ from some
IND(X) and some X(ai) in the left- and right-hand-side using the rule =⇒r with a single
premise µ≺1ν. The extra formulas IND(X) ∈ Γ and X(ai) ∈ ∆ we have in the premise
satisfy the clauses 4, 5 of Lemma 11, therefore σ∼µ.

4. IND(X). We infer IND(X) ∈ Γ from some Ind(m,X) ∈ Γ using the rule ∀l with a single
premise µ≺1ν. The extra formula Ind(m,X) we have in the left-hand-side of the premise
satisfies the clause 5 of Lemma 11, therefore σ∼µ.

5. Ind(m,X). We infer Ind(m,X) = (IH(m,X) =⇒ X(m)) ∈ Γ using the rule =⇒l from
two premises: a left premise µ having IH(m,X) added to ∆, and a right premise µ′
having X(m) added to Γ, for some µ≺1µ

′≺1ν. The formula X(m) added to Γ satisfies
the clause 6a of Lemma 11, therefore σ∼µ′≺1ν.

6. X(m). Using the Identity rule, we infer the same formula X(m) ∈ Γ and X(m) ∈ ∆, for
some m ∈ Nat. From X(m) ∈ ∆ we get m = ai for some i = 1, . . . , k by the clause 6b of
Lemma 11. X(ai) does not belong to the left-hand-side of the root of π, therefore we may
find the last node ν≺µ in the path from ν to the root of π such that X(ai) belongs to the
left-hand-side of the conclusion of µ. The only formula in π which we may prove from some
X(ai) in the left-hand-side is a left occurrence of Ind(ai, X) = (IH(ai, X) =⇒ X(ai)).
Therefore there is some node η having µ as right premise, in which we introduce by =⇒l
some Ind(ai, X) = (IH(ai, X) =⇒ X(ai)). The left premise of η is some node θ in which
IH(ai, X) occurs in the right-hand-side and it is used by =⇒l to derive Ind(ai, X). We
sum up the situation in the proof tree below.

θ : Γ′′, Ind(ai, X) ` IH(ai, X),∆′′

ν : Γ′, X(ai) ` X(ai),∆′
id

...
µ : Γ′′, Ind(ai, X), X(ai) ` ∆′′

η : Γ′′, Ind(ai, X) ` ∆′′
=⇒l

We have σ∼η because η is an ancestor of ν. IH(ai, X) satisfies the clause 7 of Lemma 11,
therefore σ∼θ. We have θ≺≺ν because θ is the left premise and µ the right premise of η,
and µ is an ancestor of ν.

7. IH(ai, X). For some i = 0, . . . , k, we infer IH(ai, X) ∈ ∆ using the recursive ω-rule.
For every p ∈ Nat, there is some assumption µp of ν adding to ∆ the formula Fp =
(pRai =⇒ X(p)). In post-order we have µ0≺≺µ1≺≺µ2≺≺ . . .≺≺ν. We distinguish two
sub-cases according to i < k or i = k.

a. Let i < k. Then i+ 1 ≤ k, therefore (ai+1Rai =⇒ X(ai+1)) has the form required
by clause 8 of Lemma 11 for σ. If we choose p = ai+1, we conclude σ∼µp, for some
µp≺1ν.

b. Let i = k. Then ak+1 is the last element of τ . The formula (ak+1Rak) =⇒ X(ak+1)
has the form required by clause 8 of Lemma 11 for τ . If we choose p = ai+1, we
conclude τ∼µp for some µp≺1ν.

8. (ai+1Rai =⇒ X(ai), =⇒r). We infer some formula ai+1Rai =⇒ X(ai+1) ∈ ∆ using
the rule =⇒r, from one premise µ having (ai+1Rai) in the left-hand-side and X(ai) in
the right-hand-side. The first formula satisfies the clause 9 of Lemma 11, the second one
the clause 6b of the same Lemma. We conclude σ∼µ≺1ν.

9. One or more formulas aRb. We infer some atomic formulas using the rule axiom and
one basic arithmetical axiom α1, . . . , αn ` α or β1, . . . , βn `, with all αi, α of the form
p(t1, . . . , tm) for some p, t1, . . . , tm. All atomic formulas p(t1, . . . , tm) in π have the form
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ai+1Rai, are closed, are true by assumption on σ, and are in the left-hand side. Thus,
the basic arithmetical axiom has the form α1, . . . , αn `, with all αi closed and true. This
case cannot happen, because axiom may infer a closed sequence α1, . . . , αn ` only if it is
true, hence if some αi is false. J

We have now all the ingredients we need to intuitionistically derive our conservativity
result.

I Lemma 13 (well-foundedness of R). Assume R is any primitive recursive binary relation
on Nat, and (T,≺1) is the tree of R-decreasing sequences with the child/father relation. Let
π : WF(R) be any proof of WF(R) in PAω, and Π = gf(π) : WF(R) be the normal proof of WF(R)
in PAω + recursive ω-rule, obtained by 8.1, 2. Let ∼ be the simulation relation defined above,
and ≺≺ the post-order ordering on Π.
1. Π with ≺≺ is well-founded.
2. ∼ is a simulation relation of (T,≺1) in Π, ≺≺.
3. (T,≺1) is well founded
4. R is well founded.

Proof.
1. By the Kleene-Brouwer Theorem (Lemma 7.4) and the hypothesis that Π, ≺1 is well-

founded.
2. By Lemma 7.6, the fact that ∼ is a weak simulation (Lemma 12), and that (Π,≺≺) is

well-founded (point 1).
3. By point 2 above, ∼ is a simulation. By point 1, the root of Π is ≺≺-well-founded. Any

node of T is related to the root of Π by ∼, hence by Lemma 7.3, any node of T is
≺1-well-founded. We conclude that (T,≺1) is well-founded.

4. R is well founded by Lemma 7.5, because (T,≺1) is well-founded by point 3. J

Eventually, we conclude:

I Theorem 14 (Conservativity). Assume R,R1, . . . , Rn are any binary primitive recursive
relation over Nat and n > 0.
1. If PAn ` WF(R1), . . . , WF(Rn) =⇒ WF(R), then using Comprehension of order n + 1we

may intuitionistically derive WF(R1), . . . , WF(Rn) =⇒ WF(R).
2. If PAω ` WF(R1), . . . , WF(Rn) =⇒ WF(R), then using Comprehension of order ω we may

intuitionistically derive WF(R1), . . . , WF(Rn) =⇒ WF(R).

Proof.
1. Assume WF(R1), . . . , WF(Rn) and PAn ` WF(R1), . . . , WF(Rn) =⇒ WF(R), in order to

deduce WF(R). By Lemma 5 we have PAn ` WF(R1) and . . . and PAn ` WF(Rn). By cut rule
we deduce PAn ` WF(R). By Lemma 13.4 we conclude WF(R). The proof is intuitionistic
because all proofs in this paper are intuitionistic. The proof may be obtained using
comprehension of order n+ 1 because this is the case for normalization for PAn + ω-rule.

2. By the previous point. J

6 Conclusions

The aim of this work is to isolate classes C of formulas such that all proofs of formulas in C
may be turned into intuitionistic proofs, at least in principle. The idea is that, if we care
about proving a mathematical result having a concrete meaning, and we have a theorem
which is classically but not intuitionistically provable, then we should reformulate our goal

CSL 2015



356 Classical and Intuitionistic Well-Foundedness

in order to obtain one formula in one of these classes. Then we may prove our result freely
using classical logic, knowing that, afterward, our proof may always be made intuitionistic.
The advantage is that it is much easier to restrict ourselves to a goal in a class C of formulas,
instead than to the use of intuitionistic logic in the proof of the goal. Intuitionistic proofs
provide extra information, but if we choose to prove a statement in C, then we know that the
intuitionistic proof may always be done as a second step. As a first step we check whether
the statement is classically true, a much easier task.

The very first example for C was provided by K. Gödel. In this case, C is the set of
formulas obtained inserting a double negation (¬¬) everywhere. However, this class C has
mainly an interest from a foundational viewpoint, because in intuitionistic logic the proof of
a negation provides no concrete information.

A second example for C is the set of formulas provided by the Dialectica interpretation.
In this case we have formulas whose intuitionistic proofs are rich of concrete consequences.
Indeed, these formulas are successfully used by U. Kohlenbach [11] and others to analyze,
say, proofs of fixed point results for non-expansive maps. A drawback of this class, however,
lies in the complexity of these formulas, which are long, involved, and use functionals of
higher types. Often, formulas in C require a real effort to be understood.

Another choice for C is the set of Π0
2-sentences, those of the form ∀x ∈ Nat.∃y ∈

Nat.R(x, y), for any primitive recursive binary relation R on Nat. The conservativity result
for this class was proved by G. Kreisel [12]. Later, H. Friedman provided A-translation, the
first realistic and purely mechanical method for turning a classical proof of a Π0

2-formula
into an intuitionistic one of the same formula [8]. An intuitionistic proof of a Π0

2-formula
is not a mere existence result, but it outlines a method for computing y given x. The only
limitation is that this class is very narrow: in a proof of a Π0

2-formula we often use as lemmas
some statements which are much more complex in the arithmetical hierarchy. We would like
intuitionistically provable versions for lemmas, too.

One way to overcome this limitation is to generalize A-translation to a larger class of
first order formulas. Berger, Buchholz and Schwichtenberg [4] proved, for instance, that we
may take as C the set of all sequents Γ ` A with A some Π0

2-formula and Γ containing only
formulas ∀x1, . . . , xn.(α1, . . . , αm =⇒ α), with α and all αi atomic and different from the
constant ⊥ (false). There are more results along this line [4] .

However, there are Π0
2-theorems requiring more than first order formulas. For instance,

Paris-Harrington theorem, the Theorem about Goodstein sequences, Higman Lemma and
Kruskal Lemma are Π0

2-theorems whose proof requires second order formulas. Therefore it
makes sense to look for a choice of C including some second order formulas.

In this paper we considered a choice of this kind, all statements of the form: “if WF(R1),
. . . , WF(Rn) then WF(R)”, where WF(S) means: “S is inductively well-founded”, again for any
primitive recursive binary relations S on Nat.

6.1 Some corollaries of the conservativity result
The conservativity results holds for statements of the form: “WF(R1), . . . , WF(Rn) =⇒ WF(R)”.
The relevance of this class relies on the empirical evidence that many mathematical results,
if expressed in this form, are rich of concrete and interesting intuitionistic consequences.

For instance, Higman’s Lemma may be expressed in the form WF(R) for some primitive
recursive R, as follows. Let us denote with List(I) the set of finite lists over some set
I. For any L,M ∈ List(I), we write L v M if L may be obtained from M by possibly
skipping some elements of M . Let T be the set of 〈L1, . . . , Ln〉 ∈ List(List(Nat)) such
that for all 0 < i < j < n we have Li 6v Lj . Then Higman Lemma may be expressed by
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saying that the set T is well-founded by one-step extension (see [5], [7]). A similar remark
applies to Kruskal’s Lemma. More in general, the theory of Almost Full Relations, the
intuitionistic version of Quasi-Well-Orders, may be developed using theorems of the form
WF(R1), . . . , WF(Rn) =⇒ WF(R) ([20]).

Another example is Ramsey’s Theorem. Let G ⊆ Nat be any primitive recursive complete
graph and c : G ×G → {1, . . . , n} be any primitive recursive n-color assignment . Define,
for i = 1, . . . , n, Ti as the set of all finite increasing lists 〈x1, . . . , xn〉 over Nat, such that for
all 0 < j < k < n we have xj , xk ∈ G and c(xj , xk) = i. Define T as the set of all finite
increasing lists 〈x1, . . . , xn〉 over Nat, such that for all 0 < j < k < n we have xj , xk ∈ G.
Then we may express Ramsey theorem by saying: if T1, . . . , Tn are well-founded then T is
well-founded. Indeed, by definition unfolding, this implication means: if, for i = 1, . . . , n, the
tree of finite i-colored sub-graph of G is well-founded by one-point extension, then the tree
of all finite sub-graphs of G is well-founded by one-step extension. This latter is just a way
of saying: G itself is finite. We recognize this statement as a variant of the contrapositive
of Ramsey. By Theorem 14 this statement has an intuitionistic proof, whenever G, c are
primitive recursive. In fact, this variant of Ramsey theorem has an intuitionistic proof for
any G, c ([3]), but Theorem 14 cannot prove it.

Besides, an intuitionistic proof of “R is inductively well-founded” is not just a proof of:
“there is some bound to the ordinal height of R”, it effectively provides such a bound. This
extra information about ordinals has been used, for instance, to characterize the programs
proved terminating by the Termination algorithm [2].

It is worth to quote that the statements of the form WF(R) are used to develop formal
topology ([6]).

Acknowledgments. We thank F. Aschieri, U. Berger, T. Coquand, P. Martin-Löf and P.
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