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Abstract
Unambiguous automata are usually seen as a natural class of automata in-between deterministic
and nondeterministic ones. We show that in case of infinite tree languages, the unambiguous
ones are topologically far more complicated than the deterministic ones. We do so by providing
operations that generate a family (Abα)α<ϕ2(0) of unambiguous automata such that:
1. It respects the strict Wadge ordering: α < β if and only if Abα <W Abβ . This can be established

without the help of any determinacy principle, simply by providing effective winning strategies
in the underlying games.

2. Its length (ϕ2(0)) is the first fixpoint of the ordinal function that itself enumerates all fixpoints
of the ordinal exponentiation x ↦ ωx: an ordinal tremendously larger than (ωω)3 + 3 which
is the height of the Wadge hierarchy of deterministic tree languages as uncovered by Filip
Murlak.

3. The priorities of all these parity automata only range from 0 to 2.
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1 Introduction

An unambiguous automaton is a nondeterministic automaton that admits at most one
accepting run on each input. By definition, the class of languages recognized by unambiguous
automata includes the class of languages recognized by deterministic automata and is included
in the class of languages recognized by nondeterministic automata. Depending on the context,
some of these inclusions may be strict. For example, in the case of finite automata on
finite words, none of these inclusions is strict, because every regular language is recognized
by a deterministic finite automaton. The picture is still trivial for infinite words if we
consider the parity condition, but becomes more interesting for Büchi automata. While not
every ω-regular (nondeterministic) language is recognized by deterministic Büchi automaton,
it always can be recognized by an unambiguous automaton ([2]). From the algorithmic
perspective unambiguous automata may be considered as a trade off between succinctness
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and efficiency. It is best understood for finite words. One can find example of unambiguous
automaton exponentially more succinct than the corresponding deterministic one, while
universality, equivalence and inclusion decision problems are in P for unambiguous and
are PSPACE-complete for nondeterministic automata (see [9] for more details and further
references).

In this paper we concentrate on infinite trees and parity condition. On the one hand, it
is easy to observe that unambiguous automata are more expressive than the deterministic
ones in this context: consider for example the language “exists exactly one branch with
infinitely many labels a”. On the other hand, it took a while to determine whether there are
regular languages that are inherently ambiguous: it was shown by Niwiński and Walukiewicz
in [14] (later described in [7] and [8]) that unambiguous automata do not recognize all
nondeterministic languages. Still, unambiguous automata, although poorly understood so
far, can occur to be an important intermediate model, as many questions seem to be very
hard to answer for nondeterministic automata. For example no algorithm is known that
calculates Rabin-Mostowski index for a given regular language.

The tool to measure the position of unambiguous languages of infinite trees in between
deterministic and nondeterministic ones is given by descriptive set theory through the
notion of topological complexity. It is well known that deterministic parity tree automata
recognize only languages in the Π1

1 class (coanalytic sets), whereas nondeterministic automata
recognize some languages that are neither analytic, nor coanalytic. The expressive power
of nondeterministic automata is nonetheless bounded by the second level of the projective
hierarchy, and, by Rabin’s complementation result ([15]), all nondeterministic languages are
in fact in the ∆1

2 class. In [12], the third author gives an unambiguous language G which is
Σ1

1-complete, and constructs from it an unambiguous language that is outside both Π1
1 and

Σ1
1. A finer topological complexity measure is therefore needed: the Wadge hierarchy, which

relies on the notion of reductions by continuous functions (Wadge-reducibility). Complexity
classes, called Wadge degrees, consist of sets Wadge-reducible to each other, and constitute a
hierarchy whose levels, called ranks, can be enumerated with ordinals. We describe a series
of operations on automata that preserve unambiguity and lift the Wadge degrees of the
recognized languages. We emphasize that this is done without any particular determinacy
principle. In particular, we do not require ∆1

2-determinacy. These operations help us
generate a hierarchy of canonical unambiguous languages of higher and higher topological
complexity. This hierarchy has ϕ2(0) many levels, where ϕ2(0) stands for the first fixpoint
of the ordinal function1 x↦ εx which itself enumerates the fixpoints of the exponentiation
x↦ ωx. Compared to the height of the Wadge hierarchy of all deterministic tree languages,
which is (ωω)3 + 3 as established by Filip Murlak in [13], the ordinal ϕ2(0) is tremendously
larger.

The gap between the respective topological complexity of the two considered classes
of languages, measured by the difference between the height of their respective Wadge
hierarchies, illustrates the discrepancy between these classes. It is nonetheless not the only
interest of the descriptive set theoretic framework, as it is shown by the recent results
obtained on MSO+U. In [5], a topological complexity result was used to prove that there is
no algorithm that decides satisfiability of a formula of MSO+U logic on infinite trees and
that has a correctness proof in ZFC (an “almost undecidability” result), partially answering
a question that was open for over ten years [4]. The elementary undecidability argument was
later given in [6], but the topological result came first and motivated the research towards

1 not to be mistaken with an ε-move.
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the other. Our constructions provide benchmarks for the study of unambiguous languages,
and could lead to prominent algorithmic results for this class. It might, for example, help
determine if it is decidable whether a given nondeterministic language is unambiguous.
The result also could contribute to solving unambiguous index problem as it can help in
characterising unambiguous languages of index (0,2).

2 Preliminaries

2.1 The Wadge hierarchy and the Wadge game
The Wadge theory is in essence the theory of pointclasses (see [1]). Let X be a topological
space. A pointclass is a collection of subsets of X that is closed under continuous preimages.
For Γ a pointclass, we denote by Γ̌ its dual class containing all the subsets of X whose
complements are in Γ, and by ∆(Γ) the ambiguous class Γ ∩ Γ̌. If Γ = Γ̌, we say that Γ is
self-dual.

The Wadge preorder ≤W on P(X) is defined as follows: for A,B ⊆ X, A ≤W B if and
only if there exists f ∶X Ð→X continuous such that f−1(B) = A. It is merely by definition a
preorder. The Wadge preorder induces an equivalence relation ≡W whose equivalence classes
are called the Wadge degrees, and denoted by [A]W . We say that the set A ⊆X is self-dual
if it is Wadge equivalent to its complement, that is if A ≡W A∁, and non self-dual if it is not.
We use the same terminology for the Wadge degrees.

Let Γ be a pointclass of X. There is a strong connection between pointclasses included
in Γ and Wadge degrees of sets in Γ, since all non self-dual pointclasses are of the form

{B ⊆X ∶ B ≤W A}

for some non self-dual set A, while self-dual pointclasses are all of the form

{B ⊆X ∶ B ≤W A and A ≰W B} ,

also for some non self-dual set A. We have thus a direct correspondence between (P(X),≤W )
restricted to Γ and the pointclasses included in Γ with the inclusion: the pointclasses are
exactly the initial segments of the Wadge preorder. In particular, the Wadge hierarchy refines
tremendously the Borel and the Projective hierarchies.

A conciliatory binary tree over a finite set Σ is a partial function t ∶ {0,1}∗ → Σ with
a prefix closed domain. Those trees can have both infinite and finite branches. A tree is
called full if dom(t) = {0, 1}∗. Let T ≤ωΣ and TΣ denote, respectively, the set of all conciliatory
binary trees and the set of full binary trees over Σ. Given x ∈ dom(t), we denote by tx the
subtree of t rooted in x. Let {0, 1}n denote the set of words over {0, 1} of length n, and let t
be a conciliatory tree over Σ. We denote by t[n] the finite initial binary tree of height n + 1
given by the restriction of t to ⋃0≤i≤n{0,1}i.

The space TΣ equipped with the standard Cantor topology is a Polish space and is in
fact homeomorphic to the Cantor space2. Let L,M ⊆ TΣ, the Wadge game W (L,M) is a
two player infinite game that provides a very useful characterization for the Wadge preorder.
In this game, each player builds a tree, say tI and tII. At every round, player I plays first,
and both players add a finite number of children to the terminal nodes of their tree. Player
II is allowed to skip its turn, but has to produce a tree in TΣ throughout a game. Player II
wins the game if and only if tI ∈ L⇔ tII ∈M .

2 See for example [3].



J. Duparc, K. Fournier, and S. Hummel 537

I Lemma 1 ([18]). Let L,M ⊆ TΣ. Then L ≤W M if and only if player II has a winning
strategy in the game W (L,M).

We write A <W B when II has a winning strategy in W (A,B) and I has a winning strategy
in W (B,A)3.Given a pointclass Γ of TΣ with suitable closure properties, the assumption of
the determinacy of Γ is sufficient to prove that Γ is semi-linearly ordered by ≤W , denoted
SLO(Γ), i.e. that for all L,M ∈ Γ,

L ≤W M or M ≤W L∁,

and that ≤W is well founded when restricted to sets in Γ ([16, 1]). Under these conditions,
the Wadge degrees of sets in Γ with the induced order is thus a hierarchy called the Wadge
hierarchy. Therefore, there exists a unique ordinal, called the height of the Γ-Wadge hierarchy,
and a mapping dΓ

W from the Γ-Wadge hierarchy onto its height, called the Wadge rank,
such that, for every L,M non-self-dual in Γ, dΓ

W (L) < dΓ
W (M) if and only if L <W M and

dΓ
W (L) = dΓ

W (M) if and only if L ≡W M or L ≡W M∁. The wellfoundedness of the Γ-Wadge
hierarchy ensures that the Wadge rank can be defined by induction as follows:

dΓ
W (∅) = dΓ

W (∅∁) = 1
dΓ
W (L) = sup{dΓ

W (M) + 1 ∶M is non-self-dual,M <W L} for L >W ∅.
Note that given two pointclasses Γ and Γ′, for every L ∈ Γ ∩ Γ′, dΓ

W (L) = dΓ′
W (L). Under

sufficient determinacy assumptions, we can therefore safely speak of the Wadge rank of a tree
language, denoted by dW , as its Wadge rank with respect to any topological class including
it. However the main result of this article does not provide any Wadge rank for the canonical
languages that are constructed, because we do not make use of any determinacy principle.

2.2 The Conciliatory Hierarchy
For conciliatory languages L,M we define the conciliatory version of the Wadge game:
C(L,M) ([10, 11]). The rules are similar, except for the fact that both players are now
allowed to skip and to produce trees with finite branches - or even finite trees. For conciliatory
languages L,M we use the notation L ≤c M if and only if II has a winning strategy in the
game C(L,M). If L ≤c M and M ≤c L, we will write L ≡c M . The conciliatory hierarchy is
thus the partial order induced by ≤c on the equivalence classes given by ≡c. We write A <c B
when II has a winning strategy in C(A,B) and I has a winning strategy in C(B,A).

From a conciliatory language L over Σ, one defines the corresponding language Lb of full
trees over Σ ∪ {b} by:

Lb = {t ∈ TΣ∪{b} ∶ t[ /b] ∈ L} ,

where b is an extra symbol that stands for “blank”, and t[ /b], the undressing of t, is informally
the conciliatory tree over Σ obtained once all the occurences of b have been removed in a
top-down manner. More precisely, if there is a node v such that t(v) = b, we ignore this node
and replace it with v0. If, for every integer n, t(v0n) = b, then v ∉ dom(t[ /b]). This process
is illustrated by Figure 1.

Formally, for each v ∈ {0, 1}∗ we consider two (possibly infinite) sequences (wi) and (ui)
in {0,1}∗:

w0 = ε, u0 = v,

3 This is in general stronger than the usual A <W B if and only if A ≤W B and B /≤W A, but the two
definitions coincide when the classes considered are determined.
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Figure 1 The undressing process.

for 0 ≤ i:
if t(wi) = b, we set ui+1 = ui and wi+1 = wi0;
if t(wi) ≠ b and ui = au′i for a ∈ {0,1}, we set
ui+1 = u′i and wi+1 = wia;
if t(wi) ≠ b and ui = ε, we halt the construction at step i.

If the construction is halted at some step i, then v ∈ dom(t[ /b]) and t[ /b](v) = t(wi).
Otherwise, v ∉ dom(t[ /b]). If Γ is a pointclass of full trees, we say that a conciliatory
language L is in Γ if and only if Lb is in Γ.

I Lemma 2. Let L and M be conciliatory languages. Then

L ≤c M if and only if Lb ≤W M b.

Proof. A strategy in one game can be translated directly into a strategy in the other game:
arbitrary skipping in C(L,M) gives the same power as the b labels in W (Lb,M b). In
particular, in W (Lb,M b), II does not need to skip at all. J

The mapping L ↦ Lb gives thus a natural embedding of the preorder ≤c restricted to
conciliatory sets in Γ into the Γ-Wadge hierarchy. Hence, for Γ with suitable closure and
determinacy properties, the conciliatory degrees of sets in Γ with the induced order constitute
a hierarchy called the conciliatory hierarchy. We define, by induction, the corresponding
conciliatory rank of a language:
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dΓ
c (∅) = dΓ

c (∅∁) = 1
dΓ
c (L) = sup{dΓ

c (M) + 1 ∶M <c L} for L >c ∅.
Similarly to the Wadge case, given two pointclasses Γ and Γ′, for every conciliatory L ∈ Γ∩Γ′,
dΓ
c (L) = dΓ′

c (L). Under sufficient determinacy assumptions, we can therefore safely speak, of
the conciliatory rank of a conciliatory tree language, denoted by dc, as its conciliatory rank
with respect to any topological class including it. Observe that the conciliatory hierarchy
does not contain self-dual languages: a strategy for I in C(L,L∁) is to skip in the first round,
and then copy moves of II.

2.3 Automata and conciliatory trees

A nondeterministic parity tree automaton A = ⟨Σ,Q, I, δ, r⟩ consists of a finite input alphabet
Σ, a finite set Q of states, a set of initial states I ⊆ Q, a transition relation δ ⊆ Q ×Σ ×Q ×Q
and a priority function r ∶ Q→ ω. A run of automaton A on a binary conciliatory input tree
t ∈ T ≤ωΣ is a conciliatory tree ρt ∈ T ≤ωQ with dom(ρt) = {ε}∪{va ∶ v ∈ dom(t)∧a ∈ {0, 1}} such
that the root of this tree is labeled with a state q ∈ I, and for each v ∈ dom(t), transition
(ρt(v), t(v), ρt(v1), ρt(v1)) ∈ δ. The run ρt is accepting if parity condition is satisfied on
each infinite branch of ρt, i.e. if the highest rank of a state occurring infinitely often on the
branch is even, and if the rank of each leaf node in ρt is even. We say that a parity tree
automaton A accepts a conciliatory tree t if it has an accepting run on t. The language
recognized by A, denoted L(A) is the set of trees accepted by A. The Rabin-Mostowski index
of the automaton is a pair (min(r(Q)),max(r(Q))). A language is of index (i, k) if it is
recognized by some automaton of index (i, k). An automaton is unambiguous if it has at
most one accepting run on each input. We denote by Lω(A) the set of full trees recognized
by A, i.e. Lω(A) = L(A) ∩ TΣ.

I Corollary 3. The mapping L ↦ Lb embeds the conciliatory hierarchy for ∆1
2-sets re-

stricted to unambiguously recognizable languages into the ∆1
2-Wadge hierarchy restricted to

unambiguously recognizable languages.

Proof. By Lemma 2 it is enough to prove that each unambiguous automaton A can be
transformed into an unambiguous automaton A′ such that Lω(A′) = L(A)b. Given any
unambiguous automaton A, this is done by adding an all-accepting state ⊺ to the set of states
QA, and the set {(q, b, q,⊺) ∶ q ∈ QA} to the transition relation δA. The obtained automaton
A′ is unambiguous and such that Lω(A′) = L(A)b. J

In the diagrams of automata below, we use ε-transitions, i.e transitions that change state
but do not progress run down a tree. This is, however, only a notation shortcut here — we
do it to emphasize nondeterministic choice better. The transitions can be easily simulated by
adding more transitions of the type as in the above definition to the state they lead from. We
also use the following conventions in the diagrams. Nodes represent states of the automaton.
Node labels correspond to state ranks. We additionally mark parity of ranks by node colors:
nodes corresponding to states with even ranks are green, while nodes corresponding to states
with odd ranks are red. A red edge shows the state that is assigned to the left successor
node of a transition, a green edge goes to the right successor node. Edge label marks the
label of a tree the transition goes through. In order to lighten the notation, transitions that
are not depicted on a diagram lead to some definitely all-accepting state.

CSL 2015
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3 Operations on languages and their automatic counterparts

In this section, we present classical operations ([11]) on conciliatory tree languages that allow
us to construct more and more complicated languages, and we prove that they preserve
unambiguity, i.e. that if we apply them to unambiguously recognizable languages, the
resulting language is equivalent4 to an unambiguously recognizable one. Without loss of
generality, we may choose the alphabet Σ = {0,1}.

3.1 The sum
For L,M ⊆ T ≤ωΣ , we define the sum of L and M , in symbols L⊕M , as the conciliatory tree
language containing all of those trees t ∈ T ≤ωΣ that one of the following conditions holds:

t(10n) = 0 for each integer n and t0 ∈M ;
the node 10n is the first on the path 10∗ labeled with 1 and either t(10n0) = 0 and
t10n00 ∈ L, or t(10n0) = 1 and t10n00 ∈ L∁

This operation behaves well regarding the conciliatory hierarchy.

I Facts 4 ([10, 11]). Let L, M , and M ′ be conciliatory tree languages over Σ. Then the
following hold.
1. (L⊕M)∁ ≡c L⊕M∁.
2. (L⊕M) ⊕M ′ ≡c L⊕ (M ⊕M ′).
3. The operation ⊕ preserves the conciliatory ordering: if M ′ ≤c M , then

L⊕M ′ ≤c L⊕M.

Let A and B be two automata that recognize respectively the conciliatory languages M
and L. Then the automaton B +A depicted in Figure 2 recognizes the sum of L and M .
In this picture, C is any automaton that recognizes a language equivalent to L∁, and the
parities i and j are defined as follows:

i = 0 if and only if the empty tree is accepted by A;
j = 1 if and only if L(A) is equivalent to L(A) → g.5
Note that the operation sum is in itself unambiguous, so that if A and B are unambiguous,

and if there exists an unambiguous C equivalent to the complement of B, their sum B +A is
also unambiguous. The core observation here is that only one of the initial ε-transitions can be
taken in a root of a given tree, depending on whether there is a node labeled with 1 on branch
10∗ in the tree or not. Moreover, if L and M are unambiguously recognizable conciliatory
languages, and if the complement of M is equivalent to an unambiguously recognizable
language M̌ , the complement of L ⊕M is equivalent to L ⊕ M̌ , which is unambiguously
recognizable.

For M ⊆ T ≤ωΣ and n ∈ ω, we denote by M ⊙ n the sum of M with itself n times:

M ⊙ n =M ⊕M ⊕ . . .⊕M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

.

If A recognizes M , we denote by A ● n the automaton that recognizes M ⊙ n.

4 Relatively to ≡c.
5 A player in charge of L(A) → gin a conciliatory game is like a player in charge of L(A), but with the

extra possibility at any moment of the play to reach a definitively rejecting position. We denote by g
the automaton that rejects all trees.
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Figure 2 The automaton B +A that recognizes L(B) ⊕L(A). The values of i and j depend on
properties of A. The transitions that are not depicted lead to an all-accepting state ⊺.

I Lemma 5. Let L, L′, M and M ′ be conciliatory languages such that L <c L′ and M ≤c M ′.
Then, the following hold.
1. M ⊕L <c M ′ ⊕L′;
2. M <c M ⊕L.6

Proof.
1. It is clear that M ⊕ L ≤c M ′ ⊕ L′, what remains to prove is thus that I has a winning

strategy in C(M ′ ⊕L′,M ⊕L). Let τ be the winning strategy for I in C(L′, L). Observe
that, since M ≤c M ′, player I has a winning strategy τ ′ in C(M ′,M∁). A strategy σ for
I in the game C(M ′⊕L′,M ⊕L) is the following. First I plays 0 on the node ε, and then,
as long as player II does not play a 1 on the branch 10∗, I follows τ on the left subtree
0{0, 1}∗. If ever II plays a 1 on a node 10n, then I copies II’s moves for the branch 10n0,
and then follows τ ′ on the subtree 10n0{0, 1}∗. Since τ and τ ′ are winning, σ is a winning
strategy for I in C(M ′ ⊕L′,M ⊕L). Thus M ⊕L <c M ′ ⊕L′.

2. It is clear that M ≤c M ⊕L: a winning strategy for II in C(M,M ⊕L) is indeed to play 0
at ε, 1 at the node 1, 0 at the node 010, and then copy I’s moves in the subtree 010{0, 1}∗.
The winning strategy σ for I in the game C(M,M ⊕L) is similar. First, I plays 0 at ε, 1
at the node 1, 1 at the node 010, and then copy I’s moves in the subtree 010{0,1}∗. J

3.2 The pseudo-exponentiation
Let P ⊆ T ≤ωΣ be a conciliatory tree language. For t ∈ T ≤ωΣ , let:

iP (t)(a1a2 . . . an)

=
⎧⎪⎪⎨⎪⎪⎩

t(a10a20 . . .0an0) if ta10a20,...0an1 ∈ P ;
b otherwise.

This process is illustrated in Figure 3. The nodes in red are called the auxiliary moves, and
the nodes in blue the main run. The blue arrows denote the dependency of a node of the
main run on a subtree of auxiliary moves. If the auxiliary subtree of a main run node is not
in P , then we say that the node is killed.

Let L ⊆ T ≤ωΣ , we define the action of P on L, in symbols (P,L), by

{t ∈ T ≤ωΣ ∶ iP (t)[ /b] ∈ L} .

6 In particular M ⊙ n <c M ⊙ (n + 1) for any 0 < n < ω.
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Let PΠ0
1
be the complete closed set of all full trees over Σ with all nodes on the leftmost

branch 0∗ labelled by 0. For L ⊆ T ≤ωΣ , we denote by (Π0
1, L) the action of PΠ0

1
on L. This

operation (Π0
1, ⋅) behaves well regarding the conciliatory hierarchy.

I Facts 6 ([10, 11]). Let L and M be conciliatory tree languages over Σ. Then the following
hold.
1. (Π0

1, L)∁ ≡c (Π0
1, L

∁).
2. If L ≤c M , then (Π0

1, L) ≤c (Π0
1,M).

3. If L <c M , then (Π0
1, L) <c (Π0

1,M).

The sets obtained as results of the operation (Π0
1, ⋅) are, so to speak, fixed points for ⊕.

I Proposition 7. Let L, L′ and M be conciliatory languages such that L <c (Π0
1,M) and

L′ <c (Π0
1,M). Then

L⊕L′ <c (Π0
1,M)

Proof. The fact that L ⊕ L′ ≤c (Π0
1,M) is clear: if σ0, σ1 and σ′ are winning strategies

respectively in the games C(L, (Π0
1,M)), C(L∁, (Π0

1,M)) and C(L′, (Π0
1,M)), a winning

strategy for II in C(L⊕L′, (Π0
1,M)) is the following. As long as player I does not play a 1

on the branch 10∗, II does not kill any nodes and follows σ′ to what I plays in the subtree
0{0, 1}∗ to get her main run. If ever II plays a 1 on a node 10n, then II kills all the nodes of
the main run she had already played (by playing 1 on the leftmost branches of appropriate
auxiliary subtrees), and begins to play along a tree not in M in her main run, without killing
any node. If I plays 0 on the node 10n0, she kills every node in the main run she had already
play, and then follows σ0 on the subtree 10n0{0, 1}∗. If I plays 1 on the node 10n0, she kills
every node in the main run she had already play, and then she follows σ1 on the subtree
10n0{0,1}∗. The proof that I has a winning strategy τ in the game C((Π0

1,M), L ⊕ L′)
is mutatis mutandis the same, given that I has a winning strategy for each of the games
C((Π0

1,M), L), C((Π0
1,M), L∁) and C((Π0

1,M), L′). J

Let A be an automaton that recognizes L ⊆ T ≤ωΣ . Then the conciliatory tree language
(Π0

1, L) is recognized by the automaton ωA defined from A by replacing each state of A by
a “gadget”, as depicted in Figure 4. By replacing a state by the gadget we mean that all
transitions ending in this state should now end in the initial state of the gagdet, and that all
the transitions starting from this state should now start from the final state of the gadget.
This sort of gadget first appeared in [11].

Observe that if A is unambiguous, then ωA is also unambiguous, so that the operation
(Π0

1, ⋅) preserves the unambiguity of conciliatory tree languages.
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Figure 4 The gadget to replace a state in A.
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Figure 5 Sketch of automata, where Π1
1 and Σ1

1 denote automata that recognize respectively a
Π1

1-complete language and the complement of this language.

4 Difference of co-analytic sets

The operations defined in Section 3 are Borel in the sense that when we apply them to
Borel languages, the resulting language is still Borel. As our purpose is to illustrate the
wide discrepancy between deterministic and unambiguously recognizable languages, we
need to climb higher in the topological complexity hierarchy. In order to achieve this
objective, we will combine a construction due to the third author in [12] with a variant of
the pseudo-exponentiation.

4.1 The D2(Π1
1) class

For a topological space X, we denote by D2(Π1
1)(X) the class of differences of two coanalytic

sets, i.e.

D2(Π1
1)(X) = {A ∩B ∶ A ∈ Π1

1(X) and B ∈ Σ1
1(X)} .

Using the unambiguously recognizable Σ1
1-complete language G (of full trees) from [12], we

define an unambiguously recognizable conciliatory language that is D2(Π1
1)-complete and

such that its complement is also unambiguously recognizable. Their definitions are given via
the automata that recognize them. The abstract idea behind our construction is depicted by
Figure 5 which represents a general form of automata that would recognize languages that
are D2(Π1

1)-complete (Figure 5a), and Ď2(Π1
1)-complete (Figure 5b).

The automaton A1, indeed, recognizes a tree t ∈ T ≤ωΣ if and only if t0 is in a given
conciliatory Π1

1-complete language (say A) and t1 is in its complement which is Σ1
1-complete.

Since the maps t↦ t0 and t↦ t1 are continuous, the language recognized by the automaton is
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there are two different transitions from given state over given letter then egdes of one of them are
drawn with solid line while the edges of the other are drawn with dashed line.
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Figure 7 Unambiguous automata that recognize respectively a D2(Π1
1)-complete and a

Ď2(Π1
1)-complete language. The transitions that are not depicted lead to an all-accepting state ⊺.

thus D2(Π1
1). Moreover, if M ∈ Π1

1 and M ′ ∈ Σ1
1, M ∩M ′ ≤c L(A1): a winning strategy for

player II in the game C(M∩M ′, L(A1)) is indeed to glue together her winning strategies in the
games C(M,A) and C(M ′,A∁). Hence, the language recognized by A1 is D2(Π1

1)-complete.
The reasoning for A2 is similar, observing that

(M ∩M ′)∁ = (M ∩M ′ ∁) ∪ (M∁ ∩M ′ ∁) ∪ (M∁ ∩M ′).

We now define two unambiguous automata: the first one recognizes a Σ1
1-complete

language, and the other one recognizes the complement of the first one, i.e. a Π1
1-complete

language7. They are depicted in Figure 6.
We will denote by AΣ1

1
and AΠ1

1
the conciliatory languages recognized respectively by AΣ1

1
and AΠ1

1
. Combining these constructions, we can now define an unambiguously recognizable

conciliatory language that is D2(Π1
1)-complete (Figure 7a) and such that its complement

(Figure 7b) is also unambiguously recognizable, via the automata that recognize each of them.
We will denote by AD2(Π1

1) and AĎ2(Π1
1)

the conciliatory languages recognized respectively
by AD2(Π1

1) and AĎ2(Π1
1)
.

7 See [12] for proofs.
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4.2 The operation (D2(Π1
1), ⋅)

For M ⊆ T ≤ωΣ , we denote by (D2(Π1
1),M) the action of AD2(Π1

1) on M . Observe that this
operation is highly non-Borel, since if we apply it to a Σ0

1-complete conciliatory language, the
resulting language will be complete for the pointclass of all the countable unions of D2(Π1

1)
languages. We prove that (D2(Π1

1), ⋅) behaves well with respect to ≤c.

I Theorem 8. Let M,M ′ ⊆ T ≤ωΣ . If M ≤c M ′, then
1. (D2(Π1

1),M)∁ ≡c (D2(Π1
1),M∁);

2. (D2(Π1
1),M) ≤c (D2(Π1

1),M ′).

Proof. The first point holds merely by the definition of the operation (D2(Π1
1), ⋅). The

proof of the second point relies on a variation of the remote control strategy ([10]). Let t be
a finite binary tree over {0,1,2,3}. We say that t is coherent if for every node v ∈ dom(t),
t(v) ∈ {1, 2, 3} implies that all the nodes in v1{0, 1}∗ ∩dom(t) have the same label, t(v). Let
(βn)n∈ω be an enumeration of the set of the coherent trees, such that if ti is an initial segment
of tj , then i ≤ j. We call βi the i-th bet. A bet encodes information on the auxiliary moves
of I in the game C((D2(Π1

1),M), (D2(Π1
1),M ′)): its underlying binary tree determines the

part of the main run taken into account, and the values at the nodes whether this node will
be killed or not, and how. Suppose I plays a conciliatory tree t. For v = v0 . . . vj ∈ dom(βi),
βi(v) = 0 means that the node 0v00v1 . . . 0vj stays alive, i.e. that t0v00v1...0vj1 ∈ AD2(Π1

1). The
value 1 means that the node 0v00v1 . . .0vj is killed because t0v00v1...0vj10 and t0v00v1...0vj11
belong to AΠ1

1
, so that t0v00v1...0vj1 ∈ AĎ2(Π1

1)
. The value 2 means that the node 0v00v1 . . . 0vj

is killed because t0v00v1...0vj10 ∈ AΣ1
1
and t0v00v1...0vj11 ∈ AΠ1

1
, and the value 3 means that it

is killed because both t0v00v1...0vj10 and t0v00v1...0vj11 belong to AΣ1
1
. We say that a bet βi

is fulfilled if at the end of the game, for all v ∈ dom(βi), βi(v) is true with respect to the
conciliatory tree played by I. Notice that it is a D2(Π1

1) condition (it is a finite intersection
of Σ1

1 and Π1
1 sets), so that II can check if a bet is fulfilled or not with an auxiliary move.

Suppose now that II has a winning strategy σ in C(M,M ′). We describe a winning
strategy σ′ for II in the game C((D2(Π1

1),M), (D2(Π1
1),M ′)). Each level of II’s main run

corresponds to a bet: suppose at some point I has constructed a finite tree t for his main run,
and let βi be a bet such that dom(t) = dom(βi). On the level i of her main run, II follows σ
modulo βi, in the sense that she plays along σ as if at all the levels j < i of her main run
such that βj is not a subtree of βi, the nodes were killed, and she checks with her auxiliary
moves for the nodes of the main run at this level whether βi is fulfilled or not, so that all
the nodes of her main run at this level are killed if the bet is not fulfilled. At the end of the
game, a unique sequence of bets forming a chain for the inclusion is fulfilled, which contains
all information about the way player I used his auxiliary moves, and which nodes he killed.
Hence,

i
AD2(Π1

1)(σ′ ∗ t)[ /b] = σ ∗ i
AD2(Π1

1)(t)[ /b],

where σ ∗ t denotes the tree resulting from application of strategy σ to tree t. That finishes
the proof. J

Mutatis mutandis, a winning strategy for I in C(M,M ′) can also be “remote controlled” to
a winning strategy for I in C((D2(Π1

1),M), (D2(Π1
1),M ′)).

I Corollary 9. Let M and M ′ be conciliatory languages such that M <c M ′. Then

(D2(Π1
1),M) <c (D2(Π1

1),M ′)
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Figure 8 The gadget to replace a state in A. The transitions that are not depicted lead to an
all-accepting state ⊺.

The operation (D2(Π1
1), ⋅) is much stronger than (Π0

1, ⋅), and is in fact a fixpoint of it.

I Proposition 10. Let M ⊆ T ≤ωΣ . Then

(Π0
1, (D2(Π1

1),M)) ≡c (D2(Π1
1),M).

The proof of Proposition 10 is a variant of the remote-control technique and is omitted
here.

Let A be an automaton that recognizes M ⊆ T ≤ωΣ . Then the conciliatory tree language
(D2(Π1

1),M) is recognized by the automaton εA defined from A by replacing each state of
A by a “gadget”, as depicted in Figure 8. As in the pseudo-exponentiation case, by replacing
a state by the gadget we mean that all transitions ending in this state should now end in the
initial state of the gagdet, and that all the transitions starting from this state should now
start from the final state of the gadget.

Observe that, since AD2(Π1
1) and AĎ2(Π1

1)
are disjoint, if A is unambiguous, then εA is

also unambiguous, so that the operation (D2(Π1
1), ⋅) preserves the unambiguity of conciliatory

tree languages.

5 A fragment of the unambiguous Wadge hierarchy

Consider the epsilon function, the ordinal function that enumerates the fixed-points of the
exponentiation of base ω:

ε0 = sup
n<ω

ω
. .
.
ω0

´¹¹¹¹¸¹¹¹¹¶
n

; εα+1 = sup
n<ω

ω
. .
.
ω(εα+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

; ελ = sup
α<λ

εα for λ limit.

We denote by ϕ2(0) its first fixed-point:

ϕ2(0) = sup
n<ω

ε. . .ε0
²
n

.

The ordinal ϕ2(0) is the first value of the second function of the Veblen hierarchy [17]. Another
way to characterise ϕ2(0) is to remember that an ordinal is the set of its predecessors and
notice that a non-zero ordinal is of the form respectively ωα if and only if it is closed under
addition, and εα if and only if it is closed under xz→ ωx. Then ϕ2(0) is the first non-zero
ordinal closed under xz→ εx as well as xz→ ωx and x, y z→ x + y.
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We recall that every ordinal α > 0 admits a unique Cantor normal form of base ω (CNF)
which is an expression of the form

α = ωαk ⋅ nk +⋯ + ωα0 ⋅ n0

where k < ω, 0 < ni < ω (any i ≤ k) and α0 < ⋯ < αk < α.
For every ordinal 0 < α < ϕ2(0), we inductively define a pair of unambiguous automata

(Aα, Āα) whose languages are both non-selfdual and incomparable through the conciliatory
ordering. If the CNF of α is α = ωαk ⋅ nk +⋯ + ωα0 ⋅ n0 we set

Aα = Aωαk ● nk +⋯ +Aωα0 ● n0

and

Āα = Aωαk ● nk +⋯ + Āωα0 ● n0,

where Aωαi and Āωαi are respectively:gand gif αi = 0;
ωAαi and ωĀαi if αi < ωαi ;
εA2+β and εĀ2+β if αi = ωαi and αi = εβ for some β < αi.

Here gdenotes automaton that accepts all conciliatory trees.

I Lemma 11. Let 0 < α < β < ϕ2(0),
1. Aα /≤c Āα and Āα /≤c Aα.
2. Aα <c Aβ ; Āα <c Aβ ; Aα <c Āβ and Āα <c Āβ.

Proof.
1. The proof, by induction on α, relies on the fact that the operations considered “commute”

with each others, see Facts 4, 6 and Theorem 8.
2. The proof, by induction on α and β, relies on the fact that the operations preserve the

relation <c (see Lemma 5, Facts 6 and Corollary 9) on the one hand, and on the fact that
they do not “overlap” (see Propositions 7 and 10). J

Applying the embedding L↦ Lb, we have thus generated a family (Abα)α<ϕ2(0)
of unambiguous

automata that respects the strict Wadge ordering: α < β if and only if Abα <W Abβ . Even
though the exact Wadge rank of this family is unknown, this fragment of the ∆1

2-Wadge
hierarchy restricted to unambiguously recognizable languages climbs far above the Σ1

1 class.
Hence the main result follows.

I Theorem 12. There exists a family (Abα)α<ϕ2(0)
of unambiguous parity tree automata

whose priorities are restricted to {0,1,2} such that
1. they recognize languages of full trees over the alphabet {0,1, b};
2. α < β holds if and only if Abα <W Abβ holds as well.

6 Conclusion

In this paper, we have produced a very long chain of unambiguous parity tree automata of
different Wadge degrees. Its length, the ordinal ϕ2(0), is the first fixpoint of the ordinal
function that itself enumerates all fixpoints of the ordinal exponentiation x↦ ωx. All these
automata share a Rabin-Mostowski index of at most (0,2). This indicates that the whole
Wadge hierarchy of unambiguous parity tree automata is even far more complicated than
that, not to mention the even higher complexity of the Wadge hierarchy of regular tree
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languages which, in comparison, seems scary. This illustrates in particular how different the
tree-case scenario is from the word-case scenario.

The whole construction is effective. This means that the mapping α ↦ Abα (for 0 <
α < ϕ2(0)) is recursive. And also that, for any 0 < α < β < ϕ2(0), the relation Abα <W Abβ
which stipulates that there exists two strategies – one that is winning for player II in the
game W (Abα,Abβ) and another one that is winning for I in the game W (Abβ ,Abα) – can be
established by recursively providing such strategies.

However, we did not consider any decidability issue. It thus remains open to show whether
one can decide, given any automaton B and any ordinal 0 < α < ϕ2(0), whether B <W Abα
holds or not.
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