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Abstract
The task of the train timetabling problem is to find conflict free schedules for a set of trains with
predefined routes in a railway network. This kind of problem has proven to be very challenging
and numerous solution approaches have been proposed. One of the most successful approaches is
based on time discretized network models. However, one of the major weaknesses of these models
is that fractional solutions tend to change the order of trains along some track, which is not
allowed for integer solutions, leading to poor relaxations. In this paper, we present an extension
for these kind of models, which aims at overcoming these problems. By exploiting a configuration
based formulation, we propose to extend the model with additional ordering constraints. These
constraints enforce compatibility of orderings along a sequence of tracks and greatly improve the
quality of the relaxations. We show in some promising preliminary computational experiments
that our approach indeed helps to resolve many of the invalid overtaking problems of relaxations
for the standard models.
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1 Introduction

Given a railway infrastructure network and a set of trains with fixed routes, the train
timetabling problem (TTP) aims at determining schedules for each train such that certain
operational restrictions like station capacities and headway times are satisfied, see, e. g., the
recent surveys [14] and [5]. The possible goals for these schedules vary. Typical ones are to
have the trains arrive as early as possible (often a goal for freight trains) [7] or follow a given
ideal timetable with as less delay as possible (passenger trains) [4].

One major approach for large scale instances is based on time expanded networks for
modeling train schedules [2, 6, 11]. These models give rise to huge integer programming for-
mulations and cannot be solved directly by standard solvers. Recently, several mathematical
techniques, e. g., dynamic graph generation [9], bundle methods [10], rapid branching [1, 17],
were developed to overcome this situation.

In this paper we present an extension for time expanded models. One major drawback of
these models is that they do not contain variables representing orderings of trains running on
the same infrastructure arc or using the same station. This has the consequence that fractional
relaxations (e. g., linear relaxations or Lagrangian relaxations) tend to find (fractional)
solutions that allow overtaking of trains on tracks where it is not possible for integral
solutions. This behavior is expected, but leads to very weak relaxations. Because of the
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lack of ordering variables it is not easy to strengthen the model with additional constraints
that model the combinatorial properties of the infrastructure network, i. e., forbid arbitrary
changes of the order of trains running on the same tracks.

Borndörfer and Schlechte [2] proposed a variant of the time expanded models, in which
headway constraints on tracks are not enforced by inequality constraints, which forbid
succeeding trains running in too quick succession. Instead they use so called configuration
networks, which model sets of non-conflicting train runs on a single infrastructure arc. This
means, while inequality constraints provide an “outer description” of feasible train runs,
configurations networks form an “inner description”, modeling all feasible points. Although
both models are equivalent from a theoretical point of view, the latter has an additional
advantage. Configuration networks form some kind of extended formulation and add further
variables and constraints to the model. In particular, they allow easy access to a limited set
of ordering variables for trains. Indeed, a configuration network provides decision variables
that model whether two trains follow each other in direct succession.

In this paper we propose a model that exploits these ordering variables to forbid invalid
changes of the ordering of trains along a sequence of succeeding tracks. We show that this
model provides a stronger relaxation than previous models, resolving some of the nastiest
weaknesses of linear relaxations for this kind of models for the TTP.

This paper is organized as follows. We give a formal description of the problem in
Section 2 and state the basic time expanded model in Section 3. In particular, the new model
extension with ordering constraints is described in Sections 3.2 and 3.3. Then we sketch
our solution approach in Section 4 and present some promising preliminary computational
experiments in Section 5. Finally, we conclude our paper in Section 6.

2 Problem Description

We briefly recall a formal description of the TTP next. The infrastructure network is a directed
graph GI = (V I , AI), where the nodes V I represent stations, junctions, and crossings and
the arcs AI represent connecting railway tracks. Arcs are directed because the running times
of some trains may depend on the direction of travel and because some tracks are single
line (one physical track that is used in both directions). In the latter case it is important to
distinguish between trains running in the same and in opposite directions. Furthermore, we
are given a set of trains R and each train r ∈ R is associated with a path Gr = (V r, Ar) ⊆ GI

in the infrastructure network, its route, and a starting time t̂r ∈ T . Denote by Ra the set of
all trains running on a ∈ AI . Between two trains r, r′ ∈ Ra running on a there is a minimal
headway time ha(r, r′) ∈ N (in discrete time steps), which is the minimal time between the
two trains entering this track (we assume that ha(r, r′) > 0 for all a ∈ AI , r, r′ ∈ Ra, and that
the triangle inequalities ha(r, r′) + ha(r′, r′′) ≥ ha(r, r′′) for each three trains r, r′, r′′ ∈ Ra

are satisfied). As mentioned above, the infrastructure network may contain double line tracks
(arcs with one physical track for each direction) and single line tracks (arcs with only one
physical track for both directions). In the case of single line tracks we set h(u,v) = h(v,u)

and the headway times for trains running in opposite directions are appropriately high, so
that no two such trains may occupy the track at the same time. Furthermore, there are
capacity constraints on the nodes that state that at most a certain number of trains cu ∈ N
may be at the same station u ∈ V I at the same time. Note that in contrast to other works
the schedules of the trains are completely free. There do not exist already fixed trains or
conditions stating that schedules must not deviate too much from some ideal timetable (see,
e. g., [4]).



F. Fischer 99

I Remark. Note that the train routes are only a rough estimate of the reality. For instance,
we do not consider the exact routing of trains through junctions as well as the possibility of
small adjustments to the train routes, e. g., by choosing one of several parallel tracks. These
aspects are often interesting in practice and can be incorporated in our model, but for sake
of simplicity we decided to neglect these details.

In our experiments we consider only a simple but reasonable objective function, which
aims at minimizing the delay of each train at each station. Here delay means the difference
of the arrival time at some station compared with the earliest possible arrival time, if a train
does not wait at some earlier station. The exact definition is given below in Section 3.1.

3 Model

In this section we present our time discretized model for the TTP. We start with the networks
modeling the schedules of each train and some basic constraints in Section 3.1. Next we
review the modeling of headway constraints based on configuration networks in Section 3.2.
In Section 3.3 we present the new ordering constraints and finally the complete model in
Section 3.4.

3.1 Basic Time Expanded Model
One of the most successful models in the literature for solving the TTP is based on time
expanded networks, see, e. g., [6, 2]. Given a set of discrete time steps T = {1, . . . , |T |}
(usually minutes), we have for each train r ∈ R a time expanded network Gr

T = (V r
T , Ar

T )
where V r

T = V r × T and

Ar
T ={((u, tu), (v, tv)) : (u, v) ∈ Ar, tu, tv ∈ T, tv − tu = t̄r

(u,v)}

∪ {((u, tu), (u, tu + 1)) : u ∈ V r
wait, tu, tu + 1 ∈ T, tu ≥ t̂r},

with V r
wait ⊆ V r the nodes at which r might wait and t̄r

(u,v) ∈ N0 the running time of r over
track (u, v) ∈ Ar. A feasible schedule of train r then corresponds to a path P ⊆ Gr

T from the
first to the last station. In particular, let ûr, ǔr denote the first and the final station of r,
respectively, then the variables xr ∈ {0, 1}Ar

T have to satisfy the following flow conservation
constraints ∑

(v,tv)∈V r
T :

e=((v,tv),(u,tu))∈Ar
T

xr
e =

∑
(v,tv)∈V r

T :
e=((u,tu),(v,tv))∈Ar

T

xr
e, (u, tu) ∈ V r

T \ {(ûr, t̂r)}, u 6= ǔr, (1a)

∑
(v,tv)∈V r

T :
e=((ûr,t̂r),(v,tv))∈Ar

T

xr
e = 1, (1b)

∑
t∈T

∑
(v,tv)∈V r

T :
e=((v,tv),(ǔr,t))∈Ar

T

xr
e = 1. (1c)

Constraints (1a) are the flow conservation constraints on all intermediate nodes. Constraint
(1b) states that the path must start at node (ûr, t̂r) ∈ V r

T and constraint (1c) enforces that
the path must end at some node (ǔr, t) ∈ V r

T corresponding to its final station. We denote
the set of all feasible paths in Gr

T by

Pr := {xr ∈ {0, 1}Ar
T : xr satisfies constraints (1a)–(1c)}.

ATMOS’15
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We associate a binary variable xr
a ∈ {0, 1} with each a ∈ Ar

T in each time expanded network,
where xr

a = 1 if and only if a is contained in the timetable of train r.
The capacity constraints in the nodes enforce that at each time instance t ∈ T at most

cu ∈ N trains may be in u ∈ V I at the same time. Hence, the sum over all arcs representing
a train being in u at time t

K(u, t) := {(r, a) : a = ((u′, t′), (u, t)) ∈ Ar
T , r ∈ R}

must be at most cu∑
(r,a)∈K(u,t)

xr
a ≤ cu, u ∈ V I , t ∈ T. (2)

The headway restrictions impose that certain arcs must not be contained in the final
timetable simultaneously if they correspond to some train runs violating a headway constraint.
In particular, let (r, a) ∈ Ar

T and (r′, a′) ∈ Ar′

T be two arcs with a = ((u, tu), (v, tv)) and
a′ = ((u, t′u), (v, t′v)) with t′u − tu < h(u,v)(r, r′), then those arcs must not be used both.
Therefore, we have the following headway constraints for each pair of incompatible arcs

xr
a + xr′

a′ ≤ 1, {(r, a), (r′, a′)} ∈ H, (3)

where H is the set of pairs of incompatible train arcs.
The objective for all trains is to run as fast possible in order to minimize all delays.

For this we use the simple objective function described in [7]. Let (u, v) ∈ Ar be a track
segment of train r ∈ R and tv ∈ R+ the earliest possible arrival time of r at v (i. e., the
arrival time if r starts at t̂r at its first station and does not wait at any station before
v). Then the penalty of a run arc e = ((u, tu), (v, tv)) ∈ Ar

T , u 6= v, is the quadratic delay
weighted with the relative length of the track segment compared with the length of the
whole train run. Let `r

e = t̄r
(u,v) denote the length (in terms of running time) of track e and

`r :=
∑

a∈Ar t̄r
a denote the minimal running time for the whole run. We set the weight of arc

e = ((u, tu), (v, tv)) ∈ Ar
T , u 6= v, to

wr
e := −`r

e/`r · (tv − tv)2,

and all other weights to 0 (note that we use negative weights because we want to have a
maximization problem).

Putting all together, the TTP can be formulated as integer program as follows:

maximize
∑
r∈R

〈wr, xr〉

subject to xr ∈ Pr, r ∈ R,

(2), (3),

i. e., we select for each train r a feasible schedule xr ∈ Pr, so that all paths satisfy the
headway and capacity constraints.

However, we do not use the headway inequalities on all arcs a ∈ AI , but we use another
approach to be presented in Section 3.2.

3.2 Configuration Networks
Our modeling of headway constraints is based on an extended formulation, which has been
proposed in [2]. This formulation introduces additional configuration networks in order to
model the safety distances between succeeding trains.
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The construction is as follows: Let sa be an artificial source and ta an artificial sink node
on track a = (u, v) ∈ AI . The set

Ãa
r := {((u, tu), (v, tv)) : ((u, tu), (v, tv)) ∈ Ar

T , (u, v) = a}

denotes all running arcs of train r ∈ R on track a. These arcs correspond to some arcs of the
configuration network. For each arc e ∈ Ãa

r , r ∈ Ra, we introduce a pair of start and end
nodes

Ba := {(r, start, e) : r ∈ Ra, e ∈ Ãa
r}, and, Ea := {(r, end, e) : r ∈ Ra, e ∈ Ãa

r}.

For these nodes we define the following sets of arcs:
1. The start arcs Ãa

start := {(sa, u) : u ∈ Ba}.
2. The end arcs Ãa

end := {(u, ta) : u ∈ Ea}.
3. The wait arcs

Ãa
wait := {((r, start, e), (r, start, e′)) ∈ Ba ×Ba :

e = ((u, tu), (v, tv)) ∈ Ãa
r , e′ = ((u, tu + 1), (v, tv + 1)) ∈ Ãa

r},

which allow to have a larger distance between two succeeding trains than the minimal
headway time.

4. The run arcs, each corresponding to a possible run of one train

Ãa
run := {((r, start, e), (r, end, e)) ∈ Ba × Ea : r ∈ Ra}.

5. The headway arcs

Ãa
hw := {((r, end, e),(r′, start, e′)) ∈ Ea ×Ba :

r, r′ ∈ Ra, r 6= r′, e = ((u, tu), (v, tv)), e′ = ((u, t′u), (v, t′v)),
t′u − tu = ha(r, r′)},

which model that r runs immediately before r′ while respecting the headway time.
Then the configuration network G̃a = (Ṽ a, Ãa), a ∈ AI , is defined by

Ṽ a := {sa, ta} ∪Ba ∪ Ea,

Ãa := Ãa
start ∪ Ãa

end ∪ Ãa
run ∪ Ãa

hw ∪ Ãa
wait.

Figure 1 shows an example of a configuration network for two trains.
Given that the headway times are strictly positive and transitive, it is easy to see that

valid configurations on track a ∈ AI , i. e. selections of exactly one run for each train on
that arc such that the headway restrictions are satisfied, correspond to sa-ta-paths that
contain exactly one run arc for each train, see [16]. Therefore, we define the set of feasible
configuration paths in G̃a, a ∈ AI , as

P̃a := {P ⊆ G̃a : P is an sa-ta-path in G̃a with exactly one run arc for each train}.

I Remark. Note that for single line tracks, only one configuration network is constructed for
both arcs (u, v) ∈ AI and (v, u) ∈ AI .
As with the train graphs we associate the binary variables x̃a

e ∈ {0, 1} with the arcs Ãa.
The coupling between configuration networks and train graphs is simple: a train may use
one of its run arcs if and only if the corresponding run arc is contained in the configuration

ATMOS’15
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t = 5

t = 4

t = 3

t = 2

t = 1

sa

ta

Ba BaEa Ea

r1 r2

Ãa
wait

Ãa
wait

Ãa
wait

Ãa
wait

Ãa
wait

Ãa
wait

Ãa
wait

Ãa
wait

Ãa
start Ãa

start

Ãa
end Ãa

end

Ãa
run Ãa

run

Ãa
hw

Ãa
hw

Ãa
hw

Ãa
hw

Figure 1 Example configuration network for two trains {r1, r2} = Ra on some infrastructure arc
a ∈ AI . The headway times are ha(r1, r2) = 2 and ha(r2, r1) = 1. The red path corresponds to a
configuration with r2 running at t = 3 followed by r1 at t = 5.

for this arc. Hence, denoting the run arc in a configuration network for some train arc
e = ((u, tu), (v, tv)) ∈ Ar

T , r ∈ R, (u, v) ∈ AI , by

cfg(e) := ((r, start, e), (r, end, e)) ∈ Ã(u,v),

we have the following configuration constraints

xr
e = x̃

(u,v)
cfg(e), r ∈ R, e = ((u, tu), (v, tv)) ∈ Ar

T .

3.3 Ordering Constraints
The basic observation when using configuration networks is the following. The run of
a train r ∈ R on some specific infrastructure arc a ∈ AI is represented by the run
arcs ((r, start, e), (r, end, e)) ∈ Ãa

run. However, we are interested in the headway arcs
((r, end, e), (r′, start, e′)) ∈ Ãa

hw. If one of these arcs equals 1, then this means that train r′

is the direct successor of r on arc a. In particular, with

Ãa
hw(r, r′) := {((r, end, e), (r′, start, e′)) ∈ Ãa

hw}

we define the ordering variables

sa
r,r′ =

∑
a′∈Ãa

hw(r,r′)

x̃a
a′ , a ∈ AI , r, r′ ∈ Ra,

with the interpretation

sa
r,r′ :=

{
1, r′ succeeds r directly on a ∈ AI ,

0, otherwise.

One of the weaknesses of the standard time expanded formulation is that combinatorial
properties of the network are not represented well. Figure 2 shows a typical situation: two
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Figure 2 Tiny example with two trains running in opposite directions on a single line track with
two passing possibilities. The white nodes have capacity 2 the other nodes have capacity 1. Nodes
in the same row correspond to a sequence of stations at the same time step, nodes in the same
column correspond to one station but at different time steps (time grows from top to bottom). All
arcs between black nodes are single track, the arcs adjacent to white nodes are double track. The
left picture shows an optimal solution for the standard linear relaxation. Note that the solution
exploits the weak formulation allowing the two trains to meet and pass on a single line part. The
right picture shows the optimal solution if ordering constraints are added to all consecutive paths of
single line tracks: one train has to wait at a capacity 2 node for the other train to pass.

trains run on a sequence of single line tracks, such that no overtaking is allowed on the
intermediate nodes. For instance, the intermediate nodes could be small local stations
without overtaking/passing possibility or the arcs represent a sequence of blocking areas
(guarded by signals) which must not be occupied by more than one train. In particular,
stopping and waiting at these intermediate nodes is allowed. Obviously, because there is no
overtaking possibility, in a feasible solution one train must go first through the complete
sequence of tracks and then the other. However, the fractional solution can easily exploit
the weak formulation: both trains can run fractionally in short succession and pass at an
intermediate node, see Figure 2.

Ordering variables provide an easy way to formulate these kind of non-overtaking proper-
ties. Consider a path of nodes (u1, u2, . . . , un) such that the capacity of each intermediate
node is 1, i. e. cui

= 1, i = 2, . . . , n− 1, and all arcs (ui, ui+1), i = 1, . . . , n− 1, are single line
tracks. Then it is clear that the order of trains running on arc (u1, u2) (or (u2, u1), which is
the same because it is a single line track) must be equal to the order of trains running on arc
(un−1, un). This can be enforced using the following ordering constraints

s
(u1,u2)
r,r′ = s

(un−1,un)
r,r′ , r, r′ ∈ R(u1,u2) = R(un−1,un).

Note that exactly the same constraints give rise to ordering conditions if the path consists of
double line tracks. The only difference is that the configuration networks associated with
(u1, u2) and (un−1, un) only model the headway conditions (and thus the ordering) of trains

ATMOS’15
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running in the same direction. Thus there would be two sets of ordering constraints, one for
(u1, u2) and (un−1, un), and one for (u2, u1) and (un, un−1).

I Remark. Of course, the ordering of the trains must not only be the same on the first and
last arcs of the path but also on each intermediate arc, so one would have ordering constraints
for all pairs of arcs {(ui, ui+1), (uj , uj+1)}, i, j = 1, . . . , n − 1, i 6= j. However, because of
practical considerations (configuration networks can get large and are thus expensive from a
computational point of view), we use them only on the first and last arcs of a path.

In our preliminary experiments we used only this simplest case of ordering constraints
on paths, where no overtaking/passing is possible. This may sound oversimplified, but it
is a typical situations in real world instances as well, where connections between different
stations are made of such paths. However, it should be possible to extend this approach to
situations, where the capacity of some intermediate station ui, i ∈ {2, . . . , n− 1}, is a small
number larger than 1. For instance, if cui

= 2 on exactly one intermediate station, then the
orders of trains on the first and last arcs may differ, but not arbitrarily. In particular, in
this case the order of three trains may not be reversed (r1 before r2 before r3 on the first
arc but r3 before r2 before r1 on the last arc). However, in order to express this kind of
ordering restrictions one might need more complex configuration subproblems that do not
only have variables for trains in direct succession but also for trains with an additional train
in between. Solving such configuration problems (or a reasonable approximation of them)
will probably be hard in itself and needs more work.

3.4 Complete Model

In this section we present the complete model. Let O ⊆
(

AI

2
)
be the set of pairs of

infrastructure arcs, such that for {(u, u′), (v, v′)} ∈ O there is a path P = (u1, . . . , un) of
maximal length with cui = 1 for all i = 2, . . . , n− 1 such that
1. (u, u′) = (u1, u2) and (v, v′) = (un−1, un),
2. either all arcs are single line tracks or all arcs are double line tracks,
3. R(u,u′) = R(ui,ui+1) for all i = 1, . . . , n− 1.
Let ÃI :=

⋃
X∈OX be the set of all arcs that are contained in at least one ordering constraint.

Because configuration networks enlarge the model quite a bit, we use them only on those
infrastructure arcs, where they are required to formulate some ordering constraints. On all
other arcs AI \ ÃI we use classical headway inequalities. The resulting model reads

(TTP) maximize
∑
r∈R

〈wr, xr〉, (4)

subject to xr ∈ Pr, r ∈ R, (5)
x̃a ∈ P̃a, a ∈ ÃI , (6)

xr
a + xr′

a′ ≤ 1, a ∈ AI \ ÃI , {(r, a), (r′, a′)} ∈ H, (7)

xr
e = x̃

(u,v)
cfg(e), e = ((u, tu), (v, tv)) ∈ Ar, r ∈ R, (8)∑

(r,a)∈K(u,t)

xr
a ≤ cu, u ∈ V I , t ∈ T, (9)

sa
r,r′ =

∑
a′∈Ãa

hw(r,r′)

x̃a
a′ , a ∈ ÃI , r, r′ ∈ Ra, (10)

sa
r,r′ = sa′

r,r′ , r, r′ ∈ Ra = Ra′ , {a, a′} ∈ O. (11)
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We optimize a linear objective function (4) so that in each train graph and each configuration
network a feasible path representing a schedule (5) or a configuration (6), respectively, is
selected. The configuration networks and train graphs are coupled by (8), for infrastructure
arcs a ∈ ÃI that have a configuration network. On the other arcs we use the usual headway
inequalities (7). The capacity restrictions on the nodes are enforced by (9). Finally, constraints
(10) introduce the ordering variables which are then coupled by the ordering constraints (11).
Note that we write the constraints (10) only for the sake of presentation as they can easily
be substituted in (11).

We use the objective function of [7], which is quite simple: all trains should run as fast as
possible, so that any delays are minimized. In other words, the weights are so that early run
arcs have higher weights than later arcs.

4 Solution Methods

In this section we briefly describe our solution method. The basic approach is to apply
Lagrangian relaxation to (TTP), see, e. g., [3] for an early work using this approach. Indeed,
we relax all coupling constraints (7)–(9) and (11) (with (10) being substituted in (11)). We
collect all coupling equality and inequality constraints in∑

r∈R

M1,rxr +
∑

a∈ÃI

M1,ax̃a = b1 and
∑
r∈R

M2,rxr +
∑

a∈ÃI

M2,ax̃a ≤ b2,

respectively. The dual problem then reads

(LR) minimize ϕ(y, z),
subject to y ∈ Rm1 , z ∈ Rm2

+ ,

where the dual function ϕ(y, z) is defined by

ϕ(y, z) :=
∑
r∈R

max
xr∈Pr

〈wr −MT
1,ry −MT

2,rz, xr〉+
∑

a∈ÃI

max
x̃a∈P̃a

〈−MT
1,ay −MT

2,az, x̃a〉.

It is well-known that the dual problem (LR) is a non-smooth, convex optimization problem
that can be solved by, e. g., bundle methods [13]. In particular, we use a special scaling
variant of a bundle method based on ConicBundle [12]. Because there is a huge number of
potential coupling constraints, they are separated during the solution process.

In order to solve (LR) one has to evaluate the function ϕ at certain trail points (y, z)
provided by the bundle method. The subproblems in the train graphs Gr, r ∈ R, have the
form

max
xr∈Pr

〈wr −MT
1,ry −MT

2,rz, xr〉,

which are longest path problems in acyclic networks (which are equivalent to shortest path
problems with the negated objective function because of the acyclicity). Because these
networks get very large if the number of time steps increases, we use a dynamic graph
generation algorithm proposed in [9], implemented in the DynG callable library [8].

The subproblems in the configuration networks G̃a, a ∈ ÃI , read similarly

max
x̃a∈P̃a

〈−MT
1,ay −MT

2,az, x̃a〉.

However, the set of feasible paths P̃a, a ∈ ÃI , is more complicated in general than the sets
Pr, r ∈ R. The reason is that a feasible configuration corresponds to an sa-ta-path if and

ATMOS’15
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Figure 3 Part of the solution of (LR) for 12 trains without ordering constraints (consecutive part
from left to right picture). The gray nodes form single line parts, the red nodes are a double line
part. Only the thicker nodes have capacity 2, all others have capacity 1. Several passings on the
single line parts are not resolved correctly because of the weak relaxation.

only if this path contains exactly one run arc for each train. These subproblems become very
difficult to be solved exactly even for relatively small numbers of trains, say ten. Therefore
we use the following relaxed version. Let

P̃a
rlx :=

{
P ⊆ G̃a : P is an sa-ta containing at most |Ra| run arcs of Ãa

run
}
⊇ P̃a.

This problem is simpler (it is a rather easy constrained shortest path problem), and we solve
it using a dynamic programming algorithm, exploiting the fact that G̃a is acyclic. However,
solving these subproblems only approximately can lead to worse solutions of the relaxation
in practice, see Section 5.

5 Numerical Tests

We tested our approach on a small 12 train test instance from the RAS Problem Solving
Competition 2012 [15]. The subproblems for the train graphs have been implemented with
the DynG callable library [8], the subproblems in the configuration networks are solved
approximately by a dynamic programming approach (see Section 3.4). The Lagrangian
relaxation (LR) has been solved using a proximal bundle method based on ConicBundle [12].
All experiments are done on an Intel Core i7 @ 3.5GHz with 12GB RAM.

The test instance consists of a corridor with 49 nodes and arcs and has several single line
parts and one double line part. There are only 4 passing points in the single line parts and
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Figure 4 The left picture shows the dual function value after a certain amount of time in seconds
for the model without ordering constraints. The right picture shows the same for the model with
ordering constraints. Note that the time is given in a logarithmic scale. The model without ordering
constraints converges very quickly, but the optimal value is quite bad. The model with ordering
constraints converges much slower, but the objective value is much better. In fact, the dual bounds
are better than without ordering constraints already after a few seconds.

one overtaking point in the double line part. The trains run over a period of about 9 hours,
and each train requires between 1 and 2 hours to go from one end of the network to the
other, depending on its speed. The model uses a time discretization of one minute.

First we look at the quality of the models in terms of the dual bounds. Figure 4 shows
the development of the dual bounds after some computation time.

The pictures show that the model without ordering constraints converges very quickly to
an optimal solution. In contrast, the model with ordering constraints converges very slowly
but generates much better bounds. In fact, the bounds are better than the bounds without
ordering constraints after 10 seconds. The slow convergence is a known disadvantage of
configuration based models (also see [7], Chapter 6.4.3) when used in a Lagrangian relaxation
approach with first-order optimization methods (like bundle methods).

However, in order to investigate the structure of the optimal solutions, we looked at the
approximate solutions after a large computation time. A part of the resulting schedule is
shown in Figure 3 for the model without ordering constraints and in Figure 5 for the model
with ordering constraints.

The pictures show that without the ordering constraints the (fractional) solution of the
relaxation easily exploits the weakness of the model and lets the trains meet and pass in the
middle of single line parts hardly slowing down any train. In contrast, the model with the
ordering constraints successfully finds appropriate waiting possibilities for some of the trains,
so that meet and pass points are exactly at the nodes with capacity 2 or within the double
line part.

However, the results are not always perfect. Figure 6 shows another part of the solution.
Here the meet and pass decisions have not been resolved correctly. But the reason for
this is not the inaccuracy of the ordering constraints. The problem is that the configur-
ation subproblems are only solved approximately. When looking at the solutions of the
subproblems during the algorithm, one sees that there are paths in G̃a, a ∈ ÃI , which do
not correspond to correct configurations. In particular, the returned paths contain more
than one run arc ((r, start, e), (r, end, e)) ∈ Ãa

run for some train r ∈ Ra and zero run arcs
((r′, start, e′), (r′, end, e′)) ∈ Ãa

run for some other train r′ ∈ Ra (see Section 4).

ATMOS’15
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Figure 5 Part of the solution of (LR) for 12 trains with ordering constraints (consecutive part
from left to right picture). The gray nodes form single line parts, the red nodes are a double line
part. Only the thicker nodes have capacity 2, all others have capacity 1. The passings of the trains
have been resolved correctly.

Note that we were not able to solve the relaxation with solving the configuration sub-
problems exactly. Although solving one subproblem exactly takes only few seconds, the
solution method using a proximal bundle method requires many iterations and thus many
subproblem evaluations for all arcs in ÃI , hence the solution process did not have sufficient
progress in reasonable time.

I Remark. Indeed, it turned out that the solution of the configuration subproblems, even if
we solve them only approximately, were the main bottleneck in our approach. In contrast,
the solution of the train graph subproblems was extremely fast thanks to the used dynamic
graph generation technique, which ensures that only very small parts of the train graphs
have to be stored and that the solutions can be found very quickly.

6 Conclusions and Future Work

In this paper we proposed an extension of a configuration network based formulation for
the TTP. In particular, we use the configuration networks to formulate constraints that
forbid changes in the order of trains along a path of tracks that are not possible due to
the existing overtaking possibilities of the infrastructure network. We implemented the
model and demonstrated how the new model greatly improves the solution of the Lagrangian
relaxation of the model. Indeed, in the example the relaxation resolves many meet and pass
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Figure 6 Another part of the solution of (LR) with ordering constraints. Because the configuration
subproblems are only solved approximately, the resulting fractional solution may still contain wrong
passing decisions (in particular for the blue train in this example).

decisions correctly, which does not happen without the ordering constraints. However, we
have also seen that the ordering constraints might not be sufficient to ensure correct meet
and pass decisions if the configuration subproblems are not solved exactly.

We can conclude from our experiments that the proposed extension with ordering
constraints has great potential to improve existing models. From a theoretical point of
view, several improvements of our model are possible. For instance, one could formulate
configuration subproblems that represent not only the ordering of trains in direct succession
but also of larger groups of trains. This would allow to formulate ordering conditions if
a certain sequence of infrastructure arcs has not zero but a small number of overtaking
points. Another possible improvement could be to solve the configuration subproblems
exactly for small subsets of all trains running on some infrastructure arc. For instance, one
could formulate configuration subproblems that ensure that each subset of 3 to 5 trains runs
correctly. Given that at most points in time only few trains compete for some infrastructure
arc, the exact solution of these small subproblems could be possible from a computational
point of view and improve the quality of the relaxation.

Finally, our experiments shows that the current approach using standard first-order
methods to solve these problems has a very bad convergence behavior. Hence, although
better bounds than before can be reached after short computation times, near optimal
solutions still take very long. Therefore several algorithmic developments or alternative
solution methods are required in order to improve the efficiency of our approach so that it
can be applied to large real world instances.
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