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Abstract
Increasing the adoption of cycling is crucial for achieving more sustainable urban mobility. Nav-
igating larger cities on a bike is, however, often challenging due to cities’ fragmented cycling
infrastructure and/or complex terrain topology. Cyclists would thus benefit from intelligent
route planning that would help them discover routes that best suit their transport needs and
preferences. Because of the many factors cyclists consider in deciding their routes, employing
multi-criteria route search is vital for properly accounting for cyclists’ route-choice criteria. Dir-
ect application of optimal multi-criteria route search algorithms is, however, not feasible due to
their prohibitive computational complexity. In this paper, we therefore propose several heuristics
for speeding up multi-criteria route search. We evaluate our method on a real-world cycleway net-
work and show that speedups of up to four orders of magnitude over the standard multi-criteria
label-setting algorithm are possible with a reasonable loss of solution quality. Our results make
it possible to practically deploy bicycle route planners capable of producing high-quality route
suggestions respecting multiple real-world route-choice criteria.
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1 Introduction

Utility cycling, i.e., using the bicycle as a mode of transport, is the original and the most
common type of cycling in the world [13]. Cycling provides a convenient and affordable form
of transport for most segments of the population. It has a range of health, environmental,
economical, and societal benefits and is therefore promoted as a modern, sustainable mode
of transport [10, 16].

In contrast to car drivers, cyclists consider a significantly broader range of factors while
deciding on their routes. By employing questionnaires and GPS tracking, researchers have
found that besides travel time and distance, cyclists are sensitive to slope, turn frequency,
junction control, noise, pollution, scenery, and traffic volumes [3, 28]. Moreover, the relative
importance of these factors varies among cyclists and can also be affected by weather
conditions and the purpose of the trip [3].

Finding routes that properly take all the above factors into account is no easy task,
particularly when cycling in complex urban environments. Consequently, cyclists would
benefit from intelligent route planning software to help them discover routes that best suite
their transport needs and preferences. Such route planners would be particularly useful for
inexperienced cyclists with limited knowledge of their surroundings but they would also
benefit experienced riders who want to fine-tune their routes [11], in effect making cycling
a more attractive and accessible transport option.

The vast majority of existing approaches to bicycle routing, however, do not use multi-
criteria search methods and they thus cannot properly account for cyclists’ multiple route-
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choice criteria. A recent exception is [24] where the authors applied optimal multi-criteria
shortest path algorithms for multi-criteria bicycle routing. Unfortunately, the proposed
algorithm is slow on realistic problem instances and cannot be used for interactive route
planning.

In this paper, we overcome this limitation and present the first bicycle routing algorithm
that properly considers multiple realistic cyclists’ route-choice criteria yet is fast enough
for interactive use. Our algorithm extends the well-known multi-criteria label-setting al-
gorithm [19] with several speedup heuristics in order to generate, in a much shorter time,
routes that closely approximate the full set of Pareto optimal routes. In contrast to the
majority of existing work, our algorithm employs a formulation of the multi-criteria bicycle
routing problem that incorporates realistic route choice factors based on recent studies of
cyclists’ behaviour [3, 28]. We thoroughly evaluate our algorithm in terms of the speed and
quality of suggested routes on a diverse set of real-word urban areas.

2 Related Work

In contrast to car and public transport route planning, for which advanced algorithms and
mature software implementations exist [1], bicycle route planning is a relatively underex-
plored topic. Furthermore, despite the highly multi-criterial nature of cyclists’ route-choice
preferences, almost all existing approaches to bicycle routing do not use multi-criteria search
methods to properly account for such a multi-criteriality. This contrasts with other categories
of routing problems for which the application of multi-criteria shortest path search techniques
has been widely studied (multimodal routing [2, 7], train routing [20], and car routing [8]).
Instead, existing bicycle routing approaches transform multi-criteria search to single-criterion
search either by optimising each criteria separately [14, 26] or by using a weighted combina-
tion of all criteria [15, 27]. Unfortunately, the scalarisation of multi-criteria problems using
a linear combination of criteria may miss many Pareto optimal routes [4, 6] and consequently
reduce the quality and relevance of suggested routes. Scalarisation also requires the user to
weight the importance of individual route criteria a priori, which is difficult for most users.

Avoiding scalarisation, [23] thus showed how to effectively search for a best compromise
solution for a biobjective shortest path problem in the context of bicycle routing. Recently,
[24] explored the use of optimal multi-criteria shortest path algorithms for multi-criteria
bicycle routing; however, the proposed algorithm is too slow for interactive route planning.

As far as general multi-criteria shortest path algorithms are concerned, the first optimal,
multi-criteria label-setting (MLS) algorithm [19] extended Dijkstra’s algorithm by operating
on labels that have multiple cost values. A minimum label from the priority queue is processed
in every iteration. On the contrary, the multi-criteria label-correcting (MLC) algorithm [5, 9]
processes the whole bag of nondominated labels associated with a current node at once.
Recently, heuristic accelerations of the MLS and MLC algorithms have attracted considerable
attention, aiming at finding a set of routes that is similar to the optimal Pareto solution.
In [7], the authors developed several heuristics to weaken the domination rules during the
search. In [22], the authors proposed a near admissible multi-criteria search algorithm to
approximate the optimal set of Pareto routes in a state space graph by using the ε-dominance
approach. An alternative approach is represented by multi-criteria extensions [18, 25] of the
standard A* algorithm, the latter of which was recently shown [17] to achieve an order of
magnitude speedup for bicriteria road routing.
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18 Speedups for Multi-Criteria Urban Bicycle Routing

3 Multi-Criteria Bicycle Routing Problem

We represent the cycleway network as a weighted directed connected cycleway graph G =
(V,E,−→c ), where V is the set of nodes representing start and end points (i.e., cycleway
junctions) of cycleway segments and E ⊆ {(u, v)|(u, v ∈ V ) ∧ (u 6= v)} is the set of edges
representing cycleway segments. The cycleway graph is directed due to the fact that some
cycleway segments in the map are one-way only. The cost of each edge is represented as a
k-dimensional vector of criteria −→c = (c1, c2, . . . , ck). The non-negative cost value ci of i-th
criterion for the given edge (u, v) ∈ E is computed by the cost function ci : E → R+

0 . The
multi-criteria bicycle routing problem is then defined as a triple C = (G, o, d):

G = (V,E,−→c ) is the cycleway graph
o ∈ V is the route origin
d ∈ V is the route destination

A route π, i.e., a finite path π with a length |π| = n from the origin o to the destination d
in the cycleway graph G has an additive cost value

−→c (π) =

 |π|∑
j=1

c1(uj , vj), . . . ,
|π|∑
j=1

ck(uj , vj)


The solution of the multi-criteria bicycle routing problem is a full Pareto set of routes
Π ⊆ {π|π = ((u1, v1), . . . , (un, vn))} non-dominated by any other solution (a solution πp
dominates another solution πq iff ci(πp) ≤ ci(πq), for all 1 ≤ i ≤ k, and cj(πp) < cj(πq), for
at least one j, 1 ≤ j ≤ k).

Based on the studies of real-word cycle route choice behaviour [28, 3], we further consider
a tri-criteria bicycle routing problem. The formulation of the problem is a compact version
of the earlier formulation proposed in [24] and considers the following three route-choice
criteria:

Travel time: The travel time criterion ctime reflects the duration in seconds of the cyclist’s
journey. Travel time is a sensitive factor in cyclists’ route planning especially for commuting
purposes. Our travel time calculation takes into account average cyclist’s speed, uphills and
downhills, quality of the road surface, and obstacles. To model the slowdown caused by
obstacles such as stairs or crossings, we define the slowdown coefficient rslowdown : E → R+

0
which returns the slowdown in seconds on a given edge (u, v) ∈ E. For the case of uphill
rides, we define the positive vertical ascend a : E → R+

0 for a given edge (u, v) ∈ E as

a((u, v)) :=
{
h(v)− h(u) if h(v) > h(u)
0 otherwise

where h : V → R returns the elevation for each node u ∈ V . Analogously, for the case
of downhill rides, we define the positive vertical descend d : E → R+

0 . We also define the
positive descend grade d′ : E → R+

0 as d′((u, v)) := d((u,v))
l((u,v)) where l((u, v)) is the length of

the edge ((u, v)). To model the speed acceleration caused by vertical descend for a given
edge (u, v) ∈ E, we define the downhill speed multiplier sd : E → R+ which depends on the
positive descend grade d′ and it is in the interval [1, 2.5].

Considering the integrated effect of the edge length, the change in the elevation, and edge
associated features, the travel time criterion is defined as

ctime((u, v)) = distance
speed + slowdown = l((u, v)) + al · a((u, v))

s · sd((u, v), sdmax) · rtime((u, v)) + rslowdown((u, v))
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where s is the average cruising speed of a cyclist and al is the penalty coefficient for uphill
rides. The criteria coefficient rtime((u, v)) expresses the effect of a set of features f((u, v))
assigned to a given edge (u, v) ∈ E with respect to travel time criterion.

Comfort: The comfort criterion ccomfort captures the preference towards comfortable routes
with good-quality surfaces and dedicated cycleways or streets with low traffic. The cost
function for the comfort is defined as

ccomfort((u, v)) = max{rsurface((u, v)), rtraffic((u, v))} · l((u, v))

where the surface coefficient rsurface((u, v)) penalises bad road surfaces, obstacles such as
steps, and places where the cyclist needs to dismount his or her bicycle, with small values
indicating cycling-friendly surfaces. The traffic coefficient rtraffic((u, v)) measures traffic
volumes by considering the infrastructure for cyclists and the types of roads, where low-traffic
cycleways are assigned a small coefficient value. The comfort is weighted by the edge length
l((u, v)), i.e., 500 m of cobblestones is worse than 100 m of cobblestones.

Elevation gain: The elevation gain criterion cgain captures the cyclists’ preference towards
flat routes with minimum uphill segments. The cost function is defined as

cgain((u, v)) = distance
speed = al · a((u, v))

s

where s is the average cruising speed of a cyclist, a((u, v)) is the positive vertical ascend of
the edge (u, v), and al is the penalty coefficient for uphill rides.

4 Heuristic-Enabled Multi-Criteria Label-Setting Algorithm

Our newly proposed heuristic-enabled multi-criteria label-setting (HMLS) algorithm extends
the standard multi-criteria label-setting (MLS) algorithm [19] with several points for inserting
speedup heuristic logic. The algorithm uses the following data structures: for each node
u ∈ V , L(u) := (u, (l1(u), l2(u), . . . , lk(u)), LP (u)) represents the label at a node u, which
is composed of the node u, the cost vector l(u) indicating the current cost values from the
origin to the node u, and the predecessor label LP (u), which precedes L(u) in an optimal
route from an origin. A priority queue Q is defined to maintain all labels created during the
search. Since each node may be scanned multiple times, we define the bag structure Bag(u)
for each node u to maintain the non-dominated labels at u.

The pseudocode of the heuristic-enabled MLS algorithm is given in Algorithm 1; the
speedup specific logic of functions terminationCondition, skipEdge, and checkDominance
is described in Section 5. The algorithm consists of the following steps:

Step 1 – Initialisation: For a k-criteria optimisation problem, the algorithm first initialises
the priority queue Q and Bag for each v ∈ V . Then it initialises the label at the origin to
L(o) := (o, (l1(o), l2(o), . . . , lk(o)), null), where li(o) = 0 for i = 1, 2, . . . , k. Finally, it inserts
the initial label L(o) into the queue Q and the Bag(o).

Step 2 – Label expansion: The algorithm extracts a minimum label current := (u, (l1(u),
l2(u), . . . , lk(u)), LP (u)) from the priority queue Q (in a lexicographic order of a cost vector).
For each outgoing edge (u, v), the algorithm computes a new cost vector (l1(v), l2(v), . . . , lk(v))
by adding the costs of the edge (u, v) to the current cost values (l1(u), l2(u), . . . , lk(u)). Then,

ATMOS’15
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Algorithm 1: Heuristic-enabled multi-criteria label-setting algorithm.
Input: cycleway graph G = (V,E,−→c ), origin node o, destination node d
Output: full Pareto set of labels

1 Q := empty priority queue
2 Bag(∀v ∈ V ) := empty set
3 L(o) := (o, (0, 0, . . . , 0), null)

4 Q.insert(L(o))
5 Bag(o).insert(L(o))

6 while Q is not empty do
7 current := Q.pop()

8 u := current.getNode()
9 (l1(u), l2(u), . . . , lk(u)) := current.getCost()

10 LP (u) := current.getPredecessorLabel()

11 if terminationCondition(current) then
12 break
13 end
14 foreach edge (u, v) do
15 li(v) := li(u) + ci(u, v) for i = 1, 2, . . . , k
16 next := (v, (l1(v), l2(v), . . . , lk(v)), current)

17 if skipEdge(next) then
18 continue
19 end
20 if checkDominance(next) then
21 Bag(v).insert(next)
22 Q.insert(next)
23 end
24 end
25 end
26 return Bag(d)

it creates a new label next using the node v, the cost vector (l1(v), l2(v), . . . , lk(v)) and the
predecessor label current.

Function skipEdge (cf. Algorithm 1, line 17) prevents looping the path by checking the
predecessor label in the label data structure, i.e., if previous node LP (u).getNode() is equal
to the node v then the edge (u, v) is skipped.

Function checkDominance (cf. Algorithm 1, lines 20–23), by default, controls dominance
between the label next and all labels inside Bag(v). If next is not dominated, the algorithm
inserts it into Bag(v) and Q. Also, if some label inside Bag(v) is dominated by next, it is
eliminated from the bag structure and not considered in future search.

Step 3 – Pruning condition: The algorithm exits if the queue Q becomes empty. Otherwise,
it continues with Step 2.

After the algorithm has finished, the optimal Pareto set of routes Π∗ is extracted. Let
|Bag(d)| = |Π| = m. Then, from labels L1, . . . , Lm in the destination Pareto set of labels
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Figure 1 Geometry of the ellipse pruning condition.

Bag(d), the routes π1, . . . , πm are extracted using the predecessor labels LP (·). These routes
comprise the set Π∗ = {π1, π2, . . . , πm} of optimal Pareto routes.

5 Speedups for the HMLS Algorithm

A significant drawback of the standard MLS algorithm is that it is very slow. The main
parameter that affects the runtime of the algorithm is the size of the Pareto set. In general,
the Pareto set can be exponentially large in the input graph size [21]. Furthermore, the MLS
algorithm always explores the whole cycleway graph.

To accelerate the multi-criteria shortest path search, we introduce four speedup heuristics.
Two of the heuristics are newly proposed by us: ratio-based pruning and cost-based pruning,
while two are existing heuristics: ellipse pruning and buckets. Implementation-wise, the
heuristics are incorporated into the heuristic-enabled MLS algorithm by defining the respective
three heuristic-specific functions used in Algorithm 1.

Ellipse Pruning: The first speedup heuristic taken from [12] prevents the MLS algorithm
from always searching the whole cycleway graph, even for a short origin-destination distance1.
The heuristic permits visiting only the nodes that are within a predefined ellipse. The focal
points of the ellipse correspond to the journey origin o and the destination d. Let |od| be
the direct origin-destination distance and d′ the distance between origin and a peripheral
point on the main axis of the ellipse. Then the length of the main axis 2a is equal to
|od|+ 2d′. During the search, in skipEdge function (cf. Algorithm 1, line 17), it is checked
whether an edge (u, v) has its target node v inside the ellipse by checking the inequality
|ov|+ |vd| ≤ |od|+ 2d′, cf. Figure 1.

Ratio-Based Pruning: The ratio-based pruning terminates the search (long) before the
priority queue gets empty (which means that the whole search space has been explored).
A pruning ratio α ∈ R+ is defined and the search is terminated when one of the criteria
cost values, e.g., l1(u), in the current label exceeds α times the best so far value of the
same criterion for a route that has already reached the destination (this is checked in the
terminationCondition function, cf. Algorithm 1, line 11).

Cost-Based Pruning: The third heuristic we use does not expand the search to a label L(v)
which is very close in the cost space (criteria c1, . . . , ck) to the existing non-dominated labels
at the node v. The newly generated label L(v) with a closer Euclidean distance than γ ∈ R+

1 Note that in contrast with single-criterion Dijkstra’s algorithm, the MLS algorithm does not stop when
the destination node is first reached.
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Table 1 Graph sizes for the experiments.

Graph Nodes Edges Area
Prague A 9411 20420 Old Town, Vinohrady
Prague B 9665 20808 Strahov, Brevnov
Prague C 10652 24121 Liben, Vysocany

is discarded inside the checkDominance function (cf. Algorithm 1, line 20). Therefore, the
search process is accelerated since fewer labels are inserted into the queue and the bag.

Buckets: The last heuristic defined in [7] discretizes the cost space using buckets for the
criteria values. The heuristic is executed in the checkDominance function (cf. Algorithm 1,
line 20). A function bucketV alue : R+

0 → N is used to assign a real cost value li an integer
bucket value bucketV alue(li).

6 Evaluation

To evaluate our approach, we consider the real cycleway network of Prague. Prague is
a challenging experiment location due to its complex geography and fragmented cycling
infrastructure, which raises the importance of proper multi-criteria routing.

6.1 Experiment Setting
We evaluate our solution on cycleway graphs corresponding to three distinct areas of the city
of Prague. We have chosen parts Prague A, Prague B, and Prague C to be different in terms
of network density, nature of the cycling network and terrain topology so as to evaluate the
performance of heuristics across a range of conditions. The sizes of the evaluation graphs
are depicted in Table 1. The graphs are also shown in Figure 2 in the map of Prague. The
specifics of each evaluation area are the following:

Prague A: This graph covers a flat city centre area of the Old Town with many narrow
cobblestone streets and Vinohrady with the grid layout of streets.
Prague B: This graph covers a very hilly area of Strahov and Brevnov with many parks.
Prague C: This graph covers residential areas of Liben and Vysocany further from the
city centre. There are many good cyclepaths in this area.

All evaluation cycleway graphs are strongly connected. The size of evaluation graphs
allows us to run the MLS algorithm without any speedups, which is crucial for comparing
the quality of heuristic and optimal solutions.

For each graph evaluation area, a set of origin-destination pairs generated randomly with
a uniform spatial distribution, was used in the evaluation. First, we generated 130 origin-
destination pairs for each of graphs Prague A, B, and C. The minimum origin-destination
distance is set to 500 m. The longest routes have approximately 4.5 km. From these 130 origin-
destination pairs, we filtered out 15 pairs with the smallest size of the optimal Pareto set and
15 pairs with the largest size of the optimal Pareto set to receive a set of 100 origin-destination
pairs. We executed the MLS algorithm and the HMLS with all 11 heuristic combinations
using the same generated 100 origin-destination pairs for each graph Prague A, B, and C.
Therefore, each heuristic combination is evaluated on 300 origin-destination pairs.
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Figure 2 Evaluation graphs Prague B, Prague A, and Prague C (from left to right).

The parameters in the cost functions were set as follows. The average cruising speed is
s = 14 km/h and the penalty coefficient for uphill is al = 13 (according to the route choice
model developed in the user study [3]). Configuration parameters for the heuristics were set
so as to maximize the ratio between the algorithm runtime and the quality of the solution
(see the next section), as measured on the three graphs Prague A, B, and C. Specifically,
the following values were used: d′ = 500 m for ellipse pruning, α = 1.6 for ratio-based
pruning, γ = C1

5 for cost-based pruning, and (15, 2500, 4) for buckets. The multi-criteria
route planning algorithm is implemented in JAVA 7. The results obtained are based on
running the algorithm on a single core of a 2.4 GHz Intel Xeon E5-2665 processor of a Linux
server. OpenStreetMap data is used to create the Prague cycleway graphs.

6.2 Evaluation Metrics
We consider two categories of evaluation metrics: speed and quality. We use the following
metrics to measure the algorithm speed:

Average runtime in ms for each origin-destination pair together with its standard deviation
σruntime.
Average speedup over the MLS algorithm in terms of algorithm runtime.

We use the following metrics to measure the quality of returned routes:
Average distance dc(Π∗,Π) of the heuristic Pareto set Π from the optimal Pareto set Π∗
in the cost space. Distance dc(π∗, π) between two routes π∗ and π is measured as the
Euclidean distance in the unit three-dimensional space of criteria values normalized to
the [0, 1] range.

dc(Π∗,Π) := 1
|Π∗|

∑
π∗∈Π∗

min
π∈Π

dc(π∗, π)

Intuitively, dc(π∗, π) = 0.1 corresponds to a 6% difference in each criterion, assuming the
difference to optimum is distributed equally across all three criteria.
Average number of routes |Π| in the Pareto set Π together with its standard deviation
σ|Π|.
The percentage of Pareto routes Π% in heuristic Pareto set Π that are equal to routes in
the optimal Pareto set Π∗.

ATMOS’15
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Table 2 Evaluation of the heuristic performance on three graphs Prague A, B, and C. Primary
metrics are marked by bold column headings (runtime in ms and average distance dc(Π∗,Π)).
Non-dominated heuristic combinations with respect to speed and quality are denoted by bold font.
Abbreviations used: Buckets → B., Ellipse → E., Ratio → R.

Heuristic Speedup Runtime σruntime |Π| σ|Π| dc Π%

MLS - 3 586 263 4 390 939 1 351 1 304 - 100.0
HMLS+B. 875 4 100 3 335 37 32 0.131 60.9
HMLS+Cost 399 8 983 4 508 92 49 0.232 58.1
HMLS+R. 14 264 174 426 887 835 868 0.095 99.9
HMLS+R.+B. 2966 1 209 1 353 31 28 0.193 65.1
HMLS+R.+Cost 734 4 887 3 265 82 44 0.275 60.8
HMLS+E. 19 184 734 287 402 1 310 1 275 0.008 99.6
HMLS+E.+B. 6791 528 721 36 32 0.136 60.9
HMLS+E.+Cost 1732 2 070 1 976 91 49 0.235 58.5
HMLS+E.+R. 46 77 468 128 784 823 858 0.098 99.8
HMLS+E.+R.+B. 10308 348 461 31 28 0.196 65.1
HMLS+E.+R.+Cost 1921 1 866 1 902 82 44 0.276 61.0

6.3 Results
Table 2 summarizes the evaluation of the HMLS algorithm and its heuristics. The MLS
algorithm is used as a baseline for the evaluation of the proposed heuristics and their
combinations. Columns dc and Π% are calculated with respect to the optimal Pareto set Π∗
returned by the MLS algorithm. The MLS algorithm returns optimal solutions (1351 routes
in the Pareto set on average) at the expense of a prohibitively high runtime (one hour per
one origin-destination pair on average).

As anticipated, all heuristic methods are significantly faster than the pure MLS algorithm.
First, we have compared the methods using the two primary metrics in each category – the
average runtime and the heuristic measured by the average distance dc(Π∗,Π) in the cost
space. From the perspective of this two metrics, there are five non-dominated combinations
of heuristics, cf. filled bars in Figure 3 and bold values in Table 2. In the following, we only
discuss non-dominated combinations of heuristics.

The HMLS+Ellipse heuristic performs best in terms of the quality of the solution.
It successfully prunes the search space with dc(Π∗,Π) = 0.008. The average runtime of
this heuristic is around three minutes. This heuristic is very good for combining with other
heuristics, it offers one order of magnitude speedup over the MLS algorithm with a negligible
quality loss (99.6% of the routes in the heuristic Pareto set Π are equal to the ones in the
optimal Pareto set Π∗).

The HMLS+Ellipse+Ratio heuristic offers very good quality with dc(Π∗,Π) = 0.098, the
average runtime is around 80 seconds. The search space is pruned geographically by the
ellipse pruning and the search is also terminated sooner by the ratio-based pruning method.

With only a small decrease of the solution quality to dc(Π∗,Π) = 0.131, HMLS+Buckets
heuristic offers a significant additional speedup in average runtime to approximately
4.1 seconds. This makes this heuristic (and also the two following ones) usable for real time
applications, e.g., a web-based bicycle journey planner.

When the ellipse pruning method is combined with the Buckets heuristic, the average
runtime of HMLS+Ellipse+Buckets is lowered to approximately 528 ms while keeping almost
the same quality dc(Π∗,Π) = 0.136.
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Figure 3 Speed and quality for the HMLS algorithm and all heuristic combinations sorted by
the quality from the best (MLS on the left hand side) to the worst. Non-dominated heuristic
combinations have grey filled in bars.

The last combination HMLS+Ellipse+Ratio+Buckets performs best in terms of average
runtime which is approximately 350 ms, i.e., it has four orders of magnitude speedup over the
pure MLS algorithm. The quality of this combination is reflected by higher dc(Π∗,Π) = 0.196,
still over 65% of the routes in the heuristic Pareto set Π are equal to the ones in the optimal
Pareto set Π∗.

To provide a deeper insight in search runtimes, we show in Figure 4 how the runtime
of the HMLS+Ellipse+Buckets heuristic depends on the direct origin-destination distance.
Although the runtime increases with the origin-destination distance, the rate of increase
slows down as the origin-destination distance grows. This behaviour was confirmed in our
initial scale-up experiments that resulted in less than 10 second response times even for
20 times larger cycleway graph covering the whole city of Prague (approx. 200 km2). Finally,
in Figure 5 we illustrate the route distribution from the optimal Pareto set of routes in the
physical space on an example of a route around a hilly area in Zizkov, Prague 3.

To summarize, we have evaluated 11 different combinations of heuristics from which
5 combinations dominated the others in terms of quality and speed. The heuristics offer
significant one to four orders of magnitude speedup over the pure MLS algorithm in terms
of average runtime. The speedup is achieved by lowering the number of iterations and also
the number of dominance checks in each iteration. HMLS+Ellipse is the best heuristic in
terms of quality of the produced Pareto set while HMLS+Ellipse+Ratio+Buckets is the
best heuristic in terms of average runtime. Taking into the account the trade-off between
the quality of a solution and the provided speedup, we consider HMLS+Ellipse+Buckets
heuristic to have the best ratio between the quality and speed.
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Figure 4 The runtime of HMLS+Ellipse+Buckets in milliseconds in dependency on the direct
origin-destination distance.

Figure 5 Distribution of 503 routes from the optimal Pareto set of routes. The more routes use
a given cycleway network segment, the wider is the depicted line.

7 Conclusions

We have made bicycle routing that properly considers multiple realistic route choice criteria
fast enough for practical, interactive use. We have achieved so by employing four heuristic
speedup techniques for multi-criteria shortest path search. The speedup heuristics provide
a variable trade-off between the search time and the completeness and quality of the suggested
routes and they enable fast response times without severely compromising the quality of the
results.

The multi-criteria search produces often large Pareto sets with many similar routes.
As a future work, we plan to provide a filtering method (e.g., based on our initial clustering
method [24]) that would extract several representative routes from a potentially very large
set of Pareto routes. Furthermore, we plan to extend the underlying cycleway graph model
to consider additional features such as detailed junction models with traffic lights and
penalisation of turns.
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