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Abstract
Pedestrian routing has its specific set of challenges, which are often neglected by state-of-the-
art route planners. For instance, the lack of detailed sidewalk data and the inability to traverse
plazas and parks in a natural way often leads to unappealing and suboptimal routes. In this work,
we first propose to augment the network by generating sidewalks based on the street geometry
and adding edges for routing over plazas and squares. Using this and further information, our
query algorithm seamlessly handles node-to-node queries and queries whose origin or destination
is an arbitrary location on a plaza or inside a park. Our experiments show that we are able to
compute appealing pedestrian routes at negligible overhead over standard routing algorithms.
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1 Introduction

The computation of routes in street networks has received tremendous attention from the
research community over the past decade, and for many applications efficient algorithms now
exist; see [4] for a recent survey. The bulk of work, however, focuses on computing driving
directions for cars. Other scenarios, such as computing routes for pedestrians, have been
neglected or simply dismissed as a trivial matter of applying a different cost function.

We argue that this naïve approach may lead to unnatural and suboptimal solutions. In
fact, pedestrians utilize the street network quite differently from cars, which is often not
captured by traditional approaches. For example to save distance, pedestrians are free to
deviate from the streets, using the walkable area of public open spaces such as plazas and
parks. On the other hand, crossing large avenues can be expensive (due to traffic), and it
may be faster and safer to walk a small detour in order to use a nearby bridge or underpass.

In this work, we address the unique challenges that come with computing pedestrian
routes. In order to obtain as realistic routes as possible, we propose to first augment the
underlying street network model, and then to apply a tailored routing algorithm on top of
it. After setting some basic definitions (Section 2), we propose geometric approaches for
automatically adding sidewalks, calculating realistic crossing penalties for major roads, and
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2 Towards Realistic Pedestrian Route Planning

(a) Google Maps. (b) Our approach.

Figure 1 In contrast to current approaches, our route in this example makes use of sidewalks (avoid-
ing unnecessary street crossings), begins on a plaza and traverses it in a natural way.

preprocessing plazas and parks in order to traverse them in a natural way (Section 3). Our
integrated routing algorithm seamlessly handles node-to-node queries and queries whose
origin or destination is an arbitrary geographic location inside a plaza or park (Section 4). To
efficiently support long-range queries, we also adapt the Customizable Route Planning (CRP)
algorithm [9]—a well-known speed-up technique for computing driving directions in road
networks—to our scenario. We evaluate our approach on OpenStreetMap data of Berlin and
the state of Baden-Württemberg, Germany (Section 5). Our algorithm runs in the order of
milliseconds, which is practical for interactive applications. We observe that we are able to
compute pedestrian routes that are much more appealing than those by state-of-the-art route
planners, such as shown in Figure 1. Section 5.2 shows further examples and an illustrated
comparison of our method with three popular external services.

Related Work. We touch several subjects: sidewalk generation, traversal of open areas,
and graph-based routing. See [12] for an overview and assessment of different sidewalk
generation approaches. Many works consider extraction of street networks from satellite
images, e. g., [15, 18]. While this approach is promising for roads, extracting sidewalks is
problematic due to poor image resolution and occlusion (e. g., by trees). Moreover, satellite
imagery is not as easily available as street data. In contrast, a street network analysis
technique [17] generates sidewalk information directly from street layouts, but it does not
handle multiple lanes and streets that are close to each other very well. An alternative
technique [3] leverages building layouts to generate sidewalks, however, not all streets that
have sidewalks are also adjacent to a building, resulting in incomplete output.

Traversing open areas is a classical problem in robotics and computational geometry,
and numerous works exist on the subject [20]. Cell decomposition [13] yields paths that are
offset from the obstacles and area boundary, and [14] combines several techniques—including
Voronoi diagrams—to obtain robust collision-free robot motion paths. Visibility graphs [1]
are specifically important to us, since they represent geometric shortest paths.

Given source and target nodes in a graph, Dijkstra’s algorithm [11] computes shortest
paths between them. A plethora [4] of work deals with accelerating Dijkstra’s algorithm by
using an additional offline preprocessing stage. In our work, we adapt the Customizable Route
Planning (CRP) algorithm [9], which offers an excellent tradeoff between query performance
and preprocessing effort. In essence, its preprocessing uses a nested multilevel partition of
the graph to compute shortcuts between the boundary vertices in each cell. Traversing these
shortcuts then enables the query to skip over large parts of the graph.
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2 Preliminaries

We model the street network as a undirected graph G = (V,E) with a set V of nodes and
a set E ⊆

(
V
2
)
of edges. A node that is incident to exactly two edges is called a 2-node.

For a specific subset of edges E′ ⊆ E the induced graph G[E′] = (V ′, E′) contains E′
and the nodes V ′, which are incident to the edges of E′. An s–t path in G is a node
sequence Ps,t = (s = v1, . . . , vk = t), with each ei = {vi, vi+1} contained in E. A graph G is
planar if a crossing-free drawing of G in the plane exists. A specific embedding of G maps
each node to a coordinate in the plane. The embedding of G subdivides the plane into disjoint
polygonal regions called faces bounded by the edges of G. Note that in our street networks
each node v ∈ V corresponds to a physical location. Likewise, each edge e ∈ E represents a
street segment. The cost of e is given by c : E → R+, where c(e) is the time (in seconds) a
pedestrian requires to traverse e. This value may, e.g., depend on the street category and
the segment’s physical length. For source and target nodes s and t, Dijkstra’s algorithm [11]
computes a shortest s–t path Ps,t, i.e., an s–t path whose cost

∑k−1
i=1 c(ei) is minimal.

Besides the street network, we consider the walkable area of public open spaces such as
plazas and parks. We represent them by polygons, as follows. A (simple) polygon Q ⊂ R2 is
defined as the interior of a sequence of vertices Q = (p1, . . . , pn), pi ∈ R2 sorted clockwise and
connected by non-self-intersecting segments p1p2, p2p3, . . . , pn, p1. (We distinguish the nodes
of a graph from the vertices of a polygon.) A polygon with holes Q is defined by a boundary
cycle bQ and holes h1

Q, . . . , h
k
Q in the interior of bQ, where bQ and hiQ again define simple

polygons and their vertices are the vertices of Q. The interior of Q is bQ \ (∪ihiQ) and a
point o or a segment s is within Q if o or s lie within this interior. The visibility graph VG(Q)
of a polygon with holes Q is a geometric graph that consists of all vertices p1, . . . , pn of Q
and all segments pipj which lie within Q. The visibility polygon VP (p,Q) of a point p ∈ Q
with respect to the containing polygon Q is the region within Q that is visible from p, i. e.,
for each q ∈ VP(p,Q) the segment pq ⊆ Q. With |Q| we denote the number of vertices of Q.

For many geometric computations, we use functionality of the computational geometry
library CGAL [22], in particular for computing line segment intersections, polygon unions
and differences, visibility graphs and polygons, range queries, and point-in-polygon queries;
see [8] for descriptions of the algorithms. Furthermore, we implement a custom sweep line
algorithm, which, given a set of disjoint polygons and a set of query points, determines for
each point the polygon that contains it (if any); see Appendix A for details. To apply these
geometric algorithms to our street data, we map geographic coordinates to points in R2 using
the Mercator projection. We use Euclidean distances ||p− q|| between points p and q.

3 Augmented Graph Model for Pedestrian Routing

We consider three key aspects where pedestrian routes differ from those of vehicles: (a) side-
walks are preferred over streets, if present; (b) plazas can be traversed freely; (c) in parks
pedestrians may walk freely on the lawn, but park walkways are preferred. In this section, we
present algorithms that process the street network in order to accommodate these differences.
(We then discuss queries in Section 4.) Most of this preprocessing is independent of the edge
costs in the network, hence, new costs can be integrated with little effort.

3.1 Sidewalks and Street Crossings
Unlike features, such as street direction, turn restrictions and separation into lanes, side-
walk data is often lacking (or inconsistently modeled) in popular street databases, such
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Figure 2 Shortest path when using streets (left) or sidewalks (right).

as OpenStreetMap (openstreetmap.org). As a result, state-of-the art pedestrian route
planners mostly use the streets themselves and not their sidewalks. However, this may lead
to unnecessary street crossings, which can either be costly (due to traffic lights), or even
be impossible. In contrast, when sidewalks are considered properly, a seeming detour may
actually be the shorter path, see Figure 2. We therefore propose to replace some streets (as
given by the input) with automatically generated sidewalks. We distinguishing between three
street types: Highways represent streets that are inaccessible for pedestrians, hence, they
have no sidewalks; regular streets, such as city streets, have sidewalks; and walkways are
footpaths and streets small enough to require no sidewalks.

Street Polygons. Naïvely, one could add sidewalks to the left and to the right of every
regular street in the input [17]. Unfortunately, this results in sidewalks being placed in the
middle of multi-lane streets or in median strips, which is clearly unwanted. We therefore
propose to avoid areas enclosed by regular or highway streets that are too small or thin to
hold sidewalks.

To achieve this, we first compute a set S of street polygons, representing such areas
without sidewalks. Consider the embedded graph Ghr induced by the set of highway and
regular street edges. We obtain the planarization G′hr of Ghr using a standard sweep-line
algorithm for line segment intersections [8]. Let f be a face in G′hr and let af and pf denote
its area and perimeter, respectively. Then f is considered a street polygon, if af/pf ≤ βr (too
thin) or af ≤ βa (too small) for suitably chosen thresholds βr, βa.

Sidewalks. Our goal is to place sidewalks to the left and to the right of each street edge at
some offset, unless they would be placed inside a street polygon. They should also follow
curves and handle street intersections correctly, see Figure 3. To do so, we consider the
embedded graph Gr, induced by the regular street edges. Recall that in Gr street intersections
are modeled by nodes v of degree deg(v) ≥ 3, while the street’s curvature is modeled as
paths of 2-nodes. For each maximal 2-node path (v1, . . . , vk) and its adjacent intersection
nodes v0 and vk+1 (where we treat dead ends as intersection nodes, too), we consider the
edge sequence (e0, . . . , ek), where ei = {vi, vi+1}. For each edge ei, we create two sidewalk
edges li and ri, and offset them (from ei) by a distance δs; see Figure 3a. In order to form
correct paths along bends, these edges need to be trimmed or linked via auxiliary edges,
depending on the bend angles; see Figure 3b.

At each street intersection v ∈ Gr with deg(v) ≥ 3, we sort the incident edges in
cyclic order. This order yields adjacent sidewalks, which we again trim at their respective
intersection points or link by an auxiliary edge; see Figure 3c. For each street edge e incident

openstreetmap.org
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Figure 3 Generating sidewalks. Regular street segments are replaced by two sidewalk edges (a).
Subsequent pairs of sidewalk edges are then connected along each 2-node path (b). Finally,
the resulting sidewalks are adjusted at street intersections (dotted parts removed), and crossing
edges (dashed) are added (c).

to v, we also add an edge between the two sidewalks at v associated with e, which allows to
cross e at v; see again Figure 3c.

Next, we remove all sidewalk portions contained in street polygons of S. Using a standard
line segment intersection algorithm [8], we first subdivide sidewalks at the boundaries of
street polygons. Then, we use our point-in-polygon algorithm (see Appendix A) to remove
all sidewalk segments with both endpoints inside a polygon of S. This results in (at most)
two sidewalks per street, as opposed to two sidewalks per lane.

Finally, we assemble the routing graph G induced by sidewalk, crossing and walkway
edges (but not highway and regular street edges). For connectivity, we add nodes at the
intersections of sidewalks with walkways, subdividing the intersecting edges, again by running
a line segment intersection algorithm [8].

Crossing Penalties. We may further utilize the street polygons S in order to penalize
certain street crossings where waiting times can be expected. As the area covered by parallel
street lanes is represented in S, an edge e of G which passes through a multi-lane street also
has a portion within S, and we may penalize this portion in our cost function. We use two
types of penalties. The “one-time” penalty αe models a general waiting time, either for a
pedestrian light or for traffic to clear. We add αe to the cost of each edge that enters S.
More precisely, an edge e = {u, v} in G enters S if u is outside S and the segment of e has
common points with S. The second penalty, denoted αw, is a penalty per unit of length spent
within S. It reflects that wider streets generally require longer waiting times to cross. We
find the edge portions of G within S while we remove sidewalks within S. We use our sweep
line algorithm (cf. Appendix A) to find edges starting outside S. Such edges with portions
within S also enter the street polygons.

3.2 Plazas
Pedestrians may traverse plazas freely. However, somewhat surprisingly, most state-of-the-art
pedestrian navigation services route around such walkable areas, not through them. We
propose to utilize visibility graphs to remedy this shortcoming. We assume that the street
network database provides traversable plazas as a set P of plaza polygons, possibly with
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6 Towards Realistic Pedestrian Route Planning

(a) A visibility graph. (b) Shortest path visibility edges.

s

(c) Route origin in plaza polygon.

Figure 4 Small polygon Q with a hole and all visibility edges (a) and the ones that are also on
shortest paths (b). Routing from within Q requires all visibility edges (c).

holes due to obstacles. Given P and the previously obtained routing graph G, we compute
the entry nodes of each plaza: These lie on the intersection of a plaza polygon’s boundary
and the routing graph and are obtained by a line segment intersection algorithm [8]. We
add each entry node both to the plaza polygon (as a vertex) and to the routing graph. For
each polygon Q ∈ P, we then compute the visibility graph VG(Q). If Q has no holes, we
require quadratic time [16, 22], otherwise cubic time. (Since we encounter only very few
polygons with holes in practice, we did not implement a more efficient algorithm, such as [1].)
Let Evis(Q) be the visibility edges of VG(Q), and Evis = ∪Q∈PEvis(Q). We add Evis as
further pedestrian edges to the routing graph G.

Since the number of visibility edges Evis(Q) of a plaza polygon Q ∈ P is generally quite
high (see Figure 4a), routing through plazas can become expensive. We therefore mark the
subset Esp

vis ⊂ Evis of visibility edges that are part of shortest paths between any pair of entry
nodes (the query may then ignore unmarked edges); see Figure 4b. We do so by running
Dijkstra’s algorithm from each entry node, only relaxing visibility edges of the node’s plaza.
Note that Esp

vis suffices to route across plazas, but queries that begin or end on a plaza may
still require all edges in Evis; see Figure 4c and Section 4. Also note that computing Esp

vis
requires knowledge of the routing cost function (all other preprocessing does not). However,
since the necessary shortest path queries are restricted to each plaza and the number of entry
nodes is typically small, this step is not costly compared to the total preprocessing effort.

3.3 Parks

Unlike plazas, parks have designated walkways, which we favor by routing on walkable park
areas (such as lawn) only at the beginning or end of a route. In order to quickly locate
nearby walkways during queries, we precompute the faces of a park induced by its walkways.

Similarly to plazas, we assume that the walkable area of parks is given as the set L of park
polygons (possibly with holes) by the street network database. We compute the entry nodes
the same way we do for plazas. We then use our algorithm from Appendix A to compute
the set EL of edges in G contained in each L ∈ L (in a single sweep). Thus, GL = G[EL]
contains exactly the park walkways within L. We add the boundary of L to GL (as nodes
and edges) and planarize GL. We define the set of park faces FL to be the faces of GL,
and F =

⋃
L∈L FL. During queries, we will use F for locating park walkways and routing

to/from them (see Section 4).
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(a) Reaching park walkways via park area.
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Figure 5 Using the park area and walkway. We minimize the walking time on the park area plus
that on the walkway (left). The manner in which the park area is utilized varies with vs (right).

4 Computing Routes

We now discuss how we leverage our model from Section 3 to compute realistic pedes-
trian routes. We are generally interested in queries between arbitrary locations `o (origin)
and `d (destination). Usually, one handles such location-to-location queries by first mapping
the locations to their nearest nodes (or edges) of the network, and then invoking a shortest
path algorithm between those. However, for locations inside plazas and parks this method
would result in inaccurate routes. Instead, we propose the following approach. First, we test
whether ` ∈ {`o, `d} is located inside a plaza or a park. In either case, we first connect ` to G
with sensible edges and then run Dijkstra’s algorithm between `o and `d on this augmented
graph. If neither is the case, we just find the nearest nodes in G using a k-d tree [5], as in
the classic scenario. We discuss more details next.

Plazas. To test whether the origin or destination location ` is on a plaza, we simply perform
a point-in-polygon test [8]. Now, assume that Q ∈ P is the polygon, which contains `.
We compute the visibility polygon VP(`,Q) of ` with respect to Q by applying the recent
algorithm of Bungiu et al. [7]. We also use our sweep line algorithm from Appendix A
to obtain the nodes V `Q in VG(Q) ⊂ G that are located within VP(`,Q). We then simply
connect ` to each node p ∈ V `Q by adding edges {`, p} to the graph G.

Recall from Section 3.2 that to route across plazas, the visibility edges in Esp
vis suffice.

Hence, we ignore edges e ∈ Evis \Esp
vis during the query, unless e ∈ VG(Q) for the polygon Q

containing `, in which case it is required for correctness.

Parks. For the case that ` is contained in a park, we first obtain the enclosing park
face f (similarly to the plaza case). We now consider two different walking speeds: the
regular walking speed vr, and another (slower) one vs for park faces (e. g., lawn). We
set λ = vs/vr (with λ ∈ (0, 1]) as a query time parameter; values λ < 1 penalize walking on
the lawn, with smaller λ values leading to higher penalization.

Taking this into account, our goal is to connect ` to the walkways of f , such that the
total walking duration is minimized. We thereby compute the optimal path toward each
edge e = {u, v} ∈ f separately, as follows. Consider a point πu on e. To reach u from ` via πu,
one requires total walking time w = ||πu−`||

vs
+ ||u−πu||

vr
; see Figure 5a. For a given λ, the

minimum walking time w∗ is achieved by the projection point π∗u = φ+ λ
1−λ2 · ||`−φ||||u−φ|| · (u−φ),

where φ is the perpendicular projection of ` on the line through e; see [2] for a derivation
of this formula. As seen in Figure 5b, a small value of λ causes a perpendicular projection:
walking on the lawn is costly and therefore minimized. A larger value of λ allows for a more
direct, target-aimed projection, saving distance but using more of the walkable park area.

ATMOS’15
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Figure 6
Detour due to
long thin face.

We now use the aforementioned formula to compute for each edge e =
{u, v} ∈ f the projection points π∗u and π∗v . To check whether a segments su =
π∗u` is walkable within the park, we test whether the point π∗u lies within the
visibility polygon VP(`,Q). If so, we add the edge {`, u} with cost ||π

∗
u−`||
vs

+
||u−π∗

u||
vr

to G. Node v is handled analogously.
Note that since we directly connect the origin `o and destination `d to

the edges of their enclosing faces, we are unable to route around obstacles
in parks. Moreover, we are unable to walk across other park faces (except
the ones containing the origin and destination locations). However, this may
result in unnatural routes, if origin and destination are in the same park
separated by a thin face; see Figure 6. We solve this issue by introducing a
radius parameter ε, and additionally compute edges to the boundaries of all
faces (of the same park) that have vertices within distance ε of `. We use range queries [22]
to obtain those faces. If, both, origin `o and destination `d are in the same park and within
distance ε, we additionally consider the direct route `o`d with cost ||`d−`o||

vs
explicitly.

Customizable Route Planning. Typical pedestrian routes are very short, thus, one might
argue that Dijkstra’s algorithm computes them sufficiently fast. Still, a practical routing
engine should be robust against long-distance queries as well. We therefore propose to make
use of the Customizable Route Planning (CRP) algorithm [9]. It is a state-of-the-art speedup
technique, developed for computing driving directions in road networks. CRP employs three
phases: The preprocessing phase uses a nested multilevel partition to compute (for each
level) a metric-independent overlay graph over the boundary nodes of the partition. The
customization phase takes a cost function as input and computes the actual edge weights of
the overlay graph. Finally, the query phase runs bidirectional Dijkstra’s algorithm, using the
overlay graph to the effect of “skipping” over large parts of the network. See [9] for details.

Adapting CRP to our scenario requires little effort. We use the routing graph G for
computing both the multilevel partition and the overlay graph. To easily support queries
beginning or ending within parks or plazas, we enforce that nodes within the same park or
plaza are never put into different cells of the partition. (We do this by running the partitioner
on a slightly modified graph, in which we contract all nodes associated with the same park or
plaza.) To see why this is correct, recall that the temporary edges added by the query only
point to nodes within the park or plaza which contains the origin (or destination) location.
By construction these nodes are all part of the same cell (on every level of the partition),
therefore, the distances in the overlay graph are unaffected and still correct.

Note that in our CRP query we do not bother ignoring visibility edges in G that are not
on shortest paths: They are only present on the bottom level, therefore, the query skips over
them automatically in most cases.

5 Experiments

We implemented all algorithms in C++ using g++ 4.8.3 (flag -O3) and CGAL 4.6. We
conducted our experiments on a single core of a 4-core Intel Xeon E5-1630v3 CPU clocked
at 3.7GHz with 128GiB of DDR4-2133 RAM. Our data set was extracted from Open-
StreetMap (OSM) on May 15, 2015, and includes roads, plazas and parks.1 We use two

1 Note that OSM offers a tag for indicating availability of sidewalks at streets, however, it has not been
widely adopted as of now, cf. http://taginfo.openstreetmap.org/keys/?key=sidewalk.

http://taginfo.openstreetmap.org/keys/?key=sidewalk
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Table 1 Size figures before and after preprocessing. Besides graph size, we report the total
number of vertices for plaza, park, and obstacle polygons. Preprocessing time is given in [m:s].

OSM Input Pedestrian Output

Nodes Edges Plaza Park Obst. Nodes Edges Plaza Park Time

BE 378 298 890 682 9 727 33 072 1 116 452 586 1 132 928 7 276 19 903 1:26
BW 8 235 762 17 740 940 74 547 86 380 4 439 10 209 641 22 750 644 63 300 43 632 32:45

Table 2 Detailed preprocessing figures. Besides running time, we report the number of added
sidewalks, substituted streets, avg. vertices per plaza polygon (Plaza avg.), visibility edges (Vis.) and
the fraction of them on shortest paths (SP. [%]), avg. vertices per park (Park avg.), avg. faces per
park (Faces/park), avg. vertices per park face (Face avg.), and the vertices of all park faces (Faces
total).

Sidewalks Plazas Parks

Added Subst. Time Plaza Vis. SP. Time Park Faces/ Face Faces Time
sidewalks streets [s] avg. total [%] [s] avg. park avg. total [s]

BE 266 336 105 146 32.6 15.38 86 912 9.5 23.0 22.4 10.4 10.68 98 108 31.6
BW 5 580 842 1 824 185 743.7 17.45 772 416 7.7 563.6 20.8 6.6 11.26 155 840 657.4

instances: Berlin (BE) and the state of Baden-Württemberg (BW), both in Germany. While
BE is an eclectic city with plenty of large streets, parks and plazas (making it interesting for
evaluating pedestrian routes), we use BW to demonstrate the scalability of our approach.

This section first presents a quantitative evaluation of our approach before it compares
the quality of our routes to the state of the art in a case study.

5.1 Quantitative Evaluation
We determined sensible values for the parameters of our preprocessing (cf. Section 3) by
running preliminary experiments. We set the sidewalk offset to δs = 3m, and set values for
sidewalks suppression of small and thin street polygons to βa = 1000m2 and βr = 3.17m.
For queries we assume a regular walking speed of vr = 1.4 m

s [6], and we set vs = 0.9 m
s for

walkable park areas, i. e., λ ≈ 0.6. We also set the park face expansion value to ε = 20m.
Regarding intersections, we set the crossing penalties to αe = 10 s and αw = 1 s

m , which
leads to about 30 s of expected waiting time for typically-sized intersections.

Note that though we set these parameter values uniformly for our experiments, the
approach would easily allow setting specific values per intersection or park face, if such
detailed data was available. Also note that in our instances we do not add crossing edges within
street polygons, i. e., at large multi-lane intersections (cf. Section 3). In fact, OpenStreetMap
provides these already, and adding further crossings may result in dangerous paths, forcing
the pedestrian to cross several lanes without the aid of traffic regulations.

Preprocessing. Table 1 presents size figures for the input and output of our preprocessing.
Note that BW is significantly larger than BE (factor of 20 in graph size and factor of 9 in
plaza polygons). This is reflected by the preprocessing effort, which takes about 23 times
longer on BW. However, the graph size increases by less than 30% (nodes and edges) by our
preprocessing. Unfortunately, polygons representing walkable areas (parks and plazas) in

ATMOS’15



10 Towards Realistic Pedestrian Route Planning

Table 3 Evaluating the query performance of our approach. We distinguish each combination of
the origin/destination being on a street node (s), plaza polygon (p), or park face (f). We report the
time in milliseconds to check for each of these cases (Localization), the time for our initialization
stage (Initialization) or not applicable (—), and the time for running Dijkstra’s algorithm (Dij.).

BE BW

Localization Initialization Dij. Localization Initialization Dij.

Query Plaza Park Street Plaza Park [ms] Plaza Park Street Plaza Park [ms]

s–s 0.021 0.027 0.004 — — 31.8 0.033 0.040 0.005 — — 808.0
s–p 0.021 0.016 0.002 0.165 — 30.4 0.032 0.020 0.003 0.173 — 871.6
p–p 0.016 — — 0.264 — 27.9 0.027 — — 0.351 — 889.4
s–f 0.021 0.022 0.002 — 0.359 28.3 0.029 0.026 0.002 — 0.310 758.7
p–f 0.017 0.011 — 0.145 0.362 30.6 0.027 0.014 — 0.178 0.303 810.1
f–f 0.020 0.021 — — 0.733 27.6 0.029 0.027 — — 0.622 733.6

OSM may overlap and, moreover, polygons with holes are not supported. Instead, obstacles
are represented as an additional type of polygon. We therefore first compute the union
of overlapping polygons and then subtract potential obstacles from it [22]. This explains
the (somewhat peculiar) drop of 50% in the number of park polygon vertices in our output.
Note that only less than 3% of the resulting plaza polygons have holes in them (not reported
in the table).

Table 2 presents more detailed figures. We observe that each part of our preprocessing
requires a similar amount of time. Regarding sidewalks, only a small subset (12 %) of
the roads is actually substituted. (Recall that we replace neither highways nor walkways.)
However, the number of sidewalk edges per substituted road segment is more than two on
average, due to complex intersections and other effects (cf. Section 3). Regarding plazas,
we observe that the number of visibility edges is only a small fraction of the graph (less
than 10%), with less than 10% of those actually being on shortest paths. The necessary
shortest path computations take less than 3 seconds on BW (not reported in the table). For
parks, we observe that including walkways (to compute park faces) increases the number of
park vertices by a factor of 5 (“Faces total” in the table). While this results in a high average
number of vertices per entire park (111 for BE), the number of vertices per park face remains
small, which is the influential performance figure for queries that begin or end in a park.

Queries. We now evaluate the query performance. Recall that our query algorithm takes
as input two arbitrary locations, which may be inside a plaza or park, and in which case the
query will route from the precise location to the vertices of its surrounding polygon. Table 3
separately evaluates our algorithm for each scenario of placing the origin or destination on a
street node (s), inside a plaza (p), or a park face (f). Per scenario, we generated 1,000 queries,
choosing origin and destination (i.e., node, plaza polygon or park face) uniformly at random.
For the plaza or park case, we further chose an interior point at random.

The query is oblivious to the specific scenario, i.e., we only pass geographic locations as
input, and it needs to perform the necessary checks to figure out the right scenario itself.
However, at below 80 µs these checks (including the determination of the specific street node
or enclosing polygon) take negligible time. The initialization stage for plazas (computing
additional visibility edges) or parks (computing and testing projections) is considerably
more expensive, but still runs well below a millisecond, orders of magnitude faster than
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Figure 7 Dijkstra rank plot on our BW instance, comparing the performance of Dijkstra’s
algorithm with CRP. The top axis shows the average walking time for the queries in each bucket.

the subsequent run of Dijkstra’s algorithm. Note that in our implementation we never add
any edges explicitly (cf. Section 4), but rather simply initialize Dijkstra’s algorithm with all
vertices (and their respective distances) to which these temporary edges would point.

Customizable Route Planning. We finally evaluate the combination of our query algo-
rithm with the Customizable Route Planning (CRP) approach [9] on our larger BW net-
work. We use PUNCH [10] for partitioning. Our partition has five nested levels with at
most [28, 211, 214, 217, 220] vertices per cell. (This is the same configuration as in [9].) We
compute the partition on the routing graph (that is output by our preprocessing), however,
we temporarily replace nodes of the same plaza or park by a single supernode. This keeps
polygons from spreading over cell boundaries and simplifies the CRP query. Computing the
metric-independent partition takes several minutes and the subsequent customization phase
takes about five seconds. Note that to integrate a new cost function, e.g., due to different
crossing penalties, only the customization phase has to be rerun, which is very fast.

Figure 7 compares the performance of CRP with Dijkstra’s algorithm using the Dijkstra
rank methodology [19]: When running Dijkstra’s algorithm from node s, node u has rank x, if
it is the x-th node taken from the priority queue. By selecting random origin and destination
pairs according to ranks 21, 22, . . . , 2blog |Vr|c (we select 1,000 queries per bucket), the plot
simultaneously captures short- mid- and long-range queries. We observe that for short-range
queries the performance of Dijkstra’s algorithm is very similar to that of CRP (below 200 µs
on average). However, from rank 210 onward, Dijkstra’s algorithm becomes significantly
slower (rising to more than a second), while the average running time of CRP remains
below 1ms at any rank. Note that while most pedestrian queries are likely of short range, a
production system must nevertheless be robust against any type of query.

ATMOS’15
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(a) OpenRouteService. (b) Google Maps.

(c) Nokia’s HERE. (d) Our approach.

Figure 8 Comparison with several readily available pedestrian route planning services. The
origin of the route is a street address, and its destination is inside a plaza.

5.2 Case Study
We now present a case study, which compares the output of our approach to OpenRouteSer-
vice2, Google Maps3 and Nokia HERE4.

Figure 8 shows an example in the city of Karlsruhe, Germany. It highlights the impor-
tance of, both, the presence of sidewalks and being able to route across walkable areas.
Clearly, OpenRouteService has the worst result, as it does not consider the boundary of the
plaza (Festplatz) for routing, which results in a large detour. Because of improper sidewalk
data, the routes of Google Maps and HERE suggest to go across the same street (Beiertheimer
Allee) twice, which is unnatural and unnecessary. While Nokia HERE is the only competing
approach that has some additional edges for walking across open areas (thus yielding a more
realistic route), the utilization of these edges seems to be heuristic, still yielding an (unnatural)
detour. In contrast, our route has no unnecessary street crossings (because of our generated
sidewalk data), and the plaza is traversed in a natural way.

Figure 9 shows an example of a route starting on a plaza between buildings and ending
in a park (Berlin, Germany). Unlike the previous example, OpenRouteService is able to
route around (but not across) the plaza, because the plaza’s boundary has been tagged as
walkable. On the other hand, GoogleMaps seems to lack information in that region and so
maps the query locations to the nearest street network node (which is actually blocked by
the building structure). HERE has walkways on the plaza, but also uses a shortcut which

2 http://www.openrouteservice.org/
3 https://maps.google.de/
4 https://www.here.com/

http://www.openrouteservice.org/
https://maps.google.de/
https://www.here.com/
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(a) OpenRouteService. (b) Google Maps. (c) Nokia’s HERE. (d) Our approach.

Figure 9 Comparison with several readily available pedestrian route planning services. The route
begins in a plaza and ends in a park.

passes through a cinema; it yields a shorter path but is obscure and unlikely: guiding the
pedestrian to a door is puzzling, the building may be closed, etc. As before, the route of our
approach traverses the plaza without detours.

Towards the destination, the routes of OpenRouteService, GoogleMaps and HERE are
all incomplete: they find the nearest node and simply use it as the query target. In contrast,
our approach allows walking directly across the lawn and avoids the small detours introduced
by the other approaches.

6 Conclusion

In this paper, we presented an approach for quickly computing realistic pedestrian routes.
We proposed geometric algorithms to automatically augment the street network with sensible
sidewalks and edges in plazas, making it possible to walk across them in a natural way. Our
query algorithm extends classic node-to-node queries by allowing the origin or destination to
be an arbitrary location inside a park or plaza. We also combined our algorithm with the
well-known Customizable Route Planning technique, which enabled us to compute appealing
pedestrian routes within milliseconds, fast enough for interactive applications.

Future work includes more realistic models (e.g., for traffic lights or more precise human
walking behavior); leveraging of building layouts [3]; and additional optimization criteria like
elevation and stairs, which have been used in the context of bicycle routing [21]. We would
also be interested in using our sidewalk generation algorithm in a semi-automatic tool for
adding sidewalk data back to OpenStreetMap.
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A Batched Point in Polygon Tests

While we could use the computational geometry library CGAL [22] for most of the required
geometric computations, we implemented our own sweep line algorithm for a batched point
in polygon test. Given a set of disjoint polygons (without holes) and a set of query points,
our algorithm determines for each point the polygon that contains it (if any). The algorithm
works by sweeping the query points and the end points of the polygon segments, which define
our event points, from left to right, maintaining a self-balancing binary tree of the segments
which intersect the current (vertical) sweep line. Whenever the current event point is a query
point o = (x, y), we find the two segments sa and sb, which lie vertically directly above
and below o. If sa and sb belong to a polygon Q = (p1, . . . , pn) with leftmost vertex p1, we
check whether sa = pipi+1, sb = pjpj+1, and j > i. If so, o lies within Q, otherwise it is not
contained in any polygon. If m is the number of polygon edges and n is the number of points
and polygon vertices then this algorithm requires O(n logm) time. For a set of polygons
with holes we may use the same approach once for the boundaries and once for the holes.
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