
15th Workshop on Algorithmic
Approaches for Transportation
Modelling, Optimization, and
Systems

ATMOS’15, September 17, 2015, Patras, Greece

Edited by

Giuseppe F. Italiano
Marie Schmidt

OASIcs – Vo l . 48 – ATMOS’15 ww.dagstuh l .de/oas i c s

Editors
Giuseppe F. Italiano Marie Schmidt
University of Rome “Tor Vergata” Erasmus University Rotterdam
Rome, Italy Rotterdam, the Netherlands
giuseppe.italiano@uniroma2.it schmidt2@rsm.nl

ACM Classification 1998
F.2 Analysis of Algorithms and Problem Complexity, G.1.6 Optimization, G.2.1 Combinatorics,
G.2.2 Graph Theory, G.2.3 Applications

ISBN 978-3-939897-99-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-99-6.

Publication date
September, 2015

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ATMOS.2015.i

ISBN 978-3-939897-99-6 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-939897-99-6
http://www.dagstuhl.de/dagpub/978-3-939897-99-6
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.i
http://www.dagstuhl.de/dagpub/978-3-939897-99-6
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

www.dagstuhl.de/oasics

ATMOS’15

http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

Contents

Preface
Giuseppe F. Italiano and Marie Schmidt . vii

Routing and Tour Planning

Towards Realistic Pedestrian Route Planning
Simeon Andreev, Julian Dibbelt, Martin Nöllenburg, Thomas Pajor, and Dorothea
Wagner . 1

Speedups for Multi-Criteria Urban Bicycle Routing
Jan Hrncir, Pavol Zilecky, Qing Song, and Michal Jakob . 16

Routing of Electric Vehicles: Constrained Shortest Path Problems with Resource
Recovering Nodes

Sören Merting, Christian Schwan, and Martin Strehler . 29

Heuristic Approaches to Minimize Tour Duration for the TSP with Multiple Time
Windows

Niklas Paulsen, Florian Diedrich, and Klaus Jansen . 42

Routing in Rail and Road Networks

Single Source Shortest Paths for All Flows with Integer Costs
Tadao Takaoka . 56

Robust Routing in Urban Public Transportation: Evaluating Strategies that Learn From
the Past

Kateřina Böhmová, Matúš Mihalák, Peggy Neubert, Tobias Pröger,
and Peter Widmayer . 68

Bi-directional Search for Robust Routes in Time-dependent Bi-criteria Road Networks
Matúš Mihalák and Sandro Montanari . 82

Railway Optimization Problems

A Mixed Integer Linear Program for the Rapid Transit Network Design Problem with
Static Modal Competition

Gabriel Gutiérrez-Jarpa, Gilbert Laporte, Vladimir Marianov, and Luigi Moccia . . 95

Ordering Constraints in Time Expanded Networks for Train Timetabling Problems
Frank Fischer . 97

Regional Search for the Resource Constrained Assignment Problem
Ralf Borndörfer and Markus Reuther . 111

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

vi Contents

ATMOS’15 Best Paper Award

Approximation Algorithms for Mixed, Windy, and Capacitated Arc Routing Problems
René van Bevern, Christian Komusiewicz, and Manuel Sorge . 130

Preface

Running and optimizing transportation systems give rise to very complex and large-scale
optimization problems requiring innovative solution techniques and ideas from mathematical
optimization, theoretical computer science, and operations research. Since 2000, the series of
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS)
workshops brings together researchers and practitioners who are interested in all aspects
of algorithmic methods and models for transportation optimization and provides a forum
for the exchange and dissemination of new ideas and techniques. The scope of ATMOS
comprises all modes of transportation.

The 15th ATMOS workshop (ATMOS’15) was held in connection with ALGO’15, hosted
by the University of Patras and its Department of Computer Engineering and Informatics in
Patras, Greece, on September 17, 2015. Topics of interest were all optimization problems for
passenger and freight transport, including, but not limited to, demand forecasting, models
for user behavior, design of pricing systems, infrastructure planning, multi-modal transport
optimization, mobile applications for transport, congestion modelling and reduction, line
planning, timetable generation, routing and platform assignment, vehicle scheduling, route
planning, crew and duty scheduling, rostering, delay management, routing in road networks,
and traffic guidance. Of particular interest were papers applying and advancing techniques
like graph and network algorithms, combinatorial optimization, mathematical programming,
approximation algorithms, methods for the integration of planning stages, stochastic and
robust optimization, online and real-time algorithms, algorithmic game theory, heuristics for
real-world instances, and simulation tools.

All submissions were reviewed by at least three referees and judged on originality, technical
quality, and relevance to the topics of the workshop. Based on the reviews, the program
committee selected eleven submissions to be presented at the workshop. In addition, Ralf
Borndörfer kindly agreed to complement the program with an invited talk that was presented
as a global key-note talk of ALGO’15. This volume collects the corresponding papers for
ten of the submissions, as well as the short paper for the eleventh one. Together, they
quite impressively demonstrate the range of applicability of algorithmic optimization to
transportation problems in a wide sense.

Based on the program committee’s reviews, René van Bevern, Christian Komusiewicz,
and Manuel Sorge won the Best Paper Award of ATMOS’15 with their paper “Approximation
algorithms for mixed, windy, and capacitated arc routing problems”.

We would like to thank the members of the Steering Committee of ATMOS for giving us
the opportunity to serve as Program Chairs of ATMOS’15, all the authors who submitted
papers, Ralf Borndörfer for accepting our invitation to present an invited talk, the members
of the Program Committee and the additional reviewers for their valuable work in selecting
the papers appearing in this volume, and the local organizers for hosting the workshop as
part of ALGO’15. We also acknowledge the use of the EasyChair system for the great help
in managing the submission and review processes, and Schloss Dagstuhl for publishing the
proceedings of ATMOS’15 in its OASIcs series.

September, 2015

Giuseppe F. Italiano
Marie Schmidt

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Organization

Program Committee

Hannah Bast University of Freiburg, Germany
Giuseppe F. Italiano (co-chair) University of Rome “Tor Vergata”, Italy
Gilbert Laporte HEC Montréal, Canada
Marco Laumanns IBM Research, Switzerland
Carlo Mannino University of Oslo, Norway
Juan A. Mesa University of Sevilla, Spain
Matúš Mihalák Maastricht University, the Netherlands
Matthias Müller-Hannemann MLU Halle-Wittenberg, Germany
Karl Nachtigall TU Dresden, Germany
Thomas Pajor Microsoft Research, USA
Federico Perea Polytechnic University of Valencia
Marie Schmidt (co-chair) Erasmus University Rotterdam, the Netherlands
Dorothea Wagner KIT, Germany

Steering Commitee

Anita Schöbel Georg-August-Universität Göttingen, Germany
Alberto Marchetti-Spaccamela Università di Roma “La Sapienza”, Italy
Dorothea Wagner Karlsruhe Institute of Technology (KIT), Germany
Christos Zaroliagis University of Patras, Greece

List of Additional Reviewers

Moritz Baum, Julian Dibbelt, Tim Nonner, Jacint Szabo, Tobias Zündorf

Local Organizing Committee

Kalliopi (Lina) Giannakopoulou, Ioannis Katsidimas, Spyros Kontogiannis, George Michalo-
poulos, Andreas Paraskevopoulos, Christos Zaroliagis (chair)

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Towards Realistic Pedestrian Route Planning∗

Simeon Andreev1, Julian Dibbelt1, Martin Nöllenburg1,
Thomas Pajor2, and Dorothea Wagner1

1 Karlsruhe Institute of Technology, Germany
simeon.andreev@student.kit.edu,
{dibbelt,noellenburg,dorothea.wagner}@kit.edu

2 Microsoft Research, USA
tpajor@microsoft.com

Abstract
Pedestrian routing has its specific set of challenges, which are often neglected by state-of-the-
art route planners. For instance, the lack of detailed sidewalk data and the inability to traverse
plazas and parks in a natural way often leads to unappealing and suboptimal routes. In this work,
we first propose to augment the network by generating sidewalks based on the street geometry
and adding edges for routing over plazas and squares. Using this and further information, our
query algorithm seamlessly handles node-to-node queries and queries whose origin or destination
is an arbitrary location on a plaza or inside a park. Our experiments show that we are able to
compute appealing pedestrian routes at negligible overhead over standard routing algorithms.

1998 ACM Subject Classification G.2.2 Graph Theory, G.2.3 Applications, H.2.8 Database
Applications, I.3.5 Computational Geometry and Object Modeling

Keywords and phrases pedestrian routing, realistic model, shortest paths, speed-up technique

Digital Object Identifier 10.4230/OASIcs.ATMOS.2015.1

1 Introduction

The computation of routes in street networks has received tremendous attention from the
research community over the past decade, and for many applications efficient algorithms now
exist; see [4] for a recent survey. The bulk of work, however, focuses on computing driving
directions for cars. Other scenarios, such as computing routes for pedestrians, have been
neglected or simply dismissed as a trivial matter of applying a different cost function.

We argue that this naïve approach may lead to unnatural and suboptimal solutions. In
fact, pedestrians utilize the street network quite differently from cars, which is often not
captured by traditional approaches. For example to save distance, pedestrians are free to
deviate from the streets, using the walkable area of public open spaces such as plazas and
parks. On the other hand, crossing large avenues can be expensive (due to traffic), and it
may be faster and safer to walk a small detour in order to use a nearby bridge or underpass.

In this work, we address the unique challenges that come with computing pedestrian
routes. In order to obtain as realistic routes as possible, we propose to first augment the
underlying street network model, and then to apply a tailored routing algorithm on top of
it. After setting some basic definitions (Section 2), we propose geometric approaches for
automatically adding sidewalks, calculating realistic crossing penalties for major roads, and

∗ Partially supported by DFG grant WA654/23-1, EU grant 609026 (MOVESMART), and Google Focused
Research Award. Most of the work done while Thomas Pajor was at Karlsruhe Institute of Technology.

© Simeon Andreev, Julian Dibbelt, Martin Nöllenburg, Thomas Pajor, and Dorothea Wagner;
licensed under Creative Commons License CC-BY

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 1–15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Towards Realistic Pedestrian Route Planning

(a) Google Maps. (b) Our approach.

Figure 1 In contrast to current approaches, our route in this example makes use of sidewalks (avoid-
ing unnecessary street crossings), begins on a plaza and traverses it in a natural way.

preprocessing plazas and parks in order to traverse them in a natural way (Section 3). Our
integrated routing algorithm seamlessly handles node-to-node queries and queries whose
origin or destination is an arbitrary geographic location inside a plaza or park (Section 4). To
efficiently support long-range queries, we also adapt the Customizable Route Planning (CRP)
algorithm [9]—a well-known speed-up technique for computing driving directions in road
networks—to our scenario. We evaluate our approach on OpenStreetMap data of Berlin and
the state of Baden-Württemberg, Germany (Section 5). Our algorithm runs in the order of
milliseconds, which is practical for interactive applications. We observe that we are able to
compute pedestrian routes that are much more appealing than those by state-of-the-art route
planners, such as shown in Figure 1. Section 5.2 shows further examples and an illustrated
comparison of our method with three popular external services.

Related Work. We touch several subjects: sidewalk generation, traversal of open areas,
and graph-based routing. See [12] for an overview and assessment of different sidewalk
generation approaches. Many works consider extraction of street networks from satellite
images, e. g., [15, 18]. While this approach is promising for roads, extracting sidewalks is
problematic due to poor image resolution and occlusion (e. g., by trees). Moreover, satellite
imagery is not as easily available as street data. In contrast, a street network analysis
technique [17] generates sidewalk information directly from street layouts, but it does not
handle multiple lanes and streets that are close to each other very well. An alternative
technique [3] leverages building layouts to generate sidewalks, however, not all streets that
have sidewalks are also adjacent to a building, resulting in incomplete output.

Traversing open areas is a classical problem in robotics and computational geometry,
and numerous works exist on the subject [20]. Cell decomposition [13] yields paths that are
offset from the obstacles and area boundary, and [14] combines several techniques—including
Voronoi diagrams—to obtain robust collision-free robot motion paths. Visibility graphs [1]
are specifically important to us, since they represent geometric shortest paths.

Given source and target nodes in a graph, Dijkstra’s algorithm [11] computes shortest
paths between them. A plethora [4] of work deals with accelerating Dijkstra’s algorithm by
using an additional offline preprocessing stage. In our work, we adapt the Customizable Route
Planning (CRP) algorithm [9], which offers an excellent tradeoff between query performance
and preprocessing effort. In essence, its preprocessing uses a nested multilevel partition of
the graph to compute shortcuts between the boundary vertices in each cell. Traversing these
shortcuts then enables the query to skip over large parts of the graph.

S. Andreev, J. Dibbelt, M. Nöllenburg, T. Pajor, and D. Wagner 3

2 Preliminaries

We model the street network as a undirected graph G = (V,E) with a set V of nodes and
a set E ⊆

(
V
2
)
of edges. A node that is incident to exactly two edges is called a 2-node.

For a specific subset of edges E′ ⊆ E the induced graph G[E′] = (V ′, E′) contains E′
and the nodes V ′, which are incident to the edges of E′. An s–t path in G is a node
sequence Ps,t = (s = v1, . . . , vk = t), with each ei = {vi, vi+1} contained in E. A graph G is
planar if a crossing-free drawing of G in the plane exists. A specific embedding of G maps
each node to a coordinate in the plane. The embedding of G subdivides the plane into disjoint
polygonal regions called faces bounded by the edges of G. Note that in our street networks
each node v ∈ V corresponds to a physical location. Likewise, each edge e ∈ E represents a
street segment. The cost of e is given by c : E → R+, where c(e) is the time (in seconds) a
pedestrian requires to traverse e. This value may, e.g., depend on the street category and
the segment’s physical length. For source and target nodes s and t, Dijkstra’s algorithm [11]
computes a shortest s–t path Ps,t, i.e., an s–t path whose cost

∑k−1
i=1 c(ei) is minimal.

Besides the street network, we consider the walkable area of public open spaces such as
plazas and parks. We represent them by polygons, as follows. A (simple) polygon Q ⊂ R2 is
defined as the interior of a sequence of vertices Q = (p1, . . . , pn), pi ∈ R2 sorted clockwise and
connected by non-self-intersecting segments p1p2, p2p3, . . . , pn, p1. (We distinguish the nodes
of a graph from the vertices of a polygon.) A polygon with holes Q is defined by a boundary
cycle bQ and holes h1

Q, . . . , h
k
Q in the interior of bQ, where bQ and hiQ again define simple

polygons and their vertices are the vertices of Q. The interior of Q is bQ \ (∪ihiQ) and a
point o or a segment s is within Q if o or s lie within this interior. The visibility graph VG(Q)
of a polygon with holes Q is a geometric graph that consists of all vertices p1, . . . , pn of Q
and all segments pipj which lie within Q. The visibility polygon VP (p,Q) of a point p ∈ Q
with respect to the containing polygon Q is the region within Q that is visible from p, i. e.,
for each q ∈ VP(p,Q) the segment pq ⊆ Q. With |Q| we denote the number of vertices of Q.

For many geometric computations, we use functionality of the computational geometry
library CGAL [22], in particular for computing line segment intersections, polygon unions
and differences, visibility graphs and polygons, range queries, and point-in-polygon queries;
see [8] for descriptions of the algorithms. Furthermore, we implement a custom sweep line
algorithm, which, given a set of disjoint polygons and a set of query points, determines for
each point the polygon that contains it (if any); see Appendix A for details. To apply these
geometric algorithms to our street data, we map geographic coordinates to points in R2 using
the Mercator projection. We use Euclidean distances ||p− q|| between points p and q.

3 Augmented Graph Model for Pedestrian Routing

We consider three key aspects where pedestrian routes differ from those of vehicles: (a) side-
walks are preferred over streets, if present; (b) plazas can be traversed freely; (c) in parks
pedestrians may walk freely on the lawn, but park walkways are preferred. In this section, we
present algorithms that process the street network in order to accommodate these differences.
(We then discuss queries in Section 4.) Most of this preprocessing is independent of the edge
costs in the network, hence, new costs can be integrated with little effort.

3.1 Sidewalks and Street Crossings
Unlike features, such as street direction, turn restrictions and separation into lanes, side-
walk data is often lacking (or inconsistently modeled) in popular street databases, such

ATMOS’15

4 Towards Realistic Pedestrian Route Planning

t

s111

10

111

105

Figure 2 Shortest path when using streets (left) or sidewalks (right).

as OpenStreetMap (openstreetmap.org). As a result, state-of-the art pedestrian route
planners mostly use the streets themselves and not their sidewalks. However, this may lead
to unnecessary street crossings, which can either be costly (due to traffic lights), or even
be impossible. In contrast, when sidewalks are considered properly, a seeming detour may
actually be the shorter path, see Figure 2. We therefore propose to replace some streets (as
given by the input) with automatically generated sidewalks. We distinguishing between three
street types: Highways represent streets that are inaccessible for pedestrians, hence, they
have no sidewalks; regular streets, such as city streets, have sidewalks; and walkways are
footpaths and streets small enough to require no sidewalks.

Street Polygons. Naïvely, one could add sidewalks to the left and to the right of every
regular street in the input [17]. Unfortunately, this results in sidewalks being placed in the
middle of multi-lane streets or in median strips, which is clearly unwanted. We therefore
propose to avoid areas enclosed by regular or highway streets that are too small or thin to
hold sidewalks.

To achieve this, we first compute a set S of street polygons, representing such areas
without sidewalks. Consider the embedded graph Ghr induced by the set of highway and
regular street edges. We obtain the planarization G′hr of Ghr using a standard sweep-line
algorithm for line segment intersections [8]. Let f be a face in G′hr and let af and pf denote
its area and perimeter, respectively. Then f is considered a street polygon, if af/pf ≤ βr (too
thin) or af ≤ βa (too small) for suitably chosen thresholds βr, βa.

Sidewalks. Our goal is to place sidewalks to the left and to the right of each street edge at
some offset, unless they would be placed inside a street polygon. They should also follow
curves and handle street intersections correctly, see Figure 3. To do so, we consider the
embedded graph Gr, induced by the regular street edges. Recall that in Gr street intersections
are modeled by nodes v of degree deg(v) ≥ 3, while the street’s curvature is modeled as
paths of 2-nodes. For each maximal 2-node path (v1, . . . , vk) and its adjacent intersection
nodes v0 and vk+1 (where we treat dead ends as intersection nodes, too), we consider the
edge sequence (e0, . . . , ek), where ei = {vi, vi+1}. For each edge ei, we create two sidewalk
edges li and ri, and offset them (from ei) by a distance δs; see Figure 3a. In order to form
correct paths along bends, these edges need to be trimmed or linked via auxiliary edges,
depending on the bend angles; see Figure 3b.

At each street intersection v ∈ Gr with deg(v) ≥ 3, we sort the incident edges in
cyclic order. This order yields adjacent sidewalks, which we again trim at their respective
intersection points or link by an auxiliary edge; see Figure 3c. For each street edge e incident

openstreetmap.org

S. Andreev, J. Dibbelt, M. Nöllenburg, T. Pajor, and D. Wagner 5

δs
δs

vi+1

vi

ri

ei
li

(a) Sidewalks for single seg-
ment.

li−1

vi−1

vi

vi+1

vi+2

ei−1

ei

ei+1

li

li+1

ri−1

ri

ri+1

(b) Connecting sidewalk
paths.

v

(c) Adjusting sidewalks at a
street intersection.

Figure 3 Generating sidewalks. Regular street segments are replaced by two sidewalk edges (a).
Subsequent pairs of sidewalk edges are then connected along each 2-node path (b). Finally,
the resulting sidewalks are adjusted at street intersections (dotted parts removed), and crossing
edges (dashed) are added (c).

to v, we also add an edge between the two sidewalks at v associated with e, which allows to
cross e at v; see again Figure 3c.

Next, we remove all sidewalk portions contained in street polygons of S. Using a standard
line segment intersection algorithm [8], we first subdivide sidewalks at the boundaries of
street polygons. Then, we use our point-in-polygon algorithm (see Appendix A) to remove
all sidewalk segments with both endpoints inside a polygon of S. This results in (at most)
two sidewalks per street, as opposed to two sidewalks per lane.

Finally, we assemble the routing graph G induced by sidewalk, crossing and walkway
edges (but not highway and regular street edges). For connectivity, we add nodes at the
intersections of sidewalks with walkways, subdividing the intersecting edges, again by running
a line segment intersection algorithm [8].

Crossing Penalties. We may further utilize the street polygons S in order to penalize
certain street crossings where waiting times can be expected. As the area covered by parallel
street lanes is represented in S, an edge e of G which passes through a multi-lane street also
has a portion within S, and we may penalize this portion in our cost function. We use two
types of penalties. The “one-time” penalty αe models a general waiting time, either for a
pedestrian light or for traffic to clear. We add αe to the cost of each edge that enters S.
More precisely, an edge e = {u, v} in G enters S if u is outside S and the segment of e has
common points with S. The second penalty, denoted αw, is a penalty per unit of length spent
within S. It reflects that wider streets generally require longer waiting times to cross. We
find the edge portions of G within S while we remove sidewalks within S. We use our sweep
line algorithm (cf. Appendix A) to find edges starting outside S. Such edges with portions
within S also enter the street polygons.

3.2 Plazas
Pedestrians may traverse plazas freely. However, somewhat surprisingly, most state-of-the-art
pedestrian navigation services route around such walkable areas, not through them. We
propose to utilize visibility graphs to remedy this shortcoming. We assume that the street
network database provides traversable plazas as a set P of plaza polygons, possibly with

ATMOS’15

6 Towards Realistic Pedestrian Route Planning

(a) A visibility graph. (b) Shortest path visibility edges.

s

(c) Route origin in plaza polygon.

Figure 4 Small polygon Q with a hole and all visibility edges (a) and the ones that are also on
shortest paths (b). Routing from within Q requires all visibility edges (c).

holes due to obstacles. Given P and the previously obtained routing graph G, we compute
the entry nodes of each plaza: These lie on the intersection of a plaza polygon’s boundary
and the routing graph and are obtained by a line segment intersection algorithm [8]. We
add each entry node both to the plaza polygon (as a vertex) and to the routing graph. For
each polygon Q ∈ P, we then compute the visibility graph VG(Q). If Q has no holes, we
require quadratic time [16, 22], otherwise cubic time. (Since we encounter only very few
polygons with holes in practice, we did not implement a more efficient algorithm, such as [1].)
Let Evis(Q) be the visibility edges of VG(Q), and Evis = ∪Q∈PEvis(Q). We add Evis as
further pedestrian edges to the routing graph G.

Since the number of visibility edges Evis(Q) of a plaza polygon Q ∈ P is generally quite
high (see Figure 4a), routing through plazas can become expensive. We therefore mark the
subset Esp

vis ⊂ Evis of visibility edges that are part of shortest paths between any pair of entry
nodes (the query may then ignore unmarked edges); see Figure 4b. We do so by running
Dijkstra’s algorithm from each entry node, only relaxing visibility edges of the node’s plaza.
Note that Esp

vis suffices to route across plazas, but queries that begin or end on a plaza may
still require all edges in Evis; see Figure 4c and Section 4. Also note that computing Esp

vis
requires knowledge of the routing cost function (all other preprocessing does not). However,
since the necessary shortest path queries are restricted to each plaza and the number of entry
nodes is typically small, this step is not costly compared to the total preprocessing effort.

3.3 Parks

Unlike plazas, parks have designated walkways, which we favor by routing on walkable park
areas (such as lawn) only at the beginning or end of a route. In order to quickly locate
nearby walkways during queries, we precompute the faces of a park induced by its walkways.

Similarly to plazas, we assume that the walkable area of parks is given as the set L of park
polygons (possibly with holes) by the street network database. We compute the entry nodes
the same way we do for plazas. We then use our algorithm from Appendix A to compute
the set EL of edges in G contained in each L ∈ L (in a single sweep). Thus, GL = G[EL]
contains exactly the park walkways within L. We add the boundary of L to GL (as nodes
and edges) and planarize GL. We define the set of park faces FL to be the faces of GL,
and F =

⋃
L∈L FL. During queries, we will use F for locating park walkways and routing

to/from them (see Section 4).

S. Andreev, J. Dibbelt, M. Nöllenburg, T. Pajor, and D. Wagner 7

`

minπu
||πu−`||
vs

+ ||u−πu||
vr

φ πu uv

(a) Reaching park walkways via park area.

`

uv π1
u π2

u π3
u

λ1 = 0.01
λ2 = 0.1

λ3 = 0.7

(b) Different penalties for walking on
park area.

Figure 5 Using the park area and walkway. We minimize the walking time on the park area plus
that on the walkway (left). The manner in which the park area is utilized varies with vs (right).

4 Computing Routes

We now discuss how we leverage our model from Section 3 to compute realistic pedes-
trian routes. We are generally interested in queries between arbitrary locations `o (origin)
and `d (destination). Usually, one handles such location-to-location queries by first mapping
the locations to their nearest nodes (or edges) of the network, and then invoking a shortest
path algorithm between those. However, for locations inside plazas and parks this method
would result in inaccurate routes. Instead, we propose the following approach. First, we test
whether ` ∈ {`o, `d} is located inside a plaza or a park. In either case, we first connect ` to G
with sensible edges and then run Dijkstra’s algorithm between `o and `d on this augmented
graph. If neither is the case, we just find the nearest nodes in G using a k-d tree [5], as in
the classic scenario. We discuss more details next.

Plazas. To test whether the origin or destination location ` is on a plaza, we simply perform
a point-in-polygon test [8]. Now, assume that Q ∈ P is the polygon, which contains `.
We compute the visibility polygon VP(`,Q) of ` with respect to Q by applying the recent
algorithm of Bungiu et al. [7]. We also use our sweep line algorithm from Appendix A
to obtain the nodes V `Q in VG(Q) ⊂ G that are located within VP(`,Q). We then simply
connect ` to each node p ∈ V `Q by adding edges {`, p} to the graph G.

Recall from Section 3.2 that to route across plazas, the visibility edges in Esp
vis suffice.

Hence, we ignore edges e ∈ Evis \Esp
vis during the query, unless e ∈ VG(Q) for the polygon Q

containing `, in which case it is required for correctness.

Parks. For the case that ` is contained in a park, we first obtain the enclosing park
face f (similarly to the plaza case). We now consider two different walking speeds: the
regular walking speed vr, and another (slower) one vs for park faces (e. g., lawn). We
set λ = vs/vr (with λ ∈ (0, 1]) as a query time parameter; values λ < 1 penalize walking on
the lawn, with smaller λ values leading to higher penalization.

Taking this into account, our goal is to connect ` to the walkways of f , such that the
total walking duration is minimized. We thereby compute the optimal path toward each
edge e = {u, v} ∈ f separately, as follows. Consider a point πu on e. To reach u from ` via πu,
one requires total walking time w = ||πu−`||

vs
+ ||u−πu||

vr
; see Figure 5a. For a given λ, the

minimum walking time w∗ is achieved by the projection point π∗u = φ+ λ
1−λ2 · ||`−φ||||u−φ|| · (u−φ),

where φ is the perpendicular projection of ` on the line through e; see [2] for a derivation
of this formula. As seen in Figure 5b, a small value of λ causes a perpendicular projection:
walking on the lawn is costly and therefore minimized. A larger value of λ allows for a more
direct, target-aimed projection, saving distance but using more of the walkable park area.

ATMOS’15

8 Towards Realistic Pedestrian Route Planning

`o

`d

fd

fo

Figure 6
Detour due to
long thin face.

We now use the aforementioned formula to compute for each edge e =
{u, v} ∈ f the projection points π∗u and π∗v . To check whether a segments su =
π∗u` is walkable within the park, we test whether the point π∗u lies within the
visibility polygon VP(`,Q). If so, we add the edge {`, u} with cost ||π

∗
u−`||
vs

+
||u−π∗

u||
vr

to G. Node v is handled analogously.
Note that since we directly connect the origin `o and destination `d to

the edges of their enclosing faces, we are unable to route around obstacles
in parks. Moreover, we are unable to walk across other park faces (except
the ones containing the origin and destination locations). However, this may
result in unnatural routes, if origin and destination are in the same park
separated by a thin face; see Figure 6. We solve this issue by introducing a
radius parameter ε, and additionally compute edges to the boundaries of all
faces (of the same park) that have vertices within distance ε of `. We use range queries [22]
to obtain those faces. If, both, origin `o and destination `d are in the same park and within
distance ε, we additionally consider the direct route `o`d with cost ||`d−`o||

vs
explicitly.

Customizable Route Planning. Typical pedestrian routes are very short, thus, one might
argue that Dijkstra’s algorithm computes them sufficiently fast. Still, a practical routing
engine should be robust against long-distance queries as well. We therefore propose to make
use of the Customizable Route Planning (CRP) algorithm [9]. It is a state-of-the-art speedup
technique, developed for computing driving directions in road networks. CRP employs three
phases: The preprocessing phase uses a nested multilevel partition to compute (for each
level) a metric-independent overlay graph over the boundary nodes of the partition. The
customization phase takes a cost function as input and computes the actual edge weights of
the overlay graph. Finally, the query phase runs bidirectional Dijkstra’s algorithm, using the
overlay graph to the effect of “skipping” over large parts of the network. See [9] for details.

Adapting CRP to our scenario requires little effort. We use the routing graph G for
computing both the multilevel partition and the overlay graph. To easily support queries
beginning or ending within parks or plazas, we enforce that nodes within the same park or
plaza are never put into different cells of the partition. (We do this by running the partitioner
on a slightly modified graph, in which we contract all nodes associated with the same park or
plaza.) To see why this is correct, recall that the temporary edges added by the query only
point to nodes within the park or plaza which contains the origin (or destination) location.
By construction these nodes are all part of the same cell (on every level of the partition),
therefore, the distances in the overlay graph are unaffected and still correct.

Note that in our CRP query we do not bother ignoring visibility edges in G that are not
on shortest paths: They are only present on the bottom level, therefore, the query skips over
them automatically in most cases.

5 Experiments

We implemented all algorithms in C++ using g++ 4.8.3 (flag -O3) and CGAL 4.6. We
conducted our experiments on a single core of a 4-core Intel Xeon E5-1630v3 CPU clocked
at 3.7GHz with 128GiB of DDR4-2133 RAM. Our data set was extracted from Open-
StreetMap (OSM) on May 15, 2015, and includes roads, plazas and parks.1 We use two

1 Note that OSM offers a tag for indicating availability of sidewalks at streets, however, it has not been
widely adopted as of now, cf. http://taginfo.openstreetmap.org/keys/?key=sidewalk.

http://taginfo.openstreetmap.org/keys/?key=sidewalk

S. Andreev, J. Dibbelt, M. Nöllenburg, T. Pajor, and D. Wagner 9

Table 1 Size figures before and after preprocessing. Besides graph size, we report the total
number of vertices for plaza, park, and obstacle polygons. Preprocessing time is given in [m:s].

OSM Input Pedestrian Output

Nodes Edges Plaza Park Obst. Nodes Edges Plaza Park Time

BE 378 298 890 682 9 727 33 072 1 116 452 586 1 132 928 7 276 19 903 1:26
BW 8 235 762 17 740 940 74 547 86 380 4 439 10 209 641 22 750 644 63 300 43 632 32:45

Table 2 Detailed preprocessing figures. Besides running time, we report the number of added
sidewalks, substituted streets, avg. vertices per plaza polygon (Plaza avg.), visibility edges (Vis.) and
the fraction of them on shortest paths (SP. [%]), avg. vertices per park (Park avg.), avg. faces per
park (Faces/park), avg. vertices per park face (Face avg.), and the vertices of all park faces (Faces
total).

Sidewalks Plazas Parks

Added Subst. Time Plaza Vis. SP. Time Park Faces/ Face Faces Time
sidewalks streets [s] avg. total [%] [s] avg. park avg. total [s]

BE 266 336 105 146 32.6 15.38 86 912 9.5 23.0 22.4 10.4 10.68 98 108 31.6
BW 5 580 842 1 824 185 743.7 17.45 772 416 7.7 563.6 20.8 6.6 11.26 155 840 657.4

instances: Berlin (BE) and the state of Baden-Württemberg (BW), both in Germany. While
BE is an eclectic city with plenty of large streets, parks and plazas (making it interesting for
evaluating pedestrian routes), we use BW to demonstrate the scalability of our approach.

This section first presents a quantitative evaluation of our approach before it compares
the quality of our routes to the state of the art in a case study.

5.1 Quantitative Evaluation
We determined sensible values for the parameters of our preprocessing (cf. Section 3) by
running preliminary experiments. We set the sidewalk offset to δs = 3m, and set values for
sidewalks suppression of small and thin street polygons to βa = 1000m2 and βr = 3.17m.
For queries we assume a regular walking speed of vr = 1.4 m

s [6], and we set vs = 0.9 m
s for

walkable park areas, i. e., λ ≈ 0.6. We also set the park face expansion value to ε = 20m.
Regarding intersections, we set the crossing penalties to αe = 10 s and αw = 1 s

m , which
leads to about 30 s of expected waiting time for typically-sized intersections.

Note that though we set these parameter values uniformly for our experiments, the
approach would easily allow setting specific values per intersection or park face, if such
detailed data was available. Also note that in our instances we do not add crossing edges within
street polygons, i. e., at large multi-lane intersections (cf. Section 3). In fact, OpenStreetMap
provides these already, and adding further crossings may result in dangerous paths, forcing
the pedestrian to cross several lanes without the aid of traffic regulations.

Preprocessing. Table 1 presents size figures for the input and output of our preprocessing.
Note that BW is significantly larger than BE (factor of 20 in graph size and factor of 9 in
plaza polygons). This is reflected by the preprocessing effort, which takes about 23 times
longer on BW. However, the graph size increases by less than 30% (nodes and edges) by our
preprocessing. Unfortunately, polygons representing walkable areas (parks and plazas) in

ATMOS’15

10 Towards Realistic Pedestrian Route Planning

Table 3 Evaluating the query performance of our approach. We distinguish each combination of
the origin/destination being on a street node (s), plaza polygon (p), or park face (f). We report the
time in milliseconds to check for each of these cases (Localization), the time for our initialization
stage (Initialization) or not applicable (—), and the time for running Dijkstra’s algorithm (Dij.).

BE BW

Localization Initialization Dij. Localization Initialization Dij.

Query Plaza Park Street Plaza Park [ms] Plaza Park Street Plaza Park [ms]

s–s 0.021 0.027 0.004 — — 31.8 0.033 0.040 0.005 — — 808.0
s–p 0.021 0.016 0.002 0.165 — 30.4 0.032 0.020 0.003 0.173 — 871.6
p–p 0.016 — — 0.264 — 27.9 0.027 — — 0.351 — 889.4
s–f 0.021 0.022 0.002 — 0.359 28.3 0.029 0.026 0.002 — 0.310 758.7
p–f 0.017 0.011 — 0.145 0.362 30.6 0.027 0.014 — 0.178 0.303 810.1
f–f 0.020 0.021 — — 0.733 27.6 0.029 0.027 — — 0.622 733.6

OSM may overlap and, moreover, polygons with holes are not supported. Instead, obstacles
are represented as an additional type of polygon. We therefore first compute the union
of overlapping polygons and then subtract potential obstacles from it [22]. This explains
the (somewhat peculiar) drop of 50% in the number of park polygon vertices in our output.
Note that only less than 3% of the resulting plaza polygons have holes in them (not reported
in the table).

Table 2 presents more detailed figures. We observe that each part of our preprocessing
requires a similar amount of time. Regarding sidewalks, only a small subset (12 %) of
the roads is actually substituted. (Recall that we replace neither highways nor walkways.)
However, the number of sidewalk edges per substituted road segment is more than two on
average, due to complex intersections and other effects (cf. Section 3). Regarding plazas,
we observe that the number of visibility edges is only a small fraction of the graph (less
than 10%), with less than 10% of those actually being on shortest paths. The necessary
shortest path computations take less than 3 seconds on BW (not reported in the table). For
parks, we observe that including walkways (to compute park faces) increases the number of
park vertices by a factor of 5 (“Faces total” in the table). While this results in a high average
number of vertices per entire park (111 for BE), the number of vertices per park face remains
small, which is the influential performance figure for queries that begin or end in a park.

Queries. We now evaluate the query performance. Recall that our query algorithm takes
as input two arbitrary locations, which may be inside a plaza or park, and in which case the
query will route from the precise location to the vertices of its surrounding polygon. Table 3
separately evaluates our algorithm for each scenario of placing the origin or destination on a
street node (s), inside a plaza (p), or a park face (f). Per scenario, we generated 1,000 queries,
choosing origin and destination (i.e., node, plaza polygon or park face) uniformly at random.
For the plaza or park case, we further chose an interior point at random.

The query is oblivious to the specific scenario, i.e., we only pass geographic locations as
input, and it needs to perform the necessary checks to figure out the right scenario itself.
However, at below 80 µs these checks (including the determination of the specific street node
or enclosing polygon) take negligible time. The initialization stage for plazas (computing
additional visibility edges) or parks (computing and testing projections) is considerably
more expensive, but still runs well below a millisecond, orders of magnitude faster than

S. Andreev, J. Dibbelt, M. Nöllenburg, T. Pajor, and D. Wagner 11

0:4 0:7 0:10 0:15 0:20 0:28 0:39 0:55 1:16 1:44 2:25 3:24 4:49 6:52 9:55 14:31 21:13 32:4 53:53

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223

10-1

100

101

102

103

10-1

100

101

102

103Dijkstra (left) CRP (right)

Walking Time [h:m]

Rank

Q
u
er
y
T
im

e
[m

s]

Figure 7 Dijkstra rank plot on our BW instance, comparing the performance of Dijkstra’s
algorithm with CRP. The top axis shows the average walking time for the queries in each bucket.

the subsequent run of Dijkstra’s algorithm. Note that in our implementation we never add
any edges explicitly (cf. Section 4), but rather simply initialize Dijkstra’s algorithm with all
vertices (and their respective distances) to which these temporary edges would point.

Customizable Route Planning. We finally evaluate the combination of our query algo-
rithm with the Customizable Route Planning (CRP) approach [9] on our larger BW net-
work. We use PUNCH [10] for partitioning. Our partition has five nested levels with at
most [28, 211, 214, 217, 220] vertices per cell. (This is the same configuration as in [9].) We
compute the partition on the routing graph (that is output by our preprocessing), however,
we temporarily replace nodes of the same plaza or park by a single supernode. This keeps
polygons from spreading over cell boundaries and simplifies the CRP query. Computing the
metric-independent partition takes several minutes and the subsequent customization phase
takes about five seconds. Note that to integrate a new cost function, e.g., due to different
crossing penalties, only the customization phase has to be rerun, which is very fast.

Figure 7 compares the performance of CRP with Dijkstra’s algorithm using the Dijkstra
rank methodology [19]: When running Dijkstra’s algorithm from node s, node u has rank x, if
it is the x-th node taken from the priority queue. By selecting random origin and destination
pairs according to ranks 21, 22, . . . , 2blog |Vr|c (we select 1,000 queries per bucket), the plot
simultaneously captures short- mid- and long-range queries. We observe that for short-range
queries the performance of Dijkstra’s algorithm is very similar to that of CRP (below 200 µs
on average). However, from rank 210 onward, Dijkstra’s algorithm becomes significantly
slower (rising to more than a second), while the average running time of CRP remains
below 1ms at any rank. Note that while most pedestrian queries are likely of short range, a
production system must nevertheless be robust against any type of query.

ATMOS’15

12 Towards Realistic Pedestrian Route Planning

(a) OpenRouteService. (b) Google Maps.

(c) Nokia’s HERE. (d) Our approach.

Figure 8 Comparison with several readily available pedestrian route planning services. The
origin of the route is a street address, and its destination is inside a plaza.

5.2 Case Study
We now present a case study, which compares the output of our approach to OpenRouteSer-
vice2, Google Maps3 and Nokia HERE4.

Figure 8 shows an example in the city of Karlsruhe, Germany. It highlights the impor-
tance of, both, the presence of sidewalks and being able to route across walkable areas.
Clearly, OpenRouteService has the worst result, as it does not consider the boundary of the
plaza (Festplatz) for routing, which results in a large detour. Because of improper sidewalk
data, the routes of Google Maps and HERE suggest to go across the same street (Beiertheimer
Allee) twice, which is unnatural and unnecessary. While Nokia HERE is the only competing
approach that has some additional edges for walking across open areas (thus yielding a more
realistic route), the utilization of these edges seems to be heuristic, still yielding an (unnatural)
detour. In contrast, our route has no unnecessary street crossings (because of our generated
sidewalk data), and the plaza is traversed in a natural way.

Figure 9 shows an example of a route starting on a plaza between buildings and ending
in a park (Berlin, Germany). Unlike the previous example, OpenRouteService is able to
route around (but not across) the plaza, because the plaza’s boundary has been tagged as
walkable. On the other hand, GoogleMaps seems to lack information in that region and so
maps the query locations to the nearest street network node (which is actually blocked by
the building structure). HERE has walkways on the plaza, but also uses a shortcut which

2 http://www.openrouteservice.org/
3 https://maps.google.de/
4 https://www.here.com/

http://www.openrouteservice.org/
https://maps.google.de/
https://www.here.com/

S. Andreev, J. Dibbelt, M. Nöllenburg, T. Pajor, and D. Wagner 13

(a) OpenRouteService. (b) Google Maps. (c) Nokia’s HERE. (d) Our approach.

Figure 9 Comparison with several readily available pedestrian route planning services. The route
begins in a plaza and ends in a park.

passes through a cinema; it yields a shorter path but is obscure and unlikely: guiding the
pedestrian to a door is puzzling, the building may be closed, etc. As before, the route of our
approach traverses the plaza without detours.

Towards the destination, the routes of OpenRouteService, GoogleMaps and HERE are
all incomplete: they find the nearest node and simply use it as the query target. In contrast,
our approach allows walking directly across the lawn and avoids the small detours introduced
by the other approaches.

6 Conclusion

In this paper, we presented an approach for quickly computing realistic pedestrian routes.
We proposed geometric algorithms to automatically augment the street network with sensible
sidewalks and edges in plazas, making it possible to walk across them in a natural way. Our
query algorithm extends classic node-to-node queries by allowing the origin or destination to
be an arbitrary location inside a park or plaza. We also combined our algorithm with the
well-known Customizable Route Planning technique, which enabled us to compute appealing
pedestrian routes within milliseconds, fast enough for interactive applications.

Future work includes more realistic models (e.g., for traffic lights or more precise human
walking behavior); leveraging of building layouts [3]; and additional optimization criteria like
elevation and stairs, which have been used in the context of bicycle routing [21]. We would
also be interested in using our sidewalk generation algorithm in a semi-automatic tool for
adding sidewalk data back to OpenStreetMap.

References

1 H. Alt and E. Welzl. Visibility Graphs and Obstacle-avoiding Shortest Paths. Zeitschrift
für Operations Research, 32(3-4):145–164, 1988.

2 Simeon Danailov Andreev. Realistic Pedestrian Routing. Bachelor thesis, Karlsruhe Insti-
tute of Technology, November 2012.

3 Miquel Ginard Ballester, Maurici Ruiz Pérez, and John Stuiver. Automatic Pedestrian
Network Generation. In Proceedings 14th AGILE International Conference on GIS, pages
1–13, 2011.

ATMOS’15

14 Towards Realistic Pedestrian Route Planning

4 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller–Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in
Transportation Networks. Technical Report abs/1504.05140, ArXiv e-prints, 2015.

5 Jon Louis Bentley. Multidimensional Binary Search Trees Used for Associative Searching.
Commun. ACM, 18(9):509–517, September 1975.

6 Raymond C. Browning, Emily A. Baker, Jessica A. Herron, and Rodger Kram. Effects of
Obesity and Sex on the Energetic Cost and Preferred Speed of Walking. Journal of Applied
Physiology, 100(2):390–398, 2006.

7 Francisc Bungiu, Michael Hemmer, John Hershberger, Kan Huang, and Alexander Kröller.
Efficient Computation of Visibility Polygons. CoRR, abs/1403.3905, 2014.

8 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.

9 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
Route Planning in Road Networks. Transportation Science, 2015.

10 Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck. Graph
Partitioning with Natural Cuts. In 25th International Parallel and Distributed Processing
Symposium (IPDPS’11), pages 1135–1146. IEEE Computer Society, 2011.

11 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959.

12 Hassan A. Karimi and Piyawan Kasemsuppakorn. Pedestrian Network Map Generation Ap-
proaches and Recommendation. International Journal of Geographical Information Science,
27(5):947–962, 2013.

13 Jean-Claude Latombe. Robot Motion Planning, volume 124 of Springer International Series
in Engineering and Computer Science. Springer, 1991.

14 Ellips Masehian and M. R. Amin-Naseri. A Voronoi Diagram-visibility Graph-potential
Field Compound Algorithm for Robot Path Planning. J. Robotic Systems, 21(6):275–300,
2004.

15 M. Mokhtarzade and M.J. Valadan Zoej. Road Detection from High-Resolution Satellite Im-
ages Using Artificial Neural Networks. International Journal of Applied Earth Observation
and Geoinformation, 9(1):32–40, 2007.

16 M. H. Overmars and Emo Welzl. New Methods for Computing Visibility Graphs. In Proc.
4th Annu. ACM Sympos. Comput. Geom., pages 164–171, 1988.

17 Scott Parker and Ellen Vanderslice. Pedestrian Network Analysis. In Walk 21 IV, Portland,
OR, 2003.

18 Ting Peng, Ian H. Jermyn, Veronique Prinet, and Josiane Zerubia. Extended Phase Field
Higher-Order Active Contour Models for Networks. International Journal of Computer
Vision, 88(1):111–128, 2010.

19 Peter Sanders and Dominik Schultes. Highway Hierarchies Hasten Exact Shortest Path
Queries. In Proceedings of the 13th Annual European Symposium on Algorithms (ESA’05),
volume 3669 of Lecture Notes in Computer Science, pages 568–579. Springer, 2005.

20 J.T. Schwartz and M. Sharir. A Survey of Motion Planning and Related Geometric Algo-
rithms. Artificial Intelligence, 37(1—3):157–169, 1988.

21 Sabine Storandt. Route Planning for Bicycles – Exact Constrained Shortest Paths Made
Practical Via Contraction Hierarchy . In Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling, pages 234–242, 2012.

22 The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 4.6 edition,
2015.

S. Andreev, J. Dibbelt, M. Nöllenburg, T. Pajor, and D. Wagner 15

A Batched Point in Polygon Tests

While we could use the computational geometry library CGAL [22] for most of the required
geometric computations, we implemented our own sweep line algorithm for a batched point
in polygon test. Given a set of disjoint polygons (without holes) and a set of query points,
our algorithm determines for each point the polygon that contains it (if any). The algorithm
works by sweeping the query points and the end points of the polygon segments, which define
our event points, from left to right, maintaining a self-balancing binary tree of the segments
which intersect the current (vertical) sweep line. Whenever the current event point is a query
point o = (x, y), we find the two segments sa and sb, which lie vertically directly above
and below o. If sa and sb belong to a polygon Q = (p1, . . . , pn) with leftmost vertex p1, we
check whether sa = pipi+1, sb = pjpj+1, and j > i. If so, o lies within Q, otherwise it is not
contained in any polygon. If m is the number of polygon edges and n is the number of points
and polygon vertices then this algorithm requires O(n logm) time. For a set of polygons
with holes we may use the same approach once for the boundaries and once for the holes.

ATMOS’15

Speedups for Multi-Criteria Urban Bicycle Routing
Jan Hrncir, Pavol Zilecky, Qing Song, and Michal Jakob

Agent Technology Center, Department of Computer Science
Czech Technical University in Prague, Karlovo namesti 13, Czech Republic
{hrncir,zilecky,song,jakob}@agents.fel.cvut.cz

Abstract
Increasing the adoption of cycling is crucial for achieving more sustainable urban mobility. Nav-
igating larger cities on a bike is, however, often challenging due to cities’ fragmented cycling
infrastructure and/or complex terrain topology. Cyclists would thus benefit from intelligent
route planning that would help them discover routes that best suit their transport needs and
preferences. Because of the many factors cyclists consider in deciding their routes, employing
multi-criteria route search is vital for properly accounting for cyclists’ route-choice criteria. Dir-
ect application of optimal multi-criteria route search algorithms is, however, not feasible due to
their prohibitive computational complexity. In this paper, we therefore propose several heuristics
for speeding up multi-criteria route search. We evaluate our method on a real-world cycleway net-
work and show that speedups of up to four orders of magnitude over the standard multi-criteria
label-setting algorithm are possible with a reasonable loss of solution quality. Our results make
it possible to practically deploy bicycle route planners capable of producing high-quality route
suggestions respecting multiple real-world route-choice criteria.

1998 ACM Subject Classification G.2.2 Graph Theory – Graph algorithms

Keywords and phrases bicycle routing, multi-criteria shortest path, heuristic speedups

Digital Object Identifier 10.4230/OASIcs.ATMOS.2015.16

1 Introduction

Utility cycling, i.e., using the bicycle as a mode of transport, is the original and the most
common type of cycling in the world [13]. Cycling provides a convenient and affordable form
of transport for most segments of the population. It has a range of health, environmental,
economical, and societal benefits and is therefore promoted as a modern, sustainable mode
of transport [10, 16].

In contrast to car drivers, cyclists consider a significantly broader range of factors while
deciding on their routes. By employing questionnaires and GPS tracking, researchers have
found that besides travel time and distance, cyclists are sensitive to slope, turn frequency,
junction control, noise, pollution, scenery, and traffic volumes [3, 28]. Moreover, the relative
importance of these factors varies among cyclists and can also be affected by weather
conditions and the purpose of the trip [3].

Finding routes that properly take all the above factors into account is no easy task,
particularly when cycling in complex urban environments. Consequently, cyclists would
benefit from intelligent route planning software to help them discover routes that best suite
their transport needs and preferences. Such route planners would be particularly useful for
inexperienced cyclists with limited knowledge of their surroundings but they would also
benefit experienced riders who want to fine-tune their routes [11], in effect making cycling
a more attractive and accessible transport option.

The vast majority of existing approaches to bicycle routing, however, do not use multi-
criteria search methods and they thus cannot properly account for cyclists’ multiple route-

© Jan Hrncir, Pavol Zilecky, Qing Song, and Michal Jakob;
licensed under Creative Commons License CC-BY

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 16–28

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

J. Hrncir, P. Zilecky, Q. Song, and M. Jakob 17

choice criteria. A recent exception is [24] where the authors applied optimal multi-criteria
shortest path algorithms for multi-criteria bicycle routing. Unfortunately, the proposed
algorithm is slow on realistic problem instances and cannot be used for interactive route
planning.

In this paper, we overcome this limitation and present the first bicycle routing algorithm
that properly considers multiple realistic cyclists’ route-choice criteria yet is fast enough
for interactive use. Our algorithm extends the well-known multi-criteria label-setting al-
gorithm [19] with several speedup heuristics in order to generate, in a much shorter time,
routes that closely approximate the full set of Pareto optimal routes. In contrast to the
majority of existing work, our algorithm employs a formulation of the multi-criteria bicycle
routing problem that incorporates realistic route choice factors based on recent studies of
cyclists’ behaviour [3, 28]. We thoroughly evaluate our algorithm in terms of the speed and
quality of suggested routes on a diverse set of real-word urban areas.

2 Related Work

In contrast to car and public transport route planning, for which advanced algorithms and
mature software implementations exist [1], bicycle route planning is a relatively underex-
plored topic. Furthermore, despite the highly multi-criterial nature of cyclists’ route-choice
preferences, almost all existing approaches to bicycle routing do not use multi-criteria search
methods to properly account for such a multi-criteriality. This contrasts with other categories
of routing problems for which the application of multi-criteria shortest path search techniques
has been widely studied (multimodal routing [2, 7], train routing [20], and car routing [8]).
Instead, existing bicycle routing approaches transform multi-criteria search to single-criterion
search either by optimising each criteria separately [14, 26] or by using a weighted combina-
tion of all criteria [15, 27]. Unfortunately, the scalarisation of multi-criteria problems using
a linear combination of criteria may miss many Pareto optimal routes [4, 6] and consequently
reduce the quality and relevance of suggested routes. Scalarisation also requires the user to
weight the importance of individual route criteria a priori, which is difficult for most users.

Avoiding scalarisation, [23] thus showed how to effectively search for a best compromise
solution for a biobjective shortest path problem in the context of bicycle routing. Recently,
[24] explored the use of optimal multi-criteria shortest path algorithms for multi-criteria
bicycle routing; however, the proposed algorithm is too slow for interactive route planning.

As far as general multi-criteria shortest path algorithms are concerned, the first optimal,
multi-criteria label-setting (MLS) algorithm [19] extended Dijkstra’s algorithm by operating
on labels that have multiple cost values. A minimum label from the priority queue is processed
in every iteration. On the contrary, the multi-criteria label-correcting (MLC) algorithm [5, 9]
processes the whole bag of nondominated labels associated with a current node at once.
Recently, heuristic accelerations of the MLS and MLC algorithms have attracted considerable
attention, aiming at finding a set of routes that is similar to the optimal Pareto solution.
In [7], the authors developed several heuristics to weaken the domination rules during the
search. In [22], the authors proposed a near admissible multi-criteria search algorithm to
approximate the optimal set of Pareto routes in a state space graph by using the ε-dominance
approach. An alternative approach is represented by multi-criteria extensions [18, 25] of the
standard A* algorithm, the latter of which was recently shown [17] to achieve an order of
magnitude speedup for bicriteria road routing.

ATMOS’15

18 Speedups for Multi-Criteria Urban Bicycle Routing

3 Multi-Criteria Bicycle Routing Problem

We represent the cycleway network as a weighted directed connected cycleway graph G =
(V,E,−→c), where V is the set of nodes representing start and end points (i.e., cycleway
junctions) of cycleway segments and E ⊆ {(u, v)|(u, v ∈ V) ∧ (u 6= v)} is the set of edges
representing cycleway segments. The cycleway graph is directed due to the fact that some
cycleway segments in the map are one-way only. The cost of each edge is represented as a
k-dimensional vector of criteria −→c = (c1, c2, . . . , ck). The non-negative cost value ci of i-th
criterion for the given edge (u, v) ∈ E is computed by the cost function ci : E → R+

0 . The
multi-criteria bicycle routing problem is then defined as a triple C = (G, o, d):

G = (V,E,−→c) is the cycleway graph
o ∈ V is the route origin
d ∈ V is the route destination

A route π, i.e., a finite path π with a length |π| = n from the origin o to the destination d
in the cycleway graph G has an additive cost value

−→c (π) =

 |π|∑
j=1

c1(uj , vj), . . . ,
|π|∑
j=1

ck(uj , vj)

The solution of the multi-criteria bicycle routing problem is a full Pareto set of routes
Π ⊆ {π|π = ((u1, v1), . . . , (un, vn))} non-dominated by any other solution (a solution πp
dominates another solution πq iff ci(πp) ≤ ci(πq), for all 1 ≤ i ≤ k, and cj(πp) < cj(πq), for
at least one j, 1 ≤ j ≤ k).

Based on the studies of real-word cycle route choice behaviour [28, 3], we further consider
a tri-criteria bicycle routing problem. The formulation of the problem is a compact version
of the earlier formulation proposed in [24] and considers the following three route-choice
criteria:

Travel time: The travel time criterion ctime reflects the duration in seconds of the cyclist’s
journey. Travel time is a sensitive factor in cyclists’ route planning especially for commuting
purposes. Our travel time calculation takes into account average cyclist’s speed, uphills and
downhills, quality of the road surface, and obstacles. To model the slowdown caused by
obstacles such as stairs or crossings, we define the slowdown coefficient rslowdown : E → R+

0
which returns the slowdown in seconds on a given edge (u, v) ∈ E. For the case of uphill
rides, we define the positive vertical ascend a : E → R+

0 for a given edge (u, v) ∈ E as

a((u, v)) :=
{
h(v)− h(u) if h(v) > h(u)
0 otherwise

where h : V → R returns the elevation for each node u ∈ V . Analogously, for the case
of downhill rides, we define the positive vertical descend d : E → R+

0 . We also define the
positive descend grade d′ : E → R+

0 as d′((u, v)) := d((u,v))
l((u,v)) where l((u, v)) is the length of

the edge ((u, v)). To model the speed acceleration caused by vertical descend for a given
edge (u, v) ∈ E, we define the downhill speed multiplier sd : E → R+ which depends on the
positive descend grade d′ and it is in the interval [1, 2.5].

Considering the integrated effect of the edge length, the change in the elevation, and edge
associated features, the travel time criterion is defined as

ctime((u, v)) = distance
speed + slowdown = l((u, v)) + al · a((u, v))

s · sd((u, v), sdmax) · rtime((u, v)) + rslowdown((u, v))

J. Hrncir, P. Zilecky, Q. Song, and M. Jakob 19

where s is the average cruising speed of a cyclist and al is the penalty coefficient for uphill
rides. The criteria coefficient rtime((u, v)) expresses the effect of a set of features f((u, v))
assigned to a given edge (u, v) ∈ E with respect to travel time criterion.

Comfort: The comfort criterion ccomfort captures the preference towards comfortable routes
with good-quality surfaces and dedicated cycleways or streets with low traffic. The cost
function for the comfort is defined as

ccomfort((u, v)) = max{rsurface((u, v)), rtraffic((u, v))} · l((u, v))

where the surface coefficient rsurface((u, v)) penalises bad road surfaces, obstacles such as
steps, and places where the cyclist needs to dismount his or her bicycle, with small values
indicating cycling-friendly surfaces. The traffic coefficient rtraffic((u, v)) measures traffic
volumes by considering the infrastructure for cyclists and the types of roads, where low-traffic
cycleways are assigned a small coefficient value. The comfort is weighted by the edge length
l((u, v)), i.e., 500 m of cobblestones is worse than 100 m of cobblestones.

Elevation gain: The elevation gain criterion cgain captures the cyclists’ preference towards
flat routes with minimum uphill segments. The cost function is defined as

cgain((u, v)) = distance
speed = al · a((u, v))

s

where s is the average cruising speed of a cyclist, a((u, v)) is the positive vertical ascend of
the edge (u, v), and al is the penalty coefficient for uphill rides.

4 Heuristic-Enabled Multi-Criteria Label-Setting Algorithm

Our newly proposed heuristic-enabled multi-criteria label-setting (HMLS) algorithm extends
the standard multi-criteria label-setting (MLS) algorithm [19] with several points for inserting
speedup heuristic logic. The algorithm uses the following data structures: for each node
u ∈ V , L(u) := (u, (l1(u), l2(u), . . . , lk(u)), LP (u)) represents the label at a node u, which
is composed of the node u, the cost vector l(u) indicating the current cost values from the
origin to the node u, and the predecessor label LP (u), which precedes L(u) in an optimal
route from an origin. A priority queue Q is defined to maintain all labels created during the
search. Since each node may be scanned multiple times, we define the bag structure Bag(u)
for each node u to maintain the non-dominated labels at u.

The pseudocode of the heuristic-enabled MLS algorithm is given in Algorithm 1; the
speedup specific logic of functions terminationCondition, skipEdge, and checkDominance
is described in Section 5. The algorithm consists of the following steps:

Step 1 – Initialisation: For a k-criteria optimisation problem, the algorithm first initialises
the priority queue Q and Bag for each v ∈ V . Then it initialises the label at the origin to
L(o) := (o, (l1(o), l2(o), . . . , lk(o)), null), where li(o) = 0 for i = 1, 2, . . . , k. Finally, it inserts
the initial label L(o) into the queue Q and the Bag(o).

Step 2 – Label expansion: The algorithm extracts a minimum label current := (u, (l1(u),
l2(u), . . . , lk(u)), LP (u)) from the priority queue Q (in a lexicographic order of a cost vector).
For each outgoing edge (u, v), the algorithm computes a new cost vector (l1(v), l2(v), . . . , lk(v))
by adding the costs of the edge (u, v) to the current cost values (l1(u), l2(u), . . . , lk(u)). Then,

ATMOS’15

20 Speedups for Multi-Criteria Urban Bicycle Routing

Algorithm 1: Heuristic-enabled multi-criteria label-setting algorithm.
Input: cycleway graph G = (V,E,−→c), origin node o, destination node d
Output: full Pareto set of labels

1 Q := empty priority queue
2 Bag(∀v ∈ V) := empty set
3 L(o) := (o, (0, 0, . . . , 0), null)

4 Q.insert(L(o))
5 Bag(o).insert(L(o))

6 while Q is not empty do
7 current := Q.pop()

8 u := current.getNode()
9 (l1(u), l2(u), . . . , lk(u)) := current.getCost()

10 LP (u) := current.getPredecessorLabel()

11 if terminationCondition(current) then
12 break
13 end
14 foreach edge (u, v) do
15 li(v) := li(u) + ci(u, v) for i = 1, 2, . . . , k
16 next := (v, (l1(v), l2(v), . . . , lk(v)), current)

17 if skipEdge(next) then
18 continue
19 end
20 if checkDominance(next) then
21 Bag(v).insert(next)
22 Q.insert(next)
23 end
24 end
25 end
26 return Bag(d)

it creates a new label next using the node v, the cost vector (l1(v), l2(v), . . . , lk(v)) and the
predecessor label current.

Function skipEdge (cf. Algorithm 1, line 17) prevents looping the path by checking the
predecessor label in the label data structure, i.e., if previous node LP (u).getNode() is equal
to the node v then the edge (u, v) is skipped.

Function checkDominance (cf. Algorithm 1, lines 20–23), by default, controls dominance
between the label next and all labels inside Bag(v). If next is not dominated, the algorithm
inserts it into Bag(v) and Q. Also, if some label inside Bag(v) is dominated by next, it is
eliminated from the bag structure and not considered in future search.

Step 3 – Pruning condition: The algorithm exits if the queue Q becomes empty. Otherwise,
it continues with Step 2.

After the algorithm has finished, the optimal Pareto set of routes Π∗ is extracted. Let
|Bag(d)| = |Π| = m. Then, from labels L1, . . . , Lm in the destination Pareto set of labels

J. Hrncir, P. Zilecky, Q. Song, and M. Jakob 21

d′ d′
o d

|od|

v
|ov| |vd|

Figure 1 Geometry of the ellipse pruning condition.

Bag(d), the routes π1, . . . , πm are extracted using the predecessor labels LP (·). These routes
comprise the set Π∗ = {π1, π2, . . . , πm} of optimal Pareto routes.

5 Speedups for the HMLS Algorithm

A significant drawback of the standard MLS algorithm is that it is very slow. The main
parameter that affects the runtime of the algorithm is the size of the Pareto set. In general,
the Pareto set can be exponentially large in the input graph size [21]. Furthermore, the MLS
algorithm always explores the whole cycleway graph.

To accelerate the multi-criteria shortest path search, we introduce four speedup heuristics.
Two of the heuristics are newly proposed by us: ratio-based pruning and cost-based pruning,
while two are existing heuristics: ellipse pruning and buckets. Implementation-wise, the
heuristics are incorporated into the heuristic-enabled MLS algorithm by defining the respective
three heuristic-specific functions used in Algorithm 1.

Ellipse Pruning: The first speedup heuristic taken from [12] prevents the MLS algorithm
from always searching the whole cycleway graph, even for a short origin-destination distance1.
The heuristic permits visiting only the nodes that are within a predefined ellipse. The focal
points of the ellipse correspond to the journey origin o and the destination d. Let |od| be
the direct origin-destination distance and d′ the distance between origin and a peripheral
point on the main axis of the ellipse. Then the length of the main axis 2a is equal to
|od|+ 2d′. During the search, in skipEdge function (cf. Algorithm 1, line 17), it is checked
whether an edge (u, v) has its target node v inside the ellipse by checking the inequality
|ov|+ |vd| ≤ |od|+ 2d′, cf. Figure 1.

Ratio-Based Pruning: The ratio-based pruning terminates the search (long) before the
priority queue gets empty (which means that the whole search space has been explored).
A pruning ratio α ∈ R+ is defined and the search is terminated when one of the criteria
cost values, e.g., l1(u), in the current label exceeds α times the best so far value of the
same criterion for a route that has already reached the destination (this is checked in the
terminationCondition function, cf. Algorithm 1, line 11).

Cost-Based Pruning: The third heuristic we use does not expand the search to a label L(v)
which is very close in the cost space (criteria c1, . . . , ck) to the existing non-dominated labels
at the node v. The newly generated label L(v) with a closer Euclidean distance than γ ∈ R+

1 Note that in contrast with single-criterion Dijkstra’s algorithm, the MLS algorithm does not stop when
the destination node is first reached.

ATMOS’15

22 Speedups for Multi-Criteria Urban Bicycle Routing

Table 1 Graph sizes for the experiments.

Graph Nodes Edges Area
Prague A 9411 20420 Old Town, Vinohrady
Prague B 9665 20808 Strahov, Brevnov
Prague C 10652 24121 Liben, Vysocany

is discarded inside the checkDominance function (cf. Algorithm 1, line 20). Therefore, the
search process is accelerated since fewer labels are inserted into the queue and the bag.

Buckets: The last heuristic defined in [7] discretizes the cost space using buckets for the
criteria values. The heuristic is executed in the checkDominance function (cf. Algorithm 1,
line 20). A function bucketV alue : R+

0 → N is used to assign a real cost value li an integer
bucket value bucketV alue(li).

6 Evaluation

To evaluate our approach, we consider the real cycleway network of Prague. Prague is
a challenging experiment location due to its complex geography and fragmented cycling
infrastructure, which raises the importance of proper multi-criteria routing.

6.1 Experiment Setting
We evaluate our solution on cycleway graphs corresponding to three distinct areas of the city
of Prague. We have chosen parts Prague A, Prague B, and Prague C to be different in terms
of network density, nature of the cycling network and terrain topology so as to evaluate the
performance of heuristics across a range of conditions. The sizes of the evaluation graphs
are depicted in Table 1. The graphs are also shown in Figure 2 in the map of Prague. The
specifics of each evaluation area are the following:

Prague A: This graph covers a flat city centre area of the Old Town with many narrow
cobblestone streets and Vinohrady with the grid layout of streets.
Prague B: This graph covers a very hilly area of Strahov and Brevnov with many parks.
Prague C: This graph covers residential areas of Liben and Vysocany further from the
city centre. There are many good cyclepaths in this area.

All evaluation cycleway graphs are strongly connected. The size of evaluation graphs
allows us to run the MLS algorithm without any speedups, which is crucial for comparing
the quality of heuristic and optimal solutions.

For each graph evaluation area, a set of origin-destination pairs generated randomly with
a uniform spatial distribution, was used in the evaluation. First, we generated 130 origin-
destination pairs for each of graphs Prague A, B, and C. The minimum origin-destination
distance is set to 500 m. The longest routes have approximately 4.5 km. From these 130 origin-
destination pairs, we filtered out 15 pairs with the smallest size of the optimal Pareto set and
15 pairs with the largest size of the optimal Pareto set to receive a set of 100 origin-destination
pairs. We executed the MLS algorithm and the HMLS with all 11 heuristic combinations
using the same generated 100 origin-destination pairs for each graph Prague A, B, and C.
Therefore, each heuristic combination is evaluated on 300 origin-destination pairs.

J. Hrncir, P. Zilecky, Q. Song, and M. Jakob 23

Figure 2 Evaluation graphs Prague B, Prague A, and Prague C (from left to right).

The parameters in the cost functions were set as follows. The average cruising speed is
s = 14 km/h and the penalty coefficient for uphill is al = 13 (according to the route choice
model developed in the user study [3]). Configuration parameters for the heuristics were set
so as to maximize the ratio between the algorithm runtime and the quality of the solution
(see the next section), as measured on the three graphs Prague A, B, and C. Specifically,
the following values were used: d′ = 500 m for ellipse pruning, α = 1.6 for ratio-based
pruning, γ = C1

5 for cost-based pruning, and (15, 2500, 4) for buckets. The multi-criteria
route planning algorithm is implemented in JAVA 7. The results obtained are based on
running the algorithm on a single core of a 2.4 GHz Intel Xeon E5-2665 processor of a Linux
server. OpenStreetMap data is used to create the Prague cycleway graphs.

6.2 Evaluation Metrics
We consider two categories of evaluation metrics: speed and quality. We use the following
metrics to measure the algorithm speed:

Average runtime in ms for each origin-destination pair together with its standard deviation
σruntime.
Average speedup over the MLS algorithm in terms of algorithm runtime.

We use the following metrics to measure the quality of returned routes:
Average distance dc(Π∗,Π) of the heuristic Pareto set Π from the optimal Pareto set Π∗
in the cost space. Distance dc(π∗, π) between two routes π∗ and π is measured as the
Euclidean distance in the unit three-dimensional space of criteria values normalized to
the [0, 1] range.

dc(Π∗,Π) := 1
|Π∗|

∑
π∗∈Π∗

min
π∈Π

dc(π∗, π)

Intuitively, dc(π∗, π) = 0.1 corresponds to a 6% difference in each criterion, assuming the
difference to optimum is distributed equally across all three criteria.
Average number of routes |Π| in the Pareto set Π together with its standard deviation
σ|Π|.
The percentage of Pareto routes Π% in heuristic Pareto set Π that are equal to routes in
the optimal Pareto set Π∗.

ATMOS’15

24 Speedups for Multi-Criteria Urban Bicycle Routing

Table 2 Evaluation of the heuristic performance on three graphs Prague A, B, and C. Primary
metrics are marked by bold column headings (runtime in ms and average distance dc(Π∗,Π)).
Non-dominated heuristic combinations with respect to speed and quality are denoted by bold font.
Abbreviations used: Buckets → B., Ellipse → E., Ratio → R.

Heuristic Speedup Runtime σruntime |Π| σ|Π| dc Π%

MLS - 3 586 263 4 390 939 1 351 1 304 - 100.0
HMLS+B. 875 4 100 3 335 37 32 0.131 60.9
HMLS+Cost 399 8 983 4 508 92 49 0.232 58.1
HMLS+R. 14 264 174 426 887 835 868 0.095 99.9
HMLS+R.+B. 2966 1 209 1 353 31 28 0.193 65.1
HMLS+R.+Cost 734 4 887 3 265 82 44 0.275 60.8
HMLS+E. 19 184 734 287 402 1 310 1 275 0.008 99.6
HMLS+E.+B. 6791 528 721 36 32 0.136 60.9
HMLS+E.+Cost 1732 2 070 1 976 91 49 0.235 58.5
HMLS+E.+R. 46 77 468 128 784 823 858 0.098 99.8
HMLS+E.+R.+B. 10308 348 461 31 28 0.196 65.1
HMLS+E.+R.+Cost 1921 1 866 1 902 82 44 0.276 61.0

6.3 Results
Table 2 summarizes the evaluation of the HMLS algorithm and its heuristics. The MLS
algorithm is used as a baseline for the evaluation of the proposed heuristics and their
combinations. Columns dc and Π% are calculated with respect to the optimal Pareto set Π∗
returned by the MLS algorithm. The MLS algorithm returns optimal solutions (1351 routes
in the Pareto set on average) at the expense of a prohibitively high runtime (one hour per
one origin-destination pair on average).

As anticipated, all heuristic methods are significantly faster than the pure MLS algorithm.
First, we have compared the methods using the two primary metrics in each category – the
average runtime and the heuristic measured by the average distance dc(Π∗,Π) in the cost
space. From the perspective of this two metrics, there are five non-dominated combinations
of heuristics, cf. filled bars in Figure 3 and bold values in Table 2. In the following, we only
discuss non-dominated combinations of heuristics.

The HMLS+Ellipse heuristic performs best in terms of the quality of the solution.
It successfully prunes the search space with dc(Π∗,Π) = 0.008. The average runtime of
this heuristic is around three minutes. This heuristic is very good for combining with other
heuristics, it offers one order of magnitude speedup over the MLS algorithm with a negligible
quality loss (99.6% of the routes in the heuristic Pareto set Π are equal to the ones in the
optimal Pareto set Π∗).

The HMLS+Ellipse+Ratio heuristic offers very good quality with dc(Π∗,Π) = 0.098, the
average runtime is around 80 seconds. The search space is pruned geographically by the
ellipse pruning and the search is also terminated sooner by the ratio-based pruning method.

With only a small decrease of the solution quality to dc(Π∗,Π) = 0.131, HMLS+Buckets
heuristic offers a significant additional speedup in average runtime to approximately
4.1 seconds. This makes this heuristic (and also the two following ones) usable for real time
applications, e.g., a web-based bicycle journey planner.

When the ellipse pruning method is combined with the Buckets heuristic, the average
runtime of HMLS+Ellipse+Buckets is lowered to approximately 528 ms while keeping almost
the same quality dc(Π∗,Π) = 0.136.

J. Hrncir, P. Zilecky, Q. Song, and M. Jakob 25

100

1 000

10 000

100 000

1 000 000

10 000 000

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30

M
L
S

H
M

L
S
+

E
ll
ip

se

H
M

L
S
+

R
at

io

H
M

L
S
+

E
ll
ip

se
+

R
at

io

H
M

L
S
+

B
u
ck

et
s

H
M

L
S
+

E
ll
ip

se
+

B
u
ck

et
s

H
M

L
S
+

R
a
ti
o
+

B
u
ck

et
s

H
M

L
S
+

E
ll
ip

se
+

R
a
ti
o
+

B
u
ck

et
s

H
M

L
S
+

C
o
st

H
M

L
S
+

E
ll
ip

se
+

C
os

t

H
M

L
S
+

R
a
ti
o+

C
os

t

H
M

L
S
+

E
ll
ip

se
+

R
at

io
+

C
os

t

ru
n
ti

m
e

[m
s]

d
is

ta
n
ce

 d
c
in

 c
os

t
sp

ac
e

Average distance in cost space from the optimal Pareto set

Average runtime [ms]

Figure 3 Speed and quality for the HMLS algorithm and all heuristic combinations sorted by
the quality from the best (MLS on the left hand side) to the worst. Non-dominated heuristic
combinations have grey filled in bars.

The last combination HMLS+Ellipse+Ratio+Buckets performs best in terms of average
runtime which is approximately 350 ms, i.e., it has four orders of magnitude speedup over the
pure MLS algorithm. The quality of this combination is reflected by higher dc(Π∗,Π) = 0.196,
still over 65% of the routes in the heuristic Pareto set Π are equal to the ones in the optimal
Pareto set Π∗.

To provide a deeper insight in search runtimes, we show in Figure 4 how the runtime
of the HMLS+Ellipse+Buckets heuristic depends on the direct origin-destination distance.
Although the runtime increases with the origin-destination distance, the rate of increase
slows down as the origin-destination distance grows. This behaviour was confirmed in our
initial scale-up experiments that resulted in less than 10 second response times even for
20 times larger cycleway graph covering the whole city of Prague (approx. 200 km2). Finally,
in Figure 5 we illustrate the route distribution from the optimal Pareto set of routes in the
physical space on an example of a route around a hilly area in Zizkov, Prague 3.

To summarize, we have evaluated 11 different combinations of heuristics from which
5 combinations dominated the others in terms of quality and speed. The heuristics offer
significant one to four orders of magnitude speedup over the pure MLS algorithm in terms
of average runtime. The speedup is achieved by lowering the number of iterations and also
the number of dominance checks in each iteration. HMLS+Ellipse is the best heuristic in
terms of quality of the produced Pareto set while HMLS+Ellipse+Ratio+Buckets is the
best heuristic in terms of average runtime. Taking into the account the trade-off between
the quality of a solution and the provided speedup, we consider HMLS+Ellipse+Buckets
heuristic to have the best ratio between the quality and speed.

ATMOS’15

26 Speedups for Multi-Criteria Urban Bicycle Routing

1

10

100

1000

10000

0 500 1000 1500 2000 2500 3000 3500 4000

ru
n
ti
m

e
[m

s]

direct origin-destination distance [m]

Figure 4 The runtime of HMLS+Ellipse+Buckets in milliseconds in dependency on the direct
origin-destination distance.

Figure 5 Distribution of 503 routes from the optimal Pareto set of routes. The more routes use
a given cycleway network segment, the wider is the depicted line.

7 Conclusions

We have made bicycle routing that properly considers multiple realistic route choice criteria
fast enough for practical, interactive use. We have achieved so by employing four heuristic
speedup techniques for multi-criteria shortest path search. The speedup heuristics provide
a variable trade-off between the search time and the completeness and quality of the suggested
routes and they enable fast response times without severely compromising the quality of the
results.

The multi-criteria search produces often large Pareto sets with many similar routes.
As a future work, we plan to provide a filtering method (e.g., based on our initial clustering
method [24]) that would extract several representative routes from a potentially very large
set of Pareto routes. Furthermore, we plan to extend the underlying cycleway graph model
to consider additional features such as detailed junction models with traffic lights and
penalisation of turns.

J. Hrncir, P. Zilecky, Q. Song, and M. Jakob 27

Acknowledgements. Supported by the European social fund within the framework of
realising the project “Support of inter-sectoral mobility and quality enhancement of research
teams at Czech Technical University in Prague” (grant no. CZ.1.07/2.3.00/30.0034), period
of the project’s realisation is 1 Dec 2012 – 30 Jun 2015. Supported by the European Union
Seventh Framework Programme (grant agreement no. 609023) and by the Czech Technical
University (grant no. SGS13/210/OHK3/3T/13). Access to computing and storage facilities
owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum,
provided under the programme “Projects of Large Infrastructure for Research, Development,
and Innovations” (LM2010005), is greatly appreciated.

References
1 H. Bast, D. Delling, A. Goldberg, M. Muller-Hannemann, T. Pajor, P. Sanders, D. Wagner,

and R. Werneck. Route Planning in Transportation Networks. Technical report, Microsoft
Research, 2014.

2 Hannah Bast, Mirko Brodesser, and Sabine Storandt. Result Diversity for Multi-Modal
Route Planning. In Daniele Frigioni and Sebastian Stiller, editors, 13th Workshop on Al-
gorithmic Approaches for Transportation Modelling, Optimization, and Systems, volume 33
of OpenAccess Series in Informatics (OASIcs), pages 123–136, Dagstuhl, Germany, 2013.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

3 J. Broach, J. Dill, and J. Gliebe. Where do cyclists ride? A route choice model developed
with revealed preference GPS data. Transportation Research Part A: Policy and Practice,
46(10):1730 – 1740, 2012.

4 D. W. Corne. The good of the many outweighs the good of the one: evolutionary multi-
objective optimization. IEEE Connections Newsletter, pages 9–13, 2003.

5 B. C. Dean. Continuous-time dynamic shortest path algorithms. Master’s thesis, Massachu-
setts Institute of Technology, 1999.

6 D. Delling, J. Dibbelt, T. Pajor, D. Wagner, and R. F. Werneck. Computing and Evaluating
Multimodal Journeys. Technical Report 2012-20, Faculty of Informatics, Karlsruhe Institut
of Technology, 2012.

7 D. Delling, J. Dibbelt, T. Pajor, D. Wagner, and R. F. Werneck. Computing multimodal
journeys in practice. In SEA, pages 260–271, 2013.

8 D. Delling and D. Wagner. Pareto paths with sharc. In Proceedings of the 8th International
Symposium on Experimental Algorithms, volume 5526 of LNCS, pages 125–136. Springer,
2009.

9 D. Delling and D. Wagner. Time-dependent route planning. In Robust and Online Large-
Scale Optimization, pages 207–230. Springer, 2009.

10 C. Dora and M. Phillips. Transport, environment and health. WHO Regional Office for
Europe, Copenhagen, 2000.

11 V. Filler. (AUTO*MAT) Private communication, 2013. Why cycle route planners are
important for cyclists.

12 L. Han, H. Wang, and W. Mackey Jr. Finding shortest paths under time-bandwidth con-
straints by using elliptical minimal search area. Transportation Research Record: Journal
of the Transportation Research Board, No. 1977:225–233, 2006.

13 D. Herlihy. Bicycle: the history. Yale University Press, 2004.
14 H. H. Hochmair and J. Fu. Web Based Bicycle Trip Planning for Broward County, Florida.

In ESRI User Conference, 2009.
15 J. Hrncir, Q. Song, P. Zilecky, M. Nemet, and M. Jakob. Bicycle route planning with route

choice preferences. In Prestigious Applications of Artificial Intelligence (PAIS), 2014.

ATMOS’15

28 Speedups for Multi-Criteria Urban Bicycle Routing

16 P. L. Jacobsen. Safety in numbers: more walkers and bicyclists, safer walking and bicycling.
Injury Prevention, 9(3):205–209, 2003.

17 E. Machuca and L. Mandow. Multiobjective heuristic search in road maps. Expert Systems
with Applications, 39(7):6435–6445, 2012.

18 L. Mandow and J. De La Cruz. Multiobjective A* search with consistent heuristics. J. ACM,
57(5), June 2008.

19 E. Martins. On a multicriteria shortest path problem. European Journal of Operational
Research, 16(2):236 – 245, 1984.

20 M. Muller-Hannemann and M. Schnee. Finding all attractive train connections by multi-
criteria pareto search. In ATMOS, pages 246–263, 2004.

21 M. Müller-Hannemann and K. Weihe. On the cardinality of the pareto set in bicriteria
shortest path problems. Annals of Operations Research, 147(1):269–286, 2006.

22 P. Perny and O. Spanjaard. Near admissible algorithms for multiobjective search. In
Proceedings of the 2008 Conference on ECAI 2008: 18th European Conference on Artificial
Intelligence, pages 490–494, Amsterdam, The Netherlands, 2008. IOS Press.

23 G. Sauvanet and E. Neron. Search for the best compromise solution on multiobjective
shortest path problem. Electronic Notes in Discrete Mathematics, 36:615–622, 2010.

24 Q. Song, P. Zilecky, M. Jakob, and J. Hrncir. Exploring pareto routes in multi-criteria
urban bicycle routing. In Intelligent Transportation Systems (ITSC), 2014 IEEE 17th
International Conference on, pages 1781–1787, Oct 2014.

25 B. S. Stewart and Ch. C. White. Multiobjective A*. Journal of the ACM (JACM),
38(4):775–814, 1991.

26 J. G. Su, M. Winters, M. Nunes, and M. Brauer. Designing a route planner to facilitate
and promote cycling in Metro Vancouver, Canada. Transportation Research Part A: Policy
and Practice, 44(7):495–505, 2010.

27 R. J. Turverey, D. D. Cheng, O. N. Blair, J. T. Roth, G. M. Lamp, and R. Cogill. Char-
lottesville bike route planner. In Systems and Information Engineering Design Symposium
(SIEDS), 2010.

28 M. Winters, G. Davidson, D. Kao, and K. Teschke. Motivators and deterrents of bicycling:
comparing influences on decisions to ride. Transportation, 38(1):153–168, 2011.

Routing of Electric Vehicles: Constrained Shortest
Path Problems with Resource Recovering Nodes∗

Sören Merting1, Christian Schwan2, and Martin Strehler2

1 Technische Universität München
Boltzmannstr. 3, 85748 Garching near Munich, Germany
soeren.merting@in.tum.de

2 Brandenburg University of Technology
Platz der Deutschen Einheit 1, 03046 Cottbus, Germany
{christian.schwan, martin.strehler}@b-tu.de

Abstract
We consider a constrained shortest path problem with the possibility to refill the resource at
certain nodes. This problem is motivated by routing electric vehicles with a comparatively short
cruising range due to the limited battery capacity. Thus, for longer distances the battery has to
be recharged on the way. Furthermore, electric vehicles can recuperate energy during downhill
drive. We extend the common constrained shortest path problem to arbitrary costs on edges
and we allow regaining resources at the cost of higher travel time. We show that this yields not
shortest paths but shortest walks that may contain an arbitrary number of cycles. We study
the structure of optimal solutions and develop approximation algorithms for finding short walks
under mild assumptions on charging functions. We also address a corresponding network flow
problem that generalizes these walks.

1998 ACM Subject Classification G.2.2 Graph Theory – Path and circuit problems, Network
problems, G.2.3 Applications

Keywords and phrases routing of electric vehicles, constrained shortest paths, FPTAS, con-
strained network flow

Digital Object Identifier 10.4230/OASIcs.ATMOS.2015.29

1 Motivation

1.1 Electric Vehicles
Electric vehicles are a cornerstone towards eco-friendly mobility. Charged with renewable
energy they contribute to a responsible use of our limited resources. Compared to common
vehicles with combustion engines, there are still some disadvantages. The comparatively
short range due to the restricted battery capacity is most likely the main reason for the poor
popularization of electric vehicles up to now. Furthermore, for these cars even fast charging
of the battery lasts significantly longer than traditional refueling.

This gives rise to many interesting mathematical questions concerning the routing of
electric vehicles. First of all, electric vehicles can recuperate energy during downhill drive,
i.e., there are road segments where energy consumption is negative. This also implies that
for deciding whether a given path is feasible the remaining energy supply has to be checked

∗ This work was supported by the German Federal Ministry of Education and Research (BMBF), funding
code 05M13ICA.

© Sören Merting, Christian Schwan, and Martin Strehler;
licensed under Creative Commons License CC-BY

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 29–41

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

30 Routing of Electric Vehicles

en route. Obviously, it must never be less than zero, but we also must not store more energy
than the battery can hold in every point in time. Thus, is it possible to reach the destination?
When no such path through the network can be found, battery charging stations have to be
visited. But where should one charge the battery, especially when different charging stations
provide different charging characteristics, e.g., rather slow charging at home compared to
fast charging or even battery swapping at professional charging stations. How much energy
should be regained at a certain charging station when charging costs (in time equivalents)
are not proportional to the charged amount as the charge rate typically decreases at higher
charge levels? All in all, which is the fastest feasible route to the destination?

There are also several fields of application for fleets of electric vehicles in commerce and
industry. Exemplary, electric automated guided vehicles (agv) are operated in harbor termin-
als, manufacturing facilities or warehouses to move materials or containers around. Whereas
reachability is of minor interest, charging all those vehicles may require a sophisticated
planning. Thus, also the network flow version of the electric vehicle routing with limited
charging capacity is worth studying.

1.2 Related Work
In the constrained shortest path problem (CSP), we are given a graph G = (V,E) with a
cost function c : E → R and lengths or resources ri : E → R. In general, costs and resources
are assumed to be non-negative. Now, one seeks for a shortest path P from a vertex s to a
vertex t which obeys the resource constraints Ri, i ∈ N = {1, . . . , k}. That is, we want to
find an s-t-path P minimizing

∑
e∈P c(e) such that

∑
e∈P ri ≤ Ri ∀i ∈ N .

For unit edge lengths, i.e., there is only one resource with r(e) = 1 for all edges, this
problem can be solved easily using a labeling algorithm. In other words, we want to find a
shortest path using at most R edges. The easiest way to solve this problem is a modified
Bellman-Ford-algorithm which stops after R iterations. Here, it is important to update the
labels simultaneously which automatically yields paths with no more than R edges.

The problem becomes NP-complete when the resource function can take arbitrary non-
negative values. This can be seen by a reduction of 2-Partition [10]. Thus, approaches
focussing on listing all Pareto-optimal solutions via dynamic programming suffer from
pseudopolynomial running times. Fortunately, several fully polynomial time approximation
schemes (FPTAS) have been found to tackle this problem. Approaches based on rounding and
scaling were suggested by Warburton [22] who used this technique to compute Pareto-optimal
solutions for the multiple-objective shortest path problem. Hassin [13] adapted and improved
this concept for constrained shortest paths. Shortly after, Phillips [18] presented an FPTAS
which uses a Dijkstra search in a resource-expanded graph. In a second line of research,
multi-phase algorithms were purposed. Most commonly, good lower and upper bounds are
computed in a first phase and the remaining gap is closed in a second phase. Handler
and Zang [12] used a Lagrange relaxation of an edge-based integer linear programming
formulation to compute the lower and upper bounds. In the second phase, the gap is closed
with help of a k-shortest path algorithm. Similarly, Beasley and Christofides [5] closed the
gap with a branch and bound strategy. Another approach was proposed by Mehlhorn and
Ziegelmann [15, 23]. They use the dual of a relaxed path-based integer linear programming
formulation for the first phase. There, the separation problem can be solved efficiently which
is used to compute the lower and upper bounds. For the second phase, additional approaches
like path ranking and labeling strategies are discussed to close the duality gap.

A flow version of the constrained shortest path problem dates back to 1978, when Lovász
et al. [14] derived a version of Menger’s theorem for node-disjoint length bounded paths. This

S. Merting, C. Schwan, and M. Strehler 31

was independently extended to edge-disjoint paths by Exoo [7] and Niepel and Šafaříková [17].
Edge-disjoint paths can be interpreted as a 0-1-valued flow with unit capacity and unit edge
length. Recently, a more general approach with fractional flow values was studied by Baier
et al. [1, 2]. Such a flow is feasible if and only if there exists a path decomposition such that
each flow carrying path fulfills the resource constraint. However, the authors of [1, 2] show
that it is NP-complete to decide whether a given edge-flow can be decomposed into such
paths. Consequently, deciding whether there is a length-bounded flow of a certain value is
also an NP-complete problem. The authors present a fully polynomial time approximation
scheme based on an approximation algorithm for constrained shortest paths. Furthermore,
the authors show that the ratio of the minimum fractional length-bounded s-t-cut, i.e., edges
can be chosen partially, and the minimum integral s-t-cut can be of order Ω(

√
n) even for

unit resources. This bound carries over to the gap between fractional and integral flow.
The routing of electric vehicles has been studied to a lesser extent in the literature. In [19]

the authors cope with negative resource consumption due to recuperation by taking the
potential energy into account. Thus, a new non-negative cost function is determined such
that an A* algorithm can be applied to compute paths with minimum energy consumption.
Baum et al. [4] present a very fast routing algorithm for electric vehicles by extending the
customizable route planning approach of [6]. Additionally, they consider reducing speed to
increase range in a subsequent paper [3]. However, recharging at charging stations is not
considered in these papers. Recently, a constrained shortest path problem for electric vehicles
with recharging stations was introduced by Storandt [20]. In this setting, it is assumed
that the whole battery is swapped at each charging point. Thus, recharge time is constant
and the battery is always recharged to full capacity after each visit of a charging station.
Consequently, first results were also obtained for the facility location problem for charging
stations [21].

1.3 Our Contribution
In this paper, we extend previous results for resource constrained shortest paths and flows to
networks with recharging nodes. Due to recuperation, negative resource consumption is now
possible. Further, we consider recharging nodes where the resource can be refilled by paying
additional costs.

The paper is organized as follows. Firstly, we give some definitions and fix the notation.
Afterwards, we will show that in our setting shortest paths can contain cycles and even a
node for charging can be visited more than once. Therefore, we also introduce a new type of
conservative cost functions in order to avoid one class of cycles. In Section 4, we develop
an FPTAS for the shortest path problem with charging. Furthermore, we address the flow
variant of this problem, i.e., we present analytic results for the min cost flow problem with
length constraints and recharging in Section 5.

2 Preliminaries

Throughout this paper the underlying structure is a finite directed graph G = (V,E) with
n = |V | vertices or nodes and m = |E| edges. Given a source vertex s and a target vertex
t, an s-t-path P is a sequence of edges (e1 = (s, v1), . . . , ek = (vk−1, t)) fitting head to tail
and each edge appears only once. However, as we will show, paths are too restrictive for
finding the most efficient route from s to t. An s-t-walk W is again a sequence of edges
(e1 = (s, v1), . . . , ek = (vk−1, t)), but each edge may appear more than once. A cycle C is a
special kind of walk, where the first node is equal to the last one.

ATMOS’15

32 Routing of Electric Vehicles

In general, one may allow of several resources, but here we limit our study to a cost
function and a single resource constraint. For each edge e ∈ E, there are two parameters,
namely cost c : E → R≥0 and resource consumption r : E → R. Since costs are related to
travel time in most of our applications, we assume the cost function to be non-negative. In
contrast, we explicitly allow recuperation of energy. Thus, there may be edges with negative
resource consumption. Of course, in accordance to basic laws of physics it is assumed that
the total energy consumption on a cycle is non-negative.

I Definition 1. A resource function r is called conservative if for each cycle C there is∑
e∈C

r(e) ≥ 0.

In the following we require the resource function to be conservative. With our application
in mind, we refer to a node as charging node if at this node the resource value of a path can
be increased at the expense of the cost value . Furthermore, our main application requires
the ability to model a non-linear charging process. We describe this charging process with
help of a charging function f : R≥0 → R≥0 which is continuous and increasing and maps
from the amount of recharged resources to the resulting costs.

I Definition 2. For a subset S ⊆ V of charging nodes, the charging function fv : R≥0 → R≥0,
v ∈ S, is a continuous and increasing function. If the path P arrives at vertex v ∈ S with
x units of remaining resources we recharge µ resources which increase the cost of P by
fv(x+ µ)− fv(x).

This definition via the charging function has two advantages. Bypassing a charging node,
that is µ = 0, causes no additional cost. Further, there is also no need to interrupt the charging
process, since fv(x+(µ1 +µ2))−fv(x) = (fv(x+µ1)−fv(x))+(fv(x+µ1 +µ2)−fv(x+µ1)).
That is, we can assume that the desired amount of resources is recharged in one step. However,
this does not prevent the optimal walk to visit a charging node v ∈ S twice as we will show
in Section 3.

I Definition 3. An s-t-walk W with charging is a sequence of tuples (ei, µi), i ∈ {1, . . . , k}
with edges ei = (vi−1, vi) and recharged resources µi ≥ 0 at vi such that the edges form an
s-t-walk. Furthermore, we require vi ∈ S if µi > 0.

Contrary to constrained shortest paths, it is not sufficient to check the resource constraint
only at the target terminal. Due to negative resource consumption on some edges, feasibility
has to be checked at each intermediate point, too. Let us assume an initial resource value of
R at node s and a lower bound of 0. Furthermore, let R be the maximum amount of storable
resources. However, this upper bound is a soft bound. We will not violate it by recharging,
since this will cause additional costs. If we would exceed this bound by recuperation, excess
resources is not stored.

Let r(W, j) be the remaining resources on walk W after the jth edge and after charging
µj units of resources at node vj . Starting with r(W, 0) = R we define iteratively:

r(W, j) := min{R, r(W, j − 1)− r(ej) + µj}.

I Definition 4. Given initial resources R and resource bound R, a walk W with charging is
feasible iff r(W, j)− µj ≥ 0 for all j ∈ {1, . . . , kW }.

Now, the cost of a walk W with charging is defined by

c(W) =
k∑
j=1

c(ej) +
k∑

j=1, µj>0
fvj (r(W, j))− fvj (r(W, j)− µj) .

S. Merting, C. Schwan, and M. Strehler 33

s u w t

vk−2

v2

vk−1

v1

(1, k) (1, k)
(1, 1)

(1, 1)(1, k −
1)

(1, 2)
(1,
k −

2)

(1, k −
2)(1

, 2
)

(1, k −
1)(1

, 1
)

Figure 1 Network with common nodes (circle) and charging nodes (boxed). Edge labels denote
(cost, resource consumption). Initial resources and maximum storage are R = R = k + 2. Charging
is instantaneous/free, i.e., f ≡ 0 for all charging nodes, until reaching R.

That is, the costs of a walk consist of costs for crossing the edges and of costs for recharging
resources. Note that r(W, j) already includes charging at the head of ej , so resources are
refilled from r(W, j) − µj up to r(W, j). Let r(W) = R − r(W,kW) be the total resource
difference of the walk W with kW edges. A walk W1 with charging is dominating a walk W2
iff c(W1) < c(W2) and r(W1) ≤ r(W2) or c(W1) ≤ c(W2) and r(W1) < r(W2). Hence, a walk
W1 with charging is Pareto-optimal if there exists no walk W2 which dominates W1. A walk
W1 with charging is a shortest walk, if there is no other feasible walk W2 with c(W2) < c(W1).

3 Structure of Optimal Solutions

From an algorithmic point of view, the problem of deciding whether there is a walk with
charging of cost ≤ c is clearly NP-complete. On the one hand it is a decision problem
and a walk given as certificate is easy to check, on the other hand the problem includes
the constrained shortest path problem. Yet, in some sense it is also not harder than the
constrained shortest path problem if we require an additional property of the network and its
charging functions. We will derive this property in this section and we present a corresponding
FPTAS in the next section.

However, the problem of finding shortest walks with charging has a richer combinatorial
variety. In this section, we will also emphasize some of the most important properties of such
walks. First of all, an optimal walk may contain cycles despite the positive cost function and
the conservative resource consumption function.

I Lemma 5. A shortest walk with charging may contain arbitrarily many cycles even when
no charging costs exist. There are networks where an optimal walk passes a certain edge
Ω(n)-times.

Proof. Consider the network in Figure 1. Charging node vj , j = 1, . . . , k − 1 is reachable
from charging nodes vi with i ≥ j − 1. Node vj is only reachable from node vj−1 if the
resources are completely recharged in vj−1. Further, t is only reachable from vk−1. Thus,
even the shortest walk has to visit all charging nodes. Edge (u,w) is used k-times. J

The construction in Figure 1 may lead to the assumption that a shortest walk visits
charging nodes at most once. However, this is not true.

I Lemma 6. A shortest walk with charging can visit a single charging node several times.

ATMOS’15

34 Routing of Electric Vehicles

s v

u

w

t
(1, R− ε) (1, R− ε)

(0, ε)(0, ε)

(0, 2ε) (0, 2ε)

Figure 2 Network with two charging nodes. Charging is very expensive at u, that is fu(x) = x.

Charging at w is very fast/free, i.e., fw(x) = 0. Even in this simple instance with linear charging
functions, u is visited twice by the optimal path.

Proof. Again, we provide an example in Figure 2. Assume R = R = 1. A walk starting
in s may only reach v and u subsequently. From u, target t can only be reached by a full
recharge µu = 1. With fu(x) = x, this also induces costs of 1. For small ε > 0, it is better to
refill only 3ε. Then, w can be reached where completely charging is free. However, t is not
reachable from w without visiting u and recharging 3ε again. Thus, if ε < 1

6 , the shortest
path visits u twice. J

More than two visits of a charging node can easily be achieved by choosing the charging
functions properly. Instead of a single free recharge node w as in Figure 2, assume several
charging nodes wi each providing free recharge only for a small subset of the domain of the
charging functions and very high fees otherwise. Then, a shortest path can visit u several
times. Actually, it is also possible to choose the charging function of two stations so that an
optimal path would have to switch infinitely often between these two stations.

However, the network in the proof of Lemma 6 presumes somewhat unnatural charging
functions. To prevent such unnatural walks, we introduce an additional constraint similar to
the restrictions of conservative cost functions to prevent negative cost cycles.

I Definition 7. Let C be a cycle, let SC = S ∩ V (C) be charging nodes on C, and let
v ∈ SC be one of these nodes. Let WC be the cyclic walk with charging, starting at node
v with r(W, 0) = R resources, using edges ej , j = 1, . . . , k of C with arbitrarily recharged
resources µj , and ending in node v. The cost of this walk is c(WC). Then, C is called a
regenerating cycle iff there is a choice of recharged resources µj such that r(W,k) > r(W, 0)
and c(WC) < fv(r(W,k))− fv(r(W, 0)).

In other words, requiring a network without regenerating cycles implies that is always
cheaper to recharge at a charging node immediately, instead of taking detours for recharging
and coming back. Without charging, this definition would be equivalent to the definition
of conservative resource functions. In accordance, we call the resource function and the
charging functions strictly conservative if no regenerating cycles occur in the network.

Checking for such cycles is a difficult problem since there is an exponential number of
cycles generally. Assuming non-linear charging functions, it is already NP-hard to compute
the optimal µi at each charging node on a single cycle since we may have to deal with a
nonconvex nonlinear programming problem [16].

I Theorem 8. In a network without regenerating cycles a shortest walk visits a charging
node at most once.

S. Merting, C. Schwan, and M. Strehler 35

s v t

u

(1, 2) (1, 1)

(1, 1) (1, 1
)

Figure 3 Assume R = R = 2. Hence, an s-t-walk has to visit u for recharging. Obviously, the
s-v-subwalk is not an optimal s-v-walk, since v can be reached directly from s with lower costs.

Proof. Definition 7 implies that visiting a charging node twice always causes additional costs
(compared to charging at this node directly) or a loss of resources compared to the first
visit. J

Please note that regenerating cycles are created by an interplay of resource functions and
charging functions. Even in a network where all charging functions are identical, regenerating
cycles may occur. Furthermore, identical charging functions do not imply either that it is
optimal to completely charge the battery when a charging node is visited. Still, a path that
visits several charging nodes and recharges small amounts of µi may be better than a path
visiting fewer charging stations.

Finally, as shown next walks with charging do not have the shortest subwalk property.

I Lemma 9. An s-v-subwalk of a shortest s-t-walk with charging is not necessarily a shortest
s-v-walk.

Proof. Figure 3 provides an instance without the subwalk property. Same claim also holds
for constrained shortest paths and CSP is a subproblem of our problem. J

At first sight, the results in this section may seem of academic interest only. But charging
functions for electric vehicles are non-linear. Consequently, such effects cannot be generally
excluded in practice. Hence, each algorithm designed for this problem should be prepared to
cope with cycles or one has to provide appropriate restrictions that are consistent with the
corresponding application.

4 Approximating Constrained Shortest Walks with Charging

We will now develop an FPTAS for the constrained shortest walk problem with charging
nodes. This will consist of two steps. Firstly, we construct an FPTAS for the common
constrained shortest path problem but with conservative resource consumption and without
charging at intermediate nodes. Secondly, we use a slightly modified version of the first
algorithm as a sub-routine in an FPTAS connecting charging nodes in a network without
regenerating cycles.

4.1 The Inner Approximation Algorithm
The inner approximation algorithm picks up the main idea of Hassin’s approach, namely
scaling and rounding [13], but we make some important changes to cope with negative
resource consumption.

Let us fix two terminal nodes ŝ and t̂. Furthermore, we are given initial resources R̂
and upper bound R, a non-negative cost function c : E → R≥0, and a conservative resource
consumption r : E → R. In this inner approximation we do not consider recharging, i.e.,
there are no charging nodes. In consequence, no cycles can occur in an optimal path. Now,
we want to find an ε̂-approximation of the shortest s-t-path with respect to the cost function

ATMOS’15

36 Routing of Electric Vehicles

c obeying the resource constraints. In other words, we want to find a feasible path that has
cost at most (1 + ε̂)-times higher than the optimal path.

To record information about subpaths, we provide a set of labels at each node. Each label
consists of two values (c, r) of costs and remaining resources. Feasibility is crucial, hence,
resource consumption has to be calculated exactly. Consequently, we can only round the
cost values in the approximation algorithm. Here, the main difficulty is to find a suitable
precision for rounding. On the one hand, the number of different values has to be bounded
polynomially. On the other hand, we have to meet the approximation factor 1 + ε̂.

Suppose that we would know the value OPT of the objective function of an optimal
solution already. In this case, we can round up all cost values on the edges to integral
multiples of ε̂OPT

|V |−1 . Since the optimal path has at most |V | − 1 edges, and the error on each
edge is at most ε̂OPT

|V |−1 , the total error of the path is at most ε̂OPT. If we round the cost
values with this precision, we also get only integer multiples of ε̂OPT

|V |−1 as possible cost values
for subpaths at each node. Since the length OPT of an optimal path is known and costs
are non-negative, it suffices to record cost values up to this bound (1 + ε̂) OPT. Thus, we
have at most (|V |−1)(1+ε̂)

ε̂ different cost values that can occur at a node. Of course, for each
node v we only store the set Q(v) of Pareto-optimal labels, i.e., the highest battery charge
achieved so far for each of the possible cost values.

To find a path of the desired length, we initially label node ŝ with Q(ŝ) = {(0, R̂)}. All
other label sets Q(v) are initially empty. In an update step, we propagate the whole label set
of each node u to all its neighbors v. Each label in Q(u) is updated using cost and resource
consumption of e = (u, v) and added to the label set Q(v) accordingly. Labels with cost
values higher than (1 + ε̂) OPT are discarded, they can never contribute to a path with the
desired properties. Since an optimal path can consist of at most |V | − 1 edges, precisely this
number of update rounds suffices to find an optimal ŝ-t̂-path according to Bellman-Ford’s
algorithm. Setting pointers for each label pointing to the predecessor node, the path itself
can easily be reconstructed.

Thus, given a value OPT, we can check whether there is a feasible ŝ-t̂-path of length at
most (1 + ε̂) OPT in time polynomial in |V | and 1

ε̂ . However, the OPT value is unknown at
the beginning, so we apply binary search to find it. Let LB be the cost of a shortest path
without considering the resource constraints. Thus, LB is a lower bound on OPT. Further,
compute a shortest path with respect to resource consumption. Since resource consumption
is conservative, one may use Bellman-Ford’s algorithm. Obviously, the cost UB of this path
is an upper bound on OPT. Our first guess on OPT is OPT =

√
LB ·UB, i.e., we use a

logarithmic scale.

If we find a feasible path with length smaller than OPT, we can use this length as a new
upper bound UB. If we cannot find a path of length at most (1 + ε̂)OPT, we can use OPT as
a new lower bound LB. OPT is updated accordingly and the binary search is stopped when
UB
LB is smaller than a pre-defined constant k, e.g., k = 2. Now, we execute a final run with
rounding precision ε̂LB

|V |−1 and maximum cost value UB. In other words, we use the precision
given by the lower bound LB, but we use k-times as many labels to cover paths of length
UB.

Summarizing, Algorithm 1 is a very short description of the inner approximation.

S. Merting, C. Schwan, and M. Strehler 37

Algorithm 1 Inner Approximation.
1: Input: Graph G = (V, E) with c, r and ε̂, nodes ŝ and t̂, Q(ŝ) = {(0, R̂)}
2: Output: ŝ-t̂-path with cost ≤ (1 + ε̂) OPT
3: compute LB, and UB, and OPT
4: while UB

LB > 2 do
5: initialize Q, round c
6: for i = 1, . . . , |V | − 1 do
7: for all nodes v ∈ V do
8: propagate Q(v) to all neighbors
9: end for
10: end for
11: update LB or UB, and OPT
12: end while
13: execute final run with double precision
14: if Q(t̂) 6= ∅ then
15: reconstruct ŝ-t̂-path, return Q(t̂)
16: else
17: no such path exists
18: end if

4.2 The Outer Approximation Algorithm
Whereas the inner approximation can be used for calculating costs and battery consumption
between charging nodes, the outer approximation combines these paths between charging
stations to create a walk from start node s to target node t.

The network for this algorithm consists only of the charging nodes S and any two nodes
of S are connected if there is a feasible path between them in the original graph. However,
reachability and the cost thereof depend on the initial battery charge. Thus, it is not possible
to compute this reachability graph a priori. Instead, the cost for going from one charging
node to another has to be computed just when needed.

Let (1 + ε) be the accuracy of the outer approximation, we again determine the optimal
rounding precision via a binary search on the optimal value OPTouter as described in
Section 4.1. Only nodes v ∈ S ∪ {s, t} are labeled, initially all label sets are empty but
Q(s) = {(0, R)}. To propagate a label from u ∈ S ∪ {s} to w ∈ S ∪ {t}, we call the inner
approximation with ŝ = u, t̂ = w, and Q(ŝ) = Q(u).

In contrast to the pure inner approximation described above, we can omit the inner
binary search by using the OPTouter value from the outer binary search and by setting
ε̂ = ε

|S+1| . Thus, we also compute paths with higher costs but less consumption which match
the required accuracy of the outer approximation. Note that this may lead to a poor actual
approximation of the subpath. Especially if the subpath is very short, then an error of
ε̂OPTouter can be much larger than ε̂OPT. However, this relative error on subpaths does
not matter as long as the total error of all subpaths is bounded.

Now, one has the option to charge the battery in node w. We use the return value Q(t̂)
of the inner approximation (where t̂ = w) and calculate all possible battery charges that
match the cost discretization. Let fw be the charging function at w, (ĉ, r̂) ∈ Q(t̂) and α

the rounding precision of the outer approximation. We determine all values of x such that
0 ≤ f(r̂ + x) − f(r̂) + ĉ = kα ≤ (1 + ε) OPTouter with k ∈ N. Each label (ĉ, r̂) of Q(w) is
shifted by all those values and is added to Q(w) forming a new Pareto-optimal label set.
Here, it is assumed implicitly that all operations concerning the computation of f can be
done in polynomial time.

Since the resource function r is assumed to be strictly conservative, each charging node
is visited at most once. We may also apply Bellman-Ford’s principle here. Propagating
the label set of each u ∈ S ∪ {s} to any other w ∈ S ∪ {t} in |S| + 1 rounds creates a

ATMOS’15

38 Routing of Electric Vehicles

Algorithm 2 Outer Approximation.
1: Input: Graph G = (V, E) with S ⊆ V , c, r and ε, nodes s and t, R
2: Output: s-t-path not longer than (1 + ε) OPT
3: compute LB, and UB, and OPT
4: while UB

LB > 2 do
5: initialize Q, Q(s) = {(0, R)}, round c
6: for i = 1, . . . , |S| − 1 do
7: for all nodes u ∈ V ∪ {s} do
8: for all nodes w ∈ V ∪ {t} do
9: determine Pareto-optimal u-w-paths with maximum cost OPTouter

and precision ε̂ = ε
|S+1| , and initial label set Q(u)

10: apply recharging in w
11: update Q(w)
12: end for
13: end for
14: end for
15: update LB or UB, and OPT
16: end while
17: if Q(t) 6= ∅ then
18: reconstruct s-t-path, return Q(t̂)
19: else
20: no such path exists
21: end if

correct label at t. Since we use at most |S|+ 1 subpath and each subpath has at most error
ε̂OPT = ε

|S+1| OPT, the total error is less than εOPT.
Thus, in a very condensed form Algorithm 2 states the outer approximation scheme.
The outer approximation runs in time polynomial in |S| and ε and the number of function

calls to the inner approximation is also bounded polynomially. Due to the finer precision
ε̂ = ε

|S+1| , the running time of the inner algorithm is increased by at most O(n) but the inner
binary search is not needed. Please note that a feasible path for determining UB can be
easily found by applying a full recharge at each charging node and checking reachability only
for maximal resources. Due to space constraints, we have to omit a more detailed analysis
but refer the reader to the journal version of this paper.

5 Flows with Recharging

Finally, we study the network flow version of constrained shortest paths in a network
with charging nodes. In this setting, we are looking for a network flow that has a path
decomposition such that each path is feasible with respect to the resource consumption.
Hence, the constrained shortest path problem can be seen as a sub-problem. For example,
the flow is zero iff no feasible path exists. Consequently, the flow problem is at least as
difficult as the path problem.

We look at the unweighted version of this problem, here. That means, we only have
capacities u : E → R≥0 and resource consumption but no costs on the edges. The capacities
limit the maximal flow on each edge. We also change the interpretation of charging nodes.
A charging node now also has a capacity c : S → R≥0 ∪ {+∞} which states the maximum
amount of resources that can be provided for charging. One may also use a different kind of
charging function to capture different efficiency factors during charging, i.e., the charging
station has to expend more energy than arrives in the battery. In practice, this difference
depends on the charge level of the battery. For simplicity, we assume a linear relation in this
paper.

As seen in Section 3, cycles may occur. Since walks are the main actors, we use a walk
based flow definition. Here, the parameter λe(K) counts the number of occurrences of edge

S. Merting, C. Schwan, and M. Strehler 39

e in a walk K. Further, Ks,t denotes the set of all possible s-t-walks. Note that due to the
walk based formulation flow conservation is automatically implied.

I Definition 10. An s-t-flow in this setting is a function f : Ks,t → R≥0 assigning a flow
value fK to each s-t-walk K in G. The sum

∑
K∈Ks,t

fK is called the s-t-flow value of f .
The flow f is feasible if it respects edge capacities, i.e.,∑

K∈Ks,t:e∈K
λe(K)fK ≤ ue ∀e ∈ E.

Given initial resources R and resource bound R, a resource constrained s-t-flow with charging
is an s-t-flow, where every walk K with f(K) > 0 is a feasible s-t walk with charging with
respect to R and R.

An s-t-walk K with charging that charges µ units at node v ∈ S and which is used by
f(K) flow units uses f(K)µ units of the capacity c(v).

I Definition 11. An s-t-flow with charging is feasible, if the underlying s-t-flow is feasible
and all walks with f(K) > 0 charge in total at most c(v) units in node v for all v ∈ S.

I Definition 12. Given initial resources R and resource bound R, an s-t-cut with charging is
a set of edges E′ ⊆ E such that there is no feasible s-t-walk with charging in G = (V,E\E′).
The accumulated capacity of the edges in E′ is called the cut value of E′.

Now, we consider maximum s-t-flows with charging, that is, flows where the flow value is
maximum among all feasible s-t-flows with charging. Even in such maximum flows it can be
necessary that some path visits a certain charging node more than once.

I Corollary 13. There are instances of the maximum s-t-flows with charging problem, where
a path contributing to a maximum s-t-flow with charging has to visit a charging node more
than once.

Proof. Consider the network in Figure 2. Let all edge capacities and c(w) be infinite. Hence,
the flow is only restricted by c(u). If we visit node u only once, there is only one feasible
path and at most c(u)

R
units can be sent from s to t. If we recharge 3ε per flow unit, visit

node w for a full recharge, and go back to u for another charge of 3ε, we can send c(u)
6ε units

from s to t. Thus, if we choose ε < R
6 , the claim follows. J

But even without limiting rechargeable resources, i.e., c(v) = +∞ for all v ∈ S, flows
with recharging significantly differ from common network flows. The network in Figure 1
implies two more corollaries for resource constrained flow with charging.

I Corollary 14. The gap between the flow value and the cut value of resource constrained
flow in a network with charging nodes and unlimited supply at charging nodes can be of order
Ω(n), even for planar networks with unit capacities.

Proof. Add unit capacities to the graph in Figure 1. Since there is only one feasible path,
and this path uses one edge Ω(n)-times, the claim follows. J

I Corollary 15. The gap between resource constrained fractional flow and integral flow with
charging in a network with unlimited supply in charging nodes is unbounded.

Furthermore, there exist networks that do not allow for an integral flow greater than
zero despite all capacities being integral. Nevertheless, the total fractional flow value can be
integral and positive in those networks.

ATMOS’15

40 Routing of Electric Vehicles

Proof. Figure 1 with unit capacities provides an instance where no positive integral flow is
possible. Using several copies of this network in a parallel manner and scaling capacities
would allow a fractional flow of value 1. J

6 Discussion

In this paper, we studied shortest paths and flows in a resource constrained setting where it is
possible to refill resources at some nodes. We considered charging costs which depend on the
charged amount. Thus, finding good paths is not only a question of reachability, but we have
also to decide where and how much to charge. This additional combinatorial variety makes
the problem significantly more difficult. Thinking of applications like routing of electric
vehicles it seems very challenging to run an FPTAS on an onboard unit in admissible time.

This suggests further research into two directions. On the one hand, one may work
on alternative approximation algorithms, e.g., based on routing algorithms in a condensed
resource-expanded network (cf. [8]). On the other hand, the cycle constraints are crucial.
Are there other ways to control regenerating cycles? Checking consumption and charging
functions for being strictly conservative is difficult and expensive. Is it possible to perform
this check using some kind of cycle basis instead of the whole set of cycles?

One may also extend the problem. For example, one may ask for the shortest path if no
more than (1 + α) of the resources of the most resource efficient path can be spent. Further,
not only the charging functions may depend on the initial value of the battery, but also the
consumption itself may differ for full or nearly empty batteries. If this cannot be handled in
a preprocessing step which parameterizes the battery linearly, this will lead to some kind of
dynamic shortest path problem with recharging.

Another open question is the existence of an FPTAS for maximum flows with charging.
Such an FPTAS can make use of the FPTAS for s-t-walks with charging. For example, one
may try an approach like the algorithm of Garg and Könemann [11] with the extension of
Fleischer [9] to approximative shortest paths. However, one will need consistent dual cost
functions for the recharge capacities of the charging nodes. Thinking of fleets of vehicles, one
may also extend the problem to include a time component. That is, charging stations only
provide a limited number of slots for charging vehicles simultaneously. Therefore, recharging
also requires scheduling.

References
1 Georg Baier. Flows with Path Restrictions. PhD thesis, TU Berlin, 2003.
2 Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Köhler, Heiko Schilling, and

Martin Skutella. Length-bounded cuts and flows. In Automata, Languages and Program-
ming, LNCS 4051, pages 679–690. Springer Berlin Heidelberg, 2006.

3 Moritz Baum, Julian Dibbelt, Lorenz Hübschle-Schneider, Thomas Pajor, and Dorothea
Wagner. Speed-consumption tradeoff for electric vehicle route planning. In Proceedings of
the 14th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS’14), OpenAccess Series in Informatics (OASIcs), pages 138–151,
2014.

4 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-optimal routes
for electric vehicles. In Proceedings of the 21st ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pages 54–63. ACM Press, 2013.

5 John E. Beasley and Nicos Christofides. An algorithm for the resource constrained shortest
path problem. Networks, 19(4):379–394, 1989.

S. Merting, C. Schwan, and M. Strehler 41

6 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
route planning. In P. M. Pardalos and S. Rebennack, editors, Proceedings of the 10th
International Symposium on Experimental Algorithms (SEA’11), LNCS 6630, pages 376–
387. Springer, 2011.

7 Geoffrey Exoo. On line disjoint paths of bounded length. Discrete Mathematics, 44(3):317–
318, 1983.

8 Lisa Fleischer and Martin Skutella. Quickest flows over time. SIAM Journal on Computing,
36(6):1600–1630, 2007.

9 Lisa K. Fleischer. Approximating fractional multicommodity flow independent of the num-
ber of commodities. SIAM Journal on Discrete Mathematics, 13(4):505–520, 2000.

10 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

11 Naveen Garg and Jochen Könemann. Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. SIAM Journal on Computing, 37(2):630–652,
2007.

12 Gabriel Handler and Israel Zang. A dual algorithm for the constrained shortest path
problem. Networks, 10(4):293–309, 1980.

13 Refael Hassin. Approximation schemes for the restricted shortest path problem. Math.
Oper. Res., 17(1):36–42, February 1992.

14 László Lovász, Víctor Neumann-Lara, and Michael Plummer. Mengerian theorems for paths
of bounded length. Periodica Mathematica Hungarica, 9(4):269–276, 1978.

15 Kurt Mehlhorn and Mark Ziegelmann. Resource constrained shortest paths. In Mike S.
Paterson, editor, Algorithms – ESA 2000, LNCS 1879, pages 326–337. Springer Berlin
Heidelberg, 2000.

16 Katta G. Murty and Santosh N. Kabadi. Some NP-complete problems in quadratic and
nonlinear programming. Mathematical Programming, 39(2):117–129, 1987.

17 Ludovít Niepel and Daniela Šafaříková. On a generalization of Menger’s theorem. Acta
Mathematica Universitatis Comenianae, 42:275–284, 1983.

18 Cynthia A. Phillips. The network inhibition problem. In Proceedings of the Twenty-fifth
Annual ACM Symposium on Theory of Computing, STOC’93, pages 776–785, New York,
NY, USA, 1993. ACM.

19 Martin Sachenbacher, Martin Leucker, Andreas Artmeier, and Julian Haselmayr. Efficient
energy-optimal routing for electric vehicles. In Conference on Artificial Intelligence, Special
Track on Computational Sustainability. AAAI, 2011.

20 Sabine Storandt. Quick and energy-efficient routes: computing constrained shortest paths
for electric vehicles. In Proceedings of the 5th ACM SIGSPATIAL International Workshop
on Computational Transportation Science, pages 20–25. ACM, 2012.

21 Sabine Storandt and Stefan Funke. Enabling e-mobility: Facility location for battery load-
ing stations. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelli-
gence. AAAI Press, 2013.

22 Arthur Warburton. Approximation of pareto optima in multiple-objective, shortest-path
problems. Operations Research, 35(1):70, 1987.

23 Mark Ziegelmann. Constrained shortest paths and related problems. Phd thesis, Universität
des Saarlandes, Saarbrücken, 2001.

ATMOS’15

Heuristic Approaches to Minimize Tour Duration
for the TSP with Multiple Time Windows
Niklas Paulsen1,2, Florian Diedrich2, and Klaus Jansen1

1 Institut für Informatik, Christian-Albrechts Universität zu Kiel,
Christian-Albrechts-Platz 4, 24118 Kiel, Germany
{npau,kj}@informatik.uni-kiel.de

2 FLS GmbH, Schlosskoppelweg 8, 24226 Heikendorf, Germany

Abstract
We present heuristics to handle practical travelling salesman problems with multiple time win-
dows per node, where the optimization goal is minimal tour duration, which is the time spent
outside the depot node. We propose a dynamic programming approach which combines state
labels by encoding intervals to handle the larger state space needed for this objective function.
Our implementation is able to solve many practical instances in real-time and is used for heur-
istic search of near-optimal solutions for hard instances. In addition, we outline a hybrid genetic
algorithm we implemented to cope with hard or unknown instances. Experimental evaluation
proves the efficiency and suitability for practical use of our algorithms and even leads to improved
upper bounds for yet unsolved instances from the literature.

1998 ACM Subject Classification I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases TSPTW, minimum tour duration, dynamic programming, heuristics

Digital Object Identifier 10.4230/OASIcs.ATMOS.2015.42

1 Introduction

The Travelling Salesman Problem with Time Windows (TSPTW) is the problem of find-
ing a cost-minimal Hamiltonian cycle through a complete digraph on N nodes, which respects
time windows given for each node. The nodes are represented by the set V = {0, . . . , N − 1},
where 0 is called the depot, and we define V ′ := V \ {0} to be the other nodes. Each node
v ∈ V ′ has a given time window [av, bv] in which it has to be visited. To calculate times,
c : V × V → N assigns a travel time to each edge. Arriving at a node v before av will lead
to waiting there until the time window opens. Node dependent visit times can be encoded
in the travel times; distinct start and return nodes can be combined into the node 0 by
adjusting travel times from and to node 0; missing arcs can be encoded by high travel times.
The time windows constrain the set of feasible solutions; in general the presence of time
windows makes it NP-hard to even find a feasible tour [12]. A possible generalization from
TSP to TSPTW minimizes the same objective function, namely the sum of weights of the
chosen edges [4, 10]. Since we have edge weights as travel times, this objective corresponds
to minimization of the total travel time. However, in workforce planning, loans make a
major contribution to the planned costs and thus also waiting times are expected to have
an impact on the objective function. An important choice is whether a delayed start of
a given tour is counted as working time or not. If not, any tour can be started at some
earliest possible time. Then, minimizing the total travel time plus any waiting time along
the way corresponds to finding the tour which has the earliest return to the depot node.
We call this problem Minimum Completion Time Problem (MCTP). In this work, however,

© Niklas Paulsen, Florian Diedrich, and Klaus Jansen;
licensed under Creative Commons License CC-BY

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 42–55

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.42
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

N. Paulsen, F. Diedrich, and K. Jansen 43

we allow the start to be delayed without cost, searching a tour that can be traversed with
minimal tour duration from depot departure to return. We call the according problem
Minimum Tour Duration Problem (MTDP). This objective function is a generalization of
the completion time minimization, since the latter can be expressed by fixing the starting
time at the depot [3]. While for mathematical formulations, the difference between MCTP and
MTDP is just a slight change in the objective function, common heuristic approaches as well
as Dynamic Programming (DP) become more complicated for the latter. Modifying a given
tour with known optimal departure time, a new optimal departure time needs to be searched,
as Savelsbergh [13] pointed out. Despite its relevance for workforce planning, the MTDP has
been given only little attention until recently. Tilk et al. [15] treated the MTDP, using a new
Dynamic Programming (DP) based approach to solve many available instances to optimality
or provide bounds. Although they are more focused on optimal solution rather than real-time
processing in a practical use case, their solutions can serve as a good reference. We handle
an even further generalized version of the problem, allowing an arbitrary number of time
windows per node, as it occurs in practice for example at machine-related maintenance tasks
or simply due to opening hours with lunch breaks. This complicates the search of an optimal
departure time for a given tour [1].

Our focus is the development of fast algorithms for a practical workforce planning context.
Our two methods are a DP based heuristic and a strongly randomized genetic algorithm. In
practical workforce planning, we see multiple applications of fast heuristics for the MTDP:

When planning only a single worker,
as a frequently called local search in advance planning of big Vehicle Routing Problems
(VRPs),
real-time post-optimization of planned tours after changes in online VRPs, and
to obtain upper bounds that can be used by exact methods for small instances or for
evaluation purposes.

In Section 2 we discuss the state-space inflation for DP inherent with allowing multiple
time windows per node and propose an approach to encode multiple states into intervals. In
Section 3 we outline our Genetic Algorithm, GA, which allows solving diverse instances like
ones with very wide time windows. We report results on instance sets from the literature
and on new real-world instances in Section 4 and give a final conclusion in Section 5.

1.1 Formal Definitions
We want to formalize the timings for given tours. Be Kv > 0 the number of time windows for
v ∈ V ′, av,k and bv,k be the opening and closing time, respectively, for the k-th time window
of node v ∈ V ′, 0 ≤ k < Kv. The time windows of every node are presumed to be sorted,
non-overlapping, and of non-negative length (av,0 ≤ bv,0 < av,1 ≤ · · · < av,Kv−1 ≤ bv,Kv−1
for v ∈ V ′). Define Π to be the set of TSP-tours, represented by permutations of V , starting
in the depot (π(0) = 0 for π ∈ Π). For an arrival time t ∈ N at a node v ∈ V ′, the next
feasible schedule time at that node is given by:

T→(v, t) := min{x | x ≥ t ∧ ∃k < Kv : x ∈ [av,k, bv,k]}

For t > bv,Kv a minimum over ∅ leads to T→(v, t) =∞. For a TSP-tour π ∈ Π and departure
time t0 ∈ N the scheduled departure times tπt0 : V → N can be calculated as follows: For
the depot 0 it is tπt0(0) = t0 and for v ∈ V ′ it is, depending on the last node visited,
v− := π(π−1(v)− 1):

tπt0(v) := T→(v, tπt0(v−) + c(v−, v))

ATMOS’15

44 Minimizing Tour Duration for the TSP with Multiple Time Windows

Define tπt0(N) := tπt0(π(N − 1)) + c(π(N − 1), 0) to be the returning time at the depot.
Furthermore we define W→(v, t) := T→(v, t)− t for the waiting time at node v ∈ V ′, when
reached at time t. The optimization goal is then to find π ∈ Π and t0 ∈ N minimizing
tπt0(N)− t0.

I Lemma 1. For π ∈ Π, i < N, τ, δ ∈ N we have tπτ+δ(π(i)) ≥ tπτ (π(i)). (Proof in Appendix)

2 Adaption of Dynamic Programming for Tour Duration
Minimization

A common way to solve various variants of TSPs is via dynamic programming (DP), based
on the formulation for the classic TSP proposed decades ago by Bellman et al. [2]. Bellman’s
Principle states, generically speaking, that optimal solutions of a problem (instance) are
consisting of optimal solutions to smaller sub-problems. We call sub-problems states and
their solution a label of the state. The proceeding of forward-labelling is to label some initial
states and use recurrence relations to propagate given labels to labels for other states.

In case of the TSP, sub-problems are finding a minimum cost path originating in 0, going
through a given subset of nodes, S ⊂ V ′, and ending in a given node, ` ∈ V ′ \ S. We
call these paths S, `-paths. The calculation can be tackled in n stages, for increasing |S|
according to longer paths. A minimum path through a given S 6= ∅ can only be arising from
an optimal path through S \ {x} to x ∈ S, but with the presence of time windows, this
only holds for minimizing tour completion time (MCTP). To solve TSPTW regarding minimum
travel time, a two-dimensional labelling for (S, `)-states is necessary, as used by Dumas et
al. [4]. This is because all S, `-paths are relevant that are Pareto optimal concerning cost
and completion time, since during calculation it is not known which time at ` can lead to a
feasible completion of the tour through V ′ \ (S ∪ {`}). Recently, DP was adapted for the
MTDP (with single time windows per node) by Tilk et al. [15]. They use labels containing
3 resources for the earliest possible time to complete an S, `-path, the tour duration so far,
and a time slack. Labelling all (non-dominated) S, `-paths, Bellman’s Principle holds. In
the generalized case of an arbitrary number of time windows for each node, every S, `-path
extended to an S ∪{`}, `′-path must distinguish the times at which it is travelled: Compared
to the time leading to a minimal duration of the S, `-path, an earlier or later traversal with a
longer duration may bring along a smaller waiting time at node `′, if a different time window
of `′ can be taken possibly leading to a smaller tour duration. As a consequence, more labels
can arise for every S, `-path, corresponding to different choices of time windows for visited
nodes. We show that the number of labels for each tour is growing at most linearly with the
overall number of time windows. For a fixed tour π ∈ Π, the following definition is used to
model a specific choice of time windows for a prefix of π.

Define a time window path of length k ≤ |V ′| = N − 1 to be a tuple (s1, . . . , sk) with
si < Kπ(i) for 0 < i ≤ k choosing time window indices for the first k nodes visited by π after
the depot; we call it schedule, iff k = |V ′| and we call it reachable, iff a start time τ exists
such that all nodes are visited within their chosen time window:

tπτ (π(i)) ∈ [aπ(i),si , bπ(i),si] for 0 < i ≤ k. (1)

Note that reachable time window paths are only met by delaying the departure at the depot
while every other node is visited as early as possible by definition of tπτ .

I Theorem 2. With a given TSP-Tour π ∈ Π there are at most 1 +
∑
v∈V ′(Kv − 1) reachable

schedules.

N. Paulsen, F. Diedrich, and K. Jansen 45

A B

(0, 0, 0)

(0, 0, 1)

(0, 1, 1)

(1, 2, 2)

0

1

2

(0, 0, 0, 0)

(0, 0, 1, 0)

(0, 0, 1, 1)
(0, 0, 1, 2)

(0, 1, 1, 2)

(1, 2, 2, 2)

Figure 1 Illustration of an example bipartite graph H for i = 3.

Proof. We show via induction over 0 < i ≤ |V ′| that there are at most

1 +
i∑

j=1
(Kπ(j) − 1) (I)

reachable time window paths of length i. The induction base is i = 1, with the visit of node
π(1) in one of its Kπ(1) time windows.
Now assume (I) holds for an 0 < i < |V ′|. To prove that (I) also holds for i+ 1 we need to
show that only up to Kπ(i+1) − 1 more time window paths of length i+ 1 arise than for i.
Define a bipartite graph H = (A,B, F ⊂ A×B) with A ⊆ N<Kπ(1) × · · ·×N<Kπ(i) being the
reachable time window paths of length i and B = N<Kπ(i+1) being the time window indices
of the next node, π(i+ 1). An edge f = ((c1, . . . , ci), k) ∈ F shall exist, if and only if the
time window path c′ := (c1, . . . , ci, k) is reachable. Since every reachable time window path
of length i+ 1 contains a reachable time window path of length i, the edges correspond to
the reachable time window paths of length i+ 1. An example for H is shown in Figure 1.

We show that H can be drawn without crossings in the sense of Eades et al. [5]. We use
the lexicographic order as ≺A on A, and the order ≺B on B which is given for the time
windows by their definition. Suppose an edge (a,w) exists. Then, an edge (a′, w′) with a ≺ a′
but w′ ≺ w cannot exist, since this would mean that starting later1 leads to reaching an
earlier time window at waypoint i+ 1, contradicting Lemma 1. This implies a crossing-free
drawing of H, and thereby absence of cycles in H [5]. Being cycle-free, H is a forest and has
at most |A|+ |B| − 1 edges. With the induction hypothesis, |A| ≤ 1 +

∑i
j=1(Kπ(j) − 1), and

with |B| = Kπ(i+1), (I) also holds for i+ 1. J

Consider the state space 2V ′ × V ′ × T with T ⊂ N, where each state (S, `, t) gets a scalar
label expressing the minimum S, `-path duration when ` is visited at time t. Even with a
bounding of T to actually relevant times, the size of this state-space is wasteful, especially
with the inherent growth with increasing temporal resolution of time encoding. Our approach
is to encode for each S and ` the function assigning the minimal S, `-path duration to each
departure time t. An example of this function is shown in Figure 2 in the lower left. The

1 With a ≺ a′, at some point a later time window (bigger index) is taken with a′, therefore starting times
leading to reaching a′ cannot be smaller than any starting time leading to reaching a (contraposition of
Lemma 1).

ATMOS’15

46 Minimizing Tour Duration for the TSP with Multiple Time Windows

1 5 time

D

a

b

`

time windows and path (a, b, `)

1 5 time

D

b

a

`

time windows and path (b, a, `)

1 5 10 time at `

minimum duration
up to ` after {a, b}

3

4

labeled intervals for ({a, b}, `):
([4, 5), 4)
([5, 6], 3)
([9, 9], 3)

Figure 2 Example for labelled intervals, for State (S = {a, b}, `). D is the depot, travelling time
between the depot and b is two hours, all others one hour.

notion is a shift of the T factor from the state space into the labels of the (S, `)-states. If an
S, `-path P can lead to a visit of ` at time t with (minimal) duration T , only the following
cases apply for the minimal duration T ′ for the “next” time t+ 1:
(C1) P can be traversed later without waiting times, leading to T ′ = T , (C2a) another path
leads to minimal duration when visiting ` at t + 1, (C2b) P with another time window
combination leads to minimal duration when visiting ` at t+ 1, or (C3) P traversed later is
optimal for t+ 1 but leads to increased waiting times along the path, with T ′ = T + 1.

Therefore the function consists (except for undefined values of t, before the arrival of the
first S, `-path) only of piecewise constant parts (starting with cases C2a or C2b, continued
with case C1) and piecewise linear parts with a slope of 1 (case C3). Our idea is to store only
the interval and assigned tour duration of constant parts to implicitly encode the function.
We can then handle multiple (S, `, t)-states by working with the encoded intervals.

A labelled interval I = ([ts, te], T) is a non-empty interval [ts, te] (te ≥ ts) of N and an
assigned tour duration. For a given (S, `)-state we use

Ints : S, ` 7−→ set of labelled intervals encoding labels of (S, `, ·)

to label (S, `)-states. An interval corresponds to a constant part of the function of minimal
S, `-path duration at different times. With Bellman’s Principle we can demand for S (
V ′, ` ∈ V ′ \ S:

[ts, te] ∩ [t′s, t′e] = ∅ f.a. ([ts, te], T) 6= ([t′s, t′e], T ′) ∈ Ints(S, `) (2)
t′s > te ⇒ t′s > te + (T ′ − T) f.a. ([ts, te], T), ([t′s, t′e], T ′) ∈ Ints(S, `). (3)

Clearly, disjoint intervals suffice: For state (S, `) only the minimum tour duration to reach `
at a time t after having visited the nodes in S is needed. To evince (3) we show:

I Lemma 3. Suppose ` ∈ V ′ can be visited at time t after all nodes in S ⊂ V ′ with a tour
duration of T1, but also such that it is left until t+ δ with tour duration T2 ≥ T1 + δ, for a
δ > 0. Then the latter is dominated by the former (it cannot lead to a tour with a smaller
duration).

N. Paulsen, F. Diedrich, and K. Jansen 47

No matter how the rest of the tour is constructed through V ′ \ (S ∪ {`}), the forward
propagation of the first state is able to reach the same time windows as the forward
propagation of the second. Since the waiting times can only be larger by the lead δ, this will
conduct at most the same tour duration (formal proof in Appendix).

To read out the label, i.e. the minimal tour duration, for a state (S, `, t), we use a function
Cost to interpret the set of labelled intervals I = Ints(S, `) at the time t:

Cost(I, t) := min
([ts,te],T)∈I

ts≤t

T + max{0, t− te} (4)

With I satisfying Equations (2) and (3) we can write (proof in Appendix):

Cost(I, t) = T + max{0, t− te} for ([ts, te], T) = arg max
([ts,te],T)∈I

ts≤t

te (5)

This means, to evaluate the minimum tour duration at time t, only the last labelled interval
starting before t needs to be considered, which can be retrieved efficiently when the labelled
intervals are stored in suitable data structures.

The labelled intervals can be initialized by

Ints(∅, `) = {([a`,k, b`,k], c(0, `)) : k < K`} (6)

Forward propagation can be done for aggregated times in intervals and time windows (a
pseudocode can be seen in the Appendix). When multiple labels (as labelled intervals) occur
for a state (S, `), the intervals can be merged, choosing for each time t the interval with the
best label and respecting Equation (3), as can be seen in Figure 2.

Heuristic Adaption. To heuristically reduce the search space for larger instances, Malandraki
et al. [9] used a cutoff on the number of states to keep track of after each stage in their DP
heuristic for the time dependent TSP. By retaining only the most promising H labels after
each step, the run time can be minimized drastically. For H = 1 it resembles a Nearest
Neighbour Heuristic, for H =∞ the Dynamic Programming for an optimal solution is not
affected. We call this approach DPH in the following. Note that we retain H labels, containing
generally more than H intervals. In our implementation the labels are simply ranked by the
minimal possible duration for each (S, `)-State: mint Cost(Ints(S, `), t).

Adapted Cost Function. It is an easy step to generalize the DPH to minimize a more generic
objective function, being a weighted sum of working time and travelled distance.

Preprocessing and Trimming the Search Space. The search space can be trimmed by
preprocessing the instance, see [3]. Also, when calculating the labelled intervals for a
state (S, `), only times need to be considered, which allow to reach all unvisited nodes
v ∈ V ′ \ (S ∪ {`}) before the end of their last time windows, bv,Kv−1. Assuming the triangle-
inequality (which holds often, especially with visit times present), an easy bound for relevant
departure times at ` is:

BS,` := min{bv,Kv−1 − c(`, v) : v ∈ V ′ \ (S ∪ {`})}. (7)

ATMOS’15

48 Minimizing Tour Duration for the TSP with Multiple Time Windows

Algorithm 1: Dynamic Programming for tour duration minimization.
1 H ← empty hashtable for labels assigned to S, `-states;
2 label (∅, `) with {([a`,k, b`,k], c(0, `)) : k < K`} for ` ∈ V ′;
3 for stage from 1 to N − 2 do
4 for state (S, `) with label I and |S| = stage− 1 do
5 for `′ ∈ V ′ \ (S ∪ {`}) do
6 calculate new interval set I ′ by propagating I towards `′;
7 Trim interval ranges to be ≤ BS∪{`},`′ ;
8 if H contains label I ′′ for (S ∪ {`}, `′) then
9 H(S ∪ {`}, `′)← Merged intervals of I ′ and I ′′;

10 else
11 H(S ∪ {`}, `′)← I ′;

12 retain only best H labels with |S| = stage in H;
13 return min`∈V ′ min([ts,te],T)∈H(V ′\{`},`) T + c(`, 0);

2.1 Pseudocode

Algorithm 1 illustrates the principal DPH flow. States are expressed by a combined binary
representation of S and `. Order constraints between nodes are also saved in a binarily
represented set of nodes that have to be visited before a given node. It can be checked with
little computation whether all required nodes have been visited when extending toward a
node `′ (not shown, line 5). The hashtable lookup in line 8 can be done very efficiently. The
merge step in line 9 only takes time linear in the number of intervals to be merged. By
iterating all times ts, te for ([ts, te], ·) ∈ I ∪ I ′ in ascending order, one simply has to chose
the minimal intervals between the times and trim them to fit Equation (3). Note that with
merging labels each state gets at most one label. Backtracking information is included for
every labelled interval.

3 A Genetic Algorithm

To find high-quality solutions for instances with arbitrary or unknown properties in real-
time, we developed a genetic algorithm that builds and refines a set of solutions, called the
population. It builds on the general concepts of genetic algorithms, like the one of Sengoku
et al. [14]. In iterations called generations, mutation is trying to bring some randomly chosen
solutions to near local optima, selection focuses the search by removing the least promising
solutions from the population, and multiplication makes up for deletions by combining
existing solutions into crossovers, in hope of finding new local optima. An initial population
is generated with randomized Insertion heuristics inserting nodes iteratively at a position
which is chosen with higher probabilities towards positions that lead to lower overall cost.
For an additional start solution, the DPH is run with H = 200. Mutation of the population
makes use of local search strategies on one third of the solutions picked randomly. The
main local search is a repeated search in randomly chosen fixed-size subsets of 3-Opt [8]
neighbourhoods. We experienced a randomized 3-Opt to be more effective than searching
in the full neighbourhood of weaker local searches like 2-Opt. The fixed number of checked
neighbours leads to execution times growing only about linearly in the number of nodes,
for relevant instance sizes. The basic crossover operation is CommonEdgesCrossover, which

N. Paulsen, F. Diedrich, and K. Jansen 49

chooses randomly three parent solutions from the population and constructs a new tour
by choosing randomly the edges to traverse. Edges occurring in more parent solutions are
chosen with a higher probability and infeasible tours are prohibited if possible. Selection
removes the worst fifth of the population, but is also allowed to eliminate solutions based on
their affinity to the other solutions in the population to encourage diversity. The said affinity
is valued by computing the longest common subsequence shared with some randomly picked
solutions from the rest of the population. The population size and the number of generations
can be set with a single aggregated parameter, γ, which controls the overall number of
performed mutations, with γ = 0 leading to 750 mutations. For instances with more nodes,
those mutations are deployed over more generations but with a smaller population, which
we found to be more efficient. We suppose that this is due to bigger neighbourhoods with
possibly more potential for bigger instances. The execution of the genetic algorithm can
generally be stopped any time leading to the return of the best solution so far, which allows
for interruption by users or timing. Infeasible solutions are tolerated but highly penalized: If
for a tour π ∈ Π and start time τ , a node v ∈ V ′ is reached after its last time window, we
correct adjust the timing to be (v− := π(π−1(v)− 1)):

tπτ (v) = tπτ (v−) + c(v−, v) + P∞,

where P∞ is a soft infinity penalty, higher than any feasible tour duration. As a consequence,
the tour duration increases by the number of nodes not yet visited (N − π−1(v)) times P∞.
This allows to improve infeasible tours while always favouring tours that (feasibly) visit more
nodes.

4 Experimental Results

The following experimental analysis was conducted based on the rationale of [7]. The test
system is a Dell OptiPlex 980 equipped with 16 GB RAM and an Intel Core i7-880 CPU
(8MB Cache, 3.06 GHz clock rate) running Windows 7. The algorithms were implemented
in Microsoft C# 4.0 and compiled with Microsoft Visual Studio 2010. To evaluate the
computation times and solution quality and provide comparable results, we use available
instances from the literature and additional real-world instances to rate suitability for use.

We use the instances from Gendreau [6] and Potvin+Bengio [11]2 and processed them
according to Tilk et al. [15]. The former are 120 instances with different parameters for
node count (21–101) and width of time windows; the latter are 30 instances with 4 to 46
nodes. All instances have only single time windows per node. The other instances treated by
Tilk et al. [15] were omitted since one set originates from a stacker crane context and the
other one has instances with more than 126 nodes, for which the current DPH implementation
is not capable (and which may arise for mobile workforce day trips only in very special
circumstances).

Being interested in practicability of the algorithms for real-world scenarios, we adduce
another test set consisting of 332 stops assigned to 17 tours with 16 to 24 nodes. The data
originates from a logistics company bringing goods from and to collecting points within an
urban area. Time windows in most cases resemble a full workday, a half workday, or a full
one with a midday closure, with varying times. Around 30% of the nodes have a midday
closure leading to two time windows. A fixed-time lunch break for the drivers has already

2 Both sets downloaded from http://iridia.ulb.ac.be/~manuel/tsptw-instances.

ATMOS’15

50 Minimizing Tour Duration for the TSP with Multiple Time Windows

Table 1 Aggregated results for different instance groups. (∗)-marked averages are only taken
over the found solutions. Stats for GA are reported as averages of 5 runs.

Instances UBGAP [%] Time [s]
Program #Feas. #UB #Imp ∅ max ∅ max

Gendreau small DPH H=1500 75 52 2 1.1 16.0 0.4 1.4
(75 instances) DPH H=5k 75 62 3 0.5 8.3 1.6 5.3

DPH H=15k 75 64 3 0.2 6.4 4.7 17.2
GA γ= -10 75 44 3 0.2 2.7 0.6 1.0
GA γ = 0 75 53 3 0.0 1.1 2.1 3.4

Gendreau big DPH H=1500 45 19 1 2.6 10.8 1.9 3.5
(45 instances) DPH H=5k 45 28 2 1.7 10.6 7.5 13.3

DPH H=15k 45 29 3 1.2 7.7 23.5 40.0
GA γ = -10 45 17 1 0.8 5.8 1.9 2.8
GA γ = 0 45 25 1 0.2 3.0 6.5 9.4

Potvin+Bengio DPH H=1500 29 19 1.6∗ 15.5 0.2 1.3
(30 instances) DPH H=5k 29 21 1.3∗ 13.7 0.8 5.3

DPH H=15k 28 21 1 0.8∗ 13.4 2.5 13.9
GA γ = -10 30 15 1 0.2 2.3 0.3 0.6
GA γ = 0 30 18 2 0.0 1.0 1.3 1.8

Real data DPH H=1500 17 5 3.4 11.2 0.2 0.3
(17 instances) DPH H=5k 17 9 1.6 10.9 0.7 1.5

DPH H=15k 17 10 1.0 9.6 2.6 5.5
GA γ = -10 17 15 0.1 0.8 0.6 1.1
GA γ = 0 17 17 0.0 0.0 2.6 4.5

been incorporated into the time windows. Compared to the other instances, time windows
are rather broad (7:53 hours open spread over the day on average). Other properties differ
from the simulated instances, like that 200 of 332 nodes have their first time window starting
exactly at 8 o’clock, instead of time windows more randomly scattered around the day or
simulated around a reference tour. The sum of travel costs assigned to edges and working
time loans plus overtime fees are to be minimized.

Table 1 shows results for the Genetic Algorithm and the DPH, with different parameters
H aggregating the instances according to Tilk et al. [15] #Feas. is the number of instances,
for which a solution was found; #UB and #Imp the count of upper bounds (including optima)
reported by Tilk et al. [15] which were hit exactly or improved, respectively. For the new
instance set, optima were instead previously calculated using the DPH with H =∞. Since, for
real-time post-processing of tours, we are interested in good solutions rather than guaranteed
optimality, the solution qualities for yet unsolved instances are reported in relation to the
upper bounds from Tilk et al. [15], which we consider a good reference due to the overall
quality of their algorithm (and effort expended for calculation). UBGAP for a given upper
bound u and a solution value v is defined as v−u

u . Averages of UBGAP are over all respective
instances, including those, where the upper bound was hit (zero gap) or improved (negative
gap). Although the DPH leads to satisfying solution quality, it is outperformed by the GA on
these instance sets, especially the real-world one with very wide time windows. However,
this also depends on the composition of the test sets: Table 2 shows results on the Gendreau

N. Paulsen, F. Diedrich, and K. Jansen 51

Table 2 Aggregated results for Gendreau instances with narrow time windows. GA* is GA without
the DPH start solution. Stats for GA(*) are reported as averages of 5 runs.

Instances UBGAP [%] Time [s]
Program #UB #Imp ∅ max ∅ max

Gendreau DPH H=1500 38 1 0.40 5.71 0.9 2.5
w120 + w140 DPH H=5000 46 2 0.01 0.77 3.3 9.4
(50 instances) GA γ= -10 28 0.36 2.85 1.2 2.9

GA γ = 0 34 2 0.13 1.73 4.3 10.0
GA* γ = -10 22 0.54 2.94 1.0 2.7
GA* γ = 0 31 1 0.16 1.69 4.2 9.8

instances with rather tight time windows, for which the DPH solves the instances very close to
optimality within seconds. The GA is noticeably weaker, and when ran without its additional
start solution from DPH (marked with *), even more.
Regarding execution times, not only for instances presented here, we found that the GA has a
running time roughly linear in the number of nodes (tested up to 200) that grows by about
15% when incrementing the parameter γ by one. The running times of DPH are varying
stronger and also expectedly depend on the time window width.
We conclude that a combination of both algorithms is promising, for example by running
DPH on visibly easier (few nodes and/or tight time windows) instances.

Improving Upper Bounds of Unsolved Instances

We ran the DPH on the instances with no more than 101 nodes that have not been solved
to optimality yet. These are 17 instances with 36 to 101 nodes from the Gendreau and
Potvin+Bengio instance sets. Running the DPH with increasing parameterH ∈ {103, 105, 106}
(stopping, if the lower bound was reached) we tried to improve the upper bounds reported by
Tilk et al. [15]. Detailed results are shown in Table 3. LB and UB are the bounds previously
reported. Time is the sum of the execution times in case multiple parameters were run. For
the two Potvin+Bengio instances we also ran the GA, since the DPH seemed less effective.
For five instances, the upper bound was met exactly and for ten it was improved (values
underlined in Table 3), with an average improvement of 2.44%. In five cases our upper bound
equals the known lower bound, so that those instances are now solved to optimality. The
other five reduced the gap of the best upper bound to the best lower bound by more than
half, on average.

5 Conclusion

We presented two algorithmic concepts to treat TSPs with (multiple) time windows for which
the tour duration is to be minimized, like it is common in many areas of mobile workforce
planning. The DP approach is based on aggregating state labels into efficient data structures
by encoding intervals of times. It can be used to seek (and prove) optimal solutions, but
also as a heuristic for harder instances. Our genetic algorithm applies local searches in a
strongly randomized manner leading to good solution qualities, even with very broad time
windows. It has a simple parameter to balance running time and (expected) solution quality
and can be interrupted, e.g. for online problems, if the input needs to be modified. Both

ATMOS’15

52 Minimizing Tour Duration for the TSP with Multiple Time Windows

Table 3 Results on open instances with up to 101 nodes, all times in seconds.

Result for H = for Time Improved
Instance n [LB,UB] 1K 100K 1M GA [s] UB [%]

n40w200.5 41 [347,350] 347 1 0.9
n60w180.5 61 [466,486] 501 466 150 4.1
n60w200.3 61 [497,525] 497 1 5.3
n80w140.2 81 [588,591] 592 589 589 765 0.3
n80w140.3 81 [615,617] 632 617 617 912
n80w140.4 81 [549,561] 583 550 550 962 2.0
n80w160.2 81 [603,609] 637 629 629 1659
n80w160.3 81 [633,638] 676 651 633 2061 0.8
n80w160.5 81 [583,584] 627 584 584 1771
n80w180.2 81 [564,570] 615 591 570 2059
n80w180.5 81 [570,571] 573 571 571 2210
n80w200.1 81 [559,584] 620 566 564 2809 3.4
n80w200.2 81 [549,550] 603 582 560 2901
n100w120.2 101 [843,846] 843 2 0.4
n100w140.2 101 [948,949] 954 949 949 1722
rc_208.1 38 [73432,79904] - - 83683 79348 524 0.7
rc_208.3 36 [61302,67902] 84723 64499 64123 63436 1604 6.6

implementations are applicable for practical real-time optimization and post-processing.
Computational results showed that very satisfying solutions can be found with minimal
computing times. We even improved the best solution reported so far for 10 out of the 17
unsolved instances from the Gendreau and Potvin+Bengio benchmarks.

Acknowledgements. The authors would like to thank Thomas Brechtel for many fruitful
discussions. Furthermore, the authors would like to thank the anonymous referees for many
helpful suggestions which led to the improvement of the presentation.

References

1 Slim Belhaiza, Pierre Hansen, and Gilbert Laporte. A hybrid variable neighborhood tabu
search heuristic for the vehicle routing problem with multiple time windows. Computers &
Operations Research, 52:269–281, 2014.

2 Richard Bellman. Dynamic programming treatment of the travelling salesman problem.
Journal of the ACM (JACM), 9(1):61–63, 1962.

3 Jacques Desrosiers, Yvan Dumas, Marius M Solomon, and François Soumis. Time con-
strained routing and scheduling. Handbooks in operations research and management science,
8:35–139, 1995.

4 Yvan Dumas, Jacques Desrosiers, Eric Gelinas, and Marius M Solomon. An optimal
algorithm for the traveling salesman problem with time windows. Operations research,
43(2):367–371, 1995.

5 Peter Eades, Brendan D McKay, and Nicholas C Wormald. On an edge crossing problem.
In Proc. 9th Australian Computer Science Conference, volume 327, page 334, 1986.

N. Paulsen, F. Diedrich, and K. Jansen 53

6 Michel Gendreau, Alain Hertz, Gilbert Laporte, and Mihnea Stan. A generalized insertion
heuristic for the traveling salesman problem with time windows. Operations Research,
46(3):330–335, 1998.

7 David S Johnson. A theoretician’s guide to the experimental analysis of algorithms. Data
structures, near neighbor searches, and methodology: fifth and sixth DIMACS implementa-
tion challenges, 59:215–250, 2002.

8 Shen Lin. Computer solutions of the traveling salesman problem. Bell System Technical
Journal, The, 44(10):2245–2269, 1965.

9 Chryssi Malandraki and Robert B Dial. A restricted dynamic programming heuristic al-
gorithm for the time dependent traveling salesman problem. European Journal of Opera-
tional Research, 90(1):45–55, 1996.

10 Gilles Pesant, Michel Gendreau, Jean-Yves Potvin, and Jean-Marc Rousseau. On the
flexibility of constraint programming models: From single to multiple time windows for the
traveling salesman problem. European Journal of Operational Research, 117(2):253–263,
1999.

11 Jean-Yves Potvin and Samy Bengio. The vehicle routing problem with time windows part
II: genetic search. INFORMS journal on Computing, 8(2):165–172, 1996.

12 Martin WP Savelsbergh. Local search in routing problems with time windows. Annals of
Operations research, 4(1):285–305, 1985.

13 Martin WP Savelsbergh. The vehicle routing problem with time windows: Minimizing
route duration. ORSA journal on computing, 4(2):146–154, 1992.

14 Hiroaki Sengoku and Ikuo Yoshihara. A fast TSP solver using GA on Java. In Third
International Symposium on Artificial Life, and Robotics (AROB III’98), pages 283–288,
1998.

15 Christian Tilk and Stefan Irnich. Dynamic programming for the minimum tour duration
problem. Technical Report LM-2014-04, Chair of Logistics Management, Gutenberg School
of Management and Economics, Johannes Gutenberg University Mainz, Mainz, Germany,
2014.

A Appendix: Proofs

Proof of Lemma 1. We show the claim by induction over i; fix τ, δ ∈ N.
The equality tπτ+δ(π(0)) = τ + δ ≥ τ = tπτ (π(0)) yields the induction base.
For the induction step, let 0 < i < N, v := π(i), v− = π(i− 1) and assume

tπτ+δ(v−) ≥ tπτ (v−). (H)

Then it follows, by definitions of T→ and tπt0 and (H):

tπτ+δ(v) = T→(v, tπτ+δ(v−) + c(v−, v))
= min{x | x ≥ tπτ+δ(v−) + c(v−, v) ∧ ∃k < Kv : x ∈ [av,k, bv,k]} (T→)
≥ min{x | x ≥ tπτ (v−) + c(v−, v) ∧ ∃k < Kv : x ∈ [av,k, bv,k]} (H)
= T→(v, tπτ (v−) + c(v−, v)) (T→)
= tπτ (v) J

Proof of Lemma 3. Construct states s1 := (S, `, t) and s2 := (S, `, t+ δ) according to the
supposition.

Case 1). It is clear that for S ∪ {`} = V ′, state s1 leads, by extension towards the depot,
to a TSP-Tour with tour duration T1 + c(`, 0) which dominates the extension of s2 to the
depot, concluding a TSP-Tour with duration T2 + c(`, 0) ≥ T1 + c(`, 0).

ATMOS’15

54 Minimizing Tour Duration for the TSP with Multiple Time Windows

Case 2). For S ∪ {`} (V ′, fix an arbitrary `′ ∈ V ′ \ (S ∪ {`}) and regard the forward
propagation of s1 and s2 towards `′, leading to labelling of states s1′ and s2′, respectively.
State s1′ = (S ∪ {`}, `′, T→(`′, t + c(`, `′))) is labelled with T ′1 = T1 + c(`, `′) + W→(`′, t +
c(`, `′)).
s2′ = (S ∪ {`}, `′, T→(`′, t+ δ + c(`, `′))) is labelled with T ′2 = T2 + c(`, `′) +W→(`′, t+ δ +
c(`, `′)).
Set δ′ := T→(`′, t+ δ + c(`, `′))− T→(`′, t+ c(`, `′)). Then:

T ′2 − T ′1 = T2 + c(`, `′) +W→(`′, t+ δ + c(`, `′))
− (T1 + c(`, `′) +W→(`′, t+ c(`, `′)))

= T2 − T1 +W→(`′, t+ δ + c(`, `′))−W→(`′, t+ c(`, `′))
≥ δ +W→(`′, t+ δ + c(`, `′))−W→(`′, t+ c(`, `′))
= δ + T→(`′, t+ δ + c(`, `′))− (t+ δ + c(`, `′))
− T→(`′, t+ c(`, `′)) + (t+ c(`, `′))

= T→(`′, t+ δ + c(`, `′))− T→(`′, t+ c(`, `′)) = δ′

The initial situation is reiterated. Since S is of increasing cardinality this iteration converges
to Case 1). J

Proof of Equation 5. We prove that Equation 5 follows from Equation 4, if (2),(3) hold. It
is to be shown that of the labelled intervals from I with ts ≤ t, the one with maximal te
(uniquely defined with (2) holding) also maximizes T + max{0, t− te}. This is clear, if there
is only one labelled interval in I with ts ≤ t. Otherwise, fix two distinct labelled intervals
([ts, te], T), ([t′s, t′e], T ′) ∈ I with ts, t′s ≤ t. With (2), one of them is earlier, say te < t′e and
te < t′s. With (3) we have t′s > te + (T ′ − T). This leads to:

T ′ + max{0, t− t′e} ≤ T ′ + max{0, t− t′s} (t′e ≥ t′s)
= T ′ + t− t′s (t′s ≤ t)
< T + t− te (t′s > te + (T ′ − T))
= T + max{0, t− te} (te < t′s ≤ t)

J

B Appendix: Additional Pseudocode

Propagation of labelled intervals. The forward propagation of labels is shown in Algorithm
2. Adjusting the intervals to conform to Equation 3 is omitted here. We write I[i] for the
i-th labelled interval of a sorted set I of labelled intervals, and write a labelled interval i as
([i.ts, i.te], i.T).

N. Paulsen, F. Diedrich, and K. Jansen 55

Algorithm 2: Propagation of labelled intervals.
Data: Labelled intervals I for (S, `) satisfying equations (2) and (3),
Travel time c = c(`, `′) from node ` to next node `′ ∈ V ′ \ (S ∪ {`}).
Result: I ′: Propagated intervals I towards node `′.

1 i← 0;
2 for k from 0 to K`′ − 1 do
3 while i < |I| − 1 and I[i+ 1].ts + c ≤ a`′,k do
4 i++;
5 if i ≥ |I| then
6 break;
7 if I[i].te + c < a`′,k then
8 Add ([a`′,k, a`′,k], I[i].T + a`′,k − I[i].te) to I ′;
9 i++;

10 while i < |I| and I[i].ts + c ≤ b`′,k do
11 t′s ← max(I[i].ts + c, a`′,k);
12 t′e ← min(I[i].te + c, b`′,k);
13 Add ([t′s, t′e], I[i].T + c) to I ′;
14 i++;

ATMOS’15

Single Source Shortest Paths for All Flows with
Integer Costs∗

Tadao Takaoka

Department of Computer Science, University of Canterbury
Christchurch, New Zealand
tad@cosc.canterbury.ac.nz

Abstract
We consider a shortest path problem for a directed graph with edges labeled with a cost and
a capacity. The problem is to push an unsplittable flow f from a specified source to all other
vertices with the minimum cost for all f values. Let G = (V,E) with |V | = n and |E| = m.
If there are t different capacity values, we can solve the single source shortest path problem t

times for all f in O(tm + tn logn) time, which is O(m2) when t = m. We improve this time to
O(min(t, cn)m+ cn2), which is less than O(cmn) if edge costs are non-negative integers bounded
by c. Our algorithm performs better for denser graphs.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems, G.2.2 Graph Theory

Keywords and phrases information sharing, shortest path problem for all flows, priority queue,
limited edge cost, transportation network

Digital Object Identifier 10.4230/OASIcs.ATMOS.2015.56

1 Introduction

We consider a network optimization problem such that each edge has two quantities associated,
that is, cost and capacity. We want to maximize a flow from a specified source vertex s to
a destination vertex v with minimum cost. Here we have two objectives; flow amount and
path cost. Both cannot be optimized at the same time. Let us call the minimum cost path
the shortest path. We need to compute the shortest path for the given flow value f for all
possible f . An example is the routing problem in a train network. Suppose f passengers
want to travel together in a group from a station specified as the source vertex s to the
destination station expressed by vertex v. On the way they may need to change trains at
several stations. The capacity of an edge corresponds to the remaining number of seats on
the train and the cost corresponds to the fare. Let d be the cost of a path from s to v and f
be the flow (unsplittable) from s to v. The pair (d, f) is called a df -pair.

Another example is a computer network. Here vertices correspond to hub computers and
edges correspond to the links. Capacities are band-widths and flows are packet sizes to be
sent. It is regarded as better if packets are transmitted together to prevent packet loss and
recovery.

If d ≤ d′ and f ≥ f ′, (d, f) is better than or equal to (d′, f ′), the latter being redundant
and represented by the former. Otherwise, excluding the opposite case, they are incomparable.
We only need to compute incomparable df -pairs.

∗ This research was partially supported by Optali : Optimization and its Applications in Learning and
Industry, funded by EU and New Zealand Government.

© Tadao Takaoka;
licensed under Creative Commons License CC-BY

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 56–67

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.56
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

T. Takaoka 57

Similar problems in the literature are the multi (bi)-objective shortest path problem
[11] and the minimum cost flow problem [1]. In the former, the two objectives are similar;
additive costs over paths. In our problem, they are cost and capacity. In the latter, the flow
can be split over several paths to minimize the cost. In our model, a flow cannot be divided.
Unsplittable flow is studied in a few papers such as [3] and [9], in which flow amounts are
considered and costs are not.

The network optimization model in this paper is simple enough to be used by network
practitioners, but to the author’s knowledge there is no algorithmic or theoretical analysis on
this model in the literature apart from the recent [15], [16] and [14]. [15] improves the second
term in the complexity of O(tm+ tn logn), the first remaining O(tm). This paper improves
the first term. [16] and [14] deal with the all pairs shortest path for all flows (APSP-AF)
problem. The complexity in this paper is better in certain combinations of t and c.

The algorithmic technique is viewed as information sharing described in [18], which solves
the all pairs shortest path problem efficiently. More specifically, for a graph with n vertices,
the single source shortest path problem is solved n times by changing the source n times,
where they share common resources obtained in advance as preprocessing or during the
course of computation. In our problem, we solve the single source shortest path problem for
all flow amounts simultaneously utilizing some common data structures.

To prepare for the later development, we describe the single source shortest path problem
for all flows (SSSP-AF) in the following. Let G = (V,E) be a directed graph where
V = {v1, · · · , vn} and E ⊆ V × V . Let |E| = m. The cost and capacity of edge (u, v)
is a non-negative real number denoted by cost(u, v) and a positive real number cap(u, v)
respectively. We specify a vertex, s, as the source. A shortest path from s to vertex v is a
path such that the sum of edge costs of this path is the minimum among all paths from s to
v. The minimum cost is also called the shortest distance. The single source shortest path
problem (SSSP) is to compute shortest paths from s to all other vertices.

The bottleneck (value) of a path is the minimum capacity of all edges on the path. The
bottleneck of the pair of vertices (u, v) is the maximum bottleneck of all paths from u to v.
Such a path is called the bottleneck path from u to v. The single source bottleneck path
(SSBP) problem is to compute the bottleneck paths from s to all vertices v. The bottleneck
from s to v is the maximum flow value of a simple path from s to v. Those two problems
are well studied. For the bottleneck path problem the readers are referred to [13] for single
source and [10] for all pairs.

If we send a smaller unsplittable flow from s to v, there may be a shorter path from s to
v. Thus it makes sense to compute the shortest paths from s to v for all possible flows for
all vertices v, which is called SSSP-AF. We compute a tuple of pairs (d, f), called a df -pair,
for each v where d is the shortest distance of a path that can push f to v.

I Example 1. An example graph with solutions is given in Figure 1 with v1 as the source. A
pair of cost and capacity is attached to each edge. Also df -pairs are attached to each vertex
as worked solutions with d’s and f ’s in increasing order. For example, we have (3, 1)(6, 3)(7,
4) at vertex v4. This means if we want to carry the flow amount of 4, we need to take the
path of (v1, v3, v4) at the cost of 7. If the flow is 3, we have a cheaper path of (v1, v2, v3, v4).
If we push just 1, the path (v1, v2, v4) costs us 3. If we want to push 2, this flow amount
is missing from the df -pairs at v4. The df -pair (6, 3) covers this case, meaning there is no
cheaper route than for flow 3. df -pairs are worked out for other vertices as well. The df -pair
(6, 3) at v4 is obtained from (4, 3) at v3 and the label on edge (v3, v4), which is (2, 5), that
is, 6=4+2 and 3=min{3, 5}.

ATMOS’15

58 Single Source Shortest Paths for All Flows with Integer Costs

v1

v2

v3

v4
�
�
�
���

?

@
@
@
@@R

@
@
@
@@R

�
�
�
���

(0, ∞)

(1, 3)

(4, 3)(5, 4)

(3, 1)(6, 3)(7, 4)

(1, 3)

(5, 4)

(3, 4)

(2, 1)

(2, 5)

Figure 1 An example graph with incomparable df -pairs.

The problem can be solved by removing edges one by one. Suppose there are t different
capacity values cap1, . . . , capt in this order. The simplest algorithm looks like:

for i = 1 to t do begin
Remove edges whose capacity is less than capi

For the flow f such that capi ≤ f < capi+1,
solve the single source shortest path problem for the resulting graph.

end

If we use a Fibonacci heap [12] for Dijkstra’s algorithm [8], the complexity of this algorithm
becomes O(tm+ tn logn), including the time for sorting capacities. This trivial upper bound
is our starting point. The above algorithm works for edge costs of non-negative real numbers.
In this paper, we improve the complexity when edge costs are non-negative integers bounded
by a small positive constant c, achieving O(min{t, cn}m + cn2) ≤ O(cmn). The trivial
complexity above is strongly polynomial, while our complexity is pseudo-polynomial. The
point here is that we have a speed-up when c is small. When t = O(m) and m = O(n2),
the trivial complexity hits O(n4), called quartic, while our complexity O(cn3) can stay
sub-quartic when c = o(n). Similar studies are done on the all pairs shortest path problem
(APSP) with integer edge costs such as [2], [17] and [20], who investigated up to what value of
c we can stay in sub-cubic for the APSP complexity. The best bound for such c is O(n0.624) if
we use the Coppersmith-Winograd matrix multiplication algorithm. Recent studies improve
this bound slightly.

The rest of the paper is as follows: In Sections 2 and 3, SSSP and SSBP are described
in a pedagogical way so that we can see how they can be combined to solve the SSSP-AF
problem. In Section 4, SSSP-AF is solved with the data structure of a one dimensional
bucket system. The computational complexity of the approach described in this section is
already known [15]. In Section 5, we improve the complexity in Section 4 by introducing
another data structure and enhancing the one-dimensional bucket system. This section is the
major contribution of the paper. In Section 6, we define the single source bottleneck path
for all costs (SSBP-AC) problem. Although we can design an algorithm for this problem on
its own, we show the problem can be solved as a by-product of the algorithm in Section 5.
Section 7 concludes the paper. We use up-right fonts for some long names of variables and
functions for readability.

2 Single source shortest path problem

We describe Dijkstra’s algorithm [8] below in our style. The set S, called the solution set, is
the set of vertices to which the shortest distances have been finalized by the algorithm. The

T. Takaoka 59

set F , called the frontier set, is the set of vertices which is outside S and can be reached
from S by a single edge. We note that the distances to vertices in F can be limited to a
small band when edge costs are bounded by a small integer.

Let OUT (v) = {w|(v, w) ∈ E}. The solution (the shortest distances from s) is in the
array d at the end of the computation. To simplify presentation, only the shortest path
distances are calculated, not the shortest paths. We assume all vertices are reachable from
the source. Paths are given by a sequence of vertices such that for two successive vertices u
and v, there is an edge (u, v). We list two invariants maintained by Algorithm 1 below.

(1) S is the set of vertices v to which shortest distances are worked out in dist[v].
(2) If v is in F , dist[v] is the distance of the shortest path that lies in S except for the end

point v itself.

I Lemma 2. The invariants (1) and (2) are kept through Algorithm 1.

Proof. Lemma is true before while. Suppose (1) is true immediately after line 4. If there is
a shorter path to v after line 5 via another vertex, say u, in F , which must exist to reach v,
then dist[u] is shorter than dist[v], which is a contradiction. After v is included in S, all w in
F or in V −S −F are updated with the smallest possible dist[w]. Thus (2) is preserved. J

Throughout the paper, comments are given in the pseudo codes of the algorithms by the
double slash for readability.

Algorithm 1
1. S = ∅
2. dist[s] = 0; dist[v] =∞ for all v 6= s

3. F = {s}
4. while F is not empty do begin
5. v =delete-min(F) // with key dist[v]
6. S = S ∪ {v}
7. for w ∈ OUT (v) do
8. if w /∈ S then
9. if w ∈ F then dist[w] = min{dist[w], dist[v] + cost(v, w)} //decrease-key
10. else begin dist[w] = dist[v] + cost(v, w);F = F ∪ {w} end // insert
11. end

At the end of computation F becomes empty and S becomes V , giving the solution in
dist. We use a simple data structure of one-dimensional bucket system with array Q. Q[i] is
a list of items whose key value is i. Items in our case are vertices. We observe delete-min
or delete-max operations can be done in O(cn) time in total where cn is the size of Q, and
decrease-key or increase-key, and insert can be done in O(1) time per operation.

I Theorem 3. Algorithm 1 solves the SSSP in O(m+ cn) time [7].

Proof. We use a one-dimensional bucket system for the priority queue following Dial’s idea
[7], where total delete-min takes O(cn) time and each insertion and decrease-key takes O(1)
time. Suppose there are mi edges from vertex vi. Summation of miO(1) gives the result,
where m = m1 + . . .+mn. J

ATMOS’15

60 Single Source Shortest Paths for All Flows with Integer Costs

3 Single source bottleneck path problem

We modify Algorithm 1 slightly for the single source bottleneck path problem. Note that we
can push flow f from s to v through a path whose bottleneck value is f . The bottleneck
path is sometimes called the widest path, where the capacity of an edge is viewed as the
width. The solution set S and frontier set F are similarly defined.

(1) S is the set of vertices v to which maximum flows are worked out in flow[v].
(2) If v is in F , flow[v] is the flow of the path with the maximum flow to v that lies in S

except for the end point v itself.

We use array “flow” instead of “dist” in the following. Capacities, which are non-negative
real numbers, are sorted and normalized to integers 1, . . . , t, t+ 1, where there are t different
capacity values in the graph and t+ 1 represents ∞. Note that t ≤ m.

Algorithm 2
1. S = ∅
2. flow[s] = t+ 1; flow[v] = 0 for all v 6= s

3. F = {s}
4. while F is not empty do begin
5. v =delete-max(F) // with key flow[v]
6. S = S ∪ {v}
7. for w in OUT (v) do
8. if w /∈ S then
9. if w ∈ F then flow[w] = max{flow[w],min{flow[v], cap(v, w)}} //increase-key

10. else begin flow[w] = min{flow[v], cap(v, w)};F = F ∪ {w} end // insert
11. end

I Lemma 4. Invariants (1) and (2) are kept through the iteration in the while loop.

Proof. Omitted. J

I Theorem 5. After normalization of capacities, Algorithm 2 solves the SSBP in O(m+ t) =
O(m) time.

Proof. Omitted. J

4 Single source shortest paths for all flows

We parameterize Dijkstra’s algorithm with the flow value f . Array dist[v] is extended to
dist[v, f] whose intuitive meaning is the distance of the shortest path that can push f to
v. The solution set S is extended to S(f), meaning the solution set for the SSSP for the
flow value f . Data structure Q is used for F such that items (v, f) are kept in the list at
Q[dist[v, f]], that is, dist[v, f] is the key. The idea is to solve t+ 1 SSSP’s in parallel with
the shared data structure Q.

T. Takaoka 61

Algorithm 3
Main data structures
dist[v, f] : currently shortest distance of path from source s to vertex v that can push flow f .
Q : a one-dimensional array of lists of items (v, f). If Q[d] includes (v, f), dist[v, f] is d. In
each list the same vertex may appear more than once with different f . This part will be
improved in Algorithm 4.
Pointer array indexed by (v, f) : pointer[v, f] points to item (v, f) in Q. Capacities are
normalized to 1, . . . , t, t+ 1.

1. S[f] = ∅ for f = 1, . . . , t, t+ 1 // t+1 is for infinity
2. dist[s, f] = 0 for f = 1, . . . , t, t+ 1; Other dist are initialized to ∞
3. Q[0] = {(s, t+ 1)}
4. while Q is not empty do begin
5. (v, f) =delete-min(Q) // with key dist[v, f]
6. S[f] = S[f] ∪ {v}
7. for w in OUT (v) do begin
8. d∗ = dist[v, f] + cost(v, w) // candidate distance for w
9. f∗ = min{f, cap(v, w)} // candidate flow for w
10. if w is not in S[f∗] then
11. if (w, f∗) ∈ Q then dist[w, f∗] = min{dist[w, f∗], d∗} //decrease-key
12. else begin dist[w, f∗] = d∗;Q = Q ∪ {(w, f∗)} end // insert
13. end
14. end

The following lemma is obvious.

I Lemma 6. In Algorithm 3, we have f ≤ f ′ ⇒ S(f) ⊇ S(f ′)

We establish two assertions similar to those in the previous sections.
(1) For all v in S[f], dist[v, f] is the distance of the shortest path from s to v that can push

flow f .
(2) For all (v, f) in Q, dist[v, f] is the distance of the shortest path from s to v that can

push flow f whose vertices are in S[f] except for the end point v.

I Lemma 7. The above invariants (1) and (2) are kept through iterations by the while-loop.

Proof. The proof is based on induction overthe while-loop. Before the while-loop (1) and
(2) are obviously true. Suppose there is a shorter path to v via u in Q that can push flow
f at line 5. This means dist[u, f] < dist[v, f], which is a contradiction to line 5 that chose
dist[v, f] as minimum. To push flow f∗ via v after v is included in S[f], we update all (w, f∗)
in Q with possible shorter distances via v, or include (w, f∗) if it was outside Q with the new
distance via v. Note that S(f∗) ⊇ S(f) from Lemma 6, meaning the path in S(f) for (w, f∗)
is included in S(f∗) except for w. Thus at the end of one iteration (2) is preserved. J

I Theorem 8. Algorithm 3 solves SSSP-AF in O(tm+ cn) time [15].

Proof. The correctness is seen from the fact that at the end of the algorithm the set S(f)
includes all v to which flow f can be pushed. The time is analysed from delete-min and
decrease-key/insert. The former takes O(cn). The latter takes O(tm), because each vertex
vi joins S(f)’s at most t times and decrease-key/insert takes O(tmi) for each vi, where

ATMOS’15

62 Single Source Shortest Paths for All Flows with Integer Costs

|OUT (vi)| = mi, resulting in O(tm) over summation on i. Note that all (v, f) in Q are
distinct so that we have at most t such (v, f)’s in Q for each v. J

The following monotone property is obvious and can be used for obtaining the solution,
i.e., incomparable df -pairs in increasing order for each vertex.

I Lemma 9. It holds for finalized distances that f ≤ f ′ ⇒ dist[v, f] ≤ dist[v, f ′].

From this lemma, we can list up incomparable df -pairs in increasing order for each v.

// L[v] is the container of the solution for v. “||” is to append a pair to the list.
L[v] = φ; dist[v, 0] =∞ for all v
for each v do
for f = 1 to t do

if dist[v, f] <∞ and dist[v, f] 6= dist[v, f − 1] then L[v] = L[v]||(dist[v, f], f)

In [4] and [6], the simple one-dimensional bucket system is generalized to the k-level
cascading bucket system for SSSP. The following is a very brief sketch of the data structure.
Readers interested in algorithm structures may skip to the end of this section.

I Example 10. An example of a 3-level radix-10 bucket system is given below. The initial
list of keys is (7, 31, 34, 38, 56, 78, 113, 456, 477, 812, 1256, 1279).
Base = 0, a0 = 7, Q[0] = (φ, φ, φ, φ, φ, φ, φ, (7), φ, φ)
Base = 0, a1 = 3, Q[1] = (φ, φ, φ, (31, 34, 38), φ, (56), φ, (78), φ, φ)
Base = 0, a2 = 1, Q[2] = (φ, (113), φ, φ, (456, 477), φ, φ, φ, (812), φ, φ, φ, (1256, 1279))
After delete-min, key 7 at level 0 is deleted and for the next next delete-min, list (31, 34, 38)
is re-distributed to level 0, resulting in
Base = 30, a0 = 1, Q[0] = (φ, (31), φ, φ, (34), φ, φ, φ(38), φ)
Base = 0, a1 = 5, Q[1] = (φ, φ, φ, φ, φ, (56), φ, (78), φ, φ)
Base = 0, a2 = 1, Q[2] = (φ, (113), φ, φ, (456, 477), φ, φ, φ, (812), φ, φ, φ, (1256, 1279))
After deleting 31 for delete-min suppose we decrease key 477 to 59, that will go out of level 2
and join key 56 at level 1. Due to the nature of Dijkstra’s algorithm, it will not go to a lower
level than Q[0].

Now the initial key value d[v] = cost(s, v) is given like a radix-p number, where only xk−1
may exceed p− 1.

d[v] = xk−1p
k−1 + . . .+ x1p+ x0 (0 ≤ x0, x1, . . . , xk−2 ≤ p− 1,

0 ≤ xk−1 ≤ dc/pk−1e − 1) for some k.

The data structure has k levels of buckets. At the i-th level for each i, there are p buckets.
Let i be the largest index of non-zero xi. Item v is inserted into the xi-th bucket at level i
for all v in the frontier. During the computation, we maintain the items in the appropriate
buckets based on the current value of d[v]. Let ai, called the active pointer, be the smallest
index of a non-empty bucket in level i. The role of ai is to skip many empty buckets at level
i. The base for level i, Bi, and the range for the j-th bucket at level i, Rj , are defined by

Bi = ak−1p
k−1 + . . .+ ai+1p

i+1, Rj = [Bi + jpi, Bi + (j + 1)pi − 1]

If item v is in level i for d[v] = xk−1p
k−1 + . . . + x1p + x0, i is the largest index such

that ak−1 = xk−1, . . . , ai+1 = xi+1 and ai 6= xi. Items move from a higher level to a lower

T. Takaoka 63

level and from a higher bucket to a lower bucket in the same level. The minimum can be
found by scanning for a non-empty level and then the first non-empty bucket. For delete-min,
the keys in this bucket are re-distributedto lower levels, finally creating a non-empty bucket
at level 0.. Decrease-key can be done by moving the item in the data structure. Insert
can be done by putting the item at the largest level and follow decrease-key. Suppose we
solve t SSSP’s. In [18], it is shown that t SSSP’s can be solved in O(tm+ tn log(c/t)) time
with this data structure. In [18], the data structure is used for the all pairs shortest path
problem, where t = n, achieving the complexity of O(mn + n2 log(c/n)). We can use the
data structure for the SSSP-AF problem where t SSSP’s are solved in O(tm+ tn log(c/t))
time. This complexity is good when c is large with a better second term, but when t is
large, the first term of O(tm) is outstanding. The same thing can be said of Thorup’s data
structure [19] that spends O(tm+ tn log log c) time when applied to our problem. We try to
improve the first term in the next section.

We note at this stage that in the list Q[d] for some d in the one-dimensional system, there
might be items (v, f) and (v, f ′) such that f 6= f ′ for some v. The following section is to
prevent this duplication of items for the same v with more formalism.

5 A faster algorithm for SSSP-AF

I Definition 11. Natural order ≤n is defined on df -pairs, (d, f) and (d′, f ′), by

(d, f) ≤n (d′, f ′)⇒ d ≤ d′ ∧ f ≤ f ′

Merit order ≤m is defined on (d, f) and (d′, f ′) by

(d, f) ≤m (d′, f ′)⇒ d′ ≤ d ∧ f ≤ f ′

The natural order represents a numerical order while the merit order specifies which is better
for our objective. Note that both are partial orders.

I Definition 12. For v in S[f], pair (dist[v, f], f) is said to be Pareto optimal at v if there is
no pair (dist[v, f ′], f ′) such that v is in S(f ′) and (dist[v, f ′], f ′) >m (dist[v, f], f). In other
words, (dist[v, f], f) is Pareto optimal if there is no better df -pair so far at v.

The priority queue Q is augmented by array flow, which is initialized to all 0. flow[v, d] is
the maximum flow so far from s to v with cost d. We maintain each list Q[d] such that each
v appears at most once in the list. If (v, f) is to be inserted to list Q[d], where d = dist[v, f],
flow[v, d] is consulted. If f ≤ flow[v, d], this insertion is ignored. If not, (v, flow[v, d]) is
deleted from Q, (v, f) is inserted and flow[v, d] is updated to f . Decrease-key(v, f) is to
perform delete(v, f) and insert(v, f) with the new distance. We maintain pointers for each
pair (v, f) to locate (v, f) in Q in O(1) time. Delete-min takes O(cn) time in total.

ATMOS’15

64 Single Source Shortest Paths for All Flows with Integer Costs

Algorithm 4
Main data structures
dist[v, f] : same as Algorithm 3
Q : a one-dimensional array of lists (buckets) of items (v, f). If Q[d] includes (v, f), dist[v, f]
is d. In each list every vertex appears at most once.
flow : flow[v, d] gives the maximum flow that can be pushed from s to v through a path in
S(f) except v with cost d. The size of array flow is O(cn2).
Pointer array indexed by (v, f) : same as Algorithm 3
0. dist[v, f] are initialized to ∞ for all v 6= s and f
1. S[f] = ∅ for f = 1, . . . , t, t+ 1; // t+ 1 is for infinity
2. dist[s, f] = 0 for f = 1, . . . , t, t+ 1; flow[v, d] = 0 for all v and d
3. Q[0] = {(s, t+ 1)}
4. while Q is not empty do begin
5. (v, f) =delete-min(Q) // with key dist[v, f]
6. S[f] = S[f] ∪ {v}
7. for w in OUT (v) do begin
8. d∗ = dist[v, f] + cost(v, w) // candidate distance for w via v
9. f∗ = min{f, cap(v, w)} // candidate flow for w via v

10. if w is not in S[f∗] then
11. if (w, f∗) is in Q then begin
12. dist[w, f∗] = min{dist[w, f∗], d∗}
13. decrease-key(w, f∗)
14. flow[w, d∗] = max{flow[w, d∗], f∗}
15. end
16. else begin
17. dist[w, f∗] = d∗

18. insert(w, f∗)
19. flow[w, d∗] = f∗

20. end // if-else
21. end // for
22. end // while
23. procedure insert(w, f∗)
24. begin
25. if f∗ > flow[w, d∗] then begin
26. if (w, flow[w, d∗]) is in Q then delete(w, flow[w, d∗])
27. Q = Q ∪ (w, f∗) // insert with key dist[w, f∗]
28. end
29. end
30. procedure decrease-key(w, f∗)
31. begin delete(w, f∗); insert(w, f∗) end

The loop invariants (1) and (2) in the previous section hold for Algorithm 4 as well. In
addition we have the following lemma, which is similar to (2).

I Lemma 13. For all v and d, let f = flow[v, d]. If (v, f) is in Q, f is the maximum flow
of the path with cost d that can push f from s to v whose vertices are in S[f] except for the
end point v.

Proof. Suppose this invariant holds at the beginning of the while loop. After v is included

T. Takaoka 65

in S[f], flow[w, d∗] is updated at lines 14 and 19. Note that we have f∗ ≤ f and thus
S[f∗] ⊇ S[f] from Lemma 6. Thus the path is in S(f∗) except for the end point and the
lemma holds for f∗ = flow[w, d∗] as well. J

I Lemma 14. At each iteration of while loop, pair (dist[v, f], f) is Pareto optimal for any
(v, f) ∈ S[f] at line 5.

Proof. Suppose the statement is true at the beginning of each iteration. We perform one
more iteration. Suppose (dist[v, f], f) is not Pareto optimal for some v and f at the end of
the iteration. Then for some (dist[v, f ′], f ′) we have (dist[v, f ′], f ′) >m (dist[v, f], f), which
means.

(dist[v, f ′] < dist[v, f] ∧ f ′ ≥ f) ∨ (dist[v, f ′] ≤ dist[v, f] ∧ f ′ > f).

By a simple calculation, this is equivalent to

(dist[v, f ′] < dist[v, f] ∧ f ′ ≥ f) ∨ (dist[v, f ′] = dist[v, f] ∧ f ′ > f).

This contradicts the fact that dist[v, f] is the distance of the shortest path that can push
f to v, or the fact that (v, f) is updated (in the form of (w, f∗)) with the maximum possible
f by consulting flow[v, dist[v, f]]. Lemma 13 guaratees f is the maximum flow to v with
cost dist[v, f]. J

In the following lemma we abbreviate (dist[v, f], f) as (d, f).

I Lemma 15. All Pareto optimal df-pairs at any v can be sorted in increasing natural order.
Furthermore if (d, f) ≤n (d′, f ′), we have d < d′ and f < f ′.

Proof. If not sorted in natural order, there must be (d, f) and (d′, f ′) at v such that d > d′

and f ≤ f ′ or d ≤ d′ and f > f ′. Then (d, f) <m (d′, f ′) or (d, f) >m (d′, f ′), a contradiction
to Pareto optimal. The latter half can be seen as follows: Suppose there are (d, f) and (d′, f ′)
at v such that d = d′ or f = f ′, which is a contradiction to Pareto optimal. J

I Theorem 16. Algorithm 4 solves SSSP-AF in O(min{t, cn}m+ cn2) time.

Proof. Correctness is similar to that of Theorem 8. We measure the complexity by the
number of accesses to major data structures. If a one-dimensional bucket system is used
for Q, the total time for scanning the array for delete-min is O(cn). For edge inspection at
line 7, we observe pair (v, f) at line 5 brings Pareto optimal (dist[v, f], f) at v. The size of
the Pareto optimal solution at each v is bounded by min{t, cn} from the previous lemma.
Thus the number of edge inspections for decrease-key and insert at line 7 is bounded by
min{t, cn}mi for vertex vi. Summation over i can give us the time for decrease-key and
insert being O(min{t, cn}m). The initialization for array dist, array flow and Boolean
arrays for membership of S[f∗] and Q used at lines 10 and 11 takes O(cn2 + tn). Thus the
total time is given by O(min{t, cn}m + cn + (cn + t)n) = O(min{t, cn}m + (cn + t)n) =
O(min{t, cn}m+ cn2). J

I Corollary 17. The SSSP-AF problem with edge costs bounded by c can be solved in O(cmn)
time. If the cost is a unit, it can be solved in O(mn) time.

Note. We could use the cascading bucket system to improve delete-min operations to
O(tn log(c/t)), but cannot improve the complexity of O(cn2) for the initialization of flow.
It is open whether we can improve this time for initialization. In a way we improved the
complexity of the first term at the higher cost of the second term, resulting in a better overall
complexity for c = o(n).

ATMOS’15

66 Single Source Shortest Paths for All Flows with Integer Costs

6 Single source bottleneck paths for all costs problem (SSBP-AC)

For every given cost d, we work out maximum flow flow[v, d] that can be pushed from s to
v for all v and d. Although we can design an algorithm for this problem by swapping the
roles of distance and flow in Algorithm 4, Algorithm 4 already solves this problem in array
flow. Following the monotone property of flow similar to Lemma 9, the solution can be
obtained by

L[v] = φ; flow[v, 0] = 0 for all v
for each v do
for d = 1 to cn do if flow[v, d] > 0 then
if flow[v, d] 6= flow[v, d− 1] then L[v] = L[v]||(d, flow[v, d])

7 Concluding remarks

Let us analyze our complexity as compared with the best known result in [15], which is
O(m2 +mn log(c/m)). If t = m, we can say the degree of variety of the graph is high, that
is, every edge has a distinct capacity. We take this case of t = m following [15]. Let us
define the density of the graph by e = m/(n(n− 1)) [5], which is approximated by e = m/n2.
The complexity in [15] becomes O(m2) = O((en2)2) as the second term of the complexity
becomes minor. Our complexity becomes O(cen3). Thus our complexity is better when
c ≤ en. We can say our algorithm performs well for denser graphs, i.e., with e close to 1.

When c = O(n) or costs are real numbers for a dense graph, i.e., m = O(n2), the
complexity is standing at O(n4) with only n as a complexity parameter. It is open whether
sub-quartic is possible. There are some possibilities to extend our idea to improve time
complexities for the all pairs shortest paths for all flows (APSP-AF) problem.

Acknowledgments. The author is thankful to the referees, whose careful reading and
constructive comments greatly improved the quality of the paper. He also acknowledges he
was greatly inspired by Tong-Wook Shinn on the subject of the research.

References
1 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,

Algorithms, and Applications. Prentice-Hall, 1993.
2 N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs shortest path problems.

JCSS 54, 255-262, 1997.
3 Amit Chakrabarti, Chandra Chekuri, Anupam Gupta, and Amit Kumar. Approximation

algorithms for the unsplittable flow problem. Algorithmica 47(1): 53-78, 2007.
4 B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest paths algorithms: Theory and

experimental evaluation. Mathematical Programming 73, 129-174, 1996.
5 Thomas F. Coleman and Jorge J. More. Estimation of sparse jacobian matrices and graph

coloring problems. SIAM Journal on Numerical Analysis 20 (1): 187-209, 1983.
6 E. V. Denardo and B. L. Fox. Shortest-route methods: I. reaching, pruning, and buckets.

Operations Research 27, 161-186, 1979.
7 R. B. Dial. Algorithm 360: Shortest path forest with topological ordering. CACM 12,

632-633, 1969.

T. Takaoka 67

8 E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math. 1,
269-271, 1959.

9 Y. N. Dinits, N. Garg Y, and N. Goemans. On the single-source unsplittable flow problem.
Combinatorica, Springer, 19(1), 17-41, 1999.

10 Ran Duan and Seth Pettie. Fast algorithms for (max, min)-matrix multiplication and
bottleneck shortest paths. Proceedings of the 20th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’09), pp. 384–391, 2009.

11 Matthias Ehrgott. Multicriteria Optimization. Springer-Verlag, 2005.
12 M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network

optimization algorithms. Jour. ACM 34, 596-615, 1987.
13 Harold N. Gabow and Robert E. Tarjan. Algorithms for two bottleneck optimization

problems. Journal of Algorithms 9 (3): 411–417, 1988.
14 Tong-Wook Shinn and Tadao Takaoka. Combining all pairs shortest paths and all pairs

bottleneck paths problems. LATIN 2014: 226-237, 2014.
15 Tong-Wook Shinn and Tadao Takaoka. Combining the shortest paths and the bottleneck

paths problems. ACSC 2014: 13-18, 2014.
16 Tong-Wook Shinn and Tadao Takaoka. Some extensions of the bottleneck paths problem.

WALCOM 2014: 176-187, 2014.
17 Tadao Takaoka. Subcubic cost algorithms for the all pairs shortest path problem. Algorith-

mica 20(3): 309-318, 1998.
18 Tadao Takaoka. Sharing information for the all pairs shortest path problem. Theor. Comput.

Sci. 520: 43-50, 2014.
19 M. Thorup. Integer priority queues with decrease key in constant time and the single source

shortest paths problem. STOC03, 149-158, 2003.
20 U. Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.

Jour. ACM, 49, 3, 289–317, 2002.

ATMOS’15

Robust Routing in Urban Public Transportation:
Evaluating Strategies that Learn From the Past∗

Kateřina Böhmová1, Matúš Mihalák2, Peggy Neubert3,
Tobias Pröger1, and Peter Widmayer1

1 Department of Computer Science, ETH Zürich
Universitätstrasse 6, 8092 Zürich, Switzerland
{katerina.boehmova,tobias.proeger,widmayer}@inf.ethz.ch

2 Department of Knowledge Engineering, Maastricht University
Postbus 616, 6200MD Maastricht, The Netherlands
matus.mihalak@maastrichtuniversity.nl

3 Verkehrsbetriebe Zürich
Luggwegstrasse 65, 8048 Zürich, Switzerland
Peggy.Neubert@vbz.ch

Abstract
Given an urban public transportation network and historic delay information, we consider the
problem of computing reliable journeys. We propose new algorithms based on our recently presen-
ted solution concept (Böhmová et al., ATMOS 2013), and perform an experimental evaluation
using real-world delay data from Zürich, Switzerland. We compare these methods to natural
approaches as well as to our recently proposed method which can also be used to measure typic-
ality of past observations. Moreover, we demonstrate how this measure relates to the predictive
quality of the individual methods. In particular, if the past observations are typical, then the
learning-based methods are able to produce solutions that perform well on typical days, even in
the presence of large delays.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity,
F.2.2 Nonnumerical Algorithms and Problems, I.2.6 Learning

Keywords and phrases public transportation, route planning, robustness, optimization, experi-
ments

Digital Object Identifier 10.4230/OASIcs.ATMOS.2015.68

1 Introduction

Motivation. When using public transportation to travel from a stop s to a stop t, we may
want to arrive at t no later than at time tA. Determining the right moment to leave s is
nontrivial: We want to reach t at time tA at the latest, but we don’t want to leave s much
too early. In an ideal situation, every bus and every tram is on time, and it is sufficient to
compute a journey that is planned to leave s as late as possible but still reaches t at the
latest at tA. However, in reality, traffic can be congested and we should expect delays. Thus,
we are looking for a robust journey from s to t that arrives before time tA, but still leaves s

∗ This work has been partially supported by the Swiss National Science Foundation (SNF) under the
grant number 200021 138117/1, and by the EU FP7/2007-2013 (DG CONNECT.H5-Smart Cities
and Sustainability), under grant agreement no. 288094 (project eCOMPASS). Kateřina Böhmová is a
recipient of a Google Europe Fellowship in Optimization Algorithms, and this research is supported in
part by this Google Fellowship.

© Kateřina Böhmová, Matúš Mihalák, Peggy Neubert, Tobias Pröger, and Peter Widmayer;
licensed under Creative Commons License CC-BY

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 68–81

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.68
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

K. Böhmová, M. Mihalák, P. Neubert, T. Pröger, and P. Widmayer 69

Planned Journey Time

00:00 00:10 00:20 00:30 00:40 00:50 01:00

R
e

a
l
T

im
e

 /
 P

la
n

n
e

d
 T

im
e

0

1

2

3

4

5

6

7

8

Average

(a)
Planned Journey Time

00:00 00:10 00:20 00:30 00:40 00:50 01:00

R
e

a
l
T

im
e

 /
 P

la
n

n
e

d
 T

im
e

0

1

2

3

4

5

6

7

8

Max

90th Perc

Average

10th Perc

Min

(b)

Figure 1 Distribution of the error coefficients grouped by planned travel time (a), and the average,
minimum, maximum, 10th and 90th percentiles of the distribution of the error coefficients in each
time slot (b). Times were measured in minutes. For the sake of clarity, (a) does not show journeys
with an error coefficient greater than 8, because there are only few (< 0.1%). For the same reason
journeys with more than one hour planned travel time are not shown in the figures.

at a “reasonable” time. In real applications one may have additional preferences, such as low
travel costs, which we don’t consider for the sake of simplicity.

Firmani et al. [9] observed in an experimental study on the transportation network of
Rome that the timetable information and the real movement of the vehicles (based on GPS
data) are only mildly correlated. They conclude that an “important issue to investigate is
how to compute robust routes” that are “less vulnerable to unexpected events”. Our goal
is provide methods for finding such robust routes. Since we only have historic delay data
from the public transportation network of Zürich, as a preliminary step we investigated
whether our network exhibits a behaviour similar to the Rome network. To make our results
comparable to the results of Firmani et al., the methodology and notation of our preliminary
study are similar to the methodology and notation in their original article [9].

We selected 10,000 departure and target stops s, t uniformly at random, set the latest
allowed arrival time tA to 8:30, and computed the st-journeys j that are optimal according
to the planned timetable. For each journey j, we measured the planned travel times tp(j) as
well as the actual travel times ta(j) (on 23 May 2013), and computed the error coefficient
ta(j)/tp(j). Figure 1(a) shows the distribution of the error coefficients grouped by the
planned travel times tp(j). High error coefficients occur easily if the planned travel time is
small and the vehicle of the planned journey leaves s a bit too early so that one has to wait
for the next vehicle (which may, depending on the line, take up to half an hour in Zürich).

As in [9], we grouped the journeys into 3-minute time slots such that the k-th slot contains
all journeys j with tp(j) ∈ (3(k−1), 3k]. Figure 1(b) shows the average, minimum, maximum
as well as the 10th and the 90th percentile of the distribution of the error coefficients of the
journeys in each time slot. Since short journeys sometimes have high error coefficients, for
simplicity Figure 1(b) does not incorporate the first two slots. The average error coefficient
of the journeys in the remaining slots lies between 1.12 and 1.71 which means that in average
a journey may take up to 71% longer than planned. Also, observe that the 90th percentile of
the error coefficients of the journeys with 15 minutes travel time is roughly 2. Thus, 10%
of the 15-minute journeys take in reality at least twice as long as planned. In overall, we
observed that the behaviour in Zürich is comparable to the one in Rome.

One way out might be to integrate real-time information into the computation of routes.
However, we believe that this is not enough, especially if the journey is planned some time

ATMOS’15

70 Robust Routing in Urban Public Transportation

in advance. For example, a trip to the airport is usually planned a few hours earlier, and
the right departure time needs to be computed before the start of the journey. Moreover
in reality it often happens that delays occur suddenly and cannot be foreseen in advance,
especially not at the time when the journey is planned. For example, consider an st-journey
that consists of two lines l1 and l2, and imagine that the transfer time between the lines is 2
minutes. Even if l1 leaves s on time, every upcoming delay of more than 1 minute (which
might always occur) leads to a late arrival at t.

Our Contribution. In [3], we introduced a novel approach for finding robust journeys that
uses recorded observations from the past as input—we look for journeys that performed well
in the given past observations. Since this approach requires journeys to be comparable in
different past days, classical solutions concepts, such as a path in the time-expanded or the
time-dependent graph, are not suitable.

In the present paper, we first shortly describe our solution concept and the above-
mentioned approach for finding robust routes. Since this approach was originally restricted
to learn from historic data of only two different days, we show how it can be generalized to
consider historic data from multiple days. We also describe how a stochastic method by Lim
et al. [13] for private transportation can be adapted to compute robust journeys in public
transportation. After that, we perform an extensive experimental study to evaluate these
methods and to investigate different aspects related to robust routing.

Related Work. Many approaches to find a fastest journey in a given public transportation
network were considered in the literature, see, e.g., a recent survey by Bast et al. [1]. One
approach to account for delays is using stochastic methods—the delays are typically modeled
as random variables on the edges of the network [4, 10, 15], or on each vehicle [6, 7]. For a
given fixed timetable, Disser et al. [8] extended Dijkstra’s algorithm for computing pareto-
optimal multi-criteria journeys. Müller-Hannemann and Schnee [14] used a dependency
graph to predict secondary delays caused by some current primary delays and gave a routing
strategy with respect to these delays. Bast et al. [2] studied the robustness of transfer patterns
in the presence of delays. They argue that even when delays occur, a reasonably good path
is still included in the pattern. Dibbelt et al. [7] modeled the delays using stochasticity
and computed a decision graph with all the possibly relevant nodes and vehicles instead of
a single path. Goerigk et al. [12] assumed that a set of delay scenarios is provided, and
showed how to compute a journey that arrives on time in every scenario (strict robustness)
or a journey with fewest number of unreliable transfers having an almost optimal travel
time (light robustness). Goerigk et al. [11] considered journeys, within the setting of delay
scenarios, that can be updated if delays occur (recoverable robustness).

2 Model

Network Design. Let S be a set of stops. A line is an ordered sequence 〈v1, . . . , vk〉 of
stops from S, where vi is visited directly before vi+1. We explicitly distinguish two lines
with the same stops but opposite directions. Given a departure stop s ∈ S and a target stop
t ∈ S, a sequence of lines 〈l1, . . . , lβ+1〉 with li 6= li+1 is called an st-route if there exist β + 2
stops v0 := s, v1, . . . , vβ , vβ+1 := t where both vi−1 and vi are stops on the line li, and the
line li visits vi−1 (not necessarily directly) before vi. We say that a transfer between the
lines li and li+1 occurs at vi. Notice that there might be more than one possible transfer

K. Böhmová, M. Mihalák, P. Neubert, T. Pröger, and P. Widmayer 71

between two lines. For s, t ∈ S and an integer β ∈ N0, let Rβst denote the set of all st-routes
with at most β transfers.

A journey consists of a departure time tD, a route 〈l1, . . . , lα+1〉 ∈ Rαst with α ≤ β, and a
sequence of transfer stops 〈v1, . . . , vα〉. Its intuitive interpretation is to leave the stop s at
time tD, take the first arriving (trip of) line l1, and for every i ∈ {1, . . . , α}, leave li at stop
vi and immediately take the next arriving trip of line li+1.

Trips and Timetables. While the only information associated with a line itself are its
consecutive stops, it usually is operated multiple times per day. Each of these concrete
realizations is called a trip. A timetable stores for every stop v ∈ S the arrival and departure
times of every trip over a day. We have
1. a planned timetable Tplan which we assume to be periodic, i.e., every line realized by

some trip τ will be realized by a later trip τ ′ again (not necessarily on the same day).
2. a set T of recorded timetables Ti that describe how various lines were operated during

a given time period (e.g., on a concrete day). These recorded timetables are concrete
executions of the planned timetable.

In the following, timetable refers both to the planned as well as to a recorded timetable. We
assume that timetables respect the FIFO property, i.e. two buses or trams of the same line
do not overtake each other.

Goal. Let s, t ∈ S be the departure and the target stop, and let tA be the latest allowed
arrival time. Our goal is to use the planned timetable and the recorded timetables in T to
compute a recommendation in form of one or more (robust) journeys from s to t that will
likely arrive on time (i.e., at time tA or earlier) on a day for which the concrete travel times
are not known yet.

We assume that users select one of the recommended journeys, and then travel according
to it. One may argue that this assumption is rather strict, because when delays come up,
users sometimes spontaneously decide to use a different journey instead. This, however, is a
different situation that we do not consider in this paper for two reasons. First, one needs to
know the network and the possible backup options well, which might not be the case when
one is travelling in a foreign city. Second, as mentioned earlier, delays may occur suddenly,
and it might be too late to choose a different journey. Consider, for example, the situation
when the alternative journeys don’t have any stop in common except for the departure and
the target stop. In such a case one has to fix the journey already in advance.

3 Robustness

Overview. In this section we present some approaches for computing robust journeys. For
this we assume that the departure stop s, the target stop t and the latest allowed arrival time
tA were specified by the user and that we already computed a reasonable upper bound β
on the maximum number of transfers. Hence, s, t, tA and β are fixed when the journey(s)
are computed. We note that, given a route r ∈ Rβst and a parameter γ ∈ N, we can use the
planned timetable Tplan to find a journey j along r that leaves s as late as possible, but
not later than time tA − γ. Thus, as soon as an algorithm identifies both a route r and a
parameter γ, it can also reconstruct the corresponding journey in the planned timetable.
These planned journeys will then be recommended to the user.

ATMOS’15

72 Robust Routing in Urban Public Transportation

Figure 2 A timetable with five lines {1, . . . , 5} and two routes r1 = 〈1, 2, 3〉 (solid) and r2 = 〈4, 5〉
(dotted). The x-axis denotes the stops {s, v1, v2, v3, t}, the y-axis the time. If a trip leaves a stop
vd at time td and arrives at a stop va at time ta, it is indicated by a line segment from (vd, td) to
(va, ta). Aγ(T) contains r1 three times and r2 once.

Transfer Buffers. An naïve strategy to increase the reliability of a journey is to enforce an
additional buffer time at each transfer or at the end of the trip. The Buffer-ξ approach uses
Tplan to compute a journey that is planned to leave s as late as possible, arrives at t not later
than at time tA, and that has an additional time of at least ξ at each transfer of the journey.
This especially implies that if a line li is planned to arrive at a transfer stop vi at time ti,
then the next line li+1 of the journey can only be taken at time ti + ξ or later. Buffer-0
corresponds to an optimal journey in the planned timetable, so we refer to it as Opt-TT.

A Similarity-Based Approach. In [3], we described how a general approach to robust
optimization designed by Buhmann et al. [5] can be used to compute robust journeys. We
briefly recall our ideas. Let T ∈ T be a timetable and γ ∈ N0. An approximation set Aγ(T)
contains all routes r ∈ Rβst for which T contains a journey along r that leaves s at time
tA − γ or later, and that arrives at t at time tA or earlier. We assume that Aγ(T) is a
multiset: a route r is contained as often as it is realized by a journey starting at time tA − γ
or later, and arriving at time tA or earlier (see Figure 2 for an example). The parameter
γ can be interpreted as the maximal time that we depart before tA. In general we have
A0(T) = ∅, and the size of Aγ(T) grows with increasing γ. If we consider the approximation
sets Aγ(T1), . . . , Aγ(Tk) for the timetables T1, . . . , Tk ∈ T , every approximation set contains
only routes that are realized (by a journey) in the same time period [tA − γ, tA], and that
are therefore comparable among different approximation sets.

The approach in [3, 5] expects that exactly two timetables T1, T2 ∈ T are given. To
compute a robust route when only two timetables are available, we consider Aγ(T1)∩Aγ(T2):
the only chance to find a route that is likely to be good in the future is a route that performed
well in both recorded timetables. The parameter γ determines the size of the intersection:
if γ is too small, the intersection will be empty. If γ is too large, the intersection contains
many (and maybe all) st-routes, and not all of them will be a good choice. Assuming that
we knew the “optimal” parameter γOPT , we could pick a route from AγOP T

(T1)∩AγOP T
(T2).

Buhmann et al. [5] suggest to set γOPT to the value γ that maximizes

Sγ = |R
β
st||Aγ(T1) ∩Aγ(T2)|
|Aγ(T1)||Aγ(T2)| . (1)

The value SγOP T
measures how similar the timetables T1 and T2 are, so Buhmann et al. refer

to this ratio as the similarity of T1 and T2. They showed that it is always at least 1, and
the larger it gets, the more similar T1 and T2 are. Of course, if one is only interested in
computing γOPT (and not measuring the similarity itself), one can simply omit the term
|Rβst| in equation (1) as we did in our original work [5].

K. Böhmová, M. Mihalák, P. Neubert, T. Pröger, and P. Widmayer 73

After γOPT has been computed, there are two possible approaches to pick a route from
AγOP T

(T1)∩AγOP T
(T2). The Similarity-Rand approach selects a route r from the intersection

uniformly at random, while Similarity-MRR selects the most frequent route r from the
intersection. For both approaches we recommend to depart at least γOPT units of time in
advance. More details can be found in [3, 5].

Function-Based Approaches. Let Ti ∈ T be a recorded timetable, r = 〈l1, . . . , lα+1〉 ∈ Rαst
be a route, τ1, . . . , τk be the trips of line l1 in Ti and D(τj , s) be the departure time of the
trip τj at s. We define δri as

min
j∈[1,k]

{
tA −D(τj , s)

∣∣∣∣ τj can be extended to a journey along r that
arrives in Ti at stop t at time tA or earlier

}
, (2)

which intuitively can be interpreted as follows: to arrive on time using route r on the day
at which Ti is realized, one has to leave s at least δri units of time before the latest allowed
arrival time tA. For a given function f : (R+)|T | → R, we search for a route r ∈ Rαst that
minimizes f(δr1, . . . , δr|T |). In the following, we describe some possible choices for f , and we
abbreviate f(δr1, . . . , δr|T |) by f(r).

For a number p ∈ [1,∞], the Norm-p estimator has the objective function

fp‖·‖
(
r) =

∥∥∥(δr1, . . . , δr|T |)∥∥∥
p
. (3)

It is easy to see that f1
‖·‖ selects all routes which in average (w.r.t. the recorded timetables

in T) depart as late as possible. Moreover, f∞‖·‖ selects all routes minimizing the maximum time
between the departure and the latest allowed arrival time tA. Such routes can alternatively
be seen as routes maximizing the earliest departure time necessary to arrive on time in all
timetables in T . Thus, the Norm-∞ estimator is related to the similarity-based approach
from the previous paragraph in the following way. Let γFI = min

{
γ > 0 |

⋂|T |
i=1Aγ(Ti) 6= ∅

}
be the smallest value for γ such that the intersection of all γ-approximation sets is non-empty.
One can observe that every route r contained in

⋂|T |
i=1AγF I

(Ti) minimizes f∞‖·‖ and vice versa.
We note that these methods relate to strict robustness [12], but are based on a different
solution concept, and learn from past observations given as daily recorded timetables (instead
of specifying a set of possible delays).

Now, let p ∈ [1,∞] be arbitrary and let rpj be a route minimizing fp‖·‖. To determine
how much in advance one has to depart when using rpj , we use our previous observations.
For p = 1, it is reasonable to set γpj = f1(rpj)/|T | since f1

‖·‖ corresponds to averaging the
departure times. For p =∞, it is reasonable to set γpj = f∞(rpj). For every other p ∈ (1,∞),
we simply scale the time linearly with respect to p = 1 and p =∞. More concretely, we set

γpj = f∞(rpj)−
(
fp(rpj)− f∞(rpj)
f1(rpj)− f∞(rpj)

)
·
(
f∞(rpj)− f1(rpj)/|T |

)
. (4)

A different function-based estimator comes from the mean-risk model which was just
recently used for finding robust routes in private transportation [13]. Let c ∈ R+

0 be the
risk-aversion coefficient, where c = 0 corresponds to the situation where the risk is being
completely ignored. The objective function associated with the Mean-Risk-c estimator is

f cMR

(
r) = Mean

(
δr1, . . . , δ

r
|T |
)

+ c ·
√
Variance

(
δr1, . . . , δ

r
|T |
)
. (5)

For a route rj minimizing f cMR, we simply set γj = f cMR(rj) as the time one has to depart
in advance. Notice that Mean-Risk-0 is equivalent to Norm-1.

ATMOS’15

74 Robust Routing in Urban Public Transportation

4 Experimental Results

Experimental Setup. For an experimental evaluation of the methods proposed in Section 3
we used the tram and bus network of the city of Zürich, Switzerland, which has 401 stops
and 292 lines. The recorded timetables T = {T1, . . . , T7} were realized on seven consecutive
Thursdays in the period from 4 April to 23 May 2013, ignoring 9 May (which was a public
holiday and therefore had different traffic and a different planned timetable).

We observed that in reality many of the 292 lines have the same ID (such as, e.g., tram 6,
bus 31, etc.). This is consequence of our modeling: not only do we distinguish lines travelling
in opposite directions, but there are also special lines coming from or going to the depot, lines
whose corresponding vehicle turns around in advance, and lines that do not visit certain stops
in the evening. Since these special lines operate only on a low frequency and mostly only
early in the morning or late in the evening, we ignored them and focused on the “standard”
realizations. Hence we effectively used only 118 of the 292 lines. Although the network is
rather small in comparison to the networks of other cities, it is well-suited for an experimental
study on robustness for two reasons. First, the network is dense enough to provide many
different routes between any two stops s and t. Second, our study in Section 1 showed that
the network is affected by a considerable amount of delays, especially during the rush hours.

For each of the following experiments, we generated 10,000 (30,000 for the experiments on
the number of transfers) departure/target pairs (s, t) ∈ S2 with s 6= t uniformly at random.
For each such pair (s, t), we computed the smallest β ∈ N0 such that Rβst 6= ∅ and used this
value for the maximum allowed number of transfers. We explicitly set β = 1 if there exists a
direct st-route with no transfers at all. In such a case, one might prefer to take an alternative
route with only one transfer, probably leading to a shorter travel time. After computing β
and Rβst, we performed the corresponding experiment. We set the target arrival time tA
to 18:00 except for the experiments that study how the behavior of the methods changes
during the day. Unless otherwise stated, the buffer methods used the planned timetable Tplan
as input, the similarity-based methods used T5 and T6 (recorded on 2 May and 16 May),
and the function-based methods used T1, . . . , T6 (recorded between 4 April and 16 May).
Timetable T7 (recorded on 23 May) was used to assess the quality of the proposed journeys.

In our experiments we observed that the performance of Similarity-Rand and Similarity-
MRR is nearly identical, so our figures show only the behavior of the latter variant, and for
simplicity we refer to both variants as Similarity. Also, Norm-2 performs similarly to Norm-Inf,
so our figures mostly omit Norm-2. Furthermore we observed that it rarely happened that a
journey proposed by Buffer-ξ, Similarity, Norm-Inf or Mean-Risk-1 arrived much too early or
much too late in the test instance. In all of these cases this was caused either because of a
highly non-typical situation in the input or the test instance (e.g., an accident), or because
a line was chosen that was not realized regularly (e.g., less than once per hour). Hence
we ignored all pairs (s, t) for which at least one of the methods above computed a journey
arriving more than one hour too early or too late.

Our algorithms were implemented in Java 7, and the experiments were performed on one
core of an Intel Core i5-3470 CPU clocked at 3.2 GHz with 4 GB of RAM running Debian
Linux 7.8. For enumerating all st-routes in Rβst, we used the algorithm proposed in [3] which
runs on average 35ms. After computing Rβst, the buffer strategies have an average running
time 1ms or less, the similarity-based methods 8ms, and the function-based approaches 24ms.
Notice that these running times are faster than the ones described in [3], because we used a
smaller network (without the agglomeration).

K. Böhmová, M. Mihalák, P. Neubert, T. Pröger, and P. Widmayer 75

Average Departure Time

16:55 17:00 17:05 17:10 17:15 17:20 17:25 17:30

P
ro

b
a

b
ili

ty
 t

o
 A

rr
iv

e
 o

n
 T

im
e

0.4

0.5

0.6

0.7

0.8

0.9

1

OPT-TT

BUFFER-1

BUFFER-2

BUFFER-3

BUFFER-4

BUFFER-5

BUFFER-6

BUFFER-7

BUFFER-8

BUFFER-9

BUFFER-10

BUFFER-12

BUFFER-15

NORM-INF

SIMILARITY

MEAN-RISK-0

MEAN-RISK-0.125

MEAN-RISK-0.25

MEAN-RISK-0.5

MEAN-RISK-1

MEAN-RISK-2

MEAN-RISK-4

(a)
Standard Deviation

6 8 10 12 14 16 18 20

P
ro

b
a

b
ili

ty
 t

o
 A

rr
iv

e
 o

n
 T

im
e

0.4

0.5

0.6

0.7

0.8

0.9

1

OPT-TT

BUFFER-1

BUFFER-2

BUFFER-3

BUFFER-4

BUFFER-5

BUFFER-6

BUFFER-7

BUFFER-8

BUFFER-9

BUFFER-10

BUFFER-12

BUFFER-15

NORM-INF

SIMILARITY

MEAN-RISK-0

MEAN-RISK-0.125

MEAN-RISK-0.25

MEAN-RISK-0.5

MEAN-RISK-1

MEAN-RISK-2

MEAN-RISK-4

(b)

Figure 3 Comparison of various methods: arrival rate vs. average departure time (a), and arrival
rate vs. standard deviation on the arrival time (b).

Table 1 Overview of how often the route suggestions of two methods differ.

Opt-TT Buffer-3 Buffer-6 Buffer-9 Buffer-12 Norm-1 Norm-Inf Similarity Mean-Risk-1

Opt-TT 30, 82% 24, 14% 25, 79% 29, 56% 27, 32% 40, 45% 40, 21% 32, 91%
Buffer-3 30, 82% 31, 60% 25, 97% 24, 89% 30, 31% 40, 05% 40, 72% 32, 54%
Buffer-6 24, 14% 31, 60% 28, 77% 25, 83% 30, 86% 41, 03% 42, 17% 34, 16%
Buffer-9 25, 79% 25, 97% 28, 77% 30, 37% 29, 99% 39, 59% 40, 68% 32, 03%
Buffer-12 29, 56% 24, 89% 25, 83% 30, 37% 31, 77% 40, 83% 42, 48% 33, 99%
Norm-1 27, 32% 30, 31% 30, 86% 29, 99% 31, 77% 27, 48% 31, 30% 14, 33%
Norm-Inf 40, 45% 40, 05% 41, 03% 39, 59% 40, 83% 27, 48% 32, 43% 19, 54%
Similarity 40, 21% 40, 72% 42, 17% 40, 68% 42, 48% 31, 30% 32, 43% 32, 50%
Mean-Risk-1 32, 91% 32, 54% 34, 16% 32, 03% 33, 99% 14, 33% 19, 54% 32, 50%

Arrival Rate, Departure Time and Standard Deviation on the Arrival Time. Intuitively,
an earlier departure time leads to a higher probability to arrive on time (i.e., a higher arrival
rate), and achieving a higher arrival rate in a network with delays entails a higher standard
deviation on the arrival time. Figure 3 compares the proposed methods with respect to these
aspects. It shows that, independently of the considered method, there is a clear trade-off
between the departure time and the arrival rate (a) as well as between the standard deviation
of the arrival time and the arrival rate (b).

Both parameter-based methods Buffer-ξ and Mean-Risk-c, form Pareto optimal fronts
in both (a) and (b). Clearly, Mean-Risk-c benefits from the additional information from
the input instances T1, . . . , T6 and it dominates Buffer-ξ in both (a) and (b). The Similarity
method needs no parameter adjustment, it is based only on two past timetables, and still
proposes solutions with a reasonable arrival rate that do not depart too early. Notice that
Norm-Inf (the generalization of Similarity) also benefits from the knowledge of the six past
timetables, and without parameter adjustment it produces a solution which gives a very
reasonable trade-off between departure time, arrival rate and the standard deviation on the
arrival time. Moreover, the solutions proposed by Norm-Inf performed rather well compared
to all the competitors (which do require parameter adjustment).

We also investigated whether the arrival rates of different methods differ due to different
departure times only, or whether the suggested route(s) also differ. In particular, for any two
methods M1 and M2, we studied how often the suggested route(s) of M1 and M2 differ. For

ATMOS’15

76 Robust Routing in Urban Public Transportation

Similarity

Low High

P
ro

b
a

b
ili

ty
 t

o
 A

rr
iv

a
l
o

n
 T

im
e

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OPT-TT

BUFFER-1

BUFFER-2

BUFFER-3

BUFFER-4

BUFFER-5

BUFFER-6

BUFFER-7

NORM-1

NORM-2

NORM-INF

SIMILARITY

MEAN-RISK-1

(a)
Target Arrival Time

06:00 09:00 12:00 15:00 18:00 21:00

S
im

ila
ri
ty

4.5

5

5.5

6

6.5

Planned vs. Test Instance

Average Planned vs. Training Instances

(b)

Figure 4 Influence of low/high similarity on the arrival rate: comparing various methods (a).
Influence of the target arrival time on the similarity of the planned timetable and the test instance
T7, and on the average similarity between the planned timetable and each of the input instances
T1, . . . , T6 (b).

some exemplary methods, Table 1 shows that this happens in 14 to 42% of the cases. Notice
that in roughly one third of the cases, the routes proposed by Similarity differ from the ones
proposed by Norm-Inf (which can be seen as a generalization of Similarity). Also, there is a
notable difference between the route suggestions of the different Buffer methods. Thus, for
enforcing robustness there are better strategies than merely decreasing the departure time.

Influence of the Similarity between Input and Test Instances. We just saw that journeys
proposed by the similarity-based approaches performed rather poorly, with respect to both
arrival rate as well as standard deviation on the arrival time. However, we have to take
into account that these methods use only two recorded timetables as input: if both differ
substantially from the test instance, then in general there is very little one can do. The
generic approach by Buhmann et al. [5] works well if both the input and the test instances
are typical, i.e., if their mutual similarity is high. Thus we investigate the impact of high
and low mutual similarities on the quality of the predictions.

First we note that the similarity SγOP T
does not only depend on the two input instances

but also on the origin s and the destination t, and on the target arrival time tA. Thus, in the
following experiments, we do not always use the same timetables T5, T6 as input and T7 for
testing, but select for every (s, t) the timetables whose mutual similarities are as high or as
low as possible. Let Υ be the set of all triples of recorded timetables (Ti, Tj , Tk) ∈ T 3 where
i, j, k are mutually different. For a given pair (s, t) and two timetables Ti, Tj ∈ T , let Sstij be
the similarity of Ti and Tj with respect to s and t. We selected triples whose minimum (or
maximum, respectively) pairwise similarity is as high or as low as possible,

(Th1 , Th2 , Th3) = arg max
(Ti,Tj ,Tk)∈Υ

min
{
Sstij , S

st
ik, S

st
jk

}
(6)

(T l1, T l2, T l3) = arg min
(Ti,Tj ,Tk)∈Υ

max
{
Sstij , S

st
ik, S

st
jk

}
(7)

and used Th1 and Th2 as input and Th3 for testing, and for comparison, used T l1 and T l2 as
input and T l3 for testing. Even though Mean-Risk-c and Norm-p could handle more instances,
they were given just the two mentioned instances.

K. Böhmová, M. Mihalák, P. Neubert, T. Pröger, and P. Widmayer 77

Target Arrival Time

06:00 09:00 12:00 15:00 18:00 21:00

P
ro

b
a

b
ili

ty
 t

o
 A

rr
iv

e
 o

n
 T

im
e

0.4

0.5

0.6

0.7

0.8

0.9

1

OPT-TT

BUFFER-3

BUFFER-6

NORM-INF

SIMILARITY

MEAN-RISK-1

(a)
Target Arrival Time

06:00 09:00 12:00 15:00 18:00 21:00

T
im

e
 D

if
fe

re
n

c
e

 i
n

 M
in

u
te

s

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

BUFFER-3

BUFFER-6

NORM-INF

SIMILARITY

MEAN-RISK-1

(b)

Figure 5 Comparison of various methods: Arrival rate vs. target arrival time (a), and travel
time difference to the optimum travel time vs. target arrival time (b).

Figure 4(a) shows that all methods benefit when the similarity of the three instances is
high. The arrival rates of both Norm-p and especially Similarity increase significantly. We
observed that Similarity outperforms Norm-p when the similarity is low, which is reasonable:
for a low similarity, the routes in the first intersection of the approximation sets as well as
the route that maximizes the average departure time are too much influenced by the noise in
the input instances. However, Similarity can still let the approximation sets grow beyond
the first intersection so that more stable solutions are contained (which Norm-p cannot). On
the other hand, if the similarity is high, then there is so little noise in the data that Sγ is
maximized already at the first γ for which the intersection is non-empty, thus Similarity and
Norm-p are nearly identical.

Of course these results cannot directly be used for designing an algorithm, since the test
instance is unknown. Nevertheless we believe that the results are interesting because they
demonstrate the power of the similarity-based approach.

Influence of the Target Arrival Time. Figure 5 shows how the behavior of the methods, in
terms of the arrival rate (a) and travel time (b), changes over the day. In particular, we can
observe a clear influence of the morning and evening rush hours. Interestingly, the two rush
hours affect the arrival rates of different methods differently. Specifically, the timetable-based
method Buffer-ξ is greatly affected by both rush hours while the learning strategies are less
affected by the evening rush hour.

To understand this behavior, consider Figure 4(b). The red curve shows how the value of
the similarity of Tplan and the test instance T7 changes during the day. In particular, we see
a significant drop of the similarity during rush hours. Notably, the two dips corresponding
to morning and evening rush hour are of the same height. This suggests that on the
day corresponding to T7, during the morning rush hour, there was a similar amount of
irregularities with respect to Tplan, as during the evening one. The blue curve in Figure 4(b)
shows the changes during the day of the averaged value of similarity of Tplan and each of the
training instances T1 − T6. Also there the similarity drops during rush hours, but we clearly
see that the morning dip is significantly lower than the evening one. This suggests that in
the recorded timetables T1 − T6 used for learning, the amount of irregularities (with respect
to Tplan) was lower in the morning than in the evening. Thus, when comparing the two

ATMOS’15

78 Robust Routing in Urban Public Transportation

Target Arrival Time

06:00 09:00 12:00 15:00 18:00 21:00

N
e

c
e

s
s
a

ry
 B

u
ff

e
r

T
im

e
 p

e
r

T
ra

n
s
fe

r

1

3

5

7

9

11

13

90%

80%

(a) Buffer-ξ
Target Arrival Time

06:00 09:00 12:00 15:00 18:00 21:00

N
e

c
e

s
s
a

ry
 M

e
a

n
-R

is
k
 C

o
e

ff
ic

ie
n

t

0

0.5

1

1.5

2

2.5

3

3.5

4

92.5%

90%

87.5%

(b) Mean-Risk-c

Figure 6 Necessary parameter to achieve a specified arrival rate in T7 depending on the target
arrival time.

curves, we see a significant gap between them during the morning rush hour, but a relative
match during the rest of the day. This suggests that the test instance T7 contained during
the day a similar amount of irregularities as it is expected on a typical day (represented by
T1 − T6), with the only exception of the morning rush hour, where it was less regular.

Let us now relate what we observed in Figures 4(b) and 5(a). Since Buffer-ξ is based solely
on Tplan, any irregularities with respect to Tplan occurring in T7 (captured by the red curve
in Figure 4(b)) affect its arrival rate. This explains why the arrival rate of Buffer-ξ drops
both in the morning and evening rush hour and exhibits two dips of nearly the same height.
On the other hand, the methods that use the information from the past observations (e.g.,
Mean-Risk-c) are trained to account for a certain amount of irregularities. Since the situation
in T7 in the evening is typical, the solutions proposed by these methods are prepared for it
and their arrival rate is almost not affected by the evening rush hour. In contrast, morning
rush hour causes their arrival rate to drop significantly and this maps to the discrepancy of
the red and blue curve in Figure 4(b).

In Figure 5(b) we observe that during peak hours, the travel time increases. Interestingly,
the required travel time does not depend on the method nor whether it is on time or not.
Thus, to achieve higher probability to arrive on time, one has to depart earlier (as seen in
Figure 3(a)), but does not need to increase the time spent traveling. We believe that this is
the case because the network of Zürich is quite dense, hence there exist different alternative
journeys with comparable travel times.

Choice of the Parameters for Buffer-ξ and Mean-Risk-c. Figure 6(a) displays the min-
imum value of the parameter ξ of Buffer-ξ that would be necessary to achieve arrival rates
of 80%, and 90% of the cases in T7, and how this value changes over the day. We see that,
affected by the daily rush hours, this parameter varies significantly, suggesting that the
Buffer-ξ strategy needs a non-trivial amount of parameter adjustment. We observe that the
dips corresponding to morning and evening rush hours are of the same height. Again, we
can directly relate this behavior with the similarity of Tplan and T7 (captured by the red
curve in Figure 4(b)).

Similarly, Figure 6(b) displays the value of the coefficient c of Mean-Risk-c that would
be necessary to achieve arrival rates of 78.5%, 90%, and 92.5% in T7, and its development

K. Böhmová, M. Mihalák, P. Neubert, T. Pröger, and P. Widmayer 79

Target Arrival Time

06:00 09:00 12:00 15:00 18:00 21:00

P
ro

b
a
b
ili

ty
 t
o
 A

rr
iv

e
 o

n
 T

im
e

0.7

0.75

0.8

0.85

0.9

0.95

1

1 Transfer

2 Transfers

3 Transfers

(a) Buffer-6
Target Arrival Time

06:00 09:00 12:00 15:00 18:00 21:00

P
ro

b
a
b
ili

ty
 t
o
 A

rr
iv

e
 o

n
 T

im
e

0.7

0.75

0.8

0.85

0.9

0.95

1

1 Transfer

2 Transfers

3 Transfers

(b) Mean-Risk-1

Figure 7 Influence of the number of transfers on the arrival rate.

during the day. We observe that this value is greatly affected by the morning rush hour.
On the other hand, the dip corresponding to the evening rush hour is visible, but not
too significant. Again, we link this behavior of the value to the observed similarity of the
training/test instances with the planned timetable—the two curves captured by Figure 4(b).
Recall that in the morning rush hour there is a gap between the two curves in Figure 4(b)
indicating that the situation in T7 was not typical with respect to previous observations. As
we see in Figure 6(b), the value of the coefficient c has be quite large to compensate for the
unexpected irregularities. In contrast, in a situation that is typical (i.e., when the two curves
in 4(b) approximately match), the Mean-Risk-c method performs well and fine-tuning of the
parameters is not crucial. For instance, a coefficient c set to 1 leads to reasonably robust
solutions.

Influence of the Number of Transfers. Figure 7(a) shows that the arrival rate of Buffer-ξ
(for ξ = 6) is quite sensitive to the number of transfers. This suggests that the number of
transfers is another aspect (of possibly many aspects) which has to be taken into account
when searching for the best parameter for Buffer-ξ. In contrast, Figure 7(b) shows that the
influence of the number of transfers on the arrival rate of Mean-Risk-c (for c = 1) is almost
negligible. Thus, there is no need to fine-tune the coefficient c to compensate for this aspect.
We remark that we generally observed that the arrival rate of the methods based on the past
observations is not very sensitive to the number of transfers.

5 Conclusion

We observed a clear trade-off: to achieve a higher probability to arrive on time in a network
with delays, one has to depart earlier and expect higher standard deviation on the arrival
time. On the other hand, the average travel time itself does not change with robustness or
the choice of a routing method.

Methods based solely on the planned timetable, where the robustness is achieved by
adding buffer times, need a non-trivial parameter adjustment for which many aspects need
to be considered (time of the day, number of transfers, etc.). The methods that learn from
past benefit from the additional knowledge: If the test instance is typical with respect to the
past observations, these strategies perform well, Mean-Risk-c does not need much fine-tuning,
and Norm-Inf without parameter adjustment proposes a highly competitive solution with

ATMOS’15

80 Robust Routing in Urban Public Transportation

reasonable trade-offs. We have seen that Similarity gives a good measure of the amount of
irregularities in the network and can help to detect typical situations. Notably, it considers
complex solutions (journeys), and thus it has a potential to capture behavior that cannot
be observed only locally. We believe that this measure is worth further exploring, and by
considering various aspects (e.g., how different approaches would benefit if Similarity was
used to preselect typical instances for training) it can bring us even closer to the goal of
robust routing.

The existence of equally good alternative journeys is one of the reasons why we believe that
it was reasonable to choose the public transportation network of Zürich for our experiments,
although the network is rather small in comparison to the public transportation networks of
other cities. An interesting question is whether the algorithms are still sufficiently fast on
larger networks. We believe that due to our solution concept (i.e., sequences of lines), the
running time depends on the number of lines rather than the number of stops. In that respect,
the network of Zürich is not exorbitantly small: For example, the public transportation
network in Vienna has more than six times as many stops, but only less than two times as
many lines. Hence, if the number of feasible st-routes (with a bounded number of transfers)
is not too large, the algorithms should still work fast. Otherwise one could try to generate
meaningful alternative routes in advance. Investigating these aspects and also whether our
qualitative results hold for other cities are clearly interesting questions that we plan to
investigate further.

Acknowledgements. We wish to thank the Verkehrsbetriebe Zürich (VBZ) for providing
historic real-world delay data.

References
1 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas

Pajor, Peter Sanders, Dorothea Wagner, and Renato Werneck. Route planning in trans-
portation networks. Technical Report MSR-TR-2014-4, Microsoft Research, 2014.

2 Hannah Bast, Jonas Sternisko, Sabine Storandt, et al. Delay-robustness of transfer patterns
in public transportation route planning. In ATMOS, pages 42–54, 2013.

3 Kateřina Böhmová, Matúš Mihalák, Tobias Pröger, Rastislav Šrámek, and Peter Widmayer.
Robust routing in urban public transportation: How to find reliable journeys based on past
observations. In ATMOS, pages 27–41, 2013.

4 Justin Boyan and Michael Mitzenmacher. Improved results for route planning in stochastic
transportation. In SODA, pages 895–902, 2001.

5 Joachim M. Buhmann, Matúš Mihalák, Rastislav Šrámek, and Peter Widmayer. Robust
optimization in the presence of uncertainty. In ITCS, pages 505–514, 2013.

6 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple
and fast transit routing. In SEA, pages 43–54, 2013.

7 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Delay-robust journeys in timetable
networks with minimum expected arrival time. In ATMOS, pages 1–14, 2014.

8 Yann Disser, Matthias Müller-Hannemann, and Mathias Schnee. Multi-criteria shortest
paths in time-dependent train networks. In WEA, pages 347–361, 2008.

9 Donatella Firmani, Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni. Is time-
tabling routing always reliable for public transport? In ATMOS, pages 15–26, 2013.

10 H Frank. Shortest paths in probabilistic graphs. Operations Research, 17(4):583–599, 1969.
11 Marc Goerigk, Sacha Heße, Matthias Müller-Hannemann, Marie Schmidt, and Anita Schö-

bel. Recoverable robust timetable information. In ATMOS, pages 1–14, 2013.

K. Böhmová, M. Mihalák, P. Neubert, T. Pröger, and P. Widmayer 81

12 Marc Goerigk, Martin Knoth, Matthias Müller-Hannemann, Marie Schmidt, and Anita
Schöbel. The price of robustness in timetable information. In ATMOS, pages 76–87, 2011.

13 Sejoon Lim, Christian Sommer, Evdokia Nikolova, and Daniela Rus. Practical route plan-
ning under delay uncertainty: Stochastic shortest path queries. In Robotics: Science and
Systems VIII, 2012.

14 Matthias Müller-Hannemann and Mathias Schnee. Efficient timetable information in the
presence of delays. In Robust and Online Large-Scale Optimization, pages 249–272. Springer,
2009.

15 Evdokia Nikolova, Jonathan A Kelner, Matthew Brand, and Michael Mitzenmacher.
Stochastic shortest paths via quasi-convex maximization. In ESA, pages 552–563, 2006.

ATMOS’15

Bi-directional Search for Robust Routes in
Time-dependent Bi-criteria Road Networks∗

Matúš Mihalák1 and Sandro Montanari2

1 Department of Knowledge Engineering, Maastricht University, The
Netherlands

2 Department of Computer Science, ETH Zurich, Switzerland

Abstract
Based on time-dependent travel times for N past days, we consider the computation of robust
routes according to the min-max relative regret criterion. For this method we seek a path
minimizing its maximum weight in any one of the N days, normalized by the weight of an
optimum for the respective day. In order to speed-up this computationally demanding approach,
we observe that its output belongs to the Pareto front of the network with time-dependent
multi-criteria edge weights. We adapt a well-known algorithm for computing Pareto fronts in
time-dependent graphs and apply the bi-directional search technique to it. We also show how
to parametrize this algorithm by a value K to compute a K-approximate Pareto front. An
experimental evaluation for the cases N = 2 and N = 3 indicates a considerable speed-up of the
bi-directional search over the uni-directional.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases shortest path, time-dependent, bi-criteria, bi-directional search, min-max
relative regret

Digital Object Identifier 10.4230/OASIcs.ATMOS.2015.82

1 Introduction

The standard goal of route planning is the computation of a quickest route from a location s
to a location t when departing at a time τ . Road networks are modeled as directed graphs
with time-dependent edge weights representing travel times at a given period of time and a
quickest route corresponds to a shortest s-t path in the time-dependent graph. The edge
weights are usually an aggregation (e.g., average) of measured travel times of many individual
cars over many similar time points. These aggregated values provide a good estimate of
the expected travel time, yet only over a large amount of past days. They say little about
deviations of the actual travel times and about per-day nuances of the traffic situations. In
fact, a quickest path computed from such aggregated values can perform substantially bad
on one particular day. In such situations a more appropriate goal is the computation of a
robust route [22], that is a path offering guarantees on its travel time in the various situations
we can encounter.

In this paper we consider the computation of robust routes in time-dependent road
networks. Our focus is on speeding-up a particular method called min-max relative regret.

∗ This work was supported by the EU FP7/2007-2013 (DG CONNECT.H5-Smart Cities and Sustainability),
under grant agreement no. 288094 (project eCOMPASS) and by the Swiss National Science Foundation
(SNF) under the grant number 200021 138117/1.

© Matúš Mihalák and Sandro Montanari;
licensed under Creative Commons License CC-BY

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 82–94

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.82
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Matúš Mihalák and Sandro Montanari 83

The method looks for a route minimizing the maximum normalized travel time in the worst-
case scenario. In our case, there are N scenarios (N past days), and the normalization is
done with respect to the travel time of a quickest route in the respective day.

In a straightforward implementation, we enumerate all s-t paths in order of increasing
travel times, alternatively for each day, until the desired s-t path is found. This implementa-
tion is however computationally extremely demanding and impractical. Thus, we observe
that its output lies on the Pareto front of the road network with appropriate time-dependent
and multi-criteria edge weights induced by the N instances. We adapt a known algorithm
of Hansen/Martins [19, 23] for computing the Pareto front of such a graph and apply the
speed-up technique of bi-directional search to it. To the best of our knowledge, our paper is
the first one to consider speeding-up the computation of shortest paths in a setting where
every component of the edge weights is time-dependent and multi-criteria.

2 Quickest Paths and Min-max Optimization

We consider a directed graph G = (V,E) with time-dependent edge weights w : E × T → N
defined over a given time horizon T . In our road network application w(e, τ) expresses the
travel time needed to traverse the edge e ∈ E when the vehicle enters e at time τ ∈ T . This
information for an edge e ∈ E is obtained from a piecewise-linear function fe : T → N with
period of one week, represented succinctly by a number of breakpoints. In our data-set the
week is divided into 2016 breakpoints, one every 5 minutes. We can therefore compute w(e, τ)
for any τ ∈ T in time O(1).

A path P is a sequence 〈v1, . . . , vk〉 of vertices where (vi, vi+1) ∈ E for i = 1, ..., k− 1. We
overload the function w to express the travel time of P = 〈v1, ..., vk〉 departing at τ ∈ T as

w(P, τ) =
{

0 if k = 1
w ((v1, v2), τ) + w (〈v2, . . . , vk〉, τ + w ((v1, v2), τ)) otherwise.

A quickest path for given source s ∈ V , target t ∈ V , and time τ ∈ T , is an s-t-path P

minimizing w(P, τ). Note that in the above definition we do not allow waiting at vertices;
this is clearly not beneficial if waiting at a vertex on an s-t path does not result in arriving
at t earlier, a property formally defined as follows.

I Definition 1 (FIFO Property). A weight function w : E×T → N satisfies the FIFO property
if for all e ∈ E and all τ, τ ′ ∈ T with τ ≤ τ ′ it holds τ + w(e, τ) ≤ τ ′ + w(e, τ ′).

If the edge weights satisfy the FIFO property, a quickest path can be computed efficiently
using a generalization of Dijkstra’s algorithm [11]. Since road networks are known to satisfy
this property, we therefore focus on algorithms not waiting at nodes.

Given a departure time τ ∈ T , vertices s, t ∈ V , and a finite discrete set of scenarios, the
problem we consider is that of computing an optimum s-t path according to the min-max
relative regret criterion. A scenario or instance Ii is specified by an edge weight function
wi : E × T → N. The relative regret of an s-t path P in instance Ii is the ratio between its
weight and the weight OPTi of a quickest path in Ii. Given N different instances I1, . . . , IN ,
we want to compute a path minimizing its maximum relative regret. In other words, we look
for a path

arg min
P

max
i

{
wi(P, τ)
OPTi

}
. (1)

The motivation for the study of this problem comes from its relation to robust optimization.
For example, Buhmann et al. [4] define a general framework for robust optimization according

ATMOS’15

84 Bi-directional Search in Time-dependent Bi-criteria Road Networks

to several different criteria. Among these criteria, the one denoted by the authors as “First
intersection” corresponds to the min-max relative regret.

Problem (1) is similar in nature to the problems of optimizing according to the min-max
absolute or the min-max deviation criteria [25], the difference lying only in the normalization
factor. In the former we look for a path arg minP maxi {wi(P, τ)}, while in the latter the goal
is arg minP maxi {wi(P, τ)−OPTi}. All these problems are NP-hard even for 2 instances;
hardness for the min-max absolute and the min-max deviation criteria was proven by Yu and
Yang [25], while for the min-max relative regret it follows straightforwardly as a reduction
from the constrained shortest path problem [13].

Since a worst-case efficient algorithm is unlikely to be found, we consider efficiency only
from a practical perspective. Even though our theoretical results can be generalized for any
number N of scenarios, for practical reasons we focus on the particular case N = 2. As
additional motivation for considering a small number of scenarios, we observe that approaches
based on the min-max or min-max (relative) regret criteria are of more interest in these cases.
If the number of scenarios is large, approaches based on statistical analysis are typically more
efficient and produce results of similar if not better quality. In Section 3 we prove that there
always exists an optimum solution lying on the Pareto front of all s-t paths. In Section 5 we
design a bi-directional algorithm for computing such a front that can be parametrized by
a factor K in order to compute a K-approximate solution. In Section 6 we experimentally
show that, on a road network of the Berlin and Brandenburg area, the speed-up of the
bi-directional search over uni-directional is considerable. A preliminary evaluation of the
algorithm for the case N = 3 seems to indicate that this speed-up scales with the number
of instances. In Section 7 we propose a simple modification to the bi-directional algorithm
exploiting the correlation between the travel times of the different instances.

3 Relation to Bi-criteria Quickest Paths

For the case of 2 scenarios, the instances I1 and I2 with edge-weight functions respectively
w1 and w2 induce a bi-criteria weight function w : E × T → N2 defined as

w(e, τ) =
(
w1(e, τ)
w2(e, τ)

)
. (2)

Again, we overload the definition of w to express the weight of a path P as

w(P, τ) = w(P ′, τ) +
(
w1(e, τ + w1(P ′, τ))
w2(e, τ + w2(P ′, τ))

)
, (3)

where P ′ is the path obtained from P without the last hop e. Given two s-t paths P and
P ′, we say that P dominates P ′ if wi(P, τ) ≤ wi(P ′, τ) for all i ∈ {1, 2}, with the inequality
being strict for some i. If two paths have the same weight in both components, they are said
to be equivalent. The Pareto front of a set of paths P is the subset of all paths in P that
are not dominated by another path in P. For the sake of readability, in the following we
will assume that no two paths are equivalent. It is well known [1] that an optimum path for
Problem (1) lies in the Pareto front F of all s-t paths departing at τ ∈ T . The following
theorem proves a slightly stronger statement.

I Theorem 2. Let Fρ be the Pareto front of all optimum paths of Problem (1). Then,
Fρ ⊆ F .

Matúš Mihalák and Sandro Montanari 85

Proof. Assume towards contradiction that there exists a path P ∈ Fρ \ F . Then, there is a
path P ′ /∈ Fρ dominating P . For i ∈ {1, 2}, we let

ρ′i = wi(P ′, τ)
OPTi

≤ wi(P, τ)
OPTi

= ρi,

Note that the relative regret of an optimum path is ρ∗ = max{ρ1, ρ2} and that max {ρ′1, ρ′2} >
ρ∗. If max {ρ′1, ρ′2} = ρ′i for some i ∈ {1, 2} we get a contradiction, because

ρ′i ≤
wi(P, τ)
OPTi

≤ ρ∗ < ρ′i. J

Theorem 2 implies that an optimum path for Problem (1) can be computed by enumerating
all paths in F and picking one with smallest relative regret. Note that there may exist
paths in F that are not optima, typically the quickest paths in either of the two instances.
It is straightforward to prove Theorem 2 also for the min-max absolute and the min-max
deviation criteria, implying that the bi-directional search algorithm proposed in the second
half of this paper can be applied for those criteria as well. We further observe that the paths
in Fρ might not be extreme points of the convex hull of F . This observation rules out the
possibility of adopting known algorithms for the computation of such points [6, 12, 14].
I Remark. The definition in eq. (3) might appear unusual to a reader familiar with bi-criteria
quickest path problems. In the literature it is more typically assumed that one of the two
criteria of the weight of a path is its travel time while the other one is a cost depending on
the travel time (for example, fuel consumption). Such a weight function can be written as

w(P, τ) = w(P ′, τ) +
(
w1(e, τ + w1(P ′, τ))
w2(e, τ + w1(P ′, τ))

)
. (4)

Note the difference in the time at which the second component is evaluated. Since our target
application is robust routing, we however need to consider different travel times for the same
path and hence use the definition in eq. (3). Under similar assumptions on the FIFO property
of the edge weights, our results can be generalized for eq. (4) as well.

4 Related Work

We now consider the computation of an optimum path for Problem (1) by means of time-
dependent multi-criteria optimization. Our aim is to apply the speed-up technique bi-
directional search to an algorithm by Martins for computing Pareto fronts and experimentally
investigate the improvements to its running time on road networks. In spite of its relevance,
the literature about the problem is scant, and not many practical algorithms are known.
The most closely related work is by Batz and Sanders [3] that consider the computation of
shortest paths in a graph with multi-criteria edge weights where only one of the components
is time-dependent. A great amount of work has been however invested by the community
into the speed-up of routing algorithms in settings where edge weights are either only
time-dependent [2, 7, 21] or only multi-criteria [8, 10].

Hansen [19] introduced several variants of bi-criteria shortest path problems and a pseudo-
polynomial time algorithm computing the Pareto front of a graph with static non-negative
bi-criteria edge weights. Martins [23] generalized this algorithm to static edge weights with
more than two criteria. His algorithm keeps a priority queue of temporary labels Q and
a set of permanent labels πu for every vertex u ∈ V . Each label (u,ω) represents a path
from s to u with weight ω ∈ Nk (for k criteria); we write P ∈ πu to indicate that the label

ATMOS’15

86 Bi-directional Search in Time-dependent Bi-criteria Road Networks

Listing 1 Time-dependent Martins’ algorithm.

∀v ∈ V : πv := ∅
Q. insert (s,

(0
0

)
)

{ Compute front}

while Q 6= ∅ do

(u,ω) := Q. extract_min ()

for e = (u, v) ∈ E do

ν := (v,ω +(w1(e,τ+ω1)
w2(e,τ+ω2)))

if ¬πv. dominates (ν) and ¬πt. dominates (ν) then Q. insert (ν)

representing P is in πu. At the beginning every πu is empty, and a label (s,0) is created
and put into Q. At each iteration the algorithm extracts from Q the smallest label (u,ω) in
lexicographical order and puts it into πu. A new label (v,ν) is then generated for each vertex
v that can be reached from u, with ν = ω + w(u, v). If no label in πv or πt dominates the
new one, it is inserted into Q and all labels corresponding to s-v paths that are dominated by
(v,ν) are removed from Q. The algorithm ends when Q is empty; at this point, πt contains
labels representing all paths in the Pareto front F . By storing labels in Q and in all πv in
lexicographical order, we can implement the operations of extract minimum, insertion, and
dominance checking to run, for the bi-criteria case, in logarithmic time. For a number of
criteria larger than 2 it is currently not known how to efficiently implement these operations.

Gräbener et al. [17] provide an experimental evaluation of a straightforward time-
dependent extension of Martins’ algorithm, shown in Listing 1, on some publicly acces-
sible networks. The correctness of this extension crucially depends on the FIFO property.
Hamacher et al. [18] consider the setting where the FIFO property does not hold, and provide
algorithms computing the Pareto front for a given s-t pair as well as for the all-to-all variant.

Dijkstra’s algorithm for finding shortest s-t paths in the static single-criteria case gradually
grows a shortest-path tree from s. At any step, each vertex is in one of the following states:
unreached, settled, or discovered. A vertex is unreached if its distance from s is not
known, it is settled if its distance from s is known exactly, and it is discovered if only an
upper bound on the distance is known. At every iteration the algorithm introduces a new
edge in the shortest path tree and sets its tail vertex as settled. The algorithm terminates
when t is settled. In the worst-case the tree contains all vertices, even though we are only
interested in those on the shortest s-t path that is returned.

The idea behind the bi-directional search [15, 16] is to grow two trees rooted at s and
t using Dijkstra’s algorithm alternatively from s and from t. The execution from t, called
backward search, uses the edges of the reverse graph, i.e., the graph containing the edges of
the original one in reverse direction. As soon as a vertex v is settled by both the forward
and the backward search the algorithm terminates and a shortest s-t path is guaranteed to
lie in the union of the so-far constructed shortest path trees (such a path might however not
pass through v). Any alternation works correctly; a typical choice is to balance the number
of iterations of the two searches.

For static multi-criteria edge weights one can apply the bi-directional search by replacing
Dijkstra’s algorithm with Martins’. Since the goal is to compute the whole Pareto front of
s-t paths (and not only a single path), the stopping criterion is however different. Demeyer
et al. [9] show that terminating the computation when the sum of the point-wise minima of

Matúš Mihalák and Sandro Montanari 87

the forward and backward queues is dominated by the front computed so far ensures that
the Pareto front is found. The point-wise minimum of a queue Q, denoted as Q.p_min(),
is the vector where each component is equal to the minimum among all labels in Q for the
corresponding criterion.

When the edge weights are time-dependent, even in the single-criterion case, applying
the bi-directional search is not straightforward anymore: the input consists of s, t, and the
departure time τ . Thus, we can grow a tree from s starting at time τ , but we do not know the
time τ ′ from which we shall start growing the tree from t – ideally, τ ′ is the earliest arrival
time at t, but that is the number we wish to compute. A way to overcome this difficulty is
to make the backward search static: for each edge (v, u) of the reverse graph ←−G = (V,←−E),
use a static weight defined as

←−w ((v, u)) = min
τ∈T
{w((u, v) , τ)} . (5)

Nannicini et al. [24] propose a bi-directional algorithm using the weights in eq. (5) working
in three phases. In phase 1 the forward and backward search run alternatively until a vertex
is discovered in both directions, resulting in an upper bound µ on the weight of a quickest
path. In phase 2 both searches continue until the distances of all the discovered vertices in
the backward queue are at least µ. In phase 3 only the forward search continues, with the
constraint that only vertices that were settled by the backward search are considered. In
the following we show how to apply this idea to the time-dependent multi-criteria case.

5 Bi-directional Time-dependent Martins’ Algorithm

A bi-directional algorithm for edge weights that are both time-dependent and bi-criteria can
be designed by straightforwardly combining the ideas of Demeyer et al. and of Nannicini
et al. This results in a three-phases search using Martins’ algorithm both from s and from
t, where the edge weights in the reverse graph are defined as in eq. (5) for both criteria.
The termination condition of the backward search (i.e., the end of phase 2) is the stopping
condition of Demeyer et al. As it turns out, however, this trivial algorithm can be improved
considerably.

A critical observation to improve the straightforward algorithm is to note that in the
backward direction our only interest is to identify vertices that might be on a Pareto optimal
path. In other words, to determine whether or not the Pareto front of a given vertex contains
at least one “promising” label. However, a label that is good for one criterion might not be
good for the other one and we cannot know in advance which labels are promising. Our
solution is to consider only the pointwise minima of the Pareto front πv of each vertex v.

If the only purpose of the backward search is to compute pointwise minima, then Martins’
algorithm is more than what is necessary. We can instead implement the backward search
as two independent Dijkstra’s runs on the reverse graph for each criterion. We modify the
three phases of the bi-directional algorithm according to this observation as follows.

For phase 2, suppose we have found (in some way during phase 1) a number of non-
necessarily Pareto-optimal s-t paths, and let M denote the Pareto front of these paths, while−→
Q is the forward queue and ←−Q1,

←−
Q2 are the backward queues. Suppose further that at some

point during the computation, the weight of a path in M dominates

β := −→Q.p_min() +
(←−
Q1.min()
←−
Q2.min()

)
.

ATMOS’15

88 Bi-directional Search in Time-dependent Bi-criteria Road Networks

At this point, if a vertex v has not been settled by both backward searches, then the weight
of any s-t path through v is dominated by β and therefore by a path in M (we prove the
correctness of this argument formally in the following). We can thus terminate phase 2 and
the backward searches as soon as a path in M dominates β.

For phase 3 consider the situation where the forward search created a label (v,ω) to
insert into −→Q . Let the vector of distances computed by the backward searches for v be v.d,
the value of the second term of β (the minima of the backward queues) at the end of phase 2
be
←−
β , and the minimum between v.d and

←−
β in each component be θ; that is, for i ∈ {1, 2},

we define θi := min{v.di,
←−
βi}. At the beginning of the computation v.di is set to ∞ and at

the end it holds that v.di ≤
←−
βi if v has been settled by the i-th backward search. If in

phase 3 a path in M dominates ω + θ then no path with the same s-v prefix as ω can be
optimal. We can thus discard all labels (v,ω) for which ω + θ is dominated by a path in M .

According to the above phases, the purpose of phase 1 is the computation of a suitable
tentative front M . Intuitively, a tentative front is good if the domination of β happens as
early as possible, because less labels carry over to phase 3. We propose to terminate phase 1
as soon as a vertex v with πv 6= ∅ is discovered by both backward searches and set M as
the corresponding set of s-t paths passing through v. This strategy has the advantage of
being efficient while at the same time being simple to implement. We note however that it is
easy to come up with different strategies; it is an interesting open question to identify an
optimum one.

To summarize, the three phases of the bi-directional algorithm are in detail as follows:
Phase 1 We let the forward and the backward search run alternatively. In the forward

direction we use the time-dependent Martins’ algorithm. In the backward direction we
use two independent runs of Dijkstra’s algorithm, one per criterion, using edge weights as
in eq. (5). This phase ends as soon as a vertex v with πv 6= ∅ is discovered by both
backward searches. At the termination of the phase we let M be the Pareto front of the
s-v paths in πv concatenated with the v-t paths discovered in the backward direction.

Phase 2 Both the forward and the backward searches continue to run as in phase 1, until a
path in M dominates β.

Phase 3 Only the forward search continues, with the constraint that labels (v,ω) for which
ω + θ is dominated by a path in M are ignored. This phase terminates when −→Q becomes
empty.

The pseudocode of the algorithm under the name of BiTdMartins is illustrated by
Listing 2. We use φ to denote the current phase and ↔ to denote either the forward (↔=→)
or the backward search (↔=←). The command ↔∈ {→,←} selects the direction for the
current iteration according to the alternation strategy; in our implementation we alternate
between one iteration of the forward search and one iteration for each backward search. Note
that to check the termination condition of phase 1 it is not necessary to search through all
vertices. It is sufficient to check whether the condition holds only for the vertex extracted at
the current iteration.

In the algorithm of Nannicini et al. [24] phase 2 terminates when the upper bound µ

computed in phase 1 is at most the minimum of the backward queue. The authors proved
that replacing this condition with one that, for a fixed parameter K, checks whether µ is
at most K times the minimum of the backward queue results in an algorithm computing
a K-approximate quickest path (i.e., a path with weight at most K times the weight of a
quickest path). The following theorem shows that BiTdMartins satisfies a similar property.
A corollary of this theorem, obtained by setting K = 1, implies correctness of the algorithm
in the exact variant.

Matúš Mihalák and Sandro Montanari 89

Listing 2 Algorithm BiTdMartins.

1 M := ∅, φ := 1, ∀v ∈ V : πv := ∅, v.d :=
(∞

∞

)
2 −→

Q . insert (s,
(0

0

)
),
←−
Q1. insert (t, 0),

←−
Q2. insert (t, 0)

3 while
−→
Q 6= ∅ do

4 if φ = 3 then ↔:=→ else ↔∈ {→,←}
5 { terminate phase 1}

6 if φ = 1 and ∃v ∈ V : πv 6= ∅ and v.d1 6=∞ and v.d2 6=∞ then

7 M . insert (< s-t paths through v >), φ := 2
8 { terminate phase 2}

9 if φ = 2 and M . dominates (β) then φ := 3
10 {relax edges}

11 if ↔=→ then

12 (u,ω) := −→Q . extract_min ()

13 for e = (u, v) ∈ −→E do

14 ν := ω +
(
w1(e,τ+ω1)
w2(e,τ+ω2)

)
15 if φ = 3 and M . dominates (ν + θ) then continue

16 if ¬πv. dominates (ν) and ¬πt. dominates (ν) then
−→
Q . insert (v,ν)

17 else

18 for i ∈ {1, 2} do

19 ui :=←−Qi. extract_min ()

20 for e = (ui, v) ∈ ←−E do

21 if ui.di +←−wi(e) < v.di then
←−
Qi. insert (v, ui.di +←−wi(e))

I Definition 3. Given τ ∈ T and K ≥ 1, we say that a path P is a K-approximation of
another path P ′ if w(P, τ) dominates or is equivalent to K ·w(P ′, τ). Given two sets of paths
P and P ′, we say that P is a K-approximation of P ′ if every path in P ′ is K-approximated
by a path in P.

I Theorem 4. Given K ≥ 1, if we replace the condition to terminate phase 2 with
M .dominates(K · β) and in phase 3 we discard all labels (v,ν) such that M .dominates(K ·
(ν + θ)), then BiTdMartins computes a K-approximation of F .

Proof. Assume there exists a path P ∈ F not K-approximated by a path in πt. That is, for
every P ′ ∈ πt there is i ∈ {1, 2} such that

K · wi(P, τ) < wi(P ′, τ). (6)

Let Psv be the prefix of P from s to the first vertex v such that Psv /∈ πv, and Pvt be the
suffix of P from v to t. Since Psv /∈ πv, there is a path in M dominating K · (w(Psv, τ) + θ).
Let P ′ be either this path, if it belongs to πt, or a path in πt dominating it otherwise. Note
that for all i ∈ {1, 2} it holds θi ≤ ←−wi(Pvt) since, if v was settled by the i-th backward
search, then θi = v.di = ←−wi(Pvt) while, if v was not settled by the i-th backward search,
then θi =

←−
βi ≤ ←−w (Pvt). Supposing without loss of generality that eq. (6) holds for i = 1 we

obtain a contradiction, because

K ·w1(P, τ) < w1(P ′, τ) ≤ K ·(w1(Psv, τ)+θi) ≤ K ·(w1(Psv, τ)+←−w1(Pvt)) ≤ K ·w1(P, τ).J

ATMOS’15

90 Bi-directional Search in Time-dependent Bi-criteria Road Networks

Table 1 Run-time in milliseconds and average number of scanned labels.

Labels
Max Rel Regret Run-time (ms) Phase 1 Phase 2 Phase 3

Dijkstra 1.0711 261 – – 220,620
Naive 1.0074 – – – 8,420

Uni-dir 1.0074 3,105 – – 1,419,524
Bi-dir 1.0074 1,888 178,855 189,336 449,560

K = 1.02 1.0085 1,570 178,855 177,133 402,970
K = 1.04 1.0108 1,427 178,855 165,209 356,479
K = 1.06 1.0156 1,286 178,855 153,549 311,216
K = 1.08 1.0232 1,150 178,855 142,190 268,139
K = 1.10 1.0337 1,028 178,855 131,160 228,646
K = 1.20 1.0724 712 178,855 80,678 93,660
K = 1.40 1.0830 338 178,855 16,854 10,420
K = 1.60 1.0856 275 178,855 1,858 2,407
K = 1.80 1.0865 269 178,855 270 1,787
K = 2.00 1.0868 269 178,855 81 1,692

I Corollary 5. BiTdMartins computes the Pareto front F .

Note that the converse of Theorem 4 in general does not hold. There might be paths in πt
not approximating a Pareto optimal path.

6 Computational Results

The experimental evaluation was performed on one core of an Intel Xeon E5-2697v2 processor
clocked at 2.7 GHz and 64 GB main memory. The code was written in C++ and compiled
using GNU C++ compiler version 4.8.2 and optimization level 3.

6.1 Input Road Network
The input data consists of a road network of the area around Berlin and Brandenburg
kindly provided by TomTom within the project eCOMPASS [5]. The largest strongly
connected component of the graph consists of 443,365 vertices and 1,038,284 edges. The
travel times of 750,544 edges are constant, while for the remaining 287,740 edges are given
by a piecewise-linear function with period of one week.

To obtain two instances (edge weight functions) I1 and I2 we consider departure times τ1
and τ2 in two consecutive days. We select uniformly at random one of the 24 hours of a day
and let τ1 be the corresponding point in time on Tuesday and τ2 be the same time in the
following Wednesday. The edge weight functions are obtained by setting the beginnings of
the time horizon (in other words the departure times) of I1 and I2 respectively at τ1 and at
τ2. We select 10,000 pairs of vertices s and t uniformly at random.

6.2 Results
Table 1 shows a comparison of the algorithms considered in terms of quality (i.e., the maximum
relative regret of the computed path) and efficiency, averaged among the performed 10,000
tests. The efficiency of an algorithm is measured in terms of CPU time and the number
of labels scanned for each phase of the algorithm. The number of labels scanned, i.e.,

Matúš Mihalák and Sandro Montanari 91

Table 2 Run-time and number of scanned labels for 3 instances.

Labels
Max Rel Regret Run-time (ms) Phase 1 Phase 2 Phase 3

Uni-dir 1.0328 954,267 - - 7,927,858
Bi-dir 1.0328 487,993 210,374 212,609 3,678,017

K = 1.2 1.0861 190,960 210,374 96,108 1,161,266
K = 1.4 1.1013 53,154 210,374 23,114 339,865
K = 1.6 1.1068 6,180 210,374 4,209 76,958
K = 1.8 1.1095 1,670 210,374 1,159 16,383
K = 2.0 1.1095 975 210,374 197 2,805

the overall number of labels extracted from the forward and from the backward queues,
represents a machine-independent measure of efficiency. The counter of labels scanned for
the bi-directional algorithm is increased by one for each iteration of the forward search, and
by 0.5 for each iteration of one of the two backward searches.

The algorithms considered for comparison are: the unidirectional search using the time-
dependent implementation of Martins’ algorithm, the bi-directional search of BiTdMartins,
the K-approximate BiTdMartins for different values of K, and the naive algorithm for the
min-max relative regret problem. As additional reference, the table also shows information
on the computation of a quickest path in I1 using the time-dependent Dijkstra’s algorithm.

The naive algorithm enumerates all s-t paths alternatively for I1 and I2 until an optimum
path is found; it is implemented as a straightforward time-dependent generalization of an
algorithm by Hershberger et al. [20] for the computation of the k-shortest paths. The row
corresponding to this algorithm in Table 1 does not show the number of labels scanned.
Instead, we display the average number of iterations before finding a path in the intersection.
Since each iteration consists of several (a number linear in n) repetitions of the time-dependent
Dijkstra’s algorithm, we can have an idea on the number of labels scanned by looking at the
first two rows of the table.

The improvements of the bi-directional search over the uni-directional is considerable
both for the run-time and for the number of scanned labels. The efficiency further increases
if we allow an approximation factor K greater than 1. It appears however that there is a
limit to the speed-up that can be obtained via approximation. The reason for this limit is
that large values of K greatly reduce the amount of time spent by the algorithm in phases 2
and 3, but do not decrease the time in phase 1. In particular, for some value of K, say K∗,
the algorithm spends no time at all in phase 2 because the termination condition is met as
soon as the phase begins. All values of K greater than K∗ will therefore result in similar
run-time and number of scanned labels.

6.3 Results for 3 Instances
Table 2 shows experimental results for the case of 3 instances (the third day being Thursday).
Since in this case the operations of extract minimum, insertion and dominance checking
necessary to implement Martins’ algorithm cannot be implemented efficiently, all algorithms
are as a result much slower than in the previous case. For this reason, the experimental
evaluation is not as thorough, and only 240 pairs of s, t vertices were considered.

We can see that the speed-up of the bi-directional search over the uni-directional is still
considerable, and an even more remarkable speed-up can be obtained via approximation. By
setting an approximation factor of K = 2.0, computations that in the exact case require in
average 25 minutes to terminate can be performed in less than one second.

ATMOS’15

92 Bi-directional Search in Time-dependent Bi-criteria Road Networks

1,0 1,2 1,4 1,6 1,8 2,0

K

0

50
0

10
00

15
00

20
00

25
00

30
00

R
u
n
ti

m
e
 (

m
s
)

UNREL

REL

1,0 1,2 1,4 1,6 1,8 2,0

K
10
00
00

20
00
00

30
00
00

40
00
00

50
00
00

60
00
00

70
00
00

80
00
00

90
00
00

L
a
b
e
ls

UNREL

REL

Figure 1 Comparison of bi-directional algorithms.

7 Single Backward Search

In our input data there is a strong correlation between the weights of a path in the different
instances, since they represent travel times in very similar time periods. However, this
correlation is not explicitly exploited by our algorithm. One might ask for a way to improve
the efficiency of BiTdMartins by considering this feature more directly. For example, for
the case of 2 instances we might get some improvement by replacing the two backward
searches with a single one that, for each backward edge e ∈ ←−E , considers weights of the kind

←−w (e) = min
i∈{1,2}

{←−wi(e)} .

The correctness of this algorithm and its approximated variants follows trivially from the
previous proofs under the same assumptions as for BiTdMartin. The benefits of this new
algorithm over the original one are however not trivial to estimate. On the one hand, if

max
e∈
←−
E

{|←−w1(e)−←−w2(e)|} (7)

is small, the modified backward search will settle almost the same vertices as before, with
almost the same values, at the price of one execution of Dijkstra’s algorithm instead of two.
On the other hand, the lower bounds on the distances computed in the reverse graph are
less accurate. As a result, the number of labels scanned by the modified algorithm is larger.
The benefit of the modified algorithm is, in loose terms, inversely proportional to eq. (7).

Figure 1 shows a plot of the average run-time and the number of labels settled by the
original bi-directional algorithm (unrel) and the modified one (rel) for different values K
of approximation and for the same 10,000 s-t pairs. We can see that unrel is faster but it
indeed settles more labels than rel. However, the difference between the two is very small
and further decreases for increasing values of K until the point where the performance of the
two algorithms is almost equal. It is an interesting open question to identify cases where the
benefit of a single backward search takes over both the run-time and the number of labels.

8 Conclusions

We have considered the problem of computing an optimum path according to the min-max
relative regret criterion and shown that there always exists one such path on the Pareto front

Matúš Mihalák and Sandro Montanari 93

of a multi-criteria weight function. We have therefore engineered a bi-directional algorithm for
the computation of Pareto fronts in time-dependent multi-criteria graphs and experimentally
demonstrated a considerable speed-up compared to the uni-directional variant.

We observe that the presented results appear of practical interest for the application of
robust routing. A peculiarity of this application is that the considered criteria correspond
to travel times for different days of the week. If the days considered are correlated like, for
example, working days as opposed to working days and holidays, we expect this correlation
to somehow appear in the travel times as well. As a result, the number of paths in the Pareto
fronts is not too big; for our experiments, the average size of the fronts is 8 (although for the
case of 3 instances this number increases to 40). It is an interesting open question to assess
the practical efficiency of the proposed algorithms for multi-criteria edge weights inducing
fronts of larger size, such as those considered by Delling and Wagner [8]. Furthermore,
an assessment of the robustness of the routes computed using the min-max relative regret
criterion on the Berlin and Brandenburg data-set is planned for a follow-up paper.

References
1 H. Aissi, C. Bazgan, and D. Vanderpooten. Min-max and min-max regret versions of

combinatorial optimization problems: A survey. European Journal of Operational Research,
197(2):427–438, 2009.

2 G. V. Batz, R. Geisberger, P. Sanders, and C. Vetter. Minimum time-dependent travel
times with contraction hierarchies. ACM Journal of Experimental Algorithmics, 18, 2013.

3 G. V. Batz and P. Sanders. Time-dependent route planning with generalized objective
functions. In ESA, pages 169–180, 2012.

4 J. M. Buhmann, M. Mihalák, R. Šrámek, and P. Widmayer. Robust optimization in the
presence of uncertainty. In ITCS, pages 505–514, 2013.

5 European Commission. eCOMPASS Project. http://www.ecompass-project.eu/, 2011-
2014.

6 C. Daskalakis, I. Diakonikolas, and M. Yannakakis. How good is the chord algorithm?
CoRR, abs/1309.7084, 2013.

7 D. Delling. Time-dependent SHARC-routing. Algorithmica, 60(1):60–94, 2011.
8 D. Delling and D. Wagner. Pareto paths with SHARC. In SEA, pages 125–136, 2009.
9 S. Demeyer, J. Goedgebeur, P. Audenaert, M. Pickavet, and P. Demeester. Speeding up

Martins’ algorithm for multiple objective shortest path problems. 4OR, 11(4):323–348,
2013.

10 S. Erb, M. Kobitzsch, and P. Sanders. Parallel bi-objective shortest paths using weight-
balanced B-trees with bulk updates. In SEA, pages 111–122, 2014.

11 L. Foschini, J. Hershberger, and S. Suri. On the complexity of time-dependent shortest
paths. Algorithmica, 68(4):1075–1097, 2014.

12 S. Funke and S. Storandt. Polynomial-time construction of contraction hierarchies for
multi-criteria objectives. In ALENEX, pages 41–54, 2013.

13 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

14 R. Geisberger, M. Kobitzsch, and P. Sanders. Route planning with flexible objective func-
tions. In ALENEX, pages 124–137, 2010.

15 A. V. Goldberg and C. Harrelson. Computing the shortest path: A* search meets graph
theory. In SODA, pages 156–165, 2005.

16 A. V. Goldberg and R. F. Werneck. Computing point-to-point shortest paths from external
memory. In ALENEX, pages 26–40, 2005.

17 T. Gräbener, A. Berro, and Y. Duthen. Time dependent multiobjective best path for
multimodal urban routing. Electronic Notes in Discrete Mathematics, 36, 2010.

ATMOS’15

http://www.ecompass-project.eu/

94 Bi-directional Search in Time-dependent Bi-criteria Road Networks

18 H. W. Hamacher, S. Ruzika, and S. A. Tjandra. Algorithms for time-dependent bicriteria
shortest path problems. Discrete Optimization, 3(3):238–254, 2006.

19 P. Hansen. Bicriterion path problems. In Multiple Criteria Decision Making Theory and
Application, pages 109–127. Springer Berlin Heidelberg, 1980.

20 J. Hershberger, M. Maxel, and S. Suri. Finding the k shortest simple paths: A new
algorithm and its implementation. ACM Transactions on Algorithms, 3(4), 2007.

21 S. C. Kontogiannis and C. D. Zaroliagis. Distance oracles for time-dependent networks. In
ICALP 2014, pages 713–725, 2014.

22 P. Kouvelis and G. Yu. Robust discrete optimization and its applications, volume 14.
Springer Science & Business Media, 2013.

23 E. Q. V. Martins. On a multicriteria shortest path problem. European Journal of Opera-
tional Research, 16(2):236–245, 1984.

24 G. Nannicini, D. Delling, D. Schultes, and L. Liberti. Bidirectional A* search on time-
dependent road networks. Networks, 59(2):240–251, 2012.

25 G. Yu and J. Yang. On the robust shortest path problem. Computers & OR, 25(6):457–468,
1998.

A Computing the Pareto Front

We provide as reference the proof of correctness for the time-dependent Martins’ algorithm.
The analysis of its run-time follows trivially from the one by Hansen [19].

I Theorem 6. Let G = (V,E) be a graph with edge weights w : E × T → N2 as in eq. (2).
If wi : E × T → N satisfies the FIFO property for every i ∈ {1, 2}, Listing 1 computes the
Pareto front F .

Proof. The computed front πt is not correct if there is a path in F that is not in πt, there is
a path in πt that is not in F , or both. We consider only the first case, since the remaining
two follow from the fact that if πt contains at least the paths in F then all other paths are
dominated by those.

Suppose towards contradiction that there exists P ∈ F such that P /∈ πt. Consider the
prefix Psv of P from s to the first vertex v such that Psv /∈ πv, and the suffix Pvt of P from
v to t. We can express the weight of P as

w(P, τ) = w(Psv, τ) +
(
w1(Pvt, τ + w1(Psv, τ))
w2(Pvt, τ + w2(Psv, τ))

)
.

Since Psv /∈ πv, there exists another path P ′sv dominating it, and we can obtain an s-t path
P ′ (not necessarily simple) by concatenating P ′sv and Pvt. The weight of P ′ can be written
as

w(P ′, τ) = w(P ′sv, τ) +
(
w1(Pvt, τ + w1(P ′sv, τ))
w2(Pvt, τ + w2(P ′sv, τ))

)
.

Since P ′sv dominates Psv, we know that, for every i ∈ {1, 2}, it holds that

wi(P ′sv, τ) ≤ wi(Psv, τ).

Since both w1 and w2 satisfy the FIFO property, we get that w(P ′, τ) dominates w(P, τ).
This contradicts the assumption that P ∈ F . J

I Corollary 7. The run-time of Listing 1 is O(nmW · log(nW)), where

W = min
i∈{1,2}

{
max

e∈E,τ∈T
wi(e, τ)

}
.

A Mixed Integer Linear Program for the Rapid
Transit Network Design Problem with Static
Modal Competition
Gabriel Gutiérrez-Jarpa1, Gilbert Laporte2,
Vladimir Marianov3, and Luigi Moccia4

1 School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso,
Chile
gabriel.gutierrez@ucv.cl

2 HEC Montréal, Canada
gilbert.laporte@cirrelt.ca

3 Department of Electrical Engineering, Pontificia Universidad Católica de Chile,
Chile
marianov@ing.puc.cl

4 Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle
Ricerche, Italy
moccia@icar.cnr.it

Abstract
In recent years, several models and algorithms have been put forward for the design of metro
networks (see e.g. [1], [7], [2], and [6]). Here we extend the rapid transit network design problem
(RTNDP) of [4] by introducing modal competition and by enriching its multi-objective framework.
In that reference an origin-destination flow is considered as captured by rapid transit if some
stations are sufficiently close to both the origin and the destination of the flow. We observe
that by maximizing the captured traffic using this criterion results in improving access, i.e. the
number of commuters who could benefit from the rapid transit network for their daily trips. This
is indeed a relevant goal in urban transit, but on its own it does not adequately reflect modal
choices. In this talk we consider a traffic flow as captured if the travel time (or equivalently the
generalized cost) by rapid transit is less than by car, i.e. an “all or nothing” criterion. This feature
has been neglected in most previous discrete mathematical programs because considering origin-
destination flows results in models that are too large for realistic instances. As observed by [8],
considering traffic flows requires a multi-commodity formulation, where each flow is considered as
a distinct commodity. This was the approach taken by [5], but it only allowed the solution of very
small instances. We introduce a methodology that overcomes this difficulty by exploiting a pre-
assigned topological configuration. As explained by [1], a pre-assigned topological configuration
is in itself a positive feature for planners since it incorporates their knowledge of the traffic flows
in cities and corresponds to what is often done in practice. We note that a metro network is
typically built incrementally starting from a simple layout. Very often planners identify a few
major corridors that should be privileged for an initial metro configuration or for later extensions.
Geographical constraints may also limit the number options. We remark that, despite the simple
layouts, the high number of location choices for each layout renders the problem hard. The
precise alignment of metro lines within these corridors can be optimized by using a methodology
such as the one we propose. The basic topological configurations we consider are not limitative
in the sense that our approach will work with any basic layout. We note, however, that simple
layouts such as stars and triangles exist in several networks (e.g. Minsk and Prague). With time
the basic networks evolve into more complex, but still common configurations. [10] find that
metro networks converge to a shape characterized by a core from which quasi-one-dimensional
branches grow and reach out to areas of the city further from it. We discuss relevant goals of
rapid transit planning, and we propose a multi-objective model conducive to a post-optimization

© Gabriel Gutiérrez-Jarpa, Gilbert Laporte, Vladimir Marianov, and Luigi Moccia;
licensed under Creative Commons License CC-BY

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 95–96

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

96 A Mixed Integer Linear Program for the Rapid Transit Network Design Problem

analysis for effectiveness, efficiency, and equity concerns. The multi-objective framework works
with two alternative measure of effectiveness under a budget constraint, and a post-optimization
phase is suggested to assess efficiency and equity trade-offs, an issue rarely considered in transit
planning (see for example [3] for a review of equity in location problems, and [9] for a discussion
of equity in urban transit). We show that our approach can be applied to realistic situations and
we illustrate it on data from Concepción, Chile.

1998 ACM Subject Classification Decision support

Keywords and phrases metro network design, multi-objective optimization, modal competition

Digital Object Identifier 10.4230/OASIcs.ATMOS.2015.95

Category Short Paper

Acknowledgements. Gabriel Gutiérrez-Jarpa was supported by FONDECYT project No.
1130878 and Becas Chile. Gilbert Laporte was supported by the Canadian Natural Sciences
and Engineering Research Council under grant 39682-10. Vladimir Marianov was partially
supported by the Complex Engineering Systems institute, through grants ICM-MIDEPLAN
P-05-004-F and CONICYT FB016. Luigi Moccia was partially supported by the CNR (Italy)
under STM-2014 and STM-2015 grants. These supports are gratefully acknowledged.

References
1 G. Bruno and G. Laporte. An interactive decision support system for the design of rapid

public transit networks. INFOR, 40(2):111–118, 2002.
2 D. Canca, A. De-Los-Santos, G. Laporte, and J. A. Mesa. A general rapid network design,

line planning and fleet investment integrated model. Annals of Operations Research, In
Press:1–18, 2014.

3 H. A. Eiselt and G. Laporte. Objectives in location problems. In Z. Drezner, editor, Facility
Location: A Survey of Applications and Methods, Springer Series in Operations Research
and Financial Engineering, chapter 8, pages 151–180. Springer-Verlag, New York, 1995.

4 G. Gutiérrez-Jarpa, C. Obreque, G. Laporte, and V. Marianov. Rapid transit network
design for optimal cost and origin-destination demand capture. Computers & Operations
Research, 40(12):3000–3009, 2013.

5 G. Laporte, A. Marín, J. A. Mesa, and F. Perea. Designing robust rapid transit networks
with alternative routes. Journal of Advanced Transportation, 45(1):54–65, 2011.

6 G. Laporte and J. A. Mesa. The design of rapid transit networks. In G. Laporte, S. Nickel,
and F. Saldanha da Gama, editors, Location Science, pages 581–594. Springer, Berlin,
Heidelberg, 2015.

7 G. Laporte, J. A. Mesa, F. A. Ortega, and I. Sevillano. Maximizing trip coverage in the
location of a single rapid transit alignment. Annals of Operations Research, 136(1):49–63,
2005.

8 Á. Marín and R. García-Ródenas. Location of infrastructure in urban railway networks.
Computers & Operations Research, 36(5):1461–1477, 5 2009.

9 A. Perugia, J.-F. Cordeau, G. Laporte, and L. Moccia. Designing a home-to-work bus ser-
vice in a metropolitan area. Transportation Research Part B: Methodological, 45(10):1710–
1726, 2011.

10 C. Roth, S. M. Kang, M. Batty, and M. Barthelemy. A long-time limit for world subway
networks. Journal of the Royal Society Interface, 9(75):2540–2550, 2012.

http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.95

Ordering Constraints in Time Expanded Networks
for Train Timetabling Problems
Frank Fischer

Algorithmic Algebra and Discrete Mathematics
University of Kassel
Heinrich-Plett-Str. 40, 34132 Kassel, Germany
frank.fischer@uni-kassel.de

Abstract
The task of the train timetabling problem is to find conflict free schedules for a set of trains with
predefined routes in a railway network. This kind of problem has proven to be very challenging
and numerous solution approaches have been proposed. One of the most successful approaches is
based on time discretized network models. However, one of the major weaknesses of these models
is that fractional solutions tend to change the order of trains along some track, which is not
allowed for integer solutions, leading to poor relaxations. In this paper, we present an extension
for these kind of models, which aims at overcoming these problems. By exploiting a configuration
based formulation, we propose to extend the model with additional ordering constraints. These
constraints enforce compatibility of orderings along a sequence of tracks and greatly improve the
quality of the relaxations. We show in some promising preliminary computational experiments
that our approach indeed helps to resolve many of the invalid overtaking problems of relaxations
for the standard models.

1998 ACM Subject Classification G.1.6 [Numerical Analysis] Optimization

Keywords and phrases combinatorial optimization, train timetabling, Lagrangian relaxation,
ordering constraints

Digital Object Identifier 10.4230/OASIcs.ATMOS.2015.97

1 Introduction

Given a railway infrastructure network and a set of trains with fixed routes, the train
timetabling problem (TTP) aims at determining schedules for each train such that certain
operational restrictions like station capacities and headway times are satisfied, see, e. g., the
recent surveys [14] and [5]. The possible goals for these schedules vary. Typical ones are to
have the trains arrive as early as possible (often a goal for freight trains) [7] or follow a given
ideal timetable with as less delay as possible (passenger trains) [4].

One major approach for large scale instances is based on time expanded networks for
modeling train schedules [2, 6, 11]. These models give rise to huge integer programming for-
mulations and cannot be solved directly by standard solvers. Recently, several mathematical
techniques, e. g., dynamic graph generation [9], bundle methods [10], rapid branching [1, 17],
were developed to overcome this situation.

In this paper we present an extension for time expanded models. One major drawback of
these models is that they do not contain variables representing orderings of trains running on
the same infrastructure arc or using the same station. This has the consequence that fractional
relaxations (e. g., linear relaxations or Lagrangian relaxations) tend to find (fractional)
solutions that allow overtaking of trains on tracks where it is not possible for integral
solutions. This behavior is expected, but leads to very weak relaxations. Because of the

© Frank Fischer;
licensed under Creative Commons License CC-BY

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 97–110

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.97
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

98 Ordering Constraints in Time Expanded Networks for Train Timetabling Problems

lack of ordering variables it is not easy to strengthen the model with additional constraints
that model the combinatorial properties of the infrastructure network, i. e., forbid arbitrary
changes of the order of trains running on the same tracks.

Borndörfer and Schlechte [2] proposed a variant of the time expanded models, in which
headway constraints on tracks are not enforced by inequality constraints, which forbid
succeeding trains running in too quick succession. Instead they use so called configuration
networks, which model sets of non-conflicting train runs on a single infrastructure arc. This
means, while inequality constraints provide an “outer description” of feasible train runs,
configurations networks form an “inner description”, modeling all feasible points. Although
both models are equivalent from a theoretical point of view, the latter has an additional
advantage. Configuration networks form some kind of extended formulation and add further
variables and constraints to the model. In particular, they allow easy access to a limited set
of ordering variables for trains. Indeed, a configuration network provides decision variables
that model whether two trains follow each other in direct succession.

In this paper we propose a model that exploits these ordering variables to forbid invalid
changes of the ordering of trains along a sequence of succeeding tracks. We show that this
model provides a stronger relaxation than previous models, resolving some of the nastiest
weaknesses of linear relaxations for this kind of models for the TTP.

This paper is organized as follows. We give a formal description of the problem in
Section 2 and state the basic time expanded model in Section 3. In particular, the new model
extension with ordering constraints is described in Sections 3.2 and 3.3. Then we sketch
our solution approach in Section 4 and present some promising preliminary computational
experiments in Section 5. Finally, we conclude our paper in Section 6.

2 Problem Description

We briefly recall a formal description of the TTP next. The infrastructure network is a directed
graph GI = (V I , AI), where the nodes V I represent stations, junctions, and crossings and
the arcs AI represent connecting railway tracks. Arcs are directed because the running times
of some trains may depend on the direction of travel and because some tracks are single
line (one physical track that is used in both directions). In the latter case it is important to
distinguish between trains running in the same and in opposite directions. Furthermore, we
are given a set of trains R and each train r ∈ R is associated with a path Gr = (V r, Ar) ⊆ GI

in the infrastructure network, its route, and a starting time t̂r ∈ T . Denote by Ra the set of
all trains running on a ∈ AI . Between two trains r, r′ ∈ Ra running on a there is a minimal
headway time ha(r, r′) ∈ N (in discrete time steps), which is the minimal time between the
two trains entering this track (we assume that ha(r, r′) > 0 for all a ∈ AI , r, r′ ∈ Ra, and that
the triangle inequalities ha(r, r′) + ha(r′, r′′) ≥ ha(r, r′′) for each three trains r, r′, r′′ ∈ Ra

are satisfied). As mentioned above, the infrastructure network may contain double line tracks
(arcs with one physical track for each direction) and single line tracks (arcs with only one
physical track for both directions). In the case of single line tracks we set h(u,v) = h(v,u)

and the headway times for trains running in opposite directions are appropriately high, so
that no two such trains may occupy the track at the same time. Furthermore, there are
capacity constraints on the nodes that state that at most a certain number of trains cu ∈ N
may be at the same station u ∈ V I at the same time. Note that in contrast to other works
the schedules of the trains are completely free. There do not exist already fixed trains or
conditions stating that schedules must not deviate too much from some ideal timetable (see,
e. g., [4]).

F. Fischer 99

I Remark. Note that the train routes are only a rough estimate of the reality. For instance,
we do not consider the exact routing of trains through junctions as well as the possibility of
small adjustments to the train routes, e. g., by choosing one of several parallel tracks. These
aspects are often interesting in practice and can be incorporated in our model, but for sake
of simplicity we decided to neglect these details.

In our experiments we consider only a simple but reasonable objective function, which
aims at minimizing the delay of each train at each station. Here delay means the difference
of the arrival time at some station compared with the earliest possible arrival time, if a train
does not wait at some earlier station. The exact definition is given below in Section 3.1.

3 Model

In this section we present our time discretized model for the TTP. We start with the networks
modeling the schedules of each train and some basic constraints in Section 3.1. Next we
review the modeling of headway constraints based on configuration networks in Section 3.2.
In Section 3.3 we present the new ordering constraints and finally the complete model in
Section 3.4.

3.1 Basic Time Expanded Model
One of the most successful models in the literature for solving the TTP is based on time
expanded networks, see, e. g., [6, 2]. Given a set of discrete time steps T = {1, . . . , |T |}
(usually minutes), we have for each train r ∈ R a time expanded network Gr

T = (V r
T , Ar

T)
where V r

T = V r × T and

Ar
T ={((u, tu), (v, tv)) : (u, v) ∈ Ar, tu, tv ∈ T, tv − tu = t̄r

(u,v)}

∪ {((u, tu), (u, tu + 1)) : u ∈ V r
wait, tu, tu + 1 ∈ T, tu ≥ t̂r},

with V r
wait ⊆ V r the nodes at which r might wait and t̄r

(u,v) ∈ N0 the running time of r over
track (u, v) ∈ Ar. A feasible schedule of train r then corresponds to a path P ⊆ Gr

T from the
first to the last station. In particular, let ûr, ǔr denote the first and the final station of r,
respectively, then the variables xr ∈ {0, 1}Ar

T have to satisfy the following flow conservation
constraints ∑

(v,tv)∈V r
T :

e=((v,tv),(u,tu))∈Ar
T

xr
e =

∑
(v,tv)∈V r

T :
e=((u,tu),(v,tv))∈Ar

T

xr
e, (u, tu) ∈ V r

T \ {(ûr, t̂r)}, u 6= ǔr, (1a)

∑
(v,tv)∈V r

T :
e=((ûr,t̂r),(v,tv))∈Ar

T

xr
e = 1, (1b)

∑
t∈T

∑
(v,tv)∈V r

T :
e=((v,tv),(ǔr,t))∈Ar

T

xr
e = 1. (1c)

Constraints (1a) are the flow conservation constraints on all intermediate nodes. Constraint
(1b) states that the path must start at node (ûr, t̂r) ∈ V r

T and constraint (1c) enforces that
the path must end at some node (ǔr, t) ∈ V r

T corresponding to its final station. We denote
the set of all feasible paths in Gr

T by

Pr := {xr ∈ {0, 1}Ar
T : xr satisfies constraints (1a)–(1c)}.

ATMOS’15

100 Ordering Constraints in Time Expanded Networks for Train Timetabling Problems

We associate a binary variable xr
a ∈ {0, 1} with each a ∈ Ar

T in each time expanded network,
where xr

a = 1 if and only if a is contained in the timetable of train r.
The capacity constraints in the nodes enforce that at each time instance t ∈ T at most

cu ∈ N trains may be in u ∈ V I at the same time. Hence, the sum over all arcs representing
a train being in u at time t

K(u, t) := {(r, a) : a = ((u′, t′), (u, t)) ∈ Ar
T , r ∈ R}

must be at most cu∑
(r,a)∈K(u,t)

xr
a ≤ cu, u ∈ V I , t ∈ T. (2)

The headway restrictions impose that certain arcs must not be contained in the final
timetable simultaneously if they correspond to some train runs violating a headway constraint.
In particular, let (r, a) ∈ Ar

T and (r′, a′) ∈ Ar′

T be two arcs with a = ((u, tu), (v, tv)) and
a′ = ((u, t′u), (v, t′v)) with t′u − tu < h(u,v)(r, r′), then those arcs must not be used both.
Therefore, we have the following headway constraints for each pair of incompatible arcs

xr
a + xr′

a′ ≤ 1, {(r, a), (r′, a′)} ∈ H, (3)

where H is the set of pairs of incompatible train arcs.
The objective for all trains is to run as fast possible in order to minimize all delays.

For this we use the simple objective function described in [7]. Let (u, v) ∈ Ar be a track
segment of train r ∈ R and tv ∈ R+ the earliest possible arrival time of r at v (i. e., the
arrival time if r starts at t̂r at its first station and does not wait at any station before
v). Then the penalty of a run arc e = ((u, tu), (v, tv)) ∈ Ar

T , u 6= v, is the quadratic delay
weighted with the relative length of the track segment compared with the length of the
whole train run. Let `r

e = t̄r
(u,v) denote the length (in terms of running time) of track e and

`r :=
∑

a∈Ar t̄r
a denote the minimal running time for the whole run. We set the weight of arc

e = ((u, tu), (v, tv)) ∈ Ar
T , u 6= v, to

wr
e := −`r

e/`r · (tv − tv)2,

and all other weights to 0 (note that we use negative weights because we want to have a
maximization problem).

Putting all together, the TTP can be formulated as integer program as follows:

maximize
∑
r∈R

〈wr, xr〉

subject to xr ∈ Pr, r ∈ R,

(2), (3),

i. e., we select for each train r a feasible schedule xr ∈ Pr, so that all paths satisfy the
headway and capacity constraints.

However, we do not use the headway inequalities on all arcs a ∈ AI , but we use another
approach to be presented in Section 3.2.

3.2 Configuration Networks
Our modeling of headway constraints is based on an extended formulation, which has been
proposed in [2]. This formulation introduces additional configuration networks in order to
model the safety distances between succeeding trains.

F. Fischer 101

The construction is as follows: Let sa be an artificial source and ta an artificial sink node
on track a = (u, v) ∈ AI . The set

Ãa
r := {((u, tu), (v, tv)) : ((u, tu), (v, tv)) ∈ Ar

T , (u, v) = a}

denotes all running arcs of train r ∈ R on track a. These arcs correspond to some arcs of the
configuration network. For each arc e ∈ Ãa

r , r ∈ Ra, we introduce a pair of start and end
nodes

Ba := {(r, start, e) : r ∈ Ra, e ∈ Ãa
r}, and, Ea := {(r, end, e) : r ∈ Ra, e ∈ Ãa

r}.

For these nodes we define the following sets of arcs:
1. The start arcs Ãa

start := {(sa, u) : u ∈ Ba}.
2. The end arcs Ãa

end := {(u, ta) : u ∈ Ea}.
3. The wait arcs

Ãa
wait := {((r, start, e), (r, start, e′)) ∈ Ba ×Ba :

e = ((u, tu), (v, tv)) ∈ Ãa
r , e′ = ((u, tu + 1), (v, tv + 1)) ∈ Ãa

r},

which allow to have a larger distance between two succeeding trains than the minimal
headway time.

4. The run arcs, each corresponding to a possible run of one train

Ãa
run := {((r, start, e), (r, end, e)) ∈ Ba × Ea : r ∈ Ra}.

5. The headway arcs

Ãa
hw := {((r, end, e),(r′, start, e′)) ∈ Ea ×Ba :

r, r′ ∈ Ra, r 6= r′, e = ((u, tu), (v, tv)), e′ = ((u, t′u), (v, t′v)),
t′u − tu = ha(r, r′)},

which model that r runs immediately before r′ while respecting the headway time.
Then the configuration network G̃a = (Ṽ a, Ãa), a ∈ AI , is defined by

Ṽ a := {sa, ta} ∪Ba ∪ Ea,

Ãa := Ãa
start ∪ Ãa

end ∪ Ãa
run ∪ Ãa

hw ∪ Ãa
wait.

Figure 1 shows an example of a configuration network for two trains.
Given that the headway times are strictly positive and transitive, it is easy to see that

valid configurations on track a ∈ AI , i. e. selections of exactly one run for each train on
that arc such that the headway restrictions are satisfied, correspond to sa-ta-paths that
contain exactly one run arc for each train, see [16]. Therefore, we define the set of feasible
configuration paths in G̃a, a ∈ AI , as

P̃a := {P ⊆ G̃a : P is an sa-ta-path in G̃a with exactly one run arc for each train}.

I Remark. Note that for single line tracks, only one configuration network is constructed for
both arcs (u, v) ∈ AI and (v, u) ∈ AI .
As with the train graphs we associate the binary variables x̃a

e ∈ {0, 1} with the arcs Ãa.
The coupling between configuration networks and train graphs is simple: a train may use
one of its run arcs if and only if the corresponding run arc is contained in the configuration

ATMOS’15

102 Ordering Constraints in Time Expanded Networks for Train Timetabling Problems

t = 5

t = 4

t = 3

t = 2

t = 1

sa

ta

Ba BaEa Ea

r1 r2

Ãa
wait

Ãa
wait

Ãa
wait

Ãa
wait

Ãa
wait

Ãa
wait

Ãa
wait

Ãa
wait

Ãa
start Ãa

start

Ãa
end Ãa

end

Ãa
run Ãa

run

Ãa
hw

Ãa
hw

Ãa
hw

Ãa
hw

Figure 1 Example configuration network for two trains {r1, r2} = Ra on some infrastructure arc
a ∈ AI . The headway times are ha(r1, r2) = 2 and ha(r2, r1) = 1. The red path corresponds to a
configuration with r2 running at t = 3 followed by r1 at t = 5.

for this arc. Hence, denoting the run arc in a configuration network for some train arc
e = ((u, tu), (v, tv)) ∈ Ar

T , r ∈ R, (u, v) ∈ AI , by

cfg(e) := ((r, start, e), (r, end, e)) ∈ Ã(u,v),

we have the following configuration constraints

xr
e = x̃

(u,v)
cfg(e), r ∈ R, e = ((u, tu), (v, tv)) ∈ Ar

T .

3.3 Ordering Constraints
The basic observation when using configuration networks is the following. The run of
a train r ∈ R on some specific infrastructure arc a ∈ AI is represented by the run
arcs ((r, start, e), (r, end, e)) ∈ Ãa

run. However, we are interested in the headway arcs
((r, end, e), (r′, start, e′)) ∈ Ãa

hw. If one of these arcs equals 1, then this means that train r′

is the direct successor of r on arc a. In particular, with

Ãa
hw(r, r′) := {((r, end, e), (r′, start, e′)) ∈ Ãa

hw}

we define the ordering variables

sa
r,r′ =

∑
a′∈Ãa

hw(r,r′)

x̃a
a′ , a ∈ AI , r, r′ ∈ Ra,

with the interpretation

sa
r,r′ :=

{
1, r′ succeeds r directly on a ∈ AI ,

0, otherwise.

One of the weaknesses of the standard time expanded formulation is that combinatorial
properties of the network are not represented well. Figure 2 shows a typical situation: two

F. Fischer 103

Figure 2 Tiny example with two trains running in opposite directions on a single line track with
two passing possibilities. The white nodes have capacity 2 the other nodes have capacity 1. Nodes
in the same row correspond to a sequence of stations at the same time step, nodes in the same
column correspond to one station but at different time steps (time grows from top to bottom). All
arcs between black nodes are single track, the arcs adjacent to white nodes are double track. The
left picture shows an optimal solution for the standard linear relaxation. Note that the solution
exploits the weak formulation allowing the two trains to meet and pass on a single line part. The
right picture shows the optimal solution if ordering constraints are added to all consecutive paths of
single line tracks: one train has to wait at a capacity 2 node for the other train to pass.

trains run on a sequence of single line tracks, such that no overtaking is allowed on the
intermediate nodes. For instance, the intermediate nodes could be small local stations
without overtaking/passing possibility or the arcs represent a sequence of blocking areas
(guarded by signals) which must not be occupied by more than one train. In particular,
stopping and waiting at these intermediate nodes is allowed. Obviously, because there is no
overtaking possibility, in a feasible solution one train must go first through the complete
sequence of tracks and then the other. However, the fractional solution can easily exploit
the weak formulation: both trains can run fractionally in short succession and pass at an
intermediate node, see Figure 2.

Ordering variables provide an easy way to formulate these kind of non-overtaking proper-
ties. Consider a path of nodes (u1, u2, . . . , un) such that the capacity of each intermediate
node is 1, i. e. cui

= 1, i = 2, . . . , n− 1, and all arcs (ui, ui+1), i = 1, . . . , n− 1, are single line
tracks. Then it is clear that the order of trains running on arc (u1, u2) (or (u2, u1), which is
the same because it is a single line track) must be equal to the order of trains running on arc
(un−1, un). This can be enforced using the following ordering constraints

s
(u1,u2)
r,r′ = s

(un−1,un)
r,r′ , r, r′ ∈ R(u1,u2) = R(un−1,un).

Note that exactly the same constraints give rise to ordering conditions if the path consists of
double line tracks. The only difference is that the configuration networks associated with
(u1, u2) and (un−1, un) only model the headway conditions (and thus the ordering) of trains

ATMOS’15

104 Ordering Constraints in Time Expanded Networks for Train Timetabling Problems

running in the same direction. Thus there would be two sets of ordering constraints, one for
(u1, u2) and (un−1, un), and one for (u2, u1) and (un, un−1).

I Remark. Of course, the ordering of the trains must not only be the same on the first and
last arcs of the path but also on each intermediate arc, so one would have ordering constraints
for all pairs of arcs {(ui, ui+1), (uj , uj+1)}, i, j = 1, . . . , n − 1, i 6= j. However, because of
practical considerations (configuration networks can get large and are thus expensive from a
computational point of view), we use them only on the first and last arcs of a path.

In our preliminary experiments we used only this simplest case of ordering constraints
on paths, where no overtaking/passing is possible. This may sound oversimplified, but it
is a typical situations in real world instances as well, where connections between different
stations are made of such paths. However, it should be possible to extend this approach to
situations, where the capacity of some intermediate station ui, i ∈ {2, . . . , n− 1}, is a small
number larger than 1. For instance, if cui

= 2 on exactly one intermediate station, then the
orders of trains on the first and last arcs may differ, but not arbitrarily. In particular, in
this case the order of three trains may not be reversed (r1 before r2 before r3 on the first
arc but r3 before r2 before r1 on the last arc). However, in order to express this kind of
ordering restrictions one might need more complex configuration subproblems that do not
only have variables for trains in direct succession but also for trains with an additional train
in between. Solving such configuration problems (or a reasonable approximation of them)
will probably be hard in itself and needs more work.

3.4 Complete Model

In this section we present the complete model. Let O ⊆
(

AI

2
)
be the set of pairs of

infrastructure arcs, such that for {(u, u′), (v, v′)} ∈ O there is a path P = (u1, . . . , un) of
maximal length with cui = 1 for all i = 2, . . . , n− 1 such that
1. (u, u′) = (u1, u2) and (v, v′) = (un−1, un),
2. either all arcs are single line tracks or all arcs are double line tracks,
3. R(u,u′) = R(ui,ui+1) for all i = 1, . . . , n− 1.
Let ÃI :=

⋃
X∈OX be the set of all arcs that are contained in at least one ordering constraint.

Because configuration networks enlarge the model quite a bit, we use them only on those
infrastructure arcs, where they are required to formulate some ordering constraints. On all
other arcs AI \ ÃI we use classical headway inequalities. The resulting model reads

(TTP) maximize
∑
r∈R

〈wr, xr〉, (4)

subject to xr ∈ Pr, r ∈ R, (5)
x̃a ∈ P̃a, a ∈ ÃI , (6)

xr
a + xr′

a′ ≤ 1, a ∈ AI \ ÃI , {(r, a), (r′, a′)} ∈ H, (7)

xr
e = x̃

(u,v)
cfg(e), e = ((u, tu), (v, tv)) ∈ Ar, r ∈ R, (8)∑

(r,a)∈K(u,t)

xr
a ≤ cu, u ∈ V I , t ∈ T, (9)

sa
r,r′ =

∑
a′∈Ãa

hw(r,r′)

x̃a
a′ , a ∈ ÃI , r, r′ ∈ Ra, (10)

sa
r,r′ = sa′

r,r′ , r, r′ ∈ Ra = Ra′ , {a, a′} ∈ O. (11)

F. Fischer 105

We optimize a linear objective function (4) so that in each train graph and each configuration
network a feasible path representing a schedule (5) or a configuration (6), respectively, is
selected. The configuration networks and train graphs are coupled by (8), for infrastructure
arcs a ∈ ÃI that have a configuration network. On the other arcs we use the usual headway
inequalities (7). The capacity restrictions on the nodes are enforced by (9). Finally, constraints
(10) introduce the ordering variables which are then coupled by the ordering constraints (11).
Note that we write the constraints (10) only for the sake of presentation as they can easily
be substituted in (11).

We use the objective function of [7], which is quite simple: all trains should run as fast as
possible, so that any delays are minimized. In other words, the weights are so that early run
arcs have higher weights than later arcs.

4 Solution Methods

In this section we briefly describe our solution method. The basic approach is to apply
Lagrangian relaxation to (TTP), see, e. g., [3] for an early work using this approach. Indeed,
we relax all coupling constraints (7)–(9) and (11) (with (10) being substituted in (11)). We
collect all coupling equality and inequality constraints in∑

r∈R

M1,rxr +
∑

a∈ÃI

M1,ax̃a = b1 and
∑
r∈R

M2,rxr +
∑

a∈ÃI

M2,ax̃a ≤ b2,

respectively. The dual problem then reads

(LR) minimize ϕ(y, z),
subject to y ∈ Rm1 , z ∈ Rm2

+ ,

where the dual function ϕ(y, z) is defined by

ϕ(y, z) :=
∑
r∈R

max
xr∈Pr

〈wr −MT
1,ry −MT

2,rz, xr〉+
∑

a∈ÃI

max
x̃a∈P̃a

〈−MT
1,ay −MT

2,az, x̃a〉.

It is well-known that the dual problem (LR) is a non-smooth, convex optimization problem
that can be solved by, e. g., bundle methods [13]. In particular, we use a special scaling
variant of a bundle method based on ConicBundle [12]. Because there is a huge number of
potential coupling constraints, they are separated during the solution process.

In order to solve (LR) one has to evaluate the function ϕ at certain trail points (y, z)
provided by the bundle method. The subproblems in the train graphs Gr, r ∈ R, have the
form

max
xr∈Pr

〈wr −MT
1,ry −MT

2,rz, xr〉,

which are longest path problems in acyclic networks (which are equivalent to shortest path
problems with the negated objective function because of the acyclicity). Because these
networks get very large if the number of time steps increases, we use a dynamic graph
generation algorithm proposed in [9], implemented in the DynG callable library [8].

The subproblems in the configuration networks G̃a, a ∈ ÃI , read similarly

max
x̃a∈P̃a

〈−MT
1,ay −MT

2,az, x̃a〉.

However, the set of feasible paths P̃a, a ∈ ÃI , is more complicated in general than the sets
Pr, r ∈ R. The reason is that a feasible configuration corresponds to an sa-ta-path if and

ATMOS’15

106 Ordering Constraints in Time Expanded Networks for Train Timetabling Problems

Figure 3 Part of the solution of (LR) for 12 trains without ordering constraints (consecutive part
from left to right picture). The gray nodes form single line parts, the red nodes are a double line
part. Only the thicker nodes have capacity 2, all others have capacity 1. Several passings on the
single line parts are not resolved correctly because of the weak relaxation.

only if this path contains exactly one run arc for each train. These subproblems become very
difficult to be solved exactly even for relatively small numbers of trains, say ten. Therefore
we use the following relaxed version. Let

P̃a
rlx :=

{
P ⊆ G̃a : P is an sa-ta containing at most |Ra| run arcs of Ãa

run
}
⊇ P̃a.

This problem is simpler (it is a rather easy constrained shortest path problem), and we solve
it using a dynamic programming algorithm, exploiting the fact that G̃a is acyclic. However,
solving these subproblems only approximately can lead to worse solutions of the relaxation
in practice, see Section 5.

5 Numerical Tests

We tested our approach on a small 12 train test instance from the RAS Problem Solving
Competition 2012 [15]. The subproblems for the train graphs have been implemented with
the DynG callable library [8], the subproblems in the configuration networks are solved
approximately by a dynamic programming approach (see Section 3.4). The Lagrangian
relaxation (LR) has been solved using a proximal bundle method based on ConicBundle [12].
All experiments are done on an Intel Core i7 @ 3.5GHz with 12GB RAM.

The test instance consists of a corridor with 49 nodes and arcs and has several single line
parts and one double line part. There are only 4 passing points in the single line parts and

F. Fischer 107

10−1 100

−900

−800

−700

−600

−500

time in s

ob
je
ct
iv
e

100 101 102 103 104
−2

−1.5

−1

−0.5

0
· 104

time in s

ob
je
ct
iv
e

Figure 4 The left picture shows the dual function value after a certain amount of time in seconds
for the model without ordering constraints. The right picture shows the same for the model with
ordering constraints. Note that the time is given in a logarithmic scale. The model without ordering
constraints converges very quickly, but the optimal value is quite bad. The model with ordering
constraints converges much slower, but the objective value is much better. In fact, the dual bounds
are better than without ordering constraints already after a few seconds.

one overtaking point in the double line part. The trains run over a period of about 9 hours,
and each train requires between 1 and 2 hours to go from one end of the network to the
other, depending on its speed. The model uses a time discretization of one minute.

First we look at the quality of the models in terms of the dual bounds. Figure 4 shows
the development of the dual bounds after some computation time.

The pictures show that the model without ordering constraints converges very quickly to
an optimal solution. In contrast, the model with ordering constraints converges very slowly
but generates much better bounds. In fact, the bounds are better than the bounds without
ordering constraints after 10 seconds. The slow convergence is a known disadvantage of
configuration based models (also see [7], Chapter 6.4.3) when used in a Lagrangian relaxation
approach with first-order optimization methods (like bundle methods).

However, in order to investigate the structure of the optimal solutions, we looked at the
approximate solutions after a large computation time. A part of the resulting schedule is
shown in Figure 3 for the model without ordering constraints and in Figure 5 for the model
with ordering constraints.

The pictures show that without the ordering constraints the (fractional) solution of the
relaxation easily exploits the weakness of the model and lets the trains meet and pass in the
middle of single line parts hardly slowing down any train. In contrast, the model with the
ordering constraints successfully finds appropriate waiting possibilities for some of the trains,
so that meet and pass points are exactly at the nodes with capacity 2 or within the double
line part.

However, the results are not always perfect. Figure 6 shows another part of the solution.
Here the meet and pass decisions have not been resolved correctly. But the reason for
this is not the inaccuracy of the ordering constraints. The problem is that the configur-
ation subproblems are only solved approximately. When looking at the solutions of the
subproblems during the algorithm, one sees that there are paths in G̃a, a ∈ ÃI , which do
not correspond to correct configurations. In particular, the returned paths contain more
than one run arc ((r, start, e), (r, end, e)) ∈ Ãa

run for some train r ∈ Ra and zero run arcs
((r′, start, e′), (r′, end, e′)) ∈ Ãa

run for some other train r′ ∈ Ra (see Section 4).

ATMOS’15

108 Ordering Constraints in Time Expanded Networks for Train Timetabling Problems

Figure 5 Part of the solution of (LR) for 12 trains with ordering constraints (consecutive part
from left to right picture). The gray nodes form single line parts, the red nodes are a double line
part. Only the thicker nodes have capacity 2, all others have capacity 1. The passings of the trains
have been resolved correctly.

Note that we were not able to solve the relaxation with solving the configuration sub-
problems exactly. Although solving one subproblem exactly takes only few seconds, the
solution method using a proximal bundle method requires many iterations and thus many
subproblem evaluations for all arcs in ÃI , hence the solution process did not have sufficient
progress in reasonable time.

I Remark. Indeed, it turned out that the solution of the configuration subproblems, even if
we solve them only approximately, were the main bottleneck in our approach. In contrast,
the solution of the train graph subproblems was extremely fast thanks to the used dynamic
graph generation technique, which ensures that only very small parts of the train graphs
have to be stored and that the solutions can be found very quickly.

6 Conclusions and Future Work

In this paper we proposed an extension of a configuration network based formulation for
the TTP. In particular, we use the configuration networks to formulate constraints that
forbid changes in the order of trains along a path of tracks that are not possible due to
the existing overtaking possibilities of the infrastructure network. We implemented the
model and demonstrated how the new model greatly improves the solution of the Lagrangian
relaxation of the model. Indeed, in the example the relaxation resolves many meet and pass

F. Fischer 109

Figure 6 Another part of the solution of (LR) with ordering constraints. Because the configuration
subproblems are only solved approximately, the resulting fractional solution may still contain wrong
passing decisions (in particular for the blue train in this example).

decisions correctly, which does not happen without the ordering constraints. However, we
have also seen that the ordering constraints might not be sufficient to ensure correct meet
and pass decisions if the configuration subproblems are not solved exactly.

We can conclude from our experiments that the proposed extension with ordering
constraints has great potential to improve existing models. From a theoretical point of
view, several improvements of our model are possible. For instance, one could formulate
configuration subproblems that represent not only the ordering of trains in direct succession
but also of larger groups of trains. This would allow to formulate ordering conditions if
a certain sequence of infrastructure arcs has not zero but a small number of overtaking
points. Another possible improvement could be to solve the configuration subproblems
exactly for small subsets of all trains running on some infrastructure arc. For instance, one
could formulate configuration subproblems that ensure that each subset of 3 to 5 trains runs
correctly. Given that at most points in time only few trains compete for some infrastructure
arc, the exact solution of these small subproblems could be possible from a computational
point of view and improve the quality of the relaxation.

Finally, our experiments shows that the current approach using standard first-order
methods to solve these problems has a very bad convergence behavior. Hence, although
better bounds than before can be reached after short computation times, near optimal
solutions still take very long. Therefore several algorithmic developments or alternative
solution methods are required in order to improve the efficiency of our approach so that it
can be applied to large real world instances.

References

1 Ralf Borndörfer, Andreas Löbel, Markus Reuther, Thomas Schlechte, and Steffen Weider.
Rapid branching. Public Transport, 5(1-2):1–21, 2013. doi:10.1007/s12469-013-0066-8.

2 Ralf Borndörfer and Thomas Schlechte. Models for railway track allocation. In Christian
Liebchen, Ravindra K. Ahuja, and Juan A. Mesa, editors, ATMOS 2007 - 7th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Dagstuhl
Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, 2007. doi:10.4230/OASIcs.ATMOS.2007.1170.

ATMOS’15

http://dx.doi.org/10.1007/s12469-013-0066-8
http://dx.doi.org/10.4230/OASIcs.ATMOS.2007.1170

110 Ordering Constraints in Time Expanded Networks for Train Timetabling Problems

3 U. Brännlund, P. O. Lindberg, A. Nõu, and J. E. Nilsson. Railway timetabling using
Lagrangian relaxation. Transportation Science, 32(4):358–369, 1998.

4 Valentina Cacchiani, Fabio Furini, and Martin Philip Kidd. Approaches to a real-world
train timetabling problem in a railway node. Omega, 58:97–110, 2016. doi:10.1016/j.
omega.2015.04.006.

5 Valentina Cacchiani and Paolo Toth. Nominal and robust train timetabling problems.
European Journal of Operational Research, 219(3):727–737, 2012. doi:10.1016/j.ejor.
2011.11.003.

6 Alberto Caprara, Matteo Fischetti, and Paolo Toth. Modeling and solving the train time-
tabling problem. Operations Research, 50(5):851–861, 2002.

7 Frank Fischer. Dynamic Graph Generation and an Asynchronous Parallel Bundle Method
Motivated by Train Timetabling. PhD thesis, Chemnitz University of Technology, 2013.
URL: http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-118358.

8 Frank Fischer. DynG Dynamic Graph Generation library, 2014. URL: http://www.
mathematik.uni-kassel.de/~fifr/fossils/dyng.

9 Frank Fischer and Christoph Helmberg. Dynamic graph generation for the shortest path
problem in time expanded networks. Mathematical Programming A, 143(1-2):257–297, 2014.
doi:10.1007/s10107-012-0610-3.

10 Frank Fischer and Christoph Helmberg. A parallel bundle framework for asynchronous
subspace optimization of nonsmooth convex functions. SIAM Journal on Optimization,
24(2):795–822, 2014. doi:10.1137/120865987.

11 Frank Fischer, Christoph Helmberg, Jürgen Janßen, and Boris Krostitz. Towards solving
very large scale train timetabling problems by Lagrangian relaxation. In Matteo Fischetti
and Peter Widmayer, editors, ATMOS 2008 - 8th Workshop on Algorithmic Approaches
for Transportation Modeling, Optimization, and Systems, Dagstuhl, Germany, 2008. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. doi:10.4230/OASIcs.ATMOS.2008.
1585.

12 Christoph Helmberg. ConicBundle 0.3.11. Fakultät für Mathematik, Technische Uni-
versität Chemnitz, 2012. URL: http://www.tu-chemnitz.de/~helmberg/ConicBundle.

13 Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis and Minimization
Algorithms I & II, volume 305, 306 of Grundlehren der mathematischen Wissenschaften.
Springer, Berlin, Heidelberg, 1993.

14 Richard M. Lusby, Jesper Larsen, Matthias Ehrgott, and David Ryan. Railway track
allocation: models and methods. OR Spectrum, 33(4):843–883, oct 2011. doi:10.1007/
s00291-009-0189-0.

15 RAS Problem Solving Competition 2012, 2012. URL: https:
//www.informs.org/Community/RAS/Problem-Solving-Competition/
2012-RAS-Problem-Solving-Competition.

16 Thomas Schlechte. Railway Track Allocation: Models and Algorithms. PhD thesis, TU Ber-
lin, 2012.

17 Steffen Weider. Integration of Vehicle and Duty Scheduling in Public Transport. PhD thesis,
TU Berlin, 2007. URL: http://opus.kobv.de/tuberlin/volltexte/2007/1624/.

http://dx.doi.org/10.1016/j.omega.2015.04.006
http://dx.doi.org/10.1016/j.omega.2015.04.006
http://dx.doi.org/10.1016/j.ejor.2011.11.003
http://dx.doi.org/10.1016/j.ejor.2011.11.003
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-118358
http://www.mathematik.uni-kassel.de/~fifr/fossils/dyng
http://www.mathematik.uni-kassel.de/~fifr/fossils/dyng
http://dx.doi.org/10.1007/s10107-012-0610-3
http://dx.doi.org/10.1137/120865987
http://dx.doi.org/10.4230/OASIcs.ATMOS.2008.1585
http://dx.doi.org/10.4230/OASIcs.ATMOS.2008.1585
http://www.tu-chemnitz.de/~helmberg/ConicBundle
http://dx.doi.org/10.1007/s00291-009-0189-0
http://dx.doi.org/10.1007/s00291-009-0189-0
https://www.informs.org/Community/RAS/Problem-Solving-Competition/2012-RAS-Problem-Solving-Competition
https://www.informs.org/Community/RAS/Problem-Solving-Competition/2012-RAS-Problem-Solving-Competition
https://www.informs.org/Community/RAS/Problem-Solving-Competition/2012-RAS-Problem-Solving-Competition
http://opus.kobv.de/tuberlin/volltexte/2007/1624/

Regional Search for the Resource Constrained
Assignment Problem
Ralf Borndörfer and Markus Reuther

Zuse Institute Berlin
Takustrasse 7, 14195 Berlin, Germany
〈surname〉@zib.de

Abstract
The resource constrained assignment problem (RCAP) is to find a minimal cost partition of the
nodes of a directed graph into cycles such that a resource constraint is fulfilled. The RCAP
has its roots in rolling stock rotation optimization where a railway timetable has to be covered
by rotations, i.e., cycles. In that context, the resource constraint corresponds to maintenance
constraints for rail vehicles. Moreover, the RCAP generalizes variants of the vehicle routing
problem (VRP). The paper contributes an exact branch and bound algorithm for the RCAP and,
primarily, a straightforward algorithmic concept that we call regional search (RS). As a symbiosis
of a local and a global search algorithm, the result of an RS is a local optimum for a combinatorial
optimization problem. In addition, the local optimum must be globally optimal as well if an
instance of a problem relaxation is computed. In order to present the idea for a standardized
setup we introduce an RS for binary programs. But the proper contribution of the paper is
an RS that turns the Hungarian method into a powerful heuristic for the resource constrained
assignment problem by utilizing the exact branch and bound. We present computational results
for RCAP instances from an industrial cooperation with Deutsche Bahn Fernverkehr AG as well
as for VRP instances from the literature. The results show that our RS provides a solution
quality of 1.4 % average gap w.r.t. the best known solutions of a large test set. In addition, our
branch and bound algorithm can solve many RCAP instances to proven optimality, e.g., almost
all asymmetric traveling salesman and capacitated vehicle routing problems that we consider.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases assignment problem, local search, branch and bound, rolling stock rota-
tion problem, vehicle routing problem

Digital Object Identifier 10.4230/OASIcs.ATMOS.2015.111

1 Introduction

Let D = (V,A) be a directed graph with dedicated events taking place at every arc. We
distinguish replenishment events from other events and call arcs with replenishment events
replenishment arcs. Let r : A 7→ Q+ × Q+ be a resource function that assigns a pair of
nonnegative rational numbers (r1

a, r
2
a) to every arc denoting a resource consumption before

and after the event, respectively, and define ra := r1
a + r2

a. A resource path is an elementary
path inD of the form P = (a0, a1, ..., am, am+1) ⊆ A such that a0 and am+1 are replenishment
arcs and a1, ..., am are not replenishment arcs. Let P(A) be the set of all resource paths
and B ∈ Q+ be a resource bound. We call a resource path P = (a0, a1, ..., am, am+1) ∈ P(A)
feasible if the following resource constraint is fulfilled (otherwise P is infeasible):

r2
a0

+
∑m

i=1
rai

+ r1
am+1

≤ B. (1)

Finally, let c : A 7→ Q be some objective function associated with the arcs of D.
© Ralf Borndörfer and Markus Reuther;
licensed under Creative Commons License CC-BY

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 111–129

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.111
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

112 Regional Search for the Resource Constrained Assignment Problem

I Definition 1 (Resource Constrained Assignment Problem (RCAP)). Given a directed graph
D = (V,A), a resource function r, an objective function c, and a resource bound B. The
RCAP is to find a set of directed cycles C1, . . . , Cn ⊆ A in D such that every node is contained
in exactly one cycle, every cycle contains at least one replenishment arc, all resource paths
in P(

⋃n
i=1 Ci) are feasible, and c (

⋃n
i=1 Ci) is minimal.

�

�

Figure 1 Cycle partition.

Figure 1 illustrates the RCAP by showing a
set of nodes covered by three cycles. The dashed
arcs are replenishment arcs. A resource path ful-
filling constraint (1) is highlighted in red where
the two stop watches indicate replenishment
events. In our previous paper [16], we addition-
ally defined all cycles C ⊆ A with

∑
a∈A ra = 0

to be feasible. In order to streamline the present-
ation we assume that D does not contain such
cycles in this paper. We also assume that D does
not contain multiple arcs between two nodes.
We remark that the treatment of replenishment
events “in the middle of the arcs” could be re-

placed by a consideration of replenishment nodes. This would blow up the RCAP instances
that we are interested in. In addition, the use of replenishment nodes is no more possible if
multiple resource constraint are considered which we like to keep open.

The RCAP has its roots in the rolling stock rotation problem (RSRP) [17], i.e., the RCAP
is a specialization of the RSRP. In the RSRP the resource constraint models a maintenance
constraint for rail vehicles, e.g., refueling. To model time or distance consumptions directly
before or after replenishment events at the arc a ∈ A one can use the pair (r1

a, r
2
a). Moreover,

the RCAP generalizes variants of the vehicle routing problem (VRP), see Section 3.5. In this
way the RCAP provides access to different recent and classical problems.

The RCAP is a multifaceted combinatorial optimization problem in the sense that the
variability in computational effort needed to solve an instance to proven optimality is huge.
On the one hand, a small instance can be computational hard to solve, e.g., capacitated
vehicle routing problems. On the other hand, large problem instances in which the resource
constraint is less restrictive might be solved with little computational effort. We aim at
utilizing this characteristic for our algorithmic design. The idea is that the algorithm should
automatically allot less computation time to easy instances and more computation time to
hard ones. We call this behavior self-calibration. Note that this desirable property is not
evident for local search algorithms or meta-heuristics in general.

Our idea to implement this design is referred to as regional search (RS). It works as
follows. Let P be a combinatorial optimization problem and let P ′ be a relaxation of P .
Consider a feasible solution S for P , interpret S as a solution S′ for P ′ for the moment,
and consider a local search algorithm A′ that exactly solves P ′. In order to turn A′ into
an algorithm A that searches for improvements of S we “lift” the neighborhoods that are
roamed by A′ for S′ back to the original problem P . In other words, the relaxation induces
a neighborhood w.r.t. S. The lifted neighborhoods are called regions in order to highlight
that they are exact for P ′, i.e., A is automatically exact if an instance of P ′ is considered.
This algorithmic behavior is our characterization of an RS:

I Definition 2 (Regional search). Let P be a combinatorial optimization problem and let A
be a primal heuristic algorithm for P . Further, let P ′ be a relaxation of P . The algorithm A

is a regional search if A is proven exact for any instance of P ′.

R. Borndörfer and M. Reuther 113

In this way, the computational effort of A is related to the difference in tractability between
P and P ′, i.e., A can be expected to be self-calibrating.

We proceed in Section 2 with an RS for binary programs by using the simplex method
in order to argue that our idea is general enough to be directly used in other applications.
Afterwards we present a specialized RS for the RCAP by using the Hungarian method. In
Section 3 we describe a global search, namely a branch and bound procedure, for the RCAP.
This algorithm is used as sub-routine in our RS as well as standalone exact method for the
RCAP. In the last section we present computations for both the regional and global search.

2 Regional Search

In order to present our idea for a standardized setting we provide an RS for binary linear
programs by using the simplex algorithm in this section. Afterwards, our proper RS for the
RCAP is presented. In that algorithm a constraint integer program (CIP) for the RCAP
(that we solve with a branch and bound procedure, see Section 3) and the Hungarian method
take over the roles of the binary program and the simplex algorithm, respectively. In this way,
we argue that the main algorithmic ingredients of our RS approach are at hand if one comes
up with an (insufficient, i.e., not fast enough) exact algorithm and a linear programming
relaxation for an optimization problem.

2.1 Regional search for binary programs by using the simplex algorithm
Given a rational matrix A and vectors b and c of suitable dimensions, we consider a binary
program BP as

min{cTx |Ax = b, x binary} with its linear relaxation min{cTx |Ax = b, 0 ≤ x ≤ 1}

that we call LP. Our RS for BP assumes that a feasible starting solution x? is at hand, i.e.,
all values of x? are binary and Ax? = b. We now interpret x? as a basic solution of LP and
try to improve x? by using the well known primal simplex algorithm. The primal simplex
algorithm iteratively improves a basic incumbent solution by searching through the simplex
neighborhood. The simplex neighborhood of a basic solution x? of LP is defined as the set of
all basic solutions of LP that share an edge with x? in the polytope associated with LP. We
denote x̃ ∼ x? if the basic solutions x̃ and x? of LP share such an edge.

We now perform an improvement step of the primal simplex algorithm and end up with
another basic solution x̃ for LP with x̃ ∼ x? and cT x̃ < cTx? (assuming a non-degenerated
simplex operation). In general, x̃ will not be binary, i.e., feasible for BP. In order to improve
the chances to reach an improving binary vector we “lift” the simplex neighborhood as
follows. If x̃ ∼ x? and cT x̃ < cTx? we solve

min{cTx |Ax = b, x binary, xj = 1∀ column indices j : x?j = x̃j = 1} (BPREGION)

Program (BPREGION) is to solve BP under the additional constraint that all variables that
agree to be one in both solutions of x̃ ∼ x? are fixed. Note that x? is always a feasible
solution to program (BPREGION) and x̃ is always a feasible solution to the linear relaxation
of program (BPREGION). The motivation behind this setup is to gain a computational
compromise between the goals (1) improvement of the objective function value while (2)
preserving feasibility and (3) solving small sub-problems in order to be fast. Goal (1) is
promised by the simplex algorithm through cT x̃ < cTx? and goal (2) is meet by solving a
restricted version of the original problem BP in which the current incumbent solution is

ATMOS’15

114 Regional Search for the Resource Constrained Assignment Problem

always feasible. Goal (3) is achieved if the difference of successive basic solutions within the
simplex algorithm is small. In this case, a large number of variables that agree to be one
lead to a huge simplification of program (BPREGION) compared to the original problem.

We suggest to solve program (BPREGION) whenever x̃ ∼ x? and cT x̃ < cTx?. Thus, we
investigate all solutions that simplex algorithm would investigate which shows that the above
algorithm is an RS for binary programs according to Definition 2. It will always exactly
solve binary programs for which the linear relaxation has an integral optimal solution. In
this way every global search algorithm, i.e., exact algorithm, for problems that have a linear
relaxation is an RS, but not every local search algorithm is regional. Note that the proposed
algorithm can also be see as an iterated variable neighborhood search algorithm, see [4] for a
recent overview in the context of mixed integer non-linear programming.

2.2 Regional search for the RCAP using the Hungarian method
Denoting by xa ∈ {0, 1} a variable that is equal to one if a ∈ A belongs to a solution and
zero otherwise, and using the constraint notation of Achterberg [1, Example 3.2]), the RCAP
can be formulated as a CIP that serves as basis for our approach:

min
∑
a∈A caxa

s.t.
∑
a∈δ+(v) xa = 1, ∀ v ∈ V∑
a∈δ−(v) xa = 1, ∀ v ∈ V

RESOURCE CONSTRAINT(x)

xa ∈ {0, 1}, ∀ a ∈ A where

(RCAPCIP)

RESOURCE CONSTRAINT(x) ⇔ @P ∈ P(supp(x)) : P is an infeasible path.
By deleting the RESOURCE CONSTRAINT from program (RCAPCIP) we obtain the
assignment relaxation (AP): For every node v ∈ V there must be exactly on integral incoming
and outgoing arc variable which forces x ∈ Q|A| to define a cycle partition of the nodes of D.
The assignment relaxation is the linear programming relaxation that we use for our RS. Let
πtv and πhv be two free dual variables for each node v ∈ V . The assignment problem, i.e., the
assignment relaxation of the RCAP, is to solve the following dual linear programs:

(AP) min
∑

a∈A caxa

s.t.
∑

a∈δ+(v) xa = 1, ∀v ∈ V∑
a∈δ−(v) xa = 1, ∀v ∈ V

xa ≥ 0, ∀a ∈ A

(AD) max
∑

v∈V π
t
v +

∑
v∈V π

h
v

s.t. πtu + πhv ≤ ca, ∀a = (u, v) ∈ A

πtv ∈ Q, ∀v ∈ V
πhv ∈ Q, ∀v ∈ V.

In each basic solution of (AP) the x-variables are all binary and thus the integrality constraints
for them can be relaxed if one solves program (AP) with a simplex method. We do not use a
simplex method for (AP) and (AD) since it needs much effort to be implemented efficiently,
in particular for our purposes. Instead we use a more specialized combinatorial algorithm,
namely a primal version of the Hungarian method that we briefly summarize in the following.

Let da := ca − πtu − πhv be the reduced cost of the arc a = (u, v) ∈ A. By the strong
duality theorem the x- and π-variables have optimal value if and only if they are feasible for
(AP) and (AD) and the reduced cost or the x-variable is zero for each arc:

xa · da = 0, ∀a ∈ A. (2)

R. Borndörfer and M. Reuther 115

u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

Figure 2 Alternating cycle C = {a+
1 = (u1, v2), a−1 = (u5, v2), a+

2 = (u5, v5), a−2 = (u4, v5), a+
3 =

(u4, v3), a−3 = (u1, v3)}.

The primal Hungarian method of Balinski and Gomory [2] can be summarized as follows.
Start with a feasible solution for (AP), i.e., a cycle partition in D and choose a configuration
of the π-variables that need not be feasible for (AD) but have to satisfy (2). In each iteration
of the primal Hungarian method either the cycle partition or the dual solution is improved.
Thereby (2) is always preserved and the process stops if all arcs have positive reduced
cost, i.e., the π-variables provide dual feasibility. The improvements found by the primal
Hungarian method have a dedicated structure. In fact, they form alternating cycles. An
alternating cycle alternates between (old) arcs that belong to the current incumbent cycle
partition and (new) arcs that do not. By replacing the old arcs with the new arcs a new cycle
partition appears. Figure 2 provides an example of an alternating cycle that deletes the arcs
a−i and adds the arcs a+

i for i = 1, 2, 3. We refer to our previous paper [16] for more details
about the primal Hungarian method in particular for the purpose of generating alternating
cycles to be used as improvement operations. Moreover, we use exactly the same procedures
to find improving alternating cycles in this paper as described in our previous paper [16].

Note that alternating cycles would also appear if we use the primal simplex algorithm
because it follows exactly the same duality arguments and the symmetric difference of two
vertices x̃ and x? of the assignment polytope with x̃ ∼ x? is exactly an alternating cycle,
see [3].

Let x? ∈ {0, 1}A be the current incumbent solution to program (RCAPCIP) that is
associated with the feasible cycle partition M ⊆ A. Further, let x̃ ∈ {0, 1}A be that one cycle
partition that we obtain if we apply an alternating cycle C = {a+

1 , a
−
1 , . . . , a

+
n , a

−
n } found

by the primal Hungarian (or simplex) method to M . Analogous to the considerations for
binary programs above it is very unlike that x̃ is feasible again since we did not spend any
attention to the resource constraint so far. To this end, we “lift” the direct application of
the alternating cycle C to the cycle partition M to the solution of the following alternating
cycle region (RCAPREGION):

min
∑
a∈A caxa

s.t.
∑
a∈δ+(v) xa = 1, ∀ v ∈ V∑
a∈δ−(v) xa = 1, ∀ v ∈ V

RESOURCE CONSTRAINT(x)

xa = 1 ∀ a ∈M \ {a−1 , . . . , a−n },
xa ∈ {0, 1}, ∀ a ∈ A.

(RCAPREGION)

Solving this program increases the chances of finding an improved cycle partition under a
resource constraint. An evident interpretation of solving program (RCAPREGION) is that
the primal Hungarian method suggest to apply the cycle C in order to improve the value of
the objective function. But this is too naive. In order to compensate the resource constraint,

ATMOS’15

116 Regional Search for the Resource Constrained Assignment Problem

1 boolean i sReg iona l lyOpt ima l (M) // M i s a c y c l e p a r t i t i o n
2 {
3 for (a? ∈ {a ∈ A | da < 0}) // p r i c i n g loop
4 {
5 C = f indAl t e rna t ingCyc l e (a?) ; // see [16]
6
7 i f (C 6= ∅)
8 {
9 compute optimal s o l u t i o n MR o f (RCAPREGION) for M and C ;

10
11 i f (c(M) > c(MR)) { return f a l s e ; }
12 }
13 }
14 return t rue ;
15 }

Algorithm 1 Proof of regional optimality.

we only take the arcs that the cycle proposes to delete seriously. Note that this is exactly
what we describe for binary programs above, i.e., we fix all arc variables that agree to be one
before and after the application of the alternating cycle. Program (RCAPREGION) can be
easily turned into a plain RCAP by replacing all constant arc variables associated with arcs
of
⋃
a=(u,v)∈M\{a−1 ,...,a

−
n } δ

+(u) \ {a}. We solve program (RCAPREGION) by the branch and
bound algorithm presented in Section 3.

We are now ready to state Algorithm 1 that “proves regional optimality” for an instance
of the RCAP. Our overall RS iteratively calls Algorithm 1 and replaces M by MR if an
improvement has been found until “regional optimality is proven”. Obviously, this method is
of type RS because it investigates at least all solutions, i.e., all solutions that can be reached
by improving alternating cycles, that the primal Hungarian method would consider.

It turns out that it is computationally too short-sighted to always search for an optimal
solution of (RCAPREGION) because it rarely happens that the arising problem is almost as
hard as the original instance if the alternating cycle is large. We resolve this issue by setting
a limit of 103 branching nodes during depth-first-search [1] for model (RCAPREGION).

The following insight provides the connection to our previous paper [16] that presents a
local search algorithm for the RCAP.

I Lemma 3. The algorithm proposed in our previous paper [16] is of type regional search.

Proof. The main difference of the algorithm in [16] to the original version of the primal
Hungarian method is that alternating cycles are decomposed and recombined before they
are applied. Let C = {a+

1 , a
−
1 , . . . , a

+
n , a

−
n } ⊆ A be the alternating cycle found. A flip is a

2-OPT move that is well-defined by an entering arc a+
i , see [16]. The flips imposed by C can

be applied in any sequence. Consider the cycle partition that results from any n− 1 flips: It
is exactly the same assignment that is defined by directly applying C. This is true, because
after n − 1 flips the matching clearly contains n − 1 of the entering a+

i arcs and each flip
inserts a closing arc that is deleted by another (because C is an alternating cycle). Thus, the
matching must contain also the n-th of the a+

i arcs. This proofs the lemma, because one can
not lose any alternating cycle, i.e., any improvement proposed by the Hungarian method. J

We close this section with the observation that our previous RS algorithm [16] is almost
equal to our present RS with the important difference that we now exactly solve pro-
gram (RCAPREGION). This program is tackled heuristically in [16].

R. Borndörfer and M. Reuther 117

3 Branch and Bound for the RCAP

We present a branch and bound algorithm for the RCAP that is based on the constraint
integer program (RCAPCIP) already presented in Section 2.

An alternative formulation for the RCAP in terms of a pure integer program (IP) can
be derived by replacing the RESOURCE CONSTRAINT in model (RCAPCIP) with the
infeasible path constraints∑

a∈P
xa ≤ |P | − 1, ∀ infeasible paths P ∈ P(A). (3)

We do, however, not expect that this integer program will produce useful results. Indeed,
a vast number of papers – the most successful by now is [13] – consider much stronger
formulations for the exact solution of the CVRP and the TSP, see the excellent and recent
survey by Toth & Vigo [19]. In this paper we do not aim to generalize or adopt those
approaches to the RCAP, even if this is an interesting research area. Instead, we pursue
a much simpler approach that can solve lightly constrained easy problems fast, namely a
branch and bound algorithm that does not generate any primal or dual cutting planes. We
refer to [7, 19] for similar algorithms developed for the VRP.

This algorithm is based on formulation (RCAPCIP) and the assignment relaxation RCAP′
for bounding. In each node, called sub-problem, of the branching tree the following steps are
performed:

solve the assignment relaxation of the current RCAP
eliminate arcs using the assignment reduction, see Section 3.2
eliminate arcs using the shortest path reduction, see Section 3.3
eliminate arcs using the bin-packing reduction, see Section 3.4
discard current branching node if

the optimal objective value of the node relaxation is not below the upper bound
the optimal solution of the the assignment relaxation is feasible
there are no further branching candidates, see Section 3.5.

In each reduction procedure we try to find detachable arcs of the current sub-problem that
fulfill the following criterion: Any solution to the current sub-problem containing a detachable
arc is definitely not better than the incumbent solution. If a reduction procedure detects an
arc a ∈ A fulfilling this criterion, we detach the arc from the current sub-problem, i.e., we
delete the arc from the arc set A. Note that a detached arc remains detached in all child
nodes of the branching tree. In the following sections, we explain our branching scheme and
the three reduction procedures. We do not use a special notation to distinguish sub-problems
from the original RCAP. Instead, we consider each branching node as a new RCAP instance.

3.1 Branching Scheme
Our algorithm uses the assignment relaxation of the RCAP to solve the subproblems in
the branching tree. Thus, the solution of the current node relaxation is always integral.
In fact, it is composed of a set of cycles C1, . . . , Ck ⊆ A. If all cycles contain at least one
replenishment arc and all resource paths of P(

⋃k
i=1 Ci) are feasible, we do not have to perform

further branching. Otherwise, we branch on arc variables, i.e., for each branching candidate
a = (u, v) ∈ A we create two new sub-problems. The first arises from forcing xa = 1 and
in the other one the constraint xa = 0 is imposed. The latter case is handled by detaching
a ∈ A from the current sub-problem, while the former is handled by detaching all arcs of
δ+(u) \ {a}.

The following two situations lead to further branching on a certain sub-problem:

ATMOS’15

118 Regional Search for the Resource Constrained Assignment Problem

a cycle, called infeasible cycle, of {C1, . . . , Ck} does not contain a replenishment arc
a path of P

(⋃k
i=1 Ci

)
is infeasible.

Let I = {I1, . . . , Im} with Ii ⊆ A for i = 1, . . . ,m be the family of cycles and paths fulfilling
one of these two criteria. In general it is valid to branch on each arc a ∈ A of the current
sub-problem, but it is natural to only branch on arcs a ∈

⋃m
i=1 Ii.

The set
⋃m
i=1 Ii can be large and the concrete choice of the branching candidate can have

a huge effect on the computational performance [1]. Our expectations on a branching rule
are: (1) It should remove “infeasibilities” as early as possible; (2) It should increase the
lower bound as much as possible; (3) It should be computationally easy; and (4) It should be
unique (i.e., break ties) in order to avoid random decisions. Many rules have been studied
in the TSP, ATSP, and CVRP literature. In particular, the paper [20] provides a literature
review and the ATSP case. It suggests the following two criteria to qualify arc a ∈ A for
branching:

1. Let P ⊆ A that one infeasible path or cycle with a ∈ P . The criterion is PL(a) := |P |.
2. The criterion is the optimal objective function value of the node relaxation s.t. xa = 0.

The maximization of criterion 2 is known as strong branching in the literature [1]. In [20]
it is suggested to lexicographically (we also always combine criteria lexicographically here)
combine strong branching with minimizing criterion 1. The argumentation for this rule is
conclusive and matches expectations (1) to (3). But we observed the following issue w.r.t.
expectation (4). Let a′ ∈ A be an arc contained in an infeasible path or cycle. Following [20]
we have to compute the strong branching bound SB(a′):

SB(a′) := min
∑
a∈A\{a′} caxa

s.t.
∑

a∈δ+(v)\{a′}
xa = 1 and

∑
a∈δ−(v)\{a′}

xa = 1 ∀ v ∈ V, xa ∈ {0, 1} ∀ a ∈ A.
(RCAPSB)

Our observation is that the values SB(a′) do not distinguish particular arcs, i.e., many arcs
of the infeasible path or cycle give the same strong branching bound. This is comprehensible
because if we force xa = 0, it is unlikely that all other arcs of the corresponding path or
cycle remain. Whenever at least two arcs have the same strong branching bound the choice
is random and can be expected to be “wrong” in half of all cases.

Our idea to diversify the strong branching bound is to introduce an additional constraint
into (RCAPSB) in order to force that things change. The constraint reads:∑m

i=1

∑
a∈Ii

xa ≤ |V | − 2. (4)

It forces us to change at least two arcs of the current cycle partition to end up with another
cycle partition. This kind of constraints is well-known in a MIP concept that is called local
branching [6] for a different application. Denoting the bound that is given by model (RCAPSB)
including inequality (4) as LB(a) for a ∈ A, the following lemma holds.

I Lemma 4. LB((u, v)) can be computed exactly by a local search over all 2-OPT moves
that insert one arc of δ+(u) into the optimal solution of the current node relaxation.

Proof. Inequality (4) and equality xa = 0 constrain to 2-OPT moves. J

A natural suggestion is to consider an arc a ∈ A maximizing LB(a) for branching.
We remark that LB does also not diversify completely (which is impossible, e.g., if ca = 0

for all a ∈ A) but much better than SB. To break the remaining ties, we introduce another

R. Borndörfer and M. Reuther 119

criterion that depends on the branching history, see [4, Section 10.2] for an overview. Suppose
that we just computed the optimal solution of the assignment relaxation of a branching node
j ∈ N and that the arc a ∈ A appears in this solution, i.e., xa = 1. Let z? be the relaxation’s
optimal objective value. Then we store the triple (z?, j, a) in a set O and define the average
objective value AO(a) of the arc a ∈ A as:

AO(a) :=
(∑

(z,j,a′)∈O : a′=a

z

)
/|{(z,j,a′)∈O | a′=a}|.

At this point we considered the following four criteria for choosing a branching candidate
a ∈

⋃m
i=1 Ii: PL(a), LB(a), SB(a), and AO(a). Each of these criteria can be minimized as

well as maximized. Also any lexicographic order (e.g., first select all arcs a ∈ A minimizing
PL(a), of these maximize LB(a), etc.) can be chosen. This gives rise to 24 · 4! = 384
possibilities which we implemented all in order to prove the optimality of an already optimal
solution for the instances: br17 (ATSP), gr17 (TSP), and eil22 (CVRP). Most of the
384 rules are obviously not competitive. But twelve rules are not evidently dominated, see
Table 3. We declare the rule (maxLB, maxAO, minPL, max SB) as (our) clear winner by
considering that computing LB(a) is much faster (O(|V |)) than computing SB(a) (O(|V |2)
with warm start and O(|V |3) without).

3.2 Assignment Reduction
The assignment relaxation RCAP′ is derived by deleting the RESOURCE CONSTRAINT
from model (RCAPCIP). It is a valid relaxation which we use for bounding within our branch
and bound algorithm. The assignment problems are solved with an O(|V |3) implementation
of the Hungarian method described in the paper [11] that celebrates its 60th birthday this
year. The Hungarian algorithm produces optimal dual variables πu and πv for each arc
a = (u, v) ∈ A. Let zLB be the optimal objective value of RCAP′ and zUB an already known
upper bound for the RCAP. Then an arc a ∈ A can be detached if zLB + ca− πu− πv ≥ zUB,
a rule which is known under the name reduced cost presolving [1].

Let M = {a ∈ A |xa = 1} be the solution of some assignment relaxation. It is easy to
see that arcs can be detached by imposing xa = 0 for an arc a ∈M and xa = 1 for an arc
a ∈ A \M if the corresponding sub-problems turn out to be infeasible or dominated by the
best known upper bound. However, solving all these sub-problems can be computationally
expensive. This computational burden can be mitigated by performing a local optimization
before solving the sub-problems. Namely, if we try to detach a = (u, v) ∈ A from the current
sub-problem, we can locally optimize in O(|V |) over all 2-OPT moves defined by δ+(v) \ {a}.
If the best objective value during this local optimization is below the best known upper
bound we do not have to solve the assignment problem that forces xa = 0 (this is can be
done similarly for a ∈ A \M).

3.3 Shortest-Path Reduction
In this section we aim at developing a pruning rule that eliminates an arc a ∈ A if it can be
proven that a feasible path P ⊆ A with a ∈ P does not exist in the current sub-problem.
To this end, we transform the directed graph D = (V,A) into another directed graph DSP.
We introduce the node set VSP := V ∪ {s, t} of DSP, i.e., we extend D by a source s and a
target t. For a = (u, v) ∈ A we apply the following transformation:

ASP(a) :=

{(u, t), (s, v)}, if a is a replenishment arc
(
cSP(u,t) := r1

a, c
SP
(s,v) := r2

a

)
,

{(u, v)}, otherwise
(
cSP(u,v) := r1

a + r2
a

)
.

ATMOS’15

120 Regional Search for the Resource Constrained Assignment Problem

The transformed graph is DSP := (VSP, ASP) :=
(
V ∪ {s, t},

⋃
a∈AASP(a)

)
with well defined

objective coefficients cSPa for all a ∈ ASP. Every feasible path must be elementary in a solution
to the RCAP and every elementary resource path of P(A) corresponds to an elementary
s-t-path P in DSP by construction. Our elimination criterion for an arc a ∈ A is as follows.
If we can prove that a shortest elementary s-t-path P in DSP such that a ∈ P has cost
c(P) > B we are allowed to detach a. This elimination criterion is NP-hard to compute, as
stated in Lemma 5:

I Lemma 5 (Elementary s-v-t-paths in directed graphs are NP-hard to compute). Given a
directed graph G = (V,A) and three different nodes s, v, t ∈ V , it is NP-complete to decide if
G contains an elementary path that starts at s, traverses v, and ends at t.

Proof. Given a directed graph D = (V,A) with four different nodes v1, u1, v2, u2 ∈ V the
disjoint path problem (DPP) is to find a v1-u1-path and a v2-u2-path in D such that the
two paths are vertex-disjoint. The DPP is NP-hard, see [8] (the DPP for undirected graphs
is polynomial, see [18]). An instance of the DPP can be instantiated as an elementary
s-v-t-path problem by setting s = v1, t = u2 and by introducing arcs (u1, v) and (v, v2). J

Fortunately, we can relax the criterion by computing non-elementary paths in DSP and also
obtain a valid elimination rule. It can be checked by first computing the shortest-paths from
s to all nodes of V , followed by computing the shortest-paths from V to t, and finished by
iterating over all arcs of A and to evaluate the elimination criterion. This procedure has
complexity O(|V |2).

3.4 Bin-Packing Reduction
Let J be a set of items with associated weights wj ∈ Q+ for j ∈ J and a bin capacity
B ∈ Q+. The standard bin-packing problem is to find a block partition S1, . . . , Sk of J
with

∑
j∈Sk

wj ≤ B for all blocks S1, . . . , Sk such that k is minimal. In a solution of the
RCAP the nodes are also assigned to capacitated bins, namely, to resource paths. This gives
motivation to derive a bin-packing relaxation of the RCAP that can be used for pruning in
the branch and bound tree. To this purpose, we interpret the nodes of our graph as items
and the feasible paths as bins. The pruning rule contributes if it can be proven that more
bins are needed than available. A valid lower bound on the minimal resource consumption
that the node (or item) u ∈ V will contribute to a feasible path can be computed by solving
the following assignment problem:

wu := min
∑
a∈δ+(u) raxa

s.t.
∑
a∈δ+(v) xa = 1 and

∑
a∈δ−(v) xa = 1 ∀ v ∈ V, xa ≥ 0 ∀ a ∈ A. (RCAPITEMS)

These quantities are used as node weights. Moreover an obviously valid upper bound for
the maximal number of feasible paths (or bins) can be computed by solving the following
model (RCAPBINS):

zUB := max
∑
a∈Ã xa

s.t.
∑
a∈δ+(v) xa = 1 and

∑
a∈δ−(v) xa = 1 ∀ v ∈ V, xa ≥ 0 ∀ a ∈ A. (RCAPBINS)

It maximizes the number of replenishment arcs Ã ⊆ A which is equivalent to maximizing the
number of resource paths. The following lemma summarizes the bin-packing pruning rule.

I Lemma 6. Let I be an instance of the RCAP. Let zLB be any valid lower bound for
the optimal solution of the bin-packing problem with item set V , weights wu derived from

R. Borndörfer and M. Reuther 121

model (RCAPITEMS) for all u ∈ V and a bin capacity of B. Further let zUB be the optimal
objective value of model (RCAPBINS). If zLB > zUB it is proven that I is infeasible.

Proof. Let zLB > zUB and let I be a feasible instance. There must be a cycle partition
C1, . . . , Ck containing feasible paths. The value zUB is associated with an optimal solution
of (RCAPBINS), therefore zUB ≥ |P(

⋃k
i=1 Ck)|. Each path in P(

⋃k
i=1 Ck) provides a feasible

assignment of items to bins, i.e., an assignment of nodes to feasible paths, because the
weight of each item v ∈ V (P) is underestimated in a worst case by the optimal objective
value wv of model (RCAPITEMS), thus zLB ≤ |P(

⋃k
i=1 Ck)|. The contradiction is given by

zLB ≤ |P(
⋃k
i=1 Ck)| and zUB ≥ |P(

⋃k
i=1 Ck)|. J

Since the bin-packing problem is NP-hard, we replace zLB by the lower bounds L2 and L3
from [12]. These bounds can be computed in O(|V |) for L2 and in O(|V |3) for L3 and have
a worst case quality of 2

3zBP and 3
4zBP where zBP denotes the optimal objective value of the

bin-packing problem.

3.5 Symmetry Reduction
In this section we collect some algorithmic insights found by solving symmetric TSP and
CVRP instances with our algorithm. This type of problems can be characterized as having
the property that each resource path is a cycle, and that the cost function is symmetric.
Therefore, every cycle can be reversed, such that the cost and the resource consumption of
the tour and the reversed tour are equal. This can be problematic in a branch and bound
algorithm that has to search through many essentially identical alternatives.

The capacitated vehicle routing problem (CVRP) [5] is to find a minimal set of cycles,
called tours, in a complete undirected graph G = (V ∪ {d}, E) with node demands rv ∈ Q+
for all v ∈ V such that each node of V is covered exactly once by a cycle, every cycle covers
the depot node d exactly once,

∑
v∈V ∩C rv ≤ B holds for every cycle C of the solution,

and the solution minimizes some linear objective function c : E 7→ Q. We assume that the
minimal number of tours t is known (as most of the articles of the CVRP literature do). An
instance of the CVRP can be modeled as a RCAP by introducing t copies of d, using the
resource function values of the outgoing arcs of a node to model the demands, and declaring
the incoming arcs of d as replenishment arcs. For t = 1, TSP instances can be modeled
directly as RCAPs. Our first observation is:

I Lemma 7. Consider a RCAP instance over the directed graph D = (V,A) such that each
resource path is a cycle and let f : V 7→ {1, . . . , |V |} be some numbering of the nodes. We
only have to consider arcs a = (u, v) ∈ A with f(u) < f(v) as branching candidates.

Proof. Consider the set of cycles C1, . . . , Ck of an infeasible solution of the current node
relaxation. Then, an infeasible path P ∈ P(

⋃n
i=1 Ci) exists. Since P is a cycle there is at least

one arc a = (u, v) ∈ P with f(u) < f(v) which can be used as a branching candidate. J

Note that, although this attractive rule was originally developed to break symmetries, it can
also be used in an ATSP context. However, we could not find an effective way to utilize it in
our implementation. The concrete reason is unclear to us. We can only speculate that merely
using arcs a = (u, v) with f(u) < f(v) as branching candidates destroys the performance
of our branch and bound algorithm because in approximately half of the cases the one arc
that increases the lower bound at most is not chosen. Nevertheless, we were able to verify by
Lemma 7 that our implementation does not suffer from symmetric cost matrices.

ATMOS’15

122 Regional Search for the Resource Constrained Assignment Problem

Another symmetry issue refers to the depot copies in the CVRP case. We assume that
D does not contain loops and arcs connecting depot nodes. Then, each cycle partition of
D is symmetric to t! cycle partitions that arise from interchanging the depot nodes. This
problem can be easily resolved by excluding all arcs incident to a depot node as branching
candidates. If all other arcs, i.e., all arcs that are not incident to the depot, are fixed to one
or zero we always obtain single-customer tours for which each xa = 0 leads to an infeasible
RCAP instance.

4 Computational Results

All our computations were performed on computers with an Intel(R) Xeon(R) CPU X5672
with 3.20GHz, 12MB cache, and 128GB of RAM by using a single thread under the operating
system Ubuntu 14.04. All implementations are written in the C++ programming language
and compiled by the compiler g++ 4.8.4 released by the Free Software Foundation.

4.1 RCAP instances from the railway application

The interpretation of the RCAP in rolling stock rotation optimization is to cover a given set
of timetabled passenger trips by a set of cycles, called rolling stock rotations. The resource
constraint models a limit on the driven distance between two consecutive maintenance
services. The main objective is to minimize the number of vehicles and the total distance of
deadhead trips (needed to overcome different arrival and departure locations between two
trips). We tested our regional and global search algorithms for 15 RCAP instances that are
specializations of the rolling stock rotation problem (RSRP) [17]. The RS is called once in
the root node of our branch and bound tree. For this application, it is advantageous to use
the RS of our previous paper [16]. It is also better to turn off the bin-packing reduction in
the railway application. By using the RS strictly as presented in this paper we get similar
results for these 15 instances w.r.t. solution quality and computation time for less constrained
instances (e.g., all with 8000 km and 6000 km and all with 97 nodes). But the computation
times for the large and hard constrained instances (e.g., RCAP_02, see below) increase w.r.t.
to our previous regional search algorithm [16].

Table 1 reports our results for the 15 instances that arise from RSRPs that are associated
with three timetables (indicated by the number of nodes in column three) for different upper
bounds of a dedicated maintenance constraint denoted in column two. The root gap in
column four is defined as (c?−c̃)

c? ∗ 100 (all gaps in this paper are computed in this way),
i.e., the worst case optimality gap in percent, where c? > 0 is the objective value of the
regionally optimal solution and c̃ the value of the lower bound obtained in the root node of
the branching tree. Columns five, six, and seven contain the number of branch and bound
nodes, the computation time, and the solution status on termination of the branch and
bound algorithm.

In the industrial application, the instances associated with a maintenance constraint of
8000 km are the ones of interest that could all be solved to proven optimality fast. Also
tighter constrained instances are solved with very high solution quality. The most difficult
instances RCAP_02, RCAP_03, and RCAP_12 display worst case optimality gaps. Nevertheless,
we claim that they are also completely “resolved” from an applied point of view. In fact, the
very large lower bound proves practical inefficiency of the solution beyond doubt.

R. Borndörfer and M. Reuther 123

Table 1 Results for RCAP instances from the railway application.

instance B [km] |V | root gap nodes hh:mm:ss proved
RCAP_01 1000 617 – 1 00:00:00 infeasibility
RCAP_02 2000 617 25.88 15105 15:50:56 9.81 % gap
RCAP_03 4000 617 3.95 51483 15:45:57 0.21 % gap
RCAP_04 6000 617 0.19 143 03:18:07 optimality
RCAP_05 8000 617 0.13 43 00:07:37 optimality
RCAP_06 1000 97 – 1 00:00:00 infeasibility
RCAP_07 2000 97 12.71 41 00:00:10 optimality
RCAP_08 4000 97 0.00 1 00:00:02 optimality
RCAP_09 6000 97 0.00 1 00:00:02 optimality
RCAP_10 8000 97 0.00 1 00:00:02 optimality
RCAP_11 1000 310 – 1 00:00:00 infeasibility
RCAP_12 2000 310 38.16 944551 16:07:46 16.71 % gap
RCAP_13 4000 310 16.70 119159 09:17:54 optimality
RCAP_14 6000 310 7.78 2053 00:08:33 optimality
RCAP_15 8000 310 7.78 87 00:21:40 optimality

Table 2 Summary of regional search for VRP instances.

type number of instances arithmethic mean shifted geometric mean [1] (shift 1)
ATSP 19 1.99 (1.70) 1.51 (1.21)
CVRP 106 0.89 (5.09) 0.63 (3.81)

ACVRP 8 1.84 1.34
TSP 65 2.22 (2.60) 1.71 (1.97)
all 198 1.47 (3.91) 1.04 (2.78)

4.2 TSP, ATSP, CVRP, and ACVRP instances from the literature

We also made experiments for a large number of instances taken from the literature [14, 15]
for which we use the regional search algorithm and the branch and bound algorithm strictly
as presented in this paper. We present results for all ATSP instances from [15] and for the
TSP instances with less than 500 nodes. From [14] we consider all CVRP and ACVRP (the
ACVRP instances were not considered in [16]) instances from the test sets A, B, E, F, G, M,
P, and V except for six instances for which we could not verify the objective values of the
solutions provided in the library (otherwise uncomparable results would appear).

Table 2 provides mean values for the column “bk gap” (i.e., the deviation in percent to
the best known objective value) of Table 4 in the appendix. The same summary is made in
our previous paper [16] and we provide the corresponding values in braces. In comparison
to [16], the exact search over the regions increases solution quality. In comparison to other
more problem specific heuristics (especially for the symmetric TSP, see [10]) our regional
search is almost competitive w.r.t. solution quality. It is definitely competitive in solving
asymmetric instances to proven optimality, as reported in the last three columns of Table 4:
18 of 19 ATSP instances from [15] and all ACVRP instances considered in [7] are solved
to proven optimality. These results give evidence that our algorithms are powerful tools
for a wide variety of resource constrained assignment problems ranging from recent railway
applications via VRPs to classical TSPs and ATSPs.

ATMOS’15

124 Regional Search for the Resource Constrained Assignment Problem

References

1 Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität
Berlin, 2009.

2 M. L. Balinski and R. E. Gomory. A primal method for the assignment and transportation
problems. Management Science, 10(3):578–593, 1964.

3 M. L. Balinski and Andrew Russakoff. On the assignment polytope. SIAM Review, 16(4):pp.
516–525, 1974.

4 Timo Berthold. Heuristic algorithms in global MINLP solvers. PhD thesis, Technische
Universität Berlin, 2014.

5 G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research, 12(4):568–581, 1964.

6 Matteo Fischetti and Andrea Lodi. Local branching. Mathematical Programming, 98(1-
3):23–47, 2003.

7 Matteo Fischetti, Paolo Toth, and Daniele Vigo. A Branch-and-Bound Algorithm for
the Capacitated Vehicle Routing Problem on Directed Graphs. Operations Research,
42(5):846–859, 1994.

8 Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theoretical Computer Science, 10(2):111–121, 1980.

9 Chris Groër, Bruce Golden, and Edward Wasil. A library of local search heuristics for the
vehicle routing problem. Mathematical Programming Computation, 2(2):79–101, 2010.

10 Keld Helsgaun. General k-opt submoves for the Lin–Kernighan TSP heuristic. Mathemat-
ical Programming Computation, 1(2-3):119–163, 2009.

11 H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.

12 Silvano Martello and Paolo Toth. Lower bounds and reduction procedures for the bin
packing problem. Discrete Applied Mathematics, 28(1):59–70, 1990.

13 Diego Pecin, Artur Pessoa, Marcus Poggi, and Eduardo Uchoa. Improved Branch-Cut-
and-Price for Capacitated Vehicle Routing. In Jon Lee and Jens Vygen, editors, Integer
Programming and Combinatorial Optimization, volume 8494 of Lecture Notes in Computer
Science, page 393–403. Springer International Publishing, 2014.

14 T. Ralphs. Branch cut and price resource web (http://www.branchandcut.org), June 2014.
15 G. Reinelt. TSPLIB - A T.S.P. Library. Technical Report 250, Universität Augsburg,

Institut für Mathematik, Augsburg, 1990.
16 Markus Reuther. Local Search for the Resource Constrained Assignment Problem. In

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems, volume 42 of OASIcs, pages 62–78, Dagstuhl, Germany, 2014. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

17 Markus Reuther, Ralf Borndörfer, Thomas Schlechte, and Steffen Weider. Integrated optim-
ization of rolling stock rotations for intercity railways. In Proceedings of RailCopenhagen,
Copenhagen, Denmark, May 2013.

18 Yossi Shiloach. The two paths problem is polynomial. Technical report, Stanford University,
Stanford, CA, USA, 1978.

19 P. Toth and D. Vigo. Vehicle Routing. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2014.

20 Marcel Turkensteen, Diptesh Ghosh, Boris Goldengorin, and Gerard Sierksma. Tolerance-
based Branch and Bound algorithms for the ATSP. EJOR, 189(3):775–788, 2008.

R. Borndörfer and M. Reuther 125

A Appendix: Tables

Table 3 Computational evaluation of branching rules: The notation defines the lexicographic
order of the criteria by that arcs are selected as branching candidates. The last column denotes the
number of branching nodes needed to proof optimality for an already optimal incumbent solution.

instance branching rule nodes
br17 max SB minPL maxAO maxLB 76425
eil22 max SB minPL maxAO maxLB 65769
gr17 max SB minPL maxAO maxLB 765
br17 max SB minPL maxLB maxAO 78579
eil22 max SB minPL maxLB maxAO 59833
gr17 max SB minPL maxLB maxAO 785
br17 max SB maxAO minPL maxLB 52415
eil22 max SB maxAO minPL maxLB 61155
gr17 max SB maxAO minPL maxLB 781
br17 max SB maxAO maxLB minPL 44581
eil22 max SB maxAO maxLB minPL 61247
gr17 max SB maxAO maxLB minPL 781
br17 max SB maxLB minPL maxAO 35959
eil22 max SB maxLB minPL maxAO 57941
gr17 max SB maxLB minPL maxAO 795
br17 max SB maxLB maxAO minPL 32159
eil22 max SB maxLB maxAO minPL 57853
gr17 max SB maxLB maxAO minPL 795
br17 maxLB max SB minPL maxAO 44233
eil22 maxLB max SB minPL maxAO 40961
gr17 maxLB max SB minPL maxAO 485
br17 maxLB max SB maxAO minPL 30103
eil22 maxLB max SB maxAO minPL 41193
gr17 maxLB max SB maxAO minPL 485
br17 maxLB minPL max SB maxAO 44505
eil22 maxLB minPL max SB maxAO 41199
gr17 maxLB minPL max SB maxAO 493
br17 maxLB minPL maxAO max SB 45355
eil22 maxLB minPL maxAO max SB 42747
gr17 maxLB minPL maxAO max SB 535
br17 maxLB maxAO max SB minPL 26821
eil22 maxLB maxAO max SB minPL 43383
gr17 maxLB maxAO max SB minPL 531
br17 maxLB maxAO minPL max SB 26847
eil22 maxLB maxAO minPL max SB 43391
gr17 maxLB maxAO minPL max SB 531

ATMOS’15

126 Regional Search for the Resource Constrained Assignment Problem

Table 4 Regional and global search for VRP instances. The third column gives the number
of nodes of the considered RCAP instance; the fourth column is the deviation in percentage of
the initial solution for our regional search (computed with a poor greedy heuristic) w.r.t. the best
known objective value [9] (column five). The columns “bk gap” and “lb gap” give the deviation
in percent of the regionally optimal objective value (column “reg. sec.” denotes its computation
seconds) w.r.t. column “best” and w.r.t. the lower bound obtained in the root node of the branching
tree, respectively. The last two columns give the number of branching nodes and the computation
time if our branch and bound approach was able to solve all remaining sub-problems.
(For M-n200-k17 (G-n262-k25) we computed a solution with objective value 1344 (5856). These
values are below the best known values provided in [9] and excluded in Table 2.)

instance type |V | initial
gap

best lb gap bk gap reg. sec. nodes dd:hh:mm:ss

A034-02f ACVRP 35 48.91 1406 14.15 0.00 7.4 18093 00:00:00:18
A036-03f ACVRP 38 46.43 1644 12.78 4.08 5.4 37037 00:00:00:38
A039-03f ACVRP 41 55.16 1654 9.92 4.00 10.9 11043 00:00:00:25
A045-03f ACVRP 47 58.19 1740 6.72 0.11 5.9 2025 00:00:00:10
A048-03f ACVRP 50 63.05 1891 8.39 2.12 4.4 11865 00:00:00:19
A056-03f ACVRP 58 65.61 1739 13.64 2.41 15.1 1192799 00:00:30:17
A065-03f ACVRP 67 69.61 1974 7.45 0.00 32.7 83185 00:00:02:23
A071-03f ACVRP 73 71.24 2054 10.11 2.00 10.1 121205 00:00:05:27
br17 ATSP 17 76.65 39 100.00 0.00 2.6 152825 00:00:00:23
ft53 ATSP 53 50.52 6905 16.97 3.33 23.1 441917 00:00:15:39
ft70 ATSP 70 31.04 38673 2.09 0.29 17.2 1462829 00:00:58:00
ftv170 ATSP 171 61.45 2755 6.87 2.48 37.2 6683339 01:03:08:19
ftv33 ATSP 34 42.56 1286 13.63 6.27 5.3 157 00:00:00:05
ftv35 ATSP 36 40.44 1473 7.32 1.14 4.0 1353 00:00:00:04
ftv38 ATSP 39 38.90 1530 7.05 1.10 4.5 5407 00:00:00:12
ftv44 ATSP 45 39.77 1613 8.43 2.89 4.7 2323 00:00:00:09
ftv47 ATSP 48 58.59 1776 10.22 3.48 4.6 26341 00:00:01:09
ftv55 ATSP 56 59.54 1608 15.09 4.85 4.5 209665 00:00:08:42
ftv64 ATSP 65 61.55 1839 10.08 3.92 12.3 46923 00:00:03:02
ftv70 ATSP 71 59.84 1950 11.35 2.11 5.9 452675 00:00:16:56
kro124p ATSP 100 82.71 36230 6.28 0.07 166.6 14253731 01:23:08:01
p43 ATSP 43 8.77 5620 97.37 0.05 6.5
rbg323 ATSP 323 79.37 1326 0.90 0.90 112.0 739 00:00:08:02
rbg358 ATSP 358 83.58 1163 0.34 0.34 113.2 663 00:00:02:46
rbg403 ATSP 403 69.02 2465 0.88 0.88 94.6 177 00:00:06:39
rbg443 ATSP 443 68.80 2720 0.98 0.98 121.3 43 00:00:06:32
ry48p ATSP 48 73.42 14422 15.64 2.80 10.2 150917 00:00:05:24
A-n32-k5 CVRP 36 52.94 784 31.63 0.00 22.0
A-n33-k5 CVRP 37 49.70 661 38.07 2.07 62.1
A-n33-k6 CVRP 38 42.92 742 36.74 0.13 84.4
A-n34-k5 CVRP 38 52.73 778 35.99 1.39 67.5
A-n36-k5 CVRP 40 50.00 799 38.17 0.99 68.3
A-n37-k5 CVRP 41 56.61 669 26.99 1.33 22.7
A-n37-k6 CVRP 42 42.03 949 45.31 0.00 321.0
A-n38-k5 CVRP 42 54.74 730 43.72 0.27 69.3
A-n39-k5 CVRP 43 59.86 822 37.08 0.72 206.6
A-n39-k6 CVRP 44 55.06 831 38.42 0.24 112.0
A-n44-k6 CVRP 49 56.03 937 31.10 0.21 75.2
A-n45-k6 CVRP 50 55.00 944 37.18 0.00 118.7
A-n45-k7 CVRP 51 51.89 1146 40.40 0.43 1025.8
A-n46-k7 CVRP 52 58.68 914 37.31 0.00 187.9
A-n48-k7 CVRP 54 52.35 1073 39.09 2.45 549.6
A-n53-k7 CVRP 59 59.26 1010 39.45 1.37 677.7
A-n54-k7 CVRP 60 54.68 1167 51.99 3.07 1700.3
A-n55-k9 CVRP 63 54.78 1073 40.04 1.01 491.2
A-n60-k9 CVRP 68 54.23 1354 54.60 1.17 4232.7
A-n61-k9 CVRP 69 55.98 1034 41.66 0.29 1080.4
A-n62-k8 CVRP 69 59.67 1288 48.94 2.13 3293.0
A-n63-k10 CVRP 72 54.07 1314 49.89 0.38 3884.1
A-n63-k9 CVRP 71 54.22 1616 48.84 1.10 4342.6

Continued on next page

R. Borndörfer and M. Reuther 127

Table 4 – continued from previous page
instance type |V | initial

gap
best lb gap bk gap reg. sec. nodes dd:hh:mm:ss

A-n64-k9 CVRP 72 57.66 1401 41.51 1.27 3110.8
A-n65-k9 CVRP 73 59.86 1174 37.05 0.00 1275.8
A-n69-k9 CVRP 77 62.16 1159 37.10 0.69 1497.4
A-n80-k10 CVRP 89 58.80 1763 41.97 0.96 6728.1
att-n48-k4 CVRP 51 63.86 40002 26.12 0.52 83.3
bayg-n29-k4 CVRP 32 55.70 2050 17.71 0.00 12.2 34154469 00:06:08:31
bays-n29-k5 CVRP 33 46.72 2963 25.89 0.00 29.2
B-n31-k5 CVRP 35 29.56 672 30.06 0.00 41.0
B-n34-k5 CVRP 38 44.35 788 32.83 0.13 76.2
B-n35-k5 CVRP 39 53.30 955 37.28 0.00 130.4
B-n38-k6 CVRP 43 57.34 805 43.85 0.00 174.0
B-n39-k5 CVRP 43 63.20 549 52.82 0.00 61.3
B-n41-k6 CVRP 46 54.90 829 61.88 0.00 176.5
B-n43-k6 CVRP 48 58.38 742 52.70 0.00 425.0
B-n44-k7 CVRP 50 50.81 909 61.72 0.00 336.1
B-n45-k5 CVRP 49 53.06 751 45.94 0.00 184.2
B-n45-k6 CVRP 50 56.23 678 43.11 0.59 349.7
B-n50-k7 CVRP 56 67.11 741 34.82 0.00 314.5
B-n50-k8 CVRP 57 50.13 1312 56.93 1.20 2457.7
B-n51-k7 CVRP 57 53.78 1032 36.88 0.10 566.7
B-n52-k7 CVRP 58 66.00 747 61.50 0.13 846.0
B-n56-k7 CVRP 62 66.41 707 62.94 0.00 673.5
B-n57-k7 CVRP 63 29.65 1153 66.67 2.45 1912.7
B-n57-k9 CVRP 65 43.09 1598 34.31 0.68 1695.2
B-n63-k10 CVRP 72 60.39 1496 58.82 2.67 3284.2
B-n64-k9 CVRP 72 66.83 861 46.58 0.23 2814.0
B-n66-k9 CVRP 74 52.97 1316 58.12 0.15 3445.1
B-n67-k10 CVRP 76 65.36 1032 43.33 0.19 3108.3
B-n68-k9 CVRP 76 60.09 1272 56.44 0.16 2461.7
B-n78-k10 CVRP 87 62.37 1221 61.02 0.00 8131.7
dantzig-n42-k4 CVRP 45 34.67 1142 49.61 1.97 76.3
E-n101-k14 CVRP 114 64.54 1071 29.07 2.10 8541.6
E-n101-k8 CVRP 108 65.83 817 20.61 0.97 2077.9
E-n13-k4 CVRP 16 38.10 247 10.93 0.00 2.7 143 00:00:00:04
E-n22-k4 CVRP 25 38.73 375 30.13 0.00 4.5 74055 00:00:00:45
E-n23-k3 CVRP 25 50.48 569 21.44 0.00 4.9 9321 00:00:00:09
E-n30-k3 CVRP 32 52.28 534 40.97 0.56 70.3
E-n31-k7 CVRP 37 66.93 379 19.26 0.00 11.3 155737 00:00:02:24
E-n33-k4 CVRP 36 34.61 835 28.50 0.00 119.8
E-n51-k5 CVRP 55 62.00 521 21.75 3.16 55.0
E-n76-k10 CVRP 85 63.16 830 29.86 0.48 1899.9
E-n76-k14 CVRP 89 47.43 1021 35.36 1.35 3552.1
E-n76-k7 CVRP 82 69.68 682 23.75 2.43 201.5
E-n76-k8 CVRP 83 61.98 735 26.28 0.94 290.0
F-n135-k7 CVRP 141 71.80 1162 52.65 0.51 6891.6
F-n45-k4 CVRP 48 65.61 724 42.99 0.55 32.9
F-n72-k4 CVRP 75 74.10 237 31.22 0.00 151.2
fri-n26-k3 CVRP 28 23.56 1353 17.75 0.37 6.1 842175 00:00:06:11
gr-n17-k3 CVRP 19 29.88 2685 28.31 0.00 5.6 13977 00:00:00:09
gr-n21-k3 CVRP 23 36.02 3704 27.54 0.00 6.3 29293 00:00:00:17
gr-n24-k4 CVRP 27 46.04 2053 28.30 0.00 11.7 5919153 00:00:47:50
gr-n48-k3 CVRP 50 66.55 5985 25.71 0.22 28.3
hk-n48-k4 CVRP 51 56.96 14749 25.74 0.09 361.6
M-n101-k10 CVRP 110 66.26 820 33.98 0.49 657.2
M-n121-k7 CVRP 127 67.19 1034 64.71 8.09 37860.9
M-n151-k12 CVRP 162 67.60 1053 34.00 0.28 12133.0
M-n200-k17 CVRP 215 66.28 1373 - - -
P-n101-k4 CVRP 104 71.61 681 15.04 2.44 219.1
P-n16-k8 CVRP 23 1.75 450 14.67 0.00 4.1 3033 00:00:00:07
P-n19-k2 CVRP 20 37.09 212 21.70 0.00 4.2 16959 00:00:00:12
P-n20-k2 CVRP 21 43.31 216 19.46 2.26 3.1 10593 00:00:00:08
P-n21-k2 CVRP 22 42.03 211 18.48 0.00 3.7 4787 00:00:00:05

Continued on next page

ATMOS’15

128 Regional Search for the Resource Constrained Assignment Problem

Table 4 – continued from previous page
instance type |V | initial

gap
best lb gap bk gap reg. sec. nodes dd:hh:mm:ss

P-n22-k2 CVRP 23 45.04 216 17.13 0.00 5.6 6765 00:00:00:07
P-n22-k8 CVRP 29 20.66 603 39.97 0.00 19.6 818203 00:00:09:20
P-n23-k8 CVRP 30 19.73 529 37.62 0.00 26.7 9609861 00:02:09:07
P-n40-k5 CVRP 44 57.08 458 18.12 0.00 12.8
P-n45-k5 CVRP 49 61.07 510 19.22 0.00 17.1
P-n50-k10 CVRP 59 41.46 696 28.43 0.57 407.6
P-n50-k7 CVRP 56 52.08 554 22.10 1.25 69.3
P-n50-k8 CVRP 57 50.43 631 31.54 5.68 353.7
P-n51-k10 CVRP 60 44.62 741 31.44 2.11 372.3
P-n55-k10 CVRP 64 48.74 694 25.71 0.86 388.4
P-n55-k15 CVRP 69 28.28 989 38.10 4.35 4983.0
P-n55-k7 CVRP 61 61.18 568 21.38 2.07 146.9
P-n55-k8 CVRP 62 62.93 588 19.83 1.18 105.0
P-n60-k10 CVRP 69 52.55 744 29.61 2.11 656.2
P-n60-k15 CVRP 74 42.59 968 31.49 0.72 1568.4
P-n65-k10 CVRP 74 57.67 792 26.28 1.37 339.0
P-n70-k10 CVRP 79 62.34 827 29.73 1.66 704.2
P-n76-k4 CVRP 79 74.01 593 16.97 1.33 64.0
P-n76-k5 CVRP 80 68.19 627 20.59 2.18 90.6
swiss-n42-k5 CVRP 46 46.79 1668 31.85 1.24 30.9
ulysses-n16-k3 CVRP 19 100.00 7965 18.75 2.60 6.1 5871 00:00:00:07
ulysses-n22-k4 CVRP 25 32.88 9179 34.51 1.21 21.4 60874403 00:07:31:41
a280 TSP 280 8.16 2579 8.94 3.08 1063.7
att48 TSP 48 78.68 10628 22.02 1.67 9.4 777323 00:00:21:35
bayg29 TSP 29 65.19 1610 10.56 0.00 6.1 2661 00:00:00:09
bays29 TSP 29 64.88 2020 12.93 0.30 4.3 2441 00:00:00:07
berlin52 TSP 52 66.03 7542 21.54 5.88 14.7 22145 00:00:01:50
bier127 TSP 127 69.98 118282 20.36 1.68 940.1
brazil58 TSP 58 80.35 25395 35.50 1.12 23.2 741555 00:00:41:02
brg180 TSP 180 98.36 1950 100.00 2.99 256.9
burma14 TSP 14 27.16 3323 17.33 0.00 3.3 191 00:00:00:05
ch130 TSP 130 87.22 6110 29.68 1.93 600.4
ch150 TSP 150 87.64 6528 16.09 1.45 323.0
d198 TSP 198 29.86 15780 33.40 0.92 1752.7
d493 TSP 493 69.17 35002 15.97 2.89 11463.8
dantzig42 TSP 42 0.00 699 23.89 0.00 8.6 224263 00:00:03:58
eil101 TSP 101 69.50 629 11.75 2.78 133.3
eil51 TSP 51 67.43 426 13.16 1.62 16.3 765927 00:00:21:30
eil76 TSP 76 72.68 538 13.26 3.58 63.6 1929865 00:02:55:49
fl417 TSP 417 78.61 11861 37.68 0.40 24856.1
fri26 TSP 26 17.81 937 11.10 0.00 4.6 553 00:00:00:06
gil262 TSP 262 90.96 2378 21.33 2.66 1593.5
gr120 TSP 120 86.12 6942 18.18 3.14 107.4
gr137 TSP 137 28.07 69853 19.10 0.96 211.8
gr17 TSP 17 55.84 2085 20.77 0.00 5.6 843 00:00:00:03
gr202 TSP 202 30.94 40160 16.45 2.92 442.3
gr21 TSP 21 59.11 2707 10.60 0.00 3.5 43 00:00:00:05
gr229 TSP 229 25.15 134602 19.48 1.54 3895.2
gr24 TSP 24 62.98 1272 17.30 0.00 5.9 215 00:00:00:06
gr431 TSP 431 26.45 171414 21.27 5.88 31311.0
gr48 TSP 48 74.56 5046 18.28 0.30 12.5 3900747 00:01:24:20
gr96 TSP 96 31.85 55209 16.99 0.15 290.8
hk48 TSP 48 76.21 11461 16.13 2.61 9.6 141947 00:00:04:43
kroA100 TSP 100 88.88 21282 19.71 0.00 222.8
kroA150 TSP 150 90.79 26524 23.00 5.07 822.6
kroA200 TSP 200 92.15 29368 24.31 3.76 606.8
kroB100 TSP 100 85.91 22141 25.83 2.20 237.3
kroB150 TSP 150 90.44 26130 24.08 3.14 565.2
kroB200 TSP 200 91.01 29437 23.19 3.41 1018.1
kroC100 TSP 100 88.69 20749 23.10 4.68 82.9
kroD100 TSP 100 87.55 21294 27.39 6.52 371.0
kroE100 TSP 100 88.28 22068 25.71 1.74 120.2

Continued on next page

R. Borndörfer and M. Reuther 129

Table 4 – continued from previous page
instance type |V | initial

gap
best lb gap bk gap reg. sec. nodes dd:hh:mm:ss

lin105 TSP 105 60.58 14379 39.56 2.96 181.1
lin318 TSP 318 64.94 42029 38.36 5.06 3329.4
pcb442 TSP 442 77.07 50778 11.32 3.84 7646.0
pr107 TSP 107 29.40 44303 46.48 2.05 1204.9
pr124 TSP 124 40.34 59030 34.54 0.73 494.6
pr136 TSP 136 66.28 96772 15.11 3.98 488.2
pr144 TSP 144 37.41 58537 66.33 1.49 847.3
pr152 TSP 152 54.23 73682 42.51 1.58 1713.9
pr226 TSP 226 27.21 80369 39.11 2.01 3059.9
pr264 TSP 264 36.99 49135 35.98 4.75 8072.2
pr299 TSP 299 42.29 48191 19.47 2.69 4455.0
pr439 TSP 439 60.38 107217 31.70 4.75 20186.8
pr76 TSP 76 28.27 108159 30.33 2.28 147.5
rat195 TSP 195 42.36 2323 14.17 4.83 551.8
rat99 TSP 99 42.98 1211 11.46 1.54 67.4
rd100 TSP 100 84.36 7910 21.89 5.80 229.0
rd400 TSP 400 92.91 15281 20.93 2.24 3940.3
si175 TSP 175 18.79 21407 6.00 0.59 382.1
st70 TSP 70 80.21 675 25.22 2.74 65.5
swiss42 TSP 42 55.08 1273 22.44 2.15 9.9 19241 00:00:00:42
ts225 TSP 225 54.20 126643 11.63 3.20 1431.0
tsp225 TSP 225 62.16 3916 12.98 0.31 494.2
u159 TSP 159 3.00 42080 17.66 0.00 139.4
ulysses16 TSP 16 29.03 6859 18.38 0.00 3.5 549 00:00:00:05
ulysses22 TSP 22 42.51 7013 24.58 0.00 4.3 10923 00:00:00:11

ATMOS’15

Approximation Algorithms for Mixed, Windy, and
Capacitated Arc Routing Problems
René van Bevern1, Christian Komusiewicz2, and Manuel Sorge2

1 Novosibirsk State University, Novosibirsk, Russia, rvb@nsu.ru
2 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany

{christian.komusiewicz,manuel.sorge}@tu-berlin.de

Abstract
We show that any α(n)-approximation algorithm for the n-vertex metric asymmetric Traveling
Salesperson problem yields O(α(C))-approximation algorithms for various mixed, windy, and
capacitated arc routing problems. Herein, C is the number of weakly-connected components in
the subgraph induced by the positive-demand arcs, a number that can be expected to be small
in applications. In conjunction with known results, we derive constant-factor approximations if
C ∈ O(logn) and O

(
logC/log logC

)
-approximations in general.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.1.6 Opti-
mization, G.2.1 Combinatorics, G.2.2 Graph Theory, I.2.8 Problem Solving, Control Methods,
and Search

Keywords and phrases vehicle routing, transportation, Rural Postman, Chinese Postman, NP-
hard problem, parameterized algorithm, combinatorial optimization

Digital Object Identifier 10.4230/OASIcs.ATMOS.2015.130

1 Introduction

Golden and Wong [16] introduced the Capacitated Arc Routing problem in order to
model the search for minimum-cost routes for vehicles of equal capacity that are initially
located in a vehicle depot and have to serve all “customer” demands. Applications of
Capacitated Arc Routing include snow plowing, waste collection, meter reading, and
newspaper delivery [7]. Herein, the customer demands require that roads of a road network
are served. The road network is modeled as a graph whose edges represent roads and whose
vertices can be thought of as road intersections. The customer demands are modeled as
positive integers assigned to edges of this network. Moreover, each edge has a travel cost.

Capacitated Arc Routing Problem (CARP)
Instance: An undirected graph G = (V,E), a depot vertex v0 ∈ V , travel costs c : E → N∪{0},

edge demands d : E → N ∪ {0}, and a vehicle capacity Q.
Task: Find a set W of closed walks in G, each corresponding to the route of one vehicle and

passing through the depot vertex v0, and a serving function s : W → 2E such that∑
w∈W c(w) is minimized, where c(w) :=

∑`
i=1 c(ei) for a walk w = (e1, e2, . . . , e`) ∈ E`,

each closed walk w ∈W serves a subset s(w) of edges of w and
∑

e∈s(w) d(e) ≤ Q,
each edge e with d(e) > 0 is served by exactly one walk in W .

Note that vehicle routes may traverse each vertex or edge of the input graph multiple times.
Well-known special cases of CARP are the NP-hard Rural Postman Problem [21], where
the vehicle capacity is unbounded and hence, the goal is to find a shortest possible route for
one vehicle that visits all positive-demand edges, and the polynomial-time solvable Chinese
Postman Problem [9, 10], where additionally all edges have positive demand.

© René van Bevern, Christian Komusiewicz, and Manuel Sorge;
licensed under Creative Commons License CC-BY

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 130–143

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.130
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

R. van Bevern, C. Komusiewicz, and M. Sorge 131

Mixed and windy problem variants. CARP is polynomial-time constant-factor approx-
imable [4, 20, 25]. It is natural to study the approximability of generalizations of CARP on
directed, mixed, and windy graphs. This is also noted in a recent survey on the computa-
tional complexity of arc routing problems by van Bevern, Niedermeier, Sorge, and Weller [5,
Challenge 5]. Herein, a mixed graph may contain directed arcs in addition to undirected
edges in order to model one-way roads or the requirement of servicing a road in a specific
direction or in both directions. In a windy graph, the cost for traversing an undirected
edge {u, v} in the direction from u to v may be different from the cost for traversing it in
the opposite direction. (This models sloped roads, for example.) In this work, we present
approximation algorithms for mixed and windy variants of CARP. To formally state the
problem, we need some terminology related to mixed graphs.

I Definition 1 (Walks in mixed and windy graphs). A mixed graph is a triple G = (V,E,A),
where V is a set of vertices, E ⊆ {{u, v} | u, v ∈ V } is a set of (undirected) edges, A ⊆ V ×V is
a set of (directed) arcs (that might contain loops), and no pair of vertices has an arc and
and an edge between them. The head of an arc (u, v) ∈ V × V is v, its tail is u.

A walk in G is a sequence w = (a1, a2, . . . , a`) such that, for each ai = (u, v), 1 ≤ i ≤ `,
we have (u, v) ∈ A or {u, v} ∈ E and such that the tail of ai is the head of ai−1 for 1 < i ≤ `.
If (u, v) occurs in w, then we say that w traverses the arc (u, v) ∈ A or the edge {u, v} ∈ E,
respectively. If the tail of a1 is the head of a`, then we call w a closed walk.

If c : V × V → N∪ {0,∞} is the travel cost between vertices of G, the cost of a walk w =
(a1, . . . , a`) is c(w) :=

∑`
i=1 c(ai). The cost of a set W of walks is c(W) :=

∑
w∈W c(w).

Formally, we present approximation algorithms for the following problem.

Mixed and Windy Capacitated Arc Routing Problem (MWCARP)
Instance: A mixed graph G = (V,E,A), a depot vertex v0 ∈ V , travel costs c : V × V →

N ∪ {0,∞}, demands d : E ∪A→ N ∪ {0}, and a vehicle capacity Q.
Task: Find a minimum-cost set W of closed walks in G, each passing through the depot

vertex v0, and a serving function s : W → 2E∪A such that
each w ∈W serves a subset s(w) of the edges and arcs it traverses and

∑
e∈s(w) d(e) ≤ Q,

each edge or arc e with d(e) > 0 is served by exactly one walk in W .
For brevity, we use the term “arc” to refer to both edges and arcs. Besides studying the
approximability of MWCARP, we also consider the following special case:

Mixed and Windy Rural Postman Problem (MWRPP)
Instance: A mixed graph G = (V,E,A) with travel costs c : V × V → N ∪ {0,∞} and a

set R ⊆ E ∪A of required arcs.
Task: Find a minimum-cost closed walk in G traversing all arcs in R.

If, moreover, E = ∅, then we obtain the Directed Rural Postman Problem (DRPP).

Relation to metric asymmetric TSP. In the development of approximation algorithms
for MWCARP, one has to be aware of the fact that, even for DRPP, there cannot be
approximation algorithms better than those for the following strongly related variant of TSP:

Metric Asymmetric Traveling Salesperson Problem (4-ATSP)
Instance: A set V of vertices and travel costs c : V × V → N ∪ {0} satisfying the triangle

inequality c(u, v) ≤ c(u,w) + c(w, v) for all u, v, w ∈ V .
Task: Find a minimum-cost cycle that visits every vertex in V exactly once.

ATMOS’15

132 Approximation Algorithms for Mixed, Windy, and Capacitated Arc Routing Problems

Given a 4-ATSP instance, one obtains an equivalent DRPP instance simply by adding a
zero-cost loop to each vertex and by adding these loops to the set R of required arcs. This
leads to the following observation.

I Observation 2. Any α-approximation for DRPP yields an α-approximation for 4-ATSP.

The constant-factor approximability of 4-ATSP is a long-standing open problem, in contrast
to the symmetric metric TSP, where the cost of an arc does not depend on its direc-
tion. Symmetric metric TSP admits the famous 3/2-approximation by Christofides [6]
and Serdyukov [23]. For 4-ATSP, however, the relatively recent O(logn/ log logn)-ap-
proximation by Asadpour, Goemans, Mądry, Gharan, and Saberi [2] is the first asymptotic
improvement over the O(logn)-approximation by Frieze, Galbiati, and Maffioli [15] from 1982.

Our contribution. As discussed above, any α-approximation for DRPP yields an α-approx-
imation for 4-ATSP. Our contribution is the following theorem for the converse direction.

I Theorem 3. If n-vertex 4-ATSP is α(n)-approximable in t(n) time, then
(i) n-vertex DRPP is (α(C) + 1)-approximable in O(t(C) + n3 logn) time,
(ii) n-vertex MWRPP is (α(C) + 3)-approximable in O(t(C) + n3 logn) time, and
(iii) n-vertex MWCARP is O(α(C + 1))-approximable in O(t(C + 1) + n3 logn) time,
where C is the number of weakly connected components in the subgraph induced by the
positive-demand arcs and edges.

The theorem shows that, although MWCARP is generally not easier to approximate than
4-ATSP, the approximation quality of MWCARP depends mainly on the number C of
weakly connected components in the subgraph induced by positive-demand arcs. There are
applications where C is small, which is also exploited in exact exponential-time algorithms
for DRPP [12, 17, 24]. For example, the company Berliner Stadtreinigungsbetriebe provided
us with instances arising in snow plowing in Berlin, in which the required arcs induce a
subgraph with only three or four weakly connected components.

A consequence of Theoem 3 is the following corollary, which follows from the exact
O(2nn2) time algorithm for n-vertex 4-ATSP by Bell [3], Held, and Karp [19]:

I Corollary 4. MWCARP is constant-factor approximable in O(2CC2 + n3 logn) time and
thus in polynomial time for C ∈ O(logn).

For perspective on Corollary 4, recall that finding a polynomial-time constant-factor approxi-
mation for MWCARP in general would, via Observation 2, answer a question open since
1982 [15]. Computing optimal solutions of MWCARP is NP-hard even if C = 1 [5].

2 Preliminaries

Although DRPP, MWRPP, and MWCARP are problems on mixed graphs as defined in
Definition 1, in some of our proofs we use more general mixed multigraphs G = (V,E,A) with
a set V =: V (G) of vertices, a multiset E =: E(G) over {{u, v} | u, v ∈ V } of (undirected)
edges, a multiset A =: A(G) over V × V of (directed) arcs that may contain self-loops, and
travel costs c : V × V → N ∪ {0,∞}. If E = ∅, then G is a directed multigraph.

From Definition 1, recall the definition of walks in mixed graphs. An Euler tour for G
is a closed walk that traverses each arc and each edge of G as often as it is present in G.
A graph is Eulerian if it allows for an Euler tour. Let w = (a1, a2, . . . , a`) be a walk. The
starting point of w is the tail of a1, the end point of w is the head of a`. A segment of w

R. van Bevern, C. Komusiewicz, and M. Sorge 133

(a) Input: Only required arcs R
shown, vertices in VR are black.

T1

T2
T3

(b) Compute Euler tours Ti for
each conn. component of G[R].

T1

T2
T3

TG

(c) Add closed walk TG to get a
feasible solution T .

Figure 1 Steps of Algorithm 1 executed to construct a feasible solution for DRPP when all
connected components of G[R] are Eulerian.

is a consecutive subsequence of w. Two segments w1 = (ai, . . . , aj) and w2 = (ai′ , . . . , aj′)
of a walk w are non-overlapping if j < i′ or j′ < i. Note that two segments of w might be
non-overlapping yet share arcs if w contains an arc several times. The distance distG(u, v)
from vertex u to vertex v of G is the minimum cost of a walk from u to v in G.

The underlying undirected (multi)graph of G is obtained by replacing all directed arcs by
undirected edges. Two vertices u, v of G are (weakly) connected if there is a walk starting in u
and ending in v in the underlying undirected graph of G. A (weakly) connected component
of G is a maximal subgraph of G in which all vertices are mutually (weakly) connected.

For a multiset R ⊆ V × V of arcs, G[R] is the directed multigraph consisting of the arcs
in R and their incident vertices of G. We say that G[R] is the graph induced by the arcs
in R. For a walk w = (a1, . . . , a`) in G, G[w] is the directed multigraph consisting of the
arcs a1, . . . , a` and their incident vertices, where G[w] contains each arc with the multiplicity
it occurs in w. Note that G[R] and G[w] might contain arcs with a higher multiplicity than G
and, therefore, are not necessarily sub(multi)graphs of G. Finally, the cost of a multiset R is
c(R) :=

∑
a∈R ν(a)c(a), where ν(a) is the multiplicity of a in R.

3 Rural Postman

In this section, we present our approximation algorithms for DRPP and MWRPP, thus
proving Theorem 3(i) and (ii). We first present, in Section 3.1, an algorithm for the special case
of DRPP where the required arcs induce a subgraph with Eulerian connected components.
Sections 3.2 and 3.3 subsequently generalize this algorithm to DRPP and MWRPP by
adding to the set of required arcs an arc set of low weight so that the required arcs induce a
graph with Eulerian connected components.

3.1 Special Case: Required arcs induce Eulerian components
To turn α(n)-approximations for n-vertex 4-ATSP into (α(C) + 1)-approximations for this
special case of DRPP, we use Algorithm 1. Figure 1 illustrates its two main steps.

In fact, to solve this special case of DRPP, we will not exploit that Algorithm 1 and the
following lemma allow R to be a multiset and that they allow VR, the set of vertices incident
with arcs of R, to contain more than one vertex of each connected component of G[R]. This
will become relevant in Section 3.2, when we plug in Algorithm 1 to solve DRPP in general.

I Lemma 5. Let G be a directed graph with travel costs c and R be a multiset of arcs of G
such that G[R] consists of C Eulerian connected components, let VR ⊆ V (G[R]) be a vertex

ATMOS’15

134 Approximation Algorithms for Mixed, Windy, and Capacitated Arc Routing Problems

Algorithm 1: Algorithm for the proof of Lemma 5.
Input: A directed graph G with travel costs c, a multiset R of arcs of G such that

G[R] consists of C Eulerian connected components, and a set VR ⊆ V (G[R])
containing at least one vertex of each connected component of G[R].

Output: A closed walk traversing all arcs in R.
1 for i = 1, . . . , C do
2 vi ← any vertex of VR in component i of G[R];
3 Ti ← Euler tour of connected component i of G[R] starting and ending in vi;
4 (VR, c

′)←4-ATSP instance on the vertices VR, where c′(vi, vj) := distG(vi, vj);
5 TVR

← α(|VR|)-approximate 4-ATSP solution for (VR, c
′);

6 TG ← closed walk for G obtained by replacing each arc (vi, vj) on TVR
by a shortest

path from vi to vj in G;
7 T ← closed walk obtained by following TG and taking a detour Ti whenever reaching

a vertex vi;
8 return T ;

set containing at least one vertex of each connected component of G[R], and let T̃ be any
closed walk containing the vertices VR.

If n-vertex 4-ATSP is α(n)-approximable in t(n) time, then Algorithm 1 applied
to (G, c,R) and VR returns a closed walk of cost at most c(R) + α(|VR|) · c(T̃) in O(t(n) +
n3) time that traverses all arcs of R.

Proof. We first show that the closed walk T returned by Algorithm 1 visits all arcs in R. Since
the 4-ATSP solution TVR

constructed in line 5 visits all vertices VR, in particular v1, . . . , vC ,
so does the closed walk TG constructed in line 6. Thus, for each vertex vi, 1 ≤ i ≤ C, T takes
Euler tour Ti through the connected component i of G[R] and, thus, visits all arcs in R.

We analyze the cost c(T). The closed walk T is composed of the Euler tours Ti computed
in line 3 and the closed walk TG computed in line 6. Hence, c(T) = c(TG) +

∑C
i=1 c(Ti).

Since each Ti is an Euler tour for some connected component i of G[R], each Ti visits each
arc of component i as often as it is contained in R. Consequently,

∑C
i=1 c(Ti) = c(R).

It remains to analyze c(TG). Observe first that the distances in TSP instance (VR, c
′)

correspond to shortest paths in G and thus fulfill the triangle inequality. We have c(TG) =
c′(TVR

) by construction of the 4-ATSP instance (VR, c
′) in line 4 and by construction

of TG from TVR
in line 6. Let T̃ be any closed walk containing VR and let T ∗VR

be an
optimal solution for the 4-ATSP instance (VR, c

′). If we consider the closed walk T̃VR

that visits the vertices VR of the 4-ATSP instance (VR, c
′) in the same order as T̃ , we

get c′(T ∗VR
) ≤ c′(T̃VR

) ≤ c(T̃). Since the closed walk TVR
computed in line 5 is an α(|VR|)-

approximate solution to the 4-ATSP instance (VR, c
′), it finally follows that c(TG) =

c′(TVR
) ≤ α(|VR|) · c′(T ∗VR

) ≤ α(|VR|) · c(T̃).
Regarding the running time, observe that the instance (VR, c

′) in line 4 can be constructed
in O(n3) time using the Floyd-Warshall all-pair shortest path algorithm [11], which dominates
all other steps of the algorithm except for, possibly, line 5. J

Lemma 5 proves Theorem 3(i) for DRPP instances I = (G, c,R) when G[R] consists of
Eulerian connected components: pick VR to contain exactly one vertex of each of the
C connected components of G[R]. Since an optimal solution T ∗ for I visits the vertices VR

and satisfies c(R) ≤ c(T ∗), Algorithm 1 yields a solution of cost at most c(T ∗) +α(C) · c(T ∗).

R. van Bevern, C. Komusiewicz, and M. Sorge 135

Algorithm 2: Algorithm for the proof of Lemma 8.
Input: A DRPP instance I = (G, c,R) such that G[R] has C connected components

and a set VR of vertices, one of each connected component of G[R].
Output: A feasible solution for I.

1 f ← minimum-cost flow for the UMCF instance (G, balanceG[R], c);
2 foreach a ∈ A(G) do add arc a with multiplicity f(a) to (initially empty) multiset R∗;
3 T ← closed walk computed by Algorithm 1 applied to (G, c,R]R∗) and VR;
4 return T ;

3.2 Directed Rural Postman
In the previous section, we proved Theorem 3(i) for the special case of DRPP when
G[R] consists of Eulerian connected components. We will now reduce DRPP to this special
case in order to prove Theorem 3(i) for the general DRPP. To this end, observe that a
feasible solution T for a DRPP instance (G, c,R) enters each vertex v of G as often as it
leaves. Thus, if we consider the multigraph G[T] on the vertex set V (G) that contains each
arc of G with same multiplicity as T , then G[T] is a supermultigraph of G[R] in which every
vertex is balanced [8, 24]:

I Definition 6 (Balance). By balanceG(v) := indegG(v)−outdegG(v), we denote the balance
of a vertex v of a graph G. We call a vertex v balanced if balanceG(v) = 0.

Since G[T] is a supergraph of G[R] in which all vertices are balanced and since a directed
connected multigraph is Eulerian if and only if all its vertices are balanced, we immediately
obtain the below observation. Herein and in the following, for two (multi-)sets X and Y ,
X] Y is the multiset obtained by adding the multiplicities of each element in X and Y .

I Observation 7. Let T be a feasible solution for a DRPP instance (G, c,R) such that G[R]
has C connected components and let R∗ be a minimum-cost multiset of arcs of G such that
every vertex in G[R]R∗] is balanced. Then, c(R]R∗) ≤ c(T) and G[R]R∗] consists of at
most C Eulerian connected components.

Algorithm 2 computes an (α(C) + 1)-approximation for a DRPP instance (G, c,R) by
first computing a minimum-cost arc multiset R∗ such that G[R]R∗] contains only balanced
vertices and then applying Algorithm 1 to (G, c,R] R∗). To find R∗, we use a folklore
reduction [8, 10, 13] to the Uncapacitated Minimum-Cost Flow problem:

Uncapacitated Minimum-Cost Flow (UMCF)
Instance: A directed graph G = (V,A) with supply s : V → Z and costs c : A→ N ∪ {0}.
Task: Find a flow f : A→ N ∪ {0} minimizing

∑
a∈A c(a)f(a) such that, for each v ∈ V ,∑

(v,w)∈A

f(v, w)−
∑

(w,v)∈A

f(w, v) = s(v). (FC)

Equation (FC) is known as the flow conservation constraint: for every vertex v with s(v) =
0, there are as many units of flow entering the node as leaving it. Nodes v with s(v) > 0
“produce” s(v) units of flow, whereas nodes v with s(v) < 0 “consume” s(v) units of flow.
UMCF is solvable in O(n3 logn) time [1, Theorem 10.34].

I Lemma 8. Let I := (G, c,R) be a DRPP instance such that G[R] has C connected
components and let VR be a vertex set containing exactly one vertex of each connected
component of G[R]. Moreover, consider two closed walks in G:

ATMOS’15

136 Approximation Algorithms for Mixed, Windy, and Capacitated Arc Routing Problems

let T̃ be any closed walk containing the vertices VR and
let T̂ be any feasible solution for I.

If n-vertex 4-ATSP is α(n)-approximable in t(n) time, then Algorithm 2 applied to I and VR

returns a feasible solution of cost at most c(T̂) + α(C) · c(T̃) in O(t(n) + n3 logn) time.

Proof. Observe that Algorithm 2 in line 2 indeed computes a minimum-cost arc set R∗ such
that all vertices in G[R]R∗] are balanced (we provide details in Appendix A).

We use the optimality of R∗ to give an upper bound on the cost of the closed walk T
computed in line 3. Since VR contains exactly one vertex of each connected component
of G[R], it contains at least one vertex of each connected component of G[R]R∗]. Therefore,
Algorithm 1 is applicable to (G, c,R] R∗) and, by Lemma 5, yields a closed walk in G

traversing all arcs in R] R∗ and having cost at most c(R] R∗) + α(|VR|) · c(T̃). This is
a feasible solution for (G, c,R) and, since by Observation 7, we have c(R] R∗) ≤ c(T̂), it
follows that this feasible solution has cost at most c(T̂) + α(C) · c(T̃).

Finally, the running time of Algorithm 2 follows from the fact that the minimum-cost
flow in line 1 is computable in O(n3 logn) time [1, Theorem 10.34] and that Algorithm 1
runs in O(n3 + t(C)) time (Lemma 5). J

Proof of Theorem 3(i). Let (G, c,R) be an instance of DRPP and let VR be a set of vertices
containing exactly one vertex of each connected component of G[R]. An optimal solution T ∗
for I contains all arcs in R and all vertices in VR and hence, by Lemma 8, Algorithm 2
computes a feasible solution T with c(T) ≤ c(T ∗) + α(C) · c(T ∗) for I. J

3.3 Mixed and Windy Rural Postman
In the previous section, we presented Algorithm 2 for DRPP in order to prove Theorem 3(i).
We now show how to apply Algorithm 2 to MWRPP in order to prove Theorem 3(ii).

To this end, we replace each undirected edge {u, v} in an MWRPP instance by two
directed arcs (u, v) and (v, u), where we force the undirected required edges of the MWRPP
instance to be traversed in the cheaper direction:

I Lemma 9. Let I := (G, c,R) be an MWRPP instance and let I ′ := (G′, c, R′) be the
DRPP instance obtained from I as follows:

G′ is obtained by replacing each edge {u, v} of G by two arcs (u, v) and (v, u),
R′ is obtained from R by replacing each edge {u, v} ∈ R by an arc (u, v) if c(u, v) ≤ c(v, u)
and by (v, u) otherwise.

Then, each feasible solution for I ′ is a feasible solution of the same cost for I and, for each
feasible solution T for I, there is a feasible solution T ′ for I ′ with c(T ′) < 3c(T).

We prove Lemma 9 in Appendix B. Using Lemma 9, it is easy to prove Theorem 3(ii).

Proof of Theorem 3(ii). Given an MWRPP instance I = (G, c,R), compute a DRPP
instance I ′ := (G′, c, R′) as described in Lemma 9. This can be done in linear time.

Let VR be a set of vertices containing exactly one vertex of each connected component
of G′[R′] and let T ∗ be an optimal solution for I. Observe that T ∗ is not necessarily a
feasible solution for I ′, since it might serve required arcs of I ′ in the wrong direction. Yet
T ∗ is a closed walk in G′ visiting all vertices of VR. Moreover, by Lemma 9, I ′ has a feasible
solution T ′ with c(T ′) ≤ 3c(T ∗).

Thus, applying Algorithm 2 to I ′ and VR yields a feasible solution T of cost at most c(T ′)+
α(C) · c(T ∗) ≤ 3c(T ∗) + α(C) · c(T ∗) due to Lemma 8. Finally, T is also a feasible solution
for I by Lemma 9. J

R. van Bevern, C. Komusiewicz, and M. Sorge 137

Algorithm 3: Algorithm for the proof of Proposition 12.
Input: An MWCARP instance I = (G, v0, c, d,Q) such that (v0, v0) ∈ Rd and such

that G[Rd] has C connected components.
Output: A feasible solution for I.
/* Compute a base tour containing all demand arcs and the depot */

1 I ′ ←MWRPP instance I ′ := (G, c,Rd);
2 T ← β(C)-approximate MWRPP tour for I ′ starting and ending in v0;

/* Split the base tour into one tour for each vehicle */
3 (W, s)← a feasible splitting of T ;
4 foreach w ∈W do
5 close w by adding shortest paths from v0 to s and from t to v0 in G, where s, t are

the start and endpoints of w, respectively;
6 return (W, s);

4 Capacitated Arc Routing

Our approximation algorithm for MWCARP uses the fact that joining all vehicle tours of a
solution gives an MWRPP tour traversing all positive-demand arcs and the depot. Thus, in
order to approximate MWCARP, the idea is to first compute an approximate MWRPP
tour and then split it into subtours, each of which can be served by a vehicle of capacity Q.
Then we close each subtour by shortest paths via the depot. This algorithm is inspired by
the CARP algorithms of Jansen [20] and Wøhlk [25] and the algorithm of Frederickson,
Hecht, and Kim [14] for (undirected) k-person minimax routing problems. Our analysis,
however, is necessarily different, since we cannot use arcs and edges in backwards direction.

I Definition 10 (Demand arc). For a demand function d : E(G)∪A(G)→ N∪ {0} we define
Rd := {a ∈ E(G) ∪A(G) | d(a) > 0} to be the set of demand arcs.

We will construct an MWCARP solution from a feasible splitting of an MWRPP tour T .

I Definition 11 (Feasible splitting). For an MWCARP instance I = (G, v0, c, d,Q), let T be
a closed walk containing all arcs in Rd and W = (w1, . . . , w`) be a tuple of segments of T .
In the following, we refer by W to both the tuple and the set of walks it contains.

Furthermore, consider a serving function s : W → 2Rd that assigns to each walk the set
of arcs in Rd it serves. We call (W, s) a feasible splitting of T if the following conditions hold:
1. the walks in W are mutually non-overlapping segments of T ,
2. when concatenating the walks in W in order, one obtains a subsequence of T ,
3. each wi ∈W begins and ends with an arc in s(wi),
4. {s(wi) | wi ∈W} is a partition of Rd, and
5. for each wi ∈W , we have

∑
e∈s(wi) d(e) ≤ Q and, if i < `, then

∑
e∈s(wi) d(e) +d(a) > Q,

where a is the first arc served by wi+1.
A feasible splitting of a given closed walk T as above can be computed in linear time using a
greedy strategy (we refer to Appendix C for details).

The algorithm. Algorithm 3 constructs an MWCARP solution from an approximate
MWRPP solution T containing all demand arcs and the depot v0. In order to ensure that
T contains v0, Algorithm 3 assumes that the input graph has a demand loop (v0, v0): if this
loop is not present, one can add it with zero cost. Note that, while this does not change

ATMOS’15

138 Approximation Algorithms for Mixed, Windy, and Capacitated Arc Routing Problems

the cost of an optimal solution, it might increase the number of connected components in
the subgraph induced by demand arcs by one. To compute an MWCARP solution from T ,
Algorithm 3 first computes a feasible splitting (W, s) of T . To each walk wi ∈ W , it then
adds a shortest path from the end of wi to the start of wi via the depot. It is not hard
to check that Algorithm 3 indeed outputs a feasible solution by using the properties of
feasible splittings and the fact that T contains all demand arcs. The remainder of this
section is devoted to the analysis of the solution, thus proving the following proposition and,
consequently, Theorem 3(iii).

I Proposition 12. Let I = (G, v0, c, d,Q) be an MWCARP instance and let I ′ be the
instance obtained from I by adding a zero-cost demand arc (v0, v0) if it is not present.

If MWRPP is β(C)-approximable in t(n) time, then Algorithm 3 applied to I ′ computes
a (8β(C + 1) + 3)-approximation for I in O(t(n) + n3) time. Herein, C is the number of
connected components in G[Rd].

The following lemma follows from the observation that the concatenation of all vehicle tours
in any MWCARP solution yields an MWRPP tour containing all demand arcs and the
depot. It is proven in Appendix D.

I Lemma 13. Let I = (G, v0, c, d,Q) be an MWCARP instance with (v0, v0) ∈ Rd and an
optimal solution (W ∗, s∗). The closed walk T and its feasible splitting (W, s) computed in
lines 2 and 3 of Algorithm 3 satisfy c(W) ≤ c(T) ≤ β(C)c(W ∗), where C is the number of
connected components in G[Rd].

It remains to analyze the length of the shortest paths from v0 to wi ∈ W and from wi

to v0 added in line 5 of Algorithm 3. We bound their lengths in the lengths of an auxiliary
walk A(wi) from v0 to wi and of an auxiliary walk Z(wi) from wi to v0. The auxiliary
walks A(wi) and Z(wi) consist of arcs of W , whose total cost is bounded by Lemma 13, and
of arcs of an optimal solution (W ∗, s∗). We show that, in total, the walks A(wi) and Z(wi)
for all wi ∈ W use each subwalk of W and W ∗ at most a constant number of times. For
this, we group the walks in W into consecutive pairs, for each of which we will be able to
charge the cost of the auxiliary walks to a distinct vehicle tour of the optimal solution.

I Definition 14 (Consecutive pairing). For a feasible splitting (W, s) with W = (w1, . . . , w`),
we call W 2 := {(w2i−1, w2i) | i ∈ {1, . . . , b`/2c}} a consecutive pairing.

We can now show, by applying Hall’s theorem [18], that each pair traverses an arc from a
distinct tour of an optimal solution (Appendix E).

I Lemma 15. Let I = (G, v0, c, d,Q) be an MWCARP instance with an optimal solu-
tion (W ∗, s∗) and let W 2 be a consecutive pairing of some feasible splitting (W, s). Then, there
is an injective map φ : W 2 →W ∗, (wi, wi+1) 7→ w∗ such that (s(wi) ∪ s(wi+1)) ∩ s∗(w∗) 6= ∅.

In the following, we fix an arbitrary arc in (s(wi)∪ s(wi+1))∩ s∗(w∗) and call it the pivot arc
of (wi, wi+1). Informally, the auxiliary walks for each wi are constructed as follows. To get
from the endpoint of wi to v0, walk along the closed walk T until traversing the first pivot
arc a. To get from the head of a to v0, walk along w∗, which is the walk of W ∗ containing a.
To get from v0 to wi, take the same approach, that is, walk backwards on T from the start
point of wi until traversing a pivot arc and then follow the tour of W ∗ containing a. The
formal definition of the auxiliary walks A(w) and Z(w) is given below (see also Figure 2).

R. van Bevern, C. Komusiewicz, and M. Sorge 139

wi−1 wi wi+1 wi+2

p(i) q(i)

A
∗ (
w

i−
1,
w

i)

A
∗ (
w

i+
1,
w

i+
2)Z

∗(w
i−

1 ,w
i)

Z
∗(w

i+
1 ,w

i+
2)

A′(wi) Z ′(wi)

Figure 2 Illustration of Definition 16. Dotted lines are ancillary lines. Thin arrows are walks.
The braces along the bottom show a consecutive pairing of walks wi−1, . . . , wi+2. Bold arcs are
pivot arcs. Here, p(i) is exactly the pair that contains wi and q(i) is the next pair.

I Definition 16 (Auxiliary walks). Let I = (G, v0, c, d,Q) be an MWCARP instance, (W ∗, s∗)
be an optimal solution, and W 2 be a consecutive pairing of some feasible splitting (W, s) of
a closed walk T containing all arcs Rd and v0, where W = (w1, . . . , w`).

Let φ : W 2 →W ∗ be an injective map as in Lemma 15 and for each pair (w,w′) ∈W 2 let
A∗(wi, wi+1) be a subwalk of φ(wi, wi+1) from v0 to the tail of the pivot arc of (wi, wi+1),
Z∗(wi, wi+1) be a subwalk of φ(wi, wi+1) from the head of the pivot arc of (wi, wi+1) to v0.
For each walk wi ∈W with i ≥ 3 (that is, wi is not in the first pair of W 2), let
p(i) be the index of the pair whose pivot arc is traversed first when walking T backwards

starting from the starting point of wi,
A′(wi) be the subwalk of T starting at the end point of A∗(w2p(i), w2p(i)+1) and ending at

the start point of wi, and
A(wi) be the walk from v0 to the start point of wi following first A∗(w2p(i), w2p(i)+1) and

then A′(wi).
For each walk wi ∈ W with i ≤ ` − 3 (that is, wi is not in the last pair of W 2, where w`

might not be in any pair if ` is odd), let
q(i) be the index of the pair whose pivot arc is traversed first when following T starting

from the end point of wi,
Z′(wi) be the subwalk of T starting at the end point of wi and ending at the start point

of Z∗(w2q(i), w2q(i)+1), and, finally, let
Z(wi) be the walk from the end point of wi to v0 following Z ′(wi) and Z∗(w2q(i), w2q(i)+1).
We are now ready to prove Proposition 12, which also concludes our proof of Theorem 3.

Proof of Proposition 12. Let I = (G, v0, c, d,Q) be an MWRPP instance and (W ∗, s∗) be
an optimal solution. If there is no demand arc (v0, v0) in I, then we add it with zero cost in
order to make Algorithm 3 applicable. This clearly does not change the cost of an optimal
solution but may increase the number of connected components of G[Rd] to C + 1.

In lines 2 and 3, Algorithm 3 computes a tour T and its feasible splitting (W, s). Denote
W = (w1, . . . , w`). The solution returned by Algorithm 3 consists, for each 1 ≤ i ≤ `, of
a tour starting in v0, following a shortest path to the starting point of wi, then wi, and a
shortest path back to v0.

For i ≥ 3, the shortest path from v0 to the starting point of wi has length at most c(A(wi)).
For i ≤ `− 3, the shortest path from the end point of wi to v0 has length at most c(Z(wi)).
This amounts to

∑`
i=3 c(A(wi)) +

∑`−3
i=1 c(Z(wi)). To bound the costs of the shortest paths

added for i ∈ {1, 2, `−2, `−1, `}, observe the following. For each i ∈ {1, 2}, the shortest paths

ATMOS’15

140 Approximation Algorithms for Mixed, Windy, and Capacitated Arc Routing Problems

from v0 to the start point of wi and from the end point of w`−i to v0 together have length at
most c(T). The shortest path from the end point of w` to v0 has length at most c(T)− c(W).
Thus, the solution returned by Algorithm 3 has cost at most

∑̀
i=1

c(wi) +
∑̀
i=3

c(A(wi)) +
`−3∑
i=1

c(Z(wi)) + 3c(T)− c(W)

=
∑̀
i=3

c(A(wi)) +
`−3∑
i=1

c(Z(wi)) + 3c(T)

= 3c(T) +

+
∑̀
i=3

c(A∗(w2p(i), w2p(i)+1)) +
`−3∑
i=1

c(Z∗(w2q(i), w2q(i)+1)) + (S1)

+
∑̀
i=3

c(A′(wi)) +
`−3∑
i=1

c(Z ′(wi)). (S2)

Observe that, for a fixed i, one has p(i) = p(j) only for j ≤ i + 2 and q(i) = q(j) only
for j ≥ i − 2. Moreover, by Lemma 15 and Definition 16, for i 6= j, A∗(wi, wi+1) and
A∗(wj , wj+1) are subwalks of distinct walks of W ∗. Similarly, Z∗(wi, wi+1) and Z∗(wj , wj+1)
are subwalks of distinct walks of W ∗ if i 6= j. Hence, sum (S1) counts every arc of W ∗ at
most three times and is therefore bounded from above by 3c(W ∗). Moreover, for a walk wi,
let Ai be the set of walks wj such that any arc a of wi is contained in A′(wj) and let Zi be the
set of walks such that any arc a of wi is contained in Z ′(wj). Observe that A′(wj) and Z ′(wj)
cannot completely contain two walks of the same pair of the consecutive pairing W 2 of W
since, by Lemma 15, each pair has a pivot arc and A′(wj) and Z ′(wj) both stop after
traversing a pivot arc. Hence, the walks in Ai ∪ Zi can be from at most three pairs of W 2:
the pair containing wi and the two neighboring pairs. Finally, observe that wi itself is not
contained in Ai ∪ Zi. Thus, Ai ∪ Zi contains at most five walks (Figure 3 in the appendix
shows such a worst-case example). Therefore, sum (S2) counts every arc of W at most five
times and is bounded from above by 5c(W).

Thus, Algorithm 3 returns a solution of cost 3c(T)+5c(W)+3c(W ∗) which, by Lemma 13,
is at most 8c(T) + 3c(W ∗) ≤ 8β(C + 1)c(W ∗) + 3c(W ∗) ≤ (8β(C + 1) + 3)c(W ∗). J

5 Conclusion

With the exception of MWCARP, we expect our algorithms to yield good heuristics. In
particular, the 4-ATSP instances should be sufficiently small to allow for the computation
of optimal solutions. For MWCARP, a better approach than the presented one could be to
compute an MWRPP tour and then compute an optimal splitting of this tour into vehicle
tours. Our analysis gives a worst-case bound for this approach. We conclude with an open
question: can the (α(C) + 3)-approximation for MWRPP in Theorem 3(ii) be improved to
an (α(C) + 3/2)-approximation using the 3/2-approximation for Mixed Chinese Postman
given by Raghavachari and Veerasamy [22]?

Acknowledgments. We thank Sepp Hartung, Iyad Kanj, and André Nichterlein for fruitful
discussions. This research was initiated during a research retreat of the algorithms and
complexity group of TU Berlin, held in Rothenburg/Oberlausitz, Germany, in March 2015,
while René van Bevern was with TU Berlin under support of the DFG, project DAPA
(NI 369/12). Manuel Sorge was supported by the DFG, project DAPA (NI 369/12).

R. van Bevern, C. Komusiewicz, and M. Sorge 141

References
1 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows—Theory,

Algorithms and Applications. Prentice Hall, 1993.
2 Arash Asadpour, Michel X. Goemans, Aleksander Mądry, Shayan Oveis Gharan, and Amin

Saberi. An O(logn/ log logn)-approximation algorithm for the asymmetric traveling sales-
man problem. In Proc. SODA’10, pages 379–389. SIAM, 2010.

3 Richard Bellman. Dynamic programming treatment of the Travelling Salesman Problem.
J. ACM, 9(1):61–63, 1962.

4 René van Bevern, Sepp Hartung, André Nichterlein, and Manuel Sorge. Constant-factor
approximations for capacitated arc routing without triangle inequality. Oper. Res. Lett.,
42(4):290–292, 2014.

5 René van Bevern, Rolf Niedermeier, Manuel Sorge, and Mathias Weller. Complexity of arc
routing problems. In Arc Routing: Problems, Methods, and Applications. SIAM, 2014.

6 Nicos Christofides. Worst case analysis of a new heuristic for the traveling salesman problem.
Management Science Research Rept. 388, Carnegie-Mellon University, 1976.

7 Ángel Corberán and Gilbert Laporte, editors. Arc Routing: Problems, Methods, and Ap-
plications. SIAM, 2014.

8 Frederic Dorn, Hannes Moser, Rolf Niedermeier, and Mathias Weller. Efficient algorithms
for Eulerian Extension and Rural Postman. SIAM J. Discrete Math., 27(1):75–94, 2013.

9 Jack Edmonds. The Chinese postman problem. Oper. Res., pages B73–B77, 1975. Suppl. 1.
10 Jack Edmonds and Ellis L. Johnson. Matching, Euler tours and the Chinese postman.

Math. Program., 5:88–124, 1973.
11 Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, June 1962.
12 Greg N. Frederickson. Approximation Algorithms for NP-hard Routing Problems. PhD

thesis, Faculty of the Graduate School of the University of Maryland, 1977.
13 Greg N. Frederickson. Approximation algorithms for some postman problems. J. ACM,

26(3):538–554, 1979.
14 Greg N. Frederickson, Matthew S. Hecht, and Chul E. Kim. Approximation algorithms for

some routing problems. SIAM J. Comput., 7(2):178–193, 1978.
15 A. M. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of some algo-

rithms for the asymmetric traveling salesman problem. Networks, 12(1):23–39, 1982.
16 Bruce L. Golden and Richard T. Wong. Capacitated arc routing problems. Networks,

11(3):305–315, 1981.
17 Gregory Gutin, Magnus Wahlström, and Anders Yeo. Parameterized Rural Postman and

Conjoining Bipartite Matching problems. Available on arXiv:1308.2599v4, 2014.
18 P. Hall. On representatives of subsets. J. London Math. Soc., 10:26–30, 1935.
19 Michael Held and Richard M. Karp. A dynamic programming approach to sequencing

problems. J. SIAM, 10(1):196–210, 1962.
20 Klaus Jansen. An approximation algorithm for the general routing problem. Inform. Pro-

cess. Lett., 41(6):333–339, 1992.
21 J. K. Lenstra and A. H. G. Rinnooy Kan. On general routing problems. Networks, 6(3):273–

280, 1976.
22 Balaji Raghavachari and Jeyakesavan Veerasamy. A 3/2-approximation algorithm for the

Mixed Postman Problem. SIAM J. Discrete Math., 12(4):425–433, 1999.
23 A. I. Serdyukov. O nekotorykh ekstremal’nykh obkhodakh v grafakh. Upravlyayemyye

sistemy, 17:76–79, 1978. [On some extremal by-passes in graphs. zbMATH 0475.90080].
24 Manuel Sorge, René van Bevern, Rolf Niedermeier, and Mathias Weller. A new view on

Rural Postman based on Eulerian Extension and Matching. J.DiscreteAlg., 16:12–33, 2012.
25 Sanne Wøhlk. An approximation algorithm for the Capacitated Arc Routing Problem. The

Open Operational Research Journal, 2:8–12, 2008.

ATMOS’15

142 Approximation Algorithms for Mixed, Windy, and Capacitated Arc Routing Problems

A Omitted details in the proof of Lemma 8

Proof. To complete the proof of Theorem 8, we prove that Algorithm 2 in line 2 indeed
computes a minimum-cost arc set R∗ such that all vertices in G[R]R∗] are balanced. This
follows from the one-to-one correspondence between arc multisets R′ such that G[R] R′]
has only balanced vertices and flows f for the UMCF instance I ′ := (G,balanceG[R], c):

1. For each vertex v with balanceG[R](v) = 0, R′ has to contain as many incident in-arcs as
out-arcs so that balanceG[R]R′](v) = 0. Likewise, by (FC), in any feasible flow for I ′, as
many units of flow enter v as leave v.

2. Each vertex v with balanceG[R](v) > 0 has balanceG[R](v) more incident in-arcs than
out-arcs in G[R] and, thus, in order for balanceG[R]R′](v) = 0 to hold, R′ has to contain
balanceG[R](v) more out-arcs than in-arcs incident to v. Likewise, by (FC), in any feasible
flow for I ′, there are balanceG[R](v) more units of flow leaving v than entering v.

3. For each vertex v with balanceG[R](v) < 0, analogous arguments apply.
Thus, from a multiset R′ of arcs such that G[R] R′] is balanced, we get a feasible flow f

for I ′ by setting f(v, w) to the multiplicity of the arc (v, w) in R′. From a feasible flow f

for I ′, we get a multiset R′ of arcs such that G[R] R′] is balanced by adding to R′ each
arc (v, w) with multiplicity f(v, w). We conclude that the arc multiset R∗ computed in line 2
is such that G[R]R∗] is balanced. Moreover, it is a minimum-cost such set, since a set of
lower cost would yield a flow cheaper than the optimum flow f computed in line 1. J

B Proof of Lemma 9

Proof. It is obvious that each feasible solution T ′ for I ′ is a feasible solution for I, since
each required edge of I is served by T ′ in at least one direction. Moreover, the cost functions
in I and I ′ are the same.

Now, for the opposite direction, let T be a feasible solution for I. We obtain a feasible
solution T ′ of I ′ as follows:
1. For each arc (u, v) or non-required edge {u, v} traversed by T in direction from u to v,

T ′ traverses arc (u, v).
2. For each required edge {u, v} traversed by T from u to v such that c(u, v) ≤ c(v, u),

T ′ traverses (u, v).
3. For each required edge {u, v} traversed by T from u to v such that c(u, v) > c(v, u),

T ′ traverses (u, v), (v, u), and again (u, v).
The closed walk T ′ is indeed a feasible solution to I ′: in (2), note that (u, v) ∈ R′ and that
it is served by T ′. In (3), in contrast, (v, u) ∈ R′, which is also served by T ′.

To compute the cost of T ′, observe that only (3) increases the cost of T ′ compared to T :
instead of c(u, v), which is paid by T for traversing {u, v} in the direction from u to v, the
closed walk T ′ pays c(u, v) + c(v, u) + c(u, v) < 3c(u, v) since c(v, u) < c(u, v). J

C Obtaining feasible splittings

Given an MWCARP instance I = (G, v0, c, d,Q), a feasible splitting (W, s) of a closed walk T
that traverses all arcs in Rd can be computed in linear time as follows. We assume that
each arc has demand at most Q since otherwise I has no feasible solution. Now, traverse T ,
successively defining subwalks w ∈W and the corresponding sets s(w) one at a time. The
traversal starts with the first arc a ∈ Rd of T and by creating a subwalk w consisting only
of a and s(w) = {a}. On discovery of a still unserved arc a ∈ Rd \ (

⋃
w′∈W s(w′)) do the

R. van Bevern, C. Komusiewicz, and M. Sorge 143

wi−2 wi−1 wi wi+1 wi+2 wi+3

p(i) q(i)

A
∗ (
w

i−
2,
w

i−
1)

A
∗ (
w

i,
w

i+
1)

A
∗ (
w

i+
2,
w

i+
3)

Z
∗(w

i−
2 , w

i−
1)

Z
∗(w

i ,w
i+

1)

Z
∗(w

i+
2 ,w

i+
3)

A′(wi)

A′(wi+1)
A′(wi+2)

A′(wi+3)Z ′(wi−2)
Z ′(wi−1) Z ′(wi)

Figure 3 Illustration of the situation in which a maximum number of five different walks in W

traverse the same pivot arc (the bold arc of wi) in their respective auxiliary walks.

following. If
∑

e∈s(w) d(e) + d(a) ≤ Q, then add a to s(w) and append to w the subwalk of T
that was traversed since discovery of the previous unserved arc in Rd. Otherwise, mark w
and s(w) as finished, start a new tour w ∈ W with a as the first arc, set s(w) = {a}, and
continue the traversal of T . If no arc a is found, then stop. It is not hard to verify that
indeed, (W, s) is a feasible splitting.

D Proof of Lemma 13

Proof. Consider an optimal solution (W ∗, s∗) to I. The closed walks in W ∗ visit all arcs
in Rd. Concatenating them to a closed walk T ∗ gives a feasible solution for the MWRPP
instance I ′ = (G, c,Rd) in line 1 of Algorithm 3. Moreover, c(T ∗) = c(W ∗). Thus, we have
c(T) ≤ β(C)c′(T ∗) in line 2. Moreover, by Condition 1 of Definition 11, one has c(W) ≤ c(T).
This finally implies c(W) ≤ c(T) ≤ β(C)c(T ∗) = β(C)c(W ∗) in line 3. J

E Proof of Lemma 15

Proof. Define an undirected bipartite graph B with the partite sets W 2 and W ∗. A
pair (w,w′) ∈W 2 and a closed walk w∗ ∈W ∗ are adjacent in B if (s(w)∪s(w′))∩s∗(w∗) 6= ∅.
We prove that B allows for a matching that matches each vertex of W 2 to some vertex
in W ∗. To this end, by Hall’s theorem [18], it suffices to prove that, for all subsets S ⊆W 2,
it holds that |NB(S)| ≥ |S|, where NB(S) :=

⋃
v∈S NB(v) and NB(v) is the set of neighbors

of a vertex v in B. Observe that, by Condition 5 of Definition 11 of feasible splittings, for
each pair (w,w′) ∈W 2 we have d(s(w) ∪ s(w′)) ≥ Q. Since the pairs serve pairwise disjoint
sets of demand arcs (Condition 4 of feasible splittings), the pairs in S serve a total demand
of at least Q · |S| in the closed walks NB(S) ⊆W ∗. Since each closed walk in NB(S) serves
demand at most Q, the set NB(S) is at least as large as S, as required. J

ATMOS’15

	p000-00-frontmatter
	Preface
	Orga

	p001-01-Andreev
	Introduction
	Preliminaries
	Augmented Graph Model for Pedestrian Routing
	Sidewalks and Street Crossings
	Plazas
	Parks

	Computing Routes
	Experiments
	Quantitative Evaluation
	Case Study

	Conclusion
	Batched Point in Polygon Tests

	p016-02-Hrncir
	Introduction
	Related Work
	Multi-Criteria Bicycle Routing Problem
	Heuristic-Enabled Multi-Criteria Label-Setting Algorithm
	Speedups for the HMLS Algorithm
	Evaluation
	Experiment Setting
	Evaluation Metrics
	Results

	Conclusions

	p029-03-Merting
	Motivation
	Electric Vehicles
	Related Work
	Our Contribution

	Preliminaries
	Structure of Optimal Solutions
	Approximating Constrained Shortest Walks with Charging
	The Inner Approximation Algorithm
	The Outer Approximation Algorithm

	Flows with Recharging
	Discussion

	p042-04-Paulsen
	Introduction
	Formal Definitions

	Adaption of Dynamic Programming for Tour Duration Minimization
	Pseudocode

	A Genetic Algorithm
	Experimental Results
	Conclusion
	Appendix: Proofs
	Appendix: Additional Pseudocode

	p056-05-Tadaoka
	Introduction
	Single source shortest path problem
	Single source bottleneck path problem
	Single source shortest paths for all flows
	A faster algorithm for SSSP-AF
	Single source bottleneck paths for all costs problem (SSBP-AC)
	Concluding remarks

	p068-06-Bohmova
	Introduction
	Model
	Robustness
	Experimental Results
	Conclusion

	p082-07-Mihalak
	Introduction
	Quickest Paths and Min-max Optimization
	Relation to Bi-criteria Quickest Paths
	Related Work
	Bi-directional Time-dependent Martins' Algorithm
	Computational Results
	Input Road Network
	Results
	Results for 3 Instances

	Single Backward Search
	Conclusions
	Computing the Pareto Front

	p095-08-Gutierrez
	p097-09-Fischer
	Introduction
	Problem Description
	Model
	Basic Time Expanded Model
	Configuration Networks
	Ordering Constraints
	Complete Model

	Solution Methods
	Numerical Tests
	Conclusions and Future Work

	p111-10-Reuther
	Introduction
	Regional Search
	Regional search for binary programs by using the simplex algorithm
	Regional search for the RCAP using the Hungarian method

	Branch and Bound for the RCAP
	Branching Scheme
	Assignment Reduction
	Shortest-Path Reduction
	Bin-Packing Reduction
	Symmetry Reduction

	Computational Results
	RCAP instances from the railway application
	TSP, ATSP, CVRP, and ACVRP instances from the literature

	Appendix: Tables

	p130-11-vanBevern
	Introduction
	Preliminaries
	Rural Postman
	Special Case: Required arcs induce Eulerian components
	Directed Rural Postman
	Mixed and Windy Rural Postman

	Capacitated Arc Routing
	Conclusion
	Omitted details in the proof of Lemma 8
	Proof of Lemma 9
	Obtaining feasible splittings
	Proof of Lemma 13
	Proof of Lemma 15

