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Abstract
The proliferation of high-level programming languages with advanced language features and the
need for portability across increasingly heterogeneous and hierarchical architectures require a
sophisticated run-time system to manage program execution and available resources. Additional
benefits include isolated execution of untrusted code and the potential for dynamic optimisation,
among others. This paper provides a high-level overview of language run-time systems with a
focus on execution models, support for concurrency and parallelism, memory management, and
communication, whilst briefly mentioning synchronisation, monitoring, and adaptive policy con-
trol. Two alternative approaches to run-time system design are presented and several challenges
for future research are outlined. References to both seminal and recent work are provided.
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1 Introduction

Programming languages have evolved from assembly languages, where programmers have to
specify a sequence of low-level instructions for a specific target platform, towards higher levels
of expressiveness and abstraction. Imperative languages enabled structured programming by
simplifying the expression of nested conditionals, iteration, and by allowing the grouping of
instructions to named procedures. More recently, object-oriented and declarative languages
with sophisticated type systems and support for generics, polymorphism, concurrency, and
parallelism, among other advanced features, further improved portability and productivity.

It is widely known that given a set of M programming languages and N target platforms,
using a platform-independent intermediate representation, which abstracts over the instruction
set of the target architecture, reduces the number of necessary translation components from
M ∗N to M +N facilitating the implementation of and interoperability between programming
languages across a wide range of diverse hardware architectures [37, 34].

As the advanced language features, such as automatic memory management, generics
and reflection, require support beyond the static capabilities of a compiler, a run-time
system (RTS, also referred to as high-level language virtual machine – a process-oriented
sub-class of virtual machines [31, 11, 20, 41]) was introduced to dynamically manage program
execution whilst maintaining high performance, which program interpreters sacrifice in most
cases [38]. The added flexibility of delayed specialisation and additional context information
available at run time allow for dynamic optimisation for many applications with no hard
real-time requirements, e.g. by detecting program hot spots and recompiling relevant program
fragments just-in-time (JIT) [4, 2]. Moreover, recent trends towards increasingly hierarchical
and heterogeneous parallel architectures [35, 9] and the promise of Big Data Analysis [30] have
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4 Language Run-time Systems: an Overview

Figure 1 RTS in the Software Life Cycle.

reinvigorated the interest in language support for concurrency, parallelism, and Distributed
Computing, based on advanced compiler and RTS-level functionalities [7].

This paper provides an overview of a set of representative language run-time systems
including both established systems and research prototypes, presents the key components of
a generic RTS and discusses associated policies as well as two more radical alternative RTS
designs. Finally, challenges and opportunities for future research are outlined. While the
discussion remains rather brief and high-level, references to technical literature are provided.

2 The Architecture of a Generic Language Run-time System

Here, a run-time system is defined as a software component responsible for dynamic man-
agement of program execution and of the resources granted by the OS. A RTS is distinct
from and embedded into a more broad run-time environment, which is defined to include
the OS that is responsible for overall resource management, and RTS instances managing
other running applications unaware of each other’s existence and resource demands. In other
words, an RTS mediates interaction between the application and the OS whilst managing
language-specific components in user space to avoid some context switching overhead [39].

2.1 Run-time System in the Software Life Cycle
The term software life cycle describes the stages of the software development process and their
relations. Here the focus is on the compilation and execution stages. The RTS is primarily
used during the application run time, consisting of the startup, initialisation, execution and
termination phases, in addition to potential dynamic linking, loading and JIT-compilation
as well as ahead-of-time (AOT) compilation.

Figure 1 illustrates the possible roles of the RTS in the software life cycle (excluding
design, construction, and maintenance). For instance, C’s minimalistic RTS (crts0) is added
by the linker/loader and initialises the execution environment (e.g. the stack, stack/heap
pointers, registers, signal handlers), transfers control to the program by calling the main
function, and eventually passes on main’s return value to the run-time environment (e.g. the
shell). However, it is platform-specific and implemented in assembler so that recompilation is
required on different architectures, thus the abstract machine functionality is not provided.
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Figure 2 RTS Components in the Software Stack.

More sophisticated RTSes are either implemented as a separate library and linked to
the application object code to create an executable program (e.g. GUM RTS for Glasgow
parallel Haskell [42]) or are themselves applications which receive program code as an input
(e.g. Java Virtual Machine (JVM) [26], and .NET Common Language Runtime (CLR) [33]).
The input is usually in an intermediate representation form (IR, virtual instruction set) that
decouples symbolic programming language representation from the native instruction set
of the target architecture, which is then either interpreted or JIT-compiled to native code.
Ahead-of-time compilation can be used to compile IR to native code to avoid initially running
the interpreted IR code until the JIT phase is complete to reduce start-up time.

2.2 Run-time System Structure and Function
We focus on the general components corresponding to key RTS functions and associated
policies, i.e. sets of rules that define choices in the behaviour of the system. We omit the
discussion of RTSes for embedded platforms as strict real-time requirements, often associated
with embedded applications, preclude the use of an RTS. The main function of the RTS is
the management of program execution on the implemented abstract machine based on a
specific execution model. The policies include interaction with the OS, memory management,
thread and task management, communication, and monitoring, among others.

Execution Models. A common model is that of a stack machine corresponding closely to
the Von-Neumann architecture [18], where a stack is used to store function arguments and
intermediate results returned from function calls. This sequential model is often employed in
RTSes for imperative and object-oriented languages along with register machines, where a
stack is replaced by a set of virtual registers, which are mapped to the machine’s registers.

Another prominent model is graph reduction commonly used with functional languages
based on the lambda calculus [22, 5]. This model is suitable for parallelism as parts of the
graph can be reduced independently [17]. Another notable model is term-rewriting that is used
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with languages based on predicate logic [23], such as Prolog [43], where facts are represented
by terms and new facts can be deduced from available facts. This model implements a variant
of tree search and has proven particularly suitable for Artificial Intelligence applications.

OS Interaction. Commonly, an RTS relies on the OS for resource allocation, I/O and
networking and provides a layer hiding OS-specific details and offering an architecture-
independent API to systems programmers. RTS often directly implements higher-level
language features and lower-level language primitives that are difficult to implement effi-
ciently in the language itself. Hiding low-level details from the programmers is beneficial
for productivity by providing abstractions and by transparently handling boilerplate ini-
tialisation, clean-up and error checking. For instance, channels in Erlang [1] offer a higher
level communication mechanism than sockets [39] and in some cases communication and
synchronisation are fully implicit, as in the distributed GUM RTS for parallel Haskell.

Error and Exception Handling. Error handling is often fairly crude such as a global errno
variable that can be explicitly checked along with the error code returned by the function.
More advanced language features include custom signal handlers and exception handling
using the try/catch mechanism which is explicit and often results in complex control flow.
Sophisticated RTSes can transparently handle errors at run time as demonstrated by Erlang’s
supervision mechanism, where failed processes can be restarted and resume execution.

Memory Management. Most high-level languages require the RTS to support garbage
collection (GC) to automatically manage allocation and reclamation of heap objects. There
are several common GC schemes [24]. One mechanism is reference-counting where a counter
indicates the number of references to an object which can be recovered once this count drops
to zero. By contrast, mark-and-sweep GC walks through the heap and marks all objects to be
collected which is more disruptive but is able to collect reference cycles. Moreover, GC can
be compacting to avoid fragmentation by periodically grouping the used objects together, and
generational where objects reachable for a long time are promoted to a less often GC’d heap
region, based on the insight that long surviving objects are likely to survive longer and most
objects expire after a short period of time. A potential scalability issue on multicores is the
use of a stop-the-world GC which suspends all execution when GC is performed, suggesting
the use of private heaps across cores to enable concurrent or distributed GC.

Thread and Task Management. OS-level threads and RTS-level tasks (or lightweight
threads) are at the heart of support for concurrency and parallelism, which is a key source of
application performance on modern hardware. Often the RTS manages a thread pool and a
task pool multiplexing tasks onto a set of OS threads for scalability. Many languages provide
explicit threaded programming model, however, this model is deemed a poor choice due to
observable non-determinism and notoriously difficult to detect and correct race conditions and
deadlocks [25]. Thus higher-level deterministic programming models such as Transactional
Memory [19] and semi-explicit or skeleton-based models have gained increasing attention [7].

Furthermore, explicit synchronisation involves a granularity trade-off that is detrimental
to portable performance: a global lock would be safe but sacrifices parallelism, whereas
fine-grained locking may result in prohibitive overheads. Coordination of execution, including
scheduling and work distribution across heterogeneous architectures substantially increases the
complexity of RTS decisions. This is the reason why optional tasks or threads are preferable
to mandatory ones: the RTS only executes a task in parallel if it appears worthwhile [42, 13].
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Two main families of work distribution mechanisms are work pushing (or work sharing) where
work is offloaded eagerly and work stealing [8], a decentralised and adaptive mechanism
where work distribution is demand-driven.

Communication. Large-scale applications require scalability beyond a single node mandat-
ing distribution of work across a cluster, a Grid, or in the Cloud. Two common schemes
include shared memory (which can be distributed, requiring an additional abstraction layer)
and message passing. Serialisation of computation and data is required if communication
occurs across a network. A low-level library such as MPI [16] can be used to implement
communication functionality. More sophisticated protocols such as publish/subscribe [12]
may be beneficial for distributed cooperative RTSes which share contextual information.

Monitoring. Profiling, debugging, and execution replay rely on tracing (logging of relev-
ant events), whereas dynamic optimisations rely on system information obtained through
monitoring at run time. Common profiling strategies are, in order of increasing overhead,
cumulative summary statistics, census-based statistics (collected at times of disruption, e.g.
GC), fine-grained event-based statistics (using a sampling frequency or recording all events).

3 A Qualitative Run-time System Comparison

Table 1 provides an overview of several mainstream and research RTSes regarding their
support for the features introduced above. We observe that a stack machine implementation is
most common for mainstream languages whilst graph reduction is popular among declarative
implementations. CLR provides support for tail call optimisation, so that declarative
languages can be supported (e.g. F#), whereas JVM lacks direct support. JVM and CLR
are compared in more detail elsewhere [15, 40], and although superficially similar they have
many distinctive features (e.g. unlike JVM, CLR was designed for multi-language support).

As concurrency and parallelism support grow more important we observe that such support
was added as an afterthought and often as a non-composable library to the mainstream
languages. By contrast, Erlang was designed for concurrency and natively supports channels
which facilitate communication among lightweight processes. Additionally, declarative
languages often are a better match for parallelism due to immutability and graph reduction
execution model [17]. For example, Haskell provides support for lightweight threads and data
parallelism, whereas GUM supports adaptive distributed execution of GpH programs [29, 42].

Most of the RTSes support some kind of GC but only in few cases a more scalable design
is used (e.g. Erlang uses per-process GC, X10 [10] and GUM use distributed GC). However,
an empirical study is necessary to judge on the relative merits of different schemes. In
mainstream languages communication and synchronisation are often explicit, increasing the
complexity of concurrent and parallel programming. From this angle GpH appears as a
very-high-level language in which all such aspects are implicit, whereas communication in X10
is implicit using the Partitioned Global Address Space (PGAS) abstraction whereas locality
settings for the distributed data structures are explicitly provided by the programmer.

Many of the RTSes also employ adaptive optimisations of some kind such as JIT, work-
stealing, or self-adjusting granularity control to throttle parallelism depending on available
resources (e.g. in GUM). Like memory management, this is an area of ongoing research [2].
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Table 1 A High-Level Overview of Ten Representative Run-time Systems.

RTS/ Exec. Concurrency/ Memory Commun./ Adaptive
Language Model Parallelism Management Synchron. Policies
crt0 stack libs: fork, explicit sockets, MPI/ user-
C machine Pthreads malloc/free mutex, locks defined
JVM stack libraries impl. gen. sockets, RPC/ JIT
Java/Scala/.. machine Threads, .. mark&sweep synchronized
CLR stack async/futures implicit sockets/ JIT
C#/F#/.. machine PLINQ, .. gen. m&s locks, wait
GHC-SMP graph forkIO, STM, implicit libraries/ work
Haskell reduction Par monad, .. gen. m&s MVars,TVars stealing
GUM graph par, Eval impl. distr. both implicit work
Haskell ext. reduction Strategies ref. count. (graph nodes) stealing
Manticore graph expl. tasks/ impl. gen. expl. mesg./ lazy tree
CML ext. reduction impl. data local/global sync splitting
X10 RTS stack async, futur./ impl. distr. PGAS/ work
X10 machine foreach, .. ref. count. atomic stealing
BEAM register spawn per process expl. mesg./ hot code
Erlang machine primitive compact./gen. mesg. boxes swapping
Cilk stack spawn, impl. cactus explicit/ work
C extension machine cilk func. stack sync stealing
SWI Prolog term threads/ impl. low sockets/ assert/
ISO Prolog rewriting concurrent prio. thread mutex, join retract

4 Alternative Views on the Role of the Run-time System

The proliferation of Cloud Computing as an economical approach to elastically scaling IT
infrastructure based on actual demand and of Big Data Analysis in addition to Scientific
High-Performance Computing applications have lead to an increased interest in parallel
and distributed RTSes capable of managing execution across distributed platforms at large
scale. Additionally, cache coherence protocols exhibit limited scalability and many novel
architectures (e.g. custom System-on-Chip architectures) resemble distributed systems to
some extent and may be non-cache-coherent [36].

Moreover, as many programming languages were not designed with parallelism and distri-
bution in mind, their RTSes provide only minimal support for rather low-level coordination.
This is an issue since most programmers are not parallelism and distributed systems experts
and explicitly specifying coordination is deemed prohibitively unproductive, favouring flexible
and safe RTS approaches. Convergence in RTS and OS functionality can be observed in
addition to the aforementioned architectural trends that lead to promising alternative views.

4.1 Holistic Run-time System
A Holistic RTS [28] would move from separate RTS instances running on top of a host OS
to a distributed RTS which takes over most of the OS functionalities and provides support
for multiple languages simultaneously. The RTS would manage multiple applications at the
same time and in a distributed fashion to avoid interference and coordinate distributed GC
across isolated heaps. Additional benefits arise from the ability to share libraries and RTS
components as well as to better utilise higher-level information for holistic optimisation.
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4.2 Application-Specific Run-time System

At the other end of the spectrum, an alternative approach is based on a generic distributed
OS [36] (e.g. based on the Multikernel approach [6]) offering a standardised interface for
RTSes to communicate their demands, facilitating cooperative execution and helping avoid
pathological interference. This way RTSes could be more lightweight and tailored for specific
applications taking additional context information about application characteristics into
account. To achieve this, a novel standard OS-RTS-interaction interface is required that
would allow the OS to schedule RTSes and mediate the negotiations among them.

5 Challenges and Opportunities for Future Research

Recent trends towards heterogeneous and hierarchical parallel architectures and increased
demand for high-level language features pose substantial challenges for the design and
implementation of efficient language run-time systems offering opportunities for research.

5.1 Adaptation and Auto-Tuning for Performance Portability

As argued above, manual program tuning is deemed infeasible for most application domains,
thus rendering automatic compiler and RTS optimisations critical for performance portability
and scalability. Alas, many decisions have been shown to be NP-hard in general, thus
requiring heuristics and meta-heuristics to facilitate heuristics choice based on available
context information. Machine Learning has been shown to improve compiler flag selection [14]
and it appears that similar techniques may be applicable for RTS-level adaptation. To
achieve performance portability, the RTS must provide some performance guarantees based
on applications’ requirements and available architectural and system-level information.

5.2 Fault Tolerance

Traditionally, language RTS designs have focused on language features and performance,
yet mechanisms to transparently detect, avoid, and recover from failures are becoming more
important, as hardware failure is rather the norm than exception in modern large-scale
systems [3]. In particular, the mean time between failures is rapidly decreasing following the
exponential growth of the transistor budget in accordance with Moore’s Law.

5.3 Safety and Security

One of the key benefits of using RTSes is that untrusted code can be executed safely in a
sandboxed environment so that other applications are safeguarded from many negative effects
that could be caused by malicious code. Additionally, intermediate code can be verified and
type-checked by the RTS (e.g. as done by JVM’s bytecode verifier) to eliminate the possibility
of whole classes of common errors. Furthermore, automatic GC eliminates the source of
memory corruption errors and avoids the buffer overflow vulnerability. It is an open issue
to ensure safe and secure execution of sensitive workloads on Cloud-based infrastructures,
which is the reason why many companies are reluctant to use new technologies or prefer
investing into private data centres. Support for dependent and session types is another
research direction focused on improving the safety of high-level languages [32, 21].
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5.4 Unified Distributed Run-time Environment
As described above, both alternative RTS approaches require tighter integration of RTS and
OS functions favouring cross-layer information flow. Moreover, a unified and extensible RTS
needs to support diverse execution models for multi-language interoperability, as has been
demonstrated by the CLR. The holistic view would facilitate avoidance of interference and
enable cooperative solutions for resource management. Ultimately, sophisticated RTSes would
hide coordination and management complexities from programmers increasing productivity
and avoiding explicit overspecification of coordination to achieve high performance portability
across diverse target platforms. On the other hand, it may be worthwhile to spatially and
temporally separate applications and grant exclusive access to some resources on massively
parallel architectures [27].

6 Conclusion

Based on the current trends, modern programming languages are likely to increasingly rely
on a sophisticated RTS to manage efficient program execution across diverse target platforms.
We have reviewed the role of the RTS in the software life cycle and the key RTS components
and associated policies. Additionally, a qualitative comparison of mainstream and research
RTSes illustrated the breadth of the design choices across the dimensions of execution models,
memory management, support for concurrency and parallelism, as well as communication
and adaptive policy control. The overview is complemented by references to influential
historical results and current research outcomes alongside a discussion of alternative RTS
designs followed by an outline of several promising areas for future research.
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