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Abstract
In this paper, we present a Satisfiability Modulo Theory based (SMT-based) bounded model
checking (BMC) method for Timed Real-Weighted Interpreted Systems and for the existential
fragment of the Weighted Epistemic Computation Tree Logic. SMT-based bounded model check-
ing consists in translating the existential model checking problem for a modal logic and for a
model to the satisfiability problem of a quantifier-free first-order formula. We have implemented
the SMT-BMC method and performed the BMC algorithm on Timed Weighted Generic Pipeline
Paradigm benchmark. The preliminary experimental results demonstrate the feasibility of the
method. To perform the experiments, we used the state of the art SMT-solver Z3.
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1 Introduction

The formalism of interpreted systems (ISs) was introduced in [1] to model multi-agent systems
(MASs) [6], which are intended for reasoning about the agents’ epistemic and temporal
properties. Timed interpreted systems (TIS) was proposed in [8] to extend interpreted
systems in order to make possible reasoning about real-time aspects of MASs. The formalism
of weighted interpreted systems (WISs) [9] extends ISs to make the reasoning possible about
not only temporal and epistemic properties, but also agents’s quantitative properties.

Multi-agent systems (MASs) are composed of many intelligent agents that interact with
each other. The agents can share a common goal or they can pursue their own interests.
Also, the agents may have a deadline or other timing constraints to achieve intended targets.
As it was shown in [1], knowledge is a useful concept for analysing the information state and
the behaviour of agents in multi-agent systems. In this paper, we consider the existential
fragment of a weighted epistemic computation tree logic (WECTLK) interpreted over Timed
Real-Weighted Interpreted Systems (TRWISs).

To the best of our knowledge, there is no work that considers SMT-based BMC methods
to check multi-agent systems modelled by means of timed weighted interpreted systems.
Thus, in this paper such a method is offered.
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We do not compare our results with other model checkers for MASs, e.g. MCMAS [4]
or MCK [2], simply because they do not support the WECTLK language and the timed
weighted interpreted systems.

Firstly, we define and implement an SMT-based BMC method for WECTLK and for
TRWISs. Secondly, we report on the initial experimental evaluation of our SMT-based BMC
method. To this aim, we use a scalable benchmark: the timed weighted generic pipeline
paradigm [7, 9].

2 Preliminaries

Let IN be a set of natural numbers, IN+ = IN\{0}, IR be the set of non-negative real numbers,
and X be a finite set of non-negative natural variables, called clocks ranging over a set of
non-negative natural numbers. A clock valuation is a function v : X → IN that assigns to
each clock x ∈ X a non-negative natural value v(x). A set of all the clock valuations is
denoted by IN|X |. The valuation v′ = v[X ′ := 0], for X ′ ⊆ X is defined as: ∀x∈X ′v′(x) = 0
and ∀x∈X\X ′v′(x) = v(x). For δ ∈ IN, v + δ denotes the valuation that assigns the value
v(x) + δ to each clock x.

The grammar ϕ := true | x < c | x ≤ c | x = c | x ≥ c | x > c | ϕ ∧ ϕ generates the set
C(X ) of clock constraints over X , where x ∈ X and c ∈ IN. A clock valuation v satisfies a
clock constraint ϕ, written as v |= ϕ, iff ϕ evaluates to be true using the clock values given
by v.

Let cmax be a constant and v, v′ ∈ IN|X | two clock valuation. We say that v ' v′ iff the
following condition holds for each x ∈ X : v(x) > cmax and v′(x) > cmax or v(x) ≤ cmax
and v′(x) ≤ cmax and v(x) = v′(x) The clock valuation v′ such that for each clock x ∈ X ,
v′(x) = v(x) + 1 if v(x) ≤ cmax, and v′(x) = cmax + 1 otherwise, is called a time successor of
v (written succ(v)).

TRWISs. Let Ag = {1, . . . , n} denotes a non-empty and finite set of agents, and E be
a special agent that is used to model the environment in which the agents operate and
PV =

⋃
c∈Ag∪{E} PVc be a set of propositional variables, such that PVc1

⋂
PVc2 = ∅ for

all c1, c2 ∈ Ag ∪ {E}. The timed real-weighted interpreted system (TRWIS) is a tuple
({Lc, Actc,Xc, Pc, tc,Vc, Ic, dc}c∈Ag∪{E}, ι), where Lc is a non-empty set of local states of the
agent c, S = L1× . . .×Ln×LE is the set of all global states, ι ⊆ S is a non-empty set of initial
states, Actc is a non-empty set of possible actions of the agent c, Act = Act1×. . .×Actn×ActE
is the set of joint actions, Xc is a non-empty set of clocks, Pc : Lc → 2Actc is a protocol
function, tc : Lc × C(Xc)× 2Xc ×Act→ Lc is a (partial) evolution function, Vc : Lc → 2PV
is a valuation function assigning to each local state a set of propositional variables that are
assumed to be true at that state, Ic: Lc → C(Xc) is an invariant function, that specifies an
amount of time the agent c may spend in a given local state, and dc : Actc → IR is a weight
function.

For a given TRWIS we define a timed real-weighted model (or a model) as a tuple
M = (Act, S, ι, T,V, d), where:

Act = Act1 × . . .×Actn ×ActE is the set of all the joint actions,
S = (L1 × IN|X1|)× . . .× (Ln × IN|Xn|))× (LE × IN|XE |) is the set of all the global states,
ι = (ι1 × {0}|X1|)× . . .× (ιn × {0}|Xn|)× (ιE × ({0}|XE |) is the set of all the initial global
states,
V : S → 2PV is the valuation function defined as V(s) =

⋃
c∈Ag∪{E} Vc(lc(s)), T ⊆

S × (Act ∪ IN) × S is a transition relation defined by action and time transitions. For
a ∈ Act and δ ∈ IN:
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1. action transition: (s, a, s′) ∈ T (or s a−→ s′) iff for all c ∈ Ag ∪ E , there exists
a local transition tc(lc(s), ϕc,X ′, a) = lc(s′) such that vc(s) |= ϕc ∧ I(lc(s)) and
v′c(s′) = vc(s)[X ′ := 0] and v′c(s′) |= I(lc(s′));

2. time transition (s, δ, s′) ∈ T iff for all c ∈ Ag ∪ E , lc(s) = lc(s′) and v′c(s′) = vc(s) + δ

and v′c(s′) |= I(lc(s′)).
d : Act → IR is the “joint” weight function defined as follows: d((a1, . . . , an, aE)) =
d1(a1) + . . .+ dn(an) + dE(aE).

Given a TRWIS, one can define for any agent c the indistinguishability relation ∼c⊆ S×S
as follows: s ∼c s

′ iff lc(s′) = lc(s) and vc(s′) ' vc(s)
A run inM is an infinite sequence ρ = s0

δ0,a0−→ s1
δ1,a1−→ s2

δ2,a2−→ . . . of global states such
that the following conditions hold for all i ∈ IN : si ∈ S, ai ∈ Act, δi ∈ IN+, and there exists
s′i ∈ S such that (si, δ, s′i) ∈ T and (si, a, si+1) ∈ T . Notice that the definition of a run does
not permit two consecutive joint actions to be performed one after the other, i.e., between
each two joint actions some time must pass; such a run is called strongly monotonic.

Abstract model. Let IDc = {0, . . . , cc + 1} with cc be the largest constant appearing in
any enabling condition or state invariants of agent c and ID =

⋃
c∈Ag∪E ID|Xc|

c . A tuple
M̂ = (Act, Ŝ, ι̂, T̂ , V̂, d), is an abstract model, where ι̂ =

∏
c∈Ag∪E ιc ×{0}|Xc| is the set of all

the initial global states, Ŝ =
∏

c∈Ag∪E Lc × ID|Xc|
c is the set of all the abstract global states.

V̂ : Ŝ → 2PV is the valuation function such that: p ∈ V̂(s) iff p ∈
⋃

c∈Ag∪E V̂c(lc(s)) for all
p ∈ PV; and T̂ ⊆ Ŝ × (Act ∪ τ)× Ŝ. Let a ∈ Act. Then,
1. Action transition: (s, a, s′) ∈ T̂ iff ∀c∈Ag∃φc∈C(Xc)∃X ′

c⊆Xc(tc(lc(s), φc,X ′c, a) = lc(s′) and
vc |= φc ∧ I(lc(s)) and v′c(s′) = vc(s)[X ′c := 0] and v′c(s′) |= I(lc(s′)))

2. Time transition: (s, τ, s′) ∈ T̂ iff ∀c∈Ag∪E(lc(s) = lc(s′)) and vc(s) |= I(lc(s)) and
succ(vc(s)) |= I(lc(s))) and ∀c∈Ag(v′c(s′) = succ(vc(s′))) and (v′E(s′) = succ(vE(s))).

Given an abstract model one can define for any agent c the indistinguishability relation
∼c⊆ Ŝ × Ŝ as follows: s ∼c s

′ iff lc(s′) = lc(s) and vc(s′) = vc(s). A path π in an abstract
model is a sequence s0

b1−→ s1
b2−→ s2

b3−→ . . . of transitions such that for each i ≤ 1,
bi ∈ Act ∪ {τ} and b1 = τ and for each two consecutive transitions at least one of them is
a time transition. Next, π[j..m] denotes the finite sequence sj

δj+1,aj+1−→ sj+1
δj+2,aj+2−→ . . . sm

with m− j transitions and m− j + 1 states, and Dπ[j..m] denotes the (cumulative) weight
of π[j..m] that is defined as d(aj+1) + . . .+ d(am) (hence 0 when j = m). The set of all the
paths starting at s ∈ S is denoted by Π(s), and the set of all the paths starting at an initial
state is denoted by Π =

⋃
s0∈̂ι Π(s0).

WECTLK. The WECTLK has been defined in [7] as the existential fragment of the weighted
CTLK with integer cost constraints on all temporal modalities. We extend WECTLK logic
by adding non-negative real cost constraints. In the syntax of WECTLK we assume the
following: p ∈ PV is an atomic proposition, c ∈ Ag, Γ ⊆ Ag, I is an interval in IR of the
form: [a,∞) and [a, b), for a, b ∈ IN and a 6= b. Moreover, hereafter, right(I) denotes the
right end of the interval I. The WECTLK formulae are defined by the following grammar:

ϕ ::= true | false | p |¬p |ϕ ∨ ϕ |ϕ ∧ ϕ |EXIϕ |E(ϕUIϕ) | EGIϕ |Kcϕ.

A WECTLK formula ϕ is true in an abstract model M̂ (in symbols M̂ |= ϕ) iff M̂, s0 |= ϕ

for some s0 ∈ ι̂ (i.e., ϕ is true at some initial state of the abstract model M̂). For every
s ∈ Ŝ the relation |= is defined inductively as follows:
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M̂, s |= true, M̂, s 6|= false, M̂, s |= p iff p ∈ V̂(s), M̂, s |= ¬p iff p 6∈ V̂(s),
M̂, s |= α ∧ β iff M̂, s |= α and M̂, s |= β, M̂, s |= α ∨ β iff M̂, s |= α or M̂, s |= β

M̂, s |= EXIα iff (∃π∈Π(s))(Dπ[0..1]∈I and M̂, π(1) |= α),
M̂, s |= EGIα iff (∃π∈Π(s))(∀i≥0)(Dπ[0..i] ∈ I implies M̂, π(i) |= β),
M̂, s |= E(αUIβ) iff (∃π ∈ Π(s))(∃i ≥ 0)(Dπ[0..i] ∈ I and M̂, π(i) |= β and (∀j <
i)M̂, π(j) |= α),
M̂, s |= Kcα iff (∃π∈Π) (∃i≥0)(s∼cπ(i) and M̂, π(i) |= α).

3 SMT-based Bounded Model Checking

In this section, we present an outline of the bounded semantics for WECTLK and define an
SMT-based BMC method for WECTLK, which is based on the BMC encoding presented
in [7]. As usual, we start by defining k-paths and (k, l)− loops. Next, we define a bounded
semantics, which is used for the translation to SMT.

Bounded semantics. Let M̂ be an abstract model, and k ∈ IN a bound. A k-path πk
is a finite sequence s0

b1−→ s1
b2−→ . . .

bk−→ sk of transitions such that for each 1 ≤ i ≤ k,
bi ∈ Act ∪ {τ} and b1 = τ and for each two consecutive transitions at least one is a time
transition. A k-path πk is a loop if l < k and π(k) = π(l). Note that if a k-path πk is a loop,
then it represents the infinite path of the form uvω, where u = (s0

b1−→ s1
b2−→ . . .

bl−→ sl)
and v = (sl+1

bl+2−→ . . .
bk−→ sk). Πk(s) denotes the set of all the k-paths of M̂ that start at s,

and Πk =
⋃
s0∈̂ι Πk(s0).

The bounded satisfiability relation |=k which indicates k-truth of a WECTLK formula in
the abstract model M̂ at some state s of M̂ is also defined in [7]. A WECTLK formula ϕ is
k-true in the abstract model M̂ (in symbols M̂ |=k ϕ) iff ϕ is k-true at some initial state of
the abstract model M̂.

The model checking problem asks whether M̂ |= ϕ, but the bounded model checking
problem asks whether there exists k ∈ IN such that M̂ |=k ϕ. The following theorem states
that for a given abstract model and a WECTLK formula there exists a bound k such that the
model checking problem (M̂ |= ϕ) can be reduced to the bounded model checking problem
(M̂ |=k ϕ).

I Theorem 1. Let M̂ be the abstract model and ϕ a WECTLK formula. Then, the following
equivalence holds: M̂ |= ϕ iff there exists k ≥ 0 such that M̂ |=k ϕ.

Proof. The theorem can be proved by induction on the length of the formula ϕ (for details
one can see [7]). J

Translation to SMT. Let M̂ be an abstract model, ϕ a WECTLK formula, and k ≥ 0 a
bound. The presented SMT encoding of the BMC problem for WECTLK and for TRWIS
is based on the SAT encoding of the same problem [10, 9], and it relies on defining the
quantifier-free first-order formula: [M̂, ϕ]k := [M̂ϕ,̂ι]k ∧ [ϕ]M̂,k

that is satisfiable if and only
if M̂ |=k ϕ holds.

Let c ∈ Ag ∪ {E}. The definition of the formula [M̂, ϕ]k assumes that
each global state s ∈ Ŝ is represented by a valuation of a symbolic state w = ((w1, v1), . . . ,
(wn, vn), (wE , vE)) that consists of symbolic local states and each symbolic local state wc
is a pair (wc, vc) of individual variables ranging over the natural numbers, in which the
first element represents a local state of the agent c, and the second represents a clock
valuation;
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each joint action a ∈ Act is represented by a valuation of a symbolic action a =
(a1, . . . , an, aE) that consists of symbolic local actions and each symbolic local action
ac is an individual variable ranging over the natural numbers;
each sequence of weights associated with the joint action is represented by a valuation
of a symbolic weights d = (d1, . . . , dn+1) that consists of symbolic local weights and each
symbolic local weight dc is an individual variable ranging over the natural numbers.

The formula [M̂ϕ,̂ι]k encodes a rooted tree of k−paths of the abstract model M̂. The
number of branches of the tree depends on the value of fk : WECTLK → IN which is an
auxiliary function defined in [7]. The formula [M̂ϕ,̂ι]k is defined over (k + 1) · fk(ϕ) different
symbolic states, k · fk(ϕ) different symbolic actions, and k · fk(ϕ) different symbolic weights.
Moreover, it uses the following auxiliary quantifier-free first-order formulae:

Is(w) – it encodes the state s of the abstract model M̂;
Hc(wc, w

′
c) – it encodes equality of two local states, such that wc = w′c for c ∈ Ag ∪ E ;

Tc(wc, ((a, d), δ), w′c) – it encodes the local evolution function of agent c;
A(a) – it encodes that each symbolic local action ac of a has to be executed by each
agent in which it appears;
T (w, ((a, d), δ),w′) := A(a) ∧

∧
c∈Ag∪{E} Tc(wc, ((a, d), δ), w′c);

Let πj denote the j-th symbolic k-path, i.e. the sequence of symbolic transitions:

w0,j
(a1,j ,d1,j),δ1,j−→ w1,j

(a2,j ,d2,j),δ2,j−→ . . .
(ak,j ,dk,j),δk,j−→ wk,j . Then, DIa,b;c,d(πn) for a ≤ b

and c ≤ d is a formula that:
for a < b and c < d encodes that the weight represented by the sequences da+1,n, . . . , db,n
and dc+1,n, . . ., dd,n belongs to the interval I,
for a = b and c < d encodes that the weight represented by the sequence dc+1,n, . . . , dd,n
belongs to the interval I,
for a < b and c = d encodes that the weight represented by the sequence da+1,n, . . . , db,n
belongs to the interval I,
for a = b and c = d, the formula DIa,b;c,d(πn) is true iff 0 ∈ I.

Thus, given the above, one can define the formula [M̂ϕ,̂ι]k as follows:

[M̂ϕ,̂ι]k :=
∨
s∈̂ι Is(w0,0)∧

∨fk(ϕ)
j=1 w0,0 = w0,j∧

∧fk(ϕ)
j=1

∧k−1
i=0 T (wi,j , ((ai,j , di,j), δi,j),wi+1,j)

where wi,j , ai,j , and di,j are, respectively, symbolic states, symbolic actions, and symbolic
weights for 0 ≤ i ≤ k and 1 ≤ j ≤ fk(ϕ). Hereafter, by πj we denote the j-th symbolic k-path

of the above unfolding, i.e., the sequence of transitions: w0,j
(a1,j ,d1,j),δ1,j−→ w1,j

(a2,j ,d2,j),δ2,j−→

. . .
(ak,j ,dk,j),δk,j−→ wk,j .
The formula [ϕ]M̂,k

encodes the bounded semantics of a WECTLK formula ϕ, and it is

defined on the same sets of individual variables as the formula [M̂ϕ,̂ι]k. Moreover, it uses
the auxiliary quantifier-free first-order formulae defined in [7].

Furthermore, following [7], our formula [ϕ]M̂,k
uses the following auxiliary functions gl,

gr, gµ, hU, hG that were introduced in [10], and which allow to divide the set A ⊆ Fk(ϕ) =
{j ∈ IN | 1 ≤ j ≤ fk(ϕ)} into subsets needed for translating the subformulae of ϕ. Let
0 ≤ n ≤ fk(ϕ), m 6 k, and n′ = min(A). The rest of translation is defined in the same way
as in [7].

[true][m,n,A]
k := true, [false][m,n,A]

k := false,
[p][m,n,A]

k := p(wm,n), [¬p][m,n,A]
k := ¬p(wm,n),

[α ∧ β][m,n,A]
k := [α][m,n,gl(A,fk(α))]

k ∧ [β][m,n,gr(A,fk(β))]
k ,
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Figure 1 The TWGPP system.

[α ∨ β][m,n,A]
k := [α][m,n,gl(A,fk(α))]

k ∨ [β][m,n,gl(A,fk(β))]
k ,

[EXIα][m,n,A]
k := wm,n = w0,n′ ∧ (d1,n′ ∈ I) ∧ [α][1,n

′,gµ(A)]
k , if k > 0; false, otherwise,

[E(αUIβ)][m,n,A]
k := wm,n = w0,n′ ∧

∨k
i=0([β][i,n

′,hU(A,k,fk(β))(j)]
k ∧

(
∑i
j=1 dj,n ∈ I ∧

∧i−1
j=0[α][j, n

′,hU(A,k,fk(β))]
k ),

[E(GIα)][m,n,A]
k := wm,n = w0,n′ ∧

(
(
∑k
j=1 dj,n ≥ right(I) ∧

∧k
i=0(

∑i
j=1 dj,n /∈ I ∨

[α][i,n
′,hG(A,k)(j)]

k )) ∨ (
∑k
j=1 dj,n < right(I) ∧

∧k
i=0(

∑i
j=1 dj,n /∈ I ∨ [α][i,n

′,hG(A,k)(j)]
k ) ∧∨k−1

l=0 (wk,n′ = wl,n′ ∧
∧k−1
i=l (¬DI0,k;l,i+1(πn′) ∨ [α][i,n

′,hG(A,k)(j)]
k )))

)
,

[Kcα][m,n,A]
k := (

∨
s∈̂ι Is(w0,n′)) ∧

∨k
j=0([α][j,n

′,gµ(A)]
k ∧Hc(wm,n,wj,n′)),

The theorem below states the correctness and the completeness of the presented translation.
It can be proved in a standard way, using induction on the complexity of the given WECTLK
formula.

I Theorem 2. Let M̂ be an abstract model, and ϕ a WECTLK formula. For every k ∈ IN,
M̂ |=k ϕ if, and only if, the quantifier-free first-order formula [M̂, ϕ]k is satisfiable.

4 Experimental Results

In this section, we experimentally evaluate the performance of our SMT-based BMC encoding
for WECTLK over the TRWIS semantics.

The benchmark, we consider is the timed weighted generic pipeline paradigm (TWGPP)
TRWIS abstract model [9]. The abstract model of TWGPP involves n+ 2 agents: Producer
producing data within the certain time interval ([a, b]) or being inactive, Consumer receiving
data within the certain time interval ([c, d]) or being inactive within the certain time interval
([g, h]), a chain of n intermediate Nodes which can be ready for receiving data within the
certain time interval ([c, d]), processing data within the certain time interval ([e, f ]) or sending
data. The weights are used to adjust the cost properties of Producer, Consumer, and of the
intermediate Nodes.

Each agent of the scenario can be modelled by considering its local states, the local
actions, the local protocol, the local evolution function, the local weight function, the local
clocks, the clock constraints, the invariants, and the local valuation function. Fig. 1 shows
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84 Checking WECTLK Properties of TRWISs via SMT-based BMC

the local states, the possible actions, and the protocol, the clock constraints, invariants and
weights for each agent. Null actions are omitted in the figure.

Given Fig. 1, the local evolution functions of TWGPP are straightforward to infer.
Moreover, we assume the following set of propositional variables: PV = {ProdReady,
ProdSend, ConsReady, ConsFree} with the following definitions of local valuation functions:
V̂P (ProdReady-0) = {ProdReady}, V̂P (ProdSend-1) = {ProdSend}; V̂C(ConsReady-0) =
{ConsReady},
V̂C(ConsFree-1) = {ConsFree}.

LetAct = ActP×
∏n
i=1 ActNi×ActC , withActP = {Produce, Send1}, ActC = {Startn+1,

Consume, Sendn+1}, and ActNi = {Starti, Sendi, Sendi+1, P roci} defines the set of joint ac-
tions for the scenario. For ã ∈ Act let actP (ã) denotes an action of Producer, actC(ã) denotes
an action of Consumer, and actNi(ã) denotes an action of Node i. We assume the following
local evolution functions: tP (ProdReady, x0 ≥ a, ∅, ã) = ProdSend, if actP (ã) = Produce;
tP (ProdSend, true, {x0}, ã) = ProdReady, if actP (ã) = Send1 and actNi(ã) = Send1;
tC(ConsStart, true, {xn+1}, ã) = ConsReady, if actC(ã) = Startn+1; tC(ConsReady,
xn+1 ≥ c, {xn+1}, ã) = ConsFree, if actC(ã) = Sendn+1 and actNn(ã) = Sendn+1;
tC(ConsFree, xn+1 ≥ g, {xn+1}, ã) = ConsReady, if actC(ã) = Consume.

Finally, we assume the following two local weight functions for each agent:
dP (Produce) = 4, dP (send1) = 2, dC(Consume) = 4, dC(sendn+1) = 2, dNi(sendi) =
dNi(sendi+1) = dNi(Proci) = 2,
dP (Produce) = 4000, dP (send1) = 2000, dC(Consume) = 4000, dC(sendn+1) = 2000,
dNi(sendi) = dNi(sendi+1) = dNi(Proci) = 2000.

The set of all the global states Ŝ for the scenario is defined as the product (LP × IN)×∏n
i=1(Li × IN) × (LC × IN). The set of the initial states is defined as ι̂ = {s0}, where

s0 = ((ProdReady-0, 0), (Node1Ready-0, 0), . . . , (NodenReady-0, 0), (ConsReady-0, 0)).
The system is scaled according to the number of its Nodes (agents), i.e., the problem

parameter n is the number of Nodes. For any natural number n ≥ 0, let D(n) = {1, 3, . . . , n−
1, n + 1} for an even n, and D(n) = {2, 4, . . . , n − 1, n + 1} for an odd n. Moreover, let
r(j) = dP (Produce) + 2 ·

∑j
i=1 dNi(Sendi) +

∑j−1
i=1 ·dNi(proci). Then, we define Right as

follows: Right =
∑
j∈D(n) r(j).

We consider the following formulae as specifications:
ϕ1 = KP (EF[0,Right)(ConsFree∧EG(ProdSend∨ConsFree))) - it states that it is not
true that Producer knows that there exists a path on which Consumer receives a data and
the cost of receiving the data is less than Right and from that point there exists a path on
which always either the Producer has sent a data or the Consumer has received a data.
ϕ2 = KP (EF[0,Right)(ConsFree ∧KCKP (EG(ProdSend ∨ ConsFree))))- it states that
it is not true that Producer knows that there exists a path on which Consumer receives a
data and the cost of receiving the data is less than Right and at that point it is not true
that Consumer knows that it is not true that Producer knows that there exists a path on
which always either the Producer has sent a data or Consumer has received a data.

The number of the considered k-paths is equal to 3 for ϕ1, and 5 for ϕ2, respectively. The
length of the witness is 2 ·n+ 4 if n ∈ {1, 2} and, 2 ·n+ 2 if n > 2 for the formula ϕ1, 2 ·n+ 2
for the formula ϕ2, respectively.

Performance evaluation. We performed our experimental results on a computer equipped
with I7-3770 processor, 32 GB of RAM, and the operating system Arch Linux with the kernel
3.19.2. The CPU time limit was set to 3600 seconds. Our SMT-based BMC algorithm was
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Figure 2 Formulae ϕ1 and ϕ2: Scaling up both the number of nodes and weights.

implemented as a standalone program written in the programming language C++. We used
the state of the art SMT-solver Z3 [5].

For both properties ϕ1 and ϕ2 we scaled up both the number of nodes and the weights
parameters. The results are summarised on charts in Fig. 2. One can observe that our
SMT-based BMC is not sensitive to scaling up the weights, but it is sensitive to scaling up
the size of benchmark.

For both the formulae, we obtained encouraging results. Namely, for ϕ1 and for TWGPP
with 16 nodes and the basic weights (bw for short) our method uses 13074.2 MB and 1864.4
seconds (13072.0 MB and 2624.5 seconds for bw multiplied by 1000); Next, for ϕ2 and
TWGPP with 6 nodes our method uses 17904.5 MB and 1536.9 second (19240.9 MB and
1424.4 seconds for bw multiplied by 1000).

5 Conclusions

We have proposed SMT-based BMC verification method for model checking WECTLK
properties interpreted over the timed real-weighted interpreted systems. The preliminary
experimental results show that the method is worth interest. In the future we are going to
provide a comparison of our new method with the SAT- and BDD-based BMC methods.
The module will be added to the model checker VerICS ([3]). All the benchmarks together
with an instruction how to reproduce our results can be found at the webpage http:
//www.ajd.czest.pl/~imi/agnieszkazbrzezny/modelchecking/.
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