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Abstract
In 2001 Lee, Jones and Ben-Amram introduced the notion of size-change termination (SCT) for
first order functional programs, a sufficient condition for termination. They proved that a pro-
gram is size-change terminating if and only if it has a certain property which can be statically
verified from the recursive definition of the program. Their proof of the size-change termination
theorem used Ramsey’s Theorem for pairs, which is a purely classical result. In 2012 Vytiniotis,
Coquand and Wahlsteldt intuitionistically proved a classical variant of the size-change termina-
tion theorem by using the Almost-Full Theorem instead of Ramsey’s Theorem for pairs. In this
paper we provide an intuitionistic proof of another classical variant of the SCT theorem: our
goal is to provide a statement and a proof very similar to the original ones. This can be done by
using the H-closure Theorem, which differs from Ramsey’s Theorem for pairs only by a contra-
positive step. As a side result we obtain another proof of the characterization of the functions
computed by a tail-recursive SCT program, by relating the SCT Theorem with the Termina-
tion Theorem by Podelski and Rybalchenko. Finally, by investigating the relationship between
them, we provide a property in the “language” of size-change termination which is equivalent to
Podelski and Rybalchenko’s termination.
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1 Introduction

An important topic in theoretical computer science is determining whether a program is
terminating on a given input by studying its source code. Even if in general this problem,
known as Halting problem, is undecidable, in some special cases this can be done. In 2001
Lee, Jones and Ben-Amram introduced the notion of size-change termination. A first order
functional program P is SCT if for any infinite sequence of calls which follows the control of
P there exists a variable whose value has to decrease infinitely many times. If the domain
of the values of P is well-founded this condition guarantees the termination. In [14] the
authors prove that any first order functional program is SCT if and only if it satisfies some
combinatorial property which can be statically verified from the recursive definition of the
program. We will call this result the SCT Theorem. In order to prove this theorem the
authors use Ramsey’s Theorem for pairs [19]. This result states that given any coloring over
the edges of the complete graph with infinitely many nodes in finitely many colors, there
exists an infinite “homogeneous” set. A set of nodes of a colored graph is said “homogeneous”
when any two elements of the set are connected with the same color. It is well-known that
Ramsey’s Theorem for pairs is not an intuitionistically valid result. To be precise, we need
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the law of excluded middle for Σ0
3 formulas in order to prove the fragment of this theorem

which can be expressed as a schema of first order statements [5].
The SCT Theorem is not the only result which characterizes the termination of some

class of programs by using Ramsey’s Theorem for pairs. In 2004 Podelski and Rybalchenko
introduced the notion of transition invariant. T is a transition invariant for a transition-based
program R if T contains the transitive closure of the transition relation of R. In [18] the
authors proved their Termination Theorem: a while-if program is terminating if and only if
there exists a transition invariant which satisfies certain properties. We refer to Section 2 for
details. The proof of the Termination Theorem uses Ramsey’s Theorem for pairs, as it is the
case for the SCT Theorem.

The Termination Theorem is intuitionistically provable if we consider inductive well-
foundedness instead of well-foundedness (see Section 2). Intuitionistic proofs of this theorem
are given in [20] and [6]. In both the proofs Ramsey’s Theorem for pairs is replaced by
some intuitionistic result. In the first one it is replaced by the Almost-full Theorem [9] by
Coquand, while in the second one it is replaced by the H-closure Theorem [6]. Both of them
are classically (but not intuitionistically) equivalent to Ramsey’s Theorem for pairs. They
keep the combinatorial strength of Ramsey’s Theorem for pairs required in the proof of the
Termination Theorem but they drop the classical part.

In this paper we prove some intuitionistic version of the SCT Theorem. From the
intuitionistic proof we extract an upper bound for the number of steps needed by an SCT
program to terminate. In Section 3 we define a variant of SCT, which we call SCT∗ and which
is classically equivalent but intuitionistically more informative. SCT∗ is defined by taking a
contrapositive and, as in the case of the Termination Theorem, by using the inductive version
of well-foundedness. Thanks to it, in Section 4, we may prove the SCT Theorem without
using classical principles. We will use the H-closure Theorem instead of Ramsey’s Theorem
for pairs. This is not the first intuitionistic proof of the SCT Theorem since Vytiniotis,
Coquand and Wahlsteldt in [20] intuitionistically proved this result by using the Almost-Full
Theorem. However since we find no way to intuitionistically deduce the H-closure Theorem
from the Almost-Full Theorem, there are no apparent relationships between the proofs.

In [3] Ben-Amram proved that any tail-recursive SCT functional program is primitive
recursive. In Section 5 we give a completely different proof of this result based on the bounds
found for the Termination Theorem in [4] and [11]. We can use these bounds since the SCT
Theorem and the Termination Theorem are strictly related. Heizmann, Jones and Podelski
proved that size-change termination is a property strictly stronger than termination [13]. By
applying an argument similar to the one used in [13] we will get the bound for a tail-recursive
SCT program from the one for the Termination Theorem provided in [11]. As a corollary of
the results presented in [13], in Section 6, we find a property in the “language” of size-change
termination which is equivalent to the termination with transition invariants.

In this paper we will work in Heyting Arithmetic (HA); all the proofs are intuitionistic.

2 Transition Invariants and the H-closure Theorem

In this section we summarize the main definitions and properties of transition invariants.
Transition invariants are used by Podelski and Rybalchenko in [18] in order to characterize
terminating programs. The Termination Theorem by Podelski and Rybalchenko states
that a transition-based program R is terminating if and only if there exists a disjunctively
well-founded transition invariant for R. The proof of this result was classical since the
authors use Ramsey’s Theorem for pairs in order to prove it. However we can modify the
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definition of termination with a classically equivalent one and show that the theorem is
intuitionistically true ([20] and [6]).

2.1 Transition Invariants

In this subsection we recall the definition of transition invariant and the Termination Theorem.
For all details we refer to [18].

I Definition 1 (Transition Invariants). As in [18]:
A transition-based program R = (S, I,R) consists of:
S: a set of states,
I: a set of initial states, such that I ⊆ S,
R: a transition relation, such that R ⊆ S × S.

A computation is a maximal sequence of states s0, s1, . . . such that
s0 ∈ I,
(si+1, si) ∈ R for all i ∈ N.

The set Acc of accessible states consists of all states that appear in some computation.
The transition-based program R is terminating if and only if R ∩ (Acc×Acc) is well-
founded.
A transition invariant T is a set which contains the transitive closure of the transition
relation R restricted to the accessible states Acc. Formally,

R+ ∩ (Acc×Acc) ⊆ T.

A relation T is disjunctively well-founded if it is a finite union T = T0 ∪ · · · ∪ Tn−1 of
well-founded relations.

Being well-founded is not preserved under binary unions, therefore a disjunctively well-
founded relation can be ill-founded. We represent each state as a finite map s which provides
the values of the variables and the location of s (for an introduction to these concepts see
[13, pag 8]). Given a state s and a variable x we will write s(x) to mean the value of x in
the state s, while s(pc) is the current location of s.

The main result by Podelski and Rybalchenko is the following.

I Theorem 2 (Termination Theorem, Theorem 1 [18]). The transition-based program R is
terminating if and only if there exists a disjunctively well-founded transition invariant for R.

By unfolding definitions Theorem 2 states that a binary relation R is well-founded if and
only if there exist a natural number n and n-many well-founded relations R0, . . . , Rn−1 whose
union contains the transitive closure of R. This is non trivial since in general a disjunctively
well-founded relation can be ill-founded. The fact that a transitive binary relation which is
the union of two well-founded relations is well-founded has been remarked before Podelski
and Rybalchenko (for instance see [12, pag 31]).

Let us see as example one simple application of the Termination Theorem.
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I Example 3. Examine the following transition-based program which computes exp = xy

whenever x, y > 0 and exp = 1 at the beginning.

while(y > 0)
{
l : temp = 0; z = x;
while(z > 0)

{temp = temp + exp; z = z − 1; }
l′ : y = y − 1; exp = temp;
}

This program terminates since there exists a disjunctively well-founded transition invariant
for it:

T := {(s′, s) | s′(z) < s(z)} ∪ {(s′, s) | s′(y) < s(y)} ∪ {(s′, s) | s′(pc) = l ∧ s(pc) = l′} .

Observe that, in this case, it would not be difficult to directly prove termination by using
the lexicographic ordering.

From the Termination Theorem Cook, Podelski and Rybalchenko extracted an algorithm
which produces disjunctively well-founded transition invariants for some terminating programs
[8], as in the example above.

2.2 Overview on inductive well-foundedness
In this subsection we recall the main results about well-foundedness which we require in this
paper. All the results presented in this subsection are presented in previous work [6], we refer
to it for details. From now on we consider the inductive definition of well-foundedness as in
[1, 2], which is classically equivalent to the usual one if we assume the Axiom of Dependent
Choice.

Classically a binary relation R over a set S is well-founded if there are no infinite decreasing
R-chains. We say that x ∈ S is classically R-well-founded if there are no infinite decreasing
R-chains from x. Here we are interested in the inductive definition of well-foundedness, which
is classically, but not intuitionistically, equivalent to the classical one. Hence we say that a
binary relation R over S is inductively well-founded if and only if every element of S belongs
to any R-inductive property X:

∀x∀X((∀y((∀z(zRy =⇒ z ∈ X)) =⇒ y ∈ X)) =⇒ x ∈ X).

We say that x ∈ S is inductively R-well-founded if x ∈ X holds for any R-inductive
property X. For short, when clear from the context, we will say well-founded instead of
inductive well-founded.

An important tool for proving that a relation is well-founded are simulations [16]. A
simulation relation is a binary relation which connects two other binary relations. Intuitively
a simulation of a binary relation R ⊆ S2 into a binary relation R′ ⊆ S′2 is a way of associating,
step by step, any R-decreasing sequence to some R′-decreasing sequence.

I Definition 4. Let R be a binary relation on S and R′ be a binary relation on S′. Let U
be a binary relation on S × S′, and let ◦ denote the composition between two relations.
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U is a simulation of R in R′ if and only if R ◦ U ⊆ U ◦R′; i.e.

∀x, z ∈ S ∀y ∈ S′ ((xUy ∧ zRx) =⇒ ∃w ∈ S′ (wR′y ∧ zUw))

A simulation relation U of R in R′ is total if dom(U) = {x ∈ S | ∃y ∈ S′(xUy)} = S.
R is simulable in R′ if there exists a total simulation relation U of R in R′.

The next proposition shows that the simulation relations “preserve” inductively well-
foundedness: it is a generalization of the preservation of well-foundedness by inverse image
[17].

I Proposition 5. Let R be any binary relation on S, and let R′ be a binary relation on
S′.
1. For any x ∈ S:

x is R-well-founded ⇐⇒ ∀y(yRx =⇒ y is R-well-founded ).

2. If U is a simulation of R in R′ and if xUy and y is R′-well-founded, then x is R-well-
founded.

3. If U is a simulation of R in R′ and R′ is well-founded, then dom(U) is R-well-founded.
4. If R is simulable in R′ and R′ is well-founded, then R is well-founded.

Let R be a binary relation over a set S. We say that a function f : S → N is a weight
function if for any x, y ∈ S

xRy =⇒ f(x) < f(y).

R has height ω if and only if R has a weight function.
By using the total simulation U = {(x, f(x)) | x ∈ dom(R)} we can easily prove that if

R has height ω then it is inductively well-founded. Moreover if R is inductively well-founded
and finitely branching, then f(x) = sup {f(y) + 1 | yRx} is a weight function for R.

We also need to recall a well-known result about finite relations. Let R be a binary
relation on any finite set {xi | i ≤ k}. A R-cycle is a finite sequence 〈xi0 , . . . , xin〉 for some
n ∈ N, such that and ij ≤ k for any j ≤ n, and

xi0 = xinRxin−1R . . . Rxi1Rxi0 .

If n = 0 we ask that xi0Rxi0 and we call xi0 a loop of R.

I Proposition 6. Let R be any binary relation on a finite set S.
R is well-founded if and only if there are no R-cycles.
If R is a strict order then R is well-founded.

2.3 H-closure Theorem
The H-closure Theorem, where H stands for “homogeneous”, is the result used in [6] to
give an intuitionistic proof of the Termination Theorem. The statement of the H-closure
Theorem was obtained from Ramsey’s Theorem for pairs by taking a contrapositive and it is
intuitionistically provable. The two theorems are equivalent in RCA0 [7], the base system of
Reverse Mathematics which consists of recursive comprehension and Σ0

1-induction. We may
define H-closure as follows.

Let � denote the one-step expansion between finite sequences; i.e.

〈y0, . . . , ym−1〉 � 〈x0, . . . , xn−1〉 ⇐⇒ m = n+ 1 ∧ ∀i < n(xi = yi).
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We call an R-homogeneous sequence any finite transitive decreasing R-chain. We say that
R is homogeneous-well-founded, just H-well-founded for short, if the relation � on the set
of R-homogeneous sequences is well-founded. Being H-well-founded is weaker than being
well-founded, as we will see in a moment. Formally, the definition runs as follows.

I Definition 7 (H-well-foundedness). Let R be a binary relation on S.
H(R), the set of R-homogeneous sequences, is the set of the R-decreasing transitive finite
sequences on S:

〈x0, . . . , xn−1〉 ∈ H(R) ⇐⇒ ∀i, j < n (i < j =⇒ xjRxi).

R is H-well-founded if H(R) is �-well-founded.

From the previous definition follows that R is classically H-well-founded if and only if
there are no infinite decreasing transitive R-chains. It also follows that if R is decidable then
also H(R) is. If S is finite, then we may describe the difference between well-foundedness
and H-well-foundedness as follows: R is well-founded if and only if R has no cycles, while R
is H-well-founded if and only if R has no loops (there is no x ∈ S such that xRx). There
is a strong connection between well-foundedness and H-well-foundedness, described in the
following proposition.

I Proposition 8 (Proposition 1 [6] ). Let R be a binary relation.
1. If R is well-founded then R is H-well-founded.
2. If R is H-well-founded and R is transitive then R is well-founded.

A last example. Consider R = {(n+ 1, n) | n ∈ N}. It is straightforward to check that it
is not well-founded and it is H-well-founded since

H(R) = {〈〉} ∪ {〈n〉 | n ∈ N} ∪ {〈n, n+ 1〉 | n ∈ N} .

The H-closure theorem states that H-well-foundedness is closed under finite unions. Formally

I Theorem 9 (H-closure Theorem, Theorem 2 [6]). Let R0, . . . , Rn−1 be binary relations. If
R0, . . . , Rn−1 are H-well-founded then R0 ∪ · · · ∪Rn−1 is H-well-founded.

Classically, and if we take a contrapositive, the H-closure Theorem states: if there is some
infinite R0 ∪ · · · ∪ Rn−1-homogeneous sequence then for some i < n there is some infinite
Ri-homogeneous sequence. From this remark we may classically check that the H-closure
Theorem is but a variant of Ramsey’s Theorem for pairs [19]. However, the H-closure
Theorem is intuitionistically provable, while Ramsey’s Theorem for pairs is not [6].

In [6] from the H-closure Theorem we obtained an intuitionistic proof of the Termination
Theorem. Furthermore, by analysing this intuitionistic proof, in [4] the authors got a
characterization of the Termination Theorem via the primitive recursive functions.

I Theorem 10. Assume that the transition relation of the program R is the graph of a
primitive recursive function restricted to a primitive recursive subset. If R has a disjunctively
well-founded transition invariant whose relations are primitive recursive and have height ω
then it computes a primitive recursive function.

For short we say that a transition invariant has height ω if the relations which compose
it have height ω. In [11] there is another proof of this result based on the Dickson Lemma.
With both approaches we can characterize the level of the primitive recursive hierarchy
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reached by the transition-based program R. We denote with Fk the usual k-class of the Fast
Growing Hierarchy [15]. Define

F0(x) = x+ 1

Fk+1(x) = F
(x+1)
k (x).

Then Fk is the closure under limited recursion and substitution of the set of functions
composed of constant, projections, sum and Fh for any h ≤ k.

As shown in [11] if R is a program such that
its transition relation R is the graph of a function in F2;
there exists a transition invariant for R which is the union of k relations, all having
weight functions in F1.

Then the function computed by R is in Fk+1.

3 From SCT to SCT*

In this section after a brief summary on the original definition of SCT presented in [13], we
introduce a variant of SCT, which we call SCT∗, and which is classically equivalent to SCT.
Thanks to this definition we can intuitionistically prove the SCT Theorem. This is similar
to what we did in the previous section: in order to intuitionistically prove the Termination
Theorem we had to consider a classical equivalent of the termination property which is
intuitionistically easier to prove. We obtain SCT∗ from SCT by taking the contrapositive
and by considering the inductive well-foundedness instead of the classical one.

From now on we will deal with a language for functions on N with call-by-value semantics
considered in [14]. We use the recursive definitions and notations for maps f : Nn → N which
Heizmann, Jones and Podelski present in their paper, for details see [13, pages 2-4]. Another
useful reference is [3].

3.1 Size-change Termination
Here we recall the definition of SCT. If the reader is familiar with this definition, he may
skip this subsection.

Informally, a recursive definition of a function has the SCT property if in every infinite
sequence of function calls there is some infinite sequence of values of arguments which is
weakly decreasing, and strictly decreasing infinitely many times. In the case the domain
of the function is N, there is no such sequence of values, and SCT is a sufficient condition
for termination. In order to formally express SCT, first of all we need the definition of
size-change graph. From now on we fix a recursive definition for a program P characterized
as above. Let f be defined in P as follows:

f(x0, . . . , xn−1) := if(. . . ) then f1(. . . ) else if(. . . ) then f2(. . . ) else f3(. . . ).

Then we will denote the set {x0, . . . , xn−1} by Var(f). Given such f , a state is a pair (f,v)
where v is a finite sequence of natural numbers whose length is n. If in the definition of f
there is a call

. . . τ : g(e0, . . . , em−1)

we define a state transition (f,v) τ−→ (g,u) to be a pair of states such that u is the sequence
of values obtained by the expressions (e0, . . . , em−1) when f is evaluated with v.
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I Definition 11 (Size-change graph). Let f, g be defined in P. A size-change graph
G : f → g for P is a bipartite directed graph on (Var(f),Var(g)). The set of edges is a
subset of Var(f)× {↓,⇓} ×Var(g) such that there is at most one edge for any x ∈ Var(f),
y ∈ Var(g). We say that f is the source function of G and g is the target function of G.

We call (x, ↓, y) the decreasing edge, and we denote it with x ↓−→ y. We call (x,⇓, y) the
weakly-decreasing edge, and we denote it with x ⇓−→ y.

I Definition 12. Let f(x0, . . . , xn−1) be defined with a call τ : g(e0, . . . , em−1) (where
Var(g) = {y0, . . . , ym−1}).

The edge xi
r−→ yj safely describes the xi − yj relation in the call τ , if for any v ∈ Nn and

u ∈ Nm such that (f,v) τ−→ (g,u), then r = ↓ implies that uj < vi and r = ⇓ implies that
uj ≤ vi.
The size-change graph Gτ is safe for the call τ if every edge in Gτ is a safe description.
Set GP = {Gτ | τ is a call in P}. We say that GP is a safe description of P if for any call
τ , Gτ is safe.

Note that the absence of edges between two variables x and y in the size-change graph
Gτ which is safe for τ indicates either an unknown or an increasing relation in the call τ .

I Definition 13. A multipathM is a graph sequence G0, . . . , Gn, . . . such that the target
function of Gi is the source function of Gi+1 for any i. A thread is a connected path of
edges inM that starts at some Gt, where t ∈ N. A multipathM has infinite descent if some
thread inM contains infinitely many decreasing edges.

I Definition 14 (SCT program). Let T be the set of calls in program P . Suppose that each
size-change graph Gτ : f → g is safe for every call τ in

GP = {Gτ | τ ∈ T } .

P is size-change terminating (SCT) if, for any infinite call sequence π = τ1, . . . , τn, . . . that
follows P’s control flow, the multipath Mπ = Gτ1 , . . . , Gτn , . . . has an infinite descent.

3.2 Composing size-change graphs
As in [13], given two size-change graphs G0 : f → g and G1 : g → h we define their
composition G0;G1 : f → h. The composition of two edges x ⇓−→ y and y ⇓−→ z is one edge
x
⇓−→ z. In all other cases the composition of two edges from x to y and from y to z is the

edge x ↓−→ z. Formally, G0;G1 is the size-change graph with the following set of edges:

E = {x ↓−→ z | ∃y ∈ Var(g) ∃r ∈ {↓,⇓} ((x ↓−→ y ∈ G0 ∧ y
r−→ z ∈ G1)

∨ (x r−→ y ∈ G0 ∧ y
↓−→ z ∈ G1))}

∪{x ⇓−→ z | ∃y ∈ Var(g)(x ⇓−→ y ∈ G0 ∧ y
⇓−→ z ∈ G1) ∧ ∀y ∈ Var(g)

∀r, r′ ∈ {↓,⇓} ((x r−→ y ∈ G0 ∧ y
r′−→ z ∈ G1) =⇒ r = r′ = ⇓)}.

Observe that the composition operator “;” is associative. Given a finite call sequence
π = τ0, . . . , τn−1 we define Gπ = Gτ0 , . . . , Gτn−1 . Moreover we say that the size-change graph
G is idempotent if G;G = G.

Given a finite set of size-change graphs G, cl(G) is the smallest set which contains G and
is closed by composition. Formally cl(G) is the smallest set such that
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G ⊆ cl(G);
If G0 : f → g and G1 : g → h are in cl(G), then G0;G1 ∈ cl(G).

Once we fixed the number of variables, there are only finitely many bipartite graphs with
two labels for the edges, therefore classically cl(G) is finite. Moreover we can intuitionistically
prove that it is finite thanks to the following proposition.

I Proposition 15. Assume that S is a finite set where the equality is decidable and that op:
S×S → S is a computable map. Then the closure of any finite subset of S is intuitionistically
finite.

In fact if I ⊆ S, we can define I0 = I, Ik+1 = {op(a, b) | a, b ∈
⋃
{Ih | h ≤ k}} \⋃

{Ih | h ≤ k}. By decidability of equality, we may effectively compute A \ B for any
A, B finite subsets of S. Therefore we may intuitionistically prove by induction over
S \
⋃
{Ih | h ≤ k} that there is a k ≤ |S| such that Ik+1 = ∅. Thus k defines the closure of I.

3.3 Definition of SCT*
As seen above, P is SCT if and only if

for any infinite call sequence π that follows P, Mπ has an infinite descent.

Now we want to apply some classical step in order to obtain a statement SCT∗ classically
equivalent to SCT but intuitionistically easier to prove. From the definition of SCT, by
taking a contrapositive, we obtain

for any call sequence π which follows P,
Mπ has no infinite descents implies that π is not infinite.

This is the sentence from which we will obtain our definition. Formally a call sequence
which follows P is a function π : N −→ {τ | τ is a call in P} ∪ {∅} such that

if π(n) = ∅ for some n ∈ N, then ∀m > n(π(m) = ∅);
if π(n+ 1) = τ , then τ is a call which appears in the definition corresponding to the call
π(n).

Observe that π is infinite in this notation means that ∀n(π(n) 6= ∅). In order to keep the
notation of [14] for any natural number n we denote τn = π(n).

We introduce two binary relations, π+ on N and Rπ on N×Var. Then we translate “Mπ

has no infinite descents” with “Rπ is inductively well-founded” and “π is not infinite” with
“π+ is inductively well-founded”.

Let P be a program and let π be a call sequence which follows P. We define a binary
relation π+ on N by:

mπ+n ⇐⇒ m > n ∧ τm 6= ∅.

Observe that if π is infinite then mπ+n holds if and only if m > n, while if l is the minimum
number such that π(l) = ∅ then mπ+n holds if and only if l > m > n.

Now, we define a binary relation Rπ on N×Var. Here (m, y)Rπ(n, x) holds if and only if
y becomes strictly smaller than x when we step from τn to τm−1 along the call sequence π.

I Definition 16. Given a sequence π that follows P, Rπ is defined as:

(m, y)Rπ(n, x) ⇐⇒ mπ+n ∧ x ↓−→ y ∈ Gτn ; . . . Gτm−1 ,

where Gτ is the size-change graph associated to τ .
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From Rπ and π+ we define SCT∗.

I Definition 17 (SCT∗ program). P is SCT∗ if and only if for any call sequence π which
follows P: Rπ is (inductively) well-founded implies that π+ is (inductively) well-founded.

We highlighted the use of the inductive definition of well-foundedness instead of the
classical one, since as seen it is crucial in order to give an intuitionistic proof of the SCT
Theorem. However for short, from now on we will write well-foundedness instead of inductive
well-foundedness.

4 Proving SCT* Theorem

The goal of this section is to intuitionistically prove that the SCT Theorem by Lee et al. holds
providing we use SCT∗ instead of SCT. The SCT Theorem states that a program P is SCT
if and only if for any idempotent G ∈ cl(GP) there exists a variable x in the source of G such
that x ↓−→ x ∈ G. Recall that in the classical proof of the SCT Theorem the main ingredient
is Ramsey’s Theorem for pairs. In the classical proof the authors suppose by contradiction
that there exists an infinite call sequence π which follows P. Then they define a coloring
h : [N]2 → cl(GP) which associates to any pair of natural numbers n < m the size-change
graph which corresponds to Gτn ; . . . ;Gτm−1 . Since cl(GP) if finite and by applying Ramsey’s
Theorem for pairs they obtain an infinite homogeneous chain and therefore a contradiction.

We will prove that also in this case we can use the H-closure Theorem instead of Ramsey’s
Theorem for pairs. In order to do that we need to introduce a binary relation π+

G for any
G ∈ cl(GP) and for any call sequence π which follows P. We have that mπ+

Gn holds if and
only if the size-change graph associated to τn, . . . , τm−1 is G.

I Definition 18. Let π be a call sequence which follows P and let G ∈ cl(GP). Define
π+
G ⊆ N2 as:

mπ+
Gn ⇐⇒ mπ+n ∧Gτn ; . . . ;Gτm−1 = G.

Observe that π+
G is decidable since Gτi

is finite and π+ is decidable. Moreover, as
remarked in Subsection 3.3, if R is decidable then H(R) is.

I Lemma 19. Let π be a call sequence which follows P and let G ∈ cl(GP). Then both π+
G

and H(π+
G) are decidable.

By applying the H-closure Theorem to the relations π+
G, for G ∈ cl(GP), we can intuition-

istically prove the SCT∗ Theorem.

I Theorem 20 (SCT∗ Theorem). Every idempotent graph in cl(GP) has an edge x ↓−→ x if
and only if P is SCT∗.

Proof. “⇒”: Assume that any idempotent graph in cl(GP) has an edge x ↓−→ x. Let π be a
call sequence which follows P such that Rπ is well-founded. We want to prove that π+ is
well-founded.

I Claim. For any G in cl(GP), π+
G is H-well-founded.

Proof of the Claim. Since “G is idempotent” is a decidable statement we can consider two
cases.
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If G is not idempotent, then each L ∈ H(π+
G) has length at most 2. Otherwise assume

that 〈n,m, l〉 ∈ H(π+
G) for some n < m < l. By definition, this would imply that mπ+

Gn,
lπ+
Gm and lπ+

Gn, therefore we would have

G;G = Gτn ; . . . ;Gτm−1 ;Gτm ; . . . ;Gτl−1 = G.

This means that G is idempotent. Contradiction. Hence we have ¬∃n,m, l(〈n,m, l〉 ∈
H(π+

G)), and so ∀n,m, l(〈n,m, l〉 /∈ H(π+
G)) follows by Lemma 19. Hence π+

G is H-well-
founded.
If G is idempotent, then there exists x ↓−→ x ∈ G. Define the following binary relation

Ux = {(n, (n, x)) | n ∈ N} .

Then Ux is a simulation of π+
G in Rπ. In fact assume that

mπ+
Gn ∧ nUx(n, x),

Therefore, since x ↓−→ x ∈ G = Gτn
; . . . ;Gτm−1 , we have

mUx(m,x) ∧ (m,x)Rπ(n, x).

Since by hypothesis Rπ is well-founded, then by Proposition 5 also π+
G is well-founded.

By Proposition 8 it is H-well-founded. J

Now observe that

π+ =
⋃{

π+
G | G ∈ cl(GP)

}
,

since every Gτn ; . . . ;Gτm−1 equates some G ∈ cl(GP) by definition of cl(GP). Hence by
applying both the H-closure Theorem (Theorem 9) and finiteness of cl(GP) we obtain also
π+ is H-well-founded. Moreover it is transitive by definition, then it is well-founded by
Proposition 8 and we are done.

“⇐”: Suppose that P is SCT∗ and let Gτ be an idempotent size-change graph. By
idempotency if we define the call sequence π such that π(n) = τ for any n ∈ N, then it is
an infinite call sequence which follows P. In particular π+ is not well-founded. Since P is
SCT∗, Rπ is not well-founded. In this case, we may observe that:

(m, y)Rπ(n, x) ⇐⇒ x
↓−→ y ∈ Gτn

; . . . ;Gτm−1 = Gτ ; . . . ;Gτ = Gτ

Then (m, y)Rπ(n, x) ⇐⇒ x
↓−→ y ∈ Gτ . Define

yR̃πx ⇐⇒ x
↓−→ y ∈ Gτ ,

Observe that if R̃π is well-founded, then also Rπ is. We can prove it by using the simulation

U = {((n, x), x) | n ∈ N, x a variable in the source of Gτ} .

Hence R̃π is not well-founded. Since R̃π is not well-founded and it is finite, thanks to
Proposition 6, it has a cycle for some variable z:

z = znR̃πzn−1R̃π . . . R̃πz0 = z.

Moreover R̃π is transitive: in fact if x ↓−→ y ∈ Gτ and y ↓−→ z ∈ Gτ , then x
↓−→ z ∈ Gτ ;Gτ = Gτ .

Since R̃π is transitive, hence zR̃πz. Therefore

z
↓−→ z ∈ Gτ .

We have proved that if Gτ is idempotent, then z ↓−→ z ∈ Gτ . J
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By comparing the classical proofs of the termination theorems, the version of Ramsey’s
Theorem for pairs used in the proof of the Termination Theorem is weaker then the one used
in the proof of the SCT Theorem. In fact in order to prove the Termination Theorem it is
sufficient to have an infinite homogeneous chain (i.e. an ordered set {xi | i ∈ N} such that
each pair of consecutive elements has the same color) instead of an infinite homogeneous set.
This result which is an infinite version of Erdős–Szekeres’s Theorem [10] is called also Weak
Ramsey’s Theorem for pairs and it is strictly weaker than Ramsey’s Theorem for pairs in
two colors in RCA0 [7]. We can stress this difference also in the intuitionistic proofs. In fact
the proof of the Termination Theorem in [6] uses:

if R0, . . . , Rn−1 are well-founded then
⋃
{Ri | i < n} is H-well-founded,

where the hypothesis is stronger than in the H-closure Theorem, by Proposition 8. On the
other hand the proof of the SCT∗ Theorem above uses the whole H-closure Theorem.

Let us conclude this section with an example of an SCT∗ program.

I Example 21. Let us consider the following functional program, where ∗ denotes any value.

g(x, y, temp, exp, z) :=if (z = 0) 0
else if (z = 1) temp
else τ0 : g(∗, ∗, temp + exp, exp, z − 1)

f(x, y, temp, exp, z) :=if (y = 0) 1
else if (y = 1) exp
else τ1 : f(x, y − 1, ∗, g(x, y, 0, exp, x)), ∗)

As in Example 3, f(x, y, 0, 1, z) computes xy. The idempotent graphs in cl(G) are Gτ0 : g → g

and Gτ1 : f → f (since the source and the target of the other size-change graphs are different).
Gτ0 is composed of z ↓−→ z and exp ⇓−→ exp, while Gτ1 is composed of y ↓−→ y and x

⇓−→ x.
Hence this program is SCT∗ since it satisfies the condition of the SCT∗ Theorem.

5 Tail-recursive SCT* programs compute exactly primitive recursive
functions

In this section we compare size-change termination and transition invariant termination. As
Heizmann, Jones and Podelski did, we restrict the domain of the programs we consider in
order to match transition invariants termination and SCT∗. In fact SCT (and so SCT∗) is
defined for functional programs, while Podelski and Rybalchenko’s termination is defined
for transition-based programs. As they did from now on we consider just tail-recursive
functional programs (where all functions use the same variables), for which there exists a
direct transition-based translation into while-if programs. We refer to [13] for details. The
reader has to keep in mind that along all this section we have at the same time a functional
program, which we denote by P , and its translation as a transition-based program RP . The
only property we use of the translation RP is that RP consists of: while, if, a program
counter and the values of the variables of P. If P were recursive but not tail-recursive, RP
should include also a stack, but we explicitly assume that this is not the case. We will derive
a characterization of P from a characterization of RP .

The goal of this section is to prove, by using the result obtained in [4], that the functional
programs which are tail-recursive and are SCT∗ compute exactly the primitive recursive
functions. Ben-Amram in [3] already proved that the tail-recursive SCT programs compute
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primitive recursive functions, however we present a completely different proof which uses an
analysis of the intuitionistic proof of the Termination Theorem, in the case of a transition
invariant of height ω. In fact we intuitionistically prove that if a program P is SCT∗ then
RP has a transition invariant of height ω.

First of all we recall some definitions and results useful to compare size-change termination
and Podelski and Rybalchenko’s termination. Each state in the transition-based program
RP which corresponds to the tail-recursive functional program P is a tuple s composed of
the location s(pc) of the program instruction and a value s(x) for any variable x. We define
a relation Φ(G) on states saying that whenever G includes a decreasing edge x ↓−→ y then the
value of y in the second state is smaller than the value of x in the first state, and similarly
for any weakly-decreasing edge.

I Definition 22 (Transition relation of a size-change graph, Definition 26 [13]). Given a size-
change graph G : f → g, define the binary relation over states Φ(G) ⊆ S × S as follows:
s′Φ(G)s if and only if s(pc) = f , s′(pc) = g and∧{

s(zi) ≥ s′(zj) | (zi
⇓−→ zj) ∈ G

}
∧
∧{

s(zi) > s′(zj) | (zi
↓−→ zj) ∈ G

}
.

The transition relation ρτ associated to the transition

f(x0, . . . , xn−1) = . . . τ : g(e0, . . . , en−1), . . . ,

is defined as follows:

ρτ =
{

((f,v), (g,u)) | (f,v) τ−→ (g,u)
}
.

Observe that if Gτ is the size-change graph assigned to the call τ of program P, Gτ is
safe for τ if and only if the inclusion ρτ ⊆ Φ(Gτ ) holds.

I Lemma 23 (Lemma 29 [13]). The composition of the two size-change graphs G1 : f → g

and G2 : g → h overapproximates the composition of the relations they define, i.e.

Φ(G1) ◦ Φ(G2) ⊆ Φ(G1;G2).

The authors of [13] proved the following lemma about the connection between G and
Φ(G).

I Lemma 24 (Lemma 31 [13]). Let G be a size-change graph such that source and target of
G coincide. If G has an edge of form x

↓−→ x then the relation Φ(G) is well-founded.

They also noticed that the vice versa does not hold in the general case, however we prove
that if G is idempotent this equivalence holds.

I Lemma 25. Let G be an idempotent size-change graph. Then G has an edge of form
x
↓−→ x if and only if the relation Φ(G) is well-founded.

Proof.
“⇒”: It follows from Lemma 24.
“⇐”: Observe that “there exists a variable x in the source of G, x ↓−→ x ∈ G” is a decidable
statement, since G is finite. Therefore either G has some edge of the form x

↓−→ x, or G
has no edge of this form. In the first case we are done, in the second one we will prove a
contradiction, that Φ(G) is not well-founded. This argument intuitionistically shows the
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thesis, because from a contradiction we may derive everything. Let V be the set of the
variables in the source of G. Define the following preorder on V :

x - y ⇐⇒ x = y ∨ y
↓−→ x ∨ y

⇓−→ x.

It is reflexive by definition and it is transitive since G is idempotent: if y r−→ x ∈ G and
z
r′−→ y ∈ G then z r′′−→ x ∈ G for some r′′ ∈ {↓,⇓}.
Let us consider the quotient X of V with respect to the equivalence relation

x ∼ y ⇐⇒ x - y ∧ y - x.

In X, - is an order since it is also antisymmetric. Moreover X is finite then, by Proposition 6,
- is well-founded on X. Hence for any equivalence class [x] ∈ X we can define h([x]) to
be the height of [x] with respect to - in X: i.e. the number of elements [y] ∈ X such that
[y] - [x].

Then we can define a state s as follows: for any x ∈ V , s(x) = h([x]). We claim that
sΦ(G)s. In fact

if y ⇓−→ x ∈ G then x - y and we have two possibilities: if [x] = [y] in X then s(x) = s(y),
otherwise h([x]) < h([y]) and so s(x) < s(y);
if y ↓−→ x ∈ G then x - y. Moreover y - x is false, otherwise by case analysis from
y
↓−→ x ∈ G and x = y ∨ x ↓−→ y ∈ G ∨ x ⇓−→ y ∈ G we deduce x ↓−→ x ∈ G, contradicting

the hypothesis. Hence h([x]) < h([y]) and so s(x) < s(y).
Then sΦ(G)s and so Φ(G) is ill-founded. Contradiction. J

Thanks to the SCT∗ Theorem and the lemma above, we may observe that if P is
tail-recursive, P is SCT∗ if and only if for every G ∈ cl(GP) idempotent Φ(G) is well-founded.

Our next goal is to prove that any tail-recursive program which is SCT∗ computes a
primitive recursive function. In order to do that we modify the proof by Heizmann, Jones
and Podelski of “

⋃
{Φ(G) | G ∈ cl(GP)} is a transition invariant”. We will prove that it is a

transition invariant of height ω. In order to do this we need the following lemmas.

I Lemma 26. Every finite semigroup G has an idempotent element.

Proof. Let x ∈ G and consider the following chain

x 7→ x2 7→ (x2)2 = x4 7→ . . . 7→ xn 7→ (xn)2 7→ . . . .

Since G is finite, there exists y in the previous chain such that yk = y, for some k ≥ 2. Put
z = yk−1, then

z · z = yk−1 · yk−1 = yk · yk−2 = y · yk−2 = yk−1 = z. J

Even if the previous definitions and results can be stated for any functional program, we
highlight now that we need tail-recursive functional programs in order to have the translation
RP of P. In this case each state of RP is composed of the location of the program and the
values in N of the variables.

I Lemma 27. Let G be a size-change graph. Let k be a positive natural number. If Gk is
such that x ↓−→ x for some x then Φ(G) has height ω.
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Proof. Assume that x ↓−→ x in Gk. We distinguish the cases k = 1 and k ≥ 2.
If k = 1, let f : dom(Φ(G)) → N be such that f(s) = s(x). Since If s′Φ(G)s, then by

x
↓−→ x ∈ G we deduce s′(x) < s(x), hence f(s′) < f(s). Thus f is a weight function for

Φ(G).
Assume now that k ≥ 2, since x ↓−→ x in Gk, then there exist y0, . . . , yk−2 such that

x→ y0 → · · · → yk−2 → x

where at least one of these arrows is strictly decreasing. Then define a function f :
dom(Φ(G))→ N by

f(s) =
k−2∑
i=0

s(yi) + s(x).

Hence if s′Φ(G)s then each of the s′(yi) and s′(x) is less or equal to the ones of s. Moreover
one of these is strictly less, since at least one of the edges of G is strictly decreasing. So
f(s′) < f(s) and this means that f witnesses that Φ(G) has height ω. J

By using the results above we can modify the Theorem Idempotence and well-foundedness
[13, Theorem 32] which states that if for any G ∈ cl(GP) idempotent Φ(G) is well-founded,
then Φ(G) is well-founded for any G ∈ cl(GP).

I Theorem 28. If

∀G ∈ cl(GP)(G;G = G =⇒ Φ(G) is well-founded)

then Φ(G) has height ω for every graph in cl(GP).

Proof. Let G ∈ cl(GP) be a size-change graph. There are two possibilities. On the one
hand, if the source and target of G do not coincide, then Φ(G) ◦ Φ(G) = ∅, therefore Φ(G)
has height ω. On the other hand, assume that source and target of G coincide. Then Gn
is defined for any n ∈ N. Since the semigroup ({Gn | n > 0}, ; ) is finite, by Lemma 26 it
has an idempotent element Gk. Since Φ(Gk) is well-founded by hypothesis we obtain, by
applying Lemma 25, that x ↓−→ x ∈ Gk for some x. By Lemma 27 Φ(G) has height ω and we
are done. J

I Corollary 29 (Corollary 33 [13]). If the program P is size-change terminating for a set of
size-change graphs GP that is a safe description of P, then the relation defined by its closure
cl(GP)⋃

{Φ(G) | G ∈ cl(GP)}

is a disjunctively well-founded transition invariant for RP .

Therefore, thanks to Theorem 28, all Φ(G) have height ω: by definition, the transition
invariant has height ω. In [4] and [11] it is proved that if R has a transition invariant of
height ω then it computes a primitive recursive function.

We apply this result to the while-if program RP which translates the tail-recursive
program P . We obtain:

I Proposition 30. Each tail-recursive program which is SCT∗ is primitive recursive.
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This result was already proved by Ben-Amram in [3] using the classical definition of SCT.
He proved that in general SCT programs compute multiple recursive function. As a corollary,
by observing that if you do not use nested recursive calls a multiple recursive function is
primitive recursive, he obtained that any tail-recursive SCT program computes a primitive
recursive function.

By using our proof we can easily obtain a bound whose class is given by the number of
relations of the transition invariant. In fact the weight function provided in Lemma 27 is in
F1, since f(s) < |s| · F0(max(s)) and for any program |s| is fixed. Therefore by applying the
bound provided in [11] we have that if the transition relation of RP is the graph of a function
in Fn, there is a bound in Fk+n−1 where k is the number of the relations which compose
the transition invariant whose weight functions are in F1. Therefore by Corollary 29, we can
conclude that if the transition relation is in F2, the function is in F |cl(GP)|+1. Unfortunately
cl(GP) is exponential in GP , so this bound is huge. We have also another bound on the
number of variables. In fact in the proof of Theorem 28 we saw that for any G there exists
k > 0 such that Gk is idempotent. Let us consider the minimum such k. Then, by following
the proof of Lemma 27 there exists either a x ↓−→ x for some x or a chain

x→ y0 → · · · → yk−2 → x

for some variables, where at least one arrow is strict. Observe that all the variables in the
chain are different: there is not a path which connect some yi to itself, by minimality of k.
The weight function we built for Φ(G) is given by the sum of the values which corresponds
to these variables. This means that if we have n-many variables, the number of possible
weight functions f of this kind is

n∑
i=k

(
n

k

)
= 2n − 1.

Since if R and R′ have the same weight function, then also R ∪R′ have this weight function,
we can merge the relations in the transition invariant found in such a way their number is
less or equal to the number of the possible weight functions. Unfortunately also this bound
is exponential (in the number of variables), so it is huge too.

I Example 31. The program considered in Example 21 is tail-recursive. Observe that

Φ(Gτ0) = {s′Φ(G)s | s′(pc) = s(pc) = g ∧ s′(z) < s(z) ∧ s′(exp) ≤ s′(exp)} ;
Φ(Gτ1) = {s′Φ(G)s | s′(pc) = s(pc) = f ∧ s′(y) < s(y) ∧ s′(x) ≤ s′(x)} ;
Φ(Gτ2) = {s′Φ(G)s | s′(pc) = f ∧ s(pc) = g} .

Then Φ(Gτ0)∪Φ(Gτ1)∪Φ(Gτ2) is already a transition invariant of height ω for the transition-
based program which corresponds to it (Example 3 where l = g and l′ = f). Trivially,
also

⋃
{Φ(G) | G ∈ cl(GP)} is a transition invariant and the function computed is primitive

recursive.

Furthermore we can observe that each primitive recursive function has a tail-recursive
implementation which is SCT∗.

I Proposition 32. Each primitive recursive function has an implementation which is SCT∗.

Proof. By induction on the primitive recursive functions.
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For the constant function, successor function and the projection function it is trivial since
we can write tail-recursive first order functional programs which have no idempotent
size-change graphs.
Assume that the primitive recursive functions g0, . . . , gn−1 and f have an implementation
which is SCT∗. By using them it is straightforward to show that the standard program
which computes their composition

h(x0, . . . , xk−1) = f(g0(x0, . . . , xk−1), . . . , gn−1(x0, . . . , xk−1))

is SCT∗. In fact each idempotent size-change graph corresponds to some call in the
definitions either of gi for some i < k or of f .
Assume that the primitive recursive functions f and g have a SCT∗ program which
computes it. Then, by using these programs we can define a standard tail-recursive SCT∗

program which computes

h(x0, . . . , xk−1, y) =
{
f(x0, . . . , xk−1) if y = 0
g(h(x0, . . . , xk−1, y − 1), y) otherwise.

As observed in the previous point each size-change graph which corresponds to some call
either in f or in g, has the desired property. There is only one new size-change graph
G ∈ cl(GP) derived from the definition of h. Since y ↓−→ y ∈ G, we are done. J

6 Transition Invariants Termination as a property of size-change
graphs

In the previous section we proved that if a tail-recursive program is SCT∗ then it has a
transition invariant of height ω. In this section we will see a statement on functional programs
strictly weaker than SCT∗ which is equivalent to the definition of termination by Podelski
and Rybalchenko, so it is equivalent to have a transition invariant of general height.

Thanks to Lemma 25, we saw that if P is tail-recursive, P is SCT∗ if and only if for
every G ∈ cl(GP) idempotent Φ(G) is well-founded. Recall that Podelski and Rybalchenko
analyse the termination of while-if programs, and in order to have a simple relationship with
while-if program we restrict the functional programs to be tail-recursive. Here we prove that
a tail-recursive program P has a disjunctively well-founded transition invariant if and only if
for any G ∈ cl(GP) idempotent Φ(G)∩R+ is well-founded, where R is the transition relation
of RP . The proof of “for any G idempotent Φ(G) ∩R+ is well-founded implies termination”
follows, with some little changes, the proof of Corollary 29 studied in [13, Corollary 33].

The first step is to intuitionistically prove another version of the Theorem Idempotence
and well-foundedness [13, Theorem 32]. In order to do that we need the following lemma.

I Lemma 33. Let R be a binary relation on I and k ∈ N and T a transitive binary relation.
If Rk ∩ T is well-founded then R ∩ T is well-founded.

Proof. Let k = 2. Induction on x with respect to R2. Assume that

∀z(z(R2 ∩ T )x =⇒ z is (R ∩ T )-well-founded ).

By two applications of point 1 of Proposition 5,

x is (R ∩ T )-well-founded ⇐⇒ ∀y(y(R ∩ T )x =⇒ y is (R ∩ T )-well-founded)
⇐⇒ ∀y(y(R ∩ T )x =⇒ (∀z(z(R ∩ T )y =⇒ z is (R ∩ T )-well-founded))).



S. Steila 305

Observe that since z(R ∩ T )y and y(R ∩ T )x then z(R2 ∩ T )x. This implies by inductive
hypothesis that z is (R ∩ T )-well-founded. So for every x ∈ I, x is (R ∩ T )-well-founded.
The idea of the proof for k > 2 is to prove it by induction on x with respect to Rk and to
repeat the same argument providing in the case above, by using k-many steps following
point 1 of Proposition 5 in order to get z(Rk ∩T )x. By applying the inductive hypothesis
we will obtain our thesis. J

I Theorem 34. If

∀G ∈ cl(GP)(G;G = G =⇒ Φ(G) ∩R+ ∩ (Acc×Acc) well-founded )

then Φ(G) ∩R+ ∩ (Acc×Acc) is well-founded for every graph in cl(GP).

Proof. Let G ∈ cl(GP) be a size-change graph. We have two cases. On the one hand, if the
source and target ofG do not coincide, then Φ(G)◦Φ(G) = ∅, therefore Φ(G)∩R+∩(Acc×Acc)
is well-founded. On the other hand, assume that source and target of G coincide. In this case
Gn is defined for all n ∈ N. Since the semigroup ({Gn | n ∈ N}, ; ) is finite, by Lemma 26 it
has an idempotent element Gk. By Lemma 23 the inclusion Φ(G)k ⊆ Φ(Gk) holds. Then

Φ(G)k ∩R+ ∩ (Acc×Acc) ⊆ Φ(Gk) ∩R+ ∩ (Acc×Acc)

By hypothesis, since Gk is idempotent we have: Φ(Gk) ∩R+ ∩ (Acc×Acc) is well-founded.
Then Φ(G)k ∩R+ ∩ (Acc×Acc) is well-founded by Lemma 23 and therefore by Lemma 33
also Φ(G) ∩R+ ∩ (Acc×Acc) is well-founded. J

Therefore we obtain the corresponding version of Corollary 29.

I Corollary 35. Let P be a program and let GP be a set of size-change graphs that is a
safe description of P. If for every G ∈ cl(GP) idempotent, Φ(G) ∩ R+ ∩ (Acc×Acc) is
well-founded, then the relation defined by its closure cl(GP)⋃{

Φ(G) ∩R+ ∩ (Acc×Acc) | G ∈ cl(GP)
}

is a disjunctively well-founded transition invariant for RP .

Proof. Thanks to the proof of Corollary 29 in [13, Corollary 33]

R+ ⊆
⋃
{Φ(G) | G ∈ cl(GP)} .

Then

R+ ∩ (Acc×Acc) ⊆
⋃{

Φ(G) ∩R+ ∩ (Acc×Acc) | G ∈ cl(GP)
}
.

Moreover, by hypothesis and thanks to Lemma 34 the relation Φ(G) ∩R+ ∩ (Acc×Acc)
is well-founded. Hence

⋃
{Φ(G) ∩R+ ∩ (Acc×Acc) | G ∈ cl(GP)} is a disjunctively well-

founded transition invariant for RP . J

Finally we prove the equivalence, the other implication is trivial.

I Theorem 36. Given a program P the followings are equivalent:
1. for every G ∈ cl(GP) idempotent, Φ(G) ∩R+ ∩ (Acc×Acc) is well-founded;
2. there is a disjunctively well-founded transition invariant for RP .
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Proof. “⇑”: If 2 holds, then R+ ∩ (Acc×Acc) is well-founded. Then for every G ∈ cl(GP)

Φ(G) ∩R+ ∩ (Acc×Acc) ⊆ R+ ∩ (Acc×Acc),

is well-founded.
“⇓”: If 1 holds, then by Corollary 35 we obtain the thesis. J

To conclude observe that the condition (1) in the previous theorem is strictly weaker
than being SCT. To put otherwise: using a transition invariant, we may prove terminating
some programs RP which are while-if translation of non-SCT tail-recursive programs P . The
following basic example explains why.

I Example 37. Let us consider the following functional program:

f(x, y) :=if (x > y) x

else τ : f(x+ 1, y).

It is not SCT since Gτ is idempotent and has no decreasing edges. In particular Φ(G) is not
well-founded. However Φ(G)∩R+ is and therefore this program satisfies the condition (1) of
Theorem 36, therefore in particular it is terminating.

7 Conclusions

In this work we presented an intuitionistic proof of the SCT∗ Theorem. This is not the
first intuitionistic proof of the SCT Theorem. Vytiniotis, Coquand and Wahlsteldt in [20]
intuitionistically proved it by using Almost-Full relations. A binary relation R over a set
S is almost-full if the set of finite sequences x0, x1, . . . , xn on S, such that for no i < j ≤ n
xiRxj holds, is inductively well-founded. Classically, the set of almost-full relations R is the
set of relations such that the complement of the inverse of R is H-well-founded. However,
we need De Morgan’s Law to prove this equivalence. Therefore it is not evident whether the
H-closure Theorem may be intuitionistically derived from the Almost-full Theorem, or the
other way round. The proof of the SCT Theorem in [20] uses the following facts:

almost-full relations are closed under finite intersections;
if R and T are two binary relations such that T ∩R−1 = ∅ and R is almost-full, then T
is well-founded.

In our intuitionistic proof, instead, we use H-well-founded relations and:
H-well-founded relations are closed under finite unions;
if a binary relation R is H-well-founded and transitive then it is well-founded.

In [6] we showed that we may provide an intuitionistic proof of the Termination Theorem
by replacing the use of Ramsey’s Theorem for pairs with the use of the H-closure Theorem.
In this paper we did the same for the SCT Theorem. Since Ramsey’s Theorem for pairs is
used in many branches of mathematics, in future works we hope to apply this method to
other classical results based on it, in order to obtain intuitionistic proofs.

We proved that the functions which are computed by a tail-recursive SCT∗ program are
exactly the primitive recursive functions. This result fits in with the one by Ben-Amram [3]:
he proved that the SCT programs compute primitive recursive functions. More in details, for
any tail-recursive SCT program we provided some primitive recursive bound to the number
of computation steps given an input. However as discussed in Section 5 the bound obtained
in this way is large. An open question is whether we may extract from the intuitionistic
proof of the SCT∗ Theorem a bound stricter than this one.
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